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Abstrakt

Tato disertačńı práce využ́ıvá metod Sum-of-squares (SOS) a Koopmanova operátoru
pro analýzu a syntézu ř́ızeńı nelineárńıch ř́ıdićıch systémů. Obě techniky pracuj́ı s
linearizaćı a konvexifikaćı nelineárńıch ř́ıdićıch problémů t́ım, že převáděj́ı problémy
do nekonečně dimenzionálńıho prostoru, kde je možné je popsat lineárně, což následně
vede ke konvexńımu programováńı. Tato práce zkoumá aktuálńı nedostatky obou
technik a navrhuje řešeńı s ćılem ulehčeńı jejich uplatněńı v praxi.

Metoda SOS poskytuje nástroje pro řešeńı nekonvexńıch polynomiálńıch problémů
pomoćı konvexńıho programováńı. Záruka globálńı optimality je vykoupena ve-
likost́ı oněch konvexńıch programů, což metodu omezuje na malé nebo velmi ř́ıdké
problémy. Tato práce zlepšuje škálovatelnost, požadavky na výpočetńı a časové
zdroje a přesnost metody SOS pro úlohy souvisej́ıćı s ř́ızeńım t́ım, že problém rozděĺı
na několik spolu propojených část́ı o menš́ı složitosti a zároveň poskytuje metodu
pro optimalizaci onoho rozděleńı, č́ımž se zmı́rňuje dopad zvýšeńı počtu parametr̊u.

Metoda Koopmanova operátoru poskytuje nástroje pro globálńı reprezentaci ne-
lineárńıch dynamických systémů pomoćı lineárńıch systémů velkého řádu, což umožňuje
použit́ı metod lineárńıho ř́ızeńı pro analýzu a návrh ř́ızeńı pro daný nelineárńı
systém. Současné metody pro učeńı Koopmanova operátoru předpokládaj́ı částečné
znalosti o operátoru, které se obvykle nedaj́ı snadno źıskat, což přenáš́ı problém
nalezeńı Koopmanova operátoru na problém nalezeńı správné parametrizace pro
konkrétńı numerickou metodu, což může být stejně tak náročné.

Tato disertačńı práce představuje novou metodu pro aproximaci Koopmanova operátoru
pro nelineárńı ř́ıdićı systémy. Metoda nepředpokládá žádné předchoźı znalosti o
operátoru, úspěšně překonává současné metody, rozšǐruje tř́ıdu systémů, které lze
aproximovat touto metodologíı, a je schopna využ́ıt a replikovat symetrie daného ne-
lineárńıho systému, č́ımž zajǐsťuje konzistentńı chováńı kontrolér̊u v př́ıpadě použit́ı
metody pro jejich syntézu.

Kĺıčová slova: Koopman̊uv operátor, Nelineráńı ř́ızeńı, Prediktivńı ř́ızeńı, Lineárńı
prediktory, Oblast přitažlivosti, Kónická diferenciace, Polynomiálńı optimalizace,
Suma čtverc̊u.
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Résumé

Cette thèse utilise les cadres de travail de la Somme des carrés (SOS) et de l’opérateur
de Koopman pour l’analyse et la synthèse de contrôle des systèmes non-linéaires.
Les deux techniques proposent la linéarisation et la convexification des problèmes
de contrôle non-linéaires en les transformant dans un espace de dimension infinie
où elles permettent des descriptions linéaires débouchant sur une programmation
convexe. Nous examinerons les défis actuels des deux techniques et proposerons des
solutions visant à les rendre plus applicables en pratique.

Le cadre SOS offre des outils pour résoudre des problèmes polynomiaux non-convexes
via une programmation convexe. Le compromis pour l’optimalité globale se reflète
dans la taille des programmes convexes, ce qui limite le cadre à des problèmes
de petite taille ou très creux. Dans ce travail, nous améliorerons la scalabilité, les
exigences en ressources et la précision du cadre SOS pour les tâches liées au contrôle,
en divisant le problème en plusieurs parties interconnectées, de moindre complexité,
tout en fournissant une méthode pour optimiser la division, atténuant ainsi l’impact
de l’augmentation du nombre de paramètres.

Le cadre de Koopman offre des outils pour la représentation globale des systèmes
dynamiques non-linéaires par des systèmes linéaires de grande dimension, permet-
tant l’utilisation de méthodes de contrôle linéaire pour l’analyse et la conception de
contrôle du système non-linéaire sous-jacent. Les méthodes actuelles d’apprentissage
de l’opérateur de Koopman supposent une certaine connaissance partielle de l’opérateur,
ce qui est généralement difficile à obtenir, transférant ainsi le problème de la recherche
de l’opérateur de Koopman au défis de trouver la bonne paramétrisation pour la
méthode numérique particulière, ce qui peut être tout aussi difficile.

Cette thèse présente une nouvelle méthode afin d’approximer l’opérateur de Koop-
man pour les systèmes de contrôle non linéaires. La méthode ne suppose aucune
connaissance préalable de l’opérateur, surpasse avec succès l’état de l’art actuel,
élargit la classe de systèmes qui peuvent être approximés par la méthodologie et
est capable d’exploiter et de reproduire les symétries du système non-linéaire sous-
jacent, garantissant ainsi un comportement de contrôleur cohérent lorsqu’il est utilisé
pour la synthèse de contrôle.

Mots-clés: Opérateur de Koopman, Contrôle non-linéaire, Commande prédictive
de modèle, Prédicteurs linéaires, Région d’attraction, Différentiation conique, Opti-
misation polynomiale, Somme des carrés.
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Abstract

This thesis uses Sum-of-squares (SOS) and Koopman operator frameworks for anal-
ysis and control synthesis of nonlinear control systems. Both techniques propose
linearization and convexification of nonlinear control problems by casting the prob-
lems into infinite-dimensional space where they permit linear descriptions leading
to convex programming. We investigate the current challenges of both techniques
and propose solutions aimed at making them more applicable in practice.

The SOS framework provides tooling for solving nonconvex polynomial problems via
convex programming. The tradeoff for the global optimality is reflected in the size
of convex programs, which limits the framework to small or very sparse problems.
In this work, we improve the scalability, resource demands, and accuracy of the SOS
framework for control-related tasks by splitting the problem into several intercon-
nected parts of lesser complexity while also providing a method for optimizing the
splitting, thus mitigating the impact of increasing the number of parameters.

The Koopman framework provides tools for global representation of nonlinear dy-
namical systems by high-dimensional linear systems, allowing the use of linear con-
trol methods for analysis and control design for the underlying nonlinear system.
The current methods for learning the Koopman operator assume some partial knowl-
edge about the operator, which is usually challenging to obtain, thus transferring
the problem of finding the Koopman operator to the problem of finding the right
parametrization for the particular numerical method, which can be just as difficult.

This thesis presents a new method for approximating the Koopman operator for
nonlinear control systems. The method does not assume any prior knowledge about
the operator, successfully outperforms the current state-of-the-art, increases the
class of systems which can be approximated by the methodology, and is capable
of exploiting and replicating symmetries of the underlying nonlinear system, thus
guaranteeing consistent controller behaviour when used for control synthesis.

Keywords: Koopman operator, Nonlinear control, Model predictive control, Lin-
ear predictors, Region of attraction, Conic differentiation, Polynomial optimization,
Sum-of-squares.
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Chapter 1

Introduction

This thesis deals with analysis and control synthesis for nonlinear control systems
using two novel techniques, which both deal with nonlinearity by casting the non-
linear problem to an infinite dimensional space, where it admits a linear description.
There are couple of things that both frameworks have in common. In both cases,
the linear infinite-dimensional reformulation leads to convex problems which are
truncated to finite dimensions and solved approximately. Both approaches provide
analytical and numerical tools for the study of nonlinear systems, while also being
capable of their control. So where do these approaches differ? The main differences
are mostly in their usage and also the maturity of their theoretical foundations. In
short, the SOS method is suited for “offline” purposes, as its solution times take
considerable amount of time while also providing guarantees in terms of optimal-
ity and convergence. The Koopman operator provides possibility to incorporate its
outputs into “online” tasks such as control and estimation, but lacks the strong
foundations found in the SOS framework (in the context of control systems). In
the following text, I will shortly address both methods in order to provide a broad
overview. More detailed introductions will be provided for each method individually
in beginnings of the respective Parts of the thesis along with the concrete statements
of my contributions. Lastly, I shall mostly use “we” instead of “I” even though I
am the sole author. It is not because I see myself as a royalty, neither did I write
the thesis with my dog. It is a simple matter of habit and convenience. The reader
is more than welcome to feel included in said “we”.

The Koopman operator The Koopman framework allows to describe a nonlin-
ear dynamical system by a high-dimensional linear operator by lifting the nonlinear
state vector into high-dimensional state space, where the evolution of the new lifted
states permits linear description. The operator is tied to the works of B.O. Koopman
[1] [2]. Most of the current approaches are fully data-driven, used for approximating
the linear infinite-dimensional operator via a linear time-invariant (LTI) dynami-
cal system. The most successful algorithm for finding the Kooopman operator, the
Dynamic Mode Decomposition (DMD) [3], only requires pairs of consecutive data
snapshots. The data-driven nature is especially useful when a physical model of
the system is too difficult to obtain, such as fluid dynamics [4], which was the first
domain where the approach was used. The approach was later expanded into Ex-
tended Dynamic Mode Decomposition (EDMD) [5], which has become one of the
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most popular methods for learning the Koopman operators from data.

Using the Koopman operator for control has been first proposed in [6], with the most
notable result being the Koopman MPC (KMPC) introduced in [7]. The KMPC
has since seen many applications with many different version of the underlying
Koopman-learning algorithm, which were in most cases based on EDMD.

The main drawback of this approach is its relative immaturity in the context of
control systems. While the Koopman operator for autonomous systems already has
convergence guarantees for its numerical tooling (see [8, 9] for the EDMD), the
theoretical foundations for the control systems are not yet laid out completely and
it is not clear what can and what cannot be accomplished with this framework in
terms of control. Also, the data-driven nature of the framework can be seen from
two points of view. On one hand it is incredibly useful for studying complex systems
for which we are not able to construct their physical models, on the other hand even
if the system model is available, we still have to represent the system with data even
though we have a closed-form description of its dynamics. The introduction of Part I
will cover the relevant state-of-the-art, its challenges, and the concrete contribution
to the Koopman operator framework.

Sum-of-squares The other framework explored in this thesis is the Sum-of-squares
(SOS) methodology. Although the name does not suggest it, the pipeline of this
framework is based on linearizing nonlinear optimization problems. The result is an
intractable Linear Program (LP) on measures, which is relaxed into a semidefinite
program (SDP). In the previous approach, we linearized the system by lifting it into
an infinite dimensional state space and there we formulated the problems we wanted
to solve. Here we do not try to linearize the description of the system but directly
the problem to be solved.

This framework is most commonly called “Sum-of-squares hierarchy” or “Lassere
hierarchy”, named after Jean-Bernard Lassere, who introduced the method in [10].
The framework is restricted to polynomial data, meaning that the dynamics of the
nonlinear system has to be polynomial, and the description of the state space has to
be semi-algebraic (i.e. described by polynomial inequalities). Loosely speaking, the
infinite-dimensional LP on measures is cast into an LP in the space of polynomials
whose degrees go up to infinity. In practice, we truncate and solve a hierarchy of
problems with increasing degree until convergence or depletion of resources (mainly
time or available memory).

This brings us to the main disadvantage of the method; the size of the resulting SDP
problem grows very quickly with the order of approximation and with the number
of states (nx) and inputs (nu) of the polynomial system. Moreover, the monomials
quickly explode (or go to zero) with high degrees, causing poor numerical condi-
tioning of the SDP (it is for this reason that most SOS problems are normalized
before solving). To give a rough idea, systems with nx + nu > 5 should be already
expected to cause issues. This resulted in a lot of effort aimed towards sparsity
exploitation [11, 12, 13, 14], allowing to take advantage of specific problem struc-
tures and solve more complex problems. The introduction of Part II covers the
relevant state-of-the-art, its challenges, and states the concrete contribution to the
SOS framework.

CHAPTER 1. INTRODUCTION 1
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Koopman operator
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The Koopman operator framework is a successful tool for providing a methodology
for analysis and control of nonlinear dynamical systems via the methods for linear
dynamical systems. The main idea is to represent nonlinear dynamics by a infinite-
dimensional linear operator, or in the context of this work, by a linear time-invariant
(LTI) system. The representation is done by means of lifting the nonlinear state
vectors via some lifting functions (also called observables) whose evolution in time is
governed by the linear operator. Since the Koopman operator is in general infinite-
dimensional, we will be focused on its finite-dimensional truncations, which will be
used as predictors for control.

The Koopman operator was first introduced by B.O. Koopman in 1931 in [1]. How-
ever the recent interest and the framework’s popularity was sparked by the works
of Mezić and his collaborators [15, 6]. As already mentioned, the majority of the
techniques for finding the operator are data-driven with the most common being
the Dynamic Mode Decomposition (DMD) [3] and the Extended Dynamic mode
decomposition (EDMD)[5], where the former operates in the original state-space
and the latter in the lifted, high-dimensional state space. Both are fully data-driven
techniques, which quickly boil down to solving a least-squares problem.

The Koopman operator was originally introduced as a tool for study of autonomous
nonlinear systems, the idea of using it for control came with [6]. Later on, control
extensions of the two aforementioned algorithms were developed and are usually
called DMDc [16] and EDMDc [7] respectively. The work [7] also presented the now
well established connection of the Koopman operator and Model Predictive Control
(MPC)[17] by pointing out that the issues connected with the high-dimensionality
of the Koopman operator can be circumvented by a particular formulation of the
MPC, thus opening up the potential for convex -based control of nonlinear systems
while taking into account their constraints. The Koopman MPC (KMPC) has been
since used in many areas such as fluid dynamics [18], robotics [19], power grids [20],
and vehicle control [21, 22] to mention a few. More thorough review can be found
in [23]. An illustration of the KMPC framework can be seen in Figure 1.1.

Nonlinear system

High-dimensional linear system

xt+1 = f(xt, ut)

zt+1 = Azt +Bvt
yt = Czt

zt = Φ(xt)
vt = Ψ(ut)

Convex MPC formulation

u? = Ψ−1(v?)

v? = MPC(Q,R,Φ(x0))

Figure 1.1: Illustration of the KMPC framework. The linear Koopman system is
introduced in Section 2.1.3 and the MPC in Section 2.2.3.

3
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Current challenges The current methods for finding the Koopman operator for
control (or rather its finite-dimensional truncation) suffer for a few drawbacks that
are caused either by the model of the Koopman operator or the learning algorithm
itself. For example, the current methods do not lift the control input, so that the
nonlinear system and its Koopman predictor have the same control. This fact,
although useful for control, is limiting the class of nonlinear systems that can be
approximated by the predictor. Second common issue is the dependance on prior
information, which is usually not available, such as the lifting function (EDMD)
or the eigenvalues of the operator [24]. A third and last issue regards mostly the
MPC usage with the Koopman operator. The MPC is an algorithm that predicts
the future trajectory of the controlled system and optimizes the control inputs such
that the trajectory satisfies some performance criteria. However, the optimization
criterion in (currently the most popular) EDMD-based methods considers only one-
step-ahead prediction; this does not necessarily imply a good prediction accuracy
over longer trajectories, which is required for the MPC. To the best of our knowledge,
the only other method that considers optimization over trajectories (with LTI pre-
dictors) is the Optimal construction of eigenfunctions [24], which will be compared
to our method.

Contribution This part of the thesis introduces a data-driven method for finding
a Koopman predictor for nonlinear control systems. The proposed method does not
depend on any prior information, since it directly optimizes the samples of the lifted
state space as well as the predictor dynamics. Nevertheless, any prior information
(such as knowledge of the lifting functions, dynamics, or symmetries) can be readily
exploited if available. Furthermore, we consider predictors with transformed control
input, increasing the class of nonlinear systems for which the method is applicable.
Finally, the optimization is done over trajectories of the nonlinear system, allowing
to optimize the predictor specifically for the same horizon length that will be used
in the KMPC.

All the aforementioned features of our approach are demonstrated in numerical
examples along with comparison to EDMDc and the Optimal construction of eigen-
functions.

Structure of this Part Chapter 2 introduces the Koopman predictor for control
along with the control architectures used in this thesis. Chapter 3 gives a quick
overview of the state-of-the-art methods, which will be compared to our approach.
Chapter 4 introduces our method. Chapter 5 provides numerical comparison of our
method with the state-of-the-art approaches and we conclude in Chapter 6.

Notation The Table 1.1 summarized the most important notation for this part of
the thesis. All vectors are assumed to be column vectors.

4
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Table 1.1: Notation for the Koopman operator part.

Symbol meaning

R space of real numbers
C space of complex numbers
Za,b space of integers from a to b
X, U, Y state, input, and output spaces
x, u, y state, input, and output vectors
x̂ prediction of x
Ts sampling time in seconds
t ∈ Z0,∞ discrete-time sample
∆ut := ut − ut−1 difference of u a time step t
K Koopman operator
Z, V lifted state and lifted input spaces
z, v lifted state and lifted input vectors
Uk, Vk kth channel of the original and lifted in-

put respectively
fu : X → X autonomous dynamics
f : X × U → X controlled dynamics
A,B,C state, input, and output matrices
φ eigenfunction of K
Φ state-lifting function
gΦ function associated with Φ
Ψ input-transformation
λ eigenvalue
χ extended state
H prediction horizon
HT trajectory length
J : Cn → R scalar cost function
Q,R,Rd weighting matrices for state, input, and

input rate in this order

||x||Q
√
x>Qx

|A| cardinality of the set A
Is identity matrix of size s
1s column vector of ones of size s
a� b element-wise multiplication of a and b
bdiag(a, b, c) block-diagonal matrix with a, b, and c

on the diagonal
θ : Rn → R scalar function, placeholder for regular-

ization
D dataset of trajectories
Ti trajectory with index i
(yt)

H
t=0 trajectory of yt for t = 0, ..., H

N number of trajectories
Uα,β uniform distribution in the interval [α, β]
qk number of quantization levels of the in-

put channel k

5



Chapter 2

The Koopman operator for control

The Section 2.1 will present the necessary definitions for the Koopman operator and
linear predictors arising from it. The usage of the Koopman operator in control will
be discussed in Section 2.2 where we present the basic idea behind Koopman MPC,
first introduced in [7], as well as a few practical considerations that should be taken
into account when using the Koopman predictor with MPC. Some of the following
definitions are based on my own work [25].

2.1 Koopman operator definition

This section shall present two definitions of the Koopman operator, one for the
autonomous and the other for the controlled case. The last subsection presents the
truncated version of the Koopman operator, called the Koopman predictor, which
has the form of an LTI system and which will be used throughout the rest of this
chapter.

2.1.1 Autonomous case

Let us assume a discrete-time nonlinear uncontrolled system with dynamics
fa : Rnx → Rnx and output equation h : Rnx → Rny :

xt+1 = fa(xt)

yt = h(xt),
(2.1)

where xt ∈ X ⊂ Rnx is the state at time-step t, and yt ∈ Y ⊂ Rny is the output.
The Koopman operator K : F → F , with F denoting a space of observables, is
defined as

Φ(fu(xt)) = (KΦ)(xt) (2.2)

for each observable Φ : X → C belonging to F . We shall also work with eigenfunc-
tions φ : X → C of the operator K, which are functions for which it holds

φ(xt+1) = (Kφ)(xt) = λφ(xt), (2.3)

for some eigenvalue λ ∈ C and all xt ∈ X.

6
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2.1.2 Controlled case

Let us consider a discrete-time controlled nonlinear dynamical system

xt+1 = f(xt, ut)

yt = g(xt),
(2.4)

where xt ∈ X ⊂ Rnx , ut ∈ U ⊂ Rnu , yt ∈ Y ⊂ Rny are the state, the input, and the
output vectors, in this order

We define the Koopman operator K with control input similarly as in [7], by consid-
ering the extended state-space Rnx × `(U), where `(U) := {(ui)∞i=0 | ui ∈ U} is the
space of all control sequences. We shall denote the elements of `(U) by u := (ui)

∞
i=0.

The dynamics on the extended state-space is defined by

χt+1 = F (χt) =

[
f(xt,ut(0))
Sut

]
, for χ0 =

[
x0

u0

]
, (2.5)

where χt = (xt,ut) ∈ Rnx×`(U) is the extended state, ut(0) denotes the first element
of the sequence ut, and S is a shift operator such that (Sut)(i) = ut(i+1) = ut+1(i).
The Koopman operator K : H → H is then defined by

(Kξ)(χ) := ξ(F (χ)) (2.6)

for ξ : Rnx × `(U) → C belonging to the space of observables H. In this work, we
shall assume the observables to be of the form

ξ(χ) =

[
Φ(x)

Ψ(u(0))

]
, (2.7)

where Φ : X → Z is a vector state lifting function, Ψ : U → V is the input trans-
formation. The spaces Z ⊂ Rnz and V ⊂ Rnv are the Koopman state and input
spaces respectively. Note that with this definition, the operator K will predict the
future lifted inputs; we will disregard those since we are not interested in the spectral
properties of the operator. Our goal is only the linear prediction of the controlled
nonlinear dynamics (2.4); this is also the main reasoning behind the choice of the
form (2.7), because it allows us to represent K by an LTI system. In order to be
able to use it in practice, we first need to truncate the operator to finite dimensions.

2.1.3 Finite-dimensional truncation

Since K is generally infinite-dimensional, we will work with its finite-dimension trun-
cation in the form of an LTI predictor

zt+1 = Azt +Bvt

ŷt = Czt, for z0 = Φ(x0) and vt = Ψ(ut),
(2.8)

where zt ∈ Z ⊂ Rnz , A ⊂ Rnz×nz , B ⊂ Rnz×nv , and C ⊂ Rny×nz . The system (2.8)
is referred to as the Koopman predictor ; the state zt is referred to as the lifted state
and ŷt is the prediction of the output yt of the system (2.4).

The primary goal when searching for the Koopman predictor is to find A,B,C,Ψ,Φ,
such that the resulting LTI system (2.8) predicts the behaviour of the nonlinear
dynamics (2.4) on X. This predictor is then used for controller synthesis within
Koopman MPC, which we describe in Section 2.2.3.

CHAPTER 2. THE KOOPMAN OPERATOR FOR CONTROL 7
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2.2 Optimal control with the Koopman operator

This section will present the Optimal control problem (OCP) for a general nonlinear
system and derive the Koopman MPC by replacing the nonlinear dynamics by a
Koopman predictor. The last part of this section addresses practical considerations
regarding the use of the Koopman MPC.

2.2.1 Optimal control problem

For the general nonlinear system (2.4), we consider the following OCP

J? = min
H∑
t=1

Jn(xt) + Jc(xt, ut)

s.t. xt+1 = f(xt, ut)

xt ∈ X
ut ∈ U,

(2.9)

where Jc and Jn are convex and non-convex parts of the cost function in this
order. This problem is non-convex due to the function Jn and the constraint
xt+1 = f(xt, ut); this makes the problem difficult to solve in general. We can,
however, use the Koopman methodology to reformulate the problem in a convex
fashion. We can eliminate the non-convex cost Jn(xt) by setting it as an additional
output Υt = Jn(xt) and use the Koopman predictor of the form

zt+1 = Azt +But[
Υ̂t

x̂t

]
= Czt, z0 = Φ(x0),

(2.10)

where Υ̂t is a prediction of the non-convex cost Υt = Jn(xt). Note that we assume
that the predictor retains the original input, i.e. Ψ is identity; this is done to preserve
the convex function Jc in the transformed problem. The case with non-trivial Ψ will
be addressed later.

With (2.10) can approximate (2.9) as

Ĵ? = min
H∑
t=1

Υ̂t + Jc(x̂t, ut)

s.t. zt+1 = Azt +But[
Υ̂t

x̂t

]
= Czt

z0 = Φ(x0)

x̂t ∈ X
ut ∈ U,

(2.11)

where X,U are assumed to be convex. With these assumption in mind, the problem
(2.12) is convex. It is customary is to assume that the cost Jc is a quadratic function,
since other convex options (such as l1 or l∞ norm) pose difficulties in terms of analysis
of the controller properties [26].

8 CHAPTER 2. THE KOOPMAN OPERATOR FOR CONTROL



The Koopman and moment-sum-of-squares approach for control

Input lifting In the case of non-trivial input lifting, we cannot write an equivalent
problem to (2.9) in a convex fashion, since the relation between the original and lifted
inputs is in general nonlinear in both directions (unlike the state, where we have a
linear projection from Z to X). In order to retain the convexity of the problem, we
have to constrain the directly the lifted input

Ĵ? = min
H∑
t=1

Υ̂t + J̄c(x̂t, vt)

s.t. zt+1 = Azt +Bvt[
Υ̂t

x̂t

]
= Czt

z0 = Φ(x0)

x̂t ∈ X
ut ∈ V,

(2.12)

where X and V are assumed to be convex (actually, we will learn in Section 4.1 that
V is convex by construction) and the optimal input u? is obtained as u? = Ψ−1(v?).
The predictor with nontrivial Ψ will be able to approximate a larger class of problem
(see the Example 5.3). Moreover, we show in Figures 5.12 and 5.13 that the lifted
input may have a physical meaning, therefore setting the weights for it could be
more intuitive than for the original input, depending on the application.

Should we dismiss the constraints of either (2.12) or (2.11) and assume Jc quadratic,
the problem will have a closed-form solution in the form of state feedback; such a
controller is known as Linear–quadratic regulator (LQR). Note that the resulting
controller, composed with the lifting mappings, will be nonlinear.

In the constrained case we would speak of Model Predictive Control (MPC). In a
wide range of applications, the constraints are upper and lower bounds on some of
the variables and the cost Jc is commonly assumed to be quadratic. This allows us
to formulate the MPC as a convex Quadratic Program (QP) – a well studied class
of convex optimization problems with many solvers tailored to solving it efficiently
such as ProxSuite [27], OSQP [28], and qpOASES [29].

2.2.2 Koopman LQR

Although this thesis is not focused on LQR, we shall briefly describe it since the
problem is dual to designing a Luenberger observer which will be visited in the
Section 2.2.4.5.

The LQR problem for stabilizable (A,B) is

JLQR = min
vt

∞∑
t=0

z>t Qzzt + v>t Rvvt

s.t. zt+1 = Azt +Bvt, z0 given

(2.13)

where Qz < 0 and Rv � 0 such that (A,Q
1/2
z ) is detectable [30, Section 9.2.3]. The

problem has a closed form solution in the form of state feedback

v?t = −Kzt (2.14)

CHAPTER 2. THE KOOPMAN OPERATOR FOR CONTROL 9
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resulting in the closed-loop system

zt+1 = Azt +Bv?t
= Azt −BKzt
= (A−BK)zt,

(2.15)

where the matrix (A−BK) is always stable [30, Section 9.2.1] for K obtained as

K = (Rv +BTPB)−1(BTPA) (2.16)

where the symmetric matrix P < 0 is the unique solution to the Discrete-time
Algebraic Riccati Equation (DARE)

P = ATPA− (ATPB)(Rv +BTPB)−1(BTPA) +Qz. (2.17)

The optimal cost of (2.13) is
J?LQR = z>0 Pz0 (2.18)

and the optimal state-feedback law is

v? = −Kzt. (2.19)

In the case of the Koopman predictor (2.8) for control of the nonlinear system (2.4),
the optimal state-feedback law is approximated by

ût
? = Ψ−1(−KΦ(xt)), (2.20)

where Ψ is assumed invertible. The invertibility is trivially fulfilled for Ψ equal to
identity, the more general case is addressed in the Section 4.3.5.3.

2.2.3 Koopman MPC

Let us exploit the benefits of the QP formulation and formulate our problem con-
cretely, in a tracking form (minimizing the deviation of yt from given yref ). We shall
refer to this optimization problem as Koopman MPC (KMPC):

min
∆vt

H∑
t=1

||yref − Czt||2Q + ||vt||2R + ||∆vt||2Rd

s.t. zt+1 = Azt +Bvt t = 1 . . . H − 1

vt = ∆vt + vt−1 t = 0 . . . H

ylow ≤ yt ≤ yup t = 1 . . . H

vlow ≤ vt ≤ vup t = 1 . . . H

∆vlow ≤ ∆vt ≤ ∆vup t = 1 . . . H

z0 = Φ(x0)

v0 = Ψ(uprev),

(2.21)

where yt =

[
Υ̂t

x̂t

]
, Q < 0, R < 0, and Rd � 0. As mentioned before, this formulation

solves the tracking problem where yref is an external parameter, and ∆vt is the

10 CHAPTER 2. THE KOOPMAN OPERATOR FOR CONTROL
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optimization variable (instead of vt). The output, input, and input rate constraints
are the pairs (ylow, yup), (vlow, vup), and (∆vlow,∆vup) in this order.

We use the ∆vt as a variable because the cost ||∆vt||2Rd
is zero even if the steady-

state input is nonzero whereas ||vt||2R pushes the input to zero regardless of the
optimal steady state input. Another common option is to assume the knowledge of
the steady-state input vref , we might use the cost ||vt−vref ||2R but we do not consider
this case here.

The optimal solution is recovered as u?t = Ψ−1(v?t ). The problem is solved repeatedly
at each time step, always using only the first control input u?1 and then recalculating
the solution from a new initial state. This approach provides closed-loop control
and can be seen in Fig. 2.1 and is also summarized in Algorithm 1; the function
Ψ is identity in case of predictors retaining original input, which are discussed in
Chapter 3.

Φ̂ QP Ψ−1

f(x, u)x

z v?

u?

yref

Figure 2.1: General MPC scheme using the Koopman operator as a control design
model.

Algorithm 1 Closed-loop KMPC usage

Input: yref ,KMPC
1: Initialization: uprev ← 0, x0 = xinit

2: while true do
3: z0 ← Φ(x0).
4: v?0 ← KMPC(yref , x0, uprev) [Problem (2.21)]
5: u?0 ← Ψ−1(v?0)
6: x0 ← f(x0, u

?
0)

7: uprev ← u?0
8: Wait for the next timestep.
9: end while

2.2.4 Practical considerations

This section will address a few practical considerations which are important for
the Koopman MPC, such as solvers, QP formulation, soft constraints, and state
estimation.

2.2.4.1 Sparse and dense formulations
The MPC (2.21) can be written either in the sparse form with both zt and ∆vt as
variables, or in the condensed form with only ∆vt as a variable, since zt directly de-

CHAPTER 2. THE KOOPMAN OPERATOR FOR CONTROL 11
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pends on ∆vt and can be inferred. The difference between these two formulations is
mainly the structure and size of the resulting QP problem. The sparse formulation
has more variables, which is compensated by its exploitable structure. Concretely,
the number of variables of the sparse formulation is H(nz + nu), whereas the con-
densed form has only Hnu. There is a tradeoff between choosing exploitable QP
structure and having less variables. In [17], the author suggests as a rough estimate
to consider the sparse formulation if

H2
(
nu +

c

2

)3

>
(

2nz + 3nu +
c

2

)3

, (2.22)

where c is the number of inequality constraints (per one sample time).

Let us consider an example with ny = 3, nu = 2, nz = 45, and constraints on inputs,
input rates, and outputs (c = 2nu + 2nu + 2ny = 14). These are the parameters of
our vehicle control example in Section 5.4. We get

H2(2 + 7)3 > (2· 45 + 3· 2 + 7)3

H293 > 1033,
(2.23)

The inequality is favorable for the sparse form for horizon length H ≥ 39. Depending
on the application, both forms are admissible. However, accounting for the cubic
scaling of the right side of (2.22) with nz, the condensed formulation should be the
safer bet in most cases since nz is expected to grow large since we are working the
truncation of an infinite-dimensional operator.

2.2.4.2 QP solvers
The QP problem (2.21) is to be solved by a specialized QP solver. There is however
multiple methods of solving a QP problem, some of which are more suitable for the
MPC.

We shall consider the QP problem in the form

min
V

V >FV + q>V

s.t. GV ≤ h,
(2.24)

where F ≥ 0, h ∈ Rl, V ∈ Rn, G ∈ Rl×n.

Active set The main idea behind active set methods is the assumption, that
the solution to (2.24) will most likely be on the boundary of the constraint set.
At each iteration, it identifies which constraints of (2.24) are inactive and ignores
them. The active constraints are considered as equality constrains, resulting in an
equality-constrained QP which can be solved directly as a linear system of equations.

The method requires a feasible starting point, and benefits greatly from warm-
starting. Also, all of it’s iterates are feasible so it is possible to stop the algorithm
early and use the intermediate solution; doing this sacrifices only the optimality of
the solution. The worst-case solving time is exponential.

An active-set solver considered in this thesis and tailored to the MPC is qpOASES
[29].

12 CHAPTER 2. THE KOOPMAN OPERATOR FOR CONTROL
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Interior point The basic idea behind interior point methods is to rewrite (2.24)
as an unconstrained problem, such as

min
V

V >FV + q>V − 1

γ

∑
i

log(hi −GiV ), (2.25)

where γ > 0. The logarithm serves as a barrier function; it forces the variable V
within the feasible region, because the logarithm goes to infinity if GiV > hi. As
γ →∞, the barrier function becomes an indicator function of the feasible region.

The most successful interior point methods are primal-dual methods, which solve
both the primal and dual problem simultaneously.

Unfortunately the interior point methods do not easily benefit from warm-starting.
Moreover, the iterates of the currently most popular primal-dual methods are not
necessarily feasible, therefore the algorithm cannot be stopped before terminating.
On the positive side, the computational complexity has polynomial bounds and the
method is not limited to QPs but can handle more complicated problem descriptions,
which might be beneficial in some applications. We shall not consider these methods
in this thesis since we focus primarily on MPC applications where warm-starting and
feasibility of the iterates are essential.

Proximal In recent years, proximal methods have gained in popularity. Just like
interior point methods, they are based on minimizing unconstrained (or equality
constrained) problem while penalizing infeasible solutions via the cost function. In
general, they have rather mild assumption for convergence; in the simplest form it
is only that a minimizer exists [31].

In general, proximal methods benefit from warm-starting and are fast to obtain an
approximate solution but slow to converge to an accurate one, which resulted in
problem-specific methods tailored to certain problem classes. In this thesis, we use
the following two proximal QP solvers: OSQP [28] and ProxQP [27].

To give a rough idea, the OSQP method (which was the more performant in our
testing in Section 5.5) solves the problem

min Ṽ >FṼ + q>Ṽ + IGV=z(Ṽ , z̃) + Iz≤h(z)

s.t. (Ṽ , z̃) = (V, z)
(2.26)

where

IGV=z =

{
0, GV = z

+∞ otherwise
, Iz≤h =

{
0, z ≤ h

+∞ otherwise
. (2.27)

The introduction of new variables Ṽ , z̃ might seem arbitrary, but it is actually a
rather common practice coming from the algorithm ADMM [32] on which OSQP
builds. We refer the reader to [32, Chapter 5], where this particular strategy is
explained for general convex problems, or [28, Section 3] where more detailed expla-
nation is provided for QP problems specifically.
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2.2.4.3 Soft constraints
Soft constraints are needed to make sure that the QP is always feasible and the
QP solver gives us some solution. The causes for infeasibility might be large dis-
turbances, measurement noise, or the model inaccuracy. In the case of Koopman
predictor, we add one more reason for using the soft constraints. Since the lifting
(Φ) and delifting (C) functions are approximations, the lifting error

||CΦ(x)− g(x)||22 (2.28)

is not necessarily 0 (in practice never) and the vector CΦ(x) may be outside of the
bounds, although g(x) is not. Therefore ŷ = CΦ(x) might be infeasible even though
y = g(x) is within bounds.

To implement the soft constraints, the problem (2.21) needs to be augmented, specif-
ically the output equation

ylow ≤ yt ≤ yup (2.29)

is updated into
ylow − εt ≤ yt ≤ yup + εt, (2.30)

where εt ≥ 0 is a slack variable allowing yt to break the constrains ylow/up, hence
softening them. We do not want to break the constraints unless necessary, therefore
the slack variables have to be penalized by adding some convex cost θε(εt) to the
cost function of (2.21).

Assuming ε ≥ 0, the most common penalizations are the l1 norm

θ1
ε = M

∑
t

εt, (2.31)

the l2 norm squared

θ2
ε = M

∑
t

ε2t , (2.32)

and the l∞ norm
θ∞ε = Mε, for εt = ε ∀t = 1 . . . H, (2.33)

where M is a “large” constant (with respect to the scaling of the problem data).

The infinity norm introduces only one additional variable for the whole prediction
horizon, therefore the solving time is not greatly affected. The drawback is that if
a single point along the trajectory is infeasible, the constraints will be shifted along
the whole prediction horizon.

The squared l2 norm is still quite fast but it is not exact, meaning that the slack
variable εt can be nonzero, even if the hard-constrained problem (2.21) is feasible.
The intuition behind this is that by squaring the εt, which will be already a very small
number, the gain from breaking the constraint might be bigger than the penalty for
breaking it [17]. The other two norms are exact, meaning that for sufficiently large
M , the constraints will not be broken unless necessary. More on exactness in [33].

Intuitively the most sensible choice is the l1 norm, which is exact and weights each
timestep individually. Unfortunately the l1 norm also results in large performance
decreases in terms of computation time [17].

The presented types can also be combined [34]. In this thesis, we use the l2 norm
for its good performance and the ability to weight each time-step separately.
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2.2.4.4 Plant Model mismatch
The use of Koopman predictor may cause mismatch between the real system and
the predictor, which has to be treated if zero tracking error is required. In classical
control, such as PID, the zero steady state is ensured by adding integral action to
the controller.

In the case of linear MPC, the mismatch is usually handled by adding a disturbance
model to the predictor and pairing the MPC with a state estimator, which estimates
the disturbance as well as the system state. The framework is called Offset-free MPC
[35] and can be readily used for the Koopman MPC as well.

The offset-free Koopman MPC has been applied in the works [36] for control of a
robotic arm, and in [37] in chemical a process. Both papers use the disturbance
model

zt+1 = Azt +Bvt +Bddt

dt+1 = dt

x̂t = Czt + Cddt

(2.34)

where dt ∈ Rnd is a disturbance entering to the system through Bd and Cd.

The augmented system is[
zt+1

dt+1

]
=

[
A Bd

0 I

] [
zt
dt

]
+

[
B
0

]
vt

x̂t =
[
C Cd

] [zt
dt

] (2.35)

or more concisely as
ξt+1 = Aaξt +Bavt

x̂t = Caξt.
(2.36)

Assuming detectability of (A,C), the augmented system is detectable if and only if[
A− I Bd

C Cd

]
has full (column) rank and nd ≤ ny [38].

Note that the selection of Bd and Cd is not trivial. The work [36] uses Bd = B,Cd =
0, and the authors of [37] do not elaborate at all on the parametrization of their
disturbance model. The parametrization of our model is given in the Section 5.6.

In order to obtain the value of the disturbance, the augmented state vector of (2.36)
is estimated via state observer.

2.2.4.5 State observer
The MPC requires information about the full state of the system. It is therefore
customary to pair it with a state observer (or filter in the stochastic setting) when
the state is not directly measured (or is affected by noise).

We shall use the observer to estimate the state of the system augmented by the
disturbance dynamics (2.36).

The use of the Koopman operator for observer design is addressed in the works
[39], where the uncontrolled case is treated, and [40] where nonlinear control-affine
systems are treated with bilinear Koopman predictors.
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The observer for the Koopman predictor

zt+1 = Azt +Bvt

x̂t = Czt
(2.37)

is defined as
z̄t+1 = Az̄t +Bvt + L(x̂t − x̄t)
x̄t = Cz̄t.

(2.38)

The dynamics of the error between real and predicted states zt and z̄t is

et+1 = zt+1 − z̄t+1

= Azt +Bvt − (Az̄t +Bvt + L(x̂t − x̄t))
= A(zt − z̄t)− LC(zt − z̄t)
= (A− LC)et.

(2.39)

We see that in order for the error to go to zero, the matrix L must be chosen such
that the matrix A− LC is stable, i.e. its eigenvalues are inside the unit circle.

The eigenvalues of A−LC are the same as eigenvalues of (A−LC)>, which can be
written as A>−C>L>; this matrix has the same form as the state feedback dynamics
(A − BK) (2.15), where we already know how to design K to make (A − BK)
stable. In short, the problem of finding K for (A,B) is the same as finding L> for
A>, C>. This concept is called duality, where the LTI system (A,B,C) has the dual
(A>, C>, B>).

In this thesis, we will use the observer on the disturbance-augmented model (Aa, Ba, Ca)
2.36 to estimate the disturbance dt in order to feed it to the MPC controller. Note
that while doing that, we can also use the estimate of the lifted state zt and forgo
the need for lifting the state xt at each timestep.

Note that when using the LQR 2.2.2 for observer design, one needs to set the matrices
Qz and Rv from (2.13) (or Qξ and Rv for the augmented system (2.36)) to penalize
the lifted states. We have not found a source that would address this topic in depth.
We have also found that simple starting points, such as identity matrices, do not
work with every predictor since their scaling and meaning of the lifted states is
vastly different from one to another. Intuitive approaches such as Qz = C>QxC, or
transforming all systems into their Jordan canonical form were not met with positive
results.

In order to provide a fair comparison between the considered methods, we shall
compare the Koopman predictors without observers and demonstrate the advantages
of using the offset-free design only on one predictor, for which it was simple to tune
the constants. The tuning used in Section 5.6 is Qa = I, Ra = I, which had
consistent results only for the proposed method in Chapter 4.
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Chapter 3

Selected state-of-the-art methods

This chapter will give a short description of two state-of-the-art methods used for
learning the Koopman predictors. Since all the methods considered here are data-
driven, let us define some common notation for the used data.

We will assume that all of our data comes from trajectories of the nonlinear system
(2.4). A dataset of N trajectories is denoted as D. A single trajectory Ti ∈ D with
initial condition xi0 ∈ X0 and length HT is defined as

Ti = {(xis, uis, yis) ∈ X × U × Y
s.t. xis+1 = f(xis, u

i
s) ∀s ∈ 0 . . . HT − 1

yis = g(xis) ∀s ∈ 0 . . . HT}.
(3.1)

Where convenient, we shall also use the notation (xs)
HT
s=0 to denote a sequence of

states x0, . . . , xHT
generated by the system (2.4).

3.1 Extended dynamic mode decomposition

The Extended dynamic mode decomposition (EDMD) [5] is one of the most well-
known methods for approximating the Koopman operator. The main drawback of
the method is the need for having a dictionary of lifting function.

3.1.1 Description

Autonomous case Assume the autonomous dynamics

xt+1 = fu(xt)

yt = g(xt)
(3.2)

and a vector lifting function Φ : Rnx → Rnz . For learning, we need pairs of consecu-
tive snapshots of the data. For simplicity, let us assume that we have a single trajec-
tory (xi, yi)

M
i=0, we would split the states into pairs (x0, x1), (x1, x2), . . . , (xM−1, xM)
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and construct the following matrices.

Z =
[
Φ(x0) Φ(x1) . . . Φ(xM−1)

]
Y =

[
y0 y1 . . . yM−1

]
Z+ =

[
Φ(x1) Φ(x2) . . . Φ(xM)

]
.

(3.3)

We are searching for a Koopman operator, represented by the matrix A for which
the relation

Z+ = AZ (3.4)

holds. In practice, the relation (3.4) will not hold exactly and therefore we find the
approximate solution by solving

min
A
||Z+ − AZ||22. (3.5)

Similarly for the output
min
C
||Y − CZ||22. (3.6)

Controlled case For the controlled dynamics

xt+1 = f(xt, ut), (3.7)

we shall consider the data pairs (xi, ui, xi+1) and add the matrix U with the control
inputs [

Z
U

]
=

[
Φ(x0) Φ(x1) . . . Φ(xM−1)
u0 u1 . . . uM−1

]
Y =

[
y0 y1 . . . yM−1

]
Z+ =

[
Φ(x1) Φ(x2) . . . Φ(xM)

]
.

(3.8)

Similarly to the autonomous case, we are searching for Koopman operator with
control (2.6), represented by matrices A and B, such that

Z+ = AZ +BU =
[
A B

] [Z
U

]
(3.9)

holds. The approximate solution is found by solving

min
A,B

∥∥∥∥Z+ −
[
A B

] [Z
U

]∥∥∥∥2

2

(3.10)

and
min
C
||Y − CZ||22. (3.11)

3.1.2 Lifting functions

The main drawback of this methods is the need for having predetermined lifting
functions Φ. Usually one does not have any and the task of finding a Koopman
operator turns into an iterative guesswork, trying to find function Φ that work.

A couple of choices seems to be popular in the literature.
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Monominals Assume that each function in Φ is a degree d monomial

Φj =
nx∏
i=1

xi
ai , ai ∈ aj (3.12)

where xi is ith element of the vector x, and aj is a vector of nonnegative integers
such that |aj| ≤ d.

Monomials are an intuitive choice, but they are prone to causing numerical issues
for larger degrees.

Thin plate spline radial basis These functions have been proposed in the orig-
inal KMPC work [7] where they showed promising results. Radial basis functions
(RBF) in general are used to approximate unknown functions from data [41], which
is what probably motivated their choice in [7]. They are defined as

Φj(x) = ||x− ηj||22 log(||x− ηj||2), (3.13)

where ηj are predetermined centers. We suggest to scale the function arguments
a unit box, otherwise the quadratic term will dominate the function value. Figure
3.1 shows the difference between scaled and non-scaled version. The issue of RBF
scaling in general is addressed in more detail in [41, Section 2.6] and [42, Section 2].

Let us therefore modify the definition to

Φj(x) =
∥∥∥x
s
− ηj

∥∥∥2

2
log
(∥∥∥x

s
− ηj

∥∥∥
2

)
, (3.14)

where s > 0 scales the data points x to the unit cube, and ηj is also assumed to be
in the unit cube.

Functions found within the dynamics of the system In some cases, it might
be a sensible choice to include or exploit functions (or function classes) found within
the nonlinear dynamics.

The work [20] used directly the function class (sin and cos functions), which was
present within the dynamics.

The papers [43] and [44] chose the lifting functions in a way that somehow ex-
ploited the concrete mathematical description of the system model, making those
approaches limited to a particular class of systems; concretely power systems and
attitude control of spacecraft, respectively.
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Figure 3.1: Thin plate spline radial basis functions with different parameter scaling.
The left (purple) graphs were generated with centers xj0 and datapoints x inside the
unit cube. In the right (red) graphs, the same centers and data were scaled by 10.
We see that with the scaling, the functions resemble quadratic functions, since the
quadratic term dominates the logarithm for larger values.

3.1.3 Algorithm: EDMD

Algorithm 2 Find the Koopman predictor (A,B,C) vie EDMD

Input: Φ, data snapshots (xi, yi, ui, xi+)Mi=0

1: Create the matrices Z, Y, U, Z+ according to (3.9) and (3.11).
2: Solve (3.10).

Output: A,B,C

3.2 Optimal eigenfunction construction

This section gives a quick overview of the algorithm from [24], where the eigenfunc-
tions of the Koopman operator were constructed from data under the assumption
that their eigenvalues are known. The (usually random) initial selection of eigen-
values can be improved via local optimization, although we do not cover that here.
The reader is referred to [24, Section 4.2].

3.2.1 Description

As a reminder, φi is an eigenfunction of K with eigenvalue λi if

φi(xt+1) = Kφi(xt) = λiφi(xt), (3.15)

where i denotes ith element of the lifted vector zt. Considering the trajectory (xjt)
HT
t=0,

the corresponding vectors of lifted states are

φ(xjt) = λ� φ(xj0), (3.16)
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where λ is a vector of pre-selected eigenvalues and φ = [φ1, . . . , φnz ]
>. The main

idea of this approach is that, having the value of λ, we only need to evaluate φ on
the starting point xj0 and the rest can be inferred from (3.16). Therefore, we can
define a function gφ : Rnx → Rnz such that

φ(xjt) = λtgφ(xj0), (3.17)

where φ(xj0) = gφ(xj0) is the initial value of the lifted trajectory j. Knowing λ, the
values gφ(xj0) can be calculated in a convex manner. The matrix A then is simply

A = Diag(λ). (3.18)

This means that one fixes the matrix A and then learns the lifting; exact opposite
of EDMD where the lifting is fixed and the state transition matrix A is learned.

The matrix C is assumed to be in block-diagonal, such that

C =

1>nΛ
0 0

0
. . . 0

0 0 1>nΛ

 , (3.19)

where nΛ is number of eigenvalues associated with each particular input, implying
that the vector λ has length ny·nΛ; let us denote its elements as λp,i, where p =
1 . . . ny denotes the associated input and i = 1 . . . nΛ.

Considering the trajectory (xjt , y
j
t )
HT
t=0, the value of the pth output at time t is

yjp,t = Cp,:A
tφ(xj0) =

nλ∑
i=1

λtp,ig
j
p,i, (3.20)

where Cp,: denotes pth row of C, and gjp,i is an element of the vector gφ(xj0) indexed
in the same manner as λp,i. Notice that the only unknowns in (3.20) are the values
gjp,i, which can be obtained in convex manner; the solution of (3.20) for output p
can be written in matrix form as

||Lgp − Fp||22 + ζ||gp||22, (3.21)

where L is a matrix containing the eigenvalues λ, Fp is a matrix of outputs from
all trajectories and ζ is a regularization term. The optimized value is the vector gp
which contains gjp,i for all λp,i and all trajectories.

The concrete form of the matrices in (3.21) can be found in [45], as well as the
algorithm for finding the locally optimal eigenvalues λi.

Example 1. Let us show (3.21) for the simple case of a single trajectory (yt)
HT
t=0

and a single eigenvalue λ. The equation (3.20) becomes

yt = λtg (3.22)

and from (3.21) we get ∥∥∥∥∥∥∥∥∥


λ0

λ1

...
λHT

 g −

y0

y1
...

yHT


∥∥∥∥∥∥∥∥∥

2

2·

(3.23)
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The form (3.21) is a generalization of this for multiple trajectories and eigenfunc-
tions.

After obtaining the initial values g, we can define the approximate eigenfunctions
on the samples xjt as

φ̂(xjt) = λ� gj, (3.24)

where � is element-wise product, λ is the diagonal of A and gj is a vector of gjp,i.

Controlled case The predictor for the nonlinear control system

xt+1 = f(xt, ut)

yt = g(xt)
(3.25)

is found in two steps. In the first step, we assume autonomous dynamics

xt+1 = f(xt, ū) = f̄u(xt)

yt = g(xt),
(3.26)

where ū is some constant input which allows us to learn the autonomous dynamics
by defining the autonomous system f̄u, in this thesis we always use ū = 0. We find
the matrices A,C and the lifting functions φ̂ for the system f̄u using the approach
above.

Then, considering a controlled trajectory (xjt , y
j
t , u

j
t)
HT
t=0, we can write the prediction

of the output as

ŷjt = CAtzj0 +
t−1∑
l=0

At−l−1Bujl , (3.27)

where zj0 = φ̂(xj0). Notice that the equation (3.27) is affine in B. In order to obtain
B, we minimize

||yjt − ŷjt ||22, (3.28)

which is a convex problem due to (3.27) being affine in B. We leave the details and
the generalization to multiple trajectories to [24, Section 5].

3.2.2 Algorithm summary

Algorithm 3 Find the Koopman predictor (A,B,C) via Optimal Eigenfunction
construction

Input: datasets of trajectories (xjt , y
j
t , u

j
t)
HT
t=0 and (xjt , y

j
t , ū

j)HT
t=0, eigenvalues λ

1: Create the matrices A = Diag(λ) and C = bdiag(1nΛ
,1nΛ

, . . . )
2: Find the eigenfunction initial conditions gp from (3.21).

3: Set φ̂(xjt) = λ� gj

4: Use a controlled dataset to find the matrix B by minimizing (3.28) for all tra-
jectories.

Output: A,B,C, φ̂
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Chapter 4

Free-variable Koopman predictor
(Freeman)

In this Chapter we introduce a novel method for finding the Koopman predic-
tor (2.8). This chapter is based on my work [25], while providing additional discus-
sion wherever appropriate.

The main point of the method is that all the variables of the Koopman predictor
(A,B,C,Ψ,Φ) are free variables in the optimization problem that finds the predic-
tor, hence the name.

4.1 Finding the Koopman predictor

We begin by providing an intuition: Assuming that we have trajectory data (yt, ut, x0)HT
t=0,

our task is to find the linear system (2.8) so that its outputs (ŷt)
HT
t=0 match the mea-

sured trajectory (yt)
HT
t=0. The unique aspect of our work is that we do so in a

dictionary-free fashion, that is, by optimizing the values of Φ and Ψ on the avail-
able data without the need to explicitly provide a dictionary of basis functions
parametrizing Φ and Ψ. Alongside the optimization of the values of Φ and Ψ, we
also optimize over the system matrices A, B, C. See Figure 4.1 for an illustration.
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z0 Az0 +Bv0

x0 u0, u1, u2...

x0

C

f(x0, u0)

C

u

v
Ψ

x

z
Φ

Figure 4.1: The intuition behind the Koopman predictor with control. Both the
initial state and the inputs are lifted via the functions Φ and Ψ respectively. The
linearly evolving high-dimensional trajectory of the Koopman predictor (2.8) can
then be projected onto the original state space, giving us the nonlinear trajectory
of (2.4). The quantities optimized in our approach are highlighted in blue; this
includes the values of Φ and Ψ on the available data.

Basic definitions

The optimization will be done over N trajectories of the nonlinear system (2.4). Let
us first define the sets of initial conditions and admissible system inputs.

We assume to have samples xi0 from X, which are the initial states of the aforemen-
tioned trajectories of (2.4)

X0 = {xi0 ∈ X : i ∈ Z1,N}. (4.1)

Each xi0 ∈ X, is then associated with a lifted initial condition zi0 ∈ Z0⊂ Rnz ; these
will serve as the decision variables in the optimization problem where the Koopman
predictor is learned.

Each input channel of the system (2.4) is handled individually and we assume that
it is normalized to [−1, 1]. We also allow for the quantization of the control input,
thus taking into consideration a possible digital control implementation or control
signals which are discrete in nature (e.g., gears in a vehicle) The kth input channel
with qk quantization levels reads

Uk ⊂ [−1, 1], |Uk| = qk. (4.2)

The full input space can be retrieved as the cartesian product of the individual
channels

U = U1 × U2 × · · · × Unu . (4.3)
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During the optimization, we will be searching for the values of the transformed
input channels Vk, which will serve as decision variables of the optimization and
which have the same number of quantization levels as Uk:

Vk ⊂ [Vk,min, Vk,max], |Vk| = qk. (4.4)

We do not make assumptions on the maxima nor minima of the lifted input channels,
they are found during the optimization process.

After the Koopman predictor is found, the lifted input space is retrieved as

V = V1 × V2 × · · · × Vnu . (4.5)

We assume that the dimensions of both the original and lifted inputs are identical,
i.e. nv = nu. Although this assumption is not required by the algorithm itself, the
benefits of increasing the dimension of the input are not investigated in this thesis.

The Example 2 shows the advantage of considering the inputs channel-by-channel,
instead of working with the whole cartesian product (4.3).

Example 2. Assume that we have two input channels quantized as

U1 = {−1, 1}, U2 = {−1, 0.4, 1}, (4.6)

with q1 = 2 and q2 = 3. We retrieve U as

U =

{[
−1
−1

]
,

[
1
−1

]
,

[
−1
0.4

]
,

[
1

0.4

]
,

[
−1
1

]
,

[
1
1

]}
. (4.7)

Optimizing over the channels V1 and V2 will introduce
∑

k qk = 5 optimization
variables. Should we, however, optimize over the whole set V , we would have
nu
∏

k qk = 12 variables. Considering each channel individually decreases the pa-
rameter space of the optimization and therefore increases the scalability of the al-
gorithm. It also makes it easier to handle non-invertible function or to enforce the
invertibility. This is discussed further in Section 4.3.5.3.

Representation of quantized inputs All the input vectors considered further
in this section are elements of either U or V , and can be represented by a linear
operator L : R

∑
k qk → Rnu . Let us assume that we have an input ū ∈ U and a

corresponding lifted input v̄ ∈ V . We can write ū as

ū = L̄(U1, U2, . . . , Unu), (4.8)

where L̄ selects appropriate values from the channels Uk in order to construct the
vector ū. The same operator is used to construct the lifted vector v̄ as

v̄ = L̄(V1, V2, . . . , Vnu). (4.9)

sharing the same L̄ is what ties ū and v̄ together. The action of the linear oper-
ator can be represented by matrix multiplication, therefore we shall represent the
operator L by a matrix L. The equation (4.8) can be written as

ū = L̄
[
U>1 U>2 . . . U>nu ,

]>
(4.10)
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and similarly for v̄ in (4.9), with the same matrix L̄. The matrix L (or L̄ in our
example) is a block-diagonal matrix with row one-hot vectors (containing only one
nonzero element equal to 1) on the diagonal, selecting only one element from each
channel; it shall be referred to as projection matrix, not to be confused with the
matrix C which also performs a projection.

The following Example 3 demonstrates the linear mapping via the projection matrix
L.

Example 3. Assume ū =
[
−1 0.4

]>
, U1 = {−1, 1}, and U2 = {−1, 0.4, 1}. The

equation (4.10) would then look as

ū = L̄

[
U1

U2

]
[
−1
0.4

]
=

[[
1 0

] [
0 0 0

][
0 0

] [
0 1 0

]]

−1
1
−1
0.4
1

 ,
(4.11)

therefore L̄ = bdiag(
[
1 0

]
,
[
0 1 0

]
).

Assume that we have the lifted input channels defined as V1 = {1, 0.2}, and V2 =
{4, 3, 0.1}. We can calculate the lifted vector v̄ which corresponds to ū by using the
same matrix L̄ as

v̄ = L̄

[
V1

V2

]
=

[[
1 0

] [
0 0 0

][
0 0

] [
0 1 0

]]


1
0.2
4
3

0.1

 =

[
1
3

]
. (4.12)

The correspondence between ū and v̄ is therefore explicitly established by sharing the
same projection matrix L̄.

Dataset for learning A dataset of N trajectories of the system (2.4) is denoted
as D where a single trajectory Ti ∈ D with initial condition xi0 ∈ X0 and length HT

is defined as

Ti = {(xis, uis, yis) ∈ X × U × Y
s.t. xis+1 = f(xis, u

i
s) ∀s ∈ 0 . . . HT − 1

yis = g(xis) ∀s ∈ 0 . . . HT

and uis = Lis
[
U>1 . . . U>nu

]>},
(4.13)

where Lis is a projection matrix associated with the input uis.

Lifting functions We will obtain the state lifting function Φ : Rnx → Rnz by
pairing the vectors xi0 and zi0 as

zi0 = Φ(xi0) ∀i ∈ Z1,N , (4.14)
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where zi0 ∈ Z0 and xi0 ∈ X0. In this way, we obtain the function values of Φ on
N points from the set X0. In practice, we need to be able to evaluate Φ on all the
points from X, therefore we extend its domain by interpolation; this is detailed in
Section 4.3.5.2.

Due to the channel separation, the input lifting function Ψ is built by concatenating
individual functions Ψk : R→ R. The jth element of the kth channel input vector is
transformed as

vjk = Ψk(u
j
k) ∀j ∈ Z1,qk ,

where ujk ∈ Uk, vjk ∈ Vk.
(4.15)

We can write Ψ : Rnu → Rnu as v1
...
vnu

 =

 Ψ1(u1)
...

Ψnu(unu)

 . (4.16)

With the definitions (4.14) and (4.16), optimizing over samples of Z0 and Vk could
be viewed as optimizing over the image of the lifting functions Φ and Ψ respectively.

4.1.1 Optimization problem setup

As a reminder, the output of the linear system (2.8) at time k for initial condition
zi0 ∈ Z0 is

ŷit = C

(
Atzi0 +

t−1∑
j=0

At−1−jBvj

)
(4.17)

To find the Koopman predictor, we seek to solve the problem

minimize
N∑
i=1

HT∑
t=0

||Czit − yit||22 + w0

∑
(a,b)∈S

||zaHT
− zb0||22 + θ(· )

s.t. zit =

(
Atzi0 +

t−1∑
j=0

At−1−jBvij

)
vij = Lij

[
V >1 . . . V >nu

]>
(4.18)

where A,B,C, zi0, Vk are the decision variables, S, Lij, yit ∈ D are the problem data,
and HT and N are the trajectory length and number of trajectories respectively.
The scalar w0 is a weighting parameter. The set S contains indices of consecutive
trajectories so for any (a, b) ∈ S, Ta ends at the same point where Tb begins; the
reasoning behind this regularization is explained further below, in the Section 4.3.1.

Let us describe the three terms in the cost function. The first term penalizes the
prediction error, the second term penalizes the difference between the last and first
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states of two consecutive trajectories, promoting invariance of Z0; this will be ad-
dressed further in Section 4.3. Finally, the term θ is a regularization function which
is optional, and will be used later to influence the lifted space of the predictor such
that it is suitable for control purposes or exhibits symmetries. The concrete form of
θ is discussed in Sections 4.3 and 4.2.

Note that the problem (4.18) is nonconvex, which contrasts with a large portion
of the current state-of-the-art methods. However, the nonconvexity allows us to
formulate what we really want to solve, instead of restricting ourselves to only to
what we can solve by convex optimization. We will see in the Examples (8.4) that
this flexibility outweighs the issues imposed by the nonconvex formulation.

4.2 Exploiting symmetry

The flexible structure of (4.18) allows us readily enforce symmetries of the nonlin-
ear system (8.1) in the Koopman predictor, permitting the use of smaller learning
dataset D and more importantly, guaranteeing consistent closed-loop behaviour in
symmetrical scenarios as will be demonstrated in the Example section 8.4. The sym-
metries are imposed by constraining the specific structure of the matrices A,B,C,
as well as defining the lifting functions Φ and Ψ in a symmetrical way. The following
text first addresses the symmetry of A,B,C, the connection to the lifting functions
is done in Corrolary 1.

We consider state-control symmetries with respect to groups Γx ⊂ GLnx and Γu ⊂
GLnu , where GLn denotes the group of invertible matrices of size n-by-n. The
group elements are denoted by γx ∈ Γx and γu ∈ Γu and the group action is the
standard matrix multiplication. The two groups are assumed to be related by a
group homomorphism h : Γx → Γu, i.e., h(γx1γ

x
2 ) = h(γx1 )h(γx2 ). A dynamical

system is said to have a symmetry with respect to (Γx,Γu, h) if for all γx ∈ Γx it
holds

f(γxx, γuu) = γxf(x, u), (4.19)

where γu = h(γx). Our goal is to find a linear predictor whose output will respect
the symmetry with respect to Γx. In order to do so, we will construct a symmetry
group Γz ⊂ GLnz and a group homomorphism h′ : Γx → Γz such that

Aγzz +Bγuv = γz(Az +Bv)

Cγzz = γxCz
(4.20)

for all γx ∈ Γx, where γz = h′(γx) and γu = h(γx). This implicitly assumes that
the input symmetries are the same for the original system and the predictor; the
requirements on the transformations Φ and Ψ for this to hold are addressed later in
Corollary 1.

Note that the predictor (4.20) has the original state vector x as an output. Although
this is not required, we shall assume it since it makes the exposition less intricate
and connects well with the KMPC (2.21) which requires full state information. Fur-
thermore, we consider only sign symmetries, meaning that (Γx,Γu,Γz) are subsets
of diagonal matrices with +1 or −1 on the diagonal. We shall simplify the notation
by denoting the diagonal matrices γ as vectors containing the diagonal, whenever
clear from the context.
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Example 4. Assume the following discrete dynamical system x+ = f(x, u) (we drop
the index k for readability):

x+
1 = −x1u1 − |x2|
x+

2 = −x2 + u2 + u3

x+
3 = −x3|x2|+ u2 + u3

x+
4 = −x4.

(4.21)

The set Γx is

Γx =




1
1
1
1

 ,


1
−1
−1
1

 ,


1
1
1
−1

 ,


1
−1
−1
−1


 (4.22)

and the pairs (γx, γu) can take following values:

(γx, γu) = (γx, h(γx)) ∈



1
1
1
1

 ,
1

1
1


 ,




1
−1
−1
1

 ,
 1
−1
−1


 ,




1
1
1
−1

 ,
1

1
1


 ,




1
−1
−1
−1

 ,
 1
−1
−1



 .

(4.23)

We see that some states can change their signs together (x2 and x3 in the Example
4) and it will be useful to group these together. To this end, let

I(Γx) = (I1, . . . , InΓ
)

where each index set Ii ⊂ Z1,nx satisfies the following two conditions:

1. γxj = γxk for all j, k ∈ Ii (states indexed by Ii change sign together).

2. Ii is maximal (no indices can be added to Ii without violating the first condi-
tion)

This implies that the index sets Ii are disjoint and hence
∑nΓ

i=1 |Ii| = nx. We shall
assume that the index sets are ordered in an increasing order, i.e., if i > j, then
k > l for all k ∈ Ii and l ∈ Ij. This can be achieved without loss of generality by
reordering the states. Coming back to Example 4, we get I(Γx) = ({1}, {2, 3}, {4}).
In order to enforce the symmetry in the Koopman predictor, we will define the
groups Γz and Γv for the lifted vectors z ∈ Z and v ∈ V . For the input, we use
the assumption Γv = Γu. For defining Γz, we need to impose some structure onto
the vector z. We do this by fixing the sparsity pattern of the C matrix in order to
explicitly link the elements of z with the elements of x. The structure of the matrix
C will be block-diagonal

C = bdiag(c>1 , . . . , c
>
nx), (4.24)

where ci are vectors of user-specified length; the lengths determine how many ele-
ments of z will be used for reconstruction of elements of x which can be retrieved
as

xi = c>i z
ci , (4.25)
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where zci is a part of the vector z which corresponds to ci and has length |ci|. In
this work we use |ci| = nz/nx, i = 1 . . . nx. The whole vector z can be written as

z =
[
zc1> . . . zcnx>

]>
. The set Γz is defined as

Γz = {bdiag(γx1 I|c1|, . . . , γ
x
nxI|cnx |) : γx ∈ Γx}, (4.26)

so that the elements of γx are multiplied with the corresponding parts of z, i.e.,

γzz =

γ
x
1 I|c1|

. . .

γxnxI|cnx |


 z

c1

...
zcnx

 =

 γx1 z
c1

...
γxnxz

cnx

 . (4.27)

Taking into consideration that some states change signs together (|Ii| > 1 for some
i), we can write the same set as

Γz =

{
bdiag(γxI1Iν1 , . . . , γ

x
InΓ
IνnΓ

) : γx ∈ Γx, I ∈ I(Γx), νi =
∑
k∈Ii
|ck|
}
, (4.28)

where γxIi is to be understood as scalar, since all the elements of γx have the same
value at indices Ii by definition. The scalars νi represent the number of lifted states
corresponding to the original states indexed by Ii, therefore we get

∑nΓ

i=1 νi = nz.
Notice that Γz, and therefore h′, depends on the pattern of C which is the connecting
element between the vectors x and z. This means that not only the dimension, but
also the structure of the lifted space can be tuned in order to obtain good prediction
performance.

The matrix A will have a block-diagonal sparsity pattern with the same block sizes
as in (4.28).

A = bdiag(A1, . . . , AnΓ
), where Ai ∈ Rνi×νi and νi =

∑
k∈I(Γx)i

|ck|. (4.29)

The matrix B ∈ Rnz×nu will also have block-diagonal sparsity pattern:

Bi,k ∈
{
R if h′(γx)i = h(γx)k ∀γx ∈ Γx

0 otherwise
(4.30)

where Bi,k = R signifies that the entry is not fixed to zero. Coming back to the
Example 4 , the predictor would have the structure

z+ =


A11 0 0 0
0 A22 A23 0
0 A32 A33 0
0 0 0 A44

 z +


B11 0 0
0 B22 B23

0 B32 B33

0 0 0

 v

x̂ =


c>1 0 0 0
0 c>2 0 0
0 0 c>3 0
0 0 0 c>4

 z,
(4.31)

where ci are vectors with user-selected lengths, and Ai,j and Bi,j are matrices of
appropriate sizes.
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We say that the LTI system z+ = Hz + Gv, x = Fz respects the output and
input symmetries γx and γv respectively, if for every trajectory of the LTI system
(zat , x

a
t , u

a
t )
∞
t=0, there exists a sequence (zbt )

∞
t=0 such that (zbt , γ

xxat , γ
uuat )

∞
t=0 is also its

trajectory.

Lemma 1. Assume an observable LTI system z+ = Hz + Gv, x = Fz, where
the output x and input u respect the symmetries Γx and Γv. The system can be
transformed into an equivalent form, which has the same output x, its state respects
the symmetry Γz, and its state matrices have the block-diagonal form introduced
above.

Proof. We can assume that the original system (H,G, F ) has been transformed into
its observer form (Â, B̂, Ĉ) [30, Section 6.4.2] and its states have been reordered
such that

Ĉ =


1 0 . . . 0 0 . . . 0
× 1 . . . 0 0 . . . 0

. . . 0 . . . 0
× × . . . 1 0 . . . 0

 , (4.32)

where × are unfixed entries. We want to find a full-rank matrix T to perform the
similarity transformation

A = T−1ÂT (4.33a)

B = T−1B̂ (4.33b)

C = ĈT, (4.33c)

with C having the block-diagonal structure used in (4.24). We can write C = ĈT
as


c>1 0 0 0
0 c>2 0 0

0 0
. . . 0

0 0 0 c>nx

 =


1 0 0 0 0 . . . 0
ĉ2,1 1 0 0 0 . . . 0

...
. . . 0 . . . 0

ĉnx,1:(nx−1) 1 0 . . . 0



c>1 0 0 0
T2,1 c>2 0 0

...
. . . 0

Tnx,1 Tnx,2 ... c>nx

TF


(4.34)

where Ti,j is a row block of length |ci| such that

Ti,j =


−∑i−1

k=1 ĉi,kTk,j, if i > j

c>i , if i = j

0 if i < j.

(4.35)

The first nx rows of T will have full row rank with this construction, since the
observability assumption implies ci 6= 0|ci|. The remainder (matrix TF) is multiplied

by 0 in the matrix Ĉ, therefore it can be freely chosen such that T has full rank.

We shall demonstrate the construction of T on a simple example with ny = 3, nz = 6,
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and c1 = [1, 2], c2 = [3, 0], c3 = [5, 6]. The equation (4.34) is then

1 2 0 0 0 0
0 0 3 0 0 0
0 0 0 0 5 6

 =

1 0 0 0 0 0
a 1 0 0 0 0
b c 1 0 0 0




1 2 0 0 0 0
−a −2a 3 0 0 0

ac− b 2(ac− b) −3c 0 5 6

TF

 .
(4.36)

We see that the matrix T has full rank (provided TF has full row rank) for all values
of the unfixed entries.

Having the matrix C in the block-diagonal form, we will use the definition of Γz

(4.28) and the sparsity patterns of A (4.29) and B (4.30) to show that

A(γzz) +B(γvv) = γz(Az +Bv) ∀ Γx, (4.37)

where γx ∈ Γx, γv = h(γx), and γz = h′(γx). The equation can be separated into
two conditions

Aγz = γzA, (4.38)

and
Bγv = γzB. (4.39)

The equation (4.38) is a product of two block-diagonal matrices with the same block
structure with the definitions (4.28) and (4.29). Block-diagonal matrices commute
if and only if their blocks commute and since the blocks of γz are scalar matrices,
they commute with every matrix and therefore (4.38) holds.

The second equation (4.39) can be written as

γv1 γv2 . . . γvnv

�B −


γz1
γz2
...
γznz

�B = 0, (4.40)

after factoring out B, we obtain
γv1 γv2 . . . γvnv

−


γz1
γz2
...
γznz


�B = 0. (4.41)

Let us call the matrix in parentheses D and obtain

D �B = 0. (4.42)

The matrix D will be 0 only in places, where the elements of γv and γz are equal

γzk = γvp =⇒ Dk,p = 0 such that γv = h(γx), γz = h′(γx),∀γx ∈ Γx. (4.43)

It is on these indices where the matrix B can have nonzero entries, it has to be zero
everywhere else in order for (4.42) to hold. We see from (4.30) that the matrix B
fulfills this condition by definition.
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Let us show an example with nu = 2, nz = 3, γz = [1, s, s]> and γv = [1, s]>, where
s ∈ {−1, 1}. b1 b2

b3 b4

b5 b6

[1 0
0 s

]
=

1 0 0
0 s 0
0 0 s

b1 b2

b3 b4

b5 b6

 (4.44)

b1 sb2

b3 sb4
b5 sb6

 =

b1 b2

sb3 sb4
sb5 sb6

 . (4.45)

The bold elements have the same value for all s, we see that b2, b3, and b5 have to
be zero in order for the equation to hold. The matrix B will then be

B =

b1 0
0 b4

0 b6

 . (4.46)

Corollary 1. Assume a nonlinear system x+ = f(x, u), its predictor z+ = Az +
Bv, x̂ = Cz both with symmetry Γx according to (4.19) and (4.20), and symmet-
ric lifting functions Φ and Ψ such that γzΦ(x) = Φ(γxx) and γvΨ(u) = Ψ(γuu),
where γx ∈ Γx, γv = γu = h(γx), and γz = h′(γx). Let (x̂t)

∞
t=0 and (γ̂xx)∞t=0

be the predictions of the symmetrical trajectories (xt)
∞
t=0 and (γxxt)

∞
t=0 respectively.

Then (γ̂xx)∞t=0 is also equal to its symmetrical counterpart (x̂t)
∞
t=0, i.e. (γ̂xx)∞t=0 =

(γxx̂t)
∞
t=0, achieving the same prediction error as (x̂t)

∞
t=0 achieves for predicting

(xt)
∞
t=0.

Proof. Let us have a nonlinear system (2.4) with symmetries (4.19). The symmet-
rical states xt, γxt of the system are obtained as

xt = Stf (x0, (u0, . . . , ut−1))

γxxt = Stf (γ
xx0, (γ

uu0, . . . , γ
uut−1)),

(4.47)

where Stf denotes the flow of the system f up to time t with initial condition x0

and input sequence u0, . . . , ut−1 . Using the same initial state and inputs, the lifted
states zt, γ

zzt of the LTI predictor (A,B) are

zt = StA,B(Φ(x0), (Ψ(u0), . . . ,Ψ(ut−1)))

γzzt = StA,B(γzΦ(x0), (γvΨ(u0), . . . , γvΨ(ut−1))).
(4.48)

The prediction of x is obtained as x̂ = Cz, therefore

x̂t = C·StA,B(Φ(x0), (Ψ(u0), . . . ,Ψ(ut−1)))

γ̂xxt = C·StA,B(Φ(γxx0), (Ψ(γuu0), . . . ,Ψ(γuut−1))).
(4.49)

Using the symmetries of the lifting functions and definition of γz (4.27), we can
rewrite the second equation as

γ̂xxt = C·StA,B(γzΦ(x0), (γuΨ(u0), . . . , γuΨ(ut−1)))

= Cγzzt

= γxCzt

= γxx̂t.

(4.50)
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Symmetric lifting functions The definition of Φ from (4.14) can be extended
to respect the symmetries by simply defining it on a symmetric dataset

z̄i0 = Φ(x̄i0) ∀i ∈ Z1,2nΓ ·N , (4.51)

where

(x̄i0, z̄
i
0) ∈ {(γxx, γzz) : γz = h(γx) ∀γx ∈ Γx} (4.52)

Since the input transformation Ψ is done channel-wise, for each Ψk we can simply
add the cost ∑

j∈Z1,qk

∑
ujk∈Ukv

j
k∈Vk

||γvvjk −Ψk(γ
uujk)||22 (4.53)

to the regularizations θ(·) in (4.18).

4.3 Implementation details

This section describes certain details concerning the problem (4.18). First, we ad-
dress the trajectory preparation in Section 4.3.1. The solving of the problem (4.18)
and its initialization are discussed in Sections 4.3.2 and 4.3.3 respectively.

A summary of the whole process from data preparation to solving (4.18) is provided
in the Section 4.3.4.

4.3.1 Trajectory preparation

This subsection addresses the cost
∑

(a,b)∈S ||zaHT
−zb0||22 in the optimization problem

(4.18). As was mentioned before, the penalty forces the endpoints of two consecutive
trajectories to have the same values in the lifted space. The idea is depicted in Fig.
4.2. Moreover, we also discuss a strategy to prevent overfitting via specific dataset
construction.

First, we need to make sure that our dataset even contains the consecutive trajec-
tories. We do this simply by generating long trajectories of length rHT and split
them into r shorter trajectories of length HT. Therefore the final state of the first
short trajectory will be identical to the initial state of the second short trajectory
and so on. Only the very first and last points of the long trajectories will not be
connected (unless the trajectory is a loop). The indices of consecutive trajectories
are stored in the set S, as depicted in the Fig.4.3.

Since the problem (4.18) is very flexible in terms of free variables (literally all the
main components of the Koopman predictor, that is A,B,C,Φ, and Ψ are decision
variables in some sense), we need to make a clear distinction between controlled and
autonomous trajectories to prevent overfitting (we do not want controlled trajectory
to be approximated by autonomous response and vice versa). For this, it is sufficient
if each point in X0 has at least two trajectories starting from it, each with different
control inputs. This situation is depicted in Fig.4.3 and stated formally in the
following Lemma.
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zaHT
, zb0

Ta Tb
xaHT

, xb0

zaHT

zb0

za0

za0

xa0Original
trajectory

Lifted trajectory
zaHT

== zb0

Lifted trajectory
zaHT
6= zb0

Figure 4.2: This figure demonstrates the effect of enforcing the endpoint consistency.
Note that even when not enforcing it, we still obtain a valid predictor although the
prediction capabilities will be strictly limited to the learning horizon HT.

T4

T1

T5

T2

T3

T6

S = {(1, 2), (2, 3), (1, 5), (2, 6)}

Figure 4.3: Example of trajectories used for learning and their interconnections.
We see that one long trajectory was split into T1, T2, and T3. The trajectories T4,5,6

start from the same initial conditions as T1,2,3 in this order. The set S contains the
indices of the interconnected trajectories.

Lemma 2. Assume that we have two distinct trajectories of the nonlinear system
(2.4), Ti and Tj, with xi0 = xj0, ui0 6= uj0, and yi1 6= yj1. For any Koopman predictor K,
which approximates the trajectories with zero error, such that zi0 = zj0, zi0 = Φ(xi0),
zj0 = Φ(xj0) , Czi1 = yi1, Czj1 = yj1, it holds that Ψ(ui0) 6= Ψ(uj0).

Proof. Let us have two trajectories

Ti :(xi0, y
i
0, u

i
0), (yi1)

Tj :(xj0, y
j
0, u

j
0), (yj1)

(4.54)

such that i 6= j, ui0 6= uj0, and yi1 6= yj1. We want to show that if xi0 = xj0 then
Ψ(ui0) 6= Ψ(uj0).
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Let us write the predictions of the Koopman predictor

ŷi1 = C(Azi0 +Bvi0)

ŷj1 = C(Azj0 +Bvj0),
(4.55)

where zi0 = Φ(xi0), zj0 = Φ(xj0), vi0 = Ψ(ui0), vj0 = Ψ(uj0) By subtracting them, we
obtain

ŷi1 − ŷj1 = CA(zi0 − zj0) + CB(vi0 − vj0). (4.56)

Knowing that we have zero approximation error, we can write ŷi1 = yi1 and ŷj1 = yj1.
Then by using the inequality yi1 6= yj1, we get

CA(zi0 − zj0) + CB(vi0 − vj0) 6= 0. (4.57)

The inequality can be fulfilled by either the initial states or the inputs not being
equal. However, if both trajectories start from the same initial condition, we get
zi0 = zj0 and the inequality can be only satisfied by vi0 6= vj0.

4.3.2 Solving the problem

The problem (4.18) can be formulated as a nonlinear unconstrained optimization
problem since the equality constraints can be eliminated by substitution. It can
be solved by a variety of solvers; in our case, we use the ADAM [46] optimization
algorithm. ADAM is a first-order method for unconstrained problems, therefore it
requires gradients of the cost function. We calculate the gradients of (4.18), via
automatic differentiation (AD) routines, specifically by the packages Flux [47],[48]
and Zygote [49] from Julia [50].

We would like to note that in some cases, it seems beneficial to fix the values Vk
during the first iterations of the ADAM solver. In the presented examples, doing
this resulted in faster convergence. In this work, we fixed the input for the first
500 iterations. Moreover, any prior information can be supplied to the problem by
means of initializing and fixing some of the variables, such as the symmetries of the
nonlinear system.

4.3.3 Initialization values

The variables of (4.18) need to be initialized. Table 4.1 lists the choices used in this
thesis. We use Uα,β to denote uniform distribution in the interval [α, β].

Variable Initialization value(s)
zi0 Each element from U−1/2,1/2

Vk Same as Uk
A ai,j ∈ U−1/2,1/2

B bi,j ∈ U−1/2,1/2

C ci,j ∈ U−1/2,1/2

Table 4.1: Initialization values for the problem (4.18).
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It might be beneficial in some cases to initialize A such that its spectral radius is
less than 1, which will make the initialized system (A,B,C) stable from a control-
systems point of view. Prior knowledge about the predictor (such as structure of
A,B,C, knowledge of Φ or Ψ) can be used to initialize relevant variables, which
could be potentially fixed throughout the optimization.

4.3.4 Summary: Learning Koopman predictor

The algorithm 4 summarizes the procedure for learning the Koopman predictor.

Algorithm 4 Find the Koopman predictor (A,B,C,Φ,Ψ)

Input: f, g,X0, HT, qk, N
1: Identify symmetries of the system f, g according to 4.2 and create the sparsity

patterns for A,B,C.
2: Choose the number of quantization levels qk and create the quantized channels
Uk.

3: Generate N trajectories Ti of length HT according to 4.3.1
4: Initialize the matrices A,B,C, and the elements of Z0 and Vk according to 4.3.3.
5: Solve (4.18), optionally fix the values Vk as mentioned in 4.3.2.

Output: A,B,C, Z0, Vk

4.3.5 Control-related considerations

As mentioned in Section 4.1, we need to expand the domain of the lifting function
Φ (4.14) to X, instead of X0. Another matter to consider is the invertibility of Ψ
(4.16), since it is not guaranteed from (4.18).

Both of these matters are addressed in the following sections 4.3.5.2 and 4.3.5.3.

Finally, we discuss the setting of lifted input rates. It was already hinted in Section
2.2 that the lifted input and its rates need to be weighted and constrained in the
lifted space. While the input itself is bounded by box constrains by definition, the
input rates prove to be a more delicate matter which is addressed in the following
text.

4.3.5.1 Input rate bounds
The bounds on ∆v are not trivial to choose because the lifted-space bounds on v
will not correspond to the real bounds on u because of the nonlinearity of Ψ, as seen
in Fig.4.4. Possible solutions are

1. use the bounds with soft constraints to make them flexible

2. use ideas from nonlinear MPC and make an iterative scheme (and solve the
QP multiple times)

3. use linearization of Ψ to set the bound

4. set the bounds on ∆v conservatively, so that the worst case of ∆u is guaranteed
to be within its bounds.
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∆u1 ∆u2

∆v

∆v

u

v
Ψ

Figure 4.4: Example of a function Ψ, which would pose challenges with identifying
desired bounds on ∆v. We can see that the rate of u changes based on the slope of
Ψ, even though the bound on ∆v is constant.

4.3.5.2 Interpolation of Φ
As a result of the optimization process, we will obtain the samples of the function Φ
in the form of pairs (xi0, z

i
0), instead of the function itself. One needs to approximate

Φ̂ by interpolation as

Φ̂(x, p) = h(X0, Z0, x, p), (4.58)

where h is an interpolation method with parameters p, e.g., the K-Nearest Neigh-
bours (k-NN). The question is how to choose the parameters p? One way would be
to simply evaluate the lifting error across all datapoints and select the best one as

p? = argmin
p∈P

∑
x∈X0

||g(x)− CΦ̂(x, p)||2Q, (4.59)

where P is the parameter space. We use the || · ||Q norm to make the weighting
consistent with the KMPC cost function in (2.21). Another possibility is to adapt
the interpolation scheme dynamically to the current initial point xinit of the MPC
as

p? = argmin
p∈P

||g(xinit)− CΦ̂(xinit, p)||2Q. (4.60)

Doing this would ensure the precision of the first few steps of the prediction, as well
as the precision of the first control input, which is used for the closed-loop control.
The tradeoff is that every iterate of the closed-loop would involve searching for the
best interpolation parameters either via solving an optimization problem, or simply
by evaluating the lifting function |P | times (if the search space P is finite, such as
for k-NN).

4.3.5.3 Invertibility of Ψ
The function Ψ might be required to be invertible if we intent to use its continuous
interpolation in the MPC.

In order to ensure this, we can either manually limit the domain of each channel to
its invertible parts, which boils down to manually limiting the domain of nu scalar
functions of one variable.
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Another option is enforcing monotonicity of individual Ψk by adding the following
regularization as the additional cost term θ(· ) in (4.18):∥∥∥∥∥∣∣vqkk − v1

k

∣∣− qk−1∑
i=1

|vi+1
k − vik|

∥∥∥∥∥
2

2

, (4.61)

where vk are samples of Ψk. The cost (4.61) is explained in the following Lemma.

Lemma 3. A sequence of qk consecutive samples [v1
k, . . . , v

qk
k ] is monotonous if and

only if ∣∣vqkk − v1
k

∣∣ =

qk−1∑
i=1

|vi+1
k − vik|. (4.62)

Proof. The final element of the sequence can be written as

vqkk = v1
k +

qk−1∑
i=1

εi, (4.63)

where εi = vi+1
k − vik. We reorganize the terms

vqkk − v1
k =

qk−1∑
i=1

εi (4.64)

and put both sides of the equation in absolute value

|vqkk − v1
k| =

∣∣∣∣∣
qk−1∑
i=1

εi

∣∣∣∣∣ . (4.65)

If the function is monotonous, all the εi have the same sign and hence∣∣∣∣∣
qk−1∑
i=1

εi

∣∣∣∣∣ =

qk−1∑
i=1

|εi|. (4.66)

Finally, by assuming the monotonicity of Ψk, we can put (4.65) and (4.66) together
and we obtain

|vqkk − v1
k| =

qk−1∑
i=1

|εi| =
qk−1∑
i=1

|vi+1
k − vik|. (4.67)

Therefore, if the sequence vik is monotonous, the equality (4.62) must hold.

Let us now prove the other direction. We claim that if (4.62) holds, then the function
is monotonous. In the simple cases where the terms inside the absolute values are
either all non-negative or non-positive, it is trivial to see that the function will be
non-decreasing or non-increasing respectively.

The interesting case is where the signs are different. Let us assume, without loss of
generality, that v2 − v1 ≤ 0, and all the other terms are nonnegative. If we rewrite
(4.67) without the absolute values, we obtain

(v1
k − v2

k) + (v3
k − v2

k) + (v4
k − v3

k) + · · ·+ (vqkk − vqk−1
k ) = vqkk − v1. (4.68)
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Is is clear that
v1
k − v2

k = 0, (4.69)

therefore Ψk will be monotonically non-decreasing. The same approach can be used
for multiple sign changes, which concludes the proof.

4.4 KMPC with the Freeman predictor

The algorithm 5 summarizes the procedure for designing the KMPC with the method
proposed in this Chapter.

Algorithm 5 Create the Koopman MPC

Input: A,B,C, Z0, Vk, H,Q,R,Rd

1: Create interpolated lifting function Φ̂ according to 4.3.5.2.
2: Decide on the strategy for inverting Ψ as in 4.3.5.3, optionally include the cost

(4.61) into the term θ(· ) in (4.18).
3: Decide on the strategy for dealing with the input rate bounds, if applicable,

according to 4.3.5.1.
4: Formulate the KMPC according to 2.2.

Output: function KMPC(yref , x0, uprev)→ v?
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Chapter 5

Examples

5.1 System with discontinuous lifting

This section compares the three methods on the example with discontinuous lifting.
The Section 5.1.1 describes the model, the learning dataset is described in Section
5.1.2, and the results and comparison are in Sections 5.1.3 and 5.1.4. Summary is
given in Section 5.1.5.

This example also demonstrates a perhaps unintuitive fact, that the linear Koopman
system can approximate systems with multiple equilibria. This is possible due to
discontinuous lifting functions, as we show in the following text.

5.1.1 Model description

This system is adopted from [51]. It is a nonlinear system with three equilibria, and
known analytical solution for its Koopman operator. The purpose of this example
is to show that the proposed method can learn discontinuous lifting functions.

Consider the nonlinear system

ẋ = f(x)

f(x) =


−(x− 1) if x > 0

0 if x = 0

−(x+ 1) if x < 0

(5.1)

The corresponding continuous Koopman operator derived in [51] is of the form

ż = Az, y = Cz, (5.2)

where

A =

[
−1 1
0 0

]
, C =

[
1 1

]
. (5.3)

The output y = z1 + z2 is equal to the nonlinear state x. The eigenvalues and
eigenfunctions of the Koopman operator are

λ1 = −1, Φ1 = x− sign(x),

λ2 = 0, Φ2 = sign(x).
(5.4)
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5.1.2 Learning setup

We have generated 300 trajectories of the system (5.1) of length HT = 20 that were
sampled with Ts = 0.1s.

The learning trajectories can be seen in Figure 5.1. We compare the resulting

0.0 0.5 1.0 1.5 2.0
-2.00

-1.25

-0.50

0.25

1.00

Time(s)

x
(−

)

Figure 5.1: Sample of the trajectories used for learning the predictors.

systems to the canonical observer form of the analytical solution

Ao =

[
0 1
0 −1

]
, Co =

[
1 0

]
. (5.5)

The following continuous observer forms of the predictors are obtained from the
discrete-time system (Âd, Ĉd), which was transformed into a continuous system by

(Â, Ĉ) = ( log(Âd)
Ts

, Ĉd).

5.1.3 Learning results

5.1.3.1 EDMD
The EDMD is not capable of solving this problem exactly unless the correct discon-
tinuous lifting functions are directly supplied to its dictionary. Nonetheless, we can
use EDMD as if we were not aware of the discontinuities by taking the thin plate
spline radial basis functions

Φrbf(x) = ||x− xc||2log(||x− xc||) (5.6)

as the observables. Their centers xc were selected randomly from the interval [−1, 1].

5.1.3.2 Optimal eigenfunctions
This method relies on the supplied guesses of the eigenvalues in order to work. The
approach also proposes a method of optimizing the initial guess of the eigenvalues,
which managed to converge to the correct eigenvalues.

Âeig
o =

[
−0.00020− 0.00029i 1.05008− 0.00096i
0.00386 + 0.00566i −0.98544 + 0.01870i

]
, Ĉeig

o =
[
1 0

]
. (5.7)

We see that it is numerically close to (5.5). The complex numbers are caused by
our initial guesses to be a complex conjugate pair. The continuous eigenvalues are[
−0.9895 + 0.0126i 0.0038 + 0.0058i

]
.
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5.1.3.3 Freeman
Our method obtained similar results to the previous one, except for having real
values only.

Âpro
o =

[
−0.0003 1.0508

0.005 −0.9989

]
, Ĉpro

o =
[
1 0

]
. (5.8)

We can see that the approximated system is numerically close to the analytical
solution. The continuous eigenvalues of the learned Koopman system were λ̂1,2 =[
−1.004 0.005

]
. The estimated eigenfunctions are compared to the real ones in

Figure 5.3.

5.1.4 Comparison

Figure 5.2 compares the autonomous responses of all three algorithms. We see
that both Freeman and the Optimal eigenfunction were able to provide accurate
predictions, as could be seen also from their eigenvalues. EDMD always diverged,
but we can see that the higher its degree, the later the divergence. Figure 5.3 shows
comparison between the real and the learned trajectories. We see that they are all
identical.

0 1 2 3 4 5

0.20

0.40

0.60

0.80

1.00

Time(s)

x
(−

)

Real, nx = 2

EDMD, nz = 10

EDMD, nz = 30

EDMD, nz = 50

Proposed, nz = 2

Opt. Eigen, nx = 2

Figure 5.2: Responses of the predictors and the real system from initial condition
x0 = 0.1. The trajectory from optimal eigenfunctions had small imaginary part,
which is not plotted. We see that the methods that allow discontinuous lifting pro-
vide much better fit. The real trajectory overlaps with the trajectory from Freeman.
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−1.0 −0.5 0.0 0.5 1.0
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z 1
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) Φ1(x)
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−1.0 −0.5 0.0 0.5 1.0
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z 2
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) Φ2(x)
z2,pro
z2,eig

Figure 5.3: Comparison of analytical eigenfunction to the results from Optimal
eigenfunctions (eig) and Freeman method (free). We see that they are the same up
to some numerical accuracy.

5.1.5 Summary of the discontinuous lifting example

Both Optimal eigenfunction and the proposed method were able find the Koopman
operator and the correct lifting functions up to numerical inaccuracies (Fig. 5.3).
The EDMD showed that it can approximate the operator with increasing order of
the predictor (Fig. 5.2), but it cannot compete with the other two methods.

5.2 Duffing oscillator

The Duffing oscillator is described in Section 5.2.1, the learning dataset description
is in Section 5.2.2, the open-loop and closed-loop results are in Sections 5.2.3 and
5.2.4 respectively. Summary is given in Section 5.2.5.

5.2.1 Model description

The Duffing oscillator is a nonlinear system with three equilibria, where two are
stable and one unstable. We shall compare the approaches by making a maneuver
that visits all of them.

The continuous dynamics are

ẋ1 = x2,

ẋ2 = −0.5x2 − x1(4x2
1 − 1) + 0.5u,

(5.9)

where x ∈ [−1, 1]2 and u ∈ [−1, 1]. The system has 3 equilibria xe1 = [−0.5, 0],
xe2 = [0, 0], and xe3 = [0.5, 0].

5.2.2 Learning setup

The autonomous part of the learning dataset is depicted in Figure 5.4a. The initial
conditions were sampled in a unit circle, as in [45]. The system was sampled with
Ts = 0.02s. The dataset Deig used for the optimal eigenfunctions contains 100
trajectories, each with 1000 samples (20s). The dataset Dfree for Freeman method
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contains the same data as Deig, only split into shorter parts with 20 samples each.
The EDMD dataset DEDMD also contains the same data, split into one-step pairs.

The controlled trajectories (not depicted) had the same length and starting points
as the short trajectories from Dfree. The control inputs were generated randomly
within U = [−1, 1] with quantization step 0.2. All of the compared methods used
the same data for the control learning.

All of the data used for learning was constrained in a unit box.

5.2.3 Comparison in open loop
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(a) Autonomous dataset
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(b) EDMD
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(c) Optimal eigenfunctions
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(d) Freeman

Figure 5.4: Comparison of all 3 methods on the prediction of autonomous Duffing
dynamics. The length of the red trajectories is 40 samples (0.8s), they serve only to
provide context in terms of time and length of the predictions.

EDMD The autonomous predictions for 40 steps (0.8s) ahead can be seen in
Figure 5.4b. The 500 initial conditions were sampled randomly within the unit
circle. We see that some part of the dataset are predicted quite well (near the
equilibrium at [−0.5, 0] for example) and in some cases the trajectories leave the
unit box in which is the learning data is constrained.

Predictions with constant control input u = 1 can be seen in Figure 5.5b, we see
that more trajectories go out of bounds of the unit box.
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(a) Real system
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(c) Optimal eigenfunctions
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Figure 5.5: Comparison of all 3 methods on the prediction of autonomous Duffing
dynamics with constant input u = 1. The length of the red trajectories is 40
samples (0.8s), they serve only to provide context in terms of time and length of the
predictions.

Optimal eigenfunctions Figure 5.4c shows autonomous predictions for the same
initial conditions and length as the previous case. We can see that the autonomous
response resembles the behaviour of the real system 5.4a quite well, since this method
learns the autonomous dynamics exclusively on the autonomous dataset.

Figure 5.5c shows the behaviour with constant forcing u = 1. We see that the
system no longer behaves like the original one. Moreover, with longer horizon, the
trajectories exploded outside of the unit box (not depicted).

Freeman Figure 5.4d shows autonomous predictions for the same initial conditions
and length as the previous methods. We see that the fit is not as good as in the
previous case, although the predictor still resembles the behaviour of the nonlinear
system. The length of the trajectories here is twice the length of the learning
trajectories Dfree. We see that the equilibria are shifted, which is accounted to the
nonconvex optimization and can be easily treated by the offset-free MPC design,
which is shown in Section 5.6.

Figure 5.5d shows the behaviour of the method with constant forcing u = 1. The
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behaviour of the predictor resembles the original system the most out of the 3
compared predictors.

5.2.4 Comparison in closed loop

We compare the three methods on the maneuver used in [45], that is we shall try to
visit all three equilibria of the system.

First, we present a tuning of the MPC controller that works for all the methods.
Next, we will perturb the controllers parameters to see if we still obtain a stabilizing
controller for all the methods.

The MPC parameters are as follows:

Q = Diag(1, 0.1), R = 0, Rd = 0.01,

y ∈ [−1, 1], u ∈ [−1, 1], ∆u ∈ [−0.045, 0.045].
(5.10)

The input lifting function Ψ was linear with Ψ(u) = 0.11u. The lifted input limits,
rates, and weights were adjusted by factor 0.11.

Rpro
d = 1, v ∈ [−0.11, 0.11], ∆v ∈ [−0.005, 0.005]. (5.11)

Short prediction horizon Figure 5.6 shows the results for prediction horizon
H = 30 (0.6s). We see that all the controllers managed to perform the maneuver,
only the EDMD had larger peaks.
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Figure 5.6: Control of Duffing oscillator with prediction horizon H = 30. The
EDMD has as offset near the unstable equilibrium, otherwise all the methods per-
form similarly.
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Long prediction horizon Now we will change the horizon H to H = 60 (1.2s), we
see that the optimal eigenfunctions method has troubles with controlling the system
whereas both Freeman and the EDMD still provide good control performance.
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Figure 5.7: Control of Duffing oscillator with prediction horizon H = 60. The per-
formance of Optimal eigenfunction approach deteriorated compared to the previous
case.

5.2.5 Summary of the Duffing oscillator example

The open-loop prediction capabilities were the best with the proposed Freeman
predictor, since the Optimal Eigenfunctions were not able to predict controlled tra-
jectories very well (Figure 5.5c), and the EDMD had inconsistent behaviour for
x2 > 0, as seen in Figures 5.4b and 5.5b. The proposed method exhibited only
slight shifts in the system equilibria (Figure 5.4d).

In spite of these differences, the closed-loop performance was very similar for all the
methods. EDMD has slight steady-state error near the unstable equilibrium and
Optimal eigenfunction method destabilized the system only with longer prediction
horizon, which goes in tune with the open-loop behaviour. Both issues can be seen
in Fig. 5.7.

5.3 Duffing with nonlinear input

In this example, we use the Duffing oscillator with changed control term. The
continuous dynamics are

ẋ1 = x2,

ẋ2 = −0.5x2 − x1(4x2
1 − 1)− 0.5u2,

(5.12)
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where the square in the control input is the only change from the previous example.
The dataset parameters and the MPC setup are exactly the same as in the previous
case. The point of this example is to show that predictors that use the original input
u cannot approximate and therefore control certain class of systems, such as (5.12).

We chose EDMD as a representant of the predictors with original control input and
learned it alongside of our method on the system (5.12). Our method resulted in
a predictor with the input lifting function shown in Figure 5.8, which is simply a
scaled (and shifted) −0.5u2. We attempted to perform a maneuver that would bring
the Duffing oscillator from one stable equilibrium to the other, i.e. from [0.5, 0]> to
[−0.5, 0]>. The results can be seen in Figure 5.9. We see that EDMD was not able
to leave the equilibrium. Figure 5.10 shows the maneuver in a state space portrait.
We see that our controller exploited the dynamics and did not apply any control
when the system was going to the equilibrium on its own (at acceptable rate, we see
that the controller sped up the converge near the equilibrium).
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Figure 5.8: Learned input transformation of a Duffing oscillator with nonlinear
control term −0.5u2.
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Figure 5.9: Control of a Duffing oscillator with nonlinear control term. EDMD was
not able to leave the equilibrium because the method does not consider nonlinear
input transformations.
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Figure 5.10: Nonlinear Duffing control trajectory (red/green) plotted over au-
tonomous trajectories (grey) of the system. Control was applied only in the red
parts of the trajectory.

5.4 Single-track vehicle model

This section compares the three methods on a singletrack vehicle model described
in Section 5.4.1. The dataset setup is described in Section 5.4.2. The open-loop and
closed-loop results are described in Sections 5.4.3 and 5.4.4, respectively.

5.4.1 Model description

The vehicle model derived in [52] will be reviewed here. The model is depicted in
Figure 5.11. The state vector of the single-track model is[

vx(m s−1), vy(m s−1), ψ̇z(rad s−1)
]>
, (5.13)

where vx is longitudinal velocity, vy lateral velocity and ψ̇z is yaw rate. Inputs to
the model are rear longitudinal slip ratios κr and front steering angle δf .

The vehicle body is modeled as a rigid body using Newton-Euler equations

mv

([
v̇x

v̇y

]
+ ψ̇z

[
−vy

vx

])
=

4∑
i=1

[
Fi,x
Fi,y

]
− 1

2
cwρAw

√
v2

x + v2
y

[
vx

vy

]
(5.14)

and

Jzzψ̈z =
4∑
i=1

riFi, (5.15)

where

r =
[
r1 r2 r3 r4

]
=

lv0
0

 ,
lv0

0

 ,
−lh0

0

 ,
−lh0

0

 (5.16)

contains the vectors describing position of each wheel with respect to the center

of gravity (CG) and Fi =

[
Fi,x
Fi,y

]
is a vector of forces acting on the ith wheel. The
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Figure 5.11: The single-track model. Forces FR2 and FR4 are not depicted in the
figure because in a general case with symmetric tires FR2 = FR1 and FR4 = FR3 .

CHAPTER 5. EXAMPLES 51



The Koopman and moment-sum-of-squares approach for control

vector and its elements are depicted in Fig. 5.11. Note that although Fig. 5.11 might
suggest that the model has 2 wheels, it is defined with 4 wheels, where the left and
right wheels are in the same place. This allows for usage of asymmetrical tire models
(such as the one used in this work). The parameters lv and lh are distances of wheels
from CG, as depicted in Fig. 5.11. The wheels are numbered in this order: front-left,
front-right, rear-left, rear-right. mv is the vehicle mass, Fi,x/y is a force acting on ith

wheel along x/y axis in body-fixed coordinates. FRi,x is a force acting along x axis

in wheel coordinate system. The term −1
2
cwρAw

√
v2

x + v2
y

[
vx

vy

]
is an approximation

of air-resistance, cw is a drag coefficient, ρ is air density and Aw is the total surface
exposed to the air flow. Jzz is the vehicle inertia about z-axis and JRi is the wheel
inertia about y-axis.

The forces

[
FRi,x
FRi,y

]
are calculated using the “Pacejka magic formula” [53]

F = D cos(C arctan(Bx− E(Bx− arctan(Bx)))). (5.17)

The same formula can be used for calculating FRi,x (tire longitudinal force) and FRi,y
(tire lateral force) with a different set of parameters for each. The argument x can be
either sideslip angle α or longitudinal slip ratio κ (usually denoted as λ, which is used
for eigenvalue in this Chapter) (see [53]) for calculating FRi,y or Fx respectively. The
parameters B,C,D and E are generally time-dependent. This work uses the Pacejka
tire model [53] with coefficients from the Automotive challenge 2018 organized by
Rimac Automobili. The transformation of tire forces from wheel-coordinate system
to car coordinate system is done as follows[

Fi,x
Fi,y

]
=

[
cos(δi) − sin(δi)
sin(δi) cos(δi)

] [
FRi,x
FRi,y

]
. (5.18)

5.4.2 Learning setup

For the Freeman and EDMD, the dataset Dfree was designed such that the number
of learning trajectories was N = 8384 with length HT = 10 (0.2s). A state was
considered feasible if its kinetic energy was less that 300kJ, forward velocity vx
was positive, and the front-wheel slip angles were less than 15◦. A trajectory was
considered feasible if 70% of its states were feasible.

The optimal eigenfunctions method did not result in a satisfying predictor when
used on the dataset Dfree. Therefore, we fell back to the dataset design based on
our previous work [22], which contained 6172 trajectories of length 50. Half of the
trajectories was autonomous, half with random control signals.

In order to properly compare the Freeman method and the optimal eigenfunctions,
both methods systems used the same set of eigenvalues, which were found by Free-
man. The state space of the optimal eigenfunction predictor has been expanded,
because its structure restricts each eigenvalue only to one output. The state space
of EDMD and Freeman had 45 states, the optimal eigenfunctions had 75.

Lifted input The lifted input functions Ψ obtained from Freeman have a shape
similar to force characteristics of the tires, which were used within the nonlinear
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model. This is quite interesting considering that we did not supply any prior infor-
mation about the tires. Therefore, the lifted inputs in this case could be thought of
as (scaled and shifted) forces acting on the vehicle. The Figures 5.12 and 5.13 show
the lifting of the steering angle and rear slip respectively.
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Figure 5.12: Lifting function of the (normalized) steering angle, compared to scaled
lateral force of the front tire at vx = 10m/s with slip ratio λ = 0.2.
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Figure 5.13: Lifting function of the rear slip ratio compared to a scaled and shifted
real force curve of the rear tire for the vehicle driving forward at vx = 10m/s. Note
that the zero of the lifted input is shifted and the lifted input is always positive, we
attribute this to the fact that the learning data contained mostly forward-driving
states.

5.4.3 Comparison in open loop

This system is more complicated than the Duffing oscillator, therefore we will com-
pare the open-loop behaviour only on two trajectories.

All of the predictors predicted the autonomous behaviour well in “usual” scenarios
such as driving forward or turning. Figure 5.14a shows a comparison from a state
[15, 5, 5]>, which is purposefully quite unusual. We see that the EDMD predicted
the behaviour well only for a short time and then started to oscillate. Both EDMD
and the Freeman had steady-state offsets in the first state.

Figure 5.14b shows a trajectory with starting point x0 = [15, 0, 0]> (driving for-
ward), with a 15◦ step on the steering angle between 0.5s and 1s. We see that
EDMD had only a minor offset in the third state, whereas the behaviour of the
Optimal Eigenfunctions largely deteriorated, similarly to the previous example with
the Duffing oscillator. Freeman had an offset in the first state.

The Freeman method was the only one, which was able to to predict the behaviour
in both cases, apart from the velocity offset, which was exhibited by all the other
methods and did not pose much issues in closed-loop control as can be seen in
Fig. 5.15. The Section 5.6 also addresses this issue with the offset-free approach
presented in the Section 2.2.4.4.
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(a) Autonomous trajectory with initial state

x0 =
[
15, 5, 0

]>
. The EDMD predictor exhibits

large oscillations.
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(b) Controlled trajectory with x0 =
[
15, 0, 0

]>
, the

steering angle was set to 15◦ between 0.5s and
1.0s. The Optimal eigenfunctions do not predict
any movement in the third state and have large er-
ror in the second state.

Figure 5.14: Comparison of all 3 methods on open-loop prediction of the vehicle
model. The Freeman method is the only one with consistent results. The Real line
corresponds to the trajectory of the nonlinear system.

5.4.4 Comparison in closed loop

This section compares the performance of all three methods on two maneuvers.
Again, as with the previous system, we shall perturb the MPC parameters to test
the sensitivity of the predictors to different tunings.

The parameters for the MPC (2.21) are

Q = different in each example

R = Diag(10, 4.6) Rd = Diag(0, 0)

yup = [30, 30, 30]> ylow = [0,−30,−30]>

uup = [1, 1]> ulow = [−1,−1]>

vup = [0.18, 0.57]> vlow = [−0.18,−0.2]>

∆uup = [5.5, 5.5]> ∆ulow = [−5.5,−5.5]>

∆vup = [1, 1]> ∆vlow = [−1,−1]>.

(5.19)

The scaling of the lifted input variables will vary depending on the concrete lifted
space of the predictor.

5.4.4.1 Classic driving scenario
The first maneuver is a simple example of a car going left and right, slowing down and
speeding up. Figure 5.15 shows the maneuver for controller tuning Q = Diag(1, 1, 1).
Figure 5.16 shows the same example with tuning Q = Diag(1, 1, 100), we see that
the behaviour of EDMD was fixed by more aggressive tuning.
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Figure 5.15: Control with Q = Diag(1, 1, 1). EDMD and optimal eigenfunctions
destabilized the system when speeding up from low velocity. Note that optimal
eigenfunctions do not steer the system.
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Figure 5.16: Control with Q = Diag(1, 0, 100). The optimal eigenfunctions destabi-
lize the system.
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5.4.4.2 Recovery maneuver
This subsection shows a manuever where the vehicle starts at x0 = [0,−15, 0]> and
the goal is to get to xF = [10, 0, 0]>, meaning that the vehicle starts in a sideway skid
and the goal is to stabilize it. We will also present the results for the symmetrical
maneuver, starting from x0 = [0, 15, 0]>.

Tuning Q = Diag(1, 1, 1) All controllers were able to stabilize the system. The
linear controller takes the longest to stabilize and has large peak in the yaw rate.
Both EDMD and optimal construction show very incosistent behaviour in the two
symmetrical cases.
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Figure 5.17: Recovery maneuver with Q = Diag(1, 1, 1). Both EDMD and Optimal
construction show poor performance and incosistencies in the two symmetrical cases.
The Freeman method has the lowest yaw rate peaks of all the controllers.

Tuning Q = Diag(1, 1, 100) We see that all the controllers were able to stabilize
the vehicle. The Freeman-based KMPC is the closest to the nonlinear controller.
The Linear controller and optimal construction have the highest peaks in yaw rate,
which was the most penalized variable. The EDMD and optimal construction have
slightly inconsistent behaviour in the two symmetrical cases.
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Figure 5.18: Recovery maneuver with Q = Diag(1, 1, 100). All controllers stabilized
the system. Both EDMD and Optimal eigenfunctions showed incosistent results for
the two symmetrical cases. The Linear controller and Optimal eigenfunction have
large peaks in yaw rate. EDMD and Freeman had lowest peaks in yaw rate, which
was the most penalized state.

5.4.5 Summary of the vehicle example

The open-loop predictions were the most accurate from the proposed method. The
EDMD predictor oscillated when the system should have been in steady state (Fig.
5.14a), and the Optimal eigenfunctions did not correctly predict controlled trajec-
tory in Fig. 5.14b. None of the compared predictors was able to predict the forward
velocity vx correctly in both cases.

The closed-loop performance was tested on two scenarios. The first was a classical
driving scenario. The EDMD steered the car when it was supposed to speed up
(Fig.5.15), the behaviour was fixed by changing the MPC parametrization in Fig.
5.16. Optimal Eigenfunctions did not manage to control the car, which agrees with
our previous results from [22]. The Freeman-based controller was able to control the
system with both tunings.

The second example compared the predictors on the recovery maneuver, where the
vehicle was sliding sideways with the goal of stabilizing it as soon as possible. The
predictors were compared to a nonlinear controller and all the tests were done twice
with symmetrical parameters. With the tuning matrix Q = Diag(1, 1, 1), only Free-
man was able to come close to the nonlinear controller (Fig. 5.17). The other
two predictors had worse performance than local linearization and their behaviour
was very different in the two symmetrical cases. With more aggressive tuning
Q = Diag(1, 1, 100) (Fig. 5.18), the trajectory of EDMD was largely improved,
although it still exhibited differences in the two symmetrical cases, mainly in the
forward velocity vx.

The Freeman predictor had control performance competitive to the nonlinear MPC
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in all test cases. Both EDMD the the Optimal Eigenfunctions were sensitive to the
tuning of the control problem, the performance of EDMD was greatly improved by
finding better controller parametrization.

5.5 Computation times

The two proximal solver (OSQP [28] and ProxQP [27]) and Ipopt[54]&CasADi[55]
had their absolute and relative stopping tolerances set to 10−5. We did not find
similar parameter in qpOASES [29], therefore it was left at default settings. The
nonlinear MPC was using the direct multiple shooting strategy, see [56], [57, Chapter
2], and [58].

The results for different solvers can be found in the Table 5.1, where the first four
columns are solves of KMPC and the last is nonlinear MPC. The used predictor was
the proposed method from Chapter 4; the difference among the different predictors
was negligible in terms of computation time. The reported times are pure solver
times (i.e. there is no lifting nor dynamics simulation included). We see that the
QP problems has comparable times; we will not attempt to decide which QP solver
is the best because the results depend on the concrete QP and parametrization of
the solver, as can be seen in the case of qpOASES, which had significantly improved
its times when switched to “MPC” mode.

The main takeaway from Table 5.1 is that all the QP problems are much faster and
more consistent than the Nonlinear solver whose solving times were not only longer
but also fluctuating greatly depending on the maneuver.

OSQP ProxQP qpOASES qpOASES(MPC) Ipopt + CasADi

Fig.5.15 0.50ms 1.30ms 1.34ms 0.49ms 121.95ms
Fig.5.17 0.71ms 1.48ms 2.16ms 0.43ms 58.92ms
Fig.5.18 0.78ms 1.26ms 1.81ms 0.72 312.60ms

Table 5.1: Comparison of average times needed by the solver per single iteration of
the MPC with quadratic constraints. All simulations were done on Intel Core i7-
9750H CPU with 6 × 2.6GHz. The number of available cores had negligible effect
in all cases. The solver qpOASES was tested with two sets of settings, default and
“MPC”. CasADi was solving the nonlinear MPC while the rest are QP problems
from the Koopman MPC.

5.6 Offset-free control

In this section, we will shortly touch upon the topic of offset-free control. We
use the disturbance model with observer developed in Sections 2.2.4.4 and 2.2.4.5
with the Freeman predictor from Chapter 4. We present two examples on the
Duffing oscillator and the vehicle model. On both cases, the parametrization of the
disturbance model was Bd = 0.1C>, Cd = 0, and the observer matrix L was found by
solving LQR for the dual problem with Qξ = I, Rv = I according to Section 2.2.4.5.
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Note that since the matrix C is block-diagonal (4.24), Bd = 0.1C> essentially links
individual elements of dt with the elements of x̂t.

Figure 5.19 shows the control Duffing oscillar to the equilibrium [0.5, 0]>. We can
see in the Figure 5.4d, that the Freeman predictor slightly offsets the equilibria of
the system. We see that the offset-free design can easily rectify that.

Figure 5.20 shows control of the vehicle into a steady-state turn. We see that the
disturbance model was able to easily correct the offset of the nominal model.
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Figure 5.19: Duffing control with offset-free MPC with Q = Diag(10, 0.1).
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Figure 5.20: Vehicle turn with offset-free MPC with Q = Diag(10, 0, 1).

5.7 Summary of the numerical examples

Predictor comparison We showed that the proposed method can find discon-
tinuous lifting functions in the Example 5.1.
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The Example 5.2 compared the proposed method with EDMD and Optimal eigen-
function method on the Duffing oscillator, where we showed superior open-loop
prediction capabilities. The closed-loop performance was also better although not
by a large margin.

The Example 5.3 showed that the proposed method can control systems with non-
linear input functions, unlike other two methods that rely on the original, untrans-
formed, control input.

Finally, the Example 5.4 showed that the proposed method can greatly benefit from
the symmetry exploitation introduced in Section 4.2, delivering consistent behaviour
in symmetrical control problems. Moreover, we showed that the method yields
similar trajectories to those of nonlinear controller and that it is not dependant on
the controller settings.

The other two predictors had performance largely influenced by the settings of the
MPC algorithm in both control example (Figures 5.15 and 5.16). The parameters
of the control algorithm should be primarily chosen based on the requirements on
control performance, and not dictated by “what works” for the predictor at hand.
Therefore, having a predictor that is robust to changes in parametrization of the
encompassing control algorithm is of great importance and the proposed method
appears to provide this quality based on the presented examples.

For more detailed commentary on the selected examples, we refer the reader to the
Summary sections of the individual examples: 5.1.5, 5.2.5, 5.3, and 5.4.5.

Solver comparison The Section 5.5 compares the computation times of the QP
solvers mentioned in Section 2.2.4.2 and the nonlinear solver Ipopt [54]. The QP
problems are faster by a margin of approximately two orders of magnitude on average
as well as more consistent with respect to varying parametrization of the control
problem (i.e. weights in the Q matrix).

Offset-free control The Section 5.6 shows that the use of offset-free control with
the Freeman predictor and proposes concrete parametrization of the disturbance
model and the observer; the parameterization provides satisfactory results in both
the Duffing oscillator in the vehicle model.

60 CHAPTER 5. EXAMPLES



Chapter 6

Conclusion to the Koopman
operator part

The first part of this thesis presented a novel approach for finding the Koopman
predictor for nonlinear systems. The method was compared to two state-of-the-
art approaches, concretely the Extended Dynamic Mode Decomposition (EDMD)
[5] and the Optimal eigenfunction construction [45]. The main highlights of the
method can be summarized as

• Lifting of the input (Sec. 4.1)

• Exploitations of symmetries (Sec. 4.2)

• No need for prior knowledge about the system (Sec. 4.1.1)

• Ability to find discontinuous lifting function (Example 5.1.5)

We have demonstrated that, compared to the other state-of-the-art approaches, the
method is capable of more complex behaviour in closed-loop control (Example 5.4.5)
and that it is capable of approximating larger class of systems (Example 5.3) while
being more robust in terms of the specific tuning of the controller (Examples 5.4.5
and 5.2). Moreover, the predictor was competitive to nonlinear MPC (Sec. 5.4.4)
while being more than 100 times faster (Sec. 5.5) and completely data-driven.

We have also touched on the topic of offset-free control (Sec. 5.6), where we provided
parametrization for both the disturbance model and the observer, a topic which has
not been investigated in great lengths to the best of our knowledge.

We also wanted to show that the Koopman operator can approximate multiple
equilibria in the Examples 5.1.5 and on the Duffing oscillator in Fig.5.4. Note that
this is not feature of our approach but rather the Koopman operator framework
as a whole (see [51]), but our approach was the only method that was able to
approximate the controlled Duffing oscillator such that its phase plots in Figures
5.4 and 5.5 actually resembled the real system.

Let us close up this discussion about nonconvexity of the approach. The compared
state-of-the-art methods are convex, which is a very positive attribute from an op-
timization perspective. However, in order to obtain the convexity, one is usually
forced to make conservative assumptions (e.g. that the Koopman system uses the
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control input) or assume the knowledge of certain parameters which are not trivial
to obtain (e.g. the lifting functions). This work has been conceived as an attempt
to formulate the problem that we really want to solve (that is finding the Koop-
man predictor and the lifting functions), instead of the problem that we can solve
easily (e.g. assuming knowledge of the lifting functions and finding the Koopman
dynamics). The cost of formulating what we want is nonconvexity, and in spite of
that, the results have been quite positive. It is not clear whether this fact should
be as surprising as it was (for me) since highly nonconvex problems such as neural
networks have great success even though the global minima are currently not attain-
able except for networks with concrete structures and optimization algorithms(see
[59] and [60]).
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Part II

Sum-of-squares hierarchy
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The following Chapters address the sum-of-squares part of this thesis. As mentioned
before, we explore the SOS framework and address its main issue, the computational
complexity. The framework can solve a large class of polynomial problems, the
most common control-related ones being the Optimal Control Problem [61] and
computation of various sets such as Region of Attraction (ROA) [62, 63], global
attractors [64], maximum positively invariant sets [65], and others.

The usual approach is to formulate the problem in question as a convex linear
program on positive measures, which is relaxed into a semi-definite program (SDP).
Depending on the problem, it is sometimes more insightful to solve the dual problem,
that is the LP on positive functions, which is also relaxed into an SDP. The SOS
framework provides convergence guarantees for increasing order of the relaxations,
making it possible to obtain optimal solutions of the aforementioned tasks in spite
of their non-convex nature. The general idea of the SOS framework is illustrated in
Figure 6.1.

min
x
p(x)

max
λ

λ

max
λ,Gs

λ

s.t. p− λ = s

Gs < 0

s.t. p(x)− λ ≥ 0

Convex LP on nonnegative polynomials

Nonconvex polynomial
optimization problem

Convex semidefinite program

Figure 6.1: Illustration of the SOS framework. A nonconvex polynomial problem
is formulated as an LP on positive functions and the relaxed into an SDP. All
explanations can be found in the introductory Example 7.1.

Current challenges As was mentioned in the main introduction, the method
can be seen as a hierarchy of problems of increasing order (and accuracy). However,
this results in rapid increase in complexity and resource demands, which restricts the
usage of the method to systems of relatively modest size. To give an idea, a problem
of calculating ROA of a system with 3 states and 2 inputs can take around 16 hours
to solve to relatively high accuracy (approximation by degree 12 polynomials) while
using the currently fastest solver and an 8-core CPU. One way to deal with this
is by exploiting existing structure or sparsity patterns found within the dynamical
systems. This direction of research is being met with a lot of effort in the works
[11, 12, 13, 14], to mention a few.
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Contribution We address the problem by introducing the structure artificially by
splitting the domain (time and space) of the dynamical systems and thus splitting
the optimization problems generated by them. This results in multiple smaller inter-
connected problems, which are relaxed into a structured SDP and thus solved more
efficiently. This technique does not place any assumptions on the structure of the
underlying dynamical system and keeps the framework general. We also address the
problem of how to split the domain by differentiating the semi-definite relaxations
and optimizing the splitting using off-the-shelf first-order methods, therefore leaving
our method lightweight in terms of additional parameters.

In order to keep the exposure concise, we present the method only on the problem
of calculating the ROA, where we show notable improvements in terms of accuracy,
memory demands, and computation time. We also provide proofs of convergence,
strong duality, and differentiability of the problem under mild assumptions.

Structure of this part The Chapter 7 introduces some basic notions of the SOS
framework. The Chapter 8 introduces the split ROA with the proofs of convergence
and outer approximations of the SOS relaxation, and the Chapter 9 presents the op-
timization of the splits along with the proofs of differentiability and strong convexity
of the SOS relaxation. This Part concludes in Chapter 10.

Notation Table 6.1 present the most common notation used in the following Chap-
ters.
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Table 6.1: Notation for the Sum-of-squares part.

Symbol meaning

R space of real numbers
N space of natural numbers
Za,b space of integers from a to b
X, U state and input spaces
XT terminal set
T terminal time
x, u state and input vectors
nx, nu dimensions of state and input vectors re-

spectively
f : Rnx × Rnu × R→ Rnx continuous dynamics
t time variable
x(t) value of x at time t
g polynomial describing constraint sets
w, v polynomial variables
A, C1(A) sets of continuous and continuously dif-

ferentiable functions on A in this order
L(A;B) set of Borel measurable functions defined

on A and taking values in B
IA indicator function of the set A;

IA(x) = 1 if x ∈ A, 0 otherwise
A◦ interior of the set A
Xi subset of X
Tk boundary of a time-split
K number of time splits
I number of state-space splits
θ set of time and space parameters
µ positive measure
λ(A) Lebesgue measure (volume) of the set A
xα =

∏nx
i=1 x

αi
i monomial with exponent α ∈ Nnx∫

A
xα dλ(x) =

∫
A
xα dx moment of the Lebesgue measure w.r.t

xα, or moment of order α
M(K)+ set of positive measures supported on K
c,A, b, s, y parameters of an SDP problem and its

dual
K,K? convex cone and its dual
ΠA, dΠA projection onto A and its derivative
Q primal-dual embedding matrix
S+ cone of positive semidefinite matrices
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Chapter 7

Preliminaries

This chapter will introduce the necessary notions surrounding the SOS framework,
in order to aid the understanding of the following two chapters. We do not aim to
make a proper theoretical introduction to the framework, but rather to offer some
basic intuition. For more detailed discussion, we refer the reader to [66].

7.1 Sum-of-squares introduction

Let us consider the following nonlinear optimization problem

J = min
x
p(x), (7.1)

where p ∈ R[x] is a polynomial in x ∈ Rnx . We can rewrite the problem by intro-
ducing additional variable λ ∈ R as

J = max
λ

λ

s.t. p(x)− λ ≥ 0,
(7.2)

which is a Linear Program (LP) on the cone of nonnegative polynomials. Unfortu-
nately, certifying positivity of a polynomial is not a simple task, therefore we will
relax the problem (7.2) and consider a polynomial class which is nonnegative by
definition, the sum-of-squares (SOS) polynomials.

Although not every nonnegative polynomial is SOS, it can be perturbed to become
SOS. The price to pay for this is in the degree of the SOS polynomial, which can go
to infinity. We refer the reader to [66, Theorem 2.4] for details.

Let us replace the nonnegativity constraint in (7.2) by an equality constraint whose
right-hand side is the SOS polynomial

s(x) = q(x)>q(x), (7.3)

where q(x) is a vector of polynomials. Clearly, s(x) ≥ 0 and we can write

Ĵd = max
λ,s

λ

s.t. p(x)− λ = s(x)

s(x) ∈ SOSd,

(7.4)
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where s(x) ∈ SOSd signifies that s(x) is a sum-of-squares polynomial of a degree d.
The degree d is always an even number since deg(q(x)>q(x)) = 2deg(q(x)).

All that is left to do is to transform the problem into a form that is admissible for
modern solvers.

Considering monomial basis m(x), we will write the polynomial q(x) as q(x) =
q>m(x), where q is to be understood as a vector of coefficients of the polynomial
q(x) in the basis m(x).

Then we can write the SOS polynomial s(x) as

s(x) = q(x)>q(x) = m(x)>qq>m(x) = m(x)>Gsm(x), (7.5)

which is a quadratic form. The matrix Gs is positive semi-definite, since Gs = qq>.
In other words, enforcing Gd

s < 0 is equivalent to writing s(x) ∈ SOSd. Thus, we
can reformulate the problem (7.4) as

Ĵd = max
λ,Gds

λ

s.t. p− λ = s

Gd
s < 0

(7.6)

The equality constraints denote that we want the coefficients of p(x) − λ equal to
the coefficients of s(x). Note that the matrices Gd

s are not unique, but it does not
influence the optimal value.

For example, consider p = p0 + p1x and

s = (a+ bx)2 =
[
1 x

] [a
b

] [
a b

] [1
x

]
=
[
1 x

] [a2 ab
ba b2

] [
1
x

]
=
[
1 x

] [α β
β γ

] [
1
x

]
= α + 2βx+ γx2.

(7.7)

Notice that we relabeled the powers of a, b; this is because we do not need the
decomposition of s(x), we only need it to be positive semi-definite and therefore it
suffices to solve for α, β, and γ.

The problem (7.6) then becomes

Ĵd = max
λ,α,β,γ

λ

s.t. p0 − λ = α

p1 = 2β

γ = 0[
α β
β γ

]
< 0.

(7.8)

Which is an SDP in variables λ, α, β, γ. Note that the coefficients of p can also be
variables while keeping the problem an SDP; this will actually be the case for the
calculation of the ROA.
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Positivity on a set Before we go to the main example, we have to address posi-
tivity of a polynomial on a set, which will be described by polynomial inequalities.
We will drop the SOS degrees d to keep the text light on notation.

Let us modify the previous example and consider the problem

max
λ

λ

s.t. p(x)− λ ≥ 0 x ∈ X,
(7.9)

where X := {x : g(x) ≥ 0} is a compact set and p is a polynomial. In general,
the set X can be described by multiple polynomial inequalities but we use only one
to keep the example simple. Moreover, we will assume that g(x) is of the form
g(x) = R2 − x2 for R > 0 in order for X to be Archimedian [67, Remark 4]. The
Archimedian property is a common assumption in the SOS framework and it allows
us to use Putinar’s results recalled below. It can be trivially fulfilled by adding a
redundant ball constraint that contains X to the description of X. Since we want
to keep this example simple, we assume that our only polynomial describing X is
the ball constraint.

Let us take a slight detour and address how to obtain the polynomial description of
the set X, since it might not seem intuitive at first glance. Let us say that we want
to describe box-constrained set X̄ := {x ∈ R2 : x(1) ∈ [−a, a], x(2) ∈ [−b, b]}, where
x = [x(1), x(2)]>. The polynomial description could be

X̄p = {x ∈ R : ḡ1(x) ≥ 0, ḡ2(x) ≥ 0},
where ḡ1(x) = a2 − x(1)2

ḡ2(x) = b2 − x(2)2,

(7.10)

since polynomials ḡ1 and ḡ2 are simultaneously nonnegative exactly on the set X̄.

In short, we want p(x) ≥ 0 whenever g(x) ≥ 0. We can enforce this by using the
Putinar’s Positivstellensatz (see [66, Theorem 2.14]), which says that if p(x) > 0 on
X, then

p(x) = g(x)s1(x) + s0(x), (7.11)

where s0, s1 ∈ SOS. The equation (7.11) is used to approximate

p(x)− g(x)s1(x) ≥ 0, (7.12)

since s0(x) ≥ 0. Note that although (7.11) and (7.12) are not equivalent, they
can both be encountered in SOS software packages where they both refer to the
formulation (7.11).

We can see that if g(x) is nonnegative, p(x) must also be nonnegative. If g(x) is
negative, we cannot say (and do not care) what sign p(x) has. We can now write
the problem (7.9) as

max
λ,s0,s1

λ

s.t. p− gs1 = s0

s0(x), s1(x) ∈ SOS,

(7.13)

which is a form we already encountered in (7.4) and know how to formulate as an
SDP.
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In the problems considered in this part of the thesis, we are not trying to find λ but
rather the polynomials p. The next example will present a problem close in spirit
to the ROA problem handled throughout the second part of the thesis.

7.1.1 SOS Example

Consider the problem in one dimension

min
w

∫
X

w(x) dx

s.t. w(x) ≥ I[−1,1](x) ∀x ∈ X,
(7.14)

where w(x) is a polynomial, X := [−2, 2], and I[−1,1] is an indicator function of the
set [−1, 1] such that

I[−1,1](x) =

{
1, if x ∈ [−1, 1]

0, otherwise.
(7.15)

This problem finds a polynomial w(x) which is greater than 0 on [−2, 2] and greater
than 1 on the set [−1, 1] such that its integral over [−2, 2] is minimal. Loosely
speaking, we are trying find a polynomial that is as close as possible to the indicator
function of [−1, 1].

Let us rewrite the problem in the form introduced above. First, we get rid of the
indicator function

min
w

∫
X

w(x) dx

s.t. w(x) ≥ 1 ∀x ∈ XI

w(x) ≥ 0 ∀x ∈ X,

(7.16)

where XI := [−1, 1]. Now we define the sets X and XI by polynomials as

X :={x ∈ R : g(x) ≥ 0}, g(x) = 4− x2

XI :={x ∈ R : gI(x) ≥ 0}, gI(x) = 1− x2 (7.17)

and use the Positivstellensatz to make the polynomials nonnegative on their respec-
tive sets

min
w,s1,s2

∫
X

w(x) dx

s.t. w(x)− 1− gI(x)s1(x) ≥ 0

w(x)− g(x)s2(x) ≥ 0

s(x)1,2 ∈ SOS

(7.18)

and replace the nonnegativity constraints by SOS equality constraints

min
w,s1,2,3,4

∫
X

w(x) dx

s.t. w − 1− gIs1 = s3

w − gs2 = s4

s(x)1,2,3,4 ∈ SOS.

(7.19)
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We are now left with equality constraints between polynomial coefficients and semidef-
inite SOS constraints, the only thing left to do is to get rid of the integral. We can
directly evaluate it; for w(x) = w0 + w1x+ w2x

2 + . . . we get∫
X

w(x) dx =

∫ 2

−2

w0 + w1x+ w2x
2 + . . . dx

= w0 · x]2−2 + w1 ·
1

2
x2
]2
−2

+ w2 ·
1

3
x3
]2
−2

+ . . .

= 4w0 +
16

3
w2 + . . .

=
[
4 0 16

3
. . .
]

w0

w1

w2
...


= c>w,

(7.20)

where l(x)]ab = l(a)− l(b) and c =
[
4 0 16

3
. . .
]
. Finally, the problem reduces to

solving
min

w,Gs1 ,Gs2 ,Gs3 ,Gs4

c>w

s.t. w − 1− gIs1 = s3

w − gs2 = s4

Gs1 < 0, Gs2 < 0, Gs3 < 0, Gs4 < 0,

(7.21)

which is a semidefinite program where the variables are the coefficients of w, s1, s2, s3, and s4.
The solution will give us an optimal SOS approximation “from above” of a given
degree of the indicator function I[−1,1] on the set X.

We obtain an approximation of the set XI from the superlevel set of w(x) as

X̄I = {x ∈ X : w(x) ≥ 1}. (7.22)

In the case of the following chapters, the indicated set will be the Region of Attrac-
tion (ROA) that we will try to calculate, the constraints of the problem will be more
complicated but the general structure will remain the same.

The results of (7.21) for degree 6 w(x) can be seen in Figure 7.1. With this particular
setting, the polynomial w(x) happened to be SOS, allowing us to decompose it as
w(x) = p2

1(x) + p2
2(x). Figure 7.1a shows the factors p1(x) and p2(x), Figure 7.1b

shows p2
1(x), p2

2(x), and their sum w(x).

Note that all the polynomials go to infinity after leaving the boundaries of the set
X. This is because we required w(x) to be nonnegative only on the set X, we are
not penalizing its behaviour outside of it.

It should be noted that p1(x) and p2(x) are not unique, not particularly interesting,
and difficult to obtain in general. Luckily, we work with the sum of their squares
directly (as was hinted in (7.7)) and it only suffices to know that p1(x) and p2(x)
exist.
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−2 −1 0 1 2
−2

−1

0

1

2

x

p1(x) p2(x)

I[−1,1]

(a) Polynomials p1(x) and p2(x)
extracted from w(x).

−2 −1 0 1 2
−2

−1

0

1

2

x

p21(x) p22(x)

I[−1,1] w(x)

(b) Sum-of-squares decomposition of the polyno-
mial w(x) = p21(x) + p22(x).

Figure 7.1: Solution of the example 7.21 for degree 6 w(x). The “indicated” set
[−1, 1] is approximated from outside by {x ∈ X : w(x) ≥ 1}. The black dashed line
shows the indicator function.

7.2 Semidefinite programming

We consider SDP programs in the form of a primal-dual pair

p? = min c>x

s.t. Ax+ s = b

s ∈ K

d? = min b>y

s.t. A>y + c = 0

y ∈ K?,
(7.23)

with variables x ∈ Rn, y ∈ Rm, and s ∈ Rm with data A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn. The convex cone K and its dual K? are assumed to contain only the product
of the zero cone, free cone, and semi-definite cone [68, Section 3].

Note that it is common to write the primal-dual pair such that one of them is a
maximization problem. We do not use this notation in order to stay consistent with
the works [69] and [68] which we use in Chapter 9.

Strong duality We speak of strong duality if both problems are feasible and one
of them is strictly feasible. Then we get p? + d? = 0 and we can write optimality
conditions as

Ax+ s = b, A>y + c = 0, s>y = 0, s ∈ K, y ∈ K?. (7.24)

Strong duality allows us to freely switch between the primal and dual problem,
which can be beneficial in practice since some solvers prefer one formulation to the
other. The “Modeling cookbook” for the solver Mosek [70] gives an example of
efficient formulation of a large sparse SDP in [71, Section 7.5]. We are not going to
be dealing with large sparse SDPs in this work but we will conveniently use duality
in Chapter 9 where we briefly switch between the two form in order to use existing
results for one of the formulations.
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7.3 Software

Sum-of-squares programming Modelling of SOS problems is done via special-
ized packages which are written for specific programming languages.

For MATLAB [72], we recommend the packages GloptiPoly3 [73] and SOS module
in YALMIP [74]. In Julia[75], we recommend the SumOfSquares extension [76, 77].

Regarding differences between the packages, GloptiPoly3 is the only one (to the
best of our knowledge) that can also solve the dual problems on measures. Regard-
ing purely SOS modelling, YALMIP is preferable since it involves various heuristics
(such as automatic switching between primal and dual as mentioned above, and
various pre- and post-processing approaches discussed in [74]). Regarding our par-
ticular method, or problems with many polynomial variables, we can recommend
only the Julia package, since YALMIP tends to slow down while parsing problems
with a lot of polynomial variables.

SDP solvers In the context of SOS problems, which result in large and dense
SDPs, we can recommend only the proprietary solver Mosek [70] that provides an
implementation of primal-dual interior point method and is used in all of our exam-
ples. From freely-available software, we will mention SeDuMi [78] and SCS [79].
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Chapter 8

Splitting of the ROA problem

Structure of this chapter Section 8.1 presents the problem statement and Section
8.2 introduces the splitting procedure with the proofs of outer approximation and
convergence. Section 8.3 states the practical sum-of-squares variant of the problem
which is then demonstrated in Section 8.4 on numerical examples. The chapter ends
with a conclusion 8.4.4.

This Chapter closely follows my paper [63], where this approach was published.

8.1 Problem statement

Let us consider the nonlinear system with control

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, T ], (8.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, t is time,
T > 0 is the final time and f is the vector field, which is assumed to be polynomial
in variables x and u.

The state and control input are constrained by basic semialgebraic sets

u(t) ∈ U := {u ∈ Rm : gUj (u) ≥ 0, j ∈ Z1,nU}, t ∈ [0, T ],

x(t) ∈ X := {x ∈ Rn : gXj (x) ≥ 0, j ∈ Z1,nX}, t ∈ [0, T ],

x(T ) ∈ XT :={x ∈ Rn : gXTj (x) ≥ 0, j ∈ Z1,NXT
},

(8.2)

where gUj (u), gXj (x), and gXTj (x) are polynomials. The region of attraction (ROA)
is then defined as

X0 = {x0 ∈X : ∃u(·) ∈ L([0, T ];U)

s.t. ẋ = f(t, x(t), u(t)) a.e. on [0, T ],

x(0) = x0, x(t) ∈ X ∀ t ∈ [0, T ], x(T ) ∈ XT},
(8.3)

where “a.e.” stands for “almost everywhere” with respect to the Lebesgue measure.
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8.2 Time and state space splitting

The work [62] presented an algorithm for calculating guaranteed outer approxima-
tion of the Region of Attraction (ROA) of a nonlinear control system. The approach
consisted in formulating the problem as Linear Program (LP) in the space of Borel
measures. The dual of that problem is LP in the space of functions, similar to the
problems introduced in the Preliminaries 7. The entirety of this chapter will be
done on the dual problem on continuous nonnegative functions. The split primal
problem is introduced later in Chapter 9, concretely in (9.7).

Let us first restate the original problem from [62]:

d? = inf

∫
X

w(x)dλ(x),

s.t.(Lv)(t, x, u) ≤ 0 ,∀(t, x, u) ∈ [0, T ]×X × U
w(x) ≥ v(0, x) + 1 ,∀x ∈ X
v(T, x) ≥ 0 ,∀x ∈ XT

w(x) ≥ 0 ,∀x ∈ X,

(8.4)

with variables w(x) ∈ C(X) and v(t, x) ∈ C([0, T ] × X), and linear operator L
defined as

L 7→ Lv =
∂v

∂t
+
∂v

∂x
f(t, x, u).

Intuitive explanation of the condition (Lv)(t, x, u) ≤ 0 would be that v in nonin-
creasing in time along the trajectories of f . We see that the problem has certain re-
semblance to the example we did in the Preliminaries, concretely the equation (7.16).
The difference here is that the “indicated” set is characterized by {v(0, x) ≥ 0}, in-
deed the constraint w(x) ≥ v(0, x) + 1 implies that w(x) ≥ 1 on {v(0, x) ≥ 0}. For
further insight, we refer the reader to [62].

Any minimizing sequence (wk, vk) for (8.4) satisfies wk ≥ IX0(x) and wk → IX0 in
L1 as well as {x ∈ X : vk(0, x) ≥ 0} ⊃ X0 with convergence in terms of the volume
discrepancy tending to zero (see [62] for proof).

Let us now split the state space X into I closed subsets Xi

X =
I⋃
i=1

Xi (8.5)

and the time interval [0, T ] into K − 1 intervals [Tk, Tk+1]

[0, T ] =
K−1⋃
k=1

[Tk, Tk+1], (8.6)

where K is the number of time splits (meaning K − 1 intervals). It is assumed that
X◦i ∩X◦j = ∅ for i 6= j.
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The function w(x) will be split into I functions wi(x)

w(x) =



w1(x) for x ∈ X1

. . .

wi(x) for x ∈ Xi

. . .

wI(x) for x ∈ XI

(8.7)

and v(t, x) will be split into I· (K − 1) functions vi,k(t, x)

v(t, x) =



v1,1(t1, x1) for t ∈ [T1, T2], x ∈ X1

. . .

vi,k(tk, xi) for t ∈ [Tk, Tk+1], x ∈ Xi

. . .

vI,K−1(tK−1, xI) for t ∈ [TK−1, TK ], x ∈ XI .

(8.8)

Assuming that neighbouring subsets Xi share boundaries, let us define the set of
indices of these neighbours as

NX := {(a, b) : Xa ∩Xb 6= ∅}. (8.9)

We are now ready to write the split version of (8.4)

d?s = inf
∑
i

∫
Xi

wi(x)dλ(x)

s.t. for all i ∈ Z1,I , k ∈ Z1,K−1 and

(a, b) ∈ NX , xa,b ∈ Xa ∩Xb

(Lvi,k)(t, x, u) ≤ 0 ∀(t, x, u) ∈ [Tk, Tk+1]×Xi × U
wi(x) ≥ vi,k(0, x) + 1 ∀x ∈ Xi

vi,K(T, x) ≥ 0 ∀x ∈ XT

wi(x) ≥ 0 ∀x ∈ Xi

vi,k(Tk+1, x) ≥ vi,k+1(Tk+1, x) ∀x ∈ Xi

(va,k(t, xa,b)− vb,k(t, xa,b)) · h>a,b f(t, xa,b, u) ≥ 0

(8.10)

where h>a,b is a normal vector of a shared boundary between two neighbouring sets
Xa and Xb, and xa,b is a set of points on said boundary such that xa,b ∈ Xa ∩ Xb.
For simplicity we assume that the normal vector ha,b is independent of x; the case of
polynomial or rational dependence of h on x can also be handled [80, Section 4.3].
The optimization variables in (8.10) are the continuously differentiable functions of
vi,k, each defined some neighborhood of [Tk, Tk+1]×Xi and the continuous functions
wi, each defined on Xi. The two additional constraints ensure that the functions vi,k
keep decreasing in time and along the system trajectories even on the discontinuous
splits. Note that these discontinuities make the formulation (8.10) more general than
(8.4). Let us now show that the modified problem (8.10) provides a guaranteed outer
approximation of X0 which can be defined as

X̄v,0 := {x : v(0, x) ≥ 0}. (8.11)
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Theorem 1. For any pair (v, w) feasible in (8.10), it holds that v(0, ·) ≥ 0 on X0

and X̄v,0 ⊃ X0.

Proof. We first need to show that the discontinuous function v(t, x(t)) is decreasing
along the system trajectories. That is, given two time instants tα ≤ tβ, we want to
show that

v(tβ, x(tβ)) ≤ v(tα, x(tα)). (8.12)

If we v were to be differentiable, this follows by simply integrating the first constraint
of (8.4) along a trajectory.

Let us now show that (8.12) holds even for the discontinuous v(t, x(t)) as defined in
(8.8). The first constraint of (8.10) ensures that the values of v decrease whenever
the trajectory resides in the interior of one of the sets Xi. We therefore need to
argue only about what happens on the boundary of these sets.

Time splits The result for time splits follows immediately from the fifth constraint
of (8.10).

State-space splits Let us first assume that the state space X is split into two
parts, Xα and Xβ by a hyper-plane with normal vector h, pointing from Xα to Xβ,
so that

h>(xβ − xα) ≥ 0, (8.13)

for xα ∈ Xα and xβ ∈ Xβ.

The function v(t, x(t)), now split between Xα and Xβ, is defined as

v(t, x(t)) =

{
vα(t, x(t)) for t ∈ [0, T ], x(t) ∈ Xα

vβ(t, x(t)) for t ∈ [0, T ], x(t) ∈ Xβ.
(8.14)

Let x0 ∈ X0∩Xα, tα ∈ [0, T ] and u(·) be given. Let x(·|x0) be the trajectory starting
at tα generated by u(·) and suppose that x(t | x0) ∈ X, u(t) ∈ U for t ∈ [tα, T ].
Assume further that this trajectory crosses from Xα to Xβ at the crossing time

τ = inf
t
{tα ≤ t | x(t|x0) ∈ X◦β} ≤ T (8.15)

and assume that this trajectory stays in Xβ for t ∈ [τ, T ]. At the crossing point
x(τ), it holds

h>f(τ, x(τ), u(τ)) ≥ 0.

The last constraint of (8.10) implies that

vα(τ, x(τ)) ≥ vβ(τ, x(τ)) (8.16)

whereas the first constraint implies

d

dt
vα(t, x(t)) ≤ 0, t ∈ [tα, τ) (8.17)

and
d

dt
vβ(t, x(t)) ≤ 0, t ∈ (τ, tβ]. (8.18)
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Let us now calculate the value of vβ(tβ, x(tβ)):

vβ(tβ, x(tβ)) = vα(tα, x(tα)) +

∫ τ

tα

d

dt
vα(t, x(t))dt

+ [vβ(τ, x(τ))− vα(τ, x(τ))] +

∫ tβ

τ

d

dt
vβ(t, x(t))dt. (8.19)

By inspecting (8.16), (8.17) and (8.18), we can see that the last three summands are
nonpositive and we get the inequality vβ(tβ, x(tβ)) ≤ vα(tα, x(tα)), which is equiva-
lent to (8.12), recalling the definition of v(t, x(t)) in (8.14). The procedure for the
negative trajectory direction is analogous. We note that this analysis encompasses
the subtle case of the trajectory sliding on the boundary between the sets Xα and
Xβ.

By induction, we can prove the inequality for arbitrary splitting of the state-space
and time axis by considering a sequence of crossing times associated to a given
trajectory. Therefore v(tβ, x(tβ)) ≤ v(tα, x(tα)) for any 0 ≤ tα ≤ tβ ≤ T . By setting
tα = 0, tβ = T , and using the constraints of (8.10), we get

v(T, x(T )) ≤ v(0, x0)

0 ≤ v(T, x(T )) ≤ v(0, x0)

0 ≤ v(0, x0)

(8.20)

for any x0 ∈ X0 as desired. This also implies that x0 ∈ X̄v,0 and hence X̄v,0 ⊃ X0.

8.3 SOS representation

We can now obtain the SDP representation of (8.10) by applying Putinar’s Posi-
tivstellensatz [81] similarly as in the introductory example 7. As a reminder, given
polynomials c(x) and g(x) the inequality

c(x) ≥ 0 for x ∈ {x : g(x) ≥ 0} (8.21)

is implied by

c(x) = q(x) + s(x)g(x), (8.22)

where q(x) and s(x) are sum-of-squares polynomials. The condition that a polyno-
mial s of degree 2d is sum-of-squares is in turn equivalent to s(x) = m(x)>Wm(x),
W � 0, where m(x) is a basis of polynomials up degree d and hence this constraint
is SDP representable. The reader is referred to [82] for more information on the
procedure.
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The SOS approximation of (8.10) reads

inf
∑
i

w>i li

s.t. for all i ∈ Z1,I , k ∈ Z1,K−1 and (a, b) ∈ NX

− (Lvi,k)(z) = qi,k(z) + sτi,k(z)>gτk (t)

+ sXi,k(z)>gXi,k(x) + sUi,k(z)>gU (u)

wi(x)− vi,k(0, x)− 1 = q0i,k(x) + s0i,k(x)>gXi (x)

vi,K(T, x) = qTi (x) + sXT
i (x)>gXT

i (x)

wi(x) = qwi (x) + swi (x)>gXi (x)

vi,k(Tk+1, x)− vi,k+1(Tk+1, x) =

qτi,k(x) + sti,k(x)>gXi (x)

(va,k(t, xa,b)− vb,k(t, xa,b)) =

q1
k,a,b(z) +

∑nX

j=1
s1
j,k,a,b(z)h>a,bf(t, xa,b, u)

(vb,k(t, xa,b)− va,k(t, xa,b)) =

q2
k,a,b(z)−

∑nX

j=1
s2
j,k,a,b(z)h>a,bf(t, xa,b, u),

(8.23)

where z = [t, x, u]>, wi(x) and vi,k(t, x) are polynomials, wi is a vector of coefficients
of wi(x) and li is a vector of Lebesgue measure moments indexed with respect to the
same basis as the coefficients of wi. The decision variables in the problem are the
polynomials vi,k and wi as well as sum-of-squares multipliers q, s and s. The symbols
gXi , gXT

i , gUi and gτk denote the column vectors of polynomials describing the sets
Xi, XT ∩Xi, U and [Tk, Tk+1] in that order. The degrees of all polynomial decision
variables is chosen such that the degrees of all polynomials appearing in (8.23) do
not exceed a given relaxation order d. This is a design parameter controlling the
accuracy of the approximation.

Given the picewise polynomial functions (wd, vd) of degree d constructed from a
solution to (8.23) as in (8.7) and (8.8), the outer approximation to the ROA is
defined by

Xd = {x | vd(0, x) ≥ 0}.
Convergence of the SDP approximations holds under the classical Archimedianity
assumption, e.g., [62, Assumption 3].

Theorem 2. For each d ∈ N, we have Xd ⊃ X0. If in addition the algebraic
description of each element of the space-time partition used in (8.23) satisfies the
Archimedianity condition, then limd→∞ λ(Xd \X0) = 0.

Proof. The result follows from [62, Theorem 6] by taking all functions defined on
the partition equal, i.e., vi,k = v and wi = w for some polynomials v and w; this
leads to the setting of [62, Theorem 6].

8.3.1 Practical implications

The ROA with splits is expected to improve accuracy of the original formulation by
allowing one to trade off the degree of the polynomials for number of splits.
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By increasing the degree d, the size of the SDP will increase with the rate of the
binomial coefficient

(
n+d
n

)
. By fixing d and splitting the state-space into λ cells,

the SDP size will grow only linearly with the number of the cells with rate λ
(
n+d
n

)
.

Furthermore, the conditioning of the SDP deteriorates with increasing degree of
approximation [74], motivating the splitting also for numerical reasons. The nu-
merical results in the following section (Figures 8.5 and 8.6) suggest that even the
computation time grows linearly with the number of split subsets.

8.4 Numerical examples

This section presents numerical examples, showcasing the performance difference
between the proposed method and the original approach from [62].

The first example in Section 8.4.1 shows the influence of the split positions on the
resulting ROA. It is shown that by having the splits exactly at the boundaries of
the ROA, we can retrieve the theoretical indicator function IX0(x).

The second example Section 8.4.2 benchmarks the algorithm on a Brockett integra-
tor, which mimics a kinematic model of a nonholonomic system (it can be shown
that three-dimensional nonholonomic vehicle with two inputs can be transformed
into the Brockett integrator [83]).

Finally, Section 8.4.3 presents a comparison of computational demands of the pro-
posed method and the original one from [62].

All the examples were implemented in MATLAB [72] with the use of YALMIP
[84]. The YALMIP’s sum-of-squares package [74] was used for rapid prototyping;
for larger examples, the SDPs were assembled using a custom routine. All SDP’s
were solved by MOSEK [70].

8.4.1 Univariate cubic dynamics

This example shows that one can find the ROA with a very low degree polynomials
by correctly positioning the splits.

The system in question is defined as

ẋ = x(x− 0.5)(x+ 0.5) (8.24)

with the state space X = [−1, 1], the target set XT = [−0.01, 0.01] and terminal
time T = 100. The analytic solution of the ROA is X0 = [−0.5, 0.5].

In Fig. 8.1, we can see a comparison between the original method (without splits)
and multiple calculations with splits, going from the inside of the real ROA to the
outside. The ROA estimates here are given by {x : w(x) ≥ 1}, which follows from
(8.11) and (8.10). We can observe that the ROA estimates get more precise, the
closer the splits are to the real ROA. Let us define the estimate of IX0(x) as ĪX0(x),
which takes 1 on {x : w(x) ≥ 1} and 0 otherwise. We can observe from Fig. 8.1, that
for the exact split it holds that ĪX0 = IX0 and we obtain the theoretically optimal
estimate. This example shows that our method can be used in an iterative manner
with splits along an inner approximation of the ROA (such as the one in [85]) as a
starting point.
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Figure 8.1: Univariate cubic dynamics, approximations of the indicator function
with degree 8 polynomials and two splits. The ROA is given by {x : w(x) ≥ 1}.
The approximation is more precise for splits that are close to the bounds of the
ROA (red), and gives the exact ROA when the splits are exactly at the bounds
(blue). Both split polynomials are more precise than the green, non-split one.

8.4.2 Brockett integrator

The Brockett integrator is defined according to [86] as

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 − u2x1.

(8.25)

With X = {x ∈ R3 : ||x||∞ ≤ 1}, XT = {0}, U = {u ∈ R2 : ||u||2 ≤ 1}, and T = 1.
As was stated before, this system usually serves as a benchmark for nonholonomic
control strategies, because it is the simplest system for which there exists no con-
tinuous control law which would make the origin asymptotically stable [86].

We shall use the system for calculation of the controlled ROA, which can be com-
puted analytically [61] as

T (x) =
θ
√
x2

1 + x2
2 + 2|x3|√

θ + sin2 θ − sin θ cos θ
, (8.26)

where θ = θ(x) is the unique solution in [0, π) to

θ − sin θ cos θ

sin2 θ
(x2

1 + x2
2) = 2|x3|. (8.27)

The Fig. 8.2 shows that given a fixed time for the calculation, the proposed approach
is always better than the original one and that the split-method approaches the real
volume much faster, although neither of the two methods reached the real volume,
due to memory constraints.

A visual example of the difference between the two methods can be seen in the Fig.
8.3 where two ROA’s with the same computation time are compared, with one being
calculated by the original method and the other by the proposed method. We can
see that there is a notable difference between the two approximations, and that the
better approximation is done by the lower-degree polynomials.
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Figure 8.2: Comparison of various methods on the Brockett integrator. The blue
line shows the original algorithm without splits and with increasing degree of the
approximation do ∈ {6, 8, 10, 12}. The other lines show the performance of the
proposed approach, each having a fixed degree ds ∈ {6, 8} with increasing numbers
of cells Xi, which are denoted as numbers next to the datapoints. The volumes were
estimated using Monte-Carlo methods.

Figure 8.3: Sliced ROA of the Brockett integrator (green) and two slices of its
approximations with similar computation time. Blue approximation is by single
degree 10 polynomial (754s) and the red is by sixteen polynomials of degree 8 (753s).
The red, lower-degree, approximation is visibly closer to the real ROA.
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8.4.3 Performance and scalability

8.4.3.1 Problem size
First, we shall investigate the accuracy of the algorithm with increasing size of the
SDP. The problem size is measured as the number of nonzero elements in the A
matrix of the SDP

min c>x

s.t. Ax = b, x ∈ K (8.28)

for variable x ∈ Rn, convex cone K and data A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

We can clearly see in Fig. 8.4 that the split versions are always more precise than
the non-split version with the same memory footprint.
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Figure 8.4: Brockett integrator - Given SDP size, the split problem always give
better results. The volumes were estimated using Monte-Carlo methods.

8.4.3.2 Computation time
The problem size increases linearly with the number of cells (as was explained in
8.3.1), but the computation time does not necessarily have to follow the same pat-
tern. In this case, however, the computation time also showed linear growth as can
be seen in Figures 8.5 and 8.6 for the Brockett integrator and the Double integrator
respectively. The Double integrator is defined as

ẋ1 = x2, ẋ2 = u

with X = [−0.7 × 0.7] × [−1.2 × 1.2], XT = {0} and T = 1. See [62, 9.3] for
more details. In the Fig. 8.6, the variables to be split were chosen randomly and
the splits were always halving the largest interval of the randomly selected variable.
This was done in order to ensure that the linear growth is not simply a fortunate
result of a particular split order.

CHAPTER 8. SPLITTING OF THE ROA PROBLEM 83



The Koopman and moment-sum-of-squares approach for control

0 200 400 600 800 1000 1200

number of cells

0

5

10

15

20

25

30

35

c
o

m
p

u
ta

ti
o

n
 t

im
e

 [
s
]

102

degree 4

degree 6

degree 8

Figure 8.5: Brockett integrator - The computation time increases linearly with the
number of cells Xi.
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Figure 8.6: Double integrator - The computation time grows linearly with the num-
ber of randomly chosen cells Xi.
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8.4.4 Summary of the numerical examples

We have showed that splitting the ROA problem is beneficical both in terms of
computation speed and accuracy (Fig. 8.2) as well as the memory footprint of the
SDP problem itself (Fig. 8.4). Furthermore, potential prior information about the
shape of the ROA can be exploited by placing the splits on the exactly on the
boundaries of the assumed ROA (Fig. 8.1).

The only standing question is how to select the splits if no prior information is
available, which is addressed in the following Chapter via the means of conic differ-
entiation.
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Chapter 9

Optimization of the split ROA
problem

The previous Chapter improved the ROA estimation on the level of the infinite-
dimensional problem on functions, by splitting them in time and space and thus
allowing more flexibility in approximating the indicator function of the ROA. In
this Chapter, we improve the technique on the level of the SDP relaxation by dif-
ferentiating it and optimizing the split positions by a first-order method.

Structure of this Chapter The Section 9.1 motivates the differentiation routine.
The section 9.2 restates the split ROA problem (8.10) and presents the conditions
for strong duality. The differentiation is described in the Section 9.3 along with the
proof of differentiability. The numerical results are in Section 9.4 and we summarize
the numerical results in the Section 9.4.3.

9.1 Motivation example

Let us first motivate the idea of optimizing the split positions. Consider a simple
double integrator system

ẋ1 = x2

ẋ2 = u
(9.1)

with X = [−0.7, 0.7] × [−1.2, 1.2] and U = [−1, 1]. Figure 9.1 shows the difference
between the original approach from [62] (salmon), the improved version from [63]
(purple), and the version provided in this Chapter (blue). The real ROA is depicted
in green. We can see that each version provides a significant improvement in accu-
racy. The most notable detail about the ROA calculated by the proposed algorithm
(blue) is that it has exactly the same memory demands as the ROA calculated via
the method [63](purple), which provides substantially worse estimation.
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Figure 9.1: ROA approximations of the double integrator. The salmon ROA has
degree 4 and no splits [62], the purple ROA has degree 4 and 4 equidistantly-placed
splits [63], and the blue ROA has also degree 4 and 4 splits with optimized positions.
The green ROA is the ground truth. The memory demands for blue and purple are
exactly the same.

9.2 Strong duality

For convenience, we restate the polynomial split problem (8.10), where we showed
that the outer approximation of the ROA X0 can be obtained as a super-level set
X̄0 := {x : v(0, x) ≥ 0} of a piece-wise polynomial

v(t, x) =



v1,1(t1, x1) for t ∈ [T1, T2], x ∈ X1

. . .

vi,k(tk, xi) for t ∈ [Tk, Tk+1], x ∈ Xi

. . .

vI,K−1(tK−1, xI) for t ∈ [TK−1, TK ], x ∈ XI

(9.2)

which is a solution to the problem

d?s = inf
∑
i

∫
Xi

wi(x)dλ(x)

s.t. for all i ∈ Z1,I , k ∈ Z1,K−1 and

(a, b) ∈ NX , xa,b ∈ Xa ∩Xb

(Lvi,k)(t, x, u) ≤ 0 ∀(t, x, u) ∈ [Tk, Tk+1]×Xi × U
wi(x) ≥ vi,1(0, x) + 1 ∀x ∈ Xi

vi,K−1(T, x) ≥ 0 ∀x ∈ XT

wi(x) ≥ 0 ∀x ∈ Xi

vi,k(Tk+1, x) ≥ vi,k+1(Tk+1, x) ∀x ∈ Xi

(va,k(t, xa,b)− vb,k(t, xa,b)) · h>a,b f(t, xa,b, u) ≥ 0,

(9.3)

where the polynomials wi and vi,k are the problem variables, f is the system dy-
namics, ha,b is normal vector of the boundary xa,b, and λ is the Lebesgue measure.
For more insight, we refer the reader to the Section 8.2.
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The problem is parametrized by the state splits θX (which define the boundaries
xa,b) and the time splits θT which define the values Tk. Let us define the vector of
the parameters as

θ = θT ∪ θX . (9.4)

The set of parameters θX depends on the chosen parametrization of the splits. In
this work, the state space is divided by hyperplanes which are formed by splitting
the axes into intervals; this restricts the Xi’s to be boxes as mentioned earlier. The
locations of the splits are the parameters in θX . An illustration is provided in Figure
9.2.

Note that in general, the splits can be of any shape as long as the sets Xi are
representable by polynomial inequalities.

x1

x2

ρ1

ρ2

Xd

Xb

Xc

Xa

Xa ∩Xb

Figure 9.2: Illustration of the split setsXi, the set boundaries xa,b, and the parameter
set θX , for which we get θX = {ρ1, ρ2} in this example.

9.2.1 Strong Duality

One of the prerequisites for the differentiation is that our problem has strong duality.
We shall prove strong duality of (8.23) by using the general proof from [67]. In order
to use the results from [67], we need to show that our problem can be written as the
augmented version of the generalized moment problem (GMP). This is the scenario
at which we hinted the Preliminaries 7.2. We will switch to the primal setting and
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prove the strong duality there, using an already-existing result. The GMP reads

p?GMP = sup

∫
c dµ

s.t.

∫
Φα dµ = aα α ∈ A∫
Ψβ dµ ≤ bβ β ∈ B

µ ∈M(K1)+ × · · · ×M(KN)+,

(9.5)

where M(Ki)+ is a set of positive measures supported on a set Ki, c ∈ RN , A
and B are index sets, aα and bβ are scalars, Φα =

[
Φα1 . . . ΦαN

]>
is a vector of

polynomials, similarly for Ψβ. The vector notation is to be understood as

∫
Φα dµ =

N∑
p=1

∫
Φαp dµp (9.6)

The primal of (9.3) reads

p?s = sup
∑
i

∫
Xi

1 dµiT1

s.t. µiT1
+ µ̂i0 = λ

−L′µik+(µiTk+1
⊗ δt=Tk+1

)− (µiTk ⊗ δt=Tk)
+
∑
b∈Nout

Xi

(h>i,bf)′µi∩bk −
∑
a∈N in

Xi

(h>a,if)′µa∩ik = 0

µik ∈M([Tk, Tk+1]×Xi × U)+ ∀(i, k) ∈ ZI × ZK−1

µiTk ∈M(Xi)+ ∀(i, k) ∈ ZI × ZK−2

µiTK−1
∈M(XT )+ ∀i ∈ ZI

µ̂i0 ∈M(Xi)+ ∀i ∈ ZI
µa∩bk ∈M([Tk, Tk+1]× (Xa ∩Xb)× U)+

∀(k, (a, b)) ∈ ZK−1 ×NX ,

(9.7)

with decision variables µiTk , µ̂
i
0, µ

i
k, and µa∩bk . The normal vector ha,b of the boundary

Xa ∩Xb is element-wise positive. The set N in
Xi

contains indices of neighbours of Xi,
such that the normal of their common boundary h·,i points to Xi. Similarly for Nout

Xi

in the opposite direction. For our specific case of splits along the axes, we can write

N in
Xi

= {a ∈ ZI : Xi ∩Xa 6= 0, h>a,i(xi − xa) ≥ 0}
Nout
Xi

= {b ∈ ZI : Xi ∩Xb 6= 0, h>i,b(xi − xb) ≤ 0}.
(9.8)

Considering polynomial test functions Ψ1 = Ψ1(x) and Ψ2 = Ψ2(t, x), we can write
the equality constraints of (9.7) as∫

Ψ1 dµiT1
+

∫
Ψ1 dµ̂i0 =

∫
Ψ1 dλ (9.9)
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Xa

ha,b hd,b

Xc

Xe

Xd

Xf

Xb

hc,a

hc,d hf,d

he,f

x1

x2

he,c

Figure 9.3: Example of split state-space. For the set Xd it holds N in
Xd

= {c, f},
Nout
Xd

= {b}. The blue area is the set Xblue =
⋃
i∈E(ha,b,a) Xi and both the red and

blue areas together are the set Xred ∪Xblue =
⋃
i∈P(ha,b,a) Xi. Note that P(ha,b, a) =

P(hc,d, c) = P(he,f , e) and similarly for E(·, ·).

and ∫
LΨ2 dµik +

∫
Ψ2(Tk+1, · ) dµiTk+1

−
∫

Ψ2(Tk, · ) dµiTk

+
∑
b∈Nout

Xi

∫
h>i,bfΨ2 dµi∩bk −

∑
a∈N in

Xi

∫
h>a,ifΨ2 dµa∩ik = 0.

(9.10)

Since
∫

Ψ1 dλ is a constant and f is assumed to be polynomial, we can see that (9.7)
fits the general description (9.5). Note that the directions of the normal vectors can
be chosen arbitrarily, we constrain them to be element-wise to simplify the following.

In order to use the results from [67] for showing strong duality between (9.3) and
(9.7), we must satisfy the following two assumptions

Assumption 1. The description of the sets Ki in (9.5) contains the ball constraint
gBi(x) = R2

B − ||x||2, such that Ki ⊂ {x : gBi(x) ≥ 0}.
We have already seen simplified version of Assumption 1 in the Preliminaries 7.

Note that if the subset Ki is a hypercube, it is usually described by gKi,p(x) =
R2
p−||xp||2 for all p = 1 . . . n; in this case the redundant ball constraint is not needed.

This case is relevant since all of our subsets Xi are hypercubes and therefore can
be described such that we do not need to include additional constraints. If this is
not the case, they can be added without changing the optimal value, since they are
redundant and we need them only to ensure strong duality.

Assumption 2. All h>a,bf are nonzero on the boundary Xa ∩Xb for all (a, b) ∈ NX
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and u ∈ U . This assumption means that the vector field f does not flow exactly

along the split boundaries. This is relevant in special cases such as f =

[
0
x2

]
.

Lemma 4. If Assumption 2, then the feasible set of (9.7) is bounded, i.e., there
exists a constant C > 0 such that

∫
1 dµ < C for all measures µ appearing in ( (9.7)).

Proof. In order to prove that all masses are bounded, we first sum the equations
of ((9.7)) over time and space, which eliminates the additional boundary measures
introduced by the time and space splits respectively. This will give us a similar situ-
ation as in the original work [62] and simplify the proof for the boundary measures.
We shall denote

∫
1 dµ as mass(µ).

The first constraint µiT1
+ µ̂i0 = λ implies that p?s is bounded and µiT1

and µ̂i0 are
bounded.

By summing the second constraint over all i and k we obtain∑
i

µiTK−1
⊗ δt=TK−1

=
∑
i,k

L′µik +
∑
i

µiT1
⊗ δt=0 (9.11)

A test function Ψ(t, x) = 1 then gives us∑
i

mass(µiTK−1
) =

∑
mass(µiT1

), (9.12)

meaning that µiTK−1
are bounded.

With a test function Ψ(t, x) = t we obtain

T
∑
i

mass(µiTK−1
) =

∑
i,k

mass(µik) (9.13)

which shows that µik are bounded.

Let us sum the second constraint over all i for some time k = s

−
∑
i

L′µis +
∑
i

(µiTs+1
⊗ δt=Ts+1)−

∑
i

(µiTs ⊗ δt=Ts) = 0, (9.14)

with a test function Ψ(t, x) = 1 we obtain∑
i

mass(µiTs) =
∑
i

mass(µiTs+1
). (9.15)

Since µiT1
are bounded, µiT2

are bounded as well; by induction all µiTs are bounded.

To show the boundedness of the remaining measures µa∩bk let us first introduce the
following sets of indices:

P(h, i) := {p ∈ ZI |∀xi ∈ Xi ∃xp ∈ Xp : h>xp ≤ h>xi}, (9.16)

E(h, i) := {p ∈ ZI |∀xi ∈ Xi ∃xp ∈ Xp : h>xp = h>xi}. (9.17)
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By summing the second constraint over the indices P(h, i), we will be left only with
the boundary measures µ·∩:

k corresponding to the normal vectors in the direction of
h, their indices are characterized by the the set E(h, i). See Fig. 9.3 for graphical
representation.

Let us fix time as k = s and focus only on space. We shall show the boundedness of
a measure µa∩bs which corresponds to the normal vector ha,b. Let us sum the equa-
tions corresponding to time s and the space indices P(ha,b, a), with a test function
Ψ(t, x) = 1 we obtain

0 +
∑

i∈P(ha,b,a)

(
mass(µT is+1

)−mass(µT is)
)

+
∑

i∈E(ha,b,a)

∫
h>i,·f dµi∩·s = 0,

(9.18)

where all the normal vectors have the same direction, i.e. hi,· = ha,b. The normal
vectors with directions different from ha,b have been summed out, since they all
appear in P(ha,b, a) exactly twice with opposite signs (once as incoming once as
outgoing vector). We can rewrite the equation (9.18) as

0 +
∑

i∈P(ha,b,a)

(
mass(µT is+1

)−mass(µT is)
)

+

∫
h>a,bf dµEs = 0,

(9.19)

where
µEs =

∑
i∈E(ha,b,a)

µi∩·s . (9.20)

Since the top part of (9.19) is bounded, the integral
∫
h>a,bf dµEs is also bounded.

Assuming that h>a,bf is nonzero on the support of µEs , we can conclude that µEs is
bounded.

This implies boundedness of all the measures µi∩·s from (9.20), since they all have
the same sign. Due to the construction of the set E(ha,b, a), the measure µa∩bs is
trivially one of the measures µi∩·s and is therefore bounded.

This procedure can be done for all the measures µa∩bk .

We can now conclude that under the assumption of

(h>a,bf)(t, x, u) 6= 0 on [0, T ]×Xa,b × U ∀(a, b) ∈ NX , (9.21)

the feasible set of (9.7) is bounded.

Theorem 3. If Assumption 2 then there is no duality gap between (9.3) and (9.7),
i.e., d?s = p?s.

Proof. The proof is based on classical infinite-dimensional LP duality theory result
[87, Theorem 3.10], following the same arguments as in [62, Theorem 2]. The key in-
gredients to these arguments are the boundedness of masses established in Lemma 4
and the continuity of the operators L′ appearing in ((9.7)) that holds trivially.
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Lemma 5. The SOS relaxation (8.23) of (9.3) and its dual, the moment relaxation
(not presented) of (9.7), have zero duality gap if Assumptions 1 and 2 hold.

Proof. The proof follows directly from [67, Proposition 6], where the only miss-
ing part is boundedness of the masses of the relaxed problem, which follows from
boundedness of masses of (9.7).

9.3 SDP Differentiation

We will consider the SDP in the form of a primal-dual pair as introduced in Section
7.2, this time parametrized by θ. In order to stay consistent with the usual notation,
we shall abuse ours and use x as vector of decision variables in the context of
semidefinite programming.

p?(θ) = min c(θ)>x

s.t. A(θ)x+ s = b(θ)

s ∈ K

d?(θ) = min b(θ)>y

s.t. A>(θ)y + c = 0

y ∈ K?,
(9.22)

with variables x ∈ Rn, y ∈ Rm, and s ∈ Rm with data A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn. We can assume strong duality due to the Lemma 5 and therefore p? = −d?.
The KKT conditions are

Ax+ s = b, A>y + c = 0, s>y = 0, s ∈ K, y ∈ K?. (9.23)

Notice that the conic constraints do not depend on θ, this reflects the fact that
neither the number of the split regions Xi nor the number of the time splits Tk
changes.

We can describe the (primal) SDP concisely as a function of θ as

p?(θ) = S(A(θ), b(θ), c(θ)) = S(D(θ)), (9.24)

where D(θ) is a shorthand for all the program data depending on θ. The goal of
this Chapter is to find a (sub)optimal set of parameters θ? such that

θ? = argmin
θ
S(θ). (9.25)

Note that we are dealing multiple meanings for the optimal value p?; let us clarify
that p?(θ) is the minimal objective value of (9.22) for some parameters θ, while p?(θ?)
is the minimal objective value for the optimal parameters θ? which is what we are
after. In the context of ROA, p?(θ?) corresponds to the ROA with optimal splits.
We shall tackle (9.25) by assuming differentiability of S which will be rigorously
proven later, in Lemma 6. Assuming an existing gradient, we can search for θ? via a
first-order method, which iteratively updates the parameters θ by using the gradient
of s as

θk+1 = θk − γ∇S(D(θ)) (9.26)

for some initial guess θ0 (e.g. obtained from the recommendations in [63]) and a
stepsize γ. The stepsize can be a function of k and/or some internal variables of the
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concrete gradient descent algorithm. The following section will present two ways of
calculating ∇S(D(θ)).

The parameter θ is considered to be a column vector of size nθ. The perturbation
of the vector θ in direction k is

θ + εθek =


θ1
...

θk + εk
...
θnθ

 (9.27)

where ek is the kth vector of standard base, containing 1 at kth coordinate and 0
everywhere else. The scalar εk is the perturbation size.

The object D(θ) is to be understood as a vector of all the SDP data, for example

D = [a1,1, . . . , an,m, b1, . . . , bm, c1, . . . , cn]>, (9.28)

where we dropped the dependence on θ to lighten up the notation.

9.3.1 Methods for finding the derivative

9.3.1.1 Finite differences
The estimate of the derivate of (9.24) at the point θ in the direction ek is

∆S
∆θk

=
S(D(θ + εfek))− S(D(θ))

εf
, (9.29)

where the step εf is a free parameter. The gradient is then estimated as

∆S =
[

∆p?

∆θ1
. . . ∆p?

∆θnθ
.
]

(9.30)

9.3.1.2 Analytical derivate
The gradient of S can be written as

∇S(D(θ)) =
dS(D)

dθ
=

dS
dD

dD
dθ

. (9.31)

The first fraction dS
dD signifies how the problem solution changes with respect to the

input data. This problem has been tackled in [69] for general conic programs; here
we shall address some specific issues tied to SOS-based SDPs.

The second fraction dD
dθ

shows how the problem data changes with the parameters θ.
Modern tools (YALMIP [84],[74], GloptiPoly [73], Sum of Squares Programming for
Julia [77],[76]) allow the user to write directly the polynomial problem (9.3) or its
SOS representation, alleviating the need for constructing the problem data (A, b, c)
directly. Despite the undeniable advantages this abstraction brings, it makes it more
difficult to work on the problem data directly, since these parsers are usually not
created to be autodifferentiable. For this reason, we shall estimate the derivatives
dD numerically, striking a tradeoff between convenience and accuracy.
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For example, sensitivity to θk is obtained as

∂D
∂θk

=
1

|Pε|
∑
ε∈Pkε

D(θ + εek)−D(θ)

ε
, (9.32)

where P k
ε = {−εd, . . . , εd} is a set of perturbation steps sizes of the parameter θ in

the direction k. Each evaluation of D is to be understood as a call to a one of the
aforementioned programming tools which constructs (9.22) from (9.3).

The following subsection will explain how to obtain the derivative ds
dD

Obtaining dS
dD

This subsection summarizes the approach listed in [69] and [68], while focusing on
the specific case of the SOS-based SDPs. The generic approach presented in [69] is
not immediately usable for our concrete problem, therefore we shall provide some
remedies in the following subsections.

We shall first quickly review the generic approach in [69]. In the following text, ΠA
shall denote a projection onto the set A and Π a projection onto Rn×K?×R+. We
shall also drop the dependence on θ to lighten up the notation. Lastly, we abuse our
notation again and use v and w to denote vectors corresponding to the primal-dual
solution of (9.22) in the context of semidefinite programs.

The derivative of the solution can be written as

d(S) = d(c>x) = dc> + c> dx = db>y + b dy, (9.33)

where the primal-dual derivatives are obtained as[
dx
dy

]
=

[
du− x> dw

dΠK?(v)> dv − y> dw

]
, (9.34)

where the variables u, v, and w are related to the solution by

z =

 x
y − s

1

 =

uv
w

 . (9.35)

Note that is w a normalization parameter which is in our case always equal to 1,
and thus not necessary; we only keep it to stay consistent with [69]. The meaning
and other possible values of w are explained in [68]. The derivative of z is obtained
as the solution to

M · dz = g, (9.36)

where M = ((Q− I) dΠ(z) + I)/w and g = dQ·Π(z/|w|). Note that the matrix M
depends only on the current solution, not the perturbations; we shall exploit it later
in this section. The matrices Q and dQ are defined as

Q =

 0 A> c
−A 0 b
−c> −b> 0

 , dQ =

 0 dA> dc
− dA 0 db
− dc> − db> 0

 . (9.37)
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Let us now write relevant cone projections and their derivatives:

ΠRn(x) = x ∀x ∈ R, (9.38)

dΠRn(x) = 1 ∀x ∈ R, (9.39)

Π{0}(x) = 0 ∀x ∈ R, (9.40)

dΠ{0}(x) = 0 ∀x ∈ R, (9.41)

ΠR+(x) = max(x, 0) ∀x ∈ R, (9.42)

dΠR+(x) =
1

2
(sign(x) + 1) ∀x ∈ R \ {0}, (9.43)

ΠS+(X) = UΛ+U
> ∀X ∈ Sr×r, (9.44)

where X = UΛU> is the eigenvalue decomposition of X, i.e., Λ is a diagonal matrix
of the eigenvalues of X and U an orthonormal matrix. The matrix Λ+ is obtained
as max(Λ, 0), element-wise.

Finally, the derivative of ΠS+ at a non-singular point X in the direction X̃ ∈ Rr×r

is
dΠS+(X)(X̃) = U(B ◦ (U>X̃U))U>, (9.45)

where ◦ is element-wise product and

Bi,j =


0 for i ≤ k, j ≤ k
|λi|

|λi|+|λj | for i > k, j ≤ k
|λj |

|λi|+|λj | for i ≤ k, j > k

1 for i > k, j > k,

(9.46)

where k is the number of negative eigenvalues of X, and U is chosen such that the
eigenvalues λi in the diagonal matrix Λ in the decomposition X = UΛU> are sorted
in increasing order, meaning that the first k eigenvalues are negative.

Exploiting problem structure
The most demanding task in this approach is solving

M · dz = g (9.47)

for dz. The paper [69] suggests the use of LSQR [88] instead of direct solve via
factorization when the matrix M is too large to be stored in dense form.

Luckily, we can also factorize the matrix M in its sparse form, via free packages such
as SuiteSparse [89] (the default factorization backend in MATLAB [72] and Julia
[50]), Intel MKL Pardiso [90], and MUMPS [91],[92]. Moreover, recall that we have
nθ parameters and have to solve (9.47) in nθ directions resulting in

M · dz = [g1, g2, . . . , gnθ]. (9.48)

Since he matrix M does not depend on the perturbed data, we need to factorize it
only once to solve (9.47) for all nθ directions of θ.
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In this work, we factorize M by the QR factorization [93],[94] as

M = QR, (9.49)

whereQ is orthonormal andR is upper triangular. The equation (9.47) then becomes

QR· dz = g

R· dz = Q>g,
(9.50)

which is solved by backward substitution due to R being a triangular matrix.

All the aforementioned methods (Finite differences, LSQR, and QR) are compared
in Section 9.3.3.

9.3.2 Conditions of differentiability

As was mentioned above, the analytical approach for obtaining the derivative is
preferable to the finite differences. However, the analytical approach also assumes
differentiability of the ROA problem with respect to the split positions, which is
proved in the following Lemma. We use the notion of genericity from [95, Definition
19]. We call a property P of an SDP generic if it holds for Lebesgue almost all
parameters (A, b, c) of the SDP. In other words, the property fails to hold on a
set of zero Lebesgue measure. Concretely, we will use the genericity of uniqueness
[95, Theorems 7,10, and 14] and strict complementarity [95, Theorem 15] of the
primal-dual solutions to (9.22).

Lemma 6. The mapping from the split positions to the infimum of the SOS-relaxation
(9.3) is differentiable at a point θ if assumptions 1 and 2 hold, and the primal-dual
solution of (9.22) is unique and strictly complementary for the problem data D(θ).

Proof. The conditions of differentiability according to [69] are uniqueness of the solu-
tion and differentiability of the projection Π of the vector z, needed for construction
of (9.36). The uniqueness is assumed and holds generically. Let us investigate the
projection Π.

Assuming (x, y, s) to be the optimal primal-dual solution, the projection Π(z) can
be written as

Π(z) =

 ΠRn(x)
ΠK?(y − s)

ΠR+(w)

 , (9.51)

where ΠRn is differentiable everywhere and ΠR+ is also differentiable since we are
at the solution with w = 1. The only cause for concern is ΠK? , where K? is a
product of the positive semidefinite cone S+ and the free/zero cone. Therefore ΠK?
is differentiable if and only if ΠS+ is differentiable.

Let us denote the semidefinite parts of y and s as matrices Y and S respectively.
The matrices Y and S commute, since Y S = SY = 0. They also share a common set
of eigenvectors Q such that Q>Q = I, making them simultaneously diagonalizable
as

Y = QΛYQ
> (9.52)
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S = QΛSQ
>, (9.53)

where ΛY and ΛS are diagonal matrices with eigenvalues on the diagonal. The
product Y S can be then written as

Y S = QΛYQ
>QΛSQ

> = QΛY ΛSQ
>, (9.54)

and for ith eigenvalue we get the condition

λisλ
i
y = 0. (9.55)

Strict complementarity of the SDP solution means that the ranks of Y and S sum
up to full rank. Taking the sum, we can write

Y + S = Q(ΛY + ΛS)Q> (9.56)

and since ΛY and ΛS are diagonal, we can claim that

λis + λiy 6= 0, (9.57)

otherwise the rank of Y + S would decrease.

By putting (9.55) and (9.57) together, we conclude that for ith eigenvalues λis and
λiy, one has to be zero and the other nonzero. This implies that the matrix Y −S will
not be singular and thus the projection ΠS+(Y − S) is differentiable, and therefore
the whole SDP (9.22) is differentiable.

9.3.3 Comparison of differentiation approaches

The Figure 9.4 shows scaling of the proposed methods with increasing number of
parameters and the Figure 9.5 investigates their scaling with the degree of approxi-
mation.

We see that using QR factorization to solve (9.36) clearly outperforms both LSQR,
suggested in [69], and Finite differences 9.3.1.1. We see that QR is preferable,
since the factorization is done only once for all parameters whereas LSQR needs to
solve (9.48) nθ-times, similarly for Finite differences which solves the ROA for each
parameter individually.

The concrete software packages used are Krylov.jl [96] for LSQR and SuiteSparse
[89] for QR factorization, both used through their interfaces to the programming
language Julia [50].
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Figure 9.4: Computation time needed to obtain derivatives for degree 6 double
integrator with respect to the number of parameters. The LSQR method always
reached the maximum number of iterations, which was set to 1000. The times for
LSQR and QR include the cost of obtaining the matrices M and g in (9.36).
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Figure 9.5: Computation time needed to obtain derivatives for double integrator
with 6 parameters and increasing degree. The LSQR method always reached the
maximum number of iterations, which was set to 1000. The times for LSQR and
QR include the cost of obtaining the matrices M and g in (9.36).

9.4 Numerical examples

This section presents the optimization results on Double integrator and Brockett
integrator, the optimization results are presented in 9.4.1. The section is divided
into optimization of low degree and high degree problems. All of the examples use
ADAM [97] as the first-order method for the optimization.

In order to simplify the following, let us define θd as the parameter path obtained by
optimizing degree d problems, i.e. θd contains the split locations of each iteration of
the optimization algorithm. Similarly, p?d(θ) will denote the vector of optimal values
of degree d calculated along θ. For example, p?6(θ4) denotes a vector of optimal
values of degree 6 problem, evaluated on parameters obtained from optimizing a
degree 4 problem.

9.4.1 Low degree

Double integrator
The Double integrator is defined as

ẋ1 = x2, ẋ2 = u

with X = [−0.7 × 0.7] × [−1.2 × 1.2], XT = {0} and T = 1. See [62, 9.3] for more
details. Figure 9.6 shows the results for degree 4 ROA optimization. The initial
conditions were equidistantly placed split positions. The dotted black line shows the
estimated global optimum, which was attained by sampling the parameter space on a
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grid of square cells with sizes of 0.1. A total of 25116 unique split positions was evalu-
ated in 23 hours. The attained optimizer was θ? =

[
−0.059 0.070 −0.017 0.015

]
while the global estimate was at θ?g =

[
0 0.2 −0.4 0

]
.

The obtained optimum improves the initial guess by 58% with respect to the global
optimum estimate, and it was found in 2 minutes whereas the global estimate took
23 hours.
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-0.40
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Time(h)

θ

x1 x2

Figure 9.6: Degree 4 Double integrator with 4 splits. The volume of the ROA
approximation in shown in the top plot. The bottom plot shows how the split
positions evolved during the optimization process. There were two splits for each
state variable. The black-and-yellow dot represents the attained minimum. The
estimated global optimum is shown by black dotted line.

The Figure 9.7 shows 1-dimensional line segment parametrized by t ∈ [0, 2], con-
necting the attained solution θ? (t = 0) to the global estimate θ?g (t = 1). We see
that in this particular direction, the optimum is quite sharp, which makes it difficult
to find by first-order method.
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1.95
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r(−)

p?4(θ
?
4 + r(θ?g − θ?4))

Figure 9.7: Slice of the value function of degree 4 Double integrator between the
attained optimum (r = 0) and the estimated global optimum (r = 1).

Brockett integrator
The Brockett integrator is defined according to [86] as

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 − u2x1,

(9.58)
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where X = {x ∈ R3 : ||x||∞ ≤ 1}, XT = {0}, U = {u ∈ R2 : ||u||2 ≤ 1}, and T = 1.
This system usually serves as a benchmark for nonholonomic control strategies,
because it is the simplest system for which there exists no continuous control law
which would make the origin asymptotically stable [86].

Figure 9.8 shows the optimization results for degree 4 approximation. The estimate
of the global optimum was attained by sampling the parameter space on a grid with
cell size 0.1. Furthermore we assumed that the splits will be symmetrical along all
three axes, making the search space 3-dimensional. The computation time of the
sampling was 16 hours over 1000 unique split positions. Without the symmetry
assumption, the computation would be intractable as the full search space has 6
dimensions. The attained optimizer was

θ? = [0.011,−0.011, 0.011,−0.011, 0.004,−0.004]>,

while the global estimate was

θ?g = [0, 0, 0, 0, 0, 0]>.

We see that both minimizers are numerically close in this case. The found optimum
improves the initial guess by 62% with respect to the global optimum estimate, and
it was found in 30 minutes whereas the global estimate with symmetry assumption
took 16 hours. A brute-force search in the whole parameter space (without our
simplifying assumptions) would take roughly 12 years on the same computational
setup.
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Figure 9.8: Degree 4 Brockett integrator with 6 splits. The volume of the ROA
approximation in shown in the top plot. The bottom plot shows how the split
positions evolved during the optimization process. There were 3 splits for each state
variable. The black-and-yellow dot represents the attained minimum. We see that
all the splits were close to origin at the minimum.

Figure 9.9 shows a 1-dimensional line segment parametrized by r ∈ [0, 2], connecting
the attained solution θ? (r = 0) to the global estimate θ?g (r = 1). Note that the
x-axis has a very small scale, concretely ||θ? − θ?g|| = 0.02 while the system is
bounded between ±1. Moreover, we can notice the oscillations of the value function
before and after the optimal point. These are likely to be exhibits of bad numerical
conditioning.
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Figure 9.9: Slice of the value function of the degree 4 Brockett integrator between
the attained optimum (r = 0) and the estimated global optimum (r = 1).

9.4.2 High degree

This section contains optimization results for the same systems but in higher de-
gree of the SOS approximation. We do not provide the estimates of global minima,
because they would take very long to compute. The high-degree systems had nu-
merical difficulties and their optimization was more demanding than the low degree
case.

We provide two plots for each system, first one being application of the same method
directly on the high-degree system. The second shall plot objective values of the
high-degree system, for the parameter paths obtained from the low -degree opti-
mization; the low-degree problems were optimized first and the high-degree system
was simply evaluated along their parameter paths. Given the positive results, this
technique could be a viable strategy to circumvent the inherently bad numerical
conditioning of high-degree SOS problems.

Double integrator
The Figure 9.10 shows the results for degree 8 Double integrator. We see that the
path of the objective values is not as smooth as in the low-degree case.

The Figure 9.11 shows the objective values of degree 8 problem while using param-
eter path obtained from degree 4 and 6 problems. We see that we we able to obtain
almost the same optimal values much faster (120 times for the degree 4 path and
24 times for the degree 6 path).

Brockett integrator
The Figure 9.12 shows the results for degree 6 Brockett integrator. Again, we see
that the objective path is not as smooth as in the low-degree case.

The Figure 9.13 shows the results from using degree 4 parameter path. We see that
in this case, the found minimum was improved by approximately 55% with respect
to the initial guess.
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Figure 9.10: Degree 8 Double integrator with 4 splits. The volume of the ROA
approximation is shown in the top plot. The bottom plot shows how the split
positions evolved during the optimization process. There were two splits for each
state variable. The black-and-yellow dot represents the attained minimum.
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Figure 9.11: Degree 8 ROA of Double integrator with 4 parameters with low degree
parameter paths. The computation times per iteration were 7.91s, 41.6s, and 990.5s
for degrees 4,6, and 8 in this order. We can see that all the trajectories reach similar
optimal value, while the lower-degree ones were calculated significantly faster.
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Figure 9.12: Degree 6 Brockett integrator with 6 splits. The volume of the ROA
approximation in shown in the top plot. The bottom plot shows how the split
positions evolved during the optimization process. There were 3 splits for each state
variable. The black-and-yellow dot represents the attained minimum.
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Figure 9.13: Degree 6 ROA of Brockett integrator with 6 parameters with optimizers
obtained from degree 4 (green) and degree 6 (red) approximations. We see that the
degree 4 optimizers provide better results than the original degree 6 trajectory.
This may be caused by numerical instability present in high-order sum-of-squares
approximations.
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9.4.3 Summary of the numerical examples

The examples demonstrate that via conic differentiation, we can get reasonably
close to a (estimated) global optimum in a fraction of the time (Fig. 9.6), which
is especially useful in cases where the global solution would be computationally
intractable (Fig. 9.8). The approximate improvement of the initial guesses with
respect to the global estimates was 60%. Moreover, we show that the omnipresent
numerical issues of the high-degree SOS problems can be circumvented by using
parameters obtained from low-degree optimization (Figures 9.11 and 9.13).
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Chapter 10

Conclusion to the SOS part

The second part of this thesis introduced a method that improves the accuracy of
the SOS-relaxation of the ROA problem. The method is based on splitting the
time and state space, therefore it is usable for a much larger class of problems than
the presented ROA. Solving the augmented problem is effectively solving multiple
interconnected smaller problems, therefore it introduces additional constraints to
tie the individual smaller problems together. The constraints introduced here are
immediately usable for control-related problems such as computation of Maximum
invariant set [98] or Optimal control problem [61].

We have demonstrated that the method is capable of providing significant improve-
ment to the accuracy of the ROA estimates (Sec 8.4.3) while keeping the theoretical
property of being a guaranteed outer approximation (Theorem 1). Moreover, the
size and computation time of the resulting problem grows linearly with the number
of split subsets (Sec. 8.4.3.2), making it not only more attractive but also more per-
formant (Fig. 8.4) than the original approach where only the approximation degree
can be increased.

Lastly, we have provided a routine to optimize the splitting itself, since the SOS
problem is formulated as an SDP and as such, it is differentiable under mild as-
sumptions (Sec. 9.3.2). We have used a first-order method to optimize the naive
splitting to obtain approximately 60% improvement in the objective value across
our examples (Sec. 9.4), 100% being the estimated global optimum.
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Chapter 11

Conclusion

We have introduced two new techniques for handling problems spawned from non-
linear control. Concretely, we introduced a new method finding the truncation of the
Koopman operator for nonlinear control systems, and we improved the SOS-based
methods for calculating the Region of Attraction for polynomial control systems.
We believe that the potential of both methods is larger than the use cases presented
in this thesis.

The Koopman framework, although originally intended for convex control of nonlin-
ear systems, also exhibited promising potential in areas such a finding exact lifting
functions and state estimation. Regarding closed-loop control, the predictor pro-
vided more robust behaviour in terms of controller tuning and showed to be com-
petitive to nonlinear control in terms of control performance and especially in terms
of computation time. To the best of our knowledge the presented method is the first
one that considers lifted input for control, which enhances the class of nonlinear
systems controllable by the predictor in convex fashion.

The splitting method for SOS problems provides guidelines for enhancing the accu-
racy of general SOS-problems while specifically targeting control-related problems
such as calculation of maximum control invariant sets of optimal control. Even
though the method introduces additional parameters to the problem, we believe the
burden of finding them was alleviated by introducing a conic-differentiation-based
method for optimizing them. Adding to the last point, we believe to be the first to
use conic differentiation in the particular context of SOS programs, hopefully provid-
ing sufficient guidelines to reduce the efforts needed to tackle the poorly conditioned
SOS problems.

Lastly, we would like to comment on the potential connection of both methodolo-
gies. Hopefully, you have already noticed that both frameworks deal with nonlinear
control. That said, there are certain instances of problems that can be solved by
both methodologies. An immediate example would be optimal control of a poly-
nomial systems, where the SOS framework could see use as an (offline) optimality
certification tool for the (online) Koopman controller. Unfortunately, the numerical
side of the SOS framework is not fully developed in the sense that handling general
systems without any exploitable structure is still a rather difficult task. In addition,
we do not have much information about the class of nonlinear control systems repre-
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sentable by the linear Koopman operator. Therefore the aforementioned connection
of both methodologies would need to be tailored on a case-by-case basis on systems
where the Koopman predictors are known to work well and the system structure
is exploitable by SOS. Therefore, the general applicability of the suggested method
would be debatable, as of writing this thesis. However, given the current popularity
of the Koopman operator and the attractiveness of the optimality guarantees of the
SOS framework, it is most likely a matter of time until these topics are properly
addressed by the scientific community and I hope that the individual contributions
in this thesis will assist in finding a practical intersection between both of them.
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2007.

[31] N. Parikh, “Proximal Algorithms,” Foundations and Trends® in Optimization,
vol. 1, no. 3, pp. 127–239, 2014.

[32] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011.

[33] E. Kerrigan and J. Maciejowski, “Soft Constraints And Exact Penalty Functions
In Model Predictive Control,” 09 2000.

[34] P. O. M. Scokaert and J. B. Rawlings, “Feasibility issues in linear model pre-
dictive control,” AIChE Journal, vol. 45, pp. 1649–1659, aug 1999.

[35] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free Model Predictive
Control,” Automatica, vol. 45, pp. 2214–2222, oct 2009.

[36] J. Chen, Y. Dang, and J. Han, “Offset-free model predictive control of a soft
manipulator using the Koopman operator,” Mechatronics, vol. 86, p. 102871,
oct 2022.

[37] S. H. Son, H.-K. Choi, and J. S.-I. Kwon, “Application of offset-free Koopman-
based model predictive control to a batch pulp digester,” AIChE Journal,
vol. 67, may 2021.

[38] G. Pannocchia, “Offset-free tracking MPC: A tutorial review and comparison
of different formulations,” in 2015 European Control Conference (ECC), IEEE,
jul 2015.

[39] A. Surana and A. Banaszuk, “Linear observer synthesis for nonlinear systems
using Koopman Operator framework,” IFAC-PapersOnLine, vol. 49, no. 18,
pp. 716–723, 2016.

[40] A. Surana, “Koopman operator based observer synthesis for control-affine non-
linear systems,” in 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 6492–6499, IEEE, 2016.

[41] R. Schaback, “A Practical Guide to Radial Basis Functions,” 2007.

[42] T. Driscoll and B. Fornberg, “Interpolation in the limit of increasingly flat
radial basis functions,” Computers & Mathematics with Applications, vol. 43,
pp. 413–422, feb 2002.

[43] M. Netto, Y. Susuki, V. Krishnan, and Y. Zhang, “On Analytical Construction
of Observable Functions in Extended Dynamic Mode Decomposition for Non-
linear Estimation and Prediction,” IEEE Control Systems Letters, vol. 5, no. 6,
pp. 1868–1873, 2021.

BIBLIOGRAPHY 111



The Koopman and moment-sum-of-squares approach for control

[44] T. Chen and J. Shan, “Koopman-Operator-Based Attitude Dynamics and Con-
trol on SO(3),” Journal of Guidance, Control, and Dynamics, vol. 43, pp. 2112–
2126, nov 2020.
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