
HAL Id: tel-04551620
https://theses.hal.science/tel-04551620

Submitted on 18 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Projecting Computer Languages for a Protean
Interaction
Camille Gobert

To cite this version:
Camille Gobert. Projecting Computer Languages for a Protean Interaction. Human-Computer Inter-
action [cs.HC]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG019�. �tel-04551620�

https://theses.hal.science/tel-04551620
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG0
19

Projecting Computer Languagesfor a Protean InteractionProjeter les Langages Informatiquespour une Interaction Protéiforme

Thèse de doctorat de l’université Paris-Saclay
École doctorale n◦ 580 :Sciences et technologies de l’information et de la communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des Sciences d’Orsay
Thèse préparée dans l’unité de recherche LISN (Université Paris-Saclay, CNRS),sous la direction de Michel BEAUDOUIN-LAFON, Professeur à l’Université Paris-Saclay.

Thèse soutenue à Paris-Saclay, le 18 mars 2024, par

Camille GOBERT

Composition du jury
Membres du jury avec voix délibérative

Anastasia BEZERIANOS PrésidenteProfesseure, Université Paris-SaclayAmy KO Rapporteure & ExaminatriceProfesseure, University of WashingtonStéphane CONVERSY Rapporteur & ExaminateurProfesseur, ENAC-LII & Université Fédérale de ToulouseAlan DIX ExaminateurProfesseur, Swansea UniversityTomas PETRICEK ExaminateurMaître de conférence, Charles University

Titre : Projeter les Langages Informatiques pour une Interaction ProtéiformeMots clés : Interaction, Langage informatique, Projection, Programmation, i-LATEX, Lorgnette
Résumé : Interagir avec les ordinateurs nousamène souvent à utiliser des langages infor-matiques tels que Python pour créer des pro-grammes et LATEX pour rédiger des documentstechniques. Au cours des dernières décennies,ces langages se sont mis à occuper une placede plus en plus importante dans des domainesdivers allant des sciences aux arts. Ils sont dé-sormais enseignés aux élèves du monde en-tier et deviennent une compétence couram-ment attendue sur le marché du travail, creu-sant le fossé entre les citoyens qui les parlentet les autres. Or, pour l’essentiel, notre interac-tion avec ces langages est identique à ce qu’elleétait il y a cinquante ans : lire et écrire dutexte brut. Bien que diverses alternatives aientété proposées, elles ont souvent été dévelop-pées avec une approche moderniste, en rup-ture avec les langages et pratiques répandus,résultant en des systèmes bornés aux cerclesacadémiques et à quelques communautés spé-cifiques. Par conséquent, les langages informa-tiques se retrouvent entravés par des visionsqui essentialisent notre interaction avec eux,encourageant ainsi à s’en distancier, au risquede perdre une partie de lamaîtrise à laquelle ilsnous donnent accès face à des interfaces tou-jours plus « simples » et à la synthèse « intel-ligente » de code. Dans cette thèse, je m’op-pose à ce point de vue, que je considère né-faste pour la recherche en interaction humain-machine et la démocratie à l’heure du tout nu-mérique. À cette fin, je développe un ensembled’arguments qui soulignent qu’il est possible— et même bénéfique — de rendre pluriellenotre interaction avec les langages informa-tiques, y compris avec les langages déjà exis-tants, en phase avec l’héritage et la diversité in-hérents à l’informatique du XXIe siècle. Je dé-veloppe d’abord une nouvelle théorie de l’in-teraction avec les langages informatiques quimontre qu’aucun de ces langages n’est intrinsè-quement lié à une représentation ou à un typed’interaction spécifique. Pour cela, je décons-truis la notion de langage informatique en cinq

aspects fondamentaux afin d’isoler l’interactiondes autres éléments constitutifs de ces lan-gages, formant ainsi un modèle de langage in-formatique plus holistique que ceux déjà exis-tants. J’identifie alors quatre niveaux d’interac-tion avec ces langages et montre que l’on peutles hybrider et choisir de projeter un mêmefragment de code sur différentes représenta-tions afin de laisser le choix de celle offrantl’interaction la plus adaptée aux utilisateurs fi-naux. J’applique ensuite cette vision des lan-gages informatiques à deux problèmes de re-cherche à l’aide d’uneméthodologie de concep-tion centrée sur l’utilisateur : faciliter la concep-tion de documents avec le langage LATEX, et aiderles programmeurs à créer leurs propres projec-tions afin de mieux s’approprier leurs éditeursde texte. Dans le cadre de chaque problème,j’identifie les problèmes et limites rencontréspar les utilisateurs des langages concernés àl’aide d’une étude formative, développe un pro-totype d’éditeur de texte augmenté de pro-jections supplémentaires, et évalue celui-ci àl’aide d’études utilisateur à la fois qualitativeset quantitatives. Les résultats montrent que lefait de compléter le texte par d’autres repré-sentations nous aide à comprendre et à modi-fier le code plus rapidement et avec une chargede travail moindre, et que ces représentationspeuvent être crées à moindre coût en recom-posant des éléments réutilisables d’une pro-jection à une autre. En conclusion, je montrequ’envisager l’interaction avec les langages in-formatiques sous la forme de projections per-met de rendre celle-ci plus protéiforme, uneapproche qui, selon cette thèse, est théorique-ment fondée, techniquement possible et em-piriquement souhaitable. Cette approche seprête à la tâche urgente d’équiper un publiccitoyen toujours plus large avec de nouveauxoutils intellectuels et techniques afin de les ai-der à comprendre et à s’approprier les langagesinformatiques au cœur du fonctionnement denos sociétés.

Title : Projecting Computer Languages for a Protean InteractionKeywords : Interaction, Computer language, Projection, Programming, i-LATEX, Lorgnette
Abstract : To interact with computers, we of-ten rely on computer languages such as Py-thon for creating programs and LATEX for wri-ting technical documents. In the past few de-cades, these languages have become increa-singly used in a variety of fields ranging fromscience to arts. They are now being taught tomillions of pupils and have become a stapleskill in the job market, widening the gap bet-ween those who are computer literates andthe others. However, for the most part, ourinteraction with these languages has remai-ned similar to what it used to be fifty yearsago : reading and writing code as plain text. Al-though various alternatives have been introdu-ced, they have often been developedwith amo-dernist approach, in isolation from popular lan-guages and widespread workflows, resulting insystems that hardly cross the borders of aca-demic circles and niche communities. As a re-sult, our interaction with computer languagesis now hampered by essentialist views that en-courage us to move away from them, at therisk of losing some of the agency they give us,as if dealing with code was nothing but a bur-den from the past compared to evermore “sim-ple” user interfaces and “intelligent” code syn-thesis. In this thesis, I argue against this viewthat I consider harmful to human-computer in-teraction research and computer-driven demo-cracies. To do so, I introduce a number of argu-ments that show that it is indeed possible—andeven beneficial—to make our interaction withcomputer languages more diverse, includingwith themany languages that already exist thatare inherent to the diversity of computing in the21st century. I first develop a new theory of in-teraction with computer languages that showsthat no such language is inherently bound toa specific representation or type of interaction.

To that end, I deconstruct the notion of com-puter language into five fundamental aspects toisolate interaction from the other constituentsof these languages, yielding amore holistic mo-del than those that already exist. I then usethis model to identify four different levels of in-teraction with computer languages, which canbe hybridised, and show that a single piece ofcode can very well be projected onto several re-presentations to let end-users decide which re-presentation supports the form of interactionmost appropriate for them. I then apply thisview of computer languages to two researchproblems using user-centred design methodo-logies : helping users author documents writ-ten in LATEX and helping programmers appro-priate their text editors by crafting their ownprojections. For each problem, I assess the li-mitations of existing solutions with the helpof a formative study ; I develop a prototypeof a text editor equipped with additional pro-jections ; and I evaluate it with both qualita-tive and quantitative user studies. The resultsshow that that complementing text with otherrepresentations helps us understand and mo-dify code faster and with a lower workload andthat these representations can be created byrecomposing existing parts that can be reusedfrom one projection to another. In conclusion, Ishow that considering interaction with compu-ter languages as projectionsmakes itmore pro-tean, an approach which, according to this the-sis, is theoretically grounded, technically pos-sible and empirically desirable. It lends itself tothe urgent task of equipping an ever-growingpublic of citizenswith new intellectual and tech-nical tools to help them understand and appro-priate the computer languages that rule the so-cieties we live in.

This document was written in LATEX and generated in April 2024 using pdfTEX and
BibLATEX. It uses a custom template created for the occasion by the author of this work.

It is typeset with the Minion Pro and IBM Plex Mono typefaces.

This thesis is licenced under CC BY-NC-ND 4.0. This licence does not apply to media
embedded in this document that have not been created by the author of this work, as

noted in the text, which must be credited appropriately.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Résumé

La notion de langage informatique est au cœur de notre interaction avec
les ordinateurs. Par exemple, les langages Python et JavaScript font parti
des langages les plus utilisés pour concevoir des programmes informatiques,
tandis que les langages LATEX et Markdown sont massivement employés afin
de rédiger des documents techniques. Au cours des dernières décennies, ces
langages se sont mis à occuper une place de plus en plus importante dans des
domaines aussi divers que la recherche scientifique et la création artistique.
Ils sont désormais enseignés aux élèves du monde entier et deviennent une
compétence couramment attendue sur le marché du travail, creusant le fossé
entre les citoyens qui les parlent et les autres.

Or, pour l’essentiel, notre interaction avec ces langages est identique à
ce qu’elle était il y a cinquante ans : lire et écrire du texte brut. Bien que
diverses alternatives aient été proposées, elles ont souvent été développées
en rupture avec les langages et pratiques répandus, résultant en des systèmes
bornés aux cercles académiques et à quelques communautés spécifiques. Par
conséquent, les langages informatiques se retrouvent désormais entravés par
des visions qui essentialisent notre interaction avec eux, encourageant ainsi à
s’en distancier, au risque de perdre une partie de la maîtrise à laquelle ils nous
donnent accès face à des interfaces toujours plus « simples » et à la synthèse
« intelligente » de code.

Dans cette thèse, je m’oppose à cette vision des langages informatiques,
que je considère néfaste pour la recherche en interaction humain-machine
et la démocratie à l’heure du tout numérique. À cette fin, je développe un
ensemble d’arguments qui soulignent qu’il est possible — et même bénéfique
— de rendre plurielle notre interaction avec les langages informatiques, y
compris avec les langages déjà existants, en phase avec l’héritage et la diversité
inhérents à l’informatique du XXIe siècle. Ces arguments, théoriques puis
empiriques, s’articulent en deux parties distinctes.

Dans la première partie de cette thèse, je développe une nouvelle théorie de
l’interaction avec les langages informatiques qui montre qu’aucun de ces lan-
gages n’est intrinsèquement lié à une représentation ou à un type d’interaction
spécifique. Pour cela, je déconstruis la notion de langage informatique en
cinq aspects fondamentaux — concepts, spécification, implémentation, inter-
action et contexte —, isolant ainsi la façon dont on interagit avec un langage
des autres éléments qui le caractérisent. Cette décomposition en cinq aspects

me conduit à introduire un nouveau modèle des langages informatiques,
plus holistique que ceux déjà présents dans la littérature, dont je déduis deux
contributions théoriques.

Premièrement, je postule que le rôle de l’aspect interactif d’un langage in-
formatique est de nous donner accès aux quatre autres aspects du langage, for-
mant ainsi une nouvelle taxonomie de l’interaction avec un langage dotée de
quatre niveaux : l’interaction graphémique, l’interaction morphosyntaxique,
l’interaction sémantique et l’interaction pragmatique. Je montre également
que les systèmes interactifs hybrident couramment plusieurs de ces niveaux,
que j’illustre avec une panoplie d’exemples mélangeant interfaces classiques
et techniques issues de l’état de l’art.

Deuxièmement, les données encodant le langage dans la mémoire d’un
ordinateur nous étant inaccessibles telles quelles, je propose d’utiliser le con-
cept de projection pour qualifier le phénomène par lequel le code se retrouve
projeté sur le substrat avec lequel nous interagissons réellement. Afin de
précisément caractériser la notion de projection, j’introduis un glossaire de
concepts et un ensemble de sept propriétés. Celles-ci définissent un espace
de conception de projections pouvant aussi bien être utilisé pour analyser les
projections de systèmes existants que pour explorer de nouvelles opportu-
nités de manière systématique. La projection de code informatique n’étant
pas limitée à un unique substrat, c’est-à-dire à une approche uniforme de
l’interaction, je conclus qu’il n’existe pas de barrière théorique à une approche
protéiforme, dans laquelle un même fragment de code se retrouve projeté sur
différents substrats, laissant l’utilisateur libre de choisir parmi l’ensemble des
projections du code sur lequel il travaille, à la façon d’une panoplie d’outils
mis à la disposition de sa curiosité et de son expertise.

Dans la seconde partie de cette thèse, j’applique cette approche protéiforme
de l’interaction avec les langages informatiques à deux problèmes de recherche
concrets à l’aide d’une méthodologie de conception centrée sur l’utilisateur. Je
me concentre plus spécifiquement sur le fait de complémenter une projection
textuelle de l’ensemble du code avec une ou plusieurs projections alterna-
tives des fragments de texte les plus à même d’en bénéficier. Ainsi, dans le
cadre de chaque problème de recherche, j’identifie les problèmes et limites
rencontrés par les utilisateurs des langages concernés à l’aide d’une étude
formative ; je développe un prototype d’éditeur de texte doté de projections
supplémentaires ; et j’évalue celui-ci à l’aide d’études utilisateur qualitatives et
quantitatives et de mises en situation des prototypes.

Je m’intéresse d’abord au problème de la conception de document avec
le langage LATEX. Afin d’identifier les difficultés auxquelles font face les util-
isateurs du langage, je présente les résultats d’une analyse thématique de
11 interviews d’utilisateurs de LATEX. Je présente alors i-LATEX, un prototype
d’éditeur LATEX dans lequel il est possible d’interagir avec certains fragments
du langage identifiés dans l’analyse thématique à l’aide de représentations

alternatives du code que l’utilisateur peut afficher à l’intérieur du document
généré, un type de projection appelé représentation transitionnelle. À l’aide
d’une évaluation contrôlée et d’une étude longitudinale, je montre que ces
représentations permettent aux utilisateurs de concevoir leurs documents en
adoptant des stratégies faisant intervenir plusieurs projections, leur permet-
tant ainsi d’effectuer certaines tâches courantes plus rapidement et avec une
charge de travail moindre.

Je m’intéresse ensuite à la question de l’appropriation des éditeurs de texte
par leurs utilisateurs. Afin de mieux comprendre de quelle manière les
programmeurs souhaiteraient pouvoir interagir avec le code qu’ils lisent et
écrivent sous forme de texte, j’analyse un ensemble de 62 projections collectées
via un atelier de conception participative organisé avec 9 programmeurs et une
revue de systèmes publiés dans la littérature. Je présente ensuite lorgnette,
un système permettant d’instrumenter un éditeur de texte existant afin de
permettre à ses utilisateurs d’y ajouter de nouvelles projections en associant
une interface graphique de leur choix à un motif arbitraire dans le code de
manière libre et idiosyncratique. J’illustre la capacité de lorgnette à en-
richir l’interaction avec plusieurs langages existants en l’utilisant pour créer
des projections complémentaires au texte dans cinq situations différentes,
telles qu’une une grille interactive permettant de manipuler la structure d’un
tableau en Markdown et un formulaire permettant de configurer des pro-
priétés graphiques en Python et en JSON.

En conclusion, ce travail suggère qu’il est possible de réenvisager notre
interaction avec les langages informatiques à travers le concept de projection
protéiforme, une approche qui, selon cette thèse, est théoriquement fondée,
techniquement possible et empiriquement souhaitable. L’approche présentée
ici se veut résolument postmoderne. Elle vise à s’accommoder aux systèmes
et aux encodages existants, malgré leurs éventuels défauts, en tant que ceux-ci
constituent le matériau réel et durable avec lequel nous sommes contraints
d’interagir et face auxquels les approches modernistes nécessitant de faire
table rase du passé se heurtent. Elle se prête ainsi à la tâche urgente d’équiper
un public citoyen toujours plus large avec de nouveaux outils intellectuels
et techniques afin de les aider à comprendre et à s’approprier les langages
informatiques au cœur du fonctionnement de nos sociétés.

Acknowledgments

I would never have studied computer science, let alone written a Ph.D. thesis,
if I had not met all the people who shaped the journey that led me to where I
am today. As this journey started a long time ago, soon after I started using
the first computer I owned, accounting for all those who played a significant
role in it requires a little history.

My interest in computer science began in early middle school when I
discovered programming as I spent countless hours taking my first steps
into the worlds of web and video game development—a freedom my parents
gave me that I will eternally be grateful for. I will never forget the joy I
felt the first time I wrote a webpage using HTML and CSS or watched my
computer successfully interpret a piece of PHP or Ruby code I tweaked out
of curiosity at a time when most of these languages’ concepts were unknown
to me. Yet, despite entering high school with a keen interest in mathematics
and science, I had already decided that although science was fun, my goal
was to study and work in graphic and interaction design. What a delusion
when, in the Summer of 2013, I discovered that each of my applications to two
preparatory schools in arts—Mises À Niveau en Arts Appliqués in French—I
applied to had been rejected. My only other plan, back then, came from a
clever recommendation from my high school teachers: always apply to a
bachelor you might be interested in at the university, just in case. This is how,
a decade ago, I enrolled in the first year of a B.Sc. in computer science at
Aix-Marseille University, located in the South of France, where I come from.

I started learning computer science without any expectation, initially think-
ing I would only spend one year at the university before applying to the same
preparatory schools again. I could never have been so wrong. Not only did I
immediately like the topics I discovered there, but I also quickly found out
about the peculiar relationship to knowledge there is in academia, which is
something that I never ceased to admire since then. For this reason, I am
thankful to all the professors and researchers I met during these years, whose
passion for sharing their knowledge rather than (just) helping students get
good grades convinced me that I should stay a little longer. Two of them, in
particular, played an essential role in helping me get to where I am today.
The first one is Régis Barbanchon, who was in charge of the C programming
class I attended in Spring 2014. Régis was the first person I met who insisted
so much on the importance of naming conventions and code organisation.

He sparked my interest in the role of design in programming, which slowly
matured in me to become the topic of the thesis you are reading. The second
one is Frédéric Béchet, who was in charge of a web programming class I
attended in Spring 2015. By trusting me enough to offer me an internship
opportunity in his research team in the middle of my B.Sc., during which I
designed and developed the user interface of a semi-automated annotation
tool for textual corpora (using a gigantic amount of inefficient jQuery code!),
Frédéric made me discover the daily life of an academic research lab for the
first time, before I even considered doing research.

As the end of my B.Sc. approached, I decided I did not want to return
to my initial plan, at least not immediately. At the time, the most obvious
option for me was to pursue a two-year M.Sc. program before working my
way to interaction design. Yet, my discovery of the field of human-computer
interaction (HCI) during an exchange semester at Uppsala University in
Sweden and the opportunity I had to join the École normale supérieure of
Paris (ENS) the year after made me stay around academia for four more
years instead. The École normale supérieure is a small world where intellect
meets craziness, and I can confidently say that everything I shared with all
the students I met and all the friends I made there, from highly intellectual
discussions to highly absurd pranks, paved the way to my decision to stay a
little longer in this ecosystem and pursue a Ph.D. I am thankful for the trust
I received from my academic advisor there, Timothy Bourke, who always
supported my interest in HCI research (which is rather uncommon for an
ENS student), as well as from the supervisors of the three research internships
I did back then—Géry Casiez in 2017, Antti Oulasvirta and Kashyap Todi in
2018, and Michel Beaudouin-Lafon in 2020—and all the fellow researchers
I met along the way, who helped me discover and explore multiple aspects
of the research field I eventually settled in, which is, to some extent, the
academic flavour of the job I had in mind back in high school.

At the end of 2019, I contacted Michel Beaudouin-Lafon to express my
interest in doing a Ph.D. under his supervision. Michel was very kind and
receptive to my initial ideas and helped me brainstorm and write the research
subject this thesis is about. With his help, my Ph.D. was soon funded for three
years, and the final part of my ten-year journey in higher education began in
October 2020. Although doing a Ph.D. can be a little tedious and make you
feel a little lonely at times, I really, really enjoyed the four years I spent in the
ex)situ group of the LISN lab, surrounded by many great people all along the
way.

Thank you, Michel, for giving me so much freedom in my work, yet being
so responsive every time I need your help, without ever pressuring me or
steering my research towards a direction I was not interested in. Thank you,
Wendy Mackay, for welcoming me to your research group and for all the
knowledgeable recommendations you are an expert in giving. Thank you,

Janin Koch, Fanis Tsandilas, Sarah Fdili Alaoui and Nicolas Taffin, for all
our great discussions on both academic and non-academic matters. Thank
you, all my fellow students, and in particular Téo Sanchez, Elizabeth Walton,
Miguel Renom, Han Han, Martin Tricaud, Alexandre Battut, Arthur Fages,
Junhang Yu, Capucine Nghiem, Romane Dubus, Alexandre Kabil and Yann
Trividic, for all the reliable help, the lengthy chats and the beers we shared in
Paris and abroad. I redouble my thanks to you, Martin, with whom I shared an
office for a while, for the hours you spent explaining, exploring and debating
ideas with me; for the many papers I could not have discovered had you
not told me about them; and for enduring my countless jokes on your crazy
love for category theory. May you succeed in improving HCI with monads
and adjunctions! In the same spirit, thank you, Adrien Chaffangeon Caillet,
Joanna McGrenere, Thomas Baudel, Simon Talaga, Edwige Chauvergne and
Matthew Beaudouin-Lafon, for your helpful thoughts and references. Thank
you, participants to my user studies, for helping science and myself move
forward; and thank you, internet strangers from StackOverflow and elsewhere,
for answering the many questions I kept facing.

Since doing a Ph.D. is not only about research, I would like to highlight a
few more people I had the pleasure of collaborating with. Thank you, Caroline
Appert and Ravi Chugh, for kindly examining my doctoral work at the first
half of the journey. Thanks to the support staff of the lab, who help us all do our
job, and more specifically to Sonia Vanot, for your smiley help with mission
planning and administrative issues. Thank you, James Eagan and Michel,
for trusting me to teach your courses—and cheers to my fellow teaching
assistants, Mehdi Chakhchoukh, Raphaël James and Yiran Zhang. Thank you,
Camille Challant and the rest of the JDD 22 team, for the fun times we had
organising the Ph.D. days of the lab in 2022.

Finally, since life is—fortunately!—not only about doing a Ph.D., I would
like to extend all my gratefulness to the people who played a significant role
in the rest of my life in the past few years. Thanks to all my friends, and in
particular to Anatole D., Anna M., Lucas P., Mathieu F., Benoit S., Luc S.,
Étienne R., Clément R., Maël R., Gaspard M. and Énora le G., for being
consistently here during this journey, for everything that our friendships
have brought me, and for the mind-opening discussions about our respective
fields of expertise and points of view. Thank you, Leila S. and Tiphaine L.,
for your peculiarity, love and care. Had you not introduced me to Pink
Floyd and Colette, these long days (and nights) of work would not have been
the same! Thanks to all my relatives who kindly supported me during this
journey despite my limited presence. In particular, thanks to my parents,
Anne-France B. and Claude G., for giving me so much love and autonomy,
fueling my interest in design and never failing to support me in doing what
makes me happy. I still hardly realise the chance I have of knowing you all,
and I cannot express how much I love you, all and forever.

Contents

1 introduction 1

2 framing computer languages 5
2.1 What is a computer language? 5

2.1.1 Definition . 6
2.1.2 Related terms . 7

2.2 What are computer languages used for? 11
2.2.1 Developing user and business applications 12
2.2.2 Solving engineering and scientific problems 13
2.2.3 Writing documents . 15
2.2.4 Teaching computer science 17
2.2.5 Creating art and design work 18

2.3 How to study computer languages? 21
2.3.1 Human-centric perspectives 22
2.3.2 Computer-centric perspectives 26
2.3.3 Human-computer interaction perspective 31

3 decomposing computer languages 35
3.1 Motivations . 35
3.2 Holistic model . 36

3.2.1 Conceptualisation . 38
3.2.2 Specification . 40
3.2.3 Implementation . 42
3.2.4 Interaction . 44
3.2.5 Contextualisation . 49

4 interacting with computer languages 53
4.1 Levels of interaction . 53

4.1.1 Graphemic interaction 54
4.1.2 Morphosyntactic interaction 57
4.1.3 Semantic interaction 60
4.1.4 Pragmatic interaction 63

4.2 Cross-level interaction . 67
4.2.1 Multiple levels within a single substrate 67
4.2.2 Multiple levels across multiple substrates 69

5 projecting computer languages 71
5.1 Definitions . 71

5.1.1 Computer system . 73
5.1.2 Projection . 74

5.2 Properties . 76
5.2.1 Locality . 78
5.2.2 Location . 78
5.2.3 Persistence . 78
5.2.4 Compositionality . 78
5.2.5 Liveness . 79
5.2.6 Malleability . 79
5.2.7 Language agnosticism 79

5.3 Implementation strategies . 80
5.3.1 Uniform projection 80
5.3.2 Protean projection . 83

5.4 Focus of this thesis . 87

6 transitional representations for LATEX 89
6.1 Background . 90

6.1.1 The LATEX ecosystem 90
6.1.2 Interacting with LATEX 91
6.1.3 Interacting with digital documents 92

6.2 Formative study . 93
6.2.1 Methodology . 93
6.2.2 Results . 95
6.2.3 Recommendations for design 98

6.3 Transitional representations 99
6.3.1 Definition . 100
6.3.2 Properties . 100
6.3.3 Application to LATEX 102

6.4 The i-LATEX editor . 103
6.4.1 User interface . 103
6.4.2 Transitionals . 106
6.4.3 Implementation . 108
6.4.4 Limitations . 109
6.4.5 Extensibility . 110

6.5 Controlled evaluation . 110
6.5.1 Methodology . 110
6.5.2 Results . 113
6.5.3 Discussion . 117

6.6 Longitudinal evaluation . 119
6.6.1 Methodology . 119
6.6.2 Results . 120

6.6.3 Discussion . 121
6.7 Conclusion . 123

7 creating malleable projections 125
7.1 Background . 126

7.1.1 Malleable software . 126
7.1.2 Tailoring text editors 128

7.2 Formative study . 130
7.2.1 Design workshop . 130
7.2.2 Examples from the literature 132
7.2.3 Results . 132
7.2.4 Discussion . 138

7.3 The lorgnette framework 139
7.3.1 Concepts . 139
7.3.2 Implementation . 142
7.3.3 Comparison with existing systems 143

7.4 Case studies . 147
7.4.1 Manipulating colours 148
7.4.2 Authoring tables . 150
7.4.3 Writing regular expressions 150
7.4.4 Tracing variables at runtime 153
7.4.5 Configuring lists of properties 155

7.5 Conclusion . 159

8 discussion 161
8.1 Contributions . 161

8.1.1 A theory of interaction with computer languages . . 162
8.1.2 A postmodern application of protean projection . . . 163

8.2 Limitations and future work 164
8.2.1 Beyond compartmentalised uses 164
8.2.2 Beyond local projections 165
8.2.3 Beyond hand-crafted mappings 167
8.2.4 Beyond semantic interaction 168
8.2.5 Beyond computer languages 169

9 conclusion 172

bibliography 175

links 206

Figures

2.1 Classes of computer languages . 8
2.2 Computer languages used in engineering and science 14
2.3 Computer languages used to author digital documents 16
2.4 Logo’s turtle . 18
2.5 Computer languages used to create art and design work 19
2.6 Two editions of Euclid’s Elements 22
2.7 Scheme of Jakobson’s model of language 24
2.8 Chomsky’s hierarchy . 27
2.9 Three notations of the same graph 32

3.1 The holistic model of computer languages 37
3.2 Drawing of a circle. 38
3.3 Hello, world! in Piet . 41
3.4 Standard notation of the APL language 41
3.5 Notations of computer programs by Zuse and Burks 45
3.6 Embedding runtime information in textual code 50

4.1 The four levels of interaction with computer languages 54
4.2 Interfaces for graphemic interaction 55
4.3 Interfaces for morphosyntactic interaction 61
4.4 Interfaces for semantic interaction 61
4.5 Interfaces for pragmatic interaction 65

5.1 Scheme of the projections of an interactive system 72
5.2 From higher to lower levels of interaction 75
5.3 List widgets in Sketch-n-Sketch . 76
5.4 Six environments featuring uniform projection 81
5.5 Six environments featuring protean projection 84

6.1 Space of document authoring paradigms 101
6.2 Three representations of the same table in i-LATEX 101
6.3 User interface of i-LATEX . 104
6.4 User interfaces of i-LATEX’s transitionals 105
6.5 The four configurations of the controlled experiment 112
6.6 Effect of transitionals on task completion time (math. only) . . . 114
6.7 Effect of transitionals on task completion time 115

6.8 Effect of transitionals on number of compilations 115
6.9 Distribution of task completion times 116
6.10 Mean and standard deviation of task completion times 116
6.11 Effect of transitionals on participant workload 118
6.12 Comparison of the two conditions in terms of workload 118
6.13 Timeline of the longitudinal study 122
6.14 Types of events logged during the longitudinal study 122

7.1 The ladder of tailorability . 127
7.2 Selections turned into persistent interactive objects 129
7.3 Three projections designed by workshop participants 134
7.4 lorgnette’s process for creating projections 140
7.5 Specifications of two colour pickers 149
7.6 Specification of a grid for Markdown tables 151
7.7 Specification of a railway diagram for regular expressions 152
7.8 Specification of visual variable tracing in JavaScript 154
7.8 Specification of a form for configuring Python plots 157
7.9 A projection for configuring the style of Vega-Lite marks 158

Tables

2.1 Number of results returned by three search engines 8
2.2 Existing approaches for studying computer languages 21
2.3 Dimensions of the cognitive dimensions of notations 25

3.1 Example use of the holistic model of computer languages 37

5.1 The seven properties of projections 77

6.1 Details on the LATEX users I interviewed. 94
6.2 Tasks of the controlled experiment 112
6.3 Statistical tests of the controlled experiment’s measures 115
6.4 Statistics on the participants’ expertise with LATEX 116

7.1 List of (re)designs created during the workshop 133
7.2 List of projections I reviewed . 137
7.3 Details on the systems lorgnette is compared to 144
7.4 Comparison of lorgnette with eleven other systems 144

To my grandmother Marie,
tel un ultime bulletin de notes.

1

1
Introduction

It’s a beautiful thing, the destruction of words.

— Nineteen Eighty-Four (Orwell, 1949, ch. 5)

In Nineteen Eighty-Four, a famous dystopian novel written by George Orwell
published in 1949, England has become a totalitarian state where freedom and
language are both under the government’s control. The protagonist, Winston
Smith, works at the Ministry of Truth, where he constantly rewrites historical
documents to ensure they always align with the ever-changing position of the
unique political party. There, he meets Syme, one of his colleagues working
in a team of linguists tasked to write the official dictionary of Newspeak—the
new official language of the state—, who eagerly explains to Winston the
purpose of his work: “You think, I dare say, that our chief job is inventing new
words. But not a bit of it! We’re destroying words—scores of them, hundreds of
them, every day. We’re cutting the language down to the bone”. Surprised by
Winston’s lack of enthusiasm, he goes on, eventually concluding—with a great
deal of admiration for the idea—that “in the end we shall make thoughtcrime
literally impossible, because there will be no words in which to express it”.

Fortunately, we avoided the terrible fate depicted in Orwell’s novel. Perhaps
oppositely, the rise of computing gave birth to many, many new languages
instead. Although computers were already in use when Orwell published
Nineteen Eighty-Four, computing was merely at its infancy at the time. Yet,
creating languages soon became necessary as computers quickly became
more powerful and widespread, for people working on increasingly complex
programs and data needed a practical support of thought and means to
communicate with the machine, beyond writing long sequences of low level
operations and binary digits. In little time, Fortran, Lisp, BASIC and many
others were developed, becoming a core part of computer education, use and
research. Computer languages were born and on the rise.

The way we interact with computers drastically evolved since the time of the
first computer languages. Early work on this topic was led by visionaries such
as Douglas Engelbart, whose work on augmenting the human intellect (En-
gelbart, 1962) with the help of computers pioneered a number of interactive
systems such as hypertext, video conferencing and shared editing. Step by step,
the field of human-computer interaction (HCI) gradually demonstrated that

1

2

interacting with computers could go beyond typing and reading monospaced
text. In the 1970s, computers soon became equipped with bitmap displays and
mice, leading to the development of operating systems capable of displaying
increasingly detailed graphical user interfaces in which users could point at
the target they wish to interact with. This, in turn, gave birth to a myriad of
graphical programs, such as word processors, spreadsheets, drawing applica-
tions and web browsers, some of which still exist today.1 The development of 1. For example, office software such

as Microsoft Word and Microsoft Ex-
cel and image editing software such as
Adobe Photoshop were first released
in the 1980s and have both remained
some of the most popular options in
their respective categories since that
time, with relatively little change to
their user interfaces.

interaction techniques at odds with established textual interaction, such as
direct manipulation, intensified the schism between interacting with comput-
ers through languages and interacting with computers through metaphorical
GUIs, best exemplified by the title of Shneiderman’s classic article on direct
manipulation interfaces: Direct Manipulation: A Step Beyond Programming
Languages (Shneiderman, 1983).

Nowadays, working with computer languages is often depicted as a techni-
cal necessity at best, and a burden from the past at worst. Many interactive
systems hide underlying linguistic considerations from their users, who are
rather encouraged to delegate their agency to cloud services and artificial
intelligence, regardless of what these terms actually mean and what impact
they have on their users and on the world—economically, ecologically and
ethically. Eventually, a sensible fraction of the world’s population might be
living in societies in which computers have an all-time high importance in
everybody’s daily lives, even though these computers are mute strangers to
many citizen, who must abide by their mechanised decision processes. I
believe that this may eventually put our democracies at risk, when citizen
do not or cannot speak the languages of the machines ruling their lives—a
risk not so hypothetical given the current impact of our lack of understand-
ing of contemporary artificial intelligence models already deployed in the
wild, including when they decide who should be arrested or who should be
killed (Benbouzid, 2019; Johnson, 2020).

While education and legal regulation may help counterbalance this trend,
as hinted by the GDPR2 in Europe and current work on regulating artificial 2. GDPR stands for General Data Pro-

tection Regulation, a major component
of the European Union’s legal texts on
privacy and digital human rights that
is in effect since 2018.

intelligence in various regions of the world,3 I believe that making computer

3. Recent examples include President
Joe Biden’s executive order on AI reg-
ulation issued in October 2023 in
the US (1) and the finalisation of the
AI act in the European Union in De-
cember 2023 (2).

languages more accessible and understood is a crucial step in giving citizen
empowering tools to think and act for themselves in our computer-centric
societies. Unfortunately, despite some small improvements, our interaction
with many of the most popular and useful computer languages in use to-
day is extremely similar to what it used to be in the 1970s—that is, editing
monospaced text. I believe this contributes to making computer languages
look like tools for experts and discourages people from learning and using
them, even though there is no reason these languages could not be used in au-
tonomy by everyone, as suggested by the remarkable success of programming
classes and systems for children, who seem to be at ease with using computer
languages from a young age without any formal training in STEM.

To contribute in addressing this challenge rooted in HCI, I decided to direct
the research work I conducted towards reconciling computer languages and
human-computer interaction. As often in research, though, this line of work
is neither new nor unique. In this case, other researchers have previously
called for further research in programmer experience (PX), a subfield of user
experience (UX) research focusing on programming system users (Morales

2

https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai

3

et al., 2019), and initiated joint work on unifying research on programming
languages and human-computer interaction (Chasins et al., 2021). Moreover,
mixed communities have formed to explore this intersection, as illustrated by
the Future of Coding (3) and the LIVE and PAINT workshops at the ACM
SPLASH conference (4; 5).

In the context of my Ph.D., I specifically worked on complementing—rather
than replacing—textual representations of computer languages with other
representations of the code. The resulting work led to one publication in
a national HCI conference (Gobert and Beaudouin-Lafon, 2021) and two
publications in international HCI conferences (Gobert and Beaudouin-Lafon,
2022, 2023), which were all co-authored with my Ph.D. supervisor, Michel
Beaudouin-Lafon. Informed by the outcomes of this work, I hereby make the
following claim:

No computer language is inherently bound to a single representation,
neither theoretically nor technically, and diversifying our interaction
with computer code can help users understand and modify it.

To support this claim, I present theoretical, technical and empirical con-
tributions to the research field presented above, which are roughly divided
into two parts. The first part, ranging from chapter 2 to 5, corresponds to the
main theoretical contribution of this work. By first deconstructing, then re-
constructing, the very notion of computer language, these chapters gradually
describe a novel theory of interaction with computer languages. This theory
decouples interaction from other aspects that constitute computer languages
with the help of the concept of projection, which I progressively introduce
to the reader by explaining why we need a new theory and a more holistic
model of computer languages (chapters 2 and 3), what are the different ways
we can interact with a computer language according to this theory (chapter 4),
and how can we implement them in both novel and established code editing
environments (chapter 5). The second part, ranging from chapters 6 to 7,
presents two independent projects that I carried out that correspond to the
main technical and empirical contributions of this work. By applying the
aforementioned theory to two concrete research questions—how to improve
our interaction with the LATEX language, and how to help users tailor their
text editors with custom representations of the code—using a user-centred
design methodology, these two chapters demonstrate practical applications
of the theory for rethinking the way we interact with computer languages,
including existing ones. More specifically, the remaining eight chapters of
this thesis are structured as follows.

In chapter 2, I start by defining what a computer language is, compare it
with related terms, and report on various situations they have been used in,
underlining how widespread they are and how diverse their users can be. I
then present how computer languages have been studied in different fields
of research, both human-centric and computer-centric, as well as in HCI,
and point at several limitations of the theories HCI researchers have at their
disposal to work on this topic.

In chapter 3, I propose to start filling this theoretical gap by decomposing
the notion of computer language into five fundamental aspects that, I argue,
must be part of every computer language: conceptualisation, specification,

3

https://futureofcoding.org/
https://2023.splashcon.org/home/live-2023
https://2023.splashcon.org/home/paint-2023

4

implementation, interaction and contextualisation. Put together, these aspects
form a new holistic model of computer languages.

In chapter 4, I derive a new taxonomy of interaction with computer lan-
guages featuring four complementary levels: graphemic interaction, mor-
phosyntactic interaction, semantic interaction and pragmatic interaction. I
then show that these levels can be used as a new taxonomy for categorising
both classic and state-of-the-art techniques for interacting with computer
languages, and that they can be combined within a single code editing systems.

In chapter 5, I drill down on the notion of projection, a core concept for
making interaction with computer languages possible according to this theory.
I define the concept and its multiple properties, which form a set of dimen-
sions that can be used to characterise existing systems for interacting with
computer languages and explore new design opportunities in a systematic
fashion. I further report on several milestones in historical implementations
of this concept, leading me to position the strategy I used in my own work,
which was motivated by postmodern visions of computing.

In chapter 6, I apply the theory introduced in the last three chapters by
diversifying representations of LATEX code to address some of the difficulties
that I identified by interviewing 11 users of the language. I present i-LATEX, a
LATEX editor with alternative representations of specific pieces of code that I
developed, and report on evaluations of i-LATEX with a controlled experiment
and a longitudinal study.

In chapter 7, I reflect upon limitations of my work on LATEX and switch to
the problem of making alternative representations of text more appropriable
by their users. I present lorgnette, a framework for augmenting text ed-
itors with alternative representations of the code that can be modified and
created by end-users without requiring them to reprogram the entire editor.
I demonstrate the value of lorgnette by using it to create visual tools to
work with several computer languages in five different situations.

In chapter 8, I review the relations between the two parts of my work and
discuss the benefits and limitations of the theory of interaction with computer
languages proposed in this thesis, which I relate to the successes and failures
I faced in developing and evaluating i-LATEX and lorgnette. I then propose
several directions to address them in the future, forming a possible research
agenda to pursue the line of work presented in this thesis.

Finally, in chapter 9, I go back to the statement I made above and highlight
how the contributions presented in this thesis support it. I conclude that com-
puter languages, old and new, can all benefit from a mixture of representations
and interaction techniques that complement each other, independently from
how they are encoded, and present my vision on how this might affect how
we use computers and their languages in education, industry and society.

4

5

2
Framing computer languages

At its core, this thesis is concerned with the study of our interaction with
computer languages—but what is a computer language? How do they differ
from other sorts of languages, such as natural languages? Who are the users of
these languages; why do they use them; and why can it be challenging? What
is more, what approaches and concepts have been used to study computer
languages so far, and what can we learn from them to study these languages
from a human-computer interaction perspective?

This chapter addresses these fundamental questions. Section 2.1 explains
what computer languages are. It defines the term as it is used in this thesis,
compares it to similar notions used in the literature, and gives a number of
examples of computer languages. Section 2.2 further helps framing what
these languages are by giving examples of what computer languages have
been and are being used for in five major application domains. Doing so also
highlights the diversity of computer language users, who range from scientists
to artists, therefore giving an overview of user groups one may focus on when
working on this topic. Finally, section 2.3 presents several human-centred and
computer-centred perspectives from which computer languages have been
studied in the past. It then argues that human-computer interaction lacks
a theory of computer languages that captures the diversity of ways we can
interact with these languages, which neither of the aforementioned theories
seem appropriate for by itself, therefore leaving room for research on creating
a dedicated theory, which I pursue in the following chapters.

2.1 what is a computer language?

There is no understood definition of what a computer language is. Depending
on the context it is used in, and the person who uses it, the term may very well
refer to different concepts. Some may argue that a computer language is just
a synonym for a programming language, even though this term has no single
definition either, as discussed by Ko (2016). Others may refer to theoretical
considerations, such as having a formal grammar or being Turing-complete,
or rather judge what is a computer language by the look of its notation.

To better delimit the object of study of this thesis, I must therefore start by
defining what a computer language means in this work. This is the purpose

5

6

of this first section, which combines an intentional approach with an exten-
sional approach. First, I propose my own definition of computer language by
characterising the key properties of this concept. Then, I contrast this defi-
nition by comparing the term with several others terms, some of which are
more commonly used, in order to determine how they overlap with computer
language and strengthen the definition with positive and negative examples.

2.1.1 definition

Language

A computer language, as its name suggest, is a particular kind of language.
Before attempting to define the former, I must therefore start by defining the
latter. In the context of this thesis, I define a language as a symbolic system
for communicating information that has two constituents: (1) symbols, which
are atoms of information that can be physically reified as, e.g., shapes, sounds
or gestures; and (2) rules, which specify how symbols can be combined and
how these combinations can be interpreted. This definition is in line with the
main definitions of language found in several English dictionaries:

A systematic means of communicating ideas or feelings by the use of
conventionalized signs, sounds, gestures, or marks having understood
meanings.

— Merriam-Webster dictionnary (2023)

A system of communication consisting of sounds, words, and grammar.

— Cambridge dictionnary (2023)

A system for the expression of thoughts, feelings, etc, by the use of spoken
sounds or conventional symbols.

— Collins dictionnary (2023)

Computer language

Computer languages are languages which have a singular relationship with
computers. Some other definitions of language found in dictionaries may hint
at ways to qualify that relationship, such as by restraining who uses computer
languages, or what they are used for:

The language of a particular nation or people.

— Collins dictionnary, 2023

A system of symbols and rules for writing instructions for computers.

— Cambridge dictionnary, 2023

However, I argue that neither of these definitions alone is satisfactory. Defin-
ing computer languages by their users is either too limiting, as not only
computer scientists or software developers use them, or too vague, as more
and more people are now becoming computer language literates. Defining

6

7

computer languages by their purposes is fragile in time, as it is difficult to
know in advance how a particular language will be used, and history has
repeatedly shown that computer languages are sometimes used in unexpected
ways, as we shall see in the subsequent sections of this chapter.

Instead, I argue that the defining characteristic of a computer language is
that it is a symbolic systems meant to be understood and manipulated both
by humans and computers:

A computer language is a language designed to be used by humans and
interpreted by computers in the appropriate context.

In addition, to avoid using purpose-specific terms such as program, I use the
term code to refer to anything written in a computer language, i.e., anything
that translates to a combination of the language’s symbols. This definition of
computer language has a number of important implications.

First, since a computer language is a particular kind of “language”, it must
include symbols and rules that can be materialised physically. This excludes
symbols that only exist in one’s mind, with no physical support, as well as col-
lections of symbols not accompanied by rules specifying which combination
of symbols is part of the language and which is not, and how to assign them
some meaning.

Then, since a computer language is “designed to be used by humans”, it
must exist in a form we can indeed use as humans, relevant to our perceptual
and cognitive abilities, which highly differs from those of machines. As a
consequence, the definition excludes any language that is only used internally
by a computer or a network of computers, without any human intervention,
such as a number of communication protocols.

Finally, since a computer language must also be designed to be “inter-
preted by computers in the appropriate context”, it must be possible to create a
computer program that “speaks” the language by reading and writing code
written in that language in a purposeful way. This notably excludes natural
languages from this definition, as they were not designed to be interpreted by
computers, even though we can write computer programs able to synthesise
plausible sentences and extract information from such languages using natu-
ral language processing techniques. The precision regarding the “appropriate
context” means that a computer language does not have to be universally
understandable by any computer or computer program to be considered a
computer language. If at least one program can understand a language that
fulfils the other criteria, on the appropriate machine, and given the appro-
priate resources, it can be considered a computer language. In particular,
this includes many domain-specific languages, no matter how niche they are,
including those that may be created and used by a single person or a very
restricted community, similar to some rare dialects spoken by humans.

2.1.2 related terms

The term computer language is different yet related to several other terms,
and most notably programming language, markup language, domain-specific
language, data format and protocol.4

4. Note that this choice of terms is nei-
ther methodic nor exhaustive, but an
empirical choice of mine, based on
my own experience and review of the
literature. Other terms that describe
computer languages could have be in-
cluded in this list, such as pattern lan-
guage (McLean and Wiggins, 2010),
transformation language (Cordy, 2006)
and computer code (Liu et al., 2020;
Ivanova et al., 2020).

Although it is part of the name of
Elsevier’s Journal of Computer Languages5

5. The journal was formlerly titledCom-
puter Languages, Systems and Struc-
tures, but changed name in 2018.

and used in some publications,6
6. See, for example, Shieber (1984) and
Simonyi (1995).

7

PNG
Data formats

JSON

Computer languages

Python

Programming languages Markdown

Javadoc

Markup languages

Matlab
Yacc

grammar

Domain-specific languages

Protocols

Figure 2.1. Venn diagram of the classes of languages represented by the different terms presented in section 2.1 as I describe
them in the context of this thesis. Boxes represent sets of languages. Languages in blue represent positive examples of
computer languages, and languages in orange represent negative examples. Since the definitions are somewhat porous, some
languages are located at the edge between several classes to indicate that they may belong to one or the other depending on
the context they are used in or the purpose they are used for. For example, LATEX may or may not be considered specific to
writing scientific and technical documents, and SMTP may only be considered as a computer language if a human manually
reads or writes the protocol’s messages.

Search term Number of matches

Google Scholar Semantic Scholar Semantic Scholar (CS) dblp

Computer language 98,100 15,300 13,100 2,572
Programming language 2,010,000 134,000 110,000 6,779
Markup language 235,000 15,300 13,000 685
Data format 267,000 34,200 23,100 1,107
Protocol 6,620,000 1,550,000 513,000 58,964

Table 2.1. Number of results returned by three search engines for scientific literature, provided different search terms related
to computer languages. Each search term was surrounded with double quotes. Results under Google Scholar and Semantic
Scholar are not specific to any field. Results under Semantic Scholar (CS) use a filter provided by the engine to only include
results related to the field of computer science; and so do those under dblp, as the engine is designed to be specific to computer
science research. All the searches were done in January 2024.

9

it appears to be less common in the scientific literature than most of these
terms, as suggested by the data reported in Table 2.1. Yet, I argue that the
notion of computer language as I define it is complementary to these other
terms, in a way that is not well captured by any other term I know. In order
to clarify what it encompasses and how all these terms are related, I briefly
review the characteristics of these other classes of languages, along with a
number of examples, as summarised in Figure 2.1.

Programming languages

Programming languages are computer languages designed for creating pro-
grams, i.e., sequences of instructions for controlling a computer that can
either be executed directly by the hardware (for compiled languages) or
by a proxy (for interpreted languages). Aho et al. (2006) report that since
their inception in the 1940s, the way we program computers has drastically
evolved, forming five generations of programming languages. In the early
days of programming, machine code (generation 1), formed of simple in-
structions written in binary, was input through physical operations such as
flipping switches. Machine code quickly evolved into assembly languages
(generation 2), which included mnemonics and macros to abstract common
sequences of instructions. Although they required some preprocessing, these
languages were still formed of sequences of instructions representing the
most basic operations available in the processing unit. However, the need of
expressing more complex statements, such as mathematical formulae, and
to write programs independently from the underlying architecture, led to
the development of high-level programming languages (generations 3 to 5)
such as Fortran, which need to be translated into machine code by more
and more advanced compilers. Today, programming languages can take very
diverse shapes, leading to various taxonomies, which may classify them by
their generation, by the paradigms they are designed to support (imperative,
functional, object-oriented, etc.), or even by the theoretical properties they
exhibit (Turing-completeness, memory safeness, etc.) As a result, it is very
hard to determine clear boundaries of what is and what is not a programming
language, whose properties can, at best, serve as opinionated hints.

For example, some languages expose hardware-level information, such
as different sizes of integers, e.g., uint8_t and uint32_t in C and u8 and
u32 in Rust for unsigned integers encoded using either 8 or 32 bits. Others
hide such details, such as Python (whose integers have no size limit) and
JavaScript (whose numbers are all floating point numbers), although such
hardware-related considerations may resurface in languages designed to hide
them in unexpected ways.7

7. This often happens for perfor-
mance reasons. For example, even
though JavaScript does not distinguish
between integer and decimal num-
bers, adding |0 after a numeric ex-
pression in JavaScript can be used
to force the JavaScript engine to
treat the result as an integer. Be-
fore WebAssembly, this was used by
asm.js (6) to run JavaScript code
transpiled from low-level languages
such as C very efficiently compared
to standard JavaScript. Similarly, Lu-
cas Pluvinage (7) showed how a trick
with CPU caching called value specula-
tion that was previously demonstrated
by Francesco Mazzoli (8) in C can ac-
tually be used in OCaml too, resulting
in much faster code in certain cases,
even though the technique requires to
do pointer arithmetic, a programming
technique OCaml is explicitly not de-
signed to support.

Similarly, different languages offer different ways to control the flow of
the program. Historically, this was implemented using instructions to jump
to a particular memory address, either conditionally or unconditionally, a
paradigm notably used in machine and assembly languages. The lack of clarity
of this approach, famously pointed out by Dijkstra (1968), led to the structured
programming paradigm, in which languages should offer syntactic structures
that describe their intention when they alter the flow of the program (such
as while and for loops). However, others paradigms recommend different

9

http://asmjs.org/spec/latest/#annotations
http://asmjs.org/spec/latest/#annotations
https://www.lortex.org/articles/value-speculation-ocaml/
https://www.lortex.org/articles/value-speculation-ocaml/
https://mazzo.li/posts/value-speculation.html

10

approaches, such as favouring recursion over loops, as in functional program-
ming, or simply specifying the desired computation without specifying how it
should be implemented, as in logic and constraint-based programming. Overall,
while the best kind of structure to offer to the programmer remains a debate,
offering ways to control the flow of the program appears to be a key feature
in all the computer languages considered to be programming languages that
are in use today.

Markup languages

Markup languages are computer languages designed for annotating text doc-
uments, such as to alter the style of the text or specify the layout of the
document. In these languages, the majority of the code is usually text, in
addition to which some characters have a special meaning, e.g., pairs of * and
_ to bolden and italicize text in Markdown, and commands can be inserted,
e.g., \includegraphics to insert an image in LATEX. Historically, markup
languages have been developed to specify how a text document should look
like when displayed on a screen or printed on paper, before it could be speci-
fied by interacting with the rendered version of the document as in What You
See Is What You Get (WYSIWYG) editors—a practice which only became
popular in the late 1970s and from the 1980s on, following the spread of direct
manipulation interfaces (Shneiderman, 1983).

Nowadays, these languages have other uses. They are commonly used to
let users of online communities format comments or articles without needing
a rich text editor using, e.g., BBCode on various forum boards, Markdown
on Reddit, and Wikitext on Wikipedia. They are also used to format text
written in other computer languages, such as documentation comments in
programming languages that can be interpreted by a program and turned
into typeset or interactive documentation. Some markup languages can even
be used as programming languages even though they were not designed
for that purpose, as demonstrated by the Turing-completeness of TEX and
LATEX (Erdweg and Ostermann, 2011).

Domain-specific languages

Domain-specific languages are computer languages designed for a specific
application domain, rather than a generic goal such as writing any kind of
computer program or document. Just like some markup languages can also
be used as programming languages, some domain-specific languages are also
programming or markup languages. For example, the Matlab language is
primarily designed for mathematics, in which efficient arrays and matrices
are first class citizen of the language; but it can also be used to write any sort
of program. Similarly, some markup languages are specifically designed to
document code written in other computer languages, such as Javadoc for Java
and JSDoc for JavaScript, usually by writing a comment just before the entity
to document in the host language they are used in. There are also domain-
specific languages that are neither programming nor markup languages. As
an example, languages to describe grammars of other languages fit into this
category. They generally inherit from common grammar notations, such

10

11

as the Backus-Naur form (BNF), and exist in different flavours, which can
be communicated as is to the public, such as Python’s grammar (9) in the
official documentation of the language; be processed by a parser generator,
such as Yacc (10), Bison (11) and ANTLR (12); or be typeset in a document,
such as with the naive-ebnf LATEX package (13).

Data formats & protocols

Unlike programming languages, markup languages and domain-specific lan-
guages, which are all computer languages, data formats and protocols are
not always computer languages, as the “language” of a format or protocol
is not systematically used by humans, nor designed for them. While image
formats such as JPEG, PNG or GIF and protocols such as TCP and SSL may
be considered as languages—in the sense that the former strictly codifies how
a data structure is organised, and the latter strictly codifies a form of commu-
nication between computers—, they are not computer languages as defined
earlier, as none of them is interpreted and expressed by humans. However,
some data formats and some protocols have been or become used by humans,
therefore making them computer languages, even though they were not de-
signed with that purpose in mind. Examples include XML and JSON which,
although initially devised as data storage formats made to be read and written
by programs (respectively inspired by tree structures and JavaScript objects),
are now commonly used for configuration files that are edited as text, as in
the case of XHTML8 for creating web pages and Vega (Satyanarayan et al., 8. Unlike XHTML, the HTML lan-

guage is not based on XML but on
SGML, which has a more permissive
syntax than XML (and is therefore
more robust to syntax errors).

2016) for specifying data visualisations. In addition, certain protocols may be
considered as computer languages in specific cases in which a human writes
messages and reads responses in place of a computer, such as for educational
or debugging purposes. This is especially adapted to text protocols such as
SMTP and HTTP, as demonstrated by the developer tools of web browsers
such as Mozilla Firefox and Chromium, which both support manually writing
and sending HTTP messages to debug a web server or application.

2.2 what are computer languages used for?

While the first computer languages were created in the 1950s with the goal of
simplifying computer programming, they have progressively been developed
for other purposes as well, such as querying databases, describing documents,
and teaching computer science to children. Nowadays, computer languages
are manifold: they are used in various domains, by various people, for various
reasons, as illustrated by the numerous examples shown in Figures 2.2, 2.3 and
2.5. This section gives an overview of five major goals computer languages are
used for: developing applications, solving scientific and technical problems,
writing documents, teaching computer science and creating art and design
work. My goal in giving this panorama of computer languages is threefold.
First, it further motivates the importance of studying and improving our
interaction with computer languages, by showing how crucial and widespread
these languages have become in modern societies. Then, it presents different
users groups that can be targeted by user-centred design research, an approach
I chose to use in the applied work I will present in chapters 6 and 7. Finally,

11

https://docs.python.org/3/reference/grammar.html
https://wikipedia.org/wiki/Yacc
https://www.gnu.org/software/bison/
https://www.antlr.org/
https://ctan.org/pkg/naive-ebnf

12

it helps framing what computer languages are in a different way than the
theoretic definition given in the previous section, by inferring what the term
refers to from a large body of examples.

2.2.1 developing user and business applications

Broadly put, an application is a program designed to help a human perform
a particular set of tasks. Applications may be one of the most common type
of program, as demonstrated by the global use of some of them, such as word
processors like Microsoft Word and web browsers like Google Chrome, and
the millions of applications available on online stores, such as Apple’s AppStore
for iPhones and Google’s PlayStore for Android phones. As a consequence, the
computer languages used to develop them are crucial in the digital ecosystem
we now live in.

Applications were first developed and adopted by businesses and public
administrations to digitalise a number of tasks that used to be done by hand.
Early examples include industries such as banking and finance, in which appli-
cations were developed to process worldwide transactions, and transportation
and sales, to manage inventories and bookings; as well as governments. Ac-
cordingly named,9 the COBOL language was developed in the late 1950s in 9. COBOL is an acronym standing for

COmmon Business-Oriented Language.order to help writing business applications in a machine-independent, high-
level programming language. Other computer languages have been developed
for or adopted by businesses in the following decades, such as SQL for retriev-
ing and processing data stored in relational databases, Erlang for creating
back-end applications designed to be highly available and easy to maintain,
and Java for developing applications that could run on any computer. Today,
these industries employ hundreds of thousands of programmers, not only to
develop new features, but also to maintain decades-old systems that are still
in use. As an example, industrial systems in banking rely on billions of lines of
COBOL code to power critical services such as transactions and devices such
as ATMs (14), even though COBOL is often considered to be a deprecated
language that is not taught in computer science curricula anymore. Similarly,
several states in the USA reported issues processing a sudden and massive
increase in the number of unemployment applications during the Covid-19
crisis, which overloaded the systems written in COBOL designed to process
them that had not been replaced in time (15).

Outside of the business world, the increasing demand for applications, the
pace at which features are being developed and added, and the scale and
diversity of the public using them, also motivated the development of new
computer languages. This is particularly visible in web and mobile applica-
tions developed by companies such as Google, Microsoft and Meta, which
started by developing them using languages such as PHP and JavaScript
but eventually switched to custom languages and frameworks they devel-
oped to better fit their needs. This includes Hack as a replacement of PHP,
Kotlin as a replacement of Java, Reason as a replacement of OCaml, and Flow
and TypeScript as replacements of JavaScript, complemented with front-end
frameworks such as React and Angular. In addition to building on existing
languages, new languages were also developed from scratch along the way,

12

http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://edition.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey-trnd/index.html

13

as demonstrated by Meta’s GraphQL language for optimising API calls and
Google’s Dart language for developing cross-platform applications.

2.2.2 solving engineering and scientific problems

Since computers were initially devised to perform mathematical operations,
such as ballistic computations, it is no surprise that computer languages were
developed to assist engineers and scientists using them for that very purpose.
Backus, who came up with the idea of Fortran in 1954,10 one of the first 10. Similar to COBOL, Fortran (ini-

tially written in full capitals) is an
acronym standing for Mathematical
FORmula TRANslating System, as in-
troduced in the preliminary report
on the Fortran language published in
1954 (Backus, 1978, p. 168).

programming languages ever created, report that “one of our goals was to
design a language which would make it possible for engineers and scientists to
write programs themselves” (Backus, 1978, p. 168). The language was later use
to develop popular libraries for scientific computing, such as BLAS (20) and
LAPACK (21) for linear algebra, some of which remain in use today despite
the language being over 60 year old.

Nowadays, multiple computer languages can be used to perform mathemat-
ical operations efficiently, sometimes as a part of a larger computer algebra
system (CAS). Languages such as Mathematica, Maple, Matlab and Julia were
explicitly designed for that purpose, whereas systems such as Sage (22) and
libraries such as NumPy (23) rely on Python. Furthermore, in addition to
performing numerical and algebraic operations, computers are now also used
to help writing mathematical proofs, requiring different sorts of systems and
languages. The work of logicians from the 20th century and results such as the
Curry-Howard correspondence, which states that constructing a program of a
given type is equivalent to proving the logical proposition associated with that
type, led to the development of theorem provers, which are systems designed
to establish proofs with the help of a computer. Accordingly, special languages
with type systems adapted to the task were developed for that purpose, such as
Gallina for Coq (Bertot and Castéran, 2004), Isar for Isabelle/HOL (Nipkow
et al., 2002), and Lean and F* for eponymous systems (de Moura et al., 2015;
Swamy et al., 2016). In addition to resulting in mechanised proofs of major
theorems, such as the four colour theorem from graph theory,11 theorem 11. The initial proof of the theorem

was devised by Appel and Haken in
the 1970s with the help of a com-
puter (Appel and Haken, 1977), but
the program they conceived was not
proved to be correct, and verifying the
complete proof still required a certain
amount of human labour. It is only
in 2005 that Gonthier et al. published
a fully automatised proof of the four
colour theorem using the Coq theorem
prover (Gonthier, 2008).

provers have also been used to verify other programs, such as the Compcert
compiler (Leroy et al., 2016), which guarantees that the generated executable
code behaves in accordance with the formal semantics of the C language.

Verified software is of uttermost importance in application domains where
safety is critical, such as in trains, planes and nuclear power plants. To satisfy
critical constraints of real-time systems such as flight control systems, the
operations performed by the program these systems run must not only be
correct, but also complete under hard time constraints. The development of
programming paradigms fit for this task in the 1980s, such as synchronous
programming, was accompanied by the development of dedicated computer
languages such as Esterel and Lustre. Moreover, in addition to modelling
software, engineers must also model hardware, such as electronic circuitry.
This can been achieved with yet another class of computer languages, called
hardware description languages (HDLs), which include languages such as
Verilog and VHDL. Besides specifying electronics that can be simulated and
tested numerically, circuit descriptions written in HDLs are also used as
input of programs designed to lay out electronic components and wires that

13

https://www.netlib.org/blas/
https://www.netlib.org/lapack/
https://www.sagemath.org/
https://numpy.org/

a. JupyterLab.

b. CoqIDE. c. TkGate.

d. Vega Editor.

Figure 2.2. Example uses of computer languages for addressing engineering and scientific problems. (a) User interface of
JupyterLab (16), a notebook environment. Cells containing text and mathematical formulae, written in Markdown and
LATEX, respectively, can be interwoven with cells of code written in languages such as Python or Julia that can be executed to
display their output below the cell. (b) User interface of CoqIDE (17), a system to write and prove mathematical theorems
using the Gallina language of the Coq proof assistant. (c) User interface of TkGate (18), a graphical system to draw and
simulate electronic circuits specified according to a subset of the Verilog language, which can also be edited as text. (d) User
interface of the Vega Editor (19), an online code editor to specify and render data visualisations using Vega (Satyanarayan
et al., 2016) or Vega Lite (Satyanarayan et al., 2017), two computer languages based on JSON.

https://jupyter.org
https://coq.inria.fr/refman/practical-tools/coqide.html
https://bnoordhuis.github.io/tkgate/
https://vega.github.io/editor

15

connect them on buffers and printed circuit boards—a task that has become
unfeasible by humans for complex circuits such as modern microprocessors,
which contain billions of transistors.

Furthermore, computers also play a central role in science and engineering
to help practitioners work with ever-growing amounts of data. The ability
to work with data—from collecting it to analysing and visualising it—has
become one of the most demanded skill on the job market in the past decade,
and is not expected to plateau anytime soon.12 To support these needs, various 12. The Bureau of Labor Statistics of

the USA indicates that the number of
data scientists employed in the USA is
expected to grow by 36% between 2021
and 2031 (24).

computer languages are being used and conceived. This includes general-
purpose languages such as Python, often with the help of dedicated libraries
such as pandas (25) and Matplotlib (26); specialised-languages such as R,
purposely designed for statistical analysis; as well as other languages, such
as JSON for visualising data with Vega (Satyanarayan et al., 2016). It also
includes query languages, designed to collect and sometimes process data,
such as SQL for relational databases, GraphQL for web APIs and SPARQL
for semantic web graphs.

2.2.3 writing documents

In addition to processing data, computer languages can also be used to create
data. Document description languages, in particular, are computer languages
designed for creating digital documents by the means of a specialised lan-
guage. Initially, these languages were designed to typeset documents to be
printed. Early examples of such languages include the markup language used
by the RUNOFF typesetting program, published in 1964, which later inspired
troff (32) and groff (33), as well as Scribe (Reid, 1980), TEX (Knuth, 1984b)
and LATEX (Lamport, 1994), which were all developed in the late 1970s and
early 1980s. Despite being about forty years old, LATEX remains vastly used to-
day for writing academic and technical documents, as reported by Knauff and
Nejasmic (2014) and illustrated by the millions of users reported by Overleaf,
an online LATEX editor, in 2021 (Reis et al., 2021).

Other document description languages are primarily designed for digi-
tal documents. This includes HTML, a language used to describe the tree
structure of webpages, which is often complemented by CSS for styling these
documents, as well as languages with less “intrusive” syntax than HTML
tags, such as Markdown, reStructuredText (reST) and AsciiDoc, which are
commonly used to provide basic formatting to participants of online plat-
forms and messaging applications and programmers writing documentation
comments in other languages.13 Document description languages can also be 13. For example, PEP 287 (34) speci-

fies that reST is the default language for
documentation comments in Python,
and Rust’s official documentation (35)
states that documentation comments
are interpreted as Markdown.

specifically designed for creating interactive digital documents. For example,
Idyll (Conlen and Heer, 2018) extends Markdown’s syntax to let writers insert
widgets that depend on variables that can be controlled by the reader (such
as buttons and sliders), and HeartDown (Li et al., 2022) and Nota (36) let
users write academic articles that include interactive explanations of symbols
and interactive components, without requiring post-hoc annotations using
systems such as ScholarPhi (Head et al., 2021) and Chameleon (Masson et al.,
2020).

Certain computer languages have been designed to describe documents
that mix markup and programming languages. The idea of weaving text and

15

https://www.bls.gov/ooh/math/data-scientists.htm
https://www.bls.gov/ooh/math/data-scientists.htm
https://pandas.pydata.org/
https://matplotlib.org/
https://troff.org/
https://www.gnu.org/software/groff/
https://peps.python.org/pep-0287/
https://doc.rust-lang.org/rust-by-example/meta/doc.html
https://willcrichton.net/nota/

a. Overleaf.

b. Frescobaldi. c. FFL.

d. Edotor.

Figure 2.3. Example uses of computer languages for authoring digital documents. (a) User interface of Overleaf (27), an
collaborative online code editor for writing LATEX documents that displays both the code (left) and the PDF generated by
compiling it (right). (b) User interface of Frescobaldi (28), a code editor for LilyPond (29), a language for describing music
sheets. The music sheet displayed on the right corresponds to the LilyPond code shown on the left. (c) Example use of FFL (Wu
et al., 2023), a language for styling mathematical formulae written in LATEX inspired by CSS. The FFL code shown at the top
specifies rules for multiple patterns that, when applied to a document written in Markdown with LATEX, outputs a document
in which matching patterns have been formatted, as in the example shown at the bottom. (d) User interface of Edotor (30),
an online code editor for Dot, a language for describing graphs that shall be rendered as diagrams by Graphviz (31).

https://www.overleaf.com
https://www.frescobaldi.org/
http://lilypond.org/
https://edotor.net/
https://graphviz.org/

17

code dates at least back to Knuth’s concept of literate programming (Knuth,
1984a), an approach to programming in which a programmer alternates be-
tween writing code in a programming language and explaining the code
using plain text—so that by using the right programs, the document can be
processed to generate either code or documentation. This idea is at the root
of systems such as Jupyter notebooks (16), Observables (37) and Code-
strates (Rädle et al., 2017), which let users create documents by mixing cells
made of either text, code, or the output of the code’s execution, using lan-
guages such as Markdown, Python and JavaScript. It is also embodied in
Catala (Merigoux et al., 2021), a language designed for writing legislative
texts that contain parts that must eventually be transformed into a computer
program (such as tax calculations), whose compiler verifies and automates
the translation of such parts into executable code.

Furthermore, some document description languages are designed to de-
scribe (fragments of) documents that do not represent text but other sort
of information, such as vector graphics, diagrams, and music. Some com-
puter languages are specifically designed to describe images, such as SVG
and PostScript (38) for general-purpose vector graphics, Metafont (39)
for describing font glyphs, and TikZ (40) for drawing images from within
LATEX documents. Similarly, DOT, Mermaid (41) and Snapdown (Whatley
et al., 2021) were designed to describe graphs and diagrams. Regarding music,
LilyPond (29) and Tabdown (42) are respectively used to describe music
scores and guitar tabs, whereas Alda (43) is rather meant to be interpreted
by the computer to play the notes written by its user.

2.2.4 teaching computer science

Languages play a dually important role in teaching computer science, as they
are both the object that is being taught to students and the communication
medium used to explain that object to them. As the interest of the general
public for programming, the availability of personal computers and the global
spread of the internet grew, more and more initiatives to introduce children
to programming were developed. This movement is highlighted by programs
such as the Hour of Code (44), which support parents and educators willing
to introduce their children and students to programming, as well as nation-
wide stands and investments, such as the Computer Science for All initiative
in the USA in 2016 (45) and the introduction of computer science and pro-
gramming lessons in French high-schools in 2019.14 To achieve this goal, 14. Legal texts introducing the subject

in the penultimate (46) and the fi-
nal (47) years of high-school even
specify that Python is the official lan-
guage that must be taught to students.

different sorts of computer languages are used. This includes languages spe-
cially designed for beginners and education—such as mini-languages, which
are languages designed to be simple on purpose, and sub-languages, which are
restricted versions of more complex languages (Gilsing et al., 2022)—as well
as general-purpose languages, sometimes included in programming systems
specifically designed for education.

Early languages designed to introduce the general public to programming
date back to the 1960s. The idea and first dialect of the BASIC language’s
family15 were invented by Kemeny and Kurtz in 1964 as an attempt to make 15. The acronym these languages are

named after stands for Beginner’s All-
purpose Symbolic Instruction Code.

computing—and therefore, at that time, programming—more accessible
to non-scientific students (Kurtz, 1978). BASIC eventually became widely

17

https://jupyter.org/
https://observablehq.com/
https://www.adobe.com/products/postscript.html
https://ctan.org/pkg/metafont
https://tikz.dev/
https://mermaid.js.org/
http://lilypond.org/
https://github.com/ultimate-guitar/Tabdown
https://alda.io/
https://hourofcode.com/
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all/
https://www.education.gouv.fr/bo/19/Special1/MENE1901633A.htm
https://www.education.gouv.fr/bo/19/Special8/MENE1921247A.htm
https://www.education.gouv.fr/bo/19/Special8/MENE1921247A.htm

18

successful and available on many more systems than the computer and Dart-
mouth Time-Sharing System (DTSS) it was specifically designed for at its
inception, becoming a staple of personal computing in the 1970s (48). While
BASIC was designed to help non-scientists use computers, the Logo language,
created in 1967, was specifically designed to teach programming to children.16 16. The Logo Fundation reports that

several researchers introduced Logo
to elementary school students in the
1970s (49).

It is especially known for popularising the concept of Turtle graphics (Pa-
pert, 1982), a metaphor to help beginners draw graphics by controlling the
movement of a virtual turtle (Figure 2.4). Among more recent examples of
educative programming languages, Scratch (Resnick et al., 2009) may be
the most successful one. Initially developed in Squeak, it was eventually
redesigned as a web application and became one of the main system for teach-
ing programming to children over the years, reaching 50 million users and
hundreds of millions of projects in 2022 (50).

a. The robot turtle.

b. The virtual turtle.

Figure 2.4. Logo’s turtle was initially
a physical turtle robot controlled by
a computer; but it eventually became
a virtual metaphor used for drawing.
The images are reproduced from the
Logo Foundation’s website (51).

While educative programming languages are undoubtedly successful, they
often remain educative tools which do not let their users harness the full
power of the skills they learn by using them. For this reason, various initiatives
have been taken to help novices learn and use computer languages that were
not designed for education. As an example, the Alice (Cooper, 2010) and
Greenfoot (Kölling, 2010) systems let their users manipulate entities in virtual
worlds just as in Scratch; but unlike the latter, users must directly program in
Java and learn some of the language’s concepts. This deliberate design choice
reflects the different age groups targeted by these systems, as discussed by
their authors: “CS1/pre-CS1 for Alice, 8-16 years old for Scratch, and 14+ years
for Greenfoot” (Utting et al., 2010, §2).

To help users transition from structured programming systems such as
Scratch to various programming languages designed to be edited as text,
hybrid programming environments that combine block and text editing
have been demonstrated in prototypes such as PencilCode (Bau et al., 2015),
Pencil.cc (Weintrop and Wilensky, 2017) and Tiled Grace (Homer and Noble,
2017). Accordingly, the Blockly framework (52), which helps creating block
editors for web applications, has been designed to support code generation in
various general-purpose languages, such as Python and JavaScript. Another
possible direction is to avoid the need of transitioning altogether. Gradual
programming languages, such as Hedy (Hermans, 2020), include multiple
levels, each with their own features and grammar, so that users can decide
how much of the language they want to use depending on their expertise.
This novel approach prevents learners from being overwhelmed with too
many features from the start, while progressively learning a fully-fledged
programming language (a subset of Python, in the case of Hedy).

2.2.5 creating art and design work

Computers have been used for creative purposes since the early 1950s. In 1952,
Christopher Strachey created a program at the source of the Love letters art
piece: computer-generated love letters written by picking words in a database
at random and printed on a teleprinter (Dreher, 2020, ch. 3). In the same
decade, an unknown IBM engineer is reported to have digitalised and inserted
pin-up images in a program ran by a military computer (57). The 1960s,
however, mark the beginning of widespread art creation using computers.

18

https://time.com/69316/basic/
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://www.scratchfoundation.org/annualreport
https://www.scratchfoundation.org/annualreport
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://developers.google.com/blockly
https://www.theatlantic.com/technology/archive/2013/01/the-never-before-told-story-of-the-worlds-first-computer-art-its-a-sexy-dame/267439/
https://www.theatlantic.com/technology/archive/2013/01/the-never-before-told-story-of-the-worlds-first-computer-art-its-a-sexy-dame/267439/

a. Algorave party. b. Orca.

c. Shadertoy.

d. The Genetic Stair. e. Code Poetry.

Figure 2.5. Example uses of computer languages for creating art and design work. (a) An algorave party held in Lorient,
France, on October 13th, 2022. The projected code is written using Sardine (Forment and Armitage, 2023), a musical live
coding framework for Python. The photography was taken by Guillaume Kerjean and is reproduced from Forment and
Armitage (2023, fig. 1). (b) User interface of Orca (53), a live coding environment featuring a computer language designed for
creating sequencers, in which each letter corresponds to a different operation. (c) User interface of Shadertoy (54), an online
community for sharing shaders written in GLSL that can be edited and rendered in real time using a text editor embedded
in the webpage. The image shows the expansive reaction-diffusion shader, which was published on Shadertoy (55) by Flexi
on January 6th, 2016. (d) A stair in a renovated apartment in New York, USA. The steel pipe structure was created by the
architects with the help of several algorithmic techniques—including finite-element analysis and a genetic algorithm—that
were implemented using the RhinoScript and VBScript languages (Jabi, 2013, p. 80). The photography was taken by Ty Cole
and is reproduced from Jabi (2013, p. 72). (e) The submarine poem (56) from the Code Poetry book. The poem (left) is
written in the J language and can be executed to display an animation (whose one frame is printed on the right).

https://hundredrabbits.itch.io/orca
https://www.shadertoy.com/
https://www.shadertoy.com/view/4dcGW2
https://code-poetry.com/submarine

20

Dreher (2020) and Dietrich (1986) report that the first art exhibition dedicated
to computer-related art pieces were organised in the 1960s, including music,
pictures and sculptures. At the time, artists were constrained to either use one
of the few general-purpose programming languages available at the time, such
as ALGOL and Fortran, or languages specialised for, e.g., drawing graphics,
which were often specific to a particular computer model, such as the GRASS
language, developed in the 1970s to “bring the immense complexity of a Digital
Equipment Corporation PDP-11/45 and a Vector General 3DR Display system
within the grasp of artists and educators” (DeFanti, 1980, p. 96).

Computers remained fruitfully used for artistic creation in the last 50 years,
and have now become a standard tool used by various sorts of artists. In
addition to the many general-purpose languages that now include modules
for drawing on the screen or playing music, special languages have been
developed for creative users who were not trained as computer scientists,
such as Max/MSP, Pure Data and Processing. Albeit less accessible to non-
experts, shader languages such as GLSL are also becoming more and more
pregnant in creative communities such as Shadertoy (54), an online platform
on which artist-programmers share animations designed to be ran exclusively
on GPUs. Furthermore, the growing interest for live coding is now challenging
the role of computer languages. Live coding (Rein et al., 2018) is a type of
performance art in which the artist creates the art piece by coding it in real
time in front of the audience, such as during algorave parties and dance
performances (Françoise et al., 2022). Since artists often project their screen
to show the program they are writing, in accordance with the TOPLAP
manifesto,17 the computer languages used in the process transition from 17. TOPLAP (58) is an organisation

centred around live coding founded
in 2004. The same year, they pub-
lished a draft that describes the key
components of a live coding perfor-
mance, known as the TOPLAP man-
ifesto (Blackwell et al., 2022, ch. 2),
which includes statements such as
“show us your screen” and “code should
be seen as well as heard”.

being hidden tools to being a part of the art pieces they help create. Again,
languages used for that purpose can be split into two categories: those based
on general-purpose languages, such as Haskell for Tidal (McLean, 2014),
JavaScript for Gibber (Roberts and Kuchera-Morin, 2012) and Python for
Sardine (Forment and Armitage, 2023), and those created from scratch for
the task, such as sclang, the language of the SuperCollider audio synthesis
system (McCartney, 2002).

Besides artists, designers now commonly use computer-aided design (CAD)
software to craft all sorts of products—from a small object to 3D print to
an entire building—by modelling them digitally. Among other things, CAD
software enable parametric design, a design practice centred around adjust-
ing a number of parameters that control the aspect of a digital model. As an
example, parametric design has been used by architects to explore spaces of
configuration—a method sometimes called combinatorial architecture (Tiaz-
zoldi, 2016)—both manually and with the help of algorithmic methods, even-
tually resulting in the creation of architectural artefacts in the real world. In
his taxonomy of parameters, Jabi (2013, pp. 196–197) suggests that even though
parameters most commonly include geometric and topological quantities,
such as the size of an element or the number of times it is duplicated, other
sorts of parameters may be of interest, from the properties of the material to
environmental factors such as the amount of sunlight or the quality of a Wi-Fi
signal. While most of the process can usually be performed by interacting
with a graphical user interface, e.g., by manipulating sliders or parametrised
elements of a 3D model (Michel and Boubekeur, 2021), several pieces of

20

https://www.shadertoy.com/
https://toplap.org/

21

Approach Main conceptual tools Concerns

Humanities Semiotic and functional models Conceptualisation, Communication
Psychology Cognitive models, notations Comprehension, Behaviour, Usability
Formal languages Automata, Grammars Computability, Complexity
Programming Grammars, semantics Implementation, Verification, Efficiency
Artificial intelligence Probabilistic models, machine learning Automation, Synthesis

Table 2.2. Summary of the different approaches for studying computer languages presented in this section, including the type
of conceptual tools used to represent and work with languages and the main concerns of each approach.

CAD software can also execute scripts written in computer languages, as
demonstrated by the Python APIs of Blender (59) and Rhino (60), and
software-specific languages, such as Autodesk’s Maya Embedded Language
(MEL) in Maya and MAXScript in 3ds Max.

2.3 how to study computer languages?

Just like natural languages can be studied from various perspectives, ranging
from poetry to neuroscience, studies of computer languages can look very
different from one field to another. Because of their dual nature, which makes
them fit for humans and computers alike, computer languages have mostly
been studied from either a human-centric point of view, e.g., in psychology,
or from a computer-centric point of view, e.g., in programming. Yet, studying
computer languages from a human-computer interaction perspective requires
a more holistic approach, able to capture the needs, abilities and limitations of
both humans and computers. Unfortunately, no such theory currently exists.

In this section, I present a panel of theories and concepts that have been
used to reason about computer languages, with the goal of identifying their
strengths and limitations to inspire work on a new theory of computer lan-
guages. I first review how computer languages have been studied in five dif-
ferent research fields in the past—humanities, psychology, formal languages,
programming and artificial intelligence—whose main conceptual tools and
concerns are summarised in Table 2.2. For obvious reasons, this work should
not be seen as an exhaustive coverage of the literature on computer languages,
but rather as a review of both seminal and recent pieces of work on topics
at the intersection between languages and computers, mostly ranging from
the early 20th century to nowadays. I then address the particular situation
human-computer interaction lies in. More specifically, I show that HCI lacks
a theory of interaction for reasoning about and designing our interaction
with computer languages beyond well-known but limiting views, such as
the classic textual/visual distinction often found in the literature. I conclude
by suggesting some directions to work towards a more holistic theory of
interaction with computer languages.

21

https://docs.blender.org/api/current/
https://developer.rhino3d.com/guides/rhinopython/

22

a. Ratdolt’s edition (1482). b. Byrne’s edition (1847).

Figure 2.6. Extracts from two different editions of Euclid’s Elements: (a) the first edition ever printed (61), published by
Erhardus Ratdolt in 1482, and (b) a more modern and colourful edition, published by Olivier Byrne in 1847. The images are
respectively reproduced from the Folger Shakespeare Library (62) and the Internet Archive (63).

2.3.1 human-centric perspectives

Humanities

The distinction between matter and form is a longstanding topic in philoso-
phy. Early distinctions include those of ancient Greek philosophers, such as
Plato and Aristotle. In his theory of Forms, Plato distinguishes the material
world, made of alterable matter, from the real world, made of unalterable
forms—permanent concepts we can only refer to (Rickless, 2020). The former
represents the world we experience—imperfect and constantly changing—
whereas the latter is a static, perfect world of concepts. Aristotle proposes
a similar distinction in his hylomorphic view of the world in which, unlike
in Plato’s view, forms do not exist independently of matter, but only in con-
junction with it (Ainsworth, 2020). These views of the world recognise the
referential power of language, which gives humans the ability to manipulate
and communicate on forms from the physical world we live in. It was used in
early mathematical treaties such as Euclid’s Elements, which describes and
manipulates “ideal” mathematical concepts such as points, lines and regular
shapes with the help of language (to refer to them) and drawings (to eschew
them), as shown in Figure 2.6.

At the end of the 19th century, the development of analytical philosophy
by philosophers such as Frege, Russel and Wittgenstein progressively put
language and logic at the centre of the philosophical method—a period that
was retrospectively described as the linguistic turn by Rorty (2007). This
increased focus on language as an object of study, rather than merely as a
medium, as in philology, led to the foundation of modern theories of signs:
the semiotics of Charles Sanders Peirce, issued from his work on logic in the
late 19th century (Peirce, 1976), and the linguistics of Ferdinand de Saussure,
which he founded in his Course in General Linguistics in 1916 (Saussure, 1916).
Pierce proposed to model a semiotic system with a triadic model, in which a

22

https://www.maa.org/press/periodicals/convergence/mathematical-treasure-ratdolts-euclids-elements
https://luna.folger.edu/luna/servlet/s/e7b5y0
https://archive.org/details/firstsixbooksofe00byrn/page/n33/mode/2up

23

symbol (the sign) only refers to a concept (the object) because the interpreter
understands that symbol in a peculiar way (the interpretant sign):

A sign is something, A, which brings something, B, its interpretant sign,
determined or created by it, into the same sort of correspondence (or a
lower implied sort) with something, C, its object, as that in which itself
stands to C.

— The New Elements of Mathematics (Peirce, 1976)

Saussure, on the other hand, proposed a simpler approach with a dyadic
model, in which every sign is a two-sided object with a symbol (the signifier)
that refers to a concept (the signified) through a relationship that he considers
to be arbitrary:

We propose to retain the word sign to designate the total, and to replace
concept and acoustic image by signified and signifier, respectively. The
latter terms have the benefit of highlighting the opposition that separates
them, either from each other, or from the total they form together. As for
sign, we settle with it because we do not know what to replace it with
since the common language does not suggest any other.

— Course in General Linguistics (Saussure, 1916)

In his Fundations of the theory of signs, Morris (1938) proposes a model
compatible with this early work. He decomposes semiosis, “the process in
which something functions as a sign” (§2), into four components: the element
that acts as a sign (the sign vehicle), what it refers to (the designatum), the
person who interprets it (the interpreter), and the interpretation itself (the
interpretant). In addition, Morris proposes that every sign system can be
studied through three different lenses: the syntactic lens, which concerns the
relations between the signs themselves; the semantic lens, which concerns the
relations between the signs and the objects they refer to; and the pragmatic
lens, which concerns the relations between the signs and those who interpret
them.

Overall, these semiotic models are in line with Plato and Aristotle’s distinc-
tions between forms and matter.18 They all highlight that semiotic systems 18. Their work also echoes work in

other disciplines, such as Freud’s work
on the psychoanalytic theory at around
the same time, in which the role of the
psychoanalyst is to decode the uncon-
scious meaning (signifieds) of the pa-
tient’s language (signifiers).

form a bridge between something in the material world (sign, signifier, sign
vehicle) and something in the ideal world (object, signified, designatum)
through a relationship that is more or less arbitrary (interpretant), although
dependent on the person interpreting it (interpreter).19

19. The amount and importance of
inter-personal variance in that inter-
pretation process remains an active sci-
entific debate, fueled by theories such
as the Sapir-Whorf hypothesis. How-
ever, I leave its discussion out of the
scope of this thesis for the sake of
brevity.

Semiotic theories have previously been used to analyse and design our
interaction with computer systems by treating them as sign systems (Nadin,
1988; Andersen, 1992; de Souza, 1993). A number of authors also specifically
applied these theories to study computer languages. For example, while
only the notions of syntax and semantics have become common knowledge
amongst programming language users, Zemanek (1966) and Connolly and
Cooke (2004) both argue that all three aspects of semiotics identified by
Morris, including pragmatics, apply to programming languages. Similarly,
Tanaka-Ishii (2006) explicitly relates Pierce and Saussure’s models to object-
oriented and functional programming paradigms.

23

24

CONTEXT
referential function

MESSAGE
poetic function

ADDRESSER
emotive function

ADDRESSEE
conative function

CONTACT
phatic function

CODE
metalingual function

Component Function Purpose

Addresser Emotive Expressing feelings.
Addressee Conative Acting on others.
Message Poetic Valuing the form.
Context Referential Referring to the world.
Contact Phatic Supporting the communication.
Code Metalingual Describing the language itself.

Figure 2.7. Scheme of Jakobson’s model of language. Each rectangle represents a component of the model, arranged according
to Jakobson’s original scheme (Jakobson, 1960). The table on the side describes the meaning of each of the six functions.

The applicability of theories and models initially devised for languages
other than computer languages extends beyond the form they take. Following
the structuralist approach to language initiated in the early 20th century,
Jakobson (1960) introduced another model in the 1960s, this time focusing
on the functions of language rather than its structures and notations. Jakobson
defines six complementary functions of language, each of which is represented
by a component of the model (Figure 2.7). Although it was designed for
natural languages, Jakobson’s model can be applied to computer languages
too, though some functions appear to be more prevalent than others. For
instance, all programming languages are, by definition, used to act on the
computer by making it execute a series of instructions (conative function);
and it is common to talk about the meta-programming capabilities of a
language (metalingual function), as illustrated by, e.g., Lisp macros and C++
templates (Lilis and Savidis, 2019).

Computer languages can also be used for less obvious functions. Their use
in works of art—as in what Sondheim calls a codework (Memmott, 2011)—
demonstrate their poetic function, as illustrated by the code poetry project (64),
which uses programming languages as poetic media in which both the code
itself and its execution are part of the art piece. Furthermore, comments
in computer languages may be considered to serve an emotive function in
situations where programmers use them to, e.g., make jokes or express their
frustration. Such comments can be found in online threads of funny com-
ments spotted or written by programmers, as on StackOverflow (65), as well
as in code bases, as in Quake III Arena’s popular implementation (66) of
the fast inverse square root function, in which two lines performing hard-to-
understand bitwise operations are respectively commented with “evil floating
point bit level hacking” and “what the fuck?”.

Psychology

Advances in the field of cognitive psychology during the second half of the
20th century, such as the development of models of short- and long-term
memory by Miller (1956), Atkinson and Shiffrin (1968) and Baddeley and
Hitch (1974), were eventually used to apply findings in psychology to pro-
gramming and computer languages, as reported by Blackwell et al. (2019).
In his article on the semiotics of programming languages published in 1966,
Zemanek states that “reading, learning and teaching of programming languages
are psychological problems on which the success of a programming language

24

https://code-poetry.com/
https://stackoverflow.com/q/184618
https://archive.softwareheritage.org/browse/content/sha1_git:bb0faf6919fc60636b2696f32ec9b3c2adb247fe/#L549-L572

25

Dimension Meaning

Viscosity How hard is it to make a meaningful change?
Consistency How much can be inferred from what is already known?
Diffuseness How many different symbols are needed?

Premature commitment How constrained is the order in which to do things?
Hidden dependencies How much does modifying a single entity affects the rest of the system?

Hard mental operations How demanding is the notation in terms of cognitive resources?
Role-expressiveness How hard is it to understand the role of an entity in the system?

Abstraction * How much redefinition of the ordinary notation is permitted?
Visibility * How easily and immediately accessible is the information?

Error-proneness * How easy is it to make notational errors?
Secondary notation * How much information can be expressed independently from the syntax?

Closeness of mapping * How close to the application domain is the notation?
Progressive evaluation * How much of incomplete notations can be evaluated preemptively?

Provisionality ** How much of an exploratory process can be recorded?

Table 2.3. Description of the dimensions of the cognitive dimensions of notations framework. The dimensions are sourced
from three articles: those initially present in Green’s original article from 1989 (Green, 1989) carry no mark; those which
appeared in Green and Petre’s article from 1996 (Green and Petre, 1996) are marked with an asterisk (*); and those which
appeared in Blackwell et al.’s article from 2001 (Blackwell et al., 2001) are marked with two asterisks (**).

may depend much more than on all its technical properties.” (Zemanek, 1966,
§4). Accordingly, in the following decade, Sime et al. (1973) compared two
type of conditionals for a programming language, Brooks (1977) proposed to
model programming activities with short- and long-term memory structures
complemented with symbolic rules for advancing the model’s execution,20 20. Brooks’ model is reminiscent

of later cognitive models such as
ACT-R—both of which were inspired
by Newell’s work (1972; 1994).

and Shneiderman and Mayer (1979) highlighted the difference between syn-
tactic and semantic knowledge in programming. This early interest for the
psychological aspect of programming eventually led to dedicated groups of in-
terest at the frontier between human-computer interaction and programming,
such as the Psychology of Programming Interest Group (67), funded in 1987.

The growing interest for studying programming languages from a psycho-
logical perspective at that time led to studies of the impact of their notations.
In the 1980s, individual properties such as indentation (Miara et al., 1983)
and colours (Rambally, 1986) were shown to impact program comprehension,
and so were short but meaningful lines of code—beacons, in Wiedenbeck’s
vocabulary (Wiedenbeck, 1986). Following that line of work,21 Green (1989) 21. According to Green and Petre (1996,

§2), the framework is founded on the
study of the activity of programming,
from the point of view of psychology
and human-computer interaction.

introduced a more holistic framework called the cognitive dimensions of nota-
tions in 1989, in which he defines several dimensions that each characterise
an independent aspect of a notation—a term Blackwell et al. later defined as
“marks made on some medium” (Blackwell et al., 2001, §3). The dimensions of
the framework are summarised in Table 2.3.

This framework is particularly adapted for “written-down, symbol-based sys-
tems” (Green, 1989, §3), such as various sorts of computer languages, though
Green also mentions that it “also applies to interactive languages” (§3) that
describe sequences of operations that characterise an interaction.22 While the 22. For a more extended analysis of the

language metaphor to characterise in-
teraction, see, e.g., Nielsen (1986) and
Baudel (1995, ch. 7).

dimensions themselves are focused on the notation, the overall framework
is more general and posits that every notation is part of a larger notational
system. Green (1989) defines that system as a combination of a notation and
an environment (§2), i.e., the context the notation is used, perceived and
modified in—therefore including the device the notation is displayed on and

25

https://www.ppig.org/

26

the interaction techniques available to the users of the language. Blackwell
et al. (2001) further argue that multiple notations can cohabit within a single
system, as illustrated by different graphical programs running in different
windows at the same time, each with their own notation.

While Green’s framework has been largely adopted to analyse notations
of computer languages, Conversy (2014) reports on three alternative. The
first alternative dates back to the first half of the 20th century, when Gestalt
psychologists proposed several principles, known as Gestalt principles, which
characterise how humans interpret perceptual cues (Rock and Palmer, 1990).
These principles notably describe how separate objects can be related to each
other based on their proximity, their similarity, their alignment, etc, to form
new entities that are more than the parts that compose them. The second
alternative was proposed in the 1960s by Bertin in his Semiology of Graph-
ics (Bertin, 1967), in which he isolated seven visual variables that describe
independent dimensions that the human visual perception system can dis-
tinguish: position, shape, size, colour, brightness, texture and orientation.
The last alternative comes from Moody (2009b), with the goal of analysing
diagrammatic programming languages. In contrast with the rather abstract
dimensions of Green’s cognitive dimensions, Moody proposed to build on
Gestalt principles and Bertin’s semiology to rather focus on the visual aspects
of notations, leading to the physics of notations framework. The framework
includes nine vision-oriented principles to design and evaluate notations,
such as perceptual discriminability (different symbols should be visually dis-
tinguishable), graphics economy (the visual noise should be minimised), se-
mantic transparency (the representation should suggest the meaning) and
dual coding (text and graphics should be complementary).

2.3.2 computer-centric perspectives

Formal languages

The 20th century saw the rise of mathematical models of language, which
are tightly coupled with the development of computer science. In his semi-
nal work on the theory of computation in the 1930s, Turing introduced the
concept of Turing machines, theoretical constructs that operate on a finite
alphabet of symbols that can be read and written on an infinite tape by a head
controlled by an automaton. The movement of the head and the action it
should take (reading or writing a symbol) is controlled by a graph of states and
transitions between states that are conditioned by the symbol currently under
the tape’s head. Turing introduced this formalism with the goal of defining
a theoretical framework to mechanically process languages, in such a way
that each machine encodes an algorithm that decides whether a sequence of
symbols written on the tape—a word—is part of the machine’s language or
not. Rather dually, lambda calculus, the other major model in the theory of
computation, can itself be considered a formal language. Developed at around
the same time by Church, it was later shown to be equally expressive as a
Turing machine and used as a foundation for paradigms such as functional
programming and languages such as Haskell.

26

27

In the 1950s, Chomsky introduced the concept of formal grammar, another
formalism for describing languages. A formal grammar is made of terminal
symbols, non-terminal symbols, and production rules that describe how non-
terminal symbols can be rewritten as sequences of symbols. According to
this theory, specifying a grammar and deciding on a special non-terminal
symbol—called an axiom—fully describes a language, whose all sentences
can be generated by applying the right sequence of production rules (starting
from the axiom). Chomsky further showed that grammars can be categorised
by constraining the type of production rules they can include, resulting in
a hierarchy of grammars known as the Chomsky’s hierarchy, in which more
general types of grammar include less general types of grammar (Figure 2.8).
Incidently, this hierarchy also categorises the languages that can be generated
by these different classes of grammars.

Recursively enumerable languages

Context-sensitive languages

Context-free languages

Regular languages

Type-0 grammars

Type-1 grammars

Type-2 grammars

Type-3 grammars

Figure 2.8. Classes of languages that
can be generated by the four types of
grammars described in Chomsky’s hi-
erarchy (Chomsky, 1959). The inclu-
sion of a rectangle into another repre-
sents the fact that more general classes
of languages also include less general
classes.

Automata-based models such as Turing machines and formal grammars
are two kinds of formal models of languages that are duals of each other.
The former describes a language intensionally, by specifying how to decide
whether a given word belongs to that language or not. Conversely, the latter
does it extensionally, by specifying how to generate every word that is part
of that language. That correspondence between two definitions of formal
languages is, in fact, mathematically proved: Chomsky (1959) showed that the
set of languages that can be recognised by a Turing machine is exactly the set
of language that can generated by a type-0 grammar (recursively enumerable
languages). This also holds for more restricted classes of languages, such
as context-free languages, which are generated by type-2 grammars and
recognised by pushdown automata (in which the tape is only a stack), and
regular languages, which are generated by type-3 grammars and recognised
by finite-state automata (in which there is no tape).

The idea that real computers, which are no more capable than Turing
machines, can only have a limited understanding of the computer languages
they manipulate, has consequences on the design of computer languages
and tools to work with them. In particular, among all desirable properties
for computer languages, some cannot be computed at all; and among all
computable properties, some are harder to compute than others.

The first observation is based on the notion of computability, i.e., what can
be computed by any computer at all, enriched by fundamental results of what
can and cannot be computed, such as Rice’s theorem. As an example, the fact
that it is not possible to create a Turing-complete programming language
in which all potential runtime errors can be detected before the program
is executed,23 motivates choices such as including an exception mechanism 23. For example, statically determining

that a program written in C is free of
any out-of-bound array indexing oper-
ation is known to be incomputable.

(at the language level) and adding runtime checks (at the library level) to
mitigate crashes, as well as the development of appropriate debugging tools.

The second observation is based on the notion of complexity, which classi-
fies algorithmic problems in complexity classes, akin to Chomsky’s four types
of grammars, which, informally speaking, determine how much time and/or
memory is needed to solve a particular problem. This affects design choices
such as the syntax of computer languages, which may or may not be parsed by
an efficient parsing algorithm depending on the grammar of the language. For
example, the grammars of many programming languages have been designed
to be compatible with efficient algorithms that can only parse certain classes

27

28

of languages, such as LL(n) and LR(n) parsing algorithms, which require that
at most n symbols/tokens need to be looked ahead to decide which rule to
use. This explains why many languages prefix different sorts of constructs
with distinct keywords or characters, as a means to diminish the ambiguity
of the grammar, and therefore the parsing time.

Programming

Languages play a key role in programming, as the main way to let a human pro-
grammer specify what a computer should do. However, unlike formal models
of language that are designed for mathematical reasoning only, programming
requires operational models of languages. As programming languages evolved,
they progressively became more and more distant from machine code, both
in terms of syntactic features (conditions, loops, functions, classes, etc.) and
semantic expressivity (richer primitive types, collection types, polymorphic
functions, etc.) Accordingly, the major concern of programming regarding
computer languages are the design process, which decides what goes in a lan-
guage and how, and the translation process, which turns code written in that
language in the only dialect that can be processed by a computer—machine
code. To accommodate this evolution, the translation process performed by
compilers and interpreters evolved as well, constrained by theoretical models
of computing on one side, and practical engineering considerations on the
other side.

The first step of the translation process is to represent the code in a form
that is convenient to be processed by a computer. This is usually performed
by assembling symbols—or groups of symbols called tokens if the language
was pre-processed by a lexical analyser, or lexer—to form a syntax tree.24 To 24. Syntax tree can be further classified

as concrete syntax trees (CSTs)—also
called parse trees—or abstract syntax
tree (ASTs). The former include every
node generated by the syntax, while
the latter discard certain information
and only represent higher-level syntac-
tic structures that are meaningful for
the task (Aho et al., 2006, §2.5.1). How-
ever, since the difference does not mat-
ter in the context of this thesis, I of-
ten do not distinguish between the two,
and simply refer to the general concept
of a syntax tree.

that end, the syntax of a programming language is often specified in the form
of a formal grammar, which is used as a reference to conceive the syntactic
analyser, or parser, that will generate the syntax tree, either manually or by
feeding the grammar to a parser generator.

Once the syntax tree is constructed, the next step is to enforce various
semantic properties, mostly with the help of a type system. A type represents
a piece of semantic information about a value. While types were initially used
to determine the amount of memory to allocate for a value, their purpose
evolved to also help ensure syntactically valid programs are also semantically
correct, such as by verifying that a given function is only called with the right
type and number of arguments. In order to conceive rules that effectively
verify properties of interest while making such constraints expressible in the
language, possibly with some degree of inference (to avoid specifying every
type by hand), type systems must be carefully designed. Since verifying such
properties means proving that a program verifies them, programming lan-
guages are increasingly formalised as mathematical objects and rules used to
specify the semantics of the language before turning them into type inference
and/or type checking programs. Furthermore, other theories are sometimes
used to provide additional guarantees about the behaviour of a piece of code.
For example, abstract interpretation can be used to constrain the set of val-
ues that a variable can take, allowing to prevent situations such as integer
overflow/underflow and divisions by zero.

28

29

While such theories help conceive safe programming languages, they do
come at a cost, and are not always compatible with other practical constraints,
such as the usability of the language. Memory management is a classic exam-
ple of such trade-offs: choosing a memory management approach rather than
another affects the concepts the language must build on; the primitives that
must be made available to its user; and the machine code generated at the
end of the process. Incidently, different computer languages make different
choices on this matter.

Certain languages, such as C and C++, include primitives to let the user
of the language manually allocate and free memory. This approach has been
criticised25 but remains in use today, for it tends to be simpler to imple- 25. The existence of a null pointer even

being qualified as a “billion-dollar mis-
take” by Tony Hoare (68), one of its
creators, due to the many runtime er-
rors it has caused.

ment, as it delegates the responsibility to the language’s users; can yield better
performance, as the control over memory operations is finer; and may be
required for certain tasks, as working on operating systems or embedded
electronics often requires to work directly with the computer’s memory. In
response, various other mechanisms have been developed to alleviate the
users from the burden of managing the memory by themselves. They include
semi-automatic mechanisms such as smart pointers, which must be manually
created by users but automatically destroy the object they point to when they
become out of scope if they are the last reference to that object, as well as
fully-automatic mechanisms such as garbage collectors, like those of Python
and Java’s runtimes.

To make the most of both worlds, languages with smart but complex way
of automating memory management such as Rust are now being developed.26 26. Rust has a memory management

system that tracks when to allocate
and free memory at compile time. Un-
like other approaches, it does not re-
quire the user to manually perform
these operations, nor does it induce
any runtime overhead. The system
works by including the lifetime of every
variable in their type and by constrain-
ing what can be done with a variable de-
pending on which piece of code owns
and borrows it at every computational
step, which requires Rust users to adapt
their mental models of the code to this
singular approach.

Yet, this added complexity has been shown to make Rust particularly hard to
learn (Fulton et al., 2021). As a consequence, Coblenz et al. (2022) suggest
that providing a garbage collector library (at the cost of performance) may be
a trade-off to help users learn concepts such as ownership and aliasing, even
though it precisely defeats the very purpose of Rust’s approach to memory
management.

Artificial intelligence

Artificial intelligence can be considered as a field of computer science con-
cerned with giving computers capabilities that resemble those we deem as
intelligent in animals, and more specifically in humans, such as their cognitive
functions. Among all the directions taken by this field, making computers
analyse and synthesise languages has been at the centre of artificial intelli-
gence from early on. In his seminal work on artificial intelligence published
in the early 1950s, Turing (1950) questioned whether machines can think
and devised the Turing test—that he called the Imitation Game—as a means
to test this hypothesis. This test works as follows: a human must discuss
with another entity by exchanging messages written in a natural language,
thinking the entity is another human, whereas the messages are actually read
and written by the computer taking the test. If the human does not notice
that they are not talking with another human being, the computer passes the
test; otherwise, it fails the test. According to Turing, machine intelligence
is therefore highly correlated to its capacity to understand and synthesise
sentences written in a natural language.

29

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

30

This vision started a long line of research on natural language process-
ing. The first computer program that is considered by some to have—to
some extent—passed the Turing test is the ELIZA program, conceived in
1966 (Weizenbaum, 1966). ELIZA used a set of rules to transform the hu-
man’s messages by detecting keywords and applying transformation rules
to generate an answer. It belongs to a wide category of rule-based artificial
intelligence models, in which decision rules are pre-programmed by human
experts. However, ELIZA’s “intelligence” is very questionable, as it does not
build an artificial representation of what the user says, and simply rephrases
their sentences based on predefined scripts to simulate a very generic human-
like conversation. French (2000) reports that the initial optimism towards
creating a machine able to pass the Turing test decreased from that time on,
even leading Minsky to state that “The AI problem is one of the hardest ever
undertaken by science” in 1982 (Kolata, 1982, p. 1238).

Starting from the late 1980s though, the development of machine learn-
ing models, in which decision rules and features of interest are no longer
explicitly designed by the programmer but learnt by the computer, led to
several breakthroughs in natural language processing. In 1989, LeCun et al.
(1989) showed that convolutional neural networks were significantly more
performant than other methods for automatically recognising handwritten
ZIP code digits on US mail. In the 2010s, the use of long short-term memory
cells in neural networks designed to process natural languages was shown to
drastically improve the performance of the models (Sundermeyer et al., 2015)
and ended up being rapidly used in commercial products such as Android’s
speech recognition system (69). More recently, the development of large
transformer models such as GPT-3 allowed to reach unprecedented perfor-
mance in text synthesis. The potential of the latter became especially visible
with the release of OpenAI’s ChatGPT chatbot at the end of 2022, which is
based on the GPT-3.5 model and its hundreds of billions of parameters (Dale,
2021). The impressive capacities of ChatGPT—which can as well write essays,
find bugs in code, and pass the entrance exam of law and business schools—
, and the risks and issues it raises, were echoed in statements such as the
warning letter issued by technology company executives and researchers in
the beginning of 2023 (70), as well as changes in policies, such as the 2023
update of the ACM policy on authorship, which now includes explicit rules
regarding “generative AI tools and technologies, such as ChatGPT” (71).

The use of artificial intelligence techniques to help humans work with com-
puter languages has followed a similar track. For several decades, the domi-
nant rule-based approach was used to derive programs (output in some com-
puter language) from specifications, such as logic formulas in theorem provers
and constraints in declarative languages such as SQL and Prolog (Flener,
2002). Similarly, hand-crafted heuristics have been used to infer properties
from code written in computer languages, such as code smells27 in Stench 27. The term code smell was coined by

Fowler (Fowler, 2019, ch. 3) to qual-
ify patterns of code that are likely to
cause issues in the future, and would
be better off refactored.

Blossom (Murphy-Hill and Black, 2010) and ongoing refactorings in Bene-
Factor (Ge et al., 2012). Dedicated systems and languages, such as Semgrep
and CodeQL, have even been conceived specifically for manually describing
patterns to search for in code bases.

Yet, just as for natural language processing tasks, machine learning tech-
niques have become increasingly used to analyse and synthesise computer

30

https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://www.theguardian.com/technology/2023/mar/29/elon-musk-joins-call-for-pause-in-creation-of-giant-ai-digital-minds
https://www.acm.org/publications/policies/new-acm-policy-on-authorship

31

languages. The idea to derive programs from input-output pairs rather than
specifications can be traced back at least to the work on the programming
by example (also called programming by demonstration) paradigm led by
Lieberman in the 1980s (Lieberman, 2001), which was subsequently applied
to various domains, such as learning the structure of a piece of text or a
sequence of operations. It was applied to computer languages by enabling
the conception of example-directed systems for, e.g., synthesising regular
expressions (Zhang et al., 2020) and generalising search-and-replace (Ni et al.,
2021), as well as to synthesise code to transform data in several languages, as
demonstrated in FlashFill (Gulwani, 2011) for inferring formulas in Microsoft
Excel, Wrex (Drosos et al., 2020) for cleaning data in Python, and Falx (Wang
et al., 2021) for visualising data in R. In addition, models trained from exam-
ples have also been used to synthesise computer languages from images to,
e.g., turn sketches into imperative code that draws them (Ellis et al., 2018) and
turn drawings of quantum circuits into Python code (Arawjo et al., 2022).

In the past few years, models primarily trained on natural language cor-
pora and designed to solve natural language tasks have been increasingly
adapted to work with computer languages too. For example, GitHub’s Copi-
lot (72), a tool for synthesising code in several programming languages
given a prompt written in a natural language such as English, is based on the
Codex model (Chen et al., 2021), which was created by fine-tuning GPT-3
with a corpus of code written in various programming languages. Similarly,
ChatGPT is now being used to write, explain, debug, optimise and translate
code (Perkel, 2023), even though it was not specifically designed nor trained
to solve programming-related tasks. At their core, these transformer models
are hardly specific to computer languages. Their very large parameter sets
encode a probability distribution over vectors that represent tokens (such as
words) and is used to predict the next token to synthesise given a window of
previous tokens as context; but they are ignorant of language-specific struc-
tures, such as syntactic and semantic rules, and have proved to be equally able
to synthesise other types of media, such as images (Esser et al., 2021). Yet, they
seem to currently outperform former state-of-the-art techniques to synthesise
computer languages that used to embed language-specific knowledge, such
as syntax-guided synthesis (Alur et al., 2018), at least in terms of generality.

2.3.3 human-computer interaction perspective

Computer languages have received substantial attention from HCI researchers,
as demonstrated by the large body of technical, empirical, and theoretical
contributions published in the literature. This includes creating and evaluating
a great number of systems and interaction techniques for computer languages
and programming, studying communities who use them, and reflecting on
the forms they take and possible taxonomies for classifying them. Yet, despite
the large amount of work related to computer languages in HCI, there is,
to the best of my knowledge, no theory of computer languages fit for the
interaction-centric approach of HCI. This is unlike the other fields that I
presented above, in which theories of sign systems, human perception, logic
or statistics, provide researchers with a glossary of clearly defined concepts.
As a result, research in HCI often refers to computer languages as sorts of

31

https://github.com/features/copilot
https://github.com/features/copilot

32

blurry monoliths, assuming more or less implicitly what is and what is not a
computer language, without further questioning what is it we actually interact
with when introducing, evaluating or classifying interaction techniques for
computer languages.

One example of this limitation lies in the previous approaches to distin-
guish between so-called textual and visual programming languages. Myers
(1990) proposes to distinguish between textual languages, in which symbols
can only be combined along one dimension, and visual languages, in which
more than one spatial dimension can be used. Moody (2009a) uses the same
definition, to which he adds that the difference between textual and visual
languages also lies in the fact that, according to the dual channel theory, tex-
tual and visual notations are processed by different systems in our brains. On
the contrary, McGuffin and Fuhrman (2020) do not define visual languages
according to what they look like, but rather according to how we interact
with them: as systems in which instructions are directly manipulated, instead
of being written using text input techniques. Yet, as Conversy (2014) previ-
ously demonstrated with examples, and as McLean (2011) points out, such
distinctions are unsatisfactory:

Research into visual languages is hampered by a definitional problem. In
a well-cited taxonomy of visual programming, Myers (1990, p. 2) defines
visual languages as “any system that allows the user to specify a program
in a two (or more) dimensional fashion.” Myers specifically excludes con-
ventional textual languages, because “compilers or interpreters process
them as long, one-dimensional streams.” This exclusion is highly problem-
atic however, as at base all a computer can do is process one-dimensional
streams. Further, some textual languages such as Haskell and Python do
indeed have two dimensional syntax, where vertical alignment as well
as horizontal adjacency is significant; however no-one would call either
language ‘visual’. Worse still, for the majority of visual languages, 2D
arrangement has no syntactical significance whatsoever, and is purely
secondary notation. Often graphical icons are described as visual, but
they too are discrete symbols, in other words textual.

— McLean (2011, ch. 5)

A→ A
A→ B
B→ C
C→ A
a. List notation.

A B

C
b. Diagram notation.

A
A

C

C

B

B

c. Table notation.

Figure 2.9. Three different notations
of the same graph: (a) the list of arcs
between nodes; (b) nodes connected
by arcs; and (c) the adjacency matrix
of the graph.

Following Conversy and McLean’s visions, I further argue that being rather
textual or visual—no matter which of the above definitions is used—is actually
a quality of a notation, rather than a quality of a language, and that as a
consequence, a single language can be noted using multiple notations.

Take, for example, a simple graph language inspired by the DOT language.
Let us assume that this language is primarily written and encoded as text files,
as most computer languages, and formed of three types of symbols—nodes,
arcs, and letters—and two composition rules stating that (1) each node is
labelled by a sequence of letters and (2) each arrow connects two nodes in
an asymmetric fashion. Initially, graphs described using this language would
likely be edited as sequences of characters that correspond to the encoding
of the graph in the computer’s memory, such as using a text editor. Let us
then suppose that a new editing environment for that language is released,
and allows to edit the same text files using other notations, such as a box-

32

33

and-arrow diagram or a table representing the graph’s adjacency matrix, as
illustrated in Figure 2.9. In this situation, the same file, representing the same
graph, written in the same computer language, can now be visualised and
modified using different, complementary notations. The fact that they use
one or two spatial dimensions, are processed by different parts of the brain,
and controlled using keyboard inputs or direct manipulations, does not affect
the underlying concepts that form the graph, the specifications of the symbols
and rules, nor the way it is encoded in the computer’s memory.28 This thought 28. The new editor might of course

rely on data structures that are differ-
ent from the sequence of characters en-
coded in the computer’s memory to cre-
ate the alternative notations; but they
would have to be derived from the en-
coding of the graph, and mapped back
to it, for it to be a new editor for an
existing language.

experiment exemplifies why merely opposing textual and visual languages or
notation carries little useful information. In such taxonomies, any language
could be one, the other or both depending on the notation(s) provided by the
environment it is edited in; leaving unclear what else constitutes a computer
language besides its notation.

Furthermore, the notion of notation alone seems too weak to capture the
vast diversity of user interfaces and interaction techniques that have been
developed to interact with computer languages. When used to describe a
computer language, the term notation usually characterises a visual sign sys-
tem used to encode the symbols and the rules of the language. Yet, computer
languages can also be manipulated through graphical user interfaces that
say nothing about the symbols and the rules of the language. For example,
using a colour picker to modify a piece of code that represents a colour, as
demonstrated in Graphite (Omar et al., 2012) and Livelits (Omar et al., 2021),
is hardly a representation of the numeric symbols that are used to encode
the colour in Java and Hazel. Further, in paradigms such as output-directed
programming (Chugh et al., 2016), in which a computer language can be
modified by directly manipulating the output it generates, such as an image or
a webpage, the visual aspect of the output—i.e., the notation—cannot even be
described in advance, as it entirely depends on what the program generates.

While theories such as the cognitive dimensions of notations can accom-
modate certain variations through the concept of secondary notation to, e.g.,
describe visual augmentations of the code (Sulír et al., 2018), they are not
appropriate to describe the interaction techniques and paradigms I just men-
tioned. How, then, conceive a theory of interaction that is specific enough
to integrate the specificities of computer languages, yet general enough to
yield a design space of interaction techniques that captures existing work and
suggests directions to explore?

The recent development of a more holistic theory of programming sys-
tems, rather than languages, partly addresses this question. This theory was
introduced by Jakubovic et al. (2023) in the beginning of 2023, who define a
programming system as follows:

A programming system is an integrated and complete set of tools suffi-
cient for creating, modifying, and executing programs. These will include
notations for structuring programs and data, facilities for running and
debugging programs, and interfaces for performing all of these tasks.
Facilities for testing, analysis, packaging, or version control may also
be present. Notations include programming languages and interfaces
include text editors, but are not limited to these.

— Jakubovic et al. (2023, §1)

33

34

While previous work, such as those of Green (1989) and Bret Victor (73),
respectively stated that “system = notation + environment” and “system =
language + environment”, they rather focused on the right-hand part of the
equation, little developing the whole that glues the summed elements to-
gether. Instead, Jakubovic et al. (2023) introduce their work by stating that
“while programming languages are a well-established concept, analysed and
compared in a common vocabulary, no similar foundation exists for the wider
range of programming systems” and conclude that “the academic research
on programming suffers from this lack of common vocabulary” (§1.1). They
follow by developing a framework for analysing and designing programming
systems holistically, in the light of multiple dimensions that they group under
seven categories: interaction, notation, conceptual structure, customisability,
complexity, errors and adoptability.

Although I believe this approach is promisingly holistic and already opera-
tional,29 I also argue that it is too much centred on programming systems and 29. It has, for example, already been

used by McNutt and Chugh (2023) to
analyse the Vega Editor.

textual languages to serve as a basis for this thesis. In the framework, the term
language mainly refers to a traditional textually-encoded programming lan-
guage as part of a larger system, whereas the term notation refers to the user
interface through which the system can be programmed, be it textually or not.
For example, the authors indicate that one class of systems they are interested
in is made of “software ecosystems built around a text-based programming
language” (§3). They later add that “to speak of a programming system, we
need to consider a language with, at minimum, an editor and a compiler or
interpreter” (§3.1), and that “efforts to support programming without relying on
textual code can only be called “languages” in a metaphorical sense” (§3.3)—a
claim I respectfully disagree with in this thesis. Furthermore, although the
authors argue that programming languages already have a theory (§2), I ar-
gue that the theory they refer to is only a theory of their specification (as
mathematical objects) and implementation (as technical objects), but not a
theory of that delimits how we can interact with computer languages and why
is that. As a consequence, I argue that HCI would benefit from a new theory
of interaction of computer languages, inspired by the holistic approach taken
by Jakubovic et al. (2023), but centred on language and interaction, rather
than programming and systems.

34

http://worrydream.com/LearnableProgramming

35

3
Decomposing computer languages

In the previous chapter, we observed that computer languages are critical
objects in the world of computing. They include a diverse range of languages;
they are used for many purposes by users with radically different backgrounds
and needs; and they are studied from a variety of research fields, each with
their own perspectives. As objects primarily living in computers, they also are
objects we must interact with—the very topic of human-computer interaction.
Yet, there is no interaction-centric theory of computer languages that explains
how we can and cannot interact with them in a particular way, and why is that.

This chapter is the first step towards filling this gap by analysing what
makes a computer language according to the definition given in section 2.1
and proposing a new holistic model of computer languages. Section 3.1 moti-
vates the need for a new theory by showing that existing theories, frameworks
and methods are insufficient to explain, and not only analyse or design, our
interaction with computer languages. Section 3.2 progressively derives a glos-
sary of concepts from the definition of a computer language and a single
axiom, centred around five aspects that, I argue, every computer language
exhibit: conceptualisation, specification, implementation, interaction and
contextualisation. Taken together, these aspects form a holistic model of com-
puter language that builds on several theories of languages while addressing
limitations discussed in the previous chapter.

3.1 motivations

Taken separately, the existing theories that have been used to study computer
languages are, although helpful, insufficient to describe how human-centric
and computer-centric considerations of computer languages depend on each
other. The former are described by theories of concepts, functions, sign sys-
tems, notations and perception, whereas the latter are described by formal
models of computation, syntax, semantics and artificial cognition. Previous
work already acknowledged that computer-centric theories such as Turing ma-
chines (Martin et al., 2023) and formal syntax and semantics (Jakubovic et al.,
2023) alone are not appropriate to describe our interaction with programming
systems we actually create and use. I further argue that since human-centric
theories were mostly created with signs and languages interpreted by humans

35

36

alone in mind, they fail to capture critical nuances that exist with computer
languages, which are meant to be interpreted both by humans and by com-
puters. Research in computer languages from a human-computer interaction
point of view suffers from this lack of reconciliation, as researchers are left
to either take a view of computer language that reduces our interaction with
computer languages to our interaction with natural languages, or ignore the
interactive aspect altogether.

To address this issue, I argue that a theory prompt to describe and explain
how we can interact with computer languages must be holistic enough to cap-
ture what matters for humans and what matters for computers in a single con-
ceptual model. This goal contrasts with previous work that rather addressed
how computer languages, programming and software is used and perceived,
as shown by studies with students (Moskal et al., 2017) and artists (Li et al.,
2021) as well as by diverse stances from researchers (Knuth, 1974; Dijkstra,
1977; Bergström and Blackwell, 2016; Ko, 2016; Martin et al., 2023). It also
complements frameworks, such as cognitive dimensions of notations (Green,
1989) and technical dimensions of programming systems (Jakubovic et al.,
2023), and methods, such as natural programming (Myers et al., 2004) and
PLIERS (Coblenz et al., 2021), which help analyse and design languages and
systems, but do not explain what the very nature of a computer language is
nor what it tells us about how we can interact with them.

Given the limitations of existing work I just mentioned, I chose not to
frame the notion of computer language according to a specific theory or con-
ceptual framework alone. Instead, I favoured a more constructivist approach
by deriving a series of deductions, using only the definition of a computer
language given in the previous chapter and a single axiom—humans require
concepts to reason—as a premise, from which I derive five complementary
aspects that, I argue, must belong to the concept of computer language. Taken
together, the aspects of this model form a glossary of concepts that I will rely
on in the rest of this thesis.

3.2 holistic model

The gist of the model I propose, which is described in this section, is the
following. Computer languages, just like any language, assume the existence
of concepts the language refers to, both for making sense of the language itself,
e.g., to understand the purpose of a symbol, and for making sense of its intent,
e.g., to interpret what an identifier means—a process I call conceptualisation.
Then, to be turned into a system of shareable codes, we must describe the
symbols of the language and the rules for combining and interpreting them
in a specification, usually with the help of a formal notation. Since a computer
can only process data encoded in the only alphabet it speaks, i.e., binary
digits, codes that adhere to the specification must further be turned into an
encoding that can be read from and written to the computer’s memory by
a computer program that adheres to the aforementioned specification, as
part of its implementation. However, since long sequences of bits are hardly
appropriate to be manipulated by humans, the encoding must therefore be
mapped to some representations that support our interaction with computer
languages. Finally, as neither of these steps exists in isolation from the world,

36

SOCIOCULTURAL
CONTEXT

COMPUTATIONAL
CONTEXT

COMPUTERS

RESOURCES

HUMANS

formalised byformalised by

implemented by

represented by

transform

help refer to

used by

interact with learn to use

produce and manage

produce and use

reason with

interpret mechanically

CONCEPTS
support conceptualisation

SYMBOLS & RULES
support specification

ENCODINGS
support implementation

SUBSTRATES
support interaction

Figure 3.1. Scheme of the holistic model of computer languages introduced in this chapter. It applies to every computer
language matching the definition given in the previous chapter. White boxes represent four of the five fundamental aspects of
the language; the last one being represented by the two dotted boxes, which represent the contextualisation of the language.
Icons represent entities using the language (humans, computers) and data they produce and manage (resources), which are
not part of the language itself, but strongly connected to its existence and use. Arrows represent relationships between the
different aspects of the language, the actors who use it, and the resources related to it. Labels in black boxes explain the nature
of these relationships.

Aspect Example Purpose

Concept Boolean values Conceptualising the notion of a binary value of truth.

Symbols ⟨bool⟩ ∶= True ∣ False Formalising the concept as two symbols, True and False.

Encoding value = 0⇔ value is False
value ≠ 0⇔ value is True Mapping the symbols to numbers in the computer’s memory.

Substrate bool show = TRUE; Representing the encoding so that users can interact with it.

Context Program’s output Showing the result of setting the boolean to one value or another.

Table 3.1. Example of an analytic use of the holistic model of computer languages to distinguish between the different aspects
of a computer language. The example focuses on a hypothetic computer language inspired by C, in the context where a
boolean value is used as a flag to control the visibility of an element in the coded program’s output.

38

studying computer languages calls for contextualisation so as to situate these
languages in the computational and sociocultural contexts they live in. The
resulting model, which encompasses these five aspects of computer languages,
is schematised in Figure 3.1 and exemplified in Table 3.1.

3.2.1 conceptualisation

As human beings, our intellectual thought process relies on concepts, akin to
Plato’s forms, that we mentally manipulate and relate to physical elements of
the material world we live in. More specifically, I define a concept as a category
of ideas we can distinguish from other categories of ideas, independently
of whether and how it is represented. For example, the sentence “a circle of
radius r centred in point P”, the mathematical set

{(x , y) ∈ R2 such that
√

(Px − x)2 + (Py − y)2 = r} r
P

Figure 3.2. Drawing of a circle.

and the drawing shown in Figure 3.2 are three different ways to refer to the
same instance of the concept of circle.

Concepts can be further grouped into ontologies, which are more abstract
concepts that designate sets of concepts connected to each other in a way
we deem meaningful. Ontologies can be used to contextualise data and
languages, as illustrated by their use in the semantic web. For example, the
ontology of mathematics includes all the mathematical concepts (also called
objects, as they are necessarily abstract) and gives a particular meaning to the
above descriptions of a circle. The same descriptions may be understood and
analysed from a different angle through other ontologies, such as an ontology
of language, which may be concerned with the structure of the sentence, or
an ontology of drawings, which may be concerned with the look of the circle.

The core of the present theory lies in one fundamental axiom: just like
any other language used by humans, computer languages are intellectual
tools for manipulating concepts. Note that this axiom does not imply that
computers cannot be used without manipulating concepts: they could be
used at random, or through a form of embodied or craft knowledge, free of
any thinking. Instead, this axiom suggests that as soon as one wants to reason
about computer languages, i.e., using their intellect rather than (just) their
emotions, they are faced with the unavoidable necessity to conceptualise the
language. In the light of this initial assumption, I shall further distinguish
between two different sorts of concepts that can be manipulated with the help
of computer languages: intrinsic concepts and extrinsic concepts.

Intrinsic concepts

Intrinsic concepts are concepts that are used by the language itself, i.e., the
concepts that are required to describe the purpose of its symbols and its rules.
They are typically learnt along with the language, or reused from the previous
knowledge of another language,30

30. Transfering knowledge be-
tween languages is a well-known
phenomenon concerning natural
languages, whose application to com-
puter languages is being increasingly
studied, as reported by Hao and
Glassman (2020). I further discuss
how it has been applied to help
programmers learn new computer
languages and avoid certain pitfalls in
subsection 3.2.5.

and form the atomic concepts we must
reason with when we work with a computer language. As a rule of thumb, the
intrinsic concepts of a language are the prerequisites one must understand to
make sense of the language’s documentation.

38

39

Very diverse intrinsic concepts have been used to conceive features found
in computer languages. Early programming languages relied on concepts
close to hardware, such as instructions available with a particular processor,
registers that can be read and written, and jumps in memory. Higher level
languages such as Fortran introduced the possibility to write expressions that
can be evaluated using static literals, dynamic variables and mathematical
operators to combine them. The advent of structured programming brought
a fair share of new concepts, including procedures, functions and modules for
reusing code, a well as conditions and loops. Many computer languages also
make a number of data structures first-class citizen of the language, requiring
to understand concepts such as tuples, arrays, lists and maps. Object-oriented
programming languages often rely on classes, prototypes and inheritance,
whereas functional programming languages may build on polymorphism or
algebraic data types, and sometimes even borrow concepts such as monads
and functors from category theory. Languages that offer primitives for parallel,
synchronous or asynchronous operations often require to understand the
concepts of atomics, threads, locks, signals or promises. In addition, languages
with meta-programming capabilities may require to understand concepts
such as macros, decorators and templates.

Intrinsic concepts can become part of a computer language in multiple
ways. Some, like variables and operators, are reified as individual symbols.
Others, like expressions and lists, are usually composed of several other
symbols. Moreover, many concepts do not appear in the syntax, but rather
describe general patterns or dynamic behaviours permitted by the language, as
illustrated by, e.g., threads and polymorphism. Furthermore, a single language
can also include seemingly different concepts that actually refer to the same
parent concept. For instance, Python distinguishes between named functions
(introduced with the def keyword) and anonymous functions (introduced
with the lambda keyword), although both of them build on the same concept.

Extrinsic concepts

Extrinsic concepts are concepts that are expressed using the language and
its intrinsic concepts without being part of the language themselves. Some
extrinsic concepts group and abstract intrinsic concepts to form new concepts
that help using the language itself. This was previously identified at multiples
scales, such as design patterns (Gamma et al., 1995) at the program/module
level, micro-patterns (Gil and Maman, 2005) at the file/class level, and nano-
patterns (Gil et al., 2019) at the function/line level. For example, Gamma et al.
(1995) describe the Observer pattern as “defin[ing] a one-to-many dependency
between objects so that when one object changes state, all its dependents are
notified and updated automatically.”, i.e., as a relation between objects in
which a series of methods is called when the state of the observed object
changes.31

31. I emphasised four key intrinsic con-
cepts the extrinsic concept of observer
builds onto: two that are explicitly
cited (object, state), and two that are
implicitly used (method, call) in the
expression “notified and updated au-
tomatically”.Other extrinsic concepts refer to concepts completely unrelated to

the language they are expressed in. For example, a collection of three numeric
values in a computer language may be used as a date, a colour or a 3D position,
three extrinsic concepts that are foreign to most of the computer language
they are used in.

39

40

Libraries are an important source of extrinsic concepts, requiring their
users to familiarise to their own concepts before using them, often by reading
user guides or relying on external sources of knowledge. Some include con-
cepts commonly used in programming, such as data structures like buffers,
trees, graphs and data frames, and common operations like searching, sorting,
filtering, mapping and reducing. In addition, libraries let users of computer
languages reify many domain-specific concepts, such as paths, files, directories,
permissions, addresses, pipes and sockets in operating systems; models, views,
controllers, events and callbacks in user interfaces; and ciphers, keys and hashes
in cryptography.

Interestingly, some extrinsic concepts eventually become part of the intrin-
sic concepts of certain languages they are heavily used in. This is similar to
the way concepts that are commonly used but cannot be described by a single
word eventually become part of the language with the help of a neologism or
a foreign word. As an example, the concept of iterator, which was introduced
as a design pattern by Gamma et al. (1995), eventually made its way into the
syntax of Java 5’s enhanced for loops (noted for (Element e : iterable))
in 2005 after being commonly used by programmers (74). Similarly, the
concept of null coalescing operator (75) made its way into JavaScript in 2020
to reify expressions of the form “if A is defined then A else B” as a dedicated
binary operator (noted A ?? B). The distinction between intrinsic and extrin-
sic concepts in computer languages is therefore not set in stone, and one must
be cautious (and distinguish between several versions of the same computer
language) when stating whether a concept is intrinsic or extrinsic.

3.2.2 specification

While the notion of concept captures the ideas we intellectually work with in
a form, it says nothing on how we can (1) refer to them in a persistent way and
(2) organise and combine them to build more complex ideas. By defining a
set of symbols and rules to combine and interpret them with the help of some
meta-language (such as a natural and/or formal language), which themselves
rely on a set of concepts forming the intrinsic concepts of the language, a
specification addresses all these limitations. Moreover, the specification is
often complemented by a sign system, which give a physicality to the symbols
so that they can be communicated to others, e.g., by speaking or writing them,
and taken out of our limited working memory to form larger combinations,
e.g., mathematical proofs. However, and unlike natural languages, this sign
system is not, strictly speaking, a mandatory part of the computer language
we are defining. Instead, it shall only be seen as a bootstrapping tool used to
formalise the computer language in the first place, and not to be confused
with the notion of substrate that will be presented later.

Symbols

Symbols can be defined as the smallest entities that can be distinguished from
one another, effectively forming the atomic building blocks of a computer
language. Being a symbol requires to be distinguishable; but the actual form of
that distinguishability is a matter of the notation, rather than the specification.

40

https://www.oracle.com/technical-resources/articles/java/java-5-features.html
https://262.ecma-international.org/11.0/

41

For this reason, they differ from the notion of character (such as those of
the English alphabet), which are part of a particular notation. For example,
a notation may assemble the latin characters l, e and t to form a unique
symbol—noted let—that corresponds to a keyword for declaring a variable;
but another notation may decide to use a different shape or sequence of shapes,
without altering the uniqueness of the symbol they both refer to. To some
extent, the notion of symbol corresponds to the notion of token present both
in artificial models of language and lexical analysers.

Figure 3.3. A program that prints
Hello, world! in Piet created by Thomas
Schoch (76).

In practice, computer languages are built around diverse sorts and numbers
of symbols. Common categories include identifiers (which can often be freely
defined by the user of the language), keywords and operators, but languages
such as Boxer (diSessa and Abelson, 1986) and Max/MSP (Puckette, 2002)
may rather include symbols called boxes and patches. Sometimes, symbols
can also take a more unexpected form. For example, in Piet (77), a so-called
esoteric programming language, symbols are squares of different colours in a
picture, as demonstrated in the Hello, world! program shown in Figure 3.3.

Different computer languages can feature a very different number of sym-
bols. On one hand, certain languages aim to be minimalistic, as demonstrated
by languages such as Brainfuck (78), whose 8 symbols are sufficient to form
a Turing complete programming language by distinguishing a few basic oper-
ations on the computer’s memory. On the other hand, other languages are
instead conceived around very extensive sets of symbols. The APL program-
ming language (Hui and Kromberg, 2020), first implemented in the early
1960s, was initially devised by Iverson as a more concise notation for writing
mathematics. To that end, Iverson created a large number of new symbols to
represent more or less complex operations using very few characters, resulting
in several dozens symbols, often represented using unconventional shapes that
are not part of natural and mathematical languages’ alphabets (Figure 3.4).

Figure 3.4. Some of the symbols used
by the standard notation of the APL
language. The image is adapted from
the APL Wiki (79).

Rules

In addition of determining what can be a symbol of the language, a speci-
fication must include rules to make sense of combinations of symbols. The
first type of rules correspond to those of formal grammars and type systems,
which specify which combinations can be legally part of the language. While
these rules can be implemented as parsers and type checkers, one must keep
in mind that this is not a necessity but a contingency of a certain choice of
encoding and representation (presented later), which may not guarantee that
the code is valid by construction. For example, code encoded and edited as
a sequence of characters, as it is common for traditional languages such as
C or Java, may include invalid subsequences of symbols, which may only
become visible when the user triggers syntactic and semantic analyses of
the code. Such mistakes may be prevented by construction if the computer
language is manipulated in a way that guarantees the validity of the code, as
demonstrated by structured editors, which may interactively reject a change
if it does not result in a valid piece of code, and load and save code as a syntax
tree, therefore removing the need for parsing possibly invalid sequences of
symbols altogether.

41

https://retas.de/thomas/computer/programs/useless/piet/explain.html
https://retas.de/thomas/computer/programs/useless/piet/explain.html
https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Brainfuck
https://aplwiki.com/wiki/Typing_glyphs

42

The second type of rules correspond to the semantics of the language, which
specifies how a human/computer should make sense of/process the structures
that are correct according to the first kind of rules, such as to execute the
computation they describe. Again, the actual implementations of these rules
can take many forms. For example, they may appear in the compiler or the
interpreter that decides how code written in a computer languages must be
translated into a series of processor instructions. However, they may also be
“reversed” (or conceived bidirectionally) in order to infer how to translate
interactive changes to the code’s output into changes to the code itself, as
recently demonstrated in situations in which the input is a programming
language and the output is a web page (Mayer et al., 2018), a vector-based
image (Hempel et al., 2019) or a data visualisation (Perera et al., 2022).

3.2.3 implementation

Although equipping a specification with a notation makes the computer lan-
guage usable by humans, it is not enough to make it usable by computers
too. As theorised by Turing, computers are simply machines that manipulate
symbols in a predictable and programmable fashion. In practice, Turing’s
theory can be implemented in a myriad of fashions. The most common imple-
mentation, by far, and the one I will focus on in this thesis, is the electronic
computer. Electronic computers rely on the presence or absence of voltage in
different parts of a circuitry as a means to distinguish between two binary
symbols, usually noted zero and one. Yet, more esoteric implementations
also exist, such as using the Magic: the Gathering card game (Churchill et al.,
2019) or a network of carnivorous plants.32 32. In a talk on alternative models of

computation (80), David Naccache
shows that the fact Dionaea Muscipula
“bites” only when two of their trigger
hairs are touched can be exploited to
build a Turing machine out of carnivo-
rous plants and demonstrates a proto-
type implementation of a XOR gate.

Regardless of how they operate, all these implementations share one com-
monality: they all require to encode and decode data using the machine’s
alphabet. This rule applies to computer languages too. To implement the
specification of a computer language into a computer, one must decide on an
encoding scheme in order to write programs able to encode the language into
the computer’s memory, then decode and process it. Further, to persist in
time and be interpreted in the correct way, that encoding must be identified as
a separate piece of information by the system managing the memory, which I
call a resource.

Encoding

Encoding a computer language can be split into two steps: the logical encod-
ing, and the physical encoding. The former describes what information is
encoded, and the latter describes how this information is encoded. Logical
encodings can either describe sequences of symbols (to be interpreted in
some order), or higher-level syntactic constructs from which eluded symbols
can be deduced. In addition, they may also include extra information related
to the language or the context it is used in. Physical encodings are usually
split into two categories: text encodings, which offer an alphabet of charac-
ters that are mapped to numbers, and binary encodings, which are arbitrary
mappings from logical data to bits. In the case of a digital computer, which is
our focus here, encoding a computer language according to its specification

42

https://savoirs.ens.fr/expose.php?id=3197
https://savoirs.ens.fr/expose.php?id=3197

43

therefore requires to combine a logical and a physical encoding schemes, so
that symbols or syntactic constructs can be turned into sequences of bits that
fit in the computer’s memory, and conversely.

The simplest type of encoding scheme is to encode a sequence of symbols
and nothing else. This is the scheme traditionally used by many popular
programming languages, such as C, Python or JavaScript, which are encoded
by strings of characters, which can be read and written as text as is. Unless each
symbol can be mapped to a unique character, this scheme usually requires
to tokenise the string to turn it back into a sequence of symbols with the
help of a lexer. Moreover, although computer languages have long used
restricted physical encoding schemes such as ASCII, which only includes 256
different characters, Unicode-compliant schemes such as UTF-8 are being
increasingly used in modern computer languages. As a result, these languages
often support identifiers with non-latin characters (and even emojis), as do
Python 3, Swift and Julia, as well as less standard mathematical symbols, as
do Gallina, Lean and F*.33 33. For example, λ = 0.5 is a valid in-

struction in Python 3, and {n ∶ N} is
a valid expression in Lean.

Different textual schemes have different advantages and drawbacks: some
include more characters than others at the cost of either an increased memory
footprint, when more bits are required to encode each character, or added
complexity at runtime, when variable-length encodings (such as UTF-8)
impact operations such as computing the length of a string (in terms of
characters, not bytes). As an example, Hui and Kromberg (2020) report that
before the inclusion of the many uncommon APL characters in the Unicode
standard, different implementations of APL on different computers each used
their own encoding scheme, making APL code written in one system non-
compatible with other systems. Yet, they also underline that “a variable length
encodingmakes array operations inefficient”, and therefore, “many APL systems
use multiple internal representations in order to efficiently support character
arrays” (Hui and Kromberg, 2020, §0.4.4).

Another approach is to encode more complex constructs, such as the
syntax tree or the graph formed by the relationships between symbols. In
this case, the encoding may rely on an intermediate language to describe the
underlying structure. For example, the blocks that form the code written in
Scratch (Resnick et al., 2009) are stored as a list of objects that refer to each
other’s identifiers in JSON; the languages created with JetBrains MPS (Voelter
and Lisson, 2014) are encoded as syntax trees in XML by default; and the
patches and wires of Pure Data’s data-flow graphs are encoded with the help
of a custom scheme (81).

Furthermore, there are situations in which the computer language must be
encoded along with extra information used by the environment the encoding
is decoded in. For example, Pure Data encodes the position of the patches
on the canvas in addition to what they are, even though it has no semantic
meaning and is encoded for purely aesthetic (or usability) reasons. Similarly,
while Python is traditionally encoded as sequences of symbols, systems such
as Jupyter notebooks (82) encode it along with the content of cells that may
contain arbitrary data, such as text formatted in Markdown and images that
were generated by executing the code. Image-based programming systems
such as Smalltalk (Goldberg and Robson, 1983) and Pharo (Bergel et al., 2013)
push this idea even further, as the eponymous languages used to program

43

http://puredata.info/docs/developer/PdFileFormat
https://ipython.org/ipython-doc/3/notebook/nbformat.html

44

these systems is often stored along with the complete state of the system,
including all the data used and produced by the execution of the code, in an
image file which is, roughly, a dump of the whole system’s memory.

Resources

Any computer system encompasses a coherent body of hardware and software
that determines how to mechanically process and transform information en-
coded in its memory. To be manipulated in meaningful ways, this information
must be organised in distinguishable units I call resources, which can take
many forms.

Operating systems, when they are present in a computer, showcase how
raw memory can be turned into different sorts of resources. Some, such as
Unix-based operating systems, are conceived to treat everything as files, which
represent units of readable and/or writable data. Others, such as Smalltalk,34 34. Although nowadays, Smalltalk is

mostly executed by a virtual machine
ran by another operating system, it was
initially conceived as an actual operat-
ing system for Xerox computers and
designed to run on bare metal.

take a radically different approach in which everything the system manipulates
is an object, which is a resource which has a type, a state and a collection of
methods, i.e., functions that can perform actions on the object and can only
be triggered by sending a message to an object—including oneself.

Beyond operating systems, pieces of software with more specific application
domains are systems dealing with resources too. In this case, the memory
they manage and turn into resources is usually only a subset of the entire
computer’s memory, such as a file on the disk or a piece of working memory
provided by the operating system, and the transformations they can perform
are restricted to what the API exposed by the underlying operating system
permits. Because these systems are more specific, they can encode, decode
and transform more specific types of resources as well. For example, while the
aforementioned operating systems can only treat a video as a generic file or
object, a media editing system may extract a variety of finer-grained resources
out of it—such as audio and video sequences, subtitles, etc.—and therefore
provide specialised features that the underlying operating system has no clue
about, such as editing subtitles as text or applying a filter onto the video.

In their encoded form, computer languages are resources within computer
systems too: they are nothing but pieces of memory which can be decoded
and transformed, just like any other resource. For example, they can be trans-
formed into data structures by lexers and parsers, into another computer
language by a transpiler, or into machine code by a compiler, therefore form-
ing new resources derived from the code. Moreover, a resource representing a
piece of code can also be combined with other resources, such as other pieces
of code and multimedia files, as do web browsers’ engines when they combine
HTML, CSS and JavaScript code with external resources they refer to (such as
images and fonts) so as to present the unified webpage they describe together
to the user.

3.2.4 interaction

Although encoding symbols and rules into resources makes computer lan-
guages usable by machines, it is still not enough to make them usable in their
encoded form by humans too as we never interact with languages as bits in a

44

45

computer’s memory. Even when switches, lights and punchcards were used
to read and write computers’ memory, they were still physical proxies for the
presence or absence of voltage in certain parts of the electronic circuitry. In
fact, Arawjo (2020) reports that early computer scientists reasoned on paper
by creating notations that fit their needs rather than the machine’s, citing work
such as Zuse’s Plankalkül (83), the first high-level programming notation,
and Burks’ diagrams describing parts of the ENIAC computer (Burks, 1947),
shown in Figure 3.5.

a. Zuse’s notation.

b. Burks’ notation.

Figure 3.5. Custom notations created
by (a) Zuse in 1945 and (b) Burks in
1947 to work with computers and pro-
grams written for them. The images
are reproduced from Arawjo (2020).

Nowadays, the representations and the techniques that we use to interact
with computer languages are very diverse. Often, this interaction is mediated
by a user interface displayed on a screen, manipulated with the help of a
keyboard and a mouse. Yet, interaction with computer languages can also
make use of other modalities. Blind and low-vision software developers
have reported listening to screen readers and touching Braille displays to
read computer languages (Mealin and Murphy-Hill, 2012). Virtual reality
programming environments such as Cubely (Vincur et al., 2017), Ivy (Ens et al.,
2017) and FlowMatic (Zhang and Oney, 2020) let users arrange and connect
symbols using gestures and handheld controllers. Juxtapose (Hartmann et al.,
2008) and Dynamicland (84) demonstrate how physical objects such as
motorised faders and sheets of paper can be used for interaction.35 35. Although Dynamicland defends a

vision in which people move away
from the traditional approach to com-
puters and their languages by embed-
ding them in the physical world we
live in, it also showcases how objects
around us can be used to program and,
possibly, manipulate computer lan-
guages. Geoffrey Litt shows a glimpse
of potential approaches in a blog post
on this topic (85).

A consequence of this diversity is that a holistic model of computer lan-
guages should equally capture interaction with flat notations displayed on
screen, virtual objects in extended reality spaces, and tangible objects in phys-
ical environments. To that end, I build upon Beaudouin-Lafon’s theory of
unified principles of interaction (Beaudouin-Lafon, 2017), which introduces
three concepts—substrates, instruments and environments—to establish a
universal foundation to interaction with computers, akin to the unification of
theories of mathematics under the set theory in the 20th century. Although I
depart from the theory, which I deem too specific to a particular implementa-
tion requiring, e.g., systematic reactivity and shareability, I borrow and adapt
the concepts of substrates and environments for the purpose of my own work.

Substrates

In order to let humans interact with a computer language in its encoded form,
only considering resources and transformations between resources is not
enough. Resources alone are not something we can perceive nor act upon:
they need to be reified as something fit to our senses and physical abilities.
Fortunately, we can equip computer systems with input and output devices
that are adapted to our senses and capabilities, such as screens and projectors
whose pixels can be controlled by modifying the appropriate resource, and
sensors whose signal can be digitalised and written into a resource.

Using those devices, we can communicate with computer systems through
a certain sensory space, formed of physical dimensions available to both the
computer system and the human user, and limited by what the devices can
sense and alter. In the early years of computing, this space was fairly nar-
row, as interaction with computers mainly occurred via mechanical switches,
blinking lights, printed paper and punched cards. As the underlying tech-
nology evolved, so did the input and output devices and the span of their

45

http://zuse.zib.de/
https://dynamicland.org/
https://www.geoffreylitt.com/projects/dynamicland

46

configuration spaces. Today, we can use screens with millions of pixels, some-
times filling up entire walls, capable of sensing fingers and pens with great
precision, or placed in extended reality headsets we can wear; mice detect-
ing fine changes in position; speakers capable of playing arbitrary sound;
and numerous other devices, whose capacities for interaction are commonly
researched in HCI.

In order to communicate information on resources, the computer must
direct output devices to constrain the physical world in a specific way. For
example, a screen must be constrained to light up only certain pixels for us to
see particular shapes we interpret as text written in an alphabet we are familiar
with, and a speaker must be constrained to vibrate at a certain frequency and
amplitude for us to hear a particular sound we interpret as a validation or a
failure. In turn, we can adapt our reaction to our interpretation of what these
constraints tell us. Conversely, to take an action that may affect a resource,
we must constrain the physical world, such as by pressing a key, clicking a
mouse button, moving a handheld controller or pronouncing words, enough
to trigger a measurable change in the sensors of the input devices.

Since we often reuse representations of digital data with similar character-
istics, I propose to reify a set of constraints on input and output devices as a
substrate, defined as follows by Beaudouin-Lafon:

A substrate is a digital computational medium that holds digital infor-
mation, possibly created by another substrate, applies constraints and
transformations to it, reacts to changes in both the information and the
substrate, and generates information consumable by other substrates.

— Beaudouin-Lafon (2017, §2)

I slightly depart from this definition, as I delegate the storage, transformation
and reuse of data to the aforementioned notion of resource, and only treat a
substrate as a set of constraints linking a resource with an input and/or output
device, whereas Beaudouin-Lafon’s theory also treats resources as substrates,
later distinguished as data substrates (Beaudouin-Lafon, 2023, §3.1). In my
view, binding data to a substrate entangles a piece of digital information with
a configuration of the physical world, making the two co-dependent, so that
modifying one can affect the other.

Furthermore, unlike Beaudouin-Lafon, I do not make a distinction between
substrates and instruments, which he defines as a particular kind of substrates
“that can operate on other substrates, even with very little knowledge about their
properties and structure” (Beaudouin-Lafon, 2017, §2). Although I admit that
instruments are conceptually useful to foster interaction design (Beaudouin-
Lafon, 2000) and study interaction through the lens of the technical reasoning
theory (Renom et al., 2022, 2023), I believe that substrates are enough to the
holistic model of computer languages I am describing. Just like they can reify
constraints on an output device only, substrates can also reify constraints on
an input device only, regardless of how that input device lets the user “operate”
on another substrate. For example, a list or a grid substrate might be used
to constrain a mouse by clipping the cursor’s position to the indices of the
list items or the grid cells, even though the screen displays no list-like or
grid-like structure. This is akin to, e.g., speeding up selection with a bubble

46

47

cursor (Grossman and Balakrishnan, 2005), which always targets the closest
selectable item according to a Voronoi diagram that is not shown to the user.

Different substrates can include different types and numbers of constraints,
resulting in different degrees of freedom. For example, a list or grid substrate
only constrains the horizontal and/or vertical positions of the items it con-
tains and has therefore many more degrees of freedom, leaving the task of
constraining the rest of them—such as the content of each item or cell—to
other substrates. A textual substrate is already more constrained, as it not only
constrains the position of the items it contains, but also their shapes, which
must belong to a particular alphabet. Depending on the situation, it may also
constrain the dimensions of the characters, e.g., if the font is monospaced,
prevent changes in the orientation or the texture of the characters, etc. A
button or a menu item is even more constrained: their size is limited and their
visual style is often imposed by the system, only leaving their static content,
usually textual or iconic, unconstrained. In return, the more a substrate is
constrained, the less work is left to the designer of the interactive system,
which has fewer choices on how to further constrain (or not) the dimensions
of the configuration space left unconstrained by the chosen substrate.

Most computer languages seem canonically associated with a single sub-
strate, to the point where certain substrates have become a way to classify
computer languages, leading to the rigid definitions of “textual languages”
and “visual languages” I critiqued earlier. For example, we mainly interact
with languages such as C, Python and JavaScript through textual substrates,
whereas we rather use a tree substrate made of blocks for Scratch and a graph
substrate made of patches for Max/MSP. Yet, in practice, we could represent
the encoding of any of these languages using any of these substrates with-
out changing the specification or the encoding of these languages. This was
exemplified earlier with the four alternative substrates for the toy computer
language for describing graphs presented in subsection 2.3.3: a textual sub-
strate representing the encoding as a sequence of characters; a list substrate
representing the arcs forming the graph; a graph substrate representing the
nodes and arcs on a two-dimensional canvas; and a grid substrate represent-
ing the adjacency matrix of the graph. Moreover, and as we shall see later
in this thesis, some substrates are only useful to interact with very specific
pieces of code and would be meaningless to interact with anything else. For
example, a colour picker is helpful to visualise and modify strings or triplets
of numbers that represent a colour, but it is inappropriate for interacting with
code representing a list of arbitrary objects or a loop.

Environments

Modern interactive computer systems are highly complex and often require
to juggle several subsystems at once. This results in systems in which multiple
programs and notations cohabit in real time, as noted by Blackwell et al.:

47

48

It is possible for several notations to be mixed within a single medium: a
computer screen may display multiple windows, each running a different
application with its own notation. Even within a window, there may
be multiple notations – the main notation of the application, but also
generic sub-notations such as menu bars, dialogs, etc.

— Blackwell et al. (2001, §3)

For the perceivable and actuatable spaces that input and output devices give
us access to are limited, there must exist some mechanism to let substrates
“reserve” or “reset” a portion of the spaces they are designed to constrain, so
as to avoid collisions with constraints set by other substrates used within the
same computer system.

In addition, systems for working with computer languages may deal with
very diverse resources and include many different features. As a result, inter-
acting with these systems often means interacting with different substrates
at the same time. For example, a text editor for editing code may be comple-
mented by a tree representing the structure of the coded document, a menu
listing various commands the system can execute, and a preview of the output
of the code. Such assemblies of related substrates may also be specialised to
be adapted to a specific user, situation or device, further enriching the mix of
substrates they rely on.

I propose to address these two requirements with the notion of environ-
ment. In this model, an environment is a concept representing a coherent
assembly of substrates that are designed to fairly share the perceivable and
actuatable spaces they constrain in parallel, with the goal of facilitating inter-
action with resources in the context of a particular activity, such as writing
a webpage or programming an application. They somehow correspond to
the user interface of systems designated by terms such as code editors, inte-
grated development environments and programming environments. Although
I explicitly mention the fair use aspect I see in environments, my definition
roughly correspond to the one given by Beaudouin-Lafon (2017), who defines
environments as “an unified answer to organizing the digital environment” that
“can be created for particular tasks and contexts of use, such as project-centric,
activity-centric, or data-centric environments” (§2).

Besides guaranteeing a fair use of input and output devices and letting
users interact with multiple resources at the same time, gathering multiple
substrates in a single environment also gives users of computer languages
the ability to choose the substrate that works best for them for working with
a single resource. For example, one user might usually prefer to edit code
written in the graph language introduced in subsection 2.3.3 using the graph
substrate, but occasionally switch to the textual substrate to copy-paste a piece
of graph or fine-tune the position of a node. The complementarity between
different substrates offered by an environment is akin to Buxton’s concepts of
weak generic tools and strong specific tools, as reported by McGrenere (1998).
According to Buxton and McGrenere, there is a trade-off between being
generic enough to work in many different situations and being specific enough
to offer powerful features that would not make sense in other situations. Weak
generic tools can be complemented with collections of strong specific tools
(forming a toolset), so that users can use strong tools when they are equipped

48

49

for a particular situation or default to weaker tools when they are not. This
very well applies to environments for working with computer languages,
which can include “weaker” generic substrates, such as text, and “stronger”
specific substrates, such as colour pickers, and let users use one or the other
depending on the situation.

3.2.5 contextualisation

This model of computer languages may appear to be complete with conceptu-
alisation, specification, implementation and interaction, which seem enough
to describe all the aspects of computer languages that we must consider when
studying how we can interact with them. Yet, none of these four aspects
exists in isolation from the rest of the world. Instead, computer languages
are necessarily affected by the contexts in which they are conceived, learnt
and used, which are crucial to understanding how external factors affect
these activities, both positively and negatively. As a consequence, I argue that
contextualisation deserves to be an aspect of computer languages on its own
in this conceptual model of computer languages. Depending on the nature
of the factors that are being considered, I distinguish between two sorts of
contexts: the computational context and the sociocultural context.

Computational context

The computational context includes all the factors that concern the computer
system, regardless of their (lack of) direct impact on the humans using them.
This notably includes all the other resources that are available within a given
system, both local and remote, as long as the system has a means to read
or write them. This consideration is especially important to account for
all the design opportunities that rely on resources other than code that are
available within code editing environments. As my goal here is not to cover
this particular aspect in depth, I focus on two particular activities that concern
computer languages and rely on other aspects of the computational context
to exist: embedding information beyond encoded languages in environments,
and writing code collaboratively and across multiple computers.

It is common for code editing environments to include information that
is not embedded in the encoding itself, but collected from elsewhere in the
computational context. For example, debuggers and static analysers can yield
information about programs that have been generated from code written
in a computer language, even though they may exist as separate resources.
For example, the gdb debugger (86) was initially conceived to be used as a
separate program that had be controlled via a command-line interface. Yet, as
long as it exists in the same computational context as the environment used
to edit the code that yields the program being debugged, nothing technically
prevents the controls and output of a debugger such as gdb from being part of
the environment too. This has been demonstrated by the progressive inclusion
of systems for compiling, running and debugging code from within code
editors, forming so-called integrated development environments (IDEs).

To keep such software modular and favour reuse, various language-agnostic
protocols have recently been developed to connect such environments with

49

https://www.sourceware.org/gdb/

50

a. Light Table. b. Chromium’s developer tools.

Figure 3.6. Examples of programming environments that embed runtime information within the code by connecting to
an execution environment—such as a debugger—running in the same computational context. (a) In Light Table, so-called
watches can be manually added by the programmer to continuously display the runtime value of an expression (shown on a
purple background). (b) In Chromium, the current values of expressions can be inspected from within the developer tools’
panel by pointing at it when a breakpoint is hit. In addition, the value of certain identifiers is automatically displayed next to
them in the code (shown on an orange background) .

third-party programs available in the same computational context, even if
they have not been designed to be part of a specific code editor. This notably
includes the Language Server Protocol (LSP, 87), the Debug Adapter Protocol
(DAP, 88) and the Chrome DevTools Protocol (CDP, 89), which help write
and debug code while deferring the static analysis and the execution to other
programs. As a result, environments for editing code are becoming more and
more capable of linking code with its execution, not only through separate
user interfaces, such as dedicated debugging panels for, e.g., pausing/resuming
the execution and inspecting the stack, but also by augmenting substrates
representing the code with this information, as in Light Table (90) and
Chromium’s developer tools (Figure 3.6).

Beyond giving access to local data and services, individual computational
contexts can be connected together over the network to allow multiple users
to collaborate on the same piece of code. This collaboration can either be
asynchronous, synchronous, or both. It relies on local resources, such as
diffing and compression programs, and protocols for inter-connecting multi-
ple computational contexts, such as TCP and WebSocket. In asynchronous
collaboration, each user works on a separate encoding, only synchronising
their version with the others from time to time. This is the approach used
by versioning systems such as Git and Subversion, which rely on a central
repository that everybody can read and write and a history of changes, whose
smallest functional unit is the commit, which describes changes made to the
code. In synchronous collaboration, all the users work on the same encoding,
whose modifications must therefore be continuously shared with others us-
ing synchronisation mechanisms such as Operational Transform (OT) and
Conflict-free Replicated Data Types (CRDTs). Albeit less common than the
asynchronous approach, synchronous collaboration techniques are becoming
more and more common in modern code editing environments, as shown
by Visual Studio Code’s LiveShare extension (91) and JetBrain’s Code With
Me feature (92), which even supports audio and video calls from within the
code editor.

Sociocultural context

Unlike the computational context, the sociocultural context includes all the
personal, social and environmental factors, which primarily affect the human
beings who use computer languages, rather than the computers that process

50

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://chromedevtools.github.io/devtools-protocol/
http://lighttable.com/
https://code.visualstudio.com/learn/collaboration/live-share
https://www.jetbrains.com/code-with-me/
https://www.jetbrains.com/code-with-me/

51

them. Such factors include, but are not limited to, training and expertise, cul-
tural habits, spoken languages, disabilities, etc. Just like considering the com-
putational context as whole helps understand what computers can and cannot
do, considering at least some of the many factors that influence how humans
create, understand and use computer languages helps understand their social
impact and points to scientific inquiries and design opportunities. Again, I
illustrate the impact of the sociocultural context by focusing on two examples:
the effect of the proficiency in other languages, and the impact of one’s train-
ing, work and habits on their expectations regarding computer languages.

Even when they are not used to interact with computers directly, natural
languages have been shown to have an effect on computer languages. The
widespread use of English in computer languages, in particular, not only
impacts the computer languages themselves, e.g., yielding English keywords
such as if, while, etc., but also their users. For example, Guo (2018) reports that
even though some computer languages have been developed specifically for
beginners, as discussed in subsection 2.2.4, they are often biased in favour of
English-speaking users. While some code editing environments can display
symbols in different natural languages, as in Scratch (Resnick et al., 2009) and
Hedy (Hermans, 2020), Guo suggests that this may not suffice, and reports
that non-English learners would further benefit from, e.g., “instructional
materials [. . .] without culturally-specific slang” and “code examples that are
culturally-agnostic” (Guo, 2018, p. 2). This bias can be put into perspective
with the impact of typewriters developed by western countries during the
20th century, which forced some countries to adapt their alphabets to fulfil
constraints that were designed for the English language, i.e., requiring humans
to adapt to the machine, rather than the opposite (Arawjo, 2020).

Furthermore, learning and using a computer language is also impacted by
the knowledge and use of other computer languages. Studies from Scholtz
and Wiedenbeck (2009) and Shrestha et al. (2020) show that while the knowl-
edge of a computer language can be leveraged to facilitate learning another
computer language, this knowledge can also be a source of confusion and
negatively interfere, e.g., when the same syntax has a different meaning in the
two languages. This is reflected in the existence of a number of guides and
systems to learn a computer language that are specifically addressed to users
of another language, such as ADAPT (Fix and Wiedenbeck, 1996) for C or
Pascal users willing to learn Ada and Transfer Tutor (Shrestha et al., 2018)
for Python users willing to learn R. Learning a new language in terms of an
old one can also improve the understanding of the latter, as reported by a
number of students learning Java in C++ terms—an effect called retroactive
facilitation by the authors of the study (Bower and McIver, 2011).

Besides knowing other languages, being trained or working in a field rather
than another is also strongly affecting how computer languages are perceived
and conceived. Petricek (2016) and Arawjo (2020) both underline that the
fact computer science is rooted in mathematics—both theory-wise, as Turing
machines and lambda calculus both originate from research in mathematical
logic, and practice-wise36

36. Before they were used for business
purposes, computers were used to help
with computations in domains such as
ballistics. The ENIAC, one of the first
large-scale digital computers, was com-
mandited by the US army at the end
of World War II and programmed by
women to “code into machine language
the higher-level mathematics developed
by male scientists and engineers” (Ens-
menger, 2010, p. 35) to help calculate
artillery firing tables.—formed a heritage of practices and expectations

that lingers on nowadays. For example, Petricek highlights that in academia,
“many novel ideas that defy mathematization are left out because they are too
“messy” to be considered through the predominant formal perspective” (Petricek,

51

52

2016, §3.1), a claim exemplified by statements such as Leroy’s, who argue that
“one of the best things that could happen to software is to be the embodiment
of mathematical logic” (Leroy, 2020, p. 28). As a consequence, many com-
puter languages are still conceived so as to require and adhere to a certain
mathematical rigour, even though many of their users are not using them to
do mathematics. For this reason, and “despite their careful design and formal
foundations”, they “address only a modest portion of modern software and only
a minority of software developers” (Shaw, 2022, p. 1).

This mathematically-rooted view of programming has been increasingly
challenged in the past decades, leading to more diverse definitions of program-
ming languages, practices and systems (Ko, 2016; Bergström and Blackwell,
2016; Shaw, 2022; Jakubovic et al., 2023). From the 1960s on, languages
such as BASIC and Smalltalk were conceived with end-users in mind, rather
than traditionally-trained programmers.37 Unlike other computer languages 37. In spite of their success, some of

these visions have been mocked by cer-
tain computer scientists. For example,
Dijkstra is reported to have joked that
“It is practically impossible to teach good
programming to students that have had
a prior exposure to BASIC: as potential
programmers they are mentally muti-
lated beyond hope of regeneration” (Di-
jkstra, 1982).

from that time, which often required users to plan their programs well in
advance, deal with hardware-related considerations, and learn about numer-
ous language-specific features,38 these languages were designed with fewer

38. COBOL, for instance, includes in-
teger, float and complex number types
of multiple sizes and more than 300
keywords, resulting in a language that
eventually became hard to manage,
criticised for its bloated design (Con-
ner, 1984). This can be contrasted with,
e.g., the full syntax of Smalltalk being
summarised in less than a double page
at the beginning of the language’s man-
ual (Goldberg and Robson, 1983).

intrinsic concepts and so as to encourage users to create their programs
progressively and interactively. As an example, Smalltalk-80 was explicitly
designed so that “there are very few new programming concepts to learn in
order to understand Smalltalk” and “every component in the system that is
accessible to the user can be presented in a meaningful way for observation and
manipulation” (Goldberg and Robson, 1983, p. viii).

To further contrast with modern programming paradigms and languages
developed at that time, Noble and Biddle (2002) argue in favour of a post-
modern view of programming, defined by “the absence of an overarching
grand narrative” and an “eclectic tolerance in programming terms”, in which
“programs can exhibit faults in construction”. In the same line, Neff and Stark
(2002) report that the many programs that are now living in an ever-changing
ecosystem (such as the world wide web) should be acknowledged as somewhat
brittle and permanently beta. Overall, while programming has long been con-
sidered as a craft too, far off from a single and rigid mathematical conception,
this vision evolved from being vividly criticised by leading computer scientists
such as Dijkstra (1977) to becoming a goal when designing a programming
language—an activity that, according to Blackwell (2018), can also be “craft-
oriented and user-centred, rather than computationally-centred” (§3).

52

53

4
Interacting with computer languages

In a well-known analogy, Norman (2002) compares interacting with a com-
puter to bridging two gulfs. To communicate information to the computer,
we must plan our actions and bridge the gulf of execution. Conversely, to let
the computer communicate information to us, we must make sense of our
perceptions and bridge the gulf of interpretation. According to the model of
computer languages described in the last chapter, we only interact with com-
puter languages that have been encoded into a computer through substrates.
However, the theory remains agnostic regarding the nature of the gulfs we
must bridge to interact with a computer language. What meaning do we give
to the substrates we use, and what is the nature of the information we try to
interpret and act upon when we interact with a computer language?

This chapter builds onto the holistic model introduced in the previous
chapter to work towards a possible answer to these questions. Section 4.1
elaborates on this interactive aspect of computer languages by introducing a
new taxonomy of paradigms and techniques for interacting with computer
languages, which consists of four levels: graphemic interaction, morphosyn-
tactic interaction, semantic interaction and pragmatic interaction. To define
and illustrate each level, I rely on a variety of both classic and state-of-the-art
examples from the literature. Section 4.2 pursues by showing that these four
levels are in fact often used in combination, as do many established code
editors and experimental environments, therefore yielding a design space of
hybrid code editing paradigms.

4.1 levels of interaction

To better understand what constitutes the interactive aspect of computer lan-
guages, I propose to consider that the function of substrates is to let us interact
with every other aspect we otherwise cannot interact with. By giving us access
to the graphemes the encodings are made of, they let us interact with the im-
plementation of a computer language. By reconstructing the symbols and the
syntactic constructs, they let us interact with the specification of a computer
language. By reifying the concepts that the language builds upon and refers
to, they let us interact with the conceptualisation of a computer language.
Finally, by linking code to other resources that coexist in the same computa-

53

54

COMPUTATIONAL
CONTEXT

CONCEPTS

SYMBOLS & RULES

ENCODINGS

GRAPHEMIC INTERACTION
interaction with graphemes

MORPHOSYNTACTIC INTERACTION
interaction with symbols & syntax

SEMANTIC INTERACTION
interaction with concepts

PRAGMATIC INTERACTION
interaction with contextual data

RAW ENCODING

AMOUNT OF INTERPRETATION

SU
BS

TR
AT

ES
Figure 4.1. Scheme of the four levels of interaction with computer languages (left) induced by the holistic model of computer
languages (right). Arrows indicate the objects of interest at each level, whose interaction must be mediated by substrates.

tional context, they let us interact with information that contextualises the
use of a computer language. These four options constitute the four levels of
interaction with computer languages available to us: graphemic interaction,
morphosyntactic interaction, semantic interaction and pragmatic interaction
(Figure 4.1).39

39. The names and the definitions of
the four levels are inspired by differ-
ent hierarchical levels that sign sys-
tems and languages can be studied at in
semiotics and linguistics, briefly men-
tioned in subsection 2.3.1.

In this section, I define each of these levels and illustrate how
they capture the existing literature on interaction with computer languages.

4.1.1 graphemic interaction

Graphemic interaction qualifies interaction in which the objects of interest
are the graphemes that encode the computer language, i.e., the smallest mean-
ingful unit of an encoding, such as characters or bytes. In case of a language
encoded graphically, such as Piet (mentioned in subsection 3.2.2), in which
code is encoded as a bitmap image, the graphemes may also be considered to
be the pixels of the image.40 Graphemic interaction has been the first style of 40. In Piet, the coloured squares that

form the actual symbols of the lan-
guage can be larger than one pixel and
are purposely named codels to distin-
guish them from the pixels themselves.

interaction used to interact with computer languages and remains, by far, the
most common one today.

Very often, graphemes used in computer languages can be mapped to
characters, i.e., forming what is commonly known as text. This is reflected
by the immense and lasting popularity of text editors specialised for editing
computer languages, such as Visual Studio Code, Sublime Text, Vim and
Emacs, as well as those of more complex environments, such as integrated
programming environments (IDEs), as in Eclipse and JetBrains’ IDEs. When
the graphemes are bytes, however, specialised editors (such as hexadecimal
editors) can be used the edit a binary-encoded language. Such editors provide
slightly adapted interfaces that visually separate bytes, align them in columns,
and often help interpreting them by decoding them using a number of com-
mon encoding schemes. As an example, Figure 4.2 shows how the text and
hexadecimal editors look like in Visual Studio Code.

Text editors support a wide range of techniques for navigating and manip-
ulating text. In addition to supporting standard text editing techniques, such
as copy-paste and search-and-replace, text editors for computer languages

54

a. Text editor.

b. Hexadecimal editor.

Figure 4.2. Example of two common types of editors that use substrates designed for graphemic interaction. Both editor
show the same textually-encoded JavaScript file, and both are available in the Visual Studio Code editor. (a) The text editor is
the default editor of Visual Studio Code. It provides many text navigation and editing features for textually-encoded computer
languages, whose bytes are automatically converted to characters. (b) Microsoft’s hexadecimal editor is an alternative editor
that can be added to Visual Studio Code as a plugin. It displays uninterpreted bytes (shown as hexadecimal numbers), which
can be individually inspected and decoded using a variety of encoding schemes by selecting them.

56

often include techniques that have been specifically designed for computer
languages, such as keyboard shortcuts to jump to the last or the next delimiter
of a pair of brackets. Code thumbnails (DeLine et al., 2006) replace tradi-
tional scrollbars with a thumbnail of the code showing the region currently
shown in the text editor, which can be directly manipulated to move to reach
a different part of the time. Code Bubbles (Bragdon et al., 2010) let users open
multiple editors and arrange them on a canvas, which can display arbitrarily
small or large portions of text files to help users read and compare multiple
fragments of code in parallel. Code portals (Breckel and Tichy, 2016) achieve
a similar goal by allowing users to transclude text next to the code they are
editing, such as code from the same file or from a different file.

Besides parallelising views, several solutions to parallelise edits have also
been proposed. Multi-cursors (Miller and Myers, 2001) let users perform the
same sequence of edit operations at different locations in parallel, such as
for renaming several identifiers in a limited area too narrow to use search-
and-replace. Similarly, linked editing (Toomim et al., 2004) lets users declare
linked blocks of code, so that when the cursor is placed in one of the blocks,
other cursors are automatically added to the same position in the other blocks.
CReN (Jablonski and Hou, 2007) goes one step further as it automatically de-
tects identifiers within copy-pasted fragments of code by analysing the syntax
tree and propagates changes across copies when one of them is modified.

To complement manual parallel editing, several tools have been devised to
help users automate some of that work by working with patterns. As an exam-
ple, regular expressions can sometimes be used in search-and-replace forms,
and various systems have been created to help users write and understand
them, such as RegViz (Beck et al., 2014), Regulex (93) and Regexr (94), or
even synthesise them from positive and negative examples (Zhang et al., 2020).
In addition, more advanced systems have recently been devised to let users go
beyond the restricted class of patterns supported by regular expressions,. This
includes Sporq (Naik et al., 2021), which infers syntactic and semantic code
patterns from user-provided examples to search a code base, and reCode (Ni
et al., 2021), which rather infers how to generalise a manual edit performed
on one match to other matches in the context of search-and-replace.

Since all the main textual encoding schemes are widely supported every-
where, several tools that were designed for text, rather than textually-encoded
computer languages, can also be used to edit code in a graphemic fashion. For
example, several Unix utilities can be used for that purpose: grep can search
patterns in the code; diff can compute the difference between two versions of
the code; and sed and awk can search and replace textual patterns. Moreover,
by writing scripts that use such utilities, users can automate common types
of operations on textually-encoded languages. This idea has been reified into
the concept of patch—a description of a transformation that must be applied
to a file by some tool—which can either be written and applied manually, e.g.,
using diff and git, or generated automatically (Long and Rinard, 2016).

While the direct mapping of certain encodings to text may be the reason
why graphemic interaction is so common, as editing plain text requires almost
no preprocessing and can be done with any text editor, it does not always
hold. In code editors created with JetBrain’s MPS (Voelter and Lisson, 2014)
and Barista (Ko and Myers, 2006), the code is encoded and stored as a syntax

56

https://jex.im/regulex/
https://regexr.com/

57

tree augmented with the appropriate metadata, so that each node can be
displayed as an arbitrary graphical user interface. Yet, even though editing a
language as text in such an environment is therefore not the default, they both
attempt to mimic the experience of regular text editors. The documentation
of MPS (95) states that “The editor gives you an illusion of editing text, which,
however, has its limits. So you are slightly limited in where you can place your
cursor andwhat you can type on that position.” Similarly, Barista is described as
a tool that “provides designers of editors with a standard text-editing interaction
technique that closely mimics that of conventional text editors, overcoming a
central usability issue of previous structured code editors” (Ko and Myers, 2006).
Other possible reasons include the cultural habit of treating code as text, which
originates from the fact textual notations initially stemmed from the massive
use of typewriters at the time when the first programming languages were
conceived (Arawjo, 2020), as well as the global use of keyboards to interact
with computers, which can be very efficient when one masters them.

4.1.2 morphosyntactic interaction

Morphosyntactic interaction qualifies interaction in which the objects of
interest are the symbols of the computer language and the structures they can
form when they are combined, such as two identifiers and a binary operand
(three symbols) forming an expression (one structure). Accordingly, code
editors that focus on symbols and structures, rather than graphemes, are
often said to be structured editors. They often feature tree, grid or graph
substrates, two of which are depicted in Figure 4.3. While morphemic and
syntactic interaction could, in theory, be studied as two separate levels, the
two of them are so closely related, and the former is so rarely separate from
the latter, that there would be little to say about substrates and techniques
for morphemic interaction alone. I therefore decided to unite them together,
forming a common level of interaction.

The first tree substrates for computer languages were developed over 50
years ago to support the development of the first syntax-directed editors—a
specific kind of structured editors. Once configured for a particular language’s
syntax, a syntax-directed editor lets programmers build a program by itera-
tively selecting a non-terminal symbol, which acts as a “hole” in the program,
and replacing it by one of the production rules it can be replaced by according
to the grammar.41 The EMILY system (Hansen, 1972), introduced in 1970, 41. While holes have a purely syntactic

value in this definition, they can also
be given a semantic role, as in Hazel-
nut (Omar et al., 2017), therefore giv-
ing a semantics to operations in struc-
tured editors and allowing partial eval-
uation of programs with holes, instead
of merely displaying a syntax error.

is one of the first interactive tree substrate for computer languages. Editing
code in EMILY is always a two-step process: first, a user must select a node
in the tree; then, they must navigate a menu and choose either to expand
it (according to one of the grammar’s rules) or to replace it by a terminal
symbol. It was followed by a variety of systems for creating such editors,
including MENTOR (Donzeau-Gouge et al., 1980), the Cornell Program Syn-
thesizer (Teitelbaum and Reps, 1981), GNOME and MacGnome (Miller et al.,
1994), which introduced evolutions such as selecting nodes with the mouse
and editing the content of a node as text (which is parsed upon validation).

Block editors constitute a modern alternative to old-fashioned syntax-
directed editors. In a block editor, users directly manipulate and intricate
blocks with holes, sometimes shaped so as to indicate which type of block

57

https://www.jetbrains.com/help/mps/commanding-the-editor.html
https://www.jetbrains.com/help/mps/commanding-the-editor.html

58

can be used in each hole—hence their jigsaw pieces nickname (Figure 4.3a).
Block editors were initially designed to prevent novices from making syntax
errors by editing code as text in teaching environments such as Alice (Cooper,
2010) and Scratch (Resnick et al., 2009). Yet, Bau et al. (2017) report that they
have been used for many other purposes that education in the past decade,
ranging from writing proofs for Coq in HenBlocks (Boey and Adams, 2022),
to creating 3D models in Madeup (Johnson and Bui, 2015), to specifying the
protocol of user studies in TouchStone2 (Eiselmayer et al., 2019).

Just like the first structured editors, block editors evolved from being direct
manipulation-based only to being hybrids between blocks and text, yielding
a continuum of substrates in between text and blocks. GP (Monig et al., 2015)
explores different alternatives, such as allowing users to type the name of a
block at the cursor’s position to display a menu suggesting matching blocks
that can be inserted at that position. Pencil Code (Bau et al., 2015) displays
the code as it would be displayed in a textual substrate within the blocks, and
lets users hide them altogether to switch to a fully textual substrate instead.
Stride (Kölling et al., 2017) takes a different path by only treating certain
syntactic constructs as blocks, such as methods and conditions, and letting
users edit their content as text—an approach named frame-based editing.

Alternative paradigms rather suggest to only interact with tree structures in
a more local and on-demand fashion, often as a complement to a textual sub-
strate, instead of making it the default interaction technique. Structural code
selection (Hempel et al., 2018) highlights ranges corresponding to meaningful
syntactic elements in a textual substrate to help users apply syntax-directed
transformations using direct manipulation. Tiny structured editing (Hempel
and Chugh, 2020) brings structured editing to custom data structures by
inferring their structure from the way they are printed as text. Gradual struc-
tured editing (Moon et al., 2023) lets users manipulate the code as text while
displaying the obligations resulting from the temporary syntax errors intro-
duced by the current editing operation, such as missing terms, and helping
the user return to a syntactically-valid piece of code.

More generally, various techniques have been proposed for addressing
the challenge of interacting with tree structures. While the EMILY system
only allowed to fold/unfold subtrees, select what to replace a non-terminal
symbol with using menus, and type identifiers using the keyboard, later
systems progressively introduced more flexibility. For example, the Cornell
Program Synthesizer lets users directly type “expressions and assignment
statements” (Teitelbaum and Reps, 1981, §1), and MacGnome lets them edit
arbitrary subtrees as text. To further decrease the need for navigating the
syntax tree when editing the code as text, Sandblocks (Beckmann et al., 2023a)
supports text edits that cross the subtree that is being edited. For example,
inserting a + in a node representing a number literal in Sandblocks will
automatically suggest inserting the + sum operator (or the ++ increment
operator) in the surrounding expression, instead of requiring the user to
move the cursor up the tree beforehand. To parallelise edits in multiple
subtrees, Forest (Voinov et al., 2022) introduces multi-cursor editing for tree
substrates, along with a number of operations on syntactic cursors to navigate
and transform the syntax tree.

58

59

Grid substrates are an alternative to tree substrates, in which code is ar-
ranged in a one- or two-dimensional grid, although the cells are usually
represented and edited as text. The most famous application of grid substrates
is the spreadsheet interface, in which code written in the underlying language
is arranged in a two-dimensional grid interface. Although they are rarely
envisioned from a computer language point of view, all the general-purpose
office spreadsheet applications such as Microsoft Excel, Apple Numbers, Libre-
Office Calc and Google Sheets are in fact built on top of computer languages
similar to dataflow-oriented programming languages, in which the user ex-
presses constraints (the formulas) between values (the cells) and leaves the
responsibility of resolving them to the computer. Besides such applications,
grid substrates have also been used to describe relationships between data in
more tailored use cases, such as customising the look of a webpage (Litt and
Jackson, 2020) or creating a simple web application (Chang and Myers, 2014),
as well as to help low-vision and blind users perceive and navigate structures
such as nested loops and conditions (Ehtesham-Ul-Haque et al., 2022).

While the grid interface brings new interaction opportunities (such as
manipulating ranges, rows or columns all at once), they do not affect the ex-
pressivity of the underlying language. Several directions have been proposed
to let users extend the underlying language with custom functions, though
they mostly rely on graphemic interaction.42 Conversely, some techniques 42. This includes defining the function

using a separate language, such as XML
or Visual Basic, which must be edited
as text; as well as defining the func-
tion by combining functions built into
the language, e.g., using LAMBDA in Ex-
cel (Sarkar et al., 2022).

that were initially designed for textual substrates have recently been adapted
to work with grid substrates, including linked editing (Joharizadeh et al.,
2020) and portals (Williams and Gordon, 2021).

In cases in which the structure to represent does not map to a tree sub-
strate, which reifies hierarchies, or a grid substrate, which reifies alignments,
an arbitrary graph substrate can still be used to materialise more general
relationships between symbols and structures. Graph substrates are often
used to manipulate computer languages that describe streams, i.e., flows
of values with operators to transform them, by representing sources, sinks
and operators as nodes (also called patches) and connections between them
as paths between nodes, similar to notations used in electronics. Just like
many tree substrates, graph substrates often remove the possibility of making
syntax errors altogether, making them appropriate for users who are not
seasoned programmers, such as artists. As a consequence, they appear in a
number of creative systems, such as Blender’s node editor (96) for config-
uring materials, Unreal Engine’s Blueprint system (97) for scripting games,
audio-processing oriented languages such as Max/MSP and Pure Data (Fig-
ure 4.3a), and Dynamic Brushes’ brush configuration system (Jacobs et al.,
2018). Graph substrates have also been combined with textual substrates to
form yet another sort of hybrid editors, as demonstrated by programming
environments such as Nodes (98) and Enso (99), in which the structure
of the code is represented by a graph, but the content of each node can be
edited as text.

Despite their many theoretical advantages, such as preventing syntax errors
and helping users visualise structures and relationships that connect symbols
together, structured editors have not been very successful beyond educational
use cases, as previously noted by Minör (1992) more than 30 years ago. Al-
though some of the future work envisioned by Minör at the time, such as

59

https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html
https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/Blueprints/
https://nodes.io/
https://enso.org/

60

direct manipulation-based editors (akin to the block editors presented above),
was indeed completed, the benefits of pushing expert users to switch from
text editors to structured editors remain unclear. This is best exemplified by
a recent article from Beckmann et al. (2023a), who observe that despite the
work put into improving the usability of the Sandblocks editor, “compared
to conventional text editors”, participants of their user study “only took on
average 21% (JS), 34% (Clojure), and 95% (RegExp) longer” to perform simple
changes in short pieces of code.

4.1.3 semantic interaction

Semantic interaction qualifies interaction in which the objects of interest are
the concepts that the code written in a computer language refers to. These
concepts can be intrinsic concepts, such as when the language is used for
meta-programming, or extrinsic concepts, in which case their link with the
code is entirely subjective. While the look and feel of certain substrates
used for semantic interaction can resemble those used for morphosyntactic
interaction, the intent differs. Substrates for morphosyntactic interaction reify
the structure of the language itself, such as the syntax tree of a piece of code,
whereas those for semantic interaction reify the meaning we give to a piece
of code. For example, consider a structure containing three numbers in a
programming language. From a morphosyntactic point of view, this structure
is just an assembly of three numeric values; whereas from a semantic point of
view, it might represent a concept such as a RGB colour, a 3D position or a
date in a calendar, depending on how we interpret it. As a consequence, there
is no clear taxonomy of semantic substrates, as they can be as diverse as the
notations we may use to represent and interact with the concepts we refer to
using computer languages.

Common candidates for semantic substrates are standard data structures,
such as lists, trees and tables—not as representations of the language’s syn-
tax, as in morphosyntactic substrates, but as opinionated interpretation of
objects that do not have this specific meaning according to the language’s
specification. They have been demonstrated in a number of environments.
INCENSE (Myers, 1983) and heterogeneous languages (Erwig and Meyer,
1995) constitute some of the earliest examples of programming systems with
semantic substrates I am aware of, using box-and-arrow diagrams to represent
records and pointers between them, state machines and AVL trees within a
textual substrate. Similar representations are used in Vital (Hanna, 2002), an
environment for editing Haskell code, which displays data structures such
as lists, arrays and trees as labeled rectangles connected by wires that can be
directly manipulated to transform the code. To address the lack of built-in
support for representing code describing state machines in environments
for editing Java code, the SwingStates library (Appert and Beaudouin-Lafon,
2006) includes a static method to visualise the machine described in the code
as a means to help users analyse and debug their code, although it cannot be
modified. A more interactive state machine can be found in Causette (Martin
et al., 2022), a system for editing Smala code in which the user can draw a path
across nodes to specify the causal order in which they should be displayed.
JetBrains MPS (Voelter and Lisson, 2014) includes substrates for concepts

60

a. Scratch. b. Pure Data.

Figure 4.3. Two implementations of the Fibonacci sequence using morphosyntactic interaction. (a) A program written in
Scratch that was built using a tree substrate. Each block is drag and dropped from a panel and configured using form elements
such as dropdown menus to select variables and text fields to input numbers. (b) A program written in Pure Data that was
built using a graph substrate. Each patch is inserted on the canvas with a keyboard shortcut. The command it executes is
written using the keyboard, and its inlets and outlets are connected to other patches using the mouse.

a. Colour. b. Grid layout. c. Animation timing.

d. Box model. e. Font.

Figure 4.4. Five semantic substrates for concepts used in CSS available in Mozilla Firefox’s developer tools. (a) A colour
picker representing a colour value. (b) A wireframe structure representing a grid layout within the webpage itself. (c) A curve
representing the timing function of a CSS animation. (d) A set of nested rectangles representing the dimensions of the margin,
border, padding and content boxes of an element. (e) A form to visualise and configure several properties of a font.

62

such as decision trees and state machines, either in the form of a grid or in the
form of a box-and-arrow diagram, which can easily be used in code editors
created with MPS, such as mbeddr for the C language (Voelter et al., 2019).
Alectryon (Pit-Claudel, 2020) turns transient data structures into persistent
and visual substrates, e.g., by representing a red-black tree as a coloured tree
diagram, just as visual syntax for Racket (Andersen et al., 2020). mage (Kery
et al., 2020), Livelits (Omar et al., 2021) and The Gamma (Petricek, 2020)
let users visualise data tables using grid substrates, some of which support
transforming the underlying structure, either by directly manipulating the
grid or by using menus. Relationships between data points can also be turned
into a substrate, typically using a 2D visualisation such as a bar plot or a
scatter plot, as demonstrated in mage (Kery et al., 2020) and B2 (Wu et al.,
2020).

Another common type of concept that have benefited from semantic sub-
strates are visual properties, such as colours and dimensions. Colour pickers,
in particular, are one of the most widespread semantic substrates for manipu-
lating the concept of colour, common to many computer languages. They are
available in several code editors, such as Visual Studio Code for CSS colours
and IntelliJ IDEA and Eclipse with Graphite (Omar et al., 2012) for Java’s
Color objects, in which the user can invoke a colour picker when creating or
modifying a piece of code representing a colour. In some cases, colour pick-
ers are complemented by other substrates for visualising and manipulating
other style properties, as in webpage inspectors, such as Poirot (Tanner et al.,
2019) and those of web browsers such as Firefox and Chromium, as well as in
Codelets (Oney and Brandt, 2012). For example, in Firefox’s inspector, box
models of DOM elements can be represented as nested rectangles represent-
ing the content, padding, border and margin boxes, with text fields allowing
to edit their dimensions. Certain layouts, such as flexbox and grid layouts, can
be represented by a wireframe representation of their structure.43 Animation 43. Such structures can also be printed

on top of the webpage elements it con-
tains, rather than in the developer tools’
panel, in which case the substrate also
supports a form of pragmatic interac-
tion (introduced below).

timing functions can be represented by curves that can be manipulated with
the help of handles, and font properties can be modified with the help of
a dedicated form interface. The related substrates are shown in Figure 4.4.
Other examples include reification of visual properties as standard form ele-
ments. Moreover, some of these concepts can also be reified as standard form
elements, such as colour and blur effects as visual switches in mage (Kery
et al., 2020) and brightness and contrast as sliders in Livelits (Omar et al.,
2021).

Various other concepts that are harder to categorise have been turned into
semantic substrates as well. Form descriptions can be represented as forms
themselves, helping users create, modify and delete fields interactively (An-
dersen et al., 2020). Components forming electronic circuits described in
Python are visualised as box connected by wires in IntelliJ with the help of a
plugin (Lin et al., 2021). Drawings of quantum circuits are used in place of
Python code to write programs for quantum computers in Notate (Arawjo
et al., 2022). Value dependencies between nested loop iterations are repre-
sented by diagrams in Clint (Zinenko et al., 2015), which can be manipulated
to transform the loops in order to parallelise their execution. Ownership and
borrowing of Rust variables at different points in the code is represented as a
diagram in RustViz (Almeida et al., 2022), which maps a number of possible

62

63

scenarios to visual marks and annotations. Similarly, static call graphs of
Java programs are represented as diagrams in Reacher (LaToza and Myers,
2011), which can be navigated and searched, and whose paths can be inter-
actively expanded to show more details when desired. Game boards whose
state is described using a computer language can be visually depicted, as
demonstrated for, e.g., Tsuro (Andersen et al., 2020) and Conway’s Game
of Life (Pit-Claudel, 2020). Finally, collections of simple geometric shapes
created with p5.js (100) in JavaScript, such as rectangles and triangles, can
be directly drawn and manipulated on a canvas in a modified version of the
p5 editor (Mcnutt et al., 2023).

4.1.4 pragmatic interaction

Pragmatic interaction qualifies interaction in which the objects of interest
are other artifacts living in the same computational context that are related
to the computer language. This includes the runtime state of the program
generated from the code, e.g., the value of a variable; the data it takes as
input, e.g., a CSV file referenced in the code; or the output it produces, e.g.,
the rendered version of a HTML file. While some of the substrates used for
semantic interaction already exploit such information, the difference lies in
the fact that they do it as a technical necessity—for example, to display a
colour picker when the colour is defined using variables in addition to literal
numbers. In contrast, substrates used in pragmatic interaction aim to let
users see and manipulate the runtime or output data for what it is. When
these substrates are updated in real time, semantic interaction can further
be qualified as being live, though this term may refer to different levels of
liveness, as discussed by Tanimoto (1990, 2013). Examples of environments
supporting some form of pragmatic interaction are shown in Figure 4.5.

Using a document or a scene described using a computer language has long
been used in What You See Is What You Get (WYSIWYG) environments, in
which users interact with a substrate representing the document as it should be
viewed or printed. For example, user interface builders such as Visual Studio’s
XAML Designer (101), Android Studio’s Layout editor (102) and XCode’s
Canvas (103) let users create a user interface by directly manipulating stan-
dard components that compose them, such as buttons and text fields, whose
invisible properties can often be edited using a complementary inspector
panel containing appropriate semantic substrates. Similarly, webpage editors
such as Adobe Dreamweaver (104) allow to modify the code by interacting
with the rendered webpage, without having to switch to a textual substrate.
The same approach has been demonstrated for other kinds of text-centric
documents, such as LATEX documents edited with Compositor (105).

A variant of this approach consists in interacting with a document that is
not described within the code itself, but the result of its execution, possibly
parametrised by other input data. This kind of environment is less common,
as mapping changes in a programmable output back to changes in the code
that generated it can be challenging. In his Inventing on Principle (106) talk,
Bret Victor showed some possible applications of this idea. In particular, he
demonstrated two environments in which the output of JavaScript code is
instrumented to be interactive: one that draws a tree, and one that defines

63

https://p5js.org/
https://learn.microsoft.com/en-us/visualstudio/xaml-tools/creating-a-ui-by-using-xaml-designer-in-visual-studio
https://developer.android.com/studio/write/layout-editor
https://developer.apple.com/documentation/xcode/creating-your-app-s-interface-with-swiftui
https://www.adobe.com/products/dreamweaver.html
https://compositorapp.com/
http://worrydream.com/InventingOnPrinciple

64

a platform game. In the first environment, each pixel of the drawing can be
individually pointed at to highlight the line of code containing the instruction
that drew it, and conversely. In the second environment, sequences of inter-
action with the game’s character (such as key presses to make it move and
jump) can be saved, previewed and replayed, in such a way that modifying the
code immediately updates the preview in the game, therefore showing, e.g.,
how changing a parameter affects the path of the character, how far it jumps,
where it lands, etc. However, although these outputs are indeed the results
of a program, they are still domain-specific: each of Victor’s environment is
specifically crafted for a particular situation and unlikely to work in other
contexts, even if the computer language stays the same.

This interaction paradigm was later theorised by Chugh as output-directed
programming (Chugh, 2016).44 According to Chugh, systems implement- 44. It was initially introduced under

the term prodirect manipulation, but
later switched to output-directed pro-
gramming. I only use the latter in this
thesis.

ing this paradigm should have three properties: the user should be able to
directly manipulate the output of the code (live synchronisation); such manip-
ulation should be automatically reified in the code with the help of program
synthesis (synthesis); and the user should remain able to edit the code di-
rectly to perform changes that cannot be initiated from the output alone,
temporarily breaking the synchronisation with the output if need be (ad
hoc synchronisation). Output-directed programming has been successfully
demonstrated in the Sketch-n-Sketch system, both for HTML code rendered
as a webpage (Mayer et al., 2018) and SVG code rendered as an image (Hempel
et al., 2019).

A similar approach was taken in Transmorphic (Schreiber et al., 2017), in
which the code describing user interface elements can be modified by directly
manipulating the latter—this time with the help of bidirectional lenses (Foster
et al., 2007), which explicitly describe how to backpropagate a change in the
runtime state. More generally, implementing output-directed editing systems
requires to retain provenance information: given a piece of output (a pixel, an
element in a webpage, etc.), there must be a way to determine which pieces of
code generated it, and, if need be, how that generation occurred. The concept
of provenance, which was initially introduced for databases (Cheney et al.,
2009) before being applied to computer languages—such as general-purpose
programming languages (Acar et al., 2013)—has also found applications in
the field of data visualisation, in which provenance has been described as a
means for creating interactive data visualisations (Psallidas and Wu, 2018)
and used to help implement brushing and linking implicitly (Perera et al.,
2022).

In addition to linking the code with an output that is already visible, prag-
matic interaction can also reify the internal state of the program resulting
from the interpretation of a computer language (or the execution of a pro-
gram compiled from the code) according to the language’s specification, as
a means to communicate that information—which is normally hidden—to
the user of the computer language. This type of pragmatic interaction is
particularly common in experimental debugging environments. The On-
line Python Tutor (Guo, 2013) helps analyse what happens in the computer’s
memory during the execution of a Python program, step-by-step, by display-
ing the heap and the stack as diagrams. Omnicode (Kang and Guo, 2017)
goes one step further by continuously running Python code and updating

64

a. Platform game editor.

b. Sketch-n-Sketch.

Figure 4.5. Two live programming environments supporting a form of pragmatic interaction with their respective computer
languages. (a) A code editing environment presented by Victor in his Inventing on Principles talk. The user can record the
execution, then pause and rewind it using the slider displayed at the top. Furthermore, by clicking the button at the left of the
slider, the trail of positions taken by the character is shown and updated in real time if some code that affects it is modified.
(b) A bidirectional programming environment called Sketch-n-Sketch (Hempel et al., 2019). The user can modify the SVG
picture displayed on the right by editing the code as text on the left, as well as modify the code by interacting with the picture
on the right using direct manipulation and tools, as in traditional vector graphic editing software.

66

user-defined plots showing relationships between any two variables across
execution steps. Light Table’s probes, previously shown in Figure 3.6, support
inspecting the runtime value of expressions as text directly within a textual
substrate. Poker (Descheemaeker et al., 2021) demonstrates how probes can
be made configurable and displayed differently in a stream-oriented language
by letting users decide what stream they would like to observe, and how
they would like to display the values, e.g., by showing a gauge instead of a
raw number. Projection boxes (Lerner, 2020b) work at a different scale, by
displaying the evolution of the values taken by variables in the local con-
text next to the code, e.g., in the body of a Python function, an approach
named local live programming. It was later extended with loop seeds (Lerner,
2020a), which let users specify example values for variables and watch how
each iteration of a loop transforms them. Log-it (Jiang et al., 2023) turns
log messages into streams of events which can be read per-stream (instead
of in a single aggregated list, as in terminals) and lets users visualise them
graphically, e.g., using a bar plot to compare successive values, and in context,
e.g., by attaching a stream to an element on a webpage. CrossCode (Hayatpur
et al., 2023) lets users interactively explore the execution of JavaScript code by
replacing abstract identifiers by concrete values and drawing the path taken
at runtime in conditions and loops while highlighting how each step affects
data structures such as lists, e.g., by showing how elements are reorganised
when the list is permuted. Skyline (Yu et al., 2020) and Glinda (DeLine, 2021)
show live information about the training phase of machine learning models,
mainly in the form of charts; some of which the user can interact with to
modify parameters in the code.

Besides being made visible to the user, runtime information can also be
used to write and transform code, similar to what output-directed program-
ming offers compared to regular live programming, in which the output of
the code is updated in real time but remains static. One way to implement this
approach is to directly use runtime data as building blocks for writing code.
This idea was demonstrated by Subtext (Edwards, 2005), a programming
environment and a language in which the code and the runtime make one,
as all the data the code manipulates must exist in the environment, as in
Smalltalk, Pharo, or most spreadsheet applications. As such, writing code in
Subtext is equivalent to creating new data by directly manipulating and trans-
forming existing pieces of data. In a similar fashion, Maniposynth (Hempel
and Chugh, 2022) lets users write OCaml code by directly manipulating
functions and runtime values, which can be dragged and dropped onto one-
another to create more complex expressions. These expressions are then
reified as let expressions in the code, which appear in an adjacent textual
substrate that is updated in real time (and can also be edited as text, as in
traditional OCaml programming).

A slightly different approach is to let the user help the system derive code
from runtime information in a more interactive manner, by letting users
exploit runtime values to provide positive or negative examples to the system.
This is the approach taken by programming-by-example systems, which have
been developed since the 1980s (Lieberman, 2001). Among recent work on
this topic, SnipPy (Ferdowsifard et al., 2020) and LooPy (Ferdowsifard et al.,
2021) build on top of the aforementioned projection boxes to implement

66

67

small-step live programming-by-example, an approach in which the user can
not only preview the runtime value of variables that have been specified in the
code or that can be computed, but also input examples of values for variables
that still have to be defined and let the system synthesise their definition
to match user-provided examples. For example, if the system displays that
the runtime value of the variable countries in the current scope is the list
["France", "Spain", "Italy"] and the user tells the system the variable
abbr_countries should contain the list ["FR", "SP", "IT], the system
may suggest assigning an expression to abbr_countries which, e.g., maps
countries by extracting the first two characters of each item and making
them uppercase.

The rapid rise of conversational agents in code editing environments, sup-
ported by systems such as GitHub Copilot and ChatGPT, may eventually
result in the development of increasingly collaborative code synthesis tech-
niques. For example, in a system that continuously executes the code, yielding
a live output, the user may write most of the code by telling the system which
high-level changes they would like to see, according to what they observe and
what their goal is; and the system may attempt to synthesise code performing
the requested changes, possibly by asking extra information to the user if
need be. Currently, code editors only seem to, at best, integrate chatbots
able to exploit knowledge about the entire code base, as do GitHub’s Copilot
Chat (107) and Cursor (108). Yet, recent experiments with ChatGPT by
Geoffrey Litt (109) and Philip Guo (110), who respectively created a web
application and a browser extension by asking ChatGPT to write code, trying
out the code manually, and reporting on successes or issues, demonstrate the
potential of exploiting not just static data, such as the local code base, but
dynamic data too, such as runtime errors that must be fixed.

4.2 cross-level interaction

As demonstrated in the previous section, we can interact with computer
languages at different levels of interaction, each level reflecting a different
aspect of the language we want to interact with. Yet, in practice, different
levels are mixed together in a single code editing environment, sometimes
qualified as hybrid in the literature. This section presents different ways in
which levels of interaction can be combined to interact with a single computer
language by classing them into two broad categories: combining levels within
one substrate and combining levels across multiple substrates.

4.2.1 multiple levels within a single substrate

A first approach is to extend a substrate primarily intended for a certain level
of interaction in a way that conveys information about or supports interaction
with objects of interest that correspond to another level of interaction. One the
most widespread application of this approach is to augment textual substrates
to support interaction beyond the graphemic level of interaction they are
mostly used for. It often relies on visual channels left unconstrained by the
shape and spatial organisation of the characters, such as the colour of the
text, corresponding to the cognitive dimension Green (1989) calls secondary

67

https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat
https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat
https://cursor.sh/
https://www.geoffreylitt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms
https://www.oreilly.com/radar/real-real-world-programming-with-chatgpt/

68

notation and that the literature and the documentation of text editors often
call decorations or augmentations.45

45. The documentation of code editor
such as Visual Studio Code (111) and
CodeMirror (112) use the term deco-
rations, whereas Sulír et al. (2018) use
the term augmentations.

In code editing environments, textual substrates meant to represent code
are very often extended so as to convey morphosyntactic information, by
helping the user distinguish tokens of different syntactic nature and identifiers
of different types—two techniques respectively called syntactic highlighting
and semantic highlighting. It has also been used to connect graphemic and
pragmatic interaction—such as by blurring the text or animating the colour of
its background—to convey information about the active value in a sequence
of numbers in a live coding environment (Roberts et al., 2015). Other forms
of extensions have also been used, including adding text and icons in the
margin (Lieber et al., 2014) and small-scale data visualisations in between
characters (Hoffswell et al., 2018) to convey information related to the execu-
tion of the code. In addition, a few user studies suggest that this type of visual
augmentation can help users understand code (Rambally, 1986; Asenov et al.,
2016), in line with arguments made by Conversy (2014) on exploiting visual
channels in code editing environments so as to avoid redundancy.

Other substrates than text are also concerned by this approach, as already
suggested in subsection 4.1.2, in which I report that several environments
that make use of a tree, grid or graph substrate to let users interact with code
in a morphosyntactic manner also rely on textual substrates and graphemic
interaction to some extent. For example, MacGnome (Goldenson et al., 1992),
GP (Monig et al., 2015) and Stride (Kölling et al., 2017) all use tree substrates
to present code to the user while letting them type code located within nodes
as text. Hybridisation can also concern other levels, such as morphosyntactic
interaction and semantic interaction, as suggested by Vasek (2012), who
proposes to convey semantic information—such as types representing very
specific concepts—by introducing new shapes for blocks and holes in order
to visually convey this information to the user.

This approach, however, is limited by the number of information channels
that can be exploited, in accordance with the constraints imposed by the
chosen substrate. For example, the shapes of the characters and the positions
of the nodes can hardly be used for other purposes than the one they were
intended for in textual and tree substrates, as they respectively convey in-
formation about an order and a hierarchy, properties that are essential for
users to readily use these substrates in ways they are familiar with. Moreover,
even when a visual channel is free, it might be used in idiosyncratic ways that
the system is unable to understand. For this reason, the position of nodes in
graph substrates is rarely given a semantic purpose in the computer language
it represents, even though some users may decide to put nodes at particular
positions in order to store information they—and only they—know how to
encode and decode. For this reason, relying on a single substrate is sometimes
not enough to combine two or more levels of interaction in a meaningful,
usable way.

68

https://code.visualstudio.com/api/references/vscode-api#TextEditorDecorationType
https://codemirror.net/examples/decoration/

69

4.2.2 multiple levels across multiple substrates

In response to the limitation I just mentioned, a second approach consists in
multiplexing levels of interaction across several substrates that can be used in
parallel by the user, who is free to switch between them. Unlike extending a
single substrate, this approach has the benefit of presenting information and
processing input in complementary ways, though it also comes with the risk of
spreading information across a larger perceptual space and requiring users to
switch their attention focus and learn how to use more diverse representations.

In some code editing environments, code can be edited in a text editor
and in a tree or graph of nodes, located in two separate panels, i.e., without
combining the two into a single substrate. For example, in an attempt to help
students learn how to program switch from fully morphosyntactic view of
the code, represented as a tree of blocks similar to Scratch (Resnick et al.,
2009), the Alice system (Cooper, 2010) also let users display the code as text,
in a read-only “Java-like” mode in which students “would not be typing code
or [have] to deal with open and close brackets, and semicolons”, but would
“at least be seeing code containing these syntactic structures” (Cooper, 2010,
§2.1). Other systems, such as Enso (99), Nodes (98) and natto (113), go
one step beyond by offering their users a graph substrate to work with the
high-level organisation of the code, which is split into smaller chunks or
modules that are meant to be edited as text individually through a dedicated
text editing interface.

Another common combination can be found in environments that display
code on one side of the screen, and the output generated by interpreting the
code on the other side, with more or less links between the two. The simpler
approach consists in not making any link and letting the user write and read
code at the graphemic or morphosyntactic level only, and observe the effects
of its execution at the pragmatic level only. It is often used in complement to a
text editor for document description languages such as HTML, Markdown or
LATEX and live coding systems such as Hydra (114), in which the output docu-
ment or the visual animation generated by interpreting the code is displayed in
a separate panel or window. A slightly more evolved variant consists in linking
parts of the text with parts of the output, as do SyncTeX (Laurens, 2008) for
LATEX, which links the text to the generated PDF, and the tree view of the DOM
in the developer tools of all the major web browsers today, which links tree
nodes to regions of the rendered webpage. Finally, the most advanced variants
not only relate regions of the code with regions of the output they generate,
but also let users modify the code by interacting with its output in an output-
directed programming fashion. Besides in Sketch-n-Sketch (Mayer et al.,
2018; Hempel et al., 2019), this approach has also been demonstrated in CAD
software, in which the code describing a 3D object can be edited both in a text
editor and by directly manipulating parts of the rendered object in a separate
3D view (Mathur et al., 2020; Cascaval et al., 2022; Gonzalez et al., 2023).

Whether they are supported by a single substrate or by a collection of sub-
strates, combinations of multiple levels of interaction are becoming more and
more common, beyond traditional techniques such as syntax highlighting
and academic prototypes, as shown by hybrid environments emerging on
the professional market such as Enso (99) and JetBrains MPS (Voelter and

69

https://enso.org
https://nodes.io/
https://natto.dev
https://hydra.ojack.xyz
https://enso.org

70

Lisson, 2014). Yet, although this chapter complements the holistic model of
computer languages, which explains why we must interact with computer
languages through one or more substrates, by explaining what kind of in-
formation these substrates help us perceive and manipulate, it still does not
explain how interactive systems let us interact with encodings and other
resources through interaction, a matter I cover in the next chapter.

70

71

5
Projecting computer languages

By decomposing computer languages into five different aspects, chapter 3
highlighted the distinction between their existence as resources in a com-
puter’s memory, which the machine can process but the human cannot even
perceive, and the reification of such resources as substrates, which are opin-
ionated views of these resources that humans can interact with. Then, by
identifying the different levels of interaction with computer languages sub-
strates give us access to, chapter 4 showed that we can interact with a piece of
code in different ways, using either a single substrate or multiple substrates.
However, I have yet to discuss the nature and the implementation of the links
that entangle resources and substrates together, as they are fundamental to
understand what has been done so far and what is yet to be explored in terms
of how we implement techniques for interacting with computer languages.

This chapter bridges this gap by focusing on the concept of projection,
which is the action of mapping resources onto a substrate. As such, it com-
pletes chapters 3 and 4, which respectively explain why we must interact with
computer languages through substrates and what these substrates let us do,
by explaining how they work. Section 5.1 defines a series of concepts I use
to describe computer systems—their resources, their dependencies and the
dependency graph they form—and projections for making them interactive—
their source, their representation and their mapping. Section 5.2 presents
seven properties of projections, which help progress towards a design space
of projections to classify existing ones and explore novel ideas in a systematic
fashion. Section 5.3 reviews the evolution of implementation strategies for
projecting computer languages over the last seven decades, distinguishing
between two major approaches, uniform projection and protean projection.
Section 5.4 concludes by presenting the subspace of the design space of pro-
jections I focus on in the rest of this work and explaining how it fits in the
current research agenda on projecting computer languages.

5.1 definitions

This section defines the concept of projection, to which I give a central role in
our interaction with computer systems in general, and in our interaction with
computer languages in particular. To that end, I first define a computer system

71

MARKDOWN

TEXT

TEXT

CANVAS

HTML

CSS

FONT

10001000111
010111010011
100111111111
00110100100
001001111100
000111001001
100011111111
010100000111
11001001010
111100010100
10000110110
01010010100
101001101110
101000011110
100011100110
001101110100
110010111110
110110001110
001111110011
000111000110
101110111111
00010001101
01100000110
000111001101
000011111010
00100100001
00110110010
00100001011
001101111001
100110111001
10100001100
11011000010
01000001110
101111110101
00001100000
01000001010
000101110111
01100001010
00010100001
10100001000
101111001101
000101011110
10000110000
10010001011
00110001001
001011000111
01101011010
101100110011
111111010101
000101111011
001001110111
11000000010
110010111111
100111100110
10101110100
101101110010
000010011011
111000010001
10100011010
111101011010
00110011000
00001000001
10001101010
111010001001
111100000010
00000001011
01010110011
010011111000
01010010100
01011101001
011001011001
111101101101
10100010011
01011001100
011110011111
110110000110
011011000111
010110101111
00110101010
111110011010
011101101011
110010110111
111110000010
01001100100
111011111110
001111001111
011111000101
110111001001

mechanically
modify itself

MEMORY

USER

perceive and
act upon

perceive and
act upon

a. Scheme of the entire interactive system.

MARKDOWN

TEXT

TEXT

CANVAS

HTML

CSS

FONT

Source Mapping Representation

b. Focus on the system’s projections.

Figure 5.1. Analysis of a hypothetical system for authoring webpages using the glossary defined in this section. Pages can be
written in Markdown and transpiled into HTML code, which can both be edited as text in a text editor. The resulting HTML
code can be combined with other resources, such as CSS code and font files, resulting in a webpage that can be displayed
in a web browser. (a) Scheme of the entire system. The graph shown in the middle of the scheme is the dependency graph
of the system. Nodes in blue are resources; nodes in orange are substrates; and dotted areas are environments that group
substrates together. Plain arrows represent dependencies that are automatically enforced by the system, whereas dotted
arrows represent dependencies that are enforced only when requested. Thick arrows represent the only two ways the system’s
memory can be modified: either by the system itself, according to instructions stored in its memory (assuming the system
is implemented using a Von Neumann architecture), such as when transpiling Markdown code into HTML code; or by
interacting with the system through substrates, such as when pressing a key on a keyboard in a text editing environment. (b)
Focus on three projections available in the system. Each projection, shown as a purple area (a subgraph of the dependency
graph), is composed of a source (the projected resources, in blue), a representation (the substrate they are projected onto, in
orange) and a mapping (the dependencies between the source and the representation, represented by black arrows).

73

in terms of three concepts that are fundamental to this theory: resources,
dependencies and dependency graphs. I then apply these concepts to the
particular case of interactive computer systems, leading me to define the
notion of projection by defining the three key parts that compose them: the
source, the representation and the mapping. Figure 5.1 applies this glossary
to describe to a hypothetical system for authoring webpages, with a focus on
three of the system’s projections.

5.1.1 computer system

To properly define the process by which we interact with computer systems,
I must start by defining the components that, I argue, are fundamental con-
stituents of all computer systems, interactive or not. In the definition I choose
to present here, the two fundamental constituents of a computer system are
its resources and the dependencies between them which, put together, form a
dependency graph that functionally defines a computer system.

Resource

A resource is a unit of information managed by a computer system
that can be encoded in and decoded from the computer’s memory
according to some encoding scheme.

Resources correspond to meaningful pieces of information for a given system
that can be read from and/or written in the memory of a computer. They
correspond to the definition I previously gave in subsection 3.2.3, which
further illustrates the concept with examples, such as files and objects in
operating systems and clips and subtitles in video editing systems.

Dependency

A dependency is a constraint between resources located in the same
computational context that must be enforced by the computer system.

Dependencies are fundamental to any computer system, in that they ma-
terialise logical constraints between memory regions that are enforced by
sequences of computations performed by the computer, in accordance with
the atomic instructions that can be executed by its processing unit. As such,
every dependency must correspond to a computable function—in the sense
of the Church-Turing thesis (Copeland, 2023)—in order to be implemented
within a computer system.

Depending on the nature of the resources, dependencies can range from
low-level mathematical relationships to high-level descriptive mappings. For
example, a dependency of a colour encoded in an hexadecimal format, e.g.,
the string #ff0000, on a colour encoded in RGB, e.g., the numeric triplet
(255, 0, 0), is rather low-level, as it can be expressed in a sequence of fun-
damental operations, such as converting a number from a base to another
and concatenating strings together. Conversely, in a system in which code is
continuously transformed into another resource representing a document,
such as HTML and CSS code that is continuously rendered as a webpage in
a web browser, the dependency of the document (the output) on the code

73

74

(the input) is high-level, as it requires a lot of complex operations to turn the
latter’s encoding into the former’s encoding.

Dependency graph

The dependency graph of a system is the directed graph (R, D) in which
the set of vertices R includes all of the system’s resources and the set
of arcs D includes all of the system’s dependencies.

The dependency graph of a computer system is a way to specify and implement
what the computer must automate in the system, akin to, e.g., operationalising
the system’s behaviour using a state machine, as in SwingStates (Appert and
Beaudouin-Lafon, 2006), or using a reactive graph, as in Stratify (Beaudouin-
Lafon, 2023). It summarises the data and behaviour of a given computer
system in a single conceptual object.

5.1.2 projection

Computer systems as described above are enough to automate transforma-
tions between resources, but not enough to let us interact with them. Doing
so requires to interact with input and output devices through substrates, as
previously explained in subsection 3.2.4. To be interactive, a computer system
must therefore map resources onto a substrate and vice-versa, in a process I
call projection, in which resources are projected onto a substrate. The term is
inspired by the concept of projectional editor, in which the code is encoded
as a syntax tree and represented in an arbitrary manner, as introduced by
Simonyi (1995). Given the dependency graph of a system, a projection corre-
sponds to a subgraph formed by resources that are being projected, the source;
a resource corresponding to the state of the substrate we can interact with, the
representation; and the set of transformations that enforce the dependency of
the latter onto the former, the mapping.

Source

The source of a projection is the resource, or the set of resources, that
contains the data the projection depends on.

Regarding computer languages, the most obvious data at the source of a
projection is code written in a computer language, either in its raw, encoded
form, or further transformed into a data structure, such as a syntax tree. The
source may also include the runtime state and the output of the program
generated by the interpretation of the code, such as the value taken by a
variable at runtime and the result of a computation. It may also depend on
other data, such as an external file that contains data read by the code or online
resources referenced in the code, which may be specified as command-line
arguments or as paths and URLs in the code.

The resources directly connected to the substrate by a transformation con-
stitute the direct dependencies of the projection. Moreover, although they
are not part of the projection per se, the resources that direct dependencies
depend on are also of interest when studying a projection. They constitute

74

75

a. Apple Numbers. b. Compositor.

Figure 5.2. Two examples in which a representation supporting a lower level of interaction is used to complement a
representation supporting a higher level of interaction. (a) In Apple Numbers, double-clicking a cell of the grid displays
a projection of the formula that produces the cell’s content, which can be edited as text. (b) In Compositor, in addition to
directly editing the output document, users can also display and edit the piece of LATEX code that generated a part of the
output as text within the output itself.

the indirect dependencies of the projection. In addition, if a projection de-
pends on a resource it does not read but only writes, this resource is called a
reverse dependency.

Reverse dependencies are useful for describing situations in which the
environment includes substrates that help modify a resource without repre-
senting it. For example, in a text editor, menu items that trigger commands
for applying generic transformations (converting a text encoding into an-
other, changing the font case, etc.) are substrates with reverse dependencies
only: their representation is not constrained by any resource, but the text file
open in the editor depends on them. They also appear in projections that
project a resource R1 on a substrate S, which modifies a resource R2 when
the user interacts with it. This is the case in output-directed editors, in which
interacting with a representation of the output does not modify the output
itself, but the code that generated it in the first place.

Representation

The representation of a projection is the virtual or physical substrate
the user interacts with to perceive and act upon the source of the
projection.

Most code editing environments include projections whose representations
permit graphemic or morphosyntactic interaction, usually through a fairly
generic substrate such as a textual, tree or graph substrate representing the
entire code. Conversely, since representations designed to support semantic
and pragmatic interaction are usually more concrete and specific, they are
rarely standalone, and rather used within or next to a representation that
supports graphemic or morphosyntactic interaction, such as by appending a
colour picker or a plot to a text editor. As such, representations are often used
to switch from a lower level to a higher level of interaction in terms of amount
of interpretation, as per the hierarchy introduced in the previous chapter.

75

76

However, switching from a higher level to a lower level of interaction is also
possible, as demonstrated in spreadsheets and output-directed editors (Fig-
ure 5.2). In spreadsheet applications, the default interface projects the code as
a grid (morphosyntactic level) and displays the output of the computation de-
scribed using the spreadsheet language as text in its cells (pragmatic level). It is
only by clicking or double-clicking a cell that a user reveals a textual substrate
that lets them interact with the underlying computer language in a graphemic
fashion, therefore going down the layers of interpretation (Figure 5.2a).

Similarly, in output-directed code editors, in which the user directly manip-
ulates the output to modify the code (pragmatic level), other representations
may be included to help the user perform certain changes in the code. For
example, a textual substrate may be displayed from within the output to let
the user read and modify the piece of code responsible for a specific part of
the output as text (graphemic level), as in Compositor (Figure 5.2b). This also
includes representations of concepts used at intermediate steps of the compu-
tation yielding the output (semantic level), as in Sketch-n-Sketch (Hempel
et al., 2019), in which the user can interact with all the lists that contain a
shape shown in the output (Figure 5.3).

Figure 5.3. Sketch-n-Sketch reifies lists
that contain a shape as dotted boxes
called list widgets, shown around the
shape in the output. The image is re-
produced from Hempel et al. (2019).

Mapping

The mapping of a projection is the set of transformations between the
primary dependencies and the representation of the projection.

Mappings can include transformations going in different directions. If data
from the source is projected onto a substrate, but changes in this substrates are
not back-propagated so as to update the source, the transformation is said to
be prodirectional. Conversely, if a representation does not depend on the data
of its source but the user can modify it by modifying the representation (a
case of reverse dependency), the transformation is said to be retrodirectional.
If a transformation is both prodirectional and retrodirectional, it is said
to be bidirectional; otherwise, it is said to be unidirectional. The forward
mapping of a projection refers to the set of all prodirectional transformations
it includes; whereas the backward mapping of a projection refers to the set of
all retrodirectional transformations.

5.2 properties

Besides being decomposed into a source, a representation and a mapping,
projections can also be studied for the various properties they can exhibit.
These properties can be used to describe and categorise existing projections,
as well as to create new projections by exploring the design space one can
construct out of these properties. This section describes seven such properties,
as well as the values they can take, summarised in Table 5.1.

Some of the notions these properties refer to are reported or adapted from
previous work. For example persistence, bidirectionality, liveness, composi-
tionality and decentralized extensibility were previously mentioned by Omar
et al. (2021), though most of the concepts they refer to were introduced even
before that.46

46. For example, the term liveness is of-
ten attributed to Tanimoto (1990), who
later revisited them (Tanimoto, 2013).
Since then, it has been extensively used
by various communities (such as HCI
and creative coding) to qualify prac-
tices such as live programming and live
coding (Rein et al., 2018).

This thesis complements them with locality, contiguity, location,

76

Property Values Description

Locality The projected data originates from. . .
Global . . . the entire source of the projection.
Local . . . a subset of the source of the projection.

Location The projection is displayed. . .
Inline . . . in place of another projection of the code.
Floating . . . next to another projection of the code.
Embedded . . .within a projection of data related to the code.
Standalone . . . in an unrelated location of the user interface.

Persistence After it has been used. . .
Transient . . . the projection disappears.
Persistent . . . the projection remains.

Compositionality Code shown in the representation of the projection. . .
Compositional . . . can itself be projected.
Not compositional . . . cannot be further projected.

Liveness When its source is modified, the projection. . .
Live . . . is updated in real time.
Not live . . . takes time to update.

Malleability The projection can be created or modified by. . .
Customisable . . . changing predefined settings.
Recomposable . . . recomposing predefined building blocks.
Extendable . . . adding a third-party plug-in to the code editor.
Scriptable . . .using a custom script language.
Reprogrammable . . . editing the source code of the code editor.

Language agnosticism The projection is compatible with. . .
Language-specific . . . a single (set of) computer language(s).
Language-agnostic . . . any computer language using the appropriate encoding.

Table 5.1. Summary of the seven properties of projections defined in this section. Depending on the situation, a property may
qualify something bigger, e.g., the entire system, or smaller, e.g., a part of the representation, than the projection itself. For
example, a projection may have a source that includes a first resource used globally, and a second resource used locally; and a
projection can be qualified with more than one level of malleability at the same time. For further details and examples, please
refer to the description of the properties in section 5.2.

78

malleability and language agnosticism, which I either created or adapted from
work that did not use such terms to qualify projections of computer languages.

5.2.1 locality

Locality characterises how much and what part(s) of the source is concerned
by a projection. Each dependency on a resource can either be global, if the
projection concerns the entire piece of data contained in the resource, or
local, if the projection only concerns a subset. If the dependency is local, is
can further be contiguous if it depends on a single region of the source data,
or non-contiguous if it is formed of several non-overlapping regions. For
example, the dependency of a text editor on a file containing code it displays
is global, as the whole file can be edited as text, whereas the dependency
of a colour picker on the same file is likely to be local, as it only depends
on specific fragments of code representing colours. In the second case, the
dependency is contiguous if each projection only projects a single fragment
of code representing a colour; but it is non-contiguous if it also projects a
subset of the runtime state containing the current value of a variable used as
a colour component.

5.2.2 location

Location characterises the relative position of a projection within the environ-
ment it is part of. If a projection appears within a substrate representing the
code, as if it were part of this substrate, such as by taking up space reserved to
characters in a textual substrate or to nodes in a tree or graph substrate, it is
said to be inline in that substrate. If it appears close to another representation
of the piece of code it represents, but not inline, e.g., next to a piece of text
or to a node in a tree, it is said to be floating in that substrate. If it appears
in a substrate representing something else than the code, such as a canvas
displaying the output of the code, it is said to be embedded in that substrate.
Otherwise, if it appears in an unrelated part of the environment, such as in a
panel that the user can freely reposition, it is said to be standalone.

5.2.3 persistence

Persistence characterises the reusability of a projection over time. If the
projection remains available after having been used, it is said to be persistent.
On the contrary, if it can only be used at a specific point in time and not
anymore afterwards, it is said to be transient. For example, a colour picker is
transient if it can only be used to insert a colour code and disappears once
the colour has been chosen, as in Graphite (Omar et al., 2012); whereas it
is persistent if the user can reinvoke it to modify the colour later on, as in
Livelits (Omar et al., 2021).

5.2.4 compositionality

Compositionality characterises the use of a projection within another: if at
least some part of a representation is further projected onto another substrate,

78

79

the resulting projection is said to be compositional. Put differently, a projection
P1 is compositional if (1) its source includes the state of another projection P2

and (2) its representation replaces a subset of the perceptual space constrained
by the representation of P2. For example, a projection that arranges text
within a grid substrate (such as for editing the code of a HTML table) is
compositional if the content of each cell of the grid can in turn be projected
onto other representations, such as a slider for manipulating text representing
a numeric value, as demonstrated in Livelits (Omar et al., 2021), shown in
Figure 5.5f below.

5.2.5 liveness

Liveness characterises the time it takes for the system to enforce the direct and
indirect dependencies of the projection depends when one of the resources it
depends on is modified. If the transformations are fast enough so that the
propagation of changes appears to be done in real time, the projection is said to
be live. Critically, lack of liveness is a transitive burden: if any transformation
in a sequence of dependencies from a resource R to a substrate S is not rapid
enough, then the projection as a whole cannot be live, as it may not acquire
information sourced in R fast enough for that. For example, if a projection of
a piece of code onto a textual substrate also depends on runtime information
to, e.g., display the current value of each variable in the text, and if interpreting
changes in the code is too slow to update the running program in real time,
then the projection cannot be live.

5.2.6 malleability

Malleability characterises the freedom of the users of an interactive system to
modify the projections by themselves. If a projection can be created, modified
or deleted by the end-users without requiring an intervention from the de-
velopers of the underlying system, then it is said to be malleable. The notion
of malleability echoes the notion of tailorability, as presented by Grønbæk
et al. (2023), who identify five levels of tailorability, ranging from customising
a projection by editing settings to reprogramming the system to modify its
projection. These levels help explaining in which way a projection is mal-
leable, rather than simply stating that it is. For example, most text editors can
only be tailored by modifying settings (customisation) or adding plug-ins
(extension), whereas visual syntax for DrRacket (Andersen et al., 2020) and
Livelits (Omar et al., 2021) let the user write custom code to specify the look
and behaviour of the projections themselves, as per the API provided by the
system (scripting). Malleability is also similar to the notion of decentralized
extensibility introduced by Omar et al. (2021) to “distinguish [decentralized
extensibility] from systems that are not extensible or that can only be extended
via editor extensions or editor generation”.

5.2.7 language agnosticism

Language agnosticism characterises the independence of a projection from
the computer language used to write the code it projects. If the projection can

79

80

be used to interact with code regardless of the computer language it is written
in, it is said to be language-agnostic. Conversely, if the projection only works
with a single language, or set of languages, it is said to be language-specific.
For example, a projection that can represent any substring that matches
the pattern of an hexadecimal colour code is language-agnostic: it can be
used to interact with any piece of code, no matter the language it is written
in. However, if the projection relies on information specific to a language,
such as decorated Java classes in Graphite (Omar et al., 2012) and typed
holes in Livelits (Omar et al., 2021), it is language-specific. Furthermore,
the specificity can be extended to entire classes of languages, rather than
individual languages. For example, a projection may be compatible with the
class of all languages that are encoded as plain text and can be compiled into
a certain bytecode that the projection depends on, such as Java, Kotlin and
Groovy, which all compile to Java bytecode.

5.3 implementation strategies

Over time, projections of computer languages have been implemented in a
myriad of fashions, ranging from very simple textual projections printed on
paper in the early 1960s, to grid and graph substrates containing complex
content in the 1980s, to projectional editors that can represent each node of
the syntax tree in a different way in the 2000s. These approaches evolved
in accordance to both the evolution of the technology and the needs of the
humans using it. This section traces this evolution and presents some mile-
stones in the history of systems that project computer languages as a means to
understand what has already been done, what has worked and what has failed.
It introduces the knowledge required to properly frame the direction I took to
pursue this line of work, which will be presented in the next section. To that
end, it distinguishes between two major strategies for projecting computer
languages: uniform projection and protean projection.

5.3.1 uniform projection

The first strategy to let users interact with a computer language is to project
code onto a single substrate. I call this strategy uniform projection, for it leaves
no choice to the user, who can only perceive and modify code through a single
representation. This strategy is the oldest of the two, and was initially chosen
as a default because of the limits of the technology available at the time. Yet,
this approach persisted even when more versatile devices—such as modern
screens—became widely available, suggesting that it should be understood
as a choice of the designer of a system, rather than merely a technological
constraint. Figure 5.4 shows six examples of code editing environments built
with a uniform projection strategy.

The very first projections of computer languages were tightly coupled to
their encoding. As teletypes and teleprinters served as front-end interfaces
for interacting with computers, they long were the most common type of
input and output devices, making text a candidate of choice for representing
what was encoded in the computer’s memory. This coincides with the devel-
opment of English-like computer languages in the 1950s and 1960s, which

80

a. TVEDIT (1965). b. EMILY (1971).

c. VisiCalc (1979). d. LabView (1986).

e. Snap! (2011). f. Eclipse Capella (2015).

Figure 5.4. Examples of uniform projection in six environments that let users interact with a computer language. (a) In
TVEDIT, one of the first visual text editors, code is shown as a sequence of monochrome characters complemented with a
cursor showing the current editing position. The image is reproduced from McCarthy et al. (1967). (b) In EMILY, code is
projected onto a tree substrate according to its syntax and can only be modified by locally transforming the tree. The image is
reproduced from Hansen (1972). (c) In VisiCalc, the code of the formula of the currently selected cell can only be edited
through the textual projection shown at the top of the user interface. The result of evaluating the formulae is shown as text
displayed within a grid substrate. (d) In LabView, code is projected onto a graph substrate made of text and iconic elements.
The image is reproduced from Kodosky (2020). (e) In Snap!, code is projected onto a tree substrate made of blocks that
be directly manipulated. The image is reproduced from the Snap! reference manual (115). (f) In Eclipse Capella, code is
represented by a series of diagrams specified in accordance with the UML standard, which can be created and edited using
appropriate drawing tools and direct manipulation. The image is reproduced from the Eclipse Capella (116) website.

https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://eclipse.dev/capella/features.html

82

were readily adapted to be typed and printed using such devices, as well as the
development of some of the first text editing programs such as the Colossal
Typewriter (McCarthy and Silver, 1960) and the Expensive Typewriter (Piner,
1972). As some computers started to be equipped with screens in the late
1960s, digital text editors were developed to virtualise text, yielding the first
textual substrates as we known them. This includes line editors, which can
only edit one line of text at a time, such as ed (117), and their visual counter-
parts, which would display the text being edited and show the changes live,
such as TVEDIT (Figure 5.4a) and vi (118).

The idea of representing and interacting with computer languages inde-
pendently from how they are encoded became increasingly viable with the
development of the first graphical user interfaces for computers in the late
1960s, pioneered by the famous demonstration of the NLS system in 1968 (En-
gelbart and English, 1968). Most notably, some of the first syntax-directed
editors, such as EMILY (Hansen, 1972), shown in Figure 5.4b, demonstrated
that computer languages could also be projected onto trees according to their
syntax, therefore offering new interaction opportunities. Yet, as the name
suggests, syntax-directed editing is circumscribed to projecting the code so
as to let users manipulate the syntactic structures it forms, therefore only
bridging the gap from graphemic to morphosyntactic interaction, leaving
semantic and pragmatic interaction out of the question at the time.

During the 1970s, the growth of graphical user interfaces and the devel-
opment of more and more capable computers led to a variety of systems in
which the user interacts with a graphical projection of an underlying model,
regardless of how it is encoded. Fundamentally, models are not so different
from computer languages: they too are formed of a number of primitives,
which can be combined together to form more complex structures. Yet, unlike
most computer languages available at that time, such models were not meant
to be edited using representations of how they are encoded. Instead, each
model could be edited using a domain-specific projection that was more fit
for representing what the model describes, making it prompt for semantic
interaction.47 This idea was applied to tasks such as writing documents with 47. For example, LATEX or Markdown

have been designed to write text doc-
uments using generic text editors,
whereas documents encoded in for-
mats such as RTF and DOC are de-
signed to be read by word processors,
which are pieces of software dedicated
to authoring certain types of models—
namely, structured text document en-
coded using dedicated schemes.

word processors, creating images using image editors, and developing soft-
ware with graphical software engineering tools (Kuhn, 1989; Fuggetta, 1993).
It enabled the development of new interaction techniques and paradigms
now taken for granted, such as direct manipulation of domain objects and
WYSIWYG interfaces, effectively forming a split between “old textual systems”
and “new visual systems” (Shneiderman, 1983).

This new approach paved the way for the so-called visual languages (and,
more specifically, visual programming languages), which usually corresponded
to projecting code—often specific to a particular domain—onto a graph sub-
strates, therefore making use of two or more dimensions, in line with the def-
inition proposed by Myers (1990). Early examples of such languages include
LabView (Kodosky, 2020), shown in Figure 5.4d, which was designed to let
scientists and engineers manipulate virtual instruments, and Max (Puckette,
2002), which was designed for musical creation.48

48. Puckette (2002) reports that Max
was later declined into several variants,
including the proprietary Max/MSP
and the open-source Pure Data lan-
guages, presented earlier.

The growing availabilities
of personal computers with graphical user interfaces seem to have catalysed
the growth of visual languages in the 1980s. Kodosky, the main author of Lab-
View, reports that their potential for the programming language he wanted to

82

https://www.gnu.org/software/ed/
https://man7.org/linux/man-pages/man1/vi.1p.html

83

create became immediately obvious to him the day he tried a graphical user
interface for the first time:

Then came the summer of 1984. My brother-in-law sat me down in front
of his Macintosh computer, showed me how to use the mouse and opened
MacPaint. It was a revelation. I immediately went out and bought aMac
[. . .] I was convinced the Mac represented the future of human-computer
interfacing. The Mac’s graphics provided an obvious way for software
instruments to reflect the physical instruments we worked with. The
virtual controls on the computer screen could be just like the controls
on an instrument, except more flexible. Now it was clear that a virtual
instrument should have a graphical interface on the computer screen.

— Kodosky (2020, §2.3)

Similarly, Puckette, the author of Max, reports that “many other graphical
patch languages—both for music and for other applications—had appeared by
1987 when I started writing the Max “patching” GUI” (Puckette, 2002, p. 33),
suggesting that projecting computer languages onto graph substrates was
already common in the mid-1980s.

This period also coincided with the development of the first spreadsheet
systems, although these are usually not qualified as visual programming lan-
guages. While visual programming environments pioneered the projection
of computer languages onto graph substrates, spreadsheet applications pio-
neered the projection of the code and its output onto the same grid substrate,
effectively introducing one of the earliest form of pragmatic interaction with
computer languages. Examples include VisiCalc (Figure 5.4c), released in 1979,
which was the first publicly released spreadsheet application; soon followed
by competitors such as Lotus 1-2-3, released in 1983.

This uniform approach to interaction is further reflected in the desire
to consolidate languages and notations for describing models in the 1990s.
One of the popular outcomes of that movement is the Unified Modeling
Language (UML), a standard for modelling any computer system. Although
it was initially designed to be descriptive, it was later adapted to be made
executable,49 paving the way for model-driven engineering systems in the 49. For example, Foundational UML

(fUML, 119) is a subset of the UML
standard that provides semantics for
translating models specified in this sub-
set of UML into executable programs
given a compatible target architecture.

2000s (Mellor and Balcer, 2002). Since then, such standards have been
implemented by software such as Eclipse Sirius (120), a system for describing
models and projecting them onto visual diagrams that originate from the
UML standard, as in Eclipse Capella (121), shown in Figure 5.4f.

5.3.2 protean projection

The other strategy to let users interact with a computer language is to project
code onto more than one substrate. I call this strategy protean projection, for
the user can switch between different representations to perceive and modify
code. Figure 5.5 shows six examples of code editing environments built with
a protean projection strategy.

Although protean projection was mostly developed in the last two decades,
a number of older systems were designed with this strategy in mind. For
example, the ThingLab system (Figure 5.5a), developed on top of Smalltalk in
the late 1970s, already lets users draw and manipulate constrained elements

83

https://www.omg.org/spec/FUML/1.5/About-FUML
https://eclipse.dev/sirius/
https://eclipse.dev/capella/

a. ThingLab (1979). b. Heterogeneous languages (1995).

c. Barista (2006). d. JetBrains MPS (2010s).

e. mage (2020). f. Livelits (2021).

Figure 5.5. Examples of protean projection in six code editing environments. (a) In ThingLab, the user can edit code by
inserting and manipulating visual elements on a canvas. This creates and modifies objects, which can also be edited as text
in a different part of the interface (not shown). The image is reproduced from Borning (1979). (b) In this heterogeneous
declination of the Prolog language, primitive shapes such as circles and arrows can be mixed with text. The system is able to
interpret them according to some shape grammar, which is used to turn them into Prolog code when need be. The image is
reproduced from Erwig and Meyer (1995). (c) In a Java editor created with Barista, an expression can be projected onto a
typeset mathematics substrate when browsing the code, and projected as text when the user wishes to edit it. The image is
reproduced from Ko and Myers (2006). (d) In an editor created with JetBrains MPS, text can be laid out in a non-sequential
fashion, or even replaced by a different projection, such as a box-and-wire diagram. The image is reproduced from Voelter
and Lisson (2014). (e) In Jupyter notebooks augmented with mage, the user can insert special commands within a textual
substrate to display interactive output cells. These cells can project both static and dynamic data onto arbitrary substrates,
such as the content of a dataframe onto a grid substrate, which can further modify the code when the user interacts with them.
The image is reproduced from Kery et al. (2020). (f) In Hazel augmented with Livelits, the user can insert visual macros (such
as $color) within a variant of Elm projected as text, which can each be projected onto arbitrary substrates, such as a colour
picker. The image is reproduced from Omar et al. (2021).

85

displayed on a canvas whose class and instances could also be edited via a
textual projection (Borning, 1979). Starting from the late 1980s, more and
more systems in which a computer language could be edited via multiple
projections were developed. Examples includes FormsVBT (Avrahami et al.,
1989), heterogeneous visual languages (Erwig and Meyer, 1995), shown in
Figure 5.5b, and Adobe Dreamweaver (104).

At about the same time UML was first standardised, Simonyi (1995) pub-
lished his seminal work on intentional programming, predicting “the death
of computer languages” as we know them. In this work, Simonyi argues that
software developers should not be imposed a particular syntax or compilation
target, nor be restricted to using a single language just because interconnect-
ing code written in different languages is too difficult. As an alternative, he
proposes a switch to a different vision of programming, made of intents. In-
tents could refer to each other so as to form a graph of intents, although it is
mostly envisioned as a tree—later called an intentional tree (Simonyi et al.,
2006). The graph (or tree) of intents could then be transformed into machine
code as need be, and could be edited by projecting its nodes so as to match
the preferences and needs of the language’s users, which could be, e.g., text,
formulas with sub- and super-scripts, or box-and-wire diagrams. Although
the gist of a graph of intents that can be translated to match a particular
computer architecture is reminiscent of UML, intentional programming is,
to the best of my knowledge, the first theory to have envisioned that a single
piece of code could be represented in different ways, in fact introducing the
use of the term projection for that purpose.

The idea of decoupling computer languages from a unique representation of
the code further took off in the 2000s. For example, in his vision of extensible
programming environments for the 21st century, Wilson (2004) imagines
that computer languages will be encoded as XML and systematically edited
through domain-specific projections, just like domain-specific models have
been for decades already:

We believe that next-generation programming systems will most likely
store source code as XML, rather than as flat text. Programmers will not
see or edit XML tags; instead, their editors will render these models to
create human-friendly views, just like Web browsers and other WYSI-
WYG editors.

— Wilson (2004, p. 54)

Wilson’s vision was indeed implemented by systems for creating so-called
projectional editors for computer language, in which each node of the syntax
tree can be displayed as an arbitrary user interface, as in Barista (Ko and My-
ers, 2006), JetBrains MPS (Voelter and Lisson, 2014) and Envision (Asenov,
2017). It also shows up in model-driven engineering systems, which progres-
sively departed from relying on the strict, generic and unified UML notation
towards offering users a variety of domain-specific notations. The goal was
to let experts in different domains work with models using notations they are
familiar with without requiring any particular software engineering knowl-
edge, as in the Whole platform (Solmi, 2005), Gentleman (Lafontant, 2022)
and Eclipse Sirius (120).

85

https://www.adobe.com/fr/products/dreamweaver.html
https://eclipse.dev/sirius/

86

The vision in which users must define and manipulate abstract entities
(objects) that can have more than one representation (views) is also embodied
within the Glamorous Toolkit (122), a programming system built on top
of Pharo. In the Glamorous Toolkit, a single class of object can define more
than one view, so that when the object is inspected—a notion similar to
showing the content of a file in a Unix system—, the user can freely switch
between multiple projections for interacting with that object, each shown in a
different tab. Feenk (123), the company that develops the Glamorous Toolkit,
describes it as a system designed for moldable development, an approach in
which specialised tools—and therefore specialised projections—can be built
and adapted to match the specifics of each use case. The concept of moldable
development is in line with recent work on the notion of malleable software,
i.e., software designed to let end-users adapt their systems to their needs,
as theorised by Tchernavskij (2019) and demonstrated by systems such as
Codestrates (Rädle et al., 2017) and Mirrorverse (Grønbæk et al., 2023).

Yet, in spite of the theoretical advantages claimed by Simonyi, Wilson
and others, and apart from a few industrial applications such as mbeddr
for C (Voelter et al., 2019), implementations of protean projection in which
computer languages that were primarily designed to be encoded and edited as
text are encoded as trees or graphs of entities that must be projected using a
dedicated editor have hardly been adopted in the wild. To create a projectional
editor using this approach, one must learn the specifics of the underlying
software—such as the meta-language it relies on—and implement both the
specification of the language (the concepts, the syntax, the type system, etc.)
and the projections available to edit it, resulting in a significant development
effort. In addition, since the language is encoded in a format specific to the
resulting editor, it results in a niche ecosystem in which all users willing to use
the language are forced to use this specific editor, with hardly no alternative.
While this may be appropriate in certain situations, such as when the code
editor will be used by domain experts to write code for critical systems or
by students in a controlled educational setting, it may otherwise be too high
a cost, both for the developers of the language/editor and the end-users,
resulting in overly specific products and underused languages.

In the last decade, augmenting a text editor with additional projections
has been increasingly reported in the literature as an alternative approach
to implement protean projection. Examples from the early 2010s includes
Graphite (Omar et al., 2012) and Codelets (Oney and Brandt, 2012), which
both feature user interfaces for configuring code snippets when they are
inserted in a text editor. Although they are not part of a code editor, online
code generators50 can also be considered to belong to this trend as they offer 50. Example of such code generators in-

clude Tables Generator (124) for creat-
ing and editing tables in different doc-
ument description languages and CSS
Gradient (125) for configuring gradi-
ents in CSS.

specialised user interfaces for synthesising pieces of code serving specific
purposes. Unfortunately, these systems are not exactly designed to project
code, but only a model that specifies what the code means: once it has been
transformed into code, the model—and therefore the user interface—is not
updated when the code is modified, such as by editing it as text.

This limitation was progressively addressed, resulting in systems in which
the code is primarily projected as text but can also be projected differently,
as demonstrated by Moonchild (126), visual syntax (Andersen et al., 2020),
as well as mage (Kery et al., 2020) and Livelits (Omar et al., 2021), shown in

86

https://gtoolkit.com/
https://feenk.com/
https://tablesgenerator.com
https://cssgradient.io
https://cssgradient.io
https://harc.github.io/moonchild/

87

Figure 5.5e and Figure 5.5f. In addition to addressing the lack of bidirectional-
ity of the aforementioned systems, mage and Livelits also support a form of
pragmatic interaction by exploiting information sourced from the execution
of the code they project. To this day, these two systems represent the state-
of-the-art in combining a textual substrate with a mix of other substrates, as
recently noted by Horowitz and Heer (2023). As such, they constitute one of
the main inspirations of my work.

5.4 focus of this thesis

Despite the work described above, I want to underline how prevalent text-
encoded computer languages and graphemic interaction using text editors
are in the 2020s. Although describing this trend with exact figures is difficult,
some indicators help get a glimpse at how big it is. Regarding computer lan-
guages, the Octoverse 2022 (127), a study of the activity on GitHub, reveals
that among the hundreds millions repositories it hosts, the five most pop-
ular languages are JavaScript, Python, Java, TypeScript and C#. Regarding
the tools we use to interact with them, a survey carried out by StackOver-
flow (128) in Spring 2023 reports that Visual Studio Code, Visual Studio,
IntelliJ IDEA, Notepad++ and Vim—i.e., five text editors—are ranked as the
five most popular code editors by over 86,000 respondents. Furthermore,
recent research on structured editors has focussed on making them compati-
ble with textually encoded languages, as well as on carefully emulating the
experience of regular text editor (Hempel et al., 2018; Beckmann et al., 2023a).

Whether the motivation is to be readily compatible with many established
languages or to accommodate the programmers’ habit and desire to interact
with text, augmenting text editors with additional projections is a safe option
to create tools compatible with the ecosystem that most computer languages
currently live in. While this may appear to be an engineering constraint
rather than a research agenda, I believe that making novel projections that help
interacting with computer languages used by millions compatible with the real-
world workflows that they already use is a hard problem which no satisfying
solution, therefore making it an excellent candidate for research. This position
aligns with Arawjo’s invitation to “build on the lessons of the past by embracing,
rather than avoiding, heterogeneity in programming practice” (Arawjo, 2020,
p. 9), as well as Kell’s conclusion regarding how we can recycle great ideas
that vanished along with Smalltalk’s failure by integrating them into a Unix-
dominated world:

Smalltalk’s modernist narrative holds that unification entails implement-
ing one “unified” system—a Smalltalk runtime. The directions outlined
in the previous section are motivated by a postmodern goal: to accept the
complex reality of existing (“found”) software, developed in ignorance of
our system, and to shift our system’s role to constructing views, including
Smalltalk-like ones, of this diverse reality.

— Kell (2013, §7)

The work I did during this Ph.D. is highly influenced by such postmodern
visions. Instead of designing systems at odds with established practices, I
rather chose to design for them, with the explicit goal of making my work

87

https://octoverse.github.com/2022/top-programming-languages
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/

88

compatible with existing computer languages and code editors, rather than
creating new languages and editors unlikely to ever be adopted.

I started by investigating how to apply the concept of protean projection to
LATEX, an established computer language that is widely used in academia and
often criticised for its many flaws. Informed by the outcomes of this work,
I then shifted my focus to the question of the appropriation of projections
by their users, following Dix’s observation that “people do not ‘play to the
rules’: they adapt and adopt the technology around them in ways the designers
never envisaged” (Dix, 2007, §2.1). These two lines of work complement
the theoretical contributions I made in the current and past two chapters
by applying them to real situations with the help of a user-centred design
methodology. They yield the main empirical and technical contributions of
my work, which I present in the next two chapters.

88

89

6
Transitional representations for LATEX

Digital document preparation systems can be roughly divided into two cat-
egories: those in which the user directly interacts with the document, such
as when writing a letter using Microsoft Word; and those in which the user
interacts with a description or a specification of the document, such as when
editing HTML as text to create a webpage. Systems that explicitly rely on
a document description language usually fall into the second category. In
most of these systems, the user must first code the document using a special
computer language, and then use a different program to generate the final
document, as do web browsers to display webpage composed of HTML, CSS
and other resources.

In this first line of my applied work, I decided to focus on LATEX, an ad-
vanced document description language that was created in the early 1980s and
remains in use today, primarily in academic and technical circles. LATEX is a
prime example of a long-standing computer language that is almost always
edited via a textual projection in spite of encoding structures that have long
benefited from other representations, such as tables and images, making it
a good candidate to investigate whether and how protean projection could
help LATEX users write code. To answer this question, I used a user-centred
design methodology by grounding my research using a formative user study
and evaluating the solution I propose using two evaluative user studies. The
results were published in two articles: a preliminary article published in the
national IHM’21 conference (Gobert and Beaudouin-Lafon, 2021), which was
awarded the best paper award of the conference and a honourable mention for
the demonstration, followed by an article in the international ACM CHI’22
conference (Gobert and Beaudouin-Lafon, 2022).

This chapter presents my work on this project as an extended version of the
second publication. Section 6.1 situates this work amongst previous work on
interacting with the LATEX language and authoring digital documents, which
inspired the directions I chose to follow. Section 6.2 presents a formative
interview study with 11 LATEX users I carried out to better understand the
way they use LATEX and the problems and needs they face in this process.
Section 6.3 introduces the concept of transitional representation, a specific type
of projection that I developed in accordance with the recommendations for

89

90

design identified when analysing the interviews. Section 6.4 presents i-LATEX,
a prototypal LATEX editor equipped with four alternative projections that
complement the standard textual substrate used to author LATEX documents.
Sections 6.5 and 6.6 report on a controlled experiment with 16 participants
and a longitudinal study with 6 participants that I conducted to evaluate the
effects of transitional representations for LATEX. Section 6.7 concludes on the
outcomes of this work, highlighting the demonstrated success of transitional
representations while identifying limitations for spreading their use, which
steered my research interest towards a different research question that I report
on in the next chapter.

6.1 background

Since its inception, various concepts and tools have been developed around
LATEX, forming a rich ecosystem of practices that influences how users write
documents in LATEX. Moreover, there is a rich body of work on authoring
and interacting with digital documents, both within and beyond the LATEX
ecosystem, whose ideas and findings are highly relevant to investigate the
effect of new interaction techniques for document description languages. This
section presents previous work relevant to each of these topics, which both
relates to and differs from the work I will present in the rest of this chapter.

6.1.1 the LATEX ecosystem

LATEX is a document description language created by Leslie Lamport in
1984 (Lamport, 1994). It was designed as an extension of TEX, a more primi-
tive document description language developed by Donald Knuth in the late
1970s (Knuth, 1984b) whose primary task is to compose documents—i.e.,
to arrange all the elements that form a document, which range from single
glyphs to sequences of paragraphs and floats—to output a sequence of pages of
definite sizes. Compared to plain TEX, LATEX provides concepts that are more
user-friendly for writing documents, such as by distinguishing between sev-
eral classes of documents (articles, letters, etc.) using the \documentclass
macro and by providing a standard set of macros for structuring them with
sections, subsections, etc.

In addition to referring to a computer language, LATEX also refers to sys-
tems designed for interpreting code written in the eponymous language and
transforming it into a typeset document. Such systems usually combine a set
of macro packages—including macros specific to each document class and
macros provided by third-party libraries that can be loaded by the user—and
TEX engines, such as pdfTEX (129), X ETEX (130) or LuaTEX (131), which
are computer programs that take TEX code augmented with the aforemen-
tioned macros as input and generate a PDF or DVI file representing the coded
document as output.

Because of its highly programmatic and configurable nature, LATEX offers
powerful abstraction mechanisms and a high level of control over the gener-
ated document. However, it comes at the cost of long compilation times, as
generating a PDF document from LATEX code often takes seconds to minutes.
Moreover, precisely understanding how the system interprets a piece of code

90

https://www.tug.org/applications/pdftex/
https://tug.org/xetex/
https://www.luatex.org/

91

is difficult, as it requires to switch to a very unusual mental model and learn
about advanced features of TEX, such as character classes, which let users to
change the lexical meaning of any input character anywhere in the code of a
document. LATEX is also famously known for being hard to debug, as errors
are often difficult to understand by non-experts and poorly linked to the part
of the code that caused them (which can be hard to determine). As a result,
according to Knauff and Nejasmic, even expert users may “experience a loss
of productivity when LATEX is used, compared to other document preparation
systems” (Knauff and Nejasmic, 2014).

Yet, nearly four decades after its inception, and despite all its flaws, LATEX
is still widely used to write technical documents in some communities, even
though alternative computer languages for advanced typesetting such as
SILE (132) and Pollen (133) have been developed. In particular, LATEX has
been reported to be one of the few authoring systems that is extensively used
in academia and research, along with Microsoft Word (Knauff and Nejasmic,
2014). Overleaf (27), an online platform for authoring LATEX documents,
recently reported a user base of over 6 million users, as well as partnerships
with multiple universities and scientific publication venues—such as ACM
conferences—to provide their users with appropriate templates for authoring
papers (Reis et al., 2021).

6.1.2 interacting with LATEX

Since LATEX was conceived as a macro-oriented language meant to be encoded
and edited as text, most environments for authoring LATEX documents look
and work like text editors. Some of them try to provide a user experience
closer to that of WYSIWYG systems, but they usually either provide basic
source code formatting, as do, e.g., AUCTeX (134) and Overleaf ’s rich text
mode, or a fully WYSIWYG interface that hides the code and only supports a
limited set of features, as does, e.g., Compositor (105). LyX (135) represents
documents in an intermediate format that focuses on the content and the
structure rather than the final layout and style—a paradigm referred to as
What You See Is What You Mean (WYSIWYM) by its authors—, but it uses
its own document format, and the use of the LATEX language is restricted to
importing/exporting the document as LATEX and inserting short pieces of
code to write, e.g., mathematical formulae.

In some situations, LATEX code can also be synthesised, either using another
programming language or an interactive code generator. As an example,
LATEX code representing a table can be generated programmatically using the
pandas data-science library in Python,51 and interactively using dedicated 51. In Pandas, DataFrame objects have

a to_latex method (136) that out-
puts a string containing LATEX code lay-
ing out the data frame’s content in a
table.

applications such as Tables Generator (124). The caveat of these approaches
is their unidirectionality: once the code has been generated and imported
into the user’s document, these tools can no longer be used to edit the table
unless the user is willing to overwrite all the changes they made to the code.

Finally, a few tools address the lack of mapping between the code and its
output. Some LATEX editors or plugins, such as LaTeXTools (137) for Sublime
Text, let users preview mathematical formulae and images by hovering over
the code. SyncTEX (Laurens, 2008) helps find which region of the code corre-
sponds to a part of the PDF—and vice-versa—and Gliimpse (Dragicevic et al.,

91

https://sile-typesetter.org/
https://docs.racket-lang.org/pollen/
https://www.overleaf.com
https://www.gnu.org/software/auctex/
https://compositorapp.com/
https://www.lyx.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html
tablesgenerator.com
https://latextools.readthedocs.io/en/latest/

92

2011) further animates the transition between the LATEX code and generated
PDF. However, none of them let users modify the code by interacting with
the output.

6.1.3 interacting with digital documents

Besides work specific to LATEX, I was inspired by a rich body of work on
interaction with digital documents, which are not constrained to be as static as
traditional paper-based documents, and can be interactively modified by their
authors and readers. In his Explorable Explanations (138) essay, Bret Victor
argues in favour of making traditionally static documents more explorable,
by encouraging the reader to modify parts of the document, such as numeric
values, and see how it affects other parts. Multiverse analyses (Dragicevic
et al., 2019) let readers try out different visualisations and analyses of the
same data from within a scientific publication. SpaceInk (Romat et al., 2019)
lets users move content around to make space for hand-written annotations.
Textlets (Han et al., 2020) turn text selections into persistent objects, to
which users can assign interactive behaviours, such as counting words or
storing alternative content. ScolarPhi (Head et al., 2021) augments scientific
papers with overlays that provide definitions and context for technical terms
and symbols. Charagraph (Masson et al., 2023a) lets users extract numbers
from selected sentences and turn them into plots to help users understand
relationships and statistical properties of multiple values. Statslator (Masson
et al., 2023b) helps reconstructing missing statistical information from the one
present in a document by exploiting the mathematical relationships between
different statistical tests.

Various directions have been proposed to help users create such interactive
documents. This includes using variants of popular document description
languages augmented with new primitives, such as Markdown-based lan-
guages in Idyll (Conlen and Heer, 2018) and Myst (139) and HTML-based
languages in Nota (36), as well as new languages, such as Typst (140) and
FFL (Wu et al., 2023). It also includes more decoupled solutions, such as
automatically recognising document parts to augment using computer vision
techniques and overlaying them with interactive user interfaces (Masson et al.,
2020). In addition, this move towards more interactive documents further
calls for new systems for authoring them, which must be equipped to let users
insert and configure interactive elements.

Because of the inherently programmable nature of such elements, these sys-
tems are likely to expose fragments of code to authors in one way or another,
including when the overall user interface is mostly designed for pragmatic
interaction, making them a good testbed for alternative projections of doc-
ument description languages. For example, the recent surge in popularity
of literate computing systems (Fog and Klokmose, 2019)—a modern take
on Knuth’s idea of literate programming (Knuth, 1984a)—, such as Jupyter
notebooks (16), has fostered the development of editing environments that
weave pieces of rich text with blocks of executable code. Document editors
such as Idyll Studio (Conlen et al., 2021) and Potluck (141) illustrate how
projections that support semantic and graphemic interaction with the under-

92

http://worrydream.com/ExplorableExplanations/
https://mystmd.org/
https://willcrichton.net/nota/
https://typst.app/
https://jupyter.org/
https://jupyter.org/
https://www.inkandswitch.com/potluck/

93

lying language can be embedded in environments that primarily display the
final document to the user, either in separate panels or localised popups.

By interacting with a document description language at the graphemic or
morphosyntactic level, users can reason about and manipulate every feature
supported by the language, including advanced configuration and abstraction
mechanisms, at the cost of decoupling their actions on the code from their
effect on the final document. In contrast, by interacting at the semantic or
pragmatic level—as in WYSIWYG software, which presents documents in
their final form at all times—, users can perceive and edit the style and content
of the document in a situated and live fashion, without having to map abstract
linguistic concepts to concrete changes in the output in their mind. As a result,
each approach has its own strengths and weaknesses, both are widely used,
and neither seems to supplant the other. Inspired by the aforementioned work
on tools for authoring interactive documents that embed code, I envisioned
that projections of LATEX code that are neither purely graphemic (as in text
editors) nor pragmatic (as in WYSIWYG editors) may help users address the
difficulties they face when they author LATEX documents.

6.2 formative study

In order to better understand how alternative projections of LATEX code could
help LATEX users, and given the scarcity of previous studies of LATEX users,
I conducted a series of interviews and performed a thematic analysis of
the difficulties they encounter. This section presents the methodology, the
generated themes, and the resulting recommendations for designing better
LATEX editors.

6.2.1 methodology

Participants

I interviewed 11 participants (5 women and 6 men, age 21 to 40), recruited
via an internal lab mailing list and a post on a Facebook group of university
students. They did not receive any compensation for their participation. Eight
were M.Sc. students, the others were a Ph.D. student, a high-school teacher,
and an associate professor. Most of them were neither beginners nor experts
with LATEX.52

52. In both the interview and the eval-
uation studies, I refer to three levels
of expertise with LATEX defined as fol-
lows: beginner users do not feel com-
fortable when they use LATEX and need
help to use basic features; intermedi-
ate users feel comfortable writing ba-
sic documents and are able to use the
most common features without help;
and expert users feel comfortable with
various kinds of document and are able
to create or customise commands and
environments when needed.

Each of them had used LATEX in the weeks or months prior to
the interview, usually with Overleaf (5/11) or Texmaker (5/11). Additional
details about the participants are presented in Table 6.1.

Setup

All the interviews were conducted remotely via screen sharing. They all lasted
about one hour in average.

Procedure

The interviews were semi-structured: I used a list of predefined questions
to guide the participants, but they were invited to speak freely about each

93

94

Participant Occupation Domain Expertise Main presented document

P1 M.Sc. student Biology Intermediate Internship report
P2 Ph.D. student Data visualisation Intermediate Ph.D. thesis
P3 M.Sc. student Ecology Intermediate Biophysics assignment
P4 M.Sc. student Geology Intermediate Hackathon project
P5 Associate prof. Computer science Expert Mathematics paper
P6 M.Sc. student Complex systems Intermediate Thesis proposal
P7 M.Sc. student Geochemistry Intermediate Internship report
P8 M.Sc. student Archaeology Beginner Internship report
P9 M.Sc. student Computer science Expert Computer science paper
P10 High school teacher Philosophy Intermediate Archive of philosophy exams
P11 M.Sc. student Computer science Expert Mathematics class notes

Table 6.1. Details on the LATEX users I interviewed.

problem they encountered. I adjusted the duration and the questions with
three pilot interviews with colleagues. I started each interview by asking
the participant to show me the last LATEX document they worked on (both
the code and the generated PDF). I first asked them questions related to the
document itself (the type of document, the editor they used, etc). I then asked
them to describe the different problems they faced, whether they eventually
solved them or not and how, and to show me the related parts of the code
when it was relevant. I also invited them to tell me about problems they
encountered in other LATEX documents. I concluded each interview with a
few more general questions about the participants’ experience with LATEX.

Data collection

The screen and the audio of the participants were recorded during the study.
In addition, I also took notes of the problems they faced and the solutions
they used.

Data analysis

I conducted a thematic analysis (Braun and Clarke, 2019) of the collected
data. To that end, I manually transcribed the first eight interviews, including
descriptions of the screen content and participants’ actions when it was rele-
vant. I then annotated the transcripts, yielding over 650 codes. Codes that
conveyed the same idea with different phrasings were merged, resulting in
about 80 different codes that I used to generate three sets of themes: a first
set that grouped codes by topic; a second set that grouped codes by problem,
independently of the context in which they appeared; and a third and final
set that mixed the first two sets based on discussions with colleagues, so as
to highlight the most prevalent and interesting findings. In addition, I also
listened to the three remaining interviews that I did not transcribe (for the
sake of saving time) in order to ensure that they fit with the final set of themes
and extract quotes from them to both reinforce and contrast what had already
been highlighted in the other interviews.

94

95

6.2.2 results

I generated five themes through the thematic analysis, which can be sum-
marised as follows: the code must be editable as text (T1), users struggle
learning the language (T2), plain text is inappropriate to describe structured
content (T3), some abstractions are difficult to visualise and formalise (T4),
and the code-PDF duality slows users down (T5).

T1 — The code must be editable as text

While most participants were comfortable using graphical text processors,
P2 complained that the documents are not properly structured and both P4
and P11 highlighted the quality of documents produced with LATEX.

No participant was aware of or interested in WYSIWYG LATEX editors, and
no participant who used Overleaf actively used its rich text mode. When she
had a look at it, P8 criticised that hiding the code made it harder to make
certain changes, such as transforming a section into a subsection, therefore
requiring “moremanipulation, more movement on the screen” (P8) to regularly
go back to the code. P7, the only participant who used it once to write a
document, explained that it was because she only had to write plain text to
take notes during a history class, without any kind of structured content.

Some participants (5/11) needed the ability to write code to program fea-
tures that did not exist out of the box, and could therefore not be accessed
through any existing user interface. Most notably, P10 created a template for
a collection of hundreds of high-school philosophy examinations. It enabled
him to generate multiple indexes (by author, by topic, by type of philosophical
question, etc.) that are automatically updated when he adds new examina-
tions later on—a level of automation he could not achieve with his usual text
processor: “with LibreOffice, you can only have an alphabetical index for one
category” (P10). The separation between content and style also enabled him to
generate two PDFs with very different layouts by switching a single parameter
in the code: one for teachers with extra metadata, and one for students that
mimics the official examination’s layout.

Several participants (7/11) explained that they appreciate reusing code.
The most expert ones make extensive use of custom commands to reuse
mathematical expressions or duplicate a parameterised drawing. P5 explained
that having access to the code makes it possible to easily copy-paste snippets
found on the internet, instead of following the steps listed in a tutorial one by
one, as well as to reuse the code of his scientific papers to create presentations
for conferences using Beamer (a LATEX package for creating slideshows).
Moreover, P5 also reported that having access to the code let him generate
documents from scratch when needed. For example, when he was responsible
for creating hundreds of similar badges for a Go contest, he wrote a Python
program to generate the appropriate LATEX code: “If you ask me to make you
two hundred badges in Word, you’re on your own; I’m not doing it” (P5).

Most participants (9/11) reported using comments within the code. They
rely on them for different purposes, including (1) remembering the role of
a package or command; (2) discussing with co-authors; (3) keeping unused
pieces of code that might be useful later; (4) commenting off lines to find the

95

96

source of an error iteratively; (5) reusing parts of an old piece of code to write
a new version; or (6) planning what to write in each part of the document.

T2 — Users struggle or avoid learning the language

Five participants explained that they only learn LATEX when they need to
solve a problem they face. Yet, several of them also pointed out that this often
happens in moments of rush, such as before a deadline, therefore leaving
them no opportunity to take the time to understand the code that caused
or solved a problem. As a consequence, fixing specific problems was often
described as time-consuming when there was no ready-made solution they
could readily reuse. For example, P7 reports that since she wanted a very self-
specific bibliography design, “[customising] the bibliography was the longest
thing, because I couldn’t find a ready-made solution. I had to invent a little
bit.” (P7). For this reason, P2 and P4 expressed regrets not taking a course
on LATEX. P6, on the other hand, said that he would not make such an effort.
For him, using LATEX means tweaking existing code until you get the desired
result, without understanding how it works: “you find a document that works,
you copy and paste it, and you iteratively change it. [. . .] I will not learn the
structure of the code.” (P6).

Instead of trying to learn the language or reading the documentation of the
packages they use, all the non-expert participants (8/11) reported that they
would rather search for solutions to specific problems: creating a particular
style or layout, adjusting a certain margin, fixing an error, etc. In addition,
most participants (9/11) seem to forget or ignore the exact names of some
macros or the order and the meaning of their parameters, even when they
use them on a regular basis: “I know I had to use a minipage, but I still had to
look for how to use it” (P3). Yet, all but one participant reported that it was
not always easy to find a solution to their problems. For example, when she
had to insert ancient Greek into her document, P8 first attempted to “look
into stuff for linguists and historians”, but could not find an answer.

T3 — Plain text is inappropriate for structured content

Many participants (8/11) complained about the difficulty of describing struc-
tured elements such as tables, sub-figures, and chemical formulae. In particu-
lar, creating or editing tables was often described as “really annoying” (P1).
For example, according to P7, “forgetting a column is hell” because “for every
row I must count to put [the cursor] in the right place” (P7).

In response to these difficulties, more than half the participants (6/11) use
third-party tools. Both P2 and P4 started to create sub-figures by combining
several images in LATEX before switching to Inkscape or Adobe Illustrator
because it gave them “more control on the layout” (P2). P8 reported that one of
her co-authors used Paint to annotate a photography they used in their LATEX
document, something that would have been directly “feasible withWord” (P8).
To create tables from data stored in Microsoft Excel spreadsheets, P7 exported
them as CSV files that she loaded into Tables Generator (124), an online
table editor that generates LATEX code. However, because of the complexity of
the generated code, she would rather modify the data in Excel and repeat the

96

https://tablesgenerator.com/

97

whole process than edit the generated code. P1, P7 and P9 also reported using
this website to create tables from scratch. In addition, P7 also complained
about not being able to export the LATEX code of the molecules she created in
ChemDraw, a piece of software for chemists, because the textual syntax of
the chemfig package, meant for achieving similar results in LATEX, was “the
hardest thing I’ve ever used” (P7).

T4 — Abstractions are difficult to visualise and formalise

Many macros in LATEX require specifying dimensions, such as the size of
an image or the margin around an element. However, according to several
participants (7/11), it is difficult to express a length that they picture in their
head as a value with a unit (difficulty to formalise), and it is difficult to imagine
the length such a value represents (difficulty to visualise). P8 faced this issue
when she inserted images into her document: “I don’t necessarily know the
exact size I want the image to be, but [I know] I want it to be that size in my
head” (P8). Similarly, P1 complained about having to try several dimensions
to find the right one, a time-consuming strategy, “especially when you have
a lot of figures, as it takes a long time to compile.” (P1). To overcome these
difficulties, some participants (4/11) mentioned using commands they are
more familiar with in an alternative way. For example, P3 inserted white
text in his document (using \color{white}) to skip several lines of text: “I
suppose there was a simpler way to do it, but since I was in quite a hurry, that’s
how it is” (P3).

Unlike dimensions, which must usually be specified by the user, LATEX
often automatically determines the positions of various elements. This can
result in a lack of control that is not always desirable. P1 explained that her
way of positioning figures was “not very rational”, and P2 complained about
the difficulty of displaying an image next to a subsubsection that refers to
it when LATEX places it somewhere else. These difficulties were sometimes
caused by a lack of understanding of positioning parameters, such as those
of figure environments, which were often copied with the rest of a piece of
code. Even the more expert participants struggled with positioning. In spite
of reading about “how the compiler positions images” to better control the
process, P4 admitted that she still had to lower her expectations concerning
the positions of her figures. P5 explained that even though he felt comfortable
with the drawing commands of the TikZ package, he would prefer to be
able to directly manipulate some of the elements that compose his drawings
instead of “trying to guess” the correct coordinates or doing “some kind of
trigonometry” to calculate them.

T5 — The code-PDF duality is a source of errors and slowdowns

Participants who wrote a lot of mathematical formulae (3/11) complained
about the difficulty of relating regions or glyphs in the PDF to the code that
generated them. When writing mathematical papers, both P5 and P9 have
trouble (1) locating the code of the mathematical formula displayed in the
PDF and (2) finding the symbol they want to edit within the code of the
formula. To solve the first problem, they often search for a few words from

97

98

the text located just above or below the formula in the code editor, although
P5 admitted that this technique regularly fails. This approach is not unrelated
to the lack of support for SyncTeX in the LATEX editor that P5 uses, who
even explained that he considers switching to another editor for that reason.
Neither P5 nor P9 have found a solution to the second problem: every time
they want to edit a formula, they have to read the code to find the part to
change.

Two participants complained about the time required to compile the code
into a PDF, which not only increases the cost of trying alternative layouts,
but also makes errors very time-consuming: “if I get it wrong, it costs me a
minute” (P5). Both of them developed strategies to minimise this cost. In
order to compile less often, P1 distinguishes between writing and formatting
phases: “when I’m in a writing phase [. . .] I just write [. . .] but when I’m
formatting, I always open [the PDF] on the side, to compile regularly.” (P1). P5,
on the other hand, gave the example of a package that caches images created
with TikZ: as long as the code is not modified, it “re-injects the image instead
of the TikZ code” (P5). In addition, P4 mentioned that compilation time was
an important factor for choosing a LATEX editor.

6.2.3 recommendations for design

This thematic analysis reveals a variety of problems faced by LATEX users
and suggests several directions for improving the design of LATEX editors. I
summarise them in the following recommendations.

R1 — Let users view and edit the code as text

No graphical user interface can completely hide the code of a LATEX document
without restricting its users, as no graphical user interface can support every
LATEX package nor every feature that can be self-programmed by advanced
users. In addition, some users are willing to reuse pieces of code found online
or in other documents, as well as automate the generation of document by
synthesising code with the help of a program. I therefore recommend that
LATEX editors let their users read and modify the code in their documents
freely and easily, so as to accommodate to this diversity of practices, and
without trapping users in using a single piece of software for authoring their
LATEX documents.

R2 — Provide task-specific features in addition to generic language support

While the majority of participants were not opposed to the idea of learning
the LATEX language, none of them can or want to devote a lot of time to it.
Instead, most participants were looking for help to solve specific problems,
and only considered learning the concepts and syntax of the language along
the way, which they sometimes forget. In addition to providing generic
features intended for language experts, such as auto-completion of macros
one must already know about, I therefore recommend that LATEX editors
include features that are task-specific, with the goal of targeting specific but
common problems and needs—e.g., authoring tables and laying out sub-

98

99

figures—and helping less experienced and intermittent users quickly find
solutions to their problems.

R3 —Make structures and abstractions visible and interactive

Although the LATEX language was initially meant to be encoded as text and
edited in a graphemic interaction fashion, this type of projection poorly sup-
ports manipulating structures, such as mathematical and chemical formulae,
and symbolic representations of visual properties, such as coded lengths and
position information. I therefore recommend that LATEX editors let users
perceive and interact with structures and abstractions otherwise represented
as text through other projections using bidirectional transformations, so as to
maintain a two-way synchronisation between these alternative user interfaces
and the textual projection of the code.

R4 — Strengthen links between the code and the generated document

The fact that the code and the generated document are two separate resources,
and that recreating the latter when the former is modified can hardly be
performed in real time,53 forces users to work with two different and asyn- 53. This limitation has been adressed

by the Texifier editor (142), which is
capable of updating the typeset doc-
ument in real time when the source
code is modified. However, as their au-
thors explain it (143), achieving this
requires to write a custom TEX en-
gine that is deeply intertwined with
the editor, so as to support partially
typesetting the document and writing
the visual output directly within the
GPU’s memory, without writing the
document on the disk.

chronous representations of the same information and construct and maintain
links between parts of their respective projections in their mind. I therefore
recommend that LATEX editors make links between the code and the generated
document more visible and granular, such as by making it easier to identify
and modify the macro responsible for a specific mathematical symbol in the
PDF.

6.3 transitional representations

Most document authoring systems only provide a uniform projection of
the editable document to the user, whether it is a textual projection of code
written in a document description languages,54 a tree of blocks representing 54. I do not consider the generated doc-

ument here, as it is usually not editable.the document structure in WYSIWYM editors such as LyX, or an editable
version of the typeset document in WYSIWYG editors such as Microsoft
Word. While this prevents users from having to switch between multiple
representations—an operation that can sometimes be prohibitively costly, as
exemplified by the seldom use of Overleaf ’s rich text mode by the LATEX users
I interviewed—, it also constrains users to perceive and interact with every
element of every document through a single projection, which has its own
limitations, as suggested in subsection 6.2.3.

I argue that moving from uniform to protean projection of LATEX code can
help address several of the challenges identified in the previous section by
enriching the environment for editing code available to LATEX users beyond
text while preserving a full compatibility with existing LATEX workflows. To
that end, I introduce the notion of transitional representation, or transitional
for short, a specific kind of projection for document description languages.
In this section, I frame the concept, define its key properties, compare it with
related concepts and systems, and show how it applies to LATEX.

99

https://www.texifier.com/
https://www.texifier.com/blog/texpadtex-story-so-far
https://www.texifier.com/blog/texpadtex-story-so-far

100

6.3.1 definition

A transitional is an alternative projection of a fragment of code primarily
projected as text that can be displayed by interacting with the region of the
output document generated by this very fragment. The concept of transitional
complements a number of existing document authoring paradigms, such as
WYSIWYG, WYSIWYM and output-directed programming, as illustrated
in Figure 6.1. For example, a transitional could be used to interact with a
fragment of code representing a table by arranging the code of each cell within
a directly manipulable grid structure whenever the user clicks on the typeset
table in the output document (Figure 6.2).

A transitional does not turn a static document into a WYSIWYG editor:
they usually provide a different representation than the output, and they are
only meant to project the code of a specific fragment of code, not the code of
the entire document. In the example given above, the grid is complementary
to the output—which may, e.g., not show the grid of the table at all—and
only contains the code of the table’s cells. To edit the rest of the code, the user
is still expected to use the textual projection (or, when appropriate, another
transitional).

6.3.2 properties

Transitionals are local, bidirectional, persistent and embedded projections of
the code. They are primarily designed for document description languages,
but could be used to interact with code written in other kinds of computer
languages as well, as long as it generates an output.

Locality

Transitionals are local projections of the code: they only project a limited
fragment of the code, which represents a single element of the document. In
contrast with WYSIWYG systems such as Adobe Dreamweaver and output-
direct programming systems such as Sketch-n-Sketch (Hempel et al., 2019),
which require the whole output to be interactive, transitionals can be used
with a static output, such as a PDF, as they can be displayed in addition to the
code and the output—and not in place of them.

Bidirectionallity

Transitionals feature a bidirectional mapping between the code (the resource)
and the user interface it displays (the representation), so that every change in
the alternative representation is reflected in the code, and vice-versa. More-
over, this mapping is expected to run in real time, therefore making transi-
tionals live projections of the code they represent. Unlike code generated
once from a specification or a sketch, this approach enables users to dynami-
cally switch between the textual projection and the transitional depending
on which representation is the most adapted to their current needs. As an
example, a user may use a transitional to drag handles shown on top of an
image to resize it interactively, even if the entire document cannot be regener-

100

Le
ve

lo
fa

bs
tr
ac

tio
n

Separate media Coded document Final document

output

code

specification

sketches

schematics

WYSIWYG

Document
description
languagesOutput-directed

programming

WYSIWYM

Transitionals
(update)

Transitionals
(display)

Code generators

Code
inference

Figure 6.1. Space of document authoring paradigms. Nodes represent document representations, and arrows represent
authoring paradigms that connect different representations. Transitionals can be displayed by interacting with the output,
and modifying them updates the code, and conversely.

Transitional representation of the code

Generated PDFTextual projection of the code
1

2

3

4

Figure 6.2. Three representations of the same table in i-LATEX, which was adapted from Zhou et al. (2021). 1 The code of the
table is compiled into a static PDF element. 2 The table can be clicked in the PDF (as suggested by the blue halo) to display
its transitional—here, the code represented as text organised in a grid. 3 The user can interact with the transitional to modify
the structure and the content of the table. 4 The transitional and the code are synchronised, so that every change in either
one of them instantly updates the other representation. For example, inserting a new column in the grid automatically adds
cell separators in the code, which show up as new ampersands in the text.

102

ated at every step, before switching to the textual projection to fine-tune the
width and height parameters.

Persistence

Transitionals are persistent projections of the code: they can be hidden and
displayed again at any time while remaining in sync with the code, even
when the code is modified in the meantime. This makes transitionals similar
to alternative representations offered by a number of projectional editors,
such as MPS (Voelter and Lisson, 2014) and Livelits (Omar et al., 2021), but
different from code generators and Graphite’s palettes (Omar et al., 2012),
which do not remain linked to the code once they have been used.

Embeddability

Transitionals can be displayed within the output of the code, by interacting
with the region of the output generated by the piece of code that the tran-
sitional projects. This makes it possible to edit the code that describes an
element in the output using a specialised representation (similar to that of-
fered by WYSIWYG editors) without having to first locate and decipher the
fragment of code in the entire source code—with all the challenges that this
implies, as discussed in theme T5.

6.3.3 application to LATEX

The concept of transitional representation bridges the gap between the two
interaction paradigms that inspired it: projectional editing, in which each
node of the syntax tree can be projected arbitrarily, and output-directed
programming, in which manipulating an element in the output of a program
transforms the code that generated it. Transitionals address the following
two limitations of these concepts by enabling a form of “output-directed
projectional editing”.

The first limitation is conceptual: the textual projection of the code or the
output alone may not be sufficient or adapted for performing certain tasks.
As an example, Mozilla Firefox’s developer tools include a projection of the
value of a CSS timing function property (previously shown in Figure 4.4c)
that may be hard to interpret and modify as text, and whose animated target
in the rendered webpage offer no affordance to inspect and modify the tim-
ing function. This is an example of a situation in which neither graphemic
nor pragmatic interaction alone is adapted to the task, and where offering
the user a projection that lets them semantically interact with the property
complements other projections already provided by the system. The authors
of Sketch-n-Sketch make a similar observation regarding the usage of output-
directed programming in non-trivial documents: “manipulation of the final
output alone will be insufficient”, and therefore, “some of the intermediate
process should be exposed on the canvas for manipulation” (Hempel et al., 2019,
p. 5). Transitionals address this limitation by design, as a transitional can
include more, less or different information to make up for what is missing
in the output or help the user focus on what is important. In addition, by

102

103

providing multiple transitionals for a single element, users can choose the
representation that best fits their current need.

The second limitation is technical: depending on the document description
language and the complexity of the code, evaluating the code may be too
slow for real-time code synthesis and document rendering. In the case of
LATEX, non-trivial documents are usually too slow to compile to update the
output in real time when the code is modified—let alone turning the static
output generated by the LATEX compiler into a fully interactive document,
as previously noted by Laurens (2007). By displaying a projection of the
code of a single element of interest, the whole compiler can be traded for
an ad-hoc static analysis that extracts all the information required by the
transitional in real time. Moreover, by displaying a user interface that is
visually similar to what the code generates in the output, transitionals enable
a form of local live programming: users can see the effects of changes they
make in a specific region of the code in real time, even though the entire
document is not updated.

The properties of transitionals and the concepts they build upon make them
conceptually and technically adapted to help LATEX users author documents.
The thematic analysis showed that while editing the code of a LATEX document
is often preferred or required by LATEX users (T1), there are a number of
situations in which a textual projection of the code is ill-adapted, such as
when working with structured content (T3) and abstract values (T4). It also
highlights two areas where current LATEX editors fall short: supporting specific
actions on common types of elements (T2), and connecting the code with its
output (T5). Transitionals are a good option for improving LATEX editors, as
they adhere to the four recommendations presented earlier: they complement
textual projections instead of replacing them (R1); they are tailored to help user
perform common tasks on specific target elements (R2); they can visualise
structures and abstractions that may be hidden in the text and lost in the
output (R3); and they help linking fragments of code and their output in a
semantically-aware fashion (R4).

6.4 the i-LATEX editor

Informed by the results of the thematic analysis, I selected four candidates for
transitional representations adapted to the needs of LATEX users and created
i-LATEX, a LATEX editor featuring transitionals for mathematical formulae,
tables, images and grid layouts. In this section, I present the design of i-LATEX’s
user interface, the four transitionals, the key points of the implementation,
the current limitations and the possible extensions of the software.

6.4.1 user interface

The interface of i-LATEX resembles that of most traditional i-LATEX editors, with
the source code on the left and the generated PDF on the right. However, some
elements in the PDF have a blue outline, indicating that they are interactive.
Clicking on one of them displays an interactive visualisation of the piece of
code that generated the element (Figure 6.3). These transitionals let users (1)

103

1

4
3

2

Figure 6.3. User interface of i-LATEX when a transitional has been displayed. 1 Text editor of Visual Studio Code. 2 Generated
PDF. 3 Transitional representation of the code of a table displayed on top of the PDF, just below the table that has been
clicked. 4 Textual representation of the code displayed in the transitional. The document was adapted from the source code
of an article authored by Xiong et al. (2021) by replacing all the tabular environments by itabular.

a. Mathematical formula.

b. Table.

c. Image.

d. Grid layout.

Figure 6.4. User interfaces of the four transitionals available in i-LATEX, showing examples of how they can be used. (a) Hovering
over the∇ symbol highlights the corresponding macro in the code. (b) Right-clicking a cell displays a contextual menu that
enables to insert and delete rows and columns. (c) Dragging a handle resizes the image while preserving the same aspect ratio.
(d) Hovering over a cell displays buttons for inserting adjacent cells or deleting the cell.

106

visualise invisible structures and abstractions and (2) modify the source code
of the document in a more interactive way.

Depending on the position of the clicked element on the screen, the tran-
sitional is displayed in a panel either above or below it so as to leave the
rendered element as visible as possible. The rest of the document output
is darkened until the transitional is closed by clicking on the cross at the
top-right of the panel or anywhere on the darkened document. Closing the
transitional also recompiles the LATEX document and updates the PDF.

The title bar of each transitional displays the name of the file and the range
of the code that is visualised. Clicking on it displays the code in the code
editor by opening the appropriate file if needed and scrolling to the relevant
section of the code. The user can edit the code directly in the code editor. The
code is re-parsed after every keystroke, to update the visualisation. If an error
is introduced, the piece of code is highlighted in red in the code editor, and
the visualisation is replaced by an error message that invites the user to fix
the problem. The visualisation is restored as soon as the error is fixed.

6.4.2 transitionals

I implemented four kinds of transitional in i-LATEX: three for standard LATEX
structures (mathematics, images, tables), and one for a custom grid layout.
They are shown in action in Figure 6.4. These transitionals mainly support
semantic interaction with the code, as they target specific concepts and help
users directly manipulate some constituents of these concepts, such as rows
and columns in grid-like structures. To some extent, they can also be con-
sidered to support graphemic interaction, e.g., by letting users view and edit
the content of grid cells as text, and pragmatic interaction, e.g., by helping
users preview what a mathematical formula that was modified or an image
that was resized will look like in the compiled document.

Mathematics

Interactive mathematical formulae can be added to the document with the
imaths environment, a wrapper around the align* environment.55 The 55. As provided by the amsmath pack-

age (144).interactive visualisation of a formula (Figure 6.4a) displays an editable copy
of the code of the formula along with the typeset formula. Hovering over a
symbol or a group of symbols in the typeset formula—such as a fraction—
highlights the piece of code that produced it, and clicking on it selects that
piece of code. Editing the copy of the code instantly updates the typeset
formula in the transitional. If an error is detected, an error message is in-
stantly displayed in the visualisation, so that the user can fix the code of the
formula without having to recompile the whole document. This transitional
provides a strong link between the code of a formula and its output (R4),
while acknowledging that users may prefer editing the code as text rather
than directly manipulating the formula (R1).56

56. Even popular word processors such
as Microsoft Word support a LATEX-
like syntax for writing mathematical
formulae as text—in spite of also pro-
viding a user interface for writing for-
mulae with the help of menus and
buttons—, therefore suggesting that
writing mathematical formulae as text
is a widespread practice, including
amongst non-expert LATEX users.

106

https://ctan.org/pkg/amsmath
https://ctan.org/pkg/amsmath

107

Tables

Interactive tables can be added with the itabular environment, with the
same syntax as the standard tabular environment. The interactive visualisa-
tion of a table (Figure 6.4b) displays the code of the table in a grid, as well as
the type of each column in the header row. The raw content of each cell can
be selected in the code by clicking and edited by double-clicking. Columns
and rows can be inserted and deleted via a contextual menu as well as re-
ordered by dragging their respective headers. This transitional lets users see
and manipulate the table structure that is usually only visible in the PDF (R3),
making common transformations such as inserting and rearranging rows
and columns much easier than with a code editor (R2). By displaying the raw
content of the table, the user is free to use arbitrary LATEX code within each
cell (R1).

Images

Interactive images can be added with the \iincludegraphics macro, with
the same syntax as the standard \includegraphicsmacro.57 The interactive 57. As provided by the graphicx pack-

age (145).visualisation of an image (Figure 6.4c) displays it at the same size as in the PDF.
The image can be resized by dragging one of the handles. Clicking a button
displays a cropper that lets the user select the region of the image to display.
These manipulations automatically update the parameters of the macro by
inserting, modifying, or deleting the width, height, trim and clip options.
This transitional facilitates visualising and formalising dimensions (R3) and
helps discover and use lesser-known macro options such as cropping (R2).

Grid layouts

Interactive grid layouts can be added using the gridlayout environment,
a custom environment I developed specifically for i-LATEX. It consists of
minipage environments arranged in a fixed-size area made up of rows of cells
parameterised with relative dimensions to support local positioning of various
types of content (text, images, tables, etc). The interactive visualisation of a
grid layout (Figure 6.4d) displays the otherwise invisible grid-like structure.
Cells can be resized by dragging a separator between two cells, reordered by
dragging a cell, as well as inserted and deleted by clicking the appropriate
button while hovering over a cell. Rows can be resized in a similar fashion,
and a new row can be appended at the end of the grid by clicking a button. As
with interactive tables, each cell displays its raw LATEX content. It cannot be
edited directly from the visualisation in the current version, but clicking on a
cell selects its content in the code editor. This transitional supports the editing
of structured content (R3) and the concrete representation of abstractions
such as relative dimensions (R4). It also illustrates that transitionals may
foster the development of new LATEX environments that would otherwise be
too difficult to use with raw code only.

107

https://ctan.org/pkg/graphicx
https://ctan.org/pkg/graphicx

108

6.4.3 implementation

i-LATEX is implemented as an extension for Visual Studio Code (146) writ-
ten in TypeScript, along with HTML and CSS for the user interface. The
source code of the extension is open-source and has been made available on
GitHub (147). I present the key aspects of the implementation below.

Providing custom macros and environments

In order to use the special macros and environments presented above to
create elements that can be visualised and manipulated through transitionals,
a custom ilatex package must be included in the preamble of the document.
Each use of one of these macros/environments is associated with a unique
identifier that is written to an external file of code mappings, along with
other metadata such as the location in the code (file path and line number)
and the current values of several length macros such as \textwidth, so that
lengths using them can be evaluated by i-LATEX. In addition, a PDF annotation
containing the same unique identifier is added to the generated PDF, with
the same bounding box as the element produced by the macro/environment.
Although I created custom macros and environments for the sake of simplicity,
the existing ones they rely upon—such as \includegraphics—could be
patched to behave in the way I just described, therefore enabling LATEX users to
benefit from transitionals without having to learn new macros/environments.

Extracting the code to visualise

Unlike most programming languages, LATEX has no predefined grammar (Erd-
weg and Ostermann, 2011). Instead, it uses some unique features, such as
TEX’s category codes (Knuth, 1984b, ch. 7), which enable to modify the lexical
meaning of every character (such as \ denoting the start of a macro) anywhere
in the document—therefore making LATEX theoretically impossible to parse
using conventional parser generators.58 Nevertheless, certain conventions 58. See a related thread on StackEx-

change (148) for more details on this
limitation.

are very commonly used, such as the structure of environments. In order to
extract the pieces of code to visualise, I wrote a LATEX parser that accepts a
reasonable proportion of documents that follow these conventions. Every
time the document is compiled, i-LATEX reads and parses every file whose
path exists in the file of code mappings into an abstract syntax tree (AST). For
each code mapping, it then attempts to find the corresponding piece of code
in the given file, at the given line and of the given type, and creates a model
of the transitional with the matching AST node. The parser is designed to be
simple enough to minimise the number of parsing errors and the execution
time. Each transitional model can perform a more thorough analysis of its
own AST node if necessary.

Displaying the augmented PDF

Once the document has been compiled into an annotated PDF, it is displayed
using a custom PDF renderer.59

59. The renderer is based on the PDF.js
library (149).

The renderer extracts all the annotations
inserted by the custom macros/environments along with their unique identi-

108

https://code.visualstudio.com/
https://github.com/exsitu-projects/ilatex
https://tex.stackexchange.com/a/4205
https://tex.stackexchange.com/a/4205
https://github.com/mozilla/pdf.js/
https://github.com/mozilla/pdf.js/

109

fiers and uses them to add a blue halo to every element of the PDF whose code
can be visualised. When one of these elements is clicked, i-LATEX matches
the unique identifier of the element with the correct model. If a matching
model is found, it is used to populate the view of the transitional with the
appropriate data that was extracted by the model, such as the content of each
cell of a table. When the user interacts with a transitional, the view notifies
the controller of every action of interest. The latter forwards them to the
model, which is responsible for modifying the code of the LATEX document.
Every time the code is modified by a visualisation model or by the user, the
AST of the file is updated, and every model whose AST is modified updates
its internal representation of the code and provides new data to the view.

6.4.4 limitations

Features

A first limitation of i-LATEX is the fact that transitionals cannot interpret cer-
tain pieces of code even though their syntax may be valid and they may
produce the expected result in the PDF. Such limitations could be addressed
by (1) improving the static analysis of the code performed by the transition-
als to extract more information and (2) developing new features in these
transitionals to exploit that information. As an example, while merged cells
are currently not supported by the transitional for tables, its model could
be modified to process the \multirow and \multicolumn macros and the
view could be modified to enable users to merge/unmerge cells interactively.
However, because of LATEX’s extensible nature, there is no way to ensure that
all the features available as code will be available in a particular transitional.

Abstraction

A second limitation of i-LATEX is the absence of support for transitionals that
represent PDF elements generated by custom macros. Supporting this type
of abstraction in i-LATEX is challenging, because it requires to (1) identify
the provenance (Williams and Gordon, 2021) of all the pieces of code that,
put together, generate a certain PDF element and (2) deal with situations
where a custom macro is used in multiple places, such as resizing an image
inserted by a custom macro that is also used to insert the same image in
other places. While some research prototypes make use of custom language
interpreters designed to track the provenance of every value they compute,
I could not readily use this approach in i-LATEX since no LATEX compiler
currently tracks such information.60 There is no consensus on how to solve 60. The difficulty of tracking the prove-

nance of PDF elements generated by
LATEX is further discussed by Laurens
(2007), who faced the same limitations
regarding custom macros when devel-
oping SyncTEX (Laurens, 2008, sec. 5).

the second challenge, which remains an open question for future work.

Performance

A third limitation of i-LATEX is the lower performance on large LATEX files.
Since i-LATEX updates the AST of a file that contains at least one transitional
every time it is modified, transformations to perform in the code of a large
file can accumulate. When too many edits are performed in a short amount

109

110

of time, e.g., when an image is being rapidly resized, this accumulation can
make i-LATEX look jerky. In practice, performance is excellent for small to
medium-size files, and larger documents can be split into multiple LATEX files.
For example, I could fluidly edit the source code of several long papers using
i-LATEX on a 2GHz MacBook Pro, such as the 750-lines long LATEX file of the
paper by Xiong et al. (2021) shown in Figure 6.3. In addition, the propagation
of changes could be optimised to better support large ASTs.

6.4.5 extensibility

Although i-LATEX is only malleable in the sense that it can be reprogrammed,
it was conceived with a modular design that facilitates extension. Creating a
new transitional requires creating (1) a model that can extract the information
to be visualised from the AST node and make the necessary changes when it
is modified, and (2) a view that represents the data provided by the model
in the desired format. The source code provides controllers with an API
for exchanging messages between the model and the view and registering
callbacks for various events, as well as a number of utilities, such as a class for
parsing, converting and manipulating LATEX lengths and an API for operating
on the AST. In addition, the ilatex package for LATEX must also be modified
to create—or patch—the LATEX macro or environment that will benefit from
the new transitional so that every time they are used, they behave as described
in subsection 6.4.3. Creating transitional for pieces of code that are neither a
macro nor an environment is also possible, but not as straightforward, as it
may require adapting i-LATEX’s parser to create new types of AST nodes.

6.5 controlled evaluation

To assess whether transitionals can improve how LATEX users perform a num-
ber of specific editing tasks that i-LATEX’s transitionals were designed to fa-
cilitate, I conducted a controlled experiment. I was interested in comparing
quantitative metrics (task duration, number of compilations, participants’
workload), as well as collecting qualitative observations and feedback on the
use of i-LATEX. In this section, I expose the methodology I used, present and
analyse the results, and discuss the outcomes of the study.

6.5.1 methodology

Participants

I recruited 16 participants (2 women and 14 men, age 20–65) by posting a
message on the mailing lists of several computer science labs and a group
of HCI practitioners, and on a Facebook group of university students and
alumni. They did not receive any compensation for their participation. All
participants had used LATEX before. 5 participants had used it for less than 5
years, 8 participants for 5 to 10 years and the other 3 for more than 10 years.
3 participants had never used mathematical formulae and 1 had never used
tables in LATEX before. Slightly less than half the participants (7/16) self-ranked
their overall expertise with LATEX as 4 or 5 on a 5-point Likert scale.

110

111

Setup

The study was carried out remotely. Participants used i-LATEX on their own
computers and shared their screen. The study lasted between one and two
hours per participant, including setup and debriefing.

Procedure

I used a 2×2 within-participant design with two independent variables, Tran-
sitionals (Enabled, Disabled) and Document (D1, D2). I adjusted the design
of the study with two pilot participants to ensure it was understandable and
not too long to complete.

For each participant, I started by explaining the steps of the study to the
participant, asked them to read and sign the consent form, and helped them
install the i-LATEX extension in Visual Studio Code. I then asked participants
to open, read, and edit an introductory LATEX document with i-LATEX. The
document presented the features of i-LATEX and the three transitionals used
in the study (mathematics, tables, and images), with one interactive example
per transitional. I also invited participants to ask questions about i-LATEX or
the study.

Once they were ready, I asked participants to perform a series of 9 tasks
(T1–T9), as fast as possible, on one of two similar LATEX document sets, D1

and D2. Participants had to perform the 9 tasks with the first document set in
one of the Transitionals conditions, and again with the other document set
in the other Transitionals condition. Each document set consisted of three
LATEX documents (one for each type of tasks). The first document contained
tasks T1–T3 (maths); the second document tasks T4–T6 (tables); and the
third document tasks T7–T9 (images). In the condition where transitionals
were enabled, I explicitly told the participants that they were not required
to use them, and could always edit the code directly if they believed it was
faster. After completing all the tasks in a document set, participants had to
fill in a workload questionnaire based on the NASA-TLX.61. The order of 61. I adapted five out of the six mea-

sures of the original NASA-TLX ques-
tionnaire, with no weighting process—
a variant called the raw NASA-TLX
questionnaire (Hart, 2006).

the two document sets and the two conditions was counterbalanced across
participants. The four configurations of the experiment are presented in
Figure 6.5.

Once all the tasks were completed, I asked the participants to fill in a post-
study questionnaire. I also debriefed them about their experience with i-LATEX
and answered their questions. Moreover, if participants were interested, they
were offered to try the transitional for grid layouts (using a LATEX document
specially provided for the task) and give feedback on their experience.

Tasks

The nine tasks were similar in each of the two document sets (Table 6.2).
Each task fits on a single page of the generated PDF that contains (1) the
instructions and (2) the current output of the code to modify. The tasks were
designed so that they could be completed in at most a few minutes. In order
to move to the next task, participants had to compile the document with no
error, and the generated PDF had to contain the expected result. Participants

111

112

Task Type of content Type of instruction

T1 Mathematics Insert a term in a multi-line formula
T2 Mathematics Remove parentheses around a term in a multi-line formula
T3 Mathematics Modify a term in one formula among six

T4 Tables Sort the rows of a table by a certain column
T5 Tables Modify the values of specific cells in a table
T6 Tables Remove a specific column from a table

T7 Images Resize an image to make it as wide as another element
T8 Images Remove the whitespace that surrounds an image
T9 Images Hide a region of an image

Table 6.2. Description of the tasks participants were asked to perform. The tasks were grouped three by three, each group
focusing on a single type of content to edit: mathematical formulae (T1–T3), tables (T4–T6) and images (T7–T9).

D₁ T1→ T2 →…→ T9 Q₁

D₁ T1→ T2 →…→ T9 Q₁

D₂ T1→ T2 →…→ T9 Q₁

D₂ T1→ T2 →…→ T9 Q₁ D₁ T1→ T2 →…→ T9 Q₂

D₁ T1→ T2 →…→ T9 Q₂

D₂ T1→ T2 →…→ T9 Q₂

D₂ T1→ T2 →…→ T9 Q₂

Figure 6.5. Scheme of the four configurations of the experiment. The colour of the blocks represent whether transitionals
are ∎ enabled or ∎ disabled. D1 and D2 represent the two document sets, and Q1 and Q2 represent the two workload
questionnaires.

were allowed to use external resources to complete the tasks, including online
searches and other programs, as long as they did not reuse LATEX code from
other files of the study.

Most of the tasks were inspired by issues mentioned during the interviews,
such as finding symbols in complex formulae and editing large tables, that I
adapted to ensure that all tasks could be solved with transitionals. I decided
not to include tasks with grid layouts after testing them in a pilot study, as us-
ing the gridlayout environment without transitionals confused participants
and made the study last more than two hours.

Data collection

I recorded the screen and the audio of the participants and took notes of the
strategies they used and the difficulties they faced. At the end of the study, I
collected the log files generated by i-LATEX on the participants’ computers.

Data analysis

For each group of tasks, I measured the task completion times (TIME) and
the number of compilation (COMPILATIONS) by processing the collected files
using Python, R and SAS JMP. I also reviewed the participants’ answers to the
three questionnaires and watched parts of the recordings to compare their
behaviours and collect examples of strategies they used to solve the tasks.

112

113

6.5.2 results

I eliminated data from one participant for the tasks with images, for both
conditions, because that participant had to leave and could not solve tasks
T7–T9 after spending more than 30 minutes trying without transitionals (with
transitionals, this participant completed tasks T7–T9 in about 14 minutes).

Performance

A mixed ANOVA showed no significant effect of the order of the two Tran-
sitionals conditions (F1,12 = 2.83, p = 0.12) nor of the order of the two
document sets (F1,12 = 0.05, p = 0.82) on TIME. Thereafter, I therefore ignore
these two order factors. Since both task duration times (TIME) and num-
bers of compilation (COMPILATIONS) are strictly positive measures, I tested
the log-normality of the distribution of each measure with Kolmogorov’s D
tests. Task completion times fit log-normal distributions for tasks with tables
(D = 0.127, p > 0.15) and images (D = 0.151, p = 0.06), but not for tasks with
mathematics (D = 0.173, p = 0.02). Numbers of compilation fit a log-normal
distribution for tasks with images (D = 0.15, p = 0.07), but not for tasks with
mathematics (D = 0.266, p < 0.01) or tables (D = 0.219, p < 0.01). Given
these results, I performed paired t-tests on log-transformed data for task
duration time and Wilcoxon signed-rank tests for the numbers of compila-
tions. I also report effect sizes using Cohen’s d for t-tests and Rank-biserial
correlation (RBC) for Wilcoxon signed-rank tests. The detailed results of all
tests are reported in Table 6.3.

Regarding task completion time (Figure 6.7), there is a significant effect of
Transitionals onTIME for tasks with tables (t15 = −4.95, p < 0.001, d = 1.39)
and images (t14 = −3.75, p = 0.002, d = 1.17), but not for mathematics
(t15 = −1.45, p = 0.17, d = 0.34). According to mean task completion times,
tasks were performed 44% faster when transitionals were enabled (42% faster
for tasks with tables, 58% faster for tasks with images). Regarding the number
of compilations (Figure 6.8), there is a significant effect of Transitionals
on COMPILATIONS for tasks with tables (W = 8, p = 0.008, RBC = −0.82)
and images (W = 6, p = 0.001, RBC = −0.90), but not for mathematics (W =
38, p = 0.97, RBC = −0.03). According to mean numbers of compilation,
participants compiled 41% less often when transitionals were enabled (26%
less often for tasks with tables, 58% less often for tasks with images).

In order to look further into the effect of the transitional for mathematics,
I split participants into two groups based on their efficiency, defined as a
combination of high speed (low task completion times) and high precision
(low variance between task completion times). To form the groups, I plotted
the distribution of task completion times per participant (Figure 6.9) and the
mean task completion time of each participant against the standard deviation
of the task completion times (Figure 6.10). The plots reveal that 6 participants
form a distinct cluster (mean task completion time shorter than 5 minutes,
standard deviation of task completion times lower than 2 minutes), which I
distinguish as the efficient group (P2, P4, P8, P10, P12 and P15). The 10 other
participants form the non-efficient group. These groups are consistent with
the self-assessed levels of expertise with LATEX collected in the post-study

113

114

questionnaires (Table 6.4), whose mean and median values are higher for
efficient participants.

Efficient Non-efficient
0

3

6

9

Ta
sk

du
ra
tio

n
(m

in
ut
es

)

Transitionals
Enabled
Disabled

Figure 6.6. Effect of transitionals on
task completion time for tasks with
mathematics (TIME for T1–T3) for
each efficiency group. Error bars rep-
resent 95% CIs.

Results comparing the two efficiency groups for tasks with mathematics
are reported in Table 6.3. Plotted means (Figure 6.6) and paired t-tests for
efficient (t5 = 0.61, p = 0.57, d = 0.28) and non-efficient (t9 = −2.37, p =
0.04, d = 0.64) participants suggest that having access to transitionals has a
different effect on each of the two groups. However, this difference cannot be
considered significant after correcting p-values as per the Holm-Bonferroni
method. Given the small sample size, the tests have a low power and the
observed trend should therefore be tested with a larger sample.

Workload and feedback

The answers to the questionnaires are in line with the quantitative analysis.
According to both the two post-condition questionnaires (Figure 6.11) and
the post-study questionnaire (Figure 6.12), participants experienced a lower
workload and consider that they performed better when they had access to
transitionals. A large majority of participants reported that having access to
transitionals to complete the tasks was less mentally demanding (16/16), less
temporally demanding (15/16), less frustrating (13/16), and made them achieve
better performance (13/16). A few participants (3/16) reported a slightly
higher physical demand when they had access to transitionals, which some
participants related to the increased use of the mouse required to interact with
the transitionals. Several participants qualified the tool as “very impressive”,
and all the participants reported that they would probably (5/16) or certainly
(11/16) use transitionals if they were available in their LATEX editor.

Most participants made positive comments and suggestions to improve
i-LATEX. The suggestions include new features, mainly for tables, such as
merging cells, resizing columns, manipulating row separators, and enabling
multi-row or multi-column selections, as well as transitionals for other types
of elements such as TikZ drawings and citations. Several participants were
frustrated that the transitional would hide a part of the document they were
interested in, and suggested to let users move transitionals up and down.
Some participants also suggested to add a way to close a transitional without
recompiling the document.

At the end of the study, all but two participants agreed to try the transitional
for grid layouts. Their reaction was mostly positive. While some commented
that the transitional currently lacks some features they would like to use,
such as grouping cells by column, previewing the output of the cells’ content,
and equally distributing the available width/height, they also noted that it
was already better than the solutions they use to locally position elements in
LATEX.

Strategies

I noticed that participants used different strategies depending on whether
they had access to transitionals or not. When they were only allowed to edit
the code as text, several participants had to search either online (10/16) or in
a document/book (2/16) to solve some of the tasks. Two participants copy-

114

Type of tasks Participants
Paired t-tests
on log(TIME)

Wilcoxon tests
on COMPILATIONS

#DoF t p d W p RBC

Mathematics
All 15 −1.45 0.17 0.34 38 0.97 −0.03
Efficient 5 0.61 0.57 0.28 5 1.00 0.00
Non-efficient 9 −2.37 0.04 0.64 16 0.83 −0.11

Tables All 15 −4.95 < 0.001 * 1.39 8 0.008 * −0.82
Images All 14 −3.75 0.002 * 1.17 6 0.001 * −0.90

Table 6.3. Comparisons of task completion times and number of compilations between the two conditions, for each type
of task, and for each subset of participants when applicable. Log-transformed task completion times are compared using
paired t-tests and Cohen’s d for effect sizes. Number of compilations are compared using Wilcoxon signed-rank tests and
rank-biserial correlation (RBC) for effect sizes. Tests where p < 0.05 are marked with asterisks.

Mathematics Tables Images
Type of task

0

3

6

9

12

15

Ta
sk

du
ra
tio

n
(m

in
ut
es

)

Transitionals
Enabled
Disabled

Figure 6.7. Effect of transitionals on task completion time (TIME per task type). Error bars represent 95% CIs.

Mathematics Tables Images
Type of task

0

5

10

15

20

25

30

N
um

be
ro

fc
om

pi
la
tio

ns

Transitionals
Enabled
Disabled

Figure 6.8. Effect of transitionals on number of compilations (COMPILATIONS per task type). Hatched bars represent failed
compilations. Error bars represent 95% CIs.

Mean Median Minimum Maximum

Efficient participants 3.8 4 3 5
Non-efficient participants 2.8 3 1 5

Table 6.4. Statistics on the participants’ self-assessed expertise with LATEX on a 5-point Likert scale (1 = Beginner, 3 = Interme-
diate, 5 = Expert).

10 4 2 8 12 15 16 17 9 7 3 6 11 13 14 5
Participant ID

0

5

10

15

20

25

30

Ta
sk

du
ra
tio

n
(m

in
ut
es

)

Figure 6.9. Distribution of task completion times per participant. Each data point corresponds to a group of tasks (mathematics,
tables or images) and a condition (with transitionals, without transitionals). Participants are sorted by their mean task
completion time over both conditions. Efficient participants correspond to the six participants with the lowest mean task
completion time (shown in purple), whose distribution of task completion times are notably less sparse than those of the
other participants.

2 4 6 8 10
Standard dev. of task durations (minutes)

2

4

6

8

10

M
ea

n
of

ta
sk

du
ra
tio

n
(m

in
ut
es

)

2

3

4

5

6

7

8

9

10

11

12

1314

15
1617

Figure 6.10. Plot of the mean task completion time (Y axis) against the standard deviation of task completion times (X axis) of
each participant. Each mark is labelled with the ID of the participant. Efficient participants correspond to the six participants
in the bottom-left hand corner (shown in purple), who are notably faster (low Y value) and more consistent (low X value)
than other participants.

117

pasted code into Emacs to sort table rows in task T4, and four participants
used an image editor to crop the images in tasks T8 and T9. Some participants
also tried to come up with elaborate solutions, including computing the size of
an element in LATEX, measuring an image displayed on their screen with a ruler,
and playing with negative whitespace. In these situations, most participants
eventually admitted that they could not achieve what they had in mind after a
few minutes of trying, often resolving to simpler solutions and approximation
by trial-and-error.

I did not observe such behaviours when participants were allowed to use
transitionals. In this condition, although most participants (13/16) edited the
code as text at some point during the study, the majority of the edits were
performed through a transitional. Two participants used the code editor to
search for values to replace in T5; four participants approached the expected
image width using the transitional and fine-tuned the value by editing the
code in T7; and seven participants used the code editor to fix errors introduced
by i-LATEX when resizing or cropping images in T7 and T9.62 62. Due to a bug in the implementation

of i-LATEX used in the study, fast succes-
sive changes sometimes caused transi-
tionals to become out-of-sync with the
code, resulting in erroneous code gen-
eration.

No participants attempted to find “clever” solutions when transitionals
were available, with one exception. One participant completed task T4 very
efficiently by using both the transitional and the code editor. He opened the
transitional to move the column with the values to sort by to the left of the
table, switched to the editor to select the code of all the rows in the editor,
triggered a command to sort the selected lines, and switched back to the
transitional to move the column back to its original position.

6.5.3 discussion

The results of the study show that participants solved common tasks with
tables and images 44% faster and recompiled the document 41% less often
when they had access to transitionals, with large effect sizes (d > 0.8 for t-tests,
∣RBC∣ > 0.8 for Wilcoxon tests). While the difference is not significant for
tasks with mathematics, it suggests that transitionals may be more beneficial
to the least efficient participants. This might be explained by the higher profi-
ciency and experience with the syntax of mathematics in LATEX of the most
efficient participants, who might be more used to, e.g., finding the location of
a certain symbol in the code (for tasks T1 and T3), and remembering to delete
both \left and \right commands along with parentheses (for task T2).

In addition to improving performance, transitionals helped participants
solve tasks with a lower workload and using more straightforward strategies.
I hypothesise that this difference mainly stems from two characteristics of
i-LATEX’s transitionals. The first characteristic is that transitionals enable to
modify the code of the document by interacting with a possible mental model
of the code, without requiring participants to (1) build their own mental
model of the code and (2) map changes in their mental models to changes
in the code. The second characteristic is that transitionals can help discover
and use features that participants were not always familiar with, such as
cropping an image directly via the \includegraphics command, which
reduced the need for searching for tutorials and documentation. Interestingly,
these characteristics may also encourage participants to solve tasks in more

117

1 2 3 4 5 6 7

Transitionals
Enabled
DisabledPerformance

Frustration

Temporal demand

Physical demand

Mental demand

Figure 6.11. Effect of transitionals on participant workload, as reported by participants after each condition. Participants
were asked to rate the workload of the condition they just completed on 7-point Likert scales (1 = very little, 4 = normal,
7 = very much).

6%

56%

94%

100%

81%

81%

19%

6%

0%

0%

12%

25%

0%

0%

19%

Best overall performance

Most frustrating

Most temporally demanding

Most physically demanding

Most mentally demanding

100 50 0 50 100

Participant answers (%)

Without transitionals With transitionals
EquallyMuch more Much more

Figure 6.12. Comparison of the two conditions in terms of workload, as reported by participants at the end of the study.
The five scales are the same as those used in the post-condition questionnaires, but participants were asked how much one
condition applies more than the other instead—e.g., “Which condition was the most mentally demanding for you?”—using
symmetrical 7-point Likert scales (1 = much more the 1st condition, 4 = equally, 7 = much more the 2nd condition).

119

direct ways, without resorting to tools designed to automate sub-tasks such
as sorting lines and searching and replacing text.

In summary, this study shows that transitionals can be useful to beginner
and expert LATEX users alike. Transitionals can be used by beginners to learn
about common LATEX commands and environments and try alternatives for,
e.g., mathematical symbols, column orders, or image sizes, without the time-
consuming burden of recompiling after every change. Since transitionals are
optional by design, expert users can freely decide if they prefer to use them
or to edit the code directly. As an example, they could use a transitional to
make changes in a table only when it is large enough, or to find the command
that produced a symbol in a formulae when they cannot readily find it in the
code.

6.6 longitudinal evaluation

The controlled experiment showed that transitionals can help LATEX users
solve specific editing tasks. Yet, the very design of the experiment did not
let users appropriate the tool and use it with their own document, for their
own goals, at their own pace. To further investigate how LATEX users would
use transitionals in a more ecological setting, free of any instruction and
restriction, I conducted a longitudinal evaluation during the summer of 2021.
I was interested in understanding how LATEX users would bring i-LATEX into
their workflow and collect feedback on what features they use, when, and
why. In this section, I expose the methodology I used, analyse the findings,
discuss how this study complements the controlled experiment, and explain
why it directed me to a new research direction.

6.6.1 methodology

Participants

I recruited 6 participants (6 men, age 20–39) by posting a message on the
mailing list of a computer science lab and recontacting participants of the
controlled experiment who explicitly expressed interest in using i-LATEX to
edit their own documents. They did not receive any compensation for their
participation. 3 participants were computer science researchers, 1 was a Ph.D.
student in computer science, and 2 were M.Sc. students in biology. All
participants had used LATEX before, with an experience ranging from 3 to
18 years of use. All participants reported writing multiple LATEX documents
every year—two participant even reporting writing more than ten every year.
All of them reported using images in their documents, and almost all (5/6)
reported using mathematics and tables as well.

Setup

The study was carried out remotely. Participants used i-LATEX on their own
computers. The study lasted three months in total, but apart from the initial
setup, participants were free to decide if and when they would like to use i-LATEX.

119

120

Procedure

Before the start of the study, I explained participants the purpose of the study,
presented the features of i-LATEX, and asked them to read and sign the consent
form. I asked them to fill in a pre-study questionnaire to collect demographics
and information about their use of LATEX, and helped them install the i-LATEX
extension in Visual Studio Code, which they were asked to pre-install on
their computer along with a full LATEX distribution. I then asked them to try
it on a demonstration document provided to them, which contained code
compatible with the four transitionals available in i-LATEX, so that participant
could try each of them and ask questions. I further reminded participants that
they were free to decide if and when they would like to use i-LATEX, and could
reach out to me at any time during the study if they had questions or faced
issues with the software. During the entire duration of the study, I contacted
participants every week by email and asked them to fill in a questionnaire to
briefly report on whether they authored LATEX documents during the week,
whether they used i-LATEX to that end, and, if applicable, why and how.

Data collection

Before and during the study, I collected the participant’s answers to the ques-
tionnaires. At the end of the study, I collected the log files generated by
i-LATEX on the participants’ computers every time they used it to edit a LATEX
document.

Data analysis

I measured when participant used i-LATEX and what features they used by
processing the collected log files using Python. I also reviewed the participants’
answers to the weekly questionnaires to verify and explain the patterns of use
observed in the logs.

6.6.2 results

According to the logged data and the questionnaire answers, only participants
P1, P3 and P6 used i-LATEX during the study (Figure 6.13). Among them, only
P1 and P6 used some of i-LATEX’s transitionals, and no participant used the
transitional for mathematical formulae (Figure 6.14).

Participant P4 and P5 respectively answered the questionnaire only 5 and 4
times during the first two months, reporting no editing of any LATEX document
at all. Both ceased to answer starting from the 9th week, and neither answered
me when I contacted them to collect log files at the end of the study, suggesting
that they decided to stop participating in the study altogether. In the rest of
the analysis, I therefore focus on the activity of the other four participants.

On 9 weeks out of 12, P2 reported that he edited one to two LATEX docu-
ments, sometimes for more than 8 hours a week, but never used i-LATEX to
perform the edits. He once commented that he was working on an article
on Overleaf, just before a deadline, and was mostly writing text, though he
also authored a figure using TikZ, possibly suggesting that i-LATEX would not

120

121

have been of any help and/or incompatible with the collaborative nature of
his work. On three other weeks, he commented on not using transitionals
for images because he was using TikZ, adding that “help with this in i-Latex
would be appreciated” (P2). The rest of the time, he did not further explain
why he did not use i-LATEX.

Similarly to P2, P3 reported that he edited LATEX documents during 8 dif-
ferent weeks, often for 3 to 8 hours a week. Contrary to P2, he did use i-LATEX
on three occasions, though he never explained why or why not. According
to the log data, P3 only used i-LATEX to edit text, compile and preview the
PDF document, but never used any transitional, in accordance with his ques-
tionnaire answers, suggesting that he used i-LATEX merely as a regular LATEX
editing environment.

P1 only used i-LATEX a few times, often explaining that since he was mostly
writing text, he preferred to keep using his regular LATEX editor, Overleaf.
He mainly used i-LATEX for editing tables, commenting that “editing and
copy/pasting cells with iTable is really cool”, though “duplicating or inserting
many rows at once is faster by editing the code” (P1). One another week, he
also commented using i-LATEX only to preview the generated PDF in Visual
Studio Code.

P6 was the most enthusiast user of i-LATEX in this study. Although he only
used it during the last few weeks of the study,63 he mainly used i-LATEX to 63. The activity in June shown in Fig-

ure 6.13 corresponds to a single text
edit. Since P6 did not report author-
ing any LATEX document during that
month, it might just have been an invol-
untary action, such as opening a LATEX
file using Visual Studio Code and mak-
ing a change in it by mistake.

write his internship report, actively making use of i-LATEX’s transitionals for
images, tables and grid layouts. In his comments on the transitionals he used,
P6 states that it was “very easy” and “extremely handy” to crop images, “very
easy and intuitive to manipulate rows and columns” in tables, and “very easy
to add/remove an element, and to change size” in grid layouts. Regarding
images and grid layouts, P6 also complained that not knowing how a change
in the size of an image would affect the rest of the document still required
him to compile a few times. Regarding tables, and just like P1, he also noted
that “for very easy changes (typically one row I have to move), just moving the
corresponding code line is as quick as using the transitional”, further adding
that this approach also prevented the document from recompiling, “which
can be long and useless” (P6).

Overall, even though he had to adapt his template a little bit to make it
compatible with i-LATEX, P6 concluded that “the time spared with interactive
editing + the satisfactory feeling when moving table rows or columns make
i-LaTeX totally worth it”, even adding that “it even becomes a little addictive”
the following week. However, he also wished he could have prevented i-LATEX
from recompiling the document every time he uses a transitional, and ex-
plained that when he did not have to edit any table, image or grid layout, he
preferred to use the TeXMaker editor as he found it faster to compile than
i-LATEX.

6.6.3 discussion

Although the results must be interpreted with care, as only four participants
actively participated and only two of them used i-LATEX’s transitionals, the
outcomes of this longitudinal study are in line with what I previously observed
and discussed regarding the controlled experiment. Comments and activity

121

June July August September October

P1
P2
P3
P4
P5
P6

Figure 6.13. Timeline of the longitudinal study, which ran from early June to mid-September 2021. Each individual line
corresponds to a participant, and each black dot corresponds to a day during which at least one event was logged by i-LATEX.
As explained in the text, neither P2, P4 nor P5 used i-LATEX during the entire duration of the study, which explains why their
individual lines are empty.

Ed
it t
ex
t

Tab
le
/ s
et
ce
ll

Im
ag
e /
cro
p

Im
ag
e /
res
ize

Gr
id
lay
ou
t /
res
ize

Gr
id
lay
ou
t /
ins
ert

Gr
id
lay
ou
t /
mo
ve

Tab
le
/ a
dd
co
l.

Tab
le
/ m
ov
e c
ol.

Fin
d c
od
e

Tab
le
/ a
dd
row

Im
ag
e /
as
pe
ct
rat
io

Gr
id
lay
ou
t /
de
let
e

Tab
le
/ d
ele
te
co
l.

1

10

100

1,000

10,000

P1 : 232
P3 : 78

N
b.

us
es

on
di
st
in
ct

m
in
ut
es

Participant
P1
P3
P6

Figure 6.14. Distribution of the different types of events logged by i-LATEX during the study. Instead of counting individual
events, which can be hard to compare as is, the Y axis corresponds to the number of distinct minutes in which each participant
used each feature present on the X axis at least once. For example, the Find code item corresponds to the number of events
fired when a participant located the code of an element by clicking on the title of its transitional that were logged at least one
minute apart from each other. Event types with a slash correspond to features that are part of a transitional, whose type come
before the slash, and whose (kind of) feature come after the slash.

123

from P1, P2, P3 and P6 suggest that while i-LATEX’s transitionals were helpful
for editing specific pieces of code which are otherwise harder to edit as text,
most of the time required to author a LATEX document is spent writing the
body of the document by editing the code as text, often in their preferred
editor. Several participants also highlighted that when an action that could
be performed through a transitional was faster to perform by editing the text,
such as when inserting or duplicating rows in a table, they would rather pick
that second option. This further demonstrates that participants are indeed
able to jump between two projections of the same piece of code, without
complaining about having to switch between contexts. In addition, this study
shows the medium-term impact of two limitations that were mentioned
during the controlled experiment but could not be observed empirically.

The first limitation is that using transitionals require i-LATEX users to switch
to a different LATEX editor. During the three months of the study, most partic-
ipants preferred to keep using their usual LATEX editor, and only considered
using i-LATEX when they believed the could benefit from i-LATEX’s non-textual
projections for editing specific fragments of code. In particular, participants
explicitly commented that i-LATEX lacked (1) the collaborative aspect of Over-
leaf for writing multi-author documents, such as research articles (P1, P2),
and (2) the efficiency of TeXMaker for compiling the document into a PDF.
Moreover, although P6 did not regret spending some time adapting his tem-
plate to make it compatible with i-LATEX, the extra effort it required might be
another reason why LATEX users may prefer to stick with another editor that
is readily compatible with their document’s format.

The second limitation is that the lack of malleability of i-LATEX is constrain-
ing its users. By not being able to extend i-LATEX with new transitionals, P2
never considered using i-LATEX to write his documents, as no transitional
could help him author the pictures he was describing with TikZ. Similarly,
by not being able to modify i-LATEX, P6 had to repeatedly experience the
same bugs, such as i-LATEX’s erroneous code generation during rapid im-
age resizing,64 without being able to investigate the source of the bug and 64. This is the same bug as the one men-

tioned in subsection 6.5.2.fix it. Although I did not expect that any participant in this study would
actually fix bugs or create new transitionals from scratch themselves, I be-
lieve such limitations—which are often pointed out in open-source software
communities—would currently hinder i-LATEX from being used at a larger
scale.

6.7 conclusion

In this work, I demonstrated that LATEX users can benefit from protean pro-
jection of LATEX code, by combining a textual projection (the text editor)
with other kinds of projections (the transitionals) in a single environment.
The interview study highlighted a number of difficulties faced by LATEX users,
yielding four recommendations for design. I used these recommendations to
ground the design of i-LATEX, whose successful development demonstrated
the technical feasibility of providing transitionals for code describing mathe-
matical formulae, tables, images and grid layouts. The controlled evaluation
showed that with transitionals, LATEX users perform a number of tasks faster
and with fewer recompilations, resulting in a lower workload and simpler

123

124

strategies. The longitudinal evaluation increased the ecological validity of
these findings, as several participants were able to use i-LATEX’s transitionals
to edit their own document during extended periods of time, despite the
limitations they sometimes faced. Overall, i-LATEX was beneficial to beginner
and expert users alike, many of whom reported that they would like to keep
using them.

However, the two evaluation studies also suggest that LATEX users would
like to use transitionals with more advanced features, such as merging cells in
tables, as well as other types of transitionals, such as for editing pictures cre-
ated with TikZ. Moreover, participants in the first evaluation study reported
that they would be very keen on using transitionals if they were available
in their usual LATEX editor; and participants in the second evaluation study
indeed used i-LATEX only if and when they needed to use transitionals, often
switching back to another editor when they were done. These observations
support the assumption that creating projections for established computer
languages such as LATEX is not enough to support their widespread adoption,
even though they have demonstrated benefits and successfully became part
of some LATEX users’ workflows. Furthermore, although I posit that tran-
sitionals initially developed for LATEX could be adapted to benefit users of
other document description languages, who may experience similar difficul-
ties than those faced by LATEX users, the language-specific nature of i-LATEX
unfortunately hinders reuse of its transitionals.

This conclusion therefore directed me towards a new research question:
how to give users of computer languages the ability to create and adapt their
own projections, within and across computer languages, without being re-
stricted by the choices made by the authors of the code editing environment
they use? I argue that addressing this problem is key to spreading the use of
protean projection of document description languages. With a solution to
this problem, LATEX users could tweak transitionals to use representations that
include features they lacked, add transitionals for fragments of code such as
TikZ drawings and chemical formulae, and adapt transitionals to languages
such as Markdown and HTML, without having to switch to a different envi-
ronment. The next chapter proposes an experimental solution to this new
problem.

124

125

7
Creating malleable projections

The work I conducted on projecting LATEX code in a protean fashion, presented
in the previous chapter, illustrated that complementing a textual projection
with other substrates has a number of benefits, such as decreasing the time
needed to complete certain tasks and lower the workload they induce. Yet,
it also demonstrated that spreading the use of a tool such as i-LATEX—and
therefore spreading the use of protean projection—is a challenge in itself for
at least two reasons. First, making users switch to a different editor than the
one they are used to is difficult. Doing so prevents users from benefiting from
features that made them choose a specific editor rather than another, such as
its collaborative features, which may be prohibitively costly to reimplement in
a new editor, especially if it is designed as a research prototype. Second, when
designing a new text editor, one cannot reasonably plan ahead of the needs
of all its future users nor the text fragments that will benefit from alternative
representations in the languages that can be edited using this editor.

In this second line of my applied work, I introduce a new way to comple-
ment a text editor with additional projections of the code that fulfil these
constraints. More specifically, I investigate a way to improve the malleability
of these projections while achieving a diversity of projections and use cases
at least as good as the state-of-the-art solutions presented in subsection 5.3.2,
including those implemented in systems such as mage (Kery et al., 2020) and
Livelits (Omar et al., 2021). Again, I used a user-centred design methodology
to frame my research by grounding the work in a study of existing projections
and by evaluating the framework I developed on a number of concrete use
cases. The results were published in an article in the international ACM
UIST’23 conference (Gobert and Beaudouin-Lafon, 2023).

This chapter presents my work on this project as an extended version of
this publication. Section 7.1 defines the notion of malleable software, both in
a general sense of the term and when applied to text editors specifically, and
illustrates it with a number of classic examples. Section 7.2 presents a formative
study in which I collected 62 projections from the literature and from a
design workshop I organised with 9 participants, whose results shed light
on the projections’ diversity and reuse opportunities. Section 7.3 describes
lorgnette, a framework for instrumenting existing text editors so as to
equip them with additional projections of the code that can be created and

125

126

modified by their users. Section 7.4 demonstrates how lorgnette can be
used to implement projections in five use cases, ranging across multiple
computer languages. Section 7.5 concludes with several directions to address
the limitations of lorgnette, as a means of both supporting more diverse
types of projections and easing their appropriation by end-users.

7.1 background

Although the notion of making software malleable was introduced about
50 years ago, its definition greatly varies from one piece of work to another,
ranging from mere customisation to complete reprogramming. This section
presents key steps in the evolution of the concept, focusing on recent stands
and examples in the field of HCI, as well as specific forms of malleability in
the context of letting users tailor their text editors to their own needs.

7.1.1 malleable software

The idea to let end-users appropriate software in “personal and idiosyncratic
ways” (Klokmose et al., 2015, p. 1), i.e., to make software malleable, is far
from new. Back in the early 1970s, Smalltalk was designed as an operating
system in which everything could be accessed and modified by the user,
including kernel aspects such as the process scheduler. Smalltalk’s approach
was a far cry from the layered approach that had been popularised by Multics’
privilege rings only slightly earlier (Schroeder and Saltzer, 1972), in which the
system distinguishes between modes, such as the kernel mode and user mode,
therefore limiting what parts of the system users have access to. Yet, Smalltalk
never took off outside of academic circles, and all the major operating systems
in use today (and the microprocessors they are designed for) are designed
with compartmentalisation in mind.

Although Smalltalk failed at making malleable operating systems a com-
mercial success, it still paved the way for the more restricted and popular
approach of end-user customisation, in which certain aspects of a piece of
software can be reconfigured by its users without going all the way back to
editing the source code. Yet, although Myers et al. (2000) state that “end-user
programming will be increasingly important in the future” (§3.5) and attribute
the success of spreadsheets and webpages to the fact that everyone can indeed
self-program them—to some extent—without being a trained programmer,
they also highlight that customising most applications still requires to know
how to program using a specific programming language. As such, they con-
clude that “the important research problem with scripting and customization is
that the threshold is still too high” (§3.5), therefore drawing attention to the
need of finding better solutions to let non-programmers customise software.

More recently, malleable software has received renewed attention from the
HCI community. In his doctoral work on this very topic, Tchernavskij argues
that malleability goes beyond the now classic notion of adaptability and aims
to let users break free of the application-centric vision that has been central
in how we can and cannot interact with software in the past few decades.

126

127

Malleable software aims to increase the power of existing adaptation
behaviors by allowing users to pull apart and re-combine their interfaces
at the granularity of individual UI elements, such as toolbars, widgets,
menus, documents, and devices. In other words, the goal is to erase the
boundaries between apps and create an end-user accessible “physics of
interfaces” that dictate how different interfaces and documents can be
assembled. Malleable software should enable end users to reuse their
favorite digital tools in different digital environments, combine the be-
haviors of multiple interfaces created by different developers, and recruit
developers to modify or substitute interface elements.

— Tchernavskij (2019, ch. 4)

This vision echoes related arguments from other researchers, such as Dix’s
call for designing for appropriation (Dix, 2007), Beaudouin-Lafon’s vision of a
world without apps (150), and Litt’s blog post on the freedom of bringing your
own client (151). It was also implemented to various extents in a number of
systems, including Webstrates (Klokmose et al., 2015), Codestrates (Rädle
et al., 2017), Videostates (Klokmose et al., 2019), Stratify (Beaudouin-Lafon,
2023) and Mirrorverse (Grønbæk et al., 2023).

For example, Webstrates (Klokmose et al., 2015) are computational media
that multiple users can concurrently view and modify by each opening the
same Webstrate in a web browser. Changes to the Webstrate’s data are syn-
chronously and transparently replicated across every user; but users can also
decide to modify the webpage in a purely local fashion, such as by editing
the DOM to customise the user interface of the document or application
implemented as a Webstrate without imposing their personal preferences
on other users. Stratify (Beaudouin-Lafon, 2023) goes one step beyond by
explicitly describing the dependency graph of resources and transformations
between them and making every substrate they are projected onto a poten-
tial target for a number of interaction instruments (Beaudouin-Lafon, 2000),
which determine the semantics of input events, such as whether a click should
activate or delete the pointed element, without determining what the target
of the action is. As such, instruments are polymorphic:65 the same instrument 65. In this context, polymoprhism, as

introduced by Beaudouin-Lafon and
Mackay (2000), means that a single in-
strument (action verb) can be applied
to different targets (subjects).

can equally be used to delete an element in a list of items or a user interface
component, without having to consider what else they should update in turn.
Any change is automatically propagated through the dependency graph in a
reactive fashion, therefore automatically updating other substrates that form
the user interface. Stratify therefore helps users tailor a specific part of the
user interface to their needs in an entirely interactive fashion by giving them
instruments to modify the user interface in a coherent and programming-free
fashion.

CustomisationCustomisation

RecombinationRecombination

ExtensionExtension

ScriptingScripting

Fr
ic
tio

n
Fr
ic
tio

n

ReprogrammingReprogramming

Figure 7.1. Schema of the five levels of
the ladder of tailorability and the fric-
tion caused by climbing it. It is inspired
by the schema published by Grønbæk
et al. (2023, §4).

To clarify what constitutes the malleability continuum, which may include
changing a single setting as well as appropriating the source code of a system,
Grønbæk et al. (2023) build on earlier work from Mørch (1997) to introduce a
ladder of tailorability that includes five levels—customisation, recombination,
extension, scripting and reprogramming—defined as follows:

Customisation adapts software functionality or aesthetics using only
predefined settings;

127

https://www.youtube.com/watch?v=ntaudUum06E
https://www.youtube.com/watch?v=ntaudUum06E
https://www.geoffreylitt.com/2021/03/05/bring-your-own-client
https://www.geoffreylitt.com/2021/03/05/bring-your-own-client

128

Recombination assembles ready-made blocks or primitives to produce
new functionality;

Extension adds new functionality from external sources;

Scripting adds new behavior using an exposed API or a built-in script-
ing language;

Reprogramming changes an application’s functionality by editing its
source code or by interfacing with it directly.

In addition, Grønbæk et al. also introduce the notion of friction to describe the
cost of moving up the ladder of tailorability from the user’s point of view. The
five levels of the ladder and the notion of friction are schematised in Figure 7.1.

Friction sheds light on the fact that, in addition to making software more
malleable, lies the challenge of making malleability itself more inclusive. As
such, releasing source code under an open-source licence is not enough to
give the power to modify a piece of software to a broad audience, as editing
source code requires skills that most users do not have. Giving users access
to multiple steps of the ladder of tailorability helps address this challenge, as
each step offers a different trade-off between the amount of tailorability that
can be achieved and the amount of skills and effort it requires. Moreover,
even skilled programmers can benefit from this multiplicity, as they too can
experience friction. For example, while scripting and reprogramming cause
friction by excluding users who do not possess programming skills, they may
also cause friction by forcing skilled programmers to use a language they are
not familiar with or to write code using a specific programming environment
they dislike, which may refrain those with the appropriate skills from using
them altogether.

7.1.2 tailoring text editors

Among all pieces of software, text editors have a long history of being mal-
leable. Early interactive text editors from the late 1970s and early 1980s, such
as vim and Emacs, already supported several types of malleability, from cus-
tomising specific settings such as key bindings to scripting vim (using the
Vim script language), and even reprogramming most of the Emacs editor
using the same Lisp dialect it is written in. Eventually, package managers
were developed to ease sharing and installing extensions, therefore providing
an intermediate step between customisation and reprogramming.66 Similarly, 66. For instance, Emacs includes a

primitive to install extensions from
ELPA (152), the official Emacs pack-
age repository.

most text editors specialised for editing computer languages that have been
developed in the past two decades support customisation and extension. In
addition, since several of them have been open-sourced, they also support
reprogramming too—some, such as Atom (153), are even being described
as “a hackable text editor for the 21st century”.

While most of the tailoring proposed by the editors presented above are
unrelated to the content of the text that is being edited, several directions
have been proposed to tailor text editors in a content-aware fashion. For
example, Textlets (Han et al., 2020) let users reify arbitrary text selections
as different sorts of interactive objects, each with their own behaviour, such
as counting the number of words or keeping trace of alternative versions

128

https://elpa.gnu.org/
https://github.com/atom/atom

129

a. Textlets. b. Potluck.

Figure 7.2. Examples of text editors that let users turn specific ranges of text into persistent and interactive elements of the user
interface. (a) In Textlets, users can assign different behaviours to arbitrary text selections. For example, a countlet (top) counts
and displays the number of word in the selected range; a variantlet (middle) allows users to switch between two versions; and
a searchlet (bottom) reifies a search as a persistent collection of matching ranges. (b) In Potluck, users can search for patterns
and write formula to transform each match (right panel) and see and interact with modified occurrences directly in the text
(left panel).

(Figure 7.2a). Similarly, Potluck (141) supports searching for patterns of text
and replacing matching occurrences with the result of a user-specific formula,
akin to a spreadsheet formula, optionally augmented with a widget to, e.g.,
control a numeric value using a slider or add an inline timer next to a duration
(Figure 7.2b). More recently, a new version of Potluck demonstrated how
integrating artificial intelligence could help writing and explaining formula,
whose domain-specific syntax may discourage non-expert users, therefore
decreasing the friction of adding text-aware interaction to one’s document.67 67. This version was presented by Geof-

frey Litt during a talk titled Dynamic
documents as personal software (154),
which was given at the Causal Islands
2023 conference.

Interestingly, there is little work on applying this approach to text editors
designed for editing computer languages. On the one hand, systems such
as CodeQL (155) and Tree-sitter (156) support finding relevant pieces of
code in a code base by writing patterns, with the goal of helping developers
transform syntax trees and detect vulnerabilities. Sporq (Naik et al., 2021)
infers patterns of code from user-selected text, which can be further refined
by marking candidates as positive or negative matches; and tools such as
structural search-and-replace (Mossienko, 2004) and reCode (Ni et al., 2021)
help users generalise a text edit by either describing or inferring a syntactic
transformation pattern that can then be applied to all matching pieces of code.
Yet, neither of these systems is designed to assign a persistent user interface
element to matching pieces of code in order to help users understand and
modify them. On the other hand, systems such as Codelets (Oney and Brandt,
2012), Visual syntax (Andersen et al., 2020), mage (Kery et al., 2020) and
Livelits (Omar et al., 2021) do offer such user interfaces, but none of them
let users specify the pattern of the fragments of code that can benefit from
alternative projections. Codelets only works with code snippets when they are
inserted in the text editor; mage’s projections can only be invoked by writing
and evaluating specific magic commands in notebook cells; and Visual syntax
and Livelits only provide projections for specific macros, which must be
defined in the same computer language as the text is written in.

The work of Beckmann et al. (2023b) on visual replacements, published
one week before the publication of my own work on creating malleable
code projections in text editors at the ACM UIST’23 conference (Gobert

129

https://www.inkandswitch.com/potluck/
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://codeql.github.com/
https://tree-sitter.github.io/tree-sitter/

130

and Beaudouin-Lafon, 2023), also proposes to combine non-textual projec-
tions of code fragments with a search pattern-based approach (based on
Tree-sitter). However, although the directions we took share a number of
similarities, their work focuses on helping users tailor a new, standalone
syntax-directed editor, which internally represents code as a tree structure,
whereas my work focuses on augmenting existing, standard text editors with
additional projections.

7.2 formative study

To better understand which existing projections are used for and what type of
features should be prioritised, I analysed a set of projections that I collected by
organising a design workshop with nine programmers and by reviewing pro-
jections published in the literature. In this section, I present the methodology
I used for collecting projections and report on the results of the analysis.

7.2.1 design workshop

To collect projections from programmers who commonly use computer lan-
guages, I organised a participatory design workshop with the goal to ask
participants to imagine and design projections that they would like to use in
their own work.

Participants

I recruited 9 participants (6 men, 2 women, 1 prefer not to say; age 18–44)
by posting messages on the mailing list of a computer science department.
2 participants were research engineers, 3 were Ph.D. students, and 4 were
associate professors or researchers in computer science, human-computer
interaction and information visualisation. All participants had at least 5 years
of experience with programming, and 6 (66%) had more than 10 years of
experience. All of them program at least once a month, and 7 participants
(78%) do it at least once a week. In addition, all were familiar with multiple
programming languages. Participants did not receive any compensation for
their participation.

Setup

The workshop was organised in person and lasted about 2 hours. Based on
data collected in a questionnaire sent to participants beforehand,68 I put 68. See the procedure below for details.

participants in groups of 3 so as to maximise the diversity of the profiles in
each group. All the tasks were on paper. Participants were provided with all
the drawing material they needed.

Procedure

Before the workshop, I asked participants to fill in an online questionnaire to
collect demographics and information about their experience with program-
ming. To prompt participants, I also asked them to write about a situation

130

131

in which they wished they had access to an alternative representation of a
piece of code. At the start of the workshop, each participant was asked to
summarise the situation they wrote about.

I then introduced the concept of projection and presented the three tasks
to perform. I showed participants videos of projections that I created that
demonstrated code manipulation using a colour picker, an interactive grid
and a style inspector. I also briefly explained how projections work, insisting
on the fact that the same user interface can be reused in different contexts.

In the first task, I asked participants to list as many ideas of projections
as they could think of—first by proposing three “good” ideas and two “bad”
ideas individually, and then by discussing ideas within their group. Each
idea had to include a title, a short description of the situation it applies to,
a short description of the user interface of the projection, as well as one or
several goals among: discovering features, understanding code, modifying
code, debugging, explaining, or any freely specified goal.

In the second task, I asked each participant to choose two ideas generated
by their group and to design the projections they describe. Each design had
to include a description of the context in which the projection could be used,
an example of the fragment of code or data that that would be projected, and
an annotated sketch of the user interface of the projection.

In the third task, I gave each group the designs created by another group
and asked participants to choose one design and to apply it to a new situation.
Each redesign had to include a description of the new context the projection
could be used in and an example of the new fragment of code or data that
would be projected. They could optionally include a new version of the sketch
if the user interface had to be adapted to work in the new situation.

Data collection

At the end of the workshop, I collected and transcribed all the documents
produced by the participants.

Data analysis

I manually annotated the transcription of each design (prefixed with D) and
redesign (prefixed with R) to comment on the nature of the source and the
representation of each projection, the context it appears in, and challenges it
poses in terms of implementation. I ignored 3 designs and redesigns that I
categorised as generic code editor features rather than projections: making
type-aware suggestions (D5), performing global renaming (R6) and displaying
the definition of a symbol (R8). I did not ignore D15 (highlighting polyglot
code) because providing syntax highlighting for specific fragments of code
may require user knowledge to, e.g., create projections for strings written in
a different language than the host language, such as SQL queries embedded
in a Java or Python program.

131

132

7.2.2 examples from the literature

In order to increase the diversity of the projections collected during the
workshop, I also collected projections from systems published in the literature.
I specifically considered non-textual projections, therefore excluding syntactic
interaction techniques and visual augmentations of textual projections (Sulír
et al., 2018).

Since the term projection is not commonly used to describe the kind of
interactive system I am interested in, I did not use a systematic approach
such as a keyword search. Instead, I reviewed systems presented in articles
published in the past few years to major conferences/journals in the fields
of both human-computer interaction and programming systems and others
systems recursively referenced therein.69 I also included the four projections 69. I notably reviewed articles from

ACM conferences such as CHI, UIST,
SPLASH and PLDI, as well as the IEEE
VL/HCC conference and the Program-
ming journal.

that I implemented in i-LATEX, which had been published at the time I carried
out this study.

During this collection phase, I only retained projections that were part
of working systems. I therefore ignored unimplemented ideas of potentially
useful projections, such as table-shaped diagrams for TCP messages (Ander-
sen et al., 2020), although these ideas could lead to useful projections if they
were implemented. This method should not be considered as an extensive
nor systematic review of the literature on projections, and I do not claim that
the results fully capture the variety of projections available in the literature.

7.2.3 results

The participants produced 44 projection ideas in the first part of the workshop,
of which 23 were developed into actual projection designs, which are listed in
Table 7.1 and illustrated in Figure 7.3. In addition, I collected 39 projections
from the literature, resulting in a total of 62 projections.

I then analysed the collected projections in terms of contexts of use (which
situation are they used in?), source (what is projected?) and representation
(what substrate is it projected on?). The results are presented below and
summarised in Table 7.2, which classifies the 62 projections by representation
and type of source data.

Contexts of use

Projections can target different audiences such as software developers, do-
main experts, e.g., to create electronic circuit (Voelter et al., 2019), teachers,
e.g., to create assignments (D14, D16, R2, R3), and students, e.g., to learn
Rust (Almeida et al., 2022). They can also serve very diverse goals: among
the 44 projection ideas that were proposed by workshop participants, 26
(59%) were designed to help them understand code, 24 (55%) to modify it, 16
(32%) to debug it, and 12 (27%) to explain it or to discover new features. One
participant was also interested in using a projection to generate synthetic
data (D12).

Projections can be used in diverse types of programming systems. In
the literature, they are used in regular text editors (27/39), notebooks (5/39)
and specialised environments (7/39). In the workshop, this was often un-

132

N° Description of the design

D1 An interactive music staff to edit LilyPond music scores.
D2 A textual explanation of a binary optimisation program written in Python with Google’s OR-tools.
D3 A form to write and edit a configuration file for, e.g., connecting to a database or a SMTP server.
D4 A form to configure the options of the ffmpeg command line utility.
D5 * A menu to paste previously copied code that matches the expected type at the cursor position.
D6 A text editor to modify a Javadoc comment in the code from within the generated documentation.
D7 A graph whose nodes represent editable function bodies and arcs represent calls between them.
D8 A 3D trajectory editor for a CSV file whose rows contain timestamps and 3D coordinates.
D9 Previews of files and patterns that will be expanded when typing a path in a terminal.
D10 A form to configure the arguments of a Swift function for using Pandoc.
D11 A grid representing a webpage to create HTML elements spanning over the selected cells.
D12 A map to draw trajectories and interact with a distribution defined along them to generate data.
D13 An interactive image that can be moved and resized in a PDF generated from LATEX code.
D14 A list of code regions that can be hidden to generate Python code with holes for students.
D15 An interface to syntactically highlight SQL requests written as strings in Java.
D16 An interface to replace code regions by “TODO” comments to generate code with holes for students.
D17 A sequence diagram representing property accesses between objects over time.

R1 A 3D space showing the evolution of the reference point for each operation in Processing.
R2 An interface to show the expected solution of a coding assignment next to the student’s code.
R3 An interface to replace code regions differently for assignments with multiple levels of difficulty.
R4 A typeset mathematical formula that can be edited to modify mathematics written in LATEX.
R5 A form to configure the fields of a front matter of a Markdown document written in YAML.
R6 * A text input to rename an “id” property of an HTML element that also updates CSS rules.
R7 A preview of the triangles/rectangles formed by successive 3D coordinates in an OBJ file.
R8 * Previews of the definition of certain expressions at the location where they are used in the code.
R9 A grid that allows to configure a grid layout to be applied to the children of an HTML element.

Table 7.1. Description of the designs (prefixed with D) and redesigns (prefixed with R) created by the participants of the
design workshop. Asterisks (*) indicates that I ignored the design in the analysis, for reasons explained in the text.

Notes Flute =
\relative { \time 4/4
ees’4(d c8 ees f)
G,4(a b’)e(
Aes8 cis, cis f bes4 aes4 \bar “||”

}

LilyPond code

a. Design D1.

ffmpeg -I lecture.mov \
-vcodec h254 -acodec mp3 \
lecture.mp4

Command line instruction

b. Design D4.

id ; time ; x ; y ; z
0 ; 0 ; 0 ; 0 ; 0
1 ; 0.1 ; 0.1 ; 0 ; 0
2 ; 0.2 ; 0.3 ; 0 ; 0,1

CSV file

c. Design D8.

Figure 7.3. Examples of three projections designed by workshop participants, including the sample code (top) and the sketch
(bottom). (a) Code written in LylyPond is projected onto an interactive music staff, which can be used to modify by dragging
notes and inserting accidentals. (b) A command line instruction to run the ffmpeg program is projected onto a form, which
helps configure some of the many options that can be specified using arguments. (c) A timed sequence of 3D positions
encoded in the CSV format is projected onto a 3D plot showing the position of each point, which can be dragged to modify
the numeric coordinates in the code.

135

specified, but most projections seem to be designed for text editors and two
for command-line interfaces (D4, D9). They can also work with multiple
languages—not just programming languages—including Python, Java, C,
HTML, CSS, JavaScript, Swift, Rust, Racket, Haskell, Hazel, LATEX, Mark-
down, YAML and others.

Source

Projections can rely on both static data available at all times, e.g., the code
of a LATEX table, and dynamic data available only during execution, e.g., the
content of a Python dataframe. Some projections use both: for instance,
mage’s image editor (Kery et al., 2020, fig. 3) gets the image to edit from the
memory at runtime but reads the area to crop in the code. Furthermore, one
workshop participant proposed a projection idea (that was not turned into a
design) to visualise the introduction of a merge conflict with another branch
of their versioning system, which suggests that some projections may need
to access other data that exist in the computational context, even though it
is not directly related to the code or its execution, such as the history of a
version control system.

When a projection represents code, the scale of the code also differs from
one projection to another. Most projections only represent a local fragment
of code (50/62), e.g., a colour value or a local tree transformation. Others
either represent entire files (6/62), e.g., a list of timestamped 3D positions
or an assignment for students, or code located in multiples files (6/62), e.g.,
the structure of a container in a HTML file and the related style in a CSS
file. This echoes the multiple scales of concepts implemented as code that
have been identified in the literature: beacons (Wiedenbeck, 1986) and nano-
patterns (Gil et al., 2019) at the instruction/line level; micro-patterns (Gil and
Maman, 2005) at the structure/file level; and design patterns (Gamma et al.,
1995) at the project/multi-file level.

Representations

More than half the projections (37/62) take the form of either a grid, a graph or
a form, which seem to be very versatile substrates. The rest of the projections
use other sorts of user interfaces, including some highly specific ones that were
used in only one situation, such as a map (D12) and a music staff (D1, shown in
Figure 7.3a). While the same user interface can be reused to represent different
concepts, some concepts can also be represented by different substrates, e.g.,
a state machine can be represented both by a grid and a graph. Regarding
interactivity, about three substrates out of four allow to modify the code
interactively (45/62), while the rest only serve as static representations of the
projected data.

Projections can also be displayed at different locations, regardless of the
substrate used by their representation. In the literature, this includes in-
line projections (11/39), which mix with textual code; float projections (14/39),
which appear next to the code; standalone projections (10/39), which appear
in a different panel; and embedded projections (4/39), which appear in a
different document related to the code. Besides a few projections created with

135

Representation Projected concept Origin

Form Colours Graphite (Omar et al., 2012)
Livelits (Omar et al., 2021)

GUI component properties Codelets (Oney and Brandt, 2012)
Graphical properties Codelets (Oney and Brandt, 2012)
Animation properties Codelets (Oney and Brandt, 2012)
Form building Visual syntax (Andersen et al., 2020)
Regular expression Graphite (Omar et al., 2012)
Configuration file D3, R5
FFmpeg configuration D4
Pandoc configuration D10
Documentation comment D6
File path D9
Code assignment D14, D16, R2, R3

Graph List Heterogeneous languages (Erwig and Meyer, 1995)
Vital (Hanna, 2002)

Tree Heterogeneous languages (Erwig and Meyer, 1995)
Alectryon (Pit-Claudel, 2020)
Visual syntax (Andersen et al., 2020)

State machine Heterogeneous languages (Erwig and Meyer, 1995)
MPS (Voelter et al., 2019)

Rust’s ownership RustViz (Almeida et al., 2022)
Runtime stack and heap Python Tutor (Guo, 2013)
Reactive stream Poker (Descheemaeker et al., 2021)
Call graph Reacher (LaToza and Myers, 2011)

D7

Grid Dataframe The Gamma (Petricek, 2020)
mage (Kery et al., 2020)
Livelits (Omar et al., 2021)

State machine MPS (Voelter et al., 2019)
Document table i-LATEX (Gobert and Beaudouin-Lafon, 2022)
Grid layout i-LATEX (Gobert and Beaudouin-Lafon, 2022)

D11, R9

2D plot Dataframe mage (Kery et al., 2020)
B2 (Wu et al., 2020)

Machine learning metrics Skyline (Yu et al., 2020)
Loop parallelisation Clint (Zinenko et al., 2015)

3D plot 3D trajectory D8
3D object R7
Transform reference point R1

Representation Projected concept Origin

Typeset mathematics Coded formula Barista (Ko and Myers, 2006)
Alectryon (Pit-Claudel, 2020)
i-LATEX (Gobert and Beaudouin-Lafon, 2022)
R4

Optimisation problem D2

2D game board Conway’s Game of Life Alectryon (Pit-Claudel, 2020)
Tsuro Visual syntax (Andersen et al., 2020)

Circuit diagram Hardware circuit Visual HDL blocks (Lin et al., 2021)
Quantum circuit Notate (Arawjo et al., 2022)

Image editor Image transformation mage (Kery et al., 2020)
Livelits (Omar et al., 2021)
i-LATEX (Gobert and Beaudouin-Lafon, 2022)
D13

Marble diagram Reactive stream RxFiddle (Banken et al., 2018)

Music staff LilyPond score D1

Map Geodata synthesis D12

Sequence diagram Variable access D17

Highlighted code Polyglot code D15

Table 7.2. List of projections I reviewed. The origin can either be a workshop design or redesign number, as specified in
Table 7.1, or a reference to a system published in the literature.

138

MPS, none of the systems I reviewed let users change the display location of
a projection—even though that may benefit some user groups, as discussed
by Omar et al. (2021, §5.3).

7.2.4 discussion

The results of the study depict a very eclectic collection of projections. They
can be used in different sorts of programming environments and languages
by both experts and non-experts. They project very different types of data,
which may originate from the code, the runtime state during its execution, or
other resources that exist in the same computational context; and they can be
represented by both very generic or very specific substrates. A single substrate
can be used in different situations, and the same data can be projected on
different substrates. Overall, this diversity contrasts with current approaches
for engineering code editors, which are hardly malleable and flexible enough
to let end-users tailor their editors by exploring the design space of projections
that emerges from this study.

For example, model-driven engineering systems and language workbenches
such as Barista (Ko and Myers, 2006) and MPS (Voelter and Lisson, 2014)
can only create editors for a single language, in which only predefined nodes
of the syntax tree can be projected onto more or less arbitrary substrates.
Since the code is internally represented as a tree, it makes them ill-adapted to
project patterns of text; and apart from a few examples, such as the Cornell
Program Synthesizer (Teitelbaum and Reps, 1981), they usually cannot exploit
runtime data.70 In terms of malleability, this approach barely supports repro- 70. When using this approach to create

an editor for a programming language
meant to be executed from a textual en-
coding, mapping runtime data to code
in the editor is particularly challenging
as the internal representation of the ed-
itor must first be transformed into text
and possibly be compiled before it can
be executed, requiring to map the run-
time state back to text and to map the
text back to the internal representation
used by the editor.

gramming, making the cost of creating or modifying projections very high
for end-users, who must recompile modified sources into a new editor before
they can use them. Image-based programming systems are more appropriate
for exploiting runtime data since they blur the distinction between code and
data, but just like the aforementioned systems, they require to use their own
language and do everything in their isolated ecosystem.

Visual syntax systems, such as visual syntax for Racket (Andersen et al.,
2020) and Livelits for Hazel (Omar et al., 2021), lower the cost of creating
custom projections by enabling end-users to write special macros that specify
a user interface for configuring the macro (and therefore the actual code
it generates on expansion). While this approach lowers the tailoring level
from reprogramming to scripting, rather than mere reprogramming, it is
deeply language-specific, does not favour reuse, and requires to use the special
macros in order to benefit from their non-textual projections, meaning that
all existing code will not benefit from them.

Overall, existing engineering approaches are specific to a single language
and target predefined AST nodes rather than all the pieces of code that match
user-specified patterns. Although the editors themselves may be reconfig-
ured or extended with plugins, to the best of my knowledge, this is hardly
ever used for creating alternative projections of the code. At best, providing
such projections is possible by exploiting a generic API to write a plugin,
at the cost of a friction almost as high as that of plain reprogramming. For
example, although Visual Studio Code includes a colour picker interface to
interact with colour codes in some languages, there is no way for end-users

138

139

to adapt the projection to make it work with a different syntax or language
unless they create a plugin providing an entirely new text editor interface to
Visual Studio Code.

To address this kind of limitations, I focused on equipping text editors
with projections that can be adapted using reconfiguration, recombination,
extension and scripting. In particular, I was interested in making the same
user interface easy to reuse across different languages and situations; a feature
not available in other text editing systems with protean projections, even
though the results of my formative study show that forms, graphs and grids
are used in 62% of the projections that I collected.

7.3 the lorgnette framework

In light of the limitations of current approaches to engineer projections in text-
based code editing environment, I developed lorgnette, a new framework
for augmenting text editors with alternative projections of the content that
can be created and modified by end users. lorgnette’s malleability targets
multiple categories of users, from novices who only want to tweak an existing
projection to adapt it to a new use case to seasoned programmers willing
to create projections with custom user interfaces to accompany a library
they work on. In this section, I present the architecture and concepts of
lorgnette, describe its implementation and compare its features to those of
related systems.

7.3.1 concepts

lorgnette is a framework for augmenting code editors with projections. It
is not a code editor in itself, but a means to instrument a text editor so that
its users can freely create, modify and delete projections of the code already
projected as text without needing to modify the source code of the editor or
waiting for the developers of the text editors to do so. To be compatible with
lorgnette, the system that includes the text editor must give lorgnette
access to resources, such as the content of the active file and a means of
communication with the runtime environment, as well as a view in which
lorgnette can display its own projections and capture events.

Once a code editor has been augmented with lorgnette, users can start
augmenting it with projections by writing projection specifications. A speci-
fication is a blueprint for a projection that tells lorgnette when and how
to create it. It has three main responsibilities: extracting the appropriate
resources, mapping them to a model, and pairing it with a user interface. The
whole process of turning a specification into a projection is schematised in
Figure 7.4. The numbers in yellow discs in the text below refer to the six steps
shown in the figure.

Extracting resources

The first responsibility of a specification is to list its requirements (1), i.e.,
the conditions that must be fulfilled for the projection to be created. They
typically represent assertions about the environment, such as the language(s)

139

registerProjection({
name: "CSS colour picker",
requirements: { language: ["css"] },
pattern: new SyntaxPattern(...),
forwardMapping: ...,
userInterface: "color-picker",
renderer: "side",
backwardMapping: ...,

});

1
2
3
4
5
6

JavaScript

Specification of the projection

.syntax-tree {
font-size: 0.8em;

}

.syntax-tree .syntax-tree-node {
padding: 0.25ex 0 0.25ex 1em;
border-width: 1px 0 1px 2px;
border-style: solid;

...

CSS

Active file in the text editor

Runtime environment User preferencesOther files opened in the editor

RESOURCES

VIEW

#4ba93d

#3d8aa8

Display the UI next to the code
when the cursor is inside

Fragment

Model

User interface

Updated model

Fragments are extracted
from the active file

The active file is tested

The extracted fragments is
transformed into a model

The model is used
to instantiate the UI

The UI is displayed when
and where appropriate

The UI processes events
to update the model

Events captured in the view
are forwarded to the UI

The new model is used
to transform the resources

LORGNETTE

1
2

3

4 4

6

5

Is the language CSS?

r: 75
g: 169
b: 61

#4ba93d

r: 61
g: 138
b: 168

r: 75
g: 169
b: 61

Figure 7.4. Description of the process followed by lorgnette to process the specification of a projection stating that the text
editor must display a colour picker to preview and modify hexadecimal colour codes in CSS whenever the cursor is inside
one. The resources and the view (dashed areas) correspond to the interface between lorgnette and the text editor, which
must provide certain resources and a view to be compatible with lorgnette via, e.g., an extension API. In this example, only
the specification and the active file are used by lorgnette, and the view displays the text editor augmented with a colour
picker representing the colour code at the cursor’s position (line 19).

141

the projection is designed for. Moreover, they must also specify what are
the resources (2) needed by the projection, i.e., to create a model for the
user interface. Resources represent different sorts of data that can be used
by projections. The main type of resource is the fragment of code that is
being projected, either in the form of a range in the text (a textual fragment)
or in the form of a node in the syntax tree if the language can be parsed (a
syntactic fragment). Specifications must include a pattern that will be used
by lorgnette to search for matching fragments in the code, each of which
will be projected. These patterns can either be textual, e.g., using a regular
expression, or syntactic, e.g., using an assertion that must be true for syntax
tree nodes that can benefit from the projection. If the environment supports
it, resources can also include runtime information, such as the value of a
variable at a certain point in time. This requires to write runtime requests in
the specification, which specify when and how lorgnette should query the
runtime (such as a debugger running the code that is being projected) and
whose responses will be provided to the projection as resources. lorgnette
currently supports these three types of resources (textual fragments, syntactic
fragments and runtime information), but other types of resources could
be made available to projections as well, such as local files or environment
variables.

Mapping resources to a model

When all the requirements to create a projection are met, the requested re-
sources are extracted and passed to the forward mapping (3). The forward
mapping is an arbitrary function that is responsible for processing the re-
sources in order to return a valid model M, such as by extracting useful
information from the code fragment. Whenever the state is modified, typi-
cally through the user interface, the new model M′ is passed to the backward
mapping (6), possibly along with extra data (such as the previous model and
other information on what changed). The backward mapping is an arbitrary
function that is responsible for updating the underlying resources, e.g., by
modifying the code fragment, so that applying the forward mapping would
produce M′, i.e., so that the set of forward and backward mappings form a
well-behaved lens (Foster et al., 2007). In case the state is never modified, such
as when using a projection to display a static representation, the backward
mapping can be left undefined.

Rendering the user interface

Once the model has been generated by the forward mapping, the user inter-
face (4) can be instantiated using M and provided to the renderer (5). The
user interface has the responsibility of deciding how to represent the data,
process events such as clicks and key presses, and update the model when
appropriate; while the renderer has the responsibility of deciding when and
where the user interface should be displayed in the code editor. For instance,
by switching between two different renderers, the same user interface could
be displayed either in a separate panel or next to the cursor when it is inside
the code being visualised.

141

142

Reusing patterns and mappings as templates

While requiring users to write arbitrary mappings between resources and
a model allows lorgnette to support very diverse situations, writing bidi-
rectional mappings from scratch is effortful and hard to reuse across similar
situations. To avoid this complexity, other systems such as Codelets (Oney
and Brandt, 2012) and mage (Kery et al., 2020) only allow to specify text tem-
plates with “slots”. The slots can be written when the user interacts with the
projection and read again when the code is directly modified. This solution
has the advantage of being easy to use, but it is too simple to support a number
of common situations. For example, it does not support creating slots in an
unsorted key-value list—such as objects in Python or JavaScript—since all
the possible orders would have to be enumerated.

To help users create projections for this kind of common situations,
lorgnette includes its own type of templates. In lorgnette, a template
reifies a procedure for creating a model containing key-value pairs. Each
template specifies slots, which are not restricted to predefined ranges and
whose meaning is completely template-specific. Each slot must have a key,
which identifies the slot’s value in the model, and an evaluator, which tells
the template how to turn the text content of the slot into a usable value. A
slot specification may also contain other information, such as a default value
that should result in the slot’s deletion in the code, e.g., to avoid cluttering a
configuration object with default options. For example, a template for named
arguments in Python lets users specify which function names they want to
target, which arguments they are interested in (keys) and whether to parse
each value into a string, a number, a boolean, etc. (evaluators). This template
automatically generates resource specifications and mappings that result in
a model where the keys are argument names and the values are evaluated
argument values. Users are not restricted to use the model as is: templates
can specify arbitrary functions to further transform the model into the shape
expected by the user interface.

7.3.2 implementation

lorgnette is implemented as a library written in TypeScript with React (157).
The source code of the library is open-source and has been made available
on GitHub (158). React allows to exploit the large ecosystem of React com-
ponents to quickly experiment with new user interfaces for projections, but
it is not a core requirement of the implementation. The current version of
lorgnette includes a number of presets that can be readily used: five lan-
guages that can be parsed (JSON, CSS, Markdown, JavaScript/TypeScript and
a subset of Python), six user interfaces (a colour picker, a table, a form, a file
tree, a 2D plot and a regular expression diagram), three renderers (next to
the code, in a popover and in a popup) and four templates (named groups
in regular expressions, JSON objects, JavaScript objects and arguments of
Python function calls). New languages, user interfaces and renderers can
be registered via an API, just like specifications, allowing users to refer to
them by name in a specification. At the moment, adding new templates
still requires to modify the source code of the framework, but they could

142

https://react.dev/
https://github.com/exsitu-projects/lorgnette

143

eventually benefit from the same kind of API. This would make it possible
to write specifications in a very descriptive fashion, without having to write
mappings in JavaScript, similar to what Vega Lite (Satyanarayan et al., 2017)
and Varv (Borowski et al., 2022) propose.

I used lorgnette to instrument the Monaco editor (159), which I then
used to create two different code editing environments with malleable pro-
jections: a playground in the form of a webpage, and a custom editor for the
Visual Studio Code (146) editor (VSC). The playground includes a number
of examples to try projections for different situations and in different lan-
guages. When the language can be parsed, the syntax tree of the document
can also be displayed next to the code editor, a convenience for writing syn-
tactic patterns. The custom VSC editor is a custom extension for VSC that
replaces the standard code editor of VSC by a similar-looking code editor that
can be augmented with projections. It consists of two parts: a webview that
runs an instance of the Monaco code editor instrumented with lorgnette,
and a core that gives the webview access to some of VS Code’s extension APIs
via message passing.

One of the major differences between the two environments is that the
custom VSC editor supports runtime queries whereas the playground does
not. To do so, the extension converts runtime queries emitted by lorgnette
in the webview into messages sent to debuggers supported by VSC using the
Debug Adapter Protocol (DAP, 88). For each runtime query, the core sets a
breakpoint at the start of the code fragment of the projection that emitted the
query. When the breakpoint is hit by the debugger, the core (1) retrieves the
current thread and frame IDs, (2) uses them to ask the debugger to evaluate
the runtime query’s expression using an evaluate request, and (3) resumes
the execution. When the debugger answers the request, the extension captures
the response, pairs it with the corresponding query, and forwards it to the
webview, so that lorgnette can update the projection that made this query.
Since the DAP is designed to be language-agnostic, this mechanism works
with multiple languages and debuggers without requiring any change to the
code (besides writing runtime queries in the appropriate language). When
testing this feature, I was able to successfully use runtime queries with VSC’s
JavaScript debugger, Google Chrome’s JavaScript debugger and VSC’s Python
debugger.

7.3.3 comparison with existing systems

To explain what makes lorgnette unique, I compare it to eleven other
systems for editing computer languages that feature a text editor coupled with
alternative projections of the code. The comparison focuses on two aspects of
each system: the type of resources that can be projected, and the properties
of the projections that complement the text editor. Table 7.3 lists the technical
characteristics and the origin of each system, and Table 7.4 summarises the
observations made below.

143

https://microsoft.github.io/monaco-editor/
https://code.visualstudio.com/
https://microsoft.github.io/debug-adapter-protocol/

System Implementation strategy Target languages Reference

Barista Standalone Any * Ko and Myers, 2006
Pres. extension Extension (Eclipse) Java Eisenberg and Kiczales, 2007
Graphite Extension (Eclipse) Java Omar et al., 2012
Codelets Extension (Ace) Any Oney and Brandt, 2012
Moonchild Standalone JavaScript Dubroy (126)
MPS Standalone Any * Voelter and Lisson, 2014
Envision Standalone Java, C++ Asenov, 2017
Visual syntax Extension (Dr. Racket) Racket Andersen et al., 2020
mage Extension (Jupyter Notebooks) Python Kery et al., 2020
Livelits Extension (Hazel) Hazel Omar et al., 2021
Vis. replacement Standalone Any * Beckmann et al., 2023b

Table 7.3. Details on the systems lorgnette is compared to. For systems such as Barista and MPS, the comparison concerns
the editors that can be created with the help of these systems, which are not code editors themselves. The implementation
strategy designates whether it is implemented as an extension of an existing editor, which is specified between parentheses, or
as a standalone program. The target languages designate the set of computer languages supported by the editor, or, in the
case of generic extensions, those that can benefit from the extension. Systems that support “any” language only as long as the
editor has been configured to support it, such as by specifying the language’s grammar in a particular format, are marked with
an asterisk (*).

System Supported resources Properties

Text Syntax tree Runtime Persistent Compositional Types of malleablility

Barista – Yes – Yes – – – – – P
Pres. extension – Yes – Yes – – – E – P
Graphite – Constructors – – – – – E – P
Codelets Snippets – – – – – – E – P
Moonchild – Yes – Yes – – – E – P
MPS – Yes – Yes Yes – – – – P
Envision – Yes – Yes – – – – – P
Visual syntax – Macros – Yes Yes – – E – P
mage Yes – Yes Partially – C – E – P
Livelits – Macros Yes Yes Yes C – E – P
Vis. replacement – Yes Yes Yes Yes – – – – P

lorgnette Yes Yes Yes Yes – C R E – P

Table 7.4. Comparison of lorgnette with eleven other systems that explicitly support projections in code editing environ-
ments. Orange values represent partially positive answers, and dashes represent negative answers. The five types of malleability
correspond to the five levels of tailorability identified by Grønbæk et al. (2023): customisation (C), recomposition (R), ex-
tension (E), scripting (S) and reprogramming (P). The characteristics and origin of each system are given in Table 7.3. The
meaning of the columns is explained in subsection 7.3.3.

145

Supported resources

I compared the type of resources that can be used to create projections:
the text of the code itself, the nodes of the syntax tree that models it, as
well as information only available at runtime. To the best of my knowledge,
lorgnette is the only framework that supports all three.

Regarding the code itself, only lorgnette supports both textual and
syntactic fragments. Barista, Graphite, presentation extensions, Moonchild,
MPS, Envision, visual syntax, Livelits and visual replacements only support
syntactic patterns, whereas Codelets and mage only support textual patterns.
Some of these systems are even more restrictive regarding what they can
project, as indicated by mentions in orange in Table 7.4. Graphite can only
project class constructors, Codelets can only project predefined code snippets,
and visual syntax and Livelits can only project specific macros, meaning that
their projections are not compatible with certain types of code fragments or
with existing code bases.

Regarding runtime data, only mage, Livelits, visual replacements and
lorgnette support projections that rely on information issued from the exe-
cution of the code. mage’s projections are invoked using special commands
executed by the runtime environment. Since these commands can receive
arguments, the runtime can evaluate them before forwarding them to the
representation shown to the user, which can therefore benefit from that data
as long as the user specified the right parameters when typing the special
command. Livelits heavily rely on the concept of hole supported by Hazel,
which enable partial evaluation of incomplete programs. Since Hazel automat-
ically attempts to evaluate the expressions referenced by the projection, the
projection may either be provided with a value (if the evaluation succeeded)
or a special token representing the absence of a value (if the evaluation failed),
leaving the responsibility of exploiting the values or using a fallback to the
user interface. Visual replacements and lorgnette use a similar solution:
they both support message passing between the code editor and a runtime
capable of evaluating expressions that are part of the projected code, whose
results are forwarded to the user interface. However, unlike visual replace-
ments, lorgnette support language-agnostic projections regardless of the
availability of a runtime (as long as the source of the projection contains no
runtime resource). In contrast, with visual replacements, “users need to define
a language runtime mapping that informs the programming environment how
programs can be executed” (Beckmann et al., 2023b, §4.4) for each language
the projection should be compatible with, regardless of whether that language
runtime is used or not.71 71. Although I do not understand the

purpose of that constraint, the fact
that Beckmann et al. (2023b) write that
“usersneed to define a language runtime
mapping [. . .]” leaves little doubt that
this is always required, even if that run-
time mapping is never used.

This last point highlights that most of the systems I compare lorgnette
to are either specific to a single language (7/11) or only partially language
agnostic (3/11), as shown in Table 7.3, in the sense that they can project a
computer language only as long as the editor has been configured to support
it by, e.g., providing a parser capable of turning the code into a syntax tree.
Besides lorgnette, only Codelets supports every language that can be edited
as text out of the box, though it does so by not supporting syntactic fragments
and runtime data. In contrast, lorgnette is as flexible as it can be: syntactic
fragments and runtime data are supported, but as long as a projection does

145

146

not rely on a syntactic pattern, the language does not need to be parsed, and
as long as no runtime data is needed, connecting the appropriate runtime
environment to lorgnette remains optional.

Persistence

Persistent projections remain available after they have been used once.
lorgnette, like most other systems, offers persistent projections, as it auto-
matically (re-)creates projections every time the text is modified. Graphite
and Codelets’ projections do not persist, as they are only designed to help
users configure snippets of code when they are inserted in the text editor.
mage’s only partially persist, as they require users to manually evaluate a
code cell to turn a magic command into a projection every time the code is
modified—unless the user only modifies specific fragments of code that have
been inserted by the projection as text, in which case it automatically parses
the modified text and updates the projection’s model.

Compositionality

Compositional projections can include other projections that were not hard-
coded in their user interfaces. For example, a typical applications of compo-
sitionality would be to project text located in a text field of a form or in a
cell of a grid onto a non-textual substrate, such as a slider or a colour picker,
as demonstrated in Livelits. Currently, only MPS, visual syntax, Livelits and
visual replacements support this property. At the moment, lorgnette does
not support compositional projections because a projection can only be cre-
ated from the content of the text editor. It could however be extended to let
user interface declare temporary resources that can benefit from lorgnette’s
projections, such as the content of every text field.

Malleability

Malleable projections can be created, modified and deleted by their users.
lorgnette is specifically designed to support malleability: users can create,
modify and delete projections by editing specifications, which does not re-
quire modifying the source code of the text editor itself. Yet, as mentioned
earlier and explained by Grønbæk et al. (2023), there are many ways for a
system to be malleable. As a result, I must explain how lorgnette’s approach
to malleability differs from previous work.

Among the eleven systems I compare lorgnette to, all might be consid-
ered to be malleable in the sense that the projections they offer might be
modified by editing the source code of the editor, recompiling it or regenerat-
ing it (if required), and using the newly created program in place of the old
one. Yet, this form of malleability—called reprogramming—is not only highly
exclusive, as it requires good programming skills, but also highly costly, even
for seasoned developers, who may have to invest a significant amount of time
to understand the code of the editor and determine how to implement what
they would like to do. To let users add new projections without programming
them, most (7/11) of the systems include an extension mechanism by which

146

147

users can add projections that others have created to their code editor. Al-
though this solution decreases the cost of customising the editor’s projections,
it does not help end-users create their own projections, as they must still rely
on someone else’s expertise.

To further lower the bar, lorgnette is designed to support customisation
and recomposition, the two most accessible forms of malleability according
to the ladder of tailorability presented earlier. First, lorgnette supports
customisation, as user interfaces, renderers and templates can be parame-
terised by simple settings that the user can freely modify. For example, when
selecting the side renderer, the user can set parameters to specify the relative
position and the offset of the user interface. In addition, lorgnette supports
recomposition by letting users freely combine user interfaces, renderers and
templates to create new projections while writing as little code as possible to
glue them together.

Although mage and Livelits also support customisation by letting users
specify parameters when they invoke a projection, neither support recombi-
nation. Unlike lorgnette’s specifications, those of mage and Livelits must
be self-contained. They cannot refer to “building blocks” the systems can be
extended with, such as by naming a user interface that was independently
registered in the system without including it in the specification, therefore
hindering reuse—one of the design goals I identified in the formative study.

7.4 case studies

Since lorgnette is a framework for creating special kinds of user interfaces,
I follow Olsen’s recommendations for evaluating such systems (Olsen, 2007)
and demonstrate what lorgnette can currently do by using it to conceive
projections to help with five different situations. I use these case studies as a
means to show that lorgnette fulfils Resnick et al.’s low threshold, high ceiling,
wide walls goals (Resnick et al., 2005): simple projections can be created with
low effort using recombination and templates; more advanced projections
can be created by writing custom patterns and mappings; and multiple types
of resources, computer languages and user interfaces are available out of
the box. In this section, I present each of the five situations, explain how
lorgnette helped me implement a projection for each of them, and highlight
key differences with what could have been done with other systems.

Although technically, nothing prevents a programmer from creating a
projection designed to support graphemic interaction, e.g., by projecting code
on another textual substrate, or morphosyntactic interaction, e.g., by turning
a fragment of textual code into a syntax-directed block editor, lorgnette
is not the most appropriate solution for these levels of interaction. Since
lorgnette is meant to augment existing text editors, they already provide
a textual substrate for editing code at the graphemic level. Similarly, since
targetting specific fragments of code within a single file strongly favours
local projections, lorgnette is meant to help users interact with specific
pieces of code representing specific concepts rather than replacing the textual
substrate with a tree or a graph substrate whose structure represents the
syntax of the language. To some extent, the runtime request mechanism is
a sign that lorgnette’s projections can help interact with the code at the

147

148

pragmatic level. However, although lorgnette’s projections can indeed
exploit runtime information, they are hardly meant to interact with other
resources than the code, unlike systems in which projections of the output
itself can be directly manipulated, as in the examples shown in Figure 4.5.
As a result, I chose to focus on creating projections that support semantic
interaction and complement the graphemic interaction already supported by
the text editor, for this is the most adapted use of lorgnette I envision.

7.4.1 manipulating colours

Colour pickers are one of the few projections that are found in several estab-
lished programming systems. For example, they are available in professional
code editing environments such as JetBrains’ IntelliJ IDEA for Java and Mi-
crosoft’s Visual Studio Code for CSS. Yet, even such a simple projection cannot
be adapted to work in other situations than the one they were hardcoded for:
users of these systems have no way to make the colour picker work with other
languages and colour formats, even when their syntax is very similar.

I used lorgnette to create a projection to view and manipulate colours
encoded as hexadecimal colour codes such as #c80077 using a colour picker
(Figure 7.5a). It makes it easy to manipulate any such sequence of text as a
colour, no matter whether it is a primitive value, a string, a comment, etc.
Since it only relies on text, it is automatically available in every language,
including languages that lorgnette cannot parse.

To create this projection with lorgnette, I used a regular expression
pattern template that lets me create a slot for each named capture group of
the regular expression. I created three slots, one for each successive pair
of symbols following the initial # sign, that are each evaluated as numbers
written in base 16. Finally, I added transformer functions that (1) wrap the
RGB values into an object at the end of the forward mapping, to create a
model with a color field, which is what the colour picker user interface
expects; and (2) unwrap the modified color object at the beginning of the
backward mapping, which is what the template expects.

Among the two other systems I compared lorgnette to that support tex-
tual patterns, neither can achieve the generality of this colour picker. Codelets
only works with predefined code snippets, meaning that it could not project
hexadecimal codes that are already written, e.g., in an existing codebase or
in a piece of text copied from the internet; and mage’s approach requires
a runtime environment for executing code, whereas lorgnette makes it
optional.

Once written, the specification of the projection can be adapted to support
3- and 8-digits hexadecimal colours, which are respectively used as a short-
hand of the 6- digit version and to encode a transparency level, as well as
other common notations such as rgb(200, 0, 119) and hsl(324, 1.0,
0.39). Doing so would only require using templates with slightly differ-
ent regular expressions and adding conversions between colour spaces in
the transformer functions when needed. I used this approach to adapt the
specification described above to create a colour picker projection for a cus-
tom Color function in JavaScript that accepts three numeric arguments. As
demonstrated in Figure 7.5b, in order to adapt the first projection to this new

148

1 const hexadecimalEvaluator = new NumericEvaluator({
2 isIntegerValue: true,
3 integerBase: 16
4 });
5
6 const template = new RegexTemplate(
7 "#(?<r>[a-fA-F0-9]{2})(?<g>[a-fA-F0-9]{2})(?[a-fA-F0-9]{2})",
8 {
9 "r": hexadecimalEvaluator,

10 "g": hexadecimalEvaluator,
11 "b": hexadecimalEvaluator
12 },
13 {
14 transformTemplateModel: model => {
15 return { color: model };
16 },
17 transformUserInterfaceModel: model => {
18 return { ...model.color };
19 }
20 }
21);
22
23 registerProjection({
24 name: "Hexadecimal colour picker",
25 ...template.resourcesAndMappings,
26 userInterface: "color-picker",
27 renderer: "side"
28 });

a. Hexadecimal colour codes (any language).

1 const decimalEvaluator = new NumericEvaluator({
2 isIntegerValue: true,
3 integerBase: 10
4 });
5
6 const template = new RegexTemplate(
7 "Color\\(\\s*(\\d+)\\s*,\\s*(\\d+)\\s*,\\s*(\\d+)\\s*\\)",
8 {
9 "r": decimalEvaluator,

10 "g": decimalEvaluator,
11 "b": decimalEvaluator
12 },
13 {
14 transformTemplateModel: model => {
15 return { color: model };
16 },
17 transformUserInterfaceModel: model => {
18 return { ...model.color };
19 }
20 }
21);
22
23 registerProjection({
24 name: "Color function colour picker",
25 requirements: { languages: ["javascript"] },
26 ...template.resourcesAndMappings,
27 userInterface: "color-picker",
28 renderer: "side"
29 });

b. Color function (JavaScript only).

Figure 7.5. Specifications (left) and results (right) of two projections for viewing and selecting a colour encoded as text, either
for (a) 6-digits hexadecimal colour codes in any language (such as #C80077) or for (b) calls to a custom Color function
in JavaScript. Lines in orange highlight the only changes required to turn the specification of the first projection into the
specification of the second projections. They do not include changes in identifiers, which are only useful to keep the code
understandable and have no effect on the resulting projection.

150

use case I only had to modify two lines of code—the base used by the numeric
evaluator (line 3), the regular expression specifying the textual pattern (line
7)—and insert a new line—the language requirement to target JavaScript code
only (line 25).

7.4.2 authoring tables

Tables written in languages such as HTML, Markdown and LATEX are notori-
ously tedious to manipulate as text. As an example, in all of these languages,
cells are grouped by row, which means that inserting, reordering or deleting a
column requires as many edits as the number of rows. In reaction to the need
for a more interactive interface to create and modify such tables, authors have
reported using spreadsheets to organise their data beforehand and online
code generators to synthesise code in the appropriate language, as reported
by several of the LATEX users I interviewed.72 Yet, these strategies increase the 72. Subsection 6.2.2 describes

these observations in more detail
(see theme T3).

time needed to author these tables and the workload induced by repetitive
switches between programs every time the table must be modified.

I used lorgnette to create a projection for manipulating Markdown tables
using an interactive grid (Figure 7.6). The grid offers features similar to those
offered by the aforementioned code generators: cells can be edited by double
clicking on them, and rows and columns can be inserted and deleted using a
contextual menu and moved by dragging their headers.

To create the projection, I used a syntactic pattern to target nodes rep-
resenting tables. I then iterated over the row and cell nodes to collect the
content of every cell into a two dimensional array to create the appropriate
model in the forward mapping. I did the exact opposite to replace the table’s
content with the new model in the backward mapping, only with the help of
a library to format a two-dimensional array as a Markdown table.73 73. Since the Markdown parser

used by lorgnette relies on
mdast-util-from-markdown (160),
which complies with the
mdast (161) syntax tree spec-
ification, I could readily use
mdast-util-to-markdown (162) to
serialise a syntax tree created from the
two-dimensional array as text.

Projections for manipulating tables have previously been demonstrated
in The Gamma (Petricek, 2020), mage and Livelits, but they were designed
to interact with tables which that exist at runtime—such as data frames
created by reading a CSV file—whereas authoring tables written in document
description languages requires to modify tables written directly in the code.
Software such as Adobe Dreamweaver also let users interact with HTML
tables in a WYSIWYG fashion, but it is specialised for a single language
and requires to interact with the formatted output instead of letting users
focus on the content and the structure of the table. In contrast, lorgnette
allowed me to easily create a tool to write and edit tables written in Markdown,
akin to a non-embedded Markdown version of i-LATEX’s projection for LATEX
tables. Since tables usually have a clear hierarchy in syntax trees, creating
similar projections for other document description languages by adapting
this specification would likely be almost as straightforward as adapting the
colour picker projection presented above to a different encoding.

7.4.3 writing regular expressions

Regular expressions are a powerful mechanism for specifying textual patterns,
but they must often be written in a domain-specific language embedded
in a more general-purpose language, e.g., as a literal value or as a string,

150

https://github.com/syntax-tree/mdast-util-from-markdown
https://github.com/syntax-tree/mdast
https://github.com/syntax-tree/mdast-util-to-markdown

1 const pattern = new SyntaxPattern(node => node.type === "table");
2
3 const forwardMapping = new ForwardMapping(({ fragment }) => {
4 const tableNode = fragment.node;
5 const tableContent = [];
6
7 for (let rowNode of tableNode.childNodes) {
8 const row = [];
9 tableContent.push(row);

10
11 for (let cellNode of rowNode.childNodes) {
12 if (cellNode.childNodes.length === 0) {
13 row.push(null); // Cell with no content.
14 continue;
15 }
16
17 const text = cellNode.childNodes
18 .map(node => node.text)
19 .join("");
20 row.push(text);
21 }
22 }
23
24 return { content: tableContent };
25 });
26
27 const backwardMapping = new BackwardMapping(({ userInterfaceOutput, fragment, documentEditor }) => {
28 const { cellChanges, content } = userInterfaceOutput;
29
30 if (cellChanges) {
31 const mdastTable = createMdastTable(content);
32 documentEditor.replace(
33 fragment.range,
34 convertMdastToMarkdownString(mdastTable)
35);
36
37 documentEditor.applyEdits();
38 }
39 });
40
41 registerProjection({
42 name: "Interactive Markdown table",
43 requirements: { languages: ["markdown"] },
44 pattern: pattern,
45 forwardMapping: forwardMapping,
46 backwardMapping: backwardMapping,
47 userInterface: "table",
48 renderer: "side"
49 });

Figure 7.6. Specification (top) and result (bottom) of the projection for modifying the structure and the content of a Markdown
table using an interactive grid.

1 const pattern = new SyntaxPattern(node => node.type === "RegularExpressionLiteral");
2
3 const forwardMapping = new ForwardMapping(({ fragment }) => {
4 const regexAsString = fragment.text;
5 const lastSlashIndex = regexAsString.lastIndexOf("/");
6 const regexBody = regexAsString.slice(1, lastSlashIndex);
7 const regexFlags = regexAsString.slice(lastSlashIndex + 1);
8
9 return { regex: new RegExp(regexBody, regexFlags) };

10 });
11
12 const backwardMapping = new BackwardMapping(({ userInterfaceOutput, documentEditor, fragment }) => {
13 const regex = userInterfaceOutput.regex;
14 const regexRange = fragment.node.range;
15 documentEditor.replace(regexRange, regex.toString());
16 documentEditor.applyEdits();
17 });
18
19 registerProjection({
20 name: "Literal regular expression diagram",
21 requirements: { languages: ["typescript"] },
22 pattern: pattern,
23 forwardMapping: forwardMapping,
24 backwardMapping: backwardMapping,
25 userInterface: "regex-editor",
26 renderer: {
27 name: "button-popup",
28 settings: { buttonContent: "Diagram" }
29 }
30 });

Show the diagram in a popup on click

Figure 7.7. Specification (top) and result (bottom) of the projection for displaying the railway diagram associated to a regular
expression produced by Regulex (93).

https://jex.im/regulex

153

making them hard to use and hard to understand (Michael et al., 2019).
Various techniques have been proposed to help users write regular expressions,
ranging from synthesising them from positive and negative examples (Zhang
et al., 2020) to explaining their meaning using visual augmentations in a text
editor (Beck et al., 2014). Among these techniques, a popular approach is to
explain the purpose of every symbol used in the regular expression, such as
using nested blocks of text, as in RegExr (94), or railway diagrams, as in
Regulex (93). Unfortunately, using these alternative representations requires
to use a separate program which, just like code generators for tables, forces
programmers to switch to a different program every time they need help
authoring or analysing a regular expression.

I used lorgnette to create projections to display regular expressions as
railway diagrams (Figure 7.7). More specifically, I created two projections
that target JavaScript code: one for regular expression literals, e.g., /ab*/g,
and one for the arguments of the regular expression constructor, e.g., new
RegExp("ab*", "g"), whose user interface display the railway diagram
created by Regulex.

To create the projections, I used two syntactic patterns to target the syntax
nodes of the two contexts these regular expressions may appear in. I then
separate the body of the expression from the optional flags by computing
the appropriate substrings in the forward mappings. Since I did not find any
open-source implementation of Regulex I could reuse, I created a custom
user interface that embeds the Regulex website in an <iframe> element
using a dynamically constructed URL that includes the regular expressions
to visualise.

Since Regulex does not allow to modify the regular expression by interact-
ing with the diagram, the projections I created do not either. Nonetheless,
they demonstrate how lorgnette supports creating projections that embed
online tools in a text editor in a contextually relevant fashion, therefore re-
ducing the number of context switches, even if the source code of the tool
is not publicly available. Again, since most languages use a similar regular
expression dialect, the specifications could be reused to visualise regular ex-
pressions written in other programming languages simply by changing the
target language and the pattern to search for in the code.

7.4.4 tracing variables at runtime

Inspecting the current value of a variable is a staple of debugging. Displaying
the values of the variables in the current namespace is a standard feature in
many debuggers, and systems such as Light Table (90) and Google Chrome’s
debugger can even display the value of expressions next to where they appear
in the text. In addition, even when debuggers are available, many program-
mers also rely on print statements that they manually add to their code. Yet,
none of these techniques allows to visualise how the value of a variable evolves
over time or to compare it to previous values. At best, programmers are left
with a sequence of raw values printed in a console that they must carefully
analyse.

I used lorgnette to create a projection to plot the values taken by a
variable on a 2D graph (Figure 7.8). The projection is attached to JavaScript

153

https://regexr.com/
https://jex.im/regulex
http://lighttable.com/

1 const pattern = new RegexPattern("/*\\s*trace\\s*:\\s*\\w+\\s**/");
2
3 const runtimeRequestProvider = new ProgrammableRuntimeRequestProvider(({ fragment }) => {
4 const colonIndex = fragment.text.indexOf(":");
5 const variableName = fragment.text
6 .slice(colonIndex + 1, fragment.text.length - 2)
7 .trim();
8
9 return [RuntimeRequest.createForFragment(fragment, "variableValue", variableName)];

10 });
11
12 const forwardMapping = new ForwardMapping(({ runtimeResponses }) => {
13 return {
14 valueChanges: runtimeResponses.map(response => {
15 return {
16 value: Number(response.content),
17 timestamp: response.receptionTime
18 };
19 })
20 };
21 })
22
23 registerProjection({
24 name: "Runtime value tracer",
25 requirements: { languages: ["javascript"] },
26 pattern: pattern,
27 runtimeRequest: runtimeRequestProvider,
28 forwardMapping: forwardMapping,
29 userInterface: "value-history",
30 renderer: {
31 name: "side",
32 settings: { onlyShowWhenCursorIsInRange: false }
33 }
34 });

The script is executed in a webpage
loaded by a web browser (Chromium)

The script makes the red disc rotate in circles

1

2

3

4

Figure 7.8. Specification (top) and result (bottom) of the projection for plotting the values taken by a variable in JavaScript at
runtime. In the example of use shown here, the projection is used to plot the successive X position taken by a red disc that
moves in a circular pattern in a webpage. 1 The script shown in the code editor on the left is executed in a webpage opened
in the Chromium web browser. 2 The webpage runs the scrips, which updates the position of the element represented as a
red disc at a fixed time interval. 3 Every time the execution of the code reaches the comment that benefit from a projection,
Lorgnette instructs Chromium’s runtime engine to evaluate the runtime request to evaluate the identifier representing the
element’s X position (line 9). 4 Every time Lorgnette receives a runtime response, it applies the forward mapping again,
which, in turn, updates the user interface’s model with the newly received value (lines 14–19).

155

comments that start with trace: followed by the name of the variable whose
value must be plotted. Every time the execution of the code reaches the
comment, the current value of the variable is added to the plot.

The comments are targeted using a regular expression pattern. For each
matching fragment, a runtime query is created in order to evaluate the expres-
sion formed by the variable’s name, which is extracted from each fragment as
a substring. Finally, the forward mapping maps the runtime response (which
are automatically accumulated by the projection) to a model formed by a list
of objects containing the values of the variable and the time at which it was
modified, which is displayed by the graph user interface.

To test this projection, I connected the Visual Studio Code editor instru-
mented with lorgnette to a Chromium instance that was displaying a
webpage running a script written in JavaScript that makes an element of the
webpage move in a circular pattern. I then used the projection to trace the
values of the variables representing the X and Y positions of the element
after each update, using comments such as /* trace: targetX */. The
result of tracing the values taken by the variable containing the successive X
positions is shown in the bottom-left hand corner of Figure 7.8.

Multiple approaches to help programmers understand the dynamic aspect
of their code have previously been proposed, as demonstrated by systems
such as Whyline (Ko and Myers, 2008), Python Tutor (Guo, 2013), Omni-
code (Kang and Guo, 2017), in-situ visualisations (Hoffswell et al., 2018), Re-
active Inspector (Mogk et al., 2018), RxFiddle (Banken et al., 2018), Poker (De-
scheemaeker et al., 2021), Log-it (Jiang et al., 2023) and CrossCode (Hayatpur
et al., 2023). Yet, although many of these approaches offer advanced interac-
tion mechanisms to explore the runtime behaviour of a piece of code, they
are not malleable and require users to use specific languages and specialised
pieces of software. In contrast, lorgnette gives end-users the freedom to
create their own debugging tools on the fly, within standard and widespread
text editors such as Visual Studio Code. For example, with little effort, one
user may decide to adapt the specification presented in this section to list the
values taken by a variable in the table user interface shown in the previous
use case instead of as a graph.

7.4.5 configuring lists of properties

It is common to specify a number of properties by hand when programming.
This typically happens when configuring the graphical properties of a drawing
primitive or a plotting function; when editing a configuration file or the
front-matter of a document; and when configuring tools such as Pandoc
and FFmpeg, as shown by several situations described by participants of
the design workshop (R5, D10, D4). Since there is no systematic way to
guess what properties can be configured, or which values can each of these
properties take, specifying such properties usually requires to switch back
and forth between the code and the documentation. This can be a particularly
daunting task when there are numerous and complex properties to chose
among, as in, e.g., multiple command-line tools and plotting functions from
popular Python data visualisation libraries. For example, the documentation
of the barplot function provided by the Seaborn library (164) describes

155

https://seaborn.pydata.org/generated/seaborn.barplot.html

1 const formContent = <>
2 <Section title="Plot description">
3 <StringInput
4 formEntryKey="title"
5 label="Title"
6 defaultValue=""
7 />
8 <SingleRow>
9 <StringInput

10 formEntryKey="xlabel"
11 label="X axis label"
12 defaultValue=""
13 />
14 <StringInput
15 formEntryKey="ylabel"
16 label="Y axis label"
17 defaultValue=""
18 />
19 </SingleRow>
20 </Section>
21 <Section title="Bar colour">
22 <p>A single colour takes precedence over the palette.</p>
23 <SingleRow>
24 <Select
25 formEntryKey="palette"
26 label="Colour palette"
27 items={["deep", "muted", "pastel", "bright", "dark", "colorblind"]}
28 defaultItem="deep"
29 />
30 <ButtonColorPicker
31 formEntryKey="color"
32 label="Single colour"
33 defaultValue={Color.fromCss("#3C5CA0")}
34 />
35 </SingleRow>
36 </Section>
37 <Section title="Error bars">
38 <SingleRow>
39 <Select
40 formEntryKey="errorbar"
41 label="Type of error bars"
42 items={["None", "ci", "pi", "se", "sd"]}
43 defaultItem="None"
44 />
45 <NumberInput
46 formEntryKey="errwidth"
47 label="Thickness"
48 defaultValue={0}
49 />
50 <NumberInput
51 formEntryKey="capsize"
52 label="Length of caps"
53 defaultValue={0}
54 />
55 <ButtonColorPicker
56 formEntryKey="errcolor"
57 label="Color"
58 defaultValue={Color.fromCss("black")}
59 />
60 </SingleRow>
61 </Section>
62 </>;

1 const template = PythonFunctionCallNamedArgumentsTemplate.createForFunctionNamed(
2 name => name.endsWith("barplot"),
3 [
4 createSlotSpecification("title", FormEntryType.String, ""),
5 createSlotSpecification("xlabel", FormEntryType.String, ""),
6 createSlotSpecification("ylabel", FormEntryType.String, ""),
7 createSlotSpecification("color", FormEntryType.Color),
8 createSlotSpecification("palette", FormEntryType.String, "deep"),
9 createSlotSpecification("errorbar", FormEntryType.String),
10 createSlotSpecification("errcolor", FormEntryType.Color),
11 createSlotSpecification("errwidth", FormEntryType.Number, 0),
12 createSlotSpecification("capsize", FormEntryType.Number, 0)
13],
14 { ...FORM_DATA_TEMPLATE_TRANSFORMERS }
15);
16
17 registerProjection({
18 name: "Seaborn barplot style form",
19 requirements: { languages: ["python"] },
20 ...template.resourcesAndMappings,
21 userInterface: {
22 name: "form",
23 settings: { content: formContent }
24 },
25 renderer: "side"
26 });

Figure 7.8. Specification (top) and result (bottom) of the projection for configuring the style of Seaborn’s bar plots in Python
using a form.

158

Figure 7.9. Demonstration of the projection for configuring the style of Vega-Lite marks using a form. The Vega-Lite code used
in this example is adapted from the Layering Rolling Averages over Raw Values example available on Vega-Lite’s website (163).

over 30 different arguments, among which many are related to the plot’s style.
Moreover, additional keyword arguments are forwarded to the underlying
Rectangle object provided by the Matplotlib library (165), which accepts
about 30 more arguments.74 74. These numbers of arguments re-

spectively correspond to Seaborn ver-
sion 0.13.2 and Matplotlib version
0.13.3.

Forms are a convenient tool for configuring properties without knowing
what exactly is feasible in advance. Accordingly, I used lorgnette to create
several projections to configure lists of properties using form-based user
interfaces. More specifically, I focused on configuring graphical properties
in two specific situations: when using the barplot function of the Seaborn
library in Python (166), as shown in Figure 7.8, and when describing a Vega
plot in JSON (Satyanarayan et al., 2016), as shown in Figure 7.9. Each form
includes several form elements to modify a number of properties, such as
a the colour of the marks, the size of the text and the presence/absence and
type of error bars.

For each projection, I used the appropriate template with one slot per
property of interest. To conceive the user interfaces, I took advantage of
the fact that lorgnette’s form user interface can be entirely customised by
describing the actual form in JSX (167), directly from within the specification.
The user interface provides form elements that can be automatically bound
to a property of the model simply by assigning the key of the property’ slot
to the formEntryKey attribute. In addition, since the user interface can be
specified using arbitrary JSX code, forms can include other kinds of elements,
such as text and images, let the user customise the style of the form with CSS
using style attributes, etc.

These projections support a form of exploratory programming: by exposing
a number of settings, they make it easy to discover, try and compare different
graphical styles until the output of the code is satisfying. By combining them
with a continuous evaluation of the code and a live output, they can be used
to create a live programming environment with projections offering user
interfaces similar to those of style inspectors in WYSIWYG systems.

Although forms are very common in graphical user interfaces of code
editing environment, they can rarely be entirely customised by end-users. For
instance, forms are used to configure Ivy’s templates for Vega (McNutt and
Chugh, 2021), but they cannot be customised nor adapted to other languages.
Codelets and Visual syntax for Racket have both demonstrated that text could

158

https://vega.github.io/vega-lite/examples/layer_line_rolling_mean_point_raw.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://seaborn.pydata.org
https://react.dev/learn/writing-markup-with-jsx

159

be projected onto customisable forms. However, neither is as general as
lorgnette: the former only supports binding forms to regions of predefined
code snippets, whereas the latter can only we used with the Racket language.

7.5 conclusion

In this work, I demonstrated that standard text editors can be augmented
so as to provide alternative projections of code that is usually represented
only as text that end-users can create and modify. The formative study, in
which I collected 62 projections sourced from the literature and a design
workshop, resulted in two key observations: there exist a wide variety of
projections of computer languages, which are used in very diverse contexts
and for very different languages; and yet, almost two thirds of them (62%)
reuse one of three kinds of user interfaces—a form, a graph or a grid. Since
all current approaches to tailor a text editor with new projections of the text
require reprogramming, i.e., inducing a high level of friction that is likely to
discourage most users, including those with programming skills, I developed
lorgnette, a framework for instrumenting text editors so as to facilitate the
development of malleable code projections.

lorgnette is designed to decrease the friction for tailoring one’s text
editor: ready-made projections can be shared and installed to extend the
editor; templates, user interfaces and renderers can be freely recombined to
form new projections; and custom patterns, mappings and user interfaces can
be created using scripts. I successfully used lorgnette to create projections
that help understand and/or modify code in five different situations, each
time in a few dozens of lines of code only. I demonstrated that lorgnette
can be used to create and adapt simple projections such as colour pickers with
very little work (low threshold), as well as craft more complex projections
such as debugging probes and configuration forms with some scripting (high
ceiling). Overall, the five use cases demonstrate lorgnette’s capacity to
map different types of data (text, syntax nodes, runtime data) onto different
sorts of user interfaces, whose arbitrary recombinations yield very diverse
projections (wide walls).

Yet, despite its successful use, lorgnette also suffers from a number of
technical limitations. One such limitation is that lorgnette can only search
for fragments in one file at a time. This prevents lorgnette from supporting
composite code fragments formed by multiple code fragments split across
several files, which are required, e.g., to modify a CSS file by interacting with
a table described in a HTML file (R9) or to create and grade code assignments
where questions and answers are located in separate files (D14, D16, R2, R3).

Another limitation is that lorgnette is more tailored for projections that
are local, both regarding the code and the runtime data, making it ill-adapted
to create projections that represent global information, such as displaying
the call graph or the stack and the heap of a program, as in Reacher (LaToza
and Myers, 2011) and the Online Python Tutor (Guo, 2013). I also did not
address the challenge of creating a renderer able to embed projections in
other documents, as i-LATEX does with transitionals embedded within the
PDF generated by the code, therefore preventing the creation of projections
for manipulating images directly in the output (D13). This leaves room for

159

160

future opportunities to link code with locations in other documents in a
language-agnostic fashion, possibly inspired by existing solutions such as
SyncTeX (Laurens, 2008) and Source Maps (168).

Overall, each paradigm for authoring code editors with protean projections
has advantages and weaknesses, including lorgnette. Yet, I argue that
adding support for non-textual projections of the code in regular text editors
in a malleable fashion, so as to give end-users the ability to tailor their editors
without having to reprogram them entirely, is key to spreading the use of
protean projection. Unlike other approaches, lorgnette achieves these goals
in a somewhat conservative way, making it readily compatible with existing
text editors and all of the most popular computer languages. Just like the
success of open-source software and of the internet owes in great part to the
freedom they offer, I believe this also holds true for code projections, which
could greatly benefit from being more malleable.

160

https://developer.chrome.com/blog/sourcemaps/

161

8
Discussion

In the previous chapters, I successively motivated (chapter 2) and introduced
(chapter 3) a new holistic model to frame and reflect on what being and inter-
acting with a computer language means, leading to a new taxonomy of levels
of interaction with computer languages (chapter 4) and to the key concept
of projection (chapter 5). Inspired by this broader vision of what interaction
with a computer language can be, I then designed, implemented and evalu-
ated additional projections for computer languages that are primarily edited
as text through my work on i-LATEX (chapter 6) and lorgnette (chapter 7).
Together, they constitute the main contributions presented in this thesis. Yet,
a link has yet to be established between the theoretical and practical aspects of
ny work. Further, as the choices I made were directed towards exploring and
showcasing a specific subset of the design space supported by the theory, I
also need to clarify what I purposely left apart, leaving various open questions
and opportunities for future work.

This chapter contributes these two missing links. First, section 8.1 sum-
marises and connects the theoretical contributions I made in chapters 2
through 5 and the applied contributions I made in chapters 6 and 7. It shows
that thinking about interaction with computer languages in terms of pro-
jections yields a design space of interaction techniques that could not be
captured by previous theories, yielding novel systems that I implemented
and demonstrated. Then, section 8.2 presents five limitations of this work,
ranging from questions I could not address in the user studies that I carried
out to incomplete aspects of the theory, from which I derive a number of
directions for future work.

8.1 contributions

Throughout this thesis, I introduced ideas, artefacts and studies of different
natures. Although each was motivated by internal or external factors, such as
a consequence of the chapter before or an observation found in the literature
or in my own experience, they are loosely connected to each other. This
section connects the dots between these contributions to draw the bigger
picture and show how they indeed compose the two parts of my work, as

161

162

announced in the introduction: introducing a new theory of interaction
with computer languages, and applying the theory by extending text editors
compatible with established computer languages.

8.1.1 a theory of interaction with computer languages

Motivated by the lack of a theoretical frame for analysing and designing
our interaction with computer languages, besides limited views such as the
classic textual/visual distinction often found in HCI research, I started by
presenting a more holistic model of what being a computer language means
(Figure 3.1). According to this model, which I derived from the definition
I gave in section 2.1 and a single axiom (we reason using concepts), every
computer language can be decomposed into five aspects: a set of concepts
that are part of the language itself, or expressed with the help of the language
(conceptualisation); a specification including an alphabet of symbols and a set
of rules for deciding how to combine and interpret symbols (formalisation);
a scheme to code and decode the language so as to implement computer
programs able to read and write the language (implementation); a collection
of substrates, gathered in code editing environments, to let us perceive and act
upon code encoded in a computer’s memory (interaction); and relations with
other conceptual and physical entities at both computational and sociocultural
levels (contextualisation).

I then derived two consequences from this model of computer languages.
First, I used this model to establish a new taxonomy of interaction with
computer languages formed of four levels, each roughly giving us access to
a different aspect of the language (Figure 4.1). It posits that substrates let us
interact with code in four different ways: by interacting with the encoding
itself (graphemic interaction); with the symbols and the structures of the
code (morphosyntactic interaction); with the concepts we associate to the
code (semantic interaction); and with other artefacts related to the code
(pragmatic interaction). Given the central role given to substrates, I then
focused on qualifying the action of pairing code (and other resources) with
a representation, which I call a projection. I defined multiple properties of
substrates (subsection 5.2) and reported on two competing strategies when
projecting a computer language (subsection 5.3), using a single substrate
(uniform projection) and using multiple substrates (protean projection).

Taken together, these three theoretical contributions—decomposing the
notion of computer language into five aspects, deriving four levels of inter-
action and describing the central role of projection in our interaction with
computer languages—form a new theory of interaction with computer lan-
guages. This theory is descriptive: it defines a series of interrelated concepts
to reason about computer languages, and can be used to analyse and classify
systems and techniques for interacting with computer languages—as demon-
strated in chapter 4—without attempting to predict any metric nor prescribe
any design choice or human behaviour. It also has a certain generative power,
in the sense conveyed by Beaudouin-Lafon et al. (2021), as it can help identify
alternative or additional modalities to interact with a computer language,
and therefore help generate new design artefacts, as illustrated by the two
concrete applications of the notion of projection that I developed.

162

163

8.1.2 a postmodern application of protean projection

Contemporary research in protean projection of computer languages can be
roughly divided into two categories: modern approaches and postmodern
approaches. Modern approaches cut loose with existing technologies and
advocate for their own instead, such as a specific runtime environment or
language, which are often required to implement the ideas they present. Ex-
amples include model-based engineering tools and language workbenches
such as Barista (Ko and Myers, 2006) and JetBrains MPS (Voelter and Lisson,
2014); siloed image-based systems such as Lively (169) and the Glamourous
Toolkit (122); and niche programming languages and environments such as
Sketch-n-Sketch (Hempel et al., 2019) and Livelits (Omar et al., 2021). On the
contrary, postmodern approaches embrace established computer languages
and widespread technologies and aim at being compatible—rather than at
odds—with them, even though this makes the approach more restrictive than
its modern counterpart in terms of, e.g., what resources can be projected and
what type of substrate can be used. Examples include code editing environ-
ments centred around text that are extended with additional projections of
the code, such as Graphite (Omar et al., 2012), Codelets (Oney and Brandt,
2012) and mage (Kery et al., 2020).

Given how popular established computer languages and text editors remain
in the 2020s, even though alternatives have existed for over 40 years, I chose
to apply the theory in a postmodern fashion, leading me to create code
editing environments compatible with several computer languages that are
massively used all over the world. To achieve this goal, I used user-centred
design methodologies to ground my design process in knowledge gained
from formative studies (interviews, design workshop) and evaluated the
outcomes of my work in both quantitive and qualitative fashions (controlled
experiment, longitudinal study). To that end, I focused on two user groups,
each corresponding to one of the five major purposes computer languages
are used for that I reported in section 2.2: users of LATEX, a specific document
description language, and users of diverse programming languages. This led
me to work on two different projects, each complementing text editing with
additional projections of the code in different ways: i-LATEX and lorgnette.

Each of these systems is designed to complement the projection of code
onto a textual substrate—which is a defining characteristic of all text editors—
with additional projections mainly designed to help users interact with con-
cepts expressed in the code, i.e., at a semantic level of interaction. The example
projections I implemented and demonstrated with i-LATEX and lorgnette
share a number of properties: they are all local, mostly bidirectional, live and
persistent. They also differ in terms of location, malleability and language
agnosticism. i-LATEX’s transitionals are specific to LATEX; they are embedded
within a projection of the document generated by the code, not within the
code itself; and they are not designed to be malleable at all. On the contrary,
lorgnette’s projections can either be language-agnostic or language-specific;
they can be located within the textual substrate representing the code (inline
or floating) and might be made standalone elsewhere in the user interface
(with some extra work), but could hardly be embedded in another document
at the time of writing; and they are purposely engineered to be customisable

163

https://lively-next.org/
https://gtoolkit.com/
https://gtoolkit.com/

164

and recombinable. As such, each system demonstrates what can be done in
two different regions of the design space of projections induced by the seven
properties of projections presented in section 5.2, therefore serving as two
complementary implementations of the protean projection strategy identified
in subsection 5.3.2.

Overall, my work on i-LATEX and lorgnette shows that thinking about
interaction with computer languages in terms of projections has multiple
advantages and yields systems that would hardly fit in the traditional tex-
tual/visual split that is predominantly used in HCI research on computer
languages. By nature, protean projection helps going beyond text-centred
interaction techniques without replacing it altogether, therefore avoiding
issues faced by syntax-oriented editors which, even in the 2020s, suffer from
engineering and usability issues that seem hard to tackle.75

75. For example, understanding how to
use the cursor appears to be far less ob-
vious in syntax-directed editors than
in regular text editors, as suggested by
the discussion on this topic in Dimi-
tar Asenov’s thesis (2017, ch. 6), the
complex operations associated with
cursors in Forest (Voinov et al., 2022)
and Tylr (Moon et al., 2022), and the
extra engineering efforts put into ad-
dressing this issue in Sandblocks (Beck-
mann et al., 2023a), in which “a mod-
ifed parser [. . .] informs our recon-
ciliation process of how users’ changes
can be made compatible with the lan-
guage grammar” (§3.2, p. 4) to help
users write code as text even when it
spans across syntax nodes of different
types. Yet, even with such efforts, Sand-
blocks’ evaluation reveals that “com-
pared to conventional text editors, [. . .]
participants only took on average 21%
(JS), 34% (Clojure), and 95% (RegExp)
longer” (p. 1).

As a result, users
of computer languages can still use text editors while benefiting from other
projections in specific situations, which, in the case of i-LATEX’s evaluation,
proved to help LATEX users perform various tasks faster, with less compi-
lations and with a lower workload, without restricting them from writing
full-fledge LATEX documents and alternate between different editors. Fur-
thermore, lorgnette’s use in five situations implying real-world computer
languages highlights that creating and adapting projections on-the-fly is pos-
sible, even for established languages, making it a suitable approach to push
the end-user tailorability of text editors further, in line with the goals of recent
research on malleable software (Borowski et al., 2022; Grønbæk et al., 2023).

8.2 limitations and future work

Despite their demonstrated benefits, my work on i-LATEX and lorgnette suf-
fers from multiple limitations, beyond the technical ones already mentioned
in the respective chapters. By choosing to focus on specific user groups, mak-
ing specific design choices, and evaluating specific aspects of these systems, I
naturally ignored other possibilities, some of which have already been studied
in previous work, and some of which remain to be investigated by future
research. In addition, the theory of interaction with computer languages
itself shows limitations, and so does my own position on what a computer
language is and what interacting with it means, as it evolved greatly since I
started writing this thesis. As a result, this section presents five limitations
that I identified in this work and shows possible directions to go beyond them
in the future, both by extending my own work and by exploring alternative
paths.

8.2.1 beyond compartmentalised uses

The two evaluations of i-LATEX’s transitionals and the five case studies with
lorgnette demonstrate how projections complementary to text can help
users perform specific tasks, such as selecting a colour, editing a table and
understanding a regular expression. Yet, all these contributions focus on
the benefits of using a single projection in a specific context, leaving unclear
if and how users would integrate them into larger workflows. Although
studying this question was one of the main goals of i-LATEX’s longitudinal

164

165

study, the prototypal nature of the editor given to the participants and the
limited sample size did not lead to any statistically sound conclusion. A few
examples, however, hint at potential synergies between textual projections
and other projections. For example, one participant of i-LATEX’s controlled
experiment was able to complete a task very efficiently by switching between
the textual and grid projections of LATEX code to sort the rows of a table by
a certain column, as explained in subsection 6.5.2. Similarly, when using
lorgnette in different situations, I often found myself switching between
a colour picker or a form user interface to configure a single property and
the text editor to copy and paste the value I just set in other locations. Such
situations illustrate the complementary nature that two projections can have,
although the situations in which this happens and the way it affects users
remain unclear.

Future work may study how users use multiple projections together and
over time, beyond the frame of a specific operation. This includes studying
why users prefer one projection over another in a variety of situations; what is
the cost of switching between two or more substrates to perform a single code
understanding or editing task; and how to help users transition from one
substrate to another, such as by suggesting another substrate when appropriate,
highlighting different representations of the same piece of code in two separate
substrates, and displaying—or even animating—the transformations that
connect one to the other, akin to how Gliimpse (Dragicevic et al., 2011)
animates how pieces of LATEX code are mapped to visual elements in the
generated PDF. Beyond better understanding how projections of computer
languages are use in real situations, such research may benefit other domains
in which users commonly deal with multiple representations of the same
piece of data. For example, this appears to be common in data analysis
and visualisation software such as Microsoft Excel, SAS JMP and Jupyter
notebooks, in which users frequently use a mixture of data tables, plots and
code in the form of queries or scripts to visualise and manipulate the same
underlying pieces of data.

8.2.2 beyond local projections

i-LATEX’s transitionals and lorgnette’s applications each showcase the use
of various substrates, for various computer languages, in various situations.
However, all of them are local projections: they only project restricted and
continuous fragments of code, always located in a single file. While this
proved to be already helpful for some tasks, such as previewing and modifying
a colour encoded as a contiguous sequence of characters, it is not adapted
situations in which multiple fragments of code (or other pieces of information,
from other resources) have to be combined into a single projection.

lorgnette’s formative study highlights a number of projections that were
of interest to participants of the design workshop and/or implemented in
other systems published in the literature, but could not be implemented nor
studied using i-LATEX and lorgnette—at least not in their current version.
For example, I did not implement nor study projections for editing CSS
properties located in a different file next to a piece of HTML code they apply
to, which is standard practice in front-end web development, as needed by

165

166

designs D11 and R9. Similarly, applications such as explaining an optimisation
problem from the code that describes it (design D2) and visualising how
functions or objects access each other over time (design D7 and D17; LaToza
and Myers, 2011) require to project information that is global to a project,
possibly spanning over hundreds of files, far from the restricted scope of the
projections I studied with i-LATEX and lorgnette.

Studies of how programmers use whiteboards and sketches (Cherubini et
al., 2007; Mangano et al., 2015) further motivate the importance of providing
tools to help programmers transfer analog practices into digital systems, so
as to directly being able to refer to and transform code beyond fragments
that are only a few lines long. Code thumbnails (DeLine et al., 2006), now
available in text editors such as Sublime Text and Visual Studio Code, displays
a textual substrate from afar to let users rely on their spatial memory to
navigate files shown as text. CodeMap (Taniguchi and Masuhara, 2022) lets
users create diagrams with nodes linked to the code and switch between the
diagram and the text editor, but it only allows them to use the diagram to
take notes, with no semantic meaning nor any way to edit the code from
the diagram. Interfaces such as Code Bubbles (Bragdon et al., 2010) and
the Debugger Canvas (DeLine et al., 2012) hint at possible ways to combine
multiple projections to give a more global view of a code base, but they only
demonstrated it by combining multiple textual substrates linked to each other.
At an even larger scale, systems such as OverCode (Glassman et al., 2015),
WEVL (Taniguchi et al., 2022) and VizProg (Zhang et al., 2023) explore how
to visualise thousands of solutions to a programming problem submitted by
students by proposing different ways to cluster and compare pieces of code
before mapping them onto a substrate such as a 2D plot.

Future work may not only go beyond studying local projections, but also
go beyond overly global ones too, by rather investigating the continuum that
exists between them, and the different requirements that come with each
scale, both in terms of implementation and interaction. Regarding imple-
mentation, this raises the question of getting the appropriate information
when it is scattered across multiple files. For example, how could one scale
up the malleability of lorgnette’s custom search patterns for fragments,
given that indexing and searching an entire code base may be prohibitively
costly in terms of time and memory.76 Regarding interaction, future work 76. Although the scale is not compara-

ble, Clem and Thomson (2022) discuss
the challenge of indexing and query-
ing code bases in an efficient manner
by relating their own experience with
providing static analysis of repositories
hosted on GitHub.

could address the challenge of working with combinations of substrates rep-
resenting information at different scales, such as a text editor showing an
extract from a single file next to a call graph showing how different pieces of
code located in different files relate to each other during the execution of the
code. User studies may help understand what is hard, and future design and
implementation work may help identify how to address such difficulties. The
challenge of working at a larger scale echoes, once again, those faced by data
analysis and visualisation experts, who are facing increasingly large datasets
and possibly left with no better solution than black-box statistical models
such as neural networks to extract meaningful information from them.

166

167

8.2.3 beyond hand-crafted mappings

In both i-LATEX and lorgnette, the mappings of the projections—that is,
the instructions that tell the computer how to map a set of resources onto
a representation, and conversely—were entirely written by hand. While
this was the most straightforward choice, and sometimes an easy solution,
such as when splitting an hexadecimal string into three parts and parsing
each of them as a base-16 number, it quickly proved to be challenging. For
example, implementing i-LATEX’s transitional for tables required me to deal
with table formatting macros that must be ignored but preserved in the text,
such as \toprule and \hline, as well as rules regarding whitespace and line
breaks.77 Similarly, in an experiment with lorgnette not reported in this 77. Although whitespace and line

breaks may be regarded as purely sec-
ondary notation which may be dis-
carded altogether or reinserted using a
code formatting program rather than
hand-craftd rules, I argue that they also
embed a form of idiosyncratic knowl-
edge about code, sometimes specific to
a community or a language, which may
be misunderstood by such programs
and result in users disliking a projec-
tion because it messes up the format-
ting they adhere to.

thesis, mapping a few CSS properties onto a form user interface required me
to write several hundred lines of code, in part to account for ambiguities that
sometimes arise, such as when the user modifies the colour of a border using
a form and the code includes both the atomic border-color property and
the composite border property.

As a result, writing mappings quickly appeared to me as one of the main
challenges to broaden the development—let alone by end-users—of ad-hoc
code projections when needed. The problem, which appears in many forms in
the literature, ranging from the old-school view-update problem introduced
in the database community to the more recent notion of lens in programming
theory and functional programming (Foster et al., 2007), has no definite
solution. Yet, a number of directions have already been suggested to ease the
difficulty of writing mappings, forming a gradient of potential solutions. The
most simple approach consists of forming bindings between ranges of text
and properties of the other projection’s model, either by manually labelling
the ranges or using a regular expression to find them, as used in systems such
as Codelets (Oney and Brandt, 2012) and mage (Kery et al., 2020). A more
advanced approach consists of treating this task as an optimisation problem
and using algorithms to explore the solution space. This is the approach
used in systems such as SnipPy (Ferdowsifard et al., 2020) and Falx (Wang
et al., 2021), which synthesise code using a generative grammar of (a subset
of) the language, and in several variants of Sketch-n-Sketch (Mayer et al.,
2018; Hempel et al., 2019), which can trace the provenance of the result of a
computation to help an algorithm identify what must be modified to account
for a change in the output. However, all these implementations have only
tackled a highly-constrained search space and small-scale code synthesis, far
from the hundreds of lines of code with a single input example and no output
example that correspond to the situations I described above.

Future work may keep investigating how to go beyond crafting complex
mappings by hand. One possible direction is to pursue the work on syntax-
and trace-directed code synthesis. However, it may be hard to use such tech-
niques in the wild rapidly, as they usually require to create new computer
languages with specially crafted specifications. This approach faces the same
difficulties of widespread adoption that I mentioned in section 5.4 to sup-
port my choice of making a postmodern application of protean projection
in my work. To apply it to larger-scale problems and established computer
languages, the recent surge in large language model-based code synthesis

167

168

and the impressive results of models such as GPT-4—which has successfully
generated entire programs such as a simple 3D game given a textual descrip-
tion and working LATEX code given a partially formal description (Bubeck
et al., 2023, §3)—seem to point towards the key role AI methods may soon
play in this area. Ongoing advances in artificial intelligence techniques may
therefore greatly decrease the cost of writing mappings on the fly, therefore
helping users create their own tools to understand and write code, instead of
merely letting a model write it without any human supervision.

This view for a future where code synthesis complements code understand-
ing and writing techniques, rather than replacing them, echoes the positions
of other researchers in this domain. Maneesh Agrawala (170) argues, for
instance, that black-box models at the core of state-of-the-art synthesis tech-
niques in use today “do not provide a predictive conceptual model”, therefore
making them “terrible interfaces” for interaction. In a similar stand, Geof-
frey Litt (171) envisions large language models as companions for tailoring
software to one’s needs, capable of making local, on-demand changes to a
program to account for a missing feature or provide a context-specific user
interface. If they indeed succeed, artificial intelligence models such as LLMs
may therefore not only help writing projections’ mappings, but also benefit
from the resulting projections themselves, either as tools to configure the
synthesis itself or as tools to understand and modify the code they output.

8.2.4 beyond semantic interaction

By decomposing the notion of computer language into five aspects, I high-
lighted that substrates let us interact with the four other aspects, yielding
four levels of interaction: graphemic interaction, morphosyntactic interac-
tion, semantic interaction and pragmatic interaction. Although, historically,
code editors used to focus on a single level of interaction, such as graphemic
interaction in text editors from the 1960s and morphosyntactic interaction in
visual programming systems from the 1980s, they can also be combined into
a single code editing environment, making our interaction with computer
languages protean. By focusing on complementing text editors with other
projections, i-LATEX and lorgnette allowed me to focus on the combination
of graphemic interaction with semantic interaction.78 As a result, it leaves 78. One could argue that I did not

strictly focus on semantic interaction,
as exemplified by the use of a typeset
formula that looks like the output in
i-LATEX’s transitional for mathematical
formulae and lorgnette’s concept of
runtime query, which I used to trace
a variable at runtime. Both allude to
pragmatic interaction. Yet, the first ex-
ample is only a reproduction of the out-
put for lack of a better representation,
and the second example uses the run-
time as a source of the projection, but
with the intention of displaying the si-
nusoidal behaviour of a variable within
the code, rather than actually interact-
ing with the output itself.

the other combinations permitted by protean interaction out of the scope of
my work.

Besides the combination of graphemic and semantic interaction, which
was also studied in a number of systems, such as Graphite (Omar et al., 2012),
Codelets (Oney and Brandt, 2012), mage (Kery et al., 2020) and Livelits (Omar
et al., 2021), a number of other combinations have been investigated in the
literature. By mixing text editing and direct manipulation of pluggable blocks,
hybrid block programming environments such as GP (Monig et al., 2015)
and Pencil Code (Weintrop and Wilensky, 2017) combine graphemic and
morphosyntactic interaction. By supporting domain-specific projections
of syntax tree nodes, beyond text as a default, mbedrr (Voelter et al., 2019)
and Sandblocks with visual replacements (Beckmann et al., 2023b) combine
morphosyntactic with semantic interaction. By letting users view and edit
code as text, as well as by directly manipulating its visual output, Sketch-n-

168

https://magrawala.substack.com/p/unpredictable-black-boxes-are-terrible
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming

169

Sketch (Hempel et al., 2019) demonstrates the combination of graphemic
and pragmatic interaction. Similarly, by supporting text editing and local
evaluation of code snippets from example values, babylonian-style program-
ming (Rauch et al., 2019) and projection boxes (Lerner, 2020b) achieve an-
other kind of combination between graphemic and pragmatic interaction.

Future work may keep implementing and studying such two-way combi-
nations between levels of interaction with computer languages, as well as
explore new ones. For example replacing Sketch-n-Sketch’s text editor with
Deuce (Hempel et al., 2018) would yield a code editing environment that
combines graphemic interaction (editing code as text), morphosyntactic in-
teraction (refactoring code by direct manipulation of syntactic constructs),
and pragmatic interaction (transforming code by transforming its visual out-
put). Further adding projections of certain concepts, such as for configuring
graphical properties using dedicated widgets,79 would also let user interact 79. Sketch-n-Sketch already includes a

colour picker widget, but it can only be
used to modify a colour of a shape in
the output, rather than a piece of code
representing the concept of colour.

with code semantically, effectively combining four levels of interaction with a
single computer language in the same environment.

Besides attempting to combine levels of interaction in new ways, future
work may also study which combinations work well together and which do
not, and why. Interestingly, all the combinations mentioned above combine
graphemic and/or morphosyntactic interaction with semantic and/or prag-
matic interaction. It may be that, because the first two levels are the only ones
that give access to an entire computer language as an abstract symbolic system,
they are by nature complementary to semantic and pragmatic interaction,
which are too focused on a specific concept or use of the language to let users
exploit it all. It may also be, as I discuss below, that this observation itself
shows a limitation of my theory of interaction with computer languages, at
least in the way it is phrased in this thesis.

8.2.5 beyond computer languages

In the limitations presented so far, I propose directions to explore alternatives
to the choices I made in my own application of the theory of interaction
with computer languages introduced in this work. As such, they all stay
within the boundaries of that theory, and they are all compatible with its
glossary of concepts. Yet, the theory itself is subject to limitations, some of
which I encountered myself, therefore calling for extension of the theoretical
reasoning I conducted.

Through the notion of projection, motivated in chapter 3 and presented
more in depth in chapter 5, I argue that any piece of code written in some
computer language is not tied to a single representation by essence, and can
be projected on any substrate as long as the appropriate resources and an
appropriate mapping are provided. Yet, because of how prevalent textual
representations have been in my own education and experience of computing
and programming, the knowledge and habits I have are inevitably rooted in a
view of the world in which text is the default. As such, the way I presented my
theory of interaction with computer languages in this thesis is nuanced with
a view that is, if not text-centric, at least text-first. For example, the four levels
of interaction with computer languages I envision start from the one closest

169

170

to the language’s encoding, for which sequences of characters representing
sequences of bytes are the most common representation.

Looking at this theory from the other way around yields a different ap-
proach to computer languages. By starting from the pragmatic level of interac-
tion, in which computer languages are used in context, possibly very far and
independently from how they are encoded, a surprisingly large set of user in-
terfaces appear to become candidate environments for working with computer
languages. If the vector-graphic editing panel of Sketch-n-Sketch (Hempel
et al., 2019) can be considered as a substrate for interacting with the code that,
when interpreted, yields the shapes shown on the screen and manipulated
by the user, even if that user never writes code as text, why would software
such as Microsoft Word, Apple Numbers or Adobe Photoshop not qualify
as well?80 Since graphemic and morphosyntactic interaction are only two 80. The scripting capability of some

of these pieces of software actually
demonstrates that concepts first meant
to be represented at a semantic or
pragmatic level only can eventually be-
come exposed as text and edited at the
graphemic level, taking the opposite
path to the one I explored.

out of four levels of interaction, code written in a computer language could
therefore very well be edited using projections that are primarily designed
to support semantic or pragmatic interaction, as do most traditional GUIs
(such as those of the three systems cited in the last sentence). In this sense,
the term code as I used it in this work appears to become interchangeable
with model (as already hinted in subsection 5.3.1) or data: anything that is
somehow encoded in a computer can qualify to be written in a computer
language, even if it is never represented and edited as a piece of text or a
graph of nodes—the two notations traditionally respectively associated with
“textual” and “visual” languages in the literature.

Future work may explore what this conclusion means for the theoretical
contributions presented in this thesis, which may be pushed beyond the mind-
constraining notion of computer language to, perhaps, become a linguistic
theory of interaction instead. This, interestingly, relates to one of the points
made by Jakubovic et al. (2023) in their work on programming systems: seeing
the activity of programming and the artefact of code as linguistic is a design
choice we make—or, rather, someone else’s decision we have to deal with—
rather than a necessity. Without going as far as authors such as Chomsky,
who argue that our human ability for language is hard-coded in our brains,
I still hypothesise that the fact that we stick to language as an interaction
metaphor, sixty year after the introduction of graphical user interfaces capable
of displaying more than text, is not merely a coincidence or a technical or
design debt.

In their work on generative theories of interactions, Beaudouin-Lafon et al.
(2021) describe such theoretical constructs as follows:

We define a Generative Theory of Interaction as a construct that is:
(1) grounded in a theory of human activity and behavior with technology;
(2) amenable to analytical, critical and constructive interpretation; and
(3) actionable through the theory’s concepts and generative principles.

— Beaudouin-Lafon et al. (2021, §2.1)

In this thesis, I focused on demonstrating the second property of the theory
I presented, by giving conceptual tools to decompose what interacting with
a computer language means and applying them to analyse and categorise a
variety of interactive systems. I only hinted at possible grounds for the two
other properties by briefly reviewing work on computer languages in other

170

171

disciplines (section 2.3) and by applying the concept of projection in some
specific situations (chapters 6 and 7). Working towards a generative linguistic
theory of interaction would require to expand on these two properties. As
such, future work may help ground this theory in other theories of how and
why humans deal with languages, helped with findings from fields such as
psycholinguistics and cognitive science, as well as devise generative princi-
ples that can be used to design new interaction techniques and systems as I
informally did myself, perhaps by suggesting to either start from graphemic
or morphosyntactic interaction and go up towards semantic and pragmatic
interaction, or the opposite, depending on the situation and the existing
practices and software to design for.

171

172

9
Conclusion

In the beginning of this thesis, I made the following claim:

No computer language is inherently bound to a single representation,
neither theoretically nor technically, and diversifying our interaction
with computer code can help users understand and modify it.

Eight chapters later, I now return to it with the knowledge I learnt by building
up the theoretical, empirical and technical contributions I made in this thesis.
I argue that both the theory of interaction with computer languages intro-
duced in this work and the two concrete applications of protean projection I
devised support this claim.

According to the theory of interaction with computer languages, every
computer language must be projected onto a substrate for us to interact with
it—otherwise, code remains data in the computer’s memory, hidden from
us. Since projecting a language onto one substrate rather than another is
a purely arbitrary choice, there is no single nor best representation for a
computer language, only habits and technical constraints—such as using text
because it is very common in a Unix-centred world, easy to implement, fit
for keyboards, and so on. Besides not being bound to a single representation,
computer languages are not bound to a single level of interaction either: code
can be edited at multiple levels in parallel, as demonstrated in many systems
published in the literature, as well as those I developed myself, in which
graphemic and semantic interaction can be used side by side. The theoretical
claims made in this thesis are therefore strongly in favour of decoupling the
concepts of a computer language, its formal specification, its encoding, and
its context of use, from how we interact with it, which is nothing but a design
choice we make when we develop and use a system for editing code written
in this language.

This distinction is also supported by my work on i-LATEX and lorgnette,
two systems I created to complement text editors with additional projections.
By offering transitional representations for certain fragments of code, i-LATEX
provides LATEX users with alternative representations of mathematical formu-
lae, tables, images and grid layouts, which can all be perceived and edited
either as text or as another representation chosen to be more semantically

172

173

meaningful and appropriate. They have shown benefits in two user studies
by allowing participants to achieve a number of tasks faster and with a lower
workload and by helping LATEX users work on specific parts of their own
documents in a non-controlled setting. Similarly, by letting users extend text
editors with additional projections for specific patterns of code, lorgnette
helps tailor one’s editor to their needs and preferences beyond traditional
end-user customisation practices. I demonstrated how lorgnette can be
used in five different situations, all including projections of an established
computer language that is otherwise edited as text only, such as JavaScript
and Python. As such, i-LATEX and lorgnette demonstrate that computer
languages can not only benefit from multiple projections at the same time
in practice, but that this approach has proven benefits and can be readily
used with some of the most popular computer languages while remaining
compatible with existing encodings, editors and workflows.

This claim has consequences on how we might use and interact with com-
puter languages in the future. Moreover, the postmodern approach I followed
in my applied work demonstrates that combining multiple representations
and interaction levels can readily benefit computer languages that are being
massively used today. Unlike other visions and prototypes found in the litera-
ture, this can be achieved without requiring any significant technological shift,
as only slight adjustments to the most used text editors are required to let their
users benefit from additional projections of the code they read and write.

In education, where computers occupy an increasing space, students may
benefit from a multiplicity of projections when working with anything en-
coded as a computer language, similar to the benefits of observing the same
piece of information from different perspectives when learning, and in line
with the complementary uses of text, schemas, and even analog and digital
artefacts by teachers. This obviously applies to teaching computer science
and programming, which may benefit from going beyond morphosyntactic
interaction; but it also concerns any discipline taught with computers, by en-
couraging developers of educational software to expose the languages of what
they build so as to let students appropriate it at different conceptual levels,
which may, in turn, help them better understand the underlying concepts.

In industry, which extensively develops and relies on software, developers
may benefit from new ways of perceiving and transforming code, possibly
increasing their efficiency while decreasing their workload; and users of said
software may benefit from larger toolsets, possibly helping them become more
expert and tailor their software to their needs or automate some of their work.
In addition, exposing more and more mechanisms to support third-party
projections of data manipulated by software—such as computer languages, but
not only—might lead to the emergence of a new market, in which companies
create and customise projections adapted to specific domains and personal
preferences in an ecosystem ruled by common protocols. Eventually, everyone
could bring their own client without risking to be isolated from others,81 for 81. The formula originates from related

work from Geoffrey Litt (151).“one application is not enough” and “users should be able to easily select, fine-
tune and appropriate their tools” (Beaudouin-Lafon, 2017, §1).

More generally, at the scale of society, I believe that thinking and talking
about our interaction with computer languages in terms of projections may
help making these languages, and, by extension, computing literacy, less

173

https://www.geoffreylitt.com/2021/03/05/bring-your-own-client

174

obscure and frightening, and more accessible to all. My belief is akin to
those who popularise mathematics and other scientific fields by showing
what abstract concepts and cryptic formulae mean, beyond sequences of
symbols we usually denote them with.82 Given the role computers are taking 82. Popular examples include Nicky

Case, the creator of a few popu-
lar explorable explanations (138),
and Grant Sanderson, the creator of
the 3Blue1Brown (172) website and
YouTube channel.

in our societies, and how much education and regulation lag behind the fast
pace of technological evolutions, I therefore see a democratic potential in this
vision of computer languages, as a means to equip people with intellectual and
technical tools to become actors of the computer-led world we now live in.

174

https://explorabl.es/
https://www.3blue1brown.com

175

Bibliography

Acar et al., 2013 doi: 10.3233/JCS-130487
Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2013. A Core Calculus for Provenance. Journal of
Computer Security 21.6, pp. 919–969.

Aho et al., 2006 isbn: 978-0-321-48681-3
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and
Tools. 2nd edition. Addison-Wesley.

Ainsworth, 2020
Thomas Ainsworth. 2020. Form vs. Matter. The Stanford Encyclopedia of Philosophy. Summer 2020. Metaphysics
Research Lab, Stanford University.

Almeida et al., 2022 doi: 10.1109/VL/HCC53370.2022.9833121
Marcelo Almeida, Grant Cole, Ke Du, Gongming Luo, Shulin Pan, Yu Pan, Kai Qiu, Vishnu Reddy, Haochen
Zhang, Yingying Zhu, and Cyrus Omar. 2022. RustViz: Interactively Visualizing Ownership and Borrowing. 2022
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 1–10.

Alur et al., 2018 doi: 10.1145/3208071
Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. 2018. Search-Based Program Synthesis.
Communications of the ACM 61.12, pp. 84–93.

Andersen et al., 2020 doi: 10.1145/3428290
Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding Interactive Visual Syntax to Textual
Code. Proceedings of the ACM on Programming Languages. Vol. 4, pp. 1–28.

Andersen, 1992
Peter Andersen. 1992. Computer Semiotics. Scandinavian Journal of Information Systems 4.1.

Appel and Haken, 1977 doi: 10.1038/scientificamerican1077-108
Kenneth Appel and Wolfgang Haken. 1977. The Solution of the Four-Color-Map Problem. Scientific American
237.4, pp. 108–121.

Appert and Beaudouin-Lafon, 2006 doi: 10.1145/1166253.1166302
Caroline Appert and Michel Beaudouin-Lafon. 2006. SwingStates: Adding State Machines to the Swing Toolkit.
Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology. UIST ’06. ACM,
pp. 319–322.

Arawjo, 2020 doi: 10.1145/3313831.3376731
Ian Arawjo. 2020. To Write Code: The Cultural Fabrication of Programming Notation and Practice. Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20. ACM, pp. 1–15.

175

https://www.doi.org/10.3233/JCS-130487
https://www.doi.org/10.1109/VL/HCC53370.2022.9833121
https://www.doi.org/10.1145/3208071
https://www.doi.org/10.1145/3428290
https://www.doi.org/10.1038/scientificamerican1077-108
https://www.doi.org/10.1145/1166253.1166302
https://www.doi.org/10.1145/3313831.3376731

176

Arawjo et al., 2022 doi: 10.1145/3526113.3545619
Ian Arawjo, Anthony DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan Parikh. 2022. Notational Program-
ming for Notebook Environments: A Case Study with Quantum Circuits. Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology. UIST ’22. ACM, pp. 1–20.

Asenov, 2017
Dimitar Asenov. 2017. Envision: Reinventing the Integrated Development Environment. Ph.D. thesis. ETH Zurich.

Asenov et al., 2016 doi: 10.1145/2858036.2858372
Dimitar Asenov, Otmar Hilliges, and Peter Müller. 2016. The Effect of Richer Visualizations on Code Com-
prehension. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, pp. 5040–
5045.

Atkinson and Shiffrin, 1968 doi: 10.1016/S0079-7421(08)60422-3
Richard C. Atkinson and Richard M. Shiffrin. 1968. Human Memory: A Proposed System and Its Control Pro-
cesses. Psychology of Learning and Motivation. Vol. 2. Academic Press, pp. 89–195.

Avrahami et al., 1989 doi: 10.1145/74334.74347
Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. 1989. A Two-View Approach to Constructing User
Interfaces. ACM SIGGRAPH Computer Graphics 23.3, pp. 137–146.

Backus, 1978 doi: 10.1145/960118.808380
John Backus. 1978. The History of FORTRAN I, II, and III. ACM SIGPLAN Notices 13.8, pp. 165–180.

Baddeley and Hitch, 1974 doi: 10.1016/S0079-7421(08)60452-1
Alan D. Baddeley and Graham Hitch. 1974. Working Memory. Psychology of Learning and Motivation. Vol. 8.
Academic Press, pp. 47–89.

Banken et al., 2018 doi: 10.1145/3180155.3180156
Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging Data Flows in Reactive Programs. Proceed-
ings of the 40th International Conference on Software Engineering. ACM, pp. 752–763.

Bau et al., 2015 doi: 10.1145/2771839.2771875
David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens. 2015. Pencil Code: Block Code for a
Text World. Proceedings of the 14th International Conference on Interaction Design and Children - IDC ’15. ACM,
pp. 445–448.

Bau et al., 2017 doi: 10.1145/3015455
David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017. Learnable Programming: Blocks
and Beyond. Communications of the ACM 60.6, pp. 72–80.

Baudel, 1995
Thomas Baudel. 1995. Aspects Morphologiques de l’interaction Humain-Ordinateur : Étude de Modèles d’interaction
Gestuels. Ph.D. thesis. Paris 11 University.

Beaudouin-Lafon, 2000 doi: 10.1145/332040.332473
Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model for Designing Post-WIMP

176

https://www.doi.org/10.1145/3526113.3545619
https://www.doi.org/10.1145/2858036.2858372
https://www.doi.org/10.1016/S0079-7421(08)60422-3
https://www.doi.org/10.1145/74334.74347
https://www.doi.org/10.1145/960118.808380
https://www.doi.org/10.1016/S0079-7421(08)60452-1
https://www.doi.org/10.1145/3180155.3180156
https://www.doi.org/10.1145/2771839.2771875
https://www.doi.org/10.1145/3015455
https://www.doi.org/10.1145/332040.332473

177

User Interfaces. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’00. ACM,
pp. 446–453.

Beaudouin-Lafon, 2017 doi: 10.1145/3125571.3125602
Michel Beaudouin-Lafon. 2017. Towards Unified Principles of Interaction. Proceedings of the 12th Biannual Con-
ference on Italian SIGCHI Chapter. ACM, pp. 1–2.

Beaudouin-Lafon, 2023 doi: 10.1145/3583961.3583968
Michel Beaudouin-Lafon. 2023. Au-delà des applications : Substrats et instruments d’interaction. Proceedings of
the 34th Conference on l’Interaction Humain-Machine. IHM ’23. ACM, pp. 1–15.

Beaudouin-Lafon et al., 2021 doi: 10.1145/3468505
Michel Beaudouin-Lafon, Susanne Bødker, and Wendy E. Mackay. 2021. Generative Theories of Interaction.
ACM Transactions on Computer-Human Interaction 28.6, pp. 1–54.

Beaudouin-Lafon and Mackay, 2000 doi: 10.1145/345513.345267
Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, Polymorphism and Reuse: Three Principles
for Designing Visual Interfaces. Proceedings of the Working Conference on Advanced Visual Interfaces. AVI ’00.
ACM, pp. 102–109.

Beck et al., 2014 doi: 10.1145/2591062.2591111
Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel Weiskopf. 2014. RegViz: Visual Debug-
ging of Regular Expressions. Companion Proceedings of the 36th International Conference on Software Engineering.
ACM, pp. 504–507.

Beckmann et al., 2023a doi: 10.1145/3544548.3580785
Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert Hirschfeld. 2023. Structured Editing
for All: Deriving Usable Structured Editors from Grammars. Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. CHI ’23. ACM, pp. 1–16.

Beckmann et al., 2023b doi: 10.1145/3623504.3623569
Tom Beckmann, Daniel Stachnik, Jens Lincke, and Robert Hirschfeld. 2023. Visual Replacements: Cross-Language
Domain-Specific Representations in Structured Editors. Proceedings of the 2nd ACM SIGPLAN International
Workshop on Programming Abstractions and Interactive Notations, Tools, and Environments. PAINT 2023. ACM,
pp. 25–35.

Benbouzid, 2019 doi: 10.1177/2053951719861703
Bilel Benbouzid. 2019. To Predict and to Manage. Predictive Policing in the United States. Big Data & Society 6.1,
pp. 1–13.

Bergel et al., 2013
Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik Laval. 2013. Deep into Pharo. Square Bracket
Associates.

Bergström and Blackwell, 2016 doi: 10.1109/VLHCC.2016.7739684
Ilias Bergström and Alan F. Blackwell. 2016. The Practices of Programming. 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 190–198.

177

https://www.doi.org/10.1145/3125571.3125602
https://www.doi.org/10.1145/3583961.3583968
https://www.doi.org/10.1145/3468505
https://www.doi.org/10.1145/345513.345267
https://www.doi.org/10.1145/2591062.2591111
https://www.doi.org/10.1145/3544548.3580785
https://www.doi.org/10.1145/3623504.3623569
https://www.doi.org/10.1177/2053951719861703
https://www.doi.org/10.1109/VLHCC.2016.7739684

178

Bertin, 1967 isbn: 978-1-58948-261-6
Jacques Bertin. 1967. Sémiologie Graphique : Les Diagrammes, Les Réseaux, Les Cartes. Mouton; Gauthier-Villars.

Bertot and Castéran, 2004 isbn: 978-3-540-20854-9
Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development — Coq’Art: The
Calculus of Inductive Constructions. Springer.

Blackwell, 2018
Alan F. Blackwell. 2018. A Craft Practice of Programming Language Research. Proceedings of the 29th Annual
Workshop of the Psychology of Programming Interest Group. PPIG 2018, pp. 1–9.

Blackwell et al., 2001 doi: 10.1007/3-540-44617-6_31
Alan F. Blackwell, Carol Britton, Anna Cox, Thomas R. G. Green, Corin Gurr, Gada Kadoda, Maria S. Kutar, Mar-
tin Loomes, Chrystopher L. Nehaniv, Marian Petre, Christopher Roast, Cristophe Roe, A. Wong, and Richard M.
Young. 2001. Cognitive Dimensions of Notations: Design Tools for Cognitive Technology. Cognitive Technology:
Instruments of Mind. Lecture Notes in Computer Science. Springer, pp. 325–341.

Blackwell et al., 2022 doi: 10.7551/mitpress/13770.001.0001
Alan F. Blackwell, Emma Cocker, Geoff Cox, Alex McLean, and Thor Magnusson. 2022. Live Coding: A User’s
Manual. The MIT Press.

Blackwell et al., 2019 doi: 10.1016/j.ijhcs.2019.06.009
Alan F. Blackwell, Marian Petre, and Luke Church. 2019. Fifty Years of the Psychology of Programming. Interna-
tional Journal of Human-Computer Studies. 50 Years of the International Journal of Human-Computer Studies.
Reflections on the Past, Present and Future of Human-Centred Technologies 131, pp. 52–63.

Boey and Adams, 2022
Bernard Boey and Michael D. Adams. 2022. HenBlocks: Structured Editing for Coq. FLoC2022: The 8th Federated
Logic Conference. The Coq Workshop 2022.

Borning, 1979
Alan Borning. 1979. ThingLab—A Constraint-Oriented Simulation Laboratory. Tech. rep. SSL-79-3. Xerox PARC.

Borowski et al., 2022 doi: 10.1145/3491102.3502064
Marcel Borowski, Luke Murray, Rolf Bagge, Janus B. Kristensen, Arvind Satyanarayan, and Clemens Nylands N.
Klokmose. 2022. Varv: Reprogrammable Interactive Software as a Declarative Data Structure. CHI Conference on
Human Factors in Computing Systems. CHI ’22. ACM, pp. 1–20.

Bower and McIver, 2011 doi: 10.1145/1999747.1999809
Matt Bower and Annabelle McIver. 2011. Continual and Explicit Comparison to Promote Proactive Facilitation
during Second Computer Language Learning. Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education. ITiCSE ’11. ACM, pp. 218–222.

Bragdon et al., 2010 doi: 10.1145/1753326.1753706
Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan, Christo-
pher Coleman, Ferdi Adeputra, and Joseph J. LaViola. 2010. Code Bubbles: A Working Set-Based Interface for
Code Understanding and Maintenance. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, pp. 2503–2512.

178

https://www.doi.org/10.1007/3-540-44617-6_31
https://www.doi.org/10.7551/mitpress/13770.001.0001
https://www.doi.org/10.1016/j.ijhcs.2019.06.009
https://www.doi.org/10.1145/3491102.3502064
https://www.doi.org/10.1145/1999747.1999809
https://www.doi.org/10.1145/1753326.1753706

179

Braun and Clarke, 2019 doi: 10.1080/2159676X.2019.1628806
Virginia Braun and Victoria Clarke. 2019. Reflecting on Reflexive Thematic Analysis. Qualitative Research in
Sport, Exercise and Health 11.4, pp. 589–597.

Breckel and Tichy, 2016
Alexander Breckel and Matthias Tichy. 2016. Live Programming with Code Portals. Proceedings of the 30th Euro-
pean Conference on Object-Oriented Programming (ECOOP’16), pp. 1–9.

Brooks, 1977 doi: 10.1016/S0020-7373(77)80039-4
Ruven Brooks. 1977. Towards a Theory of the Cognitive Processes in Computer Programming. International
Journal of Man-Machine Studies 9.6, pp. 737–751.

Bubeck et al., 2023 doi: 10.48550/arXiv.2303.12712
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023.
Sparks of Artificial General Intelligence: Early Experiments with GPT-4.

Burks, 1947 doi: 10.1109/JRPROC.1947.234265
Alan W. Burks. 1947. Electronic Computing Circuits of the ENIAC. Proceedings of the IRE 35.8, pp. 756–767.

Cascaval et al., 2022 doi: 10.1111/cgf.14476
Dab Cascaval, Mira Shalah, Philip Quinn, Rastislav Bodik, Maneesh Agrawala, and Adriana Schulz. 2022. Differ-
entiable 3D CAD Programs for Bidirectional Editing. Computer Graphics Forum 41.2, pp. 309–323.

Chang and Myers, 2014 doi: 10.1145/2642918.2647371
Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web Data Applications with Spreadsheets.
Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology. UIST ’14. ACM,
pp. 87–96.

Chasins et al., 2021 doi: 10.1145/3469279
Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. 2021. PL and HCI: Better Together. Communications
of the ACM 64.8, pp. 98–106.

Chen et al., 2021 doi: 10.48550/arXiv.2107.03374
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code.

Cheney et al., 2009 doi: 10.1561/1900000006
James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in Databases: Why, How, and Where.
Foundations and Trends in Databases 1.4, pp. 379–474.

179

https://www.doi.org/10.1080/2159676X.2019.1628806
https://www.doi.org/10.1016/S0020-7373(77)80039-4
https://www.doi.org/10.48550/arXiv.2303.12712
https://www.doi.org/10.1109/JRPROC.1947.234265
https://www.doi.org/10.1111/cgf.14476
https://www.doi.org/10.1145/2642918.2647371
https://www.doi.org/10.1145/3469279
https://www.doi.org/10.48550/arXiv.2107.03374
https://www.doi.org/10.1561/1900000006

180

Cherubini et al., 2007 doi: 10.1145/1240624.1240714
Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. 2007. Let’s Go to the Whiteboard: How and Why
Software Developers Use Drawings. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’07. LaTeX2Solver: a Hierarchical Semantic Parsing of LaTeX Document into Code for an Assistive
Optimization Modeling Application, pp. 557–566.

Chomsky, 1959 doi: 10.1016/S0019-9958(59)90362-6
Noam Chomsky. 1959. On Certain Formal Properties of Grammars. Information and Control 2.2, pp. 137–167.

Chugh, 2016 doi: 10.1145/2889160.2889210
Ravi Chugh. 2016. Prodirect Manipulation: Bidirectional Programming for the Masses. Proceedings of the 38th
International Conference on Software Engineering Companion - ICSE ’16. ACM, pp. 781–784.

Chugh et al., 2016 doi: 10.1145/2980983.2908103
Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation,
Together at Last. ACM SIGPLAN Notices 51.6, pp. 341–354.

Churchill et al., 2019 doi: 10.48550/arXiv.1904.09828
Alex Churchill, Stella Biderman, and Austin Herrick. 2019. Magic: The Gathering Is Turing Complete.

Clem and Thomson, 2022 doi: 10.1145/3486594
Timothy Clem and Patrick Thomson. 2022. Static Analysis at GitHub. Communications of the ACM 65.2, pp. 44–51.

Coblenz et al., 2021 doi: 10.1145/3452379
Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua Sunshine,
Jonathan Aldrich, and Brad A. Myers. 2021. PLIERS: A Process That Integrates User-Centered Methods into
Programming Language Design. ACM Transactions on Computer-Human Interaction 28.4, 28:1–28:53.

Coblenz et al., 2022 doi: 10.1145/3510003.3510107
Michael Coblenz, Michelle L. Mazurek, and Michael Hicks. 2022. Garbage Collection Makes Rust Easier to Use:
A Randomized Controlled Trial of the Bronze Garbage Collector. Proceedings of the 44th International Conference
on Software Engineering. ICSE ’22. ACM, pp. 1021–1032.

Conlen and Heer, 2018 doi: 10.1145/3242587.3242600
Matthew Conlen and Jeffrey Heer. 2018. Idyll: A Markup Language for Authoring and Publishing Interactive
Articles on the Web. Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology.
UIST ’18. ACM, pp. 977–989.

Conlen et al., 2021 doi: 10.1145/3472749.3474731
Matthew Conlen, Megan Vo, Alan Tan, and Jeffrey Heer. 2021. Idyll Studio: A Structured Editor for Authoring
Interactive & Data-Driven Articles. The 34th Annual ACM Symposium on User Interface Software and Technology.
UIST ’21. ACM, pp. 1–12.

Conner, 1984
Richard L. Conner. 1984. Cobol, Your Age Is Showing. Computerworld 18.20, pp. ID/7–ID/18.

180

https://www.doi.org/10.1145/1240624.1240714
https://www.doi.org/10.1016/S0019-9958(59)90362-6
https://www.doi.org/10.1145/2889160.2889210
https://www.doi.org/10.1145/2980983.2908103
https://www.doi.org/10.48550/arXiv.1904.09828
https://www.doi.org/10.1145/3486594
https://www.doi.org/10.1145/3452379
https://www.doi.org/10.1145/3510003.3510107
https://www.doi.org/10.1145/3242587.3242600
https://www.doi.org/10.1145/3472749.3474731

181

Connolly and Cooke, 2004 doi: 10.1515/semi.2004.065
John H. Connolly and D. John Cooke. 2004. The Pragmatics of Programming Languages. Semiotica 2004.151,
pp. 149–161.

Conversy, 2014 doi: 10.1145/2661136.2661138
Stéphane Conversy. 2014. Unifying Textual and Visual: A Theoretical Account of the Visual Perception of Pro-
gramming Languages. Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software. Onward! 2014. ACM, pp. 201–212.

Cooper, 2010 doi: 10.1145/1868358.1868362
Stephen Cooper. 2010. The Design of Alice. ACM Transactions on Computing Education 10.4, pp. 1–16.

Copeland, 2023
B. Jack Copeland. 2023. The Church-Turing Thesis. The Stanford Encyclopedia of Philosophy. Winter 2023. Meta-
physics Research Lab, Stanford University.

Cordy, 2006 doi: 10.1016/j.scico.2006.04.002
James R. Cordy. 2006. The TXL Source Transformation Language. Science of Computer Programming. Special
Issue on The Fourth Workshop on Language Descriptions, Tools, and Applications (LDTA ’04) 61.3, pp. 190–210.

Dale, 2021 doi: 10.1017/S1351324920000601
Robert Dale. 2021. GPT-3: What’s It Good for? Natural Language Engineering 27.1, pp. 113–118.

de Moura et al., 2015 doi: 10.1007/978-3-319-21401-6_26
Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean
Theorem Prover (System Description). Automated Deduction - CADE-25. Lecture Notes in Computer Science.
Springer International Publishing, pp. 378–388.

de Souza, 1993 doi: 10.1006/imms.1993.1082
Clarisse S. de Souza. 1993. The Semiotic Engineering of User Interface Languages. International Journal of Man-
Machine Studies 39.5, pp. 753–773.

DeFanti, 1980
Thomas DeFanti. 1980. Language Control Structures for Easy Electronic Visualization. Byte 5.11, pp. 90–104.

DeLine et al., 2012 doi: 10.1109/ICSE.2012.6227113
Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss. 2012. Debugger Canvas: Indus-
trial Experience with the Code Bubbles Paradigm. 2012 34th International Conference on Software Engineering
(ICSE). IEEE, pp. 1064–1073.

DeLine et al., 2006 doi: 10.1109/VLHCC.2006.14
Robert DeLine, Mary Czerwinski, Brian Meyers, Gina Venolia, Steven Drucker, and George Robertson. 2006.
Code Thumbnails: Using Spatial Memory to Navigate Source Code. Visual Languages and Human-Centric
Computing (VL/HCC’06), pp. 11–18.

DeLine, 2021 doi: 10.1145/3411764.3445267
Robert A DeLine. 2021. Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-Specific
Language. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, pp. 1–11.

181

https://www.doi.org/10.1515/semi.2004.065
https://www.doi.org/10.1145/2661136.2661138
https://www.doi.org/10.1145/1868358.1868362
https://www.doi.org/10.1016/j.scico.2006.04.002
https://www.doi.org/10.1017/S1351324920000601
https://www.doi.org/10.1007/978-3-319-21401-6_26
https://www.doi.org/10.1006/imms.1993.1082
https://www.doi.org/10.1109/ICSE.2012.6227113
https://www.doi.org/10.1109/VLHCC.2006.14
https://www.doi.org/10.1145/3411764.3445267

182

Descheemaeker et al., 2021 doi: 10.1145/3486605.3486785
Cloé Descheemaeker, Sam Van den Vonder, Thierry Renaux, and Wolfgang De Meuter. 2021. Poker: Visual Instru-
mentation of Reactive Programs with Programmable Probes. Proceedings of the 8th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems. ACM, pp. 14–26.

Dietrich, 1986 doi: 10.2307/1578284
Frank Dietrich. 1986. Visual Intelligence: The First Decade of Computer Art (1965–1975). Leonardo 19.2, pp. 159–
169.

Dijkstra, 1968 doi: 10.1145/362929.362947
Edsger W. Dijkstra. 1968. Letters to the Editor: Go to Statement Considered Harmful. Communications of the
ACM 11.3, pp. 147–148.

Dijkstra, 1977
Edsger W. Dijkstra. 1977. Programming : From Craft to Scientific Discipline. Proceedings of the 5th International
Computing Symposium, pp. 23–30.

Dijkstra, 1982 doi: 10.1145/947923.947924
Edsger W. Dijkstra. 1982. How Do We Tell Truths That Might Hurt? ACM SIGPLAN Notices 17.5, pp. 13–15.

diSessa and Abelson, 1986 doi: 10.1145/6592.6595
Andrea A. diSessa and Harold Abelson. 1986. Boxer: A Reconstructible Computational Medium. Communications
of the ACM 29.9, pp. 859–868.

Dix, 2007
Alan Dix. 2007. Designing for Appropriation. Proceedings of HCI 2007 The 21st British HCI Group Annual Confer-
ence University of Lancaster. 21, pp. 1–4.

Donzeau-Gouge et al., 1980
Véronique Donzeau-Gouge, Gérard Huet, Bernard Lang, and Gilles Kahn. 1980. Programming Environments
Based on Structured Editors : The Mentor Experience. Research Report RR-0026. Inria.

Dragicevic et al., 2011 doi: 10.1145/2047196.2047229
Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse: Animating from Markup Code to Ren-
dered Documents and Vice Versa. Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology. UIST ’11. ACM, pp. 257–262.

Dragicevic et al., 2019 doi: 10.1145/3290605.3300295
Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny Chevalier. 2019. Increasing the
Transparency of Research Papers with Explorable Multiverse Analyses. Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI ’19. ACM, pp. 1–15.

Dreher, 2020 isbn: 978-1-71685-581-8
Thomas Dreher. 2020. History of Computer Art. Lulu.

Drosos et al., 2020 doi: 10.1145/3313831.3376442
Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020. Wrex: A Unified Programming-

182

https://www.doi.org/10.1145/3486605.3486785
https://www.doi.org/10.2307/1578284
https://www.doi.org/10.1145/362929.362947
https://www.doi.org/10.1145/947923.947924
https://www.doi.org/10.1145/6592.6595
https://www.doi.org/10.1145/2047196.2047229
https://www.doi.org/10.1145/3290605.3300295
https://www.doi.org/10.1145/3313831.3376442

183

by-Example Interaction for Synthesizing Readable Code for Data Scientists.Proceedings of the 2020 CHIConference
on Human Factors in Computing Systems. CHI ’20. ACM, pp. 1–12.

Edwards, 2005 doi: 10.1145/1094811.1094851
Jonathan Edwards. 2005. Subtext: Uncovering the Simplicity of Programming. Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA ’05.
ACM, pp. 505–518.

Ehtesham-Ul-Haque et al., 2022 doi: 10.1145/3526113.3545620
Md Ehtesham-Ul-Haque, Syed Mostofa Monsur, and Syed Masum Billah. 2022. Grid-Coding: An Accessible,
Efficient, and Structured Coding Paradigm for Blind and Low-Vision Programmers. Proceedings of the 35th
Annual ACM Symposium on User Interface Software and Technology. UIST ’22. ACM, pp. 1–21.

Eiselmayer et al., 2019 doi: 10.1145/3290605.3300447
Alexander Eiselmayer, Chat Wacharamanotham, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2019. Touch-
stone2: An Interactive Environment for Exploring Trade-Offs in HCI Experiment Design. Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. CHI ’19. ACM, pp. 1–11.

Eisenberg and Kiczales, 2007 doi: 10.1145/1218563.1218573
Andrew D. Eisenberg and Gregor Kiczales. 2007. Expressive Programs through Presentation Extension. Proceed-
ings of the 6th International Conference on Aspect-Oriented Software Development - AOSD ’07. ACM, p. 73.

Ellis et al., 2018
Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2018. Learning to Infer Graph-
ics Programs from Hand-Drawn Images. Advances in Neural Information Processing Systems. Vol. 31. Curran
Associates, Inc.

Engelbart, 1962
Douglas C. Engelbart. 1962. Augmenting Human Intellect: A Conceptual Framework. Tech. rep. Stanford Research
Institute.

Engelbart and English, 1968 doi: 10.1145/1476589.1476645
Douglas C. Engelbart and William K. English. 1968. A Research Center for Augmenting Human Intellect. Pro-
ceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I. AFIPS ’68 (Fall, Part I). ACM, pp. 395–
410.

Ens et al., 2017
Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani, and George Fitzmaurice. 2017. Ivy:
Exploring Spatially Situated Visual Programming for Authoring and Understanding Intelligent Environments.
Proceedings of the 43rd Graphics Interface Conference. GI ’17. Canadian Human-Computer Communications
Society, pp. 156–162.

Ensmenger, 2010 isbn: 978-0-262-05093-7
Nathan Ensmenger. 2010. The Computer Boys Take over: Computers, Programmers, and the Politics of Technical
Expertise. History of Computing. MIT Press.

183

https://www.doi.org/10.1145/1094811.1094851
https://www.doi.org/10.1145/3526113.3545620
https://www.doi.org/10.1145/3290605.3300447
https://www.doi.org/10.1145/1218563.1218573
https://www.doi.org/10.1145/1476589.1476645

184

Erdweg and Ostermann, 2011 doi: 10.1007/978-3-642-19440-5_26
Sebastian T. Erdweg and Klaus Ostermann. 2011. Featherweight TeX and Parser Correctness. Software Language
Engineering. Springer, pp. 397–416.

Erwig and Meyer, 1995 doi: 10.1109/VL.1995.520825
Martin Erwig and Bernd Meyer. 1995. Heterogeneous Visual Languages-Integrating Visual and Textual Program-
ming. 1995 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE Comput. Soc.
Press, pp. 318–325.

Esser et al., 2021 doi: 10.1109/CVPR46437.2021.01268
Patrick Esser, Robin Rombach, and Björn Ommer. 2021. Taming Transformers for High-Resolution Image Syn-
thesis. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12868–12878.

Ferdowsifard et al., 2021 doi: 10.1145/3485530
Kasra Ferdowsifard, Shraddha Barke, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 2021. LooPy: Interactive
Program Synthesis with Control Structures. Proceedings of the ACM on Programming Languages 5.OOPSLA,
153:1–153:29.

Ferdowsifard et al., 2020 doi: 10.1145/3379337.3415869
Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 2020. Small-Step
Live Programming by Example. Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. UIST ’20. ACM, pp. 614–626.

Fix andWiedenbeck, 1996 doi: 10.1016/0360-1315(96)00022-X
Vikki Fix and Susan Wiedenbeck. 1996. An Intelligent Tool to Aid Students in Learning Second and Subsequent
Programming Languages. Computers & Education 27.2, pp. 71–83.

Flener, 2002 doi: 10.1007/3-540-45628-7_13
Pierre Flener. 2002. Achievements and Prospects of Program Synthesis. Computational Logic: Logic Programming
and Beyond: Essays in Honour of Robert A. Kowalski Part I. Lecture Notes in Computer Science. Springer, pp. 310–
346.

Fog and Klokmose, 2019
Bjarke V. Fog and Clemens N. Klokmose. 2019. Mapping the Landscape of Literate Computing. Proceedings of the
30th Annual Workshop of the Psychology of Programming Interest Group. PPIG 2019, pp. 1–10.

Forment and Armitage, 2023 doi: 10.5281/zenodo.7843817
Raphaël Maurice Forment and Jack Armitage. 2023. Sardine: A Modular Python Live Coding Environment.
Proceedings of the 7th International Conference on Live Coding. ICLC 2023, pp. 1–12.

Foster et al., 2007 doi: 10.1145/1232420.1232424
Nate (Nathan) Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007.
Combinators for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update Problem. ACM
Transactions on Programming Languages and Systems 29.3, pp. 1–65.

Fowler, 2019 isbn: 978-0-13-475759-9
Martin Fowler. 2019. Refactoring: Improving the Design of Existing Code. 2nd edition. Addison-Wesley.

184

https://www.doi.org/10.1007/978-3-642-19440-5_26
https://www.doi.org/10.1109/VL.1995.520825
https://www.doi.org/10.1109/CVPR46437.2021.01268
https://www.doi.org/10.1145/3485530
https://www.doi.org/10.1145/3379337.3415869
https://www.doi.org/10.1016/0360-1315(96)00022-X
https://www.doi.org/10.1007/3-540-45628-7_13
https://www.doi.org/10.5281/zenodo.7843817
https://www.doi.org/10.1145/1232420.1232424

185

Françoise et al., 2022 doi: 10.1145/3491102.3501916
Jules Françoise, Sarah Fdili Alaoui, and Yves Candau. 2022. CO/DA: Live-Coding Movement-Sound Interactions
for Dance Improvisation. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI
’22. ACM, pp. 1–13.

French, 2000 doi: 10.1016/S1364-6613(00)01453-4
Robert M. French. 2000. The Turing Test: The First 50 Years. Trends in Cognitive Sciences 4.3, pp. 115–122.

Fuggetta, 1993 doi: 10.1109/2.247645
Alfonso Fuggetta. 1993. A Classification of CASE Technology. Computer 26.12, pp. 25–38.

Fulton et al., 2021
Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and Michelle L. Mazurek. 2021. Benefits and Draw-
backs of Adopting a Secure Programming Language: Rust as a Case Study. 17th Symposium on Usable Privacy
and Security (SOUPS 2021), pp. 597–616.

Gamma et al., 1995 isbn: 978-0-201-63361-0
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Ge et al., 2012 doi: 10.1109/ICSE.2012.6227192
Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. 2012. Reconciling Manual and Automatic Refactoring.
2012 34th International Conference on Software Engineering (ICSE), pp. 211–221.

Gil and Maman, 2005 doi: 10.1145/1094811.1094819
Joseph (Yossi) Gil and Itay Maman. 2005. Micro Patterns in Java Code. Proceedings of the 20th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications - OOPSLA ’05. ACM, pp. 97–116.

Gil et al., 2019 doi: 10.1016/j.cola.2019.100905
Joseph (Yossi) Gil, Ori Marcovitch, and Matteo Orrú. 2019. A Nano-Pattern Language for Java. Journal of Computer
Languages 54, pp. 1–25.

Gilsing et al., 2022 doi: 10.1016/j.cola.2022.101158
Marleen Gilsing, Jesús Pelay, and Felienne Hermans. 2022. Design, Implementation and Evaluation of the Hedy
Programming Language. Journal of Computer Languages 73, pp. 1–17.

Glassman et al., 2015 doi: 10.1145/2699751
Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller. 2015. OverCode: Visualizing
Variation in Student Solutions to Programming Problems at Scale. ACM Transactions on Computer-Human
Interaction 22.2, 7:1–7:35.

Gobert and Beaudouin-Lafon, 2021 doi: 10.1145/3450522.3451325
Camille Gobert and Michel Beaudouin-Lafon. 2021. Représentations Intermédiaires Interactives Pour La Manip-
ulation de Code LaTeX. 32e Conférence Francophone Sur l’Interaction Homme-Machine. IHM ’21. ACM, pp. 1–
11.

Gobert and Beaudouin-Lafon, 2022 doi: 10.1145/3491102.3517494
Camille Gobert and Michel Beaudouin-Lafon. 2022. I-LaTeX: Manipulating Transitional Representations between

185

https://www.doi.org/10.1145/3491102.3501916
https://www.doi.org/10.1016/S1364-6613(00)01453-4
https://www.doi.org/10.1109/2.247645
https://www.doi.org/10.1109/ICSE.2012.6227192
https://www.doi.org/10.1145/1094811.1094819
https://www.doi.org/10.1016/j.cola.2019.100905
https://www.doi.org/10.1016/j.cola.2022.101158
https://www.doi.org/10.1145/2699751
https://www.doi.org/10.1145/3450522.3451325
https://www.doi.org/10.1145/3491102.3517494

186

LaTeX Code and Generated Documents. CHI Conference on Human Factors in Computing Systems. CHI ’22.
ACM, pp. 1–16.

Gobert and Beaudouin-Lafon, 2023 doi: 10.1145/3586183.3606817
Camille Gobert and Michel Beaudouin-Lafon. 2023. Lorgnette: Creating Malleable Code Projections. Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology. UIST ’23. ACM, pp. 1–16.

Goldberg and Robson, 1983 isbn: 978-0-201-11371-6
Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its Implementation. Addison-Wesley.

Goldenson et al., 1992 doi: 10.1145/142386.1055544
Dennis R. Goldenson, Ravinder P. Chandhok, David H. Garlan, Glenn Meter, Philip L. Miller, John Pane, Jacobo
Carrasquel, James A. Roberts, and Edward J. Skwarecki. 1992. GENIE: Developing and Assessing State-of-the-Art
Integrated Programming Environments. ACM SIGCHI Bulletin 24.2, pp. 39–40.

Gonthier, 2008
Georges Gonthier. 2008. Formal Proof—The Four-Color Theorem. Notices of the AMS 55.11, pp. 1382–1393.

Gonzalez et al., 2023 doi: 10.1145/3607822.3614521
Johann Felipe Gonzalez, Danny Kieken, Thomas Pietrzak, Audrey Girouard, and Géry Casiez. 2023. Introducing
Bidirectional Programming in Constructive Solid Geometry-Based CAD. Proceedings of the 2023 ACMSymposium
on Spatial User Interaction. SUI ’23. ACM, pp. 1–12.

Green, 1989
Thomas R. G. Green. 1989. Cognitive Dimensions of Notations. People and Computers V, pp. 443–460.

Green and Petre, 1996 doi: 10.1006/jvlc.1996.0009
Thomas R. G. Green and Marian Petre. 1996. Usability Analysis of Visual Programming Environments: A ‘Cogni-
tive Dimensions’ Framework. Journal of Visual Languages & Computing 7.2, pp. 131–174.

Grønbæk et al., 2023 doi: 10.1145/3586183.3606767
Jens Emil S. Grønbæk, Marcel Borowski, Eve Hoggan, Wendy E. Mackay, Michel Beaudouin-Lafon, and Clemens
N. Klokmose. 2023. Mirrorverse: Live Tailoring of Video Conferencing Interfaces. Proceedings of the 36th Annual
ACM Symposium on User Interface Software and Technology. UIST ’23. ACM, pp. 1–14.

Grossman and Balakrishnan, 2005 doi: 10.1145/1054972.1055012
Tovi Grossman and Ravin Balakrishnan. 2005. The Bubble Cursor: Enhancing Target Acquisition by Dynamic
Resizing of the Cursor’s Activation Area. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’05. ACM, pp. 281–290.

Gulwani, 2011 doi: 10.1145/1925844.1926423
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. ACM SIG-
PLAN Notices 46.1, pp. 317–330.

Guo, 2013 doi: 10.1145/2445196.2445368
Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.
Proceeding of the 44th ACM Technical Symposium on Computer Science Education. SIGCSE ’13. ACM, pp. 579–584.

186

https://www.doi.org/10.1145/3586183.3606817
https://www.doi.org/10.1145/142386.1055544
https://www.doi.org/10.1145/3607822.3614521
https://www.doi.org/10.1006/jvlc.1996.0009
https://www.doi.org/10.1145/3586183.3606767
https://www.doi.org/10.1145/1054972.1055012
https://www.doi.org/10.1145/1925844.1926423
https://www.doi.org/10.1145/2445196.2445368

187

Guo, 2018 doi: 10.1145/3173574.3173970
Philip J. Guo. 2018. Non-Native English Speakers Learning Computer Programming: Barriers, Desires, and Design
Opportunities. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. ACM,
pp. 1–14.

Han et al., 2020 doi: 10.1145/3313831.3376804
Han L. Han, Miguel A. Renom, Wendy E. Mackay, and Michel Beaudouin-Lafon. 2020. Textlets: Supporting
Constraints and Consistency in Text Documents. Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI ’20. ACM, pp. 1–13.

Hanna, 2002 doi: 10.1145/581478.581493
Keith Hanna. 2002. Interactive Visual Functional Programming. Proceedings of the 7th International Conference
on Functional Programming - ICFP ’02. ACM, pp. 145–156.

Hansen, 1972 doi: 10.1145/1479064.1479159
Wilfred J. Hansen. 1972. User Engineering Principles for Interactive Systems. Proceedings of the November 16-18,
1971, Fall Joint Computer Conference. AFIPS ’71 (Fall). ACM, pp. 523–532.

Hao and Glassman, 2020 doi: 10.4230/OASIcs.PLATEAU.2019.1
Rebecca L. Hao and Elena L. Glassman. 2020. Approaching Polyglot Programming: What Can We Learn from
Bilingualism Studies? 10th Workshop on Evaluation and Usability of Programming Languages and Tools. Vol. 76.
PLATEAU 2019, pp. 1–7.

Hart, 2006 doi: 10.1177/154193120605000909
Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 50.9, pp. 904–908.

Hartmann et al., 2008 doi: 10.1145/1449715.1449732
Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer. 2008. Design as Exploration:
Creating Interface Alternatives through Parallel Authoring and Runtime Tuning. Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology. UIST ’08. ACM, pp. 91–100.

Hayatpur et al., 2023 doi: 10.1145/3544548.3581390
Devamardeep Hayatpur, Daniel Wigdor, and Haijun Xia. 2023. CrossCode: Multi-Level Visualization of Program
Execution. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. ACM,
pp. 1–13.

Head et al., 2021 doi: 10.1145/3411764.3445648
Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S. Weld, and Marti A. Hearst.
2021. Augmenting Scientific Papers with Just-in-Time, Position-Sensitive Definitions of Terms and Symbols.
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, pp. 1–18.

Hempel and Chugh, 2020 doi: 10.1109/VL/HCC50065.2020.9127256
Brian Hempel and Ravi Chugh. 2020. Tiny Structure Editors for Low, Low Prices! (Generating GUIs from toString
Functions). 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 1–5.

187

https://www.doi.org/10.1145/3173574.3173970
https://www.doi.org/10.1145/3313831.3376804
https://www.doi.org/10.1145/581478.581493
https://www.doi.org/10.1145/1479064.1479159
https://www.doi.org/10.4230/OASIcs.PLATEAU.2019.1
https://www.doi.org/10.1177/154193120605000909
https://www.doi.org/10.1145/1449715.1449732
https://www.doi.org/10.1145/3544548.3581390
https://www.doi.org/10.1145/3411764.3445648
https://www.doi.org/10.1109/VL/HCC50065.2020.9127256

188

Hempel and Chugh, 2022 doi: 10.4230/LIPIcs.ECOOP.2022.16
Brian Hempel and Ravi Chugh. 2022. Maniposynth: Bimodal Tangible Functional Programming. 36th European
Conference on Object-Oriented Programming (ECOOP 2022). Vol. 222, 16:1–16:29.

Hempel et al., 2019 doi: 10.1145/3332165.3347925
Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG.
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. UIST ’19. ACM,
pp. 281–292.

Hempel et al., 2018 doi: 10.1145/3180155.3180165
Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Lightweight User Interface for Structured
Editing. Proceedings of the 40th International Conference on Software Engineering - ICSE ’18. ACM, pp. 654–664.

Hermans, 2020 doi: 10.1145/3372782.3406262
Felienne Hermans. 2020. Hedy: A Gradual Language for Programming Education. Proceedings of the 2020 ACM
Conference on International Computing Education Research. ICER ’20. ACM, pp. 259–270.

Hoffswell et al., 2018 doi: 10.1145/3173574.3174106
Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code with In Situ Visualizations to Aid
Program Understanding. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI
’18. ACM, pp. 1–12.

Homer and Noble, 2017 doi: 10.18293/VLSS2017-007
Michael Homer and James Noble. 2017. Lessons in Combining Block-Based and Textual Programming. Journal
of Visual Languages and Sentient Systems 3.1, pp. 22–39.

Horowitz and Heer, 2023 doi: 10.48550/arXiv.2303.06777
Joshua Horowitz and Jeffrey Heer. 2023. Live, Rich, and Composable: Qualities for Programming Beyond Static
Text. 13th Annual Workshop at the Intersection of PL and HCI. PLATEAU 2023. arXiv.

Hui and Kromberg, 2020 doi: 10.1145/3386319
Roger K. W. Hui and Morten J. Kromberg. 2020. APL since 1978. Proceedings of the ACM on Programming Lan-
guages 4.HOPL, 69:1–69:108.

Ivanova et al., 2020 doi: 10.7554/eLife.58906
Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, Hope H Kean, Riva Dhamala, Una-May O’Reilly, Marina U
Bers, and Evelina Fedorenko. 2020. Comprehension of Computer Code Relies Primarily on Domain-General
Executive Brain Regions. eLife 9, pp. 1–24.

Jabi, 2013 isbn: 978-1-78067-314-1
Wassim Jabi. 2013. Parametric Design for Architecture. Laurence King Publishing.

Jablonski and Hou, 2007 doi: 10.1145/1328279.1328283
Patricia Jablonski and Daqing Hou. 2007. CReN: A Tool for Tracking Copy-and-Paste Code Clones and Renaming
Identifiers Consistently in the IDE. Proceedings of the 2007 OOPSLAWorkshop on Eclipse Technology eXchange -
Eclipse’07. ACM, pp. 16–20.

188

https://www.doi.org/10.4230/LIPIcs.ECOOP.2022.16
https://www.doi.org/10.1145/3332165.3347925
https://www.doi.org/10.1145/3180155.3180165
https://www.doi.org/10.1145/3372782.3406262
https://www.doi.org/10.1145/3173574.3174106
https://www.doi.org/10.18293/VLSS2017-007
https://www.doi.org/10.48550/arXiv.2303.06777
https://www.doi.org/10.1145/3386319
https://www.doi.org/10.7554/eLife.58906
https://www.doi.org/10.1145/1328279.1328283

189

Jacobs et al., 2018 doi: 10.1145/3173574.3174164
Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending Manual Drawing Practices
with Artist-Centric Programming Tools. Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. CHI ’18. ACM, pp. 1–13.

Jakobson, 1960
Roman Jakobson. 1960. Linguistics and Poetics. Style in Language. MIT Press, pp. 350–377.

Jakubovic et al., 2023 doi: 10.22152/programming-journal.org/2023/7/13
Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimensions of Programming Systems.
The Art, Science, and Engineering of Programming 7.3, pp. 1–59.

Jiang et al., 2023 doi: 10.1145/3544548.3581403
Peiling Jiang, Fuling Sun, and Haijun Xia. 2023. Log-It: Supporting Programming with Interactive, Contextual,
Structured, and Visual Logs. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
CHI ’23. ACM, pp. 1–16.

Joharizadeh et al., 2020 doi: 10.1145/3334480.3382806
Nima Joharizadeh, Advait Sarkar, Andrew D. Gordon, and Jack Williams. 2020. Gridlets: Reusing Spreadsheet
Grids. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. CHI EA ’20.
ACM, pp. 1–7.

Johnson and Bui, 2015 doi: 10.1109/BLOCKS.2015.7369007
Chris Johnson and Peter Bui. 2015. Blocks in, Blocks out: A Language for 3D Models. 2015 IEEE Blocks and Beyond
Workshop (Blocks and Beyond), pp. 77–82.

Johnson, 2020 doi: 10.1080/03071847.2020.1752026
James Johnson. 2020. Artificial Intelligence, Drone Swarming and Escalation Risks in Future Warfare. The RUSI
Journal 165.2, pp. 26–36.

Kang and Guo, 2017 doi: 10.1145/3126594.3126632
Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live Programming Environment with
Always-On Run-Time Value Visualizations. Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. UIST ’17. ACM, pp. 737–745.

Kell, 2013 doi: 10.1145/2525528.2525534
Stephen Kell. 2013. The Operating System: Should There Be One? Proceedings of the Seventh Workshop on Pro-
gramming Languages and Operating Systems. PLOS ’13. ACM, pp. 1–7.

Kery et al., 2020 doi: 10.1145/3379337.3415842
Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wongsuphasawat, and Kayur Patel. 2020.
Mage: Fluid Moves Between Code and Graphical Work in Computational Notebooks. Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. UIST ’20. ACM, pp. 140–151.

Klokmose et al., 2015 doi: 10.1145/2807442.2807446
Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and Michel Beaudouin-Lafon. 2015.
Webstrates: Shareable Dynamic Media. Proceedings of the 28th Annual ACM Symposium on User Interface Software
& Technology. UIST ’15. ACM, pp. 280–290.

189

https://www.doi.org/10.1145/3173574.3174164
https://www.doi.org/10.22152/programming-journal.org/2023/7/13
https://www.doi.org/10.1145/3544548.3581403
https://www.doi.org/10.1145/3334480.3382806
https://www.doi.org/10.1109/BLOCKS.2015.7369007
https://www.doi.org/10.1080/03071847.2020.1752026
https://www.doi.org/10.1145/3126594.3126632
https://www.doi.org/10.1145/2525528.2525534
https://www.doi.org/10.1145/3379337.3415842
https://www.doi.org/10.1145/2807442.2807446

190

Klokmose et al., 2019 doi: 10.1145/3332165.3347912
Clemens N. Klokmose, Christian Remy, Janus B. Kristensen, Rolf Bagge, Michel Beaudouin-Lafon, and Wendy
Mackay. 2019. Videostrates: Collaborative, Distributed and Programmable Video Manipulation. Proceedings of
the 32nd Annual ACM Symposium on User Interface Software and Technology. UIST ’19. ACM, pp. 233–247.

Knauff and Nejasmic, 2014 doi: 10.1371/journal.pone.0115069
Markus Knauff and Jelica Nejasmic. 2014. An Efficiency Comparison of Document Preparation Systems Used in
Academic Research and Development. PLOS ONE 9.12, pp. 1–12.

Knuth, 1974 doi: 10.1145/361604.361612
Donald E. Knuth. 1974. Computer Programming as an Art. Communications of the ACM 17.12, pp. 667–673.

Knuth, 1984a doi: 10.1093/comjnl/27.2.97
Donald E. Knuth. 1984. Literate Programming. The Computer Journal 27.2, pp. 97–111.

Knuth, 1984b isbn: 978-0-201-13448-3
Donald E. Knuth. 1984. The TeXbook. Computers & Typesetting. Addison-Wesley.

Ko, 2016 doi: 10.1145/3001878.3001880
Amy J. Ko. 2016. What Is a Programming Language, Really? Proceedings of the 7th International Workshop on
Evaluation and Usability of Programming Languages and Tools. PLATEAU 2016. ACM, pp. 32–33.

Ko and Myers, 2006 doi: 10.1145/1124772.1124831
Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework for Enabling New Tools, Interaction
Techniques and Views in Code Editors. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’06. ACM, pp. 387–396.

Ko and Myers, 2008 doi: 10.1145/1368088.1368130
Amy J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and Answering Why and Why Not Questions
about Program Behavior. Proceedings of the 30th International Conference on Software Engineering. ICSE ’08.
ACM, pp. 301–310.

Kodosky, 2020 doi: 10.1145/3386328
Jeffrey Kodosky. 2020. LabVIEW. Proceedings of the ACM on Programming Languages 4.HOPL, 78:1–78:54.

Kolata, 1982 doi: 10.1126/science.217.4566.1237
Gina Kolata. 1982. How Can Computers Get Common Sense? Science 217.4566, pp. 1237–1238.

Kölling, 2010 doi: 10.1145/1868358.1868361
Michael Kölling. 2010. The Greenfoot Programming Environment. ACM Transactions on Computing Education
10.4, 14:1–14:21.

Kölling et al., 2017 doi: 10.18293/VLSS2017-009
Michael Kölling, Neil Brown, and Amjad Altadmri. 2017. Frame-Based Editing. Journal of Visual Languages and
Sentient Systems 3.1, pp. 40–67.

Kuhn, 1989
D. L. Kuhn. 1989. Selecting and Effectively Using a Computer Aided Software Engineering Tool. Annual Westing-
house Computer Symposium, pp. 1–13.

190

https://www.doi.org/10.1145/3332165.3347912
https://www.doi.org/10.1371/journal.pone.0115069
https://www.doi.org/10.1145/361604.361612
https://www.doi.org/10.1093/comjnl/27.2.97
https://www.doi.org/10.1145/3001878.3001880
https://www.doi.org/10.1145/1124772.1124831
https://www.doi.org/10.1145/1368088.1368130
https://www.doi.org/10.1145/3386328
https://www.doi.org/10.1126/science.217.4566.1237
https://www.doi.org/10.1145/1868358.1868361
https://www.doi.org/10.18293/VLSS2017-009

191

Kurtz, 1978 doi: 10.1145/800025.1198404
Thomas E. Kurtz. 1978. BASIC. History of Programming Languages. ACM, pp. 515–537.

Lafontant, 2022
Louis-Edouard Lafontant. 2022. Gentleman: A Lightweight Web-Based Projectional Editor. M.Sc. Thesis. Montreal
University.

Lamport, 1994 isbn: 978-0-201-52983-8
Leslie Lamport. 1994. LaTeX: A Document Preparation System: User’s Guide and Reference Manual. Addison-
Wesley.

LaToza and Myers, 2011 doi: 10.1109/VLHCC.2011.6070388
Thomas D. LaToza and Brad A. Myers. 2011. Visualizing Call Graphs. 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pp. 117–124.

Laurens, 2007
Jérôme Laurens. 2007. Will TeX Ever Be WYSIWYG or the PDF Synchronization Story. The PracTeX Journal 3.3,
pp. 1–8.

Laurens, 2008
Jérôme Laurens. 2008. Direct and Reverse Synchronization with SyncTeX. TUGBoat 29.3, pp. 365–371.

LeCun et al., 1989 doi: 10.1162/neco.1989.1.4.541
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. 1989. Backpropagation
Applied to Handwritten Zip Code Recognition. Neural Computation 1.4, pp. 541–551.

Lerner, 2020a doi: 10.1145/3379337.3415834
Sorin Lerner. 2020. Focused Live Programming with Loop Seeds. Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. UIST ’20. ACM, pp. 607–613.

Lerner, 2020b doi: 10.1145/3313831.3376494
Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfigurable Visualization for Live Programming. Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20. ACM, pp. 1–7.

Leroy, 2020
Xavier Leroy. 2020. Software, between Mind and Matter. Inaugural Lecture at Collège de France. Collège de
France.

Leroy et al., 2016
Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand.
2016. CompCert — A Formally Verified Optimizing Compiler. ERTS 2016: Embedded Real Time Software and
Systems, 8th European Congress, pp. 1–8.

Li et al., 2021 doi: 10.1145/3411764.3445682
Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From Visual Artists About Software
Development. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI ’21. ACM,
pp. 1–14.

191

https://www.doi.org/10.1145/800025.1198404
https://www.doi.org/10.1109/VLHCC.2011.6070388
https://www.doi.org/10.1162/neco.1989.1.4.541
https://www.doi.org/10.1145/3379337.3415834
https://www.doi.org/10.1145/3313831.3376494
https://www.doi.org/10.1145/3411764.3445682

192

Li et al., 2022 doi: 10.1145/3550469.3555395
Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold. 2022. HeartDown: Document Processor for Executable
Linear Algebra Papers. SIGGRAPH Asia 2022 Conference Papers. SA ’22. ACM, pp. 1–8.

Lieber et al., 2014 doi: 10.1145/2556288.2557409
Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing Misconceptions about Code with Always-on
Programming Visualizations. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’14. ACM, pp. 2481–2490.

Lieberman, 2001 isbn: 978-1-55860-688-3
Henry Lieberman. 2001. Your Wish Is My Command: Programming by Example. Morgan Kaufmann Publishers.

Lilis and Savidis, 2019 doi: 10.1145/3354584
Yannis Lilis and Anthony Savidis. 2019. A Survey of Metaprogramming Languages. ACM Computing Surveys 52.6,
113:1–113:39.

Lin et al., 2021 doi: 10.1145/3472749.3474804
Richard Lin, Rohit Ramesh, Nikhil Jain, Josephine Koe, Ryan Nuqui, Prabal Dutta, and Bjoern Hartmann. 2021.
Weaving Schematics and Code: Interactive Visual Editing for Hardware Description Languages. The 34th Annual
ACM Symposium on User Interface Software and Technology. UIST ’21. ACM, pp. 1039–1049.

Litt and Jackson, 2020 doi: 10.1145/3397537.3397541
Geoffrey Litt and Daniel Jackson. 2020. Wildcard: Spreadsheet-Driven Customization of Web Applications.
Companion Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming.
Programming ’20. ACM, pp. 126–135.

Liu et al., 2020 doi: 10.7554/eLife.59340
Yun-Fei Liu, Judy Kim, Colin Wilson, and Marina Bedny. 2020. Computer Code Comprehension Shares Neural
Resources with Formal Logical Inference in the Fronto-Parietal Network. eLife 9, pp. 1–22.

Long and Rinard, 2016 doi: 10.1145/2837614.2837617
Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Correct Code. Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’16. ACM,
pp. 298–312.

Mangano et al., 2015 doi: 10.1109/TSE.2014.2362924
Nicolas Mangano, Thomas D. LaToza, Marian Petre, and Andre van der Hoek. 2015. How Software Designers
Interact with Sketches at the Whiteboard. IEEE Transactions on Software Engineering 41.2, pp. 135–156.

Martin et al., 2022 doi: 10.1145/3524610.3527885
Alice Martin, Mathieu Magnaudet, and Stéphane Conversy. 2022. Causette: User-Controlled Rearrangement of
Causal Constructs in a Code Editor. Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension. ICPC ’22. ACM, pp. 241–252.

Martin et al., 2023 doi: 10.1007/s11023-023-09624-2
Alice Martin, Mathieu Magnaudet, and Stéphane Conversy. 2023. Computers as Interactive Machines: Can We
Build an Explanatory Abstraction? Minds and Machines 33.1, pp. 83–112.

192

https://www.doi.org/10.1145/3550469.3555395
https://www.doi.org/10.1145/2556288.2557409
https://www.doi.org/10.1145/3354584
https://www.doi.org/10.1145/3472749.3474804
https://www.doi.org/10.1145/3397537.3397541
https://www.doi.org/10.7554/eLife.59340
https://www.doi.org/10.1145/2837614.2837617
https://www.doi.org/10.1109/TSE.2014.2362924
https://www.doi.org/10.1145/3524610.3527885
https://www.doi.org/10.1007/s11023-023-09624-2

193

Masson et al., 2023a doi: 10.1145/3544548.3581091
Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2023. Charagraph: Interactive Generation of
Charts for Realtime Annotation of Data-Rich Paragraphs. Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. CHI ’23. ACM, pp. 1–18.

Masson et al., 2023b doi: 10.1145/3586183.3606762
Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2023. Statslator: Interactive Translation of
NHST and Estimation Statistics Reporting Styles in Scientific Documents. Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology. UIST ’23. ACM, pp. 1–14.

Masson et al., 2020 doi: 10.1145/3313831.3376559
Damien Masson, Sylvain Malacria, Edward Lank, and Géry Casiez. 2020. Chameleon: Bringing Interactivity to
Static Digital Documents. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. CHI
’20. ACM, pp. 1–13.

Mathur et al., 2020 doi: 10.1111/cgf.14046
Aman Mathur, Marcus Pirron, and Damien Zufferey. 2020. Interactive Programming for Parametric CAD. Com-
puter Graphics Forum 39.6, pp. 408–425.

Mayer et al., 2018 doi: 10.1145/3276497
Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Pro-
ceedings of the ACM on Programming Languages 2.OOPSLA, pp. 1–28.

McCarthy et al., 1967 doi: 10.1145/1465482.1465582
John McCarthy, Dow Brian, Gary Feldman, and John Allen. 1967. THOR: A Display Based Time Sharing System.
Proceedings of the April 18-20, 1967, Spring Joint Computer Conference. AFIPS ’67 (Spring). ACM, pp. 623–633.

McCarthy and Silver, 1960
John McCarthy and Roland Silver. 1960. Colossal Typewriter Program. Memorandum to PDP-1 Users. MIT.

McCartney, 2002 doi: 10.1162/014892602320991383
James McCartney. 2002. Rethinking the Computer Music Language: Super Collider. Computer Music Journal
26.4, pp. 61–68.

McGrenere, 1998
Joanna McGrenere. 1998. Learning to Use Complex Computer Technology: The Importance of User Interface Design.
CSRG Technical Report 403. Department of Computer Science, University of Toronto, pp. 1–67.

McGuffin and Fuhrman, 2020 doi: 10.1145/3399715.3399821
Michael J. McGuffin and Christopher P. Fuhrman. 2020. Categories and Completeness of Visual Programming
and Direct Manipulation. Proceedings of the ACM International Conference on Advanced Visual Interfaces - AVI’20.
ACM, pp. 1–8.

McLean, 2011
Alex McLean. 2011. Artist-Programmers and Programming Languages for the Arts. Ph.D. thesis. Department of
Computing, Goldsmiths, University of London.

193

https://www.doi.org/10.1145/3544548.3581091
https://www.doi.org/10.1145/3586183.3606762
https://www.doi.org/10.1145/3313831.3376559
https://www.doi.org/10.1111/cgf.14046
https://www.doi.org/10.1145/3276497
https://www.doi.org/10.1145/1465482.1465582
https://www.doi.org/10.1162/014892602320991383
https://www.doi.org/10.1145/3399715.3399821

194

McLean, 2014 doi: 10.1145/2633638.2633647
Alex McLean. 2014. Making Programming Languages to Dance to: Live Coding with Tidal. Proceedings of the 2nd
ACM SIGPLAN International Workshop on Functional Art, Music, Modeling & Design - FARM ’14. ACM Press,
pp. 63–70.

McLean andWiggins, 2010
Alex McLean and Geraint Wiggins. 2010. Tidal — Pattern Language for the Live Coding of Music. Proceedings of
the 7th Sound and Music Computing Conference, pp. 264–269.

McNutt and Chugh, 2021 doi: 10.1145/3411764.3445356
Andrew McNutt and Ravi Chugh. 2021. Integrated Visualization Editing via Parameterized Declarative Templates.
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI ’21. ACM, pp. 1–14.

McNutt and Chugh, 2023 doi: 10.1109/VL-HCC57772.2023.00015
Andrew McNutt and Ravi Chugh. 2023. Projectional Editors for JSON-Based DSLs. 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 60–70.

Mcnutt et al., 2023 doi: 10.1145/3544548.3580683
Andrew Mcnutt, Anton Outkine, and Ravi Chugh. 2023. A Study of Editor Features in a Creative Coding Class-
room. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. ACM, pp. 1–
15.

Mealin and Murphy-Hill, 2012 doi: 10.1109/VLHCC.2012.6344485
Sean Mealin and Emerson Murphy-Hill. 2012. An Exploratory Study of Blind Software Developers. 2012 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 71–74.

Mellor and Balcer, 2002 isbn: 978-0-201-74804-8
Stephen J. Mellor and Marc J. Balcer. 2002. Executable UML: A Foundation forModel-Driven Architecture. Addison-
Wesley.

Memmott, 2011 doi: 10.1386/jwcp.4.1.93_1
Talan Memmott. 2011. Codework: Phenomenology of an anti-genre. Journal of Writing in Creative Practice 4.1,
pp. 93–105.

Merigoux et al., 2021 doi: 10.1145/3473582
Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko. 2021. Catala: A Programming Language for the Law.
Proceedings of the ACM on Programming Languages 5.ICFP, 77:1–77:29.

Miara et al., 1983 doi: 10.1145/182.358437
Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman. 1983. Program Indentation and
Comprehensibility. Communications of the ACM 26.11, pp. 861–867.

Michael et al., 2019 doi: 10.1109/ASE.2019.00047
Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Francisco Servant. 2019. Regexes Are
Hard: Decision-Making, Difficulties, and Risks in Programming Regular Expressions. 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 415–426.

194

https://www.doi.org/10.1145/2633638.2633647
https://www.doi.org/10.1145/3411764.3445356
https://www.doi.org/10.1109/VL-HCC57772.2023.00015
https://www.doi.org/10.1145/3544548.3580683
https://www.doi.org/10.1109/VLHCC.2012.6344485
https://www.doi.org/10.1386/jwcp.4.1.93_1
https://www.doi.org/10.1145/3473582
https://www.doi.org/10.1145/182.358437
https://www.doi.org/10.1109/ASE.2019.00047

195

Michel and Boubekeur, 2021 doi: 10.1145/3450626.3459823
Élie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse Control of Parametric Shapes. ACM
Transactions on Graphics 40.4, 173:1–173:14.

Miller, 1956 doi: 10.1037/h0043158
George A. Miller. 1956. The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Pro-
cessing Information. Psychological Review 63.2, pp. 81–97.

Miller et al., 1994 doi: 10.1080/1049482940040202
Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. 1994. Evolution of Novice Programming Envi-
ronments: The Structure Editors of Carnegie Mellon University. Interactive Learning Environments 4.2, pp. 140–
158.

Miller and Myers, 2001
Robert C. Miller and Brad A. Myers. 2001. Interactive Simultaneous Editing of Multiple Text Regions. Proceedings
of the General Track: 2001 USENIX Annual Technical Conference. USENIX Association, pp. 161–174.

Minör, 1992 doi: 10.1016/0020-7373(92)90002-3
Sten Minör. 1992. Interacting with Structure-Oriented Editors. International Journal of Man-Machine Studies.
Structure-Based Editors and Environments 37.4, pp. 399–418.

Mogk et al., 2018
Ragnar Mogk, Pascal Weisenburger, Julian Haas, David Richter, Guido Salvaneschi, and Mira Mezini. 2018. From
Debugging Towards Live Tuning of Reactive Applications. SPLASH ’18: Conference on Systems, Programming,
Languages, and Applications: Software for Humanity. LIVE’18, pp. 1–6.

Monig et al., 2015 doi: 10.1109/BLOCKS.2015.7369001
Jens Monig, Yoshiki Ohshima, and John Maloney. 2015. Blocks at Your Fingertips: Blurring the Line between
Blocks and Text in GP. 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond). IEEE, pp. 51–53.

Moody, 2009a doi: 10.1109/TSE.2009.67
Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in
Software Engineering. IEEE Transactions on Software Engineering 35.6, pp. 756–779.

Moody, 2009b doi: 10.1109/VLHCC.2009.5295275
Daniel Moody. 2009. Theory Development in Visual Language Research: Beyond the Cognitive Dimensions of
Notations. 2009 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 151–154.

Moon et al., 2022 doi: 10.1145/3546196.3550164
David Moon, Andrew Blinn, and Cyrus Omar. 2022. Tylr: A Tiny Tile-Based Structure Editor. Proceedings of the
7th ACM SIGPLAN International Workshop on Type-Driven Development. TyDe 2022. ACM, pp. 28–37.

Moon et al., 2023 doi: 10.1109/VL-HCC57772.2023.00016
David Moon, Andrew Blinn, and Cyrus Omar. 2023. Gradual Structure Editing with Obligations. 2023 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 71–81.

195

https://www.doi.org/10.1145/3450626.3459823
https://www.doi.org/10.1037/h0043158
https://www.doi.org/10.1080/1049482940040202
https://www.doi.org/10.1016/0020-7373(92)90002-3
https://www.doi.org/10.1109/BLOCKS.2015.7369001
https://www.doi.org/10.1109/TSE.2009.67
https://www.doi.org/10.1109/VLHCC.2009.5295275
https://www.doi.org/10.1145/3546196.3550164
https://www.doi.org/10.1109/VL-HCC57772.2023.00016

196

Morales et al., 2019 doi: 10.1109/ACCESS.2019.2920124
Jenny Morales, Cristian Rusu, Federico Botella, and Daniela Quinones. 2019. Programmer eXperience: A System-
atic Literature Review. IEEE Access 7, pp. 71079–71094.

Mørch, 1997 doi: 10.7551/mitpress/1966.003.0004
Anders Mørch. 1997. Three Levels of End-User Tailoring: Customization, Integration, and Extension. Computers
and Design in Context. The MIT Press.

Morris, 1938 isbn: 978-0-226-57577-3
Charles William Morris. 1938. Foundations of the Theory of Signs. International Encyclopedia of Unified Science.
Chicago University Press, pp. 1–59.

Moskal et al., 2017 doi: 10.1145/3105726.3106170
Adon Christian Michael Moskal, Joy Gasson, and Dale Parsons. 2017. The ’Art’ of Programming: Exploring Student
Conceptions of Programming through the Use of Drawing Methodology. Proceedings of the 2017 ACM Conference
on International Computing Education Research. ACM, pp. 39–46.

Mossienko, 2004
Maxim Mossienko. 2004. Structural Search and Replace: What, Why, and How-To. OnBoard Magazine.

Murphy-Hill and Black, 2010 doi: 10.1145/1879211.1879216
Emerson Murphy-Hill and Andrew P. Black. 2010. An Interactive Ambient Visualization for Code Smells. Pro-
ceedings of the 5th International Symposium on Software Visualization - SOFTVIS ’10. ACM.

Myers et al., 2000 doi: 10.1145/344949.344959
Brad Myers, Scott E. Hudson, and Randy Pausch. 2000. Past, Present, and Future of User Interface Software Tools.
ACM Transactions on Computer-Human Interaction 7.1, pp. 3–28.

Myers, 1983 doi: 10.1145/964967.801140
Brad A. Myers. 1983. INCENSE: A System for Displaying Data Structures. ACM SIGGRAPH Computer Graphics
17.3, pp. 115–125.

Myers, 1990 doi: 10.1016/S1045-926X(05)80036-9
Brad A. Myers. 1990. Taxonomies of Visual Programming and Program Visualization. Journal of Visual Languages
and Computing 1.1, pp. 97–123.

Myers et al., 2004 doi: 10.1145/1015864.1015888
Brad A. Myers, John F. Pane, and Amy J. Ko. 2004. Natural Programming Languages and Environments. Commu-
nications of the ACM 47.9, pp. 47–52.

Nadin, 1988 doi: 10.1515/semi.1988.69.3-4.269
Mihai Nadin. 1988. Interface Design: A Semiotic Paradigm. 69.3-4, pp. 269–302.

Naik et al., 2021 doi: 10.1145/3472749.3474737
Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, and Mukund Raghothaman.
2021. Sporq: An Interactive Environment for Exploring Code Using Query-by-Example. The 34th Annual ACM
Symposium on User Interface Software and Technology. UIST ’21. ACM, pp. 84–99.

196

https://www.doi.org/10.1109/ACCESS.2019.2920124
https://www.doi.org/10.7551/mitpress/1966.003.0004
https://www.doi.org/10.1145/3105726.3106170
https://www.doi.org/10.1145/1879211.1879216
https://www.doi.org/10.1145/344949.344959
https://www.doi.org/10.1145/964967.801140
https://www.doi.org/10.1016/S1045-926X(05)80036-9
https://www.doi.org/10.1145/1015864.1015888
https://www.doi.org/10.1515/semi.1988.69.3-4.269
https://www.doi.org/10.1145/3472749.3474737

197

Neff and Stark, 2002 doi: 10.7916/D8G44X47
Gina Neff and David C. Stark. 2002. Permanently Beta: Responsive Organization in the Internet Era. Institute for
Social and Economic Research and Policy Working Papers.

Newell, 1994 isbn: 978-0-674-92101-6
Allen Newell. 1994. Unified Theories of Cognition. Harvard University Press.

Newell and Simon, 1972 isbn: 978-0-13-445403-0
Allen Newell and Herbert A. Simon. 1972. Human Problem Solving. Prentice-Hall.

Ni et al., 2021 doi: 10.1145/3472749.3474748
Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. reCode : A Lightweight Find-and-
Replace Interaction in the IDE for Transforming Code by Example. The 34th Annual ACM Symposium on User
Interface Software and Technology. UIST ’21. ACM, pp. 258–269.

Nielsen, 1986 doi: 10.1016/S0020-7373(86)80028-1
Jakob Nielsen. 1986. A Virtual Protocol Model for Computer-Human Interaction. International Journal of Man-
Machine Studies 24.3, pp. 301–312.

Nipkow et al., 2002 doi: 10.1007/3-540-45949-9
Tobias Nipkow, Markus Wenzel, Lawrence C. Paulson, Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen,
eds. 2002. Isabelle/HOL. Vol. 2283. Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Noble and Biddle, 2002
James Noble and Robert Biddle. 2002. Notes on Postmodern Programming. 17th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’02).

Norman, 2002 isbn: 978-0-465-06710-7
Donald A. Norman. 2002. The Design of Everyday Things. Basic Books.

Olsen, 2007 doi: 10.1145/1294211.1294256
Dan R. Olsen. 2007. Evaluating User Interface Systems Research. Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology. UIST ’07. ACM, pp. 251–258.

Omar et al., 2021 doi: 10.1145/3453483.3454059
Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh. 2021. Filling Typed Holes
with Live GUIs. Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. ACM, pp. 511–525.

Omar et al., 2017 doi: 10.1145/3009837.3009900
Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017. Hazelnut: A Bidirec-
tionally Typed Structure Editor Calculus. Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages - POPL 2017. ACM Press, pp. 86–99.

Omar et al., 2012 doi: 10.1109/ICSE.2012.6227133
Cyrus Omar, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. 2012. Active Code Completion. 2012 34th
International Conference on Software Engineering (ICSE). IEEE, pp. 859–869.

197

https://www.doi.org/10.7916/D8G44X47
https://www.doi.org/10.1145/3472749.3474748
https://www.doi.org/10.1016/S0020-7373(86)80028-1
https://www.doi.org/10.1007/3-540-45949-9
https://www.doi.org/10.1145/1294211.1294256
https://www.doi.org/10.1145/3453483.3454059
https://www.doi.org/10.1145/3009837.3009900
https://www.doi.org/10.1109/ICSE.2012.6227133

198

Oney and Brandt, 2012 doi: 10.1145/2207676.2208664
Stephen Oney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation and Example Code in the
Editor. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’12. ACM, pp. 2697–
2706.

Orwell, 1949
George Orwell. 1949. Nineteen Eighty-Four. Secker & Warburg.

Papert, 1982 isbn: 978-0-465-04627-0
Seymour Papert. 1982. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.

Peirce, 1976
Charles S. Peirce. 1976. The New Elements of Mathematics. Vol. 4 — Mathematical philosophy. Mouton Publishers.

Perera et al., 2022 doi: 10.1145/3498668
Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked Visualisations via Galois Dependencies.
Proceedings of the ACM on Programming Languages 6.POPL, pp. 1–29.

Perkel, 2023 doi: 10.1038/d41586-023-01833-0
Jeffrey M. Perkel. 2023. Six Tips for Better Coding with ChatGPT. Nature 618.7964, pp. 422–423.

Petricek, 2016
Tomas Petricek. 2016. Programming Language Theory: Thinking the Unthinkable. Proceedings of the 27th Annual
Workshop of the Psychology of Programming Interest Group. PPIG 2016, pp. 1–5.

Petricek, 2020 doi: 10.22152/programming-journal.org/2020/4/8
Tomas Petricek. 2020. Foundations of a Live Data Exploration Environment. The Art, Science, and Engineering of
Programming 4.3, pp. 1–37.

Piner, 1972
Stephen D. Piner. 1972. Expensive Typewriter. Tech. rep. PDP-22. MIT.

Pit-Claudel, 2020 doi: 10/ghs5sn
Clément Pit-Claudel. 2020. Untangling Mechanized Proofs. Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering. ACM, pp. 155–174.

Psallidas andWu, 2018 doi: 10.1145/3209900.3209904
Fotis Psallidas and Eugene Wu. 2018. Provenance for Interactive Visualizations. Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. HILDA’18. ACM, pp. 1–8.

Puckette, 2002 doi: 10.1162/014892602320991356
Miller Puckette. 2002. Max at Seventeen. Computer Music Journal 26.4, pp. 31–43.

Rädle et al., 2017 doi: 10.1145/3126594.3126642
Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and Clemens N. Klokmose. 2017. Codestrates:
Literate Computing with Webstrates. Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology. UIST ’17. ACM, pp. 715–725.

198

https://www.doi.org/10.1145/2207676.2208664
https://www.doi.org/10.1145/3498668
https://www.doi.org/10.1038/d41586-023-01833-0
https://www.doi.org/10.22152/programming-journal.org/2020/4/8
https://www.doi.org/10/ghs5sn
https://www.doi.org/10.1145/3209900.3209904
https://www.doi.org/10.1162/014892602320991356
https://www.doi.org/10.1145/3126594.3126642

199

Rambally, 1986 doi: 10.1145/5600.5702
Gerard K. Rambally. 1986. The Influence of Color on Program Readability and Comprehensibility. Proceedings of
the Seventeenth SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’86. ACM, pp. 173–181.

Rauch et al., 2019 doi: 10.22152/programming-journal.org/2019/3/9
David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld. 2019. Babylonian-Style Program-
ming: Design and Implementation of an Integration of Live Examples into General-Purpose Source Code. The
Art, Science, and Engineering of Programming 3.3, pp. 1–39.

Reid, 1980 doi: 10.1145/567446.567449
Brian K. Reid. 1980. A High-Level Approach to Computer Document Formatting. Proceedings of the 7th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’80. ACM, pp. 24–31.

Rein et al., 2018 doi: 10.22152/programming-journal.org/2019/3/1
Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. 2018. Exploratory and Live, Pro-
gramming and Coding: A Literature Study Comparing Perspectives on Liveness. TheArt, Science, and Engineering
of Programming 3.1, pp. 1–33.

Reis et al., 2021 doi: 10.1145/3411763.3443455
Paulo Reis, John D Lees-Miller, and Sven Laqua. 2021. Merging SaaS Products In A User-Centered Way — A
Case Study of Overleaf and ShareLaTeX. Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems. ACM, pp. 1–8.

Renom et al., 2022 doi: 10.1145/3491102.3501877
Miguel A. Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2022. Exploring Technical Reasoning in
Digital Tool Use. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI ’22. ACM,
pp. 1–17.

Renom et al., 2023 doi: 10.1145/3544548.3581246
Miguel A. Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2023. Interaction Knowledge: Understand-
ing the ‘Mechanics’ of Digital Tools. Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. CHI ’23. ACM, pp. 1–14.

Resnick et al., 2009 doi: 10.1145/1592761.1592779
Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan,
Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: Programming for
All. Communications of the ACM 52.11, pp. 60–67.

Resnick et al., 2005
Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch, and Mike Eisenberg. 2005.
Design Principles for Tools to Support Creative Thinking. NSF Workshop Report on Creativity Support Tools.

Rickless, 2020
Samuel Rickless. 2020. Plato’s Parmenides. The Stanford Encyclopedia of Philosophy. Spring 2020. Metaphysics
Research Lab, Stanford University.

Roberts et al., 2015
Charles Roberts, Matthew Wright, and JoAnn Kuchera-Morin. 2015. Beyond Editing: Extended Interaction with

199

https://www.doi.org/10.1145/5600.5702
https://www.doi.org/10.22152/programming-journal.org/2019/3/9
https://www.doi.org/10.1145/567446.567449
https://www.doi.org/10.22152/programming-journal.org/2019/3/1
https://www.doi.org/10.1145/3411763.3443455
https://www.doi.org/10.1145/3491102.3501877
https://www.doi.org/10.1145/3544548.3581246
https://www.doi.org/10.1145/1592761.1592779

200

Textual Code Fragments. Proceedings of the International Conference on New Interfaces for Musical Expression.
NIME 2015, pp. 126–131.

Roberts and Kuchera-Morin, 2012
Charlie Roberts and JoAnn Kuchera-Morin. 2012. Gibber: Live Coding Audio in the Browser. Non-Cochlear
Sound: Proceedings of the 38th International Computer Music Conference. ICMC 2012. Michigan Publishing,
pp. 64–69.

Rock and Palmer, 1990 doi: 10.1038/scientificamerican1290-84
Irvin Rock and Stephen Palmer. 1990. The Legacy of Gestalt Psychology. Scientific American 263.6, pp. 84–91.

Romat et al., 2019 doi: 10.1145/3332165.3347934
Hugo Romat, Emmanuel Pietriga, Nathalie Henry-Riche, Ken Hinckley, and Caroline Appert. 2019. SpaceInk:
Making Space for In-Context Annotations. Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology. UIST ’19. ACM, pp. 871–882.

Rorty, 2007 isbn: 978-0-521-69835-1
Richard Rorty. 2007. Philosophy as Cultural Politics: Volume 4: Philosophical Papers. Cambridge University Press.

Sarkar et al., 2022 doi: 10.1109/VL/HCC53370.2022.9833131
Advait Sarkar, Sruti Srinivasa Ragavan, Jack Williams, and Andrew D. Gordon. 2022. End-User Encounters with
Lambda Abstraction in Spreadsheets: Apollo’s Bow or Achilles’ Heel? 2022 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pp. 1–11.

Satyanarayan et al., 2017 doi: 10.1109/TVCG.2016.2599030
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A Grammar of
Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics 23.1, pp. 341–350.

Satyanarayan et al., 2016 doi: 10.1109/TVCG.2015.2467091
Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Reactive Vega: A Streaming Dataflow
Architecture for Declarative Interactive Visualization. IEEE Transactions on Visualization and Computer Graphics
22.1, pp. 659–668.

Saussure, 1916
Ferdinand de Saussure. 1916. Cours de Linguistique Générale. Payot.

Scholtz andWiedenbeck, 2009 doi: 10.1080/10447319009525970
Jean Scholtz and Susan Wiedenbeck. 2009. Learning Second and Subsequent Programming Languages: A Problem
of Transfer. International Journal of Human-Computer Interaction, pp. 51–72.

Schreiber et al., 2017
Robin Schreiber, Robert Krahn, Daniel H. H. Ingalls, and Robert Hirschfeld. 2017. Transmorphic: Mapping direct
manipulation to source code transformations. Tech. rep. 110. Hasso Plattner Institute, University of Potsdam.

Schroeder and Saltzer, 1972 doi: 10.1145/361268.361275
Michael D. Schroeder and Jerome H. Saltzer. 1972. A Hardware Architecture for Implementing Protection Rings.
Communications of the ACM 15.3, pp. 157–170.

200

https://www.doi.org/10.1038/scientificamerican1290-84
https://www.doi.org/10.1145/3332165.3347934
https://www.doi.org/10.1109/VL/HCC53370.2022.9833131
https://www.doi.org/10.1109/TVCG.2016.2599030
https://www.doi.org/10.1109/TVCG.2015.2467091
https://www.doi.org/10.1080/10447319009525970
https://www.doi.org/10.1145/361268.361275

201

Shaw, 2022 doi: 10.1145/3480947
Mary Shaw. 2022. Myths and Mythconceptions: What Does It Mean to Be a Programming Language, Anyhow?
Proceedings of the ACM on Programming Languages 4.HOPL, pp. 1–44.

Shieber, 1984 doi: 10.3115/980491.980566
Stuart M. Shieber. 1984. The Design of a Computer Language for Linguistic Information. Proceedings of the 10th
International Conference on Computational Linguistics and 22nd Annual Meeting on Association for Computational
Linguistics. ACL ’84/COLING ’84. ACM, pp. 362–366.

Shneiderman, 1983 doi: 10.1109/MC.1983.1654471
Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16.8, pp. 57–69.

Shneiderman and Mayer, 1979 doi: 10.1007/BF00977789
Ben Shneiderman and Richard Mayer. 1979. Syntactic/Semantic Interactions in Programmer Behavior: A Model
and Experimental Results. International Journal of Computer & Information Sciences 8.3, pp. 219–238.

Shrestha et al., 2018 doi: 10.1109/VLHCC.2018.8506508
Nischal Shrestha, Titus Barik, and Chris Parnin. 2018. It’s Like Python But: Towards Supporting Transfer of
Programming Language Knowledge. 2018 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, pp. 177–185.

Shrestha et al., 2020 doi: 10.1145/3377811.3380352
Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We Go Again: Why Is It Difficult
for Developers to Learn Another Programming Language? Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ICSE ’20. ACM, pp. 691–701.

Sime et al., 1973 doi: 10.1016/S0020-7373(73)80011-2
Max E. Sime, Thomas R. G. Green, and D. J. Guest. 1973. Psychological Evaluation of Two Conditional Construc-
tions Used in Computer Languages. International Journal of Man-Machine Studies 5.1, pp. 105–113.

Simonyi, 1995
Charles Simonyi. 1995. The Death Of Computer Languages, The Birth of Intentional Programming. Tech. rep. MSR-
TR-95-52. Microsoft Research.

Simonyi et al., 2006 doi: 10.1145/1167473.1167511
Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. Intentional Software. Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications. OOPSLA
’06. ACM, pp. 451–464.

Solmi, 2005
Riccardo Solmi. 2005. Whole Platform. Ph.D. thesis. University of Bologna.

Sulír et al., 2018 doi: 10.1016/j.jvlc.2018.10.001
Matúš Sulír, Michaela Bačíková, Sergej Chodarev, and Jaroslav Porubän. 2018. Visual Augmentation of Source
Code Editors: A Systematic Mapping Study. Journal of Visual Languages & Computing 49, pp. 46–59.

Sundermeyer et al., 2015 doi: 10.1109/TASLP.2015.2400218
Martin Sundermeyer, Hermann Ney, and Ralf Schlüter. 2015. From Feedforward to Recurrent LSTM Neural

201

https://www.doi.org/10.1145/3480947
https://www.doi.org/10.3115/980491.980566
https://www.doi.org/10.1109/MC.1983.1654471
https://www.doi.org/10.1007/BF00977789
https://www.doi.org/10.1109/VLHCC.2018.8506508
https://www.doi.org/10.1145/3377811.3380352
https://www.doi.org/10.1016/S0020-7373(73)80011-2
https://www.doi.org/10.1145/1167473.1167511
https://www.doi.org/10.1016/j.jvlc.2018.10.001
https://www.doi.org/10.1109/TASLP.2015.2400218

202

Networks for Language Modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23.3,
pp. 517–529.

Swamy et al., 2016 doi: 10.1145/2837614.2837655
Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan
Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago
Zanella-Béguelin. 2016. Dependent Types and Multi-Monadic Effects in F*. Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’16. ACM, pp. 256–270.

Tanaka-Ishii, 2006 doi: 10.1515/SEM.2006.006
Kumiko Tanaka-Ishii. 2006. Dyadic versus Triadic Sign Models in Functional and Object-Oriented Computer
Programming Paradigms. Semiotica 2006.158, pp. 213–231.

Taniguchi and Masuhara, 2022 doi: 10.1145/3532512.3535225
Rikito Taniguchi and Hidehiko Masuhara. 2022. CodeMap: A Graphical Note-Taking Tool Cooperating with an
Integrated Development Environment. Companion Proceedings of the 6th International Conference on the Art,
Science, and Engineering of Programming. Programming ’22. ACM, pp. 54–59.

Taniguchi et al., 2022 doi: 10.3390/su14138084
Yuta Taniguchi, Tsubasa Minematsu, Fumiya Okubo, and Atsushi Shimada. 2022. Visualizing Source-Code Evo-
lution for Understanding Class-Wide Programming Processes. Sustainability 14.13, pp. 1–17.

Tanimoto, 1990 doi: 10.1016/S1045-926X(05)80012-6
Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing. Journal of Visual Languages & Com-
puting 1.2, pp. 127–139.

Tanimoto, 2013 doi: 10.1109/LIVE.2013.6617346
Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live Programming. 2013 1st International Workshop
on Live Programming (LIVE). IEEE, pp. 31–34.

Tanner et al., 2019 doi: 10.1145/3290605.3300758
Kesler Tanner, Naomi Johnson, and James A. Landay. 2019. Poirot: A Web Inspector for Designers. Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. ACM, pp. 1–12.

Tchernavskij, 2019
Philip Tchernavskij. 2019. Designing and Programming Malleable Software. Ph.D. thesis. Université Paris-Saclay.

Teitelbaum and Reps, 1981 doi: 10.1145/358746.358755
Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A Syntax-Directed Programming
Environment. Communications of the ACM 24.9, pp. 563–573.

Tiazzoldi, 2016
Caterina Tiazzoldi. 2016. Combinatorial Architecture Methods for the Creation of Ambiance in Public Space.
Ambiances, Tomorrow. Proceedings of 3rd International Congress on Ambiances. Vol. 2. International Network
Ambiances, pp. 865–872.

202

https://www.doi.org/10.1145/2837614.2837655
https://www.doi.org/10.1515/SEM.2006.006
https://www.doi.org/10.1145/3532512.3535225
https://www.doi.org/10.3390/su14138084
https://www.doi.org/10.1016/S1045-926X(05)80012-6
https://www.doi.org/10.1109/LIVE.2013.6617346
https://www.doi.org/10.1145/3290605.3300758
https://www.doi.org/10.1145/358746.358755

203

Toomim et al., 2004 doi: 10.1109/VLHCC.2004.35
Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Duplicated Code with Linked Editing.
2004 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 173–180.

Turing, 1950 doi: 10.1093/mind/LIX.236.433
Alan M. Turing. 1950. Computing Machinery and Intelligence. Mind; a quarterly review of psychology and philoso-
phy LIX.236, pp. 433–460.

Utting et al., 2010 doi: 10.1145/1868358.1868364
Ian Utting, Stephen Cooper, Michael Kölling, John Maloney, and Mitchel Resnick. 2010. Alice, Greenfoot, and
Scratch – A Discussion. ACM Transactions on Computing Education 10.4, pp. 1–11.

Vasek, 2012
Marie Vasek. 2012. Representing Expressive Types in Blocks Programming Languages. B.Sc. Thesis.

Vincur et al., 2017 doi: 10.1145/3139131.3141785
Juraj Vincur, Martin Konopka, Jozef Tvarozek, Martin Hoang, and Pavol Navrat. 2017. Cubely: Virtual Reality
Block-Based Programming Environment. Proceedings of the 23rd ACM Symposium on Virtual Reality Software
and Technology. VRST ’17. ACM, pp. 1–2.

Voelter et al., 2019 doi: 10.1007/s10270-016-0575-4
Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu, and Arie van Deursen. 2019. Lessons Learned from
Developing Mbeddr: A Case Study in Language Engineering with MPS. Software & Systems Modeling 18.1, pp. 585–
630.

Voelter and Lisson, 2014
Markus Voelter and Sascha Lisson. 2014. Supporting Diverse Notations in MPS’ Projectional Editor. Proceedings
of the 2nd International Workshop on The Globalization of Modeling Languages, pp. 7–16.

Voinov et al., 2022 doi: 10.1145/3563835.3567663
Philippe Voinov, Manuel Rigger, and Zhendong Su. 2022. Forest: Structural Code Editing with Multiple Cursors.
Proceedings of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. Onward! 2022. ACM, pp. 137–152.

Wang et al., 2021 doi: 10.1145/3411764.3445249
Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J Ko. 2021. Falx: Synthesis-Powered
Visualization Authoring. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM,
pp. 1–15.

Weintrop andWilensky, 2017 doi: 10.1145/3078072.3079715
David Weintrop and Uri Wilensky. 2017. Between a Block and a Typeface: Designing and Evaluating Hybrid
Programming Environments. Proceedings of the 16th International Conference on Interaction Design and Children -
IDC’17. ACM, pp. 183–192.

Weizenbaum, 1966 doi: 10.1145/365153.365168
Joseph Weizenbaum. 1966. ELIZA—a Computer Program for the Study of Natural Language Communication
between Man and Machine. Communications of the ACM 9.1, pp. 36–45.

203

https://www.doi.org/10.1109/VLHCC.2004.35
https://www.doi.org/10.1093/mind/LIX.236.433
https://www.doi.org/10.1145/1868358.1868364
https://www.doi.org/10.1145/3139131.3141785
https://www.doi.org/10.1007/s10270-016-0575-4
https://www.doi.org/10.1145/3563835.3567663
https://www.doi.org/10.1145/3411764.3445249
https://www.doi.org/10.1145/3078072.3079715
https://www.doi.org/10.1145/365153.365168

204

Whatley et al., 2021 doi: 10.1109/VL/HCC51201.2021.9576201
Daniel Whatley, Max Goldman, and Robert C. Miller. 2021. Snapdown: A Text-Based Snapshot Diagram Lan-
guage for Programming Education. 2021 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, pp. 1–9.

Wiedenbeck, 1986 doi: 10.1016/S0020-7373(86)80083-9
Susan Wiedenbeck. 1986. Beacons in Computer Program Comprehension. International Journal of Man-Machine
Studies 25.6, pp. 697–709.

Williams and Gordon, 2021 doi: 10.1109/VL/HCC51201.2021.9576272
Jack Williams and Andrew D. Gordon. 2021. Where-Provenance for Bidirectional Editing in Spreadsheets. 2021
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 1–10.

Wilson, 2004 doi: 10.1145/1039511.1039534
Gregory V. Wilson. 2004. Extensible Programming for the 21st Century: Is an Open, More Flexible Programming
Environment Just around the Corner? Queue 2.9, pp. 48–57.

Wu et al., 2020 doi: 10.1145/3379337.3415851
Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging Code and Interactive Visualization
in Computational Notebooks. Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. UIST ’20. ACM, pp. 152–165.

Wu et al., 2023 doi: 10.1145/3586183.3606731
Zhiyuan Wu, Jiening Li, Kevin Ma, Hita Kambhamettu, and Andrew Head. 2023. FFL: A Language and Live
Runtime for Styling and Labeling Typeset Math Formulas. Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology. UIST ’23. ACM, pp. 1–16.

Xiong et al., 2021 doi: 10.48550/arXiv.2104.00682
Bo Xiong, Haoqi Fan, Kristen Grauman, and Christoph Feichtenhofer. 2021. Multiview Pseudo-Labeling for
Semi-Supervised Learning from Video.

Yu et al., 2020 doi: 10.1145/3379337.3415890
Geoffrey X. Yu, Tovi Grossman, and Gennady Pekhimenko. 2020. Skyline: Interactive In-Editor Computational
Performance Profiling for Deep Neural Network Training. Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology. UIST ’20. ACM, pp. 126–139.

Zemanek, 1966 doi: 10.1145/365230.365249
Heinz Zemanek. 1966. Semiotics and Programming Languages. Communications of the ACM 9.3, pp. 139–143.

Zhang et al., 2023 doi: 10.1145/3544548.3581516
Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Misunderstandings By Visualizing
Students’ Coding Progress. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI
’23. ACM, pp. 1–16.

Zhang and Oney, 2020 doi: 10.1145/3379337.3415824
Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool for Creating Interactive Scenes in
Virtual Reality. Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology. UIST
’20. ACM, pp. 342–353.

204

https://www.doi.org/10.1109/VL/HCC51201.2021.9576201
https://www.doi.org/10.1016/S0020-7373(86)80083-9
https://www.doi.org/10.1109/VL/HCC51201.2021.9576272
https://www.doi.org/10.1145/1039511.1039534
https://www.doi.org/10.1145/3379337.3415851
https://www.doi.org/10.1145/3586183.3606731
https://www.doi.org/10.48550/arXiv.2104.00682
https://www.doi.org/10.1145/3379337.3415890
https://www.doi.org/10.1145/365230.365249
https://www.doi.org/10.1145/3544548.3581516
https://www.doi.org/10.1145/3379337.3415824

205

Zhang et al., 2020 doi: 10.1145/3379337.3415900
Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020. Interactive Program Synthe-
sis by Augmented Examples. Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. UIST ’20. ACM, pp. 627–648.

Zhou et al., 2021 doi: 10.48550/arXiv.2107.02053
Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. 2021. MixStyle Neural Networks for Domain Generalization
and Adaptation.

Zinenko et al., 2015
Oleksandr Zinenko, Cédric Bastoul, and Stéphane Huot. 2015. Manipulating Visualization, Not Codes. Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT), pp. 1–8.

205

https://www.doi.org/10.1145/3379337.3415900
https://www.doi.org/10.48550/arXiv.2107.02053

206

Links

1. FACT SHEET: President Biden Issues Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence.
Oct. 30, 2023. The White House. https://www.whitehouse.gov/briefing-room/statements-rele
ases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure
-and-trustworthy-artificial-intelligence/.

2. Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI. Dec. 9, 2023. European Parliament.
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-int
elligence-act-deal-on-comprehensive-rules-for-trustworthy-ai.

3. Future of Coding. https://futureofcoding.org/.

4. LIVE workshop. ACM SPLASH 2023. https://2023.splashcon.org/home/live-2023.

5. PAINT workshop. 2023. ACM SPLASH 2023. https://2023.splashcon.org/home/paint-2023.

6. asm.js Working Draft. http://asmjs.org/spec/latest/%5C#annotations.

7. Lucas Pluvinage. May 5, 2023. Implementing value speculation in OCaml. https://www.lortex.org/art
icles/value-speculation-ocaml/.

8. Francesco Mazzoli. July 20, 2021. Beating the L1 cache with value speculation. https://mazzo.li/posts
/value-speculation.html.

9. Full Grammar specification. Python 3.12.2 documentation. https://docs.python.org/3/reference
/grammar.html.

10. Yacc. Wikipedia. https://wikipedia.org/wiki/Yacc.

11. GNU Bison. https://www.gnu.org/software/bison/.

12. ANTLR. https://www.antlr.org/.

13. Package naive-ebnf. CTAN. https://ctan.org/pkg/naive-ebnf.

14. COBOL blues. Reuters Graphics. http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-
COBOL/010040KH18J/index.html.

15. Alicia Lee. Apr. 8, 2020. Wanted urgently: People who know a half century-old computer language so states
can process unemployment claims. CNN Business. https://edition.cnn.com/2020/04/08/business
/coronavirus-cobol-programmers-new-jersey-trnd/index.html.

16. Jupyter. https://jupyter.org/.

206

https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://futureofcoding.org/
https://2023.splashcon.org/home/live-2023
https://2023.splashcon.org/home/paint-2023
http://asmjs.org/spec/latest/%5C#annotations
https://www.lortex.org/articles/value-speculation-ocaml/
https://www.lortex.org/articles/value-speculation-ocaml/
https://mazzo.li/posts/value-speculation.html
https://mazzo.li/posts/value-speculation.html
https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html
https://wikipedia.org/wiki/Yacc
https://www.gnu.org/software/bison/
https://www.antlr.org/
https://ctan.org/pkg/naive-ebnf
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://edition.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey-trnd/index.html
https://edition.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey-trnd/index.html
https://jupyter.org/

207

17. CoqIDE. Coq reference manual. https://coq.inria.fr/refman/practical-tools/coqide.html.

18. TKGate 2.0. https://bnoordhuis.github.io/tkgate/.

19. Vega Editor. https://vega.github.io/editor.

20. BLAS (Basic Linear Algebra Subprograms). https://www.netlib.org/blas/.

21. LAPACK— Linear Algebra PACKage. https://www.netlib.org/lapack/.

22. SageMath. https://www.sagemath.org/.

23. NumPy. https://numpy.org/.

24. Data Scientists. Sept. 6, 2023. U.S. Bureau of Labor Statistics. https://www.bls.gov/ooh/math/data-s
cientists.htm.

25. Pandas. https://pandas.pydata.org/.

26. Matplotlib. https://matplotlib.org/.

27. Overleaf. https://www.overleaf.com.

28. Frescobaldi. https://www.frescobaldi.org/.

29. LilyPond. http://lilypond.org/.

30. Edotor. https://edotor.net/.

31. Graphviz. https://graphviz.org/.

32. troff — The Text Processor for Typesetters. https://troff.org/.

33. GNU roff (groff). https://www.gnu.org/software/groff/.

34. PEP 287 — reStructuredText Docstring Format. https://peps.python.org/pep-0287/.

35. Documentation. Rust By Example. https://doc.rust-lang.org/rust-by-example/meta/doc.htm
l.

36. Will Crichton. 2021. A New Medium for Communicating Research on Programming Languages. https://w
illcrichton.net/nota/.

37. Observable. https://observablehq.com/.

38. Adobe PostScript. https://www.adobe.com/products/postscript.html.

39. Package Metafont. CTAN. https://ctan.org/pkg/metafont.

40. The TikZ and PGF Packages. https://tikz.dev/.

41. Mermaid. https://mermaid.js.org/.

42. ultimate-guitar/Tabdown: Tabdown is an open mark-up language for text tabs & chords. GitHub. https:
//github.com/ultimate-guitar/Tabdown.

207

https://coq.inria.fr/refman/practical-tools/coqide.html
https://bnoordhuis.github.io/tkgate/
https://vega.github.io/editor
https://www.netlib.org/blas/
https://www.netlib.org/lapack/
https://www.sagemath.org/
https://numpy.org/
https://www.bls.gov/ooh/math/data-scientists.htm
https://www.bls.gov/ooh/math/data-scientists.htm
https://pandas.pydata.org/
https://matplotlib.org/
https://www.overleaf.com
https://www.frescobaldi.org/
http://lilypond.org/
https://edotor.net/
https://graphviz.org/
https://troff.org/
https://www.gnu.org/software/groff/
https://peps.python.org/pep-0287/
https://doc.rust-lang.org/rust-by-example/meta/doc.html
https://doc.rust-lang.org/rust-by-example/meta/doc.html
https://willcrichton.net/nota/
https://willcrichton.net/nota/
https://observablehq.com/
https://www.adobe.com/products/postscript.html
https://ctan.org/pkg/metafont
https://tikz.dev/
https://mermaid.js.org/
https://github.com/ultimate-guitar/Tabdown
https://github.com/ultimate-guitar/Tabdown

208

43. Alda. https://alda.io/.

44. Hour of Code. https://hourofcode.com/.

45. Megan Smith. Jan. 30, 2016. Computer Science For All. The White House. https://obamawhitehouse.a
rchives.gov/blog/2016/01/30/computer-science-all/.

46. Programme d’enseignement de spécialité de numérique et sciences informatiques de la classe de première
de la voie générale. Jan. 22, 2019. Bulletin officiel de l’éducation nationale, de la jeunesse et des sports.
https://www.education.gouv.fr/bo/19/Special1/MENE1901633A.htm.

47. Programme de l’enseignement de spécialité de numérique et sciences informatiques de la classe terminale
de la voie générale. July 25, 2019. Bulletin officiel de l’éducation nationale, de la jeunesse et des sports.
https://www.education.gouv.fr/bo/19/Special8/MENE1921247A.htm.

48. Harry McCracken. Apr. 29, 2014. Fifty Years of BASIC, the Programming Language That Made Computers
Personal. Time. https://time.com/69316/basic/.

49. Logo History. Logo Foundation. https://el.media.mit.edu/logo-foundation/what_is_logo/hi
story.html.

50. Scratch’s Annual Report 2022. Scratch Foundation. https://www.scratchfoundation.org/annualrep
ort.

51. A Logo Primer. Logo Foundation. https://el.media.mit.edu/logo-foundation/what_is_logo/l
ogo_primer.html.

52. Blockly. Google for Developers. https://developers.google.com/blockly.

53. Orca. https://hundredrabbits.itch.io/orca.

54. Shadertoy. https://www.shadertoy.com.

55. Flexi. Jan. 6, 2016. Expansive reaction-diffusion. Shadertoy. https://www.shadertoy.com/view/4dc
GW2.

56. Submarine.ijs. Code Poetry. https://code-poetry.com/submarine.

57. Benj Edwards. Jan. 24, 2013. TheNever-Before-Told Story of the World’s First Computer Art (It’s a Sexy Dame).
The Atlantic. https://www.theatlantic.com/technology/archive/2013/01/the-never-before
-told-story-of-the-worlds-first-computer-art-its-a-sexy-dame/267439/.

58. TOPLAP. https://toplap.org/.

59. Blender Python API. https://docs.blender.org/api/current/.

60. Rhino.Python Guides. Rhino developer. https://developer.rhino3d.com/guides/rhinopython/.

61. Frank J. Swetz. Mathematical Treasure: Ratdolt’s Euclid’s Elements. Mathematical Association of America.
https://www.maa.org/press/periodicals/convergence/mathematical-treasure-ratdolts-
euclids-elements.

208

https://alda.io/
https://hourofcode.com/
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all/
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all/
https://www.education.gouv.fr/bo/19/Special1/MENE1901633A.htm
https://www.education.gouv.fr/bo/19/Special8/MENE1921247A.htm
https://time.com/69316/basic/
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://www.scratchfoundation.org/annualreport
https://www.scratchfoundation.org/annualreport
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://developers.google.com/blockly
https://hundredrabbits.itch.io/orca
https://www.shadertoy.com
https://www.shadertoy.com/view/4dcGW2
https://www.shadertoy.com/view/4dcGW2
https://code-poetry.com/submarine
https://www.theatlantic.com/technology/archive/2013/01/the-never-before-told-story-of-the-worlds-first-computer-art-its-a-sexy-dame/267439/
https://www.theatlantic.com/technology/archive/2013/01/the-never-before-told-story-of-the-worlds-first-computer-art-its-a-sexy-dame/267439/
https://toplap.org/
https://docs.blender.org/api/current/
https://developer.rhino3d.com/guides/rhinopython/
https://www.maa.org/press/periodicals/convergence/mathematical-treasure-ratdolts-euclids-elements
https://www.maa.org/press/periodicals/convergence/mathematical-treasure-ratdolts-euclids-elements

209

62. Erhard Ratdolt’s edition of Euclid’s Elements. The Folger Shakespeare Library’s digital image collection.
https://luna.folger.edu/luna/servlet/s/e7b5y0.

63. The first six books of the Elements of Euclid. Internet Archive. https://archive.org/details/firstsi
xbooksofe00byrn/page/n33/mode/2up.

64. Code Poetry. https://code-poetry.com/.

65. What is the best comment in source code you have ever encountered? Stack Overflow. https://stackover
flow.com/q/184618.

66. code/game/q_math.c file of Quake III Arena’s source code (lines 549–572). Software Heritage. https://arc
hive.softwareheritage.org/browse/content/sha1_git:bb0faf6919fc60636b2696f32ec9b3c
2adb247fe/#L549-L572.

67. Psychology of Programming Interest Group. https://www.ppig.org/.

68. Tony Hoare. Mar. 2009. Null References: The Billion Dollar Mistake. QCON London. https://www.infoq
.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/.

69. The neural networks behind Google Voice transcription. Google Research Blog. https://ai.googleblog
.com/2015/08/the-neural-networks-behind-google-voice.html.

70. Alex Hern. Mar. 29, 2023. Elon Musk joins call for pause in creation of giant AI ‘digital minds’. The Guardian.
https://www.theguardian.com/technology/2023/mar/29/elon-musk-joins-call-for-paus
e-in-creation-of-giant-ai-digital-minds.

71. ACM Policy on Authorship. Apr. 20, 2023. ACM. https://www.acm.org/publications/policies/ne
w-acm-policy-on-authorship.

72. Copilot. GitHub. https://github.com/features/copilot.

73. Bret Victor. Sept. 2012. Learnable programming. http://worrydream.com/LearnableProgramming.

74. Experiences with the New Java 5 Language Features. https://www.oracle.com/technical-resources
/articles/java/java-5-features.html.

75. ECMAScript 2020 Language Specification. https://262.ecma-international.org/11.0/.

76. Thomas Schoch. 2006. “Hello, world!” in Piet. https://retas.de/thomas/computer/programs/usel
ess/piet/explain.html.

77. Piet. Esolang. https://esolangs.org/wiki/Piet.

78. Brainfuck. Esolang. https://esolangs.org/wiki/Brainfuck.

79. Typing glyphs. APL Wiki. https://aplwiki.com/wiki/Typing_glyphs.

80. David Naccache. 2009. Quel est le QI de Dionaea Muscipula ? Les Ernest. https://savoirs.ens.fr/ex
pose.php?id=3197.

81. PdFileFormat. Pure Data. http://puredata.info/docs/developer/PdFileFormat.

209

https://luna.folger.edu/luna/servlet/s/e7b5y0
https://archive.org/details/firstsixbooksofe00byrn/page/n33/mode/2up
https://archive.org/details/firstsixbooksofe00byrn/page/n33/mode/2up
https://code-poetry.com/
https://stackoverflow.com/q/184618
https://stackoverflow.com/q/184618
https://archive.softwareheritage.org/browse/content/sha1_git:bb0faf6919fc60636b2696f32ec9b3c2adb247fe/#L549-L572
https://archive.softwareheritage.org/browse/content/sha1_git:bb0faf6919fc60636b2696f32ec9b3c2adb247fe/#L549-L572
https://archive.softwareheritage.org/browse/content/sha1_git:bb0faf6919fc60636b2696f32ec9b3c2adb247fe/#L549-L572
https://www.ppig.org/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://www.theguardian.com/technology/2023/mar/29/elon-musk-joins-call-for-pause-in-creation-of-giant-ai-digital-minds
https://www.theguardian.com/technology/2023/mar/29/elon-musk-joins-call-for-pause-in-creation-of-giant-ai-digital-minds
https://www.acm.org/publications/policies/new-acm-policy-on-authorship
https://www.acm.org/publications/policies/new-acm-policy-on-authorship
https://github.com/features/copilot
http://worrydream.com/LearnableProgramming
https://www.oracle.com/technical-resources/articles/java/java-5-features.html
https://www.oracle.com/technical-resources/articles/java/java-5-features.html
https://262.ecma-international.org/11.0/
https://retas.de/thomas/computer/programs/useless/piet/explain.html
https://retas.de/thomas/computer/programs/useless/piet/explain.html
https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Brainfuck
https://aplwiki.com/wiki/Typing_glyphs
https://savoirs.ens.fr/expose.php?id=3197
https://savoirs.ens.fr/expose.php?id=3197
http://puredata.info/docs/developer/PdFileFormat

210

82. The Jupyter Notebook Format. IPython. https://ipython.org/ipython-doc/3/notebook/nbformat
.html.

83. Konrad Zuse Internet Archive. http://zuse.zib.de/.

84. Dynamicland. https://dynamicland.org/.

85. Geoffrey Litt. Experiments in Dynamicland. https://www.geoffreylitt.com/projects/dynamicla
nd.

86. GDB: The GNU Project Debugger. https://www.sourceware.org/gdb/.

87. Language Server Protocol. https://microsoft.github.io/language-server-protocol/.

88. Debug Adapter Protocol. https://microsoft.github.io/debug-adapter-protocol//.

89. Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-protocol/.

90. Light Table. http://lighttable.com/.

91. Collaborate with Live Share. Visual Studio Code. https://code.visualstudio.com/learn/collabor
ation/live-share.

92. Code With Me. JetBrains. https://www.jetbrains.com/code-with-me/.

93. Regulex. https://jex.im/regulex.

94. RegExr. https://regexr.com/.

95. Commanding the editor. JetBrains’ MPS Documentation. https://www.jetbrains.com/help/mps/co
mmanding-the-editor.html.

96. Introduction to Nodes. Blender 2.79 Manual. https://docs.blender.org/manual/en/2.79/render
/blender_render/materials/nodes/introduction.html.

97. Blueprint Visual Scripting. Unreal Engine Documentation. https://docs.unrealengine.com/4.26/e
n-US/ProgrammingAndScripting/Blueprints/.

98. Nodes. https://nodes.io/.

99. Enso. https://enso.org.

100. P5.js. https://p5js.org/.

101. Create a UI by using XAML Designer. https://learn.microsoft.com/en-us/visualstudio/xaml-
tools/creating-a-ui-by-using-xaml-designer-in-visual-studio.

102. Develop a UI with Views. Android Developers. https://developer.android.com/studio/write/la
yout-editor.

103. Creating your app’s interface with SwiftUI. Apple Developer Documentation. https://developer.appl
e.com/documentation/xcode/creating-your-app-s-interface-with-swiftui.

104. Adobe Dreamweaver. https://www.adobe.com/fr/products/dreamweaver.html.

210

https://ipython.org/ipython-doc/3/notebook/nbformat.html
https://ipython.org/ipython-doc/3/notebook/nbformat.html
http://zuse.zib.de/
https://dynamicland.org/
https://www.geoffreylitt.com/projects/dynamicland
https://www.geoffreylitt.com/projects/dynamicland
https://www.sourceware.org/gdb/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/debug-adapter-protocol//
https://chromedevtools.github.io/devtools-protocol/
http://lighttable.com/
https://code.visualstudio.com/learn/collaboration/live-share
https://code.visualstudio.com/learn/collaboration/live-share
https://www.jetbrains.com/code-with-me/
https://jex.im/regulex
https://regexr.com/
https://www.jetbrains.com/help/mps/commanding-the-editor.html
https://www.jetbrains.com/help/mps/commanding-the-editor.html
https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html
https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html
https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/Blueprints/
https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/Blueprints/
https://nodes.io/
https://enso.org
https://p5js.org/
https://learn.microsoft.com/en-us/visualstudio/xaml-tools/creating-a-ui-by-using-xaml-designer-in-visual-studio
https://learn.microsoft.com/en-us/visualstudio/xaml-tools/creating-a-ui-by-using-xaml-designer-in-visual-studio
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://developer.apple.com/documentation/xcode/creating-your-app-s-interface-with-swiftui
https://developer.apple.com/documentation/xcode/creating-your-app-s-interface-with-swiftui
https://www.adobe.com/fr/products/dreamweaver.html

211

105. Compositor. https://compositorapp.com/.

106. Bret Victor. Jan. 20, 2012. Inventing on Principle. CUSEC conference. http://worrydream.com/Invent
ingOnPrinciple.

107. About GitHub Copilot Chat. GitHub Docs. https://docs.github.com/en/copilot/github-copilo
t-chat/about-github-copilot-chat.

108. Cursor — The AI-first Code Editor. https://cursor.sh/.

109. Geoffrey Litt. July 2023. Codifying a ChatGPT workflow into a malleable GUI. https://www.geoffreyli
tt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms.

110. Philip Guo. July 25, 2023. Real-Real-World Programming with ChatGPT. https://www.oreilly.com/ra
dar/real-real-world-programming-with-chatgpt/.

111. TextEditorDecorationType. VS Code API. https://code.visualstudio.com/api/references/vsco
de-api/%5C#TextEditorDecorationType.

112. Example: Decorations. CodeMirror. https://codemirror.net/examples/decoration/.

113. Natto. https://natto.dev/.

114. Hydra — Live coding video synth. https://hydra.ojack.xyz.

115. Brian Harvey and Jens Mönig. 2020. Snap! Reference Manual. https://snap.berkeley.edu/snap/hel
p/SnapManual.pdf.

116. Features and Benefits. Eclipse Capella. https://eclipse.dev/capella/features.html.

117. Ed — a line-oriented text editor. https://www.gnu.org/software/ed/.

118. vi. Linux manual page. https://man7.org/linux/man-pages/man1/vi.1p.html.

119. Semantics of a Foundational Subset for Executable UML Models. Object Management Group. https://ww
w.omg.org/spec/FUML/1.5/About-FUML.

120. Eclipse Sirius. https://eclipse.dev/sirius/.

121. Eclipse Capella. https://eclipse.dev/capella/.

122. Glamorous Toolkit. https://gtoolkit.com/.

123. feenk. https://feenk.com/.

124. Tables Generator. https://tablesgenerator.com.

125. CSS Gradient. https://cssgradient.io/.

126. Patrick Dubroy. 2014. Future Programming workshop. ACM SPLASH 2014. https://harc.github.io
/moonchild/.

127. The top programming languages. GitHub Octoverse 2022. https://octoverse.github.com/2022/top-
programming-languages.

211

https://compositorapp.com/
http://worrydream.com/InventingOnPrinciple
http://worrydream.com/InventingOnPrinciple
https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat
https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat
https://cursor.sh/
https://www.geoffreylitt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms
https://www.geoffreylitt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms
https://www.oreilly.com/radar/real-real-world-programming-with-chatgpt/
https://www.oreilly.com/radar/real-real-world-programming-with-chatgpt/
https://code.visualstudio.com/api/references/vscode-api/%5C#TextEditorDecorationType
https://code.visualstudio.com/api/references/vscode-api/%5C#TextEditorDecorationType
https://codemirror.net/examples/decoration/
https://natto.dev/
https://hydra.ojack.xyz
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://eclipse.dev/capella/features.html
https://www.gnu.org/software/ed/
https://man7.org/linux/man-pages/man1/vi.1p.html
https://www.omg.org/spec/FUML/1.5/About-FUML
https://www.omg.org/spec/FUML/1.5/About-FUML
https://eclipse.dev/sirius/
https://eclipse.dev/capella/
https://gtoolkit.com/
https://feenk.com/
https://tablesgenerator.com
https://cssgradient.io/
https://harc.github.io/moonchild/
https://harc.github.io/moonchild/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages

212

128. The Developer Survey 2023. Stack Overflow. https://survey.stackoverflow.co/2023/.

129. pdfTeX. https://www.tug.org/applications/pdftex/.

130. X ETEX. https://tug.org/xetex/.

131. LuaTEX. https://www.luatex.org/.

132. SILE. https://sile-typesetter.org/.

133. Pollen: the book is a program. https://docs.racket-lang.org/pollen/.

134. AUCTeX. https://www.gnu.org/software/auctex/.

135. LyX — The Document Processor. https://www.lyx.org/.

136. pandas.DataFrame.to_latex. Pandas 2.2.1 documentation. https://pandas.pydata.org/docs/refere
nce/api/pandas.DataFrame.to_latex.html.

137. LaTeXTools: A LaTeX Plugin for Sublime Text 2 and 3. https://latextools.readthedocs.io/en/lat
est/.

138. Explorable Explanations. https://explorabl.es/.

139. MyST Markdown — Tools for the future of technical communication. https://mystmd.org/.

140. Typst. https://typst.app/.

141. Potluck — Dynamic documents as personal software. Ink & Switch. https://www.inkandswitch.com/p
otluck/.

142. Texifier. https://www.texifier.com/.

143. Texifier — The Story So Far. https://www.texifier.com/blog/texpadtex-story-so-far.

144. Package amsmath. CTAN. https://ctan.org/pkg/amsmath.

145. Package graphicx. CTAN. https://ctan.org/pkg/graphicx.

146. Visual Studio Code. https://code.visualstudio.com/.

147. exsitu-projects/ilatex: i-LATEX is a prototypal LATEX editor with interactive code representations we call transi-
tionals. GitHub. https://github.com/exsitu-projects/ilatex.

148. Is there a BNF grammar of the TeX language? TEX StackEchange. https://tex.stackexchange.com/q
/4201.

149. mozilla/pdf.js: PDF Reader in JavaScript. GitHub. https://github.com/mozilla/pdf.js/.

150. Michel Beaudouin-Lafon. Oct. 22, 2019. AWorld Without Apps. ACM UIST 2019 Visions. https://www
.youtube.com/watch?v=ntaudUum06E.

151. Geoffrey Litt. Mar. 2021. Bring Your Own Client. https://www.geoffreylitt.com/2021/03/05/brin
g-your-own-client.

212

https://survey.stackoverflow.co/2023/
https://www.tug.org/applications/pdftex/
https://tug.org/xetex/
https://www.luatex.org/
https://sile-typesetter.org/
https://docs.racket-lang.org/pollen/
https://www.gnu.org/software/auctex/
https://www.lyx.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html
https://latextools.readthedocs.io/en/latest/
https://latextools.readthedocs.io/en/latest/
https://explorabl.es/
https://mystmd.org/
https://typst.app/
https://www.inkandswitch.com/potluck/
https://www.inkandswitch.com/potluck/
https://www.texifier.com/
https://www.texifier.com/blog/texpadtex-story-so-far
https://ctan.org/pkg/amsmath
https://ctan.org/pkg/graphicx
https://code.visualstudio.com/
https://github.com/exsitu-projects/ilatex
https://tex.stackexchange.com/q/4201
https://tex.stackexchange.com/q/4201
https://github.com/mozilla/pdf.js/
https://www.youtube.com/watch?v=ntaudUum06E
https://www.youtube.com/watch?v=ntaudUum06E
https://www.geoffreylitt.com/2021/03/05/bring-your-own-client
https://www.geoffreylitt.com/2021/03/05/bring-your-own-client

213

152. ELPA: GNU Emacs Lisp Package Archive. https://elpa.gnu.org/.

153. Atom: The hackable text editor. GitHub. https://github.com/atom/atom.

154. Geoffrey Litt. May 23, 2023. Dynamic documents as personal software. Causal Islands 2023. https://www
.youtube.com/watch?v=bJ3i4K3hefI.

155. CodeQL. GitHub. https://codeql.github.com/.

156. Tree-sitter. https://tree-sitter.github.io/tree-sitter/.

157. React. https://react.dev/.

158. exsitu-projects/lorgnette: lorgnette is a framework to create code editors with malleable projections of pieces
of code. GitHub. https://github.com/exsitu-projects/lorgnette.

159. Monaco Editor. https://microsoft.github.io/monaco-editor/.

160. syntax-tree/mdast-util-from-markdown: mdast utility to parse markdown. GitHub. https://github.com
/syntax-tree/mdast-util-from-markdown.

161. syntax-tree/mdast-util-to-markdown: Markdown Abstract Syntax Tree format. GitHub. https://github
.com/syntax-tree/mdast.

162. syntax-tree/mdast-util-to-markdown: mdast utility to serialize markdown. GitHub. https://github.com
/syntax-tree/mdast-util-to-markdown.

163. Layering Rolling Averages over Raw Values. Vega-Lite. https://vega.github.io/vega-lite/example
s/layer_line_rolling_mean_point_raw.html.

164. seaborn.barplot. Seaborn 0.13.2 documentation. https://seaborn.pydata.org/generated/seaborn
.barplot.html.

165. matplotlib.patches.Rectangle. Matplotlib 0.13.3 documentation. https://matplotlib.org/stable/api
/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle.

166. Seaborn: statistical data visualization. https://seaborn.pydata.org/.

167. Writing Markup with JSX. https://react.dev/learn/writing-markup-with-jsx.

168. What are source maps? https://web.dev/articles/source-maps.

169. Lively. https://lively-next.org/.

170. Maneesh Agrawala. Mar. 30, 2023. Unpredictable Black Boxes are Terrible Interfaces. Maneesh’s Substack.
https://magrawala.substack.com/p/unpredictable-black-boxes-are-terrible.

171. Geoffrey Litt. Mar. 2023. Malleable software in the age of LLMs. https://www.geoffreylitt.com/2023
/03/25/llm-end-user-programming.

172. 3Blue1Brown. https://www.3blue1brown.com.

213

https://elpa.gnu.org/
https://github.com/atom/atom
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://codeql.github.com/
https://tree-sitter.github.io/tree-sitter/
https://react.dev/
https://github.com/exsitu-projects/lorgnette
https://microsoft.github.io/monaco-editor/
https://github.com/syntax-tree/mdast-util-from-markdown
https://github.com/syntax-tree/mdast-util-from-markdown
https://github.com/syntax-tree/mdast
https://github.com/syntax-tree/mdast
https://github.com/syntax-tree/mdast-util-to-markdown
https://github.com/syntax-tree/mdast-util-to-markdown
https://vega.github.io/vega-lite/examples/layer_line_rolling_mean_point_raw.html
https://vega.github.io/vega-lite/examples/layer_line_rolling_mean_point_raw.html
https://seaborn.pydata.org/generated/seaborn.barplot.html
https://seaborn.pydata.org/generated/seaborn.barplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://seaborn.pydata.org/
https://react.dev/learn/writing-markup-with-jsx
https://web.dev/articles/source-maps
https://lively-next.org/
https://magrawala.substack.com/p/unpredictable-black-boxes-are-terrible
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming
https://www.3blue1brown.com

	Introduction
	Framing computer languages
	What is a computer language?
	Definition
	Related terms

	What are computer languages used for?
	Developing user and business applications
	Solving engineering and scientific problems
	Writing documents
	Teaching computer science
	Creating art and design work

	How to study computer languages?
	Human-centric perspectives
	Computer-centric perspectives
	Human-computer interaction perspective

	Decomposing computer languages
	Motivations
	Holistic model
	Conceptualisation
	Specification
	Implementation
	Interaction
	Contextualisation

	Interacting with computer languages
	Levels of interaction
	Graphemic interaction
	Morphosyntactic interaction
	Semantic interaction
	Pragmatic interaction

	Cross-level interaction
	Multiple levels within a single substrate
	Multiple levels across multiple substrates

	Projecting computer languages
	Definitions
	Computer system
	Projection

	Properties
	Locality
	Location
	Persistence
	Compositionality
	Liveness
	Malleability
	Language agnosticism

	Implementation strategies
	Uniform projection
	Protean projection

	Focus of this thesis

	Transitional representations for LaTeX
	Background
	The LaTeX ecosystem
	Interacting with LaTeX
	Interacting with digital documents

	Formative study
	Methodology
	Results
	Recommendations for design

	Transitional representations
	Definition
	Properties
	Application to LaTeX

	The 1.05i-LaTeX editor
	User interface
	Transitionals
	Implementation
	Limitations
	Extensibility

	Controlled evaluation
	Methodology
	Results
	Discussion

	Longitudinal evaluation
	Methodology
	Results
	Discussion

	Conclusion

	Creating malleable projections
	Background
	Malleable software
	Tailoring text editors

	Formative study
	Design workshop
	Examples from the literature
	Results
	Discussion

	The lorgnette framework
	Concepts
	Implementation
	Comparison with existing systems

	Case studies
	Manipulating colours
	Authoring tables
	Writing regular expressions
	Tracing variables at runtime
	Configuring lists of properties

	Conclusion

	Discussion
	Contributions
	A theory of interaction with computer languages
	A postmodern application of protean projection

	Limitations and future work
	Beyond compartmentalised uses
	Beyond local projections
	Beyond hand-crafted mappings
	Beyond semantic interaction
	Beyond computer languages

	Conclusion
	Bibliography
	Links

