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pas cités, pardonnez moi, je suis incapable de faire une liste exhaustive.
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Abstract

This thesis is motivated by non imaging optics problems. To begin with, we introduce the
field of non-imaging optics. We see that some of the problems arising in this field can be
recast as optimal transport problems or more generally as generated Jacobian equations
(GJE). This work is divided in two parts.

The first part deals with the stability of solutions to optimal transport problems
under variation of the measures, and is closely related to the convergence of numerical
approaches to solve optimal transport problems and justifies many of the applications of
optimal transport. We first introduce the notion of strong c-concavity, and we show that
it plays an important role for proving stability results in optimal transport for general cost
functions. We then introduce a differential criterion for proving that a function is strongly
c-concave, under an hypothesis on the cost introduced originally by Ma-Trudinger-Wang
for establishing regularity of optimal transport maps. Finally, we provide two examples
where this stability result can be applied, for cost functions taking infinite value on the
sphere: the reflector problem and the Gaussian curvature measure prescription problem.

The second part deals with Generated Jacobian equations, that have been introduced
by Trudinger [Disc. cont. dyn. sys (2014), pp. 1663–1681] as a generalization of Monge-
Ampère equations arising in optimal transport. We present and study a damped Newton
algorithm for solving these equations in the semi-discrete setting, meaning that one of
the two measures involved in the problem is finitely supported and the other one is
absolutely continuous. We also present a numerical application of this algorithm to the
near-field parallel reflector problem arising in non-imaging problems. Finally we also
explore a method to approximate (GJE) using entropic regularization. We then present
a stochastic algorithm to solve this approached problem.



Chapter 1

Introduction

The starting point for this thesis is non-imaging optics [70, 71, 50, 17, 32]. Non-imaging
optics is a branch of optics that focuses on the design and the analysis of optical systems
that do not rely on conventional imaging principles. Unlike traditional imaging systems,
which aim to capture and reproduce precise images of objects, thus inducing a one-to-one
mapping between source and target, non-imaging optics explores the manipulation and
control of light for applications beyond imaging. In particular we are interested in the
quantity of light transferred from the source to an area on the target but not where it
finds its origin on the source. Non-imaging optics finds applications in various fields,
for instance solar energy collection, where the goal is to redirect the light of the sun in
the most efficient way possible to use its energy. It may also be used in lighting design
and display technology for aesthetic purposes or practical ones such as public lighting.
Industrial applications also exist, for example headlights for cars, trains and planes and
fiber optics for optical communications.

Non-imaging optics. A non-imaging optics problem is an inverse problem. The direct
problem is the following: given a light source represented by a measure µ on a topological
space X , and an optical component Σ (e.g. mirror or lens), compute by Snell’s law the
ray tracing map TΣ associated to Σ. Then deduce the light distribution created by the
reflection (or refraction) of the source (X , µ) by Σ. This target distribution will also be
represented by a measure ν on another topological space Y, and we have that ν := TΣ#µ
is the image measure, or pushforward measure (see Def 1), of µ by the measurable map
TΣ. A draft representing the ray tracing map TΣ is presented in Figure 1.

The data of the inverse problem is a light source (X , µ) and a target distribution
(Y, ν), and the goal is to construct an optical component Σ that redirects the source
toward the target. This means that we seek Σ satisfying TΣ#µ = ν. Assuming that the
measures µ and ν have density ρ and σ, the equation TΣ#µ = ν is equivalent to

∀B ∈ T (Y),
∫
T−1
Σ (B)

ρ(x)dx =

∫
B
σ(y)dy,

where T (Y) denotes the Borel set of Y. Under some reasonable assumptions, a change of
variable yields the following conservation equation

∀x ∈ X , σ(TΣ(x)) det(DTΣ(x)) = ρ(x).
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Figure 1: An example of non-imaging optics realization, the source X is transformed into
a different image Y by a reflector Σ. Each ray x is reflected by Σ in the direction TΣ(x).

A Monge-Ampère type equation. Let us consider a particular non-imaging optics
problem, the near-field parallel reflector (defined in equation (NF-par), in Section 2.4).
In this problem, the source is collimated, meaning that all the rays are parallel going
up. The intensity of the light emitted in each direction is represented by a measure µ
on a domain X ⊂ R2. The target is contained in an hyperplane of R3, meaning that
we aim at points which are also represented by a measure ν on Y ⊂ R3. The mirror
Σ := Σφ can be parametrized by the graph of a function φ : X → R. Snell’s law then
gives a direct dependency between the ray tracing map Tφ := TΣφ and the normal vector
to the mirror Σ. This normal vector is obtained using the first order derivative ∇φ of
φ at each point x ∈ X . One can then express Tφ(x) by a function F of three variables:
Tφ(x) = F (x, φ(x),∇φ(x)) (see for example [34] for details). Again if F is regular enough,
the conservation equation thus becomes

∀x ∈ X , det (DTφ(x))) =
ρ(x)

σ(Tφ(x))
, with Tφ(x) = F (x, φ(x),∇φ(x)).

Now assume that the derivative of F with respect to its third variable, denoted ∇3F ,
is invertible. Then, multiplying the above equation by det(∇3F

−1) gives the following
Monge-Ampère type equation

∀x ∈ X , det(D2φ(x) + g(x, φ(x),∇φ(x))) = f(x, φ(x),∇φ(x)),

where f and g are continuous functions. We used a non-imaging optics problem to find
this equation, but it is actually very general and appears in many other problems. Among
them optimal transport problems [68, 66] can be expressed as a Monge-Ampère equation.
When g = 0, this equation corresponds to optimal transport in the quadratic case, i.e.
for the cost c(x, y) = ∥x− y∥2. When the cost function is regular enough, other optimal

transport problems can be written with g(x, φ(x),∇φ(x)) = d2

dx2
(x 7→ c(x, Tφ(x))). The

study of solutions to the Monge-Ampère equation in the optimal transport case has been
a subject of interest for many years, and some results on the regularity of solutions have
been obtained in this way, see for example [26, 51]. There exists a category of prob-
lems that are somewhat more general than optimal transport; these are called generated

2



Jacobian equations. They were introduced by Trudinger [66] and are sometimes named
prescribed Jacobian equations. These equations may also be written as Monge-Ampère
type equations, see [34, 66] for details. All the non-imaging optics problems we are inter-
ested in are either optimal transport or generated Jacobian, which implies that they are
all Monge-Ampère equations. Due to the non linear terms in the Monge-Ampère equa-
tions, our approach is not focused on the PDE formulation but more on the geometry
and calculus of variations. Note that generated Jacobian equations can be found in other
fields than optics, for example economics [27], where they are mentioned as equilibrium
matching problems.

Objectives of this thesis. This work focuses on the numerical computation of solu-
tions to non-imaging optics problems. It is divided in two parts that are almost indepen-
dent. In the first part, we are interested in the stability of solutions to optimal transport
problems. These stability results are interesting from a numerical analysis point of view.
For example, they guarantee the convergence of discrete solutions toward the continuous
ones, thus validating the discretization techniques for numerical applications. In the sec-
ond part, we focus on new algorithms to solve optimal transport and generated Jacobian
equations. The idea is to adapt algorithms that already exist for optimal transport to
our class of problems.

Numerical resolution. The numerical resolution of optimal transport problems has
been trending in the last decade, resulting in substantial progress. The dynamical or
Benamou-Brenier formulation opened the door to solvers for Lagrangian costs [8]. Other
methods are based on finite differences [9] or finite volumes [18] schemes for the Monge-
Ampère equation. The entropic regularization of optimal transport in the discrete case
leads to solvers using the Sinkhorn algorithm [64]. Due to its simplicity, the Sinkhorn
algorithm was widely used for numerical analysis, optimal transport and machine learning
purposes [25, 28, 21, 60]. Entropic optimal transport can also be used in the semi-discrete
setting, Genevay et. al [4] used it to develop a stochastic gradient descent. In the
semi-discrete case, there also exists a Newton algorithm exploiting some computational
geometry techniques [54]. Several other numerical methods exists, many of them are
presented in the book of Cuturi and Peyré [60].

In Chapter 4 and 5 we extend these semi-discrete algorithms to generated Jacobian
equations. We focus on the practical semi-discrete framework of [54], where we trans-
port an absolutely continuous source measure toward a discrete target measure. This
framework is known to be quite useful for non-usual cost functions, that appear often in
non-imaging optics. The numerical resolution of generated Jacobian equations did not
catch as much attention as optimal transport. An iterative algorithm has been proposed
in [1] when the source measure is absolutely continuous and the target measure is discrete,
which is also our framework. There also exists a least-squared minimization heuristic that
has been proposed in the case of two absolutely continuous measures [62].

The damped Newton algorithm that was initially developed for optimal transport [54]
is generalized to generated Jacobian equations (Chapter 4, published in [29]). However it is
difficult to implement, this is why we also consider in Chapter 5 an entropic regularization
to apply the stochastic algorithm of Genevay et. al [4] to generated Jacobian equations.
The proof of convergence of this latter algorithm remains an open problem, but the
convergence can be observed numerically on an example.
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Stability of solutions. Many problems involve the comparison of point clouds between
each other, for example in biology [38]. To this purpose, one can see these clouds as
probability measures and can use the Wasserstein metric induced by optimal transport
to compare them. Several solvers have thus been developed to solve efficiently discrete
optimal transport problems. It may also happen that one wants to compare the distance
between a point cloud and a density, or the distance between two densities. To do so, a
natural idea would be to discretize the densities and compare the point clouds instead of
the densities. The question is then, how good is the approximation ? From a numerical
analysis point of view, stability is an answer to this question. Stability results allow to
bound the distance between solutions by distances between the data, meaning that if the
approximation of the measure is precise enough, the computed solution will be close to the
exact one. This is why we study the stability of solutions to optimal transport problems
with respect to small variations in the data. The statistical version of stability, aiming
at approximating an optimal transport map between smooth density by an optimal map
between sampled discrete measures, has been the object of several works, e.g. [39] and
references therein.

There exist a few results of numerical analysis and stability in optimal transport,
but only for the quadratic cost. The first stability result of optimal transport is due to
Ambrosio and reported by Gigli [33]. Briefly, this result his a local 1/2-Holder behavior of
the Monge embedding, which is the functional that associates an optimal transport map
to a target measure. This stability result is thus applicable when the target measure is the
only one that varies. Li and Nochetto [48] have a similar result for transport plans, but
with respect to both source and target measures. Both these results are local, meaning
that they are only true around “regular enough” solutions to optimal transport problems.
Berman [11] has a global stability result that was extended by Mérigot and Delalande [24].
All these results are stated for the quadratic cost, i.e. for c(x, y) = ∥x− y∥2, and to
the best of our knowledge there exists no stability results for optimal transport with
other costs. The optimal transport problems arising from non-imaging optics are mostly
stated with other cost functions, which lead to studying stability in a more general setup.
In particular, this document contains a generalization of the local stability results of
Ambrosio-Gigli [33] and Li-Nochetto [48] for other cost functions, provided that they
satisfy a strong regularity assumption, namely the weak MTW hypothesis [51]. These
results are submitted for publication [31].

After extending the stability to more general cost functions, a natural follow-up would
be to check the stability for the generated Jacobian equation. This question is significantly
more complicated due to the non-linear structure of the generated Jacobian equation.
Even the question of uniqueness of the solutions, which is common knowledge in optimal
transport (up to the addition of a constant to the potential), is not completely clear for
generated Jacobian equations. There exist some partial uniqueness results in different
setting, by Rankin [61] and Gutierrez–Huang [36]. A stability result that would allow to
understand quantitatively the convergence of discrete solutions towards continuous ones
is currently out of reach.

Content of the thesis

This work is divided in two parts; the first part presented in Chapter 2 and 3 is about
optimal transport problems. In particular we study the stability of solution to optimal
transport problems with respect to the data. This result is of importance because, as
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already mentioned, it guarantees that approximating the measures that are transported
yields reasonable solutions. The second part is contained in Chapter 4 and 5, it is dedi-
cated to the numerical resolution of generated Jacobian equations, for which the literature
is not as extensive as for optimal transport. The content of each chapter is summarized
thereafter.

Chapter 2 is an introduction to the optimal transport theory and applications to
non-imaging optics. In this chapter we start by introducing the Monge problem which
consists in finding a transport map between µ ∈ P(X) and ν ∈ P(Y) realizing the
following infimum

(MP) := inf
T#µ=ν

∫
X
c(x, T (x))dµ(x).

where T#µ is the pushforward measure of µ by T (see Def 1). We also introduce the
Kantorovich relaxation where the map T : X → Y is replaced by a probability measure
on the product space γ ∈ P(X × Y) with constraint on its marginals

(KP) := inf
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y)

These are the two fundamental formulations of optimal transport problems. We then
derive the Kantorovich dual formulation of the problem that leads to the introduction of
Kantorovich potentials. These potential functions are fundamental throughout this work,
as they allow to introduce a generalization of convex analysis notions to more global
cost functions c. Roughly speaking they allow to generalize the notion of convexity to
c-convexity (or c-concavity depending on conventions), where the scalar product ⟨·|·⟩ is
replaced by the real valued cost function c(·, ·). The c-concavity of potentials is highly
useful to solve optimal transport problems and study their solutions, it is the starting point
of the next chapter to derive stability of transport maps with respect to the measures of
the problem. An important remark is that from an optimal potential function ψ, one
can reconstruct an optimal transport map Tψ solution of (MP). We then introduce the
semi-discrete setting of optimal transport, which is the framework that is considered here
for the numerical resolution of both optimal transport and generated Jacobian equations
throughout the document. In this framework, the space X is a domain while the space
Y is finite of size N . This setting allows to work on a tessellation of the source space X
composed of N Laguerre cells defined for each y ∈ Y by

Lagy(ψ) = {x ∈ X | ∀z ∈ Y, c(x, y) + ψ(y) ⩽ c(x, z) + ψ(z)}.

where ψ : Y → R is the Kantorovich potential. Under some assumptions on the cost
function, the Laguerre cells are uniquely defined almost everywhere. In this case, the
transport maps associated to ψ is defined by Tψ(x) = y ⇐⇒ x ∈ Lagy(ψ). If we

enumerate Y = {yi}1⩽i⩽N and identify Y → R with RN we can then define the mass
function H : RN → RN by H(ψ) =

(
µ(Lagyi(ψ))

)
1⩽i⩽N

, and the semi-discrete optimal

transport problem then amounts to the mass prescription problem of finding ψ ∈ RN such
that

H(ψ) = ν.

The last section of this chapter is dedicated to non-imaging optics, including a global
presentation of the field and some specific problems. We show that these problems in
the semi-discrete setting have the same mass prescription formulation as above. Some
non-imaging optics problems, in the “far-field” case, can then be expressed as the dual
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formulation of an optimal transport problem. Other optics problems, in the “near-field”
case, do not yield optimal transport equations but slightly more general ones, which
happen to be generated Jacobian equations.

Chapter 3 contains stability results of optimal transport maps with respect to the
measures. An important result of this chapter is the stability of optimal transport maps
under some regularity assumptions mainly on the cost function c. The starting point is a
result from Ambrosio and Gigli [33] recalled in Theorem 11. Formally, Ambrosio and Gigli
showed that if we consider a transport map for which the Brenier potential is strongly
convex, then the L2 distance between this map and another one with a different target
measure can be bounded by the Wasserstein distance between target measures, i.e.

∥Tµ→ν0 − Tµ→ν1∥
2
L2(µ) ⩽ CW1(ν0, ν1)

This result is true when Tµ→ν is an optimal transport map for the quadratic cost c(x, y) =
∥x− y∥2. In order to generalize this result to other costs, it was natural to extend the
notion of c-concavity to strong c-concavity. This notion is a generalization in the sense
that strong c-concavity is similar to strong concavity, replacing the supporting hyperplane
of the concave function by levelsets of the cost function. To define this notion, we recall
the notion of c-superdifferential. Let ψ : Y → R, the c-superdifferential of ψ at a point
y ∈ Y is defined by

∂cψ(y) = {x ∈ X | ∀z ∈ Y, ψ(z)− c(x, z) ⩽ ψ(y)− c(x, y)}

Note that ψ is c-concave iff for any y ∈ N its c-superdifferential ∂cψ(y) is non-empty.
If this is the case, then ψ is strongly c-concave with modulus ω if for all y, z ∈ Y and
x ∈ ∂cψ(y)

ψ(z)− c(x, z) ⩽ ψ(y)− c(x, y)− ω(d(y, z))

where d is a distance on Y. Once we introduced strong c-concavity, an important theorem
can be summarized as follow.

Theorem 14 (Strong c-concavity implies stability). Let µ ∈ P(X ) and ν0, ν1 ∈ P(Y).
We assume that the cost c is regular enough, and that there exists optimal transport maps
Ti from µ to νi with associated potential ψi : N → R (i = 0, 1) such that:

� ψ0 is Lipschitz on Y and c-concave.

� ψ1 is Lipschitz on Y and strongly c-concave with modulus ω.

Then, ∫
X
ω(d(T0(x), T1(x)))dµ(x) ⩽ (Lip(ψ0) + Lip(ψ1))W1(ν0, ν1)

where W1 is the 1-Wasserstein distance.

The full hypotheses are stated in Section 3.2. The chapter also treats other stabil-
ity results for general cost functions, notably for transport plans with respect to both
measures, as stated in the following proposition.

Proposition 19 (Stability with respect to both measures). Let µ, µ̃ ∈ P(X ) and ν, ν̃ ∈
P(Y). Let c : X ×Y → R be a cost function which is Lipschitz on X ×Y. Let T : X → Y
be an optimal transport map between µ and ν, and γ̃ be an optimal transport plan between
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µ̃ and ν̃ for the cost c. We assume that T is induced by a strongly c-concave potential
ψ : Y → R with associated modulus ω(r) = Cr2. Then we have

W1(γT , γ̃) ⩽ ε+

√
2Lip(c)

C
ε, where ε := W1(µ̃, µ) +W1(ν, ν̃)

where γT = (Id, T )#µ is the transport plan induced by the map T .

The main issue of this result is that it requires the cost function to be Lipschitz on
the whole product space X × Y, which is often not satisfied. All these results are given
for a strongly c-concave potential. The most technical part of the chapter is contained in
Section 3.3. It gives a sufficient condition for strong c-concavity, under the Ma-Trudinger-
Wang hypothesis on the cost function [51]. This hypothesis is not surprising as it is
necessary to obtain the regularity of optimal transport maps [69], and in fact, strong
c-concavity implies some regularity of the associated transport map. The result is a
differential criterion for strong c-concavity. It is an adaptation of Villani’s criterion for
usual c-concavity [69, Th. 12.46]. Here we can work on a subset D ⊂ X × Y on which
the cost function is regular and the MTW tensor Sc (Def 20) is positive.

Theorem 24 (Characterization of strong c-concavity). Under some assumptions on D ⊆
X × Y (detailed later). We assume that the MTW hypothesis is satisfied on D. Let
ψ ∈ C2(Y,R) be a c-concave function on D and such that there exists λ > 0 satisfying for
any x ∈ ∂cψ(y)

D2
yyc(x, y)−D2ψ(y) ⩾ λId

Then ψ is strongly c-concave on D with modulus ω(dN (y, y)) = CdN (y, y)
2, where C > 0

is a constant depending on c, X and Y. This means that we have

ψ(y)− c(x, y) ⩽ ψ(y)− c(x, y)− CdN (y, y)2

for the points x ∈ X , y, y ∈ Y such that x ∈ ∂cψ(y), (x, y) ∈ D and (x, y) ∈ D.

From this theorem we can deduce the strong c-concavity of potentials associated to
regular enough transport maps for MTW costs. This is stated in Corollary 25.

We finally show that the strong c-concavity of potentials and the stability results that
follow can be applied to two optimal transport problems for different cost functions on the
sphere. One of the applications is the far-field point reflector problem which is presented
in Section 2.4. This problem is equivalent to an optimal transport problem on the sphere
for the cost c(x, y) = − ln(1 − ⟨x|y⟩). The stability result can be stated as follows, with
Mν(β) being the maximum mass given by the measure ν on all balls of radius β.

Theorem 31 (Stability for the reflector cost). Let c(x, y) = − ln(1−⟨x|y⟩) be the reflector
cost on the sphere M = Sd−1. Let µ, ν0 ∈ P(M) be absolutely continuous with respect to
the Lebesgue measure with strictly positive C1,1 densities. Then for all β > 0, there exists
a constant C > 0 depending on µ, ν0 and β such that

∀ν1 ∈ P(M) s.t. Mν1(β) < 1/8, ∥dM (T0, T1)∥2L2(µ) ⩽ C W1(ν0, ν1)

where dM is the geodesic distance on M and Ti be optimal transport maps between µ and
νi.

This result guarantees that computing a solution by discretizing the target measure
yields a correct approximation of the reflection that would be expected in the continuous
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case. It is not trivial because the reflector cost c(x, y) = − ln(1−⟨x|y⟩) explodes when x =
y, which makes it non differentiable on the diagonal. This issue is tackled in Section 3.5,
the main argument is to show that the support of the optimal transport plan stays far
from the diagonal because it is repulsive, i.e. c(x, x) = +∞.

Chapter 4 is the main chapter on generated Jacobian equations. These equations
are Monge-Ampère type equations that can be written as a highly non linear PDE, but
we will only consider here the semi-discrete setting. This choice allows to present the
problem directly as a mass prescription equation, as it is the case in optimal transport.
The difference is that here, instead of working with a cost function c : X × Y → R, we
work with a scalar generating function G : X × Y × R → R which gives “generalized”
Laguerre cells of the form

Lagy(ψ) = {x ∈ X | ∀z ∈ Y, G(x, y, ψ(y)) ⩾ G(x, z, ψ(z))}

where again, ψ : Y → R is a scalar function. We can thus define the mass function
H : RN → RN in the same way, by H(ψ) = µ(Lagi(ψ))1⩽i⩽N , and the semi-discrete
generated Jacobian equation amounts to finding ψ : Y → R such that

H(ψ) = ν.

This equation amounts to finding the zero of a function, and one can consider trying to
solve it using a Newton algorithm, as it has been done in optimal transport [54]. The
advantage of optimal transport is that it can be shown that the map H is the gradient
of a concave function, thus implying that its differential DH is actually a Hessian which
makes it symmetric and negative semi-definite. Moreover it is easy to identify its kernel
and image. For a generated Jacobian equation, it is not as easy, the Jacobian matrix
DH is not symmetric in general; it is also more difficult to identify its kernel, but one
can still deduce its structure. The complete study of this differential DH is presented in
the chapter. These results allow to show that by using a correct damping parameter, the
Newton algorithm converges in the case of generated Jacobian equations, as it is the case
in optimal transport. The main theorem is the following.

Theorem 58 (Convergence of the Newton algorithm). Assume that the generating func-
tion is regular enough, that X is compact, and that the sets Y and ∂X are generic (see
definition in Chapter 4). Then, there exists τ∗ ∈]0, 1] such that the iterates of Algorithm 1
satisfy

∥H(ψk)− ν∥ ⩽
(
1− τ∗

2

)k
∥H(ψ0)− ν∥.

In particular, Algorithm 1 converges.

The end of the chapter is dedicated to the implementation of the algorithm on an
non-imaging optics problem, the near field parallel reflector problem (NF-par).

Chapter 5 is an ongoing work about the entropic regularization of generated Jaco-
bian equations. Entropic regularization has been widely used in the numerical optimal
transport community to obtain fast algorithms that are easy to implement [60, 21, 4]. We
focus here on the semi-discrete entropic regularization of optimal transport presented by
Genevay et. al [4]. The dual of the regularized semi-discrete problem can be expressed
as a mass prescription problem just like regular optimal transport. The difference is that
the Laguerre cells are replaced by “smoothed” Laguerre cells. The generated Jacobian
equation can also be expressed as mass prescription of Laguerre cells, even though there
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is no variational formulation. It is thus quite natural to try to adapt the smoothing of
Laguerre cells in optimal transport to generated Jacobian equations. The regularization
of the semi-discrete formulation leads to a stochastic gradient descent to solve regularized
optimal transport. Formally, regularizing the semi-discrete problem amounts to replace
the maximum by a softmax in the definition of Laguerre cells, with a scalar parameter
ε > 0. We thus obtain “smoothed Laguerre cells” that are regular functions that form a
partition of unity, and converge to the usual Laguerre cells when ε → 0. Because of its
formulation, the regularization easily adapts to the generated Jacobian equations. In this
case, the smoothed Laguerre cells are defined for ψ ∈ RN and x ∈ X by

Lε,i[ψ](x) =
eG(x,yi,ψi)/ε∑
k e

G(x,yk,ψk)/ε

and the mass function associated to cell i ∈ J1, NK is

Hε
i (ψ) =

∫
X
Lε,i[ψ](x)dρ(x)

The stochastic gradient descent of [4] can be adapted into a stochastic fixed point to solve
an approximation of the mass prescription equation Hε(ψ) − ν = 0. The fact that the
mass function H is not a gradient makes the analysis of the algorithm harder, and the
theoretical convergence is still an open problem. The algorithm was still tested on an
example of generated Jacobian equation for which it converges.
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Chapter 2

Optimal transport and
applications to optics

Optimal transport theory [69, 63, 7] was introduced by Monge in 1781 with the objective of
finding the most efficient way to transport mass from one location to another, given certain
constraints and costs. This theory has had an important impact in applied mathematics,
with a wide range of applications in various fields [14, 60, 12, 55], including machine
learning, economics, physics, computer vision, image processing and optics. In economics,
optimal transport can be used to analyze and optimize the flow of goods and services
between regions or markets, while in physics, it can be used to model the movement
of fluids and particles. In computer vision, optimal transport can be used to match
images and estimate correspondences between different sets of data. In image processing,
it can be used for tasks such as image registration and morphing. The applications
we are interested in here are non-imaging optics, where the goal is to create an optical
component (e.g. mirror or lens) that redirects a given light source toward a prescribed
target distribution, without enforcing to have a one-to-one mapping between source and
target.

2.1 Monge-Kantorovich problem and Wasserstein distances

The Monge problem consists in finding an optimal transportation map that assigns each
item in the source location to a unique location in the destination while minimizing the
total transportation cost. This problem can be challenging to solve, especially when
dealing with large datasets. Kantorovich relaxation is a more flexible approach that
allows for partial assignments between the source and destination locations, making it
easier to find solutions to the optimal transport problem. We represent the source and
the destination by Polish (separable completely metrizable) spaces X and Y. We denote
byM(A) and P(A) respectively the sets of signed measures and probability measures on
a set A. The goal is to transport a mass represented by a measure µ ∈ P(X ) toward a
measure ν ∈ P(Y). The cost function c : X × Y → R is a lower semi-continuous function
that is bounded from below such that c(x, y) is the cost of transporting the point x toward
y.

Definition 1 (Push-forward measure and transport map). Let µ ∈ M(X ) and T : X →
Y.

� The push-forward measure of µ by T is a measure on Y denoted by T#µ ∈ M(Y)
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and defined by
∀B ⊂ Y, T#µ(B) = µ(T−1(B)).

� A transport map between µ ∈M(X ) and ν ∈M(Y) is a measurable map T : X → Y
such that the image measure T#µ equals ν.

Note that for a transport map to exists, the total mass needs to be the same for both
measures, i.e. µ(X ) = ν(Y). One can then normalize, making the transport maps being
always defined between probability measures µ ∈ P(X ) and ν ∈ P(Y).

Definition 2 (The Monge problem). Monge’s optimal transport problem between µ ∈
P(X ) and ν ∈ P(Y) for the cost c : X × Y → R amounts to finding a map T : X → Y
that realizes the following infimum

(MP) := inf
T#µ=ν

∫
X
c(x, T (x))dµ(x). (2.1.1)

As mentioned earlier, the Monge problem (MP) is quite hard to solve. Kantorovich
introduced a relaxed formulation of the problem [41], in which the mass emanating from
a point x ∈ X is allowed to split and reach several positions in Y. Thus, instead of
minimizing over transport maps, one minimizes over transport plans between µ and ν,
which we define hereafter. We first introduce the notion of marginal.

Definition 3 (Marginal). For a measure γ ∈ M(X × Y), the marginals Πx#γ ∈ M(X )
and Πy#γ ∈M(Y) are defined for every measurable sets A ⊂ X and B ⊂ Y by

Πx#γ(A) = γ(A× Y), Πy#γ(B) = γ(X ×B)

A transport plan between two measures is a measure on the product space with con-
strained marginals.

Definition 4 (Transport plan). A transport plan between µ ∈ P(X ) and ν ∈ P(Y) is a
probability measure γ ∈ P(X × Y) whose marginals are µ and ν. The set of all transport
plans between µ and ν is denoted Γ(µ, ν) i.e.

Γ(µ, ν) = {γ ∈ P(X × Y) | ∀A ⊂ X , γ(A× Y) = µ(A),∀B ⊂ Y, γ(X ×B) = ν(B)}

For a transport plan γ, if A × B ⊂ X × Y, then γ(A × B) represents the mass
transported from A to B.

Definition 5. The relaxed problem introduced by Kantorovich is

(KP) := inf
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) (2.1.2)

It is clear that this problem is weaker than the Monge problem, in the sense that
(KP) ⩽ (MP). This can be seen by choosing a transport plan γ that never splits the
mass of a point x. In this case, the transport plan γ ∈ Γ(µ, ν) is said to be induced by a
transport map T , it is given by the formula γ = (Id, T )#µ. There exist several situations
where one can obtain equality between Monge and Kantorovich problems. It is actually
the case whenever the minimizing transport plan is induced by a map (or a limit of such
plans). We give below one general framework where there is equality.
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Proposition 1 (Kantorovich as a relaxation of Monge). Let X and Y be compact subsets
of Rd and c ∈ C0(X × Y). Let µ ∈ P(X ) be atomless and ν ∈ P(Y) any probability
measure, then (KP) = (MP).

A proof of this equality can be found in [63]. When X and Y live in the same Polish
space Ω, the Kantorovich problem can be used to define a distance between probability
measures. We denote by d the distance on Ω.

Definition 6 (Wasserstein distances). Let X and Y be subsets of the same metric space
(Ω,d). Let µ ∈ P(X ), ν ∈ P(Y) and c(x, y) = dp(x, y) for some p ⩾ 1. Then the
p-Wasserstein distance is given by

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×Y

dp(x, y)dγ(x, y)

)1/p

The Wasserstein distance is sometimes called the Earth Mover’s distance as it mea-
sures the cost of moving the mass from µ to ν for the distance d. This distance has several
advantages over other distance metrics, including its ability to capture structural differ-
ences between distributions and its robustness to outliers. It has been broadly studied
and is used in a wide field of applications including machine learning, image processing
or statistics.

2.2 Dual formulation and c-concavity

The Kantorovich Problem has a dual formulation that can be derived using Lagrange
multipliers for the marginals constraints on the transport plan. In many cases, the dual
problem can be solved more efficiently than the primal problem, yielding a practical
alternative for solving optimal transport problems. It also allows to obtain a different
formulation for the 1-Wasserstein distance W1 which is called the Kantorovich-Rubinstein
metric. It is detailed in Theorem 4. Finally the dual formulation leads to the notion of c-
transform which can be seen as a generalization of the Legendre transform. One can then
be inspired by convex analysis to introduce c-concave functions which are quite useful in
optimal transport theory for general cost functions. We will use these notions in Chapter 3
to study the regularity and the stability of solutions to optimal transport problems. In this
section we give a formal derivation of the dual problem based on [54]. A complete proof
of Kantorovich duality can be found in [68]. Unless specified otherwise, we will consider
for simplicity that the cost function is continuous on X × Y. We denote byM+(X × Y)
the set of positive measures on X × Y. For any functions φ : X → R and ψ : Y → R we
define the functions (φ⊕ψ)(x, y) = φ(x)+ψ(y) and (φ⊗ψ)(x, y) = φ(x)ψ(y). To lighten
the notation, we denote by ⟨φ|µ⟩ the integral

∫
φdµ, and similarly for others functions

and measures. Then one has

sup
φ∈C0(X )

⟨φ|µ⟩ − ⟨φ⊗ 1|γ⟩ =

{
0 if Πx#γ = µ

+∞ otherwise.

and similarly

sup
ψ∈C0(Y)

⟨ψ|ν⟩ − ⟨1⊗ ψ|γ⟩ =

{
0 if Πy#γ = ν

+∞ otherwise.

12



where Πx#γ ∈ M(X ) and Πy#γ ∈ M(Y) denotes the marginals of γ. Combining these
two equalities gives

sup
φ∈C0(X ),ψ∈C0(Y)

⟨φ|µ⟩+ ⟨ψ|ν⟩ − ⟨(φ⊕ ψ)|γ⟩ =

{
0 if γ ∈ Γ(µ, ν)

+∞ otherwise.

Using Lagrange multipliers φ and ψ for the marginal constraints, the Kantorovich problem
then writes

(KP) = inf
γ∈M+(X×Y)

sup
φ∈C0(X ),ψ∈C0(Y)

⟨φ|µ⟩+ ⟨ψ|ν⟩+ ⟨c− (φ⊕ ψ)|γ⟩.

The dual problem is then defined by inverting supremum and infimum, this gives

(DP) := sup
φ,ψ

inf
γ∈M+(X×Y)

⟨c− (φ⊕ ψ)|γ⟩+ ⟨φ|µ⟩+ ⟨ψ|ν⟩.

Note that at this point, there is no reason to have (KP) = (DP), but one has always
(KP) ⩾ (DP). One can then simplify this dual formulation by remarking that

inf
γ∈M+(X×Y)

⟨c− (φ⊕ ψ)|γ⟩ =

{
0 if φ⊕ ψ ⩽ c

−∞ otherwise.

This allows to replace the infimum over γ by a condition on the functions φ and ψ.

Definition 7 (Kantorovich dual problem). Let µ ∈ P(X ), ν ∈ P(Y) and c : X ×Y → R,
the dual formulation of (KP) is

(DP) = sup
φ∈C0(X ),ψ∈C0(Y)|φ⊕ψ⩽c

⟨φ|µ⟩+ ⟨ψ|ν⟩ (2.2.3)

The functions φ and ψ are called Kantorovich potentials. The global theory is called
Kantorovich duality, by the name of the Russian mathematician Leonid Kantorovich who
first introduced it in 1942 [41]. Under some mild assumptions strong duality holds.

Theorem 2 (Strong Kantorovich duality). Let X and Y Polish spaces. If the cost function
c : X × Y → R is l.s.c. and bounded below, then (KP) = (DP) and (KP) is a minimum,
i.e. the infimum in (KP) is reached for some transport plan γ ∈ Γ(µ, ν).

One proof is given by Villani in his first book [68]. We can go further in the simpli-
fication of the dual problem, by remarking that the condition φ ⊕ ψ ⩽ c gives a strong
relation between φ and ψ. Let us fix a function ψ ∈ C0(Y). Since φ ⊕ ψ ⩽ c, we have
for any y ∈ Y, φ(x) ⩽ c(x, y)− ψ(y). The measures being positive, we want to maximize
φ. The best φ possible is then the infimum over all y ∈ Y of c(·, y)− ψ(y), this quantity
depending on c and ψ is called the c-transform of ψ.

Definition 8 (c-transform). Let c : X × Y → R and ψ : Y → R, the c-transform of ψ is
a function ψc : X → R defined for x ∈ X by

ψc(x) = inf
y∈Y

c(x, y)− ψ(y)

By symmetry, for φ : X → R, φc(y) = infx c(x, y) − φ(x). When we have both φ = ψc

and ψ = φc we say that φ and ψ are c-conjugate.
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Remark 3. When X = Y lives in an Hilbert space and c(x, y) = −⟨x|y⟩, the c-transform
almost coincides with the convex conjugate [6], more precisely −ψc is the convex conjugate
of −ψ or −(−ψ)c is the convex conjugate of ψ.

The dual problem can thus be written

(DP) = sup
ψ∈C0(Y)

∫
X
ψcdµ+

∫
Y
ψdν (2.2.4)

This trick is used both in numerical application to build algorithms to solve optimal
transport problem, and in theory to study the solutions of optimal transport problem.
We will call Kantorovich functional the maximized function above.

Definition 9 (Kantorovich functional). Let µ ∈ P(X ) and ν ∈ P(Y), Kantorovich func-
tional K is defined for ψ : Y → R by

K(ψ) =
∫
X
ψcdµ+

∫
Y
ψdν

To justify what follows, recall that a convex analysis result claims that a function is
l.s.c. and convex if and only if it is the convex conjugate of some function. We use a
generalization of this result to define the c-concavity.

Definition 10. A function ψ : Y → R is c-concave if there exists a function φ : X → R
such that ψ = φc.

An equivalent definition for the c-concavity of ψ is if ψcc = ψ (in that case, φ = ψc),
see for instance [68]. C-concavity can be seen as a generalization of concavity where
the supporting hyperplanes are replaced by level sets of the cost function c. Using this
equivalence one can generalize the notion of superdifferential to c-superdifferential. The
usual superdifferential of a function f : Rd → R at a point y ∈ Rd is

∂+f(y) =
{
v ∈ Rd | ∀x ∈ Rd, f(x) ⩽ f(y) + ⟨v|x− y⟩

}
The c-superdifferential of ψ at a point y ∈ Y is defined by

∂cψ(y) = {x ∈ X | ∀z ∈ Y, c(x, y)− ψ(y) ⩽ c(x, z)− ψ(z)} (2.2.5)

As it is the case for regular concavity (in finite dimension), a continuous function is
c-concave if and only if its c-superdifferential is non-empty at every point. Note that
when it exists, a maximizer ψ of (DP) is always c-concave. Indeed by definition of
the c-transform we have for any (x, y) ∈ X × Y that ψc(x) + ψ(y) ⩽ c(x, y), and thus
ψ(y) ⩽ infx c(x, y) − ψc(x) which means that ψ ⩽ ψcc. Recall that (DP) is a maximum
with respect to ψ, thus if ψ ̸= ψcc on a non zero measure set with respect to ν, then ψcc

being greater, it is a better choice than ψ. Note that such a maximizer does not neces-
sarily exists. Though one can for example add to the hypothesis of Proposition 2 that
the cost function satisfies c(x, y) ⩽ c1(x) + c2(y) with c1 ∈ L1(dµ) and c2 ∈ L1(dν); the
problem (DP) would then admits a pair of c-conjugate functions (φ,ψ) as maximizer [68].

Distance cost. We focus here on a cost function that is a distance, i.e. c(x, y) = d(x, y).
In that case the dual problem rewrites as a supremum over Lipschitz functions. This result
is stated in the following theorem, a proof can be found in [68]. We denote by Lip(f) the
best Lipschitz constant of a function f , i.e. Lip(f) = supx ̸=y |f(x)− f(y)|/d(x, y).
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Theorem 4 (Kantorovich-Rubinstein). Let X = Y be a polish space and c(x, y) = d(x, y)
where d is a lower semi-continuous distance on X . Then the 1-Wasserstein distance
W1(µ, ν) between µ and ν in P(X ) rewrites

W1(µ, ν) = sup
Lip(f)⩽1

∫
X
fd(µ− ν)

We give below the main lines of the proof of this very well known theorem because
it is a nice and direct application of Kantorovich duality. For simplicity we will assume
here that X and Y are compact sets, though it is not necessary for the Theorem to hold.
Sketch of proof. First recall that W1 is defined by

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
X×Y

d(x, y)dγ(x, y)

and by Kantorovich duality it rewrites

W1(µ, ν) = sup
ψ∈C0(Y)

∫
X
ψcdµ+

∫
Y
ψdν

for which there exists a maximizer ψ which is c-concave. What we have left to show is that
when c = d, a c-concave function ψ is 1-Lipschitz and its c-transform satisfies ψc = −ψ.
First remark that if ψ is c-concave, then it writes ψ(y) = infx c(x, y) − φ(x) for some φ,
and thus satisfies for any y, z

ψ(z)− ψ(y) ⩽ d(xy, z)− d(xy, y) ⩽ d(y, z)

where xy is the point that minimizes c(x, y)−φ(x). It is thus 1-Lipschitz. Then we have

ψc(x) = inf
y
d(x, y)− ψ(y) = inf

y
d(x, y)− ψ(y) + ψ(x)− ψ(x) ⩾ −ψ(x).

By choosing y = x in the first infimum we deduce ψc = −ψ. Since this result is true for
any 1-Lipschitz function it is enough to conclude.

Remark 5. This definition of the W1 distance can be extended to measures that does
not have the same mass, or that are not even positive, by adding an L∞ bound on the
Lipschitz function f . Thus giving a metric on the whole space M(X ) which can be quite
useful, for example as a distance between seismograph [55].

2.3 The semi-discrete case

Among the many formulations of optimal transport, the particular framework we will
bring our interest on is the semi-discrete setting. The main point of this formulation is to
transport a measure µ ∈ Pac(X ), that is absolutely continuous with respect to a reference
measure, toward a discrete measure ν ∈ P(Y) which takes the form of a weighted sum of
diracs ν =

∑
i νiδyi . The semi-discrete setting of the optimal transport problem is useful

for several applications [14, 23], for example it allows to compute the distance between a
density and a point cloud. It is also an efficient way to solve optimal transport problems
numerically, see for instance [54].

To define semi-discrete optimal transport, we need a reference measure on the set X .
It is very common to chose X to be a domain of Rd in which case the reference measure
is the Lebesgue measure, or if X is a k-dimensional submanifold of Rd, then the reference
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measure is the k-Hausdorff measure. The target space Y is a finite set of size N . For
simplicity we consider that both X ⊂ Rd and Y ⊂ Rd, and the reference measure on X is
the Lebesgue measure denoted vold. The semi-discrete optimal transport problem consists
in finding a transport map (or plan) minimizing the transport cost from an absolutely
continuous measure µ ∈ Pac(X ) to a discrete measure ν =

∑
y∈Y νyδy. We sometimes

enumerate the set Y = {yi}1⩽i⩽N to identify the maps going from Y to R with vectors in
RN . In this case the target measure rewrites ν =

∑N
i=1 νiδyi . In the semi-discrete setting,

the dual formulation can be rephrased using the notion of Laguerre tessellation, which is
a generalization of Voronoi tessellation. This connection has been known for a long time,
details can be found in [54]. From a pedagogical perspective, it is interesting to present
here an economic metaphor that is quite common in the optimal transport community.
Assume that the set X represents a city and the absolutely continuous measure µ ∈ P(X )
is the population density of that city. In this city we consider N bakeries that are located
at positions y ∈ Y. The cost function here is a function of the distance in the city, for
differentiability we often choose the quadratic cost c(x, y) = d2(x, y). At this point, it is
natural to consider that each person of the city will buy their bread in the closest bakery,
thus partitioning the city in the following Voronoi tessellation

Vory = {x ∈ X | ∀z ∈ Y,d(x, y) ⩽ d(x, z)}

such that any person living at x ∈ Vory will buy their bread in bakery y, giving a
total number of customers µ(Vory) in each bakery y. Now assume that the bakery y
has a capacity νy > 0, and in order to have a well-posed problem we will assume that∑
νy = µ(X ) = 1 so the capacity of all the bakeries is matching exactly the population

of the city (this is called the mass balance condition). Obviously the cells (Vory) depend
on where are positioned the y, and there is no reason that µ(Vory) = νy. To enforce this
condition, one can then add a variable corresponding to the price of the bread for each
bakery, taking the form of a function ψ : Y → R. A customer x ∈ X will then go to
bakery y if it is both close and with an attractive price, partitioning this time the space
X in the following Laguerre tessellation such that this time, a customer x ∈ Lagy(ψ) will
go to bakery y.

Definition 11 (Laguerre cells). The Laguerre cell associated to a point y ∈ Y is a subset
of X defined by

Lagy(ψ) = {x ∈ X | ∀z ∈ Y, c(x, y) + ψ(y) ⩽ c(x, z) + ψ(z)}

For y ̸= z we also denote the intersection of two Laguerre cells by

Lagyz(ψ) = Lagy(ψ) ∩ Lagz(ψ)

One can then define the (possibly multi-valued) map Tψ associated to a potential function
ψ : Y → R by

∀(x, y) ∈ X × Y, y ∈ Tψ(x) ⇐⇒ x ∈ Lagy(ψ)

Remark 6 (Link with the c-superdifferential). The semi-discrete Laguerre cell Lagy(ψ)
correspond to the c-superdifferential ∂cψ(y) of ψ at y. The formula for a transport map
induced by a potential is not restricted to the semi-discrete setting. When it is well defined,
we say that T is induced by ψ if T = Tψ = ∂cψ−1.

In order to have non-overlapping Laguerre cells, and a well defined map Tψ, we need
the cost function c ∈ C1(X × Y) to satisfy the classical twist condition.
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Definition 12 (Twisted cost). The cost function c ∈ C1(X × Y) is said to satisfy the
twist condition if

∀x0 ∈ X , the map

{
Y → Tx0X
y 7→ ∇xc(x0, y)

is injective.

Here Tx0X denotes the tangent space of X at x0.

Formally, this condition guarantees that for y ̸= z, the level sets of the function
c(·, y) − c(·, z) are manifolds of dimension at most d − 1. When the cost is twisted the
intersection Lagyz between two Laguerre cells is always of zero Lebesgue measure.

Proposition 7. If the cost function c satisfies the twist condition, then for any y ̸= z,
vold(Lagyz(ψ)) = 0 and the map Tψ defined for x ∈ X by

Tψ(x) = argminy c(x, y) + ψ(y)

is well defined Lebesgue almost everywhere. Moreover Tψ is the optimal transport map
between µ and νψ = Tψ#µ which is defined by

νψ = Tψ#µ =
∑
y∈Y

µ(Lagy(ψ))δy

Proof. Note first that Y being finite, the argmin defining Tψ always exists. We are now
going to show that it is unique for almost every x ∈ X . Let f(x) = c(x, y)+ψ(y)−c(x, z)−
ψ(z). Then by the twist condition we have∇f(x) = ∇xc(x, y)−∇xc(x, z) ̸= 0, which guar-
antee that vold(f−1({0})) = 0. Since Lagyz ⊂ f−1({0}) we also have vold(Lagyz(ψ)) = 0.
It follows naturally that Tψ is well defined Lebesgue almost everywhere. We now want to
prove that Tψ is optimal between µ and νψ. By definition of Tψ we have

∀x, y ∈ X × Y, c(x, Tψ(x)) + ψ(Tψ(x)) ⩽ c(x, y) + ψ(y)

Now let γ ∈ Γ(µ, νψ) be any transport plan between µ and νψ, then integrating the
previous inequality with respect to γ gives∫

X
c(x, Tψ(x)) + ψ(Tψ(x))dµ(x) ⩽

∫
X×Y

c(x, y) + ψ(y)dγ(x, y)

where the left hand side is obtained using Πx#γ = µ and Πy#γ ∈ P(Y). Now using that
Tψ#µ = Πy#γ, by making the change of variable y = Tψ(x) we get∫

X
ψ(Tψ(x))dµ(x) =

∫
X×Y

ψ(y)dγ(x, y)

and finally ∫
X
c(x, Tψ(x))dµ(x) ⩽

∫
X×Y

c(x, y)dγ(x, y)

Remark 8. In the previous proposition we proved that Tψ is always optimal between the
appropriate measures, and that in the semi-discrete case under the same hypothesis Monge
and Kantorovich problems are always equivalent.
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Optimal Transport as mass function prescription. Since Tψ is always optimal
between µ and νψ, the Monge problem between µ and ν in the semi-discrete case then
amounts to finding ψ ∈ RY such that νψ = ν. We define the Mass function H of a
Laguerre tessellation associated to ψ by

Hy : RY → R, ψ 7→ µ
(
Lagy(ψ)

)
H : RY → RY , ψ 7→ (y 7→ Hy(ψ)) .

(2.3.6)

With these notations the measure νψ defined before rewrites

νψ =
∑
y∈Y

Hy(ψ)δy

and the semi-discrete optimal transport problem amounts to finding ψ ∈ RY such that
for any y ∈ Y, Hy(ψ) = νy. Since the set Y = {yi}1⩽i⩽N is finite of size N , one can
identify RY and RN . Similarly the measure ν can be assimilated to the vector of the
weights (νi)1⩽i⩽N ∈ RN . The semi-discrete problems then becomes an equation in RN ,
that consists in finding ψ ∈ RN such that

H(ψ) = ν (MA)

Equation (MA) can be seen as a discrete version of the Monge-Ampère type equation
arising in optimal transport. The existence of solutions to Equation (MA) and numerical
methods to solve it strongly relies on properties of the mass function H. In the following
we denote by (1y)y∈Y the canonical basis of RY , and 1Y the constant equal to 1.

Proposition 9 (Properties ofH, [54]). Assume that the cost function c is twisted (Def 12)
and that µ ∈ Pac(X ). Then the mass function H satisfies the following properties

� ∀y ∈ Y, ∀t ⩾ 0, Hy(ψ + t1y) ⩽ Hy(ψ),

� ∀y ̸= z ∈ Y,∀t ⩾ 0, Hy(ψ + t1z) ⩾ Hy(ψ),

� ∀y ∈ Y,∀t ⩾ 0, Hy(ψ + t1Y) = Hy(ψ),

� ∀y ∈ Y, H(ψ) ∈ P(Y),
� H is continuous on RY .

The proposition is proved in [54]. Using these properties, one can prove the existence of
solution to the semi-discrete optimal transport problem for any target measure ν ∈ P(Y),
which is also done in [54].

Recall that equation (MA) amounts to maximizing Kantorovich functional (Defini-
tion 9) which is defined by

K(ψ) =
∫
X
ψcdµ+

∫
Y
ψdν =

∑
y

∫
Lagy(ψ)

c(x, y) + ψ(y)dµ(x) +
∑
y

ψ(y)νy

Theorem 10. If µ ∈ Pac(X ), then Kantorovich functional K defined in 9 is concave, and
if c is twisted (Def 12) then K is C1 with gradient

∇K(ψ) = H(ψ)− ν

This has been shown by Aurenhammer, Hoffman, Aronov [5] in the quadratic case.
Kantorovich functional K being concave, this result implies that maximizing the dual
formulation of (KP) is equivalent to find a zero of its gradient, i.e. to solve (MA).

18



2.4 Non-imaging optics

Non-imaging optics (or anidolic optics) is a branch of optics where the optical compo-
nents (e.g. mirrors or lenses) are designed to manipulate light in a different way than
traditional imaging optics. Non-imaging optics focuses on controlling the distribution
and concentration of light rather than forming an image. These kind of optics have many
applications like solar collectors to produce energy, public lightning to reduce glare or
increase efficient or optical communications like optical fibers. All these problems are
inverse problems that can be posed by the following problem. Given a light source and
a target distribution, the goal is to construct a mirror that concentrates the light energy
of the source toward the target. Several variants of these optics problem exists, whether
it is a reflector or a refractor, for a point or collimated source, and near-field or far-
field target [70, 71, 22, 35, 34, 42]. In this section we focus on four non-imaging optics
problems, and see how they fall into the scope of optimal transport and Monge-Ampere
equations [57]. The first one, namely the far-field reflector problem can be recast as an
optimal transport problems, while the second one, the near-field reflector problem [34],
has a formulation that falls close to optimal transport but is not. In both problems we
represent the light source by a measure µ ∈ Pac(X ) where X is a domain embedded in
R3. The target be a discrete measure ν ∈ P(Y), with Y a finite set of points in R3. The
goal is to build a mirror Σ that reflect the desired quantity of light ν(y) to each point
y ∈ Y of the target.

2.4.1 Far-field parallel reflector: an optimal transport problem

The far-field parallel reflector problem considers a collimated light source, that is a plane
source with parallel rays of light going upward, and a target light distribution at in-
finity, which means that we don’t aim at points but at directions. More precisely, let
X ⊂ R2 × {0} be a plane embedded in R3, the light source µ ∈ Pac(X ) is an absolutely
continuous measure with respect to the Lebesgue measure. The light emitted at some
position x ∈ X is a vertical ray of intensity µ(x). The target space Y ⊂ S2 is a finite
set of directions represented by unit vectors on the sphere, and the measure ν ∈ P(Y)
represents the quantity of light to be sent in each direction. The problem is then to find
a mirror surface Σ placed above the space X that reflects the rays emitted by the source
toward the desired target distribution.

Parametrization of the mirror. In some cases, many different mirrors Σ can be
solutions of the problem. To restrict the set of mirrors and simplify the problem, we
decide to consider mirrors that are plane by parts, which means that Σ is imposed to be
the graph of an affine by parts function u : X → R. This choice comes from the fact that
if we want to reflect all the rays toward a direction y, by Snell’s law we just have to chose
a plane Σ with normal ny satisfying y = e3 − 2⟨e3|ny⟩ny, where e3 is the vertical upward
vector, or third vector of the canonical basis of R3. Since the target space Y is of size N ,
we will then choose N planes on which the mirror Σ will be supported, each one being
defined by its normal vector ny. Each plane Πy reflecting the light toward direction y
thus have for equation ⟨x|ny⟩−ψ(y) = 0 where ψ : Y → R will parametrize its height. An
additional choice we make is to consider the mirror Σ to be the maximum of the planes
(Πy)y∈Y . This choice is completely arbitrary, one could have considered a minimum, or
even some obscure way of constructing an affine by parts function, but maximum is nice
because it yields to a convex mirror. It means that the function u : X → R is defined for
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x ∈ X by
u(x) = max

y∈Y
⟨x|ny⟩ − ψ(y).

An example of such a mirror is given in Figure 2.

Figure 2: An example of reflector Σ composed of three planes.

The far-field parallel reflector as Optimal Transport. Let us define the cost func-
tion c(x, y) = −⟨x|ny⟩, which is twisted when all the y ∈ Y are distinct. Then Σ =
{(x, u(x))|x ∈ X} reflects x toward y if for any z ∈ Y, −c(x, y)−ψ(y) ⩾ −c(x, z)−ψ(z),
or equivalently x ∈ Lagy(ψ), where the Laguerre cell Lagy is defined in Def 11. Another
way of saying this is that the function ψ defines the height of each mirror at the origin,
and the point x will be reflected by the highest plane above this point. The quantity of
light reflected to y is the quantity of light in Lagy(ψ), which is µ(Lagy(ψ)).

Our parametrization thus allows to solve the Far-field parallel reflector problem by
finding ψ : Y → R such that

∀y ∈ Y, µ(Lagy(ψ)) = ν(y) (FF-Par)

which is exactly Equation (MA). The far-field parallel reflector problem can thus be
reduced to a semi-discrete optimal transport problem for the cost c(x, y) = −⟨x|y⟩ (or
−⟨x|ny⟩ which is equivalent up to a redefinition of the target). The fact that this prob-
lem can be recast as the dual of an optimal transport problem is not trivial and quite
surprising. Note that alike every optimal transport problem, this problem is invariant
by addition of a constant. Indeed if one replace ψ by ψ + C, the Laguerre diagram will
remain the same. Physically this means that if we raise or lower the mirror, the light will
be reflected to the same direction. A few other non-imaging optics problems can be recast
as optimal transport problems (see for example [70, 71, 22, 34]), but it is not always the
case.

2.4.2 Near-field parallel reflector: a generated Jacobian equation

This section is about another non-imaging optics problem, the near-field parallel reflec-
tor [34]. We will see that unlike the previous one, this problem cannot be recast as an
optimal transport, but can take the form of a slightly more general problem, namely a
generated Jacobian equation. Like for the far-field parallel reflector, the source is colli-
mated (all rays parallel and vertical) emitted from a plane X ⊂ R2×{0}, and represented
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by a measure µ ∈ Pac(X ). This time the target set Y will be a finite set that also lives in
R2×{0}, and the target measure ν ∈ P(Y) is a discrete measure on Y. We are aiming at
points and not direction, hence the terminology “near-field”. The problem is to construct
a mirror Σ that reflects µ to ν.

Parametrization of the mirror. If one wants to reflect all the rays emitted upward
from X toward the same point y, the solution is to chose a downward parabola Py of
focal point y that is above X . A parabola Py, of focal distance ψ(y), is the graph of the
function x 7→ 1/2ψ(y)− ψ(y)∥x− y∥2/2. Once again, we chose Σ to be the maximum of
N downward paraboloids of focal point y and focal distance ψ(y) for some ψ : Y → R.
The mirror Σ is the graph of the function

u(x) = max
y∈Y

1

2ψ(y)
− ψ(y)

2
∥x− y∥2.

An example of paraboloid by parts mirror is given in Figure 3.

y1 y2 y3

Σ

Figure 3: An example of reflector Σ composed of three paraboloids of focus yi.

Near-field parallel reflector, a Generated Jacobian Equation. Let us consider
the function G : X × Y × R∗

+ → R defined by

G(x, y, v) =
1

2v
− v

2
∥x− y∥2

The light reflected toward a point y is the subset of X defined by

Lagy(ψ) = {x ∈ X |∀z ∈ Y, G(x, y, ψ(y)) ⩾ G(x, z, ψ(z))}

By a slight abuse of notation, we denoted the above cell Lagy while it is not exactly a
Laguerre cell, but a “generalized” Laguerre cell. This is due to the fact that the expression
of G(x, y, ψ(y)) can not be split in a sum of the variable ψ(y) and a cost function c(x, y)
independent of ψ. The function G is called the generating function, a precise definition
is given in Chapter 4, Definition 25.

The near-field parallel reflector problem then amounts to finding ψ : Y → R such that

∀y ∈ Y, µ(Lagy(ψ)) = ν(y) (NF-par)

This equation is not an optimal transport problem but is somehow quite similar, it is
called a generated Jacobian equation. These equations were initially introduced in the
continuous setting as Monge-Ampere type equations by Trudinger [66], a pedagogical
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survey was made by Guillen [34]. It is stated here in its semi-discrete setting. Unlike
optimal transport, the generated Jacobian equation has no variational formulation, which
implies in particular that the mass function of the Laguerre cells H defined in Equa-
tion (2.3.6) has no reason to be a gradient. This problem is not invariant by addition of a
constant, but the set of solutions is still a family of functions with one degree of freedom.
Unlike optimal transport, the Laguerre tessellation corresponding to the solutions has no
reason to be unique. The structures being similar, some of the algorithm to solve optimal
transport problems can still be used to solve generated Jacobian equations. Details about
this are given in Chapter 4.

2.4.3 Some other non-imaging optics problems

There exist other non-imaging optics problems that can be written as optimal transport
or generated Jacobian equations. The approximation consisting in placing the target at
infinity, i.e. the far-field case, seems to lead to optimal transport problems, while the near
field case leads to generated Jacobian equations. We present two additional non-imaging
optics problems [22, 71, 34]. The first one will be recast as optimal transport, while the
second one will fall in the scope of generated Jacobian equations. Both are similar to
what we presented before, the difference is that we chose a point light source instead of a
collimated one, and thus represented by directions on the sphere.

Far-field point reflector

The far-field point reflector is very similar to the first problem. The target is located
at infinity, so we are aiming at directions represented by unit vectors on the sphere, i.e.
Y = (yi)1⩽i⩽N ⊂ S2. The target intensity is represented by a discrete measure ν ∈ P(Y).
The light is emitted by a single point, which we consider at the origin O ∈ R3. The source
is thus characterized by a measure µ ∈ P(S2), such that the ray emitted in direction x is
of intensity µ(x). Following the technique of the two previous problems, it is natural here
to consider a mirror shaped of N paraboloid of axis (yi)1⩽i⩽N and sharing the origin O as
focal point. Since the source is the origin, it makes sense to use the radial parametrization
of the mirror Σ. A paraboloid of revolution of axis y and focal distance 2/v(y) is defined
for x ∈ S2 by its radial function

ρy(x) =
1

v(y)

1

1− ⟨x|y⟩
.

This time, we consider the minimum of radial functions, meaning that we will choose
the paraboloid that reflects the light toward y when its the closest of the origin (one can
remark that this choice makes the mirror convex, which is nice in practice). We thus
define the mirror by the formula Σ = {xρ(x) | x ∈ S2} where ρ(x) = miny∈Y ρy(x).
Passing to the logarithm, we get log(ρy(x)) = − log(v(y)) − log(1 − ⟨x|y⟩), thus if we
consider the variables ψ(y) = − log(v(y)) and the cost function c(x, y) = − log(1−⟨x|y⟩),
we get that the set of rays reflected in the direction y is the Laguerre cell

Lagy(ψ) = {x ∈ S2 | ∀z ∈ Y,− ln(1− ⟨x|y⟩) + ψ(y) ⩽ − ln(1− ⟨x|z⟩) + ψ(z)}

and again, the far-field point reflector problem amounts to solving the optimal transport
problem

∀y ∈ Y, µ(Lagy(ψ)) = ν(y) (FF-point)

This cost function is a bit more unconventional than what is usually studied, but it is still
lower semi-continuous and bounded below. One can also take advantage that it is repulsive
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when non differentiable, which means that the points (x, y) where c is not differentiable
satisfy c(x, y) = +∞, and it is possible to quantify the fact that any “decent” transport
plan stays afar from such points. Some details on this strategy can be found at the end
of Chapter 3.

Near-field point reflector

Finally we will briefly introduce the near-field point reflector [42, 34], to emphasize the fact
that near-field reflector problems seems to always recast as generated Jacobian equations
instead of optimal transport. Is is also interesting to notice that among the four problems
presented in this section, this one is the most common in physics because of its point
source and target at finite distance (far-field being an approximation). The framework is
the same as the previous problem, except that here the target is at finite distance. This
means that the target space Y ⊂ R3 is a set of points in the space R3 instead of direction
on the sphere S2. The source being at the origin O ∈ R3, the mirror reflecting all the
light from the source to a single point y is an ellipsoid which has O and y for focal points.
The radial parametrization of such an ellipsoid is the function

ey(x, t) =
t−2 − 1

4 ∥y∥
2

t−1 − 1
2⟨x|y⟩

with t ∈]0, 2/ ∥y∥] so that the eccentricity ∥y∥ t/2 ∈]0, 1]. This formulation of the radial
function of an ellipsoid is as written by Guillen [34]. It might not seem very natural
but it is nice for us because it matches the definition of a generating function, refer to
Chapter 4 for details. Let us define the function G(x, y, t) = ey(x, t). Then if one chooses
the furthest ellipsoid from the origin, it amounts to pick the maximum among the radial
functions ey to parametrize the mirror Σ. Finally, the set of rays reflected toward the
point y will be the “generalized” Laguerre cell defined by

Lagy(ψ) = {x ∈ S2 | ∀z ∈ Y, G(x, y, ψ(y)) ⩾ G(x, z, ψ(z))}

and the near-field point reflector thus consists in finding ψ : Y → R such that

∀y ∈ Y, µ(Lagy(ψ)) = ν(y) (NF-point)

This problem cannot be solved using optimal transport, but it is a generated Jacobian
equation. The regularity of the solutions has been studied in [42].

We now have introduced the necessary notions to present the research contained in
this thesis. In the following chapters, we will show stability of optimal transport maps
and numerical techniques to solve generated Jacobian equations. All these results can be
applied to non-imaging optics problem which are the core of this work.
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Chapter 3

Stability of optimal transport
maps

The stability of solutions to optimal transport problems under variation of the measures
is fundamental from a mathematical viewpoint: it is closely related to the convergence
of numerical approaches to solve optimal transport problems and justifies many of the
applications of optimal transport. In this chapter, we introduce the notion of strong
c-concavity, and we show that it plays an important role for proving stability results in
optimal transport for general cost functions c. We then introduce a differential criterion for
proving that a function is strongly c-concave, under an hypothesis on the cost introduced
originally by Ma-Trudinger-Wang for establishing regularity of optimal transport maps.
Finally, we provide two examples introduced in Chapter 2 where this stability result
can be applied, for cost functions taking value +∞ on the sphere: the far-field point
reflector problem and the Gaussian curvature measure prescription problem. This chapter
originates from [31] written in collaboration with Quentin Mérigot and Boris Thibert.

3.1 Introduction

Numerical applications of optimal transport theory have been made possible thanks to
the tremendous progress of optimal transport solvers in the last decade [60, 54, 7].

The stability of solutions to optimal transport problems under variation of the data
is fundamental from a mathematical viewpoint, making optimal transport a “well-posed”
problem in the terminology of Hadamard. The question of quantitative stability is also of
prime importance. The first and most obvious reason is that it is strongly related to the
convergence of many numerical approaches to solve optimal transport problems — both
in statistical and in numerical analysis contexts — and explicitly or implicitly it justifies
most of the applications of optimal transport. Quantitative stability is at the heart of
several other applications, including the understanding of geometric embeddings of spaces
of probability measures to Hilbert spaces used in statistics [24], the convergence analy-
sis of numerical methods for evolution equations using optimal transport as a building
block [14], the estimation of transport maps in high dimension [39] or the construction of
precise asymptotics for random matching problems [3].

The stability of optimal transport plans can be established in a very general setting
[69], under variations of the source and target measures, and even under variations of
the cost. However, the question of quantitative stability has only been addressed rather
recently, and most of the existing results deal with the cost function c(x, y) = ∥x− y∥2
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[33, 11, 24, 48], or with the squared geodesic distance on a Riemannian manifold [3]. The
aim of this chapter is to establish stability results for more general cost functions, namely
those that satisfy the strong Twist and Ma-Trudinger-Wang conditions on manifolds. We
also identify strong c-concavity of the Kantorovitch potential as a central notion to get
stability results. In this chapter, the cost function c :M ×N → R∪{+∞} will be defined
on the product spaceM×N whereM and N will be either domains in Rd or submanifolds
of Rd.

3.1.1 Existing stability results

The problem of stability of optimal transport maps can be expressed as a continuity
property of the map (µ, ν) 7→ Tµ→ν , where Tµ→ν is the optimal transport map between a
source probability measure µ and a target measure ν. In order to have a common space in
which to consider the optimal transport map Tµ→ν , we will mainly consider the problem
of the stability of the map Tν := Tµ→ν for a fixed µ. As first noted by Li and Nochetto
[48], the arguments implying quantitative stability of ν 7→ Tµ→ν sometimes also imply
general stability results, where both the source and target measures can change.

To the best of our knowledge, the first quantitative stability result in optimal transport
is of “local” nature, in the sense that it only holds near a configuration (µ, ν), and is
established under strong assumptions on the data. It is due to Ambrosio and reported in
an article of Gigli [33]. It can be phrased as follows.

Theorem 11 (Ambrosio-Gigli). Assume that M and N are compact subsets of Rd, that
µ ∈ P(M) is absolutely continuous, and that for some ν0 ∈ P(N) the optimal transport
map Tµ→ν0 for the quadratic cost c(x, y) = ∥x− y∥2 is Lipschitz. Then

∀ν1 ∈ P(N), ∥Tµ→ν0 − Tµ→ν1∥
2
L2(µ) ⩽ 2 diam(M)Lip(Tµ→ν0)W1(ν0, ν1). (3.1.1)

In the above statement, Lip(T ) is the Lipschitz constant of the map T and W1(ν0, ν1)
is the Wasserstein distance between ν0 and ν1 with respect to the Euclidean distance on
N . For pedagogical purpose, and because it is similar to the proof for more general cost,
we give below a proof of this theorem that can be found in [24, Theorem 2.2].

Proof. We denote by Ti = Tµ→νi for i ∈ {0, 1}. By Brenier theorem [15], we know
that Ti is the gradient of a convex function φi. A convex analysis result [6] shows that
T0 is K-Lipschitz if and only if the convex conjugate of φ0 defined by φ∗

0(y) = ψ0(y) =
max⟨x|y⟩+φ0(x) is

1
K -strongly convex. Let A =

∫
M ψ0d(ν1−ν0) and B =

∫
M ψ1d(ν0−ν1)

Using that ∇φi(x)#µ = νi we get

A =

∫
M
ψ0(∇φ1(x))− ψ0(∇φ0(x))dµ(x)

=

∫
M
ψ0(∇ψ∗

1(x))− ψ0(∇ψ∗
0(x))dµ(x).

By strong convexity of ψ0 we have for any v in the subdifferential of ∂ψ0(z) that ψ0(y)−
ψ0(z) ⩾ ⟨v|y− z⟩+ 1

2K ∥y − z∥
2. Taking z = ∇ψ∗

0(x) and y = ∇ψ∗
1(x) one can check that

x ∈ ∂ψ0(z) thus giving

A ⩾
∫
M
⟨x|∇ψ∗

1(x)−∇ψ∗
0(x)⟩+

1

2K
∥∇ψ∗

1(x)−∇ψ∗
0(x)∥

2 dµ(x)
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Similarly using convexity of ψ1 one has

B ⩾
∫
M
⟨x|∇ψ∗

0(x)−∇ψ∗
1(x)⟩dµ(x)

and summing these two inequalities one get∫
N
ψ0 − ψ1d(ν1 − ν0) ⩾

1

2K
∥∇ψ∗

1(x)−∇ψ∗
0(x)∥

2 dµ(x) =
1

2K
∥T0 − T1∥2L2(µ)

Moreover it can be shown [24] that Lip(ψi) ⩽ diam(M), which finally gives

∥T0 − T1∥2L2(µ) ⩽ 2K

∫
N
ψ0 − ψ1d(ν1 − ν0)

⩽ 2K max
Lip(f)⩽diam(M)

∫
N
fd(ν1 − ν0)

= 2K diam(M) max
Lip(f)⩽1

∫
N
fd(ν1 − ν0)

= 2K diam(M)W1(ν0, ν1)

where the last inequality is given by Kantorovich-Rubinstein theorem.

Li and Nochetto [48] have a similar result but with respect to both measures.

Theorem 12 (Li-Nochetto). Assume the hypothesis of Theorem 11 (with ν0 = ν), and
denote by γ ∈ P(M ×N) the transport plan induced by the optimal map Tµ→ν . Then for
any two measure µ̃ ∈ P(M), ν̃ ∈ P(N), and any optimal transport plan γ̃ between µ̃ and
ν̃, i.e. any solution to (KP) then

W2(γ, γ̃)
2 ⩽ C(W2(µ, µ̃) +W2(ν, ν̃))

where C is a constant that depends on Lip(Tµ→ν) and on the diameters of M and N .
The Wasserstein distance W2 in the left-hand side is with respect to a product metric on
M ×N .

The “Euclidean” stability result of Theorem 11 can be extended to optimal transport
problems on a compact Riemannian manifold with the squared geodesic distance [3]. We
also mention the more “global” stability results of [11, 24], which do not make regularity
assumptions on Tµ→ν , but come with worse continuity estimates. For instance, the main
theorem of [24] shows that if µ ∈ P(Rd) is a probability density on a compact convex
subset of Rd, which is bounded from above and below by a positive constant, then for any
compact subset Y ⊆ Rd, the map ν 7→ Tµ→ν is 1

6 -Hölder from (P(Y ),W1) to L2(µ,Rd),
to be compared to the 1

2 exponent in (3.1.1).

3.1.2 Strong c-concavity of the potential

A key ingredient in the stability results for the quadratic cost [33, 3] is the strong convexity
of the Brenier potentials associated to the optimal transport maps. For general cost
functions, Brenier theorem doesn’t holds, but one can generalize it in some sense by
introducing c-concavity using Kantorovich duality presented in Section 2.2. In order to
get stability results for these general cost functions c, we introduce below the notion of
strong c-concavity. To inscrease the readibility of this chapter, we recall a few notions
that are already presented in Section 2.2.
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About the support of transport maps. The cost function is often not regular on
the whole product space. To be more general, we thus consider that the cost function is
“regular enough” on a subset D ⊂ M ×N that does not necessarly writes as a product.
We denote by X = projM (D) and Y = projN (D). We will then consider that any
optimal transport plan is supported on D, or that any optimal transport map T : X → Y
satisfies for any x ∈ X , (x, T (x)) ∈ D. Take for example the cost of the far-field point
reflector (FF-point) presented in Section 2.4, which is defined on M × N by c(x, y) =
− ln(1 − ⟨x|y⟩) with M = N = Sd−1. Then c(x, y) = +∞ ⇐⇒ x = y, meaning that c
explodes on the diagonal ∆ = {(x, x)|x ∈ Sd−1} but is regular on D =M ×N \∆. Since
the cost is repulsive when it is not regular, we can show that any descent transport plan
stays afar from the diagonal ∆, this is done in Section 3.5.

We denote by dN : N × N → R+ a distance on N . Recall that the p-Wasserstein
distance on P(N) between two probability measures is defined by

W p
p (ν0, ν1) = inf

γ∈Γ(ν0,ν1)

∫
N×N

dN (y, z)
pdγ(y, z),

Definition 13 (Transport map induced by a potential). Let T :M → N be a measurable
map, and ψ : N → R. We say that T is induced by ψ, or that ψ is a potential associated
to T if

∀x ∈M, T (x) ∈ argminy∈N c(x, y)− ψ(y)

We know by Kantorovich theory that if a transport map T from µ to ν is induced by
a potential ψ then T is a solution to the Monge problem (MP). Such a potential ψ can
be constructed by solving the dual problem

sup
ψ:N→R

∫
M
ψcdµ+

∫
N
ψdν (DP)

where ψc : M → R is the c-transform of ψ (Def 8), see Section 2.2 for details. The dual
problem (DP) has a maximizer, for instance, if the cost c is continuous on the compact
M×N , but existence also holds with weaker hypotheses on c, some of which can be found
in [69]. When such a maximizer exists, and still by Kantorovich theory, we can assume
that a map T solution of (MP) is induced by a c-concave potential ψ. We give here an
equivalent notion for c-concavity.

Proposition 13 (Equivalent definition of c-concavity). The function ψ : N → R∪{−∞}
is c-concave (Def 10) if and only if for any y ∈ N there exists x ∈M such that

∀z ∈ N, ψ(z)− c(x, z) ⩽ ψ(y)− c(x, y)

Recall that the c-superdifferential of ψ at a point y ∈ N is defined by

∂cψ(y) = {x ∈M | ∀z ∈ N,ψ(z)− c(x, z) ⩽ ψ(y)− c(x, y)}

Note that ψ is c-concave iff for any y ∈ N its c-superdifferential ∂cψ(y) is non-empty. We
can now introduce the notion of strong c-concavity.

Definition 14 (strong c-concavity on D). We say that a c-concave function ψ is strongly
c-concave on a set D ⊆ M × N with modulus ω : R+ → R+ if for all x, y, z such that
(x, y) ∈ D, (x, z) ∈ D and x ∈ ∂cψ(y) one has

ψ(z)− c(x, z) ⩽ ψ(y)− c(x, y)− ω(dN (y, z)) (3.1.2)
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In the above definition, the modulus ω : R+ → R+ is an increasing function that
satisfies ω(0) = 0. One can check that when c(x, y) = −⟨x|y⟩ and ω(r) = Cr2 the
notion of strong concavity and strong c-concavity are equivalent. Moreover if a function
ψ : N → R is strongly c-concave, then for y ̸= z in N , ∂cψ(y)∩ ∂cψ(z) = ∅. Equivalently
for any x ∈M , when it exists, the minimizer of y 7→ c(x, y)−ψ(y). This implies that the
transport map associated to ψ is uniquely defined by minimizing c(x, ·)− ψ:

∀x ∈M T (x) = argminy∈N c(x, y)− ψ(y)

The map T is actually not defined on the whole set M but only when the minimum
exists, which is only guaranteed on the image of ∂cψ. In other words for the transport
map T = ∂cψ−1 to be well defined, we need ∂cψ to be surjective.

3.1.3 Contribution

This chapter is concerned with stability problems in optimal transport. We introduce the
notion of strong c-concavity, which is central to get stability results.

� We provide two stability results in Section 3.2 that depend on an assumption of
strong c-concavity. First, we extend the 1/2-Hölder stability result of Ambrosio
stated in [33] to general cost function c (Theorem 14). Our result is local around
transport maps associated to strongly c-concave potential. Second, we generalize a
result of Li and Nochetto [48] that estimates the distance of a transport plan to an
optimal transport map (the source and target measures being fixed) in terms of the
suboptimality gap (Proposition 17). We then use this result to obtain quantitative
stability of the transport plan with respect to both measures (Proposition 19),
following the strategy of Li-Nochetto [48] for the quadratic cost.

� We provide in Section 3.3 the central result of this work (Theorem 24), which is
a differential criterion for a potential function ψ to be strongly c-concave. This
result generalizes a sufficient condition for c-convexity proposed by Villani [69, Th.
12.46]. It requires that M,N are two smooth d-dimensional complete Riemannian
manifolds. Similarly to Villani, we also require a local condition on the derivatives
of the potential ψ and a weak Ma-Trudinger-Wang condition [51] . In Section 3.4,
we combine Theorem 24 to the stability results of Section 3.2 to get local stability
results for optimal transport maps.

� The last two sections are dedicated to the applications of our stability results to two
optimal transport problems on the sphere, with cost functions taking the value +∞.
In Section 3.5 we consider the reflector antenna problem, which is a non-imaging
optics problem that can be recast as an optimal transport problem [71]. Section 3.6
is dedicated to the prescription of the Gaussian curvature measure of a convex body,
originally introduced by Alexandrov [2] which can also be rephrased as an optimal
transport problem by Oliker [58].

3.2 Stability under strong c-concavity

In this section we assume that M and N are Polish spaces. We provide stability results
in the neighborhood of transport maps that are associated to strongly c-concave Kan-
torovitch potential. The stability result of Section 3.2.1 is with respect to variations of
the target measure, whereas the result in Section 3.2.3 is with respect to variations of
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both the source and the target measures. This last result is a consequence of an error
bound for a fixed optimal transport problem given in Section 3.2.2. As a side note, we also
remark in the last section that strong c-concavity implies Hölder regularity of transport
maps.

3.2.1 Stability with respect to the target measure

The following theorem extends to general cost functions a theorem of Ambrosio [33],
using a reformulation proposed in [24]. The hypothesis that the transport map T is
Lipschitz (in the formulation of [24]) is replaced by the assumption that the transport
map is induced by a strongly c-concave potential ψ, i.e.

∀x ∈M T (x) ∈ argminy∈N c(x, y)− ψ(y).

Theorem 14. Let D ⊆ M ×N be a compact set and c : M ×N → R ∪ {+∞} be a cost
function of class C1 on D. Let µ ∈ P(M) and ν0, ν1 ∈ P(N). We assume that there exists
optimal transport maps Ti from µ to νi with associated potential ψi : N → R (i = 0, 1)
such that:

� ψ0 is Lipschitz on N and c-concave on D.

� ψ1 is Lipschitz on N and strongly c-concave with modulus ω on D.

� The maps Ti satisfies for any x ∈M , (x, Ti(x)) ∈ D.

Then, ∫
M
ω(dN (T0(x), T1(x)))dµ(x) ⩽ (Lip(ψ0) + Lip(ψ1))W1(ν0, ν1) (3.2.3)

Remark 15. The left hand side of inequality (3.2.3) measures the distance between trans-
port maps T0 and T1. To see this let us consider a simpler case where M and N are
domains of Rd and ω(r) = r2 then we get∫

M
ω(dN (T0(x), T1(x)))dµ(x) = ∥T1 − T0∥2L2(µ)

and in that case, Theorem 14 amounts to bounding the L2 norm of the distance between
transport maps. Note that unlike Equation (3.1.1), the Lipschitz constants of the right
hand side of (3.2.3) are the ones of the potentials and not the transport map.

Remark 16 (Discretization of the target measure). Assume that we have two absolutely
continuous measures µ ∈ P(M) and ν ∈ P(N) and an optimal transport map T from µ to
ν satisfying all the hypothesis of Theorem 14. One can pick a family of points (yi)1⩽i⩽n
in the target space N and approximate the measure ν by a discrete measure νh of the form

νh =
∑
i

ν(Vi)δyi

where (Vi)1⩽i⩽n is a Voronoi tesselation of N around the points (yi)1⩽i⩽n chosen in an
appropriate way in the support of ν. The parameter h is given by h = max1⩽i⩽n diam(Vi)
so that W1(ν, νh) ⩽ h. We can compute the optimal transport map Th between µ and νh
using semi-discrete methods such as [45]. Then, Theorem 14 implies∫

M
ω(dN (T (x), Th(x)))dµ(x) ⩽ Ch

where the constant C depends on the Lipschitz constants of the potentials, which can
be controlled explicitly in many cases. If the modulus ω(r) is quadratic, then the L2(µ)
distance between T and Th is controlled by h1/2.
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Proof of Theorem 14. We have

⟨ν1 − ν0|ψ1 − ψ0⟩ =
∫
N
ψ1d(ν1 − ν0) +

∫
N
ψ0d(ν0 − ν1)

Let A =
∫
N ψ1d(ν1 − ν0) and B =

∫
N ψ0d(ν0 − ν1). Since Ti#µ = νi we have

A =

∫
N
ψ1dν1 −

∫
N
ψ1dν0

=

∫
M
ψ1(T1(x))dµ(x)−

∫
M
ψ1(T0(x))dµ(x)

For x ∈M we have x ∈ ∂cψi(Ti(x)). Then the strong c-concavity of ψ1 gives

A =

∫
M
ψ1(T1(x))− ψ1(T0(x))dµ(x)

⩾
∫
M
c(x, T1(x))− c(x, T0(x)) + ω(dN (T0(x), T1(x)))dµ

Now since ψ0 is also c-concave, we have

B ⩾
∫
M
−c(x, T1(x)) + c(x, T0(x))dµ

Summing these two inequalities gives∫
M
ω(dN (T0(x), T1(x)))dµ(x) ⩽

∫
N
ψ1 − ψ0d(ν1 − ν0)

Since ψ0 and ψ1 are Lipschitz, using Kantorovich-Rubinstein theorem we get∫
N
ψ1 − ψ0d(ν1 − ν0) ⩽ (Lip(ψ0) + Lip(ψ1))W1(ν0, ν1).

3.2.2 Error bounds for optimal transport problems

In this section, we generalize in Proposition 17 a stability result of Li and Nochetto [48]
to general cost functions, using the notion of strong c-concavity. This result allows us to
bound in Corollary 18 the Wasserstein distance between the optimal transport map and
any transport plan with the same marginals by the suboptimality gap of the transport
plan.

Proposition 17. Let µ ∈ P(M), ν ∈ P(N) and T :M → N be an optimal transport map
from µ to ν. We assume that T is induced by a strongly c-concave potential ψ : N → R
with modulus ω on a compact subset D of M ×N which contains the graph of T . Then
any transport plan γ ∈ Γ(µ, ν) supported on D satisfies∫

M×N
ω(dN (T (x), y))dγ(x, y) ⩽

∫
M×N

c(x, y)dγ(x, y)−
∫
M
c(x, T (x))dµ(x)

The right hand side of this equation is called the suboptimality gap of γ, and measures
how worse the transport plan γ behaves compared to the optimal transport map T .
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Proof. The strong c-concavity of ψ implies that for any x, y ∈ D,

ψ(y) ⩽ ψ(T (x))− c(x, T (x)) + c(x, y)− ω(dN (T (x), y)).

Moreover since T#µ = ν, we have∫
N
ψ(y)dν(y) =

∫
M
ψ(T (x))dµ(x)

which combined with the strong c-concavity of ψ gives

0 =

∫
N
ψ(y)dν(y)−

∫
M
ψ(T (x))dµ(x)

=

∫
D
ψ(y)− ψ(T (x))dγ(x, y)

⩽
∫
D
c(x, y)− c(x, T (x))− ω(dN (T (x), y))dγ(x, y)

=

∫
D
c(x, y)dγ(x, y)−

∫
M
c(x, T (x))dµ(x)−

∫
D
ω(dN (T (x), y))dγ(x, y)

Rearranging this inequality gives the desired conclusion.

We can rephrase this proposition using the the 1-Wasserstein distance W1 in P(M×N)
induced by the distance

dM×N ((x, y), (x
′, y′)) = dM (x, x′) + dN (y, y

′).

Corollary 18. Under the assumptions of Proposition 17, if the modulus of the Kan-
torovitch potential ψ is ω(r) = Cr2, one has

W1(γ, γT ) ⩽
1√
C

(∫
M×N

c(x, y)dγ(x, y)−
∫
M
c(x, T (x))dµ(x)

)1/2

where γT = (Id, T )#µ.

Proof. Let S :M ×N → (M ×N)2 defined by

S(x, y) = (S1(x, y), S2(x, y))

where S1(x, y) = (x, T (x)) and S2(x, y) = (x, y). Let π = S#γ ∈ P((M ×N)2). One can
check that π ∈ Γ(γT , γ), which implies

W1(γT , γ) ⩽
∫
(M×N)2

dM×N ((x, y), (x
′, y′))dπ(x, y, x′, y′)

=

∫
M×N

dM×N (S1(x, y), S2(x, y))dγ(x, y)

=

∫
M×N

dN (T (x), y)dγ(x, y).

We use the Cauchy-Schwarz inequality in L2(M × N, γ) and Proposition 17 to get the
desired result.

31



3.2.3 Stability with respect to both measures

Here we apply Corollary 18 to show stability results of transport plans with respect to
both the source and the target measures. Our result holds for general cost functions and
is inspired by a result of Li and Nochetto [48] that holds in the quadratic case. We recall
that dM is the distance onM and dN is the distance on N . We also choose for distance on
the product space dM×N ((x, y), (x

′, y′)) = dM (x, x′)+dN (y, y
′). Throughout this section,

we require the cost function c to be Lipschitz on the whole product space M ×N .

Proposition 19 (Stability with respect to both measures). Let µ, µ̃ ∈ P(M) and ν, ν̃ ∈
P(N). Let c :M×N → R be a cost function which is Lipschitz onM×N . Let T :M → N
be an optimal transport map between µ and ν, and γ̃ be an optimal transport plan between
µ̃ and ν̃ for the cost c. We assume that T is induced by a strongly c-concave potential
ψ : N → R with associated modulus ω(r) = Cr2 on D =M ×N . Then we have

W1(γT , γ̃) ⩽ ε+

√
2Lip(c)

C
ε, where ε := W1(µ̃, µ) +W1(ν, ν̃).

The end of this section is devoted to the proof of this proposition. As in [48], we will
use the gluing lemma [63, 69].

Lemma 20 (gluing of measures). Let (Xi, µi) be probability spaces for i ∈ {1, 2, 3}, and
γ12 ∈ Γ(µ1, µ2), γ23 ∈ Γ(µ2, µ3). Then there exists π ∈ P(X1 × X2 × X3) such that
π(·, ·, X3) = γ12 and π(X1, ·, ·) = γ23. Or equivalently

p12#π = γ12 p23#π = γ23

where pij is the projection defined by pij(x1, x2, x3) = (xi, xj).

We also need the following (easy) lemma, showing that the transport cost

T c(µ, ν) := min
γ∈Γ(µ,ν)

∫
cdγ

is Lipschitz with respect to perturbations of the measures when c is Lipschitz.

Lemma 21. Let c : M × N → R be a Lipschitz cost function. Let µ, µ̃ ∈ P(M) and
ν, ν̃ ∈ P(N). Then we have

|T c(µ, ν)− T c(µ̃, ν̃)| ⩽ Lip(c)(W1(µ, µ̃) +W1(ν, ν̃)).

Proof. Kantorovich duality gives

T c(µ, ν) = max
φ⊕ψ⩽c

∫
M
φdµ+

∫
N
ψdν.

Moreover, since the cost is Lipschitz, the maximum is attained in the dual problem; one
can assume that the maximum is attained for two potentials φ,ψ satisfying φ = ψc and
ψ = φc. In particular both φ and ψ are Lipschitz continuous with Lipschitz constant
lower than Lip(c). Kantorovitch (weak) duality applied to the two measures µ̃ and ν̃
gives

T c(µ̃, ν̃) ⩾
∫
M
φdµ̃+

∫
N
ψdν̃.

We thus get

T c(µ, ν)− T c(µ̃, ν̃) ⩽
∫
M
φd(µ− µ̃) +

∫
N
ψd(ν − ν̃) ⩽ Lip(c)(W1(µ, µ̃) +W1(ν, ν̃))

where the last inequality is given by Kantorovich-Rubinstein Theorem. By symmetry the
same result holds when we exchange µ, ν and µ̃, ν̃.
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Proof of Proposition 19. Let α ∈ Γ(µ, µ̃) and β ∈ Γ(ν̃, ν) be optimal transport plans for
the cost dM and dN . Let π ∈ P(M2 ×N2) be a gluing of α, γ̃ and β, i.e.

p12#π = α, p23#π = γ̃, p34#π = β

Defining γ = p14#π ∈ Γ(µ, ν), π is a transport map between γ and γ̃, and we get

W1(γ, γ̃) ⩽
∫
M2×N2

dM (x, x′) + dN (y, y
′)dπ(x, x′, y, y′)

=

∫
M2

dM (x, x′)dα(x, x′) +

∫
N2

dN (y, y
′)dβ(y, y′)

= W1(µ̃, µ) +W1(ν, ν̃) (3.2.4)

We also have∫
M×N

c(x, y)dγ

=

∫
M2×N2

c(x, y)dπ(x, x′, y′, y)

=

∫
M2×N2

c(x′, y′) + c(x, y)− c(x′, y′)dπ(x, x′, y′, y)

⩽
∫
M2×N2

c(x′, y′) + Lip(c)(dM (x, x′) + dN (y, y
′))dπ(x, x′, y′, y)

=

∫
M×N

c(x′, y′)dγ̃ + Lip(c)

(∫
M2

dM (x, x′)dα+

∫
N2

dN (y, y
′)dβ

)
⩽
∫
M×N

c(x, y)dγ̃ + Lip(c)(W1(µ, µ̃) +W1(ν, ν̃)) (3.2.5)

The transport plans γT = (Id, T )#µ ∈ Γ(µ, ν) and γ̃ ∈ Γ(µ̃, ν̃) are optimal, so that by
Lemma 21,∫

M×N
c(x, y)dγ̃ ⩽

∫
M×N

c(x, y)dγT + Lip(c)(W1(µ, µ̃) +W1(ν, ν̃))

which combined with (3.2.5) gives∫
M×N

c(x, y)dγ −
∫
M×N

c(x, y)dγT ⩽ 2Lip(c)(W1(µ, µ̃) +W1(ν, ν̃))

Corollary 18 then implies that

W1(γ, γT ) ⩽

[
2Lip(c)

C
(W1(µ̃, µ) +W1(ν, ν̃))

]1/2
Finally, using the triangle inequality along with (3.2.4) we get

W1(γ̃, γT ) ⩽ W1(γ̃, γ) +W1(γ, γT )

⩽ W1(µ̃, µ) +W1(ν, ν̃) +

(
2Lip(c)

C
(W1(µ̃, µ) +W1(ν, ν̃))

)1/2

= ε+

√
2Lip(c)

C
ε
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3.2.4 A remark on regularity

The above results show that the notion of strong c-concavity is sufficient to get stability
results. In fact, this notion can also lead to regularity of the associated transport maps,
as expressed in the following lemma.

Lemma 22 (Regularity under strong c-concavity). Let us assume that the cost function
c : M ×N → R is Lipschitz on M ×N and let T : M → N be a transport map induced
by a strongly c-concave potential ψ : N → R, with continuity modulus ω(r) = Cr2 on
M ×N . Then T is 1/2-Hölder:

dN (T (x), T (x
′)) ⩽

(
Lip(c)

C
dM (x, x′)

)1/2

Proof. Let x ∈ M . Since T is induced by a strongly c-concave potential ψ we have
T (x) = argminy∈N c(x, y) − ψ(y). The strong c-concavity of ψ implies that for every
y ∈ N

c(x, y)− ψ(y) ⩾ c(x, T (x))− ψ(T (x)) + ω(dN (y, T (x)))

Now let x′ ∈M . By choosing y = T (x′) the above inequality becomes

c(x, T (x′))− ψ(T (x′)) ⩾ c(x, T (x))− ψ(T (x)) + ω(dN (T (x
′), T (x)))

This inequality still holds when we exchange x and x′, summing the two gives

2ω(dN (T (x), T (x
′))) ⩽ c(x′, T (x)) + c(x, T (x′))− c(x′, T (x′))− c(x, T (x))

and since c Lipschitz we have

CdN (T (x), T (x
′))2 ⩽ Lip(c)dM (x, x′).

Thus, strong c-concavity of the potential entails some regularity of the transport map,
generalizing what is well-known in the convex setting (i.e. if ψ is strongly convex, then ψ∗

is C1,1). The next section will show a partial converse statement, under strong assumptions
on the cost function.

3.3 Sufficient condition for strong c-concavity

This section is about sufficient conditions for establishing strong c-concavity, which we
used through the previous section to deduce stability results of optimal transport maps.
From now on, we assume that M and N are smooth complete Riemannian manifolds.

It is well known that the notions of convexity and strong convexity can be easily
characterized by conditions on the Hessian for smooth functions. The c-convexity is not
that easy to study but for cost functions c that are regular enough in a certain sense,
there exists a differential criterion for c-convexity, given by Villani [69]. In this section we
extend Villani’s statement for strong c-concavity, in other words we show that the strong c-
concavity of a function can also be guaranteed by conditions on its derivatives. This result
is presented in Corollary 25. To do so we need the cost function c :M ×N → R∪ {+∞}
to satisfy the Ma-Trudinger-Wang (MTW) condition, which is a well known condition in
the regularity theory of optimal transport.
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3.3.1 The Ma-Trudinger-Wang tensor

We recall in this section the notion of MTW tensor [69]. Recall that we are working with
two smooth complete Riemannian manifolds M and N , and a cost function c :M ×N →
R∪{+∞}. We denote by Dom(∇xc) ⊆M ×N the domain of differentiability of the cost
c and Dom′(∇xc(x, ·)) = int(Dom(∇xc(x, ·))) its interior, then

Dom′(∇xc) = {(x, y) | x ∈ int(M), y ∈ Dom′(∇xc(x, ·)))} (3.3.6)

Definition 15 (Twisted cost). The cost c satifies the (Twist) condition if ∇xc(x, ·) is
injective on its domain of definition, i.e. for any x, y, y′ such that (x, y) ∈ Dom′(∇xc)
and (x, y′) ∈ Dom′(∇xc):

∇xc(x, y) = ∇xc(x, y′) =⇒ y = y′

Definition 16 (STwist). The cost satisfies the strong Twist condition (STwist) if c is
C2, ∇xc is one-to-one and D2

xyc is non singular on Dom′(∇xc).

If the cost function satisfies (Twist), then for x ∈ int(M) the function −∇xc(x, ·) is
invertible on its image, i.e.

−∇xc(x, ·) : Dom′(∇xc(x, ·)) ⊆ N → Ix ⊆ TxM

is one-to-one, with Ix = {−∇xc(x, y)|y ∈ Dom′(∇xc(x, ·))}.

Definition 17 (c-exponential). When the cost c satisfies the (Twist) condition, we can
define the c-exponential map for x ∈M by c-expx = (−∇xc(x, ·))−1, giving for p ∈ Ix:

c-expx(p) : Ix ⊆ TxM → Dom′(∇xc(x, ·)) ⊆ N

p→
(
∇xc(x, ·)

)−1
(−p)

Definition 18 (c-segment). A c-segment is the image of a usual segment in Ix by the
map c-expx. We denote (yt)0⩽t⩽1 = [y0, y1]x the c-segment between y0 and y1 with base x
defined for p0 = −∇xc(x, y0) and p1 = −∇xc(x, y1) by

yt = c-expx((1− t)p0 + tp1)

Definition 19 (c-convex set). Let A ⊆ N .

� We say that A is c-convex with respect to x ∈ M if for any y0, y1 ∈ A, there is a
c-segment [y0, y1]x entirely contained in A.

� The set A is said to be c-convex with respect to a set B ⊆ M if A is c-convex with
respect to any x ∈ B.

� A set D ⊆ M × N is said to be totally c-convex if for any two points (x, y0) ∈ D
and (x, y1) ∈ D, the c-segment (yt)0⩽t⩽1 = [y0, y1]x satisfies for any t (x, yt) ∈ D.

� We say that D ⊆ M × N is symmetrically c-convex if it is totally c-convex and if
for any two points (x0, y) ∈ D and (x1, y) ∈ D, [x0, x1]y × {y} ⊆ D.

Definition 20 (MTW tensor). Assuming that c is of class C4 on Dom′(∇xc) and sat-
isfies the (STwist) condition, the Ma-Trudinger-Wang tensor is defined for (x0, y0) ∈
Dom′(∇xc) and (η, ζ) ∈ Tx0M × Ty0N by

Sc(x0, y0)(η, ζ) = −
3

2

∂2

∂q2η̃

∂2

∂y2ζ

(
c(c-expy0(q), y)

)∣∣∣
y=y0,q=−∇yc(x0,y0)

with η̃ = −∇2
xyc(x0, y0)η ∈ Ty0N .
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In the above definition, we use Villani’s notation to indicate that the cost is differ-
entiated twice with respect to q in the direction η̃ and twice with respect to y in the
direction ζ. It is a slight abuse of notation since this differentiation should depend on
the choice of coordinates. However the operator Sc is independent of the choice of coor-
dinates, even though it cannot be directly seen in the above formula. This formulation
of the MTW tensor can be found in [69, Remarks 12.31 & 12.33]. In this definition
−∇2

xyc(x0, y0) : Tx0M ×Ty0N → R is a bilinear form which is non singular since (STwist)
is satisfied. We then identify for η ∈ TxM the linear form −∇2

xyc(x0, y0)η = η̃ : Ty0N → R
with a vector of Ty0N using the Riemannian structure.

Definition 21 (weak MTW). We say that the weak MTW condition (MTWw) is satisfied
on a compact set D ⊆M×N if there exists a constant C > 0 such that for any (x, y) ∈ D
and (η, ζ) ∈ TxM × TyN we have

Sc(x, y)(η, ζ) ⩾ −C|⟨ζ|η̃⟩| ∥ζ∥ ∥η∥ (MTWw)

This condition was introduced by Ma, Trudinger and Wang [51] and is often referred to
as (A3w).

There exists a geometric interpretation of the MTW hypothesis that is given in terms
of curvature proposed by Kim–McCann [43].

3.3.2 Differential criterion for strong c-concavity

The goal here is to generalize Trudinger and Wang’s differential criterion [65, 69] (detailed
in the following theorem) for c-convexity to our definition of strong c-concavity. Our proof
is highly inspired from Villani’s one, in particular we study the same real valued function
h : [0, 1] → R and show inequalities that are similar and also require positivity of the
MTW tensor.

Theorem 23 (Differential criterion for c-convexity, [69, Th. 12.46][65]). Let D ⊆M ×N
be a closed symmetrically c-convex set and c ∈ C4(D,R) such that c and č satisfy (STwist)
on D. Assume that the weak MTW condition (MTWw) is satisfied on D. Let X =
projM (D) and ψ ∈ C2(X ,R). If for any x ∈ X there exists y ∈ N such that (x, y) ∈ D
and {

∇ψ(x) +∇xc(x, y) = 0

D2ψ(x) +D2
xxc(x, y) ⩾ 0

Then ψ is c-convex on D, or equivalently −ψ is c-concave.

This theorem is given for a potential function ψ on X ⊆ M and gives a c-convexity
result while we consider ψ : N → R and work on c-concavity, but this is really just a
matter of convention. Also Villani needs the Hessian D2ψ(x) +D2

xxc(x, y) to be positive
semi-definite to obtain c-convexity, while we are naturally going to need the Hessian
D2
yyc(x, y) − D2ψ(y) to have eigenvalues bounded from below by a positive constant to

obtain strong c-concavity. A noticeable difference of c-convexity with respect to convexity
is that it cannot be expressed locally, as we require the MTW tensor to be positive on
the whole set D which is a global condition.

Theorem 24 (Differential criterion for strong c-concavity). We consider D ⊆ Dom′(∇xc)∩
Dom′(∇yc) a symmetrically c-convex compact set and denote X = projM (D), Y =
projN (D). We assume that c ∈ C4(D,R), that c and č satisfy (STwist) on D where
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c(x, y) = č(y, x). We also assume that the weak MTW condition is satisfied on D. Let
ψ ∈ C2(Y,R) be a c-concave function on D and such that there exists λ > 0 satisfying for
any x ∈ ∂cψ(y)

D2
yyc(x, y)−D2ψ(y) ⩾ λId

Then ψ is strongly c-concave on D with modulus ω(dN (y, y)) = CdN (y, y)
2, where C > 0

is a constant depending on λ, c, X and Y. This means that we have

ψ(y)− c(x, y) ⩽ ψ(y)− c(x, y)− CdN (y, y)2

for the points x ∈ X , y, y ∈ Y such that x ∈ ∂cψ(y), (x, y) ∈ D and (x, y) ∈ D.

Corollary 25 (Strong c-concavity). We make the same hypothesis on c and D, and in
addition assume ψ ∈ C2(Y,R). We assume that the map T : X → Y defined by T (x) =
argminy c(x, y)−ψ(y) is of class C1 and satisfies for any x ∈ X , (x, T (x)) ∈ D. Then the
function ψ is strongly c-concave on the set D with modulus ω(dN (y, y)) = CdN (y, y)

2.

Remark 26 (Restriction of c-concavity to D). In the Corollary 25, we assume that the
graph of T is supported on a set D where the cost function is smooth enough. This can
be an issue for transport maps T :M → N of the form T (x) = argminz∈N c(x, y)− ψ(y),
since we cannot ensure that the argmin is obtained at a point y such that (x, y) ∈ D. This
issue has to be treated independently for each application.

3.3.3 Proof of Theorem 24.

We denote Yx = {y ∈ N | (x, y) ∈ D} for any x ∈ X . Let now fix y ∈ Y and x ∈ ∂cψ(y)
such that (x, y) ∈ D. Note that x always exists by hypothesis. Let us fix y ∈ Yx. We
want to show that there exists a constant C > 0 independant of x, y and y such that

c(x, y)− ψ(y) ⩾ c(x, y)− ψ(y) + CdN (y, y)
2 (3.3.7)

We put (yt)0⩽t⩽1 = [y, y]x the c-segment between y and y with base x. Remark that the
c-convexity of D implies that for any t in [0, 1], (x, yt) ∈ D. We define the function h by

h(t) := c(x, yt)− ψ(yt)

such that Equation (3.3.7) writes

h(1) ⩾ h(0) + CdN (y, y)
2 (3.3.8)

The end of this section is devoted to the proof of Equation (3.3.8).

Notation. We first introduce some notations. Note that Ax := ∇2
xyc(x, yt) : TxM ×

TytN → R is a bilinear form which is assumed to be nonsingular. For any X ∈ TxM
and Y ∈ TytN , we can write ∇2

xyc(x, yt)(X,Y ) = ⟨AxX|Y ⟩ = ⟨tAxY |X⟩ where in some
local coordinates Ax is an invertible matrix and X and Y are column matrices. Then
∇2
xyc(x, yt)(X, ·) is a linear form on TytN which is identified to the vector AxX ∈ TytN .

Similarly tAxY ∈ TxM . We take the same notation for Axs = ∇2
xyc(xs, yt).

Lemma 27 (Formula for the derivatives of h).

h′(t) = ⟨ζ|η̂⟩
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and

h′′(t) =
(
D2
yyc(x

t, yt)−D2ψ(yt)
)
(η̂, η̂) +

2

3

∫ 1

0
Sc(xs, yt)(ζ, η̂)(1− s)ds,

where xt ∈ ∂cψ(yt) and xs = c-expyt(qt + sζ).

η = ∇xc(x, y)−∇xc(x, y) ∈ TxM η̂ = −tA−1
x η ∈ TytN

ζ = ∇yc(x, yt)−∇ψ(yt) ∈ TytN ζ̂ = −A−1
x ζ ∈ TxM

qt := −∇yc(x, yt) ∈ TytM ζ = −A−1
xs ζ ∈ TxsM

Note that in the above lemma, xt is not necessarily a c-segment, while xs is the
c-segment between x and c-expyt(−∇ψ(yt)) = xt with base yt.

Proof of Lemma 27. Since D is symmetrically c-convex and (x, y) ∈ D, (x, y) ∈ D, we
can differentiate h as follows

h′(t) = ⟨∇yc(x, yt)−∇ψ(yt)|ẏt⟩

We also have by differentiating −∇xc(x, yt) = p+ tη, where p = −∇xc(x, y):

η = −∇2
xyc(x, yt)ẏt = −tAxẏt

So that η̂ = −tA−1
x η = ẏt and thus

h′(t) = ⟨ζ|η̂⟩.

Differentiating h′ gives

h′′(t) =
(
∇2
yyc(x, yt)−∇2ψ(yt)

)
(ẏt, ẏt) + ⟨ζ|ÿt⟩.

By differentiating −η = ∇2
xyc(x, yt)ẏt, one gets

∇3
xyyc(x, yt)(ẏt, ẏt) +∇2

xyc(x, yt)ÿt = 0

so that
ÿt = −tA−1

x ∇
3
xyyc(x, yt)(η̂, η̂)

and
⟨ζ|ÿt⟩ = ⟨ζ| −t A−1

x ∇
3
xyyc(x, yt)(η̂, η̂)⟩ = ⟨−A−1

x ζ|∇3
xyyc(x, yt)(η̂, η̂)⟩.

We therefore have

h′′(t) =
(
∇2
yyc(x, yt)−∇2ψ(yt)

)
(η̂, η̂) + ⟨ζ̂|∇3

xyyc(x, yt)(η̂, η̂)⟩

We define Φ(x) :=
(
∇2
yyc(x, yt)−∇2ψ(yt)

)
(η̂, η̂). Then we have for X ∈ TxM

DΦ(x).X = ⟨X|∇3
xyyc(x, yt)(η̂, η̂)⟩,

so that
h′′(t) = Φ(x) +DΦ(x)ζ̂

We define Φ̃(q) = Φ(c-expyt(q)) or equivalently Φ̃(−∇yc(x, yt)) = Φ(x), so that for X ∈
TxM

DΦ(x)X = DΦ̃(qt)(−AxX)
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For x = x and ζ ∈ TytN

DΦ(x)ζ̂ = DΦ̃(qt)(−Axζ̂) = DΦ̃(qt)ζ

We set qt := −∇yc(xt, yt). Since xt ∈ ∂cψ(yt), we have ∇ψ(yt) = ∇yc(xt, yt) = −qt. We
recall that qt = −∇yc(x, yt) and therefore we get ζ = qt − qt. Since the set D is c-convex
we can differentiate c at (c-expyt(qt + sζ), yt) = (xs, yt), we get using a Taylor expansion

of Φ̃ at qt

h′′(t) = Φ̃(qt) +DΦ̃(qt)(qt − qt) = Φ̃(qt)−
∫ 1

0
D2
qqΦ̃(qt + sζ)(ζ, ζ)(1− s)ds

Using the change of variable q = −∇yc(x, yt) ∈ TytM (or equivalently x = c-expyt(q)),
we get

Φ̃(q) = Φ(c-expyt(q)) =
(
∇2
yyc(c-expyt(q), yt)−∇

2ψ(yt))
)
(η̂, η̂) (3.3.9)

Since qt = −∇yc(xt, yt) we have

Φ̃(qt) = Φ(xt) =
(
∇2
yyc(x

t, yt)−∇2ψ(yt)
)
(η̂, η̂)

Moreover ∇2ψ(yt) does not depend on q, so we have by differenciating (3.3.9) twice with
respect to q in the direction ζ

D2
qqΦ̃(q)(ζ, ζ) =

∂2

∂q2ζ

∂2

∂y2η̂

(
c(c-expyt(q), yt)

)
Finally, using xs = c-expyt(qt + sζ), we get for any s ∈ [0, 1]

D2
qqΦ̃(qt + sζ)(ζ, ζ) =

∂2

∂q2ζ

∂2

∂y2η̂

(
c(c-expyt(qt + sζ), yt)

)
= −2

3
Sc(xs, yt)(ζ, η̂)

where we put ζ := −A−1
xs ζ so as to have ζ̃ = ζ.

To finish the proof we need the following elementary lemma.

Lemma 28. Let y ∈ C1([0, 1],R) satisfying for C > 0,{
y′(t) ⩾ −C|y(t)|
y(0) = 0

then y(t) ⩾ 0 for any t ∈ [0, 1].

Proof. We remark that there exists g ∈ C0([0, 1],R+) such that y is solution of{
y′(t) = −C|y(t)|+ g(t)

y(0) = 0

Then by Cauchy-Lipschitz Theorem the unique solution of this equation is t 7→
∫ t
0 g(s)e

C(s−t)ds ⩾
0.
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Proposition 29. Under hypothesis of Theorem 24,

h′′(t) ⩾ −Ch′(t) + λ∥η̂∥2

Proof. We have
|h′(t)| = |⟨ζ|η̂⟩|.

We also have

h′′(t) =
(
D2
yyc(x

t, yt)−D2ψ(yt)
)
(η̂, η̂) +

2

3

∫ 1

0
Sc(xs, yt)(ζ, η̂)(1− s)ds,

where xs = c-expyt(qt + sζ). By hypothesis we have(
D2
yyc(x

t, yt)−D2ψ(yt)
)
(η̂, η̂) ⩾ λ ∥η̂∥2

and (MTWw) gives

Sc(xs, yt)(ζ, η̂) ⩾ −C|⟨∇2
xyc(xs, yt)η̂|ζ⟩|∥η̂∥∥ζ∥

The norms ∥η̂∥ and ∥ζ∥ can be integrated in the constant by compactness, so we get

Sc(xs, yt)(ζ, η̂) ⩾ −C|⟨∇2
xyc(xs, yt))η̂|ζ⟩| = −C|⟨tAxs η̂|ζ⟩|

Recall that ζ = − A−1
xs ζ. Therefore we get

|⟨tAxs η̂|ζ⟩| = |⟨tAxs η̂|A−1
xs ζ⟩| = |⟨ζ|η̂⟩| = |h

′(t)|,

We thus have h′′(t) ⩾ −C|h′(t)|+ λ∥η̂∥2. Note that ζ|t=0 = 0 so h′(0) = 0. Then we can
apply Lemma 28 to h′, which gives h′(t) ⩾ 0, so we can drop the absolute value and we
obtain h′′(t) ⩾ −Ch′(t) + λ∥η̂∥2.

Proof of Theorem 24. By compactness we have

C1 := inf
(x,y)∈D,u∈TxM,∥u∥=1

∥∥∇2
xyc(x, y)

−1u
∥∥2 > 0

and

C2 := inf
x∈X ,y,z∈Yx

∥∇xc(x, y)−∇xc(x, z)∥2

dN (y, z)2
> 0

such that ∥η̂∥2 ⩾ C1C2dN (y, y)
2. By Proposition 29, we get

h′′(t) ⩾ −Ch′(t) + λC1C2dN (y, y)
2

Using Grönwall’s Lemma we then have that h′(t) ⩾ g(t) with g solution of{
g′(t) = −Cg(t) + λC1C2dN (y, y)

2

g(0) = 0

which immediatly gives g(t) =
(
λC1C2
C dN (y, y)

2
)
(1−e−Ct), so finally we have for t ∈ [0, 1],

h′(t) ⩾
(
λC1C2
C dN (y, y)

2
)
(1− e−Ct), and then by integrating for t ∈ [0, 1], there exists a

constant C3 > 0 such that ∫ 1

0
h′(t)dt ⩾ C3dN (y, y)

2

which is exactly what we wanted in Equation (3.3.8).
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Proof of Corollary 25. We want to show that under the hypothesis of Corollary 25, we
have

∀y ∈ Y ∀x ∈ ∂cψ(y), D2
yyc(x, y)−D2ψ(y) ⩾ λId,

We recall that T : X → Y is of class C1. Let x ∈ X , we first assume that T (x) ∈ int(Y).
Since T (x) minimizes c(x, ·)− ψ(·) we have

∇yc(x, T (x))−∇ψ(T (x)) = 0 (3.3.10)

and
D2
yyc(x, T (x))−D2ψ(T (x)) ⩾ 0 (3.3.11)

By differentiating (3.3.10) with respect to x, we get(
D2
yyc(x, T (x))−D2ψ(T (x))

)
◦DT (x) = −D2

xyc(x, T (x)). (3.3.12)

By (STwist) assumption, D2
xyc(x, T (x)) is nonsingular, which implies thatD2

yyc(x, T (x))−
D2ψ(T (x)) is also nonsingular. Since we also know that it is positive semi-definite from
(3.3.11) we get that

D2
yyc(x, T (x))−D2ψ(T (x)) > 0.

We now need to extend this inequality for any T (x) ∈ ∂Y, including the boundary. By
continuity, since ψ is C2 on Y, c is C2 on D and T is C1 on X , Equations (3.3.11) and
(3.3.12) still hold when T (x) ∈ ∂Y. Moreover (STwist) being satisfied on D, we have
D2
yyc(x, T (x))−D2ψ(T (x)) > 0 for any x ∈ X . By compactness of X , there exists λ > 0

such that
∀x ∈ X D2

yyc(x, T (x))−D2ψ(T (x)) ⩾ λId.

We conclude using that T (x) = y is equivalent to x ∈ ∂cψ(y).

3.4 Stability of optimal transport map for MTW cost

In this section, we show that the stability results of Section 3.2 can be applied to optimal
transport maps. We consider two compact Riemannian manifolds M and N in Rd and
still denote by dN the distance on N .

Theorem 30 (Stability in optimal transport). Let µ ∈ P(M) and ν ∈ P(N) be two
probability measures. Let c : M × N → R be a cost function of class C4 that satisfies
(STwist) and (MTWw) hypothesis. Let T :M → N be an optimal transport map between
µ and ν of class C1 for the cost c and assume that its associated Kantorovich potential
ψ : N → R is of class C2.

� Let ν̃ ∈ P(N) be any probability measure, and S : M → N be an optimal transport
map between µ and ν̃. Then we have

∥dN (T, S)∥2L2(µ) ⩽ CW1(ν, ν̃)

where W1 denotes the 1-Wasserstein distance and C is a constant depending on the
cost c, M and N .

� Let µ̃ ∈ P(M), ν̃ ∈ P(N) and γ̃ be an optimal transport plan between µ̃ and ν̃.
Then we have

W1(γ̃, γT ) ⩽ C (W1(µ̃, µ) +W1(ν, ν̃))
1/2

where γT = (Id, T )#µ and C is a constant depending on the cost c, M and N .
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Proof. Since M and N are compact we have strong duality with a cost c that is Lipschitz
on M × N so S is induced by a Lipschitz potential. Since T ∈ C1, ψ ∈ C2 and c ∈ C4
satisfies (STwist) and (MTWw), we can then apply Corollary 25 to ψ, which gives that
it is strongly c-concave on N , with modulus ω(dN (y, z)) = CdN (y, z)

2. Then the first
result is given by Theorem 14 and the second is given by Proposition 19.

For simplicity, the above theorem is stated in a restrictive way as it requires c to be
smooth on the whole product spaceM ×N . It may happen that the regularity conditions
such as (STwist) and (MTWw) are not satisfied on the whole product space M ×N , but
only on a subset D ⊆ M × N . In this case we can still obtain stability with respect to
the target measure if we can show that optimal transports plans are supported on this
subset D. This is treated independently on examples of Sections 3.5 and 3.6.

3.5 Stability for the reflector cost on the sphere

In this section, we apply a stability result of Section 3.2 to the far-field point reflector
problem (FF-point) presented in Section 2.4. We have seen that this problem amounts
to solving an optimal transport problem on the unit sphere M = N = Sd−1 for the cost
function c(x, y) = − ln(1 − ⟨x|y⟩) [71], extended by +∞ on the diagonal {x = y}. One
of the key element in the proof is to show that optimal transport maps are supported on
compact sets that avoid the diagonal

Dε = {(x, y) ∈M2 | dM (x, y) ⩾ ε} (3.5.13)

where dM is the geodesic distance on M . We first need the following definition.

Definition 22. Given a probability measure µ ∈ P(M), we put

Mµ(r) = sup
x∈M

µ(B(x, r)).

Theorem 31. Let c(x, y) = − ln(1−⟨x|y⟩) be the reflector cost on the sphere M = Sd−1.
Let µ, ν0 ∈ P(M) be absolutely continuous with respect to the Lebesgue measure with
strictly positive C1,1 densities. Then for all β > 0, there exists a constant C > 0 depending
on µ, ν0 and β such that

∀ν1 ∈ P(M) s.t. Mν1(β) < 1/8, ∥dM (T0, T1)∥2L2(µ) ⩽ C W1(ν0, ν1)

where dM is the geodesic distance on M and Ti be optimal transport maps between µ and
νi.

The main difficulty to prove the previous theorem is to show that the optimal transport
plan is supported on the compact set Dε for some ε. This is done in the following
subsection in a more general setting.

3.5.1 Support of the optimal transport plan

In this subsection, we show that optimal transport plans are supported on compact sets of
the form Dϵ. Since our result holds in a slightly more general context than the sphere, we
consider that M can be any smooth complete Riemannian manifold. Let c :M ×M → R
be any cost bounded from below that satisfies c(x, y) = h(dM (x, y)) where h : R+ → R is
a continuous decreasing function such that h(0) = +∞ and h(t) < +∞ for t > 0.
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Theorem 32. Let µ, ν ∈ P(M) and β > 0 such that bothMµ(β) < 1/8 andMν(β) < 1/8,
then there exists a constant ε > 0 such that any optimal transport plan γ ∈ Γ(µ, ν) is
concentrated on Dε.

Similar results have already been obtained in different settings [32, 16, 50], but none
of them can be applied to discrete measures and therefore does not imply our result. W.
Gangbo and V.Oliker [32] work with Borel measures that vanish on (d−1)-rectifiable sets.
G. Buttazzo et al. [16] consider multimarginal optimal transport problems for constant
measures. G.Loeper [50] considers two measures µ and ν such that µ ⩾ mdVol with
m > 0 and ν satisfies for any ε ⩾ 0 and x ∈ M , ν(B(x, ε)) ⩽ f(ε)εn(1−1/n) for some
function f : R+ → R+ satisfying limt→0 f(t) = 0. These hypothesis imply that neither µ
nor ν can be discrete.

Our proof is an adaptation of their proofs in a different context. Lemma 37 is inspired
by [32] while Lemma 36 and the overall strategy of the proof come from [16]. The main
difference is that here we work on any measure satisfying M(β) < 1/8, including discrete
measures, which is useful for semi-discrete optimal transport.

Remark 33. Our proof requires M(β) < 1/8 but we believe that the theoretical bound is
M(β) ⩽ 1/2, which is enough to guarantee that there exists a transport plan with finite
global cost, as showed in the following lemma. It is easy to show that we cannot expect
a greater bound. Take for example x ̸= y in Sd−1, ε ∈]0, 1/2[, µ = 1/2(δx + δy) and
ν = (1/2 + ε)δx + (1/2 − ε)δy. Any transport plan between µ and ν will send a set of
measure at least ε from x to itself for which the cost is infinite.

The end of this section is mainly dedicated to the proof of Theorem 32, which is
necessary to guarantee that the optimal transport plan is supported where the cost is
regular enough and the MTW tensor is non-negative, and allow us to apply our strong
c-concavity result in order to obtain the stability results of Theorem 31. We first show in
the following lemma that there exists a transport plan with bounded total cost.

Lemma 34. If Mµ(β) ⩽ 1/2 and Mν(β) ⩽ 1/2 for some β > 0, then there exists
γ ∈ Γ(µ, ν) s.t. ∫

cdγ ⩽ h(β/2).

The proof of Lemma 34 relies on the following result, which can be seen as a continuous
formulation of Hall’s mariage Lemma. A proof is given in [68, Theorem 1.27].

Lemma 35 (Continuous Hall’s marriage lemma). Let M,N be Polish spaces, and let P
be a closed subset of M ×N . Given µ ∈ P(M) and ν ∈ P(N), the following propositions
are equivalent:

(i) ∃γ ∈ Γ(µ, ν) such that spt(γ) ⊆ P ;

(ii) for every Borel subset B ⊆M ,

ν({y ∈ N | ∃x ∈ B s.t. (x, y) ∈ P )}) ⩾ µ(B).

Proof of Lemma 34. We are going to apply the Continuous Hall’s marriage lemma to
the set P = {(x, y) ∈ M2, dM (x, y) ⩾ β/2}. Let B be any Borel set of X. We first
assume that the diameter of B is a most β so that B ⊆ B(x0, β) for some x0 ∈ B. Then,
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µ(B) ⩽ µ(B(x0, β)) ⩽ 1/2 using Mµ(β) ⩽ 1/2. having also Mν(β) ⩽ 1/2 we get

ν({y ∈M | ∃x ∈ B, dM (x, y) ⩾ β/2}) ⩾ ν({y ∈M | dM (x0, y) ⩾ β/2})
= 1− ν(B(x0, β/2)
⩾ 1/2

⩾ µ(B).

Assume now that the diameter of B is greater than β. Then there exist x, x′ ∈ B such
that dM (x, x′) ⩾ β and the left hand side of the previous inequation is equal to 1 and
the condition is obviously satisfied. We can therefore apply Lemma 35, which implies the
existence of a transport plan γ between µ and ν such that for any pair (x, y) ∈ spt(γ)
one has dM (x, y) ⩾ β/2. Since h is decreasing, we have c(x, y) ⩽ h(β/2) for every pair
(x, y) ∈ spt(γ), which implies the desired result.

Lemma 36. Let γ be an optimal transport map between µ and ν for the cost c and
let β > 0 such that Mµ(β) < 1/8 and Mν(β) < 1/8. Then, for any optimal transport
plan γ ∈ Γ(µ, ν), there exists pairs (x0, y0), (x

′
0, y

′
0) ∈ spt(γ) such that the four points

x0, y0, x
′
0, y

′
0 are at distance at least min(ε, β) with ε := h−1(4h(β/2)) from each other.

Proof. Since γ is an optimal transport plan, its cost is less than the cost of the transport
plan constructed in Lemma 34. Since h is decreasing and by definition of ∆ε, we have for
any ε > 0,

h(ε)γ(∆ε) ⩽
∫
∆ε

cdγ ⩽ h(β/2)

Note that we can consider h(β/2) > 0, choosing a smaller β if necessary. Then if ε =
h−1(4h(β/2)) we get γ(∆ε) ⩽ 1

4 , thus proving the existence of a pair (x0, y0) ∈ spt(γ)\∆ε.
Since Mµ(β) < 1/8, one has

γ((B(x0, β) ∪ B(y0, β))× Sd−1) ⩽ µ(B(x0, β)) + µ(B(y0, β)) <
1

4
,

Similarly, Mν(β) < 1/8, gives

γ(Sd−1 × (B(x0, β) ∪ B(y0, β))) ⩽ ν(B(x0, β)) + ν(B(y0, β) <
1

4
,

so that

γ({(x, y) ∈M2 | dM (x, x0) > β, dM (y, y0) > β, dM (y,−x0) > β,

dM (x, y0) > β and dM (x, y) > ε}

= γ

(
M2 \

[
(B(x0, β) ∪ B(y0, β))× Sd−1

∪ Sd−1 × (B(x0, β) ∪ B(y0, β)) ∪∆ε

])
⩾ 1− γ((B(x0, β) ∪ B(y0, β))× Sd−1)

− γ(Sd−1 × (B(x0, β) ∪ B(y0, β)))− γ(∆ε) > 1/4.

This proves the existence of (x′0, y
′
0) ∈ spt(γ) such that dM (x0, x

′
0) > β and dM (y0, y

′
0) > β

and dM (x′0, y
′
0) ⩾ ε and allows us to conclude.

44



To state the next lemma, we first need to introduce the definition of c-cyclically
monotone sets. Roughly speaking these are subsets of the product space M × N for
which each pair has a lower costs than the other possible choices. It is well known that
the support of an optimal transport plan is always c-cyclically monotone [68].

Definition 23 (c-cyclically monotone sets). We say that S ⊂M×N is c-cyclically mono-
tone for the cost function c :M×N → R if for any family of k couples (x1, y1), · · · , (xk, yk) ∈
S and any permutation σ we have∑

i

c(xi, yi) ⩽
∑
i

c(xi, yσ(i)).

Lemma 37. Assume that c is bounded from below by a constant cmin. Let S ⊆ M ×M
be a c-cyclically monotone set , which contains two pairs (x0, y0), (x

′
0, y

′
0) such that the

pairwise distance between the points x0, y0, x
′
0, y

′
0 is at least ε > 0. Then,

∀(x, y) ∈ S, c(x, y) ⩽ Cε := h(ε) + 2h(ε/2) + 2|cmin|.

Proof. Using the c-cyclical monotonicity of S and c ⩾ cmin one has

c(x, y) ⩽ c(x, y) + c(x0, y0) + c(x′0, y
′
0)− 2cmin ⩽ F (x, y) + 2|cmin|

where 
F (x, y) = min(c(x, y0) +R1(y), c(x, y

′
0) +R2(y))

R1(y) = min(c(x0, y) + c(x′0, y
′
0), c(x0, y

′
0) + c(x′0, y)))

R2(y) = min(c(x0, y) + c(x′0, y0), c(x0, y0) + c(x′0, y))).

By assumption, we have dM (x0, x
′
0) ⩾ ε, thus max(dM (x0, y),dM (x′0, y)) ⩾ ε/2. Then,

since h is decreasing, one has min(c(x0, y), c(x
′
0, y)) ⩽ h(ε/2). We also have c(x′0, y

′
0) ⩽

h(ε) and c(x0, y
′
0) ⩽ h(ε), which leaves us with

R1(y) ⩽ h(ε) + min(c(x0, y), c(x
′
0, y)) ⩽ h(ε) + h(ε/2),

and the same bound holds forR2(y). Using the same argument we get min(c(x, y0), c(x, y
′
0)) ⩽

h(ε/2) and thus,

F (x, y) ⩽ h(ε) + h(ε/2) + min(c(x, y0), c(x, y
′
0)) ⩽ h(ε) + 2h(ε/2).

Proof of Theorem 32. Let β > 0 such thatM(β) < 1/8. Let γ be an optimal transport
plan, and denote by S its support. By Lemma 34, the cost of this transport plan is finite.
This implies that S is c-cyclically monotone. Recall that by assumption, the cost c is
bounded from below. Therefore by Lemmas 36 and 37 one has

∀(x, y) ∈ S, c(x, y) ⩽ Cε := h(ε) + 2h(ε/2) + 2|cmin|.

where ε = min(β, h−1(4h(β/2))). This directly implies that S ⊆ Dδ with δ = h−1(Cε).

3.5.2 Proof of Theorem 31

Here, we come back to the sphere case, i.e. M = Sd−1. We recall that the reflector cost
is given on M2 by c(x, y) = − ln(1 − ⟨x|y⟩). Note that on the unit sphere, dM (x, y) =
arccos(⟨x|y⟩), hence the reflector cost is of the form c(x, y) = h(dM (x, y)) with h(t) =
− ln(1− cos(t)) and satisfies the assumptions of Theorem 32.
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Lemma 38. For ε < 2, Dε is symmetrically c-convex.

Proof. A simple computation gives for x ∈M , that ∇xc(x, ·) :M \ {x} → TxM is one to
one and given by

∇xc(x, y) =
y − ⟨x|y⟩x
1− ⟨x|y⟩

and the inverse of −∇xc(x, ·) is

c-expx(p) =

(
1− 2

1 + ∥p∥2

)
x− 2

1 + ∥p∥2
p

Let (x, y0) and (x, y1) in Dε, and define the c-segment (yt) = [y0, y1]x. For p0 = ∇xc(x, y0)
and p1 = ∇xc(x, y1), we put pt = (1 − t)p0 + tp1, so that yt = c-expx(pt). We want to
show that (x, yt) ∈ Dε, hence we only have to show that dM (x, yt) ⩾ ε . We have

x− yt =
2

1 + ∥pt∥2
x+

2

1 + ∥pt∥2
pt.

Since x is orthogonal to pt and ∥x∥ = 1, we get

dM (x, yt) = arccos(⟨x|yt⟩) = arccos

(
1− 2

1 + ∥pt∥2

)
.

So dM (x, yt) ⩾ ε is satisfied if 1− 2
1+∥pt∥2

⩽ cos(ε). Since cos(ε) ⩾ 1− ε2/2 it is sufficient

to show that
2

1 + ∥pt∥2
⩾ ε2/2.

Since ∥pt∥ ⩽ max(∥p0∥ , ∥p1∥), and by symmetry of p0 and p1 it is sufficient to show that
∥p0∥2 ⩽ 4

ε2
− 1. Again using that ∥x∥ = ∥y0∥ = 1, we have

∥p0∥2 =
∥∥∥∥y0 − ⟨x|y0⟩x1− ⟨x|y0⟩2

∥∥∥∥2 = 1− ⟨x|y0⟩2

(1− ⟨x|y0⟩)2
=

1 + ⟨x|y0⟩
1− ⟨x|y0⟩

Finally using the relation ⟨x|y0⟩ = 1− ∥x− y0∥2 /2, we get

∥p0∥2 =
4

∥x− y0∥2
− 1 ⩽

4

ε2
− 1

and in conclusion, Dε is c-convex. Note that by symmetry it is obviously symmetrically
c-convex.

End of proof of Theorem 31 Since µ and ν0 are absolutely continuous there exists β > 0
such that Mµ(β) < 1/8, Mν0(β) < 1/8 and Mν1(β) < 1/8. Therefore, by Theorem 32,
there exists ε > 0 such that for every x ∈ M , (x, Ti(x)) ∈ Dε. The set Dε is a compact
set and symmetrically c-convex by Lemma 38. Recall that the optimal transport map T0
between µ and ν0 is of the form T0(x) = argminy∈N c(x, y) − ψ0(y), where ψ0 : N → R
is a c-concave function. Since µ and ν0 have C1,1 strictly positive densities, a result of
Gregoire Loeper [50, Theorem 2.5] implies that ψ0, ψ

c
0 are of class C3 and that T0 : x 7→

c-expx(∇ψc0(x)) is of class C2. As seen in the proof of Theorem 32, ψ1 is c-concave for
the truncated cost, which is Lipschitz, and is therefore also Lipschitz. Furthermore, it
is known that the reflector cost satisfies MTW and (STwist) [50]. We can thus apply
Corollary 25 which gives that ψ0 is strongly c-concave on Dε. We then conclude by
applying Theorem 14.
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3.6 Prescription of Gauss curvature measure

The problem of Gauss curvature measure prescription for a convex body has been intro-
duced by A.D. Aleksandrov in 1950 [2] and has been shown to be equivalent to an optimal
transport problem on the sphere [58, 12]. In this section we apply our stability result to
this optimal transport problem.

To this purpose we define the Gauss curvature measure introduced in [2]. Let K ⊆ Rd
be a closed bounded convex body such that 0 ∈ int(K). We denote by ρK : Sd−1 → R the
radial parametrization of ∂K defined for any direction x in the sphere Sd−1 by ρK(x) =
sup{r ∈ R | rx ∈ K}. This induces a homeomorphism −→ρK from Sd−1 to ∂K defined by

−→ρK : Sd−1 → ∂K

x 7→ ρK(x)x

We call (multivalued) Gauss map, the map GK which maps a point x ∈ ∂K to the set of
unit exterior normals to K at x, namely

GK(x) = {n ∈ Sd−1 | x ∈ argmax
K
⟨n|·⟩}.

Note that GK(x) is a set when K is not smooth at x. Through this section, we denote
by σ the uniform probability measure on the sphere Sd−1, i.e. the normalized (d − 1)-
dimensional Hausdorff measure.

Definition 24 (Gauss curvature measure). Let K be a bounded convex body containing 0
in its interior. The Gauss curvature measure of K, denoted µK , is a probability measure
over Sd−1 defined for any Borel subset A ⊆ Sd−1 by µK(A) = σ(GK ◦ −→ρK(A)).

The Gauss curvature measure prescription problem is the following inverse problem:
given a measure µ ∈ P(Sd−1), is it possible to find a convex body K such that µ = µK
? It is well-known that convexity of K implies that for every non-empty spherical convex
subset Θ ⊊ Sd−1 – i.e. subsets Θ that contains any mimimizing geodesic between any
pair of its points — we have

µK(Θ) < σ(Θπ/2) (3.6.14)

with Θπ/2 = {x ∈ Sd−1 | dM (x,Θ) < π/2}, and where where dM is the geodesic distance
on the sphere. Aleksandrov’s theorem states that Equation (3.6.14) is in fact a sufficient
condition for µ to be the Gauss curvature measure of a convex body.

Theorem 39 (Aleksandrov). Let µ ∈ P(Sd−1) be a probability measure satisfying con-
dition (3.6.14), then there exists a unique (up to homotheties) convex body K ⊆ Rd with
0 ∈ int(K) such that µ is the Gaussian curvature measure of K.

3.6.1 An optimal transport problem

Following [58, 12] we briefly recall that this inverse problem can be recast as an optimal
transport problem on the sphere for the cost c(x, n) = − ln(max(0, ⟨x|n⟩)), which takes
value +∞ when ⟨x|n⟩ ⩽ 0. Let µ be any measure in P(Sd−1) satisfying condition (3.6.14).
Note that the very same cost plays an important role in the theory of unbalanced optimal
transport [20, 49, 30].

In the following proposition, we use the notion of support function of a convex set K,
defined by

hK(n) = sup
x∈Sd−1

ρK(x)⟨x|n⟩.
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Figure 4: An example of Gauss curvature measure on a convex K. The support of the
curvature measure is shown in red. It is composed of 3 diracs of mass 1/4 for each
angle, and a density on an arc of circle for the directions where the normals have smooth
variations.

Proposition 40 ([58, 12]). Let σ ∈ P(Sd−1) be the uniform measure over the sphere, let
K be a compact convex body containing zero in its interior, and let µ = µK . Then,

� The map TK : Sd−1 → Sd−1 defined σ-a.e by

TK(n) = (GK ◦ −→ρK)−1(n)

is the optimal transport map between σ and µ for the cost c.

� The functions φK = − ln(hK) and ψK = ln(ρK) are maximizers of the Kantorovich
dual problem. In particular we have∫

Sd−1

c(TK(n), n)dσ(n) =

∫
φK(n)dσ(n) +

∫
ψK(x)dµK(x). (3.6.15)

For the sake of completeness, we recall the proof of this proposition.

Proof. Let (x, n) ∈ Sd−1 × Sd−1 be such that c(x, n) < +∞, i.e. ⟨x|n⟩ > 0. Then,

hK(n) = max
y∈K
⟨n|y⟩ ⩾ ⟨n|ρK(x)x⟩ = ρK(x)⟨n|x⟩, (3.6.16)

with equality if and only if n ∈ GK(x). Since all quantities are positive, taking the
logarithm, we see that φK(n) + ψK(x) ⩽ c(x, n), ensuring that (φK , ψK) are admissible
for the dual Kantorovich problem.
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Note that e.g. by [12] σ-a.e. direction n ∈ S−d−1 is normal to a unique point in ∂K.
This implies that the map TK = (GK ◦ −→ρK)−1 is well defined σ-a.e. The equality case of
(3.6.16) gives

φK(n) + ψK(TK(n)) ⩽ c(x, TK(n)).

Integrating this equality with respect to σ directly gives (3.6.15). In turn, Kantorovich
duality implies that TK is an optimal transport between σ and µ, and that (φK , ψK) is a
maximizer in the dual Kantorovich problem.

3.6.2 Stability of transport maps

In this subsection we apply our stability result to the Gauss curvature measure prescrip-
tion problem. We introduce the following notation:

K(r,R) = {K ⊆ Rd convex, compact | B(0, r) ⊆ K ⊆ B(0, R)}.

Proposition 41. Let K be a strictly convex and C2 compact body containing 0 in its
interior. Then, for any R > r > 0, there exists a constant C depending on K, r and R
such that

∀L ∈ K(r,R), ∥dM (TK , TL)∥2L2(σ) ⩽ CW1(µK , µL).

Note that in addition to the strict convexity and smoothness of K, the constant C also
depends on the anisotropy of K — i.e. the radii RK ⩾ rK > 0 such that K ∈ K(rK , RK).
The end of the section is devoted to the proof of Proposition 41. We need to check that
the hypothesis of Corollary 25 are satisfied for the cost c(x, n) = − ln(max(0, ⟨x|n⟩)).

Lemma 42. Given any R > r > 0, there exists ε > 0 such that for any set K ∈ K(r,R)
and any c-optimal transport plan γ ∈ Γ(σ, µK), one has

spt(γ) ⊆ Dε,

where Dε = {(x, n) ∈ (Sd−1)2 | dM (x, n) ⩽ π/2− ε}.

Proof. By hypothesis, r ⩽ ρK(x) ⩽ R for all x ∈ Sd−1, where ρK is the radial function of
the convex K. Since

hK(n) = sup
x∈Sd−1

ρK(x)⟨x|n⟩,

we also have r < hK(n) < R. Hence the two Kantorovich potential φK(n) = − ln(hK(n))
and ψK(x) = ln(ρK(x)) therefore satisfy

φK(n) + ψK(x) ⩽ − ln(r) + ln(R) = ln(R/r),

By strong Kantorovich duality φK(n) + ψK(x) = c(x, n) on spt(γ), which implies that c
is bounded by ln(R/r) on spt(γ), i.e. for any (x, n) ∈ spt(γ), one has

c(x, n) = − ln(max(0, ⟨x|n⟩)) ⩽ ln(R/r),

implying that ⟨x|n⟩ ⩾ r/R and dM (x, n) = arccos(⟨x|n⟩) ⩽ arccos(r/R). Finally (x, n) ∈
Dε with ε = π/2− arccos(r/R).

Lemma 43. The set Dε = {(x, n) ∈ (Sd−1)2 | dM (x, n) ⩽ π/2 − ε} is symmetrically
c-convex for the cost c(x, n) = − ln(max(0, ⟨x|n⟩)).
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Proof. We have

∇xc(x, n) = −
n

⟨x|n⟩
+ x

and by inverting −∇xc(x, ·) we get

c-expx(p) =
p+ x√
1 + ∥p∥2

Let (x, y0) ∈ Dε and (x, y1) ∈ Dε then we have yt = c-expx(pt) where p0 = −∇xc(x, y0)
and p1 = −∇xc(x, y1) and pt = (1 − t)p0 + tp1. By symmetry we can consider that
∥pt∥ ⩽ ∥p0∥, which implies 1√

1+∥pt∥2
⩾ 1√

1+∥p0∥2
and thus

dM (x, yt) = arccos(⟨x|yt⟩) = arccos

 1√
1 + ∥pt∥2


⩽ arccos

 1√
1 + ∥p0∥2

 = dM (x, y0) ⩽
π

2
− ε

End of proof of Proposition 41. The map TK (resp. TL) is the optimal transport map
between the uniform measure σ on Sd−1 and µK (resp. µL) for the cost c(x, n) =
− ln(max(0, ⟨x|n⟩)). From Lemma 42, for any n ∈ Sd−1 we have (TK(n), n) ∈ Dε

and (TL(n), n) ∈ Dε. Note that for (x, n) ∈ Dε, one has ⟨x|n⟩ > 0 and therefore
c(x, n) = − ln(⟨x|n⟩) = − ln(cos(dM (x, n))). It has been shown in [30] that this cost
satisfies (STwist) and (MTWw) on Dε. By Lemma 43 the set Dε is a symmetrically
c-convex compact set.

Finally it remains to show that ψK is of class C2 and TK is of class C1. Since ∂K is
C2, its radial parametrization ρK is also C2, so ψK = ln(ρK) of class C2. Furthermore
−→ρK(x) = ρK(x)x is a C1 diffeomorphism. Since K is stricly convex and ∂K is of class C2,
its associated Gauss map GK is a C1 diffeomorphism. We thus have that TK = (GK ◦−→ρK)−1

is of class C1. By Corollary 25, we know that ψK is strongly c-concave. We conclude by
applying Theorem 14.
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Chapter 4

Generated Jacobian equations

Generated Jacobian equations have been introduced by Trudinger [66] as a generalization
of Monge-Ampère equations arising in optimal transport. In this chapter, we introduce
and study a damped Newton algorithm for solving these equations in the semi-discrete
setting. We also present a numerical application of this algorithm to the near-field parallel
refractor problem arising in non-imaging problems. This chapter comes from [29] written
in collaboration with Quentin Mérigot and Boris Thibert.

4.1 Introduction

This chapter is concerned with the numerical resolution of Generated Jacobian equations,
introduced by N. Trudinger [66] as a generalization of Monge-Ampère equations arising
in optimal transport. Our goal is to generalize the damped Newton algorithm proposed
in [46] to solve these equations in a semi-discrete setting. As mentioned earlier in Sec-
tion 2.4, Generated Jacobian equations were originally motivated by inverse problems
arising in non-imaging optics in the near-field case [47, 35, 37] but they also apply to
problems arising in economy [56, 27]. A survey on these equations and their applications
was recently written by N. Guillen [34]. The input for a generated Jacobian equations are
two probability measures µ and ν over two spaces X and Y , and a generating function
G : X×Y ×R→ R. Loosely speaking, a scalar function ψ on Y is an Alexandrov solution
to the generated Jacobian equation if the map Tψ defined by

Tψ(x) ∈ argmax
y∈Y

G(x, y, ψ(y))

transports µ onto ν, i.e. ν is the image of the measure µ under Tψ, denoted

Tψ#µ = ν.

Note that one needs to impose some conditions on µ and G ensuring that the map Tψ is
well-defined µ-almost everywhere. One can describe the meaning of this equation using
an economic metaphor. We consider X as a set of customers, Y as a set of products
and G(x, y, ψ(y)) corresponds to the utility of the product y for the customer x given a
price ψ(y). The probability measure µ and ν describe the distribution of customers and
products. The map Tψ can be described as the “best response” of customers given a price
menu ψ : Y → R: each customer x ∈ X tries to maximize its own utility G(x, y, ψ(y))
over all products y ∈ Y : the maximizer, if it exists and is unique, is denoted Tψ(x). Then,
ψ is a solution to the generated jacobian equation if the best response map Tψ pushes the
distribution of customers to the distribution of available products ν.
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To our knowledge, there are not many algorithms to numerically solve generated
Jacobian equations. An iterative algorithm has been proposed in [1] when the source
measure is absolutely continuous and the target measure is discrete, which is also our
framework. More recently, a least-squared minimization algorithm has been proposed in
the case of two absolutely continuous measures [62].

4.1.1 Contribution.

In this chapter, we are interested in algorithms for solving the semi-discrete case, where
the source measure µ is absolutely continuous with respect to the Lebesgue measure on
X ⊆ Rd and the target measure ν is finitely supported. Such discretization can be traced
back to Minkowski, but have been used more recently to solve Monge-Ampère equations
[59], problems from non-imaging optics [17], more general optimal transport problems
[44], but also generated Jacobian equations [1]. In all the cited papers, the methods
are coordinate-wise algorithms with minimal increment and are similar to the algorithm
introduced by Oliker-Prussner [59]. The computational complexity of these algorithms
scales more than cubicly [54] (N3, where N is the size of the support of ν), making
them limited to fairly small discretizations. More recently, Newton methods have been
introduced to solve semi-discrete optimal transport problems [46, 53]. In this chapter,
we show that newtonian techniques can also be applied to Generated Jacobian equations
under mild conditions on the generating function G.

4.1.2 Semi-discrete optimal transport.

The semi-discrete optimal transport problem is presented in details in Section 2.3, we give
here a quick reminder in order to see the link with the semi-discrete Generated Jacobian
equations. This setting refers to the case where one is given an absolutely continuous
probability measure µ (with respect to the Lebesgues measure) supported on a domain
X of Rd and a discrete probability measure ν =

∑
y νyδy supported on a finite set Y .

Given a cost function c : X×Y → R, the optimal transport problem amounts to finding a
function T : X → Y that minimizes the total cost

∫
X c(x, T (x))dµ(x) under the condition

µ(T−1(y)) = νy for any y ∈ Y . We have seen in Chapter 2 that this problem amounts to
finding a dual potential ψ : Y → R that satisfies

∀y ∈ Y µ(Lagy(ψ)) = νy (MA)

where Lagy(ψ) are the Laguerre cells defined by

Lagy(ψ) = {x ∈ X | ∀z ∈ Y, c(x, y) + ψ(y) ⩽ c(x, z) + ψ(z)} .

This summarize the fact that the semi-discrete optimal transport problem can be recast
as a mass prescription problem of the Laguerre cells, which is what is important here seen
we are going to write the generated Jacobian equation the same way.

4.1.3 Generated Jacobian equation.

The Generated Jacobian equation in the semi-discrete setting has a very similar form.
The problem also amounts to finding a function ψ : Y → R that satisfies Equation (MA),
but the Laguerre cells have a more general form and read

Lagy(ψ) = {x ∈ X | ∀z ∈ Y,G(x, y, ψ(y)) ⩾ G(x, z, ψ(z))}
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where G is called a generating function. When G is linear in the last variable, i.e. when
G(x, y, v) = −c(x, y)−v, one obviously recovers the Laguerre cells from optimal transport.
If one choose G(x, y, v) = 1

2v −
v
2∥x− y∥

2, then we recover the near field parallel reflector
problem (NF-par) presented in Section 2.4, which does not fall in the scope of optimal
transport.

Note that the lack of linearity in the generating function G adds several theoretical
and practical difficulties. To see this, consider the mass function

H : RY → RY , ψ 7→ (µ(Lagy(ψ)))y∈Y .

In the optimal transport case, the function H is invariant under the addition of a constant
(i.e. H(ψ + c) = H(ψ) for any c ∈ R), which entails under mild assumptions that the
kernel of DH(ψ) has rank one and coincides with the vector space of constant functions
on Y [46]. Furthermore, as a consequence of Kantorovitch duality, the function H is the
gradient of a functional, called Kantorovitch functional in [46]. This implies that the
differential DH(ψ) is symmetric. In the case of generated Jacobian equations, these two
properties do not hold anymore: the differential DH(ψ) is not necessarily symmetric and
its kernel is not reduced to the set of constant functions in general.

In this chapter, we generalize the damped Newton algorithm proposed in [46] to
solve generated Jacobian equations. Note that unlike [46] we do not require any Ma-
Trudinger-Wang type condition to prove the convergence of our algorithm. In Section 4.2
we recall the notion of generating function and its properties, and introduce the generated
Jacobian equation in the semi-discrete setting. Section 4.3 is entirely dedicated to the
numerical resolution of the generated Jacobian equation. In Section 4.4, we apply our
algorithm to numerically solve the Near Field Parallel Reflector problem. Note that F.
Abedin and C. Gutierrez also consider this problem [1], but their algorithm requires a
strong condition, called Visibility Condition, that implies the Twist condition (defined
hereafter) of the generating function G. We show that under a much weaker assumption,
this twist condition holds for a subset of dual potential ψ : Y → R on which we can apply
our algorithm. It is very likely that our assumption could also be adapted to [1].

4.2 Semi-discrete generated Jacobian equation

In this section, we recall the notions introduced by N. Trudinger in order to define the
generated Jacobian equation [66] in the semi-discrete setting. Let Ω be an open bounded
domain of Rd, let X be a compact subset of Ω and let Y be a finite set of Rd. Let µ be
a measure on Ω, which is absolutely continuous with respect to the Lebesgue measure,
with non-negative density ρ supported on X (i.e. spt(ρ) ⊂ X), and let ν =

∑
y∈Y νyδy be

a measure on the finite set Y such that all νy are positive (νy > 0). These two measures
must satisfy the mass balance condition µ(X) = ν(Y ) and it is not restrictive to view
them as probability measures: ∫

X
ρ(x)dx =

∑
y∈Y

νy = 1

Notations. We denote by Hk the k-dimensional Hausdorff measure in Rd. In particular
Hd is the Lebesgue measure in Rd. The set of functions from Y to R is denoted by RY .
We denote by ⟨·|·⟩ the Euclidean scalar product, by ∥ · ∥ the Euclidean norm, by B(x, r)
the Euclidean ball of center x and radius r, by χA : Rd → {0, 1} the indicator function
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of a set A. The image and kernel of a matrix M are respectively denoted by im(M)
and ker(M). We denote by span(u) the linear space spanned by a vector u, by ∇xG the
gradient of a function G with respect to x and by ∂vG its scalar derivative with respect
to v. Finally, for N ∈ N, we denote J1, NK = {1, . . . , N}.

4.2.1 Generating function

We recall below the notion of generating function and G-convexity in the semi-discrete
setting [66, 1].

Definition 25 (Generating function). Let a, b ∈ R∪{−∞,+∞} with a < b and I =]a, b[.
A function G : Ω×Y × I → R is called a generating function. We assume that it satisfies
the following properties:

� Regularity condition: (x, y, v) 7→ G(x, y, v) is continuously differentiable in x and
v, and

∀α < β ∈ I, sup
(x,y,v)∈Ω×Y×[α,β]

|∇xG(x, y, v)| < +∞ (Reg)

� Monotonicity condition:

∀(x, y, v) ∈ Ω× Y × I : ∂vG(x, y, v) < 0 (Mono)

� Twist condition:

∀x ∈ Ω, (y, v) 7→ (G(x, y, v),∇xG(x, y, v)) is injective on Y × I (Twist)

� Uniform Convergence condition:

∀y ∈ Y, lim
v→a

inf
x∈Ω

G(x, y, v) = +∞ (UC)

Remark 44 (Range of G). Without loss of generality we will consider that I = R.
Indeed suppose that G : Ω× Y × I → R satisfies the assumptions of the above definition.
Considering a strictly increasing C1 diffeomorphism ζ : R → I and setting G̃(x, y, v) =
G(x, y, ζ(v)), we get a generating function G̃ : Ω × Y × R → R, which also satisfies the
conditions above. Moreover, up to reparametrization, the generated Jacobian equations
associated to G and G̃ are equivalent.

We defined the c-convexity (or c-concavity) with respect to a cost c and the dual
of an optimal transport problem in Section 2.2. One can use the same technique for a
Generating function, giving G-convexity. Then the duality theory of optimal transport
can be mostly imitated for generated Jacobian equation.

Definition 26 (G-convexity). Let φ : Ω → R be a function. If φ ⩾ G(·, y0, λ0) for all
x ∈ Ω with equality at x = x0, we say that the function G(·, y0, λ0) supports φ at x0. A
function φ : Ω → R is said to be G-convex if it is supported at every point, i.e. for all
x0 ∈ Ω,

∃(y0, λ0) ∈ Y × R s.t.

{
∀x ∈ Ω, φ(x) ⩾ G(x, y0, λ0)

φ(x0) = G(x0, y0, λ0)
(4.2.1)
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Remark 45 (Relation with convexity). The notion of G-convexity generalizes in a certain
sense the notion of convexity. Intuitively, it amounts to replacing the supporting hyper-
planes by functions of the form G(·, y, λ). If G(·, y, λ) is convex for any y ∈ Y and any
λ ∈ R, then a G-convex function is always convex. Moreover, if the generating function
G is affine (i.e G(x, y, λ) = ⟨x, y⟩ + λ) and if Y = Rd, then the notions of G-convexity
and convexity are equivalent.

Definition 27 (G-subdifferential). Let φ be a G-convex function and let x0 ∈ Ω. The
G-subdifferential ∂Gφ of φ at x0 is defined by

∂Gφ(x0) = {y ∈ Y | ∃λ0 ∈ Rs.t. G(·, y, λ0) supports φ at x0} (4.2.2)

The following lemma (Lemma 2.1 in [1]) shows that the ∂Gφ is single-valued almost
everywhere, and induces a measurable map.

Lemma 46. [1, Lemma 2.1] Let φ be G-convex with G satisfying (Reg), (Mono) and
(Twist). Then, there exists a measurable map Sφ : Ω→ Y s.t.

for a.e. x ∈ Ω, ∂Gφ(x) = {Sφ(x)}.

We can define the notion of generated Jacobian equation.

Definition 28 (Brenier solution to the GJE). A function φ : X → R is a Brenier solution
to the generated Jacobian equation between a probability density µ on Ω and a probability
measure ν =

∑
y∈Y νyδy on Y if it satisfies{

φ is G-convex

∀y ∈ Y, µ(S−1
φ ({y})) = νy

(GenJac)

4.2.2 G-transform

The goal in this section is to write a dual formulation of the generated Jacobian equation,
using the notion of G-transform introduced by Trudinger [66].

Definition 29. The G-transform ψG : Ω→ R of ψ : Y → R is defined by

∀x ∈ Ω, ψG(x) = max
y∈Y

G(x, y, ψ(y)). (4.2.3)

Proposition 47. Assume G satisfies (Reg), (Mono) and (Twist) and let φ : Ω → R be
a G-convex function. Then there exists ψ : Sφ(Ω)→ R s.t.

∀x ∈ Ω, φ(x) = max
y∈Sφ(Ω)

G(x, y, ψ(y))

Proof. Let y ∈ Sφ(Ω), then for any x0 ∈ S−1
φ (y) there exists λ0 ∈ R such that φ(x0) =

G(x0, y, λ0). Since φ is G-convex we also have for any x ∈ Ω that φ(x) ⩾ G(x, y, λ0).
Specifically for x1 ∈ S−1

φ (y), we get φ(x1) = G(x1, y, λ1) ⩾ G(x1, y, λ0) and since
∂vG(x, y, v) < 0 then λ1 ⩽ λ0. By symmetry we have λ1 = λ0. We can deduce that
there exists a unique ψ(y) ∈ R such that for any x ∈ S−1

φ (y), φ(x) = G(x, y, ψ(y)). This
defines a map ψ : Sφ(Ω)→ R satisfying

∀x ∈ Ω,

{
∀y ∈ Sφ(Ω), φ(x) ⩾ G(x, y, ψ(y))

∃y ∈ Sφ(Ω), φ(x) = G(x, y, ψ(y))

As a conclusion we have φ(x) = max
y∈Sφ(Ω)

G(x, y, ψ(y)).
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Corollary 48. Let φ be a G-convex function such that Sφ(Ω) = Y , then there exists
ψ : Y → R such that φ = ψG.

Remark 49 (G-convex functions are not always G-transforms). Without any additional
assumptions on the generating function, we cannot guarantee that any G-convex function
φ on X is the G-transform of a function ψ on Y . Define for instance

Ω = (1, 2), Y = {0, 1}, G(x, y, v) =

{
xe−v if y = 0

−xv if y = 1
.

and consider the function φ on Ω defined by φ(x) = G(x, 1, 1) = −x, which is G-convex
by definition. Yet for any v ∈ R and any x ∈ Ω,

max(G(x, 0, v), G(x, 1, 1)) = max(xe−v,−x) = xe−v,

thus implying that that there does not exist any ψ : Y → R such that φ is the G-transform
of ψ.

Suppose that φ is a solution of (GenJac) and that for all y ∈ Y , the mass νy is positive.
Then, for any y ∈ Y one has µ(S−1

φ (y)) = νy > 0, which guarantees that Sφ(Ω) = Y .

Therefore by Corollary 48 there exists a function ψ on Y such that φ = ψG. This means
that we can reparametrize the problem (GenJac) by assuming that the solution φ is the
G-transform of some function ψ. The sets S−1

ψG
({y}), which appear in (GenJac) will be

called generalized Laguerre cells.

Definition 30 (Generalized Laguerre cells). The generalized Laguerre cells associated to
a function ψ : Y → R are defined for every y ∈ Y by

Lagy(ψ) := S−1
ψG

({y})

= {x ∈ Ω | ∀z ∈ Y,G(x, y, ψ(y)) ⩾ G(x, z, ψ(z))} .
(4.2.4)

Note that by Lemma 46, the intersection of two generalized Laguerre cells has zero
Lebesgue measure, ensuring that the sets Lagy(ψ) form a partition of Ω up to a µ-negligible
set.

Definition 31 (Alexandrov solution to GJE). A function ψ : Y → R is an Alexandrov
solution to the generated Jacobian equation between generated Jacobian equation between
a probability density µ on Ω and a probability measure ν =

∑
y∈Y νyδy on Y if ψG is a

Brenier solution (Definition 28) to the same GJE, or equalently if

∀y ∈ Y, Hy(ψ) = νy, where Hy(ψ) = µ(Lagy(ψ)).

Setting H(ψ) = (Hy(ψ))y∈Y and considering ν as a function over Y , we can even rewrite
this equation as

H(ψ) = ν. (GJE)

4.3 Resolution of the generated Jacobian equation

The goal of this section is to introduce and study a Newton algorithm to solve the semi
discrete generated Jacobian equation (GJE). Before doing so, we study the regularity of
the mass function H : RY → RY in Section 4.3.1 and establish a non-degeneracy property
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of its differential DH in Section 4.3.2, under a connectedness assumption on the support
of the source measure. We present the algorithm and prove its convergence in Section 5.3.

For simplicity, we will number the points in Y , i.e. we assume that

Y = {y1, . . . , yN},

where the points yi are distinct. This allows us to identify the set of functions RY with
RN , by setting ψi = ψ(yi). We also denote (ei)1⩽i⩽N the canonical basis of RN . Finally,
we introduce a shortened notation for Laguerre cells and intersections thereof

Lagi(ψ) = Lagyi(ψ), Lagij(ψ) = Lagi(ψ) ∩ Lagj(ψ).

Throughout this section, we assume that the generating function G satisfies all the con-
ditions of Definition 25.

4.3.1 C1-regularity of H

The differentiability of H is established under a (mild) genericity hypothesis on the cost
function, ensuring in particular that the intersection between three distinct Laguerre cells
is negligible with respect to the (d − 1)-dimensional Hausdorff measure, denoted Hd−1.
To write this hypothesis, we denote for three distinct indices i, j, k in J1, NK,

Γij(ψ) = {x ∈ Ω | G(x, yi, ψi) = G(x, yj , ψj)}, Γijk(ψ) = Γij(ψ) ∩ Γik(ψ).

Definition 32 (Genericity of the generating function.). The generating function G is
generic with respect to Ω and Y if for any distinct indices i, j, k in J1, NK and any ψ ∈ RN
we have

Hd−1(Γijk(ψ)) = 0. (GenYΩ)

The generating function G is generic with respect to the boundary ∂X and Y if for any
distinct indices i, j in J1, NK and any ψ ∈ RN we have

Hd−1(Γij(ψ) ∩ ∂X) = 0. (GenY∂X)

Proposition 50. Assume that

� G ∈ C2(Ω× Y × R) satisfies (Reg), (Mono), (Twist), (GenYΩ), (GenY∂X),

� X ⊆ Ω is compact and that ρ is a continuous probability density on X.

Then the mass function H : RN → RN defined by H(ψ) = (µ(Lagi(ψ)))1⩽i⩽N has class
C1. We have for ψ ∈ RN and i ∈ J1, NK

∂Hj

∂ψi
(ψ) =

∫
Lagij(ψ)

ρ(x)
|∂vG(x, yi, ψi)|

∥∇xG(x, yj , ψj)−∇xG(x, yi, ψi)∥
dHd−1(x) ⩾ 0 for j ̸= i

∂Hi

∂ψi
(ψ) = −

∑
j ̸=i

∂Hj

∂ψi
(ψ)

(4.3.5)

Proof. Let ψ ∈ RN and i, j ∈ J1, NK be fixed indices such that i ̸= j. We want to compute
∂Hj/∂ψi(ψ). For this purpose, we introduce ψt = ψ + tei for t ⩾ 0. From (Mono), we
obviously have Lagj(ψ) ⊆ Lagj(ψ

t). Therefore

Hj(ψ
t)−Hj(ψ) = µ(Lagj(ψ

t))− µ(Lagj(ψ)) = µ(Lagj(ψ
t) \ Lagj(ψ))
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We introduce the set L obtained by removing one inequality in the definition of the
generalized Laguerre cell Lagj(ψ):

L = {x ∈ Ω | ∀k ̸= i, G(x, yj , ψj) ⩾ G(x, yk, ψk)}.

We have in particular Lagj(ψ) ⊆ L and more precisely

Lagj(ψ
t) \ Lagj(ψ) =

⊔
0<s⩽t

L ∩ Γij(ψ
t).

We will use this formula to get another expression of Hj(ψ
t)−Hj(ψ).

Step 1. Construction of uij such that Γij(ψ
t) = u−1

ij ({t}). To construct such a
function uij : Ω→ R, we first consider the function fij : Ω× R→ R defined by

fij(x, t) = G(x, yj , ψj)−G(x, yi, ψi + t)

This function fij is of class C1 on Ω× R by hypothesis on G and we have

∀(x, t) ∈ Ω× R,
∂fij
∂t

(x, t) = −∂vG(x, yi, ψi + t) > 0.

This implies that a fixed x ∈ Ω, the function fij(x, ·) is strictly increasing, so that equation
fij(x, t) = 0 has at most one solution. Denoting

Vij = {x ∈ Ω | ∃t ∈ R, fij(x, t) = 0} =
⋃
t∈R

Γij(ψ
t),

one can therefore define a function uij : Vij → R which satisfies

∀x ∈ Vij , fij(x, t) = 0⇐⇒ uij(x) = t.

By the implicit function theorem, the set Vij is open and the function uij is C1 on Vij .
In order to apply the co-area formula, we need to compute the gradient of uij . For any
point x in Vij , we have by definition

fij(x, uij(x)) = G(x, yj , ψj)−G(x, yi, ψi + uij(x)) = 0.

Differentiating this expression with respect to x, we obtain

∇uij(x) =
∇xG(x, yj , ψj)−∇xG(x, yi, ψi + uij(x))

∂vG(x, yi, ψi + uij(x))

which is well defined since ∂vG(x, yi, v) < 0 on Ω×Y ×R by the (Mono) hypothesis. The
(Twist) condition guarantees that for all x ∈ Vij , the map (y, v) 7→ (G(x, y, v),∇xG(x, y, v))
is injective. By definition of uij we have fij(x, uij(x)), so that

G(x, yj , ψj) = G(x, yi, ψi + uij(x)).

The (Twist) condition then entails

∇xG(x, yj , ψj) ̸= ∇xG(x, yi, ψi + uij(x)),

implying that the gradient ∇uij(x) does not vanish.
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Step 2. Computation of the partial derivatives. We can write the difference
between Laguerre cells using the function uij :

Lagj(ψ
t) \ Lagj(ψ) =

⋃
0<s⩽t

Lagij(ψ
s)

= {x ∈ Ω,∃s ∈]0, t], fij(x, s) = 0} ∩ L
= {x ∈ Ω,∃s ∈]0, t], uij(x) = s} ∩ L
= u−1

ij (]0, t]) ∩ L,

giving directly

Hj(ψ
t)−Hj(ψ) = µ(L ∩ u−1

ij (]0, t])) =

∫
L∩u−1

ij (]0,t])
ρ(x)dx.

Then the co-area formula gives us

Hj(ψ
t)−Hj(ψ)

t
=

1

t

∫
L∩u−1

ij (]0,t])
ρ(x)dx =

1

t

∫ t

0
Hij(ψ

s)ds,

where we introduced

Hij(ψ) =

∫
Lagij(ψ)

ρ(x)

∥∇uij(x)∥
dHd−1(x). (4.3.6)

Note that thanks to the computations above, we already know that the gradient ∇uij(x)
does not vanish. Moreover, for any x in Lagij(ψ) ⊆ Γij(ψ), one has uij(x) = 0. Thus,

∇uij(x) = (∇xG(x, yj , ψj)−∇xG(x, yi, ψi))/(∂vG(x, yi, ψi)).

We can therefore rewrite

Hij(ψ) =

∫
Lagij(ψ)

ρ(x)|∂vG(x, yi, ψi)|
|∇xG(x, yj , ψj)−∇xG(x, yi, ψi)|

dHd−1(x). (4.3.7)

As shown in Proposition 51 below, Hij is continuous on RN . We deduce that

∂Hj

∂ψi
(ψ) = lim

t→0,t>0

Hj(ψ
t)−Hj(ψ)

t
= Hij(ψ) ⩾ 0. (4.3.8)

The case t < 0 can be treated similarly by replacing Lagj(ψ) ⊆ Lagj(ψ
t) with Lagj(ψ

t) ⊆
Lagj(ψ). We thus get the desired expression for the partial derivative ∂Hj/∂ψi for i ̸= j.

To compute the partial derivative for j = i, we use the mass conservation property∑
1⩽i⩽N Hi(ψ) = 1 to deduce that

∂Hi

∂ψi
(ψ) = −

∑
j ̸=i

∂Hj

∂ψi
(ψ).

It remains to show that the functions Hij used in the proof of Proposition 50 are
continuous.

Proposition 51. Under the assumptions of Proposition 50, for every i, j ∈ J1, NK, the
function Hij defined in (4.3.6) is continuous on RN .
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Proof. We introduce the function g : Ω× RN → R defined by

g(x, ψ) = ρ(x)
|∂vG(x, yi, ψi)|

∥∇xG(x, yj , ψj)−∇xG(x, yi, ψi)∥

where ρ is a continuous extension of the probability density ρ|X on Ω. For a given

ψ ∈ RN , the (Twist) hypothesis guarantees that for any x ∈ Γij(ψ), ∇xG(x, yj , ψj) ̸=
∇xG(x, yi, ψi). This implies that g is continuous on a neighborhood of the set {(x, ψ) ∈
Ω× RN |x ∈ Γij(ψ)}. We introduced in Proposition 50 the function

Hij(ψ) =

∫
Lagij(ψ)∩X

g(x, ψ)dHd−1(x).

Let ψ∞ ∈ RN and ψn a sequence converging towards ψ∞.The main difficulty for proving
that Hij(ψ

n) converges to Hij(ψ
∞) as n → +∞ is that the integrals in the definition

of Hij(ψ
n) and Hij(ψ

∞) are over different hypersurfaces, namely Γij(ψ
n) and Γij(ψ

∞).
Our first step will therefore be to construct a diffeomorphism between (subsets) of these
hypersurfaces. We introduce f : R× R× Ω→ R the function defined by

f(a, b, x) = G(x, yj , ψ
∞
j + a)−G(x, yi, ψ∞

i + b)

We put an = ψnj −ψ∞
j and bn = ψni −ψ∞

i , so that an → 0 and bn → 0 as n tends to +∞.
We also have

Γij(ψ
∞) = (f(0, 0, ·))−1(0), Γij(ψ

n) = (f(an, bn, ·))−1(0).

Step 1: Construction of a map Fn between Γij(ψ
∞) and Γij(ψ

n).
This map is constructed using the composition of the flows associated to two vector fields
Xa and Xb. Let Ω̃ ⊂ Ω an open domain containing X. The (Twist) hypothesis guarantees
that there exists a neighborhood Ṽ of the set {(a, b, x) ∈ R2 × Ω̃| f(a, b, x) = 0 } such
that we have for any v ∈ Ṽ , ∇xf(v) ̸= 0. We can then define two vector fields Xa, Xb on
Ṽ by

Xa(a, b, x) =

(
1, 0,−∂af(a, b, x)

∇xf(a, b, x)
∥∇xf(a, b, x)∥2

)
Xb(a, b, x) =

(
0, 1,−∂bf(a, b, x)

∇xf(a, b, x)
∥∇xf(a, b, x)∥2

)
Since f is of class C2, Xa and Xb are both of class C1 on Ṽ . We then consider Φa and Φb
the flows associated respectively to Xa and Xb defined for (t, v) ∈ [−ε, ε]2 × Ṽ by{

Φa(0, v) = v

∂tΦa(t, v) = Xa(Φ(t, v))

and {
Φb(0, v) = v

∂tΦb(t, v) = Xb(Φ(t, v))

The vector fields Xa and Xb are continuously differentiable on Ṽ which implies that both
Φa(t, ·) and Φb(t, ·) converge pointwise in the C1 sense toward the identity as t→ 0. Let
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(t, v) ∈ [−ε, ε]× Ṽ . Denoting ∇f(v) = (∂af, ∂bf,∇xf)(v), we then have

f(Φa(t, v)) = f(Φa(0, v)) +

∫ t

0

∂

∂s

(
s 7→ f(Φa(s, v))

)
ds

= f(v) +

∫ t

0
⟨∇f(Φa(s, v))|∂t Φa(s, v)⟩ds

= f(v) +

∫ t

0
⟨∇f(Φa(s, v))|Xa(Φa(s, v))⟩ds

= f(v)

Similarly one has f(Φb(t, v)) = f(v). Let Π : Ṽ → Ω the projection of Ṽ ⊆ R2 ×Ω on Ω,
and let Fn : Γij(ψ

∞) ∩ Ω̃→ Ω be the function defined by

Fn(x) = Π
(
Φa(an,Φb(bn, (0, 0, x)))

)
.

For x ∈ Γij(ψ
∞) and v = (0, 0, x) ∈ Ṽ , we have

Φa(an,Φb(bn, v)) = (an, bn, Fn(x))

and from the previous equality we deduce that

f(Φa(an,Φb(bn, v))) = f(v) = 0

This means that for x ∈ Γij(ψ
∞), Fn(x) ∈ Γij(ψ

n). Moreover Φa(an, ·) and Φb(bn, ·) are
both invertible of inverse Φa(−an, ·) and Φb(−bn, ·). Thus Fn is also invertible of inverse

F−1
n (x) = Π

(
Φb(−bn,Φa(−an, (an, bn, x)))

)
Since both Φa(an, ·) and Φb(bn, ·) converge pointwise in the C1 toward the identity as
n→ +∞, we have for x ∈ Γij(ψ

∞) ∩ Ω̃ lim
n→+∞

Fn(x) = x,

lim
n→+∞

JFn(x) = 1,

where JFn is the absolute value of the determinant of the Jacobian matrix of Fn.
Step 2: Convergence of Hij(ψ

n) toward Hij(ψ
∞).

We let L∞ = Lagij(ψ
∞) and Ln = F−1

n (Lagij(ψ
n) ∩ Ω̃). Denoting by χA the indicator

function of a set A, we have

Hij(ψ
∞) =

∫
Γij(ψ∞)

g(x, ψ∞)χX(x)χL∞(x)dHd−1(x)

=

∫
Γij(ψ∞)∩Ω̃

g(x, ψ∞)χX(x)χL∞(x)dHd−1(x)

because Γij(ψ
∞) ∩X ⊂ Ω̃. We also have

Hij(ψ
n) =

∫
Γij(ψn)

g(x, ψn)χX(x)χLagij(ψ
n)(x)dHd−1(x)
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By a change of variable from x to Fn(x), the latter equality becomes

Hij(ψ
n) =

∫
Γij(ψ∞)∩Ω̃

g(Fn(x), ψ
n)JFn(x)χX(Fn(x))χLn(x)dHd−1(x)

where JFn(x) denotes the determinant of the Jacobian matrix of Fn. We already have
the pointwise convergences Fn(x)→ x and JFn(x)→ 1 as n→∞. If we can show that

lim
n→+∞

χX(Fn(x))χLn(x) = χX(x)χL∞(x)

for vold−1 almost every point x, then using Lebesgue’s dominated convergence theorem,
we will obtain that Hij(ψ

n)→ Hij(ψ
∞).

We first show that limn→+∞ χLn(x)→ χL∞(x) vold−1-almost everywhere on Γij(ψ
∞)∩

Ω̃. We first consider the superior limit: given x ∈ Γij(ψ
∞)∩Ω̃, we prove that lim supn→∞ χLn(x) ⩽

χL∞(x). The limsup is non-zero if and only if there exists a subsequence (σ(n))n∈N such
that ∀n ∈ N, x ∈ Lσ(n). In this case we have Fσ(n)(x) ∈ Fσ(n)(Lσ(n)) = Lagij(ψ

σ(n)) ∩ Ω̃.
This means that for any k ̸= i, j

G(Fσ(n)(x), yi, ψ
σ(n)
i ) = G(Fσ(n)(x), yj , ψ

σ(n)
j ) ⩽ G(x, yk, ψ

σ(n)
k )

Since G is continuous the previous inequality passes to the limit n → ∞, showing that
x ∈ L∞, and that

lim sup
n→∞

χLn(x) ⩽ χL∞(x)

We now want to show lim infn→∞ χLn(x) ⩾ χL∞(x). If x /∈ L∞ the result is straightfor-
ward. Let us consider the set

Sij =

 ⋃
k ̸=i,j

Γijk(ψ
∞)

 ∪ (Γij(ψ
∞) ∩ ∂X) (4.3.9)

By the genericity hypothesis (Definition 32) we have Hd−1(Sij) = 0. If x ∈ L∞ \ Sij , by
definition we get for every k ̸∈ {i, j} that x does not belong to Γjk(ψ

∞). This implies a
strict inequality

G(x, yi, ψ
∞
i ) = G(x, yj , ψ

∞
j ) < G(x, yk, ψ

∞
k ).

Since Fn(x) converges to x and since ψn converges to ψ∞, we get for n large enough{
G(Fn(x), yi, ψ

n
i ) < G(Fn(x), yk, ψ

n
k )

G(Fn(x), yj , ψ
n
j ) < G(Fn(x), yk, ψ

n
k ).

Moreover since x ∈ Γij(ψ
∞), Fn(x) ∈ Γij(ψ

n). Combining the inequalities above, this

shows that Fn(x) belongs to Lagij(ψ
n) ∩ Ω̃ = Fn(Ln), i.e. x ∈ Ln. This gives us

∀x ̸∈ Sij , lim inf
n→∞

χLn(x) ⩾ χL∞(x).

Consider x ̸∈ Sij . For such x, we already know that χLn(x) → χL∞(x) as n → +∞.
Thus, if x does not belong to L∞, we directly have

lim
n→+∞

χLn(x)χX(Fn(x)) = χL∞χX(x) = 0.

We may now assume that x belongs to L∞ \ Sij . By definition of Sij , this implies that
x /∈ ∂X. We can directly deduce that χX is continuous at x and that χX(Fn(x))→ χX(x)
when n→ +∞.

In conclusion we have that Hij(ψ
n)→ Hij(ψ

∞), so that Hij is continuous.
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4.3.2 Kernel and image of DH

The goal of this section is to prove Proposition 52 that gives properties on the differential
of the mass function H. We consider the admissible set

S+ =
{
ψ ∈ RN | ∀i ∈ J1, NK, Hi(ψ) > 0

}
. (4.3.10)

Proposition 52. In addition to the assumptions of Proposition 50, we assume that

int(X) ∩ {ρ > 0} is path-connected ,

where int(X) is the interior of X. Then we have for any ψ ∈ S+

� The differential DH(ψ) has rank N − 1;

� The image of DH is im(DH(ψ)) = 1⊥ where 1 = (1, · · · , 1) ∈ RN ;
� For any w ∈ ker(DH(ψ)) \ {0}, we have for all i ∈ J1, NK, wi ̸= 0 and all wi have
the same sign.

The next two lemmas have already been included in the recent survey on optimal
transport involving the second and third authors [54], but we include them here for
completeness. The proof of Proposition 52 is different from the previous work in optimal
transport because H is not symmetric.

Lemma 53. Let U ⊂ Rd be a path-connected open set, and S ⊂ Rd be a closed set such
that Hd−1(S) = 0. Then, U \ S is path-connected.

Proof. It suffices to treat the case where U is an open ball, the general case will follow
by standard connectedness arguments. Let x, y ∈ U \ S be distinct points. Since U \ S
is open, there exists r > 0 such that B(x, r) and B(y, r) are included in U \ S. Consider
the hyperplane H orthogonal to the segment [x, y], and ΠH the projection on H. Then,
since ΠH is 1-Lipschitz, Hd−1(ΠHS) ⩽ Hd−1(S) = 0, so that H \ ΠHS is dense in the
hyperplane H. In particular, there exists a point z ∈ ΠH(B(x, r)) \ S = ΠH(B(y, r)) \ S.
By construction the line z+R(y−x) avoids S and passes through the balls B(x, r) ⊂ U \S
and B(y, r) ⊂ U \ S. This shows that the points x, y can be connected in U \ S.

We define for ψ ∈ RN the graph Gψ = (V,E) with vertex set V = {1, . . . , N} with
edges

E =

{
(i, j) ∈ V 2 | ∂Hi

∂ψj
(ψ) > 0

}
We have the following result.

Lemma 54. Under the assumptions of Proposition 52 and for ψ ∈ S+, the graph Gψ is
connected.

Proof. Let Z = int(X) ∩ {ρ > 0}, and S =
⋃
ij Sij where Sij is defined in (4.3.9).

From Lemma 53 the set Z \ S is path connected, we also have µ(Z \ S) = 1 since
µ(∂X) = µ(S) = 0. Suppose that Gψ is not connected. Let i0 ∈ J1, NK, and let I0 be the
connected component of i0 in the graph Gψ. We thus have i0 ∈ I0 ̸= J1, NK. We consider
the two non-empty sets

U1 =
⋃
i∈I0

Lagi(ψ) ∩ (Z \ S) and U2 =
⋃
i/∈I0

Lagi(ψ) ∩ (Z \ S),
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which partition Z \ S up to a Lebesgue-negligible set. Moreover, since ψ ∈ S+,
U1 ∪ U2 = Z \ S,
0 < µ(U1) < 1,

0 < µ(U2) < 1.

By construction U1 and U2 are closed sets in Z \ S. Since µ(Ui) > 0 we can pick x and
y in Z \ S such that x ∈ U1 and y ∈ U2. The Z \ S being path-connected, we know
that there exists a path γ ∈ C0([0, 1], Z \ S) satisfying γ(0) = x and γ(1) = y. We
let t = max{s ∈ [0, 1]|γ(s) ∈ U1} and we are going to show that γ(t) ∈ U1 ∩ U2. By
construction, γ(t) obviously belongs to U1. Now if t = 1 we have γ(t) = y ∈ U2. If not,
we have for all ϵ > 0 that γ(t + ϵ) ∈ U2. Since U2 is relatively closed in Z\ and since γ
is continuous, we have γ(t) ∈ U2. Naming z = γ(t), there exists i ∈ I0, j /∈ I0 such that
z ∈ Lagi(ψ) ∩ Lagj(ψ). Moreover, since z /∈ S we get that for any k /∈ {i, j},

G(z, yi, ψi) = G(z, yj , ψj) > G(z, yk, ψk).

By continuity of G we can deduce that there exists an open ball of radius r > 0 such that

∀x ∈ B(z, r),∀k /∈ {i, j}, G(x, yi, ψi) > G(x, yk, ψk)

This implies that
B(z, r) ∩ Γij(ψ) ⊂ Lagij(ψ)

where Γij(ψ) is defined in Definition 32. By (Twist) condition and the inversion function
theorem, we know that Γij(ψ) is a d− 1 dimensional manifold and z ∈ Γij(ψ). Moreover
we have ρ(z) > 0 because z ∈ Z and ρ is continuous on Z ⊂ X by hypothesis. We now
have

∂Hi

∂ψj
(ψ) =

∫
Lagij(ψ)

ρ(x)
|∂vG(x, yi, ψi)|

∥∇xG(x, yj , ψj)−∇xG(x, yi, ψi)∥
dHd−1(x)

⩾
∫
B(z,r)∩Γij(ψ)

ρ(x)
|∂vG(x, yi, ψi)|

∥∇xG(x, yj , ψj)−∇xG(x, yi, ψi)∥
dHd−1(x) > 0

which is a contradiction with the hypothesis that i and j are not connected in the graph
Gψ.

Proof of Proposition 52. We note the matrix M = DH(ψ), with coefficients mi,j =
∂Hi/∂ψj(ψ). We first show that ker(MT ) = span(1). The inclusion 1 ∈ ker(MT ) follows
from

N∑
i=1

mi,j =
∂

∂ψj

(
N∑
i=1

Hi(ψ)

)
= 0.

Consider now v ∈ ker(MT ), and pick an index i0 where v is maximum, i.e. i0 ∈
argmax1⩽i⩽N vi. We have

0 = (MT v)i0 =

N∑
i=1

mi,i0vi =
∑
i ̸=i0

mi,i0vi +mi0,i0vi0 =
∑
i ̸=i0

mi,i0(vi − vi0).

Since ψ ∈ S+, we have by Proposition 50 that for i ̸= i0, mi,i0 ⩾ 0. By definition of i0
we also have vi − vi0 ⩽ 0. From all this we deduce that vi = vi0 for any i ̸= i0 satisfying
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mi,i0 > 0, i.e. any vertex i adjacent to i0 in the graph Gψ. By connectedness of Gψ, we
conclude that v = vi01, thus showing ker(MT ) = span(1).

We can deduce from this result that M is of rank N − 1 because rk(M) = rk(MT ) =
N − 1. Moreover for any u ∈ RN ,

⟨1,Mu⟩ = (Mu)T1 = uTMT1 = 0.

Since the spaces im(M) and 1⊥ have the same dimension, we immediately get im(M) =
1⊥.

Let w ∈ ker(M) \ {0}, we now want to show that for all i ∈ J1, NK, wi ̸= 0 and that
all of the wi have the same sign. The proof consists in two steps:

� Step 1: we show that w ⩾ 0 (or −w ⩾ 0).

� Step 2: we show that for i ∈ J1, NK, wi > 0.

We define λ = maxi |mi,i| and A = λI +M . With these definitions, v belongs to ker(M)
if and only if Av = λv. Moreover, for any i, j ∈ J1, NK, one has ai,j ⩾ 0 and

N∑
k=1

ak,j = λ.

Step 1: Assume that there exists i0 ∈ J1, NK such that wi0 ⩾ 0 (we can do this without
loss on generality, by working on −w otherwise). Suppose that there exists j ̸= i0 such
that ai0,j > 0 and wj < 0, then since Aw = λw, we have λwi0 =

∑N
j=1 ai0,jwj and

thus λ|wi0 | <
∑N

j=1 ai,j |wj |. We also have for any i ∈ J1, NK, λ|wi| ⩽
∑N

j=1 ai,j |wj |. By
summing this inequality on i and since the inequality is strict when i = i0, we obtain

N∑
i=1

λ|wi| <
N∑
i=1

N∑
j=1

ai,j |wj | =
N∑
j=1

|wj |
N∑
i=1

ai,j =

N∑
j=1

λ|wj |,

which is a contradiction, so we can affirm that there exists no index j ̸= i0 such that
wj < 0 and ai0,j > 0. Since A = M + λI, for j ̸= i0, ai0,j = mi0,j . We thus have
∀j ∈ J1, NK,mi0,j > 0 =⇒ wj ⩾ 0. By connectedness of G we deduce w ⩾ 0.

Step 2: If there exists i ∈ J1, NK such that wi = 0, then
∑

j ai,jwj = 0. Recall that by
construction ai,j ⩾ 0 and with step 1 wj ⩾ 0, so we have ∀j, ai,j > 0 =⇒ wj = 0. Again
by connectedness of G we have w = 0.

Remark 55. Remark that a part of the proof of Proposition 52 could also be seen as a
consequence of the Perron Frobenius theorem, using the notions of irreducible and stochas-
tic matrices. The matrix A = M + λI can be written A = λS where ST is a stochastic
matrix. The matrix S is thus of spectral radius 1 and A is of spectral radius λ. Since M
is irreducible, A is also irreducible. Perron Frobenius Theorem then implies that λ is a
simple eigenvalue with an associated eigenvector w satisfying wi > 0 for any i ∈ J1, NK.
Since Av = λv ⇐⇒ Mv = 0, we can deduce that rk(M) = N−1 and ker(M) = span(w).
Moreover since 1 ∈ ker(MT ), we have for any u ∈ RN , ⟨1,Mu⟩ = (Mu)T1 = uTMT1 = 0
and im(M) = 1⊥.
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4.3.3 Damped Newton algorithm

In this section, we present a damped Newton algorithm to solve the generated Jacobian
equation (GJE), namely H(ψ) = ν. For this purpose we define in the following lemma an
admissible set of variable that can be used in our algorithm.

Lemma 56 (Admissible set). Suppose that the hypothesis of Proposition 50 are satisfied.
For any δ > 0, there exists α ∈ R such that the set

Sα,δ :=
{
ψ ∈ RN | ψ1 = α and ∀i ∈ J1, NK, Hi(ψ) ⩾ δ

}
⊂ S+ (4.3.11)

is a compact subset of RN . Furthermore for δ small enough, the set (4.3.11) is non-empty.

Proof. Let γ ∈ R and M = max(x,y)∈X×Y G(x, y, γ), where M is finite thanks to the
continuity of G and compactness of X × Y . From the condition (UC), there exists α ∈ R
such that minx∈X G(x, y1, α) > M . If ψ ∈ RN is such that ψ1 = α and ψi > γ for some
i ⩾ 2, then using (Mono),

∀x ∈ X,G(x, y1, α) > M ⩾ G(x, yi, γ) ⩾ G(x, yi, ψi),

thus implying that Lagi(ψ) = ∅, and in particular ψ ̸∈ Sα,δ. We argue similarly to
show an upper bound on the elements of Sα,δ: by (UC), there exists β ∈ R such that
min(x,y)∈X×Y G(x, y, β) > maxx∈X G(x, y1, α). If ψ ∈ RN is such that ψ1 = α and ψi < β
for some i ⩾ 2, then using (Mono), we get

∀x ∈ X,G(x, yi, ψi) ⩾ G(x, yi, β) > G(x, y1, α),

thus showing that Lag1(ψ) = ∅, so that ψ ̸∈ Sα,δ. The set Sα,δ can be written as
Sα,δ = {α} × ∩H−1([δ, 1]N ), and is therefore closed by continuity of H. The previous
computations show that Sα,δ ⊆ {α} × [β, γ]N−1, proving that Sα,δ is compact.

Now suppose that δ ⩽ 1/2N−1, then we can iteratively construct a vector ψ ∈ Sα,δ
in the following way. We start from ψ = (α, γ, · · · , γ) ∈ RN . We then have H1(ψ) = 1
and for any i ⩾ 2, Hi(ψ) = 0. Then for all i from 2 to N can decrease ψi such that
Hi(ψ) = 1/2i−1. Then after iteration i we have

∀k < i,Hk(ψ) ⩾
1

2k−1
−

∑
k+1⩽j⩽i

1

2j−1
=

1

2i−1

After iteration N we thus have that for all i ∈ J1, NK, Hi(ψ) ⩾ 1/2N−1 ⩾ δ, and since
ψ1 = α has not been changed during the process we have ψ ∈ Sα,δ and Sα,δ ̸= ∅.

The differential of H is not invertible, but we can still define a Newton’s direction by
fixing one coordinate:

Proposition 57 (Newton’s direction). Under the assumptions of Proposition 52, the
system {

DH(ψ)u = H(ψ)− ν
u1 = 0

(4.3.12)

has a unique solution in RN .

Proof. Notice that from Proposition 52,DH(ψ) is of rankN−1 and sinceH(ψ)−ν ∈ 1⊥ =
im(DH(ψ)), the set S = {u ∈ RN |DH(ψ)u = H(ψ) − ν} is of dimension 1. For u ∈ S
and w ∈ ker(DH(ψ)) \ {0}, S = {u+ tw, t ∈ R}. Since w1 ̸= 0 for w ∈ ker(DH(ψ)) \ {0},
system (4.3.12) has a unique solution.
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Algorithm 1 Damped Newton algorithm to solve (GJE)

Require: ϵ > 0; initialization ψ0 ∈ Sα,δ where δ ⩽ mini νi/2
Ensure: ψ such that ∥H(ψ)− ν∥ ⩽ ϵ
1: k ← 0
2: while ∥H(ψk)− ν∥ > ϵ do
3: Define uk as the solution of the linear system{

DH(ψk)u = H(ψk)− ν
u1 = 0

4: Compute τk by backtracking, i.e.

τk = max{τ ∈ 2−N|ψk,τ = ψk − τuk ∈ Sα,δ and

∥H(ψk,τ )− ν∥ ⩽ (1− τ

2
)∥H(ψk)− ν∥}

5: ψk+1 ← ψk − τkuk and k ← k + 1

6: return ψk

Theorem 58 (Linear convergence). Assume the following assumptions:

� the generating function G ∈ C2(Ω×Y ×R) satisfies the assumptions (Reg), (Mono),
(Twist), (UC), (GenYΩ), (GenY∂X),

� X ⊆ Ω is compact and ρ is a continuous probability density on X.

� int(X) ∩ {ρ > 0} is is path-connected.

Then, there exists τ∗ ∈]0, 1] such that the iterates of Algorithm 1 satisfy

∥H(ψk)− ν∥ ≤
(
1− τ∗

2

)k
∥H(ψ0)− ν∥. (4.3.13)

In particular, Algorithm 1 terminates.

Proof. Let ψ0 ∈ Sα,δ, we define the set

Kδ = {ψ ∈ Sα,δ, ∥H(ψ)− ν∥ ⩽ ∥H(ψ0)− ν∥}

Since the function H is continuous, the set Kδ is non-empty and compact. Note that
system (4.3.12) has N + 1 lines for N variables, and we know that the last line u1 = 0,
which can be written eT1 u = 0, is linearly independent from the others. We can thus
rewrite the system in the following form

M(ψ)u = H(ψ)− ν (4.3.14)

where M(ψ) = DH(ψ) + e1e
T
1 . Obviously if u is a solution of (4.3.12) then it is also

a solution of (4.3.14). Now if u is a solution of (4.3.14), since e1 /∈ im(DH(ψ)) and
H(ψ) − ν ∈ im(DH(ψ)), we have e1e

T
1 u = eT1 ue1 = 0 which means that the scalar

eT1 u = 0 and thus, u satisfies (4.3.12). Since (4.3.14) has a unique solution, M(ψ) is thus
invertible. Let uψ solution of (4.3.14) for a given ψ. We have uψ = M−1(ψ)(H(ψ)− ν).
We thus have for any ψ ∈ Kδ that ∥uψ∥ ⩽ ∥M−1(ψ)∥op∥(H(ψ)−ν)∥ where ∥ ·∥op denotes
the operator norm inMN (R). The function ψ 7→M(ψ) is continuous and M is invertible
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so ψ 7→ ∥M−1(ψ)∥op is also continuous and admits a maximum on the compact set Kδ.
We note C = maxψ∈Kδ ∥M−1(ψ)∥op so we have for any ψ ∈ Kδ, ∥uψ∥ ⩽ C∥H(ψ)− ν∥.
Let ψ ∈ Kδ and ψτ = ψ − τuψ for τ ∈ [0, 1]. The first coordinate of ψτ satisfies ψτ1 = α.
For a small τ we can write the Taylor expansion

H(ψτ ) = H(ψ)− τDH(ψ)uψ + o(τ∥uψ∥)
= H(ψ)− τ(H(ψ)− ν) + o(τ∥H(ψ)− ν∥)

it follows that

∥H(ψτ )− ν∥ = (1− τ)∥H(ψ)− ν∥+ o(τ∥H(ψ)− ν∥)

and thus there exists τ1ψ > 0 such that for all τ ∈]0, τ1ψ[

∥H(ψτ )− ν∥ ⩽ (1− τ

2
)∥H(ψ)− ν∥

By compactness of Kδ, this property holds on an uniform open range ]0, τ1[.
Moreover, coordinatewise we have for i ∈ J1, NK,

Hi(ψ
τ ) = (1− τ)Hi(ψ) + τνi + o(τ∥H(ψ)− ν∥)

and since νi ⩾ 2δ there exists τ2ψ > 0 such that

∀τ ∈]0, τ2ψ[, ∀i ∈ J1, NK, Hi(ψ
τ ) ⩾ (1 +

τ

2
)δ.

Then again by compactness of Kδ, there exists τ2 > 0 such that for all ψ ∈ Kδ and
τ ∈]0, τ2[, ψτ ∈ Sα,δ. This implies that the chosen τk in the algorithm will always be
larger than

τ∗ =
1

2
min(τ1, τ2).

By definition of the iterates, we deduce at one that

∥H(ψk+1)− ν∥ ⩽ (1− τ∗

2
)∥H(ψk)− ν∥,

thus proving the desired convergence result.

Remark 59 (Existence). Note that the convergence of the algorithm allows to recover the
existence of a solution to the semi-discrete generated Jacobian equation. To obtain this
result we need the set Sα,δ to be non-empty, which is the case by Lemma 56 if δ is small
enough. Moreover, it can be shown that if Sα,δ is connected, then there is uniqueness of
the solution when ψ1 is fixed. Indeed, the set { ψ0 | limk→+∞ ψk = ψ} is open in Sα,δ,
which implies that if there exists two distinct solutions in Sα,δ then one can partition it
into two open sets, which is impossible if it is connected.

4.4 Application to the near field parallel reflector problem

The near field parallel reflector problem (NF-par) is a non-imaging optics problem pre-
sented in Section 2.4 that cannot be recast as an optimal transport problem [47, 57], but
that can be written as a generated Jacobian equation [40, 1]. We show in this section
that we can apply the Damped Newton algorithm to solve this problem.
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4.4.1 Generated Jacobian equation.

To have a detailed presentation of the near field parallel reflector problem (NF-par), the
reader is invited to refer to Section 2.4. We recall here that X is a domain of R2 and Y
is a finite set of size N in R2, both embedded in R2 × {0}. We search a mirror surface Σ
that is the graph of the function

u(x) = max
y∈Y

1

2ψ(y)
− ψ(y)

2
∥x− y∥2.

to which we associate the map TΣ : X → Y such that any ray of light x ∈ X is reflected
toward the point TΣ(x) ∈ Y . Then Equation (NF-par) amounts to finding ψ : Y → R
such that for any y ∈ Y , µ(T−1

Σ (y)) = ν(y).
We define G : Ω× Y × R∗

+ → R by

G(x, y, v) =
1

2v
− v

2
∥x− y∥2 (4.4.15)

where Ω is a bounded open set containing X. Then for every y ∈ Y , one has T−1
Σ (y) =

Lagy(ψ). In order to show that the semi-discrete version of Near Field problem (NF-par)
can be solved using our algorithm, we need to show that the generating function G satisfies
all the hypothesis of Definition 25.

The conditions (Reg), (Mono) and (UC) are easy to verify, as mentioned in [1]. This
follows from the fact that (x, y, v) 7→ G(x, y, v) is continuously differentiable in x and v,
that ∇xG(x, y, v) = v(y − x) and that ∂vG(x, y, v) = −1/(2v2)− v∥x− y∥2/2. The (UC)
condition is satisfied because Ω is bounded. Concerning the Twist assumption, F. Abedin
and C. Gutierrez [1] introduce a necessary condition that they call Visibility condition.
This condition is that for any two point yi, yj ∈ Y the line containing these two points
does not intersect X. Since X and Y lie in the same plane R2×{0}, this condition is quite
restrictive in practice. We show below that it is not necessary here, since it is sufficient
to have the (Twist) Condition on some interval ]0, γ[ with γ ∈ R+.

Proposition 60. The function G satisfies the (Twist) condition on X × Y×]0, γ[ where
γ satisfies

γ < inf
(x,y)∈X×Y

1

∥x− y∥
Proof. Let x ∈ X, and suppose that G(x, y1, v1) = G(x, y2, v2) and that ∇xG(x, y1, v1) =
∇xG(x, y2, v2), with vi ∈]0, γ] and yi ∈ Y . The second condition implies that v1(y1 −
x) = v2(y2 − x), which implies that x, y1 and y2 are collinear. We then have y1 − x =
(v2/v1)(y2 − x). Plugging this in the relation G(x, y1, v1) = G(x, y2, v2) gives

1

2v1
− v1

2

v22
v21
∥x− y2∥2 =

1

2v2
− v2

2
∥x− y2∥2

which gives
1

2v1
(1− v22∥x− y2∥2) =

1

2v2
(1− v22∥x− y2∥2),

thus we have either (y1, v1) = (y2, v2) or v2 = 1/∥x − y2∥. The latter implying that
v2 > γ, which is not possible since by assumption v2 ⩽ γ. It follows that y, v 7→
(G(x, y, v),∇xG(x, y, v)) is injective on Y×]0, γ] for any x ∈ X.

Having the (Twist) hypothesis only satisfied on ]0, γ] instead of R+ is not restrictive
numerically, as we can initialize the iterate at ψ0 = (α, γ, · · · , γ) with α arbitrarily small
and then guarantee that each coordinates stays below γ. In the physical problem, this
condition means that each piece of paraboloid has to be ”high enough”.
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4.4.2 Laguerre and Möbius diagram.

In order to solve the Generated Jacobian equation (NF-par) with the Damped Newton
algorithm, we study the Laguerre diagram induced by the generating function G. We
observe that it is a particular instance of a Möbius diagram [13]. This will be useful to
get a geometric condition that implies genericity (necessary to apply Algorithm 1) and it
will also be used for the numerical computation of the Laguerre diagram.

Definition 33 (Möbius diagram). The Möbius diagram of a family ω = (ωi)1⩽i⩽N of N
triplets ωi = (λi, µi, pi) ∈ R× R× Rd is the decomposition of the space into Möbius cells
Mi(ω) defined by

Mi(ω) =
{
x ∈ Rd| ∀j ∈ J1, NK, λi∥x− pi∥2 − µi ⩽ λj∥x− pj∥2 − µj

}
A simple calculation shows the boundary of Möbius cells is composed of arc of (possibly

degenerated) circles [13].

Proposition 61. For any pi ̸= pj, the intersection Mi(ω) ∩Mj(ω) between two Möbius
cells is either empty, or an arc of circle whose center belong to the line passing through
pi and pj, or the bisector of pi and pj.

Note that if we define λi = ψi/2, µi = 1/2ψi and pi = yi, then the Laguerre cells are
Möbius cells, namely

Lagi(ψ) =Mi(ω) ∩ Ω.

This allows to show that the conditions (GenYΩ) and (GenY∂X) that are required to show
the convergence of Algorithm 1 are not restrictive. Indeed, by the previous proposition,
the interface Γij(ψ) between the two Laguerre cells associated to yi and yj is contained
in a circle for which the center is on the line passing through yi and yj . This circle
can degenerate into a line, in this case it is the bisector between yi and yj . Suppose
that Y does not contain three collinear points, then for any distinct i, j, k, Γijk(ψ) is the
intersection of two circles with different centers and (GenYΩ) is satisfied. Similarly if ∂X
doesn’t contain any circle arc, nor bisectors of any two points of Y , then (GenY∂X) is also
satisfied. This allows to prove the following theorem.

Theorem 62. Suppose that Y does not contain three aligned points, and that ∂X doesn’t
contain any circle arc, nor bisectors of any two points of Y . Assuming that the measures
µ and ν satisfy the mass balance µ(X) = ν(Y ) and that µ is absolutely continuous with
a continuous density ρ such that int(X) ∩ {ρ > 0} is path-connected. Then the Damped
newton Algorithm (Algorithm 1) converges toward a solution of (NF-par).

Remark 63. The Generating function is defined on Ω× Y×]0, γ[ instead of Ω× Y ×R.
As mentioned in Remark 44, if ζ : R→]0, γ[ is a C1-diffeomorphism, then the function G̃
defined by G̃(x, y, v) = G(x, y, ζ(v)) is a generating function defined on Ω × Y × R and
we can apply Algorithm 1 to G̃.

4.4.3 Implementation.

The main difficulty in the implementation of the Newton algorithm is the evaluation of
the function H and of its differential DH, which requires an accurate computation of the
Laguerre diagram. For this, we use the fact that a Möbius diagram can be obtained by
intersecting a 3D Power diagram with a paraboloid [13].
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Definition 34 (Power diagram). The power diagram of a set of N weighted points P =
((pi, ri))1⩽i⩽N where pi ∈ Rd and ri ∈ R is the decomposition of the space into Power
cells given by

Powi(P) = {x ∈ Rd|∀j ∈ J1, NK : ∥x− pi∥2 − ri ⩽ ∥x− pj∥2 − rj}

Proposition 64. The Laguerre cells associated to the generating function G defined in
(5.3.10) are given for any i by

Lagi(ψ) = Π(Powi(P) ∩ P ) ∩ Ω,

where P is the paraboloid in R3 parametrized by x3 = x21 + x22, Π is the projection of R3

on R2 defined by Π(x, y, z) = (x, y), and (Powi(P))1⩽i⩽N is the Power diagram associated
to the weighted points P given by

∀i ∈ J1, NK :


pi =

(
ψi
2
yi,
−ψi
4

)
ri =

ψ2
i

16
+
ψ2
i ∥yi∥2

4
− ψi∥yi∥2

2
+

1

2ψi

(4.4.16)

In our implementation of the algorithm, the intersection of power diagrams with a
paraboloid is computed using an algorithm presented in [52]. Once the diagram is com-
puted, the function H and its differential DH are computed using the trapezoidal rule.
Numerical experiments are performed withX = [−1, 1]2 and µ equal to (one fourth) of the
restriction of the Lebesgue measure on X. The set Y is randomly generated in the square
[0, 1]2 for different values of N , associated with a discrete uniform measure ν. Figure 5
(left) shows the initial diagram (Lagi(ψ))1⩽i⩽N with N = 5000 for some vector ψ = λ1
with λ > 0. Figure 5 (right) is the same diagram after convergence of the algorithm,
where ψ is an approximate solution of (NF-par). The graph of Figure 6 represents the
error ∥H(ψk)− ν∥1 as a function of iteration k. It shows superlinear convergence of the
damped Newton method.

Remark 65 (Number of iterations in Algorithm 1). Using inequality (4.3.13) of Theo-
rem 58 and ∥H(ψ) − ν∥ ⩽ 2 for any ψ ∈ RN , we get an upper bound on the number of
iterations of Algorithm 1:

kmax =

⌈
ln(ϵ/2)

ln(1− τ∗/2)

⌉
,

where ⌈x⌉ denotes the smallest integer greater than x. The τ∗ parameter is obtained by
compactness and might depend on N . However, for a fixed N , the number of iterations
of the damped Newton algorithm is O(log(1/ϵ)).
The most expensive part (in terms of time) of the algorithm is the evaluation of the
function H, since it requires the computation of Laguerre cells. In all our experiments
we observe that τk is equal to 1 when k ⩾ 5 iterations, so that at each iteration k ⩾ 5,
there is only one evaluation of the function H. Overall, Figure 7 shows that the overall
number of evaluations of H remains low with Algorithm 1. Numerically, we also observe
in Figure 6 a quadratic convergence of the Newton’s algorithm.

Comparison with the iterative method of [1]

It is not straightforward to theoretically compare the computational complexities of our
algorithm with the iterative method of [1]. The main reason is that the two analyses
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Figure 5: Initial diagram for N = 5000, and final diagram, after convergence of the
algorithm.

Figure 6: Numerical error ∥H(ψk)− ν∥1 as a function of the iteration k.

Precision ϵ 10−1 10−2 10−3 10−4 10−5 10−6

# eval of H (our algorithm) 4 4 5 5 6 6

# eval of H (algorithm of [1]) 1923 3729 5464 8317 10087 12696

Figure 7: Comparison of two algorithms for different values of ϵ and N = 10.
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involve some constants that depend on N . The algorithm presented in [1] to solve the
generated Jacobian equation at a precision ϵ requires O(N3/ϵ) evaluations of H, even
disregarding the linear searches. However the constant hidden in the O(·) notation de-
pends on several quantities such as the (Twist) parameter λ in the Lipschitz constant
of [1, Theorem 5.1], which typically depends on N . As explained above, our algorithm
only requires O(log(1/ϵ)) iterations, but the constant hidden in the notation O(·) involves
a constant τ∗ that (a priori) also depends on N . We still note that for a fixed N , the
number of iteration in our algorithm is O(log(1/ϵ)) while it is O(1/ϵ) for the one of [1].
Since the most computationally expensive part of both algorithms is the evaluation of the
function H, we evaluate numerically their efficiency by comparing the number of evalu-
ations of H. Figure 7 compares numerically the two algorithms when N = 10 and for
different values of ϵ, and shows that for small values of ϵ, the number of evaluations of H
can be several orders of magnitude lower with our algorithm.

On the limitations of the Newton algorithm.

The bottleneck of the algorithm is the computation of the Laguerre diagram. There
exists no general algorithm to compute the Laguerre cells, each case has to be treated
separately and can be quite difficult to implement. For instance, in our implementation
of the Near-field reflector problem, we intersect a power diagram in R3 with a paraboloid
to compute the Möbius diagram in R2. The complexity of the Möbius diagram in Rd is
O(N log(N) + N ⌊d/2⌋+1) operations [13]. Still the constant hidden in the O notation is
quite big. Another drawback is that the computation of the diagram scales exponentially
badly with the dimension, which is true for any type of Laguerre diagram. This is not
really a problem in optics since we always work in R3, but it can be in other applications
of the generated Jacobian equations.

The other costly operation is to solve the linear system at each iteration. We used the
LU decomposition provided by the numpy.linalg library. Even though is has a complexity
of O(N3) operations, it is still much quicker than the computation of the diagram. This
is why we did not bother using the sparsity of the matrices to improve the computational
speed of this step. Yet it is not very relevant to compare the time spent computing the
diagram and solving the linear system in our experiments as we do not have an optimal
implementation of all the steps. It is likely that for some big enoughN the resolution of the
system will take more time than the computation of the diagram in our implementation,
but this N is too big for us to observe.
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Chapter 5

Entropic regularization of
generated Jacobian equations

In the literature, entropic regularization has been widely studied in optimal transport. It
is an efficient way to modify the problem to make it somewhat more regular. Roughly
speaking, entropic regularization of optimal transport consists in adding a small entropy
(e.g. a Kullback-Liebler divergence) with parameter ε > 0 in the Kantorovich problem,
that acts as a regularizer. By doing so, when passing to the dual, the maximum in
the c-transform is replaced by a softmax, i.e. a regular function that converges toward
a maximum as ε → 0. In other words instead of partitioning the source space X in
Laguerre cells, we have a partition of unity composed of smooth functions that we will
name “smoothed” Laguerre cells. In the semi-discrete setting, Genevay et al [4] use these
smoothed Laguerre cells to write a stochastic gradient descent algorithm for the entropic
optimal transport problem.

In this chapter, we introduce an entropic regularization of generated Jacobian equa-
tions. These equations have no variational formulation, but can also be expressed using
Laguerre cells. Our regularization is thus inspired of the dual formulation of regularized
optimal transport, in the sense that we construct smoothed Laguerre cells for generated
Jacobian by copying the formulation of the smoothed cells in optimal transport. We ob-
tain a regularized problem for which we show that there exists solution. Once we have
a regularized formulation, we can adapt the stochastic gradient descent (SGD)algorithm
of Genevay et al [4] to generated Jacobian equations. Due to the nature of our equa-
tions, the algorithm is a stochastic fixed point instead of a SGD. To this day it is still
a heuristic, the convergence is tested numerically on an example but there is no theo-
retical proof. Entropic regularization is also possible in the discrete generated Jacobian
equations in economics, which in this field is known under the terminology of equilibrium
matching [27].

5.1 Semi-discrete Entropic optimal transport

Before going into the details of regularized generated Jacobian equation, we will present
briefly the entropic regularization of optimal transport. Through the whole section we
will only consider again the semi-discrete setting, meaning that we want to transport an
absolutely continuous measure ρ ∈ Pac(X) toward a discrete measure ν ∈ P(Y ), where
X is a compact subset of Rd and Y = {yi}1⩽i⩽N is a finite set of Rd. Since Y is finite,
the measure ν ∈ P(Y) can be identified with a vector ν ∈ RN , i.e. ν =

∑
i νiδyi where
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νi > 0 and δyi is the dirac measure at yi.

5.1.1 Entropic regularization of optimal transport

The optimal transport problem is hard to solve numerically, especially because the com-
putation of the Laguerre tessellation is quite demanding and very case dependent. To
avoid these difficulties, one solution is to regularize the problem. This allows to approx-
imate the problem by a smooth strictly convex optimization problem. This algorithm is
easy to implement and can converge quickly in some cases [21]. The regularized optimal
transport consists in adding an entropy term to (KP).

Definition 35 (Entropy of a measure). Let π = λX ⊗1Y be the reference measure, where
λX is the Lebesgue measure on X and 1Y =

∑
y∈Y δy is the counting measure on Y . Then

the entropy of a measure γ ∈ P(X × Y ) is defined by

H(γ) =
∑
y∈Y

∫
X
γ(x, y)(log(γ(x, y))− 1)dλX(x).

where γ(x, y) is the density of γ with respect to π. By convention, H(γ) = +∞ if γ is
not absolutely continuous with respect to π.

Let ε > 0. The semi discrete entropic optimal transport problem is the following:

(KPε) := inf
γ∈Γ(ρ,ν)

∫
X×Y

c(x, y)dγ(x, y) + εH(γ) (KPε)

As it is the case for regular optimal transport, the dual formulation of the regularized op-
timal transport amounts to maximizing a concave function which is called the regularized
Kantorovich function.

Formal derivation of the dual formulation. Let M(X × Y ) be the set of all the
measures on X × Y . To write the dual problem of this formulation, we consider the
Lagrangian defined for γ ∈M(X × Y ) by

L(γ, φ, ψ) =

∫
X×Y

cdγ + εH(γ) +
∫
X
φd(ρ− γ(·, Y )) +

∫
Y
ψd(γ(X, ·)− ν)

where φ : X → R and ψ : Y → R are the Lagrange multipliers of the marginal constraints,
and γ(·, Y ) and γ(X, ·) are the marginals of γ. Note that the sign conventions of the dual
problem does not match the one of Chapters 2 and 3. This is done so that we recover
the framework of Chapter 4 when generalizing to generated Jacobian equations. Then
Equation (KPε) can be written as the unconstrained problem

(KPε) = inf
γ∈M(X×Y )

sup
φ∈L1(X),ψ∈RY

L(γ, φ, ψ)

By definition the dual formulation is obtained by exchanging infimum and supremum

(DPε) := sup
φ∈L1(X),ψ∈RY

inf
γ

∫
X×Y

c(x, y) + ψ(y)− φ(x)

+ ε(log(γ(x, y))− 1)dγ(x, y) +

∫
X
φdρ−

∑
y∈Y

ψ(y)νy
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Since γ 7→ L(γ, φ, ψ) is strictly convex, we obtain by deriving with respect to γ the
optimality condition

c(x, y) + ψ(y)− φ(x) + ε log(γ) = 0

implying that for fixed functions φ : X → R and ψ : Y → R, the optimal γ∗ must satisfy

γ∗(x, y) = e
φ(x)−ψ(y)−c(x,y)

ε . Replacing γ with its optimal value we obtain the dual problem

(DPε) = sup
φ,ψ

∫
X
φ(x)dρ(x)−

∑
y

ψ(y)νy − ε
∑
y

∫
X
e−

c(x,y)+ψ(y)−φ(x)
ε dλX(x) (DPε)

For a fixed ψ : Y → R, the optimal φ : X → R satisfies

ρ(x)−
∑
y∈Y

e−
c(x,y)+ψ(y)−φ(x)

ε = 0

which gives

φ(x) = −ε log

∑
y∈Y

e−
c(x,y)+ψ(y)

ε

+ ε log(ρ(x))

Plugging this in Equation (DPε) gives the following maximization problem.

Definition 36 (Dual formulation of regularized optimal transport.). The dual of (KPε)
writes

(DPε) = sup
ψ∈RY

Kε(ψ)

where Kε is the regularized Kantorovich function defined by

Kε(ψ) = −ε
∫
X
log

∑
y∈Y

e
−c(x,y)−ψ(y)

ε

 dρ(x)−
∑
y∈Y

ψ(y)ν(y) + εH(ρ) (5.1.1)

Theorem 66 (Strong duality [19]). Strong duality holds, meaning that the solutions
to (KPε) and (DPε) are the same. In equation this means

(KPε) = (DPε)

One way to prove strong duality is by applying the Fenchel-Rockafellar Theorem, as
done in [19]. To compute the gradient of the regularized Kantorovich function Kε, we
introduce the notion of regularized Laguerre cell. Recall Y = {yi}1⩽i⩽N , and RY can be
identified to RN .

Definition 37 (Regularized Laguerre cells). For 1 ⩽ i ⩽ N , we define the i-th regularized
Laguerre cells as a function of ψ ∈ RN and x ∈ X by

Lε,i[ψ](x) =
e

−c(x,yi)−ψi
ε∑N

j=1 e
−c(x,yj)−ψj

ε

.

We will denote by Lε[ψ](x) = (Lε,i[ψ](x))1⩽i⩽N the vector of RN composed by all the
regularized Laguerre cells.
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Note that the regularized Laguerre cells forms a partition of unity, meaning that∑
i Lε,i = 1. Remark also that the regularized Laguerre cells converge simply toward the

Laguerre cells, i.e. for ψ ∈ RN and x ∈ X,

lim
ε→0
Lε,i[ψ](x) = 1Lagi(ψ)(x)

where 1A is the indicator function of a set A. So the functions (Lε,i)i are indeed a
regularized version of the indicator functions of the Laguerre cells.

Proposition 67 (Gradient of the regularized Kantorovich function). The Regularized
Kantorovich function Kε is concave and its gradient is given by

∇Kε(ψ) =
∫
X
Lε[ψ](x)dρ(x)− ν (5.1.2)

The regularized optimal transport problem is thus reduced to finding ψ that maximizes
Kε or equivalently such that ∇Kε = 0. The regularized semi-discrete optimal transport
problem then amounts to find ψ ∈ RN such that∫

X
Lε[ψ](x)dρ(x) = ν (MAε)

It is an unconstrained maximization of a concave function that can be solved by gradient
ascent, numerical resolution of this equation is reviewed in Section 5.3.

5.2 Entropic regularization of generated Jacobian equation

In this section we propose a formulation for the entropic regularization of generated
Jacobian equations, and prove the existence of solutions to this formulation. As detailed
in Chapter 4, the generated Jacobian equation is a generalization of optimal transports
problems that has several formulations. We recall briefly some definitions and rewrite
the equation for better readability. Just as we did before we will focus here on the semi-
discrete equation because of the parallel with the dual of an optimal transport problem.
The framework is similar, we have an absolutely continuous measure ρ ∈ Pac(X) and a
discrete measure ν ∈ P(Y ), where X is a compact subset of Rd and Y = {yi}1⩽i⩽N is
a finite set of Rd. The cost function is replaced by a generating function. Recall that a
generating function is a map G : X × Y ×R→ R that satisfies several hypotheses, which
are detailed in Section 4.2.1. Then we can partition the set X in generalized Laguerre
cells in the same way it is done in the previous chapter. For 1 ⩽ i ⩽ N and ψ ∈ RN the
generalized Laguerre cells are defined by

Lagi(ψ) = {x ∈ X | G(x, yi, ψi) ⩾ G(x, yj , ψj)}

One can also define the strict Laguerre cells

SLagi(ψ) = {x ∈ X | G(x, yi, ψi) > G(x, yj , ψj)}

Recall that the (Twist) condition gives that ρ(Lagi ∩ Lagj) = 0 for any i ̸= j. It also
guarantees that ρ(Lagi(ψ) \ SLagi(ψ)) = 0. The generated Jacobian equation consists in
finding ψ ∈ RN such that

H(ψ) = ν (GJE)
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where H : RN → RN is the mass function of the Laguerre cells defined for i ∈ J1, NK
by Hi(ψ) = ρ(Lagi(ψ)). As it is the case in optimal transport, the generalized Laguerre
cells are complicated to compute. One can thus regularize the generalized Laguerre cells
in the same way it is done for optimal transport, using a softmax for some ε > 0 instead
of a maximum.

Definition 38 (Regularized Laguerre cells). Regularized Laguerre cells for generated Ja-
cobian equation are a partition of unity defined for 1 ⩽ i ⩽ N and ε > 0 by the function

Lε,i[ψ](x) =
Gε,i(x)∑
k Gk,ε(x)

with Gε,i(x) = eG(x,yi,ψi)/ε.

Lemma 68. The regularized cell Lε,i[ψ] converges simply toward χLagi(ψ)
almost every-

where on X for the Lebesgue measure. More precisely we have

∀x ∈ SLagi(ψ), lim
ε→0
Lε,i[ψ](x) = 1.

Proof. Let x ∈ SLagi(ψ), then we have

Lε,i[ψ](x) =
1∑

j Gε,j(x)/Gε,i(x)

and for j ̸= i, Gε,j/Gε,i = e
1
ε
(G(x,yj ,ψj)−G(x,yi,ψi)) → 0 as ε → +∞. We can then conclude

since
∑

i Lε,i[ψ] = 1.

The mass function Hε of the regularized cells is defined by

Hε
i (ψ) :=

∫
X
Lε,i[ψ](x)dρ(x) (5.2.3)

Since ρ is absolutely continuous, Lebesgue’s dominated convergence theorem implies that

lim
ε→0

Hε
i (ψ) =

∫
X
lim
ε→0
Lε,i[ψ](x)dρ(x) = ρ(Lagi(ψ)).

This allows to introduce the regularized Generated Jacobian equation

Hε(ψ) = ν (GJEε)

Remark 69 (Link with optimal transport). Note that if we choose G(x, y, v) = −c(x, y)−
v, then the function Hε − ν is the gradient of the regularized Kantorovich function and
Equation (GJEε) is exactly (MAε).

In the end of this part we show that the regularized mass function Hε is similar to the
exact one, especially it is monotone and has the same limits. We then use these results
to show the existence of solutions to the regularized problem.

Lemma 70 (Properties of Hε). Assume that X is a compact subset of Rd.

� The mass function Hε is of class C1 on RN .
� The function Hε

i is decreasing in ψi and increasing in ψj for j ̸= i.
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� Let ψ ∈ RN and j ̸= i, then

lim
ψi→−∞

Hε
i (ψ) = 1 and lim

ψi→−∞
Hε
j (ψ) = 0

Proof. The first limit comes from the uniform convergence hypothesis (UC) on the gener-
ating function G, which states that G(x, yi, ψi)→ +∞ as ψi → −∞. In that case the i-th
regularized cell will be the one concentrating all the mass, and one can conclude using
Lebesgue dominated convergence theorem. For the derivatives, recall that the generating
function G is C1 in its third variable. Since X is compact, again by Lebesgue dominated
convergence theorem we have

∂Hε
i

∂ψj
(ψ) =

−1
ε

∫
X

∂

∂ψj
G(x, yj , ψj)

eG(x,yi,ψi)/εeG(x,yj ,ψj)/ε(∑
k e

G(x,yk,ψk)/ε
)2 dρ(x)

which is continuous by regularity assumptions in G. Since
∑
Hj = 1 we also have

∂Hε
i

∂ψi
= −

∑
j ̸=i

∂Hε
j

∂ψi
and the second limit. The monotonicity of Hε

i then follows from the
monotonicity hypothesis (Mono) on the generating function G and the formula for the
partial derivatives.

Proposition 71 (Existence of solution). Let ε > 0. Assume that G is a generating
function (see Def 25). Then there exists ψ ∈ RN solution of (GJEε).

Proof. Let δ such that 0 < δ < mini νi/N , we are going to construct ψδ such that∥∥∥Hε(ψδ)− ν
∥∥∥
∞

⩽ (N − 1)δ (5.2.4)

using the coordinate wise Oliker-Prussner algorithm [59]. First we want to initialize by
putting all the mass in the first cell. Let γ ∈ R and ψ = (γ, · · · , γ). Since Hε is continuous
and limψ1→−∞Hε

1(ψ) = 1, we can decrease the first coordinate of ψ to a number α such
that Hε

1(ψ) = 1 − mini νi/2. Initializing at ψ0 = (α, γ, · · · , γ), we build iteratively a
sequence ψk by 

ik = min{i ⩾ 2 | Hε
i (ψ

k) ⩽ νi − δ}
tk = min{t ⩾ 0 | Hε

ik
(ψk − teik) ⩾ νik}

ψk+1 = ψk − tkeik

where (ei)1⩽i⩽N is the canonical basis of RN . When ik does not exist, the algorithm
terminates, in that case we put ψδ = ψk and claim that it satisfies (5.2.4). If ik exists,
then tk always exists because of the monotonicity and limit of Hε

i . By continuity and
monotonicity properties of Hε, all the iterates satisfy Hε

i (ψ
k) ⩽ νi for i ⩾ 2. Since∑

iH
ε
i = 1, we also have Hε

1(ψ
k) ⩾ ν1. Through the algorithm, the first coordinate of ψk

is fixed, so the limit limψi→−∞Hε
1(ψ) = 0 implies that the other coordinates are bounded

below by a constant β ∈ R. All the ψi for i ⩾ 2 being decreased through the algorithm,
we have that for any k, ψk ∈ {α} × [β, γ]N−1. Note that the numbers α, β and γ do
not depend on δ. By Lemma 70, we know that Hε is C1 on RN and thus Lipschitz on
{α}×[β, γ]N−1, let us denote by L its Lipschitz constant on this space. By construction of
the sequence, at each step we have δ ⩽

∥∥Hε
i (ψ

k)−Hε
i (ψ

k − tkeik)
∥∥ ⩽ Ltk which implies

that tk ⩾ δ/L. Since the ψki are all contained in [β, γ] the sequence is constant when
k ⩾ (N − 1)(γ − β)L/δ. At the end, for any i ⩾ 2, νi − δ ⩽ Hε

i (ψ
k) ⩽ νi, implying

ν1 ⩽ Hε
1(ψ

k) ⩽ ν1 + (N − 1)δ and ψδ satisfies (5.2.4). This being true for any small
enough δ > 0, and by compactness of {α} × [β, γ]N−1, we can deduce the existence of
solution to the equation Hε(ψ) = ν.

79



The generated Jacobian equation (GJEε) has no variational formulation in the general
case. In the next section we propose to solve it using a stochastic gradient descent, as it
can be done for optimal transport.

5.3 The stochastic gradient descent algorithm

In this section we review the Stochastic Gradient Descent (SGD) algorithm, and how it can
be applied to optimal transport and generated Jacobian equations. Though there exists
a wide literature on the subject, this section is entirely based on a short self contained
report by Turicini [67] on the subject.

5.3.1 The algorithm

Let (Ω, T , µ) be a probability space and F : Ω×RN → R be an operator depending on a
random variable ω and a deterministic parameter X to be optimized. We denote

F (X) = E[F(ω,X)]

where E is the expectation with respect to ω. We assume that the two following hypothesis
are satisfied:

� The gradient of F is bounded:

∃B > 0,∀X ∈ RN sup
ω∈Ω
∥∇XF(ω,X)∥ ⩽ B (5.3.5)

� There exists an α > 0 such that F is α-strongly convex:

∀X,Y ∈ RN , F (Y )− F (X) + ⟨∇F (X)|Y −X⟩ ⩾ α

2
∥X − Y ∥2 (5.3.6)

The goal of (SGD) is to find a minimizer X∗ of F , which is equivalent to solving

∇F (X∗) = 0

The idea is to start with an X0 ∈ RN , then to pick a random variable ωk ∼ µ and a step
size τk > 0 at each iteration k, and iteratively compute

Xk+1 = Xk − τk∇F(ωk, Xk)

The complete algorithm is detailed in Algorithm 2. Sufficient conditions for the conver-

Algorithm 2 Stochastic Gradient Descent

Require: X0 ∈ RN , steps sizes (τk)k∈N and number of iteration n ∈ N.
Ensure: Xn such that E(∥Xn −X∗∥) ⩽ C/n
1: for k ∈ {1, · · · , n} do
2: Sample ωk from µ.
3: Xk+1 ← Xk − τk∇F(ωk, Xk)

4: return Xk

gence of SGD algorithm are given in Theorem 72, a short and self-contained proof of this
classical theorem is given by Turicini [67].
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Theorem 72. Assume that F(ω, ·) is differentiable for almost every ω ∈ Ω and that
hypothesis (5.3.5) and (5.3.6) are satisfied. Let dk = E[

∥∥Xk −X∗∥∥], then we have

dk+1 ⩽ (1− τkα)dk + τ2kB

In particular if the sequence (τk)k∈N satisfies τk → 0 and
∑
τk = +∞ then dk → 0 as

k → +∞, which means that the random variable Xk converges toward X∗ in the L2 sense
for random variables.

5.3.2 Application to regularized optimal transport

The regularized OT problem (MAε) is an unconstrained optimization problem which
consists in maximizing Kε. We consider here a gradient ascent iterate of the type

ψk+1 = ψk + τk∇Kε(ψk)

where τk is a damping parameter. Since the function Kε is strictly concave on 1⊥ and
has regular gradient, this algorithm is known to converge for a suitable choice of step
τk. We have an explicit formula for ∇Kε given in Equation (5.1.2), but in order to
compute it we need to integrate the regularized Laguerre cells Lε,i against the measure
ρ which can be quite costly, especially in high dimension since computation of integral
scales exponentially in dimension. To get a faster algorithm, Genevay et al. applied the
stochastic optimization theory to the semi-discrete entropic transport [4]. The (SGD)
algorithm applies to regularized optimal transport with F = Kε and

F(x, ψ) = −ε log

(
N∑
i=1

e
−c(x,yi)−ψi

ε

)
−

N∑
i=1

ψiνi + εH(ρ).

Note that one has
∇ψF(x, ψ) = Lε[ψ](x)− ν (5.3.7)

If x ∼ ρ is a random variable sampled from the probability density ρ, then we have
indeed E(F(x, ψ)) = F (ψ). The stochastic gradient ascent iterate for regularized optimal
transport thus reads

ψk+1 = ψk + τk(Lε[ψk](xk)− ν) (5.3.8)

where (xk)k⩾1 is a sequence of iid random variables sampled from ρ. If one uses the right
initialization and step size, this algorithm converges [10].

Theorem 73 (Convergence of SGD for regularized optimal transport). Let ψ0 ∈ 1⊥ and
(τk)k∈N be a positive sequence such that

∑
τk = +∞ and

∑
τ2k < +∞, then

lim
k→+∞

E(Lε[ψk](x)− ν) = 0

Remark 74. The hypothesis on (τk) is sufficient but not necessary. Genevay et al [4]
uses τk = C/

√
k and have a convergence rate of O(1/

√
k) thanks to an averaging step.

The detailed proof is done in [10, Theorem 3.1]. We give here the main ideas. For
the bounded part, it is easy to see from equation (5.3.7) that ∥∇ψF(x, ψ)∥1 ⩽ 2 and thus,
hypothesis (5.3.5) is satisfied. The main issue is that the function Kε is only concave and
not strongly concave on RN . To tackle this issue one can use the following technique.
First, note that both ∇F (ψ) = ∇Kε(ψ) ∈ 1⊥ and ∇F(x, ψ) ∈ 1⊥. So if we pick ψ0 ∈ 1⊥,

81



all the iterates ψk stay in the subset 1⊥. We denote by diag(v) ∈ MN (R) the matrix
with diagonal components formed by a vector v ∈ RN , then one has

D2F (ψ) = E(D2
ψF(x, ψ)) = E

[
1

ε

(
Lε[ψ](x)Lε[ψ]T (x)− diag(Lε[ψ](x))

)]
which has only strictly negatives eigenvalues on the set 1⊥ (see for example [54]) and thus
allows to prove convergence of the (SGD) algorithm on the subset 1⊥.

5.3.3 Stochastic fixed point for GJE

We propose here a heuristic to numerically solve the regularized generated Jacobian equa-
tion. The idea is to replace ∇Kε by Hε in the iterate, where Hε is defined in (5.2.3).
The algorithm for generated Jacobian equation is thus a stochastic fixed point instead of
gradient descent. Recall that we want to find ψ ∈ RN such that Hε(ψ) − ν = 0. Then
starting ψ0 ∈ RN the fixed point algorithm reads

ψk+1 = ψk + τk(Hε(ψk)− ν) (5.3.9)

If x ∼ ρ, then we have E(Lε[ψ](x)) = Hε(ψ). As in SGD, the idea is to pick an xk ∼ ρ at
each iteration k and apply iterate (5.3.8). This very similar to the SGD iterate, except
that Hε(ψ) is not the gradient of a concave function anymore.

Algorithm 3 Stochastic fixed point for (GJEε)

Require: ψ0 ∈ RN , step size C > 0 and number of iteration K ∈ N.
Ensure: ψ such that E[∥Hε(ψ)− ν∥] ⩽ c/K
1: k ← 0
2: for k ∈ {1, · · · ,K} do
3: Sample xk from ρ.
4: ψk+1 ← ψk + C√

k
(Lε[ψk](xk)− ν)

5: return ψk

The fact that Algorithm 3 is a stochastic fixed point and not a gradient descent,
combined with the structure of the operator, makes the analysis of convergence more
difficult. For example in optimal transport, Hε is a gradient and thus its differential is
symmetric, and it can be shown that it is diagonally dominant which makes it positive
definite on the subspace 1⊥. This is not the case for generated Jacobian equations.
Nonetheless numerical experiments tend to show that the algorithm converges. One idea
to prove convergence is to use some monotonicity properties of the differential DHε of
the regularized mass function, since we still know that ker(DHε) = 1⊥.

5.3.4 Numerical results for GJE

Numerical experiments were performed in R2, withX = [0, 1]2 with the measure ρ uniform
on the square, and Y = {yi}1⩽i⩽10 a set of 10 points chosen randomly in the square [0, 1]2.
The discrete measure ν =

∑
νiδyi is chosen with either uniform or random weights.

The considered generating function is corresponding to the near-field parallel reflector
problem (NF-par), and is defined for (x, y, v) ∈ X × Y × R∗

+ by

G(x, y, v) =
1

2v
− v

2
∥x− y∥2. (5.3.10)
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Figures 8 and 9 plots the L1 error
∥∥Hε(ψk)− ν

∥∥
1
along the algorithm for values of k

between 1 and 107. Figure 8 is for a uniform measure ν while Figures 9 is in the case
where the νi are chosen randomly. The curves are plotted for different values of ε (ε = 1
in blue, ε = 0.1 in orange and ε = 0.01 in green). One can observe that the bigger ε is,
the faster Hε(ψk) goes to ν as k goes to infinity. This is not surprising since it is also
the case for optimal transport. When ε is bigger, the entropic term has more effect and
the problem is more regular. Figure 10 shows the approximation error as an L1-difference
∥H(ψ∗

ε)−Hε(ψ∗
ε)∥1 for different values of ε. It is computed at the end of Algorithm 3,

which means that ψ∗
ε is ψk with k = 107.

Figure 8: L1 error
∥∥Hε(ψk)− ν

∥∥
1
at each iteration k for a uniform target measure ν.

Figure 9: L1 error
∥∥Hε(ψk)− ν

∥∥
1
at each iteration k for a random target measure ν.
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Figure 10: Convergence of ∥H(ψ∗
ε)−Hε(ψ∗

ε)∥1 when ε → 0. Here ψ∗
ε is computed using

Algorithm 3.
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[38] Geert-Jan Huizing, Gabriel Peyré, and Laura Cantini. Optimal transport improves
cell–cell similarity inference in single-cell omics data. Bioinformatics, 38(8):2169–
2177, 2022.

[39] Jan-Christian Hütter and Philippe Rigollet. Minimax estimation of smooth optimal
transport maps. The Annals of Statistics, 49(2):1166–1194, 2021.

[40] Feida Jiang and Neil S Trudinger. On pogorelov estimates in optimal transportation
and geometric optics. Bulletin of Mathematical Sciences, 4(3):407–431, 2014.

[41] L. Kantorovich. On the translocation of masses. Journal of Mathematical Sciences,
133, 03 2006.

[42] Aram Karakhanyan and Xu-Jia Wang. On the reflector shape design. Journal of
Differential Geometry, 84, 03 2010.

[43] YH Kim and RJ McCann. Continuity, curvature, and the general covariance of
optimal transportation, to appear in j. Eur. Math. Soc, 432:433–437, 2010.

[44] Jun Kitagawa. An iterative scheme for solving the optimal transportation problem.
Calculus of Variations and Partial Differential Equations, 51(1-2):243–263, 2014.

87
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