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Résumé

La théorie des réseaux est une branche des mathématiques appliquées a
I’économie qui prend de 'ampleur depuis plusieurs années. La stabilité
par paires en est un concept majeur qui permet de cibler certains réseaux!
comme étant des états d’équilibre au sein d’un processus de formation (de
réseaux). De maniere informelle, un réseau est dit stable par paires si aucun
des agents n’a d’intérét a baisser un de ses poids, et si les agents d’aucune
paire d’agents distincts (d’aucun lien) n’ont d’intérét a augmenter leur poids
commun. D’abord introduite en 1996 par Jackson et Wolinsky [32] dans le
cadre des réseaux non-pondérés, la stabilité par paires a ensuite été adapté en
2020 par Bich et Morhaim [6] au cas des réseaux pondérés. Plus précisément,
une société est une structure de base de la théorie des réseaux; elle comprend
implicitement un ensemble N d’agents, ainsi que pour chaque agent ¢ € N,
une fonction de paiement v; traduisant les préférences en termes de réseaux
de 'agent i en question. Ainsi, de fagon plus formelle, un réseau (pondéré) g
est stable par paires par rapport a une société (N, (v;);en) fixée si pour tout
lien ¢5 et pour tout poids w, les deux conditions suivantes sont satisfaites:

(i) st w < gy, alors vi(w, g—ij) < vi(gij, 9-i5) €t vi(w, 9-i5) < v;(gij, 9—i)
(i.e. aucun agent n’a intérét a baisser le poids g;;);

(1) siw > gy, alors vi(w, g-i;) < vi(gij, g—ij) 0w vi(w, g-i5) < v;(Gij» 9—ij)
(i.e. au moins un agent n’a pas intérét a augmenter le poids g;;).

Cette définition évoque un peu celle de 1’équilibre de Nash en théorie des jeux,
mais avec des déviations parfois unilatérales (quand les poids diminuent), et
parfois bilatérales (quand les poids augmentent). Malgré cette analogie, il
est remarquable de noter que la connaissance des propriétés structurelles des
réseaux stables par paires est tres réduite comparée a celle des propriétés
structurelles des équilibres de Nash. En effet, dans le premier cas, on a prin-
cipalement le résultat de Bich et Morhaim, qui ont démontré I'existence d’un
tel réseau sous des hypotheses assez générales de continuité et de quasicon-
cavité des fonctions de paiement. Par contre, la structure du graphe des
équilibres de Nash (I’ensemble des paires (u, z), ol u est un jeu sous forme
stratégique, et x un équilibre de Nash de u) est un sujet qui a été exploré
pendant plusieurs années. En particulier, quatre papiers sont au coeur de

1Un réseau peut étre vu comme un graphe dont les sommets sont les agents, et une aréte
entre deux agents est le poids qui mesure 'intensité de la relation entre ces deux agents.
Quand les poids sont des nombres réels entre 0 et 1 (0 signifiant aucune connexion, et a
Pautre extréme, 1 signifiant une connexion totale), on parle de réseau pondéré. Lorsque
les poids sont uniquement égaux a 0 ou a 1, on parle de réseau non-pondéré.



cette these:

1. Wilson [43] a démontré en 1971 que génériqguement, chaque jeu fini
(sous forme stratégique) admet un nombre impair d’équilibres de Nash
en stratégies mixtes.

2. Kohlberg et Mertens [33] ont démontré en 1986 que le graphe Np des
équilibres de Nash mixtes associé aux jeux finis est homéomorphe a
I'espace F' des jeux finis, par un homéomorphisme qui est proprement
homotopique a une projection (le résultat de Wilson étant vu comme
un corollaire de ce dernier). Plus simplement, Nz peut étre déformé de
fagon continue en I'espace (plus simple) F', et cette déformation elle-
méme peut étre déformée de fagon continue en une application plus
simple qu’est la projection 7 : Np — F, (u, x) — u.

3. Demichelis et Germano [17] ont fourni en 2002 une généralisation du
théoréeme de Kohlberg et Mertens en prouvant que le graphe N des
équilibres de Nash mixtes associé aux jeux finis n’a pas de nceuds,
c’est-a-dire qu’il existe une isotopie ambiante (une déformation con-
tinue plus restrictive qu'un simple homéomorphisme) entre N et une
copie triviale de F' de la forme F'x {0y} (0¢ étant un profile de stratégies
mixtes arbitrairement fix¢é).

4. Predtetchinski [40] a fournit en 2009 un résultat plus vaste a la fois
que le théoreme de Kohlberg et Mertens, mais aussi que le théoreme
de Demichelis et Germano en s’intéressant au graphe Nx des équilibres
de Nash associé aux jeux C! et concaves en stratégie propre (i.e. les
profiles (u;);en de fonctions de paiements continument différentiables
et telles que, pour tout ¢« € N et tout profile de stratégies x_; autres
que celui du joueur i, u;(-, x_;) soit concave). Predtetchinski démontra
que, tout comme le graphe des équilibres de Nash mixtes associé aux
jeux finis, N7 est également sans noeuds.

L’objectif principal de cette these est de contribuer a un programme d’étude
en théorie des réseaux (pour la stabilité par paires) et en théorie des jeux
(pour la notion d’équilibre de Nash) qui se rapporte a celui qui a d’ores et
déja été suivi en théorie des jeux depuis les années 1970-1980. Plus par-
ticulierement, cette these consiste d’abord a poser les premieres fondations
de T'étude du graphe des réseauz stables par paires (I’ensemble des paires
(v, g), ot v est une société, et g un réseau stable par paires par rapport a v) en
s'intéressant a sa structure topologique et a son imparité générique, et ce dans
un cadre plus général que le cas “mixte” (i.e. multilinéaire) en considérant des
fonctions de paiements polynomiales satisfaisant des hypotheses “classiques”



de concavité. D’autre part, cette these a également pour but d’étendre ce
qui a déja été fait jusqu'a présent pour le graphe des équilibres de Nash
(comme précédemment, du point de vue de sa structure topologique et de
celui de son imparité générique), et ce dans le cas d’ensembles de stratégies
semi-algébriques? et de fonctions de paiements polynomiales satisfaisant les
hypotheses de concavité précédemment mentionnées.

Le premier chapitre est un travail en commun avec P. Bich dans lequel
nous commencons par étudier la structure du graphe des réseaux stables
par paires associé a tout sous-ensemble de sociétés C! et concaves en poids
propres (i.e. les profiles (v;);eny de fonctions de paiements continument
différentiables et telles que, pour tout lien ij et tout profile de poids g_;;
autres que celui du lien ij, v;(-, g—;;) et v;(-, g_;;) soient concaves) de la
forme V = [[,cy Vi, et clos pour la somme avec un ensemble particulier
A de sociétés affines (nous appelons A-réguliers ces ensembles de sociétés).
Dans la lignée de Kohlberg-Mertens et de Predtetchinski, nous montrons que
le graphe des réseaux stables par paires associé a tout ensemble A-régulier
de sociétés est homéomorphe a ce méme-ensemble de sociétés, également
par un homéomorphisme qui est proprement homotopique a une projec-
tion. Ensuite, nous considérons certains ensembles A-réguliers de sociétés
que nous appelons A-semi-algébriqguement réguliers; il s’agit de ceux tels
que pour tout agent i, V; contient uniquement des fonctions polynomiales
et dont I’ensemble de coefficients (réels) associé est semi-algébrique. Nous
démontrons que génériqguement, toute société appartenant a un ensemble A-
semi-algébriquement régulier de sociétés admet un nombre impair de réseaux
stables par paires; ce résultat est dans 'esprit de celui de Wilson, mais avec
des classes assez larges de sociétés.

Le second chapitre est également un travail en commun avec P. Bich dans
lequel nous transposons le vocabulaire du premier chapitre (ensembles A-
réguliers, ensembles A-semi-algébriquement réguliers) a la théorie des jeux, et
dans lequel nous généralisons nos résultats. Tout d’abord, nous ne supposons
plus que les ensembles considérés de jeux soient sous la forme [], . U;; nous
considérons des ensembles A-réguliers arbitraires. Nous obtenons une légere
amélioration du théoreme de Predtetchinski en considérant ces ensembles
A-réguliers de jeux. De plus, nous considérons une régularité moins forte
que la régularité A-semi-algébrique: la régularité fortement dim(L)-semi-
algébrique. A savoir, nous considérons un ensemble particulier £ de jeux

, . 7 . 5e s, . T

2Un ensemble est appelé semi-algébrique s’il peut s’écrire sous la forme U;:1 ﬂq”:l{x €

R™ : fp.q(x)*p 40}, ol %, , peut étre remplacé soit par < ou par =, et f, , € R[z1, ..., 2],
pour tout p=1,...,set tout ¢ =1,...,7).



linéaires, et nous nous intéressons aux sous-ensemble de jeux C! et concaves en
stratégie propre (plus nécessairement sous la forme d’un produit cartésien),
clos pour la somme avec L, et enfin, contenant uniquement des fonctions
polynomiales a terme constant nul et dont I’ensemble de coefficients (réels)
associé est semi-algébrique. Avec ces ensembles, nous améliorons le théoreme
de Wilson en démontrant la généricité de I'imparité du nombre d’équilibres
de Nash, pour tout jeu dans n’importe quel ensemble dim(L)-fortement semi-
algébriquement régulier de jeux.

Le dernier chapitre de cette these est un travail réalisé seul qui consiste en
I’approfondissement de I'analyse faite dans le premier chapitre (en théorie
des réseaux). Plus précisément, nous montrons que le graphe des réseaux
stables par paires associé a n’importe quel ensemble A-régulier V' de sociétés
n’a pas de nceuds (i.e. il existe une isotopie ambiante entre le graphe des
réseaux stables par paires associé a V et une copie triviale de V lui-méme),
suivant ainsi les résultats de Demichelis-Germano et de Predtetchinski. Dans
un deuxieme temps, nous introduisons la notion de dynamique de réseaux
(analogue a celle de champ de Nash en théorie des jeux); une famille de
champs de vecteurs sur un ensemble A-régulier V arbitraire de sociétés dont
les points stationnaires coincident avec les réseaux stables par paires associés
aux sociétés de V. Finalement, nous utilisons notre précédent résultat afin
de montrer que n’importe quelles dynamiques de réseaux D et D’ sur un
ensemble A-régulier V arbitraire sont homotopes au sein méme de 1’ensemble
de toutes les dynamiques de réseaux sur V, suivant encore les résultats de
Demichelis-Germano. De ce dernier théoreme résulte enfin notre résultat
d’égalité des indices des dynamiques de réseaux sur n’importe quel ensemble
A-régulier de sociétés.
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B\A
card(A)
F(A, B), BA {A — B}
V:A—-B

Cst(A, B)
CO(X,Y)

L.(E,...,E,,F)

A (B, ... B, F)

Relative complement of a set A in a set B

Cardinal of a set A

Set of all maps from a set A to a set B

A correspondence ¥ from a set A to a set B (i.e. a map from A to
the power set of B).

Set of all constant maps from a set A to a set B

Set of all continuous maps from a topological space X to a topolo-
gical space'Y

Set of all multilinear maps from a vector space Fy X --- X E, to a
vector space F'

Set of all multiaffine maps from an affine space Fy x -+ X E, to
an affine space F

Table 1: Some mathematical notations

Throughout all this thesis, if no details are provided:

1. Any subset of some topological space is endowed with the induced

topology.

2. Any finite cartesian product of topological spaces is endowed with the

product topology.

3. Any Euclidean space is endowed with the Euclidean topology.
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Strategic network formation theory and pair-
wise stability

For several years, network formation theory is gaining importance in eco-
nomic theory, and in particular, strategic network formation theory. In this
context, the original structure of interest is the one of unweighted society,
which is composed by:

(i) afinite set N such that card(N) > 2, called set of agents, which induced
the set

L={{i,j}:i,jeN,j#i},
called the set of links (on N);?

(i) a family (v;);en of maps from the set
G, ={L — {0,1}}

of (unweighted) networks (on N ) to the set R of real numbers, where
for every i € N, v; is called the payoff function of agent i.*

Informally, considering an unweighted society (N, (v;);en), the set L of links
can be seen as the set of possible relationships between two distinct agents,
and the set G, of networks can be seen as the set of possible “intensity meas-
ures” of the different relationships (0 meaning a no strength relationship, 1
meaning a full strength relationship). For example, consider an unweighted
society defined by a group of people, where networks measure friendship
relationships between any two persons, or an unweighted society defined
by a group of researchers, where networks measure co-author relationships
between any two colleagues. On the other hand, payoff function of any agent
1 € N represents his or her linking preferences.

In 1996, Jackson and Wolinsky [32] introduced pairwise stability concept in
the framework of unweighted societies, which is often applied in network
formation theory in order to predict which unweighted networks are likely to
arise in a strategic setting. In this context, a network is said to be pairwise
stable if: (7) no single agent could gain by severing one of his or her link; (i7)
no two agents could gain from linking. Formally, g € G, is pairwise stable
with respect to (N, (v;);en) if for every link ij € L:

(1) either g;; = 1, v;(0, g_i;) < v;(g) and v;(0, g—i;) < v,(g);

3Every link {i,j} € L is denoted ij.
4For every link ij € L and every network g € G, g(ij) is denoted g;;.

12



(it) or g;; =0, vi(1, g-i;) < wi(g) or v;(1,9-;) < vi(g).

In 2001, Jackson and Watts [31] established their existence theorem of a
pairwise stable network.

Jackson-Watts’ existence theorem. Fvery unweighted society admits a
pairwise stable network or a closed cycle of networks.?

An important point of this theorem is that it does not state that a pairwise
stable network always exists: there exists unweighted societies which does
not admit any pairwise stable network (e.g. see [31], Example 5).

In 2020, Bich and Morhaim [6] extended pairwise stability concept to weighted
societies, another kind of structure used in strategic network formation theory
which is composed by:

(1) aset N of agents (i.e. finite, with card(N) > 2);

(11) a family (v;);en of maps from the set
G={L—10,1]}

of (weighted) networks (on N ) to the set R of real numbers, where for
every ¢ € N, v; is called the payoff function of agent 1.

Throughout this introduction, we consider a fixed set N of agents. Then, the
set of all weighted societies (with respect to N) can be identified to the set

Soc = {N — {G — R}}.

The difference with the previous structure (i.e. with the structure of un-
weighted society) is that weighted networks assign a weight between 0 and 1
to the different relationships (a weight closed to 0 means a nearly no strength
relationship, a weight closed to 1 means a nearly full strength relationship),
i.e. these weights can be different from 0 or 1. In this framework, a network is
said to be pairwise stable if: (i) no single agent could gain by decreasing one
of his or her weights; (i) no two agents could gain from increasing their com-
mon weight. Formally, g € G is pairwise stable with respect to (N, (v;)ien) if
for every link ij € L:

5An improving path in C C G, from g € C to g € C is a finite sequence ¢ =
9,94, ...,9"" 1, ¢" = ¢’ of networks in C such that for every k € {1,...,¢ —1}: (i) either
gt < gl and (vi(g"*?) > vi(g¥) or v;(gF1) > v;(g)), for some unique ij € L; (ii) or
gffl > gy and (vi(gFth) > vi(g*) and v;(g") > w;(g*)), for some unique ij € L. A
closed cycle of networks corresponds to a subset C' C G,, of networks such that for every

9,9 € C, there exists an improving path in C from g to ¢'.

13



(i) for every w € [0, gi;), vi(w, g—i;) < vi(g) and v;(w, g—i;) < v;(g);
(i1) for every w € (gi5, 1], vi(w, g—i;) < vi(g) or v;(w, g—i;) < v;(g).

Bich and Morhaim proved the existence of a pairwise stable weighted network
for large classes of payoff functions.

Bich-Morhaim’s existence theorem. FEvery C° own-weights quasicon-
cave weighted society admits a pairwise stable network.b

Now, in order to introduce the general motivation of this thesis, let us make
a detour to game theory, starting by one of the most famous result in this
area: Kohlberg-Mertens’ theorem [33].

Some useful definitions

Before to present Kohlberg-Mertens’ theorem, let us introduce some useful
definitions. A (strategic-form) game is composed by:

(i) a nonempty finite set I, called the set of players;

(i1) for every player ¢ € I, a nonempty set X;, called the set of strategies of
player i;

(11i) a family (u;);e; of payoff functions from the set
x=]]x
icl
of strategy profiles to the set R of real numbers.

Recall that € X is a Nash equilibrium of (I, (X;)ier, (w;)icr) if for every
i € I and every d; € X;, u;(d;, x—;) < uy(x).

Throughout this introduction, we consider a fixed set I of players and a fixed
family (X;);er of sets of strategies. Then, the set of all games (with respect
to I and (X;);es) can be identified to the set

Gam = {I — {X — R}}.

Furthermore, if for every ¢ € I, X; is finite, then Gam itself can be identified
to R™, where n = card(/) and p = [[,., card(X;).

Let U C Gam be a set of games:

6A weighted society is: (i) C° if payoff function of any agent is continuous; (i) own-
weights quasiconcave if for every agent i € N, every j # i and every g_;; : L\ij — [0,1],
the function v;(-, g—;;) : w € [0, 1] — v;(w, g—;;) € R is quasiconcave.

14



e The graph of Nash equilibria associated to U is defined as

Ny ={(u,x) €U x X : x is a Nash equilibrium of u}.
e Consider a fixed strategy profile 2° € X, and consider an arbitrary
topology on the set U. Suppose that for every ¢ € I, X; is a convex
compact subspace of R™ (for some m; € N). Furthermore, consider
the space X =[],
compact subspace of R™ which contains X; in its relative interior (X

can be seen as an “enlargement” of X). The unknot associated to U
(and x°) is the topological embedding

X;, where for every ¢ € I, X; is a nonempty convex

Kyt U — UxX
u —  (u,2°)

Now, suppose that there exists also a homeomorphism f from U to Ny.
The knot of Nash equilibria associated to U and f is the topological
embedding B
kp: U — UXX
u = f(u)

Kohlberg-Mertens’ theorem

Suppose that I = {1,...,n} and that for every i € I, X; corresponds to the
unit m; — l-simplex A7~ € R™ (for some m; € N). Moreover, consider
the set

LMNX,R)={] = L,(Xy,...,X,,,R)}

of multilinear games.” Recall that

Nenixry = {(u,z) € L"(X,R) x X : x is a Nash equilibrium of u}.

Kohlberg-Mertens’ structure theorem. The graph Nyn(xr) of Nash
equilibria associated to L"(X,R) is homeomorphic to L"(X,R), through a
homeomorphism nen(x gy : Nen(xry — L™(X, R) which is properly homotopic
to the projection wen(x gy : Nenxry = L"(X,R), (u, ) — u.

Kohlberg-Mertens’ theorem [33] can be also stated in a more common form
(however, the precedent formulation of the result will be more coherent with

"The vector space L, (X1, ..., Xn,R) of all multilinear maps from X = [Lic; Xi toR
(with its usual operations) is finite-dimensional. Hence, there exists a unique topology
which turns it into a Hausdorff topological vector space.
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the other results of this thesis). For every i € I, suppose that X; is a finite
set and that m; = card(X;) (for some m; € N), and let ¥; C R™ be the
space of mized strategies of player i and 3 = []._; ¥; be the space of mized
strateqy profiles. Then, the space

el

N ={(u,0) € Gam x X : ¢ is a mixed Nash equilibrium of u}

is homeomorphic to the space Gam of all finite games (which itself can be
identified to R"), through a homeomorphism which is properly homotopic
to the projection 7 : N'— Gam, (u, o) — u.

Intuitively, Kohlberg-Mertens’ theorem states that: (i) the graph Npyn(x )
of Nash equilibria associated to £"(X,R) can be continuously deformed into
some Euclidean space (which is topologically much simpler); (i) the homeo-
morphism 7zn(xr) © Nenxr)y = L£%(X,R) itself can be continuously de-
formed into the simpler map mzn(x ) : Nzen(xry = L(X, R).

In particular, applying topological degree to mzn(x k), demonstrate the fol-
lowing result.

Corollary - Oddness theorem. Generically, every game in L"(X,R)
admits an odd number of Nash equilibria.

Hereafter is a sketch of the proof: from homotopy invariance of (topological)
degree, the degree of mzn(x ) is equal to the degree of 1 x ), and since
Nen(x,r) 1S a proper homeomorphism from Ngn(xr) to £(X,R) (£"(X,R)
being homeomorphic to some Euclidean space), its degree is equal to +1.
From some semi-algebraic properties of Ngnixr), £"(X,R) and mzn(x ),
there exists a generic subset G of L£"(X,R) such that for every u € G,
WZ,}(XJR)(U) = {u} x {r € X : zisa Nash equilibrium of u} is a finite
set {(u,z!),...,(u,z")} (for some integer ¢,).® The same semi-algebraic
properties ensure that mg»(xr) is a local homeomorphism at each (u, z%),
k€ {1,...,4,}, hence that its local degree at (u,z"*) has to be equal to £1.
Last, the sum of the local degrees of 7z»(xr) has to be equal to the degree of
Ten(x,R), Which finally implies that u admits an odd number of mixed Nash
equilibria.

Briefly, oddness theorem states that “almost every” multilinear games ad-
mit an odd number of Nash equilibria, or equivalently, that “almost every”
finite games admit an odd number of mixed Nash equilibria.® Actually, this

8The intuition behind this concept is that G fills “almost completely” £"(X,R).
9The term “generically” will be explained in the core of this thesis. For the moment,
try to keep in mind the intuitive meaning.
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oddness result is well-known since Wilson’s paper [43]. Since then, several
authors provided results in the spirit of Wilson’s oddness theorem throughout
different proof techniques, but always for mixed extensions of finite games
(e.g. see Blume-Zame [7], Govindan-Wilson [24], Harsanyi [27], Mas-Colell
[37], Govindan-McLennan [22], Pimienta [39] or Herings-Peeters [29]).1

Demichelis-Germano’s theorems

Several years latter, Demichelis and Germano [17] proposed an interesting
improvement of Kohlberg-Mertens’ theorem. Suppose that for every i € I,
X; corresponds to the unit m; — 1-simplex A;ni_l C R™ (for some m; €
N). Furthermore, consider a fixed strategy profile z° € X = [[..; X;, and

consider an “enlargement” X of X (i.e. X = [[.., X;, where for every i € I,

iel
X, is a nonempty convex compact subspace of R™ which contains X; in its
relative interior). Recall that £"(X,R) is the space of multilinear games,

that the unknot associated to £"(X,R) is the topological embedding

Ko © LYMXR) — LM(X,R) x X
u — (u, 2°) ’

and that the knot of Nash equilibria associated to £"(X,R) and pzn(x gy is
the topological embedding

Kpenixr) - ,C”(X,R) - »Cn(X,R) X)A(;
u = penxor) ()

where pon(xr) = 772,}( xR I8 the inverse of Kohlberg-Mertens’ structure the-
orem homeomorphism.

Demichelis-Germano’s unknottedness theorem. The knot k., . of
Nash equilibria associated to L(X,R) and pen(xr) is ambient isotopic to the
unknot m%n(x gy associated to L"(X,R) within the ambient space L"(X,R) x

X.H

10Tn general equilibrium theory, we can also mention the famous works of Debreu [14],
of Dierker [18] and of Balasko [3] which provided similar results on the structure of the
graph of Walrasian equilibria.

HRecall that two topological embeddings e, e? from a topological space X to another
topological space Y are said to be ambient isotopic within Y if there exists a continuous
map 60 : [0,1] x Y — Y such that 6(0,-) = idy, 6(1,-) o e! = e? and for every ¢t € [0, 1],
0(t,-) is a homeomorphism.
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Demichelis-Germano’s theorem can be interpreted in a simpler way (similarly
to the previous remark following Kohlberg-Mertens’ theorem, the precedent
way of writing Demichelis-Germano’s theorem will be more coherent with
the other results of this thesis). For every ¢ € I, suppose that X; is a finite
set and that m; = card(X;) (for some m; € N), and let ¥; C R™ be the
space of mixed strategies of player i and ¥ = [],.,; 3; be the space of mixed
strategy profiles. Moreover, let ¢ € 3 be a fixed strategy profile. Then, the
space

N ={(u,0) € Gam x ¥ : ¢ is a mixed Nash equilibrium of u}

can be continuously deformed into a trivial copy Gam x {¢°} of the space
Gam of all finite games associated to I and (X;);c;, within the ambient space
Gam x i, where ¥ is an “enlargement” of the space ¥ of mixed strategy
profiles (in a similar sense as in the previous paragraph).

The key idea in this theorem is that not only the graph Nzn(xry C L*(X,R)x
X of Nash equilibria associated to £"(X, R) is deformed, but the entire space
L(X,R) x X itself. Hence, a part of Kohlberg-Mertens’ theorem (more
precisely, the “Nzn(x ) is homeomorphic to £™"(X,R)” part) can be seen as
a corollary of Demichelis-Germano’s unknottedness theorem.'?

Also, Demichelis and Germano used their unknottedness result in order to ob-
tain interesting insights regarding Nash fields (or Nash dynamics); this notion
has been studied extensively by many authors (e.g. see Demichelis-Germano
[15], Govindan-Wilson [23], Gul-Pearce-Stacchetti [26] or Ritzberger [41]).!3

Demichelis-Germano’s theorem on extended Nash fields. Any two
extended Nash fields are homotopic within the set of all extended Nash fields.

More explicitly, the previous theorem asserts that two extended Nash fields
are homotopic, through a homotopy H such that for every t € [0, 1], H; is

12Remark that by definition, if two topological embeddings e',e? : X — Y are am-
bient isotopic within Y, then e}(X) and e?(X) are homeomorphic. Here, observe that
Kpenxm (LM(X,R)) = Nenxr) and “%"(X,R)(ﬁn(X’ R)) = L"(X,R) x {2}, where
L7(X,R) x {2} is trivially homeomorphic to £"(X,R).

13Recall that Nash fields correspond to families (Du)uern(x,r) of vector fields on the
space X = [[;c; Xi = [Lic; A7~ " such that for every u € £L(X,R): (i) the set of zeros of
the vector field D,, corresponds to the set of Nash equilibria of w; (i¢) D, weakly points to
the interior of {u} x X along its boundary. Also, extended Nash fields correspond to families
(Eu)ueﬁn(X7R) of vector fields on the “enlarged” space X such that for every u € L"(X,R):
(1) the set of zeros of the vector field ﬁu corresponds to the set of Nash equilibria of w;
(ii) D, strongly points to the interior of {u} x X on {u} x (X\X). For some reminders
about Nash fields, see Laraki-Renault-Sorin [35], pp. 84-85, or Demichelis-Germano [17].
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also an extended Nash field. In particular, this result implies that for every
u € L"(X,R), the index of D, at any of its zeros has to be equal to the index
of D!, at this same zero, for any two extended Nash fields D and D’ (this
corresponds to homotopy invariance of indices).

Predtetchinski’s theorems

More recently, in 2006, Predtetchinski [40] proposed an important improv-
ment regarding both Kohlberg-Mertens’ structure theorem [33] and Demichelis-
Germano’s unknottedness theorem [17].

Suppose that for every ¢ € I, the set X of strategies of player ¢ is any convex
compact subspace of R™ with nonempty interior, for some fixed integer
m; € N. Moreover, for every ¢ € I, consider the space

Fi=Au; € F(X,R) :Vo_; € X_;,u;(-,2_;) is concave}

exists and is continuous}
8:171-73

F=1[r

i€l

N{u; € CO(X,R):Vl {1,...,mi},a—u

and consider the space

of own-strategy C* concave games.**

Predtetchinski’s first result is similar to Kohlberg-Mertens’ structure the-
orem, but for a wider class of payoff functions.

Predtetchinski’s structure theorem. The graph Nr of Nash equilibria
associated to F is homeomorphic to F, through a homeomorphism nr which
15 properly homotopic to the projection mx.

Now, consider a fixed strategy profile 2% € X, and consider an “enlargement”
X of X (i.e. X = ]];c; Xi, where for every i € I, X; is a nonempty convex
compact subspace of R™ which contains X; in its relative interior). Recall
that the unknot associated to F is the topological embedding

Ky: F — FxX
u o~ (u,2%)

For every i € I, the set F; is endowed with the topology generated by all subsets of
F; of the form {u; € F; : Vo = (z;,2_;) € K,u;(x) € O and V,,u;(-,2_;) € O'}, where K
is a compact subspace of X, O is an open subset of R and O’ is an open subset of R™i,
and where V,,u; (-, z_;) denotes the gradient of u;(-,z_;) at z; (for more details, see [40]).
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and that the knot of Nash equilibria associated to F and pr is the topological
embedding
{ Kpr: F — FX X
u = pr(u)

where pr = 13 is the inverse of Predtetchinski’s structure theorem homeo-
morphism.

Predtetchinski’s second result is similar to Demichelis-Germano’s unknotted-
ness theorem, but again, for a bigger set of payoff functions.

Predtetchinski’s unknottedness theorem. The knot x,, of Nash equi-
libria associated to F and pr is ambient isotopic to the unknot k% associated
to F within the ambient space F X X.

Contributions of this thesis

Chapter one

In this first chapter, we come back to (strategic) network formation theory
and to the notion of pairwise stability (in the case of weighted networks).
In views of what we said before, an immediate idea is that it seems quite
important to contribute to the analysis of the concept of pairwise stability,
by taking to refer Nash equilibrium’s story in game theory. We try to do
so by providing two main results: our structure theorem and our oddness
theorem. Recall that NV is a fixed set of agents and that

Soc = {N — {G — R}}

is the set of all societies (with respect to N). Also, for every ¥V C Soc, the
graph of pairwise stable networks associated to V is defined as

Py ={(v,9) € V x G : g is pairwise stable with respect to v}.

Before presenting our theorems, we introduce the notions of A-reqular set of
societies and of A-semi-algebraically reqular set of societies which are at the
core of this thesis. First, for every ¢ € N, consider the space

Fi={vi € F(G,R) : Vj # i,Vg_;; € G_;j,v;(-, g_;;) is concave}
8112-

N {v; € CO(X,R) : V] #1, Do exists and is continuous}
Gij
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and consider the space

F=1Ix

ieN

of own-weights C' concave societies.'® First, for every i € N, let: (i) A; be
the set of payoff functions of agent ¢ which are affine in (g;;);« and which
only depend on those weights;'% (ii) Rs,[g] be the set of payoff functions of
agent ¢ which are polynomial functions of g (with coefficients in R) whose
degree is less or equal to some fixed integer 0; (for any V; C Ry, [g], the set of
coefficients associated to polynomial payoff functions in V; is denoted Cy,).*"
Then, for every i € N, consider V; C F(G,R), §; € N and consider the
following properties:

1. (Concavity). V; C F;.

2. (A-invariance). For every v; € V; and every a; € A;, v; + a; € V;.

3. (Semi-algebraicity). V; C Ry, [g] and Cy, is a semi-algebraic set.
The set [[,cy Vi of societies is called:

(1) A-regular if it satisfies concavity and A-invariance assumptions;

(11) A-semi-algebraically regular if it satisfies concavity, A-invariance and
semi-algebraicity assumptions.

A A-semi-algebraically regular set of societies is a particular case of A-regular
set of societies whose payoff functions are polynomial, with additional as-
sumptions on their associated sets of coefficients allowing to define it using
a finite number of polynomial equalities or inequalities.

Bich-Fixary’s structure theorem. The graph Py of pairwise stable net-
works associated to any A-regular set V = [[.cn Vi of societies is homeo-
morphic to V), through a homeomorphism ny which is properly homotopic to
the projection my.

5For every i € N, the set D; = {v; € C°(X,R) : Vj # 1, g;; exists and is continuous}
together with the map || - ||; : v; € D; — max{max{||v;| oo, ||867”7||00} cj#i} €Risa
normed vector space. Hence, for every i € N, the topology on F; C D; is induced by the
norm || - ||;-

16F.g. Suppose that N = {1,2,3}. If for every g = (912,913, 923) € G, v1(g9) = 2912 +
4go3 + 1, v2(g) = 2g12 + 1 and v3(g) = 5g13 + 3ges, then v ¢ A;, v2 € Ag and vs € As.

1"E.g. Suppose that N = {1,2,3}, and that §; = 63 = 1 and §, = 2. If for every
g = (912,913, 923) € G, v1(g) = —g12923 + 3912913 — 913, v2(9) = —gis + 913 — Hg33 and
U3(g) = 5913 — 2923 + 3, then vy ¢ R51 [g], Vo € R52 [g] and v3 € R53 [g}
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The intuition behind our structure theorem is similar to the one of Kohlberg-
Mertens’ theorem [33] and to the one of Predtetchinski’s structure theorem
[40], but for pairwise stable networks instead of Nash equilibria. However,
our result works with many sets of payoff functions (those included in F and
which are closed under addition of any society in A).

Bich-Fixary’s oddness theorem. Generically, every society in any A-
semi-algebraically regular set T],.n Vi of societies admits an odd number of
pairwise stable networks.

Similarly as before with the oddness theorem derived from Kohlberg-Mertens’
theorem, our oddness theorem could be summarize by saying that “almost
every” society in any A-semi-algebraically regular set admits an odd num-
ber of pairwise stable networks. The difference between these two results
lies in the fact that our theorem works for many sets of polynomial payoff
functions, not only for multilinear payoff functions.!® We will show that our
oddness theorem is a consequence of the topological structure of the graph
Py of pairwise stable networks associated to any A-regular set V = [[..x Vi
(characterized by our structure theorem).

We would like to emphasize that our theorems are not applications of existing
results in game theory:

e First, by nature, a pairwise stable network is not a Nash equilibrium:
two agents who want to create a link together have to decide it simul-
taneously (i.e. deviations have to be bilateral in some cases), whereas
deviations are always unilateral in Nash equilibrium concept. More pre-
cisely, assessing that there exists generically an odd number of Nash
equilibria is equivalent to say that there are generically an odd number
of fixed-points of the best-reply correspondence, but there is no natural
and analogue formulation for pairwise stability concept.

e Second, a notion of “mixed pairwise stability”, comparable to the no-
tion of mixed Nash equilibrium in game theory, seems less meaningful
in network formation theory. This explains also - apart from its math-
ematical interest - why we consider general sets of polynomial payoff
functions, going beyond the case of multilinear payoff functions. How-
ever, this also creates new technical difficulties: to prove our oddness

18Tn particular, as a byproduct, we encompass a recent work of Herings and Zhan [30]
which states the same oddness result, but for multilinear payoff functions (as a matter of
fact, Herings and Zhan’s paper also treats the problem of computation of pairwise stable
networks, an issue that we do not consider here).
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theorem, we have to enter more deeply in the field of real semi-algebraic
geometry (in particular, we will provide some new decomposition result
for semi-algebraic sets).

e Third, we have to “extend” Kohlberg-Mertens’ theorem to the frame-
work of network formation theory and pairwise stability. Our extension
(i.e. our structure theorem) is not only a rewriting of existing proofs
in game theory, since, in essence, we do not deal with standard non-
cooperative strategic-form games.?

To conclude this chapter, we describe several standard models in network
formation theoretical literature to which our oddness theorem can be applied.
A first example is the public good model of Bramoullé and Kranton [10]: each
agent ¢ € N is characterized by some level of effort e; € [0, +00) (e.g. it could
be the amount of time a consumer spends researching a new product) and
interacts in some network g € G (the idea being that agents could benefit
from other agents’ efforts, thanks to network externalities). Oddness theorem
implies that, in this standard model, there exists an odd number of pairwise
stable networks, generically with respect to some parameters of the model
(i.e., in short, there exists an odd number of pairwise stable networks for
“most” parameters of the model). We prove similar results in the information
transmission model of Calvé-Armengol and Ilkilic [11] and the two-way flow
model of Bala and Goyal [2].

Chapter two

Originally, the principal objective of this second chapter was to transpose
the results we obtained in the framework of network formation theory to the
one of game theory; i.e. to obtain both a topological structure result and an
oddness result similar to the ones of Chapter 1. Hence, this chapter has some
common points with the preceding one. However, it has also non negligible
differences that will be explained in a moment.

First of all, recall that I is a fixed set of players, that for every player i € I,
X; is the fixed set of strategies of player ¢ and that

Gam = {I —» {X — R}}

is the set of all games (with respect to I and (X;);cr). In this chapter, suppose
that for every ¢ € I, the set X, of strategies of player 7 is a convex compact

YHowever, several important ingredients of our proof comes from the proof of Pre-
dtetchinski’s structure theorem.
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semi-algebraic subset of R™ with nonempty interior (for some fixed integer
m; € N). Also, recall that

Fi={uw; € F(X,R) :Vo_; € X_;,u;(-,x_;) is concave}

Ou;
N{u; € COX,R) : V0 € {1,...,m;}, 8_u exists and is continuous},
Tie

with F =[], ; F; being the space of own-strategy C' concave games.
For every ¢ € I, let:

(i) A; be the set of payoff functions of player ¢ which are affine in z; and
which only depend on this strategy, and let A = [[..; A;.

(11) L; be the set of payoff functions of player ¢ which are linear in z; and
which only depend on this strategy, and let £ =[], L;.

(i1i) Ry, [x] be the set of payoff functions of player ¢ which are polynomial
functions of = (with coefficients in R) whose degree is less or equal
to some fixed integer ¢;, and let Rs[z] = [[,.,; Ry, [x] (for any U C
Rs[x], the set of coefficients associated to profiles of polynomial payoff
functions in U is denoted Cy).

Then, consider U C Gam, 6 = (§;);eny and consider the following properties:
1. (Concavity). U C F.
2. (A-invariance). U + A =U.
3. (Semi-algebraicity). U C Rs[z| and Cy is a semi-algebraic set.
4

. (Strong semi-algebraicity). U C Rs[z], payoff functions in & do not
have constant part, and Cy is a semi-algebraic set.

5. (dim(A)-invariance). The (semi-algebraic) dimension of Cy 4 is
equal to the (semi-algebraic) dimension of Cy.

6. (dim(£)-invariance). The (semi-algebraic) dimension of Cy; . is equal
to the (semi-algebraic) dimension of Cy.

The set U of games is called:
(i) A-regular if it satisfies concavity and A-invariance assumptions;

(i1) A-semi-algebraically regular if it satisfies concavity, semi-algebraicity
and A-invariance assumptions.

(i1i) dim(A)-semi-algebraically regular if it satisfies concavity, semi-algebraicity
and dim(.A)-invariance assumptions.
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(iv) dim(L)-strongly semi-algebraically reqular if it satisfies concavity, strong
semi-algebraicity and dim(£)-invariance assumptions.

Observe that A-semi-algebraically regular sets of games are particular cases
of A-regular set of games whose payoff functions are polynomial, with ad-
ditional assumptions on their associated sets of coefficients. However, a
dim(.A)-semi-algebraically regular set of games might not verify A-invariance
assumption, which would imply that it might not be A-semi-algebraically
regular. Thus, dim(.A)-semi-algebraic regularity is weaker than .A-semi-
algebraic regularity:.

Finally, even if dim(L)-strongly semi-algebraic regularity is not, strictly speak-
ing, weaker than dim(.4)-semi-algebraic regularity (from a logical point of
view), it has the advantage to not take into account the constant part of
any game, which is irrelevant regarding its set of Nash equilibria (i.e. adding
constant terms to a game does not modify its set of Nash equilibria).

Bich-Fixary’s structure theorem. The graph Ny of Nash equilibria as-
sociated to any A-reqular set U of games is homeomorphic to U, through a
homeomorphism my, which is properly homotopic to the projection my.

Bich-Fixary’s oddness theorem. Generically, every game in any dim(L)-
strongly semi-algebraically reqular set U of games admits an odd number of
Nash equilibria.

As mentionned before, our results are closely related to the ones of Chapter 1.
Indeed, analogously to our network theoretical oddness theorem in Chapter 1,
our game theoretical oddness theorem states that “most” games should have
an odd number of Nash equilibria, when payoff functions are polynomial and
satisfy the “standard” concavity assumption. However, our game theoretical
theorem is less assumptions demanding and the proof of this result is also
slightly simplified at some points: (i) we do not require anymore U to be
a cartesian product of spaces (U;);er; (i1) we now drop the constant parts
(which are not relevant when one deals with Nash equilibria); (ii7) dim(.A)-
invariance assumption is weaker than A4-invariance assumption; (iv) we use
topological degree of proper continuous maps between topological oriented
m-manifolds instead of topological degree of continuous maps from the unit
m-sphere to itself - a more technical approach, but which avoids complex
details (which are in fact not necessary).

Very important point: every improvements that have been done in this
chapter (compared to Chapter 1) could be transpose in network formation
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theory without too much difficulty.?°

To conclude this chapter, we provide examples of games on networks (intro-
duced in network formation theory) to which our oddness theorem can be ap-
plied. The main example being Jackson-Zenou’s benchmark quadratic model
[44], from which several other models are dervided from: Patacchini-Zenou’s
model [38] about juvenile delinquency and conformism, Calvé-Armengol-
Patacchini-Zenou’s model [12] about social networks in education, Konig-
Liu-Zenou’s model [34] about R&D networks, Helsley-Zenou’s model [28§]
about social networks and interactions in cities, etc.

Chapter three

This thesis ends with this last chapter which constitues a final contribution
in network formation theory. This last apport consists in two mains results
which are in the spirit of Demichelis and Germano’s theorems: our unknot-
tedness theorem and our dynamics equivalence theorem.

Recall that N is a fixed set of agents, that Soc = {N — {G — R}} is the
set of all societies (with respect to N), and that for every set V C Soc of
societies, Py = {(v,g9) € V x G : g is pairwise stable with respect to v} is
the graph of pairwise stable networks associated to V, and that py : V — Py
is the inverse of the homeomorphism 7y : Py, — V of Bich-Fixary’s structure
theorem (cf. Chapter 1).

Now, consider a fixed network ¢° € G and a fixed € € (0,+00). For any
subset V C F of own-weights C! concave societies, the space V x G, where
G® = [—¢,1+¢], is called the (2-)ambient space (associated to V); it can be
seen as an “enlargement” of V x G. Also, the unknot associated to V' (and
g°) is defined as the topological embedding

/{%: V — VxG°
v o= (v,4°)

Moreover, if f is a homeomorphism from V to Py, then the knot of pairwise
stable networks associated toV and f is defined as the topological embedding

kp: Voo VxG*
v f(o)

20Chronologically, this chapter has been written after Chapter 1. In my opinion, it was
very important to write Chapter 1 without the “upgrade” of Chapter 2; I think that this
allows a better appreciation of the general progression of this thesis (“Ce qui compte, c’est
pas larrivée, c’est la quéte” - Orelsan).
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The first goal of this chapter is to strengthen Bich-Fixary’s structure theorem
by showing that the graph Py, of pairwise stable networks associated to any
A-regular set V of societies is not only homeomorphic to V, but that it can
be continuously deformed to a trivial copy V x {¢°} of the space V within
the ambient space V x G°. Namely, we show that x,, is ambient isotopic to
k), within V x G*.

Fixary’s unknottedness theorem. The knot k,, of pairwise stable net-
works associated to any A-reqular set V of societies and py is ambient isotopic
to the unknot kY, associated to V within the ambient space V x G*.

This result is parallel to those of game theory, and in particular to the work
of Predtetchinski [40] and to the work of Demichelis and Germano [17].

Now, in order to achieve our last goal, we introduce what we call network
dynamics and extended network dynamics. Briefly, for any subset V C F of
own-weights C! concave societies, a network dynamic (resp. extended net-
work dynamic) on V is a family of vector fields (D,),cy on the set G of
networks (resp. (D2),ey on the “enlarged” set G° = [—¢,1 + ¢]F of net-
works) whose zeros coincide with the set of pairwise stable networks of v
(v € V). The idea is to use the unknottedness theorem to demonstrate the
second main result of this chapter: our dynamics equivalence theorem. This
theorem states that for every A-regular set V of societies, any two strongly
inward-pointing extended network dynamics on V are homotopic within the
set of all extended network dynamics on V. In other words, any extended
network dynamic that points toward G outside of it (i.e. on G*\G) can be
continuously deformed into any other extended network dynamic with the
same property, without adding additional zeros.

Fixary’s dynamics equivalence theorem. Any two strongly inward-
pointing extended network dynamics on any A-reqular set V of societies are
homotopic within the set of all extended network dynamics on V.

To conclude this chapter, we provide some examples of network dynam-
ics/extended network dynamics, and some consequences of the dynamics
equivalence theorem.

A first result concerns the indices of extended network dynamics at any
isolated zero. This result is called indices equality theorem.

Fixary’s indices equality theorem. Consider any A-regular set V of
societies. For every strongly inward-pointing extended network dynamics D
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and D' onV and every v € V, the index of D, at g 1s equal to the index of
D’ at g, for every isolated zero g of D, (resp. D’)

Another consequence of the dynamics equivalence theorem comes from the
following proposition: for every subset V C F of own-weights C! concave
societies, any inward-pointing network dynamic D on )V admits an exten-
sion to the ambient space V x G* (i.e. a strongly inward-pointing extended
network dynamic D® on V such that its restriction to V x G corresponds
to D).2!' Hence, what follows from dynamics equivalence theorem //indices
equality theorem and from the last proposition is that for every A-regular
set V of societies, every inward-pointing network dynamic D on V and every
extension D¢ of D to the ambient space V x G, the index of D (v € V) at
any isolated zero g (of D,) does not depend on the choice of this extension.??
Thus, even if we technically cannot talk about the index of D, (v € V) at
an isolated zero g on the boundary 0G of G, we can still describe how D,
behaves around g using any extension D°.

Last, another version of the indices equality theorem is proposed, when one
considers A-semi-algebraically regular sets of societies instead of A-regular
sets of societies, and which is based on Bich-Fixary’s oddness theorem.

Fixary’s indices equality theorem with semi-algebraic regularity.
Consider any A-semi-algebraically regular set V of societies. Generically,
for every strongly inward-pointing extended network dynamic D and D" on
V and every society v in V, the index ofD at g is equal to the index of D’

at g, for every zero g of D, (resp. D’)

The important difference between the two versions of the indices equality
theorem is the following: if one considers a A-semi-algebraically regular set
V of societies instead of a A-regular set of societies which is not A-semi-
algebraically regular, then for every strongly inward-pointing extended net-

work dynamic D and D’ on V and “almost every” society v € V, we are now
able to talk about the equality of the indices of D, and D! at any zero, since
in that case, each zero is by definition isolated.

21 An inward-pointing network dynamic on V is a dynamic which points weakly to the
interior of {v} x G along the boundary {v} x 9G, for every v € V.

22Recall that for a given vector field V on an arbitrary smooth manifold, and a given
isolated zero z of V', the index of V" at z is an indicator which helps to quantify the behavior
of V around z (i.e. V may circulate around z, it may have a source, a sink, a saddle, etc.).
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Chapter 1

Topological Structure and
Generic Oddness of the Graph
of Pairwise Stable Networks
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Set of weighted networks on N

Graph of pairwise stable networks associated to the setV of societies
Projection from Py to V, where V is a set of societies

Set of continuous payoff functions of agent © which are concave in
gij and with continuous first-order derivative with respect to the ij-
th variable, for every j #i (F = [l,en Fi)

Set of payoff functions of agent i which are affine in (g;);2 and
which only depend on those weights (A = [].cn Ai)
Homeomorphism from Pr to R of structure theorem, where R is a
A-reqular set of societies

Set of payoff functions of agent v which are polynomial of g and
whose degree is less or equal to 0; (R;s[g] = [[;cn Rs,[9])

Vector space isomorphism which assigns to each payoff function of
agent i in Ry, [g] its coefficients in R™, where m; € N depends on
6 (m = Zz‘eN mi, p = Xienwi - Rslg] — R™)

Set of coefficients of polynomial payoff functions of agent i in V;
(i.e. Cy, = pi(Vi)), where V; C Ry, [g]

Set of coefficients of polynomial societies in V (i.e. Cy = p(V)),
where V = [[,cn Vi C Rslg]

Polynomial society in V whose coefficients correspond to x (i.e.
v =@ (x)), where V = [[,cy Vi C Rslg] and where z € Cy,
Linear subspace of Rs,[g] generated by all the monomials in Ry,[g],
except the ones in Aj;

Linear projection from R™ = CRJZ_ [9—a, @ Cy, to CR% l9]—a,
Semi-algebraic decomposition of I1_4,(Cs,), where S = [],. v Si is
a A-semi-algebraically reqular set of societies and where r; € N
depends on S;

Minkowski sum of ¢; ' (Ti) and A; (Vx = [L,en Vi), where S =
[Licy Si is a A-semi-algebraically regular set of societies and where
ANeEA=TLy{L, . o mi}

Subset of indicies X € A such that for every i € N, Ty. is open
in11_4,(Cs,), where S = [[,cn Si is a A-semi-algebraically reqular

set of societies

Table 1.1: Table of notations of Chapter 1
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This chapter is based on the research paper Network formation and pair-
wise stability: A new oddness theorem, published in Journal of Mathematical
Economics (December 2022) by Philippe Bich and Julien Fixary [5].

1.1 Introduction

In this first chapter, we provide our structure theorem and our oddness the-
orem in network formation theory. The chapter is organized as follows: (i)
in Subsection 1.2.1 (of Section 1.2), we first recall some basic definitions and
notations about strategic network formation theory - in particular, pairwise
stability concept - and we define the graph of pairwise stable networks associ-
ated to any set of societies; (i1) in Subsection 1.2.2, we introduce the notion
of A-regular set of societies and we present our structure theorem (Theorem
1.2.1); (i27) in Subsection 1.3.1 (of Section 1.3), we introduce the notion of
A-semi-algebraically reqular set of societies and we present our oddness the-
orem (Theorem 1.3.1); (iv) in Subsection 1.3.2, we provide several examples
of applications of oddness theorem; (v) in Section 1.4 (Appendix), we provide
first the necessary reminders about specific notions of general topology and
of differential calculus (Subsection 1.4.1) and about real semi-algebraic geo-
metry (Subsection 1.4.2), and we provide next the proofs of structure theorem
(Subsection 1.4.3) and of oddness theorem (Subsection 1.4.4).

1.2 Topological structure of the graph of pair-
wise stable networks

1.2.1 The graph of pairwise stable networks

First of all, let us recall some elementary definitions and notations from
network formation theory.

Definition 1.2.1. A set of agents is a finite set N such that card(N) > 2.
For every set N of agents, the set

L={{i,j}:(i,j) e NxN,i#j}
is called the set of links (on N ) and the set
G={L—10,1]}

is called the set of (weighted) networks (on N ).
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Remark 1.2.1. The vector space RY (with its usual operations) is endowed
with the Euclidean norm, i.e.

I-:geR = Y g% €R,
ijeL

and G is endowed with the induced topology.

Definition 1.2.2. A (weighted) society is a couple (N, (v;);en) composed by
a set NV of agents and a family (v;);en of maps from G to R, where for every
1 € N, v; is called the payoff function of agent i. For every set N of agents,
the set of all societies whose the set of agents is equal to N can be identified
to the set

Soc = {N — {G — R}}.

Throughout this chapter, we consider a fixed set N of agents.

Notations. Every link {i,j} € L is denoted ij. For every network g € G

and every link ij € L, g(ij) is denoted g¢;; and is called the weight associated

toij (in g). For every link ij € L, L_;; = L\ij and G_;; = {L_;; — [0,1]}.

For every link ij € L, every ¢g_i; = (gu)mzij € G_i; and every w € [0, 1],

¢ = (w,g9-;;) € G is the network defined by g, = g, for every kl # ij, and

%j = w. For every network g € G and every link ij € L, g_i; = (gr)kiij €
g

Pairwise stability is one of the most important concept of network formation
theory. It has been introduced by Jackson and Wolinsky [32] for unweighted
societies,! and has been extended by Bich and Morhaim [6] to weighted
societies.

Definition 1.2.3. Let v € Soc be a society. A network g € G is pairwise
stable (with respect to v) if for every ij € L, the two following conditions
hold:

1. For every w € [0, gi5), vi(w, g—i;) < vi(g) and v;(w, g—ij) < v;(g).

2. For every w € (g,j, 1], vi(w, g—ij) < vi(g) or v;(w, g_i;) < v;(g).

For every set N’ of agents, the set of unweighted networks (on N’) is defined by
Gy, = {L — {0,1}} (with L' = {{i,5} : (4,5) € N’ x N',i # j}), and an unweighted
society is a couple (N', (v});en) composed by a set N’ of agents and a family (v});en of
maps from G, to R, where for every i € N’, v} is called the payoff function of agent i.
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Definition 1.2.4. Let V C Soc be a set of societies. The pairwise stable
networks correspondence associated to ) is the correspondence

\I/V I G
v +— {g € G: g is pairwise stable with respect to v}

The graph of the pairwise stable networks correspondence associated to V is
called the graph of pairwise stable networks associated to V and is denoted
Pv, ie.

Py = Gr(¥y) = {(v,9) € V x G : g is pairwise stable with respect to v}.
The projection from Py to V is denoted 7y, i.e. my(v,g) = v, for every

(U, g) S PV‘

1.2.2 A-regular sets of societies and structure theorem

Payoff functions which are considered in this chapter have to satisfy some
differentiability and some concavity properties.

Definition 1.2.5. For every i € N,
Ci={vi e F(G,R) :Vj #i,Yg_;; € G_;j,v;(-, g—;;) is concave},
D; = {v; € C°(G,R) : Vj # i, 0;;v; exists and is continuous},
where for every v; € C°(G,R) and every j # i,
ov;

Gij
and
The set
F=1]x
iEN

is called the set of own-weights C' concave societies.

Remark 1.2.2. Since G is a closed convex subspace of RL such that int(G) #
0, for every i € N, every v; € C°(G,R) and every j # i, 0;;v; is well-defined
(see Proposition 1.4.5 and Definition 1.4.5 in Appendix 1.4.1).

Remark 1.2.3. For every i € N, every v; € D;, every j # i and every
g-ij € G_ij, vi(-,g-ij) is a C* function (see Definition 1.4.4 in Appendix
1.4.1).
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Example 1.2.1. Suppose that N = {1,2,3}:

e Suppose that
v1(g) = 2In(g12) 975 + 933,
for every g = (912, 913, 923) € G. Then, v; € Fi.

e Suppose that
v2(g) = 2In(g12) 975 + g3,

for every g = (g12,913,923) € G. Then, vy ¢ Fy, since ve ¢ Cy (for
every g o3 € G_o3, the map wvy(-, g_23) is not concave). However, if
va(g) = 2In(g12)g3; — g3, then vy € Fy (since gaz > 0).

e Suppose that

1 1
v3(g) = —\/\912 - §|2 + 913 — §|27

for every g = (g12, g13,923) € G. Then, v ¢ F3, since v ¢ D3 (for
every g € G such that g1o = g13 = 3, 013v3(g) is not defined). However,

if v3(g) = —\/|g12|* + |g13|?, then v3 € F3 (since (g2, g13,0) belongs to
the boundary of G).

e Suppose that for some i € N,

g = 912913923 if g # (0,0,0)
v g = (912, 913, 923) € G = { ] otherwise e R.

Then, v; ¢ F;, since v; ¢ D; (v; is not a continuous map).

Definition 1.2.6. For every i € N, the vector space D; (with its usual
operations) is endowed with the following norm:

|- Ils : vi € Ds = max{max{]|v;[|oc, ”aijUiHoo} (j# i} eR,

where for every v; € D; and every j # i, ||[vi]|oo = sup,cclvi(g)| and [|0;vil|o0 =
sup,c|0ivi(g)]- Furthermore, any subset of D; is endowed with the induced
topology.

Remark 1.2.4. For every i € N, every v; € D; and every j # i, ||vi]|ooc =
max,ec|vi(g)| and ||0;;vi]|c = maxyec|0ijvi(g)|, since both v; and 0;;v; are
continuous maps and since G is a compact subspace of R”.

For every © € N, we consider the set of payoff functions of agent ¢ which are
affine in (g;;),2 and which only depend on those weights.
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Definition 1.2.7. For every i € N,
Ai:{geG*—)ZOngij—l—CGRZVj#Z.,Odij ER,CGR}.
J#i
Moreover, A = [T,y Ai.
Example 1.2.2. Suppose that N = {1,2,3}:

e Suppose that v1(g) = 2912 + 413 + 1, for every g = (g12, 913, 923) € G.
Then, v, € Ay, since vi(g) = Z#l Q115 + ¢, with oo = 2, ag3 = 4
and ¢ = 1.

e Suppose that ve(g) = 2912 + 413 + 1, for every g = (g12, 913, 923) € G.
Then, vy ¢ A,, since it depends on ¢i3. However, if v5(g) = 2¢12 + 1,
then vy(g) = 2#2 Q2jg2j + ¢, with ags = 2, a3 = 0 and ¢ = 1. Hence
Vo € .AQ.

e Suppose that v3(g) = 5g13 + 3ga3, for every g = (g12, 13, 923) € G.
Then, vz € A3, since v3(g) = Z#g as3jg3; + ¢, with a3 = 5, agg = 3
and ¢ = 0.

We now introduce the notion of A-regular set of societies which is at the core
of our structure theorem.

Definition 1.2.8. For every i € N, let R; C F(G,R). The set [],.y Ri of
societies is A-reqular if for every i € N, the two following conditions hold:

1. (Concavity). R; C F;.
2. (A-invariance). For every v; € R; and every a; € A;, v; + a; € R;.

Our following result characterizes the topological structure of the graph of
pairwise stable networks associated to any A-regular set of societies (e.g. to
F itself).

Theorem 1.2.1. (Structure theorem)

For every A-regular set R of societies, the projection mr : Pr — R is
properly homotopic to some homeomorphism ng : Pr — R.

This theorem provides three important informations:

1. Thanks to nz, the graph Px of pairwise stable networks associated to
F is homeomorphic to F, which corresponds to the intuition that Pr
can be continuously deformed into the simpler space F.
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2. The projection mx is properly homotopic to the homeomorphism 7,
which corresponds to the intuition that nz itself can be continuously
deformed into the simpler map 7x.

3. The two previous properties remain true if F is replaced by any A-
regular set R of societies.

Structure theorem is a key ingredient in the proof of our oddness theorem
(Theorem 1.3.1 in Section 1.3.1), which is itself very important for applica-
tions (see Section 1.3.2). Indeed, Theorem 1.3.1 relies partly on some prop-
erties of topological degree (see Appendix 1.4.1 for some reminders) which
can be derived from Theorem 1.2.1; for every A-regular set R of societies,
the fact that the homotopy between 7z and ng is proper means intuitively
that it maps points “close to infinity” to points “close to infinity”, which
plays an important role in the proof of Theorem 1.3.1. Figure 1.1 provides
a simple representation of the graph Pr of pairwise stable networks associ-
ated to some A-regular set R of societies, of the projection mx and of the
homeomorphism 7%.

In the field of game theory, Kohlberg and Mertens [33] provided a similar
result in the case of mixed Nash equilibria of finite strategic-form games.
More recently, Predtetchinski [40] provided a generalization of Kohlberg-
Mertens’s structure theorem in the case of Nash equilibria of own-strategy C*
concave games. We can also mention the interesting works of Demichelis and
Germano [17, 16], which provided sharper results on the topological structure
of the graph of Nash equilibria associated to the set of mixed extensions of
finite strategic-form games and on the topological structure of the graph of
Walrasian equilibria.

Sketch of proof
The full proof is provided in Appendix 1.4.3.

First, we construct the homeomorphism 7z from Pz to F (Step I). To do so,
we have to associate to a couple (v, g), where v is an own-weights C! concave
society (i.e. a profile of payoff functions in F) and g is a network which is
pairwise stable with respect to v, another own-weights C' concave society
nr(v, g). Moreover, nz(v,g) has to contain all the information conveyed by
v and g, since we want to be able to define an inverse map 77}1 : F = Pr
(Steps II-IV). The idea is to define nr(v,g) by adding to v = (v;)ieny a
profile of affine payoff functions whose coefficients contain some weights of
9 = (9ij)ijer, as well as first-order derivatives of each v; at g and at (g,;, go_z-j)
(where ¢° is an arbitrary fixed network). These coefficients are chosen so
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Figure 1.1: Pgr, g (in thick line) and ng (in dashed line)

that for every v € F, n7'(v) has a simple form (u’, g*):

e For every ij € L, gj; is defined from v by taking the minimum of the
two (unique) solutions of

manE[O,l}Uk(wa ggz]) - 77

for k € ij (uniqueness is guaranteed by concavity of vy, go_ij)). The
intuition is that for every k € 47, from the first-order necessary and suf-
ficient conditions (see Proposition 1.4.6 in Appendix 1.4.1), the solution
of the above maximization problem should depend on some first-order
derivatives of vy: we precisely fix the coefficients in the affine part ad-
ded to v in nz(v,g) (see the discussion above) in accordance to this

solution in order to guarantee that g?f ©g) Gij-

e " is defined from v in a very similar way as 1z (v, g), simply by reversing
some signs (in particular, u” is also equal to v up to some profile of affine
payoff functions).

In Step V and Step VI, we prove that both 1z and 77}1 are continuous maps.
In Step VII, we prove that the straight-line homotopy (¢, (v,g)) € [0,1] x
Pr — (1 — t)mr(v,g9) + tnr(v,g) € F is a proper homotopy between the
projection mr : Pr — F and nz. Finally, in Step VIII, we show that for
every A-regular set R of societies, the restriction of nr from Px to R, which is
denoted ng, is a homeomorphism (its inverse corresponds to the restriction
of 77}1 from R to Pr). Furthermore, thanks to A-invariance assumption,
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we show that the straight-line homotopy (¢, (v,g)) € [0,1] x Pr — (1 —
t)mr(v,g) +tnr(v,g) € R is a proper map.

1.3 Generic oddness of the graph of pairwise
stable networks

1.3.1 A-semi-algebraically regular sets of societies and
oddness theorem

In this section, we are interested by sets of societies whose payoff functions are
polynomial functions of g (with coefficients in R), and by their corresponding
sets of coefficients.

Definition 1.3.1. Let
Rlg]={g€G— > (o [[ gi)’) €R:Vk € N* o, € R}.
keNL ijeL

For every i € N and every §; € N,
Rs,[g] = {vi € Rg] : deg(v;) < d:},

where for every v; € R[g], deg(v;) = max{deg(k) : oy # 0}, with deg(k) =
ZUGL kij, for every k € N*. For every § = (&;)ien € NV, the set

9] = [ [ Rs.[g]
i€N
is called the set of (§-)polynomial societies.

Example 1.3.1. Suppose that N = {1,2,3} and that for some i € N,
52' =12 and

0i(9) = — 912923 + 3912973953 — 913923,
for every g = (912, 913, 923) € G. Then,

) = aya Hgﬂ + a2 Hgﬂ +ak5ng € Ry, [g

JleL JIEL JlEL

with k! = (2,0,1), k2 = (1,5,4) and k* = (0,2,1), and with ap = —1,
a2 = 3 and ags = —1. Indeed, deg(v;) = 10, since deg(k') = 3, deg(k?) = 10
and deg(k?) = 3.
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Remark 1.3.1. For every i € N and every §; € N, Ry [g] (with its usual
operations) is a finite-dimensional vector space. Thus, Ry, [g] is endowed with
the unique topology which makes it a Hausdorff topological vector space.
Since D; is Hausdorff (see Definition 1.2.6), this topology corresponds also
to the one induced by D; on Ry, [g]. Furthermore, with this topology, note
that that every linear map from Ry, [g] to any other topological vector space
is also continuous.

Definition 1.3.2. Let § = (8;);eny € NV, and consider an order on the set L
and an order on the set N¥. For every i € N, there exists a unique m; € N
such that the map

¢i v € Ry [g] = (ag)rene € R™
is a well-defined vector space isomorphism. Furthermore, the map
v € Rs[g] — Xienpi(vi) € R™,

where m =), y m;, is also a well-defined vector space isomorphism.

Example 1.3.2. Suppose that N = {1,2,3}, that for every i € N, §; = 2,
and that

v1(9) = — 9129233912913 — 913, V2(9) = —Gro+G13— 5933, v3(9) = 5g13—2053+3,

for every g = (912, 913, 923) € G. Moreover consider the order g12 < g13 < go3
on L and the order

(0,0,0) < (1,0,0) < (0,1,0) < (0,0, 1)
< (1,1,0) < (1,0,1) < (0,1,1)
< (2,0,0) < (0,2,0) < (0,0,2)

on {0, 1,2} (for simplicity). Then,

901(U1> - (07 07 07 07 37 _]-7 07 07 _17 0)7
902(1)2) = (07 07 17 07 07 07 07 _17 Oa _5)5
903(1)3) = (370757()’0707070’()’ _2)a

with m; = 10, for every i € N, and 90(711,112,113) = (901(?11)7902(1)2)7903(“3))'

Throughout the rest of this chapter, we consider a fixed § = (6;)ieny € NV,
a fixed order on the set L and a fixed order on the set N* (in particular, we

consider also the vector space isomorphism ¢; of Definition 1.3.2, for every
i€ N).
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Notations. For every i € N, let V; C Ry, [g], and consider the subset V =
[Licy Vi C Rs[g] of polynomial societies. For every i € N, the set ¢;(V;) of
coefficients of polynomial payoff functions in V; is denoted Cy,, and the set
©(V) of coefficients of polynomial societies in V is denoted Cy. By abuse
of notation, for every ¢ € N, both the restriction of ¢; from V; to R™
and the restriction of ¢; from V; to Cy, are denoted ¢; (however, note that
¢i : Vi = Cy, is a homeomorphism). Similarly, by abuse of notation, both
the restriction of ¢ from V to R™ and the restriction of ¢ from V to C,, are
denoted ¢ (however, note that ¢ : V — Cy, is a homeomorphism). For every
x € Cy, the polynomial society in V whose coefficients correspond to z is
denoted v®, i.e. v* = o ().

In the following, we introduce the notion of A-semi-algebraically reqular set
of societies; a particular case of A-regular set of societies whose payoff func-
tions are polynomial, with an additional assumption on its associated set of
coefficients.

Definition 1.3.3. For every i € N, let S; C F(G,R). The set [, 5 S; of
societies is A-semi-algebraically regular if for every i € N, the three following
conditions hold:

1. (Concavity). S; C F;.
2. (A-invariance). For every v; € S; and every a; € A;, v; +a; € S;.
3. (Semi-algebraicity). S; C Rg,[g] and Cg, is a semi-algebraic set.

For every i € N, consider V; C Rg,[g]. To say that V = [[.. Vi satisfies
semi-algebraicity assumption means that for every ¢ € N, the set Cy, of
coefficients of polynomial payoff functions in V; can be defined using a finite
number of polynomial equalities or inequalities (see Appendix 1.4.2 for some
reminders about real semi-algebraic geometry).

Recall that a semi-algebraic subset G of a semi-algebraic set S is said to be a
generic subset of S if dim(S\G) < dim(S), and if G is open in S (again, see
Appendix 1.4.2 for some reminders). The intuition behind this definition is
that a generic subset of S fills “almost completely” S. Now, we present the
second main theorem of this chapter: our oddness theorem.

Theorem 1.3.1. (Oddness theorem)

For every A-semi-algebraically regular set S of societies, there exists a generic
semi-algebraic subset G of Cs such that for every x € G, the society v* has
an odd number of pairwise stable networks.
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Briefly, our result states that “most” societies in network formation theory
should have an odd number of pairwise stable networks, when payoff func-
tions are polynomial and satisfy the “standard” concavity assumption.

Sketch of proof
The full proof is provided in Appendix 1.4.4.

Recall that from Theorem 1.2.1, for every A-regular set R of societies, the
projection mr : Pr — R is properly homotopic to some homeomorphism
nr : Pr — R. Since S is A-semi-algebraically regular, it is also A-regular
(by definition), which implies that ws : Ps — S is properly homotopic to
some homeomorphism 7s : Ps — S.

Following a tradition of existence proofs in game theory or in general equilib-
rium theory, one could try to apply topological degree to the projection map
s in order to obtain that generically, 75" (v) (which “counts” the number of
pairwise stable networks of the society v € &) has an odd number of elements.
The idea would be, first, to prove that the degree of 7s is equal to 1, which
would imply that the degree of 7gs is also equal to 1, by homotopy invariance
of topological degree (see Proposition 1.4.2 in Appendix 1.4.1). Also, from
some covering space properties (see Theorem 1.4.5 in Appendix 1.4.2), we
could obtain that m5'(v) = {(v,q1),...,(v,9,)} is generically finite, where
for every k € {1,...,n}, (v, gx) has some open neighborhood in Pgs which
is mapped by ms homeomorphically onto its image. This would imply that
the local degree over v of the restriction of s to such a neighborhood of
(v, gr) is equal to £1 (see Proposition 1.4.4 in Appendix 1.4.1). Thus, by
additivity of topological degree, the sum of these local degrees over v being
equal to the degree of s (which is equal to 1), this would imply that n is odd
(see Theorem 1.4.1 in Appendix 1.4.1), i.e. that v admits an odd number of
pairwise stable networks.

One of the main problem with this approach is that to be able to apply
topological degree on 7s, Ps and S have to be topological manifolds, which
is not verified in general. From Step I to Step VI, we first skip this difficulty
by assuming that the space Cs = ¢(S) of coefficients of polynomial societies
in § is equal to R™ (the whole reasoning is similar if we only assume that
Cs is homeomorphic to R, for some p < m).

Under this assumption, ¢ is a global chart which allows to identify & with
R™ (i.e. S is now a topological manifold). Hence, the two maps 7s and 7s,
from Ps to S, can be read in this chart as continuous maps mcg and 7ncg
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from Mg to R™, where
Ms ={(¢),9) € Cs xG: (v,9) € Ps} CR™ x G,

these two spaces being (semi-algebraically) homeomorphic (Step I).

Also, since s and ng are properly homotopic, we show that this homotopy
(denoted Hg) can be read in the global chart ¢ as a proper homotopy between
mcs and neg (denoted Heg). However, a second issue which could prevent
from using topological degree is the possibility to have pairwise stable net-
works “at infinity”. Formally, we avoid that problem by considering the
compactifications MF = Mg U {oo} of Mg and (R™)* = R™ U {oo} of
R™ (see Appendix 1.4.1 for some reminders about topology). The fact that
Hc, is a proper homotopy between mc, and nc, allows us to: (i) (uniquely)
extend the map mcg (resp. 7cg) to a continuous map 7, (resp. 1) from
the compactification MZ to the compactification (R™)> (see Proposition
1.4.1 in Appendix 1.4.1), where 7& (c0) = n&,(00) = oo; (ii) construct a
homotopy between 7& and n¢; (denoted HE),). Furthermore, the compac-
tifications M% and (R™)* being homeomorphic to the unit m-sphere S™,
we can “transport” the map 7g, (resp. ng,) to a continuous map msm (resp.
ngm) from S™ to itself, and the homotopy H&, to a homotopy Hgm between
mgm and ngm (Step II and Step III). These constructions are summarized by
the following diagram:

Ps — Mg — MP —— S™

o e ol wfln ]|

S§ — Cs —— R™M)*® —— 5™

In particular, all left vertical arrows (which “represent” ms) should be thought
as very similar to each other, and similarly for all right vertical arrows (which
“represent” 7s). However, one great advantage of this construction is that
it allows us to apply topological degree to the last couple (7gm,nsm) (which
will also provides informations about 7g).

In Step IV, we show that the degree of wgm : S™ — S™ is equal to 1, because
mgm is homotopic to the homeomorphism ngm, which corresponds in fact to
the identity map on S™ (see Proposition 1.4.2 in Appendix 1.4.1). This im-
plies that 7gm is a surjective map (see Proposition 1.4.3 in Appendix 1.4.1),
hence that both mcg and 7s are also surjective (from their definitions). In
Step V, we use the fact that mc, is a continuous semi-algebraic surjective
map from Mg (whose dimension is equal to m, from Step I) to R™ in or-
der to apply some semi-algebraic trivialization result (see Theorem 1.4.5 in
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Appendix 1.4.2) and to obtain that generically, every society in & admits a
strictly positive finite number of pairwise stable networks. In Step VI, we use
additivity of topological degree (as discussed above) to obtain the oddness
theorem, when Cg = R™.

Finally, in the last step of the proof (Step VII), which is perhaps the most
important in terms of providing new proof techniques, we want to get rid of
the assumption that Cg is equal to R™. The idea is to decompose § into a
finite union of sets (Vy)xea to which we can apply the previous steps (Steps
[-VI). This requires that for every A € A, V): (i) is A-semi-algebraically
regular; (i7) is homeomorphic to RP*| for some py < m. To construct (Vy)xea,
we could try, using semi-algebraicity of Cgs, to decompose Cs in a finite
union of sets (Sg)r_; (for some n € N), each one being (semi-algebraically)
homeomorphic to some Euclidean space (see Proposition 1.4.9 in Appendix
1.4.2). The problem with this method is that there is no guarantee that
the set p~!(Sk) of societies associated to Sy (k € {1,...,n}) satisfies A-
invariance assumption. Instead, the idea is to proceed as follows:

1. In Substep VII.1, for every i € N, we remove the “A;,” part of the
set Cg, of coefficients of polynomial payoff functions in S; (i.e. we
remove the coefficients of the constant monomial and of the monomials
(gij)j#i from Cg,) using some linear projection II_4, (n.b.: this step
is important for the next ones; the rest of the proof would not hold
otherwise).

2. In Substep VII.2, for every i € N, we semi-algebraically decompose
the outcome II_ 4 (Cs,) of Substep VII.1 using Proposition 1.4.9 (in
Appendix 1.4.2).

3. In Substep VIIL.3, for every ¢ € N, we re-introduce the coefficients that
were removed in Substep VII.1 by summing elements of the previous de-
composition of I1_ 4, (Cs,) with the set C 4, of coefficients corresponding
to A;; by doing so, we construct the family (V))iea mentioned above
(the definition of the finite set A is detailed in the proof). Indeed, we
show in Substep VII.4 that for every A € A, V) is A-semi-algebraically

regular and is homeomorphic to RP*, for some p) < m.

The end of the proof consists in applying Steps I-VI to each set V) (A € A):
this provides a generic semi-algebraic subset G of the set Cy, of coefficients
corresponding to Vy such that for every z € G, the society v* = o~ !(x)
has an odd number of pairwise stable networks. To finish, a generic semi-
algebraic subset of Cs can be obtained by considering the union G of the
sets (Gy)aea, retaining only the indices A for which V), is “thick enough”, in
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order to be sure that G is open in Cg (Substeps VIL.5-VIL7).

1.3.2 Some applications of oddness theorem
Polynomial own-weights concave societies

The following proposition states that polynomial societies which are own-
weights concave admit generically an odd number of pairwise stable networks.

Proposition 1.3.1. The set S = [[..y Si, where for everyi € N,

is a A-semi-algebraically regular set of societies. Furthermore, there exists a
generic semi-algebraic subset G of Cs such that for every x € G, the society
v® has an odd number of pairwise stable networks.

Proof. Let i € N. By definition, S; satisfies both concavity assumption (i.e.
S; C F;) and A-invariance assumption (i.e. S;+.A4; = S;). Now, observe that
S; also satisfies semi-algebraicity assumption. Indeed, recall that any payoff
function v; € S; can be written as

vilg) = > (e [T 57,

keNL jleLl

for every g € G (by definition of Ry, [g]). Consider the polynomial function

P ((on)perer 9) ER™ x G Y (o [[ o) € R.

keNL JleL

Thus, remark that

2
Cs, = {a = ()renr € R™ :Vj #i,Yg = (gij,9-45) € G, % <0},
ij
which is a semi-algebraic set, since G is semi-algebraic and from Proposition
1.4.7 (in Appendix 1.4.2). Therefore, S is a A-semi-algebraically regular
set of societies, and from oddness theorem (Theorem 1.3.1), there exists a
generic semi-algebraic subset GG of Cg such that for every z € GG, the society
v* has an odd number of pairwise stable networks. O
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Network formation with linear costs

For every ¢ € N, consider a fixed payoff function v; € Rg,[g] N F;, i.e. poly-
nomial with a degree less or equal to J; and concave in g;;, for every j # i.
Moreover, let Ly = {(i,j) € N? : i # j} be the set of directed links (on N)
(every directed link (i, j) € Ly is denoted i, j).

Now, for every a = ()i jer, € R and every ¢ = (¢;)ien € RY, consider
the society

0 — (g ceGr— @i(g) — Zamgij +c; € R)ieN
J#

parameterized by «. For every i,j € Lg, o ; € R can be interpreted as the
marginal cost for agent ¢ of maintaining the weight g;; of link ij (at least
when a; ; > 0).

Remark 1.3.2. Notice that the society v® is also parametrized by the constant
coefficients ¢: it can be proved that the result that will follow (Proposition
1.3.2) still holds without taking into account these coefficients, that is why
the parameter c is dropped in the previous notation.?

The following proposition states that polynomial societies of the form v®
(a € RE) admit generically an odd number of pairwise stable networks.

Proposition 1.3.2. The set S = [[,.y Si, where for everyi € N,

Si: {gGGHEi(g)—Zamgij—i—ci ERZVj#Z‘,OJi,j GR,CZ‘ ER},
J#i

is a A-semi-algebraically reqular set of societies. Furthermore, there exists a
generic semi-algebraic subset G of RL4 x RN such that for every (a,c) € G,
the society v has an odd number of pairwise stable networks.

Proof. Let i € N. By definition, §; satisfies both concavity assumption (i.e.
S; C F;) and A-invariance assumption (i.e. S;+.4; = S;). Now, observe that
S; also satisfies semi-algebraicity assumption. Indeed, the set Cg, is a finite
product of copies of R and of singletons,® thus is a semi-algebraic set. Thus,

2Even if it may seem obvious, the proof of the general case requires in fact a little more
work and is not treated in this chapter. However, an analogous proof will be presented in
Chapter 2, in the field of game theory.

3More precisely, ¢; + 1 copies of R (corresponding to the “A; part” of the whole map
9 € G 0i(9) =>4 i,j9i+¢i € R) and max{m; — (¢; +1), 0} singletons (corresponding
to the “non-A; part” of the whole map g € G — ;(g) — Z#i a;;9i; + ¢ € R, which
depends on 7), where ¢; = card({ij € L : j # i}).
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S is a A-semi-algebraically regular set of societies, and from Theorem 1.3.1,
there exists a generic semi-algebraic subset C% of Cs such that for every
z € CY%, the society v* has an odd number of pairwise stable networks. Now,
since the trivial map f which associates to any (o, c) € RF x RN the “same”
element in Cg (up to singletons) is a semi-algebraic homeomorphism, for
every (a,c) € G = f71(C%), the society v* has an odd number of pairwise
stable networks, where G is a generic subset of R x RY. O

Network formation with quadratic costs

For every i € N, consider a fixed payoff function v; € Rg,[g] N F;, i.e. poly-
nomial with a degree less or equal to ¢; and concave in g;;, for every j # i.
Moreover, recall that Ly = {(i,7) € N? : i # j} is the set of directed links
and that every directed link (7, j) € Ly is denoted i, j.

Now, for every o = (i ;)ijer, € R¥, every B = (Bi;)ijer, € [0, +00)k
and every ¢ = (¢;)ieny € RY, consider the society
v = (9 € G ui(g) — Zﬁi,jg?j - Zai,jgij +ta € R)EN
J# J#i
parameterized by « and [.

The following proposition states that polynomial societies of the form v®#
(a € R4 B € [0, +00)r4) admit generically an odd number of pairwise stable
networks.

Proposition 1.3.3. The set S = [[..y Si, where for every i € N,

Si={geGr ﬁi(g)*z ﬂi,jgfjfz @i jgite ER:Vj#i,0;5 €R, By € [0,+00),¢; € R},
J#i J#i

is a A-semi-algebraically reqular set of societies. Furthermore, there exists a
generic semi-algebraic subset G of REa x [0, +00)Ld x RN such that for every
(o, B,¢) € G, the society v™* has an odd number of pairwise stable networks.

Proof. The proof is similar to the one of Proposition 1.3.2 (network formation
with linear costs). O

Bramoullé-Kranton’s public good model [10]

In their paper, Bramoullé and Kranton suppose that agents interact in an
exogenous unweighted network ¢ € G (i.e. for every ij € L, g;; € {0,1})
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and are characterized by some endogenous levels of efforts e € [0, +00)”, and
that the payoff function of agent ¢ € N is of the form

vi(e) = b(e; + Z e;) — ce;,
i#i
gij=1
where b : R — R is a twice-differentiable strictly concave benefit function
and ¢ € (0, +00) is the marginal cost of effort for any agent.

Here, we consider a slight modification of Bramoullé-Kranton’s model: we
suppose that agents interact in an endogenous weighted network g € G (i.e.
for every ij € L, g;; € [0,1]) and are characterized by some exogenous levels
of efforts e € [0, +00)", and that the payoff function of agent i € N is of the

form .
v (g) = bles + Z €jgij) — cei — Z Q;j9ij — Ci,
J#i J#1
where b : R — R is a polynomial concave benefit function, a;; € R (j #1)
is the marginal cost for agent 7 of maintaining the weight g;; of link i (with
a = (ag)kier,) and ¢; € R is a constant cost for agent ¢ (with ¢ = (¢;) jen)-

The following corollary of Proposition 1.3.2 (network formation with linear
costs) states that societies with payoff functions of the previous form admit
generically an odd number of pairwise stable networks.

Corollary 1.3.1. The set S =[],y Si, where for everyi € N,
Si={9eG—uv(g) eR:Vj#ia;; €R,c; €R},

is a A-semi-algebraically reqular set of societies. Furthermore, there exists a
generic semi-algebraic subset G of R4 x RN such that for every (o, c) € G,

the society v = (v3);en has an odd number of pairwise stable networks.

(2

Calvé-Armengol-Tlkili¢’s information transmission model [11]

In their paper, Calvé-Armengol and Ilkilic suppose that agents interact in
an unweighted network g € G (i.e. g;; € {0,1}, for every ij € L) and that
the payoff function of agent ¢ € N is of the form

vilg) =1—= [ piy —enila),
J#
gij=1

where p;; € (0,1) (j # 4) is the probability that some information can be
transmitted from agent i to agent j, ¢ € (0, +00) is the marginal cost for any
agent of maintaining any link and n;(g) = card({j € N\{i} : g;; = 1}).
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Here, we consider a slight modification of Calvé-Armengol-Ilkilic’s model: we
suppose that agents interact in a weighted network g € G (i.e. g;; € [0,1],
for every ij € L) and that the payoff function of agent i € N is of the form

vi'(g) =1- Hpijgij - Z Qij9i5 — Ci
i#i i#i
where «;; € R (j # i) is the marginal cost for agent ¢ of maintaining the
weight g;; of link ij (with o = (o )ker,) and ¢; € R is a constant cost for
agent i (with ¢ = (¢;)jen).

The following corollary of Proposition 1.3.2 (network formation with linear
costs) states that societies with payoff functions of the previous form admit
generically an odd number of pairwise stable networks.

Corollary 1.3.2. The set S =[],y Si, where for everyi € N,
Si={geG—v¥g) eR:Vj#ia,; € R ¢ €R},

is a A-semi-algebraically regular set of societies. Furthermore, there exists a
generic semi-algebraic subset G of RLe x RN such that for every (a,c) € G,

the society v* = (v3")ien has an odd number of pairwise stable networks.

7

Bala-Goyal’s two-way flow model [2]

In their paper, Bala and Goyal suppose that agents interact in an unweighted
network g € G (i.e. g;; € {0, 1}, for every ij € L) and that the payoff function
of agent i € N is of the form

vi(g) = pi(g) — eni(g),

where P{,; (j # i) is the set of all (finite) paths from agent 7 to agent j with
respect to g (i.e. the set of all finite sequences pg =4, p1,...,Pn_1,Pn = J Of
distinct agents such that the weights gip,, ..., gp, .p; are not null), u;(g) =
card({j € N : P{_; #0}), ¢ € (0,400) is the marginal cost for any agent of
maintaining any link and n;(g) = card({j € N\{i} : g;; = 1}).

Here, we consider a slight modification of Bala-Goyal’s model: we suppose
that agents interact in a weighted network g € G (i.e. g;; € [0, 1], for every

ij € L) and that the payoff function of agent i € N is of the form
v (g) =Y fuil9) =Y g —
por i
where P,_,; is the set of all (finite) paths from agent ¢ to agent j (i.e. the set
of all finite sequences py = i,p1,...,Pn—1,pn = j of distinct agents), fi; j(9)
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(j # 1) is the sum on all paths in P;_,; of the product of the weights along
these paths (the quantity >, ft;;(g) can be interpreted as the benefit that
agent i receives from his links), o; ; € R (j # ¢) is the marginal cost for agent
i of maintaining the weight g;; of link ij (with o = (ak)ker,) and ¢; € R is
a constant cost for agent ¢ (with ¢ = (¢;)jen)-

The following corollary of Proposition 1.3.2 (network formation with linear
costs) states that societies with payoff functions of the previous form admit
generically an odd number of pairwise stable networks.

Corollary 1.3.3. The set S = [[,.y Si, where for everyi € N,
Si={9eG—v¥(g) eR:Vj#1i,0;,; € R, ¢; € R},

is a A-semi-algebraically reqular set of societies. Furthermore, there exists a
generic semi-algebraic subset G of R x RN such that for every (o, c) € G,
Mien has an odd number of pairwise stable networks.

the society v* = (v§

1.4 Appendix

1.4.1 Reminders about topology and differential cal-
culus

Elementary concepts of topology
Definition 1.4.1. Let X, Y be two topological spaces:

e Amap f: X — Y is proper if for every compact subspace K of Y,
f7Y(K) is a compact subspace of X.

e Amap f: X — Y is a homeomorphism if f is a bijection, and if f and
f~! are continuous maps. If such a map exists, then X and Y are said
to be homeomorphic.

e Amap f: X — Y is a topological embedding if the map z € X —
f(z) € f(X) is a homeomorphism.

o Let f,g: X — Y be two continuous maps. A homotopy between f
and g is a continuous map H : [0,1] x X — Y such that H(0,-) = f
and H(1,-) = g. If such a map exists, then f and g are said to be
homotopic. Furthermore, if such a map is proper, then f and g are
said to be properly homotopic.
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R

L ]

Figure 1.2: S!' is (homeomorphic to) the compactification of R (Aliprantis-
Border [1], p. 57)

Alexandroff one-point compactification of a topological space

Definition 1.4.2. Let (X, 7) be a noncompact locally compact Hausdorff
topological space and X = X U {oco}, where co ¢ X. The set

7 =7 U{X*\K : K C X is compact}

is a topology on X i.e. aset O C X is open in X if: (i) either co ¢ O
and O is open in X; (i) or co € O and the complement of O in X is
compact for the topology induced by 7. The space (X*°, 7%°) is compact and
is called the (Alezandroff one-point) compactification of X.

As a well-known example, Figure 1.2 illustrates the compactification of the
set R of real numbers.

Proposition 1.4.1. Let X,Y be two noncompact locally compact Hausdorff
topological spaces and f : X — Y be a continuous map. Then, f can be
extended to a continuous map from X°° to Y™ if and only if f is a proper
map.

Proof. Consider the map

[ X® o yee
NN {f(m) if reX

oo  otherwise

which is the only possible extension of f.

Suppose that f> is a continuous map, and suppose that f is not a proper
map. By assumption, there exists a compact subspace K of Y such that
f7HK) is not a compact subspace of X. Note that Y\ K is open in Y.
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However, (f*) 1 (Y*°\K) = X\ f~!(K) is not open in X, since f~}(K) C
X is not compact. This contradicts the continuity of f>°.

Suppose that f is a proper map. Let O be an open subset of Y*°. First,
suppose that oo ¢ O. By definition, O is open in Y. Then, (f>*)71(0) =
/7HO) is open in X, since oo ¢ (f*°)~!(O) and since f is a continuous map.
Last, suppose that oo € O. By definition, there exists a compact subspace
K of Y such that O = Y*°\K. Then, (f*)"}O) = (f*)"(Y>*\K) =
X\ f7HK) is open in X, since K C Y is compact and since f is a proper
map. Therefore, f* is a continuous map. O]

Topological degree of a continuous map from S™ to S™

For every continuous map f : S™ — S™, one can associate to f an integer
deg(f) € Z called the degree of f (Dold [19], Definition 4.1, p. 62).

Proposition 1.4.2. (Dold [19], Proposition 4.2, pp. 62-63)

o deg(idgm) = 1.

o Let f,g:S™ — S™ be two continuous maps. If f and g are homotopic,
then deg(f) = deg(g).

e Let f:S™— S™ be a homeomorphism. Then, deg(f) = £1.

For every open subset V' of S, every continuous map f : V' — S™ and every
y € S™ such that f~!(y) C S™ is compact, one can associate to f an integer
deg,(f) € Z called the local degree of f over y (Dold [19], Definition 5.1, pp.
66-67).

Proposition 1.4.3. Let f : S™ — S™ be a continuous map. If deg(f) # 0,

then f 1s surjective.

Proof. The proof follows directly from Dold [19], Examples 5.4, p. 67 and
from Dold [19], Corollary 5.6, p. 67. ]
Proposition 1.4.4. (Dold [19], Examples 5.4, p. 67)

Let V' be an open subset of S™, f : V. — S™ be a continuous map and
y € f(V) such that f~'(y) C S™ is compact. If f is a topological embedding,
then deg,(f) = £1.

Theorem 1.4.1. Let f : S™ — S™ be a continuous map and y € S™ such
that f~*(y) = {x1,..., 2.}, where n > 0. Moreover, let V = J;_, Vi, where
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(Vi) is a family of pairwise disjoint open subsets of S™ such that for every
ie{l,...,n}, z; € V;. Then,

deg(f) = Zdegy(ﬂw)-

Furthermore, if deg(f) = +1, and if for every i € {1,...,n}, f
topological embedding, then n is odd.

v, 18 a

Proof. From Dold [19], Proposition 5.8, p. 68, deg, (f|v) = > i, deg,(fl|v;).
From Dold [19], Corollary 5.6, p. 67 and still from Dold [19], Proposition
5.8, p. 68, deg(f) = deg,(f) = deg,(flv) + deg,(f[v/), where V" is any
open subset of S™ which contains S™\V and such that x; ¢ V', for every
i€ {l,...,n} (such a set always exists if for every i € {1,...,n}, V; is small
enough). Then, from Dold [19], Examples 5.4, p. 67, deg,(f|v+) = 0, which

implies that deg(f) = >, deg, (f Vi)

Now, suppose that deg(f) = £1, and that for every ¢ € {1,...,n}, fly, is

a topological embedding. From Proposition 1.4.4, for every i € {1,...,n},
deg, (flv;) = £1. If deg(f) = 1, then

v) = —1}) = card({; : deg,(f

card({z; : deg,(f

SISV ES]
Therefore,

n = card({; : deg,(f|v;) = —1}) + card({w; : deg, (f
= 2card({z; : deg,(f|v;) = 1}) +1

is odd (the proof is similar if deg(f) = —1). O

v;) =1})

Covering spaces

Definition 1.4.3. Let E be a topological space, B be a connected topological
space, p : E — B be a continuous map and F' be a discrete topological space.
The tuple (E, B, p, F) is a covering space (of total space E, of base space B, of
projection p and of fiber F') if for every b € B, there exists an open subset V'
of B which contains b and a homeomorphism v making the following diagram
commute:

V) 25 VX F

(
lp%

V

o4
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>

Figure 1.3: Covering of S' by p: R — S (Fulton [21], p. 154)

where pry, : (z,y) e VX F—xeV.

Theorem 1.4.2. Let E be a topological space, B be a connected topological
space, p : E — B be a continuous map and F' be a discrete topological
space. Then, (E,B,p, F) is a covering space if and only if for every b € B,
there exists an open subset V' of B which contains b and such that p~ (V) =
Uicr Vi, where (Vi)ier is a family of pairwise disjoint open subsets of E such
that for every i € F, the map x € V; — p(x) € V is a homeomorphism.

Figure 1.3 illustrates the covering of the unit circle of S! by the projection
p:z € R+ (cos(2mz),sin(27z)) € St

Proof. Suppose that (E, B, p, F') is a covering space. Let b € B. By assump-
tion, there exists an open subset V' of B which contains b and a homeomorph-
ism ¢ : p~1(V) = V x F such that for every z € p~*(V), p(z) = (pry o)) (z).
Then, (v=4(V x {i}))icr is a family of pairwise disjoint open subsets of E
such that for every i € F, the map x € ¢}V x {i}) — p(x) € V is a
homeomorphism. Moreover,

U (vxdiy) = o (U Vxdid) = &7 (ory' (V) = (pryow) (V) = p~ (V).

i€F el
Suppose that for every b € B, there exists an open subset V' of B which

contains b and such that p~" (V) = ,cp Vi, where (V;)icp is a family of
pairwise disjoint open subsets of E such that for every ¢ € F, the map
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x € V; = p(x) € V is a homeomorphism. Let b € B. The map 1 :
v € Uiep Vi = (p(x),i,) € V x F, where i, is the only element of F such
that z € V, , is a homeomorphism, since for every ¢ € F, the map = €
Vi = p(z) € V is a homeomorphism. Moreover, for every =z € (J,cp Vi,

)
(pry 0 ¥)(x) = pry(p(x),4z) = p(z). 0

Differential calculus and mathematical optimization

Definition 1.4.4. A function f from an arbitrary subset A of R™ to R is
said to be C! if for every a € A, there exists an open subset O of R™ which
contains a and a C! function g : O — R such that glona = flona.

Proposition 1.4.5. Let C be a closed convex subset of R™ such that int(C') #
0, f:C =R beaClC function, c € C and g, : O1 — R, g2 : Oy — R be two
C! extensions of f around c. Then, for everyi=1,... m,

g _ 092

Proof. First, note that cl(int(C')) = C, from C being a closed convex subset
of R™. By definition, there exists a sequence (c¢‘)gen in int(C) (# ) such
that (c’)sen converges to c¢. Thus, there exists £* € N such that for every
0> 0%, c* € Oy N Oy. Then, for every £ > ¢*,

991, 4 of 4 992 , 4
Since both g; and g, are C! functions, their first-order derivative with respect
to the i-th variable are continuous, which finally implies that

g, (©) = lim o () = 1 Jg2 () = 392( ).

= C
e 8557, t—ec aﬂfl al’z
>0 >0
]

Definition 1.4.5. Let C be a closed convex subset of R” such that int(C') #

0, f:C — RbeacC! function, c € C' and g : O — R be a C! extension of f
around c. For every 1 =1,...,m,

of dg
8%(C) = axi(c)'

Proposition 1.4.6. (First-order necessary and sufficient conditions)

Let f:1]0,1] = R be a C' concave function. Then, x € [0,1] is a mazimizer
of f if and only if one of the three following conditions holds:
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1. f'(x) =0 and z € (0,1).
2. f(x) >0 and z = 1.
3. f'(xz) <0 and x = 0.

Theorem 1.4.3. (Berge’s theorem)

Let XY be two topological spaces, V : X — Y be a continuous correspond-
ence such that for every x € X, ¥(x) is a nonempty compact subspace of Y,
and f: Gr(¥) — R be a continuous map. Then, the map

€ X — maxycue) f(z,y) €R
is continuous. Moreover, if Y is Hausdorff, then the correspondence
r € X w argmax, ey, f(2,y)

1 upper hemicontinuous.

1.4.2 Reminders about real semi-algebraic geometry
Elementary concepts

Definition 1.4.6. A semi-algebraic subset of R™ is a set of the form

S

U ﬁ{x e R™: f;;(z) %;; 0},

i=1j=1
where x; ; denotes either < or = and f;; € R[X;,...,X,,], for every ¢ =
1,...,sand every j = 1,...,7r;. A set S is said to be semi-algebraic if it is a

semi-algebraic subset of R™, for some m € N.

Example 1.4.1.

e The unit m-disk D™ = {(z1,...,2m) € R 0 S22 < 1}
=1

the unit m-sphere ™ = {(z1,...,2pp1) € R S xil
and the unit m-simplex A™ = {(zy,..., &) € R™H S gy =

1 and Vk € [1,m + 1], 2, > 0} are semi-algebraic.

e The graph {(z,y) € R? : y = cos(x)} of the cosine function is not
semi-algebraic.

e The “infinite fan” {(x,y) € R?: In € N,y = nz} is not semi-algebraic
(cf. Figure 1.4).
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Figure 1.4: Infinite fan (left) and infinite staircase (right) (Bochnak et al.
(8], pp- 24-25)

e The “infinite staircase” {(z,y) € R* :y = |z or[r € Zand z <y <
x + 1]} (where |-| denotes the floor function) is not semi-algebraic (cf.
Figure 1.4).

Starting from semi-algebraic sets, one can create new ones by taking finite
unions, finite intersections and complements (by definition). However, it is
also the case by taking projections:

Theorem 1.4.4. (Tarski-Seidenberg’s theorem)

Let S be a semi-algebraic subset of R™™ and prgm : (z1,...,Tm,y) € R™M —
(1, ..., Tm) € R™. Then, prgm(S) is a semi-algebraic subset of R™.

Remark 1.4.1. In this chapter, even if Tarski-Seidenberg’s theorem will not
be used per se, it remains one of the most important result of real semi-
algebraic geometry, since many results (including the ones which follow in
this section) are derived from this theorem.

Definition 1.4.7. A first-order formula of the language of ordered fields with
parameters in R is a formula written with a finite number of conjunctions,
disjunctions, negations, and universal or existential quantifiers on variables,
starting from atomic formulas which are formulas of the kind f(x1, ..., z,,) =
0 or g(z1,...,z,m) > 0, where f and g are polynomials with coefficients in
R. The free variables of a formula are those variables of the polynomials
appearing in the formula, which are not quantified.

Example 1.4.2. Here are some examples of first-order formula of the lan-
guage of ordered fields:
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e > 0.

(22 + 4z = y) A (v° = 3).

Yy, 3z, (r+y=1) A (z =1y).

(Fy, (y > 0) A (zy = 3)) = (x > 0).

Proposition 1.4.7. (Bochnak et al. [8], Proposition 2.2.4, p. 28)

Let ®(xq,...,xy) be a first-order formula of the language of ordered fields
with parameters in R, with free variables x1, ..., x,,. Then,

{(x1,...,2p) ER™: D(xy,...,2,)}

15 a semi-algebraic set.

2

Remark 1.4.2. In the previous notation, “®(zy,...,x,,)” is implicitly con-
sidered as a first-order formula of the language of ZF(C) set theory. In
particular, quantifiers are only allowed on variables that range over R. For
example, if ®(z,y) corresponds to

Iz, (x+y+2z=3)A(zy+2°>=5),
then {(z,y) € R?: ®(x,y)} corresponds to

{(z,y) ER2: 32 e R,z +y+ 2 =3 and 2y + 2% = 5}.

Example 1.4.3. If f is a polynomial function of four variables with coef-
ficients in R, then S = {(z,y) € R? : V(z2,t) € S', f(z,y,2,t) > 0} is a
semi-algebraic set. Indeed, S can be written as {(z,y) € R* : ®(x,y)},
where ®(x,y) corresponds to

Vz,Vt, (2'2 +t2 - 1) = (f(x,y,Z,t) 2 O)

More generally, if S is a semi-algebraic set, and if ®(zq,...,x,,) is a first-
order formula of the language of ordered fields with parameters in R, then
both the sets

{(z1,...,2m) ER™ Vo € S, 0(x1,...,2)}

and
{(z1,...,2p) ER™: Tz € S, D(x1,...,2)}

are semi-algebraic.
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Definition 1.4.8. Let S be a semi-algebraic subset of R™ and T be a semi-
algebraic subset of R?. A map f : S — T is semi-algebraic if its graph
Gr(f) = {(z, f(x)) : x € S} is a semi-algebraic subset of R™ x RP. A map
f S — T is a semi-algebraic homeomorphism if f is both a semi-algebraic
map and a homeomorphism. If such a map exists, then S and 7" are said to
be semi-algebraically homeomorphic.

Example 1.4.4.
o If S C R™ and T C RP are semi-algebraic, and if f : S — T is a
polynomial function, then f is semi-algebraic.

e The map f:x € R\{0} — < € R is semi-algebraic since
1
Gr(f) = {(x,9) € R\{0) x By = 1} = {(2,0) €B”: 2 # 0 and oy = 1},

e If S C R™ is semi-algebraic, and if f : S — [0, 400) is semi-algebraic,
then /f : S — [0, +00) is semi-algebraic.

e The maps In, exp, cos and sin are not semi-algebraic.
Proposition 1.4.8. (Bochnak et al. [8], Proposition 2.2.7, p. 29)

Let S,T be two semi-algebraic sets and f : S — T be a semi-algebraic map.
For every semi-algebraic set A C S, f(A) is a semi-algebraic set, and for
every semi-algebraic set B C T, f~1(B) is a semi-algebraic set.

Corollary 1.4.1. Let S, T be two semi-algebraic sets and f : S — T be a

semi-algebraic bijective map. Then, =1 is a semi-algebraic map.

Proof. The proof follows directly from Proposition 1.4.7 and from Proposi-
tion 1.4.8. [

Corollary 1.4.2. Let S, T be two semi-algebraic subsets of R™. Then, S+T
15 a semi-algebraic set.

Proof. Note that S+ T = f(S x T), where f: (z,y) € SxT —z+y e R™
is a semi-algebraic map. The proof follows from Proposition 1.4.8. O]

Dimension of a semi-algebraic set

For every semi-algebraic set S, one can associate to S an integer dim(S) € N
called the dimension of S (Bochnak et al. [8], Definition 2.8.1, p. 50).
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Proposition 1.4.9. (Bochnak et al. [8], Theorem 2.5.6, p. 33)

FEvery semi-algebraic subset S of R™ s the union of a finite number of
pairwise disjoint semi-algebraic sets (S;)i—,. Furthermore, for every i €

{1,...,n}, S; is semi-algebraically homeomorphic to an open hypercube (0,1)%,
for some d; € N.

Proposition 1.4.10. (Bochnak et al. [8], Corollary 2.8.9, p. 53)

Let S be a semi-algebraic subset of R™. If S is a union of a finite number
of semi-algebraic sets (S;)"_, such that for every i € {1,...,n}, S; is semi-
algebraically homeomorphic to an open hypercube (0,1)% (d; € N), then

dim(S) = max{dy,...,d,}.

Example 1.4.5. dim(S*) = 1 (by removing (0, 1) and (0, —1)). More gener-
ally, dim(D™) = dim(S™) = dim(A™) = m.

Corollary 1.4.3. Let S = |J;_, Si, where (S;)1_; is a family of semi-algebraic
subsets of R™ such that for every i € {1,...,n}, S; is semi-algebraically
homeomorphic to an open hypercube (0,1)% (d; € N). For everyi € {1,...,n},
if dim(.S;) = dim(S), then S; is open in S.

Proof. The result follows from Bochnak et al. [8], proof of Theorem 2.3.6,
pp. 33-34. O

Proposition 1.4.11. (Bochnak et al. [8], Proposition 2.8.5, p. 51)
o Let S = |J,(Si),, where for every i € {1,...,n}, S; is a semi-
algebraic set. Then, dim(S) = max{dim(S;),...,dim(S,)}.

e Let S, T be two semi-algebraic sets. Then, dim(S x T) = dim(S) +
dim(7).

Proposition 1.4.12. (Bochnak et al. [8], Theorem 2.8.8, p. 52)

Let S, T be two semi-algebraic sets and f : S — T be a semi-algebraic map.
Then, dim(S) > dim(f(S)). Furthermore, if f is a bijective map, then
dim(S) = dim(7').

Corollary 1.4.4. Let S, T be two semi-algebraic sets. If S C T, then
dim(S) < dim(7).

Proof. The proof follows directly from Proposition 1.4.12. ]
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Corollary 1.4.5. Let S, T be two semi-algebraic subsets of R™. If Span(.S)
and Span(T') are in direct sum, then dim(S + T) = dim(S) + dim(7T).

Proof. Since Span(.S) and Span(7') are in direct sum, the semi-algebraic map
f i (z,y) € Span(S) xSpan(T") — z+y € Span(S)+Span(T’) is a vector space
isomorphism. Thus, the restriction of f from Sx T to f(SxT)=S+T isa
semi-algebraic bijective map, and the result follows from Proposition 1.4.11
and from Proposition 1.4.12. n

Generic semi-algebraic sets and semi-algebraic fiber bundles

Definition 1.4.9. Let S be a semi-algebraic set. A semi-algebraic set G C S
is said to be generic in S (or to be a generic subset of S) if dim(S\G) <
dim(S), and if GG is open in S.

Example 1.4.6. The complement of a line in the plane R? is a generic subset
of R2.

Definition 1.4.10. Let £ and F' be two semi-algebraic sets, B be a semi-
algebraically connected semi-algebraic set and p : E — B be a continuous
semi-algebraic map. The tuple (E, B,p, F') is a semi-algebraic fiber bundle
(of total space E, of base space B, of projection p and of fiber F) if there exists
a semi-algebraic homeomorphism 1 making the following diagram commute:

pYB) —25 BxF
lp/
Prp
B
where prg : (z,y) € Bx F—x € B.

Proposition 1.4.13. Let S,T be two semi-algebraic sets and f : S — T be
a continuous semi-algebraic map. There exists a generic subset G of T such
that for every connected component C' of G, there exists a semi-algebraic set

Fe such that (f~1(C),C, f, Fc) is a semi-algebraic fiber bundle.

Proof. The result follows from Bochnak et al. [8], Theorem 2.4.5, p. 35 and
from Bochnak et al. [8], Corollary 9.3.3, p. 224. ]

Theorem 1.4.5. Let S,T be two semi-algebraic sets such that dim(S) =
dim(7T) and f : S — T be a continuous semi-algebraic surjective map. There
exists a generic subset G of T' such that for every connected component C
of G, there erists a nonempty finite set Fo such that (f~1(C),C, f, F¢) is a
covering space.
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Proof. From Proposition 1.4.13, there exists a generic subset Ty of T' such
that for every connected component C' of Tj, there exists a semi-algebraic
set F¢ such that (f~1(C),C, f, F¢) is a semi-algebraic fiber bundle (denote
by ¥ the semi-algebraic homeomorphism such that pr, o ¢ = f, where f
is restrained from f~1(C) to C, by abuse of notation).

First, consider the sets
C~(Ty) = {C C Tp : C is a connected component of Ty and dim(C') = dim(7")},
C=(Ty) = {C C Ty : C is a connected component of Ty and dim(C) < dim(7T)}

¢= |J c

CEC:(T())
Remark that C=(Tp) # 0. Indeed, since T'= Ty U (T'\Tp),

and

dim(7T") = max{dim(7}), dim(T\Tp)} = dim(7p)

(from Proposition 1.4.11 and from Ty being generic in T'), which implies that
at least one of the connected component of T has the same dimension as
T (again from Proposition 1.4.11, but applied to Ty). We show that G is a
generic subset of 7"

1. Since G and Upee<(p,,) are disjoint, notice that
nG=1\(Gu |J opu | ¢
Ccec<(Ty) Ccec<(To)

Hence,

dim (7T\@) = max{dim ((7"\(G U U C))), dim( U )},

CeC<(To) CeC<(Tp)

from Proposition 1.4.11. Observe that

dim((T\(GU | ©))) =dim(T\Tp) < dim(T),
CeC<(Tp)

from T being generic in 7', and that
dim( | J ©) <dim(7),
CceC<(Ty)
by definition and from Proposition 1.4.11. Therefore, dim(7T\G) <
dim(7).
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2. Note that each connected component of T is open in T, since Ty is itself
open in T' (from T, being generic in T') and since T is locally connected
(as a subspace of some Euclidean space). Thus, G = UCeC:(TO) C is
also open in T as an arbitrary union of open subsets of T

Now, for every C' € C=(Tp), we show that there exists a nonempty finite
set Fc such that (f~1(C),C, f, F¢) is a covering space. Let C' € C=(Tj)
be a connected component of G and t € C. Since f~(C) and C x Fg are
semi-algebraically homeomorphic,

dim(C x F¢) = dim(C) + dim(F¢) = dim(f~(C)),

from Proposition 1.4.11 and from Proposition 1.4.12. Also, note that f~1(#) is
semi-algebraically homeomorphic to Fir (1c|f-1(;) is a semi-algebraic homeo-
morphism from f~1(t) to {t} x Fi, which is itself semi-algebraically homeo-
morphic to F, and the result follows by composition), which implies that

dim(f~1(t)) = dim(Fc),

again from Proposition 1.4.12. Moreover, dim(C') = dim(T") (by definition of
G). Thus, since f~}(C) C S,

dim(f~'(¢)) = dim(f~(C)) — dim(C) < dim(S) — dim(T),

from Corollary 1.4.4. By assumption, since dim(S) = dim(7"), notice that
dim(f~!(t)) = dim(F¢) = 0, hence that F¢ is a finite subspace of some
Euclidean space (i.e. a discrete space). Nonemptiness of Fo comes from
surjectivity assumption on f and from the fact that f~!(¢) and Fi are semi-
algebraically homeomorphic (which implies that card(f~1(¢)) = card(F¢)).
Finally, consider the set C' 3 ¢ (which is open in itself) and the (semi-
algebraic) homeomorphism ¢, and observe that (f~(C),C, f, F¢) is a cov-
ering space with nonempty finite fiber F¢, since by assumption, (prs o

Ye)(z) = f(x), for every x € f~1(C). n
1.4.3 Proof of structure theorem

From now on, consider a fixed network ¢° € G.

Step I. Constructions of 7r and pr.
Consider the map

Y

nrg: Pr — F
(v,9) — @
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where for every ¢ € N and every v € G,
59 () = v+ (Ouvilgis, 9-i5) — Ogvilgij, 926)) (vig — 9i3) + > gigvig- (1.1)
J#i J#i
Moreover, consider the map

pr: F — FxG
v (u,gY)

Y

where for every ¢ € N and every v € G,
Qf(f)/) = Ul(f)/) - Z (81]1)1(.9277931]) 81]”’5(9”79 f)/Zj g’Lj Z 91]72]7 1 2
j#i J#i
and where for every link ij € L, g;; = min{wy ;, w3, }, with w}; € [0, 1] being

the unique maximizer of the strictly concave function

{qi[v]: 0,1] — R ]
w o = vi(w, g_zj) - %

(since vy(-, ¢°,;) is concave) and w?,; € [0, 1] being the unique maximizer of
the strictly concave function

{qj[v]: 0,1] — R )
w = v(w, g_w) — %

(since v;(-, g%;;) is concave).

Step II. pz(F) C Pxr.
Let v € F. We have to prove that the network ¢" is pairwise stable with
respect to u¥. Let 17 € L, and without loss of generality, suppose that

v )
9i; = mln{w”, wi,} = w;;

(ie. wi; <wj,).

First, we show that gj; maximizes the map (-, ¢%;;) (Which ensures that

first condition of pairwise stability is fulfilled for agent ¢ and that second
condition of pairwise stability is also fulfilled). For every w € [0, 1],

aijgg<wagqiij) = aijvi(wﬂzij) - (a’ijvi<g;}j7gzij> - aijvi(g;}pg(lij)) — 9

and in particular, note that

aijgg(gzpjagzij) = aijvi(g;}jago—ij) — 9 (1.3)
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However, remark that for every w € [0, 1],

gi[v]' (w) = aijvi<waggz’j) —w,

and in particular, that

qi[v]'(g5;) = Bijvi(9, 9%45) — 955 (1.4)

By definition, wy; = g;; is the unique maximizer of the function ¢;[v]. Hence,
from Equation (1.3) and Equation (1.4), and from Proposition 1.4.6 (applied
first to ¢;[v], and then to uf (-, g”;;)), one obtains that gj; also maximizes the

map Q;‘)('v gzz’j)‘

Last, it remains to show that first condition of pairwise stability is fulfilled
for agent j. It is clearly the case if g;; = 0, so suppose that g;; > 0. We
show that the map uj(-,¢%;;) is nondecreasing on [0, g;;), or equivalently
(since u(-,g",;;) is concave), that J;uj(g;,9%;;) > 0. After a computa-
tion similar to the one in Equation (1.3), note that 9;u?(gy;, 9%,;) > 0 if
and only if aijvj(g;’j,go_ij) — g;; = 0. However, after a computation sim-
ilar to the one in Equation (1.4), remark that g;[v]'(g;;) = 015 (g5}, 9%;)-
By definition, wj; > gj; is the unique maximizer of the function g;[v].
Hence, from Proposition 1.4.6 (applied to g;[v]) and from concavity of ¢;[v],

05ui (9, 9%45) = a;lv)'(g3;) = 0.

Therefore, ¢V is pairwise stable with respect to u”, which implies that pz(F) C
Pr.

From now on, by abuse of notation, the map v € F — (u’, g") € Pz is also
denoted pgr.

Step I11. nr o pr = idr.

Let v € F, and consider

v LU
7% g

(nF o pr)(v) =nr(u’, g") =u*

By definition of nz (see Equation (1.1)) and of pr (see Equation (1.2)), for
every ¢ € N and every v € G,

a () = ul (V) Y (9wl (95, 9%5) — Ol (985, 9%55) (vig — 955)) + D 98vig- (1.5)
[ET [eT
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= (Ol (g5, 9%45) — 05w (935, 9°35) (i — 9))
- Z (aijvz'(gfp gzij) - 8ijvi(g;‘)j> ggij)(%j - gfj))
i

= Z () — 0i) (955, 9%5) — O (g —vi) (g5, 9%4,)) (g — 93)
J#i

by summing Equation (1.2) and Equation (1.5). However, remark that the
map g € G — (uf —v;)(g) is affine, which implies that for every j # i and
every g € G, 0;;(u} —v;)(gi5, 9—ij) does not depend on g_;;. Thus, each term
in the previous sum is null, which implies that w%9" = v.

Step IV. pronr =idp,.

Let (v,g) € Pz, and consider

(pr 0 nF)(v, 9) = pr(@?) = (W™, g™,

where for every link ij € L, gf;" = min{w;”’, w};’}, with w;”" € [0,1]
being the unique maximizer of the strictly concave function

{ qi[u?] = [0,1] R

%
2
w = T (w, g_w) -
(since @; (-, g°;;) is concave) and w¥;” € [0, 1] being the unique maximizer
of the strlctly concave function

{ ¢;[w?: [0,1] — R
—v, 0 w?
wo = Uy g(wagﬂ‘j) -3

0

(since u;?(-, g%,;;) is concave). We have to prove that ¢** = g and that

v,9
u-?

Substep IV.1. ¢* = g.

Recall the following lemma, which provides a necessary condition for a net-
work to be pairwise stable with respect to a continuous own-weights concave
society.
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Lemma 1.4.1. (Bich-Morhaim [6])

Let v be a continuous own-weights concave society and g be a pairwise stable
network with respect to v. Moreover, for every ij € L, let

Qi(g-ij) = [Wi(g-ij), wi(g-i5)] = argmax, e 1vi(w, g—ij)

and
Qj(9-ij) = [wj(9-ij), @j(g9-ij)] = argmax,,¢(o 1v; (W, g—ij)-

Then, for everyij € L,
9i5 € [min{w;(g_i;), 0;(g-i;) }, min{wi(g—i;), w;i(g-i;) }]-

Let ij € L, and without loss of generality, suppose that @;(g_;;) < @;(g-i;)
(recall that (v,g) € Pr). In that case, from Lemma 1.4.1, observe that
gi; € Qi(g_ij), 1.e. gi; is a maximizer of the map v;(-, g_;;). Hence, v;(-, g_;;)
satisfies one of the three conditions of Proposition 1.4.6. Now, note that

4q; [ﬂv’g]/(gij) = @juq;’g(gz‘ja ggij) —G9ij = aijvi(gz‘j, g*ij)v (1.6)

computing 0;;u;"? (g5, 9°;;) with Equation (1.1). Then, ¢;[@"] also satisfies
one of the three conditions of Proposition 1.4.6, which implies that g;; is the

unique maximizer of this function (from its strict concavity), i.e. ¢;; = wlﬂ;q
To finish, it only remains to prove that giﬂ;’ = w;‘j ' or equivalently, that
wi” < wfy’. This inequality is clearly verified when wi’;* = 0 or when

w;lg = 1, so suppose that wf’;” > 0 and that w?;" < 1. Since wi’ < 1,

note that

g;[@"?) (wy;") <0,
from Proposition 1.4.6. Also, a computation similar to the one in Equation
(1.6) provides that ¢;[u ’9] (gw) = 0;;v,(i;,9-i;). Hence, since v;(-, g_;;) is
concave and since 0 < wi;" = g;; < Wj(g-i;) (because g;; is less or equal to
min{w;(g_;;),w;(g—:;)}, from Lemma 1.4. 1) remark that J;;v;(wi;”, g_i;) >
0, i.e.

v,9

gi[a"?]' (w;") = 0.

Finally, ¢;[@"9]'(w};”) < ¢;[@"9)'(wf;”), which implies that w;” < wjzg,
because the map g [@”9]" is strictly decreasing from strict concavity of ¢;[u"9].

Therefore, g* "~ = g.
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Substep IV.2. v*" = .

The proof is similar to the one of Step III. For every ¢« € N and every v € G,
by definition of p# and from Substep IV.1 (i.e ¢** = g),

u () = ﬂf’gW)—Z (057915, 9-i) =035 (915, 9245)) (%‘j_gij)_z 9iiVij»
JF JFi

and by definition of nr,

() = vily) + Z (aijvi<gij7 9-ij) — O3vi(gij, go—ij))(%’j — 9ij) + Zgiﬂz‘j-
i i

Then,

W () =ui(r) = 3 (O (0= ) 915 910)— O (=) 15, 2,)) (=91

7 Y iy g \Vi i Gijs 9—ij ig\ Vi i iz, g—U Vii —Yij),
J#i

by summing the two above equations. However, remark that the map g €
G — (v; —u;?)(g) is affine, which implies that for every j # i and every
g € G, 0;(v; —u;?)(gij, g—i;) does not depend on g_;;. Thus, each term in

the previous sum is null, which implies that u*"* = v.

Step V. nr is a continuous map.

Recall that for every (v, g) € Pr, nr(v,g) = u”9, where for every i € N and
every v € G,

u(y) = vi(y) + Y (00i(9iss 9-i3) — 0ig0i9i7, 9%7)) (vig — 9i) + D> 9iiVis
ji J#

(see Equation (1.1)). Since F is endowed with the product topology, the
continuity of nr is obtained from the three following points:

1. For every i € N and every continuous maps f}, f? : P — F;, the map

fi : (Uvg) € 7).7: = fil(vvg) + fiQ(Uag) € -Fz

is continuous. Indeed, consider (v*, ¢g*) € Pr and consider a sequence
(v, ") een in Pz which converges to (v*, ¢g*). By definition, for every
(v,9) € Pr, [Ifi(v, 9) = fi(v*, ") i is equal to

max{max{|[fi(v, 9)=fi(v", §%) lloc, 10w Si (v, 9) = O fi(v", g )|oo } + K 7 1},
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Thus,
Hfi(veage)_fi(v*vg*)”i < ”fil(veage)_fil(v*7g*)Hi—i_Hfz?(veage)_f'?(v*7g*)‘|i7
which implies that

lim | I £i(v®, g — fi(v*, g")|li = 0,

(vt,g%) = (v*,g*

since (v, g*)ren converges to (v*, g*) and since both f! and f? are con-
tinuous. Hence, f; is a continuous map.

. For every i € N, the map (v,g) € Pr — v; € F; is continuous, as the
restriction of a canonical projection.

. For every 7 € N, the map
(v,9) € Pr (7 = Z (@jvi(gij,g—ij)—aijvi(gij7go_ij))(Vij—gij)+Z gz'j%'j) S
j#i J#i

is continuous. Indeed, we show that the map
fij: (v,9) € Pr (7 = aijvi(gijvg—ij)%j) € Fi

is continuous, for every j # i (the reasoning is similar for the other
maps of the previous sum). Consider (v*,¢*) € Pz and consider a
sequence (v%, g“)sen in Pr which converges to (v*, g*). By definition,
for every (v, g) € Pr and every v € G,

fz’j(ng)(ﬂ - fij(v*,g*)(v) = aijvi(gij,g—ij)%j - @jvf(gfjagiij)%j
= 0ij(vi — v})(9ij» 9—ij)Vij
+ (@'jvf(gija gfij) - az‘jvf (g:ja giij))%j-
This implies that

1£i5(0%, g°) = fi (v, 0 oo
< ’aij(vf - U:)(gfjagé—ij”
+ [035v; (gfja gé—ij) — Oijv; (g:ja giij)l

< vl = vf [l + 10307 (g5, 9%5) — O3 (955, 97455 -

70



Then,
lim Hfu( K’gé) - fij(v*vg*)HOO =0, (1'7)

(fUZ7gZ) ('U* *

since (v, g“)en converges to (v*,g*) and since O;v} is continuous.
Moreover, for every (v, g) € P, every k # i and every v € G,

i fi5(v, 9)(7) — O fij (v", g%)(7)

_ [ 0ivil9ij, 9-i5) — 0307 (955, 9%45) if k=
0 otherwise

Similarly as above, this implies that for every k # i,
19ir fij (", §°) =i fig (v, 9 loo < Nl =0 iH|0s50F (98, 9%45)— 0507 (9550 9745
hence that

lim ||aikfij(vea ge) - aikfij(v*ag*)”oo =0, (1-8)

(vt,g%)—(v*,g%)

since (v, g*)ren converges to (v*,g*) and since O;v} is continuous.
Therefore, from Equation (1.7) and Equation (1.8),

lim ”fij(veagﬁ) - fij(U*>9*)Hi =0,

(vt,g%) = (v*,9%)

which implies that f;; is a continuous map, for every j # 7.

Step VI. pr is a continuous map.

Recall that for every v € F, pr(v) = (u’, ¢"), where for every i € N and
every v € G,

wf () = vi(7) = Y (0vilgl 9%5) — 0igvilaly %)) (g — 95) = > 9%

G J#i
(see Equation (1.2)), where for every link ij € L, gj; = min{w};, w},;}, with
wy ; € [0,1] being the unique maximizer of the strictly concave function g;[v] :
w € [0,1] = vi(w, ¢°,;) — %2 € R and wj,; € [0, 1] being the unique maximizer
of the strictly concave function g;[v] : w € [0,1] —= v;(w, ¢%;;) — %2 € R. The
continuity of p can be obtained similary as the continuity of 1. The only
additional point is to prove that the map

vEF s g' €G
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is continuous. This follows from the continuity of the maps v € F — wy; €
0,1] and v € F = wj,; € [0,1], for every ij € L, which is a consequence
of Theorem 1.4.3 (Berge’s theorem). Indeed, let ij € L, and consider the
constant correspondence

U:veFe 0,1 clo1]

and the map

2
gi : (v,w) € Gr(¥) — g;[v](w) = vi(w,ggij) — w? € R.

We show that the map ¢; is continuous. Consider (v*,w*) € F x [0,1] and

consider a sequence (v’, w*),en in F x [0, 1] which converges to (v*, w*). By

definition, for every (v,w) € F x [0, 1],

giv](w) = gilv*](w") = (vi(w, g73) — =) = (v (w", g7

0 w’ %/ % 0 (w*)?
) 00— )

= (vi(w, ¢°;) — vf (w*, g°;)) + (% (w*)
= (=), o) (07,62, =07 524)

This implies that

|qi W] (wé) — qi[v*](w")| <

(vf = 1) (', 02| + o (', ¢2.) — v (w60,
) )

Rl -
< va —vj ||; + |U:(w£7go—ij) - v:(w*’go—ij)‘

2 2

+1

2 2 .
Then,
|a: [0} (w") = g:[v*](w*)] = 0,

(vt wt)— (v w*)

since (v, w%) ey converges to (v*,w*) and since v} is continuous. Therefore,
from Berge’s theorem, the map

v € F = argmax,,c o1 ¢[v)(w) = wi; € [0,1]
is continuous (the reasoning is similar for the map v € F + w?; € [0, 1]).
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Step VII. 7 and nr are properly homotopic.
We show that the map

{H]:I [O,l]xp]-‘ — F
(tv (Uag» = (1 - t)?T;(U,g) + 7577?(“79)

is a proper homotopy between 7z and nr. Note that Hx(0,(+,-)) = 7x and
Hz(1,(-,-)) = nr, and that Hz is a continuous map (the proof is similar to
the one of Step V).

Thus, it remains to show that Hz is a proper map. To do so, define the map

{G}: 0,1]x FxG — F
(t? (U,g)) = (G};(t? (U’g))i)ieN 7

where for every ¢ € N and every v € G,

= v;(7) + t( Z (8350i(9ij> 9-i3) — B0z, 9%4)) (g — 9i5) + Z 9ijYii)-
i i
Note that the restriction of G from [0, 1] x Pz to F is equal to Hz. Moreover,

consider the map

{@;: 0,1]] x FxG — 0,1] x Fx G
(t.(v.9) = (L(GE(E (v,9),9)

and remark that this map is invertible: its inverse is the map

{belz 0,1]]x FxG —  [0,]]xFxG
(t,(v,9)) = (L(GE((v,9),9) 7

where
{G;: 0,1]x FxG — F
(t, (U7 g)) = (G.;'<t7 (U7 g)>i)z’eN ’

where for every ¢ € N and every v € G,

Gx(t, (v, 9))i(7)

= v;(7) — t( Z (aijvi(gij; 9—ij) — 9ijvi(gij, go—z‘j)) (Vij — 9i5) + Zgij%j)-
i i
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Both & and @}1 are continuous maps (proofs are similar to the one of Step
V), which implies that ®# is a homeomorphism. Now, for every compact
subspace K of F, observe that

,(v,9)) € [0,1] x Pr: Hx(t, (v,9)) € K}
,(U,g)) € [07 1] X P}' : (I)}-(Zf, (U79>> < [07 1] X K % G}
= o:1([0,1] x K x G) N ([0,1] x Px).

Moreover, consider the following lemma.

Lemma 1.4.2. Pz is a closed subet of F X G.

Proof. Consider (v*,g*) € F x G and consider a sequence (v, g)sey in Pr
which converges to (v*, g*), and suppose that (v*, g*) ¢ Pz.

Suppose first that there exists ij € L and w < gj; such that v} (w, g*;;) >
v} (g*) (without loss of generality). By definition of the topology on F;, since
(v*, ¢%)een converges to (v*, g*) and since v} is continuous, remark that the

sequence (v¢(g%))een converges to v} (g*):

[0 (") = v (g7)] < [vi(g") — w7 (g")] + v} (g") — v (g")]
< lvf = v llso + 105 (9%) — w7 (9")]
< lvf = villi + vy (") = vi (g7)],

and similarly, that the sequence (vf(w,g",;))een converges to vf(w, g ;).
Then, there exists ¢ € N such that vf(w, g";;) > v/(g"), which contradicts
the fact that ¢¢ is pairwise stable with respect to v*.

Now, suppose that there exists ij € L and w > g}; such that v (w,g*;;) >

vi(g*) and vi(w, g*;;) > vi(g*). In a similar way as above, since (v*, ¢*)sen
converges to (v*,¢g*) and since v} and v} are continuous, this means that
there exists £ € N such that vf(w,g",;) > v{(¢°) and vj(w,¢";;) > vi(g"),

which contradicts the fact that ¢° is pairwise stable with respect to v*. [

From Lemma 1.4.2, note that [0, 1] x Pz is also closed in [0, 1] x F x G, thus
that Hz'(K) is closed in ®7'([0,1] x K x G), which is a compact subspace
of [0,1] x F x G (since K is compact, and since ®x is a homeomorphism).
Therefore, this finally implies that Hz'(K) is a compact subspace of [0, 1] x
Pz, thus that Hz is a proper map.
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Step VIII. For every A-regular set R of societies, the projection
mr : Pr — R is properly homotopic to some homeomorphism 75 :

Let R = [];,cy Ri be a A-regular set of societies (i.e. R satisfies concavity
assumption and A-invariance assumption in Definition 1.2.8).

Consider the maps
{ nrR: Pr — F
(v,9) = nr(v,g) =a"9

and
pr: R — Pr
{ v o= pr(v) = (v’ g")

(which are well-defined, from concavity assumption). From the previous
steps, it is sufficient to prove that ng (Pr) C R and that pr(R) C Pg in order
to obtain that Pr and R are homeomorphic (in that case, the restriction of
nr from Pgr to R is such a homeomorphism and its inverse is the restriction
of pr from R to Pr).

Substep VIIL.1. nzx(Pr) C R.
Recall that for every (v, g) € Pg, every i € N and every v € G,
w0 (y) = 0i(y) + D (0ivi(9igs 9-i5) — Dijvil9i 9%i7)) (vig — 9i3) + Y 9igVig
i i

(see Equation (1.1)). Remark that @;? is equal to v; up to an element of
A;. Thus, A-invariance assumption directly implies that nr (Pr) C R.

From now on, by abuse of notation, the map (v, g) € Pgr — nz(v,g) € R is

also denoted ng.

Substep VIIL.2. pr(R) C Px.
Recall that for every v € R, every ¢ € N and every v € G,

w(y) = vi(y) = Y (ivilg5y 9%5) — Oigoilglys 9%i))) (vig — 985) — D 98vis

J#i J#i
(see Equation (1.2)), where for every link ij € L, gi; = mm{w”, w},;}, with
€ [0,1] (resp. w}; € [0,1]) being the unique maximizer of the strictly

concave function qi[v] 0,1] = vi(w, g%55) — %2 € R (resp. g¢;[v] : [0,1] —
v;(w, g°,;) — %2 € R). Similarly as in the previous step, observe that u! is
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equal to v; up to an element of A;. Thus, A-invariance assumption directly
implies that pr(R) C Px.

From now on, by abuse of notation, the map v € R — pz(v) € Pg is also
denoted pgr.

Substep VIII.3. mz and 1z are properly homotopic.
Consider the map
{HR: 0,1] x Pr — F
(t> (Uag)) = (1 —t)WR(%g) +tnR(U7g)

(which is well-defined, from concavity assumption). Remark that, for every
(t, (v,g)) € [0,1] x Pg, there exists a € A such that

Hr(t(v,g9)) = (1—t)mr(v, 9)+tnr(v,9) = (1—t)v+t(v+a) = v+ta € R+A,

since ngr (v, g); is equal to v; up to an element of A4;. Hence, A-invariance
assumption implies that Hz([0,1] x Pz) C R.

From now on, by abuse of notation, the map (¢, (v,g)) € [0,1] x Pr —
(1—t)mr(v,9) +tnr(v,g) € R is also denoted Hg. Moreover, the proof that
Hpy is a proper homotopy between 7 and ng is similar to the one of Step
VII.

This step ends the proof of the structure theorem. [

1.4.4 Proof of oddness theorem

From now on, consider a fixed network ¢° € G. Recall that for every A-
regular set R of societies, ng is the homeomorphism from Pr to R of struc-
ture theorem (Theorem 1.2.1): for every (v, g) € Pg, every i € N and every
veG,

nr(v, 9)i(v) = vi(y) + Z (85vi(gij> 9—ij) — Oijvi(9ij» 9%4)) (Vi — 9i5) + Zgij'Yij
J#i J#i

(see Equation (1.1) in Appendix 1.4.3). Also, for every subset V C Rg[g| of

polynomial societies, consider the set

My ={(p(v),9) € Cy xG: (v,9) € Py} CR™ x G.

Let S = [[;cn Si be a A-semi-algebraically regular set of societies (i.e. S sat-
isfies concavity assumption, A-invariance assumption and semi-algebraicity
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assumption in Definition 1.3.3). In particular, note that S is also A-regular
(by definition). From Step I to Step VI, suppose that the set Cs = ¢(S) is
equal to R™ (n.b.: the proof is similar if we only assume that Cg is homeo-
morphic to RP, for some integer p < m). The general case is treated in Step
VII.

Step I. The set My is semi-algebraic and its dimension is equal to
m.

First, we show that Mg is a semi-algebraic set. From concavity assumption,
remark that for every (z,9) € R™ x G, (z,g) € Mg if and only if for every
ije L
(i) either g;; € (0,1), 007 (gij, 9—i;) = 0 and 0;;v5(9ij, 9-i5) > 0;
(i) or gi; € (0,1), 9305 (3ij, g—ij) = 0 and 9307 (gij, g—ij) > 0;
(iii) or gij = 0 and [9;;v7 (gij, 9—i5) < 0 or 0;;v5(gis, 9—ij) < 0J;
(Z’U) or gij =1 and [@jvf(gij,g,ij) 2 0 and &jv;?(gij,g,ij) Z O]

These conditions involve a finite number of equalities and of inequalities with
semi-algebraic maps, thus M is a semi-algebraic set.

Last, we show that the map

{ NCg - MS — R™

(xag) = ((100775>(vm7.g)
is a semi-algebraic homeomorphism, which implies that dim(Mg) = m, from
Proposition 1.4.12 (in Appendix 1.4.2). From its definition and from the

definition of 7s, the map nc; is semi-algebraic if and only if for every ¢ € N,
the map

(.’E, g) € MS =

0i(v = oF (1) + D (0507 (965, 9-i5) — 007 (9635 9%4))) (Vij — 9i5) + D _ 915 %) € R™
J#i J#

is semi-algebraic. Observe that this is the case, since each coefficient of the

polynomial function

1e€G Uf(W)*‘Z (857 (gij» 9—i3)— 0505 (935 go_ij))(%'j—gz‘j)+z 9ijvi; ER
JFi JFi
is itself a polynomial function of (z,g), for every (x,g9) € Mgs. In order to

understand why the map 7nc, is a homeomorphism, consider the following
diagram:
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<p><1d¢;

< ./\/ls

“fl lnf nsl lns mgl lﬁcs

P

where ¢, is such that the right square commutes considering the map s,
ie.

Teg = @ oms o (p X idg) ™!
(which is the restriction of the canonical projection R™ x RE — R™ from
M to R™). Now, notice that by definition, nc, makes commute the same
square considering the map ng, i.e.

Nes =@ onso(px idq;,)_1
Therefore, nc, is a homeomorphism as the composition of the three homeo-
morphisms ¢, s and (p x idg)™*

Step II. Extensions of mc, and 7nc, to the compactifications of Mg
and R™.

From Step I, since Mg is homeomorphic to R™, it is a noncompact locally
compact Hausdorff space, which implies that it admits a compactification
MZ. Recall that from structure theorem (Theorem 1.2.1), both 7s and
ns are proper maps. Furthermore, by definition, both m¢c, and ncg are
also proper maps, since ¢ and (¢ X idg)™! are homeomorphisms. Hence,
from Proposition 1.4.1 (in Appendix 1.4.1), ¢, and nc, can be (uniquely)
extended to continuous maps

T, P Mg — (R™)®
and

nes s Mg — (R™)>
(note that the map 7g is also a homeomorphism).
Now, recall that (R™)> is also homeomorphic to the unit m-sphere S™ (the
inverse of the stereographic projection, denoted s : (R™)* — §™, is such
a homeomorphism). Then, one can also consider the map mgm : §™ — S™

(resp. nsm : S™ — S™) such that the right square of the following diagram
commutes considering the map 7&. (resp. ng;) :

"703

MS %MS Sm

ﬂCsl lnCS Wcsl l’qcs TS™m l l’rlsm
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1.e.
Mo = 50, 0 (s 0nE,) " = s 0mE, 0 (1) "o s

and

1

Ngm = song, o (song,) " =soidrmy= os ' = idgm,

where s o ne, is (by composition) a homeomorphism from Mg to S™.
Step IIl. ¢, and 7nc, are properly homotopic. Moreover, ms» and
nsm are homotopic.

Recall that from structure theorem (Theorem 1.2.1), there exists a proper
homotopy Hs between 7ms and ns. Then, the map

{ HCSZ [0,1]XM5 — R™
(t,(z,9)) = (poHso (idpy x (¢ xidg)™))(t, (2,9))

is a proper homotopy between mcg and 7cg, since: (i) Heg(0, (4, 1)) = meg
and Heg(1, (7)) = ncs; (#0) it is a continuous map (by composition); (ii7)
it is a proper map (both ¢ and (idjo1 X (¢ x idg)~") are homeomorphisms).

Now, consider the map

HE @ [0,1]x MF — (R™)=
t, (z,9) {HCs(ia.fiCag)) Othelrfsze (z,9) #0

and remark that for every (z,g) € MZ,

o _ [ Hcg(0, (2, 9) = mes (2, 9) = 7&4 (2, 9) if (z,9) # o0
HE,(0,(,9)) = { 00 = Ty (c0) ° otherwise
and that

- _J Hes(1, (2, 9)) = ncs(,9) = ng,(z, 9) if (,9) # o0
HE (1, (,9)) = { 00 = n%os(oo) ° otherwise ’

Hence, it only remains to show that Hg is continuous in order to obtain
that it is a homotopy between 7&, and n&,. Once done, observe that the
map

Hgm : [0,1] x ™ — Sm
(t, ) = (so HE, o (id[o,l] X (so ngos)*l))(t, x)

is therefore a homotopy between 7wgm and ngm.
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We show that Hg, is a continuous map. Let O be an open subset of (R™)>.
We show that (Hg,)~'(O) is open in [0, 1] x M.

First, suppose that oo ¢ O. By definition, O is open in R™. Then, notice
that (HZ,)'(0) = Ha;(O) is open in [0, 1] X Ms (since Hg;, is continuous),
which implies that it is also open in [0, 1] x M.

Last, suppose that oo € O. By definition, there exists a compact subspace
K of R™ such that O = (R™)*\K. Then,

(HE,) 7 (0) = ([0,1] x {oo}) U (([0,1] x Ms)\Hgy(K)).

To prove that this set is open in [0, 1] x M, consider (t, (x,g)) € (HZ,) ' (O).
We show that there exists € > 0 such that

Ve=([0,1]N(t —e,t+€)) x (MF\K,)

is an open neighborhood of (¢, (x,¢)) in [0,1] x M which is included in
(HE,)~'(0), where

K. ={(a,¢d)e Ms:F €0, 1]N[t —et+e€, (', (2, 9)) € H{:;(K)}
={(a',¢d) e Ms:FH €[0,1]N[t — €t +¢|,Hcs(t', (2, ¢")) € K}.

We proceed in two steps.

Substep II1.1. For every ¢ > 0, K, is a compact subspace of Mg, and
Ve is an open subset of [0,1] x M. Furthermore, V. C (Hg,)"'(0).

Let ¢ > 0. First, we show that K, is a compact subspace of Mg, and
V. is an open subset of [0,1] x M¥. Consider a sequence (¢, g*)sey in
K.. By definition, for every ¢ € N, there exists t* € [0,1] N[t — ¢, +
€] such that (', (2%, ¢)) € HE;(K). However, since K C R™ is compact
and since Hcg is a proper map, this implies that Ha;(K ) is a compact
subspace of [0, 1] x M. Thus, the sequence (t*, (z*, g))¢en in Hg, (K) admits
a subsequence which converges to some element (t*,(z*, g*)) of HE;(K ).
Finally, since [0, 1] N [t — €, + €] is a closed subset of R, this implies that ¢*
belongs to [0,1] N [t — €,t + €], therefore that (z*,¢*) € K.. In particular,
because K. C Mg is compact, V. = ([0,1] N (t — e, t 4+ €)) x (MP\K,) is
(by definition) open in [0,1] x MZ. Last, we show that V. C (Hg,) '(O).
Let (¢, (2',¢")) € Ve. This property is directly verified when (z,g) = oo, so
suppose that (x, g) # oco. In that case, by definition of V, and of K, note that
for every ¢ € [0,1] N[t — et + €], (", (2, ¢)) ¢ Hgy(K), Le. (1", (2, ¢)) €
(([0,1] x Ms)\HG(K)) C (Hg,)™1(O). Thus, V. C (H&,)1(O) (the last
property being in particular verified for ¢’ € [0,1] N (t —¢,t + ¢€)).
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Substep III.2. There exists ¢ > 0 such that (¢,(x,g)) € V..

Again, this property is clearly verified when (x,g9) = oo, so suppose that
(x,g) # oo, and suppose that for every € > 0, (¢, (z,g)) ¢ V.. In that case,
since (t, (z,9)) € (HE,)~'(0), this means that

(t (2,9)) € (([0,1] x Ms)\Hc (K))

and that for every € > 0, (x,g) € K.. In particular, for every integer k > 1,
(x,g) belongs to K 1, which implies that there exists a sequence (t‘)sey in

[0, 1] which converges to ¢, and such that for every £ € N, He(t4, (v, 9)) € K.
However, since Hgg is a continuous map and since K is closed in R™ (K
is a compact subspace of R™, which is itself Hausdorff), this implies that
limge_; Hog (8, (7, 9)) = Heg(t, (z,9)) € K, which contradicts the fact that

(t. (z,9)) € (([0,1] x Ms)\Hc (K)).

Step IV. deg(msm) = 1. Moreover, 7¢, is a surjective map. In partic-
ular, 7s is also surjective (i.e. every society in S admits a pairwise
stable network).

Since ngm = idgm (from Step II), deg(nsm) = 1, from Proposition 1.4.2 (in
Appendix 1.4.1, first point). Moreover, since mgm and nsm are homotopic
(from Step III), deg(msm) = 1, again from Proposition 1.4.2 (in Appendix
1.4.1, third point). Hence, mgm is a surjective map, from Proposition 1.4.3
(in Appendix 1.4.1). Now, remark that this implies that m¢g is a surjective
map. Indeed, because 7gn is surjective, for every x € R™, there exists y € S™
such that 7gm (y) = s(z), which implies that z = (s~ 'omgm)(y). Furthermore,

by definition of 7wgm, this is equivalent to say that

“lo(song, o(song,) "))y
= (1&, o (s0n&,) ) (y)

= 7185 (1) (s ()
= 7cs(08,) (s 7' (),

x=(s

where (ng,) ' (s (y)) € M, since x # oo,

Remark that the map 7s is also surjective (i.e. every society in S admits a
pairwise stable network). Indeed, for every v € S, there exists (z, g) € Ms
such that mc4 (7, g) = p(v) (since mc, is surjective), i.e. v = (p~' o ¢)(v) =
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1

(=t omeg)(x, g), where, by definition of 7y,

. Yo (pomso(pxide)™))(z, g)
(gp X ld(g) )(x,g)

s O
(@deG xg)),

(p7 o mes) (@, 9) =

(™
(

where (¢ x idg) '(z,9) = (v*,g) € Ps. Hence, we recover in particular
(but for a “smaller” set of societies) the result of Bich and Morhaim [6],
which states that every continuous own-weights quasiconcave society admits
a pairwise stable network.

Step V. There exists a generic subset G of R™ such that for every
connected component C' of G, there exists a nonempty finite set F
such that (7?62 (C),C,mcg, Fe) is a covering space. In particular, for
every z € (G, the society v* admits a strictly positive finite number
of pairwise stable networks.

Note that m¢, : Ms — R™ is a continuous semi-algebraic map, which is also
surjective (from Step IV), and recall that dim(Mgs) = m = dim(R™) (from
Step I). Thus, from Theorem 1.4.5 (in Appendix 1.4.2), this directly implies
that there exists a generic subset G of R™ (which is now fixed) such that for
every connected component C of GG, there exists a nonempty finite set F¢
such that (7?6}5 (C),C, ey, Fe) is a covering space.

Now, from Theorem 1.4.2 (in Appendix 1.4.1), observe that for every connec-
ted component C' of GG, the previous property is equivalent to the following
one: for every x € C, there exists an open subset V& of C which contains x
and such that 7¢! (VE,) = Urer. (V&g )k, where ((VE,)k)rer. is a family of
pairwise disjoint open subsets of Mg such that for every k € F, the map
(7', 9) € (V& )k = mes(2', g) € V&, is a homeomorphism.

Also, remark that since for every connected component C' of G and every
x € C, Fo and WEL( r) are homeomorphic, and since (¢ X idg) ™! is a homeo-
morphism, for every z € G,

card(mg' (¢~ (x))) = card((¢ x id@)_l(ﬂ'aé (x)) = C&I‘d(ﬂ'éé(l’)) = card(Fe-)
(by definition of mcg), where C* is the connected component of G which
contains x. To put it in another way: the society v® = ¢~1(z) admits a

strictly positive finite number of pairwise stable networks.
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Step VI. For every x € (G, the society v* admits an odd number of
pairwise stable networks.

Let x € G and C* be the connected component of G which contains x. From
Step V, consider an open subset V&  of C* which contains z and a family
(V& )k rere. of pairwise disjoint open subsets of Mg such that 7ol (VE,) =
Ukerp. (V&g )k, and such that for every k € Fee, the map (2, g) € (V&) —
mcs (', g) € V&, is a homeomorphism (recall that F- is a nonempty finite
set). Observe that V&  is also open in R™, since G is open in R™ (G being
generic in R™) and C* D V§&_ is open in G (as a connected component of
(). Furthermore, remark that WEL (z) = (7&,) " (x), that V&, is also open
in (R™)>, and that for every k € Fg=, (V&)k is also open in Mg, since
x # 00.

Now, let Vi, be the image by the homeomorphism s of V&, and for every
k € Fge, let (V) be the image by the homeomorphism s o g, of (V&)
Since, both s and 7&, are homeomorphisms, note that Vg, is an open subset
of S™ which contains s(z) and such that

Tgn (Vi) = mgm (s(VS,)
= (mgm 0 8)(V&,)
=(so ngos)(ﬁai (V&) (by definition of 7gm)

= (song)( |J (V&

k€EFox

= | (ong)((VEm

keFox

= U V&

keFox

where ((Vén)k)ker.. is a family of pairwise disjoint open subsets of S™ such
that for every k € Fge, the map o' € (Vih), — mem(2’) € V&, is a homeo-
morphism. Observe that for every k € Fe=, there exists a unique of € (V)i
such that

Ton(s(z)) = {af : k € Fes},

by definition of the family ((Vém)i)ker... Moreover, for every k € Fee,
because the restriction 7gm|(yz, ), of the map mgm from (V{.), to S™ is a

sm

topological embedding, then

degs(m) (ﬂ-Sm ‘(ngm)k) = il?

from Proposition 1.4.4 (in Appendix 1.4.1). Finally, since deg(mgm) = 1
(from Step IV), card(F¢-) is odd, from Theorem 1.4.1 (in Appendix 1.4.1).
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Therefore, since card(mg' (¢~ !(z))) = card(Fe=) (from Step V), v* = ¢~ }(z)
admits an odd number of pairwise stable networks.

Step VII. General case.

We now treat the general case, i.e. we do not suppose anymore that the set
Cgs is equal to R™.

Substep VII.1. Direct sum decomposition of R™ and cancellation
of the “A; part” of Cgs, (i € N) - application of the first part of the
proof.

For every ¢ € N, let
Rs,[g] 4, = Span({[] i : k € N, deg(k) < 0 \({gu : L # i} U {1}))

jleL

be the linear subspace of Ry, [g] generated by all the monomials in Ry, [g],
except the ones in 4;. By definition, observe that Ry [g] = Ry, [g]-4, ® A,
thus that

QOZ(R& {g]) =R™ = CRai [9]74411 D CAi = ()Ol(R(Sz [g]—-Ai) D 901("4@)

Moreover, denote by II_ 4, the linear projection from the vector space R™ =
Cr; g4, ®Co, (of coefficients of polynomial functions in Rg,[g]) to the space
Cry,[g) 4, (of coefficients of polynomial functions in Ry, [g]-4,), and consider
the set II_4 (Cs,).

Substep VIIL.2. Semi-algebraic decomposition of II_4,(Cs,) (i € N)
- application of the first part of the proof.

For every i € N, since Cg, is a semi-algebraic set (from semi-algebraicity
assumption in Definition 1.3.3) and since II_ 4, is a semi-algebraic map, the
set II_4,(Cs,) is also semi-algebraic, from Proposition 1.4.8 (in Appendix
1.4.2). In particular, from Proposition 1.4.9 (in Appendix 1.4.2),

II_4(Cs,) = U Tli?
k=1

where r; € N, and where (7});, is a family of pairwise disjoint semi-
algebraic sets such that for every k € {1,...,r;}, T} is semi-algebraically
homeomorphic to an open hypercube (0, 1)%, for some di € N. Thus,

[Tmas)=TTUn=UTII%. (1.9

1EN 1€EN k=1 AEAN iEN
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where A = [[,cn{1, ..., 7}

Substep VIL.3. Addition of A; to ¢;'(T}) (i € N) - application of
the first part of the proof.

For every A € A, consider the set
V= [Tt @)+ T A =T (1) + A,
iEN iEN ieEN

and define Vi, = ¢; (T} ) + A;, for every i € N.

Substep VIIL.4. For every )\ € A, V), is A-semi-algebraically regular
and Cy, is homeomorphic to some Euclidean space of dimension
pr < m, for some integer p, - application of the first part of the
proof.

Observe that for every A € A:

1. V), satisfies concavity assumption (in Definition 1.3.3) because for every
i € N,Ti CH_4/(Cs,) =1_4,(0i(S:)), which implies that ;' (T} ) C
(¢ oIl 4, 0 9:)(S;) C Sy, hence that

V=i ' (T)+ A CSi+A=S

(the last equality coming from the fact that S satisfies A-invariance
assumption), where S satisfies concavity assumption (i.e. S; C F;).

2. V) clearly satisfies A-invariance assumption (in Definition 1.3.3).

3. V), satisfies semi-algebraicity assumption (in Definition 1.3.3) because
for every 1 € N, Vﬁi,

Cy =wil) = ¢ile; (T3) + A)) = T+ @i(A) = T3 + Cua,,

where both T§ and C, are semi-algebraic sets; the result follows from
Corollary 1.4.2 (in Appendix 1.4.2).

4. For every i € N, since Span(Tf\i) and Span(Cy,) = Cy4, are in dir-
ect sum (because Cg, [y, D Span(7’ %) and Cy, are in direct sum),
Cy; is homeomorphic to T;. x Cyu, (see the proof of Corollary 1.4.5
in Appendix 1.4.2), thus homeomorphic to (0, 1)d§i, for some dj, € N,
which implies that Cy, = [[;cn CVi. is itself homeomorphic to some

Euclidean space of dimension py < m, for some integer p, (n.b.: this
condition is important in order to be able to use what has been done
from Step I to Step VI).
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Therefore, from the first part of the proof (Steps I-VI), for every A € A, there
exists a generic semi-algebraic subset Gy of Cy, such that for every x € G},
the society v* has an odd number of pairwise stable networks. This implies

that for every x in
G= ] G

AeAopP

where

AP ={X e A:Vie N,T} is open in II_4,(Cs,)},

the society v* admits an odd number of pairwise stable networks.

Substep VIIL.5. The family (Cy, ),ca forms a cover of Cs - genericity
of G in Cg.

Because S satisfies A-invariance assumption, notice first that for every i € N,
fAi(CSi)"'CAi = CSZ" (1.10)

Now, observe that

Ucw =) = e(ITe (T, = U 1] wile () + A))

AeA AeA AeA  iEN AEA iEN

= J I @ +eiA)) =TT @ +ca) =U ] + I Ca
AEANIEN AEANIEN AEANIEN 1EN

= H II_4,(Cs,) + H C 4, (from Equation (1.9))
iEN iEN

= H (H—Ai(C5i> + C-Az)
iEN

= H Cs, (from Equation (1.10))
€N

= CSa

i.e. (Cy,)aen forms a cover of Cg. Furthermore, remark that
Cs\G C | J(Cy\G)UC,
AEA

where

U on

AEA\AoP

(for every A € A, A € A\A°P if and only if there exists i € N such that
T3 is not open in II_4,(Cs,)). Indeed, let z € Cg such that = ¢ G (ie.
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T € (Nyeror Cv\Gr). Since (Cy,)rea forms a cover of Cg, there exists
¢ € A such that x € Cy,. Hence: (i) either ¢ € A°, which implies that
r € Cy\G¢ C U,ea(Cy\Gy) (because z ¢ G); (i) or £ € A\A°P, which
implies that x € C.

Substep VII.6. dim(Cs\G) < dim(Cgs) - genericity of G in Cg.

Note that the dimension of ( J,., (Cy, \G») is strictly less than the dimension
of Cg, because for every A € A, dim(Cy,\G,) < dim(Cy,) (from G, being
generic in Cy, ) and dim(Cy, ) < dim(Cg) (from Corollary 1.4.4 in Appendix
1.4.2); the result follows from Proposition 1.4.11 (in Appendix 1.4.2). Also,
the dimension of C is strictly less than the dimension of Cgs. Indeed, for
every A € A\A® = {A € A: 3i € N, T} is not open in II_4 (Cs,)}, consider
j € N such that T){j is not open in II_4,(Cs,), and remark that dim(T/{j) <
dim(I1_4,(Cs,)) (from Corollary 1.4.3 in Appendix 1.4.2). Thus, for every
A€ A\A°P,

dim(Cy,) = dim(] [(75, + C4,))

€N
= Z dim(T}, 4 C.4,) (from Proposition 1.4.11)
ieN
= dim(T}) + Y _dim(C.,) (from Corollary 1.4.5)
ieN ieN
<) dim(I_4,(Cs,)) + dim(IT_4,(Cs,)) + Y _ dim(C.,)
i ieN
= Z dim(II_ 4,(Cs,;) + C4,) (from Corollary 1.4.5)
ieN
= dim(] J(I_4,(Cs,) + C.4,)) (from Proposition 1.4.11)
ieN
= dim(H Cs,) (from Equation (1.10))
€N

Therefore, the result follows from Proposition 1.4.11 (in Appendix 1.4.2).
Finally, from Step VIL5 and from Corollary 1.4.4 (in Appendix 1.4.2),

dim(Cs\G) < dim( | J(Cy,\GA)UC),
AEA
and from Proposition 1.4.11 (in Appendix 1.4.2),
dim( [ J(Cy,\G») U C) = max{dim( | J(Cy,\G»)),dim(C)} < dim(Cs).

AEA AEA
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Substep VII.7. GG is open in Cgs - genericity of GG in Cg.

Observe that for every A € A = {A € A: Vi € N, T} is open in II_4,(Cs,)},
G, is open in Cg because G, is open in Cy, (from G, being generic in Cy,)
and because Cy, is open in Cs. Indeed, to understand this last point, re-
mark that since for every A € A" and every i € N, T} is open in II_4,(Cs,),
Cyi = Ty, + Cy, is open in IT_4,(Cs,) + Cy,, ie. is open in Cs, (from
Equation (1.10)). Therefore, Cy, = [];cn Cvii is open in Cs = [],.y Cs,-
Finally, G = [J,cp0r G is open in Cg (as an arbitrary union of open subsets
of Cs)

This step ends the proof of the oddness theorem. [
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Chapter 2

Topological Structure and
Generic Oddness of the Graph
of Nash Equilibria
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uY

R5¢ [x] —Cst(X,R)

¢

-4
(TA)§:1

Uy

A°P

Graph of Nash equilibria associated to the set U of games
Projection from Ny to U, where U is a set of games

Set of continuous payoff functions of player i which are concave in
x; and with continuous first-order derivative with respect to the i, £-
th variable, for every £ € {1,...,;} (F =1len Fi)

Set of constant payoff functions (C = Cst(X,R)Y)

Set of payoff functions of player i which are linear in x; and which
only depend on this strategy (£ = [],cn £i)

Set of payoff functions of player i which are affine in x; and which
only depend on this strategy (A = [T.cn Ai)

Homeomorphism from N to R of structure theorem, where R is a
A-reqular set of games

Set of payoff functions of player i which are polynomial of x and
whose degree is less or equal to 6; (Rs[r] = [],cn Rs,[g])

Vector space isomorphism which assigns to each payoff function of
player i in Ry, [z] its coefficients in R™, where m; € N depends on
i (m = Shen i, @ = Xicws : Rafz] — R™)

Set of coefficients of polynomial games in U (i.e. Cy =
where U C Rg|x]

Polynomial game in U whose coefficients correspond toy (i.e. u¥ =
0 (y)), where U C Rs[x] and where y € Cy

Linear subspace of Rg,[x] generated by all the monomials in Ry, [x],
except the constant one (Rs[x]—¢c = [ ey Ra[2]-cst(xr))

Linear projection from R™ = Cg;y)_ . @ Cc to Cryla)_

Linear subspace of Rs,[x] generated by all the monomials in Ry, [x],
except the ones in A; (Rslx]_a4 = ey Rs,[r]-4,)

Linear projection from R™ = Crgy_, ® Ca to Crypa)_,
Semi-algebraic decomposition of T1_4(Cgs), where S is a A-semi-
algebraically regular set of games and where r € N depends on S
Minkowski sum of @ YT\) and A, where S is a A-semi-
algebraically regular set of games and where A € A = {1,...,r}
Subset of indicies N € A such that Ty is open in I1_4(Cs), where
S is a A-semi-algebraically reqular set of games

pU)),

Table 2.1: Table of notations of Chapter 2
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This chapter is based on a preprint written by Philippe Bich and Julien
Fixary which is to appear in Games and Economic Behavior [4].

2.1 Introduction

In this second chapter, we provide our structure theorem and our oddness
theorem in game theory. The chapter is organized as follows: (i) in Subsec-
tion 2.2.1 (of Section 2.2), we first recall some basic definitions and notations
about game theory and we define the graph of Nash equilibria associated to
any set of games; (ii) in Subsection 2.2.2, we introduce the notion of A-
reqular set of games and we present our structure theorem (Theorem 2.2.2);
(7i1) in Subsection 2.3.1 (of Section 2.3), we introduce the notion of dim(L)-
semi-algebraically reqular set of games and we present our oddness theorem
(Theorem 2.3.1); (iv) in Subsection 2.3.2, we provide several examples of ap-
plications of oddness theorem; (v) in Section 2.4 (Appendix), we provide first
the necessary reminders about topological degree of proper continuous maps
between topological oriented m-manifolds (Subsection 2.4.1), and we provide
next the proofs of structure theorem (Subsection 2.4.2) and of oddness the-
orem (Subsection 2.4.3).

2.2 Topological structure of the graph of Nash
equilibria

2.2.1 The graph of Nash equilibria

First of all, we recall some elementary definitions and notations from game
theory.

Definition 2.2.1. A set of players is a finite set N such that card(N) > 1.
For every set N of players and every ¢ € N, a set of strategies of player i is
an arbitrary set denoted X;. For every set N of players, every ¢« € N and
every set X; of strategies of player 4, the set X = [[,.y X; is called the set
of strategy profiles.

Definition 2.2.2. A (strategic-form) game is 3-tuple (N, (X;)ien, (w;)ien)
composed by a set N of players, a family (X;);cny of sets of strategies and a
family (u;);en of maps from X to R, where for every i € N, the map u; is
called the payoff function of player i. For every set N of players and every
family (X;);en of sets of strategies, the set of all games whose the set of
players is equal to N and whose sets of strategies correspond to (X;);en can
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be identified to the set

Gam = {N — {X — R}}.

Throughout this chapter, we consider a fixed set N of players, and for every
1 € N, we consider a fixed integer p; € N and a fixed nonempty convex com-
pact semi-algebraic subset X; of R* such that int(X;) # () which corresponds
to the set of strategies of player 7.

Notations. For every player i € N, every strategy z; of player i is also
denoted (%;1,...,%;,,). For every player i € N, X_; = [[,; X;. For every
playeri € N, every x_; = (x;),;2 € X_; and every d; € X;, 2’ = (d;,z_;) € X
is the strategy profile defined by x; = x;, for every j # i, and x] = d;. For
every strategy profile x € X and every player i € N, z_; = ()4 € X_,.

Definition 2.2.3. Let u € Gam be a game. A strategy profile z € X is a
Nash equilibrium of u if for every i € N and every d; € X,

wi(di, x—;) < w(z).

Definition 2.2.4. Let I/ C Gam be a set of games. The Nash correspondence
associated to U is the correspondence

\D(/{ U — X
u +— {z € X :xisa Nash equilibrium of u} -

The graph of the Nash correspondence associated to U is called the graph of
Nash equilibria associated to U and is denoted Ny, i.e.

Ny = Gr(¥y) = {(u,z) €U x X : x is a Nash equilibrium of u}.
The projection from Ny, to U is denoted my, i.e. my(u,z) = u, for every

(u,x) € Ny.

2.2.2 A-regular sets of games and structure theorem

Payoff functions which are considered in this chapter have to satisfy some
differentiability and some concavity properties.

Definition 2.2.5. For every i € N,
Ci={u; € F(X,R) :Vo_; € X_;,u;(-,x_;) is concave},

D; = {u; € C°(X,R) : V0 € {1,..., 1}, 0;.pu; exists and is continuous},
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where for every u; € C°(X,R) and every £ € {1,...,u;},
8ui

8i,gui 1= ((J}i’l, cee s Ty e ,Ii’”),%,i) e X — (l’) € R,
6’%@
and
The set
F=1Ix
iEN

is called the set of own-strategy C' concave games.

Remark 2.2.1. Since X is a closed convex subspace of R* such that int(X) #
0, for every i € N, every u; € C%(X,R) and every ¢ € {1,...,p;}, O;pu; is
well-defined (see Proposition 1.4.5 and Definition 1.4.5 in Appendix 1.4.1 of
Chapter 1).

Remark 2.2.2. For every i € N, every u; € D; and every x_; € X _;, u;(+, x_;)
is a C! function (see Definition 1.4.4 in Appendix 1.4.1 of Chapter 1).

Definition 2.2.6. For every i € N, the set D; is endowed with the topology
generated by all subsets of D; of the form
{u; € D; : Vo = (v5,2_;) € K,u;(z) € O and V, u;(-,x_;) € O'},

where K is a compact subspace of X, O is an open subset of R and O’ is an
open subset of R* and where V, u;(-,x_;) denotes the gradient of u;(-,z_;)
at x;. Furthermore, any subset of D; is endowed with the induced topology.

Remark 2.2.3. For every ¢« € N, the topology defined on D; in Definition
2.2.6 is the one that is used by Predtetchinski [40] in his structure theorem
(see Theorem 2.2.1 in what follows).

Let us recall (the first part of) Predtetchinski’s structure theorem about the
graph of Nash equilibria.

Theorem 2.2.1. (Predtetchinski [40])

The projection wr : Ny — F is properly homotopic to some homeomorphism
nr: N]-‘ — F.

Also, recall that the homeomorphism 7z : Nz — F of Theorem 2.2.1 is
defined as follows: for every (u,x) € Nx, every i € N and every z € X

nr(u, )i(2) = wi(2) + (Vi (- -5) — Vaui(2%,), 2 — x3) + (z5,2),  (2.1)
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where 2° € X is a fixed strategy profile, and where (-,-) denotes the Euc-
lidean scalar product on R,

Now, our structure theorem (see Theorem 2.2.2 below) is a slight extension
of Theorem 2.2.1 which states that Predtetchinski’s result remains true if we
replace F by any of its subspace which satisfies some assumption of “invari-
ance under affine addition”.! For every i € N, we consider the set of payoff
functions of player ¢ which are affine in x; and which only depend on this
strategy.

Definition 2.2.7. For every i € N,
Ai={z e X - (o,z;)) +ceR:o; e R c € R}

Moreover, A =[],y Ai-

We now introduce the notion of A-regular set of games which is at the core
of our structure theorem.

Definition 2.2.8. A set R C Gam of games is A-regular if the two following
conditions hold:

1. (Concavity). R C F.
2. (A-invariance). R + A =R.

Our following result characterizes the topological structure of the graph of
Nash equilibria associated to any A-regular set of games.

Theorem 2.2.2. (Structure theorem)

For every A-reqular set R of games, the projection wr : Ng — R is properly
homotopic to some homeomorphism ng : Ng — R.

The proof is provided in Appendix 2.4.2.

Remark 2.2.4. We emphasize the fact that the assumption of semi-algebraicity
of the sets of strategies is not used in the proof of our structure theorem, but
only in the proof of our oddness theorem (Theorem 2.3.1 in Section 2.3.1).

Considering an arbitrary A-regular set R of games, this theorem provides
two important informations:

'In the second part of his structure theorem, Predtetchinski considers the following
subspaces of F: (i) the space of own-strategy C*¥ concave games (k € N); (ii) the space
of games such that for every player i € N, each payoff function of player 7 is affine in j’s
strategy (j € N). Both these cases are particular ones of our structure theorem.
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Figure 2.1: Ng, mg (in thick line) and nr (in dashed line)

1. Thanks to ng, the graph Nz of Nash equilibria associated to R is
homeomorphic to R, which corresponds to the intuition that Nz can
be continuously deformed into the simpler space R.

2. The projection 7 is properly homotopic to the homeomorphism 7z,
which corresponds to the intuition that ng itself can be continuously
deformed into the simpler map 75.

Structure theorem is a key ingredient in the proof of our oddness theorem
(Theorem 2.3.1 in Section 2.3.1), which is itself very important for applica-
tions (see Section 2.3.2). Indeed, Theorem 2.3.1 relies partly on some prop-
erties of topological degree (see Appendix 2.4.1 for some reminders) which
can be derived from Theorem 2.2.2. Figure 2.1 provides a simple represent-
ation of the graph Nz of Nash equilibria associated to any A-regular set R
of games, of the projection 7z and of the homeomorphism 7%.

2.3 Generic oddness of the graph of Nash
equilibria

2.3.1 dim(L)-strongly semi-algebraically regular sets of
games and oddness theorem

In this section, we are interested by sets of games whose payoff functions are
polynomial functions of x (with coefficients in R), and by their corresponding
sets of coeflicients.
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Definition 2.3.1. Let

Riz] = {z e X~ > (o [] «iy) € R: ¥k € N*, a € R},
keNL i,0€L

where L = {(i,¢) : i € N, € {1,...,u;}} (every (i,¢) € L is denoted 1, ¢).
For every ¢ € N and every §; € N,

Ry, [z] = {w; € Rlz] : deg(u;) < 6;},

where for every u; € R[z], deg(u;) = max{deg(k) : ay # 0}, with deg(k) =
ZMeL ki, for every k € N¥. For every § = (8;)ieny € NV the set

Rslz] = [ [ Rs,[2]

ieN
is called the set of (§-)polynomial games.

Remark 2.3.1. For every i € N and every 0; € N, Ry, [x] (with its usual
operations) is a finite-dimensional vector space. Thus, Ry, [z] is endowed
with the unique topology which makes it a Hausdorff topological vector space.
Since D; is Hausdorff (see Definition 2.2.6), this topology corresponds also
to the one induced by D; on Rg,[z]. Furthermore, with this topology, note
that that every linear map from Ry, [z] to any other topological vector space
is also continuous.

Definition 2.3.2. Let § = (6;);en € NV, and consider an order on the set L
and an order on the set N¥. For every i € N, there exists a unique m; € N
such that the map

@i+ u; € R, [z] — (g )pene € R™
is a well-defined vector space isomorphism. Furthermore, the map
o u € Rs[z] — xXienpi(u;) € R™,

where m =),y my, is also a well-defined vector space isomorphism.

Throughout the rest of this chapter, we consider a fixed § = (6;)ieny € NV,
a fixed order on the set L and a fixed order on the set N¥ (in particular, we
consider also the vector space isomorphism ¢, of Definition 2.3.2, for every

ieN).

Notations. Consider a subset & C Rs[z] of polynomial games. The set (i)
of coefficients of polynomial games in U is denoted Cy,. By abuse of notation,
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both the restriction of ¢ from U to R™ and the restriction of ¢ from U to
Cy are denoted ¢ (however, note that ¢ : Y — Cy is a homeomorphism).
For every y € Cy, the polynomial game in U whose coefficients correspond
to y is denoted u?, i.e. u¥ = p~1(y).

On the other hand, if we consider the set Cst(X,R) (of constant payoff
functions), we can remark that for every game u € Gam and every constant
game

W €C={N — Cst(X,R)},

the set of Nash equilibria of u is equal to the set of Nash equilibria of u + u’.
Thus, we want to focus only on games without constant part.

Definition 2.3.3. For every i € N,

R[] _cacxm = Span({ [ 254+ b € N*, deg(k) < 5:}\{1}).

J,¢€L

Moreover, Rs[z]_¢ = [;,cn Rs, [7]—cst(x R)-

For every player i € N, Ry, [:E],Cst( x,r) corresponds to the linear subspace of
Ry, [z] generated by all the monomials in Ry, [x], except the one in Cst(X, R)
(i.e. the constant monomial).

Also, for every ¢ € N, we consider the set of payoff functions of player ¢ which
are linear in x; and which only depend on this strategy.

Definition 2.3.4. For every i € N,
Ei:{x€X|—><ai,xi) ER:OQGRM}.

Moreover, £ = [[,cy Li-
Remark 2.3.2. Notice that A = L + C.

In the following, we introduce the notions of A-semi-algebraically reqular set
of games, of dim(.A)-semi-algebraically reqular set of games, and of dim(L)-
strongly semi-algebraically regular set of games.

Definition 2.3.5. Let S C Gam be a set of games:

e S is said to be A-semi-algebraically regular if the three following con-
ditions hold:

1. (Concavity). S C F.

2. (Semi-algebraicity). S C Rs[z] and Cg is a semi-algebraic set.
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3. (A-invariance). S+ A =S.

e S is said to be dim(.A)-semi-algebraically regular if the three following
conditions hold:

1. (Concavity). S C F.
2. (Semi-algebraicity). S C Rs[z] and Cg is a semi-algebraic set.
3. (dim(A)-invariance). dim(Cs; 4) = dim(Cg).

e S is said to be dim(L)-strongly semi-algebraically reqular if the three
following conditions hold:

1. (Concavity). S C F.

2. (Strong semi-algebraicity). S C Rj[z]_¢ and Cgs is a semi-
algebraic set.

3. (dim(£)-invariance). dim(Cg,,) = dim(Cg).

A-semi-algebraically regular sets of games are particular cases of A-regular
set of games whose payoff functions are polynomial, with additional as-
sumptions on their associated sets of coefficients. However, dim(.4)-semi-
algebraically regular sets of games and dim(L£)-strongly semi-algebraically
regular sets of games are not A-regular in general since A-invariance as-
sumption might not be verified. Hence, dim(.A)-semi-algebraic regularity
is weaker than A-semi-algebraic regularity. On the other hand, recall that
even if dim(L)-strongly semi-algebraic regularity is not weaker than .A-semi-
algebraic regularity (from a logical point of view), it has the interest to not
take into account the constant part of any game, which is irrelevant regarding
its set of Nash equilibria (as discussed above).

Also, to say that a set U C Rs[x] of games satisfies semi-algebraicity as-
sumption means that the set Cy; of coefficients of polynomial games in i/ can
be defined using a finite number of polynomial equalities or inequalities (see
Appendix 1.4.2 in Chapter 1 for some reminders about real semi-algebraic
geometry). Furthermore, to say that U satisfies strong semi-algebraicity as-
sumption means that U satisfies the previous condition and that games in U
have no constant part.

Now, we present our oddness theorem which is in the spirit of Wilson’s
oddness theorem [43], but for polynomial payoff functions satisfying the last
regularity condition in Definition 2.3.5 (recall that a semi-algebraic subset G
of a semi-algebraic set S is said to be a generic subset of S if dim(S\G) <
dim(.9), and if G is open in 5).
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Theorem 2.3.1. (Oddness theorem)

For every dim(L)-strongly semi-algebraically regular set S of games, there
exists a generic semi-algebraic subset G of Cs such that for everyy € G, the
game uY has an odd number of Nash equilibria.

Analogously to Theorem 1.3.1 in Chapter 1, our result states that “most”
games in game theory should have an odd number of Nash equilibria, when
payoff functions are polynomial and satisfy the “standard” concavity as-
sumption. However, Theorem 2.3.1 is less assumptions demanding: (i) we
do not require anymore S to be a cartesian product of spaces (S;)ien; (i7)
we now drop the constant parts (which are not relevant when one deals with
Nash equilibria); (zii) dim(.A)-invariance assumption (see the second point of
Definition 2.3.5) is weaker than A-invariance assumption (see the first point
of Definition 2.3.5). Furthermore, this oddness result can be obtained in a
very similar way in the framework of network formation theory.?

Remark that dim(£)-strong semi-algebraic regularity seems to be tight, since
we can find simple polynomial own-strategy concave games without constant
part for which oddness theorem is false when we remove dim(£)-invariance
assumption.

Example 2.3.1. Suppose that N = {1,2}, and that X; = X, = [0,1].
Moreover, suppose that ; = 1 and that d; = 2. Consider the subset

U={(z€X—ar; e Rz e X —bl—1z)22 €R):(a,b) € RxR}

of polynomial games. The set U satisfies concavity assumption and strong
semi-algebraicity assumption. Indeed, Cy, is of the form

{(a,0,0) : @ € R} x {(0,0,b,b,0,0) : b € R},

which is a linear subspace of R of dimension 2 (in particular, it is a semi-
algebraic set of dimension 2). However, it does not satisfies dim(£)-invariance
assumption because Cy . is of the form

{(a,0,0):a € R} x {(0,0,b,¢,0,0) : (b,c) € R x R},

which is a linear subspace of RY of dimension 3. As a matter of fact, Theorem
2.3.1 does not hold since for every xo € [0, 1], (1, 22) is a Nash equilibrium of
the game whose coefficients correspond to ((a,0,0), (0,0,b,b,0,0)), for every
(a,b) € [0,400) x R. The set

S ={(a,0,0):a € [0,+00)} x {(0,0,0,0,0,0) : b € R}

2This justifies Remark 1.3.2 in Section 1.3.2 of Chapter 1.
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is a full-dimensional semi-algebraic subset of C;; such that for every y € S,
the game uY has an infinite number of Nash equilibria (i.e. we cannot find a
generic semi-algebraic subset G of Cy such that for every y € G, the game
u? has an odd number of Nash equilibria).

One could argue that dim(L£)-invariance assumption seems not easy to be
verified, and that an assumption of L-invariance would be simpler to ap-
proach (a set S C Gam of games would satisfy L-invariance assumption if
S + L = §; analogously to A-invariance assumption). However, the follow-
ing simple example highlits the practical use of dim(£)-invariance assumption
when one wants to model some economical problematics (more interesting
examples are provided in Section 2.3.2). The idea is that dim(£)-invariance
assumption allows to have a larger degree of freedom on the possible values
of the coefficients of the payoff functions that we consider.

Example 2.3.2. Suppose that N = {1,2}, and that X; = X, = [0,1].
Moreover, suppose that 9, = d; = 1. Consider the subset

U={(reX —ar eR,z € X — by €R): (a,b) € [0,+00) x [0,+00)}

of polynomial games. The set U satisfies concavity assumption and strong
semi-algebraicity assumption. Indeed, Cy, is of the form

{(a,0,0) : a € [0,+00)} x {(0,b,0) : b € [0,+00)},

which is a semi-algebraic set of dimension 2. This set does not satisfies
L-invariance assumption because Cy, , is of the form

{(a,0,0) : a € R} x {(0,b,0) : b € R}.

However, the set Cy satisfies dim(L)-invariance assumption since the dimen-
sion of Cy, , is also equal to 2. In fact, observe that

G ={(a,0,0):a € (0,+00)} x {(0,b,0) : b € (0,+00)}
is a generic semi-algebraic subset of Cy such that for every y € G, the game
u¥ has a unique Nash equilibrium which corresponds to (1,1).
Sketch of proof
The full proof is provided in Appendix 2.4.3.

First of all, remark that A-invariance assumption is not necessarily verified
for a dim(L£)-strongly semi-algebraically regular set S of games. Hence, the
proof of Theorem 2.3.1 cannot be exactly the same as the one of Theorem
1.3.1 (in Chapter 1). The idea is to proceed as follows:
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1. In the first part of the proof (Step I), we show that for every .A-
semi-algebraically regular set S of games, there exists a generic semi-
algebraic subset GG of Cg such that for every y € GG, the game uY has
an odd number of Nash equilibria. The demonstration is quite sim-
ilar to the one of Theorem 1.3.1 (in Chapter 1). However, it has been
slighlty revisited and modified; the main difference lies in the use of
topological degree between topological oriented manifolds of the same
dimension (instead of topological degree between unit spheres of the
same dimension), which avoids to use compactifications, thus simpli-
fies the demonstration.

2. In Step II, we first prove that for every dim(.4)-semi-algebraically reg-
ular set S of games, the set S+ A is A-semi-algebraically regular. This
allows to use the previous result in order to obtain a generic semi-
algebraic subset G of Csy 4 such that for every y € GG, the game uY has
an odd number of Nash equilibria, and to show that the set Cs NG is a
a generic semi-algebraic subset of Cg (which satisfies the same oddness

property).

3. Finally, in the last step (Step III), we demonstrate our oddness theorem.
First, we show that for every dim(£)-strongly semi-algebraically regular
set S of games, the set S + C is dim(A)-semi-algebraically regular.
Then, using the previous step, we obtain a generic semi-algebraic subset
G of Cg,¢ such that for every y € GG, the game u¥ has an odd number
of Nash equilibria, and we consider the projection II_¢(G) of G to
the vector space Cgyly)_ of coefficients of polynomial games without
constant part. This set satisfies the oddness property since constant
parts are not relevant to determine Nash equilibria of any game, and
is generic in Cg.

2.3.2 Some applications of oddness theorem
Multiaffine games

Here, suppose that N = {1,...,n}. Moreover, suppose that for every i € N,
the set X; of strategies of player ¢ corresponds to the unit p; — 1-simplex
AFi~t C R and that §; is “large enough”. Consider the set

AMX,R) = {N = A, (X,..., X0, R)}
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of multiaffine games, where A,(Xq,...,X,,R) is the set of all multiaffine
maps from X = X; x --- x X,, to R.3

Proposition 2.3.1. The set A"(X,R) of all multiaffine games is a A-semi-
algebraically reqular set of games. Therefore, there exists a generic semi-
algebraic subset G of Can(xr) such that for every y € G, the game u¥ has
an odd number of Nash equilibria.

Remark 2.3.3. The previous proposition is closely related to Kohlberg-Mertens’
structure theorem [33] (see also Predtetchinski [40], Corollary 1).

From now on, and until the end of this section, we suppose that for every
1 € N, the set X; of strategies of player ¢ is a nonempty compact interval
of R; when X; C [0,+00), a strategy of player i can be interpreted as an
amount of time or effort to exert some activity.

Linear perturbations

In this section, we prove that oddness theorem holds for generic linear per-
turbations of a given game u = (u;);en, where for every i € N, u; €
Rs, [ﬂU]—Cst(X,R) N F;, i.e. u; is polynomial with a degree less or equal to 9;
and without constant part, and is concave in z;.

Consider a semi-algebraic subset A of RY such that dim(A) = card(N) (a
typical case is when A is a product of intervals of nonempty interior), and
for every a = (a;)ien € A, consider the game

u® = (.’E € X — fbl(l') + o € R)iGN
parameterized by a.

The following proposition states that polynomial games of the form u® (o €
A) admit generically an odd number of Nash equilibria.

Proposition 2.3.2. The set
S = {(ZE eEXm— ﬂz(.l’) + ox; € R)iGN NS A},

3Recall that: (i) an affine space is a 3-tuple (E,E,—l—), where F is a set, ﬁ is a
vector space and + is a transitive free action of the additive group of B on E (in the
case where E = E, + can be taken as the vector sum of F); (i4) a map f : F — F
between two affine spaces is affine if there exists a linear map : — ? such that
for every x,y € B, ?(x —y) = f(z) — f(y); (éii) a map f : [['_, E; — F between a
product of n € N affine spaces and an affine space is multiaffine if for every i = 1,...,n
and every (L1,...,@i—1,Lit1,...,Lpn) € Hj# E;, the map f(z1,...,%i—1,", Tit1,...,%n)
is affine (recall that the set of all multiafhine maps from E; X ... x E,, to F is denoted
An(Ey,...,E, F)).
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is a dim(L)-strongly semi-algebraically reqular set of games. Furthermore,
there exists a generic semi-algebraic subset G of A such that for every a € G,
the game u® has an odd number of Nash equilibria.

Proof. By definition, S satisfies concavity assumption (i.e. & C F). Now,
remark that the set Cs C R™ of coefficients associated to S is of the form

[1E < (]I E+4).

€N 1EN

where for every player i € N, E} is a finite product of singletons (corres-
ponding to the coefficients of the payoff function of player i in the game u
associated to the monomials other than z;) and E? is a singleton (corres-
ponding to the coefficient of the payoff function of player ¢ in the game
associated to the monomial x;). Hence, S satisfies strong semi-algebraicity
assumption, since A is semi-algebraic (by assumption). Furthermore, S sat-
isfies also dim(L£)-invariance assumption, since

dim(Cgs) = dim(A) = card(N) = dim(Cs. 1)

(the dimension of each singleton being equal to 0 and by assumption, dim(A) =
card(N)). Thus, S is a dim(£)-strongly semi-algebraically regular set of
games, and from Theorem 2.3.1, there exists a generic semi-algebraic subset
C% of Cs such that for every y € C%, the game u? has an odd number of
Nash equilibria. Now, since the trivial map f which associates to any a € A
the “same” element in Cgs (up to singletons) is a semi-algebraic homeomorph-
ism, for every a € G = f71(C%), the game u® has an odd number of Nash
equilibria, where G is a generic subset of A. ]

Quadratic perturbations

Similarly to the previous section, we now prove that oddness theorem holds
for generic quadratic perturbations of a given game 4 = (;);en, where for
every i € N, u; € Ry, (2] _cse(x,r) N Fi, 1. @, is polynomial with a degree less
or equal to §; and without constant part, and is concave in z;.

Consider a semi-algebraic subset A of RY such that dim(A) = card(N), a
semi-algebraic subset B of RF¢ and a semi-algebraic subset C' of [0, +0c0)?,
where Ly = {(i,7) € N? :i # j} (every (i,7) € Lq is denoted 1, j). Now, for
every (a, 8,7) € A x B x C, consider the game

uo"B"’ = (I eEX— ﬂz(ft) — ’}/ZZL’? + Z 61‘73'.1‘1;%]' + o, € R)
J#

1EN
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parameterized by «a, 5 and 7.

The following proposition states that polynomial games of the form u®#7
((a, B,7) € Ax B x (') admit generically an odd number of Nash equilibria.

Proposition 2.3.3. The set

S={reXr~ ﬁz‘(l’)_%x?‘i‘z Bijrivi+oix; € R)en : (o, B,7) € AxBxCY,
J#i

is a dim(L)-strongly semi-algebraically regular set of games. Furthermore,
there exists a generic semi-algebraic subset G of A x B x C' such that for
every (o, 8,7) € G, the game u®?? has an odd number of Nash equilibria.

Proof. By definition, S satisfies concavity assumption (i.e. & C F). Now,
remark that the set Cs C R™ of coefficients associated to S is of the form

[1E < (]I E-C) < (][] E}+B) x (][ B! + 4).

iEN i€EN 1EN €N

where for every player 4, E} is a finite product of singletons (corresponding
to the coefficients of the payoff function of player ¢ in the game @ associated
to the monomials other than z?, (z;x;);.;, and x;), E? is a singleton (cor-
responding to the coefficient of the payoff function of player i in the game «
associated to the monomial z?), E? is a finite product of singletons (corres-
ponding to the coefficients of the payoff function of player i in the game @
associated to the monomials (x;x;),.), and E} is a singleton (corresponding
to the coefficient of the payoff function of player ¢ in the game @ associated
to the monomial z;). Hence, S satisfies strong semi-algebraicity assump-
tion, since A, B and C are semi-algebraic (by assumption). Furthermore, S

satisfies also dim(L£)-invariance assumption, since

dim(Cgs) = dim(A x B x C)
= dim(A) 4+ dim(B) + dim(C)
= card(N) + dim(B) + dim(C)
= dim(Cgs;r)

(the dimension of each singleton being equal to 0 and by assumption, dim(A) =
card(N)). Thus, S is a dim(L)-strongly semi-algebraically regular set of
games, and from Theorem 2.3.1, there exists a generic semi-algebraic subset
C% of Cs such that for every y € C%, the game u¥ has an odd number
of Nash equilibria. Now, since the trivial map f which associates to any
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(cr, B,77) € Ax B x C the “same” element in Cg (up to singletons) is a semi-
algebraic homeomorphism, for every (a,3,7) € G = f~'(C%), the game
u®%7 has an odd number of Nash equilibria, where G is a generic subset of

Ax BxC. O

As an application of the model with linear perturbations and of the model
with quadratic perturbations, we prove that there exists generically an odd
number of Nash equilibria for several models of games on networks (intro-
duced in network formation theory): Patacchini-Zenou’s model [38] about
juvenile delinquency and conformism, Calvé-Armengol-Patacchini-Zenou'’s
model [12] about social networks in education, Konig-Liu-Zenou’s model
[34] about R&D networks, Helsley-Zenou’s model [28] about social networks
and interactions in cities, etc. These models are in fact particular cases of
Jackson-Zenou’s benchmark quadratic model [44]. In the following, we con-
sider the set L = {{i,7} : (i,j) € N?,i # j} of links (on N) (every link
{i,7} € L is denoted ij), and the set G = [0, 1]* of (weighted) networks (on
N ). For every network g € G and every link ij € L, g({7,j}) is denoted g;;
and is called the weight associated to ij (in g); this quantity measures the
strength of link 75 in the network g.

Jackson-Zenou’s benchmark quadratic model with ex ante hetero-
geneity [44)]

Let ¢ € (0, 400), and suppose that for every i € N, payoff function of player
7 is defined by
1
rze X — —51’22 + ngijl'ifljj + oy,
JFi
where ¢ € G and «; € [0,+00). For every i € N, we can rewrite payoff
function of player ¢ in the following way:

r€ X —ywl+ Z Bijrir; + oy,
JF#i

1

where for every player j # i, f;; = B, = cgi; € [0, ¢|, and where ; = 3.

We can obtain two different generic existence results (which are not compar-
able), depending on which parameters of the model are fixed:

e First, as an application of the model with linear perturbations, we can
consider the set

S = {(ZIZ' € X — ﬂl(iﬁ) + ox; € R)iEN o€ A},
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where for every player ¢ € N, and every x € X,

and where A = [0, +00)". From Proposition 2.3.2, we obtain a generic
subset G of A such that for every o € G, the game

u® = (CE € X — ﬂl(l') + o € R)iEN

has an odd number of Nash equilibria. This application corresponds to
the case where the network ¢ is supposed to be fixed.

Second, as an application of the model with quadratic perturbations,
we can consider the set

S={(re X~ ai(fﬂ)—%l’?+z Bijrizj+o;x; € R)ien : (o, B,7) € AxBxCY,
J#

where for every player i € N, and every z € X, u;(x) = 0, and where

A= [O,+OO)N, B = {5 = (ﬁi,j)i,jGLd Vi € N,Vj 7'é i,ﬁi’j = ﬁj,i €

0,c]} and C = {1}, From Proposition 2.3.3, we obtain a generic

subset G of A x B x C such that for every (a, 3,7) € G, the game

uo"ﬁ’” = (Z‘ eX El(x) — ’lef + Zﬁi,jxixj + o € R)
J#i

1EN

has an odd number of Nash equilibria. Moreover, we can even find a
generic subset G4 of A x G x C such that for every (o, g,v) € G4,
the game

o 1
u = (z € X —§x? + ngijl’ixj + oz € R)z‘eN
J#
has an odd number of Nash equilibria. Indeed, the map

(0, (Buuseren) € Ax B x O (a0, (P) ey 7) € Ax G x €

with ;; = 8;; (ij € L), is a well-defined semi-algebraic homeomorph-
ism, since for every player ¢« € N and every player j # i, 3;; = B,
and since ¢ # 0. This application corresponds to the case where the
network g is not supposed to be fixed.
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Jackson-Zenou’s benchmark quadratic model with ex ante hetero-
geneity and global congestion [44]

Consider the benchmark quadratic model with ex ante heterogeneity with the
following modification: let ¢ € [0,+00), and suppose that for every i € N,
payoff function of player i is defined by

1
ze X — —533'12 + cZgijxia:j — C/Zl'iil?j + 0;x;.
i i
Again, for every i € N, payoff function of player i can written in the following
way:
T € X —yw? + Z Bijrir; + oy,
J#

where for every player j # 4, 8;; = B = cgi; — ¢ € [—=c', ¢ — ], and where

1
Y = 3

Similarly to the previous model (without global congestion):

e If we apply Proposition 2.3.2 (i.e. if we consider the case where the
network ¢ is supposed to be fixed), then we obtain a generic subset
G'"" of [0, +00)" such that for every a € G'", the game

[0}

u® = (x € X — u(x) + ayz; € R)ieN
has an odd number of Nash equilibria, where
_ 1 2 /
UZ(Z') = —axl -+ cZgijmixj — C Zl’zl’j
JFi JF
(1e N,z e X).

e If we apply Proposition 2.3.3 (i.e. if we consider the case where the
network g is not supposed to be fixed), then we obtain a generic subset
G2 of [0, +00) x G x {3}V such that for every (o, g,7) € G™,
the game

1
U = (z e X —53712 + ngz‘jacil‘j - Zl’ﬂ'j + o € R)z’eN
i j#i

has an odd number of Nash equilibria, where @;(x) =0 (i € N, z € X).
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2.4 Appendix

2.4.1 Reminders about topological degree of a proper
continuous map between topological oriented m-
manifolds

Let X be an oriented topological m-manifold and Y be an oriented connected
topological m-manifold. For every proper continuous map f : X — Y, one
can associate to f an integer deg(f) € Z called the degree of f (Dold [19],
Proposition and Definition 4.5, p. 268).

Proposition 2.4.1. (Dold [19], Exercises 4.10, 3., p. 271)

Let f,g: X =Y be two proper continuous maps. If f and g are homotopic,
then deg(f) = deg(g).

Proposition 2.4.2. Let f : X — Y be a proper continuous map. If f is a
topological embedding onto an open subset of Y, then deg(f) = +1.

Proof. See Dold’s comment [19] after Definition 4.2, p. 267. O

Proposition 2.4.3. Let f : X — Y be a proper continuous map. If deg(f) #
0, then f is surjective.

Proof. See Dold’s comment [19] after Definition 4.2, p. 267. O

Theorem 2.4.1. Let f : X — Y be a proper continuous map and y € Y
such that f~*(y) = {x1,..., 2.}, where n > 0. Moreover, let V = J;_, Vi,
where (Vi) is a family of pairwise disjoint open subsets of X such that for

everyi € {1,...,n}, x; € V;. Then,

vi)-

deg(f) = Z deg(f

Furthermore, if deg(f) = £1, and if for every i € {1,...,n}, f
topological embedding, then n is odd.

v, 18 a

Proof. The proof follows from Dold [19], Proposition 4.7, p. 269 and is similar
to the one of Theorem 1.4.1 in Section 1.4.1 of Chapter 1. ]
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2.4.2 Proof of structure theorem

Let 2° € X be a fixed strategy profile and R be a A-regular set of games (i.e.
R satisfies concavity assumption and A-invariance assumption in Definition
2.2.8).

Consider the restriction g of the homeomorphism 7z (of Theorem 2.2.1)
from Nz to F, and the restriction pr of the map 77;1 from R to Nz (which
are well-defined, from concavity assumption). It is sufficient to prove that
nr(Nz) C R and that pr(R) C Nz in order to obtain that Nz and R are
homeomorphic (in that case, the restriction of ng from Nz to R is such a
homeomorphism and its inverse is the restriction of pr from R to Ng):

e Recall that for every (u,z) € Ng, every i € N and every z € X,
R (u,2)i(2) = ui(2) + (Va,ui(-, 2—) — Vaui (-, 2%,), 2 — @) + (24, 2)

(see Equation (2.1) in Section 2.2.2). Remark that ng(u, x); is equal
to u; up to an element of A;. Thus, A-invariance assumption directly
implies that nr(Nr) C R.

From now on, by abuse of notation, the map (u, ) € Ng — nr(u,z) €
R is also denoted ng.

e Recall that the inverse of the homeomorphism nr : N — F of The-
orem 2.2.1 is defined as follows: for every u € F, n7'(u) = (v*, z%),
where for every ¢ € N and every z € X,

(2) = wi2) = (Vasui (-, 2%,) = Vasui(-2%,), 2 — zff) — (2, 24),

and where z} is the unique maximizer of the strictly concave map

x; € X; — ui(x;, 1%,) — 3 (@, 2;) (see Predtetchinski [40]). Similarly as

before, observe that v¥ is equal to w; up to an element of A;. Thus,
A-invariance assumption directly implies that pr(R) C Nx.

From now on, by abuse of notation, the map u € R — pr(u) € Ny is
also denoted pg.

Now, consider the map

— F
(zow) = (1=t)mr(z,u) + tnr(x,u)

For every (¢, (z,u)) € [0,1] X Nz, there exists a € A such that
Hr(t(z,u)) = (1—t)mr(z, u)+tnr(x,u) = (1—t)u+t(uta) = utta € R+A,
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since ng(u,x); is equal to u; up to an element of A;. Hence, A-invariance
assumption implies that Hg([0, 1] x Nz) C R. Finally, the map (¢, (z,u)) €
0,1] x Ng = (1 — )7r(u,z) + tnr(u,x) € R (which is also denoted Hg,
by abuse of notation) is a proper homotopy between 7wz and 1z (the proof is
similar to the one of Theorem 1.2.1, Step VII in Section 1.4.3 of Chapter 1,
knowing that for every i € N, X; is compact).

This step ends the proof of the structure theorem. [

2.4.3 Proof of oddness theorem

From now on, consider a fixed strategy profile z° € X. Recall that for
every A-regular set R of games, nr is the homeomorphism from Nz to R of
structure theorem (Theorem 2.2.2): for every (u,z) € Ng, every i € N and
every z € X,

R (U, )i(2) = ui(2) + (Vi (- 2-5) — Vaui(-,2,), 2 — @) + (24, 21)

(see Equation (2.1) in Section 2.2.2). Also, for every subset U C Rs[z]| of
polynomial games, consider the set

My = {(¢(u),r) € Cy x X : (u,x) € Ny} CR™ x X.

Step I. For every .A-semi-algebraically regular set S of games, there
exists a generic semi-algebraic subset G of Cs such that for every
y € G, the game ©Y has an odd number of Nash equilibria.

Let S be a A-semi-algebraically regular set of games (i.e. S satisfies concavity
assumption, A-invariance assumption and semi-algebraicity assumption in
Definition 2.3.5). In particular, note that S is also A-regular (by definition).
Substep I.1. A decomposition result.
For every v € N, let

R(Si [x]_Ai

k.
= Span({ [ ;5 : k € N¥,deg(k) < 6:}\({wie: £ € {1,..., u}} U{1}))

JjleL

be the linear subspace of Rg,[z] generated by all the monomials in Rg,[z],
except the ones in A;, and let Rs[z]_4 = [[,cnRs[2]—4,. By definition,
observe that Rs[z] = Rs[x]_4 & A, thus that

¢(Rs[z]) = R™ = Cgrye_, ® Ca = p(Rs[z]-a) ® p(A).
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Moreover, denote by II_ 4 the linear projection from the vector space R™ =
Cryje] 4 ® Ca (of coeflicients of polynomial games in Rj[x]) to the space
Cr,ja] 4 (of coeflicients of polynomial games in Rs[z]_4), and consider the
set I1_4(Cs).

Since Cg is a semi-algebraic set (from semi-algebraicity assumption in Defin-
ition 2.3.5) and since II_ 4 is a semi-algebraic map, the set II_4(Cg) is also
semi-algebraic, from Proposition 1.4.8 (in Appendix 1.4.2 of Chapter 1). In
particular, from Proposition 1.4.9 (in Appendix 1.4.2 of Chapter 1),

I_4(Cs) = | J T,
A=1

where r € N, and where (T))5_; is a family of pairwise disjoint semi-algebraic
sets such that for every A € A = {1,...,r}, T\ is semi-algebraically homeo-
morphic to an open hypercube (0,1)%, for some dy € N. For every A € A,
consider the set

Uy = ¢ (T)) + A,

Observe that for every A € A:

1. U, satisfies concavity assumption (in Definition 2.3.5) because T C
I_4(Cs) = IT_4(¢(8S)), which implies that o=} (T)) C (¢ ' oIl_40
©)(S) C S, hence that

Z/{)\:go_l(T)\)+ACS+.A:S

(the last equality coming from the fact that S satisfies A-invariance
assumption), where S satisfies concavity assumption (i.e. S C F).

2. U, clearly satisfies A-invariance assumption (in Definition 2.3.5).
3. U, satisfies semi-algebraicity assumption (in Definition 2.3.5) because
Cu, = ¢(Uy) = ¢(e ' (Th) + A) = Th + p(A) = Ty + Cy,

where both T and C 4 are semi-algebraic sets; the result follows from
Corollary 1.4.2 (in Appendix 1.4.2 of Chapter 1).

4. Since Span(7T)) and Span(C4) = C 4 are in direct sum (because Crgy]_,
- which contains Span(7}y) - and C 4 are in direct sum), Cy, is homeo-
morphic to Ty x C4 (see the proof of Corollary 1.4.5 in Appendix 1.4.2
of Chapter 1), thus homeomorphic to (0, 1)%*, for some e, € N.

Hence, for every A € A, U, is a A-semi-algebraically regular set of games
such that Cy, is homeomorphic to R,

From now on, and until Step 1.6, consider a fixed A € A.
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Substep I.2. The set My, is semi-algebraic and dim(My, ) = dim(Cy, ).
Moreover, both M;,, and C;, are oriented connected topological e,-
manifolds.

First, we show that My, is a semi-algebraic set. From concavity assumption,
remark that for every (y,z) € R" x X, (y,x) € My, if and only if for every
1 € N and every d; € X;,

<Vziu?('7l"—i)7 d; — $z> <0.

These conditions involve a finite number of equalities and of inequalities with
semi-algebraic maps, thus My, is a semi-algebraic set.

Last, we show that the map
{ My, - ./\/lz,{A — Cu)\
(y,2) = (pom,)(u, )
is a semi-algebraic homeomorphism, which implies that dim(My, ) = dim(Cy, ),

from Proposition 1.4.12 (in Appendix 1.4.2 of Chapter 1). From its definition
and from the definition of 7, , the map 7c,, is semi-algebraic if and only if

for every i € N, the map
(y,z) € My, @i(z = uf(z) + <VIluZZJ( T) — Vﬂczuz( ) (lz) Zi = 1‘1> + <xivzi>) eR™

is semi-algebraic. Observe that this is the case, since each coefficient of the
polynomial function

2 € X = ul(2) + (Vaul (o) = Vil (22,), 20 — i) + (w3, 2:) €R

is itself a polynomial function of (y, ), for every (y,z) € My,. In order to
understand why the map 7nc,, is a homeomorphism, consider the following
diagram:

pxid
< ./\/'z,{A X‘ ./\/lz,[A

- l lﬂf l l’”“ cun | [

> CU)\

)

where ey, 18 such that the right square commutes considering the map m, ,
ie.

ey, =% 0 mu, © (¢ x idx) ™"
(which is the restriction of the canonical projection R™ x RXien#i — R™
from My, to Cy, ). Now, notice that by definition, 7, makes commute the
same square considering the map 7y, , i.e.

ey, = % 01y © (p X idx) ™!
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Therefore, NCy, 18 & homeomorphism as the composition of the three homeo-
morphisms ¢, 7y, and (pxidx)~!. Finally, since Cy, is homeomorphic to R
(from Step 1.1), this implies that both My, and Cy, are oriented connected
topological ey-manifolds.

Substep 1.3. Ty, and 7gc,, are properly homotopic and deg(ﬂc%) =
+1. In particular, m, is a surjective map (i.e. every game in U,
admits a Nash equilibrium).

Recall that from structure theorem (Theorem 2.2.2), there exists a proper
homotopy Hy, between my, and 7y, . Then, the map

{ HCMA : [O, 1] X Mu/\ — CuA
(t.(y.2)) = (poHy, o (idpy x (¢ xidx)™!))(, (y,2))

is a proper homotopy between ¢, and nc,,, , since: (i) Hg, (0, (-,")) = 7cy,
and He,, (1, (-,)) = ncy, ; (ii) it is a continuous map (by composition); (ii)
it is a proper map (both ¢ and (idjp1) X (¢ x idx)™") are homeomorphisms).

Now, since 7, is a homeomorphism (from Step 1.2), deg(ncuA) = 41, from
Proposition 2.4.2 (in Appendix 2.4.1). Moreover, since 7¢,, and Ncy, are
properly homotopic, deg(ﬂcuk) = +1, from Proposition 2.4.1 (in Appendix
2.4.1). Hence, Ty, 18 a surjective map, from Proposition 2.4.3 (in Appendix
2.4.1). Observe that this implies that m,, is also surjective (i.e. every game
in Uy admits a Nash equilibrium). Indeed, for every u € U,, there exists
(y,z) € My, such that mc, (y,7) = @(u) (since 7c,, is surjective), i.e.

u=(p~top)(u) = (¢ " ome, )(y,x), where, by definition of ¢, ,

(¢ oma, ), x) = (971 o (pomy o (p xidx)™"))(y, )
= (mu, o (¢ x idx) ") (y, z)
= my, ((p x idx) "' (y, x)),

where (¢ x idx) ' (y,z) = (u¥,x) € Ny,.

Substep I.4. There exists a generic subset G, of Cy;, such that
for every connected component C' of G, there exists a nonempty
finite set F such that (7@;A (C), C,mey, - Fe) is a covering space. In
particular, for every y € G,, the game uY admits a strictly positive
finite number of Nash equilibria.

Note that TCy, My, — Cy, is a continuous semi-algebraic map, which is
also surjective (from Step 1.3), and recall that dim(My,, ) = dim(Cy, ) (from
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Step 1.2). Thus, from Theorem 1.4.5 (in Appendix 1.4.2 of Chapter 1), this
directly implies that there exists a generic subset G\ of Cy, (which is now
fixed until Step 1.6) such that for every connected component C' of G, there
exists a nonempty finite set F» such that (WE;A (C),C, ey, , Fe) is a covering
space.

Now, from Theorem 1.4.2 (in Appendix 1.4.1 of Chapter 1), observe that
for every connected component C' of GGy, the previous property is equivalent
to the following one: for every y € C, there exists an open subset Vé’uA

of C' which contains y and such that WE;A(V(%MA) = Use Fc(VguA)’f’ where
((Vé’uk) k)ker 1s a family of pairwise disjoint open subsets of My, such that
for every k € Fg, the map (v/,z) € (Vé’uk)k = ey, (V7)€ Vé’uA is a
homeomorphism.

Also, remark that since for every connected component C' of G and every

y € C, Fo and Wai{ (y) are homeomorphic, and since (¢ x idx)™! is a homeo-
A

morphism, for every y € G,

card(w[,; (0 y)) = Caurd((goxidx)_l(7rg,iA (y)) = caurd(wazlA (y)) = card(Few)

(by definition of WCMA), where CY is the connected component of G, which
contains y. To put it in another way: the society u¥ = ¢~ !(y) admits a
strictly positive finite number of Nash equilibria.

Substep 1.5. For every y € G, the game uY admits an odd number
of Nash equilibria.

Let y € G and CY be the connected component of G, which contains y.
From Step 1.4, consider an open subset Vé’uA of C¥ which contains y and
a family «Vé/u)\)k) keF., Of pairwise disjoint open subsets of My, such that
WE;A(VCZ?/L{A) = UkEFcy<VéJu)\>k’ and such that for every k € Fgy, the map
(v, z) € (Vé’uA)k = Ty, (V) € Vé’uA is a homeomorphism (recall that Fgy
is a nonempty finite set). Observe that Vé’uA is also open in Gy, , since G} is
open in Cy, (G, being generic in Cy, ) and CY D Vé’uA is open in G (as a
connected component of Gy).

Now, observe that for every k € Feu, there exists a unique of € (Vé’MA) r such
that

Ty (y) = {af 1k € Fou},

by definition of the family ((Vgu/\)k>keFCy. Moreover, for every k € Feu,
because the restriction 7c,, ’(Véuk)k of the map mc,,, from (Vé’uk) k to Cy, is
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a topological embedding onto ch;uA (which is open in Cy, ), then
deg(ﬂ-CuA ‘(Véu)\)k> - :I:l,

from Proposition 2.4.2 (in Appendix 2.4.1). Finally, since deg(rc,, ) = +1
(from Step 1.3), card(Few) is odd, from Theorem 2.4.1 (in Appendix 2.4.1).
Therefore, since card(w&;(gfl(y))) = card(Fev) (from Step 1.4), v¥ = ¢~ (y)
admits an odd number of Nash equilibria.

Substep I.6. An amalgamation result.

From the first part of the proof (Substeps I.1-1.5), for every A € A, there
exists a generic semi-algebraic subset G5 of Cy, such that for every y € G},
the game uY has an odd number of Nash equilibria. This implies that for
every y in

where
AP ={A € A:TyisopeninIl_4(Cs)},

the game u¥ admits an odd number of Nash equilibria (recall that I1_4(Cgs) =
U=, Th; see Substep L1).

Because S satisfies A-invariance assumption, notice first that
H,A(Cg) + Cy4 = Cs. (2.2)

Now, observe that

U Cu, = J o) = | (e (T0) + A)

AEA AEA AEA
= U (T>\+<,0(.A)) = U (T>\+CA) = UTA+CA
AEA AEA AEA
= H,A(CS) + Cy

= Cs (from Equation (2.2))

i.e. (Cyy)aen forms a cover of Cg. Furthermore, remark that

Cs\G C [ J(Cu\Gr) UC,

AEA

where



(for every A € A, A € A\A°P if and only if Ty is not open in II_4(Cs)).
Indeed, let y € Cs such that y ¢ G (i.e. y € [\,cpor Cury \Ga). Since
(Cuy )aen forms a cover of Cg, there exists ¢ € A such that y € Cy,. Hence:
(i) either £ € A°P, which implies that y € Cy,\G¢ C [, (Cr, \G\) (because
y ¢ G); (i) or £ € A\A°P, which implies that y € C.

We now show that G is generic in Cg, which will end Step I:
e First, we show that dim(Cs\G) < dim(Cy).

Note that the dimension of (J,.,(Cy, \G») is strictly less than the di-
mension of Cg, because for every A € A, dim(Cy, \G)) < dim(Cy, )
(from G, being generic in Cy,) and dim(Cy,) < dim(Cgs) (from Co-
rollary 1.4.4 in Appendix 1.4.2 of Chapter 1); the result follows from
Proposition 1.4.11 (in Appendix 1.4.2 of Chapter 1). Also, the di-
mension of C is strictly less than the dimension of Cgs. Indeed, for
every A € A\A°® = {\ € A : T) is not open in I1_4(Cgs)}, remark that
dim(7T)) < dim(II_4(Cs)) (from Corollary 1.4.3 in Appendix 1.4.2 of
Chapter 1). Thus, for every A € A\A°P,

dim(Cyy, ) = dim(7y + C4)

= dim(7)) + dim(C4) (from Corollary 1.4.5 of Chapter 1)
< dim(Il-4(Cs)) + dim(Cy,)

= dim(II_4(Cs) + C4) (from Corollary 1.4.5 of Chapter 1)
= dim(Cs) (from Equation (2.2)).

Therefore, the result follows from Proposition 1.4.11 (in Appendix 1.4.2
of Chapter 1). Finally, from Corollary 1.4.4 (in Appendix 1.4.2 of
Chapter 1),

dim(Cs\G) < dim( | J(Cy,\GA) U C),
AeA
and from Proposition 1.4.11 (in Appendix 1.4.2 of Chapter 1),
dim ( {_J(Cy, \GA)UC) = max{dim( |_J(Cy,\G»)),dim(C)} < dim(Cs).

AEA AEA

e Last, we show that (G is open in Cg.

Observe that for every A € A® = {\ € A : Ty is open in [I_4(Cgs)},
G is open in Cg because G is open in Cy, (from G being generic in
Cu,) and because Cy, is open in Cg. Indeed, to understand this last
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point, remark that since for every A € A° Ty is open in II_4(Cs),
Cuy, = T+ C4 is open in II_4(Cg) + Cy4, ie. is open in Cg (from
Equation (2.2)). Finally, G = |J,cper G is open in Cgs (as an arbitrary
union of open subsets of Cg).

Step II. For every dim(.A)-semi-algebraically regular set S of games,
there exists a generic semi-algebraic subset G of Cs such that for
every y € G, the game 1Y has an odd number of Nash equilibria.

Let S be a dim(.A)-semi-algebraically regular set of games (i.e. S satisfies
concavity assumption, dim(.A)-invariance assumption and semi-algebraicity
assumption in Definition 2.3.5).

Consider the set S + A of games, and observe that it is A-semi-algebraically
regular: (i) concavity assumption is directly verified; (ii) A-invariance as-
sumption is verified since (S + A) + A = S + A; (4it) semi-algebraicity
assumption is verified since both Cg and C4 are semi-algebraic sets, and
since Cg; 4 = Cgs + C4; the result follows from Corollary 1.4.2 in Appendix
1.4.2 of Chapter 1. Hence, from Step I, there exists a generic semi-algebraic
subset GG of Cg, 4 such that for every y € GG, the game u¥ has an odd number
of Nash equilibria.

Now, consider such a subset G of Cs, 4 and define G’ = CsNG. In particular,
note that for every y € G’, the game u¥ has an odd number of Nash equilibria.
Finally, observe that G’ is generic in Cg, from the following lemma applied
to S = CS, T= C5+A, and TO =G.

Lemma 2.4.1. Let S,T be two semi-algebraic sets such that S C T and
dim(S) = dim(T"). If Ty is a generic subset of T', then S N1y is a generic
subset of S.

Proof. Remark that S\(S N Ty) € T\Tp, which implies that dim(S\(S N
Ty)) < dim(T\Typ), from Corollary 1.4.4 in Appendix 1.4.2 of Chapter 1.
Now, since dim(7\7p) < dim(7") (from T, being generic in 7') and since
dim(S) = dim(7") (by assumption), note that dim(S\(S N 7)) < dim(S).
Moreover, S N Ty is open in S: Ty is open in T (from Tj being generic in T')
and S C T, so the result follows from the definition of the induced topology
on S. ]

Step III. Oddness theorem.

Let S be a dim(L)-strongly semi-algebraically regular set of games (i.e. S sat-
isfies concavity assumption, strong semi-algebraicity assumption and dim(L)-
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invariance assumption in Definition 2.3.5).

Recall that for every ¢ € N,

R, [7]-csex.z) = Span({ [ ] #3 + k € N¥ deg(k) < 5, }\{1})

jLEL

corresponds to the linear subspace of Ry, [x] generated by all the monomials in
R, [z], except the constant monomial, and that Rs[z]_¢ = [[,cy Rs [2]—cst(xr)-
By definition, observe that Rs[x] = Rs[z] ¢ @ C, thus that

P(Rs[z]) = R™ = Cgyu)_. ® Cc = p(Rs[z]-¢) ® ¢(C).

Moreover, denote by II_¢ the linear projection from the vector space R™ =
Cr,] o ® Cc (of coeflicients of polynomial games in Rs[z]) to the space
Cry[a] . (of coefficients of polynomial games in Rs[x] _¢).

Consider the set S+C of games, and observe that it is dim(.4)-semi-algebraically
regular: (i) concavity assumption is directly verified; (i7) dim(.A)-invariance
assumption is verified since

dim(Csyeyra) = dim(Csicys(c+c))
= dim(Csyr)+c)
= dim(Cgs; ) + dim(Ce¢) (from Corollary 1.4.5 of Chapter 1)
= dim(Cgs) + dim(Cg)
(from dim(L£)-invariance assumption on S)
= dim(Cgs;¢) (from Corollary 1.4.5 of Chapter 1);

(17i) semi-algebraicity assumption is verified since both Cg and C are semi-
algebraic sets, and since Cs ¢ = Cgs + Cg; the result follows from Corollary
1.4.2 in Appendix 1.4.2 of Chapter 1. Hence, from Step II, there exists a
generic semi-algebraic subset G of Cg,¢ such that for every y € GG, the game
u¥ has an odd number of Nash equilibria.

Now, consider such a subset G of Cs ¢ and define G' = II_¢(G). In partic-
ular, note that for every y € G’, the game u? has an odd number of Nash
equilibria (constant parts are not relevant when one deals with Nash equi-
libria). Finally, observe that G’ is generic in Cg, from the following lemma
applied to p = m, E; = Cgyjy) ., > = Sy = C¢, S = Cs, and Ty = G.

Lemma 2.4.2. Let Fy, Ey be two linear subspaces of RP (p € N) such that
Ey and E5 are in direct sum, and let 11g, be the linear projection from RP to
Ey. Moreover, let Sy (resp. Sz) be a semi-algebraic subset of Ey (resp. Es).
If Ty is a generic subset of S + Sa, then g, (Ty) is a generic subset of Sy.
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Proof. Recall that from Proposition 1.4.8 (in Appendix 1.4.2 of Chapter 1),
g, (Tp) is semi-algebraic.

Now, consider a generic subset Ty of Sy + Sy, and suppose that Ilg, (7p) is
not generic in 5j.

First, we prove that Ilg, (75) is open in S; (which will imply that the di-
mension of S1\IIg, (Tp) is equal to the dimension of S;). To do so, consider
x1 € g, (To). We show that there exists a neighborhood of z; in S; which
is included in Ilg, (Tp). By definition of Ilg, (T5), there exists ¢ € Ty such
that x; = Ilg, (t), and by definition of Tj, there exists zo € Sy such that
t = x1 + 22 (fix such elements ¢t € Ty and x5 € S3). Since Ty is open in
S1 4+ Sy (from Ty being generic in S; + Ss), there exists a neighborhood
Vtof t in S; + Ss (now fixed) which is included in Tj. Now, consider the
map f : (y1,y2) € S1 X So — y1 +y2 € S; + S3. Since f is a continuous
map, for every neighborhood V of t = f(z1,29) in Sy + S, there exists a
neighborhood U* of (x1,x5) in Sy x Sy such that f(U*) C V (by definition);
consider V* 3 ¢, and consider such a neighborhood U* of (z1, 23) in Sy x Ss.
Because for every (yi,y2) € Si X Sa, the set of all subsets of S; x Sy of
the form V¥ x V¥ (where V¥ is a neighborhood of y; in S; and V¥2 is
a neighborhood of y, in S5) forms a neighborhood basis of (y1,ys) for the
topology on S X Sy C E; X Fs, there exists some neighborhoods V*! of x;
in S; and V*2 of x5 in Sy such that V*' x V* C U?, which implies that
f(V* x V#=2) C f(U) Cc V! (le. VP 4+ V* C V). In particular, note that
V®1 is a neighborhood of z; in S; which is included in Ilg, (Tp) (for every
Ty eV a4 19 € VI 4+ V*2 C V' C Ty, which implies that 2 € g, (Tp)).

Now, since Ilg, (Tp) is not generic in Sy and since Iz, (Tp) is open in S;, one
obtains that dim(S;\Ilg, (7p)) = dim(S;), thus that

dlm((Sl\HEl (To))+52) = dlm((Sl\HEl (To))XSQ> = dlm(SleQ) = dlm(51+52),

since, by assumption, £ and Ej are in direct sum, and from Corollary 1.4.5
(in Appendix 1.4.2 of Chapter 1). However, remark that

(S1\IIg, (To)) + Sa C (S1 + S2)\To

(for every 1 + zo € (S1\Ilg, (Tp)) + Sz, x1 + x9 € (S + S2)\ Ty, otherwise
x1 € Ig, (Tp), which directly leads to a contradiction), which implies that

from Corollary 1.4.4 (in Appendix 1.4.2 of Chapter 1). This contradicts the
genericity of Ty in S; + S5. [

This step ends the proof of the oddness theorem. []
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Chapter 3

Unknottedness of the Graph of
Pairwise Stable Networks and
Dynamics in Networks
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nrR

PR

Set of weighted networks on N

Graph of pairwise stable networks associated to the setV of societies
Projection from Py to G, where V is a set of societies

Set of continuous payoff functions of agent © which are concave in
gi; and with continuous first-order derivative with respect to the ij-
th variable, for every j #i (F = [l,en Fi)

Set of payoff functions of agent i which are affine in (g;j);2 and
which only depend on those weights (A = [].cn Ai)
Homeomorphism from Pr to R of structure theorem, where R is
a A-reqular set of societies (for every (v,g) € Pr, nr(v,g9) =
(@;"")ien, where for every i € N, ;Y = v; + hi[v] +17)

Inverse of nr, where R is a A-regular set of societies (for every
v ER, pr(v) = (W)iew, (g )ijer), where for every i € N, ul =
v = [o] = 17")

Initial ambient space associated to V: cartesian product of V and
G, where ¥V C F is a subset of own-weights C' concave societies
Trivial copy of V: cartesian product of V and {g°}, where V C F
is a subset of own-weights C* concave societies and ¢° € G
(e-)ambient space associated to a subset V of own-weights C' con-
cave societies, where ¢ € (0,400) (&, = V x G°, where G* =
[—e,1+¢€]|F); if there is no ambiguity, then &y = &y and G =G
Unknot associated to a A-regqular set R of societies and g°, where
3 E€G (K% :veER M (v,¢9°) € Er, iIm(k%) =RY)

Knot of pairwise stable networks associated to a A-regular set R of
societies and pr, (Kpp : v € R — pr(v) € Er, im(K,, ) = Pr)
Ambient isotopy between k,, and K% of unknottedness theorem,
where R is a A-reqular set of societies

Z(D) ={(v,g9) € & : g € Z(D,)}, with Z(D,) being the set of zeros
of the vector field D,, = D(v,-), where D is a network dynamic on
some subset V C F of own-weights C* concave societies

Table 3.1: Table of notations of Chapter 3
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This chapter is based on a preprint written by Julien Fixary [20].

3.1 Introduction

In this last chapter, we provide our unknottedness theorem and our dynamics
equivalence theorem in network formation theory. The chapter is organized
as follows: (i) in Subsection 3.2.1 (of Section 3.2), we first recall some defini-
tions and notations introduced in Chapter 1 - in particular, we provide some
reminders about the graph of pairwise stable networks (associated to any
set of societies), about A-regularity, and we recall our structure theorem
(Theorem 3.2.1); (i7) in Subsection 3.2.2, we present our unknottedness the-
orem (Theorem 3.2.2); (i4i) in Subsection 3.3.1 (of Section 3.3), we introduce
the notions of network dynamic and of extended network dynamic; (iv) in
Subsection 3.3.2, we present our dynamics equivalence theorem (Theorem
3.3.1); (v) in Subsection 3.3.3, we provide some consequences of the dy-
namics equivalence theorem - in particular, we present our indices equality
theorem (Corollary 3.3.1); (vi) in Section 3.4 (Appendix), we provide first
the necessary reminders about elementary notions of knot theory, about vec-
tor bundles and about differential geometry (Subsection 3.4.1 and Subsection
3.4.2), and we provide next the proofs of unknottedness theorem (Subsection
3.4.3), of dynamics equivalence theorem (Subsection 3.4.4) and of indices
equality theorem (Subsection 3.4.5).

3.2 Unknottedness of the graph of pairwise
stable networks

3.2.1 The graph of pairwise stable networks and .A-
regular sets of societies

First, we recall some definitions and notations from network formation theory
introduced in Chapter 1.

Definition 3.2.1. A set of agents is a finite set NV such that card(N) > 2.
For every set N of agents, the set L = {{i,j} : (i,j) € N x N,i # j} is
called the set of links (on N) and the set G = [0,1]" is called the set of
(weighted) networks (on N ). Furthermore, the vector space R (with its
usual operations) is endowed with the Euclidean norm, i.e.

I-:geR = > g% €R,
ijEL
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and G is endowed with the induced topology. A (weighted) society is a couple
(N, (v;)ien), where for every i € N, the map v; is called the payoff function
of agent i. For every set N of agents, the set of all societies whose the set of
agents is equal to N can be identified to the set

Soc = {N — {G — R}}.

Throughout this chapter, we consider a fixed set N of agents.

Notations. Every link {7, j} € L is denoted ij. For every network g € G and
every link 7j € L, g({7,7}) is denoted g¢;; and is called the weight associated
to ij (in g). For every link ij € L, L_;; = L\ij and G_;; = [0, 1],
For every link ij € L, every ¢g_i; = (gu)mzij € G_i; and every w € [0, 1],
g = (w,g-;;) € G is the network defined by g;;, = gu, for every kl # ij, and
gi; = w. For every network g € G and every link ij € L, g_ij = (grt)riij €
G—ij'

Definition 3.2.2. Let v € Soc be a society. A network g € G is pairwise
stable (with respect to v) if for every ij € L, the two following conditions
hold:

1. For every w € [0, gi5), vi(w, g—i;) < vi(g) and v;(w, g—ij) < v;(g).
2. For every w € (gija 1]7 Ui(wag—ij) < wi(g) or Uj(wvg—ij) < Uj(g)'

For every set V C Soc of societies, the pairwise stable networks correspond-
ence associated to ) is the correspondence

Uy: YV — G
v +— {g € G: g is pairwise stable with respect to v} -

The graph of the pairwise stable networks correspondence associated to V is
called the graph of pairwise stable networks associated to V and is denoted
Pv, i.e.

Py = Gr(¥y) = {(v,9) €V x G : g is pairwise stable with respect to v}.

The projection from Py, to V is denoted my, and the projection from Py to G
is denoted 7g (by abuse of notation).

Definition 3.2.3. For every i € N,
Ci ={vi € F(G,R) : Vj # i,Vg_;; € G_;;,v;(-, g—;;) is concave},
D; = {v; € C°(G,R) : Vj # 1, 0;jv; exists and is continuous},
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where for every v; € C°(G,R) and every j # 1,

81}1»
Oijvi + 9 = (9ij, 9-ij) € G 5= (g) € R,

ij

and
F;, =C;ND;.
The set
F=1]x
1EN

is called the set of own-weights C* concave societies. For every i € N, the
vector space D; (with its usual operations) is endowed with the following
norm:

|- |li - vi € Di = max{max{[|vil|oc, [|0;jvilloc } : J # i} € R,

where for every v; € D; and every j # i, ||[vi||oc = sup,eg|vi(g)| and [[05vi |0 =
sup,c|0ivi(g)]. Furthermore, any subset of D; is endowed with the induced
topology.

Definition 3.2.4. For every i € N,
Az’:{96Gﬁz&ijgij-FCGRIVj#i,oqj €eR,ceR}.
J#
Moreover, A =[],y Ai-

We now recall the notion of A-regular set of societies which plays also an
important role in this chapter.

Definition 3.2.5. A set R C Soc of societies is A-regular if the two following
conditions hold:

1. (Concavity). R C F.
2. (A-invariance). R + A =R.
We also recall our structure theorem (see Theorem 1.2.1 in Chapter 1).!

Theorem 3.2.1. For every A-reqular set R of societies, the projection 7x :
Pr — R is properly homotopic to some homeomorphism ng : Pr — R.

To be precise, this result was stated for .A-regular set of societies of the form [], en Ri,
where for every i € N, R; C F(G,R). Nevertheless, Theorem 1.2.1 holds in fact for any
A-regular set of societies.
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Recall that for every A-regular set R of societies, the homeomorphism 7z :
Pr — R of Theorem 3.2.1 is built in the following way: consider a network
¢ € G and define

)

nr : PR — R
(v,9) = u™

where for every i € N and every v € G,
() = v+ (0ivil i, 9-i5) — 0igvi(9ij» 8%5)) (vij — 9i3) + > gigvis- (3-1)
j#i J#

The inverse of 1y is defined as

)

pr: R — Pr
vo= o (ugY)

where for every ¢ € N and every v € G,

{(v) = vi(y) - Z (8i5vi(giy, 9%45) — az‘jvi(gfjag ) (vij — 987) Zgzﬂm, 3.2)
J#i J#i

and where for every link ij € L, g;; = min{wy;, w?,}, with w}; € [0, 1] being
the unique maximizer of the strictly concave function

{qi[v]: 0,1] — R ]
w = ov(w, g_”) —

and wj; € [0,1] being the unique maximizer of the strictly concave function
{ glv]: [0,1] — R )
w = (U) g—z]) - w?

In order to simplify the rest of this chapter, for every agent i € N, every
network ¢ € G, and every (v, g) € R X G, define the maps

vl : G — R
{ Yo Zj;ﬁi (aijvi(gijag ) amvz(gwag—zg))(%] gij)
and
v: G — R
{ Vo Z#ﬂijgzj
so that

u,? =+ W]+l and uf = v; — hfv [v] — lfv.
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3.2.2 Unknottedness theorem

Notations. Let ¥V C F be a subset of own-weights C! concave societies.
&y =V x G. For every network ¢° € G, V° =V x {¢°}.

In this section, for every subset V C F of own-weights C! concave societies,
we consider an “enlargement” of the space &, = V x G which we call ambient
space associated to V.

Definition 3.2.6. Let € € (0, +0c) and V C F be a subset of own-weights C*
concave societies. The (e-)ambient space (associated to V) is the topological
space & = V x G°, where G° = [—¢,1 + ¢|*. If there is no ambiguity, &
(resp. G?) is also denoted &, (resp. G).

Throughout the rest of this chapter, consider a fixed real number € > 0.

Definition 3.2.7. Let ¢° € G and R be a A-regular set of societies. The
unknot associated to R (and ¢°) is the topological embedding

K : R — Er
v~ (v,9°)

Moreover, the knot of pairwise stable networks associated to R and pg is the
topological embedding

{ Kpr : R — Er

v = pr(v)

By analogy to knot theory (a branch of topology which studies topological
embeddings of the unit circle S! C R? into R3 or S?, called knots), the term
“unknot” (in the previous definition) comes from the trivial knot (z,y) €
S' + (z,3,0) € R3 which is itself originally called the unknot. In our case,
the idea is that for every network ¢° € G and every A-regular set R of
societies, if we consider the set of all topological embeddings of R into the
ambient space Ex (instead of those mentioned before), then R can be seen as
trivially embedded by £% into éN’R Figure 3.1 provides a simple representation
of the unknot x% associated to R (for ¢° € G), and of the knot x,, of pairwise

stable networks associated to R and pgr, where R is an arbitrary A-regular
set of societies.

Recall that for every topological spaces X,Y and every topological embed-
dings e!,e? : X — Y, an ambient isotopy between e' and e? is a continuous
map 60 : [0,1] x Y — Y such that 6(0,-) = idy, 6(1,-) o e! = €* and for
every t € [0,1], 6(¢,-) is a homeomorphism (see Appendix 3.4.1 for some
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Figure 3.1: Pgr =im(k,,) (in thick line) and R® = im(x%) (in dashed line)

reminders). With reference to Theorem 3.2.1 (structure theorem), the fol-
lowing result provides more insights on the topological structure of the graph
of pairwise stable networks associated to any A-regular set of societies.

Theorem 3.2.2. (Unknottedness theorem,)

For every A-regular set R of societies, the knot k,, : R — gR of pairwise
stable networks associated to R and pr is ambient isotopic_to the unknot
K% : R — Er associated to R within the ambient space Ex, through an
ambient isotopy Or which does not deform the boundary of E,N’R

Consider a A-regular set R of societies. Again, by analogy to knot theory, the
term “unknottedness” comes from the fact that x,, : R — &g can be seen as
“equivalent” to the unknot k% : R — gR Intuitively, unknottedness theorem
states that the graph Pr = im(k,, ) of pairwise stable networks associated to
R can be continuously deformed (using 6z ) into a trivial copy RY = im(x%)
of the space R of societies within the ambient space gg; the key idea being
that 6z does not deform only Pg, but also the entire space £z.? Note that
unknottedness theorem is stronger than the first part of structure theorem
(Theorem 3.2.1): for every A-regular set R of societies, since k,, : R = Ex
is ambient isotopic to k% : R — Ex within gR, then k,,(R) = Pgr and

In knot theory, the notion of homeomorphism is not sufficient in order to classify
knots since by definition, the image of S! by any knot is homeomorphic to S! itself. The
(stronger) notion of ambient isotopy is more useful since it allows to distinguish in a
sharper way a knot from the others (see Appendix 3.4.1 for some reminders).
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k%(R) = R° are homeomorphic, where R? is itself homeomorphic to R.

Before providing a sketch of proof of Theorem 3.2.2, let us come back in
a slightly more precise way on two particular works in game theory that
we already mentioned in the Introduction (of this thesis) and at the begin-
ning of Chapter 1: Demichelis and Germano’s paper [17], and Predtetchin-
ski’s paper [40]. These works are indeed very linked to the results of this
chapter: Demichelis and Germano provided an unknottedness theorem in
the case of mixed Nash equilibria of finite strategic-form games, and Pre-
dtetchinski provided (in addition to his structure theorem) a generalization
of Demichelis-Germano’s unknottedness theorem in the case of Nash equi-
libria of own-strategy C' concave games. Furthermore, in the same paper,
Demichelis and Germano proved several important results about the notion
of Nash dynamic (these results will be very useful for our next section).

Sketch of proof
The full proof is provided in Appendix 3.4.3.

Considering a fixed network ¢° € G and a fixed A-regular set R of societies,
the demonstration goes as follows:

1. In Step I, we show that the knot x,, : v € R — pg(v) € Ex of pairwise
stable networks associated to R and pr, and the topological embedding
e PR 1y € R (v, (rgopr)(v)) € Ex are ambient isotopic within Ex,
through an ambient isotopy 6%. The idea is to continuously deform the
graph Pr of pairwise stable networks associated to R into the graph
of the continuous map 7g o pg : R — G, within the ambient space.
Figure 3.2 provides an illustration of this proof step.

2. In Step II, for every continuous map f : R — G, we show that the
topological embedding e/ : v € R + (v, f(v)) € Er and the unknot
k) cv e R = (v,9°) € Eg are ambient isotopic within g, through
an ambient isotopy 9721”0 . The idea is to continuously deform the graph
of any continuous map from R to G into the trivial copy R" of R,
within the ambient space. Figure 3.3 provides an illustration of this
proof step.

3. In Step III, using ambient isotopies 6% of Step I and 9722’10 of Step II
(for f = mg o pr), we construct, within Er, an ambient isotopy Or
between the knot ki of pairwise stable networks associated to R and
pr, and the unknot %, which ends the proof of this theorem. A major
feature of 05 is that it does not deform the boundary of the ambient
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Pr = im(k,y)

R

»

Figure 3.2: Deformation of Pr_(in thick line) into Gr(ng o pr) (in dashed
line) within the ambient space Er = R x G

R

>

Figure 3.3: Deformation of Gr(f) (in thick line) into RY (in dashed line)
within the ambient space Er = R x G
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space gR; this will play an important role in the proof of our dynamics
equivalence theorem (Theorem 3.3.1 in Section 3.3.2).

3.3 Dynamics in networks

3.3.1 Network dynamics and extended network dynam-
ics

In this section, we introduce the notions of network dynamic and of extended
network dynamic on an arbitrary subset V of own-weights C! concave soci-
eties (i.e. an arbitrary subset of F). Briefly, a network dynamic (resp. an
extended network dynamic) on V is a family of vector fields (D,),ev on G
(resp. (Dy)vey on G) such that for every v € V, the set of zeros of D, (resp.
of D,) coincide with the set of pairwise stable networks of v.?

Definition 3.3.1. Let V C F be a subset of own-weights C! concave societ-
ies:
e A network dynamic on V is a continuous map D : &, — TG such that
the two following conditions hold:

1. For every v € V, D, = D(v,-) is a vector field on G.

2. Z(D) = Py, where Z(D) = {(v,9) € & : g € Z(D,)}, with Z(D,)
being the set of zeros of the vector field D,.

e An extended network dynamic on 'V is a continuous map D: gv — TG
such that the two following conditions hold:

1. For every v € V, D, = D(v,-) is a vector field on G.

2. Z(D) = Py, where Z(D) = {(v,g) € & : g€ Z(D,)}, with Z(D,)
being the set of zeros of the vector field D

Remark 3.3.1. Remark that G (resp. G) is a convex subset of R, which
implies that it is contractible in R%, thus that the tangent bundle TG of G
(resp. TG of G) is trivial (see Proposition 3.4.1 in Appendix 3.4.1). Con-
sequently, Theorem 3.4.1 (see Appendix 3.4.1) states in particular that any
network dynamic D on a subset V of own-weights C! concave societies can be

3Recall that the tangent bundle TG of G is the disjoint union of all tangent spaces T,G
to G at g (9 € G), and that a vector field on G is an assignment of a tangent vector in
TG to each network g € G (see Appendix 3.4.2 for more details). Moreover, each tangent
space TG (g € G) can be identified to RZ, and we will see in what follows that each
vector field on G can be seen as a continuous map from G to R”.
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Figure 3.4: Variational geometry of a convex set; examples of normal cones

(and of tangent cones) (Rockafellar-Wets [42], p. 204)

treated as a continuous map from &y to R such that D~*(0ze) = Py, and
that any extended network dynamic D on V can be treated as a continuous
map from &y to RY such that D~1(0ge) = Py. Sometimes, this identification
will be implicitly or explicitly used in some definitions or in some proofs in
order to avoid complex details.

In the following, we introduce the notions of inward-pointing network dy-
namic and of strongly inward-pointing extended network dynamic. Before
that, recall that for every convex subset C' of R™ (m € N) and every x € C,
the normal cone to C at x is defined as

Ne(z) ={y e R™: Va2’ € C, (y, 2’ — z) <0}

(see Rockafellar-Wets [42], pp. 203-204).

Definition 3.3.2. Let V C F be a subset of own-weights C* concave soci-
eties. A network dynamic D on V is said to be inward-pointing if for every
v eV, every g € 0G, and every x € Ng(g),

(Dy(g),x) <0.

Figure 3.5 provides a “slice” of an inward-pointing network dynamic D for
card(L) = 2, and for some subset V C F of own-weights C' concave societies
and some v € V.
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Figure 3.5: “Slice” of D, with Z(D,) = {g*, ¢, ¢°}

Definition 3.3.3. Let V C F be a subset of own-weights C! concave soci-
eties. An extended network dynamic D on V is said to be strongly inward-
pointing if for every v € V, every ¢ € (0,¢], every g € 9G®, and every
z € Nger (9)\{Opz },

(Du(g),z) <0.

Similarly as above, Figure 3.6 provides a “slice” of a strongly inward-pointing
extended network dynamic D for card(L) = 2, and for some subset V C F
of own-weights C! concave societies and some v € V.

The two notions of inward-pointing network dynamic and of strongly inward-
pointing extended network dynamic are in fact quite natural. If one wants
to deal with flows associated to vector fields on G, then the first notion is
worth to consider; at the boundary of G, we do not want to move “outside”.
The second notion aims to precise how an extended network dynamic should
“normally” behave on the ambient space &, (V C F), which corresponds to
an “artificial enlargment” of the space &£y. Indeed, the practical feature of gv
lies in the fact that it allows us to be able to describe what happens outside G
(especially around isolated zeros on 0G). However, starting from any element
in @\G, we also want to be sure to move back to G (by following the path
induced by the underlying extended network dynamic); this will be the case
if the considered extended network dynamic is strongly inward-pointing.

Example 3.3.1. (Pairwise best-response dynamic)
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Figure 3.6: “Slice” of D, with Z(ﬁv) ={9" 9%’}

For every ¢ € N, let
Vi =A{v; € Fi:Vj #i,VYg_;; € G_jj,v;(-, g—;;) is strictly concave}.
Moreover, consider the map
D:(v,g) €V x G+ (min{w;(vi, g_i;),w;(vj, 9-5;)} — gij)ijeL e RY,
where V = [,y Vi, and where for every (v,g) € V x G, and every ij € L,
wi(vi, g—ij) = argmax,,c (o 1vi(w, g—i;)
and

wj(vj, g-i5) = argmax,,co,1)Y; (w, g_i5)-

We show that D is an inward-pointing network dynamic.

First, observe that D7*(Oge) = Py. Indeed, for every (v,g) € V x G, ¢
is pairwise stable with respect to v if and only if for every ij € L, g;; =
min{w;(v;, g—i;), w;(vj, g—ij) } (from strict concavity of the maps v;(-, g_;;) and
v (-, 9—i;)). Equivalently, ¢ is pairwise stable with respect to v if and only if
for every ij € L, min{w;(vi, g_i;),w;(v;,9-i;)} — 9;; = 0, i.e. if and only if
D(v,g) = Oge.

Now, we show that D is inward-pointing. Let v € V, g € 0G, and x €
Ng(g) = {y € Rl : ¥y € G, (y,7 — g) < 0}. By definition,
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for every v € G. In particular, remark that

</3/ -9, l’) < 07
for 4 = (min{wi(vi,g,ij),wj(vj,g,ij)})ijd € G. Finally, observe that

D,(g) = (min{wi(viag—ij)>wj(vjag—ij)} - gij)ijeL = (’AYij - gij)ijeL =7—g.
Hence,
<Dv(g)>$> <0.

3.3.2 Dynamics equivalence theorem

The second main result of this chapter, called dynamics equivalence theorem,
states that any two strongly inward-pointing extended network dynamics on
an arbitrary A-regular set R of societies are homotopic within the set of all
extended network dynamics on R, i.e. through a homotopy Hg such that for
every t € [0,1], Hr(t,-,-) : Er — TG is also an extended network dynamic
on R.

Theorem 3.3.1. (Dynamics equivalence theorem)

For every A-regular set R of societies, any two strongly inward-pointing ex-
tended network dynamics on R are homotopic, through a homotopy Hgr such
that for every t € [0,1], Hg(t,-,-) is an extended network dynamic on R.

Dynamics equivalence theorem is a result which is in the spirit of Demichelis
and Germano’s previously mentioned paper [17], who provide a similar the-
orem in game theory, in the case of extended Nash dynamics.*

Sketch of proof
The full proof is provided in Appendix 3.4.4.

Consider a fixed network ¢° € G and a fixed A-regular set R of societies.

4Consider a set I = {1,...,n} of players (for some n € N) and the family (X;);cs of sets
of strategies such that for every i € I, X; corresponds to the unit x; — 1 simplex A*i—1 ¢
R#i (for some p; € N). Moreover, consider the space L (X,R) = {I — L,(X1,...,X,,R)}
of multilinear games. Observe that the notion of Nash dynamic (resp. extended Nash
dynamic) is analogous to the one of inward-pointing network dynamic on £"(X,R) (resp.
strongly inward-pointing extended network dynamic on £™*(X,R)). For example, recall
that a Nash dynamic is a continuous map D : L"(X,R) x X — TX (with X =J[,.; Xy)
such that: (i) for every u € L"(X,R), D(u,-) is a vector field on X; (77) Z(D) = Nzn(x r);
(7i1) for every u € L(X,R), every x € 0X, and every z € Nxx, (D,(z),2) <0.
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Observe that G is a convex subset of RL , which implies that it is contract-
ible. Hence, from Proposition 3.4.1 (see Appendix 3.4.1), TG is trivial. Con-
sequently, using Theorem 3.4.1 (see Appendix 3.4.2), any extended network
dynamic on R is treated throughout all this proof as a continuous map
D : Er — RE such that D=!(0ge) = Pg, in order to simplify the demonstra-
tion.

Now, consider two extended network dynamics IN), D' on R. The required
homotopy Hz between D and D’ of Theorem 3.3.1 is built in a two-step
process:

ﬁRi [0,1]X(§R — RL
(4 (0,9)) {ﬁ%e@f’(vvg)) it “@’? ,

where the maps ]’-vf}z, ﬁ 2. [0,1] x Er — RE are explained in what follows:

1. The map HR is built in Step I. The idea is to deform the map D into

a continuous map Dd &g — RE which is equal to D on Er =R x G,
and which is equal to D' on R x G, i.c.

Dpler = Dlep and Dolp, oz = D'l yoz

(this property will be crucial for the construction of the map H 2)
Then, H 1 is defined as the straight-line homotopy between D and Da,
this homotopy is such that for every t € [0, 1], HL % (t,-,-) is an extended
network dynamic on R.

2. The map f[% is built from Step II to Step VIII. Now, the idea is to
deform the map Dy into the map D’. Briefly:

e In Step II, we want to simplify this construction by using the am-
bient isotopy O : [0,1] X Eg — SR of the unknottedness theorem
(Theorem 3.2.2). More precisely, instead of directly deform Dy
into D', our aim is to deform the map Ay = Dy o (Ox(1,-, )™
into the map A’ = D’ o o (6r(1,-,-))~". By doing so, once we find
a homotopy (TDR between Aa and A’ such that for every t € [0, 1],
((iR(ta ) '))71(ORL) = RO(: R x {90})7 then



is a homotopy between Dy and D’ such that for every t € [0, 1],
the map H%(t,-,-) is an extended network dynamic on R (by
definition of 0g).

e From Step IIT to Step VII, we proceed to a kind of ”backand-
forth motion” in order to built a homotopy @R between Aa and
A’ as mentioned above. The following diagram summarizes this
construction:

oL~ P2

Ay —25 Al —R5 A2
I
]
]
{)

Each map of this diagram is detailed in the proof. However, the
key point is the equality in the last column of the diagram between

32 . SR — RL
Ap(v,g9) ) ;
(v.g) > | Taapnlo=dll i gy
Orz otherwise
and
KQ . gR N RL
s ” H if + 0
(U;g) — HA/(Uga)HQ g—gi2 g#g ’
Oz otherwise

where for every g € G\{¢"}, g5 € dG is detailed in Step IV.
Indeed, this equality comes from: (i) the fact that the ambient
isotopy 0z does not deform the boundary of the ambient space
Er; (ii) the property of the map Hzp L (built in Step I) mentioned
before. The map P is then built using the homotopies (@k )iy
(details about these maps are provided in the proof).

3. We conclude about the construction of EIR in Step VIIL.

3.3.3 Some consequences of dynamics equivalence the-
orem

Indices equality theorem

Recall that for a given vector field V' on an arbitrary smooth manifold, and
a given isolated zero z of V', the index of V at z is an indicator which helps
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to quantify the behavior of V' around z (i.e. V may circulate around z, it
may have a source, a sink, a saddle, etc.). It’s formal definition is recalled
and illustrated in Appendix 3.4.2. The following corollary of Theorem 3.3.1
establishes a link between the indices of strongly inward-pointing extended
network dynamics on R at any isolated zero (i.e. at any isolated pairwise
stable network), where R is an arbitrary A-regular set of societies.

Corollary 3.3.1. (Indices equality theorem)

Let R be a A-reqular set of societies. For every strongly inward-pointing
extended network dynamics D and D’ on R and every v € R, the index
of D at g s equal to the index of D’ at g, for every isolated point g of
Z(D,) = Z(D,).

The proof is provided in Appendix 3.4.5.

Index of a zero of a network dynamic

Definition 3.3.4. Let V be a subset of F, and D be an inward-pointing net-
work dynamic on V. A strongly inward-pointing extended network dynamic
D# on V is called a (e-)extension of D to &y if D%, = D.

The next proposition establishes a link between inward-pointing network
dynamics and strongly inward-pointing extended network dynamics.

Proposition 3.3.1. For every subset ¥V C F of own-weights C' concave
societies, any imward-pointing network dynamic on'V admits an extension to

.

Proof. Let r be the projection from G to the closest point in G (this map
is a retraction of G on G, i.e. a continuous map such that its composition
with the inclusion G < G is the identity map idg on G), b: G — [0,1] be a
continuous map such that b(G) = 1 and b(0G) =0, and V : G = G — R
be a (continuous) vector field on G° such that V(G) = Ogz and for every
g € (0,¢], every g € G, and every x € Ngor(g), (V(g),x) < 0. Consider
the map
{ De: & = RE
(v,9) = b(g)D(v,r(g)) +V(g)

First, one obtains directly that for every (v, g) € &y,

D (v, g) = b(g9)D(v,7(g9)) + V(g9) = D(v, g).
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Indeed, since g € G, then b(g) = 1, r(g) = ¢g and V(g) = 0, which implies
that

Py C (De)_l(ORL). (33)

Second, observe that D° = b(D o (idy x r)) + V is a continuous map since
D, b, r and V are continuous. Last, observe that for every v € V), every
' € (0,¢], every g € G and every z € N/ (g),

(D5(g), z) = (b(g) D(v,(g)) + V(9), )
— b(g)(D(v,7(9)). 2) + (V(g), ) < 0.

Indeed: (i) by definition, b(g) € [0, 1]; (i7) (D(v,7(g)),z) < 0 because r(g) €
0G (by definition) and because D is inward-pointing (by assumption); (7i7)
by definition, (V(g),z) < 0. Therefore, for every v € V, DS has no zeros on
G°\G, which finally implies that (D?)~!(0gz) = Py (using Equation (3.3)).

[

Considering a regular set R of societies, an inward-pointing network dynamic
D on R and any extension D¢ of D to Ex (from Proposition 3.3.1), Corollary
3.3.1 states that for every v € R, and every isolated zero g of D:, the index
of D at g does not depend on the choice of this extension. Thus, even
if we technically cannot talk about the index of D, at an isolated zero g
on G (v € R), we can still describe how D, behaves around g using any
extension D° (because such an extension is strongly inward-pointing, no zero
is added outside G, which makes it a “good representation” of D on £%). In
particular, we can see here why the ambient space £% is useful to consider.

Indices equality theorem with semi-algebraic regularity

In this section, we are interested by sets of societies whose payoff functions
are polynomial functions of ¢ (with coefficients in R). Hence, we recall first
some definitions introduced in Chapter 1.

Definition 3.3.5. Let

Rlg]={9€G— Y (o ][] 0)) €R:Vk e N* o) € R},

keNL ijeL
For every ¢+ € N and every 9; € N,
Rs.[9] = {vi € R[g] : deg(v;) < 6:},
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where for every v; € R[g], deg(v;) = max{deg(k) : oy # 0}, with deg(k) =
ZijeL kij, for every k € N-. For every § = (&;)ien € NV, the set

Rslg] = [ [ Rs.lg]
iEN
is called the set of (9-)polynomial societies.

Definition 3.3.6. Let § = (8;);en € NV, and consider some order on the
set L and some order on the set N”. For every i € N, there exists a unique
m; € N such that the map

¢i 2 v € Ry, [g] = (an)rene € R™
is a well-defined vector space isomorphism. Furthermore, the map
v € Rglg] — Xienpi(vi) € R™,

where m = ), m;, is also a well-defined vector space isomorphism.

Throughout the rest of this section, we consider a fixed § = (6;);en € NV, a
fixed order on the set L and a fixed order on the set N” (in particular, we

consider also the vector space isomorphism ¢; of Definition 1.3.2, for every
ieN).

We now recall the notion of A-semi-algebraically set of societies

Definition 3.3.7. A set S C Soc of societies is A-semi-algebraically reqular
if the three following conditions hold:

1. (Concavity). S C F.

2. (A-invariance). S+ A= S.

3. (Semi-algebraicity). S C Rs[g] and ¢(S) is a semi-algebraic set.
We also recall our oddness theorem (see Theorem 1.3.1 in Chapter 1).°

Theorem 3.3.2. Let S be a A-semi-algebraically reqular set of societies.
There ezists a generic semi-algebraic subset G of the set p(S) (of coefficients
of polynomial payoff functions in S) such that for every x € G, the society
v® = o Y(x) has an odd number of pairwise stable networks.

5Similarly to a previous footnote: this result was stated for .A-semi-algebraically reg-
ular set of societies of the form [[,. 5 S; (for every i € N, S; C F(G,R)), but we can
demonstrate that the result holds for any A-semi-algebraically regular set of societies.
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Now, observe that in the framework of A-semi-algebraically regular sets of so-
cieties, one can mix indices equality theorem (Corollary 3.3.1) with Theorem
3.3.2 in order to obtain another interesting version of this result.

Corollary 3.3.2. (Indices equality theorem with semi-algebraic reqularity)

Let S be a A-semi-algebraically reqular set of societies. There exists a generic
semi-algebraic subset G of 90( ) such that for every strongly inward- -pointing
extended network dynamics D and D' on S and every v € G, the index ofDUL
at g is equal to the index ofD . at g, for every point g of Z(Dyx) = Z(D’ ).

The proof follows directly from the ones of Corollary 3.3.1 and Theorem
3.3.2.

The difference between Corollary 3.3.2 and Corollary 3.3.1 lies in the fact
that if we consider a A-semi-algebraically regular set S of societies, and
strongly inward-pointing extended network dynamics D D' on S, then for

“almost every” society v € §, we are now able to talk about the equality
of the indices of D, and D, at any zero, since in that case, each zero is by
definition isolated.

3.4 Appendix

3.4.1 Reminders about topology and vector bundles

Elementary concepts of topology (homeomorphisms, topological embeddings,
homotopies, etc.) have been introduced in Section 1.4.1 of Chapter 1. The
aim of this section is to present other notions that are used in this chapter.

Knots and ambient isotopies

Definition 3.4.1. Let X,Y be two topological spaces and e!,e? : X — Y
be two topological embeddings. An ambient isotopy between e' and e? is a
continuous map 6 : [0,1] x Y — Y such that 6(0,-) = idy, 0(1,-) oe! = €2
and for every ¢t € [0,1], 6(¢,-) is a homeomorphism. If such a map exists,
then e! and e? are said to be ambient isotopic within'Y .

Remark 3.4.1. The previous definition find its roots in knot theory, which is
a branch of topology which studies topological embeddings of the unit circle
S! € R? into R3 (or sometimes, into S?), called knots. Figure 3.7 provides two
examples of knots: the clover-leaf knot and the figure-eight knot (n.b.: often,
the term “knot” refers both to the topological embedding that is considered
and to the image of S! by this embedding). The notion of homeomorphism
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Figure 3.7: Clover-leaf knot (left) and figure-eight knot (right), embedded into
R? (Crowell-Fox [13], p. 4)

iy o iy

—CSo 1o —=

Figure 3.8: The clover-leaf knot is not ambient isotopic to the unknot (ref.:
a lecture course on knot theory from University of Moscow)

is not sufficient in order to classify knots since by definition, any knot is
homeomorphic to S' (i.e. homeomorphic to the unknot). In fact, it is quite
natural to remark that, for example, the clover-leaf knot is not “similar” to
the figure-eight knot, nor to the unknot. Ambient isotopy concept (which
is stronger than homeomorphism concept) aims to distinguish knots in a
better manner. Informally, in order to illustrate this notion, consider the
example of the clover-leaf knot. Figure 3.8 illustrates how this knot can
be homeomorphically deformed into the unknot. However, the clover-leaf
knot is not ambient isotopic to the unknot. Indeed, observe that if such an
ambient isotopy would exist, then the whole ambient space (here, R?) would
be deformed, which would imply an overlap problem and a lack of injectivity
(imagine a tubular neighborhood of the clover-leaf knot: the deformation of
Figure 3.8 would be problematic, passing from the third picture to the last
one).

Vector bundles

Definition 3.4.2. Let E be a topological space, B be a connected topological
space, p : E — B be a continuous map and m € N. The tuple (F, B, p, m) is
a (real) vector bundle (of total space E, of base space B, of projection p and
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of rank m) if the two following conditions hold:

1. For every b € B, p~!(b) is endowed with the structure of a m-dimensional
real vector space.

2. For every b € B, there exists an open subset V' of B which contains b
and a homeomorphism 1 making the following diagram commute:

p (V) 2 V xR™
lp /
pry
V
where pry, @ (z,y) € V X R™ +— x € V, and such that for every 0/ € V,

the restricted map = € p~ (V) — ¥(x) € {b'} x R™ is a vector space
isomorphism.

A section of (E, B, p, m) is a continuous map s : B — E such that pos = idp.
Example 3.4.1.

e Let B be a connected topological space and m € N. The trivial bundle
of rank m over B is the vector bundle

(B xR™ B,prg,m),

where prg : (b,y) € BxR™ — b€ B.

e Let M be a smooth m-manifold (with or without boundary, with or
without corners). The tangent bundle of M is the vector bundle

(TM7 M7 p? m)?
where TM is the disjoint union of the tangent spaces (T, M )qenr to M
and p : (a,v) € TM — a € M (for more details, see Section 3.4.2).

Definition 3.4.3. Let (E, B,p,m), (E’, B,p',m’) be two vector bundles over
the same base space. A continuous map F : E — FE’ is a vector bundle
homomorphism if the two following conditions hold:

1. The following diagram commutes:

E -y F

[t
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2. For every b € B, the restricted map z € p~!(b) — F(x) € (p/)7'(b) is a
linear map.

Moreover, the map F' is a vector bundle isomorphism if F' is a bijection, and
if I and F~! are vector bundle homomorphisms. In that case, (E, B, p, m)
and (E', B,p',m’) are said to be isomorphic.

Definition 3.4.4. A vector bundle (E, B,p,m) is trivial if it is isomorphic
to the trivial bundle (B x R™, B, prg, m) of rank m over B.

Definition 3.4.5. A topological space X is contractible if there exists * € X
and a homotopy between the (continuous) map 7.« : © € X +— x* € X and
the identity map idx on X.

Example 3.4.2.

e R™ and the unit m-hypercube [0, 1]™ are contractible.
e The unit m-sphere S™ is not contractible.

Definition 3.4.6. A topological space X is paracompact if every open cover
of X admits a locally finite open subcover.

Example 3.4.3.

e Every compact space is paracompact.

e Any subspace of R™ is paracompact (since it is metrizable; cf. Stone’s
theorem).

Proposition 3.4.1. Any vector bundle over a contractible paracompact base
space is trivial.

Proof. The proof is similar to Bott-Tu [9], Corollary 6.9, p. 59. O

3.4.2 Reminders about differential geometry

Remark 3.4.2. In the following, the term “smooth m-manifold” (without
further qualification) means a smooth m-manifold with or without boundary,
with or without corners (e.g. see Lee [36], pp. 10-15, p.25 and p. 415 for
some reminders about these definitions).

Tangent spaces and vector fields

Definition 3.4.7. Let M be a smooth m-manifold and a € M. A linear
map d : C*°(M,R) — R is a derivation at a if it satisfies the Leibniz identity:
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Figure 3.9: Tangent space to S? at a (Lee [36], p. 52)

for every f,g € C*(M,R),

d(fg) = d(f)g(a) + f(a)d(g).

The vector space of all derivations at a is denoted T,M and is called the
tangent space to M at a. Furthermore, the tuple (TM, M, p,m), where

TM = ]_[ T,M

aeM

and p : (a,v) € TM — a € M, is a vector bundle of rank m which is called
the tangent bundle of M.5

Definition 3.4.8. Let M be a smooth m-manifold. A section V : M — TM
of the tangent bundle of M is called a wvector field on M. The vector space
of all vector fields on M is denoted X(M). Moreover, for every vector field
V € X(M) on M, the set

_>

ZV)y={a€e M :V(a) = (a,0,)},

where O_Z is the derivation at a constantly equal to 0, is called the set of zeros
of V. A zero z € Z(V') of V is isolated if there exists an open neighborhood
of z in M which does not intersect the set Z(V)\{z}. A zero z € Z(V) of V
is (manifold) interior if there exists a chart (U, ¢) of M such that ¢(U) is an
open subset of R™ (such a chart is called an interior chart of M) and z € U.

Theorem 3.4.1. Let M be a smooth m-manifold with trivial tangent bundle
and X be a topological space. There exists a bijection ¥ from C°(X x M, R™)

6See Lee [36], Proposition 3.18, p. 66 and Proposition 10.4, p. 252 for some reminders
about the natural topology on TM.
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Figure 3.10: lllustration of a vector field on a smooth manifold (Lee [36], p.
175)

‘\.

to the set
D={DcC'X xMTM):Vz e X,D(z,-) € X(M)}

with the following properties:

1. For every f, f' € CO(X x M,R™): there exists a homotopy H between
f and f'if and only if there exists a homotopy H' between V(f) and
U(f") such that for every t € [0,1], H'(t,-,-) € D.

2. For every f € CO(X x M,R™), f~'(Ogm) = Z(V(f)), where
Z(V(f) ={(z,a) € X x M :a € Z(¥(f)(x,-))}.

Proof. By definition, since TM is trivial, there exists a vector bundle iso-
morphism from (TM, M,p,m) to (M x R™ M, pr,;,m). Let F : TM —
M x R™ be such an isomorphism. Observe that the map
{ U: CYX xM,R™") — D
f = W(f)
with
U(f): XxM — TM
(z,a) — (Fto(pry X f)oAxxum)(z,a)

(where pry, : (z,a) € X x M — a € M and Axxy : (z,0) € X X M —
((x,a),(x,a)) € (X x M) x (X x M) is the diagonal function on X x M) is
a bijection whose inverse is the map
vl D - CYUX x M,R™)
D — v—1(D) ’
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with
UUD): XxM — R™
(z,a) + (prgmo FoD)(z,a)

Now, we prove the first property. Let f, f' € C°(X x M,R™). First, let H
be a homotopy between f and f’. Observe that the map

{H’: 0, 1] x X xM — TM
(t,z,a) — U(H(t, ")) (z,a)

is continuous (by composition), and that H'(0,-, ) = ¥(f) and H'(1,-,-) =
U(f"). Furthermore, for every ¢t € [0,1] and every (z,a) € X x M, remark
that
(p © H,(t7 €, ))((l) = (p © F_l)(a7 H<t7 Z, a))
= pry(a, H(t,z,a)) (by definition of F)
= a,’
i.e. that for every t € [0, 1] and every x € X, H'(t,x,-) € X(M), hence that

H'(t,-,-) € ©. Conversely, let H' be a homotopy between W(f) and W(f")
such that for every t € [0,1], H'(t,-,-) € ©. Then, the map

H: [0,]]xXxM — R™
(t,x,a) —  (prgm o F o H')(t,z,a)

is the requiered homotopy between f and f’; since it is continuous (by com-
position), and since H(0,-,-) = f and H(1,-,-) = f'.

Finally, we prove the second property. Let f € C°(X x M, R™). By definition,
Z(V(f)) ={(z,a) € X x M :a € Z(Y(f)(x,"))}
= {(ZL’,CL) €EX X M: \I/(f)(l’, CL) = (a, a)}
={(z,a) € X x M : FY(a, f(z,a)) = (a, 0_;)}

=l

(where ()_a> is the derivation at a constantly equal to 0, for every a € M).
First, let (z,a) € f~!'(0gm). Since F~! is a vector bundle homomorphism,
the restricted map (,y) € {a} x R™ — F~(d,y) € {a} x T,M is a linear
map, which implies that

F'(a, f(z,0) = F~*(a,0) = (a, 0,),

thus that (z,a) € Z(¥(f)). Last, let (z,a) € X x M such that F~(a, f(z,a)) =
(a, @) Observe that F(F~(a, f(z,a))) = (a, f(z,a)) = F(a, 0_;) Since F

147



is a vector bundle homomorphism, the restricted map (a’,v) € {a} x T,M —
F(d',v) € {a} x R™ is a linear map, which implies that

(a, f(x,a)) = F(a,00) = (a,0),
thus that (z,a) € f~(Ogm). O

Remark 3.4.3. A particular case of the previous theorem will be useful in
this chapter: suppose that X = {x} is a singleton. For every vector bundle
isomorphism F': TM — M xR™, following the constructions of the previous
proof, the map

U, COM,R™) — X(M)
f N U (f): M — TM
a — (Flo(idy x f)oAy)(a)
(sometimes denoted U, ) is a bijection whose inverse is the map
vl X(M) — CO(M,R™)
Voo v AV): M — R™
a ~ (prgmoFoV)(a)

and it satisfies the following properties:

1. For every f, f' € C°(M,R™): there exists a homotopy H between f
and f" if and only if there exists a homotopy H’ between W,(f) and
W, (f") such that for every ¢ € [0,1], H'(t,-) € X(M).

2. For every f € CO(M,R™), f~1(Orm) = Z(W.(f)).

A particular vector bundle isomorphism, denoted here F, (“¢” for “canon-
ical”), is usually considered in the case where M is an open subset of R™.”
In such a case, one can define

( FCZ TM — M x R™
(a,2|) = (a,e)=(a.(1,0,0,...))

(a,-22=]) — (a,e3) =(a,(0,1,0,...)) ,

(a,% a) = (a,en) =(a,(...,0,0,1))

\

"This notion will be useful in order to be able to define the notion of index of a zero of
a vector field, on an arbitrary smooth m-manifold.
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0

where for every a € M, {—621 ,...,—af ‘ } is the canonical basis of
m
a

a7a_x2
T, M, with for every i € {1,...,m},
0 of
: (M, R R.
2| recrorn Lwe

In that case, the map W, p. defined above is simply denoted W, ..

Index of a zero of a vector field

Definition 3.4.9. Let O be an open subset of R™ and f : O — R™ be a
continuous map. Moreover, let z € f~!(Ogm) be an isolated zero of f, i.e.
there exists € > 0 such that B(z,€) N (f~1(0rm)\{z}) = 0, where B(z,¢) =
{y € R™: ||z — yll2 < €}. The indezx of f at z is defined as the topological
degree of the map

{fz: OB(z,e) — Sm!
f(z)
r = Tl

and is denoted ind,(f).®

Remark 3.4.4. The index ind,(f) of f at z does not depend on € (e.g. see
Guillemin-Pollack [25], p. 133).

Definition 3.4.10. Let O be an open subset? of R™, V : O — TO be a
vector field on O and z € Z(V') be an isolated zero of V. The indez of V' at
z is defined as the index of W (V) at z and is denoted ind.(V), i.e.

ind.(V) = ind. (¥, }(V)),
where W 1(V) : O — R™ is defined in Remark 3.4.3.

Definition 3.4.11. Let M, N be two smooth manifolds, V' € X(M) be a
vector field on M, V' € X(N) be a vector field on N, and f: M — N be a
smooth map. The maps V and V' are said to be f-related if the following
diagram commutes (in the category of sets):

™ —2 5 TN

VT V’T
ML N

8See Appendix 2.4.1 in Chapter 2 for some reminders about topological degree of a
proper continuous map. Note that the (continuous) map f# is proper since it goes from
the compact space dB(z,€) to the Hausdorff space S™~1.

9Here, O is seen as an embedded m-submanifold of R™ (see Lee [36], Proposition 5.1,
p. 99). Also, the tangent bundle of O is trivial (see Lee [36], Proposition 3.20, p. 67).
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Figure 3.11: Ezamples of vector fields’ zeros on some open subset of R?: (a)
ind,(V) = 1; (b) ind,(V) = 1; (¢) ind, (V) = 1; (d) ind,(V) = —1; (e)
ind.(V) =1; (f) ind, (V) = 2 (Guillemin-Pollack [25], p. 133)

where Tf : (a,d) € TM — (f(a), Tof(d)) € TN is the global tangent map of
[, with T f(d)(g) = d(go f) € R, for every g € C*(N,R) (T, f(d) € Ty@)N).

Definition 3.4.12. (Lee [36], Proposition 8.19, p. 183)

Let M, N be two smooth manifolds, V' € X(M) be a vector field on M
and f : M — N be a diffeomorphism. There exists a unique vector field
fxV € X(N) on N, called the pushforward of V' by f, such that V and f.V
are f-related, which is defined as follows: for every a € N,

fV(a) = (T f o Vo f7H)(a).

Definition 3.4.13. Let M be a smooth m-manifold, V' € X(M) be a vector
field on M, z € Z(V) be an interior isolated zero of V' and (U, ¢) be an
interior chart of M such that z € U. The index of V at z is defined as the
index of the pushforward ¢,V of V by ¢ at ¢(z), i.e. the index of the vector

field
{¢Jﬁ p(U) — Te(U)
a = (Tp-r@poVood ) a)

(on the open subset ¢(U) of R™) at ¢(z), and is denoted ind, (V).
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Remark 3.4.5. The quantity ind,(V') does not depend on the chart (U, ¢)
(e.g. see Guillemin-Pollack [25], p. 134).

3.4.3 Proof of unknottedness theorem

From now on, consider a fixed network ¢° € G and a fixed A-regular set R of
societies. Recall that ng : (v,9) € Pgr — u”? € R is the homeomorphism of
structure theorem (Theorem 3.2.1), defined as follows: for every (v, g) € Pg,
every i € N and every v € G,

w;(v) = vi(v) + Z (8350i(9ij> 9-i3) — B0z, 9°55)) (g — i) + Z 9i57ij
J#i J#

(see Equation (3.1)), i.e.
u;? = v + hi[v] + 1,
where

hf[v] 7eG— Z (aijvi<gij7 inj) - 8ijvi(gij7 Qo_ij))(%'j - gij) eR
J#i
and
l;q Ty € G — Z’yugm € R.
J#i
Moreover, recall that the inverse of ng : Pr — R is the map pr : v € R —
(u”, g") € Pr which is defined as follows:

e For every v € R, every ¢ € N and every v € G,

wf () = vi() =Y (90i(g5, 9%45) = 0ivi(9ly, 9%:)) (Vi —95)— D 94yvii»
j#i i

(see Equation (3.2)), i.e.

v

= v~ BTl

e For every link ij € L, gf; = min{w};, wj,}, with w}; € [0,1] (resp.

w?,; € [0, 1]) being the unique maximizer of the strictly concave function
glv] :w € [0,1] = vi(w,¢%;) — % € R (resp. g;[v] : w € [0,1] —
w2
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Step I. The knot x,, : R — gR of pairwise stable networks associated
to R and pr is ambient isotopic to the topological embedding e™’? :
vER— (v,(rgopr)(v)) € Eg within x, through an ambient isotopy
oL..

Let r be the projection from G to the closest point in G (this map is a
retraction of G on G, i.e. a continuous map such that its composition with
the inclusion G < G is the identity map idg on G), and b : G — [0,1] be a
continuous map such that b(G) = 1 and b(dG) = 0.

Now, let

and let

where for every 1 € N,

w9 = v, — tb(g) (A9 [v] + 1)),

)

Notice that from A-invariance assumption, 6% and &% are well-defined maps.

First, 0% is a continuous map since both r and b are continuous maps (for
more details, see Step V of the proof of Theorem 1.2.1 in Appendix 1.4.3 of
Chapter 1, whose demonstration is quite similar).

Second, for every i € N and every (v, g) € &g,
T = v+ 0b(g) (W, To] + [) = vy,
Hence, 0%(0,-,-) = idz_.
Third, for every v € R,
(OR(1,+,) 0 Kipe ) (v) = O (1, pr(v)) = Or(1, (u", g")) = (@, g"),
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where for every i € N,

w = uf 1) (] ] + 1)
= (v = B[] = 1) + b(g") (h ) + 177
= (vi = B[] = 1) + () + 1) (since g € G, b(g") = 1)
= (vi = B[] = 1) + (W [u') + ") (since ¢" € G, 7(g") = g")
= v — h{"[v] + h{ [u’]

Observe that for every v € G,

hfv [w’](v) = Z (aijﬂg(gfp gzij) - 8ijg$(g;)ja ggij))(Vij - g;,l‘)])
J#
=> (9 = b 0] = 1" )(g5;, 9" 4)
J#i

— Oy (v = WY [o] = 1) (g%, 9°53)) (i — 95)

= Z (al]U’L (gfp g—i]) aljvl (gz]7 g—z])) (fylj g;v])
i
(since both 9;;hY [v] and 919" are constant maps)

= h{ ](7).

Thus, 6%(1,-,-) 0 k,, = €TePR,

Last, it remains to show that for every t € [0, 1], 6% (¢, -, ) is a homeomorph-
ism with inverse & (¢, -, ). Let t € [0,1]. First, both 6%(¢,-,-) and &k (¢, -, )
are continuous maps (as both 6% and & are continuous maps). Second, for
every (v,g) € Er,

(O (t, ) 0 &k lt,-,)) (v, 9) = O (¢, (W9, 9)) = (@9, g),

where for every i € N,

T = w9 4 b(g) (][] + 1)
= v; — tb(g) (W] [v] + 1) + tb(g) (h! W [ut*9]) + [[)
= vy + tb(g) (h] @ [u"9] — B[9[v]).
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Observe that for every v € G,
B ) ()

=3 (05t (r(9)i57(9) 7)) — Dyt (1 ()i, 6%:7)) (vig — 7(9)is)
J#i

= (00 = tb(g) (W] + L)) (r(9)i5,7(9) ~i5))

J#i
—%wr%wxmwm+x@mmmwg>x% r(9)ij)
= (050i(r(9)i 7(9)=i3) — Digvi(r(9)ij» 9%:)) (vis — 7(9)i5)

JFi

(since both 9k @ [v] and 0,17 are constant maps)

154
= h9](v),

which implies that u "9 = . Similarly, one can verify that for every
(U7 g) € 5737

(R(t: ) 0 Ok (.-, )) (v, 9) = Ep(t, (@9, 9)) = (""", ) = (v, g).

Finally, from the previous points, 6% is by definition an ambient isotopy
between kr and the topological embedding €™ ’® within the ambient space
Er.

Remark that for every ¢ € [0, 1],

Or(t: -, )rvos = dr o

i.e. the ambient isotopy 6% does not deform the boundary of the ambient
space.

Step II. For every continuous map f : R — G, the topological
embedding el iveR— (v, f(v)) € Er is ambient isotopic to the
unknot k% : R — Exr within SR, through an ambient isotopy Q%f .

For every link ij € L and every w € |0, 1], consider the piecewise linear maps
xi; and ¢ defined by

Xij o e 1+e = [-e1+¢]
—€ — —€
95 — w
1+e¢ — 1+e¢
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and

vl 1+¢]

i [—e,1+ €]

N
—€ — —€
w — 95
1+4+¢ — 1+4+¢

Furthermore, for every 5 € L, consider the maps
Xij - (wﬂ:b/) < [Oa 1] X [_57 1+ 8] = X;ljj(ﬁj) < [—5, 1+ 5]
and

Gij : (w,w) € [0,1] X [—&,1+¢] = ((w) € [—¢,1+¢].

Lemma 3.4.1. Letij € L:

1. For every w € [0,1], x}} is a homeomorphism with inverse (j;.

2. Xf;.f — gj’] = id[_c 14

Now, let

T = Gy (1 =) gl + tf(v)i5, 9i5),

and let _ _
{ 201 xEr = &r
, (v,9) = (v,7"9) 7

where for every ij € L,

12.”’9 = xi; (L = t)g; + tf(0)ij, 9ij)-

First, G%’f is continuous as the composition of continuous maps (recall that
by assumption, the map f : R — G is continuous).

Second, for every ij € L and every (v, g) € gR,
T = G (1= 0)gyy + 0 (v)ij, i) = Ci (955 945

From Lemma 3.4.1 (property 2), Cg” Gij (g”,-) is the identity map on
[—e,1+ ¢]. Hence, 9722f( S idg_ .
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Third, for every v € R,

(6 (1.1 0 o) = 0 (1. (0. £ () = (0.7),

where for every ij € L,

Wzlyv’f CU(( )gz] 1f(v )w?f( )Zj)

= ,fj( )”(f(v)ij)
= g?j (by definition of (;;)

Thus, 027 (1,-,-) o e/ = K.

Last, it remains to show that for every t € [0,1], #27(t,-,-) is a homeo-

morphism with inverse £3/(t,-,-). Let t € [0 1]. Flrst both 62/ (t,-,-) and

2I(t,-,-) are continuous maps (as both 0% and &3’ are continuous maps).

Second, for every (v, g) € Exr,

t,v

(627 (t,-,-) 0 €47 (,-,)) (v, 9) = 6% (¢, (0,779)) = (v, 7702""),

where for every ij € L,

tv,y

T T = G0 = 1)l + (), 7
= (L= 1) g0 + £ (v)ij. xi; (L — ) gis + £ (©)ij, 9i))

A-t)gl+tf(v)i;  (A-t)gl+tf(v)i;
= (CU 7 © Xij o J)(gij)

= ¢;; (from Lemma 3.4.1, property 1).

Similarly, one can verify that for every (v, g) € &g,

( 72€7f(t7 K ) © 07217]0(15’ K '))(Uvg) = 7227f(t7 (v77t7v7g)) = (Ualt Uﬁtvg) = (Uag)'

Finally, from the previous points, H%f is by definition an ambient isotopy
between e/ and the unknot x% within the ambient space .

Remark that for every ¢ € [0, 1],
2, .
eRf(ta ) rxoe = Mdryoss

i.e. the ambient isotopy H%f does not deform the boundary of the ambient
space.
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Step III. Unknottedness theorem.
To finish, from Step I and Step II, notice that the map
( 7( )) = (0’?{%@72(757 " ) © 071€(t7 ) ))(U g)
is an ambient isotopy between k,, and the unknot % within Ex. Indeed:
(1) O is continuous as the composition of continuous maps;
(ii) O57°%(0,-,-) 0 65 (0,-,-) = idg_ oids, =idg, ;
(ZZZ) (672277%0/)72(17 * ) © 9713(17 ) )) O RKpr = Q%WGOPR<17 ) ) 0 eTER = 5[7)37

(iv) for every t € [0,1], Ox(t,-,-) is a homeomorphism with inverse & (¢, -, -)o
2,7TGOPR
R (t7 ) )

Also, again from Step I and Step II, remark that for every ¢ € [0, 1],

Q'R(ta ) ')|R><8((§ = id'RX@@ﬂ

i.e. the ambient isotopy #z does not deform the boundary of the ambient
space.

This step ends the proof of the unknottedness theorem. [

3.4.4 Proof of dynamics equivalence theorem

From now on, consider a fixed network ¢° € G and a fixed A-regular set
R of societies. Recall that G is a convex subset of R”, which implies that
it is a contractible subspace of RL (since Gis a convex, for every g* € G
the map (¢,¢g) € [0,1] x G — tg+ (1 —t)g* € G is a well-defined homotopy
between the constant map g € G — g€ G and the identity map idg on
((N}) Thus, from Proposition 3.4.1 (see Section 3.4.1), the tangent bundle T@
of G is trivial. Consequently, using Theorem 3.4.1 (see Section 3.4.2), any
extended network dynamic on R is now treated throughout all this proof as
a continuous map D from Ex to RE such that D~ 1(0ge) = Pr (for the sake
of simplicity).

Also, the following lemma will be used several times in this proof:

Lemma 3.4.2. Let X, Y be two metrizable topological spaces, A be a subspace
of X, fi: A=Y and f: X\A = Y. Suppose that:

(1) both fi and fo are continuous;
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(ii) for every x* € OA and every sequence (x*)en in A such that x* Lo,

o, filat) S fa);

(iii) for every z* € O(X\A) and every sequence (x%)en in X\ A such that
2 L—400 {IJ*, fg(l'e) L—4-00 f(l'*)

Then, the map

fr X — Y

fitz) if x€A
v {fg(x) if veX\A

1S continuous.

Proof. Let 2* € X and (2%)sen be a sequence in X such that 2¢ =52 2+,

First, suppose that z* € int(A) (in that case, f(z*) = fi(z*)). Since

gt ey x*, there exists n € N such that for every £ > n, 2 € int(A) (which

L—~+00

implies that f(z°) = fi(z*), for every £ > n). Hence, f(z*) ——— f(z*), i.e.
f is continuous at x*.

Second, suppose that z* € int(X\A) (in that case, f(z*) = fa(z*)). Since

2t 2% 4 there exists n € N such that for every £ > n, 2 € int(X\A)

L—+o0

(which implies that f(z%) = fy(z*), for every £ > n). Hence, f(a) ——
f(x*), i.e. f is continuous at z*.

Last, suppose that x* € 0A = 9(X\A). Consider the sets of indices
Iy={teN:2"€ A} and Ix\a = {¢ € N: 2" € X\ A},

and consider the two subsequences (2%)eeny = (2%)ser, of (2%)en in A, and
(xg(\A)geN = (xe)EGIX\A of (#%)4eny in X\ A. Since L2420 2%, one obtains

that z% 2% 4+ and a:ﬁ(\A EmasN x*, thus that

filal) T f(a) and folahs) S5 f(at),

using second and third assumptions in the statement of the lemma. In other
words, considering an open subset U of Y which contains f(z*): (i) there
exists ny € N (now fixed) such that for every £ > ny, fi(2%) € U; (ii) there
exists nx\a € N (now fixed) such that for every ¢ > nx 4, fg(l’é(\A) eU.
Finally, by definition of f and since N = I, U Ix\4 with Iy N Ix\a = 0,
observe that for every £ € N, f(z') is either equal to fi(2%), or to fQ(xf(\A),
for some ¢ € N. Therefore, setting n = n4 +nx\ 4, one obtains that for every
(>mn, f(z*) € U, ie. fis continuous at x*. O
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Let 5,5’ : ER — R% be two strongly inward-pointing extended network
dynamics on R.

Step I. First step in the construction of a homotopy fIR between
D and D'.

First, define

Ds: Er — RL
(0.9) v {T@@,g)ﬂl—ﬂ)ﬁ'w,g) it geB\G |

D(v,9) otherwise

where for every g € @,

— g2 — 1 _
o=l =i
with ¢g'/? € G being the network such that for every ij € L, 92-1]/2 = 1. The

map Dy is continuous since:

(i) the map (v,g) € R x G\G — 79D(v,g) + (1 — 79)D'(v,g) € RE is
continuous (in particular, the map g € G\G — 79 € R is itself con-
tinuous);

(i) the map (v,g) € R x int(G) — D(v,g) € RE is continuous as the
restriction of the continuous map D from R x int(G) C Ex to RE;

(iii) for every (v,g) € R x 8G, 79D(v, g) + (1 — 79)D'(v, g) = D(v, g).

Moreover, notice that

Doler = Dley and Dolg, o5 = D'lg o5 (3.4)

Second, define

HL: 0,1 x Er — _ RE
(,(v,g) = (1—t)D(?},g)+tDa(U,g)

The map f[}z is a homotopy between D and 53; more precisely, it corresponds
to the straight-line homotopy between D and lN)a. Furthermore, for every
t € [0,1], the map Hx(t,-,-) is an extended network dynamic on R. Indeed,
for every t € [0, 1]:
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(i) HL(t,-,-) : Eg = RE is continuous since HA is itself a continuous map;
(ii) (Hk(t,-,-)) " (0zz) = Pr.

To understand the previous last point, remark first that for every v € R,
every ¢’ € (0,¢], every g € 9G®, and every x € Ngor(9)\{Oge },

(Da(v,9),z) = (19D(v,g) + (1 — 79)D'(v, ), x)
(since G C G\G, for every ' € (0,¢))
=79(D(v,g),z) + (1 — 79)(D'(v, g), )
<0

since 79 belongs to [0,1] (g belonging to G\G), and since both D and D' are
strongly inward-pointing (by assumption). Hence, for every v € R, (ﬁa)v
has no zeros on G\G. Morecover, knowing from Equation (3.4) that Dy Er =
Dle,, one obtains directly that (Dy)~'(0Ogz) = Pr. Finally, observe that for
every v € R, every & € (0,¢], every g € 9G*, every & € Ng.r(9)\{Oge }, and
every t € [0,1],

(Hg(t,v,9).2) = (1 = t)D(v, g) + Dy (v, g), )

= (1= t){D(v,9),x) + t(Ds(v, 9), x)
<0

since by assumption, Dis strongly inward-pointing, and since from the above
calculation, Dp is also strongly inward-pointing. Hence, for every v € R,
H(t,v,-) has no zeros on G\G. Therefore, one obtains that for every t €
[0, 1], (ﬁ]}a(t, )1 (0ge) = Pg since for every (v,g) € Er,

Hy(t,v,9) = (1 —t)D(v,g) + tDa(v, g)
= (1 —t)D(v,g) + tD(v,g) (from Equation (3.4))
= D(v,9)

Step II. Use of the ambient isotopy 6z of unknottedness theorem.

Consider the ambient isotopy 6z : [0, 1] x gR — §R between the knot &, :
v € R — pr(v) € Ex of pairwise stable networks associated to R and the
unknot k% : v € R +— (v,¢°) € Er of Theorem 3.2.2, and define

Ay =Dyo (6r(1,-,-)) " and A’ = D' o (f(1,-,-)) "
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The map Ay (resp. A/ ) is continuous (as the composition of two continuous
maps) and is such that

(resp. (A')71(0gz) = R°). Thus, observe that if &% is a homotopy between

Ay and A’ such that for every t € [0,1], (®r(t,-,-)) " (0gz) = R, then
H%:: [0,1]xEr — RE
( 7(”79 ) = (¢R(t77)o‘973(177))(v79)
is a homotopy between Dy and D’ such that for every t € [0,1], the map
H2(t,-,-) is an extended network dynamic on R.
Last, recall that the ambient isotopy 6z does not deform the boundary of
the ambient space &g, i.e. for every ¢ € [0, 1],

9R<t’ " ')|’R><8@ = ideB@'

Hence, from Equation (3.4), remark that

Aa|R><6<(~} = A/|R><8<[~;‘ (3'5)

Step III. First step in the construction of a homotopy dx between
Ay and A'.

First, define

Aolo, .
(v,9) { Eesllg = ol if  g#g°

Opr otherwise

Continuity of this map is a consequence of Lemma 3.4.2 applied to X = gR,

Y =RE A=Rx (G\{g"}),

oo
fiilvg) e A 2009 ooy cy
1200, 9)1
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and
f2 : (/U,g) EX\A’—)ORL ey.

Assumptions (i) and (i27) of Lemma 3.4.2 are clearly verified. Now, in order
to check that assumption (i7) is also satisfied, let (v*,g*) € 9A = RY and

let (v, g%)¢en be a sequence in A such that (v, g°) Lo, (v*, g*). Then, for

every £ € N|

Ap(v', g")
1A5(v", g*)]2
| Nﬁa(vg,gé)

1As(vt, g°) |2
_ H%a(ve:gg)\!znge —
1As(v, g°)l2
= lg" = g°ll2-

1105, g — A", g%) 12 = ||( lg" — ¢°ll2) — Oe |2 (since g* = ¢°)

19" = ¢°ll2]l2

Since ¢* EmasN g* (by assumption), and since g* = ¢°, one obtains that
1f1(0, g) — A (v*, %)l =25 0, thus that

fl(v€7 gé) m 81(0*7 g*)

Second, define

L : 0,1 xEr — . ORE
(t7(v7g)) = (1_t)A8(U79)+tA1<Uvg) '

This map is the straight-line homotopy between &a and Al Furthermore,
for every t € [0,1], notice that (®L(¢,-,-)) ' (0ge) = RY. Indeed, for every

t €10,1], (v,g) € Er belongs to (BL(¢,-,-)) " (0ge) if and only if: (i) either
g = g% (i) or g # ¢” and

E@(”a g)

" lg = ¢[|2) = Oge. (3.6)
1Aa(v, 9|2

(1= 8)As(v, g) +t(

However, Equation (3.6) has no solution if g # ¢° (recall that ﬁgl(ORL) =
RY), which implies that (®%(¢,-,-)) ! (0gz) = R, for every t € [0, 1].
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. 2
o) =147
% G
' B2(5,77)
7% = 3°(0,%)
go
=801
a5 :::Bo(l,vl).,/

Figure 3.12: Illustration of 3°

Step I'V. Second step in the construction of a homotopy ZISR between
Aa and A'.
For every g € @\{go}, consider the unique element gj € dG such that

g2 €{g €G:3te0,+00),¢9 = (1 —1t)g" + tg}, i.e. such that g) belongs
to the half-line starting at ¢° and passing through g. Moreover, consider the

map N N
(#:D0x@@D > &
(t. 9) = (1—t)g+ g3
This map is continuous, since the map g € @\{90} — gy € dG is itself

continuous.

Now, define

52 . ER — RL
Bo(wah) 1 o0 , .
(U,g) = Hza(v,gg)h Hg g ||2 if g 7£ g

Oz otherwise

Continuity of this map is a consequence of Lemma 3.4.2 applied to X = gR,
V=R A=TR x(G\{¢"}),

£8<Uagg>
Ao (v, 83)ll2
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and
f2 : (/U,g) EX\A’—)ORL ey.

Assumptions (i) and (i7i) of Lemma 3.4.2 are clearly verified. Now, in order
to check that assumption (i7) is also satisfied, let (v*, g*) € A = RY and

let (v, g“)¢en be a sequence in A such that (v, g*) EmanN (v*, g*). Then, for
every { € N|

~ Ap(vt, ' .
1f1(0", ") = A%(v*, g7)]l2 = H(a(—%)Hg —9"ll2) = Oge |2 (since g = g°)

[1Aa(v, 85 )2
Ap(v', g
- H%W — & lall
[Aa(v", g3 ) |2
A ot g
_ H 3( 93)”2||gz_go||2

~ Y4
| Aa(v®, g3 )2
= [lg" — ¢°[|--

Since ¢* EmasN g* (by assumption), and since g* = ¢°, one obtains that
A0, ) — A%(v*, %)l =25 0, thus that

A g B A2, ).

Last, define
% : 0,1 x En — RE
As(v,8°(t,9)) : 0
(t,(v,g)) — < TBa@s vy 19 = 9ll2 if 979
Orz otherwise

This map is a homotopy between A! and A2
e Again, continuity of this map is a consequence of Lemma 3.4.2 applied

to X =[0,1] x &z, Y = RE, A= [0,1] x (R x (G\{g°})),

?8(”, 50@7 g))
[1Aa(v, B2t 9)) 2

fi(t (v, g)) € lg—g°l € Y

and
fo:(t,(v,9)) € X\Aw— Ope €Y.
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e For every (v, g) € &,

= _Bo(v,°(0,9) : o
(I)%(()?/Uag) == { ”A@(Uﬁo Og)H2||g g HQ if g%g
Oz otherwise

12a(v,9)ll2
Orz otherwise

{ Aa—”’)Hg ¢ll2 if  g#g°

Al(v, g).

e For every (v, g) € &,

Py _Bo(vf(19) : 0
(1)32(170,9) = { ||A3(U BO(1,9)|l2 Hg g HQ if g 7£ g
Oz otherwise

185(v,63)ll2
Opr otherwise

A; v .
{ Lolegy) g0y, if g#4°
= A%(v, g).

Furthermore, for every ¢ € [0, 1], notice that (E)%(ti-, )1 (0ge) = R In-
deed, for every t € |0, 1] (v,9) € Er belongs to (®%(t,-,-)) ' (0ge) if and
only if: (i) either g = ¢°; (ii) or g # ¢° and

;3(% 50<t7 g))
[As(v, BO(t, 9))]|2

However, Equation (3.7) has no solution if g # ¢° (recall that (Ag) " (Ope) =
RY), which implies that (®% (¢, -, ) *(0gz) = R, for every t € [0, 1].

g — ¢°|l2 = Ope (3.7)

Step V. Third step in the construction of a homotopy dx between
Ay and A'.

First, remark that the maps A? (defined in Step IV) and

32 : ng — R

N(wgd) . .
(v,g) —> ||A’(vg H2||g g HQ if g 7& q
Orz otherwise

are equal. Indeed, recall that from Equation (3.5) of Step II,

A8|R><8([~} = AlleG@
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and that for every g € G\{¢"}, g% belongs to oG.

Second, define

Al & o RE

(v,9) + DD g— g, i g4
Orer otherwise

This map is continuous (the proof is similar to the one of the continuity of
Al in Step III).

Last, define
O 0,1 x & — Rl
A'(v,8°(1—t,9)) . 0
<t7 (079)) — IIA’(vﬁO(1 t9) 2 Hg g HQ if g;ég
Orc otherwise

(recall that the map (3° is defined at the beginning of Step IV). This map is
a homotopy between A% and Al

e The proof of the continuity of CTD% is similar to the one of &D%, in Step
IV.

e For every (v,g) € Ex,

= M . 0
(I)%(O,U’g) = { 1A (v,89( 19))H2H9 g Hz if g#yg

Orr otherwise
A v .
_ mﬂg 9ll2 if 9g#4°
Ogr otherwise
= 32(21, g).

e For every (v,g) € g’Ru

= AN (@p09) . .
@%(l,v,g) = 1A (v,89( Og)HQ”g g ||2 if g#g
Orc otherwise
_ ) Eq :’gf?)“Qllg 9°ll2 if g+
Opz otherwise
= 31 (U, g)

Furthermore, for every ¢ € [0, 1], notice that (&)%(t, ) H0ge) = RY (the
proof is similar to the one of (®%(¢,,+)) ' (0ge) = R, in Step IV).
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Step VI. Fourth step in the construction of a homotopy EISR between
Ay and A'.

Define B

E)%Z [0,1] Xgn
(, (v, 9))

— RE

= (1 - t)A1<’U, g) + tA,('U, g) '

This map is the straight-line homotopy between Al and A’ Furthermore,
for every t € [0, 1], notice that (®%(¢,-,-))"}(0gz) = RY (the proof is similar
to the one of (®L(¢,-,-)) " (0re) = RY, in Step III).

Step VII. Last step in the construction of a homotopy CBR between
Aa and A'.

From Step III to Step VI, the map

( EIV)RI [071] XgR — R
(4, (v, g)) if t€0,4]
2 (4t — 1, (v, g)) if te [t 1
(t’ (U’g)) = ~R Y . 13
(4t —2,(v,g)) if €3,
\ Bk (4t —3,(v,9)) if te[31]

is a homotopy between Ay and A’ such that for every t € [0, 1],

(@ (t,,-) " (0ms) = R,

Step VIII. Last step in the construction of a homotopy Hz between
D and D'.

Following the remark made in Step II, since EIVDR is a homotopy between K@
and A’ such that for every ¢ € [0,1], (Pr(¢t,-,-)) '(Ogz) = R?, then

H%: [0,]]x& — RE
( ,(v,g ) = (@R(t,~,-)0(973(1,-,-))(1),9)

is a homotopy between 53 and D' such that for every t € [0, 1], the map
H%(t,-,-) is an extended network dynamic on R. Finally, from Step I, the
map

Hp [0, 1] x Er — R
Hy(2t,(v,g9) if te[0,]]
(¢ (v.g) = { H2(2t —1,(v,g)) if tel[i ]
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is the required homotopy between D and D’ such that for every t € [0,1],
the map Hg(t,-,-) is an extended network dynamic on R.

This step ends the proof of the dynamics equivalence theorem. []

3.4.5 Proof of indices equality theorem

Before to start the proof, let us precise that we do not use here the identific-
ation of Theorem 3.4.1 (see Appendix 3.4.2), unlike in the proof of Theorem
3.3.1.

First, consider the homotopy Hpz betweenji and D’ defined in Theorem 3.3.1
(in the following, Hg is simply denoted H). Observe that the map

Hy: (t,7) €[0,1] x G~ H(t,(v,7)) € TG
is a homotopy between D, and IN); such that for every ¢ € [0, 1],
Z(H,(t.")) = Z(Dy) = Z(D,) = PS(v). (338)

where PS(v) = {yv € G : ~ is pairwise stable with respect to v}, since by
definition, for every ¢t € [0,1], H(t,-,-) is an extended network dynamic on

R.
Also, let g be an isolated zero of D, and (U, ¢) be an interior chart of G such

that g € U (since g € G and G C int(G), g is necessarily an interior zero of
D,).!° The index of D, at g corresponds to the index of the pushforward

6.Dy 1w € Q(U) = (Tyr(yd 0 Dyo ¢ ')(x) € TH(U)

of D, by ¢ at ¢(g) (see Definition 3.4.13 in Appendix 3.4.2), which cor-
responds to the index of the map W;}(@Ev) : o(U) — RE at ¢(g) (see
Definition 3.4.10 in Appendix 3.4.2), which is finally equal to the topological
degree of the map

W 6.D)0) : 0B(6(g).e) — S
U (¢ Do)(x)

X = =
@5 c (6 Do) ()2

(see Definition 3.4.9 in Appendix 3.4.2), where € > 0 is such that

B((9),€) N ([T,¢ (6. D) (022)\{0(9)}) = 0 (3.9)

0From Equation (3.8), notice that g is also an interior isolated zero of D
HL(t,-), for every t € [0, 1].

/
v

and of
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(because g is isolated, such a e is well-defined, and fixed from now on).

First of all, observe that from Equation (3.8), € is also such that

B((g), ) N (V2 (6.D,)] " (0m2)\{0(9)}) = 0,

and even such that

B((g), ) N ([, (6.H (1)) (022)\{6(9)}) = 0,

for every t € [0, 1]. Indeed, observe that for every t € [0, 1],
Z(6. 7111, )) = 2(6.5,) = 2(6.5,) = 6(PSE) N U);, (310)

for every x € ¢(U), the tangent map Ty-1(,)¢ of ¢ at ¢~'(z) being a vector
space isomorphism (because ¢ : U — ¢(U) is by definition a diffeomorphism),
ker(Ty-1(;)¢) is reduced to the set containing only the zero vector m of
qufl(x)@. Last, from Remark 3.4.3, for every ¢ € [0, 1],

(Wt (S Hy (8, )] (Ope) = Z(0.H (2, ). (3.11)

One obtains the result using together Equation (3.9), Equation (3.10) and
Equation (3.11). In particular (for ¢ = 1), this implies that the index of D/
at g is equal to the topological degree of the map

(W6 DD . 9B(6(g),e) —  SH

i — =
195 (¢« D) ()2

Now, remark that it is sufficient to show that the maps [\P;}(qﬁ*ﬁv)w(g) and

[W;}(@ﬁ{,)]ﬂg) are homotopic in order to obtain that ind,(D,) = ind, (D).
Define the maps

[A{E . (t,:L‘) € [07 1]X¢(U) = (ﬁ*ﬁ;(t:m) = <T¢_1(x)¢0ﬁi(t7 ')O(ﬁil)(m) € T(b(U)

and
H?: (t,2) € [0,1] x ¢(U) — (prps o F, 0 H3(t,-))(z) € RE,

where F; is defined in Remark 3.4.3.

TG ——2— T(U) —=— ¢(U) x R 222, RE
A 1
H%T Az el
i o
0,1 x G 0,1 x ¢(U) .-
[ ) ]X idm_l[ ) ]X ¢( ) -———-



Observe that ﬁf is a homotopy between the pushforward <b*l5v of D, by
¢ and the pushforward ¢,D. of D] by ¢: it is continuous (as the compos-
ition of continuous maps), and for every z € ¢(U), H2(0,z) = ¢.D,(x)

and H2(1,z) = ¢.D)(z). In a similar way, observe that H? is a homotopy
between W, 1 (¢.Dy) = prye © Fr 0 ¢.Dy and W, (¢, D,) = prye o Fi 0 ¢, D,

Now, notice that the map

{f{rv: 0,1] x dB(4(g),e) — S

H3(t,x)
(t,2) = @l

is a well-defined homotopy between [U;!(¢.D,)]?@ and [V} (¢, D.)]*9). In-
deed, let us demonstrate that

(10,1] x B(@(g), e)) N ((H3) ™ (022 )\([0,1] x {6(9)}))

is empty. By contradiction, suppose that there exists (¢, z) € [0, 1] xB(¢(g),€)
which belongs also to (H32)™'(0ge)\([0, 1] x {¢(g)}). By definition,

(H3) ™ (0z2) )
— {(t:2) € [0,1) X 9(U)  (pras o Feo H2(t.))(@) = Ous )
= {(t.2) € [0,1] X B(U) : 1z © Fr 0 Tyragmydo ALt ) 0 671)(x) = Oga}.

Hence, by deﬁnitign of F. (cf. Remark 3.4.3) and of the projection prg.,
(t,z) belongs to (H3)™1(0gz)\([0,1] x {¢(g)}) if and only if z # ¢(g) and

(Tyos(mp o HA(L,-) 0 67) () = ¢ HL(t, 2) = 0,

where O_x) denotes the zero vector of T,¢(U). However, recall from Equation
(3.9), Equation (3.10) and Equation (3.11), that for every ¢’ € [0, 1],

Z(¢.H)(t',")) = Z(Ty1md o H)(t',) 0 67') = $(PS(v) N U) = Z(.D,).
Furthermore, as explained above and by definition of e,
B(¢(g), €) N (Z(¢.Du)\{d(9)}) =0,
which implies that for every ¢’ € [0, 1],
B(d(g),€) N (Z(d.H(¢',-)\{6(9)}) = 0.
In particular, one obtains that B(¢(g), €) N (Z(¢HA(t,-)\{¢(g)}) is empty,

which contradicts the fact that (¢, z) belongs to the set (H2) ™' (0ge)\ ([0, 1] X

{o(9)})-
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Therefore,

{ﬁf,,; 0,1] x OB(¢(g),e) — S

ﬁg(t,x)
(t,) = 1Bl

is a well-defined homotopy between [\I/;cl(qb*f)v)]d’(g) and [\I/;cl(qﬁ*ﬁq’})]d’(g),
which implies that ind,(D,) = indy(D)). O
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Part 111

Conclusion
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This thesis aims to provide elements for the study of the topological structure
as well as the generic oddness of both the graph of pairwise stable networks
(in network formation theory) and the graph of Nash equilibria (in game
theory), in the semi-algebraic case.

In the first chapter, we first show that the graph of pairwise stable networks
associated to any A-regular set R of societies can be continuously deformed
into the set R itself. A rather natural question is then the following: can we
obtain a topological structure result based on a generalization of A-regularity
? On one hand, the second chapter of this thesis provides a beginning of an
answer to this question by considering sets of games which do not have neces-
sarily a product form [],_y U; (contrary to Chapter 1, where sets of societies
do have a product form by assumption). On the other hand, one can observe
that A-invariance assumption is linked to the form of the homeomorphism
of the structure theorem (see the proof of Theorem 1.2.1). If we would con-
sider another homeomorphism, then we could maybe weaken A-invariance
assumption, thus weaken A-regularity. Also, we prove in this first chapter
that generically, each society belonging to any .4-semi-algebraically regular
fixed set of societies has an odd number of pairwise stable networks. In a
somewhat analogous way, one can then ask whether we can obtain a general-
ization of this result by assuming a regularity hypothesis a little weaker than
the one considered, i.e. than A-semi-algebraic regularity (also in this case,
chapter two provides some answers).

In the second chapter, we prove in a rather similar way that the graph of Nash
equilibria associated to any A-regular set R of games can be continuously
deformed into the set R in question, but also that generically, each game
belonging to any fixed .A-semi-algebraically regular set of games has an odd
number of Nash equilibria. One can first of all wonder if it is possible to gen-
eralize the two previous results by weakening the hypotheses of A-regularity
and of A-semi-algebraic regularity (in a quite similar way to the case of net-
work formation theory). Also, one can wonder if it is possible to extend the
previous results beyond the semi-algebraic case, i.e. assuming more general
sets of strategies (for example, o-minimal structures which can be seen as
an axiomatic treatment of semi-algebraic geometry). However, a much more
fundamental question arises from the following observation: one can note a
certain parallelism between game theory (with the concept of Nash equilib-
rium) and network formation theory (with pairwise stability). The question
would then be to ask whether we can formulate this similarity mathematic-
ally. More precisely, would there be a “nice” way to associate to any society
a game whose Nash equilibria are related to the pairwise stable networks of
the underlying society, and conversely, to associate to any game a society
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whose pairwise stable networks would be related to the Nash equilibria of
the underlying game.

In the last third chapter, we first prove that the graph of pairwise stable
networks associated to any A-regular set R of societies has no knots (i.e.
there is an ambient isotopy between the graph of pairwise stable networks
associated to R and a trivial copy of R itself). This result improves the
one about the topological structure of the graph of pairwise stable networks
associated to any A-regular set of societies which is established in the first
chapter. Secondly, we introduce the notion of network dynamic, then we
show that any two network dynamics D and D’ on any arbitrary A-regular
set R of societies are homotopic within the set of all network dynamics on R.
An example of problem relating to network dynamics is the following: is it
possible to highlight different types of pairwise stable networks by calculating
their indices (e.g. a pairwise stable unweighted network, whose weights are
either equal to zero or to one, can perhaps be characterized by a particular
value of its index). Finally, another question would be to ask whether it
would be possible to obtain network dynamics analogous to well-known Nash
dynamics in game theory such as for example replicator dynamic or Gul-
Pearce-Stacchetti dynamic (for best-response dynamic, see Example 3.3.1 in
Chapter 3).
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