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Abstract

The main objective of this thesis is to explore brain and artificial neural network connectivity
from a graph-based perspective. While structural and functional connectivity analysis has been
extensively studied in the context of the human brain, there is a lack of a similar analysis
framework in artificial systems. To address this gap, this research focuses on two main axes.

In the first axis, the main objective is to determine a healthy signature characterization of the
human brain resting state functional connectivity. A novel framework is proposed to achieve
this objective, integrating traditional graph statistics and network reduction tools to determine
healthy connectivity patterns. Hence, we build a graph pair-wise comparison and a classifier
to identify pathological states and rank associated perturbed brain regions. Additionally, the
generalization and robustness of the proposed framework are investigated across multiple datasets
and variations in data quality.

The second research axis explores the benefits of brain-inspired connectivity exploration of artifi-
cial neural networks (ANNSs) in the future perspective of more robust artificial systems develop-
ment. A major robustness issue in ANN models is represented by catastrophic forgetting when
the network dramatically forgets previously learned tasks when adapting to new ones. Our work
demonstrates that graph modeling offers a simple and elegant framework for investigating ANNs,
comparing different learning strategies, and detecting deleterious behaviors such as catastrophic
forgetting. Moreover, we explore the potential of leveraging graph-based insights to effectively
mitigate catastrophic forgetting, laying the foundations for future research and explorations in
this area.

Résumé

L’objectif principal de cette these est d’explorer la connectivité cérébrale et celle des réseaux de
neurones artificiels d'un point de vue de leur connectivité. Un modele par graphes pour I'analyse
de la connectivité structurelle et fonctionnelle a été largement étudié dans le contexte du cerveau
humain, mais un tel cadre manque encore pour I’analyse des systemes artificiels. Avec 'objectif
d’integrer I'analyse de la connectivité dans les systéme artificiels, cette recherche se concentre sur
deux axes principaux.

Dans le premier axe, I’'objectif principal est de déterminer une caractérisation de la signature saine
de la connectivité fonctionnelle de repos du cerveau humain. Pour atteindre cet objectif, une
nouvelle méthode est proposée, intégrant des statistiques de graphe traditionnelles et des outils de
réduction de réseau, pour déterminer des modeles de connectivité sains. Ainsi, nous construisons
une comparaison en paires de graphes et un classifieur pour identifier les états pathologiques et
idéntifier les régions cérébrales perturbées par une pathologie. De plus, la généralisation et la
robustesse de la méthode proposée ont été étudiées sur plusieurs bases de données et variations
de la qualité des données.

Le deuxieéme axe de recherche explore les avantages de I'intégration des études de la connectivité
inspirée du cerveau aux réseaux de neurones artificiels (ANNs) dans la perspective du développe-
ment de systemes artificiels plus robustes. Un probleme majeur de robustesse dans les modeles
d’ANN est représenté par 1'oubli catastrophique qui apparait lorsque le réseau oublie dramatique-
ment les taches précédemment apprises lors de 'adaptation a de nouvelles taches. Notre travail
démontre que la modélisation par graphes offre un cadre simple et élégant pour étudier les ANNs,
comparer différentes stratégies d’apprentissage et détecter des comportements nuisibles tels que
I'oubli catastrophique. De plus, nous soulignons le potentiel d'une adaptation a de nouvelles
taches en contrélant les graphes afin d’atténuer efficacement I'oubli catastrophique et jetant ainsi
les bases de futures recherches et explorations dans ce domaine.
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The brain is certainly one of the most investigated human organs and still remains
one of the most cryptic. Understanding how the brain works is one of the greatest
challenges of current neuroscience with multiple implications across diverse disciplines
such as: anatomy, psychology, clinical neuroscience, but also philosophy, ethics, and
more contemporary domains such as neuromorphic computing, automated systems,
and artificial intelligence.

In a clinical perspective, the progress of technology and the advancement of imaging
techniques have given the possibility to obtain an accurate and precise reproduction
of the brain anatomy, including neurons and blood vessels, together with a real-time
monitoring of brain functionality with significant impacts on human health.

These advances manifest in a spectrum of applications. To name a few, they range from
the application of artificial intelligence algorithm for the analysis of computed tomog-
raphy scans for traumatic brain injury patients (Brossard et al. 2021), the integration
of uncertainty estimation into sclerosis lesion segmentation (Lambert et al. 2022), to
the pioneering development of magnetic resonance fingerprinting protocols (Christen
et al. 2014; Delphin 2022), or to the innovative use of microbubbles with ultrasound
to breach the blood-brain barrier and design new drug transport (Meairs et al. 2007).
Certainly, the use of advance methods to assist clinicians in their work is of particular
interest to obtain accurate and early diagnosis, as it happens in breast cancer detection
(Yoon et al. 2023), providing the development of new disease biomarkers.

However, an autonomic diagnosis tool alone does not equate to a comprehensive un-
derstanding of disease mechanisms, which remains of crucial importance for treatment
refinement.

From this point of view, the emergence of network neuroscience holds great promise
for its ability of providing a simple model for brain exploration. Certainly, the brain
naturally acts as a network, both structurally and functionally and at different ag-
gregation scales: synapse connections among single neurons, interconnections among
neuronal regions, and cooperative connections among hemispheres. All these types
of relations can be elegantly modeled as graphs on which well-founded mathematical
definitions find a natural application. The use of such a graph model particularly
for functional connectivity exploration can provide fascinating results and advance our
comprehension of brain mechanisms under diverse states. When coming to the study of
neurological disorders, network neuroscience can be crucial for identifying specific non-
invasive biomarkers and for the definition of new therapies. For instance, in Alzheimer
and Parkinson disease or for region mapping before surgical intervention (Fox et al.
2010; Du et al. 2018; Zhang et al. 2021; Oujamaa 2020; Nandakumar et al. 2021).

It is no coincidence that deep learning models simulating brain information processing
are organized into networks. These artificial neural networks comprise multiple units
or neurons and are constructed with increasingly complex and intricate structural ar-
chitectures. Since their introduction, artificial neural networks (ANNs) have been
developed to emulate the information processing, learning, and decision-making mech-
anisms of biological neural systems and have been studied with the aim of addressing
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fundamental questions about how humans perceive the world, store and recall infor-
mation, and how this information influences their behavior (Rosenblatt 1958; Bengio
et al. 2015; Hassabis et al. 2017).

With this purpose, many research laboratories actively work towards creating ANN
models that resemble the human brain more closely (Stanford Artificial intelligence
Laboratory, Center for Brains, Minds, and Machines, Google Brain, etc.).

The integration of neuroscience and artificial intelligence extends beyond the develop-
ment of brain-inspired neural network systems and bio-inspired algorithms (Hassabis
et al. 2017). From neuroscience to artificial intelligence, the study of the brain can
lead to the design of more robust, interpretable, and explainable artificial systems.
In fact, many algorithms find inspiration in natural intelligence or are constrained to
learn through human-features (Klyuzhin et al. 2022; Ilyas et al. 2019). On the oppo-
site direction, contributions of artificial intelligence into neuroscience allows to read the
human mind, with the development of recent models able to reconstruct images from
human brain activity recorded during functional magnetic resonance imaging (Takagi
et al. 2023; Nishimoto et al. 2011; Poldrack 2011; Mensch et al. 2021; Zhang et al.
2022b) or to finely understand how information is processed in different brain areas
(Bashivan et al. 2019; Kanwisher et al. 2023).

In light of this productive integration and exchange between neuroscience and artificial
intelligence, the Multidisciplinary Institute of Artificial Intelligence in Grenoble dedi-
cates a research axis to the development of robust and understandable Neuromorphic
systems by leveraging psychology, cognitive science, informatics, neuroscience, neu-
roimaging, mathematics, and statistics. It is within this overarching framework that
this Ph.D. project finds its roots, spanning both the Neuroscience Institute of Greno-
ble’s Functional Neuroimaging and Brain Perfusion team and the Laboratoire Jean
Kuntzmann’s Statify team, with collaboration with the Psychology and Neurocogni-
tion Laboratory LPNC.

Particularly, the general scope of this thesis is to provide a network-science perspec-
tive for neuroscience into the analysis of human brain functional connectivity
networks, and for a brain-inspired artificial neural networks robustness assess-
ment.

Both branches share the development of innovative network analysis tools allowing an
original integration.

The former research branch, concerning human brain functional connectivity explo-
ration, aims to ultimately establish a network signature of a population group, to
enhance our comprehension of the underlying brain mechanisms implicated in patho-
logical dysfunction and possibly refining the nosology of brain disorders. To achieve
this objective, a novel framework is proposed, integrating established graph statistics
and network reduction tools, to determine connectivity patterns. Hence, we build a
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graph pair-wise comparison and a classifier to identify pathological states and rank
associated perturbed brain regions.

The latter research branch, concerning ANNs, specifically addresses artificial intelli-
gence robustness issue by developing a brain-inspired framework of analysis to detect
the occurrence of catastrophic forgetting. While the connectivity of the brain has
been extensively studied and modeled, there is a limited number of works conducted
in this area for ANNs and our proposal lays the foundation for future research and
explorations in this area.

Following this main division, the present dissertation is organized into two main parts
dedicated to these two distinct research axes.

The first part begins by contextualizing and providing background on functional brain
connectivity graph modeling. It reviews the state-of-the-art in this domain and in-
troduces the principal research questions. Chapter 1 also includes a concise recall of
graph theory definitions. Chapter 2 introduces our main contribution, by giving its
motivations and culminating in the definition of an innovative nodal equivalence rela-
tion for characterization of individual graph and graph collections at both global and
local scale. Chapter 3 demonstrates the benefit of our proposal in four applications
in human functional connectivity: characterizing generative synthetic data and real
data, analyzing healthy subjects, developing a pathological classifier, and exploring
data quality’s influence on local characterization.

The second part of this manuscript is dedicated to artificial neural network systems.
Chapter 4 introduces the robustness challenges in the development of artificial intel-
ligence systems, focusing into the paradigm of continual learning and reviewing the
existing strategies and scenarios in this context. Subsequently, Chapter 5 proposes a
brain-inspired approach to analyse feedforward neural network by the development of a
resting state graph model for ANNs. The final chapter, Chapter 6, applies our approach
to characterize and explore different continual learning strategies on two architecture
and image recognition tasks.

The appendix supplements our work with related studies, including investigations into
data-quality considerations in functional brain connectivity in a topological data anal-
ysis fashion and the application of a graph-based model for the detection of adversarial
attacks in ANN models.
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Part A

Human Brain Connectivity






——— Chapter 1 —

Context and Background

Abstract

In this chapter, we delve into the analysis of functional connectivity (FC) studies, with
a special focus on methods adopting a graph perspective. We show the diversity across
studies and the resulting controversies on results. We introduce graph-theory concepts
and graph descriptor commonly considered in functional connectivity studies. We em-
phasize the significance of interpretability and explainability in FC analysis, highlight-
ing their role in understanding underlying physio-pathological mechanisms. We define
these concepts in the context of the multilevel abstraction present in graph-based meth-
ods. Furthermore, we present generative network models that serve as effective tools
for the comparative assessment of real data against synthetic counterparts. Finally, we
identify the requirements for a comprehensive FC analysis framework, emphasizing in-
terpretability, adaptability, group characterization, individual differences tracking, and
local perturbation detection.
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1.1. Functional Connectivity 13

1.1 Functional Connectivity

The human brain represents only 2% of the total body mass, yet it is remarkably
energy-demanding, consuming 20% of the body’s energy even at rest (Rolfe et al. 1997;
Fox et al. 2010). Neurons require oxygen and glucose for their activity, which are not
stored directly in the cells, and instead supplied through blood flow. When neurons
are activated, nearby capillaries experience increased blood flow to meet the energy
demands. This results in a localized change of brain oxygenation levels which can be
detected by functional magnetic resonance imaging (fMRI). Introduced in the early
1990s, fMRI captures the blood oxygen level-dependent (BOLD) signal as measure of
brain activity (Ogawa et al. 1990; Mansfield et al. 1977; Pauling et al. 1936; Kwong
2012). The increase in the oxygenated hemoglobin alters the local magnetic properties
of the blood, which can be detected by the fMRI scanner (Fig.1.1). The BOLD signal
is commonly used to create activation maps, showing which brain regions are involved
in specific tasks or responding to stimuli (Lv et al. 2018). Broadly, fMRI finds nu-
merous applications in neuroscience and clinical studies, for instance in the detection
of pathologies, or the design of new treatments (Fox et al. 2010; Wang et al. 2010;
Bobholz et al. 2007).

Applied Magnetic Field c

—

& S)
ee— B, ¢ &, —
) %
Neuronal Transient Blood flow "
Activation Deoxyhemoglobin Blood volume BOLD Activation

(Strong paramagnetic)  Oxyhemoglobin
(Weak Diamagnetic)

Non-uniform magnetic environment creates BOLD contrast

Figure 1.1 — Principle of fMRI: when neurons are activated, nearby capillaries
respond by increasing blood flow to meet the energy demands. This results in
a localized change in brain oxygenation levels, causing variations in the magnetic
properties of blood. By quantifying these magnetic field changes, fMRI can mea-
sure the Blood Oxygen Level-Dependent (BOLD) signal, providing a non-invasive
method to visualize and study brain activity. Adapted from Karunakaran et al.
2021.

fMRI allows to study brain activation during specific tasks and to acquire brain images
while the scanned subject is at rest, letting the mind wandering and without perform-
ing any specific task. Resting state fMRI (rs-fMRI) has gained attention since it allows
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to scan patients who may struggle with task-based instructions, such as those with
neurological or psychiatric conditions or pediatric patients.

In the analysis of rs-fMRI we can distinguish two different approaches: functional seg-
regation and functional integration! (Lv et al. 2018; Friston 2011). The former focuses
on understanding the specific local functions of individual brain regions with the objec-
tive of associating to each region a particular function. On the other hand, functional
integration analyses the brain in terms of the relationships or connectivity between
different brain areas, considering the whole brain as an interconnected network. Our
work adopts an integration point of view and explore the statistical dependencies or
correlations between the activity of different brain regions. We call this functional
connectivity (FC).

There are multiple metrics and methods currently used for functional connectivity stud-
ies: independent component analysis (ICA), seed-based FC analysis and graph-based
analysis (Lv et al. 2018; Friston 2011; Van Den Heuvel et al. 2010).

ICA is a data-driven technique used to identify independent components in brain activ-
ity. It aims to separate the brain data into independent sources that represent distinct
functional networks. While ICA can be effective in identifying individual components,
it may not provide a comprehensive view of the whole brain network and its global
properties (McKeown et al. 1998; Calhoun et al. 2009; Zuo et al. 2010; Varoquaux
et al. 2010b; Beckmann et al. 2004; Calhoun et al. 2001).

Seed-based FC analysis involves selecting a specific brain region - named the seed - and
examining its functional connectivity with other regions in the brain. This method is
useful for investigating the connectivity of a specific region of interest. However, it
focuses on pairwise connections and may not capture the complex interactions and
global properties of the entire brain network (Biswal et al. 2010; Joel et al. 2011; Tang
et al. 2021; Job et al. 2020; Bluhm et al. 2009; Fox et al. 2005; Fox et al. 2007).

Here, we assume a network perspective and adopt a graph-based analysis approach
(Sporns 2016; Bullmore et al. 2009; Mheich et al. 2020; Bassett et al. 2017b; Smith
et al. 2011; Vico Fallani et al. 2014). In this approach, the brain is modeled as a graph,
a properly defined mathematical object which allows to encode the relationships among
multiple units. Particularly, in our work, units represent brain regions and their rela-
tionships is encoded in edges.

This model offers several advantages, allowing to analyze the topology of brain net-
works, investigate local and global properties, and explore functional relationships be-

!Note that here we refer to segregation and integration at the brain level. The same concepts can
be found when considering a network model, see Def.1.13, Def.1.14 in Sec.1.2.3
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tween brain regions. Within the network modelling for FC analysis, there is a diverse
array of approaches. In the following section, we propose a categorization of the main
existing methods.

1.1.1 Network-based methods for FC

Graph theory is a mathematical branch originated to solve complex system problems.
Its origins track back to the famous Seven Bridges of Konigsberg problem (Réz 2018;
Euler 1741), but its theoretical foundations and adaptability allow it to find applica-
tions in a variety of domains. In the context of brain imaging and specifically in resting
state FC, it provides a mean to analyze the topology of brain networks. A network
is a natural way to encode the pair-wise relations among in a set of units (the nodes
or vertices). Graph theory is used to investigate both local properties (within spe-
cific brain regions) and global properties (across the entire brain) of functional brain
networks. Regarding the temporal aspect of FC, two main modeling approaches are
distinguished: static and dynamical models. In static models, the interaction between
different brain regions is estimated over the entire available temporal length resulting
in a single network per subject. On the other hand, dynamical models inferred multi-
ple networks at different instant intervals to capture temporal changes in connectivity
(Lurie et al. 2020; Varley et al. 2022). Our focus is dedicated to static model, but it
can be extended for the investigation of dynamic FC.

A main issue of dynamical models is given by the choice of the number of instants to be
considered for the estimation. A controversial point in static model is instead given by
the fact that it implicitly assumes that the estimated dependency is static over time.
The inference of network model requires crucial steps, particularly in defining units,
the graph nodes and the links, the graph edges (Fig. 1.2). Defining units from fMRI
data, where a unique time-series is extracted from each voxel, necessitates the selection
of an aggregation method.

node definition

fMRI acquisition network-based
model

edge definition:

% FC estimator
S

Time series

pre-processing

Figure 1.2 — Visualization of the required modeling steps to determine a FC
network-based model from fMRI acquisition.

Two main approaches exist: anatomical-based and data-driven methods (Vico Fallani
et al. 2014).

Anatomical-based methods use brain region parcellations to assign each voxel to a spe-
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cific brain regions defined a priori. This approach enables the comparison of graph
instances among different subjects while preserving regional identity, making it par-
ticularly useful for clinical studies. Another approach is to define vertices based on
previously-specified coordinates and to include nearby voxels within the region, or
even to consider each voxel as graph node.

On the other hand, data-driven approaches employ clustering algorithm or dictionary
learning to define regions of interests, without prior anatomical information (Abraham
et al. 2013; Varoquaux et al. 2011; Bhanot et al. 2019).

The second requirement for graph-modeling is given by the edge definition, correspond-
ing to the choice of an estimator of FC interaction among brain regions. An established
way to quantify the strength of interaction between a pair of regions is given by the
Pearson correlation coefficient between signal of aggregated regions (Hlinka et al. 2011.
The used of Pearson correlation implicitly assumes that the temporal order of the sam-
ples within each time series and their mutual interaction can be disregarded. Other
methods adopt partial correlations, tangent space of covariance matrices, mutual in-
formation, etc (Smith et al. 2011; Dadi et al. 2019; Richiardi et al. 2013).

In the following, we adopt as FC estimator the Pearson correlation at a specific fre-
quency scale, obtained by the application of the discrete wavelet transform (Achard
et al. 2006; Achard et al. 2012). The discrete wavelet allows to decompose each fMRI
time series into a set of compactly supported basis functions that are uniquely scaled
in frequency and located in time. The use of wavelets considers the long-memory prop-
erties of fMRI time series and produces estimation with known variances based on the
number of data points at each scale.

Recently, methods have been developed to simultaneously account for noise and intra-
regional correlation impact, i.e. the correlation of signals within a region, on the
inter-regional correlation estimation (Lbath et al. 2023; Achard et al. 2020).

After estimating functional connectivity using graph-based approaches, some authors
apply a graph-filtering procedure to refine the network representation (Vico Fallani et
al. 2014; De Vico Fallani et al. 2017; Achard et al. 2006; Achard et al. 2007). This step
aims to select the most important weights and determine an unweighted graph, which
can be crucial for better interpretation the underlying brain connectivity patterns.

Various filtering procedures exist, and they can vary across studies. Some methods are
based on topological properties of the graph to identify the most significant connec-
tions (Bordier et al. 2017; Chen et al. 2008; Achard et al. 2006; Ferrarini et al. 2009).
Others focus on determining a unique connected component within the graph, ensur-
ing that all nodes are connected and form a coherent network (Bassett et al. 2006a).
Proportional thresholding is another common technique, where a threshold is applied



1.2. State-of-the-art 17

to retain a certain percentage of the strongest edges, effectively sparsifying the graph
and eliminating weaker connections (Achard et al. 2007; Bassett et al. 2009).

1.2 State-of-the-art

In the following section, we review existing methods to analyse FC brain networks.
Specifically, we discuss works which consider undirected unweighted graph model ex-
tracted for each subject. As we mentioned, in a clinical perspective FC has the potential
to serve as a non-invasive biomarker of pathological disease. Thus, we will discuss clas-
sification methods in the state-of-the-art which strive to assist clinicians in making
diagnoses. Indeed, classification involves the process of categorizing items into prede-
fined classes or categories based on their inherent characteristics or distinctive features.

We stress the importance in any FC network analysis of providing an improvement in
our comprehension of the underlying physio-pathological mechanisms (Park et al. 2013;
Vico Fallani et al. 2014). Indeed, FC analysis methods, especially when a classification
task is included, should be evaluated in terms of their interpretability and explan-
ability. We adopt these concepts in a broader sense with respect to their classical
machine learning algorithm definition (Gilpin et al. 2018).

Within FC studies, any graph-based method introduces several levels of abstraction
within its model: this commences from the brain, progresses through its FC network
model, and culminates in the extraction of meaningful features from this graph (See.
Fig. 1.3). Hence, the interpertability and explainability of FC analysis framework’s

analysis

abstraction level

&S5 e

Figure 1.3 — Interpretatbility and explainability in FC studies.

should also encompass all levels of abstraction. We define these concepts as follows.
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The FC method’s interpretability refers to a transparent and clear understanding of
the entire analysis process: from the network model definition to the methodology used
for the analysis itself. On the other hand, the FC method’s explainability corresponds
to its effectiveness on illuminating the functioning of the brain across varying states or
conditions, ultimately reconnecting with the brain level.

As illustrated in Figure 1.4, we categorize existing FC networks analysis frameworks
into two main groups: classical statistical comparison and classification methods.

FC Graph Analysis

Classical Statistical Classification
Comparison Methods
. . Graph . :
Global Descriptors Local Descriptors Distance-based Embedding / GNN
features-based

Figure 1.4 — Categorization of existing analysis methods for human brain FC
graph-based models.

The former refers to a statistical comparison of established graph descriptors for dis-
tinguishing network groups (Bullmore et al. 2009; Wang et al. 2010). This statistical
analysis can be performed for characterization of real data by comparing it with null
models (Vasa et al. 2022, Appendix B.3) or to compare different brain states, such
as pathological subjects and healthy controls (Mheich et al. 2020). Graph descriptors
can be extracted at different scales. At the global-level, a single graph descriptor is
computed over the entire network, resulting in a single value per network, but multiple
graph statistics can also be extracted per each node, and then compared in average
or individually across groups. Formal definition of classical graph descriptors can be
found in the next section.

On the other hand, classification methods refer to all approaches which have been
developed to categorically classify subjects into different brain states. Classification
methods have the advantage with respect to classical group comparison, to individ-
ually compare subjects. They are used for instance to predict if a network graph
belongs to a pathological or healthy subject. Given the growing interest in artificial
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intelligence, it is not surprising that such classification methods are based on machine
learning techniques: systems which learn directly from data in order to take decision
without specific instructions (Valliani et al. 2019; Du et al. 2018).These methods offer
notable benefits, as they can uncover subtle patterns emerging directly from data that
might not be apparent through traditional analyses. A commonly approach within clas-
sification methods employs machine learning algorithms trained on a set of extracted
graph features (Richiardi et al. 2013; Craddock et al. 2009).

Other classification methods directly define a similarity score or a network pair-wise
distance and apply it to cluster or classify different brain states (Wills et al. 2020).
Finally, the development of network embedding and graph neural network (GNN)
methods has also found captivating applications within network neuroscience. Nu-
merous existing techniques have now embraced GNNs to classify different brain states
(Bessadok et al. 2022a). Network embedding methods aim to represent nodes in a
graph as low-dimensional vectors while preserving a specific proximity function. By
transforming nodes into continuous vector representations, network embedding facili-
tates the application of existing machine learning algorithms on graph data. GNNs can
also be interpreted as network embedding methods, since they provide a low-space rep-
resentation of a graph into a latent space. With respect to classic network-embedding
methods, the hidden representation is optimized for the specific classification task.

The diversity in FC analysis methods is accompanied by a multitude of studies that
are grounded in varying FC estimation and acquisition parameters. To provide an
overview of this diversity, we present in the following subsection the outcomes of a
PubMed literature search.

1.2.1 PubMed Literature Search

A literature search has been conducted on PubMed on the 30th September 2021 using
the query: (resting state) graph fMRI connectivity (comparison OR prediction). The
results were filtered from 2016 to 2021, two reviews paper were discarded, together
with studies concerning small animals or task MRI, resulting in a total of 196 entries.
Full results can be found in Tab. A.1 in Appendix A. Among the results 58% of the
papers apply classical statistical methods, while 24% use a classification-based method
(See Tab. 1.1)

To give an idea of the data variability in pre-processing and acquisition parameters,
we extract magnetic field, repetition time, number of acquired volumes and scanning
time, and eyes condition (open, closed, or cross-fixing). Concerning the network model
after the pre-processing step, we select the considered frequency band and the chosen
regions definition if given by pre-defined atlas. Finally, we collect the number of sub-
jects, the analyzed group labels, and the data availability. These details were manually
extracted from the text. To envisage an automatic extraction process, it is essential
to establish a standardized format for presenting data, ensuring enhanced comparabil-
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Table 1.1: Literature search has been conducted on PubMed on the 30th Septem-
ber 2021 using the query: (resting state) graph fMRI connectivity (comparison OR
prediction,).

FC Graph Analysis | n (frequency)
Classical Statistical Comparison 114 (58%)
Classification Methods 47 (24%)

Both 22 (11%)
Other 13 (7%)

ity and facilitating searches in future works. In addition, in many cases, not all the
needed information was included within the main text and must be sourced from sup-
plementary materials or referenced publications or might not have been available at all.

Moreover, we included in our review the major used public fMRI dataset: UK BioBank
(Sudlow et al. 2015), ABIDE (Di Martino et al. 2014), MJFOX (Loh et al. 2020),
Human Connectome Project (Woolrich et al. 2001), iShare (Tsuchida et al. 2017),
ADHD-200 (Bellec et al. 2017), and COBRE (Mayer et al. 2013; COBRE 2012). As
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Figure 1.5 — Variability in the number of volumes, repetition time (TR), and scan
acquisition time on the considered PubMed Literature Search.

we can observe in Fig. 1.5 and in Tab. A.1, there is a high parameter diversity
both in data acquisition and pre-processing steps. Particularly, there exists a high
variability in repetition time (TR), acquired number of volumes and scan duration,
which, both for static and dynamic estimation of brain connectivity, will result in
differences in the estimated networks.The range of acquired volumes spans from 100
to 1200, and this parameter introduces the most significant variability in the overall
recorded results. Notably, the observed mode is 240, which corresponds to acquisition
times of approximately 15 seconds and over 18 minutes for the extreme observed TR
cases (minimum of 70 ms and maximum of 5000 ms). Given such substantial variations,
it is reasonable to expect disparities in graph estimation and the conclusions drawn
under these distinct parameters of acquisitions.
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Besides, the eyes condition at the scan can not be discarded. Generally, there are three
different possibilities: subjects are instructed to close their eyes, to keep their eyes
open or to fix a colored cross in a screen. Studies have been conducted for assessing
the difference in brain connectivity depending on the eye condition at scan (Zou et
al. 2015; Patriat et al. 2013; Barry et al. 2014; Petro et al. 2022; Yuan et al. 2014;
Agcaoglu et al. 2019), demonstrating the need of a standard acquisition method to
improve studies comparability and data pooling .

This diversity hampers study results comparison and multi-site functional connectivity
data sharing. To cite a dramatic example, we report a review on Parkinson’s Disease
where different resting-state functional connectivity conditions results into contradic-
tory conclusions. These results are reported in Tab. 1.2 adapted from Tessitore et al.
2019.
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Table 1.2: Summary of the methods and results from the studies on Parkinson
disease which adopt a graph-based analysis included in the review by Tessitore et
al. 2019. PD: Parkinsonian patients HC: healthy controls.

Reference

‘ Subjects

Main findings

Sang et al.
2015

26 early PD 30
HC

Decreased global efficiency in PD compared to
HC. Increased nodal centrality in bilateral pal-
lidum, inferior parietal lobule, and medial supe-
rior frontal gyrus, and decreased nodal centrality
in caudate nucleus, supplementary motor areas,
precentral gyrus, and middle frontal gyrus in PD
compared to HC

Berman et al.
2016

19 PD 16 HC

Increased local efficiency in central executive net-
work and salience network.

Fang et al.
2017

26 early PD 19
HC

Decreased nodal degree, global efficiency, local
efficiency and characteristic path length within
the Sensorimotor network (SMN) and visual net-
work in PD compared to HC. Higher nodal de-
gree, global efficiency and local efficiency, and
lower characteristic path length within default
mode network (DMN) and cerebellum in PD
compared to HC. Lower cluster coefficient in tha-

lamus and caudate nucleus in PD compared to
HC

Decreased clustering coefficient, global efficiency,
and local efficiency, and increased characteristic

Suo et al. 2017 | 153 PD 81 HC path length as well as decreased nodal central-
ities in the SMN, DMN, and temporal-occipital
regions in PD compared to HC
Increased eigenvector centrality within fron-

De Schipper et | 13- ppy 53 H(C toparietal regions in PD compared to HC. In-

al. 2018

creased connectivity in the SMN and VN in PD
compared to HC

Hou et al. 2018

20 early akynetic
PD 20 HC

Lower nodal centralities in the occipital lobe and
areas of the limbic system and higher nodal cen-
tralities in frontal and temporal regions in PD
compared to HC

Tuovinen et al.
2018

16 early PD 16
HC

At baseline, increased connectivity between cere-
bellum and SMN as well as decreased connectiv-
ity between motor regions and cingulate cortex in
PD compared to HC. At 1.5 years follow-up, in-
creased cerebellum connectivity within itself and
to the caudate nucleus, thalamus and amygdala
in PD compared to HC
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In recent times, a consensus protocol for functional connectivity analysis has been es-
tablished for the brain of rats (Grandjean et al. 2023), which provides a standardized
and reliable methodology for analyzing functional brain networks in rats. Similarly,
efforts are being made to reach a consensus protocol for human brain functional con-
nectivity analysis, which would ensure the comparability and repeatability of results
across different studies (Wang et al. 2023a; Botvinik-Nezer et al. 2020).

Concerning modeling steps for fMRI, we point out the work by Dadi et al. 2019 which
proposes a comprehensive analysis of the impact of the main choices in terms of dis-
crimination power. However, the work does not consider graph-based approaches for
functional connectivity analysis.

Given the advantages of graph-based approaches in studying brain networks, future re-
search needs to investigate the impact of different choices on graph representations of
functional connectivity networks. This could involve exploring the influence of various
graph construction methods, graph filtering procedures, and graph theoretical metrics
on the discriminative power and interpretability of the resulting network representa-
tions. Such an analysis would contribute to a more comprehensive understanding of the
methodological choices that impact the study of brain connectivity using graph-based
approaches.

1.2.2 Recall Graph-Theory

In this section, we introduce the adopted graph notation, more details on graph-theory
can be found in the works by Newman 2012; West et al. 2001; Van Steen 2010; Barabasi
2013. A visualization of the main graph descriptors can be found in Fig. 1.6.
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Figure 1.6 — Visualization of common graph descriptors classically considered in
FC studies. (a) Standard definition of node and edges, (b) visualization of regular,
small-world and random graph regime, (c¢) extreme example of the considered nodal-
statistics. Adapted from Jacunski et al. 2013

Definition 1.1 (Graph). A graph G is a pair G = (W, €).

Here, V is a set of vertices or nodes. Each node represents a unit of the network we
are considering.

E CV x V is the set of edges among the nodes, encoding the presence of a special
relationship among pairs of units.

Within the context of FC network modeling, each node represents a region of the brain.

Definition 1.2 (Weighted Graph). A graph G is said to be weighted when it is
equipped with a weight function W : & — R{ which associates to each edge a value.
This value reflects the magnitude or strength of the encoded relationship.

In the following, we will deal with unweighted graphs: we can interpret unweighted
graphs as special case of weighted graphs where each edge is assigned the same weight,
which is equal to 1.

Definition 1.3 (Directed Graph). A graph G is a said to be directed if its edges e € £
are ordered pair of nodes (u,v) u, v € V, representing a connection from vertex u to
vertex v.

Definition 1.4 (Undirected Graph). A graph G is said to be undirected when each link
represents a bi-directional relationship. e € £ is then a pair of nodes e = {u, v} u, v €
V encoding the presence of a connection among the vertices u, v.
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In this context of FC networks, the pairs of nodes are not ordered, thus, the consider
graphs are undirected. In the following, the terms vertex, node, and unit are used
interchangeably, as are the terms link and edge.

Definition 1.5 (Adjacency Matrix). The adjacency matrix A of an unweighted graph
G, is a binary matrix defined as follows:

1 if{u,v} e
0 otherwise

A= (auv)u7v€V = {

For an undirected graph A is symmetric.

The adjacency matrix is one of the ways to represent a graph which directly encodes
the presence of edges.

Definition 1.6 (Node Neighborhood). We define the nearest-neighborhood, first-order
neighborhood, or simply the node neighborhood of node u as the set A(u), which
includes all nodes connected to w.

We denote N the cardinality of V.

Definition 1.7 (Complete Graph). A graph is complete if every pair of distinct vertices
is connected by an edge. A complete graph of N nodes has exactly (];f ) = w Each
node’s neighborhood in a complete graph includes all the other nodes.

Definition 1.8 (Graph sparsity). We refer to graph sparsity as the ratio between the
number of edges in the graph and the number of all possible edges among the set of
nodes:

€]

Sparsity = m
2

A graph whose Sparsity = 1 is the complete graph and vice versa.

Definition 1.9 (Path on a graph). In a graph, a path is an ordered sequence of vertices
(v1,v9, ..., V) where each consecutive pair of vertices is connected by an edge.

The length of a path in a graph is one less than the number of vertices it includes:
Length(vq, vg, ...,v,) = k — 1. This corresponds to the number of edges a walker on
node v; needs to cross to reach node vy.

A path is said to be a cycle if it starts and ends at the same vertex, while traversing
only distinct vertices in between.

Definition 1.10 (Minimum Path Length). Given a graph G, the minimum path length
between two vertices u and v is the smallest number of edges a walker must traverse
to move from vertex u to vertex v.

A path from u to v of length the minimum path length between u and v is said a
shortest path between u and v.
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If no path exists between node u and v, we say node u is unreachable from v and
conversely. In such case, we set their minimum path length to +oo.

Definition 1.11 (Completely Connected Graph). A graph G is said to be completely
connected (or simply connected) if the minimum path length between every pair of
distinct vertices is finite.

Definition 1.12 (Minimum Spanning Tree). A minimum spanning tree (MST) of a
graph is a subset of its edges which identifies a sub-graph connecting all its vertices
without any cycles and having the lowest possible total edge weight.

A graph can admit many MSTs.

1.2.3 Classical Statistical Comparison

A classical statistical comparison analysis can concern global or local graph descriptors.
As global-level statistic, we report the notions of global and local efficiencies which are
commonly used to quantify the small-worldness of functional networks (Bassett et al.
2006b; Bassett et al. 2017a; Liao et al. 2017; Achard et al. 2007).

Global Descriptors

The concept of small-world network was originally introduced by Watts et al. 1998 and
used to characterize networks which exhibit a good balance between short-distance con-
nections among neighbors nodes and long-distance connections between non-proximal
nodes.

Definition 1.13 (Global Efficiency). We define the global efficiency of a graph G as:

1 1
N(N —1) 2 7 (1.1)

uFvey TUU

Eglobal (g) -

where L, , is the minimum path-length between node u and v.

Definition 1.14 (Local Efficiency). The local efficiency of a graph G is computed as
the mean over all nodes of the node efficiency FE,oqa1(u):

1 1
Elocal(g) = N Z Enodal(u> - N Z

uey uey

1

1
y L g
Nxw) (NNw) = 1) e Lik

where N (u) is the set of nodes that are nearest-neighbors of the v and Ny, = |N (u)].

Global efficiency in a network quantifies the network capacity for efficient information
transfer across all nodes, potentially at high distance. The global efficiency reflects
network information integration. On the other hand, local efficiency focuses on neigh-
borhood communication and can be interpreted as a measure of network segregation,
i.e. the presence of node groups highly connected among them with short-distance
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paths (Sporns 2013; Deco et al. 2015). By considering global and local efficiency mea-
sures, networks can be categorized into three types: regular networks exhibit high local
efficiency and low global efficiency, random networks show low local efficiency and high
global efficiency, while small-world networks strike a balance between both efficiencies,
positioning themselves between regular and random networks (Fig. 1.6 (b) ).

Global and Local Efficiency in FC: small-world brain networks. Human brain
FC networks studies - and more broadly various brain networks, even spanning different
species- report a small-world topology (Watts et al. 1998; Achard et al. 2006; Bullmore
et al. 2009; Wang et al. 2009; Bassett et al. 2010; Rubinov et al. 2015; Varoquaux et al.
2012). This organization is hypothesized to emerge from the evolutionary process to
simultaneously optimize the cost of neuronal resources and the efficiency of information
transmission (Bullmore et al. 2012; Samu et al. 2014). Notably, connections among
anatomically adjacent brain regions are preferred to optimize the resource cost, while
long-distance connections are required for faster information integration (Vértes et al.
2012; Chen et al. 2013b).

Finally, we refer to nodal statistics on a graph as any possible application on the set of
nodes of the graph sg : V — s(V), which is a function of the adjacency matrix. Given
a nodal statistics, its graph average corresponds to a global graph descriptor and we

denote it as )

5(9) = W > sg(v) (1.3)

vey

Local Descriptors

In the following definitions (Def. 1.15-1.20), we report nodal statistics commonly used
in functional connectivity studies (Hallquist et al. 2018; Richiardi et al. 2013; Mheich
et al. 2020). These nodal statistics can be associated with small-world properties of
human brain (Liao et al. 2017) or with its modularity structure (Bullmore et al. 2009).
A supporting visualization can be found in panel (c) of Fig. 1.6.

Definition 1.15 (Degree). The degree of a node v represents the number of edges
incident to the node

deg(v) = Z oy -

uey

Definition 1.16 (Degree distribution). The degree distribution P(k) is the ratio be-
tween the number of nodes with degree equals to k and the total number of nodes
N.

The degree and the degree distribution are among the fundamental graph descriptors
that are commonly analyzed to understand the connectivity and structural characteris-
tics of a network (Newman 2003; Newman et al. 2001; Broido et al. 2019; Albert et al.
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2002).

Degree in FC: brain networks exhibit hubs. The nodal degree in FC networks
is frequently employed to identify specific hub regions. These hubs are characterized
by having a significantly high number of connections - or generally high centrality - in
the network (Cole et al. 2010; Wang et al. 2010; Zuo et al. 2012). Numerous studies
provide evidence for the presence of these hub regions in human brain networks, which
serve to connect different parts of the brain (Power et al. 2013; Tomasi et al. 2011;
Van den Heuvel et al. 2013). The presence of hubs is reflected in the heavy tail of
the observed degree distribution of FC networks (Liao et al. 2017; Bassett et al. 2008;
Achard et al. 2006; Bassett et al. 2017a; Heuvel et al. 2008; Eguiluz et al. 2005). A
significant portion of studies on FC networks report degree-based hub detection results
(Crossley et al. 2014; Guo et al. 2020; Hallquist et al. 2018; Saghayi et al. 2020Db).

Definition 1.17 (Clustering coefficient). We define the clustering coefficient of a node
v as a function of the number of triangles (i.e. group of three nodes) through the node
itself.

B 2T (v)
= dea(v)(deg(v) = 1)°

Ce(v)

The clustering coefficient can be considered an alternative measure of nodal efficiency,
capturing network segregation by quantifying the presence of edges between pairs of
node neighborhoods (Watts et al. 1998; Newman 2009).

Clustering coefficient in FC: brain networks modularity. As the clustering
coefficient provides insights into how a node tends to form interconnected groups, its
average serves as a quantification of the network’s modularity. Modularity refers to the
extent to which a network can be divided into node groups that have a high number of
connections among themselves but few connections within each group. These groups
are referred to as modules. The presence of modules in brain networks reflects the
localization of information in densely clustered nodes. The brain’s modular structure
is counterbalanced by the presence of hubs, ensuring the maintenance of the small-
world network property for efficient communication (Liao et al. 2017; Ferrarini et al.
2009; Sporns 2013). The brain’s modularity structure has also been extensively studied
(Laurienti et al. 2009; Ferrarini et al. 2009; Meunier et al. 2009; Chen et al. 2013a;
Bhanot et al. 2023) in network neuroscience. Within these studies, the clustering
coefficient and its average have been analyzed and applied to characterize different
brain states and conditions (Eguiluz et al. 2005; Richards et al. 2018; Sala-Llonch et
al. 2014; Bullmore et al. 2009; Saghayi et al. 2020b; Supekar et al. 2008; Zimmerman
et al. 2018).

Definition 1.18 (Betweenness centrality). We define the betweennes centrality of a
node given o(s,t), the number of shortest paths from node s to t, and o(s,t|v) the
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number of shortest paths from s to ¢ through v as

Bu)= Y

s,tey

o(s,t|u)
o(s,t)

Betweenness centrality is especially valuable when examining how information traverses
a network model. Nodes with high betweenness centrality play a crucial role as bridges
for information flow, and their identification can highlight significant nodes in the
network (Freeman 1977).

Definition 1.19 (Closeness centrality). The closeness centrality measures the facility
of connection of a node with respect to all the other nodes in the graph and it is defined
as follows

N -1
Zu;ﬁv d(U, U)

where d(v,u) the shortest-path distance between v and u

Cs(v) =

Withing the notion of closeness centrality, a central node is a node which is close to all
the other in the vertices set (Bavelas 1950).

Definition 1.20 (II-order centrality). The II-order or second-order centrality is defined
as the standard deviation of return times of a simple random walk starting in node v

S(v) = A}@@JW{ N ;Euuf)? - [Ml_ . ;EM]Q

with =, (k) the k-th return time of the simple random walk starting in u to w.

The second-order centrality was introduced to reevaluate the importance of node
bridges (Kermarrec et al. 2011), which facilitate information flow and connect dis-
tinct parts of a network, even if they are not strictly on the shortest paths (Fig. 1.6

(c))-

Centralities in FC networks: hubs detection. As previously mentioned, brain
networks are characterized by the presence of hub regions. A hub can be defined
as a vertex which occupies a central position among all other nodes in the network.
This central position might simply correspond to regions exhibiting a high number of
connections (Def. 1.15). However, the adopted definition of centrality impacts the
identification of this central position. Different centrality measures may identify differ-
ent hubs with varying properties (Sporns et al. 2007; Rubinov et al. 2010; Zuo et al.
2012). The selection of these statistics is fundamental for hub detection within FC net-
works, particularly when the aim is to compare changes in hubs across different brain
states. This may require testing different nodal statistics separately to identify the one
that most effectively distinguishes between diverse groups, based on the specific pathol-
ogy or task under consideration (Achard et al. 2006; Oldham et al. 2019; Achard et al.
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2012; Crossley et al. 2014; Power et al. 2013; Joyce et al. 2010; Drakesmith et al. 2015).

Finally, to conclude this section concerning statistical comparison method, we present
the definition of hand-crafted index that provides motivations to our research. It’s
worth noting that various engineered indices have been presented in the literature.
Notably, the Graphlet Degree Vector, which investigate the presence of sub-patterns
within functional connectivity graphs to characterize healthy subjects (Finotelli et al.
2021b).

Here, we report the hub disruption index, introduced by Achard et al. 2012. This index
allows to detect differences between groups in the identification of hubs and their re-
organization (Fig.1.7). We reformulate the original definition by explicitly mentioning
the dependence on s, the adopted centrality.

Definition 1.21 (s-nodal disruption). We notate a group of graphs having the same
vertices set as G = {Gry = (W, &) s.t. Vi = V} and, given a nodal statistics s, we
consider the group mean nodal statistics

1
sa(v) = €] > sg(v).

grLeqG

We define the s-nodal disruption of the graph G having same nodal set, with respect
to the group of graphs G as

rs(v) = s(v) — sg(v) (1.4)

Definition 1.22 (Hub disruption index). Given the s-nodal disruption of a graph
G with respect to the group G, we define the hub disruption index of G, ks(G), as
the coefficient of the linear regression of rs(v) as dependent variable and sg(v) as
independent variable

rs(v) = ks(G)sa(v) + 6 (1.5)

with £ the value of ks(v) when the sg(v) = 0. A toy example of the computation of
ks(G) can be found in Fig. 1.7.
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Ks(v)
ks(G)

sc(v)

Figure 1.7 — Visualization of an example of computation of the hub disruption
index of an individual graph G associated to the nodal statistics s with respect to
the graph collection G. To compute the hub disruption index of the collection G,
with respect to the nodal statistics s, we compute r4(v), i.e. the difference between
the nodal statistics s of the graph G and the mean nodal statistics of the group
sg(v). Thus, this difference is plotted against the mean nodal statistics of the group
s¢(v). Finally, we determine the regression line ks(v) = k5(G)sg(v) + 5. Adapted
from Achard et al. 2012.

1.2.4 Classification Methods

We name graph-based classification methods all approaches which aim at predicting
the brain state given the FC graph. These methods focus on optimizing the accuracy
(i.e. the rate of correct predictions) of the classification and may overlook the inter-
pretability aspect, essential in neuroscience and crucial for clinical applications.

While the development of a good classifier is fundamental for the true applicability of
FC graph as biomarker of brain disease, research in this context lacks comparability
across studies due to the variability of the pre-processing choices in graph inference
and in dataset acquisition parameters (i.e. close or open eyes, scan length etc.).

We propose to distinguish graph-based classification methods in three main groups
(Fig. 1.4). The first group employs a classifier which takes as input graph-features.

A common machine learning application to network neuroscience (Richiardi et al. 2013;
Bassett et al. 2012; Casanova et al. 2012; Cheng et al. 2015) employs the previous
defined graph-descriptors as input features of classifier algorithms. A schematic visu-
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alization of this procedure can be found in Fig. 1.8.
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Figure 1.8 — Visualization of a classification procedure, adapted from Richiardi
et al. 2013. (a) A signal is collected over brain regions (b) the corresponding graph
model is extracted (c) for each graph some features are extracted, graph belonging
to different classes are expected to have different features (d) the features are used
to distinguish between data points corresponding to the different classes.

While this kind of classifier is favored for its interpretability in relation to graph fea-
tures, it is important to acknowledge that, when compared with counterparts that do
not operate directly on the graph, they exhibit lower performance capabilities (Lei
et al. 2020). Moreover, each study, according to the considered pathology or even the
considered dataset, develop different classifiers based on different features (Du et al.
2018; Zanin et al. 2016). For instance FC has been used for the design of automatic
classification tools in various tasks concerning autism (Grana et al. 2021; Yang et al.
2022; lidaka 2015; Bilgen et al. 2020, schizophrenia (Filippis et al. 2019; Lei et al.
2020; Cheng et al. 2015), Parkinson disease (Rubbert et al. 2019), Alzheimer’s Disease,
epilepsy (Gholipour et al. 2022), and other brain states (Dai et al. 2022; Shen et al.
2022; Vergun et al. 2013; Ball et al. 2016; Lord et al. 2012; Kramer et al. 2023; Renard
et al. 2021).

Among the variety of dataset-specific classifier, a particular attention have received the
graph Laplacian.

Definition 1.23 (Laplacian matrix). We recall the definition of the Laplacian matrix
L:
L=D-A (1.6)

where D is the degree matrix, a diagonal matrix where D,u represents the degree of
node u, and A is the adjacency matrix.

In particular, different approaches determine the eigenvalues of the Laplacian matrix
as input of a classifier. Such classification methods have proven to detect network pa-
tient alterations in Alzheimer disease or autism spectrum disorder (Haan et al. 2012;
Mostafa et al. 2019; Schirmer et al. 2021; Mheich et al. 2020).
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The second category of classification methods under consideration relies on the use
of a graph distance or a similarity score (Mheich et al. 2020; Wills et al. 2020). The
use of graph distances and similarity scores determine an underlying metric space on
graphs, which allows to compute the individual distance between different subjects.
This permits the identification of clusters and the delineation of boundaries between
these groups. Despite the existence of numerous graph metrics, including those that
consider both structural and feature-based aspects simultaneously (Vayer et al. 2020;
Thual et al. 2022), there is currently no conclusive evidence regarding an optimal
distance metric to be employed in FC networks. Furthermore, there is a lack of graph-
metrics specifically defined to handle brain graph.

Finally, the third group includes reduction tools such as network embedding or GNN
methods (Cui et al. 2018; Hamilton 2020; Schieber et al. 2017; Zhang et al. 2022c). A
network embedding is a dimensional reduction tool which maps a graph into a vector
space by preserving specific graph features. Recently, the nodal embedding method
node2vec (Grover et al. 2016), which associates to each node a vector, was applied
to brain network characterization in Rosenthal et al. 2018. Embedding methods can
be applied to define new network similarity (Nikolentzos et al. 2017) and being used
for pathological discrimination (Carboni et al. 2021a; Lostar et al. 2020; Morris et al.
2017) or brain network evolution prediction (Goktag et al. 2020).

GNNs (Cheung et al. 2020; Hamilton 2020; Bronstein et al. 2017), also find applications
in network neuroscience (Bessadok et al. 2022a; Ménoret et al. 2017; Mhiri et al. 2020)
as tool to process graph-structured data. The basic operation in GNN consists in
aggregating feature vectors of the node neighborhood to update the node representation
across different layers (See Fig. 1.9).
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Figure 1.9 — Example of a GNN model for graph classification applied on an input.
The model includes a graph convolutional layer, a pooling layer and a fully connected
layer. A graph with node features is the input of the neural network model. As
first layer for each vertex (shown in blue) the neighborhood information (shown in
red) is first aggregated and then uses as input of a nonlinear activation function
converting the aggregated information into a new node features (shown in green).
This operation is repeated on all node of the graph. The pooling layer operates
reducing the number node per graph. Finally, a fully connected layer outputs the
probability of the graph to belong to three existing classes. Figure adapted from
Cheung et al. 2020.

This process is called message-passing and it is iterated to optimize a specific loss func-
tion. The graph-level representation can then be used for various tasks, such as node
or graph classification, regression, or clustering. A GNN model can directly include
the classifier as final layer, or instead learn a lower-space representation interpreted
as network embedding such as in Auto Encoder architecture (Banka et al. 2020). For
more details in the training of an artificial neural network, we refer to the Chapter 4.
An important assumption of GNN model is permutation invariance, meaning that the
predicted output does not depend on the chosen adjacency matrix ordering. However,
in brain graph where a node represents specific brain region, the permutation invari-
ance property may not be desirable and GNN models may need to incorporate node
labels information, for instance through attention (Velickovi¢ et al. 2017; Vaswani et al.
2017) or by learning adaptive node-wise aggregation scales (Choi et al. 2022).

While GNNs have shown promising results in FC (Bessadok et al. 2022a; Wang et al.
2022; Li et al. 2021, they have some drawbacks, including high computational costs
for training and the need for large datasets. Moreover, their generalization to different
datasets, especially from different centers or pathologies, can be challenging and require
image harmonization (Bottani et al. 2022; Cackowski et al. 2023). Additionally, the
lack of explainability in GNNs is an area that needs further evaluation (Kim et al.
2020a; Agarwal et al. 2023; El Ouahidi et al. 2022).
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Figure 1.10 — Visualization of examples of ER, WS, BA graph.

1.3 Generative Networks

An important step for the understanding of brain functional connectivity can be
achieved through the comparison of real data with synthetic ones. Here, we present
the graph synthetic models we will further analyse in comparison with true data. A
big branch of study in functional connectivity aims at finding explanation of brain
functioning by comparing it to null models or determining its possible evolution jus-
tification (Bassett et al. 2018; Dichio et al. 2023b; Dichio et al. 2023a; Morgan et al.
2018; Vértes et al. 2012). In our proposal, we will consider generative networks to test
whether the captured information is meaningful of the brain or derived by choices in
network inferences, particularly when comparing real data with models which repro-
duce brain characteristics such as the observed degree distribution, its efficiency, or
clustering coefficient.

1.3.1 Erdds-Rényi model (ER)

The Erdés-Rényi (ER) model generates a binomial graph G, , by the creation of edges
among n nodes (Erdos et al. 1959). Each edge has a probability p of being created.
The expected number of edges in G, , is then p(;‘) and its sparsity ration equals p. For
values of p close to 1, the graph tends to be the complete graph in which all possible
edges are present.

1.3.2 Watts-Strogatz model (WS)

The Watts-Strogatz (WS) model generates a small-world graph G, ;, by connecting
each node with its k neighbors nodes and then recombining each edge with probability
p (Watts et al. 1998). In this case, the number of created edges is always %k, requiring
an even value for k, which corresponds to a sparsity value of Q"—ff = (n—fl) The p
parameter, which regulates the probability of rewiring the edges, génerates the regular
graph (p = 0) in which all nodes have the same degree, and the completely random
graph (p = 1) in which the expected number of edges are randomly distributed on the
vertices set. We consider cases p = 0.1,0.5,0.9 and refer to the case p = 0.5 as the

small-world model.
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1.3.3 Barabasi-Albert model

The Barabasi-Albert model generates a graph G, ,, by favoring specific attachments
(Barabasi et al. 1999). It starts from a star graph of m + 1 nodes and attaches the
n —m — 1 remaining nodes to the m existing nodes with high degree. In that case,
the number of edges expected is given by the sum of the first m edges of the initial
graph with (n —m — 1)m edges created by attaching new nodes until the graph has

n vertices leading to the sparsity value equals to mn=m) Ty this case, having fixed n

2
and the level of sparsity [, there are two possible choices for m, corresponding to the
solutions of
n
mQ—mn—l—l( ) =0.
2
'I’L2

The existence of real solutions to the previous equations is only guaranteed for [ < &)
2

and in that case, it always has two positive solutions. We considered both cases, re-
ferring to BA1 and BA2, respectively for the lower and the highest root. Due to
the constraints of existence of real solutions, all networks generated according to a
Barabasi-Albert model are sparse (Del Genio et al. 2011).

1.3.4 Degree sequence preserving model (DSP)

The degree sequence preserving (DSP) model is based on the configuration model
(Barabasi et al. 1999). In this case, we will build degree sequence preserving copy
of graph coming from real dataset. The construction is also constrained by a given
sparsity ration, thus, given the correlation matrix associated with a real graph and
given a sparsity ratio, we threshold the correlation matrix to obtain a binary version
with the number of edges corresponding to the fixed sparsity. Then, we extract the
degree sequence and randomly generate a new graph that preserves the given degree
sequence. Since the degree of each node is fixed, we obtain a synthetic graph which
has the same sparsity as its real version. In such a way, for all sparsity values we
considered, we obtain the synthetic graphs whose elements are the model version of
the corresponding real graphs. An example of the simulated DSP networks is shown
in Fig. 1.11.

1.3.5 Economical preferential attachment model (EPA)

The economical preferential attachment (EPA) model has been defined to reproduce
functional brain networks (Vértes et al. 2012). The probability of observing a connec-
tion between two regions, u and region v is given by

Pup o (deg(u) deg(v))” (dup) ™"

where deg(u) is the degree of node u and d,,, is the Euclidean distance in anatomical
space between u and v. Since we want to generate network at fixed sparsity, given a
real network, we first extract its degree distribution. Next, we compute the p, , of all
possible pairs of nodes and then we select the edges with highest probability until we
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= Shared edges with real network
=== Unshared edges with real network

Figure 1.11 — Examples of real functional connectivity network of healthy subjects
and their corresponding model versions at different sparsity values. DSP: Degree
sequence preserving model; EPA: Economical preferential attachment model; EC:
Economical clustering model.

reach an expected number of edges. To ensure connectivity, we also add the Minimum
Spanning Tree as it is done in real data. v,n are hyperparameters of the model and are
fixed to better match the real data as in the work by Vértes et al. 2012. An example
of the simulated EPA networks is shown in Fig. 1.11.

1.3.6 Economical clustering model (EC)

The economical clustering (EC) model has also be proposed in the context of functional
brain networks (Vértes et al. 2012). The probability of observing a connection between
region u and region v is given by

Pup X (ku,v)’y(du,v)_n

where k, , is the number of nearest neighbors in common between nodes u- and v, while
d,, is the Euclidean distance in anatomical space between v and v. For being able of
tuning the sparsity of the model, we generate an EC model version of real network.
Given a real network at a given sparsity ratio, we determine its k,, and compute the
Pu,» 0f all possible node pairs. Finally, we select edges whose probability is higher until
the expected number of edges is reached. Again, we ensure connectivity by adding
missing edges from the Minimum Spanning Tree algorithm. The hyperparameters 7,
and 7 are fixed according to the work by Vértes et al. 2012. An example of the simulated
EC networks is shown in Fig. 1.11.

1.4 Summary and conclusion

In summary, the analysis of functional connectivity studies from a graph perspective
shows a high diversity across studies, leading to various questions and controversies in
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the research field (Hallquist et al. 2018; Cwicek et al. 2022). We have identified several
requirements for the development of a general analysis framework for FC networks:

» the framework should take into account existing and interpretable classical net-
work statistics;

« it should be adaptable to different type of pathologies or datasets, allowing for
the tuning or selection of appropriate graph statistics to suit specific applications;

o the framework should enable group characterization, facilitating the comparison
of network properties among different populations;

« it should also be capable of tracking subject individual differences, acknowledging
the unique brain connectivity patterns exhibited by individuals;

o the framework should allow for local characterization, enabling the detection of
local perturbations or anomalies within brain networks.

While we recognize the importance of developing classification methods for automatic
diagnosis, our primary focus is not solely on competing for classification accuracy with
existing methods. Instead, we aim to design an approach that is both adaptable and
interpretable at group and individual level and at global and local network scale. This
approach, presented in the next chapter, aims to bridge the gap between classical
graph descriptors and advanced network classification techniques, ultimately providing
an original characterization of healthy and pathological brain networks.
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Structural Pattern

Abstract

This chapter introduces a novel mathematical framework for functional connectivity
network analysis. It beginnings by providing an overview of two prior studies that
investigate nodal reorganization within functional connectivity networks. These explo-
rations provide the motivation for the formulation of a graph structural pattern -the
core definition of our work. Our newly introduced structural pattern finds also find
inspirations in the concept of nodal automorphically equivalence relations prevalent in
complex networks.

At the basis of our proposal is the introduction of a new nodal-statistics-based equiva-
lence relation which allows to fill the gap between classical nodal statistics and network
dimensional reduction tools.

This novel approach not only permits the combination of a multitude of nodal statistics
for network analysis, but also enables the characterization of networks at both individual
and group levels, global and local scales.
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2.1 Motivations

Based on a paper written in collaboration with Michel Dojat and Sophie Achard, published in 2021
IEEE 18th International Symposium on Biomedical Imaging (ISBI). (Carboni et al. 2021a)

In several application scenarios which focus on complex network studies, being able to
determine node roles has proven to be relevant (De Arruda et al. 2014; Weng et al.
2007; Borgatti et al. 2009; Finotelli et al. 2021a; lacopini et al. 2020). Historically, the
notion of node roles has been introduced in social science structural theory (Borgatti
et al. 1992b) with at least two different conceptions: structural equivalence and struc-
tural isomorphism. According to the former, nodes are equivalent if they share exactly
the same neighbors. For the latter, nodes are equivalent if there exists an automor-
phism which maps the first node to the second and wvice versa. The nodal structural
equivalence is related to the way nodes are connected with the other nodes in the graph
and allows to take into accounts the existence of patterns and sub-networks.

In the context of social networks, the structural equivalence determines the role an
agent recovers in a network, identifying peculiar node corresponding to influencers or
grouping together agents with similar roles.

Recently, node roles analysis has been applied to various application domains such
as web graphs (Meghabghab 2002), technological or biological networks (Rossi et al.
2014). Different algorithms have been proposed to detect structural equivalence classes
in a single network by evaluating similarity metrics among nodes (Yu et al. 2021; Jeh
et al. 2002; Chen et al. 2020).

In the case of brain connectivity networks, previous works characterized neurological
deviations by looking for hub nodes in a collection of graphs (Achard et al. 2012).
This research conducted by Achard et al. 2012 demonstrates a reconfiguration of these
hub nodes among comatose patients compared to a control group. As shown in Fig.
2.1, high-connected nodes in healthy controls exhibit a decrease in the number of
connections in comatose patients, while low-connected nodes in healthy controls show
an increase number of connections in comatose patients.
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Figure 2.1 — Hub disruption index with respect to the degree of functional net-
works in comatose patients. The x-axis shows the mean degree of nodes in healthy
volunteers, while the y-axis displays the difference in mean degree of nodes between
the two groups. Abnormal hub nodes exhibit reduced degrees in comatose patients
(e.g., precuneus) with respect to their high degress in the healthy group. Conversely,
non-hub nodes display increased degrees in patients (e.g., angular gyrus), compared
to their low healthy group degrees. The hub disruption index is quantified by the
slope of the fitted (red) line, and node color indicates inter-group degree differences.
Adapted from Achard et al. 2012 with permission.

From this outcome, it becomes evident that the characterization of nodal roles within
functional connectivity networks holds the promise of elucidating the neurological im-
plications underlying brain connections. Furthermore, it highlights the necessity for
extending the structural equivalence concept to encompass a collection of graphs.

From a mathematical point of view, the organization of nodes can be captured through
the concept of graph automorphism, which is defined as follows:

Definition 2.1. An automorphism of a graph G = (V, &) is a bijection 7 between G
and itself such that:

Vu,v € V,{u,v} € &€ <= {n(u),n(v)} €&

If two vertices are connected in G their images through the map 7 must be connected
too. An obvious automorphism is the identity map, however not-obvious automorphism
could exist.

Definition 2.2. Two nodes v, w € V are structurally isomorphic or automorphically
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equivalent v = w if there exists an automorphism 7 : G — G such that 7(v) = w
An example of automorphically equivalent nodes is shown in Figure 2.2

Proposition 2.1. If two nodes are structurally isomorphic, so are their adjacent nodes.
v=w = YueVstf{v,u} €& I eVst {wu} el

for which it values:

Proof. By hypothesis we have v = w, so it exists an automorphism 7 such that w =
m(v). By definition of automorphism:

{vu} € & = {n(v),n(u)} ={w,m(u)} € €

Let u’ equals to m(u) then we have {w,u'} € £ for which it values u = v’ via 7. O
a b g h
e id
C d i j

Figure 2.2 — Structural isomorphic nodes are shown in the same color.
a=c=h=j,b=d=g=1,e=f. Figure adapted from Borgatti et al. 1992a.

The detection of graph automorphisms goes under the graph isomorphism problem
(Grohe et al. 2020; Babai 2016). Substantial advancement has been made in defining
algorithmic tests for establishing graph isomorphism, with specific emphasis on the
Weisfeiler-Lehman algorithm algorithmic tests for two graph to be isomorphic (We-
isfeiler et al. 1968; Furer 2017). However, its worst-case complexity can still be ex-
ponential in the number of nodes. The employment of a brute force approach to
find nontrivial automorphisms necessitates assessing all possible permutations of the
adjacency matrix. This process becomes easily intractable in real complex network
applications, specifically when dealing with network collections.

In our pursuit of identifying node roles in FC graphs, we opted in our work Carboni et
al. 2021a for node2vec embedding algorithm (Grover et al. 2016). This algorithm has
demonstrated to effectively capture the structural equivalence of nodes. The node2vec
algorithm learns a low-dimension nodal representation by sampling a particular random
walk on the graph, thus determines a map such that similar nodes have similar repre-
sentation. The node2vec approach reproduces the feature learning aspect of word2vec,



44 Chapter 2. Structural Pattern

a technique in natural language processing. In word2vec, similar features vector are
learned for words within a sentence possessing similar semantic, or syntactic char-
acteristics (Mikolov et al. 2013, Tab. 2.1).

Table 2.1: Semantic and Syntactic definition.

Definition

refers to the inherent or inherent sense of a
Semantic word, phrase, or symbol that relates to its real-
world concepts, ideas, or objects.

pertains to the grammatical structure and ar-
rangement of words within a sentence. It con-
cerns the relationships between words based on
how they are combined in a sentence.

Syntactic

When analysing a sentence, the position of a word can provide valuable insights. For
instance, a word positioned near a verb might serve as an adverb, while a word pre-
ceding the verb could be its subject. Additionally, words that frequently co-occur in
sentences tend to possess similar semantic meanings, whereas those that seldom co-
occur might lack semantic connections.

The distinction between syntactic similarity and semantic similarity is translated into
structural node similarity and homophily node similarity (Fig. 2.3). In the node2vec

s ..':oo 200 o000

) 0" @ ®
% .... 00 [} @ e, ® *
® ® ®

> .- @ « ®2 000 0% "
—Qo' /% %e, 900

..". .... ® ... O o00000 o0

.“.. A ®
Structural equivalence Homophily

(structural roles) (network communities)

Figure 2.3 — Homophily and Structural Equivalence on Les Misérables network.
Results of the nodal clustering on node2vec embedding space obtained with the
DFS (left) and BFS (right) within Les Misérables network. Adapted from Grover
et al. 2016.

algorithm, these two concepts are captured using distinct sampling strategies within
the graph, as part of the node2vec random walk algorithm. Precisely, for each node,
the algorithm computes a neighborhood set of a fixed number of similar nodes. The
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breadth-first sampling (BFS) considers the neighborhood of a node as nodes which
are immediate neighbors of the source. Whereas, the depth-first sampling DFS se-
quentially select nodes at increasing distances from the node itself. node2vec allows
to smoothly interpolate between BFS and DFS by tuning its hyperparameters. This
flexibility enables the algorithm to explore different structural aspects of the graph and
capture varying degrees of syntactic and semantic similarities.

A visualization of the two differences sampling strategies is shown in Fig. 2.4. The
resulting clustering on the embedding of Les Misérables network® (Min et al. 2016) in
Fig. 2.3 shows the corresponding graph notions of semantic and syntactic: nodes high
connected one to each other are detected by a pure BFS strategy, while nodes which
occupy specific positions in relation with the other nodes are grouped together when

S,
N\I¥

Figure 2.4 — node2vec sampling strategies. Generation of a neighborhood set of
size 3 for node u, according to the two different sampling strategies. In red the
BFS-neighborhood (s1, $2, s3). In blue the DFS-neighborhood (sy4, s5, ). Figure
from Grover et al. 2016.

In our prior research (Carboni et al. 2021a; Carboni et al. 2021b), we employ the ca-
pabilities of node2vec in capturing nodal structural equivalence for the design of clas-
sification methods which differentiate comatose patients from healthy controls. This
demonstrates the significance of considering nodal structural role for discerning differ-
ent states of consciousness. However, the use of node2vec, as well as broader network
embedding tolls, comes with certain drawbacks. These include the necessity of meticu-
lous hyperparameters tuning, dependence on massive dataset for training, and potential
difficulties in providing comprehensive explanations and interpretations. Moreover, the

'The network based on Les Misérables is constructed by representing characters as nodes and
connecting together characters who appear together in the same scene.
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inherent stochasticity of node2vec could impact the performances and comparability
of the outcomes. To mitigate these challenges, we propose an alternative strategy, ap-
plicable when dealing with graphs of lower dimensions. This strategy involves direct
operation in the graph space itself, favoring an integration between network science
and neuroscience practitioners.

This new framework of analysis is inspired and motivated by the previous mentioned
results. It does not require to learn low-space representation, but extract the graph
structural pattern by means of classical nodal statistics.

2.2 Nodal-statistics-based equivalence relation for
graph collections

Based on a paper written in collaboration with Sophie Achard and Michel Dojat and published in
Physical Review E. Carboni et al. 2023b

(b) COMPARISON AT GLOBAL LEVEL BASED ON GRAPH STRUCTURAL PATTERNS
(a) SINGLE GRAPH STRUCTURAL PATTERN
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Figure 2.5 — Graphical visualization of the proposed nodal-statistics-based equiv-
alence relation in graph collections. Global comparison and nodal characterization
of graphs: (a) structural patterns associated with the same statistics are determined
on the graphs, (b) the structural patterns are matched to compute a similarity value,
(¢) nodal participation in nontrivial classes is obtained for nodal characterization.

We examine a network collection defined on the same node-set, node role detection
can provide meaningful information for collection characterization, possibly revealing
a specific nodal partitioning. Indeed, in many real-world applications, the available
graph set can potentially be characterized by specific node role classes (Kersting et al.
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2016; Borgwardt et al. 2005; Cardillo et al. 2013; De Domenico et al. 2015; Hu et al.
2020). However, while many graph comparison metrics already exist (Wills et al. 2020;
Schuld et al. 2020), there is no evidence of a method for comparing them, moreover,
none of them directly address the detection of differences at the nodal level or it has
been showed to be adapted for functional connectivity characterization.

The contributions of this work are fourfold. First, we define a structural equivalence
relation on a graph node-set based on nodal statistics (any functions on the node-set).
The proposed definition allows determining node role classes according to statistics
values. The main innovation of this definition is given by the possibility of identifying
the graph structural pattern based on an original combination of as many statistics as
desired.

Second, we define two global measures of a statistics set which determine parsimony
and heterogeneity of its elements. These measures only depend on the graph structure
and can be used for statistics selection or graph complexity evaluation (Bianconi 2007).
Third, we propose to compare graphs with the same vertices according to their struc-
tural patterns similarity. Indeed, thanks to the identification of node classes, we can
compare different graph instances throughout the evaluation of the similarity of their
structural patterns.

Finally, we propose a framework to determine node categories in a network group which
allows to characterize the group at a nodal level and to discriminate nodes according
to their role.

A visualization of our proposal is depicted in Fig. 2.5.

2.2.1 Structural equivalence for undirected unweighted graph

We propose to identify the graph structural pattern with the equivalence classes of a
newly defined equivalence relation.

Definition 2.3. We propose to define an equivalence relation ~y, associated with a
statistics s, on the nodes set V of a graph as follows:

vy u <= s(u) = s(v). (2.1)

Definition 2.4. For a nodal statistics having as s()) a dense and continuous subset of
R, the equivalence is defined up to a fixed positive small €: v ~; u <= |s(u)—s(v)|< €
(Fig. 2.6).

As ~; is an equivalence relation on V), it is possible to find its induced partition P on
V,

Definition 2.5.
P, =— ={la];~, Vles(V)}, (2.2)

NS

which defines the structural pattern of G associated with the statistics s,
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Figure 2.6 — ¢ choice effects in Erdés-Rényi graphs. The chosen € corresponds to
a number of significant digits to be used when comparing different nodal-statistics
values. When the number of significant digits is higher the number of extracted
classes increases. Depending on the considered statistics, the number of classes
usually stabilizes around 4 or 5 significant digits.

and whose elements are the classes of equivalence [al;, VI € s(V),
lali~, =la] ={beV]a~; b < s(a) =s(b) =1}. (2.3)

A necessary condition for two nodes to be automorphically equivalent is to belong to
the same equivalence class.

Subsequently, we extend the equivalence relation associated with a statistics to any
statistics collection S = {s;};—1.__», requiring that:

Definition 2.6.
a~sb <= ar~g b ar~gb ... an~, b (2.4)

n

Again, we can determine Ps = {[a].s}, the induced partition by ~s on V as the
intersection of each class of the considered {s;};—1, . A visualization of the partitions
associated with degree statistics is shown in Fig. 2.5 (a).

Since the automorphically equivalence relation preserves any nodal statistics, the nodal
statistics-based equivalence relation associated with an infinity collection retrieves the
automorphically equivalence. However, a finite nodal statistics collection with this
property may also exist (Fig. 2.7).

We propose to compare statistics collection according to new defined global graph
parameters which measure respectively parsimony and heterogeneity of its elements.
These global parameters depend on the graph structure.
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Figure 2.7 — Visualization of the structural pattern associated with different nodal
statistics on a trivial graph whose nodes have the same degree. Left: Structural
pattern associated with nodal degree. Right: Structural pattern associated with
combination of betweenness centrality and degree. Colors correspond to different
classes. In this toy example, the degree alone is not sufficient to reveal different
equivalence classes and identifies a unique class. While, when two nodal statistics
are considered, a nontrivial structural pattern appears.

Given Pg, one can compute exactly the number of eligible automorphisms that map
nodes into the same equivalence class, as it is computed below. Therefore, for each
statistics collection on a graph G, we can estimate how many permutations are pre-
vented from being tested as being adjacency preserving in a brute force approach.

Definition 2.7. We introduce the power coefficient (PC) of a set S for a graph G =
(G.€)

#{permutations preserving PS}‘

PCq(S) = ‘log #{permutations of V}

(2.5)

with

#{permutations preserving Ps} = [] |o|!
o€ Ps

#{permutations of V} = [V|!.

The value [V|!e FC corresponds to an upper bound of the number of automorphisms
of G. Indeed, PC is increasing when more nodal statistics are combined together (Fig.
2.8). In the special case in which the permutations preserving Ps can be identified
with the automorphisms of G, PC can be interpreted as entropy of the network ensem-
ble (Bianconi 2007) having G topology. In all other cases, PC encodes the amount of
information given by & on the structure of G and it is a parsimony measure for S.
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Figure 2.8 — Normalized power coefficient (1:/’(\3) on nodal statistics incremental

sets of two Erdds-Rényi graphs of 90 and 100 nodes: the more nodal statistics are
considered the higher the PC.

Definition 2.8. Since PC takes values in [0, log ﬁ[, with an upper bound strictly

depending on the number of nodes, we propose a normalized version of PC, PC e [0, 1]

e PCqg(S)
PCy(S) = ToglV (2.6)
_ g log #{permutations preserving Ps} 2.7)

log #{permutations of V}

The higher the 136, the more the collection of statistics S captures the heterogeneity
of nodal structural roles in G. Indeed, for a vertex-transitive graphs (i.e. all nodes
are automorphically equivalent) PCg(S) = 0 for all nodal statistics S, while if it
exists a collection S s.t. F/)EQ(S) = 1 then the graph G does not admit nontrivial
automorphisms. Hence, we introduce the notion of perfectly orthogonal statistics for
heterogeneity evaluation of a collection elements. First, two nodal statistics are said to
be perfectly orthogonal if their union-associated equivalence relation induces the trivial
partition: all nodes belong to a single element set. Next, we extend the definition to
any nodal statistics set: a nodal statistics collection is said to be perfectly orthogonal
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if its induced partition is trivial.

Definition 2.9. An orthogonality measure for a given nodal statistics set on a graph

can be assessed by computing the number of nodes in nontrivial classes on its associated

partition:

{v € Vs.t. #[v]~g # 1}
V]

Og(S) is the ratio between the number of nodes in nontrivial classes and the total
number of vertices and corresponds to an orthogonality score.

Og(S) = (2.8)

By definition, S is perfectly orthogonal if and only if Og(S) = 0.

2.2.2  Structural equivalence for graph collections

Structural pattern comparison

Graphs that have the same node set can be compared by evaluating the correspondence
between their structural patterns. The node set constraint can be easily circumvented
when two graphs do not share all the nodes, by including all nodes to the graphs
vertices set and allowing the network to be composed of more connected components.
Indeed, each network can be seen as the union of one strongly-connected component
with as many single disconnected vertices as needed. We propose to compare structural
patterns as follows. Let G,G’ be two graphs having same vertices V and let S be a
statistics collection whose associated partitions are Ps, P on G, G’ respectively.

Definition 2.10. Given bijective mapping from Ps, P§ to an initial segment of the
natural numbers as enumerations, let ¢(v;), ¢'(v;) be the enumeration of the classes of
v;, the correspondence structural pattern score between G, G’ is defined as:

VI

C(G,G") = max — V] 2 ZX = (vy)) (2.9)

mell

where II is the set of all coupling between the elements in Ps and the elements in P§
and X is the indicator function. A possible implementation of C(G,G’) in polynomial
time is given by the Hungarian algorithm (Kuhn 1955) for assignment problems with
a complexity O(max{|Ps|, |P5|}3) which in the worst case equals O(|V|?).

The correspondence structural pattern score can be applied for two different purposes:
to evaluate structural pattern similarity between two graphs (Fig. 2.5 (b)) or to eval-
uate the similarity of structural patterns associated with different statistics collection
on the same graph (Fig. 2.9). Since at least one class of Ps shares one element with
one of the classes in P§, C(G,G") > ‘ As a consequence, even perfectly orthogonal
statistics set of a graph can exhibit a correspondence pattern score higher than zero
(Fig.2.9 (c¢)). If for every class in Ps there exists one class of P§ having all and only its
elements, then Ps = P; and C(G,G’') = 1. The opposite is also true: same partitions
determine a correspondence structural pattern score equals to 1. More general prop-
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erties of the defined global measures can be found in the Sec. 2.2.3.
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(a) One statistics is enough informative
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Figure 2.9 — Visualization of global metrics on three graphs (column) for three

cases (I‘OW). (a) One statistics is sufficient: the PC value observed when considering two statistics (right) is
equal to degree alone (left), meaning that betweenness provides no more useful information for determining the
structural pattern. When we compare the two partitions with the degree statistics alone, we observe 75% of the
nodes belonging to the same class and no trivial class (orthogonality equals to 1). This result can be interpreted
in two different ways: more node statistics are needed to identify hub nodes, or the considered graph does not
contain hub nodes. (b) Two statistics are more informative: to associate degree and betweenness improves the
power coefficient. The identified patterns share half of nodes and their orthogonality is 0.5, meaning that their
partition situates half of nodes in trivial classes. (c) Perfect orthogonality: The minimal orthogonality value is
reached when one of the two compared structural pattern has only one class and the other contains trivial classes.
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Nodes distinctiveness or similarity

Since eligible automorphisms can only map nodes within classes, a node in a trivial class
(one element class) is always a fixed point. Thus, to provide a group characterization
at nodal level, we propose to enumerate for each node its participation into nontrivial
classes as a measure of the node’s propensity not to be a fixed-point of admissible
automorphisms. The more a node appears in nontrivial classes, the more it shows
common properties with some other nodes in the graph. The persistence of a node
to belong to a class in an entire graph group reveals the presence of shared properties
among the group for the given node, i.e. hubs nodes, peripheral nodes, etc (Fig. 2.5
(c)). Thus,

Definition 2.11. given a graphs group G = {G, = (Wi, &) s.t. Vi = V}, and a
statistics collection § we count the percentage of participation of each node of V in
nontrivial classes:

{9 € G st #)% # 1)
|G

Vv eV NPPZ(v) = NPPg(v) (2.10)

with [v]g’; the class of v in Gy in the partition induced by S. In the following, with
abuse of notation, we suppose S fixed and avoid to explicitly repeat the dependency. A
high percentage of participation means the node shares its role in many graph instances
in the group, while at the opposite a node which does not share its role consistently
shows a distinctiveness behavior in the considered graphs collection.

2.2.3 General properties
Properties of PC

Note that all the listed properties are true also for PC.

Observation 1. On the same graph the PC increases on increasing collections of nodal
statistics (Fig. 2.8).

Observation 2 (PC for vertex-transitive graph). the PC of every nodal statistics
collection equals zero for vertex-transitive graph.

Observation 3. If the PC of a nodal statistics collection equals the PC of one of its
elements, then the correspondence structural patterns score of the structural pattern
associated with the collection and the one of that element is 1.

Observation 4. If the PC of a graph equals 0 for one collection of statistics, then the
graph does not admit nontrivial automorphisms.

Observation 5. If two graphs are isomorphic than their PC is the same for all statistics
collection.
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Relation with network ensembles entropy Our proposed method serves a spe-
cific purpose, focusing on introducing novel statistical tools adapted for the analysis
of brain functional connectivity networks. However, its significance extends beyond
its primary objective, as it also holds relevant implications for prior publications that
aimed to characterize the complexity of networks (Bianconi 2007; Bianconi 2009; Bo-
gacz et al. 2006). In particular, when adopting a statistical-mechanics approach, an
ensemble of networks possessing specific structural properties can be effectively exam-
ined through its associated entropy. The number of eligible automorphisms of a graph
corresponds to the number of permutations of its adjacency matrix. Following Bogacz
et al. 2006, the partition function of the ensemble of a given topology G = (V, £), with
Aut(G) the set of automorphism of G, is defined as

Definition 2.12 (Partition function of the network ensemble).

V!

Z(G= (V€)= ’|Aut(g)\‘

(2.11)

We denote PC* the PC computed for a collection of statistics whose equivalence relation
corresponds to the automorphisms relation. Then, we have

1
PC* = |log Zl (2.12)
PC* = |—-logZ| (2.13)
PC* =logZ (2.14)
entropy o< PC* (2.15)

This is in line with the idea that a higher level of order in the graph structure is
associated with lower entropy, indeed for vertex-transitive graphs the entropy reaches
is minimal value at zero (Bianconi 2007; Bianconi 2009). A comparison with-in entropy
and PC* can be found in Table 2.2. Note that in the first and last examples the statistics
collection choice does not affect the PC.
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Table 2.2: Entropy and PC* on known graphs

Graph Entropy PC*
° [
[ J
o 1 <log n(an)) vS, PC(S) = PC*
° - =0 !
n\ 0 PC* = log— =0
Trivial graph with n s
isolated nodes
°
°
o® 1 <1og _n<n2—1>> B S = {deg}, PC(S) :2 ITS
° n 1 PC* = log (n—2)
n!
ER model p(Z) =1 e T 5 = log n(n—1)
2 connected nodes and n—
2 isolated nodes
S = {deg}, PC(S) = PC*
1 n! 1 . (n—1)!
- == PC* =1 =
n log (n—1! n logn o8 X n!
. = log—
Star graph with n nodes
and n — 1 edges
1 ol VS, PC(S) = PC*
—log— =0 n!
n "~ nl PC* = log — =
n!
. =0
Complete graph with n
nodes having n — 1 edges

Properties of Orthogonality

Observation 6. A nodal statistics whose induced partition is composed of classes
having each one a unique element, is perfectly orthogonal with every nodal statistics.

Observation 7. If collection of statistics is perfectly orthogonal, all other collections
having as subset that collection are perfectly orthogonal as well;

Observation 8. If a perfectly orthogonal statistics set exists on a graph, then the
graph does not admit nontrivial automorphisms.
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Properties of Correspondence of structural pattern score

Observation 9. All graphs defined on the same node set, having same degree sequence,
have a correspondence of structural patterns associated with the degree statistics equals
to 1.

Observation 10. The minimum values of structural pattern score is given by ﬁ

Observation 11. If on the same graph, the structural patterns score of different nodal
statistics reaches the minimal value, then the nodal statistics are perfectly orthogonal.

2.3 Summary and conclusion

Graph models become largely used in real world applications and many nodal statistics
have been proposed for node roles detection. However, the most informative statistics
for graph comparison is highly dependent on the observed data and combining more
statistics can be relevant.

We propose a mathematical framework with the specific purpose of providing new
statistical tools for the analysis of brain functional connectivity networks.

We introduce a nodal-statistics-based equivalence relation and propose an innovative
way to combine nodal statistics for graph structural pattern detection. We will use
this notion to compare different graphs and characterize graph family defined on the
same node set. As the equivalence relation depends on a collection of nodal statistics,
we define a power coefficient and an orthogonality score to evaluate parsimony and
heterogeneity of the collection. Such coefficients can be used as revisited measure of
nodal statistics dependency.

We define a graph similarity based on node roles and a mathematical tool to detect
nodes persistently different from others, by computing the percentage of participation
in nontrivial classes. Interestingly, nodes which tend to persistently belong to trivial
class are likely to play peculiar roles in the graphs, while at the opposite nodes with a
high participation, appear to share similar property with other nodes.
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Applications

Abstract

In this chapter, we present experiments demonstrating the benefit of a graph struc-
tural pattern approach in functional connectivity brain networks, both for characteri-
zation and in classification task. We compare real data with synthetic models, achieve
consistent characterizations of healthy brain connectivity, enable pathological condition
differentiation, and highlight the impact of time-series length on regional characteriza-

tion. These findings underline the potential of our framework in comprehensive brain
network analysis.
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In this chapter, we present experiments leading to key results regarding the appli-
cation of a graph structural pattern characterization in functional connectivity brain
networks. First, we provide a brief overview of the databases we utilized. To ensure
the generalizability of our method and to demonstrate its adaptability, we made an
effort to incorporate a wide range of data. However, as we elucidate in the previous
chapter, it is crucial for the data to adhere to specific criteria to ensure the robustness
of the results.

The four main experiments are organized as follows. First, a comparison between real
data and synthetic generative models is provided. This serves as a proof of concept,
illustrating that graph structural patterns have the capacity to capture information
unique to brain connectivity networks.

In the second experiment, we detail how we achieved a consistency results across healthy
subjects from various databases. This endeavor results in a comprehensive healthy
characterization of brain connectivity.

Our third experiment pertains to a classification method for distinguishing between
different pathological conditions. This method is effective even in discerning subtle
differences among groups with varying symptomatology.

Lastly, we explore the influence of the length of time-series on regional characterization.
We recommend the use of long acquisition time to effectively capture relevant patterns.

Overall, these results showcase the potential of utilizing graph structural patterns in
analyzing functional connectivity brain networks, encompassing generalization across
healthy subjects, discrimination between pathological conditions, and the significance
of data length in regional characterization.

3.1 Databases

3.1.1 Preprocessing of rs-fMRI data

The data preprocessing is based on the resting state fMRI pipelines developed by V.
Munoz-Ramirez, M. Dojat, C. Delon-Martin and S. Achard at the Grenoble Institute of
Neuroscience (Munioz-Ramirez et al. 2021). The pre-processing requires an anatomical
scan and the resting state acquisition. It encompasses several essential steps, as outlined
below and summarized in Figure 3.1.

» Anatomical segmentation: the first step involves segmenting the anatomical data
using the Statistical Parametric Mapping (SPM) software. This segmentation
process categorizes each voxel into anatomical structures within the brain.

» Resting state realignment and conversion: in this step, the 4D resting state data
is realigned, which ensures that the time series data for each voxel is temporally
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Figure 3.1 — Scheme for BOLD time-series extraction from fMRI acquisition. Fig-
ure adapted from Richiardi et al. 2013.

aligned with the others. Additionally, the data is converted from a 4D volume to
a series of 3D slices.

» Atlas registration: the adopted atlas is registered to the native space of the resting
state data. This alignment allows for mapping brain regions onto the subject’s
volumes for subsequent analyses.

o Artifact detection: the pipeline includes a procedure to detect artifacts within
the resting state data. Artifacts can arise from various sources, such as motion
or physiological noise, and their identification is essential to ensure data quality.
Points associated with a motion of more than 2mm are discarded.

These steps collectively form the preprocessing pipeline for the rs-fMRI data, aiming
to enhance the quality and reliability of subsequent analyses. The use of this pipeline
helps to align the anatomical and functional data, correct for potential artifacts, and
prepare the data for further investigation into graph structural patterns and functional
connectivity within the brain.

3.1.2 Adopted network inference protocol

The definition of the functional network is achieved throughout different phases shown
in Fig. 3.2. First, the acquired fMRI data are aggregated over regions which are
determined according to an anatomical labeling. Particularly, depending on the desired
granularity, we adopt one of the following atlas for our analysis: AAL90, AAL16, and
AICHA (Tzourio-Mazoyer et al. 2002; Rolls et al. 2020; Joliot et al. 2015). These
atlases divide the brain into 90, 116 and 384 regions of interest (ROI), respectively.
The choice of atlas depends on the specific research question and the desired resolution
of analysis. For each ROI, we estimate a unique time series signal by averaging the
fMRI time series over all voxels in each parcel, weighted by the proportion of gray
matter in each voxel.

The following stage consists in the application of the discrete wavelet transform to the
fMRI time series. Thanks to this procedure, each time series is decomposed into a
set of compactly supported basis function, which are uniquely scaled in frequency and
located in time. As a results, for each subject, different fMRI time series at distinct
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Figure 3.2 — Adopted framework for graph definition. Courtesy of Sophie Achard.

scales are at disposal. At each scale, which represents an interval of frequencies, the
correlation among regions is estimated. Specifically, we estimate the correlation at the
frequency band lower than 0.1Hz, since it has been observed that the resting state
information activity is mainly captured at this frequency range (Biswal et al. 1995;
Lowe et al. 1998; Cordes et al. 2000; Salvador et al. 2005).

Finally, we consider unweighted graphs obtained by graph filtering procedure on the
absolute of the correlation matrix. A subject-dependent threshold is determined in
order to obtain a fixed number of edges in all the estimated networks (Richiardi et
al. 2013; Vidal et al. 2011; De Vico Fallani et al. 2017). The threshold guarantees a
specific sparsity level in the final graph, ensuring that only the strongest connections
in absolute value, are preserved independently on the correlation values (Achard et
al. 2006; Fornito et al. 2013). The choice of the threshold is performed to extract
graphs belonging to the small-world regime as shown in Fig. 3.3 and corresponds
to low sparsity values. The small-world regime is defined in terms of global and local
efficiency: when a network has global and local efficiencies comprise between the ones of
a corresponding regular lattice and random networks. Moreover, to ensure connectivity,
the edges of the Minimum Spanning Tree are always added. We refer to our work in
Appendix B.2 where we make effort to avoid the selection of an a priori threshold
and to Appendix B.3 where we refine the small-world regime definition by identify
Watt-Strogatz hyperparameters model to fit global and local efficiencies of real data.
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Figure 3.3 — Visualization of the small-world regime characterization of functional
connectivity graphs.

Table 3.1: List of the studied databases including different classes of subjects.
#Vol: Number of rs-fMRI volumes, HC: Healthy Controls, CO: Comatose patients,
PD: Parkinsonian patients, PD-H: Parkinsonian patients with visual hallucinations,
PD-I: Parkinsonian patients with visual illusions. Gin-Chuga: Grenoble Hospital,
Chu-CF: Clermont-Ferrand Hospital. ChuStr: Strasbourg Hospital, HCP: Human
Connectome Project, iShare: internet-based Students’ Health Research Enterprise,
Gin-Chuga: Grenoble Hospital.

Provider Subjects Scanning Parameters Age range
Total B0 TR (ms) #Vol Frequency Band years
HCP (Termenon et al. 2016) HC(100x2) 3T 720 1200  0.043-0.087 Hz 20-43
iShare (Tsuchida et al. 2017) HC(1814) 3T 850 1046  0.037-0.074 Hz 18-35
Gin-Chuga (Munoz-Ramirez et al. 2019) HC(11)-PD-de novo(13) 3T 1000 500  0.031-0.063 Hz 46-70, 51-70
ChuStr (Achard et al. 2012) HC(20) - CO (17) 1.5T 3000 405  0.042-0.084 Hz 25-45, 21-82
Chu-CF (Marques et al. 2022) HC(20) PD-H (17) PD-I (19) 3T 3000 200  0.041-0.083 Hz 60-78, 63-78, 61-75

We build networks from resting state fMRI (rs-fMRI) datasets from different databases
(Table 3.1) which gather Healthy Controls (HC) and different pathologies. For dataset
including patients with Parkinson Disease (PD), we consider a modified version of
the AAL3 (Rolls et al. 2020), including the first 94 regions and the subcortical regions
known to be affected in PD (substantia nigra, red nucleus, cingulate cortex, accumbens
nucleus), in addition, we parcellate the Cerebellum in three regions per hemisphere
(Posterior, Anterior, Inferior), resulting in a total of 106 regions. The same data and
atlas are used in Munoz-Ramirez et al. 2019. The iShare dataset was pre-processed
similarly but with different software elements (Tsuchida et al. 2017).

Information about the main acquisition parameters and the populations are provided
in Table 3.1, for more details we refer to the corresponding references.
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3.2 (1) Synthetic Data and Real Data

Based on a paper written in collaboration with Sophie Achard and Michel Dojat and published in Phys-
ical Review E. (Carboni et al. 2023b)

In this section, we aim at providing interpretation of the different defined measures of
interest of the previous chapter, namely the Power Coefficient and the Orthogonality
score over a single graph, the Correspondence of Structural Pattern as pair-wise simi-
larity score among networks and finally the local characterization of a graph collections
through the nodal percentage of participation in nontrivial classes (NPP). For this ex-
tent, we evaluate our framework on synthetic data, as null-models for which we have
a clear understanding of the underlying topological structure, and compare them with
real data to show as a proof of concept that our proposal captures meaningful brain
network information.

3.2.1 Material

We consider different generative graph models and compare them according to their
sparsity level, defined as the ratio between the edge count on the graph and the edge
count in a complete graph having the same nodes. In generating synthetic graphs,
we constraint the number of nodes to 90 to align with the corresponding real dataset,
AAL9O (Tzourio-Mazoyer et al. 2002). We examine ER, WS and BA1,BA2 models,
together with a synthetic version of corresponding real networks coming from HCP:
DSP conserving the same observed degree distribution, and EPA and EC models. As
real data, we consider the 200 networks coming from HCP dataset (Tab. 3.1). When
analyzing graph at fixed sparsity, we select 0.1 which guarantees that each extracted
network belongs to small-world regime corresponding to global and local efficiencies
comprised between the ones of ER graph and ones of the complete graph (Achard
et al. 2007; Latora et al. 2001, Fig. 3.3). We consider the classical nodal statistics
previously defined: degree, clustering coefficient, and the three centrality measures of
betweenness, closeness, and second-order. We refer to the previous chapter for the
definition of the different considered metrics (Chapter 2).

3.2.2 Results and Discussion
Power Coefficient.

In Fig. 3.4, we report the clustering coefficient PC on different generative models and
real connectivity graphs with respect to their sparsity ratio. We can appreciate the
different behavior of PC across models and sparsity levels.

As expected, for every nodal statistics the PC equals zero when computed over the
complete graph (corresponding to the sparsity ratio of 1). In this case, all nodes are
automorphically equivalent and it is not possible to extract any equivalence class.
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In the Barabasi-Albert model (BA1, BA2), we observe a monotone decreasing PC(cc)
with respect to the sparsity. Indeed, when the sparsity is low, we have few nodes of high
clustering coefficient and many nodes of very low coefficient values. The number of
automorphisms exchanging nodes of low values is then higher for small sparsity, while
when the sparsity ratio increases the clustering coefficient values distribution tends to
be less concentrated on the node set, identifying more classes and corresponding to
higher PC. ER and WS show similar behavior especially for high sparsity values, while
when the sparsity is low, WS tends to differ from ER model.

Regarding brain models, EPA fits correctly the HCP networks when the sparsity is
higher than 0.7. EC and DSP curves follow the HCP curve tendencies, but with lower
PC values. A possible explanation of this difference is the presence of hubs in HCP
networks not well reproduced in the models. Indeed, a higher number of hubs will
result in higher PC U score.

Interestingly, the PC on the real data have the highest performance at all sparsity
levels, reproducing the higher complexity of the real FC network topologies. When
evaluating the PC of different measures on the same model, we can select for each
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Figure 3.4 — Mean normalized power coefficient (136) of clustering coefficient statis-
tics on different generative models and real brain connectivity graphs (HCP) at dif-
ferent sparsity levels. ER: Erdos-Rényi; WS: Watts-Strogatz; BA1, BA2: Barabasi-
Albert; DSP: Degree sequence preserving model; EPA: Economical preferential at-
tachment model; EC: Economical clustering model.
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sparsity ratio which nodal statistics have the higher discriminative power on the node
set. A same analysis can be performed over different nodal statistics, (see for instance
Fig. 3.5).
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Figure 3.5 — Mean normalized power coefficient (156) of degree statistics on differ-
ent generative models and real brain connectivity graphs (HCP) at different sparsity
levels. ER: Erdos-Rényi; WS: Watts-Strogatz; BA1, BA2: Barabasi-Albert; DSP:
Degree sequence preserving model; EPA: Economical preferential attachment model;
EC: Economical clustering model. Interesting, the PC on the real data have the best
performance at all sparsity levels. When evaluating the PC of different measures on
the same model, we can select for each sparsity ratio which nodal statistics have the
higher discriminative power on the node set.

Orthogonality and Correspondence of Structural Pattern.

In Fig. 3.6, we evaluate orthogonality and correspondence structural pattern of statis-
tics pairs in WS and BA2 models at 0.1 sparsity. A visualization of their structural
patterns is shown in Fig. 3.7.

In WS model, the degree shows high orthogonality values with all nodal statistics:
many nodes that have same degree also share a second nodal statistics value. This is
likely due to its degree distribution. Indeed, in a general WS graph G, ;, the degree
distribution has a peak at the £ values, meaning many nodes have approximately the
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Figure 3.6 — Nodal statistics pair comparison on two models. Upper Triangular
Matrix: WS (Watt-Strogatz model); Lower Triangular Matrix: BA2 (Barabési-
Albert) model. Left: Orthogonality for a pair of statistics; Right: Correspondence
structural pattern score for a pair of statistics. cc: clustering coefficient; b: beetwee-
ness centrality; d: degree; s: second-order centrality; cs: closeness centrality.

same degree (Albert et al. 2002). Consequently, the probability of retrieving high pop-
ulated classes associated with degree is increased in this model.

Interestingly, the correspondence patterns scores between the degree and the other
statistics are low except for the second-order centrality (Fig. 3.7, Top Right). Degree
and second-order centrality capture different topological graph features (Kermarrec et
al. 2011) and usually appear unrelated in complex networks. However, in the consid-
ered case, their induced partitions on the graph largely overlap. Indeed, they exhibit
a strong negative correlation coefficient (—0.98 in average). Their high orthogonality
and high correspondence scores reveal this correlation.

In WS model, the statistics pair, which shows the least correspondence pattern scores,
is composed by degree and betweenness centrality: while trivial degree classes capture
high connected nodes, the betweenness centrality better refines the class associated
with the average degree value.

Completely different results are observed in BA2 model, for which the orthogonality
of all considered statistics pair together with their correspondence scores appear close
to 1.0. This shows how in preferential attachment model all statistics pairs determine
almost the same structural patterns: few populated classes of high connected nodes
and high populated class for the leaves. Indeed, for BA1,BA2 models a very high
correspondence of structural patterns associated with single statistics is detected (Fig.
3.7 bottom).

We report results over the HCP dataset, by considering degree and betweenness central-
ity associate-equivalence relation. For this pair, low orthogonality and correspondence
patterns scores are observed both on WS model and real data (Fig. 3.6, Fig. 3.8).
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Figure 3.7 — Structural patterns associated with different statistics on Watt-
Strogatz (top) and Barabasi-Albert (bottom) models. cc: Clustering coefficient; b:
Beetweeness centrality; d: degree; s: Second-order centrality; cs: Closeness central-
ity.

In Fig. 3.9, we compare the correspondence structural pattern score distribution for
generative models and HCP datasets. The observed ER and WS distribution values
are lower compared to real data. Moreover, when considering a dataset combining half
HCP real networks and half ER networks, we observe a reduction in the structural
pattern comparison values and an increase in the variance. Interestingly, while HCP
data and WS model both exhibit small world properties, their score distributions are
very distinct, meaning that the computed structural pattern score on real data comes
from peculiar brain properties which are not completely capture by networks of small
word regime.

For brain connectivity models, EC and EPA have similar distributions, but when
compare to real data they exhibit lower values. Instead, the DSP show higher variance
in comparison to HCP and a non-Gaussian behavior.
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Figure 3.8 — Average value of orthogonality and correspondence structural pattern
scores (SD) of nodal statistics pairs on HCP dataset. Upper Diagonal: Orthogonal-
ity score, Lower Diagonal: Correspondence structural patterns score. CC: clustering
coefficient; B: beetweeness centrality; D: degree; S: second-order centrality CS: close-
ness centrality.

Nodal Percentage of Participation.

Finally, we compare nodal participation in models and real HCP dataset (Fig. 3.10). As
expected, the values of percentage of participation for EC and ECA brain models, are
higher than real ones, due to the spatial relations that constrain the role of each brain
region. Thus, same nodes play the same role in many samples of the generated datasets.
On the contrary, DSP provides a lower bound in the percentage of participation of real
data. Indeed, constraining graphs to only keep same degree sequence, increases the
node role variability in the group.

A well-known brain property is the presence in the two hemispheres of homotopic
regions: the right and left hemispheres are approximately mirror images of each other.
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Figure 3.9 — Correspondence structural pattern score distribution on the considered
model and real data. Left: WS: Watt-Strogatz model, ER: Erd6s-Rényi model and
HCP; dataset composed of 100 samples randomly chosen from HCP dataset and
100 from ER model. Right: Brain models and HCP data. DSP: Degree sequence
preserving model; EPA: Economical preferential attachment model; EC: Economical
clustering model.
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Figure 3.10 — Nodal participation in nontrivial classes for real (HCP), and synthetic
datasets. ER: Erdés-Rényi model, WS: Watt-Strogatz model, DSP: Degree sequence
preserving model; EPA: Economical preferential attachment model; EC: Economical
clustering model.

That means the same region can be found in both hemispheres. An interesting result
is the high number of observed classes to which belong both the homotopic regions
(38% in average on HCP - Table 3.2). Again, when analyzing the entire data, we
find that the nodal participation of brain regions is symmetrical: pairs of homotopic
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Figure 3.11 — Nodal participation in nontrivial class in HCP dataset and a shuffled
version. Nodes labels are sorted according to the percentage of participation of left
hemisphere regions. The symmetry reveals the expected hemisphere similarity in
the participation of analogue regions.The percentage of participation of each node
is also compared with a shuffled HCP dataset, where each real network is re-ordered
by a random shuffle of the adjacency matrix, preserving the degree distribution.
In this way, we expect that non-zero percentage of participation is simply due to
chance. The participation indices for this random dataset appear to be significantly
lower than the ones observed in the real HCP. However, even if closer to 0, all nodes
appear to participate at least in one nontrivial class. Thus, when, for the real data,
we observe a high participation index, we can conclude that the node is likely to
share its equivalence role with some other nodes in the graph. At the same time,
when a node does not have a positive percentage of participation, we expect the
node to be unique, consistently in all networks and so to retrieve regions associated
with unique functions.

regions have similar percentage of participation in nontrivial classes (Fig. 3.10). This
property is still present in the brain models that integrate the brain geometry in their
construction, such as DSP (Fig. 3.10). The percentage of participation of each node
is also compared with a shuffled HCP dataset, where each real network is re-ordered
by a random shuffle of the adjacency matrix, preserving the degree distribution. In
this way, we expect that non-zero percentage of participation is simply due to chance.
The results in Fig. 3.11 reveals how the NPP distribution on real data follows a very
distinct behavior with respect its shuffled versions.
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Table 3.2: Ratio of nodes in nontrivial classes in the same class of their homotopical
in HCP dataset.

AVG SD MIN MAX
0.38 0.11 0.13 0.67

3.3 (2) Healthy Population Characterization

In this section, we aim at providing the characterization of the healthy group both at
global and local level. Indeed, there exists an inter-individual variability under same
healthy conditions on the estimated network inference and network estimated on the
same subject at different moment may result in different estimation. Here, we explore
the ability of our proposed metrics to generalize to different datasets when healthy
conditions are met. Particularly, we select healthy subjects coming from different
databases and compare them in terms of orthogonality score and nodal percentage of
participation.

3.3.1 Material

We gather Healthy Controls (HC) from four databases HCP, iShare, Gin-Chuga and
ChuStr. The HCP database provides a total of 200 networks, each corresponding to
100 subjects who were scanned on different occasions. The age range of this population
spans from 20 to 43 years. The networks in this dataset are computed based on the
longest acquisition time among our databases of interest, amounting to a total of 1200
time-points in the time-series. The iShare dataset corresponds to the largest dataset
in our collection, comprising 1814 scans of subjects aged between 18 to 35 years. It is
important to note that, unlike the other scans where subjects lay down with open eyes
(or fixing a cross displayed on a screen), the iShare acquisitions were obtained with
subjects’ eyes closed. Finally, we consider 20 HC subjects, aged 25 to 45, collecled by
ChuStr provider and 11 subjects of the higher age range (46-70) from the Gin-Chuga
dataset.

3.3.2 Results and Discussion
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Figure 3.12 — Average orthogonality score curves of pairs of nodal statistics on
healthy controls (HC) over sparsity. Networks are computed using AAL9O atlas. C.:
Centrality.
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Orthogonality Score.

We evaluate the mean of the orthogonality values over all samples of adjacency ma-
trices at different sparsity values for HC obtained using AAL90. We remind that
the orthogonality can be interpreted as a measure of redundancy and independence
between different nodal statistics over a specific network. Specifically, across brain
network analyses it can provide information on the underlying structure of the graph
and justifying which structural properties are the predominant ones.

Differences are observed, particularly within the context of the iShare dataset. A dis-
tinct iShare mean orthogonality curve is reported with respect to closeness centrality
and II order centrality, which exhibit notably elevated orthogonality coefficients in re-
lation to other pairs of statistical measures ( Fig. 3.12). Indeed, these two nodal statis-
tics show a negative correlation on the extracted iShare graphs and their associated
structural pattern partitions appear to highly overlap, resulting in high orthogonality
score. Healthy brain connectivity networks extracted from iShare do not display nodes
that serve as alternative bridge connections linking different modules of the network.
An example of node which provide alternative bridge connections is illustrated in the
visualization of second-order centrality in Fig. 1.6). This dissimilar behavior could
be originated by the difference in scanning conditions, particularly eye conditions at
scan. Previous research has indicated the presence of differences in functional connec-
tivity, particularly in visual and auditory networks (Agcaoglu et al. 2019; Patriat et al.
2013), that might arise due to these variations. These discrepancies could potentially
lead to distinct estimations of the network’s modularity structure, ultimately reflected
in the structural patterns highlighted by the second-order centrality. However, further
investigations into the impact of eye conditions on the structural patterns are necessary.

To statistically validate the presence of different orthogonality curve, we employed
ANOVA test to the orthogonality values across dataset at different sparsity. The re-
sults demonstrated significant differences (p < 0.05) among the considered groups for
closeness centrality and second-order centrality.

No statistical difference is reported for the other nodal statistics pair. To assess this
HC consistency results, we built a classifier to perform a multi-class discrimination by
detecting the provenance of the datasets. As it happens in conventional machine learn-
ing practices in the field of network neuroscience, we interpret the orthogonality score
as global graph-descriptor and adopt it as feature of a K-Means algorithm (Richiardi
et al. 2013).

To evaluate the performance of the classifier, we apply a 10-fold stratified cross-
validation approach. In this approach, the entire set of available subjects was divided
into 10 groups of equal size, while maintaining the proportion of each class within
each provider. During each run of the experiment, one group is used as the test set,
while the remaining groups are used as the training set. The evaluation results are
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Figure 3.13 — Nodal percentage of participation for healthy controls datasets. C.:
Centrality. Left hemisphere nodes are sorted by participation from the lowest to the
highest values in HC HCP. Right hemispheres nodes are sorted in order to occupy
symmetrical positions of the corresponding nodes in the left hemisphere with respect
to the dotted line.

reported in terms of mean accuracy. The K-Means algorithm was set to identify 4
clusters, corresponding to the number of different data providers. It results that it is
not possible to distinguish the provenance of data in a multi-centre HC dataset (Tab.
3.3), while instead it is eventually possible to discriminate the pathology (Section 3.4).
This demonstrates their possible pooling without the need of data harmonization be-
forehand.

Table 3.3: Mean Accuracy on center prediction performed on the healthy control
datasets.

Degree | Betweenness C. | Clustering Coeff. | Closeness C.
Betweenness C. 0.23

Clustering Coeff. | 0.48 0.42
Closeness C. 0.50 0.32 0.31
II Order C. 0.36 0.42 0.17 0.28

Nodal Percentage of Participation for Regional Characterization.

Finally, we compare the nodal percentage of participation in nontrvial classes (NPP)
in HC dataset in order to obtain a regional characterization of the healthy groups
of comparable age distribution. The NPP shown in Fig. 3.13 are computed for a
sparsity equals to 0.1. Even if the regional values are slightly different, the ranking in
the percentages of participation in HC groups are largely overlapping. Indeed, when
fitting the NPP of HC of different groups, we observe high correlations score, especially
for degree and betweenness centrality: HCP - iShare 0.8, HCP - Chu-Str 0.7, iShare
- Chu-Str 0.7 (Tab. 3.4). Interestingly, the symmetry left-right hemispheres is well
captured by all the chosen pairs of nodal statistics.
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Table 3.4: Regression parameters between nodal participation of different HC
groups for different pairs of statistics.

Degree - betweenness C. | Degree - Clustering Coefficient
R-value Standard Error | R-value Standard Error

HCP - iShare 0.8 0.036 0.7 0.047
HCP - Chu-Str 0.7 0.044 0.5 0.050
iShare - Chu-Str 0.7 0.071 0.6 0.094

Discussion

We show that healthy control populations, with different sizes and acquired in differ-
ent centers, provide similar orthogonality curves; the minimum of the curve is always
reached at the same sparsity value, except for iShare. This exhibited difference is prob-
ably due to the use of a different preprocessing chain and a change in the absolute values
of the estimated correlations. Indeed, iShare correlations matrices have lower values
leading to reach the minimum orthogonality values for lower sparsity. Particularly, in
iShare dataset, selecting higher levels of sparsity determines the estimation of spurious
edges since they are associated with very low correlation. Additionally, the convexity of
the orthogonality curves can be used to evaluate the complexity of the graphs structure
at different sparsity levels. Indeed, as the sparsity increases to 1, the graphs become
much more close to a complete graph in which all edges are observed. In this case,
all nodes are equivalent, independently of the considered pair of nodal statistics. On
the contrary, for very low sparsity levels, different pairs of nodal statistics capture the
same graph information and show no-minimal orthogonality scores. When the orthog-
onality curve reaches the minimum, the pair of statistics is as close as possible - for
the considered statistics set - to the perfect orthogonality on the given graph structure.
At this sparsity level, the combination of statistics places many nodes in trivial class,
capturing node specific behaviors and revealing the presence of particular structural
properties on the extracted graph.

3.4 (3) Discrimination of Patients Population

In this section, our focus is on demonstrating the advantages of our proposal within the
context of pathological discrimination and characterization. Specifically, we begin by
applying our proposal to comatose patients, driven by the insights gained from previous
findings related to nodal re-organization, which served as a foundation for establishing
the structural pattern.

Subsequently, we validate that a comparison utilizing the scores derived from the struc-
tural patterns effectively distinguishes between comatose patients and healthy individ-
uals. Furthermore, we utilize the nodal participation percentage to detect regional
perturbations of the patients group versus the healthy controls.

As a second application, we extend a similar framework to Parkinsonian patients. This
serves a dual purpose: to classify recently diagnosed patients from the healthy control
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group and to identify subtle distinctions among patients.

We conduct a comparison with existing state-of-the-art classification techniques. Fi-
nally, we present a synthesis of our observations from a neuroscientific interpretation
perspective.

3.4.1 Comatose Patients

Based on a communication written in collaboration with Michel Dojat and Sophie Achard accepted for
XXIXéme Colloque Francophone de Traitement du Signal et des Images - GRETSI 2023 ( Carboni
et al. 2023c)

To demonstrate the advantages of our proposed framework in real-world data scenarios,
we begin by examining the functional networks of individuals in comatose state. Data
are provided by Chu-Str and counts 20 HC and 17 comatose patients (CO). Among
the comatose patients, twelve experienced cardiac and respiratory arrest, two patients
experienced hypoglycemia, two others fell into a coma after a gaseous embolism inci-
dent, and one patient had extracranial artery dissection.

The task of distinguishing between subjects with differing levels of consciousness through
the analysis of functional networks poses a multifaceted challenge that is not readily
apparent. Previous studies have encountered difficulties in detecting significant changes
in graph metrics when contrasting comatose patients with their healthy counterparts.
Nonetheless, as previously mentioned, it has been observed that disruptions in hub
connectivity yield discriminatory outcomes in comatose patient classification (Achard
et al. 2012).

Orthogonality coefficient

Our analysis commences with an assessment of the variations in orthogonality scores
across diverse levels of sparsity. Demonstrating the efficacy of orthogonality as a com-
prehensive global index of the underlying graph structure topology, we unveil its capa-
bility to effectively differentiate between the healthy controls group and patients. In
contrast, the utilization of the corresponding standard metric fails to provide a distinct
discriminatory insight. This observation underscores the superiority of orthogonality
as a discerning feature, enabling clearer discrimination and deeper understanding of the
underlying graph structure differences between these two distinct groups. In Fig. 3.14,
we show the difference in employing the orthogonality coefficient of pair of nodal statis-
tics with resepct tothe use of the corresponding global average in detecting differences
across the groups.

Drawing inspiration from conventional machine learning practices in the field of network
neuroscience, we interpret the orthogonality score as global graph-descriptor and adopt
it as feature of K-Means algorithm (Richiardi et al. 2013). This integration allows us
to effectively cluster orthogonality curves that share similarities, ultimately enabling
the grouping of coherent patterns. Moreover, this approach empowers us to predict the
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Figure 3.14 — (a) Visualization of the centroid of the orthogonality curves obtained
with K-Means clustering. Left: CO centroid and HC centroid obtained considering
degree and closeness centrality. Examples of graph with a given orthogonality values
of the considered pair of statistics are also shown with node colors correspond to
different classes. Grey is used for node in trivial classes. (b) Visualization of the
mean graph average closeness centrality at different sparsity levels per group.

classes of new samples based on the insights garnered from the clustered orthogonality
curves.

We perform a binary discrimination task, differentiating between patients and a con-
trol group by the use of the orthogonality coefficient of pair of nodal statistics. This
facilitates the interpretation in terms of the predominant substructures within graph
topology.

As depicted in Fig. 3.15, it becomes evident that the combination of closeness central-
ity and either degree or II order centrality can be effectively employed to distinguish
comatose patients from the HC group. These results suggest that, for Comatose pa-
tients, connections among different groups of high-interconnected nodes in the graph
structure are provided by nodes having a high degree, while in Healthy Controls, links
between these groups, which do not involve high connected nodes, may exist (Fig.
3.14).

Correspondence Structural Pattern

We determine the distribution of the correspondence structural pattern score associ-
ated with different nodal statistics in three different groups: a group of only healthy
controls, a group including all the comatose patients and healthy controls, and a group
including only the comatose patients.

Subsequently, we employ a Support Vector Machine (SVM), utilizing the correspon-
dence structural pattern score as a kernel function to effectively discriminate between
functional networks of comatose patients and those of healthy controls. Fig. 3.16,
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Figure 3.15 — Accuracy results in patients classification 7-fold cross validation
over the orthogonality curves per pairs of nodal statistics. Upper Matrix: Comatose
patient discrimination. Lower Matrix: Parkinsonian patient discrimination. C.:
centrality, Clust. Coeff.: Clustering Coefficient.

displays the distributions of the structural pattern scores within these three groups
of interest. Results are shown for the equivalence relation associated with the de-
gree and the clustering coefficient in combination or as single statistics. For the three
equivalence relations, a discernible separation is observed between the distributions of
healthy controls and comatose patients; with the former group consistently exhibiting
a higher correspondence score. This distinction is statistically significant and has been
validated through the Z-test with a p-value of less than 0.001 for all the three cases.
Additionally, significant difference was also observed in the distributions of the entire
dataset encompassing both comatose patients and healthy controls (CO+HC) and the
group of solely healthy controls (HC).

Interestingly, while a significant difference exists between the CO+HC and CO groups
when considering the structural pattern associated with other nodal statistics combina-
tions, this is not the case with the clustering coefficient-associated structural pattern.
In this case, the correspondence scores between comatose subjects are similar to the
values obtained when they are pooled with HC, indicating a notable heterogeneity
within the comatose subgroup when considering the clustering coefficient.

Moreover, we can appreciate the benefit of combining together more nodal statistics
for the identification of finer structural patterns. This combinations results in struc-
tural pattern scores vary from 0.2 to 0.5 when considering only the degree and 0.4 to
0.8 when degree and clustering coefficient are considered simultaneously. Remarkably,
even with this expanded range, the discernible and statistically significant differentia-
tion between comatose patients and healthy controls remains consistently preserved.
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Figure 3.16 — Distribution of correspondence structural patterns score in the con-

sidered three groups of subjects.

Finally, Fig. 3.17 presents a graphical representation of the outcomes of the discrimi-
nation between comatose patients and healthy controls when considering the structural
pattern associated with degree, clustering coefficient and their combinations. The dis-

crimination reaches a perfect score in a 5-cross-validation procedure.
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Figure 3.17 — ROC curve of discrimination between comatose network and healthy
controls in a 5 cross-validation considering structural pattern associated with degree,
clustering coefficient and their combinations.

Nodal Percentage of Participation

Concerning the regional characterization of the patients group, we compare node per-
centage of participation scores of comatose patients with healthy controls in Fig. 3.18.

When juxtaposed with the Human Connectome Project (HCP) scores, it becomes evi-

dent that the percentage participation in comatose patients exhibits reduced variability.
In the context of comatose patients, nearly every node tends to cluster around the mean
percentage of 0.26+0.17, whereas the HCP dataset displays a wider distribution with a

mean percentage of 0.32+0.30 (See Tab. 3.5). This tighter clustering of nodes around

the mean in comatose graphs makes it more challenging to discern a distinct hierarchy
in node behavior within this context as it would happen in random dataset (Fig. 3.19).

Table 3.5: Statistics on nodal percentage of participation.

AVG SD MIN MAX

HCP
Comatose

0.32 0.30 0.015 0.98
0.26 0.17 0.0 0.76
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Figure 3.18 — Nodal participation in nontrivial classes associated with degree and
betweennes centrality for comatose patients, healthy controls (HCP dataset) and
DSP model. Left hemisphere nodes are sorted by participation in HCP, right hemi-
spheres nodes occupy symmetrical positions of their corresponding left hemisphere
nodes with respect to the dotted line.

As shown in Fig. 3.20, the NPP of each region differs from HC and comatose patients
(correlation of NPP for degree and closeness centrality: 0.2, for closeness centrality
and IT order centrality: -0.1). In all cases, the maximum nodal comatose participation
value is lower than the corresponding value in HC.

Since the low number of NPP in the patient group, can be due either to the presence
of many trivial classes in patient networks, or to the fact that the nodes in nontrivial
classes are not consistently be the same in the group, we evaluate the number of nodes
in nontrivial classes per graph, and we report comparable number in controls and
patients (Tab. 3.6). Hence, the difference in the percentage of participation indicates
the presence of higher structural patterns variability in patients.

Table 3.6: Nodes in nontrivial class per graph

AVG SD MIN MAX
HCP 0.32 0.062 0.17 0.52
Comatose 0.26 0.067 0.13 0.41

Finally, we rank the regions according to their perturbation with respect to the partic-
ipation in healthy controls. This allows to determine which brain regions have higher
change in their structural between the healthy control group and the patient one. For
Parietal Inferior, Angular and Fusiform gyri (already hubs in Achard et al. 2012) and
Hippocampus appears to be particularly impacted.
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Figure 3.19 — Mean participation of a node in datasets of different size. Mean
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indicate that the mean percentage of participation stabilizes respectively at 0.43
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Figure 3.20 — Nodal percentage of participation in HC and CO for degree and
closeness centrality.

3.4.2 Parkinson Disease

Parkinson’s disease (PD) is a neurodegenerative disorder affecting the aging popula-
tion. It manifests with a wide range of non-motor symptoms, such as hallucinations,
apathy, depression etc.(Jankovic 2003; Maciéas-Garciéa et al. 2022; Moro et al. 2020).
The study of functional connectivity networks in PD has shown promising results for
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early detection (Long et al. 2012; Munoz-Ramirez et al. 2019) and abnormalities in-
vestigation in diverse symptomatology (Gao et al. 2016; Marques et al. 2022; Tessitore
et al. 2019). In this section, we consider three different PD patients reflecting the
first stages progression of the disease: de novo patients (H&Y score < 2, stage I-11
(Bhidayasiri et al. 2012)) with normal vision, patients (2 < H&Y < 3, stage I1I) with
visual illusions or with visual hallucinations. In the quest to differentiate these PD
patients from healthy controls (HC, age-matched), we demonstrate the existence of
nodal re-organization in PD by applying a classifier based on the similarity of the
graph structural patterns. Moreover, our classifier can differentiate between PD and
HC groups and between patients experiencing visual illusions and visual hallucinations.
Finally, we can detect brain regions with abnormal behavior in the different groups,
giving a local characterization of the disease symptoms. Our classifier has comparable
performances with other current methods, with the added value of providing interpre-
tation and explanation of the exhibited differences among groups both at the global
and regional levels.

Orthogonality coefficient
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Figure 3.21 — (a) Visualization of the centroid of the orthogonality curves obtained
with K-Means clustering. Left: CO centroid and PD centroid obtained considering
clustering coefficient and closeness centrality. Examples of graph with a given or-
thogonality values of the considered pair of statistics are also shown with node colors
correspond to different classes. Grey is used for node in trivial classes. (b) Visual-
ization of the mean graph average closeness centrality at different sparsity levels per

group.

In our initial application concerning Parkinson’s disease, we replicate the orthogonal-
ity curve classification experiments as outlined in previous section. We systematically
investigate the orthogonality coefficient’s behavior across different sparsity levels and
nodal statistics pairs. Our focus centers on assessing the discriminative capability of
each pairwise combination of nodal statistics in the context of distinguishing between
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de novo PD patients and a control group of healthy individuals within the comparable
age range, as provided by the Gin-Chuga database.

Throughout this investigation, the higher discrimination power emerges when com-
bining between closeness centrality and clustering coefficient (Fig. 3.15). When in-
vestigating the different group orthogonality curves (reported in Fig. 3.21) a mean
orthogonality is observed in Parkinsonian patients in comparison to the healthy con-
trol group. This indicates a discernible distinction in the distribution of triplets of
fully connected nodes between the patient and control networks and nodes occupying
central position. These findings provide compelling evidence of potential network-level
variations that may be indicative of the underlying physiological differences between
the two groups.

Correspondence of structural pattern score

As a second step in PD exploration, we evaluate the possibility of comparing networks
by using the correspondence structural pattern score.This evaluation spans a range of
sparsity levels, ranging from 0.1 to 0.9, with incremental steps of 0.1. These sparsity
levels are associated with the considered nodal statistics and their pair combinations.
Our approach involves the training of a SVM classifier, where the correspondence
structural pattern score serves as a pivotal input.*!.

To benchmark, our classification results are compared with a selection of methods that
have been used in the literature in a classification task of functional brain connectivity
networks. We select some representative methods with the constraint of relying on a
prefixed-atlas correlation estimation and being applied in disease classification tasks.
A first class of approaches directly uses correlation matrices or second-order matrices
(i.e. tangent Pearson) as input of an SVM or other types of classifier (Rish et al. 2009;
Heinzle et al. 2012; Dadi et al. 2019; Varoquaux et al. 2010a; Schirmer et al. 2021).
We implement this first class (M1) by selecting the best classifier in accuracy among
(SVMs, Random forest, Ridge classifier, K-nearest neighbor and naive Bayes classifiers)
fed by the extracted matrices. As a second class of approaches (M2), we consider a
graph-based method relying on the normalized Laplacian spectrum computation. The
eigenvalues of each graph are used as input-features of the SVM classifier. Similar
methods have been proposed to detect network patient alterations (Haan et al. 2012;
Mostafa et al. 2019; Mheich et al. 2020; Schirmer et al. 2021). Next, we select the
HyperConnectome AutoEncoder HCAE (M3) as representative of graph neural network
(GNN)-based approaches (Banka et al. 2020). (M3) learns embedding features from a
brain graph (one graph per subject) and has been applied for brain state classification
(Bessadok et al. 2022b). Finally, we consider a method (M4) that has been proposed
for the classification of early PD patients. We implement a modified version of the
algorithm proposed by Long et al. 2012 which only relies on functional connectivity

1The code is made pubhcly available at https://gricad-gitlab.univ-grenoble-alpes.fr/carbonil/

regional-differentiation-based-on-graph-nodal-statistics-for-functional-brain-connectivity-networks-characterization/
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correlation matrices, instead of requiring multimodal information. Classification results
are reported in Tab. 3.7, we recall the definition of sensitivity and specificity.

Sensitivit True Positives (3.1)
ensitivity = .
Y True Positives + False Negatives

True Negatives

Specificity = (3.2)

True Negatives 4 False Positives

In our method, we indicate the best combination of sparsity level and nodal statistics
(NS).

It is worth noticing that the best performances of classification for PD vs HC are
obtained at low sparsity range, which corresponds to the small-word network regime.

Table 3.7: Classification results for repeated stratified fold cross validation max-
imizing the global accuracy. K has been fixed to 8 for having at least three test
samples and results are averaged over 100 runs (SD). Sens: sensitivity, Spec: speci-
ficity, Acc: accuracy. SD: Standard deviation. Sp: Sparsity, NS: Nodal statistics,
CL Coeff: Clustering Coefficient, C: centrality, Bet: Betweenness, Cl: Closeness. In
our method, we indicate the best combination of sparsity level and nodal statistics

(NS).

Task Method
M1 (sp) M2 (sp) M3 (sp) M4 (sp) | Ours (sp) || Sp. NS
Spec | 0.42 (0.44) 0.40 (0.44) 0.35 (0.48) 0.47 (0.45) | 0.63 (0.43)
HC vs PD-de novo | Sens | 0.86 (0.28) 0.85 (0.30) 0.64 (0.48) 0.73 (0.36) | 0.95 (0.15) || 0.3 CL. Coeff. (A)
Acc | 0.65 (0.25 ) 0.63 (0.25) 0.42 (0.15) 0.61 (0.27) | 0.79 (0.21)
Spec | 0.19 (o 0.49 (0.44) 0.0011 (0.030) 0.19 (0.36) | 0.19 (0.34)
HC vs (PD-H,PD-I) | Sens | 0.81 0.75 (0.25)  0.99 (0.051)  0.72 (0.28) | 0.94 (0.15) 0.3 Bet. C.+ Cl. C. (B1)
)

PD-I vs PD-H Sens | 0.59 (0.33) 0.24 (0.34) 0.69 (0.32) 0.51 (0.35) | 0.85 (0.24) || 0.1 CL. Coeff. (C)
Acc | 0.63 (024) 0.61 (0.24) 0.56 (0.22) 0.59 (0.23) | 0.66 (0.21)

(
(
(0.3
(0.2 (
Acc | 0.61 (0200 0.67 (0.21)  0.66 (0.11) 0.54 (0.23) | 0.67 (0.17) || 0.3 | II Order C. 4+ Cl. C. (B2)
Spec | 0.67 (0.35)  0.66 (0.33) 0.41 (0.37) 0.69 (0.36) | 0.44 (0.38)
( (
( (

Our classification results highlight the presence of a nodal reorganization associated
with different nodal statistics in the presence of Parkinson’s Disease and during its
progression in early stages. The overall classification scores obtained for all the methods
are not really high reflecting the difficulties to discriminate the patients at this stage of
the pathology progression (HY <3). It is worth mentioning that when the duration of
scanning is longer (Grenoble), the classification scores are improved for all the methods
(HC vs PD-de novo). Possibilities to improve accuracy results may come from the use
of a multimodal approach taking into account changes in structural MRI (Long et al.
2012).

Nodal Percentage of Participation

Finally, to obtain an interpretable characterization at the nodal level of a the group of
brain connectivity networks G = {G1,Go, ..., G} of different subjects, we propose to
evaluate the persistence of distinctive node role in the group. Specifically, we identify
nodes whose role is highly distinctive as the nodes in a trivial class: a class with no
other node. On the other hand, a node whose role is shared with at least another node
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Figure 3.22 — Visualization of the nodal PP in the different subject groups. A
selection of significant perturbed regions is colored in red. The blue line indicates
the hypothetical equivalence of the populations under comparison. Brain regions
are annotated according to Rolls et al. 2020, description can be found in the text.

in the graph belongs to a nontrivial class. The node persistence to have a distinctive
role in the group is computed as the nodal percentage of participation in trivial class
(PP):

_ [{G € G st #[g, = 1}]

\V/Ui ey PP(;(?)Z) : m

(3.3)

with m = |G| the number of subjects in G. The PP provides a summary of the
structural patterns of a network group at the nodal (regional) level. Differences in the
participation in each group can be explicitly computed, allowing to track any change
in the regions between different groups. In an ideal case where two groups of subjects
have the same structural patterns, we expect their PPs to be equal, meaning that
each region equally shares its role in the structural pattern of the graphs in the two
groups. Thus, the difference between groups can be estimated by linear regression
model coefficients and using the residuals to rank the local perturbation given by
each region v;. Moreover, we quantify the nodal disruption by computing the angle
between the ideal regression line having a slope coefficient of 1 and the estimated one
as in (Achard et al. 2012). Note that the nodal PP is a complementary measure with
respect to the NPP which quantifies the node persistence in nontrivial classes.

To determine which regions show significant differences in the PP between two groups,
we perform a permutation test with Bonferroni correction, controlling for multiple
comparisons across all regions. We prefer to avoid false discovery as we are able to find
many disrupted regions. This analysis identifies the regions that are most significantly
perturbed in their nodal PP between the two groups. And finally, we estimate the
angle between the regressed line and the ideal one (the identity), as a measure of the
global nodal disruption index (Achard et al. 2006). Results are reported in Figure 3.22,
and a full list of significantly different regions can be found in Tab. 3.8 and Tab. 3.9.

The use of the nodal percentage of participation (PP), reveals altered subcortical and
cortical regions in accordance with the PD pathology. By comparing de novo PD
patients with HC, we detect 17 significantly altered regions among which the middle
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Table 3.8: List of regions significantly different in HC vs PD de nowo.

MFG_ L Frontal Mid 2 L MOG R | Occipital Mid_ R

IFGoperc_ R | Frontal Inf Oper R FFG R | Fusiform R

ROL R Rolandic Oper R SPG_L | Parietal Sup L

SFGmedial L | Frontal Sup Medial L || SMG_ L | SupraMarginal L

MCC L Cingulate Post_ L ANG_R | Angular R

CAL R Calcarine R STG_R | Temporal Sup R

CUN_R Cuneus_ R MTG_R | Temporal Mid R

SOG__ L/R Occipital_Sup_ L/R ITG_R | Temporal Inf R
Table 3.9: List of significantly different regions in HC vs (PD-I, PD-H).
PreCG_L/R Precentral L/R CAL_L/R Calcarine_ L/R SFG_L/R Frontal Sup 2 L/R
CUN_L/R Cuneus_L/R IFGoperc_R Frontal _Inf Oper_R LING_L/R Lingual L/R
IFGtriang L/R Frontal Inf Tri L/R SOG_L/R Occipital Sup_ L/R IFGorb_L/R | Frontal Inf Orb 2 L/R
MOG_L/R Occipital Mid  L/R ROL R Rolandic_ Oper_R I0G_L/R Occipital Inf L/R
SMA L/R Supp_Motor Area  L/R || FFG_L/R Fusiform  L/R OLF L Olfactory L
PoCG_L/R Postcentral L/R SFGmedial R | Frontal Sup_Medial R SPG_L/R Parietal Sup L/R
PFCventmed L/R | Frontal Med Orb_L/R PG L/ Parietal _Inf L REC_L/R Rectus L/R
SMG_L SupraMarginal L OFCmed_L/R | OFCmed_L/R ACC_L/R Cingulate Ant L/R
ANG _L/R Angular L/R OFCant_L/R | OFCant L/R PCUN_L/R | Precuneus L/R
OFCpost_R OFCpost_R PCS R Paracentral Lobule R OFClat_L/R | OFClat_L/R
PUT_R Putamen_ R INS L/R Insula  L/R HES L Heschl L
ACCmid_L Cingulate_ Mid_L/R STG_L/R Temporal _Sup L/R MCC_L/R Cingulate_Post_ L/R
TPOsup_L/R Temporal Pole Sup L/R || HIP_ L Hippocampus_ L MTG L/R Temporal Mid L/R
PHG L/R ParaHippocampal L/R TPOmid L/R | Temporal Pole Mid L/R | AMYG R Amygdala_ R
ITG_L Temporal_Inf R CERant_L/R | Cerebellum Ant L/R THAL_L Thalamus_ L
N Acc R Nucleus Accumbens R

frontal gyrus and the posterior cingulate in the Default Mode Network, whose dis-
ruption is associated with cognitive decline, and calcarine cortex and cuneus which,
in accordance with the literature, show progressive connectivity deterioration during
the premotor phase (Tessitore et al. 2019; Munoz-Ramirez et al. 2019). 11 regions are
located in the right hemisphere and 6 in the left one, with only the occipital superior
gyrus being affected in both hemispheres, suggesting an asymmetrical distribution of
abnormal regions in de novo patients which can be related with the lateralisation of
PD. When comparing HC with PD patients with visual symptoms, more regions are
impacted probably due to the disease’s progression. We select two combinations of
nodal statistics and sparsity that reach the same global discriminative power (B1) and
(B2). We detect a significant PP difference in 86 regions for the first combination and
77 regions in the second. In accordance with the literature (Gao et al. 2016; Tessitore
et al. 2019; Marques et al. 2022), we report a significant difference in the anterior
cingulate cortex (ACC), the nucleus accumbens (N_ACC), the cerebellum anterior
(CERant), thalamus (THAL), the amygdala (AMYG) and the Supplementary Motor
Area (SMA). Interestingly, the detected perturbed regions largely overlap in the two
combinations and greater disruption coefficients s are observed when comparing HC
against PD patients with visual abnormalities compared to de novo PD patients (Fig.
3.22).

Our study contributes to the understanding of PD progression, detecting multiple
regions associated with the disease at an early stage, a more advanced stage, and with
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different visual symptoms.

3.5 (4) Reliability

The primary objective of this section is to provide recommendations for determining
the minimum time-series length to conduct robust regional-level analyses in functional
connectivity. To achieve this goal, we focus on healthy control (HC) subjects with ex-
tended time-series scans, specifically those containing 1000 or more data points coming
from iShare and HCP. Our approach involves a subsampling of these lengthy time-
series to extract shorter versions, each comprising n consecutive data points. For each
of these shortened time-series, we proceed to estimate a new connectivity matrix.
Moreover, we will consider an attacked version: where a predetermined number of
randomly selected edges from each real network undergo re-wiring. The re-wiring is
considered valid only if the obtained network is still completely connected.

This process allows us to compare the nodal statistics at the local level across these
diverse estimations. By analyzing the variations in nodal statistics resulting from dif-
ferent time-series lengths, we gain insights into the impact of the number of acquired
volumes on functional connectivity patterns. Ultimately, this investigation aims to sug-
gest the appropriate time-series length required to ensure the robustness and reliability
of regional-level functional connectivity analyses.

3.5.1 Material and Method

To assess the difference across different estimations, differing in time-length, we eval-
uate Intra-Class Correlation Coefficient (ICC) and Bland-Altman plot over the nodal
values and their group average (Koo et al. 2016; Altman et al. 1983; Giavarina 2015;
McGraw et al. 1996).

These analyses quantify the reliability and agreement between measurements derived
from network estimated with different time-series lengths.

The former, it has been defined as a different form of Pearson correlation coefficient
and it is used to evaluate the reliability of different raters or test-retest consistency. In
our evaluation, as suggested by McGraw et al. 1996; Koo et al. 2016, we consider the
ICC defined for a two-way mixed-effects models for absolute agreement, corresponding
to ICC(A,1) following the notation by McGraw et al. 1996. In fact, we assume in our
model that the choice of a set of time-series lengths determines a raters population
whose reliability needs to be assessed. Reporting the result of measurements into a ta-
ble where each column corresponds to a measurement obtained with a different points
number in the time-series, and each row corresponds to a distinct brain region subject
to measurement evaluation, the ICC(A,1) is given by the following equation:

MSg — MSg
MSg + (k — 1)MSg + £(MSc — MSg)

ICC(A, 1) = (3.4)
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where MSg = mean square for rows (across raters); MSg = mean square for error,
MS¢ = mean square for columns; n = number of subjects; k& = number of raters.

We interpret the reliability score according with the work by Koo et al. 2016 as reported
in Table 3.10.

Table 3.10: Reliability interpretation based on ICC values.

I1CC Reliability
1CC <0.5 poor
0.5 < ICC <0.75 | moderate
0.7 < ICC <0.9 good
09<ICC excellent

It is important to highlight that while the ICC traditionally assumes that all raters are
equivalent, in our specific context, these raters are distinguishable due to the variations
in time-series lengths. Consequently, it becomes crucial to consider not only the ICC
but also to complement its evaluation with the Bland-Altman (BA) plot (Bland et al.
1986). By doing so, we can gain a more comprehensive understanding of the agreement
and disagreement patterns between measurements from different time-series lengths.
The presence of any noticeable trends or discrepancies, as indicated by the BA plot,
can provide further insights into the nature of measurements and potential biases in-
troduced by varying time-series lengths.

The BA graphical approach can compare each measurement to a supposed gold-standard
method. Specifically, we assume the measurement performed on the network estimated
on the complete time-series as the gold-standard reference. However, it is worth notic-
ing that a disagreement between measurements obtained from estimations with varying
volume numbers in the acquisition does not necessarily indicate which of the two mea-
surements should be favored.

In situations of perfect agreement, the mean difference between measurements should
ideally be equal to zero and not show any tendency with respect to the average of the
two methods. We evaluate the BA plot according to the criteria proposed by Giavarina
2015. Particularly, we determine if there exists a systematic or proportional bias when
comparing a measurement against its gold-standard by finding a regression line of the
difference of the estimated methods over their mean. A poor agreement is deducted if
it is possible to find a well-fitted regression line.

We conduct our analysis on the iShare and HCP datasets. Within this framework,
we generate updated dataset denoted as iShare, and HCP,, each corresponding to
new versions of adjacency matrices derived from time-series containing n consecutive
points.
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3.5.2 Results and Discussion

As an initial experiment, we assess the variation in the number of edges within the
estimated network (counting 400 edges) when utilizing a reduced number of data points.
Results are reported in Fig. 3.23. We observe a noticeable trend where the network
estimations converge more closely to those obtained using the complete time-series
length as we incrementally increase the number of data points used in the estimation
process. This gradual convergence suggests that a larger number of data points yields
to more robust network estimations. In the right panel of Fig. 3.23, we evaluate the
difference on estimated networks by employing a sliding window encompassing 200
data points at different starting position. This window is iteratively positioned at
various starting points within the entirety of the time-series length. The outcomes of
this analysis show higher difference with the standard network when inferring from
the initial segment of the time-series. However, as we progress through the time-series,
the network estimation stabilizes and gradually aligns itself at an average of 200 edges
difference with respect to the final estimation.
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— 80O —— 600 - 800
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—— 1000 - 1200
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Figure 3.23 — Left: Number of edges discrepancies in observed between the network
estimated using the complete available time-series length and its respective subsam-
ples of 200, 400, 600, 800 points. Right: Number of edges discrepancies identified
between the network estimated using the complete available time-series length and
a subsample of 200 data points originating from various starting positions within
the entire available time-series.

As second experiment, we assess the disparities in the degree distribution between net-
work estimations based on shorter time-series versions and their complete counterparts.
This disparity is evaluated using the Kolmogorov—Smirnov (KS) test, a statistical tool
that quantifies discrepancies in the empirical degree distribution between two samples:
the standard network version and the abbreviated version with fewer data points. The
KS test facilitates a comprehensive comparison by scrutinizing the degree distribution
of the graph derived from the entire time-series against the degree distribution of the
graph estimated using a subset of n data points. This approach enables us to dis-
cern and quantify the degree of variation in the network’s structural characteristics
introduced by the use of shorter time-series segments. Moreover, for comparison, we
analyse the attacked network version where a specific number of randomly sampled
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edges are subjected to re-sampling. The results of this analysis are shown in Tab. 3.11
for varying time-series length estimations and for the attacked versions.

Table 3.11: Number of significant rejects of the null hypothesis at 0.05 in degree
comparison. HCP comprises 200 networks, iShare 1814 networks.

num of points HCP iShare num of attacks HCP iShare
200 6 21 50 28 5
400 0 4 80 34 8
600 0 1 110 49 8
800 0 0 140 53 10
170 55 18
200 58 11
230 56 21

Our findings reveal intriguing insights into the stability of the degree distribution of FC
networks or the influence of the network inference process on its computation. Indeed,
in the majority of instances, the hypothesis of a consistent degree distribution could
not be statistically rejected. On the other hand, when the FC networks undergo re-
sampling, we observe an increase in the number of times the hypothesis is rejected. This
observation seems to imply that despite the use of estimations with shorter lengths,
resulting in different edges estimation, the global properties of the FC network are
largely preserved and effectively captured even at short acquisitions.

Finally, we assess the absolute agreement concerning nodal statistics at the regional
level, employing both ICC and BA plots for a comprehensive evaluation. We evaluate
the regional group mean of nodal statistics s on the available datasets and their
corresponding shorter versions and the NPP associated with each nodal statistics. The
ICC reliability results are shown in Figg. 3.24, 3.25, while Fig. 3.26 shows the BA
plots concerning the clustering coefficient (other nodal statistics results can be found
in Figg. A.2-A.5 in Appendix A).
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Figure 3.24 — Reliability of nodal metrics in iShare dataset.
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Figure 3.25 — Reliability of nodal metrics in HCP dataset.

As a general tendency, when poor reliability is observed in the group average, poor re-
liability is also reported in the associated corresponding NPP. In a broader context, we
note that the iShare dataset tends to exhibit comparatively lower reliability in contrast
to the HCP dataset. This discrepancy could potentially be attributed to the disparity
in the number of subjects between the two datasets. The greater population size in
the iShare dataset may introduce heightened variability.

Excellent levels of reliability are evident within the HCP dataset, notably emerging
within 600-700 points in the group average estimation. Concerning the NPP, we ob-
serve excellent scores for betweenness centrality and clustering coefficient, mirroring
their average trend from around 700 points. Conversely, second-order centrality demon-
strates excellent reliability after 900 points. Closeness centrality, despite reaching the
good score of 0.83, surpasses this threshold. Interestingly, the degree also never sur-
pass the 0.95 score which, even if corresponding to good reliability, may be expected
to reach excellent score. Yet, it is worth highlighting that even a minor alteration in
degree statistics can yield varying estimations of the corresponding structural pattern
equivalence classes, in contrast to what happen with continuous nodal statistics where
the equivalence is granted up to a certain tolerance. This distinction could potentially
elucidate the higher reliability scores observed for continuous nodal statistics in the
NPP analysis.

Similarly, when focusing on the iShare dataset, analogous trends emerge in terms of av-
erage nodal statistics, with reliability scores achieving good and excellent levels across
all statistics commencing around the 500 points. In the context of NPP, results ex-
hibit slightly diminished reliability, with scores higher than 0.9 only for second-order
centrality at 900 points, while other cases hover between moderate and good.
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Figure 3.26 — Bland-Altmann plot of clustering coefficient in iShare and HCP
dataset.
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Yet, considering only the ICC results can be misleading. It seems to report generally
good reliability already when considering only 200 points. Finer analysis conducted
with the Bland-Altman plots reveals additional insights.

For instance, we consider the case of clustering coefficient for which the corresponding
BA plots are displayed in Fig. 3.26 in both datasets and different configurations.
Despite showing an excellent ICC score (0.91) for the iShare dataset group average at
500 points, a closer examination of the corresponding BA plot reveals the tendency to
overestimate the group average in regions exhibiting higher average difference scores.
This trend persists until at least 800 time-series points are employed for the network
estimation, highlighting the complexity of the reliability assessment. Interestingly, our
proposed NPP seems to stabilize before at 700 points.

A similar pattern is discernible in the HCP dataset, where biases gradually fade away
after 800 points for both group average and NPP estimations. This underscores the
importance of considering complementary methodologies, such as BA plots, to gain a
more comprehensive understanding of the reliability landscape together with the ne-
cessity for extended data acquisition when local FC characterization is aimed.

In Fig. 3.27, a visual representation of the NPP is presented for various nodal statistics,
regressed over the standard dataset. The depicted curves exhibit a gradual convergence
to the final estimated values as the considered time-series lengths increase. Again, this
observation emphasizes the importance of extended time-series in achieving more ac-
curate and stable estimations.

A comparative analysis is then conducted by juxtaposing these results with the cor-
responding attacked versions showcased in the last row of Fig. 3.27. Evidently, the
estimation of randomly spurious edges results in very different curves, showing that
the employment of shorter time-series lengths is capable of capturing meaningful FC
information, but requires longer estimation for stabilizing.

Consequently, we advocate for the adoption of time-series consisting of at least 800
data points to ensure better consistency and reliability in FC studies, in lines with
previous studies (Termenon et al. 2016; Noble et al. 2019).
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Figure 3.27 — Nodal percentage of participation associated with different nodal
statistics on the standard dataset and regressed over its corresponding shorter or

attacked versions.
3.6 Summary and conclusion

In summary, our work introduces an innovative framework that combines classical
network statistics with network reduction and classification techniques. Drawing in-
spiration from established concepts in social network science, our framework aims to
detect an originally defined structural pattern of a network and employ it for com-
parison and characterization within a graph collection. These structural patterns are
based on single or combination of classical nodal statistics. Our proposal to combine
multiple nodal statistics offers an original way to simultaneously capture the intricate
information within the node space of a network. The introduction of novel global graph
descriptors for nodal statistics combination has the potential to put some order in the
plethora of existing graph statistics (see also Appendix A), originally redefining the
concept of redundancy (Rubinov 2022) in the orthogonality score.
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Notably, the use of our novel graph orthogonality score uncovers subtle distinctions be-
tween network groups and, particularly when applied to pathological and healthy con-
trol networks, it detects differences which would be overlooked by the associated nodal-
statistics in conventional methods. Simultaneously, it preserves consistency among
healthy controls coming from various databases.

In order to measure individual similarity, built upon these structural patterns, we define
the correspondence structural pattern score. Our findings reveal high correspondence
between real networks in comparison to synthetic generative models, demonstrating the
capability of structural pattern characterization to capture meaningful functional con-
nectivity (FC) information. The versatility of our framework is investigated through
its application across various pathologies, effectively discerning even between nuanced
symptomatic differences in Parkinsonian patients.

While our result as classification scores may not surpass other existing methods in FC,
the significance of our proposal lies in its ability to identify globally affected underlying
structures within pathologies and to detect anomalies at the regional level. Notably,
the definition of the nodal participation enables the ranking of perturbed regions when
comparing different functional connectivity network groups, detecting the homotopy
brain property and emphasizing the advantages of local characterization.

It is interesting to observe how different pathological conditions are better distinguished
by different nodal statistics combination, revealing the need of considering a variety
of graph properties (Fig. 3.15). This phenomenon suggests that various pathological
contexts and neurophysiological mechanisms impact the brain’s functional connectivity
in distinctive ways.

Finally, our investigation into the reliability of regional measurement advocates for the
importance of acquiring long time-series data when seeking precise local characteriza-
tions. Particularly, reliability and accuracy of edge estimation play a crucial role in
drawing meaningful conclusions from network data. Even a small deviation or error in
edge estimation can lead to significant differences in the resulting network structural
pattern and properties. Thus, we propose an extension of our framework to address
uncertainty in edge estimation, as outlined in Appendix A.3. While the theoretical
foundations are robust, empirical experimentation is essential to validate the potential
benefits of this extended framework and it is object of on-going work.

3.6.1 Limitations

Our work, while yielding valuable insights, faces several limitations primarily rooted
in the nature of the data employed in our experiments. It is important to observe
that, especially when applying classification methods, the dataset sizes are relatively
small (Helwegen et al. 2023). In light of this, our evaluation heavily relies on cross-
validation techniques, enabling us to assess the model’s performance across multiple
train-test splits. Furthermore, a crucial aspect already highlighted in our literature re-
view, pertains to the reliance on specific acquisition hyper-parameters for our results.
The extension of our method’s applicability to datasets originating from various sources
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with varying data quality remains a challenge that necessitates future evaluation and
validation.

Moreover, although our framework exhibits good results in classifying distinct condi-
tions, other existing FC classification methods, mainly not-based on a graph estimation,
reports better classification accuracy. Emphasizing our primary objective, our frame-
work excels in identifying and characterizing the inherent structural changes rather
than solely prioritizing state-of-the-art classification scores. Our emphasis lies in the
interpretability and utility of the underlying structural patterns rather than in classifi-
cation performance. Finally, we focus on a predetermined collection of nodal statistics
and their pairwise combinations. The selection of these nodal statistics was influenced
by prior research, and the inclusion of pairs of nodal statistics can facilitate the results
interpretation. However, it is worth noting that the framework does offer the flexibility
to investigate all conceivable combinations and relevant nodal statistics.

3.6.2 Future work

In moving towards the practical integration of FC graph-based methods for clinical ap-
plications, it is imperative to establish a golden standard for the entire pipeline—from
fMRI data acquisition to network estimation and similarity definition. The current
multi-steps process involving graph modeling and subsequent analysis presents chal-
lenges to research comparability and inhibits the realization of FC as a reliable disease
biomarker.

Indeed, a real FC biomarker application in clinical contexts might still be some distance
away and and its realization is not guaranteed. Yet, as it may be the case for Parkinson
Disease, embracing a multimodal approach could be the key (Long et al. 2012). Just as
a clinician considers a patient’s complete medical history and various diagnostic tests
rather than relying solely on a single data point, mathematical discrimination models
should leverage all pertinent modalities available. Integrating multiple data streams
can enrich the accuracy and robustness of the analysis, potentially yielding more pow-
erful diagnostic tools.

Furthermore, the emergence of end-to-end learning frameworks that commence with
raw image data and culminate in predictive outcomes holds promise for improved
accuracy. This approach may garner greater interest in clinical practice, potentially
diminishing the current emphasis on network science methodologies. However, research
on this shift may focus on model explainability.

Considering our analysis framework, it can be extended specifically to handle equiva-
lence over the graphs in a family. In this case, the group version nodal statistics assigns
a value (or an interval) to each node in the vertices-set, such as the average per node of
the statistics across multiple graph instances (or its first-third quartile interval). Then,
we could introduce the corresponding nodal equivalence relation whose nodes are equiv-
alent if their average of nodal statistics is the same (or fall in the same interval). In
this case, the definition of the structural pattern corresponds to an average structural
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pattern of a virtual average graph. The graph family version of power coefficient and or-
thogonality corresponds to the traditional definition on this average graph. The ability
of the average structural pattern to characterize the group of graphs could be explored.

Finally, the generality of our proposal enables application across diverse domains. The
concept of structural patterns of our methodology, has broader applicability in other
different fields such as social science, protein analysis, urban networks, and more gener-
ally in network structured data. The flexibility of our proposal will allow an application
beyond neuroimaging, extending into various domains where structural patterns may
hold significance.
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Context and Background

This chapter provides an overview of the context, background, and related works con-
cerning the applications of network science to artificial neural networks (ANNs). Ini-
tially, ANNs are formally defined, accompanied by an introduction to the adopted nota-
tion. Thus, continual learning paradigm is introduced in relation with the development
of robust artificial systems. Different learning scenarios and existing continual learning
strategies are presented and categorized. Particularly, we propose to distinguish con-
tinual learning strategies which are biologically inspired from those algorithmic-based.
Finally, the chapter briefly revisits network science applications for designing sparse
or more effective artificial neural networks, as well as existing research related to our
work.
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4.1 Artificial Neural Networks

The history of artificial neural networks can be traced back to the 1940s when McCul-
loch and Pitts introduced the first formal neuron (McCulloch et al. 1943). This first
neuron model was based on the idea that complex inputs could be simplified and cate-
gorized into a binary decision. Later, in 1949, Hebb introduced the concept of synaptic
modification, suggesting that learning occurs through the strengthening or weakening
of connections among neurons (Hebb 1949). Then, in 1958, Rosenblatt developed the
perceptron, the first artificial neuron (Rosenblatt 1958). The perceptron consisted of
multiple input combined together to produce a single output.

In the following years, advancements continued to be made in the field of neural net-
works. In 1986, Rumelhart introduced the multilayer perceptron, which allowed the
construction of more complex networks by combining many perceptrons in hierarchical
structure composed of multiple layers (Rumelhart et al. 1986).

Definition

From a mathematical point of view, we define an artificial neuron as a parametric
function ¢y, which transforms an input vector x into an output value y. Similarly,
an artificial neural network (ANN) is a mathematical function that processes informa-
tion from the input to the output by applying a hierarchical combination of artificial
neurons. The way the neurons (or units) are combined together determines the ANN
architecture. Such architecture can be easily represented as a graph, whose vertices
are the units and the oriented links represent a linear transformation applied to the
output of the first connected unit and being the input of the second connected unit
(See Fig. 4.2).

The architecture determines the number of layers (list of neurons having the same
input), the number of units per layer, and the presence and orientation of edges among
the units. The nonlinear transformation function oy, ; associated to each unit is called
activation function. The activation function mimics the stimulation of a biological
neuron by transforming multiple inputs into an output value. Common examples of
activation functions are the sigmoid function o(z) = = or the Rectified Linear Unit

1+e—®
(ReLU) function o(z) = max(0,z) shown in Fig. 4.1.

It has been proven that an artificial neural network can approximate any continu-
ous function with infinity precision level (Hornik et al. 1989). This property of ANN
models, named expressiveness, together with their adaptability to different tasks
has allowed ANN to find applications in multiple domains reaching or even exceeding
human-like performances (Esteva et al. 2017; Silver et al. 2016; Rajpurkar et al. 2018).
According to their architecture, artificial neural network can be grouped in different
structure classes: Feedforward Neural Network, Convolutional Neural Network, Re-
current Neural Network, Bolztmann Neural Network, Spiking Neural Network or com-
binations of this modular architecture. In our work, we mainly consider feedforward
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Figure 4.1 — Examples of common activation functions

ANNSs, but see Bengio et al. 2015; Hassabis et al. 2017 for reviews of different ANNs
and applications. In feedforward ANNs, neurons are organised in a sequence of layers
oriented from the input to the output, making the architecture graph representation a
multipartite graph.

Feedforward Artificial Neural Network

We denote [ the [-th layer of a feedforward neural network, where [ = 0 represents the
input layer. The depth of the neural network is denoted L, which corresponds to the
total number of layers in the architecture. Each layer [ consists of a varying number
of units, indicated by H(l), and each unit is associated with an activation function
o. The connections between layer | and [ + 1 correspond to a linear transformation
Al which performs a weighted sum. The synaptic weights of the neural network are
determined by the set of coefficients in each linear transformation. In particular, we
represent the weight associated with the edge connecting the #-th unit of layer [ — 1
and the j-th unit of layer [ as wﬁ’_jl’l, which is the coefficient of the output of the i-th
unit of layer [ — 1 in the linear operator A'.

The artificial neural network, denoted as fw, processes an input sample z € R7©)
by applying a sequence of linear and nonlinear transformations, as shown in Equation
4.1. Each unit ¢ in layer [ is associated with an activation value u!, calculated using
Equation 4.2, where b; is a fixed bias term, w and b are the parameters of the artificial
neuron function and u? = x;, where x; is the i-th entry of the input vector .

fw(z) = ot (Al (AT Al (A%) - ) (4.1)

i gi Yy

ub = o'(A' 1), = o' (D Wi Ml 4+ by) (4.2)
J

The set of parameters W of the neural network are learned through the training or
learning phase of the neural network. Here, we consider a supervised setting where
inputs and their expected outputs are provided to the neural network (LeCun et al.
2015). A classical example is to perform a classification task: associating to each
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input a label (i.e. an image labeled by category). The neural network processes a
set of inputs and produces the corresponding outputs. During the training phase, the
objective is to obtain as output label the desired one, (or as close as possible). This is
achieved by optimizing an objective function. Such a function measures the distance
(the error) between the NN outputs and the desired ones, thus the goal of a supervised
classification learning is to learn the prediction function f : X — ) given a set of
K labeled data {(z*,y*)}5 |, 2 € X,y* € V. This corresponds to the optimization
problem:
1 K
min — 3> L(y, fw (")) (4.3)
K=

fweF

where X', ) are respectively the data space and the label space, F is the set of func-
tion between X, Y, the pair (2, y*) are the data points and their labels, £ is a loss
function which computes the error between y* and f(2*). Given fw the parametric
function associated to a considered artificial network, the optimization problem reduces
in finding the optimal weights

K
W argmin - 3 L0, fw(e). (4.4)
k=1

In the following, when it is not needed to precisely identify the synaptic weights in a
layer, we will enumerate the parameters of W simply as W, adopting an enumeration
which does not take into account the hierarchical structure of the ANN.

A solution to Equation 4.4 can be achieved by gradient descent and backpropagation
(Cauchy et al. 1847; Rumelhart et al. 1986), which applies the chain rule of derivative
from the output to the input in order to determine the partial derivative of the loss
function with respect to each synaptic weight in the neural network . Each weight
W;—jl’l is updated iteratively during the training process by subtracting the product of
the learning rate n and the partial derivative of the loss function £ with respect to

the weight as Wli;cl’l — Wéjjl’l — n%. In practice, the iteration is repeated until

2]
convergence and grants reaching a global optimum if £ is convex.

Classification Evaluation
In a classification task of supervised learning, the evaluation metric associated with

the performance of the ANN is typically given in terms of accuracy.

Definition 4.1. The accuracy in a classification task is given by the ratio of the
number of correct classifications and the total number of tested samples.

number of correctly classified samples

(4.5)

Accuracy =
Y total number of classified samples

Adam Optimizer. From an implementation point of view, instead of updating the
weights at every single sample, a commonly used learning algorithm is stochastic gra-
dient descent which employs small batches of randomly sampled training examples to
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processing of an input sample in a feedforward NN backpropagation algorithm
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Figure 4.2 — Visualization of the backpropagation algorithm in a feedfoward neural
network. Figure adapted from LeCun et al. 2015.

estimate the averaged gradient of those samples and update the weights accordingly
(Robbins et al. 1951). In the implementation of stochastic gradient descent, an impor-
tant step refers to the selection of an appropriate learning rate n: a too small learning
rate can lead to slow convergence, while a too large rate may hinder convergence and
cause the loss function to fluctuate around the minimum. To overcome these issue new
methods have been proposed to adapt the learning rate automatically in the learning
process (Sun et al. 2019; Yang et al. 2020b) or even to define unit-base learning rates
(Blier et al. 2019). In the following, we will use Adam (Kingma et al. 2014) as opti-
mization algorithm which determines an adaptive learning rate through the estimation
of mean and variance of the gradient. The Adam optimizer grants a quick convergence
and a faster training phase (Kingma et al. 2014). A pseudo-code can be found in
Algorithm 1.
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Algorithm 1 Adam: Stochastic Optimization, adapted from Kingma et al. 2014.

Require: 7: Stepsize

Require: /31,32 € [0,1): Exponential decay rates for moment estimates
Require: f(6): Stochastic objective function with parameters ¢
Require: 6,: Initial parameter vector

1: my <+ 0 > Initialize 1st moment vector
2: vg 0 > Initialize 2nd moment vector
3:t+0 > Initialize timestep
4: while 6; not converged do

5: t—t+1

6: gt < Vofi(0i_1) > Get gradients w.r.t. stochastic objective at timestep ¢
7: my < Pr-my1+ (1 —051) -9 > Update biased first moment estimate
8: Vg < Bo vy + (1= o) - g2 > Update biased second raw moment estimate
9: My + my/(1— B}) > Compute bias-corrected first moment estimate
10: ot « v /(1 — B?) > Compute bias-corrected second raw moment estimate
11: O < Ot — 1 — - Mg/ (VO + €) > Update parameters
12: end while
13: return 6, > Resulting parameters

4.1.1 Robust Artificial Neural Network

Despite the expressiveness of neural network model, a major challenge in training ar-
tificial neural networks is represented by their generalization ability, i.e. the ability
to associate good output to new input samples which are unseen during the training
phase. In some cases indeed, the model may be affected by the overfitting phenomenon,
where the learned function is a very good approximation on the training dataset, but
failed when applied to the test data (see Fig. 4.3).

In the development of a robust neural network model, the generalization issue re-

mains a challenge in two different settings: static generalization ability, where the
neural network is expected to be able to generalize to unseen sample extracted from
the same distribution (or from distribution-shift) inside a given fixed class set; dynamic
generalization ability, where the neural network is expected to generalize to previously
unseen tasks by re-using previously learned information and after a new training ses-
sion. The desiderata of a robust neural network model are listed in Table 4.1.
In the following chapters, we consider the dynamic generalization ability, where a neu-
ral network model is trained in sequential manners (for static generalization ability in
ANN see for instance Neyshabur et al. 2018; Novak et al. 2018; Arbel et al. 2023; Pitas
et al. 2019). Moreover, our contribution to adversarial attacks robustness is reported
in the Appendix B.4.
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Figure 4.3 — Visualization of two cases where the predicted model does not gener-
alised to new sample due to overfitting (left) and a good generalization case (right).

Table 4.1: Desiderata of a robust neural network systems.

Property Definition

Static generalization ability the learned function should be able to
generalize to unpreviously seen samples
belonging to the same distribution or
class-set

Dynamic generalization ability the learned function should be able, after
a new learning phase, to generalize to un-
previously seen samples from a different
class, without forgetting the previously
learned information

Robustness against adversarial at- the learned function should not be fooled

tacks by slightly perturbed inputs (Goodfellow
et al. 2015)

4.2 Continual Learning

One of the main debates surrounding artificial neural networks in the fields of cognitive
science and artificial intelligence revolves around the disparities in behavior between
ANNSs and biological brains across different scenarios where ANN fail to reproduce cru-
cial aspects of human intelligence (Hassabis et al. 2017; LeCun et al. 2015; Serre 2019),
Indeed, ANNs are blamed to be too simplistic models (Doerig et al. 2023; Marcus et
al. 2019; Marcus 2020) of natural intelligence since they exhibit contrasting behaviors
compared to humans in various contexts: they require massive-size data to learn, they
fail in generalization, they can be fooled by adversarial attacks, they are unable to
learn in sequence and to transfer learning in different tasks.

Among the others, a main challenge in the development of a more-human-like artificial
agent is represented by the need of learning in a continuous manner. Indeed, while
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natural intelligence is faced by a continuous adaptation to new information, artificial
systems are usually trained under the assumption of a static environment (De Lange
et al. 2021; Hadsell et al. 2020). Natural intelligence is able to have a continual adap-
tation to new tasks across a lifetime and even to re-use previously learned ability for
faster learning or consolidation of previously seen tasks. An entire research program
about lifelong learning aims at reproducing this process in artificial systems. This
is the opposite of the static-assumption, where the training of a neural network is per-
formed over a training dataset and the learned function is assumed to generalize to
unpreviously seen samples. However, in real life, agents are continuously faced with
new information, reinforcing the need of developing a model which can continuously
learn and adapt to new tasks. A first attempt to implement lifelong learning in arti-
ficial systems is represented by a continual learning paradigm, where neural networks
are trained sequentially over different datasets. See Tab. 4.2 for a proper definition of
sequential and related learning paradigms.

Table 4.2: Glossary of different learning paradigms. For more details see for in-
stance Chen et al. 2018.

Learning Paradigm Definition

Offline Learning the training phase consists of a unique learning ses-
sion, where all the samples in the training data are
presented to the NN.

Online / Incremental / the training phases consists of multiple learning ses-

Continual / Sequential sions, where new samples for training appear across

Learning learning sessions.

Transfer Learning the training phase consists of at least two sessions
where the learned information of the first phase is
transfer to the second phase, yet at the end of the
last learning session the model is evaluated only on
its performance of the last-seen dataset.

Curriculum Learning the training phases consists of multiple learning ses-
sions where the order is set a priori in order to go
from the easiest task to more difficult ones.

Reinforcement Learning an agent is trained based on a system of rewards to
perform a particular task.

Metalearning the agent is trained to learn the best learning strat-
egy.

Lifelong Learning a special case of online learning which also implies
a faster learning while going through the learning
sessions.

One major issue is the occurrence of the catastrophic forgetting phenomenon when
neural networks are trained in sequential sessions. This phenomenon manifests when
a neural network model, as it adapts to new tasks, loses its capability to execute the
previously learned ones.
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Figure 4.4 — Schematic visualization of the sequential learning framework of three
tasks. (A) The same ANN is trained sequentially to perform three different tasks.
While the architecture does not change across the learning sessions, the associated
weights are updated at the end of each session. (B) Example of performances of a
model affected by catastrophic forgetting. The Task 1 performance at the end of the
third learning session, has deteriorated. This corresponds to ANN where plasticity
property is stronger than its stability. (C) Example of performance of a model which
perfectly learns Task 1, at the end of all the learning sessions. However, the model
does not learn new tasks. This corresponds to an ANN where the stability property
is stronger than the plasticity. (Adapted from Figure 2 in Hadsell et al. 2020)

As shown in Fig. 4.4, a sequentially-trained model can result in two extreme cases:
an extreme stability case and an extreme plasticity one. Stability and plasticity are
properties of human intelligence which refer respectively to the ability of maintaining
previous learned information and adapting to new one. A robust continual learning
procedure is expected to find the good balance between the two extremes requiring
enough plasticity for the integration of new knowledge, but also enough stability pre-
venting the forgetting of previous knowledge. Determining the good trade-off between
these properties goes under the name of the stability-plasticity dilemma (Abraham
et al. 2005; Mermillod et al. 2013).

4.2.1 Continual Learning Scenarios

The training of a neural network model in sequential learning sessions includes differ-
ent learning scenarios which are usually categorized in three different types (Hsu et al.
2018; Ven et al. 2018; Mainsant et al. 2022; Ke et al. 2022; Wang et al. 2023b). In
general, a sequential learning framework implies that the neural network model sees
at different learning session ¢ = 1,..., T, a different dataset D; = {(zF,yF)} including
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Figure 4.5 — Visualization of three examples of the different continual learning
scenarios on the MNIST dataset. TIL refers to the learning of different tasks at
each session. DIL refers to the learning over different datasets of the same task
in sequential learning session. CIL concerns the learning of different class at each
learning session. Adapted from Hsu et al. 2018.

pairs of sample zF and their corresponding label y*. We distinguish three continual
learning scenarios: task incremental learning, domain incremental learning and class in-
cremental learning. A visualization of the three different cases can be found in Fig. 4.5.

In a task incremental learning (TIL), the model is trained in sequential learning
sessions to perform different tasks. In this configuration, at test time the learning
session identifiers are provided. Across the learning session, the model is not entirely
trained on the new task, since the output layer (i.e. the classifier) is specific of the
learning session. Yet, the first layers are shared and sequentially trained. This means
that after learning all tasks 7T, at test time we apply the shared model trained se-
quentially up to the T-th learning session, with the output layer specific task ¢. This
approach is called multi-head configuration. In a TIL scenario, not only the class labels
are distinguished at each learning session, but different tasks can be performed at each
session: for instance a classification task can be followed by a regression task and so
on. As an example of TIL, consider a model that, with each new task, learns to classify
two classes. For instance, at ¢ = 1, the model learns to distinguish handwritten digit
images of 0 and 1, then, at ¢t = 2, it is trained to classify 2 and 3, and so on. Since we
have access to the learning session identifier, the goal of TIL is to learn the function
f: X xT — Y with X the input space of all tasks, and ) the label space of all the
tasks. In this scenario, the label spaces of all tasks learned so far ()) is a subset or
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equals Y.

Domain incremental learning (DIL) refers to the sequential learning on different
dataset of a same task: the class labels are the same across the learning sessions. In this
scenario, task identifiers are not provided. In DIL the model is trained subsequently on
new instances of the same class. Across the learning session the entire model is updated
and trained over and over. This approach contrasts with the process in a multi-headed
configuration and is referred to as a single-headed setup. In DIL the learned function
is f: X — ), in this scenario ), is constant across learning session and equals to ).
As an example of DIL, consider a model trained to classify two classes: even and odd
numbers from handwritten digit images. At the learning session ¢ = 1 the model is
trained on 0 and 1, then, at ¢ = 2 ,it is trained using 2 and 3 and so on.

Finally, the class incremental learning (CIL) refers to a sequential learning where
at each learning session classes which were not seen before, are learned. Session iden-
tifiers are not provided, and we have that J, N Yy = (), Vt # ¢ and Y corresponds to
the union of all uleyt. The objective of CIL is also to learn the function f: X — ).
This is the most difficult scenarios since while training on task ¢ 4+ 1 the model needs
to define the boundaries with the previously seen samples without re-using the dataset
D,_1. This results in the so-called Inter-task Class Separation problem identified in
Kim et al. 2022. As an example, we can think at a model trained to recognize the ten
handwritten digits trained sequentially for each digit.

4.2.2 Continual Learning Strategies
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Figure 4.6 — Overview of existing continual learning strategies. Branches are not
exclusive and can intersect.

Across the years, multiple techniques and approaches have been proposed to face the
challenge of continual learning.
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As we are mainly interested in ANN behavior as brain-model, we concentrate into
brain-inspired approaches which includes regularization method, replay methods
and architecture based methods (Chang et al. 2021; Hadsell et al. 2020; Parisi et al.
2019; De Lange et al. 2021; Aimone et al. 2009; Kempermann et al. 2004; Draelos et al.
2017). A visualization of our proposed categorization can be found in Fig.4.6. Our
categorization is based on the framework proposed by Wang et al. 2023b, but it also dis-
tinguishes between biologically-inspired strategies and algorithmic-based approaches.
The latter category includes optimization-based strategies that directly operate in the
optimization programs, as well as problem-reframing-based strategies that involve the
use of self-supervised learning or pre-training the model prior to commencing the con-
tinual training sessions.

The first family has been inspired by the replay mechanism observed in rodents and
humans (McClelland et al. 1995; O'Reilly et al. 2014; Liu et al. 2019¢), where neural
activity patterns are replayed during sleep as a means of memory consolidation (Fig.
4.7 (b)).

Short-term storage hippocampus

Fast learning

Replay l Storage

Hippocam
Lenguterm storage neocortex

Slow learning

{a) Hebbian learning mechanism: Synapses are dynamically organized and ~ (b) CLS theory: Hippocampus replays information to transfer this
updated according to different stimuli, including LTP and LTD. information to long-term storage neocortex.

Type-1 Type-2a Type-zb Type-3 Early Late Matura
n immalore  neuron
Siem gall neuren neure

(¢) Adult neurogenesis: Generation of new neurons in adult brains
throughout life, balanced by death of unused neurons,

Figure 4.7 — Brain-inspiration of continual learning strategies. The human brain
adopts different continual learning strategies which have served as inspiration in the
development of ANN continual learning strategies. Adapted from Chang et al. 2021.

For ANNs, two implementations have been introduced: the rehearsal approach where
some of the previously seen samples are reused with the current samples to learn, and
the pseudo-rehearsal approach where artificially generated new examples are introduced
to represent previously learned knowledge. We consider two rehearsal approaches:
Sample Replay that stores randomly previously seen samples (Lomonaco et al. 2021)
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and GDumb that selects the stored samples by asymptotically balancing the class
distribution (Prabhu et al. 2020). Both methods require to fix a memory budget
corresponding to the maximum number of samples that can be stored and re-use across
learning session. GDumb algorithm allocates an equal number of samples for each
learning session. When facing a new class, it gradually removes samples from the
memory belonging to the class with the maximum number of samples, substituting
them with samples from the new class. A visualization of this process is shown in Fig.
4.8.

Greedy Dumb
Sampler Learner
(/]
<&
& =
Dt Train
Selection Learning

Figure 4.8 — Visualization of GDumb learning strategy process. Adapted from
Prabhu et al. 2020.

For the pseudo-rehearsal approach, instead, we evaluate the Dream Net strategy
(Mainsant et al. 2021) developed by our collaborators in Grenoble. Dream Net re-
quires an output layer composed of several neurons corresponding to the input (Auto-
associative or Auto-encoder part) and several neurons corresponding to the number of
classes (Hetero-associative or part). Dream Net architecture learning process can be
divided into three phases:

1. The Learning Net at each learning session, learns real features from the class of
the session and pseudo-features from the previously learned classes.

2. The Learning Net at the end of the learning session transfers its weights to
Memory Net

3. Memory Net captures the learned function using a re-injection sampling proce-
dure. The re-injection sampling procedure consists of the following steps: inject
a random noise input vector and re-inject the replication vector obtained at the
output of the auto-associative part of Memory Net at its input and so on. At
each re-injection, Auto and Hetero associative outputs of Memory Net are con-
served to create pseudo-examples. After several re-injection, a pseudo-examples
database is obtained that contains pseudo-features and corresponding pseudo-
labels obtained after each re-injection (data from the first inference is not kept).

A visualization scheme of the Dream Net learning procedure can be found in Figure
4.9.



4.2. Continual Learning 117

The regularization methods have been developed to retain the most important weights
while learning new classes. Their bio-inspiration relies on the hypothesis that con-
tinual learning relies on task-specific synaptic consolidation, making certain synapses
less plastic and stable over time (Clopath 2012). For instance, experiments with mice
demonstrate that a strengthening of excitatory synapses occurs at new skill acquisition
(Yang et al. 2009), leading to an increased volume of specific spines. The increased
volume persists despite the subsequent learning of new tasks and is associated with the
persistence of performance of the very first learned task several months later. When
these spines are removed the task is forgotten (Cichon et al. 2015; Hayashi-Takagi
et al. 2015, panel (a) Fig. 4.7). Among the ANNs regularization methods, we con-
sider Elastic-Weight-Consolidation (EWC), Synaptic Intelligence (SI) and Learning
without Forgetting (LwF') strategies (Kirkpatrick et al. 2017; Zenke et al. 2017; Li
et al. 2017b). EWC and SI are structural regularization methods (Li et al. 2017b)
that constrain relevant weights to stay close to their old values. The major difference
between these two approaches is given by the estimation of important weights. EWC
relies on an offline estimation of the Fisher information matrix while SI proposes an
online computation of the importance of a synapse being proportional to the product
of its weight and the activity of the post-synaptic neurons.

EWC penalizes excessive movements in learning new task from the just obtained op-
timal weights. At each learning session ¢, a regularization term is added to the loss
function L, constraining the new learned weights to stay close to the previous learned
one:

A
Liw =Ly, + §Fc(wc — W, ,)? (4.6)

where L, is the loss function at the learning session ¢ with weights parameters w,
L, is the loss function evaluated on the dataset associated to the learning session ¢, ¢
is an enumeration of the weights, X is the regularization hyperparameter assessing the
importance of previously seen task with respect to the new one, F, is the Fisher matrix
at session ¢t — 1 corresponding to an estimation of the importance of each parameter
in solving the optimization problem over D,_; and W,_; . is the optimal c-th weight
determined at session t — 1. The Fisher information matrix

P =&| (s toe (w) v

is computed at the end of each learning session. SI proposes a regularization parameter

in the loss function of each learning step by introducing a surrogate loss whose minimum
is reached for the previously determined optimal weights parameters. Specifically, the
actual loss function becomes

‘th = ‘C|Dt + ¢ Z QZ(WC - wct—1)2 (47)

where 1 is an hyperparameter corresponding to the influence of the previously learned
tasks, W, , is the previously determined optimal parameters and €2, is the proposed
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new estimation of parameters importance which is updated online as follows:

y

Q=S Y 48

AT E: 4

w! is the parameter specific contribution to changes in the total loss, obtained by sum-

ming at each weight update iteration of the training phase the product of the individual

gradient aanc and the parameter update. This corresponds to write the change of the

loss function over the entire training phase as sum of infinitesimal changes across each

iteration per individual parameter. Af; corresponds instead to the difference between

the parameter value at two consecutive iterations, which is simply given by the gradient
descent rule, and £ is introduced to ensure a non-zero denominator.

While EWC and SI directly operate by regularizing the model parameters, functional
regularization approaches, such as the LwF' strategy, penalize changes in the input-
output function of the neural network. This is achieved by constraining the predictions
obtained by applying the current model to remain close to the predictions obtained by
applying the previously learned model to samples from the current dataset D;.

Finally, the third class of methods which dynamically update the network architecture
are inspired by neurogenesis happening in adult mammalian brain when learning new
information (Kempermann et al. 2004; Aimone et al. 2009 (c) panel Fig. 4.7). These
methods can dynamically increase the architecture model by adding neurons, layers
or sub-networks, or instead freezing part of the model while learning over the other
in static conditions. Architecture-based approaches have the main issue of scalability,
since the architecture continues to expand while more tasks are added (Parisi et al.
2018; Yoon et al. 2017; Draelos et al. 2017). The LwF strategy requires neurogenesis:
the model architecture is updated by the addition of a node in the output layer corre-
sponding to the new observed class, together with the inclusion of all the connections
from the last hidden layer to the output one.

The LwF loss function can be separated in two parts: L4 and L., with the influence
of previously seen tasks being weighted by the hyperparameter ay. The equation 4.9
is given by :

£t = OéoAColol‘D (yfa ftil(xZ)) + ‘Cnew’D (yfa ft(xf)) (49)

The difference between the current model and the previous one is given by the addition
of a node in the output layer corresponding to the new observed class, together with
the inclusion of all the new parameters from the previous layer and the output one.
L4 is computed using the parameters learned during the session ¢t — 1 for the sample
belonging to the current dataset D; and corresponds to

t

Loa( S (x5),yi) = = > T (@) log T(f (7)) (4.10)

t'=1
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which is the sum over the available labels of the difference between the recorded output
from previous model and the current output, rescaled by the T function as

k (k)¢
T(rH(ah)) = M

where ( is a hyperparameter regulating the smoothness of the classes probability dis-
tribution. £, is a chosen loss function computed for the dataset D;.

(4.11)

Other architecture-based strategies propose to freeze part of the neural network to
force the appearance of specialized sub-networks (Rusu et al. 2016; Turner et al. 2021;
Draelos et al. 2017).
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Figure 4.9 — Architecture scheme of Dream Net model. The Dream Net model
learning procedure can be divided into 3 phases indicated as 1, 2, and 3.
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4.3 Network Science in ANNs

Since the development of ANNs and over the years, there has been an interest in
using insights from cognitive neuroscience to improve their performances (Marblestone
et al. 2016; Hassabis et al. 2017; Khacef et al. 2018; McCulloch et al. 1943; Hebb
2005; McClelland et al. 1986). Particularly, artificial intelligence practitioners can find
inspiration from biological intelligence and natural mechanisms for the development of
new models (Hassabis et al. 2017).

However, despite the seminal bio-inspiration in ANNs design, many tools introduced
for brain information processing investigation have not been fully used to study ANN
behaviors. Among these, graph modeling has shown to be a powerful framework widely
used in neuroscience to study brain structural and functional connectivity (Petersen
et al. 2015; Bullmore et al. 2009; Wang et al. 2010; Sporns 2022; Barabési 2013).

In this section, we review related works about network science applications in ANN
models (comprehensive reviews be found in Chung et al. 2023; Kaviani et al. 2021).
Most part of the previous works in this direction concerns the structure of the ANN
itself, i.e. its architecture, to achieve faster convergence and better results. Large
part of the literature focuses on Hopfield neural network (Hopfield 1982; Stauffer et al.
2003; Kaviani et al. 2021), which is a particular ANN composed of a set of neurons all
connected in a regular structure and which simulates memory. On the other hands,
concerning feed forward neural network, many works explore the use of architectures
characterized from a network science point of view. For instance, various works have
explored the possibility of connecting neurons in ANN to build small-world, scale-free
or sparse ANN instead of traditional feed forward network with the objective of im-
proving performances, having faster convergence or reducing the model dimension.

Small-world neural network was first proposed in Simard et al. 2005. The author
trained different layered neural network after rewiring a different number of connections
between neurons making the architecture transit from a regular structure to a random
one, passing by the small-world architecture and evaluate the effect of introducing
long-jump links between neurons of different layers. The influence of complex topology
in artificial neural network performance was later on explored in different applications,
but remain a controversial topic (Erkaymaz et al. 2012; Erkaymaz et al. 2014; Jiang
2009; Zheng et al. 2010). Scale-free topology was instead applied and evaluated across
multiple datasets in Mocanu et al. 2016.

Regarding work for network characterization, recently complex network tools have been
used for the analysis of both trained and untrained ANNs. In La Malfa et al. 2021;
La Malfa et al. 2022, the authors apply complex network theory to deep ANNs of
different types (feed forward neural network, convolutional NN, etc.). Their ANNs
characterization is based on metrics distribution over weighted directed graphs.

A motif discovery process has been proposed in Zambra et al. 2020, where the authors
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characterize multi-layer perceptrons during the learning phase by detecting different
patterns of connection of groups of four or five units. Their method is used to compare
different weights initialization in multi-class classification. While the proposed frame-
work has promising results, the motif search can become computationally expensive
while the dimension of ANN increases (Masoudi-Nejad et al. 2012; Patra et al. 2020).
In their application, the ANN size appears quite small (30-20 units and 3 layers).

Next, the work of Scabini et al. 2021 extends complex network techniques to detect dif-
ferent neuron types and to relate their presence to the performance of fully connected
neural networks. Their framework considers only weighted graphs and an Offline learn-
ing setting.

A different graph model definition is proposed in Hanczar et al. 2020, where the ANN
decision process for a binary classification task is based on the definition of a relevance
network per class, obtained through the computation of the layer-wise relevance prop-
agation (LRP) score (Bach et al. 2015). While LRP has been defined and it is mainly
used to determine input features contributing to the final classification, the authors
originally propose to use the class relevance network as a human-understandable deci-
sion process. Their approach associates each unit with the final decision, providing a
human-understandable decision process, but requires expert knowledge insertion.

Finally, a new approach has been proposed in Corneanu et al. 2019 by the definition
of a functional network obtained by the computation of Pearson correlation among
activation units. Multiple instances of functional networks across training epochs are
then compared using topological metrics in order to assess the model evolution during
the learning process. In their approach, the ANN model is considered as a structural
network and its weights and architecture are not considered.

In the next chapters, we present our collaborative work on the use of graph to study
ANN connectivity and explore different continual learning strategies.
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In this chapter, we present our original graph-based analysis model for ANN connec-
tivity. This work aims to bridge the gap between meuroscience and artificial neural
networks by introducing a graph modeling framework, a powerful tool widely used in
studying brain structural and functional connectivity. Our approach, largely inspired by
a brain framework analysis, introduced the definition of ANN functional connectivity at
rest and a corresponding induced-graph definition. Thus, we introduce graph-informed
features for the characterization architecture at different learning sessions and graph-
informed pruning and weight-injection methods. Finally, we present the adopted eval-
uation metric and their interpretation in terms of plasticity and stability of artificial
models. This proposal lays the foundation for the development of a graph-features-
informed learning strateqy. At the end of the chapter, we discuss relevant related works
and limitations.
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Figure 5.1 — Overview of the brain-inspired perspective of the proposed graph-
based analysis of ANNs. (A) Inspired by the concept of brain functional connectivity at
rest, we propose to investigate the equivalent functional connectivity at rest of trained artificial
systems. (B) Graph modeling can be applied for both brain and ANN connectivity modeling. Thus,
different graph statistics can be extracted to characterize the resting state network. (C) Similarly
to brain functional connectivity studies aiming at differentiating between different brain states (for
instance healthy vs pathological conditions), by the use of the considered graph statistics, we show
how the graph statistics can be used as features for the identification of ANN in good learning
conditions or affected by the catastrophic forgetting phenomenon, or even to identify the learning
strategy used. (D) At a finer level of a single-state characterization, nodal roles are investigated to
determine the presence of nodes having specific roles in the network. In natural systems, nodal role
discovery aims at identifying the hub nodes (nodes with a high number of connections). In artificial
systems, we propose to consider the group of units belonging to the tail of the considered graph
statistics distribution. (E) While in the brain functional role identification can only be achieved
by the identification of nodal role in the connectivity network, in ANNs we can perform a network
surgery by turning off specific sets of units to evaluate the change in the system performance. This
allows associating the network nodal role with a functional role.
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5.1 Introduction

Despite the seminal bio-inspiration in ANNs design, many tools introduced for brain
information processing investigation have not been fully used to study ANN behavior.
Among these, graph modeling has shown to be a powerful framework widely used in
neuroscience to study brain structural and functional connectivity (Petersen et al. 2015;
Bullmore et al. 2009; Wang et al. 2010; Sporns 2022; Barabési 2013). In this chapter,
we propose to explore how such a framework can be elegantly and interestingly used to
investigate the ANN properties and particular behaviors. A conceptual visualization
of our proposal can be found in Fig. 5.1.

As a case of study, we concentrate on the sequential learning process where ANNs are
trained on an ordered series of tasks as shown in Fig. 4.4 (Buzzega et al. 2020; Hadsell
et al. 2020). This process mimics how the brain continuously learns and adapts to new
tasks (Milgram et al. 1987; Pascual-Leone et al. 2005). As neuroscientific literature re-
ports, brain connectivity changes are associated with new learning tasks (Casimo 2018;
Vico Fallani et al. 2010; Zouridakis et al. 2007), we explore, using graph modeling, the
corresponding ANN connectivity changes. In particular, we investigate how specific
graph statistics are modified during a continual learning framework and the conditions
that led to catastrophic forgetting (i.e. the performance of previously learned tasks
dramatically decreases when new tasks are learned in a sequential manner by stopping
training on task A while beginning training on task B, Fig. 4.4 Panel B).

An overview of the brain-inspired perspective of the proposed graph-based analysis of
ANNSs is proposed at the beginning of the chapter.

In the following, we refer to an architecture, a learning strategy, a fixed order of training
sessions, and the general classification task associated with the database as a config-
uration.

All our graph modeling analysis of ANNs across sequential learning sessions aims to
extract information on how the network adapts to new tasks and how it preserves
knowledge of previous tasks from a connectivity point of view. This can potentially
provide insights into the plausible neural mechanisms underlying continual learning in
the biological neural networks and in reverse inspire the design of more efficient and
biologically-plausible continual learning artificial systems.

5.2 Graph-based method for ANN connectivity anal-
ysis

From a trained ANN, we build a corresponding graph model starting from its archi-
tecture: the units (i.e nodes) present in each layer and the presence and orientation
of edges among the units. Indeed, we extract the activation network at rest (see Def.
5.1), similar to a brain resting-state connectivity analysis (van den Heuvel et al. 2010),
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by feeding to a trained ANN an input sample of 1-entries. Then, we perform a graph
filtering procedure to determine the most active units and the strongest connections (B
panel Fig. 5.1). This results in an induced graph that is oriented from the input layer
to the output layer, and its structure is encoded by its adjacency matrix A = (anm)-

For each configuration, we extract as many induced resting-state graphs as learning
sessions.

Unlike biological connectivity graphs, the feedforward ANN is a partite graph with a
fixed structure where edges exist only between consecutive layers.

5.2.1 Activation Network and Induced Graph

We consider an ANN model to be uniquely identified by an architecture graph and a
synaptic weight function which determines the parameters of each artificial neuron by
associating a weight to each edge.

The weights are uniquely determined at the end of the training process, we denotate
wﬁ’_jl’l the weight associated with the edge connecting the i-th node of layer [ — land
the j-th node of layer [. Note that the input layer corresponds to | = 0.

At each input sample x processed by the ANN model, we can associate an activation
network defined by the computation of the sequence of linear and nonlinear transfor-
mations applied to the input and associate to each unit, its activation value o and to
each edge, the resulting value of the corresponding transformation. In biological terms,
the activation network can be thought of as the map of the brain response to a stimulus

x. In particular, each unit i in layer [ is associated with an activation wu!:

ul = o Zw;l’luﬁ_l + b;) (5.1)

J

where o is the activation function and b is a fixed bias term, w and b are the parameters
of the artificial neuron function.

Definition 5.1. Inspired by the concept of brain resting-state connectivity analysis,
where the brain activation map is determined at mind-wandering, we define the acti-
vation network at rest feeding to the ANN a vector of ones to simulate the process
of a non-task-related-information.

With this procedure, the ANN is not engaged in any specific cognitive task, and we
can assess the intrinsic functional organization of the artificial system. The activation
network at rest results in a set of artificial neurons that are spontaneously active and
functionally connected with each other in the absence of true external inputs. The
vector of ones can serve as a simple way to activate the network at rest, by providing
a constant input to all the nodes, yet different choices (random noise, periodic signals,
average of the considered data, ..) can be envisaged in future explorations. Thus, for
the units in the input layer, we fix u) = 1. The weights of the edges in the following
layers of the activation network at rest are given by
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Gl — gyl (5.2)

.J ,J i

. ~0,1 0,1 0,1
Hence, for the first hidden layer, we have w;; = w;; u) = w,’; and for the subsequent

layer, we simply apply (5.2) again with u} the output of the first layer. Even if for

the first layer wg ’jl equals in value W?:jl, they formally correspond to two very distinct
concepts, being w the parametric synaptic weights of the artificial neural network

function and @ the weights function associated to the edges of a graph.

Finally, we perform a graph filtering procedure for both the nodal features - to deter-
mine the most active units - and edges weights - to determine the strongest connections.
As final results of this procedure, we obtain a binary directed graph, i.e. every two
nodes are either connected either disconnected with edges direction going from the
input layer to the output. Note that the number of nodes and edges in the activa-
tion network only depends on the architecture graph of the model which is fixed for
all configurations. The graph filtering procedure can be performed by choosing the
number of units to extract in each layer, and the desired total number of edges with
respect to a given criterion (for instance to observe particular graph properties). This
corresponds to determine a weight threshold WT such that the number of edges whose
graph weights are greater in absolute value of WT equals the chosen graph sparsity.
Similarly, on the nodal features, we can filter out units whose activation is not greater
than an activation threshold AT.

Definition 5.2. We define the induced graph obtained by filtering the activation
network at rest of a trained neural network as G(NN)

GNN)=G=V,E): (5.3)

V={(li)st. ic{l,....,H)},I=00r (1 €{l,...,L} and u} > AT)}  (5.4)

+1if M > WT
0 otherwise

A= (ag-1),0.5) (-1, 056y = (5.5)

le{1,...,D},
je{1,....H()}

where A is the adjacency matrix (Fig. 5.2), L the depth of the ANN and H(l) the
number of units in layer [.

Note that after applying the graph-filtering procedure, some nodes can be disconnected
from the resulting graph and the existence of a unique connected component can be
guaranteed by the addition of one single edge. However, in our simulations, a unique
connected component was always observed with some disconnected units whose weights
were not significant in absolute values to be included in the resulting induced graph.
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Figure 5.2 — A toy example of an induced graph. Left: NN architecture graph.
Center: The induced graph at rest. Right: Visualization of the statistics of interest
for the gray node.

5.2.2 Graph statistics of interest

The fixed structure of the graphs we analyze only allows edges between two consec-
utive layers. As a result, graph statistics like diameter or centrality measures, which
detect the graph shape, are not expected to provide valuable additional insights when
comparing the same architecture trained with different strategies. Hence, we focus
on in-degree and out-degree of units in the hidden layers, defined in Eq. 5.7. These
statistics respectively count the number of incoming and outgoing edges, capturing the
amount of information flow through each unit (See Fig. 5.2). Thus, the value in minus
out degree can be used to rank nodes in the hidden layer. In the following, we omit
the dependency on [ and only indicate with ¢ the node (I, 7).

Definition 5.3.

degi, (1) = X (-1j)  @u-1).0) (5.6)
je{1,....,H(I-1)}
dego (i) = X i1y Ga).0r1y) (5.7)

je{l,.. . H(I+1)}

In particular, we consider the quantity

(1) = deg,,, (i) — degyy, (i) (5.8)

and we distinguish two types of nodes: nodes belonging to the interquartile range of
. and nodes in the tail of .. An example, with . having average in zero, can be
visualized in Fig. 5.3

5.2.3 Graph-informed Features

We enumerate the T' learning sessions, and notate base the first one, at the end of
each training session we determine an induced graph. Thus, for each configuration
(an architecture, a learning strategy, a database, and the learning order), we extract
T induced graphs. In the following we include the subscript ¢ corresponding to the
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Figure 5.3 — Examples of interquartile and tail nodes.

learning session, for the induced graph extracted at session ¢ we consider the statistics
.. Moreover, we define the following graph features.

Definition 5.4. We define the Maximum Unit Change in Equation 5.9.

Maximum Unit Change = max ‘%(z) - 5’,5_1(@‘)‘ (5.9)
iefl, . H(I)}
te{l,...,T}

where H(l) is the number of units in layer [.

Next, we determined the number of units in the tail of S; at each learning session,
given by v; in Equation 5.10.

v=" > Xgmu<ery® + Xgimo>esy @ (5.10)
ief1,. H()}

Q1;, Q3; are the first and third quartiles of .#;(j) distribution.

In general, we can expect .#(i) to be positive. Yet, a node hosting a negative flow
may exist. It corresponds to a neuron receiving little information and spreading it
irrespective to all output units. Vice versa, a very high .#;(i) value represents a neuron
aggregating multiple information into a few output units. The extracted graph feature
Maximum Unit Change represents the maximum consecutive change in the flow of one
hidden neuron across two learning sessions. Each v; quantifies the number of units in
the hidden layer whose flow does not belong to its interquartile range.

Definition 5.5. Next, we define the Consecutive Tail Persistence as the percentage of
tail units in the tails of consecutive learning sessions (i.e. in the tail of both .%;,_; and
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1)

Definition 5.6. Finally, we define the Tail Persistence as the percentage of units
which are in the tail of . after the learning session of the base task and in the final
distribution .77 after all learning sessions.

5.2.4 Network Surgery: Nodal Role Identification

We are interested in determining the behavior of hidden units according to their value
in .%(7). In particular, for each model and configuration NN, we notate the ordered
list of trained networks as NN = (NN',... NN’ ... NN”). At each learning session
t, we extract the associated induced graph and compute for each hidden unit ¢ the
statistics .#;(7). Thus, we compute the first and third quartiles Q1;, @3;,. We denote

%’Ll(t) the synaptic weights between the i-th unit of layer [ and the j-th unit of layer
[ + 1 of the model NN obtained after the t-learning session, L is the depth of the NN
and H4 the number of units in the auto-associative part of the output layer, if any.

We propose the following definitions.

Definition 5.7. We define a version NN” = (NN*7 ... NN”") which only preserves
the weights of units outside the interquartile in-out degree interval, namely in the tail.

0 Il=L—1land Hy <j< Hap+T and
NN“T oW ) = i€ {k|Ql < (k) < Q3i} : (5.11)

wé:ljﬂ (t) otherwise

Definition 5.8. Second, a complementary version of the previous one, which discards
the weights of units in the tail. We notate this version NN = (NN'7 NN27 ... NN”7),
NN®T .

l=L—1and
wir WO Ha<j<HitTand (5.12)
(@)(+1.4) i€ {k|QL < A(k) < Q3,}
0 otherwise

A schematic visualization of these pruned versions is shown in Fig. 5.4.

5.2.5 Graph-informed Weight Injection

We propose three procedures across consecutive sessions to recall previously learned
classes: a forward weights injection without fine-tuning, backward weights injection
without fine-tuning and a weight constraint with fine-tuning.

We denote 71, 72, - - -, 77 the hidden units in the tails of the distribution of () =1, 1
Given a NN, we define three new ordered lists, as follows:
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PRUNING
Q1 =0,Q3; =2

Figure 5.4 — Schematic visualization of the pruning versions. Gray units correspond
to the not-pruned ones.

Definition 5.9. The forward weights injection procedure

NNFWI — (NNLFWI, e NNT7FWI)

NNEWE— NNB™ g > 1,

wiit e —1) (i) et
LWI .t WI -
NNPP Wiy ) =

W§:§~+1 (t) otherwise

Definition 5.10. the backward weights injection procedure

NNBWI — (NNLBWI, . NNT,BWI)

NNl,BWI — NNl,T

I,I+1 . !
w, o (t) (1) erT
Vi > 1 NNGBWL . tBWL !
) © U (),(I+1,5) T
WEE{&VE) otherwise
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Definition 5.11. the weights injection with fine-tuning procedure is defined as

NNWIF — (NNI,WIF . ’NNT,WIF)

)

in which at each step the hidden units in the tail are detected and their weights frozen,
before training in the new task as shown in Fig. 5.5.

Architecture

BMErozen weights

W Trainable weights B Trainable weights

Figure 5.5 — Weights injection with fine-tuning procedure. At each learning session,
the weights among hidden units in the tails and the output units in the hetero
associative part are frozen. Thus, the model is trained for the new task.

5.3 Evaluation Metrics

Since the occurrence of catastrophic forgetting is related to the stability-plasticity
dilemma, we propose to evaluate each architecture and strategy on these two properties
by the estimation of the following metrics based on the accuracy of the different learned
classes. These metrics have been proposed in Kemker et al. 2018, here we originally
interpret them with the stability and plasticity properties

Definition 5.12.

S Y S _ 1 T “baset
Stabll@ty = Qbase = 71 Zt:Z m (513)
plasticity := Qpew = ﬁ ST newst (5.14)

where T" corresponds to the total number of learning sessions, oupew s is the test accuracy
for the class immediately learned at session ¢, upaset is the test accuracy of the class
learned during the first session (base set) after ¢ new learning sessions and qjqea is
the offline method accuracy on the base set, which can be assumed to be the ideal
performance. To determine q;qea) We train the architecture in one single learning session
with a unique dataset including the entire classes.

In continual learning, we notate local accuracy the accuracy of the last learned class,
and global accuracy at each learning session as the accuracy of all the seen classes.

We quantify the stability with 2pase that measures the ability to retain the class learned
during the first session (base session), after learning the successive sessions; and the
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plasticity with Qyew that measures the performance in learning a new task (See B-C
panels in Fig. 4.4). Unless a model outperforms the offline model accuracy on the base
set Qiqeal, stability and plasticity vary between [0, 1]. Note that the occurrence of the
catastrophic forgetting phenomenon is directly quantified by the stability metric: low
stability implies forgetting.

5.4 Related Works and Limitations

Induced-graph definition. The proposed graph-based analysis is based on a unique
induced graph definition, while for its estimation it does not require any input data, by
essentially propagating the weights themselves across the different layers, the meaning
of the induced graph is not explored with respect to the learned function. Other ways
to define the graph need to be explored in future work, together with the exploration
of the relation of the extracted induced graph and the neural network model from
a statistical-based point of view. In particular, in our work in adversarial attacks
(Appendix B.4), we explored a different way to define the induced graph, by associating
to each sample a thresholded network where each edge (i.e. each synaptic weight) is
associated to its influence on the output. This is achieved by applying the layerwise
relevance propagation LRP (Bach et al. 2015, Montavon et al. 2019). LRP offers
the possibility of a more detailed analysis of the information flow per sample within
the neural network from a graph perspective. Alternatively, an average graph could
be used to associate each configuration and learning session with a unique activation
graph. However, the representative power of such a graph might be a concern.

Similarly, other graph definition, such as the functional network proposed in Corneanu
et al. 2019 also merit comparison and exploration. These alternative approaches could
provide valuable insights into the behavior and performance of the neural network in
different scenarios.

Relation with hard-pruning. Our thresholding procedure to determine the induced
graph is similar to a magnitude-based pruning process (Kim et al. 2015; Han et al.
2015b; Han et al. 2015a), where low magnitude weights are turned-off in neural net-
work models to obtain smaller number of parameters. The main difference is given by
the fact that our process requires the propagation of an input vector from the input
to the output. Yet, given the choice of employing a ones-vector as input, the weights
extracted from the first layer are obtained by selecting the strongest weight-magnitude,
as done in hard-pruning (Kim et al. 2015; Han et al. 2015b; Han et al. 2015a). Our
approach - similarly to hard-pruning techniques - implicitly adopts weight magnitude
as predictor of weight to the output. Previous works (Olden et al. 2002; Olden et al.
2004) demonstrate that the use of weight values for assessing variable contributions in
neural networks reach high performance with low computational cost.

Graph-statistics. The adopted method remains general and can be adapted to take
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into account different choices of graph-statistics. As a fist preliminary exploration, we
consider a single graph-statistics given by the combination of in- and out-degree. Yet,
many other nodal statistics exist and need to be considered in future works. Specif-
ically, the choice of the statistics . is based on the concept of network flow, indeed
intuitively it captures the amount of information which is processed by each unit in
the network.

In the next chapter we applied our proposed graph modeling to the ANNs for the
exploration of different continual learning strategies on two classification tasks.
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In this chapter we propose as case of study the characterization of various learning
strategies on continual learning scenario. Particularly, we consider two different clas-
sification task and related architectures. We perform three experiments to thoroughly
assess the graph-based framework’s ability to recognize different deleterious behaviors
arising from various learning strategies in continual learning scenarios. Moreover, we
introduce the notion of plasticity/stability-critical unit set and design the pruning ex-
periment to obtain a fine-grained analysis at the unit level of the considered learning
strategies. QOur graph modeling manage to identify units with slight norm changes in
weights across learning sessions, without requiring input data processing.
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6.1 Introduction

In this chapter, we explore the previously proposed framework for the characterization
of sequential learning process of ANNs. This process mimics how the brain continu-
ously learns and adapts to new tasks (Milgram et al. 1987; Pascual-Leone et al. 2005).
As neuroscientific literature reports, brain connectivity changes are associated with
new learning tasks (Casimo 2018; Vico Fallani et al. 2010; Zouridakis et al. 2007), we
explore, using graph modeling, the corresponding ANN connectivity changes. In par-
ticular, we investigate how the specific graph statistics is modified during a continual
learning framework and the conditions that lead to catastrophic forgetting.

We consider two simple ANNs architectures (an input layer, a hidden layer, and an
output layer) sequentially trained in a simple handwritten digit recognition task and in
a more complex face emotion recognition task using respectively the MNIST database
(Deng 2012; LeCun et al. 1989) and the FER+ database (Goodfellow et al. 2013a;
Barsoum et al. 2016).

In both cases, we train the ANN architectures using different learning strategies (Lomonaco
et al. 2021) in various learning session orders. In particular, we compare brain-inspired
learning strategies specifically developed to reduce catastrophic forgetting occurrence
(McClelland et al. 1995; French 1999). To ensure comparability of architecture, we
focus on the analysis of changes occuring over a fixed graph structure, thus we do not
consider neurogenesis strategies which require a change in the architecture structure
as new tasks are learned.

To achieve a baseline comparison, we will also consider Finetune and Cumulative
strategies. In the former nothing is done to avoid catastrophic forgetting, while in the
latter the architecture is subsequently trained using all previously seen training data
up to the task of the current session as it happens in Offline training.

6.2 Material

6.2.1 Handwritten Digit Recognition

Database

Despite being a universal task, digit handwriting is influenced by individual uniqueness
in the formation and appearance of the digits (Jain et al. 2008). Educated humans
gain expertise in recognizing handwritten digits all along their existence, from early
school training, when such an ability is acquired, to adult life during which the ability
is continuously refined to adapt to recognize distorted samples or more personal style
(Legault et al. 1992).

Training an artificial system to be competitive with humans in a handwritten digit
recognition task is a fundamental step in human-machine interaction (LeCun et al.
1995; Ciregan et al. 2012; Kumar et al. 2018; Niu et al. 2012; Pashine et al. 2021).
In this field, the MNIST database Deng 2012 is widely used for benchmarking various
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image recognition algorithms. The database contains a total of 60,000 training and
10,000 test images of handwritten digits, each of which is 28x28 pixels in size, written
by more than 500 different writers (LeCun et al. 1995). The digits range from 0 to 9
as grayscale images.

Architecture and Learning Strategies

Different ANN architectures and algorithms of varying complexity have been proposed
to tackle the classification of the MNIST dataset (Baldominos et al. 2019; Ciregan et al.
2012; Jarrett et al. 2009. Due to the objective of our case of study, we used the MNIST
database in a simple feedforward architecture defined as follows: an input layer of 784
units, a hidden layer of 512 units, and the output layer with 10 output neurons. Thus,
the images were flattened before being fed into the ANNs. Comparable architectures
are used in the literature for learning strategies evaluation (Goodfellow et al. 2013b;
Kirkpatrick et al. 2017; Zenke et al. 2017; Lomonaco et al. 2021).

We trained this architecture using different learning strategies (hyperparameters details
are reported in Table 6.1):

« Sample Replay (Lomonaco et al. 2021)
e GDumb (Prabhu et al. 2020)

o SI (Zenke et al. 2017)

« EWC (Kirkpatrick et al. 2017)

o LwF (Li et al. 2017Db)

o Cumulative

o Finetune

Table 6.1: Hyperparameters of the considered learning strategies in MNIST set-
tings.

Hyperparameters
Units in [input, hidden, output| | Activation functions | Optimizer | Loss function
[784, 512, 10] [relu, softmax] Adam Cross-entropy

For each architecture and learning strategy, we tested different randomly orders of
learning sessions. In Table 6.2, we report for our simulations, the achieved results in

stability,plasticity, last global accuracy Qay (Qan = ﬁ T Zalli a9 defined in Kemker

=2 0jgeal
et al. 2018.
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Table 6.2: Complete list of the trained configuration results on the handwritten
digit recognition database MNIST. Acc: global accuracy after training on all ses-

sions.
Order Strategy Acc. stab. plas.
(A) 1036457928 Sample Replay 0.80 0.77 0.90
GDumb 0.23 0.00 0.32
EWC 0.12 0.14 1.00
LwF 0.15  0.21 0.99
SI 0.13 0.19 1.00
Finetune 0.11  0.08 1.00
Cumulative 0.72  1.00 0.59
(B) 2813047569 Sample Replay 0.60 0.94 0.55
GDumb 0.54 042 0.63
EWC 0.31  0.03 0.99
LwF 046 0.11 0097
ST 045 0.12 0.98
Finetune 0.14 0.00 1.00
Cumulative 0.68 1.00 0.59
(C) 1204673985 Sample Replay 0.82 0.56 0.88
GDumb 0.41 0.00 0.53
EWC 0.15  0.00 1.00
LwF 0.23 0.00 0.98
SI 0.22 0.00 0.99
Finetune 0.11  0.00 1.00
Cumulative 0.80 1.00 0.65
(D) 4816203957 S. Sample Replay 0.68 0.91 0.72
GDumb 0.48 0.24 0.57
EWC 0.25 0.00 0.99
LwF 0.37  0.07 0.98
SI 0.32  0.02 0.99
Finetune 0.17 0.00 0.99
Cumulative 0.73 1.00 0.62
(E) 6031925487 Sample Replay 0.78 1.01 0.80
GDumb 0.46 0.64 0.53
EWC 0.26 0.18 0.99
LwF 0.31  0.36 0.98
SI 0.29 0.31 0.99
Finetune 0.17 0.00 1.00
Cumulative

0.70

1.02

0.52

Order Strategy Acc. stab. plas.
(F) 941752386  Sample Replay 0.73  1.00 0.80
GDumb 0.40 0.84 042
EWC 0.20 043 0.99
LwF 0.26  0.68 0.98
SI 0.24 053 0.99
Finetune 0.12 0.15 1.00
Cumulative 0.71  1.00 0.45
(G) 9480712653 Sample Replay 0.70  0.89 0.74
GDumb 0.44 0.00 0.55
EWC 0.24 0.00 0.99
LwF 0.31 0.00 0.91
SI 0.29 0.00 0.96
Finetune 0.13 0.00 1.00
Cumulative 0.65 1.01 0.55
(H) 6180534972 Sample Replay 0.76  0.97 0.75
GDumb 042 089 044
EWC 0.18 0.46 0.99
LwF 0.30 0.78 0.97
SI 0.25 0.72 0.99
Finetune 0.13 0.14 1.00
Cumulative 0.70  1.00 0.60
(I) 2784903165  Sample Replay 0.64 0.97 0.70
GDumb 0.47 0.62 0.56
EWC 0.23 0.38 0.99
LwF 0.37  0.52 091
SI 0.29 0.52 0.96
Finetune 0.12 0.10 1.00
Cumulative 0.76 0.98 0.70
(J) 2536790418  Sample Replay 0.69 0.98 0.73
GDumb 0.47 0.69 0.51
EWC 0.21 0.17 0.98
LwF 0.33 049 0.95
SI 0.24 0.28 0.98
Finetune 0.14 0.00 1.00
Cumulative 0.83 099 0.68

6.2.2 Face Emotion Recognition

Database

In human social interaction, the ability to identify other beings feeling and emotions is
crucial, particularly to adapt the individual’s behavior. Emotion recognition is mainly
achieved, but not exclusively, by decoding non-verbal information and in particular fa-
cial expressions. Many social cognition studies focus on understanding emotion recog-
nition in humans, for instance detecting specific region contributions (in particular in
the amygdala Adolphs et al. 1994; Adolphs et al. 1995; Calder 1996; Breiter et al.
1996; Morris et al. 1996; Davis et al. 2001; Pessoa et al. 2010; Anderson et al. 2000) or
defining functional activation at different emotional faces processing (Fusar—Poli et al.
2009; Gémez et al. 2020; Liao et al. 2021; Underwood et al. 2021).
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Automatic systems and ANNs for facial expression recognition have also been intro-
duced (Kumari et al. 2015; Mehta et al. 2018; Li et al. 2020). Available databases
mainly cover the six basic emotions: Anger, Fear, Sadness, Disgust, Surprise and Hap-
piness (Ekman 1992a; Ekman 1992b; Ekman et al. 1978) and a Neutral emotional state.
Here, we considered the Fer+ databases (Goodfellow et al. 2013a; Barsoum et al. 2016).
This database contains 35,685 grayscale 48x48 pixels images with all the basic emotions
and covering all ages, gender, and ethnicity, the labels are provided by 10 crowd taggers.

Architecture and Learning Strategies

We follow the work of Mainsant et al. 2021 which introduces an ANN allowing con-
tinual learning without the requirement of neurogenesis, nor the necessity of an oracle
about learned or data to be learned, as well as data privacy issues for facial emotion
recognition.

In a preliminary step, we performed a feature extraction employing a pre-trained
ResNeth0 model provided by Wang et al. 2018a. A visualization of ResNet50 ar-
chitecture can be found in Fig. 6.1. The feature vectors used as input of our NN
architectures were obtained after the flatten operation of ResNet (indicated by a red
rectangle in Fig. 6.1).

49,49,256 25,25,512 13,13,1024 7,7,2048 1,1,2048

Convolutional Block

Convolutional Block

Convolutional Block
Average Pooling

Resized Image
197,197,3

Convolutional Block

Figure 6.1 — ResNet50 model architecture. The features vector taken as the input
of the last fully connected layers is extracted in correspondence of the red box. The
Convolutional Blocks extract features changing the input dimensions. The Identity
Blocks extract features without changing the input dimensions.

The 2048-feature vectors are then fed into the following fixed architecture:

- input layer of 2048 units corresponding to the size of features extracted from
images;

- hidden layer with 1000 neurons;

- output layer.

We evaluated Dream Net together with the other learning strategies (as listed in Table
6.3). Note that the methods do not entirely share the same architecture: indeed
Dream Net requires an output layer composed of several neurons corresponding to the
input (Auto-associative or Auto-encoder part) and several neurons corresponding to
the number of classes (Hetero-associative or part). While this part is used both for
training and evaluation of the model, the Dream Net activation network at rest is
obtained by discarding all the units coming from the auto-associative part and their
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related edges, so that only the part of the ANN directly involved in the classification
task is retained. This guarantees a fair comparison with the other learning strategies
and architectures.

Table 6.3: Hyperparameters of the considered learning strategies on Fer+ settings.

Strategy Hyperparameters

Units in [input, hidden, output] | Activation functions | Optimizer Loss function
Cumulative* [2048, 1000, 2055] [relu, sigmoid] Adam* | Binary Cross-entropy
Finetune* [2048, 1000, 2055] [relu, sigmoid] Adam | Binary Cross-entropy
Dream Net [2048, 1000, 2055] [relu, sigmoid] Adam Binary Cross-entropy
Cumulative [2048, 1000, 7] [relu, sigmoid] Adam Binary Cross-entropy
GDumb [2048, 1000, 7] [relu, sigmoid] Adam | Binary Cross-entropy
Sample Replay [2048, 1000, 7] [relu, sigmoid] Adam Binary Cross-entropy
EWC [2048, 1000, 7] [relu, sigmoid] Adam Binary Cross-entropy
LwF [2048, 1000, 7] [relu, sigmoid] Adam Binary Cross-entropy
SI [2048, 1000, 7] [relu, sigmoid] Adam | Binary Cross-entropy
Finetune [2048, 1000, 7] [relu, sigmoid] Adam | Binary Cross-entropy

Dream Net architecture was sequentially trained with different learning strategies and
in different learning sessions. We tested 7 choices of emotion orders so that each class
is learned in the first position, followed by random order choice.

The different learning configurations are listed in Tab. 6.4, with the learning orders
notated by A: angry, D: disgust, F: fear, H: happy, S: sad, Su: surprise, and N: neutral.
The model setting performance evaluation is based on the last global accuracy and on
the metrics proposed in Kemker et al. 2018.
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Table 6.4: List of the trained configuration results on the face emotion recognition
database Fer+. Acc: global accuracy after training on all sessions.

Order Strategy Acc. stab. plas.

Order Strategy Acc. stab. plas.

(A) ADFHSSuN Cumulative 0.99 1.01 067 =
Cumulative* 0.76 1.03 0.81 _:

Dream Net 0.71 081 084 (E)SNDFSuAH Cumulative 0.77 0.52  0.50

Sample Replay 0.57 0.52  0.95 Cumulative* 0.77 1.00 0.85
GDumb 0.61 057 0.79 Dream Net 0.71  0.99 0.90
EWC 0.10 1.15 0.00 Sample Replay 0.37  0.60 0.33
LwF 0.34  0.00 0.83 GDumb 0.37  0.80 0.25
ST 0.34 0.00 1.00 EWC 0.099 0.00 0.17
Finetune* 0.02  0.00 1.00 LwF 034 023 017
Finctune 0.032 0.19 0.17 SI 0.34 023 0.00
(B) DAHSNSuF  Cumulative 0.76  1.00 0.40 Finetune 0.26  0.00 1.00
Cumulative* 076  1.03  0.84 Finetune* 036 0.00 1.00
Dream Net 0.77  1.00 0.82 (F) SUDFNHAS Cumulative 0.76  0.33 0.57
Sample Replay 0.54  0.54 0.26 Cumulative* 0.76 1.00 0.86
GDumb 052  0.53 0.25 Dream Net 0.71  0.93 0.92
EWC 0.099 0.00 0.17 Sample Replay 0.41  0.68 0.30
LwF 034 0.19 0.17 GDumb 0.34 0.66 041
ST 034 0.19 0.17 EWC 0.099 0.00 0.17
Finetune 0.032 0.00 1.00 LwF 0.34 020 017
Finetune* 0.34  0.00 1.00 SI 0.34 020 0.00
(C) FHSuDNSA  Cumulative 0.78  0.86 0.39 Finetune 0.13 0.00 1.00
Cumulative* 076 1.56 0.81 Finetune* 013 0.00 1.00
Dream Net 051 1.31 0.32 (G) NDSuFHSA  Cumulative 0.76  0.77 0.68
Sample Replay 0.57 0.68 0.14 Cumulative* 0.76  1.00 0.83
GDumb 0.62 0.81 027 Dream Net 0.56 0.79 0.58
EWC 0.099 0.00 0.17 Sample Replay 0.34  0.84 0.20
LwF 034 022 017 GDumb 0.34 077 043
ST 034 022 0.00 EWC 0.099 0.51 0.17
Finctune 0.099 0.00 1.00 LwF 0.34 061 0.00
Finetune* 0.099 0.00 1.00 ST 0.3¢ 0.20 0.17
(D) HADNSFSu Cumulative 076 101 0.67 Finetune 0.098 0.00  1.00
Cumulative*  0.76  0.99 0.81 Finetune* 0.098 0.00 1.00
Dream Net 0.71 1.00 0.86
Sample Replay 0.56  0.54  0.35
GDumb 043 1.00 0.40
EWC 0.099 0.00 0.17
LwF 0.34 0.24 0.33
SI 0.34 024 0.17
Finetune 0.12 0.00 1.00

Finetune* 0.34 0.00 1.00

6.3 Experiments

Following the standard human brain functional connectivity analysis framework, we
performed two types of experiments on the induced graph G(NN) of various NNs: a
global setting recognition and a nodal role identification. For the former, we assumed
that the induced graphs of a NN contained enough information to identify its learning
settings. For the latter, we associated nodal graph statistics with a functional property
of the artificial system. In particular, we performed a network surgery, by removing
hidden units according to their statistics value. Thus, we evaluated the stability and the
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plasticity performance: if removing the units had a strong negative effect, thus the units
are considered as critical. In particular, we defined a set of units as stability-critical
(resp. plasticity) if by pruning all its units, we observed negative changes in terms of
stability (resp. plasticity) performance. If the evaluation performance in the pruned
version is increased, then we defined the unit set as stability /plasticity-inhibitorial.

6.3.1 Experiment 1: Characterization

At a global level, we show how this brain-inspired framework can be used to extract
interpretable statistics which allow the detection of configurations affected by catas-
trophic forgetting. Moreover, the same statistics can be used to group together con-
figurations that apply the same learning strategies. Similarly to human brain studies
where functional connectivity allows to discriminate across brain states, the first ob-
jective of our analysis was to demonstrate that a graph-based connectivity analysis of
ANNSs could discriminate architectures according to different learning strategies. Par-
ticularly, we explored the possibility of correctly identifying models whose learning was
affected by catastrophic forgetting. To this extent, we considered the induced graphs
of each configuration in different learning settings. We determined the threshold to
guarantee in and out degrees statistics followed a similar power-law distribution (an
example is shown in Fig. 6.2).

In this line, we first propose a general learning strategy characterization Experiment
1 (Characterization). For each configuration, we determine the number of hidden
units in the tail of . together with the Maximum Unit Change.

We characterize the different learning strategies by comparing these graph-based fea-
tures and by using them for their identification in a reduced space.

Moreover, we validate the use of the degree statistics by investigating the relationship
among units in the tail and the norm changes of their synaptic weights across the
different learning sessions.

Given the T+ 1 features per configuration, we determined the principal components
and perform a K-Means Clustering algorithm in the reduced space. Thus, we evaluated
the consensus score by computing the adjusted rand index where the true labels are
given by the learning strategies or by two classes affected by catastrophic forgetting, not
affected which corresponds to the configurations where stability < 0.5, stability > 0.5.

Handwritten Digit Recognition task

We observe similar distribution across the different learning strategies, except for the
Finetune model. The Maximum Unit Change value is under 100 in continual learning
strategies and Cumulative, but equals to 179.7 + 34.0 for the Finetune model (Fig. 6.3
Top Left). The tail persistence units shows the peculiar behavior of Cumulative and
Finetune models for which the information is subsequently overwritten: their consecu-
tive persistence is severely lower compared to other strategies and only less than 40%
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Figure 6.2 — Example of in (green) and out (red) degree distributions in the induced
graph of an activation network at rest.

of the tail units persists from the learning of the basal task. For all other strategies, the
percentage reaches 80% with the exceptional case of the GDumb an average of 98%.
Visualization in a reduced space of the graph-features vector reveals how these graph-
based extracted features are able to identify how Finetune and other strategies are
affected by catastrophic forgetting (Fig. 6.3 Bottom Left). A simple clustering al-
gorithm in the reduced space groups together all regularization learning strategies,
replays and Cumulative reaching an overall consensus score of 0.71 (Fig. 6.4).

In Fig. 6.5 we explore the relationship between the nodal statistics and the consecutive
norm change of weights in the trained ANN. It is interesting to observe a slight change
in norm across consecutive steps even in non-regularization methods. Additionally, we
should notice that in the MNIST dataset, there is a large number of units that receive
as input zeros from the border of the flattened images, these units do not update their
synaptic weights across the learning process. The statistics . is able to retrieve the
majority of units whose synaptic weights norm does not change across consecutive
steps. This is highly valuable for a resting-state analysis which defines induced graphs
without any input data.
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Figure 6.3 — Results of Experiment 1 ( Characterization). Left: Handwritten
Digit Recognition task Right: Face Emotion Recognition task. Top: Distribution
of the graph-based features by strategy. Cons. Tail Persistence: Consecutive Tail
Persistence percentage of units in the tail at consecutive learning sessions, Tail
Persistence: Percentage of units being in the tail at the first and last learning session.
Bottom: Visualization of the reduced space of the graph-based features extracted
by each sequence of ANNs trained with different strategies. A point corresponds to
a unique configuration given by the ANN architecture, the learning strategy, and the
fixed-order learning. Points are colored by their stability performances. Each red
circle indicates catastrophic forgetting. Similarly, the plasticity performances for all
strategies are reported in the appendix. S.Replay: Sample Replay, EWC: Elastic-
Weight-Consolidation, SI: Synaptic Intelligence, LwF': Learning without Forgetting.

Face Emotion Recognition task

The same experiment was performed in the Face Emotion Recognition task. In this
more difficult task, we considered two different architectures. Since Dream Net requires
an auto-hetero associative architecture, we introduced two different versions for Cumu-
lative and Finetune with or without an auto-associative part in the output of the NN.
In general, the introduction of auto-associative neurons gives better results already in
the standard Cumulative configuration.

As in the handwritten digit recognition task, we report a strong Maximum Unit Change
for the Finetune strategy (Top Right Fig. 6.3). The tail persistence results show a
consecutive tail persistence in Dream Net strategy of about 0.7, with lower values
for Cumulative, Finetune, Sample Replay and GDumb. EWC shows the highest con-
secutive tail persistence, but the other regularization strategies have in average less
persistence with respect to Dream Net. Not surprisingly, the percentages in tail per-
sistence have the lowest average for the Finetune configurations and the highest for
EWC. Finally, the visualization in a reduced space of the graph features reveals the
possibility of identifying the robust learning strategies (Bottom Right Fig. 6.3), a
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Figure 6.4 — Visualization of the cluster labels (Left) obtained by applying KMeans
(Top: K=2, Bottom: K=4) in the reduced space of the Handwritten Recognition
task and their ground truth (Right).

simple K-Means algorithm reaches a consensus score of 0.77 (Fig. 6.6). Interestingly,
the Finetune configuration, which is dramatically affected by catastrophic forgetting,
appears to be moved away with respect to the other clusters.

6.3.2 Experiment 2: Network Surgery

Similar to what happens in the human brain, where each node can be associated with
a different role given a graph nodal statistics (Carboni et al. 2023b), we assume that
each unit behaves differently at fostering or inhibiting the plasticity and stability per-
formance of the ANN. We hypothesize that such properties are unevenly distributed
across the units of an ANN and we aim at identifying units that contribute differently
to the stability and plasticity performances of the ANN. Specifically, we distinguish
two subsets of .#;: units that belong to the middle quartiles and units which belong to
the tail. As it happens in natural intelligence, where high volume spines persistence is
associated with the memory of the corresponding task (Yang et al. 2009), we hypoth-
esize that units that persist in having extreme .# values can be associated with high
stability. In contrast, nodes whose .¥ values strongly change can be associated with
the plasticity property.
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Figure 6.6 — Visualization of the cluster labels (Left) obtained by applying K-
Means with K=2 in the reduced space of the Face Emotion Recognition task and
their ground truth (Right).

In the Experiment 2 (Network Surgery), we simulate the removal of the increased-
volume spines (Cichon et al. 2015; Hayashi-Takagi et al. 2015) by pruning (i.e. turning
off) the units in ANN. The objective is to associate the interquartile units and the tail
units with the stability or plasticity properties of the ANN configuration by evaluating
the change in the performance with respect to the standard model (when no unit is
turned off). In artificial systems, it is indeed possible to perform such a network surgery
in order to associate a functional role to a unit following a graph-statistics-based nodal
role.

Inspired by the proposal in Zhang et al. 2022a, we assume that if a set of units is pruned
and the performance changes significantly in terms of stability, then the pruned units
are critical for the stability of the ANN model. The same applies to the plasticity.
Given the number of units in an ANN;, testing the pruning of each unit becomes rapidly
unfeasible, thus we consider the set of units in the interquartile and in the tail distribu-
tion of .. Hence we propose two pruned ANN versions, one which only preserves the
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synaptic weights of units in the tail of the distribution of ., and another version that
nullifies the weights of the tail units. Since the distribution of . changes across the
learning session, we define a copy of each trained ANN in the order sequence, with each
pruned copy at the ¢-th learning session obtained by looking at the .#; distribution.

These pruned ANNs ordered by learning sessions are respectively denoted NN™ and
NN7, while the standard sequence (i.e. where no pruning is applied) is notated NN.

We evaluate the difference between the stability/plasticity of the standard model and
its corresponding pruned version: a strong difference corresponds to a critical stabil-
ity /plasticity unit (i.e. when the units are pruned the performance decreases dramat-
ically), while a low positive difference corresponds to a robust unit (i.e. the pruned
units do not affect the performance). Finally, a negative difference identifies plastic-
ity /stability inhibitory units, i.e. units whose synaptic weights have a negative effect
on its plasticity /stability.
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Figure 6.7 — Results of Experiment 2 (Network Surgery) for two orders of Hand-
written Digit Recognition. Stability (Left) and Plasticity (Center) performances
for all configurations on handwritten digit recognition task for the standard model
NN (plain black line) and their pruned versions NN7, NN” (colored dashed lines).
The performance is reported for two different orders (A,F, see Tab. 6.2) of learn-
ing sessions. Right: average local accuracy performances for the last learned class

across learning sessions.

Handwritten Digit Recognition

We observe different behaviors depending on the learning strategy (see Fig. 6.7, Fig.
A.7). The Cumulative learning strategy reveals how in offline learning the stability and
plasticity properties are shared in the hidden units: pruning of both sets equally affects
the performance. On the contrary, the Finetune model, whose stability is extremely
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low in the standard version, shows strongly improved performance for the pruned
sets. Indeed, we can identify the tail units as stability-inhibitory: pruning them has a
beneficial effect in recalling the basal task, reaching a maximum stability performance
of almost 0.46 for the first training session on the class corresponding to the digit 4
(Fig. A.7). The GDumb approach behaves similarly to the Finetune or the Cumulative
models depending on the standard performance: it exhibits a beneficial effect of pruning
the tail when the standard performance is poor and critical behavior in general pruning
when the standard performance is higher. A stronger effect is observed when pruning
the interquartile range units.

Concerning plasticity, a common general behavior across all learning strategies is a
stronger plasticity-critical behavior of the tail units: when their weights are set to zero
the plasticity performance is dramatically reduced. The pruning of the interquartile
range also affects the plasticity, but with less effect, especially for the Finetune model.
We report in details the local accuracy at each learning session (Right Fig. 6.7). We
can notice how in the Finetune model, the NN has positive local accuracy and for a
few learning sessions has comparable results with the standard version. In the regu-
larization methods, a transition between the best local accuracy pruned performance
exists, with the interquartile having better results at the beginning of the learning
sessions and the tail in the following phases.

Face Emotion Recognition task

The Cumulative model distributes the stability properties across all units indepen-
dently by the distribution of .. This leads to a dramatic decrease of the stability
performance for the pruning versions. Concerning the plasticity property, we detect a
higher criticality for the units in the interquartile range. For Dream Net, all pruned
settings have very poor results for new tasks, with the extreme case of the model with
tailing removing NN” that has a zero ). Different results are observed for the Fine-
tune model, where the pruning versions, keeping only the weights in the tail, reach the
same Q. that the standard one.

On the contrary of Cumulative and Dream Net, where none pruned copy reaches similar
performances, for Finetune, the NN is a good pruned copy of the complete standard
model.

6.3.3 Experiment 3: Weights-injection

The weights injection experiment aims at validating the identified stability /plasticity
relation at the hidden unit level and assessing the biological assumptions.

In particular, we assume that injecting the weight of a set that is plasticity-critical for
the learning of a task into its consecutive trained architecture can ensure the ability
to perform such a task after the learning of new tasks. More generally, we aim at
verifying if the injection of stability-critical units in a model with low stability can
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Figure 6.8 — Results of Experiment 2 (Network Surgery) for two orders of Face
Emotion Recognition Task. Stability (Left) and Plasticity (Center) performances
for all strategies on face emotion recognition task for the standard model NN (plain
black line) and their pruned versions NN™, NN" (colored dashed lines). The perfor-
mance is reported for two different orders (C,E, see Tab. 6.4) of learning sessions.
Right: average local accuracy performances for the last learned class across learning
sessions.

have a positive effect and similarly for plasticity.

This weights injection experiments can be seen as a new learning strategy for continual
learning which employ graph-information. Note that the first two procedures FWI and
BWI do not require any training and are simply obtained by considering the model
snapshots of the previous task and the current one. While FWI only injects the weights
from the previous one into the current model by looking at which hidden units where
in the tail in the previous step, the BWI procedure keeps all the weights from the
previous task, except those corresponding to units that are currently in the tail, for
which the weights from the current trained networks are used.
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The evaluation of these injections is reported in terms of difference in performance
between the receiver model, which goes through the weights injection process, and
the standard model that doesn’t receive any weight injections. The performance is
measures on stability and plasticity metrics. If the performance difference is positive,
it indicates that injecting weights has positively impacted the model’s performance.
Conversely, a negative difference suggests a detrimental effect.

This experimental approach introduces a novel learning strategy for continual learning
that leverages graph-information about the neural network’s architecture. The weights-
injection procedure is related to the concept of transfer incremental learning where
transfer learning methods (Weiss et al. 2016; Zhuang et al. 2020; Boukli Hacene et al.
2018 are applied in continual learning scenarios (Masana et al. 2022; Boukli Hacene
et al. 2018.

Handwritten Digit Recognition task

A clear increase in the plasticity is observed when fine-tuning is used to retrain the
model (NN"/F) "even if the number of trainable parameters is reduced with respect to
the Finetune learning strategy. An interesting result is observed in terms of stability
especially in the Finetune and rarely in some configurations of the EWC, LwF and SI
strategies, where a slightly beneficial effect is observed by injecting the weights in the
sequential model Fig. 6.9. In the Replay methods and Cumulative, where a fine-tuning
procedure that preserves the tail units gives better results in the plasticity.

Face Emotion Recognition task

Concerning the stability, the weights injection procedure without tuning, outperforms
the standard for Finetune and Dream Net.Results in plasticity show that only with a
fine-tuning procedure, we are able to learn new tasks. Note that the FWI injection
procedure in Finetune, significantly affects the plasticity performance, but never reach-
ing the zero (Fig. 6.10).

In the Finetune model, the weight injection procedure without fine-tuning increases
the standard performance, indeed when evaluating the global accuracy results in the
Finetune model and its weights-injection setting, we observe that when learning a few
tasks the weight injection significantly outperforms the standard version (Fig. 6.10),
loosing however the adaptability to new tasks.
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Figure 6.9 — Results of Experiment 3 (Weights-injection) on MNIST configurations.
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Figure 6.10 — Results of Experiment 3 (Weights-injection) on Fer+ configurations.
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6.4 Summary and conclusion

In this study, we leverage a novel research framework in which ANNs are studied
starting from their connectivity properties. This framework enables us to integrate
the biological inspiration of ANNs into their analyzing tool by proposing a way to
fill the gap between brain connectivity studies and the analysis of the information
flow in ANN. Utilizing this research framework, we concentrate our analysis on the
catastrophic forgetting issue. Our objective was to determine the relationship between
existing learning strategies that alleviates the catastrophic forgetting phenomenon and
general graph connectivity features. We showed that a simple graph-induced defini-
tion and the extraction of interpretable graph features are important indicators of the
stability properties of an ANN model being enough to detect the learning strategies
applied to the same ANN architecture learning to perform the same task.

This study investigates the utility of implementing memory consolidation or task-
specific synaptic consolidation, by distributing unequally the stability and plasticity
properties in the ANN units. We report good stability in online learning strategies in
the presence of a persistence of tail units with strong synaptic weights across the learn-
ing sessions. We showed in the weight-injection experiment how a Finetune model can
retrieve previous information when such persistence is brutally forced with the FWI
technique. While such persistence can be expected for the regularization methods, it
surprisingly appears to be present in replay methods too, suggesting that both methods
can induce similar distribution in the strength of the connection in the hidden units.
Surprisingly, replay methods achieve the same result of constraining synaptic weight
updates across learning sessions, without requiring hyperparameter tuning, unlike reg-
ularization strategies. Our graph modeling and the chosen graph statistics are able
to detect the units whose weights slightly change in norm across the learning session.
This is highly valuable for our graph modeling at rest, which does not estimate the
importance of weights given true input data, but whose only relation with data is given
by the determined weights after training.

We observed that the low performance of regularization methods is associated with the
similarity of behavior between the Finetune strategy.

When coming to more complicated tasks, major differences are revealed between the
Cumulative and the Dream Net replay methods. First, Dream Net and Cumulative
have opposite behavior in the network surgery experiment: any pruning technique of
the Cumulative configuration destroys the stability, while for Dream Net the pruning
increases stability at the cost of diminishing plasticity. This suggests that the use of
a dropout technique in the training phase of Dream Net, can result in better stability
results.

The results in the pruning experiments capture the difference between multiple tasks
learning in one session and sequential learning: while offline learning automatically
distributes the connections and their strength across the hidden units for the differ-
ent tasks, sequential learning imposes strong task-specific synaptic weights on a few
connections which are continuously overwritten and substituted. Thus, catastrophic
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forgetting is alleviated when these connections are not erased but slightly adapted to
the subsequent tasks.

In the Finetune model, the proposed graph statistics detect the lottery ticket winner
(i.e. a pruned version of the model with the same performance as the entire network
and less redundancy (Frankle et al. 2018)). We found that the model which only
preserves the weights of the tail units reaches the same performance of the standard
one, despite the number of preserved units. This is in line with pruning literature
results which determine a very small subnetwork having almost the same performance
as the complete model (Wolinski 2020; Tanaka et al. 2020). Remarkably, we prove that
the high plasticity of a Finetune model is strongly related by units in the tail of the
distribution and that a simple weights-injection across sequential models can enhance
its stability.

Yet, none of the weights-injection procedure can be suitable for the design of new
continual learning strategy and more works is needed for the design of a graph-informed
learning strategy overcoming catastrophic forgetting.

6.4.1 Limitations

Besides laying down the foundation for a graph-statistics-based study of the learning
process in ANN, we mainly show empirical findings of post-training ANN model charac-
terization. However, the training process in an ANN is not negligible and by definition
highly dependent on the dataset used for training (Ramyachitra et al. 2014; Ali et al.
2019; Djolonga et al. 2021; Song et al. 2022). This is the major weakness preventing
results generalization of a post-training analysis: results may change when different
tasks or datasets are used, or even by testing a different learning order. We tackle
some generalization induced by the order of learning sessions, by randomly testing
different orders since testing all possible orders becomes quickly intractable.

In addition, our proposal is only applied to a feed-forward ANN model having a unique
hidden layer. In deeper neural networks, we may observe different results depending
on the considered hidden layers, as different robustness was observed associated with
different layers (Zhang et al. 2022a).

6.4.2 Future work

Many studies have already introduced the need for more complex neural network archi-
tectures, giving both brain-inspired motivations and graph-based topological require-
ments (Sussillo et al. 2009; Mocanu et al. 2016; Mocanu et al. 2018; Hasson et al.
2020; Liu et al. 2021; Kaviani et al. 2021), hence indicating possible future research
directions to extend the present work to different architectures.

In addition to existing work that promotes the graph-based approach to define new
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ANN architectures (Elsken et al. 2019; Leijnen et al. 2020) we introduce for the first
time, the graph-based analysis of the connectivity at rest of ANNs.

We have used graph modeling and graph-based statistics to analyze trained ANNs in a
continual learning framework. By studying different models which differently address
the catastrophic forgetting issue, we show that it is possible to identify models with
different performances based on simple features extracted from a binary graph obtained
considering the strongest weights connection. We propose to identify critical hidden
units according to the performance of pruned version model which turns off neurons
according to their in-out degree values in the induced graph. The results show that the
selected statistics and choice of hidden unit sets in the tail or interquartile range can
be used to identify critical unit sets for the stability and plasticity of the corresponding
configuration.

Finally, as it happens in the brain, we conclude that the hidden units in ANN are
not homogeneous in recalling previously learned information or at adapting to newly
learned information. These results lay down the foundations to study how the learning
process in ANN using graph-theory tools, providing insights into the occurrence of
catastrophic forgetting and the presence of a stability-critical set of neurons.
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General Conclusion

To conclude, this work explores the integration and synergistic collaboration across
various multidisciplinary fields. We propose an integration between artificial systems
practitioners, neuroscientists and network science researchers. Particularly, our objec-
tive is to propose a graph-based analysis of artificial neural network and brain connec-
tivity. This translates into twofold objectives: on one side the proposal of an innovative
way to characterize functional connectivity network groups, on the other side, the ex-
tension of a brain-inspired method for artificial neural networks analysis. As we have
pointed out, a more stringent integration and collaboration between these domains
have significant promise for advancing our understanding for both brain function and
pathology and artificial neural network robustness.

Throughout this work, we have stressed the importance of establishing a gold-standard
analysis framework for functional brain connectivity with graph-based approach. Po-
tentially, such a framework will serve as a common ground, facilitating consistent in-
terpretation of results and enhancing reliability. Furthermore, it is crucial for the
neuroimaging community to prioritize ensuring the quality of data and establishing
standardized protocols for acquiring resting-state fMRI data. This effort is essential to
lay a strong foundation for the development of functional connectivity studies research.
Despite the multitude of existing functional connectivity methods and studies, we stress
the importance of the definition of a method which can detect the regional organiza-
tion of brain network. We have identified the criteria a functional connectivity analysis
method should fulfil: consider interpretable classical network statistics; demonstrate
adaptability to diverse pathologies or datasets, allowing the customization of graph
statistics to match specific application cases; provide a framework for characterizing
groups; possess the capability to account for individual differences among subjects; and
enable localized characterization, to facilitate the identification of regional disruptions.
We make a significant contribution in this regard. We introduce a novel framework that
leverages classical network statistics to identify structural patterns within graphs. We
assess the adaptability of this proposal across various pathologies and by collecting data
from multiple databases. We show that distinct pathologies necessitate the employ-
ment of specific nodal statistics to accurately differentiate pathological networks from
healthy controls. Finally, we detect regional perturbation in line with literature results.

Coming to the integration of brain-inspired methodology to artificial neural network
connectivity studies, we make efforts for adapting a brain analysis framework to the
analysis of artificial neural networks. This approach is based on the definition of an
induced-graph associated to a trained neural network architecture. Applied to contin-
ual learning strategies, our method effectively detects catastrophic forgetting through
simple topological information. This approach has the potential to help in define more
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robust artificial systems, more closely emulating the human brain connectivity. From
this standpoint, it is crucial to embrace relevant metrics for evaluating robustness, for
instance specifically focusing on plasticity and stability within the context of contin-
ual learning paradigms. Within the proposed experiments, we cast doubt upon the
traditional concept of exchangeable units in artificial neural network. By evaluating
the model’s performance across a range of pruning scenarios, we manage to connect
specific units to particular class predictions.

Although there is additional space for exploration, for instance for the use of induced-
graph topological characteristics in the design of new continual learning strategies,
our contribution effectively proposes an integration of network science principles into
artificial neural networks analysis in a brain-inspired perspective.
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Appendix






A.1 PubMed Query Results

Table A.1: Query Results on Pubmed. MF: magnetic field, Num Vol: Number of
Acquired Volumes, ScD: Scan Duration, Fr: resting-state considered frequency, EC:
eyes condition, Num S: Number of Subjects

MF TR Num  ScD Fr (Hz) EC !  Atlas
(T) (ms)  Vol. (min)

Abdallah 3 3000 200 10’ ROIs
et al. 2019

Abdelnour 3 2000 199 6’38” 0.01-0.08 0OX AAL90
et al. 2018

Abdelnour 3 2000 199 6’38” 0.01-0.08 O AAL90
et al. 2021

Adhikari 3 2500 768 30’ 0.009-0.08 O DK?

et al. 2017

Amiri et 3 3000 330 16’30”  0.01-0.1 C AAL90
al. 2020

Audrain et 3 2000 180 6’ 0.008-0.09 C Brainnetome?®
al. 2018

Bachmann 3 3000 140 7 <0.02

et al. 2018

Bansal 3 2200 0.01-0.1 C DK

et al. 2021

Behfar 3 3000 155 7 O

et al. 2020

Ben Simon 3 2500 0 0.01-0.08 OX

et al. 2017

Bharath et 3 3000 185 9’40” C Craddock
al. 2016

Billings et 3 645 900 940 wavelet O voxel
al. 2018

Blommaert 1700 254 7

et al. 2020

2Desikan-Killiany,Desikan et al. 2006
3Fan et al. 2016
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MF TR Num  ScD Fr (Hz) EC ' Atlas
(T) (ms)  Vol. (min)

Brenner et 3 2000 210 & <0.15 HAO!

al. 2018

Campabadal 3 2500 10° <0.01 C

et al. 2020

Cao et al. 3 1500 210 515”7 0.01-0.10 Cd voxel

2017

Carotenuto 3 3000 240 12 0.008-0.09 MNTI®

et al. 2020

Cary et al. 3 2000 600 20 <0.08 O Power

2017

Chen 3 720 4666 58’ O ROIs

2019a

Chen 3 2000 8’ 0.009-0.08 O Power

2019b

Chen et al. 3 2000 240 8’ 0.01-0.08 C AAL90

2019

Chirumamilla 3000 AAL116

et al. 2016

Chockanathan 3 1650 250 412’5 0.038- AAL16

et al. 2019 0.076

Chockanathan 3 1650 250 412’5 C

et al. 2018

Collantoni 1.5 2009 250 8227 0.005—-0.1 C ROIs

et al. 2019

Cope et al. 3 2430 269 1

2018

Cordova et 3 2500 120 5 ROIs

al. 2020

Dall’Acqua 3 2220 140 5'19” 0.01-1 C AAL90

et al. 2017

De Micco 3 1508 240 6’ 0.01-0.08 C ROIs

et al. 2021

Schipper et 3 2200 200 729”7 <0.01 C

al. 2018

Deng et al. 3 3000 137 6’51” 0.01-0.08 voxel

2016

Diez et al. 5000 6’407 O

2019

Dongetal. 3 1900 216 7127 0.01-0.08

2020

4Harvard-Oxford atlas Smith et al. 2004

Snatural sleep

6Montreal Neurological Institute
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MF TR Num  ScD Fr (Hz) EC! Atlas
(T) (ms)  Vol. (min)

Douw et 3 1800 200 6’ 0.06-0.12 C Brainnetome
al. 2020

Duncan et 3 1500 200 5 0.01-0.1

al. 2016

Eldaief et 3 2500 <0.08 O

al. 2017

Erdeniz et 1.5 2640 11 0.01-0.08 OX AAL90
al. 2017

Fan et al. 3 2000 240 8’ 0.01-0.08 C AAL90
2021

Figueroa- 3 2000 220 6-9’ OX

Jimenez

et al. 2021

Finotelli et 1.5 2500 160 6'06” <0.01 C HOAT
al. 2018

Finotelli et 3 2000 5 0.01-1 C AAL90
al. 2019

Fitzsimmons 3 2100 ROIs
et al. 2020

Fujimoto 3 1000 360 6’ OX

et al. 2020

Fulong et 3 2030 240 8’32 0.01-0.1 O

al. 2020

Gaudio et 1.5 3560 80 644" 0.01-0.08 AAL116
al. 2018

Gerchen et 3 1370 508"

al. 2017

Gilson 3 2400 244 946" 0.01-0.1

et al. 2019

Hahn et al. 3 2080 1505 52’177 0.01-0.1 AAL90
2021

Han et al. 3 2000 204 6’567 0.009-0.08 C Power
2020

Han et al. 3 2000 200 8’ 0.01-0.08 Power
2019

Hart et al. 3 2420 269 10°51” wavelets

2016

He et al. 3 2000 225 7307 O

2016

He et al 5 wavelet AAL9O /
2017 0.05-0.1 HOA

"Harvard—Oxford Atlas
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MF TR Num  ScD Fr (Hz) EC! Atlas
(T) (ms)  Vol. (min)

Herzberg 3 2500 140 5577 0.009-0.08

et al. 2021

Ho et al. 3 2000 256 8’327 0.009-0.08

2017

Hojjati et 3 3000 140 6’ 0.01-0.08 O Dosenbach

al. 2019

Hojjati et 3 3000 140 7 0.01-0.08 O AAL90

al. 2018 /Dosen-

bach

Holla et al. 3 2000 303 10’ 0.01-0.09 O Power

2020

Honnorat 3000 120 6’ 0.01-0.08

et al. 2017

Hou et al. 3 2000 154 508” 0.01-0.1

2019

Hrybouski 4.7 3000 200 10’ <0.1

et al. 2021

Huang 3 2500 230 9’35” 0.008-0.01 ROIs

et al. 2019

Huang 3 1000 360 6’ 0.01-0.1 C Voxel

et al. 2017

Hou et al. 3 2000 242 8’ 0.01-0.1

2019

Tordan 3 2000 235 7°50 0.01-0.1 0OX Power

et al. 2017

Kang et al. 3 150 7307 Voxel/AATL90

2016

Kato et al. 2500 198 815 0.01-0.1 C

2021

Kesler 3 2000 216 712”7 0.008-0.09 C AAL90

et al. 2017

Kharabian 3 2000 300 10 0.005-0.1 C

Masouleh

et al. 2017

Kim et al. 3 3000 730”7 ROIs

2020b

Kirshenbaum3 2000 180 6’ C Brainnetome

et al. 2022

Klooster et 3 2000 10°12” 0.1-0.01

al. 2019

Kong et al. 3 2000 240 8’ 0.01-0.08




A.1. PubMed Query Results XV

MF TR Num  ScD Fr (Hz) EC ' Atlas

(T) (ms)  Vol. (min)
Lee et al. 3 3000 100 5 0.009-0.08 C ROIs
2017
Leming et 3 3000 256 856" C AAL116
al. 2019
Levakov et al. = o 045 10’ 0.008-0.08 Schaefer
2021 7 1000 0 0.0005
Li et al. 3 2000 240 8’ 0.01-0.08 C voxel /seed
2017a based
Lin et al. 4 2500 10° 0.009-0.08 C seed-based
2016
Lin et al. 3 3000 100 5 0.01-0.1 Power
2019
Lindner et 3 2500 0.008-0.09 OX AAL90
al. 2018
Liu et al. 3 2000 240 8’ 0.01-0.08 AAL116
2019a
Liu et al. 3 2000 230 740 0.01-0.08 C ROIs
2019b
Liu et al. 3 2000 180 6’ 0.06-0.1 OX AAL90
2017
Liu et al. 2000 200 6’40 0.01-0.08 C AAL90
2018
Long et al. 3 2000 150 5’ OX
2021
Luppi et 3 2000 7207 0.008-0.09 C Schaefer'®/
al. 2021 x3? Brain-

netome

Makovac 1.5 2520 5 wavelets
et al. 2018 0.05-0.1
Mandelli 3 2000 240 480 0.008-0.15 C seed-based
et al. 2016 ROIs
Mao et al. 2000 210 420 0.01-0.08 C
2021
Maximo et 3 1000 419 6'59” 0.008-0.08 O KsRN!
al. 2017
Mazrooyisebdani 3 2600 5’ 0.009-0.08 C ROIs
et al. 2020
Mijalkov et 3 2400 210 829 0.01-0.08
al. 2017

8two different datasets are considered in the same paper

9x3: the scan is repeated 3 times

10Gchaefer et al. 2018
1Koyama’s Reading Network Koyama et al. 2010
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MF TR Num  ScD Fr (Hz) EC ' Atlas
(T) (ms)  Vol. (min)

Mirakhorli 3 3000 140 7 AAL2
et al. 2020

Neudorf et 3 720 1200  14°24” Shen'?/
al. 2020 voxels

Neumann 3 2500 200 8’20 0.008-0.1 13 Voxels
et al. 2021

Ogawa 3 720 0 0.0005

2021

Openneer 3 2300 215 824" 0.008-0.08 OX

et al. 2020

Osadchiy 3 2000 107 0.008-0.08 C ROIs
et al. 2019
Paldino et 3 2000 300 10’ <0.01 variable'
al. 2017
Petersen et 1.5 2000 240 8 0.01-0.08 NSI®  seed based
al. 2016
Pezoulaset 3 720 91 01°05” OX
al. 2017
Prajapati 3 123 Dosenbach
et al. 2021
3 2400 220 848" 0.01-0.1
Puig et al. 1.5 2500 240 10’ 0.01-0.08
2018
Rangaprakasl3 600 1000 10’ 0.01-0.1 O Craddock
et al. 2019
Ray et al. 3 2000 0C ROIs
2017
Regner et 3 2000 150 5 0.008-0.15 C ICA
al. 2016
Ribeiro de 3 2000 C DK
Paula et al.
2017
Roberts et 3 2000 188 6’16 C ROIs
al. 2017
Rodriguez 3 2000 300 D’ <0.15
et al. 2021
Ryan et al. 3 1500 0.01-0.1 OX Seed
2018

12Shen et al. 2013

Bno specific instructions, keep their head still and avoid movements

14The number of nodes in each patient’s network ranged from 511 to 841 (mean: 684; standard
deviation: 68)

1510 specific instructions
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MF TR Num  ScD Fr (Hz) EC! Atlas
(T) (ms)  Vol. (min)

Sadeh 3 3000 6’ O

et al. 2019

Saghayi et 3 5’ HOA

al. 2020a

Sako et al. 3 2000 0.01-0.08 C

2019

Sato et al. 1.5 2000 180 6’ 0.01-0.1 OX seed based

2018

Sen et al. 2000 6’ C ROIs

2021

Shaw et al. 3 2000 0.008-0.09

2021

Sheffield et 3 2300 60’ 0.009-0.08 Power

al. 2016

Simpson et 1.5 3000 200 6’ 0.00765- (0),¢ AAL90

al. 2019 0.068

Song et al. 2000 0.01-0.08

2019

Sourty 3 3000 121 6'03” O ICA

et al. 2016

Stortietal. 3 2200 256 9'23” 0.008-0.1 C ROIs

2017

Subramanian3 3000 200 10’ 0.01-0.1 0OX

et al. 2020

Sun et al. 3 2000 240 8’ 0.01-0.1 (0):4 AAL90

2017a

Sun et al. 3 2550 210 9 0.01-0.1 AAL90

2017b

Surampudi 3 720 1200 14’24”  0.01-0.08 (0):4

et al. 2019

Taya et al. 3 2000 163 526" 0.01-0.1 O AAL90

2016

Taya et al. 3 2000 163 5’ 0.06-0.012 O HOA

2018

Tomasi et 3 720 1200 14’247  0.01-0.08 (0):¢ ROIs

al. 2017,

Trofimova 3 2000 300 10° 0.008-0.09 ROIs

et al. 2021

Tumati et 3 3000 140 7 0.009-0.08 C 7 different

al. 2020 subnet-

works
Vaghietal. 3 2470 10° 0.049-0.101 OX AFNI

2017
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MF TR Num  ScD Fr (Hz) EC! Atlas
(T) (ms)  Vol. (min)
Vancea et 0.009-0.08 O ROIs
al. 2019
Vasa et al. 3 3000 104 5127 clustering
2018
Vatansever 3 3000 180 9’
et al. 2020
Vergara et 3 2000 152 504" 0.01-0.15 0X
al. 2018
Wagner et 3 2090 285 9’55 0.01-0.08 0X ROIs
al. 2019

Wangetal. 3 3000 133 645" 0.01-0.08 C Power
2020a

Wang et al. 3000 6'20” 0.01-0.1 0X

2020b

Wangetal. 3 2000 250 8720 0.01-0.08 C BN246'°
2019

Wang et al. <0.0167 ROIs
2018b

Welton et 3 2200 191 7 HOA

al. 2020

Wirsich et 3 3600 21 0.04-0.09 C Destrieux
al. 2017

Xiang et 4,7 0.01-0.1 O Brainnetome
al. 2019

Xiao et al. 3 3000 124 6’ 0.01-0.1 0X Power
2021

Xie et al. 3 720 1200 14’247 0.043- OX DK!"
2021 0.087

Xu et al. 3 2000 240 8’ 0.01-0.1 C AAL90
2020b

Xu et al. 3 2000 240 8’06 0.01-0.1 C Power/
2020a AAL90
Yang et al. 2000 266 8’52 0.01-0.08 C

2020a

Yin et al. 1.5 3000 132 706" 0.01-0.08 C ROIs
2016

Zhang 3 720 1200  14'24” 0X AAL116
et al. 2016
Zhang 3 2000 107 <0.01 C freesurer
et al. 2018

16Wang et al. 2019
17desikan-killiany
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MF TR Num  ScD Fr (Hz) EC! Atlas
(T) (ms)  Vol. (min)

u Zhao et 3 3000 140 7 Craddock
al. 2019

Zhao et al. 1.5 2000 120 4 0.01-0.1 C AAL90
2017

Zheng 3 2000 6’ 0.01-0.08 C

et al. 2020

Zhu et al. 3 720 1200 14’247 0.01-0.08 0OX Brodmann
2021a

Zhu et al. 3 2400 200 8’40” <0.15 ICA
2021b.

Zhu et al. 3 2000 8’ 0.01-0.1 C Voxels
2018

Zhuang et 3 2000 242 8’04 0.01-0.1 C AAL90™®
al. 2021

Zimmerman 3 2000 304 10’ 0.008-0.08 HOA

et al. 2019

Supplementary Results on the Orthgonality

Table A.2: Accuracy results obtained when comparing the orthogonality curves of
single nodal statistics or over the combination of all the five considered statistics.
Discr. Task: Discrimination task.

Discr. Task | Degree | Betweenness C. | Clustering Coeff. | Closeness C. | II Order C. | All

CO 0.78 0.81 0.58 0.82 0.56 0.79
PD 0.62 0.62 0.80 0.62 0.66 0.75
Data-center | 0.35 0.53 0.36 0.31 0.31 0.25

Atlas On the HCP and iShare dataset, we compare the effect of the atlas choice on the
orthogonality curves in Fig. A.1. The orthogonality of degree and clustering coefficient
seems invariant with respect to the atlas choice, while closeness centrality and II order
centrality orthogonality approaches one, meaning that for finer atlas the modularity
structure of the graph for every sparsity is stronger. Interestingly, the orthogonality
curves of the two datasets appear to be consistent: minimum and maximum reached at
the same sparsity level. That reveals the orthogonality is capturing the presence of some
graph substructures proper of the considered dataset. Interestingly, the orthogonality
curves of the two datasets appear to be consistent: minimum and maximum reached
at the same sparsity level. That reveals the orthogonality is capturing the presence of
some graph substructures proper of the considered dataset.

18re-parcellated into 1024 regions equal volume size
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Figure A.1 — Orthogonality sensitivity to the atlas choice (AAL90 and AICHA
with 384 regions) in HCP and iShare datasets.

Single and complete combination of nodal statistics To evaluate the benefit
of the combination of nodal statistics, we reproduce the classification tasks over the
orthogonality score on a single statistics and on the collection of all the considered
statistics. Results are shown in Table A.2. Depending on the statistics, the discrim-
ination is still possible when considering the orthogonality, while instead when using
graph average of a single statistics without taking into account its associated structural
patterns, a group discrimination is not possible (Fig. 3.14 and 3.21 panels (b)). The
lower accuracy when using the combination of all the nodal statistics represents the
fact that increasing the nodal statistics in the collection determine a too fine structural
patterns making it harder (even if not impossible) to perform the discrimination.

A.2 Bland-Altman Plots
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