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Abstract

This thesis explores automatic and semi-automatic structuring approaches for icono-
graphic heritage contents collections. Indeed, exploiting such contents could prove ben-
eficial for numerous applications. From virtual tourism to increased access for both re-
searchers and the general public, structuring the collections would increase their accessi-
bility and their use. However, the inherent "in silo" organization of those collections, each
with their unique organization system hinders automatic structuring approaches and all
subsequent applications.

The computer vision community has proposed numerous automatic methods for in-
dexing (and structuring) image collections at large scale. Exploiting the visual aspect of
the contents, they are not impacted by the differences in metadata structures that mainly
organize heritage collections, thus appearing as a potential solution to the problem of
linking together unique data structures. However, those methods are trained on large,
recent datasets, that do not reflect the visual diversity of iconographic heritage contents.
This thesis aims at evaluating and exploiting those automatic methods for iconographic
heritage contents structuring.

To this end, this thesis proposes three distinct contributions with the common goal of
ensuring a certain level of interpretability for the methods that are both evaluated and
proposed. This interpretability is necessary to justify their efficiency to deal with such
complex data but also to understand how to adapt them to new and different content.

The first contribution of this thesis is an evaluation of existing state-of-the-art au-
tomatic content-based image retrieval (CBIR) approaches when faced with the different
types of data composing iconographic heritage. This evaluation focuses first on image
descriptors paramount for the image retrieval step and second, on re-ranking methods
that re-order similar images after a first retrieval step based on another criterion. The
most relevant approaches can then be selected for further use while the non-relevant ones
provide insights for our second contribution.

The second contribution consists of three novel re-ranking methods exploiting a more
or less global spatial information to re-evaluate the relevance of visual similarity links
created by the CBIR step. The first one exploits the first retrieved images to create an
approximate 3D scene of the scene in which retrieved images are positioned to evalu-
ate their coherence in the scene. The second one simplifies the first while extending the
classical geometric verification setting by performing geometric query expansion, that is
aggregating 2D geometric information from retrieved images to encode more largely the
scene’s geometry without the costly step of 3D scene creation. Finally, the third one
exploits a more global location information, at dataset-level, to estimate the coherence of
the visual similarity between images with regard to their spatial proximity.

The third and final contribution is a framework for semi-automatic visual validation
and manual correction of a collection’s structuring. This framework exploits on one side
the most suited automatic approaches evaluated or proposed earlier, and on the other
side a graph-based visualization platform. We exploit several visual clues to focus the ex-
pert’s manual intervention on impacting areas. We show that this guided semi-automatic
approach has merits in terms of performance as it solves mistakes in the structuring that
automatic methods can not, these corrections being then largely diffused throughout the
structure, improving it even more globally.
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We hope our work will provide some first insights on automatically structuring heritage
iconographic content with content-based approaches but also encourage further research
on guided semi-automatic structuring of image collections.

Keywords: Content-based image retrieval, Re-ranking, Visual and spatial collection
structuring, Graph-based visualization and structuring, Deep learning.
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Résumé

Cette thèse explore des approches de structuration automatique et semi-automatique pour
les collections de contenus iconographiques patrimoniaux. La structuration et l’exploita-
tion de tels contenus pourrait s’avérer bénéfique pour de nombreuses applications, du
tourisme virtuel à un accès facilité pour les chercheurs et le grand public. Cependant,
l’organisation "en silo" inhérente à ces collections entrave les approches de structuration
automatique et toutes les applications subséquentes.

La communauté de la vision par ordinateur a proposé de nombreuses méthodes au-
tomatiques pour l’indexation (et la structuration) de collections d’images à grande échelle.
Exploitant l’aspect visuel des contenus, elles fonctionnent indépendamment des structures
de métadonnées qui organisent principalement les collections patrimoniales, apparaissant
ainsi comme une solution potentielle au problème de liage entre les structures uniques
des différentes collections. Cependant, ces méthodes sont généralement entrainées sur
de grands jeux d’images récentes ne reflètant pas la diversité visuelle des contenus pat-
rimoniaux. Cette thèse vise à évaluer et à améliorer ces méthodes automatiques pour la
structuration des contenus iconographiques patrimoniaux.

Pour cela, cette thèse apporte trois différentes contributions avec l’objectif commun
d’assurer une certaine explicabilité des méthodes évaluées et proposées, nécessaire pour
justifier de leur pertinence et faciliter leur adaptation à de nouvelles acquisitions.

La première contribution est une évaluation des approches automatiques de recherche
d’images basée sur le contenu, confrontées aux différents types de données du patrimoine
iconographique. Cette évaluation se concentre d’abord sur les descripteurs d’images de
l’étape de recherche d’images, puis sur les méthodes de ré-ordonnancement qui réorga-
nisent ensuite les images similaires en fonction d’un autre critère. Les approches les plus
pertinentes peuvent alors être sélectionnées pour la suite tandis que celles qui ne le sont
pas fournissent des informations inspirant notre deuxième contribution.

La deuxième contribution consiste en trois nouvelles méthodes de ré-ordonnancement
exploitant des informations spatiales plus ou moins globales pour réévaluer les liens de
similarité visuelle créés par l’étape de recherche d’images. La première exploite les pre-
mières images retrouvées pour créer une scène 3D approximative dans laquelle les images
retrouvées sont positionnées pour évaluer leur cohérence dans la scène. La deuxième sim-
plifie la première avec une expansion de requête géométrique, c’est-à-dire en agrégeant
des informations géométriques 2D issues des images récupérées pour encoder plus large-
ment la géométrie de la scène sans la reconstruire (ce qui est couteux en temps de calcul).
Enfin, la troisième exploite des informations de position plus globales, à l’échelle du jeu
d’images, pour estimer la cohérence entre la similarité visuelle entre images et leur pro-
ximité spatiale.

La troisième et dernière contribution est un processus semi-automatique de valida-
tion visuelle et de correction manuelle de la structuration d’une collection. Ce cadre
exploite les approches automatiques les plus adaptées et une plateforme de visualisation
basée sur une représentation en graphes. Nous utilisons plusieurs indices visuels pour
orienter l’intervention manuelle de l’expert sur les zones impactantes. Cette approche
semi-automatique guidée présente des avantages certains, car elle résout des erreurs de
structuration qui échappent aux méthodes automatiques. Ces corrections étant ensuite
largement diffusées dans toute la structure, l’améliorant globalement.
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Nous espérons que notre travail apportera quelques perspectives sur la structuration
automatique de contenus iconographiques patrimoniaux par des approches basées sur le
contenu, tout en ouvrant la porte à davantage de recherches sur la structuration semi-
automatique guidée de collections d’images.

Mots-Clés: Recherche d’images par contenu visuel, Ré-ordonnancement des résul-
tats, Structuration visuelle et spatiale des collections, Structuration et visualisation basée
graphe, Apprentissage profond.
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From archiving purposes to immersive visualization via new research purposes, exploit-

ing digital and digitized iconographic heritage contents could have numerous impactful

applications. This thesis presents approaches furthering the structuring of such contents,

promoting their use. This first chapter outlines the goals, challenges, motivations and

contributions of our work.

The starting point of this thesis is the increased availability of digital or digitized

iconographic heritage contents, opening new areas of research and offering new poten-

tial applications. This increase in digitization stems from two paradigms. On the one

hand, GLAMs (Galleries, Libraries, Archives and Museums) exploit digitization for the

purpose of conservation and exploitation of their contents. On the other hand, the French

administration is leading a large and accelerating campaign to promote open data for

disseminating and promoting public data, which further lead french GLAMs down the

path of digitization for open access distribution.

However, this growing availability revealed that the specific characteristics of these

contents prove to be challenging for a complete use of their potential. Indeed, due to

their specific organization, structuring issues prevent a large scale usage. To alleviate

those challenges, owners of these contents developed structuring standards and methods.

However, those remain very collection-based, thus barely solving the large scale use issues.

From another perspective, large-scale indexing of image collections is a growing field

for the past decade, that benefited greatly from technological advancements in terms

of storage and computational capabilities, as well as the advancements in the field of

computer vision, proposing efficient large-scale solutions for image indexing. However,

those solutions are developed with rather recent contents and barely tested against the

more difficult cases that are brought on by digitized iconographic heritage.

This thesis aims to bridge the gap between large-scale automatic image indexing meth-
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ods and the specificities of iconographic heritage contents, to propose new structuring

paradigms for iconographic heritage contents. More structure and interlinking of con-

tents could further their large scale use for multiple goals. Those are what motivate our

thesis and we detail them in the following section.

1.1 Motivations

The digitization process started by many GLAMs has two main purposes. On the one

hand, this process ensures an obvious objective of digital archiving of all contents. On

the other hand, many new applications could make use of those newly available contents.

This section introduces some potential applications as well as the challenges hindering

their deployment.

1.1.1 Various potential applications

The uses of iconographic heritage contents are multiple. The applications examples pre-

sented here are not exhaustive but rather highlight the multiplicity and diversity of po-

tential uses, especially when the contents are digitized and linked together.

First, digital collections are much more accessible via web-based platforms. This

allows GLAMs to reach more and more people, promoting their collections, their work,

but also serving potential educative purposes. Indeed, as George Santayana said, "Those

who cannot remember the past are condemned to repeat it". Thus, ensuring access to

information on the past is paramount for history or geography teachers, students, but

also the general public. Especially in our time in which visualization is key, allowing

such contents to be readily available to students or to the media for instance becomes

paramount. The French National Audiovisual Institute for instance has started to do such

comparisons between past reactions and current reactions to a similar problematic.

From another perspective, further from the general public, the accessibility of digitized

iconographic contents proves to be a new and rich source of data for multiple fields of

research, especially in social sciences and humanities. Even though those contents were

already present, their digitization furthered somewhat their accessibility, making it a more

readily usable source of information. These new contents prove usable as illustrations,

source or support of new theories within research projects (examples are the ALEGORIA

project (ALEGORIA project, 2018) or the Archival City project (Archival City Project,

2019; Blettery et al., 2020)).

Furthermore, exploiting such iconographic heritage contents could also serve more

current and pressing issues. Indeed, satellite data for instance is now widely use for

change detection and land use monitoring. It allows to follow the territory’s evolution

throughout decades. Iconographic heritage in our thesis focuses more on street-level

depictions of landmarks. They could be used for similar purposes of change detection

and analysis. Indeed, whether for ecological studies or urban planning studies, knowing

how an area was before and how it was affected by different types of human interventions
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is immensely useful to plan new urban developments or to protect sensitive areas. "A

picture is worth a thousand words" to convey an idea and can help understand what

multiple written reports would tell in a less intuitive way. A similar field that could

benefit from these contents is architectural refurbishments projects. Indeed, visualizing

a building at its prime, in an immersive fashion, and comparing it to the actual scene

should help promote new ideas to both do repairs and respect the original spirit of the

building, especially in this time when renovation plans are more and more numerous.

Apart from the specific studies, visualization of the collections can also be performed

in multiple, more or less intuitive and immersive ways. From simple browsing of images on

the web to advanced visualization platforms using Augmented/Virtual Reality paradigms,

the showcasing of contents can be pushed very far. Going further with virtual reality

applications could lead to full virtual guided tour to "visit the past", making the past a

more tangible object to visualize, explore, and analyze. The augmented reality paradigm

could lead to actual guided tour with the possibility to visualize a place as it was fifty or

a hundred years ago for instance. Those visualization paradigms could as well be applied

to all types of modern studies like urban planning. Indeed, standing in front of a future

urban development and seeing immersively how it was fifty years ago could foster new

thinking and prevent planners from repeating past mistakes they may have overlooked

"on paper".

Finally, even within the collections’ own organization, the digitization process intro-

duced a new way of organizing contents, leading to new structuring and added information

to the contents, as links are inherently created as a new, digitized structuring is created.

Furthermore, as new structuring and new content (digitally available ones) are available,

more fields of study can exploit this data. Thus, combining multiple organizations, ap-

proaches and methods from different communities focusing on different aspects of the data

can be beneficial for all communities, as explained by (Meinecke, 2022).

1.1.2 A hindering lack of structure but several possible solutions

As the potential applications are numerous and attractive, their implementation is often

hindered by the lack of structure both intra-collection and inter-collections. Indeed, due

to the silo-based organization of the collections, few links between collections are available.

Furthermore, as each collection has its own specific organization and structuring, links are

hard to create. Structuring within a collection is furthermore based solely on the choices

made at creation time and can be hard to modify afterwards.

Having links between contents either within collections or between collections can

serve multiple purposes. First of all, to easily query relevant contents, which allows for

a more global use of all -rather sparse- data sources (that image collections often are).

Linking contents also allows checking for incoherences between metadata associated to

contents. Indeed, two images linked together as similar but not sharing the same address

for instance may reveal an issue with the address of one of them. Furthermore, links

between images also allow to propagate information between contents. Thus, if links
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are created between a collection where all images depicting buildings have an address

and another where all images depicting buildings have a construction date and architect

name, then similar images can be provided with all three information at once.

Though structuring may be hard, linking contents within each collection or between

collections could be based on several information. For instance, based on a localization

information (two images at the same address probably depict the same object). It can also

be based on semantic tags depicting what is shown on the images. It can also be based on

automatically computed visual similarity scores. In our context of iconographic heritage,

the metadata are often sparse and organized differently for each collection, making their

use difficult for automatic linking. However, visual similarity is agnostic to all this, thus

making it a potential solution for automatic linking.

Aware of the huge potential of exploiting iconographic heritage and the potential so-

lutions to structure collections, we detail in the next section the contributions we propose

to help interlinking and structuring collections of iconographic heritage contents.

1.2 Objectives and contributions

This section details our starting objectives and paradigms and the contributions they led

us to.

Starting hypotheses

The main objective of our work is to improve the structuring between various heritage

iconographic contents by leveraging existing automatic methods while remaining aware of

the specificities of the data considered. This main objective can thus be subdivided into

the following ones:

• Exploring the suitability of state-of-the-art large scale automatic image indexing

approaches;

• Proposing new approaches more suited to the specificities of the data considered;

• Exploiting structures specific to the considered collections to enrich the interlinking

of contents.

Due to the specificity of the data considered and the potential applications, the struc-

turing must be performed with the greatest understanding of the methods possible. In-

deed, interpretability of the approaches is paramount to understand why a method is

suited for some specific contents and not others. That allows to adapt methods accord-

ingly to the observed behavior. We will focus in our study on interpretable methods for

whose the impact of the data on their performance is explainable.

Furthermore, as shown previously, iconographic heritage contents depictions are mul-

tiple. We focus our work on visual representations of buildings depicting Parisian heritage

throughout the 20th century as presented in Chapter 2. Working with such objects allows
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to exploit several types of link between contents, either visual or spatial, as each building is

an immovable object. The linking of contents in our work may thus use information from

either the depicted object (the building) and the depiction of the object (the iconographic

content) but both should not be confused.

Outline and contributions

To address the objectives listed before, the main contributions of this thesis are detailed

next. They all aim at improving structuring within and between image collections. The

various proposed approaches do not attack the problem from the same angle, either at

query level or at collection-level, but all take into account the specificity and challenges

of the data considered. They are detailed in the outline of our thesis which consists of

eight chapters with two main parts with our contributions:

Chapter 1: Introduction. This first chapter introduces the general context of

our work. More specifically, it describes what motivates our research and outlines our

contributions.

Chapter 2: Iconographic Heritage: a focus on Paris. Out of the multiple

potential aspects of iconographic heritage, we choose to work on representations of build-

ings, both well-known and regular ones. This chapter further details the specificities of

iconographic heritage contents and presents the dataset we gathered for the remainder of

our experiments.

Part 1: Automatic Retrieval and Re-ranking. This part focuses on our work on

automatic, content-based image retrieval methods, applied to our heritage dataset.

Chapter 3: Related Work and its Evaluation. This chapter details our first con-

tribution. It is the review and evaluation of state-of-the-art approaches for content-based

image retrieval faced with iconographic heritage. Both image descriptors and re-ranking

approaches are evaluated with the dual objective of correctly linking similar images but

also ensuring a strong inter-collection retrieval, the goal of our thesis being the automatic

linking of contents between different collections. This led us to define which methods

are suited for this data and which are not but also to explain why. Furthermore, it also

provided interpretable insights that led to our second contribution.

Chapter 4: Our Contributions to Re-ranking. The second contribution

consisting of three re-ranking methods alleviating the challenges brought by iconographic

heritage on existing approaches are introduced in this chapter. For all of them, the idea

is to exploit information at a more global scale than just the query itself. In our case,

we exploit spatial information in two different contexts. Furthermore, one main focus of

these methods is for them to remain interpretable as to how and why they work better

with our data than existing approaches.

First, in a geometric query expansion setting, extending the classical geometric verifi-

cation paradigm. The idea of our first two propositions is to exploit the geometric infor-

mation gathered within the first retrieved images to extend the encoding of the scene’s

geometry, thus evaluating the geometric coherence of the retrieved images not only against
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the query’s geometry but against a larger geometry. Our two methods exploit for one a

3D reconstruction and for one an approximate 2D reconstruction of the scene.

Second, our third approach exploits the location information that is partially available

with the images. The idea is to evaluate the coherence of the visual similarity automat-

ically computed by weighing it against the spatial proximity between images. The idea

being that far away images are less likely to represent the same scene. If this method ex-

ploits spatial information in our case, it could use any structuring information associated

to the images.

Chapter 5: Re-ranking Strategies Evaluation. The proposed approaches are

evaluated in this chapter. The most-suited paradigms of re-ranking are then defined

and evaluated in depth to better understand which parameters are most important for

automatic retrieval and re-ranking on iconographic heritage contents.

Part 2: Graph-based Semi-automatic Retrieval. The second part of our thesis

focuses on a semi-automatic framework designed for structuring iconographic collections,

leveraging the large-scale impact of automatic methods and the focused impact of expert

knowledge.

Chapter 6: Structuring, Spatializing and Visualizing Iconographic Her-

itage. A review of methods designed for spatializing, visualizing and more globally struc-

turing iconographic heritage is presented in this chapter. This chapter aims to ground our

proposed framework within an ecosystem of platforms and approaches which all leverage

specific aspects of iconographic heritage for structuring collections.

Chapter 7: Graph-based Semi-automatic Re-ranking. The third and final

contribution of the thesis is developed in this chapter. It is a framework for semi-

automatic visual validation and manual correction of a collection’s structuring at a global

level. This framework first exploits the most suited automatic approaches evaluated in the

first part of the thesis to automatically estimate the best possible structuring. The struc-

tured collection is then visualized in a graph-based fashion on a web-based visualization

platform. Several visual clues are then introduced to guide the expert’s manual interven-

tions on impacting areas. We show that, though semi-automatic approaches are costly

in expert time, they can be optimized for the expert to intervene on the most important

structuring issues that automatic methods can not solve. This impacting corrections then

see their effects multiplied after diffusion throughout the entire structure. This framework

feeds on the insights from the first part in terms of what is most-suited for re-ranking and

structuring collections. It also provides a visual platform ideal for evaluating automatic

approaches, furthering our objective of interpretability of the structuring.

Chapter 8: Conclusion. This final chapter summarizes our work and offers insights

as to what the next step should be to further improve collection structuring in a more

automated and large-scale fashion.
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1.2.1 Context

The Ph.D. work presented in this thesis was part of a Cifre Ph.D. between the city of

Paris and the LaSTIG laboratory of the French Mapping Agency. This work was financed

by the City of Paris and the French ANRT through the Cifre grant 2019/1841. This work

was carried out using HPC resources from GENCI-IDRIS (Grant 2022-AD011013510 and

2023-AD011013510R1).

Furthermore, collections from several GLAMs were exploited during this work, namely

the city of Paris, the Médiathèque du Patrimoine et de la Photographie, the Musée Albert

Kahn and the Cité de l’Architecture.

1.3 Publications

The work in this thesis led to the following publications:

International Conferences

1. Emile Blettery, Nelson Fernandes and Valérie Gouet-Brunet, "How to Spatialize Ge-

ographical Iconographic Heritage", Proceedings of the 3rd Workshop on Structuring

and Understanding of Multimedia heritAge Contents, ACM Multimedia, Chengdu,

China, 2021, 31-40.

2. Emile Blettery and Valérie Gouet-Brunet, "Re-ranking Image Retrieval in Challeng-

ing Geographical Iconographic Heritage Collections", 20th International Conference

on Content-Based Multimedia Indexing, Orléans, France, 2023.

Under review Emile Blettery and Valérie Gouet-Brunet, "Heritage Iconographic Content Struc-

turing: from Automatic Linking to Visual Validation", Journal on Computing and

Cultural Heritage.
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2.1 Introduction

The previous chapter introduces the motivations of this thesis and the challenges they

face. Indeed, many of the characteristics of heritage contents are challenging for automatic

approaches relying on visual content. This chapter first presents how iconographic heritage

contents are challenging due to their visual aspect but also their organization in Section

2.2. To further study and evaluate this in the rest of the thesis, we design a specific

dataset depicting Paris throughout the last century, multiplying variations in terms of

collection of origin, color, viewpoint, level of detail, etc. This chapter extensively details

this dataset and its specificities in Section 2.3.
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Figure 2.1: Sample of images of iconographic heritage1

2.2 Iconographic heritage: a challenging object of

study

According to the Collins dictionary, a country’s heritage is all the qualities, traditions,

or features of life that have continued over many years and have been passed on from

one generation to another. This heritage may be transmitted through the ages in various

forms as listed by the UNESCO2. Iconography is "the art of representing or illustrating

by pictures, figures, images, etc.". Hence, iconographic heritage consists of all past visual

representations of a society’s way of life, culture, buildings, technological innovations

and so on. It can represent cultural aspects (monuments of course as well as mundane

places and scenes of life), but also natural or geographical landscapes, depicting scenes at

different times in the past. Iconographic heritage describes a specific state at a specific

time, based on the principle that iconography is a snapshot. Furthermore, even if a

common view of heritage implies that it comes from a somewhat distant past, we assume

that past photographs from even a year ago rapidly become part of iconographic heritage

as they represent a dated cultural aspect of society in a quickly evolving world. As all

iconography can be exploited for sociological and historical analysis, even recent pictures

are a testimony of a less distant past and become integral part of the iconographic heritage.

Because it would be difficult to perform an extensive study for all types of contents

related to iconographic heritage, in this thesis we choose to focus on one category of

1From top to bottom and left to right: Internet, CC-BY-NC 2.0 ; IGN, Stereopolis ; Internet, CC-BY-
NC-SA 2.0 ; Internet, CC-BY-NC 2.0 ; Internet, CC-BY-NC 2.0 ; Internet, CC-BY-NC 2.0 ; Internet,
CC-BY-NC 2.0 ; Internet, CC-BY-NC 2.0 ; IGN, Photothèque ; Archives Nationales, LAPIE ; Internet,
CC-BY-SA 2.0 ; Internet, CC-BY-NC 2.0

2http://www.unesco.org/new/en/culture/themes/illicit-trafficking-of-cultural-property/unesco-
database-of-national-cultural-heritage-laws/frequently-asked-questions/definition-of-the-cultural-
heritage/
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iconographic heritage, related to all the visual representations of geographical landmarks,

as illustrated in Figure 2.1 with various aerial and terrestrial iconographic representations

of landmarks.

From one side, this category of contents is extremely widespread because accounting

for a large portion of what people have liked to capture through drawings or amateur or

professional photographs. This leads to a huge visual testimony of our environment that

can benefit use cases and applications, ranging from historical and sociological studies

up to mobile mapping scenarios, through digital tourism, landscape ecology or remote

sensing. And from the other side, the visual representations associated with these objects

of interest are extremely diverse given the various acquisition conditions and the evolution

of landmarks over time.

With the development of powerful scanning tools and the availability of storage and

sharing infrastructures, increasing digitized or digital data are made available. In this

thesis, we focus on iconographic cultural heritage data which proves in its heterogeneous

aspect (Section 2.2.1) and its specific organization and structuring (Section 2.2.2) to be

of specific scientific interest as their analysis, i.e. their description, comparison, learning,

indexing and retrieval are complex and challenging.

2.2.1 Heterogeneous data

Various data types. When it comes to iconographic cultural heritage data, even so

the digitized format may be similar between images, the original medium used for the

depiction transfers its specificity to the digital image. Indeed, whether it is a painting,

an historical map, a postcard, or even printed-then-digitized photographs, the final image

content will have features specific to its original medium. Hence, iconographic cultural

heritage data cannot be apprehended as a single type of object but as a constellation

of objects, with both specificities and similarities when compared to one another. In

particular, this multiplicity of representations and data types leads to a large variety of

visual characteristics (color, texture, shapes, local patterns, etc.) that may be hard to

link together using off-the-shelf automatic indexing methods.

Increasing number of objects and representations. For the last decade, GLAMs

(Galleries, Libraries, Archives and Museums) have increased their digitization processes,

mostly as a new mean of conservation but also to render their collections available on a

dedicated platform.

Examples of those platforms are the Terra3 media library of the French Ministry

of Ecological Transition and Territorial Cohesion but also the Europeana Collections4

regrouping millions of digitized heritage items. Platforms like these allow the user to

browse through the collection using more or less precise search conditions (location, date,

theme, etc.). This "dive into the past" has made available many more representations of

the same objects or places (see Figure 2.2) and revealed depictions of old places that may

3https://terra.developpement-durable.gouv.fr/
4https://www.europeana.eu/
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now have disappeared. This multiplicity of depictions, on various media, at several dates,

from different points of view intensifies the heterogeneity of the images available.

Figure 2.2: Sacré-Cœur Basilica, at different times, from different perspectives using
various media5

Heterogeneous metadata. The nebulous and heterogeneous aspect of iconographic

heritage data is also heightened due to the variability between associated metadata. In-

deed, metadata are linked to the image depending on many factors: the considered col-

lection, the original medium, the curator of the collection, the information provided, the

application and audience targeted, etc. Hence, for instance, if the geographical location

depicted is considered, the level of metadata may be very different. From a simple de-

scription of the main object of the depiction to a precise address or even a precise 2D,

3D or 6D location (usually provided by mapping agencies), the level of detail is very dis-

parate. Furthermore, the formatting of the information is very collection-dependent. For

an address, you can have a single sentence containing the full address or three separate

entries for the street number, the street type, and the street name. Furthermore, as we

are on the topic of toponyms, as time passes, place names are modified to suit political

needs of because of city evolution (for instance Paris during the XIXth). Saint-Petersburg

for example has been renamed three times along the XXth. Hence, addresses associated

with images at a certain time may not correspond to current addresses if correspondences

between passed and current addresses are not known. The variety of combinations and

representations deepens even further the heterogeneity of the available data, which com-

5From top to bottom and left to right: Musée Nicéphore Niepce, Internet ; Internet, CC-BY-NC 2.0
; Musée Nicéphore Niepce, Internet ; Musée Nicéphore Niepce, Internet ; IGN, Photothèque ; Musée
Nicéphore Niepce, Internet ; Internet, CC-BY-NC-SA 2.0 ; Ville de Paris, Edouard Desprez / DHAAP /
Roger-Viollet
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bined with its specific organization makes requesting these contents harder than modern

datasets.

Metadata can also be structured in various models according to the needs and practices

of the different institutions in charge of the funds, which requires a prior harmonization

step to be fully exploitable together. Following the recommendations of the Web of Data

best practices for representing metadata, it is generally conventional to adopt a graphical

data model (RDF), accompanied by common and linked ontologies and repositories to

describe cultural objects (e.g. the ICA RiC-O international standard6). Alongside this

model, it is considered good practice to extend the publication principles in accordance

with the FAIR data principles7.

2.2.2 General organization and structure

In silo structuring. Cultural heritage data is traditionally preserved, organized, and

displayed by GLAMs. This physical distribution of the data has limited interactions

between collections, inducing this "in silo" organization. Generally, this structuring model

sees every collection as an independent, self-sufficient entity. The connections are very

sparse between them, the similarity and complementarity across collections being more

or less identified. Furthermore, as described in the previous section, metadata associated

to the iconography may be very collection-dependent. Indeed, metadata selection and

organization reflects the representation each institution has of its collections. This can

be influenced by institutional tradition, the date of creation of the collection, etc. This

collection-specific organization explains the difficulty to link collections between each other

but interlinking within a single collection may also prove difficult.

Traditional manual indexing. Structuring collections using indexes has mostly

been done manually, even with the help of IT tools. These manual methods require la-

borious work when it comes to updating indexes, for instance, to add new information or

to add a new object to the collection. Manual indexing requires expert knowledge (hence

the necessary employment of an archivist), but this knowledge is difficult to pass on from

one generation of archivists to the next. The consistency of the indexing process and the

indexes becomes one of the main obstacle when it comes to linking objects within a collec-

tion or with other collections. To alleviate this obstacle, the folksonomy (a spontaneous

decentralized collaborative annotation system, based on indexing by non-specialists) al-

lows for a quick annotation of numerous objects by multiple users using tags which in the

end create a classification and interlink contents. However, this bottom-up strategy offers

a quality that may be inferior to a taxonomy (top-down strategy, classification made by

the owners of the contents) and this may cause issues. Thus, this solution is often incom-

patible for professional applications and remains for general public applications (YouTube

for instance).

Weak intra-linking and interlinking. The "Linked Data" initiative (Berners-Lee,

6RiC-O standard: https://www.ica.org/standards/RiC/ontology
7FAIR principles: https://www.go-fair.org/fair-principles/
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2006) encourages the publication of structured data on the Web, not as isolated silos

of data, but by linking them together to form a global network of information, helping

sharing and querying information between machines, regardless of where it is stored. In

order to gain visibility and to make their data exploitable in other contexts, GLAMs have

started participating in this organization, mainly through the assignment of URI (Uniform

Resource Identifier) to collection items, relying on metadata. To go deeper, this kind of

initiative should also involve techniques relying on the content itself, to overcome the po-

tential problems associated with metadata (annotation cost, lack of metadata, metadata

not standardized, too specialized, etc.), and CBIR has a great role to play in such initia-

tive. Several research projects aim to alleviate those limitations: an example is the Indian

Ocean iconographic heritage network (Indian Ocean iconographic heritage network). Its

objective is first to improve digitization of the iconographic heritage of countries of the

Indian Ocean. The second objective is the sharing of resources and expertise and the

development of common tools to "create cultural content in a digital form throughout

the Indian Ocean area". From a more automated point of view, the ALEGORIA project

(ALEGORIA project, 2018) for instance works on automatically interlinking and exploit-

ing French institutional funds. Its consortium regroups ICT and social sciences research

laboratories, archives and museums. The idea being for the iconographic heritage content

to be a material for research, the product of the research in turn serving the better link-

ing and exploitation of the iconographic heritage. The existence of those projects and the

collaboration of the different actors reflect the realization by all actors of the pitfall that

this weak linking represents. The iconographic heritage and all its challenges appear as a

scientific object both challenging and full of promises.

To evaluate how these specificities impact the newly developed automatic approaches

dedicated to interlinking of image contents, we design and present in the following section

a specific dataset illustrating those specificities.

2.3 A test dataset focusing on Paris

As presented in the previous section, iconographic heritage is extremely diverse and for this

thesis, we focus on a specific iconography. We study the city of Paris, from 1900 onwards.

We more specifically exploit images depicting Parisian architecture mostly taken at street-

level, depicting both known landmarks and classical facades, a sample is shown in Figure

2.3. This dataset combines multiple collections from various GLAMs, all with specific

characteristics. We first present our two starting collections, the city of Paris’ one in

Section 2.3.1 and the Stereopolis one in Section 2.3.2. We then present the other providers

in Section 2.3.3 and summarize the dataset in Section 2.3.4. This dataset depicting a

certain type of iconographic heritage but reflecting all the diversity and heterogeneity of

the contents will then be used as a support for evaluating existing automatic approaches

and guide the proposition of new, more suited approaches.
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Figure 2.3: Sample of images in our dataset8

2.3.1 City of Paris’ image data

One of the two starting datasets was created by La Parisienne de Photographie, for dig-

itization and promotion purposes of the Roger-Viollet photographic archives agency’s

collections, owned by the city of Paris and now archived by the Department of Architec-

tural History and Archeology (DHAAP). The whole dataset comprises more than 13 691

photographs, depicting Paris throughout the 20th century between 1910 and 1979. The

dataset depicts various aspects of Paris, from photographs of paintings or city plans to

photographs of life scenes, via shots of archeological digs and findings. Most importantly,

it depicts the parisian architecture in ample details, showing the variability of Parisian

buildings and the evolution of the city through the century. In total, the architectural

part of the dataset consists of 8390 images. Examples of the dataset are shown in Figure

2.4.

The main specificity of this dataset is its sparsity, both spatially and temporally.

Indeed, a specific building can be shot from the same angle every two years, whereas

another can be shot from ten different angles twice thirty years apart. This sparsity

increases the variability in terms of visual aspect, as both photography techniques and

Paris evolved throughout the years.

Alongside those images, an image caption is almost always available. It may be a

textual description of the shot, an address (more or less detailed), a date of acquisition

(more or less precise). Indeed, the information linked to the image were manually added

by the photograph right after the acquisition or much later by archivists in an effort to

add information to the shots, which have resulted in errors and imprecisions.

Exploiting automatic, content-based indexation appears like a solution to detect ob-

vious errors in the metadata-linking process but also to enrich the existing metadata

between images depicting the same buildings. Indeed, if one has an address while another

has not, the address could be propagated. On the contrary, if they depict the exact same

building while not having the same address, it reveals a mistake that could be manually

8From top to bottom and left to right: © Charles Lansiaux / DHAAP / Roger-Viollet; © IGN,
Stereopolis; © Médiathèque du patrimoine et de la photographie; © Musée départemental Albert-Kahn;
© Ville de Paris, COARC/Jean-Marc Moser; © Commission du Vieux Paris / DHAAP / Roger-Viollet;
© Pascal Saussereau / DHAAP; © DHAAP / Roger-Viollet; © Donation Marcel Bovis, Médiathèque du
patrimoine et de la photographie; © DHAAP / Roger-Viollet; © Marc Lelievre / DHAAP; © Charles
Lansiaux / DHAAP / Roger-Viollet; © Charles Lansiaux / DHAAP / Roger-Viollet
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or automatically corrected.

(a) Assemblée Nationale
© Charles Lansiaux /
DHAAP / Roger-Viollet

(b) Pharmacie (rue Saint-
Honoré)
© DHAAP / Roger-Viollet

(c) Rue de Lille
© DHAAP / Roger-Viollet

Figure 2.4: Examples of images from the Parisienne de Photographie

2.3.2 Stereopolis dataset

The second starting dataset for our study is called Stereopolis (Paparoditis et al., 2014).

It is a complete and systematic acquisition of all streets of Paris in 2015 using a mobile

mapping system. Similar to other mobile mapping datasets such as RobotCar (Maddern

et al., 2017) or Kitti (Geiger et al., 2013), it consists of both photographs taken every

three meters and a complete 3D point cloud of the whole city. Images are taken all around

and above the car, as shown in Figure 2.5.

Exploiting this data has multiple benefits. First, contrary to the "Parisienne de Pho-

tographie" data, there is no sparsity in the data. Indeed, the whole city is mapped, which

provides us with a full ground truth at a specific date. Second, the metadata associated

are certain, especially the very useful location information, thanks to the mobile mapping

approach that provides us a 6-degrees of freedom pose for each image.

Thus, our hope of exploiting sparse heritage data in conjunction with this complete

"picture" of Paris at a certain date is to bring the structure and certainty of the recent

and systematic dataset into the heritage one.

36



(a) Fontaine Saint-Michel (b) Musée d’Orsay (c) Rue des Quatre-Fils

Figure 2.5: Example of images from the Stereopolis dataset. © IGN

2.3.3 Other providers

To further increase the multi-provider aspect of the dataset, which is essential to evaluate

the efficiency of the whole process for interconnecting multiple collections, we have decided

to use contents from six other providers described here.

Paris 6K dataset

The first dataset exploited is a well known public benchmark in the field of content-based

image retrieval called Paris 6K (Philbin et al., 2008). We more specifically exploit the

revisited version (Radenovic et al., 2018). It consists of images of well-known monuments

and buildings in Paris taken from Flickr. The quality, resolution, color and viewpoint

of the images are very diverse, even though the images are quite recent (after 2000).

Furthermore, some images are from an aerial persective, which we have kept as they

could display multiple known buildings, presenting a certain challenge for the evaluated

and proposed methods. Figure 2.6 represents some images kept in the proposed dataset.

(a) Dôme des Invalides (b) Le Louvre (c) Panthéon

Figure 2.6: Example of images from the Paris 6K public benchmark. © Flickr

37



Médiathèque du Patrimoine et de la Photographie

A second database we obtained images from is the Memoire database with images mainly

from the Médiathèque du Patrimoine et de la Photographie9. The photographs come from

either the Historical Monuments collections or the State collections, displaying more or

less known monuments or regular buildings, as illustrated in Figure 2.7. More than 20

000 photographs of Paris can be found, however, not all can be used in the thesis as they

depict interiors, tiny details or archeological digs.

(a) Place Franz Liszt (b) Sénat (c) Arc de Triomphe

Figure 2.7: Example of images from the Médiathèque du Patrimoine et de la Photographie.
© Médiathèque du patrimoine et de la photographie

Musée Albert Kahn10

A third collection where we gathered images are the Planet’s Archives, a series of pho-

tographs taken by Albert Kahn in order to document the world and visually inventory

the transformations of his time. A certain part of this collection (examples in Figure

2.8) concerns Paris with more than 4 000 photographs. However, all the images of this

collection are not available at full resolution, hence part of the data we gathered is used

at full resolution while some images are used at a lower resolution.

9https://mediatheque-patrimoine.culture.gouv.fr/
10https://albert-kahn.hauts-de-seine.fr/les-collections/presentation/photographies-

et-films/les-archives-de-la-planete
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(a) Tour Eiffel (b) Eglise du Val de Grâce (c) Place de la Bastille

Figure 2.8: Example of images from the Musée Albert Kahn’s collection. © Musée Albert-
Kahn, Archives de la Planète

Cité de l’Architecture et du Patrimoine

The fourth GLAM we asked data from is the Cité de l’Architecture et du Patrimoine11. Its

focus is more on the parisian monuments as its objective is to promote french architecture

throughout the world. Thus, most images there concern known monuments with the

specificity of finding photographs of mock-ups and work drawings for those monuments.

Examples of images from this collection are represented in Figure 2.9.

(a) Place de la Concorde (b) Opéra Garnier (c) Gare du Nord

Figure 2.9: Example of images from the Cité de l’Architecture et du Patrimoine. © Cité
de l’architecture et du patrimoine

Commission du Vieux Paris

The "Commission du Vieux Paris" data consists of multiple data sources including pho-

tographs (old or recent) gathered for evaluating the possibility of construction work (more

specifically demolition works) with regard to its objectives of heritage preservation, thus

using various viewpoints and detail levels, as presented in Figure 2.10. Also gathered

by the Department of Architectural History and Archeology (DHAAP) of the city of

Paris, this data is organized on an address basis, which makes it a quite certain collection

(metadata-wise) but also an easily queried resource.
11https://www.citedelarchitecture.fr/fr
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(a) Avenue Rapp (b) Panthéon (c) Cathédrale Notre-Dame

Figure 2.10: Example of images from the Commission du Vieux Paris. © DHAAP / CVP

Conservation des Œuvres d’Art Religieuses et Civiles

Partner of the DHAAP, the Conservation des Œuvres d’Art Religieuses et Civiles of the

city of Paris aims at listing and protecting more specifically the monumental heritage

of Paris, from fountains to churches via statues. We exploited their collections more

specifically for their photographs of churches which are otherwise quite lacking in more

general collections of Paris and which we show in Figure 2.11.

(a) Basilique du Sacré-Coeur
© Ville de Paris, COARC/
Emmanuel Michot

(b) Eglise Saint-Sulpice
© Ville de Paris, COARC/
Jean-Marc Moser

(c) Eglise de la Madeleine
© Ville de Paris, COARC

Figure 2.11: Example of images from the Conservation des Œuvres d’Art Religieuses et
Civiles of the city of Paris

2.3.4 Summary of the final dataset

Exploiting data from all the collections, which are summarized in Table 2.1, we assembled

in total a dataset of 1,637 images of which an example was previously shown in Figure

2.3, divided into 31 classes depicting regular buildings, renowned monuments (e.g. the

Panthéon), churches (e.g. the Saint-Sulpice church), and remarkable buildings (e.g. the

Lavirotte building). These classes are described in Table 2.2. Classes in red depict highly

known monuments. Those in orange depict lesser known monuments of Paris. Green

classes depict Parisian churches and gray classes represent classic Parisian buildings. To

further challenge image retrieval in the experiments, we added 8,197 images as distractors
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(from the Department of Architectural History of the city of Paris), which leads to a total

of 9,834 images in the dataset.

Acronym Full Name Nb of images % of dataset

Sp Stereopolis 537 32.8

PdP Parisienne de Photographie 193 11.8

MAP Médiathèque du Patrimoine et de la Photographie 276 16.9

CVP Commission du Vieux Paris 153 9.3

AK_HD Albert Kahn - Haute Définition 214 13.1

AK_BD Albert Kahn - Basse Définition 47 2.9

CA Cité de l’Architecture 25 1.5

COARC Conservation des Œuvres d’Art Religieuses et Civiles 30 1.8

P6K Paris 6K 162 9.9

Total 1637 100

Table 2.1: Summary of the providers of the dataset, their acronyms and how much they
account for in the dataset

Name and count

Assemblée Nationale 26 Avenue Jean Jaurès 28
Avenue Rapp 35 Place de la Bastille 50

Place de la Concorde 71 Tour Eiffel 135
Fontaine Saint-Michel 27 Gare de l’Est 39

Gare de Lyon 37 Gare du Nord 38
Gare Saint-Lazare 31 Hôtel Hérouet 32
Dôme des Invalides 74 Le Louvre (place du Carrousel) 88

Eglise de la Madeleine 81 Musée d’Orsay 67
Place de la Nation 39 Cathédrale Notre-Dame 120

Opéra Garnier 63 Panthéon 89
Pharmacie (rue Saint-Honoré) 27 Place Franz Liszt 32

Rue de Lille 18 Rue de l’Université 18
Rue des Quatre-Fils 17 Rue Linne 15

Basilique du Sacré-Coeur 75 Eglise Saint-Sulpice 64
Sénat 24 Arc de Triomphe 119

Eglise du Val de Grâce 58

Table 2.2: Summary of the classes in the dataset and their size. Legend: highly known
monuments, lesser known monuments, Parisian churches and classic Parisian buildings.

Due to the variety of the classes, the number of images and providers per class can

vary greatly. However, in every class both starting datasets must be present. Statistics

on the class sizes and providers present are displayed in Figures 2.12, 2.13 and 2.14.

Due to the large time period of acquisition and the multitude of providers, this dataset

displays a large number of specific challenges for image retrieval:

• different techniques of acquisition, colors, etc.,

• different resolution, levels of details, artisticity, etc.,
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• collection specificities increasing the above differences,

• changes in the scenes depicted due to the evolution of Paris throughout the century.

In addition to these images, some metadata may be available sometimes, such as

an acquisition date or a location. The latter may be of various types, from an address

manually provided (it is the case with some images of the dataset, e.g. those from the

Dept. of Architectural History of the City of Paris) up to a precise pose of the camera

(with the mobile mapping system Stereopolis).

Figure 2.12: Dataset statistical representation based on classes

Figure 2.13: Dataset statistical representation based on providers
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Figure 2.14: Dataset global statistical representation

2.4 Conclusion

This chapter first presents the specificities of iconographic heritage contents, both in

terms of visual representations and in terms of organization. These specificities are prone

to create challenges for existing state-of-the-art automatic image retrieval approaches.

To evaluate such approaches and their suitability for large-scale use with iconographic

heritage contents, but also to help formulate and assess our proposed methods, we design

a dataset aggregating contents from multiple heritage collections.

This chapter thus introduces the proposed heritage iconographic content dataset de-

picting Paris throughout the last century, from 1910 to 2015. Due to the multiplicity

of collections, the visual heterogeneity and variability is high, making this dataset one

prone to challenge state-of-the-art methods of content-based image retrieval, as presented

in Part I and more specifically in Chapter 3. Furthermore, this dataset will be used

throughout the thesis to evaluate all newly proposed more suited approaches.

43



44



Part I

Automatic Retrieval and Re-ranking
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3.1 Introduction

Since the 90s, there exist a large panel of approaches for the description, matching and

indexing of visual contents (Veltkamp and Tanase, 1999; Dharani and Aroquiaraj, 2013;

Zhou et al., 2017; Chen et al., 2021). They can be classified according to the contents con-
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sidered, even if today’s machine learning techniques, associated with dedicated training

datasets, tend to reduce this difference. Specific datasets (e.g. fingerprints, faces, etc.)

usually exploit dedicated techniques of description, while generic visual contents, includ-

ing landmarks, are based on more generic approaches such as global descriptors (color,

texture and shape) or local ones (points of interest, blobs, regions, etc.). Because of

the variability of the content encountered in iconographic heritage, we address here such

generic approaches, which gathers a very large panorama of techniques of description.

Note that some of the references considered in the following concern the domain of RSIR,

i.e. Remote Sensing Image Retrieval: this is a fast-growing research field where contents

at large scale (large image datasets and/or high-resolution images) highly benefit from

CBIR for retrieval as well as classification tasks. It mainly concerns satellite or vertical

aerial imagery, sometimes with dedicated modalities (e.g. multispectral, hyperspectral,

SAR imagery) but some approaches share characteristics with those of iconographic her-

itage dedicated to landmarks, especially when considering multi-temporal imagery (Li

et al., 2021).

To easily present the global process of Content-based Image retrieval, Figure 3.1 pro-

poses an overview of the whole process. A first step of image retrieval is performed by

comparing image descriptors between that of a query and those of the images in the

database. Images are then ranked in a decreasing similarity order. A second step of re-

ranking can then be performed, using a variety of methods and based on the first retrieved

images, to re-order the images according to another similarity criterion, improving the

retrieval results.

Figure 3.1: Global Content-Based Image retrieval pipeline
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Due to its specificities, and mostly its large visual heterogeneity, iconographic heritage

makes it very challenging for image descriptors to be efficient. Furthermore, their low

accessibility at large-scale has precluded them from being used in benchmarks or training

datasets, thus limiting the new methods from being suited to this specific type of data.

Existing methods can thus be applied to heritage contents but with poorer performance.

This chapter presents methods for CBIR and their specificities, first for simple image

retrieval and second for re-ranking, respectively in Sections 3.2 and 3.3. Some of those

methods thought most-suited for our problem are then tested to estimate the ones most

adapted to the dataset we gathered and its specificities, in Section 3.4 and Section 3.5.

3.2 Image retrieval

As presented in Figure 3.1, the first part of any image retrieval process is the creation of

image descriptors that can be compared to evaluate the similarity between two images

in order to be able to order images based on this similarity measure. In this section we

will thus develop a state of the art on descriptor extraction and similarity measurement

between images based on their visual content. First, Section 3.2.1 presents handcrafted

methods for image description. Second, Section 3.2.2 introduces new learned methods for

descriptor extraction with their specific paradigms, networks and training datasets. Then,

Section 3.2.3 explains the specificities of the similarity search between descriptors. 3.2.4

details further the descriptor that will prove essential for our work. And finally, Section

3.2.5 presents specific image retrieval methods applied to some types of iconographic

heritage.

3.2.1 Hand-crafted descriptors

Content-based image retrieval methods leaned on various handcrafted image descriptors

based on different paradigms, the main one being the scale at which they are computed :

either at a global scale or by aggregating local features.

Global features. A first category of handcrafted image descriptors uses the image

in its entirety to estimate a single image signature. It can use color, texture or shape

information or even combine them. A simple color-based descriptor is the histogram,

however lacking in efficiency as two images can have identical histograms and yet represent

two completely different scenes. Texture-based methods are for instance the GIST feature

(Oliva and Torralba, 2001) of the Fourier transform, which can also be used to describe the

shape (outlines) of the images’ objects. Those global descriptions may be efficient when

it comes to memory use for instance, however, they lack in invariance and robustness

to transformations like rotation or illumination changes. Hence, using more robust local

features and aggregating them has proven to be a successful alternative to global features.

Aggregated local features. An alternative to global features are local features,

which prove to be more robust to various variations appearing on the images. Using local

features to describe the image can be decomposed in three steps : first, detecting interest
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points (or regions), second, describing those interest points, third, computing the image

signature. Multiple methods exist to detect and describe (and sometimes both at the

same time) the interest points. As detectors for instance, one can mention the famous

SIFT (Lowe, 2004) and its adaptation SURF (Bay et al., 2008), but also ORB (Rublee

et al., 2011), BRISK (Leutenegger et al., 2011) or Hessian-affine (Mikolajczyk and Schmid,

2004). As for descriptors, one can find once again SIFT and its adaptation Root-SIFT

(Arandjelovic and Zisserman, 2012), and SURF, ORB but also BRIEF (Calonder et al.,

2010). Detectors and descriptors can then be combined to achieve the most accurate,

robust and invariant description. To establish a global signature for the image using

those local features, two ways can be followed to aggregate the local information. First,

using a sparse representation aggregating all interest points. However, as those represen-

tations can rapidly increase the memory use and complexity of the description, for large

volumes of images, other means of aggregating the features using "bag-of-features" have

been developed. Indeed, since (Sivic and Zisserman, 2003), quantization methods have

been widely adopted in image retrieval. Local features in an image are seen as words in a

text. Hence, using a "visual dictionary" (built using clustered local features extracted from

a large visual database), local features are assigned to the nearest visual word and then

the frequency of each visual word in the image becomes the image’s signature. Several

methods have then improved the aggregation or the assignment process like the Hamming

embedding (Jegou et al., 2008), Fisher Vectors (FV) (Perronnin et al., 2010) or the Vec-

tors of Locally Aggregated Descriptors (VLAD) (Jégou et al., 2011). New learning-based

methods of aggregation have also been developed like (Passalis and Tefas, 2017).

3.2.2 Learned descriptors

Since AlexNet (Krizhevsky et al., 2012) at the ImageNet challenge in 2012, Deep Neural

Networks have been a source of interest and successes when applied to the field of CBIR

(Content-Based Image Retrieval) because they can compute powerful representations of

images, especially with Convolutional Neural Networks first and later with Vision Trans-

formers models. Multiple surveys have inventoried existing models based on different

perspectives. (Piasco et al., 2018) describes the methods used in Visual-Based Localiza-

tion, (Masone and Caputo, 2021) focuses on its applications regarding place recognition,

whereas (Chen et al., 2021) and (Dubey, 2022) focus in more detail on the models’ im-

plementation. However, all surveys agree to distinguish three steps: the encoding of the

representation, the similarity search between the query image and the database images,

and finally the post-processing refinement of the results (which will be addressed later in

Section 3.3).

The first step towards CBIR is the computation of the representation of the images

(both the database images and later the query one) by the network. To this end, two

strategies are used in the literature: using off-the-shelf models and applying them directly

to the desired dataset or fine-tuning models to adapt them to the specificity of the dataset.
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3.2.2.1 Off-the-shelf models and feature enhancement

Using off-the-shelf models means exploiting models trained for a specific task (mostly

classification) and applying them without retraining to solve a different task (in our

case an image retrieval task). In this case of off-the-shelf use, weights and parameters

are used as is and not recomputed. This choice implies a wider domain shift, hence,

results potentially disappointing as the network’s representations are not initially suited

for image retrieval purposes. Multiple networks used as backbones in image retrieval tasks

are presented further in Table 3.1.

To reduce the gap, the main contributions that can be applied to the results of these

models are feature enhancement. The idea is to transform or combine extracted repre-

sentations to obtain a new representation more suited to the problem of image retrieval.

Hence, using this method, two steps are essential : extracting the features and enhancing

them.

Feature extraction. Feature extraction process is impacted by several aspects of

the model’s architecture.

• First, the data passed through the network. Indeed, it can be the whole image at

once in a single pass forward or multiple passes forward using each time different

patches of the image before aggregating the features computed. The strategy to

choose those patches also impacts the features extracted. It can use a rigid grid,

pyramid modeling, dense patch sampling or even use region proposal networks (Ren

et al., 2017; Kong et al., 2016) to select patches.

• Second, the extraction layer. It can be either a fully connected layer or a convolu-

tional layer. The fully connected layer is an intuitive solution that has been pursued

(Jun et al., 2019; Song et al., 2017), but it has obvious limits: as each neuron is

connected to all previous neurons, spatial information is largely lost, as well as local

geometric invariance. Using a convolutional layer preserves the local information,

as the receptive fields are smaller, propagating more structural information. Local

detectors extracted from convolutional layers are used in image retrieval. One can

mention SPoC (Babenko and Lempitsky, 2015) or (Ng et al., 2015) that uses VLAD

instead of BoW and thus paves the way for NetVLAD (Arandjelovic et al., 2018).

• Third, the level of fusion of the extracted features if need be. Indeed, fusing features

within a feature extractor aims at combining the various characteristics to enhance

the feature specificity. This fusion process can happen between layers within a

single model. Fusing multiple fully connected layers concatenates global features

to enrich the combined global feature (Yu et al., 2018). As RSIR applications

mostly require better features than low-level ones, (Zhou et al., 2015) use an auto-

encoder to fuse low-level features into a sparse middle-level feature better suited

for image retrieval purposes. The fusion can also concatenate features from both

fully connected and convolutional layers (Yu et al., 2017). Fusing different types of

layers allows for concatenating both global and local features. However, methods
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like Multi-layer Orderless Fusion (Li et al., 2016) which are pooling-based, tend to

remove the subtleties brought by local features as they are considered equivalent to

global ones. To reduce these limitations, (Yu et al., 2017) and (Cao et al., 2020) tend

to use local features in a second time for the re-ranking of the results obtained using

local features. (Tolias et al., 2020) proposes a deep local descriptor How designed

to learn and aggregate (using ASMK) local features specifically to obtain a global

descriptor for instance-level retrieval. How and ASMK will be further detailed in

Section 3.2.4. (Teichmann et al., 2019) proposes a regional ASMK to aggregate

features extracted at a regional level with VLAD. Instead of layer fusion, the fusion

can be performed at model level, either intra-model or inter-model. Intra-model

fusion combines features obtained with similar or highly compatible models. For

instance, (Ding et al., 2019b) combines ResNet-26 and ResNet-50, while (Kim et al.,

2018) trains three attention modules to extract different features. On the contrary,

inter-model fusion combines models whose structures are much more different and

tries to combine very different features. Hence, (Ozaki and Yokoo, 2019) combines

six different descriptors out of six models (using various combinations of backbone

models, loss and data augmentation strategies) to improve retrieval performance.

This fusion strategies can be applied at two times : "early fusion" concatenates

features and then learns a metric on the concatenated feature while "late fusion"

learns metrics for each feature and concatenates optimal features.

Feature enhancement. To enhance the discriminativeness of the features computed,

several enhancement strategies can be applied.

• Feature aggregation. The idea behind is to improve the discrimination of features

using pooling methods on feature maps (Zheng et al., 2016). Hence, sum or average

pooling will limit the effect of highly activated features, while max pooling will

enhance the power of sparse features that are rarely activated. R-MAC (Tolias et al.,

2016b) allows for a more targeted approach during the pooling. GeM (Radenovic

et al., 2019) generalizes both max and average pooling to achieve current state-of-

the-art regarding pooling layers.

• Feature embedding. The principle behind feature embedding is to obtain compact

features by embedding convolutional maps into a high dimensional space. The

embedding methods are widely similar to those used in hand-crafted methods (cf.

3.2.1), namely, BoW (high dimensionality and sparsity, not ideal for large datasets),

VLAD (affected by the number of centroids but more effective than BoW), or FV

(extends BoW, captures more statistics but costs more memory-wise). As those

embedding methods have to be added to the networks as a new layer, it led to the

NetVLAD (Arandjelovic et al., 2018) approach, where the network is fine-tuned us-

ing VLAD; and Patch-NetVLAD (Hausler et al., 2021), where the network extends

NetVLAD by deriving patch-level features from NetVLAD residuals to increase in-

variance to many visual changes. Hash embeddings can also be further used to
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limit the high dimensionality of the feature representations. Hash functions can

be plugged into deep networks (Wang et al., 2018)(Deng et al., 2020) to embed

features into compact codes, allowing for higher efficiency both storage and compu-

tation wise, especially for RSIR applications in regard to the large amount of data

considered (Li et al., 2020).

• Attention mechanisms. The idea behind attention is to focus on relevant features

and limit "distractions" caused by irrelevant ones, using attention maps. Those maps

can be computed with or without using deep networks. Without deep networks, no

parameters are learned, the basic methods are either channel wise or spatial pooling

and are applied to convolutional layers. Spatial-based methods weigh activations on

feature maps to determine the most relevant ones but in (Ng et al., 2020) authors

not only weigh activations at different spatial locations, but they also explore the

correlations between the different activations. Separately, channel-wise methods

like (Xu et al., 2018) rank weighted feature maps to select regional features. Using

deep networks to learn attention maps is now widely used in literature, especially

thanks to the greater adaptability of those methods. Indeed, full feature maps or

patches can be fed to the network to predict relevant features (Noh et al., 2017).

Full images can also be used as input (Hu and G.Bors, 2020), separately training the

feature description network and the attention computation network. Specifically for

our problem of image retrieval, those mechanisms can be used in combination with

metric learning (cf. section 3.2.3) to improve retrieval (Ng et al., 2020).

Transformers models. A specific focus must be made on transformers for CBIR.

Indeed, unlike all approaches described previously that build on CNN architectures, new

networks for vision tasks now rely on the transformer architecture. The advent of trans-

formers models introduced with (Vaswani et al., 2017) for Natural Language Processing

tasks, allowed for new approaches to image retrieval with vision transformers (Dosovitskiy

et al., 2021). Relying on self-attention layers, transformers process the image as a series

of patches (like words in a sentence) and embed information globally across the whole

image. Vision transformers variants have reached state-of-the-art performances on mul-

tiple vision tasks, like (Dosovitskiy et al., 2021) first when proposing vision transformers

(ViT) for image classification. (Carion et al., 2020) combines a traditional CNN with a

transformer for object detection, removing the need for post-processing steps for clear-

ing the results of the first feature extraction and object detection steps. (Touvron et al.,

2021a) combines transformers models with knowledge distillation to improve performance

and limit training overhead for image classification tasks. (Touvron et al., 2021b) pro-

poses a class-attention layer to improve image classification performance of transformer

models by feeding the model the class token later in the training. (Bao et al., 2022)

proposes BEiT, a BERT like pre-training approach for vision transformers that allows for

pre-training a network that can be used for image classification or image segmentation.

Building on this, (Touvron et al., 2022) revisits the pre-training approaches for vision

transformers, inspired by pre-training approaches used for CNNs like ResNet-50. (Wang
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et al., 2021) combines the transformer architecture with the pyramid approach of CNNs

to create a versatile backbone for many vision tasks. (Zhang et al., 2021) further improves

this multiscale approach for high-resolution image encoding, resulting in a backbone for

several vision tasks. (Han et al., 2021) embeds a transformer architecture within a global

transformer architecture to further extract information from image patches for both image

classification and object detection. (Liu et al., 2021) proposes a shifted window approach

to vision transformer to perform self-attention on changing parts of the image layer after

layer, thus encoding more information. (Dong et al., 2022) builds on this with CSWin,

its self-attention using a cross-shaped window divided between heads (self-attention on

vertical and horizontal stripes is computed simultaneously). It also introduces a new

positional encoding scheme supporting arbitrary input resolutions, ideal for the different

downstream tasks.

Several of these approaches are designed as backbones suited for multiple downstream

vision tasks as shown in Table 3.1 and could be exploited for image retrieval. The main

drawbacks of transformer-based networks however is the fact that they require a large

amount of training data, as well for training from scratch as for fine-tuning.

3.2.2.2 Fine-tuning models

Instead of using off-the-shelf models, fine-tuning existing models allows for a thinner

domain gap as the model’s parameters and weights are slightly adapted to the specific

dataset, which is often essential when working with challenging data. As presented in

Table 3.1, multiple networks have been developed and can be used as backbones to be

fine-tuned on the specific data used. However, it requires to have enough training data

for the fine-tuning to be efficient. Depending on the dataset used, the fine-tuning step

can be either supervised or unsupervised.

Supervised fine-tuning. These methods of fine-tuning can be considered when

enough information can be gathered regarding the dataset. It can be a classification

or a similarity evaluation between images. Using a cross-entropy loss on a classified

dataset can improve the features computed (either global or local), but the focus remains

on inter-class variability and fails to distinguish intra-class specificities. Hence, using

information describing similarity or dissimilarity between images offers more opportunities

for robustness to both inter-class and intra-class variability. The principle is to fine-tune

the network to learn a metric that preserves the similarity (or dissimilarity) between the

features computed. Three approaches are possible to preserve feature similarity close to

image similarity.

• First, using a transformation matrix (Garcia and Vogiatzis, 2019), that is con-

catenating features from two images and maximizing or minimizing the similarity

score estimated using this concatenated feature to conform to the binary label sim-

ilar/dissimilar assigned to the image pair.

• Second, using Siamese networks and only two images, either a similar pair or a
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Table 3.1: Main network backbones for image retrieval

Backbone Date
Training
dataset

Testing
dataset

Goals Improvements

VGG
(Simonyan and Zisserman, 2015)

2015 ImageNet ImageNet
Image

classification
Uses a deeper model

Up to 19 layers

ResNet
(He et al., 2016)

2016
ImageNet
Cifar-10

ImageNet
Cifar-10

Image
classification

and localization,
object detection

Residual learning
Increase

representation depth

Inception ResNet
(Szegedy et al., 2017)

2017 ImageNet ImageNet
Image

classification

Network with
Inception module

and residual learning

Xception
(Chollet, 2017)

2017 JFT FastEval14k
Image

classification
Extreme Inception

module

DenseNet
(Huang et al., 2017)

2017

CIFAR-10,
CIFAR-100,

SVHN,
ImageNet

CIFAR-10,
CIFAR-100,

SVHN,
ImageNet

Image
classification

Dense connection
between all layers

ResNext
(Xie et al., 2017)

2017
ImageNet,
CIFAR,
COCO

ImageNet,
CIFAR,
COCO

Image
classification,

object detection

Aggregates a set
of smaller

transformations,
increasing cardinality

NASNet
(Zoph et al., 2018)

2018 CIFAR-10
CIFAR-10,
ImageNet

Image
classification,

object detection

Learn the model’s
architecture using
the dataset and

transfer it to other
datasets

Fishnet
(Sun et al., 2018)

2018
ImageNet,

COCO
ImageNet,

COCO

Image
classification,

object detection

Combines pixel-level,
region-level and

image-level information

SENet
(Hu et al., 2018)

2018
ImageNet,

COCO
ImageNet,

COCO

Image
classification,

object detection

Add the Squeeze
and Excitation block

EfficientNet
(Tan and Le, 2019)

2019 ImageNet

ImageNet,
other datasets

for
transfer learning

Image
classification

New architecture,
new method to scale

width, depth
and resolution
simultaneously

ResNeSt
(Zhang et al., 2020a)

2020
ImageNet,

COCO
ImageNet,

COCO

Image
classification,

object detection

Add a Split-Attention
block

ViT
(Dosovitskiy et al., 2021)

2021
ImageNet,

ImageNet-21k,
JFT-300M

ImageNet,
CIFAR-10,
CIFAR-100,

VTAB

Image
classification

Introduces vision
transformers with

self-attention layers

Swin
(Liu et al., 2021)

2021
ImageNet,

COCO,
ADE20K

ImageNet,
COCO,

ADE20K

Image
classification,

object detection,
semantic segmentation

Uses a shifting
window for self-attention

Pyramid Vision
Transformer

(Wang et al., 2021)
2021

ImageNet,
COCO,

ADE20K

ImageNet,
COCO,

ADE20K

Image
classification,

object detection,
semantic segmentation

Uses a pyramid-like
structure like CNN’s

but with transformers

Multi-Scale Vision
Longformer

(Zhang et al., 2021)
2021 ImageNet

ImageNet,
COCO

Image
classification,

object detection

Uses a multiscale
approach and adapts

Longformer for images

CSWin
(Dong et al., 2022)

2022
ImageNet-21K,

COCO,
ADE20K

ImageNet

Image
classification,

object detection,
semantic segmentation

Uses a cross-shaped
self-attention and
locally enhanced

positional encoding

55



dissimilar one. The network’s weights are shared between layers. (Ong et al., 2017)

for instance, uses both Fisher vectors and a Siamese network to compute features.

• Finally, following the Siamese network idea, using a Triplet Network allows for op-

timizing the metric using at the same time a similar and a dissimilar pair, each

sharing the same "anchor". Using a triplet loss trains the model to learn represen-

tations minimizing the dissimilarity with the positive example and maximizing it

with the negative one. Improving those two distances improves the final relevance

and discriminative power of the computed features.

• Furthermore, those methods of fine-tuning can also be combined with various mod-

ules to further improve the quality of the features. Region Proposal networks allow

the network to adopt a more local approach to the feature computation, focusing on

more relevant parts of the image (Gordo et al., 2017). Attention modules can also

be plugged into deep networks to focus on specific regions, improving inter-class but

also intra-class feature discrimination. Finally, a combination of losses may be of

interest to exploit, for instance the inter-class discriminative power of the classifi-

cation loss and the intra-class discriminative power of the triplet loss (Jun et al.,

2019).

Unsupervised fine-tuning. The issue regarding supervised fine-tuning is the cost

of annotating the dataset to have ground truth data regarding the class or the similarity

between images. Hence, unsupervised fine-tuning methods are a way to explore when

dealing with poorly annotated datasets as they do not require a ground truth. A first

idea behind this type of fine-tuning is to exploit/mine the data to estimate which images

are similar to each other to estimate the relevance of an image compared to another

in order to use this estimation for the latter step using positive examples and negative

examples (e.g. a triplet network). This method is called manifold learning. Using the first

output of the network, an affinity matrix is computed (similar to a weighted kNN-graph),

then the pairwise similarities are reevaluated in light of all other pairwise affinities. After

several iterations, the deep representations are spatially organized in the manifold space

and using a distance in this space the positive and negative examples are mined to fine-

tune the initial network. A second idea to exploit the new unannotated dataset is to use

AutoEncoders within image retrieval frameworks. An AutoEncoder is a neural network

that wishes to reconstruct its output as similar as possible as its input. Hence, it will

encode the input into a deep feature then decode it to obtain in our case an image very

similar to the one fed as input. It can be used within a network aiming at hash-encoding

images, as (Shen et al., 2020c) aims at limiting prior computation of a graph of image

similarity (with manifold learning, for instance) by using an AutoEncoder framework.

3.2.3 Similarity search

After the computation of the most optimal features for both the database images and

the query image, the second step in image retrieval is the search of neighbors in the
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feature representation space, i.e. the images similar to the query. The similarity search

is composed of two steps: first, computing a distance between features, whether local or

global, and second, querying efficiently the database to find the most similar images.

Similarity measures. Various distances can be used as a similarity measure to com-

pare two vectors of features, e.g. the l1 norm, the most-used l2 norm, the inner product.

These measures can be used for global descriptors or multiple local descriptors (e.g. (Kim

et al., 2015) sums similarity of each feature to obtain the global similarity). For local

features, other metrics can be used like SMK or its aggregated version ASMK (Tolias

et al., 2016b) (more details in Section 3.2.4).

Similar images search. The search of similar images can then be seen as a straight-

forward step of finding the k nearest neighbors in the feature space. However, this task

can be quite expensive when dealing with a large database or with high-dimensionality

features. Several improvements have been proposed to speed up this process.

Feature dimension reduction. First, approaches aiming to reduce the dimension of

the features have been proposed, reducing the computation cost of the matching. For

instance, (Arandjelovic et al., 2018; Gordo et al., 2017) use Principal Component Analysis

to reduce the dimension of CNN-based features, it is the mainly used approach. This can

also be used jointly with a whitening step like in (Tolias et al., 2020) that helps ensure data

consistency and limiting the impact of co-occurences during similarity computation. Using

quantization methods like binarization (Cao et al., 2020) reduces the storage requirement

and speeds up the computation at search time.

Approximate nearest neighbors. Second, exact nearest neighbors are costly to identify

as it supposes an exhaustive similarity computation between the query and all images

in the database. Thus, using various indexing structure stopping criteria, approximate

nearest neighbor methods speed up the process immensely, performing a non-exhaustive

search (Johnson et al., 2019; Magliani et al., 2019). The nearest neighbor search can also

be improved by using several features per image and then using Dominant Set Clustering

(Zemene et al., 2019) to find the most similar images.

Other search methods. Several other approaches have been devised to perform the

search in the database. (Kim et al., 2015) for instance exploits SVM classifier to estimate

the robustness of the descriptors and select those to compare in the database. (Stumm

et al., 2015) matches graphs of visual words present in the images using a graph kernel.

Grouping images of the database and then matching the query to the clusters also proves

to improve the search efficiency. Graph-based approaches like Hierarchical Navigable

Small World (Malkov and Yashunin, 2020) have proved efficient for approximate nearest

neighbors search. Indeed, it uses a proximity graph between images in the database.

Starting anywhere, it compares the query with all its connected nodes and moves to

the one closest to the query. Iteratively, the nearest neighbor is found. In the case of

local features, text-based approaches of inverted files have been adapted to visual words,

allowing to select potentially similar images based on their shared visual words, this is
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used in (Tolias et al., 2020) for instance. Figure 3.2 summarizes approaches developed for

searching nearest neighbors efficiently in a database. For a more in-depth study, readers

may refer to (Wang et al., 2018).

Figure 3.2: Overview of approaches for approximate nearest neighbors search (illustration
from (Matsui et al., 2018))

3.2.4 Spotlight on How and ASMK

Later in this thesis, evaluations will show that How combined with ASMK is an efficient

descriptor for image retrieval in our specific dataset. We thus present here the approaches

in more details.

How

We present here the proposed descriptor How as defined in (Tolias et al., 2016a, 2020),

used later in our experiments for image retrieval. We largely use the authors descriptions,

equations and illustrations.

The idea behind How is to extract deep local features that are aggregated using a

global sum-pooling at training time to obtain a global descriptor that is optimized at

image level using contrastive loss. Intuition of the authors is that optimization at image-

level with a contrastive loss implicitly optimizes local features in various ways. First,

local background features’ impact is lowered, while local foreground features’ importance

is heightened. Second, local descriptors of similar images are pushed closer in the feature

space and the opposite for dissimilar images.

Furthermore, an attention metric to evaluate the strength of each local feature in the

descriptor is used first for weighting the contribution of each local feature in the global

descriptor at training time and then to select the strongest features for aggregation with

ASMK at testing time.

An overview of the process is available in Figure 3.3.

This descriptor is optimized to be used with ASMK which proved an efficient way to

aggregate local features and is described next.
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Figure 3.3: Overview of the architecture for How local features (illustration from (Tolias
et al., 2020))

ASMK

We present here the binarized version of Selective Match Kernel (SMK) and its extension,

the Aggregated Selective Match Kernel (ASMK) as defined in (Tolias et al., 2016a, 2020),

used with How later in our experiments for indexing and retrieval. We largely use the

authors equations and descriptions of the process.

An image is represented by a set X =
{

x ∈ R
d
}

of n = |X | d-dimensional local

descriptors. The descriptors are quantized by q : Rd → C ⊂ R
d. C = {c1, . . . , ck} is a

codebook comprising |C| vectors (visual words), extracted both in the original publication

and our experiments on the SfM120k dataset (Radenovic et al., 2019).

Using the quantization process, every descriptor x is assigned to its nearest visual

word q(x). It creates two types of subsets: Xc = {x ∈ X : q(x) = c} the subset of

descriptors in X assigned to visual word c, and CX the set of all visual words that appear

in X .

Especially for its use with How, a binarization step is used: x is mapped to a binary

vector through function b : R
d → {−1, 1}d given by b(x) = sign(r(x)), where r(x) =

x − q(x) is the residual vector w.r.t. the nearest visual word and sign is the element-wise

sign function.

The SMK similarity of two images, represented by X and Y respectively, is estimated

by cross-matching all pairs of local descriptors with match kernel

SSMK(X , Y) = γ(X )γ(Y)
∑

x∈X

∑

y∈Y

[q(x) = q(y)]k(b(x), b(y)), (3.1)

where [.] is the Iverson bracket and γ(X ) is a scalar normalization that ensures unit
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self-similarity. Function k : {−1, 1}d × {−1, 1}d → [0, 1] is given by

k(b(x), b(y)) =















(

b(x)⊤b(y)

d

)α

,
b(x)⊤b(y)

d
≥ τ

0, otherwise

(3.2)

where τ ∈ [0, 1] is a threshold parameter. Only descriptor pairs that are assigned to

the same visual word contribute to the image similarity in Equation 3.1. In practice, not

all pairs need to be enumerated and image similarity is equivalently given by

SSMK(X , Y) = γ(X )γ(Y)
∑

c∈CX ∩CY

∑

x∈Xc

∑

y∈Yc

k(b(x), b(y)) (3.3)

where cross-matching is only performed within common visual words.

In the case of ASMK, the local descriptors assigned to the same visual word are first

aggregated into a single binary vector. This is performed by B (Xc) = sign (
∑

x∈Xc
r(x)),

with B (Xc) ∈ {−1, 1}d. Image similarity in ASMK is then given by

SASMK(X , Y) = γ(X )γ(Y)
∑

c∈CX ∩CY

k (B (Xc) , B (Yc)) . (3.4)

Aggregating the descriptors proves more efficient computationnally and memory-wise.

Furthermore, it deals better with the burstiness problem, detrimental to image retrieval.

For retrieval, an inverted-file indexing structure is used to perform efficient search.

3.2.5 CBIR and iconographic heritage

Due to the diversity of the iconographic heritage, the methods presented above apply

to various types of contents. Here we first present applications dedicated to digitized

paintings or manuscripts and then applications for long-term landmark retrieval.

3.2.5.1 Pattern spotting and artwork recognition

While image retrieval aims at finding similar images, pattern spotting goes further and

consists of retrieving in a collection of historical document images occurrences of a graph-

ical object and estimating its location on the image. Methods first applied traditionnal

handcrafted image retrieval descriptors and methods like (En et al., 2016a) and (En et al.,

2016b). But deep learning approaches have been designed specifically for this problem

as new datasets have become available, for instance (En et al., 2016c). (Wiggers et al.,

2019b) presents two previous methods (Wiggers et al., 2018, 2019a) in a comparative way.

Indeed, one method (Wiggers et al., 2018) is based on a AlexNet and pre-processes the

data using a Selective Search algorithm to extract multiple candidates out of a single im-

age, all those candidates being later described and compared to the query. On the other

hand (Wiggers et al., 2019a) exploits a Siamese network instead of a conventional CNN

and outperforms the previous method using feature maps of higher dimension. (Úbeda

et al., 2019) uses RetinaNet and its pyramidal architecture to extract features at various
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levels. Combining this with a NonText classifier to search only on relevant image parts,

it improves the state-of-the-art of (En et al., 2016c) when it comes to pattern spotting,

however lowering the results of "simple" image retrieval. (Úbeda et al., 2020) further im-

proves the work of (Úbeda et al., 2019), enhancing their results both on pattern spotting

and image retrieval. When it comes to heritage content, artworks collections have become

a new object of interest as their digitization increases and their heterogeneity make them

a very interesting object of study. Hence (Yang and Min, 2020) uses a CNN (DenseNet)

to classify oilpaint brush, pastel, pencil and watercolor artworks. Similarly, (Ufer et al.,

2020) proposes a multi-style feature fusion approach to reduce the domain gap. (Hu et al.,

2023) proposes an approach for cross-domain retrieval (paintings, sketches, photographs

and so on) by learning domain-agnostic features using the more generic frequency domain,

which proves less variable than the actual representations. They however apply it only

on specific objects and not actual scenes. (Shen et al., 2019) aims at finding similar in-

stances of details amongst different artworks but simultaneously proves that its methods

brings improvement on localization for historical photographs datasets, as illustrated in

Figure 3.4. (Shen et al., 2020b) further extend their work to find watermark in historical

documents, a challenging pattern recognition problem.

Figure 3.4: Example of pattern spotting in art collections (illustration from (Shen et al.,
2019))

3.2.5.2 "Very" long-term image retrieval

Image retrieval on heritage content can be viewed as "very" long-term image retrieval.

Indeed, heritage content often depicts known visual landmarks that a human can compare

to a more recent depiction. However, as (Fernando et al., 2015) explains, old and new

images can be considered as belonging to two different domains, making it difficult for
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Figure 3.5: Example of long term image retrieval (illustration from (Shen et al., 2019))

automated methods to link the two depictions.

Linked to pattern spotting, a first specific lead is followed, aiming at finding similar

details on artworks or historic documents and it is applied on visual landmarks by (Shen

et al., 2019) as illustrated in Figure 3.5 where the areas of interest to the model (non

changing) are identified both on the old and the recent image.

With a very applied aspect to their research (building a 4D visualization platform

for heritage contents), (Maiwald et al., 2021) applies deep features to heritage content.

However, to further ensure the quality of the retrieval, they manually select three queries

of a same object with different viewpoints and select the intersection of the retrieved image

lists as the final list. Further along, (Maiwald et al., 2023) uses a first metadata-based

searching step to subsample the collection in which they apply the CBIR process.

Another lead is to extend the research on long-term visual localization to even more

expand the temporal gap and thus the domain gap. Several image retrieval datasets focus

on landmark retrieval as presented in Table 3.2. However, the time gap or heterogeneity

of the data may not be representative when compared to cultural heritage content.
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Table 3.2: Image retrieval datasets usable for landmark retrieval applications. MMS
stands for Mobile Mapping System.

Dataset
Number of

images
Viewpoint Time gap

Large TimeLags Locations
(Fernando et al., 2015)

500 Street-level 150 years

Google Landmarks Dataset v2
(Weyand et al., 2020)

Over 5M
Street-level
and aerial

Unspecified

ROxford
(Radenovic et al., 2018)

Over 5k
Mostly street-level

and some aerial
Unspecified

Aachen Day-Night
(Sattler et al., 2018)

7712 Street-Level 2 years

Extended CMU-Seasons
(Sattler et al., 2018)

Over 110k Street-level MMS camera 1 year

RobotCar Seasons
(Sattler et al., 2018; Maddern et al., 2017)

Over 35k Street-level MMS camera 1 year

SILDa Weather and Time of Day
(Balntas, 2019)

Over 14k
Street-level
and aerial

1 year

HistAerial
(Ratajczak et al., 2019)

4.9M Vertical aerial 1970-1990

ALEGORIA
(Gominski et al., 2019)

13175
Street-level
and aerial

1920’s-today

Table 3.3: Image retrieval datasets’ specific heterogeneity

Dataset Color Domain Illumination Occlusion Scale Orientation

Large Time Lags Locations

(Fernando et al., 2015)
X X X X

Google Landmarks Dataset v2

(Weyand et al., 2020)
X X X X

ROxford

(Radenovic et al., 2018)
X X X X X

Aachen Day-Night

(Sattler et al., 2018)
X X X X

Extended CMU-Seasons

(Sattler et al., 2018)
X X X

RobotCar Seasons

(Sattler et al., 2018; Maddern et al., 2017)
X X X

SILDa Weather and Time of Day

(Balntas, 2019)
X X X

HistAerial

(Ratajczak et al., 2019)
X X

ALEGORIA

(Gominski et al., 2019)
X X X X X X

Most datasets do not reflect correctly the heterogeneity representative of cultural her-
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itage contents as summarized in the Table 3.3. Indeed, the heterogeneity may come from

multiple factors. The main differences are the color of the image (is it a regular RGB

image, a sepia one, a black and white one ?), the domain of the image (a photograph,

a drawing, an engraving, etc.), the illumination variation (between seasons or day and

night for instance), the occlusion that may be present (preventing from correctly discern-

ing the landmark), the scale (meaning the size the main object takes in the whole image,

influencing the level of detail to which one can see it but also the number of distracting

elements in the image) and finally the orientation of the image (i.e. the viewpoint used

to depict the landmark). To address this issue, (Gominski et al., 2019) proposes the ALE-

GORIA dataset consisting of multi-source, multi-date and multi-view images with wide

intra-class variations (viewpoint, illumination, date, media, etc). This new dataset allows

(Gominski et al., 2019) to challenge seven state-of-the-art image descriptors (including

six deep features). It concludes that there are still many difficult cases to be handled by

image retrieval methods and methods need to become more robust to bigger changes in

viewpoint or illumination for instance. Extending their work and dataset in (Gominski

et al., 2021), they explain the difficulties encountered by state-of the art deep features

in the context of cultural heritage content, detailing the most problematic variations.

Especially, they affirm that the existing datasets do not cover wide enough variations in

content to properly train feature descriptors to be used on heritage content. In order to

improve the results, work on precision and recall is done. However, place for improvement

remains for deep features to be generalised to such datasets.

3.3 Re-ranking

Figure 3.6: Re-ranking methods paradigms

Retrieving similar images simply based on visual descriptors and their similarities may not

always yield the best results at the top of the list, because some other kinds of information,
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e.g. geometry in the image, was not encapsulated in the visual descriptor in order to be

robust to the many transformations an image can undergo. Consequently, as presented

at the beginning of the chapter in Figure 3.1, retrieval is usually considered as a two-step

process: at first retrieval at large scale with descriptors, then re-ranking of the responses

based on other finer or more specific criteria. Multiple paradigms of re-ranking exist as

described in Figure 3.6. In this section, we will further present these paradigms and the

methods associated.

3.3.1 Late fusion

The principle behind late fusion is to exploit two (or more) separate retrieval processes

and fuse their similarity lists or scores afterwards to obtain a new list of similar results

combining optimally the previous results. The idea is to exploit the efficiency of different

approaches (for instance global description and local description) while alleviating their

drawbacks, this on a dataset where both approaches perform very differently depending

on each query. (Zhang et al., 2012) for instance exploits both global and local features

similarities as two local graphs that they fuse to obtain the best similarity result overall.

(Ye et al., 2012) exploits similarity results as several ranking matrices and finds the most

common ranking matrix between them. Another approach in (Zheng et al., 2015) exploits

the similarity score curve of each descriptor to estimate its efficiency with regard to each

specific query and uses it to weigh the impact of this descriptor in the fusion scheme.

Even in the paradigm of learned features late fusion can be exploited as in (Wang et al.,

2020b) where the image features are compared using multiple distances to be the most

discriminative possible, as illustrated in Figure 3.7.

Figure 3.7: Example of late fusion using multiple distances (illustration from (Wang et al.,
2020b))

3.3.2 Geometric verification

A very common re-ranking method is a geometric verification step. The idea is to match

local features between the query image and each retrieved image, estimate the geomet-
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ric transformation parameters (affine transformation) using a robust approach such as

RANSAC (Fischler and Bolles, 1981; Cao et al., 2020) which fits data to a model while

being robust to outliers (in our case wrong matches). It consists of four steps:

1. local features are extracted for the query image and its k most similar images,

2. the features are matched between the query image on one side and each of the k

images,

3. out of this k matched sets, an affine transformation is estimated via RANSAC,

4. the k images are re-ranked based on the number of inliers kept by the RANSAC

process.

An example of matches considered as inliers is shown in green in Figure 3.8 while out-

liers (incorrect matches) are shown in red. The idea behind this geometric transformation

is to check the consistency of the matching between specific points in both images. Thus,

two images displaying the same place will be geometrically speaking more consistent than

two images which local features match but without any coherence, indicating that they

are less likely to display the same object.

Figure 3.8: Examples of RANSAC-based matches selection (illustration from (Wang et al.,
2020a))

The local features used can directly be the ones used during the retrieval step as in

(Noh et al., 2017) with DELF. However, more precise local features have been developed

and used in other computer vision tasks, such as Structure from Motion (SfM) which esti-

mates a 3D structure from 2D images of a same object but taken from different viewpoints.

These more precise features are often more efficient for the geometric verification process,

even though they require another feature extraction step. First of all, most handcrafted

features described in Section 3.2.1 can be used for this task. However, newly developed

learned feature extractors prove to be the new state-of-the-art, especially when dealing
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with a high variability in the contents. Examples are D2Net (Dusmanu et al., 2019),

SuperPoint (DeTone et al., 2018) or DISK (Tyszkiewicz et al., 2020).

Once local features are extracted, the matching between them can be computed in

various ways. The most recent specific approaches for matching features are learned one.

Multiple approaches exist such as SuperGlue (Sarlin et al., 2020) and its improvement

LightGlue (Lindenberger et al., 2023) which exploits a self attention mechanism to base

its matching on priors specific to the underlying 3D scene. With OANet (Zhang et al.,

2019), the matching exploits both the local and the global context extracted from the

existing sparse correspondences between two sets of local features.

(An et al., 2023) proposes an adaptation of this classical RANSAC using topological

relations instead of spatial ones to improve re-ranking without requiring fine-tuning, which

could prove useful in our setting of iconographic content heritage retrieval.

The detection and matching can also be concomitant as in (Sun et al., 2021) which

uses a transformers-based approach to mitigate the cost of first detecting and describing

features and then matching them.

This geometric verification step can also be included directly in the descriptor ex-

traction process as in DOLG (Yang et al., 2021), DELG (Cao et al., 2020) or CV-Net

(Lee et al., 2022) which does not apply RANSAC with local features, but a dense cross-

scale feature correlation to assess the coherence between images. The efficiency of spatial

verification is such that this geometric verification step is now further embedded in the

descriptor extraction process. (Zhang et al., 2023b) proposes to extract global features

embedding directly their spatial context. The subsequent matching exploits both infor-

mation (visual and spatial) at once rather than in two separate steps.

(Cai et al., 2023) proposes a dataset and a method to disambiguate visually similar

images (in their case similar facades of monuments, front and back for instance). They see

this problem as a classification task, binarily deciding whether or not two images display

the same side of the building. Their geometric verification is thus a trained network

exploiting geometric matches for a classification task.

3.3.3 Transformers-based re-ranking

The advent of transformers model introduced with (Vaswani et al., 2017) proposed new

approaches to image retrieval with vision transformers (Dosovitskiy et al., 2021). The

use of transformers for re-ranking became the next logical step. Exploiting self-attention

mechanisms, these networks learn new scores based on different input informations.

On one side, (Tan et al., 2021) proposes RRT and exploit the re-ranking lists and both

global and local descriptors to estimate a new similarity score between each pair of images,

said score being then used for re-ranking. Similar to RRT, (Zhang et al., 2023a) proposes

ETR, a new transformer block jointly exploiting self-attention and cross-attention when

estimating the similarity within an image pair. (Zhu et al., 2023) proposes a unified

pipeline (shown in Figure 3.9) for both retrieval and re-ranking based on transformers.

A self-attention mechanism selects the informative local features extracted by the trans-
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Figure 3.9: Transformer-based pipeline for re-ranking using global and local features
(illustration from (Zhu et al., 2023))

former used afterwards during the re-ranking process using jointly correlation, attention

and positional information between feature pairs.

On the other side, (Ouyang et al., 2021) exploits the lists of results to estimate a

certain cross-similarity between the lists of similar images of two similar images. Indeed,

two similar images should logically be similar to the same images. Using both lists of

results exploits this logic to reestimate the similarity between two images.

3.3.4 Query expansion

A large family of approaches regroups query expansion methods. The main idea is to take

advantage of contextual information from the first retrieved images list by aggregating

the features of the query and its most similar images to increase the meaningfulness of

the query descriptor in order to improve the retrieval results. We detail further all types

of approaches.

3.3.4.1 Descriptor aggregation

A first approach to query expansion is the aggregation of the image descriptors most simi-

lar to the query image. The principle is to use true positives returned by the initial process

and create a new, richer query by "combining" the initial query and those positive results,

in order to "attract" more positive results during a second querying step. The number of

descriptors aggregated and the weighting schemes can greatly vary. Multiple adaptations

have been proposed, such as changing the aggregation weighting scheme. Average-QE

(AQE) (Chum et al., 2007) considers all retrieved results as equal when averaging the de-

scriptors. An adaptation is AQEwD, meaning AQE with decay, where further an image

is in the result list, lesser the impact of its descriptor is in the aggregation. HQE (Tolias

68



and Jégou, 2014) exploits Hamming embeddings to enrich the descriptors. (Arandjelovic

and Zisserman, 2012) proposes a discriminative query expansion (DQE) which rather

determines which descriptors not to aggregate rather than those to aggregate like all

AQE-based methods. α-QE (Radenovic et al., 2019) in turn aggregates descriptors based

on similarities weighted by an alpha coefficient. (Klein and Wolf, 2021) exploits the graph

of nearest neighbors to aggregates descriptors using both the descriptors of most similar

images and the descriptors of their most similar images. Finally, new learned approaches

like (Gordo et al., 2020; Zhang et al., 2022) have been developed to automatically select

meaningful parts of the images that should be aggregated into a new descriptor.

3.3.4.2 Pseudo relevance feedback

Similar to descriptor aggregation, the idea is also to create a new, richer descriptor,

however, this approach is inspired by semi-automatic relevance feedback approaches, used

for instance in commercial platforms to propose new products to a client based on its first

selection. Instead of simply using the first results as correct results, other results are

assumed to be incorrect to compute the new descriptor as both closer to the query and

correct retrieved images and further from incorrect retrieved images. As this is in a fully

automatic setting, this is only a "pseudo" relevance feedback process.

Figure 3.10: Pseudo-relevance feedback pipeline (illustration from (Lin, 2019))

(Lin, 2019) propose the pipeline from Figure 3.10 and exploit the Rocchio algorithm

(Rocchio Jr, 1971) from Equation 3.5 for descriptor aggregation and also proposes a com-

bination of result lists using the Borda count to fuse the retrieved images list, aggregating

either only pseudo positive results or both pseudo positive and pseudo negative results.

The Rocchio algorithm modifies the query vector q0 into the modified vector qm fol-

lowing this formula:

qm = αq0 + β
1

|Dr|

∑

dj∈Dr

dj − γ
1

|Dnr|

∑

dj∈Dnr

dj, (3.5)

with Dr the set of pseudo-positive (relevant) images and Dnr the set of pseudo-negative

(non-relevant) images and α, β and γ the weights of the three components of the modified

query vector.

(Lin, 2022) builds on the Rocchio algorithm using a block based approach. Indeed,

instead of using the same weight for all positive images and the same weight for all
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negative ones, the sets of positive and negative results are divided into blocks to which a

different weight is assigned, in order to preserve the order of similarity. That way, a block

of positive images closer to the query will be wheighed higher than the following block

in a decreasing order of similarity. This aims at limiting the impact of incorrect images

wrongly selected in the set of positive images.

3.3.4.3 Diffusion-based approaches

A specific kind of approach within query expansion re-ranking relies on diffusion, which

propagates the similarity through the k-NN graph of similar images in order to re-rank

the list of results without a new step of querying like descriptor aggregation methods.

Such solutions have achieved state-of-the-art performance on many benchmarks. (Delvin-

ioti et al., 2014) proposes three extended similarity measures for comparing the neigh-

borhoods of candidates in the list of results and then re-rank them. (Iscen et al., 2017)

transforms a similarity matrix into an affinity matrix in order to assign gradually each

image to a cluster of its similar images, exploiting the manifold of the dataset. (Zhong

et al., 2017) proposes to encode the set of k-reciprocal nearest neighbors of an image

to reestimate a similarity between images using an adapted Jaccard metric. Using heat

diffusion properties, (Pang et al., 2019) re-rank the images by estimating how much an

image is heated by the query (heat source) and then how much this image contributes to

heating the cluster of heated images. (Bai et al., 2019) alternates a diffusion step and a

fusion step to further increase affinity between similar images while gradually removing

the noise created by dissimilar images. (An et al., 2021) exploits hypergraphs intra- and

inter-images to diffuse the spatial similarity information alongside the visual similarities.

(Shen et al., 2021) finally leverages the structure of the similarity graph to re-rank im-

ages, refining the similarity of multiple subgraphs and aggregating them into a new global

graph of similarity, as simply shown in Figure 3.11.

Figure 3.11: Graph-based approach to re-ranking (illustration from (Shen et al., 2021))
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GNN-Reranking

During our experiments, one diffusion-based approach similar to (Shen et al., 2021) proved

to be highly efficient with our dataset. It is called GNN-Reranking (GNN-R after) and

was proposed in (Zhang et al., 2020b). We describe it in more details, largely using the

authors equations.

Figure 3.12: GNN-Reranking process (illustration from (Zhang et al., 2020b))

Their key idea is that image similarities can be seen as relations in a graph. That

way, discrimination between sets of similar images can be performed in the graph and

updating the image features can be seen as a message propagation in GNN approaches.

The approach is done in two steps as shown in Figure 3.12. First, it creates a k-NN graph

using all images and similarity information. The images are nodes and the similarity

score between two images (two nodes) is encoded in the edge. Second, the features are

updated by aggregating the features of the closest nodes weighted by the edges. The final

re-ranking list is computed by comparing the updated image features.

Graph creation. The process first embeds a k1-NN graph in an adjacency matrix A∗

with i and j two images in the dataset and N(i, k) the k most similar images to i based

on the similarity matrix S:

A∗
i,j =























1 if j ∈ N (i, k1) ∧ i ∈ N (j, k1)

0 if j /∈ N (i, k1) ∧ i /∈ N (j, k1)

0.5 otherwise

(3.6)

By encoding differently similar images and reciprocally similar images, this matrix

encodes more finely the adjacent information of similar images. Using this matrix, the

feature of the images (nodes) are defined as hi for the node ni, which can be extracted

from the i-th row of the symmetric adjacent matrix A
∗ :

hi =
[

A
∗
i,0, . . . , A

∗
i,n

]

. (3.7)

The features used to represent the images are based on their set of neighbors rather

than the original features, in order to more easily remove hard negatives which can be

occasionally similar to one image but are rarely similar to the same set of images.

Once the graph of k1-NN is set as base for the GNN process, the k2-NN graph is
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exploited to select the edges (eij) representing image similarity between images i and j

that are used during the aggregation step to update the node (image) feature; k2 is lower

than k1 (usually much more lower).

Features update. Once the graph is constructed, the message propagation is per-

formed using the aggregation scheme defined here with h
(l)
i the feature of image i at the

l-th layer:

h
(l+1)
i = h

(l)
i +

∑

eα
ij · h

(l)
i , j ∈ N (i, k2) (3.8)

with h
(l)
i regularized with L2 norm after every message propagation on the graph.

In our experiments, as evaluated by the authors, we use two consecutive layers and the

last GNN layer outputs the transformed node features h
(l)
i . In the end, the final ranking

list is computed with the cosine similarity of refined features.

This method exploits the manifold of the dataset and is very efficient because the mes-

sage propagation is concurrent between all nodes. The high-parallelism GNN propagates

the message on the sparse graph efficiently, the whole dataset is re-ranked in one passage.

3.4 Image descriptors evaluation

In this section, we evaluate some state-of-the-art descriptors presented earlier to define

which descriptor is the most suited for the iconographic heritage contents we have selected

in this thesis.

3.4.1 Descriptors evaluated and evaluation choices

3.4.1.1 Evaluation choices

Training strategy. First of all, we decided in our thesis not to retrain or fine-tune

existing networks but rather use pretrained weights. Indeed, as presented in Section 2.2

of Chapter 2 the ever-changing aspect of heritage iconographic content collections, due to

ongoing and increasing digitization presents difficulties for training networks.

A first aspect, inherent to iconographic heritage collections, is the sparsity both inside

each collection and between collections. Each collection often has a specific object or

area of study, or a specific acquisition protocol which makes linking between collections

complex. Thus, automatically creating a large enough dataset for training, especially a

correct ground truth is very complicated and not realistic.

A second aspect is the continuous change of the available data in digital humanities

due to the digitization, which would require to fine-tune networks on each new data to

be able to capture its new specificities.

For those reasons, the networks used are the implementations of the authors and the

weights exploited are the ones provided by the authors.

Evaluation framework. The first experiments were run on a RTX 3060 GPU with

12 Go RAM and 4 CPU cores. Most of the experiments of this thesis are then run on a
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Tesla-V100 GPU with 16 Go RAM and 10 CPU cores.

Evaluation metric. We evaluate the efficiency of the approaches mostly with the

mean Average Precision score (mAP); the implementation used is from (Radenovic et al.,

2019)1.

3.4.1.2 Evaluation datasets

During the quite lengthy process of creating the complete dataset as presented in Chapter

2, we started our evaluations on smaller subsets of the dataset.

The first one, called DBsmall afterwards, consisted of only 1306 images instead of

1637, coming from only five providers instead of eight and without distractors. The main

differences with the final one are for one the even smaller part of heritage iconographic

content compared to more recent Stereopolis and Paris6K data and second the fact that

none of the Albert Kahn data was in high resolution, which was more detrimental to

How-A due to the fact that it is a local descriptor.

The second one, called DBlarge, is comprized of the 1637 selected images in the 31

classes described earlier, and includes DBsmall.

The final one, called DBlarge+dist, regroups the 9834 images, aggregating DBlarge and

the numerous distractors.

3.4.1.3 Evaluated descriptors

Four state-of-the-art image descriptors were evaluated, all methods are deep detectors

and descriptors:

1. DELG (Cao et al., 2020), a global descriptor, trained on Google Landmarks Dataset

v2. Out of a first set of image features, it produces a global descriptor using GeM

pooling and simultaneously extract local features using an attention-based process.

The local features are used in an integrated re-ranking process for the images re-

trieved using the global descriptor. The global descriptor was evaluated on our

specific dataset.

2. R101-GeM (He et al., 2016; Radenovic et al., 2019) was also tested. Trained on

Google Landmarks Dataset v2, it produces a global descriptor simply by combining

a ResNet 101 backbone and using GeM as a pooling function.

3. How (Tolias et al., 2020) showed promises when used with heritage iconographic

content as presented in (Gominski et al., 2021). Trained on the SfM120k dataset

(Radenovic et al., 2019), it exploits attention to produce local features. The match-

ing used is ASMK (Tolias et al., 2016a) which exploits a codebook of visual words

created on SfM120k to evaluate the similarity between images. This descriptor will

be called How-A for the remainder of the manuscript.

1https://github.com/filipradenovic/cnnimageretrieval-pytorch
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4. CVNet-Global (Lee et al., 2022) appeared as a new state-of-the-art for image

retrieval, also trained on Google Landmarks Dataset v2. CV-Net makes in one pass

image retrieval and re-ranking. For this evaluation, we extracted the global features

and used them for image retrieval.

Table 3.4 resumes all mAP scores for all the tested descriptors. The two next sections

will further justify our final choice of descriptor.

Table 3.4: mAP score of tested image descriptors

DBsmall DBlarge DBlarge+dist

DELG (Cao et al., 2020) 53.2 - -
R101 - GeM (He et al., 2016; Radenovic et al., 2019) 57.9 53.3 38.5
How + ASMK (Tolias et al., 2016a, 2020) 53.8 55.1 41.0
CV-Net global (Lee et al., 2022) - 67.3 37.1

3.4.2 Choice between How-A, R101-GeM and DELG

A first evaluation was performed on the DBsmall with the first three image descriptors.

As shown in Table 3.4, R101-Gem outperforms largely the other global descriptor DELG.

It also outperforms How-A, by almost as much. Because of our very specific dataset, we

compared more in depth How-A and R101-GeM in order to base the choice of descriptor

not only on a global mAP score. This more in-depth evaluation was motivated by the

fact that a local descriptor appeared more suited to retrieve images with a high variability

in terms of levels of details in the contents. Furthermore, our objective is interlinking

connections, thus the descriptor chosen must be efficient both intra-provider and inter-

providers. This more in-depth evaluation was motivated by the fact that a local descriptor

appeared more suited to retrieve images with a high variability in terms of levels of details

in the contents.

To evaluate this, inspired by confusion matrices, inter-provider mAP scores were com-

puted. An ideal descriptor for our problem should perform retrieval with the right trade-off

between intra-provider and inter-provider retrieval (between the diagonal terms and the

others). In the following Tables (3.5 and 3.6 but also all others of the kind), the mAP

is each time computed using all the queries from the provider in the first column and for

whom the positives are the images of the same class and from the provider in the first

row. In all following tables, FD refers to the Full Dataset (being either DBsmall, DBlarge

or DBlarge+dist depending on the case).

Comparing results of the Tables 3.5 and 3.6, we can identify several key aspects that

helped decide on the best descriptor for our dataset. First of all, we see that for R101-

GeM (Table 3.6), the diagonal terms are much more salient, indicating that the retrieval

is efficient to find correct images from the same provider but in comparison less efficient

to find correct images from another provider, thus probably with a different visual aspect.

Secondly, we will focus on the two starting providers of the dataset (Parisienne de la
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Retrieved Image’s Provider

FD Sp PdP AK CVP P6k Mean

Q
u

e
ry

P
ro

v
id

e
r FD 53.75 39.61 10.55 20.38 13.73 13.27

Sp 65.02 76.40 05.72 07.61 06.12 08.29 25.16
PdP 55.21 20.86 43.14 20.09 09.30 12.61 25.27
AK 29.54 04.43 02.02 45.58 02.96 03.60 13.05

CVP 55.69 19.82 07.29 12.59 47.18 12.68 24.05
P6k 51.85 15.33 04.55 15.52 09.66 29.82 19.71

Mean 27.37 11.17 19.39 13.71 12.80

Table 3.5: mAP provider vs provider with How-A descriptor

Retrieved Image’s Provider

FD Sp PdP AK CVP P6k Mean

Q
u

e
ry

P
ro

v
id

e
r FD 57.86 42.58 11.82 24.07 14.75 12.92

Sp 64.02 80.53 04.63 07.30 05.82 06.31 28.10
PdP 49.34 17.10 50.13 18.20 06.90 07.53 24.87
AK 55.62 12.54 06.04 61.80 05.19 06.54 24.62

CVP 59.14 20.82 06.61 12.38 53.64 11.19 27.30
P6k 50.02 16.11 04.21 15.54 09.41 29.45 20.79

Mean 31.61 13.91 23.21 15.95 12.32

Table 3.6: mAP provider vs provider with R101-GeM descriptor

Photographie and Stereopolis) to evaluate the efficiency of the inter-provider retrieval that

is paramount for collection interlinking. Indeed, what we are looking for is a descriptor

that ensures that all providers will retrieve the starting providers and vice-versa. The

comparison can be done on the two columns and two lines for Stereopolis (Sp) and the

Parisienne de la Photographie (PdP):

• with Sp as a query, How-A slightly outperforms R101-GeM,

• when PdP is a query, How-A outperforms R101-GeM even more,

• for the column with Sp as the retrieved images, How-A performs slightly worse, with

the particular case of AK which we explain later,

• as for PdP as the retrieved images, How-A performs slightly better, with the same

exception for AK.

Globally, it appears that How-A performs better than R101-GeM if we consider the intra-

provider aspect of the retrieval, which is paramount in our study. Third, we want to

reiterate the fact that all results based on Albert Kahn (AK) images are biased due

to the low resolution of these contents at the time of the experiments, which is more

detrimental for How-A as it is a local descriptor.

To further validate the choice of How-A, we looked further into specific classes of the

dataset that prove to be difficult or ambiguous for image descriptors due to their similarity
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to another class or to the very small detail that represents them. We used class-based

mAP scores, meaning that queries and positive images can come from any provider but

only from one specific class. The two following qualitative examples further validate the

use of How-A in our case.

Class Gare de Lyon Nation Sacré Coeur

Example

Detail Clock tower Fountain and column Dome in the background

mAP w/ How-A 92.9 46.3 67.6

mAP w/ R101-GeM 76.3 38.9 53.3

Table 3.7: mAP comparison for classes with specific small details

The examples in Table 3.7 show that for classes whose main element is often a small

detail of the images, How-A performs better than R101-GeM.

Class Invalides Val de Grâce

Example

mAP w/ How-A 44.5 48.2

mAP w/ R101-GeM 35.6 33.8

Table 3.8: mAP comparison for classes with great visual similarity

In Table 3.8 we compare the mAP for two classes which are quite similar. Indeed, the

main element in both pictures is the dome. In both cases, it is in the background with
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buildings in the forefront. Furthermore, both domes are quite similar, even to a human

observer. Both classes could be confused with each other. However, it appears once more

that How-A is more discriminative than R101-GeM, especially when confronted to small

details.

Going even further than those experiments, as shown in Table 3.4, we evaluated both

descriptors with DBlarge and DBlarge+dist. In both cases, How-A performs better than

R101-GeM, showing its higher robustness to the added distractors.

This detailed analysis of performances between How-A and R101-Gem led us to finally

select How-A for further experiments as it corresponds better to our needs in terms of

discriminativeness and inter-provider retrieval efficiency. Both those characteristics are

essential for our goal of interlinking widely diverse heritage image collections.

3.4.3 Choice between How-A and CV-Net

Even though How-A appeared most suited for our needs, CV-Net (Lee et al., 2022) ap-

peared in 2022 as a new state-of-the-art with a substantial mAP gain. Therefore, we

evaluated it against our dataset to keep using the best descriptor as a baseline for our

retrieval process. At the time, CV-Net and How-A were evaluated on both DBlarge and

DBlarge+dist.

When evaluated on DBlarge, CV-Net largely outperforms How-A with a 12.2% global

mAP gain as shown in Table 3.4. When comparing its inter- and intra-provider retrieval

capacities against those of How-A in Tables 3.9 and 3.10, several conclusions can be made:

• CV-Net is largely better in terms of intra-provider retrieval,

• in terms of inter-provider retrieval, several points should be noted:

– with PdP or AK (HD and BD) (the two main heritage collections) as the

retrieved images, How-A outperforms CV-Net for 5 out of 9 providers,

– when PdP images are the queries, How-A outperforms or is on par with CV-Net

for 6 out of 9 providers.

This observations does not completely justify the fact to choose How-A over CV-Net, even

though the performance is a little better with the two biggest "heritage-like" providers.

However, when adding the distractors, the performance of CV-net drastically drops, scor-

ing almost 4% below that of How-A. Indeed, being a global descriptor, CV-Net appears

less efficient at dealing with the noise brought on by the distractors depicting similar

scenes all over Paris.

Thus, despite CV-Net being a strong candidate, for the remainder of our experiments,

we decided to keep working with How-A because of its adequate trade-off between intra-

provider and inter-providers retrieval efficiency and its high degree of discriminativeness

that helps dealing with distractors.

77



Retrieved Image’s Provider

FD Sp PdP AK HD MAP CVP CA COARC AK BD P6k Mean
Q

u
e
ry

P
ro

v
id

e
r

FD 55.1 37.5 10.0 17.9 10.3 11.3 01.6 18.0 06.5 11.7

Sp 62.0 75.8 04.8 06.4 04.8 05.5 00.7 07.2 02.5 07.8 12.8

PdP 56.1 17.4 35.8 16.5 15.7 07.5 02.1 17.8 06.9 10.3 14.4

AK HD 52.7 09.5 06.4 51.4 08.2 04.4 01.1 10.8 05.8 07.5 11.7

MAP 48.2 12.2 11.6 15.7 22.1 06.0 01.6 10.1 03.4 10.2 10.3

CVP 53.9 17.2 07.0 09.3 06.9 44.7 02.7 11.6 05.7 10.2 12.8

CA 48.7 11.9 08.3 16.6 10.7 11.2 15.7 07.2 06.3 11.0

COARC 76.2 12.5 06.7 10.8 10.5 04.3 64.4 01.0 37.5 18.5

AK BD 33.0 06.8 02.5 16.1 04.1 04.1 00.9 01.6 48.6 04.3 09.9

P6k 50.8 14.0 04.0 13.5 07.7 07.9 01.2 16.9 03.2 23.6 10.2

Mean 19.7 09.7 17.4 10.1 10.6 03.2 17.5 09.4 13.0

Table 3.9: mAP provider vs provider with How-A descriptor on Full dataset without
distractors

Retrieved Image’s Provider

FD Sp PdP AK HD MAP CVP CA COARC AK BD P6k Mean

Q
u

e
ry

P
ro

v
id

e
r

FD 67.3 38.9 12.4 20.4 17.4 13.8 01.8 20.7 06.1 14.7

Sp 67.3 85.6 04.1 06.5 05.8 06.0 00.3 08.8 01.6 10.6 19.7

PdP 63.6 16.3 51.3 09.9 28.1 07.7 01.9 17.8 04.6 08.6 21.0

AK HD 67.7 12.6 05.5 71.9 10.2 05.7 00.9 09.7 07.2 08.7 20.0

MAP 66.7 13.8 17.5 11.0 45.3 07.0 02.4 16.4 03.4 09.6 19.3

CVP 74.4 22.5 06.7 09.2 11.2 58.5 03.0 14.9 07.1 12.3 22.0

CA 53.5 09.4 09.4 14.6 23.3 11.6 23.7 03.5 04.5 17.1

COARC 89.1 16.6 06.5 10.1 16.3 03.1 73.7 01.4 37.2 28.2

AK BD 60.9 10.2 06.2 38.2 09.1 07.3 01.1 03.3 41.7 07.9 18.6

P6k 65.5 20.5 03.0 13.9 09.3 08.6 00.7 11.9 03.5 32.8 17.0

Mean 24.6 12.3 20.6 17.6 12.9 04.0 19.7 08.0 14.7

Table 3.10: mAP provider vs provider with CV-Net global descriptor on Full dataset
without distractors

3.5 Re-ranking methods evaluation

In this section, we evaluate all paradigms of re-ranking presented in 3.3 in order to find

the most relevant ones for our problem of automatic content linking using image retrieval

on a challenging dataset.

3.5.1 Re-ranking choices

As presented in Section 3.3, a large number of methods have been implemented to im-

prove image retrieval results through a re-ranking step. Starting from How-A as visual

descriptor, we have tested approaches from all families to evaluate what best suited our

challenging data.
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For all trained methods, the choice was made not to retrain or fine-tune the networks,

for reasons similar to those explained in Section 3.3. Indeed, retraining networks is quite

costly in both computation resources and in annotation time to create an adequate dataset

and a ground truth. Furthermore, as the digitization process and the linking of contents is

an ongoing process, fine-tuning would only help temporarily and for each new collection,

the network would have to be retrained. Thus, our thesis focuses on off-the-shelf networks

and how to exploit them to the maximum without retraining.

Table 3.11 shows the performance of these approaches, by providing an idea of the

improvement in terms of mAP when exploited as a single re-ranking step. For example,

geometric verification with RANSAC in average improves results by 0.5-1.5 point of mAP.

Further details on experiments and results explanations are presented in the next sections.

Table 3.11: Modification of mAP score with re-ranking

Approach Order of magnitude

Weighted descriptor aggregation
(Chum et al., 2007; Radenovic et al., 2019)

+ 0.1

Pseudo relevance feedback
(Lin, 2019)

< + 0.5

Transformers-based :
CSA (Ouyang et al., 2021), RRT (Tan et al., 2021)

- 10

Geometric Verification :
RANSAC (DeTone et al., 2018; Sarlin et al., 2020) + 0.5-1.5
CV-Net Rerank (Lee et al., 2022) - 2

Diffusion
(Shen et al., 2021; Zhang et al., 2020b)

+ 16

3.5.2 Aggregation

In terms of descriptor aggregation approaches, AQE and α-QE have been tested on the

DBsmall. For each, the number of aggregated descriptors varied between 5 and 20, and the

value of α between 1 and 5. The experiments were run using descriptors from R101-GeM,

DELG and How.

Independently of the descriptors, the final mAP gains were minimal, inferior to 0.1%.

In the case of the How descriptor, the fact that it is based on multiple local features

explains why an aggregation approach is not best suited. However, in the case of global

descriptors like R101-GeM or DELG, the explanation behind this very slim mAP gain

appears to be the high degree of variability of the visual contents. Indeed, global de-

scriptors are less suited for retrieval in a dataset whith a high degree of changes in color,

viewpoint, detail level, illumination,... Thus, the aggregation of the global descriptors
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does not encapsulate enough subtil information required to bridge the gap induced by the

visual disparities.

As for learned aggregation paradigms, no pre-trained networks or code releases were

available and we did not explore this option further.

3.5.3 Pseudo-relevance feedback

The pseudo-relevance feedback method was tested on the DBsmall, concurrently with the

classical descriptor aggregation approaches. We chose to test (Lin, 2019) as its algorithm

was detailed and allowed for freedom to test several choices in the weighting paradigm.

Indeed, it exploited the Rocchio algorithm (Rocchio Jr, 1971) for descriptor aggregation

in order to get "closer" to positive images’ descriptors and further from negative ones.

Exploiting simply this aggregation approach proved slightly better than simple aggre-

gation. Indeed, by tweaking the number of pseudo-correct and pseudo-incorrect images

and the weights associated, we managed to obtain a mAP gain of about 0.5% which

remains quite small after so much adaptation.

3.5.4 Transformers-based

For transformers-based approaches, we tested two available methods: CSA (Ouyang et al.,

2021) and RRT (Tan et al., 2021) as pure re-ranking steps on DBlarge. Both approaches

required global features. We tested them with respectively R01-GeM and DELG descrip-

tors, following the authors experiments. However, the re-ranking step in both cases was

highly detrimental in terms of mAP (about a 10% drop). In both cases, it appears that

the networks should be retrained with data more similar to our own. Indeed, trained

with Google Landmark Dataset v2 which is a recent dataset in terms of image quality

and visual aspect, the networks do not deal well with the high visual variability of our

dataset.

3.5.5 Geometric verification

For geometric verification purposes, we exploited a classical RANSAC implementation for

finding an affine transformation between two images. The process is similar regardless of

the local features or the matching scheme selected.

Based on work previous to this thesis, we chose to exploit SuperPoint features (DeTone

et al., 2018) and SuperGlue (Sarlin et al., 2020) as a matching scheme. Indeed, they

proved to be the most efficient when applied to heritage content. Furthermore, they were

integrated in the Hierarchical Localization process of (Sarlin et al., 2019) whose approach

was very inspiring in terms of adapting the retrieval to the downstream task desired.

Further along, as LightGlue was proposed in 2023 (Lindenberger et al., 2023), we decided

to test it as an alternative for matching due to it being an improvement of SuperGlue.

Table 3.12 presents the mAP increases due to classical geometric verification on the

k = 135 first similar images. The mAP gain is higher than previous re-ranking methods
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tested. On DBlarge, the mAP gain is of 1.7% when using SuperGlue. When the distractors

are added (DBlarge+dist), the mAP gain is less, only 0.5%. However, changing the matcher

with the new and improved LightGlue brings the score up by 0.9%. The mAP gain is

not extremely high, however as we will discuss later in Chapter 5, the real gain due

to geometric verification will appear when combined with other re-ranking approaches

exploiting extended information to globally improve the retrieval, justifying this more

in-depth testing.

Table 3.12: Geometric verification on the 135 first similar images

mAP DBlarge DBlarge+dist

How-A 55.1 41.0

How-A + RANSAC-SuperPoint/SuperGlue
(DeTone et al., 2018; Sarlin et al., 2020)

56.8 41.5

How-A + RANSAC-SuperPoint/LightGlue
(DeTone et al., 2018; Lindenberger et al., 2023)

- 41.9

The final geometric verification approach we tested is the re-ranking part of CV-

Net (Lee et al., 2022). We used it directly after the retrieval step from CV-Net as it

exploits features extracted by CV-Net. Whereas CV-Net may perform better than other

descriptors in terms of retrieval, its re-ranking step however was detrimental to the whole

process with a mAP loss of about 2%, which can be explained by the high visual variability

that is not suitable for its dense correlation approach.

3.5.6 Diffusion methods

To evaluate the benefits of using diffusion methods for re-ranking, we tested several ap-

proaches exploiting in different ways the set of nearest neighbors of each query to exploit

the global retrieval context.

First, two different types of approaches were compared. The comparison of the k-

reciprocal sets of nearest neighbors from (Zhong et al., 2017) on one side and the graph-

oriented approach of GNN-Reranking from (Zhang et al., 2020b). This test exploits the

same retrieval results as an input and is performed on the DBlarge. While the mAP gain

from both methods is high, we obtain +14.1% for k-reciprocal and +16.9% for GNN-R,

GNN-R outperforms the other approach.

Second, we compare our leading method GNN-R with the similar approach SSR (Shen

et al., 2021). Indeed both approaches exploit the retrieval results as a graph. In one case,

GNN-R exploits the k-nearest neighbors graph as a whole while SSR exploits subgraphs

which are optimized independently before creating a new whole similarity graph. Tested

on the DBlarge+dist, without any retraining, both methods perform similarly with an order

of magnitude of 16% (15.9% for SSR and 16.2% for GNN-R). While GNN-R outperforms

only with a very small margin, we decided to keep using it going forward for another
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specific reason: as it will be shown in Chapter 5, multiple runs of GNN-R can be done

successively, further improving the re-ranking.

3.6 Conclusion

This chapter has provided an overview and an evaluation of image retrieval descriptors

and re-ranking methods.

Table 3.13: Summary of the evaluated descriptors and re-ranking methods

Descriptor evaluation

Descriptor Specificities Evaluation

DELG Global descriptor
Trained on GLDv2

Lowest performance on the sim-
plest dataset

R101-GeM Global descriptor
Trained on GLDv2

Better than DELG
Less efficient inter-provider
Less robust to distractors

CV-Net Global descriptor
Trained on GLDv2

Largely better without distractors
Slightly less efficient inter-provider
Not robust to distractors

How-A Local descriptor
Trained on SfM120k

Not the highest score to start
More robust to distractors
Better inter-provider retrieval

Re-ranking approaches evaluation

Re-ranking method Principle Evaluation

Weighted descriptor
aggregation

Aggregates most similar image’s
descriptors

Almost no mAP improvement
Visual heterogeneity is too great

Pseudo relevance
feedback

Aggregates image descriptors to
be closer to pseudo-similar im-
ages and further from pseudo-
dissimilar images

Low mAP improvement
Visual heterogeneity is too great

Transformers-based
approaches

Exploits transformers
Uses global and local features or
a global ranking list

Detrimental to the mAP
Need to be retrained

Geometric verifica-
tion: RANSAC

Estimates an affine transfor-
mation between images using
matches between local features

Low mAP improvement
Useful in the rest of our experi-
ments
Multiple potential features and
matchers

Geometric verifica-
tion: CV-Net

Trained approach using dense
cross-scale feature correlation to
assess geometric coherence be-
tween images

Detrimental to the mAP
Needs to be retrained

Diffusion methods Exploits the graph of nearest
neighbors to propagate the sim-
ilarities between images

Great mAP improvement
Choice of GNN-R because it can
be repeated multiple times.
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First, it presented a state-of-the-art of existing descriptors for image retrieval. Second,

a review of the multiple approaches to re-ranking is detailed. Both aspects of image

retrieval are then evaluated on our dataset in order to evaluate their relevance in our

research, as summarized in the following Table 3.13. Methods highlighted in bold are the

one used in our next experiments.

After existing methods have been evaluated, several insights can be exploited to de-

vise new approaches for re-ranking. The following chapter will focus on presenting our

proposed re-ranking methods, exploiting both insights from existing methods and the

knowledge of our specific dataset.
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Chapter 4

Our Contributions to Re-ranking

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Geometric query expansion . . . . . . . . . . . . . . . . . . . . 86

4.2.1 A 3D based proof of concept . . . . . . . . . . . . . . . . . . . 86

4.2.2 A 2D geometric query expansion proposition (R2D) . . . . . . 90

4.3 Metadata exploitation . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Metadata structure weighting scheme . . . . . . . . . . . . . . 96

4.3.2 Structuring with location information . . . . . . . . . . . . . . 98

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Introduction

The previous chapter introduced and evaluated a large state of the art of the whole

content-based image retrieval pipeline. First, the most suited image descriptors were

compared with regard to our specific dataset and the objectives of our study, that is

interlinking content within and between diverse collections. Afterwards, the second part

of the pipeline namely the re-ranking step was evaluated. Many re-ranking paradigms

have been devised, and we tested methods for all of them to evaluate how they could suit

our needs for improving a first retrieval step that proves to be difficult due to the specific

data considered.

This first study provided several insights that we leveraged in order to propose new

re-ranking methods suited to the data we work with. First, aggregation methods perform

poorly mainly due to the high visual variability in the data. Second, classical pairwise

geometric verification approaches does not perform as well as commonly observed in the

literature. Finally, diffusion methods, exploiting a large retrieval context, in a way a

similarity structure, prove to be the methods performing best with our data.

Those insights led us to explore the use of a more global structure either at query

level or later at dataset level when performing re-ranking. The idea is to leverage a more

global similarity and alleviate the issues introduced by the high visual variability in our

dataset when performing simple pairwise approaches.
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We will first introduce in Section 4.2 a geometric query expansion step to build on

classical geometric verification, using the geometric information contained in the first

retrieved images to enrich that of the query image before performing pairwise geometric

verification. We will then in Section 4.3 introduce a dataset-wide weighting scheme based

on location weighting which leverages a global structure of the dataset to validate or

invalidate retrieval results. All those methods will be evaluated later in Chapter 5.

4.2 Geometric query expansion

This section introduces our proposed contributions for geometric query expansion. First,

Section 4.2.1 details a first 3D reconstruction-based approach that leverages an exact

geometry of the scene. Second, Section 4.2.2 proposes a version of the first approach

based on a 2D approximation of the scene’s geometry, less accurate but computation-wise

less costly.

4.2.1 A 3D based proof of concept

The objective of this approach is to exploit geometric information more global than simply

the geometric information contained in the query alone. Indeed, when levels of detail

greatly vary between images, the number of matched points can be very small and yet

be a very good match, which is hard to evaluate without any priors on the images. A

first idea to enrich the geometric information related to an image is to exploit the 3D

scene. However, this information is not available directly with our dataset, especially

with heritage content. We propose an approach to reconstruct this scene and evaluate

the geometric coherence of the retrieved images in this scene, we call it R3D.

4.2.1.1 3D scene reconstruction (R3D)

A main aspect in our dataset is the very large variation in viewpoint and level of detail.

If it impairs classical geometric verification, it also means that 3D reconstruction can be

considered.

Our reconstruction process is widely inspired by the hierarchical localization toolbox

(Sarlin et al., 2019). We first extract keypoints in images using SuperPoint (DeTone et al.,

2018), then match them using SuperGlue (Sarlin et al., 2020) or LightGlue (Lindenberger

et al., 2023). Those points and matches are then fed to the Colmap Library (Schönberger

and Frahm, 2016; Schönberger et al., 2016) for 3D scene reconstruction using Structure-

from-Motion algorithms.

We do not particularly set specific parameters (maximum reprojection error for in-

stance) to Colmap as we wish to obtain quality scenes. However, we had to use our

keypoints detectors and matchers (SuperPoint and SuperGlue/LightGlue) as Sift proved

to be completely unsuited for heritage content. Furthermore, this allowed us to remain

coherent when comparing with classical geometric verification. Due to the difficulties at
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the retrieval step, we allowed for a model to consist of a minimum of two images, in order

to make sure that if a query manages to retrieve only one similar image in the set of

images used for the reconstruction, a 3D scene, even a small one can be produced.

Our evaluation protocol is that for each query, itself and the ten first retrieved images

are given to the 3D reconstruction. A model is then selected as correct if it consists of at

least two images and includes the query. Otherwise, no model is selected and the images

are not re-ranked. An example of a reconstructed model is shown in Figure 4.1 alongside

the ten images given as input. One can notice that out of the ten images, only six are

used and those are images from the mobile mapping Stereopolis dataset, well suited for

this type of reconstruction.

(a) The ten images given as input to the SfM process

(b) The reconstructed 3D point cloud, using 6 out of 10 images (the highlighted ones)

Figure 4.1: Illustration of the 3D reconstruction

4.2.1.2 Image relocalization

Once a 3D reconstruction of the scene is reconstructed, the k first retrieved images are

then evaluated against this model to check their geometric coherence, even images that

potentially were used to create the model.

To evaluate the geometric coherence of an image I in the 3D model, its keypoints are

extracted and matched against those used for the reconstruction, using the same extract-
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ing and matching protocol as before. The matching is first performed in 2D between I

and the images used to create the model. Then, keypoints of I matched to keypoints of

the reconstruction’s images that were projected in 3D are matched to those 3D points,

conducing to 2D/3D matches. Using these matches, we try to estimate the pose of the

image in the scene using Colmap and its 2D-3D registration algorithm. If an image is

not re-positioned due to a lack of matches with the images used to create the model, its

geometric coherence score will be null. However, if it is re-positioned, its coherence with

the scene will be evaluated using a specific score, detailed below.

The geometric coherence score SI is comprised of two parts. First a score evaluating

the quality q of the reconstruction. This score (see Equation 4.1) uses the number of

images used originally to perform the reconstruction n, the number of 3D points in the

reconstruction p and the mean number of 2D/3D matches m per image used for the

reconstruction:

q = npp/m. (4.1)

This quality score aims at promoting reconstructions with the largest number of images

and 3D points but also reconstructions which extend the most the 3D scene. Indeed,

if the mean number of points per image is the same as the number of points in the

reconstruction, it means that not much geometric information was added to the scene

whereas the opposite means that the scene extended further than what any single image

"sees".

Once this quality score for the reconstruction is computed, the final score SI used for

the re-ranking is computed as:

SI = qpI , (4.2)

with pI the number of points kept as inliers when estimating the pose of the re-ranked

image I.

Two visual examples of image relocalization are shown in Figure 4.2 and 4.3. In the

first example, the image represents the 3D scene, its relocalization produces a pose that

is coherent, facing the scene. The second example however presents the relocalization of

a totally different image. The pose obtained is thus degenerate, "inside" the 3D recon-

struction, not coherent with the scene.
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(a) The image (correspond-
ing to the scene) to relocalize

(b) The image localized (in green) in the 3D reconstruction, the pose estimation is coherent in
the scene

Figure 4.2: Illustration of the relocalization of a correct image
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(a) The image (not corresponding to
the scene) to relocalize

(b) The image localized (in green) in the 3D reconstruction, the pose estimation is incoherent

Figure 4.3: Illustration of the relocalization of an incorrect image

4.2.2 A 2D geometric query expansion proposition (R2D)

As it will be evaluated in Section 5.2.1 of Chapter 5, using a 3D reconstruction proves

to be a very efficient re-ranking method to improve retrieval. However, it is also very

time-consuming (2 times more than classical geometric verification with RANSAC). To

alleviate this drawback, we propose another approach for geometric verification that tries

to get the best of both worlds. On one side, exploiting the global scene to expand the geo-

metric information with which to compare retrieved images’ geometry. On the other side,

preventing the computational overhead due to the 3D reconstruction and the reposition-

ing of all images. This approach can be apprehended as a 2D geometric query expansion

as the idea is to aggregate the 2D geometric information from the first retrieved images

to enrich that of the query image. Thus, the classical geometric verification is between

an image and a geometrically extended query. We call this approach R2D.
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4.2.2.1 2D point set creation

As previously explained, the objective is to enrich the set of 2D points of the query. The

subsequent matching between the query and a retrieved image exploits the 2D geometry

of a retrieved image and a 2D approximate representation of the scene of the query.

Building on the visual query expansion paradigm that fuses visual descriptors, our idea

is to exploit the features extracted in similar images by reprojecting them in the query

image to enrich its geometric significance and artificially enlarge the scene representation

encoded. Thus, the query does not only encode the geometry of the scene it depicts,

but also parts of the scene depicted by its most similar images. This way, the various

viewpoints of the same scene add to the geometric of the scene in an approximate 2D

reconstruction of the scene.

The first step of the proposed approach is the creation of a new set of keypoints for the

query. To do this and remain comparable to the 3D reconstruction-based approach, we

use the first ten retrieved images and the query to estimate the enriched set of keypoints

of the query. We first extract keypoints in images using SuperPoint (DeTone et al., 2018),

then match them using SuperGlue (Sarlin et al., 2020) or LightGlue (Lindenberger et al.,

2023).

To ensure a certain quality in this geometric enrichment, we set some constraints that

are described below and illustrated in Figure 4.4.

The first step consists in creating all triplets containing the query Q and two images

from its k most similar retrieved ones: (Q, I1, I2) (with k = 10 in our experiments). Then,

for each triplet:

• extract keypoints for images in triplet: sets KQ, KI1
, KI2

,

• define matches pairwise: MQ,I1
, MQ,I2

, MI1,I2
illustrated in Figure 4.4 (a),

• define the query’s solid matches as:

Ks
Q = {k if MI1,I2

◦ MQ,I1
(k) = MQ,I2

(k), ∀k ∈ KQ} ,

• define the query’s uncertain matches:

Ku
Q =

{

k if k /∈ Ks
Q, ∀k ∈ KQ

}

,

• if |Ks
Q| > 10, estimate homographies hI1,Q and hI2,Q,

• then reproject unmatched points of I1 and I2 in the query:

Kh
Q =

{

hI1,Q(k) if k /∈ MQ,I1
[Ks

Q], ∀k ∈ KI1

}

∪
{

hI2,Q(k) if k /∈ MQ,I2
[Ks

Q], ∀k ∈ KI2

}

.

The three types of points are shown in the example of Figure 4.4 (b), (c) and (d).

Once those steps are performed on all triplets, they are globally concatenated for each

query: Ka
Q = Ks

Q ∪ Ku
Q ∪ Kh

Q, as illustrated in Figure 4.4 (e).
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(a) Pairwise matching be-
tween images of the triplet

(b) Solid keypoints (red)
matched in a loop pattern

(c) Uncertain keypoints
(blue), simply matched

(d) Reprojection (green) of
keypoints from other images
to the query if enough solid
matches are available

(e) Final set of points, col-
ored with regard to their
original category

Figure 4.4: Illustration of the R2D point set creation steps
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4.2.2.2 Extended geometric verification

Once the new set of points is created, the re-ranking protocol is similar to the classical

geometric one: the retrieved images are compared pairwise to the query image with the

new set of points. Furthermore, the specificity of the points included in the query’s set

allows for a different, finer geometric verification than simply a classic RANSAC. The

computation of the geometric similarity score SQ,I between the query Q and a retrieved

image I is detailed below:

• match the keypoints Ka
Q and KI (those of image I): MQ,I ,

• select the subsample of solid matches M s
Q,I (matches with a solid keypoint) or the

subsample of solid and uncertain matches M s,u
Q,I if the number of solid matches is

less than 5,

• estimate a transformation via RANSAC based on this subsample of matches,

• reevaluate the matches based on this transformation and keep the matches respect-

ing this transformation up to a maximum difference of 10 pixels,

• out of the kept matches, identify three categories of matches: M̂ s
Q,I , matches with

solid keypoints, M̂u
Q,I , matches with uncertain keypoints and M̂h

Q,I , matches with

reprojected keypoints,

• the final score SQ,I is computed using the number of each type of match (kept after

the RANSAC) and the subsample of points used for the RANSAC:

SQ,I =































2 ×
|M̂s

Q,I
|

|Ks
Q

|
+

|M̂u
Q,I

|

|Ku
Q

|
+ ωs ×

|M̂h
Q,I

|

Kh
Q

if M s
Q,I is used

2 ×
|M̂s

Q,I
|

|Ks
Q

|
+

|M̂u
Q,I

|

|Ku
Q

|
+ ωs,u ×

|M̂h
Q,I

|

Kh
Q

if M s,u
Q,I is used

2 ×
|M̂s

Q,I
|

|Ks
Q

|
+

|M̂u
Q,I

|

|Ku
Q

|
+ ωs,u,h ×

|M̂h
Q,I

|

Kh
Q

otherwise

(4.3)

The re-ranking score has to distinguish between different cases in order to ensure the

coherence of the approximate 2D reconstruction as detailed in Equation 4.3. Indeed,

depending on the quality of the keypoints used for estimating the affine transformation

between the query and the retrieved image, the validity of the transformation varies.

Thus, matches with reprojected points that pass through the test using a highly certain

transformation weigh more in the score than those passing through the test with an

uncertain transformation.

The first weighting difference is between solid and uncertain matches as solid ones are

weighed double what uncertain matches weigh.

The second weighting difference applies on matches with reprojected points. Indeed,

the more they correspond to a transformation estimated without them, the more they are

assumed to be correct, thus having ωs > ωs,u > ωs,u,h. Furthermore, as our objective is
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to exploit those reprojected points to expand the query’s geometry, we give them weights

that can be higher than solid matches weights.

Finally, as the matchers used (SuperGlue or LightGlue) have different performance to

estimate correct matches, the confidence given to the reprojected points (and subsequent

matches) is different depending on the matcher used. Thus, the optimal values found for

our dataset are the following:

• For SuperGlue: ωs = 4, ωs,u = 2 and ωs,u,h = 1

• For LightGlue: ωs = 8, ωs,u = 6 and ωs,u,h = 4

As the ratios of matches over keypoints are all in [0, 1], depending on the matcher and

on the keypoints used for estimating the affine transformation, the scores of the images

vary differently:

• For SuperGlue: SQ,I ∈ [0, 7]if M s
Q,I is used, SQ,I ∈ [0, 5]if M s,u

Q,I is used and SQ,I ∈

[0, 4] otherwise

• For LightGlue: SQ,I ∈ [0, 11]if M s
Q,I is used, SQ,I ∈ [0, 9]if M s,u

Q,I is used and SQ,I ∈

[0, 7] otherwise

This re-ranking score SQ,I is then used to re-rank the k first images in decreasing order

of geometric similarity.

To summarize, this proposed approach exploits the global geometric information from

the first retrieved images. It is less costly than a full 3D reconstruction while approx-

imately encoding in 2D the geometric information of the scene. It is evaluated on our

dataset in Section 5.2.2 of Chapter 5.

Level of detail and geometric verification

To go slightly further than the proposed extended geometric verification, we propose to

exploit the difference in level of detail during the matching to impact the re-ranking.

Indeed, with our proposed adaptation, the re-ranking can favor details of the query image

or on the contrary, favor images of which the query image is a detail. This can be leveraged

to focus image retrieval on a desired representation of a scene based on a query image.

The previous score SQ,I is adapted into Sd
Q,I such that:

Sd
Q,I = SQ,I × wd

Q,I , (4.4)

with wd
Q,I ∈ [0, 2] such as:

wd
Q,I =











1 + tanh(αβ(rQ,I − 1)) if S(xI,J) < 1

1 + tanh(αβ(1 − 1
rQ,I

)) otherwise,
(4.5)

including:

rQ,I =
dQ

dI

, (4.6)
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where dQ and dI are a measure of the level of detail of the matched keypoints in the query

and the retrieved image respectively, α weighs the impact of this level of detail on the

score and β indicates whether to favor detailing or englobing images.

First, the measure d of the level of detail of the matched keypoints in an image can be

computed in multiple ways. Once the images are all normalized at the same size, it can be

the area of the bounding box (or convex hull) of the matched keypoints. It could also for

instance be a ratio between this area and the total area of the image. The ratio between

the two level of details reflects whether the retrieved image is a detail of the query (ratio

less than 1) or a more global view of the scene, englobing the query (ratio more than 1).

The global coefficient α × β applied to the ratio is composed of two coefficients. First,

α ∈ [0, ∞], that reflects the importance given to the level of detail in the geometric

coherence score. If α = 0, it means that the level of detail is not taken into account in

the re-ranking score, Sd
Q,I = SQ,I . Secondly, we have β ∈ {−1; 1} that binarily indicates

if image detailing the query should be favored (value is -1) or if we want to retrieve

first images englobing the query (value is 1). Indeed, a positive global coefficient will

favor a positive ratio (englobing images) and a negative one will promote negative ratios

(detailing images).

(a) Re-ranking without taking into account the level of detail

(b) Re-ranking promoting englobing images

(c) Re-ranking promoting detailing images

Figure 4.5: Visual example of exploiting the level of detail in the R2D re-ranking process

An illustration of the impact on image retrieval is shown with the three retrieval results

in Figure 4.5. On each retrieval result, the image framed in black is the query, the images

to its right are the retrieved images in descending order of similarity from left to right. If

framed in green, the image is correctly retrieved (same class as the query), whereas if it

95



is framed in red, it is an incorrect result (of a different class). The three examples clearly

show the impact of weighting the geometric coherence by the level of detail. Indeed,

in every case, the order of the retrieved images is different and the desired images are

retrieved first.

4.3 Metadata exploitation

This section introduces another contribution, leveraging this time another type of struc-

tural information. Instead of extracting structure at the query level, in the first retrieved

images, we aim at leveraging dataset-level structural indications.

4.3.1 Metadata structure weighting scheme

To continue to evaluate other tracks exploiting the specificity of the manipulated data,

we chose to be interested in their metadata, starting from the observation that in practice

when considering multi-source collections, some metadata are present at least partially, in

some of the collections. Like image retrieval, such data may provide useful links between

images, that can be simply but efficiently combined with visual similarity.

For geometric verification, a more global and structured representation (a 3D recon-

struction) increases the efficiency of the re-ranking process. Building on this idea, we

decided to use other structured linking representation of the data and combine it with the

automatic visual content-based linking of CBIR. Structured linking can be extracted from

the metadata associated with the images. A simple example of this is the position infor-

mation associated with an image. We make the hypothesis that two images taken at the

same location have a much better chance of depicting a similar scene than images distant

of several kilometers. Our intuition is to compute a spatial coherence weight based on the

metadata and use it to validate/invalidate the visual similarity automatically computed

via CBIR. An example of this invalidation can be seen in Figure 4.6. In this illustration

which belongs to the 3D representation platform introduced later in Chapter 7, each node

represent an image, illustrated by the thumbnail. The blue arrows represent high visual

similarity links automatically computed by the retrieval step. On the other hand, the

grey links represent the link between an image and a location on the map. Whereas the

images are considered highly similar by the automatic retrieval process (which a visual

confirmation explains, they all depict the same type of scene coming from mobile map-

ping), the associated location data shows that they are quite far from each other, tending

to disprove their supposed visual similarity.

If the most natural example to understand this concept is the location information,

other metadata could be used to weight the visual similarity. For instance, a date infor-

mation could be used if we assume that images taken closer in time have a bigger chance

to be visually similar. Many other structural information could also be used as weight,

even at a more global dataset level, in terms of dataset organization or creation, not only

with an information purely associated to an image.
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Figure 4.6: Example of contradiction between the metadata information (location) and
the automatically estimated visual similarity

A theoretical example of this could be the fact that a photographic acquisition of the

whole city is ordered, and a single photographer is assigned to each district in the city.

Thus, two images taken by different photographs are less likely to depict the same place

than two images taken by the same photographs. Weighting the visual similarity links

by this information could lead to a better structuring of the dataset. Figure 4.7 could

represent this situation: red and blue links represent more or less strong visual similarities,

each node is a photograph and the node’s color is based on the photographer that took

the picture. Whereas visual similarity links are mainly coherent, some link two nodes of

different color. Weighting the visual similarity based on a coherence score extracted from

the structured metadata could help remove those potentially wrong links.

Figure 4.7: Example of structuring based on visual similarities compared to a structuring
metadata
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4.3.2 Structuring with location information

To evaluate our hypothesis, we focus on the position information available for some of the

images in our dataset. This is universal information, but potentially of varying nature: for

example, it can be directly available for images acquired through mobile mapping (e.g.

Stereopolis), or the result of a geocoding of associated addresses (e.g. those manually

provided by experts of the Dept. of Architectural History of the City of Paris).

It should be noted, however, that the quality of the location can be variable, due

to potential human error (when manually added, copied and digitized), to acquisition

precision (e.g. low-cost mapping) and to environment evolution (e.g. streets renamed or

created through centuries). Thus, we give a different weight for the different locations,

based on the confidence rate we assign to each of them. Stereopolis images, thanks to

their mobile mapping acquisition, have a certain location, giving them a confidence score

of 1. For the Parisienne de la Photographie locations, if they are part of the 1637 images

selected in classes, their addresses were checked before geocoding, thus giving them a

0.9 confidence rate to account only for automatic geocoding errors. As for the distractor

images, their addresses were not manually checked before geocoding, earning them a 0.8

confidence rate to account for both geocoding errors and errors in the addresses directly.

Then, based on the image locations available and in addition to the visual similarity

score provided by image retrieval, we define a spatial proximity score ss
I,J between two

images I and J .

ss
I,J = σ(xI,J) (4.7)

σ(xI,J) is a proximity score based on the spatial Euclidean distance dI,J between images

I and J : xI,J = 1− dI,J

dmax
(normalized over the diameter of Paris in our experiments (dmax)).

We define σ as a double sigmoid function:

σ(xI,J) = a + (b − a) ×
tanh(k1(xI,J − X1)) + 1

2

+ (c − b) ×
tanh(k2(xI,J − X2)) + 1

2
(4.8)

with a, b, c the bottom, middle and top values of the double sigmoid’s plateaux. X1, X2,

k1 and k2 are respectively the values for the inflexion point and the steepness coefficient

for both slopes.

In our case, after analyzing the distribution of distances between all position informa-

tion in the dataset, we chose to use values a = 0, b = 1, c = 2 ; k1 = 10 and k2 = 50, as we

want to ensure a steep slope (k2) when images are close in order to validate only very close

images while k1 is lower as the discriminativeness between further images has less impact

in the overall process. Finally, X1 = 0.878 − 1.5 × 0.066 and X2 = 0.878 + 1.5 × 0.066

with 0.878 being the mean of the distribution of distances and 0.066 the standard de-

viation. The 1.5 coefficient was determined experimentally to ensure a certain plateau

around 1 where distance really does not discriminate one way or another in terms of visual
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similarity. Figure 4.8 displays the weighting function defined in Equation 4.7

Figure 4.8: Plot of distance weighting function wi,j

Furthermore, we weigh ss
I,J with the confidence rate (cI for I and cJ for J) presented

earlier to take the location quality into account, which leads to a spatial weighting score

ws
I,J as follows:

ws
I,J = ss

I,J
cs

I,J with











cs
I,J = 1

cI×cJ
if ss

I,J < 1

cs
I,J = cI × cJ otherwise

(4.9)

To summarize, wI,J ranges in [0,2] and equals 1 if we do not have location information

for both images.

We finally combine the proximity and visual similarity scores between couples of im-

ages, through a simple weighting of the similarity score with the weight of equation 4.9,

with the objective of limiting incoherent retrieval errors due to the limitations of visual

descriptors. We have thus the final similarity score between two images I and J :

SI,J = sv
I,J × ws

I,J = sv
I,J × ss

I,J
cs

I,J (4.10)

with sv
I,J the visual similarity score.

The whole process applies this weighting scheme and re-rank images by combining two

similarities, preventing in no way other steps of re-ranking afterwards. In a way, this can

be seen as a sort of geometric verification, using as a scene the whole area of the dataset

and as geometric information the 2D location of the images.

This re-ranking proposal is evaluated in Section 5.2.3 of Chapter 5.

4.4 Conclusion

In this chapter, three new re-ranking approaches were proposed in order to alleviate issues

our specific dataset raises with classical re-ranking approaches, relying on the geometry of

the scene or on geometry between images, and on metadata exploitation. More precisely,

with those methods we exploit the structure of the dataset. It can be after a first step
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of retrieval by exploiting the global geometric structure of the scene of the query as in

Section 4.2. It can be concurrent to the first retrieval step when using dataset-wide

structure provided by related metadata to validate or invalidate the visual similarities, as

shown in Section 4.3.

The following chapter will focus on testing and evaluating those proposed approaches

and further estimate which re-ranking method or combination of methods as hinted before

are best suited to obtain the best possible retrieval results.
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5.1 Introduction

In Chapter 3, state-of-the-art re-ranking approaches were evaluated against our dataset.

Presenting multiple specificities, such content proved challenging for classical retrieval

and re-ranking approaches. Faced with those challenges and inspired by diffusion re-

ranking approaches exploiting the first retrieval results in a global fashion to extract

information from the structure of the retrieved results, we proposed in Chapter 4 new

re-ranking strategies using some form of structure. On one side a geometric structure

artificially created using a first step of content-based retrieval. On the other side, a

global dataset-wide structure exploited jointly with the content-based approach to weigh

in on the retrieval results; Section 5.2 will present the evaluation of those approaches

individually.

The idea of using a specific structure to perform re-ranking also brought to mind the

fact that after every re-ranking step, the structure of the retrieval results is changed.

Thus, another re-ranking approach might not yield the same results directly after the

first retrieval results or after a first re-ranking step. Added to the fact that some of the

proposed strategies are complementary, this led us to evaluate combinations of re-ranking
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methods in order to find the most efficient; Section 5.3 will investigate this.

Once again, the effectiveness of the strategies are evaluated based on the mAP score.

Furthermore, the computational cost of the re-ranking steps must also be evaluated as it

can impact the choice of methods depending on the context in which those methods are

used (online, offline, more or less often, etc.); Section 5.4 will discuss this.

5.2 Contributions’ evaluation

As previously presented, this section aims at evaluating the approaches proposed in Chap-

ter 4 in the same order they were first introduced. First the 3D reconstruction-based

approach in Section 4.2.1, then the method using an approximate 2D reconstruction of

the scene in Section 4.2.2 and finally, the weighting scheme based on known image loca-

tions in Section 5.2.3. To be noted, for all experiments the number of re-ranked images

is always k = 135, that is the size of the largest class in our dataset.

5.2.1 3D geometric query expansion

We first evaluate the impact of our proposal exploiting a global 3D scene, presented in

Section 4.2.1 of Chapter 4 (named R3D). The evaluation of this method is performed

on DBlarge+dist, including distractors. The detection and matching of keypoints for the

3D reconstruction are done with two pairs of detector + matcher, namely SuperPoint +

SuperGlue (DeTone et al., 2018; Sarlin et al., 2020) and SuperPoint + LightGlue (DeTone

et al., 2018; Lindenberger et al., 2023). To be concise, in all following sections and tables,

methods using SuperGlue will end with "-SG" and those using LightGlue will end with

"-LG".

Table 5.1, presents the mAP scores for the R3D method compared to those of the

simple image retrieval and the classical geometric verification approach. Before analyzing

those results, it is interesting to note that out of 9834 potential 3D reconstructions (be-

cause of 9834 images queried in the dataset), R3D-SG produces 5111 and R3D-LG 5650.

The difference in reconstructions is most certainly due to the higher quality of matches

produced by LightGlue, as an improved version of SuperGlue.

Table 5.1: Evaluation of the 3D reconstruction-based approach

Descriptor + Re-ranking step mAP

How-A 41.0
How-A + RANSAC-SG 41.5
How-A + RANSAC-LG 41.9
How-A + R3D-SG 44.4
How-A + R3D-LG 44.2

The mAP gain using a 3D reconstruction for geometric verification is substantial. More

than 3% more than simple retrieval and more than 2% compared to classical geometric
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verification. It is a great improvement, tending to prove the validity of our geometric

query expansion approach.

An interesting result is the fact that even if R3D-LG manages to reconstruct more

3D scenes, its performance is slightly lower than R3D-SG. Our hypothesis is that with

a stricter matching, the 3D scene is also "stricter", meaning that it includes less loosely

matched information because it can reconstruct a more certain scene using only stronger

matches.

Nonetheless, both experiments clearly outperform classical geometric verification. This

costly proof of concept based on 3D information validate our hypothesis that adapting

query expansion to geometric information rather than visual description is worth pursuing

with an approximate but less costly 2D geometric query expansion.

5.2.2 2D geometric query expansion

This section presents the evaluation of the second proposed method, named R2D, pre-

sented in Section 4.2.2 of Chapter 4 as an adaptation of the previous 3D reconstruction-

based method.

The evaluation is performed on DBlarge+dist, using the two different keypoint matchers.

Table 5.2 presents the mAP scores for both experiments.

Table 5.2: Evaluation of the re-ranking method using a 2D pseudo-reconstruction

Descriptor + Re-ranking step mAP

How-A 41.0
How-A + RANSAC-SG 41.5
How-A + RANSAC-LG 41.9
How-A + R3D-SG 44.4
How-A + R3D-LG 44.2
How-A + R2D-SG 36.2
How-A + R2D-LG 41.9

Evidently, the results are not as promising as those of R3D. Indeed, when using Super-

Glue, the retrieval is impaired compared to simple retrieval, and by a large gap of 4.6%.

However, when using LightGlue, the results are similar to those of a classical RANSAC

with LightGlue.

Our hypothesis for the different scores between R2D-SG and R2D-LG is actually

opposite the one we had to explain the difference between R3D-SG and R3D-LG. In the

case of the 3D reconstruction, the stricter matching of LightGlue hindered the expansion

capabilities of the 3D scene, thus encoding less geometric information. However, in the

2D approximation, a stricter matching helps improve the approximation of the geometry,

thus allowing for a better geometric verification afterwards.

Though disappointing as is, those approaches will have to be reevaluated in light of

the combination of re-ranking approaches which will be evaluated in Section 5.3.
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5.2.3 Location proximity weighting

Here is the evaluation of the final re-ranking approach that was proposed in Section 5.2.3

of Chapter. 4 Relying on location information associated to the images of the dataset,

this method was evaluated on DBlarge+dist, however, different paradigms of "metadata

availability" were tested.

Indeed, due to their heterogeneity and their high degree of variability between each

other, heritage iconographic content collections do not often have corresponding metadata.

Thus, as we tested our approach with the location information, we chose to subsample

the information available for re-ranking in order to evaluate the impact of data sparsity.

The weighting scheme was tested in three different settings, with the location confi-

dence scores described before in Section 5.2.3 of Chapter 4, as follows:

• using only certain location information provided by the Stereopolis dataset, i.e. 537

locations, that is about 5% of the dataset. It is indicated as (Sp) in the results.

The confidence score given to those locations is 1, as they are acquired via mobile

mapping, thus certain;

• using all locations from Stereopolis and the Parisienne de la Photographie, not

considering the distractors, i.e. 730 locations, that is about 7% of the dataset. It

is indicated as (No dist) in the results. As locations for the Parisienne are obtained

from geocoding addresses, their associated confidence score is of 0.9, because the

geocoding may be flawed but the addresses were checked beforehand;

• using all possible locations, including those of the distractors, i.e. 7896 locations,

that is about 80% of the dataset. It is indicated as (All) in the results. Finally,

the confidence score associated to the distractors’ locations is 0.8 as they also come

from automatic geocoding but without checking the address’ correctness before.

Table 5.3 presents the results of all three testing settings for the weighting scheme,

compared to all previously tested re-ranking methods.

Table 5.3: Evaluation of the location weighting re-ranking approach

Descriptor + Re-ranking step mAP

How-A 41.0
How-A + RANSAC-SG 41.5
How-A + RANSAC-LG 41.9
How-A + R3D-SG 44.4
How-A + R3D-LG 44.2
How-A + R2D-SG 36.2
How-A + R2D-LG 41.9
How-A + location weighting (Sp) 42.0
How-A + location weighting (No dist) 40.5
How-A + location weighting (All) 42.5

104



Analyzing those results shows the great promise that such a weighting scheme holds.

Indeed, using all possible location data improves retrieval higher than all methods except

3D-based ones. Furthermore, exploiting only the certain location information of the

Stereopolis images, while not performing as well as the setting with all locations, still

outperforms all non 3D-based methods.

Using all location information from the dataset but that pertaining to the distractor

images led to disappointing results, even underperforming compared to simple retrieval.

The explanation for this is probably the fact that the less certain location information

of the Parisienne de la Photographie brings noise into the "perfect" location informa-

tion of Stereopolis without bringing the advantage of disambiguating retrieval with the

distractors as shown in the (All) setting.

As with all proposed and evaluated methods, this weighting scheme holds promise in

terms of re-ranking. However, its full impact will be evaluated in the following section as

part of a pipeline of multiple successive re-ranking steps.

5.3 Combination of re-ranking methods

Studying the impact of all previous re-ranking approaches, it has been shown that ex-

ploiting as much information as possible is beneficial for image retrieval. Indeed, whether

it is dataset-wide structure information, from retrieval (diffusion) or annex data (meta-

data weighting), or global geometric information at query level, the more information and

structure the better.

However, as soon as a first step of re-ranking is performed, the structure available for

other methods of re-ranking is different from that of a simple retrieval step. Thus, specific

successive steps of re-ranking may prove beneficial to one another and improve retrieval

re-ranking capabilities further than each method independently.

This will be evaluated in this section, and will offer new insights on retrieval and

re-ranking for iconographic heritage content.

5.3.1 Multiple re-ranking combinations’ evaluation

Going further than a single step of re-ranking, we propose to combine several approaches

of re-ranking in a logical manner giving each approach the optimal information for it to

perform optimally.

5.3.1.1 A first visual illustration

To illustrate this idea, we visually show the impact of combining re-ranking methods on

a simple example in Figure 5.1. On each retrieval result, the image framed in black is the

query, the images to its right are the retrieved images in descending order of similarity

from left to right. If framed in green, the image is correctly retrieved (same class as the

query), whereas if it is framed in red, it is an incorrect result (of a different class).
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(a) Simple retrieval results, without re-ranking.

(b) Results after a diffusion step only.

(c) Results after a classical geometric verification step only.

(d) Results after a classical geometric verification step followed by a diffusion one.

Figure 5.1: Visual example of re-ranking methods combination

This easy example illustrates the reason for combining several strategies of re-ranking.

Indeed, applied to the simple retrieval results (Figure 5.1 (a)), the diffusion process (Fig-

ure 5.1 (b)) improves slightly the ranking of the first correct image. However, we visually

observe that it diffuses information from incorrect results. Thus, the new first correct

results now come from the same provider as the query and the initial incorrect results

whereas the previously first retrieved images that were from a different provider (Stere-

opolis) are relegated further in the ranking list. This demonstrates that diffusing incorrect

information does not improve retrieval in all aspects of interest to us. Indeed, it improves

the ranking of the first image but not the provider interlinking potential of the retrieval.

From another perspective, shown in Figure 5.1 (c), using a classical geometric approach

greatly improves the first retrieved results. We can observe that it still preserves the inter-

provider aspect that we want, however, an incorrect image still remains highly ranked.

Figure 5.1 (d) finally shows the benefits of successively performing a classical geometric

verification step followed by a diffusion one. Indeed, more correct images are highly

ranked, and different providers are represented high in the ranking list.

Building on this proof of concept, we evaluate all possible combinations, using a specific
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evaluation protocol described in the following section.

5.3.1.2 Evaluation protocol

To evaluate all possible re-ranking methods combinations, we first had to determine the

order in which methods could be combined. Indeed, depending on each method, the

information provided by another approach may be disregarded, the combination being

the equivalent of simply using the second method. Thus, we evaluated each method to

divide them into categories based on their input and output to combine them cleverly.

The first category regroups classical geometric verification and our location weighting

approach, as approaches for which a previous re-ranking step is useless. Indeed, the first

one evaluates the first k images in a pairwise manner, no matter the new order those

first images might be given by a first re-ranking step. The second one combines spatial

similarity and visual similarity in a new score used for re-ranking. Independently of the

order of the first retrieved images, the important information are the two scores, thus

once again, no matter the order of the input retrieved images, the output will remain the

same.

In contrast to those approaches, we define another category for which the order of the

retrieved images is paramount. This category regroups R3D and R2D methods. Indeed,

as the reconstruction (3D or 2D) is based on the first ten images in our experiments, the

results after a first step of re-ranking may differ from those after a simple retrieval. This

category of approaches can potentially build on and exploit the improvements brought by

another approach.

Finally, we let the diffusion-based re-ranking approach in another category. Indeed,

with this method both the similarity scores (visual or visual weighted by location) and

the order of the images in the ranking list are important. Diffusion can thus be applied

after no re-ranking or multiple steps of re-ranking. Diffusion can also be applied after

a first diffusion step, further improving the retrieval as will be shown in the next sec-

tion. Furthermore, as shown previously, diffusing errors is not beneficial to retrieval, thus

diffusion should be the last step of re-ranking.

Figure 5.2 summarizes all categories and all possible combination of methods.

5.3.1.3 Results presentation and analysis

This section presents results for most combinations of re-ranking methods. Table 5.4

summarizes mAP scores for all combination. All previous naming conventions are kept,

and one is reminded: GNN-R stands for GNN-Reranking, the diffusion approach from

(Zhang et al., 2020b), evaluated in Section 3.5.6 of Chapter 3.

The scores of Table 5.4 confirm our intuition that combining re-ranking methods

yields better results than any one of them independently. Indeed, using a single re-

ranking method yields at best a 57.2% mAP when using only diffusion, with the potential

drawbacks for inter-provider retrieval already mentioned. Combining RANSAC-SG and

R3D-SG, followed by two diffusion steps brings the mAP up to 65.8% which is a great
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Figure 5.2: Workflow of re-ranking steps combinations

Table 5.4: mAP scores for multiple combinations of re-ranking steps. Indicated in color
are the first, second and third best results for each column, and in bold the best score
overall.

Descriptor + Diffusion after previous re-ranking

Re-ranking step No GNN-R GNN-R × 1 GNN-R × 2 GNN-R × 3

How-A 41.0 57.2 59.3 57.0
How-A + RANSAC-SG 41.5 57.2 59.3 57.0
How-A + RANSAC-LG 41.9 61.2 65.5 63.3
How-A + R3D-SG 44.4 61.9 64.2 61.9
How-A + R3D-LG 43.2 61.1 63.2 60.7
How-A + R2D-SG 36.2 59.6 62.9 60.5
How-A + R2D-LG 41.9 61.0 64.4 62.1
How-A + location weighting (Sp) 42.0 58.9 61.8 59.5
How-A + location weighting (No dist) 40.5 57.8 61.1 59.0
How-A + location weighting (All) 42.5 60.2 63.1 61.8
How-A + RANSAC-SG +R3D-SG 44.9 62.9 65.8 63.3
How-A + RANSAC-LG +R3D-LG 43.0 61.8 64.1 61.9
How-A + RANSAC-SG +R2D-SG 36.9 60.1 63.0 60.5
How-A + RANSAC-LG +R2D-LG 41.7 61.2 64.3 62.2
How-A + location weighting (Sp) + R3D-SG 44.7 62.4 64.9 62.4
How-A + location weighting (Sp) + R2D-LG 41.9 61.1 64.7 62.1
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improvement of more than 8% against only diffusion. Furthermore, those results allow us

to draw other conclusions.

A first common point to every combination is that performing diffusion re-ranking in

succession is relevant up to two times. The third diffusion step depreciates the results in

every case.

A second lesson is that conclusions on our proposed geometric query expansion ap-

proaches in Section 5.2.1 and 5.2.2 still remain.

First, in terms of reconstructions, RANSAC-SG + R3D-SG manages to reconstruct

5479 3D scenes, a bit more than without RANSAC-SG whereas RANSAC-LG + R3D-LG

reconstructs 7582 scenes. Despite a higher number of reconstructions, its mAP score is

not better. This reinforces our belief that a matching too strict is detrimental for the

required geometric "expansion". However, it must be noted that using a RANSAC before

the reconstruction allows for a better score overall, no doubt due to more meaningful

reconstructions using a better set of input images.

Second, in the case of R2D, using a stricter matching method proves once more that

it helps render a better approximation of the scene. Furthermore, as with R3D, using

a RANSAC before helps the method to perform better when combined with diffusion.

Indeed, a very important thing to notice is that even if R2D approaches perform less

than R3D ones and even RANSAC-LG, when combined with diffusion they perform ad-

equately, with scores similar or only slightly below R3D based methods of which they

are an approximation. Finally, they reach third best score overall when combined with

location weighting.

A final teaching of these results is the huge impact that location weighting has when

combined with other methods. Indeed, we chose the most probable case, using only

information from a certain source, the Stereopolis locations and yet, all combinations

with location weighting perform better than all combinations with RANSAC but one.

When thinking in terms of computational cost, it is very interesting and will be discussed

in Section 5.4.

To conclude on those results, combining re-ranking steps is a sure way to further

improve retrieval results. However, when comparing the first three methods in each

column, one can see that the final score is not only dependent on the initial mAP score

before diffusion. That is particularly clear with RANSAC-LG which is the 8th best method

before diffusion and reaches the 2nd place overall after diffusion. Hence, the diffusion seems

to extract and diffuse some information from the global dataset-wide ranking list that the

mAP score alone can not represent. This will be investigated in the next section.

5.3.2 Insight on provider entropy impact for re-ranking

As previously shown with the evaluation or combinations of re-ranking methods, the

mAP score at the end of a first step of retrieval or re-ranking does not predict the results

obtained after diffusion. We investigate in this section a reason explaining why diffusion

is able to extract more information to diffuse through the dataset from ranking lists of
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lower quality in terms of mAP and thus managing a final results higher that other list of

higher mAP score.

5.3.2.1 Intuition on provider entropy

First, we remind the readers that the diffusion process, exploiting both the similarity

scores and the ranking of the most similar images, extracts information from the graph

of nearest-neighbors of each query and diffuse widely the retrieval context to the whole

dataset.

Second, in our context of multi-provider dataset, it must be remembered that image

descriptors are most performant in an intra-provider setting, meaning that the retrieval

process will most likely retrieve images from the same provider as the query’s. Images

from the same provider will then probably be ranked higher than images from other

providers.

Based on both those insights, our intuition is that in order to diffuse the most infor-

mation and rank highly as many correct images as possible (and increase the mAP), the

diffusion must be able to increase inter-provider content retrieval. To do this, it must

have access to a maximum of providers in the graph of nearest-neighbors. Indeed, as

explained before, providers retrieve themselves more easily. Thus, if a query from one

provider retrieves other providers then the diffusion will be able to extract similarities

from those providers’ contents and then increase the presence of those contents in the

final ranking list.

To conclude, aside from the initial retrieval performance, the distribution of providers

in the ranking list is also paramount. We evaluate that with the entropy of provider’s

distribution and observe its impact on the diffusion’s performance.

5.3.2.2 Artificial entropy experiment

To validate our intuition, we performed an artificial provider entropy modification exper-

iment in order to see if this is indeed an impacting factor in diffusion performance.

To do this, we modify the ranking list in order to maximize the entropy of providers

amongst correct images while conserving the same exact mAP score. We reorder the first

twenty elements of the ranking list following those conditions for each query’s ranking

list:

• get the ranks of correct images,

• reorder the correct images in these ranks by alternating providers in order to max-

imize the entropy,

• the images are repositioned with regard to their original ranking order.

Figure 5.3 presents an example of entropy maximization. Here we maximize the en-

tropy of the five first results. In black is the query, in green correct images and in red
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incorrect images. The retrieved images are displayed from left to right in order of de-

creasing similarity. Inside each retrieved image, the initial ranking number and in correct

ones, the provider is also added. We assume that between the 7th and the 12th image

there are no other correct images and that there are only three possible providers for the

query image.

After entropy maximization for the first five results, the mAP score is unchanged

whereas all providers are now ranked high in the retrieval list.

Figure 5.3: Example of artificial increase of provider entropy while keeping the same mAP

We maximize entropy amongst the twenty first images and test entropy maximization

on some of the descriptors and re-ranking combinations; the results are summarized in

Table 5.5 (lines with "Max entropy").

Table 5.5: Evaluation of the impact of diffusion depending on provider’s entropy

Descriptor + Entropy Diffusion after previous re-ranking

Re-ranking step @20 No GNN-R GNN-R × 1 GNN-R × 2 GNN-R × 3

How-A 36.4 41.0 57.2 59.3 57.0
How-A (Max entropy) 61.4 41.0 66.8 69.9 67.3
How-A + RANSAC-SG 38.0 41.5 57.2 59.3 57.0
How-A + RANSAC-SG (Max entropy) 61.5 41.5 67.2 70.1 67.7
How-A + R3D-SG 41.5 44.4 61.9 64.2 61.9
How-A + R3D-SG (Max entropy) 61.6 44.4 71.4 73.7 70.4
How-A + R2D-SG 42.4 36.4 60.1 63.0 60.5
How-A + R2D-SG (Max entropy) 57.7 36.4 69.3 72.1 69.3

In all the experiments performed, we observe that increasing the entropy artificially,

while keeping the mAP score identical, improves the diffusion efficiency of almost 10%.

This experiment demonstrates the high impact on the diffusion process of the visual

entropy coming from different providers. This observation clearly demonstrates the im-

portance and interest of implementing a retrieval technique based on descriptors capable

of being robust to visual variation between providers’ contents.

5.3.2.3 A combination of mAP and entropy for diffusion

We further analyze the re-ranking combinations obtained with this provider entropy as-

pect in mind. The objective is to validate the fact that an ideal first re-ranking step
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must combine a good retrieval performance evaluated by the mAP score and ensure a

good distribution of every retrievable provider in the ranking list used afterwards by the

diffusion step.

We illustrate this idea with several examples that must be analyzed alongside Table

5.4. For each example, the entropy is computed for the first n images in the ranking list.

Figure 5.4: Comparison of provider entropy between How-A, How-A + RANSAC-SG,
How-A + R3D-SG and How-A + R2D-SG

This Figure 5.4 compares the entropy of a simple retrieval (How-A) and three ap-

proaches to re-ranking before diffusion (How-A + RANSAC-SG, How-A + R3D-SG and

How-A + R2D-SG). All re-ranking approaches use the same matching method.

First, we saw before in Table 5.4 that despite a small improvement at first, combined

with diffusion, RANSAC-SG reaches the same results as the simple retrieval. In terms

of provider entropy, while starting higher, RANSAC-SG’s entropy becomes similar than

that of simple How-A, explaining the similar performance with diffusion.

Second, while R2D-SG started with a worst mAP than simple retrieval, diffusion

brought it almost up to the level of R3D-SG which started with a mAP much higher

than simple retrieval. When studying their respective entropy, we observe that R2D-SG’s

entropy is on par with that of R3D-SG.

Figure 5.5: Comparison of provider entropy between How-A, How-A + RANSAC-SG and
How-A + RANSAC-LG
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Figure 5.5 compares the entropy of simple retrieval and both RANSAC methods, mean-

ing using two different matching methods. While the mAP gain of RANSAC-LG compared

to RANSAC-SG was only of 0.4%, after diffusion the difference is of 6%. Comparing their

respective entropies shows that while RANSAC-SG does not improve its provider entropy

compared to simple retrieval, RANSAC-LG greatly improves it, explaining that it reacts

much better to diffusion.

Figure 5.6: Comparison of provider entropy between How-A + RANSAC-LG, How-A +
RANSAC-SG + R3D-SG and How-A + Location weighting (Sp) + R3D-SG

Finally, Figure 5.6 compares the entropy scores of the best three methods overall.

While before diffusion about 4% of mAP separate the first and the third method (with the

final order respected), less than 1% separate them after diffusion. Furthermore, comparing

the entropies show that they are very similar, with the final order of performance once

more respected.

To conclude, these examples show that more than focusing on the best re-ranking step

in terms of mAP, for inter-provider retrieval in a challenging dataset like ours, we have

to ensure the maximum possible entropy in the different providers’ distribution amongst

the first retrieved images. More than pure mAP efficiency, a good combination of mAP

and entropy is essential.

5.4 Runtime of methods and combinations

In order to complete the evaluation of the strategies of retrieval with re-ranking proposed,

this section provides an analysis of computation time for each solution, to be put in per-

spective against the mAP gain they allow for. Table 5.6 summarizes all mean computation

time for the re-ranking of the first k = 135 images of one query image.

Those computation times indicate that, logically, the more re-ranking steps, the more

computation time required. However, three main aspects should be noted.

First, RANSAC-LG appears to finally be the method that, combined with diffusion,

is the best trade-off between mAP performance and computation time. Indeed, for less

than a third of computation time, it performs only 0.6 % less well than RANSAC-SG +

R3D-SG.
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Table 5.6: Mean computation time for each re-ranking strategy, including combinations,
for k = 135 images

Descriptor + Re-ranking step mAP after GNN-R × 2 Mean computation time

How-A 59.3
How-A + RANSAC-SG 59.3 +120s
How-A + RANSAC-LG 65.5 +100s
How-A + R3D-SG 64.2 +220s
How-A + R3D-LG 63.2 +210s
How-A + R2D-SG 62.2 +150s
How-A + R2D-LG 62.8 +140s
How-A + location weighting (Sp) 61.8 +1/30s
How-A + location weighting (No dist) 61.1 +1/30s
How-A + location weighting (All) 63.1 +1/30s
How-A + RANSAC-SG +R3D-SG 65.8 +340s
How-A + RANSAC-LG +R3D-LG 64.1 +300s
How-A + RANSAC-SG +R2D-SG 63.0 +270s
How-A + RANSAC-LG +R2D-LG 64.2 +240s
How-A + location weighting (Sp) + R3D-SG 64.9 +220s
How-A + location weighting (Sp) + R2D-LG 63.5 +140s

Second, location weighting is a very quick way to improve the final mAP if computation

efficiency is paramount.

Finally, for the diffusion process, GNN-R is very quick (less than 2s) but is performed

at dataset-level, requiring for all images in a dataset to have been re-ranked first in order

to exploit the full potential of the diffusion. This can be very costly and is not be ideal

for online performance. However, when done in a production setting, once and for all,

it is definitely worth exploiting the best combination of re-ranking methods for optimal

performance.

5.5 Key takeaways

We will here succinctly summarize all key takeaways that the experiments of this chapter

have brought to light.

First, exploiting more structural information is always beneficial when combined with a

diffusion process. Indeed, the more information diffused, the better the final performance.

Thus, on one side the geometric query expansion propositions or the location weighting

scheme have proven to improve re-ranking substantially. On the other side, exploiting

dataset-level information for weighting visual similarity brings structure and improves

overall retrieval while being very quick.

Second, combining multiple re-ranking approaches is beneficial for overall performance.

However, with costly methods on top of costly methods, a trade-off has to be performed

depending on the desired frequency of the retrieval.

Finally and more importantly, rather than trying to achieve the best mAP performance

before diffusion, it is essential to ensure a good distribution of all providers of images

in the first retrieved results. Indeed, in the setting of collections interlinking with a
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low inter-provider retrieval performance, a high entropy in the provider’s distribution at

the beginning of the ranking list is paramount for the diffusion process to achieve top

performance.

5.6 Conclusion

In this chapter, our proposed methods for re-ranking were first evaluated, proving inter-

esting for improving retrieval. However, their potential was really demonstrated when

combined with other re-ranking steps, especially the diffusion process. Indeed, combining

multiple steps of re-ranking brings the initial retrieval results from a mAP score of 41.0

up to 65.8, a very high performance boost.

Furthermore, further analysis of the various combinations’ performances led us to

confirm that performance of re-ranking steps prior to diffusion should be evaluated as a

combination of two elements. First, the classical mAP score that evaluates the quality of

the retrieval. Second, as we perform our study in the setting of collection interlinking, the

distribution of the various retrievable providers amongst the first retrieved results is very

important. Indeed, that is what allows the diffusion process to perform at its best and

alleviate the main issue with retrieval amongst various providers, a poor inter-provider

retrieval performance.

However, as we evaluated the computational cost of those re-ranking steps, it appeared

clear that at some point, despite all the re-ranking possible, we will hit the maximum

of what automatic methods can do in the very particular setting of image retrieval for

iconographic heritage content. Indeed, the specificity of the data, its high visual variability

and its natural unbalanced sparsity prevent from achieving perfect retrieval.

With this conclusion in mind, alongside our re-ranking setting exploiting structure for

retrieval improvements and the specific paradigm of diffusion that propagates structure

throughout the dataset, we thought about how to add more certain structure for diffusion

purposes. For that purpose, the following Part II will focus on a graph-based semi-

automatic retrieval paradigm that we propose. The main idea is to use a graph-based

visualization platform for an expert to evaluate the first automatic step of retrieval. With

its interventions, the expert adds structure that can then be diffused through the dataset,

in order for a small intervention to have a multiplied effect.

115



116



Part II

Graph-based Semi-automatic

Structuring
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6.1 Introduction

As structuring the increasing digitized contents becomes paramount due to the potential

applications becoming more and more numerous, several paradigms for organizing and

visualizing those contents are developed and exploited. The choices in structuring leading

to limitations in terms of usage and visualization, the various paradigms must be correctly

identified.

This chapter aims at presenting the various paradigms of structuring and visualization

available through different platforms and serving different goals. Furthermore, we also

detail how to spatialize contents in more or less automatic ways; this is an essential step for

visualizing content in a spatialized environment, and that can be complex to implement.

Indeed, using a spatial structuring is a very efficient way to display and analyze visual

contents, thus warranting a further study in this chapter.

To summarize, Section 6.2 presents spatialization techniques depending on their level

of automation while Section 6.3 provides an overview of existing platforms for structuring

and visualizing visual contents based on their structuring paradigms.
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6.2 Image spatialization

Organizing and displaying contents in any given space, whether it is geographic, based

on descriptors, or completely arbitrary, brings out endogenously the global structure of

any dataset (no matter the data). No matter the use one may have for it, analyzing the

structure of any dataset helps understand it. Visualizing contents in their context only

enriches their potential in terms of comprehensive analysis and their overall value. The

added value of spatialization of contents for analysis purposes has been made apparent in

multiple fields and more specifically in social sciences and humanities (SSH). Starting in

1989 with the geographer Edward Soja, the term "spatial turn" describes the paradigm

shift in SSH studies that is still ongoing today (Podpora, 2011; Dörfler and Rothfuss,

2023; Bartmanski et al., 2023). That led to the spatialization of multiple contents for

analysis and visualization purposes, as the spatial aspect took a larger place in analyzing

social processes and organizations.

In terms of iconographic heritage, displaying scenes from the past, within a global

context, both spatial and temporal, is paramount, particularly in social sciences and hu-

manities studies, as shown in (Blettery et al., 2020). When it comes to images representing

past or still existing scenes, structuring them and displaying them allows for analysis of

their evolution. This gives depth to both the current scene and the past representations.

The most adapted representation space to do this is the geographical space, either in 2D

or in 3D. However, heritage contents not always come with location information. In the

case of heritage contents acquired digitally, location metadata are more often acquired at

the acquisition time and stored jointly with the images (e.g. EXIF metadata with a GPS

location). However, digitized contents are rarely digitized with integrated metadata, and

the location information can be lost during this digitization process if it were even noted

at acquisition time. Furthermore, when digitized heritage contents are provided with a

location information, it is mostly as textual metadata representing an address, in a more

or less usable formatting. Thus, to exploit those contents in the geographical space, one

must spatialize them first.

This section introduces various paradigms and methods for spatializing image contents

requiring more or less manual expert intervention and leading to more or less precise loca-

tion information. We first present all spatialization paradigms in Section 6.2.1, in terms

of levels of spatialization and reference frames available. We then focus successively first

on manual spatialization methods in Section 6.2.2, then on semi-automatic approaches in

Section 6.2.3 and finally Section 6.2.4 develops the full automatic spatializing paradigm.

6.2.1 Spatialization paradigms overview

This section is a preamble to the presentation of the spatialization techniques. It has

two objectives: first, clarifying what kind of spatial information can be associated with

an image, and second, revisiting the data sources available to assist the spatialization

process.
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6.2.1.1 Levels of spatialization

Depending on the method and application, the spatialization of an image may refer to

finding an information of geolocalization either of the content imaged or of the sensor at

the origin of the image. More precisely, this information can be:

• A textual annotation, providing an information of geolocalization with toponyms:

department, city, locality, name of a monument, etc. It is often the case with

collections from preservation institutions which are documented with standardized

descriptive metadata (standardized with vocabularies and reference databases (e.g.

CIDOC-CRM)), or AI learning algorithms dealing with the "place recognition" prob-

lem which provides a semantic label.

• A 2D or 3D position, which can be relative (determined in a particular coordinate

system, e.g. a map, a 3D model) or absolute (on Earth, associated with as stan-

dardized reference system, e.g. WGS84). Such information on images is natively

provided by national mapping agencies, based on regular surveys, as well as by re-

cent cameras equipped with GPS. It can also be provided with geocoding techniques

that consist in assigning geographic coordinates to a toponym by using reference

datasets (e.g. GeoNames geographical database) and API (e.g. Google’s Geocoding

API or OSM’s API Nominatim), and also estimated by vision-based computational

tools.

• A 6-DoF pose (i.e. the position and orientation of the camera with 6 Degrees

of Freedom), either available with professional systems (national mapping agen-

cies, mobile mapping systems) or estimated with computational tools dedicated to

vision-based localization. Depending on the specifications of the application, the

algorithmic choices can go as far as the calibration of the acquisition system (e.g.

the estimation of the focal length for rectification or dedicated visualization of the

spatialized content).

We will afterwards mainly refer to a 2D or 3D position as a location and a 6-DoF pose

as a pose.

6.2.1.2 Available data as spatialized reference

Whatever the approach employed, spatializing an input image supposes that the involved

space is already known, in other words that we have at our disposal a spatialized repre-

sentation of this area on which we can rely on to infer the localization of the image input.

This reference can take various forms, from simple descriptive metadata or labels up to

a 3D model of the scene, through different kinds of maps and image datasets, which we

briefly revisit here.
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Spatialized image datasets. A first way of spatializing non-located contents is to

exploit the spatialization of similar contents either as a reference (a map for instance) or

as a starting location to be refined afterwards (from similar images that are spatialized).

In the Computer Vision and Machine Learning communities, there exist several anno-

tated datasets dedicated to landmarks, which can apply for spatialization; let’s mention

specifically Google Landmarks (Weyand et al., 2020), which is one of the best known (ver-

sion GLDv2 is the largest with over 5M images and 200k distinct spatial instance labels).

It is also relevant as training and test dataset for the CBIR as presented in Chapter 3

and place recognition tasks, which can be used as a first step of localization (seen later in

Section 6.2.4).

For more specific or dedicated purposes and contents (neither mapped nor perennial

landmarks), annotated training datasets and benchmarks are usually not available. How-

ever, the CBIR task is able to exploit spatialized image collections that may exist in

GLAMs (Galleries, Libraries, Archives and Museums) which cover various iconographic

contents, or in public and private mapping agencies which image territories at large scale.

Here, the metadata associated with iconographic heritage are very heterogeneous, depend-

ing on the objectives and standards of the holding organizations. For instance, semantic

descriptions of the content for preservation institutions and multimodal geographic de-

scriptions for mapping agencies. Using this location information (whichever the form it

comes in) can provide a starting location for similar non-spatialized contents.

Note that maps are by definition a rich source of referencing, with an unequaled spatial

(and sometimes temporal) coverage, but if there exist some automatic solutions to align

a vertical airborne view with a map (Krüger, 2001; Khokhlova et al., 2021), it is more

difficult to establish a link between a map and a free viewpoint image. One alternative

is to rely on semantic landmark extraction (through pattern detection tasks) and to

search on maps by exploiting spatial reasoning, such as in (Weng et al., 2020) where the

semantic objects seen in the street-view image serve as anchors for spatialization within

OpenStreetMap.

Several public image datasets dedicated to landmarks are presented in Table 6.1, with

a focus on the spatial coverage addressed, the type of localization data available as well

as the time period covered to have an insight on their match with old contents. Whether

the objective is to employ them to learn a description or as reference to spatialize a

content, these datasets are numerous, but most of them are not dedicated to heritage

iconographic heritage. They do not reflect correctly the heterogeneity representative of

heritage contents as experimented with the ALEGORIA dataset (Gominski et al., 2021),

in which are highlighted the difficulties encountered by state-of-the-art deep features in

the context of cultural heritage content retrieval.

3D models. To gain in robustness and precision when the objective is to estimate a 3D

position or a 6-DoF pose, the most recent and efficient spatialization approaches exploit

all the geometrical 3D information available. Many approaches exploit 3D point clouds
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Table 6.1: Overview on public image datasets dedicated to landmarks, exploited for
training purposes or as spatialization reference (MMS stands for Mobile Mapping System)

Dataset
Number of

images
Viewpoint and
spatial coverage

Localization
type

Time gap

Large Time Lags Locations
(Fernando et al., 2015)

500
Street-level
25 cities of

Europe and Asia
Label 150 years

Google Landmarks Dataset v2
(Weyand et al., 2020)

Over 5M
Street-level and aerial

246 countries
Label Unspecified

ROxford
(Radenovic et al., 2018)

Over 5k
Mostly street-level

and some aerial
Oxford

Label Unspecified

Aachen Day-Night
(Sattler et al., 2018)

7712
Street-Level

city of Aachen (Germany)
Label, GPS, 3D 2 years

Extended CMU-Seasons
(Sattler et al., 2018)

Over 110k
Street-level MMS camera
areas of Pittsburgh (USA)

Label, GPS, 3D 1 year

RobotCar Seasons
(Sattler et al., 2018; Maddern et al., 2017)

Over 35k
Street-level MMS camera

city of Oxford (UK)
Label, GPS, 3D 1 year

Kitti Vision Benchmark
(Geiger et al., 2012)

389
Street-level MMS camera
Greater Karlsruhe (city,

rural areas and highways)
Label, GPS, 3D 2012

SILDa Weather and Time of Day
(Balntas, 2019)

Over 14k
Street-level and aerial

London
Label 1 year

HistAerial
(Ratajczak et al., 2019)

4.9M
Vertical aerial

France (sparse)
GPS 1970-1990

ALEGORIA
(Gominski et al., 2021)

13175
Street-level
and aerial

France (sparse)
Label 1920’s-today

obtained with Structure-from-Motion (SfM) techniques, as in (Yang et al., 2019), (Pion

et al., 2020) and (Sarlin et al., 2021a), built especially on a given area for spatialization

in this area. There exist other alternatives, such as simple or sophisticated 3D building

models, as well as LiDAR or RGB-D data belonging from recent scanning systems that

respectively provide a 3D sparse geometrical information and a 3D depth.

For 20 years, with the purpose of autonomous driving, the Robotics community has

provided a large variety of vision-based public benchmarks, involving image datasets spa-

tialized with a very rich information (GPS, LiDAR, RGB-D, 3D models, etc.). Their

benchmarks are far from the iconographic heritage spatialization problem, but it is inter-

esting to point out that recently they have been enriched with multi-date data to tackle

the problem of long-term mapping, which to some extent bring them closer to the variety

found in heritage contents.

Interestingly, thanks to public or private mapping agencies, some 3D models exist at

large scale and are then usable on a much less narrowed footprint than dedicated SfM

clouds or public benchmarks, such as those displayed in Figure 6.1. Currently, their

spatial coverage tends to be inversely proportional to their precision (in terms of levels

of detail and localization), but this ratio is reducing with the implementation of massive

and sophisticated acquisition protocols (e.g. aerial HD LiDAR will be made available by

IGN on the whole French territory in 2025).
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Figure 6.1: Examples of scalable georeferenced 3D models (data from IGN). 1st row:
CityGML LoD1 buildings (French "Ref3DNat" reference), available on the whole territory;
2nd row: Superposition with terrestrial LiDAR point cloud acquired by Stereopolis at the
scale of the city.

Note that such kind of information is very rich and has proven its relevance to improve

spatialization tasks (especially considering detailed models such as 3D point clouds), but

these recent acquisitions raise the question of their adequacy facing old iconographic

contents potentially associated with landmarks that have evolved.

6.2.2 Manual spatialization

When it comes to spatialization of an image, most basic methods are manual ones. They

rarely allow for a high precision and are very costly when faced to a large number of

images.

A first, very basic way to add location information to an image is to give it an address

as a textual metadata. Indeed, even without converting it to a 2D or 3D position, this

textual information can be compared with other addresses to find similar or close ones.

Rather than an address, an image can simply be pinned to a map. Thus, a manual

selection of a 2D point can be enough for localizing the image. This is the method used by

the French national library’s collaborative platform for spatializing its contents (Gallicarte

project, 2019) as shown in Figure 6.2. Going one step further, at the time of the 2D point
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selection, the user could also manually indicate the coarse orientation of the image (in

this case simply the direction on the 2D map).

Figure 6.2: Manual 2D spatialization of contents in the French national library’s collab-
orative platform

A similar setting can also happen in a 3D environment. For instance, HistoryPin

(HistoryPin, 2010) (see later in Figure 6.12) allows users to localize images in a pseudo 3D

setting. Indeed, the image is located as a layer in an existing pseudo 3D scene, depending

on a camera pose from Google Street View. Thus, a coarse position and orientation of

the initial camera is proposed, but it depends on another camera, making it a very poor

localization of an image. Indeed, should the user move the camera around, the image will

move around as well instead of staying at its supposedly correct location.

Those approaches are very costly and lack both precision and reproducibility too much

to be an ideal choice for large-scale spatialization.

6.2.3 Semi-automatic spatialization

To alleviate the drawbacks of manual spatialization, especially in terms of processing time

cost, semi-automatic methods aim at automating part of the process to improve speed

and reduce the cost of manual interventions.

For instance, to assign a 2D point as a location semi-automatically, instead of pointing

precisely on a map, geocoding methods exist. Indeed, geocoders will take as input an

address and return the corresponding 2D location. Multiple geocoders are available,

either free of charge or chargeable. One can mention some like Google Maps, Open Street

Map or the one from the French Mapping Agency. Once the point is computed, a user

can quickly check its correctness.

The semi-automatic paradigm is more useful for a more complex localization estima-

tion, that is the 6D pose. Indeed, this localization estimates where the camera was when
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Figure 6.3: Interactive selection of 2D-3D pairs of points (colored bullets) in the photo-
graph and in the 3D scene modeled with LiDAR points, as input of a 6-DoF pose esti-
mation tool (iTowns web application (Blettery et al., 2020)). In this example, we observe
differences between the old photograph and the recent version of the scene (disappearance
of the bridge, new buildings, roadway modification), which highlights the challenge of the
points selection for the pose estimation (images from Musée Nicéphore Niepce and IGN).

the picture was taken, that is a 3D position and a 3D orientation (not simply a generic 2D

direction). To this end, the most commonly used method supposes to have a 3D model of

the scene and an image. The idea is for the user to manually identify 2D-3D correspon-

dences between the scene and the model (as shown in Figure 6.3) and then automatically

use a geometric PnP solver. Of this PnP solver, multiple adaptations have been proposed

to deal with more or less complex case. A major difference between two sets of solvers

is the previous knowledge (or not) of the camera’s calibration (its intrinsic and extrinsic

parameters). Hence, with a calibrated camera and 2D-3D matches (at least 3), several

solvers of the PnP problem have been developed such as an efficient P3P (Kneip et al.,

2011) or a method accepting more than 3 matches such as EPnP (Lepetit et al., 2009) or

PPnP (Fusiello et al.). An intermediary solution when the focal length of the camera is

unknown is the P3Pf solver (Sattler et al., 2014). However, when the camera’s intrinsic

parameters are unknown, using the Direct Linear Transformation (DLT) (Hartley and

Zisserman, 2004) solves it with a minimum of six matches to calibrate the camera, i.e. es-

timating its 6-DoF pose plus its intrinsic parameters (focal length, principal point, skew);

this method is known as P6P. Furthermore, all those methods benefit from a RANSAC

loop (Fischler and Bolles, 1981) to estimate the best possible 6D pose. Finally, as this

takes place in a semi-automatic setting, the estimated pose can be directly visualized by

the user to evaluate its quality instantly after computation.

As part of Nelson Fernandes’ internship, under the supervision of Valérie Gouet-Brunet

and myself, several experiments were performed to spatialize heritage iconographic content
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in a semi-automatic setting (as shown in Figure 6.3). This work, published in (Blettery

et al., 2021), aimed at exploiting all available 3D information (coarse building represen-

tation and fine-grained LiDAR data) and evaluating the most suited method for 2D-3D

pose registration in our context of unknown camera calibration (most common case with

iconographic heritage). Several PnP algorithms were also implemented and evaluated with

different configurations of intrinsic camera. Visual examples of the conclusions obtained

are shown in Figure 6.4.

(a) (b)

(c)

Figure 6.4: Illustration of the influence of the intrinsic parameters on the pose estimation:
(a) Calibration estimated with DLT vs. 6-DoF pose estimated with PPnP and intrinsic
parameters correctly chosen empirically (the two localizations are similar and correct); (b)
Same estimations with different intrinsic parameters for PPnP (localization with PPnP is
damaged) and (c) Same estimations as (a) on another more difficult example (localization
with DLT is damaged by noisy input points while PPnP’s one remains correct) (images
from IGN).

Finally, even if it allows for higher quality localization and more certainty in the

outputs, it remains costly in terms of processing time and can prove difficult to do at

large-scale.
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6.2.4 Automatic spatialization

To fully remove any manual intervention, automatic methods of spatialization have been

developed. They can output localization information starting from 2D points up to precise

6D poses. However, the automation of the localization estimation means that verification

is not included in the process, and thus may lead to undetected errors, especially when

confronted to highly diverse datasets in terms of metadata and visual contents.

Automatic spatialization methods, though not requiring manual input, still require a

first coarse idea of where the content is located. Indeed, amongst the methods presented

after, whether it is a geocoded address, a pose fused from relative poses or one created via

3D scene regression by a CNN, some information of localization was initially known. First,

it was a textual address, secondly, similar images and finally the 3D scene encoded in the

CNN. To obtain this starting location, most methods exploit a first CBIR step to limit the

number of possible locations, known as Visual Place Recognition. Indeed, finding similar

images allows for finding coarse location information, either as an address of a similar

image that can be propagated or as close image poses that are a good first approximation

of that of the image that is being localized. This first approximated position can be used

to initiate a semi-automatic process as seen in Section 6.2.3 but is mostly used for the

full automatic approaches described next.

To use once again geocoding methods, once all images of a dataset (or a large number)

have a textual address information, either native, propagated after a CBIR step, or as-

signed manually by an expert user, the transformation of those addresses in 2D locations

on a map can be performed as a batch, locating all images in one go. However, once more,

as all images are located as a whole, detecting wrongly located images is hard, even using

the geocoders own confidence score. It can be even harder when address information in

one dataset are not expressed the same way for all images, leading to even more potential

geocoding mistakes.

Another type of localization uses similar images’ localizations to estimate the query

image’s one. This can be done for a 2D location, simply averaging the positions of the

most similar images. This averaging process can also be weighed using the visual similarity

score for instance. The fusion of localization can also be performed for a 6D pose provided

the first retrieved images possess a 6D pose. (Song et al., 2016) estimates relative poses

between the query image and each first retrieved image to find potential poses. It then

minimizes the possible poses adjustments to find the final pose, as illustrated in Figure

6.5. (Pion et al., 2020) fuses candidate poses in a linear weighted combination, the weight

being for instance based on the rank of the retrieved image, or based on the similarity

of descriptors amongst the first retrieved images. Furthermore, relative poses could also

be estimated using RANSAC-Flow (Shen et al., 2020a), which considers dense alignment

between images, from which a relative pose could be extracted. New networks have also

been proposed (Ding et al., 2019a) to solve this relative pose regression problem. However,

due to the need of encoding all reference images poses in the network, the computational

cost is high whereas the performance has not yet reached that of classical geometric
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solvers.

Figure 6.5: Pose estimation by fusing relative poses as proposed by (Song et al., 2016)
(figure from (Song et al., 2016))

A different paradigm of localization uses explicitly or not a 3D structure to estimate

the pose of an image. This 3D structure of the scene can be computed offline beforehand

or computed using the first retrieved images that happen to possess a 6D pose. The idea

is always to identify 2D-3D matches between the image to localize and the 3D scene and it

can be done in various ways. (Sattler et al., 2016) uses visual words assigned offline to the

3D scene to easily find which part of the scene the image depicts and find 2D-3D matches

there. (Brachmann et al., 2017) introduces DSAC, a differentiable RANSAC to include

it in a CNN-based pipeline for estimating 2D-3D correspondences. More recently, (Sarlin

et al., 2021a) proposed PixLoc which learns features end-to-end for the visual localization

task, aligning deep features with a 3D model. (Brachmann and Rother, 2018) uses a CNN

for 3D scene regression to estimate scene coordinates for the input image contents, that

is 2D-3D matches. The final pose estimation using those matches can be performed using

PnP algorithms (see Section 6.2.3), otherwise deep networks can be used to regress the

pose.

Finally, to bypass the step of identifying 2D-3D correspondences and the use of a 3D

structure, new methods propose to use a trained CNN to directly estimate the 6D pose of

an image given as input. Indeed, the network is trained on a whole scene and encodes its

geometry, using information from localized reference images. It then produces directly the

6D pose of the input image. This field of CNN-based absolute camera pose regression is

well described by (Sattler et al., 2019). Introduced by (Kendall et al., 2015) with PoseNet,

this approach of absolute pose regression has been improved on multiple fronts. First, in

terms of encoders and decoders for the image features with (Shavit et al., 2021) replacing

CNNs by transformers. Others like (Xue et al., 2020) exploit spatio-temporal constraints
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to improve the pose regression. To further improve the encoding of the scene, a Neural

Radiance Fields (NeRF) approach (first introduced by (Mildenhall et al., 2020)) can be

used to create new synthetic views of the scene to further train the pose regression network

as proposed by (Moreau et al., 2022). (Moreau et al., 2023) in turn applies absolute pose

regression in the context of autonomous driving and regresses the pose hierarchically in

real-time within an urban setting. These approaches show promise, but the quality of

the obtained poses remains for now sub par with what structure-based approaches offer.

Furthermore, it depends on the training of the network on a specific area, areas that may

not exist anymore when dealing with iconographic heritage contents.

Figure 6.6: Classes of methods for pose estimation (figure from (Humenberger et al.,
2023))

All those automatic approaches (whose main classes for pose estimation are summa-

rized in Figure 6.6) are promising in terms of type of localization they offer (6D poses

mainly) and in terms of scalability to large datasets. However, as many of these methods

rely on visual contents, they suffer from the same drawbacks as CBIR techniques. Indeed,

visual heterogeneity mainly decreases performance of those methods which are not trained

with such type of data. This is the main reason why spatialization of heritage contents still

mainly remains semi-automatic, exploiting collaborative platforms (some are presented in

6.3). However, with the growing spatialization of those contents, state-of-the-art methods

may soon be trained to handle a wider range of visual changes between contents.
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6.3 Iconographic heritage structuring and visualiza-

tion

As first introduced, structuring visual contents for visualization purposes becomes paramount

at times when web-based platforms are flourishing for users to browse through collections.

However, unlike an index intended for specialists only, the structures required for any mun-

dane user to understand it must be as self-explanatory as possible. Several options are

available, like metadata based structuring using understandable tags or spatial structuring

where the organization of the collections displays itself on a map.

Furthermore, as explained, using visual context or comparative analysis (within the

collection or with ancillary data) increases the information that can be gathered through

the visual contents, furthering their use in research projects for instance, but also more

simply their understanding by basic users.

We present here an overview of existing web-based platforms dealing with structur-

ing and displaying image collections at a more or less large scale. We classify them in

categories depending on the data used for structuring and querying the images.

6.3.1 Single modality platforms

Many platforms allow for browsing through their contents based on a single (or at least

one largely predominant modality). From metadata to spatialization via visual contents,

those platforms structure and display their contents based on one type of information.

This section provides an overview of those single-modality based platforms.

6.3.1.1 Metadata based structuring

Several GLAMs developed platforms for displaying their collections on the web. The

structure used as support for the organization of contents in the visualization is based on

metadata. Indeed, categories of contents are created based on similar metadata, allowing

users to browse through data using filters based on tags/metadata. The contents are

not particularly organized together and not much more information emerges from the

visualization. A few examples are Gallica (French National Library, 2015), the platform

of the French National Library or the Base Mémoire (French Culture Ministry, 2019) of

the French Culture Ministry but also the Dallas Museum of Art platform (Dallas Museum

of Art, 2020).

Going further than simply browsing tagged images, the project Inventer le Grand Paris

(Consortium Inventer le Grand Paris, 2017) organizes not merely visual contents but whole

research studies based on their metadata, more specifically the object of research. Visual

contents are then mainly used to illustrate the research projects.

Further again, the Oronce-Fine platform (Verdier et al., 2017) organizes contents as

a graph. Linking contents together using metadata and annotations makes information

emerge as the graph endogenously organizes contents and let the structure and internal
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Figure 6.7: Graph of a collection organized in the Oronce-Fine platform

logics appear. Figure 6.7 illustrates the graph representing all links between contents.

The dark blue nodes represent iconographic contents, orange nodes are semantic concepts

and light blue nodes are the annotations added to the contents.

6.3.1.2 Visual content based structuring

Other platforms only exploit visual content to structure contents and visualize them in the

space of the visual descriptors. The images are then not organized using metadata assigned

to each image. Groups of images are created automatically as similarly looking images are

displayed together while far away images do not look alike. Furthermore, this paradigm of

organization allows for visualizing the contents and their structure concurrently. PixPlot

(Duhaime, 2017) is an example of those platforms, as shown in Figure 6.8.

6.3.1.3 Location-based structuring

A final type of single-modality structure that can be leveraged is the spatial location

of contents. Indeed, especially with contents depicting existing scenes, displaying them

based on their location easily displays the structure of the dataset and gives context to

each image independently and between images.

A basic setup is the platform WhatWasThere (Pup Ventures, LLC, 2021) where users

can upload more or less recent photographs with two informations, a date and a 2D

location. The contents are then organized as pins on a map on which a user clicks to see

the image, as shown in Figure 6.9.

Similarly, the platform (Commission du Vieux Paris, 2023) of the Commission du

Vieux Paris (one of our collection provider) displays the locations of the images on a map

as points. Clicking on a point reveals the images at this location, alongside more of their

associated metadata. The structuring of the collections is purely spatial.
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Figure 6.8: Preview of a collection visualized via PixPlot

Figure 6.9: Preview of the WhatWasThere platform

Other platforms go a little further, allowing to visualize multiple types of contents

jointly to compare them, but always based on a location. That is the case with the

Remonter le temps platform (French Mapping Agency, 2016) where the French Mapping

Agency (IGN) displays its aerial photographs and maps dating from the 18th century

up to now (shown in Figure 6.10). Similarly, the Voyages dans le temps (Office fédéral

de topographie swisstopo, 2020) part of the platform from the Swiss topographic agency

displays heritage maps and aerial images on a map of Switzerland, alongside more recent

contents, should the user wish it.

Going a bit further than simple 2D, the Mapillary platform (Mapillary, 2013) aggre-

gates images from multiple sources and organizes the visual contents based on their 2D
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Figure 6.10: Preview of the Remonter le temps platform, comparison of a 1950 ortho-
photograph and a 1850s map of Paris’ center

location on a map. By clicking on a location, user can see the content located there.

Furthermore, if a 360° view of the location is available, the user can move the camera all

around the 360°, thus getting a better picture of the global scene.

6.3.2 Multiple modalities combinations platforms

Even though single modalities may be an adequate solution for organizing, structuring and

displaying visual contents, the full potential of web-based platform is revealed when using

a combination of modalities to structure and then browse through collections. Several

combinations have been explored and will be presented next.

6.3.2.1 Metadata and 2D location based structuring

A first combination of modalities uses metadata and 2D location. The main advantage

of this combination resides in the possibilities to filter contents in two different ways,

either spatially or using metadata tags. Combining them in a different order may lead

to different visualization of the global structure of the dataset and then let different

conclusions emerge from browsing the dataset. For instance, one can first choose the type

of data to visualize and then, based on their spatial distribution select their area of study.

However, selecting first the area of study and then asking for specific data can reveal an

absence of data revealing another issue worth studying.

A first simple example of dual structuring is the platform of the Albert Kahn museum

(Albert Kahn museum, 2016) which uses it to promote its collections. Indeed, the 2D

map displaying locations of the images is mostly useful for people to focus on places they

know and spatially select them for browsing and downloading.

Navigae (Navigae, 2018) extends the previous approach to research projects and datasets
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Figure 6.11: Preview of the Navilium platform, with a located image selected

in geography. Visual contents used in projects or studies are located on a map but can

also be queried based on their date, on tags about what they represent or even on the

subject of the study they are related to.

Other examples of this combination of information for structuring visual contents are

set in a paradigm mixing collaborative platforms and social network.

Figure 6.12: Preview of the HistoryPin platform, with an image visualized in pseudo-3D
in the scene

Navilium (Navilium, 2016) first lets users upload images, assign a date, a 2D location

and other descriptive tags. Users can then browse through all available images by indi-

cating several informations. It can be a location (they can also move around on the map,

changing the area of focus will change the images visible), a time span or tags. Images are
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then filtered and pins are placed on the map, pins on which the user can click to visualize

the image associated. One can also simply browse through all images pertaining to its

search criteria (on the right-side of the web-browser). An example of the visualization is

shown in Figure 6.11.

HistoryPin (HistoryPin, 2010) finally is very similar to Navilium in terms of browsing

through and querying the contents. However, a specific difference is the possibility to

spatialize the image in pseudo-3D (as explained in Section 6.2.2). Indeed, users can place

coarsely the images in the scene of a recent camera from Google Street View, trying to

give it more context. An example is shown with Figure 6.12.

6.3.2.2 Metadata and specific 3D spatialization structuring

Rather than simply using 2D location, new platforms aim at using a 3D localization in

conjunction with metadata information for visualization purposes. However, obtaining

a general 3D model and localizing contents within may be quite costly. Thus, some

platforms first exploited local 3D models, suited to their needs, their specific collections.

A first platform in this category is the project Hist4D (Maiwald et al., 2019). It

proposes a 4D web browser to visualize a whole collection of images from 1820 up to now

of the city of Dresden (see Figure 6.13). A 3D model of the city has been specifically

constructed for this purpose. Images are localized using a 6D pose, user can visualize the

images in their context by placing the view at the camera location and multiple analysis

tools are available (heatmap of image density, clusters of image orientations, etc.).

Figure 6.13: Preview of the Hist4D platform, where images are located in 6D within a
tailored 3D model

The Aioli platform (MAP laboratory, CNRS, 2017) also organizes image contents

using a 3D structure, the annotations on image being propagated through the 3D to

other images. However, the 3D cloud exploited is reconstructed using the images and
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thus remains a specifically created 3D structure for the image data considered. Another

image outside the specific project could not be located based on this structure. The

structuring is done "locally".

6.3.2.3 Metadata and global 3D spatialization structuring

(a) Map of all geolocated images, with their coarse orientation

(b) Visualization of the image in its 3D context

(c) Transparency-based comparison between old and recent scenes,
proving the quality of the localization process

Figure 6.14: Preview of the SmapShot platform, displaying an image in its 3D context
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The SmapShot platform (Blanc et al., 2018; Produit et al., 2018), integrated now in Im-

ages of Switzerland Online (Swiss Art Research Infrastructure, 2022) proposes to query

contents based on metadata, or concepts but also browse through them on a map and vi-

sualize them in their 3D context, as shown in Figure 6.14. The spatialization is considered

more global as it is over the entirety of Switzerland and could be easily adapted to other

countries, provided a similar 3D model exists (potentially easily available from National

Mapping Agency or Google Earth for instance). However, even though the images are

displayed in their global environment, the user can not move around freely in the scene

and visualize other close images (like in the Hist4D platform for instance). This drawback

limits the full use of the context of the global scene. It prevents from visualizing other

potential representations to enrich the simply visual data.

Finally, all structuring paradigms can be combined in a single platform. That is

the proposition of the ALEGORIA project (ALEGORIA project, 2018). It proposes a

combination of a search engine combining metadata and visual similarity (see Figure 6.15)

and a 3D visualization platform (see Figure 6.16) to display the images in a global 3D

context.

(a) Search of similar images

(b) List of retrieved similar images

Figure 6.15: ALEGORIA Project Search Engine, images from (Geniet et al., 2022)
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Figure 6.16: ALEGORIA project visualization platform, allowing for the visualization of
multiple images at the same time (all "pyramids" correspond to an image), image from
(Blettery et al., 2020)

Similarly to SmapShot, the images are displayed in a 3D scene. However, the user

is much more free. First, they can upload their own images to be compared visually

with existing images. Images can also be located in the 3D scene by estimating their 6D

pose, using a semi-automatic approach of selecting 2D-3D matches as presented in Section

6.2.3. On the contrary, in SmapShot or Hist4D, the 6D poses are not editable. Users can

also freely move around in the scene, jointly visualize and compare images. Furthermore,

the modularity of Itowns1 -the 3D platform used for visualization- allows for visualizing

thematic data alongside images, further enriching the analysis that can emerge from the

dataset (see (Blettery et al., 2020)).

The number of images that can be visualized at the same time even led (Paiz-Reyes

et al., 2021) to investigate visualization paradigms to allow for a better browsing. This

is to ensure that the global and large-scale visualization does not become detrimental to

the good structuring and understanding of the dataset.

From a different perspective, with a focus on urban data and more specifically the

visualization of its evolution, the virtual city project (Liris Laboratory Vcity Team, 2023)

works on modelling urban data, more specifically in 4D. Furthermore, it enriches the visu-

alization with analysis tools and semantic information, within the reproducible framework

UD-SV presented in (Samuel et al., 2023). Part of the project described in (Jaillot et al.,

2021) also focuses on bringing to the visualization iconographic multimedia contents to

further enrich the analysis of the evolution of the urban setting considered. This is illus-

trated in Figure 6.17 where an image from 1856 is compared against the contemporary

3D model of the city. This type of content visualization could be possible on any scene,

1https://www.itowns-project.org/
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making it a global structuring approach. Their spatialization of the iconographic contents

is however much coarser and their visualization options are very limited.

Figure 6.17: The heritage content coarsely spatialized and visualized in the 3D scene of
the UD-Viz platform from (Jaillot et al., 2021)

6.4 Conclusion

In this chapter we provided two overviews related to spatial-based structuring and visu-

alizing image collections.

The first one, on image spatialization, presented methods requiring more or less manual

input, and resulting in various kinds of spatialization. From a simple address to a 6D pose

in a 3D scene, the images can be spatialized in multiple manners, which in turn allows

for various paradigms for organizing and visualizing them at large-scale.

The second one, based partly on the first one, describes existing solutions for structur-

ing, displaying and visualizing visual contents (heritage or not) in web-based platforms.

Mainly, platforms are different from one another due to the type of data they use for

the structuring (metadata, localization, visual similarity, or any combination of those)

and the visualization paradigm they choose. However, another important difference to

note is the potential or not for the structuring to evolve. Indeed, the structuring can be

done beforehand (e.g. GLAMs showcasing platforms or Hist4D) and then be fixed for the

visualization. It can also be evolutionary, as proposed by the social network approaches

(HistoryPin and Navilium) but also the platform from ALEGORIA. However, evolution-

ary structuring can be difficult to scale to the thousands of heritage iconographic contents

available, especially if the quality of the structuring is to be preserved. Furthermore, even

platforms that support evolutionary structuring and could be adapted to other areas or

datasets are still designed with a specific area and a specific data in mind. This remains

an obstacle to their actual generalization. Thus, the step of co-modelling data and visu-

alization, as done by (Samuel et al., 2023) for instance, must be encouraged in order to

attain generalization and reproducibility for the platforms.

In light of all those observations, both on automatic content-based approaches from

Part I and on existing structuring and visualization platforms from this chapter, we focus

on a new web-based visualization and structuring platform. More than a platform for

visualizing structure created offline, we propose a complete workflow combining structur-

ing and visualizing through the combination of automatic and manual processes, each
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working for the other in a virtuous cycle to improve global structuring and allow for a

more meaningful visualization of the dataset. This will be presented and discussed in

Chapter 7.
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Chapter 7

Graph-based Semi-automatic

Re-ranking
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7.1 Introduction

To browse or structure iconographic collections, a natural way would be to exploit meta-

data describing contents with tags or location information for instance. However, the im-

age collections we target are often organized in silo, each with their own metadata model

for describing contents depending on their specific needs. This heterogeneity of the meta-

data led us to exploit content-based image retrieval approaches (see Part I) which prove

to be state-of-the-art for relatively homogeneous contents of image collections. However,

the evaluation of those automatic methods showed that they can not perform optimally

due to the visual heterogeneity of the considered contents. Nonetheless, we demonstrated

that exploiting structuring information at query-level or at dataset-level proves useful for

143



re-ranking, especially the graph-based diffusion process.

This leads us to two main conclusions, exploiting the largest possible structure is

informative for re-ranking purposes and automatic structuring is often flawed for the

most complicated cases that only an expert can solve.

Hence, we introduce in this chapter a graph-based semi-automatic structuring proposal

leveraging automatic approaches to both create a first structure to be evaluated by an

expert user and then to propagate the certainty of the user’s interventions to firm up

or modify the existing structure, overall multiplying the impact of the targeted expert

interventions. The evaluation of the dataset’s structure is performed in a 3D, graph-based,

web visualization platform illustrated in Figure 7.1.

Figure 7.1: The 3D graph-based visualization platform

This chapter will first introduce in Section 7.2 our paradigm of representation of the

structure of the dataset as a graph. The semi-automatic structuring process proposed is

then detailed in Section 7.3. Section 7.4 then presents the visualization needs and the

platform and visual clues proposed to serve the structuring process. Finally, Section 7.5

evaluates quantitatively and visually the relevance of our structuring process.

7.2 Graph representation of the structured dataset

On the one hand, diffusion-based re-ranking approaches proved very efficient for structur-

ing contents. On the other hand, our previous conclusion was that "larger-scale" struc-

turing information were beneficial to the global structuring process. Thus, we decided

for this part to set ourselves in a paradigm where the different categories of links built

are organized into graphs (including various structuring information), and to exploit this

representation of the structure for re-ranking purposes. Looking at our structuring prob-
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lem as being set within a graph indeed allows us to use graph-based algorithms (like

diffusion-methods for instance) but also to visualize it using tools designed for graph

visual analytics.

7.2.1 Graph links considered

To provide structure to the image collections, we build and exploit five kinds of links

between items, some are shown in Figure 7.1. We detail next all five types of links and

the similarity they encode.

Location links

They connect a location to any image at this location. Two images with matching loca-

tion information coming from a different source (e.g. GPS or geocoded address) can be

connected to the same location. The confidence cI ∈ [0, 1] given to the link between and

image I and its location depends on the way the location was estimated, as explained in

Section 4.3 of Chapter 4.

Visual similarity links

Those links connect two images similar in terms of visual content. Such links do not

exploit the metadata and are processed automatically with the best approaches for image

retrieval (in our case the descriptor How-A) described in Section 3.4 of Chapter 3. They

encode the visual similarity score sv
I,J ∈ [0, 1] between two images I and J .

Spatial similarity links

They encode the pairing of two images according to their spatial proximity in the envi-

ronment, if available. Other criteria could have been chosen (e.g. semantic similarity)

but the geolocation criterion is a useful one in several domains, e.g. the geographical her-

itage. They can represent simply an information of spatial proximity that can validate or

contradict visual similarities but also be used to propagate locations as shown in Section

7.3.2.

Those links can be automatically computed, as proposed in Section 4.3 of Chapter 4,

but also manually created. They encode the spatial similarity score ss
I,J ∈ [0, 2] defined

in the aforementioned Section. Furthermore, they are also assigned a spatial confidence

score cs
I,J ∈ [0, 1], either manually defined or automatically computed (see Section 4.3 of

Chapter 4). The similarity score is the weighted by the confidence score, which leads to

the previously presented (in Section 4.3 of Chapter 4) spatial similarity weight ws
I,J =

ss
I,J

cs
I,J ∈ [0, 2].

Expert similarity links

Those are manual connections added by an expert to connect two images according to its

own structuring paradigm, visual, spatial, semantic or other. This similarity thus encodes

more information than a simple similarity link like visual or spatial links. Those links
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encode an expert similarity score ss
I,J ∈ [0, 1] associated to an expert confidence score

ce
I,J ∈ [0, 1] whose value depends on the level of expertise of the user.

Global similarity links

To exploit all types of similarity during the diffusion re-ranking step presented in Section

7.3, we aggregate all three previous similarities to create the strongest possible similarity

links, exploiting all available information.

Computing the final global similarity score SI,J between two images I and J , used for

re-ranking all images, using all possible information, is done as follows:

SI,J = N
(

sv
I,J × ss

I,J
cs

I,J + (se
I,J)ce

)

(7.1)

It consists of the five similarity and confidence scores presented before and developed

further in the following:

• the visual similarity score sv
I,J ∈ [0, 1], computed between the two image descriptors

during retrieval;

• the spatial similarity score ss
I,J ∈ [0, 2], that can be estimated two ways: either by

estimating a proximity score (see Section 4.3 of Chapter 4) or set to the maximum

when reflecting a spatial similarity manually added (e.g. 2 views of the same monu-

ment without considering any geolocalization information). A score over 1 confirms

the probable visual similarity, under 1, it denies it, and if it equals 1 it reflects a

lack of spatial information or a distance that is not meaningful to weight the visual

similarity. The importance given to this score relies on the fact that we focus on

spatialized and non-movable objects for whom spatial similarity is obvious while the

visual aspect can change through time or viewpoint;

• the spatial confidence score cs
I,J ∈ [0, 1], that reflects either the quality of the esti-

mated proximity score (based on source locations’ quality (see Section 4.3 of Chap-

ter 4), the user’s confidence or the confidence in the location propagation process).

When automatically computed based on location quality, it is obtained as:

cs
I,J =











1
cI×cJ

if ss
I,J < 1

cI × cJ otherwise
; (7.2)

• the expert similarity score se
I,J ∈ [0, 2], that reflects the opinion of the user as to

similarity between the two images based on their visual evaluation. The similarity

reflects the specific structuring the expert wants to bring to the dataset, it can

aggregate visual, spatial or any other type of similarity specific to the dataset. Set

to 0 if no expert similarity exists between the images, it is added to the previous

scores because such validation of similarity must increase the global similarity score

(if no similarity should exist, the link would be deleted by the expert);
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• the expert confidence score ce ∈ [0, 1], whose value depends on the level of expertise

of the user.

Finally, we normalize SI,J in [0, 1] using N , a min-max normalization over S. Figure 7.2

illustrates the nodes and links presented before.

Figure 7.2: Minimal representation of the graph-based representation of the dataset

One can notice that should no expert nor spatial similarity be present, SI,J represents

simply the visual similarity (meaning no re-ranking of any sort), and should simply no

expert similarity be present, SI,J encodes the visual similarity weighted by the spatial

similarity as defined in Section 4.3 of Chapter 4. Our global score only builds on existing

structuring information to encode the most information possible.

7.2.2 Presentation of the graph

Exploiting the links considered in the previous section, we define a graph, described in

details, formally and visually, in this section.

The links presented in the previous section lead to a multi-edge graph-based repre-

sentation of the collections’ structure, where the nodes are either image contents (and

metadata) or a location. We formally define here the global graph G:

• Let us call G the global graph, G = {V, E};

• We highlight two subgraphs:

– GI = {VI , EI} the subgraph of image nodes,

– GL = {VL,∅} the subgraph of location nodes,

– with G = GI ∪ GL;

• Furthermore, V = VI ∪ VL and E = EI ∪ ELI ;

• Amongst the edges, there are first ELI ⊂ [0, 1]×VI ×VL, edges linking location nodes

to image nodes. One such weighted edge is defined as (cI , vI , vL) with vI the image

node, vL the corresponding location node and cI the confidence score associated;
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• Second, the edges EI ⊂ VI ×VI linking two image nodes. As described before, those

edges can be of four types, leading to EI = Ev
I ∪ Es

I ∪ Ee
I ∪ Eg

I . They are detailed

below with an example of each type of edge linking two image nodes vI and vJ :

– Ev
I ⊂ [0, 1] × VI × VI linking images with a visual similarity. An example edge

is (sv
I,J , vI , vJ), with sv

I,J the visual similarity score;

– Es
I ⊂ [0, 2] × VI × VI linking images with a spatial similarity. An example edge

is (ss
I,J , vI , vJ), with ss

I,J the spatial similarity score;

– Ee
I ⊂ [0, 1] × VI × VI linking images with an expert similarity. An example

edge is (se
I,J , vI , vJ), with ss

I,J the expert similarity score;

– Eg
I ⊂ [0, 1] × VI × VI linking images with a global similarity. An example edge

is (SI,J , vI , vJ), with SI,J the global similarity score;

• Using those different edges, we can extract multiple subgraphs out of the global

graph, depending on the similarity exploited:

– Gv
LI = {V, Ev

I ∪ ELI} the subgraph of image and location nodes with location

links and visual similarity ones;

– Gs
LI = {VI , Es

I ∪ ELI} the subgraph of image and location nodes with location

links and spatial similarity ones;

– Ge
LI = {VI , Ee

I ∪ ELI} the subgraph of image and location nodes with location

links and expert similarity ones;

– Gg
LI = {VI , Eg

I ∪ ELI} the subgraph of image and location nodes aggregating

all previous links;

After some iterations of the semi-automatic process we propose in Section 7.3, the

graph-based representation may contain data (in nodes and edges) of three natures that

all serve the understanding and structuring of the dataset in and out of the visualization:

• source data (from providers), e.g. annotations or location information;

• automatic data (computed), e.g. similarity scores between images, or new propa-

gated locations;

• manual data (added by user) e.g. new manually added similarities or image anno-

tations.

Some of those different informations within the graph structure are presented in the

diagram in Figure 7.3.
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Figure 7.3: Detailed representation of the graph-based representation of the dataset

As explained in Section 7.2.1, similarities or locations can be associated to a confidence

degree -depending on user’s skills and/or on some parameters of the automatic processes-

which counts during the automatic structuring steps of global similarity creation or loca-

tion propagation (see details in Section 7.3).

To further present our graph-based representation, we illustrate below in Figure 7.4

the structure of the dataset as various graphs based on different similarities. Blue nodes

are image nodes, gray ones are location nodes. The links between them are each time one

of the previously defined similarity links.

Once again, the main advantage of a graph-based representation is that existing meth-

ods of graph analysis can be leveraged in our image retrieval setting to improve our struc-

turing process. We present next the semi-automatic structuring process that we propose.
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(a) Sample of the subgraph Gv
LI (b) Sample of the subgraph Gs

LI

(c) Sample of the subgraph Ge
LI (d) Sample of the subgraph G

g
LI

Figure 7.4: Visualization of the subgraphs obtained using different similarities

7.3 Structuring process overview

The dataset’s graph-based representation was first introduced in Section 7.2. This section

presents the semi-automatic process we propose to improve the structuring of the dataset,

based on the graph paradigm introduced before. We first detail the global process and

then focus on the specific location propagation step.

7.3.1 Semi-automatic iterative process

Building on the diffusion-based re-ranking paradigm and the graph-based representation

presented in Section 7.2, we propose a semi-automatic process where key links in the

dataset’s structure are manually evaluated (created or deleted) and then the updated

structure is diffused throughout the whole graph to update links. As it will be shown in

Section 7.5, the diffused impact is much greater than the simple impact of the manual

modifications.

Structuring is considered as a three-step iterative and semi-automatic process:

1. Automatic building of similarity links, based on CBIR or the approach described in

Section 4.3 of Chapter 4 for instance. These links feed the graph-based representa-

tion of the global structure at large scale, as explained in Section 7.2;

2. Creation of the graph-based representation based on the previous similarity links;
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3. Manual assessment and improvement of some complex configurations automatically

highlighted with visual clues in the 3D visualization environment (examples in Sec-

tion 7.4). The graph-based representation of the collection’s structure is updated

with these inputs. Then repeat step (1) if necessary.

Figure 7.5: Overview of the semi-automatic structuring process

In the process depicted in Figure 7.5, an expert first visualizes the results of a first step

of automatic processing. The automatic process produces links between all images based

on various information (and ranked based on the global similarity score of Equation 7.1).

However, as it will be presented later in Section 7.4, displaying all links is detrimental to

the correct visualization and analysis of the proposed structure. Thus, only some links

are displayed. It can be the first k links or links ranked between k1 and k2, as desired by

the expert. The expert then correct mistakes or add new expert similarities using guides

described later in Section 7.4. Those new informations are used to recompute the global

similarity score SI,J , the images are then re-ranked based on those updated similarity

scores. Those ranks and scores are then fed to the automatic diffusion-based re-ranking

process or the location propagation process (presented after), running offline. The images

are once again re-ranked by those automatic processes and the visualization of the first k

links for instance will display new structures to be evaluated and enriched by the expert,
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and so on. This approach exploits the best of both worlds, on the one hand automatic

processes which handle a large number of data at once and on the other hand an expert

knowledge that ensures strong results but is way more time-consuming.

As said earlier, for any image I in the dataset, after any modification, either automatic

or manual, the N retrieved images are ranked based on their similarity with I, with the

score from Equation 7.1. However, if a similarity link between images I and J is deleted

through the visualization platform, J is then ranked last in the ranking list and the images

initially ranked after J are moved closer to I by 1. And vice-versa for I in the ranking

list of J . Furthermore, SI,J is set to 0, leading all "aggregated" similarity links (visual,

spatial or potentially wrong expert ones) to be deleted, with their respective similarities

set to 0 too.

7.3.2 Location propagation

Once enough global (or simply spatial in our case) similarity links are established, some

information can be propagated through them. Here, we focus on localization: some

images can be localized from the locations available with the first similar images retrieved.

There exist many techniques for estimating a location from several candidate locations as

presented in Section 6.2 of Chapter 6; here we simply choose to average the 2D position of

the first candidate locations which are spatially coherent together. To evaluate the spatial

coherence, the locations are averaged and for a location to be kept for the propagation, it

needs to be closer than 30 meters from the averaged location. Furthermore, the locations

are assumed spatially coherent enough for propagation if the mean distance between every

possible location and the averaged one is less than 15 meters.

This process can be repeated multiple times until the requirements for propagation are

not met anymore (number of linked located images, confidence over the global similarity

or the location, etc.). Propagating locations, in order to exploit them for spatial simi-

larity linking and for weighing the automatic retrieval process, proves to be an efficient

way to improve the structuring as shown quantitatively in Section 7.5.1 and visually in

Section 7.5.2.

7.4 Graph-based visualization platform

The final part of our semi-automatic process is the visualization platform that enables the

expert to display the structure of the dataset, to analyze and evaluate it in order to make

corrections. This section first presents the requirements we defined for this platform and

the most-suited solution we selected. It then focuses on particular visual clues available

through the platform in order to help the expert focus on the most impacting structuring

issues.
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7.4.1 Visualization needs and technical solutions

To visualize the structure of the dataset based on our representation choices, several

requirements must be met. We focus here on defining them and then present the platform

that meets most of them and that we selected for our process.

7.4.1.1 Main requirements

For our semi-automatic process, the requirements are multiple, both in terms of visu-

alization and in terms of potential interventions by the expert on the structure in an

interactive way, which we detail further here.

Visualization paradigms required

The first needs in terms of visualization are quite basic and derive straight from the

graph-based structure paradigm chosen and defined in Section 7.2.

The platform must allow to visualize different types of nodes (images and locations)

and several types of links at once. The organization of the nodes and links must be

automatic, based on different styles of representation the user can choose from.

Furthermore, as the spatial aspect of the structuring is important to us as we work

with geographical iconographic heritage, the possibility of spatializing the location nodes

would be a major benefit for analyzing and understanding "naturally" the structure of the

dataset and the coherence of the various similarity links.

Finally, as our objective is to exploit an iterative semi-automatic process, the native

link of the platform with a graph database would ease the back and forth between the

visualization and the structuring process offline.

Possible expert actions desired

In order for the expert to intervene on the visualized structure, several actions must be

available to him. The two basic ones are the deletion and the creation of links (of any

type). Furthermore, as previously presented, additional information could also be added

by the expert on the newly created or already existing nodes and links. From an expert

similarity score to added information on an image caption, both types of information have

to be able to be added to the graph.

The user must also be able to focus on specific types of nodes, of links, to filter based

on a specific information or to focus on specific areas of the graph to perform a finer

analysis. Furthermore, as the structure is perceived as a graph, algorithms and analysis

tools designed for graphs would be a bonus for helping to identify and comprehend the

key elements of the structure at a glance. Indeed, modifying the representation of the

graph based on several criterions could reveal different and new key elements for which

an expert intervention is necessary.
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7.4.1.2 GraphXR, the most-suited solution

For visualizing the graph-based structure, we decided to exploit GraphXR1, a web-based

visualization platform dedicated to graph data. We use a free version of the platform that

suits our needs in terms of volume of visualization. Combined to a Neo4j graph database,

it enables the visualization of the image collections and their link-based structure; see

the example of Figure 7.1 at the beginning of the chapter. The platform also allows for

spatialization by pinning localized nodes to a map in the 3D environment. That way,

our three first main requirements are met. Furthermore, as a web-based platform, the

structuring could be performed from anywhere by anyone, as long as the data is made

available on a server running the Neo4j database and also making the images available

via the web. However, for the current implementation and experiments, we stuck to a

local solution.

The different categories of links established (visual similarity, spatial similarity, ex-

pert similarity, location linking) produce graphs, which may be connected to the map,

otherwise they float in space. The interface allows a user to control the visualization of

this representation: focus on one neighborhood, display sub-graphs according to a level of

similarity or to a particular link type, access to images and metadata in nodes, etc. They

also have the power of updating, removing or adding data manually in nodes and edges of

the graphs, creating new edges, as well as launching the update of the whole graph-based

representation via automatic retrieval and re-ranking.

Due to the large size of the dataset, the visualization of all types of links at the

same time is not an option. Indeed, only the visual similarity links between all images

amounts to more than 2 million links, many of them representing very low and meaningless

similarities. To prevent the cluttering in the visualization we chose to only display a part

of the links at any given time. It can be the k first (most similar) ones, but also could

be the links further down the list of similarities, as long as k remains less than 10 (in our

case at least).

To further help to obtain a meaningful visualization, visual clues are made available

automatically in order to help users focus on more unusual or impacting areas. They can

either come from graph analysis or from simple representation choices. Several of them

are presented next.

7.4.2 The visualization platform

Relying on GraphXR, we present here in detail the visualization choices and the tools

and actions available to the user within the platform.

The platform

The whole visualization platform, displayed in Figure 7.6, provides a 3D visualization

area for the graph and/or the map but also multiple tools and visualization solutions.

1https://www.kineviz.com/graphxr (free version)
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Figure 7.6: Overview of the platform’s interface

Several parts of the platform are detailed further.

Figure 7.7: Overview of the platform’s menu

On the left, as illustrated by Figure 7.7, several menus are accessible. They allow

multiple actions of which we list several below:

• loading data and querying both graph and database;

• apply transformations to the graph;
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• compute graph algorithms;

• select from multiple layouts;

• filter the displayed data;

• add a map;

• exploit extensions of GraphXR.

On the top right, nodes and links are summarized. The user can select the nodes or

links by category but also easily modify their representation, rather than going through

the menu. Figure 7.8 illustrates this.

Figure 7.8: Overview of the nodes and links displayed

On the bottom right (see Figure 7.9), several visualization tools are available, to select

neighbors of a selected node, to invert the selection or hide the selected nodes for instance.

Figure 7.9: Overview of the platform’s tools

Furthermore, a right-click after selecting nodes or links on the graph gives access to

many more actions. A simple one is the display of the node’s information, as illustrated by
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Figure 7.10. Other actions like the creation or deletion of links or nodes are also available

for instance.

Figure 7.10: Node information display

Finally, one of the most useful aspect of the platform to create a usable platform for

any expert is the possibility to create macros with their specific tool, Grove. That is

create a button that once clicked will perform successive actions in a specific order. This

allows to load the data easily, but also perform algorithms computation or apply specific

layouts to the graph. This is illustrated in Figure 7.11 and proves essential to ensure two

things. On the one hand, the user does not have to navigate through the different menus

and remember the specific order in which to perform the actions. On the other hand,

this ensures the fact that the platform can be used by less tech-savvy users (important

in GLAMs) but also ensures consistency in the work performed. Indeed, with the same

input data, the same macro will get to the same output, which is paramount if several

users work jointly on the same data.

To summarize, the platform offers the expert the possibility to perform multiple actions

of which we list the most useful below:

• choose the visualization paradigm,

• exploit graph algorithms to automatically compute new information on the graph
that can modify the visualization,

• remove an incorrect link,

• create a link of any similarity (visual, spatial or expert),

• add information on a link or a node,

• update the graph database to launch new offline re-ranking steps.
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Figure 7.11: Grove extension macro buttons examples

It also allows to create macros to automate several processes in order to speed up the

correction process and go smoothly from one visualization to another in a smooth fashion,

giving all users, even beginners, the whole range of potential actions.

Visual choices

To ensure consistency in our experiments and illustrations, we made visual choices that

we detail here.

The nodes are distinguished by their visual representation. First, the location nodes

are always pinned to the map, and in light blue color. For the image nodes, the nodes are

never pinned to the map and three potential visualizations are possible:

• in dark blue, the nodes simply indicate their type (that is Images);

• node properties can be displayed in various colors (scaled or not), for instance the

community of the node or its betweenness coefficient (see Section 7.4.3);

• the thumbnail of the image that the node represents can also be represented in

the node, allowing for a quick check of the scene depicted. Furthermore, a link to

visualize the image in full is available in the node’s information panel.
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The links in turn are distinguished by color, detailed next:

• Salmon pink ones represent the visual similarity between two images;

• Green links means a spatial similarity between images;

• Yellow similarity links are the expert similarity links;

• For global similarity links, to further display information on the structuring, we

differentiate them in three categories:

– Blue similarity links represent global, strong, reciprocal similarity links;

– Red ones represent global, strong, single-sided similarities;

– Purple links express a global, low, single-sided similarity between images.

The difference between strong and low similarity links is that strong links are amongst

the k links we want to display (as explained before), that is for instance the first k links

which are thus probably correct. Low similarity links however represent a lower score,

not amongst the top-k links. They are thus more uncertain.

7.4.3 Visual clues as analysis support

The following sections, from Section 7.4.3.1 up to 7.4.3.5, present several visual clues

specifically useful for global dataset structuring. From simple visualization to graph

algorithms, all are meant to make it easier for the expert to set their focus on impacting

areas, thus maximizing the impact of their work while limiting the time cost.

7.4.3.1 From visualizing multiple similarities to a single one

As images can be linked via multiple similarities, the structuring must take all of them

into account. That is done in the structuring process detailed in Sections 7.2 and 7.3.

However, aggregating similarities also proves beneficial for visualization purposes. Indeed,

as illustrated in Figure 7.12 (d), co-visualizing multiple similarities (individually shown

in (a), (b) and (c)) leads to a strenuous visualization, not ideal for analysis. Aggregating

all similarities in a global link (with the global score introduced before) leads to an un-

cluttered visualization (shown in (e)), more suited for visual analysis by any user, and at

large scale.
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(a) Visual similarity links visualization (b) Spatial similarity links visualization

(c) Expert similarity links visualization (d) Co-visualization of all three previous
similarity links

(e) Visualization of previous links aggre-
gated into a global one

Figure 7.12: Aggregated similarity links visualization

7.4.3.2 Cross-community links

Within graphs, communities can be exhibited based on the different links between nodes.

In our case, as we structure a dataset composed of multiple classes, an ideal structure

representing a classification in terms of depicted object would be a single community for

each class and no links between communities. This "ideal" case never presents itself due

to the difficulties automatic methods have with such data (see Part I), however exploiting

communities can still prove useful.

Indeed, as said before, links between two different communities are potentially false

as similar object should belong together in a community, thus there should be almost no

links between communities. Highlighting those links focuses the user’s attention on their

verification. Once the expert focuses on a specific edge, they can visualize image thumb-

nails and make the decision to confirm the edge, to simply delete the edge (indicating
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(a) Visualization of cross community link

(b) Visual check

Figure 7.13: Example of cross-community link validation

that it was a false matching) or to create a new edge between the images representing the

"expert similarity" they estimate, based on their own criterion.

This highlighting process for deleting a link is depicted in Figure 7.13. The first image

shows only inter-community links, with one highlighted. The second image shows a zoom

on this link with the thumbnails of the images, allowing the expert to evaluate whether to

confirm the link with a new expert similarity link or to delete the link. Either creating or

deleting links proves beneficial for overall structuring, especially after diffusion, as actions

#3-#4 and #6-#7 of Table 7.1 of Section 7.5 illustrate.

In our platform, communities can be exhibited in the graphs by exploiting the global

similarity links using the Louvain algorithm (Blondel et al., 2008) or its improvement, the

Leiden algorithm (Traag et al., 2019).
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7.4.3.3 Highly central nodes

(a) Identification of highly central nodes (dark green)

(b) Visual check of the visual similarity links

(c) Deletion of the incorrect link

(d) Recomputation of the betweenness coefficient, showing
that different communities are no longer wrongly connected

Figure 7.14: Highly central node edge clearing
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Exploiting once again the fact that in an ideal setting, no links should exist between

communities, thus, problematic links can link an image node to several communities (in

this case groups of similar nodes). Those links are problematic because if a single node

is linked to multiple communities, then during the diffusion process it creates noise and

confuses the re-ranking.

To identify them, the betweenness coefficient is quite efficient as it estimates in how

many shortest paths between any two nodes a specific node is. Thus, a high betweenness

score reveals a node linking multiple groups of nodes, creating potentially wrong paths

for the diffusion process.

In our platform, visualizing for each node its betweenness coefficient, computed with

Brandes’ algorithm (Brandes and Pich, 2007), helps the user in identifying central nodes

linked to multiple clusters/communities. Checking the edges of these central nodes is

highly beneficial for global structuring of the dataset. Indeed, clearing the edges of those

central nodes, that is deleting or strengthening links with spatial or expert similarities,

ensures a clearer frontier between communities.

This is illustrated in Figure 7.14 where a chain of nodes seems to link two communities

because their betweenness coefficient is high. Cleaning those links removes this high

betweenness, indicating an improvement in the structuring. Highlighting nodes based

on their centrality coefficient thus focuses the user’s intervention on highly impacting

evaluations.

7.4.3.4 Spatialized tree representation

Creating trees based on similarities with location nodes as roots displays naturally to-

gether nodes which are spatially close. Indeed, the graph representation will organize

nodes in a tree fashion, considering all the similarity links to place the nodes in the scene.

This display setting endogenously regroups together non-located nodes not linked to each

other but linked to nodes that are spatially close.

It easily allows users to densify the linking between these nodes as finding visually

similar or spatially close images supposes to look only at nearby nodes. This is what

Figure 7.15 represents. First, not-linked but close nodes are identified (in the yellow

rectangle in (a)). Their thumbnails are then visualized (b) and it appears that they depict

two parts of the same scene. Thus, there are no visual similarity links (at least not strong

ones) but the user can create spatial similarity ones (in green in (c)). Actions #5 and

#8 of Table 7.1 (see Section 7.5) show that adding spatial similarities that are then used

to improve similarities and overall structuring via diffusion is as efficient as intervening

on visual similarities, indicating that both interventions should be used jointly for best

performance.

Furthermore, it also helps identifying clusters prime for location propagation as shown

in Figure 7.17. That is clusters that can be selected in order to propagate automatically

the location information of located images in the cluster to non-located images in the

cluster, based on their visual similarity links.
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(a) Spatially close images in the visualization

(b) Visual check of their actual similarity

(c) Creation of spatial similarity links (green) for the following automatic
diffusion process

Figure 7.15: Spatial similarity links creation process aided by the tree representation
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7.4.3.5 Isolated nodes reconnection

(a) Visualization of floating nodes

(b) Selection of a floating node and visualization of its lower
similarity links (purple)

(c) Visual validation of the links

(d) Validation of the links and reconnection of the node to
the main graph with expert similarity graphs (yellow)

Figure 7.16: Unconnected nodes’ reconnection process
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Sometimes, single nodes or small groups of nodes are not connected to the map and to

the main graph, they float "in space". This happens when no strong global similarities

link them to the main graph. To reattach them to the main graph is complicated for

the expert if they do not know which scene the floating nodes represent. To help them,

the expert can decide to visualize links of lower global similarity. It at least gives them

putative links to evaluate in order to validate them and strongly reconnect the node

(and the other nodes of its group) to the map and the main graph using a spatial or an

expert similarity link. This process both helps the overall structuring when diffusing the

strengthened similarities throughout the graph, it also helps in visualizing the complete

dataset in a more organized fashion.

7.5 Semi-automatic structuring process evaluation

After presenting the new graph representation paradigm in Section 7.2, necessary for our

semi-automatic structuring process (Section 7.3) in an adapted 3D web-based visualization

platform introduced in Section 7.4, this final section evaluates the performance of our

proposed process on our dataset.

First, a quantitative evaluation will show the improvements in the structuring when

using the semi-automatic process and the visual clues aforementioned for several inter-

ventions on the graph. Second, some visual examples will show the evolution of the

structuring after each step of intervention and diffusion.

7.5.1 Automatic quantitative evaluation

The impact of the iterative process can be assessed in terms of mAP score (mean Average

Precision), previously used to evaluate the automatic retrieval and re-ranking approaches.

Table 7.1 illustrates how this score evolves through iterations involving automatic linking

(without and with a diffusion step) enriched with automatic and manual inputs (actions

#2 to #8 in the Table 7.1).

In this experiment, the number of image nodes is 1637, the number of located images

is 537, and the total number of links is around 7,000. The experiments are lead using

different starting structures, created using three different sets of links.

First, we start with the structure using Stereopolis locations as a weighting scheme,

to remain coherent when using automatic location propagation and subsequent weighting

with the new locations. The results of these automatic steps correspond to actions #1

and #2 of Table 7.1.

The second part of our experiments was on the structure provided by the first 5 links

of the structure from the previous steps. Those links being the strongest, they have a

high probability of being correct, leading to a quite certain structure. Various manual

interventions are performed, with results corresponding to actions #3 to #5 in Table 7.1.

Third, we performed manual interventions on the structure created with the 5 to

10 first links of the previous manual structuring steps. Those links may thus be more
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Table 7.1: mAP scores evolution through iterations combining automatic and manual
linking

Action # Intervention type
Automation

level

Number
of added

information

mAP
before

diffusion

mAP
after

diffusion

1 Image retrieval Automatic - 41.97 61.77
2 + Location propagation Automatic 85 42.32 62.20

Interventions on the first 5 links

3 + Deletions (visual) Manual 70 42.36 62.32
4 + Creations (expert) Manual 30 42.40 62.46
5 + Creations (spatial) Manual 33 42.43 62.58

Interventions on the 5th to 10th links

6 + Deletions (visual) Manual 78 42.44 62.59
7 + Creations (expert) Manual 26 42.48 63.83
8 + Creations (spatial) Manual 27 42.51 64.21

uncertain than the first five, leading to a potentially noisier structure. The results of these

interventions correspond to actions #6 to #8 in Table 7.1.

The information added to automatic retrieval (location propagation, targeted manual

interventions on similarity links) is quite small, representing each time a volume of about

2% of the total information, while the mAP scores reveal that it notably improves the

structuring, with a multiplied impact after the automatic diffusion of this new knowledge.

While the automatic location propagation is quite quick, each of the two manual inter-

vention steps takes about an hour of expert time, accounting for the actual intervention

time and the time necessary to save them to the database and run the diffusion process.

Several conclusions can be drawn from those results.

The overall improvement (after the three steps) of 2.44% of mAP (from 61.77 to

64.21) is significant and proves the impact of targeted structuring coupled with a diffusion

process. The overall mAP score reaches the level of the second-best approach combining

a single step of re-ranking before diffusion (R3D-SG) and the fourth score overall.

First, with action #2 of Table 7.1, we observe an improvement of the mAP from

61.77 (using starting locations from Stereopolis only, c.f. Section 5.2 of Chapter 5) to

62.20 when adding 85 new propagated locations. The improvement is quite substantial

in terms of global structuring but also in terms of added information, 85 more locations

represent an increase of 16% in terms of localized images.

Second, the manual interventions improve the mAP in a very limited way (0.19%

overall) when not coupled with diffusion. Indeed, the diffusion process brings it up to a

2.01% improvement.

Furthermore, while the first manual interventions on the first 5 links improved the

structuring by 0.38%, working on the deeper links improves the mAP by 1.63%. This

shows that correcting the deeper and more uncertain structure has much more impact
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when diffused afterwards.

Finally, these improvements must be put in perspective to the automatic approaches

evaluated in Section 5.3 of Chapter 5. Indeed, the maximum mAP improvement us-

ing combined re-ranking approaches is 6.5%. However, it requires around 150 hours of

computing to re-rank the first 135 images.

Table 7.2 compares the semi-automatic process with some automatic approaches in

terms of number of images re-ranked and computation time.

Table 7.2: mAP improvements comparison against no re-ranking at all, depending on the
number of re-ranked images and the computation time

Re-ranking approach
k re-ranked images

per query
Computation
time (hours)

mAP improvement
after

diffusion (%)

Automatic approaches

RANSAC-SG + R3D-SG 135 150 6.5
RANSAC-LG 135 45 6.2
RANSAC-SG/RANSAC-LG 5 1.5 0.01
Location weighting (Sp) 135 1/60 2.5

Semi-automatic process

Automatic location propagation - - 2.9
+ Interventions on the first 5 links - 1 3.3
+ Interventions on the 5-10 links - 1 4.9

This comparison shows that the ratio between computation time and mAP improve-

ment is quite favorable for our semi-automatic process.

Indeed, 1 hour of automatic process on the whole dataset, such as RANSAC, does not

allow to reach such improvement, as it allows for re-ranking only about 5 images per query,

which is very low compared to the 135 we evaluated it on in Chapter 5. Furthermore,

re-ranking only 5 images improves the mAP after the diffusion process of only 0.01%, and

that using either SuperGlue or LightGlue.

Furthermore, due to the large computation time of more complex re-ranking ap-

proaches like the best performing one RANSAC-SG + R3D-SG, in 2 hours, the re-ranking

could not be performed for all 1637 images in the dataset.

Finally, with our semi-automatic process, the visualization step ensures a correction

of the structure that is coherent and validated by the expert, even (and mostly) for

complicated cases. On the contrary, automatic methods are somehow black boxes and

if we can deduce part of their behaviors, in our case of highly variable contents, some

re-ranking may actually be detrimental in some cases, which does not happen with our

semi-automatic process.

7.5.2 Qualitative visual evaluation

Besides the mAP score, a visual evolution of the structuring can be perceived by the expert

as its corrections take place. In addition to the visual examples illustrating the visual clues
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already shown in section 7.4.2, here we want to show the global visual structuring that

can be displayed within the platform.

First, a visual, local example of location propagation is displayed in Figure 7.17: at

first (a), in the cluster of similar images, 10 are located (linked to a location node on

the map) and 4 are not. Leveraging the global similarity links between them (in blue),

the locations are propagated, resulting (b) in 13 located and 1 non-located images. The

location propagation brings structure and visually links images to the map, refining the

global visualization.

(a) Detection of a cluster of highly connected localized and non-localized
images

(b) Propagation of the locations to non-localized images

Figure 7.17: Example of the location propagation process

The first Figure 7.18 represents the visual aspect of the dataset’s structure during the

first steps presented in Table 7.1.
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(a) Structure before the first deletion step (action #2), detail on the right

(b) Structure after the first deletion step (action #3), detail on the right

(c) Structure after the two link creation steps (actions #4-#5), detail on the right

Figure 7.18: Visual evaluation of the dataset’s structure on the 5 first global links

Visualizing the structure’s evolution after each step shows a better structure simply

by looking at the amount of long links between images (for instance between the details

of (a) and (b)), reflecting links between communities of images that should be spatially

distinct.

However, the amount of images linked to the main graph (and the map) remains quite

low (between 1218 after the deletion step (b) and 1379 after the final creation step (c) out
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of 1637 images in total), showing a better structuring within the first 5 links but limiting

the diffusion’s impact to find harder images to link, thus limiting the global structuring.

(a) Structure before the second deletion step (action #5), detail on the right

(b) Structure after the second deletion step (action #6), detail on the right

(c) Structure after the two final link creation steps (actions #7-#8), detail on the right

Figure 7.19: Visual evaluation of the dataset structure, using the 5 to 10 best global links

When working with the 5 to 10 strongest global links, the structure is more noisy with

more "long links" across the visualization (see Figure 7.19 (a) and especially the red links

in the detailed view). However, the deletion limits those problematic links (see Figure 7.19

(b) and the detail on the same area as (b) where no more long red links exist). Finally,

after adding new links (expert and spatial), the structure gets noisy again (see Figure 7.19

(c)). The zoom of (c) illustrates that the similar images remain quite correctly organized

but new long, potentially wrong links appear, mostly strong single-sided global links (red

ones).

However, after each step, the amount of images linked to the main graph increases.
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From 1379 in (a) to 1452 in (b) after deleting incorrect links, and finally 1603 out of

1637 after adding new links. This shows that almost all images are linked to the main

graph and the map using the 5 to 10 strongest global links. It shows a better global

structuring of the dataset and also offers new areas for the expert to intervene on (the

"long" and potentially problematic links as shown in the detail of (c)). Indeed, evaluating

links within the main graphs proves easier than reattaching floating nodes to the main

graphs. It also gives a better global overview of the dataset and its structure.

7.6 Conclusion

In this chapter, we introduced a new semi-automatic structuring process for image col-

lections. Building on our evaluation of automatic retrieval and re-ranking approaches,

we propose to exploit targeted manual interventions on an automatically created graph-

based structure then diffused throughout the whole graph, exponentially improving the

dataset’s structuring.

Using a 3D graph-based visualization platform, several visual clues are proposed to

help the expert focus its manual interventions on impacting areas of the graph. Jointly

exploiting automatically computed similarities and manually corrected or created links,

the process iteratively improves the global structure, and using the diffusion process, the

impact is much higher than simply that of the few interventions of the expert.

Though costly in expert time, this proposed approach appears to be a solution to the

performance ceiling that fully automatic methods seem to reach. Even though they are

not able to deal with extremely complicated cases introduced by heritage content, they

can use and multiply the impact of a manual input on those extremely difficult cases.

This semi-automatic setting allows to create the most complicated links between con-

tents that automatic approaches can not. Furthermore, after our extensive evaluation in

Chapter 5, it has been shown that the diffusion process is most efficient when the entropy

of providers is at its maximum. Indeed, it thrives on exploiting links between different

collections to further link those collections together. Knowing this, the expert can use

visual clues to focus on a priori problematic areas but also focus on linking contents

inter-collections. This allows for much more control on the subsequent diffusion process.

However, some limitations must be highlighted. First of all, for some very complicated

cases, links deeper and deeper would have to be used, and it could prove problematic as the

visualized structure could become noisy with too many incorrect links. Indeed, depending

on the various contents, the initial automatic linking, either visual or spatial can be very

poor, thus preventing the expert to see putative links easily.

For this reason but also the fact that the expert similarity must denote a certain

expertise on the dataset to be coherent throughout the various evaluations, it appears for

now necessary that the user be acquainted with the data considered, or at least be given

strong guidelines.

Furthermore, this proposed process within this platform does not deal with a simple
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problem that would need to be solved for this approach to be used at large scale, that

is the concurrent work of multiple experts. What to do when two experts set a different

expert similarity between contents ? How to exploit information from multiple experts

in the updating and diffusion process ? What if two experts disagree ? When to update

the visualization ? All those questions would have to be answered for this approach to be

used efficiently by collection managers.
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Chapter 8

Conclusion and Perspectives

This chapter summarizes the contributions of this thesis and outlines some future per-

spectives to further our work.

8.1 Contributions

The key takeaways from this thesis are twofold: (i) automatic image retrieval and re-

ranking methods can be leveraged and adapted for structuring and interlinking icono-

graphic heritage contents from multiple collections, and (ii) the specificity of this type of

data still requires manual intervention to solve the most complicated cases, which can be

done in a framework integrating visualization of the structure, manual corrections and

relevant re-ranking methods. In this thesis, we make contributions on both of those as-

pects.

Our first contributions focus on automatic retrieval and re-ranking approaches and

were developed in Part I. A first, extensive evaluation of the state-of the-art methods

for image retrieval and re-ranking led us to identify inadequacies between iconographic

heritage content and existing methods and propose three new, more-suited re-ranking

approaches. The main idea behind those three approaches is to exploit structuring infor-

mation to enrich the retrieval and re-ranking. This information can be extracted at query

level or at dataset level.

The two first proposed approaches exploit the geometry of the scene, ex-

tending the geometric verification paradigm, in an effort to alleviate the large changes

in viewpoint and level of detail hindering the classical approach. The first one, R3D,

reconstruct a 3D scene from the first retrieved images and relocates the first retrieved

images in this scene to estimate their coherence in the scene. The second one, R2D,

aggregates 2D geometric information from the first retrieved image to extend the

2D geometry encoded in the query image. This approach can be seen as an approximation

of R3D, less costly in computation time while still largely improving classical geometric

verification approaches.

The third proposed approach does not extract data from the first retrieved images
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but rather leverages a structuring information provided alongside images, in our

case a location information. The spatial proximity between images is used to weigh the

visual similarity, estimating that closer images are more likely to depict the same scene

than far away ones.

Furthermore, we also evaluated the relevance of combining multiple re-ranking ap-

proaches, mainly a first re-ranking step query-wise and another exploiting the manifold

of data and exploiting similarities throughout the whole dataset for re-ranking (diffusion-

based methods). This led us to realize that in our context of cross-collection interlinking,

the first step of re-ranking must not especially be aimed at retrieving many similar images

but rather at retrieving similar images from many providers. Indeed, the diffusion step

leverages this provider entropy to further retrieve images from multiple providers, overall

increasing the retrieval performance.

These automatic approaches used for image linking appear suited to tackle several

problems for the collections managers, and more specifically those of iconographic her-

itage collections like the City of Paris. They are the ones concerned with the digitization

process and suffer challenges from both the original manual organization of the data and

the new, adapted, digitized structuring. Thus, when they were faced with examples of

the potential of automatic approaches, several recurrent uses have emerged. First of all,

the detection of duplicates within their collections. It can first be used to clean the col-

lections of digitization artifacts. It can also be used cross-collections to either perform a

consistency check on the metadata but also enrich each collection with the metadata from

the other (as each collection often has its own metadata due to the use it has of its data).

A final use for automatic, visual-based linking is to apply it to images with no metadata

available, thus non-exploitable. These images whose metadata were lost can not be used

as such as no one can say what they represent. Instead of having to compare these im-

ages manually to the whole collection in hope of finding a similar image, those could be

set as queries for automatic retrieval against the whole collection, thus giving potential

similar images for manual comparison, which would greatly reduce the time necessary to

re-identify those images.

Our final contribution focuses on semi-automatic structuring of heritage

image collections and is developed in Part II. We propose a framework exploiting

a graph representation of a collection’s structuring. The process for structuring

leverages automatic retrieval methods to create an initial structure and to diffuse manual

corrections iteratively. The links between images thus represent similarities that can be

visual, spatial, or simply defined by an expert. This structure is visualized in a graph-

based web platform and visual clues are proposed to guide the expert towards highly

impacting areas of the graph. Indeed, a few corrections on those areas see their effect

multiplied once diffused automatically throughout the structure. This approach proves

interesting in two main aspects. First, it allows for a global visualization of the collection

in a structured way. Second, it helps unlock difficult structuring challenges that automatic
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methods often can not solve.

This proposed framework proved to be interesting for iconographic heritage collection

managers (of the City of Paris) and could be helpful for several existing works tackled

manually for now. First, as an organized visualization of the data, it allows for a better

understanding and analysis of the collection. It could also be used to annotate images

in the collection easily, as similar images are displayed close to each other, tags applying

to one can easily be added to another. Furthermore, automatic propagation of those

annotations could also be considered in this graph paradigm. Finally, the visualization

part of the framework could also be considered as an adequate solution for the general

public to browse through the collection in its entirety. However, one must remember that

either for the general public or for collection managers, the ergonomy and the simplicity

of the tools is paramount. The objective is for experts on the data to use the platform

for structuring the data, not for experts on the platform to try to organize the data.

8.2 Perspectives

To extend this thesis, some aspects of our research could be developed further, based on

insights from this work or recent trends offering new solutions.

8.2.1 Retrieval and reranking

On the first part of our work, several aspects could be improved, either on the retrieval

part or the re-ranking one. We detail them further below.

Fine-tuning models for heritage datasets

A first area on which improvements should be sought is the training of models dedicated

to heritage contents. This would further the performance of the initial retrieval step,

leading to a better overall performance. Several avenues could be explored to this end.

First, retraining networks on iconographic heritage data seem to be a good place to

start to further improve the automatic retrieval approaches. Indeed, image descriptors’

performance could only be improved with new training on a data resembling more the

iconographic heritage we work with. However, as explained before, it could prove difficult

to create such a dataset, but several options could be considered.

Our proposed semi-automatic approach could serve as a tool for creating such datasets,

starting from some collections and gradually adding new collections while easily creating

a ground truth.

To increase the number of images in the training dataset, novel view synthesis ap-

proaches could also be explored. This specific data augmentation indeed proved useful

when used on recent image data for applications like pose localization for autonomous

driving (Moreau et al., 2022). Either NeRF approaches (Mildenhall et al., 2020) or 3D
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Gaussian splatting (Kerbl et al., 2023) approaches could help create new, artificial, her-

itage views to alleviate the sparsity of the real data.

Another avenue to explore is in the model itself, rather than the dataset. Recent

works have shown that exploiting geometric information at training time rather than

as a re-ranking step trains the image descriptor to differentiate extremely similar images

(doppelgängers as they call them in (Cai et al., 2023)). As this can prove to be a challenge

for regular, non-monumental images (Parisian facades for instance), and because we have

shown that geometric information can afterwards discriminate between them, it could be

interesting to exploit this information at training time.

Goal-oriented retrieval

More and more retrieval approaches are designed in a goal-oriented fashion (Pion et al.,

2020; Sarlin et al., 2021b; Humenberger et al., 2022). The idea is that to train the retrieval

step using an evaluation metric suited to the final task, whether it is a 3D reconstruction

task, an inter-collection retrieval task, or any other. In our thesis, the retrieval step was

similar for all subsequent tasks, independently of the re-ranking step for instance. It

could be pertinent to differentiate several steps of retrieval, whether it is for 3D geometric

reconstruction for re-ranking purposes for instance or for collection interlinking. Indeed,

we showed that the retrieval results required for both tasks are not exactly the same.

Suiting each retrieval for each task could improve both steps independently but also their

combination and thus the global performance.

Improving re-ranking

To experiment further on the re-ranking steps, a first lead would be to exploit 3D point

clouds, which are now more and more available with some image datasets, such as the

Stereopolis one related to mobile mapping, rather than performing a 3D reconstruction

with the first images. Novel approaches are quite efficient for the registration of an image

into a point cloud (Li and Lee, 2021; Ren et al., 2022), allowing to estimate the geometric

coherence of the image in the scene. However, two main challenges arise. First, the point

cloud exploited for evaluation should be selected based on the most similar image linked

to a 3D point cloud. However, in some cases, due to the variety of heritage contents, the

first of such images retrieved is not correct, leading to an incorrect scene for the geometric

verification step. Second, those approaches are trained on recent data and would probably

need specific fine-tuning (like image descriptor networks) for them to perform on heritage

data.

A second lead to follow is based on the performances of the diffusion process. As we

have evaluated that the performance of the diffusion for a specific task is based on the

initial data (especially the difference between inter and intra-providers retrieval), it could

be interesting to evaluate the impact on combining (for instance with late fusion) two
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concurrent diffusion steps performed on different initial retrieval results, thus potentially

combining both performances on several "tasks" into a better global one.

Finally, evaluating our approaches of retrieval and re-ranking to solve actual linking

problems faced by collection managers (metadata consistency, unknown image linking,

...) could help define further improvements based on their efficiency on real test cases.

8.2.2 Semi-automatic structuring platform improvements

The semi-automatic process we proposed remains a proof of concept and the visualization

platform could be improved in multiple ways. New visual guides could be proposed. One

example could be to visually aggregate densely linked clusters (supposedly correct ones),

thus clearing the view for visualizing suspicious links.

Furthermore, more ergonomy could be required to seamlessly go from one visualization

paradigm to another, to make it easier for non-expert to apprehend the data without being

expert on the platform. Indeed, to consider making it a platform exploited by collections

managers, archivists and so on, some work would be required to ensure a smooth use,

to make it foolproof and most importantly to ensure concurrent work on the platform,

should multiple users work on the same collection at the same time.

Finally, a more advanced platform could be designed, combining the aspects already

present with a more advanced 3D visualization, for instance with a 3D representation of

the area, rather than just a map. The graph-based representation could thus potentially

be visualized jointly with a more immersive visualization of the contents in their context,

provided they are given a 6D pose.

8.2.3 Generalization to other types of data

Another general aspect that should be investigated for both parts of our work is the use

of other types of data. In our case, we exploit the spatial information of the collection.

However, most collections also query and organize their collections based on other an-

notations which could be leveraged as structuring information. This information could

be leveraged during the automatic retrieval and re-ranking process, but also within the

visualization platform.

First, in the retrieval step, we have shown that more information is always helpful for

structuring. Thus, exploiting textual annotations and their structure would most certainly

lead to an improved structuring, provided that the coherence between annotations from

different collections is ensured.

Second, within the platform, querying based on annotations could help create new

informative visualizations, new visual clues helpful to the user. Furthermore, visualiz-

ing these annotations in the platform alongside other types of similarities could also be

a solution for ensuring their coherence and even modify them manually directly, those

modifications being then potentially diffused throughout the graph of similarities.
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To conclude, limiting ourselves to a spatial and visual-based display paradigm suited

our dataset but might not be the best for other collections.
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Résumé détaillé de la thèse en

français

Structuration des fonds iconographiques

patrimoniaux : de l’interconnexion automatique à

une validation visuelle semi-automatique

3 Chapitre 1 : Introduction

Cette thèse se déroule en parallèle d’une grande entreprise globale de numérisation du

patrimoine iconographique contenu dans les archives, musées et bibliothèques. Cette

numérisation intervient à la fois pour des soucis de conservation mais aussi dans un con-

texte d’amélioration de l’accessibilité des données publiques. Cette démarche de numéri-

sation des documents les rend ainsi potentiellement accessibles à de nombreux publics et

révèle aussi leur grande diversité. Or, cette diversité, combinée à un manque de struc-

ture, notamment entre collections, freine leur mise à disposition et donc leur utilisation à

grande échelle.

Pour aider à résoudre ce manque de structure entre collections, de plus en plus de

nouvelles méthodes automatiques d’indexation d’images à grande échelle pourraient être

envisagées. Or, ces dernières sont entrainées sur des contenus récents et ne s’adaptent

donc pas très bien aux contenus patrimoniaux.

Cette thèse a pour objectif tout d’abord d’étudier l’adéquation des méthodes automa-

tiques aux contenus patrimoniaux. L’objectif est ensuite de proposer des solutions pour

aider à la structuration des collections patrimoniales, à la fois selon une approche grande

échelle et le plus automatiquement possible.

Notre travail va donc se concentrer sur la structuration des collections patrimoniales

selon trois objectifs :

• évaluer la pertinence des méthodes automatiques état de l’art ;

• proposer de nouvelles approches pour pallier les difficultés des méthodes existantes ;

• exploiter la structure propre à chaque collection étudiée pour améliorer la structura-
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tion globale entre collections.

Par ailleurs, la multiplicité des contenus patrimoniaux étant très grande, nous nous

concentrons sur le patrimoine architectural parisien du 20ème siècle.

Notre thèse et nos contributions sont présentées en huit chapitres :

Chapitre 1, introduisant le contexte de notre travail ;

Chapitre 2, qui présente en détail les spécificités inhérentes aux contenus patrimo-

niaux puis les images que nous avons sélectionnées pour nos expériences ;

Chapitre 3, évaluant les méthodes automatiques de recherche d’images et de ré-

ordonnancement, en les appliquant à l’iconographie patrimoniale pour déterminer

les approches les plus performantes ;

Chapitre 4, qui expose nos propositions de méthodes de ré-ordonnancement. Ces

dernières exploitent une structure plus globale, géométrique ou spatiale pour amélio-

rer la recherche d’images similaires. La diversité visuelle des contenus considérés est

telle qu’exploiter plus d’information est bénéfique pour la structuration globale ;

Chapitre 5, présentant tout d’abord l’évaluation des méthodes proposées, puis celle

des combinaisons d’approches de ré-ordonnancement. Certaines combinaisons d’ap-

proches sont plus performantes. Ce chapitre détaille et explique les raisons de cette

variation en termes de performances ;

Chapitre 6, qui passe en revue les approches de spatialisation, de structuration et

de visualisation des contenus iconographiques patrimoniaux ;

Chapitre 7, qui présente notre proposition de processus semi-automatique de struc-

turation des collections. Combiné aux approches automatiques précédentes, ce pro-

cessus s’avère pertinent pour résoudre les cas les plus complexes, qui échappent

aux méthodes automatiques. Il se place dans un paradigme de représentation en

graphe de la structure des collections. Cela permet à la fois la visualisation et la

modification manuelle de cette structure par un expert ;

Chapitre 8, conclusion de cette thèse, résume le travail accompli et propose de

futures pistes de travail.

4 Chapitre 2 : Contenus iconographiques patrimo-

niaux, focus sur Paris

Ce chapitre décrit tout d’abord la diversité des contenus iconographiques patrimoniaux

en termes de représentation telles que la couleur, le niveau de détail, la variété de points
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de vue, les changements dans le temps, etc. Outre ces représentations multiples, ex-

ploiter ces contenus est ardu du fait de leur distribution en silo où chaque collection a son

schéma d’organisation particulier. De fait, cela limite l’interconnexion entre les contenus

et la structuration globale entre collections, limitant leur accessibilité et donc leur utili-

sation à grande échelle et par le plus grand nombre. Pallier ces difficultés en termes de

structuration est la principale motivation de notre thèse.

Ce chapitre présente ensuite l’ensemble des contenus représentant la ville de Paris

tout au long du XXe siècle sur lesquels notre étude porte, que nous détaillons quelque

peu ici. Le jeu de données englobe une variété d’images se concentrant sur l’architecture

parisienne, à la fois des monuments célèbres et des façades classiques. Il combine des

collections issues de diverses bibliothèques, archives et musées, chacune possédant des

caractéristiques spécifiques comme l’illustre la Figure 8.1.

Figure 8.1: Exemple d’images issues de notre jeu de données1

Le jeu de données utilisé dans cette étude comprend deux collections clés : l’une de "La

Parisienne de la Photographie", qui a numérisé les collections de l’agence photographique

Roger-Viollet, et l’autre de "Stereopolis", un système de cartographie mobile complet

ayant capturé en images et en nuage de points 3D les rues de Paris en 2015.

Tout d’abord, le jeu de données de "La Parisienne de la Photographie" s’étend de

1910 à 1979 et couvre un large éventail de l’architecture parisienne. Cette collection est

intéressante pour notre thèse du fait de la faible densité en termes de couverture à la fois

spatiale et temporelle. Cela rend en effet la recherche d’images similaires plus complexe.

D’autre part, le jeu de données "Stereopolis" fournit une acquisition complète et sys-

tématique des rues de Paris en 2015, offrant un jeu de données de référence avec des

informations de localisation précises. Ce jeu de données vise à donner de la structure et

de la certitude à l’information, en contraste avec les données patrimoniales plus éparses

et incertaines.

De plus, le jeu d’images contient des images de six autres fournisseurs, à savoir le

jeu de données Paris 6K, la Médiathèque du Patrimoine et de la Photographie, le Musée

Albert Kahn, la Cité de l’Architecture et du Patrimoine, la Commission du Vieux Paris

et la Conservation des Œuvres d’Art Religieuses et Civiles. Ces collections contribuent

à l’aspect multi-fournisseurs du jeu de données, essentiel pour évaluer l’efficacité de la

recherche d’images basée sur le contenu face à des images provenant de sources variées.
1Pour les droits des images, voir la Figure 2.3
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Le chapitre fournit un aperçu complet du jeu de données, qui se compose de 1637

images réparties en 31 classes. Les classes représentent des monuments célèbres, des églises

parisiennes et des bâtiments classiques de Paris. A cela s’ajoutent des distracteurs, pour

un total de 9834 images. Le jeu de données se caractérise par sa diversité visuelle due aux

différentes techniques d’acquisition, résolutions et périodes. Il pose de nombreux défis

pour les méthodes de recherche d’images automatiques évaluées dans la partie suivante,

en faisant ainsi un objet d’étude adapté à nos objectifs de recherche.

Partie I : Recherche d’image par contenu visuel et ré-

ordonnancement a posteriori

Cette partie se concentre sur les méthodes automatiques de recherche d’images par con-

tenu visuel, qui apparaissent comme une solution au manque d’interconnexion entre les

différents contenus. Elle est composée de trois chapitres. Le premier passe en revue et

évalue l’état de l’art sur notre jeu de données. Le second propose de nouvelles approches

de ré-ordonnancement plus adaptées aux données considérées. Finalement, le dernier

chapitre évalue les nouvelles approches proposées et analyse la pertinence des méthodes

automatiques pour interconnecter des contenus iconographiques patrimoniaux.

5 Chapitre 3 : Etat de l’art et évaluation

Ce premier chapitre passe en revue l’état de l’art des méthodes de recherche d’image par

contenu visuel. Deux grands types de méthodes sont présentés ici. Tout d’abord, celles

reposant sur des descripteurs d’image pour la recherche d’images similaires par contenu

visuel. Ensuite, celles se concentrant sur le ré-ordonnancement des résultats de la première

recherche en ré-ordonnant les images retrouvées selon un autre critère de similarité. Après

les avoir passées en revue, ce chapitre évalue leurs performances sur notre jeu de données

complexe.

Les descripteurs d’images peuvent être produits selon plusieurs méthodes. Débutant

avec les méthodes "fait main", l’état de l’art porte maintenant quasiment exclusivement

sur des descripteurs entrainés. Les réseaux utilisés pour extraire les descripteurs sont

multiples et nous passons en revue les architectures des réseaux les plus utilisés (cf Tableau

3.1 dans le corps de la thèse). Ces réseaux nécessitent d’être entraînés sur de larges bases

d’images, ce qui rend leur adaptation à la donnée patrimoniale plus complexe. Cependant,

quelques approches thématiques se concentrant sur des cas très particuliers commencent

à se développer.

Une fois que les descripteurs d’images ont été produits, on peut retrouver les images

similaires entre-elles en comparant ces descripteurs. Pour affiner encore plus les résultats,

une seconde étape, dite de ré-ordonnancement, est très souvent effectuée. Le principe

est de ré-ordonner la liste d’images similaires selon un autre critère de similarité (autre
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descripteur, cohérence géométrique, etc.). De nombreuses méthodes existent, comme

indiqué dans le schéma de la Figure 8.2.

Figure 8.2: Différentes méthodes de ré-ordonnancement a posteriori des images

Une fois les approches possibles (description d’images et ré-ordonnancement) passées

en revue, les plus adaptées a priori sont évaluées sur notre jeu de données pour déterminer

leur performances respectives.

Tout d’abord, certains descripteurs d’images sont évalués. Tous sont des descripteurs

entraînés et tous sont des descripteurs globaux sauf How + ASMK. Le Tableau 8.1 présente

les scores selon différents cadres d’évaluation (taille du jeu de données, DBsmall et DBlarge

et présence d’images distracteurs, DBlarge+dist).

Table 8.1: Scores de mAP des descripteurs évalués

DBsmall DBlarge DBlarge+dist

DELG (Cao et al., 2020) 53.2 - -
R101 - GeM (He et al., 2016; Radenovic et al., 2019) 57.9 53.3 38.5
How + ASMK (Tolias et al., 2016a, 2020) 53.8 55.1 41.0
CV-Net global (Lee et al., 2022) - 67.3 37.1

Outre cette évaluation globale, une évaluation plus fine a montré que How+ASMK

est le descripteur d’image le plus adapté. Il est performant à la fois face à l’hétérogénéité

visuelle des contenus mais aussi pour répondre à nos objectifs d’interconnexion entre

collections. C’est le descripteur d’image que l’on conserve pour la suite de notre étude,

en l’appelant How-A.

Les méthodes de ré-ordonnancement a posteriori sont ensuite évaluées, les résultats

sont dans le Tableau 8.2.
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Table 8.2: Modification du score de mAP par ré-ordonnancement

Approche Ordre de grandeur

Weighted descriptor aggregation

(Chum et al., 2007; Radenovic et al., 2019)
+ 0.1

Pseudo relevance feedback

(Lin, 2019)
< + 0.5

Transformers-based :

CSA (Ouyang et al., 2021), RRT (Tan et al., 2021)
- 10

Geometric Verification :

RANSAC (DeTone et al., 2018; Sarlin et al., 2020) + 0.5-1.5

CV-Net Rerank (Lee et al., 2022) - 2

Diffusion

(Shen et al., 2021; Zhang et al., 2020b)
+ 16

Les différentes méthodes testées n’apportent pas le même bénéfice une fois appliquées

à nos données. En effet, l’hétérogénéité visuelle des contenus empêche les méthodes de ré-

ordonnancement sus-mentionnées de performer correctement. Ainsi, certaines ont un très

faible impact et d’autres sont même préjudiciables à la recherche d’images. Il faut noter

toutefois la performance importante des approches de diffusion qui exploite les résultats

de recherche d’images de manière globale, à l’échelle du jeu de données entier. Cette

étude nous permet donc d’analyser ce qui fonctionne et ce qui manque à ces méthodes et

permet de proposer de nouvelles approches dans le chapitre suivant.

6 Chapitre 4 : Contributions pour le ré-ordonnance-

ment des images

S’appuyant sur l’analyse des différentes méthodes évaluées précédemment, ce chapitre

propose trois nouvelles approches de ré-ordonnancement a posteriori des images. Pour

chacune d’entre elles, l’idée est d’exploiter des informations à une échelle plus globale que

l’image requête elle-même. Dans notre thèse nous exploitons des informations spatiales

dans deux contextes différents.

Tout d’abord, deux méthodes se placent dans un cadre d’expansion de requête géomé-

trique, étendant le paradigme classique de la vérification géométrique. L’idée de nos

deux premières propositions est d’exploiter les informations géométriques collectées dans

les premières images retrouvées par similarité visuelle avec l’image requête. La vérifica-

tion géométrique s’appuie ensuite sur une géométrie de la scène plus globale, aggrégeant

l’information de la requête et celle des images similaires.

La première méthode proposée, R3D, reconstruit une scène 3D (voir Figure 8.3) à
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partir de l’image requête et des images les plus similaires visuellement. La cohérence

géométrique des images est ensuite évaluée par rapport à cette scène 3D globale plutôt

que par rapport à l’information 2D uniquement contenue par l’image requête.

Figure 8.3: Une scène 3D reconstruite

Pour simplifier cette approche par reconstruction 3D qui s’avère couteuse en temps de

calcul, nous proposons une version 2D (R2D) qui aggrège l’information géométrique 2D

des premières images retrouvées dans l’espace de la requête (Figure 8.4). Cette aggrégation

étend l’information géométrique à une scène plus globale, à la manière de la reconstruction

3D mais sans le coût en temps important de la reconstruction 3D.

Figure 8.4: Exemple d’extension de la géométrie 2D de l’image requête à partir des images
similaires, les points rouges sont des points importants dans la scène, les bleus dépendent
de l’image requête et les points verts sont reprojetés depuis les images similaires

Pour finir, notre troisième approche exploite également une information spatiale glo-

bale. Cette fois-ci, on utilise les informations de localisation partiellement disponibles avec

les images. L’idée est d’évaluer la cohérence de la similarité visuelle calculée automatique-

ment (et sensible à l’hétérogénéité visuelle des contenus). Pour cela, elle est pondérée par
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un score de proximité géographique entre les images. L’idée est que les images éloignées

sont moins susceptibles de représenter la même scène que des images proches, comme

l’illustre la Figure 8.5. Si cette méthode exploite des informations spatiales dans notre

cas, elle pourrait utiliser n’importe quelle autre information de structuration associée aux

images pour pondérer la similarité visuelle.

Figure 8.5: Contradiction entre les liens de similarité visuelle (flèches bleues) entre images
et la localisation des images sur la carte (points bleus ciels)

7 Chapitre 5 : Evaluation des stratégies de ré-ordon-

nancement

Ce chapitre présente d’abord l’évaluation des méthodes proposées dans le chapitre précé-

dent. Ces résultats sont résumés dans le Tableau 8.3.

Table 8.3: Résumé des méthodes de ré-ordonnancement proposées

Descripteur + Méthode de ré-ordonnancement mAP

How-A 41.0
How-A + RANSAC-SG 41.5
How-A + RANSAC-LG 41.9
How-A + R3D-SG 44.4
How-A + R3D-LG 44.2
How-A + R2D-SG 36.2
How-A + R2D-LG 41.9
How-A + location weighting (Sp) 42.0
How-A + location weighting (No dist) 40.5
How-A + location weighting (All) 42.5

Toutes les méthodes proposées améliorent le résultat de mAP sauf R2D-SG. En ef-

fet, pour cette dernière, le descripteur de points d’intérêts locaux utilisé (SuperGlue) ne

performe pas suffisamment bien pour que la scène étendue géométriquement soit suffisam-

ment précise pour permettre une vérification géométrique efficace.
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Si les approches avec ré-ordonnancement sont un peu plus performantes que la simple

recherche d’images, ce chapitre montre ensuite que le plus efficace pour améliorer les ré-

sultats a posteriori est de combiner plusieurs méthodes de ré-ordonnancement de manière

successive. Ainsi, nous combinons différentes méthodes de ré-ordonnancement s’appuyant

sur de l’information spatiale avec une méthode de diffusion (GNN-R) qui s’avérait très

performante dans le chapitre 3. Les résultats de ces combinaisons sont présentés dans le

Tableau 8.4.

Table 8.4: Scores de mAP pour différentes combinaisons de méthodes de ré-
ordonnancement. En couleurs sont indiqués les premiers, deuxièmes et troisièmes
meilleurs résultats de chaque colonne. Le meilleur score est indiqué en gras.

Descriptor + Diffusion après ré-ordonnancement préalable Computation

Méthode de ré-ordonnancement Sans GNN-R GNN-R × 1 GNN-R × 2 GNN-R × 3 time

How-A 41.0 57.2 59.3 57.0
How-A + RANSAC-SG 41.5 57.2 59.3 57.0 +120s
How-A + RANSAC-LG 41.9 61.2 65.5 63.3 +100s
How-A + R3D-SG 44.4 61.9 64.2 61.9 +220s
How-A + R3D-LG 43.2 61.1 63.2 60.7 +210s
How-A + R2D-SG 36.2 59.6 62.9 60.5 +150s
How-A + R2D-LG 41.9 61.0 64.4 62.1 +140s
How-A + location weighting (Sp) 42.0 58.9 61.8 59.5 +1/30s
How-A + location weighting (No dist) 40.5 57.8 61.1 59.0 +1/30s
How-A + location weighting (All) 42.5 60.2 63.1 61.8 +1/30s
How-A + RANSAC-SG +R3D-SG 44.9 62.9 65.8 63.3 +340s
How-A + RANSAC-LG +R3D-LG 43.0 61.8 64.1 61.9 +300s
How-A + RANSAC-SG +R2D-SG 36.9 60.1 63.0 60.5 +270s
How-A + RANSAC-LG +R2D-LG 41.7 61.2 64.3 62.2 +240s
How-A + location weighting (Sp) + R3D-SG 44.7 62.4 64.9 62.4 +220s
How-A + location weighting (Sp) + R2D-LG 41.9 61.1 64.7 62.1 +140s

L’enchainement de multiples étapes de ré-ordonnancement s’avère efficace pour amélio-

rer les résultats de la recherche d’image avec une amélioration maximale de près de 26%

de mAP. Cependant, cela s’accompagne d’un temps de calcul très long.

Par ailleurs, une étude plus poussée des performances montre que l’étape de diffusion

finale performe idéalement si deux critères sont conjointement maximisés. D’une part, un

résultat de mAP initial correct (indiquant avoir correctement retrouvé des images

similaires) et d’autre part dans notre cadre d’interconnexion des collections, une entropie

maximale des fournisseurs présents dans les premiers résultats. En effet, la diffusion

exploite le graphe des images les plus similaires. Dès lors, comme la recherche d’image

a tendance naturellement à performer intra-fournisseur (où l’hétérogénéité visuelle est

réduite), si tous les fournisseurs sont présents dans les premiers résultats, la diffusion va

pouvoir ramener des résultats issus de tous les fournisseurs. Ainsi, la recherche d’images

tant inter-fournisseurs que globale est améliorée.

Cela explique aussi pourquoi nos méthodes d’expansion de requête géométrique pro-

posées performent mieux que la vérification géométrique classique. Elles proposent une

scène globale qui englobe les multiples points de vues, permettant aux images de four-

nisseurs différents (et donc aux caractéristiques visuelles différentes) de s’y rattacher.
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Cependant, cet enchainement de méthodes de ré-ordonnancement permet de réaliser

que les cas les plus compliqués semblent toujours hors d’atteinte pour les méthodes in-

tégralement automatiques qui semblent plafonner. C’est ce qui nous pousse à proposer

dans la seconde partie de la thèse un processus semi-automatique combinant méthodes au-

tomatiques et interventions manuelles dans une plateforme de visualisation. Ce processus

permet de résoudre les cas les plus complexes de similarité entre images puis de diffuser

ces informations dans le graphe de similarité pour améliorer globalement la recherche

d’images.

Partie II : Structuration semi-automatique, approche

basée sur le graphe

La première partie de la thèse s’est intéressée à la performance des méthodes automatiques

de recherche d’image (et de ré-ordonnancement a posteriori) et propose des méthodes plus

adaptées aux contenus iconographiques patrimoniaux. Cependant, cette partie révèle

qu’adapter les méthodes automatiques et exploiter la meilleure combinaison possible at-

teint un plafond en termes de performance, ne parvenant pas à résoudre les cas les plus

compliqués que seul un expert peut résoudre manuellement. Cette seconde partie propose

donc un processus semi-automatique de structuration des collections iconographiques.

Considérant la collection d’image et les liens de similarité entre images comme un graphe,

un expert peut intervenir sur la structure du graphe dans une plateforme visuelle. Ses

modifications sont ensuite diffusées automatiquement pour améliorer plus globalement

la structure du graphe de similarités. Cette partie se compose de deux chapitres, le

premier passe en revue tout d’abord les méthodes de spatialisation des contenus icono-

graphiques et ensuite les plateformes de structuration et visualisation des contenus. Le

second chapitre détaille le processus semi-automatique proposé et évalue sa pertinence

pour la structuration des collections iconographiques.

8 Chapitre 6 : Etat de l’art en structuration, spatiali-

sation et visualisation du patrimoine iconographique

Ce chapitre s’intéresse aux potentielles méthodes de structuration des collections d’images.

Nous nous concentrons tout d’abord sur les méthodes de spatialisation des contenus. Elles

sont devenues très importantes pour organiser, requêter et visualiser les contenus, amélio-

rant ainsi leur accessibilité. La seconde partie présente les approches de structuration des

contenus qui sont ensuite exploitées par des plateformes de visualisation.

La première partie du chapitre passe en revue la question de la spatialisation des

contenus iconographiques. Cette spatialisation peut se faire de diverses manières, selon

différents référentiels et peut aboutir à différentes informations de localisation.
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Tout d’abord, l’information de localisation obtenue peut être en 2D (position sur une

carte) ou en 3D (position sur un globe). Mais aussi en 6D (information de pose), à savoir

la position et l’orientation de la caméra (ou pseudo-camera) qui a pris la photographie.

Cette information peut être obtenue en s’appuyant sur différents types de référentiels.

D’une simple base d’adresses à un nuage de point 3D très précis, la localisation peut aussi

être dérivée des localisations des images similaires.

La localisation peut également être obtenue selon une multitude de méthodes plus ou

moins automatiques. Tout d’abord, manuellement, en pointant la localisation d’une image

sur une carte. De manière semi-automatique ensuite, en sélectionnant des points corres-

pondants en 2D dans l’image et en 3D dans une scène puis en utilisant des algorithmes de

résection spatiale pour obtenir une pose. Pour finir, de manière totalement automatique,

en géocodant les adresses associées pour obtenir une position 2D ou 3D ou bien en ex-

ploitant des réseaux entrainés sur une scène 3D qui peuvent produire directement la pose

de l’image.

Cette information est importante car elle permet de structurer de manière très simple

les collections d’images et offre un paradigme naturel de visualisation qui peut être poussé

très loin, comme la seconde partie du chapitre le montre.

La deuxième partie du chapitre se concentre sur les modes de structuration et de

visualisation de l’iconographie patrimoniale. Différentes modalités sont possibles et com-

binables pour obtenir des représentations visuelles plus ou moins complètes et adaptables

à d’autres collections.

Tout d’abord, certaines plateformes n’exploitent qu’un seul paradigme de structuration

qui impacte leur visualisation. Cela peut être une organisation par métadonnées. Créant

soit des plateformes basées sur des mots-clés, soit des représentations en graphes de mé-

tadonnées similaires pour visualiser l’organisation globale de la collection. La similarité

visuelle peut aussi être exploitée pour refléter la structure des collections. Les images sont

alors organisées visuellement selon leur proximité dans l’espace des descripteurs d’image

utilisés. Pour finir, le troisième paradigme de structuration et de visualisation exploite

la similarité spatiale. En effet, le fait de simplement positionner les contenus sur une

carte donne de l’information sur la structure de la collection et permet de sélectionner les

images potentiellement similaires (a fortiori dans le cas de collections représentant des

paysages ou des objets géographiques inamovibles).

La structuration et la visualisation peuvent ensuite être enrichies et complexifiées

en combinant les modalités d’organisation. Certaines plateformes vont donc combiner

plusieurs des modalités sus-mentionnées, notamment les métadonnées et l’information

spatiale. Par ailleurs, la multiplicité des informations de localisation (présentées plus tôt)

permet différents paradigmes de visualisation. La visualisation peut être plus ou moins

immersive et plus ou moins adaptable à de nouveaux contenus. Un exemple de plate-

forme combinant les trois modalités précédentes est la plateforme du projet ALEGORIA

(ALEGORIA project, 2018) illustrée dans les Figures 8.6 et 8.7. Les images similaires à
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(a) Recherche d’images similaires

(b) Liste d’images similaires

Figure 8.6: Plateforme de recherche d’images du projet ALEGORIA, images de (Geniet
et al., 2022)

Figure 8.7: Plateforme de visualisation du projet ALEGORIA, de nombreuses images
sont visualisées au même moment (toutes les "pyramides" correspondent à une image),
image de (Blettery et al., 2020)
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l’image requête peuvent d’abord être retrouvées selon une similarité visuelle ou selon des

métadonnées semblables. Les images peuvent ensuite être visualisées et localisées dans

une plateforme de visualisation 3D immersive couvrant potentiellement le monde entier.

Ces différentes plateformes peuvent permettre une certaine structuration des collec-

tions considérées (notamment par la spatialisation) mais ne permettent pas toujours de

combiner visualisation et structuration globale selon différentes similarités. Les plate-

formes se limitent souvent à la visualisation, ou bien limitent la structuration à des traite-

ments hors-ligne distincts de la plateforme de visualisation. C’est ce qui justifie notre

proposition d’un processus de visualisation et de structuration semi-automatique global

dans le chapitre suivant.

9 Chapitre 7 : Ré-ordonnancement semi-automatique

par une approche basée sur le graphe

Ce chapitre présente notre dernière contribution : un processus semi-automatique de

structuration des collections d’images qui traite l’ensemble des images et les différentes

similarités entre elles comme un graphe. Le processus s’appuie sur des méthodes au-

tomatiques performantes -notamment la diffusion-, et une plateforme de visualisation de

graphe dans laquelle un expert peut intervenir sur la structure de la collection.

Figure 8.8: La plateforme de visualisation de graphe en 3D

Ce processus exploite différentes similarités. Tout d’abord, la similarité visuelle ex-

traite automatiquement avec les descripteurs présentés dans la première partie. Ensuite

une éventuelle similarité spatiale, extraite à partir des informations de localisation asso-

ciées aux images. Et pour finir, une similarité experte, ajoutée manuellement par l’expert,
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qui encode une similarité entre contenus plus ou moins définie, telle qu’évaluée par un

connaisseur de la collection. L’ensemble de ces similarités permet de créer une structure

de graphe que l’on visualise de manière spatialisée en 3D dans une plateforme dédiée,

comme l’illustre la Figure 8.8.

Une fois la structure visualisée dans la plateforme, l’expert peut la modifier en sup-

primant ou ajoutant des similarités. Ces modifications sont ensuite exploitées dans le

processus de diffusion de manière itérative comme présenté dans le schéma de la Figure

8.9.

Figure 8.9: Schéma du processus de structuration semi-automatique

Suite à l’action de l’expert, la performance de la diffusion est meilleure, ce qui améliore

globalement la structuration de la collection. Différents indices visuels sont proposés dans

la plateforme pour guider l’expert vers des zones incertaines de la structure. Exploitant

les algorithmes de graphe ou différents paradigmes de représentation, ces indices visuels

accélèrent le travail de l’expert et le rendent plus impactant. L’objectif est que le processus

combine le meilleur des deux mondes, à savoir la certitude des interventions expertes et

l’impact à grande échelle des méthodes automatiques.

Ce processus est prometteur pour améliorer la structuration globale des collections

considérées, comme le montre le Tableau 8.5. En effet, alors que le nombre d’interventions

manuelles reste modéré, avec un temps d’intervention total d’environ 2 heures, l’améliora-
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tion de la structuration est très importante. Par ailleurs, les similarités ajoutées ou

supprimées le sont avec un fort degré de confiance. Et de plus, l’expert peut concentrer

ses interventions pour assurer une structure de départ idéale pour la diffusion (notamment

l’entropie des différents fournisseurs pour l’interconnexion des collections).

Ces résultats apparaissent prometteurs pour confirmer que l’intervention ciblée d’un

expert permet de corriger des erreurs des processus automatiques de liage des données.

De plus, le processus itératif passant par la visualisation permet également de mieux

appréhender les collections et d’identifier des dynamiques qui leur sont propres.

Table 8.5: Evolution du score de mAP après plusieurs itérations de diverses modifications
de la structure

Action # Intervention type
Automation

level

Number
of added

information

mAP
before

diffusion

mAP
after

diffusion

1 Image retrieval Automatic - 41.97 61.77
2 + Location propagation Automatic 85 42.32 62.20

Interventions on the first 5 links

3 + Deletions (visual) Manual 70 42.36 62.32
4 + Creations (expert) Manual 30 42.40 62.46
5 + Creations (spatial) Manual 33 42.43 62.58

Interventions on the 5th to 10th links

6 + Deletions (visual) Manual 78 42.44 62.59
7 + Creations (expert) Manual 26 42.48 63.83
8 + Creations (spatial) Manual 27 42.51 64.21

10 Chapitre 8 : Conclusion

Cette thèse s’est donc concentrée sur la structuration des collections d’images par inter-

connexion de contenus, au sein des collections et entre collections. Elle se concentre sur

un objet d’études complexe : les contenus iconographiques patrimoniaux. Les conclusions

de cette thèse sont doubles.

Nos premières contributions se concentrent sur les approches automatiques de

recherche et de ré-ordonnancement d’images similaires. Ces approches peuvent en effet

être utilisées pour structurer et relier des contenus iconographiques provenant de plusieurs

collections. Tout d’abord, une évaluation des méthodes existantes est effectuée pour iden-

tifier ce qui fonctionne ou non pour un cas d’étude plus complexe. Exploitant ces conclu-

sions, plusieurs nouvelles approches de ré-ordonnancement sont proposées, exploitant une

information de structure plus globale. Deux approches explorent la géométrie de la scène,

tandis qu’une troisième se base sur des informations de localisation pour pondérer la simi-

larité visuelle entre les images. Par ailleurs, nous avons montré l’importance de combiner

différentes approches de ré-ordonnancement pour améliorer au maximum la performance
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de la recherche d’images.

Ces approches automatiques ont des applications pratiques pour les gestionnaires de

collections. Cela peut être la détection de doublons, la vérification de la cohérence des

métadonnées, l’enrichissement des métadonnées ou bien l’attribution de nouvelles infor-

mations à des images sans métadonnées.

Notre dernière contribution porte sur la structuration semi-automatique des col-

lections d’images. En effet, nous avons montré que malgré des approches automatiques

performantes, certains cas complexes nécessitent une intervention manuelle. Nous pro-

posons un processus de structuration semi-automatique utilisant une représentation en

graphe de la structure des collections d’images, liées par différentes similarités. Ce pro-

cessus intègre des méthodes automatiques de recherche d’images pour créer une structure

initiale. Celle-ci peut ensuite être affinée grâce à des corrections manuelles par un expert

dans une plateforme de visualisation adaptée. Cette approche permet donc une visuali-

sation structurée de la collection et permet de résoudre les problèmes de structuration les

plus complexes que les méthodes automatiques ne peuvent pas traiter efficacement.

Concernant les perspectives futures de la première partie de la thèse, les pistes sui-

vantes pourraient être explorées :

• réentraîner les réseaux des méthodes automatiques sur des données iconographiques

patrimoniales pour améliorer les méthodes de recherche automatique ;

• explorer l’utilisation d’autres types d’information de structuration présents au sein

des collections, en plus des informations spatiales que nous exploitons ;

• tester ces approches sur des problèmes de liage réels rencontrés par les gestionnaires

de collections, ce qui permettrait d’affiner encore plus les besoins et d’adapter les

méthodes.

En ce qui concerne la seconde partie de la thèse, de nouvelles pistes d’améliorations

sont envisagées :

• exploiter d’autres informations de structuration, potentiellement basées sur des an-

notations au sein de la plateforme ;

• améliorer la plateforme avec de nouvelles fonctionnalités et une meilleure ergonomie.

L’objectif final est de faciliter son utilisation par des non-experts, notamment en permet-

tant à plusieurs personnes de travailler de manière concurrente. Par exemple, que chaque

amélioration de la structure se propage chez tous les contributeurs en même temps.
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