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Abstract

The main objective of this thesis is to explore brain and artificial neural network connectivity
from a graph-based perspective. While structural and functional connectivity analysis has been
extensively studied in the context of the human brain, there is a lack of a similar analysis
framework in artificial systems. To address this gap, this research focuses on two main axes.

In the first axis, the main objective is to determine a healthy signature characterization of the
human brain resting state functional connectivity. A novel framework is proposed to achieve
this objective, integrating traditional graph statistics and network reduction tools to determine
healthy connectivity patterns. Hence, we build a graph pair-wise comparison and a classifier
to identify pathological states and rank associated perturbed brain regions. Additionally, the
generalization and robustness of the proposed framework are investigated across multiple datasets
and variations in data quality.

The second research axis explores the benefits of brain-inspired connectivity exploration of artifi-
cial neural networks (ANNSs) in the future perspective of more robust artificial systems develop-
ment. A major robustness issue in ANN models is represented by catastrophic forgetting when
the network dramatically forgets previously learned tasks when adapting to new ones. Our work
demonstrates that graph modeling offers a simple and elegant framework for investigating ANNs,
comparing different learning strategies, and detecting deleterious behaviors such as catastrophic
forgetting. Moreover, we explore the potential of leveraging graph-based insights to effectively
mitigate catastrophic forgetting, laying the foundations for future research and explorations in
this area.

Résumé

L’objectif principal de cette these est d’explorer la connectivité cérébrale et celle des réseaux de
neurones artificiels d'un point de vue de leur connectivité. Un modele par graphes pour I'analyse
de la connectivité structurelle et fonctionnelle a été largement étudié dans le contexte du cerveau
humain, mais un tel cadre manque encore pour I’analyse des systemes artificiels. Avec 'objectif
d’integrer I'analyse de la connectivité dans les systéme artificiels, cette recherche se concentre sur
deux axes principaux.

Dans le premier axe, I’'objectif principal est de déterminer une caractérisation de la signature saine
de la connectivité fonctionnelle de repos du cerveau humain. Pour atteindre cet objectif, une
nouvelle méthode est proposée, intégrant des statistiques de graphe traditionnelles et des outils de
réduction de réseau, pour déterminer des modeles de connectivité sains. Ainsi, nous construisons
une comparaison en paires de graphes et un classifieur pour identifier les états pathologiques et
idéntifier les régions cérébrales perturbées par une pathologie. De plus, la généralisation et la
robustesse de la méthode proposée ont été étudiées sur plusieurs bases de données et variations
de la qualité des données.

Le deuxieéme axe de recherche explore les avantages de I'intégration des études de la connectivité
inspirée du cerveau aux réseaux de neurones artificiels (ANNs) dans la perspective du développe-
ment de systemes artificiels plus robustes. Un probleme majeur de robustesse dans les modeles
d’ANN est représenté par 1'oubli catastrophique qui apparait lorsque le réseau oublie dramatique-
ment les taches précédemment apprises lors de 'adaptation a de nouvelles taches. Notre travail
démontre que la modélisation par graphes offre un cadre simple et élégant pour étudier les ANNs,
comparer différentes stratégies d’apprentissage et détecter des comportements nuisibles tels que
I'oubli catastrophique. De plus, nous soulignons le potentiel d'une adaptation a de nouvelles
taches en contrélant les graphes afin d’atténuer efficacement I'oubli catastrophique et jetant ainsi
les bases de futures recherches et explorations dans ce domaine.
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The brain is certainly one of the most investigated human organs and still remains
one of the most cryptic. Understanding how the brain works is one of the greatest
challenges of current neuroscience with multiple implications across diverse disciplines
such as: anatomy, psychology, clinical neuroscience, but also philosophy, ethics, and
more contemporary domains such as neuromorphic computing, automated systems,
and artificial intelligence.

In a clinical perspective, the progress of technology and the advancement of imaging
techniques have given the possibility to obtain an accurate and precise reproduction
of the brain anatomy, including neurons and blood vessels, together with a real-time
monitoring of brain functionality with significant impacts on human health.

These advances manifest in a spectrum of applications. To name a few, they range from
the application of artificial intelligence algorithm for the analysis of computed tomog-
raphy scans for traumatic brain injury patients (Brossard et al. 2021), the integration
of uncertainty estimation into sclerosis lesion segmentation (Lambert et al. 2022), to
the pioneering development of magnetic resonance fingerprinting protocols (Christen
et al. 2014; Delphin 2022), or to the innovative use of microbubbles with ultrasound
to breach the blood-brain barrier and design new drug transport (Meairs et al. 2007).
Certainly, the use of advance methods to assist clinicians in their work is of particular
interest to obtain accurate and early diagnosis, as it happens in breast cancer detection
(Yoon et al. 2023), providing the development of new disease biomarkers.

However, an autonomic diagnosis tool alone does not equate to a comprehensive un-
derstanding of disease mechanisms, which remains of crucial importance for treatment
refinement.

From this point of view, the emergence of network neuroscience holds great promise
for its ability of providing a simple model for brain exploration. Certainly, the brain
naturally acts as a network, both structurally and functionally and at different ag-
gregation scales: synapse connections among single neurons, interconnections among
neuronal regions, and cooperative connections among hemispheres. All these types
of relations can be elegantly modeled as graphs on which well-founded mathematical
definitions find a natural application. The use of such a graph model particularly
for functional connectivity exploration can provide fascinating results and advance our
comprehension of brain mechanisms under diverse states. When coming to the study of
neurological disorders, network neuroscience can be crucial for identifying specific non-
invasive biomarkers and for the definition of new therapies. For instance, in Alzheimer
and Parkinson disease or for region mapping before surgical intervention (Fox et al.
2010; Du et al. 2018; Zhang et al. 2021; Oujamaa 2020; Nandakumar et al. 2021).

It is no coincidence that deep learning models simulating brain information processing
are organized into networks. These artificial neural networks comprise multiple units
or neurons and are constructed with increasingly complex and intricate structural ar-
chitectures. Since their introduction, artificial neural networks (ANNs) have been
developed to emulate the information processing, learning, and decision-making mech-
anisms of biological neural systems and have been studied with the aim of addressing



Contents 5

fundamental questions about how humans perceive the world, store and recall infor-
mation, and how this information influences their behavior (Rosenblatt 1958; Bengio
et al. 2015; Hassabis et al. 2017).

With this purpose, many research laboratories actively work towards creating ANN
models that resemble the human brain more closely (Stanford Artificial intelligence
Laboratory, Center for Brains, Minds, and Machines, Google Brain, etc.).

The integration of neuroscience and artificial intelligence extends beyond the develop-
ment of brain-inspired neural network systems and bio-inspired algorithms (Hassabis
et al. 2017). From neuroscience to artificial intelligence, the study of the brain can
lead to the design of more robust, interpretable, and explainable artificial systems.
In fact, many algorithms find inspiration in natural intelligence or are constrained to
learn through human-features (Klyuzhin et al. 2022; Ilyas et al. 2019). On the oppo-
site direction, contributions of artificial intelligence into neuroscience allows to read the
human mind, with the development of recent models able to reconstruct images from
human brain activity recorded during functional magnetic resonance imaging (Takagi
et al. 2023; Nishimoto et al. 2011; Poldrack 2011; Mensch et al. 2021; Zhang et al.
2022b) or to finely understand how information is processed in different brain areas
(Bashivan et al. 2019; Kanwisher et al. 2023).

In light of this productive integration and exchange between neuroscience and artificial
intelligence, the Multidisciplinary Institute of Artificial Intelligence in Grenoble dedi-
cates a research axis to the development of robust and understandable Neuromorphic
systems by leveraging psychology, cognitive science, informatics, neuroscience, neu-
roimaging, mathematics, and statistics. It is within this overarching framework that
this Ph.D. project finds its roots, spanning both the Neuroscience Institute of Greno-
ble’s Functional Neuroimaging and Brain Perfusion team and the Laboratoire Jean
Kuntzmann’s Statify team, with collaboration with the Psychology and Neurocogni-
tion Laboratory LPNC.

Particularly, the general scope of this thesis is to provide a network-science perspec-
tive for neuroscience into the analysis of human brain functional connectivity
networks, and for a brain-inspired artificial neural networks robustness assess-
ment.

Both branches share the development of innovative network analysis tools allowing an
original integration.

The former research branch, concerning human brain functional connectivity explo-
ration, aims to ultimately establish a network signature of a population group, to
enhance our comprehension of the underlying brain mechanisms implicated in patho-
logical dysfunction and possibly refining the nosology of brain disorders. To achieve
this objective, a novel framework is proposed, integrating established graph statistics
and network reduction tools, to determine connectivity patterns. Hence, we build a
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graph pair-wise comparison and a classifier to identify pathological states and rank
associated perturbed brain regions.

The latter research branch, concerning ANNs, specifically addresses artificial intelli-
gence robustness issue by developing a brain-inspired framework of analysis to detect
the occurrence of catastrophic forgetting. While the connectivity of the brain has
been extensively studied and modeled, there is a limited number of works conducted
in this area for ANNs and our proposal lays the foundation for future research and
explorations in this area.

Following this main division, the present dissertation is organized into two main parts
dedicated to these two distinct research axes.

The first part begins by contextualizing and providing background on functional brain
connectivity graph modeling. It reviews the state-of-the-art in this domain and in-
troduces the principal research questions. Chapter 1 also includes a concise recall of
graph theory definitions. Chapter 2 introduces our main contribution, by giving its
motivations and culminating in the definition of an innovative nodal equivalence rela-
tion for characterization of individual graph and graph collections at both global and
local scale. Chapter 3 demonstrates the benefit of our proposal in four applications
in human functional connectivity: characterizing generative synthetic data and real
data, analyzing healthy subjects, developing a pathological classifier, and exploring
data quality’s influence on local characterization.

The second part of this manuscript is dedicated to artificial neural network systems.
Chapter 4 introduces the robustness challenges in the development of artificial intel-
ligence systems, focusing into the paradigm of continual learning and reviewing the
existing strategies and scenarios in this context. Subsequently, Chapter 5 proposes a
brain-inspired approach to analyse feedforward neural network by the development of a
resting state graph model for ANNs. The final chapter, Chapter 6, applies our approach
to characterize and explore different continual learning strategies on two architecture
and image recognition tasks.

The appendix supplements our work with related studies, including investigations into
data-quality considerations in functional brain connectivity in a topological data anal-
ysis fashion and the application of a graph-based model for the detection of adversarial
attacks in ANN models.
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Part A

Human Brain Connectivity






——— Chapter 1 —

Context and Background

Abstract

In this chapter, we delve into the analysis of functional connectivity (FC) studies, with
a special focus on methods adopting a graph perspective. We show the diversity across
studies and the resulting controversies on results. We introduce graph-theory concepts
and graph descriptor commonly considered in functional connectivity studies. We em-
phasize the significance of interpretability and explainability in FC analysis, highlight-
ing their role in understanding underlying physio-pathological mechanisms. We define
these concepts in the context of the multilevel abstraction present in graph-based meth-
ods. Furthermore, we present generative network models that serve as effective tools
for the comparative assessment of real data against synthetic counterparts. Finally, we
identify the requirements for a comprehensive FC analysis framework, emphasizing in-
terpretability, adaptability, group characterization, individual differences tracking, and
local perturbation detection.
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1.1. Functional Connectivity 13

1.1 Functional Connectivity

The human brain represents only 2% of the total body mass, yet it is remarkably
energy-demanding, consuming 20% of the body’s energy even at rest (Rolfe et al. 1997;
Fox et al. 2010). Neurons require oxygen and glucose for their activity, which are not
stored directly in the cells, and instead supplied through blood flow. When neurons
are activated, nearby capillaries experience increased blood flow to meet the energy
demands. This results in a localized change of brain oxygenation levels which can be
detected by functional magnetic resonance imaging (fMRI). Introduced in the early
1990s, fMRI captures the blood oxygen level-dependent (BOLD) signal as measure of
brain activity (Ogawa et al. 1990; Mansfield et al. 1977; Pauling et al. 1936; Kwong
2012). The increase in the oxygenated hemoglobin alters the local magnetic properties
of the blood, which can be detected by the fMRI scanner (Fig.1.1). The BOLD signal
is commonly used to create activation maps, showing which brain regions are involved
in specific tasks or responding to stimuli (Lv et al. 2018). Broadly, fMRI finds nu-
merous applications in neuroscience and clinical studies, for instance in the detection
of pathologies, or the design of new treatments (Fox et al. 2010; Wang et al. 2010;
Bobholz et al. 2007).

Applied Magnetic Field c

—

& S)
ee— B, ¢ &, —
) %
Neuronal Transient Blood flow "
Activation Deoxyhemoglobin Blood volume BOLD Activation

(Strong paramagnetic)  Oxyhemoglobin
(Weak Diamagnetic)

Non-uniform magnetic environment creates BOLD contrast

Figure 1.1 — Principle of fMRI: when neurons are activated, nearby capillaries
respond by increasing blood flow to meet the energy demands. This results in
a localized change in brain oxygenation levels, causing variations in the magnetic
properties of blood. By quantifying these magnetic field changes, fMRI can mea-
sure the Blood Oxygen Level-Dependent (BOLD) signal, providing a non-invasive
method to visualize and study brain activity. Adapted from Karunakaran et al.
2021.

fMRI allows to study brain activation during specific tasks and to acquire brain images
while the scanned subject is at rest, letting the mind wandering and without perform-
ing any specific task. Resting state fMRI (rs-fMRI) has gained attention since it allows



14 Chapter 1. Context and Background

to scan patients who may struggle with task-based instructions, such as those with
neurological or psychiatric conditions or pediatric patients.

In the analysis of rs-fMRI we can distinguish two different approaches: functional seg-
regation and functional integration! (Lv et al. 2018; Friston 2011). The former focuses
on understanding the specific local functions of individual brain regions with the objec-
tive of associating to each region a particular function. On the other hand, functional
integration analyses the brain in terms of the relationships or connectivity between
different brain areas, considering the whole brain as an interconnected network. Our
work adopts an integration point of view and explore the statistical dependencies or
correlations between the activity of different brain regions. We call this functional
connectivity (FC).

There are multiple metrics and methods currently used for functional connectivity stud-
ies: independent component analysis (ICA), seed-based FC analysis and graph-based
analysis (Lv et al. 2018; Friston 2011; Van Den Heuvel et al. 2010).

ICA is a data-driven technique used to identify independent components in brain activ-
ity. It aims to separate the brain data into independent sources that represent distinct
functional networks. While ICA can be effective in identifying individual components,
it may not provide a comprehensive view of the whole brain network and its global
properties (McKeown et al. 1998; Calhoun et al. 2009; Zuo et al. 2010; Varoquaux
et al. 2010b; Beckmann et al. 2004; Calhoun et al. 2001).

Seed-based FC analysis involves selecting a specific brain region - named the seed - and
examining its functional connectivity with other regions in the brain. This method is
useful for investigating the connectivity of a specific region of interest. However, it
focuses on pairwise connections and may not capture the complex interactions and
global properties of the entire brain network (Biswal et al. 2010; Joel et al. 2011; Tang
et al. 2021; Job et al. 2020; Bluhm et al. 2009; Fox et al. 2005; Fox et al. 2007).

Here, we assume a network perspective and adopt a graph-based analysis approach
(Sporns 2016; Bullmore et al. 2009; Mheich et al. 2020; Bassett et al. 2017b; Smith
et al. 2011; Vico Fallani et al. 2014). In this approach, the brain is modeled as a graph,
a properly defined mathematical object which allows to encode the relationships among
multiple units. Particularly, in our work, units represent brain regions and their rela-
tionships is encoded in edges.

This model offers several advantages, allowing to analyze the topology of brain net-
works, investigate local and global properties, and explore functional relationships be-

!Note that here we refer to segregation and integration at the brain level. The same concepts can
be found when considering a network model, see Def.1.13, Def.1.14 in Sec.1.2.3
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tween brain regions. Within the network modelling for FC analysis, there is a diverse
array of approaches. In the following section, we propose a categorization of the main
existing methods.

1.1.1 Network-based methods for FC

Graph theory is a mathematical branch originated to solve complex system problems.
Its origins track back to the famous Seven Bridges of Konigsberg problem (Réz 2018;
Euler 1741), but its theoretical foundations and adaptability allow it to find applica-
tions in a variety of domains. In the context of brain imaging and specifically in resting
state FC, it provides a mean to analyze the topology of brain networks. A network
is a natural way to encode the pair-wise relations among in a set of units (the nodes
or vertices). Graph theory is used to investigate both local properties (within spe-
cific brain regions) and global properties (across the entire brain) of functional brain
networks. Regarding the temporal aspect of FC, two main modeling approaches are
distinguished: static and dynamical models. In static models, the interaction between
different brain regions is estimated over the entire available temporal length resulting
in a single network per subject. On the other hand, dynamical models inferred multi-
ple networks at different instant intervals to capture temporal changes in connectivity
(Lurie et al. 2020; Varley et al. 2022). Our focus is dedicated to static model, but it
can be extended for the investigation of dynamic FC.

A main issue of dynamical models is given by the choice of the number of instants to be
considered for the estimation. A controversial point in static model is instead given by
the fact that it implicitly assumes that the estimated dependency is static over time.
The inference of network model requires crucial steps, particularly in defining units,
the graph nodes and the links, the graph edges (Fig. 1.2). Defining units from fMRI
data, where a unique time-series is extracted from each voxel, necessitates the selection
of an aggregation method.

node definition

fMRI acquisition network-based
model

edge definition:

% FC estimator
S

Time series

pre-processing

Figure 1.2 — Visualization of the required modeling steps to determine a FC
network-based model from fMRI acquisition.

Two main approaches exist: anatomical-based and data-driven methods (Vico Fallani
et al. 2014).

Anatomical-based methods use brain region parcellations to assign each voxel to a spe-
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cific brain regions defined a priori. This approach enables the comparison of graph
instances among different subjects while preserving regional identity, making it par-
ticularly useful for clinical studies. Another approach is to define vertices based on
previously-specified coordinates and to include nearby voxels within the region, or
even to consider each voxel as graph node.

On the other hand, data-driven approaches employ clustering algorithm or dictionary
learning to define regions of interests, without prior anatomical information (Abraham
et al. 2013; Varoquaux et al. 2011; Bhanot et al. 2019).

The second requirement for graph-modeling is given by the edge definition, correspond-
ing to the choice of an estimator of FC interaction among brain regions. An established
way to quantify the strength of interaction between a pair of regions is given by the
Pearson correlation coefficient between signal of aggregated regions (Hlinka et al. 2011.
The used of Pearson correlation implicitly assumes that the temporal order of the sam-
ples within each time series and their mutual interaction can be disregarded. Other
methods adopt partial correlations, tangent space of covariance matrices, mutual in-
formation, etc (Smith et al. 2011; Dadi et al. 2019; Richiardi et al. 2013).

In the following, we adopt as FC estimator the Pearson correlation at a specific fre-
quency scale, obtained by the application of the discrete wavelet transform (Achard
et al. 2006; Achard et al. 2012). The discrete wavelet allows to decompose each fMRI
time series into a set of compactly supported basis functions that are uniquely scaled
in frequency and located in time. The use of wavelets considers the long-memory prop-
erties of fMRI time series and produces estimation with known variances based on the
number of data points at each scale.

Recently, methods have been developed to simultaneously account for noise and intra-
regional correlation impact, i.e. the correlation of signals within a region, on the
inter-regional correlation estimation (Lbath et al. 2023; Achard et al. 2020).

After estimating functional connectivity using graph-based approaches, some authors
apply a graph-filtering procedure to refine the network representation (Vico Fallani et
al. 2014; De Vico Fallani et al. 2017; Achard et al. 2006; Achard et al. 2007). This step
aims to select the most important weights and determine an unweighted graph, which
can be crucial for better interpretation the underlying brain connectivity patterns.

Various filtering procedures exist, and they can vary across studies. Some methods are
based on topological properties of the graph to identify the most significant connec-
tions (Bordier et al. 2017; Chen et al. 2008; Achard et al. 2006; Ferrarini et al. 2009).
Others focus on determining a unique connected component within the graph, ensur-
ing that all nodes are connected and form a coherent network (Bassett et al. 2006a).
Proportional thresholding is another common technique, where a threshold is applied
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to retain a certain percentage of the strongest edges, effectively sparsifying the graph
and eliminating weaker connections (Achard et al. 2007; Bassett et al. 2009).

1.2 State-of-the-art

In the following section, we review existing methods to analyse FC brain networks.
Specifically, we discuss works which consider undirected unweighted graph model ex-
tracted for each subject. As we mentioned, in a clinical perspective FC has the potential
to serve as a non-invasive biomarker of pathological disease. Thus, we will discuss clas-
sification methods in the state-of-the-art which strive to assist clinicians in making
diagnoses. Indeed, classification involves the process of categorizing items into prede-
fined classes or categories based on their inherent characteristics or distinctive features.

We stress the importance in any FC network analysis of providing an improvement in
our comprehension of the underlying physio-pathological mechanisms (Park et al. 2013;
Vico Fallani et al. 2014). Indeed, FC analysis methods, especially when a classification
task is included, should be evaluated in terms of their interpretability and explan-
ability. We adopt these concepts in a broader sense with respect to their classical
machine learning algorithm definition (Gilpin et al. 2018).

Within FC studies, any graph-based method introduces several levels of abstraction
within its model: this commences from the brain, progresses through its FC network
model, and culminates in the extraction of meaningful features from this graph (See.
Fig. 1.3). Hence, the interpertability and explainability of FC analysis framework’s

analysis

abstraction level

&S5 e

Figure 1.3 — Interpretatbility and explainability in FC studies.

should also encompass all levels of abstraction. We define these concepts as follows.
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The FC method’s interpretability refers to a transparent and clear understanding of
the entire analysis process: from the network model definition to the methodology used
for the analysis itself. On the other hand, the FC method’s explainability corresponds
to its effectiveness on illuminating the functioning of the brain across varying states or
conditions, ultimately reconnecting with the brain level.

As illustrated in Figure 1.4, we categorize existing FC networks analysis frameworks
into two main groups: classical statistical comparison and classification methods.

FC Graph Analysis

Classical Statistical Classification
Comparison Methods
. . Graph . :
Global Descriptors Local Descriptors Distance-based Embedding / GNN
features-based

Figure 1.4 — Categorization of existing analysis methods for human brain FC
graph-based models.

The former refers to a statistical comparison of established graph descriptors for dis-
tinguishing network groups (Bullmore et al. 2009; Wang et al. 2010). This statistical
analysis can be performed for characterization of real data by comparing it with null
models (Vasa et al. 2022, Appendix B.3) or to compare different brain states, such
as pathological subjects and healthy controls (Mheich et al. 2020). Graph descriptors
can be extracted at different scales. At the global-level, a single graph descriptor is
computed over the entire network, resulting in a single value per network, but multiple
graph statistics can also be extracted per each node, and then compared in average
or individually across groups. Formal definition of classical graph descriptors can be
found in the next section.

On the other hand, classification methods refer to all approaches which have been
developed to categorically classify subjects into different brain states. Classification
methods have the advantage with respect to classical group comparison, to individ-
ually compare subjects. They are used for instance to predict if a network graph
belongs to a pathological or healthy subject. Given the growing interest in artificial
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intelligence, it is not surprising that such classification methods are based on machine
learning techniques: systems which learn directly from data in order to take decision
without specific instructions (Valliani et al. 2019; Du et al. 2018).These methods offer
notable benefits, as they can uncover subtle patterns emerging directly from data that
might not be apparent through traditional analyses. A commonly approach within clas-
sification methods employs machine learning algorithms trained on a set of extracted
graph features (Richiardi et al. 2013; Craddock et al. 2009).

Other classification methods directly define a similarity score or a network pair-wise
distance and apply it to cluster or classify different brain states (Wills et al. 2020).
Finally, the development of network embedding and graph neural network (GNN)
methods has also found captivating applications within network neuroscience. Nu-
merous existing techniques have now embraced GNNs to classify different brain states
(Bessadok et al. 2022a). Network embedding methods aim to represent nodes in a
graph as low-dimensional vectors while preserving a specific proximity function. By
transforming nodes into continuous vector representations, network embedding facili-
tates the application of existing machine learning algorithms on graph data. GNNs can
also be interpreted as network embedding methods, since they provide a low-space rep-
resentation of a graph into a latent space. With respect to classic network-embedding
methods, the hidden representation is optimized for the specific classification task.

The diversity in FC analysis methods is accompanied by a multitude of studies that
are grounded in varying FC estimation and acquisition parameters. To provide an
overview of this diversity, we present in the following subsection the outcomes of a
PubMed literature search.

1.2.1 PubMed Literature Search

A literature search has been conducted on PubMed on the 30th September 2021 using
the query: (resting state) graph fMRI connectivity (comparison OR prediction). The
results were filtered from 2016 to 2021, two reviews paper were discarded, together
with studies concerning small animals or task MRI, resulting in a total of 196 entries.
Full results can be found in Tab. A.1 in Appendix A. Among the results 58% of the
papers apply classical statistical methods, while 24% use a classification-based method
(See Tab. 1.1)

To give an idea of the data variability in pre-processing and acquisition parameters,
we extract magnetic field, repetition time, number of acquired volumes and scanning
time, and eyes condition (open, closed, or cross-fixing). Concerning the network model
after the pre-processing step, we select the considered frequency band and the chosen
regions definition if given by pre-defined atlas. Finally, we collect the number of sub-
jects, the analyzed group labels, and the data availability. These details were manually
extracted from the text. To envisage an automatic extraction process, it is essential
to establish a standardized format for presenting data, ensuring enhanced comparabil-
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Table 1.1: Literature search has been conducted on PubMed on the 30th Septem-
ber 2021 using the query: (resting state) graph fMRI connectivity (comparison OR
prediction,).

FC Graph Analysis | n (frequency)
Classical Statistical Comparison 114 (58%)
Classification Methods 47 (24%)

Both 22 (11%)
Other 13 (7%)

ity and facilitating searches in future works. In addition, in many cases, not all the
needed information was included within the main text and must be sourced from sup-
plementary materials or referenced publications or might not have been available at all.

Moreover, we included in our review the major used public fMRI dataset: UK BioBank
(Sudlow et al. 2015), ABIDE (Di Martino et al. 2014), MJFOX (Loh et al. 2020),
Human Connectome Project (Woolrich et al. 2001), iShare (Tsuchida et al. 2017),
ADHD-200 (Bellec et al. 2017), and COBRE (Mayer et al. 2013; COBRE 2012). As
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Figure 1.5 — Variability in the number of volumes, repetition time (TR), and scan
acquisition time on the considered PubMed Literature Search.

we can observe in Fig. 1.5 and in Tab. A.1, there is a high parameter diversity
both in data acquisition and pre-processing steps. Particularly, there exists a high
variability in repetition time (TR), acquired number of volumes and scan duration,
which, both for static and dynamic estimation of brain connectivity, will result in
differences in the estimated networks.The range of acquired volumes spans from 100
to 1200, and this parameter introduces the most significant variability in the overall
recorded results. Notably, the observed mode is 240, which corresponds to acquisition
times of approximately 15 seconds and over 18 minutes for the extreme observed TR
cases (minimum of 70 ms and maximum of 5000 ms). Given such substantial variations,
it is reasonable to expect disparities in graph estimation and the conclusions drawn
under these distinct parameters of acquisitions.
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Besides, the eyes condition at the scan can not be discarded. Generally, there are three
different possibilities: subjects are instructed to close their eyes, to keep their eyes
open or to fix a colored cross in a screen. Studies have been conducted for assessing
the difference in brain connectivity depending on the eye condition at scan (Zou et
al. 2015; Patriat et al. 2013; Barry et al. 2014; Petro et al. 2022; Yuan et al. 2014;
Agcaoglu et al. 2019), demonstrating the need of a standard acquisition method to
improve studies comparability and data pooling .

This diversity hampers study results comparison and multi-site functional connectivity
data sharing. To cite a dramatic example, we report a review on Parkinson’s Disease
where different resting-state functional connectivity conditions results into contradic-
tory conclusions. These results are reported in Tab. 1.2 adapted from Tessitore et al.
2019.
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Table 1.2: Summary of the methods and results from the studies on Parkinson
disease which adopt a graph-based analysis included in the review by Tessitore et
al. 2019. PD: Parkinsonian patients HC: healthy controls.

Reference

‘ Subjects

Main findings

Sang et al.
2015

26 early PD 30
HC

Decreased global efficiency in PD compared to
HC. Increased nodal centrality in bilateral pal-
lidum, inferior parietal lobule, and medial supe-
rior frontal gyrus, and decreased nodal centrality
in caudate nucleus, supplementary motor areas,
precentral gyrus, and middle frontal gyrus in PD
compared to HC

Berman et al.
2016

19 PD 16 HC

Increased local efficiency in central executive net-
work and salience network.

Fang et al.
2017

26 early PD 19
HC

Decreased nodal degree, global efficiency, local
efficiency and characteristic path length within
the Sensorimotor network (SMN) and visual net-
work in PD compared to HC. Higher nodal de-
gree, global efficiency and local efficiency, and
lower characteristic path length within default
mode network (DMN) and cerebellum in PD
compared to HC. Lower cluster coefficient in tha-

lamus and caudate nucleus in PD compared to
HC

Decreased clustering coefficient, global efficiency,
and local efficiency, and increased characteristic

Suo et al. 2017 | 153 PD 81 HC path length as well as decreased nodal central-
ities in the SMN, DMN, and temporal-occipital
regions in PD compared to HC
Increased eigenvector centrality within fron-

De Schipper et | 13- ppy 53 H(C toparietal regions in PD compared to HC. In-

al. 2018

creased connectivity in the SMN and VN in PD
compared to HC

Hou et al. 2018

20 early akynetic
PD 20 HC

Lower nodal centralities in the occipital lobe and
areas of the limbic system and higher nodal cen-
tralities in frontal and temporal regions in PD
compared to HC

Tuovinen et al.
2018

16 early PD 16
HC

At baseline, increased connectivity between cere-
bellum and SMN as well as decreased connectiv-
ity between motor regions and cingulate cortex in
PD compared to HC. At 1.5 years follow-up, in-
creased cerebellum connectivity within itself and
to the caudate nucleus, thalamus and amygdala
in PD compared to HC
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In recent times, a consensus protocol for functional connectivity analysis has been es-
tablished for the brain of rats (Grandjean et al. 2023), which provides a standardized
and reliable methodology for analyzing functional brain networks in rats. Similarly,
efforts are being made to reach a consensus protocol for human brain functional con-
nectivity analysis, which would ensure the comparability and repeatability of results
across different studies (Wang et al. 2023a; Botvinik-Nezer et al. 2020).

Concerning modeling steps for fMRI, we point out the work by Dadi et al. 2019 which
proposes a comprehensive analysis of the impact of the main choices in terms of dis-
crimination power. However, the work does not consider graph-based approaches for
functional connectivity analysis.

Given the advantages of graph-based approaches in studying brain networks, future re-
search needs to investigate the impact of different choices on graph representations of
functional connectivity networks. This could involve exploring the influence of various
graph construction methods, graph filtering procedures, and graph theoretical metrics
on the discriminative power and interpretability of the resulting network representa-
tions. Such an analysis would contribute to a more comprehensive understanding of the
methodological choices that impact the study of brain connectivity using graph-based
approaches.

1.2.2 Recall Graph-Theory

In this section, we introduce the adopted graph notation, more details on graph-theory
can be found in the works by Newman 2012; West et al. 2001; Van Steen 2010; Barabasi
2013. A visualization of the main graph descriptors can be found in Fig. 1.6.
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Figure 1.6 — Visualization of common graph descriptors classically considered in
FC studies. (a) Standard definition of node and edges, (b) visualization of regular,
small-world and random graph regime, (c¢) extreme example of the considered nodal-
statistics. Adapted from Jacunski et al. 2013

Definition 1.1 (Graph). A graph G is a pair G = (W, €).

Here, V is a set of vertices or nodes. Each node represents a unit of the network we
are considering.

E CV x V is the set of edges among the nodes, encoding the presence of a special
relationship among pairs of units.

Within the context of FC network modeling, each node represents a region of the brain.

Definition 1.2 (Weighted Graph). A graph G is said to be weighted when it is
equipped with a weight function W : & — R{ which associates to each edge a value.
This value reflects the magnitude or strength of the encoded relationship.

In the following, we will deal with unweighted graphs: we can interpret unweighted
graphs as special case of weighted graphs where each edge is assigned the same weight,
which is equal to 1.

Definition 1.3 (Directed Graph). A graph G is a said to be directed if its edges e € £
are ordered pair of nodes (u,v) u, v € V, representing a connection from vertex u to
vertex v.

Definition 1.4 (Undirected Graph). A graph G is said to be undirected when each link
represents a bi-directional relationship. e € £ is then a pair of nodes e = {u, v} u, v €
V encoding the presence of a connection among the vertices u, v.
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In this context of FC networks, the pairs of nodes are not ordered, thus, the consider
graphs are undirected. In the following, the terms vertex, node, and unit are used
interchangeably, as are the terms link and edge.

Definition 1.5 (Adjacency Matrix). The adjacency matrix A of an unweighted graph
G, is a binary matrix defined as follows:

1 if{u,v} e
0 otherwise

A= (auv)u7v€V = {

For an undirected graph A is symmetric.

The adjacency matrix is one of the ways to represent a graph which directly encodes
the presence of edges.

Definition 1.6 (Node Neighborhood). We define the nearest-neighborhood, first-order
neighborhood, or simply the node neighborhood of node u as the set A(u), which
includes all nodes connected to w.

We denote N the cardinality of V.

Definition 1.7 (Complete Graph). A graph is complete if every pair of distinct vertices
is connected by an edge. A complete graph of N nodes has exactly (];f ) = w Each
node’s neighborhood in a complete graph includes all the other nodes.

Definition 1.8 (Graph sparsity). We refer to graph sparsity as the ratio between the
number of edges in the graph and the number of all possible edges among the set of
nodes:

€]

Sparsity = m
2

A graph whose Sparsity = 1 is the complete graph and vice versa.

Definition 1.9 (Path on a graph). In a graph, a path is an ordered sequence of vertices
(v1,v9, ..., V) where each consecutive pair of vertices is connected by an edge.

The length of a path in a graph is one less than the number of vertices it includes:
Length(vq, vg, ...,v,) = k — 1. This corresponds to the number of edges a walker on
node v; needs to cross to reach node vy.

A path is said to be a cycle if it starts and ends at the same vertex, while traversing
only distinct vertices in between.

Definition 1.10 (Minimum Path Length). Given a graph G, the minimum path length
between two vertices u and v is the smallest number of edges a walker must traverse
to move from vertex u to vertex v.

A path from u to v of length the minimum path length between u and v is said a
shortest path between u and v.
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If no path exists between node u and v, we say node u is unreachable from v and
conversely. In such case, we set their minimum path length to +oo.

Definition 1.11 (Completely Connected Graph). A graph G is said to be completely
connected (or simply connected) if the minimum path length between every pair of
distinct vertices is finite.

Definition 1.12 (Minimum Spanning Tree). A minimum spanning tree (MST) of a
graph is a subset of its edges which identifies a sub-graph connecting all its vertices
without any cycles and having the lowest possible total edge weight.

A graph can admit many MSTs.

1.2.3 Classical Statistical Comparison

A classical statistical comparison analysis can concern global or local graph descriptors.
As global-level statistic, we report the notions of global and local efficiencies which are
commonly used to quantify the small-worldness of functional networks (Bassett et al.
2006b; Bassett et al. 2017a; Liao et al. 2017; Achard et al. 2007).

Global Descriptors

The concept of small-world network was originally introduced by Watts et al. 1998 and
used to characterize networks which exhibit a good balance between short-distance con-
nections among neighbors nodes and long-distance connections between non-proximal
nodes.

Definition 1.13 (Global Efficiency). We define the global efficiency of a graph G as:

1 1
N(N —1) 2 7 (1.1)

uFvey TUU

Eglobal (g) -

where L, , is the minimum path-length between node u and v.

Definition 1.14 (Local Efficiency). The local efficiency of a graph G is computed as
the mean over all nodes of the node efficiency FE,oqa1(u):

1 1
Elocal(g) = N Z Enodal(u> - N Z

uey uey

1

1
y L g
Nxw) (NNw) = 1) e Lik

where N (u) is the set of nodes that are nearest-neighbors of the v and Ny, = |N (u)].

Global efficiency in a network quantifies the network capacity for efficient information
transfer across all nodes, potentially at high distance. The global efficiency reflects
network information integration. On the other hand, local efficiency focuses on neigh-
borhood communication and can be interpreted as a measure of network segregation,
i.e. the presence of node groups highly connected among them with short-distance
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paths (Sporns 2013; Deco et al. 2015). By considering global and local efficiency mea-
sures, networks can be categorized into three types: regular networks exhibit high local
efficiency and low global efficiency, random networks show low local efficiency and high
global efficiency, while small-world networks strike a balance between both efficiencies,
positioning themselves between regular and random networks (Fig. 1.6 (b) ).

Global and Local Efficiency in FC: small-world brain networks. Human brain
FC networks studies - and more broadly various brain networks, even spanning different
species- report a small-world topology (Watts et al. 1998; Achard et al. 2006; Bullmore
et al. 2009; Wang et al. 2009; Bassett et al. 2010; Rubinov et al. 2015; Varoquaux et al.
2012). This organization is hypothesized to emerge from the evolutionary process to
simultaneously optimize the cost of neuronal resources and the efficiency of information
transmission (Bullmore et al. 2012; Samu et al. 2014). Notably, connections among
anatomically adjacent brain regions are preferred to optimize the resource cost, while
long-distance connections are required for faster information integration (Vértes et al.
2012; Chen et al. 2013b).

Finally, we refer to nodal statistics on a graph as any possible application on the set of
nodes of the graph sg : V — s(V), which is a function of the adjacency matrix. Given
a nodal statistics, its graph average corresponds to a global graph descriptor and we

denote it as )

5(9) = W > sg(v) (1.3)

vey

Local Descriptors

In the following definitions (Def. 1.15-1.20), we report nodal statistics commonly used
in functional connectivity studies (Hallquist et al. 2018; Richiardi et al. 2013; Mheich
et al. 2020). These nodal statistics can be associated with small-world properties of
human brain (Liao et al. 2017) or with its modularity structure (Bullmore et al. 2009).
A supporting visualization can be found in panel (c) of Fig. 1.6.

Definition 1.15 (Degree). The degree of a node v represents the number of edges
incident to the node

deg(v) = Z oy -

uey

Definition 1.16 (Degree distribution). The degree distribution P(k) is the ratio be-
tween the number of nodes with degree equals to k and the total number of nodes
N.

The degree and the degree distribution are among the fundamental graph descriptors
that are commonly analyzed to understand the connectivity and structural characteris-
tics of a network (Newman 2003; Newman et al. 2001; Broido et al. 2019; Albert et al.
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2002).

Degree in FC: brain networks exhibit hubs. The nodal degree in FC networks
is frequently employed to identify specific hub regions. These hubs are characterized
by having a significantly high number of connections - or generally high centrality - in
the network (Cole et al. 2010; Wang et al. 2010; Zuo et al. 2012). Numerous studies
provide evidence for the presence of these hub regions in human brain networks, which
serve to connect different parts of the brain (Power et al. 2013; Tomasi et al. 2011;
Van den Heuvel et al. 2013). The presence of hubs is reflected in the heavy tail of
the observed degree distribution of FC networks (Liao et al. 2017; Bassett et al. 2008;
Achard et al. 2006; Bassett et al. 2017a; Heuvel et al. 2008; Eguiluz et al. 2005). A
significant portion of studies on FC networks report degree-based hub detection results
(Crossley et al. 2014; Guo et al. 2020; Hallquist et al. 2018; Saghayi et al. 2020Db).

Definition 1.17 (Clustering coefficient). We define the clustering coefficient of a node
v as a function of the number of triangles (i.e. group of three nodes) through the node
itself.

B 2T (v)
= dea(v)(deg(v) = 1)°

Ce(v)

The clustering coefficient can be considered an alternative measure of nodal efficiency,
capturing network segregation by quantifying the presence of edges between pairs of
node neighborhoods (Watts et al. 1998; Newman 2009).

Clustering coefficient in FC: brain networks modularity. As the clustering
coefficient provides insights into how a node tends to form interconnected groups, its
average serves as a quantification of the network’s modularity. Modularity refers to the
extent to which a network can be divided into node groups that have a high number of
connections among themselves but few connections within each group. These groups
are referred to as modules. The presence of modules in brain networks reflects the
localization of information in densely clustered nodes. The brain’s modular structure
is counterbalanced by the presence of hubs, ensuring the maintenance of the small-
world network property for efficient communication (Liao et al. 2017; Ferrarini et al.
2009; Sporns 2013). The brain’s modularity structure has also been extensively studied
(Laurienti et al. 2009; Ferrarini et al. 2009; Meunier et al. 2009; Chen et al. 2013a;
Bhanot et al. 2023) in network neuroscience. Within these studies, the clustering
coefficient and its average have been analyzed and applied to characterize different
brain states and conditions (Eguiluz et al. 2005; Richards et al. 2018; Sala-Llonch et
al. 2014; Bullmore et al. 2009; Saghayi et al. 2020b; Supekar et al. 2008; Zimmerman
et al. 2018).

Definition 1.18 (Betweenness centrality). We define the betweennes centrality of a
node given o(s,t), the number of shortest paths from node s to t, and o(s,t|v) the
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number of shortest paths from s to ¢ through v as

Bu)= Y

s,tey

o(s,t|u)
o(s,t)

Betweenness centrality is especially valuable when examining how information traverses
a network model. Nodes with high betweenness centrality play a crucial role as bridges
for information flow, and their identification can highlight significant nodes in the
network (Freeman 1977).

Definition 1.19 (Closeness centrality). The closeness centrality measures the facility
of connection of a node with respect to all the other nodes in the graph and it is defined
as follows

N -1
Zu;ﬁv d(U, U)

where d(v,u) the shortest-path distance between v and u

Cs(v) =

Withing the notion of closeness centrality, a central node is a node which is close to all
the other in the vertices set (Bavelas 1950).

Definition 1.20 (II-order centrality). The II-order or second-order centrality is defined
as the standard deviation of return times of a simple random walk starting in node v

S(v) = A}@@JW{ N ;Euuf)? - [Ml_ . ;EM]Q

with =, (k) the k-th return time of the simple random walk starting in u to w.

The second-order centrality was introduced to reevaluate the importance of node
bridges (Kermarrec et al. 2011), which facilitate information flow and connect dis-
tinct parts of a network, even if they are not strictly on the shortest paths (Fig. 1.6

(c))-

Centralities in FC networks: hubs detection. As previously mentioned, brain
networks are characterized by the presence of hub regions. A hub can be defined
as a vertex which occupies a central position among all other nodes in the network.
This central position might simply correspond to regions exhibiting a high number of
connections (Def. 1.15). However, the adopted definition of centrality impacts the
identification of this central position. Different centrality measures may identify differ-
ent hubs with varying properties (Sporns et al. 2007; Rubinov et al. 2010; Zuo et al.
2012). The selection of these statistics is fundamental for hub detection within FC net-
works, particularly when the aim is to compare changes in hubs across different brain
states. This may require testing different nodal statistics separately to identify the one
that most effectively distinguishes between diverse groups, based on the specific pathol-
ogy or task under consideration (Achard et al. 2006; Oldham et al. 2019; Achard et al.
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2012; Crossley et al. 2014; Power et al. 2013; Joyce et al. 2010; Drakesmith et al. 2015).

Finally, to conclude this section concerning statistical comparison method, we present
the definition of hand-crafted index that provides motivations to our research. It’s
worth noting that various engineered indices have been presented in the literature.
Notably, the Graphlet Degree Vector, which investigate the presence of sub-patterns
within functional connectivity graphs to characterize healthy subjects (Finotelli et al.
2021b).

Here, we report the hub disruption index, introduced by Achard et al. 2012. This index
allows to detect differences between groups in the identification of hubs and their re-
organization (Fig.1.7). We reformulate the original definition by explicitly mentioning
the dependence on s, the adopted centrality.

Definition 1.21 (s-nodal disruption). We notate a group of graphs having the same
vertices set as G = {Gry = (W, &) s.t. Vi = V} and, given a nodal statistics s, we
consider the group mean nodal statistics

1
sa(v) = €] > sg(v).

grLeqG

We define the s-nodal disruption of the graph G having same nodal set, with respect
to the group of graphs G as

rs(v) = s(v) — sg(v) (1.4)

Definition 1.22 (Hub disruption index). Given the s-nodal disruption of a graph
G with respect to the group G, we define the hub disruption index of G, ks(G), as
the coefficient of the linear regression of rs(v) as dependent variable and sg(v) as
independent variable

rs(v) = ks(G)sa(v) + 6 (1.5)

with £ the value of ks(v) when the sg(v) = 0. A toy example of the computation of
ks(G) can be found in Fig. 1.7.
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Ks(v)
ks(G)

sc(v)

Figure 1.7 — Visualization of an example of computation of the hub disruption
index of an individual graph G associated to the nodal statistics s with respect to
the graph collection G. To compute the hub disruption index of the collection G,
with respect to the nodal statistics s, we compute r4(v), i.e. the difference between
the nodal statistics s of the graph G and the mean nodal statistics of the group
sg(v). Thus, this difference is plotted against the mean nodal statistics of the group
s¢(v). Finally, we determine the regression line ks(v) = k5(G)sg(v) + 5. Adapted
from Achard et al. 2012.

1.2.4 Classification Methods

We name graph-based classification methods all approaches which aim at predicting
the brain state given the FC graph. These methods focus on optimizing the accuracy
(i.e. the rate of correct predictions) of the classification and may overlook the inter-
pretability aspect, essential in neuroscience and crucial for clinical applications.

While the development of a good classifier is fundamental for the true applicability of
FC graph as biomarker of brain disease, research in this context lacks comparability
across studies due to the variability of the pre-processing choices in graph inference
and in dataset acquisition parameters (i.e. close or open eyes, scan length etc.).

We propose to distinguish graph-based classification methods in three main groups
(Fig. 1.4). The first group employs a classifier which takes as input graph-features.

A common machine learning application to network neuroscience (Richiardi et al. 2013;
Bassett et al. 2012; Casanova et al. 2012; Cheng et al. 2015) employs the previous
defined graph-descriptors as input features of classifier algorithms. A schematic visu-
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alization of this procedure can be found in Fig. 1.8.
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Figure 1.8 — Visualization of a classification procedure, adapted from Richiardi
et al. 2013. (a) A signal is collected over brain regions (b) the corresponding graph
model is extracted (c) for each graph some features are extracted, graph belonging
to different classes are expected to have different features (d) the features are used
to distinguish between data points corresponding to the different classes.

While this kind of classifier is favored for its interpretability in relation to graph fea-
tures, it is important to acknowledge that, when compared with counterparts that do
not operate directly on the graph, they exhibit lower performance capabilities (Lei
et al. 2020). Moreover, each study, according to the considered pathology or even the
considered dataset, develop different classifiers based on different features (Du et al.
2018; Zanin et al. 2016). For instance FC has been used for the design of automatic
classification tools in various tasks concerning autism (Grana et al. 2021; Yang et al.
2022; lidaka 2015; Bilgen et al. 2020, schizophrenia (Filippis et al. 2019; Lei et al.
2020; Cheng et al. 2015), Parkinson disease (Rubbert et al. 2019), Alzheimer’s Disease,
epilepsy (Gholipour et al. 2022), and other brain states (Dai et al. 2022; Shen et al.
2022; Vergun et al. 2013; Ball et al. 2016; Lord et al. 2012; Kramer et al. 2023; Renard
et al. 2021).

Among the variety of dataset-specific classifier, a particular attention have received the
graph Laplacian.

Definition 1.23 (Laplacian matrix). We recall the definition of the Laplacian matrix
L:
L=D-A (1.6)

where D is the degree matrix, a diagonal matrix where D,u represents the degree of
node u, and A is the adjacency matrix.

In particular, different approaches determine the eigenvalues of the Laplacian matrix
as input of a classifier. Such classification methods have proven to detect network pa-
tient alterations in Alzheimer disease or autism spectrum disorder (Haan et al. 2012;
Mostafa et al. 2019; Schirmer et al. 2021; Mheich et al. 2020).
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The second category of classification methods under consideration relies on the use
of a graph distance or a similarity score (Mheich et al. 2020; Wills et al. 2020). The
use of graph distances and similarity scores determine an underlying metric space on
graphs, which allows to compute the individual distance between different subjects.
This permits the identification of clusters and the delineation of boundaries between
these groups. Despite the existence of numerous graph metrics, including those that
consider both structural and feature-based aspects simultaneously (Vayer et al. 2020;
Thual et al. 2022), there is currently no conclusive evidence regarding an optimal
distance metric to be employed in FC networks. Furthermore, there is a lack of graph-
metrics specifically defined to handle brain graph.

Finally, the third group includes reduction tools such as network embedding or GNN
methods (Cui et al. 2018; Hamilton 2020; Schieber et al. 2017; Zhang et al. 2022c). A
network embedding is a dimensional reduction tool which maps a graph into a vector
space by preserving specific graph features. Recently, the nodal embedding method
node2vec (Grover et al. 2016), which associates to each node a vector, was applied
to brain network characterization in Rosenthal et al. 2018. Embedding methods can
be applied to define new network similarity (Nikolentzos et al. 2017) and being used
for pathological discrimination (Carboni et al. 2021a; Lostar et al. 2020; Morris et al.
2017) or brain network evolution prediction (Goktag et al. 2020).

GNNs (Cheung et al. 2020; Hamilton 2020; Bronstein et al. 2017), also find applications
in network neuroscience (Bessadok et al. 2022a; Ménoret et al. 2017; Mhiri et al. 2020)
as tool to process graph-structured data. The basic operation in GNN consists in
aggregating feature vectors of the node neighborhood to update the node representation
across different layers (See Fig. 1.9).
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Figure 1.9 — Example of a GNN model for graph classification applied on an input.
The model includes a graph convolutional layer, a pooling layer and a fully connected
layer. A graph with node features is the input of the neural network model. As
first layer for each vertex (shown in blue) the neighborhood information (shown in
red) is first aggregated and then uses as input of a nonlinear activation function
converting the aggregated information into a new node features (shown in green).
This operation is repeated on all node of the graph. The pooling layer operates
reducing the number node per graph. Finally, a fully connected layer outputs the
probability of the graph to belong to three existing classes. Figure adapted from
Cheung et al. 2020.

This process is called message-passing and it is iterated to optimize a specific loss func-
tion. The graph-level representation can then be used for various tasks, such as node
or graph classification, regression, or clustering. A GNN model can directly include
the classifier as final layer, or instead learn a lower-space representation interpreted
as network embedding such as in Auto Encoder architecture (Banka et al. 2020). For
more details in the training of an artificial neural network, we refer to the Chapter 4.
An important assumption of GNN model is permutation invariance, meaning that the
predicted output does not depend on the chosen adjacency matrix ordering. However,
in brain graph where a node represents specific brain region, the permutation invari-
ance property may not be desirable and GNN models may need to incorporate node
labels information, for instance through attention (Velickovi¢ et al. 2017; Vaswani et al.
2017) or by learning adaptive node-wise aggregation scales (Choi et al. 2022).

While GNNs have shown promising results in FC (Bessadok et al. 2022a; Wang et al.
2022; Li et al. 2021, they have some drawbacks, including high computational costs
for training and the need for large datasets. Moreover, their generalization to different
datasets, especially from different centers or pathologies, can be challenging and require
image harmonization (Bottani et al. 2022; Cackowski et al. 2023). Additionally, the
lack of explainability in GNNs is an area that needs further evaluation (Kim et al.
2020a; Agarwal et al. 2023; El Ouahidi et al. 2022).
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Figure 1.10 — Visualization of examples of ER, WS, BA graph.

1.3 Generative Networks

An important step for the understanding of brain functional connectivity can be
achieved through the comparison of real data with synthetic ones. Here, we present
the graph synthetic models we will further analyse in comparison with true data. A
big branch of study in functional connectivity aims at finding explanation of brain
functioning by comparing it to null models or determining its possible evolution jus-
tification (Bassett et al. 2018; Dichio et al. 2023b; Dichio et al. 2023a; Morgan et al.
2018; Vértes et al. 2012). In our proposal, we will consider generative networks to test
whether the captured information is meaningful of the brain or derived by choices in
network inferences, particularly when comparing real data with models which repro-
duce brain characteristics such as the observed degree distribution, its efficiency, or
clustering coefficient.

1.3.1 Erdds-Rényi model (ER)

The Erdés-Rényi (ER) model generates a binomial graph G, , by the creation of edges
among n nodes (Erdos et al. 1959). Each edge has a probability p of being created.
The expected number of edges in G, , is then p(;‘) and its sparsity ration equals p. For
values of p close to 1, the graph tends to be the complete graph in which all possible
edges are present.

1.3.2 Watts-Strogatz model (WS)

The Watts-Strogatz (WS) model generates a small-world graph G, ;, by connecting
each node with its k neighbors nodes and then recombining each edge with probability
p (Watts et al. 1998). In this case, the number of created edges is always %k, requiring
an even value for k, which corresponds to a sparsity value of Q"—ff = (n—fl) The p
parameter, which regulates the probability of rewiring the edges, génerates the regular
graph (p = 0) in which all nodes have the same degree, and the completely random
graph (p = 1) in which the expected number of edges are randomly distributed on the
vertices set. We consider cases p = 0.1,0.5,0.9 and refer to the case p = 0.5 as the

small-world model.
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1.3.3 Barabasi-Albert model

The Barabasi-Albert model generates a graph G, ,, by favoring specific attachments
(Barabasi et al. 1999). It starts from a star graph of m + 1 nodes and attaches the
n —m — 1 remaining nodes to the m existing nodes with high degree. In that case,
the number of edges expected is given by the sum of the first m edges of the initial
graph with (n —m — 1)m edges created by attaching new nodes until the graph has

n vertices leading to the sparsity value equals to mn=m) Ty this case, having fixed n

2
and the level of sparsity [, there are two possible choices for m, corresponding to the
solutions of
n
mQ—mn—l—l( ) =0.
2
'I’L2

The existence of real solutions to the previous equations is only guaranteed for [ < &)
2

and in that case, it always has two positive solutions. We considered both cases, re-
ferring to BA1 and BA2, respectively for the lower and the highest root. Due to
the constraints of existence of real solutions, all networks generated according to a
Barabasi-Albert model are sparse (Del Genio et al. 2011).

1.3.4 Degree sequence preserving model (DSP)

The degree sequence preserving (DSP) model is based on the configuration model
(Barabasi et al. 1999). In this case, we will build degree sequence preserving copy
of graph coming from real dataset. The construction is also constrained by a given
sparsity ration, thus, given the correlation matrix associated with a real graph and
given a sparsity ratio, we threshold the correlation matrix to obtain a binary version
with the number of edges corresponding to the fixed sparsity. Then, we extract the
degree sequence and randomly generate a new graph that preserves the given degree
sequence. Since the degree of each node is fixed, we obtain a synthetic graph which
has the same sparsity as its real version. In such a way, for all sparsity values we
considered, we obtain the synthetic graphs whose elements are the model version of
the corresponding real graphs. An example of the simulated DSP networks is shown
in Fig. 1.11.

1.3.5 Economical preferential attachment model (EPA)

The economical preferential attachment (EPA) model has been defined to reproduce
functional brain networks (Vértes et al. 2012). The probability of observing a connec-
tion between two regions, u and region v is given by

Pup o (deg(u) deg(v))” (dup) ™"

where deg(u) is the degree of node u and d,,, is the Euclidean distance in anatomical
space between u and v. Since we want to generate network at fixed sparsity, given a
real network, we first extract its degree distribution. Next, we compute the p, , of all
possible pairs of nodes and then we select the edges with highest probability until we
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= Shared edges with real network
=== Unshared edges with real network

Figure 1.11 — Examples of real functional connectivity network of healthy subjects
and their corresponding model versions at different sparsity values. DSP: Degree
sequence preserving model; EPA: Economical preferential attachment model; EC:
Economical clustering model.

reach an expected number of edges. To ensure connectivity, we also add the Minimum
Spanning Tree as it is done in real data. v,n are hyperparameters of the model and are
fixed to better match the real data as in the work by Vértes et al. 2012. An example
of the simulated EPA networks is shown in Fig. 1.11.

1.3.6 Economical clustering model (EC)

The economical clustering (EC) model has also be proposed in the context of functional
brain networks (Vértes et al. 2012). The probability of observing a connection between
region u and region v is given by

Pup X (ku,v)’y(du,v)_n

where k, , is the number of nearest neighbors in common between nodes u- and v, while
d,, is the Euclidean distance in anatomical space between v and v. For being able of
tuning the sparsity of the model, we generate an EC model version of real network.
Given a real network at a given sparsity ratio, we determine its k,, and compute the
Pu,» 0f all possible node pairs. Finally, we select edges whose probability is higher until
the expected number of edges is reached. Again, we ensure connectivity by adding
missing edges from the Minimum Spanning Tree algorithm. The hyperparameters 7,
and 7 are fixed according to the work by Vértes et al. 2012. An example of the simulated
EC networks is shown in Fig. 1.11.

1.4 Summary and conclusion

In summary, the analysis of functional connectivity studies from a graph perspective
shows a high diversity across studies, leading to various questions and controversies in
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the research field (Hallquist et al. 2018; Cwicek et al. 2022). We have identified several
requirements for the development of a general analysis framework for FC networks:

» the framework should take into account existing and interpretable classical net-
work statistics;

« it should be adaptable to different type of pathologies or datasets, allowing for
the tuning or selection of appropriate graph statistics to suit specific applications;

o the framework should enable group characterization, facilitating the comparison
of network properties among different populations;

« it should also be capable of tracking subject individual differences, acknowledging
the unique brain connectivity patterns exhibited by individuals;

o the framework should allow for local characterization, enabling the detection of
local perturbations or anomalies within brain networks.

While we recognize the importance of developing classification methods for automatic
diagnosis, our primary focus is not solely on competing for classification accuracy with
existing methods. Instead, we aim to design an approach that is both adaptable and
interpretable at group and individual level and at global and local network scale. This
approach, presented in the next chapter, aims to bridge the gap between classical
graph descriptors and advanced network classification techniques, ultimately providing
an original characterization of healthy and pathological brain networks.
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Structural Pattern

Abstract

This chapter introduces a novel mathematical framework for functional connectivity
network analysis. It beginnings by providing an overview of two prior studies that
investigate nodal reorganization within functional connectivity networks. These explo-
rations provide the motivation for the formulation of a graph structural pattern -the
core definition of our work. Our newly introduced structural pattern finds also find
inspirations in the concept of nodal automorphically equivalence relations prevalent in
complex networks.

At the basis of our proposal is the introduction of a new nodal-statistics-based equiva-
lence relation which allows to fill the gap between classical nodal statistics and network
dimensional reduction tools.

This novel approach not only permits the combination of a multitude of nodal statistics
for network analysis, but also enables the characterization of networks at both individual
and group levels, global and local scales.
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2.1 Motivations

Based on a paper written in collaboration with Michel Dojat and Sophie Achard, published in 2021
IEEE 18th International Symposium on Biomedical Imaging (ISBI). (Carboni et al. 2021a)

In several application scenarios which focus on complex network studies, being able to
determine node roles has proven to be relevant (De Arruda et al. 2014; Weng et al.
2007; Borgatti et al. 2009; Finotelli et al. 2021a; lacopini et al. 2020). Historically, the
notion of node roles has been introduced in social science structural theory (Borgatti
et al. 1992b) with at least two different conceptions: structural equivalence and struc-
tural isomorphism. According to the former, nodes are equivalent if they share exactly
the same neighbors. For the latter, nodes are equivalent if there exists an automor-
phism which maps the first node to the second and wvice versa. The nodal structural
equivalence is related to the way nodes are connected with the other nodes in the graph
and allows to take into accounts the existence of patterns and sub-networks.

In the context of social networks, the structural equivalence determines the role an
agent recovers in a network, identifying peculiar node corresponding to influencers or
grouping together agents with similar roles.

Recently, node roles analysis has been applied to various application domains such
as web graphs (Meghabghab 2002), technological or biological networks (Rossi et al.
2014). Different algorithms have been proposed to detect structural equivalence classes
in a single network by evaluating similarity metrics among nodes (Yu et al. 2021; Jeh
et al. 2002; Chen et al. 2020).

In the case of brain connectivity networks, previous works characterized neurological
deviations by looking for hub nodes in a collection of graphs (Achard et al. 2012).
This research conducted by Achard et al. 2012 demonstrates a reconfiguration of these
hub nodes among comatose patients compared to a control group. As shown in Fig.
2.1, high-connected nodes in healthy controls exhibit a decrease in the number of
connections in comatose patients, while low-connected nodes in healthy controls show
an increase number of connections in comatose patients.
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Figure 2.1 — Hub disruption index with respect to the degree of functional net-
works in comatose patients. The x-axis shows the mean degree of nodes in healthy
volunteers, while the y-axis displays the difference in mean degree of nodes between
the two groups. Abnormal hub nodes exhibit reduced degrees in comatose patients
(e.g., precuneus) with respect to their high degress in the healthy group. Conversely,
non-hub nodes display increased degrees in patients (e.g., angular gyrus), compared
to their low healthy group degrees. The hub disruption index is quantified by the
slope of the fitted (red) line, and node color indicates inter-group degree differences.
Adapted from Achard et al. 2012 with permission.

From this outcome, it becomes evident that the characterization of nodal roles within
functional connectivity networks holds the promise of elucidating the neurological im-
plications underlying brain connections. Furthermore, it highlights the necessity for
extending the structural equivalence concept to encompass a collection of graphs.

From a mathematical point of view, the organization of nodes can be captured through
the concept of graph automorphism, which is defined as follows:

Definition 2.1. An automorphism of a graph G = (V, &) is a bijection 7 between G
and itself such that:

Vu,v € V,{u,v} € &€ <= {n(u),n(v)} €&

If two vertices are connected in G their images through the map 7 must be connected
too. An obvious automorphism is the identity map, however not-obvious automorphism
could exist.

Definition 2.2. Two nodes v, w € V are structurally isomorphic or automorphically
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equivalent v = w if there exists an automorphism 7 : G — G such that 7(v) = w
An example of automorphically equivalent nodes is shown in Figure 2.2

Proposition 2.1. If two nodes are structurally isomorphic, so are their adjacent nodes.
v=w = YueVstf{v,u} €& I eVst {wu} el

for which it values:

Proof. By hypothesis we have v = w, so it exists an automorphism 7 such that w =
m(v). By definition of automorphism:

{vu} € & = {n(v),n(u)} ={w,m(u)} € €

Let u’ equals to m(u) then we have {w,u'} € £ for which it values u = v’ via 7. O
a b g h
e id
C d i j

Figure 2.2 — Structural isomorphic nodes are shown in the same color.
a=c=h=j,b=d=g=1,e=f. Figure adapted from Borgatti et al. 1992a.

The detection of graph automorphisms goes under the graph isomorphism problem
(Grohe et al. 2020; Babai 2016). Substantial advancement has been made in defining
algorithmic tests for establishing graph isomorphism, with specific emphasis on the
Weisfeiler-Lehman algorithm algorithmic tests for two graph to be isomorphic (We-
isfeiler et al. 1968; Furer 2017). However, its worst-case complexity can still be ex-
ponential in the number of nodes. The employment of a brute force approach to
find nontrivial automorphisms necessitates assessing all possible permutations of the
adjacency matrix. This process becomes easily intractable in real complex network
applications, specifically when dealing with network collections.

In our pursuit of identifying node roles in FC graphs, we opted in our work Carboni et
al. 2021a for node2vec embedding algorithm (Grover et al. 2016). This algorithm has
demonstrated to effectively capture the structural equivalence of nodes. The node2vec
algorithm learns a low-dimension nodal representation by sampling a particular random
walk on the graph, thus determines a map such that similar nodes have similar repre-
sentation. The node2vec approach reproduces the feature learning aspect of word2vec,
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a technique in natural language processing. In word2vec, similar features vector are
learned for words within a sentence possessing similar semantic, or syntactic char-
acteristics (Mikolov et al. 2013, Tab. 2.1).

Table 2.1: Semantic and Syntactic definition.

Definition

refers to the inherent or inherent sense of a
Semantic word, phrase, or symbol that relates to its real-
world concepts, ideas, or objects.

pertains to the grammatical structure and ar-
rangement of words within a sentence. It con-
cerns the relationships between words based on
how they are combined in a sentence.

Syntactic

When analysing a sentence, the position of a word can provide valuable insights. For
instance, a word positioned near a verb might serve as an adverb, while a word pre-
ceding the verb could be its subject. Additionally, words that frequently co-occur in
sentences tend to possess similar semantic meanings, whereas those that seldom co-
occur might lack semantic connections.

The distinction between syntactic similarity and semantic similarity is translated into
structural node similarity and homophily node similarity (Fig. 2.3). In the node2vec
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Figure 2.3 — Homophily and Structural Equivalence on Les Misérables network.
Results of the nodal clustering on node2vec embedding space obtained with the
DFS (left) and BFS (right) within Les Misérables network. Adapted from Grover
et al. 2016.

algorithm, these two concepts are captured using distinct sampling strategies within
the graph, as part of the node2vec random walk algorithm. Precisely, for each node,
the algorithm computes a neighborhood set of a fixed number of similar nodes. The
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breadth-first sampling (BFS) considers the neighborhood of a node as nodes which
are immediate neighbors of the source. Whereas, the depth-first sampling DFS se-
quentially select nodes at increasing distances from the node itself. node2vec allows
to smoothly interpolate between BFS and DFS by tuning its hyperparameters. This
flexibility enables the algorithm to explore different structural aspects of the graph and
capture varying degrees of syntactic and semantic similarities.

A visualization of the two differences sampling strategies is shown in Fig. 2.4. The
resulting clustering on the embedding of Les Misérables network® (Min et al. 2016) in
Fig. 2.3 shows the corresponding graph notions of semantic and syntactic: nodes high
connected one to each other are detected by a pure BFS strategy, while nodes which
occupy specific positions in relation with the other nodes are grouped together when

S,
N\I¥

Figure 2.4 — node2vec sampling strategies. Generation of a neighborhood set of
size 3 for node u, according to the two different sampling strategies. In red the
BFS-neighborhood (s1, $2, s3). In blue the DFS-neighborhood (sy4, s5, ). Figure
from Grover et al. 2016.

In our prior research (Carboni et al. 2021a; Carboni et al. 2021b), we employ the ca-
pabilities of node2vec in capturing nodal structural equivalence for the design of clas-
sification methods which differentiate comatose patients from healthy controls. This
demonstrates the significance of considering nodal structural role for discerning differ-
ent states of consciousness. However, the use of node2vec, as well as broader network
embedding tolls, comes with certain drawbacks. These include the necessity of meticu-
lous hyperparameters tuning, dependence on massive dataset for training, and potential
difficulties in providing comprehensive explanations and interpretations. Moreover, the

'The network based on Les Misérables is constructed by representing characters as nodes and
connecting together characters who appear together in the same scene.
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inherent stochasticity of node2vec could impact the performances and comparability
of the outcomes. To mitigate these challenges, we propose an alternative strategy, ap-
plicable when dealing with graphs of lower dimensions. This strategy involves direct
operation in the graph space itself, favoring an integration between network science
and neuroscience practitioners.

This new framework of analysis is inspired and motivated by the previous mentioned
results. It does not require to learn low-space representation, but extract the graph
structural pattern by means of classical nodal statistics.

2.2 Nodal-statistics-based equivalence relation for
graph collections

Based on a paper written in collaboration with Sophie Achard and Michel Dojat and published in
Physical Review E. Carboni et al. 2023b

(b) COMPARISON AT GLOBAL LEVEL BASED ON GRAPH STRUCTURAL PATTERNS
(a) SINGLE GRAPH STRUCTURAL PATTERN
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Figure 2.5 — Graphical visualization of the proposed nodal-statistics-based equiv-
alence relation in graph collections. Global comparison and nodal characterization
of graphs: (a) structural patterns associated with the same statistics are determined
on the graphs, (b) the structural patterns are matched to compute a similarity value,
(¢) nodal participation in nontrivial classes is obtained for nodal characterization.

We examine a network collection defined on the same node-set, node role detection
can provide meaningful information for collection characterization, possibly revealing
a specific nodal partitioning. Indeed, in many real-world applications, the available
graph set can potentially be characterized by specific node role classes (Kersting et al.
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2016; Borgwardt et al. 2005; Cardillo et al. 2013; De Domenico et al. 2015; Hu et al.
2020). However, while many graph comparison metrics already exist (Wills et al. 2020;
Schuld et al. 2020), there is no evidence of a method for comparing them, moreover,
none of them directly address the detection of differences at the nodal level or it has
been showed to be adapted for functional connectivity characterization.

The contributions of this work are fourfold. First, we define a structural equivalence
relation on a graph node-set based on nodal statistics (any functions on the node-set).
The proposed definition allows determining node role classes according to statistics
values. The main innovation of this definition is given by the possibility of identifying
the graph structural pattern based on an original combination of as many statistics as
desired.

Second, we define two global measures of a statistics set which determine parsimony
and heterogeneity of its elements. These measures only depend on the graph structure
and can be used for statistics selection or graph complexity evaluation (Bianconi 2007).
Third, we propose to compare graphs with the same vertices according to their struc-
tural patterns similarity. Indeed, thanks to the identification of node classes, we can
compare different graph instances throughout the evaluation of the similarity of their
structural patterns.

Finally, we propose a framework to determine node categories in a network group which
allows to characterize the group at a nodal level and to discriminate nodes according
to their role.

A visualization of our proposal is depicted in Fig. 2.5.

2.2.1 Structural equivalence for undirected unweighted graph

We propose to identify the graph structural pattern with the equivalence classes of a
newly defined equivalence relation.

Definition 2.3. We propose to define an equivalence relation ~y, associated with a
statistics s, on the nodes set V of a graph as follows:

vy u <= s(u) = s(v). (2.1)

Definition 2.4. For a nodal statistics having as s()) a dense and continuous subset of
R, the equivalence is defined up to a fixed positive small €: v ~; u <= |s(u)—s(v)|< €
(Fig. 2.6).

As ~; is an equivalence relation on V), it is possible to find its induced partition P on
V,

Definition 2.5.
P, =— ={la];~, Vles(V)}, (2.2)

NS

which defines the structural pattern of G associated with the statistics s,
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Figure 2.6 — ¢ choice effects in Erdés-Rényi graphs. The chosen € corresponds to
a number of significant digits to be used when comparing different nodal-statistics
values. When the number of significant digits is higher the number of extracted
classes increases. Depending on the considered statistics, the number of classes
usually stabilizes around 4 or 5 significant digits.

and whose elements are the classes of equivalence [al;, VI € s(V),
lali~, =la] ={beV]a~; b < s(a) =s(b) =1}. (2.3)

A necessary condition for two nodes to be automorphically equivalent is to belong to
the same equivalence class.

Subsequently, we extend the equivalence relation associated with a statistics to any
statistics collection S = {s;};—1.__», requiring that:

Definition 2.6.
a~sb <= ar~g b ar~gb ... an~, b (2.4)

n

Again, we can determine Ps = {[a].s}, the induced partition by ~s on V as the
intersection of each class of the considered {s;};—1, . A visualization of the partitions
associated with degree statistics is shown in Fig. 2.5 (a).

Since the automorphically equivalence relation preserves any nodal statistics, the nodal
statistics-based equivalence relation associated with an infinity collection retrieves the
automorphically equivalence. However, a finite nodal statistics collection with this
property may also exist (Fig. 2.7).

We propose to compare statistics collection according to new defined global graph
parameters which measure respectively parsimony and heterogeneity of its elements.
These global parameters depend on the graph structure.
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Figure 2.7 — Visualization of the structural pattern associated with different nodal
statistics on a trivial graph whose nodes have the same degree. Left: Structural
pattern associated with nodal degree. Right: Structural pattern associated with
combination of betweenness centrality and degree. Colors correspond to different
classes. In this toy example, the degree alone is not sufficient to reveal different
equivalence classes and identifies a unique class. While, when two nodal statistics
are considered, a nontrivial structural pattern appears.

Given Pg, one can compute exactly the number of eligible automorphisms that map
nodes into the same equivalence class, as it is computed below. Therefore, for each
statistics collection on a graph G, we can estimate how many permutations are pre-
vented from being tested as being adjacency preserving in a brute force approach.

Definition 2.7. We introduce the power coefficient (PC) of a set S for a graph G =
(G.€)

#{permutations preserving PS}‘

PCq(S) = ‘log #{permutations of V}

(2.5)

with

#{permutations preserving Ps} = [] |o|!
o€ Ps

#{permutations of V} = [V|!.

The value [V|!e FC corresponds to an upper bound of the number of automorphisms
of G. Indeed, PC is increasing when more nodal statistics are combined together (Fig.
2.8). In the special case in which the permutations preserving Ps can be identified
with the automorphisms of G, PC can be interpreted as entropy of the network ensem-
ble (Bianconi 2007) having G topology. In all other cases, PC encodes the amount of
information given by & on the structure of G and it is a parsimony measure for S.
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Figure 2.8 — Normalized power coefficient (1:/’(\3) on nodal statistics incremental

sets of two Erdds-Rényi graphs of 90 and 100 nodes: the more nodal statistics are
considered the higher the PC.

Definition 2.8. Since PC takes values in [0, log ﬁ[, with an upper bound strictly

depending on the number of nodes, we propose a normalized version of PC, PC e [0, 1]

e PCqg(S)
PCy(S) = ToglV (2.6)
_ g log #{permutations preserving Ps} 2.7)

log #{permutations of V}

The higher the 136, the more the collection of statistics S captures the heterogeneity
of nodal structural roles in G. Indeed, for a vertex-transitive graphs (i.e. all nodes
are automorphically equivalent) PCg(S) = 0 for all nodal statistics S, while if it
exists a collection S s.t. F/)EQ(S) = 1 then the graph G does not admit nontrivial
automorphisms. Hence, we introduce the notion of perfectly orthogonal statistics for
heterogeneity evaluation of a collection elements. First, two nodal statistics are said to
be perfectly orthogonal if their union-associated equivalence relation induces the trivial
partition: all nodes belong to a single element set. Next, we extend the definition to
any nodal statistics set: a nodal statistics collection is said to be perfectly orthogonal
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if its induced partition is trivial.

Definition 2.9. An orthogonality measure for a given nodal statistics set on a graph

can be assessed by computing the number of nodes in nontrivial classes on its associated

partition:

{v € Vs.t. #[v]~g # 1}
V]

Og(S) is the ratio between the number of nodes in nontrivial classes and the total
number of vertices and corresponds to an orthogonality score.

Og(S) = (2.8)

By definition, S is perfectly orthogonal if and only if Og(S) = 0.

2.2.2  Structural equivalence for graph collections

Structural pattern comparison

Graphs that have the same node set can be compared by evaluating the correspondence
between their structural patterns. The node set constraint can be easily circumvented
when two graphs do not share all the nodes, by including all nodes to the graphs
vertices set and allowing the network to be composed of more connected components.
Indeed, each network can be seen as the union of one strongly-connected component
with as many single disconnected vertices as needed. We propose to compare structural
patterns as follows. Let G,G’ be two graphs having same vertices V and let S be a
statistics collection whose associated partitions are Ps, P on G, G’ respectively.

Definition 2.10. Given bijective mapping from Ps, P§ to an initial segment of the
natural numbers as enumerations, let ¢(v;), ¢'(v;) be the enumeration of the classes of
v;, the correspondence structural pattern score between G, G’ is defined as:

VI

C(G,G") = max — V] 2 ZX = (vy)) (2.9)

mell

where II is the set of all coupling between the elements in Ps and the elements in P§
and X is the indicator function. A possible implementation of C(G,G’) in polynomial
time is given by the Hungarian algorithm (Kuhn 1955) for assignment problems with
a complexity O(max{|Ps|, |P5|}3) which in the worst case equals O(|V|?).

The correspondence structural pattern score can be applied for two different purposes:
to evaluate structural pattern similarity between two graphs (Fig. 2.5 (b)) or to eval-
uate the similarity of structural patterns associated with different statistics collection
on the same graph (Fig. 2.9). Since at least one class of Ps shares one element with
one of the classes in P§, C(G,G") > ‘ As a consequence, even perfectly orthogonal
statistics set of a graph can exhibit a correspondence pattern score higher than zero
(Fig.2.9 (c¢)). If for every class in Ps there exists one class of P§ having all and only its
elements, then Ps = P; and C(G,G’') = 1. The opposite is also true: same partitions
determine a correspondence structural pattern score equals to 1. More general prop-
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erties of the defined global measures can be found in the Sec. 2.2.3.
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(a) One statistics is enough informative
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Figure 2.9 — Visualization of global metrics on three graphs (column) for three

cases (I‘OW). (a) One statistics is sufficient: the PC value observed when considering two statistics (right) is
equal to degree alone (left), meaning that betweenness provides no more useful information for determining the
structural pattern. When we compare the two partitions with the degree statistics alone, we observe 75% of the
nodes belonging to the same class and no trivial class (orthogonality equals to 1). This result can be interpreted
in two different ways: more node statistics are needed to identify hub nodes, or the considered graph does not
contain hub nodes. (b) Two statistics are more informative: to associate degree and betweenness improves the
power coefficient. The identified patterns share half of nodes and their orthogonality is 0.5, meaning that their
partition situates half of nodes in trivial classes. (c) Perfect orthogonality: The minimal orthogonality value is
reached when one of the two compared structural pattern has only one class and the other contains trivial classes.
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Nodes distinctiveness or similarity

Since eligible automorphisms can only map nodes within classes, a node in a trivial class
(one element class) is always a fixed point. Thus, to provide a group characterization
at nodal level, we propose to enumerate for each node its participation into nontrivial
classes as a measure of the node’s propensity not to be a fixed-point of admissible
automorphisms. The more a node appears in nontrivial classes, the more it shows
common properties with some other nodes in the graph. The persistence of a node
to belong to a class in an entire graph group reveals the presence of shared properties
among the group for the given node, i.e. hubs nodes, peripheral nodes, etc (Fig. 2.5
(c)). Thus,

Definition 2.11. given a graphs group G = {G, = (Wi, &) s.t. Vi = V}, and a
statistics collection § we count the percentage of participation of each node of V in
nontrivial classes:

{9 € G st #)% # 1)
|G

Vv eV NPPZ(v) = NPPg(v) (2.10)

with [v]g’; the class of v in Gy in the partition induced by S. In the following, with
abuse of notation, we suppose S fixed and avoid to explicitly repeat the dependency. A
high percentage of participation means the node shares its role in many graph instances
in the group, while at the opposite a node which does not share its role consistently
shows a distinctiveness behavior in the considered graphs collection.

2.2.3 General properties
Properties of PC

Note that all the listed properties are true also for PC.

Observation 1. On the same graph the PC increases on increasing collections of nodal
statistics (Fig. 2.8).

Observation 2 (PC for vertex-transitive graph). the PC of every nodal statistics
collection equals zero for vertex-transitive graph.

Observation 3. If the PC of a nodal statistics collection equals the PC of one of its
elements, then the correspondence structural patterns score of the structural pattern
associated with the collection and the one of that element is 1.

Observation 4. If the PC of a graph equals 0 for one collection of statistics, then the
graph does not admit nontrivial automorphisms.

Observation 5. If two graphs are isomorphic than their PC is the same for all statistics
collection.



2.2. Nodal-statistics-based equivalence relation for graph collections 55

Relation with network ensembles entropy Our proposed method serves a spe-
cific purpose, focusing on introducing novel statistical tools adapted for the analysis
of brain functional connectivity networks. However, its significance extends beyond
its primary objective, as it also holds relevant implications for prior publications that
aimed to characterize the complexity of networks (Bianconi 2007; Bianconi 2009; Bo-
gacz et al. 2006). In particular, when adopting a statistical-mechanics approach, an
ensemble of networks possessing specific structural properties can be effectively exam-
ined through its associated entropy. The number of eligible automorphisms of a graph
corresponds to the number of permutations of its adjacency matrix. Following Bogacz
et al. 2006, the partition function of the ensemble of a given topology G = (V, £), with
Aut(G) the set of automorphism of G, is defined as

Definition 2.12 (Partition function of the network ensemble).

V!

Z(G= (V€)= ’|Aut(g)\‘

(2.11)

We denote PC* the PC computed for a collection of statistics whose equivalence relation
corresponds to the automorphisms relation. Then, we have

1
PC* = |log Zl (2.12)
PC* = |—-logZ| (2.13)
PC* =logZ (2.14)
entropy o< PC* (2.15)

This is in line with the idea that a higher level of order in the graph structure is
associated with lower entropy, indeed for vertex-transitive graphs the entropy reaches
is minimal value at zero (Bianconi 2007; Bianconi 2009). A comparison with-in entropy
and PC* can be found in Table 2.2. Note that in the first and last examples the statistics
collection choice does not affect the PC.
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Table 2.2: Entropy and PC* on known graphs

Graph Entropy PC*
° [
[ J
o 1 <log n(an)) vS, PC(S) = PC*
° - =0 !
n\ 0 PC* = log— =0
Trivial graph with n s
isolated nodes
°
°
o® 1 <1og _n<n2—1>> B S = {deg}, PC(S) :2 ITS
° n 1 PC* = log (n—2)
n!
ER model p(Z) =1 e T 5 = log n(n—1)
2 connected nodes and n—
2 isolated nodes
S = {deg}, PC(S) = PC*
1 n! 1 . (n—1)!
- == PC* =1 =
n log (n—1! n logn o8 X n!
. = log—
Star graph with n nodes
and n — 1 edges
1 ol VS, PC(S) = PC*
—log— =0 n!
n "~ nl PC* = log — =
n!
. =0
Complete graph with n
nodes having n — 1 edges

Properties of Orthogonality

Observation 6. A nodal statistics whose induced partition is composed of classes
having each one a unique element, is perfectly orthogonal with every nodal statistics.

Observation 7. If collection of statistics is perfectly orthogonal, all other collections
having as subset that collection are perfectly orthogonal as well;

Observation 8. If a perfectly orthogonal statistics set exists on a graph, then the
graph does not admit nontrivial automorphisms.
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Properties of Correspondence of structural pattern score

Observation 9. All graphs defined on the same node set, having same degree sequence,
have a correspondence of structural patterns associated with the degree statistics equals
to 1.

Observation 10. The minimum values of structural pattern score is given by ﬁ

Observation 11. If on the same graph, the structural patterns score of different nodal
statistics reaches the minimal value, then the nodal statistics are perfectly orthogonal.

2.3 Summary and conclusion

Graph models become largely used in real world applications and many nodal statistics
have been proposed for node roles detection. However, the most informative statistics
for graph comparison is highly dependent on the observed data and combining more
statistics can be relevant.

We propose a mathematical framework with the specific purpose of providing new
statistical tools for the analysis of brain functional connectivity networks.

We introduce a nodal-statistics-based equivalence relation and propose an innovative
way to combine nodal statistics for graph structural pattern detection. We will use
this notion to compare different graphs and characterize graph family defined on the
same node set. As the equivalence relation depends on a collection of nodal statistics,
we define a power coefficient and an orthogonality score to evaluate parsimony and
heterogeneity of the collection. Such coefficients can be used as revisited measure of
nodal statistics dependency.

We define a graph similarity based on node roles and a mathematical tool to detect
nodes persistently different from others, by computing the percentage of participation
in nontrivial classes. Interestingly, nodes which tend to persistently belong to trivial
class are likely to play peculiar roles in the graphs, while at the opposite nodes with a
high participation, appear to share similar property with other nodes.
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Applications

Abstract

In this chapter, we present experiments demonstrating the benefit of a graph struc-
tural pattern approach in functional connectivity brain networks, both for characteri-
zation and in classification task. We compare real data with synthetic models, achieve
consistent characterizations of healthy brain connectivity, enable pathological condition
differentiation, and highlight the impact of time-series length on regional characteriza-

tion. These findings underline the potential of our framework in comprehensive brain
network analysis.
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In this chapter, we present experiments leading to key results regarding the appli-
cation of a graph structural pattern characterization in functional connectivity brain
networks. First, we provide a brief overview of the databases we utilized. To ensure
the generalizability of our method and to demonstrate its adaptability, we made an
effort to incorporate a wide range of data. However, as we elucidate in the previous
chapter, it is crucial for the data to adhere to specific criteria to ensure the robustness
of the results.

The four main experiments are organized as follows. First, a comparison between real
data and synthetic generative models is provided. This serves as a proof of concept,
illustrating that graph structural patterns have the capacity to capture information
unique to brain connectivity networks.

In the second experiment, we detail how we achieved a consistency results across healthy
subjects from various databases. This endeavor results in a comprehensive healthy
characterization of brain connectivity.

Our third experiment pertains to a classification method for distinguishing between
different pathological conditions. This method is effective even in discerning subtle
differences among groups with varying symptomatology.

Lastly, we explore the influence of the length of time-series on regional characterization.
We recommend the use of long acquisition time to effectively capture relevant patterns.

Overall, these results showcase the potential of utilizing graph structural patterns in
analyzing functional connectivity brain networks, encompassing generalization across
healthy subjects, discrimination between pathological conditions, and the significance
of data length in regional characterization.

3.1 Databases

3.1.1 Preprocessing of rs-fMRI data

The data preprocessing is based on the resting state fMRI pipelines developed by V.
Munoz-Ramirez, M. Dojat, C. Delon-Martin and S. Achard at the Grenoble Institute of
Neuroscience (Munioz-Ramirez et al. 2021). The pre-processing requires an anatomical
scan and the resting state acquisition. It encompasses several essential steps, as outlined
below and summarized in Figure 3.1.

» Anatomical segmentation: the first step involves segmenting the anatomical data
using the Statistical Parametric Mapping (SPM) software. This segmentation
process categorizes each voxel into anatomical structures within the brain.

» Resting state realignment and conversion: in this step, the 4D resting state data
is realigned, which ensures that the time series data for each voxel is temporally
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Figure 3.1 — Scheme for BOLD time-series extraction from fMRI acquisition. Fig-
ure adapted from Richiardi et al. 2013.

aligned with the others. Additionally, the data is converted from a 4D volume to
a series of 3D slices.

» Atlas registration: the adopted atlas is registered to the native space of the resting
state data. This alignment allows for mapping brain regions onto the subject’s
volumes for subsequent analyses.

o Artifact detection: the pipeline includes a procedure to detect artifacts within
the resting state data. Artifacts can arise from various sources, such as motion
or physiological noise, and their identification is essential to ensure data quality.
Points associated with a motion of more than 2mm are discarded.

These steps collectively form the preprocessing pipeline for the rs-fMRI data, aiming
to enhance the quality and reliability of subsequent analyses. The use of this pipeline
helps to align the anatomical and functional data, correct for potential artifacts, and
prepare the data for further investigation into graph structural patterns and functional
connectivity within the brain.

3.1.2 Adopted network inference protocol

The definition of the functional network is achieved throughout different phases shown
in Fig. 3.2. First, the acquired fMRI data are aggregated over regions which are
determined according to an anatomical labeling. Particularly, depending on the desired
granularity, we adopt one of the following atlas for our analysis: AAL90, AAL16, and
AICHA (Tzourio-Mazoyer et al. 2002; Rolls et al. 2020; Joliot et al. 2015). These
atlases divide the brain into 90, 116 and 384 regions of interest (ROI), respectively.
The choice of atlas depends on the specific research question and the desired resolution
of analysis. For each ROI, we estimate a unique time series signal by averaging the
fMRI time series over all voxels in each parcel, weighted by the proportion of gray
matter in each voxel.

The following stage consists in the application of the discrete wavelet transform to the
fMRI time series. Thanks to this procedure, each time series is decomposed into a
set of compactly supported basis function, which are uniquely scaled in frequency and
located in time. As a results, for each subject, different fMRI time series at distinct
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Figure 3.2 — Adopted framework for graph definition. Courtesy of Sophie Achard.

scales are at disposal. At each scale, which represents an interval of frequencies, the
correlation among regions is estimated. Specifically, we estimate the correlation at the
frequency band lower than 0.1Hz, since it has been observed that the resting state
information activity is mainly captured at this frequency range (Biswal et al. 1995;
Lowe et al. 1998; Cordes et al. 2000; Salvador et al. 2005).

Finally, we consider unweighted graphs obtained by graph filtering procedure on the
absolute of the correlation matrix. A subject-dependent threshold is determined in
order to obtain a fixed number of edges in all the estimated networks (Richiardi et
al. 2013; Vidal et al. 2011; De Vico Fallani et al. 2017). The threshold guarantees a
specific sparsity level in the final graph, ensuring that only the strongest connections
in absolute value, are preserved independently on the correlation values (Achard et
al. 2006; Fornito et al. 2013). The choice of the threshold is performed to extract
graphs belonging to the small-world regime as shown in Fig. 3.3 and corresponds
to low sparsity values. The small-world regime is defined in terms of global and local
efficiency: when a network has global and local efficiencies comprise between the ones of
a corresponding regular lattice and random networks. Moreover, to ensure connectivity,
the edges of the Minimum Spanning Tree are always added. We refer to our work in
Appendix B.2 where we make effort to avoid the selection of an a priori threshold
and to Appendix B.3 where we refine the small-world regime definition by identify
Watt-Strogatz hyperparameters model to fit global and local efficiencies of real data.
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Figure 3.3 — Visualization of the small-world regime characterization of functional
connectivity graphs.

Table 3.1: List of the studied databases including different classes of subjects.
#Vol: Number of rs-fMRI volumes, HC: Healthy Controls, CO: Comatose patients,
PD: Parkinsonian patients, PD-H: Parkinsonian patients with visual hallucinations,
PD-I: Parkinsonian patients with visual illusions. Gin-Chuga: Grenoble Hospital,
Chu-CF: Clermont-Ferrand Hospital. ChuStr: Strasbourg Hospital, HCP: Human
Connectome Project, iShare: internet-based Students’ Health Research Enterprise,
Gin-Chuga: Grenoble Hospital.

Provider Subjects Scanning Parameters Age range
Total B0 TR (ms) #Vol Frequency Band years
HCP (Termenon et al. 2016) HC(100x2) 3T 720 1200  0.043-0.087 Hz 20-43
iShare (Tsuchida et al. 2017) HC(1814) 3T 850 1046  0.037-0.074 Hz 18-35
Gin-Chuga (Munoz-Ramirez et al. 2019) HC(11)-PD-de novo(13) 3T 1000 500  0.031-0.063 Hz 46-70, 51-70
ChuStr (Achard et al. 2012) HC(20) - CO (17) 1.5T 3000 405  0.042-0.084 Hz 25-45, 21-82
Chu-CF (Marques et al. 2022) HC(20) PD-H (17) PD-I (19) 3T 3000 200  0.041-0.083 Hz 60-78, 63-78, 61-75

We build networks from resting state fMRI (rs-fMRI) datasets from different databases
(Table 3.1) which gather Healthy Controls (HC) and different pathologies. For dataset
including patients with Parkinson Disease (PD), we consider a modified version of
the AAL3 (Rolls et al. 2020), including the first 94 regions and the subcortical regions
known to be affected in PD (substantia nigra, red nucleus, cingulate cortex, accumbens
nucleus), in addition, we parcellate the Cerebellum in three regions per hemisphere
(Posterior, Anterior, Inferior), resulting in a total of 106 regions. The same data and
atlas are used in Munoz-Ramirez et al. 2019. The iShare dataset was pre-processed
similarly but with different software elements (Tsuchida et al. 2017).

Information about the main acquisition parameters and the populations are provided
in Table 3.1, for more details we refer to the corresponding references.
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3.2 (1) Synthetic Data and Real Data

Based on a paper written in collaboration with Sophie Achard and Michel Dojat and published in Phys-
ical Review E. (Carboni et al. 2023b)

In this section, we aim at providing interpretation of the different defined measures of
interest of the previous chapter, namely the Power Coefficient and the Orthogonality
score over a single graph, the Correspondence of Structural Pattern as pair-wise simi-
larity score among networks and finally the local characterization of a graph collections
through the nodal percentage of participation in nontrivial classes (NPP). For this ex-
tent, we evaluate our framework on synthetic data, as null-models for which we have
a clear understanding of the underlying topological structure, and compare them with
real data to show as a proof of concept that our proposal captures meaningful brain
network information.

3.2.1 Material

We consider different generative graph models and compare them according to their
sparsity level, defined as the ratio between the edge count on the graph and the edge
count in a complete graph having the same nodes. In generating synthetic graphs,
we constraint the number of nodes to 90 to align with the corresponding real dataset,
AAL9O (Tzourio-Mazoyer et al. 2002). We examine ER, WS and BA1,BA2 models,
together with a synthetic version of corresponding real networks coming from HCP:
DSP conserving the same observed degree distribution, and EPA and EC models. As
real data, we consider the 200 networks coming from HCP dataset (Tab. 3.1). When
analyzing graph at fixed sparsity, we select 0.1 which guarantees that each extracted
network belongs to small-world regime corresponding to global and local efficiencies
comprised between the ones of ER graph and ones of the complete graph (Achard
et al. 2007; Latora et al. 2001, Fig. 3.3). We consider the classical nodal statistics
previously defined: degree, clustering coefficient, and the three centrality measures of
betweenness, closeness, and second-order. We refer to the previous chapter for the
definition of the different considered metrics (Chapter 2).

3.2.2 Results and Discussion
Power Coefficient.

In Fig. 3.4, we report the clustering coefficient PC on different generative models and
real connectivity graphs with respect to their sparsity ratio. We can appreciate the
different behavior of PC across models and sparsity levels.

As expected, for every nodal statistics the PC equals zero when computed over the
complete graph (corresponding to the sparsity ratio of 1). In this case, all nodes are
automorphically equivalent and it is not possible to extract any equivalence class.
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In the Barabasi-Albert model (BA1, BA2), we observe a monotone decreasing PC(cc)
with respect to the sparsity. Indeed, when the sparsity is low, we have few nodes of high
clustering coefficient and many nodes of very low coefficient values. The number of
automorphisms exchanging nodes of low values is then higher for small sparsity, while
when the sparsity ratio increases the clustering coefficient values distribution tends to
be less concentrated on the node set, identifying more classes and corresponding to
higher PC. ER and WS show similar behavior especially for high sparsity values, while
when the sparsity is low, WS tends to differ from ER model.

Regarding brain models, EPA fits correctly the HCP networks when the sparsity is
higher than 0.7. EC and DSP curves follow the HCP curve tendencies, but with lower
PC values. A possible explanation of this difference is the presence of hubs in HCP
networks not well reproduced in the models. Indeed, a higher number of hubs will
result in higher PC U score.

Interestingly, the PC on the real data have the highest performance at all sparsity
levels, reproducing the higher complexity of the real FC network topologies. When
evaluating the PC of different measures on the same model, we can select for each
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Figure 3.4 — Mean normalized power coefficient (136) of clustering coefficient statis-
tics on different generative models and real brain connectivity graphs (HCP) at dif-
ferent sparsity levels. ER: Erdos-Rényi; WS: Watts-Strogatz; BA1, BA2: Barabasi-
Albert; DSP: Degree sequence preserving model; EPA: Economical preferential at-
tachment model; EC: Economical clustering model.
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sparsity ratio which nodal statistics have the higher discriminative power on the node
set. A same analysis can be performed over different nodal statistics, (see for instance
Fig. 3.5).
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Figure 3.5 — Mean normalized power coefficient (156) of degree statistics on differ-
ent generative models and real brain connectivity graphs (HCP) at different sparsity
levels. ER: Erdos-Rényi; WS: Watts-Strogatz; BA1, BA2: Barabasi-Albert; DSP:
Degree sequence preserving model; EPA: Economical preferential attachment model;
EC: Economical clustering model. Interesting, the PC on the real data have the best
performance at all sparsity levels. When evaluating the PC of different measures on
the same model, we can select for each sparsity ratio which nodal statistics have the
higher discriminative power on the node set.

Orthogonality and Correspondence of Structural Pattern.

In Fig. 3.6, we evaluate orthogonality and correspondence structural pattern of statis-
tics pairs in WS and BA2 models at 0.1 sparsity. A visualization of their structural
patterns is shown in Fig. 3.7.

In WS model, the degree shows high orthogonality values with all nodal statistics:
many nodes that have same degree also share a second nodal statistics value. This is
likely due to its degree distribution. Indeed, in a general WS graph G, ;, the degree
distribution has a peak at the £ values, meaning many nodes have approximately the
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Figure 3.6 — Nodal statistics pair comparison on two models. Upper Triangular
Matrix: WS (Watt-Strogatz model); Lower Triangular Matrix: BA2 (Barabési-
Albert) model. Left: Orthogonality for a pair of statistics; Right: Correspondence
structural pattern score for a pair of statistics. cc: clustering coefficient; b: beetwee-
ness centrality; d: degree; s: second-order centrality; cs: closeness centrality.

same degree (Albert et al. 2002). Consequently, the probability of retrieving high pop-
ulated classes associated with degree is increased in this model.

Interestingly, the correspondence patterns scores between the degree and the other
statistics are low except for the second-order centrality (Fig. 3.7, Top Right). Degree
and second-order centrality capture different topological graph features (Kermarrec et
al. 2011) and usually appear unrelated in complex networks. However, in the consid-
ered case, their induced partitions on the graph largely overlap. Indeed, they exhibit
a strong negative correlation coefficient (—0.98 in average). Their high orthogonality
and high correspondence scores reveal this correlation.

In WS model, the statistics pair, which shows the least correspondence pattern scores,
is composed by degree and betweenness centrality: while trivial degree classes capture
high connected nodes, the betweenness centrality better refines the class associated
with the average degree value.

Completely different results are observed in BA2 model, for which the orthogonality
of all considered statistics pair together with their correspondence scores appear close
to 1.0. This shows how in preferential attachment model all statistics pairs determine
almost the same structural patterns: few populated classes of high connected nodes
and high populated class for the leaves. Indeed, for BA1,BA2 models a very hi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>