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Characterization and Mapping of Irrigated Crop 

Classes at Territory Level 

Abstract 
The occurrence and intensity of water shortages due to climate change are increasing 

worldwide including the Mediterranean region, and are thus becoming a major threat to 

agricultural production. Efficient management of agricultural water resources is therefore a 

crucial concern, particularly in irrigated areas. Accurate assessments of plant water 

requirements using tools for estimating evapotranspiration (ET) on a regional scale could 

contribute to the sustainable management of limited water resources in regions already facing 

water shortages. Implementing these tools requires precise knowledge of irrigated crops, their 

location as well as their foliar development. To this end, remote sensing provides important 

information on the dynamics of plant cover via vegetation indices (NDVI) or the estimation of 

biophysical variables (e.g. Leaf Area Index (LAI)), which are variables describing 

characteristics of plant cover linked to ET. 

The general aim of this thesis is to evaluate methods using Sentinel-2 data to map 

irrigated crops and their leaf development. The study is based on two Mediterranean areas, 

namely the Crau plain and the Ouvèze-Ventoux irrigated zone. In this work, the algorithms 

used for mapping surfaces and characterising plant cover are all based on the analysis of LAI 

time series estimated by remote sensing to identify the phenological and agronomic traits of 

the plant cover observed. The main innovation lies in the use of these traits to characterise 

plant cover rather than injecting the raw time series (reflectances or vegetation indices) into 

the classification algorithms as is generally done. This work is divided into three parts: (i) the 

first concerns the mapping of irrigated grasslands in the Crau. (ii) the second part is dedicated 

to the mapping of irrigated woody crops (orchards, vineyards, and olive groves) (iii) finally, 

the third part focused mainly on the characterisation of vineyards by looking for two 

important characteristics, namely the management of the inter-row and the characterisation of 

the foliar index of the vine, which requires the subtraction of the contributions of the inter-row 

to the LAI as seen by the satellite. For the first part of the work (on irrigated grassland), a 

mowing detection algorithm was designed using the temporal LAI signal derived from 

Sentinel 2 observations. The algorithm includes a filter to eliminate noise in the signal that 

could lead to false detection of mowing. A pixel is classified as irrigated grassland if at least 

two mowings are detected. We obtained a very satisfactory Kappa index of between 0.94 and 

0.99 depending on the year. In the second stage of the work, a classification based on 

phenological metrics (PMs) derived from the Sentinel 2 time series was developed. The PMs 

correspond to the parameters of an analytical model (double logistic) used to characterise the 

phases of growth and decline in LAI, as well as the plateau corresponding to the maximum 

development of the canopy. The PMs are calculated from the LAI time series averaged over 

the agricultural plot and then fed into the classification algorithm (random forest RF). The 

Kappa indices vary from 0.86 to 0.95 depending on the year. These results are much better 

than those obtained by applying the RF algorithm to the LAI time series (Kappa ranging from 

0.3 to 0.52). Finally, in the last part of this thesis, the proposed method is based on two 

hypotheses, namely the temporality of the vine's leaf development and the fact that the inter-
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row grass cover is dry or absent in summer. This makes it possible to fit a theoretical vine leaf 

development curve based on an analytical curve of the double logistic type and to identify the 

contribution of the inter-row to LAI by subtracting the theoretical vine curve from the 

observed LAI time series. We were thus able to separate the inter-rows with different 

management practices such as grassed, partial grassed, and tillage. 

This study demonstrates the value of using phenological traits (or points characterising 

the phenological stages) rather than the raw values derived from the raw temporal profiles of 

the remote sensing data (less data is used and the method can be reproduced from one year to 

the next). This is an interesting feature that reduces the workload involved in collecting 

reference information. 
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Caractérisationa et cartographie des classes de 

cultures irriguées au niveau du territoire 

Résumé 
L’occurrence et l’intensité des pénuries d'eau dues au changement climatique 

augmentent dans le monde et dans la région méditerranéenne et devient ainsi une 

menace majeure pour la production agricole. Une gestion efficace des ressources en 

eau agricole est donc une préoccupation cruciale, en particulier dans les territoires 

irrigués. Des évaluations précises des besoins en eau des plantes grâce à des outils 

permettant d'estimer l'évapotranspiration (ET) à l'échelle régionale pourraient 

contribuer à une gestion durable des ressources en eau limitées dans des régions déjà 

confrontées à des pénuries d'eau. La mise en œuvre de ces outils requiert une 

connaissance précise des cultures irrigués, leur localisation ainsi que leur 

développement foliaire. Pour cela, la télédétection apporte des informations 

importantes sur la dynamique des couverts végétaux via les indices de végétation 

(NDVI) ou l’estimation de variables biophysiques (par exemple l’indice Foliaire (LAI)), 

qui sont des variables décrivant des caractéristiques des couverts végétaux relié à l'ET. 

L'objectif général de cette thèse est d'évaluer des méthodes utilisant les données 

Sentinel-2 pour cartographier les cultures irriguées, ainsi que leur développement 

foliaire. L’étude s’appuie sur deux territoires méditerranéens à savoir la plaine de la 

Crau et la zone irriguée Ouvèze-Ventoux. Dans ce travail les algorithmes utilisés pour 

la cartographie des surfaces et la caractérisation des couverts végétaux s’appuient tous 

sur l’analyse des séries temporelles de LAI estimée par télédétection afin d’identifier 

des traits phénologiques et agronomiques des couverts végétaux observés. 

L’innovation principale réside dans l’exploitation de ces traits pour caractériser les 

couverts végétaux plutôt que d’injecter les séries temporelles brutes (réflectances ou 

indices de végétation) dans les algorithmes de classification comme cela est 

généralement fait. Ce travail comprend trois parties : (i) la première a porté sur la 

cartographie des prairies irriguées en Crau. (ii) la deuxième partie est dédiée à la 

cartographie des cultures irriguées ligneuses (vergers, vignes et oliveraies) (iii) enfin, 

la troisième partie s'est principalement concentrée sur la caractérisation des vignes en 

recherchant deux caractéristiques importantes qui sont la gestion de l'inter-rang et la 

caractérisation de l’indice foliaire de la vigne qui nécessite de soustraire les 

contributions de l’inter-rang au LAI vue par le satellite.  

Pour la première partie du travail (sur les prairies irriguées), un algorithme de 

détection de la fauche a été conçu en utilisant le signal LAI temporel dérivé des 

observations de Sentinel 2. L'algorithme comprend un filtre pour éliminer le bruit dans 

le signal qui pourrait conduire à une fausse détection de la fauche. Un pixel est classé 

comme étant une prairie irriguée si deux fauches au moins sont détectées. Nous avons 
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obtenu un indice de Kappa très satisfaisant compris entre 0,94 et 0,99 selon les années. 

Dans la seconde étape de travail, une classification basée sur les métriques 

phénologiques (PM) dérivées des séries temporelles de Sentinel-2 a été développée 

pour effectuer la classification. Les PM correspondent aux paramètres d’un modèle 

analytique (double logistique) qui permet de caractériser les phases de croissance, de 

décroissance du LAI ainsi que le plateau correspondant au développement maximum 

du couvert. Les PM sont calculées sur les séries temporelles de LAI moyennées sur la 

parcelle agricole pour être ensuite introduites dans l’algorithmes de classification 

(random forest RF). Les indices Kappa varient de 0,86 à 0,95 selon les années. Ces 

résultats sont bien meilleurs que ceux obtenus en appliquant l'algorithme RF aux séries 

temporelles LAI (Kappa compris entre 0,3 et 0,52). Enfin, dans la dernière partie de ce 

travail de thèse, la méthode proposée se base sur deux hypothèses, à savoir la 

temporalité du développement foliaire de la vigne et le fait que le couvert herbacé de 

l’inter-rang est sec ou absent en été. Cela permet d’ajuster une courbe théorique du 

développement foliaire de la vigne basée sur une courbe analytique de type logistique 

double et d’identifier la contribution de l’inter-rang au LAI en soustrayant que la 

courbe théorique de la vigne à la série temporelle de LAI observée. Ainsi Nous avons 

réussi à séparer les inter rangs avec différentes pratiques de gestion comme 

l'enherbement, l'enherbement partiel et le travail du sol. 

Cette étude démontre l'intérêt d'utiliser des traits phénologiques (ou points 

caractérisant les stades phénologiques) plutôt que les valeurs brutes issues des profils 

temporels brutes des données de télédétection (moins de données sont utilisées et la 

méthode peut être reproduite d'une année sur l'autre). Il s'agit d'une caractéristique 

intéressante qui permet de réduire la charge de travail liée à la collecte d'informations 

de référence. 
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Introduction 
Contextual background 

The most significant component of agricultural production on the Earth's surface is 

water with 50% of the complete water extractions on an average basis in the Mediterranean 

region (Fader et al., 2016). However, this region is facing water shortages (including rainfall 

and other forms of precipitations) due to the negative impact of climate change and global 

warming which has led to increased irrigation practices and consequently created water use 

conflicts and irrigation restrictions by policy and decision makers to preserve the scarce 

resource (Pageot et al., 2020). For instance, in Southern France, some regions have been already 

faced with irrigation water restrictions. This was the case for instance in the Crau area where 

more than half of the region is dedicated to agriculture with various irrigated crops as 

permanent grasslands via flooding, (Courault et al., 2010; Merot et al., 2008a),  or intensive 

market garden and orchards (Séraphin et al., 2016). Another region in Southern France, in the 

North of the Vaucluse department, is the Ouvèze-Ventoux watershed. This area already 

suffered from water restrictions which are expected to be stronger by 2030 with new 

regulations on water withdrawals for agriculture from the Ouvèze River that must be reduced 

by 30% to preserve the biologic quality of the River. In this region, the farmer's vulnerability 

to the reduction of water access is a key issue. Dealing with water shortage needs management 

improvements of the water resources in these watersheds with a precise assessment of the 

irrigation needs that take the climatic requirements, the soil characteristics, and plant 

requirements into account.  

In the past years, the region has had to cope with repeated droughts and water 

shortages This will be amplified with an increase in irrigated surface since rainfed crops might 

require irrigation to sustain the production. This is typically the case in vineyards. The 

worsening tensions on water resources are leading to changes in the rules for sharing water, 

the implementation of which must be based on an objective assessment of water requirements 

to ensure that the consequences are shared equitably between the various water users. 

Precise geospatial data on irrigated land extents improves our comprehension of 

agricultural water use, local land surface processes, conservation or depletion of water 

resources, and hydrological budget components. Therefore, accurate optimization of water 

resources by providing the exact required water by crop remains one of the obvious ways to 

avoid over-exploitation of the scarce (water) resource. Thus, to supervise plant water needs 

across terrains with vast spatial extents, remote sensing (RS) is an interesting tool that provides 

spatial data concerning two main parameters for assessments of irrigation i.e. crop type and 

crop development. On the one hand, the irrigation scheduling strategy is dependent on crop 

type with water needs depending on the phenology and the management of the crop quality. 

With this later, suboptimal water supply might be sought to improve the harvested organ 

quality. On the other hand, evapotranspiration (ET) is governed by crop development and the 

resulting leaf area. The ability of remote sensing to supervise vegetation and its physical 

features has long been recognized for the past years (Tucker, 1979). RS offers large coverage 

of areas under irrigation in many spectral regions and with a frequent temporal revisit (Figure 

1) that surveys phenological traits (emergence, vegetative growth) and agronomic traits (date 

of sowing, harvest). Therefore, the accessibility of remote sensing information and image 

classification approaches makes it achievable to perform high-quality characterization for crop 
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types by utilizing limited field information that can aid in predicting management systems 

like water supply (Peña and Brenning, 2015). 

 

 

Figure 1: The most frequently used satellite sensors in the agricultural field and their spatial resolution on the 

abscissa and temporal (revisit) resolution on the ordinate (inspired by Courault et al. (2020)). 

Irrigated perennial woody fruit trees are among the major irrigated crops in Southern 

France and there is a need to accurately identify these (irrigated woody fruit trees) crop types 

with a specific complexity due to heterogeneous canopy and RS signal that gathers 

contributions of the tree canopy and the herbaceous background. Concerning the mapping of 

irrigated field crops (like maize, sunflower, soybean, potatoes, sorghum, etc.) using RS data, 

undeniable progress has been made in that aspect (Bazzi et al., 2022; Courault et al., 2008; 

Demarez et al., 2019a). However, the delineation of irrigated woody fruit trees using RS 

remains farfetched (there are few related conducted works) due to the strong variability 

existing even among the same crop type due to variation in management practices (like 

presence or absence of inter-row grass, etc.) among other things. The limitation of horticultural 

maps based on remote sensing might also be ascribed to the complexities linked to the 

separation of different tree crop types or species spectrally to acquire precise maps (Usha and 

Singh, 2013). The utilization of SITS (satellite image time series) has offered encouraging 

results on crop identification. Through the utilization of SITS, the temporal profiles of targeted 

crops are generated from multispectral images generated within the temporal window of 

interest mostly the complete growing season. Such multitemporal pattern is linked to the 

crop’s phenology like their seasonal patterns or stages of inter/intra annual changes, whose 

date of onset and offset can be used to characterize a given crop among other types of crops 

planted within the same agricultural area. The improvement of satellite missions, with more 

frequent acquisition and thus enhanced SITS has been boosting the chances of accurately 
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classifying various crop types (Masialeti et al., 2010; Odenweller and Johnson, 1984; Pena et 

al., 2017; M.A. Peña and Brenning, 2015) 

We have also seen that characterising LAI is an important factor in assessing crop water 

requirements. While characterisation of LAI by remote sensing gives good results for crops 

with homogeneous cover (Weiss et al., 2002; Weiss and Baret, 1999), it is much more difficult 

to know the LAI of the tree stratum of an orchard, a vineyard, or an olive grove. Remote 

sensing shows the overall canopy cover, which includes the herbaceous cover under the 

canopy or in the inter-row. Being able to estimate these two components is a real challenge.  

Thanks to the launch of the recent Sentinel satellite missions that provide various 

possibilities to handle such challenging issues (crop type delineations including background 

contributions) as they offer real-time satellite images with high spatial (10 m) resolution and 

temporal revisits of 5 days which remain cost-free and open source. 

PhD objectives, and methodological approach 

The broad objective of my PhD thesis is to develop methods using remote sensing data 

for mapping irrigation characteristics at the territory level to assess water consumption 

according to the specific needs of the different cropping systems. Therefore, there is a need to 

map the cropping systems and in particular those being irrigated. Two study areas namely 

Crau and Ouveze-Ventoux respectively located in Southern France, characterized by a 

Mediterranean climate were chosen to evaluate the developed methods. The areas are 

characterized by a diversity of irrigated cropping systems with gardening, orchards, 

vineyards, olive groves, and irrigated grasslands. The water requirements are very different 

due to the irrigation system (flooded irrigation in grasslands, drip or micro sprinkler in 

orchards, vineyards, and olive groves) and crop cycles. Woody crops are characterized by 

mixed surfaces that contain the canopy of interest (tree), in general along rows, and the 

background which is managed differently either by tilling the inter-row or leaving grass. As 

irrigation needs are determined by the vegetation coverage of the tree canopy, there is a need 

to delineate remote sensing data on the contribution of the canopy and that of the background. 

Mapping the different irrigated crops and delineating the canopy and background 

contributions are the two main key (specific) objectives of this thesis. To achieve these goals, 

I wish to take profit from the temporal characteristics of new remote sensing Sentinel missions, 

which allows the characterization of the crop dynamic in detail. It is assumed that such time 

series together with agronomic knowledge can provide robust features that can be used to 

characterize relevant irrigation characteristics  

Thus, this manuscript is structured into five main chapters:  

- The first chapter made a state-of-the-art of the general notions associated with the 

characterisation and mapping of irrigated fields using a remote sensing approach. 

- The second chapter made a description of the two study areas and the data used.  

- The third chapter shows the results of mapping irrigated permanent grasslands using 

temporal profiles of the leaf area index (LAI) of Sentinel-2 (S2) data (published paper 

1). 
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- The fourth chapter showed the mapping of orchards, vineyards, and olive perennial 

woody crops using temporal profiles of leaf area index (LAI) and green chlorophyll 

vegetation index (GCVI) based on phenology metrics (published paper 2). 

- The fifth chapter analysed remote sensing data (S2) and aimed to characterise canopy 

leaf area and inter-row management of some selected vineyards in Ouveze-Ventoux 

using LAI of S2 data and leaf surface from field visits (published paper 3). 

- Lastly, the general conclusions and perspectives of the research were presented 

- .
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Chapter 1 

State of the art on characterisation and mapping of 

irrigated fields using remote sensing approach. 
This chapter presented the state-of-the-art for delineating irrigated fields using optical and microwave, 

remote sensing. Incorporation of several kinds of irrigation mapping using time series by exploiting the 

significance of some key agronomic and phenology traits by emphasizing irrigated grassland, orchards, 

and vineyards. I also presented the different literature on the characterisation of orchards and grapevines 

using high-resolution satellite sensors. I made a synthesis of the different satellite missions used from 

low, medium to high-resolution satellites of optical (in the visible and near-infrared domain) and 

microwave domains. 
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Several specific possibilities are offered by Earth-Observation (EO) satellites to supervise 

features linked to irrigation such as land use/land cover, soil moisture, or vegetation 

phenology. Over the past decades, there has been a growing interest in utilizing satellite Earth 

Observations (EO) to capture data linked to irrigation scale and reoccurring frequency. This 

has created an expansion of studies utilizing the latest EO program capable of quantifying 

surface variables with proportional high spatial resolutions below 1km (https://defence-

industry-space.ec.europa.eu/eu-space-policy/copernicus_en) (Massari et al., 2021). 

1.1 Irrigation characterisation and mapping using optical satellite sensors 

On a recorded history dating back to precisely 1972, research studies commenced with the 

utilization of optical remotely sensed images of Landsat-1 satellite (with 80 m spatial 

resolution and 18 days temporal revisit) to delineate areas under irrigation (using center pivot 

sprinkler system) and evaluate water use (Hoffman et al., 1975) in the United States. In 1984, 

the launching of Landsat-5 (with 30 m spatial resolution and seven spectral bands) was 

achieved and a comparative satellite named SPOT a.k.a. “Satellite pour l’Observation de la Terre” 

(with 20 m spatial resolution and six days revisit within the green, red, and near-infrared 

bands) was launched by France in 1986 (Mulla, 2013).  

Optical sensors (multispectral and hyperspectral) are widely utilized to calculate several 

vegetation indices by a proper description of various biophysical features (Jin et al., 2017). 
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Vegetation indices (VI) derived from multispectral reflectance can be exploited to acquire data 

on phenology, vegetation water content, and biomass over a growing season. Interpretation 

of the VI times series can bring advanced information on crop systems (Beniaich et al., 2022), 

management practices (Abubakar et al., 2023), irrigation needs (Darouich et al., 2022), and risk 

assessments on soil erosion (Rizzi et al., 2021).  

Information via optical satellite sensors like Landsat, MODIS (Moderate Resolution 

Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer), MERIS 

(Medium, Resolution Imaging spectrometer), and, SPOT have already been widely utilized to 

identify irrigated cropland areas by utilizing the variations in spectral behaviours among 

irrigated and non-irrigated cropland fields (Deines et al., 2017; Loveland et al., 2000; Ozdogan 

et al., 2010; Sharma et al., 2018). The proxy used to map irrigated areas using optic data 

depends on the differences in spectral signatures between irrigated and non-irrigated surfaces. 

Due to the wettest conditions in irrigated fields, they mostly retain more photosynthesis and 

denser biomass consequently creating variations within the spectral and temporal signature 

among irrigated fields and comparable non-irrigated fields. Such variations are probably seen 

using multispectral vegetation indices like normalized difference vegetation index (NDVI) 

where Pervez and Brown (2010) adopted three assumptions which are (i) irrigated crops have 

higher yearly NDVI values in comparison to non-irrigated crops (ii) the growing peak NDVI 

values at any time will vary for each crop and for each geographical location of the USA (iii) 

the NDVI difference between irrigated and non-irrigated crops will be under non-optimal 

precipitation condition (droughts) with an overall accuracy of 92%. In a similar research study 

Xiang et al. (2019) used normalized water vegetation index (NDWI) to delineate irrigated 

cropland and forests by adopting two basic hypotheses, (i) canopy moisture of irrigated 

cropland (using land surface water index (LSWI)) is higher than forest (ii) the variation in land 

surface water index is higher in arid regions than in humid regions. Pageot et al. (2020) used 

normalized difference red-edge (NDRE) showing interesting properties with the possibility of 

taking into account the variations in canopy development (speed and amplitude) with good 

accuracy. Chen et al. (2018) used green index (GI) obtained from  Landsat, MODIS, or Sentinel-

2 sensors was also utilized widely to characterize and delineate irrigated fields. Deines et al. 

(2017a), have used random forest (RF) classification based on the temporal features of 

vegetation signals like the maximum and range of variation of the proposed vegetation index. 

During 18 years, training might be restricted to wet and dry years, from which an outstanding 

overall accuracy (OA) was derived (> 0.9). Different crop growth patterns can occur due to 

irrigation in comparison to rainfed agriculture entirely (Thenkabail et al., 2005) as plant 

development (NDVI), which is greater in irrigated areas. 

However, the transfer of the approach according to optical information is constrained in 

humid regions with frequent cloud cover (Karakizi et al., 2018). Timely detection of irrigated 

crops is of utmost significance for the irrigation calendar, however, coverage due to clouds 

could seriously lower the availability (the numbers) of optical images consequently making 

identification of irrigated crops very challenging (Demarez et al., 2019b). 
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1.2 Irrigation characterisation and mapping using microwave satellite sensors 

 One of the advantages offered by microwave sensors is that they are not affected by 

weather conditions (like clouds, dust, etc.). Microwave signal (backscattering with an active 

system, emission with a passive system) is sensitive to the moisture content of both soil and 

vegetation and thus, possesses the ability to estimate quantities related to irrigation. 

Additionally, microwave RS is responsive (sensitive) to several factors that require 

parameterization during retrieval which include soil texture, characteristics of vegetation 

coverage, topography, surface temperature, and the atmosphere. These feature heterogeneities 

might complicate the retrieval more and put its physical basis in jeopardy. Therefore, the 

resolution (spatial) of the measurement might play a crucial role in retrieving the physical 

consistency (Lee and Anagnostou, 2004).  

Passive microwave remote sensors also known as radiometers quantify the naturally 

emitted electromagnetic radiations from the surface of the Earth as brightness temperature 

(TB) and have been a good application for supervising global surface variables. The passive 

microwave radiometer is liable to be more responsive (sensitive) to near-surface soil moisture 

(Lee and Anagnostou, 2004). However, the spatial resolution of the spaceborne radiometer is 

coarse (e.g. 50 km with SMOS) which might be a strong limitation. In the past few years, the 

introduction of microwave satellite soil moisture products was presented as a tool for 

detecting irrigated territories. Kumar et al. (2015) conducted one of the early studies using 

microwave sensors. They made comparisons of soil moisture distribution of modelled datasets 

which did not integrate irrigation data against several satellite soil moisture products with 

coarse spatial resolution. Assuming the satellite signals are impacted by the irrigation 

(signals), it might be anticipated that will also display soil moisture conditions that are wetter 

than the results of land surface model simulation driven by climate data only. The researchers 

concluded that despite the encouraging results obtained for irrigation detection across some 

specific areas, the spatial discrepancy between satellite inferred from coarse resolution satellite 

and model data and the effect of vegetation, topography, and frozen soil created unreliability 

across most locations. Lawston et al. (2017), revealed that aside from temporal signature, the 

seasonal irrigation schedule across three large areas under irrigation in the US (United States) 

might be detected when utilizing the SMAP (Soil Moisture Active Passive) enhanced 9km 

product. They identify soil moisture anomalies to detect irrigation. It works in semi-arid where 

the contrast between irrigated and non-irrigated areas is strong and when the irrigated areas 

are large enough and not embedded in complex topography. 

 Another new opportunity for delineating agricultural fields under irrigation is 

provided by SAR data (active microwave). SAR sensors are more responsive (sensitive) to 

surface features like plant structure and surface roughness (Lee and Anagnostou, 2004). In 

recent years, the Sentinel-1 (S1) satellite has been incorporated into land use delineation 

methods across several environmental contexts (Massari et al., 2021) thanks to the very 

interesting characteristics of the S1 mission with 5 days revisit period; a global coverage at 10 

x 10 m pixel size across two C-band polarizations VV and VH. Various methods were 

suggested to delineate areas under irrigation by taking multitemporal data from S1 

backscattering to identify specific signal changes in areas under irrigation (El Hajj et al., 2017; 
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Gao et al., 2017). Gao et al. (2018) suggested a method according to direct assessments of multi-

temporal radar signals on individual agricultural fields via various metrics like the mean, 

standard deviation, correlation length, and fractional dimension. The method permits the 

separation of three classes namely non-irrigated fields, irrigated crops, and trees with a 

precision of almost 80% across a site in Catalonia, Spain. These satisfactory results based on S1 

information were replicated for the mapping of irrigated fields using a deep learning 

algorithm (Bazzi et al., 2020). Sentinel 1 sensors also allow the collection of high-resolution soil 

moisture estimates that are significant for the management of irrigation (but for crops with 

NDVI below 0.7), the methods are based on machine learning techniques such as NN (neural 

networks), change detection approaches, and as well direct inversion technique of semi-

empirical physical models (Bauer-Marschallingere et al., 2019; Bousbih et al., 2018; El Hajj et 

al., 2017; Gao et al., 2017; Santi et al., 2019). The potential of microwave supervision to retrieve 

information on irrigation timing was also investigated in some research. For instance, Le Page 

et al. (2020) suggested evaluating the timing of irrigation at the plot scale by making 

comparisons between surface soil moisture derived from the model via coefficient obtained 

from S2 to measurements of local surface soil moisture and products of soil moisture obtained 

from S1 and S2 (El Hajj et al., 2017). The research was conducted across six maize fields in 

South-West France and displayed that the best retrieval of irrigation would be fulfilled with 

measurement (local) of surface soil moisture for each 3-4 days. The authors also observed that 

the approach is not sufficient for small irrigation event timing of less than 10 mm due to the 

frequency of the six daily measurements of S1, and there might be confusion between 

irrigation and rainfall events. 

However, the mapping of irrigated fields using SAR data can be constrained in regions 

experiencing frequent events of rainfall occurrences (Bazzi et al., 2022, 2020) because irrigation 

and rainfall have a similar impact on the surface soil moisture which correlates with the 

coefficient of radar backscattering (Bazzi et al., 2021). In addition, the SAR C-band data was 

disclosed to be more responsive (sensitive) to canopy density in densely vegetated fields like 

wheat and grasslands than soil moisture (Bazzi et al., 2022; El Hajj et al., 2019; Nasrallah et al., 

2019) however, when the NDVI value is above 0.7, the SAR C-band is not capable of 

penetrating canopy cover and thus the C-band appears non-sensitive to surface soil moisture 

(El Hajj et al., 2019). Concerning densely vegetated cover, the penetration of radiation in the 

C-band through the canopy is reduced significantly. In this regard, irrigation events detection 

using the backscattering coefficient increase might be challenging (Bazzi et al., 2021). For 

instance, El Hajj et al. (2019) and Nasrallah et al. (2019), displayed that the contribution of soil 

in the C-band SAR backscattered signal is insignificant around the heading growth stage in 

wheat because of the C-band’s low penetration signal to the surface of the soil. In this regard, 

irrigation events detection using the backscattering coefficient increase might be challenging 

(Bazzi et al., 2021).  

1.3 Irrigation characterization and mapping using optic and microwave sensors 

Studies (Julien et al., 2011; Ozdogan and Gutman, 2008) have shown that dense time series 

of optical data permits crop-type delineation and characterization across different climates and 

under heterogeneous cropping systems. However, because cloud coverage affects optical data, 
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crop delineation performance might be reduced in some instances, even with a temporal 

revisit of 5 days. On the contrary, since microwave data are not impeded by cloud coverage, 

the unifying data utilization of high-resolution optic and microwave sensors might offer 

synergies to identify irrigated plots as well as the timing intervals of the occurred irrigation 

events. Various studies have pinpointed the possibility of merging (synergy) optic and 

microwave data which might improve the detection of crop types that are affected by cloud 

coverage while using optical data alone (Inglada et al., 2016; Sonobe et al., 2017; Whyte et al., 

2018).  

 Ferrant et al. (2019, 2017) utilized a random forest (RF) classifier by merging radar and 

optical (Sentinel-1 and Sentinel-2) data across Southern India to explore the profits of high 

spatial resolution and multiple satellite approaches. The input resolution permitted the 

recovery of irrigated fields for the dual climatic seasons of India at 10 and 20 m spatial 

resolutions. Implying that synergy among radar and optical monitoring using RF algorithm 

further slightly enhanced irrigation assessments. Demarez et al. (2019) employed random 

forest via synergetic use of 6 Landsat-8 bands every 16 days (optical) and synthetic aperture 

radar (SAR) information, highlighting that the dual merging marginally enhanced the 

precision of the classification in comparison to the performance when used separately (with 

one source) on summer crops. When Landsat 8 alone was used the kappa index was 0.85 while 

when Sentinel-1 data was used alone the kappa index was 0.70 and for the synergy (Landsat 

8 and Sentinel-1) the kappa was 0.89 implying the adding value was not much. Likewise, 

Pageot et al. (2020) adopted a method that supported precipitation data, gaining the same 

marginal outcome (kappa index for SAR, optical, and the synergy in 2017 was 0.63, 0.72, and 

0.75 while for 2018 was 0.54, 0.65, 0.66). They also disclosed that the utilization of precipitation 

information boosted the capability and that the combination of high temporal resolutions with 

monthly composite led to the same achievements while decreasing computation duration. 

Inglada et al. (2016) when Landsat 8 alone was used gained an initial kappa accuracy of 0.70 

and had a marginal gain of 0.06 kappa accuracy improvements after combining Landsat 8 and 

Sentinel-1 (kappa index of 0.76). In another study conducted by Whyte et al. (2018), they used 

optical and radar data with yet again very marginal differences with a kappa index of 0.72 

whereas a kappa index of 0.71 was obtained when optical data were used alone.  

1.4 Irrigation characterization and mapping using agronomic and phenology traits. 

1.4.1 Characterization of the cropping system  

Crop delineations according to RS observation have been a critical requirement for crop 

supervision, and biophysical and biochemical parameter estimation (like yield and water 

requirements). Therefore, classical methods of crop classification have been adopted such as 

clustering, decision-trees, parcel-based, machine, or deep learning methods (Ashourloo et al., 

2020). However, the aforementioned approaches mostly need huge training data of different 

crops as training samples while such data provision is in general time-consuming, expensive, 

and labour-demanding (Ashourloo et al., 2019). Additionally, these conventional classifiers 

used VI during classification and the difficulty comes mainly from the fact that these 

vegetation covers have a great diversity of development because of the age of the plantation, 

their density, the mode of management such as pruning, and the confusion that there can be 
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with other plant covers (non-irrigated meadows, wetlands...). On the contrary, phenology-

based approaches derived from SITS (satellite image time series) are valuable sources for 

uniform and rapid supervision of agricultural fields that might be independent of ground data 

(Ashourloo et al., 2020). By utilizing such data, changes in the crop reflectance signatures 

during the growth period might be adopted to automatically identify and separate crops 

without the need for huge training data samples (Ashourloo et al., 2018).  

Usually, plant phenology is evaluated at the ground scale (known as ground phenology 

(GP)) which requires observation visually for phenology incidence (Figure 2) however, it is 

labour and time-demanding (Misra et al., 2020). Thus, observations via spaceborne are 

engaged to supervise plant spatial and temporal development at the landscape level which is 

also referred to as LSP (land surface phenology) (Zeng et al., 2020). LSP refers to the seasonal 

manner of changes in vegetated land surface examined using RS information (Reed et al., 

2009). Metrics of LSP are mostly linked to overall inter-annual variations, that are interpreted 

from optic RS data like SOS (start of the season), POS (peak of the season), EOS (end of season 

or senescence), LOS (length of season) (de Beurs and Henebry, 2004; Reed et al., 2009), 

including other transitional phases like maturity and senescence (Zhang et al., 2003). These 

phenological metrics are generally computed from NDVI or other related vegetation indices 

(for instance (de Beurs and Henebry, 2004; White et al., 2009)) and refer to the DOY (day of the 

year). Nevertheless, the NDVI possesses some limitations like less sensitivity to vegetation 

photosynthesis dynamics (Wang et al., 2017). On the contrary, quantitative vegetative 

variables like LAI (for instance (Mateo-Sanchis et al., 2021; Verger et al., 2016)) when engaged 

to a lesser scale, might aid a better precision accuracy in the retrieval of LSP metrics, 

particularly croplands (Wang et al., 2017; Wang et al., 2017). 
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Figure 2: Phenological stages of grapevine (Caffarra, 2023) 

Even though optical RS has displayed encouraging results in monitoring phenology, several 

optical sensors have various limitations concerning resolution (spatial and temporal) (Misra 

et al., 2020). For instance, optical data of the Landsat mission is faced with cloud coverage (for 

Landsat 7) that affects its use to examine LSP and requires synergy with other datasets that 

possess higher resolution to defeat such constraints (Melaas et al., 2016). According to Vrieling 

et al. (2018), despite the spatial and temporal resolution, the accessibility of data provided by 

Landsat 8 is still limited because of its sole orbit and sufficiently fine to document rapid 

changes occurring like the green-up of cropland. Having Landsat data being not too frequent 

(due to the 16 days revisit periods), needing huge computational inputs for processing, and 

the difficulties of gap fillings in Landsat 7, most especially in cloudy terrains, other sensors 

like MODIS, AVHRR, SPOT-VEGETATION, and MERIS with coarse, received popularity 

because high-quality sets of data were readily accessible with less processing difficulty (Bolton 

et al., 2020; Zhu et al., 2019). Nevertheless, several LSP studies carried out using data from 

these sensors, despite giving frequent monitoring, are faced with the problem of mixed pixels 
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and thus, restricted their application across complex terrains (Chen et al., 2018; Misra et al., 

2018). Aside from atmospheric interference (like clouds, aerosol e.t.c.) and algorithmic 

corrections that change (contaminate) the true spectral data (Ahl et al., 2006), two crucial 

geographic uncertainties might complicate the detection of SOS (start of the season) due to the 

coarse spatiotemporal resolutions in products of VI (like MODIS, SPOT VGT). The first 

uncertainty source pertains to the temporal mismatch of remotely sensed information with 

ground data. For instance, VI products of MODIS might fail to match ground dates due to 

vegetation growth among green-up and the maturity is an active and fast event (for instance 

using an 8 or 16-day MODIS products to determine 10-12 day growth duration (Ahl et al., 

2006)). The second uncertainty source is the mixed pixel effect which is equally referred to as 

the point vs pixel problem (Reed et al., 1994; White et al., 2009). They arise due to (i) a pixel 

within the VI products might possess unknown constituents of vegetation species or types of 

land covers and, (ii) these vegetation species vary in their responsiveness (sensitivity) to 

climate changes regarding SOS (Badeck et al., 2004; Duchemin et al., 1999; Schwartz and Reed, 

1999). As the pixel-based SOS trend can be induced by the variation in the sole variable or a 

group of variables (like species composition, species SOS) contained in a mixed pixel, it is far 

from clear regarding the exact mechanism that reads the phenological results. Even though 

mixed pixels cannot be avoided, cautious handling of pixel complexity might aid in evaluating 

the variation in the computed LSP (Granero-Belinchon et al., 2020; Tian et al., 2020). The fused 

datasets of the different Landsat satellite missions like Landsat 7, 8, and probably 9 when 

operational might offer an official ground coverage of 8 days 

(https://landsat.gsfc.nasa.gov/satellites/landsat-9/), and are therefore among the leading 

options for data sampling at higher resolution (spatial and temporal). Although, going by the 

cost challenges and image retrieval during Landsat commercialization between 1984 to 2008 

(Zhu et al., 2019), the cost-free accessible wide-swath coarser resolution sensors like MODIS 

and AVHRR were focused with much interest among the phenology community.  

To counter some of the shortcomings of these sensors with lower resolution (spatial), 

satellite sensors from collections of similar sensors with a decametric spatial and 5 days 

temporal resolution like S2 (cost-free), RapidEye (expensive), and Planet might aid in 

improving the computation and comprehension of LSP. The ESA (European Space Agency) S2 

satellite sensors accessible from 2016 (S2A) and 2017 (S2B) to duplicate the data retrieval at 

fine spatial resolution (10 m) and temporal revisit (5 days). One of the main advantages of the 

S2 data is the temporal resolution with improved ground sampling and overlaying areas (for 

S2A and 2B orbits) attaining even better temporal sampling, which is essential for terrains 

where cloud coverage might be often (Immitzer et al., 2016). It is noticed that, for similar 

terrain, S2 can retrieve roughly more than ten times pixels in comparison to Landsat 8, going 

by its decametric spatial resolution and 5 days temporal resolution from the dual sensors (S2A 

and S2B), thus allowing enhanced space ability to supervise vegetation (Addabbo et al., 2016; 

Griffiths et al., 2019). Prior research utilizing simulated S2 bands derived from hyperspectral 

data displayed encouraging results in the supervision of vegetation greenness and land cover. 

Such studies also discovered bands of S2 to be adaptable with various optic sensors like VIIRS, 

MODIS, MERIS, RapidEye, and Landsat (Hill, 2013; Veloso et al., 2017). Likewise, utilization 

of S2-like bands from other optic sensors, Veloso et al. (2017) observed the resulting output to 

https://landsat.gsfc.nasa.gov/satellites/landsat-9/


 CHAPTER 1 

STATE OF THE ART ON CHARACTERISATION AND MAPPING OF IRRIGATED FIELS 

USING REMOTE SENSING APPROACH 

13 
 

be highly linked to fresh biomass and GAI (green area index), and capable of retrieving short 

phenological phases, consequently aiding accurate supervision of crop advancements. S2 

allows the advantages of supervising and examining plant phenology extensively (Delegido 

et al., 2011) and the use of S2 for phenological-related studies has increased immensely in the 

past few years. 

Multitemporal data can be used to map crop conditions, agronomic activities, and 

phenology of plots under irrigation which can serve as added information for decision-making 

(Karantzalos et al., 2017). For instance, Ashourloo et al. (2018) used the RS time series of 

Landsat 8 information to obtain phenological patterns of alfalfa fields in Iran and the United 

States of America (USA) for automatic mapping independent of training data. The spectral 

reflectance values (from different bands) of alfalfa were compared among other crops in a 

growing season by finding suitable relationships for demonstrating the features of alfalfa and 

also differentiating it from other crops with an overall accuracy ranging from 90-94%. In 

another study, Ashourloo et al. (2019) made a classification of canola fields in Iran and the 

United States of America (USA) by proposing a new index (canola index) based on temporal 

changes in the green and red band that are linked to some agronomic activities (harvesting 

period) and phenological features (flowering period).  The comparison with conventional 

classification approaches like Maximum Likelihood (ML) and Support Vector Machine (SVM) 

has shown an interest in using agronomic traits to identify a given crop with improved 

accuracy. A similar attempt was established in extensive agricultural fields to separate potato 

field classes from other crop classes by Ashourloo et al. (2020). The authors based their 

mapping criteria on spectral indices linked to phenological (flowering and peak of greenness) 

and agronomic traits (harvesting periods of early and late potato fields) leading to good 

classification accuracy (Kappa = 0.8) with little training data. The authors of Julien et al. (2011) 

made a land-use map based on the annual behaviour of both the land surface temperature 

(LST) and the NDVI. The classification was performed on characteristics of the LST/NDVI 

yearly relationship and produced good results for the identification of irrigated fields (kappa 

= 0.85). With irrigated perennial woody fruit trees, classification was done by Kordi and 

Yousefi (2022) to map apple orchards, vineyards, and annual crops in Iran. Phenology traits 

were utilized by choosing the optimum data by merging Sentinel 1, Landsat 8 images, and 

DEM (digital elevation model) with a total precision of 89% attained. These researches have 

displayed that good results can be achieved with perennial woody fruit tree delineation. The 

standards of the achieved results came from the number of images used, the choice of selected 

dates used, and the complementarity among spectral indices within the optical domain and 

textural indices obtained from SAR images. The classification standards also came from the 

uniqueness of the signatures of the different covers. In this regard, the phenology makes it 

realistic to aim at the dates of observation to be regarded particularly during stages of 

greenness and senescence. In previous studies, phenology is not directly utilized as a criterion 

for classification but more to consider optimum or key specific dates. The utilization of 

phenology or agronomic traits might offer advantages in time series assessments since they 

are relatively independent of the acquisition dates. This can be fascinating in a condition where 

partial cloud coverage is often present in the temperate zone, which might affect the time series 
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homogeneity from one location to another within the area to be mapped. This can significantly 

affect the learning process of the algorithm. 

1.4.2 Characterization of the main canopy leaf area  

Knowledge concerning biophysical features (canopy) of vegetation is significant for 

describing water models among others. In situ (ground) measurements of these biophysical 

features are labour-demanding, time-consuming, and might even be destructive. Thus, 

achieving spatial and temporal sampling is difficult for a reliable continuous supervision of 

the Earth's surface. This is the reason why satellite repeatability is needed for environmental 

modelling, for instance, Weiss and Baret (1999) compared the retrieval performance of 

different biophysical variables (including LAI) from the accumulation of large swath satellite 

data (VEGETATION/SPOT4 sensor). The LAI is the main vegetation structure variable 

controlling canopy reflectance and is among the main drivers of canopy primary production 

processes because it represents the size interference between the plant and atmosphere for 

energy and mass exchange. Thus, it is of crucial interest for evapotranspiration models. The 

top of the canopy (LAI) bidirectional reflection distributive function (BDRF) of the 

homogenous canopy (like field crops) was estimated with good accuracy (Weiss et al., 2002; 

Weiss and Baret, 1999).  

However, in the case of perennial woody crops like orchards and vineyards, the 

computation of the canopy LAI is faced with the problem of mixed pixels. For instance, Khaliq 

et al. (2019) highlighted the advantages of low-altitude UAV (unmanned aerial vehicles) 

drones over decametric S2 data in comparative multispectral vineyard imagery. They consider 

three elements of the vineyard environments i.e. the complete cropland surface, only the 

grapevine canopies, and, the inter-row terrain only. The results indicated that the decametric 

resolution imagery failed to directly describe the vineyard variability due to the contribution 

of inter-row background to the remotely sensed data might affect the computation of the NDVI 

leading to crop descriptors that are biased. On the contrary, UAV imagery computed vigour 

maps consider only the canopy pixels leading to be linked to the in-field assessment in 

comparison to the decametric S2 data. 

However, it is important to note that data from UAV drones can be very expensive 

especially when acquired daily (high temporal revisits). However, by using S2 data some 

studies still disclosed the potential of S2 sensors to characterize inter-row patterns of row 

plantations for instance, Palazzi et al. (2022) exploited decametric S2 data to delineate inter-

row signals of grapevine fields using a photo interpretation and, cluster analysis(Object-

based) classification approach. The results pin-pointed that vineyards can be classified based 

on the different inter-row soil management (i.e. conventional tillage and permanent grass 

cover) with the best accuracies obtained using NDVI and NDWI. The obtained results 

indicated that a seasonality effect might be involved in the selection of the most appropriate 

bands or index that well describes the development of soil coverage at a certain time of the 

year. Data concerning the management of vineyards is normally difficult to find and might 

need in-field measurements. The choice of an unsupervised classification approach of 

remotely sensed information over a given duration might be a crucial and rapid tool, for 

permitting the users to characterize a certain area without the need to create training data. 
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According to Palazzi et al. (2022), results from the cluster analysis show that open-sourced 

satellite data regardless of being characterized by a resolution (geometrical) that fails to permit 

discrimination among grapevine rows and inter-rows; might still be crucial to determine 

variations concerning soil management of the latter part of the vineyard. Free-sourced 

information like S2 is indeed characterized by a 5-day temporal revisit, permitting the user to 

reconstruct growth patterns among vineyards that might be linked to either the grapevine 

plants or ground coverage that might be found in the inter-rows. In such a way, cluster 

analysis might offer information concerning the vigour variations occurring within the 

vineyard (both from a spatial and temporal point of view) permitting one to differentiate parts 

of the field with different vigour. That might be due to the presence of grapevine plants that 

failed to grow than the presence of portions of bare soil within the inter-rows, both indicators 

of poor management practices. Such information might be crucial for crop supervision events 

using satellite sensors. 

1.5 Synthesis 

Numerous studies have used active microwave satellite sensors to generate soil 

moisture at field-to-region scales because of their spatial resolution (i.e. higher). However, the 

retrieval of SAR-based soil moisture again poses several drawbacks which include the concern 

regarding the estimation of surface roughness and vegetation water parameterization. During 

synergy between optic and microwave sensors, we observe from most studies that there was 

not much-adding value to most of the obtained accuracy, the gain remains very marginal with 

optic data when used alone having the highest precision. 

Considering the availability of cost-free satellite sensors like the Sentinel-2 (optic) 

which provide data at decametric spatial (10 m) and 5 days temporal revisits, the analysis of 

cropping patterns and land use during a growing season can easily be observed using spectral 

vegetation indices like NDVI or biophysical variables like LAI. Despite the challenges of cloud 

coverage faced with optic remote sensing, the quick temporal revisit of the Sentinel-2 mission 

the temporal evolution can lead to identifying some key unique features during growing 

seasons such as a decrease or increase in biomass or NDVI/LAI, harvest, or mowing practices, 

the start of the season (greenness), the length of the season, the end of the season or senescence 

to mention a few. Such capacity to analyze some key unique agronomic or phenology traits 

(features) can aid in identifying fields with similar features like crop type and land use. The 

main advantage of the use of temporal traits is that it requires a minimum (or zero training 

data if expert knowledge is used) during delineation to identify different land uses and it 

enhances classification reliability. 
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Chapter 2 

Study Sites and Data 
In this chapter, the overall description of the two (2) study sites (geographic location, climate, soil, etc.) 

was presented. Also, the remote sensing data used during this thesis were described. The different 

exploited vegetation indices and biophysical variables were also detailed for 2016 to 2022. The data on 

ground monitoring about phenology and canopy development was also presented in this chapter. 
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2.1 Description of the Study Sites 

2.1.1 Geographical positions 

The study was conducted across two different locations in South-East France namely 

the Ouveze-Ventoux and the Crau area (Figure 3). These study sites are representative of the 

Mediterranean with a strong diversity of cropping systems including irrigated permanent 

grasslands, fruit orchards (cherries plums, peaches apricots etc.), vineyards (table and wine 

grapes), and olive groove orchards.  

The Crau (a flat plain) is located around 43° 38' N and 5° 00' E (5m a.s.l) close to the 

Rhône delta having a surface area of 600 km2 (Abubakar et al., 2022). The Crau is restricted to 

the North by the Alpilles relief and bounded to the East by the Miramas Hills and the Rhône 

Delta to the West an area referred to as “Camargue”, and to the South by the Mediterranean 

Sea (Séraphin et al., 2016; Trolard et al., 2016).  

The Ouveze-Ventoux site is positioned around 44° 10' N and 5° 16' E (with its lowest 

and highest elevation as 230 and 630  m a.s.l) and covers 59 km2 (Abubakar et al., 2023). Forest 

and semi-natural environments occupy roughly 57.7% (Tuffery et al., 2021) of the area showing 

a high environmental diversity. 
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Figure 3. Geographical locations of the two study sites in South East France. 

 

2.1.2 Climate 

The Crau is characterized by a meso-Mediterranean climate with a summer drought 

period of three months, a winter that is mild having an average temperature of 7°C and 

occasional frost, with rain precipitation of 400-600mm per annum mostly in the autumn (50%). 

Having a very high hour sunshine per annum of > 2800 and wind that can be very strong for 

some periods. The wind is a significant element of the Crau climate with about 300 days of 

wind per year, this includes 70 days having a wind speed above 20km.h-1 majorly as a result 

of Mistral which is a North/North-Western wind (Jaunatre, 2012). The wind (Mistral) 

participates in the desertification of soil and sunlight decreases temperatures in the winter. An 

additional significant component of the Mediterranean climate is the high inter-annual 

variation: for instance, from 1997-2006, a meteorological station in the South of Crau 

documented an average annual precipitation of 561mm however having a minimum of 

394mm and a maximum of 823mm (Bourrelly et al., 1983). 

The Ouveze-Ventoux climate has the typical Mediterranean climate identified by cold 

and moist winters and dry and hot summers. Annual precipitation is about 750 mm per year, 

annual mean temperature of 12.6°C according to the Vaison la Romaine data 

(https://fr.climate-data.org/europe/france/provence-alpes-cote-d-azur/vaison-la-romaine-

65550/#climate-table). The lowest relative humidity of the year is in July (48.82%) and the 
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month with the highest humidity is January (77.71 %). The fewest rainy days are expected in 

July, while the wettest days are measured in November.  

2.1.3 Soil description 

The soils in the Crau sites are calcic luvisols having an irragric upper horizon consisting 

of 5% stones, over an average loamy sand layer of 15-75%, and a petro-calcic horizon (FAO-

UNESCO, 1981). The thickness of the upper layer is 0.1-0.4m having roots dominating the 0.3 

m upper layer of which the root density rapidly decreases with depth until the permeable 

pudding stone hampers growth. It is shallow at about 60-80 cm and stony with 20% at the 

surface soil and about 90% subsurface (around 80 cm deep) creating a water holding capacity 

that is very low and as well poor in organic matter and mineral elements except for the 

irrigated layers which were deposited by irrigation water.  

The soils in Ouveze-Ventoux have a depth of 80cm-1m that has a coarse stoney fraction 

of 48-63%, therefore, leading to low soil water capacity retention. The subsoil in Ouveze-

Ventoux consists of Pliocenic calcareous loamy sands. The topsoil ranges between 1.5% and 

3% (Van Der Perk et al., 2004). The soils in Ouveze-Ventoux developed in tertiary molassic 

deposits and according to the FAO system of soil classification it is classified as calcaric 

regosols with sandy loam and loamy sand as the dominant textures (van Dijck and van Asch, 

2002). 

2.1.4 Irrigation  

Irrigation practices in the Crau are more than 4 centuries old dating back to the 16th 

century (Séraphin et al., 2016). In the Crau area, there are 13500 ha of grasslands irrigated using 

flooding techniques and 8500 ha of orchards (fruit and olives) using drip irrigation. A few field 

crops are irrigated using sprinkling techniques (pivot) and there is a growing surface of 

greenhouses. Flood irrigation is carried out from March to September with variable water 

turns according to a local association called ASA (Association Syndicale Autorisée) from 8 to 12 

days. Below a certain flow threshold and the estimated level at the outlet of Serre-Ponçon, 

there may be water restrictions that are applied (this has been the case in recent years in 2015-

2022). Gravity irrigation brings water often in excess in comparison with the plant's real needs; 

water supply canals are provided by the ASAs. This irrigation technique contributes 

significantly to the recharge of the groundwater of about 75%, which is important for the 

region's industries, domestic (280,000 inhabitants), and, intensive irrigation of orchard and 

market garden production (Séraphin et al., 2016; Trolard et al., 2016). In recent years, due to 

recurrent droughts, water distribution in the region has been restricted, impacting 

groundwater supply, local production, and economic development as a result. Urban 

expansion (in particular the establishment of numerous logistics platforms near Fos sur mer in 

these irrigated areas makes surfaces waterproof and reduces water supply to the groundwater 

table (Courault et al., 2010). 

In the Ouveze-Ventoux site, irrigation is done either by drip system or using a micro 

sprinkler under the canopy. Marginally very few fields are irrigated using sprinklers near the 

Ouveze river bed. Irrigation is generally carried out for most crops from April to October. For 

the grapevines, irrigation stops earlier to allow the fruit to ripen and have more sugar at the 

end of August to early September.  
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2.1.5 Water resource for irrigation 

The site of Crau Plain lacks a natural network of Rivers and every water surface transfer 

happens via a dense canal of irrigation network from the Durance. The absence of a network 

of rivers is due to the very plain relief in addition to the high percolation ability of natural 

surfaces where an outcrop of puddingstones with roughly no soil layer (Dellery, 1964). The 

agricultural sector has the right to use 200 million m3 of water from the Serre Ponçon Lake, in 

summer. These are determined when the reconstructed natural flow of the Durance River is 

higher than a threshold. The management of 200 million is, therefore, a strong issue. Flooding 

irrigation, mainly for grassland irrigation (Figure 4 (a and b)) is the major source of recharge 

of the Crau aquifer (75%), which is used to supply orchards, olive trees, and greenhouses. 

   

a)                                         b )                                                         c )                    

Figure 4. Flooded grassland (a), surface channel network (b), and orchards (c) in the Crau area. (photos @courault 

and flamain) 

In the Ouveze-Ventoux site, the main water source for irrigation water is the Ouvèze 

River with a right of 200 L/s. Water is pumped in reservoirs at different altitudes (from 250m 

to 520 m) to distribute water over the basin within a network of pipes to deliver pressurized 

water as shown in Figure 5. 

     

a)                                 b)                                                                           c ) 

Figure 5. Vineyard irrigation for table vine (a), drip, and micro-sprinkler on cherry trees (b and c) 

 (photos @courault). 

2.2 Ground data 

Different ground data were used during this thesis like the already existing field 

segmentation, land use maps, the use of Goeportail and Google Earth to check and verify 



 CHAPTER 2 

STUDY SITES AND DATA 

20 
 

different occasions on the field, and vineyard monitoring to support the last phase of the work. 

Surveyed plots were located and observed crops were reported including other relevant 

agricultural management practices like irrigation, inter-row grass, levelling, etc. 

2.2.1 Land use map and field boundaries 

Plot boundaries were demarcated across the two study sites (Crau and Ouvèze-

Ventoux) resulting in polygons. The map was initiated with the cadastre, which we then 

corrected manually to delimit homogeneous spatial entities in terms of their use hereafter 

referred to as plot (the boundaries were fine-tuned using an aerial picture to isolate 

homogeneously managed surfaces). The whole area was therefore segmented and used for 

this study. The resulting layer was then used to aggregate classification results produced at 

pixel scale over the plot’s polygons. 

2.2.1 Vineyards field monitoring of phenology and canopy development 

Ground monitoring of grapevine trees was conducted in the Ouvéze-Ventoux site for 

two years (2021 and 2022) and the goal is to track the temporal dynamic of the leaf area of both 

compartments as shown below (Figure 6).  

 

Figure 6. Grapevine ground canopy monitoring for the year 2021 

 

Eleven (11) plots of grapevines (4 table grapevines and 7 wine grapevines) were 

selected (Figure 7) across the study area (brief descriptions in Table 1). In each plot, five 

grapevine tree stands were randomly chosen to observe phenology and characterize the leaf 

development. On each grapevine tree, a branch was selected to count the leaves during the 

whole growing season (11 field visits every year) to characterize the dynamic of the leaf 

development. The standard protocol was to count the leaves number on the main branches 

and the sub-branches. In addition, specific observations were made to establish allometric 

relationships to infer leaf surface area from the leaf counts. Therefore, at three dates across the 

grapevine cycle (20-05-2022; 05-07-2022, and 07-10-2022) the leaf lengths (from the petiolar 
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sinus to the end of the apical lobe) of every leaf on a selection of monitored branches (from 58 

to 30) were measured. The lengths thus measured were then converted into surface area using 

a relationship between length and surface area established on sets of leaves of different sizes 

taken from each of the plots. The results showed that a single relationship is sufficient to 

characterize the leaf area of the different grapevine varieties monitored in this work. At the 

end of the process, we obtained three allometric relationships for each of the leaf length 

measurement dates linking the leaf surface (cm2 per branch) to the leaf number. Figure 8 

exhibits a variation of the relationship across the year and thus the different relationships were 

estimated as follows. Up to March 20th, we used the allometric function established the 20-05-

2022. From March 21st to October 6th we applied the second relationship established the 05-07-

2022 and finally the relationship obtained the 07-10-2023 as applied after October 7th. The 

estimated leaf surface per branch was then averaged at the field level and then normalized 

using the maximum value of every time series. 

 

 

Figure 7. Displaying the eleven selected grapevine plots for ground-based monitoring 
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Table 1. Descriptions of the eleven selected grapevine plots  

S/N Plot ID Variety  Inter-row management strategies Irrigation  

1 45 Table grapevine Grassy Irrigated 

2 203 Wine grapevine Partially tilled Non-irrigated 

3 204 Wine grapevine Constantly tilled Non-irrigated 

4 1901 Table grapevine Grassy Irrigated 

5 2026 Wine grapevine Tilled Non-irrigated 

6 2335 Wine grapevine Tilled Non-irrigated 

7 3064 Table grapevine Grassy Irrigated 

8 3121 Table grapevine Tilled Irrigated 

9 3138 Wine grapevine Tilled Non-irrigated 

10 3140 Wine grapevine Tilled Non-irrigated 

11 3358 Wine grapevine Partially tilled Non-irrigated 

 

 

Figure 8. The three linear allometric relations (a) for main branches and (b) sub-branches used for the conversion 

of leaves number to surface area. 

 

2.2.2 Assessments of background coverage 

Standardized RGB photos were taken (Figure 9) using a digital camera to characterize 

the background coverage using vertical views in three locations in the plot inter-row, the 

location remaining the same across the season to maintain the same ROI (region of interest). 

To estimate the degree of soil surfaces covered by the background vegetation as shown in 

Figure 10, the percentage of the ground cover was estimated using the SegVeg model for 

semantic segmentation of RGB photos into soil background portion, green vegetation portion, 

and senescent portion as described by Serouart et al. (2022). It conforms with the U-net model 

that delineates vegetation from the background (after training across a dataset that is very 

large and diverse). Pixels of the vegetation are subsequently classified using a Support Vector 

Machine (SVM) shallow machine learning approach trained on grids extracted pixels applied 

to the RGB photos. We used an already trained SegVeg model (Serouart et al. 2022) leading to 

a vegetation cover fraction ranging from 0 to 1. The presence of senescent vegetation (pruned 

residues or dried grasses) was not considered in the vegetation cover. A qualitative assessment 

of the results was done leading to the removal of images with blurry shadows from the 

analysis because it leads to a biased assessment as shown below (Figure 11). 
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Figure 9: horizontal (a) and vertical (b) view photos of plots showing the background coverage. 

 

 

Figure 10. The percentage of the inter-row green cover estimate using the SegVeg model. 
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Figure 11: The percentage of the inter-row green cover estimate using the SegVeg model affected by blurry 

shadows. 

2.3 Rainfall conditions at the experimental site. 

Among the components of weather, only rainfall data was used in this study. The 

rainfall data used in this study were extracted from the weather station of Entrecheaux for 

both years (2021 and 2022) which is closest to the selected monitored grapevine fields. The 

cumulated rainfall value for 2021 was 664.8 mm and for 2022 was 754.8 mm respectively 

(Figure 12). In particular, the year 2022 was wetter (more precipitation) than 2021 but also had 

the driest summer. Rainfall data analysis was useful to examine grass dynamics, especially in 

the summertime when grass regrowth might be stimulated by a rainfall event. 

 

Figure 12: cumulative daily rainfall for the years 2021 and 2022 in the Ouvèze-Ventoux site. 

 

2.4 Remote sensing data 

2.4.1 Satellite Imagery 

In our study, time-series of Sentinel-2 optical images were utilized and were obtained 

from both Sentinel-2A and Sentinel-2B of all dates in a given year (for 2016-2021), all within 

the visible (B2, B3, and B4), the near-infrared (B8) and mid-infrared (B11 our B12) bands. We 

utilized the open-source service center to obtain images (https://www.theia-land.fr/, accessed 

on 17 May 2022), it offers cloud treatments (cloud mask described in Hagolle et al. (2017)) to 

eliminate pixels influenced by clouds (images with > 30% cloud cover), and for this obvious 

reason, the number of images utilized vary across study sites and years as well because there 

were different level of cloudiness in each site. Since Sentinel-2B satellites were functional in 

the time of 2017, fewer data (dates) were obtained from the 2016-2017 year. Table. 2. Below is 

a depiction of the number of cloud-free images used for each year across the two study sites. 

 

Table 2. Number of cloud-free available images across the two study sites used for the classification 

S/N Year Crau Ouveze-Ventoux 

1 2016 43 39 



 CHAPTER 2 

STUDY SITES AND DATA 

25 
 

2 2017 49 45 

3 2018 55 52 

4 2019 56 51 

5 2020 52 49 

6 2021 51 50 

7 2022 - 51 

 

2.4.2 Vegetation indices and biophysical variables 

Various vegetation indices and biophysical variables were utilized for spectral and 

temporal analysis which was subdivided into those highlighting greenness like the popular 

normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), green 

chlorophyll vegetation index (GCVI) to those highlighting moisture like normalized difference 

moisture index (NDMI), land surface water index (LSWI), and finally on biophysical variables 

like leaf area index (LAI), fraction vegetation cover (FCOVER) and the fraction of absorbed 

photosynthetically active radiation (FAPAR) as summarized in Table. 2. The biophysical 

variables used in this study were computed with the BVNET algorithm by utilizing the B2, B3, 

B4, and B8 bands (from 10-meter resolutions) as described in Weiss et al. (2002). The algorithm 

is robust and has been fused into the S2 toolbox developed by the European Space Agency, It 

operates on the principles of neural network calibrated (trained) on simulated spectral 

reflectance utilizing a radiative transfer model (Weiss et al., 2002) and time series of LAI 

implemented across every 10 m spatial resolution.  

2.4.3 Plot pixel average  

In each plot (polygon) across the two study sites, a buffer of 20 meters (two pixels) was 

removed to avoid the impact of mixed pixels at the plot boundary. The plot mean was 

computed by averaging the vegetation indices of all pixels in a given buffered polygon using 

the zonal statistics function in R [(“Zonal statistics in R | GeoProfesja,” 2016)] which was the 

values taken for the land classification (i.e. at the indices level). The minimum number of pixels 

being considered in each plot is one from the cloud-free images. A minimum of thirty-nine 

(39) cloud-free images were used from 2016 to 2022. 

Table 3. List of tested vegetation indices and biophysical variables 
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Chapter 3 

Detection of irrigated permanent grasslands with 

Sentinel-2 based on temporal patterns of the leaf 

area index (LAI) 
3.1 Intention note 

 Conventional crop mapping methods are often based on ground observations to 

train supervised classification algorithms. Thanks to the frequent acquisition made possible 

by recent satellite missions (Sentinel 2), temporal patterns can be also explored since they 

depend on both phenology and crop management (Bazzi et al, 2021, Courault et al, 2010). Some 

of these patterns are specific to a given crop and can therefore be used to map it (Bazzi et al, 

2021). In this study, this approach has been applied to identify the irrigated permanent 

grasslands (IPG) in the Crau region (Southern France). 

 The irrigated grasslands have an important economic role in the region (unique 

production with a certified label IPG), by irrigation made by flooding between March and 

October which contributes to 70% of the ground table recharge. (Courault et al., 2010; Merot 

et al., 2008b). Grasslands are mowed three times per year. This agricultural practice is clearly 

identifiable in the temporal profile of the leaf area index (LAI) derived from Sentinel 2 images. 

The signal decreases sharply when the canopy is mown. The grass then grows back rapidly, 

and the observed drop is then followed by an increase in LAI, leading to a specific temporal 

pattern for the leaf area index (LAI). We have therefore proposed an algorithm based on the 

detection of mowing based on the analysis of the temporal LAI derived from Sentinel 2 

observations. The algorithm comprises different steps, first a filtering on the period and to fix 

minimum and maximum LAI values corresponding to grasslands. The number of minima is 

calculated for each year. A pixel is classified as grassland if the number of detected mowings 

is greater or equal to 1. Five years (2016-2020) were studied. The detection of the number of 

mowings was calculated at the pixel level, then the results were aggregated at the plot level. 

An evaluation dataset comprising 780 plots was used to assess the performance of the 

classification. The mapping of irrigated grasslands obtained with this method was compared 

with other classifications obtained by supervised methods. The results showed that the 

method based on the mowing analysis gives higher scores than other supervised classification 

methods that largely include training data sets. Analysis of changes in land use shows that the 

misclassified plots concern mainly grasslands managed less intensively or with high intra-plot 

heterogeneity due to irrigation failures or grazing throughout certain periods of the year. A 

change in land use can be observed and detected by this method, but long time series are 

required to confirm the changes observed and to remove the ambiguities associated with the 

heterogeneity of grasslands. 
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Résumé 

 Les méthodes conventionnelles de cartographie des cultures sont souvent basées 

sur le recueil d’observations de terrain pour entraîner les algorithmes de classifications 

supervisées. Grâce à l'acquisition fréquente permise par les missions satellitaires récentes 

(Sentinel 2), nous pouvons identifier des modèles temporels qui dépendent à la fois de la 

phénologie et de la gestion des cultures. Certains de ces modèles sont spécifiques à une culture 

donnée et peuvent donc être utilisés pour la cartographier. Cette approche a été appliquée 

pour identifier les prairies permanentes irriguées (PPI) dans la région de la Crau (sud de la 

France), qui jouent un rôle crucial dans la recharge des nappes phréatiques. Les prairies en 

Crau sont généralement fauchées trois fois dans l’année entre mai et octobre. Cette pratique 

culturale est clairement identifiable sur les profils temporels de l’indice foliaire (LAI) dérivés 

des images Sentinel 2. Le signal décroit brusquement lorsque le couvert est fauché. Puis l’herbe 

repousse rapidement, et la chute observée est ensuite suivie d’une croissance du LAI, ce qui 

conduit à une signature temporelle spécifique de de ce type de couvert. Nous avons donc 

proposé un algorithme fondé sur la détection des fauches basée sur l’analyse du LAI dérivé 

des observations Sentinel 2. L'algorithme comprend différentes étapes, un premier filtrage sur 

les périodes considérées en fixant également un minimum et maximum de valeurs de LAI 

correspondant aux prairies. Le nombre de minima est calculé pour chaque année. Un pixel 

sera classé en prairie si le nombre de fauches détectées est au moins supérieur ou égal à 2. Cinq 

années (2016-2020) ont été étudiées.  La détection du nombre de fauche a été calculée au niveau 

du pixel, puis les résultats ont été agrégés au niveau de la parcelle. Un ensemble de données 

comprenant 780 parcelles a été utilisé pour évaluer les performances de la classification. Nous 

avons obtenu un indice de Kappa compris entre 0,94 et 0,99 selon les années. La cartographie 

des prairies irriguées obtenues avec cette méthode a été comparées à d’autres classifications 

obtenues par méthode supervisée. Les résultats obtenus montrent que la méthode basée sur 

l’analyse des fauches donne de meilleurs scores que les autres méthodes de classification 

supervisées qui demandent des données d'entraînement. L'analyse des changements 

l'utilisation des sols montre que les parcelles mal classées concernent des prairies gérées de 

façon moins intensive ou présentent une forte hétérogénéité intra-parcellaire due à des défauts 

d'irrigation ou à un pâturage à certaines périodes de l'année. Un changement réel d'utilisation 

des terres peut être détecté par cette méthode, mais cela demande de longues séries 

chronologiques pour confirmer les changements observés et lever les ambiguïtés liées à 

l'hétérogénéité des prairies.  

Mots clés : irrigation ; télédétection ; Sentinel-2 ; prairies ; indice de surface foliaire 

cartographie 
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3.2 Graphical Abstract 
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Abstract: Conventional methods of crop mapping need ground truth 

information to train the classifier. Thanks to the frequent acquisition 

allowed by recent satellite missions (Sentinel 2), we can identify temporal 

patterns that depend on both phenology and crop management. Some of 

these patterns are specific to a given crop and thus can be used to map it. 

Thus, we can substitute ground truth information used in conventional 

methods with agronomic knowledge. This approach was applied to 

identify irrigated permanent grasslands (IPG) in the Crau area (Southern 

France) which play a crucial role in groundwater recharge. The grassland 

is managed by making three mows during the May-October period which 

leads to a specific temporal pattern of leaf area index (LAI). The mowing 

detection algorithm was designed using the temporal LAI signal derived 

from Sentinel 2 observations. The algorithm includes some filtering to 

remove noise in the signal that might lead to false mowing detection. A 

pixel is considered a grassland if the number of detected mows is greater 

than 1. A data set covering five years (2016-2020) was used. The detection 

mowing number was done at the pixel level and then results are 

aggregated at the plot level. An evaluation data set including 780 plots 

was used to assess the performances of the classification. We obtained a 

Kappa index ranging between 0.94 and 0.99 according to the year. These 

results were better than other supervised classification methods that 

include training data sets. The analysis of land-use changes shows that 

misclassified plots concern grasslands managed less intensively with 

strong intra-parcel heterogeneity due to irrigation defects or year-round 

grazing. Time series analysis, therefore, allows us to understand different 

management practices. Real land-use change in use can be observed, but 

long time series are needed to confirm the change and remove ambiguities 

with heterogeneous grasslands. 

Keywords: irrigation; remote sensing; Sentinel-2; grasslands; leaf area 

index; land use classification 
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1. Introduction 

 According to the United Nations [1], water is a scarce resource thus, its justifiable 

and judicious use must remain a crucial and fundamental target for sustainable developments 

across the globe, especially in a world with a constantly increasing populace that directly or 

indirectly depends on this scarce resource for sustaining their activity and food production 

system. Undoubtedly agriculture remains an obvious focal point in water management, as the 

main water user [2], with irrigation accounting at world-scale about 70% of the global 

freshwater withdrawals [3]. The effect of global changes is anticipated to heighten the issue of 

water shortage and irrigation needs [4]. Thus, attention is needed on appraisals related to 

irrigation activities to bolster water resource management, maximize water productivity, and 

boost agricultural water sustainability [5]. To match water needs and resources, better 

planning is needed for irrigation activities [6]. One of the key solutions to good irrigation 

planning is the provision of extensively detailed spatial delineations of croplands under 

irrigation [7] and the description of irrigation systems and strategies that may lead to various 

water needs across the year [8]. There is therefore a challenge to detect not only the irrigated 

areas but also the associated production systems. 

 The classification of irrigated areas is widely discussed in the literature [8]. 

While the use of medium-resolution satellites has allowed the establishment of methodological 

bases applicable to regional scales, there is a renewed interest in these methods with the 

Sentinel satellites, which offer both good temporal repeatability (3-5 days) and good spatial 

resolution (10m), which is particularly relevant for crop monitoring. Classification methods 

for irrigated surfaces are generally based on radar data giving temporal series of surface 

moisture, data in the optical domain with monitoring of vegetation dynamics, and 

meteorological data. The use of optical data to separate irrigated and non-irrigated areas is 

based on the green cover dynamic, which displays a higher level when additional water is 

brought to the crop. Indices based on meteorological data enhance the quality of the 

classification. In general, these indices are linked to climatic water stress, which allows for a 

better characterization of irrigation periods [9, 10, 11]. In addition to the meteorological data, 

thermal infrared observations enable the implementation of a surface energy balance model 

to infer the evaporative fraction that is found as a relevant classifier [12] complementary to 

vegetation indices. 

 

Supervised classification is the most common approach with the implementation of 

different methods such as decision trees, random forest, support vector machine (SVM), or 

neural networks for the most frequently cited. The classifiers are in general based on the 

remotely sensed quantities and/or the derived indices combining several measurements as 

spectral indices in the optical domain or the radar polarization ratio. It is difficult to report on 

the obtained accuracy in general terms, since the pedoclimatic conditions, the spatial domain, 

and the type of irrigated and non-irrigated crops differ considerably from one study to 

another. For instance, the kappa index ranges between 0.36 [9] and 0.9 [13]. In recent years 

many studies have been based on Sentinel satellite observations [8] using either Sentinel 1, 2, 

or both. The combined use of radar Sentinel-1 and optical Sentinel-2 has shown a moderate 

improvement in classifications [5, 13, 14, 13] when compared to methods based on Sentinel-2 

only. However, supervised classification has some limitations, such as the need to collect 

training data or to deal with missing data. The latter can be an important issue in the optical 
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domain with the clouds. Therefore, when working over large spatial domains, the selection of 

cloud-free images can considerably reduce the time series. 

An alternative is to use temporal characteristics of the remotely sensed quantities. For 

instance, in [10], a classification of the temporal characteristics of the vegetation signal such as 

the maximum and the range of variation of the vegetation index is proposed. For an 18-year 

period, the training can be limited to a wet and dry year, while an excellent overall accuracy 

was obtained (>0.95). The authors of [5] showed that it is possible to separate irrigation systems 

between crops and orchards based on the variability of the radar signal and the temporal 

autocorrelation length of this signal. Several studies [6, 10, 15, 11] show that consideration of 

agronomic traits related to phenology and cropping interventions can provide relevant 

information to characterize irrigated systems. In a broader context it is found that agronomic 

features can be extracted from multitemporal remote sensing data [16] and applied to crop 

mapping for instance with canola [17] and potatoes [18] with an improved accuracy in 

comparison to classical supervised classification methods. These encouraging results led us to 

take profit of the short revisit time of Sentinel 2 satellites to map Irrigated Permanent 

Grasslands (IPG) using a temporal approach based on the detection of agronomic traits. In the 

study site (the Crau area in South-East France), IPG are irrigated using flooding techniques, 

which has a strong impact on the regional water budget by consuming a very large amount of 

water (about 20000 m3/ha/year [19]) but also provides important externalities such as the 

groundwater recharge. IPG is an interesting case as it provides very clear agronomic traits 

with several mowing events across the year that can be used for the classification. 

The characterisation of grasslands has already been the subject of several studies. The 

authors of [20] showed that with a limited number of SPOT images (3 in the study) one can 

separate mown grasslands from grazed grasslands with a kappa=0.82. In this study, it was also 

found that LAI is the best indicator to make such a distinction. More recently the authors of 

[21] classify grassland use intensity with 5 rapid eyes images based on the variability of the 

temporal signal. A similar approach was followed by [22] who used a series of 14 Landsat 

dates to distinguish 6 classes of grassland reflecting different management strategies. These 

results announce the potential of Sentinel-2, which was used to detect mowing events [23, 24, 

25, 26, 27]. All the proposed methods are based on frequent temporal sampling of vegetation 

index and local minimum detection. The proposed approaches differ in the methods for 

filtering the vegetation indices time series and the algorithm for detecting local minima 

associated with mowing. The quality of the results depends on the scale of the work, with 

overall accuracies of about 70-80% for studies covering large regional territories [27,24) and 

better than 90% for smaller territories [26]. The difficulties mentioned by these studies concern 

the variability of management methods, such as the quantities of grass removed during 

mowing, spatial heterogeneities (e.g. presence of trees), and acquisition dates that are not 

always optimal for identifying mowing events. The use of radar series that are not impacted 

by cloud covers is an alternative exploited in [28,29]. However, the rate of detection errors 

remains significant due to errors that are inherent to the measured quantities and its 

interaction with other factors as the plant water content. The combination of optical and radar 

images was implemented in [25]. The authors used a deep learning algorithm and showed that 

combining radar quantities (coherence and backscattering coefficient) and NDVI is the best 

option with an F1-score obtained at a regional scale of 0.88. It should be noted that these 

characterisations are done on known grassland areas and are not used for the classification of 

grassland areas. The originality of the present study was then to explore the capabilities of 

mowing event detection to map IPG and non-irrigated grassland (NIG). 

The goal of the study was to develop a classification method to map IPG in South-East 

France. The approach was developed in the context of the Crau area in Southern France in the 
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Mediterranean. IPG are both an emblematic crop of the areas and plays an important role in 

the superficial aquifer water budget [(Merot et al., 2008a)]. In this paper, we develop a mowing 

event algorithm able to minimise false mowing event detection and account for temporal 

sampling of Sentinel-2 data that may present missing observation dates during mowing 

periods. The classification performance was compared to the traditional classification method 

made directly on vegetation indices time series and the THEIA product, which is an 

operational product implemented over France. 

 

2. Materials and Methods 

2.1. The study site  

The Crau area (Fig. 1) is located at 43°38 N, 5°00 E (5 m a.s.l), near the Rhône delta in Southern 

France, which covers a surface area of 540 to 600 km2. The climate of the Crau area is 

Mediterranean with an average annual rainfall of 600 mm (non-uniform) and a potential 

evapotranspiration of 1100 mm. Mean air temperature of about 7-8°C (in winter) and 24°C (in 

summer) [23,30,31]. The Crau area is characterised by native shallow soils of about 60-80 cm 

with 90% stones consequently rendering its water retention very low. Soils irrigated using 

flooding techniques present a loamy surface soil layer thanks to sediments transported via 

irrigation water with a layer depth that can reach 60 cm depending on the length of the 

irrigation period [23]. IPG are the most predominant irrigated crops in the Crau area [19, 23] 

with a coverage of about 13000 ha (23%) as depicted in Fig.1 (the dark green plots). The 

irrigation practice of permanent grasslands in the Crau area is more than 4 centuries old which 

can be dated back to the 16th century [30]. The common practice mostly remains the same 

which involves the use of gravity (flood) for irrigation, in areas specifically dedicated to hay 

production and the rearing of sheep. The water used for flooding irrigation contributes to more 

than 75% of the groundwater table. This ground water table is used for irrigation of intensive 

orchard and market garden productions, domestic and industrial purposes to roughly 280,000 

people around the southern part of the area [23,30]. Duration for irrigation in a year extends to 

about seven months [19] from March to September. IPG management is regulated by the 

selling label “foin de Crau” the first COP (Certified Origin Product) in France leading to 

standardize management with three or four grass mowings from May 1st to the end of October 

and sheep grazing in winter. In general grass fields are irrigated optimally to cover the water 

needs but, in some places, and some years the access to water might be critical thus leading to 

reduce grass productivity and skipping a mowing operation. Some farmers do not follow the 

label rules, for example when they breed animals all year round, which leads to a different 

spatial and temporal dynamics of the vegetation cover than the one obtained with the 

recommended cultivation practices, which are dominant on the territory. The grass fields are 

in general homogeneous but heterogeneities in vegetation cover were found at the field 

boarder or within the field when surface levelling is not satisfactory generating heterogeneities 

in the water supply. Therefore, if a dominant grass development temporal pattern is expected 

and then used to identify grassland areas, the mentioned variation can interfere with the 

classification process. 
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Figure 1. Study site location. 

2.2. Data used 

2.2.1. Field survey 

A field survey was done to identify crop type and irrigation over a total of 809 plots 

(all plots were greater than 1 ha) by a visit done during the 2016-2020 period. During the visit, 

surveyed plots were identified, and observed crops were reported in the plot map established 

over the whole area. Irrigated permanent grasslands (IPG) consisted of 391 plots and Not 

Irrigated Grasslands (NIG) comprise 418 plots. In addition, aerial photographs were used to 

check management features such as soil levelling, land-use change, or grazing. For that 

purpose, we used Google Earth images acquired during the 2015-2021 period together with 

the IGN (the French National Geography Institute) 2020 flight campaign. Plot boundaries were 

drawn in 2012 throughout the Crau area leading to 18058 polygons. The map was initiated 

with the cadastre, which we then corrected manually to delimit homogeneous spatial entities 

in terms of their use hereafter referred to as plot. The resulting SIG layer was then used to 

aggregate classification results produced at pixel scale over plot’s polygons. 

 

2.2.2. Satellite data 

Time series of Sentinel-2 of level 2A optical images were used for this study, which were 

collected from both Sentinel-2A and Sentinel-2B for all dates from 2016 to 2020. We used the 

images distributed by the French land data open-source service center (https://www. theia-

land.fr/), which also proposed cloud masks that were used to remove pixels affected by clouds. 

The number of remaining dates during the considered period (March 15th to October 30th) is 

given in Table 1. As Sentinel 2B satellite was operational during 2017 we got less date in 2016 

and 2017. At the pixel level, the number of available dates varied due to the occurrence of 

clouds, which was not homogeneous within the studied area. 
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Table 1. Statistics on the number of days available over the period from 15 April to 30 October after removing the 

dates impacted by clouds. The filtering is carried out at the pixel level and the statistics have been calculated on all 

the pixels of the Crau area. 

Year  Average maximum minimum 

2016     26  31 20 

2017 43 49 37 

2018 52 61 44 

2019 54 59 48 

2020 49 56 42 

 

The BVNET algorithm using bands 3, 4, and 8 was used. The algorithm calculates 

biophysical canopy variables such as the Leaf Area Index (LAI). Due to its robustness, 

especially on homogeneous canopies such as grasslands, the algorithm has been integrated 

into the S2 toolbox developed by the European Space Agency. It is based on a neural network 

trained on simulated spectral reflectance using a radiative transfer model [32]. Temporal 

profiles of LAI were then established for every 10-meter pixel. 

 

2.3. Developed irrigated permanent grassland detection algorithm. 

The specificity of irrigated grasslands is that they present several mowing-vegetation 

growth cycles during the year. To detect a grassland, we can also rely on the level of LAI, 

which is generally high (LAI > 4) when the vegetation is well developed, and the growth rate 

after a cut which is specific to grassland. For example, in the study area, it takes 30 to 50 days 

after a mow to return to a vegetation development comparable to that before the mow. 

Although these characteristics specific to irrigated grassland should make it relatively easy to 

identify them with a temporal sampling such as that offered by the Sentinel-2 mission, we 

were confronted in the time series with LAI variations linked to atmospheric corrections that 

may generate temporal patterns of LAI leading to confusion with grassland mowing events. 

In addition, the presence of clouds during the mowing periods reduced the time sampling of 

the LAI and prevents a clear detection of a mowing event. 

As in [23, 24, 26, 27], the detection algorithms of mowing events developed in the study 

are based on a sharp reduction in vegetation amount followed by a significant vegetation 

development during the following 45 days. To monitor the development of vegetation, we 

used the LAI estimated from Sentinel 2. If this quantity has not been used in previous mowing 

event detection studies that rely on NDVI or NDII [23, 24, 27, 26], the main reason for this 

choice comes from the nature of the quantity, which is a characteristic of plant cover and can 

therefore be directly linked to agronomic knowledge and crop model outputs. This is 

important for the design of algorithms characterising agronomic traits, their parameterisation, 

and their generalisation to include prior information from agronomic knowledge. Moreover, 

it has been shown that LAI is more sensitive to variations in well-developed vegetation while 

conventional vegetation indices tend to saturate more easily [29]. The disadvantage is that the 

computed LAI is more sensitive to atmospheric corrections as we no longer have the 

normalization of measurements made on classical vegetation indices such as the NDVI. 

Moreover, on some surface types, the LAI inversion algorithm may fail. For example, we found 

very high and variable LAI values on greenhouses with a non-negligible risk of confusion with 

grasslands.  

To detect an irrigated grassland, we made the following main assumptions: 

• There are at least 2 mowing events during the May to October period. If most of the 

irrigated grassland is managed with 3 or 4 mowing events, this threshold makes it 

possible to consider less intensively managed grasslands or to allow for the possibility 
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of missing a mowing event due to an unfavourable time series with a long cloudy 

period during the mowing period. Such a situation can happen even in the 

Mediterranean area despite the high revisit frequency of the sentinel-2 satellites. 

• A mowing event is characterized by a local minimum with significant variations in LAI 

over 45 days before and after this minimum. The period of 45 days after the minimum 

reflects the growth time of the grassland after mowing. The period of 45 days before 

may seem long since a mowing induces an immediate drop in the amount of 

vegetation. However, we found that some mowings were delayed and then the 

grassland began to senesce, resulting in a decrease in green leaf area as captured by the 

LAI estimate. A shift of 10 to 20 days in the maximum LAI before mowing can thus be 

observed. In addition, gaps in LAI time series may lead to the maximum being sought 

over a somewhat longer period. 

To implement these assumptions, we propose a five steps algorithm as summarized in Figure 

2 

Step 1: we first flagged the LAI time series by considering that the maximum LAI must 

be greater than tlaimin and lower than tlaimax. tlaimin threshold reflects the fact that irrigated 

grassland leads to strong vegetation development while tlaimax is dedicated to eliminating 

surface type on which the LAI computation fails leading to unrealistic high values. 

Step 2:  To eliminate local minimum due to short-term LAI variations as induced by 

poor atmospheric corrections, different smoothing procedures were presented in [24, 26, 33]. 

In this work, we used the smooth spline algorithm in R [34], which is efficient and flexible. The 

algorithm involved a degree of freedom parameter (df) controlling the smoothing process. The 

minimum was then detected on the smoothed LAI time series that might be slightly delayed 

in comparison to the date of the corresponding minimum in the observed LAI time series. 

Step 3:  Some remaining anomalies in the LAI time series that might impact the LAI 

variations computation will be corrected. When the LAI is too small, i.e. lower than tlailow or 

when the difference between the observed LAI and the smoothed LAI is greater than difmax, 

the observed LAI is substituted by the corresponding smoothed LAI value. 

Step 4: Every detected minimum in step 2 is validated according to different criteria. 

First, the date of the observed minimum (tmin) is searched in the observed LAI time series 

within a time window around the minimum detected on the smoothed series. This time 

window ranges from dtb1 days before and dta1 days after the date of the minimum detected 

in step 2. The time tmin must fall within the considered period starting at dbeg and ending at 

dend, being in our case May 1st and October 15th, respectively. Then the value of the minimum 

was analysed. We consider that the minimum LAI must be lower than a threshold, this 

threshold being adapted according to the LAI sampling date before and after the minimum 

date. Indeed, if the LAI is sampled loosely around the minimum, the truncation effect of the 

time series may result in a minimum value that is larger than the true minimum, as the 

vegetation may have started to grow at the time of the measurement. The threshold is therefore 

set according to the following relationship: 
 

tminlai= tminlai0 when dt<dtmin0 

tminlai=tminlai1 when dt> dtmin1 

𝑡𝑚𝑖𝑛𝑙𝑎𝑖 = 𝑡𝑚𝑖𝑛𝑙𝑎𝑖0 + 𝑑𝑡
(𝑑𝑡𝑚𝑖𝑛1 − 𝑑𝑡𝑚𝑖𝑛0)⁄ ∙ (𝑡𝑚𝑖𝑛𝑙𝑎𝑖1 − 𝑡𝑚𝑖𝑛𝑙𝑎𝑖0)                                          (1) 

with dt being the time interval between the first acquisition date before and after tmin. If the 

minimum is validated (LAI(tmin)<tminlai), the last test was done on the LAI variations before 

(within the [tmin-dtb – tmin] period and after (within the [tmin– tmin+dta] period) that must be 

greater than threshlai. The period before the minimum is reduced when the LAI sampling is 
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tightened. If the measurement period of the nbb observations before the minimum is shorter 

than dtb then this period is used to calculate the LAI variation. 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Five steps of the developed irrigated grassland algorithm at the pixel level. 

Step 5: The number of validated minimums, considered as mowing events, is 

established and used to apply the irrigated grassland filter being a minimum of two events. 

The algorithm is applied at the pixel level. However, due to plot heterogeneity or 

border effect, an aggregation was done within the plot boundary after applying a buffer of 20 

m to provide a classification at the plot level. A plot was then declared as irrigated grassland 

when a majority of pixels were classified as irrigated grassland, the majority being qualified 

by a percentage of the pixels that has to be determined (pixperc).  

The detection algorithm involved 16 parameters that are summarized in Table 2. As 

the number of parameters was large we prescribed some of them to values consistent with our 

agronomical knowledge while the other parameters were calibrated. 

 

Table 2. List of parameters and value retained to implement the developed method. 

Parameters Definitions 
Range of values used 

when calibrated 
Final value 

fd degree of freedom of the smoothing algorithm 5, 10, 15, 17 10 

tlaimax 

LAI threshold. a pixel is declared being not a grassland when 

the maximum of LAI time series is  

greater than tlaimax 

10, 10.5, 11, 11.5 10.5 

1- Filtering LAI time serie :
tlaimin<Max(LAI(t) < tlaimax

2 – Smoothing LAI time serie and minimum 
detection (fd) 

no Non irrigated grass

Yes

3 – Correcting strong anomalies (very low values,  
short variations) (tlailow, difmax) 

4 – Minimum filtering
• Period (a mowing event between dbeg and dend)
• LAI of a Minimum must be lower than a threshold

(dtb1, dta1, dtmin1, dtmin0, tminlai1,tminlai0)
• LAI variation before and after the minimum must be

significant (threshlai, dtb,dta, nbb)

5 – number of validated
Minimums (likely a mowing
event) >1 

no Non irrigated grass

Yes

Irrigated grass
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tlaimin 
LAI threshold. A pixel is declared not being a grassland when 

the maximum of the LAI time series is lower than tlaimin 
4.0, 4.1, 4.2, 4.3, 4.4, 4.5 4.2 

threshlai 
LAI variation threshold before and after the detected 

minimum  
0.5, 1.0, 1.5, 2.0, 2.5 1.5 

dta1 
Period to search for the true minimum after the smoothed 

minimum 
 15 

dtb1 
Period to search for the true minimum before the smoothed 

minimum 
 25 

tlailow LAI threshold to characterize unrealistic low LAI value  0.4 

nbb 
Number of points to consider in searching the maximum 

before a cut 
2,4,6,8 4 

dtmin1 
Minimum time interval between observations bracketting the 

minimum leading to selecting the largest tminlai (tminlai1) 
 25 

dtmin0 
maximum time interval between observations bracketting the 

minimum leading to selecting the smallest tminlai (tminlai0) 
 10 

tminlai1 
largest LAI threshold to validate a minimum LAI (when time 

sampling is sparse) 
 2.5 

tminlai0 
smallest LAI threshold to validate a minimum LAI (when 

time sampling is frequent) 
 2 

dta Period length after a minimum to characterize LAI variation  45 

dtb Period length before a minimum to characterize LAI variation  45 

difmax 
The difference between the observed and the smoothed LAI 

above which the LAI is corrected. 
 2.6 

Pixperc 
The minimum rate of pixels detected as irrigated grass in a 

plot to classify it as an irrigated grass plot 
50,70,90 90 

 
 

2.4. Calibration and Evaluation 

The calibration procedure targeted the best parameters to be used for the separation of 

IPG from NIG. The calibration was done considering 29 vignettes surrounding a known IPG 

plot. In each vignette, we determined 6 polygons, 3 being inside the grassland plot and three 

being outside (Figure 3) corresponding to surfaces that might be orchards, vineyards, field 

crops, market gardens, dry grasslands... Each polygon is considered as a single entity on which 

metrics describing the mowing event number distribution are computed.  

The cost function used for calibration was the percentage of well-classified polygons 

i.e. that having a majority of pixels with at least 2 mowing events for the IPG polygons and 

lower than 2 for the NIG polygons. A database covering the 2016-2020 period was generated, 

considering that every year provides a set of data to compute the cost function. 

Two phases are considered in the calibration. First, based on agronomic knowledge 

and/or visual analysis of LAI time series, we set dta and dtb to 45 days, dta1 to 15 days, dtb1 to 

25 days, and dbeg and dend set to May 1st and October 15th, respectively. Then fd, tlaimax, tlaimin, 

threslai, and pixperc were calibrated using a manual fitting considering the range of values 

given in Table 2. In that first calibration phase, the LAI anomaly correction (step 3) and the 

filtering tests on the minimum value (step 4) involving the other parameters were not 

activated. 
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Figure 3. Green polygons symbolise IPG while red polygons symbolise NIG. 

Then, in a second phase, some refinements were added to the minimum detection 

algorithm dtlimlai0, dtlimlai1, dtmin0, dtmin1, and tlailow were prescribed to 15, 25, 10, 25, 2, 2.5, 

and 0.4, respectively, based on the visual analysis of LAI time series that led to an error in the 

first phase. The other parameters (difmax, nbb) were calibrated. 

The evaluation was made at the plot level on 780 plots not used for the calibration with 

362 IPG plots and 418 NIG plots, which in detail their break down goes as 162 orchards; 100 

vineyards; 99 greenhouses; 20 dry grass; 33 field crops, and 4 lawns. 

 

2.5. Accuracy assessment 

Accuracy assessment remains an important aspect of mapping projects utilizing 

remotely sensed information [35]. The different classifications made in the study were 

evaluated using the overall accuracy (OA), the producer’s accuracy (PA), and Cohen’s Kappa 

index (K), all quantities being derived from the confusion matrix having the following terms: 

TG (well-classified irrigated grassland plots), FG (plot classified as irrigated grassland while 

not an irrigated grassland), TNG (well classified not irrigated grassland plots), FNG (irrigated 

grassland plot classified as not irrigated grassland ). 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 TG+TNG 

𝑇𝐺+𝐹𝐺+𝑇𝑁𝐺+𝐹𝑁𝐺
∙ 100       2

                                               

Producer’s accuracy corresponds to the error due to omission (exclusion). From the 

perspective of the land use map maker, it indicates how accurate is the map: for a given class, 

how many plots among the reference plots in the map were tagged accurately. It is defined for 

the IPG as ; 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TG 

TG+FNG
∙ 100         3 

The Cohen’s Kappa index (K) characterizes the map agreement with the ground truth 

after removing the chance factor. It is an indication of the adding value of the classification 

method, which is defined as ; 
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𝐾 =
overall accuracy – chance agreement

1− chance agreement
        4

                                               

where chance agreement is the probability of having a good classification by chance, which is 

defined by 

:chance agreement =  
(TG+FG)∙(TG+FNG)+(FNG+TNG)∙(FG+TNG)

(TG+FG+FNG+TNG)²
                                                 

   

2.6. Benchmark 

Different existing classification methods based on Sentinel 2 data were considered to 

assess the adding value of the new proposed method described above. First, we made a 

supervised classification based on the Support Vector Machine (SVM) method, which is rather 

common and powerful for discriminating two classes. The classification was carried out on 

cloud-free LAI images taken over the whole year. Due to the proximity of the coast, we have 

large cloudiness heterogeneities. To maximise the number of images, the Crau area was 

divided into 4 zones (A, B, C, and D) and for each zone, we selected the images according to 

the following two criteria: 1) the whole zone is cloud-free as well as 2) for the training polygons 

(Figure 3). As a consequence, the number of images used for the classification varied between 

12 and 25 in 2016, 13 and 33 in 2017, and 24 and 38 in 2018 according to the zones. The training 

dataset is similar to that used for the developed algorithm by taking randomly three pixels in 

every polygon described in the 2.5 section. The training was done for each year with the cloud-

free images selected for each of the 4 zones. The classification was then applied to each zone 

and aggregated over the Crau area to produce a binary image (IPG/NIG) per year. 

We also consider the THEIA land use map as a benchmark since it is implemented 

yearly over the whole national territory (https://www.theia-land.fr/ceslist/ces-occupation-des-

sols/). It is a supervised classification [36] based on random forest classification using all 

Sentinel-2 dates and the VIS and NIR bands and as auxiliary information the topography, the 

urban map, the Corinne Land Cover map, and the RPG (‘Registre Parcellaire Graphique) data 

which gathers farmer’s annual declarations to get subsidies from the European Union. 

Seventeen classes were identified with one dedicated to grasslands. In our study, the detection 

of one class, the grassland class, among the others was evaluated. The produced maps were 

given at the scale of Sentinel 2 10-meter pixels. 

The evaluation of the two benchmark classifications was done on the evaluation plots 

described in section 2.5. Therefore, each evaluation plot is classified according to the majority 

class (>50% of the pixels in the plot). 

 

3. Results 

3.1. Calibration 

The most important parameter is the smoothing parameter (df) whose effect is clearly 

illustrated in Figures 4-6. The goal of the smoothing is to remove signal oscillations that are 

not linked to mowing events (Figure 4). We observed that most of these undesirable 

oscillations correspond to short-term variations. Therefore, the smoothing should be strong 

enough to remove them (i.e. df < 15) but should not be too strong as some mowing events 

might be missed (i.e. df = 5). The calibration led to df = 10, which corresponds to an intermediate 

case in Figure 5. When applying the minimum detection on the smoothed LAI time series, we 

identified 3 events that are consistent with the mowing calendar (Figure 6). The rate of 

misclassified plots was about 13% after phase 1 (Table 3). The main source of error comes from 

the detection of NIG as IPG (9%) as shown in Figure 7.  
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Table 3. Calibration performance after the first and second phases on the calibration data set. TG represents well-

classified irrigated grassland polygons), FG, polygons classified as irrigated grassland while not an irrigated 

grassland, TNG, well classified not irrigated grassland polygons and FNG; irrigated grassland polygons classified 

as not irrigated grassland. 

Calibration phases Total plots TG TNG FG FNG 

First calibration phase 748 372 281 69 26 

Second calibration phase 748 416 304 25 3 

 

 

 

Figure 4. Observed LAI time series of an IPG pixel before smoothing, red dots correspond to LAI minimums that 

are not linked to mowing events. Green dots are LAI minimum linked to mowing event. 

 

Figure 5. Effect of degrees of freedom (df) of the smoothed algorithms on LAI times series of an IPG pixel. In blue 

the observed LAI, in grey, orange and yellow the smooth LAI times series with df equal 5, 10 and 15, respectively. 

In the presented case in Figure 7, the smoothing was not appropriate and some strong 

LAI oscillations were still present in the smoothed signal; thus, triggering the identification of 

false mowing events. However, the LAI values corresponding to the detected minimum were 

high and larger than what is expected with freshly mowed grass. An additional test on the LAI 

values at the detected minimum is a way to resolve the ambiguity displayed in Figure 7. The 
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analysis of such errors led to defining the series of tests and data manipulation as described in 

section 2.3 in steps 3 and 4, which parameters were characterized in phase 2. After this phase, 

we reduced the misclassified plots rate to less than 4%, with still a greater probability to miss 

a NIG than an IPG (Table 3). The final values of the parameters of the algorithm are reported 

in Table 2. 

 

 

Figure 6. Observed LAI time series (blue) and smoothed LAI time series (orange) of an IPG pixel. Green dots 

correspond to minimum LAI detected on the smoothed LAI time series. 

 

Figure 7. Observed (blue) and smoothed (orange) LAI time series of a NIG pixel detected as an IPG. The green 

dots correspond to the detected mowing events using the developed algorithm after the first phase of calibration. 

To illustrate the results of the algorithm, we selected an area covering two grassland 

plots surrounded by NIG area. The results obtained in 2019 are displayed in Figure 8 where 

letters represent the exact location of the pixel time series A, B, and C displayed in Figures 6, 

9, and 10, respectively. There is a clear difference in grass management with four mowing 

events in the northern plot and three in the southern (Figure 8) as illustrated in Figures 6 and 
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10. If the plots are mostly homogeneous, some areas with less mowing events can be seen at 

the plot boarder, in the middle corresponding to a ditch bringing the water, and, in some 

patches. The case of point A (Figure 9) indicates that the missed last mowing event is explained 

by low grass growth at the end of the season. The difference between the minimum and the 

maximum after harvest was below 1.5 (threshlai < 1.5) reflecting less productive area that might 

be induced by soil properties or the quality of the irrigation with heterogeneities induced by 

poor soil levelling. 

 

Figure 8. Results obtained after the second phase of calibration in 2019 showing locations of Fig. 6, 9, and 10. 

 

Figure 9. Observed signal (blue) and smoothed (orange) LAI time series of an IPG pixel showing two mowing 

events (green dots). 

 

A 

B 

C 
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3.2 Evaluation 

Results obtained on the evaluation data set are given in Table 4. Excellent results were 

obtained with an OA greater than 97% and a Kappa index between 0.94 and 0.99. The producer 

accuracy is equal to 100% for the NIG class, meaning that a parcel declared as a NIG is always 

NIG. This shows that the additional filtering can handle situations like the one shown in Figure 

7. The producer’s accuracies of the IPG class are a little less good, which means that some IPG 

plots are not detected. We will come back to this point in the discussion. There is also a year 

effect that appears clearly. For example, 2020 was the worst year, while the best results were 

obtained in 2018. The 2018 year is the wettest year during the summer, which might limit the 

irrigation pressure and therefore allowed good production throughout the cycle. In 2020 there 

was gap of 20 days in the measurements, which did not allow for the detection of the 

maximum grass development between the second and the third mowing events, leading to 

miss both of them. 

 

 

Figure 10. Observed (blue) and smoothed (orange) LAI time series of an IPG pixel showing four mowing events 

(green dots). 

Table 4. Summary of all the classification performances conducted in the Crau area. 

Year Overall accuracy Producer’s accuracy (IPG) Producer’s accuracy (NIG) 
Kappa 

indice 
 

Developed Classification  

Leaf Area Index (Sentinel-2) + proposed algorithm 

2016 97.7 95.2 100.0 0.96 

 

2017 99.1 98.3 100.0 0.98 

2018 99.7 99.4 100.0 0.99 

2019 98.8 97.5 100.0 0.98 

2020 
96.9 

 
93.8 99.7 

0.94 

 

THEIA Classification  

Satellite image + Land use data +Supervised classification 

2016 97.2 95.5 98.7 0.95 
 

2017 98.6 96.9 100.0 0.97 
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2018 98.4 97.8 98.9 0.97 

Classification via Support Vector Machine (SVM)  

Satellite images + supervised classification using SVM method 

2016 67.2 72.6 68.4 0.51 
 

2017 71 78.3 79.1 0.63 

2018 73.3 81.3 76.2 0.58  

 

These good results have to be tempered by the fact that IPGs are likely a class easy to 

detect as shown by the good results depicted in Table 4 with the THEIA classification 

approaches. However, our results are clearly better than those obtained with the SVM method, 

which means that algorithms based on artificial intelligence cannot necessarily capture the 

agronomic traits as used in our method. Although slightly better, our results are comparable 

to those of THEIA, which relies on a rich spatialized ground truth with the administrative 

census and Corinne Land Cover data. 

4. Discussion 

The proposed method was applied to the whole territory of the Crau area having 18058 

plots with an illustration given in Figure 11 for the year 2018, showing all plots of IPG (in 

green) and NIG (in red). We do not have any reference on the whole territory and we can 

therefore only make relative analyses. This was done by addressing the following two 

questions: i) what is the impact of classifying land use at plot scale compared to a pixel scale 

approach? ii) what is the evolution of irrigated areas between years and can it be linked to 

changes in land use? Finally, we discussed the novelty of the approach and its generalisation. 

 

Figure 11. Land use map using the developed algorithm in 2018. 
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4.1. Impact of plot aggregation in the classification process 

One of the constraints of the method applied in this work is that the land-use class is 

determined at the scale of a plot. We have seen in Figure 8 that the edges of the plot, the 

irrigation ditches within the plot, and certain less productive areas could lead to a lower 

number of mows and thus induce a misclassification of the pixel. It is also possible to have 

isolated pixels located in NIG areas that present several mowing-like events. Working at the 

plot level reduces the risk of error since the land-use class is based on a majority of pixels. 

However, a plot map with their boundaries is not always available, especially when large areas 

are considered. Furthermore, the plot map may contain errors generating errors in the areas 

counted or misclassification of an IPG plot when it includes a significant part (>10% in our 

case) of an area that is not an IPG. For inventory purposes, we can imagine applying the 

developed classification method at the pixel level rather than at the plot level. To see the 

impact of such a choice we compared the total surface over the Crau area obtained using either 

a pixel-based approach by counting the pixels classified in each class or a plot-based approach 

where we summed the surface of the plots per class.  

The pixels of the study site (the Crau) were taken from an extraction polygon that is as 

close as possible to the considered area being the aggregation of plots. As this area sometimes 

presents a bit complex boundary (Figure 10), the extracted polygon was drawn inside the area 

explaining the small differences in the total areas of the pixel-based and plot-base counting 

(Table 5). The percentages of IPG based on the plot-based approach ranged from 25-26% and 

74-75% for NIG while for the pixel-based approach, the percentages of IPG ranged from 22-

25% and 75-78% for the NIG. The underestimation obtained with the pixel-based approach, 

likely due to the plot boarder effect, remained however moderate.  
 

Table 5. Total surfaces obtained for IPG and NIG classes using the developed classification algorithm obtained 

with a plot aggregation or a pixel-based approaches. 

Plot-based approach 

 IPG NIG Total plots 

2016 13318 ha 40264 ha  53581 ha 

2017 13717 ha 39864 ha 53581 ha 

2018 13839 ha 39742 ha 53581 ha 

2019 13994 ha 39587 ha 53581 ha 

2020 13850 ha 39731 ha 53581 ha 

Pixel-based approach 

 IPG NIG Total pixels 

2016 11480 ha  40520 ha 52000ha 

2017 11770 ha 40230 ha 52000 ha 

2018 12345 ha 39655 ha 52000 ha 

2019 11561 ha 40439 ha 52000 ha 

2020 12758 ha 39242 ha 52000 ha 

 

4.2. Ability to detect land-use changes 

The proposed method implemented across the five years (2016-2020) gave us an 

overview of the consistency of the results from one year to another. Results are displayed in 

Table 6 by considering plots where the classification remains stable over the five years (i.e 

GGGGG and NNNNN classes), plots that met one change that can be attributed to a land-use 

change, and plot having several changes reflecting problems in their classification. In 91% of 
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the cases, perfect stability was observed. The analysis was made on plots presenting one 

change with spatial illustrations depicted in Figure 12. The figure shows that changes are 

spread over the area with plots of different sizes. The causes of the change were identified by 

analysing the high-resolution images acquired during the considered period. From these 

images, we can identify the following key features clearly: 

LUC: land-use change, most of them being IPG converted in urban areas, orchards or 

abandoned and vice versa 

EXPL: some plots have been levelled and resown, the algorithm can fail to classify such 

plots as IPG, especially during the first year after leveling because there is relatively very low 

vegetation growth. 

MGT: Some plots are very heterogeneous likely due to permanent grazing or irrigation 

problems such as the insufficient flow of irrigation water or a lack of levelling preventing a 

homogeneous water supply. 

In the other cases, hereafter labelled as ERR, there were no clear features that could 

explain the classification change during the considered period. 

Table 6. Composition of land-use change classes. (The Land-use type sequence corresponds to the five-year 

succession G and N corresponding to the IPG and NIG classes, respectively). 

Case ID Land-use type Sources of variations Number of plots >1 ha 

Consistent classification through the 5 years 

1 G G G G G  3156 

2  N N N N N   6623 

Plots presenting one land-use change through the 5 years 

3 G G G G N MGT (60); ERR (15) 75 

4 G G G N N MGT (34); LUC (15); EXPL (10) 59 

5 G G N N N MGT(40); LUC (40); EXPL (20); 100 

6 G N N N N MGT (21); EXPL (6); LUC (10) 37 

7 N G G G G MGT (139); EXPL (14); ERR (32) 185 

8 N N G G G MGT (27); LUC (7); EXPL(11); ERR (5) 50 

9 N N N G G MGT (20); ERR (5); LUC(6) 31 

10 N N N N G MGT (47); LUC (20); EXPL (3)  70 

Plots presenting ≥ 2 land-use changes through the 5 years 

11 G N G N G MGT(65); EXPL (25); ERR (10)  100 

12 All plots  331 

G=grassland; N=non-grassland. 
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Figure 12. Landuse change map 2016-2020 showing changes from IPG to NIG (green) and NIG to IPG (blue) with 

a zoomed part. 

Analysis of the data in Table 6 shows that over the 5 years, 607 (6%) plots presented 

one change in classification while 331 (3%) plots had at least two changes. The analysis of the 

high-resolution images on plots with time series presenting at least one change shows that 

when a plot is detected as an IPG it is always an IPG. On the 707 plots controlled, only one 

case corresponding to a young grassed orchard generated an error. This confirms the reliability 

of the algorithm when an IPG is detected as shown in table 4 with a producer accuracy close 

to 100%. Among plots with at least one year classified as IPG (class Id 1, 3-11 in Table 6), 19% 

have discontinuous NIG-IPG series over the 5 years. These plots are mostly related to 

heterogeneity problems (MGT) (in 66% of the cases) while in 27% of the cases, a real change in 

use (LUC) or a plot levelling (EXPL) was observed. If we consider the cases where the change 

is confirmed over the last 2 or 3 years (Case ID 4,5,8,9), the cumulative rate of LUC and EXPL 

features increased to 50%.  

This leads us to conclude that the use of long series (5 years) allows us to characterise 

the IPGs even when they present strong heterogeneities linked to irrigation defects or grazing 

during the summer period. The occurrence of IPG detection could be a marker of grassland 

management and might be used as information to refine the description of grassland systems. 

Detection of real land-use change needs confirmation of the change over several years (> 3 

years), which requires time series longer than 5 years to reduce the ambiguity between actual 

land-use change and classification errors induced by grassland management.  

 

4.3 Novel aspects and generalization 

Our study shows that a classification based on temporal signal with agronomic trait 

detection offers much better results than a supervised classification such as the use of the SVM 

method. This superiority is probably exacerbated with the detection of intensively farmed 

grasslands. Indeed, with grasslands, there is no strong seasonality in vegetation variation. 

Vegetation cycles are numerous and asynchronous between IPG plots making the 

identification of a specific grassland pattern in the data series across the whole Crau area 

difficult by a simple supervised classification algorithm like SVM. This comparison is 
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somewhat contradicted by the very good results obtained by THEIA, which also used a 

supervised random forest classification. However, the a priori knowledge on the territory 

integrated in the classification can have a very important weight in the obtained performances 

and it would be interesting to analyse the impact of remotely sensed classifiers on the results. 

If classification approaches based on agronomic traits detection are efficient, they remain 

specific to a given class of land use and are not adapted to simultaneously identify a large 

number of classes as could be done by usual classification methods. Thus, a complementarity 

between methods might be foreseen, approaches based on the temporal signal being dedicated 

to answering some specific questions requiring a good accuracy on a given land use class as 

for IPG in the Crau area. 

The advantage of our method is that it does not require supervised learning even if 

some calibration was required on a few plots. The question is then to establish to which extent 

our approach is generic and implementable in other contexts. First, we found that a single set 

of parameters was suitable for the five years. Analysis of the classification errors has shown 

that classification errors come more from ground problems (plot heterogeneity, management 

variability) and the timing of the LAI time series than the detection algorithms itself. Thus, we 

can reasonably support the idea that calibrated algorithms can be applied to any year. The 

implementation of the development method to other territories needs to be examined more 

carefully. Most of the parameters (10 over 16) were prescribed either from agronomic 

knowledge (dta1, dtb1, dta, dtb, tminlai0, tminlai1, dtmin0, dtmin1, tlailow) or on visual analysis 

on some problematic LAI time series (difmax). We think that these parameters can be adapted 

to other contexts. As far as the calibrated parameters are concerned, they have to be considered 

individually. nbb and fd are related to the temporal frequency of the images. It is conceivable 

that in a cloudier context, they may have to be revisited. threshlai and tlaimin are related to the 

temporal dynamics of the LAI of grasslands, which is influenced by the plot management and 

the soil and climate conditions. But with a good knowledge of the grasslands of the targeted 

territory, it should be possible to give an estimation for both parameters. This was the case in 

our study with tlaimin whose values were explored over a narrow range (from 4.0 to 4.5). The 

filtering of outliers with tlaimax seems to us to have a generic scope while the pixperc parameter 

could be the most impacted by new contexts with different intra-plot heterogeneities. In 

conclusion, we think that adaptations of the parameters based on the knowledge of the 

territorial characteristics of the grasslands should allow good accuracy. A calibration will 

undoubtedly be necessary to obtain the precision levels obtained in our study but this must be 

done only once for all years.  

Several algorithms, comparable to the one above, have recently been published [23, 24, 

26, 27]. While the approaches used are similar, the solutions for filtering the signal from 

atmospheric remaining effects and detecting drops in the time series of vegetation indices are 

very different. It is however difficult to compare our results with those of these studies since 

in our work we are interested in the identification of grasslands whereas in the other studies, 

it is the number of mowing events that is sought. In all cases, the timing of the time series and 

the diversity of the grasslands due to their management or heterogeneity lead to detection 

errors. In spite of the good scores obtained in our classifications, we had mowing detection 

errors which did not necessarily led to a classification error, since the observation of two events 

is sufficient to classify the IPG even though they are mowed three or four times a year. We can 

also point out that the complexity of the mowing detection algorithms is largely due to 

anomalies in the temporal series of the vegetation index. This could be simplified if the data 
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were better filtered upstream and there is no doubt that this will be possible in the future. In 

this sense the approach in [27] to improve cloud masks is interesting. 

 

5. Conclusions 

A new algorithm for the identification of Irrigated Permanent Grass (IPG) was 

developed in this study. It is based on the detection of agronomic traits thanks to the possibility 

offered by the Sentinel 2 mission to provide frequent images of the vegetation development. 

In our area located in the Mediterranean about 40 images per year can be exploited during the 

period of interest (mid-April to October ending). IPGs were classified by detecting mowing 

events assuming that a pixel is an IPG when at least two mowing events were detected. The 

developed classification method offers very good results, better than that obtained when using 

supervised classification as SVM or land use product as the THEIA product covering the 

French territory. The method presents the advantage of not depending on training samples, 

even if some calibration was necessary to fix some thresholds and deal with the remote sensing 

signal noise. We believe that calibration effort will likely be lower when addressing IPG 

detection in other geographical contexts. Moreover, once established the algorithm can be 

applied directly to another year.  

Despite the good performance of the developed algorithm, it is faced with some 

constraints that lead to failure to detect mowing activities. For instance, when there is 

relatively very low biomass or a heterogeneous plot, the developed algorithm tends to fail by 

missing some mowing events. This can be seen as a weakness, but our analysis has shown that 

the IPG class covers several management modalities. Depending on the objectives, such a 

weakness can be a strength to characterize different production systems. In addition, the 

detection of mowing should make it possible to understand the technical itineraries and to 

provide information to inform the farming practice heterogeneities over large territory to 

implement crop models. Real changes in use can be observed, but long time series are needed 

to confirm the change and remove ambiguities with heterogeneous grasslands. 

In general, one can question the relevance of relying on agronomic traits specific to 

certain types of land use to map them. In this work, we have relied on a clear, specific, and 

somewhat caricatural trait and this has allowed excellent results. The results in the literature 

are not necessarily as precise, probably due to less clear specific features that can lead to 

ambiguities. We believe, for example, that the separation of vineyards and orchards, which is 

important to map different irrigation strategies, may be more difficult to characterize. 

Moreover, it was found that the method requires frequent acquisition to catch the events of 

interest. For locations with frequent cloud cover, combining optic and radar images can be an 

option to overcome the lack of optical data. 
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Chapter 4 

Delineation of orchard, vineyard, and olive trees 

based on phenology metrics derived from time 

series of Sentinel-2 
4.1 Intention note 

Water management is a critical issue in areas under irrigation. To supervise plant water 

needs across vast terrains, an interesting tool is remote sensing which can provide useful 

information on land cover and crop development (Tucker, 1979). 

Irrigated perennial woody fruit trees are among the major water users in Southern 

France and there is a need to accurately identify these crop types. However, the delineation of 

irrigated woody fruit trees remains difficult because of their structural heterogeneity. At the 

regional scale, a large spatial variability is observed due to different management practices 

(inter-row with grass or bare soil, different irrigation techniques…)The limitation of mapping 

orchards from remote sensing is also due to the difficulties in separating different fruit trees 

or species (Usha and Singh, 2013). Approaches based on the analysis of specific temporal 

patterns generated from satellite image time series (SITS) appear as interesting methods to 

classify heterogeneous crops (Masialeti et al., 2010; Odenweller and Johnson, 1984; Pena et al., 

2017; M.A. Peña and Brenning, 2015). 

Some key phenological traits such as the start of the season (start of greenness), length 

of the season (peak of greenness), end of the season (senescence), etc. can be identified when 

exploiting multi-temporal time series to aid in accurate delineations. This work has used a 

classification based on phenology metrics (PMs) derived from the Sentinel-2 time series to 

separate orchards, vineyards, and olive trees. A large dataset from the ground survey is used 

as a reference to calibrate and validate the method.  The method was applied on two different 

sites in South-Eastern France. Overall accuracies ranged from 89-96% and Kappa of 0.86-0.95 

(2016-2021), respectively. This method gave higher performances than standard supervised 

classifications based on the use of a learning data set with random forest algorithms. 

Résumé 

La télédétection est un outil largement utilisé pour cartographier les cultures. De nombreuses 

études sont basées sur des méthodes de classifications supervisées qui requièrent des bases de 

données de référence qui sont parfois coûteuses à acquérir sur le terrain. L’identification des 

couverts tels que les vignes, vergers et oliviers reste toujours un challenge car l’hétérogénéité 

de ces cultures conduit à un signal spectral et temporel complexe à analyser. Par ailleurs ces 

cultures présentent une grande variabilité de pratiques agricoles (inter-rang enherbé ou non, 

différents types d’irrigation…) ce qui conduit à des signaux radiométriques mélangeant les 

contributions de la canopée et du sol. Des approches basées sur l’analyse de séries temporelles 

présentent l’avantage de limiter l’acquisition de données de références pour cartographier les 
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cultures. Ce chapitre porte sur le développement d’une méthode de classification basée sur 

des grandeurs phénologiques (PM) dérivées de la série temporelle Sentinel-2 pour distinguer 

les vignes, vergers et oliviers. La méthode a été appliquée sur deux sites agricoles différents 

dans le Sud-Est- de la France, la Crau et le bassin de l’Ouvèze. Les PM ont été calculées en 

ajustant un modèle logistique double sur les profils temporels des indices de végétation. Les 

PM générés ont ensuite été introduits dans un algorithme de classification de type random 

forest (forêt aléatoire (RF)). En comparant différents indices de végétation, les résultats ont 

montré que l'indice de surface foliaire (LAI) avait le score le plus élevé pour distinguer les 

vergers des vignes. Pour délimiter la classe des oliviers, L’usage d’un autre indice basé sur le 

ratio des bandes verte et proche infrarouge (GCVI) indice de végétation de la chlorophylle 

verte (s’est plus avéré plus performant pour identifier les classes visées. Les précisions globales 

obtenues varient de 89 à 96 % avec des valeurs pour l’indice Kappa de 0,86-0,95 (2016-2021), 

respectivement. Ces précisions sont nettement supérieures aux précisions obtenues lorsque 

l’on applique une classification de type RF en considérant toutes les valeurs de LAI (Kappa 

compris entre 0,3 et 0,52). Ces résultats montrent l'intérêt d'utiliser les traits phénologiques 

plutôt que les séries temporelles brutes des données de télédétection. La méthode peut être 

bien reproduite chaque année sans requérir de données supplémentaires. 

Mots-clés : classification des cultures ligneuses ; Sentinel-2 ; phénologie des cultures ; olivier ; 

verger ; vignobles ; Méditerranée. 

4.2 Graphical Abstract 
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Abstract: This study aimed to propose an accurate, and cost-effective 

analytical approach for the delineation of fruit trees of orchards, 

vineyards, and olives in Southern France considering two locations. A 

classification based on phenology metrics (PM) derived from the Sentinel-

2 time series was developed to perform the classification. The PM were 

computed by fitting a double logistic model on temporal profiles of 

vegetation indices to delineate orchard and vineyard classes. The 

generated PM were introduced in a random forest (RF) algorithm for 

classification. The method was tested on different vegetation indices, the 

best results being obtained with the leaf area index. To delineate the olive 

class, the temporal features of the green chlorophyll vegetation index 

were found to be the most appropriate. Obtained overall accuracies 

ranged from 89-96% and Kappa of 0.86-0.95 (2016-2021), respectively. 

These accuracies are much better than applying the RF algorithm on the 

LAI times series, which led to a Kappa ranging between 0.3 and 0.52 and 

demonstrates the interest of using phenological traits rather than the raw 

time series of the remote sensing data. The method can be well 

reproduced from one year to another. This is an interesting feature to 

reduce the burden of collecting ground truth information. If the method 

is generic it needs to be calibrated in given areas as soon as a phenology 

shift is expected.  

Keywords: woody crop classification; Sentinel-2; random forest; crop phenology; 

olive, orchard, vineyards; Mediterranean. 
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1. Introduction 

Among the several hazards of climate change and global warming on natural 

resources, the most significant threat is its implication on the accessible availability of 

freshwater. Unequivocally, the agricultural sector is the highest consumer of water universally 

with irrigation accounting for about 70% of freshwater withdrawals [1–3]. Thus, supervision 

of irrigation activities is crucial to buttress the execution of water management policies and to 

improve water use productivity [4,5]. Supervision of irrigation activities not only encompasses 

spatial assessments of areas under irrigation but also irrigation strategies [4–7], which differ 

between crop systems [8]. Therefore, mapping the different irrigated crops is an important 

issue in water management, particularly in the Mediterranean region which is sensitive to 

variations in agricultural activities and land use due to its exposure to excessive climatic 

threats [9]. Irrigation patterns and water quantity depend on crop type and associated 

irrigation methods for instance flooding irrigation applied to grassland, which mobilizes a 

great quantity of water while drip irrigation applied in horticultural production leads to 

frequent water supplies but with much less water. If numerous works address irrigated crop 

delineation less attention has been paid to the delineation of perennial woody crops such as 

fruit trees of orchards, vineyards, and olive groves that are common in the Mediterranean. 

Crop classification from remote sensing data is a field that has been widely studied for 

decades and is gaining interest with new satellite missions such as the Sentinel missions that 

have considerably improved temporal resolution and spectral richness. Progress in the 

identification of grasslands and field crops is undeniable [9–11]. On the other hand, the case 

of woody perennial crops such as fruit orchards, vineyards, or olive groves might pose more 

problems and progress is still possible. The difficulty comes mainly from the fact that these 

covers have a great diversity of development because of the age of the plantation, their density, 

the mode of management such as pruning, and the confusion that there can be with other plant 

covers (non-irrigated meadows, wetlands...). 

Concerning woody crops, high-resolution Landsat TM images were used to identify 

crop classes (olive and citrus) in Marrakech, Morocco using the temporal profile of normalized 

difference vegetation index (NDVI) simply by setting a threshold of maximum and minimum 

values of the NDVI across the season [12] leading to an overall accuracy (OA) of 83%. Peña et 

al. [13] classified fruit trees by comparing Landsat 8 image times series considering the full 

band, the normalized difference water index (NDWI), and the normalized difference 

vegetation index (NDVI). The best results were obtained using the full spectral information, 

in particular with visible and SWIRS bands (OA = 94%).  while the NDVI led to the worst 

results. They tested the interest of dates and highlighted that the beginning (greenness) and 

end (senescence) of the growing cycle were the most significant phases for the separation. They 

obtained an OA of 94% with four dates. The interest in image acquisition during the greenness 

period was confirmed in [14]. In this study, it was demonstrated that up to seven types of 

orchards can be classified by considering all Landsat 8 spectral bands as well as a combination 

of bands. Recently tree fruits crop type mapping was conducted in Egypt by examining 
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various temporal windows, spectral approaches, and several combination methods between 

S1 (Sentinel-1) and S2 (Sentinel-2) data inserted into RF [15]. Good accuracy was found with 

S2 alone while improvement was found by combining the textural S1 information with the 

spectral S2 observations, which led to an OA of 96%. In [16] a classification was done to 

delineate apple orchards, vineyards, and annual crops in Iran. Phenology was used to select 

the optimal dates. By combining S1, Landsat 8 images, and the digital elevation model, an OA 

of 89% was obtained. Another recent study was conducted in Juybar, Iran where an automatic 

approach to map citrus orchards was implemented using S1 and S2 and the ALOS digital 

surface model (DSM) [17]. Without training and by considering a very large number of images 

(148), textural, and spectral features, it was possible to separate citrus and non-citrus surfaces 

with an OA of 99.7%. The approach is a very favorable case with evergreen trees (citrus), which 

presents a contrast with the other surfaces. These studies have shown that good results can be 

obtained with perennial woody crop mapping. The quality of the results obtained came from 

the number of images used, the choice of the dates considered, and the complementarity 

between spectral indices in the optical domain and textural indices derived from SAR images. 

The quality of the classifications also came from the specificity of the signatures of the various 

covers. In this respect, the phenology makes it possible to target the dates of observation to be 

considered in particular during the phases of greenness and senescence. In past studies, 

phenology is not used directly as a classification criterion but more to determine optimal dates. 

The use of phenological traits may present advantages in the exploitation of time series by the 

fact that they are relatively independent of the dates of acquisition. This can be interesting in 

a situation where partial cloud cover is frequent in the temperate zone, and can disturb the 

homogeneity of the time series from one point to another in the area to be mapped. This can 

considerably disturb the learning algorithms. 

Conventional crop phenology also termed ground phenology (GP) [18] is the particular 

re-occurring events of crop life traits like budburst, leaf development, senescence, flowering, 

and maturity [19], which is laborious to collect, time-consuming and expensive as well [18,20]. 

These GP observations correlate to key particular plant physiological activities that govern 

natural resource uptake by plants. Despite GP remaining objective and precise, its 

characterization over a wide-scale area remains a challenge [21]. Satellite remote sensing is 

capable of offering time series on vegetation development with a short revisit period, which 

can serve as a source of data to monitor vegetation phenology at a local and regional scale with 

proxies termed land surface phenology (LSP) [22]. Phenology metrics (PM) obtained from the 

analysis of vegetation indices time series were often used to characterize the LSP [23–25]. In 

the past, most of the studies related to crop phenology were done using medium-resolution 

sensors (MODIS, AVHRR) allowing frequent acquisition over the whole globe [18]. The 

spatiotemporal resolution was enhanced by combining those medium-resolution sensors, with 

high-resolution (LANDSAT) [26,27]. Most research on LSP carried out using information from 

these satellite sensors is faced with a drawback of mixed pixels and thus, restricted in their 

implementation across complex or fragmented terrains [28]. Such a drawback can be now 

overcome by using S2, which allows accurate supervision of crop changes [29]. PM are linked 

to the variation of the seasonal pattern in cropland surfaces derived from satellite observations 

[30]. The most common patterns are the start of the season (SOS), the peak of the growing 

season (POS), the end of the season corresponding to the senescence (EOS), and the length of 
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the season (LOS) [30,31]. In other terms, in a growing year season, the major phases of 

phenology controlling the spectral patterns of vegetation are (i) the date of photosynthetic 

commencement (green-up), (ii) the date of maximum plant green leaf (maturity), (iii) the date 

of decline in photosynthetic activities (senescence) [32]. The mentioned PM are normally 

computed from the common normalized difference vegetation index (NDVI) or other popular 

indices for instance [31,33]. But despite that, the NDVI method can bring some drawbacks, like 

restricted sensitivity to vegetation photosynthetic dynamics [34] while biophysical variables 

like LAI (leaf area index) can improve the PM, particularly for farmlands. The use of 

phenology as a classifier for crop mapping has been applied in many studies. In [35] PM (SOS, 

EOS, LOS, and the peak integral reflecting the photosynthetic activity) were derived from 

MODIS NDVI time series using the TIMESAT algorithm [36] and used to characterize different 

agricultural systems (fallow, rainfed crop, irrigated crop and irrigated perennial). It was 

shown that the PM were able to monitor agricultural system evolution across two decades 

2000-2019 with an OA ranging from 93% and 97%. In that case, irrigated perennials were 

evergreen orchards (citrus) which makes the distinction with annual crops easier. According 

to [37], they developed a phenology-based approach to delineate wheat and barley by 

identifying the heading date using temporal feature of the different S2 bands. Good results 

were obtained (OA of 76%) across three sites in Iran, and the USA (North California and 

Idaho). These studies, among others, have shown that the PM can be used as a classifier to 

map crops. The quality of the results depends very much on the specificity of the temporal 

signatures of the different crops to be identified and the diversity of plant cover that can be 

found in a given class. Moreover, the added value of using PM rather than time series of 

spectral and/or vegetation index data was not yet demonstrated. 

The objective of this study is to characterize the main classes of perennial woody crops, 

namely fruit orchards (OC), vineyards (VY), and olive groves (OL), which are cropping 

systems with different irrigation strategies. Within these classes, there is a great diversity of 

situations marked by the type of cover, pruning practices, or soil management in the inter-

row. To address this diversity of situations we intend to rely on phenological traits to identify 

the crops studied in this work. Such approaches have proven to be successful in the 

identification of annual crops and we assumed that such approaches could be interesting for 

perennial woody crops. Indeed, we believe that if the diversity of the characteristics of a type 

crop due to their management and their ages can lead to variable remote sensing signatures, 

these crops share the same phenological traits. The study is carried out on two sites about 100 

km apart but with different climatic conditions and plant cover other than the desired 

perennial woody crops. The challenge will be to evaluate the performance of classifications 

carried out with PM, to analyze their added value in comparison with approaches based on 

the time series of vegetation index, and to establish the genericity of a classification model 

from one year to another or from one site to another. 

2. Materials and Methods 

2.1 Study sites 

The study was conducted across two different locations in South-East France namely 

the Ouveze-Ventoux and the Crau area (Figure 1). These study sites are representative of the 

Mediterranean with a strong diversity of cropping systems including fruit orchards (cherries 

plums, peaches apricots), olives, and vineyards.  
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Figure 1. Map of France depicting the two selected study sites (Ouveze-Ventoux and Crau). 

The Ouveze-Ventoux is located at 44° 10' N and 5° 16' E (with the lowest and highest 

elevation of 230 and 630 m a.s.l) in the South France of the Provence region with a surface area 

of 59 km2 and forest and semi-natural environments inhabiting about 57.7% [38], associated to 

specific bioclimatic and geomorphological surroundings. It has the typical Mediterranean 

climate identified by cold and moist winters and dry and hot summers. Annual precipitation 

is about 750 mm per year, annual mean temperature of 12.6°C; The number of plots on Ouveze-

Ventoux is about 3500 of which OC occupied about 40% (1413), and VY occupied about 34% 

(1186) of the cultivated area. 

The Crau is positioned between 43° 38' N and 5 °00' E (5m a.s.l) close to the Rhône delta 

in South Eastern France with a surface area of 600 km2 and a typical Mediterranean climate 

[10]. The annual average rainfall is 600 mm (non-uniform). Potential evapotranspiration of 

1100 mm and mean air temperature of 14.8 °C [9,39,40]. The soils are shallow ranging from 60-

80 cm having 90% stones making water retention capacity to be very low. Soils irrigated via 

flooding methods have a loamy surface soil layer from the constantly deposited sediments 

leading to a layer depth of about 60 cm depending on the length of the irrigation period [9]. 

The water used for flooding irrigation contributes to more than 75% of the groundwater table 

which is used for irrigation of intensive orchards and market garden productions, domestic and 

industrial purposes to about 280,000 people around the southern part of the area [39,40]. The 

number of plots in Crau is about 17980 of which OC occupied about 11% (2050), VY occupied 

about 4% (790) and OL occupied about 5% (1050) of the cultivated area. 

2.2. Ground truth information 

The collection of ground truth data was conducted in the two study areas during the 

2016-2021 period. Plot boundaries were drawn in both sites, starting from the cadastral survey 

and the RPG (Régistre Parcellaire Graphique), which is used for subsidy allocation to farmers. 

The boundaries were fine-tuned using an aerial picture to isolate homogeneously managed 
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surfaces. The whole area was therefore segmented with 17980 and 3501 plots in the Crau and 

Ouveze-Ventoux areas, respectively (but 16680 and 1601 plots were used in this study due to 

the exclusion of 20 meters from each plot boundary to avoid the effect of mixed pixels at the 

plot border). A subset of the controlled plot was surveyed and identified, and crop types were 

taken into note during field visits. In the Ouveze-Ventoux study area, a total of 234 plots 

(Figure 2) were identified as OC, and other classes (DC), which encompasses field crops, dry 

grasslands, and greenhouses. In the Crau study area, a total of 243 (out of 18058) plots were 

selected of which are OC, (35), (60), and DC (60) encompassing greenhouse, dry grass, forest, 

field crop, irrigated grassland, and wetland. Aerial photographs from IGN (the French 

national mapping service) and Google Earth images collected during the 2016 to 2021 period 

were used to understand anomalies found in vegetation time series derived from satellite, 

principally to assess surface heterogeneity and change in management between field visits. 

The number of plots in each class is given in Table 1. Fields were split into two groups 

dedicated to the training and the validation. As there are very few numbers of olive plots, the 

OL class was not considered in the Ouveze Ventoux site. 

 

 

 

Figure 2. Map of the two study areas displaying locations of the selected ground truth plot. 

 

Table 1. Ground truth information of the two study sites used for model calibration and validation during 2016-

2021. 

Ouveze Ventoux site Crau site  

Land use Ground data       Land use Ground data  

 (number of plots)                        (number of plots)  

OC 60        OC                   88              

VY 100        VY                   35  

OL -        OL                   60  

DC 74        DC                   60        

 

2.3 Satellite data 

In our study, time-series of Sentinel-2 (S2) optical images were utilized and were 

obtained from both Sentinel-2A and Sentinel-2B of all dates in a given year within the 2016-

2021 period considering the visible (B2, B3, and B4), the near-infrared (B8 and mid-infrared 

(B11 our B12) bands. We utilized the open-source service center to obtain images 

Ouveze-Ventoux Crau 
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(https://www.theia-land.fr/, accessed on 17 May 2022), it offers cloud treatments (cloud mask) 

to eliminate pixels influenced by clouds (images with > 30% cloud cover), and for this obvious 

reason, the number of images utilized vary across study sites and years. Since Sentinel-2B 

satellites were functional in the time of 2017, lesser dates were obtained from the 2016-2017 

year. The number of cloud-free images (with <30% cloud cover and subsequently masked) 

used for each year across the two study sites is reported in Table 2. An additional cloud 

filtering was added when creating the time series for each plot. The dates for which there was 

at least one pixel in the considered plot impacted by clouds were removed. This led, for a given 

site, to have time series with different dates from one plot to another. 

Table 2. Number of cloud-free available images across the two study sites used for the classification 

S/N Year Ouveze-Ventoux Crau 

1 2016 39 43 

2 2017 45 49 

3 2018 52 55 

4 2019 51 56 

5 2020 49 52 

6 2021 50 51 

 

2.4 Vegetation indices and biophysical variables. 

To begin with, various vegetation indices and biophysical variables were utilized for 

spectral-temporal analysis which was subdivided into those highlighting greenness like the 

popular normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), 

green chlorophyll vegetation index (GCVI) to those highlighting moisture like normalized 

difference moisture index (NDMI), land surface water index (LSWI), and finally on biophysical 

variables like leaf area index (LAI), fraction vegetation cover (FCOVER) and the fraction of 

absorbed photosynthetically active radiation (FAPAR) as summarized in Table 3. The 

biophysical variables used in this study were computed with the BVNET algorithm by 

utilizing the B2, B3, B4, and B8 bands. The algorithm is robust and has been fused into the S2 

toolbox developed by the European Space Agency, it operates on the principles of neural 

network calibrated (trained) on simulated spectral reflectance utilizing a radiative transfer 

model [41] and time series of LAI implemented across every 10-m spatial resolution. In each 

plot polygon across the two study sites, a buffer of 20 meters was removed to avoid the impact 

of mixed pixels at the plot boundary. The plot mean was computed by averaging the 

vegetation indices of all pixels in a given buffered polygon using the zonal statistics function 

in R [(“Zonal statistics in R | GeoProfesja,” 2016)] which was the values taken for the land 

classification.  
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Table 3. List of tested vegetation indices and biophysical variables 

 

 

2.5 Time series Metric derivation for classification 

In our study, vegetation indices time series were fitted to an analytical model that 

represents the development of plants in relation to their phenology and uses the parameters 

of such relationships (PM) as a classifier used in the land classification. This is a significant 

variation from conventional classifiers which target directly vegetation indices or diffusion of 

surface reflectance. The double sigmoid fitting function is shown in Equation 1 [51,52] fitted 

to the raw vegetation index time series using a non-linear least square method (nls function in 

R). 
 

𝑉(𝑡)  =  𝑣𝑚𝑖𝑛 + 𝑣𝑎𝑚𝑝 ( 
1

1+𝑒𝑚1−𝑛1𝑡 −
1

1+𝑒𝑚2−𝑛2𝑡)           (1) 

Where V(t) stands for a given vegetation index at time t, vmin, and vamp are minimum 

(background greenness) and amplitude parameters of one year respectively, m1, n1, m2, and 

n2 are parameters controlling the curve shape (Figure 3). Some critical points are important to 

highlight as t1 = m1/n1, which is the inflection point within the growth period while t2 = m2/n2 

corresponds to the inflection point at the end of the season during the leave senescence phase. 

Full name Index Formula Reference  

Canopy greenness-related vegetation indices    

Normalized Difference Vegetation Index NDVI 𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

[(Rouse Jr 

et al., 

1973)] 

Green Normalized Difference Vegetation 

Index 

GNDVI 𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

[(Gitelson 

et al., 

1996)] 

Enhanced Vegetation Index EVI 
2.5 ∗

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝐸𝐷 − 𝐶2 ∗ 𝐵𝐿𝑈𝐸 + 𝐿
 

[(Huete et 

al., 2002)] 

Transformed Soil Adjusted Vegetation Index TSAVI 
𝑎 ∗

𝑁𝐼𝑅 − 𝑎 ∗ 𝑅𝐸𝐷 − 𝑏

𝑅𝐸𝐷 + 𝑎 ∗ (𝑅𝐸𝐷 + 𝑎(𝑁𝐼𝑅 − 𝑏) + 𝑐 ∗ (1 + 𝑎2)
 

[(Baret et 

al., 1989)] 

Atmospherically Resistant Vegetation Index ARVI 𝑁𝐼𝑅 − (𝑅𝐸𝐷 − 1 ∗ (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷))

𝑁𝐼𝑅 + (𝑅𝐸𝐷 − 1 ∗ (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷))
 

[(Kaufman 

and Tanre, 

1992)] 

Green Chlorophyll Vegetation Index GCVI 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 [(Gitelson 

et al., 

2006)] 

Water-related vegetation indices    

Normalized Difference Moisture Index NDMI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅12

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅12
 

[(Gao, 

1995)] 

Land Surface Water Index LSWI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 

[(Xiao et 

al., 2005)] 

Biophysical variables    

Leaf Area Index LAI  [(Weiss et 

al., 2002)] 

Fraction Vegetation Cover FCOVER  [(Weiss et 

al., 2002)] 

Fraction of Absorbed Photosynthetically 

Active Radiation 

FAPAR  [(Weiss et 

al., 2002)] 
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Quantities t1 and t2 can be used as proxies of the start of the season (SOS) and end of the season 

(EOS), respectively [53]. Parameters n1 and n2 reflect the slope at the inflection points, t1, and t2.  

 

Figure 3. Double logistic fitting showing SOS and EOS. 

 

With deciduous trees and annual crops, t1 occurs when leaves are growing while t2 

corresponds to leave senescence. It is expected that parameters involved in equation 1 or their 

derivatives are specific to a given crop and thus can be used in calibration schemes. 

Furthermore, since t1 is strained by the whole structure of the phenology, it is rarely impacted 

by noise while t2 is more undetermined for trees since defoliation is slow which relies on water 

accessibility and conditions of weather [54]. The PM used in this study includes all these 

parameters (vamp, vmin, m1, n1, m2, n2, t1, t2) plus the residual standard deviation (std) 

characterizing the difference between the fitted curves and the data. Some fitting examples are 

given in Figure 4. It shows that whatever the temporal dynamic of the vegetation, Equation 1 

can be calibrated. However, when the curve does not follow the expected double logistic 

shape, as with a mowed grassland (Figure 4a) the std is high and the phenology timing given 

by t1 and t2 (t1=200 and t2=330) is significantly different in the presented case from that of an 

orchard or a vineyard. We expected that those parameters might be considered by the 

classification algorithm and thus would lead to the field classified as DC. 
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Figure 4. DC class with the fitted curve (a), VY class with the fitted curve (b), and OC class with the fitted curve 

(c).  

 

2.6 Classification method 

Land use classification was made using a machine learning (ML) approach. Among the 

ML approaches, random forest (RF) is often used for land use classification. The approach is 

based on decision trees that can handle a lot of variables [55,56] which was the case in this 

study [56]. The RF method is a non-parametric ML approach that displays good results when 

compared to the conventional parametric approaches [37]. We optimized the performance of 

the RF model by tunning (automatically done) on two significant parameters namely mtry 
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(indicates the number of predictors tested at each tree node) and ntree (displays the number of 

decision trees runs at each iteration), the accuracy of the classification was enhanced by 

tunning on the number of ntree (after starting with the default value of 500 trees) using 

hyperparameter tuning for each year and each site, the justification for such tunning according 

to the site is that each year has its specific features thus, we adopted the value that leads to the 

best performance of the classifier. Finally, the model output is decided by the number of a 

majority of votes by the classifier ensembles.  

Regarding remote sensing and land surface phenology mapping, the RF classifier 

remains an effective approach [35] thus, for classification accuracy assessments ground truth 

information was equally split into two batches for each class namely calibration (50% 

proportional distribution from each class in the target population) and evaluation (50% from 

each crop class) datasets utilizing a spatial cross-validation method from the CAST package in 

R [57]. The aforementioned spatial cross-validation aid ensures the selected ground truth data 

of a similar field will be apportioned either in the calibration or evaluation dataset to keep 

away from over-fitting. Accuracy evaluations were done by the confusion matrix which gives 

the number of plots well classified on the diagonal and the number of erroneous detections 

between classes outside the diagonal with predicted class in column and actual class in line 

[58]. Accuracy metrics for the classification results include overall accuracy (OA), Kohen’s 

Kappa which removes the chance factor, user’s accuracy (UA), and producers’ accuracy (PA). 

These metrics were computed directly from classification routines or using the CARET 

package in R [58] when the classification was done with different steps. 

3. Results 

3.1 Analysis of temporal profile for orchard, vineyard, and olive trees to derive phenology metrics 

In both areas, OC and VY trees are deciduous and therefore exhibit a similar temporal 

pattern that is characterized by a maximum plateau in the summer. However, despite the close 

resemblance in the temporal patterns, there are still some significant features that can be used 

to separate them. For instance, OC trees mostly have SOS during 60-80 DOY and 100-120 DOY 

time intervals in the Crau and Ouveze-Ventoux areas, respectively. With VY, such intervals 

are delayed by about 30 days in both areas (Figure 4). Moreover, the growth rate with 

vineyards is more gradual. The differences between the areas are explained by the type of 

orchards and the climate, the Ouveze area being located more to the North with higher 

altitudes and thus lower temperature, which induces delays in phenology. The level of the 

plateau is variable. It depends on the age and density of the stands. However, in general, the 

values obtained in summer by the VY remain lower than those of the OC, except for the 

irrigated VY dedicated to table grapes. The LAI variations in mid-season can be variable 

according to the inter-row management and pruning practices. For a given field, the temporal 

features remain rather stable between years meaning that the classification algorithms might 

be applied over different years. 

OL groves are observable in the Crau. The fact of having evergreen leaves leads to a 

very different temporal signature in comparison to that of OC and VY with variations rather 

governed by the soil cover. For the other surfaces (DC class), there is a great diversity of 

temporal signatures. For many of them, very different evolutions are observed (market 

gardening, irrigated meadows, dry meadows) from the previous cases, while ambiguities 

could appear with some surfaces such as wetlands which also show a seasonality comparable 

to OC plots. 
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Figure 5. Temporal profile of DC (a), VY (b), OC (c) in Ouveze-Ventoux and temporal profile of DC (d), VY (e), 

and OC (f) in the Crau site. 

3.2 Selection of indices and biophysical variables using the proposed method. 

Different vegetation indices related to canopy greenness, water, and, biophysical 

variables were analyzed to make the selection of the best indices and biophysical variables for 

the year 2021 in the Ouveze-Ventoux site. For all indices and biophysical variables, we fitted 

the double logistic model to infer the PM. These PM together with statistical parameters 

qualifying the quality of the fit (std) were used as input in the RF algorithm to separate three 

classes: OC, VY, and DC. If all the considered variables representing vegetation development 

led to comparable results, the best results were obtained with LAI (Table 4). Moreover, using 

such a quantity is an advantage since it is directly comparable to field observations which 

facilitates its interpretation and thus the establishment of thresholds that could be useful to 

conduct the classification [10]. Additionally, a further comparison was conducted from 2020 

to 2018 (years with larger data acquisitions dates when both Sentinel 2 satellites were operated) 
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among the best two performing vegetation indices (NDVI and TSAVI) and LAI. This is to 

ensure that the LAI remains a good choice across the years. This was the case with a K ranging 

between 0.85 and 0.88 when using the LAI while the kappa ranged between 0.72 and 0.79 with 

the NDVI and between 0.68 and 0.74 with the TSAVI.  

Table 4. Classification performance of different vegetation indices and biophysical variables in Ouveze-Ventoux 

for 2021. 

Vegetation indices                  OA (%) K 

NDVI 82 0.71 

GNDVI 80 0.70 

EVI 82 0.75 

TSAVI 87 0.85 

ARVI 81 0.77 

GCVI 73 0.70 

NDMI 82 0.71 

LSWI 80 0.77 

   

Biophysical variables OA (%)               K 

LAI 92 0.89 

FAPAR 90 0.88 

FCOVER 87 0.85 

 

3.3 Accuracy assessments 

3.3.1 Delineation of orchards and vineyards in Ouveze-Ventoux site. 

The classification in the Ouveze-Ventoux site was done by considering three classes namely 

OC, VY, and DC. The classification was made using the PM derived from the LAI temporal 

profiles (Table 5). Misclassified fields mainly came from confusion between VY and DC. In 

about half of the cases, the confusion came from young stands having a low vegetative 

development and thus a canopy signal which was not very clear as displayed in Figure 6. 

Therefore, we merged young stands, presenting a maximum LAI lower than 0.5 to the DC 

class and replay the classification. By applying such a threshold, the classification accuracy 

was slightly improved (Table 6). The producer’s accuracy is revealing errors due to 

commission with OC class being the best with a producer’s accuracy of 0.96. To test the 

classification over time, the classification was done each year from 2016 to 2021 with results 

summarized in Table 7. The performance of the classification was slightly affected in 2017 and 

2016 and the probable explanation for this might be ascribed to fewer acquisitions of S2 images 

since only one of the Sentinel 2 constellations was operated. 

Table 5. Confusion matrix for OC and VY classification using PM of LAI in 2021 (subscript a and p correspond to 

actual and predicted class, respectively)  

 DCp OCp VYp Total User’s accuracy 

DCa 35 0 2 37 0.94 

OCa 1 29 0 30 0.96 

VYa 5 1 44 50 0.88 

Total 41 30 46 117  

Producers’s accuracy 0.86 0.96 0.96   

OA = 0.92 ; K = 0.89 
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Figure 6. Temporal profile of a young VY misclassified as DC in Ouveze-Ventoux. 

Table 6. Confusion matrix for OC and VY classification using PM from LAI 2021 time series and applying a LAI= 

0.5 for OC and VY classes (subscript a and p corresponds to actual and predicted class, respectively)  

 DCp OCp VYp Total User’s accuracy 

DCa 37 0 2 39 0.95 

OCa 0 30 0 30 1.00 

VYa 1 1 46 48 0.97 

Total 38 31 48 117  

Producers’s accuracy 0.95 0.96 0.95   

OA = 0.96 ; K = 0.91 

 

Table 7. Results of OC and VY classification in Ouveze-Ventoux from 2016-201 based on PM derived from LAI 

time series and applying LAI = 0.5 thresholds for OC and VY classes 

Year Site Accuracy assessments  

  OA (%) Kappa 

2016 Ouveze-Ventoux 89 0.86 

2017  90 0.89 

2018  91 0.90 

2019  94 0.92 

2020  95 0.93 

2021  96 0.91 

 

The classification was then applied to all fields large enough to have at least one pixel after 

applying a buffer of 20 meters on the plot boundary. The field distribution confirms the 

importance of OC and VY in the Ouveze-Ventoux area as shown in Figure 7 below. 
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Figure 7. Spatial distribution of OC, VY, and DC classes in the Ouveze-Ventoux site for the year 2021. 

 

3.3.2 Delineation of orchards, vineyards, and olives in the Crau site. 

On the Crau site, we find the three classes mapped on the Ouveze-ventoux site (VY, 

OC, and DC) to which an OL class has been added because of the high representation of olive 

groves. It is also worth noting the high diversity of the DC class with market gardening, steppe 

areas, wetlands, and field crops. First, we begin by conducting the classification considering 

the four classes (DC, OC, OL, VY). Results displayed in Table 8 exhibit rather weak results 

with particular difficulties in delineating DC and OL classes. We decided to perform the 

classifications in two steps. In the first step, we gathered both OL and DC in a single DC class. 

Then, in a second step, we delineated DC and OL. Results of the first step are reported in Table 

9 showing a significant improvement with a Kappa rising from 0.69 to 0.91. Remarkably, 

results were also strongly improved for the VY class with user accuracy increasing from 0.28 

to 0.61. Note that the OC class was very well characterized in spite of a large diversity of tree 

types and varieties. As for the Ouveze-Ventoux site, an analysis of the misclassified fields 

showed again the difficulties in identifying the phenology in juvenile tree stands. A LAI 

threshold was therefore applied to the OC and VY by considering that all plots having a 

maximum LAI lower than 1 belong to the DC class. The quality of the classification continues 

to improve (Kappa = 0.95) but at the cost of not identifying young orchards and vineyards 

(Table 10). 
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Table 8. Confusion matrix for OC, VY, OL, and DC classification based on PM from 2021 time series 

(subscript a and p correspond to actual and predicted class, respectively)  

 DCp OCp OLp VYp Total User’s accuracy 

DCa 19 0 11 0 30 0.63 

OCa 0 42 0 2 44 0.95 

OLa 10 0 20 0 30 0.67 

VYa 11 2 0 5 18 0.28 

Total 40 44 31 7 122  

Producers’s accuracy 0.50 0.95 0.65 0.71   

 OA = 0.70 ; K = 0.69 

 

Table 9. Confusion matrix for OC and VY classification based on PM from 2021 LAI time series and after 

gathering OC and DC in common DC class (subscript a and p correspond to actual and predicted class, 

respectively)  

 DCp OCp VYp Total User’s accuracy 

DCa 60 0 0 60 1.00 

OCa 0 44 0 44 1.00 

VYa 6 1 11 18 0.61 

Total 66 45 11 122  

Producers’s accuracy 0.91 0.98 1.00   

OA = 0.94 ; K = 0.91 

 

Table 10. Same as Table 9 with an additional threshold of LAI=1 for OC and VY classes of LAI in 2021 

(subscript a and p correspond to actual and predicted class, respectively)  

 DCp OCp VYp Total User’s accuracy 

DCa 62 0 0 62 1.00 

OCa 0 44 0 44 1.00 

VYa 3 1 12 16 0.75 

Total 65 45 12 122  

Producers’s accuracy 0.95 0.98 1.00   

OA = 0.97 ; K = 0.95 

 In step 2, we distinguished the olive trees (OL) in class DC. It is necessary to identify 

in the time series discriminating features of the olive trees, which could then be used as 

classifiers. In Figure 8, we show the time series of a sample of OL plots and plots identified as 

DC. We conducted this comparison for two variables, the LAI used in the previous 

classification and the GCVI, which leads to a typical signature of olive trees with a systematic 

decrease of the signal in the summer period compared to earlier and later periods in the year. 

This signature is typical of the OC class. In order to appreciate the generality of this behavior 

we represented in a diagram (Figure 9) the average value of the vegetation index (VI) at the 

beginning of the year (between DOY 1 in 100) in abscissa and the average value in the middle 

of the year (between DOY 150 and 250) in ordinates. When the vegetation of the OL trees is 

well developed, there is a systematic decrease of the GCVI, which is all the stronger as the 

GCVI is high. It is also interesting to note that the area of the diagram of points covered by OC 

plots is specific with little coverage of DC plots, whose dispersion in the diagram reflects the 

diversity of vegetation cover encountered in this class. Similar results are obtained with LAI 
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(Figure 9a) but with less specificity of olive plots and a less clear relationship between the 

difference in LAI over the two periods and the development of olive trees as shown by the 

scatter of the OC points. Concerning the behaviour of the GCVI with the OL trees, the reasons 

for the reflectance ratio in the NIR and green band cannot be explained by the seasonality of 

the grass cover under the canopy. Indeed, the impact of the herbaceous cover should decrease 

with tree cover, which is contrary to what we observe. The reason could come from the 

orientation of the leaves and their spectral properties, which could be influenced by heat and 

summer water stress. 

 

a)                                                                                             b) 

Figure 8: Vegetation indice time series observed on OL plots (red) and DC (green). In a) the vegetation indices is 

the LAI, in b) the vegetation indices are GCVI. 

 

a)                                                                                                         b) 

Figure 9: Average vegetation indices during the summer period (DOY 150-250) as a function of the average 

vegetation indices at the beginning of the year (DOY 1-100) for olive plots (red triangle) and end DC plots (blue 

triangle). In a) the vegetation indices are the LAI and in b) the vegetation indices are GCVI. 
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To carry out the classification, we calculated characteristics for each of the periods, 

namely the beginning of the year from DOY=1 to DOY=100 and the middle of the year from 

DOY=150 to DOY=250. The following characteristics were considered: the mean, the standard 

deviation, the slope, and the origin of the linear regression between the vegetation indices and 

time as well as the corresponding correlation coefficient. The classification was done with the 

RF method using the 12 variables thus obtained (6 per period) as classifiers. The results are 

given in Table 11 when using the GCVI as the vegetation indices. 

 

Table 11. Confusion matrix for DC and OL classification based on a temporal feature from 2021 GCVI time series 

(subscript a and p correspond to actual and predicted class, respectively) 

 DCp OLp Total User’s accuracy 

DCa 25 5 30 0.87  

OLa 1 29 30 0.97 

Total 26 34 60  

Producers’s accuracy 0.96 0.88   

OA = 0.91 ; K = 0.82 

 

When using LAI instead of the GCVI results were degraded with an OA=0.82 and a 

Kappa=0.70. In the misclassified plots analysis, it can be seen that the DC plots classified as OL 

correspond to mowed grasslands or more or less dense forests. Concerning the grasslands, it 

is easy to identify them because, on the periods used to calculate the characteristics of the 

signal, we have a strong variability of the GCVI. As far as the forests are concerned, they do 

not generally show the summer decrease of the GCVI. These features could not be identified 

by the calibration of the classification model, but can easily be considered by doing a post-

processing. Thus, we propose to classify as DC the plots classified as OL when 1) the sum of 

the standard deviations of the signal obtained on each period is higher than 2, which never 

happens with OL trees, or 2) when the GCVI is higher than 3 and the average increases 

between period 1 and 2 contrary to the behaviour of OL trees. Applying this post-processing 

we obtain an OA = 0.97 and a K= 0.94 (Table 12). 

Table 12. Results of OL classification in Crau from 2016-201 using GCV 

Year Site Accuracy assessments  

  OA (%) Kappa 

2016 Crau 90 0.86 

2017  90 0.88 

2018  95 0.93 

2019  93 0.92 

2020  94 0.91 

2021  97 0.94 

 

The final classification obtained after chaining step 1 and step 2 are displayed in Table 

13, VY class being the most difficult to determine. The good results were maintained across 

the years (Table 14) with, however, some degradation for 2016 and 2017 years, during fewer 

S2 data were available. One can note little loss in accuracy in 2018, 2019, and 2020. This might 
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be the result of the final thresholding that is specific to 2021. However, they always remain 

better than the results obtained when no thresholds were applied.  

Table 13. Confusion matrix of DC, OC, OL, and, VY classification in Crau for 2021. 

 DCp OCp OLp VYp Total User’s accuracy 

DCa 31 0 1 0 32 0.97 

OCa 0 44 0 0 44 1.00 

OLa 1 0 29 0 30 0.97 

VYa 3 1 0 12 16 0.75 

Total 35 45 30 12 122  

Producers’s accuracy 0.89 0.98 0.97 1.00   

 OA = 0.96 ; K = 0.95 

 

 

Table 14. Results of OC, VY, OL global classification accuracy in Crau from 2016-201. 

 

3.4 Feature importance ranking 

 Feature importance process in the RF algorithm involves building a classification and 

regression tree to create OOB (out-of-bag) sample data. According to the OOB data, the RF 

algorithm can confirm the significant (importance) role of the input data and generate each 

feature’s important score which is displayed as MDA (mean decrease accuracy). The principle 

is to convert a feature’s value to a random number compute its influence on the model’s 

precision and quantify the parameter’s importance according to the MDA value generated 

from several computations. When the value is higher, the importance variable too becomes 

higher [59]. Both in Ouveze-Ventoux and Crau t1 and vamp are the two most significant feature 

variables showing the importance of the start of the season and the amplitude of variation of 

the LAI signal. On the contrary, the EOS as reflected by t2 had a lower impact on the 

classification. 

 

 

 

 

 

 

 

Year Site Accuracy assessments  

  OA (%) Kappa 

2016 Crau 89 0.87 

2017  90 0.87 

2018  92 0.90 

2019  94 0.91 
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Figure 10. Feature importance ranking (mean decrease accuracy) for Ouveze-Ventoux (a) and Crau (b) 

 

4. Discussion 

4.1 Benchmark and novelty of the proposed classification approach 

One of the reasons behind the scarcity of RS-based maps delineating fruit trees could be 

ascribed to the difficulty of differentiating several tree crop classes spectrally and temporarily 

to generate precise maps. For instance, the use of NDVI temporal profile of fruit trees such as 

grapes, mangoes, and bananas displayed no clear distinction between the different fruit tree 

types [60]. The novelty in our approach was to apply the classification on plant phenological 

traits rather than using a temporal series of images. If we obtained good results it is necessary 

to assess the adding value of our approach compared to existing approaches. Two benchmarks 

were considered: 

• A classification made directly on the times series of LAI without interpreting the 

phenology in time series. This was done using the RF method. In the Crau area, we 

did not consider the last step separating olive orchards from other surfaces, and 

focused on the first step which considers the following three classes only: OC, VY, 

and DC. 

• The THEIA land use map is yearly implemented across the entire French national 

territory (https://www.theia-land.fr/ceslist/ces-occupationdes-sols/, accessed on 17 

May 2022). It uses RF-supervised classification on all S2 dates (VIS and NIR bands) 

with other supplementary data like urban maps, topography, Corine Land Cover 

map, and ‘Registre Parcellaire Graphique ‘ (RPG) that collect yearly farmer's 

declarations on subsidy collection from the European Union (EU). The number of 

identified classes was seventeen of which OC (tagged as 221 and 14 in 2017 and 2018 

respectively) and VY (tagged as 222 and 15 in 2017 and 2018 respectively) are 

inclusive and in our study, the detection of orchards and vineyards were assessed. 

The maps were prepared at 10 m pixels of S2 and aggregated at the field level to be 

comparable with the results of our study. 

The accuracies of the classification made on temporal series of LAI images were far 

below that obtained with our method with an OA ranging from 41 to 60 and a Kappa ranging 

from 0.31 to 0.52 across the two study sites from the 2016-2021 (Table. 15) while we obtained 

Kappa larger than 0.80. Results from 2016-2017 had the worst performance and this might be 

because S2 had data acquisition limited to S2A. The difficulty of classifying directly on LAI 

images can be explained by the very strong diversity of situations, in particular in the DC class 

that might hamper the possibility to capture specific features of the crop of interest.  Better 

results were found with the THEIA product (Table 16) which involves much more information 

layers that better constrained the classification. However, the use of our method led to a 

significant improvement. 
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Table 15. Classification performance of the raw spectral satellite images (LAI) across the two study sites for OC 

and VY using RF classifier. 

Year Site OA (%) K 

2016 Ouveze-Ventoux 43 0.30 

2017  47 0.32 

2018  55 0.41 

2019  51 0.49 

2020  55 0.51 

2021  52 0.50 

    

2016 Crau 41 0.32 

2017  45 0.31 

2018  49 0.41 

2019  55 0.52 

2020  60 0.51 

2021  58 0.49 

 

Table 16. THEIA classification performance across the two study sites for OC and VY using RF classifier and 

other supplementary data. 

Year Site OA (%) Kappa 

2016 Ouveze-Ventoux 73 0.70 

2017  77 0.72 

2018  75 0.71 

2019  78 0.75 

2020  75 0.71 

2021  72 0.69 

    

2016 Crau 76 0.73 

2017  75 0.69 

2018  79 0.75 

2019  75 0.72 

2020  73 0.68 

2021  78 0.75 

 

4.2 Training sample size and generality of the proposed approach across years and sites.  

Former studies highlighted that large data samples bolster RF classification accuracy.  

while in some situations, larger data samples might lower the RF classification accuracy 

depending on the dataset quality. In our study, we obtained good accuracy using a small 

training data set of 117 (out of 1601 in Ouveze-Ventoux) and 122 (out of 16680 in Crau) This 

corroborates the conclusions of Nguyen et al. [27] and Colditz [61] who found that datasets 

consisting of 0.15% to 0.35% of the study sites are sufficient to attain a precise land cover 

delineations. As a rule of thumb, studies related to land use/land cover should operate with 

restricted data because of the excessive price of organizing field data. Therefore, to reduce the 

ground truth collection burden, we can imagine applying the RF model determined for a given 

year to the other years. This idea is supported by the results displayed in Figure 11 which have 

shown that the main temporal patterns of the LAI times series are rather stable from one year 

to another. Therefore, we have applied the RF model established in 2021 to the PM computed 

for 2016, 2017, 2018, 2019, and 2020 LAI time series. The results of the classifications thus made 
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are given in Table 17. The results revealed that PM used for the training of the model is robust 

irrespective of the different years however with slightly lower accuracies with an average loss 

of 8% (max 14%) in OA and 0.10 (max 0.16) in kappa. Results obtained in the Crau are found 

to be a bit better, while the smallest time series in 2016 and less extent 2017 did not have a 

strong impact on the classification performance. In all cases, the accuracy remains much better 

than that obtained when the classification was made directly on the LAI time series and 

comparable to the THEIA classification.  

Table 17. Classification performance using PM for classifying orchards and vineyards applying the predicted 

model of 2021 across years and sites. 

Accuracy Assessment 

 Calibrated RF model 2021 model across years  

Year Site OA Kappa OA Kappa 

2016 Ouveze-Ventoux 89 0.86 81 0.72 

2017  90 0.89 83 0.76 

2018  91 0.90 82 0.79 

2019  94 0.92 83 0.81 

2020  95 0.93 86 0.85 

2016 Crau 89 0.87 83 0.79 

2017  90 0.87 82 0.78 

2018  92 0.90 85 0.80 

2019  94 0.91 87 0.83 

2020  93 0.91 86 0.80 

 Calibrated RF model 2021 model across sites  

2021 Ouveze Ventoux 96 0.91 71 0.65 

2021 Crau 89 0.87 60 0.51 
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Figure 11. Temporal profile of OC and VY in Ouveze-Ventoux (a and b) and Crau (c and d) study areas from 2019 

to 2021. 

The same exercise was done to make comparisons across sites (i.e the model of 2021 

established in the Ouveze-Ventoux site to be used for Crau and vice versa). In this exercise, 

the performance of the model was affected (Table 17). This further corroborates the fact that 

each model generated is strictly adapted to a given location, the climatic and geographical 

variations and diversity in crop management practices across the two sites might be 

responsible for the decline in results performances since the model was adapted to a different 

location (based on their PM). 

4.3 Limitations and prospects of the proposed classification approach 

Despite the novelty and good performance of our proposed approach, we are faced 

with quite some drawbacks which are to be highlighted in this section. One of the obvious 

drawbacks is the inability of the approach to successfully classify young OC and VY. In 

general, the canopy size of young fruit trees (OC and VY) is very scanty (low) and 

consequently creates room for misclassification since our approach is based on the temporal 

dynamics of the LAI. One of the main reasons is the contribution of inter-row vegetation, 

which can be dominant in young stands. As a result, we can end up with a LAI signal that is 

no longer dominated by the plant of interest. In Figure 12, we see that the SOS is earlier with 

the VY plot than with the OC plot, which is contrary to the expected result. Such drawbacks 

are minimized by considering only OC and VY plots with sufficient development, which led 

us to put thresholds in our reference dataset by assimilating several young OC and VY to the 

DC class. To obtain an optimal result this thresholding depends on the considered area, which 

is probably the reflection of different cultural practices for the management of the inter-row. 

The determination of these thresholds is a real limitation of the method. There is therefore a 

strong stake to work on the separation of the contributions coming from the inter-row 

vegetation and the canopy of the stand of interest. A finer analysis of the spectral signature 

and/or a finer analysis of the temporal dynamics could contribute to a better separation of 

these two components and thus work on the specific signal of the crop of interest. 

 

Figure 12. Temporal pattern of a young OC field and a temporal pattern of a young VY. 

Another instance is the inability of the approach to accurately classify heterogeneous 

plots. The trees are sparse due to age differences, creating so many sources of interference most 

especially from soil background among others. This creates sources for interferences with the 
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main canopy of the heterogenous orchard or vineyard fields since only the mean of all the total 

pixels in a given farm plot is utilized thereby creating a different form of the temporal pattern 

away from that of the fruit trees of interest. Such deviations from the main temporal patterns 

of fields used for training the model consequently lead to degraded fits by the model and lead 

to misclassifications when making predictions to the global extent.  

Despite the highlighted drawbacks mentioned above, the prospect of PM-based 

delineations is encouraging for many reasons. Our analysis of data showed that we can 

separate three (3) crucial fruit tree types (OC, VY, and OL). PM-based classifiers were used 

only as input classifiers to the RF model thus the approach can be extended to profit from some 

spectral bands and some particular vegetation indices like enhanced bloom index (EBI) [62]) 

capable of separating the individual orchard (like cherry, plum, apricot, peach, nectarine, etc.) 

and vineyard (table and wine) classes. Despite our work using S2, we might be faced with 

issues of data missing (gap) in some areas due to the presence of the cloud affecting the 

capacity of inferring accurate PM and thus affecting the classification accuracy. Future satellite 

systems with better spatial and temporal resolutions can be merged with S2 or even synergy 

between optical and synthetic aperture radar (SAR) can be exploited. 

5.0 Conclusions  

Fruit tree delineations have been a difficult topic in crop delineation using remote 

sensing information. S2 has offered an encouraging avenue to build a classification strategy 

based on crop phenology and the temporal features of canopy development. Therefore, our 

study proposed a novel method to identify deciduous and evergreen fruit trees like OC, VY, 

and OL, by using a time series of LAI (for OC and VY) and GCVI (for OL) derived from S2 

data to infer PM as classifiers used by an RF algorithm. The method has been developed and 

implemented on two areas (Ouveze-Ventoux and Crau areas) located in the south-east of 

France, separated by a hundred kilometers. The main differences are the climate with cooler 

and wetter climate in the Ouveze-Ventoux area and the composition of the DC class which is 

strongly different between sites. The obtained performances led to an overall accuracy ranging 

between 0.89 and 0.96 and a Kappa index ranging between 0.87 and 0.95. This is far better than 

the results we can obtain by applying the RF method on LAI time series (the same used to infer 

the phenology metrics) and significantly better than the THEIA classification which is an 

operational tool implemented over the France territory using multiple sources of ground 

information. Moreover, as the method is independent of the satellite acquisition dates, we can 

apply a RF classification model obtained from one year to the other years while keeping a 

reasonable accuracy. 

While this study shows the value of using phenology and leaf development parameters 

to identify perennial woody crops, the use of phenology may have some limitations. It is 

shown that the differences in phenology induced by climate do not allow the use of a calibrated 

RF model from one site to another. The proposed generic approach must therefore be 

calibrated on each study area as soon as a temporal shift in phenology is expected. Moreover, 

in the case of mixed cover composed of plants with different temporal dynamics, it may be 

difficult to capture the phenology of the plant of interest. This is the case in this study with 

young plantations having an inter-row with grass. Mixing the signals from the tree canopy 

with those from the inter-row does not allow the identification of the phenological traits of the 

trees. To overcome such limitations additional information as that provided by textural 
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analysis of remote sensing images might be an interesting avenue to improve the results. From 

that perspective, the use of satellites with different resolutions can be envisaged.  
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Chapter 5 

Characterization of grapevine canopy leaf area 

and inter-row management using Sentinel-2 time 

series. 
5.1 Intention note 

 Data concerning vegetation cover and soil management are used in hydrological 

modelling. A wide spatial variability is generally observed for vineyards in Mediterranean 

regions (with grass or bare soils in inter-row, irrigated or not) which have an impact on water 

management. ., Remote sensing already has shown its ability and effectiveness in vegetation 

monitoring both spatial and temporal (Lanjeri et al., 2001; Primicerio et al., 2017). 

 Nevertheless, remote sensing signals can be difficult to analyse for heterogenous crops 

like grapevines and orchards having trees and backgrounds with grass or bare soils. 

(Borgogno-Mondino et al., 2018). 

 The study objective was to characterise canopy development and inter-row 

management of grapevine fields. The work is based on the analysis of the temporal profile of 

LAI averaged at plot scale. Ground observations were made on several fields in the Ouvèze 

area. These data were used to identify plots without grass and to better understand the spectral 

pattern. The main assumption was to consider that the background signal can be simulated by 

a double logistic model, with a plateau corresponding to the lowest level of LAI in summer. 

The background signal was then subtracted from the simulated canopy from the S2 LAI time 

series obtained for each plot of vineyards. 

Résumé 

 Des données précises sur le couvert végétal sont essentielles à connaître pour la 

modélisation hydrologique ou la modélisation des productions. Notre étude s'est concentrée 

sur une analyse approfondie des données optiques satellitaires de la série chronologique 

Sentinel-2 (S2) en particulier l'indice de surface foliaire (LAI) pour caractériser des parcelles 

de vignes et la gestion de leur inter-rangs. Des observations de terrain ont été faites sur deux 

années -2021-2022) sur le bassin versant de de l’Ouvèze-Ventoux, dans le sud-est de la France, 

pour suivre la phénologie et le développement de 11 parcelles de vignes ayant des gestions 

différentes de l’inter-rang. La dynamique annuelle du LAI des parcelles a été ajustée avec un 

modèle à double logistique. Les observations de terrain ont permis de caractériser les 

paramètres du modèle qui correspondent à des parcelles avec des inter-rangs en sol nu. Le 

modèle correspondant a ensuite été soustrait aux profils temporels des parcelles de vignes et 

a permis de distinguer les parcelles enherbées des non enherbées. Les données 

pluviométriques ont été analysées en complément pour déterminer les explications possibles 

des variations dans le développement de l'herbe entre les rangs. Nous avons pu classer les 
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 vignobles de u bassin de l’Ouvèze en 3 catégories : enherbée, partiellement enherbée et 

travaillée, et valider nos cartographies avec nos observations de terrain.  

Mots-clés: télédétection, Sentinel-2, indice de surface foliaire, vigne, enherbement, canopée, 

gestion de l'inter-rang. 
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                           INTRODUCTION 
Grapevine (Vitis vinifera L.) cultivation is one of 

the most widespread cultivations worldwide, and 

its practice in the Mediterranean is millennia-old 

(Corti et al., 2011). According to reports given by 

an international organisation of grapevine and 

wine (Roca, 2022) on the world, viticultural 

surfaces covered around 7.3 million hectares in 

2021, with 3.3 million hectares within the EU 

(European Union) zone; Spain (13 % of the 

grapevine area) produced the most wine with 

France (11 %) in second. 
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Accurate data on crop canopy are among the prerequisites for hydrological modelling, 

environmental assessment, and irrigation management. In this regard, our study 

concentrated on an in-depth analysis of optical satellite data of Sentinel-2 (S2) time 

series of the leaf area index (LAI) to characterise canopy development and inter-row 

management of grapevine fields. Field visits were conducted in the Ouveze-Ventoux 

area, South Eastern France, for two years (2021 and 2022) to monitor phenology, 

canopy development, and inter-row management of eleven selected grapevine fields. 

Regarding the S2-LAI data, the annual dynamic of a typical grapevine canopy leaf area 

was similar to a double logistic curve. Therefore, an analytic model was adopted to 

represent the grapevine canopy contribution to the S2-LAI. Part of the parameters of 

the analytic model were calibrated from the actual grapevine canopy dynamics timing 

observation from the field visits, while the others were inferred at the field level from 

the S2-LAI time series. The background signal was generated by directly subtracting the 

simulated canopy from the S2 LAI time series. Rainfall data were examined to see the 

possible explanations behind variations in the inter-row grass development. From the 

background signals, we could group the inter-row management into three classes: 

grassed, partially grassed, and tilled, which corroborated our findings on the field. To 

consider the possibility of avoiding field visits, the model was recalibrated on a 

grapevine field with a clear canopy signal and applied to two fields with different inter-

row management. The result showed slight differences among the inter-row signals, 

which did not prevent the identification of inter-row management, thus indicating that 

field visits might not be mandatory. 
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Grapevines mostly require good soils and, for 

table grapevines, good water resource 

management, too (Darouich et al., 2022). 

Conventionally, grapevines have been rainfed 

perennial woody crops as irrigation was 

prohibited by authorities for several wine 

qualities (Darouich et al., 2022). Nevertheless, 

because soil water stress seriously impacts the 

growth, yield, and grape quality (Zarrouk et al., 

2012), irrigation practices have become more 

and more frequent, specifically across dry areas 

of South Europe (Esteban et al., 2001; 

Permanhani et al., 2016). Irrigation practices can 

vary a lot according to various factors: the soil 

type, the climatic demand, or the target in 

production quality. Inter-row management might 

differ by the management of the grass cover 

between the rows of grapevine. The grass can be 

kept in the field, leading to constant coverage 

that might have a positive impact on runoff, 

infiltration, and erosion, while a higher water 

consumption from the inter-row and an 

increased fire hazard might negatively impact the 

crop performance (Steenwerth and Belina, 2010; 

Whitmore and Schröder, 2007). 

On the contrary, the grass is removed by frequent 

tillages, leading to opposite benefits and 

drawbacks. An intermediate situation is where 

part of the rows are tilled while in the other part, 

the inter-row is left grassed. In the context of 

climate change, there is an increasing need to 

irrigate perennial woody crops as vineyards that 

were rarely irrigated until now, especially with 

wine grapevine to gain in quality. Moreover, 

there is also a willingness to enhance ecosystem 

services of cropping systems, the management of 

inter-row being one of the levers to go in that 

direction. Therefore, delineating the green cover 

between the grapevine canopy and the 

vegetation in the background is an important 

issue for both the characterisation of the 

grapevine water need and, thus, the amount of 

irrigation and the detection of inter-row 

management practices. Moreover, Abubakar et 

al. (2023) have shown that inter-row 

management may lead to confusion in mapping 

the different perennial woody crops. 

During the last decades, remote sensing is 

playing a significant role in crop supervision. 

Earth-observing (EO) satellites can record 

multispectral images with constant temporal 

revisit occurrence, documenting variations in 

spectral patterns among surfaces. This allows the 

detection of the spatial and temporal differences 

in crops. In recent times, the utilisation of 

remotely sensed information to promote 

decision and policy rulings has raised within the 

sectors of agriculture and forestry (Borgogno-

Mondino et al., 2018; De Petris et al., 2019; Sarvia 

et al., 2019; Testa et al., 2014).  

Regarding viticulture, airborne and spaceborne 

sensors can be utilised to characterise crop’s 

yield spatial variability and describe soil 

features, crop varieties, and crop diseases 

(Arnó et al., 2009; Hall et al., 2003; Hall, 2018; 

Hall and Wilson, 2013; Karakizi et al., 2016a). 

Vegetation indices (VI) derived from 

multispectral reflectance can be exploited to 

acquire data on phenology, vegetation water 

content, and biomass over a growing season. In 

the past decades, several VI were unfolded 

(Gao, 1996 ; Huete, 1988 ; Motohka et al., 2010 

; Qi et al., 1994), with NDVI (normalised 

difference vegetation index) being the most 

widely used for crop growth dynamic 

descriptions. However, despite that fact, NDVI 

can be faced with some limitations like 

sensitivity restriction to vegetative 

photosynthetic dynamics (Wang et al., 2017), 

whereas biophysical variables like LAI (leaf area 

index) can be substituted to farmlands and 

were used advantageously to delineate 

different crop types (Abubakar et al., 2022). 

Interpretation of the VI times series can bring 

advanced information on crop systems 

(Beniaich et al., 2022), management practices 

(Abubakar et al., 2022), irrigation needs 

(Darouich et al., 2022), and risk assessments on 

soil erosion (Rizzi et al., 2021). 
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The spatial resolution has a strong impact on 

the way to interpret remote sensing data, 

especially for perennial woody crops, which 

have spatial patterns (row, tree crown) that 

may be larger than the resolution. With a very 

high-resolution satellite (resolution lower than 

5 m as WorldView-2 (Karakizi et al., 2016a)), it 

is possible to investigate within canopy details, 

for instance, the separation of the canopy and 

the soil background. However, such spaceborne 

sensors are mostly owned by private 

companies/firms, generating costs. Moreover, 

the revisit time might be large, preventing 

access to times series data capable of grasping 

the temporal feature over a crop cycle. 

Nonetheless, larger spatial resolution can be 

used to characterize vineyard inter-row 

management using time series, thanks to the 

difference in vegetation growth dynamics 

between grapevine and inter-row (Palazzi et al., 

2022). As an alternative, decametric resolution 

satellites such as the European Sentinel-2 (S2) 

can offer 10 m spatial resolution imagery and 

fine temporal revisits while being free of 

charge. Such spatial resolution does not permit 

a direct separation of the different field’s 

components, but the free access and the 

possibility to access densely sampled times 

series are interesting properties to build 

applications. 

Vaudour et al. (2010) used imageries coming 

from the SPOT satellite to zone viticultural 

terroirs in South Africa, while in Spain, Landsat 

images were used to detect grapevine fields by 

Rodriguez et al. (2006). Semmens et al. (2016) 

estimate daily field-scale evapotranspiration 

from satellite data coming from Landsat-8, 

MODIS (Moderate Resolution Imaging 

Spectroradiometer), and GEOS 

(Geosynchronous Equatorial Orbit Satellite) 

across two vineyards. Johnson et al. (2003) used 

multispectral high-resolution satellite 

imageries coming from IKONOS to characterise 

wine grapevine’s leaf area. High-resolution 

satellite imageries were used, and it was 

observed that satellite information possesses  

 

the possibility to characterise or delineate 

quality parameters of wine grapevines 

(Kandylakis and Karantzalos, 2016). Landsat-8-

derived NDVI (normalised difference vegetation 

index) was found to be highly correlated with 

aerial imagery-derived NDVI at the grapevine 

plot scale when evaluating grapevine vigour to 

build recommendation maps (Borgogno-

Mondino et al., 2018). Nevertheless, some 

conducted research showed that the spatial 

resolution images coming from medium-

resolution satellites are rarely adequate for 

grapevine field assessments because of the 

narrow spacing of the inter-row; such 

constraint is more evident among grapevine 

fields with huge heterogeneity, and higher 

resolution satellite information is capable of 

producing similar or equivalent results using 

aerial platforms (Erena et al., 2016; Matese and 

Filippo Di Gennaro, 2015). For instance, a 

detailed comparative analysis of grapevine 

multispectral imagery delivered by decametric 

satellite resolution (S2) and low-elevation UAV 

(unmanned aerial vehicle) platforms was 

proposed by Khaliq et al (2019). The success of 

S2 imagery and the UAV’s high-resolution 

images was assessed while considering the 

known relation between NDVI and crop vigour. 

Comparisons were made between the 

information obtained from UAV and the S2 

imagery by evaluating three different NDVI 

indices to accurately examine the grapevine’s 

different spectral contribution in the 

surroundings by taking into note : (i) the total 

cropland surface (ii) the grapevine canopies 

only, and (iii) the grapevine inter-row. The 

results showed that the resolutions of the raw 

S2 satellite imagery might not be directly used 

to delineate grapevine variability. In reality, the 

inter-row surface contribution to the remotely 

sensed information might influence the NDVI 

estimation, leading to biased crop descriptors. 

Conversely, vigour maps calculated from the 

UAV imagery using pixel representation of crop 

canopies tend to be more linked to the in-field 

evaluation in comparison to the S2 satellite 
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imagery. In a different study on the 

characterisation of grapevines using high-

resolution imagery, an object-based 

classification framework for grapevines was 

designed, developed, and evaluated to detect 

grapevine canopy and variety separation 

(Karakizi et al., 2016b). Innovative features 

(spectral, spatial, and textural), rules, 

segmentation scales, and a set of frameworks 

were suggested according to image analysis 

(object-based). The proposed methodology was 

evaluated on WorldView-2 (multitemporal) 

satellite imagery in Greece across four diverse 

regions for viticulture. The performed 

quantitative assessment showed the suggested 

approach detected over 89 % of grapevines 

with high completeness and correct detection 

rates. Evaluation of the grapevine canopy 

extraction was above 96 %, while the 

quantitative evaluation of the variety 

separation was above 85 % at the plot scale, 

although it is important to note that such 

satellite imagery with a very high spatial 

resolution (0.5 m) is not freely accessed. 

Anastasiou et al. (2018) aimed to assess 

spectral vegetation indices obtained via 

satellite and proximal sensing across different 

growth phases (veraison to harvest) of table 

grapevines of which NDVI and GNDVI (green 

normalised difference vegetation index) were 

computed by employing Landsat-8 satellite 

imagery and proximal sensing to examine the 

grapevine yield and quality characteristics. In 

this study, the proximal sensing was more 

accurate concerning the grape yield and quality 

in comparison to the satellite sensing. 

However, in this current study, free, open-source 

multi-temporal data of S2 are used, and field-

scale analysis was done. Time series of the leaf 

area index (LAI) and spectral bands are exploited 

in this study to characterise features of 

grapevine, particularly the canopy and inter-row 

coverage. At the field scale, analysis according to 

temporal evolutions of the LAI was used to 

examine inter-field differences of grapevine 

canopy and soil management strategies (i.e., 

identification of grassy and non-grassy inter-

rows). 

Recently, a phenology-based classification of 

perennial woody fruit crops (orchards, 

grapevines, and olives) based on S2 temporal 

profiles was conducted in South-Eastern France 

(Abubakar et al., 2023) with encouraging results. 

Despite the good results obtained, there is still 

room for improvement, especially among the 

grapevine class. The difficulty with the grapevine 

LAI signal is that confusion can occur between the 

grapevine canopy and the background leading to 

both signals having the same order of magnitude 

leading to some misclassifications. This is not the 

case with orchards that have a tree canopy 

contribution to the LAI signal significantly larger 

than that of the background. Consequently, we 

arrived at a different scientific question to be 

addressed in this current study concerning the 

grapevines classes. Can we separate the canopy 

signal and background signal, which depends on 

management practices, from the remote sensing 

(RS) LAI S2 data. 

The objective of this paper is to develop a 

method based on decametric resolution remote 

sensing as that of Sentinel-2 or Landsat to 

characterise two features of interest for 

grapevine: the canopy leaf area to assess the 

transpiration and the resulting water need and 

the interrow management by identifying grassed 

and tilled interrows. The scientific issue is then to 

delineate in observed LAI the contribution from 

the vine and that from the background. In this 

study, we assumed that the LAI times series 

derived from remote sensing together with 

agronomic knowledge of the grapevine 

development across an annual cycle can be used 

to separate the contributions of the different 

vegetation components of a grapevine. The 

method was developed and implemented in the 

South-East of France. 
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MATERIALS AND METHODS 
1. Description of the study sites and grapevine 
management 
The research was carried out in the Ouvéze-

Ventoux areas in the years 2021 and 2022. The 

area is located in southern France (44° 10’ N and 

5° 16’ E) and covers a surface of 59 km² and an 

altitude ranging between 230 and 630 m a.s.l 

(Figure 1.) The study area encompasses forest 

and crops (mostly vineyards and orchards), the

 

FIGURE 1. Map of France showing the location of the study site (Ouvèze-Ventoux) in the South-Eastern 

part of the country including photos of irrigated table and non-irrigated wine grapevine fields. 

latter 57.7 % of the surface, 34 % of which are 

vineyards (Abubakar et al. 2023). The study site 

has a typical Mediterranean climate recognised 

by cold and moist winters with dry, hot summers; 

yearly rainfall is roughly 750 mm with a mean 

temperature of 12 °C. 

The grapevines are planted in rows of 2 to 2.50 m 

apart for wine grapevines and 2.50 to 2.80 m 

apart for table grapevines. The ‘’V’’ shape trellis 

was predominantly used for table grapevines. 

Part of the vineyards are irrigated (mostly the 

table grapevines) via drip irrigation. Irrigation 

strategies are different with small inputs in the 

case of wine grapevines to escape from very dry 

conditions while the amount of irrigation is much 

larger with table grapevine to maximise the fruit 

production. Inter/intra-row grass cover 

(background) development is governed by 

rainfalls and inter-row management. There are 

mainly three modes of inter-row management: 

tilled with regular harrowing to suppress weeds, 

grassed inter-row with regular mowing of the 

grass, and a mix of the two by tilling one inter-row 

over 2 or 3. Dry summer conditions lead to a 

drying out of the herbaceous stratum, with a very 

small remaining fraction of the green grass, 

whatever the inter-row management method. 

2. Ground data 

2.1 canopy development and phenology 

monitoring. 

The experiment was conducted across two years 

(2021 and 2022). Eleven (11) plots of grapevines 

(4 table grapevines and 7 wine grapevines) were 

selected across the study area (Table 1). In each 

plot, five grapevine trees were randomly chosen 

to observe phenology and characterise the leaf 

development. On each grapevine tree, two 

branches were selected to count the leaves 

during the whole growing season (11 field visits 

every year) to characterise the dynamic of the 

leaf development. The standard protocol was to 

count the leaves number on the main branches 

and the sub-branches. In addition, specific 

observations were made to establish allometric 
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relationships to infer leaf surface area from the 

leaf counts. Therefore, at three dates across the 

grapevine cycle (20-05-2022, 05-07-2022, and 07-

10-2022), the leaf lengths (from the petiolar sinus 

to the end of the apical lobe) of every leaf on a 

selection of monitored branches (from 58 to 30) 

were measured. The lengths thus measured were 

then converted into surface area using a 

relationship between length and surface area 

established on sets of leaves of different sizes 

taken from each of the plots. The results showed 

that a single relationship was sufficient to 

characterise the leaf area of the different 

grapevine varieties monitored in this work. At the 

end of the process, we obtained three allometric 

relationships for each of the leaf length 

measurement dates linking the leaf surface (cm2 

per branch) to the leaf number (Figure 2). Figure 

2 exhibits a variation of the relationship across 

the year and, thus, the different relationships 

were estimated as follows. Up until March 20th, 

we used the allometric function established on 

20-05-2022. From March 21st to October 6th, we 

applied the second relationship established on 

05-07-2022, and finally, the relationship obtained 

on 07-10-2023 was applied after October 7th. The 

estimated leaf surface per branch was then 

averaged at the field level and then normalised 

using the maximum value of every time series. 

2.2 Assessments of background coverage 

Standardised RGB photos were taken using a 

digital camera to characterise the background 

coverage using vertical views in three locations in 

the plot inter-row, the location remaining the 

same across the season to maintain the same ROI 

(region of interest). To estimate the degree of soil 

surfaces covered by the background vegetation, 

the percentage of the ground cover was 

estimated using the SegVeg model for semantic 

segmentation of RGB photos into soil background 

portion, green vegetation portion, and senescent 

portion as described by Serouart et al. (2022). It is 

in conformity with the U-net model that 

delineates vegetation from the background (after 

training across a dataset that is very large and 

diverse) Pixels of the vegetation are subsequently

 

TABLE 1. Descriptions of the eleven selected grapevine fields.  

Plot ID Variety Inter-row management strategy Irrigation 

45 Table grapevine Grassed Irrigated 

203 Wine grapevine Partially grassed Non-irrigated 

204 Wine grapevine Constantly tilled Non-irrigated 

1901 Table grapevine Grassed Irrigated 

2026 Wine grapevine Tilled Non-irrigated 

2335 Wine grapevine Tilled Non-irrigated 

3064 Table grapevine Grassed Irrigated 

3121 Table grapevine Tilled Irrigated 

3138 Wine grapevine Tilled Non-irrigated 

3140 Wine grapevine Tilled Non-irrigated 

3358 Wine grapevine Partially grassed Non-irrigated 
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FIGURE 2. The three linear allometric relations (a) for main branches and (b) sub-branches used for the 

conversion portion, and senescent portion as described. 

classified using a Support Vector Machine (SVM) 

shallow machine learning approach trained on 

grids extracted pixels applied to the RGB photos. 

We used an already trained SegVeg model 

(Serouart et al. 2022), leading to a vegetation 

cover fraction ranging from 0 to 1. The presence 

of senescent vegetation (pruned residues or dried 

grasses) was not taken into account in the 

vegetation cover. A qualitative assessment of the 

results was done, leading to the removal of 

images with shadows from the analysis. 

3. Rainfall conditions at the experimental site.  

Among the components of weather, only rainfall 

data was used. The rainfall data used in this study 

were extracted from the weather station of 

Entrecheaux for both years (2021 and 2022) 

located in the studied area with a distance to the 

fields that range from 1 to 5 km. The cumulated 

rainfall value for 2021 was 664.8 mm, and for 

2022 was 754.8 mm, respectively. In particular, 

the year 2022 was wetter (more precipitation) 

than 2021 but also had the driest summer. 

Rainfall data analysis was useful to examine grass 

dynamics, especially in the summertime when 

grass regrowth might be stimulated by a rainfall 

event. 

4. Satellite data  

In this study, we used Sentinel-2 (S2) time series 

(optical images) collected from both Sentinel-2A 

and Sentinel-2B, considering all cloud-free images 

during the years 2021 and 2022. Images were 

provided by an open-source service centre 

named THEIA (https://www.theia-land.fr/, 

accessed on 17 January 2023). We worked with 

S2 level 2A, which is spatially registered and 

corrected for atmospheric effects. The products 

are delivered with a cloud mask used to filter the 

images. The number of used images varies across 

the two years; for instance, there were 50 and 53 

available images in 2021 and 2022, respectively. 

The leaf area index (LAI) utilised in this research 

was calculated via the BVNET algorithm (Weiss et 

al., 2002), which is based on the green (B3), red 

(B4), and near-infrared (B8) bands. The quality of 

this algorithm was proven and thus it was 

incorporated into the ESA (European Space 

Agency) S2 toolbox. The algorithm is based on the 

neural network trained on simulated spectral 

reflectance using the SAIL radiative transfer 

model (Weiss et al., 2002). The SAIL model is 

adapted to homogeneous canopies as field crops, 

and using it to structured plant cover such as 

orchards and vineyards remains questionable. 

However, in Abubakar et al. (2023), it was found 

that the LAI derived from the BVNET algorithm 

can track the leaf development dynamic. The LAI 

was computed on each 10m resolution pixel, and 

then the LAI average was computed for every 

field using the R function of zonal statistics (Zonal 

Statistics in R | GeoProfesja, 2016). To avoid any 

border effect, a buffer of 20 m from the field limit 

was removed before the averaging. 

5. Analytic model and calibration  

In this study, we assumed that the vine leaf area 

dynamic can be represented by a double logistic 

model (Fisher et al., 2006 ; Fisher and Mustard, 

2007), which has proved to be efficient in 

describing the LAI dynamic of orchards and 
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vineyards (Abubakar et al., 2023). The analytic 

relationship is given in Equation 1. 

 𝑬𝒒. 𝟏: 𝑽(𝒕)  =  𝒗𝒎𝒊𝒏 + 𝒗𝒂𝒎𝒑 ( 
𝟏

𝟏+𝒆𝒎𝟏−𝒏𝟏𝒕
−

𝟏

𝟏+𝒆𝒎𝟐−𝒏𝟐𝒕
) 

Where V(t) represents a vegetation index (LAI in 

our case) at time t, vmin is the minimum V value, 

and vamp is the amplitude of V variations. 

Parameters m1, n1, m2, n2 are the curve-shape 

controlling parameters. The n1 and n2 

parameters represent the slope at inflexion 

points, as shown below in Figure 3a, while m1 and 

m2 are the timing of the inflexion point. The 

problem with the vineyard is that there is a risk of 

confusion between the grassed background, 

which has its dynamic on the grapevine canopy 

since both components might have a similar 

weight in the overall LAI (Figure 3c). This hampers 

the possibility of determining the double logistic 

model parameters and consequently prevents 

identifying the vine canopy development. Such a 

feature was noticed in Abubakar et al. (2023) with 

the possibility of vineyard misclassification due to 

early grass development that provides leaf 

growth earlier than expected with grapevine. The 

results of the leaf development observations are 

displayed in Figure 3b. The observed leaf surface 

should be considered as a proxy of the LAI, whose 

main characteristic is to describe the temporal 

dynamic of the canopy development. The leaf 

surfaces were normalised using the maximum 

value observed in each field. Figure 3b clearly 

shows the relevance of using the double logistic 

model and shows a good synchronisation of the 

temporal patterns over the growing and plateau 

phases. 

These observations were the foundation of the 

additional hypothesis used to constrain the fitting 

procedure. Based on the field observations, we 

can determine critical dates that correspond to 

vmin, vmax=vmin+vamp, and intermediate points 

in the growing and senescence phases 

corresponding to (Vmin+¼Vamp), ½, and ¾ of the 

amplitude (see Figure 3c). To determine the V 

value at those critical times, we need to 

 

FIGURE 3. (a) analytic model showing Eq. 1 parameter effect (b) canopy developments from the field 

visits data showing selected time used for the model calibration (c) the simulated canopy from the S2 
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data showing the calibration points (d) the separation of canopy and background from S2 data of a 

given irrigated table grapevine field. 

determine Vmax and Vmin. These values were 

taken from the LAI time series. Vmin was derived 

from a field with a tilled interrow, taking into 

account the field presenting a flat and the lowest 

LAI in winter. This value was then applied to all 

other fields. Vmax is characterised by every field’s 

times series by taking the minimum value during 

the plateau phase. In doing so, the underlying 

assumption is that, whatever the inter-row 

management method, there is a point during the 

summer drought when the vegetation is 

completely dried out, allowing us to hypothesise 

that the grassed contribution to LAI is negligible. 

From that hypothesis, we can generate a 

grapevine LAI time series at the critical times 

mentioned above. Then, the parameters n1, n2, 

m1, and m2 were determined using a non-linear 

fitting algorithm (nls function in R). The last step 

is to remove from the observed LAI time series 

the fitted vine LAI to obtain the LAI of the 

background (Figure 3d). 

RESULTS  

1. Grapevine canopy and background field 

observation  

The data obtained on the evaluation of the 

grapevine leaf area were presented (Figure 3b) 

and partially discussed in the previous section. 

The measurements obtained on a sample of 

branches provide a good reflection of leaf 

evolution but do not allow us to compare LAI 

from one plot to another since the number of 

branches per grapevine is also an important 

datum that was not recorded. The evolution 

clearly shows the growth, plateau, and 

senescence phases. The first two phases are 

remarkably synchronous despite the diversity of 

the grape varieties used (different varieties for 

wine grapes and table grapes). More marked 

differences can be observed in the senescence 

phase. Between the two years, we noted a slight 

shift of a few days, with vegetation in 2022 ahead 

of 2021. The surface dynamic shows a drop at the 

beginning of the plateau, in line with thinning 

operation. Such an operation could have an 

impact on the detection of minimum LAI in the 

plateau phase. 

The temporal patterns of the inter-row grass 

coverage are displayed in Figure 5 for the two 

years. The temporal patterns reflect the weather 

nature of the study area by having a significant 

drop in summer and a rise in both winter and 

autumn, as shown in Figure 5. From DOY 150 to 

215, i.e., when the inter-row decline was 

observed, strong water deficits were recorded 

with cumulative daily rainfall of 54 mm (the 

potential evapotranspiration being 325 mm) in 

2021 and 37.6 mm (the potential 

evapotranspiration being 315 mm) in 2022. Due 

to the significant variation in inter-row 

management strategies among the selected 

grapevines, the drop in the green vegetation still 

varies among fields with some having a drastic 

drop (for instance the constantly tilled plots), 

while in some fields the drop is not so drastic (for 

instance plots that have grassed inter-row). Such 

a drop in the summer confirms our hypothesis 

that in the summer, there are times when the 

grass contribution to LAI is negligible. However, 

the hypothesis is questionable with table 

grapevine fields 45, 1901, and 3064 that had a 

grassed inter-row and were irrigated. In that case, 

the grapevine canopy is very high, and the impact 

of the grassed inter-row might be minimised. 

2. Delineation of canopy and soil background 

from the remote sensing data  

The method was applied to each field, 

considering the specific Vmax for each of them. 

The canopy development for one of the selected 

grapevine is displayed below with all the 

calibration points (Figure 5). In this figure, we can 

make a qualitative assessment of the background 

dynamic as displayed by the picture. After tillage 

within some part of the growing season, there is 

re-emergence of the inter-row grasses coverage 

as seen in Figure 5 below ; which can be explained 

by rainfall that may stimulate the regrowth 

between the two tillage events shown in the two 
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mid photos. The regrowth of the grass shown in 

the last picture is also visible on the background 

LAI signal. When comparing the grapevine results, 

we can see that the timing of the growing and 

senescence phases was consistent. For the 

background, the overall trend is well reproduced, 

with high LAI in spring and fall while the grass 

cover decreases strongly in summer 

 

 

FIGURE 4. Temporal pattern of the inter-row green vegetation cover from the field visits data (with 

plot ID indicated above the figures) in 2021 (a) and 2022 (b). 

Some variations in both signals were not always 

consistent due to some shifts in acquisition dates 

and very sharp variations in grass dynamics due 

to tillage and rainfall. The main parameters used 

including their timings are vmin_deb (110 DOY), 

vmin+vamp1/4 (144 DOY), vmin+vamp1/2 (158 

DOY), vmin+vamp3/4 (167 DOY) vmin+vamp_SOP 

(199), vmin+vamp_EOP (272 DOY), 

vmin+vamp1/2 (304 DOY), vmin_end (346 DOY). 

3. Evaluation of the vine LAI  

The developped method was evaluated by 

considering the observations made on the 

03/08/2023 when the canopy is expected to be 

fully developped. The average and standard 

deviation of the canopy width from the five 

selected grapevine tree was determined across 

each field. A relation was determined between 

the remotely sensed LAI (RS-LAI) and the average 

canopy width (of the same date) for each field 

with error bars on the ground measurements, as 

shown in Figure 6 below. The evaluation was 

done independently for table (Figure 6a) and 

wine grapevines (Figure 6b), as the grapevine 

trees are managed differently. The increase in the 

RS-LAI is somewhat directly linked to an increase 

in the canopy width, but the strong uncertainties 

on the ground observations might affect this 

evaluation strongly. 
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FIGURE 5. Results obtained with field ID 3140: (a) Separation of canopy and background green cover 

from remote sensing LAI signal and the rainfall data of a grapevine plot with field ID 3140. The points 

on the yellow curve are those used to calibrate the grapevine LAI curve. In (b), the curves correspond 

to the observed canopy leaf area and background green vegetation cover. 

 

FIGURE 6. Table grapevine RS-LAI and canopy width relations (a) and wine grapevine RS-LAI and canopy 

width relations (b). 
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FIGURE 7. Temporal patterns of background LAI time series for 2021 (a) and 2022 (b). The black curves 

correspond to the grassed, green to the partially tilled, and orange to the tilled inter-row management. 

4. Identification of inter-row management 

strategies from remote sensing data  

The background LAI time series are displayed in 

Figure 7, and the colour scheme is used to 

distinguish the three management classes : tilled, 

partially grassed, and grassed. For the grassed 

class (black lines), we can observe strong 

variations in LAI that reflect growth, mowing, and 

summer senescence. Overall, the grassed class 

presented a yearly average LAI, which was 

significantly larger than the other modes, with an 

average of 0.36 compared to 0.19 to 0.21 values 

obtained with the other two classes. One can 

note that the differences were even larger when 

considering the spring period until DOY = 150. 

Therefore, the yearly (or spring average) average 

LAI over the year might be a useful metric to 

separate grassed and tilled inter-rows. As a 

matter of fact, the lowest yearly average in the 

grassed class (0.30) is always larger than the 

maximum obtained in the other class (0.24). On 

the other hand, the tilled and partially grassed 

classes are difficult to distinguish. A comparison 

of the retrieved LAI with the inter-row vegetation 

cover led to a significant relationship with an R² = 

0.4. The quality of this comparison is affected by 

the uncertainties in the vegetation cover due to 

the sampling, the error in image processing, and 

the difference in time between the remote 

sensing data and the close field observation. 

However, a qualitative assessment made with the 

field pictures as shown in Figure 5 showed 

consistency between the background LAI time 

series and the grass development in the inter-

rows. 

DISCUSSION  

1. Impact of grapevine trimming and thinning 

management.  

Grapevine canopies are subjected to several 

management practices, such as pruning, 

trimming, or thinning, among others, for canopy 

structure manipulations. The shoot trimming is 

done to regulate the excess growth spread of the 

grapevines across the fields (regulate shoot 

vigour) by adopting several approaches of canopy 

management (shoot trimming or thinning) 

(Smart, 1985). Thinning or trimming of shoot 

remains one of the extensively adopted 

management strategies in viticulture to regulate 

canopy density, improve interception of sunlight, 

optimise photosynthetic dynamics, improve fruit 

microclimate, and eventually enhance fruit yield 

and quality of the wine (Costa et al., 2016). Figure 

8 displays the temporal data obtained from the 

field visits and RS-LAI time series. With the field 

observation, one can notice that, in general, there 

is a slight decrease in the leaf surface area 

observations (highlighted with a red circle) on the 

sixth field visit which corresponds to 12–13 of July 

2021. Such drop in the leaf surface area is 

ascribed to the first shoot thinning management, 

as demonstrated by the picture showing the 

removed shoots left on the ground. On the 

contrary, the RS-LAI signals from Figure 8 have 

failed to display such a reduction in leaf area. It is 

interesting to implement our approach that  
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needs to take profit of a minimum value, and it is 

interesting to have it not impacted by a thinning 

event. However, it also reflects that LAI estimated 

by remote sensing is not so sensitive to leaf area 

reduction within the grapevine canopies. This 

questions the LAI algorithm itself but also 

indicates that some management practices such 

as thinning and pruning can not be observable on 

the 10-metre resolution images delivered by the 

Sentinel 2 satellite 

2. Is the proposed method dependent on field 

observations  

The leaf growth is governed by the temperature 

(Malheiro et al., 2013) and is tightly linked to the 

phenology. It also depends on grapevine 

varieties, while water stress may impact the 

grapevine LAI dynamic. In our study, the timing of 

the plant development as the growth, the 

plateau, and the senescence phases were set up 

on ground observations. In other locations having 

different climates and grapevine varieties, there 

is a need to adapt the timing of the different 

phases. One can question the need for field 

observation and then the resulting burden of 

collecting leaf area in several fields. One can ask 

if such an observation step is mandatory or if we 

can infer the timing characteristics directly from 

the RS times series. In our data set, we can take 

profit from vineyards where the LAI time series is 

dominated by the grapevine canopy. A good 

candidate for that is a field with a LAI times series 

having low LAI in winter and spring and a LAI  

 

 

significantly higher during the crop seasons, as 

shown with field 3121 in Figure 9a. From that 

curve, we can determine the Vmax as done 

previously and then determine the time 

corresponding to the start and the end of the 

season (t0-deb and t0-end), the plateau (tSOP and 

tEOP), and the intermediate points during the 

growing and senescence phases (t1/4, t1/2, and 

t3/4). These points are displayed in the orange 

curves in Figure 9a. The differences in time 

between the remote sensing and field 

approaches reached a maximum of 17 days for 

tSOP and was, on average, equal to 10 days. The 

plateau duration was expended by 20 days, and 

the senescence phase was delayed when using 

the remote sensing time series in comparison to 

the field observations. If such differences in the 

development timing have no impact on the 

maximum LAI, their impacts on the vegetation 

component time series might be significant. 

Figure 9b displays the LAI times series of the 

background using the two methods (with or 

without field observation) on three fields 

representative of the three management classes. 

As expected, differences were found during the 

growing and senescence phases. However, such 

differences remain small in comparison to the 

differences observed between management 

practices and, thus, the possibility to identify 

grassed inter-row remains possible. Such a result 

is encouraging and opens the possibility of 

applying the method in different areas with the 

use of remote sensing data only. This is an 

important property for the model scalability and 

its implementation in wide areas. 
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FIGURE 8. Temporal evolution of canopy dynamic and the temporal evolutions of the RS-LAI signal for 

the year 2021. 
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FIGURE  9. (a) RS-LAI signal of a clear and fully-grown grapevine tree where a good case was identified 

with calibration fit from field visit and RS data (b) comparison of the background LAI time series on 

three fields representative of the different management classes: Grassed inter-row (black for field 

1901), tilled interrow (orange for field 3121), and partially tilled (green for field 203). The solid lines 

correspond to the implementation of the method using field observations, while the dashed lines 

correspond to the implementation using remote sensing only 

 

CONCLUSIONS 

In this work, we propose a method for 

characterising two important characteristics of 

grapevines, namely the LAI of the grapevine 

canopy and inter-row management. We showed 

that these data are accessible from the LAI time 

series derived from a decametric resolution 

satellite such as Sentinel 2, which has the 

advantage of offering frequent and free data over 

the whole globe but at a resolution that does not 

allow us to enter into the description of the 

constituent elements of a plant canopy such as 

the vineyards. The proposed method is based on 

assumptions about canopy dynamics supported 

by field observations, and on the presence of 

periods during the summer when the 

contribution of the herbaceous canopy may be 

neglected, due either to tillage or to the drying 

out of the grass as a result of water stress. The 
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method was applied to eleven (11) vineyards with 

different types of management and grape 

varieties. The results obtained led to interesting 

qualitative results on LAI, and we have succeeded 

in separating grass-covered vines from vines in 

which the inter-row is tilled. We have shown that 

we can dispense with field observation and base 

our methods solely on remote sensing data. 

These promising results now need to be 

evaluated against more quantitative data and 

applied on a larger scale.  
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General conclusions and perspectives 
 Shortage of water is among the major factors restricting agricultural development 

in the Mediterranean environment. This study addressed the mapping of irrigated crop 

classes at the territory level and the characterization of vineyard components (canopy leaf 

area and identification of the inter-row management). It aimed to propose different mapping 

approaches of the prevalent irrigated crop classes in the respective study areas like irrigated 

permanent grasslands, orchards, vineyards, and olive groves, using Sentinel 2 data. 

 In the course of this thesis, these proposed methodologies have been applied to our 

respective study sites: the plain of Crau and the basins of Ouvéze-Ventoux; where irrigation 

is a major issue to sustain agricultural production. The innovations in this thesis are to infer 

from Sentinel-2 (S2) time series agronomic or phenological traits (features) that are used to 

characterize the different irrigation systems. This was the case with irrigated grassland which 

presents a specific temporal signature with several mowing events that are easy to identify 

with a sharp drop in the amount of vegetation or with the phenology development which 

makes the distinction between orchard, vineyard, and olive groves possible. Such innovation 

is possible with the good temporal resolution offered by the S2 mission and the weather 

conditions that allow to exploit a large number of images. Among the different indices and 

biophysical variables that are accessible from remote sensing, the LAI led to interesting results 

on both the classification performances and the interest in having a meaningful variable that 

can be further used for agronomical analysis. Lastly, the temporal analysis of S2-LAI time 

series, as used for crop mapping, can also be used to characterize vineyards with two 

important characteristics, namely the LAI of the grapevine canopy and inter-row management 

It was shown that these characteristics are accessible from the LAI time series derived from a 

decametric-resolution satellite such as Sentinel-2, which does not allow us to enter into the 

description of the constituent elements of a plant canopy such as the vineyards. The proposed 

method is based on assumptions about canopy dynamics supported by field observations and 

the herbaceous canopy. The results obtained led to interesting qualitative results on vine LAI, 

and we have succeeded in separating grass-covered vines from vines in which the inter-row 

was tilled. We have shown that we can avoid collecting field observations and base our 

methods solely on remote sensing data. These promising results now need to be evaluated 

against more quantitative data and applied on a larger scale. Since this thesis gave information 

concerning irrigated crops and thus completely about water utilization management, the 

results can supplement studies in hydrology, agronomy, or water management.  

Summary of the main findings 

 The first phase of the thesis was devoted to mapping irrigated permanent 

grasslands (IPG) at the plain of Crau. The developed method was tuned on a limited data set 

and can be replicated in different places when irrigated grassland is mowed at least two times 

a year with a classification scheme that is based on simple threshold detection applied to the 

number of mowing events. The developed method provides good results (Kappa ranging from 

0.94-0.99), better than the results obtained using supervised classification (SVM) on soil LAI 

time series and comparable to the results provided by the THEIA land use map which covers 

the whole of the French territory using large ground-based data sets. An important part of the 

development was to handle noise from remote sensing. In spite of the good obtained results 

by the algorithm, some drawbacks were faced which can lead to failure to detect mowing 
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events like very low vegetation growth or biomass or heterogeneous plots, it tends to be faced 

with mowing detection failure. This can be viewed as a drawback however our analysis has 

demonstrated that the irrigated permanent grasslands class covers numerous management 

procedures. Such drawbacks might as well be advantageous to distinguish various production 

patterns. Moreover, it is possible to characterize practices from the detection of mowing events 

and to provide data to inform farming practices over large extents to implement crop models. 

Real land use change can be noticed but to confirm the change in land use, long time series are 

required to separate real changes from fields with lower irrigation or strong heterogeneities. 

In this study, we relied on agronomic traits that are typical of the irrigated grassland which 

makes the classification easier and can explain the good classification statistics, which were 

also found with other products such as the THEAI classification. However, it was expected 

that mapping the other irrigated crop types like orchards, vineyards, and olive groves would 

offer closer remote sensing signal making their characterization more challenging  

 In the second phase of the work, we have proposed a new approach to delineating 

deciduous (orchards and vineyards) and evergreen (olive groves) perennial woody trees by 

fitting an analytical model representing the plant development according to its phenology on 

LAI time series obtained from Sentinel-2 data. The parameters of such a model linked to 

phenological traits, were used as classifiers in the random forest algorithm. The obtained 

performances led to good overall accuracies (0.89-0.96) and Kappa (0.87-0.95), which was 

much better than the results derived from using the LAI times series as a classifier using the 

random forest method. This demonstrates the use of agronomic knowledge in the analysis of 

the temporal series, here by selecting a relevant analytical model to match the data, overpass 

machine learning method used with small training data sets. Our method is also significantly 

better than THEIA land use classification that is implemented across the territory of France 

using various sources of ground data. Additionally, the approach is not dependent on satellite 

acquisition dates. We can implement a random forest model derived from one year to another 

year by still obtaining reasonable precision.  

 In the third phase of the work, we suggested an approach that concentrated on an 

in-depth analysis of optical satellite data of Sentinel-2 (S2) time series of the leaf area index 

(LAI) to characterize canopy development and inter-row management of grapevine fields. 

Field visits were conducted in the Ouveze-Ventoux area, South Eastern France, for two years 

(2021 and 2022) to monitor phenology, canopy development, and inter-row management of 

eleven selected grapevine fields. Concerning the S2-LAI data, the annual dynamic of a typical 

grapevine canopy leaf area was found similar to a double logistic curve. Therefore, an analytic 

model was adopted to represent the grapevine canopy contribution to the S2-LAI. Part of the 

parameters of the analytic model were calibrated from the actual grapevine canopy dynamics 

timing observation from the field visits, while the others were inferred at the field level from 

the S2-LAI time series. The background signal was generated by direct subtraction of the 

simulated canopy from the S2 LAI time series. Rainfall data were examined to see the possible 

explanations behind variations in the inter-row grass development. From the background 

signals, we were able to group the inter-row management into three classes namely grassed, 

partially grassed, and tilled which corroborated our findings on the field. To consider the 

possibility of avoiding field visits, the model was recalibrated on a grapevine field with a clear 
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canopy signal and applied to two fields with different inter-row management. The result 

showed slight differences among the inter-row signals, which did not prevent the 

identification of inter-row management, thus indicating that field visits might not be 

mandatory. 

Limitations of the study 

Summarily, the presented findings (results) displayed in this work have demonstrated 

that multispectral remote sensing images and the use of LAI in particular allow to classify with 

a good level of precision Mediterranean crops and delineate parcels under irrigation (irrigated 

crops). These findings are in accordance with many past studies with similar emphases in the 

Mediterranean regions or under the climate of the Mediterranean. Nevertheless, the proposed 

approaches developed in this study (thesis) are nonetheless limited by some corresponding 

postulations which were mentioned and discussed below in a nutshell; 

a) For instance, since the proposed approaches depend on specific agronomic or 

phenology timings, thus, when there is cloud coverage exactly corresponding 

to these crucial events (time of harvest or mowing, the onset of the season, etc.) 

the accuracies of the methods can be greatly affected as it was noticed with the 

first part of the work (developed grassland detection algorithm) and even to 

some extent the second part of the work (fruit trees delineation). 

b) In general, there are difficulties in mapping young tree canopies and this might 

be due to the low contribution of the canopy and creating confusion with the 

background signals. Such limitation was also experienced with the grassland 

detection algorithm (mowing detection failure due to low vegetation growth 

mostly from poor management or levelling). 

c) Classes of the orchards, vineyards, and olives were determined in a broad 

manner. For instance, there is a need for more clarity on the precise type of 

orchards (e.g plum, cherry, apricot, apple, nectarine, peach etc..) vineyards 

(separate between table and wine grapevines) and the same with olive class. 

This will give a clear pathway when estimating their respective water needs 

d) There is a need for calibration between territories and in less extent between 

years. To maintain good accuracy there is a need for individual calibration 

across sites (due to the slight variation in micro-climate which consequently 

reflects on the phenology) and even across years. 

e) Delineation of vineyard components needs validation over large data sets. The 

eleven selected fields might not be sufficient and there is a need for validation 

across vast extents to encounter different occurrences  

Perspectives 

 The accessibility of remote sensing data with decametric resolution (spatial and 

temporal) like the Sentinel-2 mission provides an extraordinary avenue to improve the 

monitoring of crop water balance. The Sentinel-2 program mission made it practicable to 

obtain complete coverage of the main aspect of the Earth's surface for at least every 5 days 

with 13 multispectral independent bands with a GSD (ground sampling distance) of 10 m. 

Such spatial and temporal resolution might permit simultaneous supervision of crop 
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advancements and water status via the utilization of biophysical variables or spectral 

vegetation indices like NDVI or NDWI to mention a few and consequently estimation of crop 

water use.  

 Going by the respective results obtained from the three phases of this PhD thesis, it 

could be noticed that there is a need to be more curious about knowing the in-depth nature of 

the classified crops. For instance, in the second phase of the work irrespective of the good 

accuracy obtained, knowing the exact crop classes of the different classified orchards could as 

well be an adding value to the work (which was determined broadly). The ability to separate 

within the orchard class (cherry, plum, apricot, and apple trees) probably by exploiting a 

different vegetation index like the bloom index to make the separation according to time, 

colour, and intensity of blooming. Since floral phenology timing and intensity are linked to 

the reproduction of terrestrial ecosystems and are also highly responsive to climate change. 

Although flowering observational records are quite sparse which consequently affects our 

comprehension of spatiotemporal behaviours of floral phenology from local to regional 

extents. Remote sensing satellites can offer unique opportunities for spatiotemporal floral 

monitoring in a less expensive manner. For instance, Chen et al. (2019) proposed an enhanced 

bloom index (EBI) using remote sensing multispectral data to estimate the status of almond 

(Prunus dulcis) orchard flowering in the Central Valley of California. Their results showed 

that decametric S2 data displayed robustness of the EBI in displaying the flower information 

due to the relatively dense time series of S2 data being capable of grasping the blooming 

pattern of the almond orchards. EBI derived from satellite sensors like S2 is expected to capture 

the blooming data and thus, enhance our understanding and prediction of flowering 

responses to weather and yield. 

 Another way to classify the individual orchards could be by using textural feature 

analysis, which is a significant tool for classifying land cover types remotely having less inter-

class variability or a huge intra-class heterogeneity (Myint et al., 2004). Very high-resolution 

aerial/satellite imageries could assist in generating the different classes by offering high-

quality GLCM texture descriptors (Chen et al., 2019b; Chen et al., 2019).  

 Other issues (challenges) could be stated such as the imperative issues that might 

pertain to mixed pixel problems. Due to the complicated and diverse land cover types in the 

study areas, the issue of mixed pixels is a challenging incident that might lead to the wrong 

estimation of delineated maps. To address the problems of mixed pixels in future studies, 

subpixel analysis might be (presumably) crucial too.  

 The use of future very high-resolution optic satellite imageries that are cost-free and 

have a fine temporal frequency (finer than the Sentinel-2 mission in both resolution and 

frequency) can be merged with S2 data to improve time series acquisition. This will also 

counter the limitation of cloudy dates for instance in 2016 only one functional satellite of S2 

was available (S2A) and that might explain the reasons behind the general low obtained 

accuracies.  

 The launch of the Franco-Indian mission (TRISHNA) in 2025 with thermal bands 

might be very promising to detect irrigated surfaces based on direct observation of crop stress 

might be interesting to delineate crop types that are not always irrigated as vineyards. 
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 The different crop maps generated from this study (based on agronomic and 

phenology metrics) can be used to evaluate or estimate their respective water needs by 

adopting different modelling approaches such as the AquaCrop model, FAO-56 model, and 

STICS model to mention a few.  
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