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... for nature cannot be fooled.
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Avant-propos

Cette thèse fut pour moi difficile. J’ai rejoint en avril 2017 l’équipe de la salle « E20 » du
groupe d’Électrodynamique Quantique en Cavité. C’est Jean-Michel Raimond qui m’avait
convaincu de contribuer à cette expérience. La route à suivre semblait claire. Après avoir pré-
paré des états de Rydberg circulaires à partir d’un nuage de rubidium froid, il fallait mettre
en évidence le piégeage pondéromoteur pour ces états circulaires. Nous pourrions alors nous
concentrer sur ce que j’espérais être le cœur de ma thèse : la construction d’un simulateur
quantique. L’idée était séduisante, pour simuler une chaine de spin, nous allions piéger une
chaine d’atomes de Rydberg circulaires entre deux plaques conductrices afin d’inhiber l’émis-
sion spontanée, permettant ainsi de sonder la dynamique sur des échelles de temps jamais
atteintes. Bien sûr, rien ne devait se passer comme prévu.

Je finissais alors mes études de physique, jusqu’alors principalement orientées sur la théo-
rie : c’était en effet avec brio que j’avais réussi à éviter autant que possible toute forme de
travaux pratiques en physique. J’allais maintenant devoir travailler sur un dispositif expé-
rimental particulièrement complexe. En effet, celui-ci devait allier la préparation d’atomes
froids, leur excitation et transfert vers l’état de Rydberg circulaire, le tout en environnement
cryogénique.

C’est ainsi que je rencontrai Tigrane et Rodrigo, tous deux doctorants de l’équipe, ainsi
que Clément, membre permanent en charge de notre manip’, et Michel, qui fut mon directeur
de thèse et suivait de près nos expériences. Je n’ai pas eu l’occasion d’interagir énormément
avec Tigrane, qui allait commencer à rédiger peu de temps après mon arrivée. J’ai en revanche
passé nettement plus de temps aux côtés de Rodrigo, toujours en questionnement — parfois
jusqu’à l’égarement. Je garde de lui le souvenir de quelqu’un qui contrairement à moi, ne
se laissait jamais abattre, même dans les moments difficiles. On le voyait travailler avec
acharnement jusque tard, parfois encore présent à notre arrivée le lendemain matin.

J’ai dans un premier temps passé deux ans et demi à travailler sur ce dispositif, pour
rattraper le retard et contribuer aux résultats des doctorants précédents. Les expériences que
nous réalisions étaient complexes, de celles qui appellent inexorablement à des imprévus et
des retards. Afin de compenser ces retards, une approche très populaire consiste à rendre
permanentes les améliorations ou réparations temporaires effectuées pour pouvoir avancer.
C’est par cette approche qu’une bonne partie du dispositif avait été construite, par ajouts
successifs. Il m’a donc fallu énormément de temps pour me familiariser avec toutes ses compo-
santes, dont certaines étaient un peu anciennes et pour le moins artisanales. Ce fut pour moi
l’occasion de découvrir que j’étais perfectionniste, et de pester à chaque fois qu’un problème
survenait. Il était difficile pour moi d’accepter que les choses restent telles quelles, et j’ai tout
mis en œuvre pour apporter des modifications, au grand dam de certains.

Paul, qui nous a rejoint un an après mon arrivée, a apporté un bon équilibre à mes
velléités. C’est avec lui que j’ai passé le plus de temps au laboratoire et ai partagé les bons
moments comme les galères. Il a rendu agréables les longues journées passées à acquérir des
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données.
Nous avons été rejoints un an plus tard par Maxime en post-doc, et Yohann, futur doc-

torant. C’était au moment où il apparaissait clair que le plan initial n’allait pas pouvoir être
suivi : le simulateur quantique proposé était bien trop complexe à mettre en œuvre. Il fut
donc décidé, quelque peu malgré moi, d’assembler une nouvelle manip’ sur laquelle j’allais
devoir obtenir mes résultats de thèse. Ce dispositif devait opérer à température ambiante et
accommoder la préparation de pinces optiques. Maxime a contribué à la conception de la
partie mécanique et j’ai pu apprécier son flegme, notamment face aux changements imposés
à la dernière minute. Yohann s’est chargé des pinces optiques. Ses qualités expérimentales et
son sens pratique hors du commun nous ont permis d’avoir un système dont les performances
ont dépassé nos attentes.

Il m’apparait nécessaire de saluer leur contribution à ces résultats, ainsi que celle de Paul
à qui je dois une partie des données présentées ici, acquises alors que j’avais déjà bien entamé
ma rédaction.

Andrès nous a rejoints lorsque j’entamais ma cinquième année de thèse. Il a apporté à cette
manip’ une bonne dose d’enthousiasme, et je ne l’ai jamais vu démotivé par les vociférations
d’un doctorant aigri par trop d’années passées sur ces expériences. Enfin, Gautier nous a
rejoint un an plus tard alors que j’étais en pleine rédaction. J’ai la certitude qu’ils assureront
l’avenir de la manip’.

Il faut admettre que l’on n’apprend pas grand chose quand tout fonctionne. J’ai eu ici
l’occasion d’apprendre une quantité considérable de choses nouvelles, tant sur le plan expéri-
mental que théorique, en mécanique, optique, électronique et programmation notamment. La
décision de changer de dispositif au cours de ma thèse m’a aussi offert la possibilité d’acquérir
de nouvelles compétences, cette fois-ci en organisation et gestion. J’ai pu mettre à profit ces
connaissances à maintes reprises tout au long de mon doctorat.

La rédaction de ce manuscrit a été pour moi l’occasion de m’affranchir des contraintes
extérieures et de produire un travail correspondant à mon niveau d’exigence propre. J’ai
essayé tant bien que mal de fournir une description détaillée des phénomènes physiques en
jeu tant sur le plan théorique qu’expérimental, bien que celle-ci m’apparaisse encore incom-
plète. Ceci a nécessité le développement de deux programmes informatiques pour d’une part
l’analyse unifiée des données expérimentales, et d’autre part la réalisation des simulations de
dynamique atomique. Ils ont été écrits au cours de ma rédaction et représentent à mes yeux
une part non négligeable de mon travail de thèse dont il est fait usage dans la majeure partie
du manuscrit, et il me semble nécessaire de le mentionner ici. Enfin, ces programmes ont été
codés dans le langage Python, et s’appuient sur des bibliothèques telles que NumPy, SciPy
et Matplotlib dont je tiens à remercier ici les développeurs et contributeurs.

Je tiens aussi à remercier l’ensemble des services du laboratoire ainsi que ceux du Collège
de France. Je salue tout particulièrement la réactivité et la disponibilité du service adminis-
tratif. Ces qualités sont partagées par les services mécanique et électronique, qui fournissent
un travail et une expertise dont nous sommes absolument dépendants. Je salue enfin les ser-
vices techniques et logistiques du Collège de France, qui nous permettent de travailler au
quotidien dans un cadre des plus exceptionnels.

Pour conclure, ma vie pendant la thèse ne s’est pas limitée à mon travail au laboratoire.
Je tiens enfin à remercier mes amis et mon entourage, avec qui je partage mes meilleurs
moments.

Commençons par mes amis de longue date, rencontrés pour la plupart au lycée. Adrien,
Agathe, Alexandre, Caroline, Flore, Georges, Jean, Lucile, Marie, Marie, Maud, Nicolas,
Pierre, Samuel, Sonia. Je pourrais m’étendre longuement sur les moments qu’on a passés
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ensemble et l’importance qu’ils ont pour moi, mais je pense que vous le savez et qu’il n’est
pas nécessaire de le rappeler ici. Il y a aussi le groupe de l’X : Mathieu, et ces soirées passées à
discuter des curiosités du monde jusque tard, parfois dans le brouillard. Moments de brouillard
partagé aussi avec Jules et Malo. Il y a enfin ces gens rencontrés par l’intermédiaire de Marie :
son mari Mathieu, Théodore, Gabriel, Nicolas et les autres avec lesquels je retiens quelques
soirées tardives.

Le laboratoire ne fut pas non plus un lieu exclusivement dédié au travail, j’y ai aussi
rencontré en plus de ceux mentionnés plus haut des gens hauts en couleurs. Igor, intarissable
sur les détails techniques de sa manip’. Valentin, presque toujours en short et chemise, même
en hiver. Fred, en quête de sens (comme bien des personnes. . .). Arthur, jamais trop à gauche.
Rémi, intègre, la tête bien faite, qui a choisi de suivre sa voie. Haiteng, travailleur acharné
qui a eu à lui seul la charge d’une expérience. Andrea, pour qui chaque jour est un combat à
mener. Léa, qui trouve rarement le temps de dormir. Angelo, un peu tête en l’air. Et d’autres
encore : Eva et Dorian avant moi, Guillaume, Baptiste et Ankul après moi.

Parmi tous les gens qu’on croise, il y en a avec lesquels on tisse des liens plus forts. Ce
fut le cas pour moi au cours de ces presque six années. Arthur, Paul, Yohann, je tiens ici à
vous exprimer le plaisir que j’ai eu à passer ces moments avec vous, au labo et en dehors.
Pour paraphraser Paul : « Je suis entré avec des collègues, je repars avec des amis. »
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Introduction

“Begin at the beginning,” the King said gravely, “and go on till you
come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

The old quantum theory arose in the early 20th century to account for unexplained ob-
servations made a few decades before. It succeeded in explaining the black-body spectrum,
the photoelectric effect and most importantly the discrete atomic spectra available at the
time [1, 2]. Quantum mechanics took a few decades to mature as its modern formulation,
successfully accounting for most of the current experimental data available [3]. It underlies
several technological advancements that are among the most important of human history,
such as lasers [4] and semiconductor technology [5].

Contrary to classical theories, that consider states of the world as a distribution of matter
and other fields in space and time, the quantum theory encodes the states of a physical system
as vectors of a Hilbert space [6]. This approach brings a conterintuitive representation of the
world, associated to the emergence of new features [7]. This has led physicists to consider
quantum systems as a computational tool by taking advantage of quantum interference along
with states superpositions and entanglement [8]. In this perspective, two main approaches
emerge.

The first approach is that of quantum computation, which can be considered analogous
to the classical implementation of computers. It relies on the assembly of a large number
of interconnected individual two-level systems – qubits. The computation protocol consists
in the application of successive unitary transforms in what is called a quantum algorithm
and terminates with the readout of the state. Currently, the most efficient platforms, that
have achieved the so-called quantum supremacy [9], are based either on superconducting cir-
cuits [10] or integrated photonics [11, 12]. Many quantum algorithms have been proposed [13]
and successfully implemented as a small scale proof of principle [14, 15, 16]. However, the
physical constraints imposed on any such device for proper scalability are strong. The con-
trol over the system must be preserved as its size increases and decoherence processes, that
ultimately limit the computational power, must be contained. This, together with the pos-
sibility of increasing the number of qubits at limited cost, imposes strong constraints on any
potential quantum computer. Up to now, none of the implementations completely solves the
problem [17].

The second approach trades the generality of addressable problems for an improved per-
formance on a particular problem. Quantum simulation was thus proposed by physicists [18,
19] to address complex problems which are intractable numerically. The idea is simple: to
solve a set of differential equations, build a physical system whose dynamics is governed by
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2 INTRODUCTION

those equations and record its evolution. To quote Richard Feynman [20]:

“The same equations have the same solutions.”

Of course, numerical methods can be applied when the number of equations is small, but
the computational resources required get prohibitive as this number gets large. Many-body
quantum systems fall in the latter category, since the dimensionality of the Hilbert space
scales exponentially with the system size. To illustrate this, consider a set of N spin-1/2
particles. Each particle evolves in the smallest non-trivial Hilbert space, of dimension 2. The
ensemble as a whole therefore evolves in a 2N -dimensional space, and is correspondingly ruled
by 2N equations. When the particles interact, those equations are coupled and the problem
quickly becomes out of reach for complete numerical resolution. The current computational
power available sets a limit on the system size. This limit is generally admitted to be around
N = 40 for universal quantum computation [21, 22], with most numerical studies carried with
N ∼ 20 (see for example the results reviewed in [23] and [24]). Let us make clear that this does
not prevent the study of large interacting quantum systems since in many cases the problem
can be simplified: Bose-Einstein condensation [25] and BCS theory of superconductivity [26]
are textbook cases. Other approximate methods exist to find solutions in low-energy sectors,
such as density-matrix renormalization group methods [27].

However, current research is pointing towards problems for which the state and dynamics
of each subsystem must be tracked down. These problems arise from condensed matter
physics (spin-systems, high-Tc superconductivity, etc. ), but also from other fields such as
high-energy physics (with the simulation of gauge fields on lattices) or atomic physics (with
the simulation of the Jaynes-Cummings hamiltonian) [21]. The relaxation and thermalization
of quantum systems, quantum chaos [23] and associated phenomena such as many-body
localization [24] and quantum scars [28] are the subject of growing interest among researchers.

Considering the variety of problems that could be addressed by quantum simulation, a
large number of approaches have been proposed to tackle them [29]. Focusing on spin models
such as the Ising model, three main implementations stand out:

• Superconducting circuits, as an implementation of the more general quantum com-
puter, are also suited to the simulation of spin systems. Three archetypal categories
of superconducting qubits can be distinguished, based on the quantity that encode the
quantum state: charge, flux and phase qubits [30]. This gives significant flexibility
in the simulation platforms that can be engineered, which translates into a variety of
simulated systems [31], such as Mott insulators in the strongly interacting regime [32]
or the dynamics of strongly-coupled light and matter [33].

• Trapped ions platforms [34] offer a high degree of control over the individual ions, along
with long coherence times (10ms-100 s depending on the implementation). The interac-
tion scales with the inter-atomic distance r as 1/rα with a tunable range 0 < α < 3,
hence a rather long-range interaction regime. These platforms are naturally suited
to study non-equilibrium dynamics. For instance, in [35], the transport of a spin flip
excitation in a chain of 15 ions was studied for various interaction parameters. The
correlations were demonstrated to spread faster than the Lieb-Robinson bound when
the couplings were beyond nearest-neighbor. Ion trapping was extended to 2D geome-
tries [36] with hundreds of atoms, offering the prospect of large-scale simulations.

• Neutral atoms in optical lattices can emulate very large systems of both fermions and
bosons. The loading of the lattice is carried with a gas of atoms in the quantum-
degenerate regime (Bose-Einstein condensate for bosons and Fermi-degenerate gas for
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fermions). So far, this regime has been achived with a wide variety of atomic species [37].
Ultracold atoms in optical lattices were used in early experiments, for intance to demon-
strate the quantum phase transition from a superfluid to a Mott insulator [38]. Single-
site resolution is now possible with quantum gas microscopes [39]. These platforms
offer a broad range of possibilities for quantum simulation [40, 41]. Among them we
can cite the possibility to easily introduce disorder on the lattice potential with an
optical speckle. This allowed for the study of the disordered counterpart of the Bose-
Hubbard model [42].

The idea of trapping neutral atoms in potentials created by light led to the demonstration
of single-atom trapping in optical tweezers [43, 44], using the dipole force. Initially, a single
tweezer was prepared by focusing a laser beam tightly, but the approach was fruitful and its
developpement lead to the preparation of large arrays of optical tweezers. The team of Mikhail
Lukin in Harvard was able to prepare and control a row of 100 tweezers by dynamically
multiplexing radio-frequencies in an acousto-optic deflector and focusing the many beams
with a microscope objective [45]. The use of spatial light modulation techniques in the
team of Antoine Browaeys at Institut d’Optique allowed for the preparation of 2D arrays of
∼ 100 tweezers [46]. The loading of optical tweezers being probabilistic, such large arrays
would be useless without the possibility to prepare deterministic configurations of atoms.
The development of atom rearrangement and transport with moving tweezers was therefore
concomitant to the increase of array size, now reaching several hundreds of atoms [47, 48].
More recent developments involved the preparation and assembly of 3D atomic structures [49,
50].

Traditionally, rubidium and cesium atoms, being easier to manipulate thanks to their
single valence electron, were used for tweezer trapping [43, 44]. Recent advances, mostly
related to laser technology, have opened the way for the trapping of other atomic species.
Alkali atoms such as potassium are now being used [51], but also species with more than one
valence electron, most notably strontium [52, 53] and ytterbium [54].

The inter-atomic distance of such atom assemblies is usually within the 2.5 – 15 µm range [55,
56, 57, 58, 59], too large to yield significant interactions for atoms close to the ground state.
However, the interactions become significant when the atoms are excited to a Rydberg state,
in which a valence electron occupies an orbital of high principal quantum number n. The
electron orbit, extending far from the ion core, gives rise to a large electric dipole-dipole
interaction Vdd between neighboring atoms, which can be tuned through the geometry and
external fields [60, 61]. We can distinguish two cases, depending on whether the interaction
is first or second-order.

The case of a first-order coupling between a pair of atoms in the dipole-coupled states
|r⟩ and |r′⟩ is associated to an exchange energy ⟨r, r′|Vdd |r′, r⟩ = C3/d

3, where d is the inter-
atomic distance. For an ensemble of atoms with coherent driving of the transition |r⟩ ↔ |r′⟩
(Rabi frequency Ω and detuning δ), the hamiltonian takes the form [62]

H/ℏ =
Ω

2

∑

i

σxi −
∆

2

∑

i

σzi +
∑

i<j

C3,ij

d3ij

[
σ+i σ

−
j + σ−i σ

+
j

]
. (1)

This XY hamiltonian is well suited to the study of excitation transport, and gives rise to a
variety of phenomena [63, 64]. In [56], de Leseleuc et al. take advantage of the anisotropic
dipolar interaction to achieve topologically-protected edges states on a chain of 14 atoms. The
model consists in a chain of spins with alternating weak and strong couplings between nearest
neighbors. The authors probe the energy spectrum through microwave spectroscopy in both
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the trivial (strong coupling at the edges of the chain) and the topological (weak coupling
at the edge). They observe the presence of edge states at zero energy in the topological
configuration, characterized by high occupancy on the two edge sites (see figure 1 (a)).

The quantum simulation protocols involving Rydberg atoms rather relie on the second-
order dipole-dipole interaction between atoms in the same Rydberg state |r⟩. The so-called
van der Waals interaction scales as 1/d6. The spin states are usually embodied by an atomic
ground state |g⟩ which is laser-coupled to a Rydberg state |r⟩. With the notations introduced
above for the Rabi frequency and detuning, the hamiltonian now takes the form [62]

H/ℏ =
Ω

2

∑

i

σxi −∆
∑

i

nzi +
∑

i<j

C6,ij

d6ij
ninj , (2)

where ni = (σzi + 1)/2. The strong van der Waals interaction leads to the well known dipole
blockade mechanism [65], illustrated in figure 1 (b), in which an atom excited to the Rydberg
state shifts the transition of nearby atoms out of resonance. This can be understood using
the blockade radius Rb =

(
C6
ℏΩ
)1/6: only one Rydberg excitation is allowed in a solid sphere

of radius Rb.
The dipole blockade has been used in a variety of contexts. It can be viewed as a way to

prevent a Rydberg excitation conditionally to the presence of a neighboring Rydberg atom,
and hence serves as the basis for proposals [66] and implementation [67, 68, 69] of C-NOT
and other quantum gates. The hamiltonian (2) can be mapped to the Ising model with a
transverse field. As such, it exhibits a variety of phases that have been probed in one- and
two-dimensional arrays of atoms. In [55], the authors access the Zn-ordered phases of a chain
of 13 atoms through a sweep of the driving laser parameters (see figure 1 (c)). Using the
full capability of their simulator, a chain of 51 atoms, they study the domain walls in the
Z2 and show the occurrence of oscillations between two many-body anti-ferromagnetic states
after a quench. Using a similar methodology of experimental parameters sweep, the build-up
of correlations was shown in three array geometries [57]. More recently, the observation of
a quantum spin liquid was reported on an array of 219 atoms arranged on the edges of a
Kagome lattice [58, 70], as shown in figure 1 (e). It is interesting to note the steady increase
over time of the number of atoms involved in those simulations, that now reach more that
200 [47, 48] (with tweezers arrays at least twice as large).

Quantum simulation with 3D structures has recently been published by the team of
Jaewook Ahn at KAIST who investigated the phase diagram of the Ising hamiltonian (2) in
Cayley-tree structures [59]. The Cayley graphs can be seen as a succession of shells with an
exponentially increasing number of vertices. In this study, the atomic structure has adjacent
shells spaced by distance d and in-shell inter-atomic distance ≥

√
3d (with equality for atoms

sharing a vertex). In the regime d < Rb <
√
3d, the authors observe experimentally the

expected ground state, which consist in shells alternating between ground-state atoms and
Rydberg atoms (see figure 1 (d)).

However, in all the implementations mentioned above, the simulation time is limited by
the Rydberg state lifetime and atomic motion [71]. The lifetime is about 100 µs for laser-
accessible states, and must essentially be divided by the system size, leading to effective
simulation times of a few µs. In a dual way, ground state atoms exhibit very long lifetimes
yet have only short-ranged interactions, which limit the hamiltonians that can be simulated.
Rydberg dressing has been proposed to circumvent these problems [72, 73, 74]. It either
improves the lifetime at the expense of the strength of interactions [75], or improves the
interactions strength at the expense of the lifetime [76]. This approach has been successfully
used to induce long-range spin-spin correlations in an optical lattice of ultracold atoms in [76].
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The dressing scheme used allowed to tune the interaction potential to yield anisotropic cor-
relations. The tunability of the interactions was further investigated with atoms in optical
tweezers in [77], with the engineering of programmable interactions for the very general XYZ
hamiltonian.

The Rydberg-based quantum simulation platforms mentioned above have been proposed
for the implementation of lattice gauge theories [78], and for finding a maximal independent
set of a graph [79]. Experimental investigations of the latter were carried recently [80]. Recent
advances in Rydberg-based quantum simulations have been reviewed in [62].
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Figure 1: Quantum simulation with Rydberg atoms. (a) Simulation of the SSH model on
a chain of 14 atoms. Topologically-protected edge states are characterized by a high occu-
pancy of the edge sites, and are identified by microwave spectroscopy only in the non-trivial
configuration. Adapted from [56]. (b) Illustration of the dipole blockade. Realizing multiple
Rydberg excitations is forbidden within a volume set by the blockade radius Rb. The width
γ of the transition is usually set by the Rabi frequency Ω. Figure taken from [81]. (c) Ap-
parition of Zn-ordered phases (from left to right: n = 4, 3, 2) through adiabatic preparation.
Adapted from [55]. (d) Quantum simulation with 3D structures. Top: schemes of the Cayley
trees studied in [59]. Center: fluorescence imaging of the structures; the blurred signal cor-
responds to atoms out of the imaging plane. Bottoms, Averaged images of the ground state
in the regime d < Rb <

√
3d; the dashed circles represent unoccupied sites, where an atom

was excited to the Rydberg state. Adapted from [59]. (e) Array of 219 atoms arranged on
the edges of a Kagome lattice used for the experimental realization of a spin liquid. Figure
taken from [58].
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All the above implementations use low-angular-momentum Rydberg states, thus suffering
from two main limitations. First, their lifetime limits the simulation duration to a few µs.
Second, the often-used red-detuned dipole traps used are repulsive to Rydberg atoms and
must be switched off during the actual simulation. The now free atomic ensemble either
collapses or explodes due to the van der Waals interaction, further reducing the achievable
simulation duration. Schemes for the trapping of Rydberg atoms have been proposed [82],
using the repulsive ponderomotive force exerted by the laser light on the almost free Rydberg
electron. This led to some experimental demonstrations [83, 69, 84, 85]. However, the interest
of low-l states trapping is limited due to their already short lifetime and the possibility of
photoionization decay [86, 87].

Maximal angular momentum Rydberg states, called circular, avoid some of the bottle-
necks mentioned above. These states have few allowed radiative transitions, which lie in the
microwave domain. Their lifetime, in the ms-range at 0K, decreases dramatically as the
temperature of the environment increases. For instance, the 29ms lifetime of |50C⟩ at 0K is
down to 9ms at 4K (typical temperature in a cryogenic environment) and further decreases
to 123 µs at 300K. Moreover, circular states are basically insensitive to photoionization, and
the effect of laser light is essentially reduced to the ponderomotive force [88].

These interesting properties led to the recent proposal of new quantum computation [89]
and simulation [90] platforms based on circular Rydberg atoms. Focusing on [90], the pro-
posed simulator realizes a 1D chain of N spin-1/2 subject to an XXZ hamiltonian

H/h =
∆′

2
(σz1 + σzN ) +

∆

2

N−1∑

j=2

σzj +
Ω

2

N∑

j=1

σxj +
N−1∑

j=1

[
Jzσ

z
jσ

z
j+1 + J(σxj σ

x
j+1 + σyj σ

y
j+1)

]
. (3)

The spin particles are embodied by circular Rydberg atoms in the states |48C⟩ and |50C⟩. A
principal quantum number difference ∆n = 2 was chosen in order to have both van der Waals
and exchange interactions of the same order, scaling as 1/d6 for an inter-atomic distance d.
These two contributions factor into the hamiltonian through the two parameters J and Jz
that represent respectively the exchange and van der Waals interaction.

The exchange parameter J sets the global energy scale of the XXZ hamiltonian and
is largely independent from the external fields. For the proposed simulator configuration,
with d = 5 µm, we have J = 17 kHz. The Ising coupling parameter Jz is controlled by
the applied electric and magnetic field and can be tuned from −2J to 2J , as shown in
figure 2 (b). The parameters ∆ and ∆′ on the one hand, and Ω on the other hand are
related respectively to the detuning and the amplitude of a microwave dressing of the pair
of circular states. The high degree of control over the parameters values, which can also
be tuned dynamically with high bandwidth, allow for a large range of possible simulation
protocols through Floquet engineering [91]. Among the possibilities offered by the simulator,
let us mention the exploration of the whole phase diagram of the system, with the study
of associated phase transitions, and out-of-equilibrium dynamics such as the relaxation and
thermalization after a quench.

However, such a versatility comes at a cost, characterized by the much lower interaction
energy scale, ∼ 10 kHz at the selected inter-atomic distance, as compared to MHz-range
interactions for other Rydberg atom-based simulators [55, 56, 57, 58, 59]. To compensate for
the reduced interaction, the implementation takes advantage of the long lifetime of circular
states. Following the idea [92] and experimental demonstration [93] of Kleppner, our group
proposes to further increase this lifetime by inhibiting the spontaneous emission of the circular
state. This is achieved by placing the atoms between the plates of a plane-parallel capacitor
with a spacing D < λ/2, where λ stands for the wavelength of the radiated microwave. In this
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Figure 2: Left: Artist view of the quantum simulation platform proposed in [90], with the
two main features highlighted. Atoms are trapped in a hollow Laguerre-Gauss mode of a
laser beam superimposed with the axial interference pattern from two contrapropagating
gaussian beams. The spontaneous emission is inhibited between the plates of a plane-parallel
capacitor. Right: Graph of the coupling ratio Jz/J as a function of the electric field. The
accessible range −2 < Jz/J < 2 allows to explore the whole phase diagram of the system.

configuration, a single-atom lifetime exceeding 50 s in the presence of interactions is expected
for the proposed setup, with the possibility to run simulations over 1 s for a 40-atom chain,
corresponding to ∼ 105 interaction cycles. Increasing the strength of interactions through a
decrease of d would reduce the lifetime unfavorably, but could be advantageous in regard of
other loss processes such as decoherence.

At such long lifetimes, even the free fall of atoms is significant, and their three-dimensional
trapping becomes a necessity. This is the second key feature of the proposition, that had
no experimental demonstration at the time of publication. The trapping, together with the
lifetime enhancement by spontaneous-emission inhibition, is illustrated in the artist view of
the simulator presented in figure 2.

However innovative it may be, this proposal is not exempt of difficulties. In order to
validate it experimentally and gather technical expertise on the various methods introduced,
the components of this complex simulator were identified and set for individual studies:

• A preliminary step was the preparation of circular states out of a cloud of cold 87Rb
atoms in a cryogenic environment (4K), with the recording of their evolution, that goes
through a complex population transfer, and the measurement of their coherence [94].
We obtained a lifetime T1 = 3.7ms, corresponding to an effective temperature of 11K
for the prepared circular state n = 52. The corresponding reversible and non-reversible
coherence times were measured as T ∗

2 = 37 µs and T2 = 270 µs, respectively. In the
course of this work, we identified key elements for the proper operation of the simulator.
On the one hand, a tighter control of electric and magnetic fields is necessary to reach
high coherence times. On the other hand, we have developed methods to reduce as
much as possible the residual microwave black-body and thermalize the environment
to 4K in order to improve the states lifetime.

• The experimental demonstration of bi-dimensional trapping of circular states ensued [85].
Using a hollow Laguerre-Gauss beam, we demonstrated the transverse confinement of
the circular Rydberg atoms cloud for 10ms.

• As mentioned above, the inhibition of spontaneous emission has been demonstrated
experimentally [93]. However, this was done on a thermal beam of atoms, while we aim
at maintaining them in the capacitor region. In this context, a study of the evolution of
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circular states inside a plane-parallel capacitor at room temperature has been carried
in a separate experiment by Haiteng Wu [95]. The use of an indium tin oxide-coating,
both transparent and conductive, for lifetime enhancement has been investigated. Its
use in our proposed simulator architecture would allow for a wider optical access to the
trapping region (see figure 2), thus facilitating the design.

I joined the team shortly after the publication describing this new quantum simulation
platform. The first two years of my Ph.D were dedicated to the preparation, characterization
and trapping of circular states in our cryogenic environment, as briefly summarized in the pre-
vious paragraph. This work was done together with Rodrigo Cortiñas, and Paul Méhaignerie
who joined us one year later. The description of the experiment, together with the results
and their analysis is presented in detail in Rodrigo’s thesis [96] and our two publications [94,
85].

For the continuation, it was decided to divert from the original scheme for atom trapping
and Rydberg chain preparation. Optical tweezers are increasingly common among research
teams to trap ground-state atoms, and offer the ever-growing possibilities mentioned above.
Their generation through spatial light modulation techniques was retained as the method of
choice to prepare arbitrary arrays of atoms. Its versatility allows one to produce a variety
of intensity patterns, such as hollow bottle beams that are well suited to the trapping of
individual Rydberg states.

Decision was thus made to build a mock up quantum simulator operating at room tem-
perature, using optical tweezers to trap ground state atoms, that would be catched in super-
imposed bottle beam traps after Rydberg excitation. Its purpose, as an intermediate stage
towards the definitive setup operating at cryogenic temperatures, was the demonstration of
the 3D trapping of individual circular Rydberg atoms and measurement of their interactions.
It would also allow us to gather technical experience on optical tweezers and spatial light
modulation techniques. In return for the increased flexibility offered by optical tweezers, the
inhibition of spontaneous emission is not implemented. Its requirements would bring un-
necessary complexity to the design, and its usefulness is limited at room temperature where
spontaneous decay is dwarfed by black-body-induced transitions.

Two main steps remained towards practical quantum simulation: the demonstration of
circular Rydberg states trapping, and the measurement of their dipole-dipole interaction.
In this context, the work presented in this manuscript pertains to the first part. We thus
describe the numerous stages that are involved in the preparation and trapping of circular
states.

There is one notable exception to the topics covered in this manuscript. The physics of
the spatial light modulation methods that are used for the preparation of optical tweezers is
eluded, as I was not involved in the this part of the experiment. The complete description of
the methodology and algorithms used is therefore deferred to a subsequent thesis [97].

The first chapter gives the theoretical framework on which this work is based. We briefly
introduce the physics of alkali Rydberg atoms, and especially circular states which have much
in common with the hydrogen atom. A general approach to the treatment of the coupling
of atoms to external fields is given, with the energy shifts associated to static magnetic and
electric fields. The interaction between atoms and radiation is at the core of our experimental
work. It is paramount to the dipole trapping of atoms in the ground state, and the subsequent
preparation and trapping of circular states. The trapping of atoms is new to our team, and
its physics is discussed in some detail.

The results presented here have been obtained with an almost entirely new experimental
setup. It was designed mainly by Maxime Favier, a former post-doctoral fellow, Clément
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Sayrin and Michel Brune. In the second chapter, we detail the design and how it accommo-
dates for the constraints imposed by the experiment.

The loading of circular Rydberg atoms in ponderomotive traps involves two intermediate
steps. The first step, that consists in loading ground-state atoms in an array of gaussian
tweezers, is described in the third chapter. We first introducing the optical detection of
trapped atoms and the methodology for signal analysis. We then characterize experimentally
the gaussian tweezers and introduce the measurement of lifetime and temperature.

The second step, addressed in the fourth chapter, is the Rydberg excitation and transfer to
the circular state. Although the procedure is similar to that described in previous works [98,
96], some important changes justify a dedicated chapter. Most notably, the possibility of
optical detection of atoms and the spatial resolution offered by the structured array bring
significant information that we discuss. This contrasts with the disordered excitation from
an atomic cloud in our cryostat setup, with state ionization as the sole detection method.
We finally measure the electric and magnetic field in the environment and characterize the
circular states thus produced by spectroscopic methods.

We finally demonstrate the ponderomotive trapping of circular states in the fifth and
last chapter. The traps produced are characterized both theoretically and experimentally
through the measurement of their transverse frequency. We also measure the evolution of
circular states in our room temperature environment, following the methodology introduced
in [96]. The possibility to trap circular states allows for their optical detection after de-
circularization to the ground state. We take advantage of the spatial resolution to further
characterize the circular states and their environment through Rabi oscillations and Ramsey
interferometry.
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Chapter 1

Elements of atomic physics and
introduction to Rydberg atoms

No, no! The adventures first, explanations take such a dreadful time.
— Lewis Carroll, Alice in Wonderland

We begin by introducing elements of the theory that underlie the physical results presented
in this thesis. This work is in line with the construction of the quantum simulation platform
briefly described in the introduction [90]. However, we focus here only on single-atom physics,
with the topic of interactions and many-body physics delayed to a subsequent work.

In this context, we begin by recalling the main characteristics and properties of Rydberg
atoms, and in particular of circular Rydberg atoms, which will embody the spin levels of
the proposed simulator. These states are characterized by a valence electron occupying an
orbit of high principal quantum number n. As such, they benefit from an extended lifetime
as compared to the low-lying excited states. Moreover, owing to the large spatial extension
of the Rydberg orbit, scaling as n2, the mutual dipole-dipole interaction between a pair of
atoms is exacerbated. This gives rise to the strong inter-atomic interaction that scales as
n11. This, together with their long lifetime, makes of Rydberg states a good platform for
quantum simulation.

A large part of this work discusses the trapping of individual atoms in both ground and
Rydberg states, which is new to our research team and has been introduced in [96]. The
theory behind dipole and ponderomotive trapping, in the general context of the coupling of
atoms to the electromagnetic field, is thus introduced here.

Other topics, pertaining to well established techniques or already covered in depth, are not
discussed here. A first stage of magneto-optic trapping and molasses cooling is necessary for
the preparation of individually trapped atoms. Those laser trapping and cooling techniques
are described in great detail in [99]. Resonance spectroscopy and coherent population transfer,
related to Rydberg excitation and state manipulation, are discussed in [100]. The radiative
lifetimes of Rydberg states and the related black body induced transitions are treated in [101].

As announced, the physics of the interactions between Rydberg states is not detailed here.
However, the occurrence of interactions is manifest in some of the experiments presented
thereafter. We thus briefly introduce interactions in the simple case of circular states, with
computations that serve as the basis for order-of-magnitude estimations.

11
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Let us stress that the elements of physical theory given in this chapter are only introduc-
tory and by no mean intended to be exhaustive. However, throughout the text, we will point
out the reader to references that the author considers to be the most relevant.

1.1 One valence electron: alkali Rydberg atoms

Our experiments use rubidium-87 as the atomic species. As an alkali atom, it can be assim-
ilated to an hydrogenoid system consisting of its valence electron orbiting around the ionic
core. For low-lying levels, the corrections to this approximation are important because of the
interaction with the core electrons. However, for highly excited Rydberg levels, the electron
charge density lies far from the ionic core which thus appears almost point-like. The hydrogen
atom, for which analytical computations are possible, is thus a good starting point to alkali
Rydberg physics, and allow us to introduce corrections arising from the relativistic nature
of the electron motion. The deviation to the hydrogen atom model can be understood from
the perspective of quantum defect theory, in which the structure of the ionic core is encom-
passed in quantities called quantum defects. This effect of the charge distribution of the core
becomes vanishingly small as the angular momentum of the valence electron increases. This
is the case, in particular, of circular states for which the angular momentum is maximal. In
this limit, the hydrogen atom provides again an appropriate description.

1.1.1 The simple system: hydrogen atom

In 1926, Erwin Schrödinger published his famous equation [102], describing the wave dynam-
ics for an electron in a Coulomb potential:

[
− ℏ2

2me
∆− e2

4πε0

1

r

]
ψ(r) = Eψ(r), (1.1)

where ℏ stands for the reduced Planck’s constant, ε0 the vacuum permittivity, me the electron
rest mass, and e the elementary charge. In this equation, the radial and angular motion can
be separated and the solutions ψ(r) can be decomposed in spherical coordinates as a radial
and angular component:

ψ(r, θ, ϕ) = Rl(r)Y
m
l (θ, ϕ). (1.2)

The functions Y m
l are the well-known spherical harmonics defined for integers l ≥ 0 and

m = −l, . . . , l. It is common practice to introduce the function yl(r) = rRl(r), which
satisfies the radial equation:

[
d2

dr2
− l(l + 1)

r2
+

2mee
2

4πε0ℏ2r
+

2meE

ℏ2

]
yl(r) = 0. (1.3)

Of particular interest are those solutions corresponding to bound states. Their eigenen-
ergies En, indexed by an integer n ≥ 1, can be expressed in terms of the Rydberg unit of
energy Ry:

En = −Ry

n2
, Ry = α2mec

2

2
=

e2

8πε0a0
, (1.4)

where we introduced the fine structure constant α and Bohr’s radius a0:

α =
e2

4πε0ℏc
, a0 =

4πε0ℏ2

mee2
. (1.5)
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The radial equation (1.3) can be re-expressed, using the above values of En as:
[
a20

d2

dr2
− l(l + 1)

a20
r2

+ 2
a0
r
− 1

n2

]
ynl(r) = 0. (1.6)

This equation can be used to derive the very useful Kramers recurrence relation between the
average values of powers of r (see appendix A):

s+ 1

n2
⟨rs⟩ − (2s+ 1) a0 ⟨rs−1⟩+ s

4

[
(2l + 1)2 − s2

]
a20 ⟨rs−2⟩ = 0. (1.7)

The eigenfunctions themselves write, in spherical coordinates:

ψnlm(r, θ, ϕ) = a
−3/2
0

2

n2

√
(n− l − 1)!

(n+ l)!
Fnl

(
2r

na0

)
Y m
l (θ, ϕ), (1.8)

with l = 0, . . . , n− 1. The radial part Fnl is

Fnl(x) = xle−
x
2L2l+1

n−l−1(x) (1.9)

involving the generalized Laguerre polynomials Lkp defined as:

Lkp(z) =

p∑

i=0

(−)i
(
p+ k

p− i

)
zi

i!
=

p∑

i=0

(−)i (p+ k)!

(p− i)!(k + i)!

zi

i!
. (1.10)

The bound states solutions ψnlm are indexed by three quantum numbers n, l and m. The
principal quantum number n characterizes the energy level of the state. The two angular
momentum quantum numbers (l,m) represent the total angular momentum and its projection
along the z-axis respectively. Additional energy shifts add-up to the gross structure energies
En, partially lifting their n2-degeneracy. To account for this observation, made on the atomic
transition spectra available at the time, a new quantum number, the electron spin (and its
projection) (s=1/2,ms) was introduced [103]. It behaves as an intrinsic magnetic moment
for the electron and couples as such with the surrounding magnetic field, giving rise to the
spin-orbit coupling. The latter is one of the corrections to the Schrödinger hamiltonian that
are necessary to accurately predict hydrogen transition frequencies. These additional energy
terms give rise to the so-called fine structure (of which the spin-orbit coupling is a part),
hyperfine structure and radiative corrections.

The fine structure terms, along with the electron spin, arise naturally from the relativistic
treatment of the electron motion as given by the Dirac equation [104]:

[γµ(i∂µ − eAµ)−me] Ψ = 0. (1.11)

They can be expanded in power series of α2. To first order, three terms arise:

• The next-to-leading order correction to the relativistic kinetic energy;
• The spin-orbit coupling. It is the most important term as it involves the electron spin;
• The Darwin term.

Taking into account the structure of the nucleus and its dynamics in the treatment of the
hydrogen atom also leads to some energy corrections. Of the many contributions that arise,
we consider only the two most important. The finite mass M of the nucleus causes corrections
of the order of me/M , which for rubidium, are of the order of 10−5. The atomic nucleus also
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has a magnetic moment M associated to its spin I. The interaction of the electron with the
field produced by this magnetic moment gives rise to the (dipolar) hyperfine splitting.

Finally, the quantum nature of the electromagnetic field gives rises to radiative corrections.
This effect was first observed as a splitting of the 2S1/2 and 2P1/2 levels of hydrogen, known
as the Lamb shift [105]. Radiative corrections also contribute to the electron g-factor in what
is known as the anomalous magnetic moment.

We now give the expressions for the fine structure terms, the finite nuclear mass correc-
tions, the hyperfine hamiltonian and the radiative corrections.

Relativistic correction to the kinetic energy

The relativistic kinetic energy writes

T =
√
p2c2 +m2

ec
4 −mec

2 =
p2

2me
− p4

8m3
ec

2
+ · · · . (1.12)

The first term is the usual non-relativistic kinetic energy, already present in the Schrödinger
equation (1.1). The second term gives the correction, which can be evaluated using first-order
perturbation theory from the relation

p4 ≃ 4m2
e(H0 − V (r))2, (1.13)

where H0 is the Schrödinger hamiltonian of eq. (1.1). This gives

⟨ψnlm| p4 |ψnlm⟩ = 4m2
e

[
E2
n − 2En

e2

4πε0
⟨r−1⟩+

(
e2

4πε0

)2

⟨r−2⟩
]
. (1.14)

Substituting ⟨r−1⟩ and ⟨r−2⟩ for their explicit value (see appendix A), we finally get

⟨ψnlm|
p4

8m3
ec

2
|ψnlm⟩ = −

α4mec
2

2n3

[
1

l + 1/2
− 3

4n

]
. (1.15)

Spin-orbit coupling

The spin-orbit hamiltonian writes, in the case of a central potential V (r) = V (r) [104]:

HSO =
gS

4m2
ec

2

1

r

dV

dr
(S · L) . (1.16)

We make the electron g-factor appear explicitly to take into account the anomalous moment1.
This expression is valid for any well-behaved central potential, in particular the effective
potential resulting from the partial screening of the nucleus charge by the core electron cloud
when considering many-electrons atoms. In the case of a Coulomb potential (hydrogen atom),
V (r) = e2

4πε0r
, we have

1

r

dV

dr
=

e2

4πε0

1

r3
. (1.17)

This gives the expression of the spin-orbit hamiltonian for the hydrogen atom:

HSO =
ℏαgS
2m2

ec

(S · L)
r3

. (1.18)

1The Dirac theory gives gS = 2
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To evaluate the S · L term, the total angular momentum J = L + S is introduced, and we
have

S · L =
1

2

(
J2 − L2 − S2

)
. (1.19)

To this new operator J we associate the quantum numbers (j,mj), with j = l± 1/2. Substi-
tuting r−3 for its average (see appendix A) and using eq. (1.19) in eq. (1.18) yields:

⟨HSO⟩ =
α4mec

2gS
4n3

[
j(j + 1)− l(l + 1)− 3/4

l(l + 1/2)(l + 1)

]
. (1.20)

Darwin term

The Darwin term writes [104]:

HDarwin =
ℏ2

8m2
ec

2
∆V =

ℏ2e2

8m2
ec

2ε0
δ3(r). (1.21)

This term shifts only the states with zero orbital angular momentum, as the corresponding
wavefunctions do not vanish at the origin. Noting that

ψn, l=0,m=0(0) =
2√
4π

(na0)
−3/2 , (1.22)

we get at first order, using the notation δl,0 for the Kronecker delta,

⟨ψnlm|HDarwin |ψnlm⟩ =
α4mec

2

2n3
δl,0. (1.23)

Assuming gS = 2, the three fine-structure terms sum up to give a simple formula for the
total energy shift:

∆Efs =
α4mec

2

n3

[
3

8n
− 1

2j + 1

]
. (1.24)

Nuclear motion

The usual procedure to transform a two-particle problem to two one-particle problems is to
separate the center-of-mass motion of the system. In doing so, we consider the dynamics
of a fictitious particle in the rest frame of the system. For the non-relativistic Schrödinger
equation (1.1), this amounts to replace the electron mass with the reduced mass:

µ =
Mme

M +me
. (1.25)

Such a procedure is, however, only rigorously possible in a non-relativistic context. Nev-
ertheless, it is valid as the electron motion is almost non-relativistic, and gives the correct
correction to leading order in me/M . The substitution me → µ in all the above energy
terms (Bohr energies and fine-structure terms), that corresponds to the classical separation
of center-of-mass motion, is therefore the first (and main) change to account for the finite
nuclear mass. Another contribution comes from the apparition of an new term [106]:

Enuc
n = −α

4m2
ec

2

8Mn4
. (1.26)
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Hyperfine structure

The hyperfine structure arises from the interaction of the electron with the inhomogeneous
component of the field generated by the nucleus. We consider here only the magnetic dipole
interaction with the nuclear moment M. It consists in two terms: the nuclear spin-electron
orbit coupling H(a)

D and the spin-spin coupling H(b)
D :

H
(a)
D = − 2

4πε0c2
M·µL
r3

, (1.27)

H
(b)
D = − 2

3ε0c2
M·µS δ3(r)−

1

4πε0c2
1

r3

[
3
(
M· r

r

)(
µS ·

r

r

)
− (M·µS)

]
. (1.28)

Here we have denoted µL and µS for the electron orbital and spin magnetic moment, re-
spectively. Together with M, they can be expressed in a standard form in terms of Bohr’s
magneton,

µB =
ℏe
2me

≃ h× 1.4MHzG−1, (1.29)

as:
µL = −µB

ℏ
gLL, µS = −µB

ℏ
gSS, M =

µB
ℏ
gII. (1.30)

We introduced the notation gL, gS and gI for the electron orbital, spin and nuclear2 g-factors
respectively [107]. Substituting and taking the average as for the fine-structure, we obtain:

⟨H(a)
D ⟩ =

α4mec
2

2n3
gIgL

l(l + 1/2)(l + 1)
⟨I·L⟩, (1.31)

⟨H(b)
D ⟩ = δl,0

8α4mec
2

3n3
gIgS
ℏ2
⟨I·S⟩+ α4mec

2

4n3
gIgS

l(l + 1/2)(l + 1)

〈
3
(
I· r
r

)(
S· r
r

)
− (I·S)

〉
.

(1.32)
Further treatment is required to compute the remaining averages, but the above expres-

sions are enough to estimate the order of magnitude of the hyperfine splitting of levels.

Radiative corrections and Lamb shift

Radiative corrections arise from the interaction of the electron with the quantum electro-
magnetic field. In the language of quantum electrodynamics, these interaction terms add
loop diagrams to the electron propagator in the presence of the external field. This brings
some finite energy corrections that are state-dependent. For the sake of completeness, we
report here the expressions of the Lamb shift to leading order [108]. Two cases must be
distinguished, depending on the orbital angular momentum l of the state:

δE(n, j=1/2, l=0) = −4α5mec
2

3πn3

[
ln

(
mec

2

2∆E(n, l=0)

)
+

19

30

]
, (1.33)

δE(n, j, l) = −4α5mec
2

3πn3
ln

(
2∆E(n, j, l)

α2mec2

)
+

α

2π

α4mec
2

2n3

[
j(j + 1)− l(l + 1)− 3/4

l(l + 1/2)(l + 1)

]
.

(1.34)

The second term of the energy shift in the case l ̸= 0 represents a correction α
2π to the

electron spin g-factor (compare with eq. 1.18). The quantities ∆E(n, j, l) must be computed
2We define it with respect to µB rather than the nuclear magneton µN = ℏe

2mp
to keep the common factor

and avoid introducing the proton mass mp.
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numerically and are of the same order as the Rydberg excitation energy Ry. They are
roughly constant as n increase, but decrease rather fast with l. From [109], the logarithmic
term ln

(
2∆E(n,j,l)
α2mec2

)
has a dependency that scales roughly as l−2, which is validated for l ≤ 7

from the numerical computations carried in [110]. Its value is of the order of unity for n = 0,
l = 0 in the case of hydrogen.

Wrap-up

We have given the corrective terms to the simple Bohr energies of eq. (1.4) for the hydrogen
atom. This concludes the description of this simple system to which, as we will see, the
circular states are related. We anticipate that these terms, scaling as n−3, will be small for
Rydberg states.

The resolution of the Schrödinger and Dirac equations along with the derivation of the
fine and hyperfine structure terms of the non-relativistic atomic hamiltonian can be found
in [104, 111]. For a more synthetic approach to the resolution of the Dirac equation, with
application of quantum electrodymanics to the radiative correction to the energy, see [108].

1.1.2 Rydberg states

We now turn to the more specific description of alkali Rydberg states, for which the principal
quantum number n is large (in our experiment, we work with n ∼ 50). The main complication
to the hydrogen atom model is the presence of core electrons that causes additional energy
shifts to the levels. In this introduction to the Rydberg states, we return to the situation
of a non-relativistic electron in the (spherically symmetric) potential U(r) generated by the
nucleus and its procession of core electrons:

[
− ℏ2

2me
∆+ U(r)

]
ψ(r) = Eψ(r). (1.35)

When the electron is far from the core, that is, as r → ∞, it is exposed to the Coulomb
potential resulting from the residual unit charge of the ion. On the other hand, when ap-
proaching the nucleus, r → 0, the potential becomes that of the nucleus itself, with its Z
charges. In other words, the potential U is subject to the boundary conditions

U(r) ∼
r→0
− Ze

2

4πε0

1

r
, U(r) ∼

r→∞
− e2

4πε0

1

r
. (1.36)

To get an insight on the influence of the core electrons on the Rydberg levels, we consider
the radial extension of the wavefunction in the case of a Coulomb potential. We recall from
appendix A that:

⟨r⟩ = a0
2

[
3n2 − l(l + 1)

]
, (1.37)

⟨r2⟩ = a20
2
n2
[
5n2 + 1− 3l(l + 1)

]
. (1.38)

The expression of ⟨r⟩ reveals that the electron orbit is located at a distance r ∼ n2a0 from
the nucleus. This n2 scaling makes the size of highly excited states huge as compared to the
ground state, for instance for n = 50, the orbit extends over 200 nm. We can also determine
the standard deviation of r:

∆r =
√
⟨r2⟩ − ⟨r⟩2 = a0

2

√
n2(n2 + 2)− l2(l + 1)2. (1.39)
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This expression can be analyzed in two limit cases. First consider a zero angular momentum
state, l = 0, for which we have

∆r ∼ n2a0
2
,

∆r

⟨r⟩ ∼
1

3
.

This result is interpreted as the fact that the orbit of the electron always gets close to
the nucleus, independently of the energy (characterized by n). Now consider the opposite
situation of a maximal angular momentum state l = n− 1, which gives

∆r ∼
√
2n3/2

a0
2
,

∆r

⟨r⟩ ∼
1

3

√
2

n
.

Here we see that the relative extension of the orbit vanishes as n → ∞, limit at which the
electron is located on a shell of radius ∼ n2a0. One recovers here the classical limit of circular
orbits, in which the electron sees only the potential U(r) in its Coulomb limit.

Low-angular-momentum Rydberg states

The treatment of low-angular-momentum (low-l) Rydberg states is the most difficult since,
as we have seen, the Rydberg electron is sensitive to the electronic structure of the ionic core.
Starting from eq. (1.35), it is common practice to split the radial and angular components,
noting that the latter is not altered by the modified potential U(r). Thus, the effect of the core
electrons in encompassed in the radial part of the Rydberg wavefunction. More specifically,
the energy deviation with respect to the hydrogen limit comes from the small fraction of the
wavefunction that comes in contact with the ionic core. In this region, the potential increases
and so does the kinetic energy, which leads to the accumulation of a phase. Quantum Defect
Theory [112] (QDT) links this phase to the energy shift to the Rydberg state caused by the
core electron cloud.

Set ρ = r/a0 and introduce ynl(ρ) = ρRnl(r). Within the frame of QDT, the radial
equation for the Rydberg wavefunction can be written [113, 101]

[
d2

dρ2
− l(l + 1)

ρ2
+

2

ρ
− 1

n∗2

]
ynl(ρ) = 0. (1.40)

In this equation, the principal quantum number n is replaced by the non-integer effective
value3 n∗ that encompasses the deviation of the potential from the Coulomb potential near
the origin. The difference δnlj = (n−n∗) is called the quantum defect. It is usually expanded
as a power series

δnlj = δ
(0)
lj +

δ
(2)
lj(

n− δ(0)lj

)2 + · · · , (1.41)

with the parameters δ(p)lj independent of n.
The quantum defects are related to the energy shift of Rydberg levels with respect to the

hydrogen model:

E∗
nlj = −

Ry

n∗2
= − Ry

(n− δnlj)2
. (1.42)

3Another approach (see [114, 115] for instance) consists in also replacing the angular momentum quantum
number l by an effective value l∗. This is particularly relevant if we assume that the deviation to the Coulomb
potential is ∝ 1/r2.
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They are determined experimentally by spectroscopic measurements [116]. Their knowledge
allows for the resolution of the radial equation (1.40) and determination of corresponding
matrix elements. The quantum defects parameters (δ

(0)
lj , δ

(2)
lj ) have been measured up to

l = 4 for 85Rb [117, 118]. They differ little from the corresponding 87Rb values that have
been measured [119, 120]. As the angular momentum l increases, the electron interacts less
and less with the ionic core. The scaling of the quantum defect goes as l−5 for l ≥ 4 [101].

More precisely, for l ≥ 5, the energy shift can be written as

δEn,l ≃ −2δ(0)l≥5

Ry

n3
, (1.43)

where we can estimate

δ
(0)
l≥5 ≃ δ

(0)
l=4

(
4

l

)5

. (1.44)

Circular Rydberg states: hydrogen-like states

We have a special interest in Rydberg states of maximal angular momentum l = n − 1
and |m| = l, called circular Rydberg states. As indicated above, the wavefunction of these
states never penetrates the core electron cloud, hence the associated quantum defect vanishes.
The hydrogen atom model is fully valid here, and the corresponding wavefunction takes a
particularly simple form:

ψnC(r, θ, ϕ) =
1√
πa30

1

nn!

(
− r

na0
eiϕ sin θ

)n−1

exp

(
− r

na0

)
. (1.45)

We now introduce another classification of hydrogen states that preserves the axial sym-
metry at the expense of the spherical symmetry. This is particularly useful when the latter
is broken, for instance by the introduction of a directing electric field. As a consequence,
the operator L2 does not commute anymore with the hamiltonian. The total angular mo-
mentum l is no longer a good quantum number and the remaining labeling of states with
n,m becomes incomplete. To circumvent this, the Schrödinger equation can be solved in
parabolic coordinates, which distinguish naturally a particular direction in space [111]. It is
also possible to introduce, in spherical coordinates, the Runge-Lenz vector [121]:

An =
n

mecα

[
1

2
(p× L− L× p)− e2me

4πε0

r

r

]
. (1.46)

This operator commutes with the hamiltonian (provided that the potential is coulombic),
albeit not with L. We therefore introduce the two operators:

J
(n)
1 =

1

2
(L+An), (1.47)

J
(n)
2 =

1

2
(L−An). (1.48)

These operators commute with the hamiltonian, and with each other. Moreover, they both
satisfy (α = 1, 2):

(J(n)
α )2 = ℏ2

n2 − 1

4
, (1.49)

[(J (n)
α )i, (J

(n)
α )j ] = ϵijk iℏ(J

(n)
i )k, (1.50)
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where ϵijk is the completely antisymmetric tensor. The operators J(n)
α represent two angular

momenta jα = (n− 1)/2, mα = −jα,−jα + 1, . . . , jα − 1, jα. The n2 states corresponding to
a given principal quantum number n can now be labeled4 as |n,m1,m2⟩. For a more intuitive
classification of the states, we note that m = m1 +m2 and define a new quantum number
k = m1 −m2. The levels in the Rydberg manifold for a given n, without fine and hyperfine
structure, are presented in figure 1.1. The arrows indicate levels with constant m1 or m2.
Circular states are indicated which correspond to m1 = m2 = ±j = ±n−1

2 or equivalently, to
m = n − 1. Nearby levels, with large but not maximal m, are called elliptical states. They
are also well described by the hydrogen model and are of interest since they are accessible by
microwave spectroscopy from circular states.

m = 1− n 2− n 3− n −1 0 1 n−1n−2n−3

k=2

k=0

k=-2

k=1

k=-1

k=0

k=n - 2

k=2 -n

k=n - 4

k=4 -n

k=n - 1
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k=n - 3
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j = n−1
2

k

m

circular
state

elliptical
states

Figure 1.1: Level structure for hydrogen in the Rydberg manifold, without fine and hyperfine
structure.

As we will see, the states labeled as |n,m, k⟩ are well suited to express the energy shift
in the presence of an external field. Let us note, however, that the Runge-Lenz vector does
not commute anymore with the hamiltonian when the potential is not Coulombic. The
above classification is therefore rigorously valid only for the hydrogen atom or, in the case of
rubidium, for levels with sufficiently high angular momentum (so that the potential becomes
effectively Coulombic). We nevertheless retain the given indexation with quantum numbers
|n,m, k⟩, keeping in mind that k is not related anymore to an observable for low-l states.

1.1.3 Estimation of the corrective energy terms for circular states

We turn to the estimation of the shifts caused by the corrective terms to the Bohr energy
described in section 1.1.1 for circular states. To fix the ideas, we compute the values for the
n = 50 circular state and consider the differential shift ∆E = En=51 − En=50.

4We recover n2 = (2j1 + 1)(2j2 + 1)
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• Fine structure (1.24). The fine structure shift is 7.3 kHz, with a corresponding differ-
ential shift of 560Hz.

• Spin-orbit level splitting (1.20). The energy splitting between levels |nC,ms = +1/2⟩
and |nC,ms = −1/2⟩ is 573Hz for n = 50 and 519Hz for n = 51, hence a splitting of
54Hz for the transitions corresponding to the two spin states. The spin-orbit coupling
can be significant for low-l states, with splittings usually in the range [101] 1 - 10MHz.
This explained by the increase of the potential from its asymptotic form ∼ 1/r to
its ∼ Z/r behavior at the origin that results in an important gradient.

• Nuclear motion term (1.26). This term is completely negligible, with a shift of 0.05Hz.

• Hyperfine structure (1.31-1.32). To estimate this quantity, we use the quoted value [107]
gI ≃ −0.001. We also have gL = 1 and assume gS = 2 for simplicity. The hyperfine
splitting constant is thus −0.01Hz, again completely negligible for circular states.

• Radiative corrections (1.33). Excluding the anomalous magnetic moment of the elec-
tron, the radiative correction prefactor is 8.7 kHz, with a differential value of −500Hz.
However, the “excitation energy” ∆E(n, j, l) further reduces the effect. With the l−2

dependence announced above, the residual effect is approximately 1Hz, also a negligible
contribution.

• Quantum defect (1.43). From [118], we have δ(0)l=4 = 0.004. Using the scaling law of
eq. (1.44) a shift of 763Hz and an associated differential of 113Hz. The effect is of the
same order as the fine-structure splitting.

1.2 Coupling to external fields

The general procedure to treat the problem of an atom in an external electromagnetic field
consists in introducing the corresponding four-potential (φ/c,A) in the wave equation. For
instance, including the contribution from the electron spin S, the Schrödinger equation be-
comes [104]:

[
1

2me
(p+ eA)2 − eφ(r)− e2

4πε0r
+
µB
ℏ
gS(S ·B)

]
ψ = Eψ, (1.51)

where B = ∇×A is the magnetic field.

1.2.1 Static magnetic field: Zeeman and Paschen-Bach effects

To a constant magnetic field B we can associate the vector potential A(r) = 1
2B× r, which

gives

(p+ eA)2 = p2 + eB · (r× p) +
e2

4
(B× r)2. (1.52)

We drop the quadratic diamagnetic term5 ∝ B2 and note that r× p = L to obtain:

(p+ eA)2 = p2 + eL ·B. (1.53)

5To justify this approximation, compare the linear and quadratic terms. The condition is e2

me
B2r2 ≪ µBB.

We have r2 ∼ a2
0n

4, and using the expression of µB, the condition becomes B ≪ ℏ
a2
0en

4 = 2.35 · 109 G. For a
field of 10G, the equality is attained for n = 123, well above our typical values n ≃ 50.
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The effect of the magnetic field is to couple to the angular momentum of the atom. Omitting
the contribution from the nuclear spin, the hamiltonian describing the interaction with the
magnetic field is thus

HB =
µB
ℏ

(gLL+ gSS) ·B. (1.54)

The orbital g-factor in this hamiltonian must take into account a correction from the finite
nuclear mass M , and writes, at first order [111]:

gL = 1− me

M
. (1.55)

The effect of the presence of a magnetic field on the atom depends on the strength of the
spin-orbit coupling that we write

HSO =
∆ESO

ℏ2
(S · L) . (1.56)

The weak field limit, HB ≪ HSO, corresponds to the (anomalous) Zeeman effect, and the
strong field limit is known as the Paschen-Bach effect. The general case requires the explicit
diagonalization of the hamiltonian in each l subspace [111].

Zeeman effect

We consider HB as a perturbation to HSO, which is the case for instance of low-l states with
l ≤ 2. As seen in section 1.1.1, the spin-orbit hamiltonian is diagonal in the basis |l, j,mj⟩
with

⟨l, j,mj |HSO |l, j,mj⟩ = ∆ESO [j(j + 1)− l(l + 1)− 3/4] . (1.57)

We can rewrite HB using L = J− S:

HB =
µB
ℏ

(gLJ+ (gL − gS)S) ·B. (1.58)

To compute the average value ⟨l, j,mj |S |l, j,mj⟩, we use the identity

1

2

[
J2,
[
J2,S

]]
=
(
J2S+ SJ2

)
− 2J (J · S) . (1.59)

Evaluating the expectation value of the above expression, the left hand side vanishes, and we
get

⟨l, j,mj |S |l, j,mj⟩ = ⟨l, j,mj |J |l, j,mj⟩
j(j + 1)− l(l + 1) + 3/4

2j(j + 1)
. (1.60)

Taking the quantization axis along B, we finally have:

⟨l, j,mj |HB |l, j,mj⟩ = BµBgJmj , (1.61)

with gJ the Landé factor given by:

gJ = gL + (gL − gS)
j(j + 1)− l(l + 1) + 3/4

2j(j + 1)
. (1.62)

The treatment in the presence of the hyperfine coupling is similar.
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Paschen-Bach effect

When HB dominates, the appropriate basis is |l,ml,ms⟩, in which we have

⟨l,ml,ms|HB |l,ml,ms⟩ = BµB (gLml + gSms) . (1.63)

The spin orbit coupling is a perturbation which diagonal elements are, in the same basis,

⟨l,ml,ms|HSO |l,ml,ms⟩ = ∆ESOmlms. (1.64)

1.2.2 Static electric field: Stark shift

To a static electric field F we can associate the potential φ(r) = −r·F. The Stark hamiltonian
is thus:

HS = −eφ(r) = −d · F, (1.65)

where d = −er is the dipole operator. Contrary to the magnetic field which couples linearly
only to the angular motion of the electron, the electric field also couples with the radial
motion. This causes the mixing of states within larger subspaces, and therefore a more
complex evaluation of the resulting energy shift. An important remark comes from the fact
that the the potential φ(r) has no lower bound and therefore the corresponding Schrödinger
equation has no square-integrable solution. Nevertheless, the ionization rate is vanishingly
small for sufficiently low fields, which allows for the perturbative treatment of HS .

The operator r is a vector operator – a rank-1 irreducible tensor – and Wigner-Eckart
theorem [104] can be used to decompose the corresponding matrix elements. For this, the
operator r is decomposed in standard components rq with q = 0, ±1. These write

r+1 = −
1√
2
(x+ iy), r0 = z, r−1 =

1√
2
(x− iy), (1.66)

or, using the definition of spherical harmonics,

rq = r

√
4π

3
Y q
1 . (1.67)

Some algebra is required in order to express the matrix elements ⟨τ, j,m| rq |τ ′, j′,m′⟩, where
τ , τ ′ identify with the remaining quantum numbers defining the basis. In the simple case of
a spinless system, τ = n and j = l, relevant when the spin-orbit coupling is negligible, the
matrix elements take the form

〈
n, l,m |rq|n′, l′,m′〉 = (−)m

〈
n, l
∥∥r
∥∥n′, l′

〉√
(2l + 1)(2l′ + 1)

(
l 1 l′

0 0 0

)(
l 1 l′

m −q −m′

)
.

(1.68)
In this expression the Wigner 3-j symbols were used. Their symmetries yield the following
selection rules:

l = l′ ± 1, (1.69)
m = m′ + q. (1.70)

A notable property of the Stark shift arises from the symmetries of HS . To fix the
ideas, we assume the field F to be along the z-direction, the Stark hamiltonian then writes
HS = ezF with F = ||F||. It is invariant by rotation Rz(ϕ) around the z-axis, and also
by reflection S through any plane containing the z-axis. The operators associated to these
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transformations are respectively Jz, the z-component of the total angular momentum6, and
S. The invariance of HS translates into the commutation relations

[HS , Jz] = 0, [HS , S] = 0. (1.71)

From the first relation, we see that the projection m of the angular momentum is a good
quantum number. We can therefore consider eigenvectors |m⟩ of both HS and Jz:

HS |m⟩ = Em |m⟩ , Jz |m⟩ = m |m⟩ . (1.72)

The relation SRz(ϕ)S = Rz(−ϕ) translates into the anti-commutation relation

S Jz S = −Jz. (1.73)

Since [HS , Jz] = 0, the projection m of the angular momentum is a good quantum number.
We also have

Jz(S |m⟩) = −SJz |m⟩ = −m(S |m⟩), (1.74)

hence S |m⟩ = |−m⟩. Since S commutes with HS , we have

HS |−m⟩ = HSS |m⟩ = SHS |m⟩ = SEm |m⟩ = Em |−m⟩ .
As a consequence, the Stark hamiltonian keeps the states |m⟩ and |−m⟩ degenerate. The
shift is only dependent on the absolute value |m| of the angular momentum.

Stark shift for the hydrogen atom

The evaluation of the dipole matrix elements of eq. (1.68) is not trivial, and turns out to
be simpler in the parabolic basis introduced in section 1.1.2. Using perturbation theory, the
Stark shift is expanded as a power series of the electric field F

∆EStark = α(1)F + α(2)F 2 + α(3)F 3 + · · · . (1.75)

The Stark hamiltonian in the parabolic basis is already diagonal at first perturbation order
and the α coefficients write simply as a function of the {n,m, k} quantum numbers [111]:

α(1) =
3kn

2
ea0, (1.76)

α(2) = −n
4

32
(17n2 − 9m2 − 3k2 + 19)

(ea0)
2

Ry
, (1.77)

α(3) =
3kn7

128
(23n2 + 11m2 − k2 + 39)

(ea0)
3

Ry2
, (1.78)

where Ry is the Rydberg energy defined in eq. (1.4). As expected from the symmetry ar-
gument of the above section, the coefficients α(i) are dependent only on the absolute value
|m| of the angular momentum m. These formulas are valid for alkali Rydberg atoms in the
domain where the quantum defect becomes negligible, which corresponds to m≳ 7.

Although this approach gives satisfactorily results, the rapid increase of available com-
putational power over time makes it less and less relevant for quantitative estimation of the
Stark shift or other perturbations. This is especially true as the precision of experimental
measurements tends to increase, which can only be accounted for by including more contri-
butions to the hamiltonian. Recently published Rydberg atoms computation packages [122,
60] are well-suited for this. They proceed essentially by brute-force diagonalization of the
hamiltonian in a finite-size Hilbert space. They thus get the perturbations to all orders, only
limited by the cutoff imposed on the Hilbert space dimension.

6This is actually the generator of the group of operators associated to the rotations Rz.
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1.2.3 Dipole-dipole interaction

The response of a given Rydberg state to the electric field produced by the dipole moment of
another atom in the Rydberg state gives rise to the dipole-dipole interaction. The correspond-
ing hamiltonian is very similar to the spin-spin coupling of the hyperfine hamiltonian (1.32).
For a pair of atoms with dipole moment di, i = 1, 2 and inter-atomic vector R12 = R12n12,
the dipole-dipole coupling reads7 [123]

Vdd =
1

4πε0R3
12

[d1 · d2 − 3(d1 · n12)(d2 · n12)] . (1.79)

This operator is an irreducible tensor operator of rank 2, and as such can be decomposed as
a sum of five standard components:

Vdd =
1

4πε0R3
12

×
5∑

i=1

Ai(θ, φ)fi(d1,d2), (1.80)

where the angles θ, φ parametrize the unit vector n12 in spherical coordinates and fi(d1,d2)
represents the i-th standard component of the operator. The matrix elements associated to
this operator are quite complex, especially in the presence of spin-orbit coupling. Their full
expression can be found in [123]. The expressions nevertheless simplify in the absence of
spin-orbit coupling, such as for circular states.

Let us now consider the dipole operator as a perturbation. For pairs of single-atom
eigenstates |a1, a2⟩ and |b1, b2⟩, the matrix elements

⟨a1; a2|Vdd|b1; b2⟩ =
1

4πε0R3
12

×
5∑

i=1

Ai(θ, φ) ⟨a1; a2|fi(d1,d2)|b1; b2⟩ (1.81)

are subject to the dipole selection rules for each atom. In particular the matrix element vanish
when both atoms are in the same state, that is, when a1 = a2 = b1 = b2. The dipole coupling
can nevertheless become dominant in some cases. For instance, when the coupled states are
degenerate pairs |a; b⟩ and |b; a⟩, the term8 ⟨a; b |Vdd| b; a⟩ = Aab3 /R

3, called exchange term,
causes an energy shift

±∆E(1)
ab = ±A

ab
3

R3
, (1.82)

associated to the new eigenstates

|ϕ±⟩ =
1√
2
(|a; b⟩ ± |b; a⟩) . (1.83)

For a pair of atoms in the same state, we must go to second order perturbation theory to
determine the energy shift:

∆E(2)
aa =

∑

|c;d⟩

⟨a; a |Vdd| c; d⟩ ⟨c; d |Vdd| a; a⟩
Ea + Eb − Ec − Ed

=
Caa6
R6

12

, (1.84)

where Eα is the energy of the single-atom state |α⟩. Exchange is also possible at second
order, and leads to a coupling

∆E
(2)
ab =

∑

|c;d⟩

⟨a; b |Vdd| c; d⟩ ⟨c; d |Vdd| b; a⟩
2Ea − Ec − Ed

=
Aab6
R6

. (1.85)

7We do not take retardation effects into account.
8We switch to the simpler notation R for the interatomic distance R12
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Focusing on circular Rydberg states |nC⟩, denoted |n⟩ for simplicity, the most important
couplings to consider are:

• An,n+1
3 , the first-order coupling that gives rises to the flip-flop between circular states

with ∆n = 1;

• Cn,n6 , the second-order shift for a pair of atoms in the same state;

• Cn,n+2
6 , the second-order shift for a pair of atoms in circular states with ∆n = 2;

• An,n+2
6 , the second-order exchange for a pair of atoms in circular states with ∆n = 2;

The last three terms are at the heart of the proposal for the new quantum simulation platform
published by our group [90]. We show in figure 1.2 some the above quantities in the conditions
relevant to our experiments. The electric field F = 2V cm−1 and magnetic field B = 7G
correspond to our experimental conditions. We evaluate the energies as a function of the
angle θ between the interatomic axis and the quantization axis, with an interatomic distance
R = 15 µm (see figure 1.2 (a)).
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Figure 1.2: Interaction between circular states. (a) Field and geometric configuration for the
computation. The inset shows the orientation of the circular states in our experiment. (b)
Energy shift Cn,n6 for n = 52 and n = 50. (c) Exchange term An,n+1

3 between 52C and 51C.
Note the scale difference: the first-order coupling is three orders of magnitude larger. The
computations were carried by exact diagonalization of the hamiltonian in a basis of 8281 pair
states.

The energy shift for a pair of atoms in the same circular state is presented in figure 1.2 (b).
It lies in the kHz range, and is thus relatively weak. The shift “per atom” on the transition
52C↔ 50C is

∆ν52,50 =
C52,52
6 − C50,50

6

2
. (1.86)

From the graph, we estimate ∆ν52,50 ∼ 150Hz at θ = 0◦ and ∼ 75Hz at θ = 90◦.
The first-order interaction is three orders of magnitudes larger, and lies in the MHz range.

Its angular dependence is very close to the classical formula (1 − 3 cos2(θ)). With a change
in sign at the magic angle θm ≃ 54.7◦.
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1.2.4 Oscillating electromagnetic field

The case of a time-dependent external field is more complex. In the absence of currents, the
potential vector is subject to Maxwell’s equations in vacuum:

(
∇2 − 1

c2
∂2

∂t2

)
A(r, t) = 0. (1.87)

It can be expanded as plane waves

A(r, t) =

∫
dkAke

i(k·r−ωt), (1.88)

subject to the dispersion relation ||k|| = cω. The gauge freedom is conveniently settled by
choosing the Coulomb gauge ∇·A = 0. With this choice, eq. (1.51) can be expanded to give9

H = H0 +HI , HI =
e

me
A(r, t) · p+

e2

2me
A2(r, t) +

µB
ℏ
gS(S ·B(r, t)), (1.89)

with H0 the atomic hamiltonian in the absence of coupling, and HI represent the atom-
radiation interaction. The expression of HI is exact in the non-relativistic limit, but inconve-
nient to work with. The magnetic coupling is usually weak as compared to the other terms,
and we drop it for the remainder as it does not intervene in the context of this work. The
interaction thus becomes

HI =
e

me
A(r, t) · p+

e2

2me
A2(r, t). (1.90)

The potential vector in the interaction hamiltonian A is evaluated at the position r of
the electron. The problem can be simplified when the spatial variation of A is small over
the electron orbit. The dipole approximation consists in replacing A(r, t) with its value at
the origin A(0, t). Taking A as a plane wave, its spatial variation is characterized by its
wavelength λ = 2π

k . For usual atomic transitions the atoms are coupled to field modes with
λ≳ 100 nm. Denote by R the spatial extension of the atom, the dipole approximation is valid
as long as kR≪ 1, or equivalently

R≪ λ

2π
(1.91)

This is justified in most cases as we consider only the interaction with optical, microwave
or radio-frequency radiation, with wavelengths much larger than the spatial extension of the
atom. A word of caution is nevertheless in order in the case of the excitation to Rydberg
states. The laser wavelengths are λ ∼ 1 µm, to be compared with the extension of the
Rydberg state, R ∼ a0n

2 = 130 nm for n = 50. The validity of the condition (1.91) is
questionable in this case, and even more so for higher values of n.

Under the dipole approximation, the interaction HI can be re-expressed [124, 125, 126]
using the electric field F = −∂tA. We recover the more familiar form of the interaction
between the field and an electric dipole:

HI = −d · F(0, t). (1.92)

This form is often more convenient to work with than the corresponding “momentum inter-
action” (1.90). In return, unlike the latter, it is bounded to the domain of validity of the
dipole approximation. Let us mention that procedures [126] exist to generalize this approach
and relax the dipole approximation, giving rise to additional terms that form a multipole
expansion.

9The potential φ can be set to zero in the absence of external sources.
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A quantized field

The radiation field that intervenes in the above equations can be both “classical” or quantized.
In what follows we will make use mainly of the quantized form. Working in a quantization
volume L3, the electric field is usually written as a sum of modes decomposed into plane
waves of momentum k and polarization ϵσ [104]:

F(r) = i
∑

k,σ

√
ℏωk

2ε0L3

[
ϵσ ak,σe

ik·r − ϵ∗
σ a

†
k,σe

−ik·r
]
, (1.93)

with ωk = c∥k∥ the mode pulsation, and a†k,σ, ak,σ the corresponding creation and anni-
hilation operators. The hamiltonian associated to the free field is, up to a renormalization
constant,

HRad =
∑

k,σ

ℏωk a
†
k,σak,σ. (1.94)

When considering the interaction with light (usually a laser source), one often finds a
specific mode (k,ϵ) filled with many photons while the others are empty. A relevant approx-
imation then consists in dropping the contribution from the empty modes. Removing the
unnecessary indices, the interaction thus becomes

HI = ie

√
ℏω

2ε0L3

[
a(r · ϵ)− a†(r · ϵ∗)

]
. (1.95)

1.3 Light-matter interaction: applications

Light-matter interaction is at the core of an important part of modern experimental physics,
and many of its topics underlie the techniques used in our experiment. In this section, we
will focus on topics that bring novelty to the experiment: the dipole and ponderomotive
forces, involved in the trapping of individual atoms. We also describe the method used for
the preparation of circular states: the adiabatic transfer. This procedure is adapted to the
required transfer of dozens of angular momentum quanta to the Rydberg electron.

1.3.1 Adiabatic transfer to the circular state

The difficulty of circular states preparation lies in the transfer of many quanta of angular mo-
mentum to the Rydberg electron. We follow the procedure introduced by Hulet and Kleppner
in 1983 [127]. It consists in a rapid adiabatic passage through the states |m, k = m+ 1− n⟩,
m = 0, ..., n− 1 in the presence of σ+-polarized radio-frequency radiation (see figure 1.3).

The course of events can be understood in the dressed-atom formalism [128]. We consider
the mode populated by the radio-frequency photons along with the ladder of atomic states
indicated above, which we will denote as |m⟩. We further assume that the degeneracy between
the atomic states is lifted by an electric field F (that also defines the quantization axis). In
the absence of coupling between the atom and the radiation, the eigenstates and eigenenergies
write (we only take into account the linear Stark effect):

|m;N⟩ , Em,N = Nℏω +
3

2
(m+ 1− n)n ea0F. (1.96)
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The atom-field coupling is that of eq. (1.95). For a σ+ polarization, we have r · ϵ = r+1

and r · ϵ∗ = r−1. The matrix elements are thus

⟨m;N |HI

∣∣m′;N ′〉 = ie

√
ℏω

2ε0L3

[
⟨m| r+1

∣∣m′〉√N + 1δN,N ′−1 − ⟨m| r−1

∣∣m′〉√NδN,N ′+1

]
.

(1.97)
They have been computed in [129], and according to the selection rules (1.69), the non-

vanishing terms are

⟨m| r−1 |m+ 1⟩ = ⟨m+ 1| r+1 |m⟩ = 3a0n
√

(n−m− 1)(m+ 1). (1.98)

Inspection of the matrix elements (1.97) shows that the interaction only couples the states
|m,N⟩ and |m± 1;N ∓ 1⟩. We can therefore restrict ourselves to the subspace spanned by
the vectors |m̃⟩ = |m,N0 −m⟩, m = 0, ..., n− 1. Define ℏω0 =

3
2nea0F the energy difference

between successive atomic states, the eigenenergies write

Em̃ = Em,N0−m = mℏ(ω0 − ω) = mℏ∆, (1.99)

where the constant contribution N0ℏω+ (1− n)ℏω0 has been dropped. In the high intensity
field limit, N0 ≫ 1, the full hamiltonian writes

⟨m̃|H
∣∣m̃′〉 = mℏ∆δm,m′ + iℏΩ

√
(n−m−1)(m+1)

[
δm,m′+1 − δm,m′−1

]
, (1.100)

where the pulsation Ω relates to the radio-frequency field amplitude ERF

Ω = 3ea0n

√
N0ℏω
2ε0L3

=
3n√
2
ea0ERF. (1.101)

The hamiltonian has the simple matrix form

H = ℏ




. . . . . . . . . 0

. . . (m− 1)∆ −iΩ cm−1 0

. . . iΩ cm−1 m∆ −iΩ cm
. . .

0 iΩ cm (m+ 1)∆
. . .

0
. . . . . . . . .




,

where we introduced the shorter notation cm =
√
(n−m−1)(m+1). The dressed levels

energies are equidistant with spacing ℏ
√
∆2 + 4Ω2, and the eigenenergies are:

Ep =
n− 1

2
ℏ
[
∆−

√
∆2 + 4Ω2

]
+ pℏ

√
∆2 + 4Ω2, p = 0, 1, ..., (n− 1). (1.102)

The eigenstates can be analyzed in the limit of large detunings |∆/Ω| ≫ 1. The effect of
the coupling on the bare atomic eigenstates |m⟩ can then be neglected (see figure 1.3 (a)).
When ∆ > 0 the eigenenergies order as Em=0 < Em=1 < ... < Em=n−1, and the lowest
energy state is |m = 0⟩. This order reverses when ∆ < 0, so that the lowest energy stat is
now |m = n− 1⟩, the circular state.

The adiabatic passage consists in scanning the detuning ∆ from a positive to a negative
value in the presence of the radio-frequency field. The initial state |m = 0⟩ thus evolves
adiabatically to the circular state following the lowest energy trajectory (indicated by the
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Figure 1.3: Rapid adiabatic passage to the circular state. (a) Depiction of the ladder of levels
(n = 52) coupled through σ+-polarized RF; spurious σ− polarization couples to the interior
of the manifold. The Rydberg levels for m ≤ 2 are shifted due to the quantum defect. They
are depicted in green to distinguish them from the pure hydrogen case. At the electric field
F ≈ 2.15V cm−1 and RF frequency νRF ≈ 225MHz the level |m = 2, k = −47⟩ becomes
resonant with the rest of the ladder, allowing to initiate the transfer from this state. (b)
Eigenenergies of the ladder levels without (black line) and with (red line) the RF coupling.
The atomic state |m = 0⟩ is branched to the circular state |m = n− 1⟩ through a negative
sweep of the detuning ∆.

arrow in figure 1.3 (b)). In practice, the detuning ∆ is controlled by the electric field through
the Stark shift. The adiabatic transfer thus involves three steps: switching on the RF,
ramping down the electric field and switching off the RF. We have two adiabatic conditions
associated with this process. The dressing of atoms from the gradual application of the RF
coupling Ω is adiabatic if:

1

∆2

∣∣∣∣
dΩ

dt

∣∣∣∣≪ 1. (1.103)

The spurious population transfer to non-circular states will remain negligible during the
anticrossing provided that [130]:

1

Ω2

∣∣∣∣
d∆

dt

∣∣∣∣≪ 1. (1.104)

A few remarks are in order concerning the practical aspects of the adiabatic transfer. We
considered only σ+-polarized RF which confined the evolution within the subspace indicated
on the figure 1.3 (a). However, the σ−-polarization couples to the remaining of the Rydberg
manifold as indicated by the arrow on the figure 1.3 (a). This is undesired during the
adiabatic passage as it leads to the population of non-circular states. Minimization of the
spurious σ−-polarized RF is thus an important step in the optimization process.

Other contributions to the hamiltonian should be taken into account for a more refined
analysis or numerical simulation. The quadratic Stark shift contributes to the coupled hamil-
tonian, and adds up diagonal elements. Its presence does not change significantly the adi-
abatic transfer dynamics. The presence of a magnetic field parallel to the electric field also
adds up diagonal energy terms. The detunings are of opposite sign for the σ+ and σ−-coupled
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subspace. This can be beneficial as it splits the resonance conditions for the two polariza-
tions. The π-polarized component of the RF also gives a diagonal contribution, proportional
to m, that simply shifts the resonance condition.

The previous discussion applies to the hydrogen atom, but the situation is more complex
in the case of rubidium. For low-l states m≲ 2, the energy shifts due to the quantum defect
put the levels far of resonance with the harmonic ladder. The energy differences between
successive levels of the ladder are close enough only for m ≥ 3, a priori preventing us from
initiating the adiabatic passage from a level with lower m values. However, for a suitable
RF frequency, the state |m = 2, k = 3− (n− 1)⟩ can be made resonant with the harmonic
ladder |m > 2, k = m− (n− 1)⟩ at a given electric field. This is illustrated in figure 1.3 (a).
For the principal quantum number n = 52, the corresponding frequency is approximately
225MHz, with an electric field of 2.15V cm−1. The adiabatic transfer is nevertheless robust
with respect to small variations of these values.

1.3.2 Light-shift and dipole trapping

Except in the case of quasi-resonant light fields, such as discussed in the previous section, the
coupling of the atom to the radiation field does not results in energy shifts at first perturbation
order. However, the so-called light shift appears at second perturbation order. The case of
an empty field gives rise to the Lamb shift mentioned above. We will focus here on the case
of a single field mode occupied with many photons. This corresponds to an atom illuminated
by a laser beam, associated to the hamiltonian HI of eq. (1.95).

We denote by |λ; k⟩ the eigenstates of the bare hamiltonian (without the coupling HI),
where λ is the atomic state and k the number of photons. To determine the energy shift to
the atomic state |α;N⟩, we compute the second order correction

δEα =
∑

λ,k

| ⟨λ; k|HI |α;N⟩ |2
Eα − Eλ + (N − k)ℏω . (1.105)

The above formula can be rewritten in the more explicit form

δEα =
e2ℏω
2ε0L3

∑

λ,k

| ⟨λ| r · ϵ |α⟩ ⟨k| a |N⟩ − ⟨λ| r · ϵ∗ |α⟩ ⟨k| a† |N⟩ |2
Eα − Eλ + (N − k)ℏω (1.106)

=
e2ℏω
2ε0L3

∑

λ

[
(N + 1)| ⟨λ| r · ϵ |α⟩ |2

Eα − Eλ + ℏω
+
N | ⟨λ| r · ϵ∗ |α⟩ |2
Eα − Eλ − ℏω

]
. (1.107)

Let us now focus to the case where |α⟩ is the ground atomic state. The energy differ-
ence Eλ − Eα = ℏωλ is thus positive. The denominator of the second term of eq. (1.106),
proportional to |ωλ + ω| > ω. Assuming that the photon energy ℏω is of the same order as
the atomic transition energies ℏωλ, the second term can safely be neglected. Introducing the
detuning ∆λ = ω − ωλ, eq. (1.106) becomes

δEα =
e2I

2ε0ℏc
∑

λ

| ⟨α| r · ϵ |λ⟩ |2
∆λ

, (1.108)

where we assumed N sufficiently large to substitute the light intensity I = Nℏωc
L3 in the

classical limit. The sum of eq. 1.108 is usually dominated by a single term whose detuning
determines the sign of the light shift. For a positive detuning (blue-detuned light), high-
intensity regions are repulsive to the atom, while for a negative detuning (red-detuned light),
the atom gets attracted to high intensity regions.
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The quantitative determination of the light shift δEα basically amounts to the computa-
tion of the dipole matrix elements ⟨α| er |λ⟩. However, the situation is complex here due to
the coupling between the orbital, spin and nuclear angular momenta L, S and I respectively.
Nevertheless, the dipole operator can be reduced by using the Wigner-Eckart theorem and
factoring out the nuclear and electron spin dependence into Wigner 6-j symbols.

We illustrate this with the atomic species relevant to this thesis, 87Rb, for which we have
S = 1/2 and I = 3/2. We write:

|α⟩ = |n=5, L=0, J=1/2, F,mF ⟩ (1.109)
|λ⟩ =

∣∣n′, L′, J ′, F ′,m′
F

〉
(1.110)

For a π or σ± polarization, r ·ϵ is the standard component rq, q = 0, ±1. The decomposition
of the dipole matrix elements gives

⟨α| er · ϵ |λ⟩ = ⟨α| erq |λ⟩ =
〈
n,L, J

∥∥er
∥∥n′, L′, J ′〉 cqα,λ, (1.111)

where cqα,λ represents the angular contribution (its expression can be found in [107]). The
reduced matrix element ⟨n,L, J ∥er∥n′, L′, J ′⟩ is related to the radiative decay rate Γλ of the
state |n′, L′, J ′⟩ by the relation10 [104]:

Γλ =
ω3
λ

3πε0ℏc3
2J + 1

2J ′ + 1

∣∣〈n,L, J
∥∥er
∥∥n′, L′, J ′〉∣∣2 . (1.112)

Combining (1.111) and (1.112) and inserting in (1.108), we finally get

δEα =
3πIc2

2

∑

λ

Γλ
ω3
λ∆λ

2Jλ + 1

2Jα + 1
cqα,λ. (1.113)

For 87Rb (and reasonable wavelengths), the main contribution to the sum comes from the 5P
states. We then have λ = (J ′, F ′,m′

F ) with J = 1/2, 3/2 (the rubidium fine structure) and
corresponding F ′,m′

F . The decay rate Γλ is dependent only on J ′, with the relation

Γ1/2

ω3
1/2

=
Γ3/2

ω3
3/2

=
Γ

ω3
0

, (1.114)

where ω0 and Γ are respectively the transition frequency and decay rate in the absence of
fine structure splitting. When the detuning ∆ is large compared with the hyperfine coupling,
it can be factored out of the sums corresponding to different fine structure terms. We finally
have

δEα =
3πIc2

2

Γ

ω3
0


 1

∆α,1/2

∑

F ′,m′
F

cq
α,(1/2,F ′,m′

F )
+

2

∆α,3/2

∑

F ′,m′
F

cq
α,(3/2,F ′,m′

F )


 . (1.115)

For a π-polarized light (q = 0), the sum rules [107] give

∑

F ′,m′
F

cq
α,(J ′,F ′,m′

F )
=

1

3
, (1.116)

10We use here the normalization condition of [107]: ⟨λ, J∥∥λ′, J ′⟩ = δλ,λ′δJ,J′ .
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hence the final result

δEα =
πIc2

2

Γ

ω3
0

[
1

∆α,1/2
+

2

∆α,3/2

]
. (1.117)

The situation is more complex for σ-polarized light (see [131] for instance). The contribution
from other excited states is not negligible and is appropriately accounted for by numerical
evaluation.

The excited state also experiences a light shift whose sign is (except by accident) opposite
to that of the ground state. The computation in this case is more complex as contributions
from both terms of (1.106) must be taken into account.

The light shift is associated with a first-order perturbation of the eigenvector |α⟩, which
gets a small contribution from the coupled excited states |λ⟩:

|α;N⟩ −→ |α;N⟩+
∑

λ

⟨λ;N−1|HI |α;N⟩
ℏ∆λ

|λ;N − 1⟩ . (1.118)

The dressed atomic state finds itself in the excited atomic state |λ⟩ with a probability11

pλ =
| ⟨λ;N − 1|HI |α;N⟩ |2

ℏ2∆2
λ

. (1.119)

This small excited contribution scatters photons at a rate Γλ, hence a total scattering rate

Γsc =
∑

λ

Γλpλ. (1.120)

The computation of the matrix elements is essentially the same as done for the light shift.
Actually, the scattering rate can be obtained from eq. 1.113 by multiplying each term of the
sum by Γλ/(ℏ∆λ) to give

Γsc =
3πIc2

2ℏ
∑

λ

| ⟨α| r · ϵ |λ⟩ |2
∆2
λ

Γλ =
3πIc2

2ℏ
∑

λ

Γ2
λc
q
α,λ

ω3
λ∆

2
λ

. (1.121)

For a given intensity pattern I(r), the light-shift essentially represents the trapping (or
repulsive) potential V (r) exerted on the atom. We can thus write, for a state |α⟩,

V (r) = βαI(r), (1.122)

where the coefficient βα depends on the polarization and wavelength of the light. In our
experimental configuration, the polarization is linear, parallel to the quantization axis. In this
case, the shift is independent on the hyperfine level for the ground state 5S1/2. We computed
the corresponding value β0 using the ARC-Alkali Rydberg Calculator package [122], for which
the value is

β0 = −18.164
MHz

mW µm−2
. (1.123)

In an experiment described thereafter, we determine the peak intensity by measuring the
light-shift induced on the transition

∣∣5S1/2, F = 1
〉
−→

∣∣5P3/2, F
′ = 2

〉
. For this purpose, we

also computed the coefficient for the excited state
∣∣5P3/2, F

′ = 2
〉
, which value, denoted β1,

is independent on the Zeeman sublevel. We have

β1 = 5.714
MHz

mW µm−2
, (1.124)

11The expression given for the dressed vector is not normalized anymore, but the error is negligible.
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giving rise to a light-shift

β1 − β0 = 23.877
MHz

mW µm−2
(1.125)

on the probed transition.

1.3.3 Ponderomotive trapping

The ponderomotive energy is essentially the light-shift resulting from the interaction with
laser light in the limit of a large principal quantum number. Contrary to the dipole po-
tential, the derivation of the ponderomotive energy is best carried using the momentum
formulation (1.90) of the interaction. Qualitatively, the reason is that in the d · F formula-
tion, the dipole matrix elements increase with n, thus partially compensating for the large
denominator (see eq. (1.108)). However, the momentum p of the states decreases with n, so
that the p ·A contribution vanishes. Only the quadratic term ∝ A2 remains. We thus write:

V (r, t) =
e2

2me
A2(r, t). (1.126)

The instantaneous vector potential is most conveniently written in terms of the electric field
F = −∂tA = −ωA, where ω is the field pulsation, to yield

V (r, t) =
e2

2meω2
F2(r, t). (1.127)

Averaging over one period, the instantaneous value F2(r, t) is replaced by half the squared
amplitude 1

2F
2(r). The thus obtained time-averaged potential V (r) can be formulated using

the more convenient field intensity:

I(r) =
ε0 c

2
F 2(r). (1.128)

This leads to the usual expression for the ponderomotive potential experienced by a free
electron subject to laser light:

V (r) =
q2

2mcε0 ω2
I(r). (1.129)

Although it is written as a potential, this energy term is actually a kinetic contribution
originating from the fast electron oscillations in the field. The above derivation is kept
simple to expose the ideas and highlight the physical origin of the ponderomotive potential.
An important point to be made is that we have considered a classical field and thus neglected
the coupling to the empty modes of the quantized field. A more complete treatment of
the problem, including leading-order relativistic corrections, can be found in [88]. The given
approach is completely valid for circular states, but only partially so for low-l Rydberg states.
In the latter case, contributions arising from the possibility of photoionization and stimulated
de-excitation must be taken into account. These reservations being made, the ponderomotive
energy shift is also present in the case of low-l Rydberg states.

To fix the ideas and facilitate subsequent numerical estimations, we specialize to the
case of our trapping laser, with a wavelength of 821 nm. This corresponds to a pulsation
ω = 2π× 365THz. The ponderomotive potential can be re-expressed as V (r) = hβP (ω)I(r),
with

βP (ω) =
α

meω2
= 1.52

MHz

mW µm−2
. (1.130)
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Conclusion

We introduced in this chapter some of the theoretical aspects pertaining to the results pre-
sented in this thesis. An overview of atomic physics is given through the description of the
electron motion in hydrogen as a solution of the Schrödinger equation. The wavefunctions are
indexed by three quantum numbers: n, the principal quantum number, l, that represents the
total angular momentum and m, its projection along the z-axis. We give various corrections
to the energy, of relativistic origin or associated to the structure of the nucleus. This allows
us to treat the case of alkali Rydberg atoms whose unique valence electron occupy an orbit of
large principal quantum number. Within the frame of quantum defect theory, the interaction
of this electron with the ionic core is reduced to one parameter: the quantum defect. Its
values are determined from spectroscopic measurements.

Among the Rydberg levels we described in more details the circular states, whose angular
momentum is maximal: |m| = l = n − 1. As their name suggests, the electron orbit of
such states is almost circular and located far from the core, and the quantum defect becomes
negligible. For these states, the various corrective terms introduced for the hydrogen atom
also turn out to be negligible.

The effect of a static magnetic field, coupled only to the angular motion (and spin) of the
electron, is basically the same for low lying and Rydberg levels. The energy shifts correspond
to the Zeeman effect in the weak field regime and to the Paschen-Bach effect in the strong
field regime. The response to the electric field is, however, different and is at the origin of
most of the interesting properties of Rydberg states. The electric field mixes different l-states,
giving rise to the Stark shift. A particular case is that of an electric field generated by the
dipole of a neighboring Rydberg state. The dipole-dipole interaction can give rise, depending
on the pair of states, to a direct interaction scaling as 1/R3 for an interatomic distance R,
or to a van der Waals interaction that scales as 1/R6. These strong interactions are one of
the main assets of Rydberg states for quantum simulation.

The manipulation of theses states is usually done by radiative transitions. We introduced
the coupling to the electromagnetic field that can take two forms. The general form involves
the vector potential and the electron momentum. It is not convenient to work with and can
be re-expressed, under the dipole approximation, in a simpler form involving the electric field
and the dipole moment of the atom.

This latter form serves as the starting point for the calculations pertaining to the method
that we use to prepare circular states. It consists in coupling a series of states with a nearly-
resonant radio frequency field. The adiabatic transfer proceeds by scanning the detuning
through the resonance. We also introduced the ideas behind the determination of the dis-
placement of (low lying) energy levels caused by a light field in the far-detuned regime. This
light-shift is proportional to the light intensity and is used in our experiment to trap ground-
state atoms in intensity maxima of optical tweezers. Rydberg states react differently to the
light field. The ponderomotive force is always repulsive and is used in our experiments to
trap Rydberg states in hollow intensity patterns.

We will now detail how the experimental setup accommodates for the requirements im-
posed by both the circularization and the preparation of traps.
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Chapter 2

Experimental setup

6) Never do something the person standing in front of you can’t
understand.

— Hunter S. Thompson, Fear and Loathing in Las Vegas

The main asset of circular states for the proposed quantum simulation platform lies in
their extended lifetime, that allows one to probe the dynamics over long timescales. This re-
quires to work in a cryogenic environment to mitigate the circular states’ stimulated emission
or absorption of black-body photons. However, working in a cryogenic environment brings
some unnecessary complexity for the demonstration of the two important characteristics of
the proposed platform: the trapping of circular-state qubits and the measurement of their
dipole-dipole interaction.

In this prospect, the main result of this thesis, the characterization of the trapping of
circular Rydberg states, was obtained in a new setup operated at room temperature. This
setup is designed to allow seamless transfer to the cryostat traditionally used in the team [96],
which will host the experiment in the mean term. This chapter is dedicated to its description.

The preparation of circular Rydberg states and their trapping involves a lot of experi-
mental steps: gaussian tweezers must be loaded out of a cold atomic cloud of rubidium-87,
followed by the preparation of circular Rydberg states and their trapping in bottle beam (BoB)
tweezers. Every step requires careful control of the electric and magnetic fields in the region
where the experiment takes place, along with proper alignment of the many laser beams
involved, thus imposing strong constraints on the design.

Although the experimental techniques involved in the excitation to circular states are well
known in the laboratory, the preparation of optical tweezers for their trapping is new.

2.1 Overview of the setup

The complete mechanical assembly of the setup is shown figure 2.1. The experiment takes
place in an ultra-high vacuum (UHV) chamber surrounded by a custom made optical table,
itself supported on a frame. A U-shaped cut in the optical table accommodates for the
future insertion of the cryostat, and a removable optical table extension closes this cut to
allow for installation of optics all around. The atom source, a rubidium cell connected to a bi-
dimensional magneto-optic trap (2D-MOT), is clamped to the lower side of the optical table

37
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Figure 2.1: Overview of the setup, highlighting the main components. The front circular coil
holder and the removable optical table extension are shaded for clarity. The inset shows the
large compensation coils indicated as color bands: Bx in blue, By in magenta, Bz in green.

and can be connected interchangeably to the UHV setup or to the cryostat. Finally, the top
part of the UHV setup, new to this experiment, is installed on an optical breadboard clamped
on the optical table. This breadboard assembly can be easily removed to be substituted by
the cryostat. Large compensation coils surround the whole setup. They cancel most of the
Earth’s magnetic field in the region of the experiment.

2.1.1 The UHV environment

We present in figure 2.2 some details of the UHV setup. It is centered on a custom machined
piece of sapphire of dimensions 50×50×55 mm (that will be latter referenced as the sapphire
cube). The cube is placed inside a cylindrical UHV chamber having eight openings arranged
as an octagon in the yz plane and two additional lateral openings along the x direction. To
the +z opening is attached an ion pump (NEXTorr Z100, SAES), that maintains the vacuum
of the chamber at a level of 2.5×10−10mbar. The connection with the 2D-MOT is established
via the bottom opening. The six remaining octagon openings are viewports through which
laser beams pass, one pair lies along the y axis, while the other two pairs form a cross oriented
diagonally with respect to the z and y axes. On the left (−x) side opening of the cylindrical
chamber is a cross flange holding four sets of electrical feedthroughs along with an additional
viewport. On the right (+x) side is installed the ion channeling and detection setup, with
another viewport. We therefore have a total of eight optical accesses to the core of the setup
(indicated by red beams and arrows on figure 2.2 a)):
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• One pair along the x axis,
• One pair along the y axis,
• Two pairs in the yz plane, at a 45° angle with the y, z axes.

Apart from the large compensation coils, the magnetic fields are controlled by three pairs
of coils located in the surroundings of the UHV chamber, as depicted in figure 2.2 b). The
magnetic gradient required for the magneto-optical trap and the directing magnetic field
applied during the experiment are generated along the x-direction. The Bx coils are installed
around the lateral flanges of the UHV chamber, as close as possible to the atoms, and their
current is switched dynamically between parallel or anti-parallel flow depending on the needs.
The By and Bz coils, however, serve only to fine tune the magnetic field. They thus produce
weaker fields and are located farther from the sapphire cube.

2.1.2 The sapphire cube

The sapphire cube setup, at the center of which the experiment takes place, is shown in detail
in figure 2.3. It is attached with positioning brackets to the −x flange of the cylindrical UHV
chamber (marked as (2) in figure 2.3 (c)) to center it with respect to the rest of the setup.

The atoms are loaded inside the cube from the bottom through a 26 × 26 mm square
opening, visible in the top view in figure 2.3 (a). Such an opening accommodates for the

x

y
z

x

y
z

(a) (b)

Figure 2.2: Depiction of the UHV setup and its components. (a) The whole setup, with
its components highlighted. Beige (center): UHV chamber, where the experiment takes
place; purple (top): pumping setup; cyan (left): electrical feedthroughs; yellow (right): ion
detection setup. Red beams and arrows indicate the directions of the optical access. (b)
the setup without its auxiliary components, revealing the sapphire cube assembly with the
surrounding coil holders colored in blue (Bx), magenta (By) and green (Bz).
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working distance required to focus the optical tweezers and leaves enough space to ensure
homogeneous electric and microwave fields over the size of the atomic sample. On the same
figure are visible eight holes arranged in four pairs, drilled in the sapphire cube. They are
aligned with and are the continuation of the viewports of the UHV setup, pointing to the
center of the cube where atoms are located. The lasers involved in the cooling of atoms and
the preparation of Rydberg states pass through three pairs of circular holes at right angle.
Two pairs, of 8mm diameter, are located in the yz plane, aligned with the diagonal viewports
of the UHV chamber, let MOT/imaging and Raman beams go through. The last pair goes
along the x-axis and is larger, with a diameter of 12mm. It lets the remaining MOT/imaging
beams go through, along with the Rydberg excitation and optical pumping lasers. Each of
the three pairs of holes is covered with 1mm-thick electrodes, which effectively reduces the
opening diameter by 2mm. Finally, optical tweezers are focused on the atoms along the y
direction by aspheric lenses hosted in lens holders, themselves inserted in specifically designed
countersunk holes of the cube.
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Figure 2.3: View of the sapphire cube and the surrounding electrodes. (a) Cut view of
the sapphire cube with electrodes in false colors. (b) 3D view of the cube assembled with
its electrodes. The color code is consistent with (a). (c) Photograph of the cube assembly
attached via positioning brackets (1) to the flange (2) of the UHV chamber; a Bx coil holder
(3) is visible, too. (d) Exploded view of the cube electrodes witch the same color convention
as in (a)-(b). Magenta: Stark electrodes; yellow: RF electrodes; blue: Stark electrodes
holders; grey: guiding tube electrode. The lens holder assembly (shown assembled in the
inset picture) is composed successively of: an adjustment shim (dark green), the lens holder
electrode (red), the aspheric lens (light cyan), a spacer (golden yellow), a set screw (purple).

To prevent stray electric fields from perturbating the very sensitive Rydberg atoms during
the experiment, all the inner dielectric surfaces of the cube are covered with gold-coated
brass electrodes. The potential of each electrode can be controlled individually via a coaxial
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connection to the electrical feedthrough, allowing for a precise control of the electric field and
its gradients at the position of the atoms. There is a total of ten inner electrodes, as shown
in the exploded-view of figure 2.3 (d):

• During the preparation and manipulation of Rydberg states, the quantization axis is
maintained along the x axis, but set by an electric field rather than a magnetic field.
This electric field is controlled via the potential applied to two electrodes facing each
other in the x direction (called Stark electrodes). In addition, the ionization electric
field is applied by these same electrodes during ionization detection of the Rydberg
states.

• The circularization procedure requires the application of σ+-polarized radio-frequency
field on the atoms. The field direction is orthogonal to the quantization axis defined by
the Stark electrodes and generated by four electrodes divided in two pairs facing each
other in the y-direction (called RF electrodes). An additional DC potential can be set
to fine tune the electric field and its gradients at the atoms’ location. These electrodes
are connected to tube electrodes that cover the 45◦ holes of the sapphire cube.

• Two electrodes inserted in the x-direction holes (Stark holder electrodes). Their purpose
is mainly to cover the sapphire surface.

• Two lens holder assemblies inserted in the y-direction holes. They are made up of
five components. A lens holder electrode ensures mechanical contact with the sapphire
cube. It also hosts the aspheric lens and maintains electrical contact with its surface,
made conductive by a coating of indium tin oxide (ITO) of 10 nm thickness. The lens
is held tight with a spacer and a set screw inside the lens holder. Finally, precise
positioning of the lens is ensured by a conic adjustment shim that controls the spacing
between the lens holder and the countersunk hole in the sapphire cube.

Attached to the cube is also, on the +x side, a guiding tube electrode. Its role is to
channel the ions produced from the ionization of Rydberg states during ion detection. It has
no other purpose and is grounded during the rest of the experiment.

2.1.3 State-selective field ionization setup

Circular Rydberg states are impossible to detect optically as they do not have any transition
at these wavelengths. The traditional way to detect Rydberg states implemented in the lab
takes advantage of their sensitivity to moderately strong electric fields, that leads to their
ionization. The detection and discrimination of different Rydberg states is done by collecting
and amplifying the charges produced from their ionization. For this purpose, an ion detection
setup is installed in the UHV chamber.

Principle

Rydberg states, being close to the ionization threshold, can be ionized with the application
of electric fields in the order of ∼ 100V cm−1 [101]. The generated ions can then be detected
with a charge amplification device such as a channeltron. The field at which a given Rydberg
state ionizes depends on the state, allowing one to distinguish different states from their
arrival times when a ramp of electric field is applied. Typical arrival times curves are shown
in figure 2.4.

This procedure allows one to detect the different Rydberg states present in the experiment
at a given point of the experimental sequence, a necessity to optimize each step of the
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Figure 2.4: Principle of state selective field ionization. A ramp of potential is applied to
ionization electrodes, generating a ramp of electric field (bottom panel), successively ionizing
different states (top panel). Figure adapted from [94].

preparation of circular states. Table 2.1 presents the ionizing fields of the various Rydberg
states involved in the experiment.

Table 2.1: Ionization field for
some Rydberg levels involved in
the experiment.

Level Ionization field (V/cm)

52D 50
52F 44
52C 122
50C 142

Setup

We designed the ion detection setup, shown figure 2.5, with the help of the ion optics software
Simion. The ions exit the sapphire cube through the x-direction, along which the ionizing
field is generated by applying a symmetrical ramp of potential to the Stark electrodes. The
positive Rb+ ions are accelerated in the +x-direction. The channeltron (KBL15RS_HMI,
Dr. Sjuts Optotechnik GmbH) cannot stand along the same axis, since it would block the
optical access in this direction. It is therefore placed along the z axis, pointing downward,
and collects the ions deflected upwards by a pair of deflection electrodes. The guiding tube
electrode, in which the ions travel from the sapphire cube to the deflection electrodes, is held
at a negative voltage of −380V. Its role is to accelerate the ions sufficiently for them to
have a straight trajectory. The channeltron operates at a potential of −2500V, and a voltage
of 60V on the deflection electrodes is enough to redirect the ions vertically. Produced ions
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Figure 2.5: The detection setup, designed to detect Rb+ ions. Ions are produced by applying
a symmetric ramp of potential to the Stark electrodes (positive on the red electrode, negative
on the blue one). They are accelerated by the guiding tube and Stark holder assembly (light
blue) then deflected toward the channeltron (white) by the deflection electrodes (orange).
The upper left inset shows (black lines) typical ion trajectories computed with the Simion
software suite. It corresponds to a cloud of Rb+ ions, at the ionization field of |52C⟩ with
the electrode voltages given in the text.

travel from the science region to the channeltron in about 7 µs. There is little dispersion of
the time of flight of ions produced at different fields, of approximately 1 µs over the whole
range of ionizing fields (between 40 and 150V cm−1).

The electronic signal produced by the channeltron is amplified and shaped with a pulse
discriminator. We can then either timestamp each pulse, allowing to record arrival times of
ions, or simply count the number of pulses in predefined time windows that correspond to the
arrival of different states. The first case gives a signal similar to the top panel of figure 2.4,
which is time-resolved. The second counting method gives only the integral of the peaks, for
instance, in the colored rectangles, which is often enough for data analysis.

2.2 Optical tweezers setup

Our experiment necessitates the preparation of both gaussian optical tweezers and BoB tweez-
ers. The retained method to prepare them within the experiment consists in spatially modu-
lating the phase of a collimated laser beam. A lens then focuses the phase-modulated beam
to produce the desired intensity profile in the vicinity of its focal plane. Albeit very flex-
ible in generating arbitrary intensity profiles, this approach requires careful control of the
imperfections of the system with methods that will be partially described in this section.
The exhaustive description of tweezer preparation will be treated in an upcoming thesis by
Yohann Machu [97].
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The presence of atoms in traps is determined by fluorescence imaging. The design requires
single-photon sensitivity to convert the few photons scattered by trapped atoms into a reliable
signal, and proper filtering of the parasitic light which potentially dwarfs the signal.

2.2.1 Tweezer and imaging setup

The optical setup is schematized in figure 2.6. A total of five laser beams, involved in
the cooling of the atoms and the control of their state (i.e. optical pumping and Rydberg
excitation), overlap and cross the atoms in the x-direction. Their role will be detailed in
dedicated sections.

The actual tweezers preparation and fluorescence collection takes place along the y-axis,
where the focusing aspheric lenses lie. Phase modulation is done by spatial light modulators
(SLMs). Owing to their slow response time of dozens of milliseconds as compared to a mil-
lisecond long sequence with needs of sub-microsecond switching time, two SLMs are necessary
to make both varieties of tweezers available during the experimental sequence. The prepara-
tion of tweezers begins with two optical paths, one dedicated to the preparation of gaussian
tweezers and the other one to the preparation of BoB tweezers. The phase-modulated beams
are then gathered on the same path and focused by an aspherical lens. The preparation of
the tweezers is combined with fluorescence imaging using the MOT beams to detect trapped
ground state atoms.

Laser and optics

The laser light used for the preparation of the tweezers comes from a Toptica TA Pro laser
emitting approximately 2W of power at 821 nm. As shown in the framed scheme of figure 2.6,
the output beam is sent to the UHV setup optical table via two optical fibers, one for each
variety of tweezers, and power switching is done with acousto-optic modulators (AOMs).
Since we do not need to have both types of tweezers in the experiment at the same time,
the beam power is shared between the two fibers rather than split. This arrangement allows
us to maximize the power available to the BoB traps, which is the limiting factor to the
number of such traps that can be prepared in the experiment. The beams at the output
of the fibers are collimated to a diameter of 10.4mm (at 1/e2 intensity), a value close to
the SLM’s effective area of 16 × 12mm. The phase modulated reflections on the SLMs are
overlapped with a polarizing beamsplitter (PBS) cube. From there on, these two beams act
as one beam, producing either gaussian or BoB tweezers, depending on the needs, and will
therefore be referenced from now on as the tweezer beam.

The tweezer beam undergoes a first step of spatial filtering at the focus of a 1 : 1 telescope
(marked (1) on figure 2.6) to dispose of spurious light. The role of this spatial filtering will
be detailed later in the text. It is then focused at the center of the sapphire cube, where
the atoms are located, by an aspheric lens (AFL12-15-S-U-285, Asphericon) with a working
distance of 12.3mm. It has an effective focal length of 16.3mm with a numerical aperture
(NA) of 0.36 (at the operating wavelength of 821 nm). The outgoing beam is collimated back
with a lens of the same model and split with a glass window. The transmitted beam, that
contains most of the power, goes to a beam dump, while the reflection is focused on a camera
to produce an image of the tweezers in transmission.

A flip-flop mirror is present just before the UHV chamber to deflect the incoming tweezer
beam towards a diagnostic camera on which the tweezers can be imaged directly. This imaging
of the tweezers allows precise overlap between the arrays of gaussian and BoB tweezers. This
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camera is also involved in the correction of the aberrations of the optical path of each SLM
as will be described later.
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Figure 2.6: Scheme of the optical setup for tweezer preparation and fluorescence imaging.
Top: simplified scheme of the laser setup for the preparation and control of the two tweezer
beams. Bottom: scheme of the optical setup surrounding the experiment. Two important
components are highlighted: the preparation of tweezers and collection of atom fluorescence.
For the sake of completeness, laser beams along the x direction are depicted, their role will
be described later in the text. The inset shows a yz-cut of the cube along with the laser
beams that propagate in this plane.
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The spatial light modulators (SLMs)

The devices that we use are Hamamatsu liquid crystal on silicon (LCOS-SLM) model X10468-
02. The light modulator consists in a dielectric mirror covered by an array of 792 × 600
independent phase modulators of dimensions 20 × 20 µm. Each phase modulator (latter
referred as pixel) is controlled by a voltage that changes the refractive index of a layer of
liquid crystal, thus changing the phase of a beam going through. The device allows for a
phase control from 0 to 2π in about 200 levels1 that we re-scale to 256 levels (8 bits).

The SLM has some imperfections with respect to an ideal device that must be taken into
account when operating it:

• It is not flat, generating an offset of phase shift on each pixel. A factory calibration
compensates for most of the departure from flatness, yet some remains.

• The anti-reflection coating of the liquid crystal layer is not perfect.

• The behavior is ill-defined at the boundaries of the pixels, where the electric field is
not controlled. For instance, the manufacturer indicates a light utilization efficiency of
97 %.

The imaging setup

The presence of ground state atoms trapped in gaussian tweezers is assessed by fluorescence
imaging. A fraction of the 780 nm-wavelength photons scattered by the atoms is collected and
collimated by the lens focusing the incoming tweezer beam. This “beam” of photons going
in the opposite direction of the tweezer beam is split from the latter and transmitted by a
dichroic mirror (T800DCSPXR, Chroma Technology Corp.). A first stage of spatial filtering
is done by an iris encircling the collimated beam (marked (2) on figure 2.6), that filters the
incoming light emitted outside of the focal plane (which is therefore not collimated).

The camera used for imaging of individual atoms is an Andor iXon ultra 888 EMCCD
camera. Its sensor consists in an array of 1024× 1024 pixels of size 13 µm. The image of the
atoms is magnified so that the fluorescence of an atom in a trap roughly spans the size of a
camera pixel. For a pixel size of 13 µm and a trap of about 1 µm, the magnification is a factor2

∼ 9, performed by a lens of focal length f = 150mm. To prevent any stray light coming
from the surrounding environment to saturate the very sensitive imaging camera and also
spatially filter fluorescence light emitted out of the tweezers plane, the beam enters a sealed
black box through a pinhole at the focus of the magnifying lens (marked (3) on figure 2.6).
The image of the atoms is then translated to the sensor of the camera with a lens assembly
of focal length f = 75mm in 2f − 2f configuration. To remove residual laser light at 820 nm
scattered on the various optics, two bandpass filters (FF01-780/12-25, Semrock), having an
optical density > 7 at the corresponding wavelength are installed in front of the camera
sensor. Let us mention that the laser that serves to prepare the tweezers also emits residual
light at 780 nm. We filter it at the output of the laser with another pair of bandpass filter
(model 84-107, Edmunds), as shown in the top framed panel of figure 2.6.

We operate the camera with its sensor cooled to a temperature of −80 ◦C and an electron
multiplying (EM) gain of 30, recording images with the manufacturer’s software.

1The manufacturer takes some margin for phase wrapping to ensure that the whole range of phases is
accessible.

2The magnification is equal to the ratio of the focal lengths of the magnifying lens and the aspheric lens,
that is 150/16.3 = 9.2.
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2.2.2 Preparation of optical tweezers

This section introduces the ideas behind the preparation of the tweezers in the experiment.
It is by no means intended to be exhaustive and eludes some of the technical aspects.

The first step consists in imprinting the correct phase mask on the SLM. Assuming that
the field in the SLM plane (with transverse coordinates u, v) is a gaussian beam of waist w,
with wavenumber k, the field F (x, y, z) propagating along the z-direction close to the focal
plane z = 0 of a lens of focal length f is, within paraxial approximation and up to a phase
and a constant amplitude:

F (x, y, z) ∝
∫
eiφ(u,v)−

u2+v2

w2 (1+i(NAe)2kz)e
−i k

f
(ux+vy)

dudv, (2.1)

where NAe = w/f is the effective numerical aperture.
The previous equation can be expressed as the Fourier transform (denoted F) of the

function

fz(u, v) = exp

(
iφ(u, v)− u2 + v2

w2
(1 + i(NAe)2kz)

)
, (2.2)

F (x, y, z) ∝ F [fz]
(
kx

f
,
ky

f

)
. (2.3)

Selection of a pupil

The first step for efficient tweezer preparation is to have a controlled illumination pattern to
apply phase modulation to, and to get rid of any stray light. The imperfect light utilization
efficiency of the SLM causes a fraction of the incoming beam to remain unaffected by the
phase modulation. We must get rid of this part of the beam to prevent it from producing
uncontrolled interferences with the tweezers. In addition, to preserve the axial symmetry
of the system, we discard the light hitting the corners of the rectangle-shaped SLM array,
keeping only the light inside a circular pupil at the center of the SLM.

Figure 2.7 shows how the selection of the phase-modulated part of the beam inside a pupil
is done. The idea consists in applying the phasemask of a diffraction grating on the SLM to
generate a translation at the focus of a lens. This translation permits spatial filtering with
a pinhole. In practice, the selected pupil is displaced horizontally by ∼ 1mm at the focus of
the 400mm-focal-length lens (at mark (1) on figure 2.6). The light hitting the SLM outside
the pupil is translated vertically with a similar grating. The part of the beam that is not
phase-modulated appears at order zero of the diffraction pattern.

The two displacements imprinted on the phasemask are orthogonal because of their im-
perfections: while most of the power is in the order 1 of the diffraction pattern, some residual
power goes in order −1. Displacing the light outside the pupil along the same axis as the
light inside the pupil would overlap the spurious order −1 of the first with the desired order
+1 of the latter.

The Gerchberg-Saxton algorithm

The method to produce a given intensity profile in the vicinity of the focal plane is simple in
theory: apply the correct phase modulation with the SLM so that the transformation (2.3)
matches with the desired profile. Although it is possible to invert the relation (2.3) to recover
the field that would produce the desired arbitrary profile, it would not only impose the phase,
but also the intensity profile on the SLM. However, we have no control on the latter, hence
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Figure 2.7: Principle of pupil selection. A phasemask is applied to shift different parts
of the beam at the focus of a lens. The 0th order corresponds to the part unaffected by
phase modulation (equivalent to a flat phasemask). The vertical and horizontal 1st orders
correspond to the beam hitting the edges of the SLM and to the desired beam on the pupil,
respectively. The iris (represented as a blue dotted circle) selects the beam diffracted at the
pupil.

the difficulty of the intensity profile generation at the focus of the lens lies in finding the
correct phase mask to apply with a fixed intensity profile on the SLM. Iterative methods for
phase retrieval exist that in practice converge3 to a phase mask giving a good approximation
of the desired intensity profile.

Let us mention an important algorithm for phase retrieval, introduced in 1972 by Ger-
chberg and Saxton [132]. It allows one to reconstruct a given intensity profile in the image
plane (the Fourier plane), with a fixed intensity profile I0 in the diffraction plane (the SLM
plane).

The principle of the algorithm is depicted in figure 2.8. In essence, it consists in cycling
between the SLM plane and the image plane by performing Fourier transform and its inverse,
repeatedly substituting the target intensity to the computed intensity. The target phasemask
is obtained after a suitable number of iterations. The algorithm goes as follows:

• Initialization
The field in the SLM plane is set as

√
I0e

iϕ0 , with ϕ0 a suitable initial phase, usually
chosen as an educated guess based on an intuition of the final phasemask or as a mask
of random phase in the absence or prior information.

• Iteration

– Compute the profile in the image plane Aneiψn = F
[√
I0e

iϕn
]
;

– Replace the module of the amplitude An with the target Stgt;
– Compute the image-plane profile obtained previously in the SLM plane:
Bn+1e

iϕn+1 = F−1
[√

Stgte
iψn
]
;

– Replace the module of the amplitude Bn+1 with the imposed
√
I0.

• Termination
Return the phase ϕN obtained after N iterations.

3There is however no mathematical proof of the convergence in general.
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Figure 2.8: Principle of Gerchberg-Saxton algorithm for phase retrieval. The description is
given in the text. FFT and IFFT stand for fast Fourier transform and inverse fast Fourier
transform respectively.

Nevertheless, this method has limitations that prevents the algorithm to converge in some
cases. Let us mention the necessity for a precise knowledge of the intensity profile I0 on the
SLM. Another limitation of the algorithm is that it takes the information of the intensity
only in the focal plane, which is not always enough to reconstruct the phase with precision.

2.2.3 Aberrations correction

To produce well defined arrays of tweezers, optical aberrations introduced by the various
optical elements on the beam path must be compensated. They contribute to deform the
phasemask applied by the SLM, by effectively adding a “phasemask of aberrations” to it.
Aberration correction therefore consists in determining this phasemask and applying its op-
posite on the SLM.

The aberrations introduced by the optics are split in two contributions, each having its
own correction procedure. The aberrations introduced by the aspheric lenses and the windows
of the UHV chamber are determined in a specific setup before their installation in the UHV
environment, as shown in figure 2.9 a). This is necessary as the lenses are assembled as a pair
in the UHV chamber, making it impossible to correct the aberrations generated by one lens
independently of the other. First, a step of spatial filtering is done at the focus of a telescope
(as described section 1.2.2). The aspheric lens then imprints aberrations on the beam, which
is collimated back with a 1mm-focal-length microscope objective (MPLFLN100X, Olympus)
that we assume to be perfect. The beam aberrations translate into a deformed intensity
pattern measured by a camera at the focus of a lens of good quality surface (λ/10) and
focal length f = 300mm, large enough to introduce a negligible amount of aberrations. The
assembly of the aspheric lens and the microscope objective make an afocal system that can
be replaced by another one, for instance the windows of the UHV chamber.

The second part, shown in figure 2.9 b), concerns the aberrations due to the optics on
the beam path (and of the beam itself), which are compensated in situ. For this, a flip-flop
mirror in front of the UHV chamber deflects the tweezer beam towards a camera located at
the focus of a lens. As for the previous case, the additional mirrors and 300mm-focal-length
lens on the beam path are assumed to add negligible deformations to the beam.
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Figure 2.9: (a) Setup for the correction of the aspheric lenses’ aberrations. The assembly of
the aspheric lens and microscope objective are replaced by UHV chambers windows to correct
their aberrations. (b) Deflection of the tweezer beam towards a camera for the correction of
aberrations along the beam path outside of the UHV chamber. Compare with figure 2.6.

Principle of aberrations compensation

Let us give briefly the idea behind the aberration compensation procedure that we follow.
The mask of aberrations ϕaber previously mentioned distorts a reference phase mask to yield
a distorted intensity profile in the image plane. We can recover the mask ϕaber by running
the GS algorithm with the distorted intensity profile as the target. However, the drawbacks
of the GS algorithm mentioned earlier prevent this simple procedure to converge in the case
of aberration compensation, and in practice we must take into account information from the
distorted intensity profile out of the focal plane.

The procedure that we follow to perform aberration compensation is more involved than
the plain GS algorithm introduced section 2.2.2. Indeed, our aspheric lenses exhibit a signif-
icant amount of aberrations, and require us to use a correction algorithm that can take into
account the additional information.

The algorithm that we use is depicted Figure 2.10. The phasemask on the SLM is ini-
tialized to produce a gaussian beam, and the image of the beam at the focus of the lens is
recorded by a camera. Rather that displacing the camera in the vicinity of the focal plane,
we add phasemasks φj corresponding to Fresnel lenses of varying focal length to the SLM
to shift the focal plane. Slices Sj of the beam intensity profile are obtained in a region sur-
rounding the focal plane with this procedure, and serve as the target intensity for a modified
GS algorithm, that reconstructs the correct phasemask to obtain the intensity profile on the
camera.

The modified GS algorithm consists in iterating the single-plane algorithm for each mea-
sured slice, a procedure that yields a set of field amplitudes and phases Bn,jeiϕn,j . Those
fields are, after subtraction of the Fresnel lens mask φj , averaged before being used as the
starting point of the next iteration.
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ϕj = Sj =

I0, φ0 Ane
i(φaber

n +ϕj) A′ne
iψn,j
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√
Sj e
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∑
j
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Figure 2.10: Aberration correction procedure. Applying Fresnel lens phasemasks on the SLM
yields the gaussian intensity profile deformed by aberrations in the vicinity of the focal plane
of the lens. The GS algorithm is run for each slice, retaining the average of the profiles
obtained (minus the Fresnel lenses) to initialize of the next iteration.

2.3 Preparation of cold atoms in gaussian optical tweezers

The first step towards the trapping of atoms in the circular state consists in the preparation
of a cloud of cold rubidium-87 atoms trapped in gaussian optical tweezers. For this purpose,
a vapor of rubidium is first cooled transversely by a 2-dimensional magneto-optic trap (2D-
MOT), then travels to a 3-dimensional MOT (3D-MOT) from which tweezers are loaded.
The atoms are further cooled by an optical molasses.

2.3.1 Atom source and 2D-MOT

A vapor of rubidium is first obtained from a cell containing the metal in liquid form, heated
at 60 ◦C. The vapor then diffuses to the 2D-MOT to be cooled transversely.

Our 2D-MOT is a commercial device obtained from the SYRTE laboratory. A detailed
description is given in [133]. The principle of its operation is schematized in figure 2.11. It
consists of an arrangement of three pairs of laser beams and four coils. A current flows in the
coils to produce a balanced and centered bi-dimensional magnetic quadrupole in the center
of an UHV cell. Each incident laser beam has its polarization adjusted to be σ− with respect
to the quantization axis defined by the magnetic field when deviating from the minimum,
and is overlapped with its reflection on a mirror. The polarization of the reflected beam is
maintained by passing twice through a quarter waveplate. The three pairs of laser beams
intersect at the center of the cell, forming three vertical stages of cooling to produce a rising
collimated beam of rubidium. The resulting beam goes out by a 1.5mm hole and is aimed
at the 3D-MOT, located 50 cm higher, by adjusting the orientation of a gimbal holding the
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Figure 2.11: Scheme of the 2-dimensional MOT. The collimated atom beam is represented
in cyan.

2D-MOT with pressure screws (visible on figure 2.1).
For proper operation, the UHV cell of the 2D-MOT is maintained at a pressure of ∼

10−8mbar with an ion pump located at the top of the cooling stage. The 2D-MOT produces
a maximal flux of 1010 atoms of 87Rb per second, with a velocity 18± 6.5m s−1.

2.3.2 3D MOT

The rubidium incoming from the 2D-MOT is collected in the tri-dimensional MOT (3D-
MOT) depicted figure 2.12. The trapping region is located at the center of the sapphire
cube, where the six cooling beams intersect.

The trap operates via the cycling transition
∣∣5S1/2, F = 2

〉
−→

∣∣5P3/2, F
′ = 3

〉
, addressed

by the cooling laser beams. In order for the cooling to be effective, the frequency of the cooling
beams is red-detuned by 14.8MHz, that is ∼ 2.5Γ from the resonance (for a natural linewidth
Γ = 2π ·6.065MHz [107]). Owing to its detuning the cooling beam sometimes sends the atom
in the state

∣∣5P3/2, F
′ = 2

〉
that in turn can decay to the dark state

∣∣5S1/2, F = 1
〉
. Atoms

ending up in this state are pumped back to the level
∣∣5P3/2, F

′ = 2
〉

with the help of a
dedicated laser beam, the “repumper”, tuned to this transition.

The magnetic quadrupole is generated by the two Bx coils in which current flows in
opposite directions as indicated in figure 2.12 a). The currents in the By and Bz coils (shown
in figure 2.2) are adjusted to fine tune the center of the quadrupole.

2.3.3 Optical molasses and imaging

A typical cold atom sequence is shown in figure 2.13. It lasts approximately 300ms in total,
including some delays not displayed on the figure. An array of gaussian optical tweezers is
first loaded from the MOT for a duration of about 100ms. However, the atomic temperature
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Figure 2.12: (a) Schematic depiction of the 3D-MOT, showing the magnetic coil holders and
the orientation of the six cooling beams. (b) Hyperfine structure of 87Rb. The lasers involved
in the cooling are indicated.

at this point is too high to proceed. Additional cooling is therefore provided by an optical
molasses stage. For that purpose, the magnetic quadrupole applied by the Bx coils is switched
off, and the By and Bz coils currents are adjusted to cancel the magnetic field at the atoms’
location. Moreover, since the Bx coils are also necessary to fine tune the magnetic field to
zero during the molasses, their anti-parallel configuration is switched to parallel configuration.
This is achieved with the help of a H-bridge that reverses the polarity of the current applied
to the +x coil. The optical molasses requires the cooling beams’ power to be ramped down
and their red detuning to be increased farther from the cycling transition with respect to the
MOT configuration [99]. Optimization of these values is done by minimizing the temperature
of atoms. The method to measure it will be described in the next chapter. The optimized
values are indicated on figure 2.13, relative to the natural transition. It is important to note
that the atoms trapped in tweezers experience a lightshift that is, for the

∣∣5S1/2, F = 2
〉
−→∣∣5P3/2, F

′ = 3
〉

transition, of about 30MHz as compared to the surrounding atoms. Optical
tweezers are present for most of the sequence, and therefore the lightshift they induce must
be taken into account and added to the indicated detunings during the molasses and imaging.

Before moving to the actual experimental sequence, the fluorescence signal from the
trapped atoms is detected using our EMCCD camera. For this, the cooling laser beams
are tuned closer to the cycling transition, with a higher intensity (both indicated in fig-
ure 2.13), in order to get enough scattered photons from the trapped atoms to distinguish
their fluorescence signal from the background. The choice of these values comes from a com-
promise between the heating of atoms at high intensity / low detuning and a lower signal at
low intensity / high detuning. The cooling beams of 5.4mm diameter (at 1/e2) are clipped
with irises to a diameter of 4.5mm to prevent light from scattering from the sapphire cube
inner walls, and hence reduce the background signal on the images. Recording fluorescence
heats up the atoms, requiring a second stage of optical molasses cooling before initiating the
experiment. Finally a second image is taken to detect the atoms that remained trapped at
the issue of the experiment. A “repumper” beam is also needed during the molasses and
imaging. This role is taken by a frequency scannable beam that is set resonant with the
lightshifted

∣∣5S1/2, F = 2
〉
−→

∣∣5P3/2, F
′ = 2

〉
transition.
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Figure 2.13: Typical cold atom sequence. Each step is described in the text. Transitions
between each step take about 10ms. The settling time of the magnetic field is exaggerated
to highlight the necessary delay before the actual Rydberg physics sequence. The duration
of the latter is of the order of 1ms. The horizontal line in the central panel represents the
natural frequency of the
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〉
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′ = 3

〉
transition.

The exact content of an experimental sequence varies, and each one will be detailed in
its dedicated section later in the text. Let us mention the case of a Rydberg experiment,
which is the most important in the context of this work, and consists in the preparation and
manipulation of Rydberg states. A typical Rydberg experiment is carried in the presence of
a magnetic field switched on just after the second optical molasses. The experiment, that
lasts between 0.5 and 5ms, is triggered after a 30ms delay. This delay is necessary for the
magnetic fields to settle, owing to the finite response time of the system.

Conclusion

Our results on Rydberg states trapping were obtained in a new experimental setup operating
at room temperature. It constitutes an intermediate step before the implementation of the
definitive simulation platform in a cryogenic environment. To that end, it is assembled on a
custom-made optical table allowing for the seamless transfer to the future setup.

The experimental assembly is centered around a custom-made piece of sapphire located
inside an ultra-high vacuum (UHV) chamber. It is connected to four sub-assemblies, each
with a dedicated function: an ion pump system, a cross flange equipped with several electrical
feedthroughs, an ion detection setup and a bi-dimensional magneto-optic trap (2D-MOT)
located at the bottom. Three pairs of coils control the magnetic field in the three spatial
dimensions, the directing magnetic field being set along the x-axis. The sapphire piece is
empty in its center and pierced with eight holes aligned with the viewports of the UHV
chamber, providing optical accesses to the various laser beams involved in the experimental
sequence. The sapphire piece holds several electrodes for electric field control, and radio
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frequency emission during circular states preparation. Two aspheric lenses facing each other
are also mounted. Their role is to focus the optical tweezers used for trapping atoms.

The retained method for optical tweezers preparation is spatial light modulation. It
consists in applying an adequate phasemask to an incident laser beam, that is converted to
the desired intensity pattern at the focus of a lens. The difficulty is twofold. First, the optical
aberrations introduced by the imperfect optics must be compensated. We use an adaptation
of the well-known Gerchberg-Saxton algorithm to achieve this. Second, one needs to compute
the appropriate phasemask for a target intensity pattern. The methodology is not described
in this thesis and delayed to a subsequent work.

An experimental sequence starts from a vapor of 87Rb cooled transversely in the 2D-
MOT. It rises to the center of the sapphire piece and atoms are caught in a tri-dimensional
MOT. Gaussian optical tweezers are present in the experiment and some atoms get captured.
An optical molasses stage ensues that further cools them down. To assess the presence of
trapped atoms, we record atomic fluorescence using a very sensitive EMCCD camera (see
2.14). A second molasses stage takes place before the actual experiment, and a second image
is recorded after, to see which atoms are still present. The whole sequence – from loading to
final detection – is approximately 300ms-long, with the actual experiment lasting a few ms.

20 µm

Figure 2.14: Accumulated fluorescence image of atoms trapped in a 9 × 9 array of gaussian
tweezers spaced by 10 µm.
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Chapter 3

Ground-state atoms trapped in
tweezers

When I was young I played with legos, but now I am older and I play
with atoms.

— Anonymous

The loading of gaussian optical tweezers with cold rubidium-87 atoms is the first step
towards the preparation of trapped circular states. This chapter focuses on the characteriza-
tion of the gaussian tweezers, along with some analysis of the atomic dynamics in tweezers.
Its main interest lies in the introduction of the various experimental sequences and analysis
procedures that are new to our research group.

Trapped atoms are detected by fluorescence imaging, a detection method that is also
paramount to the demonstration of circular states trapping as will be shown in chapter 5.
We begin with the description and characterization of the atomic fluorescence signal, which is
the basis of all subsequent data treatment. In most cases, we take advantage of the possibility
to treat individually the signal from each trapping site to get spatially-resolved information.
This will prove extremely useful in analyzing some of the results presented in the rest of this
manuscript.

Any defect in the array of tweezers, such as an inhomogeneity of power or deformation
from aberrations would have an impact on the atomic dynamics. This could impair our ability
to transfer the atoms to the BoB traps or lead to excessive losses afterwards. Moreover, the
homogeneity of the traps array is a direct assessment of the performance of our tweezer
generation algorithm. We thus measure the depth and oscillation frequency of the individual
tweezers to recover their power and waist.

We also determine the lifetime of atoms in the tweezers and most importantly their
temperature [134]. The latter probes the efficiency of our cooling scheme and is used for its
optimization. The temperature is the parameter that has the larger impact on any subsequent
experiment. An excessive temperature can lead to significant mechanical losses from the
shallow BoB traps. Even if is low enough, it basically sets the residual motion of atoms in
BoB traps, which in turn has an incidence on the dipole-dipole interaction between circular
states [135].

The number of tweezers that can be prepared in our setup is limited by the laser power
at our disposal. Although this allows us to prepare arrays of up to 11 × 11 gaussian traps,

57
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we are limited to only 18 of the shallower BoB traps. This chapter is concerned only with
gaussian tweezers, and the results presented here concern experiments carried on a square
array of 9 × 9 traps with 10 µm inter-atomic spacing. In doing so, we keep some margin to
compensate easily for day-to-day fluctuations of power. Moreover, this ensures homogeneous
laser intensities over the 80× 80 µm extension of our 9× 9 array of tweezers.

3.1 Detection of trapped ground-state atoms

The very first step before performing more elaborate experiments on trapped atoms is to
detect them properly, with a minimal error rate. The detection is based on a threshold set
on the fluorescence signal, we use it to binarize the data by reducing the photon counts to
the presence or absence of an atom. This binarization serves as the basis to compute relevant
statistics such as the trap loading efficiency, or the recapture probability after performing an
experiment.

Before proceeding to the characterization of the gaussian tweezers that we prepare, we
briefly describe how this analysis procedure is implemented.

3.1.1 Fluorescence imaging

The simplest experiment that can be done with atoms trapped in tweezers is to image them.
This is done by shining the cooling beams, the detuning, power and duration of which are
adjusted so as to find the best compromise between the heating of atoms and the collection
of enough photons to minimize the error rate of atom detection. The scattered fluorescence
photons are therefore collected on the EMCCD camera for a duration of 25ms, with an
intensity per imaging beam I0 = 10mWcm−2 (thus a total intensity I = 6 · I0) and a
detuning ∆ ∼ 10Γ (taking into account the lightshift induced by the tweezers on the imaging
transition). The number of scattered photons is

Rsc =

(
Γ

2

)
(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
, (3.1)

with Γ = 2π · 6.065MHz the natural linewidth of the D2 line and Isat = 3.58mWcm−2 [107].
We thus get, for our experimental parameters, a scattering rate Rsc = 7.6 × 105 photon/s.
With a numerical aperture of 0.36, the aspheric lens collects a fraction (1−cos(arcsin(0.36)) ·
2π/4π = 0.0335 of the scattered photons. We therefore expect to collect approximately
650 photons during the 25ms of imaging exposure. However, our optics are not perfect
and some photons are lost along the way to the EMCCD camera, as shown in table 3.1
which summarizes their transmission efficiency. The camera software internally converts
the electron signal into a number of photons, taking into account the imperfect quantum
efficiency at 780 nm. The latter must therefore not be taken into account for the estimation
of the measured signal. This should lead to a signal count of approximately 400 fluorescence
photons for a total transmission efficiency of 61 %.

Typical images are presented figure 3.1 (a), along with an averaged accumulation of many
images showing the whole array of tweezers. The rotation of the array on the camera sensor
is caused by the mirrors along the optical path to the camera. The tweezers and the camera
sensor are not at the same height, hence the mirrors must displace the incoming beam out-
of-plane, which induces this rotation as a side-effect. From an accumulation of the signal
from atoms trapped in a given array pattern, we define regions of interest (ROIs) located on
the traps. The ROIs are 3× 3 pixels in size. The fluorescence signal is analyzed by recording
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Table 3.1: Transmission efficiency of optics along the
way to the EMCCD camera (see figure 2.6).

Optical element Transmission

ITO-coated aspheric lens 0.955
UHV chamber window 0.92

Dichroic mirror 0.93
Uncoated singlet lens 0.93
Uncoated lens pair 0.932 = 0.87
Bandpass filters 0.962 = 0.92

EMCCD camera quantum efficiency 0.76

Total 0.46 (0.61)a
a Without the contribution from the EMCCD camera.

many frames, measuring, independently for each ROIs, the total number of photons collected.
We thus get, for a imaging acquisition, a list of recorded photon counts for each ROI.

The distribution of the signal in each ROI can be visualized by plotting histograms of the
detected counts, as seen in figure 3.1 (b). The histograms show two peaks, corresponding to
the background and the fluorescence of a single atom in the trap. The model used to fit the
detected signal is a sum of two gaussian peaks:

f(n) =
A1√
2πσ21

e
− (n−µ1)

2

2σ2
1 +

A2√
2πσ22

e
− (n−µ2)

2

2σ2
2 , (3.2)

where (A1, µ1, σ1) and (A2, µ2, σ2) represent the amplitudes, mean and standard deviation
of the background and fluorescence signal, respectively. The background is, of course, al-
ways present and uncorrelated to the atomic fluorescence, hence the real fluorescence signal
corresponds to µsig = µ2 − µ1, with standard deviation σsig =

√
σ22 − σ21. We thus detect

in each ROI, a number1 ⟨µsig⟩ = 289, Std(µsig) = 30 photons in our imaging conditions,
in good agreement with our expectation of 400 detected photons. We note that the signal
appears stronger in the center of the array. This can be explained by the deformation of the
fluorescence beam caused by aberrations. Indeed, although we do compensate the aspheric
lens aberrations for tweezers preparation, the outgoing fluorescence signal is not corrected,
which is likely to cause the observed pattern.

The scattering of photons by an atom is a Poisson process, hence the statistics of collected
fluorescence photons should correspond to a Poisson distribution of parameter λ = µsig.
All higher order moments are fully determined by λ, in particular the standard deviation
which is expected to be

√
λ =

√
µsig. We can therefore compare the previous value to the

fitted standard deviation to assess whether our photon count statistics is indeed subject to
a poissonian process. From the measured fluorescence signal we infer a theoretical Poisson
width ⟨

√
λ⟩ = 17.0, Std(

√
λ) = 0.9 photon, much lower than the measured width ⟨σsig⟩ =

31.6, Std(σsig) = 2.0 photon. This indicates clearly that our photon count statistics is
broadened by other processes.

1Here and in the remaining of the manuscript, the notations ⟨X⟩ and Std(X) refer respectively to the
mean and standard deviation of the quantity X over all trapping sites.
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Figure 3.1: (a) Typical images of trapped atoms in a 9×9 array of tweezers spaced by 10 µm.
On the right is an accumulation of 100 images from which we position ROIs. The images
are oriented as we see them on the camera software. (b) Histograms of the signal measured
in each ROI. The lower left histogram is magnified and shows the double gaussian fit of the
histogram, along with the threshold as a green vertical line. From this data we infer the
loading probability at each trapping site. Note that the orientation is different from that of
the camera pictures and corresponds to the physical orientation of the array.

From the parameters of the model 3.2, we can also compute a theoretical loading proba-
bility pth as the fraction of the total area that corresponds to the fluorescence peak:

pth =
A2

A1 +A2
. (3.3)
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In our experimental conditions, we get a loading probability per site ⟨pload⟩ = 61.9 %,
Std(pload) = 0.8 % (from 58 to 63 %). The fluctuations of loading probability are distributed
homogeneously among the trapping sites and indicate a good centering of the MOT and the
molasses on the tweezers. The signal and loading probability vary from time to time owing
to inevitable fluctuations and drift of the experiment, nevertheless we maintain a loading
probability > 60 % through all the experiments.

As the background and fluorescence peaks are well separated, the loading probability can
also be inferred as the fraction of frames with photon count above a given threshold T :

pexp =
#(frames with count > T )

#(frames)
. (3.4)

We thus compute independent thresholds for each ROI; they are shown as green vertical lines
on the histograms of figure 3.1. They serve to discriminate the presence of an atom: a trap is
considered loaded with an atom in a given frame if the photon count is above the threshold.
The optimal condition for setting the threshold T is a priori to minimize the error rate, that
is the sum of false positive and false negative rates, defined respectively as

pFP =
A1√
2πσ21

∫ ∞

T
e
− (n−µ1)

2

2σ2
1 dn, pFN =

A2√
2πσ22

∫ T

−∞
e
− (n−µ2)

2

2σ2
2 dn. (3.5)

However, we favor a reduction of false positive rates to decrease the background in the recap-
ture experiments detailed later, thus the threshold is usually shifted towards the fluorescence
peak. In practice, we set:

T = 0.55µ1 + 0.45µ2. (3.6)

The loading probability pexp obtained from this threshold is in good agreement with the
“theoretical” probability pth, with an absolute difference between the two lower than 0.5 %.

3.1.2 General procedure for data analysis

Apart from simple fluorescence imaging, each run of an experimental sequence involves the
recording of two images as shown figure 3.3. A first image comes after loading the atoms, prior
to the actual experiment, followed by a second image to assess which atoms are still trapped
after the experiment. For each experimental sequence, we compute detection thresholds a
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Figure 3.2: Measured loading probabilities according to eq. 3.4. The histogram on the left
shows little dispersion, with an outlier having only 58 % loading probability. The mosaic plot
on the right reveals the location of this outlier.
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posteriori from the histograms built by pooling the fluorescence signal of the first images
of each run. Albeit sufficient for the analyses presented in this thesis, it is important to
note that detection thresholds could be preset to allow for dynamical detection of atoms, for
instance in an atom rearrangement setup.

The recorded signal is converted to an atomic population at each trapping site with the
thresholds described previously. The resulting binarized frames, which can be visualized as
arrays of booleans, are the basis of all subsequent data treatment. For each experimental
run, depending on the presence or absence of atoms in the recorded frames, each trapping
site is classified according to the event that occurs:

• A null event corresponds to no atom in both frames;
• An appearance event corresponds to an atom present in the second frame, albeit absent

in the first;
• A recapture event occurs when an atom is present in both frames;
• A loss event occurs when an atom is present in the first but absent in the second frame.

Such events are determined by simple logical operations on the binarized frames. The recap-
ture/loss events are of most interest to us, and are dependent on the experimental conditions.
Except for the lifetime experiment described in the next section, appearance events are not
considered during data analysis and occur less than 0.1 % of the time at a given trapping
site.

t

Loading
and cooling 1st image Cooling Experiment 2nd image

1st image
1 0 1 0 1 0 1 1 1
0 1 1 0 1 0 0 0 1
1 1 1 1 0 1 1 1 1
1 1 0 1 0 1 0 1 1
0 1 1 0 0 1 1 1 0
1 0 0 0 1 1 1 1 1
0 1 1 1 0 1 1 1 1
0 1 0 1 1 1 0 1 1
1 0 1 0 1 0 1 0 1

1st image population

2nd image
0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 1
0 1 1 0 0 1 0 0 0
0 0 1 0 1 1 1 1 0
0 1 0 0 0 0 1 1 1
1 0 0 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1

2nd image population

Loss
Recapture
Appearance

Binarization

Figure 3.3: General principle of data acquisition by fluorescence imaging. A first image is
recorded after loading the tweezers to get prior information of the trap sites that are occupied.
A second image is taken after the experiment to determine which sites are occupied. The data
treatment process involves the binarization and classification of the trapping sites depending
on the event that occurred. The presented data has been selected to show atom appearance
events, which are usually exceptional (the probability is about 1 ‰ at each trapping site). In
the sequence scheme (and all subsequent ones), the red band represents the optical tweezers.
The tweezers are sometimes switched off during an experiment, which we indicate with a
lighter color.
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Finally, from the data gathered from many repetitions of the experimental run in the
same conditions, we estimate the probabilities of the events previously described:

pappearance = P (after = 1 |before = 0) (3.7)
precapture = P (after = 1 |before = 1) (3.8)

ploss = P (after = 0 |before = 1) = (1− precapture) (3.9)

For each experimental condition, the events are assumed to be samples of independent
Bernoulli-distributed variables Xi ∼ B(p). From the N repetitions of the experiment the
desired probability p and the standard deviation σ = p(1− p) are estimated as:

p̂ =
∑

i

Xi

N
, σ̂ = p̂(1− p̂). (3.10)

We therefore obtain recapture (or loss) probabilities in different experimental conditions,
usually as a function of a scanned parameter, which can be plotted independently for each
trapping site. Further analysis is done by fitting the data and plotting mosaics of the fitted
parameters, or by averaging ROI data to improve statistics at the expense of site-resolved
information as we will now see.

3.2 Characterization of the tweezers

Proper knowledge of the trapping potential is paramount to the study of the dynamics of
trapped atoms. Hence, we first characterize the tweezers effectively generated by the mask
imprinted on the SLM. Such a characterization is also a way to assess the efficiency of the
tweezer preparation, as improper aberration correction or misalignment would translate into
an inhomogeneous array of tweezers.

Assuming gaussian-shaped tweezers, the trapping potential, parameterized by its waist
w0 and depth V0, is of the form

V (r, z) = −V0
w2
0

w(z)2
exp

(
−2 r2

w(z)2

)
, (3.11)

where zR = πw2
0/λ is the Rayleigh range, w(z) = w2

0

(
1 + (z/zR)

2
)

is the waist of the beam
at a distance z of the focal plane z = 0.

The depth V0 is proportional to the peak intensity I0: V0 = −β0I0, with β0 the light
shift coefficient of the state 5S1/2 introduced in chapter 1. The tweezers also induce different
light shift to the 5P3/2 states. We get the trap depth from a spectroscopy measurement of
the light-shifted transition

∣∣5S1/2, F = 1
〉
−→

∣∣5P3/2, F
′ = 2

〉
. A measured light shift ∆ν is

linked to the peak intensity I0 by

∆ν =
(β′0 − β0)I0

h
, (3.12)

with β′0 the light shift induced on the state
∣∣5P3/2, F

′ = 2
〉
.

The bottom of a gaussian trap can be considered harmonic:

V (r, z) ≃ −V0 +
1

2
mω2

rr
2 +

1

2
mω2

zz
2, (3.13)

with natural frequencies linked to the waist and depth:

ωr =

√
4V0
mw2

0

, ωz =

√
2V0
mz2R

. (3.14)
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3.2.1 Light shift spectroscopy

We determine the trap depth by measuring the light-shift ∆ν induced by the tweezers on
the transition

∣∣5S1/2, F = 1
〉
−→

∣∣5P3/2, F
′ = 2

〉
addressed by the “repumper” beam. Fig-

ure 3.11 (a) describes the experimental sequence used to probe this transition. We first
populate the dark state

∣∣5S1/2, F = 1
〉

by shining the detuned cooling beams at the atoms
for 20ms in the absence of repumper. The frequency-tunable repumper beam, switched on for
8 µs with a peak intensity of 1.4mWcm−2, populates the state

∣∣5S1/2, F = 2
〉

when resonant
with the probed transition. Finally, a pushing beam resonant with the cycling transition∣∣5S1/2, F = 2

〉
←→

∣∣5P3/2, F
′ = 3

〉
is applied for 4 µs, with the tweezers switched off. Its

peak intensity is much higher than the saturation intensity, and those atoms that have been
effectively repumped back to

∣∣5S1/2, F = 2
〉

by the repumper pulse are kicked out of the
trapping region and are not recaptured. We thus get a dip in the recapture probability that
corresponds to the resonance we are looking for.

We first calibrate the zero of light shift by switching the tweezers off during the repumper
pulse. This gives us the natural transition to which we compare the light-shifted frequency.
The results are presented figure 3.4 (c). We fit the recapture probabilities with a lorentzian
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Figure 3.4: Lightshift spectroscopy experiment. (a) Principle of the sequence. (1) The atoms
are first de-pumped to

∣∣5S1/2, F = 1
〉

with the cooling beams in the absence of the repumper
beam; (2) the repumper transfers the population toward

∣∣5S1/2, F = 2
〉
; (3) a pushing beam

resonant with the
∣∣5S1/2, F = 2

〉
←→

∣∣5P3/2, F
′ = 3

〉
transition expels the

∣∣5S1/2, F = 2
〉

population from the trapping region. (b) Optical setup for the light-shift spectroscopy ex-
periment. (c) Experimental results. Left: the reference and light-shifted average recapture
probability, fitted with a lorentzian peak. Center: histogram of the measured frequencies.
Right: site-resolved map. Note that the outlier site of figure 3.2 presents a significantly higher
light-shift (+4MHz)
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peak, the theoretical line shape. As expected, all the individual trapping sites give the same
peak frequency for the reference spectrum, with inter-site fluctuations of 0.18MHz, very
close to the fit uncertainty, 0.17MHz. We get a light shift ⟨∆ν⟩ = 27.1MHz, Std(∆ν) =
1.1MHz, equal to the one deduced from the fit of the pooled data. The width of the peaks is
7.0±0.6MHz for the reference spectrum and 7.2±0.4MHz, to be compared with the natural
linewidth Γ = 2π ·6.065MHz. This broadening is due to the repumper intensity: we observed
that increasing the power of the repumper during this sequence leads to a broader peak.

Figure 3.4 (c) also shows the distribution and spatial map of light-shift frequencies. Apart
from two extreme values, the light-shifts are centered on the average value of 27.1MHz. It
is interesting to note that the maximal value corresponds to the site with the lowest loading
probability, as seen in figure 3.2.

To conclude, we can convert these frequency measurements into the more intuitive quan-
tities that are the peak intensity I0 and trap depth V0. We get:

⟨I0⟩ = 1.14mW µm−2, Std(I0) = 0.05mW µm−2, (3.15a)
⟨V0⟩ = kB × 990 µK, Std(V0) = kB × 42 µK. (3.15b)

3.2.2 Oscillations in the trap

The second trap characterization is the determination of their natural frequencies. Assuming
a gaussian trap potential, the axial frequency can be expressed as a function of the radial
frequency. We measure the latter by inducing oscillations of the atoms in the trap, looking at
the recapture probability after releasing them for a short duration. The detail of the sequence
is given figure 3.5 (a). The atoms begin to oscillate after blinking the trap for 6 µs, and do
so for a variable duration before being released again for 20 µs. The first release allows the
atoms to reach the borders of the trap, increasing the amplitude of oscillations when the trap
is switched back on. After the oscillation delay, the second release leads to two scenarios.
If the atoms are at the edges of the trap, hence have minimal velocity, they almost don’t
move and are recaptured with high probability. This situation corresponds to the top panel.
However, if they stand at the center of the trap, with maximal velocity, they leave during
the release period and are lost, as shown in the bottom panel. This leads to a recapture
probability oscillating at twice the trap frequency. It is important to note that the optimal
release durations are dependent on the atomic temperature. Anticipating the results of the
next section, these parameters were adjusted for a temperature of 14 µK.

The recapture probability averaged over all trapping sites is presented in figure 3.5 (b).
It highlights some general characteristics of the oscillation of atoms in the traps. A first
observation is that the recapture probability never goes below a level of approximately 20 %.
This is due to the fact that the portion of atoms that have a low energy (i.e. a low velocity
at the bottom of the trap) are insensitive to the releases and stand undisturbed at the center
of the trap for the whole sequence. Secondly, the regions of high recapture probability are
sharper than the low recapture probability regions. This is explained as follows. The timings
giving high recapture rates are those for which the atoms have minimal velocity, therefore are
at the edge of the trap. In this situation a small residual velocity is sufficient to allow them to
travel outside the trapping region as they have already gone a part of the way, thus causing
the sensitivity to the timing of the second release. Finally, the damping at long oscillation
times is due to both inhomogeneities in the oscillation frequencies of the various traps and
their anharmonicity. The latter effect can be seen in the simulation of figure 3.5 (a). The
atoms start the central oscillation period with roughly the same phase and a slightly larger
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Figure 3.5: Measurement of the trap frequencies. (a) Top: Scheme of the sequence. Bottom:
simulated trajectories highlighting the behavior of the atoms (only the evolution of the x
coordinate is shown). Trapped atoms are first released for 6 µs, then recaptured for a variable
time, during which they oscillate in the trap. A second release for 20 µs allows fast atoms
to leave while short enough to keep the slow atoms. The simulations were carried with the
measured trap parameters (eq. (3.19)) and temperature T = 14 µK). (b) Measured recapture
probability averaged over all trapping sites.

amplitude in the bottom panel. The accumulation of a phase is manifest and yields two
completely different outcomes when released.

The regularity of the averaged recapture probability hides the important heterogeneity
of oscillations observed in individual traps. This is highlighted in figure 3.6 (a) in which we
present the array of 9 × 9 individual signals. We identified three general main oscillation
patterns and selected archetypal signals that appear framed with a red box. Those are
reported in large in the top panels of figure 3.6 (b), along with the corresponding Fourier power
spectra2 in the bottom panels. The left graph shows a regular oscillation slowly damping
toward 50 % recapture probability over more than 100 µs, with a sharp peak at 164 kHz on
the corresponding spectrum. The signal of the central graph shows a beat pattern with an
envelope similar to the left graph, that manifests itself as two peaks at 163 and 176 kHz in the
Fourier spectrum. This can be interpreted a priori as an anisotropy of the trap (giving rise to
an elliptic beam), having slightly different transverse frequencies. The last signal presented
on the right graph decays in less than 50 µs, with weak oscillations persisting for more than
100 µs. The corresponding Fourier spectrum is harder to interpret, having three peaks at
157, 163 and 168 kHz. Let us mention that none of the signals yield a peak around 20 kHz,
the expected axial frequency, on the Fourier spectra.

2The signal has its mean subtracted before taking the Fourier transform to suppress an otherwise dominant
(and irrelevant) component at zero frequency.
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Figure 3.6: Site-resolved oscillations in the traps. (a) Detail of the individual oscillation
signals, with three archetypal behaviors highlighted with a red box. (b) The selected signals
are magnified in the top panels. They show from left to right a damped oscillation at a
single frequency, a damped oscillation with two beating frequencies and a quickly decaying
oscillation. We recover an effective frequency from the discrete Fourier power spectra (bottom
panels) by the method given in the text.

A more detailed analysis of these results, with attempts to account for the observed
behaviors with Monte-Carlo simulations, is given in appendix D.

Let us now describe the retained analysis procedure for such complex signals. The data
indicate that the exact shape of the tweezers is only approximately gaussian and an exhaustive
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Figure 3.7: Histogram and color map of the individual trap frequencies. Note that the outlier
observed in figures 3.2 and 3.4 also presents a higher trap frequency.

description of the latter is out of reach. We therefore focus on getting the best gaussian
approximation of the traps to estimate their spatial extension and power. This amounts to
reduce the oscillation to a single frequency from which we deduce the waist according to
equation 3.14.

A radial trap frequency is obtained from the power spectrum S(f) of the oscillations by
computing fmin and fmax as:

fmin = min
f

{
S(f) =

maxS

2

}
, fmax = max

f

{
S(f) =

maxS

2

}
. (3.16)

Intuitively, these quantities point at the half maximum of the peak structure, to which we
associate an effective full width at half maximum fmax − fmin. The values are pointed by
arrows on the magnified peaks in the insets of the spectra of figure 3.6. The effective oscillation
frequency fosc, indicated as a dotted line, is then set as the average of fmin and fmax:

fosc =
fmin + fmax

2
. (3.17)

We thus obtain the desired trap frequency ftrap = fosc/2. The individual values are
presented figure 3.7 with ⟨ftrap⟩ = 80.9 kHz, Std(ftrap) = 2.0 kHz.

3.2.3 Trap parameters

From the knowledge of the maximum intensity I0 and the radial frequency ftrap of a gaussian
tweezer, we recover the waist w0 and total power P0 as:

w0 =

√
β0I0

mπ2f2trap
, P0 =

π

2
I0w

2
0. (3.18)

Using the measurements of the previous sections, we obtain:

⟨w0⟩ = 1.21 µm, Std(w0) = 0.01 µm, (3.19a)
⟨P0⟩ = 2.62mW, Std(P0) = 0.12mW. (3.19b)

The waists thus obtained are effective parameters encompassing the spatial extension of the
tweezers. Nevertheless, they show very little dispersion of less than 1 %. This uniformity
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Figure 3.8: Histogram and color map of the individual trap parameters computed from
equation 3.19.

in size indicates that the aberrations are well compensated over the explored lens field of
80 µm. Indeed, aberrations tend to deform the traps, effectively increasing their size. This
effect being more pronounced at the edges of the lens field, improper aberrations correction
would is expected to lead to higher dispersion in the traps size. The power per trap shows
more dispersion, of the order of 5 %.

Inspection of the individual trapping site data presented in figure 3.8 shows that the
waists are higher than average in the lower left corner of the array. This can be interpreted
in view of the previous remark as an imperfect correction of aberrations in this region. The
power per trap shows the same tendency to increase in the lower left corner. The outlier
trapping site mentioned throughout this chapter appears to have more than 10 % higher
power than the others, with average waist.
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Figure 3.9: Correlation between the trap parameters and the loading probability obtained
from the measurement of oscillation in the traps (blue) and light-shift spectroscopy (orange).
The loading probability is well correlated to the trap power but not to the waist. The solid
lines indicate the linear relationship between the power and the loading probability. We also
indicate the corresponding Pearson’s correlation coefficients.
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To conclude, let us mention the correlation between the loading probability and the
trap power. Figure 3.9 shows scatter plots of the loading probability versus the waist (left
panel) and the power (right panel). Since the trap characterization involves two distinct
measurements, we have two sets of loading probabilities, one from the light shift spectroscopy
(light green) and one from the trap oscillation measurement (magenta). Although there is
clearly no correlation between the waist and loading probability, a linear regression reveals
a strong correlation between the power and the loading probability for the spectroscopy and
the trap oscillation data. The respective (Pearson’s) correlation coefficients are −0.83 and
−0.91.

3.3 Atoms in tweezers

We turn to the two measurements pertaining to the behavior of atoms in tweezers: the lifetime
and temperature. The latter is usually determined on a day-to-day basis and depends on the
experimental conditions. The results of this section rather serve to illustrate the methodology.

3.3.1 Lifetime in the trap

We measure the lifetime of atoms in the trap by simply waiting for a variable delay between
the two fluorescence images, as described in figure 3.10 (a). Two main mechanisms affect the
lifetime of atoms in the trap [131]. The first mechanism is the heating of atoms inside the
trap. Many factors influence this heating, including the scattering of the light that generates
the trap (and also near-resonant residual light) and fluctuations of the trap intensity and
position. The second mechanism is the collision with surrounding atoms. Assuming only
collisions at a rate 1/τ with the residual gas, this leads to a survival probability at time t:

Psurv(t) = exp(−t/τ). (3.20)
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Figure 3.10: Lifetime measurement experiment. (a) Scheme of the sequence. (b) Average
recapture probability. (c) Average appearance probability.

We maintain the molasses cooling during the experiment to suppress the contribution of
atomic heating to the lifetime. The measured recapture probability Precapture is presented in
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figure 3.10 (b). A simple fit with the model of eq. (3.20) is only in qualitative agreement
with the data, especially at short delays when the recapture probability decreases faster than
expected. This can be understood by taking into account the contribution from surrounding
molasses-cooled atoms which can be captured in a trap. This leads to two phenomena: the
discharge due to light-assisted collisions [136, 137] of a trap that was already loaded and the
loading of a trap that was empty.

To get a more quantitative insight, let us first assume that the atomic density nmol(t) in
the molasses surrounding the tweezers is proportional to a decaying exponential. This results
in a probability density pload(t) to load an atom at time t:

nmol(t) ∝ e−
t

τload , pload(t) =
A

τload
e
− t

τload , (3.21)

where τload is the lifetime of the molasses and 0 < A ≤ 1 is an empirical parameter to be
fitted from the data.

In the case of a loaded trap, such an event in which an additional atom gets trapped leads
to the emptying of the trap. The infinitesimal variation of Psurv is

Psurv(t+ dt) = Psurv(t)

(
1− dt

τ
− dt

A

τload
e
− t

τload

)
, (3.22)

where the first contribution to the variation comes from the possible collision with the residual
gas and the second contribution stems from the loading of an atom from the molasses. This
yields the following differential equation satisfied by Psurv:

dPsurv

dt
(t) =

(
−1

τ
− A

τload
e
− t

τload

)
Psurv(t). (3.23)

After integration and proper normalization, we obtain:

Psurv(t) = exp

(
− t
τ
+A(e

− t
τload − 1)

)
. (3.24)

The data of figure 3.10 (b) are in very good agreement with eq. (3.24), with fitted survival
time τ = 12.6 ± 0.2 s and loading time τload = 0.84 ± 0.18 s. The fit also gives a value
A = 0.166± 0.013 for the empirical parameter introduced.

In the case of an empty trap, the loading of an atom leads to an atom appearance event,
as described in section 3.1.2. The probability of such an event is presented figure 3.10 (c).
Qualitatively, we observe an initial increase as the surrounding atoms get more time to
load the trap, followed by an exponential decay with a characteristic survival time. The
observation of an atom at time t (conditioned to the absence at t = 0) is therefore the
combination of two events: the loading of an atom at time t′ such that 0 < t′ < t and its
survival from t′ to t. This gives, after integrating over t′,

Pgen(t) =

∫ t

0
pload(t

′)Psurv(t, t
′)dt′. (3.25)

Substituting Psurv(t, t
′) ≃ exp

(
− t−t′

τ

)
and integrating we get:

Pgen(t) = A
τ

τ − τload

(
e−

t
τ − e−

t
τload

)
. (3.26)
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Fitting the probability of appearance with the model of eq. (3.26) yields A = 0.140 ± 0.005
and τload = 1.28± 0.11 s, which are close to the values obtained from the measured recapture
probability, 0.166± 0.013, and 0.84± 0.18 s, respectively. We however get τ = 5.81± 0.28 s,
two times smaller than the value of 12.6± 0.2 s found previously. This indicates another loss
mechanism for those atoms that are loaded in the trap during the delay between the two
images.

3.3.2 Atom temperature

A last experiment pertaining to the behavior of the atoms trapped in gaussian tweezers is the
measurement of their temperature. This is done with a release-recapture [134] experiment
depicted in figure 3.11 (a)-(b). The atoms are first prepared and cooled by an optical molasses
before switching the tweezers off for a variable delay, during which the atoms move freely. At
the end of the delay, the tweezers are switched on, recapturing those atoms which are close
to the center of the trap, thus having low enough energy.
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Figure 3.11: Release-recapture experiment for temperature measurement. (a) Scheme of the
sequence. (b) Snapshots of a sample of 1000 atomic positions obtained from Monte-Carlo
simulations for various release durations, from left to right: 0 µs, 20 µs, 40 µs. At the end of the
release period, the tweezers recapture only those atoms depicted in blue. The simulations were
carried with the measured trap parameters (eq. (3.19)) and temperature. (c) Experimental
results. Left: measured average recapture probability as a function of the release duration;
the simulated curve shown corresponds to a fitted temperature of 14.1± 0.1 µK. Right: site-
resolved temperatures obtained from the Monte-Carlo fitting procedure of individual trapping
sites data, revealing a significant inhomogeneity in atomic temperatures.
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Monte-Carlo simulations of the atom dynamics are carried to fit the temperature of the
atoms. Samples of initial atomic positions and velocities are drawn according to a Maxwell-
Boltzmann distribution:

ρr(x, y, z) ∝ exp

(
−V (x, y, z)

kBT

)
, ρv(vx, vy, vz) ∝ exp

(
−
m(v2x + v2y + v2z)

2kBT

)
. (3.27)

We use the harmonic approximation of eq. (3.13) for the trap potential, which we parameterize
by the average values of the waist and depth found previously:

w0 = 1.21 µm, V0 = kB × 990 µK. (3.28)

The determination of the temperature thus assumes that the different trapping sites are
the same and correspond to the average “best gaussian” approximation. After evolution in
free space for a duration τ , the fraction of recaptured atoms is determined. The recapture
condition is that the mechanical energy is negative:

Em =
1

2
mv2(τ) + V [r(τ)] < 0. (3.29)

The recapture probabilities psim(ti) simulated at various delays ti for a given temperature
T can be compared with experimental recapture probabilities pexp(ti) (having estimated
uncertainties σexp(ti)) by computing the χ2 distance:

χ2 =
∑

i

(pexp(ti)− psim(ti))2
σ2exp(ti)

. (3.30)

To estimate the temperature, simulations are carried for a list of temperatures Ti to obtain
values χ2(Ti). The non-negligible sampling noise in the latter is mitigated by fitting with
a polynomial to obtain the position of the minimum, T̂ . The uncertainty in the estimated
temperature, σ̂T , is given by the formula [138]:

σ̂2T = 2

[
d2χ2

dT 2

]−1

T̂

χ2(T̂ )

k
, (3.31)

where k is the number of degrees of freedom, that is, k = n − p with n the number of data
points taken and 1 ≤ p ≤ 3 is the number of fitted parameters (the temperature, along with
optional global scale and offset). The detail of the simulations and fitting procedure, along
with a discussion on the validity of the previous approximations, is given in appendix D.

The results are presented figure 3.11 (c). Despite the averaging over many trapping sites
(and many trap shapes), the global recapture probability is well fitted with the Monte-Carlo
procedure, yielding a temperature of 14.1±0.1 µK. The fitting of individual trapping site data
gives a temperature ⟨T ⟩ = 14.3 µK, Std(T ) = 1.4 µK, revealing significant inhomogeneity in
the fitted temperatures. The latter inhomogeneity is further highlighted by the mosaic plot
of the temperatures shown in the right panel of figure 3.11 (c). There is a clear tendency to
have cooler atoms along the vertical in the center of the array. The reason for this pattern is
unclear, and does not correlate to any of the trap parameters studied previously3.

3One could think that the observed pattern is an artifact from the compensation of trap parameters
inhomogeneity by the fitting procedure.
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Conclusion

The preparation of optical tweezers being new to our team, we described here the character-
izations carried on the gaussian traps for ground-state atoms. The results presented in this
chapter were obtained with an array of 9× 9 traps with 10 µm spacing.

The fluorescence signal emitted by trapped atoms allowed us to discriminate their presence
at each trapping site. In the 25ms of imaging, we detect approximately 300 photons scattered
from one atom. This allowed us to establish detection thresholds and binarize the data. We
obtained an average loading probability of 60% per trap. From the comparison of frames
acquired before and after the actual experiment, our analysis procedure consists in computing
basic statistics such as the probability of recapture for an atom at each trapping site.

We characterized the gaussian traps by measuring on the one hand the light-shift induced
on the transition

∣∣5S1/2, F = 1
〉
−→

∣∣5P3/2, F
′ = 2

〉
by spectroscopy and on the other hand

the trap frequency from a release-recapture experiment. The spectroscopy gave a depth
(averaged over all trapping sites) ⟨V0⟩ = 990 µK. We measured (also on average) a trap
frequency of ⟨ftrap⟩ = 80.9 kHz. From these values we recovered the waist w0 and the power
P0:

⟨w0⟩ = 1.21 µm, ⟨P0⟩ = 2.62mW.

These values were found to be relatively homogeneous among the 81 traps, with a dispersion
of about 1% for the waist and 5% for the power.

We reported lifetime of 12.6±0.2 s for ground-state atoms in the tweezers. To conclude we
determined the temperature with a release-recapture experiment: we measured the recapture
probability after releasing the atoms for a variable time. The data was fitted by running a
series of Monte-Carlo simulations for a sequence of temperatures and computing the mean
squared error. A polynomial fit of the latter yielded the temperature at its minimum. We thus
obtained an average temperature ⟨T ⟩ = 14.3 µK. The spatially-resolved map of temperatures
revealed a strong inhomogeneity, the atoms being cooler along a vertical band located at the
center.

These characterizations, and most notably the temperature measurement, set the stage
for circular states trapping. We therefore turn to the topic of their preparation.



Chapter 4

Preparation of circular states

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where -” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.
“- so long as I get SOMEWHERE,” Alice added as an explanation.
“Oh, you’re sure to do that,” said the Cat, “if you only walk long
enough.”

— Lewis Carroll, Alice in Wonderland

We now turn to the preparation of circular Rydberg states from ground state atoms
trapped in gaussian tweezers. Previous calculations [90] have shown the levels |48C⟩ and
|50C⟩ to be good candidates to embody the spin states of the prospected quantum simulator.
However, in line with previous work [96], we choose to prepare the n = 52 circular state to
demonstrate the trapping and in the longer term study dipole-dipole interaction with |50C⟩.
Although the circularization procedure has previously been described extensively [98, 96], we
adapted it and optimized each step to maximize the preparation efficiency. The latter must
be as high as possible to improve the signal and in the longer term minimize the occurrence
of defects in the simulator. This involves careful control of each of the four steps of the new
preparation process depicted in figure 4.1:

(1) We introduced in this work a first stage of optical pumping to transfer the initial
atomic populations to the state

∣∣5S1/2, F = 2,mF = 2
〉
. This step is of paramount

importance for the circularization efficiency since only the pumped state is addressed
by the excitation lasers of the second stage.

(2) The Rydberg excitation to the state
∣∣52D5/2

〉
is carried via a two-photon excitation.

However, we now use
∣∣6P3/2

〉
as the intermediate state instead of

∣∣5P3/2

〉
, which allows

us to reach higher Rabi frequencies and perform coherent excitation.
(3) The third stage consists in the transfer of population from

∣∣52D5/2

〉
to the state |52F⟩

that branches, when the electric field is applied, to the state suitable for the last step.
(4) The fast adiabatic transfer, introduced in chapter 1, is carried in the same way as we

used to, yet with a new radio-frequency setup.

The directing magnetic field (along the x direction) is set constant during the whole
sequence. Its orientation defines the quantization axis for the ground state and low-l Rydberg

75
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Figure 4.1: Preparation of circular states. (1) Optical pumping; (2) Laser excitation; (3)
Microwave transfer; (4) Adiabatic transfer.

states. The electric field is applied before the circularization and defines the quantization
axis during the circular Rydberg experiment.

We take advantage of the two detection methods at our disposal for the optimization of
each step. Fluorescence imaging gives us spatially resolved information and is insensitive to
the presence of surrounding atoms potentially excited to Rydberg state. In practice, we use
imaging to probe the first preparation steps and to demonstrate the trapping of Rydberg
states, as it requires prior information on the localization of atoms. State-selective field
ionization, on the other hand, gives us a snapshot of the populations of different Rydberg
states in the experiment at any given time. It is therefore involved in the detection of circular
states, be it for various optimizations or lifetime measurements presented in the next chapter.

We conclude the chapter with the characterization of the state purity and the estimation
of the preparation efficiency in our room temperature environment. This is done with the
help of a spectroscopy measurement between circular states.

4.1 Preparation of 52D

The first step toward the preparation of circular states is the laser excitation from the state∣∣5S1/2, F = 2,mF = +2
〉

to
∣∣52D5/2,mj = +5/2

〉
. The degeneracy between the different m-

sublevels is lifted by a constant magnetic field present during the whole sequence. The
Rydberg excitation is done by addressing a two-photon transition with

∣∣6P3/2

〉
as the in-

termediate state. To maximize the transfer efficiency, we first pump ground state atoms
into the m = +2 sub-level. The optical pumping is optimized by probing the Zeeman levels
population using Raman spectroscopy. Figure 4.2 shows the optical setup involved in the
preparation of |52D⟩.



4.1. PREPARATION OF 52D 77

Optical
pumping
beams

420 nm

1015 nm

f 250 mm

f 400 mm

Raman
beams

MW

λ/2

λ/4

dichroic
mirror

PBS
cube

Glan-Thompson
polarizer

Raman
beams

Cooling
beams

Cooling
beams

B

x

y

z
y

σ+

σ+

σ+

σ+,π,σ-

F
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We keep the 9×9 array of tweezers used for the characterizations described in the previous
chapter to optimize both optical pumping and Rydberg excitation. The optical pumping
benefits from the improved statistics offered by a larger number of atoms, while the Rydberg
excitation takes advantage of the larger spatial extension to ease proper alignment of the
lasers. We then switch to a 6 × 3 array that matches the BoB traps introduced in the next
chapter for an in-depth characterization of the Rydberg excitation.

4.1.1 Optical pumping

The optical pumping is done by illuminating the atoms with the “repumper” and “probe”
beams1, referred to as optical pumping beams on figure 4.2. They are respectively tuned
to the repumping transition

∣∣5S1/2, F = 1
〉
−→

∣∣5P3/2, F
′ = 2

〉
and the cycling transition∣∣5S1/2, F = 2

〉
−→

∣∣5P3/2, F
′ = 3

〉
in the presence of the directing magnetic field. They

come out of the same optical fiber with parallel polarization, further purified by a Glan-
Thompson polarizer, and adjusted with a pair of half and quarter waveplates to be σ+ at the
atoms position.

The optical pumping efficiency is probed by two-photon Raman spectroscopy as described
in figure 4.3 (a). The sequence proceeds as follows. After imaging and cooling the atoms,
the repumper is applied for 400 µs to empty the population in F = 1. The two Raman lasers
couple the F = 1 and F = 2 levels through the states2 5P3/2 F

′ = 1 and F ′ = 2, with
respective (blue) detunings ∆1 = 759MHz and ∆2 = 602MHz. Shining the Raman beams
during approximately 4 µs transfers the population from the resonant Zeeman sub-levels from
F = 2 to F = 1. Residual population in F = 2 is kicked out of the trapping region in the
same manner as for light shift spectroscopy: the tweezers are switched off and the pushing
beam is applied for 4 µs. We therefore observe the absence of recaptured atoms except at the

1Those are the same as the beams involved in light shift spectroscopy.
2The hyperfine levels F ′ = 0 and F ′ = 3 do not intervene since the selection rule |∆F | ≤ 1 cannot be

satisfied for both F = 1 and F = 2.
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Raman resonances that transfer the population to F = 1, which is insensitive to the kick.
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Figure 4.3: Raman spectroscopy. (a) Experimental sequence. (1) The optical pumping lasts
400 µs; (2) The repumper pulse lasts 400 µs; (3) The Raman pulse lasts ∼ 4 µs; (2) The kick
lasts 4 µs;. (b) Spectra obtained with (blue) and without (various colors) optimized optical
pumping. The zero corresponds to the frequency where the peaks coalesce as the magnetic
field vanishes. The inset shows the position of the peaks as a function of the magnetic field,
solid lines correspond to the theory. (c) Scheme of the levels indicating the observed Raman
transitions.

Figure 4.3 (b) presents Raman spectra with and without optical pumping, after optimiza-
tion. The measurements are carried at our working magnetic field B = 7G. Each transition
has its pulse duration and laser power adjusted to reach a π-pulse at the peak frequency, the
intensities are approximately 200mWcm−2 and 100mWcm−2 for the beam tuned to F = 1
and F = 2 respectively.

The Raman beams come out of the same optical fiber and have the same circular po-
larization at the atoms location. The quantization axis being orthogonal to the direction of
propagation of the beams, the Raman field is a mixture of 25% σ+, 25% σ− and 50% π-
polarized light. We only observe peaks corresponding to four of the seven possible transition
frequencies, as indicated in the level scheme figure 4.3 (c).

The peaks are evenly spaced and their dependence in the magnetic field agrees very well
with the theory as seen in the inset of figure 4.3 (b). At a given magnetic field B, the
peak frequencies are offset from their zero-field value by3 νk = k

2µBB, k = ±1,±3, where
µB is Bohr magneton. The splitting ∆ν = µBB between two adjacent peaks allows for the
precise measurement of the magnetic field. From measured ∆ν = 9.81± 0.02MHz, we infer
a magnetic field Bx = 7.01± 0.02G.

The drawback of our optical pumping scheme is the heating of atoms from the cycling
transition. We want to maximize the population in the state

∣∣5S1/2, F = 2,m = 2
〉

without
3Here and in the following we assume that the electron, orbital and nuclear g-factors have their approximate

integer value 2, 1 and 0 respectively. This approximation is valid to about 0.1%, which is good enough for
our purposes. Note that this also is the order of the uncertainty of our magnetic field measurement, which is
thus limited by this approximation.
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excessively heating the atoms. The optimization is done on these criteria by adjusting the
polarization of the beams, their power and duration. We settled on a duration of 400 µs with
respective intensities of the order of 0.02mWcm−2 and 200mWcm−2 for the probe and the
repumper beam. This leads to an increase of atomic temperature from 14 µK to 25 µK. We
can get a rough estimate of the purity of the population from the spectra of figure 4.3 (b)
where some residual population in m = 1 can be seen from the peak at 5MHz. Fitting the
two high-frequency peaks (corresponding to the cyan and purple transitions) with lorentzian
profiles we get respective amplitudes Am=1 = 0.018 ± 0.002 and Am=2 = 0.72 ± 0.01 from
which we evaluate the optical pumping efficiency ηOP as:

ηOP =
Am=2

Am=1 +Am=2
= 0.97± 0.01. (4.1)

4.1.2 Laser excitation

The excitation to the Rydberg state
∣∣52D5/2,mj = +5/2

〉
takes place after the optical pump-

ing. We proceed via a two-photon process with
∣∣6P3/2

〉
as the intermediate state (see fig-

ure 4.1). The low-lying transition 5S1/2 −→ 6P3/2 is addressed by a 420 nm laser, blue-
detuned by ∆ = 500MHz. A second laser, with a wavelength of 1015 nm, completes the ex-
citation scheme to the Rydberg state. To reach the mj = +5/2 sub-level, the two excitation
beams propagate in opposite directions, parallel to the magnetic field along the x-direction,
with σ+-polarizations (see figure 4.2). In the presence of lasers with Rabi frequencies Ω420

and Ω1015, the three-level system in the far detuned regime ∆≫ Ω420, Ω1015 is equivalent to
a two-level system with effective Rabi frequency and detuning:

Ω =
Ω420Ω1015

2∆
, δ = δ0 +

1

4∆

(
Ω2
1015 − Ω2

420

)
. (4.2)

The detuning ∆ limits the maximum allowable Rabi frequency Ω420: we must stay in the
∆≫ Ω420 regime to avoid populating the intermediate P3/2 state. Therefore, the two-photon
Rabi frequency that we can achieve is essentially limited by the laser power at 1015 nm.

The excitation takes place at zero electric field. In doing so we minimize the broadening
of the transition due to the large quadratic Stark shift of the target state: 140MHzV−2 cm2.
We identified the transition to address among the many possibilities by performing Zeeman
spectra with and without the optical pumping. The latter is then always present in subsequent
experiments.

The excitation lasers

The laser emitting at 420 nm is composed of a titanium-sapphire laser (SolsTiS, M-squared)
emitting 6W of power at 840 nm and a frequency-doubling cavity from which we can get up
to 2W of output power. The titanium-sapphire laser is pumped with approximately 18W of
532 nm light with dedicated pump (Equinox, M-squared). Initially, the laser light at 1015 nm
was obtained from a similar assembly: a pump at 532 nm and a titanium sapphire laser from
which we got 2W of output power at 1015 nm (again, a commercial Equinox and SolsTiS
apparatus from M-squared). Unfortunately, the 1015 nm laser pump got defective, and we
had to use a diode laser instead (DL Pro, Toptica) with 120mW of output power. Technical
details on the laser setup are gathered in appendix B.

In our conditions, we have approximately 50mW of power at 1015 nm focused on the
atoms with a waist of 140 µm, hence a Rabi frequency Ω1015 ≈ 2π × 10MHz. With a power
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estimated to be 55mW and a size4 of ∼ 100 µm at the atoms location for the 420 nm beam,
we get a Rabi frequency Ω420 = 2π × 160MHz. This leads to an expected two-photon Rabi
frequency Ω ≈ 2π × 1.7MHz.

The 9× 9 array

We begin by showing in figure 4.4 an excitation spectrum obtained on the 9 × 9, 10 µm
spacing array of tweezers described in chapter 3. As indicated earlier, the spectrum is taken
in a magnetic field B = 7G and at zero electric field: F = 0V cm−1. The tweezers, that
would otherwise undesirably light-shift the Rydberg transition, are switched off during the
laser pulse and re-established just after. Atoms thus excited to the Rydberg state are subject
to the repulsive ponderomotive potential of the gaussian tweezers and expelled from the
trapping region, while those atoms still in the ground state are recaptured and detected by
fluorescence imaging. To complement the optical detection, we ionize the Rydberg atoms still
present in the environment and count the total number of ions detected during the ionization
ramp. The obtained spectra show good complementarity and fit well with the theoretical
line shape for a square pulse of duration T :

p(ω) = y0 +A
sin2(π(f − f0)T )
(π(f − f0)T )2

, (4.3)

where f is the frequency of the pulse and f0 is the transition frequency. The offset y0 and
amplitude A have been included as necessary parameters for proper fitting of experimental
data.

There is a noticeable decrease in the number of ions detected as compared to the lost
atoms. This difference is due to the delay between laser excitation and ionization. In the
case of fluorescence detection, the atoms transferred to the Rydberg state are necessary lost
as they are repelled by the tweezers. Fluorescence detection is therefore, once corrected from
background losses, quantitative in terms of excitation efficiency. Ionization detection can,
however, only detect atoms in the Rydberg state, yet does so independently of their position.
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Figure 4.4: Two-photon laser spectrum on the large 9× 9 array. (a) Scheme of the sequence.
In addition to the usual fluorescence imaging, ionization detection is triggered 40 µs after
laser excitation. (b) Corresponding laser spectrum, showing on the same scale the average
number of recaptured atoms on the whole array from fluorescence imaging and the detected
ion counts. Note the complementarity between the two signals.

4The beam does not look gaussian at the focus.
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Owing to the delay between excitation and detection, a significant fraction of the Rydberg
population decays to the ground state. We estimated, using the Alkali Rydberg Calculator
package [122], this decay rate to be 150 µs. Most ions being produced 70 µs after the excita-
tion, we expect the loss of 33 atoms from optical detection to translate into 33× e70/150 = 21
detected ions. This result is very close to the measured value of 22.5 ions, especially consider-
ing the fact that untrapped surrounding atoms excited to the Rydberg state also contribute
to ion counts.

The size of the excitation lasers is comparable to that of our array of tweezers, 80 µm.
Figure 4.5 (a) presents spatially-resolved Rabi oscillations with the laser frequency at the
peak of the average spectrum of figure 4.4 (b). The results make the inhomogeneity of the
laser excitation manifest. There is a clear tendency towards higher Rabi frequencies at the
center of the array, where the laser intensity is maximal, as highlighted in the color map of
figure 4.5 (b). Assuming the lasers are aligned with waists w1 and w2, we have, according to
eq. (4.2)

Ω ∝ e
−x2

(
1

w2
1
+ 1

w2
2

)
,

where x is the distance to the propagation axis. With our measured values w1 = 100 µm and
w2 = 140 µm, this yields an expected ratio of Rabi frequencies Ω(x = 50 µm)/Ω(x = 0 µm) ≃
0.69. This value is in reasonable agreement with the measured ratio 250

420 = 0.6.
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Figure 4.5: Rabi oscillations of the two-photon laser transition on the large 9×9 square array,
with 10 µm spacing. (a) Individual oscillation signals. (b) Map of fitted Rabi frequencies. (c)
Number of recaptured atoms summed on all trapping sites and ion counts. The laser powers
here differ from the ones announced earlier and correspond to pre-optimized settings, with
lower values.
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The number of recaptured atoms summed over the whole array (see figure 4.5 (c)) shows a
quick damping due to the dephasing between individual Rabi oscillations which, again, reflects
itself in the ionization detection signal. This damping is non-negligible even at short pulses
durations, and is the cause of the reduced contrast observed in the spectrum of figure 4.4 (b).

The 6× 3 array

The above Rabi signal is very useful to properly align the excitation lasers. However, to
ensure homogeneous Rydberg excitation, we must restrict ourselves to a horizontal band of
at most 30 µm vertical extension. This, together with the fact that we are limited by the
power at our disposal to produce BoB traps, leads us to switch to a smaller array of traps.
Hence, from now on and for the rest of this manuscript, we use an array of 6 × 3 traps,
spaced by 15 µm to rule out the possibility of any interaction between neighboring atoms.
This corresponds to a spatial extension of 75× 30 µm for the new array.

We present the results obtained for the laser spectroscopy averaged over all trapping sites
in figure 4.6. Along with the usual excitation spectrum, figure 4.6 (a) shows the light-shifted
spectrum in the presence of the tweezers light. The dispersion of tweezer light intensity causes
a significant broadening and a drop of the maximum achievable Rydberg transfer from 90% to
30%. Comparing with figure 3.4 (c), we see that in the latter case the light-shifted spectrum
in not significantly broadened. On the contrary, the broadening observed on the Rydberg
transition in figure 4.6 (a), with a full width at half maximum (FWHM) of 2.14± 0.05MHz,
is much smaller than the 6MHz of the D2 line. This opens the perspective of a much higher
resolution on the measurement of the traps intensity profile, by using the Rydberg transition
instead of the D2 line. In figure 4.6 (b), we plot the excitation spectrum in terms of counts
and compare optical and ionization detection. For this purpose, the delay between the laser
excitation and the triggering of ionization detection is reduced to the minimum: 5 µs. The
arrival times of figure 4.6 (c) show a peak of ions produced 35 µs after the laser pulse, to
be contrasted with the ∼ 80 µs delay in the case of the large array. This shorter delay
translates into a higher ratio of detected ions over lost atoms as compared to the spectrum
of figure 4.4 (b).

The number of atoms measured in the Rydberg state can be estimated from fits of the
data with the theoretical line shape. This yields an average loss of nimg = 10 atoms from
the tweezer array and 8.5 ions detected. Spectroscopy in the presence of the tweezers has
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Figure 4.6: Laser spectroscopy on the small 6×3 array of tweezers. (a) Laser spectra obtained
from the recapture probability averaged on all trapping sites, with and without the light-shift
induced by the tweezers. (b) Total number of recaptured atoms and ion counts. (c) Ion arrival
times at the peak frequency.
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shown the ion background, resulting from the excitation of surrounding untrapped atoms)
to be approximately 0.5 atoms. We thus get an estimated nion = 8 ions produced from the
excitation of trapped atoms. This number is very close to the value expected from the decay
rate to the ground state: 10 × e−35/150 = 7.9. We conclude to a near-unity efficiency of our
ionization detection setup.

Spatially-resolved spectra and Rabi oscillations are presented in figure 4.7. The spectra
are measured with a π-pulse duration of 0.8 µs. The individual peak amplitudes, with value
⟨A⟩ = 0.925, Std(A) = 0.013, are all superior to that of the averaged data, A = 0.89± 0.01.
The reason for this reduction of contrast appears on the inspection of the peak frequencies
map. They fluctuate by 100 kHz around the average position, causing a mean decrease of
the Rydberg transfer of 3% for each trapping site. The global efficiency η52D of the laser
excitation corresponds to the peak amplitude A of the averaged data:

η52D = A = 0.89± 0.01. (4.4)

The map of Rabi frequencies of figure 4.7 (b) reveals another mechanism leading to the
decrease of excitation efficiency. The atoms are subject to large variations of Rabi frequencies
Ω along the vertical, with ⟨Ω⟩ = 2π × 660 kHz, Std(Ω) = 2π × 50 kHz. The laser pulse is
therefore not a perfect π-pulse, causing an additional peak amplitude reduction of 1% on
average.

The two effects described above clearly share a common origin given the strong anti-
correlation between the position of peak frequency and the Rabi frequency. The observed
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Figure 4.7: Spatially-resolved laser spectra and Rabi oscillations. (a) Laser spectroscopy with
corresponding peak amplitudes and frequencies maps. The reference frequency is that of the
average spectrum (see figure 4.6). (b) Rabi oscillations with corresponding Rabi frequencies
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frequencies.
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behavior can therefore be attributed to spatial variations of the intensity of the 420 nm laser
beam, in accordance with eqs. 4.3. The Rabi frequency inhomogeneities cannot be accounted
for by assuming a gaussian shape with waist ∼ 100 µm for the lasers. This would lead to
a Rabi frequency ratio of 0.96 at a 15 µm distance, in contrast with the measured values of
0.85-0.93 for the bottom and top pairs of lines, respectively.

The measured Rabi frequency is significantly lower than the value announced in the
beginning of this section, by a factor of approximately 2.5. This can be due to an imprecision
in the measurement of laser powers, with a possibly large difference between continuous and
pulsed values. There is also the possibility of an imperfect alignment of the 420 nm laser,
with a beam profile that cannot be considered gaussian.

To conclude, let us emphasize that the possibility of measurements on individual trapping
sites is a powerful tool to analyze and optimize the experimental conditions. The Rydberg
excitation spectra and Rabi oscillations presented in this section illustrate the use of spatially-
resolved information to get the beams characteristics at the atoms location.

4.2 Preparation of circular states

Further state manipulation from
∣∣52D5/2,mj = +5/2

〉
in the Rydberg manifold is done with

the help of microwave (MW) and radio-frequency (RF) fields by taking advantage of the
sensitivity of the Rydberg levels to the electric field. As indicated in chapter 1, the D state
cannot be involved directly in the circularization process. The energy shift caused by its large
quantum defect displaces it far off-resonance with the harmonic ladder that we go through
during the adiabatic transfer. The preparation of circular states thus involves an intermediate
step consisting in the microwave transfer of

∣∣52D5/2,mj = +5/2
〉

to a |52F⟩ state. The latter
branches, after switching on a directing electric field parallel to the magnetic field, to the
state from which we carry out the adiabatic transfer.

Although it is possible to detect each population transfer optically by going backwards to
the ground state, this is of limited use, especially as we add up experimental steps. Indeed,
fluorescence imaging essentially requires to double the number of necessary steps, thus squar-
ing the total efficiency and leading to a non-negligible loss of contrast on the signal. Moreover,
without ponderomotive trapping, the necessary delays for each preparation step would lead
to the loss of a significant fraction of atoms. For these reasons, the results presented in this
section involve only state-selective field ionization as the detection method.

4.2.1 Microwave transition

The frequency of the transition |52D⟩ −→ |52F⟩ is 64.76GHz in zero field. To address it,
microwave at 16.2GHz is generated by a signal generator (MG3692C, Anritsu), amplified
and converted with a frequency quadrupler (AMC-15-RFH00, Millitech). The MW field is
emitted in free space by a pyramidal horn located outside the UHV chamber, close to the
outgoing tweezers beam opening (see figure 4.2). A PIN diode allows us to control the timing
and duration of the MW pulse with a digital gating signal.

The target |52F⟩ state is particularly sensitive to the electric field. We therefore work
at zero electric field to minimize the broadening of the transition from field inhomogeneity
or noise, the quantization axis being still maintained by the magnetic field. Figure 4.8 (a)
shows the energy of the levels |52F⟩ as a function of the magnetic field B. These states
correspond to the quantum numbers l = 3 and s = 1

2 , hence a total of (2l+1)(2s+1) = 14 m
sub-levels. The spin-orbit coupling dominates at low magnetic fields (B ≲ 1G), the spin and
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angular momenta add-up to form mj levels with j = 5
2 ,

7
2 . The level structure, magnified

in the inset of figure 4.8 (a), is that of the Zeeman splitting proper. The coupling to the
magnetic field dominates for higher field values, in particular at our working field B = 7G.
The structure here corresponds to the Paschen-Bach effect, with levels

∣∣l = 3, s = 1
2 ,ml,ms

〉

perturbed by the residual spin-orbit coupling. Neglecting the latter, the eigenenergies at field
B are −µBB(ml + gsms), where µB is Bohr’s magneton and gs ≈ 2 is the electron g-factor.
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Figure 4.8: Level structure and spectroscopy of the 52F states. (a) Eigenenergies of the |52F⟩
as a function of the magnetic field. The level indicated in magenta is the target state for
the circularization. The dashed line corresponds to the working magnetic field. The inset
shows the L-S mixing at low magnetic field. (b) Level structure of |52D⟩ and |52F⟩. Top
left: scheme of the levels of |52F⟩ highlighting the two subsets with ms = +1

2 , −1
2 ; the target

state is indicated as a dashed magenta line. Top right: Zeeman splitting of the |52D⟩ levels;
the Rydberg excitation prepares the state indicated in green. Bottom: Representation of
the levels as a function of m with allowed transitions; the ml levels of |52F⟩ are shifted by
ms = +1

2 to make manifest the ∆ml = 0,±1 selection rules. (c) Experimental sequence and
related spectra obtained for the three allowed transitions. The zero of frequency is set at the
peak position of the ∆ml = 0 line, with value given in the text.
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This level structure is schematized in the upper left panel of figure 4.8 (b) with two sets dis-
tinguished that correspond to ms = +1

2 , −1
2 . The right panel shows the

∣∣52D, j = 5
2

〉
levels,

for which the stronger spin-orbit coupling still dominates in our experimental conditions. The
state

∣∣52D, j = 5
2 ,mj = +5

2

〉
which constitutes the initial state for the microwave transfer can

be written
∣∣52D,ml = +2,ms = +1

2

〉
. As we address a dipolar electric transition, hence with

forbidden spin flip, we are coupled to the ms = +1
2 subset of F levels, with three transitions

allowed by the selection rules: ∆ml = 0,±1.
The spectra for these three transitions are shown in figure 4.8 (c), along with the ex-

perimental sequence for their measurement. We apply a 30 µs MW pulse after the laser
excitation described in the previous section and detect the |52D⟩ and |52F⟩ populations by
ionization. We plot the transfer from |52D⟩ to |52F⟩, which is computed as nF/(nD + nF),
where nF and nD are the ion counts corresponding respectively to |52F⟩ and |52D⟩. The
zero of the frequency scale corresponds to the peak of the central line, that we measure at
64755.1529± 1.4× 10−3MHz.

Assuming negligible spin orbit coupling, the splitting between successive transitions is
equal to µBB, where B is the magnetic field. We measure an average splitting of 9.68 ±
0.05MHz, from which we recover a magnetic field of 6.92 ± 0.04G, close to the value of
7.01G obtained by Raman spectroscopy. The discrepancy between the two estimations is
due to the spin-orbit coupling that still affects the F levels. Let us also mention the possible
presence of a residual electric field to which the F levels are very sensitive.

For the preparation of circular states, we address the ∆m = 0 transition. Rabi oscillations
along with the spectrum in the conditions of a π-pulse at resonance are presented in figure 4.9.
The microwave power corresponds to a Rabi frequency of 277.5 ± 0.2 kHz which gives a
maximal detected population transfer of 80% with a π-pulse lasting 1.8 µs. It must be noted
that this estimation of the efficiency is only approximate, since the ionization signals have
significant noise as can be seen in the arrival times of figure 4.9. In the absence of MW (top
plot) we observe residual counts in the detection window of the F state, hence a non-zero
background transfer. Reciprocally, at the π-pulse (bottom plot), ions are detected in the
detection window of the D state, thus reducing the transfer. It is not possible to determine
precisely the origin of these ions.

For the reasons given above, the use of raw ion counts is not well suited to the quantitative
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Figure 4.9: The ∆m = 0 DF transition: spectrum, Rabi oscillations and ion arrival times.
The spectrum is recorded with a MW pulse of 1.6 µs, slightly shorter than the π pulse duration
of 1.8 µs, hence the reduced transfer at the peak. The arrival times without (top) and with
(bottom) DF transfer show residual population in the detection windows of 52F and 52D
respectively, causing the observed reduction of contrast.
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measurement of the microwave transfer efficiency. Its determination is done from the MW
spectrum obtained by optical detection, as shown in figure 4.10. The sequence begins iden-
tically as when using ionization detection (see figure 4.8 (c)). After the MW pulse, however,
instead of triggering the ionization ramp we apply a second laser π-pulse to send back the
remaining 52D population to the ground state followed by the switching-on of the tweezers.
The state manipulation takes 5 µs, during which the atoms are not trapped. This duration
is short enough to ensure a priori negligible mechanical losses from the free flight of atoms
(see figure 3.11).

The individual spectra and averaged recapture probability presented in figure 4.10 (a)
are fitted by the line shape (4.3). Some quantitative insight is provided by the mosaic plots
of figure 4.10 (b). A first remark comes from the dispersion of peak frequencies, that lie
in a 40 kHz-range, much smaller than the approximately 400 kHz FWHM of the peak. We
can conclude that there is no significant reduction of transfer efficiency from the dispersion
of resonance frequencies. The most striking feature of the data is the inhomogeneity of the
out-of-resonance baseline y0, with a 10% difference between the central horizontal line and
the side lines. This is associated to similar variations of the peak amplitude (the presence
of the outlier value makes the visualization difficult though). The efficiency ηDF is computed
from the baseline y0 and amplitude A of the peak as

ηDF =
|A|
y0
. (4.5)

We thus obtain the efficiency ηDF for each individual trapping site,

⟨ηDF⟩ = 0.884, Std(ηDF) = 0.045. (4.6)
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Figure 4.10: Spatially-resolved MW spectroscopy of the 52D to 52F transition. (a) Individual
trapping sites spectra (left) and corresponding average recapture probability (right). (b)
Maps of relevant parameters (see text for discussion). Note the large inhomogeneity of the
baseline y0.

As a global efficiency, we retain that deduced from the average signal,

ηDF = 0.878± 0.013. (4.7)
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The structured spatial variations of baseline, with higher values along the central line, are
unlikely to be caused by inhomogeneity in the laser excitation. The laser frequency, power
and pulse duration tend to favor the excitation on the upper and lower lines. This suggests
another mechanism for the decreased baseline at the edges. One possibility is the expulsion
of atoms from the trapping region due to Rydberg-Rydberg interactions. Qualitatively, this
would lead to the observed pattern. By symmetry, the atoms along the central line are
on a potential extremum, with a vanishing force exerted on them, and therefore, minimal
displacement during the trap-off duration. However, the interaction is one-sided for edge
atoms, which may move significantly during the 5 µs period.

4.2.2 Circularization

The last step of circular Rydberg states preparation requires the presence of pure σ+-polarized
radiofrequency (RF) on the atoms. The RF field is produced by the circuit schematized in
figure 4.11. Two phase-coherent RF signals are emitted by a PCI-interfaced signal generator
(Synth-300, Acquitek). The subsequent circuitry is identical for both channels. Two mixers
in series shape the RF into a smooth pulse with the help of an arbitrary waveform generator
(33521A, Agilent Technologies). The RF signal is then split in two, with a voltage-controlled
phase shifter on one line to adjust the relative phase on the two RF lines. The power is
controlled individually by an additional mixer connected to a voltage source, and is subse-
quently amplified. A RF circulator is present at the output of the amplifier to transfer the
reflection from the high impedance electrodes into a 50Ω termination to protect the circuitry.
DC voltages are superimposed to the RF via bias tees installed just before the electrodes.
Each of the 10 applied voltages (2 for phase control, 4 for power control and 4 for the DC
bias voltage) comes from a computer-controlled DAC. The four lines are connected to the
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RF electrodes as indicated in the figure and generate a field orthogonal to the quantization
axis (set along the x-direction).

The course of events leading to the preparation of 52C is summarized in figure 4.12 (a).
The electric field comes into play just after the transfer to |52F⟩ (step (4)). It is switched along
the x direction, parallel to the magnetic field, to approximately 2.25V cm−1. Figure 4.12 (b)
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Figure 4.12: Circularization procedure. (a) Complete circular Rydberg state preparation
sequence. Atoms are prepared and cooled to 14 µK in gaussian optical tweezers; (1) the
optical pumping lasts 400 µs, in the presence of the tweezers, and results in the heating of
atoms to 25 µK; (2) the tweezers are switched off for the laser excitation, with a π-pulse
lasting 0.8 µs; (3) the DF transfer ensues with a MW pulse of 1.8 µs; (4) we apply the electric
field and reach a value of 2.25V cm−1 in 0.5 µs; (5) after a settling delay of a few µs, we apply
a trapezoidal RF pulse while decreasing the electric field from 2.25V cm−1 to 2.05V cm−1 in
4.7 µs. The circularization (steps (2)-(5)) takes 14 µs and is followed by the actual experiment.
(b) Stark map of the F levels. The evolution of the state |52F⟩ when the electric field is applied
in step (4) is indicated as a red line. The inset shows three anti-crossings at low field that
we must go through fast enough. (c) Arrival times of ions obtained after each of the three
population transfer stages (2), (3), (5). Note the appearance of peaks corresponding to the
states 51C and 53C, that result from the decay of 52C population during the 80 µs delay
between preparation and detection.
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shows the Stark map of neighboring states at our working magnetic field of 7G, and the red
line indicates the evolution of the |52F⟩, that branches to the state |n = 52, m = 2, n1 = 1⟩,
as the electric field increases. The electric field is switched in 0.5 µs to allow for diabatic
transfer through the early anticrossings shown in the inset of figure 4.12 (b). The adiabatic
condition is fulfilled for the rest of the evolution, with electric field F ≳ 0.2V cm−1. The
transfer to the circular state follows in the presence of RF at 225MHz with the electric field
decreasing from 2.25V cm−1 to 2.05V cm−1 in 4.7 µs. The RF pulse is trapezoid, lasts a
total of 6 µs with 1 µs rising and falling edges to ensure adiabatic switching. The RF comes
resonant with the ladder of levels during the electric field ramp, resulting in the desired
population transfer.

The difficulty in optimizing the circularization lies in the optimization of the RF polar-
ization. Indeed, the σ−-polarized component must be suppressed to avoid population loss to
resonant neighboring states during the adiabatic transfer, as indicated in figure 4.13. This
can be achieved using only a pair of adjacent electrodes, which is what we do due to a defect
in one of the four RF lines. We thus only use electrodes 1 and 2 of figure 4.11 to generate
the RF field for circularization. Using the four electrodes would improve the homogeneity
of the RF field and suppress the σ− component over a larger range. The RF optimization
procedure that we follow can be found in [96].

4.3 Purity of the circular states and de-circularization

To conclude on the preparation of circular states, we determine their purity and describe
the de-circularization procedure. Deviations from an optimal circularization will transfer a
fraction of the initial population to levels in the vicinity of the circular state. We assess the
purity of the latter by probing the populations of the surrounding states with microwave
spectroscopy.

Optical detection of atoms is at the core of the demonstration of trapping and associated
characterizations. This requires to follow the circularization procedure backwards to the
ground state, which is not as efficient as the forward part. We conclude by wrapping up
the efficiencies of each step, which will give us an estimation of the global efficiency of the
whole procedure. This sets a limit on the signal that we can expect from the measurements
performed in BoB traps.

4.3.1 Purity

The local level structure near 52C is represented in figure 4.13, including levels down to
m = n− 3 for each multiplicity. Closest to the circular state (characterized by m = n− 1),
two elliptical levels, denoted by |52E+⟩ and |52E−⟩ have angular momentum m = n − 2.
Those states are of primary importance for fine tuning of the parameters and determining
the efficiency of the circularization. Indeed, they are the first states to get populated in case of
an imperfect (yet already good) adjustment of the parameters. We determine the population
of the three levels mentioned by the two-photon MW spectroscopy from n = 52 to n = 50.
We probe the transitions indicated as colored arrows in figure 4.13. Circular states are
subject to the Stark effect only to the second order, with coefficients 2.03MHzV−2 cm2 and
2.57MHzV−2 cm2 for 50C and 52C respectively. First order Stark effect dominates for elliptic
states with ± 95.97MHzV−1 cm and ± 95.97MHzV−1 cm for 50E± and 52E±, respectively.
The MW transition is only sensitive to differential effects, with the corresponding splitting
of the three lines shown in figure 4.13.
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Figure 4.13: Level structure in the vicinity of 52C. We address the downward two-photon
transitions indicated as colored arrows. The upwards one-photon transition to the elliptical
state is described in section 4.3.2. The right panel shows the Stark splitting of the two-photon
transitions.

The reason to choose a two-photon transition rather than the apparently simpler single
photon transition from n = 52 to n = 51 is twofold. First, the spin levels of the prospected
quantum simulator are implemented with states having ∆n = 2, hence we conveniently
anticipate the necessity of a two-photon transition to probe coherence between the spin
states. The second, and more important reason is specific to our room temperature setup.
As shown in the arrival times of figure 4.12, the delay between MW transfer and detection is
non-negligible as compared to the lifetime of circular states. That would lead to significant
transfer n=52 −→ n=51 and n=51 −→ n=52 and a reduction of contrast if we were to
probe these transitions. In choosing the two-photon transition, we also free ourselves from
the consideration of the strong dipole interaction between ∆n = 1 circular states, which
would potentially complicate the interpretation of the spectra.

Figure 4.14 shows the spectra obtained for the three transitions described above. The
elliptical transitions appear as large peaks in case of an improperly adjusted RF (in red and
purple). Only small peaks remain after optimization. Fitting these residual peaks yields
amplitudes

A0 = 0.71± 0.02, A− = 0.05± 0.01, A+0.031± 0.007,

for the circular, E− and E+ transitions, respectively. We estimate the purity ηcirc as

ηcirc =
A0

A0 +A− +A+
= 0.90± 0.02. (4.8)

We also present the sharp circular to circular transition obtained with a 50 µs long MW
pulse. The line shape fits well to a Voigt profile, giving a FWHM of 28 ± 4 kHz for a peak
centered at 99 295.432 18± 0.000 55MHz. The width is not limited by MW the pulse length,
but potentially by non-intrinsic processes. For instance, the sequence was not triggered on
the power line, potentially causing a broadening due to magnetic field variations between the
repetitions. The presence of 50Hz current noise in the coils would be a likely cause.



92 CHAPTER 4. PREPARATION OF CIRCULAR STATES

−10 −5 0 5 10

Rel. frequency (MHz)

0.0

0.5

1.0

5
2

to
5
0

tr
a
n
sf

er

52C→50C

52E−→50E− 52E+→50E+

−75 −50 −25 0 25 50 75

Rel. frequency (kHz)

99 295.4322 MHz

FWHM
28 kHz

Figure 4.14: Two-photon circular to circular spectroscopy. Left: spectrum measured with a
0.8 µs π-pulse; the elliptical to elliptical transitions that appear with an imperfect adjustment
of the RF are also shown. Right: spectrum measured with 50 µs-long pulse. Note the
difference of frequency scales between left and right panels.

−1 −0.5 45688.831 +0.5 +1

Frequency (MHz)

0.2

0.3

0.4

0.5

0.6

0.7

5
2
C

to
5
3
E

+
tr

a
n
sf

er

t
e-κδµ

δµ

F

MW
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the electric field leading to the model of eq. (4.9).

4.3.2 Electric field measurement

The circular to circular spectroscopy is not convenient to measure the electric field. On the
one hand, it is only second-order sensitive. On the other hand, having ∆m = 2, it is also
sensitive to the magnetic field. We get rid of this dependence by measuring the frequency
of the ∆m = 0 transition between |52C⟩ and |52E+⟩ (green arrow on figure 4.13). The
large linear Stark shift of the elliptical state, about 100MHzV−1 cm, makes for an accurate
measurement. The corresponding spectrum, presented in figure 4.15 (a), has an asymmetric
line shape, with a larger tail at high frequencies. The scheme of figure 4.15 (b) illustrates the
underlying mechanism. The 12 µs-long MW pulse takes place 3.5 µs after the target value of
the potential is set by the AWG (see figure 4.12 (a), at the end of the RF pulse). At this
time, the electrode voltage (and thus the electric field) has not completely settled down and
slowly drifts down towards its steady value. The electric field consequently decreases, which
translates into a shift of the spectral line and causes its asymmetry. Additional details on
the circuitry involved in the electric field control are given in appendix C.

Assuming an exponential decay of the electric field toward its steady value and a propor-
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tional transition frequency (linear Stark shift), the line shape has the form

f(ν) = y0 +
Aγ

κ

∫ δµ

e−κδµ

1

γ2 + (x− µ− y)2
dy

y
. (4.9)

In this formula, the parameters µ and γ represent respectively the peak frequency and width of
the lorentzian line shape, which is the limit at steady field. The parameters y0 and A represent
the offset and scale of the peak experimentally measured. The effect of drift is encompassed
in the two parameters κ and δµ, which are represented on the graph in figure 4.15 (b). The
deviation of the field from its steady value at the beginning of the MW pulse corresponds to
δµ. The decay towards the steady value is characterized by the non-dimensional parameter
κ. The latter is linked to the decay time τ of the field by the relation τ = T0/κ, where
T0 = 12 µs is the MW pulse duration.

The fit of the data with the formula (4.9) gives µ = 45 688.831 ± 0.006MHz. From this
value we recover, by inverting the Stark shift formula up to 3rd order perturbation, a steady
electric field F0 = 2.0887 ± 0.0001V cm−1. The width γ = 89 ± 5 kHz corresponds to field
fluctuations of approximately 0.9mV cm−1, hence an estimated5 differential voltage noise of
1.6mV on the electrodes. This value is consistent with the 1.2mV precision of our waveform
generator6.

The fitted drift parameters δµ = 751± 44 kHz and κ = 5.5± 0.4 correspond to an initial
field deviation of 7.51± 0.44mV cm−1 and a characteristic decay time τ = 2.2± 0.2 µs. The
capacitance of the line is 2.7 nF, in parallel with a 60Ω resistance (see appendix C), which
gives a characteristic time of 160 ns, one order of magnitude below the value estimated from
the spectroscopy.

4.3.3 Circularization and de-circularization efficiency

The demonstration of circular states trapping requires the spatially-resolved detection of
those atoms that stayed in the trapping region during the whole sequence. Our approach
consist in following the circularization procedure backwards and eventually catch ground-
state atoms back in gaussian tweezers. The recorded arrival times corresponding to each
step are shown in figure 4.16, towards the circular state (left), and backwards to 52D (right).
Qualitatively, we observe that the 52F and 52D counts obtained after de-circularization are
reduced as compared to the initial counts. Moreover, some population remains in the peak
corresponding to the 52F after optimized MW transfer to 52D.

The determination of the efficiency of steps (4-5) is indirect. We cannot use fluorescence
imaging since the free flight of atoms would result in a very weak signal. Neither can we use
the raw counts as low-l-states evolution during the delay between preparation and ionization
changes the populations and makes their interpretation difficult. We instead rely on ionization
spectra for the 52F to 52D transfer, as shown in the right panel of figure 4.16. The latter
essentially represents the combined efficiency of steps (3-5). The population in the state 52F
gets transferred to 52c with elliptical impurities. The de-circularization brings back both
circular and elliptical states to levels that appear in the same ionization peak as our desired
52F level. The latter gets transferred back to 52D with finite efficiency. What remains in
the ionization peak of the state 52F is thus the residual population that has accumulated
from the imperfections of the stages (3-5), as shown in the arrival times of figure 4.16 (curve
in cyan). However, as mentioned earlier, the ion signal is by itself insufficient and must be

5The field response of each Stark electrode is 0.4 (V/cm)/V.
6This corresponds to a precision of 14 bits over a voltage range of ±10V.
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Figure 4.16: Arrival times corresponding to each step of the circularization (left) and de-
circularization (right) procedure.

compared to a reference for which the efficiency is known. For this purpose, we use the
signal pertaining to the 52D to 52F transfer, described in section 4.2.1, of which we know
the efficiency. Thus, for 52D→ 52F and 52F→ 52D peaks of respective amplitudes ADF and
AFD, the efficency ηF-C-F-D is

ηF-C-F-D = ηDF

AFD

ADF

. (4.10)

We show in figure 4.17 the transfer 52D → 52F for both steps (2) and (5). To record the
spectrum of step (5), we used another MW source which frequency was scanned (while the
frequency for the 52D→ 52F transition was kept fixed). Rather than adjusting the power to
have a π-pulse at the same duration, we choose to adjust the pulse duration for an optimum
at 1.1 µs. On these spectra note that step (5) leads to a less efficient de-population of the
52F state. From a fit of the two curves, we obtain

ηF-C-F-D = 0.49± 0.04. (4.11)

Table 4.1: Relevant quantities characterizing the BoB trapping potential.
The potential was computed with the circular state oriented along the x
direction.

Step Detection method Efficiency Ref. eq.

5S1/2 → 52D (1) Optical 0.89± 0.01 (4.4)
52D→ 52F (2) Optical 0.88± 0.01 (4.7)
52F→ 52C (3)a Ionization 0.90± 0.02 (4.8)

52F→ 52C→ 52D (3-5) Ionization 0.49± 0.04 (4.11)
52D→ 5S1/2 (6) Optical 0.89± 0.01 (4.4)

Total 0.34± 0.04
a Not included in the computation of the total efficiency.

The results are summarized in table 4.1. They suggest that the backward population
transfer from 52C to 52D (steps (4-5) on figure 4.16 (a)) is the bottleneck of the whole
procedure.
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Figure 4.17: Spectroscopy of the 52D→ 52F (step (2)) and 52F→ 52D (step (5)) transitions.
The latter is measured using a different MW source with more power, hence the shorter 1.1 µs-
long pulse as compared to 1.8 µs for the former.

Conclusion

The transfer from the ground state to the circular state takes place in four stages. Although
the general methodology is the same as in our previous works, some improvements have been
made. Moreover, the use of optical tweezers, along with optical detection, brings new insights
on the process.

The initial state is not well defined, it consists in a mixture of Zeeman sublevels of∣∣5S1/2, F = 2
〉
. The first step is the optical pumping to the state

∣∣5S1/2, F = 2,mF = 2
〉
.

This was done with a σ+-polarized laser tuned on the
∣∣5S1/2, F = 2

〉
−→

∣∣5P3/2, F
′ = 3

〉

transition. The hyperfine sub-levels of the ground state
∣∣5S1/2

〉
were probed by Raman

spectroscopy. The spacing between the different peaks allowed us to determine the magnetic
field B = 7.01 ± 0.02G. After optimization of the optical pumping, we obtained a state
purity ηOP = 0.97± 0.01.

The next step is the laser excitation to the Rydberg state
∣∣52D5/2,mj = +5/2

〉
, for which

we address a two-photon transition with 6P3/2 as the intermediate state. We recorded site-
resolved spectra and Rabi oscillations on both the large 9×9 array used for the measurements
presented in the previous chapter, and on a smaller 6 × 3 array of 18 traps having now a
15 µm spacing. This latter array was kept for the rest of the experiments and matches with
the maximum number of BoB traps we were able to prepare, with large enough spacing to
ensure weak interactions between Rydberg states. We used both ion and optical detection
in these experiments, but the latter turned out to be more reliable for quantitative analysis.
We obtained an excitation efficiency η52D = 0.89 ± 0.01 for a π-pulse with an average Rabi
frequency ⟨Ω⟩ = 2π × 660 kHz. Our main limitation was the laser power at our disposal.

The third step consists in a microwave transfer to the state |52F,ml = +2⟩. An analysis
similar to that of the previous step concluded to a transfer efficiency ⟨ηDF⟩ = 0.88.

When we apply an electric field, the state 52F branches to the level that constitutes our
starting point for the adiabatic transfer to the circular state 52C, as detailed in chapter 1. We
proceeded in practice by ramping down the electric field from 2.25V cm−1 to 2.05V cm−1 in
the presence of σ+-polarized radio-frequency (RF) at 225MHz. The RF signal was generated
with an improved which we described.

After the transfer, we carried spectroscopic measurements to nearby states for further
characterizations. We estimated the purity from the two-photon transition 52C −→ 50C.
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The presence of lateral peaks corresponding to the transitions 52E± −→ 50E± indicated an
imperfect adiabatic transfer. We nevertheless obtained a good purity, estimated as ηcirc =
0.90± 0.02. The transition 52C −→ 53E+ is insensitive to the magnetic field, and allowed us
to determine the electric field F0 = 2.0887± 0.0001V cm−1.

Finally, the optical detection of circular states currently requires us to de-excite them to
the ground state, which appeared to be less efficient than the excitation. Combining the total
efficiencies we obtained a global value ηtot = 0.34± 0.04.

The optical detection proved a valuable tool for the diagnostic of the experimental con-
ditions pertaining to the processes presented in this chapter. The trapping of circular states,
which we describe in the next chapter, will continue in this direction by offering the possibility
for optical detection over long timescales.



Chapter 5

Ponderomotive trapping of circular
states

How long is forever?
Sometimes just one second.

— Lewis Carroll, Alice in Wonderland

Having prepared cold ground-state atoms in tweezers and described the procedure to
transfer them to the (circular) Rydberg state with good efficiency, we are ready to tackle
the problem of the trapping of atoms in the Rydberg state. We thus present here the main
results of this thesis, and pave the way for subsequent work on inter-atomic interactions and,
in the longer term, on quantum simulation.

The topic of Rydberg atom trapping is not new and some strategies have already been
proposed and implemented. One approach consists in using the second valence electron of
alkali-earth atoms for dipole trapping. This has been achieved for instance with strontium
in [52, 53] and ytterbium in [54]. The second approach takes advantage of the ponderomo-
tive force exerted on the Rydberg electron. Successful implementations of three-dimensional
trapping include [69] (with an optical lattice) and [84] with one or two individual bottle-beam
(BoB) traps. Here we extend the latter method to produce not only one or two but arrays
of ponderomotive BoB traps, allowing for more flexibility than a definite regular lattice.

Before describing the traps in detail, we begin by demonstrating the ponderomotive trap-
ping of circular Rydberg states with our setup. We anticipate the full presentation and
analysis for both low-l and circular states by reporting in figure 5.1 the early demonstration
of circular states trapping. The data were obtained before the failure of one of our Rydberg
excitation lasers, as mentioned in section 4.1.2. We observed no atomic loss apart from the
natural thermal decay of the population over 1ms of trapping. Some analysis of these data
is provided in appendix E.

The detailed description of the traps follows in the next section, where we also introduce
the experimental characterization of the traps. Although, as we will show, the trapping
potential to which the circular states are subject is complex, the characterization is limited
to the transverse trap frequency.

The trapping of atoms in the Rydberg state is, of course, paramount to the control of the
inter-atomic distance, and, in fine, to that of the interactions. However, in this work, the

97
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Figure 5.1: Early demonstration of circular states trapping. Left panel: raw data. Right
panel: data corrected from natural population decay at 300K.

interactions are not studied and even avoided by imposing a spacing of 15 µm between traps.
We recall from chapter 1 that the interaction nC–nC is in the kHz-range (with a difference of
about 100Hz between n = 50 and n = 52). The exchange interaction, with ∆n = 1 is three
orders of magnitude larger and lies in the range 0.5–1MHz in our geometric configuration.

We take advantage of Rydberg trapping in the majority of the experiments described
in this chapter. Indeed, the trapping makes it possible to use optical detection even when
running 100 µs-long sequences that would otherwise lead to the loss of almost all atoms from
free flight out of the trapping region. As it was the case in the two previous chapters, the
spatially-resolved measurements of the chapter give useful information on the experimental
conditions and open the possibility for the fine-tuning of the parameters. This is illustrated in
the last section, devoted to the study of the effect of trapping on thermal population transfer
and coherent state manipulation.

5.1 Ponderomotive trapping of Rydberg states

The trapping of Rydberg states is achieved by producing an array of hollow bottle beams
overlapped with the gaussian tweezers. A false-color camera picture of both arrays is shown
in figure 5.2. The figure also shows the theoretical BoB intensity profile, the Rydberg atoms
being contained in the low intensity region. Mechanical losses of atoms are most likely along
the escaping directions indicated as dashed lines on the yz-section of the profile.

In this section, we keep an empirical approach to the trapping and its study is reduced to
the investigation of mechanical losses. The detailed structure of the potential is not considered
here, as this will be the topic of the next section. We first describe the trapping of the 52D
level prepared by laser excitation. Elements of analysis are introduced in this simpler context
before moving on to the more complex case of circular states.

In probing the trapping, we are primarily limited by the lifetime of the considered state.
In the case of 52D, this limits us to a maximal trapping duration of 400 µs. For 52C, despite
a room temperature lifetime of ∼ 130 µs, we are able to probe the trapping for 5ms thanks
to the specific state dynamics of thermal transfers between circular levels that maintains a
fraction of the initial population over an extended timescale. Let us note that this is still a
short duration as compared to what is possible in a cryogenic environment [94], where the
lifetimes have been observed to be longer by a factor of approximately 30.
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Figure 5.2: BoB traps for Rydberg trapping. Top: xy and yz-cuts of the theoretical profile
of a single BoB trap; the escaping directions are shown as dashed line on the yz section.
Bottom: phasemask used to generate the 6 × 3 array of BoBs presented in the right panel;
the gaussian tweezers (in red) overlap the BoB traps (in green). White scale bar: 20 µm.

Let us recall that due to the laser power limitation, we work with a rectangular array of
6× 3 trapping sites spaced by 15 µm. We have approximately 20mW of laser power per BoB
trap.

5.1.1 Trapping of 52D

We begin by demonstrating the trapping of atoms in the state 52D obtained after laser
excitation. This allows us to get more signal by getting rid of the technical aspects and
imperfections of the circularization and de-circularization process. Moreover, the possible
outcomes leading to the recapture or loss of an atom at the end of the sequence are simpler
for the state 52D than for circular states.

Indeed, the many decay channels available to low-l states essentially make the decay of
52D irreversible. On the one hand, the radiative decay towards low-n states via optical
transitions is one-way as there is no light at these wavelength in the environment. On the
other hand, the black-body radiation induced decay brings the atoms to nearby Rydberg
states that in turn have many possible decay channels, hence a negligible probability of
return. The evolution of the 52D population can be considered as an exponential decay,
with its characteristic time as a single parameter. This leads to an easier interpretation
of the results and serves as a good preliminary study before introducing the more complex
evolution of circular states.

The experimental sequence, shown in figure 5.3 (a), consists in switching on the BoB traps
for a variable duration ∆t after the laser excitation, followed by another laser pulse to send
the remaining 52D population back to the ground state. Gaussian tweezers are present before
and after the two π-pulses with minimal delay to release and recapture ground-state atoms.
The results are presented in figure 5.3 (c), in which we compare the recapture probabilities
with or without BoB trapping as a function of the delay ∆t. We observe a fast decay in
the absence of BoB traps (blue discs) as compared to the trapping condition (orange discs),
which is the signature of Rydberg-state trapping.
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Figure 5.3: Ponderomotive trapping of atoms in the state 52D. (a) Scheme of the experimen-
tal sequence. The laser excitation is indicated as purple rectangles, during which both types
of traps are off for a duration ∼ 2 µs. (b) Averaged recapture probability with and without
trapping. The lines corresponds to the various models described in the text. (c) Simplified
scheme for the possible outcomes during the sequence. The population in the state 52D
decreases due to its finite lifetime, and additional losses occurs when the traps are off.

To understand the qualitatively different data obtained in the two conditions, we must
consider the evolution of the states during the sequence. We schematize it in figure 5.3 (c)
We begin with atoms in the optically-pumped state

∣∣5S1/2, F = 2,mF = +2
〉
, denoted |g⟩.

The Rydberg excitation transfers the population to the state |52D⟩. The latter subsequently
evolves for a duration ≃ ∆t′ = ∆t − 2t0, where t0 represents the duration of the Rydberg
excitation. At the end of this period and just before the second laser pulse, the initial state
may have decayed either to another Rydberg state |r⟩ through a transition (or more) induced
by black-body radiation or to the ground state |g⟩. The second π pulse then exchanges |52D⟩
and |g⟩ populations but does not affect |r⟩. For the sake of simplicity, we assume here that
the optical pumping is perfect and that the Rydberg excitation has unit efficiency.

The presence of optical traps leads to mechanical losses depending on the atomic state.
First, Rydberg states are expelled by the gaussian tweezers that we switch back at the end of
the sequence. Second, when present, the BoB traps capture ground state atoms in their high
intensity lobes far from the focus of gaussian tweezers. This leads to the loss of most atoms
independently of their state, but it also acts as a reservoir of atoms for the gaussian tweezers
that get populated with a small probability at the end of the sequence. We also assume this
process to be negligible.

With these simplifications, the interpretation of the data is straightforward. The recap-
ture probability in the presence of the traps is essentially the surviving fraction of |52D⟩ at
the end of the delay, combined with possible mechanical losses. In the absence of trapping,
we must also take into account the free flight of atoms.

We now introduce some notations to get quantitative formulas for the recapture prob-
ability in both conditions. We denote by τ the lifetime of |52D⟩ at 300K, and pT (∆t) the
recapture probability after a free flight of duration ∆t for an atom initially trapped at a
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temperature T . Assuming that the atoms do not escape from the BoB traps, the recapture
probability ptrap(∆t) in their presence is simply

ptrap(∆t) = e−
∆t′
τ = e−

∆t−2t0
τ . (5.1)

In the absence of BoB traps, we have

pfree(∆t) = pT (∆t)e
−∆t′

τ . (5.2)

The parameters of our models are fixed. The Rydberg excitation duration t0 is a sequence set-
ting. The lifetime τ = 74 µs is computed using the Alkali Rydberg Calculator package [122].
Finally, the quantity pT (∆t) is computed from Monte-Carlo simulations (see section 3.3.2),
with a measured temperature T = 25 µK.

In order to partially account for imperfections of the experimental steps such as the optical
pumping and laser excitation, we include a global scaling factor to both1. The contribution
from t0 can be included in this factor, hence we also remove this parameter. These models
are plotted as dashed lines on figure 5.3 (b). The free flight model of eq. (5.2) fits the data
well, with a scale factor equal to 0.94. A discrepancy nevertheless is discernible at the final
delays, around 80 µs, yet not precise enough to be analyzed.

The data in the presence of trapping is in good agreement with the constrained model
of eq. (5.1), represented as a dashed orange line on figure 5.3 (a). Further insight can be
obtained by fitting the data with an exponential decay

ptrap(∆t) = Ae−
∆t′
τ + y0, (5.3)

with amplitude A, offset y0 and decay time τ kept as free parameters. The fitted curve is
represented as a dashed orange line on figure 5.3 (b). The fit gives an offset of approximately
1%, possibly due to the BoB traps acting as a reservoir of decayed ground-state atoms, as
mentioned above.

We note a difference between the fitted and theoretical decay times τfit = 66 ± 1 µs
and τ = 74 µs. Assuming that the fitted values encompasses another loss mechanism, the
corresponding characteristic time is τ ′ = τ τfit/(τ − τfit) = 600 ± 90 µs. This value is larger
than the maximum trapping duration in the above experiment, which shows its limitations
to probe the possible loss mechanisms. The increased decay can originate from mechanical
losses, but also from photo-ionization processes to which low-l states are possibly subject to.

We can use the photo-ionization cross sections measured in [139] to get a more quantitative
insight on this process. From figure 14 of [139], we extract a cross-section σpi ≃ 1.2×10−24m2

for 50D and a trapping laser wavelength λL = 1.01 µm. Using the order of magnitude
σpi ∼ 10−24m2 for 52D at our trapping laser wavelength λL = 821 nm (thus a pulsation
ωL = 2π × 365THz), we estimate the photo-ionization rate

Γpi =
I0σpi
ℏωL

∼ 430 s−1, (5.4)

where we used the laser intensity at the bottom of our traps I0 = 1.04 × 108Wm−2. The
associated characteristic time is about 2.3ms, not far from the value τ ′ = 600 µs found above.
This is especially true considering that the average laser intensity seen by the atoms is larger
due both to the spatial extension of the Rydberg wavefunction and to the residual atomic
motion.

1A more detailed analysis would show that the experimental imperfections have a more complex effect
than a simple rescaling. However, our data are not precise enough to be sensitive to such effects.
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5.1.2 Trapping of circular states

We now describe the trapping of circular Rydberg atoms, which is our ultimate goal in the
context of this work. The experimental sequence is reported in figure 5.4 (a). It is similar to
that of 52D trapping, yet was subject to one adjustment in order to improve the signal. After
the optical pumping, we further cool down the atoms by decreasing the tweezers power from
a depth of 1mK to approximately 100 µK. This is done by filtering the stepping down of the
control voltage with an RC filter having a damping time of 500 µs. Through this procedure,
we reduce the atomic temperature to 4 µK. The sequence also adds-up an incompressible
duration to circularize at the beginning and de-circularize at the end of BoB trapping. The
sensitivity of states to the BoB traps light within the Rydberg manifold is weak enough to
allow us to perform the circularization in the presence of the BoBs. The whole circularization
(including the laser excitation) takes approximately 15 µs, hence a minimal delay of 30 µs.

Figure 5.4 (b) presents the averaged recapture probability, again, with or without BoB
trapping. A first remark concerns the recapture at minimal delay. Contrary to the case of
52D trapping, we only reach ∼ 36% recapture at minimal delay with trapping. This is in
good agreement, albeit slightly higher than the efficiency η ≃ 34% of the whole circularization
and de-circularization procedure obtained in section 4.3.3. Despite this, the occurrence of
trapping is manifest, with a significant fraction of recaptured atoms, even after a trapping
duration of a few ms.

The analysis of the recapture is analogous to that of the previous section, except that we
must consider the more complex evolution of 52C instead of the simple exponential decay of
52D. We thus introduce ρ52C(t) the fraction of the population in the state 52C after a delay
t, assuming a pure 52C state at t = 0. The expected recapture probability in the presence of
trapping is then

ptrap(∆t) = η ρ52C(∆t
′), (5.5)

and without trapping, is
pfree(∆t) = pT (∆t)η ρ52C(∆t

′). (5.6)

In the same manner as in the previous section, the relevant evolution duration ∆t′ is shorter
than the delay ∆t. We have ∆t′ = ∆t − 2t0, where t0 = 12 µs now represents the time not
spent in the circular state during the circularization and de-circularization processes2. The
quantity ρ52C is obtained by solving the master equation described in [95] with the black-body
temperature, 300K, as the only parameter.

We first discuss the data obtained without Rydberg trapping. The recapture probability
drops quickly and reaches 0.25% in approximately 500 µs. This value essentially corresponds
to the probability pgen = 0.16 ± 0.08% of appearance of an atom in an initially unloaded
trap, which indicates that essentially all atoms are lost at this delay. To get a quantitative
description, we use the model of eq. (5.6) to fit the temperature T and efficiency η, yielding
respectively T = 18±3 µK and η = 0.50±0.01. The fitted temperature is significantly higher
than that measured on ground-state atoms, 4 µK. On the left panel of figure 5.4 (a), we show
two simulated curves, with T = 18 µK and T = 4 µK, the latter being normalized by imposing
that it crosses the experimental data at minimal delay (∆t = 30 µs). The curves both take
into account the 52C population decay, itself shown as a black solid line on the figure (with
appropriate normalization, which will be discussed later). The mismatch between the data
and the simulation with T = 4 µK indicates that the atoms are expelled faster than expected
from the trapping region, and suggests an effect of interactions.

2This is shorter than the 15µs-long procedure as the latter includes some field settling time and additional
delays to re-initialize the voltages sources.
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The recapture probability is significantly higher at all times in the presence of BoB traps,
which is a clear signature of circular states trapping. The data overlaps well at moderate
delays ≲500 µs with the properly scaled theoretical population. However, the two curves sep-
arate at higher delays, indicating an additional loss of population in the traps. Nevertheless,
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Figure 5.4: Ponderomotive trapping of circular Rydberg atoms. (a) Scheme of the experi-
mental sequence. (b) Average recapture probability obtained without (blue discs) and with
(orange discs) trapping. Left: raw data. The black solid line corresponds to the theoretical
population of the state 52C, at 300K, according to [95], properly scaled to the data. Right:
data corrected by the theoretical population of 52C. The two panels also show various mod-
els used to fit the data; they are detailed in the main text. (c) Recapture probability for
individual trapping sites. The data is re-scaled by the theoretical population as in the right
panel of (b). The statistics in the absence of trapping are not good enough to allow for a good
visualization. Accordingly, we plot instead the curve fitted on the averaged data for a clearer
comparison. We show on the right panel the map of characteristic times from exponential
fits of the decaying portion of the curve, after 500 µs.
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this reduction is only partial even at the maximal delay of 5ms. This is highlighted in the
right panel of figure 5.4 (b), where we present the recapture probability corrected from the
52C population decay. In order to analyze this decay more quantitatively, we empirically
model the excess losses ptrap/ρ52C by a decaying exponential:

ptrap
ρ52C

(∆t > ∆t0) = Ae
−∆t−∆t0

τ + y0, (5.7)

where ∆t0 = 500 µs is the time at which the decay begins. As an illustration we obtain, for
the averaged signal, τ = 1.1 ± 0.1ms, with a significant offset t0 = 0.114 ± 0.007. These
values are difficult to interpret for the averaged data, but the model 5.7 is nevertheless useful
to compare the decay for different trapping sites. We thus obtain the color map presented
in the right panel of figure 5.4 (c). The decay, ⟨τ⟩ = 3.3ms, Std(τ) = 2.9ms is skewed by
three outliers having values of 14ms, 6ms and 5ms. Moreover, the fits suffer from a large
uncertainty in the optimal decay time. Let us limit ourselves to the qualitative observation
from the individual plots (with population decay correction) of figure 5.4 (c) that the trapping
efficiency seems homogeneous over the whole array of BoBs. With all due reservations on the
soundness of the fitting procedure, the color map indicates a possible excess loss from the
traps that lie in the center of the array. These sites corresponds to atoms having the most
neighbors, which hints, again, at a possible effect of the interactions.

Let us finally mention a mechanism through which the interactions are likely to play a role
in the atomic motion, leading to the fast drop of recapture probability without trapping, and
to the excess loss of atoms in the presence of the traps. A heating mechanism3 may originate
from the stochastic evolution of circular states, together with the dipole interaction. The
interaction between two circular states is strong when we have ∆n = ±1, and rather weak
otherwise. Starting with a pair of n = 52 circular states, the interaction becomes stronger
when one of them decays thermally, say, to n = 51. We now have ∆n = 1, which causes
the atoms to be attracted or repelled more strongly, and pushes them to regions of higher
trapping potential. However, any subsequent thermal decay will lead to ∆n = 0 or 2 and thus
the force holding them on the edges of the trap will vanish. The atoms may gain mechanical
energy through this mechanism.

Order of magnitude estimation of the effect of the exchange interaction

We gave in chapter 1 an order of magnitude estimate of the interaction energy for a first-order
dipole coupling. We have A3/R

3 ∼ 1MHz for an inter-atomic distance of R = 15 µm. This
added potential has an effect of both free atoms (no trapping condition) and on trapped
atoms.

Free atoms subject to this interaction are pushed outside the trapping region. This leads
to a faster decay of the recapture than what would be expected if the atoms simply had a
velocity corresponding to their initial temperature. Using the above interaction energy, we
get a corresponding acceleration

3

M

A3

R4
∼ 10−3 µm µs−2, (5.8)

where M denotes the mass of 87Rb. With this acceleration, atoms initially at rest are dis-
placed by 1 µm in approximately 50 µs, and acquire a kinetic energy that corresponds to a
temperature of ∼ 10 µK.

3Or at least an increase in average mechanical energy.
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For trapped atoms, the interaction adds up a term to the trapping potential, causing the
minimum to shift slightly in position. This displacement in turn induces atomic motion in
the trap, increasing the mechanical energy of atoms. We can estimate the displacement of the
potential (assumed harmonic) by linearizing the interaction near the inter-atomic distance
R. The potential thus becomes, along the interatomic distance denoted x,

V (x) =
1

2
Mω2x2 − 3

A3

R4
x

=
1

2
Mω2(x− x0)2 + C,

with
x0 =

3A3

Mω2R4
. (5.9)

For a trap frequency ω = 2π × 16 kHz, we get x0 ∼ 90 nm associated to an energy shift
1
2Mω2x2 ∼ kB× 0.5 µK. Such a displacement following random thermal population transfers
between circular state is indeed likely to effectively “heat-up” the atoms. However, the above
quick estimation does not give the precise rate and dynamics of this mechanism, which should
be studied through more refined simulations.

5.2 Characterization of the traps

The trapping of a Rydberg atom relies on the ponderomotive force exerted by the oscillating
laser field on the Rydberg electron. We recall from chapter 1 the formula for the pondero-
motive potential generated by a laser of intensity I(r) and pulsation ωL:

V (r) =
e2

2meε0 cω2
L

I(r), (5.10)

with e the elementary charge, me the electron mass, ε0 the vacuum permittivity and c the
speed of light.

The trapping potential exerted on the Rydberg atoms in our experiment cannot be re-
duced (up to a proportionality constant) to the simple theoretical intensity profile of the
BoB traps. An intrinsic reason for this is that the laser intensity must be averaged over
the electron orbit to get the trapping potential at a given point [82]. This, together with
the strong anisotropy of the circular Rydberg electron wavefunction, leads to a non-trivial
trapping potential, dependent on the orientation of the circular orbit.

Extrinsic factors also influence the trapping potential by causing deviations of the light
intensity profile from the ideal case. Among these factors we can cite interferences between
neighboring traps, optical aberrations introduced by the setup (to which the BoBs are very
sensitive) and the limitation of the SLM itself. In particular, the fact that the SLM cell must
be used to prepare not only one but the 6×3 array of BoBs leads to the appearance of speckle
light that deforms the intensity pattern.

In order to properly describe the BoB traps, we begin by giving a theoretical description
of the trapping potential, for an ideal BoB. We cannot directly measure the intensity profile in
the experiment since the second lens of the sapphire cube adds up aberrations that deform the
beam. Our only possibility to probe the actual trap profile is to perform in situ measurements.
The theoretical discussion is thus followed by an experimental characterization of the traps.
In doing so, we limit ourselves to a measurement of the transverse trap frequency by inducing
oscillations in the trap.
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5.2.1 Description of the traps

Using the ponderomotive force to trap circular Rydberg atoms imposes us to prepare light
patterns consisting in a low intensity region surrounded by light. This requirement strongly
constrains the shape of the potential, and in particular that of BoB traps which were the
retained solution for trapping circular states.

We describe here the important features of the BoB traps, that are essential to interpret
the experimental results that follow. A more detailed study is provided in appendix D, where
we analyze among other things the impact of the trapping on the coherence, which is of
primary importance in the prospect of quantum simulation.

Principle of BoB preparation

A bottle beam intensity pattern is obtained by making two beams of differing size inter-
fere [140]. In the context of optical tweezers preparation, we achieve this by imprinting a
π phase shift to the central part of the SLM. The incoming beam can be split in two compo-
nents, with a π phase shift between the two. The inner part produces a beam with a large
extension at the lens focus, in which the more tightly focused outer part digs a dip because
of the destructive interference.

To make a more quantitative description, let us introduce some notations for the param-
eters used. We thus define

• k, the wavenumber of the laser beam;
• a = 5.5mm, the pupil radius;
• f , the focal length of the lens;
• s, the radius of the disc on which a π phaseshift is applied for BoB preparation;
• Iprof , the intensity profile of the beam hitting the SLM.

The phase mask imprinted on the SLM only depends on the distance r to the center of
the pupil. To produce a single BoB, it consists in a phase shift of π for r < s and zero for
r > s. The expression of the bottle beam amplitude at a distance ρ from the optical axis and
z from the focal plane z = 0 is

A(ρ, z) = A0F
[
1r<aI0(r)e

ikz r2

2f2 eiπ1r<s

]
. (5.11)

Here A0 is a complex scaling factor, and 1X denotes the characteristic function of the set X:

1X(x) =

{
1, if x ∈ X
0, otherwise.

(5.12)

The intensity profile corresponds a priori to a gaussian beam clipped at the pupil radius.
However, a more refined analysis yields the following empirical formula

Iprof(r) = I0

(
α+ e−

2r2

w2

)
. (5.13)

The intensity offset α and waist w were fitted to give α = 0.1 and w = 4mm. A few words are
in order to explain and justify the difference with respect to an ideal gaussian beam. Despite
the fact that our aspheric lenses have an anti-reflection coating, the latter is optimized at
normal incidence. However, albeit valid at the center of the lens, this normal incidence
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Figure 5.5: Description of the BoB intensity profile. (a) Representation of the phase and
amplitude profiles pertaining to our experimental conditions for single BoB generation. We
have a = 5.5mm and r = 3.5mm. (b) Sections of the corresponding BoB intensity profile
for (from top to bottom) r = 3, 3.5 and 4mm. The scale is normalized to 1W total power
in the beam. (c) Minimum and threshold intensity defining the trapping region as a function
of the phase shift radius r. The trap depth is the difference between the threshold and the
minimum.

condition is not satisfied for the outer part of the incident beam, hence some undesired
reflection occurs. The latter leads to a reduction of the intensity at the edge of the beam,
that we effectively describe by a modified intensity profile on the SLM.

This empirical amplitude profile
√
Iprof , along with the phasemask used are presented

in figure 5.5 (a). We show, in figure 5.5 (b), cuts of the resulting BoB intensity profiles for
different values of the parameter s. When the value is too low (upper panel), the BoB is
open on the sides and non-trapping. On the contrary, when too high, the BoB becomes tight
and shallow with significant light intensity at the center.

We report on figure 5.5 (c) the residual light intensity at the bottom of the BoB trap, along
with the threshold intensity (the light intensity at the saddle points of the trapping walls).
We also plot the corresponding trap depth, which is the difference between the threshold and
minimum intensity. The trap depth is maximal for s = 3.5mm, the retained value for our
experiments. The residual light intensity at this value is of the order of 10% of the threshold
intensity, which is not a problem given that circular states are insensitive to photo-ionization.
Dark BoBs, having zero intensity at their center, correspond to s = 3.3mm and suffer from
a lower trap depth.

In contrast with the theoretical idea behind the preparation of a bottle beam, our actual
implementation differs significantly. Apart from the subtleties related to the effective intensity
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on the SLM, the main difference lies in the more complex mask required to prepare not only
a single trap but a whole array. Insights from section 3.2 hints at the possibly important
fluctuations of BoB trap shapes as we explore a large field of the lens with higher sensibility
to aberrations.

The trapping potential

The ponderomotive force is exerted on the electron, itself bound to the Rb+ core. Under the
Born-Oppenheimer approximation [82], the resulting atomic trap potential U is the convolu-
tion between the Rydberg electron wavefunction and the potential of eq. 5.10. For an atom
located at position R, we thus have

U(R) =

∫
V (R+ r)|ψ(r)|2 d3r, (5.14)

where ψ(r) denotes the Rydberg electron wavefunction evaluated at relative position r from
the ion core.

In the case of circular states, the charge density |ψn(r)|2 of the Rydberg electron (see
eq. 1.45) is a torus whose axis is parallel to the quantization axis (set by the electric field). The
trapping potential of a circular Rydberg atom in a BoB trap thus depends on the orientation
of the quantization axis. This is illustrated with the sections presented in figure 5.6 (a).
We computed the convolution (5.14) of the theoretical BoB intensity profile with the charge
density corresponding to the circular state |52C⟩ for the three quantization axes x, y and z.
We present the difference with the effective potential for a point-like Rydberg orbit |ψ(r)|2 =
δ(3)(r), which is directly proportional to the light intensity. In the case of a transverse
quantization axis, the real potential is not cylindrically symmetric anymore.

To further quantify this, the convolution was computed with the circular states nC for
48 ≤ n ≤ 54. Some characteristics of the trapping potentials thus obtained are reported in
figure 5.6 (b). We compare the values with those of the reference point-like orbit introduced
above. The reference values are indicated as a red horizontal line on each panel and are ap-
proached asymptotically as n→ 0. The trap potential is slightly shallower by approximately
1% with respect to the reference. This tendency is more pronounced when the quantization
axis is axial (along the z-axis), and the effect increases with n. This is expected as the
intensity pattern gets more averaged-out as the wavefunction extension increases.

In addition to the minimum energy and trap depth introduced previously, we also plot
the trap frequencies along the three spatial directions x, y and z. We distinguish two cases,
depending on the orientation of the quantization axis: axial or transverse. Their behavior
is more complex. The axial frequency essentially decreases, which reflects the increase of
the minimum energy: the potential gets more “flat” along the z-axis. On the contrary, the
transverse frequency increases as the charge distribution gets closer to the lateral walls.

The results presented in this chapter were obtained with a transverse quantization axis,
set along x. The corresponding data is indicated as discs on the plots of figure 5.6 (b-c).
The experimental results presented in the next sections involve the state 52C or transitions
between 52C and 50C. To this end, we present in tables 5.1 and 5.2 some relevant quantities
that characterize the trapping potential under our experimental conditions for these two
states. In particular we compare the values with the reference point-like Rydberg state.

The important energy scales of the BoB traps are reported in 5.1, for a BoB trap produced
with 1W laser power. They are represented by the trap depth and the energy shift at the
center. The state dependence, in the 0.1% range, is essentially unimportant, save for the
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Figure 5.6: Characterisation of the theoretical trapping potential. (a) Cut of the difference
between the actual and effective trapping potential for a point-like charge. Results are pre-
sented for |52C⟩ oriented along x, y and z. The anisotropy of the charge density breaks
the cylindrical symmetry for the trapping potential when the quantization axis is transverse.
On-scale cuts of the charge density are superimposed on the trapping potential section. They
appear as a pair of dots or as a circle depending on the quantization axis. (b) Corresponding
minimum energy and trap depth of the trapping potential for a transverse or axial quantiza-
tion axis as a function of the principal quantum number n. (c) Trap frequencies as a function
of the principal quantum number n. The quantization axis is set along the x-direction in our
experiment. The red horizontal line on each plot is the corresponding value obtained for a
reference point-like charge.

difference of energy at the center which causes a shift of the transition. A more detailed
description of this energy difference is given in appendix D, where we also discuss its spatial
variations.

Those spatial variations are described locally by the trap frequencies, shown in table 5.2.
The frequency difference between 52C and 50C lies in the range 0.1–0.5%. However, the
difference of potential is not accurately described by an quadratic polynomial. We provide
an extensive description of the potential difference in appendix D, along with its main con-
sequence: motion-induced decoherence in the trap.
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Table 5.1: Trap depth and minimum light shift. The quantization axis is set along x.

State Emin (MHzW−1) Depth (MHzW−1) Depth (mKW−1)

Reference 7.9219 74.645 3.58
(n = 50) 8.4522 74.12 3.55
(n = 52) 8.5438 74.03 3.56

(n = 52)− (n = 50) 0.092 0.009 0.004

Table 5.2: Trap frequencies (in kHzW− 1
2 ). The quantization axis is set along x.

State ωx/2π ωy/2π ωz/2π

Reference 110.15 110.15 44.52
n = 52 111.3 113.7 44.2
n = 50 111.2 113.2 44.2

(n = 52)− (n = 50) 0.17 0.5 −0.05

We measured an incident power of about 400mW shared between 18 BoB traps, hence
approximately 20mW per trap. This gives, according to table 5.1 a depth of about 70 µK,
almost 15 times less than the gaussian tweezers. We also expect a shift of the transition
due to the difference of minimum energy Emin, which we estimate to be 1.8 kHz. With such
power, we also expect a trap frequency of about 16 kHz.

5.2.2 Trap frequency measurement

The most important characterization of the BoB traps is their frequency, which we measure
by inducing oscillations of atoms in the traps as we did for gaussian tweeezers. However,
the method to induce these oscillations differs from the latter case. Indeed, simply releasing
the atoms from BoB traps did not give rise to a detectable oscillation signal in our setup.
To ensure that the various atomic trajectories start in phase, the solution that we found
consisted in a circular states preparation offset with respect to the trap center.

The sequence used for the trap frequency measurement is detailed in figure 5.7 (a). We
initially prepare the array of BoB traps with a lateral x-offset of 0.3 µm with respect to
the gaussian tweezer array. The usual trapping sequence follows, with BoB traps switched
on immediately after the laser excitation. The lateral offset of position with respect to the
BoBs center causes atoms to oscillate in-phase. We then wait until the completion of the
circularization to release the atoms. The rest of the experimental sequence is comparable to
that of the analogous experiment for ground-state atoms presented in section 3.2.2. If the
atoms have minimal velocity, i.e. they are at the edge of the trap, their displacement during
the release is minimal and they recaptured in BoB traps. However, if they are at the bottom
of the trap, hence with maximal velocity, they drift out of the trapping region and are lost.
The BoB traps are subsequently switched back on until the end of the de-circularization.
The latter takes place at a constant delay after circularization to ensure that the reference
recapture probability is constant. We found an optimal release duration of 15 µs for our trap
parameters and atomic temperature (22 µK). No adiabatic cooling of the atoms is carried
during the sequence since the atoms must have significant motion amplitude to be able to
leave the trap during the release.

The averaged recapture probability is reported in figure 5.7 (c), where a clear oscillation
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Figure 5.7: Measurement of the transverse trap frequency. (a) Scheme of the experimental
sequence. (b) Oscillation signal from the averaged recapture probability, with correspond-
ing damped-sinus fit and Monte-Carlo simulation. (c) Color map of the fitted oscillation
frequency and associated trap power determined using the data of 5.2 for each trap. (d)
Individual trap oscillation signals. The signals appear relatively homogeneous, with a lower
signal amplitude along the bottom line.

signal is manifest. A damped sinus fit yields a frequency of 31.7 ± 0.2 kHz thus a trap
frequency ωtrap = 2π × 15.8 ± 0.1 kHz. According to the results of table 5.2 and assuming
that we measure the frequency along the x-axis, the measured value corresponds to an average
power of P0 = 20.3± 0.3mW. This result is compatible with an estimated 400mW of power
shared between 18 traps.

We can also compute atom dynamics over the whole sequence to determine the power
in the trap. For this purpose, we use a Monte-Carlo fitting procedure similar to that used
for the temperature, which we describe in more detail in appendix D. The simulation uses
the theoretical trapping potential introduced in the previous section, and fits well to the
data. A global scale was left as a free parameter in the fitting procedure. The value thus
recovered, 0.122±0.001 is in good agreement with the one measured from the recapture data
of figure 5.4, 0.13. The fitted trap power, P0 = 15.1 ± 0.2mW, is significantly lower than
the one obtained from the trap frequency. Such a difference, pointing towards lower trap
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frequencies, is consistent with the anharmonicity of the BoB trap. With a positive quartic
coefficient, the frequency of oscillations is larger than the pure harmonic case (and increases
with the amplitude), hence a lower power required to reach a lower frequency.

We report in figure 5.7 (d) the recapture probability for individual traps. The sig-
nal appears quite homogeneous across the various sites, with only one outlier at the edge
of the array. We carried only the fitting with a damped sinus to recover the trap fre-
quency and deduce the power. We thus obtained a trap frequency ⟨ωtrap⟩ = 2π × 15.7 kHz,
Std(ωtrap) = 2π × 0.6 kHz, with corresponding power (within the harmonic approximation)
⟨P0⟩ = 19.9mW, Std(P0) = 1.6mW. The individual powers sum up to a total value
Ptot = 359± 3mW, which is, again, compatible with 400mW of total incident power.

5.3 Lifetime measurement and coherent state manipulation

For the purpose of quantum simulation, the traps must not affect the properties of our
circular states. This section introduces three characterizations of single atom properties of
the trapped circular states in our room temperature setup.

The room temperature radiative lifetime of circular states sets the limit on what can be
achieved with our new setup. We present here its measurement [96, 94], with a comparison
between the trapped and free conditions.

Coherent control of the states is required to perform quantum simulation and is also a
limiting factor for the duration of any simulation protocol. We operate between the two states
52C and 50C, as we did in section 4.3.1, for essentially the same reasons. First, we show the
measurement of spatially-resolved Rabi oscillations, from which we probe the mode structure
of the microwave. Then, we describe Ramsey interferometry experiments from which we
recover a coherence time. In addition, the Ramsey signal is sensitive enough to detect the
effect of trapping and inter-atomic interactions, which makes it a promising tool to probe
them.

5.3.1 Lifetime measurement

Circular states have no allowed optical transition but are sensitive to radiation in the radio-
frequency and microwave domain. Thus, the main factor influencing their lifetime is the
temperature through black-body radiation. The lifetime measurement is possible because
circular states only decay to nearby levels that are still detectable by ionization, allowing
us to measure the spreading-out of the initial population to these states. The evolution of
a given state corresponds to a series of stochastic transfers to accessible levels which is well
described by a master equation for the various populations.

The experimental sequence is depicted in figure 5.8 (a). It essentially consists in waiting a
variable delay before applying the ionization ramp and recording the arrival times of the ions.
However, the non-circular Rydberg states remaining in the environment after an imperfect
circularization process might alter the population measurements. Moreover, contrary to the
cryogenic environment, the low-l states have a lifetime comparable to that of circular states
and thus are also present on ionization signals. Before the introduction of the variable delay,
we clear the environment of non-circular states by transferring the population from 52C to
50C, followed by the application for a short duration of a high voltage on the ionization
electrodes to ionize the states up to 51C. We reach approximately 140V cm−1 in 8 µs in
what we refer to as a “broom ramp”. In figure 5.8 (b) we show the effect of the broom ramp,
that clears residual low-l states and elliptic states visible at 20 µs and 30 µs respectively.
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Figure 5.8: Timing of the lifetime measurement experiment. (a) Experimental sequence.
After the preparation of 52C, the population is transferred to 50C and the Rydberg atoms
with n > 50 are ionized with a “broom ramp”. Ionization is then triggered after a variable
delay. (b) Effect of the broom ramp on the ionization signal at zero delay. (c) Ionization
signal at 800 µs delay. The populations nC for 45 ≤ n ≤ 54 correspond to the colored areas
under the curve. Note the “detection shadow” indicated as a light beige rectangle on the
ionization signals.

The detected ions at a delay of 800 µs are reproduced in figure 5.8 (c), versus both
the arrival time and ionization field. The detail of the ionization setup and electronics is
given in appendix C. An important remark must be made on these ionization signals. In
performing the measurements, we noticed a dip of ion counts at the location of the 49C
peaks. This “detection shadow” is of unknown origin, but is consistent throughout the lifetime
measurements. It prevents us from normalizing the data with the total population, as the
amount of 49C atoms not detected is time-dependent. The population analysis is therefore
carried without normalization at each time step, and does not take into account the 49C
state. Nevertheless, we can still compare the results in the presence and absence of BoB
trapping.

Figure 5.9 (a) illustrates the evolution of the populations by showing the arrival times at
different delays, with 200 µs steps, with and without trapping. We see that after a transient
spread of the initial 50C population between neighboring circular states, the system reaches
a quasi-steady distribution characterized by the stochastic diffusion within the local set of
states. This is further highlighted in figure 5.9 (b), where the integrated population show
little evolution for delays > 1000 µs. The evolution of the initial 50C population is only
approximately described by an exponential decay.

Finally, in figure 5.9 (b), we compare the populations measured in the presence or absence
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Figure 5.9: 50C lifetime measurement. (a) Ionization signals plotted as a function of the delay,
without (left) and with (right) trapping. Each colored area corresponds to the population of
a given state. (b) Time evolution of the detected states populations. (c) Relative population
difference computed from (5.15).

of the BoB traps by computing the relative difference between the two:

∆relPi(t) =
P trap
i (t)∑
i P

trap
i (0)

− P free
i (t)∑
i P

free
i (0)

, (5.15)

where P trap
i (t) and P free

i (t) are the integrated populations of state i at delay t, with and
without trapping, respectively. We normalize by the population at zero delay in each trapping
condition to compare similar quantities. The relative population difference is relatively small,
between ±4%, and is essentially random. The effect of the traps on the lifetime can therefore
be considered negligible. Let us however mention a pitfall of the previous comparison. The
trapping measurements of section 5.1.2 have shown that the atoms tend to escape from the
traps at moderate delays. The ionization detection being insensitive to this effect, it is safe
to assume that a fraction of the detected populations corresponds to untrapped atoms, even
when the BoB traps are present. Nevertheless, the atoms are likely to still be trapped at
short delays. The data is therefore not sensitive enough to conclude on any detrimental effect
of the trap on the lifetime at these timescales.



5.3. LIFETIME MEASUREMENT AND COHERENT STATE MANIPULATION 115

t
π Circ. MW De-circ. π

t
π Circ. MW Ionization

0.0

0.2

0.0

0.2

0 10
0.0

0.2

0 10 0 10 0 10 0 10 0 10 20

0 5 10 15 20
0.0

0.1

0.2

0.3

Amplitude Damping time (µs) Rabi freq. (kHz)

0.08 0.1 0.12 8 10 12 14 16 820 840 860 880 900

0 5 10 15 20

MW duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

5
2
C

to
5
0
C

tr
a
n
sf

er

0 5 10 15 20

MW duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

5
2
C

to
5
0
C

tr
a
n
sf

er

(a)

(b)

(c)

(d)

R
ec

a
p
tu

re
p
ro

b
.

MW duration (µs)

Figure 5.10: Rabi oscillations between 52C and 50C. (a) Experimental sequences for the
measurement of Rabi oscillations, with optical detection (left) or ionization detection (right).
(b) Optically-detected oscillations with BoB trapping. Left panels: individual Rabi oscillation
signals. Note the lower contrast and faster decay in the center of the array. Right panel:
averaged Rabi oscillation signal. (c) Color map of the fitted amplitude, damping time and
Rabi frequencies. The map of Rabi frequencies reveals the inhomogeneity of the microwave,
with a conspicuous linear gradient of approximately 1.2 kHz µm−1. (d) Rabi oscillations
measured by ionization detection. Left: data from the 6×3 array; the red line is a (rescaled)
sum of exponentially damped sinus with frequencies from the spatially-resolved measurement,
and decay time from the single-atom measurement. Right: oscillations measured with a single
atom, without trapping.

5.3.2 Rabi oscillations

The Rabi oscillations between circular states 52C and 50C presented here take advantage
of the trapping to allow for the optical detection of circular states. Both spatially-resolved
measurements and ionization signals are shown in figure 5.10.

The Rabi oscillations experiment simply consists in applying a MW pulse of variable
duration after the preparation of circular states. We proceed in the presence of trapping for
optical detection, but not when we detect the states by ionization. The MW frequency is set at
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49.647 716GHz (at resonance with the transition of figure 4.14). The individual oscillations
are shown in figure 5.10 (b), each fitted with an exponentially-damped sinus. The most
striking feature of these signals is the lower contrast in the middle horizontal line, concomitant
with a faster decay in the center of the array. Before discussing these features, we remark that,
albeit hardly visible to the eye, the spatial variation of Rabi frequencies is manifest from the
color mapping of the values. It reveals a linear gradient of MW amplitude of approximately
1.2 kHz µm−1, oriented mainly along the +x-direction but also with a component along the
+z-direction. We therefore have a variation ±45 kHz across the 75 × 30 µm tweezer array.
This corresponds to a relative difference of ±5%, around the mean value 855 kHz.

We can now interpret the corresponding ionization signal presented in figure 5.10 (d) as
the sum of individual Rabi oscillations with different Rabi frequencies. Such a sum can be
written:

pion(t) = y0 +A
∑

i

sin(2πfit+ φi + π)e−
t
τ , (5.16)

with fi, φi the Rabi frequency and oscillation phase4 of trapping site i and τ the characteristic
damping time of single-atom Rabi oscillations shown in the right panel of figure 5.10 (d). The
(properly scaled) sum pion(t) is plotted in red on the figure and fits well to the data.

The single-atom Rabi oscillation signal is recorded without trapping. Fitting with an
exponentially decaying oscillation, we recover the characteristic single-atom damping time
τ = 51.2 ± 5.8 µs. The microwave power and frequency are slightly different for these data,
resulting in a Rabi frequency of 703.9 ± 0.5 kHz. Note that the measurements involving
ionization detection are carried without BoB trapping. With a temperature of 25 µK, the
average displacement over the 15 + 20 µs duration of circular state preparation and Rabi
oscillation is ∼ 1.7 µm. This value corresponds to a Rabi frequency shift of 2 kHz, not
detectable over the 20 µs of MW probing.

The faster damping of oscillations observed with optical detection could have two origins.

• The traps could induce, together with the microwave, some additional population trans-
fer, thus leading to faster losses.

• The atoms could be expelled faster from the traps due to a combination of the interac-
tions and the microwave.

In favor of the latter possibility, we insist on the fact that the damping time used in eq. (5.16)
comes from the fit of the single-atom measurement rather than from the optically-detected
signal. The revival of oscillations indeed seems more pronounced on the ionization signal
than on the averaged fluorescence signal, although this may be due to the improved contrast
of ionization detection. An effect of the interactions also tends to be supported by the spatial
distribution of the decay times and oscillation amplitudes. Lower values are located in the
center of the array, where atoms are on average more subject to interactions. The mechanism
by which the MW could induce these excess losses is nevertheless unclear.

5.3.3 Ramsey interferometry

We conclude with the measurement of the coherence time T2 of the superposition (|52C⟩ +
|50C⟩)/

√
2. We proceed by performing Ramsey interferometry, which allows us to quantify

the decoherence including both homogeneous and inhomogeneous processes.

4A maximum of detected ions corresponds to a minimum of recaptured atoms, hence the additional π
phase-shift.
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We first prepare a superposition (|52C⟩ + |50C⟩)/
√
2 by applying a π/2 MW pulse at a

frequency νMW with a two-photon detuning ∆0 from the transition frequency νCC: νMW =
(νCC + ∆0)/2. This leads, after a delay τ , to a dephasing ϕ = 2π∆0τ which is converted
to a population difference by a second π/2-pulse in phase with the first one. For a proper
measurement, the MW Rabi frequency ΩMW, the detuning and the coherence time must
satisfy the hierarchy ΩMW ≫ 2π × ∆0 ≫ 1/T2. The left inequality amounts to require a
hard π/2-pulse, while the right inequality is the condition for the detection of many Ramsey
oscillations and the precise measurement of the decay time T2. Taking into account the
damping of the oscillations, we expect a signal:

p(τ) = y0 +Ae
− τ2

2T2
2 sin(2π∆0τ + ϕ0). (5.17)

Measurements on the 6× 3 array

The actual experimental sequences are depicted in figure 5.11 (a) and (b). After the prepa-
ration of circular states, a π/2-pulse of 0.4 µs duration is applied, followed by another one
after a variable delay τ . We proceed in the presence of BoB trapping using imaging de-
tection (figure 5.11 (a)) or without trapping using ionization (figure 5.11 (b)). We present
spatially-resolved data in figure 5.11 (c) from the imaging experiment. The MW frequency
is set at νimg

0 = 49.647 839GHz, hence an expected detuning ∆0 = +246 kHz from the
measured 52C to 50C transition (see section 4.3.1). We measure a Ramsey frequency of
∆trap

0 = 236.4 ± 0.4 kHz for the averaged data (see figure 5.11 (a)), and for individual trap-
ping sites ⟨∆trap

0 ⟩ = 236.5 kHz, Std(∆trap
0 ) = 1.2 kHz. The standard deviation given above

is comparable to the uncertainity resulting from the fitting procedure (∼ 1 kHz), and sig-
nificantly smaller than the Fourier-limited width 1/(2π × τ) = 5 kHz for a maximal delay
τ = 30 µs. In the case of free atoms (figure 5.11 (b)) the measured Ramsey frequency is
∆free

0 = 243.0 ± 0.4 kHz. Here, the MW frequency was set at νion0 = 49.647 840GHz, hence
an expected frequency shift of 2 × (νion0 − νimg

0 ) = +2kHz with respect to the optical mea-
surement.

Three contributions can affect the measured Ramsey frequencies:

• Electric field gradients. These affect both trapped and free atoms, yet we could expect
a faster decoherence in the latter case as atoms are allowed to drift.

• The differential energy shift induced by the BoB traps (see figure 5.6-(b)). Obviously,
it affects only trapped atoms.

• Inter-atomic interactions. They are expected to affect both trapped and free atoms,
albeit differently since free atoms can move in response.

The average frequency difference between trapped and free atoms is 4.6 ± 0.6 kHz. At
least part of this difference is attributable to the BoB trap. Its curvature at the bottom
causes the differential energy shift between 50C and 52C discussed in section 5.2.1. This
causes the transition frequency to increase and in turn yields a decrease in the detuning
∆trap

0 , as observed. According to table (5.2), the measured shift corresponds to, on average,
50 ± 7mW power per BoB trap, more than a factor of 2 off from the trap power given in
section 5.2.2, about 20mW. This suggests that other mechanisms intervene to cause this
frequency difference, although these are unclear.

We also note that the spatial structure of Ramsey frequencies is incompatible with the
rather homogeneous distribution of trap powers seen on figure 5.7. We observe a tendency
towards lower Ramsey frequencies along the central row, with an average of 235± 0.4 kHz as
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Figure 5.11: Ramsey interferometry on the 6×3 array of tweezers. (a) Experimental sequence
in the presence of trapping with corresponding averaged recapture probability. (b) Exper-
imental sequence carried in the absence of trapping with ionization detection. (c) Ramsey
oscillations measured in individual trapping sites. The data is fitted with an exponentially-
damped sinus (eq. 5.18) with corresponding Ramsey frequency and damping time shown as
color maps on the right.

compared to 237.3± 0.7 kHz on the upper and lower rows. This difference corresponds to a
shift of approximately 2 kHz towards higher frequencies for the transition. The sign of this
difference is the same as that of the differential of the Cn,n6 coefficients given in section 1.2.3,
although the numerical value ∼ +100Hz for the latter quantity differs by more than one
order of magnitude.

At our working electric field of 2.09V cm−1, a variation of 1mV cm−1 is expected to
cause a frequency shift of 2.2 kHz on the two-photon transition. The field being directed
along x, only the x-component of the gradient is significant. Although the data is not very
precise, from the spatial distribution of Ramsey frequencies, we can safely conclude that the
electric field variation is below 1mV cm−1 over the 75 µm extension of the array. This gives
an order of magnitude for an upper bound to electric field gradients of 10 µV cm−1 per µm,
or equivalently 0.1V cm−2.

The Ramsey oscillations damping times of individual trapping sites suffer from significant
fluctuations, with a value ⟨τ⟩ = 15.8 µs, Std(τ) = 1.9 µs. Nevertheless, this damping time is
close to the value τimg = 15.6±0.6 µs fitted from the averaged data presented in figure 5.11 (a).
With ionization detection (and without the BoB traps), we get similar oscillations with a
fourfold increase in contrast. In this case, we obtain a damping time τion = 18.7 ± 0.9 µs.
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This value is larger than τimg and suggests an additional coherence loss mechanism in the
presence of the traps, possibly linked to the position-dependent differential shift between 52C
and 50C.

In the above treatment, the oscillation signals were not fitted with the model of eq. (5.17),
but rather with an exponentially decaying sinus:

p(t) = y0 +Ae−t/τ sin(2π∆0t+ ϕ0). (5.18)

This choice is justified by the following semi-quantitative argument, from which we can recover
the announced decay times. Owing to their rather short lifetime at room temperature, some
atoms might decay either to 53C or 51C during the delay between the two MW pulses. When
that occurs, the strong dipole-dipole interaction that appears (∼ 1MHz at 15 µm) causes the
52C to 50C transition of nearby atoms to shift far from its initial value. In this case, the
second MW pulse is off-resonant and does not affect the populations, yielding the observed
damping. We assume, for the sake of simplicity, that the process described above is the
dominant mechanism for the loss of coherence and that the decay to 53C or 51C shifts all the
remaining atoms off resonance. Under these approximations, the decay is roughly n52C/T52C,
where n52C is the number of 52C atoms prepared and T52C ≃ 130 µs is the lifetime of 52C at
room temperature. We noted earlier that approximately n52C = 7 circular states are produced
per experimental run. We therefore expect τ ∼ 7/130 ≈ 19 µs, which is close to the measured
value, especially considering that other decoherence processes were neglected.

Single-atom measurements

To free ourselves from the complexity brought by inter-atomic interactions, we measure Ram-
sey oscillations with a single atom. The results are reported in figure 5.12. The electric field
is kept at the same value of 2.09V cm−1 as before, hence the same transition frequency.
However, to circumvent the problem of reduced statistics, we restrain ourselves to ionization
detection. In the single-atom case, this essentially gives the same information as imag-
ing. The bare detuning is reduced to ∆0 = +86 kHz by setting the microwave frequency
at 49.647 759GHz, allowing us to reduce the sampling frequency and further improve the
statistics.

The Ramsey interference signals are presented in figure 5.12, both without (left panel)
and with (right panel) BoB trapping. We found it necessary to trigger the whole sequence
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Figure 5.12: Single-atom Ramsey oscillations. In the trapping condition (right), all the
available power was used in the single BoB trap.
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on the power line in order to avoid the convolution of the signal with 50Hz power line noise
picked-up by the experiment.5 The most striking feature of the two signals is the difference
of Ramsey frequencies. With free atoms, we have ∆free

0 = 86.7 ± 0.4 kHz, in very good
agreement with the expected value ∆0 = +86 kHz. The Ramsey frequency in the trap,
∆trap

0 = 46.8 ± 0.4 kHz, is 40 kHz below. To observe such an energy shift, all the available
laser power was used to prepare the single trap. According to table (5.1), we estimate that
the trap was produced with a laser power of 436±7mW. In contrast with the value deduced
from the measurement carried on the 6 × 3 array, this result is in good agreement with our
estimation of 400mW for the total available power. This is expected, as the other frequency
shifting mechanisms are dwarfed by the large differential shift at the bottom of the BoBs.

The damping of the signal is fitted according to the model of eq. (1.112). It is interesting
to note that the decay of the coherence appears slower when the atom is trapped, with
T trap
2 = 61 ± 8 µs, as compared to T free

2 = 45 ± 3 µs for the free atom. The uncertainty in
the fitted value is large and one cannot rule out the possibility of specific effects appearing
at high trapping power6.

Overall, the coherence times are compatible with the electric field noise of 0.9V cm−1

determined in section 4.3.2. Indeed, this noise is associated to fluctuations of δ∆0 ≃ 2 kHz of
the transition, with corresponding timescale T2 = 1/(2πδ∆0) ≃ 80 µs.

Conclusion

In order to consistently describe the subsequent results, we first studied the trapping of
Rydberg states. We kept an empirical approach and did not consider in detail the atom
dynamics in the traps. We first demonstrated the trapping of the laser-accessible 52D state,
allowing us to free ourselves from the complexity brought by circular states. The data were
found to be consistent with an exponential decay at a rate of 66±1 µs, close to the theoretical
value of 74 µs.

The analysis of the data pertaining to circular states was more difficult, mostly due to
the complex dynamics of circular states, subject to stochastic thermal transfers to nearby
levels. The population evolution is governed by a master equation that we did not detail here.
By scaling the data with the theoretical 52C population expected at room temperature, we
observed a residual decay, associated to a timescale in the ms range. The precise origin of these
losses is not clear, yet we conjectured an effect of the strong first-order dipole interactions
that appear when an atom decays to a nearby state such as 51C or 53C.

We then gave a theoretical description of the trap: the preparation of bottle-beams and
their convolution with the charge distribution of various circular states. We obtained in
particular the light-shift at the bottom of the trap (along with the differential value between
50C and 52C), and the trap frequencies. We subsequently used these values to confront the
theory with the experiments to come.

This was first illustrated with the measurement of the transverse trap frequency. We
thus obtained a mean value of 15.8 ± 0.1 kHz that corresponds, assuming harmonic motion
within the traps, to a power per trap of 20mW. This was found to be in good agreement
with our estimations of 400mW shared between 18 traps. However, a simulation of the atom
dynamics inside the traps yielded a significantly lower trap power, of about 15mW. Such a
difference appeared in qualitative agreement with the trap anharmonicity.

5The data measured without power line triggering are presented in appendix E.
6In particular, the circularization efficiency dropped by a factor 1.5 in the presence of the high power trap.
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We verified that the presence of the traps does not affect the states evolution by measuring
the various populations with ionization detection. The resulting plots are close to each other
and prevented us from detecting an effect of the traps at our level of precision.

Rabi oscillations benefited from the spatially-resolved optical detection. It allowed us
to interpret the ionization signal as resulting from a gradient of Rabi frequencies over the
75 µm-large array of atoms.

We concluded with a Ramsey interferometry experiment on the 52C ↔ 50C transition.
The measurement realized with the 6 × 3 array of atoms revealed two things. First, we
observed a difference of 4.6 ± 0.6 kHz between the frequencies obtained without and with
trapping, corresponding to a transition displaced towards high frequencies. About half of
this difference could be attributed to the differential light-shift of the trap. Second, the signal
showed a rather quick decay, in the 15–20 µs range. Echoing to the mechanism suggested when
we discussed circular state trapping, we interpreted this as a consequence of the interactions.
An atom decaying to a nearby state could induce an important shift on the transition due to
the first-order dipole-dipole interaction.

This hypothesis seemed confirmed by the significant increase in coherence time when we
repeated the experiment with a single atom. The coherence time increases to 61 ± 8 µs in
the presence of the trap and 45 ± 3 µs for free atoms. The precision of the measurements
prevented us from concluding on the origin of this difference. All the available power was used
in the single BoB trap, that resulted in a significant frequency difference of approximately
40 kHz between the two conditions. This led us to another estimation of the power for the
single BoB trap. The obtained value of 440mW was found to be in good agreement with our
estimation. In this case the other processes that shift the transition were likely to be dwarfed
by the large light shift.
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Conclusion and outlook

Have I gone mad?
I’m afraid so. But I’ll tell you a secret. All the best people are.

— Lewis Carroll, Alice in Wonderland

The work presented in this manuscript introduced a new experimental setup operated
at room temperature and dedicated to the preparation of arrays of circular Rydberg states
trapped in optical “bottle-beam” tweezers. We detailed the design of this new setup, which
encompasses the constraints imposed by both the preparation of optical tweezers and by
the preparation and manipulation of circular Rydberg states. We recalled the procedure to
prepare a cloud of cold rubidium atoms from a “hot” vapor to a ∼ 10 µK optical molasses
by going through two stages of magneto-optical trapping. We presented the methodology
to prepare optical tweezers: the phase modulation techniques with SLMs, the algorithms
for phase retrieval and the aberration correction procedure. This topic is however only
partially covered in this manuscript since most of the work on optical traps preparation and
characterization has been done by another PhD student of our team, Yohann Machu. An
extensive coverage of tweezers will be given in his thesis.

The loading of gaussian optical tweezers with rubidium atoms is the starting point of all
the experiments described in this thesis. We first went through an extensive description of
the fluorescence imaging of the atoms and data analysis methodology, as they are involved
in most of the subsequent experiments. With these tools in hand, we moved on to the
characterization of the tweezers, assuming a gaussian intensity profile. We thus obtained
the trap depth from light-shift spectroscopy and the trap frequency by recording an atomic
oscillation signal. From these two parameters we recovered the average waist ⟨w0⟩ = 1.21 µm
and power ⟨P0⟩ = 2.62mW at each trapping site of a large 9 × 9 array of tweezers. Among
the 81 sites, we obtained a waist inhomogeneity of about 1% and a power inhomogeneity of
approximately 5%. This validates the methodology used for tweezers preparation. The study
pertaining to trapped ground-state atoms concluded with the measurement of their lifetime
in the tweezers and of their temperature by a release-recapture experiment. We obtained a
lifetime of 12.6±0.2 s, and an average temperature ⟨T ⟩ = 14.3 µK. The measurement carried
on individual trapping sites revealed a specific pattern for the distribution of temperatures:
atoms along a vertical band in the center of the array were found cooler. The temperature
is however dependent on the experimental conditions. For instance, our optical pumping
scheme increases it to a value in the range 20 to 25 µK, which we can then reduce to 4 µK with
adiabatic cooling of the atoms. Let us stress the fact that the preparation of optical tweezers
is new to our group, hence the necessity to detail the associated experimental procedures and
methodologies.
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The next step consists in the preparation of circular Rydberg states from trapped atoms,
with notable differences with respect to previous works. Each of the many stages leading
to the target state |52C⟩ was thus described. In doing so, we switched to an array of 6 × 3
tweezers, which corresponds to the maximal number of BoB traps that we are able to prepare
with effective trapping. The inter-atomic distance was also increased to 15 µm to mitigate
the interactions between neighboring Rydberg atoms.

We begin by optically pumping our atoms to the proper Zeeman sublevel. We determined
a state purity of 97± 1% by Raman spectroscopy. The laser excitation to the Rydberg state
|52D⟩ follows. We proceed via a two-photon transition through the intermediate state

∣∣6P3/2

〉

with a 420 nm-laser and a 1015 nm-laser. The average efficiency for this transition was found
to be 89 ± 1%, mainly limited by the laser power at our disposal. This is followed by a
microwave transition to the state |52F⟩, for which we estimated an efficiency of 88±1%. The
adiabatic transfer to the circular state |52C⟩ constitutes de last step of the process. It has
been covered extensively in a previous work [96], and was therefore only briefly discussed.

From that point, we described microwave spectroscopy experiments between |52C⟩ and
nearby states, which we used as a diagnostic tool for the circularization procedure. We
first probed the transition from |52C⟩ and neighboring elliptical states to |50C⟩ and its cor-
responding elliptical levels. This transition echoes the embodiment of spin-1/2 qubits by
circular states with ∆n = 2 in the proposed quantum simulation platform. We used it to de-
termine the state purity after the adiabatic transfer, which we estimated to be 90±2%. This
transition was later involved both in lifetime measurements as a way to get rid of undesired
states to get a pure lifetime signal, and for coherence measurements by Ramsey interferom-
etry. We determined the electric field in the environment using the transition between |52C⟩
and |53E±⟩. Having ∆m = 0, this transition is insensitive to the magnetic field, yet is very
sensitive to the electric field, owing to the strong first order Stark shift of the elliptical state.
We thus obtained a value of 2.0887 ± 0.0001V cm−1 for the electric field. The width of the
line indicated field fluctuations of 0.9mV cm−1, which are most likely attributable to voltage
noise on the electrode rather than field inhomogeneity at the atoms location. We concluded
with a summary of the efficiency of each preparation step, including the de-circularization
procedure, and estimated a total efficiency η = 0.34±0.04 for the round trip from the ground
state to the circular state and back to the ground state. At this stage of the experiment,
we focused on the demonstration of trapping and the various preparation steps were not
thoroughly optimized.

We took advantage of both the spatially-resolved fluorescence imaging and the state-
selective field ionization detection throughout the preparation of circular states. In particular,
it was possible to obtain most of the presented data pertaining to Rydberg states (with the
exception of lifetime measurements) using both detection methods. Yet the reader must
be aware that the optimizations were usually more conveniently carried using ionization
detection. This is especially true when adjusting the adiabatic transfer parameters, because
ionization detection still brings information even if the atoms are completely lost in the
Rydberg manifold, a situation that would prevent going backward to the ground state as
required by fluorescence detection.

We finally demonstrated Rydberg state ponderomotive trapping in bottle-beam traps.
Since all Rydberg states are subject to the ponderomotive potential, we began by showing
the trapping of the state |52D⟩. This simple experiment showed good agreement with a model
involving only the decay of the Rydberg state, without mechanical losses. We then described
the main result of this thesis: the trapping of atoms in the circular state. Despite the rather
short lifetime of circular states at room temperature, we were able to observe trapping over
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a 5ms timescale. This is due to the fact that circular states mainly decay to nearby circular
states, which not only are trapped, but also repopulate the initial state.

The trapping potential generated by the BoBs is not exactly proportional to the light
intensity but must be convolved with the Rydberg electron wavefunction. Such convolution
was carried numerically with the charge distribution of circular states of interest. We studied
the resulting theoretical trapping potential, that was characterized by its depth, along with
its energy shift and curvature at the minimum. These values depend on the quantization axis
of the circular state. In our experimental conditions, with the quantization axis orthogonal
to the propagation axis, we computed a differential energy shift of 92 kHzW−1 between the
states 52C and 50C. The trap frequencies associated to the curvature at the minimum are
also dependent on the principal quantum number, with relative variations found to be about
1%. The transverse frequencies (whose degeneracy is lifted by the orientation of the circular
orbit) were found to be around 112 kHzW− 1

2 .
We confronted the theory to the experiment by measuring the transverse trap frequency.

We obtained a value of 15.8± 0.1 kHz, which, according to our prediction on the frequency,
corresponds to a power per trap of 20.3±0.3mW, compatible with our expectations of 20mW
per trap. However, a more refined analysis through the complete atom dynamics simulation
yielded an estimated power of 15.1 ± 0.2mW, significantly lower than the value obtained
using the trap frequency. This indicated that the anharmonicity of the trap could not be
neglected at this level.

To get some insight on the evolution of circular states in our room temperature setup, we
performed a lifetime measurement, both with free and trapped atoms. The results showed
little incidence of the trapping on the lifetime.

The trapping proved itself a valuable tool to perform coherent state manipulation for
extended duration, with optical detection, as illustrated by Rabi oscillations and Ramsey
interferometry. As for rabi oscillations, we were able to detect a significant inhomogeneity
in the microwave intensity, that translated into a gradient of Rabi frequencies. The corre-
sponding ionization signal, showing some beating, would be difficult to interpret without the
spatially-resolved measurement. Ramsey fringes are quite sensitive to the frequency of the
probed transition. Here, we were able to detect a shift of 4.6 ± 0.6 kHz in the frequency of
the |52C⟩ to |50C⟩ transition caused by the trapping. The measurement was also sensitive
enough to reveal a spatial distribution of Ramsey frequencies which hinted at the presence of
interactions between circular states despite the large distance separating them. We observed
a fast damping of the oscillations, with an average characteristic time of 15.8 ± 1.9 µs. We
interpreted this as the effect of the strong first order dipole coupling that appears when an
atom is transferred thermally to a neighboring state.

To circumvent this phenomenon of interactions-mediated coherence loss, we realized
single-atom experiments. Using the full power available for trapping, approximately 400mW,
we detected a large shift of the transition that was found to be compatible with the power
available. We obtained a coherence time of 61 ± 8 µs for a trapped atom, higher than that
of a free atom. The significance of this difference was difficult to interpret owing to the
large uncertainties in the fitted values. These coherence times were nevertheless compatible
with the measured temporal electric field noise, with a possible, yet unlikely, effect of field
gradients.

The results reported here essentially relate to single-atom physics but pave the way toward
our proposed quantum simulation platform. The experiment is now turning to many body
systems, which will require to go though several stages. The improvement of holographic
trap generation algorithms will increase the spatial extension of the trap array, and in fine
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the number of traps that we are able to produce. An atom rearrangement setup is being
installed to prepare defect-free arrays of atoms and significantly improve our control over
the experiment. Finally, a necessary step before diving into the complexity of many-body
systems is to understand the simplest of them: a pair of interacting atoms. The experimental
measurement of the dipole-dipole interaction between circular states is thus the object of
current studies.

20 µm 20 µm

Figure 5.13: Successful rearrangement of a partially loaded array of tweezers to prepare pairs
of atoms for dipole-dipole interaction measurement.

The study of many-body physics with a small number of atoms can also be considered
in the current experimental setup. This will require to improve the efficiency of circular
states preparation. The de-circularization to the ground state was shown to be an important
limiting factor to the total efficiency for optical detection. It would also need to be improved,
or could possibly be abandoned in favor of a non-destructive optical detection scheme [89].

Finally, as already mentioned, exploiting the full potential of circular states requires a
cryogenic environment to benefit from their extended lifetime. However, this will require
a much tighter control of the technical aspects that affect the coherence of the system, of
which we can cite the the electric and magnetic field noise along with electric gradients.
The transition from our room-temperature setup to a cryostat, which adds another layer of
complexity and technical difficulties, is thus the last step before the implementation of the
proposed quantum simulation platform.



Appendix A

The Kramers relation

A.1 The Kramers recurrence relation

We start from the radial equation1 (1.6):
[
a2

d2

dr2
− l(l + 1)

a2

r2
+ 2

a

r
− 1

n2

]
ynl(r) = 0. (A.1)

The normalization condition on the radial wavefunctions Rnl is
∫ ∞

0
r2R2

nl(r) dr =

∫ ∞

0
y2nl(r) dr = 1, (A.2)

and we therefore have
⟨rs⟩ =

∫ ∞

0
ynl(r) r

s ynl(r) dr. (A.3)

The idea behind the derivation of the Kramers relation is to apply successive integrations
by parts, substituting (A.1) whenever possible. The formula states, for well-behaved functions
u and v: ∫ b

a
u(x) v′(x) dx =

[
u(x) v(x)

]b
a
−
∫ b

a
u′(x) v(x) dx. (A.4)

In the derivation, we will use this notation and identify the functions u and v when integrating
by parts. We first multiply (A.1) by rsynl and integrate to get:

a2
∫
ynl r

s y′′nl dr = l(l + 1) a2 ⟨rs−2⟩ − 2 a ⟨rs−1⟩+ 1

n2
⟨rs⟩, (A.5)

where the primes denote the derivative of the function. For the sake of clarity, the integration
bounds and the r-dependence of ynl have been omitted. We now turn to the evaluation of
the right hand side of the above equation. Integrating by parts, with u = ynlr

s and v′ = y′′nl
yields ∫

ynl r
s y′′nl dr =

[
ynlr

sy′nl
]∞
0
−
∫
(ynl r

s)′ y′nl dr. (A.6)

We first consider the first term of the right hand side. The functions ynl decay exponentially
as r →∞, hence the evaluation at infinity is always zero. We also have ynl ∼ rl+1 for r → 0,
hence the evaluation at zero vanishes as long as

s > −(2l + 1), (A.7)
1We substitute a for a0 to alleviate the notations.
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which we assume verified in all the following computations. Computing the derivative in the
second term yields

∫
ynl r

s y′′nl dr = −
∫
y′nl r

s y′nl dr − s
∫
ynl r

s−1 y′nl dr. (A.8)

We want to express the first term of the right hand side in the same form as the second
therm. For this we again integrate by parts with u = (y′nl)

2 and v′ = rs so that
∫
y′nl r

s y′nl dr =
1

s+ 1

[
(y′nl)

2rs+1
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− 2

s+ 1

∫
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′
nl r

s+1 dr, (A.9)

where the first term evaluates as zero by virtue of the same argument as above. We can
substitute the second derivative y′′nl that appears using eq. (A.1) and we obtain

∫
y′nl r

s y′nl dr = − 2

s+ 1

∫
ynl

[
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a
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1

a20n
2
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]
y′nl dr. (A.10)

Combining this equation with eq. (A.8) gives:
∫
ynl r

s y′′nl dr =

∫
ynl f(r) y

′
nl dr, (A.11)
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Noting that (y2nl)
′ = 2y′nlynl and integrating by parts with u = f and v′ = y′nlynl, we get
∫
ynl r

s y′′nl dr = −1

2

∫
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′(r) ynl dr = −
1

2
⟨f ′(r)⟩, (A.13)

with

f ′(r) = (s− 1)

[
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Substituting in eq. (A.5) and summing the common terms yields

2a2

s+ 1

[
(2l + 1)2 − s2

]
⟨rs−2⟩ − 2a

s+ 1
(2s+ 1)⟨rs−1⟩+ 2

n2
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from which we recover the announced Kramers relation after multiplying by (s+ 1)/2:

s+ 1

n2
⟨rs⟩ − (2s+ 1) a ⟨rs−1⟩+ s

4

[
(2l + 1)2 − s2

]
a2 ⟨rs−2⟩ = 0. (A.16)

To conclude, let us make an important remark on the validity of the Kramers relation. In
the above derivation, no assumption has been made on the values of n and l, which is valid
as long as the solutions ynl exist and are square-integrable. The latter condition is verified as
long as l > 0 and n > 0, without the restriction to integers values. In particular, this holds
true for Rydberg states withing the context of quantum defect theory, where n is replaced
with n∗ = n − δnlj > 0 (see eqs. (1.40-1.41)). To sum up, the conditions of validity of the
Kramers relation are:

n > 0, l > 0, s > −(2l + 1). (A.17)
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A.2 Computation of the average values ⟨rs⟩
We now turn to the computation of the average values ⟨rs⟩ used in chapter 1. The Kramers
relation above allows for the immediate determination ⟨rs⟩ for s ≤ −1. More work is required
to compute ⟨r−2⟩, which is necessary to apply the recurrence relation to get those values
corresponding to s ≤ −3.

Case s ≥ −1

Setting s = 0 in the Kramers relation (A.16), we get, using the normalization relation ⟨r0⟩ =
1:

1

n2
− a⟨r−1⟩ = 0, (A.18)

hence
⟨r−1⟩ = 1

n2a
. (A.19)

We can get higher exponents s recursively. For instance, setting s = 1 yields

2

n2
⟨r⟩ − 3a+ l(l + 1)a2⟨r−1⟩ = 0, (A.20)

hence
⟨r⟩ = a

2

[
3n2 − l(l + 1)

]
. (A.21)

We also make use of ⟨r2⟩, which we get by setting s = 2 in the Kramers relation:

3

n2
⟨r2⟩ − 5a⟨r2⟩+

[
2l(l + 1)− 3

2

]
a2 = 0, (A.22)

which finally gives

⟨r2⟩ = a2

2
n2
[
5n2 + 1− 3l(l + 1)

]
. (A.23)

These results extend without restriction to the case of Rydberg atoms simply by using
n− δnlm in place of n.

Case s ≤ −2

The Kramers relation alone is not sufficient to determine ⟨rs⟩ for s ≤ −2. We therefore must
determine ⟨r−2⟩ by another method to initiate the recurrence towards negative values. The
method shown here is based on the application of the Hellmann-Feynmann theorem [141].
We note that the quantum number l appearing in the radial equation (1.6) is only a mere
parameter and is not bound to be integer. The equation has solutions also for non-integer2

l, which allows for the derivation with respect to l. Multiplying (1.6) by ynl, taking the
derivative with respect to l and integrating with respect to r, we get:

∫
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[
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n2
. (A.25)

2The solutions ynl can actually be made analytical in l by replacing the factorials with the Gamma function.
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The left term is essentially the radial equation multiplied by ∂ynl
∂l , thus vanishes. The same

goes for the right term, which corresponds to the conjugate of the radial equation. We
therefore have ∫

dr ynl
∂H
∂l
ynl = 0, (A.26)

which we can write as
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Before computing the derivative, note that n has a hidden dependency in l. Indeed, we have
the constraint n ≥ l + 1, which can be accounted for by writing n = l + k, with k ≥ 0. We
now have, retaining only those terms dependent on l:

∂

∂l

[
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(l + k)2

]
= 0, (A.28)

which yields

⟨r−2⟩ = 2

(2l + 1)n3a2
. (A.29)

From this point we can compute the remaining ⟨rs⟩ using the Kramers relation. In
particular, we obtain ⟨r−3⟩ by setting s = −1 in the latter:

⟨r−2⟩ − l(l + 1)a⟨r−3⟩ = 0. (A.30)

Finally, we have:

⟨r−3⟩ = 1

a3n3
1

l(l + 1/2)(l + 1)
. (A.31)

Contrary to the previous section, the derivation of ⟨r−2⟩ does not extend to the Rydberg
case. Indeed, we assumed a relation n = l + k between n and l, which is valid only for the
hydrogen atom. The relation writes n = l + k − δnlj for Rydberg atoms, with a non-trivial
(and unknown) dependence to l of δnlj . This prevents the direct computation of values such
as ⟨r−3⟩, though the knowledge of ⟨r−2⟩ (for instance from a numerical computation) would
still allow to determine them by use of the (still valid) Kramers relation.

Summary of the results

The quantities computed in this section are relevant to the calculations carried in chapter 1.
We summarize them here:
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, (A.32)
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]
. (A.36)

Those preceded with (∗) are also valid for non-hydrogenic Rydberg states.
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Laser setup and frequencies

Many laser beams are involved during operation of the experiment. Almost all must have
specific and stable frequencies, They are described in detail here.

We can categorize the lasers in three classes, depending on their role in the experiment.
This entails different constraints and requirements that are shared within a given class. We
thus can distinguish:

(1) “Ground-state lasers”. Those are mostly involved in the manipulation of atoms in their
ground state. They are tuned to the D2 line of 87Rb. They are characterized by the
number of beams involved to address the various hyperfine levels.

(2) “Rydberg lasers”. As their name suggest, they serve to excite atoms to the Rydberg
state. They require high power and high frequency stability to maximize the transfer
efficiency.

(3) The “tweezers laser”. Its purpose is the generation of optical traps in the experiment. Its
power is, in our conditions, the limiting factor to the number of traps we can prepare.
The power fluctuations should also be controlled to prevent the heating of atoms.

In comparison to previous work, the Rydberg and tweezers laser setups are completely
new, and the ground state lasers setup has been entirely rebuilt. This is also true of the
laser locking scheme, that has been improved to fulfill the stronger constraints imposed by
the new experimental setup. In this perspective, we describe here the “ground-state lasers”
and “Rydberg lasers” setups. The “tweezers laser” has been described in chaper 2. We also
briefly describe the frequency stabilization setup.

B.1 Ground-state laser setup

The ground-state laser setup is constituted by three lasers. The “spectro” laser, the “re-
pumper” laser, and the “MOPA” laser. The schemes of the optical setups associated to each
of them is shown in figure B.1.

The “spectro” laser is a Toptica DL pro laser diode emitting ∼ 60mW of power. It is
tuned to the 5S1/2, F = 2↔ 5P3/2 hyperfine transition and is locked on an external cavity. It
serves as a reference for the locking of the other two lasers. In addition to the beams involved
in the frequency lock, we derive from it:

• The “probe” beam, tuned to the F = 2 → F ′ = 3 transition. Its main role is to
optically pump the atoms to the mF = 2 Zeeman level, but it also serves as a kick
beam in light-shift and Raman spectroscopy experiments.
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• The “Raman F2” beam, involved in Raman spectroscopy.

Each of these two beams can have its frequency tuned with a ∼ 40MHz bandwidth using a
double-pass AOM system [142].

The “repumper” laser is also a Toptica DL pro laser diode. It is tuned to the 5S1/2, F =
1↔ 5P3/2 hyperfine transition. We derive from it:

• Two static “repumper” beams, tuned to the F = 1→ F ′ = 2 transition. Their role is to
re-pump the atoms from the F = 1 to the F = 2 hyperfine level. Those beams overlap
with the cooling beams of the MOT/molasses.

• One frequency-tunable “repumper”, thanks to an AOM in double-pass configuration.
The beam is overlapped with the probe beam of the spectro laser (they also share the
same polarization). It is the repumper beam dedicated to the tweezers-trapped atoms.
It is also involved more specifically in the light-shift spectroscopy experiment.

• The “Raman F1” beam, involved in Raman spectroscopy.

The “MOPA” laser is a Toptica TA 100 tapered amplifier system emitting ∼ 1W of power.
It is tuned to the 5S1/2, F = 2↔ 5P3/2 hyperfine transition. We derive from it:

• Two “2D-MOT” beams, in charge of the first cooling stage of the atoms: the 2D-MOT.
• One “3D-MOT” beam, in charge of the 3D-MOT/molasses cooling in the sapphire cube.

For this purpose, the beam is split in six with the help of a Schäfter+Kirchhoff cluster
system, also shown in figure B.1.

The level structure of 87Rb D2-line along with the relative frequencies of the various
beams described above are represented in figure B.2. The “probe”, “Raman F2”, “Raman
F1” and “scanned repumper” beams can have their frequency tuned using a double-pass
AOM configuration. The corresponding frequencies are indicative and may vary in actual
experiments.



B.1. GROUND-STATE LASER SETUP 133

 

2
D

-M
O

T
 

fr
on

t

2
D

-M
O

T
 

le
ft

3
D

-M
O

T
 

C
lu

st
er

Fr
om

M
O

PA

A
A
 M

T
8
0
-A

2
.I

R
-8

0
 M

H
z

Fr
om

R
ep

u
m

p
er

Ph
ot

od
io

d
e

- 
4
5
°

+
 y

+
 4

5
°

- 
y

- 
x

+
 x

- 
4
5
°

- 
y

M
O

PA
To

p
ti
ca

 T
A
 1

0
0

F2
 R

am
an

b
ea

m
Pr

ob
e

b
ea

m

A
A
.M

T
8
0
/A

1
.I

R
D

ou
b
le

 p
as

s
2
 x

 8
3
 M

H
z

S
p
ec

tr
o

To
p
ti
ca

 D
L 

p
ro

R
ep

u
m

p
er

b
ea

tl
oc

k

R
ep

u
m

p
er

3
D

-M
O

T

R
ep

u
m

p
er

To
p
ti
ca

 D
L 

p
ro

R
ep

u
m

p
er

B
ea

tl
oc

k

C
av

it
y

lo
ck

S
ee

d
 b

ea
m

M
O

PA
B
ea

tl
oc

k

S
p
ec

tr
o

R
ep

u
m

p
er

2
D

-M
O

T

F1
+

F2
R
am

an
b
ea

m
s

+
 4

5
°

- 
y

C
ou

p
le

r 
6
0
S
M

S
-1

-4
-A

1
1
-0

2

Pu
m

p
-p

ro
b
e

sp
ec

tr
os

co
p
y

3
D

-M
O

T
C
lu

st
er

 s
et

u
p

M
O

PA
b
ea

tl
oc

k
5
0
/5

0
fi
b
er

 s
p
lit

te
r

Pu
m

p
-p

ro
b
e

sp
ec

tr
os

co
p
y

R
ep

u
m

p
er

H
al

f-
w

av
e

p
la

te

Q
u
ar

te
r-

w
av

e
p
la

te

O
p
ti
ca

l 
fi
b
er

fr
om

/t
o 

op
ti
ca

l 
ta

b
le

O
p
ti
ca

l 
fi
b
er

to
 e

xp
er

im
en

t

R
ep

u
m

p
er

+
 P

ro
b
e

Pr
ob

e

A
co

u
st

o-
O

p
ti
c

M
od

u
la

to
r

Ph
ot

od
io

d
e

Po
la

ri
zi

n
g

b
ea

m
sp

lit
te

r
N

on
-P

ol
ar

iz
in

g
b
ea

m
sp

lit
te

r
G

la
n
-T

h
om

p
so

n
p
ol

ar
iz

er

Pu
m

p
-p

ro
b
e

sp
ec

tr
os

co
p
y

F2
 R

am
an

M
T
2
0
0
-A

0
,5

-8
0
0

D
ou

b
le

 p
as

s
2
 x

 2
0
0
 M

H
z

M
T
1
1
0
/B

5
0
/A

1
.5

-I
R

D
ou

b
le

 p
as

s
2
 x

 -
1
0
0
 M

H
z

M
T
2
5
0
-B

1
0
0
A
0
,5

-8
0
0

D
ou

b
le

 p
as

s
2
 x

 2
5
0
 M

H
z

M
T
2
0
0
-A

0
,5

-8
0
0

-2
0
0
 M

H
z

M
T
2
5
0
-B

1
0
0
A
0
,5

-8
0
0

-1
9
2
 M

H
z

R
u
b
id

iu
m

 v
ap

or
ce

ll
M

ir
ro

r
B
ea

m
 d

u
m

p

Figure B.1: Optical schemes of the ground-state lasers.
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5S1/2

F = 1

F = 2

5P3/2

F = 0
F = 1

F = 2

F = 3

D2 line
780.241 nm

6.835 GHz

72.2

156.9

266.7

Spectro

Probe

151.81

Raman F2
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Figure B.2: Level structure of 87Rb D2-line and relative frequencies of the “Ground-state
lasers”. Owing to its particular locking scheme, the main MOPA laser beam (represented with
a dashed red line) has its frequency tuned dynamically during the experimental sequence.
We represent the frequency (relative to the “spectro” laser) of the relevant beams during
the corresponding parts of the sequence as a solid red line. Unless otherwise specified, the
frequencies are expressed in MHz.
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B.2 Rydberg lasers setup

Two lasers are dedicated to the Rydberg excitation by a two photon transition at 420 nm +
1015 nm. However, the laser emitting at 1015 nm that we used initially went defective and
was replaced by another one. We present in figure B.3 the optical setup of the three lasers,
with the one corresponding to the defective laser (on the right) shaded.

AA MT80-B???
80 MHz

Ryd blue 420 nm
M-Squared

Ryd red 1015 nm
M-Squared

840 nm

Optical fiber
to optical table

Optical fiber
to experiment

AOM

AA
MT200-B20A0,5-1064

Double pass
2 x 200 MHz

Ryd red 1015 nm
Toptica DL pro

λ/4 PBSMirrorλ/2

to
λ-meter

to
λ-meter

to
λ-meter

AA
MQ200-B5A2-UV

80 MHz

to lock

to lock

to lock

 

Figure B.3: Optical schemes of the Rydberg lasers. The titanium-sapphire laser emitting
at 1015 nm (shaded center scheme) went defective and was replaced by a laser diode setup
(right scheme).

The laser emitting at 420 nm (left scheme, referred to as “Ryd blue”) is produced by a
titanium-sapphire (TiSa) laser (SolsTiS, M-squared) pumped at 532 nm with a pump laser
(Equinox, M-squared). The TiSa laser emits ∼ 6W of power at 840 nm, and is frequency-
doubled (ECD-X, M-squared) to yield ∼ 2W of power at 420 nm. We use a fraction of the
seed beam at 840 nm to lock the laser and monitor its frequency on a wavelength-meter. The
frequency of the beam cannot be scanned.

The original laser emitting ∼ 2W of output power at 1015 nm (right scheme, referred
to as “Ryd red”) was prepared using a similar TiSa laser assembly (Equinox + SolsTiS, M-
squared). A fraction of the output was used for the lock and to monitor the frequency. The
beam frequency could be tuned thanks to a double-pass AOM system.

The current laser beam at 1015 nm (middle scheme, also referred to as “Ryd red”) is
produced by a Toptica DL pro laser diode. Contrary to the TiSa laser, the output power is
only 130mW. The setup is similar to the original laser except for the AOM that operates in
single-pass. The beam frequency is tuned by changing the lock point of the laser.
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B.3 Laser locking setup

The optical setup for the lock of the Rydberg and “spectro” lasers is presented in figure B.4.
We lock the three lasers on a Stable Laser Systems ultrastable caity using the Pound-Drever-
Hall (PDH) method [143]. Each beam has its frequency modulated by a fiber-coupled Electro-
Optical Modulator (EOM) in order to shift the beam frequency and produce the modulation
required for the PDH lock. The three beam are then overlapped before being sent to the
cavity. The reflection from the cavity is then collected by a photodiode and sent to the
locking electronics.

Ultrastable Cavity

λ/4 PhotodiodePBS

Ryd red
1015 nm

EOM iXblue
NIR-MPX-LN-02

Mirror

Ryd blue
840 nm

Spectro
780 nm

T 1015
R 840, 780

T 780
R 840

EOM iXblue
NIR-MPX800

EOM iXblue
NIR-MPX800

PDH Lock electronics

Stable Laser Systems

λ/2
Dichroic
Mirror

Figure B.4: Optical scheme of the PDH lock of the Rydberg lasers and the “spectro” laser on
a Stable Laser Systems cavity.

The “repumper” laser is phase-locked to the “spectro” laser with a frequency offset of
32 × 216.08 = 6914.56MHz. The “MOPA” laser is beat-locked to the “spectro” laser with
a variable frequency of approximately +200MHz. The frequency offset is controlled by a
Voltage-Controlled Oscillator which frequency is tuned dynamically during the experiment
(see figure B.2).



Appendix C

Electric field control in the experiment

The control of the electric field in the experiment is paramount to its proper operation,
be it for the results presented here, those next to come or in the longer term for quantum
simulation. Significant work has been done to ensure a good control of the electric field
despite the strong constraints imposed by the setup:

(1) The minimization of electric field gradients over the ∼ 100 µm spatial extension of
atoms, in particular those possibly arising from charge accumulation on nearby dielec-
tric surfaces.

(2) The necessity to switch between low voltages during the Rydberg sequence and high
voltage for state-selective field ionization.

(3) Although this is not an actual limitation for the results shown in this manuscript, volt-
age noise from the sources can possibly be a limiting factor to the achievable coherence
times in the prospect of long simulation times.

We first detail in this appendix the sapphire cube electrodes, their electrical connections
and some of their characteristics. We follow with the description of the low-to-high voltage
switching electronics that proved itself to be a significant improvement over the previously
used devices [98, 96].

C.1 The sapphire cube electrode system

The Simion simulations carried for the design of the ionization detection setup give the field
response at any point of the simulation domain for a given potential applied to an electrode.
For this purpose, we simulated a set of 12 electrodes: 2 Stark electrodes, 2 Stark holders,
4 RF electrodes1, 2 lens holders and 2 lenses. This can be used to determine the field with
high precision when given the potential applied to each electrode.

To do this, we simplify the problem and consider only the 6 electrodes covering the interior
of the sapphire cube: 2 Stark electrodes and 4 RF electrodes. Furthermore, instead of consid-
ering each electrode independently for its field response, we consider linear combinations of
voltages applied to each electrode. These combinations, depicted in figure C.1, benefit from
a simple physical interpretation. The reference Vref essentially represents a global shift of the

1The reader must be aware that mechanical constraints prevent the tube-shaped part of the RF electrodes
to be mechanically attached to the plate part (see figure fig:SapphireCube (d), yellow electrodes). The
simulation actually takes both parts as separate electrodes, for a total of 16 electrodes rather than 12. The
two parts are nevertheless electrically connected in the UHV setup and are considered as one in what follows.
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Figure C.1: Scheme of the sapphire cube electrodes highlighting the main voltages compo-
nents. Red electrodes have positive voltage, blue electrodes have negative voltage, and yellow
electrodes are grounded. (a) Vref . (b) V0. (c) V+. (d) Vx. (e) Vy. (f) Vz.

potential. The component V0 produces a quadrupolar field in the (x, y)-plane. V+ produces
a quadrupolar field in the (y, z)-plane. The three components Vx, Vy, and Vz are the most
important and produce an electric field along the x-, y- or z-direction respectively.

The situation is made more complex, however, due to the Indium-Tin Oxide (ITO) coating
of the lenses. Indeed, we must take into account the difference of work function ϕ between
ITO and the gold-coated electrodes. Although we can take the value ϕITO = 4.45 eV [144]
with a reasonable degree of confidence, the work function of gold is more variable an depends
on the actual sample preparation and history [145].

The following tables show the field and gradient response to a potential of 1V applied to
each main voltage component (see figure C.1). Except for the ITO-coated lenses, the other
electrodes are set to 0V.2 In table C.1 we provide the values in the condition ϕgold = ϕITO.
In table C.2 we set ϕgold = 5.15 eV, which is approximately the value for a clean sample
of Au according to [145]. This translates respectively into an intrinsic potential difference
VITO = 0V and +0.7V between the lenses and the lens holder (that is, the lens voltage is
0.7V higher than the lens holder voltage in the latter case).

The simulation gives an electric field of 2.068V cm−1 when set with the voltages applied
on the electrodes during the Rydberg experiments. This is in very good agreement with
the measured value F = 2.09V cm−1. Assuming VITO = +0.7V, we get a field gradient
∥∇F∥ = −0.138V cm−2 directed along the x-direction. This represents a field variation of
approximately 1mV cm−1 over the 75 µm-lateral extension of our 6 × 3 array of atoms, or
15 µV cm−1 over the trapping region of our BoB traps. The effect of gradients is therefore
much weaker than the temporal noise of the electric field, which we evaluated as 0.9mV cm−1

(see subsection 4.3.2).

2The other electrodes have little effect on the electric field and mainly produce gradients. As such, they
could have their potential adjusted for precise field control at the atoms location. Although this might be
necessary in the future, it was not done for the experiments presented and is out of the scope of this thesis.
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Table C.1: Field response at the center of the cube to 1V applied on the indicated
voltage component. We set VITO = +0V for the ITO-coated lens potential; other
electrodes are grounded.

Voltage component
Field response (V cm−1) Gradient response (V cm−2)

Fx Fy Fz ∂x∥F∥ ∂y ∥F∥ ∂z ∥F∥
Vref 0 0 0 −0.021 0.002 0
V0 0 0 0 −0.777 0.654 0
V+ 0 0.142 0 0 0 1.149
Vx −0.818 0 0 0 0 0
Vy 0 −0.787 0 0 0 0
Vz 0 0 −0.548 0 0 −0.163

Table C.2: Field response at the center of the cube to 1V applied on the indicated
voltage component. We set VITO = +0.7V for the ITO-coated lens potential; other
electrodes are grounded.

Voltage component
Field response (V cm−1) Gradient response (V cm−2)

Fx Fy Fz ∂x∥F∥ ∂y ∥F∥ ∂z ∥F∥
Vref 0 0 0 0.145 −0.111 0
V0 0 0 0 −0.857 0.849 0
V+ 0 0.142 0 0 0.252 1.149
Vx −0.818 0 0 0.138 0 0
Vy 0 −0.787 0 0 0.252 0
Vz 0 0 −0.548 0 0 −0.049

C.2 Electric field control in the experiment

We present in figure C.2 a scheme of the electrical connections and instruments involved in
the control of the electric field in the experiment.

The electric field is during Rydberg manipulation is set by a Keysight 33612A Arbitrary
Waveform Generator (AWG) with 14 bit precision over the−10 to 10V range. The two output
of the AVG generate opposite voltages, each one being sent to a Stark electrode according to
the circuit of figure C.2. To detect the Rydberg states by ionization, we switch the electrodes
connection to high-voltage (HV) circuits. One of them (Stanford Research Systems PS310)
is a static source. The other two are composed of an AVG and a HV amplifier and generate
the ionization ramps.

The switching circuit and electrodes setup impose an important capacitive load of 2.7 nF
to the voltage sources. This is significant for the negative HV amplifier that we use (Trek
2205) which has a low current capability. The corresponding (negative) ionization ramp gets
deformed by the capacitive load.
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Figure C.2: Scheme of the electric circuit and connections for electric field control. The
low-to-high voltage switch circuit is described in a dedicated section.

C.3 Voltage switching electronics

The electric fields involved in the ionization of Rydberg states are incompatible with those
applied during the experimental sequence. Electronic circuits for HV to LV switching were
thus designed to conciliate both voltage ranges. We distinguished two cases, depending on
the sign of the high voltage, and designed a circuit to switch to high negative voltage and one
to switch to high positive voltage. The essential components of the circuit are schematized
in figure C.3, where we focus on the switching between LV and negative HV.

The isolation between the low voltage line and the output when connected to HV is done
by a high-voltage p-channel MOSFET (FQB1P50), maintained closed with a voltage of +12V
applied on the gate. When switching to LV, the gate is set at a voltage of −15V, thus allowing
for a full −10 to +10V range of low voltages. The transistor gate presents a rather large
capacitance and is conveniently driven with a gate driver optocoupler (FOD3182) for shorter
switching times. The connection to the HV line is established with the help of a high-voltage
phototransistor optocoupler (MOC8204) able to withstand collector-to-emitter voltage up to
400V. When switching from HV to LV, it is important to discharge the electrode before
connecting to LV. For this purpose, a second optocoupler connects the output to the +15V
power supply for a few µs.

For proper operation, the activation of the various components must be controlled pre-
cisely. For this purpose, some timing and synchronization circuitry converts the LV-to-HV
triggering gate into three signals that command each of the three components described
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Figure C.3: Simplified scheme of the electronic circuit designed to switch between low voltage
and high negative voltage. The circuitry essentially consists in three components: voltage
regulation (not shown for simplicity); shaping of the trigger pulse to generate the control
signals (boxes “Delay” and “Pulse generator”); high voltage switching proper. The operation
is detailed in the text. The circuit differs slightly for positive voltage switching. Most
notably the high-voltage p-channel MOSFET is be replaced by a n-channel MOSFET and
the connections to the MOC8204 emitter and collector are adapted.

above. The timings are set by the intermediate of trimmers in the circuit. The triggering
gate, coming from the computers, is a potential source of noise. It is isolated from the remain-
ing circuitry with the help of another optocoupler (ACPL-21ML). The switching is therefore
current-controlled rather than voltage-controlled. The whole circuit is powered with ±15V,
with intermediate voltages produced by regulators. The corresponding circuitry is not shown
in figure C.3.

A LV to HV to LV switching cycle proceeds as follows.

• No current flows in the trigger circuit. The HV MOSFET connects the LV input to the
output.

• The trigger is activated. A command to close the MOSFET channel is sent immediately.
A delay of a few us is waited before sending a command to set the HV optocoupler into
conduction. This is to ensure that the LV line does not get connected to the HV input.

• This state is maintained as long as current flows in the triggering circuit.
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• The trigger is deactivated. The HV input is isolated from the output immediately.
After a short delay, a control pulse is sent to the other HV optocoupler to discharge of
the electrode. Only after this optocoupler goes back to non-conductive mode is the HV
MOSFET channel opened to connect the LV line to the output.

The following pages show the complete circuits for both negative (1st page) and positive
(2nd page) high voltage switching. In addition to the high-voltage control, they detail the
pulse shaping logic, and the voltage regulation circuitry. The circuits may appear significantly
more complex than the simplified scheme of figure C.3. They include some circuit protection
devices, along with other tricks to improve the response time of the circuit. These, along
with useful components miscellany, are described in great detail in [146, 147].
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Appendix D

Numerical simulations of atomic
dynamics

Atomic dynamics in the traps has an incidence on many aspects of our experimental results.
Most notably, we discussed in chapter 5 the mechanical losses and the transition frequencies
shift due to the residual light at the bottom of the trap. We also have seen in chapter 3 that
our measurement of the oscillation of atoms in optical tweezers is sensitive enough to probe
the trap shape beyond the gaussian approximation. In this appendix, we detail the methods
used for classical atomic dynamics simulations in various trap potentials and use them to
investigate its impact on various experimental observations.

The simulations begin with the sampling of atomic positions and velocities in a given
potential, that corresponds to (or approximates) the gaussian tweezer potential. We provide
some technical details on the potential and sampling method that are involved in all subse-
quent atomic dynamics simulations. We also discuss in some detail the Monte-Carlo fitting
procedure involved in the atom temperature measurement. Simulations of the atomic motion
in the traps, together with this methodology, are used to get an insight on the trapping
potential beyond the gaussian approximation.

The ponderomotive trapping potential produced by the bottle beams presents additional
features as compared to the ground-state traps. Indeed, contrary to the latter, the BoB poten-
tial is not simply proportional to the light intensity. We discussed some of the consequences
in chapter 5 and most notably its variation with respect to the circular level considered. Here,
we extend on the topic and investigate the origin of this difference and the consequences on
the light-shift and coherence.

D.1 Gaussian traps

Gaussian optical tweezers are based on gaussian beams, the simplest solution of the paraxial
Helmoltz equation for the propagation of light. These solutions are analytical, and the
corresponding trapping potential (for ground-state atoms) is directly proportional to the
light intensity at the atomic position, which simplifies greatly the study of these traps and
the associated numerical simulations of atomic dynamics. Moreover, our experimental results
obtained in chapter 3 allow us to get some insight on their deviation from the ideal gaussian
trap.
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D.1.1 Gaussian trap potential

The idealized trapping potential is generated by a gaussian beam produced by focusing a
collimated monochromatic laser beam (wavelength λ) to a waist w0 with a lens having a
focal length f . The resulting potential is cylindrically symmetric and its value at a distance
r from the optical axis and z from the lens focal plane is

V (r, z) = − V0

1 + (z/zR)
2 exp


−2 r2

w2
0

(
1 + (z/zR)

2
)


 , (D.1)

where zR = πw2
0/λ is the Rayleigh length. The potential amplitude V0 is proportional

to the maximum intensity I0 (see chapter 1). It is often useful to consider the harmonic
approximation to the above potential, retaining the curvature at the minimum as the only
spatial dependence. The trapping potential thus becomes, for an atomic mass m,

V (r, z) ≃ −V0 +
1

2
mω2

rr
2 +

1

2
mω2

zz
2, (D.2)

associated to the axial and radial trap frequencies

ωz =

√
2V0
mz2R

, ωr =

√
4V0
mw2

0

. (D.3)

Cut views of the potential and corresponding plots of the trap depth are represented in
figure D.1. Also depicted is the profile of the harmonic approximation (D.2), which is valid
for r ≲w0/2 and z ≲ zR/2. An important remark is that the gaussian potential is sub-harmonic
in the sense that it is always inferior to its harmonic approximation.
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Figure D.1: Vizualization of the gaussian trap potential. Top: cut views of the potential.
Bottom: transverse profile of the potential at the focal plane (left) and axial profile along the
optical axis (right). The green dashed line corresponds to the harmonic approximation.

As we will now see, the gaussian potential is not only used to numerically solve the
equations of motion and compute the dynamics, but also to sample atomic positions as the
initial conditions for dynamics computation.
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D.1.2 Sampling in phase space

The sampling of atomic coordinates in phase space assumes that the energies are Boltzmann-
distributed, which is regarded as a valid hypothesis [134]. We also restrain ourselves to
classical motion: position and momentum commute and are therefore independent. For a
position r and velocity1 v, the mechanical energy Em is

Em =
1

2
m ∥v∥2 + V (r). (D.4)

As mentioned above, the velocity and position are independent and the join equilibrium
probability distribution ρ can be factored in two terms

ρ(r,v) = ρr(r)ρv(v). (D.5)

At thermodynamic equilibrium, with a temperature T , the corresponding probability densi-
ties are

ρr(r) = N exp

[
−V (r)

kBT

]
, (D.6)

ρv(v) =

[
m

2πkBT

]3/2
exp

[
−m ∥v∥

2

2kBT

]
, (D.7)

where we introduced the Boltzmann constant kB, and an unspecified normalization factor N .
Each component of the velocity follows a normal distribution with standard deviation√
kBT/m. Sampling the velocity numerically therefore does not pose any problem. However,

the distribution of positions is not trivial, and even ill-defined. To see this, we remark that
the exponential in eq. (D.6) does not vanish at infinity:

exp

[
−V (r)

kBT

]
−−−−−→
∥r∥→∞

ϵ > 0, (D.8)

and hence the integral over all space is infinite (and so is the normalization factor in eq. (D.6)).
To circumvent this problem, the retained approach consists in confining the atomic positions
to a finite volume in space.

However, the difficulty of position sampling is not completely solved. Indeed, contrary to
the case of velocities, the potential of eq.(D.1) does not lead to a distribution (eq. (D.6)) for
which a sampling algorithm is immediately available. We followed two approaches to samples
positions despite these difficulties.

• Simplify the potential. With the harmonic approximation of eq.(D.2), the positions
become normally-distributed and are easily sampled.

• Use a general sampling method. The rejection sampling method [148] applies well to
our case.

Our rejection sampling algorithm proceeds as follows.

(1) We first add the constant energy V0 to the potential: V (r) −→ V ′(r) = V (r)+V0. The
resulting potential is always positive. Therefore, introducing ṼT (r) = V (r)/(kBT ) , we
have 0 < exp

(
−ṼT (r)

)
≤ 1 at any position.

1We favor velocity over momentum as it is more convenient to work with in addition to being more
intuitive.
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(2) We define a region of space in which raw positions are sampled by the condition
exp
(
−ṼT (r)

)
< 10−3. The value 10−3 was chosen empirically and works fine for

temperatures up to 150 µK.
(3) Draw atomic positions ri in the selected spatial volume, along with a number 0 ≤ pi < 1.

Position ri is accepted if pi < exp
(
−ṼT (ri)

)
. This is done until the desired number of

values is obtained.

The rejection sampling is precise, but computationally intensive and hence rather slow.
Normal sampling from the harmonic approximation of eq.(D.2) is significantly faster (about
20 times), but less precise. The harmonic approximation is valid as long as r << w0, the
natural radial length scale, and z << zR, the natural axial length scale. Assuming that the
harmonic approximation is valid, we get, for a thermal distribution at temperature T,

⟨rrms⟩
w0

,
⟨zrms⟩
zR

=

√
kBT

2V0
. (D.9)

Thus, for trap depths of the order of 1mK, the condition is verified if T ≲ 20 µK (giving a
ratio of 1/10).

We compare the two sampling methods in figure D.2. We used the gaussian beam pa-
rameters obtained in chapter 3 (see eq. 3.28), and show scatter plots for 500 samples at
temperatures T = 10, 60 and 120 µK. As expected from the above argument, the distribu-
tions are hardly distinguishable at T = 10 µK, but start to differ significantly for T ≳ 60 µK.
The difference lies mainly in the underestimation of the axial extension ⟨zrms⟩ by the normal
sampling method.
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Figure D.2: Comparison between normal and rejection sampling of atomic positions. 500
samples were drawn by both methods at indicated temperatures using the tweezers param-
eters found in chapter 3. The panels show the (x, y)-coordinates of the samples (left), and
the (z, y)-coordinates (right).

None of the experimental results presented in this manuscript involves atomic tempera-
tures higher2 than 30 µK. We therefore choose the faster normal sampling in all our fitting

2Higher temperatures nevertheless occur in pre-optimized conditions.
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procedures and simulations described hereafter.

D.1.3 Monte-Carlo fitting procedure: temperature measurement

Our Monte-Carlo fitting procedures are based on the simulation of an experimental sequence
and its comparison with the data. Repeating this by varying the fitted parameter lead to the
determination of the best value. We illustrate this with the simplest simulations involved in
this thesis: the release-recapture experiment for temperature measurement.

The release-recapture sequence measures the fraction pexp(ti) (with standard deviation
σexp)of atoms that get recaptured after releasing them for variable delays ti, which depends
on their temperature. Knowing the beam parameters, the procedure to compare how a given
temperature fits to the experimental data goes as follows.

• Draw N atomic position and velocity samples in the tweezer potential. For the tem-
perature measurement, we usually take N ∼ 100 000.

• Simulate the recaptured fraction psim(ti) at each recapture delay. To gain in computa-
tional speed, we use the same N atomic samples for all experimental points.

– Compute the atomic positions and velocities after free flight for a duration ti (we
take the gravity g into account).

r(ti) = r(0) + v(0) ti + g
t2i
2

(D.10)

v(ti) = v(0) + g ti (D.11)

– Determine the recapture probability. Atoms are recaptured if their mechanical
energy is negative:

Em =
1

2
mv2(ti) + V [r(ti)] < 0. (D.12)

• Take into account additional loss mechanisms, such as the finite lifetime of the atomic
species considered (see for instance sections 5.1.1 and 5.1.2). Mathematically we do
the transform psim(ti) → p̂sim(ti) = psim(ti)ρ(ti), where ρ(t) represents the population
decay at delay t.

• Scale the simulated curve to the data. The scale A accounts for baseline losses of atoms,
and y0 corresponds to the atom background. This values can be set constant or fitted to
the experimental data, that is by fitting to pexp the parameters (A, y0) of the function
f(A, y0; t) = Ap̂sim(t)+ y0. Although these parameters can be estimated from the data
in some situations (for instance in chapter 3, see figure 3.11), this is not always the case
(see chapter 5, figures 5.3 and 5.4). In the latter case, the fitting procedure is necessary.

• Compute the χ2 distance using the transformed simulated curve

χ2 =
∑

i

(pexp(ti)−Ap̂sim(ti)− y0)2
σ2exp(ti)

. (D.13)

The whole fitting procedure involves repetitions of the above algorithm for different tem-
peratures. We first get a rough estimate of the temperature by performing quick simulations
with a reduced number of samples, retaining the temperature T0 that minimizes the χ2 dis-
tance (D.13). More precise simulations are run for temperatures near T0, from which we
determine the distance χ2(T ). The resulting curve is fitted with a 4th-degree polynomial,
from which we recover the temperature at the minimum T̂ .
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Figure D.3: Monte-Carlo fitting procedure for the temperature. (a) Simulated recapture
curves for various temperatures. The simulations were run with 400 000 samples and scaled
to the data (scaling factor A = 0.985) (b) Calculated χ2 distance as a function of the tem-
perature for the preliminary estimation (large panel) and for precise determination (inset).
The solid red line is a 4th-degree polynomial fit of the inset data. The simulations were
carried with 400 000 samples. The optimal temperature is T̂ = 14.1 µK, that corresponds to
χ2 = 656.

The uncertainty in the fitted temperature is determined using the formula [138]:

σ̂2T = 2

[
d2χ2

dT 2

]−1

T̂

χ2(T̂ )

k
, (D.14)

where k is the number of degrees of freedom. We have k = n− p with n the number of data
points taken and 1 ≤ p ≤ 3 the number of fitted parameters (the temperature, along with
optional global scale and offset). We have included the factor χ2(T̂ )/k so that the weights
1/σ2exp(ti) are considered as relative rather than absolute. This behavior is consistent with all
the fits carried throughout this thesis. One could nevertheless argue that the interval [0, 1]
is the natural scale for Monte-Carlo simulations and thus the weight should be considered as
absolute. In the data presented on figure D.3, we have3 k = 81− 2 = 79, and χ2(T̂ ) = 656.
Hence considering the weights as absolute would reduce the uncertainty by a factor of ∼ 8.

To conclude, let us mention some limitations in the procedure. They represent function-
ality that is currently not implemented rather than fundamental limitations.

• We do not take into account the uncertainty in the position of the minimum of the
polynomial fit of χ2. The difficulty lies in the fact that we do not fit the roots of the
polynomial but its coefficients, which are harder to link to the roots.

• When the scaling parameters are fitted, the covariance with the temperature is not
determined.

D.1.4 Classical dynamics in gaussian tweezers

The atomic dynamics in BoB traps does not corresponds to that of atoms at thermal equi-
librium. Instead, the dynamics is inherited from the atomic motion in gaussian tweezers.
The oscillation signals described in section 3.2.2 are actually an indirect probe of the latter.
Hence, in order to get some insight on the dynamics in gaussian tweezers, we analyze here

3we fix y0 = 0 and fit A and T so that p = 2.
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these signals beyond the simple Fourier analysis described in the main text. To this end, we
carry simulations of the atomic motion during the whole experimental sequence to compare
with the measurements.

Atomic motion in gaussian traps

We show five classical atomic trajectories simulated for a total duration of 100 µs in figure D.4.
The trapping potential is that of eq.(D.1), with the trap parameters and temperature obtained
in chaper 3, namely:

w0 = 1.21 µm, V0 = kB × 990 µK, T = 14.1 µK. (D.15)

To improve on the precision, we sampled the initial positions using rejection sampling.
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Figure D.4: Simulated trajectories in gaussian tweezers. The left panel shows the (x, y)
coordinates of the trajectories; the right panels show the (z, x) (top) and (z, y) (bottom)
coordinates. The background shading indicates the trapping potential (compare with fig-
ure D.2). The motion was calculated for a duration of 100 µs.

We note that the typical transverse motion is elliptical rather than simply linear. This is
in contrast with the picture of a one-dimensional oscillating motion, in which the kinetic and
potential energies necessarily oscillate. Here, situations occur in which both energy terms
stay relatively constant along the trajectory.

The time-averaged kinetic energy Ēc and potential energy Ēp along the trajectories (we
take the mean over 150 000 trajectories, hence the brackets) are

⟨Ēc⟩ = h× 440 kHz =
3

2
kBT, ⟨Ēp⟩ = h× 453 kHz ≈ 3

2
kBT. (D.16)

The potential energy deviates slightly from the expected value 3
2kBT in the case of an har-

monic potential. This indicates an effect of the trap anharmonicity, to which the atoms are
sensitive even at such low temperatures. This effect is nevertheless very small, and the po-
tential can safely be assumed harmonic for the purpose of semi-quantitative analysis. We
also note that such a thermal shift cannot be detected with the light-shift spectroscopy dis-
cussed in section 3.2.1 since its value is 10 times smaller than the natural width of the probed
transition. However, we could expect to observe it on the sharper Rydberg transition.

Let us conclude with a word of caution on the validity of these simulations. The trap
parameters used above correspond to transverse and axial trap frequencies ωr ≈ 2π× 80 kHz
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and ωz ≈ 2π × 12 kHz, respectively. Those values must be compared to the atomic tem-
perature, that corresponds to a frequency4 ωT ≈ 2π × 300 kHz. On the one hand, we have
ℏωz/kBT ∼ 25≫ 1, and the axial motion can therefore safely be assumed to be in the classi-
cal regime. On the other hand, we have ℏωr/kBT ∼ 4 ∼ 1, which implies that the transverse
motion is still in the quantum regime.

As we will now see, our classical simulations, albeit limited in precision, allow us to grasp
the essential features of atoms dynamics in the traps.

Simulations of release-induced oscillations

The variety of oscillations signals observed in the experiment dedicated to the trap frequency
measurement (see figure 3.6) forced us to go beyond the simple damped sinus model for the
analysis of oscillations. Before justifying the choice retained to recover the trap parameters
from those signals, we describe here some of the features observed and characterize them
with simulations.

In order to get an insight on the variety of oscillation signals observed, we introduce a
generalized potential

V (x, y, z) = − V0w0xw0y

wx(z), wy(z)
exp

[
−2 r2

wx(z)wy(z)

]
. (D.17)

Apart from V0, this potential is now dependent on three parameters rather than one: w0x, w0y

and δz. The first two parameters correspond to the beam waist along the x- and y-direction
respectively. The dependence on δz lies in the functions wx(z) and wy(z):

wx(z) = w0x

√
1 + ((z − z0)/zRx)2, wy(z) = w0y

√
1 + ((z + z0)/zRy)

2, (D.18)

where zRx and zRy are the corresponding Rayleigh lengths. These parameters emulate the
deformation of gaussian tweezers by optical aberrations. for instance, the difference w0x−w0y

can be associated to coma, resulting in an elliptical beam. A non-zero δz can be associated
to astigmatism, that makes the two axes of the beam focus at different positions.

We present, in figure D.5, simulations of the experimental sequence leading to the recorded
oscillation signal. We reproduce in the top panels the selected signals of figure 3.6. The middle
panel show simulated curves that qualitatively replicate the selected signals.

To obtain those curves, we simulate the whole experimental sequence (see figure 3.5):

• sample atomic positions using rejection sampling;
• compute free-flight evolution for a duration of 6 µs;
• compute the evolution in the trapping potential for a variable delay;
• compute free-flight evolution for a duration of 20 µs;
• determine the recapture probability.

The potential used to sample atomic position and to compute the dynamics is the same. It is
set using the trap depth V0 obtained for the corresponding trapping site (the same is done for
the sampling temperature T ). The remaining parameters w0x, w0y and δz are set manually.

The three oscillation behaviors are archetypal and each of the 81 signals can be related to
one of them. On the left, we have a slowly decaying oscillation, which we can reproduce by
setting w0x = w0y = 1.16 µm and δz = 0. In the middle panel, we observe a beating occurring

4The value kB
h

≃ 21 kHz µK−1 is useful for quick order-of-magnitude estimates.
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Figure D.5: Simulation of atomic oscillations in the traps. Top panels: selected signals ex-
hibiting the three archetypal oscillation behaviors (see figure 3.6). Middle panels: simulated
curves obtained with 50 000 atomic samples using the indicated trap parameters. Bottom
panels: Corresponding Fourier power spectra of the experimental data (blue) and of the sim-
ulated curve (red). The green vertical lines are the trap frequencies associated to the trapping
potential used in the simulations. Note that they appear systematically at frequencies higher
than the peak(s) of the power spectrum.

with a node at 50 µs. This can be interpreted as resulting from two distinct transverse
frequencies which we reproduce by setting w0x = 1.11 µm and w0y = 1.11 µm. The signal on
the left shows a quick decay, with persistent residual oscillations. Simulating this behavior
proved more difficult. Albeit less convincing, we obtain a similar oscillation decay by setting
δz = 2.3 µm. Its relevance to the actual trap shape is questionable, yet it illustrates that a
large variety of oscillation dynamics can take place when the traps are deformed.

Some features of the experimental data are shared by all simulations. For instance, we
recover a minimal recapture probability of 20% and the particular shape of oscillations, sharp
at the top and smooth at the bottom, that was discussed in section 3.2.2. This is in good
agreement with the experimental data. However, a notable difference is the decay of the
simulated curves, which is significantly faster than that of the experimental curves. No
obvious reason appears for this discrepancy, but we can make the following remarks:

• The switching of the optical tweezers is not instantaneous, but takes a few hundreds
ns. This is not taken into account and might alter the atomic dynamics.

• As mentioned in the previous section, the initial cloud expansion (1st release) takes
places in the quantum regime. This might cause the oscillatory motion to be more
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coherent and result in a slower decay of the signal.

We plot on the bottom panels of figure D.5 the power spectra of both the experimental
data and the simulation. Except for the rightmost data set, the spectra of the simulated
curve overlap well with those of the experimental data. We also plot the trap frequencies of
the trap potentials used in the simulations as vertical green lines. They appear systematically
∼ 5 kHz above the peak(s) of the spectra. This indicates an effect of the trap anharmonicity
and a possible bias in our estimation of the waist, as we will now see.

Monte-Carlo fitting of the waist

Using the Monte-Carlo fitting procedure described above to systematically fit the trap param-
eters is not possible. As we have seen, many parameters are required to accurately describe
the trap shape. This would in turn necessitate an intractable exploration of the parame-
ter space with simulations for proper fitting. Nevertheless, it is possible to fit those signals
that are accurately described by one parameter. This is the case of the rightmost signal of
figure D.5, which can be described with the beam waist w0 as the single trap parameter.

In figure D.6 we show, along with the experimental data, a simulated curve corresponding
to the fitted value w0 = 1.167 ± 0.001 µm of the waist. The fitting procedure is the same
as described for the temperature, except that we simulate the oscillation sequence with the
waist as the varying parameter. Apart from the faster decay of the simulation, the agreement
between the two is good, as evidenced by the good overlap of the Fourier power spectra (right
panel of figure D.6).
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Figure D.6: Monte-Carlo fitting of the trap waist. Left panel: selected oscillation data used
for fitting and simulated curve with the trap potential parameterized with the fitted value of
the waist. Right panel: Corresponding power spectra (the colors match the data). The inset
details the peaks in the range 140 – 180 kHz. The green lines represent the trap frequencies
of the potential used in the simulation.

The waist obtained from the Monte-Carlo procedure differs slightly (but significantly)
from the value w0 = 1.192 ± 0.004 µm obtained in section 3.2.3. This overestimation of the
waist from the identification of the oscillation frequency with the trap frequency (that is, its
curvature at the minimum) is compatible with the sub-harmonic character of the gaussian
potential (see figure D.1). Indeed, for a given motion amplitude, the oscillation frequency is
inferior to what it would be with the corresponding harmonic potential. The discrepancy of
about 2% is nevertheless very small and does not affect much the distribution of positions
used in the simulations.
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Choice of the analysis method

The bias in the waist estimation mentioned above is difficult to avoid. This is due to the
impossibility to directly fit the atom dynamics to the data in most cases, where the oscillations
are more complex than the simple decay. Even then, the variety of signals make difficult the
recovery of the trap parameters. They do not convey enough information to get the detailed
structure of the trap and require us to make the simplification of reducing the data to a single
trap frequency from which we deduce the waist.

The question of how to compute a trap frequency is thus not trivial. For this purpose
we selected three methods, which we illustrate in figure D.7 with a selected signal5. This
data set, plotted of the left panel of figure D.7 (a), was chosen because it shows pronounced
beating and a complex power spectrum (right panel), with three peaks.

(1) Fitting with a damped sinus function, shown in the left panel of figure D.7 (a). This
solution is the simplest, yet is not completely satisfactory. First, it does not grasp some
features of the signal such as the nonzero minimum recapture probability. Second, and
most importantly, the beating of the signal is associated to a phase inversion, which is
deleterious to the fit. To compensate for this, the decay time is reduced so as to make
the oscillations collapse at the first beating node. This can be seen as an algorithmic
way to get rid of a part of the data, which is not desirable.

(2) Compute the frequency that corresponds to the maximum of the power spectrum S(f).
Mathematically, we compute argmaxS. This method is not satisfactory either since
when we are in the presence of multiple peaks, there is no apparent reason to favor one
over another.

(3) Take the center of the peak structure. As detailed in section 3.2.2, we set

fosc =
fmin + fmax

2
, (D.19)

with

fmin = min
f

{
S(f) =

maxS

2

}
, fmax = max

f

{
S(f) =

maxS

2

}
. (D.20)

This method has the disadvantage of being somewhat arbitrary in the definition of fmin

and fmax.

The frequencies determined with the three methods are shown as vertical lines on the power
spectrum of figure D.7 (a).

To compare the three methods and select the best, we determine the trap parameters with
each method and look at the correlation between the trap power and the loading probability.
We report in figure D.7 (b) the loading probability vsṫhe trap power of each trapping site
as determined by the three methods. We have two set of loading probabilities, one from the
light-shift spectroscopy (violet) and one from the trap frequency measurement (green). A
linear regression for each set is shown as a solid line, along with the corresponding Pearson’s
r coefficient. The “arg max” method is clearly the worst, while the “peak center” method
appears to give the best correlation with r = −0.84 and r = −0.91 for the light-shift spec-
troscopy data set and the trap frequency measurement data set, respectively.

Although the exact origin of this correlation is unknown, it is unlikely that it occurs
randomly out of a given analysis method. On this basis, the “peak center” method (3) was
retained to get the trap parameters.

5Visible on figure 3.6 (a), 3rd column from the left, 2nd line from the top.
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Figure D.7: Benchmarking analysis procedures to get the trap frequency from the oscilla-
tion signals. (a) Left panel: selected data set fitted with a damped sinus. Right panel:
Corresponding Fourier power spectrum. The vertical lines corresponds to the frequencies
determined by the three methods described in the text. (b) Correlation between the trap
power and the loading probability from the frequency measurement (green) and the light-shift
spectroscopy (violet).

The average waist thus obtained is used to parameterize the gaussian trapping potential
that is involved in the simulation of atom dynamics in BoB traps, which is the topic of the
next section.

D.2 BoB traps

Due to the repulsive nature of the ponderomotive force, the BoB traps are much more complex
than the gaussian traps discussed above. In addition to the fact that the intensity pattern has
no analytic expression, the exact potential is not directly proportional to the intensity but a
convolution with the Rydberg wavefunction charge density. This has important consequences
that we study in this section.

We thus first briefly describe the anharmonicity of the BoB intensity profile and show
that it is at the heart of the trapping potential deformation from the convolution with the
charge distribution of the trapped state. The transfer of atoms from gaussian traps has an
impact on the subsequent dynamics in the shallower BoB traps, which we discuss together
with the transfer efficiency. Finally, the state-dependent deformation of the potential leads
to a position-dependent shift of the transition. We study the decoherence induced by this
effect, using classical Monte-Carlo simulations.
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D.2.1 BoB traps anharmonicity

We present in figure D.8 cut views of the BoB intensity profile along with corresponding plots
of the intensity. This is similar to and should be compared with figure D.1 for the gaussian
traps.
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Figure D.8: Vizualization of the BoB intensity profile. Top: cut views of the BoB. Bottom:
transverse profile at the focal plane (left) and axial profile along the optical axis (right). The
blue line indicates the trapping threshold; atoms with an energy above this threshold are able
to escape from the trap. The green dashed line corresponds to the harmonic approximation;
note that the transverse profile is above its harmonic approximation.

There is one notable difference between the BoB traps and their gaussian counterpart.
Although both are sub-harmonic along their propagation axis (the z-direction), the BoB
intensity profile differs from the gaussian beam in that it is above its harmonic approximation
along the transverse direction.

As we indicated in section 5.2.1, the BoB profile is parametrized by the radius s of the
disc on which we apply a π phase shift (see figure 5.5). The retained value, s = 3.5mm for
our experimental settings, not only maximizes the trap depth as already discussed, but also
corresponds to a maximization of the harmonic character of the BoB profile. The quadratic
coefficients of the series expansion of the BoB profile in the vicinity of the center is thus
maximized. In contrast, a dark BoB, having no residual light intensity at its center, is
also completely anharmonic. This means that the quadratic coefficients of its power series
expansion (at the center) vanish.

As we will now see, the intensity profile anharmonicity is at the origin of the deformation
of the trapping potential occurring from the convolution with the charge density of the state.

D.2.2 Convolution with a charge density

We mentioned in chapter 5 that the convolution of the BoB intensity profile with the charge
density of the Rydberg electron causes a deformation of the trapping potential. This leads to
a state-dependent potential not only leading to a global energy offset but also to a position-
dependent shift.

In order to analyze the effect of the convolution in general terms, we rewrite eq. (5.14)
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with an arbitrary probability distribution ρ(r):

U(R) =

∫
V (R+ r)ρ(r) d3r. (D.21)

A qualitative difference arises when comparing quadratic and quartic potentials. We thus
first study these two simple cases to obtain analytical results and get some insight on the
occurrence of this state-dependent potential variation. We proceed by describing the potential
difference that pertains to our experiments: between 52C and 50C in the BoB trap. In that
case, the intensity distribution V (R) is that of the BoB traps and the probability distribution
is that of the Rydberg electron of the circular state 52C or 50C.

Quadratic intensity profile

We first consider the simple case of a one-dimensional quadratic potential V (X) = αX2.
Denoting r = (x, y, z), we can simplify the convolution of eq. (D.21) by integrating over
the y and z coordinates. This yields

U(X) = α

∫
(X + x)2p(x) dx, (D.22)

where
p(x) =

∫
ρ(x, y, z) dydz. (D.23)

The above convolution can be further integrated with respect to the x coordinate to give

U(X) = α(X2 + 2X⟨x⟩+ ⟨x2⟩) = α(X − ⟨x⟩)2 + α(⟨x2⟩ − ⟨x⟩2), (D.24)

where ⟨xk⟩ =
∫
xkp(x)dx is the k-th moment6 of x. The convolved potential is thus essentially

the original potential V (X), shifted in position by ⟨x⟩ and with the variance ⟨x2⟩ − ⟨x⟩2 of
the distribution as a global offset. The shift ⟨x⟩ makes the result D.24 essentially invariant
under a change of coordinates. The latter can be conveniently chosen so as to have ⟨x⟩ = 0,
in which case only the offset remains.

The above result obtained for a one-dimensional potential generalizes without restriction
to three dimensions. Indeed, in the latter case there always exists a system of coordinates
(X, Y, Z) in which the potential can be written V (X,Y, Z) = αX2+βY 2+ γZ2. Each term
of the sum can then be treated independently as above and will give a contribution analogous
to that of eq. D.24. In particular, for a probability distribution ρ(r) such that ⟨r⟩ = 0, we
have U(R) = V (R) + ⟨ ∥r∥2⟩.

A word of caution is nevertheless in order when comparing the convolution with two
different probability distributions. In this situation, the convolution must be computed in the
same coordinates for both distributions. However, it is quite possible that (the indices denote
the two distinct distributions) ⟨x⟩1 ̸= ⟨x⟩2. This leads to a position-dependent potential
difference

U1(X)− U2(X) = 2αX(⟨x⟩1 − ⟨x⟩2) + α(⟨x2⟩1 − ⟨x2⟩2)2. (D.25)

Focusing on circular states, this situation may occur when the atoms are subject to a strong
electric field. In this case, the ion core is displaced in the direction of the electric field
while the Rydberg electron wavefunction is displaced in the opposite direction. This effect
being stronger for higher circular levels, we could expect such a state-dependent shift of the
potential to occur. The effect might as well be negligible, and in any case would benefit from
a quantitative study.

6Here and in the following, we assume that p and ρ are regular enough so that the moments of any order k
are well defined. This is the case for instance of atomic orbitals which decay exponentially as r → ∞.



D.2. BOB TRAPS 159

Quartic intensity profile

We now consider the simple quartic potential V (X) = αX4 to highlight the qualitatively
different effect of the convolution as compared to a quadratic potential. Keeping the above
notations, the convolution yields

U(X) = α(X4 + 4X3⟨x⟩+ 6X2⟨x2⟩+ 4X⟨x3⟩+ ⟨x4⟩). (D.26)

Similarly to the quadratic potential, the cubic term ∝ X3 can be removed by choosing
the appropriate coordinates. In addition, the odd moments ⟨x2k+1⟩ vanish for a symmetric
probability distribution, thus further simplifying the convolved potential. This is the case of
circular states wavefunctions (save for the last remark of the previous section on the necessity
to keep the same coordinates when comparing two convolutions), for which we get

U(X) = α(X4 + 6X2⟨x2⟩+ ⟨x4⟩). (D.27)

In addition to the original potential V (X) and the global offset α⟨x4⟩, a quadratic term
6α⟨x2⟩X2 appears that changes the shape of the potential. Furthermore, the quadratic coef-
ficient ∝ ⟨x2⟩ is dependent on the atomic state considered which leads to a state-dependent
change of the potential shape.

This analysis extends to the three-dimensional case and to more complex potentials. The
potential can in general be expanded as a power series in which each term of the sum will be
treated independently as above. The convolution basically leads to the apparition of lower
order terms proportional to the moments of the probability distribution. Even though the odd
terms vanish in the case of a symmetric probability distribution (such as for circular states),
position-dependent terms remain that change the shape of the potential. The only exception
is the quadratic potential, which degree as a polynomial is too low to make non-constant
terms appear.

Potential difference between 52C and 50C

Our BoB traps fall in the category of complex potentials which cannot be assumed quadratic.
The convolution with the circular state charge density causes a state-dependent deformation
of the trapping potential. This is illustrated in figure D.9, in which we show cut views of the
potential energy difference U52−U50 between 52C and 50C. This potential energy difference
can be interpreted as the light-shift of the 50C→ 52C transition.

The individual potentials U52 and U50 were obtained by directly computing the convolu-
tion between the BoB intensity profile and the corresponding circular state probability density
(both evaluated on a discrete mesh). The quantization axis was set along the x-direction,
which corresponds to our experimental configuration.

We define the trapping region as the part of the trap, where the potential is lower than
the threshold energy necessary to escape from the trap. Its boundary is indicated on the cut
views by a gray line7.

The color map is split in three parts. The dashed lines are the isocontours corresponding to
a zero light-shift. The regions in blue (negative light-shift) lie mostly outside of the trapping
region, albeit not entirely. The dotted lines correspond to the light shift at the center of the
trap, 94.32 kHzW−1, that delimitate regions of positive yet lower light-shift (cyan to yellow)
and larger light-shift (red). The situation is quite complex here as the trap center is actually

7The trapping region is found to be the same for both 52C and 50C within a spatial resolution of 10 ×
10× 40 nm.
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Figure D.9: Cut views of the difference of potential between 52C and 50C. The trapping
region is delimited by the gray line. The dashed lines correspond to the isocontours of zero
transition light-shift. The dotted lines correspond to the isocontours at the trap center light-
shift of 94.32 kHzW−1.

a saddle point for the transition light-shift, which increases in the transverse direction and
decreases along the propagation axis. We also note a strong anisotropy that appears as a
result of the quantization axis being transverse.

D.2.3 Classical dynamics in BoB traps

Although it can be safely assumed that thermal equilibrium is reached for atoms in gaussian
traps [134], this is not the case in BoB traps. The atoms are “dropped” in BoB traps with
their position and velocity inherited from the gaussian trap. This has consequences on their
dynamics, that we discuss here.

In the remaining of this section, we consider a BoB trap with 20mW total power, cor-
responding to a trap depth of ∼ 80 µK with respective radial and transverse frequencies
ωr ≃ 2π × 16 kHz and ωz ≃ 2π × 6.4 kHz. Note that these trap frequencies correspond to
excitation quanta ℏωr ≃ kB× 0.75 µK and ℏωz ≃ kB× 0.3 µK. The classical treatment of the
atomic motion is therefore justified in the 10 µK-range of temperatures considered here.

We show in figure D.10 five trajectories of atoms in the circular state 52C computed for
a duration of 200 µs. To obtain these, the atoms are initially sampled in the gaussian beam
potential with the parameters of eq. (D.15) and left to evolve in the 52C BoB potential. These
trajectories exhibit some differences with respect to those in the gaussian traps (compare with
figure D.4).

The radial extension of the trajectory is much larger in BoB traps, getting close to the
boundary in some cases. This is can be understood by considering the respective trap fre-
quencies of the gaussian beam and BoB potentials. In our conditions, the gaussian beam has
a radial frequency ωr, gauss ≃ 80 kHz, hence a ratio

⟨r⟩BoB

⟨r⟩gauss
≈ ωr, gauss

ωr,BoB
= 5. (D.28)
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Figure D.10: Simulated trajectories for 52C atoms in a BoB trap with 20mW total power.
The trapping potential is represented in the background, along with its boundary (gray line).
The initial position and velocities correspond to the thermal equilibrium in gaussian traps
with the parameters of eq. (D.15), and the atoms were left to evolve for a duration of 200 µs.

As for the axial motion, from eq. 3.14 and table 5.2 we have

ωz, gauss ≃ 2π × 12.4 kHz, ωz,BoB ≃ 2π × 6.3 kHz. (D.29)

This leads to an axial extension ⟨z⟩ in the BoB traps only about 2 times larger than in the
gaussian traps.

The fact that the atoms are “dropped” in BoB traps with their position and velocity
inherited from the tighter gaussian trap causes the initial atomic positions to be distributed
closer to the center of the BoB trap than the corresponding thermal distribution. This is
illustrated in the xy components of the trajectories (left panel of figure D.10) which always
get close to the center of the trap. As a consequence, the initial atomic velocities look almost
radial, and in contrast with what was seen for gaussian traps, the xy motion is almost linear,
without elliptical trajectories (compare with the left panel of figure D.4)).

Transferring atoms from gaussian to BoB traps amounts to replace the potential energy
in the gaussian trap by that of the BoB trap. The latter being shallower than the former, the
initial potential energy is significantly reduced. As a consequence, the atoms are not anymore
in thermal equilibrium, and the evolution in BoB traps will cause a periodic (and partial)
redistribution of energies. From 200 000 trajectories we obtain, for the time-averaged kinetic
and potential energies along the trajectory,

⟨Ēc⟩ = h× 235 kHz, ⟨Ēp⟩ = h× 238 kHz. (D.30)

These values are in good agreement with the rough estimate 3
4kBT = h × 220 kHz obtained

by assuming that the transfer to the BoB traps amounts to suppress the potential energy
term. The only contribution is thus the kinetic energy ⟨Ec⟩ = 3

2kBT that redistributes equally
between the kinetic and potential terms when averaging over the trajectory.

Let us finally make clear that this reduction of the mechanical energy is not equivalent
to a decrease of temperature. The distribution of atomic positions and velocities in the BoB
trap does not correspond to that of the thermal equilibrium at any time.
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Atomic losses in the trap

The BoB traps being shallower than their gaussian counterpart, a fraction of the trapped
atoms may actually have enough energy to escape the BoB traps after switching the traps.

The remarks of the previous section allow us to get some quantitative insight on the
efficiency of this transfer process. Indeed, we noted that the transfer from gaussian to BoB
traps is well approximated by the suppression of the potential energy of the atoms. With
this approximation, the initial energy distribution of the atoms is that of an ideal gas. The
dispersion relation is

E(k) =
ℏ2∥k∥2
2m

, (D.31)

with ℏk = p the atomic momentum and m the atomic mass. The energy is solely a function
of k = ∥k∥2, and the equilibrium probability distribution of the latter is

p(k) =

√
2

π
λ3Tk

2e−
λ2T k2

2 , λT =

√
ℏ2

mkBT
. (D.32)

The transfer efficiency pcapture corresponds to those atoms whose energy is lower than the
trap depth, that is ℏ2k2

2m < kBTthr. We therefore have

pcapture =

∫ kthr

0
p(k)dk, kthr =

√
2mkBTthr

ℏ2
=
√
2/λTthr . (D.33)

After integration of the above expression, we finally obtain

pcapture(T ) = erf

(√
Tthr
T

)
− 2√

π

√
Tthr
T

e−
Tthr
T . (D.34)

We present in figure D.11 (a) the efficiency of the transfer process from gaussian to BoB
traps as a function of the temperature of atoms initially in gaussian traps. The BoB trap
depth is kBTthr = kB×71 µK, and is indicated by a dashed vertical line. The simple analytical
model of eq. D.34 is plotted as a red line. The agreement with the simulation is very good,
and its departure at high temperatures is interpreted as a contribution of the initial potential
energy, which becomes non-negligible and causes more atomic losses.

In order to avoid some problematic side effects, the characterization of an atomic loss
must be conservative. It is therefore different from determining whether the atom is located
inside or outside the trapping region introduced in the previous section. The retained loss
condition is thus

r > 1.4 µm or |z| > 4 µm. (D.35)

The radius of 1.4 µm defines the annulus where the BoB potential is maximal: atoms farther
than 1.4 µm from the trap axis are expelled (see figure D.8). The axial distance of 4 µm
corresponds approximately to the axial position of the saddle region of the trap (that can be
visualized on the right panels of figure D.9).

The two characterizations of atomic losses given above did not yield significantly different
gaussian-to-BoB transfer efficiencies. However, the choice of an appropriate atomic loss
condition is important when computing the escape time of atoms from the traps, which is
presented in figure D.11 (b). The escape time is defined as the lowest time of the trajectory
for which the loss condition (D.35) is satisfied. When running simulations, cases occur in
which an atom has a enough initial radial velocity to go outside the trapping region yet not



D.2. BOB TRAPS 163

0 20 40 60 80 100

Temperature (µK)

0.0

0.2

0.4

0.6

0.8

1.0

C
a
p
tu

re
p
ro

b
.

Simulation

Eq. (D.34)

0 20 40 60 80 100

Temperature (µK)

0

50

100

150

200

250

300

E
sc

a
p

e
ti

m
e

(µ
s)

10−3

10−2

10−1

L
o
ss

p
ro

b
.

d
en

sity
(µ

s −
1)

(a) (b)

Figure D.11: Transfer efficiency from gaussian to BoB traps. (a) Transfer efficiency as a
function of the initial temperature of the atoms. (b) Distribution of the escape times of
atoms; the gray line represents the mean.

enough to go through the maximum of potential and escape immediately. The atom has the
possibility to escape the trap but will only do so when reaching the saddle region of the trap,
which might take a significant amount of time. This is the reason why the conservative loss
condition of eq. (D.35) is preferred over the lenient condition based on the trapping region,
that would lead to an underestimation of the escape times.

The color map presents the probability density of an atom escaping at a given time
as a function of the temperature. The gray line represents the mean of this distribution,
conditioned to the fact that atoms are lost at the end of the 6ms simulation time. We see
that the probability density is skewed towards large escape times, with the mean located well
above the mass of the distribution. This reflects the fact that although most losses occur
rather quickly, in the first 100 µs of the trajectory, there are also outliers that escape the trap
after several ms.

Thermal energy shift and coherence loss

Apart from the atomic losses potentially occurring due to a lower trap depth, the BoB traps
also affect the coherence of a superposition of (circular Rydberg) states. This is due to the
small state dependence of the trapping potential discussed in section D.2.2. This causes a
spatially variable light-shift of the transition frequency, which in turn leads to decoherence
when averaging over possible trajectories.

To characterize and quantify this effect further, we simulated sets of 50 000 trajectories
at various initial atomic temperatures in the gaussian trap for a total duration of 6ms (with
a time step of 200 ns). The atoms evolve in the potential U52 of the state 52C, and we record
the light-shift on the transition by computing the potential energy difference U52 − U50 at
each time step. We thus obtain the light-shift frequencies δfi(tj) for each trajectory i and
time step tj .

We report in figure D.12 the distribution of these frequencies δf as a function of the
temperature. More precisely, the color map represents the fraction of the time spent with a
given light-shift along a trajectory, and averaged over the trajectories for which atoms are
still trapped at the last time step. The solid white line corresponds to the mean of this
distribution, and the dashed black line is the trap center light-shift, δf = 1.89 kHz (for a trap
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power P0 = 20mW, see figure D.9).
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Figure D.12: Probability distribution of the light shift of the 50C → 52C transition as a
function of the initial atomic temperature in gaussian traps. The dashed black line represents
the light shift at the center of the trap; the solid white line corresponds to the mean light-
shift.

The atoms are located in the center of the trap in the limit of zero temperature, and the
light-shift distribution (thus also the mean) concentrates around the corresponding light-shift.
The distribution quickly expands as the temperature increases, and the maximum light-shift
of about 3 kHz (see figure D.9) is reached at moderates temperatures of approximately 10 µK.
This is associated to an increase of the mean light-shift (of 10%).

A further increase of the temperature causes the distribution to expand towards lower
light-shifts as the axial extension of the trajectories increase, with the mean correspondingly
decreasing, and a slower evolution above 10 µK. To interpret that, it is important to re-
member that the data presented here is conditioned to the fact that atoms are kept trapped
in the BoBs. Such post-selection effectively imposes a cutoff on the mechanical energy of
the trajectories that are involved in the computation of the light-shift distribution. In other
words, only the trajectories with an energy inferior to the trap depth are used to compute the
light-shift distribution. This is the cause of its slow evolution above 10 µK, the temperature
at which some atoms begin to be lost from the BoB traps (see figure D.11 (a)).

We now consider the effect of such a variation of the light-shift along a given trajectory
on the single-atom coherence. The atom is initialized in a superposition |ψ0⟩ = (|50C⟩ +
|52C⟩)/

√
2, with corresponding density matrix

ρ(0) =
1

2

(
1 1
1 1

)
. (D.36)

The evolution of such state corresponds to the accumulation of a phase associated to the
frequency shift between the two atomic levels of the superposition, and we have, after a given
delay t:

ρ(t) =
1

2


 1 exp

(
−iω0t− i

∫ t
0 δω(t

′)dt′
)

exp
(
iω0t+ i

∫ t
0 δω(t

′)dt′
)

1


, (D.37)

where ℏω0 is the bare energy difference between 50C and 52C, and ℏδω(t′) is the light-shift
induced by the trap on the transition. We define the coherence γ(t) as the norm of the
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Figure D.13: Decoherence of the (|50C⟩ + |52C⟩)/
√
2 superposition in the BoB traps. (a)

Coherence plots (eq. D.38) for various initial temperatures in the gaussian trap. (b) Corre-
sponding coherence time T2 (defined in eq. D.39) as a function of the temperature.

off-diagonal terms of the density matrix, averaged over all possible atomic trajectories:

γ(t) =

∣∣∣∣
〈
exp

(
i

∫ t

0
δω(t′)dt′

)〉

δω

∣∣∣∣ . (D.38)

We report in figure D.13 (a) the coherence γ(t) of eq. (D.38) computed from the sets of
trajectories described above. Again, only those trajectories corresponding to trapped atoms
are used for the computation. We define the coherence time T2 such that

γ(T2) =
1

2
. (D.39)

The latter is plotted as a function of the atomic temperature in figure D.13 (b).
Decoherence occurs rather quickly in the BoB traps, even at very low temperatures (we

have T2 ≃ 4ms at T = 0.1 µK). Moreover, the coherence time drops to about 1ms as the
temperature increases to 5 µK, with further yet slower decrease at higher temperatures. At
large temperatures, a plateau at about 0.5ms is reached. This stabilization at high temper-
atures is due to the energy cutoff imposed by the post-selection of trajectories corresponding
to trapped atoms. However, the situation is not as bad as it may seems for temperatures
T ≳ 5 µK. Indeed, we observe rebounds of the coherence for such values (see figure D.13 (a)),
echoing to the periodicity of atomic trajectories. This hints at the possibility to improve
coherence by methods such as dynamical decoupling [149, 150].

In the 5 – 20 µK atomic temperature range involved in our experiments, we expect a BoB-
limited coherence time of about 500 – 1000 µs. This value is much larger than our measure-
ment of ∼ 60 µs (see section 5.3.3), and indicates that we are not sensitive to the trap-induced
decoherence at the probed timescales. This might however become a serious limitation to
the realization of quantum simulation in a context in which the lifetime of circular Rydberg
atoms is extended (such as a cryogenic environment).

We conclude this section with final cautionary notes on the validity of these simulations.

• The simulated trajectories are classical, therefore effects of quantum nature such as
spin-motion entanglement are completely overlooked.

• Rydberg interactions are not taken into account, and their effect on the motion and
decoherence of an atomic ensemble as a whole is also neglected.
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Appendix E

Supplementary material to chapter 5

This appendix constitutes supplementary data to the chapter 5.
In the first part, we provide additional data pertaining to the trapping of circular states

and trap frequency measurement. The signal was recorded a few days before the failure of
our titanium-sapphire laser emitting at 1015 nm. As such, it is only partial: the trapping is
only probed for a duration of 1ms and the oscillation signal is only visible on the averaged
data.

In the second part, we present Ramsey fringes that were obtained without triggering the
sequence of the power line. We found out that the signal was deformed due to the magnetic
field fluctuations oscillating at the power line frequency, 50Hz. We present a quantitative
evaluation of this “noise” from the data.

E.1 Trapping of circular states: early demonstration

E.1.1 Trapping signal

Analogously to section 5.1.2, we present in figure E.1 the recapture signal both with and
without the BoB traps. The sequence, depicted in figure E.1 (a), differs from that shown
in figure 5.4 (a): there was no adiabatic cooling after the optical pumping and prior to the
trapping. The average recapture probability, both with and without trapping, is reported
in figure E.1 (b). We also show the theoretical thermal population decay ρ52C scaled to the
data (solid black line). The decay in the presence of the traps agrees very well to the theory.
This translates into an almost flat signal when normalized to the thermal population decay,
as shown on the right panel of figure E.1 (b).

Because of the absence of adiabatic cooling, the initial atomic temperature T0 = 25 µK is
significantly higher than the 4 µK obtained after the adiabatic cooling. We fit the recapture
probability without trapping according to eq. (5.6) to recover the temperature. The best fit,
shown as a solid blue line on figure E.1 (b), corresponds to a temperature T = 25± 7 µK and
is in good agreement with T0. However, the significant uncertainty in the fitted value does
not rule out the possibility of interaction-mediated mechanical effects such as those described
at the end of section 5.1.2.

Such a flat (normalized to the thermal decay) recapture probability is observed at each
individual trapping site, as shown in figure E.1 (c). This demonstrated our ability to generate
BoB traps over a range of 75× 30µm, with sufficient quality to retain atoms for 1 µs.

It is interesting to note that this signal differs qualitatively from the data presented in
the main text. Indeed, in the latter, we observe an excess loss of population starting at

167
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approximately 500 µs, which does not appear in the data that we presently discuss. We can
think of two possible reasons to explain such a difference.

• A higher total laser power available to the BoB traps in the early data. The direct
consequence would be an increased trap depth and therefore less losses.

• A drift in the aberrations introduced along the optical path. This could be caused by
the slow deposit of dust on the optics. It would result in deformed and therefore less
efficient BoB traps.
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Figure E.1: Early signature of the ponderomotive trapping of 52C. (a) Scheme of the se-
quence. There is no adiabatic cooling prior to trapping (compare with figure 5.4 (a)). (b)
Average recapture probability obtained without (blue discs) and with (orange discs) trapping.
Left: raw data. The black solid line corresponds to the theoretical population decay ρ52C
properly scaled to the data. Right: data corrected by ρ52C (now appearing as a straight line).
The two panels also show (blue line) a simulation of the recapture probability in the case
of free atoms according to eq. (5.6). (c) Recapture probability for individual trapping sites.
The data in the absence of trapping is noisy and thus replaced by the simulation carried on
the average data (blue line) for a better visualization and comparison.
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E.1.2 Trap frequency

We schematize in figure E.2 (a) the sequence that was used to record the oscillation signal
reported in figure E.2 (b). Its only difference with the one discussed in the main text is a
slightly longer total duration (230 µs as compared to 210 µs in chapter 5). The use the same
offset between the gaussian tweezers and the BoB traps to induce oscillations: 300 nm along
the x-direction.

As mentioned earlier, this sequence was not recorded with enough repetitions to obtain
individual site resolution. The oscillations are nevertheless clearly visible on the averaged
signal. We can carry the same analyses as in section 5.2.2 to estimate the power per trap.
Assuming harmonic motion with the frequency obtained from table 5.2, we get a power
P0 = 23.1 ± 0.5mW. Using the Monte-Carlo fitting procedure (see appendix D), we obtain
P0 = 17.5± 0.2mW. As expected, the two values disagree similarly to what we observed in
section 5.2.2.

We nevertheless note that the estimated power per trap in our early measurement was
about 15% higher than that pertaining to the data presented in chapter 5. This can explain
in part the better trapping signal presented in the previous section.
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Figure E.2: Early measurement of the transverse trap frequency. (a) Scheme of the ex-
perimental sequence. (b) Oscillation signal from the averaged recapture probability, with
corresponding damped-sinus fit (blue line) and Monte-Carlo simulation (red line).

E.2 Power-line-induced magnetic field noise measurement

We present in figure E.3 (a) the Ramsey fringes obtained from a single-atom measurement,
with and without trapping. The right panels of this figure correspond to the data discussed in
section 5.3.3 (see figure 5.12), recorded by triggering the sequence on the power line. The Left
panels correspond to the same experiment, without synchronizing the sequence triggering and
the power line. A clear beating appears, which is highlighted in the Fourier power spectra of
figure E.3 (b). The single peak in the trigger-on-line condition gets split in two peaks, with
a spacing of about 20 kHz.
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Figure E.3: Single-atom Ramsey oscillations. (a) Measurement in four different conditions:
without (top) and with (bottom) BoB trapping; sequence triggered at random (left) or on
the power line (right). (b) Corresponding Fourier power spectra.

This splitting thus originates from 50Hz power line noise pick-up by the experiment. The
scheme of figure E.4 describes the effect observed. When triggered randomly, the Rydberg
experiment begins at a random point φ of the 50Hz cycle, which causes the 52C to 50C
transition to be shifted by δν = δν0 sin(φ). The probability distribution of sin(φ) for φ
uniformly distributed among [0, 2π] is known as an arcsine distribution:

ρ(u) =
1

π
√
1− u2

. (E.1)

The observed signal can therefore be described as the raw signal of eq. 5.17 with the oscillation
frequency ∆0 convolved with an arcsine distribution:

p(τ) = y0 +Ae
− τ2

2T2

∫ 1

−1

sin(2π(∆0 + u δν0)τ + ϕ0)

π
√
1− u2

du. (E.2)

The corresponding fits, shown as solid lines, give almost equal frequency shifts, with δν0 =
9.45 ± 0.31 kHz in the absence of trapping and 9.06 ± 0.36 kHz with BoB trapping. This
is compatible with the splitting (twice this value) observed on the Fourier spectra. We also
expect that triggering the sequence on line locks the Ramsey frequency in the range delimited
by the two peaks of the random triggering case. This is indeed what we observe on the signals
recorded without trapping, but not in the presence of the traps. The reason is that the trap
power was uncontrolled when we ran the sequence with random triggering. The frequency
difference in this case corresponds to a trap power of 250mW.

We can use the above results to get some insight on the 50Hz power line noise to which
the experiment is subject. We saw that power line pick-up corresponds to approximately
20 kHz peak-to-peak frequency shift. At a field F0 ∼ 2V cm−1, recalling a transition subject
to a differential quadratic Stark shift of 540 kHzV−2 cm2 we deduce peak-to-peak electric field
fluctuations δFpp ∼ 20

540×2F0
≈ 10mV cm−1. This would result in a broadening of 1MHz for

the |52C⟩ −→ |53E+⟩ transition described in 4.3.1, which we did not observe (see figure 4.15).
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Figure E.4: Illustration of the uniform sampling of a sinus, giving rise to arcsine-distributed
frequencies.

The other candidate to the broadening is the magnetic field, with power line noise getting
in the coils producing the directing magnetic field. For a ∆m = 2 transition, the 20 kHz
shift corresponds to magnetic field fluctuations δBpp ∼ 20

2µB
≈ 7mGpp. The response of our

pair of coils being approximately 2GA−1, this amounts to a peak to peak noise current of
∼ 3.5mApp, or relative fluctuations of about 0.1%. This situation is quite likely, with the
noise coming either from the current source itself or the voltage noise from the controlling
DACs converted to current.

Let us finally mention that, in order to assess a possible effect of the power-line pick-
up by the electric field control circuitry, we recorded the circular to elliptical spectrum (see
figure 4.15) both with and without triggering on-line. The peak had the same shape in both
conditions. We therefore conclude that the electric field is, at our level of precision, not
subject to power-line noise.
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Résumé en français

Chapitre 1

Ce chapitre introduit les concepts théoriques sous-jacents aux résultats présentés dans ce
manuscrit. Nous y introduisons ainsi les bases d’atomistique par la description de l’atome
d’hydrogène : fonctions d’onde et énergies propres associées à l’équation de Schrödinger qui
décrit la dynamique d’un électron dans un potentiel coulombien. Sont aussi introduites di-
verses corrections à l’énergie d’origine relativiste ou associées à la structure du noyau (masse
finie, moment magnétique, . . .). Ceci permet d’aborder le cas des atomes de Rydberg alcalins,
notamment le rubidium que nous utilisons, qui ont en commun avec l’hydrogène de n’avoir
qu’un seul électron de valence, qui occupe un état de nombre quantique principal élevé.

Dans le cadre de la théorie du défaut quantique, l’interaction de cet électron avec le cœur
ionique est caractérisée par un paramètre unique, le défaut quantique, qui dépend toutefois de
l’état atomique. Parmi les niveaux de Rydberg, nous nous intéressons en particulier aux états
circulaires, qui possèdent un moment angulaire maximal. L’orbite électronique se rapproche
de la limite classique d’une orbite circulaire très éloignée du cœur ionique. Dans ce contexte,
le défaut quantique ainsi que les corrections au modèle de Schrödinger sont négligeables.

Nous décrivons ensuite la réponse de ces états à différents champs extérieurs : champ
magnétique et électrique statiques. Dans le cas d’un champ magnétique, on distingue deux
régimes : Zeeman (champ magnétique faible) et Paschen-Bach (champ fort). Le champ ma-
gnétique ne se couplant qu’au mouvement angulaire de l’électron (ainsi qu’à son spin), le
traitement s’applique sans grand changement à la fois aux états de Rydberg et aux états
faiblement excités, et les déplacements d’énergie sont similaires pour les deux. Le cas d’un
champ électrique est différent, les états de Rydberg s’y trouvent être très sensibles, ce dont
nous tirons profit dans nos expériences. Un cas particulier intéressant est celui où le champ
électrique est produit par un atome de Rydberg. On observe alors, selon la paire d’états
considérée, une interaction dipolaire évoluant en 1/R3 pour une distance interatomique R ou
une interaction de type van der Waals en 1/R6.

La manipulation de ces états atomiques se fait en général par des transitions radiatives.
Nous introduisons ainsi le couplage au champ életromagnétique ainsi que le hamiltonien
d’interaction HI associé. Celui-ci peut s’exprimer sous deux formes. En général il s’écrit
HI = e

me
A(r, t) · p + e2

2me
A2(r, t), où e est la charge élémentaire, me la masse de l’électron

et A représente le potentiel vecteur du champ. Cette expression peut être simplifiée à l’ap-
proximation dipolaire, et s’écrire sous la forme plus familière HI = −d ·F faisant apparaitre
le champ électrique F et le moment dipolaire d = −er.

Cette seconde forme est le point de départ pour les calculs se rapportant à la méthode que
nous utilisons pour préparer des états circulaires : le passage adiabatique. Le principe consiste
à coupler de proche en proche une série de niveaux menant à l’état circulaire par un champ
radiofréquence proche de résonance. On réalise ensuite le passage adiabatique en traversant la
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résonance par un balayage de l’écart d’énergie entre les niveaux non couplés. Nous calculons
aussi le déplacement des niveaux d’énergie par un champ fortement hors résonance, qui est
un effet perturbatif du second ordre. L’une des applications directes est le piégeage dipolaire
d’atomes dans des potentiels lumineux tels que les pinces optiques. Les états de Rydbergs
réagissent différemment aux champs lumineux : l’interaction est toujours répulsive et donne
lieu à l’effet pondéromoteur. Celui-ci provient tout simplement du terme e2

2me
A2(r, t) issu de

la première formulation du couplage HI au rayonnement.

Chapitre 2

Nos résultats de piégeage d’états circulaires ont été obtenus à l’aide d’un nouveau dispositif
expérimental. Celui-ci constitue une étape intermédiaire avant la mise en place de la pla-
teforme de simulation définitive, opérant en environnement cryogénique. À cette fin, il est
assemblé sur une table optique réalisée sur mesure pour permettre le transfert d’une partie
de l’assemblage vers notre cryostat.

Le dispositif s’articule autour d’une pièce de saphir située au centre d’une enceinte à
vide. Celle-ci dispose de 8 accès optiques, et est reliée à quatre sous-assemblages remplis-
sant chacun une fonction : un système de pompe ionique, un raccord équipé de traversées de
connecteurs électriques, un dispositif de détection d’ions ainsi qu’un piège magnéto-optique
bi-dimensionnel (2D-MOT) situé en dessous, qui constitue notre source d’atomes. Le champ
magnétique est contrôlé par trois paires de bobines orthogonales. La pièce de saphir est creuse
le long de l’axe vertical et percée de quatre trous la traversant entièrement. Ceux-ci sont ali-
gnés avec les accès optiques de l’enceinte à vide et permettent aux différents faisceaux lasers
utilisés de se croiser en son centre, où sont situés les atomes. En outre, la pièce de saphir
supporte diverses électrodes permettant le contrôle du champ électrique ainsi que la prépara-
tion d’états circulaires par l’émission d’un champ radiofréquence. Deux lentilles asphériques
placées dans leur monture viennent aussi s’insérer dans le cube. Elles sont destinées à la
préparation de pinces optiques afin de piéger les atomes dans l’état fondamental d’une part
et dans l’état circulaire d’autre part.

La préparation de pinces optiques présente une certaine complexité ainsi que certaines
contraintes. La méthode retenue consiste en l’utilisation d’un modulateur spatial de lumière
appliquant un masque de phase adéquat au faisceau incident. Celui-ci est alors converti en
une distribution d’intensité donnée au plan focal de nos lentilles. Avant de préparer le masque
pour les pinces optiques, il nous faut corriger les aberrations introduites par les optiques le
long du chemin du faisceau. Nous utilisons pour cela une version modifiée de l’algorithme
de Gerchberg-Saxton, qui tient compte de l’information contenue hors du plan focal. Pour la
détermination du masque de phase générant le pince optiques, toute la difficulté se trouve
dans la recherche de ce masque de phase, et l’algorithme utilisé n’est pas détaillé ici.

Toutes nos séquences expérimentales partent d’une vapeur de 87Rb refroidie transversa-
lement par le 2D-MOT. Cette vapeur s’élève jusqu’au centre de la pièce de saphir, et sont
ensuite capturés dans un MOT tri-dimensionnel en présence des pinces optiques. Les atomes
qui se sont retrouvés capturés dans ces dernières sont ensuite refroidis par une mélasse op-
tique. Une image en fluorescence est ensuite prise par une caméra EMCCD très sensible avant
une seconde étape de mélasse et le démarrage de la séquence expérimentale à proprement
parler.



RÉSUMÉ EN FRANÇAIS 175

Chapitre 3

La préparation de pinces optiques étant nouvelle pour notre équipe, nous décrivons ici de
façon assez détaillée les caractérisations que nous avons effectuées sur les pièges gaussiens
destinés aux atomes dans l’état fondamental. Nous travaillons pour cela avec un tableau de
9× 9 pièges espacés de 10 µm.

Nous décrivons le signal de fluorescence qui, dans nos conditions expérimentales, nous
permet de discriminer la présence d’atomes dans les pièges par la détection d’environ 300
photons de fluorescence et d’établir des seuils de détections à partir desquels nous obtenons
une probabilité de chargement moyenne de 60%. L’enregistrement d’une image avant et après
la séquence expérimentale nous permet de déterminer pour chaque site la probabilité de
recapture ou de perte d’un atome, qui constitue la base de toutes nos analyses.

Nos pièges gaussiens sont caractérisés en mesurant d’une part le déplacement lumineux
induit sur la transition

∣∣5S1/2, F = 1
〉
−→

∣∣5P3/2, F
′ = 2

〉
et d’autre part la fréquence du

piège en y faisant osciller mécaniquement les atomes. De la première mesure nous déduisons
une profondeur de 990 ± 42 µK, de la seconde une fréquence de 80.9 ± 2.0 kHz. Dans toutes
ces mesures, les variations mentionnées (après le symbole “±”) correspondent à l’écart type
calculé à partir des valeurs obtenues pour chaque site. Ces valeurs permettent de remonter
au rayon de gorge w0 ainsi qu’à la puissance P0 des pièges :

⟨w0⟩ = 1.21± 0.01 µm, ⟨P0⟩ = 2.62± 0.12mW.

La dispersion est de l’ordre de 1% pour le rayon de gorge (qui est proche de la limite de
diffraction de 1.14 µm pour notre dispositif) et de 5% pour la puissance.

Par ailleurs, nous obtenons un temps de maintien moyen dans les pinces optiques de
12.6± 0.2 s, les données mettant en évidence la possibilité d’un chargement des pièges inoc-
cupés par les atomes environnants. Enfin, la température est déterminée par une séquence
de “release-recapture” consistant à mesurer la probabilité de recapture après libération des
atomes pendant un temps donné. Les données sont ajustées en simulant une courbe théorique
pour une série de valeurs de température et en retenant celle qui minimise l’écart quadra-
tique. Nous obtenons de cette façon une température moyenne ⟨T ⟩ = 14.4± 1.4 µK. La carte
des températures pour les sites individuels révèle une forte inhomogénéité, les atomes étant
plus froids le long d’une bande verticale située au centre.

Chapitre 4

Le transfert dans l’état circulaire à partir des atomes piégés s’effectue en quatre étapes :

(1) l’état initial est pompé optiquement vers
∣∣5S1/2, F = 2,mF = 2

〉
. Nous utilisons pour

cela laser de polarisation σ+ accordé sur la transition
∣∣5S1/2, F = 2

〉
−→

∣∣5P3/2, F
′ = 3

〉
,

l’axe de quantification étant défini par le champ magnétique. La spectroscopie Raman
sur les sous-niveaux hyperfins de l’état

∣∣5S1/2
〉

nous permet d’une part d’évaluer le
champ magnétique B = 7.01 ± 0.02G, d’autre part d’estimer l’efficacité du pompage
optique. Nous obtenons ainsi, après optimisation, une pureté ηOP = 0.97± 0.01.

(2) L’étape suivante est l’excitation vers l’état de Rydberg
∣∣52D5/2,mj = +5/2

〉
. Nous

adressons une transition à deux photons avec l’état
∣∣6P3/2

〉
comme état intermédiaire.

L’analyse des spectres et des oscillations de Rabi réalisées avec détection optique nous
conduit à une efficacité d’excitation η52D = 0.89 ± 0.01 effectuée avec un fréquence de
Rabi moyenne ⟨Ω⟩ = 2π × 660 ± 50 kHz. Nous sommes principalement limités par la
puissance laser disponible.
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(3) La troisième étape consiste en un transfert micro-onde vers l’état |52F,ml = +2⟩. Une
analyse similaire à celle réalisée pour l’excitation laser conduit à estimer l’efficacité du
transfert ⟨ηDF⟩ = 0.88± 0.05.

(4) L’état précédent se branche, lorsque l’on applique un champ électrique sur le niveau qui
constitue notre point de départ pour le transfert adiabatique vers l’état circulaire 52C.
Le transfert est réalisé en réduisant le champ électrique de 2.25V cm−1 à 2.05V cm−1

en présence de radiofréquence polarisée σ+ à 225MHz.

Une fois préparés nous réalisons des spectres micro-onde vers les niveaux environnants. La
transition à deux photons 52C −→ 50C permet d’estimer la pureté de nos états circulaires :
ηcirc = 0.90±0.02. Le champ électrique est estimé à partir de la transition 52C −→ 53E+, in-
sensible au champ magnétique. La mesure donne ainsi un champ F0 = 2.0887±0.0001V cm−1.

Enfin, la détection optique des états circulaires impose le retour à l’état fondamental, que
nous décrivons brièvement et qui s’effectue moins efficacement que l’aller. En combinant les
efficacités de chaque étape, nous arrivons à une valeur finale ηtot = 0.31± 0.04.

Chapitre 5

Ce chapitre final présente les principaux résultats obtenus au cours de ma thèse.
Afin de décrire de façon complète les résultats présentés ensuite, nous abordons dans un

premier temps le piégeage des états de Rydberg. L’approche retenue est purement empirique
et ne considère pas en détail la dynamique au sein des pièges. Nous décrivons dans un premier
temps le piégeage des états 52D préparés par excitation laser, qui nous permet de nous affran-
chir des détails techniques inhérents aux états circulaires. Les données obtenues s’accordent
assez bien à un déclin exponentiel dont le temps caractéristique mesuré, 66± 1 µs, est proche
de la valeur théorique attendue, 74 µs.

L’analyse des données de piégeage se rapportant aux circulaires est plus délicate, d’une
part à cause de l’efficacité limitée de la séquence aller-retour, et d’autre part par la dynamique
complexe des états circulaires. Ceux-ci subissent des transferts thermiques successifs qui les
font diffuser vers l’ensemble des niveaux environnants, l’évolution des populations est décrite
par une équation pilote dont le détail n’est pas donné ici. En normalisant les données par la
population théorique attendue pour l’état 52C à température ambiante, nous observons une
diminution en excès de la population à partir de 500 µs. L’origine exacte des pertes en excès
n’est pas élucidée clairement, mais nous conjecturons toutefois un effet des fortes interactions
dipolaires qui apparaissent lorsque l’un des atomes est transféré thermiquement vers un état
voisin. Le piégeage des atomes ainsi mis en évidence est à la base des expériences qui suivent.

Nous décrivons ensuite le piège de façon théorique : la préparation d’un faisceau en bou-
teille idéalisé et sa convolution avec la distribution de charge de différents états circulaires.
Nous obtenons des valeurs théoriques pour le déplacement des niveaux au fond du piège (et
notamment un différentiel entre les niveaux 50C et 52C), ainsi que ses fréquences. Ces valeurs
nous permettent de confronter la théorie aux expériences qui suivent.

Cela s’illustre dans un premier temps par la mesure de la fréquence transverse des pièges.
Nous obtenons une fréquence moyenne de 15.8±0.1 kHz qui s’accorde, en supposant un mou-
vement harmonique, avec une puissance par piège de 20mW en accord avec nos estimations.
Cependant, une simulation de la dynamique dans les pièges conclut à une puissance sensible-
ment plus faible, de l’ordre de 15mW. Une telle baisse obtenue par simulation est en accord
au moins qualitatif avec le caractère anharmonique du piège.
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Nous vérifions ensuite que la présence des pièges n’affecte pas l’évolution des états en
détectant par ionisation les populations à différents délais. Les courbes obtenues sont sensi-
blement les mêmes et ne permettent pas de discerner un effet des pièges à ce niveau.

Les oscillations de Rabi bénéficient grandement de la détection optique résolue spatiale-
ment. En effet, celles-ci permettent d’interpréter un signal d’ionisation qui présente plusieurs
nœds. L’ajustement de la fréquence de Rabi pour chaque piège (qui donne une valeur de
l’ordre de 850 kHz) met en évidence un gradient d’amplitude micro-onde, qui est à l’origine
des battements observés sur le signal d’ionisation.

Nous concluons avec une expérience d’interférométrie de Ramsey. La mesure effectuée sur
le tableau de taille 6× 3 met en évidence deux choses.

• D’une part les fréquences de Ramsey diffèrent d’environ 5 kHz selon que l’on est en
présence ou en absence de piégeage. Ceci s’explique en partie par le différentiel de
déplacement des niveaux prédit par l’analyse théorique mentionnée plus haut. On s’at-
tend à une valeur de 92 kHzW−1 et ainsi la puissance attendue des pièges, 20mW,
rend compte d’environ la moitié de la différence mesurée. Le reste peut être causé par
plusieurs facteurs, sans qu’aucun ne soit quantitatif. Mentionnons les interactions entre
états circulaires. Une analyse détaillée sort toutefois du cadre du présent manuscrit.

• Le temps caractéristique du déclin se situe entre 15 et 20 µs. Cette valeur, qui semble
assez faible, peut toutefois s’expliquer par les interactions. Le transfert thermique d’un
atome vers un état voisin donne lieu à l’apparition de couplage dipolaire du premier
ordre. Celui-ci est de l’ordre du MHz et est susceptible de déplacer hors résonance la
transition Ramsey que nous adressons, et ce sur une large étendue spatiale. La seconde
impulsion micro-onde est alors inefficace, ce qui se traduit par l’atténuation du signal.

Cette dernière hypothèse semble validée lorsque l’on réduit la mesure à un atome unique.
Le temps de cohérence passe à 61± 8 µs en présence des pièges, et dépasse même les valeurs
en l’absence de piégeage, 45±3 µs. Toutefois, la précision des mesures ne nous permet pas de
conclure sur l’origine de cette différence. Enfin, il est à noter que toute la puissance disponible
a été utilisée pour préparer un piège unique. Nous observons alors un décalage conséquent
de la transition, qui atteint 40 kHz. Ceci nous permet de remonter à une puissance totale de
440mW pour le piège, en bon accord avec notre estimation pour la puissance. Dans ce cas les
autres processus potentiellement responsables du décalage de la transition sont probablement
éclipsés par l’effet dû à l’intensité du piège.
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MOTS CLÉS

atomes de Rydberg, atomes froids, simulation quantique, atomes de Rydberg circulaires, spectroscopie,
pinces optiques, piégeage dipolaire, piégeage pondéromoteur

RÉSUMÉ

La simulation quantique offre des perspectives intéressantes pour la compréhension de systèmes complexes dans des
régimes qui se prêtent difficilement à une approche numérique du problème. Dans cette perspective, une nouvelle
architecture de simulateur quantique a récemment été proposée. Celle-ci modélise un hamiltonien XXZ à spin 1/2 dont
les paramètres peuvent être contrôlés sur une large gamme. Les états de spin sont encodés sur des états de Rydberg
circulaires en interaction dipolaire. Ceux-ci présentent des temps de vie plus longs que les états correspondants de bas
moment angulaire utilisés actuellement pour réaliser des simulations quantiques. En outre ils peuvent être piégés par
laser en tirant profit de l’effet pondéromoteur, et voir leur temps de vie augmenté considérablement par l’inhibition de
l’émission spontanée.
Nous présentons dans cette thèse la première étape vers la mise en place ce simulateur quantique. Nous préparons
dans un premier temps un tableau d’atomes de rubidium 87 piégés individuellement dans des pinces optiques. Ceux-ci
sont alors excités vers l’état de Rydberg circulaire n = 52 et transférés dans des pièges creux en forme de bouteille. Nous
mettons ainsi en évidence le piégeage pondéromoteur de ces états sur des durées de plusieurs millisecondes. Nous
tirons ensuite profit de la détection optique des états ainsi préparés au cours de diverses expériences. Le potentiel de
piégeage est caractérisé en mesurant sa fréquence d’oscillation transverse de chaque piège. Enfin, nous concluons en
réalisant la manipulation cohérente de ces états circulaires piégés au travers d’oscillations de Rabi ainsi que la mesure
de franges de Ramsey pour déterminer leur cohérence.

ABSTRACT

Quantum simulation offers interesting perspectives for the understanding of complex systems that are out of reach for
numerical approaches. In this line, a new quantum simulation platform has recently been proposed. A spin-1/2 XXZ
hamiltonian is thus realized in which the parameters can be controlled over a large range. The spin states are encoded
by circular Rydberg states coupled through dipole-dipole interaction. These states benefit from longer lifetimes compared
to the low angular momentum states used for current quantum simulations. In addition, they can be laser-trapped through
the ponderomotive effect, and their lifetime can be further enhanced by spontaneous emission inhibition.
We present in this thesis the first step towards the implementation of the proposed quantum simulator. We first prepare
an array of rubidium 87 atoms trapped individually in optical tweezers. These atoms are subsequently excited to the
circular Rydberg state n = 52 and transferred to hollow bottle-beam traps. We thus demonstrate the ponderomotive
trapping of these states over durations of several milliseconds. We take advantage of the optical detection of the states
thus prepared with various experiments. We characterize the trapping potential by measuring its transverse frequency.
We finally conclude with the coherent manipulation of these trapped circular states through Rabi oscillations and Ramsey
interferometry to determine their coherence.

KEYWORDS

Rydberg atoms, cold atoms, quantum simulation, circular Rydberg atoms, spectroscopy, optical tweezers,
dipole trap, ponderomotive trapping
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