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Résumé: Cette thèse explore l’intersection
cruciale entre l’apprentissage automatique
(IA) et la sécurité, visant à résoudre les défis
liés au déploiement de systèmes intelligents
dans des scénarios réels. Malgré des progrès
significatifs en IA, des préoccupations liées à
la confidentialité, à l’équité et à la fiabilité ont
émergé, incitant à renforcer la fiabilité des sys-
tèmes d’IA. L’objectif central de la thèse est
de permettre aux algorithmes d’IA d’identifier
les écarts par rapport au comportement normal,
contribuant ainsi à la sécurité globale des sys-
tèmes intelligents.
La thèse commence par établir les concepts
fondamentaux de la détection des données
hors distribution (OOD) et de la détection
des erreurs de classification dans le chapitre
1, fournissant une littérature essentielle et ex-
pliquant les principes clés. L’introduction
souligne l’importance de traiter les problèmes
liés au comportement non intentionnel et nuis-
ible en IA, en particulier lorsque les systèmes
d’IA produisent des résultats inattendus en rai-
son de divers facteurs tels que des divergences
dans les distributions de données.
Dans le chapitre 2, la thèse introduit une nou-
velle méthode de détection de données hors
distribution basée sur la distance géodésique
Fisher-Rao entre les distributions de proba-
bilité. Cette approche unifie la formulation
des scores de détection pour les logits du
réseau et les espaces latents, contribuant à
une robustesse et une fiabilité accrues dans
l’identification des échantillons en dehors de
la distribution d’entraînement.
Le chapitre 3 présente une méthode de détec-
tion des données hors distribution non super-
visée qui analyse les trajectoires neuronales
sans nécessiter de supervision ou d’ajustement
d’hyperparamètres. Cette méthode vise à
identifier les trajectoires d’échantillons atyp-

iques à travers diverses couches, améliorant
l’adaptabilité des modèles d’IA à des scénar-
ios divers.
Le chapitre 4 se concentre sur la consolida-
tion et l’amélioration de la détection hors dis-
tribution en combinant efficacement plusieurs
détecteurs. La thèse propose une méthode
universelle pour combiner des détecteurs ex-
istants, transformant le problème en un test
d’hypothèse multivarié et tirant parti d’outils
de méta-analyse. Cette approche améliore la
détection des changements de données, en en
faisant un outil précieux pour la surveillance
en temps réel des performances des modèles
dans des environnements dynamiques et évo-
lutifs.
Dans le chapitre 5, la thèse aborde la détection
des erreurs de classification et l’estimation
de l’incertitude par une approche axée sur
les données, introduisant une solution pra-
tique en forme fermée. La méthode quanti-
fie l’incertitude par rapport à un observateur,
distinguant entre prédictions confiantes et in-
certaines même face à des données difficiles.
Cela contribue à une compréhension plus nu-
ancée de la confiance du modèle et aide à sig-
naler les prédictions nécessitant une interven-
tion humaine.
La thèse se termine en discutant des perspec-
tives futures et des orientations pour améliorer
la sécurité en IA et en apprentissage automa-
tique, soulignant l’évolution continue des sys-
tèmes d’IA vers une plus grande transparence,
robustesse et fiabilité. Le travail collectif
présenté dans la thèse représente une avancée
significative dans le renforcement de la sécu-
rité en IA, contribuant au développement de
modèles d’apprentissage automatique plus fi-
ables et dignes de confiance, capables de fonc-
tionner efficacement dans des scénarios réels
divers et dynamiques.
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Abstract: This thesis explores the intersection
of machine learning (ML) and safety, aiming
to address challenges associated with the de-
ployment of intelligent systems in real-world
scenarios. Despite significant progress in ML,
concerns related to privacy, fairness, and trust-
worthiness have emerged, prompting the need
for enhancing the reliability of AI systems.
The central focus of the thesis is to enable ML
algorithms to detect deviations from normal
behavior, thereby contributing to the overall
safety of intelligent systems.
The thesis begins by establishing the founda-
tional concepts of out-of-distribution (OOD)
detection and misclassification detection in
Chapter 1, providing essential background lit-
erature and explaining key principles. The in-
troduction emphasizes the importance of ad-
dressing issues related to unintended and harm-
ful behavior in ML, particularly when AI sys-
tems produce unexpected outcomes due to var-
ious factors such as mismatches in data distri-
butions.
In Chapter 2, the thesis introduces a novel
OOD detection method based on the Fisher-
Rao geodesic distance between probability dis-
tributions. This approach unifies the formula-
tion of detection scores for both network logits
and feature spaces, contributing to improved
robustness and reliability in identifying sam-
ples outside the training distribution.
Chapter 3 presents an unsupervised OOD de-
tection method that analyzes neural trajecto-
ries without requiring supervision or hyperpa-
rameter tuning. This method aims to iden-

tify atypical sample trajectories through vari-
ous layers, enhancing the adaptability of ML
models to diverse scenarios.
Chapter 4 focuses on consolidating and en-
hancing OOD detection by combining multi-
ple detectors effectively. It presents a uni-
versal method for ensembling existing detec-
tors, transforming the problem into a multi-
variate hypothesis test and leveraging meta-
analysis tools. This approach improves data
shift detection, making it a valuable tool for
real-time model performance monitoring in
dynamic and evolving environments.
In Chapter 5, the thesis addresses misclassi-
fication detection and uncertainty estimation
through a data-driven approach, introducing a
practical closed-form solution. The method
quantifies uncertainty relative to an observer,
distinguishing between confident and uncer-
tain predictions even in the face of challenging
or unfamiliar data. This contributes to a more
nuanced understanding of the model’s confi-
dence and helps flag predictions requiring hu-
man intervention.
The thesis concludes by discussing future per-
spectives and directions for improving safety
in ML and AI, emphasizing the ongoing evo-
lution of AI systems towards greater trans-
parency, robustness, and trustworthiness. The
collective work presented in the thesis repre-
sents a significant step forward in advancing
AI safety, contributing to the development of
more reliable and trustworthy machine learn-
ing models that can operate effectively in di-
verse and dynamic real-world scenarios.
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CHAPTER1
Introduction

Machine learning (ML) enables computers to perform intelligent tasks (Turing, 1950). The term
artificial intelligence (AI), so popular today, was coined by John McCarthy in 1955 to refer to
the science and engineering of making intelligent machines. According to Valiant (1984), intelli-
gent capabilities would arise by learning from data without explicit instructions. In this sense, the
goal of the artificial learner is to generalize concepts from past experiences to future interactions in
other contexts (Vapnik, 1995). To achieve this, artificial neural networks (NN) (Rosenblatt, 1958;
Ivakhnenko et al., 1965) have shown to be a suitable statistical model, rich enough to be able to
approximate any function (Cybenko, 1989; Hornik et al., 1989) in a region, and flexible enough to
incorporate inductive biases related to the downstream applications, e.g., convolutional neural net-
works (CNN) (LeCun et al., 1989). By incorporating non-linearities (Fukushima, 1969) andmultiple
layers, deep architectures learn through backpropagation (BP) (Linnainmaa, 1976) and stochastic
gradient descent (SGD) (Robbins and Monro, 1951) and is the subject of study of the field enti-
tled as Deep Learning (DL) (Dechter, 1986). Recent improvements of specialized hardware, such as
graphic processing units (GPU) (Clark, 1982) and NN architectures (Vaswani et al., 2017) combined
with efforts and investment from academia, industry, and open source community, resulted in an as-
tounding advancement and proliferation of intelligent systems in the last decade. As a result, ML
disrupted various fields, including–but not limited to–computer vision, natural language processing,
multi-autonomous agent coordination, and multimodal reasoning. This technological progress can
potentially revolutionize science, medicine, transportation, cinema, and numerous other industries,
potentially reshaping workforce requirements. However, AI will likely complement rather than re-
place traditional approaches in the short term.

Deploying AI systems in real-world applications is not without its challenges. Alongside these
remarkable achievements, we are confrontedwith amyriad of limitations related to privacy (Liu et al.,
2021), fairness (Mehrabi et al., 2021), adversarial robustness(Chakraborty et al., 2018), explainabil-
ity (Burkart and Huber, 2021), uncertainty quantification (Abdar et al., 2021) and trustworthiness
(Kaur et al., 2022) in general, provoking an inevitable loss of trust in automated systems. Hence,
one of the most pressing challenges in AI research is ensuring the safety and reliability of these
systems, particularly when they are applied in safety-critical domains, such as autonomous driving
and healthcare. Failures or accidents occur when human designers have specific objectives, but the
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deployed AI systems produce unexpected outcomes. Such errors can have dire consequences, from
incorrect medical diagnoses to road accidents. The source of these problems is diverse, including
mismatches between training and real-world data distributions, lack of objective function specifi-
cation, and more. Humans suffer from the same problem when faced with situations our previous
experiences did not prepare us to deal with. For instance, when visiting a country whose culture is
very different from ours, we may encounter difficulty and inevitably commit mistakes, causing cul-
tural shock. Contrary to machines, humans were able to develop a critical skill for such a situation:
admitting our ignorance rather than assuming that our pre-defined concepts translate flawlessly to
every situation.

Even though an ML model may achieve great generalization for a given data distribution, the
training environment does not necessarily reflect those encountered in the open world (Quionero-
Candela et al., 2009). As the learning framework often assumes that the data distribution is static,
i.e., does not change between the learning phase and the time we apply the model, we naturally need
a mechanism to alert us. Real-life environments are usually non-stationary, and the complexities
of matching the development scenario to the production one are either too high or too expensive.
The failure of ML models to adapt to non-stationary environments could limit their adoption. So,
models that warn for unusual examples could prevent unintended behavior in AI systems. The work
presented in this manuscript contributes towards mitigating these risks.

1.1 Uncertainty Estimation at the Core of Trustworthiness in AI Applications

Uncertainty estimation is the bedrock of trustworthiness in AI applications by providing a quan-
tifiable measure of the model’s confidence in its predictions. Uncertainty-aware models facilitate
risk-sensitive applications, guiding users on when to trust predictions or seek additional information.
In this context, uncertainty estimation is not merely a technical detail. It emerges as a fundamental
element for the responsible deployment of AI, ensuring that users can rely on AI systems as trust-
worthy and accountable. Uncertainty is usually split into two facets: aleatoric (irreducible) and
epistemic (reducible). Estimating each of them or the aggregated uncertainty is a rich and vast study
field in the literature on trustworthy AI. As a consequence, it employs multiple techniques and ap-
proaches that, unfortunately, we cannot treat all of them in depth in this thesis. This manuscript will
briefly introduce some of these techniques in the following and will then focus on state-of-the-art
techniques for out-of-distribution and misclassification detection.

1.1.1 Epistemic versus Aleatoric Uncertainty

Aleatoric uncertainty, also known as statistical or inherent uncertainty, arises from the inherent
stochasticity or randomness in the data-generating process itself. It is related to the irreducible vari-
ability even if we had a perfect model and infinite data. This type of uncertainty can be further
classified into homoscedastic uncertainty, which remains constant for different samples, and het-
eroscedastic uncertainty, which can vary between samples.

Epistemic uncertainty, also known as model uncertainty or knowledge uncertainty, stems from
our lack of knowledge or incomplete understanding of the underlying system. Epistemic uncertainty



could be reduced with more data or a more sophisticated model. In regression tasks, epistemic
uncertainty represents uncertainty about the model parameters. For instance, if the model hasn’t
seen certain patterns in the data during training, it might be uncertain how to predict those regions.
Reducing epistemic uncertainty involves improving the model architecture, collecting more relevant
data, or refining the training process.

Some works focus on disentangling them. (Kotelevskii et al., 2022; Mukhoti et al., 2023), how-
ever, the work on this manuscript focuses on the combined or total uncertainty that are key for
detecting inlier mistakes and novelty.

1.1.2 Conformal Prediction

An interesting take on the problem of uncertainty in AI is conformal prediction (Romano et al., 2020;
Gibbs and Candes, 2021; Angelopoulos and Bates, 2021; Angelopoulos et al., 2021). In addition to
estimating the most likely outcome, a conformal predictor provides a prediction set or interval that
provably contains the ground truth with high probability, unlike traditional models that provide point
predictions. This can be adapted post-hoc or by leveraging a conformal learning algorithms to create
models that produce valid and informative sets. Intuitively, a larger set indicates low confidence
on the prediction while a smaller set shows less uncertainty in the prediction. For a more formal
introduction, please refer to Vovk et al. (2005).

1.1.3 Bayesian Learning

Bayesian Learning for uncertainty estimation is a framework grounded in Bayesian statistics that
extends beyond conventional point-estimate models by placing a distribution over model parame-
ters. It involves a probabilistic approach to reasoning about uncertainties associated with predic-
tions grounded on Bayesian statistics. The fundamental components of Bayesian Learning include
a prior distribution, which encapsulates prior knowledge or assumptions, and a likelihood function
that quantifies the probability of observed data given the model parameters. Following data obser-
vation, Bayesian inference leads to the posterior distribution, reflecting updated beliefs about the
model parameters. In the realm of deep learning, Bayesian Neural Networks (BNNs) represent a
relevant application where probability distributions over weights replace fixed values, allowing for
the explicit modeling of uncertainty in predictions. Some key references in Bayesian Deep Learning
are Gal and Ghahramani (2016); Lakshminarayanan et al. (2017); Kendall and Gal (2017); Snoek
et al. (2019); Mukhoti et al. (2021); Einbinder et al. (2022); Thiagarajan et al. (2022). For a formal
and comprehensive introduction to the topic, please refer to MacKay (1992).

1.2 Background

The primary objective of this thesis is to enhance the detection capability of ML models to identify
situations that deviate from the norm, increasing their reliability. We hope to achieve this by devel-
oping detection methods to identify samples from outside the training distribution, more popularly
known in the literature as out-of-distribution (OOD) detection. Also, we strive to quantify uncer-



tainty in inlier predictions for performing misclassification detection. These are crucial aspects of
AI safety that identify inputs that, may threaten the system response, and may cause a drop in accu-
racy. Since classical learning algorithms depend strongly on the properties of their inputs, e.g., the
i.i.d. assumption, they tend to fail silently when faced with shifted data.

Formally, Let X ⊆ R
d be a continuous feature space, and let Y = {1, . . . , C} denote the

label space related to some task of interest. Also, let X ∈ X ∼ pX and Y ∈ Y ∼ PY be
the random variables (r.v) governing the realization of the features X = x and discrete concepts
Y = y involved in the problem. We denote by pXY and qXY the underlying source and target
probability density functions (pdf) associated with the distributions P and Q on X × Y , respec-
tively. We assume that a machine learning model f : X → Y is trained on some training set
Dn = {(x1, y1) , . . . , (xn, yn)} ∼ pXY , which yields a model that, given an input x ∈ X , outputs
a prediction on Y , i.e., fDn(x) = argmaxy∈Y pŶ |X(y|x). Data shift occurs when the test data joint
probability distribution differs from the distribution a model expects, i.e., pXY (x, y) 6= qXY (x, y).
Due to this mismatch, the model’s response may suffer a drop in accuracy. We can observe the types
of distribution shift by decomposing the joint probability density function (pdf) into

p(X,Y ) = P (Y |X)︸ ︷︷ ︸
concept

p(X)︸ ︷︷ ︸
covariate

= p(X|Y )P (Y )︸ ︷︷ ︸
prior

. (1.1)

Each decomposed shift happens under the condition that the accompanying decomposed probabil-
ity remains unchanged. Briefly, concept drift is usually attributed to the presence of novel classes
or concepts with covariates following the same known distribution. Covariate shift often happens
because the input data comes from different domains, e.g., drawing of concepts, while the training
features are natural pictures. Finally, a prior shift or label shift usually occurs when the test condition
is biased towards some classes. All of these shifts may have negative impacts on the model. Shifts
that do not affect the detector’s performance are referred to virtual shifts. The primary emphasis in
OOD detection will be on concept shift detection. In Chapter 4, we will also treat the problem of
identifying covariate shifts. Prior shift detection is left for future work.

1.3 Out-of-Distribution Detection

Out-of-distribution detection boils down to a binary classification problem by one-sided error esti-
mation but with a caveat: data from just one class is available in training time. According to this
hypothesis, it is impossible to collect enough data to learn the outlier distribution satisfactorily. To
model this detection problem, we introduce an artificial hidden binary r.vZ ∈ {0, 1} indicating with
z = 1 that the input sample x is an outlier and z = 0 it is an inlier. The open-world data can be
modeled by a mixture distribution defined by

pX|Z(x|z = 0) ≜ pX(x), and pX|Z(x|z = 1) ≜ qX(x). (1.2)

To further ground it formally, we have tomake the hypothesis that qX and pX are sufficiently different
from each other (this will be clarified later on) so that we can separate them.



One of the main difficulties behind the problem is that little can be assumed about the unknown
distribution qX fromwhich no samples are available during training. Furthermore, there is no reason
to suppose that the observed change in pX induces a change in PY |X and thus, we will assume that
PY |X ≡ QY |X . However, this equality should not be mistaken as being equivalent to say that the
learned rule fDn predicting Y fromX should not be re-adapted to the new input distribution qX . This
is because learning a predictor from finite data may be tuned to functions that fit well the empirical
data distribution according to regions where pX has a high probability which may be somewhat
different to those in qX . Indeed, such an assumption will be critical to detecting the underlying drift
based not only on the testing sample but, in particular, on the behavior of the trained predictor when
evaluating it on such samples. Features and pattern that are rarely observed during training could be
identified as being caused by OOD data. The next subsection will dive into the optimal discriminator
when using features as a dense proxy for the input data.

1.3.1 Optimal OOD Detection and Performance of the Oracle

This section details the mathematical model and detection performances of an Oracle discriminator
accessing the underlying distributions. Basic properties and proof are relegated to Appendix A.1.
Since different methods rely on different parts of a NN to perform detection, let Tl : X → Ul
be a Borel-measurable mapping denoting the transformation between input features in X and the
l-th layer in Ul ⊆ R

dl with l = {1, . . . , L}. In particular, we have for the final layer that UL =

[0, 1]K and TL(x) = [P
Ŷ |X(1|x), . . . , PŶ |X(K|x)] indicates the soft-probabilities. Then Tl induces

a probability measure P Tl
Ul|Z on the Borel σ-field Bdl as follows:

P
Tl
Ul|Z(A|z) =

∫

T−1

l
(A)

PX|Z(dx|z), A ∈ Bdl . (1.3)

Furthermore, we will assume the existence of pdf pU1|Z , . . . , pUL|Z corresponding to the change
of measure induced by transformations at each layer. For the special case of the last layer, the
probability distribution is given by

P
Ŷ |Z(y|z) =

∫

X
P
Ŷ |X(y|x)PX|Z(dx|z). (1.4)

For simplicity, we will use a generic pU |Z which should be interpreted as the available information
to perform the decision, e.g., if it is the last layer outputs, pU |Z should be understood as P

Ŷ |Z with
u ≡ y ∈ Y or the specific pdf at the given l-th layer with u ∈ R

dl .

We begin by stating the optimal rejection region of an Oracle, which has access to all involved
distributions.

Definition 1.3.1 (Most efficient test). Let A(γ,Dn) ⊆ U be the set containing all the u ∈ U to
be detected as being out-of-distribution samples and thus, Ac(γ,Dn) contain all samples must be



declared to be in-distribution. The following decision region achieves the most efficient test:

A(γ,Dn) ≜
{
u ∈ U :

pU |Z
(
u|z = 1;Dn

)

pU |Z
(
u|z = 0;Dn

) > γ

}
(1.5)

=

{
u ∈ U :

PZ(z = 0)

PZ(z = 1)
·

PZ|U
(
1|u;Dn

)

1− PZ|U
(
1|u;Dn

) > γ

}
, (1.6)

where 0 < γ < ∞ and Dn denotes the implicit dependence of the involved transformations across
layers with the training set.

Proposition 1 (Detection tradeoffs). Let A ⊆ U be any decision set, and let

ϵ0(A,Dn) =
∫

A
PU |Z(du|z = 0;Dn), (1.7)

ϵ1(Ac,Dn) =
∫

Ac

PU |Z(du|z = 1;Dn) (1.8)

be the average Type-I and Type-II error probabilities, respectively. Then,

ϵ0(A,Dn) + ϵ1(Ac,Dn) ≥
∫

U
min

{
PU |Z(du|z = 1;Dn), PU |Z(du|z = 0;Dn)

}
(1.9)

= 1−
∥∥PU |Z(·|z = 1;Dn)− PU |Z(·|z = 0;Dn)

∥∥
TV . (1.10)

Equality is achieved by setting A⋆ ≡ A(1;Dn). Moreover, if the hypothesis is equally distributed,
then the minimum average Bayesian error satisfies

inf
ψ
PDn {ψ(U) 6= Z} = 1

2

[
1−

∥∥PU |Z(·|1;Dn)− PU |Z(·|0;Dn)
∥∥
TV

]
. (1.11)

The proof is relegated to Appendix A.1.

1.3.2 Statistical Hypothesis Testing Framework

Statistical hypothesis testing can be designed to test if a given sample is distributed accordingly to
pX or qX . Traditionally, these tests are conducted in the asymptotic regime, where the number of
samples tends to infinity. Efforts towards more efficient tests are recently being developed in the
literature. In special, Valiant and Valiant (2017) proposes an efficient test and a lower bound of
number of samples to detect OOD distributions. They leverage symmetric properties of probability
distributions to design this test. Thus, out-of-distribution detection can be seen as a hypothesis test.
Formally, the null and alternative hypothesis writes:

H0 : X ∼ pX and HA : X ∼ qX . (1.12)

However, since the true distributions are unknown in practice, it is common to rely on a detection
score function to make the test. Let s : (x, fDn)→ R

+ be a similarity score function that measures
how adapted the input is to the model, i.e., a low score indicates the sample is untrustworthy, and



a high value indicates otherwise. Hence, we frame the statistical hypothesis test as a left-tailed
test (Lehmann and Romano, 2005) that will detect an input sample x according to the magnitude of
s(x) and a threshold γ ∈ R.

Definition 1.3.2 (OOD detector). Given s, fDn , and γ, an out-of-distribution detector is defined by

d(x) ≜ 1 [s(x, fDn) ≤ γ] =




1 if s(x) ≤ γ
0 if s(x) > γ

(1.13)

Hence, the role of the classifier-detector system (fDn , d) is to keep a prediction if the input
sample x is not rejected by the detector d, i.e., if ẑ = d(x) = 0. A remaining key step is finding
the detection threshold γ. In practice, it is calibrated with the help of a validation set and a desired
level of precision α ∈ [0, 1] on inlier data. Let F (s(X)) be the cumulative density function of the
r.v. s(X),

γ = inf{s(X) ∈ R : 1− α ≤ F (s(X))}. (1.14)

1.4 Misclassification Detection

This subsection recalls misclassification events and links them with OOD detection. Let us consider
a discrete r.v. expressed by E ≜ 1[fDn(X) 6= Y ], i.e., the misclassification event is denoted by
{E = 1} ≡ {(x, y) ∈ X ×Y : fDn(x) 6= y}. We can express the joint probability density function
pXY as a mixture:

pXY (x, y) = pXY |E(x, y|E = 1)PE(1) + pXY |E(x, y|E = 0)PE(0). (1.15)

By taking the marginal of Eq. (1.15) over Y , we obtain:

pX(x) = pX|E(x|1)PE(1) + pX|E(x|0)PE(0), (1.16)

where pX|E(x|1) denotes the pdf truncated to the error event and pX|E(x|0) the pdf truncated to the
event of correct classification.

We finally define the probability of classification error as:

Pe(x) ≜ PE|X(1|x) = 1− PY |X (fDn(x)|x) . (1.17)

Similar to the test defined in Eq. (1.12), we define the following hypothesis test for the misclassifi-
cation detection problem:

H0 : X ∼ pX|E=0 and HA : X ∼ pX|E=1. (1.18)

1.5 Literature Review

This section will briefly describe and extensively cite key references on OOD and misclassification
detection, finally shedding light to a new object of study that combines both domains into a single



detection framework.
Out-of-distribution detection. With roots in one-class novelty detection (Pimentel et al., 2014),

out-of-distribution is also referred to in the literature as open-set recognition (Geng et al., 2021) and
semantic anomaly detection (Pang et al., 2021). OOD detection became popular among the DL
community when Hendrycks and Gimpel (2017) introduced a baseline method to detect OOD ex-
amples on different classification tasks, such as image recognition, text categorization, and speech
recognition. The maximum softmax probability is used to score test samples, and inputs with low
confidence are detected as OOD. Nevertheless, Nguyen et al. (2014) demonstrates that neural net-
works can produce arbitrarily high softmax scores for inputs far from the training data.

Overall, detectionmethods are taxonomized into confidence-based (Hein et al., 2019; Hendrycks
and Gimpel, 2017; Liang et al., 2018b; Hsu et al., 2020; Liu et al., 2020; Hendrycks et al., 2022; Sun
and Li, 2022), which rely on the logits and softmax outputs of the network to identify patterns that
distinguish in-distribution from OOD samples. Feature-based (Sastry and Oore, 2020; Sun et al.,
2021; Huang et al., 2021; Zhu et al., 2022b; Colombo et al., 2022; Dong et al., 2021; Song et al., 2022;
Lin et al., 2021; Djurisic et al., 2023a; Lee et al., 2018b; Fort et al., 2021; Darrin et al., 2024; Sun et al.,
2022; Du et al., 2022a; Ming et al., 2023; Djurisic et al., 2023b). Exploring latent representations
typically involves designing methods that measure the dissimilarity between the input sample and
the training dataset or prototypes. generative-based methods (Schlegl et al., 2017; Vernekar et al.,
2019; Xiao et al., 2020; Ren et al., 2019; Kirichenko et al., 2020; Nalisnick et al., 2019; Choi and
Chung, 2020) fit a generative model to the in-distribution and test the likelihood of testing samples
as an OOD criterion. Mixed feature-logits (Dadalto et al., 2022; Wang et al., 2022; Dadalto et al.,
2023b) leverage information from the outputs and the latent representations, managing to combine
the advantages of both approaches. Uncertainty-regression (Lakshminarayanan et al., 2017; DeVries
and Taylor, 2018; Lee et al., 2018a), aims to learn an uncertainty score in training time. Finally,
learning with outlier exposure (Hendrycks et al., 2019; Du et al., 2022b) utilizes outlier samples to
regularize training and shape outlier-aware decision boundaries. Recent benchmarks (Zhang et al.,
2023) reveal no clear single winner, which is a direct consequence of the constraints and challenges
imposed on the problem.

Misclassfication detection. The goal of misclassification detection is to create techniques that
can evaluate the reliability of decisionsmade by classifiers and determinewhether they can be trusted.
Liang et al. (2018a) proposes applying temperature scaling (Guo et al., 2017) and perturbing the input
samples to the decision boundary’s direction to better detect misclassifications. A line of research
trains auxiliary parameters to estimate a detection score (Corbière et al., 2019) directly, following
the idea of learning to reject (Chow, 1970; Geifman and El-Yaniv, 2017). Exposing the model to out-
liers or severe augmentations during training has been explored in previous work (Zhu et al., 2023)
to evaluate if these heuristics are beneficial for this particular task apart from improving robustness
to outliers. Granese et al. (2021) proposes a mathematical framework and a simple detection method
based on the estimated probability of error. We show that their proposed detection metric is a special
case of ours. Zhu et al. (2022a) study the phenomenon that calibration methods are often useless or
harmful for failure prediction and provide insights into why. Cen et al. (2023) discusses how training
settings such as pre-training or outlier exposure impact misclassification and open-set recognition



performance. Related sub-fields are predictive uncertainty estimation via Bayesian Neural Networks
estimation (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017; Mukhoti et al., 2021; Ein-
binder et al., 2022; Snoek et al., 2019; Thiagarajan et al., 2022) and conformal predictions (Gibbs
and Candes, 2021).

A new line of research proposes combining misclassification detection or rejection option and
out-of-distribution detection (Narasimhan et al., 2023; Katz-Samuels et al., 2022; Xia and Bouganis,
2022), also known as selective classification with out-of-distribution detection (SCOD). In this
case, at test time, the objective is to reject misclassified (E = 1) and OOD (Z = 1) samples at the
same time, with a single rejection criterion.

1.6 Popular Detection Methods

Below, several essential detection methods using a standard notation that will be an accessory in
understanding the techniques developed in the literature are introduced

Maximum Softmax Probability (MSP). The Maximum Softmax Probability method, as out-
lined in (Hendrycks and Gimpel, 2017), serves as a common baseline for out-of-distribution (OOD)
detection. Provided an input x and a pre-trained neural network fDn(·), the classifier’s most confi-
dent class probability serves as similarity score.

s(x; fDn) = max
y∈Y

efy(x)
∑K

j=1 e
fj(x)

(1.19)

A limitation of this method is that the actual conditional probability function PY |X is unknown,
leading to reliance on P

Ŷ |X(y|x;Dn), an estimate derived from the training data Dn.
ODIN. The work by Liang et al. (2018b) enhances the MSP baseline by adjusting the softmax

outputs using a temperature scaling parameter

s(x;T, fDn) = max
y∈Y

efy(x)/T
∑K

j=1 e
fj(x)/T

, (1.20)

where T ∈ R
+ is the temperature. Additionally, they introduce a small adversarial noise perturba-

tion to the inputs based on their observation that perturbed out-of-distribution data exhibits lower
confidence than perturbed in-distribution samples, indicating that OOD data are present on flatter
regions of the loss landscape. The perturbation writes:

x̃ = x− η · sign {−∇x log s(x;T, fDn)} , (1.21)

where η is the perturbation magnitude. The hyperparameters T and η can be optimized using random
noise input, such as a Gaussian or uniform distribution. Importantly, this optimization process does
not rely on prior knowledge of the out-of-distribution dataset, as described in (Hsu et al., 2020) and
is a common practice in the literature.

Energy based OOD detector. In Liu et al. (2020), they propose an energy-based detector that
relies on discrepancies in free energies between in-distribution and out-of-distribution examples for



distinguishing between them. Instead of utilizing soft probability outputs, the energy-based model
employs the Helmholtz free energy equation, following the concept from Lecun et al. (2006). For-
mally, the free energy of an examplex is defined asE(x; f) = −T ·log∑K

j=1 e
fj(x)/T . A data point

with low energy has a higher likelihood of being in-distribution and vice versa. So, the log-likelihood
writes

log p(x) = −E(x; f)/T − log
∫

X
e−E(x;f)/Tdx

︸ ︷︷ ︸
constant w.r.t. x

(1.22)

showing that −E(x; f) is linearly aligned with the log-likelihood function, which is desirable for
OOD detection. The work also proposes an energy-based cost function for energy-bounded learning.

Mahalanobis distance-based score. The Mahalanobis method (Lee et al., 2018b) models the
embedding of a DNN as a Gaussian mixture model with a tied covariance matrix and parameters
estimated on the training dataset. The modes of the mixture are estimated with samples from a
single class. They use the outputs of every DNN latent block to leverage useful information for
discrimination. For a test sample x, the confidence score from the ℓ-th layer is calculated based
on the Mahalanobis distance Mahalanobis (1936) between f (ℓ)(x) and the closest class-conditional
distribution:

sℓ(x) = max
y
−
(
f (ℓ)(x)− µ̂(ℓ)

y

)⊤
Σ̂−1
ℓ

(
f (ℓ)(x)− µ̂(ℓ)

y

)
, (1.23)

where f (ℓ)(·) is the ℓ-th latent feature extractor, and µ̂(ℓ)
y and Σ̂ℓ are, the empirical class conditional

mean and global covariance matrix estimates, respectively. The covariance matrix is often not full
rank, so the pseudo-inverse is calculated instead of the inverse. In addition, input pre-processing
and feature ensemble are also used to boost performance. A logistic regression model fits the multi-
plicative weights αℓ for each layer score. Finally, the Mahalanobis-based discriminator is given by
thresholding the expression

∑
ℓ αℓsℓ(x). The negative sign is to transform a distance-based score

(i.e., larger values indicate a higher likelihood of being OOD) to a confidence-based score (i.e.,
smaller values indicate a higher likelihood of being OOD).

Relative Mahalanobis distance. Fort et al. (2021) introduces an adaptation of the Mahalanobis
distance method focusing on improving near-OOD detection. It involves fitting a global Gaussian
distribution to the training set without considering class information. This process computes the
global mean (µ̂global) and covariance (Σ̂global) of the data. The similarity score is the difference be-
tween the originalMahalanobis distance (Lee et al., 2018b) and theMahalanobis distance concerning
the global Gaussian distribution:

sℓ(x) = max
y
−
(
f (ℓ)(x)− µ̂y

)
Σ̂

−1
(
f (ℓ)(x)− µ̂y

)⊤
−

(
f (ℓ)(x)− µ̂global

)
Σ̂

−1

global

(
f (ℓ)(x)− µ̂global

)⊤
.

(1.24)

which is equivalent to the log-likelihood ratio between the class mode of a mixture of Gaussians with
a common covariance matrix and a global Gaussian distribution estimated using the entire training
dataset.

Data depth. Data depths extend the notion of amedian to themultivariate setting (Tukey, 1975b).



Multivariate data depths are nonparametric statistics that measure the centrality of any element of
R
d, where d ≥ 2, w.r.t. a probability distribution (respectively a random variable) defined on any

subset of Rd. Formally, a data depth is defined as follows:

D : R
d × P(Rd) −→ [0, 1] ,

(x, PX) 7−→ D(x, PX).
(1.25)

The higher D(x, PX), the deeper x is in PX . Colombo et al. (2022) propose to leverage the Inte-
grated Rank-Weighted (IRW) depth (Staerman et al., 2021). The IRW depth of x ∈ R

d w.r.t. to a
probability distribution PX on Rd is given by:

DIRW(x, PX) =

∫

Sd−1

min {Fu (〈u,x〉) , 1− Fu (〈u,x〉)} du,

where Fu(t) = Pr(〈u, X〉 ≤ t) and S
d−1 is the unit hypersphere. In practice, the expectation is

approximated using Monte-Carlo. Given a sample Sn = {x1, . . . ,xn}, the approximation of the
IRW depth is defined as:

D̃IRW(x,Sn) =
1

nproj

nproj∑

k=1

min

{
1

n

n∑

i=1

1 {〈uk,xi − x〉 ≤ 0} , 1
n

n∑

i=1

1 {〈uk,xi − x〉 > 0}
}
,

(1.26)
where uk ∈ S

d−1 and nproj is the number of direction sampled on the hypersphere. It has the advan-
tage of not supposing any underlying distribution for the embedding features.

Deep k-nearest neighbors. Sun et al. (2022) leverages non-parametric k-nearest neighbors
approach (Fix and Hodges, 1989) in the latent space for OOD detection. The noteworthy feature of
this approach, akin to data depth, lies in its lack of assumptions about the underlying distribution.
Given an input sample x, they compute the normalized embedding z = f (ℓ)(x)/‖f (ℓ)(x)‖2 and the
ordered set

Z = {si = ‖zi − z‖2 | s1 ≤ s2 ≤ · · · ≤ sn}, (1.27)

where zi, i = {1, . . . , n}, are the normalized embeddings of the training samples. The decision
function is finally given by d(x) = 1[−sk ≥ γ].

Max cosine similarity. Techapanurak et al. (2020); Zhou et al. (2021) calculates the maximum
cosine similarity between the features of a test sample and class conditional average embedding
vectors denoted as µ̂y, sometimes referred to as prototype vectors. The max cosine score writes:

s(x) = max
y∈Y

µ̂⊤y f
(ℓ)(x)∥∥µ̂⊤y
∥∥
2

. (1.28)

Usually, ℓ is the index of the penultimate layer of the network.

Activation clipping. Sun et al. (2021) propose a feature truncation technique, denoted as ReAct
for rectified activations, where the feature vector extracted from the penultimate layer of the network,
z, is truncated element-wise using a threshold r to obtain z. These truncated features are transformed
into rectified logits using f(x) = W⊤z+ b, whereW and b are the weights of the linear classifier



on top of the penultimate features of a DL model. Their proposed score is the rectified free Energy,
computed as:

s(x) = −T log
K∑

j=1

exp

(
f(x)

T j

)
. (1.29)

The intuition is that OOD data activations demonstrate higher variance with skewness towards ac-
tivation peaks on residual networks, making the resulting predictions overconfident. By truncating
the activations, this problem is alleviated, and the separation between in- and out-of-distribution
samples increases.

Kullback-Leibler (KL) divergence matching. Hendrycks et al. (2022) computes class prob-
abilities prototyes on a validation set, i.e., vk = Ex′∼Xval [f (x

′)] and computes the KL diver-
gence (Kullback and Leibler, 1951) between the test sample’s softmax probabilities and the class-
conditional prototype. The minimal divergence is used as a similarity score:

s(x) = min
y∈Y

KL [softmax(f(x))‖vk] . (1.30)

The KL divergence is a common dissimilarity measure between probability distributions with nice
properties and a natural choice for OOD detection.

Gradient norm. Huang et al. (2021) takes as reference probability to the KL divergence the
uniform probability distribution over the classes of the classifier, i.e., vk = [1/K, . . . , 1/K]⊤. They
compute as similarity score the Lp-norm of the gradient of the KL divergence between the test
sample’s output probabilities and the uniform reference.

s(x) =

∥∥∥∥
∂ KL [vk‖ softmax(f(x))]

∂W

∥∥∥∥
p

(1.31)

whereW is the weight matrix of the last linear layer from a DLmodel. They observed that, for some
NNs, the gradient norm of OOD samples would be abnormally high compared to inlier samples.

Training with outlier exposure. Training with outlier exposure (Hendrycks et al., 2019) lever-
ages unlabeled auxiliary examples represented as x′ drawn from the distribution qX to enhance
out-of-distribution (OOD) detection. The method involves training a new classifier by minimizing
an objective function:

L = E(x,y)∼pXY
[− log fy(x)] + λ · Ex′∼qX

[
LCE

(
f(x′), vk

)]
(1.32)

where LCE is the cross entropy loss. The objective aims to minimize the classical cross-entropy loss
and the cross-entropy between the classifier’s predictions on the auxiliary data x′ and the uniform
distribution vk = [1/K, . . . , 1/K]⊤. Additionally, a regularization factor λ is introduced to account
for different scales between the terms of the loss.

Doctor. Granese et al. (2021) proposes a simple and flexible framework to detect whether a
decision made by a model is likely to be correct or not. A key ingredient of the Doctor score is to
fully exploit all available information contained in the soft-probabilities of the predictions. Since
the true probability of error Pe is unknown and cannot be learned from samples, they rely on the



following approximation:

1− s(x) =
∑

y∈Y
p
Ŷ |X(y|x) Pr(Ŷ 6= y|x) = 1−

∑

y∈Y
p2
Ŷ |X(y|x). (1.33)

They also use temperature scaling and input pre-processing. We show in Dadalto et al. (2024a) that
this criterion can also be used for selective classification, and we propose a tight relationship between
the optimal misclassification detector and the optimal rejection criterion.

1.7 Experimental Setup

The classical OOD detection experimental setup consists of choosing a pre-trained classifier with an
associated in-distribution dataset and running an inference of a test set composed of a mixture of an
in-distribution validation dataset and a different dataset without semantic or class overlap with the
in-distribution one. The similarity scores are computed for every test sample, and their performance
is measured. In the following, we will introduce the evaluation metrics in Section 1.7.1, models in
Section 1.7.2, and datasets in Section 1.7.3.

1.7.1 Evaluation Metrics

In this subsection, we introduce themetrics used to evaluate OOD andmisclassification detection per-
formance that are borrowed from standard binary classification evaluation metrics. Two main quan-
tities allow us to measure the performance of a method. The false positive rate is the proportion of
samples that are detected as being in-distribution while they are OOD. Mathematically, FPR(X) =

Pr (s(X) ≤ γ|Z = 0). The true positive rate (TPR) is the proportion of in-distribution samples that
are correctly classified as being in-distribution. It is computed as TPR(X) = Pr (s(X) ≤ γ|Z = 1).
The following derived metrics are the most common ones encountered in the literature that express
these effects:

• True Negative Rate at 95% True Positive Rate (TNR at TPR-95% (%)). This metric
measures the true negative rate (TNR) at a specific true positive rate (TPR). The operating
point is chosen such that the TPR of the in-distribution test set is fixed to some value. Let
TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative,
respectively. In practice, we measure TNR = TN/(FP + TN), when TPR = TP/(TP + FN)
is fixed. More rigorously, for a desired detection rate r, this fixes a threshold γr such that the
corresponding TPR equals r. At this threshold, one then computes:

Pr(s(X) ≤ γr|z = 0) with γr s.t. TPR(γr) = r. (1.34)

In the literature, it is common practice to set r = 0.95. Values are multiplied by 100 so that it
is in percentage (%) in the benchmarks.

• False Positive Rate at 95% True Positive Rate (FPR at TPR-95% (%)). This metric mea-



sures the complementary event of the TNR at 95% TPR, or,

Pr(s(X) ≥ γr|z = 0) with γr s.t. TPR(γr) = r. (1.35)

The metric is also referred to as FPR for short. In practice, we measure FPR = FP/(FP+TN)
for the confusion metrics obtained with threshold γr such that r = 0.95. Values are multiplied
by 100 so that it is in percentage (%) in the benchmarks.

• Area Under the Receiver Operating Characteristic (ROC) curve (AUROC). The ROC
curve is constructed by plotting the true positive rate (TPR) against the false positive rate
(FPR) at various threshold values. The area under this curve tells how much the detector
can distinguish positive (OOD) and negative (IND) samples in a threshold-independent man-
ner (Bradley, 1997). More rigorously, the AUROC corresponds to the probability that a ran-
domly drawn negative sample (XZ=0) has a higher score than a randomly drawn sample posi-
tive sample (XZ=1): AUROC = Pr(s(XZ=0) > s(XZ=1)). The ROC curve is parametrized
by the threshold γ:

γ 7→ (Pr
(
s(X) ≤ γ|Z = 0

)
, Pr
(
s(X) ≤ γ|Z = 1

)
). (1.36)

and the area under this curve writes in terms of the truncated cumulative distribution function
(tcdf) Fz(γ) = Pr(s(X) ≤ γ|Z = z) of the r.v. score s(X).

AUROC =

∫ 1

0
F0

(
F−1
1 (v)

)
dv (1.37)

The estimation is usually done with trapezoidal integration, and the AUROC is often multi-
plied by 100 so that its values are given in percentage (%) in the benchmarks.

Other metrics for evaluating binary classifiers could also be employed, such as the accuracy or the
area under the precision-recall curve.

1.7.2 Models

In computer vision classification tasks, popular model architectures are Residual Convolutional Neu-
ral Networks (ResNet) (He et al., 2016), Vision Transformers (ViT) (Dosovitskiy et al., 2021), Mo-
bileNet (Howard et al., 2017) for fast inference and DenseNet (Huang et al., 2017) for a reduced
number of parameters. For textual classification in natural language processing, transformer-based
encoders like BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) are prevalent choices. In
this thesis, we will concentrate on the computer vision benchmark exclusively. Our works (Colombo
et al., 2022; Darrin et al., 2024) proposes new methods for OOD detection in NLP benchmarks.

1.7.3 Datasets

Image Classification. To this date, two primary benchmarks exist for OOD detection on natural
image classification: one is founded on CIFAR, and the other on ImageNet.



(a) CIFAR (Krizhevsky et al., 2009). (b) SVHN (Netzer et al., 2011).

(c) Imagenet (resized) (Deng et al., 2009). (d) LSUN (resized) (Yu et al., 2015).

(e) MNIST (LeCun and Cortes, 2010). (f) Fashion MNIST (Xiao et al., 2017).

Figure 1.1: Randomly selected images from a few datasets resized to 32× 32.

• CIFAR. The CIFAR-10 dataset (Krizhevsky et al., 2009) comprises 32x32 pixel natural im-
ages categorized into 10 distinct classes, such as airplanes, ships, birds, and more. Similarly,
the CIFAR-100 dataset consists of natural images akin to those in CIFAR-10 but spanning
100 categories. Both datasets feature a training set containing 50,000 images and a test set of
10,000 images. The distribution of classes in both training and testing data is uniform. These
datasets are made available under the MIT license.

• ImageNet-1K. The ImageNet-1K, also known as ILSVRC2012 (Deng et al., 2009), repre-
sents a challenging and realistic mid-sized dataset, encompassing approximately 1.28 million
training examples and 50,000 labeled test instances distributed across 1000 distinct classes.
This dataset is available under the BSD 3-Clause license.

For the CIFAR benchmark, SVHN (Netzer et al., 2011), Tiny-ImageNet (Le and Yang, 2015),
LSUN (Yu et al., 2015), iSUN (Xu et al., 2015), Textures (Cimpoi et al., 2014), Chars74K (de Cam-
pos et al., 2009), Places365 (Zhou et al., 2017), Gaussian noise, and Uniform noise are commonly
used as OOD datasets. Fig. 1.1 show some examples of the images encountered in these datasets. For
the large-scale benchmark, in addition to Textures and Places365, Species (Hendrycks et al., 2022),
OpenImage-O (Wang et al., 2022), iNaturalist (Huang and Li, 2021), Sun (Huang and Li, 2021), and
Semantic Shift Benchmark (Vaze et al., 2022) datasets are considered with the curated splits intro-
duced by (Bitterwolf et al., 2023). Further details on the datasets are relegated to Appendix A.2.

1.8 Overview of the Manuscript

This section outlines the structure of the manuscript and the contents of each chapter.
Chapter 2 presents a method for OOD detection by building on the geodesic (Fisher-Rao) dis-

tance between the inlier and a proxy of the outlier data distributions. The discriminator combines
confidence scores from the logits and features of a deep neural network through a unified formula-
tion.



Chapter 3 introduces a simple unsupervised layer representations projection to perform OOD
detection, identifying trajectories that are atypical from the behavior characterized by the training
set. Often, methods that explore the multiple layers require a special architecture or a supervised
objective. The presented method, on the other hand, is completely unsupervised and does not require
any hyperparameter tuning.

Chapter 4 explores generalized data distribution drift detection. Most ML systems are evalu-
ated in static scenarios, while, in practice, they encounter a dynamic and evolving environment. We
propose a universal method for ensembling existing detectors by effectively transforming the prob-
lem into a multi-variate hypothesis test and leveraging established meta-analysis tools, resulting in
a more effective detector with consolidated decision boundaries.

Chapter 5 proposes a new method to quantify uncertainty in machine learning predictions, espe-
cially focused on misclassification detection. Conventional uncertainty measures such as Shannon
entropy do not provide an effective way to infer the real uncertainty associated with the model’s
predictions. We introduce a novel data-driven measure of uncertainty relative to an observer for
misclassification detection by learning patterns in soft-predictions distribution.

Finally, Chapter 6 will conclude the research journey by summarizing this work’s major findings
and contributions. Also, we will offer insights into potential avenues for future research to continue
advancing our understanding of out-of-distribution and misclassification detection.

1.9 List of Contributions and Publications

The main content of the dissertation will be based on the following works:

1. Chapter 2 is based on the results presented in Dadalto et al. (2022) entitled Igeood: An In-
formation Geometry Approach to Out-of-Distribution Detection, that was accepted to
the NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications
and appeared in the proceedings of the International Conference on Learning Representations
(ICLR) in 2022. The full list of authors isEduardo Dadalto Câmara Gomes, Florence Alberge,
Pierre Duhamel, and Pablo Piantanida, and it is available at ArXiv, abs/2203.07798.

2. Chapter 3 is based on the results presented in Dadalto et al. (2023b) entitled Neural Tra-
jectories for Out-of-Distribution Detection, under submission. The full list of authors is
Eduardo Dadalto Câmara Gomes, Pierre Colombo, Guillaume Staerman, Nathan Noiry, and
Pablo Piantanida, and it is available at ArXiv, abs/2306.03522.

3. Chapter 4 is based on the results presented in Dadalto et al. (2023a) entitled Combine and
Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection, that has
been recently submitted to the Transactions on Machine Learning Research journal. The full
list of authors is Eduardo Dadalto Câmara Gomes, Florence Alberge, Pierre Duhamel, and
Pablo Piantanida.

4. Chapter 5 is based on the results presented in Dadalto et al. (2024b) entitled A Data-Driven
Measure of Relative Uncertainty for Misclassification Detection, that has was accepted to



the Neural Information Processing Systems Workshop entitled Mathematics of Modern Ma-
chine Learning (NeurIPS 2023 M3L) and to the proceedings of the International Conference
on Learning Representations (ICLR) in 2024. The full list of authors is Eduardo Dadalto Câ-
mara Gomes∗1, Marco Romanelli∗, Georg Pichler∗, and Pablo Piantanida, and it is available
at ArXiv, abs/2306.01710.

Other works I have contributed to during my PhD are:

5. Beyond Mahalanobis-Based Scores for Textual OOD Detection (Colombo et al., 2022),
that appeared in the 35th Advances in Neural Information Processing Systems proceedings in
2022. The full list of authors is Pierre Colombo, Eduardo Dadalto Câmara Gomes, Guillaume
Staerman, Nathan Noiry, and Pablo Piantanida, and it is available at ArXiv, abs/2211.13527.

6. Unsupervised Layer-wise Score Aggregation for Textual OOD Detection (Darrin et al.,
2024), that has been accepted to the 38th Annual AAAI Conference on Artificial Intelligence
(AAAI 2024). The full list of authors is Maxime Darrin, Guillaume Staerman, Eduardo
Dadalto Câmara Gomes, Jackie Cheung, Pablo Piantanida, and Pierre Colombo, and it is
available at ArXiv, abs/2302.09852.

7. Trusting the Untrustworthy: A Cautionary Tale on the Pitfalls of Training-based Rejec-
tion Option (Dadalto et al., 2024a) , that has been recently submitted to the journal Pattern
Recognition Letters. The full list of authors is Eduardo Dadalto Câmara Gomes∗, Marco
Romanelli∗, Federica Granese, Siddharth Garg, and Pablo Piantanida.

During this thesis, I also collaborated closely with IBM-France for the ANR project entitled
AIDA, a joint venture between public and private institutions towards Artificial Intelligence for Digi-
tal Automation. Notably, we delivered a practical demonstration in the format of anAPI (Application
Programming Interface) of some of the techniques that will be presented in the following chapters
for detecting OOD data in a real-world scenario. An URL2 is provided to access the public version of
the API. An open source library for accelerating research on generalized out-of-distribution (OOD)
detection is publised alongside this thesis3 (Dadalto, 2023).

1∗ indicates equal contribution.
2https://huggingface.co/spaces/edadaltocg/ood-detection
3https://github.com/edadaltocg/detectors





CHAPTER2
Igeood: An Information Geometry
Approach to Out-of-Distribution

Detection

2.1 Introduction

In this chapter, we propose Igeood, a new unified and effective method to perform OOD detection
by rigorously exploring the information-geometric properties of the feature space on various depths
of a DNN. Igeood provides a flexible framework that applies to any pre-trained softmax neural
classifier. A key ingredient of Igeood is the Fisher-Rao distance. This distance is used as an effective
differential geometry tool for clustering, as a distance in the context of multivariate Gaussian pdfs
(Pinele et al., 2020; Strapasson et al., 2016), among other applications.

We measure the dissimilarity between probability distributions (in and out) as the length of the
shortest path within the manifold induced by the underlying class of distributions (i.e., the softmax
probabilities of the neural classifier or the densities modeling the learned representations across
the layers). By doing so, we can explore statistical invariances of the geometric properties of the
learned features (Bronstein et al., 2021). Our method adapts to the various scenarios depending on
the level of information access of the DNN. It uses only in-distribution samples but can also benefit
(if available) from OOD samples or artificially generated outliers.

The contents of this chapter will be based on the papers Dadalto et al. (2021, 2022), a joint work
with Florence Alberge, Pierre Duhamel, and Pablo Piantanida. The code is available at the url1.

2.2 Summary of Contributions

Our work investigates the problem of OOD detection and advances state-of-the-art in different ways.

1. To the best of our knowledge, this is the first work studying information geometry tools to
devise a unifiedmetric for OOD detection. We derive an explicit characterization of the Fisher-
Rao distance based on the information-geometric properties of the softmax probabilities of the

1https://www.github.com/edadaltocg/igeood
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neural classifier and the class of multivariate Gaussian pdfs. In general terms, our Fisher-Rao-
based metric measures the mismatch–in the geometry space–between the probability density
functions of the pre-trained DNN classifier conditioned on test and in-distribution samples.
Section 2.4 details Igeood.

2. Experiments on Black-Box and Grey-Box setups using various datasets, architectures, and
classification tasks show that Igeood is competitivewith state-of-the-art methods. In the Black-
Box setup, we assume that only the outputs, i.e., the logits of the DNN, are available. In the
Grey-Box setup, we allow access to all parameters of the network; however, the detection
must be performed using only the output softmax probabilities. The latter permits input pre-
processing, which introduces a small (additive) noise in the direction of the gradients w.r.t
the test sample. This pre-processing allows for further discrimination between in- and out-of-
distribution samples. Our benchmark contains two DNN architectures, three in-distribution
datasets, and nine OOD datasets.

3. In a White-Box setting, we combine the logits with the low-level features of the DNN to
leverage further useful statistical information of the encoded in-distribution data. We model
the pre-trained latent representations as a mixture of Gaussian pdfs with a diagonal covariance
matrix. Under this assumption, we derive a confidence score based on the Fisher-Rao distance
between conditional pdfs corresponding to the test and the closest in-distribution samples.
Experiments based on various datasets, architectures, and classification tasks clearly show
consistent improvement of Igeood, achieving new state-of-the-art performance on a couple of
benchmarks. In particular, we increased the average TNR at 95% TPR by 11.2% with tuning
on OOD data and by 2.5% with tuning on adversarial data compared to Lee et al. (2018b).

2.3 Review of the Fisher-Rao Distance

In this section, we review some results from references Atkinson and Mitchell (1981); Pinele et al.
(2020). We intend to clarify some basic concepts surrounding the Fisher-Rao distance (FRD) while
motivating this measure in the context of OOD detection.

In a few words, Fisher-Rao’s distance is given by the geodesic distance, i.e., the shortest path
between points in a Riemannian space induced by a parametric family. Consider the family C of
probability distributions over the class of discrete concepts or labels: Y = {1, . . . , C}, denoted
by C ≜

{
qθ(·|x) : x ∈ X ⊆ R

C
}
. We are interested in measuring the distance between probability

distributions qθ(·|x)with respect to the testing input x and a population of inputs drawn accordingly
to the in-distribution data set. To this end, we first need to characterize the Fisher-Rao distance for
two inputs or for two probability distributions qθ, q′θ ∈ C. Assume that the following regularity
conditions hold (Atkinson and Mitchell, 1981):

(i) ∇x qθ(y|x) exists for all x, y and θ ∈ Θ;

(ii)
∑
y∈Y
∇x qθ(y|x) = 0 for all x and θ ∈ Θ;



(iii) G(x) = EY∼qθ(·|x)
[
∇x log qθ(Y |x)∇⊤

x log qθ(Y |x)
]
is positive definite for any x and θ ∈

Θ.

Notice that if (i) holds, (ii) also holds immediately for discrete distributions over finite spaces (as-
suming that

∑
y∈Y and∇x are interchangeable operations) as in our case. When (i)-(iii) are met, the

variance of the differential form∇⊤
x log qθ(Y |x)dx can be interpreted as the square of a differential

arc length ds2 in the space C, which yields

ds2 = 〈dx, dx〉G(x) = dx⊤G(x)dx. (2.1)

Thus, G, which is the Fisher Information Matrix (FIM), can be adopted as a metric tensor. We
now consider a curve γ : [0, 1] → X connecting a pair of arbitrary points x, x′ in the input space
X , i.e., γ(0) = x and γ(1) = x′. Notice that any curve γ induces a curve qθ(·|γ(t)) for t ∈ [0, 1]

in the space C. The Fisher-Rao distance between the distributions qθ = qθ(·|x) and q′θ = qθ(·|x′)

will be denoted as dR,C(qθ, q′θ) and is formally defined by the expression:

dR,C(qθ, q
′
θ) ≜ inf

γ

∫ 1

0

√
dγ⊤(t)
dt

G(γ(t))
dγ(t)

dt
, (2.2)

where the infimum is taken over all piecewise smooth curves. This means that the FRD is the
length of the geodesic between points x and x′ using the FIM as the metric tensor. In general, the
minimization of the functional in equation 2.2 is a problem that can be solved using the well-known
Euler-Lagrange differential equation.

2.3.1 Derivation of Fisher-Rao Distance for the Class of Softmax Probability Distributions

The direct computation of the FIM of the family C with qθ(y|x) in the form of the softmax probability
distribution function given by equation 2.16 can be shown to be singular, i.e., rank(G(x)) ≤ C − 1,
where C − 1 is the number of degrees of freedom of the manifold C. To overcome this issue, we
introduce the probability simplex P defined by

P =



q : Y → [0, 1]C :

∑

y∈Y
q(y) = 1



 . (2.3)

Next, we consider the following parametrization for any distribution q ∈ P :

q(y|z) =
z2y

4
, y ∈ {1, . . . , C}. (2.4)

From this expression, we consider the statisticalmanifoldD =
{
q(·|z) : ‖z‖2 = 4, zy ≥ 0, ∀y ∈ Y

}
.

Note that the parameter vector z belongs to the positive portion of a sphere of radius 2 and is centered



at the origin in RC . The computation of the FIM for z on D yields:

G(z) = Eq(y|z)
[
∇z log q(y|z)∇⊤

z log q(y|z)
]

=
∑

y∈Y

z2y

4

(
2

zy
ey

)(
2

zy
e⊤y

)

=
∑

y∈Y
eye

⊤
y

= I,

(2.5)

where {ey} are the canonical basis vectors in R
C and I is the identity matrix. From equation 2.5

we can conclude that the Fisher-Rao metric in this parametric space is equal to the Euclidean metric.
Also, since the parameter vector lies on a sphere, the FRD between the distributions q = q(·|z) and
q′ = q (·|z′) can be written as the radius of the sphere times the angle between the vectors z and z′.
Which leads to the expression:

dR,D
(
q, q′

)
= 2 arccos

(
z⊤z′

4

)
= 2 arccos


∑

y∈Y

√
q(y|z)q (y|z′)


 . (2.6)

Finally, we can compute the FRD for softmax distributions in C as

dFR−Logits
(
qθ, q

′
θ

)
= 2 arccos


∑

y∈Y

√
qθ(y|x)qθ (y|x′)


 , (2.7)

obtaining the same form of equation 2.17. Notice that 0 ≤ dFR−Logits (qθ, q′θ) ≤ π for all x,x′ ∈
X ⊆ R

C , being zerowhen qθ(·|x) = qθ (·|x′) andmaximumwhen the vectors
(
qθ(1|x), . . . , qθ(C|x)

)

and
(
qθ (1|x′) , . . . , qθ (C|x′)

)
are orthogonal.

2.3.2 Derivation of Fisher-Rao Distance for Multivariate Gaussian Distributions

Consider a broader statistical manifold S ≜ {pθ = p(x;θ) : θ = (θ1, θ2, . . . , θm) ∈ Θ} of multi-
variate differential probability density functions. The Fisher information matrixG(θ) = [gij(θ)] in
this parametric space is provided by:

gij(θ) = Eθ

(
∂

∂θi
log p(x;θ)

∂

∂θj
log p(x;θ)

)

=

∫
∂

∂θi
log p(x;θ)

∂

∂θj
log p(x;θ)p(x;θ)dx.

(2.8)

Next, consider a multivariate Gaussian distribution:

p(x;µ,Σ) =
(2π)−(

n
2 )

√
Det(Σ)

exp
(
−(x− µ)⊤Σ−1(x− µ)

2

)
, (2.9)



where x ∈ R
k is the variable vector, µ ∈ R

k is the mean vector, Σ ∈ Pk(R) is the covariance
matrix, andPk(R) is the space of k positive definite symmetric matrices. We can define the statistical
manifold composed by these distributions asM = {pθ;θ = (µ,Σ) ∈ R

k×Pk(R)}. By substituting
equation 2.9 in equation 2.8, we can derive the Fisher information matrix for this parametrization,
obtaining:

gij(θ) =
∂µ⊤

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr
(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θi

)
, (2.10)

which induces the following square differential arc length inM:

ds2 = dµ⊤Σ−1dµ+
1

2
tr
[(
Σ−1dΣ

)2]
. (2.11)

Here, dµ = (dµ1, . . . , dµn) ∈ R
k and dΣ = [dσij ] ∈ Pk(R). We observe that this metric is

invariant to affine transformations (Pinele et al., 2020), i.e., for any (c, Q) ∈ R
k × GLk(R), with

GLk(R) the space of non-singular order k matrices, the map (µ,Σ) 7→
(
Qµ+ c, QΣQ⊤) is an

isometry inM. Thus, the Fisher-Rao distance between two multivariate normal distributions with
parameters θ1 = (µ1,Σ1) and θ2 = (µ2,Σ2) inM satisfies:

dR,M (θ1,θ2) = dR,M
((
Qµ1 + c, QΣ1Q

⊤
)
,
(
Qµ2 + c, QΣ2Q

⊤
))

. (2.12)

Unfortunately, a closed-form solution for the Fisher-Rao distance remains unknown. This is still
an open problem for an arbitrary covariance matrix Σ and mean vector µ. Fortunately, the FRD is
known for the univariate case and, hence, for the submanifold where Σ is diagonal. Notice that in
this case, equation 2.11 admits an additive form.

FromPinele et al. (2020), we obtain the analytical expression of the Fisher-Rao in the 2-dimensional
submanifold of univariate Gaussian probability distributionsM2 = {pθ : θ = (µ, σ2) ∈ R ×
(0,+∞)}:

ρFR
((
µ1, σ

2
1

)
,
(
µ2, σ

2
2

))
=
√
2 log

∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∣∣∣+
∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∣∣∣
∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∣∣∣−
∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∣∣∣
, (2.13)

where | · | is the Euclidian norm in R
2 and σ denotes the standard deviation. Consequently, the

FRD for Gaussian distributions with diagonal covariance matrix Σ = diag
(
σ21, σ

2
2, . . . , σ

2
k

)
in the

2k-dimensional statistical submanifoldMD =
{
pθ : θ = (µ,Σ),Σ = diag

(
σ21, σ

2
2, . . . , σ

2
k

)
, σi >

0, i = 1, . . . , k
}
is

dFR−Gauss (θ1,θ2) =

√√√√
k∑

i=1

dR,M2

(
(µ1i, σ1i) , (µ2i, σ2i)

)2
. (2.14)

2.3.3 Fisher-Rao vs. Mahalanobis Distance

There is an intricate relationship between the FRD for multivariate Gaussian distributions and the
Mahalanobis distance. We borrow the result from Pinele et al. (2020), which states that in the k-



dimensional submanifoldMΣ ofM where Σ is constant, i.e.,MΣ = {pθ : θ = (µ,Σ),Σ = Σ0 ∈
Pk(R)}, the Fisher-Rao distance dR,MΣ

between two distributions is given by the Mahalanobis
distance (Mahalanobis, 1936):

dR,MΣ

(
N (µ1,Σ),N (µ2,Σ)

)
=
√

(µ1 − µ2)TΣ−1(µ1 − µ2). (2.15)

The Mahalanobis distance is also used for OOD detection (Lee et al., 2018b), and its performance
is compared to the FRD through several experiments in Section 2.5. Since the covariance matrix
for the hidden layers’ outputs is often not full rank, the pseudo-inverse is calculated instead of the
inverse.

2.4 Igeood: OOD Detection Using the Fisher-Rao Distance

This section introduces Igeood, a flexible framework for OOD detection. Igeood is implemented
in two ways: at the level of the logits using temperature scaling (Section 2.4.2), which mitigates
the high-confidence scores assigned to OOD examples, and layer-wise level (Section 2.4.3). The
key ingredient of Igeood is the Fisher-Rao distance that allows for effective differentiation between
in-distribution and out-of-distribution samples. This distance measures the dissimilarity between
two probability models within a class of probability distributions by calculating the geodesic dis-
tance between two points on the learned manifold. This measure connects information geometry
and differential geometry through the R. Fisher information matrix (Fisher, 1922). Closed-form ex-
pressions of this distance are known to multivariate normal distributions under certain assumptions,
among others distributions (Pinele et al., 2020).

2.4.1 Empirical Motivation

We introduce a simple example to demonstrate conceptually how Fisher-Rao distance is instrumental
to OOD detection. It should be noted that this example is limited to one dimension. However, we
expect similar behavior with more complex data under the Gaussianity assumptions.

Consider the case where we try to distinguish between samples from distinct Gaussian distribu-
tions on 1D. Assume that the in-distribution data follows a Gaussian N (µ1, σ1) while OOD data
is drawn according to either N (µ2, σ1) or N (µ2, σ2). These distributions are illustrated in Figures
2.1a and 2.1b. In this setup, distance-based approaches, which are invariant to the variance of the dis-
tributions, would have the performance limited to the information given by the difference between
the means of the underlying distributions. For instance, in the case of the Mahalanobis distance,
we would rely on our discrimination on the difference between the sample and the in-distribution
mean, rescaled by the in-distribution standard deviation only, but nothing further could be obtained.
However, suppose we can estimate OOD standard deviations from actual or pseudo-OOD data. In
that case, we expect the Fisher-Rao distance between Gaussian distributions to be more effective in
distinguishing between distributions. Figure 2.1c shows that the Fisher-Rao distance distinguishes
better between “In-dist.” and “OOD II” samples, while the other distances fail.



(a) Contour lines. (b) Synthetic data distribution.
(c) OOD detection score his-
togram.

Figure 2.1: Example comparing Fisher-Rao and Mahalanobis distances to distinguish between 1D
Gaussian distributions, showcasing the motivation to use of Fisher-Rao metric for OOD detection.

2.4.2 Igeood Score Using the Softmax Outputs

The Fisher-Rao distance (Atkinson and Mitchell, 1981) takes as input two probability distributions.
For the classification problem, we can take the temperature T scaled softmax function (Eq. (2.16))
as an approximation of a class-conditional probability distribution:

qθ (y|f(x);T ) ≜
exp (fy(x)/T )∑

y′∈Y exp
(
fy′(x)/T

) , (2.16)

where f : X → R
C is a vectorial functionwith f ≜

(
f1, f2, . . . , fC

)
and fy(·) denotes the y-th logits

output value of the DNN classifier. The Fisher-Rao distance dFR−Logits between two distributions
resulting from the softmax probability evaluated at two data points is (see Section 2.3):

dFR−Logits
(
qθ(·|f(x)), qθ(·|f(x′))

)
≜ 2 arccos


∑

y∈Y

√
qθ
(
y|f(x)

)
qθ
(
y|f(x′)

)

 . (2.17)

Class conditional centroid estimation. We model the training dataset class-conditional pos-
terior distribution by calculating the centroid of the logits representations of this set. Precisely, we
compute the empirical centroid for the logits of each class y ∈ Y = {1, . . . , C} of the in-distribution
training dataset DN corresponding to the Fisher-Rao distance, i.e.,

µy ≜ min
µ∈RC

1

Ny

∑

∀ i : yi=y
dFR−Logits

(
qθ(·|f(xi)), qθ(·|µ)

)
, (2.18)

where Ny is the amount of training examples with label y. We optimize this expression offline
using SGD algorithm, where the parameter to be tuned is µ in the logits space. This is equivalent to
finding the centroid of a cluster using the Fisher-Rao distance after each example has been assigned
to a cluster.

OOD and confidence score. Using the softmax probability, we can define a confidence score to
be the minimum of the Fisher-Rao distance between f(x) and the class-conditional centroids. Thus,



the estimated class ŷFR follows as:

ŷFR(x) ≜ argmin
y∈Y

dFR−Logits
(
qθ(·|f(x)), qθ(·|µy)

)
. (2.19)

However, we obtained slightly better OOD detection performance by using Eq. (2.20) instead of the
minimal value. A likely explanation would be that this metric uses extra information from the other
logits dimensions. Thus, we propose the Fisher-Rao distance-based OOD detection score FR0(x)

for the logits to be the sum of the distances between f(x) and each individual class conditional
centroid µy given by Eq. (2.18). By taking the sum instead of the minimal distance, we leverage
useful information related to the example’s confidence score for each class y. We denote it by

FR0(x) ≜
∑

y∈Y
dFR−Logits

(
qθ(·|f(x)), qθ(·|µy)

)
. (2.20)

Input pre-processing. In consonance with the literature (Liang et al., 2018b; Liu et al., 2020;
Lee et al., 2018b), we also perform input pre-processing to enhance the detection between in-distribution
and OOD samples and potentially improve OOD detection performance for the Grey-Box discrimi-
nator. We add small magnitude perturbations ε in a Fast Gradient-SignMethod-style (FGSM) (Good-
fellow et al., 2015) to each test sample x to increase the proposed metric, that is:

x̃ = x+ ε⊙ sign
[
∇xFR0(x)

]
. (2.21)

The OOD detector. The detector consists of a threshold-based function for discriminating be-
tween in-distribution and OOD data. This threshold δ and parameters are set so that the true positive
rate, i.e., the in-distribution samples correctly classified as in-distribution, becomes 95%. Mathe-
matically, the Black-Box OOD detector gBB and the Grey-Box OOD detector gGB writes:

gBB(x; δ, T ) =

{
1 if FR0 (x) ≤ δ
0 if FR0 (x) > δ

and gGB(x̃; δ, T, ε) =

{
1 if FR0 (x̃) ≤ δ
0 if FR0 (x̃) > δ

. (2.22)

2.4.3 Igeood Score Leveraging Latent Features

For each layer, we define a set of class-conditional Gaussian distributions with diagonal standard
deviation matrix σ(ℓ) and class-conditional mean µ(ℓ)

y , where y ∈ {1, . . . , C} and ℓ is the index of
the latent feature. We compute the empirical estimates of these parameters according to

µ(ℓ)
y =

1

Ny

∑

∀i : yi=y
f (ℓ) (xi) , and σ(ℓ) = diag



√

1

N

∑

y∈Y

∑

∀i : yi=y

(
f
(ℓ)
j (xi)− µ(ℓ)y,j

)2

 ,

(2.23)
where j ∈ {1, . . . , k}, k is the size of feature ℓ, and f (ℓ)(·) is the output of the network for feature
ℓ. The Fisher-Rao distance ρFR between two arbitrary univariate Gaussian pdfs N (µ1, σ

2
1) and



N (µ2, σ
2
2) is given by Section 2.3 above.

ρFR ((µ1, σ1) , (µ2, σ2)) =
√
2 log

∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∣∣∣+
∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∣∣∣
∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∣∣∣−
∣∣∣
(
µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∣∣∣
. (2.24)

Similarly, the Fisher-Rao distance dFR−Gauss between two multivariate Gaussian pdfs with diagonal
standard deviation matrix is derived from the univariate case and is given by

dFR−Gauss
(
(µ,σ), (µ′,σ′)

)
=

√√√√
k∑

i=1

ρFR

(
(µi, σi,i) ,

(
µ′i, σ

′
i,i

))2
, (2.25)

where k is the cardinality of the distributions N (µ,σ) and N (µ′,σ′), µi is the i-th component of
the vector µ, and σi,i is the entry with index (i, i) of the standard deviation matrix σ.

Experimental support for a diagonal Gaussian mixture model. It is known that interme-
diate features of a DNN can be valuable for detecting abnormal samples as demonstrated by Lee
et al. (2018b). Nonetheless, we observed that the latent features covariance matrices are often ill-
conditioned and are diagonal dominant. In other words, the condition number of the covariance
matrix often diverges, and the magnitude of the diagonal entry in a row is greater than or equal to
the sum of all the other entries in that row for most rows. Thus, a diagonal covariance matrix will
be a favorable compromise for OOD detection.

Fisher-Rao distance-based feature-wise confidence score. We derive a confidence score by
applying the Fisher-Rao distance between the test sample x and the closest class-conditional diag-
onal Gaussian distribution. Contrarily to the logits, taking the sum did not improve results, so we
kept the minimal distance. We can consider two scenarios: (i)We do not have access to any valida-
tion OOD data whatsoever. In this case, the natural choice is to model the test samples as Gaussian
distribution with the same diagonal standard deviation as the learned representation, i.e.,

FRℓ(x) = min
y∈Y

dFR−Gauss
(
(x,σ(ℓ)), (µ(ℓ)

y ,σ(ℓ))
)
; (2.26)

and (ii) we dispose of a validation OOD dataset on which the features’ diagonal standard deviation
matrices σ′(ℓ) and the means µ′(ℓ) can be estimated, as well as the quantity:

FR′
ℓ(x) = min

y∈Y
dFR−Gauss

(
(x,σ(ℓ)), (µ′(ℓ),σ′(ℓ))

)
. (2.27)

This validation dataset could be obtained from a synthetic dataset, a dataset different from the testing
one, or even by adversarially creating OOD data by attacking the classifier model on the training
dataset.

Feature ensemble. To further improve performance, we combine the confidence scores of the
logits and the ones from the low-level features through a linear combination. Similarly to the strat-
egy in Lee et al. (2018b), we choose the weights α0, αℓ and α′

ℓ ∈ R by training a logistic regression
detector using validation samples. Thus, we ensure that the metric emphasizes features that demon-



strate a greater capacity for detecting abnormal samples. Igeood score for the White-Box setting
is:

FR(x) ≜ α0FR0(x) +
∑

ℓ

αℓ · FRℓ(x) + α′
ℓ · FR′

ℓ(x), (2.28)

where FR0 is given by equation 2.20, FRℓ is given by equation 2.26 and FR′ considers a different
validation diagonal covariance matrix for the test samples (equation 2.27). We also apply input
pre-processing similarly to the Grey-Box setting (equation 2.21), obtaining FR(x̃) as final score.

Unified metric. For the three settings, the metric is the same but has different formulations
given the family of the distributions. For the DNN outputs, we use the softmax posterior probability
distribution formulation. The intermediate layers it is under the model of diagonal Gaussian pdfs.
Therefore, we have derived a unified OOD detection framework that combines a single distance for
both the softmax outputs and the latent features of a neural network. Figure 2.2 illustrates how each
technique contributes to separating in-distribution and OOD samples.

Figure 2.2: Probability distributions of the Igeood score under three different settings for a pre-
trained DenseNet on CIFAR-10 for in-distribution and OOD data (TinyImageNet downsampled).

2.5 Experimental Results

2.5.1 Setup

The experimental setup follows the setting established by Hendrycks and Gimpel (2017), Liang et al.
(2018b) and Lee et al. (2018b). We use two pre-trained deep neural networks architectures for image
classification tasks: a Dense Convolutional Network (DenseNet-BC-100) (Huang et al., 2017) and
a Residual Neural Network (ResNet-34) (He et al., 2016). We take as in-distribution data images
from CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 and SVHN (Netzer et al., 2011) datasets.

We measure the effectiveness of the OOD detectors with three standard evaluation metrics: (i)
The true negative rate at 95% true positive rate (TNR at TPR-95%); (ii) the area under the receiv-
ing operating curve (AUROC); and (iii) the area under the precision-recall curve (AUPR). For the
Black-Box and Grey-Box experimental settings, we tune hyperparameters for all of the OOD de-
tectors only based on the DNN classifier architecture, the in-distribution dataset and a validation
dataset. The iSUN (Xu et al., 2015) dataset is chosen as a source of OOD validation data, inde-
pendently from OOD test data. We choose the parameters that maximize the TNR at TPR-95% on
the validation OOD dataset. For the White-Box framework, we allow both the benchmark and our
method to tune either on adversarially generated data from in-distribution training samples or a sep-



arate validation dataset containing 1, 000 images from the OOD test dataset with feature ensemble
described in Section 2.4.3. In this case, we evaluate the performance of the remaining test samples.

2.5.2 Results for the Black-Box and the Grey-Box Setups

For comparing Igeood under the hypothesis of a Black-Box scenario, we consider the Baseline
(Hendrycks and Gimpel, 2017) method, ODIN (Liang et al., 2018b) with temperature scaling only,
and the free-energy-based metric (Liu et al., 2020) with temperature scaling only. The results for
the Black-Box setting are available in Table 2.1, where we show the average and one standard devia-
tion OOD detection performance for each of the eight OOD detection method in six different image
classification contexts (couple DNN model and in-distribution dataset). For comparison under the
Grey-Box assumption, we consider ODIN and the free-energy-based methods, both with input pre-
processing. The results for the Grey-Box setup are provided in Table 2.2. For the Black-Box setting,
Igeood slight improves the benchmark by less than 1% in TNR at TPR-95%. While for the Grey-
Box setting, results show Igeood is outperformed by <1% in a few benchmarks by ODIN, which is
greatly improved by input pre-processing techniques.

Table 2.1: Average and standard deviation OOD detection performance across eight OOD datasets
for each model and in-distribution dataset in a Black-Box setting.

TNR at TPR-95% AUROC
Model In-dist. Baseline / ODIN / Energy / Igeood (ours)

DenseNet
C-10 52.5±16/66.8±20/65.3±23/65.6±23 91.8±3.2/92.8±4.6/92.1±5.3/92.3±5.1
C-100 15.9±6.8/20.5±9.5/20.3±9.6/20.7±9.8 69.1±15/71.6±20/71.6±20/73.2±17
SVHN 68.4±14/68.8±20/70.2±17/72.1±15 92.3±4.0/87.3±14/90.1±5.9/90.9±5.3

ResNet
C-10 41.7±16/51.9±15/56.3±13/56.7±13 89.6±3.1/90.4±3.1/90.4±3.0/90.5±3.0
C-100 15.0±5.5/16.0±6.3/16.3±7.1/16.4±6.8 74.0±1.9/75.2±1.7/75.5±1.9/75.5±1.7
SVHN 76.2±7.8/77.7±7.9/78.0±7.9/78.3±8.0 92.2±2.9/91.4±3.2/91.4±3.2/91.7±3.2

Average and Std. 44.9±24/50.3±24/51.1±24/51.6±24 84.8±9.5/84.8±8.3/85.2±8.4/85.7±8.0

Table 2.2: Average and standard deviation OOD detection performance across eight OOD datasets
for each model and in-distribution dataset in a Grey-Box setting.

TNR at TPR-95% AUROC
Model In-dist. ODIN / Energy / Igeood

DenseNet
C-10 66.8±23/64.8±25/65.3±24 91.9±6.2/91.5±6.4/91.9±6.0
C-100 25.5±14/24.8±13/25.0±13 76.6±12/76.4±12/78.2±8.2
SVHN 75.4±15/70.6±17/72.4±16 91.6±5.4/89.2±6.9/90.0±6.3

ResNet
C-10 57.3±20/57.7±19/57.8±19 89.2±5.4/88.7±5.3/89.0±5.2
C-100 31.1±22/30.2±22/30.2±22 76.9±11/74.4±12/74.3±12
SVHN 78.5±7.8/78.5±7.9/78.8±7.8 90.4±3.4/90.9±3.4/90.7±3.3

Average and Std. 55.8±21/54.4±20/54.9±20 86.1±6.7/85.2±7.0/85.7±6.8



2.5.3 Hyperparameters Tuning

Temperature scaling and input pre-processing. For temperature T , we ran a Bayesian optimiza-
tion for 500 epochs in the interval of temperature values between 1 and 1000, where the objective
function was to maximize the TNR at TPR-95% metric for the validation set. We took the best tem-
perature among five runs with different random seeds. For the input pre-processing noise magnitude
ε tuning, we ran a grid search optimization with 21 equally spaced values in the interval [0, 0.002].
Table 2.3 shows the best hyperparameters we found for the methods in the Black-Box, Grey-Box,
and White-Box settings.

Table 2.3: Best temperatures T for the Black-Box setup, best temperature and noise magnitude (T , ε)
for the Grey-Box setup, and best ε for the Mahalanobis score and (T, ε) for Igeood and Igeood+ in
the White-Box setup with adversarial tuning.

In-dist.
dataset

Black-Box Grey-Box White-Box
Model ODIN Energy Igeood ODIN Energy Igeood Maha. Igeood,+

DenseNet
C-10 1000 4.6 5.3 (1000, 0.0014) (4.6, 0.0012) (5.3, 0.0012) 0 (5, 0.0015)
C-100 1000 1.1 2.1 (1000, 0.0020) (1.1, 0.0020) (2.1, 0.0020) 0 (5, 0)
SVHN 1 1.1 1.1 (1, 0.0010) (1.1, 0.0006) (1.1, 0.0006) 0.001 (5, 0.0015)

ResNet
C-10 1000 5.4 5.3 (1000, 0.0014) (5.4, 0.0012) (5.3, 0.0012) 0.0005 (2, 0)
C-100 1000 1 1 (1000, 0.0020) (9.1, 0.0024) (12.7, 0.0024) 0.0005 (1, 0)
SVHN 1000 1.7 1 (1000, 0.0004) (1.7, 0.0002) (1.0, 0.0004) 0 (5, 0)

In Figure 2.3, we plot on the left-hand side column the effect of the temperature parameter in the
performance for the Black-Box setup. We set the noise magnitude to zero and measured the TNR at
TPR-95% for 500 different temperature values found by a Bayesian optimization for various DNN
models. The performance is evaluated on the iSUN dataset. The right-hand side column of Figure
2.3 shows the effect of the noisemagnitude parameter in the performance of Igeood score in the Grey-
Box setup. We set the temperature to the best found in the Black-Box case. Then, we measured the
OOD performance for 21 values of noise magnitude ε equally spaced in the interval [0, 0.004]. The
best couple (T, ε) for each method and model is used to evaluate the Grey-Box performances. The
best hyperparameters found are detailed in Table 2.3.

We observed that low values of temperature and moderate noise magnitude yield better detection
performance for Igeood on the logits. For most models and datasets, we obtained better results for
temperatures between 1 and 6 and noise magnitudes below 0.002. Detailed results and the best
hyperparameters found for each configuration, as well as figures of their impact on performance,
are delegated to the appendix of this chapter.

How the choice of validation dataset impacts performance. To verify the consistency of
Igeood and other methods to the choice of validation data, we measured the TNR at TPR-95% after
tuning our method in a Black-Box and Grey-Box scenario on nine validation datasets. In Table 2.4,
the first column shows the validation dataset, while we used the remaining OOD datasets to evaluate
performance. We obtained consistent results, ranging from 63.4% to 72.0% the average TNR at TPR-
95% in the Black-Box case and from 65.0% to 73.4% in the Grey-Box setting. We show that input
pre-processing provides mild amelioration for our method and can be considered a fine-tuning step.



(a) DenseNet on CIFAR-10.

(b) DenseNet on CIFAR-100.

(c) DenseNet on SVHN.

Figure 2.3: OOD detection performance against temperature and noise magnitude parameters for
ODIN (Liang et al., 2018b), Energy (Liu et al., 2020) and Igeood (ours) on the iSUN (Xu et al.,
2015) OOD dataset for a DenseNet-100 architecture.

We show that the average TNR at TPR-95% for Igeood ranges between 63% and 72% on a
Black-Box scenario and between 65% and 74% on a Grey-Box scenario. The performances among
the compared methods are consistent across validation datasets.

2.5.4 Results for the White-Box Setting

For benchmarking Igeood on the White-Box setting, we compare results to the Mahalanobis (Lee
et al., 2018b) method with input pre-processing and feature ensemble. For both of them, we extract
features from every output of the dense (or residual) block of the DenseNet (or ResNet) model
and the first convolutional layer. The size of each feature is reduced by average pooling in the
spatial dimensions. Thus, the initial dimension Fℓ × Wℓ × Hℓ is reduced to Fℓ, where Fℓ is the
number of channels in block ℓ. For DenseNet, this reduction translates to features of sizes F1 =

{24, 108, 150, 342}; and for ResNet, to features of sizes F2 = {64, 64, 128, 256, 512}.
We consider two scenarios for tuning hyperparameters for both Mahalanobis and Igeood: one

with adversarially generated (FGSM) and in-distribution data and another one with 1,000 OOD sam-



Table 2.4: Black-Box and Grey-Box settings average performance across different OOD datasets for
validation. The hyperparameters are tuned using one validation dataset (column 1), and evaluation
is done on the remaining eight OOD test datasets. The DNN is DenseNet-BC-100 pre-trained on
CIFAR-10, and the values are TNR at TPR-95% in percentage.

Black-Box Grey-Box
Validation set Baseline ODIN Energy Igeood ODIN Energy Igeood

iSUN 52.5 64.3 64.9 65.6 66.8 64.8 65.3
Chars 55.0 70.8 71.1 71.4 72.5 72.0 73.4
CIFAR-100 55.4 68.6 69.1 72.0 68.6 71.7 71.3
Gaussian 49.4 62.8 65.6 63.4 70.4 64.0 68.0
TinyImgNet 53.0 64.7 65.2 63.5 67.0 65.0 65.5
LSUN 52.1 63.9 63.7 63.6 66.6 65.3 65.0
Places365 55.3 68.5 69.0 71.8 70.0 71.5 70.9
SVHN 55.4 68.7 69.3 69.5 70.0 69.4 70.1
Textures 55.4 71.2 73.1 71.4 71.5 72.4 71.6
average and std. 53.7±2.0 67.1±3.0 67.9±3.0 68.0±3.7 69.3±2.0 68.4±3.4 69.0±3.0

ples and in-distribution data. We derive two methods: Igeood+, which is given by equation 2.28 and
considers that we can calculate the statistics from OOD data as additional information; and Igeood,
which doesn’t consider any prior on OOD data, i.e., set α′

ℓ = 0 on equation 2.28.
Comparison with current literature. For each DNNmodel and in-distribution dataset pair, we

report the average and one standard deviation OOD detection performance for Mahalanobis (Lee
et al., 2018b), Igeood and Igeood+. Table 2.5 validates the contributions of our techniques. We
observe substantial performance improvement in all experiments for the left-hand side of the table,
where we outperform Mahalanobis on average for all test cases. Igeood+ show improvements of
at least 2.1% up to 23% on TNR at TPR-95%. Since the results are usually above 90%, these im-
provements are significant. To assess the consistency of Igeood to the choice of validation data, we
measured the detection performance when all hyperparameters are tuned only using in-distribution
and generated adversarial data, as observed in the right-hand side of Table 2.5. Igeood record im-
provements up to 10.5%, and improves by 2.5% the average TNR at TPR-95% across all datasets
and models.

2.6 Discussion

2.6.1 Ablation Study

Igeood has three components, FR0, FRℓ, and FR′
ℓ, that together compose the final metric of equa-

tion 2.28. The outputs of the network provide limited OOD detection capacity as observed in Ta-
ble 2.1. When available, the intermediate features, i.e., FRℓ, are a valuable resource for OOD detec-
tion. Moreover, when few reliable OOD data are available, calculating FR′

ℓ can further improve the
detection performance (left-hand side column of Table 2.5). Also, data from a source other than in-



Table 2.5: Average and standard deviation OOD detection performance for the White-Box settings.
The abbreviation TNR-95%, C-10, and C-100 stands for TNR at TPR-95%, CIFAR-10, and CIFAR-
100, respectively.

Validation on OOD data Validation on adversarial data
TNR-95% AUROC TNR-95% AUROC

Model In-dist. Mahalanobis / Igeood+ (ours) Mahalanobis / Igeood (ours)

DenseNet
C-10 76.6±31/92.6±14 92.1±12/98.4±3.0 75.9±30/77.9±29 91.7±12/94.0±9.0
C-100 67.2±28/90.2±21 90.2±13/97.7±5.0 60.4±34/70.9±35 85.3±19/90.8±13
SVHN 93.3±8.0/98.0±2.0 98.6±1.0/99.6±0.1 93.7±10/92.2±9.0 98.6±2.0/98.4±1.0

ResNet
C-10 82.5±23/91.6±16 96.5±4.0/98.4±3.0 78.6±24/77.3±32 95.3±6.0/90.0±15
C-100 70.4±30/86.4±23 91.9±10/97.1±5.0 57.4±36/65.1±33 86.9±13/88.6±15
SVHN 96.8±6.0/98.9±2.0 99.2±1.0/99.7±0.1 96.3±8.0/93.6±14 99.1±1.0/98.4±3.0

Average and Std. 81.1±11/92.9±4.0 94.8±4.0/98.5±1.0 77.0±15/79.5±10 92.8±5.4/93.4±3.9

distribution, e.g., adversarial samples, is enough for tuning hyperparameters and combining features
(right-hand side column of Table 2.5).

For both Mahalanobis and Igeood methods, we fitted a logistic regression model with cross-
validation using 1,000 OOD and 1,000 in-distribution data samples. Each regression parameter
multiplies the layer scores outputs with the objective function of maximizing the TNR at TPR-95%.
We set the maximum number of iterations to 100.

To investigate which hidden feature assists the most in OOD detection, we calculate the TNR at
TPR-95% for the scores in the outputs of Blocks 1, 2, and 3 of a DenseNet pre-trained on CIFAR-10.
We took as OOD data the SVHN dataset. Figure 2.4 shows the histogram and detection performance
for each layer and the results from the logistic regression. Note that we did not consider the logits
for the Igeood score in this study.

2.6.2 Adversarial Data Generation

We generate adversarial samples from the in-distribution dataset using the fast gradient sign method
(FGSM). This method works by exploiting the gradients of the neural network to create a non-
targeted adversarial attack. For an input image xi, the method computes the sign of the gradients of
the loss function J concerning the input image to create a new image xadv

i that maximizes the loss
as given by equation 2.29. This fabricated image is called an adversarial image, which we use for
tuning the hyperparameters of the OOD detection methods in the White-Box case. Mathematically,

xadv
i = xi + εadv ⊙ sign(∇xi

J(θ,xi, yi)), (2.29)

where εadv > 0 is the additive noise magnitude parameter. Table 2.6 shows the resulting L∞ mean
perturbation and classification accuracy on adversarial samples.



(a) Block 1. (b) Block 2. (c) Block 3.

(d) Logistic regression result.

Figure 2.4: Histograms of the Mahalanobis and Igeood scores for the output of each hidden block of
a DenseNet model for CIFAR-10 (in-dstribution) and SVHN (out-of-distribution). The title shows
the TNR at TPR-95% considering only the scores of the outputs of the given layer. The logistic
regression found as coefficients: α = (1.0,−3.6,−0.13) for Mahalanobis and α = (1.0, 1.3, 1.2)
for Igeood.

2.7 Final Remarks and Summary

This chapter introduces Igeood, an effective and flexible method for OOD detection that applies
to any pre-trained neural network. The main feature of Igeood relies on the geodesic distance of
the probabilistic manifold of the learned latent representations that induces an effective measure for
OOD detection. First, in a (Grey-) Black-Box setup, we calculate the sum of the Fisher-Rao distance
between the softmax output, corresponding to the test (pre-processed) sample, and a reference prob-
ability, corresponding to the conditional-class of softmax probabilities. Similarly, in a White-Box
setup, we model the low-level features of a DNN as a diagonal Gaussian mixture. The Fisher-Rao
distance between the pdf of the latent feature, corresponding to the test sample, and a reference pdf,
corresponding to the conditional class of pdfs, provides an effective confidence score. We considered
diverse testing environments where prior knowledge of OOD data may be unavailable, reflecting di-
verse application scenarios. It is observed that Igeood significantly and consistently improves the



Table 2.6: The L∞ mean perturbation used to generate adversarial data with FGSM algorithm and
classification accuracy on adversarial samples for the DNN models and in-distribution datasets.

CIFAR-10 CIFAR-100 SVHN
L∞ Acc. L∞ Acc. L∞ Acc.

DenseNet-BC-100 0.21 19.5% 0.20 4.45% 0.32 54.7%
ResNet-34 0.21 23.7% 0.20 12.49% 0.25 50.0%

accuracy of OOD detection on several DNN architectures across various datasets for a White-Box
setting.





CHAPTER3
Neural Trajectories for

Out-of-Distribution Detection

3.1 Introduction

Distinguishing OOD samples is challenging. Some previous works developed detectors by com-
bining scores at the various layers of the multi-layer pre-trained classifier (Sastry and Oore, 2020;
Lee et al., 2018b; Dadalto et al., 2022; Huang et al., 2021; Colombo et al., 2022). These detectors
require either a held-out OOD dataset (e.g., adversarially generated data) or ad-hoc methods to com-
bine OOD scores computed on each layer embedding. A key observation is that existing aggregation
techniques overlook the sequential nature of the underlying problem and, thus, limit the discrimina-
tive power of those methods. Indeed, an input sample passes consecutively through each layer and
generates a highly correlated signature that can be statistically characterized. Our observations in
this work motivate the statement:

The input’s trajectory through a network is valuable for distinguishing typical samples
from atypical ones.

In this chapter, we cast the multi-layer scores into a sequential representation that captures the
statistical trajectory of an input sample through the various layers of a neural network. Consequently,
we redefine OOD detection as detecting samples whose trajectories are abnormal (or atypical) com-
pared to reference trajectories characterized by the training set. Through a vast experimental bench-
mark, we showed that the vectorial representation of a sample encodes valuable information for
OOD detection without the need for outlier data to tune parameters.

The contents of this chapter will be based on the work Dadalto et al. (2023b) that was conducted
with my co-authors Pierre Colombo, Guillaume Staerman, Nathan Noiry, and Pablo Piantanida. The
code is available at the url1.

1https://www.github.com/edadaltocg/detectors
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3.2 Summary of Contributions

1. Computing OOD scores from trajectories. We propose a semantically informed map from
multiple embedding spaces to a simple vectorial representation. Subsequently, the simple dot
product between the test sample’s trajectory and the training prototype trajectory indicates
how likely a sample is to belong to in-distribution.

2. Extensive empirical evaluation. We validate the value of the proposed method by demonstrat-
ing gains against twelve strong state-of-the-art methods on both CIFAR-10 and ImageNet on
average TNR at 95% TPR and AUROC across five NN architectures.

3.3 Related Works

Efforts toward combining multiple features to improve performance were previously explored in
(Lee et al., 2018b; Sastry and Oore, 2020; Dadalto et al., 2022). The strategy relies upon having
additional data for tuning the detector or focusing on specific model architectures, which are limiting
factors in real-world applications. For instance, MOOD (Lin et al., 2021) relies on the MSDNet
architecture, which trains multiple classifiers on the output of each layer in the feature extractor, and
their objective is to select the most appropriate layer in inference time to reduce the computation
cost. On the other hand, we study the trajectory of an input through the network. Unlike MOOD,
our method applies to any current architecture of NNs.

3.4 Preliminaries

We start by recalling the general setting of the OOD detection problem from a mathematical point of
view (Section 3.4.1). Then, in Section 3.4.2, we motivate our method through a simple yet clarifying
example showcasing the limitations of previous works and how we approach the problem.

3.4.1 Background

Previous work rely on a multi-layer pre-trained classifier f : X → Y defined as:

fθ(·) = h ◦ fL ◦ fL−1 ◦ · · · ◦ f1(·),

with L ≥ 1 layers, where fℓ : Rdℓ−1 → R
dℓ is the ℓ-th layer of the multi-layer neural classifier,

dℓ denotes the dimension of the latent space induced by the ℓ-th layer (d0 = d), and h indicates
the classifier that outputs the logits. We also define zℓ = (fℓ ◦ · · · ◦ f1)(x) as the latent vectorial
representation at the ℓ−th layer for an input sample x. We will refer to the logits as zL+1 and h
as fL+1 to homogenize notation. It is worth emphasizing that the trajectory of (z1, z2, . . . , zL+1)

corresponding to a test input x0 are dependent random variables whose joint distribution strongly
depends on the underlying distribution of the input.

Therefore, the design of the binary detection function d(·) is typically based on the three key
steps:



(i) A similarity measure D(· ; ·) (e.g., Cosine similarity, Mahalanobis distance, etc.) between a
sample and a population is applied at each layer to measure the similarity (or dissimilarity) of
a test input x0 at the ℓ-th layer zℓ,0 = (fℓ ◦ · · · ◦ f1)(x0) w.r.t. the population of the training
examples observed at the same layer

{
zℓ = (fℓ ◦ · · · ◦ f1)(x) : x ∈ SN

}
.

(ii) The layer-wise score obtained is mapped to the real line collecting the OOD scores.

(iii) A threshold is set to build the final decision function.

A fundamental ingredient remains in step (ii):

How to consistently leverage the information collected from multiple layers outputs in
an unsupervised way, i.e., without resorting to OOD or pseudo-OOD samples?

3.4.2 From Supervised Multi-Layer Scores to an Unsupervised Formulation
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Figure 3.1: Figure 3.1a summarizes the limitation of supervisedmethods for aggregating layer scores
that rely on held-out OOD or pseudo-OOD data. It biases the decision boundary (D.B) that does not
generalize well to other types of OOD data. We observed that in-distribution and OOD data have
disparate trajectories through a network (Fig. 3.1b), especially on the last five features. These
features are correlated in a sequential fashion, as observed in Fig. 3.1c.

Previous multi-feature OOD detection works treat step (ii) as a supervised learning problem
(Lee et al., 2018b; Dadalto et al., 2022) for which the solution is a linear binary classifier. The
objective is to find a linear combination of the scores obtained at each layer that will sufficiently
separate in-distribution from OOD samples. A held-out OOD dataset is collected from true (or
pseudo-generated) OOD samples. The linear soft novelty score functions sα writes:

sα(x0) =
L∑

ℓ=1

αℓ · D
(
x0;
{
(fℓ ◦ · · · ◦ f1)(x) : x ∈ SN

})
.

The shortcomings of this method are the need for extra data or ad-hoc parameters, which results in
decision boundaries that underfit the problem and fail to capture certain types of OOD samples. To



illustrate this phenomenon, we designed a toy example (see Figure 3.1a) where scores are extracted
from two features fitting a linear discriminator on held-out in-distribution (IND) and OOD samples.

As a consequence, areas of unreliable predictions where OOD samples cannot be detected due
to the misspecification of the linear model arise. One could simply introduce a non-linear discrim-
inator that better captures the geometry of the data for this 2D toy example. However, it becomes
challenging as we move to higher dimensions with limited data.

By reformulating the problem from a vectorial data point of view, we can identify trends and
typicality in trajectories extracted by the network from the input. Figure 3.1b shows the dispersion
of trajectories coming from the in-distribution and OOD samples. These patterns are extracted from
multiple latent representations and aligned on a time-series-like object. We observed that trajectories
coming from OOD samples exhibit a different shape when compared to typical trajectories from
training data. Thus, to determine if an instance belongs to in-distribution, we can test if the observed
path is similar to the reference extracted from the training set.

3.5 Trajectory-Based OOD Detection

This section presents our OOD detection framework, which applies to any pre-trained multi-layer
neural network with no requirements for OOD samples. We describe our method through two key
steps: vector representation of the input sample (see Section 3.5.1) and test time OOD score compu-
tation (see Section Section 3.5.2).

3.5.1 Vectorial Representation

The first step to obtaining a vector representation of the data from the multivariate hidden representa-
tions is to reduce each feature map to a scalar value. To do so, we first compute the class-conditional
training population prototypes defined by:

µℓ,y =
1

Ny

Ny∑

i=1

zℓ,i, (3.1)

where Ny =
∣∣{zℓ,i : yi = y, ∀i ∈ {1..N}}

∣∣, 1 ≤ ℓ ≤ L+ 1 and zℓ,i = (fℓ ◦ · · · ◦ f1)(xi).
Given an input example, we compute the probability weighted scalar projection2 between its

features (including the logits) and the training class conditional prototypes, resulting in L+1 scalar
scores:

Dℓ(x;Mℓ) =

C∑

y=1

σy(x) · projµℓ,y
zℓ (3.2)

=

C∑

y=1

σy(x)‖zℓ‖cos
(
∠ (zℓ,µℓ,y)

)
, (3.3)

whereMℓ = {µℓ,y : y ∈ Y}, ‖·‖ is the ℓ2-norm, ∠ (·, ·) is the angle between two vectors, and
2Other metrics to measure the similarity of an input w.r.t. the population of examples can also be used.



σy(x; fθ) is the softmax function on the logits fθ(x) of class y. Hence, our layer-wise scores
rely on the notions of vector length and angle between vectors, which can be generalized to any
n-dimensional inner product space without imposing any geometrical constraints.

It is worth emphasizing that our layer score has some advantages compared to the class condi-
tional Gaussian model first introduced in Lee et al. (2018b) and the Grammatrix-based method intro-
duced in Sastry and Oore (2020). Our layer score encompasses a broader class of distributions as we
do not suppose a specific underlying probability distribution. We avoid computing covariance matri-
ces, which are often ill-conditioned for latent representations of DNNs Ahuja et al. (2019). Since we
do not store covariance matrices, our vectorial approach has a negligible overhead regarding mem-
ory requirements. Also, our method can be applied to any vector-based hidden representation, not
being restricted to matrix-based representations as in Sastry and Oore (2020). Thus, our approach
applies to a broader range of models, including transformers.

By computing the scalar projection at each layer, we define the following vectorial neural-
representation extraction function given by Eq. 3.4. Thus, we can map sample representations
to a simpler vector space while retaining information on the typicality w.r.t the training dataset.

ϕ : X → R
L+1

x 7→
[
D1 (x;M1) , . . . ,DL+1 (x;ML+1)

] (3.4)

We apply ϕ to the training input xi to obtain the representation of the training sample across the
network ui = ϕ(xi). We consider the related vectors ui, ∀ i ∈ [1 : N ]3 as curves parame-
terized by the layers of the network. We build a training reference dataset U = {ui}Ni=1 from
these representations that will be useful for detecting OOD samples during test time. We then
rescale the training set trajectories w.r.t the maximum value found at each coordinate to obtain
layer-wise scores on the same scaling for each coordinate. Hence, for j ∈ {1, . . . , L + 1}, let
max (U) := [maxi ui,1, . . . ,maxi ui,L+1]

⊤, we can compute a reference trajectory ū for the entire
training dataset defined in equation 3.5 that will serve as a global typical reference to test trajectories.

ū =
1

N

N∑

i=1

ui

max(U) (3.5)

3.5.2 Computing the OOD Score at Test Time

At inference time, we first re-scale the test sample’s trajectory as we did with the training reference
ϕ̄(x) = ϕ(x)/max (U) . Then, we compute a similarity score w.r.t this typical reference, resulting
in our OOD score. We choose as metric also the scalar projection of the test vector to the training
reference. In practical terms, it boils down to the inner product between the test sample’s trajectory
and the training set’s typical reference trajectory since the norm of the average trajectory is constant

3We observed empirically that subsampling vectors to even N /100 yields very good results.



for all test samples. Mathematically, our scoring function s : X 7→ R writes:

s(x; ū) =
〈
ϕ̄(x), ū

〉
=

L+1∑

j=1

ϕ̄(x)jūj (3.6)

which is bounded by Cauchy-Schwartz’s inequality.
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Figure 3.2: The left-hand side of the figure shows the feature extraction process of a deep neural
network classifier f . The mapping of the hidden representations of an input sample into a vectorial
representation is given by a function ϕ. The right-hand side of the figure shows how our method
computes the OOD score s of a sample during test time. The sample’s trajectory is projected to the
training reference trajectory ū. Finally, a threshold γ is set to obtain a discriminator g.

3.6 Experimental Setup

Datasets. We set as in-distribution dataset ImageNet-1K (= ILSVRC2012; Deng et al., 2009) for our
main experiments. For the out-of-distribution datasets, we take the same dataset splits introduced
by Huang and Li (2021).
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Figure 3.3: Vectorial representation with 5 and 95% quantiles (3.3a), histogram (3.3b), and ROC
curve (3.3c) for our OOD score on a DenseNet-121 model with Textures as OOD dataset.

Models. We ran experiments with five models. ADenseNet-121 (Huang et al., 2017) pre-trained
on ILSVRC-2012 with 8M parameters and test set top-1 accuracy of 74.43%. A ResNet-50 model



with top-1 test set accuracy of 75.85% and 25M parameters. A BiT-S-101 (Kolesnikov et al., 2020)
model based on a ResNetv2-101 architecture with top-1 test set accuracy of 77.41% and 44M param-
eters. And aMobileNetV3 large, with an accuracy of 74.6% and around 5M parameters. We reduced
the intermediate representations with anmax pooling operation when needed obtaining a final vector
with a dimension equal to the number of channels of each output. We also ran experiments with a Vi-
sion Transformer (ViT-B-16; Dosovitskiy et al., 2021), which is trained on the ILSVRC2012 dataset
with 82.64% top-1 test accuracy and 70M parameters. We take the output’s class tokens for each
layer. We download all the checkpoint weights from PyTorch (Paszke et al., 2019) hub. All mod-
els are trained from scratch on ImageNet-1K. For all models, we compute the probability-weighted
projection of the building blocks, as well as the projection of the logits of the network to form the
vectorial representation. So, there is no need for a special layer selection.
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MSP 88.4 81.6 80.5 80.4 28.6 83.9 79.9 75.6 74.9
ODIN 91.3 84.7 82.0 84.9 40.7 87.4 80.4 73.0 78.0
Energy 90.6 86.6 84.0 86.7 41.8 87.1 79.7 72.2 78.6
MaxLogits 91.1 86.4 84.0 86.4 40.7 87.4 80.4 73.0 78.7
KLMatching 89.7 80.4 78.9 82.5 39.0 85.7 80.8 74.0 76.4
IGEOOD 90.1 85.0 82.8 85.7 39.5 86.7 80.2 71.5 77.7
Mahalanobis 63.0 50.8 50.4 89.8 78.5 75.1 65.8 55.2 66.1
GradNorm 93.9 90.1 86.1 90.6 47.9 80.9 74.1 65.1 78.6
DICE 94.3 90.7 87.4 90.6 43.3 85.8 77.5 70.3 80.0
ViM 87.4 81.0 78.3 96.8 71.0 88.8 78.9 66.4 81.1
ReAct 96.7 94.3 91.9 88.8 52.5 89.2 80.2 75.0 83.6
KNN 94.9 88.6 84.7 95.4 76.8 84.1 79.6 64.2 83.5

Proj. (Ours) 95.8 94.5 91.2 96.3 62.9 82.7 81.2 80.1 85.6
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MSP 88.2 80.9 80.4 83.0 73.6 89.0 83.2 80.5 82.4
ODIN 86.0 75.2 76.5 81.2 74.5 89.5 83.7 83.3 81.2
Energy 79.2 70.2 68.4 79.3 75.9 88.5 82.7 84.4 78.6
MaxLogits 93.2 84.8 81.2 83.7 75.0 89.6 83.9 83.4 84.4
KLMatching 93.2 85.1 83.4 84.5 78.2 90.1 83.4 78.5 84.6
IGEOOD 94.6 85.9 81.8 85.0 77.2 91.1 85.1 84.4 85.6
Mahalanobis 96.0 85.3 84.2 87.5 83.3 93.1 85.4 76.9 86.5
GradNorm 91.2 85.3 83.4 86.5 44.7 47.2 51.7 68.5 69.8
DICE 46.1 49.3 49.7 64.3 40.1 32.5 42.3 52.7 47.1
ViM 97.1 85.4 81.9 85.9 83.1 93.0 83.5 75.0 85.6
ReAct 85.6 78.8 77.3 84.5 83.2 93.8 85.4 81.2 83.7
KNN 88.9 79.4 77.7 87.8 84.4 94.2 87.2 79.2 84.8

Proj. (Ours) 93.3 82.1 80.7 91.1 81.4 93.8 87.5 84.8 86.8

Table 3.1: Comparison against post-hoc state-of-the-art methods for OOD detection on the ImageNet
benchmark in terms of AUROC. Values are in percentage, and higher is better.



3.7 Results and Discussion

3.7.1 Main Results

We report our main results in Table 3.1, which includes the performance for two out of five models
(see Section 3.A for the remaining three), four OOD datasets, and twelve detection methods. On
ResNet-50, we achieve a gain of 2% in average AUROC compared to ReAct. For the ViT-B-16, the
gap between methods is small, and our method exhibits a comparable TNR and AUROC to previous
state-of-the-art. For BiT-S-101, we outperform GradNorm by 18.9% TNR and 5.4% AUROC. For
DenseNet-121 (see Section 3.A), we improved on ReAct by 16% and 3.9% in TNR and AUROC,
respectively. Finally, on MobileNet-V3 Large, we registered gains of around 20% TNR and 9.2%
AUROC. We observed that activation clipping benefits our method on convolution-based networks
but hurts its performance on transformer architectures, aligned with the results from Sun et al. (2021).

Trajectory iNat SUN Places Text. Avg.
ResNet-50 Penult. 96.3 93.1 89.5 95.2 93.5
ResNet-50 Last 2 98.0 96.7 94.9 94.5 96.0
ResNet-50 Last 3 97.7 95.3 92.7 96.5 95.5
ResNet-50 All 95.8 94.5 91.2 96.3 94.5

ViT-B-16 Penult. 97.0 88.6 86.2 91.0 90.7
ViT-B-16 Last 2 96.5 88.8 84.9 90.7 90.2
ViT-B-16 Last 3 97.6 89.9 86.7 91.2 91.3
ViT-B-16 All 93.3 82.1 80.7 91.1 86.8

Table 3.2: Performance for segments of the trajectory.

3.7.2 Results on CIFAR-10

We ran experiments with a ResNet-18 model trained on CIFAR-10 Krizhevsky et al. (2009). We
extracted the trajectory from the outputs of layers 2 to 4 and logits. The results are displayed in Ta-
ble 3.3. Our method outperforms comparable state-of-the-art methods by 2.4% on average AUROC,
demonstrating that it is consistent and suitable for OOD detection on small datasets too.

MSP ODIN Ener. KNN ReAct Ours

C-100 88.0 88.8 89.1 89.8 89.7 89.4
SVHN 91.5 91.9 92.0 94.9 94.6 99.0
LSUNc 95.1 98.5 98.9 97.0 97.9 99.8
LSUNr 92.2 94.9 95.3 95.8 96.7 99.8
TIN 89.8 91.1 91.7 92.8 93.8 98.0
Places 90.1 92.9 93.2 93.7 94.7 93.6
Text. 88.5 86.4 87.2 94.2 93.4 97.9

Avg. 90.7 92.1 92.5 94.0 94.4 96.8

Table 3.3: CIFAR-10 benchmark results in terms of AUROC based on a ResNet-18 model.



3.7.3 Ablation Study

Table 3.2 show OOD detection results in terms of AUROC (%) on the ImageNet benchmark for the
penultimate layer, for a trajectory formed by the last two and three outputs compared to the results for
the entire trajectory. We demonstrated that building a trajectory with the last layers could improve
detection performance, as observed in previous work that most information for OOD detection in
Computer Vision benchmarks is contained in the last layers’ outputs. Thus, we showed that the
practitioner’s inductive bias can improve detection, demonstrating that our method is flexible and
can adopt smart layer selection strategies.

3.7.4 Study Case

There are a few overlaps regarding the semantics of class names in the Textures and ImageNet
datasets. In particular, “honeycombed” in Textures versus “honeycomb” in ImageNet, “stripes” vs.
“zebra”, ”tiger”, and ”tiger cat”, and “cobwebbed” vs. “spider web”. We showed in Table 3.1 that
our method significantly decreases the number of false negatives in this benchmark. We designed
a simple study case to understand better how our method can discriminate where baselines often
fail. Take the Honeycombed vs. Honeycomb, for instance (the first row of Fig. 3.4a). The honey-
comb from ImageNet references natural honeycombs, usually found in nature, while honeycombed
in Textures has a broader definition attached to artificial patterns. In this class, the Energy baseline
makes 108 mistakes, while we only make 20 mistakes. We noticed that some of our mistakes are
aligned with real examples of honeycombs (e.g., the second example from the first row). At the same
time, we confidently classify other patterns correctly as OOD. For the striped case (middle row), our
method flags only 16 examples as being in-distribution, but we noticed an average higher score for
the trajectories in Fig. 3.4b (Stripes). Note that, for the animal classes, the context and head are
essential features for classifying them. For the Spider webs class, most examples from Textures are
visually closer to ImageNet. Overall, the study shows that our scores are aligned with the semantic
proximity between testing samples and the training set.

(a) A few examples from Textures dataset
sharing semantic overlap with ImageNet
classes.
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(b) Trajectories of the leftmost examples of
Fig. 3.4a and their OOD scores in parenthe-
sis.

Figure 3.4: Detection of individual samples on classes with semantic overlap between ImageNet
and Textures. The badge on each image in Fig. 3.4a shows the detection label given by our method.
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Figure 3.5: Histogram showing that the halfspace depth of the average vectors for a given class
is higher than the highest depth of an embedding feature vector of the same class, demonstrating
multivariate centrality.

3.7.5 On the Centrality of the Class-Conditional Features Maps

This section studies whether the mean vectors are sufficiently informative for statistically modeling
the class-conditional embedding features. From a statistical point of view, the average would be
informative if the data is compact. To address this point, we plotted the median and the mean for
the coordinates of the feature map and measured their difference in Figure 3.6. We observed that
they almost superpose in most dimensions or are separated by a minor difference, which indicates
that the data is compact and central. In addition, we showed in Figure 3.5 that the halfspace depth
(Tukey, 1975a) of the mean vector of a given is superior to the maximum depth of a training sample
vector of the same class, suggesting the average is central or deep in the feature data distribution.
From a practical point of view, the clear advantages of using only the mean as a reference are com-
putational efficiency, simplicity, and interpretability. We believe that future work directions could
be exploring a method that better models the density in the embedding features, especially as more
accurate classifiers are developed.

3.7.6 Limitations

We believe this work is only the first step towards efficient post-score aggregation as we have tack-
led an open and challenging problem of combining multi-layer information. We rely on the class-
conditional mean vectors, which might not be sufficiently informative for statistically modeling the
embedding features depending on the distribution. From a statistical point of view, the average
would be informative if the data is compact. To address this point, we plotted the median and the
mean for several coordinates of the feature map and measured their difference in Fig. 3.6. We ob-
served that they superpose in most dimensions, which indicates that the data is compact and central,
thus, the prototypes are informative. Additionally, we showed in Fig. 3.5 that the halfspace depth
(Tukey (1975a); more details in Section 3.7.5) of the mean vector of a given class is superior to the
maximum depth of a training sample of the same class, suggesting that the average is deep in the
feature’s data distribution.
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Figure 3.6: Histogram for the 20 first dimensions of the penultimate feature of a DenseNet-121 for
class index 0 of ImageNet. The green line is the average, and the red line is the estimated median.

3.8 Final Remarks and Summary

In this chapter, we introduced an original approach to OOD detection that leverages the sample’s
trajectories through the layers of a neural network. Our method detects samples whose trajectories
differ from the typical behavior characterized by the training set. The key ingredient relies on the
statistical dependencies of the scores extracted at each layer, using a purely self-supervised algorithm.
We empirically validate through an extensive benchmark against several state-of-the-art methods that
our Projection method is consistent and achieves great results across multiple models and datasets,
even requiring no special hyperparameter tuning. We hope this work will encourage future research
to explore sample trajectories to enhance the safety of AI systems.

3.A Appendix to Chapter 3

We provide additional results in terms of TNR and AUROC for the BiT-S-101, DenseNet-121, and
MobileNetV3-Large models in Table 3.4 for the baseline methods and ours.



Table 3.4: Extended comparison against post-hoc state-of-the-art methods for OOD detection on the
ImageNet benchmark. Values are in percentage.
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CHAPTER4
Combine and Conquer: A

Meta-Analysis on Data Distribution
Shift and Out-of-Distribution Detection

4.1 Introduction

This chapter presents a universal method to improve the detection of performance-degrading shifts
by ensembling existing detectors in an unsupervised manner. Each detector can be formalized as
a test of equivalence of the source distribution (from which training data is sampled) and target
distribution (from which real-world data is sampled) through the lens of a predictive model. Our
framework is highly adaptable for future developments in detection scores. It is motivated by the
fact that different detection algorithms may make trivial mistakes in different parts of the data space
without any assumptions on the test data distribution (Birnbaum, 1954). The challenge is to develop
a widely applicable method for combining detectors to alleviate catastrophic errors, resulting in a
more effective detector with consolidated decision boundaries.

Additionally, we can create a fully interpretable criterion by adjusting the final statistics of the in-
distribution scores. Our framework is highly adaptable for future developments in detection scores.
Through a meticulous empirical investigation, we analyze different types of shifts with varying de-
grees of impact on data, demonstrating that our approach significantly enhances overall robustness
and performance across various domains, shift types, and out-of-distribution detection scenarios.

The contents of this chapter will be based on the work Dadalto et al. (2023a) that was a collab-
oration with my co-authors Florence Alberge, Pierre Duhamel, and Pablo Piantanida. The code is
available at the url1.

4.2 Summary of Contributions

Our method is inspired by meta-analysis (Glass, 1976), a statistical technique combining multiple
studies’ results to produce a single overall estimate. Even though p-value ensembling is not new,

1https://www.github.com/edadaltocg/detectors
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this is the first time such techniques have been used in OOD detection and data distribution shift
detection. We summarize our contributions as follows:

1. To the best of our knowledge, we are the first to present a simple and convenient ensembling
algorithm for combining existing out-of-distribution data detectors, leading to better general-
izability by incorporating effects that may not be apparent in individual detectors;

2. A probabilistic interpretable detection criterion that comes for free by correcting the final
statistics into a distribution with known parameters;

3. A framework to adapt any single example detector to a window-based data shift detector;

4. And a comprehensive empirical investigation encompassing single example out-of-distribution
detection and window-based data distribution shift detection.

4.3 Related Works

Window-based data shift detection. This line of work proposes methods for detecting shifts in
data distribution using multiple samples. Lipton et al. (2018) presents a technique for detecting
prior probability shifts. Rabanser et al. (2019) studies two-sample tests with high dimensional inputs
through dimensionality reduction techniques from the input to a projected space. Cobb and Looveren
(2022) explores two sample conditional distributional shift detection based on maximum conditional
mean discrepancies to segment relevant contexts in which data drift is diminishing. Our work shows
detection against window data shifts, for a survey on adapting models to these shifts, please refer to
Gama et al. (2014) and Lange et al. (2022).

4.4 Methodology

This section analyzes the methodology for detecting distribution shifts in data streams inputted to
deep neural networks. We define data stream in Section 4.4.1 and we formalize window-based
detection in Section 4.4.2.

4.4.1 Background

At test time, an unlabeled sequence of inputs or data stream is expected, sampled from the marginal
target distribution qX .

Definition 4.4.1 (Data stream). A data stream S is a finite or infinite sequence of not necessarily
independent observations typically grouped into windows (i.e., sets Wm

j = {xj , . . . , xj+m−1} ∼
qX ) of same sizem,

S = {x1, . . . ,xm, . . . } =
∞⋃

j=1

Wm
j . (4.1)



Under the data-shift scenario, let β ∈ [0, 1] be a mixture coefficient, we will write the true joint
test pdf qXY as a mixture of pdfs p and υ2:

qXY (x, y) = (1− β) · pXY (x, y) + β · υXY (x, y). (4.2)

Remark 1. When β = 0, the test distribution matches the training distribution, i.e., there is no shift.
Conversely, when β = 1, we have the largest shift between training and testing environments.

4.4.2 Window Based Detection Framework

Predictions can be made sample by sample or window by window in a data stream. We introduced
the single sample detection in Chapter 1.

In a window based detection scenario, we make the assumptions that 1.) there are available
multiple reference samples, 2.) the instance’s class label are not available right after prediction, and
3.) the model is not updated. So, given a reference window Wr

1 ∼ pXY with r samples and test
windowWm

2 = {x′
1, . . . ,x

′
m} ∼ qX with sample sizem, our task is to determine whether they are

both sampled from the source distribution or, equivalently, whether pXY (x, y) equals qXŶ (x′, ŷ′)

where ŷ′ = f(x′). The null and alternative hypothesis of the two-sample test of homogeneity writes:

H0 : pXY (x, y) = q
XŶ

(
x′, ŷ′

)
and HA : pXY (x, y) 6= q

XŶ

(
x′, ŷ′

)
. (4.3)

In this case, the null hypothesis is that the two distributions are identical for all (x, y); the alter-
native is that they are not identical, which is a two-sided test. As testing this null hypothesis on a
continuous and high dimensional space is unfeasible, we will compute a univariate score on each
sample of the windows. With a slight abuse of notation let s (Wm, f) = {s(x1, f), . . . , s(xm, f)}
be a multivariate proxy variable to derive a unified large-scale window-based data shift detector. To
compute the final window score, we rely on the Kolmogorov-Smirnov (Massey, 1951) two-sample
hypothesis test over the proxy variable. The test statistic writes:

KS(Wm
1 ,Wr

2) = sup
w
|F2,m(w)− F1,r(w)| , (4.4)

where F1,r and F2,m are the empirical cumulative distribution functions (ecdf) of the scores of each
sample of the first and the second windows, respectively. Finally, The KS statistic is compared to a
threshold, i.e., the window-based binary detector writesD(·) = 1 [KS(·,Wr

1) ≤ γ].

4.5 Main Contribution: Arbitrary Scores Combination

This section explains in detail the core contribution of the chapter. We present an algorithm to
effectively combine arbitrary detection score functions inspired by meta-analysis (Glass, 1976), a
statistical technique that combines the results of multiple studies to produce a single overall estimate.
The first step is to transform the scores into p-values through a quantile normalization (Conover and

2We assume that υ is unknown and differs significantly from p, i.e., 1

2

∫
X×Y

|p(z)− υ(z)|dz ≥ δ.



Iman, 1981) (cf. Section 4.5.2). Then, with multiple detectors, the p-values can be combined using
a p-value combination method (cf. Section 4.5.3). Finally, we introduce an additional statistical
treatment, since the p-values of the multiple tests over the same sample are not independent, to
obtain better-calibrated statistics through the Brown’s method (Brown, 1975) (cf. Section 4.5.4)
for the Fisher’s statistic. Haroush et al. (2021) treated the first step similarly and proposed a few
combination methods for the second step. However, to the best of our knowledge, we are the first
to propose correcting for correlated tests in the context of OOD and data shift detection.
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Figure 4.1: Illustration of the three steps of the proposed algorithm on an example with three score
functions on in-distribution data. Our main experiments combine 15 scores.

4.5.1 Simple Statistics for Score Aggregation Falls Short

Common practices to combine different detection scores usually involve a notion of mean (de Car-
valho, 2016) of scores accompanied with some assumptions. For instance, should the scores con-
tribute equally to the final one, or should we consider a weighted sum, giving more importance to
a few methods? Outlier score values should have preference over the other values or not? Should
we take a more conservative or permissive approach in combining the scores? For example, the
product of the available scores would give a low combined score if any of the individual scores is
low. Using the minimum or maximum value among all anomaly scores can control if the method is
more conservative or permissive. All of these combination methods are valid, but they are heavily
dependent on the distributional characteristics. Since the choice of aggregating method depends on
the characteristics of the data, let us focus on the special characteristics of OOD detection scores.

One intrinsic constraint on OOD detection is not having access to a sufficiently representa-
tive group of outlier data, undermining techniques such as metalearning Opitz and Maclin (1999)
and other supervised ensembling techniques. Another undesired characteristic is that detection
scores usually exhibit very distinct distribution shapes, with different moments, as displayed in
Fig. 4.1a. In order to mitigate some of this effects, some simple statistical approaches are commonly
used. They include normal standardization or z-score normalization, where the individual score r.v
Si = si(X, f) is converted into a standard score Zi = (Si − S̄i)/σSi

where the absolute value of
Zi represents the distance between the raw score and the population mean in units of the standard
deviation σSi

. Even though this method correct the first two moments of the distributions, it fails
to accommodate for skewness, kurtosis, and multimodality. Another common data normalization is
min-max scaling, with statistics Zi = (Si − minSi)/(maxSi − minSi). While min-max scaling



guarantees that the final score will be in the same range of zero and one, it also fail to correct many
other characteristics. The lack of control over the moments of the resulting distribution makes the
task of combining scores much more challenging. To address this issue, we stress the importance of
pre-processing the scores with a quantile normalization instead.

4.5.2 Quantile Normalization: Managing Disparate Score Distribution

Each detector’s score r.v. Si = si(X, f) follows very different distributions depending on the
model’s architecture, the dataset it was trained on, and, of course, the score function si. In or-
der to combine them effectively, we propose first to apply a quantile normalization (Bolstad et al.,
2003), which exhibits interesting statistical properties (Gallón et al., 2013). Let Si : Ω 7→ R be a
continuous univariate r.v. captured by a cumulative density function (cdf) Fi(δ) = Pr(Si ≤ δ) for
i ∈ {1, . . . , k} and δ ∈ R. Its empirical cumulative density function F̂i : R 7→ [0, 1] is defined by

F̂ ri (δ) =
1

r

r∑

i=1

1 [Si ≤ δ] , (4.5)

which converges almost surely to the true cdf for every δ by theDvoretzky-Kiefer-Wolfowitz-Massart
inequality (Massart, 1990). We are going to estimate this function using a subsample of size r of the
training or validation set if available. The resulting r.v. is uniformly distributed in the interval [0, 1].
As a result, for each detector i and sample x, we can obtain a p-value:

pi(x) = PH0
(Si ≤ si(x, f)) = Pr (Si ≤ si(x, f)|H0) ≈ F̂ ri (si(x, f)) . (4.6)

A decision is made by comparing the p-value to a desired significance levelα. If p < α, then the null
hypothesisH0 is rejected, and the sample is believed to be OOD. Even though we derived everything
for the single sample case, this formulation can be extended to the window-based scenario.

4.5.3 Combining Multiple p-Values

Our objective is to aggregate a set of k ≥ 2 scores (or p-values) in such a way that their synthesis ex-
hibits better properties, such as improved robustness or detection performance, by consolidating each
method’s decision boundaries. Unfortunately, since q is not known and p is hard to estimate, design-
ing an optimal test is unfeasible according to Neyman–Pearson’s Fundamental Lemma (Lehmann
and Romano, 2005). However, there are several possible empirical combination methods, such as
Tippett (1931) mini pi, Neyman and Pearson (1933) 2

∑k
i ln(1 − pi), Wilkinson (1951) maxi pi,

Edgington (1972)
∑k

i=1 pi, and Simes (1986) mini
k
i
pi for sorted p-values. We are going to explain

in detail Fisher’s method (Fisher, 1925; Mosteller and Fisher, 1948) in the main manuscript, also
referred to as the chi-squared method, and Stouffer’s method (Stouffer et al., 1949) in the appendix
Section 4.A.1, as they exhibit good properties that will be explored in the following.

If the p-values are the independent realizations of a uniform distribution, i.e., for in-distribution
data, −2∑k

i=1 ln pi ∼ χ2
2k follows a chi-squared distribution with 2k degrees of freedom. Finally,



for a test input x, Fisher’s detector score function can be defined as

sF (x, f) = −2
k∑

i=1

ln F̂i(si(x, f)). (4.7)

Fisher’s test has interesting qualitative properties, such as sensitivity to the smallest p-value, and it is
generally more appropriate for combining positive-valued data (Heard and Rubin-Delanchy, 2017)
with matches the properties of most OOD scores.

4.5.4 Correcting for Correlated p-values

It should be noted that Fisher’s method depends on the assumption of independence and uniform
distribution of the p-values. However, the p-values for the same input sample are not independent.
Brown (1975) proposes modeling the r.v sF (·) using a scaled chi-squared distribution, i.e.,

sF (·) ∼ cχ2(k′), with c = Var(SF )/(2E[SF ]) and k′ = 2(E[SF ])
2/Var(SF ). (4.8)

With this simple trick, we approachmore interpretable results, as we know in advance the distribution
followed by the in-distribution data under our combined score. As such, we can leverage calibrated
confidence values given by the true cdf and leverage more powerful single-sample statistical tests
for window-based data shift detection.

Remark 2. Commonly, the binary detection threshold γ for a score is set based on a certain quantile
of the score’s value on an in-distribution validation set. Usually, this value is set to have 95% of enti-
ties correctly classified. By combining p-values with Fisher’s method and correcting for correlation
with Brown’s method, we relax the need for a validation set to find γ, i.e., γ = F−1

cχ2(k′)
(α).

Remark 3. Since Brown’s method is simply a linear scaling, any detection evaluation metric (e.g.,
AUROC) computed for this method will be identical to the original Fisher’s method statistic. How-
ever, we get calibrated scores given that we know the underlying data distribution, as observed in
Fig. 4.1c.

Algorithm 1 summarizes the offline steps of Combine and Conquer. Finally, at test time, the ag-
gregated binary detection function for an input samplexwrites for a given TPR desired performance
α ∈ [0, 1]:

d(x) = 1

[
Fcχ2(k′)

(
−2

k∑

i=1

ln F̂i(si(x, f))

)
≤ α

]
=




1 data shift,

0 otherwise.
(4.9)

4.6 Experimental Setup

In this section, we present and detail the experimental setup from a conceptual point of view. For all
our main experiments, we set as in-distribution dataset ImageNet-1K (=ILSVRC2012; Deng et al.,



Algorithm 1 Offline preparation for combining multiple detectors for OOD detection.
Require: Classifier f , in-distribution held-out data set Dr = {x1, . . . ,xr}, and k ≥ 2 detection
score functions denoted by s1, . . . sk.

S ← 0r×k ▷ Initialize empty r × k matrix
for xi ∈ Dr do ▷ Fill the matrix with in-distribution scores

for j ∈ {1, . . . , k} do
Si,j ← sj(xi)

end for
end for
for j ∈ {1, . . . , k} do ▷ Define the empirical cdfs to compute p-values

F̂j(·)← 1/r
∑r

i=1 1[Si,j ≤ · ]
end for

▷ The following steps are for the Fisher-Brown method. They can be easily adapted to other
methods
for i ∈ {1, . . . , r} do

pi ← −2
∑k

j=1 ln F̂j(Si,j)
end for
µ← 1/r

∑r
i=1 pi, σ2 ← 1/r

∑r
i=1(pi − µ)2

c← σ2/(2µ), k′ ← 2µ2/σ2

return F̂1, . . . , F̂k, c, k
′

2009) on ResNet (He et al., 2016) and Vision Transformers (Dosovitskiy et al., 2021) models. Our
experiments encompass a full-spectrum setting on i.) classic OOD detection (Section 4.6.1), ii.)
concept shift via independent window-based detection (Section 4.6.2; Par. 1), iii.) covariate shift
via independent window-based detection (Section 4.6.2; Par. 2), and iv.) sequential shift detection
via sequential window-based detection (Section 4.6.3).

4.6.1 Classic Out-of-Distribution Detection

We evaluate OOD detection performance on the curated datasets from Bitterwolf et al. (2023) that
contain a clean subset of the far-OOD datasets: SSB-Easy (Vaze et al., 2022), OpenImage-O (Wang
et al., 2022), Places (Zhou et al., 2017), iNaturalist (Horn et al., 2017), and Textures (Cimpoi et al.,
2014); and the near-OOD datasets: SSB-Hard (Vaze et al., 2022), Species (Hendrycks et al., 2022),
and NINCO (Bitterwolf et al., 2023). For the evaluation metrics, we consider the Area Under
the Receiver Operating Characteristic curve (AUROC), which measures how well the OOD score
distinguishes between out- and in-distribution data in a threshold-independent manner (higher is
better). For the baselines, we consider the following post-hoc detection methods: MSP (Hendrycks
and Gimpel, 2017), Energy (Liu et al., 2020), Maha (Lee et al., 2018b), Igeood (Dadalto et al., 2022),
MaxCos (Techapanurak et al., 2020), ReAct (Sun et al., 2021), ODIN (Liang et al., 2018b), DICE
(Sun and Li, 2022), VIM (Wang et al., 2022), KL-M (Hendrycks et al., 2022), Doctor (Granese
et al., 2021), RMD (Fort et al., 2021), KNN (Sun et al., 2022), GradN (Huang et al., 2021). When
needed, we followed the hyperparameter selection procedure suggested in the original papers. New
methods can be easily integrated into our universal framework and should improve the robustness



and, potentially, the performance of the group detector. In Section 4.7 we discuss the empirical
results and analyze if there exists a optimal subset of detectors that boosts detection performance.

4.6.2 Independent Window-Based Detection

Concept shift. We suppose that full ID and corrupted windows formed by ID and OOD data
from the OpenImage-O (OI-O) (Wang et al., 2022) dataset with mixing parameter β (Eq. (4.2)) are
available. The objective of the detectors is to classify each test window as being corrupted or not by
comparing it to a fixed reference window of size r = 1000 extracted from a validation set. We ran
experiments with β ∈ [0, 1] andwith window sizes |W| ∈ {1, . . . , 1000}. We use the KS two sample
test described in Section 4.4.2 as window-based test statistics. Evaluation metrics and baselines are
the same as described in Section 4.6.1. Fig. 4.2 shows Fisher’s ensembled test statistic in different
scenarios of mixture amount and window sizes. Fig. 4.2a shows the distribution of the test statistics
for different mixture values from β = 0 (fully ID window) to β = 1 (fully OOD window). Fig. 4.2b
displays how the distribution on the test statistic changes from flatter to peaky as we increase the
window size (better seen in color). Finally, Fig. 4.2c demonstrates how the detection performance
is affected by window sizes increase mixture coefficient. Note an AUROC of 0.5 for the case with
β = 0, as expected. With a window size as low as 8, we can already perfectly distinguish fully
corrupted from normal ones. Similar qualitative behavior is observed on all detectors.
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Figure 4.2: Test statistic distribution and detection performance w.r.t concept shift intensity and
window size. Experiments ran for Fisher’s method on a ResNet-50.

Model Train Val. IN-R IN-R (m)

ResNet-50 87.5 76.1 1.33 36.2
ResNet-101 90.0 77.4 1.67 39.3
ResNet-152 90.2 78.3 0.67 41.4

ViT-S-16 88.0 81.4 1.33 46.0
ViT-B-16 90.5 84.5 3.33 56.8
ViT-L-16 92.3 85.8 1.67 64.3

Table 4.1: Top-1 accuracies in percentage on the training and validation sets and on the domain drift
on all and (m)asked classes outputs.

Covariate shift. We ran experiments with the ImageNet-R (IN-R) (Hendrycks et al., 2021)
dataset, providing domain shift to 200 ID classes. Similarly to the novelty setup described in the



previous paragraph, we suppose that the windows arrive independently from one another. We use
the same reference window to compute metrics, and we vary the mix parameter and the window size
in the same way. Fig. 4.8 is similar to Fig. 4.2 and shows the behavior of the combined p-values for
detecting covariate shift in windows of a data stream. Similar qualitative observations are drawn.
Table 4.1 display the accuracy of each model studied on the new domain. We can see that without
masking only the classes present on IN-R, the drift is severe, with a top-1 accuracy of around 1%
only. However, as we compute the top accuracy only on the 200 classes by masking the other 800,
we can observe an amelioration in performance. In our experiments, we simulate the more realistic
scenario by supposing that this mask is not available.

4.6.3 Sequential Drift Detection
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Figure 4.3: Data stream monitoring with correlation ρ = 0.98.

In this setup, differently from the independent window-based detection setting, we implement a
sliding window of size 64 with a stride of one. We assume that the samples arrive sequentially and
labels are unavailable to compute the true accuracy of the model on the current or past test windows.
The objective is to see how well the moving average of the detection score will correlate with the
moving accuracy of the model. By having a high correlation with accuracy, a machine learning prac-
titioner can use the values of the score as an indicator if the system is suffering from any degrading
data distribution shift. We ran experiments with the corrupted ImageNet (IN-C) (Hendrycks and
Dietterich, 2019) dataset. The intensity of the drift increases over time from intensity 0 (training
warmup set and part of the validation set without corruptions) to 5. Fig. 4.3 illustrates the monitor-
ing pipeline with the moving accuracy on the left y-axis and the score’s moving average on the right
y-axis. The score’s moving average can effectively follow the accuracy (hidden variable).

4.7 Results and Discussion

4.7.1 Out-of-Distribution Detection

Table 4.2 displays the experimental result on classic OOD detection for a ResNet-50 model on the
setup described in Section 4.6.1. Fisher’s method achieves state-of-the-art results on average AU-



ROC, surpassing the previous SOTA by 1.4% (MaxCos). Also, the other six standard p-value combi-
nation strategies also achieve great results, validating our proposed meta-framework of Section 4.5.
Similar tables for FPR and other architectures are available in the Section 4.A. Apart from achiev-
ing overall great performance capabilities, the most compelling observed property is the robustness
compared to individual detection metrics. Fig. 4.4 shows the ranking per dataset and on average for
selected methods. We can observe that, even though several detectors achieve top-1 performance
in a few cases, there are several datasets in which they underperform, sometimes catastrophically.
This is not true for the group methods, which can effectively combine the existing detectors to ob-
tain a final score that successfully combines the multiple decision regions. For instance, Combine
and Conquer with Fisher/Brown keeps top-4 performance in all cases on the ResNet-50 ImageNet
benchmark and Stouffer/Hartung is top-5 in all cases.

Table 4.2: Numerical results in terms of AUROC (values in percentage) comparing p-value combi-
nation methods against literature for a ResNet-50 model trained on ImageNet. The left-hand side
shows results on out-of-distribution detection, and the right-hand side shows results on concept (OI-
O) and covariate (IN-R) shift detection with |W| = 3 and β = 1.

Out-of-Distribution Detection Data Shift Detection
Method Avg. SSB-H NINCO Spec. SSB-E OI-O Places iNat. Text. IN-R OI-O

Fisher/Brown 89.8 75.8 84.3 88.7 91.0 93.0 93.1 95.9 96.4 94.3 (0.2) 95.7 (0.4)
Stouffer/Hartung 89.6 75.5 84.6 89.0 90.9 92.8 92.7 95.8 95.5 92.8 (0.2) 95.5 (0.4)

Edgington 89.3 75.2 84.6 89.0 91.0 92.5 92.1 95.5 94.4 92.5 (0.2) 95.3 (0.3)
Pearson 89.2 74.6 84.9 89.4 90.9 92.4 91.8 95.5 94.1 92.2 (0.3) 93.9 (0.4)
Simes 89.2 75.0 83.0 87.6 89.5 92.3 93.1 95.7 97.0 83.6 (0.5) 86.6 (0.7)
Tippet 88.5 74.8 80.9 86.7 87.3 91.7 93.5 95.9 97.2 82.0 (1.0) 81.5 (0.7)
Wilkinson 86.5 68.7 83.3 89.0 88.1 89.5 86.3 93.6 93.1 71.2 (1.8) 77.4 (0.9)

MaxCos 88.4 69.6 82.7 88.2 89.9 92.2 89.7 96.1 98.4 92.2 (0.3) 95.5 (0.4)
ReAct 87.4 75.0 80.1 87.2 82.3 90.4 95.8 96.6 91.6 92.2 (0.3) 94.5 (0.4)
ODIN 85.4 72.9 80.3 83.9 87.7 88.8 90.0 91.4 88.3 92.2 (0.5) 93.6 (0.4)
DICE 85.1 70.2 77.4 84.1 82.5 88.6 91.6 94.4 91.9 85.5 (0.3) 90.1 (0.4)
Energy 85.0 72.1 79.6 83.1 87.2 88.7 90.0 90.7 88.4 91.9 (0.3) 93.4 (0.4)
Igeood 84.7 71.4 80.1 83.0 88.8 88.0 88.8 90.2 87.6 91.0 (0.3) 93.3 (0.3)
VIM 84.3 66.4 78.9 80.7 89.3 90.3 83.7 87.9 97.5 92.2 (0.5) 95.4 (0.4)
KL-M 84.3 73.9 80.7 86.1 87.3 85.7 85.2 90.0 85.3 86.9 (0.6) 91.4 (0.9)
Doctor 84.2 75.9 80.6 85.1 87.0 85.1 86.7 89.7 83.8 85.2 (0.6) 89.9 (0.4)
RMD 83.5 78.2 82.7 87.7 82.9 84.9 81.3 87.6 82.7 89.9 (0.3) 93.1 (0.6)
MSP 83.5 75.5 79.9 84.5 86.1 84.1 85.9 88.7 83.0 83.6 (0.5) 89.0 (0.4)
KNN 83.4 64.3 79.6 83.3 88.0 87.2 83.0 84.1 97.6 84.6 (0.5) 89.2 (0.8)
GradN 82.6 63.3 74.4 83.1 76.2 84.4 91.1 96.0 92.5 49.7 (1.0) 67.4 (1.2)
Maha 69.6 55.3 65.7 70.3 70.6 73.9 60.0 72.7 88.4 71.2 (1.8) 77.6 (1.8)

4.7.2 Independent Window-Based Detection

Fig. 4.5 displays results on concept shift detection. Fig. 4.5a) shows the detectors’ performance with
the window size, showcasing a small edge in performance for Vim, Fisher’s, and Stouffer’s methods.
Fig. 4.5b displays the impact of the mixture parameter. Fig. 4.5c shows that model size does mildly
impact detection performance, with registered improvements for ResNet-152 over ResNet-50 on
Fisher’s method. The confidence interval bounds are computed over 10 different seeds and are quite
narrow for all methods. Similar observations are drawn in the covariate shift results displayed in
Fig. 4.10, except for the network scale impact, where we obtained more or less the same results
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Figure 4.4: Ranking in terms of AUROC for a few selected methods for the ResNet-50 model. Note
that the two displayed methods to combining tests obtain a top-5 ranking in every dataset, while
state-of-the-art individual detectors vary significantly in performance.
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Figure 4.5: Concept shift (OpenImage-O) detection performance on a ResNet-50 model (ImageNet).

for all sizes. On the right-hand side of Table 4.2, we showed that for both shifts, we demonstrated
improved performance by combining p-values, especially with Fisher’s method. We also observe
from the table that the concept shift benchmark is slightly easier than the covariate shift benchmark,
probably biased because most OOD detectors were developed for the novel class scenario.

4.7.3 Results in a Sequential Stream

Table 4.3 displays the average results for the ImageNet-C dataset, including 19 kinds of covari-
ate drifts. We can observe that the most performing methods are the scores function based on the
softmax and logit outputs and that Fisher’s method is on par with top-performing methods. We em-
phasize that, even though MSP and Doctor work well in this benchmark, they demonstrated poor
performance on other benchmarks, notably on Table 4.2. This supports our claim that combining
scores is the most effective approach for improving robustness and performance in general data shift
detection.

Table 4.3: Average Pearson’s correlation coefficient with the hidden accuracy with one standard
deviation in parenthesis for top and bottom performing detection methods across 19 different cor-
ruptions on the sequential data shift detection scenario on a ResNet-50 model.

Fisher Doctor MSP Igeood ... KNN RMD GradN Maha

Avg. 0.96 (0.03) 0.96 (0.03) 0.96 (0.03) 0.95 (0.03) ... 0.92 (0.07) 0.92 (0.03) 0.91 (0.07) 0.81 (0.21)



4.7.4 On the Distillation of the Best Subset of Detectors

We provide a supervised study to showcase the potential impact of finding an optimal subset of de-
tectors. We computed the performance of all possible subsets of j < k methods, and we report
our results in Fig. 4.6. We found out that 1.) surprisingly, removing the least performant detector
from the pool does not necessarily increase performance; 2.) increasing the size of the subset im-
proves probable detection on average and on worst performance; 3.) best subset selection benefits
harder to find OOD samples; and 4.) not surprisingly, the best combination for the easy benchmark
may be very different from the best subset on the harder one. We also list the best subset of four
methods on average performance: {GradN, ReAct, MaxCos, RMD}, on an easy dataset (SSB-Easy):
{DICE, MaxCos, KL-M, VIM}, and on a hard dataset (SSB-Hard): {MSP, GradN, ReAct, RMD}.
Their AUROC and relative gain w.r.t all methods combined together are equal to 91.4 (+1.8%), 92.0
(+1.1)%, and 79.7 (+4.9%), respectively. These observations support the main claim of this chapter
that in a data-free scenario with specialized methods, combining all of them should greatly improve
the safety of the underlying system.
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Figure 4.6: Evaluation of all possible subsets of detectors on the OOD detection benchmark. The
dashed red line indicates the performance combining all detectors.

4.7.5 Limitations

Our study acknowledges that there is not a one-size-fits-all detector or a universally superior combi-
nation method, a finding supported by previous research (Heard and Rubin-Delanchy, 2017; Fang
et al., 2022). This recognition underlines the inherent complexity of real-world ML applications.
Additionally, we recognize that the empirical cumulative distribution function may be susceptible
to estimation errors, and the effectiveness of individual detector score functions can influence the
performance of the aggregated score. It is also important to note that, although our investigation
primarily focused on computer vision applications, similar techniques can be applied to diverse sce-
narios and application domains.

4.8 Final Remarks and Summary

This chapter introduces a highly adaptable and efficient approach to combining detectors while ef-
fectively addressing data distribution shifts. By converting arbitrary scores into p-values and incor-
porating meta-analysis tools, we have demonstrated consolidated decision boundaries that prevent



catastrophic collapses observed on individual detectors. We also showed that Fisher’s method cor-
rected for correlated p-values demonstrates great properties, being a fully interpretable detection cri-
terion. Through a meticulous empirical investigation, we have thoroughly validated our approach,
assessing both single-example out-of-distribution detection andwindow-based data distribution shift
detection, gaining significant robustness and detection performance across various domains. Look-
ing ahead, our framework offers a robust foundation for enhancing the safety of AI systems.

We believe several directions for future research are left open. A promising path involves ex-
ploring the pattern in the performance of detectors across different kinds of drifts to enable subset
selection, leading to enhanced detection accuracy. However, it might need validation on held-out
labeled data or domain expertise to reflect the prior importance of the p-values. Furthermore, our
proposed algorithm could be integrated into incremental and online learning algorithms, thereby en-
hancing their adaptability to evolving data streams, representing an exciting avenue for advancing
machine learning applications.

4.A Appendix to Chapter 4

4.A.1 Combining Multiple p-Values with Stouffer’s Method

The Stouffer et al. (1949) test statistics for combining p-values is given by:

sS(·) =
k∑

i=1

Φ−1(pi(·)) (4.10)

where Φ−1 is the probit, i.e., Φ−1(α) =
√
2 erf−1(2α − 1), where erf is the Gauss error function.

If the p-values are independent, sS(·) ∼ N (0, 1), where N (µ, σ2) is the normal distribution with
mean µ and standard deviation σ.

4.A.2 Correcting for Correlated p-Values with Hartung’s Method

Hartung (1999) method aims to correct Stouffer’s test for correlated p-values. The group statistics
writes:

sH(·;w, ρ) =
∑k

i=1wiΦ
−1(pi(·))√

(1− ρ)∑k
i=1wi

2 + ρ
(∑k

i=1wi

)2 ∼H0

N (0, 1) (4.11)

with ρ a real-valued parameter and
∑k

i=1wi 6= 0. Hartung showed that an unbiased estimator of ρ
based on pi under H0 is given by:

ρ̂ = 1− E


 1

k − 1

k∑

i=1

(
Φ−1(pi)−

1

k

k∑

i=1

Φ−1(pi)

)2

 . (4.12)

Assuming equal weights, we repeated a similar experiment as the one of Fig. 4.1, replacing the chi-
squared with a standard normal to see how well the correction works. We can observe in Fig. 4.7
that the corrected statistic indeed approximates a standard normal distribution. Unlike Brown’s



method, Hartung’s method corrects the statistics directly instead of correcting the parameters of the
underlying distribution.
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Figure 4.7: Stouffer’s method corrected for correlated p-values with Hartung’s method to obtain a
standard normal distribution when evaluated on in-distribution data (null hypothesis), also obtaining
interpretable results.

4.A.3 Additional Results
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(c) Detection performance.

Figure 4.8: Test statistic behavior and detection performance in function of the covariate shift inten-
sity and window size. Experiments ran on a ResNet-50.
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Figure 4.9: Test statistic behavior and detection performance in function of the covariate shift inten-
sity and window size. Experiments ran on a ViT-L-16.
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(a) |W| impact with β = 0.8.
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(b) β impact with |W| = 10.
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Figure 4.10: Covariate shift (ImageNet-R) detection performance on a ResNet-50 model (Ima-
geNet).
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(a) |W| impact with β = 0.8.
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(b) β impact with |W| = 10.
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Figure 4.11: Covariate shift (ImageNet-R) detection performance on a ViT-L-16 model (ImageNet).

1 2 4 6 8 10 12 14
Number of Methods

0.94

0.95

0.96

0.97

0.98

A
U

R
O

C

(a) SSB-Easy.

1 2 4 6 8 10 12 14
Number of Methods

0.86

0.88

0.90

0.92

0.94

A
U

R
O

C

(b) SSB-Hard.

5 10 15
Number of Methods

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
U

R
O

C

iNat 
Species 
Places 
OI-O 
SSB-E 
Textures 
NINCO
SSB-H 
Avg.

(c) Average for all datasets with 95% CI.

Figure 4.12: Evaluation of all possible subsets of detectors on the OOD detection benchmark for a
ViT-L-16 model. The dashed red line indicates the performance combining all detectors.





CHAPTER5
A Data-Driven Measure of Relative
Uncertainty for Misclassification

Detection

5.1 Introduction

Usual uncertainty measures such as Shannon entropy do not provide an effective way to infer the
real uncertainty associated with the model’s predictions. This paper introduces a novel data-driven
measure of uncertainty relative to an observer for misclassification detection inspired by Rao (1982).
By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify mis-
classified samples based on the predicted class probabilities. Interestingly, according to the proposed
measure, soft predictions corresponding to misclassified instances can carry much uncertainty, even
though they may have low Shannon entropy. We demonstrate empirical improvements over multiple
image classification tasks, outperforming state-of-the-art misclassification detection methods.

It relies on negative and positive instances to capture meaningful patterns in the distribution
of soft-predictions. It yields high and low uncertainty values for negative and positive instances,
respectively. Our measure is “relative”, as it is not characterized axiomatically, but only serves
the purpose of measuring uncertainty of positive instances relative to negative ones from the point
of view of a subjective observer d.. By learning to minimize the uncertainty in positive instances
and to maximize it in negative instances, our metric can effectively capture meaningful information
to differentiate between the underlying structure of distributions corresponding to two categories of
data.

The contents of this chapter will be based on the work Dadalto et al. (2024b) that was a col-
laboration with my co-authors Marco Romanelli, Georg Pichler, and Pablo Piantanida. The code is
available at the url1.

1https://github.com/edadaltocg/relative-uncertainty/
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5.2 Summary of Contributions

1. We leverage a novel statistical framework for categorical distributions to devise a learnable
measure of relative uncertainty (Rel-U) for a model’s predictions, which induces large uncer-
tainty for negative instances, even if they may lead to low Shannon entropy (cf. Section 5.3);

2. We propose a closed-form solution for training Rel-U in the presence of positive and negative
instances (cf. Section 5.4);

3. We report significantly favorable and consistent results over different models and datasets,
considering both natural misclassifications within the same statistical population, and in case
of distribution shift, or mismatch, between training and testing distributions (cf. Section 5.5).

5.3 A Data-Driven Measure of Uncertainty
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Figure 5.1: Intuitive example illustrating the advantage of Rel-U compared to entropy-based meth-
ods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than
Doctor (Granese et al., 2021); a detailed analysis is provided in Section 5.5.3.

Before we introduce our method, we start by recalling basic definitions and notations. Then, we
describe our statistical model and some useful properties of the underlying detection problem.

Let X ⊆ R
d be a (possibly continuous) feature space and let Y = {1, . . . , C} denote the label

space related to some task of interest. Moreover, we denote by pXY be the underlying joint proba-
bility distribution on X × Y . We assume that a machine learning model is trained on some training
data, which ultimately yields a model that, given samples x ∈ X , outputs a probability mass func-
tion (pmf) on Y , which we denote as a vector p̂(x). This may result from a soft-max output layer, for
example. A predictor f : X → Y is then constructed, which yields f(x) = argmaxy∈Y p̂(x)y. We
note that we may also interpret p̂(x) ∈ Y as the probability distribution of Ŷ , which, givenX = x,
is distributed according to p

Ŷ |X(y|x) ≜ p̂(x)y.
In statistics and information theory, many measures of uncertainty were introduced, and some

were utilized in machine learning to great effect. Among these are Shannon entropy (Shannon, 1948,
Sec. 6), Rényi entropy (Rényi, 1961), q-entropy (Tsallis, 1988), as well as several divergence mea-
sures, capturing a notion of distance between probability distributions, such as Kullback-Leibler di-



vergence (Kullback and Leibler, 1951), f -divergence (Csiszár, 1964), and Rényi divergence (Rényi,
1961). These definitions are well motivated, axiomatically, and/or by their use in coding theorems.
While some measures of uncertainty offer flexibility by choosing parameters, e.g., α for Rényi α-
entropy, they are invariant w.r.t. relabeling of the underlying label space. In our case, however, this
semantic meaning of specific labels can be important, and we do not expect a useful measure of
“relative” uncertainty to satisfy this invariance property.

Recall that the quantity p̂(x) is the posterior distribution output by the model given the input x.
The entropy measure of Shannon (Shannon, 1948, Sec. 6)

H(Ŷ |x) ≜ −
∑

y∈Y
p̂(x)y log (p̂(x)y) (5.1)

and the concentration measure of Gini (Gini, 1912)

sgini(x) ≜ 1−
∑

y∈Y
(p̂(x)y)2 (5.2)

have commonly been used to measure the dispersion of a categorical random variable Ŷ given a
sample x. It is worth to emphasize that either measure may be used to carry out an analysis of
dispersion for a random variable predicting a discrete value (e.g., a label). This is comparable to the
analysis of variance for the prediction of continuous random values.

Regrettably, these measures suffer from two major inconveniences: they are invariant to relabel-
ing of the underlying label space, and, more importantly, they lead to very low values for overcon-
fident predictions, even if they are wrong. These observations make both Shannon entropy and the
Gini coefficient unfit for our purpose, i.e., the detection of misclassification instances. Evidently,
we need a novel measure of uncertainty that can operate on probability distributions p̂(x), and that
allows us to identify meaningful patterns in the distribution from which uncertainty can be inferred
from data. To overcome the aforementioned difficulties, we propose to construct a class of uncer-
tainty measures that is inspired by the measure of diversity investigated in Rao (1982), defined as

sd(x) ≜ E[d(Ŷ , Ŷ ′)|X = x] =
∑

y∈Y

∑

y′∈Y
d(y, y′)p̂(x)yp̂(x)y′ , (5.3)

where d ∈ D is in a class of distancemeasures and, givenX = x, the random variables Ŷ , Ŷ ′ ∼ p̂(x)
are independently and identically distributed according to p̂(x). The statistical framework we are
introducing here offers great flexibility by allowing for an arbitrary function d that can be learned
from data, as opposed to fixing a predetermined distance as in Rao (1982). In essence, we regard
the uncertainty in equation 5.3 as relative to a given observer d, which appears as a parameter in
the definition. To the best of our knowledge, this is a fundamentally novel concept of uncertainty.



5.4 From Uncertainty to Misclassification Detection

We wish to perform misclassification detection based on the statistical properties of soft-predictions
of machine learning systems. In essence, the resulting problem requires a binary hypothesis test,
which, given a probability distribution over the class labels (the soft-prediction), decides whether a
misclassification event likely occurred. We follow the intuition that by examining the soft-prediction
of categories corresponding to a given sample, the patterns present in this distribution can provide
meaningful information to detect misclassified samples. For example, if a sample is misclassified,
this can cause a significant shift in the soft-prediction, even if the classifier is still overconfident.
From a broad conceptual standpoint, examining the structure of the population of predicted distribu-
tions is very different from the Shannon entropy of a categorical variable. We are primarily interested
in the different distributions that we can distinguish from each other by means of positive (correctly
classified) and negative (incorrectly classified) instances.

We first rewrite sd(x)Eq. (5.3) in order to make it amenable to learning themetric d. By defining
the C × C matrix D ≜ (dij) using dij = d(i, j), we have sd(x) = p̂(x)D p̂(x)⊤. For sd(x) to
yield a good detector g, we design a contrastive objective, where we would like E[sd(X+)], which
is the expectation over the positive samples, to be small compared to the expectation over negative
samples, i.e., E[sd(X−)]. This naturally yields the following objective function, where we assume
the usual properties of a distance function d(y, y) = 0 and d(y′, y) = d(y, y′) ≥ 0 for all y, y′ ∈ Y .

Definition 5.4.1. Let us introduce our objective function with hyperparameter λ ∈ [0, 1],

L(D) ≜ (1− λ) · E
[
p̂(X+)D p̂(X+)

⊤
]
− λ · E

[
p̂(X−)D p̂(X−)

⊤
]

(5.4)

and for a fixedK ∈ R
+, define our optimization problem as follows:




minimizeD∈RC×C L(D)

subject to dii = 0, ∀i ∈ Y
dij ≥ 0, ∀i, j ∈ Y
dij = dji, ∀i, j ∈ Y
Tr(DD⊤) ≤ K

(5.5)

The first constraint in equation 5.5 states that the elements along the diagonal are zeros, which
ensures that the uncertainty measure is zero when the distribution is concentrated at a single point.
The second constraint ensures that all elements are non-negative, which is a natural condition, so the
measure of uncertainty is non-negative. The natural symmetry between two elements stems from
the third constraint, while the last constraint imposes a constant upper bound on the Frobenius norm
of the matrix D, guaranteeing that a solution for the underlying optimization problem exists.

Proposition 2 (Closed form solution). The constrained optimization problem defined in Eq. (5.5)



admits a closed form solution D∗ = 1
Z
(d∗ij), where

d∗ij =




ReLU

(
λ · E

[
p̂(X−)⊤i p̂(X−)j

]
− (1− λ) · E

[
p̂(X+)

⊤
i p̂(X+)j

])
i 6= j

0 i = j

. (5.6)

The multiplicative constant Z is chosen such that D∗ satisfies the condition Tr(D∗(D∗)⊤) = K.

The proof is based on a Lagrangian approach and relegated to Section 5.A.1. Algorithm 2 in
Section 5.A.2, summarizes all the main steps for the empirical evaluation, including the data prepa-
ration and the computation of the matrix D∗. Note that, apart from the zero diagonal and up to
normalization,

D∗ = ReLU
(
λ · E

[
p̂(X−)

⊤p̂(X−)
]
− (1− λ) · E

[
p̂(X+)

⊤p̂(X+)
] )
. (5.7)

Finally, we define the Relative Uncertainty (Rel-U) score for a given sample x as

sRel-U(x) ≜ p̂(x)D∗ p̂(x)⊤. (5.8)

Remark 4. Note that Eq. (5.2) is a special case of Eq. (5.8) when dij = 1 if i 6= j and dii = 0.
Thus, s1−d(x) = sgini(x) when choosing d to be the Hamming distance, which was also pointed out
in (Rao, 1982, Note 1).

5.5 Experiments and Discussion

In this section, we present the experiments conducted to validate our measure of uncertainty in the
context of misclassification considering both the case when the training and test distributionsmatch,
and the case in which the two distributions mismatch. Although our method requires additional
positive and negative instances, we show that lower amounts are needed (hundreds or few thousands)
compared to methods that involve re-training or fine-tuning (hundreds of thousands).

5.5.1 Misclassification Detection on Matched Data

We designed our experiments as follows: for a given model architecture and dataset, we trained
the model on the training dataset. We split the test set into two sets: one portion for tuning the
detector (held out validation set) and the other for evaluating it. Consequently, we can compute
all hyperparameters in an unbiased way and cross-validate performance over many splits generated
from ten random seeds. For ODIN (Liang et al., 2018a) and Doctor (Granese et al., 2021), we found
the best temperature (T ) and input pre-processing magnitude perturbation (ϵ). For our method, we
tuned the best lambda parameter (λ), T , and ϵ. For details on temperature and input pre-processing
equations, see Section 5.A.5. As of evaluation metric, we consider the false positive rate (fraction
of misclassifications detected as being correct classifications) when 95% of data is true positive
(fraction of correctly classified samples detected as being correct classifications), denoted as FPR at
95%TPR (lower is better). AUROC results are similar amongmethods (see Fig. 5.7 in the appendix).



Table 5.1 showcases the misclassification detection performance in terms of FPR at 95% TPR
of our method and the strongest baselines (MSP (Hendrycks and Gimpel, 2017), ODIN (Liang
et al., 2018a), Doctor (Granese et al., 2021)) on different neural network architectures (DenseNet-
121 (Huang et al., 2017), ResNet-34 (He et al., 2016)) trained on different datasets (CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009)) with different learning objectives (Cross-entropy loss, Logit-
Norm (Wei et al., 2022), MixUp (Zhang et al., 2018), RegMixUp (Pinto et al., 2022), OpenMix (Zhu
et al., 2023)). Please refer to Section 5.A.3 for details on the baseline methods. We observe that, on
average, our method performs best 11/20 experiments and is equal to the second best in 4/9 out of the
remaining experiments. It works consistently better on all the models trained with cross-entropy loss
and the models trained with RegMixUp objective, which achieved the best accuracy among them.
We observed some negative results when training with logit normalization, but also, the accuracy of
the base model decreased. Results for Bayesian methods for uncertainty estimation such as Deep
Ensembles (Lakshminarayanan et al., 2017) and MCDropout (Gal and Ghahramani, 2016), as well
as results for anMLP directly trained on the tuning data are reported in Table 5.4 in the Section 5.A.5.
We report superior detection capabilities for the task at hand.

Table 5.1: Misclassification detection results across two different architectures trained on CIFAR-10
and CIFAR-100 with five different training losses. We report the average accuracy of these models
and the detection performance in terms of average FPR at 95% TPR (lower is better) in percentage
with one standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP ODIN Doctor Rel-U

DenseNet-121
(CIFAR-10)

CrossEntropy 94.0 32.7 (4.7) 24.5 (0.7) 21.5 (0.2) 18.3 (0.2)
LogitNorm 92.4 39.6 (1.2) 32.7 (1.0) 37.4 (0.5) 37.0 (0.4)
Mixup 95.1 54.1 (13.4) 38.8 (1.2) 24.5 (1.9) 37.6 (0.9)

OpenMix 94.5 57.5 (0.0) 53.7 (0.2) 33.6 (0.1) 31.6 (0.4)
RegMixUp 95.9 41.3 (8.0) 30.4 (0.4) 23.3 (0.4) 22.0 (0.2)

DenseNet-121
(CIFAR-100)

CrossEntropy 73.8 45.1 (2.0) 41.7 (0.4) 41.5 (0.2) 41.5 (0.2)
LogitNorm 73.7 66.4 (2.4) 60.8 (0.2) 68.2 (0.4) 68.0 (0.4)
Mixup 77.5 48.7 (2.3) 41.4 (1.4) 37.7 (0.6) 37.7 (0.6)

OpenMix 72.5 52.7 (0.0) 51.9 (1.3) 48.1 (0.3) 45.0 (0.2)
RegMixUp 78.4 49.7 (2.0) 45.5 (1.1) 43.3 (0.4) 40.0 (0.2)

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)
LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)
Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)

OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)
RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)
LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)
Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)

OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)
RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Ablation study. Fig. 5.2 displays how the amount of data reserved for the tuning split impacts the
performance of the best two detection methods. We demonstrate how our data-driven uncertainty es-
timationmetric generally improves with the amount of data fed to it in the tuning phase, especially on



a more challenging setup such as on the CIFAR-100 model. Fig. 5.3 illustrates three ablation studies
conducted to analyze and comprehend the effects of different factors on the experimental results. A
separate subplot represents each hyperparameter ablation study, showcasing the outcomes obtained
under specific conditions. We observe that λ ≥ 0.5, low temperatures, and low noise magnitude
achieve better performance. Overall, the method is shown to be robust to the choices of hyperpa-
rameters under reasonable ranges. Further discussion on hyperparameter selection is relegated to
Section 5.A.4.
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Figure 5.2: Impact of the tuning split size on the misclassification performance on a ResNet-34
model trained with supervised CrossEntropy loss for our method and the Doctor baseline. Hyperpa-
rameters are set to their default values (T = 1.0, ϵ = 0.0, and λ = 0.5), i.e., only the impact of the
validation split size is observed.
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Figure 5.3: Ablation studies for temperature, lambda, and noise magnitude effects. The x-axis rep-
resents the experimental conditions, while the y-axis shows the performance metric.

Training losses or regularization is independent of detection. Previous work highlights the
independence of training objectives from detection methods, which challenges the meaningfulness
of evaluations. In particular, we identify three major limitations in (Zhu et al., 2023): The evaluation
of post-hoc methods, such as Doctor and ODIN, lacks consideration of perturbation and temperature
hyperparameters. Despite variations in accuracy and the absence of measures for coverage and risk,
different training methods are evaluated collectively. Furthermore, the post-hoc methods are not as-
sessed on these models. The primary flaw in their analysis stems from evaluating different detectors
on distinct models, leading to comparisons between (models, detectors) tuples that have different
misclassification rates. As a result, such an analysis may fail to determine the most performant
detection method in real-world scenarios.

Does calibration improve detection? There has been growing interest in developing machine



learning algorithms that are not only accurate but also well-calibrated, especially in applications
where reliable probability estimates are desirable. In this section, we investigate whether models
with calibrated probability predictions help improve the detection capabilities of our method or not.
Previous work (Zhu et al., 2022a) has shown that calibration does not particularly help or impact mis-
classification detection onmodels with similar accuracies, however, they focused only on calibration
methods and overlooked detection methods.

To assess this problem in the optics ofmisclassification detectors, we calibrated the soft-probabilities
of the models with a temperature parameter (Guo et al., 2017). Note that this temperature is not
necessarily the same value as the detection hyperparameter temperature. This calibration method
is simple and effective, achieving performance close to state-of-the-art (Minderer et al., 2021). To
measure how calibrated the model is before and after temperature scaling, we measured the expected
calibration error (ECE) (Guo et al., 2017) before, with T = 1, and after calibration. We obtained the
optimal temperature after a cross-validation procedure on the tuning set and measured the detection
performance of the detection methods over the calibrated model on the test set. For the detection
methods, we use the optimal temperature obtained from calibration, and no input pre-processing is
conducted (ϵ = 0), to observe precisely what is the effect of calibration. We set λ = 0.5.

Table 5.2 shows the detection performance over the calibrated models. We cannot conclude
much from the CIFAR benchmark as the models are already well-calibrated out of the training,
with ECE of around 0.03. In general, calibrating the models slightly improved performance on
this benchmark. However, for the ImageNet benchmark, we observe that Doctor gained a lot from
the calibration, while Rel-U remained more or less invariant to calibration on ImageNet, suggesting
that the performance of Rel-U is robust under the model’s calibration.

Table 5.2: Impact of model probability calibration on misclassification detection methods. The
uncalibrated and the calibrated performances are in terms of average FPR at 95% TPR (lower is
better) and one standard deviation in parenthesis.

Architecture Dataset ECE1 ECET Uncal. Doctor Cal. Doctor Uncal. Rel-U Cal. Rel-U

DenseNet-121 CIFAR-10 0.03 0.01 31.1 (2.4) 28.2 (3.8) 32.7 (1.7) 27.7 (2.1)
CIFAR-100 0.03 0.01 44.4 (1.1) 45.9 (0.9) 45.7 (0.9) 46.6 (0.6)

ResNet-34 CIFAR-10 0.03 0.01 24.3 (0.0) 23.0 (1.4) 26.2 (0.0) 24.2 (0.1)
CIFAR-100 0.06 0.04 40.0 (0.3) 38.7 (1.0) 40.6 (0.7) 38.9 (0.9)

ResNet-50 ImageNet 0.41 0.03 76.0 (0.0) 55.4 (0.7) 51.7 (0.0) 53.0 (0.3)

5.5.2 Mismatched Data

So far, we have evaluated methods for misclassification detection under the assumption that the
data available to learn the uncertainty measure and that during testing are drawn from the same
distribution. In this section, we consider cases in which this assumption does not hold true, leading
to a mismatch between the generative distributions of the data. Specifically, we investigate two
sources of mismatch: i) Datasets with different label domains, where the symbol sets and symbols
cardinality are different in each dataset; ii) Perturbation of the feature space domain generated



using popular distortion filters. Understanding how machine learning models and misclassification
detectors perform under such conditions can help us gauge and evaluate their robustness.

5.5.2.1 Mismatch from Different Label Domains

We considered pre-trained classifiers on the CIFAR-10 dataset and evaluated their performance in
detecting samples in CIFAR-10 and distinguishing them from samples in CIFAR-100, which has a
different label domain. Similar experiments have been conducted in Fort et al. (2021); Zhu et al.
(2023). The test splits were divided into a validation set and an evaluation set, with the validation
set consisting of 10%, 20%, 33%, or 50% of the total test split and samples used for training were
not reused.
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Figure 5.4: Impact of different validation set sizes (in percentage of test split) for mismatch detection.

For each split, we combine the number of validation samples from CIFAR-10 with an equal num-
ber of samples from CIFAR-100. To assess the validity of our results, each split has been randomly
selected 10 times, and the results are reported in terms of mean and standard deviation in Fig. 5.4.
We observe how our proposed data-driven method performs when samples are provided to describe
the two groups accurately. To reduce the overlap between the two datasets, and in line with previous
work (Fort et al., 2021), we removed the classes in CIFAR-100 that most closely resemble the classes
in CIFAR-10.

In order to reduce the overlap between the label domain of CIFAR-10 and CIFAR-100, in this
experimental setup, we have ignored the samples corresponding to the following classes in CIFAR-
100: bus, camel, cattle, fox, leopard, lion, pickup truck, streetcar, tank, tiger, tractor, train, and wolf.

5.5.2.2 Mismatch from feature space corruption

We trained a model on the CIFAR-10 dataset and evaluated its ability to detect misclassification on
the popular CIFAR-10C corrupted dataset, which contains a version of the classic CIFAR-10 test
set perturbed according to 19 different types of corruption and 5 levels of intensities. With this
experiment, we aim to investigate if our proposed detector is able to spot misclassifications that
arise from input perturbation, based on the sole knowledge of the misclassified patterns within the
CIFAR-10 test split.

Consistent with previous experiments, we ensure that no samples from the training split are
reused during validation and evaluation. To explore the effect of varying split sizes, we divide the



test splits into validation and evaluation sets, with validation sets consisting of 10%, 20%, 33%,
or 50% of the total test split. Each split has been produced 10 times with 10 different seeds and
the average of the results has been reported in the spider plots in Fig. 5.5. In the case of datasets
with perturbed feature spaces, we solely utilize information from the validation samples in CIFAR-
10 to detect misclassifications in the perturbed instances of the evaluation datasets, without using
corrupted data during validation. We present visual plots that demonstrate the superior performance
achieved by our proposedmethod compared to other methods. Additionally, for the case of perturbed
feature spaces, we introduce radar plots, in which each vertex corresponds to a specific perturbation
type, and report results for intensity 5. This particular choice of intensity is motivated by the fact
that it creates the most relevant divergence between the accuracy of the model on the original test
split and the accuracy of the model on the perturbed test split. Indeed the average gap in accuracy
between the original test split and the perturbed test split is reported in Table 5.3.

We observe that our proposed method outperforms Doctor in terms of AUROC and FPR, as
demonstrated by the radar plots. As we can see, in the case of CIFAR-10 vs CIFAR-10C, the radar
plots (Fig. 5.5) show how the area covered by the AUROC values achieves similar or larger values
for the proposed method, indeed confirming that it is able to detect misclassifications in the mis-
matched data better. Moreover, the FPR values are lower for the proposed method. Additionally,
as a particular case of a mismatch from feature space corruption, we have considered the task of
detecting a mismatch between MNIST and SVHN, the results are reported in Fig. 5.6.
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Figure 5.5: CIFAR-10 vs CIFAR-10C, ResNet-34, using 10% of the test split for validation.

Table 5.3: We report the gap in accuracy between the original and the corrupted test set for the
considered model. The gap is reported, and the average and standard deviation over the 19 different
types of corruption for corruption intensity is equal to 5. The maximum and minimum gaps are also
reported, with the relative corruption type.

Architecture Average gap Max gap Min gap

DenseNet121 0.36± 0.18 0.66 (Gaussian Blur) 0.04 (Brightness)
ResNet34 0.35± 0.20 0.72 (Impulse Noise) 0.03 (Brightness)
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Figure 5.6: SVHN versus MNIST mismatch analysis.

5.5.3 Empirical Interpretation of the Relative Uncertainty Matrix.

Fig. 5.1 exemplifies the advantage of our method over the entropy-based methods in Eqs. (5.1)
and (5.2). In particular, the left-end side heatmap represents the D matrix learned by optimizing
Eq. (5.4) on CIFAR-10. Clearly, by only using the information required in Eq. (5.4) (no class labels
or predictions required, only the probability vectors), our method is able to describe the uncertainty
over different, and differently hard to predict, classes: darker shades of blue indicate higher uncer-
tainty, while lighter shades of blue indicate lower uncertainty. The central heatmap is the predictor’s
class-wise true confusion matrix. The vertical axis represents the true class, while the horizontal axis
represents the predicted class. For each combination of two classes ij, the corresponding cell reports
the count of samples of class j that were predicted as class i. The correct matches along the diagonal
are dashed for better visualization of the mistakes. The confusion matrix is computed on the same
validation set used to compute theD matrix. Crucially, our uncertainty matrix can express different
degrees of uncertainty depending on the specific combination of classes at hand. Let us focus for
instance on the fact that most of the incorrectly classified dogs are predicted as cats, and vice-versa.
The matrixD fully captures this by assigning high uncertainty to the cells at the intersection between
these two classes. This is not the case for the entropy-based methods, which cannot capture such a
fine-grained uncertainty, and assign the same uncertainty to all the cells, regardless of the specific
combination of classes at hand.

5.5.4 Limitations

We presented machine learning researchers with a fresh methodological outlook and provided ma-
chine learning practitioners with a user-friendly tool that promotes safety in real-world scenarios.
Some considerations should be put forward, such as the importance of cross-validating the hyperpa-
rameters of the detection methods to ensure their robustness on the targeted data and model. As a
data-driven measure of uncertainty, to achieve the best performance, it is important to have enough
samples at the disposal to learn the metric from as discussed on Section 5.5.1. As with every detec-
tion method, our method may be vulnerable to targeted attacks from malicious users.



5.6 Final Remarks and Summary

To the best of our knowledge, we are the first to propose Rel-U, a method for uncertainty assessment
that departs from the conventional practice of directly measuring uncertainty through the entropy
of the output distribution. Rel-U uses a metric that leverages higher uncertainty scores for negative
data w.r.t. positive data, e.g., incorrectly and correctly classified samples in the context of misclas-
sification detection and attains favorable results on matched and mismatched data. In addition, our
method stands out for its flexibility and simplicity, as it relies on a closed-form solution to an opti-
mization problem. Extensions to diverse problems present both an exciting and promising avenue
for future research.

5.A Appendix to Chapter 5

5.A.1 Proof of Proposition 2

We have the optimization problem




minimizeD∈RC×C L(D)

subject to dii = 0, ∀i ∈ {1, . . . , C};
dij − dji = 0, ∀i, j ∈ {1, . . . , C}
Tr(DD⊤)−K ≤ 0

−dij ≤ 0, ∀i, j ∈ {1, . . . , C}

(5.9)

in standard form (Boyd and Vandenberghe, 2004, eq. (4.1)) and can thus apply the KKT conditions
(Boyd and Vandenberghe, 2004, eq. (5.49)). We find

∇L(D∗)−
∑

i,j

ξ∗ij∇d∗ij +
∑

i

µ∗i∇d∗ii +
∑

ij

ν∗ij∇(d∗ij − d∗ji) + κ∗∇(Tr(D∗(D∗)⊤)−K) = 0

(5.10)

as well as the constraints

d∗ii = 0 d∗ij − d∗ji = 0 (5.11)

−d∗ij ≤ 0 ξ∗ij ≥ 0 (5.12)

ξ∗ijdij = 0 κ∗ ≥ 0 (5.13)

κ∗(Tr(D∗(D∗)⊤)−K) = 0 (5.14)

We have

∇L(D∗) = (1− λ) · E
[
p̂(X+)

⊤p̂(X+)
]
− λ · E

[
p̂(X−)

⊤p̂(X−)
]

(5.15)

∇(Tr(D∗(D∗)⊤)−K) = 2D∗ (5.16)



and thus2

0 = (1− λ) · E
[
p̂(X+)

⊤p̂(X+)
]
− λ · E

[
p̂(X−)

⊤p̂(X−)
]
− ξ∗ + diag(µ∗)

+ ν∗ − (ν∗)⊤ + κ∗2D∗ (5.17)

D∗ =
1

2κ∗

(
− (1− λ) · E

[
p̂(X+)

⊤p̂(X+)
]
+ λ · E

[
p̂(X−)

⊤p̂(X−)
]
+ ξ∗ − diag(µ∗)

− ν∗ + (ν∗)⊤
)

(5.18)

As ∇L(D∗) in Eq. (5.15) is already symmetric, we can choose ν∗ = 0. We choose3 µ∗ =

diag(∇L(D∗)) to ensures d∗ii = 0. The non-negativity constraint can be satisfied by appropriately
choosing0 ≤ ξ∗ = ReLU(−∇L(D∗)). Finally, κ∗ is chosen such that the constraint Tr(D∗(D∗)⊤) =

K is satisfied. In total, this yields D∗ = 1
Z
ReLU(d∗ij), where

d∗ij =




− (1− λ) · E

[
p̂(X+)

⊤
i p̂(X+)j

]
+ λ · E

[
p̂(X−)⊤i p̂(X−)j

]
i 6= j

0 i = j
. (5.19)

Themultiplicative constantZ = 2κ∗ > 0 is chosen such thatD∗ satisfies the condition Tr(D∗(D∗)⊤) =

K.

Remark 5. A technical problem may occur when d∗ij as defined in Eq. (5.19) is equal to zero for all
i, j ∈ {1, 2, . . . , C}. In this case, D∗ cannot be normalized to satisfy Tr(D∗(D∗)⊤) = K and the
solution to the optimization problem in Eq. (5.9) is the all-zero matrix D∗ = 0. I.e., no learning is
performed in this case. We deal with this problem by falling back to the Gini coefficient Eq. (5.2),
where similarly, no learning is required.

Equivalently, one may also add a small numerical correction ε to the definition of the ReLU
function, i.e., ReLU(x) = max(x, ε). Using this slightly adapted definition when defining D∗ =
1
Z
ReLU(d∗ij) naturally yields the Gini coefficient in this case.

5.A.2 Algorithm

In this section, we introduce a comprehensive algorithm to clarify the computation of the relative
uncertainty matrix D∗.

At test time, it suffices to compute Eq. (5.8) to obtain the relative uncertainty of the prediction.

5.A.3 Details on Baselines and Benchmarks

In this section, we provide a comprehensive review of the baselines used on our benchmarks. We
state the definitions using our notation introduced in Section 5.3.

2We useX = diag(x) for a vector x to obtain a matrixX with x on the diagonal and zero otherwise.
3Slightly abusing notation, we also write x = diag(X) to obtain the diagonal of the matrixX as a vector x.



Algorithm 2 Offline relative uncertainty matrix computation.

Require: p̂ : X 7→ R
C trained on a training set with C classes, validation set Dm = {(xj , yj) ∼

i.i.d
pXY }mj=1, and hyperparameter λ ∈ [0, 1]

D+
m ← ∅, D−

m ← ∅ ▷ Initialize empty positive and negative sets
for (x, y) ∈ Dm do ▷ Fill the respective sets with positive or negative samples

if argmaxy′∈Y p̂(x)y′ = y then
D+
m ← D+

m ∪ {p̂(x)}
else
D−
m ← D−

m ∪ {p̂(x)}
end if

end for
µ+ ← 1

|D+
m|
∑

p̂∈D+
m
p̂⊤p̂, µ− ← 1

|D−
m|
∑

p̂∈D−
m
p̂⊤p̂

D∗ ← 0C×C ▷ C by C square matrix with zeroed out elements
for i← 1, i ≤ C, i← i+ 1 do ▷ Build D∗ according to Eq. (5.6)

for j ← 1, j ≤ C, j ← j + 1 do
if i 6= j then

d∗ij ← max
(
λµ−ij − (1− λ)µ+ij , 0

)

end if
end for

end for
return D∗

5.A.3.1 MLP

We trained an MLP with two hidden layers of 128 units with ReLU activation function and dropout
with p = 0.2 on top of the hidden representations with a binary cross entropy objective on the
validation set with Adam optimizer and learning rate equal to 10−3 until convergence. Results on
misclassification are presented in Table 5.4.

5.A.3.2 MCDropout

Gal and Ghahramani (2016) propose to approximate Bayesian NNs by performing multiple forward
passes with dropout enabled. To compute the confidence score, we averaged the logits and computed
the Shannon entropy defined in Eq. (5.1). We set the number of inferences hyperparameter to k = 10

and we set the dropout probability to p = 0.2. Results on misclassification are presented in Table 5.4.

5.A.3.3 Deep Ensembles

Lakshminarayanan et al. (2017) propose to approximate Bayesian NNs by averaging the forward
pass of multiple models trained on different initializations. We ran experiments with k = 5 different
random seeds. To compute the confidence score, we averaged logits and computed theMSP response
Eq. (1.19). Results on misclassification are presented in Table 5.4.



5.A.3.4 Conformal Predictions

According to conformal learning Angelopoulos and Bates (2021); Angelopoulos et al. (2021); Ro-
mano et al. (2020) the presence of uncertainty in predictions is dealt by providing, in addition to
estimating the most likely outcome—actionable uncertainty quantification, a “prediction set” that
provably “covers” the ground truth with a high probability. This means that the predictor imple-
ments an uncertainty set function, i.e., a function that returns a set of labels and guarantees the
presence of the right label within the set with a high probability for a given distribution.

5.A.3.5 LogitNorm

Wei et al. (2022) observe that the norm of the logit keeps increasing during training, leading to
overconfident predictions. So, they propose Training neural networks with logit normalization to
hopefully produce more distinguishable confidence scores between in- and out-of-distribution data.
They propose normalizing the logits of the cross entropy loss, resulting in the following loss function:

ℓ(f(x), y) = − log exp fy(x)/(T‖p̂(x)‖2)∑C
i=1 exp fi(x)/(T‖p̂(x)‖2)

. (5.20)

5.A.3.6 MixUp

Zhang et al. (2018) propose to train a neural network on convex combinations of pairs of examples
and their label to minimize the empirical vicinal risk. The mixup data is defined as

x̃ = λxi + (1− λ)xj and ỹ = λyi + (1− λ)yj for i, j ∈ {1, ..., n}, (5.21)

where λ is sampled according to a Beta(α, α) distribution. We used α = 1.0 to train the models.
Observe a slight abuse of notation here, where y is actually an one-hot encoding of the labels y =

[1y=1, . . . ,1y=C ]
⊤.

5.A.3.7 RegMixUp

Pinto et al. (2022) use the cross entropy of the mixup data as in Eq. (5.21) with λ sampled according
to a Beta(10, 10) distribution as a regularizer of the classic cross entropy loss for training a network.
The objective is balanced with a hyperparameter γ, usually set to 0.5.

5.A.3.8 OpenMix

Zhu et al. (2023) explicitly add an extra class for outlier samples and uses mixup as a regularizer
for the cross entropy loss, but mixing between inlier training samples and outlier samples collected
from the wild. It yields the objective

L = EDinlier [ℓ(f(x), y)] + γEDoutlier [ℓ(f(x̃), ỹ)], (5.22)



where γ ∈ R
+ is a hyperparameter, x̃ = λxinlier + (1− λ)xoutlier, and ỹ = λyinlier + (1− λ)(C + 1)

with a slight abuse of notation. The parameter λ is sampled according to a Beta(10, 10) distribution.

5.A.4 Additional comments on the ablation study for hyper-parameter selection

We conducted ablation studies on all relevant parameters: T , ϵ, and λ (cf. Section 5.5.1). It is crucial
to emphasize that T is intrinsic to the network architecture and, therefore, must not be considered
a hyper-parameter for Rel-U. Additionally, the introduction of additive noise ϵ serves the purpose
of ensuring a fair comparison with Doctor/ODIN, where the noise was utilized to enhance detection
performance. Nevertheless, as indicated by the results in the ablation study illustrated in Fig. 5.3, ϵ =
0 seems to be close to optimal most of the time, thereby positioning Rel-U as an effective algorithm
that relies only on the soft-probability output, therefore comparable to Granese et al. (2021); Liang
et al. (2018b) in their version with no perturbation, and Hendrycks and Gimpel (2017). Furthermore,
Rel-U exhibits a considerable degree of insensitivity to various values of λ, as evident from Fig. 5.3.
This suggests that a potential selection for λ could have been λ = N+/(N++N−), aiming to balance
the ratio between the number of positive (N+) and negative (N−) examples. In such a scenario, there
are no hyper-parameters at all.

5.A.5 Additional Results on Misclassification Detection

Bayesian methods. In this paragraph, we compare our method to additional uncertainty estimation
methods, such as Deep Ensembles (Lakshminarayanan et al., 2017), MCDropout (Gal and Ghahra-
mani, 2016), and a MLP directly trained on the validation data used to tune the relative uncertainty
matrix. The results are available in Table 5.4.

Table 5.4: Misclassification detection results across two different architectures trained on CIFAR-10
and CIFAR-100 with CrossEntropy loss. We report the detection performance in terms of average
FPR at 95% TPR (lower is better) in percentage with one standard deviation over ten different seeds
in parenthesis.

Model Dataset MCDropout Deep Ensembles MLP Rel-U

DenseNet-121 CIFAR-10 30.3 (3.8) 25.5 (0.8) 37.3 (5.8) 18.3 (0.2)
DenseNet-121 CIFAR-100 47.6 (1.2) 45.9 (0.7) 78.4 (1.4) 41.5 (0.2)

ResNet-34 CIFAR-10 25.8 (4.9) 14.8 (1.4) 33.6 (2.7) 14.1 (0.1)
ResNet-34 CIFAR-100 42.3 (1.0) 37.4 (1.9) 63.3 (1.0) 32.7 (0.3)

ROC and Risk-Coverage curves. We also display the ROC and the risk-coverage curves for
our main benchmark on models trained on CIFAR-10 with cross entropy loss. We observe that the
performance of Rel-U is comparable to other methods in terms of AUROC while outperforming
them in high-TPR regions and reducing the risk of classification errors when abstention is desired
(coverage) as observed in Fig. 5.7.

Performance of conformal prediction. We take into account the application of conformal
predictors applied to the problem of misclassification. In particular, we consider the excellent work
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Figure 5.7: Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for
our method for high TPR regime. The risk and coverage (RC) curves also looks similar between
methods, with a small advantage to our method in terms of AURC.

in Angelopoulos and Bates (2021), but most importantly Angelopoulos et al. (2021), which, in turn,
builds upon Romano et al. (2020). Conformal predictors, in stark contrast with standard prediction
models, learn a “prediction set function”, i.e. they return a set of labels, which should contain
the correct value with high probability, for a given data distribution. In particular, Angelopoulos
et al. (2021) proposed a revision of Romano et al. (2020), with the main objective of preserving the
guarantees of conformal prediction, while, at the same time, minimizing the prediction set cardinality
on a sample basis: samples that are “harder” to classify can produce larger sets than samples that are
easier to correctly classify. The models are “conformalized” (cf. Angelopoulos et al. (2021)) using
the same validation samples, that are also available to the other methods. We reject the decision
if the second largest probability within the prediction set exceeds a given threshold, as then, the
prediction set would contain more than one label, indicating a possible misclassification event. The
experiments are run on 2 models, 2 datasets and 3 training techniques for a total of 12 additional
numerical results reported in Table 5.5. For the model trained with cross entropy in Table 5.5, the
area under the ROC curve, averaged over 10 seeds, is 0.92 (0.7) for the DenseNet-121 conformalized
model on CIFAR-10, and 0.93 (0.7) for the ResNet-34 conformalized model on CIFAR-10, showing



Table 5.5: Misclassification detection results across two different architectures trained on CIFAR-10
and CIFAR-100 with five different training losses. We report the average accuracy of these models
and the detection performance in terms of average FPR at 95% TPR (lower is better) in percent with
one standard deviation over ten different seeds in parenthesis. The values for the conformalized
models are reported in the right-most column.

Model Training Accuracy MSP ODIN Doctor Rel-U Conf.

DenseNet-121
(CIFAR-10)

CrossEntropy 94.0 32.7 (4.7) 24.5 (0.7) 21.5 (0.2) 18.3 (0.2) 31.6 (3.3)
Mixup 95.1 54.1 (13.4) 38.8 (1.2) 24.5 (1.9) 37.6 (0.9) 57.6 (6.9)

RegMixUp 95.9 41.3 (8.0) 30.4 (0.4) 23.3 (0.4) 22.0 (0.2) 30.3 (5.1)

DenseNet-121
(CIFAR-100)

CrossEntropy 73.8 45.1 (2.0) 41.7 (0.4) 41.5 (0.2) 41.5 (0.2) 46.5 (1.3)
Mixup 77.5 48.7 (2.3) 41.4 (1.4) 37.7 (0.6) 37.7 (0.6) 47.0 (1.3)

RegMixUp 78.4 49.7 (2.0) 45.5 (1.1) 43.3 (0.4) 40.0 (0.2) 46.0 (1.3)

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1) 26.8 (4.6)
Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3) 58.1 (5.6)

RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2) 41.9 (7.0)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3) 38.7 (1.5)
Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3) 43.3 (0.9)

RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4) 47.7 (1.5)

comparable results w.r.t. the results in Figs. 5.7a and 5.7b.



CHAPTER6
Conclusion and Perspectives

In conclusion, this thesis delves into the important field of the safety and trustworthiness of machine
learning algorithms and their profound impact on the evolution of artificial intelligence. As AI ap-
plications extend their reach into diverse domains, including safety-critical areas like autonomous
driving and healthcare, the need for reliability and trust in these systems takes center stage. Fail-
ures and unforeseen outcomes of AI systems cast shadows of doubt, and addressing these issues is
paramount to restoring trust in automated systems.

Our primary mission has been to bolster the detection capabilities of machine learning mod-
els, empowering them to identify situations that deviate from the norm. To achieve this, we have
developed detection methods for identifying out-of-distribution (OOD) samples and quantifying un-
certainty in inlier predictions, which are critical aspects of AI safety. These contributions hold sig-
nificant implications for enhancing the reliability and safety of AI systems, particularly in scenarios
characterized by changing data distributions. While we do not anticipate adverse outcomes from our
work, it is important to exercise caution when employing detection methods in critical domains, es-
pecially given the evolving threat landscape, where adversaries may actively exploit vulnerabilities
to bypass safety measures.

To summarize, in the first chapter, we formalized the problems of OOD and misclassification
detection, laying the groundwork for our research. In Chapter 2, We introduced a novel methodology
based on the Fisher-Rao geodesic distance between distributions, unifying the formulation for the
logits and features of the network. Furthermore, we tackled integrating information from pseudo-
outliers by integrating a reference distribution. In Chapter 3, we relaxed any needs for supervision or
hyperparameter tuning by designing a methodology that measures the similarity between the neural
trajectory of a sample w.r.t. the training data distribution, effectively distinguishing OOD samples in
a completely unsupervised manner. In Chapter 4, we showed how to effectively combine any detec-
tors to obtain a more powerful and robust detector with a consolidated decision region grounded on
solid statistical principles. Finally, in Chapter 5, we addressed misclassification detection and uncer-
tainty estimation, deriving a data-driven approach to better separate positive and negative samples
with a practical and convenient closed-form solution.

Moving forward, several opportunities for future work have emerged from this research. First
and foremost, a focus on enhancing the interpretability and explainability of OOD detection methods
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is imperative. Ensuring that AI systems provide clear explanations for their decisions is essential,
especially in applications with legal or ethical implications. Additionally, investigating ways to facil-
itate better collaboration between humans and AI systems is crucial, particularly in scenarios where
AI encounters situations it is not equipped to handle. Designing systems that can effectively com-
municate their limitations to human operators can enhance trust and user experience. Collaboration
with researchers from various disciplines, including psychology, philosophy, and ethics, can provide
valuable insights into human-AI interaction and the broader societal implications of AI safety. Fur-
thermore, extending the methods to accommodate multi-modal data, where information is derived
from various sources such as text, images, and sensor data, is a promising avenue. Multi-modal AI
systems are increasingly relevant in real-world applications and require robust safety measures.

In conclusion, as we look towards the future of detection mechanisms, it becomes evident that
there are promising avenues for advancement. The integration of misclassification and OOD detec-
tion through a unified metric presents an exciting prospect for enhancing the robustness of models.
Furthermore, the utilization of regret minimization techniques to combine multiple detectors can be
a strategic approach to mitigate worst-case performance scenarios. Additionally, leveraging uncer-
tainty measures to evaluate dataset quality holds potential for refining detection processes. However,
it’s crucial to acknowledge the complexities inherent in OOD detection; while latent embeddings are
pivotal for OOD detection, the last layer plays a significant role in misclassification detection. More-
over, the integration of synthetic outliers, although beneficial in benchmarks, introduces biases that
must be carefully addressed. Ultimately, the combination of heterogeneous detectors emerges as a
pragmatic strategy to navigate data-lacking scenarios and minimize risks effectively. As we con-
tinue to explore these directions, it’s essential to maintain a balanced approach, recognizing both
the opportunities and challenges that lie ahead in the field of trustworthy AI. Finally, we hope the
current work can contribute to the development of more trustworthy and resilient AI systems with a
positive impact on various aspects of society and industry.



APPENDIXA
Appendix

A.1 Proof of Proposition 1

We recall the definition of the total variation distance when applied to distributions P , Q on a set
X ⊆ R

d and the Scheffé’s identity (Scheffe, 1947, Lemma 2.1):

‖P −Q‖TV ≜ sup
A∈Bd

|P (A)−Q(A)| = 1

2

∫
|pX(x)− qX(x)|dµ(x) (A.1)

with respect to a base measure µ, where Bd denotes the class of all Borel sets on Rd.

Proof. First of all, we prove the equality for γ = 1. Let us denote with A⋆ ≡ A(1,Dn) and
A⋆c ≡ Ac(1,Dn) the optimal decision regions. Let ϵ0(A⋆,Dn) and ϵ1(A⋆c,Dn) the Type-I and
Type-II errors. Then,

ϵ0(A⋆,Dn) + ϵ1(A⋆c,Dn) =
∫

A⋆

PU |Z(du|z = 0;Dn) +
∫

A⋆c

PU |Z(du|z = 1;Dn)

=

∫

A⋆

min
{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

+

∫

A⋆c

min
{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

=

∫

U
min

{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

= 1−
∥∥PU |Z(·|z = 1;Dn)− PU |Z(·|z = 0;Dn)

∥∥
TV , (A.2)

where the last identity follows by applying Scheffé’s theorem (Scheffe, 1947, Lemma 2.1).
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From the last identity in equation A.2 and any decision region A ⊆ U , we have

1−
∥∥PU |Z(·|z = 1;Dn)− PU |Z(·|z = 0;Dn)

∥∥
TV,

=

∫

U
min

{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

=

∫

A
min

{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

+

∫

Ac

min
{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

≤
∫

A
PU |Z(du|z = 0;Dn) +

∫

Ac

PU |Z(du|z = 1;Dn)

= ϵ0(A,Dn) + ϵ1(Ac,Dn).

It remains to show the last statement related to the Bayesian error of the test. Assume that
PZ(1) = PZ(0) = 1/2. By using the last identity in equation A.2, we have

1

2

[
1−

∥∥PU |Z(·|z = 1;Dn)− PU |Z(·|z = 0;Dn)
∥∥
TV

]

=
1

2

∫

U
min

{
PU |Z(du|z = 0;Dn), PU |Z(du|z = 1;Dn)

}

=

∫

U
min

{
PUZ(du, Z = 0;Dn), PUZ(du, Z = 1;Dn)

}

= EU

[
min

{
PZ|U (Z = 0|U ;Dn), PZ|U (Z = 1|U ;Dn)

}]

=
1

2

[
ϵ0(A⋆,Dn) + ϵ1(A⋆c,Dn)

]

= inf
ψ
PDn {ψ(U) 6= Z} ,

where the last identity follow by the definition of the decision regions.

A.2 Datasets Details

• SVHN (Netzer et al., 2011) dataset collects street house numbers for digit classification. It
contains 73,257 training and 26,032 test RGB images of printed digits (from 0 to 9). Usually
only the first 10,000 examples of the test set is used for evaluating the methods.

• Tiny-ImageNet (Le andYang, 2015) dataset is a subset of the large-scale natural image dataset
ImageNet (Deng et al., 2009). It contains 200 different classes and 10,000 examples.

• LSUN (Yu et al., 2015) dataset, which has 10,000 examples, is used for the large-scale scene
classification of different scene categories (e.g., bedroom, bridge, kitchen, etc.).

• iSUN (Xu et al., 2015) dataset consists of selected natural scene images from the SUN (Xiao
et al., 2010) dataset. The test set has 8925 images. This dataset is often used as a source of
OOD for validation purposes as an independent dataset from the test OOD data.



• Textures. The Describable Textures Dataset (DTD) (Cimpoi et al., 2014) is a collection of
textural pattern images observed in nature. It contains 47 categories totaling 5640 images.

• Chars74K dataset (de Campos et al., 2009) contains 74,000 samples of 62 classes of charac-
ters found in natural images, handwritten text, and synthesized from computer fonts. We take
as OOD data only the EnglishImg dataset split, which contains 7705 characters from natural
scenes.

• Places365 (Zhou et al., 2017) contains images of 365 natural scenes categories. We used the
small images validation split as OOD data in our experiments. It contains 36,500 RGB images.

• Gaussian dataset usually contains 10,000 synthetic RGB images generated from 2DGaussian
noise, where each RGB pixel is sampled from a Gaussian distribution with mean 0.5 and vari-
ance 1.0. The pixel values are clipped to the [0, 1] interval. They should be easily detectable
against natural images.

• Uniform dataset usually contains 10,000 synthetic RGB images generated from Uniform
noise in the [0, 1] interval. They should also be easily detectable against natural images.

For the large-scale benchmark, in addition to Textures and Places365, the following datasets are
considering with the curated splits introduced by (Bitterwolf et al., 2023):

• Species (Hendrycks et al., 2022) is sourced from iNaturalist (Horn et al., 2017) and consists
of 700,000 images from 1,316 species which were selected for not being in ImageNet-21K.
They sort the species into 10 superclasses.

• OpenImage-O (Wang et al., 2022) consists of 17,632 images from the OpenImage-v3 (Krasin
et al., 2017) which were manually annotated as being OOD w.r.t ImageNet-1K.

• iNaturalist (Huang and Li, 2021) split is composed of 10,000 test samples with concepts from
110 plant classes different from ImageNet-1K ones. The original dataset (Horn et al., 2017)
cantains 859,000 images from more than 5,000 species of plants and animals.

• Sun (Huang and Li, 2021) is dataset with a split of 10,000 randomly sampled test examples
belonging to 50 nature-related categories of the 397 categories and 130,519 images from the
Xiao et al. (2010) scene dataset.

• Semantic Shift Benchmark proposed by Vaze et al. (2022) aims to capture the notion of
semantic novelty by exploit the hierarchical, tree-like semantic structure of the ImageNet-21K
(Ridnik et al., 2021) database that are disjoint. For each pair of classes between ImageNet-1K
and ImageNet-21K, they define the semantic distance between two classes as the total path
distance between their nodes in the semantic tree.
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