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Abstract

The turbulent/non-turbulent interface (TNTI) is a very sharp interface layer between turbulent
and non-turbulent regions of the flow. This study aims to gain insight into the kinetic energy
balance in the vicinity of the TNTI. The Kármán-Howarth-Monin-Hill equation (KHMH) is
used to characterize the local kinetic energy balance including interscale/interspace energy
transfers. The analysis is conducted by using a data set obtained by highly resolved direct
numerical simulation (DNS) of a temporally developing turbulent planar jet.

The scalings for the velocity and length scales of the temporally developing turbulent
planar jet are shown to be different from its spatially developing counterpart in the sense that
these scalings are independent of the turbulent dissipation scaling, whether equilibrium or
non-equilibrium. The variation of the mean propagation velocity across the thickness of the
TNTI is shown as a function of the fractal dimension of the surface at each location.

Furthermore, a methodology based on a TNTI-averaging operation is used for the anal-
ysis of the local flow field in the vicinity of the TNTI. The analysis of the normal vector
associated with the local facing direction of the TNTI provides valuable insights into the
predominant geometric characteristics of the interface. The TNTI-averaged statistics are
further conditioned on the mean curvature and the local propagation velocity of the interface,
in order to characterize the variation of the local flow field and KHMH balance in various
regions of the interface.

The thickness of the TNTI and its sublayers are shown to reduce significantly in re-
gions of fast entrainment. The interscale/interspace transfer terms are decomposed into
solenoidal/irrotational parts showing the central importance at the TNTI of the irrotational
interscale/interspace transfers of kinetic energy associated with pressure-velocity correlation.
Compression and stretching are observed on average at the TNTI location, in the normal and
tangential directions of the interface respectively. Investigation of the interscale transfer term
shows the presence of a forward cascade in the normal direction and an inverse cascade in
the tangential direction.

In regions of detrainment, the local statistics display stretching in the normal direction
and compression in the tangential direction, which is in contrast with the statistics observed
for the entire TNTI and the local entrainment regions. Close to the location of TNTI, on the
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turbulent side, an unexpected Kolmogorov-like balance is observed between the interscale
transfer and the dissipation rate for a wide range of scales. For these scales, unlike the usual
Kolmogorov balance for homogeneous turbulence, the interscale transfer consists solely of
the irrotational part which is directly associated with the pressure-velocity correlations.



Résumé

L’interface turbulent/non-turbulent (TNTI) est une couche très fine entre les régions tur-
bulentes et non turbulentes de l’écoulement. Cette étude vise à mieux comprendre le
bilan d’énergie cinétique au voisinage de l’interface turbulent/non-turbulent. L’équation de
Kármán-Howarth-Monin-Hill (KHMH) est utilisée pour caractériser le bilan énergétique ciné-
tique local, y compris les transferts d’énergie dans l’espace et entre les échelles. L’analyse
est effectuée à l’aide de données obtenues par simulation numérique directe (DNS) finement
résolue d’un jet plan turbulent se développant avec le temps. Les lois d’échelles de vitesse et
de longueur du jet plan turbulent en evolution temporelle sont différentes de celles de son
homologue en développement spatial, dans le sens où ces lois sont indépendantes de l’échelle
de dissipation turbulente, qu’elle soit à l’équilibre ou hors équilibre. Il est montré que la
variation de la vitesse moyenne de propagation à travers l’épaisseur de la TNTI est fonction
de la dimension fractale de la surface à chaque position. Une méthodologie basée sur une
opération de moyennage le long de la TNTI est utilisée pour l’analyse de l’écoulement local
à proximité de la TNTI. L’analyse du vecteur normal associé à l’orientation locale de la
TNTI fournit des informations précieuces sur les caractéristiques géométriques prédomi-
nantes de l’interface. Les statistiques moyennes de l’interface sont ensuite conditionnées
par sa courbure moyenne et sa vitesse de propagation locale afin de caractériser la varia-
tion locale de l’écoulement et le bilan de l’équation KHMH dans les différentes couche de
l’interface. Il est démontré que l’épaisseur de la TNTI et de ses sous-couches diminuent
de manière significative dans les régions de fort entraînement. Les transferts entre échelles
et en espace sont décomposés en une partie solénoïdale et une partie irrotationnelle, ce qui
montre l’importance, au niveau de la TNTI, des transferts irrotationnels d’énergie cinétique
entre échelles et en espace, associés à la corrélation pression-vitesse. Des phénomènes de
compression et d’étirement sont observés en moyenne à proximité de la TNTI, dans les
directions respectivement normale et tangentielle à l’interface. L’étude du terme de transfert
inter-échelles montre la présence d’une cascade directe dans la direction normale et d’une
cascade inverse dans la direction tangentielle. Dans les régions d’entraînement inverse, les
statistiques locales montrent un étirement dans la direction normale et de la compression dans
la direction tangentielle, ce qui contraste avec les statistiques observées pour l’ensemble de la
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TNTI et les régions d’entraînement locales. Près de la TNTI, du côté turbulent, un équilibre
inattendu ressemblant à celui de Kolmogorov est observé entre le transfert inter-échelle et
le taux de dissipation pour une large gamme d’échelles. Pour ces échelles, contrairement à
l’équilibre de Kolmogorov habituel pour la turbulence homogène, le transfert inter-échelle est
constitué uniquement de la partie irrotationnelle qui est directement associée aux corrélations
pression-vitesse.
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Chapter 1

Introduction

1.1 Turbulent/non-turbulent interface (TNTI)

Boundaries never fail to capture people’s attention, whether due to the mysteries hidden
behind them or the potential knowledge they hold. Interfaces in fluids have long piqued cu-
riosity, as they manifest in natural phenomena such as clouds (Hentschel and Procaccia, 1984;
Howard, 1803; Lovejoy, 1982). Similarly, the various aspects of the turbulent/non-turbulent
interface (TNTI) have been investigated in numerous studies including the local mechanisms
playing a role in the expansion of the turbulent volume into the outer non-turbulent fluid, ge-
ometrical properties of the interface, its fractal nature (Corrsin and Kistler, 1955; Dimotakis
and Catrakis, 1999; Miller and Dimotakis, 1991; Sreenivasan, 1991; Sreenivasan et al., 1989;
Watanabe et al., 2014a) and the coherent structures residing near the interface (da Silva and
dos Reis, 2011; da Silva et al., 2011; Neamtu-Halic et al., 2019, 2020; Watanabe et al., 2017)
and many more (Bisset et al., 2002; da Silva et al., 2014; da Silva and Pereira, 2008; Phillips,
1955).

Although interfaces are relatively easily identified visually in everyday examples such as
clouds, smoke plumes, or other instances where the jets/plumes are seeded by particles or
water particles, it is still useful to elaborate the concept of the interface between the turbulent
and non-turbulent regions for the sake of clarity.

The turbulent region is characterized by vorticity, defined as the curl of the velocity field
ω = ∇×u. In contrast, the non-turbulent region is where the flow is irrotational. The
existence of a very thin fluid layer as a frontier of the turbulent fluid has been proposed and
justified in the seminal work by Corrsin and Kistler (1955).

A generalization of the concept of the interface layer can be extended to include turbulent-
turbulent interfaces where both regions can be turbulent, at least up to some extent, while
still having a significant difference in enstrophy (ω2 = ω ·ω) on each side of the interface
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(Kankanwadi and Buxton, 2020). In the present study, we limit our interest only to the TNTI
which is characterized by the complete lack of enstrophy on one side.

In their report, Corrsin and Kistler (1955) highlighted the central role of the viscosity
in the process of the irrotational fluid acquiring vorticity while crossing the sharp interface
layer, referred to as the laminar superlayer in the original text (Corrsin and Kistler, 1955). In
their study, they have conducted a comprehensive investigation into various aspects of this
layer such as the surface’s wrinkling, the propagation of the interface in the normal direction,
and the assertion that the interface thickness is influenced by both the viscous diffusion of
vorticity and the straining due to the turbulence (Corrsin and Kistler, 1955).

They proposed a model for the thickness and the propagation velocity of the interface.
They have concluded that the thickness of the laminar superlayer is of the order of Kol-
mogorov length scale η = (ν3/ε)1/4, where ε stands for the turbulent dissipation rate and ν

is the kinematic viscosity of the fluid (Corrsin and Kistler, 1955).
Further analytical investigations on the interface have been carried out in other studies

(Phillips, 1955, 1972; Reynolds, 1972). Phillips (1955) focused on the irrotational fluctuations
in the non-turbulent side of the interface, examining the kinetic energy associated with normal
and tangential oscillations of the interface, as well as the distribution of energy across the
spectrum at various distances from the interface. In the study by Phillips (1972), the evolution
of the interface is explored using both pseudo-Lagrangian and Eulerian descriptions of the
surface. Conclusions regarding the entrainment velocity at the interface in turbulent boundary
layer flows are drawn based on experimental data from the literature. Notably, it is found that
the advancement speed of the interface greatly exceeded the Kolmogorov velocity uη (of the
order of 15 times), although potential limitations of the model employed by Phillips (1972)
are acknowledged, including the assumption of time independence of large-scale motions.

In contrast, Reynolds (1972) conducted a control volume analysis at the interface location,
with the assumption of the interface being an infinitesimally thin layer. This analysis led
to the proposal of a relationship between the jump in vorticity and the Reynolds stresses
across the interface. Additionally, Reynolds (1972) suggested the existence of a jump for the
tangential component of the velocity across the thickness of the interface, a concept that has
been referenced in later studies on the TNTI (da Silva and Pereira, 2008; Hunt et al., 2008;
Westerweel et al., 2009).

1.1.1 Entrainment and the underlying processes

A central subject that is closely related to the TNTI is the entrainment and detrainment
processes, which can be associated with the incorporation of the outer non-turbulent fluid
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into the turbulent volume or the loss of a portion of the turbulent fluid into the outer non-
turbulent external flow respectively.

Various methods have been employed in the literature to detect the bounding surface of
the turbulent volume. Enstrophy, denoted as ω2 = ω ·ω (or the norm of vorticity, related to
enstrophy as |ω|= (ω ·ω)1/2), is the most widely used marker for delineating the turbulent
volume (Bisset et al., 2002; da Silva and Pereira, 2008; Holzner et al., 2008; Holzner and
Lüthi, 2011; Krug et al., 2017; Taveira et al., 2013; van Reeuwijk and Holzner, 2014; Wolf
et al., 2012). In some experimental studies where velocity gradients may not be readily
available, a passive scalar with a high Schmidt number is also commonly employed for this
purpose (Gampert et al., 2014; Mistry et al., 2016; Sandham et al., 1988; Westerweel et al.,
2009).

Over time, numerous studies have focused on gaining a deeper understanding of the
entrainment process and how turbulent volumes expand by incorporating outer irrotational
fluid. This phenomenon has been investigated in various flow configurations, including jets
(Mathew and Basu, 2002; Mistry et al., 2019, 2016; Taveira et al., 2013; Watanabe et al.,
2016a; Westerweel et al., 2005), mixing layers (Jahanbakhshi and Madnia, 2016; Watanabe
et al., 2016a), wakes (Kankanwadi and Buxton, 2020; Philip and Marusic, 2012; Zhou and
Vassilicos, 2017) plumes (Krug et al., 2017; Turner, 1986) and shear-free turbulence (Holzner
et al., 2008; Holzner and Lüthi, 2011).

As has been pointed out in the literature, there have been different definitions of the
entrainment velocity that emerged in time (Hunt et al., 1984; Jahanbakhshi and Madnia,
2016; Turner, 1986). This conceptual variance, as discussed by Turner (1986), may lead
to quantitative differences under specific flow conditions or at different interfaces. Turner
(1986) outlines three distinct definitions of entrainment velocity: the velocity of external
fluid flowing into the turbulent region, the velocity at which the turbulent flow boundary
expands into the external flow, and the entrainment velocity relative to the local mean flow.
These definitions can also be categorized into two main approaches: the global approach and
the local approach for defining entrainment.

Examples of studies employing the global approach to determine entrainment velocity
include the works of van Reeuwijk and Holzner (2014), Zhou and Vassilicos (2017), and
Krug et al. (2017). In these studies, entrainment velocity is derived from the global rate of
change of turbulent volume.

Conversely, the local entrainment velocity is defined at each location along the boundary
in some other studies (Holzner and Lüthi, 2011; van Reeuwijk and Holzner, 2014; Watanabe
et al., 2015; Wolf et al., 2012). Holzner and Lüthi (2011) derives an expression for the local
propagation velocity vl

n of an iso-enstrophy surface element by considering that Dω2/Dt = 0
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in the reference frame following the iso-enstrophy surface element. This expression is
derived by employing the transport equation for the enstrophy (Holzner and Lüthi, 2011; van
Reeuwijk and Holzner, 2014) (see section 4.10 for the definition of the local propagation
velocity vl

n). A direct relation exists between these two approaches for the propagation
velocity which is also shown by van Reeuwijk and Holzner (2014) and Jahanbakhshi and
Madnia (2018) when the turbulent volume and its boundary are consistently defined.

In the current study, we utilize a condition on ω2 for the detection of the turbulent volume
and the associated boundary. Consequently, the boundary that separates the turbulent volume
from the external fluid corresponds to an iso-enstrophy surface defined by a threshold value
ω2

th employed for the field of ω2. Both the global and the local approaches are employed
in the current study for the characterization of the entrainment and the expansion of the
turbulent volume.

Many studies have delved into the intricacies of the entrainment mechanism to determine
whether it is primarily driven by the large scales or the smaller scales of motion. Several
examples to these studies are (Brown and Roshko, 1974; Mathew and Basu, 2002; Sreenivasan
et al., 1989; Taveira et al., 2013; Westerweel et al., 2009). The entrainment mechanisms are
distinguished into two main categories in relation to their association with large or small-scale
motions and are referred to as "engulfment" and "nibbling" respectively.

Nibbling is linked to small-scale motions, as it involves the expansion of the turbulent
volume through the viscous diffusion of vorticity and momentum into the non-turbulent
region (Bisset et al., 2002; Corrsin and Kistler, 1955; Mathew and Basu, 2002; Taveira
et al., 2013; Westerweel et al., 2009, 2005; Wolf et al., 2013a) occurring along a highly
contorted surface due to the small scale motions (Sreenivasan et al., 1989). This mechanism
can be associated with the viscous process described by Corrsin and Kistler (1955), which
is emphasized as being critical for the acquisition of vorticity by the irrotational fluid as it
crosses the TNTI.

In contrast, engulfment is predominantly linked to large-scale motions in the literature
(Brown and Roshko, 1974; Dahm and Dimotakis, 1987; Jahanbakhshi and Madnia, 2016;
Liepmann and Gharib, 1992; Mathew and Basu, 2002; Philip and Marusic, 2012; Westerweel
et al., 2009, 2005). It is worth noting that the definition of engulfment varies among studies
investigating entrainment phenomena. In some studies, engulfment is described as a volume
of irrotational fluid completely surrounded by turbulent flow, entirely separated from the
outer non-turbulent flow (Jahanbakhshi and Madnia, 2016; Mathew and Basu, 2002; Taveira
et al., 2013; Westerweel et al., 2009, 2005) while still being irrotational. An alternative use
of engulfment is also suggested, where it corresponds to the enhancement of the entrainment
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due to the large-scale motions by means such as amplifying the interface surface area by
contorting it (de Silva et al., 2013; Krug et al., 2017; Philip et al., 2014).

Determining the driving mechanism of entrainment holds significance because it can
impact the resolution requirements for numerical simulations and the choice of modelling
approaches for flows involving a TNTI. Improved modelling can lead to a more accurate rep-
resentation of large-scale quantities, including jet expansion rate and entrainment, especially
in situations where highly resolved simulations are not available.

Since 1970’s, with the discovery of the coherent structures and their significance in
turbulent shear flows (Brown and Roshko, 1974; Crow and Champagne, 1971; Kline et al.,
1967), the importance of the large-scale motions is pointed out as being the main contributors
for the outer, non-turbulent flow to be entrained into the turbulent volume (Bisset et al., 2002;
Brown and Roshko, 1974; Dahm and Dimotakis, 1987; Liepmann and Gharib, 1992).

On the other hand, in more recent studies, the amount of entrainment due to the nibbling
process associated with the small-scale motions is shown to be much more significant in
studies analyzing the free-shear flows numerically both in the presence of mean shear Bisset
et al. (2002); Mathew and Basu (2002); Taveira et al. (2013) in the absence of mean shear
(Holzner and Lüthi, 2011), and also experimentally Westerweel et al. (2009, 2005). These
findings are directly related to the conclusions given in the seminal study by Corrsin and
Kistler (1955), where the critical role of viscosity is pointed out for the entrainment which
has a dominant effect at the smallest scales.

Providing a complete picture of the entrainment phenomena is undoubtedly a complex
endeavour. It is likely that entrainment is not solely attributable to either large-scale or
small-scale motions but rather emerges as a result of a process in which both scales, as well
as intermittent ones, play roles. Numerous studies have underscored the significance of both
large and small scales, particularly in the context of the latter definition of engulfment (Bisset
et al., 2002; Chauhan et al., 2014; Krug et al., 2017; Mathew and Basu, 2002; Philip and
Marusic, 2012; Philip et al., 2014; Sreenivasan et al., 1989). In this framework, large-scale
motions contribute to entrainment by modulating the interface’s surface area. Simultaneously,
viscous diffusion, occurring at smaller scales, is solely responsible for transforming the
initially irrotational external fluid into rotational fluid, consequently leading to the expansion
of the turbulent volume defined by vorticity/enstrophy conditions into the external region
(Bisset et al., 2002; Chauhan et al., 2014; Krug et al., 2017; Mathew and Basu, 2002; Philip
and Marusic, 2012; Philip et al., 2014; Sreenivasan et al., 1989).

An important study pointing out both ends of the entrainment process is conducted by
Sreenivasan et al. (1989). This study highlights the connection between the large-scale end
of the process, where the entrainment is associated with the large eddies, and the small-scale
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end, where the diffusive action happens at the molecular level. In order to characterize the
entrainment process, they opt for the latter approach due to an approximation of small scales
being more independent from the flow configuration, thus being more potent to arrive at a
more universal result, which can be valid for various flows (Sreenivasan et al., 1989).

A crucial point is made by Sreenivasan et al. (1989) on why the earlier attempts have
been unsuccessful in modelling the entrainment process by the small-scale motions and
the diffusion mechanism. They highlight the fact that these prior studies have failed to
account for the fractal nature of the interface, which is important for the surface across which
the diffusion occurs (Sreenivasan et al., 1989). They proceed by presenting an argument
and experimental results supporting the conclusion that the interface indeed exhibits fractal
properties with a fractal dimension of 7/3 and suggesting that the large-scale fluxes become
independent of viscosity by the specific adjustment of the small scales (Sreenivasan et al.,
1989).

1.1.2 Local analysis of the interface

Another milestone for the analysis of the TNTI is the methodology introduced by Bisset
et al. (2002). This approach involves directly analyzing flow field statistics at the TNTI
location through a specialized averaging operation conditioned on the interface’s position.
Subsequently, this methodology has been widely adopted in numerous studies to investigate
local profiles of vorticity (da Silva and dos Reis, 2011; Taveira and da Silva, 2013), velocity
(Westerweel et al., 2009, 2005), and terms of the enstrophy balance equation (Holzner et al.,
2008; Silva et al., 2018; Taveira and da Silva, 2014a; Watanabe et al., 2015) and many more.

Bisset et al. (2002) has conducted their analysis by conditioning the statistics further on
the local orientation of the interface, which is useful to see the variation of the 1D profiles of
various flow quantities in the normal direction of the interface in specific regions of the TNTI.
A similar conditioning has been carried out also in the work by (Watanabe et al., 2014a)
which draws detailed conclusions about the enstrophy balance at the leading edge, trailing
edge, and the cross-stream facing parts of the TNTI.

Wolf et al. (2013a), analyzes the PDFs of the local propagation velocity of the TNTI and
the local shape of the interface characterized by the mean and Gaussian curvature parameters.
They report a significant variation of the local propagation velocity between the regions with
different geometrical characteristics, especially with different mean curvature values (Wolf
et al., 2013a).

In the present study, we adopt a similar methodology to the one mentioned above, in
chapters 4 and 5 for the analysis of the flow field near the TNTI. Different from the previously
mentioned studies in the literature, we apply the TNTI-averaging procedure to a 3D local field
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because of the 3D nature of the analysis conducted with the Kármán-Howarth-Monin-Hill
equation employed in chapter 5 (Hill, 2002). Taking the findings in the literature into account,
which highlight the variation of the local balance along the surface of the interface (Watanabe
et al., 2014a; Wolf et al., 2013a), the TNTI-averaged statistics are further conditioned on the
local quantities such as the local mean curvature and the local propagation velocity.

1.1.3 Physical properties of the TNTI and its sublayers

Following the study by Sreenivasan and Meneveau (1986), numerous works have investigated
the fractal properties of the interface (Dimotakis and Catrakis, 1999; Flohr and Olivari, 1994;
Lane-Serff, 1993; Miller and Dimotakis, 1991; Mistry et al., 2018, 2016; Sreenivasan, 1991;
Sreenivasan et al., 1989). The fractal nature of the TNTI is widely acknowledged in the
literature, although there have been differing opinions regarding whether the fractal dimension
of the interface is constant 7/3 (de Silva et al., 2013; Mistry et al., 2018; Sreenivasan, 1991;
Sreenivasan et al., 1989), if it varies with threshold and Reynolds number (Flohr and Olivari,
1994; Lane-Serff, 1993; Miller and Dimotakis, 1991), or if it can even be expressed with a
constant value or it is scale-dependent (Miller and Dimotakis, 1991) (see also (Catrakis and
Dimotakis, 1999), (Dimotakis and Catrakis, 1999) and references therein).

Some studies have explored the relationship between TNTI properties, entrainment, and
coherent structures in various flows, including jets (da Silva and dos Reis, 2011; da Silva
et al., 2011; da Silva and Taveira, 2010) and gravity currents (Neamtu-Halic et al., 2019,
2020, 2021). Considering the conditional profiles at the TNTI location, these studies have
suggested the possible effects of different vortical structures, such as vortex tubes and vortex
sheets, as noted by Westerweel et al. (2009) and da Silva and dos Reis (2011). da Silva
and dos Reis (2011) also emphasize the difference in the longevity of these structures, with
vortex tubes having a longer lifespan, suggesting that these tube-like structures have a greater
influence on determining the features of the TNTI such as its thickness.

In their study, da Silva and Taveira (2010) introduce a procedure to detect vortical struc-
tures, categorizing them into two distinct groups: large vortical structures (LVS) and intense
vortical structures (IVS). They propose that LVSs are associated with remnants of the Kelvin-
Helmholtz instability and secondary instabilities. They note that these structures primarily
exhibit spatial orientations in the spanwise and streamwise directions. The description of
LVS presented by da Silva and Taveira (2010) encompasses both primary and secondary
(coherent) structures described by Fiedler (1988) for free-shear flows. Primary and secondary
coherent structures are suggested to be responsible for the exchange of mass, momentum, etc.
across the whole flow and the production of turbulent kinetic energy respectively (Fiedler,
1988). The radius of the LVSs is being measured by da Silva and Taveira (2010) along
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with the thickness of the TNTI which are shown to follow closely each other in planar jet
simulations having a Reynolds number based on the Taylor length scale between Reλ = 30
to Reλ = 160.

In the same study, da Silva and Taveira (2010) introduce an argument regarding the
lifespan of vortical structures, based on the balance between radial viscous diffusion of
vorticity and axial stretching, akin to a Burgers vortex. This analysis suggests that the
thickness of the TNTI would be influenced by the shear acting on the vortical structures and
would differ between flows with mean shear and shear-free turbulence. Consequently, they
propose that the mean thickness of the TNTI is linked to the radius of the largest vortices
near the interface, which is λ for flows with mean shear and η for shear-free flows. This
argument aligns with measurements in the literature for shear-free flows (Holzner et al., 2007,
2008) and jets (da Silva and Pereira, 2004, 2008; Westerweel et al., 2009, 2005), as pointed
out by da Silva and dos Reis (2011).

On the other hand, the IVSs in da Silva and dos Reis (2011); da Silva and Taveira (2010),
and da Silva et al. (2011) are depicted as worms described in the studies of homogeneous
isotropic turbulence (Jimenez et al., 1993; Jiménez and Wray, 1998). These IVSs lack a
preferential orientation and are associated with very high enstrophy values.

In da Silva et al. (2011), a comprehensive investigation of these IVSs near the TNTI is
conducted. They characterize various aspects of these structures, such as the probability
density function (PDF) of the radius, axial vorticity of these vortical structures, and strain
acting on them at different distances from the interface. They report a significant drop in the
stretching of IVSs at the jet edge, which they attribute to the absence of background vorticity
near the TNTI, as the large vortical structures (LVS) are bounded by the interface (da Silva
et al., 2011). This led da Silva et al. (2011) to conclude that the radius of IVSs near the
interface tends to increase over time due to the dominance of vortex diffusion over stretching,
indicating that these IVSs are not equilibrium Burgers vortices.

Additionally, Taveira and da Silva (2014a,b) point out a relationship between the local
thickness of the outer, viscous layer of the TNTI, (viscous superlayer) and the radius of IVSs
near the TNTI. However, they noted that this relationship may not explain all regions of the
VSL, as IVSs are found only near some parts of the interface.

With the increase of the computing resources at disposal and the development of mea-
surement techniques such as particle image velocimetry (PIV), particle tracking velocimetry
(PTV), and planar laser-induced fluorescence (PLIF), the inner structure of the TNTI has
been analyzed in more detail along with its shape and its local propagation velocity in various
free-shear flows both numerically (da Silva et al., 2011, 2014; da Silva and Pereira, 2008;
da Silva and Taveira, 2010; Krug et al., 2017; Neamtu-Halic et al., 2020; Silva et al., 2018;
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Taveira and da Silva, 2014a; van Reeuwijk and Holzner, 2014; Watanabe et al., 2019, 2020,
2017, 2016a, 2014a; Zecchetto and da Silva, 2021) and experimentally (Balamurugan et al.,
2020; Holzner et al., 2008; Holzner and Lüthi, 2011; Mistry et al., 2018, 2019; Neamtu-Halic
et al., 2019; Wolf et al., 2012).

Higher-resolution studies of the TNTI have led to a significant change in how it is
conceptualized, with the identification of distinct sublayers within the TNTI itself (Bisset
et al., 2002; da Silva et al., 2014; Taveira and da Silva, 2014a). These sublayers are commonly
referred to as the viscous superlayer (VSL) and the turbulent sublayer (TSL) (da Silva et al.,
2014; Taveira and da Silva, 2014a), although the latter is also referred to as the buffer layer
in the work of van Reeuwijk and Holzner (2014). The differentiation between these layers
is based on the observation of different dominant mechanisms in the enstrophy balance in
various regions across the thickness of the TNTI (da Silva et al., 2014; Silva et al., 2018;
Taveira and da Silva, 2014a; Watanabe et al., 2015).

The VSL is primarily associated with the dominant viscous mechanism responsible
for the diffusion of vorticity into the outer, non-turbulent region of the flow. This layer is
conceptually related to the "laminar superlayer" described by Corrsin and Kistler (1955)
(Bisset et al., 2002; da Silva et al., 2014). In contrast, the TSL is characterized as a layer
where the flow is already turbulent, and there is significant turbulent production of vorticity,
distinct from the external VSL (Bisset et al., 2002; da Silva et al., 2014; Taveira and da Silva,
2014a).

In the studies conducted by Silva et al. (2018); Taveira and da Silva (2014a); Watanabe
et al. (2015), a methodology for distinguishing these sublayers has been provided. The extent
of these sublayers is determined by examining the magnitudes of various terms in the enstro-
phy balance equation. The VSL is identified by recognizing that the dominant mechanism in
this region is the viscous diffusion of vorticity/enstrophy. Starting from the external regions
of the TNTI and moving towards the turbulent core, the non-linear production of enstrophy
gradually increases and reaches a magnitude comparable to that of viscous diffusion, which
marks the boundary separating the VSL from the TSL in this methodology (Silva et al., 2018;
Taveira and da Silva, 2014a; Watanabe et al., 2015). Therefore, the VSL can be characterized
as the external region of the interface where enstrophy is diffused primarily due to viscosity,
while in the TSL, non-linear mechanisms such as vortex stretching become increasingly
important and contribute to the increase of enstrophy within this sublayer.

Another approach to distinguishing the sublayers within the TNTI is proposed by van
Reeuwijk and Holzner (2014). In their study, they treat the TNTI as a continuous phenomenon
and investigate the local propagation velocity of the interface and its constituent enstrophy iso-
surfaces for a wide range of enstrophy threshold values. By calculating the mean propagation
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velocity for this broad range of threshold values, they observe that the external iso-enstrophy
surfaces (associated with low ω2 threshold values) propagate towards the non-turbulent
region. However, this velocity decreases as the threshold value increases, eventually reaching
zero and changing sign for the iso-surfaces corresponding to higher ω2 threshold values
(van Reeuwijk and Holzner, 2014). The variation in propagation velocity is linked to the
constancy of flux through the interface and the increase in surface area for higher threshold
values (van Reeuwijk and Holzner, 2014). Based on this observation, van Reeuwijk and
Holzner (2014) suggest that the point where the propagation velocity crosses zero can be
considered as the boundary marking the extent of the VSL in the turbulent direction across
the thickness of the TNTI.

In a study by Silva et al. (2018), the scaling of the TNTI thickness and the thicknesses of
its sublayers in flows with and without shear, specifically turbulent planar jets and shear-free
turbulence, are investigated. This study is notable for its extensive range of Reynolds numbers
(Reλ ) covered by the DNS dataset used for systematic analysis. They report the probability
density functions (PDFs) of the local thicknesses of TNTI, TSL, and VSL, along with their
mean values (Silva et al., 2018). The results show that the mean values of these thicknesses
follow a similar trend, scaling with the Kolmogorov length scale (η) rather than the Taylor
length scale (λ ) for Reλ values exceeding 200. The differences between these findings and
those reported by da Silva and Taveira (2010) and da Silva and dos Reis (2011) are suggested
to be due to the lower Reλ values in the flows considered in the former studies (for a detailed
discussion on the implications of low Reλ , refer to Silva et al. (2018)).

Another important result presented by Silva et al. (2018) is the PDF of the local thick-
nesses of TNTI and its layers. These PDFs reveal that, for Reλ ≳ 200, the PDFs of local
VSL thickness have peaks between 2.3η and 3.1η , and a very limited range of values makes
up the majority of the local VSL thickness for planar jet TNTI (Silva et al., 2018). This
highlights the sharpness of the layers under investigation and underscores the importance of
simulation resolution to capture the internal structure of TNTI accurately.

Apart from the thickness of the TNTI, and its sublayers, some studies have investigated
the effects of surface characteristics, including its orientation (Watanabe et al., 2017, 2014b)
and its local curvature (Wolf et al., 2013a, 2012, 2013b).

The studies conducted by Wolf et al. (2012, 2013b) involve conditional average values
of the entrainment velocity, further conditioned on the mean and Gaussian curvatures of
the interface. Their findings reveal significant variations in the entrainment velocity at
regions with different mean curvature characteristics of the interface, while no notable
correlation is observed between the local Gaussian curvature and the entrainment velocity.
These observations are further supported by the results obtained by Wolf et al. (2013a)
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in experimental cases of spatially developing jets with Reynolds numbers of Re = 2000
(Reλ = 60), Re = 5000 (Reλ = 80), and Re = 8000 (Reλ = 100), as well as DNS results of
shear-free turbulence with Reλ = 50.

In the study conducted by Watanabe et al. (2014b), regions associated with enstrophy
production and reduction are identified. The analysis involves examining the alignment
between the interface normal, vorticity, and strain rate eigenvectors to gain insights into the
details of vortex stretching and compression events near the interface. The results indicate
that predominant vortex stretching occurs in regions where the fluid velocity is directed
towards the interface, while predominant vortex compression occurs in regions where the
velocity field is moving away from the interface.

Additionally, in the work of Watanabe et al. (2017), an analysis of the relative motion
of the fluid with respect to the interface is conducted, conditional on the orientation of the
interface normal vector. This analysis is carried out for the TNTI of shear-free turbulence
and a turbulent planar jet. The study reveals that the velocity of the fluid with respect to the
interface varies depending on the presence of mean shear. In the case of a planar jet, the fluid
velocity is directed towards the interface in regions facing downstream, whereas the opposite
is observed in regions where the interface is oriented towards the upstream direction.

1.1.4 Local energy/enstrophy budgets and their cascade in the vicinity
of the TNTI

As previously mentioned, the TNTI is a highly localized phenomenon in space, which brings
certain challenges for its analysis. Additionally, the budgets of kinetic energy, enstrophy, and
other relevant quantities involve various processes such as transport, diffusion, production,
and dissipation, all of which are scale-dependent. There are studies in the literature where
these multidimensional processes are investigated in the presence of the TNTI, in flows with
mean shear (Cimarelli et al., 2021; da Silva, 2009; Zhou and Vassilicos, 2020) and without
mean shear (Cimarelli et al., 2015; Watanabe et al., 2020).

In the studies by Cimarelli et al. (2015) and Cimarelli et al. (2021) the shear-free turbu-
lence and temporally developing planar jet flows are studied respectively. In these studies,
the respective flow fields are divided into layers along the axis, which the TNTI propagates
and the extents of these layers are given with respect to the mean location of the interface
along this axis (Cimarelli et al., 2015, 2021). The details of the enstrophy/energy budgets
and associated fluxes are analyzed in and across these layers, in a multiscale framework.

From this perspective, the methodology employed in these studies (Cimarelli et al., 2015,
2021) differs from the local analysis conducted in the present study, where we employ a
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TNTI-averaging operation, carried out at the exact location of the TNTI and by also taking
into account its local orientation. This allows us to account for the local inhomogeneous
direction associated with the presence of the TNTI, which has been proven to be crucial for
the analysis of the TNTI layer (Bisset et al., 2002; da Silva and dos Reis, 2011; Holzner
et al., 2008; Silva et al., 2018; Taveira and da Silva, 2013, 2014a; Watanabe et al., 2015;
Westerweel et al., 2009).

Cimarelli et al. (2015) investigate the enstrophy budget in shear-free turbulence with a
TNTI propagating towards the non-turbulent region. The various layers are defined within the
flow as the bulk turbulent region, the inhomogeneous turbulent layer, and the interfacial layer.
In order to understand the balance of enstrophy in the turbulent region, both the one-point
equation and an equation for the evolution of spectral enstrophy in the wavenumber space
are employed by Cimarelli et al. (2015), providing insights into the mechanisms acting on
this balance in a multiscale framework in the various regions of the flow.

They report a spatial transport of enstrophy from the bulk turbulent region towards the
interfacial layer by the inviscid turbulent transport mechanism and they highlight the role
of viscous diffusion in the increase of enstrophy, particularly in the external part of the
interfacial layer, although its contribution in the other regions is negligible (Cimarelli et al.,
2015).

In the multiscale framework, Cimarelli et al. (2015) conclude that the large scales are
responsible for carrying enstrophy from the bulk turbulent region to the interfacial layer.
Going in the direction of the non-turbulent region, enstrophy is observed to be transferred
from the large scales to the smaller scales. In the interfacial layer, the enstrophy cascade is
reported to become anisotropic, with the cascade shifting from large to small scales in the
tangent plane to the small scales in the interface normal direction (Cimarelli et al., 2015).

A region-by-region analysis, similar to the one conducted by Cimarelli et al. (2015),
is applied to the temporal planar jet flow by Cimarelli et al. (2021) for the analysis of the
evolution of the cascade at and across the various regions of a temporal planar jet. In this
study, they employ an equation based on the exact equation for the second order structure
function given by Hill (2002) applied to the symmetries of the temporally developing planar
jet flow (Cimarelli et al., 2021). They document separate families of fluxes responsible for
the transfer of turbulent kinetic energy in both physical and scale space (across the spatial
layers and across the scales). One family of fluxes is shown to distribute the energy from
the large scales in the region associated with the production of the turbulent kinetic energy
along the cross-stream axis in both directions i.e., towards the non-turbulent region and the
centre-plane of the jet (Cimarelli et al., 2021). Meanwhile, the kinetic energy cascades from
larger towards smaller scales in the scale space. Another family of fluxes is reported to feed
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the inner region of the jet (close to centre-plane) with the kinetic energy transferred from the
production region, while this time the kinetic energy cascades not only towards the small
scales but to both small and large scales (Cimarelli et al., 2021). Lastly, another family of
fluxes is described by Cimarelli et al. (2021) which, again transports the energy originating
from the production region, but this time in the direction of the interfacial region. Moreover,
this last family of fluxes is also associated with a reverse cascade towards the larger scales as
it feeds larger streamwise scales. As a result, a detailed picture of the various paths taken by
the turbulent kinetic energy, both in physical and scale space, are depicted by Cimarelli et al.
(2021) in and across the layers defined for the temporally developing planar jets.

Differently from the region-by-region analysis by Cimarelli et al. (2015) and Cimarelli
et al. (2021), Zhou and Vassilicos (2020) conduct a study centred on the interscale energy
transfer at the location of the TNTI of a spatially developing wake. They make the connection
between the forward/backwards energy cascade and the compression/stretching events and
they report weak backwards interscale transfers due to straining motions in the interface
tangential direction and forward interscale transfer in the other directions due to compressing
motions (Zhou and Vassilicos, 2020). In their analysis, they focus on the interscale energy
transfer and the associated term in the KHMH equation by decomposition of the interscale
energy transfer into the transfers of longitudinal and rotational energy. Also by analysing
the higher-order moments of the term associated with the compression/stretching events,
they observe that extreme compression events are more likely to occur compared to the
extreme stretching events. Apart from this, it can be noted that they do not study the other
mechanisms acting on the local scale-by-scale energy balance which are described by the
various terms of the KHMH equation, except the spatial turbulent transfer rate.

On the other hand, Watanabe et al. (2020) investigate the scale-by-scale kinetic energy
balance near the TNTI of a shear-free turbulence. They employ a methodology based on
local volume averaging for the decomposition of the kinetic energy into parts associated with
the large and small scales near the TNTI layer and report the terms for the sub-grid scale
(SGS) energy budget equation. They extend the analysis by investigating the contributions of
the interface normal and tangential velocities and their derivatives in the normal/tangential
directions, to the kinetic energy transfer towards the SGSs. Similarly to the findings by Zhou
and Vassilicos (2020), they report energy transfer from large to small scales in the interface
normal direction due to the velocity gradients in that direction (fluid compression in the
normal direction) and a shearing motion due to the interface-tangential velocity (Watanabe
et al., 2020). They also analyze the contributions of the viscous diffusion and the pressure
diffusion near the TNTI, where the former is reported to increase the small-scale kinetic
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energy and the latter is suggested to be associated with the small-scale vortices possibly
present near the TNTI.

1.2 Objectives

In the early studies, the TNTI has been modelled as a finite thickness surface (Corrsin and
Kistler, 1955; Reynolds, 1972). This paradigm of TNTI has evolved throughout time, with
the improving abilities of numerical and experimental capabilities and the finer resolution of
this sharp interface. The term TNTI now describes an interface layer which contains various
sublayers with distinct properties (da Silva et al., 2014). Still, many questions remain for
a deeper understanding of the structure of the TNTI, its local properties and the relation
between the entrainment mechanisms. In this study, we aim to gain more insight into the
following questions:

• What are the fractal properties of the TNTI? Does it remain constant across the interface
or does it vary due to the inner structure of the TNTI? The more accurate resolution
of the TNTI with its inner structure raises the question of whether the fractal nature
of the surface can be determined by a single fractal dimension 7/3 or by a range of
fractal dimensions due to the varying inner structure of the interface layer.

• The variation of the mean propagation velocity of the iso-enstrophy surfaces across
the TNTI thickness has been shown by van Reeuwijk and Holzner (2014). Taking into
account the fractal properties of the TNTI, is it possible to gain more insight into the
mean propagation velocity of the TNTI from a global perspective?

• Different scalings for the length and velocity scales of the flow have been shown for
spatially developing wakes by Obligado et al. (2016) and Ortiz-Tarin et al. (2021), and
for spatially developing planar jets by Cafiero and Vassilicos (2019). What are the
implications of the non-equilibrium dissipation scaling for the temporally developing
turbulent planar jet and is it possible to make a connection between various dissipation
scaling regimes and the local mechanisms at the TNTI, playing a role in the entrainment
process?

• What are the mechanisms acting on the local kinetic energy balance at the TNTI
location and what are the properties of the local cascade? The Kármán-Howarth-
Monin-Hill equation (KHMH) allows an effective distinction between various transfer
mechanisms of the kinetic energy in both physical and scale spaces (Hill, 2002). In
the present study, we employ KHMH in the vicinity of the TNTI, which permits us to
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investigate the local kinetic energy balance at the TNTI, and whether the individual
sublayers have specific characteristics in terms of various mechanisms acting in this
balance.

• Do the roles of these kinetic energy mechanisms vary at the TNTI location in the
regions of local entrainment and detrainment along the interface?

• What are the implications of the local geometry and the orientation of the TNTI surface
on the topology of the local flow field and on the terms acting in the KHMH balance?

1.3 Organization of the Thesis

The present study is organized into five chapters following this introduction chapter, mainly
by considering the different approaches being employed for the analysis of various aspects
of the TNTI. These chapters can be briefly summarized as follows:

• The details of the datasets produced by direct numerical simulation of temporally
developing turbulent planar jets are presented in chapter 2. These include the details
of the numerical method used, the initial conditions, the evaluation of the quality of
the produced dataset, and a discussion of the various constraints such as for the grid
resolution or on the Reynolds number. The two datasets with different numerical
resolutions are presented along with a discussion of the importance of the resolution
for the analysis we have conducted. The TNTI detection method is also given in
this chapter along with the detection and labelling procedure for the turbulent, non-
turbulent, and engulfed volumes.

• Chapter 3 employs a global approach to investigate the details of the mean propagation
velocity across the thickness of the interface. This global approach relates the rate
of increase of the turbulent volume with the surface area of the various enstrophy
iso-surfaces constituting the TNTI and the mean propagation velocity at each iso-
surface. The fractal characteristics of the interface are presented in this chapter by
the investigation of its variation across the thickness of the TNTI layer. The results
presented in this chapter are published in the Journal of Fluid Mechanics (Er et al.,
2023).

• In chapter 4 a local approach is introduced based on a TNTI-averaging operation for
the analysis of the local flow field in the vicinity of the TNTI. The enstrophy balance
is investigated in terms of various contributing terms. Alignment of the velocity
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and vorticity vectors are investigated, which has implications for the production of
enstrophy. The local propagation velocity of the iso-enstrophy surface elements and the
local curvature are used for the conditioning of the statistics. The pictures of the local
flow field and the local enstrophy balance are obtained for each of these conditions.
A general sketch is given depicting the TNTI of the temporally developing turbulent
planar jet.

• Chapter 5 is devoted to the analysis of the various mechanisms in the KHMH equation
and the characterization of interscale/interspace transfer of the kinetic energy near
the TNTI location. The analysis is further detailed by the decomposition of the
interscale/interspace terms into solenoidal and irrotational parts. Furthermore, the
KHMH balance is analyzed close to the interface, on the turbulent side where significant
non-linear production of enstrophy is present.

• In chapter 6, the main conclusions of the thesis are given with the perspectives for
future works.



Chapter 2

Simulations

2.1 Parameters of the simulation and details of the solver

DNS of a temporally evolving turbulent jet is conducted similarly to those described in the
studies of (da Silva and Pereira, 2008; Silva et al., 2018; van Reeuwijk and Holzner, 2014).
The global Reynolds number is ReG ≡ UJHJ

ν
= 3200, where UJ is the initial streamwise

velocity at the center-plane, HJ is the initial jet width and ν is the kinematic viscosity of the
fluid. The reference time scale Tre f = HJ/(2UJ) is used for the normalization of time when
presenting the results.

The initial mean velocity profile of the jet is defined by (da Silva and Pereira, 2008; van
Reeuwijk and Holzner, 2014);

U(y, t = 0) =
UJ

2
− UJ

2
tanh

[
HJ

4θ0

(
1− 2|y|

HJ

)]
, (2.1)

where y = 0 is the centre-plane of the planar jet and θ0 is the initial momentum thickness. We
take HJ/θ0 = 35 as in other studies since this value was reported to lead to faster transition
compared to lower HJ/θ0 values when perturbed (da Silva and Pereira, 2008). A high-
frequency white noise is added on top of the mean velocity profile to accelerate the transition
to turbulent flow. To confine the added noise inside the jet region, y = [−HJ/2,HJ/2], the
hyperbolic tangent velocity profile is used (i.e., eq. 2.1) by taking UJ = 1. The initial noise is
multiplied by this function which is equal to one at the centre-plane and goes smoothly to
zero at the border of the jet. The added noise is made divergence-free and the resulting total
velocity field satisfies the continuity equation.

The energy spectrum of the random velocity field is Enoise(k) =Cnoise exp(−(k− k0)
2)

where Cnoise is the constant controlling the amplitude and k0 is the wavenumber of the energy
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peak. This peak of the excited wavenumber is chosen to be 1.5 times the wavenumber
corresponding to the initial shear layer thickness, which corresponds to k0 = 75. The shear
layer thickness is determined by the difference between the value of y where dU/dy =

0.95max(dU/dy) and the value of y where dU/dy = 0.05max(dU/dy), max(dU/dy) being
the maximum velocity gradient on the initial mean profile. The amplitude Cnoise is tuned
so that the mean enstrophy value of the random fluctuations at the centre-plane y/HJ = 0
is approximately 4% of the maximum value of the initial mean enstrophy profile. This
corresponds to velocity fluctuations at the centre of the jet which are 2.45% of the initial
mean stream-wise velocity UJ .

The domain size of the DNS is (8HJ , 12HJ , 8HJ). The current domain size is two times
larger on each side compared to the domain used in da Silva and Pereira (2008) where
the streamwise extent of the domain is evaluated by taking into account the length scale
associated with the Kelvin-Helmholtz (KH) instability in this direction. Following the
discussion by da Silva and Pereira (2008), the streamwise extent of the current simulation
domain corresponds to Lx = 9.2ℓKH , where ℓKH corresponds to the length scale for the KH
instability in the streamwise direction. For the cross-stream extent of the domain Ly is larger
than numerous studies reporting the details of the DNS of temporally developing planar jet,
where 6HJ is used in the studies of da Silva and Pereira (2008) and da Silva and dos Reis
(2011), while 10HJ is used by Watanabe et al. (2019) and Hayashi et al. (2021). On the other
hand, a significantly large Ly is used in the study of van Reeuwijk and Holzner (2014) as
large as 18HJ in order to extend the window for time integration, before the expansion of the
jet is affected by the boundary conditions in the cross-stream direction. In the present study,
we do not have a specific reason to extend the simulation time and thus Ly = 12HJ is chosen.
The spanwise extent of the domain is mainly related to the convergence of the results, which
is observed to be particularly important for the TNTI local analysis conducted in chapters
4 and 5 and thus the domain size in the spanwise direction is chosen as Lz = Lx = 8HJ ,
similar to the stream-wise extent. Of course, the extent of the simulation domain has been
thought by taking into account the desired resolution and also the limits of the computational
tools/resources in use.

The corresponding grid size is (1024×1536×1024) in directions x, y, and z respectively,
which leads to a homogeneous grid size in every direction. For ensemble averaging, five
DNS were run, referred to as PJ1, PJ2, PJ3, PJ4, and PJ5 to improve the convergence of
the results. The governing equations are solved with a pseudo-spectral solver and a second-
order Runge-Kutta time stepping scheme. Periodic boundary conditions in all directions are
compatible with V = 0 and ∂ ⟨p⟩/∂x = 0, in agreement with the theory in section 3.2. Apart
from the 2/3 truncation de-aliasing method, a filtering function effective at the very high end
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of the resolved wavenumbers is also applied to reduce the oscillations appearing in the outer
edge of the TNTI layer and the irrotational region outside of the turbulent bulk of the jet.

Figure 2.1a shows the Reynolds number defined in terms of the Taylor length scale
λ =

√
10νK0/ε0, where the K0 and ε0 are the kinetic energy and dissipation averaged over

the centre-plane (y = 0). Reλ = (
√

2/3K0λ )/ν remains constant at about Reλ ∼ 45− 65
throughout the time evolution of the jet after the transition to a fully turbulent regime.
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Fig. 2.1 Taylor Reynolds number, Reλ and spatial resolution dx = dz = dy = HJ/128,
normalized by the Kolmogorov scale at the centre-plane of the jet (y = 0). The five different
curves correspond to five DNS realizations.

Given that ν/
√

Kc ∼ η(η/δ )1/3, the constancy of Reλ in time is one indication that the
turbulent length scales of the flow evolve similarly in time as expected from the previous
section. Figure 2.1b shows that the spatial resolution dx = dy = dz remains at all times
smaller than the Kolmogorov length calculated in the centre-plane y = 0. This resolution is
observed to be critical for post-processing in this study as it is directly related to the accurate
resolution of the geometrical properties of the TNTI. Results for the simulations with higher
Reynolds numbers on the same grid will be presented later in section 2.3 and the necessity
for the high grid resolution favoured in the present study will be demonstrated.

2.2 Modified de-aliasing method

We are interested in fine details of iso-enstrophy surfaces (IES)s which are part of the TNTI
layer and located at the boundary of the turbulent volume. At the outer edge of the TNTI,
the enstrophy value decays quickly to zero. In chapter 3 we investigate how quantities such
as the fractal dimension of the interface D f , and local propagation velocity of the TNTI vn

vary across the thickness of the TNTI, for various IESs. A wide range of enstrophy threshold
values ω2

th/ω2
re f are considered, in a range where the sensitivity of the detected turbulent
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volume to the value of ω2
th/ω2

re f is low (see figure 2.7). The lowest threshold considered in
chapter 3 is ω2

th/ω2
re f = 10−6.

In order to obtain relevant TNTI statistics at such very low enstrophy levels, the DNS
solution must be smooth and free of oscillations. When using a classical 2/3 truncation
de-aliasing method for the simulations with the pseudo-spectral code, we observe numerical
oscillations at these low enstrophy values which makes it impossible to investigate this outer
part of the TNTI layer. The limiting effects of these oscillations have been mentioned also in
the study of Krug et al. (2017) at the non-turbulent side of the interface layer. Some trials
with (i) a posteriori filtering of the velocity field by spectral filter and (ii) modification of the
2/3 truncation de-aliasing method acting during the simulation, lead to the conclusion that
the latter is much more effective for the elimination of the weak numerical oscillations for
very low ω2 threshold values and the accurate resolution of the geometrical features of these
IES. Thus the modified de-aliasing approach has been chosen to be applied in the present
study.

For the modified de-aliasing method, a filter function R(|⃗k|) (where k⃗ = (kx,ky,kz)) has
been applied in the form R(|⃗k|) = 2− exp(c1(|⃗k|− k f ilter)

2) where c1 is a coefficient chosen
to fix the value R(kcut−o f f ) = 0.01. The wavenumbers with |⃗k| < k f ilter are completely
unaffected by the filtering and the wavenumbers with at least one component greater than
the cut-off wavenumber, i.e. max[(kx,ky,kz)]> kcut−o f f , are truncated. The wavenumbers
with |⃗k|> k f ilter but max[(kx,ky,kz)]< kcut−o f f are then filtered by using the function R(|⃗k|).
Due to the shape of R(|⃗k|), the effect of this modified de-aliasing is only limited to the
wavenumbers very close to the cut-off wavenumbers.

A similar procedure is applied in Krug et al. (2017) with their choice of a pth-order
Fourier exponential filter for the de-aliasing. Our method, which has no effect on the modes
unaffected by the aliasing, is able to suppress the oscillations within the useful range of
enstrophy. As we are dealing with a very sharp interface and need to reduce our enstrophy
thresholds to extremely low values, the numerical oscillations naturally become observable
at some point, particularly without a special treatment being employed. This is due to the
fact that the spectral method does not underestimate the derivatives and does not smooth out
sharp gradients as is the case with finite difference methods for example.

In order to demonstrate how the classical sharp de-aliasing leads to some oscillations
and the effectiveness of our modified de-aliasing method, we compare the results of two
simulations starting from identical initial conditions (even the same random noise phase
distribution), solved by the same pseudo-spectral solver. The first simulation was performed
with the classical sharp de-aliasing method which truncates the solution at all wavenumbers
with a modulus larger than 2/3kmax = N/3, and the second simulation uses our modified
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de-aliasing method. As can be observed in figure 2.1b, the minimum value of the mean
Kolmogorov scale η on the centreline appears just after the transition, and we therefore
compare the solutions of the two simulations at t/Tre f = 26 where the grid resolution is most
problematic. We also consider the simulation PJ5 which has the highest Reλ peak.

Figures 2.2a and 2.2b show the enstrophy in a normal streamwise plane for the two
simulations at t/Tre f = 26. Figure 2.2a corresponds to the simulation with the modified
de-aliasing and figure 2.2b is the case where the classical 2/3 truncation method is used. Os-
cillations are clearly visible in the case of classical de-aliasing even for normalized enstrophy
levels higher than 10−3 whereas the solution is smooth for all investigated enstrophy levels
with our modified de-aliasing method.
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(a) Modified de-aliasing, t/Tre f = 26.
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(b) Classical 2/3 truncation, t/Tre f = 26.
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(d) Classical 2/3 truncation, t/Tre f = 50.

Fig. 2.2 Contour fields of ω2/ω2
re f , on the mid-section along the z-axis, for two identical

simulations PJ5 (a,c) with modified de-aliasing (used in the present study) (b,d) classical 2/3
truncation. (a,b) at t/Tre f = 26 and (c,d) at t/Tre f = 50. Contours showing IES associated
with ω2

th/ω2
re f from 10−3 to 10−6, by colours magenta to cyan with an interval of one order of

magnitude in between the values of ω2
th. Magenta and cyan correspond to ω2

th/ω2
re f = 10−3

and 10−6 respectively.

It should be noted that the oscillations are visible at fairly high enstrophy thresholds at
this instant and that these oscillations gradually reduce with time, but do not disappear at
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the targeted enstrophy thresholds ω2
th/ω2

re f > 10−6 for t/Tre f > 30 with the classical 2/3
truncation method. In figure 2.2c and 2.2d, enstrophy contours are given for t/Tre f = 50,
which is in the time range we will investigate in chapter 3 and conduct the local analysis of
the TNTI in chapters 4 and 5. Although some IES appear smooth, local regions where the
oscillations are present may introduce significant problems. For example, the computation
of the fractal dimension of the IES D f would be affected by these oscillations, as the IES
becomes more volume-filling in the presence of these numerical artifacts.
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(a) 2D energy spectra

101 102 103

k

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

2ν
k

2
E

(k
)

modified de-aliasing
classical de-aliasing

(b) 2D dissipation spectra

Fig. 2.3 (a) Energy and (b) dissipation spectra at the centre-plane of two identical simulations
in terms of flow parameters and initial conditions, one with modified de-aliasing and the other
one with classical 2/3 truncation method. Results are from the simulation PJ5 at t/Tre f = 26.

To quantify the energy content of these oscillations, the energy and dissipation spectra
on the centre-plane are compared for the two simulations in figure 2.3. The spectra look
identical for both cases, apart from the small peak at the very end of the resolved wave
numbers which is present for the classical 2/3 truncation method. This shows how difficult it
is to assess the smoothness of the irrotational region and the external part of the TNTI from
energy and dissipation spectra.

In figure 2.4, the jet volume as a function of the enstrophy threshold is plotted at t/Tre f =

26 for the two simulations with classical and modified de-aliasing methods. A clear extension
of the plateau towards lower values of ω2

th/ω2
re f is seen when the modified de-aliasing method

is used. Meanwhile, the high threshold regions remain unaffected by the modification,
showing that the de-aliasing method works as planned. It suppresses the weak oscillations
at the outer regions of the TNTI but the evolution of the turbulent region is similar in both
cases.
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Fig. 2.4 The jet volume defined as ω2 > ω2
th for the two simulations PJ5 at t/Tre f = 26 with

modified de-aliasing (blue) and classical 2/3 truncation (orange).

2.3 Limitations on the Reynolds number

Despite the success of the modified de-aliasing method for the accurate resolution of the IESs
associated with low values of ω2, there exists a limitation in terms of the Reynolds number
ReG of the simulations, as increasing values of ReG leads to smaller turbulent scales, which
in turn means a drop in the resolution of the simulation in terms of the smallest turbulent
length scales. Dissipation of the turbulent kinetic energy is mainly associated with these
small scales and their under-resolution leads to a build-up of turbulent kinetic energy at the
highest wavenumbers, which leads to the weak oscillations that are documented in section
2.2.

In an attempt to demonstrate the limitations in Reynolds number, additional simulations
have been conducted with ReG = 6400 and ReG = 9600 which are referred to as PJ-Re6400
and PJ-Re9600 respectively. The initial conditions and the solver properties remain the
same as described in section 2.1. The computational grid also remains the same as the PJx
simulations, due to the computational constraints and the modified de-aliasing method is also
employed.

With the increase of ReG, the Reynolds number based on Taylor length scale Reλ at
the centre-plane of the jet becomes Reλ ≈ 70 and Reλ ≈ 80 for the simulations PJ-Re6400
and PJ-Re9600, compared to Reλ ≈ 50 for PJ1 simulation (labelled as ReG = 3200), which
can be seen in figure 2.5a. Figure 2.5b shows the time evolution of the spatial resolution
normalized by the Kolmogorov scale at the centre-plane after the transition of the planar jet
into the fully turbulent regime.
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Fig. 2.5 Reλ and dy/η at the centre-plane of the planar jet for ReG = 3200 (PJ1 simulation),
ReG = 6400 and ReG = 9600.

Following section 2.2, a comparison at t/Tre f = 50 is chosen as this time is in the middle
of the investigated time range in chapter 3. Figure 2.6 shows the enstrophy contours at the
cut section of the PJ-Re6400 simulation along with the IES marked at the TNTI.
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Fig. 2.6 Enstrophy contour field at a cut-section of the simulation PJ-Re6400 at t/Tre f = 50,
with the IES from ω2

th/ω2
re f = 10−6 to 10−3 are shown as contours at the TNTI.

It is observed that numerical oscillations are present in the IESs due to the reduction of
the resolution of the simulations. The oscillations are present even at the IES of thresholds
up to ω2

th/ω2
re f = 10−4. In chapter 3, the box-counting algorithm is applied in order to get

information about the fractal properties of each IES. Under these conditions, the application
of the box-counting algorithm at these thresholds (ω2

th/ω2
re f ≲ 10−3) is not possible.
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This analysis shows that ReG = 3200 is the maximum Reynolds which can be achieved
keeping the resolution (1024×1536×1024) used for the simulation PJx without compro-
mising the accurate resolution of the wide range of IESs constituting the TNTI.

2.4 Identification of the turbulent jet and locating the TNTI

The procedure for the detection of the TNTI starts with the identification of the turbulent
jet. As it has been mentioned above, TNTI is a spatially local region associated with very
high gradients of ω2. In relation to IESs being located extremely close to each other, the
identified turbulent jet volume does not depend much on the threshold value of enstrophy
ω2

th being used, if the threshold value is chosen from the range of ω2 values which fall into
the TNTI layer. In figure 2.7 we plot the turbulent jet volume VJ identified by the condition
ω2 ≥ ω2

th. In this figure, VJ is normalized by the volume of the simulation domain Vtot and
plotted as a function of the normalized enstrophy threshold values ω2

th/ω2
re f , where the ω2

re f

is the ω2 averaged over the centre-plane of the jet (Note that ω2
re f evolves in time).

Figure 2.7 reveals the presence of a plateau over a very wide range of threshold values
at any time between t/Tre f = 30 and t/Tre f = 90. This is the range of ω2 packed tightly
together within the TNTI, leading to VJ/Vtot being approximately constant for a wide range
of ω2

th/ω2
re f values and thereby reflecting the sharp demarcation between the turbulent region

and the outer non-turbulent region.
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Fig. 2.7 Detected turbulent volume VJ/Vtot obtained by varying the threshold values ω2
th/ω2

re f
for the PJ1 simulation.

The left side of the plateau, corresponding to low enstrophy threshold values, is limited by
the numerical noise. These numerical oscillations get significant as the threshold value goes
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to zero. Also, it has been shown in section 2.2 that the modified de-aliasing method which
has been employed in the current study reduces the numerical oscillations and increases the
ω2

th/ω2
re f range of the plateau by extending its left side to values closer to ω2

th/ω2
re f = 0.

(a) Labelled turbulent, non-turbulent and en-
gulfed volumes.

(b) Cut-section of the detected IES defined by
ω2

th/ω2
re f = 10−3.

Fig. 2.8 Labelling of the volume and the detected IES at time t/Tre f = 50 for simulation PJ1,
by using the threshold ω2

th/ω2
re f = 10−3.

Following the determination of the ω2
th/ω2

re f range defining the TNTI, we now determine
the TNTI as shown in figure 2.8. The procedure starts by labelling the turbulent volume by the
condition ω2(x,y,z)≥ ω2

th and obtaining the binary field. The turbulent region corresponds
to blue marked region in figure 2.8a and the non-turbulent regions correspond to the white
and red marked regions, where the engulfed regions (shown with red) are still present. The
non-turbulent volumes are labelled in 3D by using the labelling function from the open-source
SciPy library (Virtanen et al., 2020) so that all independent non-turbulent volumes have
their individual label number. At this stage, the connectivity of the non-turbulent regions
is checked leading to the detection of engulfed non-turbulent volumes. Engulfed volumes
are the chunks of irrotational fluid surrounded totally by the turbulent volume and they have
no connection in 3D with the external irrotational region. Some examples of these detected
engulfed volumes can be seen in figure 2.8a, marked in red. The white detached regions
inside the turbulent area 2.8a (blue) are connected to the outer non-turbulent region in the 3D
field (out of the figure’s plane). In order to consider only the outer surface for the TNTI, the
engulfed volumes are suppressed in this study. To get the surface corresponding to a chosen
ω2

th/ω2
re f in 3D, a dilation procedure is used in 3-dimensions to expand the non-turbulent

region into the turbulent region by one data point. Then by subtracting the original field from
the dilated field, we end up with a field where the 3D jet envelope is marked by the number
one, and all other data points are marked zero in the entire simulation domain. A cut-section
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of the resulting field is shown in 2.8b, as the dark line showing the cut-section of the detected
IES of ω2

th/ω2
re f . This detection procedure is applied for various ω2

th/ω2
re f values to obtain

the interface characteristics at different locations throughout the TNTI layer as in Krug et al.
(2017); van Reeuwijk and Holzner (2014).

2.5 Highly resolved simulations

Even though the resolution of the PJx simulations, obtained with a dedicated modified de-
aliasing method is observed to be enough to conduct a global study of the TNTI which is
presented in chapter 3, different methods of analysis are employed for the investigation of the
flow field at the vicinity of the TNTI in chapters 4 and 5. An important local property that
will be used widely in chapter 4 and 5 is the mean curvature Hm computed at any location on
detected IESs by using the relation,

Hm =
1
2

∇ ·n=
1
2
(κ1 +κ2). (2.2)

Here, κ1 and κ2 are the curvatures on the two principal axes and n is the enstrophy normal
vector defined as,

n=
∇ω2

|∇ω2| . (2.3)

According to this definition, the vector n points towards the turbulent core of the jet.
Another physical interpretation for Hm is that Hm = 1/Rcurv where Rcurv is the radius of
the curvature of the surface. Figure 2.9b shows the PDF of the Hm normalized by the
turbulent length scales at the centre-plane, η and λ . It is seen from the figure that a sharp
peak is present at the low-negative values of Hm. This is related to the concave surfaces
at the interface, showing that the interface is mainly constituted by concave regions with
low curvature values. The peak is located at Hmλ ≈ 0.5 meaning the radius of curvature is
Rcurv ≈ 2λ for these regions. Despite the negative side of the PDF going rapidly to very
low probability values, a second peak is present for the positive values of Hm. This second
peak is located roughly at Hmη ≈ 1 meaning some parts of the interface have a curvature
with a radius of approximately η . Naturally, the question arises about this particular feature,
whether these values of Hm are physical or do they occur due to numerical oscillations and
what is the extent of Hm which is physical?

Although great care has been taken to reduce the numerical oscillations in the data, mainly
to eliminate any numerical effect on the topology of the interface, for the wide range of IESs
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(a) Schematic of TNTI showing the enstrophy normal vector
n defined by the eq. 2.3 and examples of concave and convex
regions.
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(b) PDF of Hm for the IES of ω2
th/ω2

re f = 10−3 for the simu-
lation PJ1.

Fig. 2.9 Schematic of the TNTI showing the concave/convex regions and the PDF of Hmη

for the IES of ω2
th/ω2

re f = 10−3 for the simulation PJ1.

considered in chapter 3, the accurate computation of Hm imposes a more strict constraint as
it contains second order derivatives of ω2 (see eq. 2.2 and 2.3).

In order to investigate the effects of numerical noise on the field of Hm, a series of tests
are conducted with a posteriori filtering of the ω2 field by using a Gaussian filter. Then Hm

is calculated to see the effects of the filtering of ω2 field on the Hm values at the IES. The
standard deviation of the filter kernel σ is also varied to see its effect. Figure 2.10 shows
again the PDF of the Hm values at the IES of ω2

th/ω2
re f = 10−3, this time along with the Hm

values computed by the filtered ω̃2 field. A variation in the PDF of Hm is observed mostly in
the high curvature regions of the PDF in the case of the application of the a posteriori filter.
The distribution at the lower values of Hm remained unchanged by this operation.

These findings suggest that even though the numerical oscillations are pretty weak and
their effect is small enough not to interfere with the resolution of the general shape of the
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Fig. 2.10 PDF of Hm for the IES of ω2
th/ω2

re f = 10−3 detected from the ω2 field and a

posteriori filtered enstrophy fields ω̃2, for the simulation PJ1.

IESs, the computed quantities containing high order derivatives or ω2 can still be affected.
On the other hand, applying an a posteriori filter opens new questions such as at which
stage the filter should be applied (filtering the field of u, ω or ω2) for the consistency of the
variables at the TNTI location? What should be the properties of the filter used? What will be
the eventual effects of the filter on the nature of the TNTI? All these points being important,
the latter question is the most concerning one. TNTI being a very local phenomenon with
sharp gradients of flow variables, can be altered by the filtering operation. On top of that,
the thickness of the TNTI varies at different locations of the interface, thus the effects of the
filter will depend on the local structure of the TNTI.

In order to avoid the introduction of these new questions which may lead to serious
doubts about the data being used, the quality of the data is chosen to be improved by
further increasing the resolution of the simulation, thus resolving the dissipation scales more
accurately. Energy reduces very sharply in the dissipative range, thus any increase of the
resolved wavenumber will have a significant effect on the energy content of these oscillations.

Due to the computational limits of the solver being used, the flow fields from PJ1 -
PJ5 simulations are being interpolated, in Fourier space, into a finer grid which consists
of Nx ×Ny ×Nz = (1536× 2304× 1536) elements in each direction. All simulations are
run for t = 2Tre f so that the oscillations are damped naturally by the dissipative term of NS
equations and the PJx-HR data set is produced. For example in order to obtain PJ1-HR data,
the velocity field of PJ1 at t/Tre f = 48 is interpolated to a fine grid and then run with exact
same parameters for 2Tre f which becomes the highly resolved case of PJ1 simulation at the
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instant of t/Tre f = 50. The resolution increases from dy/η = 0.7 to dy/η = 0.47 for the
instant of t/Tre f = 50 for the PJx-HR data set.

Figure 2.11 shows the PDF of Hm on the IES of ω2
th/ω2

re f = 10−3, for the simulations
PJ1 and PJ1-HR. As PJ1-HR has been obtained by using the flow field of PJ1 at a previous
instant, they have nearly exact same flow structures. The difference comes from the fact that
the finer grid used for PJ1-HR simulation leads to a more accurate resolution of the very
small scales and that the dissipation range is better captured. Without an energy build-up at
small scales, the numerical oscillations at very high wavenumbers are significantly reduced.
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Fig. 2.11 PDF of Hm at the IES of ω2
th/ω2

re f = 10−3 for the simulations PJ1 and PJ1-HR.

For the small values of Hm, both cases correspond to each other but for the positive
branch of the PDF, they start deviating from each other at Hmη ≈ 0.15. The second peak
observed in figure 2.9b at Hmη ≈ 1 is shifted to higher Hmη values (clearly larger than 1) by
the increase of the resolution of the simulation. This shows that the increase in the resolution
is still beneficial to capture the very fine details of the IESs more accurately. It should be
noted again that the amplitudes of oscillations of PJx simulations are extremely small, they
do not affect any quantities being investigated in chapter 3, as a global approach has been
employed in this chapter for the investigation of the properties of the temporally developing
turbulent jet and the mean propagation velocity of the interface.

On the other hand, in chapter 4 and 5, a different methodology is used for the analysis of
the interface locally, where the accurate computation of the high order derivatives of flow
variables is becoming crucial as it has direct effects on the local properties at the detected
IESs such as Hm. For this reason, the data set of PJx-HR is used in chapters 4 and 5.
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2.6 Improved TNTI detection

In addition to enhancing the resolution of the dataset for the local analysis of flow parameters
at the TNTI, we have also improved the accuracy of TNTI detection. The classification of the
turbulent jet volume, non-turbulent region, and engulfed regions is detailed in Section 2.4.
This methodology yields a set of points representing the Interface of Entrainment Structure
(IES), corresponding to the closest grid points that satisfy the condition ω2 > ω2

th on the
turbulent side of the IES, defined by ω2 = ω2

th. Given the high resolution of our simulations,
these detected points are already precise enough to capture the fine geometrical details of the
interface.

However, it is essential to note that the TNTI is associated with a thin layer characterized
by very high gradients. Therefore, a slight error in the exact location of the detected points
on the IES can lead to inaccuracies in some statistics. In Chapters 4 and 5, we consider local
variables at the TNTI location, such as Hm over the TNTI surface, and derive local statistics
based on these variables. Thus, having precise values of these local variables on the detected
IES is crucial for our analysis. To enhance the accuracy of TNTI location, we have applied
a sub-grid correction to the coordinates of the points detected using the method described
in Section 2.4. This refinement ensures the TNTI location is as precise as possible for our
analysis.

To apply the correction, we process each detected point individually. For every point, we
calculate the enstrophy normal vector n (eq. 2.3), which indicates the direction of the fastest
growth of enstrophy. We then create a very fine 1D grid (with a resolution of 1

10dy) aligned
with the −n direction and we interpolate the values of enstrophy ω2.

Following this interpolation, we examine each point on the fine 1D grid to identify the
one that is closest to the specified ω2

th value. Subsequently, we update the coordinates of the
detected point and the enstrophy normal vector n at this new location.

Since the condition for the identification of the point where the enstrophy value is closest
to ω2

th is a manual process, in the regions where the TNTI normal axis crosses the same IES
multiple times, it may lead to a jump of the point to another location along the IES. In order
to avoid this, we implement an additional condition that prevents the coordinate correction if
the correction distance is greater than dy.

The contour plot given in figure 2.12 illustrates the improvement of the locations of points
by showing the probability density of the enstrophy values of all the points before and after
the correction operation i.e., ω2

be f ore, ω2
a f ter. The contour plot in figure 2.12 is generated by

the application of the coordinate correction process to 22M points detected by the procedure
described in section 2.4, for the IES of ω2

th/ω2
re f = 10−3 for the PJ4-HR simulation at

t/Tre f = 50. The magenta line shows the perfect initial value of enstrophy corresponding to
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ω2
be f ore/ω2

th = 1, at which the enstrophy was equal to ω2
th before the correction. Similarly,

the red line corresponds to the perfect correction where the enstrophy value is exactly ω2
th

after the application of the correction.
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Fig. 2.12 Contour plot of the joined probability of enstrophy values at the detected points on
the IES before and after the coordinate correction operation. Plot generated for the IES of
ω2

th/ω2
re f = 10−3 for the PJ4-HR simulation at t/Tre f = 50.

The improvement can be observed clearly as there is a significant difference for all the
points where they are positioned much more accurately on the IES defined by ω2

th, resulting
in a narrower distribution of points along the ω2

a f ter/ω2
th axis. The majority of the points are

observed to be positioned close to the line for the perfect correction and the maximum error
on the enstrophy value along the IES decreases by a factor of approximately 5.

This sub-grid correction ensures that the locations of the points are more precise concern-
ing the IES associated with ω2

th value. This accuracy for the location of the points is crucial
as the TNTI is characterized by very high gradients, meaning that even a small displacement
error can have a considerable impact on the values of local variables.



Chapter 3

Scaling of the Jet and the Mean
Propagation Velocity of the Interface

Preface to the chapter

The results given in this chapter are published in Journal of Fluid Mechanics, with the title
"Length scales and the turbulent/non-turbulent interface of a temporally developing turbulent
jet" (Er et al., 2023). The appendices and the sections of the paper where the simulation
details are given, including modified de-aliasing and TNTI detection are moved to chapter 2
for the completeness of the current manuscript.

Abstract

The temporally developing self-similar turbulent jet is fundamentally different from its
spatially developing namesake because the former conserves volume flux and has zero
cross-stream mean flow velocity whereas the latter conserves momentum flux and does not
have zero cross-stream mean flow velocity. It follows that, irrespective of the turbulent
dissipation’s power law scalings, the time-local Reynolds number remains constant and
the jet half-width δ , the Kolmogorov length η and the Taylor length λ grow identically as
the square root of time during the temporally developing self-similar planar jet’s evolution.
We predict theoretically and confirm numerically by Direct Numerical Simulation that the
mean centre-line velocity, the Kolmogorov velocity and the mean propagation speed of the
Turbulent/Non-Turbulent Interface (TNTI) of this planar jet decay identically as the inverse
square root of time. The TNTI has an inner structure over a wide range of closely spatially
packed iso-enstrophy surfaces with fractal dimensions that are well defined over a range
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of scales between λ and δ and that decrease with decreasing iso-enstrophy towards values
close to 2 at the viscous superlayer. The smallest scale on these iso-surfaces is around η

and the length scales between η and λ contribute significantly to the surface area of the
iso-enstrophy surfaces without being characterized by a well-defined fractal dimension. A
simple model is sketched for the mean propagation speeds of the iso-enstrophy surfaces
within the TNTI of temporally developing self-similar turbulent planar jets. This model is
based on a generalized Corrsin length, on the multiscale geometrical properties of the TNTI
and on a proportionality between the turbulent jet volume’s growth rate and the growth rate
of δ . A prediction of this model is that the mean propagation speed at the outer edge of the
viscous superlayer is proportional to the Kolmogorov velocity multiplied by the 1/4th power
of the global Reynolds number.

3.1 Introduction

The Turbulent/Non-Turbulent Interface (TNTI) is a thin layer which sharply demarcates
between turbulent vortical flow and non-vortical flow at the turbulent edge of a wide variety
of turbulent flows such as turbulent boundary layers, mixing layers, jets and wakes (Corrsin
and Kistler, 1955; da Silva et al., 2014). The TNTI propagates relative to the fluid and thereby
controls entrainment and resulting in transfers across it of mass, momentum and various
scalar quantities such as heat. Determining the local propagation velocity of the TNTI, and
in particular its scalings, is therefore of central importance.

The TNTI’s local propagation velocity is often thought of as related to a length scale
such as a thickness pertaining to the TNTI or/and a turbulence inner length scale such as
the Kolmogorov or the Taylor lengths. The question of determining the scalings of local
TNTI thicknesses is therefore closely related to the question of determining the scalings of
local TNTI propagation velocities. Cafiero and Vassilicos (2020) and Zhou and Vassilicos
(2017) have argued, with support from Direct Numerical Simulations (DNS) and laboratory
experiments of self-similar turbulent wakes and jets, that the average TNTI propagation
velocity scales as the fluid’s kinematic viscosity divided by a length which is the Kolmogorov
length in the presence of the classical equilibrium turbulence dissipation scaling but is the
Taylor length in the presence of the non-equilibrium dissipation scaling (Vassilicos, 2015).

The turbulent wakes and jets considered by Cafiero and Vassilicos (2020) and Zhou and
Vassilicos (2017) are spatially developing wakes and jets whereas many DNS studies of
turbulent wakes and jets in the literature are concerned with temporally developing wakes and
jets (e.g. da Silva and Pereira (2008); Silva et al. (2018); van Reeuwijk and Holzner (2014)
and references therein). The presence of non-equilibrium turbulence dissipation scalings
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have been established in important regions of significant extent in spatially developing self-
similar turbulent axisymmetric wakes (Obligado et al. (2016); Ortiz-Tarin et al. (2021) and
references therein) and spatially developing self-similar turbulent planar jets (Cafiero and
Vassilicos, 2019). It is in these spatially developing self-similar flow regions that the scaling
of the average TNTI propagation velocity as the inverse Taylor length has been argued by
theory and supported by laboratory and DNS data of turbulent planar jets and turbulent bluff
body wakes (Cafiero and Vassilicos, 2019; Zhou and Vassilicos, 2017). However, Silva et al.
(2018) have found that the average thicknesses of the TNTI and of its viscous superlayer
both scale with the Kolmogorov rather than the Taylor length in temporally developing
self-similar turbulent planar jets. Is it that there is no non-equilibrium turbulent dissipation
scaling, i.e. that the turbulence dissipation scaling is classical, in temporally developing
self-similar planar jets? Or is it that the average TNTI thickness does not trivially relate to
the average TNTI propagation speed even in self-similar turbulent shear flows? Or is it both,
or something else?

In spatially developing self-similar turbulent jets and wakes, the turbulence dissipation
scaling impacts the TNTI propagation speed via its relation to the jet/wake width growth
(Cafiero and Vassilicos, 2020; Zhou and Vassilicos, 2017), and the jet/wake width growth
rate is obtained from mass, momentum and turbulent kinetic energy balances (Cafiero and
Vassilicos, 2019; Dairay et al., 2015; George, 1989; Townsend, 1976). This approach to
the estimation of the jet/wake width does not seem to have ever been applied to temporally
developing turbulent flows even though Gauding et al. (2021) did apply to temporally devel-
oping turbulent planar jets the self-similar theory of Townsend (1949) (see also Tennekes
and Lumley (1972)) which uses only momentum balance (but no mass and turbulent kinetic
energy balances) and a hypothesis on the relation between mean flow and Reynolds shear
stress profiles which is now known not to be generally true (e.g. Cafiero and Vassilicos
(2019); Dairay et al. (2015)). To answer the questions at the end of the previous paragraph
we therefore start by applying the mass-momentum-energy approach of Townsend (1976),
George (1989), Dairay et al. (2015) and Cafiero and Vassilicos (2019) to temporally develop-
ing self-similar turbulent planar jets in section 3.2. This allows us to see how the turbulence
dissipation scaling impacts the jet width and the mean flow velocity of temporally evolving
self-similar turbulent planar jets. In section 3.3 we derive a formula for the TNTI’s mean
propagation velocity in terms of the jet width growth rate and the fractal/multiscale nature of
the TNTI. The details of our pseudo-spectral DNS with particular attention paid to spatial
resolution and control of numerical oscillations were presented in 2.1, and in section 3.4 we
use this DNS to critically examine the assumptions and results of our theoretical approach.
We report the strengths and failings of our formula for the TNTI’s mean propagation velocity
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and conclude with a suggestion for how to overcome the failings. We summarise our results
in section 3.5.

3.2 Mean flow scalings

The temporally developing planar jet is often favoured in numerical studies because of
the advantage that the boundary conditions in the streamwise and spanwise directions can
be taken to be periodic. The initial condition of the planar jet is defined in terms of an
initial streamwise velocity UJ and an initial jet width HJ and the global Reynolds number is
ReG =UJHJ/ν (see section 2.1 for further details on the initial condition and the DNS of the
temporally developing planar jet). The transition to the turbulent regime starts with shear
layer instabilities present on both sides of the jet. After the jet has become fully turbulent,
the turbulent jet volume expands with time into the irrotational surrounding volume.

In this section, the time and ReG dependencies of the parameters related to the mean flow
and turbulence are investigated. The growth of the mean flow profile is of interest because it
relates to the outward spread of the TNTI, a point at which is given quantitative expression in
the next section. Following Cafiero and Vassilicos (2019); George (1989); Townsend (1976)
we start the analysis with the Reynolds averaged continuity and momentum equations, where
averaging is over the two homogeneous/periodic spatial directions and/or over realizations:

∇ · ⟨u⟩= 0, (3.1)

∂ ⟨u⟩
∂ t

+ ⟨u⟩ ·∇⟨u⟩=− 1
ρ

∇⟨p⟩+ν∇
2⟨u⟩−⟨u′ ·∇u′⟩. (3.2)

where the vector u is the instantaneous velocity field and the brackets signify averaging.
Homogeneity/periodicity along x (streamwise) and z (spanwise) coordinates implies

∂ ⟨..⟩/∂x = ∂ ⟨..⟩/∂ z = 0. Defining ⟨u⟩= (U,V,W ), these being the mean flow components
in the streamwise, cross-stream and spanwise directions respectively, the relation ∂V/∂y = 0
is reached from eq. (3.1). Because of reflectional symmetry with respect to y = 0, y being
the cross-stream coordinate, we are led to V = 0. The immediate result V = 0 is a very
significant difference between temporally and spatially developing turbulent jets as V ̸= 0 in
the spatially developing case.
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For high Reynolds number temporally evolving x− and z−periodic/homogeneous turbu-
lent jets the momentum equation in the streamwise direction is well approximated by

∂U
∂ t

≈−∂ ⟨u′v′⟩
∂y

(3.3)

where u′ and v′ are the streamwise and cross-stream fluctuating velocities.
Integrating eq. (3.3) within one period along y, the following constraint is obtained;

∂

∂ t

∫
Udy = 0, (3.4)

implying that the volume flux is conserved throughout the time evolution of the jet. The
conservation of the volume flux is another important difference between the temporally
developing jet and its spatially developing counterpart where it is the momentum flux that is
conserved (momentum deficit for the spatially developing wakes) instead of the volume flux
throughout the streamwise direction (Tritton, 1988).

At this point, the self-similarity assumption for the mean streamwise velocity U is
introduced:

U(y, t) = u0(t) f (y/δ ) (3.5)

where δ (t) is the instantaneous jet half-width, u0(t) is the centre-line (y = 0) mean flow
velocity of the jet and both are time-dependent. Plugging eq. (3.5) for the mean streamwise
velocity into eq. (3.4) yields the following result;

u0(t)δ (t) = const ∼UJHJ. (3.6)

A popular way to obtain δ (t) and u0(t) for the temporally evolving jet is by dimensional
analysis based on volume flux conservation. The volume flux is constant in time and
therefore proportional to UJHJ , one is tempted to argue that δ and u0 are functions of UJHJ

and time t only, in which case dimensional analysis immediately implies δ ∼ (UJHJ)
1/2t1/2

and u0 ∼ (UJHJ)
1/2t−1/2. However, all power laws δ ∼ HJ(tUJ/HJ)

a, u0 ∼UJ(tUJ/HJ)
−a

are consistent with the constant volume flux u0δ = const.∼UJHJ and there is no a priori
reason why δ and u0 should depend on UJHJ rather than on UJ and HJ separately. In fact,
Cafiero and Vassilicos (2019) have shown that different mean flow scalings exist for the
spatially developing turbulent planar jet, depending on different turbulent dissipation scaling
possibilities. If one were to use dimensional analysis based on the notion that δ and u0

must depend only on the conserved momentum flux and streamwise distance in the spatially
developing jet, then one would only obtain mean flow scalings compatible with one particular
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turbulence dissipation scaling (the classical equilibrium dissipation scaling) and no other, in
disagreement with experimental results, see Cafiero and Vassilicos (2019). Thus, in order
to obtain the most general picture for the temporally developing self-similar planar jet case,
which can also potentially allow for effects of non-equilibrium turbulence dissipation, we do
not adopt the dimensional analysis we mentioned and continue our analysis by deriving the
self-similarity of the Reynolds shear stress and by introducing the equation for the turbulent
kinetic energy, a general turbulence dissipation scaling and self-similarity assumptions for
the terms in the turbulent kinetic energy equation.

By inserting the self-similarity relation for U , relation 3.5, into eq. 3.3, by integrating
over y both sides of eq. 3.3 from 0 to y, and by making use of ⟨u′v′⟩= 0 at y = 0, we easily
show that the Reynolds stress also has a self-similar form which can be written as;

⟨u′v′⟩= R0(t)g(y/δ ), (3.7)

where R0(t) is given by

R0 ∼ δ
du0

dt
∼ u0

dδ

dt
. (3.8)

Note that this is different from R0 ∼ u2
0 which is the assumption made in Townsend (1949),

Tennekes and Lumley (1972) and Gauding et al. (2021). We do not use this assumption here
(but the results 3.19 and 3.20 of our analysis confirm it in this very particular flow case).

At this point, we have three unknowns, u0, δ , R0, and two relations, eq. 3.6 and eq. 3.8.
Hence, one more relation is needed. Following Cafiero and Vassilicos (2019); George (1989);
Townsend (1976) the equation for the x- and z-average turbulent kinetic energy K is therefore
also incorporated into the analysis:

D
Dt

K = T +P− ε (3.9)

where T , P and ε are the x- and z-averaged turbulence transport, production and dissipation
terms respectively. Due to homogeneity/periodicity in x and z and to the fact that the mean
velocity component V is 0, the equation reduces to the form

∂

∂ t
K = T +P− ε. (3.10)
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Making self-similarity assumptions for the turbulent kinetic energy K, dissipation ε and
transport and production terms as one entity T +P, i.e.

K(t,y/δ ) = K0(t)e(y/δ ), (3.11)

ε(t,y/δ ) = ε0(t)θ(y/δ ), (3.12)

(T +P)(t,y/δ ) = P0(t)τ(y/δ ), (3.13)

and then plugging these expressions into the eq. 3.10, we obtain

∂K0

∂ t
e− K0

δ

dδ

dt
e′ = P0τ − ε0θ , (3.14)

where e′ is the derivative of e with respect to y/δ . The coefficients which are only functions
of t and not of y/δ must be proportional to each other, hence

∂K0

∂ t
∼ K0

1
δ

∂δ

∂ t
∼ P0 ∼ ε0. (3.15)

The first of these proportionalities simply shows that the variables K0 and δ have power-
law dependencies on time. The remaining useful proportionality relates the turbulence
dissipation to the turbulent kinetic energy and the jet half-width. We isolate it below as it is
one of the additional relations that we need:

K0
1
δ

∂δ

∂ t
∼ ε0. (3.16)

To be useful, this additional relation needs to be complemented by a separate turbulence
dissipation scaling for ε0. There are two options: the classical dissipation scaling

ε0 ∼
K3/2

0
δ

, (3.17)

and the non-equilibrium dissipation scaling found in various turbulent flows including
spatially developing turbulent jets and wakes, grid-generated turbulence and time-evolving
periodic turbulence (both forced and decaying) (Cafiero and Vassilicos, 2019; Dairay et al.,
2015; Goto and Vassilicos, 2016; Ortiz-Tarin et al., 2021; Vassilicos, 2015)

ε0 ∼
(

ReG

Re0

)m K3/2
0
δ

, (3.18)
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with m = 1 except for slender body wakes (Ortiz-Tarin et al., 2021) where m = 2. Unlike
ReG, which is the global Reynolds number (independent of time), Re0 is the local Reynolds
number (time-dependent) defined by Re0 =

√
K0δ/ν . With eq. 3.18, the dissipation scaling

is actually written in a general way which also includes the classical dissipation scaling as a
special case for which m = 0.

To complete our analysis and obtain δ (t) and u0(t), the additional relations that we use
are eq. 3.16, eq. 3.18 and Townsend’s assumption K0 ∼ R0 (Townsend, 1976) which is only
needed, in fact, if m ̸= 1. Combining with u0δ0 ∼UJHJ (eq. 3.6) and R0 ∼ u0

dδ

dt (eq. 3.8),
one obtains the following scalings (where t0 is a virtual time origin):

u0 ∼ (UJHJ)
1/2(t − t0)−1/2, (3.19)

δ ∼ (UJHJ)
1/2(t − t0)1/2, (3.20)

irrespective of the value of m. It follows, in particular, that the local Reynolds number Re0 is
constant in time irrespective of m. This Reynolds number constancy is a consequence of our
analysis, not its premise. Note also that dδ 2/dt is a constant proportional to UJHJ . In terms
of a dimensional constant coefficient A we write dδ 2/dt = AUJHJ .

An important observation here is that the mean flow scalings are independent of the
turbulent dissipation scaling relation, contrary to the spatially developing turbulent planar
jet where different centre-line mean velocity and jet width scalings are present for different
turbulent dissipation regimes (Cafiero and Vassilicos, 2019). In other words, for the tempo-
rally developing turbulent planar jet, the mean flow scalings are the same for all values of m,
which includes the classical dissipation (m = 0) and the non-equilibrium dissipation (m = 1)
cases. It is therefore not possible to distinguish between different dissipation scaling regimes
from the time evolution of the temporally developing planar jet flow.

3.3 TNTI propagation velocity

With the time dependencies of the mean flow parameters obtained, a relation for the mean
propagation velocity of the TNTI can also be found. Following van Reeuwijk and Holzner
(2014) and Zhou and Vassilicos (2017), a relation between the growth rate of the turbulent
jet volume in time and the TNTI propagation speed can be written;

dVJ

dt
= Svn (3.21)
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where VJ stands for the turbulent volume, S stands for the surface area of the TNTI bounding
this volume and vn stands for the mean interface propagation velocity. In this chapter we
follow this global/integral approach to our theoretical and computational estimates of the
propagation velocity which, as shown by van Reeuwijk and Holzner (2014), is consistent
with the local approach which requires highly resolved calculations with low numerical noise
of first and second-order derivatives of vorticity, particularly at the outer edge of the TNTI
layer (see section 2.1 and section 2.2).

Substituting VJ = 2aδLxLz where a is a dimensionless constant coefficient and Lx and
Lz are the extents of the domain in the streamwise and spanwise directions respectively, the
relation can be written as

dδ (t)
dt

2aLxLz = Svn. (3.22)

In various previous studies, the TNTI defined in terms of passive scalar fields are found
to have fractal or fractal-like properties, either with a constant fractal dimension over a range
of scales (Prasad and Sreenivasan, 1990; Sreenivasan et al., 1989) or with a scale-dependent
fractal dimension (Dimotakis and Catrakis, 1999; Miller and Dimotakis, 1991) which may
actually also vary with the threshold defining the boundary of the turbulent region (Flohr and
Olivari, 1994; Lane-Serff, 1993). By taking into account an assumed fractal or fractal-like
nature of the interface, the surface area of the TNTI can be estimated with the following
relation;

S(r)∼ LxLz

(
r

δ (t)

)2−D f

, (3.23)

where r is the length scale with which the surface area is measured (see Mandelbrot (1982)),
the outer length is assumed to be δ (t) which is of the order of the integral scale, and D f is
the fractal dimension of the interface, with a value in the range 2 ≤ D f < 3. Considering
that the interface cannot have contortions of size smaller than the thickness of the interface,
the smallest length scale on the interface can be considered to be the TNTI thickness, ηI . In
this section, we neglect the complex inner structure of the TNTI layer and espouse a relation
between ηI and the mean propagation velocity of the type

ηI = ν/vn, (3.24)

which recognizes the effect of viscous diffusion of enstrophy at the interface (Corrsin and
Kistler, 1955) (In subsection 3.4.5 we modify this relation in an attempt to take into account
the fact that viscous superlayer is only the outer part of the TNTI layer). We therefore
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estimate S by setting r proportional to ηI in eq. 3.23 in a way which models S as

S = LxLz

(
ηI

δ (t)

)2−D f

. (3.25)

Using this formula eq. 3.25 for S with eqs. 3.22 and 3.24, the following relation is
obtained for the TNTI’s mean propagation velocity:

vn

UJ
= (Aa)1/(D f−1)HJ

δ
Re

−(D f−2)/(D f−1)
G , (3.26)

where we made use of the dimensionless constant coefficient A in dδ 2/dt = AUJHJ . It can
be seen from eqs. 3.26 and 3.20 that the average propagation velocity of the TNTI scales as
the inverse square root of time and that it scales with the global Reynolds number raised to a
power depending on the fractal dimension of the interface.

We want to compare eq. 3.26 for vn to the scalings of the characteristic velocities of
the flow, u0 ∼ (UJHJ)

1/2(t − t0)−1/2 and uη ≡ ν/η where η is the Kolmogorov length
η ≡ (ν3/ε0)

1/4 in terms of the centre-line (y = 0) turbulence dissipation rate ε0 (averaged
over x and z). Firstly, we find vn/u0 ∼Re

(2−D f )/(D f−1)
G which means that vn/u0 is independent

of time and depends on the initial volume flux only through ReG as it depends on ReG raised
to a power equal to (2−D f )/(D f − 1). From η ≡ (ν3/ε0)

1/4, eq. 3.18, K0 ∼ R0 and eq.
3.20 follows

η ∼ (UJHJ)
1/2Re−3/4

G (t − t0)1/2 (3.27)

and therefore
uη ∼ (UJHJ)

1/2(t − t0)−1/2Re−1/4
G . (3.28)

Hence vn/uη ∼ Re
(2−D f )/(D f−1)+1/4
G meaning that vn and uη have the same dependence on

time, but the same dependence on ReG only if D f = 7/3. Note that the maximum possible
fractal dimension D f = 3 corresponds to vn ∼ uλ where uλ ≡ ν/λ , the Taylor length λ being
obtained from ε0 ∼ νK0/λ 2 and scaling as

λ ∼ (UJHJ)
1/2Re−1/2

G (t − t0)1/2. (3.29)

It follows that uλ scales as

uλ ∼ (UJHJ)
1/2(t − t0)−1/2Re−1/2

G . (3.30)

The most important implication of these relations is that the time dependencies of all
the velocities vn, uη , uλ and u0 are the same. Similarly, the turbulent length scales η , λ ,
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the TNTI thickness ηI and the jet half-width δ have the same time dependencies too. As a
result, it is not possible to distinguish whether the average TNTI propagation velocity scales
with uη or uλ in the temporally developing turbulent jet by just monitoring the evolution in
time of these velocities. Other than that, all these three velocities scale with global Reynolds
number ReG raised to different powers except if D f = 7/3 in which case vn and uη have the
same ReG dependence, or if D f = 3 in which case vn has the same ReG dependence as uλ .

The validity of the time dependencies and the fractal characteristics of the TNTI are now
investigated with data from a DNS of a time-developing turbulent jet. A study of the ReG

dependencies would require many such DNS with a wide enough range of high ReG values
and remains out of our present scope.

3.4 Results

3.4.1 Self-similarity and length-scales

The analysis of the DNS data set of PJx starts with mean profiles in order to determine the
self-similar time range where the investigation of the TNTI is to be conducted. In order to
determine the time when the jet becomes self-similar, mean profiles of the streamwise velocity,
turbulent kinetic energy and the ⟨u′v′⟩ component of the Reynolds stress is considered. Self-
similarity means that statistics evolve with a time-local amplitude scaling and a time-local
length scale, i.e. φ0(t) and ℓ(t), so that the time-dependent y profile of an x− z averaged
quantity φ can be written in the form (Townsend, 1976),

φ = φ0(t) f (y/ℓ(t)). (3.31)

For the investigation of the self-similarity of the mean flow profiles, we start by normalizing
the profiles by using the jet half-width δ (t) (defined as the absolute value of y where U(y)
is U(0)/2) as time-local length-scale, see figure 3.1. In order to distinguish between self-
similarity and scaling, the profiles are normalized in figure 3.1 by their maxima (Dairay et al.,
2015).

With a similar DNS, da Silva and Pereira (2008) report that the self-similar regime starts
at t/Tre f ≈ 20 which is after the transition to turbulence has happened. In another study of
the same flow, van Reeuwijk and Holzner (2014) report that the jet becomes fully turbulent
at t/Tre f ≈ 30. Looking at figure 3.1, it is observed that the mean flow, Reynolds stress, rms
streamwise velocity and turbulent kinetic energy profiles collapse rather well as functions
of y/δ (t) for t/Tre f ≥ 30 in the present simulations: t/Tre f = 30 marks the beginning of the
self-similar regime, and as shown in figure 2.1a, it is also when the Taylor length Reynolds
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Fig. 3.1 Profiles of mean streamwise velocity U , streamwise velocity rms urms, Reynolds
shear stress ⟨u′v′⟩, and turbulent kinetic energy K, normalized by the maximum values of the
respective profiles and compared with experimental data from Cafiero and Vassilicos (2019)
( ), Ramaprian and Chandrasekhara (1985) ( ) and Gutmark and Wygnanski (1976) ( ).

number starts remaining about constant in time. In figure 3.1, the self-similar profiles are
also compared with the experimental data of Cafiero and Vassilicos (2019); Gutmark and
Wygnanski (1976); Ramaprian and Chandrasekhara (1985), showing good collapse between
the present data and the profiles obtained in the experiments.

Figure 3.2a shows the time evolution of the normalized square of the jet half-width,
i.e. δ 2/H2

J .The data plotted in figures 3.1 and 3.2a are ensemble averages over the five
simulations (as well as averages over the x− z plane in every simulation, of course). A linear
fit to the data for t/Tre f ≥ 30 shows that δ 2 grows linearly with time, in agreement with the
prediction in section 3.2. Figure 3.2b shows ratios of length scales, namely η(t)/λ (t) and
δ (t)/λ (t) where λ and η are calculated in terms of turbulent kinetic energy and dissipation
rate at the centre-plane y = 0. It is observed that the turbulence length scales λ and η evolve
similarly in time. In addition, the mean flow length scale δ (t) also evolves in the same
way, leading to the confirmation of the conclusion in section 3.2 that all length scales grow
identically with time.

To extract from the DNS data the scaling quantity R0 of section 3.2, we identify it with
⟨u′v′⟩max, the maximum value of the Reynolds shear stress profile in figure 3.1.
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Fig. 3.2 Time variation of the square of the jet half-width and the ratio of the length scales δ ,
λ and η , demonstrating the similar time evolution of all length scales of the flow between
t/Tre f = 30 and t/Tre f = 98.

We find that the Townsend assumption K0 ∼ R0 holds for times t/Tre f = 30 to t/Tre f = 80
(figure 3.3a). According to the scalings derived in section 3.2, K0 should vary in time like u2

0,
where u0(t)≡U(y = 0, t), and this is confirmed by our DNS data as figure 3.3a makes clear
over an even greater range of times than K0 ∼ R0 (up to t/Tre f = 100). This range of times is
greater because the effects of the boundary conditions on the time-developing jet appear to
be felt first by the Reynolds shear stress and later by other quantities such as K0 and u0. We
chose to process our data from t/Tre f = 30 to t/Tre f = 100 where self-similarity holds and
where the constancy of u0δ , related to the volume flux, (eq. 3.6) is definitely respected in
our DNS (figure 3.3b). With the exception of fig 3.3a where K0/R0 start deviating from its
constancy in time after t/Tre f = 80, all the figures where we plot quantities versus time do
not show a drastic change after t/Tre f = 80, which is why we chose to process our data till
t/Tre f = 100 rather than t/Tre f = 80. There is no effect on our paper’s conclusions.
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Fig. 3.3 The ratios K0/R0, K0/u2
0 and the constancy of the normalised volume flux between

t/Tre f = 26 to t/Tre f = 98.
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3.4.2 Time dependence of scaling parameters and virtual origin

The time dependencies of the centreline streamwise velocity scale u0(t) and of the jet
half-width δ (t), eqs. 3.19 and 3.20, are found to be power laws

φ(t) = A(t − t0)b (3.32)

in the theoretical analysis of section 3.2. It is important to note that these two power laws
must properly combine to satisfy the governing equations and that this can only happen if the
virtual origin t0 is the exact same one in eqs. 3.19 and 3.20 (Cafiero and Vassilicos, 2019;
Dairay et al., 2015; Nedić, 2013; Nedić et al., 2013).

There exist various methods for the determination of the exponent b while taking proper
account of the virtual origin t0 (Cafiero and Vassilicos, 2019; Dairay et al., 2015; Nedić et al.,
2013). In the present study, the method used in Cafiero and Vassilicos (2019) is implemented
on u0(t)∼ (t − t0)b and δ (t)∼ (t − t0)−b.

The procedure starts with initial fits to the u0 data in the form u0 ∼ tb and to the δ data
in form δ ∼ t−b in agreement with volume flux conservation, eq. 3.6. By this step, two
approximate values for the exponent b are obtained as initial guesses. Then the value of the
exponent is varied in a certain range around the initial guess in order to find the corresponding
t0 values for every value of b. This procedure is carried out for both u0 and δ separately.
Plotting the resulting (b, t0) pairs yields the plot in figure 3.4, where red and blue colours
differentiate the values obtained from the u0 and the δ data. At the point where these two
lines intersect, the best fit values (b, t0) are the ones which take into account that the virtual
origin must be identical for both u0 and δ . These values are b =−0.51 and t0 = 11.7. The
time evolutions of u0 and δ in the time range t/Tre f = 30 to /Tre f = 100 and their power law
fits with the pair (b =−0.51, t0 = 11.7) are shown in figure 3.5.

At this point we recall our result of section 3.2 that, unlike spatially developing turbulent
jets (Cafiero and Vassilicos, 2019), the evolutions (in time) of u0 and δ0 in temporally
developing turbulent jets are independent of the exponent m in the turbulence dissipation law
3.18. The values found for b and t0 from the DNS data are compatible with the theoretical
value b =−0.5 obtained in section 3.2 for any exponent m.

3.4.3 Fractal dimensions of the TNTI

The theoretical analysis in section 3.2 relates the fractal dimension of the TNTI to the global
Reynolds number scaling of the TNTI propagation velocity, see eq. 3.26. It is therefore
important to investigate the fractal/fractal-like properties of the TNTI.
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Fig. 3.4 The optimal virtual origin t0 as a function of exponent b for the time evolutions of u0
(blue disks) and δ (red squares). The dashed vertical lines show the best fit exponent b for
t0 = 0 (blue for u0, red for δ ) and the green diamond marks the one value of b for which t0 is
the same for both equations 3.19 and 3.20.
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Fig. 3.5 Time variation of u0 and δ with the best power law fits obtained by the procedure
based on figure 3.4.

The fractal/fractal-like nature of scalar iso-surfaces relating to the TNTI has been reported
in various studies (Dimotakis and Catrakis, 1999; Lane-Serff, 1993; Miller and Dimotakis,
1991; Mistry et al., 2018, 2016; Sreenivasan, 1991; Sreenivasan et al., 1989). However, these
fractal/fractal-like characteristics are described somewhat differently in different studies. In
some studies, a well-defined power-law for the scale dependence of the surface area (thus
constant fractal dimension) has been reported (Mistry et al., 2018, 2016; Sreenivasan, 1991;
Sreenivasan et al., 1989). This is the case where, when one covers the surface with boxes of
the size of r, the number N of boxes needed to fully cover the surface scales as N(r)∼ r−D f

(Mandelbrot, 1982) and the fractal dimension D f of the surface is independent of r over
a significant range of scales r. In other studies of iso-surfaces, in flows such as turbulent
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jets and mixing layers, a scale-dependent fractal dimension is reported, i.e. D f = D f (r),
which means that there is no constant value for the fractal dimension D f but that the fractal
dimension varies with box size r (Catrakis and Dimotakis, 1999; Dimotakis and Catrakis,
1999; Miller and Dimotakis, 1991).

There is also the question of the enstrophy threshold used to define the TNTI because a
strong threshold dependence of the fractal dimension of scalar iso-surfaces has been reported
in some studies (Flohr and Olivari, 1994; Lane-Serff, 1993; Miller and Dimotakis, 1991).
Varying the threshold within the range of thresholds where VJ remains about constant is akin
to sampling different inner iso-enstrophy surfaces within the TNTI layers inner structure
(van Reeuwijk and Holzner, 2014). There may not be one single fractal dimension for the
TNTI, but different fractal dimensions for different inner iso-surfaces of enstrophy within the
TNTI layer, an aspect of the problem which needs to be investigated.

We apply the box-counting procedure to obtain fractal dimensions of iso-enstrophy
surfaces within the TNTI. Figure 3.6 shows typical ensemble averaged box-counting results,
these particular ones being for the iso-surface ω2

th/ω2
re f = 10−3 at time t/Tre f = 50. The

plot on the left is a log-log plot of the number N of boxes needed to cover the iso-enstrophy
surface versus the inverse box size 1/r. The linear fit in orange is obtained by using all the
points on the plot, and the slope of this fit is found to be D f 1 = 2.161 for this particular case.
On the other hand, local slopes are also calculated by fits over 9 consecutive data points on
this plot. It is observed (see example in figure 3.6 (right)) that the local slope does not remain
constant throughout all scales r. An approximately constant fractal dimension, seen as a
plateau-like region on the right plot of Figure 3.6, appears to exist between r = δ and r = λ

for the entire range of iso-surfaces of various enstrophy threshold values within the TNTI
(ω2

th/ω2
re f between 10−6 and 10−3) and for all times where the jet is fully turbulent (local

slope values marked by red square markers). Note that the constancy of this local fractal
dimension is affected by the fact that it is calculated by using 9 points around the value of r
where the local dimension is evaluated. This means that the highly non-constant values of
the fractal dimension at scales r larger than δ are responsible for deviations from constancy
at scales close to but below δ ; and that the progressive decrease of the local slope towards
D f = 2 as r decreases at scales r below λ is responsible for the systematic deviation from
constancy at scales close to yet larger than λ .

Throughout this study, the fractal dimension is calculated as the average value of the local
slopes between box sizes r = δ and r = λ , and this fractal dimension is denoted D f 2. The
first point with r smaller than or equal to δ (i.e. the largest value of r in the range λ ≤ r ≤ δ )
is excluded from this average so as to reduce the oscillation caused by less converged values
of N at larger box sizes.
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Fig. 3.6 Ensemble-averaged results of the box-counting method applied to iso-surface
ω2

th/ω2
re f = 10−3 at time t/Tre f = 50. On the left, a plot of the number of boxes N of

size r versus 1/r is shown in log-log scale, the orange line is the linear best fit for all data
points on this plot. The plot on the right shows the local slope calculated by the fits using
9 consecutive data points, the value of the local slope being attributed to the centre point.
The local slopes marked as red squares (as opposed to blue disks) are the points used to
calculate D f 2. The dashed, dot-dashed and dotted vertical lines located on the horizontal axis
the length scales δ , λ and η respectively. (λ and η are calculated on the centre-plane.)

The fractal dimension D f 2 for different enstrophy threshold values in the TNTI range
ω2

th/ω2
re f =

[
10−6,10−3] is shown in figure 3.7 as a function of time. The fractal dimensions

D f 2 of the TNTI may be considered to remain approximately constant in time for all these
enstrophy thresholds and the mean value around which D f 2 appears to fluctuate is shown by
the dashed lines in the figure. For the threshold values ω2

th/ω2
re f =

[
10−6,10−3], this fractal

dimension value varies from D f 2 = 2.09 to D f 2 = 2.18. It can be observed that the values of
D f 2 for different ω2

th/ω2
re f get closer to each other towards the lower values of ω2

th/ω2
re f . It

can also be argued that an objective definition of the viscous superlayer must include within
the superlayer, enstrophy iso-values for which the fractal dimension can be detected with a
value larger than 2.

A significantly higher value, D f 2 = 2.36, has been observed for the iso-enstrophy surface
defined by the threshold ω2

th/ω2
re f = 10−2. This value is close to the fractal dimension 7/3 ≈

2.33 reported in various studies (Mistry et al., 2018, 2016; Sreenivasan, 1991; Sreenivasan
et al., 1989). It must be noted that the enstrophy threshold ω2

th/ω2
re f = 10−2 rests on the

turbulent side of the TNTI judging from the enstrophy range of the plateau showed in figure
2.7. However, it is also observed that the log2N − log2(1/r) plot obtained from the box-
counting algorithm for this enstrophy threshold shows no evidence of a fractal dimension that
is independent of r, i.e. there is no significant plateau region in the right plot of figure 3.8 and
the local slope varies significantly with r. The value D f 2 = 2.36 is obtained by averaging
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Fig. 3.7 TNTI fractal dimensions D f 2 versus time t/Tre f for different normalised enstrophy
thresholds within the TNTI.

over the local fractal dimensions (local slopes in the right plot of figure 3.8) from r = λ to
r = δ , but these local fractal dimensions vary continuously with r from 2.2 to over 2.45.
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Fig. 3.8 Same as figure 3.6 but for iso-enstrophy surface ω2
th/ω2

re f = 10−2 at same time
t/Tre f = 50.

3.4.4 Propagation velocity of the interface

In section 3.2 we obtained formula 3.26 for the TNTI’s mean propagation velocity on the basis
of the fractal/fractal-like character of the TNTI. We now know, following the previous sub-
section, that the TNTI of our time-developing turbulent jet has a range of fractal dimensions
D f 2 depending on the normalised enstrophy threshold ω2

th/ω2
re f , and that D f 2 is a fairly

well-defined single number independent of box size r in the range λ ≤ r ≤ δ if ω2
th/ω2

re f is
in the range

[
10−6,10−3]. The question which naturally arises now is: does formula 3.26

capture the time and enstrophy-threshold dependencies of the mean propagation velocity
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vn? More specifically, can we use D f 2 = D f 2(ω
2
th/ω2

re f ) defined in the range λ ≤ r ≤ δ as
the fractal dimension in formula 3.26 to accurately capture the time and enstrophy threshold
dependencies of vn? We stress that in this formula, vn depends on the enstrophy threshold only
through D f 2 given that A is defined in terms of quantities which are independent of enstrophy
threshold and a in VJ = 2aδLxLz can be expected to have a negligibly weak dependence on
enstrophy threshold.

To estimate vn independently from our formula 3.26 we use equation eq. 3.22, having
first checked the validity of d

dtVJ = 2aLxLz
d
dt δ (see figure 3.9) which is needed to go from eq.

3.21 to eq. 3.22. Figure 3.9 confirms that the dimensionless coefficient a is approximately
independent of time as it oscillates around the constant value a = 1.66 and that it is also very
weakly dependent on enstrophy threshold over at least four decades.
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Fig. 3.9 Validity of d
dtVJ ∼ 2LxLz

d
dt δ over the time evolution of the fully turbulent jet.

To use eq. 3.22 we need a reliable estimate of the TNTI surface area S that is different from
the fractal estimate 3.23. To obtain such an estimate of S we plot r2N(r): as the box-counting
algorithm’s box size r decreases and becomes small enough to resolve all the contortions of
the iso-enstrophy surface, r2N(r) reaches a maximum and does not grow further with further
decreasing r. We take this maximum as our estimate of S, i.e. S = SR ≡ maxr[r2N(r)]. Of
course, S depends on the enstrophy threshold defining the chosen iso-surface within the TNTI
and figure 3.10a shows an example of a r2N(r) versus 1/r log-log plot for ω2

th/ω2
re f = 10−3

at t/Tre f = 50 where the maximum r2N(r) is reached at r close to η . In fact, figure 3.10a is
quite typical of normalised enstrophy thresholds in the range

[
10−6,10−3] and times t/Tre f

in the range [30,100].
In figure 3.10b we plot SR ≡ maxr[r2N(r)] as a function of t/Tre f for various normalised

enstrophy thresholds. Interestingly, the TNTI surface areas SR remain approximately constant
in time for all thresholds ω2

th/ω2
re f = 10−6 to 10−4 from t/Tre f = 40 to 100 and for threshold
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Fig. 3.10 Plot of r2N(r) versus 1/r, at time t/Tre f = 50, for the threshold value ω2
th/ω2

re f =

10−3 and SR/(LxLz)≡ maxr[r2N(r)]/(LxLz) versus time t/Tre f with different ω2 thresholds.

ω2
th/ω2

re f = 10−3 from t/Tre f = 50 to 100. This is compatible with the fact that all length
scales, large and small, grow together in this flow.

We now calculate the average TNTI propagation velocity vn by using eq. 3.22 with S ob-
tained from SR ≡maxr[r2N(r)] and we compare it with formula 3.26. Firstly, in figure 3.11 we
check the time-dependence of vn which, according to formula 3.26 and δ ∼

√
UJHJ(t − t0),

is the same as the time dependence of uη and of uλ . In support of this prediction, figure 3.11
shows that vn/uη and vn/uλ oscillate around a constant as time proceeds for all ω2

th/ω2
re f in

the range
[
10−6,10−3].

Secondly, we check the enstrophy threshold dependence of vn which, according to for-

mula 3.26, should be vn/uη ∼ (Aa)1/(D f (ω
2
th/ω2

re f )−1)Re
[2−D f (ω

2
th/ω2

re f )]/[D f (ω
2
th/ω2

re f )−1]+1/4
G and

equivalently vn/uλ ∼ (Aa)1/(D f (ω
2
th/ω2

re f )−1)Re
[2−D f (ω

2
th/ω2

re f )]/[D f (ω
2
th/ω2

re f )−1]+1/2
G . We plot

vn/uη versus ω2
th/ω2

re f for various time instants t/Tre f in figure 3.12a; and we take our mea-
sured D f 2(ω

2
th/ω2

re f ) (averaged over time for simplicity, this average being denoted D f 2) to

represent the fractal dimension D f and plot (vn/uη)(Aa)−1/(D f 2−1)Re
−(2−D f 2)/(D f 2−1)
G versus

ω2
th/ω2

re f for various time instants t/Tre f in figure 3.12b. If our formula 3.26 is able to capture

the enstrophy threshold dependence of vn, then (vn/uη)(Aa)−1/(D f 2−1)Re
−(2−D f 2)/(D f 2−1)
G

should be constant with varying ω2
th/ω2

re f for all times t/Tre f between 30 and 100 with
a ≈ 1.66 (as already found from figure 3.9) and A ≈ 0.058 from figure 3.2a.

We can clearly see in figure 3.12a that, irrespective of time, vn decreases with increasing
ω2

th/ω2
re f in the TNTI normalised enstrophy range

[
10−6,10−3]which makes sense because S

increases with increasing ω2
th/ω2

re f . Indeed, we expect Svn to be approximately independent
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of ω2
th/ω2

re f in the TNTI range of enstrophy thresholds, judging from eq. 3.21 and the
approximate constancy of VJ in that range (shown in figure 2.7).

Figure 3.12b shows that our formula 3.26 for the TNTI’s mean propagation velocity
vn with D f given by D f 2(ω

2
th/ω2

re f ), the time-averaged (from t/Tre f = 30 to 98) value of
D f 2(ω

2
th/ω2

re f ), captures the enstrophy threshold dependence of vn very well over the wide
range of thresholds 10−6 ≤ ω2

th/ω2
re f ≤ 10−3 which is within the TNTI throughout the time

range considered.
In the following section, we explore the inconsistencies of the simple fractal model for vn

presented in section 3.2 and investigate how they might be overcome.

3.4.5 A generalised Corrsin length for the TNTI

Our simple fractal model’s formula 3.26 predicts both the time dependence of the TNTI’s
mean propagation velocity vn and its enstrophy threshold dependence quite well. However,
our fractal model did not foresee the complex inner structure of the TNTI where different
iso-enstrophy surfaces within the TNTI have different fractal dimensions.

Our model is based on (i) d
dtVJ = 2aLxLz

d
dt δ (needed to go from eq. 3.21 to eq. 3.22)

which our simulations rather support (see figure 3.9); (ii) S = LxLz(ηI/δ )2−D f where ηI =

ν/vn is the Corrsin length-scale for the viscous superlayer’s thickness; and (iii) a well-defined
fractal dimension D f independent of r over a significant range of r values bounded from
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below by the smallest length scale on the TNTI. In the event, our DNS data have returned
well-defined fractal dimensions D f 2 independent of r in a range bounded from below by λ

but not by the smallest length-scale on the TNTI, which appears to be η as the maximum
of r2N(r) is typically reached at r close to η . The number N of boxes needed to cover iso-
enstrophy surfaces continues to increase faster than r−2 as r decreases from λ to η , implying
that these scales between λ and η contribute to the surface area, but not with a well-defined
r-independent fractal dimension. Furthermore, in the range where a r-independent fractal
dimension may be claimed, i.e. λ ≤ r ≤ δ , this fractal dimension D f 2 is a decreasing function
of enstrophy threshold ω2

th/ω2
re f appearing to tend towards close to 2 as ω2

th/ω2
re f tends to 0.

In figure 3.13 we plot S(η) = LxLz(η/δ )2−D f 2 , S(λ ) = LxLz(λ/δ )2−D f 2 and S(ηI) =

LxLz(ηI/δ )2−D f 2 , all normalised by SR ≡ maxr[r2N(r)]. These three quantities are plotted
versus time for different enstrophy thresholds within the TNTI range of thresholds, i.e.
ω2

th/ω2
re f within

[
10−6,10−3]. The fractal dimension D f 2 is our only possible choice of

fractal dimension for the calculations of S(η), S(λ ) and S(ηI) if we want to be consistent with
our model’s requirement that the fractal dimension should be well-defined, i.e. r-independent
over a significant r-range.

Firstly, figure 3.13 shows that S(η)/SR, S(λ )/SR and S(ηI)/SR are about constant in
time for all TNTI enstrophy thresholds, which is not surprising given the approximate time
constancies of D f 2 and of SR and given that η , λ and ηI have the all same time-dependence as
δ . Secondly, figure 3.13 shows that only S(η)/SR collapses for all enstrophy thresholds. This
is not a trivial result because S(η) is calculated in terms of a fractal dimension D f 2 which is
not well-defined at scale η . The worse collapse is returned by S(λ )/SR; and S(ηI)/SR tends
towards S(η)/SR with decreasing ω2

th/ω2
re f which makes some sense because, in this limit,
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D f 2 decreases towards values close to 2 and ηI/η therefore approaches a value of order 1
extremely weakly dependent on ω2

th/ω2
re f (see section 3.2). However, S(ηI)/SR takes values

between 1/5 and 1/4 which is different from 1 and therefore contradicts eq. 3.25 which
is a premise of our model. In fact, there is a dimensionless coefficient b in eq. 3.23, i.e.
S(r) = bLxLz(r/δ )2−D f . This coefficient b is independent of enstrophy threshold because it is
set by S(r = δ ) = bLxLz. The only way to retrieve 3.25 is by writing S = bLxLz(cηI/δ )2−D f

with bc2−D f = 1 which requires that the dimensionless coefficient c is a function of ω2
th/ω2

re f .
Without the arbitrary condition bc2−D f = 1, the formula 3.26 predicted by our simple fractal
model should be replaced by

vn

UJ
=

(
cD f−2

b

)1/(D f−1)

(Aa)1/(D f−1) HJ

δ
Re

−(D f−2)/(D f−1)
G . (3.33)

The quantity cD f −2

b is in fact the ratio S(ηI)/SR (with S(ηI) given by LxLz(ηI/δ )2−D f 2)
that we plot in figure 3.13 and from our data it transpires that (S(ηI)/SR)

1/(D f 2−1) is a
significantly decreasing function of ω2

th/ω2
re f (see figure 3.14). Without setting cD f −2

b = 1 our

model does not return the right enstrophy threshold dependence of vn, and cD f −2

b = 1 does not
agree with our DNS data which show that S(ηI)/SR (with S(ηI) given by LxLz(ηI/δ )2−D f 2)
takes values between 1/5 and 1/4. We therefore need to explore how our model could be
modified to be more realistic, and we do this by generalising the Corrsin length.

The Corrsin length may be considered appropriate only for the viscous superlayer at the
very lowest enstrophy thresholds where the generation of vorticity is viscosity-dominated
and, consistently, S(ηI)/SR and S(η)/SR appear to take similar values. To generalise this
property to higher enstrophy thresholds, we introduce a generalised Corrsin length

ηT = νT/vn (3.34)

in terms of a local turbulent viscosity νT (local to every iso-enstrophy surface within the
TNTI) such that

S = bLxLz(cηT/δ )2−D f 2 (3.35)

where b and c = c(ReG,ω
2
th/ω2

re f ) are dimensionless coefficients independent of time.
The simple physical idea behind eq. 3.34 is that the process of enstrophy production is

increasingly dominated by vortex stretching rather than viscosity as the enstrophy threshold
increases from the outer, viscous superlayer, side of the TNTI to its inner, turbulent, side.
Studies over the past two decades have indeed shown that the TNTI has an inner structure
which includes a viscous superlayer and a sort of buffer layer or turbulent sublayer where
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vorticity production dominates (da Silva et al., 2014; Nagata et al., 2018; Taveira and
da Silva, 2014a). Hence, the turbulence viscosity νT = νT (ω

2
th/ω2

re f ) is expected to increase
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and become independent of the fluid’s kinematic viscosity ν with increasing ω2
th/ω2

re f within
the TNTI.

We now ask whether equations 3.34, 3.35 and 3.22, which represent an attempt to improve
the model for vn in section 3.2, are consistent with the requirement that νT must increase
with ω2

th/ω2
re f . The three equations just mentioned imply

νT =
2aδ

c
dδ

dt

(
S

bLxLz

)−(D f 2−1)/(D f 2−2)

(3.36)

where the dimensionless constant a is the one in Svn = 2aLxLzdδ/dt. It can be seen that
νT depends on ω2

th/ω2
re f through S and D f 2 (and also c) but does not depend on time in

agreement with our observations in figures 3.2a, 3.10b and 3.7. As S/LxLz increases whereas
(D f 2 − 1)/(D f 2 − 2) decreases with increasing ω2

th/ω2
re f , it is not trivial to predict how(

S
LxLz

)−(D f 2−1)/(D f 2−2)
behaves with varying ω2

th/ω2
re f . We therefore use time-averaged

values of S and D f 2 obtained in the previous section for different enstrophy thresholds and
plot in figure 3.15 the turbulent viscosity νT given by eq. 3.36 with c set to a constant
independent of ω2

th/ω2
re f and δ

dδ

dt = 1
2

dδ 2

dt given by the DNS. The result shows that νT with
c =Const is a monotonically increasing function of ω2

th/ω2
re f as required for our improved

model to be physically viable. This means that ηT = νT/vn is also a monotonically increasing
function of ω2

th/ω2
re f because eq 3.22 implies that vn is a decreasing function of ω2

th/ω2
re f .

However, the result in figure 3.15 also suggests that νT and ηT tend to 0 as ω2
th/ω2

re f

decreases towards 0 whereas νT should be tending towards the kinematic viscosity ν in that
limit. In the following paragraph, we demonstrate how the model’s dimensionless coefficient
c(ReG,ω

2
th/ω2

re f ) can ensure that νT tends to ν as ω2
th/ω2

re f → 0, i.e. as we move towards
the outer edge of the TNTI.

We model c as being a constant independent of both ReG and ω2
th/ω2

re f for most en-
strophy thresholds within the TNTI except the smallest ones where we approximate it as
c(ReG,ω

2
th/ω2

re f ) ≈ ReGc̃(ω2
th/ω2

re f ) with c̃ being a function of ω2
th/ω2

re f but not of ReG.
Given that δ

dδ

dt = A
2UJHJ (from eq. 3.20), we can write 2aδ

c
dδ

dt ≈ Aaν

c̃ as ω2
th/ω2

re f → 0, i.e.

νT ∼ Aa
ν

c̃

(
S

bLxLz

)−(D f 2−1)/(D f 2−2)

. (3.37)
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Fig. 3.15 The turbulent viscosity νT given by eq. 3.36 with a/c = 1 and b = 1 as a function
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in that limit. For νT to tend to ν as ω2
th/ω2

re f → 0, c̃ must tend to 0 at the same rate as(
S

bLxLz

)−(D f 2−1)/(D f 2−2)
, i.e.

ln c̃ ≈−D f 2 −1
D f 2 −2

ln(
S

bLxLz
)+ const (3.38)

as ω2
th/ω2

re f → 0. It is not the goal of this paper’s final part to determine the functions
νT (ReG,ω

2
th/ω2

re f ) and c(ReG,ω
2
th/ω2

re f ) in the improved model for vn based on eqs. 3.34,
3.35 and 3.22; the goal here is simply to demonstrate on the basis of our DNS and simple
asymptotic arguments that such a model can be physically viable. The example of a choice
of c(ReG,ω

2
th/ω2

re f ) that we made at the start of this paragraph ensures that νT remains
a monotonically increasing function of ω2

th/ω2
re f while at the same time tending to ν as

ω2
th/ω2

re f tends to 0. We now work out the consequences of this choice for ηT and vn.
The formulae for vn and ηT which can be readily derived from our improved model are

vn/uη ∼
(

c(D f 2−2)

b

) 1
D f 2−1

(Aa)
1

D f 2−1 Re
−D f 2−2

D f 2−1+
1
4

G (νT/ν)
D f 2−2
D f 2−1 (3.39)

and

ηT/η ∼
(

c(D f 2−2)

b

) −1
D f 2−1

(Aa)
− 1

D f 2−1 Re
D f 2−2
D f 2−1− 1

4

G (νT/ν)
−D f 2−2

D f 2−1 (νT/ν) (3.40)
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Note that the original model of section 3.2 leads to vn/uη ∼ (Aa)
1

D f 2−1 Re
−D f −2

D f −1+
1
4

G and

ηI/η ∼ (Aa)
− 1

D f 2−1 Re
D f −2
D f −1− 1

4

G without the extra powers of cD f 2−2/b and νT/ν in eqs. 3.39
and 3.40.

Without these extra powers, the original model predicts the dependence of vn on ω2
th/ω2

re f

very well. In our improved model, (νT/ν)
D f 2−2
D f 2−1 is an increasing function of enstrophy thresh-

old because νT/ν is increasing and because the exponent D f 2−2
D f 2−1 is also increasing given that

D f 2 is an increasing function of ω2
th/ω2

re f as observed in our DNS. Our improved model
is therefore capable of maintaining the original model’s good prediction for vn if the in-

creasing dependence of (νT/ν)
D f 2−2
D f 2−1 on ω2

th/ω2
re f compensates the decreasing dependence of

(cD f 2−2/b)1/(D f 2−1) on ω2
th/ω2

re f . Indeed, cD f 2−2/b is not equal to 1 and (cD f 2−2/b)1/(D f 2−1)

is a decreasing function of enstrophy threshold, in agreement with our DNS observation in
the bottom plot of figure 3.13. The entire point of our improved model has been to show that
by introducing the generalised Corrsin length and the turbulent viscosity νT it is possible
to correct our original model’s wrong assumption cD f 2−2/b = 1 without compromising its
correct predictions.

We now show that the choice of c that we made for νT to tend to ν as ω2
th/ω2

re f → 0 also
ensures that the generalised Corrsin length ηT tends to a finite value in that limit. As we
move within the TNTI from high to low iso-enstrophy levels, i.e. as we take the limit of
ω2

th/ω2
re f decreasing towards very small values close to 0 and we approach the outer edge

of the viscous superlayer, D f 2 tends towards values close to 2 and νT tends to ν assuming
c(ReG,ω

2
th/ω2

re f )≈ ReGc̃(ω2
th/ω2

re f ) in that limit. We are therefore left with

vn/uη ∼ c̃
D f 2−2
D f 2−1 Re

1
4
G (3.41)

and

ηT/η ∼ c̃
−D f 2−2

D f 2−1 Re
− 1

4
G (3.42)

as we approach the outer edge of the viscous superlayer (we have omitted the unimportant

factor Aa/b). Finally, eq. 3.38 implies c̃
D f 2−2
D f 2−1 ∼ LxLy/S, and therefore our generalised

model’s predictions for the viscous superlayer where D f 2 is very close to 2 and ω2
th/ω2

re f is
extremely small are

vn/uη ∼ LxLz

Sν

Re
1
4
G (3.43)
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and
ηT/η ∼ Sν

LxLz
Re

− 1
4

G (3.44)

where Sν is the finite surface area of the effectively smooth viscous superlayer of the
TNTI. Our generalised model with c(ReG,ω

2
th/ω2

re f )≈ ReGc̃(ω2
th/ω2

re f ) and eq. 3.38 at the
very smallest enstrophy levels and c = 1 above those enstrophy levels implies that ηT is
a monotonically increasing function of ω2

th/ω2
re f with a finite value different from η by a

factor Re−1/4
G at the very smallest enstrophy thresholds. The exponent 1/4 being small, this

prediction is not easy to check as it requires numerical oscillation-free calculations at low
enstrophy thresholds for many highly resolved DNS of temporally developing turbulent
jets over a wide range of Reynolds numbers ReG (see section 2.3 for some details about
higher Reynolds number simulations and the importance of spatial resolution). This is at, and
perhaps even beyond, the very limit of the most powerful current computational capabilities
and therefore beyond the present paper’s scope. Such a computational check would also
require a computable definition or surrogate for ηT which we make a first attempt to give in
the following couple of paragraphs. Before doing so, however, we point out that Silva et al.
(2018) argued that the viscous superlayer thickness scales with the Kolmogorov length if
Reλ is larger than about 200 and that the TNTI layer’s characteristic sizes may have different
scalings at smaller values of Reλ depending on presence or absence of mean shear (see
(da Silva and Taveira, 2010) and references therein). It must be stressed that the definition
of the viscous superlayer used by Silva et al. (2018) does not necessarily include some low
iso-enstrophy surfaces with fractal dimensions clearly larger than 2 (see discussion around
figure 3.7 in subsection 3.4.3) and, more importantly, is not local in enstrophy threshold (i.e.
it does not depend on the local position within the TNTI) and is therefore different from ηT

which is local in enstrophy threshold. The scaling 3.44 does not necessarily contradict the
scalings in Silva et al. (2018) as they concern different quantities.

We close this section with an interpretation of the generalised Corrsin length ηT . As
ηT is local in terms of iso-enstrophy levels within the TNTI and as it expresses some kind
of thickness of iso-enstrophy surfaces, it appears natural to compare it with some average
enstrophy length scale on the TNTI. To this end, we use enstrophy profiles conditioned on
the interface location similar to Bisset et al. (2002). We define a local coordinate system with
local coordinate yI chosen along the local normal unit n =− ∇ω2

|∇ω2| which is pointing towards
the non-turbulent region. The origin yI = 0 of this local coordinate system is placed at a given
location within the TNTI, for example on the iso-surface defined by ω2

th/ω2
re f = 10−6, located

at the very edge of the TNTI neighbouring the non-turbulent region. This way, positive
values of yI correspond to the very edge of the viscous superlayer and the non-turbulent
region whereas negative values of yI are within the TNTI and the turbulent region. Given
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such local coordinate systems on the TNTI, we calculate averages of any quantity φ at a
given yI over all locations on the TNTI where the local yI axis does not cross the TNTI more
than once in the range yI = [−27η ,+27η ]. We use the notation φI to denote these average
quantities, averaged conditionally on the specified iso-surface location.

Figure 3.16 shows the vorticity magnitude and the enstrophy profile, averaged condi-
tionally on the distance from the enstrophy iso-surface ω2

th/ω2
re f = 10−6: the profiles are

normalized by the average values of the respective quantities at the centre-plane. The drastic
change of both vorticity and enstrophy values in a very short distance is visible as shown
previously in studies using similar methods e.g. Nagata et al. (2018); Silva et al. (2018);
Watanabe et al. (2019).
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Fig. 3.16 Vorticity magnitude and enstrophy values averaged conditionally on the distance
from the iso-enstrophy surface defined by ω2

th/ω2
re f = 10−6 for the simulation PJ1.

We define the local length ηω ≡
(

dω2
I

dyI
1

ω2
I

)−1
. In figure 3.17a we plot ηω/η versus

ω2
I /ω2

re f . In agreement with ηT , ηω is an increasing function of enstrophy, ω2
I /ω2

re f in
this case: iso-enstrophy surfaces get further away from each other on average as ω2

I /ω2
re f

increases within the TNTI. At the very smallest enstrophy thresholds, ηω appears to tend to
a finite value that is significantly smaller than η , which is also in agreement with ηT at high
enough ReG (see eq. 3.44)

We also plot ηω/η versus yI/η in figure 3.17b. In this figure yI = 0 corresponds to the iso-
enstrophy surface ω2

th/ω2
re f = 10−6. We see that the profile of ηω along yI is exponentially

decreasing with increasing yI . The linear region ends near yI/η ≈ −2.5. This is due to
some points where the normal enstrophy profiles do not decrease monotonically to zero
when going towards the non-turbulent region, even though the local enstrophy values always
remain lower than the threshold value.
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PJ1 simulation. This plot is typical for all times
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(b) Profile of ηω along yI/η , for the iso-
enstrophy surface detected by ω2

th/ω2
re f = 10−6.

Fig. 3.17 Variation of ηω/η with ω2
I /ω2

re f and yI/η at t/Tre f = 50, in PJ1 simulation.

3.5 Conclusion

To determine the mean flow profile evolution, we have applied to the temporally developing
turbulent planar jet the approach typically applied to spatially developing free turbulent shear
flows. This approach is based on self-similarity and on mass, momentum and turbulent
kinetic energy balance equations (Cafiero and Vassilicos, 2019; George, 1989; Townsend,
1976). The turbulent kinetic energy equation involves the turbulence dissipation rate and
one needs to specify the turbulence dissipation rate’s scalings in order to close the problem.
While dissipation of the turbulent kinetic energy takes place exclusively at the smallest scales
in the flow, there are different ways through which the energy may be transferred to those
scales, that is, different types of turbulence cascades (e.g. equilibrium, non-equilibrium,
balanced non-equilibrium, see Cafiero and Vassilicos (2019); Dairay et al. (2015); Goto
and Vassilicos (2016); Vassilicos (2015)). The presence of different types of large-scale
coherent structures can lead to different turbulence dissipation scalings due to different
turbulent cascade properties (Goto and Vassilicos, 2016; Ortiz-Tarin et al., 2021). In turn,
different dissipation scalings lead to different self-similar mean flow profile evolutions as
already found in various spatially developing turbulent flows (e.g. Cafiero and Vassilicos
(2019); Dairay et al. (2015); Ortiz-Tarin et al. (2021); Vassilicos (2015)) and to different
TNTI mean propagation speeds as demonstrated by Cafiero and Vassilicos (2020) for the
spatially developing turbulent planar jet.

The temporally developing self-similar turbulent planar jet is exceptional because the
scalings of its mean flow profile evolution do not depend on the scalings of the turbulence
dissipation rate. Whatever the exponent m in eq. 3.18, the scalings of the centreline mean
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flow velocity u0 and jet width δ are given by eqs. 3.19 and 3.20. The reason why the
temporally developing self-similar jet is fundamentally different from its spatially developing
counterpart is that it conserves volume flux and has identically zero cross-stream mean
flow velocity, whereas spatially developing turbulent planar jets do not conserve volume
flux and have non-zero cross-stream mean flow velocity. As a result, in the case of the
temporally developing self-similar turbulent planar jet, the δ , η and λ , all grow as the square
root of time, and u0, uη and vn all decay as the inverse square root of time irrespective
of turbulence dissipation scaling. The Reynolds number based on λ remains constant in
time. All these theoretical predictions and the assumptions that they are based on have been
verified by our DNS of a temporally evolving turbulent planar jet. Note that the volume flux
which is conserved in our flow is not conserved in many other flows with a TNTI besides
spatially-developing jets such as wakes (e.g. Watanabe et al. (2016b)), boundary layers (e.g.
Borrell and Jimenez (2016)) and mixing layers (e.g. Attili et al. (2014) and Balamurugan
et al. (2020)). One should therefore be very careful if attempting to extend the applicability
of the present results to other turbulent flows with a TNTI.

The prediction for the TNTI mean propagation speed has been made on the basis of
(i) a proportionality between the turbulent jet volume and the jet width growth rates which
have been verified by our DNS; (ii) an assumption that the TNTI is fractal with a well-
defined fractal dimension; (iii) an assumption that the smallest geometrical scale on the
TNTI scales with the Corrsin length which characterises generation of vorticity by viscous
diffusion; and (iv) a particular way to blend assumptions (ii) and (iii) together, eq. 3.25. The
geometrical picture of the TNTI returned by our DNS has turned out to be more involved
than assumptions (ii), (iii) and (iv) which make no reference to the TNTI’s inner structure.
Even so, the prediction that the TNTI mean propagation speed evolves as the inverse square
root of time has been validated by our DNS.

The TNTI has an inner structure over a wide range of closely spatially packed iso-
enstrophy surfaces and it turns out that different iso-enstrophy surfaces have different fractal
dimensions. These fractal dimensions vary from about 7/3 at the innermost iso-enstrophy
surface on the fully turbulent side of the TNTI to close to 2 at the outermost iso-enstrophy
surface on the non-turbulent flow side of the TNTI. However, the 7/3 value, which according
to the theory based on assumptions (i), (ii) and (iii), corresponds to a TNTI mean propagation
speed that scales with the Kolmogorov velocity uη , is not well-defined in the sense that it
is a fit through a range of scales where the fractal dimension is not scale-independent as it
should be. Lower fractal dimension values between about 2.2 and under 2.1 are found for
iso-enstrophy surfaces with lower enstrophy values, i.e. towards the TNTI’s outer side. These
lower fractal dimensions are well-defined in a range of scales bounded by λ from below and
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δ from above. However, the smallest geometrical scales on these iso-enstrophy surfaces are
close to η and the scales between λ and η contribute significantly to the surface areas of
the iso-enstrophy surfaces even though these scales are not characterised by a well-defined
fractal dimension. The formula for the TNTI mean propagation speed vn obtained from
assumptions (i), (ii) and (iii) captures its time dependence because the time dependence is the
same for all iso-enstrophy surfaces. Perhaps remarkably, it also captures the iso-enstrophy
dependence of vn via the iso-enstrophy dependence of the fractal dimension. However, the
DNS invalidates eq. 3.25 on which the formula for vn is partly based and supports a form
such as eq. 3.35 instead.

Having found that different iso-enstrophy surfaces within the TNTI have different suffi-
ciently well-defined fractal dimensions over a range of scales bounded from below by λ and
that length scales below λ on these surfaces also contribute significantly to their surface area,
it is not possible to sweepingly argue that the Corrsin length ηI is the smallest length-scale
on the fractal/fractal-like/multiscale TNTI. Aiming to keep the model’s correct predictions
while at the same time abandoning the wrong premise (iv), we nevertheless keep the main
structure of our model by keeping assumptions (i) and (ii) and modifying (iii) and (iv).

For this, we introduce a generalised Corrsin length defined on the basis of an iso-enstrophy
surface-dependent turbulent viscosity νT which tends to the fluid’s kinematic viscosity ν

as the iso-enstrophy level tends to near-vanishing values at the viscous superlayer but is
independent of ν at higher iso-enstrophy levels. We demonstrate the physical viability of such
a model but leave for future investigation the detailed relation between νT and the enstrophy
production processes which vary from being viscosity dominated at the outer edge of the
TNTI (viscous superlayer) to being controlled by vortex stretching further in the turbulent
region. We do, however, show with our DNS that the generalised Corrsin length ηT depends
on iso-enstrophy levels similarly to the length-scale ηω defined by the local enstrophy
gradients within the TNTI: in particular, ηω is smaller than η at the outer edge of the TNTI,
larger than η at the inner edge of the TNTI, and monotonically increasing in between. Even
if incomplete at this stage, our revised model predicts that the mean propagation speed at the
outer edge of the viscous superlayer is proportional to the Kolmogorov velocity multiplied
by the 1/4th power of the global Reynolds number. We stress that this prediction is specific
to temporally developing self-similar turbulent planar jets which are very idiosyncratic flows
and that it should not necessarily be extended to spatially developing free turbulent shear
flows. Current computational capabilities at our disposal are insufficient for the wide range
of global Reynolds numbers required to verify this prediction.



Chapter 4

Local Analysis of the TNTI

4.1 Introduction

The TNTI is characterized by sharp gradients of vorticity and enstrophy in the interface nor-
mal direction. This implies that the transition from the non-turbulent region to the turbulent
region occurs over a very short distance, typically of the order of 10−15η as documented in
the literature (Silva et al., 2018). Furthermore, the local position and orientation of the TNTI
are highly irregular and vary significantly. Detecting, computing, or measuring the gradients
associated with the TNTI is particularly challenging due to these traits of the interface.

Despite the gradients being sharp locally at the TNTI location, they quickly get smeared
out when the statistics are obtained by the application of an averaging operation, without
taking into account the orientation and the position of the interface. To overcome this issue,
an averaging technique was introduced by Bisset et al. (2002) where they obtained statistics
of flow field variables conditionally on the interface location and, up to some extent, to its
local orientation. They have chosen to interpolate the local flow field variables on local
1D grids aligned with the cross-stream direction (y-axis), stream-wise direction (x-axis), or
span-wise direction (z-axis). The grid’s origin is set at the points on the interface which
is identified by a certain vorticity magnitude threshold. In their study, they decided not
to directly utilize the local surface normal vector for the alignment of the local 1D grid.
Instead, they divided the TNTI regions into distinct groups, such as those facing downstream,
upstream, spanwise, and vertical (cross-stream) directions (Bisset et al., 2002). For each
facing direction, a local 1D grid was aligned according to the specific condition. For instance,
in regions facing in the streamwise direction, they used a local 1D grid aligned with the
global x-axis.

With this methodology, they are able to analyze the properties of the TNTI surfaces facing
in various directions, effectively capturing the sharp gradients of flow variables associated
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with the interface. This method has proven to be valuable for investigating the irregular TNTI
layer and has been employed in numerous subsequent studies, including those by da Silva
and Pereira (2008); Silva et al. (2018); Watanabe et al. (2015); Zhou and Vassilicos (2020).
In these later studies, the local 1D grid is directly aligned with the direction of the local
surface normal vector. The direct use of the surface normal vector for the alignment of the
local 1D grid allows for the investigation of TNTI without any constraints on the orientation
of the interface as opposed to the approach used by Bisset et al. (2002).

In chapter 3, we introduced a global approach to calculate the average propagation
velocity of the interface, as shown in equation 3.33. However, starting from this chapter, we
shift our focus towards examining the local characteristics of the flow field near the TNTI. In
chapters 4 and 5 of this study, we employ a methodology based on the conditional averaging
technique introduced by Bisset et al. (2002) to analyze the local fields in the vicinity of the
TNTI. We will refer to this averaging process as TNTI-averaging in the text, as it involves
the averaging of the profiles and the local fields over the detected iso-enstrophy surface (IES)
while taking into account the location and local orientation of the TNTI.

There are two primary distinctions between the methodology employed in the current
study and that in the previous studies in the literature (da Silva and Pereira, 2008; Silva
et al., 2018; Watanabe et al., 2015; Zhou and Vassilicos, 2020). Firstly, for each local
point considered on the TNTI, the velocity field u with components (u,v,w) in the global
coordinate system is expressed in a local reference frame with components (ul,vl,wl). The
expression of the vector quantities in the TNTI local reference frame permits us to isolate the
effects of the local inhomogeneity associated with the presence of the TNTI in the statistics
of one of the components of the vector fields. This direction varies at each location on the
interface due to the changing orientation of the TNTI. For instance, in regions where the
TNTI is facing in the cross-stream direction, the ωy component decreases more rapidly when
going towards the non-turbulent direction than the other components, which are aligned with
the tangential directions of the TNTI and in regions where the interface is oriented towards
the spanwise direction, it will be the ωz component that is affected due to the presence of the
TNTI related to the fact that different components becoming interface normal/tangential in
different regions of the interface (see Watanabe et al. (2020) for the difference between the
local profiles of normal/tangential vorticity components).

Considering the irregular shape of the TNTI, even though the local flow field is averaged
conditionally on the location of the interface, the effects of the presence of the TNTI are
distributed between different components of vector quantities such as velocity, vorticity,
etc. depending on the local orientation of the TNTI. This can be observed by examining
the conditional profiles of the magnitudes of vorticity components given by da Silva and
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dos Reis (2011) and Taveira and da Silva (2013). The results presented in these studies
exhibit minor differences between the conditional profiles of each vorticity component such
as the rate of change of |ωy| towards the turbulent core is a bit lower compared to the other
two vorticity components, due to the TNTI predominantly facing in cross-stream direction
on average. However, this difference between the components of ω remains relatively
small when compared to the difference given by Watanabe et al. (2020) for the normal and
tangential components of vorticity with respect to the interface.

The expression of the local velocity field in the TNTI local coordinate system also
enables us to examine previous analyses, such as the one conducted by Reynolds (1972),
which suggests a balance of variables in the reference frame of the TNTI. Moreover, our
investigation extends beyond the analysis of just the 1D TNTI normal profile; we also delve
into the examination of the local 3D fields near the TNTI points. This is highly valuable for
comprehending the presence of average flow field patterns and properties in the vicinity of the
interface, including specific vortical structures that influence or are influenced by the TNTI,
as well as flow patterns that stretch or compress the interface layer. Additionally, a deeper
understanding of the TNTI-averaged 3D flow fields is crucial for interpreting the results
obtained through the application of the K’arm’an-Howarth-Monin-Hill (KHMH) equation,
as presented in Chapter 5.

The various sublayers of the TNTI are analyzed with the help of the enstrophy transport
equation following the studies by Silva et al. (2018); Taveira and da Silva (2014a); Watanabe
et al. (2015), including discussion on the thickness and the properties of these sublayers.
Moreover, the local propagation velocity relative to the fluid vl

n of the IES at various locations
is investigated by employing the formula given in Holzner and Lüthi (2011). In relation to
chapter 3, the variation of the local propagation velocity vl

n is compared with the variation
of the mean propagation velocity vn at different IES (corresponds to the dependence on
ω2

th/ω2
re f ). The TNTI-averaged statistics are analyzed for different regions of the interface by

conditioning them on the mean curvature and the local propagation velocity. Consequently,
this chapter aims to provide a comprehensive understanding of the TNTI in a temporally
developing turbulent planar jet by examining the statistics of local fields near the TNTI.

In order to examine the TNTI-averaged local fields near the interface, a specific IES must
be chosen. Contrary to the physical criteria proposed for the determination of the extent of
VSL and TSL in the direction of the turbulent core, establishing a clear physical criterion
for the outer boundary of the TNTI is challenging. The lack of a physical criterion makes
determining this location somewhat arbitrary, as emphasized in the study by van Reeuwijk
and Holzner (2014). A similar point is raised by Silva et al. (2018), where it is also noted
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that defining this boundary is inevitably non-physical due to the presence of experimental or
numerical noise in the non-turbulent region.

To address this issue, Silva et al. (2018) employ the method introduced by Taveira et al.
(2013), which relies on the direct observation that vorticity profiles when conditionally
averaged based on the TNTI location, do not exhibit significant variations across a range of
threshold values. It should be noted that this method for the determination of the external
boundary of the TNTI, is more empirical and it does not originate from a physical definition
(Silva et al., 2018).

In chapter 3 of the current study, a wide range of values for ω2
th/ω2

re f are considered in
order to check the dependence of the mean propagation velocity vn on ω2

th/ω2
re f through the

dependence of D f on ω2
th/ω2

re f in eq. 3.26. For each ω2
th value, a slightly different surface is

detected with varying D f .
The analysis in Chapter 3 considers specific threshold values, namely ω2

th/ω2
re f = 10−6,

10−5, 10−4, and 10−3. These values are chosen because they fall within the range of ω2
th/ω2

re f

where VJ/Vtot in figure 2.7 exhibits a plateau. Special care is taken to ensure the quality
of the DNS dataset so that no numerical effects are present for even the lowest threshold
considered in that analysis and the geometrical properties of the IES are captured accurately
(see section 2.2).

In the range of ω2
th/ω2

re f values considered, chapter 3 of the study investigates the varia-
tion in the geometrical characteristics of different IES. This exploration involves calculating
the fractal dimension D f of each IES using the box-counting algorithm. The relationship
between D f and vn is established through eq. 3.25.

The findings reveal a trend where D f decreases toward 2 as the enstrophy threshold value
is decreased to very low values. The smallest threshold used in chapter 3 is ω2

th/ω2
re f = 10−6,

which corresponds to an IES with D f ≈ 2.09 indicating that this threshold is still relevant for
the analysis conducted in chapter 3, as the IES exhibits a fractal dimension larger than 2.

In contrast, the current chapter and chapter 5 analyze the local flow field using the local
reference frame of the TNTI, which takes into account the orientation of the interface. As can
be observed in figure 2.2c, the IES associated with ω2

th/ω2
re f = 10−3 is more contorted (see

also the higher D f value for the IES of ω2
th/ω2

re f = 10−3 in figure 3.7) and it can be suggested
that it follows more closely the outer boundaries of turbulent structures compared to the
IES associated to lower ω2

th/ω2
re f values. This characteristic of the IES at ω2

th/ω2
re f = 10−3

renders it more suitable for the TNTI-averaging process. In other words, alignment between
the local ω2 gradient and the ω2 gradient across the whole interface layer is higher for the
IES at ω2

th/ω2
re f = 10−3.
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Considering the extent of the plateau towards the higher values of ω2
th/ω2

re f in figure
2.7, the slope dVJ/d(ω2

th) starts changing after certain values. Due to this reason, the IES of
ω2

th/ω2
re f = 10−3 which still falls in the plateau region in figure 2.7 is used in this chapter

and chapter 5 for the TNTI-averaging operation and the analysis of the local fields at the
vicinity of the interface.

Despite the variation of ω2
th does not lead to a significant change in the spatial location

of the IES, the variations in the enstrophy normal vector n have a more pronounced effect
on the TNTI-averaged profiles of the variables. Further discussion on the differences in the
TNTI-average profiles resulting from the choice of different ω2

th values are given in section
4.4.

The threshold value used in the present study can be compared with the one used in
the study of Taveira et al. (2013) where they have analyzed the TNTI by using a DNS of a
temporally developing planar jet with identical global Reynolds number ReG with the present
simulations PJx-HR. In their work, they reported a range of ωth between ωth ≈ 0.08UJ/HJ

and ωth ≈ 0.3UJ/HJ (where ωth is the threshold value for vorticity magnitude) for the
detection of the interface in which the TNTI geometry and conditional vorticity profiles
remain similar for different values of ωth (Taveira et al., 2013).

Taking into account the UJ , HJ parameters in the present study and the fact that the
enstrophy threshold value is defined relative to a reference value where ω2

re f = ω2
c , the

threshold value ω2
th/ω2

re f = 10−3 falls in the range reported by Taveira et al. (2013) at
t/Tre f = 50.

The present chapter begins with the definition of the local coordinate system and its
positioning. Then the definition of the TNTI-averaging operation is given. Two distinct
but complementary averaging operations used in the chapter are explained, namely the
x− z averaging and the TNTI-averaging. The chapter proceeds with the presentation of
profiles of flow quantities that are averaged over the TNTI. A discussion on TNTI normal
profiles follows which includes the investigation of the contributions of U and u′ on the
TNTI-averaged velocity components.

Subsequently, the shape and the orientation of the interface are explored through an
analysis of the face normal vector over the IES and the TNTI-averaged local 3D fields are
presented. After the analysis of the primary flow quantities in the vicinity of the TNTI, the
enstrophy transport equation is introduced and the various terms acting on the balance are
analyzed along the normal axis of the interface.

The variation of non-linearity across the TNTI is examined through an investigation of
relative helicity, a parameter related to the orientation of the u and ω vectors with respect to
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each other. The relationship between the enstrophy production close to the TNTI and the
variation of non-linearity across the normal direction is discussed.

In relation to the transport equation for the enstrophy, the concept of local propagation
velocity is introduced for IES elements. A comparison is made between the mean propagation
velocity vn obtained in chapter 3 and the TNTI-averaged value of the local propagation
velocity at various thresholds. Local entrainment/detrainment regions are detected related to
the local propagation velocity for the IES. The TNTI-averaged statistics are conditioned on
the local values of mean curvature and the local propagation velocity of the IES in order to
investigate the variation of the local fields for distinct regions of the interface.

Finally, bringing together the picture of the TNTI of the temporally developing turbulent
planar jet by the interpretation of the results obtained and the observations made throughout
the chapter.

4.2 Definition of the local coordinate system at the TNTI

Similarly to the above-mentioned studies, we introduce a local coordinate system to analyze
the flow field near the TNTI and perform ensemble average operation conditioned on the
interface location. The detection of the IESs constituting the TNTI has been explained in
section 2.6. The local coordinate system is defined for each point X0 on the IES detected
by a specific ω2

th, taking into account the position X0 and the orientation of the IES at that
location. The enstrophy normal vector at each point is calculated as follows:

n= ∇ω
2/|∇ω

2|. (4.1)

A local coordinate system is placed at each point considered on the detected IES, where
the unit vectors of the local coordinate system are denoted by ex, ey and ez. The local
coordinate system is defined for each point on the detected IES by a procedure starting with
the positioning of the origin of the local coordinate system on a given point X0 along the IES.
The condition for the local y-axis is chosen to be ey =−n. Note that by using this definition,
the positive y-direction in the local coordinate system points towards the non-turbulent region.
The unit vector ey is referred to as the face normal vector in the text since it indicates the
local facing direction of the IES and is used in discussions related to the TNTI orientation.
Meanwhile, the normal vector n on the other hand, is referred to as the enstrophy normal
vector in the text.

Apart from the local face normal direction, there is no evident constraint for the remaining
two unit vectors, which are tangential to the IES. Considering the temporal planar jet flow
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having a mean velocity only in the global x-direction, we have chosen to maximize the
projection of the ex on the global x-axis. With the determination of the unit vectors ey and ex,
the local z-coordinate is defined by the cross-product of these two vectors. So the conditions
defining the unit vectors of the local coordinate system (X0,ex,ey,ez) at each point on the
IES are:

ex ·k = 0,

ex ·n= 0,

|ex|= 1,

(4.2)

ey =−n, (4.3)

ez = ex ×ey. (4.4)

Here the vectors i, j, k represent the unit vectors of the global coordinate system and
correspond to the streamwise, cross-stream, and spanwise directions. Two examples of the
local coordinate system on different locations on the IES are shown in figure 4.1 following the
conditions given in eqs. 4.2, 4.3 and 4.4. In order to eliminate possible confusion, it should
be remarked that for the two local coordinate systems shown in figure 4.1, the ez vector
perfectly aligns with k vector. However, this alignment is a result of the 2D representation
of the local grid positioning. In practice, the face normal vector ey can be oriented in any
direction, thus the ez vector can be oriented in other directions than k or −k.

4.3 The TNTI-averaging operation

The positioning of the local coordinate system is a precursor step for the generation of a
local grid centred on the detected IES. Once the local coordinate system is positioned and
the local 3D grid is placed, the global flow field variables are interpolated at the local grid
points by using the trilinear interpolation method. Given the very high spatial resolution of
the simulations, a trilinear interpolation is observed to be enough for the post-processing
of the interpolated fields including the computation of the second-order derivatives. The
interpolated variables include, u, ω vectors and scalars such as p, ω2. After the interpolation
of the variables, a transformation is applied to the vector quantities by the application of
a rotation operation, R in order to express the vector fields with components in the local
coordinate system (ex,ey,ez). The rotation operation R which relates the expression of an
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arbitrary vector a in the global coordinate system with its expression in the local coordinate
system al can be written as;al

1

al
2

al
3

=

ex · i ex ·j ex ·k
ey · i ey ·j ey ·k
ez · i ez ·j ez ·k


a1

a2

a3

 (4.5)

10−3

ex
ey

n

ez

ex

ey

n

ez

i

j

k

Fig. 4.1 Example of the two local coordinate systems placed on two different locations on
the IES of ω2

th/ω2
re f = 10−3. The unit vectors of the local coordinate systems are denoted by

ex, ey and ez. n is the enstrophy normal vector defined as n =∇ω2/|∇ω2| and the unit
vectors of the global coordinate system, i, j, k are shown on the top left of the figure. It must
be noted that due to the constraints of the demonstration on a 2D figure, ez looks aligned
with k and ey rests fully on the x-y plane for all the locations, which is not the general case.
The orientation of ey is not constrained in any way in 3D, thus the orientation of ez.

To ensure that the TNTI does not fold on itself and that there are no engulfed turbulent or
non-turbulent regions near the interface, an additional condition called the no multi-cross
condition is applied. This condition checks whether the TNTI normal axis, i.e., the local
y-axis, crosses the TNTI multiple times within a certain distance on each side of the IES.
This condition is applied as we are interested in capturing the variation of variables across the
turbulent to non-turbulent sides of the interface. Normal axis crossing the interface multiple
times will make the TNTI-average profiles hard to interpret and possibly affect the parts
associated with the non-turbulent part of the TNTI-averaged data and is therefore omitted also
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in previous studies (da Silva and Pereira, 2008; Watanabe et al., 2014b). Different methods
have been used in the literature to overcome this issue, either by completely neglecting the
points on the IES where the local normal axis has multiple crossings of the interface (Zhou
and Vassilicos, 2020), or by defining a margin of length in order to exclude certain parts of
the local profile from the conditional averaging operation (Watanabe et al., 2019, 2020) or by
using an envelope surface rather than the full interface with all its contortions Westerweel
et al. (2009).

In the present work, we follow the methodology applied in Zhou and Vassilicos (2020).
On the non-turbulent side of the interface, a check is made to see if there is a point where
ω2(yI) > cmcω2

th along the interface normal axis from the IES location towards the non-
turbulent region until the maximum extent of the interpolated field. On the turbulent side of
the interface, a check is made if there is a point having ω2(yI)< (1/cmc)ω

2
th between the IES

location towards the direction of the turbulent core, again until the end of the interpolated
local field. In the present study, a local interpolated field with a size of −50 < yI/dy < 50 in
the interface normal direction is used, meaning that the check for no multi-crossing condition
is carried out in this range, corresponding to −23 < yI/η < 23 where dy is the uniform grid
size in all the directions and η is the Kolmogorov length scale computed at the centre-plane
of the jet. Along the 1D normal grid, yI/η = 0 corresponds to the IES location. Here, the free
parameter cmc is cmc = 5 taking into account that the different thresholds analyzed in chapter
3 are chosen with an interval of a decade of ω2

re f values, thus choosing cmc = 10 corresponds
to the next threshold considered. This parameter serves as a modifier for the sensitivity
of the no multi-cross check, which is useful when the local grid used for the conditional
analysis is of the same order or finer than the grid used for the TNTI detection. With the
improved detection method for the TNTI position utilized in this chapter (see section 2.6), it
is observed that the values cmc = 1 and cmc = 5 do not lead to a change in the results obtained
in this chapter, as for the ω2

th/ω2
re f of the order of 10−3-10−6, it is mainly the ω2

th term
which determines the threshold value (rather than cmc or 1/cmc) used for the no multi-cross
condition i.e., ω2(yI)< (1/cmc)ω

2
th. However, cmc = 5 is used to retain the locations where

the enstrophy profiles are not perfectly monotonic. If a multi-crossing is detected on either
side of the interface, this point on the IES is excluded from the local analysis and the TNTI
averaging operation.

Before moving on to the local analysis of the interface and the application of the TNTI-
averaging operation, it is beneficial to clarify the two distinct averaging operations used in
this study to distinguish and comprehend their interactions. Firstly, we have the averaging
over the homogeneous directions as introduced in chapter 3, where ⟨·⟩ denotes the averaged
quantity in two homogeneous directions of the global coordinate system i.e. x and z,
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a=A+a′. (4.6)

In this chapter, a capital letter is used for the quantity averaged in the homogeneous
directions, i.e. A = ⟨a⟩. To prevent confusion with the TNTI-averaging operation introduced
in this section, the notation in the form of ⟨a⟩ is omitted. The second averaging operation is
defined conditional on the interface location X0 and will be referred to as "TNTI-averaging"
and the obtained profiles/local fields will be referred to as "TNTI-average" or "TNTI mean".

The local fields are averaged along the interface while keeping the local coordinates xI ,
yI , and zI constant. This operation is denoted by ⟨·⟩I . When applied to a vector quantity, it
leads to a result in the form,

a= ⟨a⟩I +a′′. (4.7)

It is important to point out the fact that these are two independent definitions of averaging
processes and the TNTI-average values of the fluctuating component a′ in eq. 4.6 is not
zero i.e. ⟨a′⟩I ̸= 0. On the other hand, due to the definition of the TNTI averaging process,
⟨a′′⟩I = 0.

As shown in chapter 3, for the case of a temporally developing jet, the mean velocity
profile is solely a function of y-direction for a given time, i.e. U(y). Using eq. 4.5, it can
be expressed with respect to the TNTI local coordinates as U(Y0 +R−1

2 (X0) ·xI). Both
averaging operations, which are defined by eqs. 4.6 and 4.7, are applied spatially so we
consider an instant of the velocity field for the demonstration of these operations on the flow
field variables and the time variable will be omitted in the notation. With the application of
the decomposition in eq. 4.6 to the velocity vector for a given time, at any location can be
written as,

u(xI,yI,zI,X0) =U(Y0 +R−1
2 (X0) ·xI)+u′(xI,yI,zI,X0). (4.8)

Apart from that, averaging the velocity vector, conditionally on the TNTI location leads
to,

u(xI,yI,zI,X0) = ⟨u(xI,yI,zI,X0)⟩I +u′′(xI,yI,zI,X0). (4.9)

The local velocity vector field can be expressed in the local coordinate system as;
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ul = u ·ex

vl = u ·ey

wl = u ·ez.

(4.10)

Here, vl is the TNTI normal component, and ul and wl are components of the velocity vector,
tangential to the interface.

The TNTI averaging operation across the interface can be applied to these local vector
fields. In this case, the components of TNTI-averaged local velocity can be written as;

⟨ul⟩I = ⟨U ·ex⟩I + ⟨u′ ·ex⟩I,

⟨vl⟩I = ⟨U ·ey⟩I + ⟨u′ ·ey⟩I,

⟨wl⟩I = ⟨U ·ez⟩I + ⟨u′ ·ez⟩I.

(4.11)

The profiles of TNTI-averaged velocities and the mean local 3D fields are mostly obtained
by this operation in the current chapter and in chapter 5. Here it should be remarked that as
the TNTI averaging operation is applied for fixed xI , yI , and zI locations, it averages the x− z
averaged U at various global y-coordinate values.

On the other hand, another decomposition for the components of the TNTI-averaged
local velocity can be written by using eq. 4.9 and eqs. 4.10;

ul = ⟨u⟩I ·ex(X0)+u′′ ·ex(X0)

vl = ⟨u⟩I ·ey(X0)+u′′ ·ey(X0)

wl = ⟨u⟩I ·ez(X0)+u′′ ·ez(X0)

(4.12)

This decomposition is now further investigated in order to show the various terms constituting
⟨u⟩I . Applying the TNTI averaging operation we obtain,

⟨ul⟩I = ⟨u⟩I · ⟨ex⟩I + ⟨u′′ · ⟨ex⟩I⟩I + ⟨u′′ ·e′′x ⟩I,

⟨vl⟩I = ⟨u⟩I · ⟨ey⟩I + ⟨u′′ · ⟨ey⟩I⟩I + ⟨u′′ ·e′′y ⟩I,

⟨wl⟩I = ⟨u⟩I · ⟨ez⟩I + ⟨u′′ · ⟨ez⟩I⟩I + ⟨u′′ ·e′′z ⟩I,

(4.13)

where e(X0) = ⟨e⟩I +e′′(X0) with ⟨e′′⟩I = 0.
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The second term on the right-hand side of the equation is zero due to the definition of the
TNTI averaging in eq. 4.7. So the term becomes,

⟨ul⟩I = ⟨u⟩I · ⟨ex⟩I + ⟨u′′ ·e′′x ⟩I,

⟨vl⟩I = ⟨u⟩I · ⟨ey⟩I + ⟨u′′ ·e′′y ⟩I,

⟨wl⟩I = ⟨u⟩I · ⟨ez⟩I + ⟨u′′ ·e′′z ⟩I,

(4.14)

By applying the decomposition 4.8 to the first term on the right-hand side in eq. 4.14 we
obtain,

⟨ul⟩I = ⟨U⟩I · ⟨ex⟩I + ⟨u′⟩I · ⟨ex⟩I + ⟨u′′ ·e′′x ⟩I,

⟨vl⟩I = ⟨U⟩I · ⟨ey⟩I + ⟨u′⟩I · ⟨ey⟩I + ⟨u′′ ·e′′y ⟩I,

⟨wl⟩I = ⟨U⟩I · ⟨ez⟩I + ⟨u′⟩I · ⟨ez⟩I + ⟨u′′ ·e′′z ⟩I,

(4.15)

Using the TNTI averaging, the fluctuations of the local velocity components can be
written as,

u′′l = ul −⟨ul⟩I

v′′l = vl −⟨vl⟩I

w′′
l = wl −⟨wl⟩I

(4.16)

By using this definition (eq. 4.16) of fluctuating velocities, normal and cross stresses can
be defined in the TNTI local coordinate system e.g. ⟨v′′l

2⟩I , ⟨u′′l v′′l ⟩I similarly to the classical
turbulent stress terms. Turbulent stresses defined this way in the local coordinate system
are used in the interpretation of the theoretical approach put forth in the study of Reynolds
(1972) (see section 4.5).

4.4 TNTI-averaged profiles of the flow field variables

It has been demonstrated in chapter 3 that the instant t/Tre f = 50 falls within the time range
where the turbulent jet exhibits self-similarity and is unaffected by boundary conditions.
TNTI-averaged profiles have been examined at different times with the PJ1 simulation,
and it has been observed that t/Tre f = 50 is representative of a wide range of times in the
aforementioned time range. All results presented in this chapter are obtained from the
PJx-HR simulations at t/Tre f = 50 unless stated otherwise. In order to increase statistical
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convergence, the results are obtained as the ensemble average over the five simulations
whenever possible. In case a specific result is based on data from a single simulation rather
than the ensemble average, this is explicitly mentioned in the caption.

In this section, the analysis is conducted using a local grid that spans from −50dy to
50dy in each direction of the local coordinate system, which corresponds to a range −23η to
23η in the local coordinates yI , xI , and zI . The points X0 considered over the interface are
the numerical mesh points where the enstrophy is closest to the enstrophy threshold, although
their exact locations are refined with the method described in section 2.6. It is worth noting
that the no multi-crossing condition results in the exclusion of 40% of the total number of
points for the IES of ω2

th/ω2
re f = 10−3.

Before delving into the discussion of the results, it is important to address the choice
of using the ω2

th/ω2
re f = 10−3 IES for the TNTI averaging operation, as mentioned in the

introduction of this chapter (see Section 4.1). Now that the TNTI-averaging operation is
defined, let’s attempt to quantify the differences between various ω2

th values. Figure 4.2
presents TNTI-average profiles of ⟨ω2⟩I for comparison of the TNTI-averaged profiles of ω2

for the IES of ω2
th/ω2

re f = 10−3 and ω2
th/ω2

re f = 10−6.
In figure 4.2a, the ⟨ω2⟩I/ω2

c profile is shown in solid line for the IES of ω2
th/ω2

re f = 10−6.
Along this profile, the location of ⟨ω2⟩I/ω2

re f = 10−3 is marked by a red vertical dashed line.
The TNTI-average profile of ⟨ω2⟩I/ω2

c for the IES of ω2
th/ω2

re f = 10−3 is plotted on top, by
offsetting its origin (yI/η = 0 location) to coincide with the ⟨ω2⟩I/ω2

re f = 10−3 location
computed from the TNTI normal profile for the IES of ω2

th/ω2
re f = 10−6. The offset between

these two profiles is found to be 2.85η . This can be considered as a maximum limit for the
mean distance between the IES of ω2

th/ω2
re f = 10−3 and ω2

th/ω2
re f = 10−6. The reason it is

referred to as the maximum value is that it is computed by using the profile of ⟨ω2⟩I/ω2
c

obtained for ω2
th/ω2

re f = 10−6 IES. As has been mentioned in section 4.1, the local orientation
of n at the IES can lead to a reduction of the gradient of ⟨ω2⟩I along the yI axis, thus the
mean distance between the IES of ω2

th/ω2
re f = 10−6 and ω2

th/ω2
re f = 10−3 is higher when the

gradient is measured by the profile ⟨ω2⟩I averaged over the IES of ω2
th/ω2

re f = 10−6.
Even though three orders of magnitude variation of ω2

th/ω2
re f does lead to a slight change

of the spatial location of the IES i.e. ≈ 2.85η , the effect of the variation of the contortion of
the IES is more dramatic on the TNTI-averaged profiles. Figure 4.2b shows the TNTI-average
profiles in a linear plot, in order to see their differences more clearly. A much steeper gradient
is observed for the ⟨ω2⟩I profile obtained by averaging over the IES of ω2

th/ω2
re f = 10−3.

This is due to the different geometrical structure of the IES which has also been shown in
figure 2.2c with the visualization of the IES for various ω2

th/ω2
re f values and the variation of

D f for the corresponding surfaces (see figure 3.7). It is observed that due to the orientation
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Fig. 4.2 TNTI-averaged profiles of ⟨ω2⟩I for IES of ω2
th/ω2

re f = 10−6 and ω2
th/ω2

re f = 10−3

at t/Tre f = 50. The red line shows the yI location where ⟨ω2⟩I/ω2
re f = 10−3 in the TNTI-

average profile obtained for the IES of ω2
th/ω2

re f = 10−6

of IES of ω2
th/ω2

re f = 10−3 following more closely the underlying relatively intense turbulent
zones, the gradient obtained for this IES is also higher.

Following the discussion regarding the choice of using ω2
th/ω2

re f = 10−3 to detect the
IES and an attempt to quantify its implications, we can now begin our analysis by examining
the profiles of flow field variables averaged over the specified IES. Enstrophy, being a marker
variable for distinguishing the turbulent and non-turbulent regions, is the first variable to look
at, along with the components of the local vorticity, along the axis normal to the IES.

Many previous studies have reported profiles of |ωx|, |ωy|, |ωz|, |ω |, or ω2 conditioned on
the TNTI location (da Silva et al., 2011; da Silva and Pereira, 2008; da Silva and Taveira, 2010;
Silva et al., 2018; Watanabe et al., 2014b). These profiles have been related to the average
TNTI thickness or the vortical structures near the interface. An important distinction between
these studies and the present one is that in our study, the vorticity vector ω = (ωx,ωy,ωz)

is expressed in the local coordinate system as ω = (ω l
x,ω

l
y,ω

l
z), where ω l

y corresponds to
the local vorticity in the TNTI normal direction, while ω l

x and ω l
z correspond to the local

vorticity components in the two tangential directions of the TNTI.
Figure 4.3 shows the profiles of ω2 and of the magnitudes of the components ω l

x, ω l
y

and ω l
z all normalized by the mean centre-plane value of |ωz|, along with the gradient

−d⟨ul⟩I/dyI in the interface normal direction. The centre-plane mean value of |ωz|, is used
for the normalization of all the profiles as ⟨|ωx|⟩c ≈ ⟨|ωy|⟩c ≈ ⟨|ωz|⟩c at the centre-plane
of the jet, due to isotropy. In relation to the term −d⟨ul⟩I/dyI , it should be noted that the
derivative operation d/dyI commutes with the TNTI-averaging operation ⟨·⟩I .
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Fig. 4.3 TNTI-averaged profiles of ⟨|ω l
x|⟩I , ⟨|ω l

y|⟩I , ⟨|ω l
z|⟩I , ⟨ω2⟩I and the gradient of local

ul velocity in the TNTI normal direction −d⟨ul⟩I/dyI , normalized by the mean |ωz| at the
centre-plane of the jet. The interface location (yI = 0) used for the conditioning of the profile
is defined with the IES of ω2

th/ω2
re f = 10−3. Distance from the IES yI is normalized by the

Kolmogorov length scale η computed at the centre-plane of the jet.

The profiles of vorticity components exhibit clear differences. Notably, the magnitude of
ω l

y increases at a slower rate compared to the other components. In contrast, the other two
vorticity components tangential to the interface rise sharply, where the profile of spanwise
component ⟨|ω l

z|⟩I exhibits a distinct peak.
A similar analysis for the interface normal component of vorticity is indirectly presented

in Watanabe et al. (2020). In their study, the conditional profile of the tangential component
is computed by subtracting the contribution of (ω ·ey)

2 from the conditional profile of ω2.
The profiles of ⟨|ω l

x|⟩I , ⟨|ω l
y|⟩I and ⟨|ω l

z|⟩I given in figure 4.3 are in parallel with the results
given by Watanabe et al. (2020).

The expression of the vectors in the local coordinate system enables us to observe the
variation of the interface normal/tangential components of the vorticity vector more directly
along the interface normal axis. It can be useful to recall at this point that, due to the
orientation of the local x-direction ex given by eq. 4.2, the local spanwise component
is primarily aligned with the global spanwise direction (further details on this particular
orientation can be found in section 4.6). By taking this fact into account, a comparison of the
current TNTI-averaged profiles can be made with the profiles given in the literature (Bisset
et al., 2002; Westerweel et al., 2009).
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In the study by Bisset et al. (2002), TNTI-averaged profiles of vorticity components
are obtained specifically for the regions of TNTI surface facing the cross-stream direction.
For these specific regions, the components of the vorticity vector in the global reference
frame align with those in the local reference frame. However, it is essential to note that
the TNTI-averaged profiles in the present study include not only the cross-stream facing
regions but all the regions of the interface with any conditions applied in terms of orientation.
Nevertheless, considering that the TNTI introduces an inhomogeneity in the interface normal
direction, the effects due to the presence of the TNTI on the TNTI-averaged profiles are
qualitatively similar, in figure 4.3 and the conditional profiles presented in Bisset et al. (2002)
e.g., the peak observed in the profile of the tangential vorticity component and the slower
rise of the component normal to the interface.

A similar analysis is conducted by Westerweel et al. (2009) in an experimental setup of
an axisymmetric jet. They employ the interface envelope to obtain the conditional profiles of
ωz, where a local normal axis aligned with the direction j is used for the TNTI-averaging
process. This approach results in slightly less sharp profiles of ⟨ωz⟩I as the gradient of ωz is
most significant in the interface normal direction, whereas the axis being used by Westerweel
et al. (2009) makes an angle with the interface normal axis depending on the local orientation
of the interface envelope. However, on average, the interface predominantly faces in the
±j direction and thus the conditional profile of ⟨ω l

z⟩I has again a bump associated with the
presence of the TNTI, which relates to the bump observed in the profile of ⟨ω l

z⟩I in figure
4.3.

In the study by da Silva and Taveira (2010), the conditional profiles of ωz are obtained
using a methodology similar to that employed by Westerweel et al. (2009). This approach
is applied to DNS datasets of temporally developing planar jets with varying Reλ values.
The study documents the presence of a bump in the mean profile of ωz conditioned on the
interface location.

Furthermore, Taveira and da Silva (2013) present conditional profiles of |ωx|, |ωy|, and
|ωz|. In this case, the local grid used for the conditional profiles is positioned directly aligned
with the surface normal vector of the interface envelope. It is important to note that while the
local axis used for conditional averaging takes into account the local orientation of the TNTI
envelope, the effects of the interface-induced inhomogeneity are distributed in conditional
profiles of |ωx|, |ωy|, and |ωz| rather than affecting only the conditional profile of |ωz| as the
TNTI normal direction does not always align perfectly with k.

However, taking into account that, on average, the TNTI is oriented towards ±k (which is
valid also for the TNTI envelope defined in da Silva and Taveira (2010); Taveira and da Silva
(2013); Westerweel et al. (2009)), the bump presented in the conditional profile of |ωz| in the
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above-mentioned studies can be related qualitatively with the bump observed in the profile
of ⟨|ω l

z|⟩I/⟨|ωz|⟩c in figure 4.3. Hence, it can be asserted that the TNTI-averaged profiles
of ⟨ω2⟩I and ⟨|ω l

x|⟩I , ⟨|ω l
y|⟩I , and ⟨|ω l

z|⟩I are in alignment with the findings in the existing
literature.

In the analysis conducted by Westerweel et al. (2009) two possible reasons are proposed
in order to explain this bump, which are the formation of a vortex sheet at the outer edge of
the jet, or the presence of small individual vortices. A jump in the mean stream-wise velocity
is also reported in this study, across the detected interface, and it is suggested that this velocity
jump can be related to the peak of spanwise vorticity close to the interface (Westerweel et al.,
2009). Supporting this point, Bisset et al. (2002) reports the contribution of the d⟨U⟩I/∂yI on
⟨|ωz|⟩I is indeed significant for the regions of the interface facing towards global y-direction
(cross-stream).

On a related note, da Silva and Taveira (2010) and da Silva et al. (2011) present results
showing the influence of the interface on the spatial alignment of the vortical structures.
The vortical structures are studied in two different classes large-scale vortical structures
(LVS), which are associated with low-pressure iso-surfaces and are suggested to be remnants
of Kelvin-Helmholtz instability and secondary instabilities (da Silva and dos Reis, 2011;
da Silva and Taveira, 2010; Taveira and da Silva, 2013) and the intense vortical structures
(IVS) associated with very high values of enstrophy (da Silva and dos Reis, 2011; da Silva
et al., 2011). This particular alignment of the vortical structures will also account for a part
of the observed bump in the profile of ⟨|ωz|⟩I as mentioned by Silva et al. (2018).

The rapid increase of ⟨ω l
z⟩I , along with its peak inside the interface, prompts an inves-

tigation into the relationship between the profile of ⟨|ω l
z|⟩I and the local velocity gradient

in the interface normal direction. In the present case, it is observed that the contribution of
−d⟨ul⟩I/dyI at the peak location accounts for less than half of the total |ω l

z|.
This observation slightly differs from the results presented in Bisset et al. (2002), in

terms of the magnitude of the contribution from the gradient of the mean streamwise velocity,
where a more substantial contribution is reported. The difference between the current study
and Bisset et al. (2002) primarily arises from the fact that Bisset et al. (2002) considers only
the interface locations facing in the cross-stream direction. In contrast, the profiles in figure
4.3 are obtained for the entire interface, without imposing any conditions on the orientation,
with the exception of excluding points detected by the no multi-cross condition.

Even though it is not the main contributor to ⟨|ω l
z|⟩I , the peak of −d⟨ul⟩I/dyI indicates a

change of local streamwise velocity along the interface normal direction in agreement with
the predictions made by Reynolds (1972) and the results shown by Bisset et al. (2002) and
Westerweel et al. (2009).
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Figure 4.4a illustrates the TNTI-averaged profiles of the local velocity components,
namely ⟨ul⟩I , ⟨vl⟩I , and ⟨wl⟩I , in the interface normal direction. These profiles are normalized
by the centre-plane uη . A rapid change is observed in both the ⟨ul⟩I and ⟨vl⟩I components
across the TNTI.

On the other hand, ⟨wl⟩I remains zero throughout the interfacial layer which is mainly
due to the definition of the local coordinate system. Specifically, the orientation of the ex

vector is chosen to align maximally with the global streamwise direction, which leads to ex

being in the x-y plane. Furthermore, the vector ez is defined by the cross-product of ex and
ey (as per eq. 4.4). Given these definitions, the average ⟨ez⟩I vector aligns with the global
+z-direction at the upper TNTI and with -z-direction at the lower TNTI, except at locations
where the interface folds onto itself.

Considering this orientation of the ez vector eq. 4.11 for ⟨wl⟩I reveals that both terms on
the right-hand side vanish. This is due to the fact that the global mean flow velocity U does
not have a component in the z-direction, and both the spanwise component of the fluctuations
u′ and the TNTI orientation ez do not have a preferential direction along the spanwise axis.
Consequently, ⟨wl⟩I remains zero along the interface normal yI axis.
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Fig. 4.4 TNTI-averaged profiles of local velocity components and the local normal and shear
turbulent stresses for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50.

In relation to the way that the orientation of ex is chosen, ⟨ul⟩I remains positive along the
TNTI-average profile due to the jet having mean velocity in the global streamwise direction
(see eq. 4.11 for ⟨ul⟩I). In contrast, the TNTI-averaged local normal velocity ⟨vl⟩I crosses
zero at a certain point.

For the region yI/η < 0, the ⟨vl⟩I component remains positive. This indicates that the
interface perceives a local normal velocity pointing from the turbulent core towards the
non-turbulent region. Furthermore, the negative gradient d⟨vl⟩I/dyI < 0 along the normal
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TNTI axis suggests that the velocity field tends to compress in the normal direction near the
interface.

The general properties of the profile of ⟨vl⟩I show that the interface perceives a velocity
field that moves towards the interface in both turbulent and non-turbulent directions. Also,
the fact that the TNTI-average velocity component ⟨vl⟩I is non-zero along the yI axis is
interesting as the mean velocity obtained by the x− z averaging does not have a component
in the cross-stream direction i.e. V (y) = 0.

In the case of spatially developing jets, the streamwise mean velocity U decreases along
the streamwise direction i.e. ∂U/∂x < 0. This leads to a mean cross-stream velocity in the
outward direction from the centre-plane, which is consistent with the decay of U and the
expansion of the jet in the streamwise direction. On the other hand, the external fluid is
entrained inside the jet and a mean cross-stream velocity is induced outside the jet towards
the centre-plane. These two opposing flows associated with positive/negative V velocity
meet at a point along the y-axis, where the gradient of the U velocity is maximum and TNTI
is most probable to exist. As previously demonstrated in the theoretical analysis presented in
chapter 3, the mean flow behaviour in spatially developing jets differs significantly from its
temporally developing counterpart.

A crucial distinction between both flows is that the mean cross-stream velocity V = 0 for
each x− z plane along the y-axis, meaning that there is no global cross-stream velocity V due
to entrainment in the case of the temporally developing jet, unlike its spatially developing
counterpart. In this context, the existence of a non-zero average velocity ⟨vl⟩I in the reference
frame of the IES is very interesting. Moreover, the profile of ⟨vl⟩I in figure 4.4a exhibits a
change of sign, even without the argumentation related to the conservation of mass for the
spatially developing jet. The reason for this is discussed in more detail with the presentation
of the contributions of each term in eqs. 4.15 to the TNTI-average profiles of ⟨ul⟩I , ⟨vl⟩I and
⟨wl⟩I at the end of this subsection.

Figure 4.4b presents the profiles of local stresses, defined by the fluctuating velocities
with respect to the TNTI-average velocity values, obtained by the eqs. 4.16.

Firstly, the normal stresses i.e., ⟨u′′2⟩I , ⟨v′′2⟩I , and ⟨w′′2⟩I , exhibit significantly higher
magnitudes compared to the cross-stress term ⟨u′′v′′⟩I . These normal stresses maintain non-
zero values even on the non-turbulent side of the interface, extending as far as yI/η = 24.
However, their magnitudes decrease rapidly on the turbulent side of the IES, when going
towards the non-turbulent region, particularly in the region between yI/η ≈ −13.7 and
yI/η ≈−1.5.

Secondly, the profile of ⟨u′′v′′⟩I displays an even steeper gradient, primarily occurring
between yI/η ≈ −7.2 and yI/η ≈ −2.1. This suggests that the TNTI is characterized
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by a pronounced jump in ⟨u′′v′′⟩I along the normal direction. It can be noted that the
very high gradient of the profile of ⟨u′′v′′⟩I is observed on the turbulent side of the IES of
ω2

th/ω2
re f = 10−3 between yI/η ≈−2 and yI/η ≈−10.5.

The variation of the pressure across the TNTI is shown in figure 4.5a. It is observed
that the pressure drops swiftly going from the non-turbulent side inside the turbulent region.
This observation aligns with the idea proposed by Reynolds (1972) which suggests a balance
between the high pressure in the non-turbulent region and the increased normal turbulent
stresses at the turbulent side of the interface. Also, the gradient of the mean pressure in the
interface normal direction is shown in figure 4.5b and exhibits a negative peak at yI/η = 8.
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Fig. 4.5 TNTI-averaged profiles of mean pressure ⟨p⟩I and gradient of mean pressure
d⟨p⟩I/dyI , for the IES of ω2

th/ω2
re f = 10−3.

Before continuing with further discussion regarding the TNTI-averaged profiles of com-
ponents of u as functions of yI , it is useful to analyze the decomposition presented in eq.
4.15 in order to investigate the contributions of U , u′ and the orientation of the local co-
ordinate system e (associated with the local TNTI orientation) to the components of the
TNTI-averaged velocity ⟨u⟩I .

Figure 4.6 shows the mean profiles ⟨ul⟩I , ⟨vl⟩I and ⟨wl⟩I obtained by applying the TNTI-
averaging operation. The comparison of the profiles ⟨ul⟩I , ⟨vl⟩I and ⟨wl⟩I is carried out with
the sum of the terms on the right-hand side of eqs. 4.15. This figure is a verification of the
numerical methodology employed for the computation of the TNTI-averages of quantities by
the demonstration of the equalities given in eqs. 4.15.

In figure 4.7, we present the profiles ⟨ul⟩I and ⟨vl⟩I alongside the three components on
the right-hand side of eq. 4.15. The first term, ⟨U⟩I⟨e⟩I is the contribution of the mean flow
field with respect to the x− z averaging operation and the mean orientation of the TNTI. The
second term ⟨u′⟩I⟨e⟩I includes the effects of the velocity fluctuation field with respect to
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Fig. 4.6 TNTI-averaged profiles of ⟨ul⟩I , ⟨vl⟩I and ⟨wl⟩I and sum of the terms in the eqs.
4.15 for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50 in PJ4-LV simulation.

x− z mean. And finally, the third term ⟨u′′ ·e′′⟩I where the u′′ is the fluctuating velocity
with respect to TNTI-averaging and similarly e′′ is the fluctuation of the interface orientation
with respect to the TNTI mean. Thus the last term corresponds to the correlation between the
fluctuations of the velocity and of the interface orientation around the TNTI mean.
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Fig. 4.7 TNTI-averaged profiles of ⟨ul⟩I and ⟨vl⟩I given with the profiles of the terms on the
RHS of the eq. 4.15, for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50 in PJ4-LV simulation.

Starting with the term ⟨U⟩I · ⟨e⟩I , the contribution of the mean velocity profile U varies
linearly over the yI/η axis for each component of the local TNTI-averaged velocity. Naturally,
the highest contribution is in the component of ⟨ul⟩I , due to the positioning of the local
coordinate system ensuring that the alignment of ex is maximal with the global streamwise
vector i. Due to the fact that the axis goes towards the centre-plane of the jet for smaller
values of yI/η , the contribution of U increases in that direction. But there is no specific
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location in the profile of ⟨U⟩I · ⟨e⟩I where it undergoes a dramatic change at the TNTI
location.

On the other hand, figure 4.7a reveals a significant variation in ⟨ul⟩I in the yI direction
when crossing the interface. It is evident that this jump is caused by TNTI averaging
of the fluctuating velocity u′ around the x− z mean. The term ⟨u′⟩I · ⟨e⟩I crosses zero at
yI/η =−13.8 and beyond this point, it contributes negatively to the profile of ⟨ul⟩I . Although
the third term also contributes to the profile of ⟨ul⟩I , the primary factor driving the jump of
⟨ul⟩I across the TNTI is the second term, which includes the effects of u′ field.

The impact of U is not particularly significant for the interface normal velocity com-
ponent, ⟨vl⟩I . The profile ⟨vl⟩I is primarily influenced by the correlation between velocity
fluctuations u′′ and fluctuations in the orientation of the interface with respect to TNTI-
average e′′y i.e., ⟨u′′ ·e′′y ⟩I . Thus the average interface normal velocity, perceived by the TNTI
in the local reference frame is determined by the correlation between u′′ and e′′y .

4.5 Jump condition for the tangential velocity and the vor-
ticity at the interface

The TNTI-averaged profiles presented in section 4.4 allow us to investigate the analysis
conducted by Reynolds (1972) on the interface. In the study of Reynolds (1972), the interface
between the turbulent and non-turbulent regions was analyzed by placing a small control
volume (CV) which covers a segment of the interface (interface referred to as superlayer in
the original paper). Figure 4.8 shows a schematic of the CV described by Reynolds (1972).

Fig. 4.8 Schematic of the local control volume defined similar to (Reynolds, 1972) (shown in
dashed green line). The subscripts T and NT are used for the quantities in the turbulent and
non-turbulent sides of the control volume.

In the analysis presented in Reynolds (1972), the mean velocity at the interface is
expressed by two components: one aligned with the normal direction and the other in the
tangential direction of the interface. The positioning of the local coordinate system in the
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current study is important in this context by using the conditions given in eqs. 4.2, 4.3, and
4.4. As shown in figure 4.4a, the TNTI-average velocity vector ⟨u⟩I has components in
the interface normal direction ⟨vl⟩I and another component in the tangential direction ⟨ul⟩I ,
whereas the second tangential average velocity component ⟨wl⟩I is zero, compatible with the
mean velocity components defined in Reynolds (1972) (see figure 4.4a).

The interface is considered to be a sheet-like surface, with an infinitesimal thickness by
Reynolds (1972), thus the CV covering a section of the interface is also considered to have
a negligible thickness, thus neglecting the fluxes at the side surfaces of the CV and only
considering the fluxes in the interface normal direction. Furthermore, the viscous stresses
on either side of the interface are neglected in the analysis by Reynolds (1972). Given these
assumptions, the conservation equations for mass and momentum equations in TNTI normal
and tangential directions are written for the CV, with certain terms omitted. Starting with the
mass balance for the control volume, the relation is written as;

[⟨vl⟩I]NT = [⟨vl⟩I]T . (4.17)

Here, ⟨vl⟩I is the mean TNTI normal velocity and the subscripts NT and T stand the values
of the variables at the location of the boundary surfaces of the CV on the non-turbulent
and turbulent sides of the interface (see figure 4.8). Balance is written in the TNTI local
coordinate system where the mean/fluctuating velocities with respect to the TNTI-averaging
operation are also expressed with components normal and tangential to the interface. As the
CV is taken to be infinitesimally thin in TNTI normal direction, the faces of CV facing TNTI
tangential directions are neglected and we end up with a mass balance with the fluxes in the
normal direction of the interface (Reynolds, 1972). This directly implies that the interface
normal velocity should remain constant across the interface.

To assess the validity of this conclusion, figure 4.4a can be re-visited. It becomes apparent
from this figure that the TNTI normal component ⟨vl⟩I varies across the interface, and its
derivative along the yI direction exhibits high values, particularly in the proximity of the
detected IES. Considering the CV positioned in the work of Reynolds (1972), which fully
contains the jump of the vorticity at the interface, there is a significant difference between the
value of ⟨vl⟩I at the turbulent and non-turbulent sides of the interface. This result contradicts
eq. 4.17 and leads to a fundamental problem due to the assumptions made in Reynolds (1972)
for the balance of quantities inside the CV.

The primary problem arises because the variation in the TNTI-averaged normal velocity
⟨vl⟩I directly implies the presence of a significant gradient of ⟨ul⟩I in the tangential direction
of the IES. Furthermore, considering that the jump in vorticity ω occurs over a certain
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distance and is not as sharp as depicted in Reynolds (1972), this gradient of ⟨ul⟩I suggests
significant outflow of mass from the neglected side surfaces of the CV.

Secondly, the momentum balance in the normal and tangential directions are written as
follows by (Reynolds, 1972),

[⟨p⟩I]NT = [⟨p⟩I + ⟨ρv′′2l ⟩I]T , (4.18)

ρ⟨vl⟩I([⟨ul⟩I]NT − [⟨ul⟩I]T )− [ρ⟨v′′l u′′l ⟩I]T = 0. (4.19)

Here, ⟨p⟩I denotes the TNTI-averaged pressure and ⟨v′′2l ⟩I is the turbulent normal stress,
which is considered only for the turbulent side in the model proposed by Reynolds (1972). In
eq. 4.19, −(ρ⟨v′′l u′′l ⟩I) is the turbulent shear stress at the boundary and similarly to eq. 4.18,
it has been considered only for the turbulent side of the CV.

Another important point related to this equation is that the mean velocity ⟨vl⟩I has to
be defined for the first term of eq. 4.19. In the analysis made by Reynolds (1972), the
conservation of mass yields the equality given in eq. 4.17 with the assumptions being made.
With this relation, there is no ambiguity in the choice of ⟨vl⟩I appearing in the eq. 4.19 as it
does not vary across the TNTI. On the other hand, a significant jump in the value of ⟨vl⟩I

across the TNTI is observed in the present study (see figure 4.4a). Without introducing any
modification to the original equation, the ⟨vl⟩I in eq. 4.19 can be determined by taking the
average value of ⟨vl⟩I along the extent of the CV on the yI axis. So this term is not specified
by a subscript T or NT and the mean value of ⟨vl⟩I along yI for the extent of CV is denoted
as [⟨vl⟩I]m. Looking at eq. 4.19, a jump in the TNTI mean tangential velocity is expected
in case the turbulent shear stress is non-zero on the turbulent side of the interface. There
is indeed a jump in the ⟨u′′v′′⟩I across the interface which is shown in the figure 4.4b and
the values of the TNTI-averaged tangential velocity ⟨ul⟩I rise sharply in the turbulent side
of the detected IES across the TNTI layer (see figure 4.4a). The local profiles obtained in
the present study support the presence of a jump in the values of TNTI-averaged tangential
velocity between the turbulent and non-turbulent sides of the interface.

As the TNTI-averaged profiles of velocity, pressure, turbulent stresses, and vorticity have
now been computed, the relations of mass/momentum balance proposed in (Reynolds, 1972)
can be checked to see if they hold near the detected IES. In order to make this check, we
make use of the 1D TNTI-averaged profiles presented in section 4.4 in the interface normal
direction.

An important difference between the early theoretical approaches (Corrsin and Kistler,
1955; Phillips, 1972; Reynolds, 1972) and more recent studies (da Silva et al., 2014; Taveira



4.5 Jump condition for the tangential velocity and the vorticity at the interface 89

and da Silva, 2014a; van Reeuwijk and Holzner, 2014; Watanabe et al., 2020) exists for
the concept of TNTI. In the former, the TNTI is regarded as a surface with an infinitesimal
thickness, featuring nearly singular jumps in flow variables such as tangential velocity and
span-wise vorticity. In contrast, in recent studies, the TNTI has been resolved well enough,
which permits us to observe the continuous variation of quantities across the interface
thickness, even though the local gradients of variables are indeed very high. Due to this
continuous variation, the choice of the location and the thickness of the CV to check the
relations proposed by Reynolds (Reynolds, 1972) also becomes important.

Thus, it is appropriate to start by defining how the CV is placed, before presenting the
results related to the balance equations 4.17, 4.18 and 4.19. For the NT side (upper face) of
the CV, the point satisfying the condition |ω l

z|< 10−3/2 is searched, starting from the IES
location and going towards the non-turbulent region. The position of the side denoted with T,
the lower surface of the CV (turbulent side) is chosen at the maximum of the profile ⟨|ω l

z|⟩I .
As a result of the procedure above, the upper surface of the CV is chosen to be at yI/η = 1
and the location of the lower surface has been chosen as yI/η =−10.3. The resulting CV
surfaces are marked on the normal profiles given in figure 4.9.
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Fig. 4.9 Extent of the chosen CV by the conditions mentioned above, shown on top of the
TNTI-averaged profiles on ω2 and local components of |ω |.

Using the local mean/fluctuating variables with respect to the TNTI averaging operation
at the location of the interface, the balance of mass and the normal/tangential momentum can
be written as;
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BR
c =

[⟨vl⟩I]NT

[⟨vl⟩I]T
= 0.17, (4.20)

BR
nm =

[⟨p⟩I]NT

[⟨p⟩I + ⟨ρv′′2l ⟩I]T
= 1.40, (4.21)

BR
tm =

[⟨vl⟩I]m([⟨ul⟩I]NT − [⟨ul⟩I]T )

[⟨u′′l v′′l ⟩I]T
=−0.83. (4.22)

The errors in the balance relations can be observed from the ratio of the balancing terms
on both sides of eqs. 4.20, 4.21 and 4.22. The superscript R stands for relations given by
Reynolds (1972). A very large error is present for the continuity equation, eq. 4.17. It can
be noted that in 4.17, it is assumed that the interface normal velocity is equal on both sides
of the CV. However, as has been shown in figure 4.4a, the value of ⟨vl⟩I is not equal at the
upper and lower sides of the CV. It varies across the thickness of the TNTI and even a change
in the sign of ⟨vl⟩I occurs along the yI/η axis. This indicates that there is a considerable
mass flux from the faces perpendicular to the interface, which is not accounted for in the
analysis conducted by Reynolds (1972). This outwards mass flux in tangential direction at
the interface is mentioned again in section 4.7 where the TNTI-averaged 3D local velocity
fields are presented. For the sake of consistency, the variation of the velocity in the tangential
direction is not further elaborated here and we continue the current discussion with the
TNTI-average normal 1D profiles, in relation to the model proposed by Reynolds (1972).

Considering the normal momentum balance, the error BR
nm remains smaller compared to

BR
c given in eq. 4.20. In eq. 4.21, the error in the balance of normal momentum is mainly due

to the neglected term ⟨v′′l
2⟩I in the non-turbulent side of the interface. It can be seen from the

figure 4.4b that even though the normal stress reduces significantly across the interface, it
does not go to zero in the non-turbulent region. Thus neglecting this term contributes to the
imbalance in the eq. 4.18.

The balance of the tangential momentum BR
tm even becomes negative as the ⟨u′′v′′⟩I

takes positive values with the velocity fluctuations with respect to the TNTI-averaged local
velocity.

To summarize, an imbalance exists in continuity and normal/tangential momentum
balance relations of Reynolds (1972). The reason for these balance deficits is the neglected
terms in the eqs. 4.17, 4.18 and 4.19. As has been shown in figure 4.4b, the normal stresses
in the non-turbulent side cannot be neglected, and more importantly the prediction in eq. 4.17
by Reynolds (1972) is shown not to hold by considering the TNTI-average profile ⟨vl⟩I in
the interface normal direction given in figure 4.4a. The relations obtained in Reynolds (1972)
can be improved by taking these observations into account and writing the balance equations
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without applying the assumptions that are observed not to hold near the interface. With the
introduction of the neglected terms, the equations for the normal and tangential momentum
balance are:

[⟨p⟩I +ρ⟨v′′2l ⟩I +ρ⟨vl⟩2
I ]NT = [⟨p⟩I +ρ⟨v′′2l ⟩I +ρ⟨vl⟩2

I ]T , (4.23)

[ρ⟨vl⟩I⟨ul⟩I +ρ⟨u′′v′′⟩I]NT = ρ[⟨vl⟩I⟨ul⟩I +ρ⟨u′′v′′⟩I]T . (4.24)

The error for the balance of normal and tangential momentum equations (now denoted by the
superscript F for "full terms") then follows;

BF
nm =

[⟨p⟩I +ρ⟨v′′2l ⟩I +ρ⟨vl⟩2
I ]NT

[⟨p⟩I +ρ⟨v′′2l ⟩I +ρ⟨vl⟩2
I ]T

= 1.11, (4.25)

BF
tm =

ρ[⟨vl⟩I⟨ul⟩I]NT −ρ[⟨vl⟩I⟨ul⟩I]T
ρ[⟨u′′v′′⟩I]T −ρ[⟨u′′v′′⟩I]NT

=−3.08. (4.26)

The error related to the tangential momentum balance BF
tm is written in a form that shows the

difference of the tangential momentum flux due to ⟨vl⟩I velocity at the T and NT boundaries
and the jump of the ⟨u′′v′′⟩I term between these two boundaries.

Equations 4.25 and 4.26 include the neglected terms in Reynolds (1972) which are
observed to be significant from the current investigation. The value of BF

nm = 1.11 (eq. 4.25)
is an improvement over the value BR

nm = 1.40 in eq. 4.21. On the contrary, the imbalance for
the tangential momentum is increased when the omitted terms are included.

Another measure for the balance of the tangential momentum (eq. 4.24) would be to
write the ratio of the fluxes on the top and bottom boundaries;

BF
tm,2 =

[ρ⟨vl⟩I⟨ul⟩I +ρ⟨u′′v′′⟩I]NT

[ρ⟨vl⟩I⟨ul⟩I +ρ⟨u′′v′′⟩I]T
= 0.127. (4.27)

Written in this form, the error for the tangential momentum balance shows that in both forms
i.e., 4.26 and 4.27, there exists an important imbalance in the tangential momentum balance
for the CV defined.

In conclusion, the approach in the study of Reynolds (1972), placing a very thin CV on
the interface has a few important shortcomings;

• The most important one is that the jump of ω2 occurs with a certain thickness and there
is significant tangential velocity at the interface location which leads to considerable
outflow of mass/momentum from the side boundaries of the CV, which are neglected in
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the analysis of Reynolds (1972) as the interface is considered to be much sharper and
the CV containing the interface thus has negligible thickness in the interface normal
direction.

• Secondly, the ⟨vl⟩I is shown to vary significantly across the interface looking at the
profiles shown in figure 4.4a. The significant change of ⟨vl⟩I across the TNTI also
relates to the previous point made, highlighting the importance of the outflux from the
side boundaries of the CV.

The stretching motion in the tangential direction of the interface which is responsible for
the significant outflux in the side boundaries is shown in detail with the TNTI-average 3D
local fields in section 4.7.

As the main imbalance is due to this feature of the TNTI local velocity field, the inclusion
of the omitted terms for the top and bottom boundaries of the CV is not enough to account
for the imbalance even though it improves the situation for the momentum balance in the
normal direction (see BR

nm and BF
nm given by the eqs. 4.21 and 4.25).

We close this subsection with a relation given by Reynolds (1972) for the jump of vorticity
at the interface location, which he obtained by integration of the vorticity equation across the
interface. With the use of eq. 4.17 and with the assumption of homogeneity in the plane of
the interface, the vorticity jump condition at the interface is written as (Reynolds, 1972),[

⟨vl⟩I⟨ω l
z⟩I +

∂

∂yI
⟨u′′v′′⟩I

]
T
= 0, (4.28)

which suggests a relationship between the vorticity jump across the interface and the jump of
the cross-stress term. Looking at figure 4.4b, it has been observed already that the TNTI is
associated with high gradients of ⟨u′′v′′⟩I . This observation indeed supports the point made
by Reynolds (1972).

Similar to the previous checks for the balances of mass and momentum i.e. 4.20, 4.21
and 4.22, the relation 4.28 can be checked by looking at

BR
ω =

⟨vl⟩I⟨ω l
z⟩I

− ∂

∂yI
⟨u′′v′′⟩I

. (4.29)

Eq. 4.29 includes a derivative along the yI direction and should be evaluated at a given value
of yI including ⟨vl⟩I . On the other hand, the value of this derivative is very low at the exact
location of the peak of |ω l

z| (see figure 4.9), and thus the relation does not hold. In order
to see where the relation 4.28 for the jump of vorticity holds, BR

ω is evaluated at different
yI locations. Figure 4.10 shows BR

ω at various yI locations given together with the profile
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of ⟨u′′v′′⟩I . The vertical blue dashed line marks the yI location where the d⟨u′′v′′⟩I/dyI is
maximum.
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Fig. 4.10 BR
ω (eq. 4.29) evaluated at various yI locations along the direction normal to the

interface. Dashed blue line marks where the d⟨u′′v′′⟩I/dyI is maximum.

At the point of maximum d⟨u′′v′′⟩I/dyI , BR
ω = 1.6. BR

ω is found to be unity, exactly at
yI/η = −2.5. Actually, the jump in the profile of ⟨u′′v′′⟩I appears to be occurring over a
much shorter distance compared to the jump of ⟨ωz⟩I .

4.6 Orientation of the TNTI

The analysis of the local flow field near the interface yields important insights into the
properties of the TNTI, its persistence, and the propagation of the turbulent boundary into the
non-turbulent region. In section 4.3, the properties of the TNTI-averaging operation of the
local fields in the reference frame of the TNTI have been presented. Figure 4.7 demonstrated
that the correlation between u′′ and e′′ over the TNTI-average significantly influences the
local mean field of ⟨u⟩I . It is thus useful to analyze the properties of the interface in terms of
its facing directions, symmetries, or asymmetries in certain directions for the interpretation of
the TNTI-averaged fields/profiles of the flow field quantities. Analyzing the TNTI geometry
also aids in gaining a better understanding of the overall structure of the interface in a
temporally developing planar jet.

One informative result concerning the orientation and general shape of the TNTI is
the orientation of the face normal vector ey with respect to the unit vectors of the global
coordinate system. The PDFs of ey · i, ey ·j and ey ·k are given in figure 4.11. This figure
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presents the distribution of the orientation of the face normal vector along the entire IES of
ω2

th/ω2
re f = 10−3, without applying the no multi-cross condition.

The projections of ⟨ey⟩I on the cross-stream axis for the upper/lower interfaces are
symmetric with respect to the centre-plane of the jet, as can be seen in figure 4.11 from the
two, nearly identical peaks, at ey ·j ≈±0.75. The value at which the peaks are located shows
that the most probable angle between the vector ey and the global cross-stream direction, j
is 40 degrees.
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Fig. 4.11 PDF of the scalar product of the local y-axis unit vector ey with the global unit
vectors i, j and k for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50. Results for the full IES,

i.e. no multi-cross condition is not applied.

The distribution of ey · i is observed to be asymmetric with respect to zero, which is
not surprising due to the existence of a mean streamwise velocity profile. The peak at
ey · i= 0.5 implies that the TNTI surface regions, facing towards the downstream direction,
are mostly oriented at an angle of approximately 60◦ with respect to the streamwise direction.
Conversely, TNTI surfaces facing upstream do not exhibit a dominant angle; the angle
between ey and i is more evenly distributed. This implies that the upstream-facing surfaces
resemble a half-sphere or dome shape, with the top facing upstream direction, whereas the
downstream-facing surfaces exhibit a more pronounced inclination. This observation is
supported by the fact that the probability of finding surfaces with ey · i=−1 is significantly
higher than surfaces where ey · i= 1. The dome-like surfaces in the upstream-facing parts
of the interface are facing directly towards the −i direction, while the downstream-facing
faces exhibit an inclination that results in a lower proportion of the surface pointing directly
downstream.

It should also be noted that the orientation of the face-normal vector ey does not show
any preference in the global spanwise direction, which is attested by the PDF of the ey ·k
being symmetric with respect to ey ·k = 0 line.
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For the sake of completeness, the PDFs related to the orientation of the unit vectors
of the local coordinate system, which lie in the tangential plane of the IES are given in
figure 4.12. As described in section 4.2, ex is positioned to maximize its projection onto
the global streamwise direction, resulting in ex · i always being positive. Consequently, the
local spanwise direction mostly aligns with the global spanwise direction i.e. the peaks at
ez ·k±1. The reason for two peaks appearing in the PDF of ez ·k is due to the ey being in
inverse directions for the surfaces of upper and lower TNTI.
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Fig. 4.12 PDF of the scalar product of the local y-axis unit vector ey with the global unit
vectors i, j and k for the case where the no multi-cross condition is applied.

In figure 4.13 the orientation of the local face-normal vector ey is shown when the no
multi-cross condition is applied. The expected effect of applying the no multi-cross condition
is that the probability of having ey aligned with j is increased (comparison of the PDF of
ey · j in figures 4.11 and 4.13). This can be explained by the fact that the TNTI normal
axis has less chance of crossing the turbulent region several times when it is oriented in the
cross-stream direction. Conversely, the TNTI locations where ey makes a high angle with the
cross-stream direction |ey ·j|< 0.5 reduces with the application of no multi-cross condition.
At these locations, the TNTI normal axis is closer to the tangential plane, thus multi-crossing
occurs more frequently.

Another significant difference between figures 4.11 and 4.13 is due to the asymmetry
of the TNTI shape in the streamwise direction. The upstream-facing regions have more
instances facing towards the centre-plane or the upstream direction i.e., ey · i≈−1 compared
to the faces oriented towards the downstream direction. Due to the change in the total number
of points, the magnitude of the positive peak of the curve ey · i increases but it can be said
that the shape of the PDF does not vary significantly as the location of the peak remains at
ey · i≈ 0.5.



96 Local Analysis of the TNTI

−1.0 −0.5 0.0 0.5 1.0

ey · (i, j,k)

0.2

0.3

0.4

0.5

0.6

0.7

P
D

F

ey · k
ey · j
ey · i

Fig. 4.13 PDF of the scalar product of the local y-axis unit vector ey with the global unit
vectors i, j and k for the case where the no multi-cross condition is applied.

The change in the PDF of ey ·k is not as dramatic as the other ones when the figures 4.11
and 4.13 are considered. The faces contributing the extremities of the PDF, i.e. |ey ·k|> 0.5,
are those facing close to the tangential plane of the TNTI in the spanwise direction, making
them likely to cross the TNTI multiple times.

As a result, the PDFs of the scalar product of the unit vectors of the local and global
coordinate systems and their variation with and without the application of the no multi-
cross condition, provide valuable information about the geometry of the TNTI surface.
Documentation of the PDFs reported in figure 4.13 is important as they show the orientation
of ey for the regions of the IES used to compute the TNTI-averaged local flow statistics.

4.7 TNTI-averaged 3D fields of velocity, vorticity, pressure
and enstrophy

In this section, the 3D TNTI-averaged local fields of flow variables are presented. As a
reminder, the local coordinate system is placed on a specified IES where the exact location
of the surface corresponds to the point (xI,yI,zI) = (0,0,0) in the local 3D grid. Again, the
no multi-cross condition is checked along the normal axis yI on both sides of the interface.
Considering an individual TNTI location X0, the checks related to the no multi-cross
condition are made only along the axis normal to the IES. Thus, on the tangential plane, as
one moves further away from the point (xI,yI,zI) = (0,0,0), it cannot be strictly determined
if a particular point (xI,yI,zI) is in the turbulent or non-turbulent region. The turbulent/non-
turbulent state of any point (xI,yI,zI) depends on the local shape of the IES e.g. if the
surface is concave in each tangential direction, the tangential plane will entirely be in the
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non-turbulent region. This reminder is provided mainly to point out the possible difference
between the tangential plane xI − zI and the exact IES. Keeping this in mind, the TNTI-
averaged 3D local fields of flow variables are investigated in order to gain insight into the
local fields that influence the interface.

4.7.1 TNTI-averaged velocity field and the contributions from the pla-
nar mean U and fluctuation u′

Figure 4.14a shows the cut-sections of the TNTI-averaged 3D velocity field in the local
reference frame ⟨u⟩I(xI,yI,zI), near the interface. Figure 4.14a is obtained by applying
the TNTI-averaging process on the full velocity field u, while figure 4.14b and 4.14c are
obtained by the application of the same operation on the fluctuating and mean velocity fields
obtained by the x− z averaging i.e., u′ and U respectively.

Looking at Figure 4.14a, the first observation is the symmetry of the field with respect to
the zI = 0 plane, which is evident in the xI − zI and zI − yI cut-sections. In both planes, the
local mean spanwise velocity ⟨wl⟩I changes sign at zI = 0, indicating a stretching motion at
the TNTI point X0 along the zI axis. Additionally, when considering the xI − zI cut-section,
it becomes evident that the stretching motion is not confined solely to the zI axis but is also
present along the local streamwise axis xI . Along the xI axis, the velocity component ⟨ul⟩I

increases in the positive xI direction, despite not changing sign as the ⟨wl⟩I along the zI axis
does. Consequently, the velocity field experiences stretching in the local streamwise direction
due to d⟨ul⟩I/dxI > 0.

As has been discussed in section 4.5, the primary reason for the imbalance in the
continuity relation proposed by Reynolds (1972), in eq. 4.17, is observed to be a substantial
outflow of mass from the neglected sides of the CV. This outflow is associated with the
TNTI-average stretching motion observed along the tangential plane of the TNTI in figure
4.14. Consequently, improving the mass/momentum balance for the CV defined in section
4.5 becomes problematic without taking into account these neglected boundaries. Improving
the precision of the fluxes on the T and NT faces by the consideration of the neglected terms
in the equations i.e., eqs. 4.23 and 4.24 only increases the imbalance, as the boundary normal
velocities ⟨vl⟩I on both faces are directed inward into the CV.

When examining the ⟨vl⟩I component of the local velocity in the xI − yI and zI − yI

cut-sections (figures 4.14a, 4.14b, and 4.14c), the same observation that can be made for the
normal profile of ⟨vl⟩I in figure 4.4a holds true for the local 3D velocity field: along the yI

axis, there is a consistent d⟨vl⟩I/dyI < 0 for the entire tangential plane. This compressive
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(a) TNTI-averaged local velocity field; ⟨u⟩I (Term on the LHS of the eqs. 4.11)
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(b) TNTI-averaged local fluctuating velocity field with respect to x− z average;
⟨u′⟩I (Second term on the RHS of the eqs. 4.11)
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(c) TNTI-averaged mean velocity field with respect to x−z averaging; ⟨U⟩I (First
term on the RHS of the eqs. 4.11)

Fig. 4.14 TNTI-averaged fields ⟨u⟩I , ⟨U⟩I and the ⟨u′⟩I . The velocity scale is given in
the top left corner of each figure. The position of the IES is at X0 = (0,0,0). Results are
obtained from PJ4-HR data and for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50.

motion in the interface normal direction has a direct connection with the stretching motion in
the tangential plane, mentioned in the previous paragraph.

Looking at the middle cut-sections (xI − zI plane) of figures 4.14a, 4.14b, and 4.14c, it
can be seen that even though the direction of ⟨ul⟩I is determined by ⟨U⟩I , its gradient along
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xI is influenced by the contribution of the ⟨u′⟩I field, where d⟨ul⟩I/dxI > 0 is present along
the local streamwise axis. This suggests that the TNTI-average rotating motion observed in
the xI − yI cut-section in figure 4.14b on the turbulent side of the interface induces a positive
gradient of ⟨ul⟩I along xI . Consequently, this leads to d⟨vl⟩I/dyI < 0 on the plane yI = 0 due
to the conservation of mass in the local frame of the TNTI. This observation is important
as it sheds light on the existence of a TNTI-averaged interface normal velocity ⟨vl⟩I , even
though it is known that the x− z averaged V velocity is zero for the temporally developing
turbulent jet at each y-location.

In figure 4.14c, a negative gradient d⟨Ul⟩I/dyI is observed in the local mean stream-
wise velocity, particularly in the leftmost cut-section of figure 4.14c. The ⟨Ul⟩I values are
slightly higher on the turbulent side of the interface. However, it is notable that the gradient
d⟨ul⟩I/dyI observed in the cut-section of xI − yI in figure 4.14a is primarily influenced by
the contribution of the ⟨u′⟩I field presented in figure 4.14b.

Figure 4.15 provides a clearer view of the contributions of ⟨u′⟩I and ⟨U⟩I to ⟨u⟩I through
TNTI-averaged 1D profiles normal to the IES (see eq. 4.11). As previously mentioned, the
contribution of the ⟨u′l⟩I term to ⟨ul⟩I is significant, resulting in a jump in ⟨ul⟩I in the yI

direction. Additionally, ⟨Ul⟩I contributes to this jump due to its negative gradient across yI .
A similar pattern is observed for the interface normal component, where the most substantial
contribution comes from ⟨v′l⟩I , while the contribution of ⟨Vl⟩I remains marginal.

The local mean stream-wise velocity fluctuation ⟨u′l⟩I predominantly exhibits negative
values in the xI − yI plane in figure 4.14b. Its most significant negative contribution to ⟨ul⟩I

occurs near the location of the IES, which is easier to see in figure 4.15b as a negative peak
of the ⟨u′l⟩I along the normal axis yI . Furthermore, in figure 4.14b, it can be observed that
this negative contribution to the ⟨ul⟩I near the IES location is due to a rotating motion present
in the turbulent side of the cut-section (yI < 0) of the ⟨u′⟩I field. This motion appears to have
a rotation axis in the zl direction and rotates in the counter-clockwise direction.

It is possible that this mean behaviour is related to the vortical structures reported near the
interface by various studies in the literature (da Silva and dos Reis, 2011; da Silva et al., 2011;
da Silva and Taveira, 2010). The presence of a spanwise roller in the vicinity of the TNTI
is also compatible with the picture given in Cimarelli et al. (2022) describing the structure
of turbulence in temporally developing planar jets. The centre of the mean rotating motion
is observed to be at yI/η ≈−20, xI/η ≈−20 (see figure 4.14b) while the total size of this
motion is not covered by the employed local averaging window. Thus it is analyzed further
down in this section by using results from the TNTI-averaging operation conducted with a
wider local grid.
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Fig. 4.15 TNTI-averaged profiles of u, u′ and U obtained normal to the IES for PJ4-HR
data and for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50.

The average stretching motion observed in the xI − zI plane for ⟨u⟩I in figure 4.14a
can also be spotted in the field of ⟨u′⟩I . This observation highlights that the stretching in
the zI direction primarily arises from the contribution of the fluctuating field ⟨u′⟩I , with
no significant contribution from ⟨U⟩I to the ⟨wl⟩I component of ⟨u⟩I (see figure 4.14c).
Likewise, the compression event in the interface normal direction is predominantly a result
of the fluctuating component of the velocity, although it can be qualitatively noted that there
is a slight compression in the TNTI normal direction due to the influence of the ⟨U⟩I field
(see figure 4.14c, zI − yI plane). However, the magnitudes are very small compared to the
other components of ⟨U⟩I .

It is noteworthy that, although quite small in magnitude, there exists a positive ⟨vl⟩I

field in the zI − yI plane as shown in figure 4.14c. This phenomenon can be attributed to
the asymmetry in the PDF of the projection of interface-facing direction on the streamwise
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direction (see figure 4.11). Specifically, there are more regions of the interface facing
downstream than facing upstream. This preferred downstream orientation results in the
relatively small positive values of ⟨vl⟩I in the zI − yI plane shown in figure 4.14c. This
behaviour can be understood by examining the distribution of the most probable orientation
angle for the downstream-facing regions, which is approximately ±60◦ between the face-
normal vector ey and the streamwise direction vector i for the upper and lower TNTI,
respectively.

Consider a location on the interface where the face normal vector ey makes a 60◦

angle with i. In this case, the mean streamwise velocity U contributes primarily to the local
component ul and less to the vl component, resulting in values of U cos(π/6) and U sin(π/6),
respectively. The contribution of ul becomes even more significant for cases where ey is
more perpendicular to the streamwise direction i. Consequently, the effect of U is more
pronounced in the xI − yI plane in figure 4.14c compared to the zI − yI plane. The gradient
of the TNTI-average velocities in the yI direction is influenced by the global streamwise
velocity gradient dU/dy because the yI axis aligns with the ±y-directions in the upper and
lower TNTI, respectively.

To confirm that the feature observed in the xI − yI cut-section of figure 4.14b is indeed a
rotating motion aligned in the local spanwise direction, the TNTI-average velocity field is
obtained for a wider field of view, shown in figure 4.16. By calculating the local spanwise
vorticity in this TNTI-averaged velocity field, it was observed that the radius of this vortical
motion is approximately 1.5λ (21η). This radius is similar to the radius of the large-scale
vortical structures (LVS) reported in the study conducted by da Silva and Taveira (2010)
which is of the order of λ .

The diameter of the rotating motion is comparable to the jet half-width δ for the present
simulations (0.46δ ). It can be noted that the Reynolds number of the present dataset is limited
due to the constraints on the resolution mentioned in chapter 2. Simulations with higher
Reynolds numbers can give a more definitive conclusion for the size of the mean rotating
motion observed in the TNTI-averaged velocity fields with a larger separation between the
length scales λ and δ .

4.7.2 TNTI-averaged fields of enstrophy and pressure

The TNTI-averaged local enstrophy field is shown in figure 4.17. A detail linking this figure
with figure 4.14a is that the location of the enstrophy peak in the xI − yI plane is not directly
aligned with the interface normal axis. Instead, it is positioned more towards the upstream
direction in the local streamwise axis xI . As a result, the field exhibits asymmetry with
respect to xI = 0 along the xI axis. This observation underscores the presence of strong
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Fig. 4.16 TNTI-averaged field ⟨u′⟩I near the IES with a wider local field of view. The
velocity scale for each figure is given in the top left corner. The location of the IES is at
X0 = (0,0,0). Results obtained from PJ4-HR data and for the IES of ω2

th/ω2
re f = 10−3 at

t/Tre f = 50.

turbulent structures near the interface, primarily associated with spanwise vorticity, which
significantly influences the characteristics of the TNTI. In figure 4.17, the outline of these
structures in the zI − yI plane can be seen, although the cut section does not pass through
the centre of the vortex. It can be seen that the high enstrophy region extends more in the zI

direction compared to the local peak observed in the xI − yI plane.
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Fig. 4.17 TNTI-averaged local enstrophy field.

The corresponding locally averaged pressure field is given in figure 4.18a. Here the
pressure field is given after subtracting the pressure at the TNTI location i.e. ⟨p⟩I −⟨p⟩I(X0).
Notably, negative values of local pressure are noticeable in the turbulent side of the interface.
This observation aligns with the predictions put forth by Reynolds (1972), with the simplified
balance equations and by considering the significant disparity in local normal stresses between
the turbulent and non-turbulent sides of the interface. As can be seen from eq. 4.18, the
pressure difference is balanced by the difference in normal stresses across the interface (see
figures 4.5a and 4.4b).
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A slight asymmetry of TNTI-averaged pressure field is present in the xI − yI plane.
This asymmetry might be attributed to the presence of large vortical structures described
by da Silva and Taveira (2010) which are associated with low-pressure iso-surfaces. It is
possible that due to the asymmetric shape of the interface in the streamwise direction, these
rollers might have been sampled in a way that the TNTI-average effect related to these
vortical structures appears slightly towards the local upstream direction.
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(a) TNTI-averaged local pressure field.
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(b) Local field of −∇⟨p⟩I in the vicinity of the TNTI.

Fig. 4.18 (a) Local mean pressure field near the TNTI. The mean pressure at the interface
⟨p⟩I(X0) has been subtracted from the full field. (b) Local vector field of the negative mean
pressure gradient near the interface −∇⟨p⟩I .

Looking at the gradient of the TNTI-averaged pressure field, shown in figure 4.18b, it is
observed that the pressure gradient tends to act in a manner that directs the flow towards the
centre-plane of the jet in the vicinity of the interface. The vectors associated with −∇⟨p⟩I

also align with the IES normal vector i.e., xI/η = 0, going inside the turbulent region. This
alignment can be attributed to the predominant concave shape of the IES, and the average
pressure gradient acting normal to the interface.

However, despite the pressure gradient tends to push the flow towards the centre-plane,
the mean local velocity field in figure 4.14a reveals that the flow is moving towards the IES
within the turbulent region. On the other hand, it has been observed from figure 4.4a that the
interface normal component ⟨vl⟩I decreases rapidly when going towards the non-turbulent
side of the IES in the positive yI direction.
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4.8 Enstrophy transport equation and the sublayers of the
TNTI

Another important analysis is the balance of enstrophy at the location of the TNTI as it has
been used as the criterion for the detection of the turbulent jet and the TNTI in the present
study, following numerous studies in the literature (Holzner and Lüthi, 2011; Krug et al.,
2017; van Reeuwijk and Holzner, 2014).

The variation of the local geometrical features of the interface across its thickness has
been investigated by the analysis of various IES inside the TNTI layer in chapter 3. Being the
marker of the TNTI, the terms of the enstrophy balance equation at the TNTI bring insights
into the local characteristics of the sublayers of the interface and also the expansion of the
turbulent volume into the non-turbulent external flow. The balance equation for the enstrophy
can be written as follows,

Dω2/2
Dt

= ωiω jSi j +ν∇
2 (

ω
2/2
)
−ν∇ωi ·∇ωi. (4.30)

The left-hand side is the material derivative of the enstrophy and the terms on the right-hand
side of the equation are the production Pω2 , viscous diffusion Dω2 and the dissipation εω2 of
enstrophy respectively. Thus eq. 4.30 can also be written in the symbolic form:

Dω2/2
Dt

= Pω2 +Dω2 − εω2. (4.31)

It has been documented in the literature that different terms in eq. 4.31 are dominant in
the balance of ω2 across the thickness of the TNTI. A separation of the TNTI into distinct
sublayers has been proposed taking into account the varying picture of the balance of ω2

along the interface normal axis (da Silva et al., 2014; Silva et al., 2018; Taveira and da Silva,
2014a). A fundamental point, as highlighted in the seminal work of Corrsin and Kistler
(1955), is that an irrotational fluid packet can acquire vorticity solely through the action of
viscosity. The outer region of TNTI is thus characterized by viscous diffusion being the
principal term driving the transport of enstrophy towards the non-turbulent region and named
as viscous superlayer (VSL) (Taveira and da Silva, 2014a). Characteristics of this layer are
thus similar to the laminar superlayer described by (Corrsin and Kistler, 1955).

Going deeper into the turbulent side, the production term Pω2 gradually increases, eventu-
ally reaching a point where it is as significant as the viscous diffusion term Dω2 . The location
where Pω2 = Dω2 is being considered as the border of the VSL towards the turbulent side
of the TNTI (Silva et al., 2018; Taveira and da Silva, 2014a; Watanabe et al., 2015). In this
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region, while enstrophy levels remain notably lower than those within the turbulent core,
the dominant mechanism in the balance of enstrophy changes from viscous diffusion to the
production of enstrophy. This intermediate layer is referred to as the turbulent sublayer (TSL)
and is suggested to extend up to the first peak of the TNTI-averaged profile ⟨ω2⟩I (Silva
et al., 2018; Taveira and da Silva, 2014a; Watanabe et al., 2015).

A reminder can be made at this point about the yI = 0 location used in this chapter.
As has been explained in the introduction of this chapter, the TNTI-averaging operation
is conducted over the IES of ω2

th/ω2
re f = 10−3 due to the reasons discussed in section 4.1.

Thus the location for the arbitrary outer boundary of the TNTI (the VSL is within that
boundary) is taken to be ω2

th/ω2
re f = 10−3 for the measurements given in this section. It is

important to keep this in mind because, in this section, we determine the thickness of various
sublayers within the TNTI, by using the TNTI-average profiles of the terms in eq. 4.30 for a
specific IES. The average distance between IES ω2

th/ω2
re f = 10−3 and ω2

th/ω2
re f = 10−6 is

approximately 2.85η if measured from the IES of ω2
th/ω2

re f = 10−6. It should also be noted
that, as has been shown in section 4.4, different choices of IES do not lead only to an offset
of the same profile, but also the TNTI-average profiles of enstrophy and all the terms in eq.
4.30 changes slightly (see figure 4.2).

Figure 4.19 shows the TNTI-average profiles of the terms Pω2 , Dω2 , εω2 and ω2/2 as
functions of yI . The |⟨D(ω2/2)/Dt⟩I is computed by the sum of the terms on the right-hand
side of the eq. 4.31 and plotted in figure 4.19 along with the other terms. The enstrophy
threshold used for the detection of the IES, ω2

th/ω2
re f = 10−3, corresponds to yI/η = 0.

Going towards the turbulent side from the location of the IES, the viscous diffusion term
Dω2 is indeed the main source of increase of ω2 in the external part of the TNTI layer. The
dissipation term εω2 is also active along with the Dω2 which is responsible for the viscous
destruction of enstrophy. Moving towards negative yI values, the production of enstrophy Pω2

starts to rise after yI/η ≈−2 and cross Dω2 near yI/η ≈−3.3, where Pω2 = Dω2 (marked
by the dashed line in figure 4.19 which denotes the extent of the VSL in the direction of the
turbulent core). Considering the arbitrary external boundary to be our choice of IES, the
thickness of the VSL can be estimated as δν ≈ 3.3η .

Furthermore, in various studies in the literature, the total thickness of the TNTI is often
measured by locating the first peak in the TNTI-averaged enstrophy profile (Silva et al., 2018;
Taveira and da Silva, 2014a; Watanabe et al., 2015). This peak’s position is denoted by the
dash-dot vertical line in figure 4.19. According to this definition, the total TNTI thickness is
measured to be δI ≈ 16η , with the thickness of the TSL being δω2 ≈ 16η −3.3η = 12.7η .
The production of enstrophy reaches its peak around yI/η ≈ −10. Simultaneously, the
viscous diffusion term Dω2 attains negative values, indicating that the enstrophy generated at
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Fig. 4.19 TNTI-averaged profiles of the terms of the enstrophy transport equation, eq. 4.30,
P2

ω , D2
ω , ε2

ω and ω2/2 at the TNTI location. D(ω2/2)/Dt profile is computed as the balance
of the terms on the RHS of the eq. 4.30. The extent of VSL in the turbulent side is marked
by ( ) i.e. the location of Pω2 = Dω2 and ( ) shows the extent of δI determined by the
first peak of ⟨ω2⟩I . Figure obtained for the IES of ω2

th/ω2
re f = 10−3, obtained for PJ4-HR at

t/Tre f = 50.

this location is being transported towards the non-turbulent region, where the contribution of
Dω2 is positive on average.
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Fig. 4.20 TNTI-averaged profiles of P2
ω , D2

ω and ε2
ω given along with the balance of (D2

ω +ε2
ω)

and the term D(ω2/2)/Dt computed from the balance of the RHS of the eq.4.30. ( ) marks
the extent of VSL. Figure obtained for the IES of ω2

th/ω2
re f = 10−3, obtained for PJ4-HR at

t/Tre f = 50.

Figure 4.20 provides a closer look at the terms in eq. 4.31 in the vicinity of the VSL. It also
illustrates the approximate balance between viscous diffusion Dω2 and viscous dissipation
εω2 i.e., (Dω2 − εω2) in the VSL. The significance of Dω2 at the outer regions of the TNTI



4.9 Relative helicity at the TNTI 107

is acknowledged in the literature due to its crucial role in the spread of enstrophy into the
non-turbulent region (Bisset et al., 2002; Taveira and da Silva, 2014a; Watanabe et al., 2015).
This term contains the effects of the viscous mechanism mentioned by Corrsin and Kistler
(1955) for an irrotational fluid acquiring vorticity. Consequently, it is the primary contributor
to the positive D(ω2)/Dt observed at the outer edge of the TNTI.

An interesting observation from figure 4.20 is that D(ω2)/Dt remains positive until
yI/η ≈−4.2 even though (Dω2 − εω2) becomes negative at yI/η ≈−2.75. For this range,
the contribution of Pω2 is crucial because D(ω2/2)/Dt remains positive even after viscous
dissipation of enstrophy εω2 exceeds viscous diffusion Dω2 . This highlights the significance
of the rate with which Pω2 diminishes along the yI axis for the expansion of the turbulent
volume and its extension into the non-turbulent external region.

4.9 Relative helicity at the TNTI

The crucial role of the viscous diffusion mechanism for the net increase of the enstrophy
at the outer edge of the TNTI i.e., D(ω2/2)/Dt > 0 is observed in figure 4.19. In addition
to that, a closer look into the balance of ω2 at the VSL region in figure 4.20 highlights the
important role of the production of enstrophy Pω2 for the increase of ω2 in a range of yI

location spanning over the boundary between TSL and VSL. As has been remarked at the
end of the previous section, the variation of Pω2 with yI is observed to be important, where
D(ω2/2)/Dt is positive and the partial balance of (Dω2 − εω2) is negative i.e., within the
range −4.2 < yI/η <−2.75.

The production term Pω2 , is directly related to the non-linear term of the Navier-Stokes
equation. Writing the non-linear term u ·∇u in the momentum equation with the help of
vorticity as (ω ×u)+ 1

2∇|u|2, the first term, namely the Lamb vector, is responsible for
the non-linearity of the equation. In the regions without non-linearity, i.e. ω ×u= 0, the
production of enstrophy Pω2 is zero. Rather than looking at the Lamb vector, it is more
practical to analyze the scalar field of relative helicity (Alves Portela et al., 2018),

ĥ =
(u ·ω )

|u||ω | (4.32)

to characterize the alignment of the velocity and vorticity vectors, for the investigation of
the non-linearity. Another reason for looking at ĥ is that it separates the effect of the change
of the magnitudes of the constituting vectors with the effect of their respective orientations.
The Lamb vector will, of course, decrease together with Pω2 due to the decay of |ω| with
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increasing yI towards the non-turbulent region, but a variation of the alignment of the vectors
u and ω , might also have an effect on the rate of change of the non-linearity.

Considering the value of ĥ for any given location in the flow field, it can be observed that
when ĥ =±1, the Lamb vector becomes zero, and on the contrary when ĥ = 0, non-linearity
is maximal for a given vorticity magnitude (u and ω are perpendicular to each other).

Figure 4.21 shows the TNTI-averaged profile of ⟨|ĥ|⟩I as a function of yI/η for the IES
of ω2

th/ω2
re f = 10−3.
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Fig. 4.21 Profile of ⟨|ĥ|⟩I averaged over the IES of ω2
th/ω2

re f = 10−3.

A slight drop of ⟨|ĥ|⟩I over the interface can be observed. The variation is maximum as
we enter the TSL region and there is a negative peak at yI/η =−6.5, indicating the u and ω

vectors become more orthogonal to each other.
Apart from the average profile of ⟨|ĥ|⟩I , the PDF of ĥ can also be investigated at each

distance yI from the detected IES as shown in figure 4.22. For the purpose of comparison,
the PDF of ĥ inside the entire volume of the turbulent jet is also given. The PDF of ĥ for the
whole turbulent region is obtained by considering all the points satisfying the condition of
ω2 > 10−3ω2

re f and it is labelled V (ω2 > 10−3ω2
re f ) in figure 4.22.

The shape of the PDF of ĥ is fundamentally different in the TSL compared to the PDF
obtained for the bulk of the turbulent volume. More specifically, this transition corresponds
to the difference between the PDF curves of yI/η <−14.1 and the rest of the PDF curves
which are obtained at locations yI/η ≥−4.7.

Within the bulk turbulent region i.e. V (ω2 > 10−3ω2
re f ), the PDF of ĥ displays two peaks

at −1 and 1. The PDF obtained at the location of yI/η = −23.5, which is situated inside
the turbulent core region as indicated in figure 4.19, exhibits similar behaviour to the PDF
obtained for the entire turbulent volume (the green line in figure 4.22).
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As we move to the location yI/η =−14.1 the peaks at ±1 are reduced and the distribution
of ĥ looks flatter across a wider range. Additionally, the probability distribution shows an
increase for values close to ĥ = 0, indicating a transient region. Moving further towards the
non-turbulent region, a peak appears centred at ĥ = 0 and it is observed that the PDF remains
similar afterwards.
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Fig. 4.22 PDF of ĥ, at various yI locations with respect to the IES of ω2
th/ω2

re f = 10−3.

In conclusion, this transition of the shape of the PDF suggests that going across the TNTI,
the relative orientation of the vectors u and ω is affected in a way that the non-linearity is
maximized for a given ω and u magnitudes (probability of ĥ values close to zero gets higher)
as we go across the interface. We know that ω2 and Pω2 values drop swiftly with increasing
yI (see figure 4.19), but the transition of the shape of the PDF in figure 4.22 suggests that the
change of the alignment of u and ω vectors has an effect which slows down the decay of
Pω2 along the yI direction, even though the magnitudes of u and ω are decreasing drastically
across the TNTI.

Without this specific orientation of the vectors, and if the PDF remained the same as
that obtained for the turbulent bulk, the decay of Pω2 would be much steeper. The more
orthogonal alignment of u and ω contribute to keeping Pω2 high enough for a net increase of
ω2 in spite of Dω2 not being high enough to compensate εω2 in the region yI/η =−4.2 to
yI/η =−2.7 (see end of section 4.8 and figure 4.20).
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4.10 Definition of local propagation velocity vl
n

In chapter 3, a relationship for the mean propagation velocity vn is derived, based on the
equilibrium between the increase of the turbulent volume, dVJ/dt, and the product of the
interface area, S, and mean propagation velocity vn, which is given in equation 3.21. The
variation of vn, across the thickness of the TNTI layer has been examined. In this section, the
local definition of the propagation velocity is introduced, which is denoted as vl

n, which is
related to the mean propagation velocity vn (Jahanbakhshi and Madnia, 2018; van Reeuwijk
and Holzner, 2014).

By defining the turbulent volume VJ using the condition ω2 > ω2
th, and taking the

bounding surfaces as the IES of ω2
th, a relation was obtained by Holzner and Lüthi (2011),

for the local propagation velocity of IES elements in the interface normal direction. This
relation was later used in other studies for the analysis of the propagation of the interface
(van Reeuwijk and Holzner, 2014; Wolf et al., 2013a) into the non-turbulent region.

For the sake of completeness, the derivation of the local propagation velocity is given
here following the studies Holzner and Lüthi (2011) and van Reeuwijk and Holzner (2014).
We start by writing the total rate of change of the enstrophy, in the reference frame of the
moving enstrophy iso-surface. Ds/Dts being the total derivative operation following the
iso-enstrophy surface element, the total rate of change of enstrophy can be written as

Dsω2

Dst
=

∂ω2

∂ t
+utot ·∇ω

2 = 0, (4.33)

where the velocity of the iso-surface element, utot can be written as the sum of fluid velocity
u and the velocity of the IES element relative to the fluid vω2 as utot = u+vω2 . The total
derivative is equal to zero as it is the total rate of change of enstrophy written in the reference
frame moving with the IES element. Substituting the decomposition given for the utot , eq.
4.33 can be re-written as;

Dsω2

Dst
=

Dω2

Dt
+vω2 ·∇ω

2 = 0. (4.34)

Here, D/Dt denotes the material derivative following the fluid element. The local normal
propagation velocity of the IES element is,

vl
n = vω2 ·n (4.35)



4.10 Definition of local propagation velocity vl
n 111

where n=∇ω2/|∇ω2|. Using eqs. 4.34 and 4.35 we obtain

vl
n =− 1

|∇ω2|
Dω2

Dt
. (4.36)

The Dω2/Dt term can be expanded by using the enstrophy transport equation, i.e. eq. 4.30,
such that a relation for the local normal propagation velocity can be obtained (Holzner and
Lüthi, 2011; van Reeuwijk and Holzner, 2014);

vl
n =−2ωiω jsi j

|∇ω2| +
2ν∇ωi ·∇ωi

|∇ω2| − ν∇2ω2

|∇ω2| . (4.37)

In the study of Holzner and Lüthi (2011), the first term in the RHS of eq. 4.37 is referred
to as the inviscid part of the local TNTI propagation velocity, denoted with a superscript (inv)
as vl

n
(inv) and the last two terms containing the kinematic viscosity of the fluid are referred to

as the viscous part of the local TNTI propagation velocity vl
n
(vis),

vl
n
(inv)

=
2ωiω jsi j

|∇ω2| (4.38)

vl
n
(vis)

=
2ν∇ωi ·∇ωi

|∇ω2| − ν∇2ω2

|∇ω2| (4.39)

The second term in the RHS of eq. 4.39 is further decomposed, which yields a relation in
the form of,

vl
n
(vis)

=
2ν∇ωi ·∇ωi

|∇ω2| −ν(∇ ·n)− ν(n ·∇|∇ω2|)
|∇ω2| , (4.40)

where the divergence of n appears which is related to the mean curvature of the IES given by
eq. 2.2, meaning that the shape of the IES also has an effect on its local propagation velocity.

Due to the definition of the normal vector n, pointing towards the turbulent core, when vl
n

is negative, it means that the element of the IES is expanding towards the non-turbulent side
relative to the fluid velocity at that specific point in the flow field. Conversely, positive values
of vl

n indicate that the IES is propagating towards the turbulent core. In this context, the
terms "entrainment" and "detrainment" are used to describe the sign of the local propagation
velocity vl

n in relation to the fluid. Depending on the sign of vl
n the local contribution to the

rate of change of turbulent volume at a given location can be either positive or negative for
each iso-surface element.

When there is a positive contribution, the IES expands into the non-turbulent volume.
This expansion can occur due to the diffusion of vorticity/enstrophy at the outer edge of the
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TNTI, driven by fluid viscosity. Conversely, the enstrophy region can shrink when there is a
negative contribution, which can happen as a result of the viscous dissipation of enstrophy.

Figure 4.23 displays the PDFs of the local TNTI propagation velocity vl
n and its viscous

and inviscid components, vl
n
(vis) and vl

n
(inv). These velocities are normalized by the Kol-

mogorov velocity computed at the centre-plane of the planar jet. The results are consistent
with findings in the literature (Holzner and Lüthi, 2011; Watanabe et al., 2015; Wolf et al.,
2012).

The total propagation velocity vl
n is primarily dominated by the viscous term vl

n
(vis). The

peak of the PDF occurs on the negative side at approximately vl
n/uη ≈ 0.5. This indicates

that, on average, the turbulent jet is expanding, even though locally, in some regions of the
interface, the IES may retract towards the turbulent core. Both the extreme values and the
mean of vl

n are mostly influenced by the vl
n
(vis) term. Also, it is noteworthy to mention that,

even in extreme cases, the magnitude of the local propagation velocity remains comparable
to the Kolmogorov velocity.
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Fig. 4.23 PDF of vl
n, vl

n
(inv) and vl

n
(vis) defined by the eqs. 4.37, 4.38 and 4.39 respectively.

PDFs are obtained for the IES of ω2
th/ω2

re f = 10−3 at t/Tre f = 50 for the PJ4-HR simulation.

It is essential to clarify that the local propagation velocity, denoted as vl
n, is calculated

for each IES element. As demonstrated in chapter 3, the TNTI layer is composed of a
collection of different IESs associated with a wide range of ω2

th/ω2
re f . Therefore, it is crucial

to emphasize that vl
n is a function of both the position on an IES and the threshold ω2

th/ω2
re f .

Throughout the present study, vl
n might be referred to as the local propagation velocity of the

interface. However, in this context, the term "interface" does not refer to the entire TNTI
layer with its various IES but to the specific IES being investigated in that particular analysis.
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4.10.1 Effect of resolution on the local propagation velocity

As discussed in section 2.5, the increased resolution of the simulation has led to improved
quality in calculating various quantities, including high-order derivatives of flow field vari-
ables, such as the mean curvature of the IES, given by eq. 2.2. In this study, we explore
the variation of the mean propagation velocity across the TNTI, specifically its dependence
on the enstrophy threshold, as presented in chapter 3. To understand the scaling of vn with
ω2

th/ω2
re f , it is desirable to have a wide range of enstrophy thresholds.

In chapter 3, the mean propagation velocity is computed with the global quantities,
and only the geometrical resolution of the IES is used to get information about the fractal
dimension of each IES. However, it is important to note that obtaining similar information
with the local propagation velocity vl

n places even stricter resolution constraints. This is
because higher-order derivatives of enstrophy/vorticity need to be computed, and the terms
in eq. 4.37 are normalized by the magnitude of the gradient of enstrophy, which can become
quite small (at least on average) as one moves towards the non-turbulent region through the
VSL.

The PDF of the local propagation velocity can be seen in figure 4.24 for the IES of
ω2

th/ω2
re f = 10−3 and the IES of ω2

th/ω2
re f = 10−6. It can be observed from figure 4.24a that

the tails of the PDF vary with spatial resolution. For the positive values of the vl
n/uη the tail

of the PDF varies significantly between the resolutions dy/η = 1.4 and dy/η = 0.7 and this
part of the PDF converges for the resolution dy/η ≤ 0.7.
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Fig. 4.24 PDF of vn given for simulations with varying resolutions of dy/η = 1.4, dy/η = 0.7
(PJ4), and dy/η = 0.46 (PJ4-HR), for the IES of ω2

th/ω2
re f = 10−3.

On the other hand, for the regions of entrainment i.e. negative values of the vl
n/uη , the

tail of the PDF changes even from the medium resolution, dy/η = 0.7 to the high-resolution
case, dy/η = 0.46. The average value of the local propagation velocity vl

n over the IES



114 Local Analysis of the TNTI

detected by the condition ω2
th/ω2

re f = 10−3 is computed and found to be ⟨vl
n⟩I/uη =−0.268,

⟨vl
n⟩I/uη =−0.544 and ⟨vl

n⟩I/uη =−0.517 for the cases with grid resolutions dy/η = 1.4,
dy/η = 0.7 and dy/η = 0.46 respectively and the corresponding standard deviations are
σvl

n
= 1.267, σvl

n
= 0.697 and σvl

n
= 0.631.

The effect of resolution becomes more drastic for the IES of ω2
th/ω2

re f = 10−6 (see figure
4.24b), where the mean value over the IES is ⟨vl

n⟩I/uη = 4.484, ⟨vl
n⟩I/uη = −1.014 and

⟨vl
n⟩I/uη =−0.906 and the standard deviations are σvl

n
= 8.466, σvl

n
= 1.230 and σvl

n
= 0.665

for the cases with grid resolutions dy/η = 1.4, dy/η = 0.7 and dy/η = 0.46 respectively.
In conclusion, it has been observed that the mean and standard deviation of vl

n over the
IES of ω2

th/ω2
re f = 10−3 is starting to be captured by grid resolutions higher than η . On

the other hand, the distribution over the IES of ω2
th/ω2

re f = 10−6 is more problematic. The
comparison of the vn and ⟨vl

n⟩I over the IESs was not carried out in chapter 3 due to the
variation observed in the PDF of the quantities containing the higher order derivatives of
vorticity/enstrophy such as vl

n seen in figure 4.24 and Hm seen in figure 2.11.

4.10.2 Comparison of the global and local propagation velocity across
the TNTI

In chapter 3, a global approach is employed following the study of Zhou and Vassilicos
(2017) to compute the mean propagation velocity for a specific IES. This was done using eq.
3.21, which establishes a relation between the rate of change of the turbulent volume and the
volume swept by the IES surface due to its mean propagation velocity in the normal direction,
denoted as vn. By taking into account the fractal properties of the interface, a relation for the
mean propagation velocity for the IES was derived, as shown in eq. 3.26.

Considering the variation of the fractal properties of the IESs at the outer regions of the
TNTI, a relation for the variation of vn as a function of ω2

th/ω2
re f is obtained in eq. 3.26 and

the dependence of vn on ω2
th/ω2

re f is demonstrated in figure 3.12a. Values of vn for different
ω2

th/ω2
re f corresponds to the mean propagation velocity of IES associated with different

threshold values ω2
th/ω2

re f .
The main reason for employing the global approach is to evade the computation of

the high order derivatives of ω and ω2 for the computation of the vl
n given by eq. 4.37.

The variation of vn is demonstrated for a very wide range of ω2
th/ω2

re f values in chapter 3,
which spans three decades (see figure 3.12). The accurate computation of eq. 4.37 is not
straightforward for this wide range of threshold values as has been demonstrated in sections
4.10.1 and 2.5.
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On the other hand, for the local analysis of the TNTI, the dataset has been improved as
explained in section 2.5. The effects of the increased resolution on the local quantities such
as Hm and vl

n have been documented in sections 2.5 and 4.10.1. With the improved dataset,
the vl

n values are calculated for various IES which allows us to obtain the TNTI-averaged
values ⟨vl

n⟩I for iso-surfaces of different ω2
th/ω2

re f .
A direct relationship between the global and the local approaches exists with a consistent

definition of the turbulent volume and the bounding surface (see (Jahanbakhshi and Madnia,
2018; van Reeuwijk and Holzner, 2014)). Thus a comparison can be made between vn and
the TNTI-averaged value of vl

n for each individual IES.
Figure 4.25 shows the ⟨vl

n⟩I/uη computed by averaging vl
n over various IESs associated

with different ω2
th/ω2

re f values and normalization is made by the uη computed at the centre-
plane. In parallel and in agreement with the observation made for vn in section 3.4.4, it can
be seen in figure 4.25 that ⟨vl

n⟩I increases as the threshold value decreases and more external
iso-surfaces are considered.

The external surfaces being less contorted (lower fractal dimension D f of the IES) with
low surface area have higher propagation velocity compared to the highly contorted IES
(higher fractal dimension D f ) with high surface area (see figures 3.10a and 3.7).

10-6 10-5 10-4 10-3

ω2
th/ω

2
ref

0.6

0.8

〈 vl n〉 I
| (y

I
=

0)
/u

η

Fig. 4.25 Variation of the ⟨vl
n⟩I(yI = 0) over various IESs ⟨vl

n⟩I .

In figure 4.26, the ratio of ⟨vl
n⟩I/vn is plotted as a function of ω2

th/ω2
re f . It can be seen

from this figure that the ratio does not vary significantly considering three decades of variation
of the ω2

th/ω2
re f . On the other hand, the ratio is observed to be of the order of 2.5 rather than

unity.
This ratio might be caused by the method used for the calculation of the surface area of

the IES. The box-counting method is employed for the calculation of the fractal dimension
of each IES. As described in section 3.4.4, the surface area SR is also computed with the help
of the box-counting algorithm, and is then used for the computation of vn using eq. 3.21. It
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is thus possible that this ratio between the two evaluations of the mean propagation velocity
is introduced by this rather basic approximation of the areas of the various IES considered.

Another detail must also be noted for the computation of the ⟨vl
n⟩I . In the present

study, vl
n is computed locally in order to detect the various regions of the interface such

as entrainment/detrainment regions. The vl
n is obtained for each point detected on the IES,

where the detection of the points on the IES is described in section 2.4. This methodology
does not guarantee each point is associated with exact same surface area element. Thus there
will be a certain error when ⟨vl

n⟩I and the surface weighted average of the vl
n are compared,

at any IES location.
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Fig. 4.26 Variation of the ratio of global mean TNTI propagation velocity vn and the local
propagation velocity vl

n averaged over various IES ⟨vl
n⟩/vn.

4.11 Conditioning TNTI-average statistics on Hm and vl
n

The local characteristics of the flow field at the TNTI location are being examined using
the tools developed to compute TNTI-averages of flow field properties, including velocity,
vorticity, pressure, enstrophy, and the components of the enstrophy transport equation, all
expressed in the local coordinate system. The use of a local coordinate system, as mentioned
by Bisset et al. (2002) is crucial.

It is reasonable to expect that the characteristics of the TNTI exhibit variations across the
interface. These variations may result in distinct local topological features of the interface,
different enstrophy balance profiles, and varying entrainment and detrainment properties.

To explore these variations across the TNTI, the TNTI-averaged statistics are conditioned
on parameters such as the local mean curvature Hm (see definition in eq. 2.2) and the
local propagation velocity vl

n of the IES. In addition to these conditions, the no multi-cross
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condition is also applied to ensure that the TNTI does not fold on itself and that no turbulent
or non-turbulent pockets are present near the interface.
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Fig. 4.27 The IES of ω2
th/ω2

re f = 10−3 drawn for a part (256×384×256) of PJ1 simulation,
colored by the Hmη showing concave/convex regions.

The 2D histogram of Hmη and vl
n/uη is presented in figure 4.28a, while the PDFs of

Hmη and vl
n/uη are shown in figures 4.28b and 4.28c for the IES of ω2

th/ω2
re f = 10−3 from

the PJ4-HR simulation. These plots are based on the analysis of a total of 22×106 points,
which corresponds to the number of nearest mesh points to the specified IES. The locations
of these points have been improved as described in section 2.6.

In the histogram and PDF shown in figures 4.28a and 4.28b respectively, it can be
observed that the peak of the curvature PDF is close to zero but slightly on the negative side,
indicating that the most probable shape of the interface is concave. This concave shape is
also visible in figure 4.27, which displays a part of the IES of ω2

th/ω2
re f = 10−3 within a

portion of the full domain extracted from the PJ1 simulation.
Analyzing the PDF of vl

n in figure 4.28c, it can be observed that the peak is located on
the negative side, consistent with the expansion of the jet on average. The highest probability
corresponds to the situation where the IES element propagates into the non-turbulent region
with a velocity of approximately 0.5uη . Even for extreme values of |vl

n|, the magnitudes
remain in the order of the Kolmogorov velocity uη .

No strong correlation between vl
n and Hm is observed considering the 2D histogram

given in figure 4.28a. A possible weak correlation can nevertheless be noted due to the high
probability region (in yellow) deviating towards lower Hmη values for increasing positive vl

n.
The mean curvature can also be expressed as Hm = 1/Rcurv, where Rcurv represents the

radius of curvature. In order to ensure the physical accuracy and account for any potential
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Fig. 4.28 (a) 2D histogram of Hm/η and vl
n/uη (b) PDF of Hm/η and (c) PDFs of vl

n (eq.
4.37), vl

n
inv (eq. 4.38) and vl

n
vis (eq. 4.39). The results are for the IES of ω2

th/ω2
re f = 10−3 for

PJ4-HR simulation. The total number of TNTI points used for the PDF is 22×106.

numerical artefacts despite the special attention paid to the spatial resolution, the TNTI points
with |Hm| values exceeding 1/η are excluded from the TNTI-averaging process, wherever a
condition on Hm is applied. It can be noted that the fraction of the TNTI points where the
|Hm| value exceeds 1/η is 8.7% of the total TNTI points (without applying no multi-cross
condition).

Considering the distribution of vl
n and Hm, the vl

n −Hm parameter space is divided into
regions, and these additional conditions are referred to as "ED conditions" where "ED" stands
for entrainment and detrainment. In the present study, the entrainment and detrainment terms
refer to the sign of the local propagation velocity of the IES i.e., negative and positive values
of vl

n.



4.11 Conditioning TNTI-average statistics on Hm and vl
n 119

The conditions on Hm are set with respect to the length scales η and λ at the centre-plane,
i.e. Hm =±1/λ , Hm =±1/η . For vl

n, the distinction has been made between detrainment
cases, (vl

n/uη > 0), moderate entrainment cases (−1 < vl
n/uη < 0) and fast entrainment cases

(vl
n/uη <−1). For the sake of clarity, the conditions applied on the variables Hm and vl

n for
the conditional TNTI-averages are given for each case in table 4.1.

D1
−1/η < Hm <−1/λ

vl
n > 0

(3.4 %) (1.54 %)

D2
−1/λ < Hm < 0

vl
n > 0

(2.6 %) (1.46 %)

D3
0 < Hm < 1/λ

vl
n > 0

(1.0 %) (0.37 %)

D4
1/λ < Hm < 1/η

vl
n > 0

(3.0 %) (0.57 %)
E1

−1/η < Hm <−1/λ

−uη < vl
n < 0

(4.0 %) (2.22 %)

E2
−1/λ < Hm < 0
−uη < vl

n < 0
(45.3 %) (33.94 %)

E3
0 < Hm < 1/λ

−uη < vl
n < 0

(9.9 %) (6.17 %)

E4
1/λ < Hm < 1/η

−uη < vl
n < 0

(7.6 %) (3.11 %)
E5

−1/η < Hm <−1/λ

−2uη < vl
n <−uη

(0.3 %) (0.11 %)

E6
−1/λ < Hm < 0
−2uη < vl

n <−uη

(9.7 %) (7.68 %)

E7
0 < Hm < 1/λ

−2uη < vl
n <−uη

(1.6 %) (0.97 %)

E8
1/λ < Hm < 1/η

−2uη < vl
n <−uη

(2.9 %) (1.14 %)
Table 4.1 The conditions applied on Hm and vl

n, for each of the ED conditions during the TNTI
averaging operation. D stands for the detrainment (vl

n > 0) and E stands for the entrainment
cases (vl

n < 0). The probabilities of each condition over total TNTI locations without and
with no multi-cross condition are given in black and in red respectively. The probabilities
of the conditions are obtained for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50 for PJ1-HR

simulation.

The joint conditional cases are shown in figure 4.29 on the 2D histogram of Hmη-vl
n/uη

over the IES of ω2
th/ω2

re f = 10−3. The green lines showing the borders defined by the above-
mentioned conditions on the variables correspond to Hm =−1/η , Hm =−1/λ , Hm = 1/λ

and Hm = 1/η from left to right. Each blue-shaded region corresponds to a specific condition
on Hm and vl

n. Table 4.1 shows all conditions with their respective percentage of occurrences
amongst all the points considered on the IES. The green grid seen in figure 4.29 limits the
various conditions of table 4.1.
If we consider the E2 condition as an example, it is obtained by the following conditions;

1. −1/λ < Hm < 0

2. −1 < vl
n/uη < 0

3. No multi-crossing of TNTI in the range [−23η ,+23η ], on each side of the TNTI along
the normal axis.
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Fig. 4.29 2D histogram of Hm and vl
n given for the IES of ω2

th/ω2
re f = 10−3. The regions of

ED conditions for Hm and vl
n in the blue-shaded region are divided by the green dashed lines.

Horizontal lines stand for vl
n/uη =−1 and vl

n/uη = 0. Vertical lines stand for Hm =−1/η ,
Hm =−1/λ , Hm = 1/λ and Hm = 1/η . The regions of the histogram corresponding to D1,
E1 and E5 are marked on the plot as examples.

Among all the points considered on the TNTI, 33.94% satisfy all the three conditions
above. 11.36% of the points are eliminated due to the no multi-crossing condition, meaning
that 45.3% of the total TNTI points satisfy the first two criteria.

To facilitate the comparison of TNTI-averaged statistics, we have selected a subset of
conditions, specifically D2, E2, E3, and E6. This choice helps us avoid an overwhelming
amount of results, given the number of possible joint conditions defined on both Hm and
vl

n. These selected ED cases offer an opportunity to explore the local TNTI structure across
different regions of the interface, each exhibiting distinct characteristics in terms of Hm

and vl
n. By focusing on these cases, we aim to isolate the impact of either Hm or vl

n on the
conditional TNTI-averages.

The cases D2, E2, and E6, effectively span the range of vl
n, while E2 and E3 allow us to

investigate the influence of the IES shape, whether it is concave or convex. In addition to
that, the probabilities of occurrence of each condition over the interface are also considered
when these conditions are chosen. After applying the no multi-cross condition, the chosen
joint conditions (D2, E2, E3, and E6) emerge as the predominant representations of certain
local TNTI characteristics, such as regions of detrainment, and convex curvature, etc.

To summarize the selected subset of the ED cases; the D2 condition corresponds to the
regions of detrainment i.e. where the vl

n is positive and the IES element retracts towards the
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turbulent core. These are also the regions of the IES where the surface is concave (see figure
2.9a). The E2 condition also contains the regions at which the mean curvature is concave.
Conversely to the D2 condition, the E2 condition is associated with negative values of vl

n

i.e., locations where the IES element is moving towards the non-turbulent region relative to
the fluid velocity at that location. The E3 condition includes the regions which are convex
in shape and they are expanding into the non-turbulent region similar to the E2 condition.
Lastly, the E6 condition includes the regions where the mean curvature is concave similar to
D2 and E2 conditions, and the IES propagates towards the non-turbulent direction with a
higher velocity compared to the regions included in E2 and E3 i.e., |vl

n|> uη .

4.11.1 Conditional TNTI-average profiles and local fields

The variations in Hm and vl
n across the IES indicate potential differences in the local surface

geometry and the influence of the local flow field, including distortion, transport, and folding
of the interface. Figure 4.30 presents the conditional profiles of ⟨ω2⟩I/ω2

c and the components
of local vorticity ⟨ω l

x,y,z⟩I/|ωx,y,z|c for the conditions D2, E2, E3, and E6.
The first observation concerns the sharpness of the ⟨ω2⟩I profiles at the interface. In the

D2 condition, enstrophy continues to rise even at yI =−23η inside the turbulent region. In
the other cases, a peak in enstrophy can be observed as one moves towards the turbulent core
from the IES location. This peak is particularly pronounced in the E6 condition, characterized
by high negative values of vl

n. In this case, the ⟨ω2⟩I peak inside the TNTI reaches much
higher values, nearly double the mean centre-plane value, and occurs at a distance less
than 10η from the detected IES. This suggests that the regions of the IES satisfying the E6
condition are situated adjacent to high vorticity/enstrophy regions.

Conversely, in the E2 condition, the peak of ⟨ω2⟩I occurs at approximately 12η from
the IES, and the value remains lower than the centre-plane value ω2

c . It can be observed
that the profile of ⟨|ω2|⟩I is influenced by the local spanwise vorticity, perhaps indicating
the presence of vortical structures oriented in the local spanwise direction. This observation
aligns with findings in the literature (da Silva et al., 2011) and in section 4.7. The effect is
most pronounced in the E6 condition, which focuses on the regions of the TNTI where the
IES propagation velocity is high in the direction of the non-turbulent region. This suggests
a potential connection between the local entrainment process and the intensity of vortical
structures near the IES on the turbulent side of the interface.

The effect of the vortical structures located just next to the interface has been discussed
in the literature including the relation between the thickness of the TNTI and the radius of
LVS (da Silva and Taveira, 2010) and these vortical structures affecting the TNTI-average
profile of the tangential component of the vorticity, due to their predominant alignment when
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Fig. 4.30 Conditionally averaged profiles of the terms of enstrophy transport equation near
the TNTI. PJ4-HR simulation, ω2

th/ω2
re f = 10−3.

approaching the interface (da Silva and dos Reis, 2011; da Silva et al., 2011; Westerweel
et al., 2009).

The vortical structures located adjacent to the interface and their effects on TNTI have
been discussed in the literature, including the relation between the thickness of TNTI and the
radius of LVS (da Silva and Taveira, 2010), or the contribution of the vortical structures to
the TNTI-average profile of the vorticity component tangential to the interface, due to the
predominant alignment of vortical structures close to the interface (da Silva and dos Reis,
2011; da Silva et al., 2011; Westerweel et al., 2009).

The properties of the IVS near the interface have been documented by (da Silva et al.,
2011). These structures are reported to exhibit a predominant alignment in the tangential
direction of the interface, even though they do not exhibit any preferential alignment direction
inside the turbulent core. The radius of these IVS was analyzed in conjunction with the
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stretching experienced by these vortical structures and it was found that their radius reaches
its maximum value of 5η at yI = −λ (da Silva et al., 2011). Given the findings in the
literature, it may be possible to attribute the bump in the profile of ⟨|ω l

z|⟩I/|ωz|c to these IVS
structures residing near the IES, considering the extent of this bump is approximately 10η

along the yI axis.
Moreover, it has been reported (da Silva et al., 2011) that the stretching experienced

by IVS near the interface is small compared to the IVS located within the turbulent core.
This reduced stretching is attributed to a local minimum of strain at the locations of these
structures, which arises due to the presence of the TNTI. In essence, the TNTI inhibits the
stretching of the IVS by the large-scale motions as the fraction of LVS near the interface
decreases getting closer to the non-turbulent region (da Silva et al., 2011).

On the other hand, the bump observed in the profile of ⟨|ω l
z|⟩I/|ωz|c is notably more

pronounced in the case of E6 compared to other conditions, such as the E2 condition (see
figures 4.30d and 4.30b). This suggests that the regions associated with the E6 condition
may be where the IVSs are swept closer to the TNTI by the larger motions (see very high
positive values of ⟨vl⟩I in figure 4.32e), confining them in a narrow region between the LVS
and TNTI. In these regions, the stretching of the IVSs is possibly stronger, due to the more
pronounced expansion in the tangential direction of the TNTI for the case of E6 given in
figure 4.32e, when compared with other conditions, e.g. the E2 condition (see figure 4.32c).

To evaluate the influence of Hm on the TNTI-averaged profiles of ω2 and ω , a comparison
between conditions E2 and E3 can be conducted (see figures 4.30b and 4.30c). It is evident
that the effects of Hm on the profiles are relatively minor compared to the conditioning on vl

n.
In general, the values of ω2 and ω are slightly higher for the E3 condition in the inner-most
side of the TNTI-averaged profiles (see yI/η ⪅−20 in figures 4.30b and 4.30b).

This difference may be attributed to the fact that the convex surfaces, which are repre-
sented by the E3 condition, are located between the concave bulges that extend towards
the non-turbulent region. Consequently, these convex regions are positioned closer to the
centre-plane compared to the concave regions of the interface (i.e., D2, E2, and E6 conditions)
and they correspond to the valley-like sections of the interface, which are depicted in red in
figure 4.27 when viewed from the non-turbulent side of the interface.

Figure 4.31 displays the TNTI-average normal profiles of local velocity components
⟨ul⟩I , ⟨vl⟩I , and ⟨wl⟩I normalized by uη for conditions D2, E2, E3 and E6. Similar to the
observation for the TNTI-averaged profiles of ω2 and ω , the most significant variation is
observed when comparing conditions with different vl

n ranges. Especially, the profile of
the interface-normal component of the local velocity, ⟨vl⟩I , exhibits notable variations for
regions with different values of vl

n/uη i.e., D2, E2, and E6.
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In the D2 condition, ⟨vl⟩I remains negative along the entire yI axis. However, for the
moderate entrainment conditions E2 and E3, ⟨vl⟩I experiences a change in sign. Finally, in
the E6 condition, ⟨vl⟩I is positive throughout the entire TNTI normal axis.

It is useful to recall that the negative values of ⟨vl⟩I do not directly translate into entrain-
ment/detrainment as the local propagation velocity for the IES element, vl

n, is computed
relative to the fluid velocity at the IES location. It can even be noted that ⟨vl⟩I < 0 is ob-
served in both D2 and E3 conditions (see figures 4.32b and 4.32d) which are associated with
local detrainment and entrainment respectively. The fact that ⟨vl⟩I is negative at yI/η = 0
does not lead to an entrainment in the D2 condition. This picture suggests that the local
entrainment/detrainment is associated more with the compression/stretching of the interface
than the direction of the flow velocity at the interface.

In the D2 case, it can be suggested that the negative TNTI-averaged velocity in the normal
direction (⟨vl⟩I < 0) pushes the vortical structures away from the IES location. This may
have an impact on how sharp the TNTI is and affect the non-linear production of enstrophy,
Pω2 . It should also be noted that the positive gradient of ⟨vl⟩I along the yI axis leads to the
stretching of the interface layer in the normal direction (see figure 4.31a).

Conversely, for the E6 condition, the gradient of ⟨vl⟩I along the yI axis is negative,
suggesting that the TNTI-average velocity field induces a transport from the turbulent core
towards the interface. This will lead to a sweep of IVS closer to the interface, perhaps
contributing to the prominent bump observed in the profile of ⟨|ω l

z|⟩I in figure 4.30d, on the
turbulent side of the IES. This interpretation is further supported by the jump of ⟨ul⟩I across
the interface, for D2, E2, and E6 conditions. In the D2 case, the observed jump in ⟨ul⟩I

across the TNTI is smaller and occurs over a wider range of yI , whereas it is much higher in
magnitude and occurs much sharply in the case of the E6 condition given in figure 4.31d.

The jump of ⟨ul⟩I is shown to be due to the u′ field near the interface (see figures 4.14b
and 4.15b), where the relationship between ⟨ul⟩I and u′ is given by eq. 4.15. In cases where
vortical structures may be transported closer to the IES, the tangential velocity induced by
these structures will be higher, resulting in the differences between figures 4.31d, 4.31b and
4.31a.

One less prominent feature in the profiles given in figure 4.31 is the region in the profile
of ⟨ul⟩I where d⟨ul⟩I/dyI changes its sign. This feature is most noticeable in figure 4.31d for
the E6 condition, occurring at yI/η =−2. Upon examining the TNTI-averaged profiles for
the D2 and E3 conditions, it becomes evident that this inverse bump is not present for these
conditions, contrary to E2 and E6 conditions. This discrepancy suggests a difference in the
local flow field topology near the IES for the E3 and D2 conditions.
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Fig. 4.31 Conditionally averaged profiles of local velocity ⟨u⟩I near the TNTI. IES of
ω2

th/ω2
re f = 10−3.

The vortical motion depicted in figure 4.16 contributes to a local negative peak in the
⟨ul⟩I component very close to the yI/η = 0 location. For the D2 and E3 conditions, the
impact of this vortical motion appears less significant, as the local minimum of ⟨ul⟩I is absent
in these conditions. This observation may indicate a lack of tangentially aligned vortical
structures or a lower intensity of such structures in these specific regions. The reason for this
difference might vary between the D2 and E3 conditions.

In the case of the D2 condition, we mentioned that the TNTI-averaged velocity field
acts in a way that transports the vortical structures away from the interface. In contrast, the
convex regions of the IES associated with the E3 condition are situated between the bulges,
resembling valley-like regions (see figure 4.27). Unlike the concave regions of IES, which
follow the underlying vortical motions, there is no reason to expect the same picture for the
convex regions of the IES.
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Therefore, even though the ⟨ul⟩I values are higher for the E3 condition compared to
the E2 condition, the inverse bump does not exist for the E3 condition as prominently as
in conditions E2 and E6. Meanwhile, the higher values of ⟨ul⟩I in the E3 condition can
be attributed to the fact that concave surfaces reach further into the non-turbulent region,
hence farther from the center-plane, compared to the convex regions. In support of this
last point, the average distance of regions satisfying the E2 condition with respect to the jet
centre-plane is computed to be 1.68HJ , whereas the same average distance is 1.55HJ for the
regions associated with the E3 condition.

The TNTI-averaged local velocity fields are presented in figure 4.32 for conditions D2,
E2, E3, E6, and for the case without any conditioning on Hm and vl

n. As mentioned earlier, the
local velocity field exhibits notable differences for the D2 and E3 cases, where the rotational
motion observed in the xI − yI cut section in figure 4.16 is not present.

In the D2 condition, the velocity field exhibits a rotational pattern around a point in the
local upstream region of the xI − yI cross-section i.e. at a location where xI/η > 0. The
interface normal velocity ⟨vl⟩I is directed towards the turbulent core, not only along the
normal axis but across the entire TNTI-averaged field.

In the E3 condition, the influence of the convex IES can be seen in the zI − yI cross-
section. The ⟨vl⟩I component is directed towards the non-turbulent region, and its magnitude
remains significant at zI =±23η , which is different from the mean picture obtained for the
E2 condition in figure 4.32c. This observation further supports the notion that the regions
identified by the E3 condition are not directly positioned on top of significant vortical motions
but rather between them.

For the E6 condition, the velocity vectors of the TNTI-averaged velocity field given in
figure 4.32e, are nearly perpendicular to the IES at the location of xI = (0,0,0)≡X0. The
magnitudes of ⟨vl⟩I are significantly higher compared to the other cases. The stretching
motion centred at the X0 location is much more pronounced in the tangential plane defined
by the xI − zI cut section, especially compared to the E2 condition. Conversely, in the xI − zI

cut section for the D2 condition, shown in figure 4.32b, compression of the flow field can be
observed in the tangential direction of the interface, where, d⟨wl⟩I/dzI < 0 along the zI axis,
and d⟨ul⟩I/dxI is close to zero near the zI/η = 0 line, indicating that the gradient of ⟨vl⟩I in
the interface normal direction is maximized along the yI axis.

Figure 4.33 displays the TNTI-averaged local fields of ω2 for various conditions across
the IES of ω2

th/ω2
re f = 10−3. A notable observation is the exceptionally high enstrophy

values in close proximity to the IES for the E6 condition. This is consistent with the findings
in figure 4.32e, where the TNTI-averaged local velocity field transports ω2 towards the
interface. Additionally, the analysis of ĥ across the interface reveals that the alignment
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Fig. 4.32 TNTI-averaged local velocity field near the detected IES for the conditions D2, E2,
E3, and E6. The scales for vectors are given on the top left of the figures. The location of the
IES is X0 = (0,0,0). Results for the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50.
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of ω is influenced by the presence of the interface, with a higher likelihood of alignment
perpendicular to u.

Given these observations, a plausible scenario for the regions corresponding to the E6
condition is as follows: The vortical structures are advected towards the interface by a
significant ⟨vl⟩I , after which they are stretched in the tangential direction of the interface due
to the mean velocity field shown in figure 4.32e for the xI − zI cut section. This stretching
process can be associated with the increased non-linear production of enstrophy Pω2 , in close
proximity to the IES. This increase in Pω2 is particularly important for the net increase of ω2

in the outer regions of the TNTI, where the viscous destruction of ω2 already exceeds the
viscous diffusion, i.e., (Dω2 − εω2)< 0.
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Fig. 4.33 TNTI-averaged local enstrophy fields for various ED conditions (IES of ω2
th/ω2

re f =

10−3). The green dashed line shows the iso-contour of ω2
th/ω2

re f = 10−1. The same colour
scale is used for all the contour plots for the comparison, which is over-saturated for the E6
condition due to very intense ω2 values for this case compared to the other conditions.
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4.11.2 Conditional enstrophy balance

The TNTI-averaged profiles of the terms of the enstrophy transport equation (eq. 4.30) have
been computed conditionally on the Hm and vl

n of the detected IES. Figure 4.34 shows the
profiles normal to the interface for the cases D2, E2, E3, and E6 where the D(ω2/2)/Dt term
is calculated from the balance of the terms in the right-hand side of the eq. 4.30.
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Fig. 4.34 Conditionally averaged profiles of the terms of enstrophy transport equation near
the TNTI. PJ4-HR simulation, ω2

th/ω2
re f = 10−3.

A notable distinction can be observed between the conditional enstrophy profiles for
the D2 case and the E2, E3, and E6 cases, which corresponds to a comparison between
regions of detrainment and entrainment. In figure 4.34a for the D2 condition, it is observed
that as we move towards the turbulent core from yI/η = 0, the εω2 increases more rapidly
compared to the Dω2 and Pω2 terms. This results in the destruction of ω2 as the diffusion and
production terms are not able to balance εω2 , causing the IES to retreat towards the turbulent
core. Another difference between the D2 condition and the entrainment cases is that the Pω2

and εω2 terms continue to rise along with the ω2/2 profile, even at yI = −23η . It should
also be noted that the magnitudes of all the terms in the D2 condition are lower compared to
the other conditions.
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The impact of the conditioning on Hm appears to have a less significant effect on the
variation of TNTI-averaged terms in the enstrophy transport equation. To assess how the
enstrophy balance changes between convex and concave regions of the IES, figure 4.34c
can be compared with figures 4.34b and 4.34d. As a reminder, it can be noted that the E3
condition corresponds to convex regions (0 < Hm < 1/λ ), while the E2 and E6 conditions
correspond to concave regions (−1/λ < Hm < 0) of the IES. Even though it can be said
that, qualitatively the profiles of the terms appear similar for concave and convex regions,
a difference can be noted for the profile of the D(ω2/2)/Dt term as we move towards the
turbulent core.

In figures 4.34b and 4.34d, it can be observed that D(ω2/2)/Dt crosses zero relatively
close to the IES location and remain negative until yI/η = −23. On the other hand, for
the E3 condition, D(ω2/2)/Dt remains close to zero until yI/η =−14, which is nearly the
extent of the full TNTI layer located at yI/η =−16.

When considering the thickness of the VSL and TSL for each condition, similar behaviour
is also observed for the E6 condition. The D(ω2/2)/Dt remains near zero over the full extent
of the TNTI, even though the TNTI thickness δI for the E6 condition is half that computed
for the E2 and E3 conditions.

Furthermore, it is noteworthy that Pω2 appears to be more dominant for the E3 and E6
conditions than for the E2 condition. This suggests a similarity between the E3 and E6
conditions in the sense that there is significant production of enstrophy inside the TNTI.

For the E6 condition, the mean profile of Pω2 supports the discussion made in relation
to figure 4.33e regarding the intense ω2 near the IES. It has been discussed that the vortical
structures transported by the TNTI-averaged interface normal velocity, are subjected to vortex
stretching in the tangential direction close to the IES location, particularly in the regions
associated with the E6 condition. The Pω2 peak appears at yI/η ≈−5.5, which is the same
location where the negative peak of Dω2 is observed. This demonstrates the significant
amount of ω2 that is produced at this location is on average, transported by the action of
viscosity towards the non-turbulent region.

On the contrary, the TNTI-averaged velocity field significantly differs between the E3 and
E6 conditions (see figures 4.32d and 4.32e). Consequently, the same reasoning does not seem
very plausible for the profiles obtained for the E3 case. However, previously demonstrated,
the regions associated with the E3 condition are predominantly situated within the turbulent
region, nested between the bulges. In these convex regions, vortical structures near the IES
might experience more stretching due to straining by the LVS, akin to the stretching of
vortex filaments in isotropic turbulence subjected to background strain, as documented by
Jiménez and Wray (1998). The higher stretching effect is likely because these convex regions
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are enveloped by the turbulent region, in contrast to the concave sections of the interface.
In concave regions, the LVSs are confined more by the interface, leading to fewer LVSs
near the location of the IES. This interpretation aligns with the findings of da Silva et al.
(2011), where they illustrated TNTI and vortical motions at various scales, discussing the
relationship between strain acting on the IVS near the TNTI in detail, while the statistics
were not specifically conditioned on the shape of the interface i.e., concave/convex shaped
regions.

The separation of the TNTI thickness into various sublayers by considering the terms of
the ω2 balance equation is described in section 4.8 and the computations of the total TNTI
thickness δI , VSL thickness δν , and TSL thickness, δω2 are carried out from the profiles
obtained for the entire TNTI i.e., without applying any conditions on Hm and vl

n. Now,
by employing the same methodology, the thicknesses of the TNTI and its sublayers are
investigated in various regions of the interface associated with each ED condition. It must be
noted that the number of points satisfying each condition varies significantly (see table 4.1)
which may affect the convergence of the profiles in certain cases.

Table 4.2 provides the thicknesses of the TNTI and its sublayers for all the ED cases.
Some values in the table are left empty because the conditional profile of ω2 does not exhibit
a visible peak value within the investigated range. As a reminder, the thicknesses obtained
without imposing any conditions on vn and Hm are δI = 16η , δν = 3.27η and δω2 = 12.74η .

D1
δI = not defined

δν = 4.1η

δω2 = not defined

D2
δI = 20.7η

δν = 5.3η

δω2 = 15.4η

D3
δI = 16η

δν = 6η

δω2 = 10η

D4
δI = 17.4η

δν = 4.4η

δω2 = 13η

E1
δI = not defined

δν = 4η

δω2 = not defined

E2
δI = 16.5η

δν = 4.5η

δω2 = 12η

E3
δI = 16η

δν = 5.1η

δω2 = 11η

E4
δI = 18.4η

δν = 4.7η

δω2 = 13.6η

E5
δI = 9.9η

δν = 2.7η

δω2 = 7.2η

E6
δI = 8.5η

δν = 3η

δω2 = 5.5η

E7
δI = 8η

δν = 3.3η

δω2 = 4.7η

E8
δI = 10.4η

δν = 2.8η

δω2 = 7.5η

Table 4.2 Thickness of the TNTI, VSL and TSL layers, δI , δν , δω2 , for different ED conditions.
PJ4-HR simulation for the IES defined by ω2

th/ω2
re f = 10−3 at t/Tre f = 50.

In the table 4.2, the thicknesses of all the layers tend to decrease for increasing local
entrainment i.e. from top to bottom in each column. For the conditions with moderate
entrainment velocity (−1 < vl

n/uη < 0), the thickness of layers are; δI/η = 16.5, δν/η = 4.6
and δω2/η = 12 (average of E2, E3 and E4 conditions). For the fast entrainment regions
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(vl
n/uη <−1), the interface and the sublayer thicknesses are as follows: δI/η = 8.6, δν/η =

3 and δω2/η = 5.7. Notably, the total TNTI thickness is halved at the high entrainment
regions, indicating a much sharper TNTI at these locations. Conversely, the VSL thickness δν

does not decrease to the same extent as δI and is reduced by a factor of 2/3 when comparing
the mild entrainment regions (E1, E2, E3, E4) with the fast entrainment regions (E5, E6, E7,
E8).

Overall, the total thickness of the TNTI and the thickness of its sublayers exhibit more
significant variations when comparing the fast entrainment regions to other cases. In contrast,
the differences in thicknesses are less pronounced when comparing the regions of detrainment
with the mild entrainment regions.

The terms of the enstrophy balance equation, alongside the balance between ⟨Dω2⟩I and
⟨εω2⟩I , are shown in figure 4.35 for the conditions D2, E2, E3, and E6, near the detected IES
with ω2

th/ω2
re f = 10−3. It must be noted that the magnitudes of the terms are significantly

higher for the E6 case compared to the other cases, even an order of magnitude difference is
present between the D2 and E6 conditions.

The Dω2 term shows a significant amount of enstrophy diffusion towards the non-turbulent
region, but the region where the balance (Dω2 − εω2) changes its sign is much closer to the
IES for the E6 case compared to the other entrainment cases, E2 and E3. This behaviour is
consistent with the observation that the vortical activity is tightly packed near the IES in the
E6 condition, possibly due to the significant positive values of ⟨vl⟩I which may also lead to
the Pω2 term remaining much higher until very close to the IES location along the axis of
yI/η for the E6 condition.

The variation of ĥ across the TNTI for the conditional cases is shown in figure 4.36.
It is evident that the TNTI-averaged behaviour of ĥ is very different for the D2 and E6
conditions on the one hand and for the E2 and E3 conditions on the other. The unconditioned
TNTI-average profile ⟨|ĥ|⟩I presented in figure 4.21 is similar to the TNTI-average behaviour
of ⟨|ĥ|⟩I conditioned by E2 and E3.

In the cases of D2 and E6, the values of ⟨|ĥ|⟩I drop significantly as one approaches the
IES. This behaviour is particularly pronounced for the E6 condition. It can be noted also
that the TNTI-averaged profile of ⟨Pω2⟩I in figure 4.34d shows a peak in mean production of
enstrophy close to the IES, at yI/η ≈−5.75.

Regarding the D2 condition, there is also a significant drop in ⟨|ĥ|⟩I across the TNTI. It
should be reminded that ĥ gives information about the orientation of the velocity and vorticity
vectors with respect to each other but not about their magnitudes. Taking this into account,
the ω2 values are significantly low as we approach the IES for the D2 condition. Thus it is
possible that the vorticity aligns in such a way that it is perpendicular to the local velocity
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Fig. 4.35 TNTI-averaged profiles of P2
ω , D2

ω and ε2
ω given along with the balance of (Dω2 −

εω2) and the term D(ω2/2)/Dt computed from the balance of the RHS of the eq. 4.30 for the
conditions of D2, E2, E3 and E6. The vertical dashed line marks the extent of VSL. Profiles
are obtained for the IES of ω2

th/ω2
re f = 10−3, for PJ4-HR at t/Tre f = 50.

near the IES, but looking at the figure 4.34a, it can be observed that this does not lead to a
significant Pω2 across the interface.

Another interesting observation is that the ⟨ĥ⟩I values are higher towards the turbulent core
for the D2 condition compared to the E2, E3 and especially E6 conditions (at yI/η =−23
in figures 4.36a, 4.36b, 4.36c and 4.36d). This suggests that non-linearity is less on the
turbulent side of the regions associated with D2 compared to the E2, E3 and E6 conditions.
Due to the local fields at regions associated with the D2 condition, Pω2 does not contribute to
D(ω2/2)/Dt as much as in the regions associated with regions where local entrainment is
present.

The profiles of ⟨|ĥ|⟩I for the regions satisfying the E2 and E3 conditions indeed appear to
be more similar to the unconditioned TNTI mean profile along the yI/η axis. However, a
slight change can be observed for the location yI/η where the ⟨|ĥ|⟩I has a minimum. It is not
surprising to see that the local flow topology is different for the concave/convex shapes as a
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significant difference is already observed for the ⟨Pω2⟩I profiles between figures 4.34c and
4.34b.
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Fig. 4.36 TNTI-averaged profiles of the absolute value of the relative helicity ⟨|ĥ|⟩I (eq.
4.32) computed for the conditions of D2, E2, E3 and E6. Profiles obtained for the IES of
ω2

th/ω2
re f = 10−3. At t/Tre f = 50 for PJ4-HR simulation.

The variation of the PDF of ĥ at various locations from the IES is given in figure 4.37 for
the various conditions. Again a similarity between the D2 and E6 cases is visible, while there
is of course a difference in terms of the convergence of the PDFs considering the number of
locations on IES satisfying the D2 and E6 conditions. Otherwise, an abrupt change in the
shape of the PDF is present for these two conditions, which occurs between yI/η =−14.1
and yI/η =−4.7 as in the unconditioned situation (see figure 4.22).

For the conditions of E2 and E3, the shape of the PDFs remains the same across the
interface. The PDFs are checked also at locations further towards the non-turbulent side
(yI/η > 2.4) and no transition of the shape of the PDFs is observed as has been shown to be
the case for D2 and E6 conditions. The PDFs remain similar until yI/η locations where the
values of |u| and |ω| are getting so small that ĥ becomes irrelevant.

Finally, to investigate if the ED conditions correlate with specific interface orientations,
we examine the PDFs of ey · i for D2, E2, E3, and E6 conditions, as illustrated in figure
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(c) E3 condition
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(d) E6 condition

Fig. 4.37 PDF of ĥ, at various yI locations for the conditions D2, E2, E3 and E6, with respect
to the IES of ω2

th/ω2
re f = 10−3 at t/Tre f = 50 for PJ4-HR simulation.

4.38. The PDFs reveal a notable trend that the local entrainment predominantly occurs in the
downstream-facing regions of the interface, which aligns with the findings by Watanabe et al.
(2014a) for the spatially developing turbulent jets. This preference becomes particularly pro-
nounced in cases with high entrainment velocities, such as the E6 condition. Although there
are still instances of other orientations, the PDF for the E6 condition exhibits a prominent
peak around ey · i≈ 0.52, corresponding to an angle of approximately 60◦ between the face
normal vector ey and i. Implying that the IES extends into the non-turbulent region primarily
in the downstream-facing regions of the TNTI.

Even though the asymmetry observed in the orientation of the ey vector for regions
meeting the D2 condition is not as pronounced as the E6 condition, there exists a clear and
strong trend showing that the regions of the interface where local detrainment occurs are
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more often at the upstream-facing regions of the interface. Watanabe et al. (2014a) present
similar results showing the propagation of the interface regions towards the turbulent core in
the regions facing in the upstream direction.
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Fig. 4.38 PDF of the orientation of the face normal ey with respect to the global streamwise
direction i, for the conditions of D2, E2, E3 and E6.

4.12 Conclusions on the TNTI-average statistics of the flow
field

In contrast to chapter 3, a spatially local methodology is used to analyze the flow field in the
proximity of the TNTI and its various sublayers. The chapter begins by providing a definition
of the TNTI-averaging operation, which is also utilized in chapter 5.

The TNTI-averaged local statistics are analyzed in the vicinity of the interface. Also,
the orientation of the interface surface has been discussed with respect to the streamwise,
cross-stream, and spanwise directions. Following the literature, the ω2 balance equation has
been used in order to distinguish the various sublayers of the TNTI by the TNTI-average
profiles of the terms of the enstrophy balance equation.

Subsequently, the local propagation velocity vl
n of the IES has been presented follow-

ing the studies by Holzner and Lüthi (2011) and van Reeuwijk and Holzner (2014). The
TNTI-average statistics for the local entrainment/detrainment regions are distinguished
by conditioning the local fields on vl

n. Similarly, the TNTI-average statistics for the con-
cave/convex regions are distinguished by applying a condition on the mean curvature Hm.
The variation of the local TNTI properties such as the TNTI local fields of velocity, vorticity,
pressure, enstrophy, the thicknesses of the interface and its sublayers have been investigated
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conditionally, for regions of the interface, which have different entrainment/detrainment -
concave/convex characteristics.

Figure 4.39 gives an overview of the TNTI of the temporally developing turbulent planar
jet, which summarizes the observations made throughout the present chapter as a result of all
the analysis being conducted.

A sketch of the geometrical property of the interface is given in figure 4.39a. The shape of
the TNTI has been mainly discussed in section 4.6 in terms of the PDFs of the orientation of
the face normal vector ey with respect to the global streamwise, cross-stream, and spanwise
directions (see figure 4.11) and in sections 2.5 and 4.11 in terms of the PDF of the local mean
curvature Hm.

It has been concluded that the TNTI mostly consists of concave surfaces and the average
value of Hm across the IES shows that the most probable radius of curvature for the IES of
ω2

th/ω2
re f = 10−3 is Rc ≈ 0.5λ = 7η (see figure 4.28b). By analyzing the PDFs presented in

figure 4.11, it has been shown that in the regions facing towards the downstream direction, ey

makes predominantly a 60◦ angle with the unit vector pointing in the streamwise direction,
i. Conversely, the distribution for the upstream-facing regions (corresponding to ey ·j < 0
in the PDF shown in figure 4.11) is observed to be flatter without exhibiting any particular
angle, which suggests that these regions have features closer to a half-sphere.

Furthermore, the analysis of the TNTI-averaged local fields of u′, p and ω2 (see figures
4.14b, 4.18a and 4.17) show that there exists a rotating motion near the interface, which
is oriented in the spanwise direction and rotates in the counter-clockwise direction in the
TNTI-average local frame, which is an average over many local frames along the interface.
This observation is also depicted in figure 4.39a with the mention of the radius of these
rotating motions observed to be approximately 1.5λ = 0.23δ . A possible reason for the
mean rotating motion is located asymmetrically along xI instead of xI/η = 0, in figure 4.16,
is the asymmetric shape of the TNTI in the streamwise direction (the difference between
upstream/downstream facing regions). The peculiar shape of the interface, which exhibits an
extension in the downstream direction (see figure 4.39a) leads to more frequent sampling of
the rotating motion at the local upstream part of the TNTI-average field which corresponds
to xI < 0 regions in TNTI-average local fields such as in figure 4.14b.

On the other hand, figure 4.39b illustrates the various regions associated with D2, E2, E3,
and E6 conditions, which are distinguished by the application of different conditions on the
local values of Hm and vl

n (see table 4.1). The regions of Dω2/Dt > 0 and Dω2/Dt < 0 are
also marked with red and green shading respectively, which are observed as a result of the
investigation of the terms for the ω2 balance equation conditional on Hm and vl

n in section
4.11.2.



4.12 Conclusions on the TNTI-average statistics of the flow field 139

(a) A sketch of the TNTI (black line represents the IES of ω2
th/ω2

re f = 10−3),
where the face normal vector ey and its predominant orientation of 60◦ is illus-
trated with respect to i. The fluctuating velocity field relative to the TNTI is
denoted by red arrows ⟨u′⟩I . The arrows are placed by taking into account the
TNTI-average velocity fields obtained for ED conditions and the predominant ori-
entations for each condition. The rotating motions observed in the TNTI-averaged
local field ⟨u′⟩I are also shown by orange arrows in the TNTI local reference
frame. where RV S ≈ 1.5λ stands for the radius of these vortical structures.

(b) Showing the regions associated with D2, E2, E3 and E6 conditions on the
same sketch of the interface. The regions where Dω2/Dt > 0 and Dω2/Dt < 0,
are denoted by the red and green shadings, and the magenta arrows indicate the
directions of TNTI-average compression/stretching motions at certain locations.

Fig. 4.39 General picture of the TNTI of temporally developing turbulent planar jet.

An important result from the analysis of the ω2 balance across the interface is that the
Pω2 is observed to be crucial in the regions of local entrainment regions. The investigation of
the PDF of relative helicity ĥ at various distances from the interface, in figure 4.22, shows
the vectors of ω and u being oriented more orthogonally with respect to each other, as the
outer edge of the interface is approached, which limits the rate of decay of Pω2 towards the
non-turbulent region.
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The main observations made in the chapter can be summarized as:

• The magnitudes of the tangential components of the vorticity vector rise sharply, and
even exhibit a peak on the turbulent side of the TNTI for the local spanwise component.
On the contrary, the vorticity component normal to the interface shows much smaller
gradients as the TNTI acts as a boundary for the turbulent region.

• The TNTI is associated with very high gradients of TNTI-average turbulent stress
⟨u′′v′′⟩I along the interface normal direction, where ′′ stands for the fluctuations with
respect to the TNTI-averaging.

• A non-zero TNTI normal velocity ⟨vl⟩I is observed along the yI axis, even though the
cross-stream velocity, averaged over the homogeneous (x− z) directions, is zero for all
the locations along y. Moreover, the profile of ⟨vl⟩I is determined by the correlation
between u′′ and e′′ vectors i.e., the term ⟨u′′ ·e′′⟩I .

• In qualitative agreement with the prediction of Reynolds (1972), a jump in the tan-
gential component of the TNTI-average velocity i.e., ⟨ul⟩I , across the thickness of the
TNTI is observed. On the other hand, the prediction that ⟨vl⟩I is equal on both sides of
the TNTI by Reynolds (1972) is shown not to hold.

The principal reason why the relations obtained by Reynolds (1972) do not hold is the
stretching motion on average, in the tangential direction of the interface. This mean
velocity in the outwards direction on the tangential plane causes a significant outward
flux of mass/momentum from the side faces of the CV, which have been omitted in the
study of Reynolds (1972).

• The orientation of the TNTI has shown that the regions of the interface facing in the
downstream direction predominantly make a 60◦ angle with the unit vector pointing in
the downstream direction in the global coordinate system i (see section 4.6).

• A rotating, vortex-like motion is observed in the TNTI-averaged local velocity field
⟨u′⟩I which is aligned in the local spanwise direction. It should be noted that this
motion is observed in the TNTI local reference frame, which is an average of many
local frames. The contribution of ⟨u′⟩I is found to be crucial for the local features
observed in the TNTI local velocity field both for the rotational motion and also for
the jump of the tangential velocity across the TNTI.

• The terms of the enstrophy budget equation are analyzed in the vicinity of the TNTI.
Both the qualitative balance of the terms and the measured thicknesses of the TNTI
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and its sublayers are in agreement with the results in the literature (see section 4.8). It
has been known that the propagation of the ω2 into the non-turbulent region occurs
due to the Dω2 in the outer regions of the TNTI. In addition to that, the importance of
the production term Pω2 has been pointed out in the present analysis, especially in the
yI locations where Dω2/Dt > 0 while (Dω2 − εω2)< 0.

• In relation to Pω2 , the ω and u vectors are oriented more orthogonally near the TNTI,
compared to the centre-plane of the jet. This maximizes the non-linearity (for given
the magnitudes of ω and u) across the TNTI, which in turn contributes locally to Pω2 .

• The local detrainment/entrainment can be associated with the interface normal compo-
nent of ⟨u⟩I pointing towards the turbulent core/non-turbulent region respectively.

• Considering the detrainment, entrainment, and fast entrainment conditions (associated
with different values of vl

n), the mean thicknesses of the TNTI, VSL and TSL are
observed to vary for each condition. More radical differences in the thicknesses have
been observed between moderate entrainment (−1 < vl

n/uη < 0) and fast entrainment
(−2 < vl

n/uη <−1) regions, while the mean thicknesses at the detrainment regions
(−1 < vl

n/uη < 0) remain similar to moderate entrainment condition. For moderate
entrainment regions, the thicknesses for the whole TNTI layer, VSL and TSL are
observed to be δI = 16.5η , δν = 4.6η and δω2 = 12η , while at the fast entrainment
regions, these thicknesses are measured to be δI = 8.6η , δν = 3η and δω2 = 5.7η .

• The fast entrainment regions can be associated with very high values of local Pω2 . A
significant peak is present in the TNTI-average profile of Pω2 for the E6 condition.

• The face normal vector ey has different predominant facing directions for each con-
dition at the regions of the TNTI associated with detrainment, entrainment, and fast
entrainment, which are upstream, slightly downstream and more significantly down-
stream (see figure 4.38).





Chapter 5

Interscale/Interspace Energy Transfer at
the TNTI

5.1 Kármán-Howarth-Monin-Hill equation

As demonstrated in previous chapters and numerous prior studies, the TNTI is a highly
localized phenomenon. Consequently, investigating the energy cascade in proximity to this
interface presents its own set of challenges. In this chapter, we undertake an analysis of the
energy balance on a scale-by-scale basis near the TNTI using the Kármán-Howarth-Monin-
Hill (KHMH) equation. The KHMH equation, in its most general form, was derived by
Hill (2002) (equations for the structure functions of all orders are obtained in Hill (2001))
without making any assumptions regarding flow field characteristics such as isotropy or
homogeneity. Moreover, it does not involve any averaging or decomposition of velocity.
Essentially, this equation is an evolution equation that describes the instantaneous, local
turbulent kinetic energy associated with scales determined by the separation vector r. It
offers valuable insights into how kinetic energy varies at different scales due to various
mechanisms of energy transfer in both physical and scale space.

The derivation of the KHMH equation starts by writing the Navier-Stokes equations

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+ν
∂ 2ui

∂x2
j
, (5.1)

at two points ξ1 and ξ2, separated by a vector r (r= (ξ2−ξ1)), where the mid-point between
these two points (centroid) is denoted X ≡ 1

2(ξ1 +ξ2) (see figure 5.1).
By subtracting the Navier-Stokes equation at ξ1 from the Navier-Stokes equation at ξ2,

equations for components of δu are obtained, where each component δui is defined by the
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Fig. 5.1 Schematic of the two-point separation.

difference between the one-point velocity components at the two points;

δui = ui(ξ2)−ui(ξ1). (5.2)

Changing variables from ξ1 and ξ2 to X and the separation vector r and multiplying
by δuk leads to an equation for δuk

∂

∂ t δui. The same procedure can be applied to obtain an
equation for δui

∂

∂ t δuk. The two equations can be summed in order to have the symmetry
under the interchange of the pair of indices, and the equation for |δu|2 can be obtained by
taking the trace of the result (Hill, 2002):

∂

∂ t
|δu|2 +δu j

∂

∂ r j
(|δu|2)+u∗j

∂

∂X j
|δu|2 =

− 2
ρ

δui
∂

∂Xi
(δ p)+2ν

∂ 2

∂ r2
j
|δu|2 + ν

2
∂ 2

∂X2
j
|δu|2 −2ν

[(
∂ui

∂x j

)2∣∣∣∣
1
+

(
∂ui

∂x j

)2∣∣∣∣
2

]
. (5.3)

Here, the terms with ∂/∂Xi are associated with variations in physical space, while the terms
with ∂/∂ ri are associated with variations in scale space. The u∗ stands for the sum of
velocities at two points u∗ = (u2 +u1). The notation for each term in the presentation of
the results in this chapter is as follows;

Dt +Ty +Tr =−Tp +Dr +Dc − ε (5.4)
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Each term in the KHMH eq. 5.3 (equivalently eq. 5.4) corresponds to a different
mechanism contributing to the balance of the local, instantaneous scale-by-scale kinetic
energy, |δu|2;

• Dt =
∂

∂ t |δu|2 is the rate of change of |δu|2 in time, at a location X , for the separation
vector r. Due to the nature of the flow that we consider in this study, the average of
Dt is non-zero (both TNTI-averaging and (x− z) averaging), which differs from some
other studies where this term vanishes as a result of the averaging procedure employed
(Apostolidis et al., 2023; Yuvaraj, 2021).

• Tr = δu j
∂

∂ r j
|δu|2 represents the interscale transfer of |δu|2 and the redistribution of

the energy in scale space.

• Ty = u∗j
∂

∂X j
|δu|2 is the advection term, responsible for the interspace energy transfer,

and redistribution of the energy in physical space.

• Tp =− 2
ρ

δui
∂

∂Xi
(δ p) is the pressure-velocity term, accounting for the effects of pres-

sure.

• Dr = 2ν
∂ 2

∂ r2
j
|δu|2 is the term responsible for the viscous diffusion of |δu|2 in scale-

space. This term reduces to ε when the separation between the two points is zero
(r = 0). With ε , it is the only non-zero term in eq. 5.3 at r = 0. In addition to that,
it has been shown by Valente and Vassilicos (2015) that the contribution of this term
becomes negligible compared to the dissipation term, for separations larger than the
Taylor length scale λ .

• Dc =
ν

2
∂ 2

∂X2
j
|δu|2 is the viscous diffusion of |δu|2 in physical space. This term is

analogous to the diffusion term in the one-point turbulent kinetic energy equation and
is expected to have a small contribution when averaged over homogeneous directions,
at all scales.

• ε = 2ν

[(
∂ui
∂x j

)2
∣∣∣∣
1
+
(

∂ui
∂x j

)2
∣∣∣∣
2

]
is referred to as the dissipation term. It is the sum of

pseudo-dissipation at the two points ξ1 and ξ2.

In the present chapter, all the individual terms of the KHMH equation are expressed in
TNTI local reference frame variables introduced in section 4.2 in order to investigate the
contributions of the various mechanisms on the evolution of |δu|2 in the vicinity of the TNTI.
Similarly to chapter 4, we focus on the flow field at time t/Tre f = 50 which is in the range
of times where the temporally developing turbulent planar jet is self-similar. Computation
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results at times t/Tre f = 38, t/Tre f = 62 and t/Tre f = 74 showed that the TNTI-averaged
KHMH terms remain qualitatively the same at these instants, showing a similar balance
between the different terms.

The details for the post-processing of the individual terms are described by Yuvaraj
(2021), where the terms in eq. 5.3 are computed on the basis of spatial derivatives with
respect to ξ1 and ξ2. The derivatives of the flow quantities for the TNTI local fields are
computed by using 4th order finite differences applied to the local coordinate system e.g.
to the fields of ul , vl , wl defined in section 4.3. Due to the high resolution of the dataset
being used, our 4th order scheme has sufficient accuracy for the calculation of the derivatives,
which is verified by checking the balance of NS and KHMH equations in the local fields.

Following the analysis conducted in the work of Zhou and Vassilicos (2020), we place
the centroid X on the detected IES for the investigation of the budget at the border of the
turbulent jet. By fixing the location X at a given time, the remaining dependencies of
the terms are reduced to (rx,ry,rz) which correspond to two-point separations in xI , yI and
zI directions. The TNTI-averaging process is applied at this stage to each KHMH term.
Following the methodology used in Zhou and Vassilicos (2020), the obtained TNTI-average
fields (3D in scale space) are further averaged over the angle tangential to the IES (rotation
around the IES normal axis) resulting in the TNTI local mean KHMH terms becoming only
function of rn and rt where rn is the separation of the two points in the IES normal direction
and rt is the separation of the two points in the direction tangential to the IES. A schematic
is given in figure 5.2, where the tangential plane at the location X0, on the IES is denoted
by a green shade, given along with the location of the two-points ξ1 and ξ2 with respect to
the centroid X and the angles θ and φ (in the figure, the centroid X is placed on the IES
location X0 thus X =X0).
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Fig. 5.2 Schematic showing the local separation vector r and its components ry = rn, rx, rz
and rt , and the θ angle along which the averaging operation is applied.

5.2 KHMH balance at the TNTI location

Figure 5.3 shows 1D profiles of TNTI-averaged KHMH terms, as functions of the separation
vector rn/η in the interface normal direction and rt held at zero. For the analysis of the
profiles, we have employed two different normalizations.

Firstly, we have normalized the profiles by the average dissipation at the centre-plane εc as
shown in figure 5.3a, and secondly by the ε(rn) profile in figure 5.3b. The latter normalization
allows us to assess the magnitude of the terms relative to the ε for each separation rn/η ,
where η is calculated based on the centre-plane one point dissipation εc.

As anticipated, all the terms, except for ⟨Dr⟩I and ⟨ε⟩I , become zero when rn/η = 0.
At this point, these two terms are in equilibrium, which can be seen in figure 5.3b. As
separation values rn increase slightly, we observe a rapid increase in the magnitudes of the
time derivative term ⟨Dt⟩I and the transport in physical space ⟨Ty⟩I . Following closely behind
are the pressure-velocity ⟨Tp⟩I and the interscale transfer ⟨Tr⟩I terms, even though their rates
of increase are comparatively slower compared to the former two.
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(a) TNTI-averaged KHMH terms normalized by the mean centre-plane
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(b) TNTI-averaged KHMH terms normalized by the profile of ε(rn/η).

Fig. 5.3 KHMH terms computed centred at the IES location, as functions of separation vector
in TNTI normal direction rn/η for iso-surface of ω2

th/ω2
re f = 10−3.

5.2.1 The role of advection at the TNTI location

The ⟨Dt⟩I and ⟨Ty⟩I terms exhibit an inverse correlation over the entire range of rn. Their
magnitudes are approximately equal, establishing the approximate relationship ⟨Dt⟩I ≈
−⟨Ty⟩I until rn/η = 11.4. At rn/η = 4.3, the magnitudes of ⟨Dt⟩I and ⟨Ty⟩I reach the same
magnitude as ⟨ε⟩I (|⟨Dt⟩I| = |⟨Ty⟩I| = |⟨ε⟩I|) while ⟨Dr⟩I remains significant in the local
balance of |δu|2 for these scales.

Around rn/η = 11.1, ⟨Dt⟩I/⟨ε⟩I reaches its highest contribution, aligning with the
negative peak location of ⟨Ty⟩I/⟨ε⟩I . Beyond this point, |⟨Dt⟩I/⟨ε⟩I| and |⟨Ty⟩I/⟨ε⟩I| begin
to diminish, and the difference between their magnitudes increases with increasing rn/η .
Consequently, the sum (⟨Dt⟩I + ⟨Ty⟩I)/⟨ε⟩I starts to decrease. This inverse correlation
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between ⟨Dt⟩I and ⟨Ty⟩I suggests that the advection of |δu|2 is effective across various
scales.

Figure 5.3 presents the sum (⟨Dt⟩I + ⟨Ty⟩I) alongside the individual terms of the KHMH
equation. According to eq. 5.3, (⟨Dt⟩I + ⟨Ty⟩I) can be interpreted as a material derivative for
the rate of change of |δu|2 while moving with the flow.

An interesting observation for scales rn/η < 11.4 is that a slight imbalance exists between
⟨Dt⟩I and ⟨Ty⟩I , which results in positive values of (⟨Dt⟩I + ⟨Ty⟩I). Notably, in figure 5.3,
(⟨Dt⟩I + ⟨Ty⟩I) closely follows the small ⟨Dc⟩I term. Even though it may be tempting to
conclude that the net increase in |δu|2 is due to spatial diffusion by ⟨Dc⟩I , this local balance
requires careful consideration since other terms are also significant for these scales.

Additionally, due to the centroid being on the IES of ω2
th/ω2

re f = 10−3, a question arises
about whether this particular balance (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I for rn/η < 11.4 is a result of
the external regions of the TNTI being dominated by viscous processes (Corrsin and Kistler,
1955). The investigation of this balance is given also on the IES of ω2

th/ω2
re f = 10−6 in section

5.4 to address this question. It should be noted that the viscous mechanism addressed by
Corrsin and Kistler (1955) is primarily in relation to the irrotational flow acquiring vorticity
when crossing the TNTI. In this analysis, we focus on the rate of change of |δu|2, mainly
associated with turbulent kinetic energy at specific scales. Therefore, while the positive
contribution of ⟨Dc⟩I to the |δu|2 balance is essential for some scales, the balance among
⟨Tr⟩I , ⟨Tp⟩I , ⟨Dr⟩I , and ⟨ε⟩I should also be investigated before drawing general conclusions.

5.2.2 Pressure and interscale transfer

The observed partial balance (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I in figure 5.3 also implies another partial
balance for scales rn < 11.4η , where the interscale transfer ⟨Tr⟩I , over-compensates the
pressure-velocity term ⟨Tp⟩I and also balances ⟨ε⟩I along with the viscous diffusion in
scale-space ⟨Dr⟩I .

Regarding viscous diffusion in scale space in figure 5.3b, it balances ⟨ε⟩I for rn = 0
i.e., ⟨Dr⟩I = ⟨ε⟩I . Going to larger scales rn, it starts diminishing after rn/η ≈ 4, eventually
becoming negligible at rn ≈ 1.42λ together with ⟨Dc⟩I , and remains very small but negative
for larger values of rn/η .

The pressure-velocity term ⟨Tp⟩I increases until rn/η = 29 (rn/λ ≈ 2). Its maximum
contribution occurs when points ξ1 and ξ2 on the turbulent and non-turbulent sides are at a
distance of the order of λ from the IES. On the other hand, the maximum contribution of the
interscale transfer term ⟨Tr⟩I occurs at rn/η = 18.4 (rn/λ = 1.27), which corresponds to a
situation where the two points are at a distance 9.2η (0.63λ ) from the IES. Consequently,
the scales which are primarily affected by pressure are larger than those where interscale
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transfer is maximal. Nevertheless, the balance (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I (which holds at small
rn ⪅ 9η for the IES ω2

th/ω2
re f = 10−3) implies the balance ⟨Tr⟩I + ⟨Tp⟩I = ⟨Dr⟩I −⟨ε⟩I .

5.2.3 TNTI sublayers and the KHMH balance at various scales

Having observed a local balance between certain terms of the KHMH equation in the previous
subsection for rn ≤ 11.4η on the IES of ω2

th/ω2
re f = 10−3, we now aim to explore if there is

a connection between these scales and the TNTI sublayers discussed in section 4.8. To do so,
we can begin with a brief review of the various TNTI sublayers and their measured sizes, as
presented in the previous chapter, chapter 4.

In section 4.8, the various sublayers of the TNTI are identified by examining the terms in
the ω2 evolution equation at different yI locations along the direction normal to the interface,
following previous studies in the literature (Holzner et al., 2008; Silva et al., 2018; Taveira
and da Silva, 2014a; Watanabe et al., 2015). These layers have distinct characteristics such
as the viscous effects being dominant in the external region of the TNTI, i.e. the VSL and
the non-linear production of the enstrophy getting more prominent in the TSL.

Furthermore, as demonstrated in section 4.9, the non-linearity is enhanced by the prefer-
entially orthogonal alignment of the u and the ω vectors, independent of the decay of their
magnitudes. The implications of this observation on ω2 production have been discussed in
sections 4.9 and 4.11.2. It can be anticipated that these distinct sublayers, each possessing
unique characteristics, may have consequences on the local scale-by-scale kinetic energy
balance.

Of course, it should be kept in mind that these layers are defined by the terms of the
enstrophy balance equation (eq. 4.30), while the KHMH equation is formulated for |δu|2,
which is associated with the kinetic energy at various scales. Consequently, the relationship
between these layers and KHMH terms is not straightforward. However, we can compare
specific scales with notable contributions from individual terms of the KHMH equation or
the size of scales where we observe the scale-local balance between specific terms with
the thickness of the layers detected in section 4.8. As a reminder, the average thicknesses
of the TNTI, VSL and TSL have been found to be δI = 16η , δν = 3.3η and δω2 = 12.7η

respectively, based on the TNTI-averaged profiles of the terms acting on the local enstrophy
balance (see section 4.8).

Taking these thicknesses into account, it is observed that the ⟨Tp⟩I/⟨ε⟩I term reaches its
peak contribution when the point on the turbulent side reaches the limit of the TNTI layer
on the turbulent side, demarcated by the first peak of the TNTI-average profile ⟨ω2⟩I (see
figure 5.3b). Furthermore, when we examine the peak of |⟨Tr⟩I/⟨ε⟩I| along the rn/η axis
in relation to the thickness of the TNTI sublayers, we find that the maximum contribution
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occurs at approximately rn ≈ 20η . This location aligns roughly with the middle of the TSL
(δν +δω/2 = 9.65η) relative to the IES of ω2

th/ω2
re f = 10−3.

In the previous section, we observed the relationship (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I , for scales
rn < 11.4η at the IES of ω2

th/ω2
re f = 10−3 (see figure 5.3b). Since ⟨Ty⟩I represents the

transport of |δu|2 in physical space, the sum (⟨Dt⟩I + ⟨Ty⟩I) can be interpreted as a material
derivative of |δu|2. Keeping this in mind, the relation (⟨Dt⟩I +⟨Ty⟩I)≈ ⟨Dc⟩I , along with the
observation that ⟨Dc⟩I > 0, suggests a positive contribution to |δu|2 for scales rn < 11.4η

by the viscous diffusion in physical space when moving with the flow. Therefore, the
observation of (⟨Dt⟩I + ⟨Ty⟩I) > 0 for these scales may be associated with the dominant
viscous mechanisms expected to operate in the VSL.

Meanwhile, it can be noted that the scales where (⟨Dt⟩I + ⟨Ty⟩I)> 0, are larger than the
extent of the VSL in the direction of the turbulent core at the IES of ω2

th/ω2
re f = 10−3. Taking

into account the VSL thickness δν being 3.3η , the scales at which the point on the turbulent
side reaches the limit of VSL, corresponds to rn/η ≤ 6.6 in figure 5.3.

Between rn/η = 11.4 and rn/η = 20, no specific balance is observed based on the
TNTI-average profiles presented in figure 5.3. Within this range of scales, all mechanisms
contribute significantly to the scale-by-scale kinetic energy balance, including advection
⟨Ty⟩I , interscale transfer ⟨Tr⟩I , pressure-velocity term ⟨Tp⟩I and diffusion terms like ⟨Dr⟩I

and ⟨Dc⟩I even though the latter two are much smaller than the former ones. It is worth
noting that this range corresponds to scales associated with length scales close to λ , where λ

is the Taylor length scale computed at the centre-plane of the planar jet.
For scales rn > 20η , both diffusion terms, ⟨Dc⟩I and ⟨Dr⟩I , become very small, and the

balance of |δu|2 is primarily driven by the rest of the terms. For these scales, the balance
cannot be reduced to ⟨Dt⟩I + ⟨Ty⟩I ≈ 0 (which could have been a consequence of advection)
or to a Kolmogorov-like balance such as ⟨Tr⟩I = ⟨ε⟩I .

5.2.4 KHMH balance for the IES of ω2
th/ω2

re f = 10−6

Looking at various terms of the KHMH equation presented in figure 5.3, it is apparent that
the small scales are predominantly influenced by flow advection i.e., |⟨Dt⟩I + ⟨Ty⟩I| <<

min(|Dt |, |Ty|). Moreover, there is a net increase in turbulent kinetic energy at these scales
when moving with the flow, following a trend similar to viscous diffusion in physical
space i.e., (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I . The range where ⟨Dc⟩I is positive is observed to be the
scales rn/η < 18 and the relation (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I is observed to hold very precisely
for scales rn/η ⪅ 9 on the IES of ω2

th/ω2
re f = 10−3. It must be noted that the balance

(⟨Dt⟩I + ⟨Ty⟩I) ≈ ⟨Dc⟩I does not appear due to the absence of other mechanisms, but it is
observed even though the contribution of the other terms are significant (they are even much
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higher than the magnitude of ⟨Dc⟩I for all rn). Consequently, the question arises about the
generality of this balance at different layers of the TNTI i.e., at locations of IES defined by
different ω2

th/ω2
re f .

In order to investigate whether and to what extent local balances such as (⟨Dt⟩I +⟨Ty⟩I)≈
⟨Dc⟩I hold at the locations of different IES, and to document the robustness of the TNTI-
averaged KHMH profiles, the TNTI-average profiles of KHMH terms as functions of rn are
given in figure 5.4 for the IES of ω2

th/ω2
re f = 10−6. Analysis of the TNTI-averaged profiles

at the IES of ω2
th/ω2

re f = 10−6 allows us to investigate the generality of the trends observed
for the IES of ω2

th/ω2
re f = 10−3 in figure 5.3.
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Fig. 5.4 KHMH terms computed centered at the IES of ω2
th/ω2

re f = 10−6, as functions of
separation vector in TNTI normal direction rn/η . Computed for the PJ4-HR simulation at
t/Tre f = 50.
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In figure 5.4b, it is noticeable that at the location of the IES of ω2
th/ω2

re f = 10−6, the
sum (⟨Dt⟩I + ⟨Ty⟩I) exceeds the value of ⟨Dc⟩I for scales rn/η < 16. This indicates that
there are mechanisms other than ⟨Dc⟩I contributing to the net kinetic energy increase at these
scales. This difference between the profiles of (⟨Dt⟩I +⟨Ty⟩I) for the IES of ω2

th/ω2
re f = 10−3

and ω2
th/ω2

re f = 10−6 can be mainly attributed to the variation of ⟨Tp⟩I profile and to the
observation that ⟨Dr⟩I appears to be non-negligible over a wider range of scales at the IES of
ω2

th/ω2
re f = 10−6 compared to the IES of ω2

th/ω2
re f = 10−3.

Meanwhile, figure 5.4 is important for the demonstration of the robustness of the TNTI-
averaged KHMH terms computed at various IES locations. The qualitative similarity between
the results presented in figures 5.3 and 5.4 indicates that the main qualitative conclusions
drawn for the IES of ω2

th/ω2
re f = 10−3 are not highly sensitive to the exact location within

the TNTI layer between ω2
th/ω2

re f = 10−3 and 10−6. Even though some variations exist in
the actual values of the KHMH terms and the specific rn scales where certain terms peak or
diminish (see figures 5.3 and 5.4), these variations remain relatively small, considering the
three decades of variation in ω2

th.
However, it is important to note that the reduced KHMH balance identified as (⟨Dt⟩I +

⟨Ty⟩I)≈ ⟨Dc⟩I , in figure 5.3 for rn ⪅ 9η is observed to be specific to the IES of ω2
th/ω2

re f =

10−3 and does not hold for ω2
th/ω2

re f = 10−6. On the other hand, the observation that all terms
are significant for the large scales, except for ⟨Dc⟩I and ⟨Dr⟩I , holds true for ω2

th/ω2
re f = 10−6.

5.2.5 Decomposition of the KHMH into solenoidal/irrotational parts

At this point, it is beneficial to examine the terms responsible for physical space transport
and interscale transfer by employing the decomposition of the KHMH equation into two
components: solenoidal and irrotational, as introduced by Larssen and Vassilicos (2023). The
decomposition of the KHMH equation (eq. 5.3) can be given in the symbolic form (Larssen
and Vassilicos, 2023),

Dt +T S
y +T S

r = Dr +Dc − ε, (5.5)

T I
r = T I

y =−1
2

Tp. (5.6)

Here the superscripts S and I denote the solenoidal and irrotational parts of the respective
terms. It must be emphasized that these two equations, and eq. 5.6 in particular, are exact
everywhere and at any time in the flow field for fully periodic boundary conditions, while
different boundary conditions can introduce additional terms (Larssen and Vassilicos, 2023).
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Given the fully periodic boundary conditions utilized in PJx-HR simulations, eq. 5.6 can be
employed to compute the irrotational parts of ⟨Ty⟩I and ⟨Tr⟩I . The relations involving the
irrotational and solenoidal parts of the interscale and interspace transfer terms are as follows;

Tr = T I
r +T S

r =−1
2

Tp +T S
r , (5.7)

Ty = T I
y +T S

y =−1
2

Tp +T S
y . (5.8)

Therefore, we can compute T I
r and T I

y by using equations 5.7, 5.8 and the ⟨Tp⟩I . Then,
the solenoidal contributions can be obtained by subtracting the irrotational parts from ⟨Tr⟩I

and ⟨Ty⟩I .
It has been shown by Larssen and Vassilicos (2023) that in fully developed periodic/homogeneous

turbulence, only the solenoidal component of the interscale transfer plays an active role in
the mean behaviour of the cascade towards smaller scales. The PDF of the irrotational part
T I

r is symmetrical around zero and T I
r thus becomes zero when averaged.

Meanwhile, it can also be seen from eqs. 5.5 and 5.6 that the direct contribution to the Dt

term from Ty comes from its solenoidal part T S
y . On the other hand, the irrotational part, T I

y ,
is counterbalanced by the pressure-velocity term as shown by eq. 5.6.

Starting with the interscale transfer term Tr and applying the decomposition provided in
eq. 5.7, the solenoidal and irrotational parts are shown in figure 5.5, alongside ⟨Tp⟩I , and are
compared to ⟨ε⟩I to assess their local magnitudes across the scales. When normalized by
⟨ε⟩I , it is observed that the solenoidal part ⟨T S

r ⟩I reaches its peak at a scale close to rn ≈ λ ,
as shown in figure 5.5b. Furthermore, the contribution of ⟨T S

r ⟩I to ⟨Tr⟩I is more significant
for scales rn < 17.2η compared to the contribution of ⟨T I

r ⟩I . However, for scales rn larger
than 17.2η , the irrotational part ⟨T I

r ⟩I becomes more prominent, even though both terms
have considerable effects on the total ⟨Tr⟩I term.

Similarly, ⟨Ty⟩I is also decomposed into irrotational and solenoidal parts using eqs. 5.8
and 5.6. The terms ⟨T S

y ⟩I and ⟨T I
y ⟩I are shown in figure 5.6 along with the ⟨Dt⟩I term and

the (⟨Dt⟩I + ⟨T S
y ⟩I) sum as functions of rn/η . Comparing figure 5.6 to figure 5.3, it becomes

apparent that (⟨Dt⟩I + ⟨T S
y ⟩I) is smaller in magnitude than (⟨Dt⟩I + ⟨Ty⟩I) for rn larger than

20η . Conversely, it exhibits a larger magnitude at smaller scales, reaching as high as ⟨ε⟩I for
scales close to rn/η = 10.

As indicated by eq. 5.5, the solenoidal part T S
y directly contributes to the time derivative

term Dt . In contrast, the irrotational part T I
y is balanced by T I

r , which represents the irrota-
tional part of the interscale transfer rate, related to pressure effects. Therefore, it is intriguing
to examine (⟨Dt⟩I + ⟨T S

y ⟩I) due to the relationship between these terms given by eq. 5.5. The
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Fig. 5.5 Pressure-velocity term ⟨Tp⟩I , dissipation term ⟨ε⟩I , interscale transfer term ⟨Tr⟩I and
its solenoidal/irrotational parts ⟨T S

r ⟩I , ⟨T I
r ⟩I as functions of separation vector in TNTI normal

direction rn/η , at ω2
th/ω2

re f = 10−3.
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Fig. 5.6 Pressure-velocity term ⟨Tp⟩I , dissipation term ⟨ε⟩I , interscale transfer term ⟨Tr⟩I and
its solenoidal/irrotational parts ⟨T S

r ⟩I , ⟨T I
r ⟩I as functions of separation vector in TNTI normal

direction rn/η , at ω2
th/ω2

re f = 10−3.

sum (⟨Dt⟩I + ⟨T S
y ⟩I) remains positive for scales larger than those where (⟨Dt⟩I + ⟨Ty⟩I) is

positive, extending up to rn = 22.7η(1.62λ ).

5.2.6 The KHMH balance as a function of rt and rn

Up to this point, our discussion of the KHMH balance has primarily focused on scales
associated with the separation vector in the interface normal direction i.e. rn (for rt = 0).
However, in this subsection, we expand our examination of the KHMH terms to include all
directions, which is not only the separations in the normal direction but also in the tangential
direction of the interface.
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As described in Section 5.1, the local TNTI-averaged KHMH terms are initially obtained
near the interface as functions of separation vectors rx, ry and rz. Following Zhou and
Vassilicos (2020) we apply an averaging operation over the angular direction θ , as illustrated
in figure 5.2. This allows us to express the KHMH terms as functions of rn and rt , which
reduces the complexity of the analysis significantly when compared to each term being a 3D
field in scale space (rx, ry, rz).

Figure 5.7 shows the terms ⟨Dt⟩I , ⟨Ty⟩I , ⟨Tr⟩I and ⟨Tp⟩I , normalized by the centre-plane
average dissipation εc. These terms dominate the local balance of |δu|2 when compared to
the terms related to diffusion.
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Fig. 5.7 ⟨Dt⟩I , ⟨Ty⟩I , ⟨Tr⟩I and ⟨Tp⟩I terms of the KHMH equation, eq. 5.3, computed at the
TNTI location.

The ⟨Dt⟩I term maintains a positive value when considering |r|/η < 25 but becomes
negative for larger separation values in the normal direction (rn/η > 25). In contrast, ⟨Ty⟩I

consistently remains negative for most of the local field analyzed, with only an exception in
a small region at large rn and very small rt .

Concerning the interscale energy transfer rate ⟨Tr⟩I , a comparison can be made between
the ⟨Tr⟩I in figure 5.7 and the findings by Zhou and Vassilicos (2020), where they report the
TNTI-average statistics ⟨Tr⟩I along the TNTI of a spatially developing turbulent wake. The
⟨Tr⟩I contours as a function of (rt − rn) exhibits similar qualitative behaviour near the TNTI
of temporally developing planar jet and spatially developing turbulent wake flows.

In addition to the ⟨Tr⟩I , Zhou and Vassilicos (2020) also shows results for the spatial
transfer of |δu|2, but their calculations were made for the fluctuating velocities and excluded
the mean velocity component. In contrast, our approach employs the KHMH equation for the
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full velocity field without any decomposition. Interestingly, we observe a similar correlation
between ⟨Tr⟩I and ⟨Ty⟩I in figure 5.7 and thus the results concerning the relationship between
interscale and spatial transfer aligns with the findings reported by Zhou and Vassilicos (2020).
A closer look at the PDF of the TNTI location given in figure 5.8 can give a clue about
why the ⟨Ty⟩I obtained using the full-velocity in the present study and the spatial nonlinear
energy transfer rate obtained using the fluctuating velocity in Zhou and Vassilicos (2020)
are comparable. The PDF in figure 5.8 reveals that the TNTI is predominantly located
around y/δ ≈ 3/2, where the influence of the mean flow is limited. This suggests that mean
advection may not be a dominant contributor in our ⟨Ty⟩I contours, explaining partially the
similarity between the ⟨Ty⟩I in the present study and the spatial energy transport given by
(Zhou and Vassilicos, 2020).
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Fig. 5.8 PDF of the location of IES defined by the condition ω2
th/ω2

re f = 10−3 for t/Tre f = 50
normalized by the jet half-width δ .

Finally, it is important to note that the ⟨Tp⟩I term takes positive values for the separation
vectors in the TNTI normal direction, thus contributing negatively to |δu|2 (see eq. 5.4). In
figure 5.7, we can observe that the value of the ⟨Tp⟩I term becomes negative when the angle
φ between r and the rn axis exceeds 66◦.

In figure 5.3b, we observed a balance between the terms ⟨Dt⟩I and ⟨Ty⟩I , suggesting
an effect of flow advection for scales associated with separations comparable to the TNTI
thickness. In this figure, the balance of (⟨Dt⟩I + ⟨Ty⟩I) is shown for separation along the
interface normal direction (rn > 0 and rt = 0). However, the balance can be analyzed for all
the separation directions including both rn/η and rt/η as presented in figure 5.9. The scale
range where (⟨Dt⟩I + ⟨Ty⟩I) is positive along the rn axis, indicating an increase in kinetic
energy in a material derivative sense following advection, is illustrated in figure 5.3b. In
figure 5.9, a more significant rate of increase in |δu|2 can be observed in the tangential
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direction. The absolute value of (⟨Dt⟩I + ⟨Ty⟩I) increases in both the normal and tangential
directions. However, in the normal direction, it consistently remains negative except for
scales rn/η < 11.4, whereas it always remains positive along the tangential direction.
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Fig. 5.9 (⟨Dt⟩I + ⟨Ty⟩I) as a function of rt and rn, computed at the TNTI location and
normalized by average centre-plane dissipation εc.

5.2.7 Summary of main results for the analysis of the KHMH balance
across scales at the TNTI location

In this section, we carried out the analysis of the terms of the KHMH equation (eq. 5.3) in the
vicinity of the TNTI. The terms have also been analyzed by carrying out the decomposition
of the KHMH equation into solenoidal/irrotational parts. The main points that are observed
from the local balance of these terms for various scales are:

• The advection mechanism plays an important role in the evolution of |δu|2 at the
interface location.

• When moving with the flow i.e. (⟨Dt⟩I + ⟨Ty⟩I), a specific balance exists among
the terms ⟨Tr⟩I , ⟨Tp⟩I , ⟨Dr⟩I and ⟨ε⟩I for scales rn/η < 11.4 (rt/η = 0) and can be
simplified to (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I at the IES of ω2

th/ω2
re f = 10−3. Notably, at these

scales, ⟨Dc⟩I is greater than zero and the sum (⟨Dt⟩I + ⟨Ty⟩I) is positive. The analysis
of the KHMH terms for the IES of ω2

th/ω2
re f = 10−6 reveals that (⟨Dt⟩I + ⟨Ty⟩I) is

indeed positive over an even broader range of scales in this case. However, the balance
is not strictly (⟨Dt⟩I + ⟨Ty⟩I)≈ ⟨Dc⟩I at the location of IES of ω2

th/ω2
re f = 10−6.

• The highest contribution to ⟨Tr⟩I from the solenoidal part of the interscale transfer
⟨T S

r ⟩I is observed at scales that are of the order of λ .
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• ⟨T I
r ⟩I plays a substantial role across all scales in the interface normal direction rn. Its

contribution to ⟨Tr⟩I becomes more pronounced compared to ⟨T S
r ⟩I as the separation

length rn increases.

• The local fields of ⟨Tr⟩I and ⟨Ty⟩I in the (rt −rn) plane at the interface of the temporally
developing turbulent jet exhibit similarities to the findings reported by Zhou and
Vassilicos (2020) for the TNTI of a spatially developing turbulent wake. In both flows,
a correlation between ⟨Tr⟩I and ⟨Ty⟩I is observed at the TNTI location.

• It is observed that, except for the diffusion terms which become less significant for
scales larger than approximately λ , all the terms in the KHMH equation play significant
roles in the local scale-by-scale balance of |δu|2 at the interface location. Specifically,
for rn values greater than λ , the equation 5.5 holds in a simplified form, indicating a
balance between Dt , T S

y , and T S
r , approximately equal to −ε i.e. Dt +T S

y +T S
r ≈−ε .

5.3 TNTI-averaged KHMH statistics conditioned on Hm

and vl
n

In sections 4.11.2 and 4.11.1, it has been demonstrated that the local characteristics of the
interface vary across different parts of the IES. These variations include differences in the
total thickness of the TNTI, the sublayer thicknesses, the details of the local ω2 balance, and
the TNTI-averaged normal profiles of various quantities.

In these sections, the various regions of the IES are distinguished by conditioning the
TNTI-averaged statistics on the local mean curvature Hm and local propagation velocity vl

n

values. We now apply the same conditions introduced in section 4.11 to explore the variation
of the KHMH balance at these distinct regions along the IES.

Figure 5.10 presents the TNTI-averaged KHMH terms as functions of rn, for D2, E2,
E3 and E6 conditions (see table 4.1), for the IES of ω2

th/ω2
re f = 10−3. These terms are

normalized by εc. Notably, the magnitudes of these terms exhibit significant variations
among the different conditions. Especially, in the range 10 < rn/η < 20, where the peaks of
⟨Dt⟩I and ⟨Ty⟩I are located for all conditions, the magnitude of terms ⟨Dt⟩I , ⟨Tr⟩I , ⟨Ty⟩I , and
⟨Tp⟩I in the rn ̸= 0, rt = 0 axis is approximately an order of magnitude higher for condition
E6 compared to conditions E2 and E3.

The differences between the profiles of (⟨Dt⟩I + ⟨Ty⟩I) along rn, for various conditions
are also noteworthy. In the case of D2, (⟨Dt⟩I + ⟨Ty⟩I) remains positive over a substantial
range of rn, extending up to rn/η = 37. However, for the E2 condition, the extent of this
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range is only up to rn/η = 14. On the other hand for the E3 condition, which represents
convex-shaped regions, the balance between ⟨Dt⟩I and ⟨Ty⟩I remains positive over a wide
range of rn, reaching up to rn/η = 24.3. It is worth noting that in the E3 case, this imbalance
is not solely due to the viscous diffusion terms ⟨Dc⟩I and ⟨Dr⟩I , but also involves other terms,
particularly at scales rn/η = 24.3 and smaller.
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Fig. 5.10 TNTI-averaged profiles of KHMH terms as functions of rn. Computed for the
conditions D2, E2, E3, E6, normalized by εc at ω2

th/ω2
re f = 10−3.

Figure 5.11 shows the same profiles given in figure 5.10, this time normalized by the
TNTI-averaged profile of ⟨ε⟩I(rn) in order to see the balance of the various terms for each
individual condition. Again, the sum (⟨Dt⟩I + ⟨Ty⟩I) is given along with the KHMH terms in
order to see the rate of change of |δu|2 when moving with the flow for various scales rn.

In figure 5.11, we can observe an interesting feature related to the variation of (⟨Dt⟩I +

⟨Ty⟩I). Specifically, the E3 condition stands out because (⟨Dt⟩I + ⟨Ty⟩I) is close to ⟨ε⟩I for
scales rn/η ≃ 12, where (⟨Dt⟩I + ⟨Ty⟩I) is at its maximum. This behaviour is mainly due to
the unique characteristics of ⟨Tp⟩I at the convex regions associated with the E3 condition.
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5.3.1 Interscale transfer and pressure effects for various ED conditions

In figure 5.11a, we can see that for the D2 condition, the terms ⟨Ty⟩I , ⟨Tr⟩I , and ⟨Dt⟩I

remain comparable to ⟨ε⟩I for most scales rn/η . However, ⟨Tp⟩I is approximately zero until
rn/η = 13.3, which corresponds to the turbulent point being slightly further than the extent
of the VSL, given that δν = 5.3η for the D2 condition (see table 4.2). Therefore, we can
infer that an approximate balance exists between the terms ⟨Dr⟩I , ⟨Tr⟩I , and ⟨ε⟩I until the
TSL is reached. Additionally, an approximate balance is evident between ⟨Dt⟩I and ⟨Ty⟩I .
Within the TSL, the ⟨Tp⟩I/⟨ε⟩I term becomes more influential, reaching its maximum value
at rn/η ≈ 35, which corresponds to the scale separation where the turbulent point on the
turbulent side reaches the inner limit of the full TNTI for the D2 condition.

Furthermore, ⟨Tr⟩I exhibits an interesting behaviour in the detrainment regions of the
IES. It has negative values for scales rn/η < 22.3 but beyond this point, it changes sign
and becomes positive for scales rn/η > 22.3, suggesting the presence of an inverse cascade
in the interface normal direction for scales rn/η > 22.3. This is interesting because the
investigation of the TNTI-averaged local velocity field in chapter 4 in the vicinity of the
TNTI showed that only the regions of the IES conditioned on D2 exhibited stretching in
the interface normal direction (and compression in the tangential direction), while the other
regions associated with local entrainment exhibited compression in the normal direction of
the interface (and stretching in the tangential direction).

For the TNTI points satisfying the E2 condition, the magnitudes of the ⟨Ty⟩I , ⟨Tr⟩I , and
⟨Dt⟩I terms remain similar to those in the D2 condition, roughly of the order of ⟨ε⟩I for
most rn/η scales (see figure 5.11b). The most notable difference between the E2 and D2
conditions is due to the ⟨Tr⟩I and ⟨Tp⟩I terms. What is particularly intriguing is the presence
of a very approximate balance between the terms ⟨Tr⟩I and ⟨ε⟩I starting from rn/η = 9.4 (see
figure 5.11b). This scale separation corresponds to a situation where one of the two points is
located just at the limit of the VSL region in the turbulent direction because δν/η = 4.5 for
the E2 condition (see table 4.2). It is an unexpected result to see even a very approximate
and imperfect balance between the dissipation rate and the interscale energy transfer rate at
the TNTI where none of the conditions for Kolmogorov equilibrium hold.

It is worth noting that the E2 condition concerns concave regions with mild local entrain-
ment, which are the most probable regions across the IES (see table 4.1). Therefore, it may
be reasonable to expect that the E2 condition will be representative of the unconditioned
KHMH balance in the vicinity of the interface. However, when comparing figure 5.11b with
figure 5.3b (TNTI-average without any conditioning) it becomes evident that even though
⟨Tr⟩I remains close to ⟨ε⟩I in magnitude for scales rn/η ≥ 9.4 for the E2 condition, it reaches
values close to |⟨Tr⟩I| ≈ 2|⟨ε⟩I| in the absence of any conditioning on Hm and vl

n. This shows
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(d) E6 condition

Fig. 5.11 TNTI-averaged profiles of KHMH terms as a function of rn/η , computed with the
conditions D2, E2, E3, E6 and normalized by the ⟨ε(rn)⟩I at ω2

th/ω2
re f = 10−3.

that the extreme values of ⟨Tr⟩I , such as in the case for the E6 condition (see figure 5.11d),
has a significant effect on the TNTI-average profile of ⟨Tr⟩I for the entire TNTI without
conditioning applied.

The comparison of figures 5.11c, 5.11b, 5.11d and 5.11a reveals some interesting in-
sights into the KHMH balance across scales in the interface normal direction for regions of
entrainment and detrainment.

Firstly, there is a noticeable similarity in the behaviour of the ⟨Tr⟩I term for the E2, E3,
and E6 conditions, which is distinct from the behaviour observed in the D2 condition. This
suggests a particular variation of the ⟨Tr⟩I term in the vicinity of the interface at the local
entrainment and detrainment regions of the IES.

Secondly, when examining figures 5.11c and 5.11b, it becomes apparent that the ⟨Dt⟩I

term and the sum (⟨Dt⟩I +⟨Ty⟩I) are higher for the E3 condition compared to the E2 condition.
This difference can be attributed to the influence of the pressure-velocity term ⟨Tp⟩I , which
acts differently in the concave and convex regions of the interface.
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The magnitudes of the TNTI-averaged KHMH terms exhibit significant differences in the
E6 condition compared to the other conditions, with an order of magnitude disparity between
⟨Tp⟩I and ⟨ε⟩I . However, a qualitative resemblance can be observed between the general
patterns in the E6 and E2 cases, except for the extreme contribution of the ⟨Tp⟩I term and the
locations of peaks in ⟨Tr⟩I and ⟨Ty⟩I , which affect larger scales rn for the E6 condition.

As presented in section 4.11.2, the thicknesses of the TNTI and TSL are observed to be
halved for the E6 condition compared to the E2 condition. This reduction in thicknesses
may be related to the TNTI-averaged local fields discussed in section 4.11.1, where there
is a transport of vorticity/enstrophy towards the TNTI by the TNTI-average velocity field.
Possibly, the transport of IVS (da Silva et al., 2011) towards the interface may lead to
an increase in interscale energy transfer rates due to the mean stretching in the tangential
direction.

However, a clear demarcation of the transition between the layers of VSL and TSL in
terms of dramatic changes in the KHMH balance is not evident, except for the rapid rise of
the ⟨Tp⟩I term for rn/η values beyond the extent of the TNTI in the E6 condition.

5.3.2 Solenoidal/irrotational decomposition of ⟨Tr⟩I and ⟨Ty⟩I for vari-
ous ED conditions

The interscale transfer term ⟨Tr⟩I exhibits an exceptional behaviour in the D2 case, as
seen in figure 5.11a, where it becomes positive after rn/η = 22.3 contrary to the other cases.
Likewise, the ⟨Tp⟩I term behaves differently in the convex entrainment regions (E3) compared
to the concave entrainment regions (E2, E6) of the interface. Therefore, it is intriguing to
investigate how the irrotational and solenoidal parts of ⟨Tr⟩I contribute to these particular
behaviours for various ED conditions.

In figure 5.12, the terms ⟨T S
r ⟩I and ⟨T I

r ⟩I are presented alongside ⟨Tp⟩I and ⟨ε⟩I , all
normalized by the profile of ⟨ε⟩I . The comparison of ⟨T S

r ⟩I profiles across various conditions
reveals a consistent qualitative similarity when normalized by the respective ⟨ε⟩I profiles,
except for a slight deviation in the case of D2, where ⟨T S

r ⟩I exhibits an unusually positive
trend at rn/η ≥ 35. Notably, the TNTI-average profile of ⟨T S

r ⟩I exhibits a negative peak at
scales close to λ . This peak occurs at rn = 1.1λ for both the D2 and E6 conditions, while it
occurs at rn = 1.2λ for the E2 and E3 conditions.

It has been demonstrated by Apostolidis et al. (2023) that the negative contribution of
the Tr term, indicative of a forward cascade towards smaller scales, reaches its maximum
value at scales approximately |r| ≈ λ within the inertial layer of channel flows (in the study
of Apostolidis et al. (2023) Tr is investigated over all the r directions). Similarly, studies on
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homogeneous, isotropic turbulence (HIT) by Yasuda and Vassilicos (2018), Obligado and
Vassilicos (2019), and Meldi and Vassilicos (2021) also observed that the average interscale
transfer towards smaller scales attains its maximum around scales of |r| ≈ λ in homogeneous
turbulence.

Considering the findings in the literature, it is intriguing to observe that ⟨T S
r ⟩I exhibits

a peak close to rn ≈ λ at the TNTI for all conditions considered. This pattern persists
regardless of whether the conditions involve detrainment or entrainment regions, or if the
mean curvature of the IES is concave or convex.

It is important to emphasize that here, we present the profiles of ⟨T S
r ⟩I in figure 5.12.

The studies which are referred to above, report the complete averaged Tr term rather than
just the solenoidal part (Apostolidis et al., 2023; Meldi and Vassilicos, 2021; Obligado and
Vassilicos, 2019; Yasuda and Vassilicos, 2018). Additionally, Yasuda and Vassilicos (2018)
provide data on the average Tp term as a function of separation vector r. Notably, this
term was found to be consistently zero for all scales in homogeneous turbulence, which
is significantly different from the turbulent region near the TNTI, which is characterized
by a local inhomogeneity. It is also important to remember that the difference between Tr

and T S
r is precisely 1

2Tp (see equation 5.6) for fully periodic boundary conditions, which is
the case for the simulations conducted by Yasuda and Vassilicos (2018). Consequently, in
their case, ⟨Tr⟩ presented is entirely composed of ⟨T S

r ⟩, rendering the profiles of ⟨T S
r ⟩I in

the present study comparable with ⟨T S
r ⟩ term reported for homogeneous turbulence in these

studies (Obligado and Vassilicos, 2019; Yasuda and Vassilicos, 2018), even though in their
flow the term is averaged over the whole flow, while we apply the TNTI-averaging.

On the other hand, care should be taken while comparing with the results of Apostolidis
et al. (2023) as eq. 5.6 is exact for fully periodic boundary conditions, and additional terms
prevail in eqs. 5.5 and 5.6 for channel flow due to the different boundary conditions (Larssen
and Vassilicos, 2023).

An examination of figure 5.12a reveals that, for scales larger than rn = λ , ⟨T I
r ⟩I becomes

positive. This positive trend in ⟨T I
r ⟩I is primarily responsible for ⟨Tr⟩I changing its sign at

scales corresponding to rn = 1.57λ and remains positive afterwards. Notably, ⟨T S
r ⟩I also

exhibits a positive trend, but this occurs only at scales greater than rn = 2.5λ . It can thus be
concluded that for the D2 condition, the inverse cascade observed at the location of the IES
is largely due to pressure effects and the irrotational component ⟨T I

r ⟩I plays a significant role
in this process.

For conditions E2 and E6, the behaviour of ⟨T I
r ⟩I is quite different compared to the D2

case. For these conditions, ⟨T I
r ⟩I acts in a manner that enhances the forward cascade for

all scales rn. Remarkably, its magnitude becomes comparable to ⟨T S
r ⟩I , or even sometimes
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much higher e.g., the E6 condition at large separations rn/η . This observation highlights the
significant role of ⟨T I

r ⟩I in promoting the forward cascade of turbulent kinetic energy for the
regions of local entrainment where the IES has a concave shape. On the other hand, the role
of ⟨T I

r ⟩I is reversed for the regions of local detrainment at the concave-shaped regions of the
IES.
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Fig. 5.12 Decomposition of the ⟨Tr⟩I with the eq. 5.7 into solenoidal and irrotational parts,
⟨T S

r ⟩I and ⟨T I
r ⟩I .

For completeness, we also present the solenoidal and irrotational components that consti-
tute ⟨Ty⟩I in figure 5.13. For all three conditions D2, E2, and E6 where the IES has a concave
shape, the (⟨Dt⟩I + ⟨T S

y ⟩I) changes its sign from positive to negative at scales rn = 20η

(see figures 5.13a, 5.13b, 5.13d), while for the convex regions of the IES i.e. E3 condition,
(⟨Dt⟩I + ⟨T S

y ⟩I)> 0 extends as far as rn = 26.2η . Meanwhile, for the E3 and E6 conditions,
(⟨Dt⟩I + ⟨T S

y ⟩I) reaches as high as ⟨ε⟩I for certain scales.
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Fig. 5.13 Decomposition of the ⟨Ty⟩I with the eq. 5.8 into solenoidal and irrotational parts,
⟨T S

y ⟩I and ⟨T I
y ⟩I .

5.3.3 KHMH terms near TNTI as functions of rt and rn for ED condi-
tions

Figure 5.14 provides an overview of the dominant KHMH terms in the vicinity of the IES, as
functions of both rn/η and rt/η for the D2, E2, E3, and E6 conditions. When comparing the
contour fields of ⟨Dt⟩I for the D2, E2, E3, and E6 conditions, several qualitative similarities
stand out.

Primarily, ⟨Dt⟩I exhibits a consistent behaviour across all the conditions, showing negative
values in the local fields for two-point separations along the interface normal direction
where rn/η ⪆ 25. This indicates a decreasing |δu|2 in time for scales rn/η ⪆ 25 along the
TNTI normal direction. This reduction in |δu|2 is a result of the combination of various
mechanisms, including advection, interscale transfer, interspace transfer, pressure-velocity
terms, and dissipation. Notably, diffusion terms have negligible effects at these scales, as
shown in figure 5.3b. Conversely, the rate of change of |δu|2 in time is consistently positive
for all scales in the direction tangential to the interface, regardless of the condition applied
on the local values of Hm and vl

n along the interface.
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A closer examination of the contour field of ⟨Dt⟩I for the D2 condition (figure 5.14a)
reveals that the ⟨Dt⟩I field in the scale space is primarily influenced by the contributions of
⟨Tr⟩I and ⟨Ty⟩I in this case. However, for the E3 condition (figure 5.14c), the qualitative
behavior of ⟨Dt⟩I is mainly driven by the contributions of ⟨Ty⟩I and ⟨Tp⟩I . Furthermore, it can
be observed that the pressure-velocity term ⟨Tp⟩I exhibits a significant difference between
regions of local detrainment (figure 5.14a) and regions of local entrainment (figures 5.14b,
5.14c, 5.14d).
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(d) E6 condition

Fig. 5.14 ⟨Dt⟩I , ⟨Ty⟩I , ⟨Tr⟩I and ⟨Tp⟩I terms of the KHMH equation computed at the TNTI
location for D2, E2, E3 and E6 conditions, normalized by εc. The colour scale ranges are
the same for all the terms given for each condition, but the range varies between different
conditions.

A crucial qualitative difference arises in the behaviour of the interscale transfer term
⟨Tr⟩I between the detrainment case D2 and the entrainment cases E2, E3, and E6. Notably,
positive values of ⟨Tr⟩I are evident in figure 5.14a (in the detrainment regions) for separation
vectors oriented in the interface normal direction, specifically for scales rn > 20η . It shows
an energy loss at scales smaller than rn = 22η due to the inverse cascade and the energy
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is transferred to larger scales. A more comprehensive exploration of this phenomenon is
provided in section 5.5, which delves deeper into the interscale transfer term.

Contrary to the D2 condition, at the regions characterized by mild entrainment conditions,
such as E2 and E3, ⟨Tr⟩I consistently maintains negative values across all scales, regardless
of the local mean curvature of the IES (as seen in figures 5.14b and 5.14c).

Figure 5.14d reveals a unique behaviour for the E6 condition, where ⟨Tr⟩I > 0 is ob-
served primarily for separations oriented tangentially to the IES (i.e., rt ̸= 0 and rn ≈ 0).
This behaviour may be linked to the more pronounced stretching observed in the extreme
entrainment condition, in the tangential direction of the interface, as shown in figure 4.32e
for the xI − zI cross-section of the TNTI-average velocity field.

The term which is responsible for pressure effects on the local scale-by-scale kinetic
energy balance ⟨Tp⟩I , also exhibits qualitative differences in detrainment regions. In the
context of the balance outlined in eq. 5.4, the negative values of the ⟨Tp⟩I result in a
net increase in the kinetic energy at a given scale over time. Specifically, the ⟨Tp⟩I term
contributes in a manner that increases the kinetic energy of scales rt < 36.7η only for the D2
condition (see figure 5.14a). Despite the significant contribution of ⟨Tp⟩I , which becomes
prominent at rn = 40η mainly along the interface normal direction, the ⟨Dt⟩I term attains
high negative values for the same rn separations, due to the influences of ⟨Ty⟩I and ⟨Tr⟩I (see
figure 5.14a).

Finally, for separations rn/η ⪆ 27, the ⟨Dt⟩I term is consistently negative for all con-
ditions. Although it displays the same qualitative behaviour, the magnitude of this term is
notably higher for the D2 and E6 conditions compared to the E2 and E3 conditions, indicating
a more significant reduction in kinetic energy associated with scales larger than rn = 27η for
the two former conditions.

In regions characterized by local detrainment, the variation in scale-by-scale kinetic
energy is primarily influenced by the term associated with transport in physical space, ⟨Ty⟩I ,
which contributes to ⟨Dt⟩I , both qualitatively and quantitatively (see figure 5.14a). Notably,
for the D2 condition, ⟨Ty⟩I primarily gets positive values for separation vectors rn ⪆ 20η .
Conversely, for the E2, E3, and E6 conditions, this term displays a negative peak near
rn/η ≈ 17, and ⟨Ty⟩I generally remains negative for all r.

Considering the separation values of rn in figure 5.12, the decomposition of ⟨Tr⟩I into the
irrotational and solenoidal parts leads to interesting observations such as ⟨T S

r ⟩I remaining
relatively similar across rn for all the conditions, while the contribution of ⟨T I

r ⟩I varies
significantly between each condition, exhibiting much different pressure effects at various
regions.



5.3 TNTI-averaged KHMH statistics conditioned on Hm and vl
n 169

The solenoidal/irrotational decomposition is applied in figure 5.15 to the local fields of
⟨Tr⟩I for various conditions in order to see the complete picture, for the separation vector r
in all directions. For the sake of comparison, figure 5.15a shows the contour fields of ⟨Tr⟩I ,
⟨T I

r ⟩I and ⟨T S
r ⟩I for the general case, without any conditioning applied on Hm or vl

n when
computing the statistics.

It should be noted that the colour scale used in figures 5.15a, 5.15b, 5.15c, 5.15d, 5.15e
for each condition is unique, meaning that the same colour scale is used for the three terms
⟨Tr⟩I , ⟨T I

r ⟩I and ⟨T S
r ⟩I , but this scale varies between different conditions.

Apart from the variation of the magnitudes of terms between various conditions, a
significant change is observed concerning the contribution of ⟨T I

r ⟩I , especially between
the detrainment and entrainment regions. It can be seen in figure 5.15b that the ⟨T I

r ⟩I > 0
for nearly all the separation vectors r irrespective of the direction and the length of r in
scale-space, except for a limited region where rt ⪆ 35.

On the contrary, ⟨T I
r ⟩I contributes with negative values for separations in the interface

normal direction and with positive values in the tangential direction i.e., rn and rt respectively,
in the case of E2, E3, and E6 conditions (also in the unconditioned statistics). Taking
into account the direct relation between Tr and Tp (see eq. 5.6), it can be said that the
compressive/stretching motions in the normal/tangential directions are mostly caused by the
effects of pressure at the interface.

It is observed that generally, the qualitative behaviour of ⟨Tr⟩I in scale-space is determined
by ⟨T S

r ⟩I part, which is the case in figures 5.15c, 5.15d and 5.15a. On the other hand, in the
cases of D2 and E6 conditions, the ⟨T I

r ⟩I has important contributions, notably for the scales
and directions where the inverse cascade is present.

When ⟨T S
r ⟩I is compared for the conditions D2, E2, E3, and E6, it can be observed that

the general picture remains similar for all the cases including the D2 condition. This suggests
that the terms other than the pressure act qualitatively similar, irrespective of the vl

n and Hm

values along the IES. For all the conditions, ⟨T S
r ⟩I has a minima at a certain location along

the interface normal axis, and then starts rising, and only in the D2 condition, it becomes
positive for scales rn ⪆ 34η .

5.3.4 Summary of the main observations on KHMH balance for various
ED conditions

We have analyzed the KHMH balance in the vicinity of the TNTI in section 5.2 for the entire
TNTI without applying any conditions on the mean curvature Hm and the local propagation
velocity vl

n of the IES. In the present section 5.3, we have looked closer at how this balance
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(c) E2 condi-
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Fig. 5.15 TNTI-averaged fields of ⟨Tr⟩I , ⟨T S
r ⟩I and ⟨T I

r ⟩I near the detected IES of ω2
th/ω2

re f =

10−3, (a) without any conditioning of the statistics on Hm or vl
n and (b, c, d, e) for the

conditions D2, E2, E3, and E6 as functions of rt/η and rn/η .
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varies in different regions of the IES with distinct characteristics in terms of Hm and vl
n,

namely the ED conditions. The main observations made for the local balance in the cases of
ED conditions can be given as follows;

• An approximate balance, more or less close to ⟨Tr⟩I ≈−⟨ε⟩I , is observed for the E2 and
E3 cases over a wide range of scales in the interface normal direction. On the contrary,
⟨Tr⟩I ≈ −2⟨ε⟩I is observed when the TNTI-averaged results are not conditioned on
Hm and vl

n. This discrepancy between the unconditioned observation and the case
of mild entrainment conditions suggests the significance of regions like E6, where
the TNTI-average values of the KHMH terms exhibit more extreme behaviour, even
though E2 and E3 regions represent a substantial portion of the total IES.

• The pressure term ⟨Tp⟩I makes significant contributions to the scale-by-scale energy
balance which varies drastically for concave/convex regions at scales up to rn ≈ 1.5λ ,
even leading to positive values of ⟨T I

r ⟩I at convex regions. Similarly, a significant
qualitative difference is observed in terms of the effects of pressure between the regions
of entrainment and detrainment.

• The solenoidal part of the interscale transfer ⟨T S
r ⟩I is observed to make its maximal

contribution enhancing the forward cascade at scales rn ≈ λ in the interface normal
direction. This behaviour is observed for all conditions D2, E2, E3, and E6, irrespective
of the local entrainment/detrainment or convex/concave properties of the IES region.

• The irrotational part of the interscale transfer, ⟨T I
r ⟩I , plays a crucial role in the overall

energy transfer across scales at the interface. It contains the influence of pressure on
the velocity field and is responsible for a substantial portion of the inverse cascade of
energy especially for the scales in the interface normal direction.

• The local (rt , rn) field of ⟨Tr⟩I shows an average energy transfer towards the larger
scales in the TNTI normal direction for scales rn > 20η at the regions of detrainment
while the interscale energy transfer is towards the smaller scales in the tangential
direction i.e. ⟨Tr⟩I < 0. On the contrary, for the E6 condition (the regions of extreme
entrainment), an inverse cascade is observed in the tangential direction while very high
values of interscale transfer are observed in the interface normal direction at scales
rn ≈ 20η .
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5.4 KHMH balance at different centroid locations along
the TNTI normal axis yI

The KHMH balance provides insight into the scale-by-scale energy budget at the specific
location where the centroid X is placed. In the previous sections, we investigated the scale-
by-scale budget for |δu|2 precisely at the location of the IES, i.e., X =X0. However, it is
also possible to analyze the budget for |δu|2 at various distances from the IES by moving the
centroid X along the interface normal axis yI . In this section, we carry out the analysis of the
KHMH balance at the locations yI/η =−6 and yI/η =−10, both located in the turbulent
side of the IES of ω2

th/ω2
re f = 10−3. These locations have been chosen, due to the fact that

they correspond to the normal distances from the IES, where the Pω2 term reaches its first
peak towards the turbulent core on the yI axis in figures 4.34b and 4.34d, showing significant
production of ω2 and thus non-linear interactions between scales.

The analysis presented in this section shares some similarities with the work of Watanabe
et al. (2020), as it involves applying the KHMH not only at the exact IES location but also on
its turbulent side. In the study by Watanabe et al. (2020), a filter of size r is used to separate
the kinetic energy associated with filtered scales (scales smaller than r) from non-filtered
scales (scales larger than r). Energy transfer between these resolved and unresolved scales is
examined, though not through the KHMH equation, but by using an equation for sub-grid
scale (SGS) kinetic energy, following studies using the same equation in the context of large
eddy simulation.

Even though some similarity between the current analysis and the methodology in
Watanabe et al. (2020) is mentioned, there are crucial differences between the two approaches
that make the direct comparison difficult. For example, it has been shown by Vela-Martín
(2022) that SGS stresses include conservative spatial fluxes, which highlights the difference
between the SGS backscatter and the inverse cascade observed for the interscale transfer
term of the KHMH equation.

In addition, in the present study, we keep separations in TNTI normal and tangential
directions, namely rn and rt , to account for the anisotropy caused by the presence of the
interface.

Figure 5.16 presents the KHMH terms as functions of rn/η at three different locations
for the centroid X: yI/η = 0, yI/η = −6, and yI/η = −10. These terms are normalized
again by εc and by the TNTI-average profile of ⟨ε⟩I(rn/η). For the cases of yI/η = −6
and yI/η =−10, the point on the non-turbulent side of the centroid X reaches the location
of IES at rn/η = 12 and rn/η = 20 respectively. For the scales rn/η which exceed these
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values, one point is located on the non-turbulent side of the IES while to other point is in the
turbulent region.
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(e) X at yI/η =−10. Normalized by εc.
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(f) X at yI/η =−10 Normalized by ⟨ε⟩I .

Fig. 5.16 TNTI-average profiles of KHMH terms, as a function of rn/η , computed for the
center-point location at yI/η = 0, yI/η =−6 and yI/η =−10 for the IES ω2

th/ω2
re f = 10−3.

At t/Tre f = 50 for the PJ4-HR simulation.
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5.4.1 Advection and diffusion at different yI locations

The inverse relationship between ⟨Dt⟩I and ⟨Ty⟩I has already been noted since figure 5.3b.
Additionally, it has been observed that these two terms have significant magnitudes at the
location of the IES.

By comparing figures 5.16b, 5.16d, and 5.16f, we can conclude that the observations made
regarding the profiles of ⟨Dt⟩I and ⟨Ty⟩I for yI/η = 0 are also applicable at other locations
along the normal axis. However, it is worth noting that the rn profile of (⟨Dt⟩I + ⟨Ty⟩I)

changes as the centroid X moves along the normal axis.
Going from yI/η = 0 to yI/η =−6, the negative peak of ⟨Ty⟩I is reduced in magnitude

and moves from rn/η = 14.5 to rn/η = 10. At yI/η = 0, an approximate balance between
⟨Dt⟩I and ⟨Ty⟩I has already been mentioned; their sum is small but roughly equal to ⟨Dc⟩I

for scales rn ⪅ 10η (for the IES of ω2
th/ω2

re f = 10−3). However, this balance changes at
yI/η =−6, where there is an apparent imbalance between ⟨Dt⟩I and ⟨Ty⟩I . The contributions
of ⟨Tp⟩I and ⟨Tr⟩I lead to a steep negative trend in (⟨Dt⟩I + ⟨Ty⟩I) starting from very small
scales rn. For larger scales, i.e. rn/η ⪆ 25 at yI/η = 0, rn/η ⪆ 14 at yI/η = −6 and
rn/η ⪆ 18 at yI/η = −10, (⟨Dt⟩I + ⟨Ty⟩I) attains a value close to −2⟨ε⟩I for all centroid
locations. On the contrary, the range of scales where (⟨Dt⟩I +⟨Ty⟩I)> 0 observed at yI/η = 0
exists only at yI/η = 0 location.

It has been pointed out in figure 5.3 that the viscous diffusion in space ⟨Dc⟩I is positive and
thus contributes to the increase of |δu|2 for the scales rn/η < 11.4 at yI/η = 0. Comparing
figures 5.16b, 5.16d and 5.16f shows that ⟨Dc⟩I becomes negative for scales comparable to
rn = 11.4η at locations in the turbulent side of the IES. At location yI/η = −6, the peak
negative contribution of ⟨Dc⟩I is at scale rn = 6.3η and ⟨Dc⟩I remains negative until rn ≈ 11η .
When we move the centroid to yI/η =−10, the location of this peak negative contribution
moves to rn = 14η (rn ≈ λ ) and ⟨Dc⟩I is negative until rn = 20.2η meaning that the kinetic
energy for scales smaller than 20.2η is reduced by viscous diffusion mechanism in space.
Therefore, it can be suggested that viscosity plays a role in transferring kinetic energy from
a certain range of scales, and from the turbulent side of the IES towards the non-turbulent
region.

5.4.2 Dissipation and interscale transfer at different yI locations

To begin with, we can note the ⟨ε⟩I values at rn/η = 0 in figures 5.16a, 5.16c and 5.16e,
which takes a small value at yI/η = 0, slightly higher than εc at yI/η =−6 and nearly 2εc at
yI/η =−10.
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As one can observe from eq. 5.3, the dissipation term consists of the sum of dissipation
at the two points ξ1 and ξ2. At the location yI/η = 0, the centroid is located directly on
the IES defined by ω2

th/ω2
re f = 10−3, thus the ⟨ε⟩I at rn/η = 0 is very small as dissipation

is much lower than εc at the location of the IES. On the other hand, when the KHMH
centroid is moved towards the turbulent core, the ⟨ε⟩I at rn/η = 0 increases due to higher
dissipation values at the location of centroid X . At the location yI/η =−10 the ⟨ε⟩I starts
from ⟨ε⟩I ≈ 2εc for scales rn/η = 0 showing that the value of dissipation at this location is
close to εc already.

A very striking observation in figure 5.16 is that at location of yI/η =−10, given in figure
5.16f, the interscale transfer term ⟨Tr⟩I increases in magnitude as rn approaches to rn = 10η

where it reaches ⟨ε⟩I and remains that way for a wide range of scales (until rn/η = 40). This
balance between ⟨Tr⟩I and ⟨ε⟩I is unexpected at this location, where the centroid is located
only at a distance 10η from the IES location.

Another detail that makes this observation even more interesting is that the balance
⟨Tr⟩I ≈ ⟨ε⟩I continues to hold even for large separations rn for which one point is on the
non-turbulent side and the other point is on the turbulent side of the IES. For scales that
fully fit into the turbulent side of the interface (rn < 10η), the interscale transfer term ⟨Tr⟩I

increases in magnitude with increasing rn until it reaches ⟨ε⟩I . Going closer to the IES,
at yI/η = −6 and at the IES location yI/η = 0, it is observed that the interscale transfer
⟨Tr⟩I exceeds ⟨ε⟩I over a large range of scales, showing a considerable forward cascade of
the energy in the interface normal direction. It should also be noted in figure 5.16d that at
yI/η =−6, |⟨Tr⟩I|= |⟨ε⟩I| is attained at scales rn > 40η .

At yI/η = 0, for scales rn < 11.4η , where (⟨Dt⟩I + ⟨Ty⟩I) is positive, it is observed that
⟨Tr⟩I balances ⟨Tp⟩I and the net viscous loss of kinetic energy due to (⟨Dr⟩I −⟨ε⟩I). If
we look at figure 5.16d, this balance does not exist at location yI/η = −6 where ⟨Tr⟩I is
significantly smaller than ⟨Tp⟩I in magnitude for all the range of scales rn. When the KHMH
centroid is moved further inside the turbulent region, at yI/η = −10 (figure 5.16f), ⟨Tr⟩I

becomes larger than ⟨Tp⟩I for scales rn ⪅ 13.6 even though at larger scales rn, the magnitude
of ⟨Tp⟩I exceeds the magnitude of ⟨Tr⟩I .

5.4.3 Contributions of the solenoidal and irrotational parts of the inter-
scale transfer at different yI locations

The observation that ⟨Tr⟩I = ⟨ε⟩I is found for scales extending across the TNTI layer and
into the non-turbulent region at yI/η = −10 is indeed intriguing. This balance between
⟨Tr⟩I and ⟨ε⟩I near the interface is unexpected and raises questions about the underlying
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mechanisms. To further investigate the mechanisms leading to this balance, we can ex-
amine the contributions of the solenoidal (⟨T S

r ⟩I) and irrotational (⟨T I
r ⟩I) parts of ⟨Tr⟩I for

various scales at different locations along the interface normal axis. Figure 5.16 shows
the solenoidal/irrotational parts of the ⟨Tr⟩I at IES location, at yI/η = 0, yI/η = −6 and
yI/η =−10, as functions of rn.
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Fig. 5.17 Decomposition of ⟨Tr⟩I into irrotational and solenoidal parts ⟨T I
r ⟩I and ⟨T S

r ⟩I ,
plotted as a function of rn/η , computed at centroid placed at yI/η = 0, yI/η = −6 and
yI/η =−10 and normalized by εc and ⟨ε(rn/η)⟩I . At t/Tre f = 50 for the PJ4-HR simulation
over the IES of ω2

th/ω2
re f = 10−3.
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At yI/η = −10, (figure 5.16f), it is interesting to see that the contribution from the
solenoidal part ⟨T S

r ⟩I into the total interscale transfer ⟨Tr⟩I is zero for the scales associated
with rn > 20η where ⟨Tr⟩I ≈ ⟨ε⟩I . Hence ⟨Tr⟩I is fully constituted by the irrotational part
⟨T I

r ⟩I at these scales for yI/η = −10. A particular detail about scale rn = 20η is that this
is the largest scale that can fit into the layer between the KHMH centroid X and the IES
location. At the separation length rn = 20η , the point on the non-turbulent side reaches the
IES location, thus scales of rn > 20 extend over the IES into the non-turbulent region. Given
this extension into the irrotational region, it is plausible that the interscale energy transfer at
these scales is primarily driven by pressure variations.

As we approach closer to the IES location at yI/η =−6, we observe in figure 5.17d that
⟨T S

r ⟩I starts taking moderate, non-zero, negative values and remains non-zero over a broad
range of scales, although ⟨T I

r ⟩I still dominates ⟨Tr⟩I for scales with rn/η ⪆ 10. Between the
scales of rn/η = 6 and rn/η = 10, ⟨T S

r ⟩I diminishes rapidly in magnitude as the outer point
approaches the IES location. However, its magnitude does not drop to zero for larger scales
and remains relatively constant until rn ≈ 2λ . It does however reach zero between rn = 2.5λ

and rn = 3λ .
At the IES location (yI/η = 0), the magnitude of ⟨T S

r ⟩I becomes comparable to that
of ⟨T I

r ⟩I (see figure 5.17b). The maximum contribution of ⟨T S
r ⟩I occurs at scales around

rn = 14.8η , which corresponds to scales of the order of λ . In contrast, the contribution of
⟨T I

r ⟩I peaks for scales at rn = 2λ , which are significantly larger.
There appears to be a continuous transition between the profiles of ⟨T I

r ⟩I and ⟨T S
r ⟩I as we

move from yI/η =−10 to yI/η = 0. Looking at the profiles in figure 5.17, it is interesting
to observe that ⟨T S

r ⟩I is strictly zero at scales extended to the non-turbulent region of the
TNTI at yI/η =−10, whereas at yI/η =−6, a weak contribution of ⟨T S

r ⟩I exists at scales
extending to the non-turbulent side of the IES. Finally, at the IES location, the contribution
from the solenoidal part of the interscale transfer is significant for a wide range of scales in
the interface normal direction.

5.4.4 KHMH terms at different yI locations as functions of rt and rn

In figures 5.16 and 5.17, we have observed specific characteristics of the KHMH terms
for various scales associated with the interface normal separation rn. To gain a more
comprehensive understanding, contour plots of the KHMH terms as functions of rt/η and
rn/η are presented in figure 5.18.

At yI/η = 0, the rate of change in time of |δu|2 for the scales |r|< 24.7η is positive,
which is shown in figure 5.18a with the plot of ⟨Dt⟩I/εc. In the tangential direction, the
kinetic energy increases in all scales. Referring to the eq. 5.4 if we keep the Dt term on
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the left-hand side and put all the other terms to the right-hand side of the equation we end
up with ⟨Dt⟩I = −⟨Ty⟩I −⟨Tr⟩I −⟨Tp⟩I + .... The negative values of the terms ⟨Ty⟩I , ⟨Tr⟩I

and ⟨Tp⟩I in figure 5.18a result in positive values of ⟨Dt⟩I . Among these terms, the most
substantial contribution in the tangential direction comes from the ⟨Tp⟩I term, highlighting
the impact of pressure. However, both ⟨Ty⟩I and ⟨Tr⟩I also contribute to ⟨Dt⟩I > 0, especially
for scales associated with rt (with rn being small).

In the interface normal direction, ⟨Ty⟩I makes a significant contribution at scales around
rn/η ≈ 15 (close to λ ), where ⟨Dt⟩I > 0, particularly for small values of rt . This contribution
may be attributed to the transport of turbulent kinetic energy toward the IES location by the
TNTI-averaged velocity field (see figure 4.14a).

On the other hand, ⟨Tr⟩I makes its most significant contribution at scales around rn ≈ 23η ,
leading to an increase in ⟨Dt⟩I . However, it is important to note that ⟨Dt⟩I = 0 can still be
observed in figure 5.18a at the exact same location. At this scale, the contributions from
⟨Ty⟩I and ⟨Tr⟩I are completely counteracted by the ⟨Tp⟩I term.

In summary, in figure 5.18a, for scales in the interface normal direction, ⟨Ty⟩I has its
maximum impact on scales around rn ≈ 15η , ⟨Tr⟩I is most influential at scales around
rn ≈ 23η , and ⟨Tp⟩I dominates at scales around rn ≈ 32η . This indicates that the scales most
affected by the spatial transfer in physical space are on the order of λ and are the smallest
among the three. ⟨Tr⟩I attains its maximum point at slightly larger scales, while the effects of
pressure are most pronounced for even larger scales, approximately rn ≈ 2λ .

At yI/η =−10 (figure 5.18c), the interscale transfer term appears to exhibit a somewhat
more isotropic behaviour compared to the other two locations closer to the IES. The negative
values of ⟨Tr⟩I related to the forward cascade are also present for separations in the tangential
direction, in contrast to the ⟨Tr⟩I results for the yI/η = 0 given in figure 5.18a. In addition to
that, there is still a more prominent interscale transfer rate at scales rn ≈ 11η at yI/η =−10.
It can be reminded that the yI/η =−10 location is picked for the placement of the centroid
due to the peak observed in the profile of Pω2 in figure 4.34d, thus the non-linear production
of ω2 is high at this particular distance from the interface for the regions of the IES with high
local entrainment velocity.

For the completeness of the picture, ⟨Ty⟩I at yI/η = −10 (figure 5.18c) can also be
compared with the results at yI/η = 0 and yI/η =−6 (figures 5.18a and 5.18b). At yI/η = 0
and yI/η = −6, ⟨Ty⟩I becomes positive for large scales of rn. At yI/η = −10, a second
region of ⟨Ty⟩I > 0 appears for scales between rn/η = 0 and rn/η = 15. Recalling that
⟨Ty⟩I > 0, is associated with a decay of |δu|2 due to advection, this positive region might be
related to the advection of these small scales towards the IES by the local velocity field.
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In figure 5.19, the decomposition of the ⟨Tr⟩I into ⟨T S
r ⟩I and ⟨T I

r ⟩I has been given. In
relation with the similarity of ⟨Tp⟩I in scale-space at yI/η = 0, yI/η =−6 and yI/η =−10
locations, the irrotational part ⟨T I

r ⟩I remains qualitatively the same for these locations across
the yI/η axis.

On the other hand, at yI/η = −10, the location where the balance of ⟨T I
r ⟩I = ⟨ε⟩I is

observed for scales rn ⪆ 10 (see figure 5.16f), ⟨T S
r ⟩I is observed to be zero only for separations

in the normal direction. In the tangential direction, significant negative ⟨T S
r ⟩I values show an

intense forward cascade in this direction. Moreover, the peak of ⟨Tr⟩I along the rn axis at
rn ≈ 10η in figure 5.16f is observed to be due to the ⟨T S

r ⟩I . The contour field presented in
figure 5.19c for ⟨T S

r ⟩I can be said to be more or less isotropic for scales r < 10η as the value
of ⟨T S

r ⟩I seems to be independent from the orientation of r.

5.4.5 Main observations for the KHMH balance at different yI locations

After examining the KHMH balance at the precise location of the IES defined by ω2
th/ω2

re f =

10−3, we have proceeded to analyze this balance at various locations along the normal axis
for the same IES. To achieve this, KHMH terms have been computed by placing the centroid
X at yI/η =−6 and yI/η =−10. The objective of this analysis has been to investigate how
the scale-by-scale energy balance is established in different regions near the interface. The
primary observations from this analysis are as follows;

• At yI/η = 0, we observe that (⟨Dt⟩I + ⟨Ty⟩I)> 0 for relatively small rn scales, suggest-
ing an increase of kinetic energy for scales up to some extent in the normal direction.
In contrast, (⟨Dt⟩I + ⟨Ty⟩I) remains negative for all scales of rn at both locations
yI/η =−6 and yI/η =−10 (figure 5.16).

• The viscous diffusion of kinetic energy in physical space ⟨Dc⟩I , has different effects at
different locations. At yI/η = 0, it increases the kinetic energy associated with scales
rn ≈ λ . Conversely, at yI/η =−10, it contributes to a reduction of the kinetic energy
associated with scales rn ≈ λ . This suggests a possible diffusion of kinetic energy in
physical space, from the turbulent core towards the non-turbulent region, due to the
action of viscosity (figure 5.16).

• At yI/η =−10, a Kolmogorov-like balance is observed in the form ⟨Tr⟩I = ⟨ε⟩I . This
is an interesting observation given how close this location is to the IES of ω2

th/ω2
re f =

10−3. Further decomposition of ⟨Tr⟩I into its solenoidal and irrotational parts, ⟨T S
r ⟩I

and ⟨T I
r ⟩I , reveals that ⟨T S

r ⟩I is non-zero for scales fully contained on the turbulent
side of the TNTI, while for scales extending beyond yI/η = 0, the irrotational part,
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directly associated with pressure effects, becomes fully responsible for the interscale
transfer rate, i.e. ⟨Tr⟩I = ⟨T I

r ⟩I (figure 5.17).

• Looking at the local 2D contour fields of ⟨Dt⟩I , ⟨Ty⟩I , ⟨Tr⟩I and ⟨Tp⟩I as functions
of rt and rn (figure 5.18), a significant change in the field of ⟨Ty⟩I is observed for
different locations along yI/η . Despite ⟨Ty⟩I being completely negative at yI/η = 0,
it exhibits positive regions mostly associated with separation vectors in the interface
normal direction at yI/η =−6, yI/η =−10. It suggests the advection of the kinetic
energy associated with scales with an approximate size of 10η , towards the interface
location, by the local velocity field.

• Again the contour fields in figure 5.18 show that the interscale transfer term ⟨Tr⟩I

becomes more isotropic on the (rt − rn) plane as we go to yI/η =−10. For yI/η = 0
and yI/η = −6, ⟨Tr⟩I remains very small for separations in the tangential direction
and it gets negative values (forward cascade) in the interface normal direction.

• Decomposition of ⟨Tr⟩I into irrotational and solenoidal parts shows that ⟨T I
r ⟩I remains

similar in scale-space (rt − rn) for various yI/η locations. On the other hand, ⟨T S
r ⟩I

change significantly, especially in the tangential direction. Going from yI/η = 0 to
yI/η =−10, the contribution of ⟨T S

r ⟩I gets more and more significant in the direction
of forward cascade in the tangential direction of the interface.
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Fig. 5.18 TNTI-average local fields of KHMH terms, as a function of rn/η and rt/η .
Computed with KHMH centered at yI/η = 0, yI/η = −6 and yI/η = −10 for the IES of
ω2

th/ω2
re f = 10−3, and normalized by εc.
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Fig. 5.19 TNTI-averaged fields of ⟨Tr⟩I , ⟨T S
r ⟩I and ⟨T I

r ⟩I , as functions of rn/η and rt/η .
Computed with KHMH centered at yI/η = 0, yI/η = −6 and yI/η = −10 for the IES of
ω2

th/ω2
re f = 10−3, and normalized by εc.
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5.5 Average compression/stretching-entrainment/detrainment
conditions

In this section, we focus on the interscale transfer of the scale-by-scale kinetic energy |δu|2
at the location of the IES defined by ω2

th/ω2
re f = 10−3. Following the work of Zhou and

Vassilicos (2020), we can define an average energy over scales smaller than r ≡ |r| as;

E(X,r) =
3

πr3

∫
V (r)

|δu|2d3r. (5.9)

This relation is obtained by an application of a normalized 3D integration operation, 3
4πr3

∫
V (r) d3r

where V (r) is the volume of a sphere with radius r.
A relation for the evolution of E(X,r) can be written by the application of the normalized

integral operation to the eq. 5.3. Here, we specifically focus on the interscale energy flux
term, which can be expressed as a flux across the bounding surface of the volume of the
sphere V (r) (making use of the divergence theorem) as follows;

Π(X,r) =
3

πr3

∫
V (r)

∂

∂ ri
[δui|δu|2]d3r =

3
πr3

∫
S(r)

δu · r̂|δu|2d2r (5.10)

where S(r) denotes the surface of a sphere with radius r and r̂ is the unit vector in the
direction of r.

Upon integrating equation 5.3 and writing the interscale flux on the right-hand side, we
can observe its contribution to the rate of change of E(X,r) as follows;

∂E
∂ t

=− 3
πr3

∫
S(r)

δu · r̂(δu)2d2r+ ..., (5.11)

It is useful to note that, in this section, we focus on the interscale energy transfer rate at
the TNTI location but the significant contributions of the other terms such as the pressure-
velocity term, the term for the energy transfer in physical space in the vicinity of the TNTI
should still be acknowledged as has been shown in previous sections and that these terms
may be significant in the behaviour of E thus the "..." in eq. 5.11.

An important detail about eq. 5.10 is that the sign of the interscale energy flux is
determined solely by the δu · r̂ term. Considering the relation between the rate of change
of E and the interscale flux given by relation 5.11, it can be observed that E associated
with scales smaller than r, increases over time when (δu · r̂) < 0, and it decreases when
(δu · r̂) > 0 if all other terms are kept constant. It should be noted that these cases of
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(δu · r̂)< 0 and (δu · r̂)> 0 correspond to compression and stretching events in the direction
of r, respectively.

In the case of compression events, |δu|2 is transported towards smaller scales, resulting
in a positive contribution to kinetic energy at scales smaller than r. Stretching events, on the
other hand, lead to the transfer of energy from scales smaller than r towards scales larger
than r, manifesting as a negative contribution to E in equation 5.11.

We begin by examining figure 5.20, which presents ⟨δu · r⟩I and ⟨δu · r|δu|2⟩I as
functions of rt/δ and rn/δ . The TNTI-averaging operation is performed across the IES
without applying any conditions on Hm and vl

n.
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Fig. 5.20 ⟨δu ·r⟩I and ⟨δu ·r(δu)2⟩I as a function of rt/δ and rn/δ , centered at the interface.
Without any conditions applied for Hm and vl

n and for the IES of ω2
th/ω2

re f = 10−3.

The current findings align with those presented in Zhou and Vassilicos (2020), where the
same variables are obtained for the TNTI of a spatially developing turbulent wake. Figure
5.20a illustrates the presence of compressive motion on average, indicated by the negative
values of ⟨δu ·r⟩I , in the TNTI normal direction. The green dashed line demarcates the
boundary between regions where this term is negative and positive. The angle between
the face normal ey and the vector r, where the characteristics of the motion change from
compressive to stretching on average, is found to be 50◦, which is the exact same value that
has been reported by Zhou and Vassilicos (2020) for the TNTI of a spatially developing
wake.

Figure 5.20b displays ⟨δu · r̂(δu)2⟩I as a function of rn/δ and rt/δ , which directly
represents the interscale energy flux. The magenta dashed line in figure 5.20b delineates the
border between negative and positive values of ⟨δu · r̂|δu|2⟩I , while the green dashed line is
taken from figure 5.20a for comparison.

Above the green dashed line, the local field exhibits compressive motion on average, and
the average interscale transfer of energy is from large to small scales. Below the magenta line,
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motion is predominantly stretching on average, and the energy transfer occurs from small
to large scales. A region between these two exists, which corresponds to the area between
the green and magenta dashed lines, where the motion is stretching on average but the
average interscale transfer is nevertheless from large to small scales. This suggests significant
contributions of the extreme events, as an average forward cascade is present where the
motion is stretching on average. A more detailed analysis of this phenomenon is presented
in Zhou and Vassilicos (2020) and a similar picture for ⟨δu ·r|δu|2⟩I is presented for the
spatially developing turbulent wake. There is a slight difference which is that the mid-zone
between green and magenta dashed lines is larger in the flow of Zhou and Vassilicos (2020).
This difference may be due to the fact that the expansion of the temporally developing
turbulent jet analyzed in the present study is fundamentally different from its spatially
developing counterpart and also from the spatially developing turbulent wake. Furthermore,
the spatial development of the wake may have implications for the mean orientation of the ey,
which affects the TNTI-averaged fields of velocity, thus affecting the ⟨δu ·r⟩I at the TNTI.

The results presented in figure 5.20 are also to be compared with the findings of Watanabe
et al. (2020), where they employed a decomposition of the interscale energy flux term in the
SGS budget equation (Watanabe et al., 2020) into contributions associated with the gradients
of the different components of velocity in various directions. They observed that the terms
containing the gradients in the interface normal direction (both for the interface normal and
tangential components of the velocity) cause a transfer of energy from large to small scales
(Watanabe et al., 2020). Similar to what has been observed in figure 5.20b, Watanabe et al.
(2020) report that the terms containing the tangential gradient lead to an average energy
transfer from small to large scales for a certain distance from the interface.

5.5.1 Average compression/stretching and the interscale energy flux at
the entrainment/detrainment regions of the interface

In section 4.11.1, we have observed significant changes in the TNTI-averaged fields when
conditioning was applied based on Hm and vl

n in the regions of detrainment, entrainment, and
fast entrainment. These variations in the TNTI-averaged local fields are likely to have direct
implications for the statistics of compression and stretching events in the interface normal
and tangential directions. To gain further insight, we will now examine the terms presented
in figure 5.20 for the conditions D2, E2, E3, and E6.

Figure 5.21 displays ⟨δu ·r⟩I and ⟨δu ·r|δu|2⟩I as functions of rt/δ and rn/δ for the
D2, E2, E3, and E6 conditions. Comparison of figure 5.21a with figures 5.21c, 5.21e, and
5.21g, leads to a conclusion supporting the observations made in section 4.11.1 and highlights
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the crucial difference between the local detrainment and entrainment regions as the different
directions where the average compression/stretching events are observed. In the entraining
regions, we observe an average compression in the TNTI normal direction and a stretching
event in the tangential direction of the interface on average. In contrast, the detrainment
regions exhibit compression on average in the tangential direction and an average stretching
in the TNTI normal direction.

For the D2 condition, there is a significant stretching motion in the interface normal
direction, indicated by positive values of ⟨δu · r⟩I in figure 5.21a. The positive peak in
⟨δu ·r⟩I occurs at rn/δ = 0.43 (rn/η = 38.7) in the normal direction of the interface. At
this separation value, the point on the turbulent side of the interface is located at yI/η ≈ 20.

In figure 5.21e (E3 condition), for the convex regions (Hm > 0), both compression and
stretching events in the interface normal and tangential directions do not appear to be as
prominent for relatively small separations, such as r < 0.15δ (13.5η). However, in the case
of the E2 and E6 conditions, compression in the TNTI normal direction and stretching in the
tangential direction are noticeable even at very small separation values (see figures 5.21c and
5.21g). It can be noted that when the centroid X is placed at yI/η = 0, the scales associated
with rn ≈ 14η beyond the mean TNTI layer thickness δω2 .

In addition to the significant differences in compression and stretching events on aver-
age, the interscale energy flux is observed to vary significantly between detrainment and
entrainment regions when the figures 5.21b, 5.21d, 5.21f, and 5.21h are compared.

For the E2 and E6 conditions, a forward cascade is present in the interface normal
direction, while an inverse cascade is observed in the tangential direction of the interface. A
similar pattern can be seen for the E3 condition, although the interscale energy flux does not
reach high magnitudes for scales smaller than |r|/λ ≈ 0.2. In the tangential direction, an
inverse cascade is observed for scales rt/λ > 0.39(rt > 35.3η).

The behaviour of ⟨δu ·r|δu|2⟩I undergoes a significant change for the D2 condition (see
figure 5.21b), where a forward cascade is present for tangential separations. However, the
magnitudes of ⟨δu ·r|δu|2⟩I remain lower compared to the other cases. A region where
⟨δu ·r|δu|2⟩I acquires positive values can be observed for large separations in the TNTI
normal direction, i.e., rn/δ > 0.38, which shows an energy transfer from small scales towards
larger scales in the interface normal direction.

This observation is interesting as the predominant direction of the average interscale
energy transfer changes radically in the regions of local detrainment, while the previous
observations made in figure 5.20 mostly hold for the regions of local entrainment (apart from
the slightly different picture in the convex regions which are discussed above). With the
investigation of ⟨δu ·r⟩I and ⟨δu ·r|δu|2⟩I at the location of the IES, without applying any
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conditions on the statistics (see figure 5.20a), it has been observed that compression/stretching
motions dominate, on average, in the interface normal/tangential directions respectively. The
contour plot in figure 5.20b also shows that the direction and scales for which the mean
compression/stretching is observed mostly align with the forward/backward cascade of
energy in scale space. On the contrary, when the TNTI-average values of ⟨δu · r⟩I and
⟨δu · r|δu|2⟩I is analyzed for the D2 condition (associated with the local detrainment),
in the interface normal direction positive values of ⟨δu ·r⟩I shows stretching on average,
and in the tangential direction, negative values of ⟨δu ·r⟩I shows compression on average.
In addition to that, the mean interscale energy flux becomes large to small scales in the
tangential direction, while an inverse cascade is observed on average in the interface normal
direction. It can be noted that the average forward/backward cascade in various directions
and scales does not correspond strictly to the average compression/stretching regions in the
scale space for the D2 condition.

5.5.2 Main observations for the average compression/stretching motions
and the interscale energy flux at the regions of ED conditions

In this section, we have focused on the contributions to the interscale energy transfer rate
for various scales and directions at the location of the IES of ω2

th/ω2
re f = 10−3. The average

compression/stretching events are also analyzed for the different regions of the IES as the
δu · r term which determines the direction of the local cascade. The main observations
presented in this section can be given as follows;

• Considering the TNTI-averaged results ⟨δu · r⟩I and ⟨δu · r|δu|2⟩I , average com-
pression and stretching motions are present at the location of the IES but in different
directions in r space i.e., compression in the interface normal direction and stretching
in the tangential direction. These observations are compatible with the TNTI-average
velocity fields analyzed in chapter 4 and the results obtained in the present study align
with the findings in the literature for the TNTI of a spatially developing wake (Zhou
and Vassilicos, 2020) and shear-free turbulence (Watanabe et al., 2020).

• Conditioning of the TNTI-averaged statistics allows us to see the average picture
separately for the entrainment and detrainment regions of the interface (figure 5.21).
For the regions of entrainment, compression (⟨δu ·r⟩I < 0) on average is observed in
the interface normal direction and stretching (⟨δu ·r⟩I > 0) on average is observed in
the tangential direction of the interface. Results are compatible with the observations
made in chapter 4 for the TNTI-average velocity fields at the entrainment regions.
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For the regions of detrainment, this picture is inverted and we observe stretching on
average in the interface normal direction and compression on average in the tangential
direction.

• The contribution to the total energy flux changes in various r directions with varying
signs of ⟨δu ·r|δu|2⟩I . For the regions of entrainment, there is a dominantly forward
cascade in the normal direction and a backward cascade in the tangential direction. On
the other hand, for the regions of local detrainment, a forward cascade is present in the
tangential direction, and a backward cascade is observed in the normal direction on
average for a certain range of scales.

• The variation of ⟨δu ·r|δu|2⟩I is observed to be affected less dramatically with the
conditioning on the local mean curvature Hm. The main difference between the concave
cases (E2 and E6 condition) and the convex cases (E3 condition) is at scales rt < 0.3δ

(27η), where the inverse cascade seen for concave cases is not present for the condition
E3. However, the forward cascade in the interface normal direction remains unchanged
between the concave and convex regions.
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(h) E6 condition

Fig. 5.21 ⟨δu ·r⟩I and ⟨δu ·r|δu|2⟩I as functions of rt and rn, for conditions D2, E2, E3
and E6. KHMH centroid placed on the IES defined by ω2

th/ω2
re f = 10−3.
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5.6 Conclusions for the KHMH balance in the vicinity of
the TNTI

In this chapter, we have investigated the KHMH balance at the TNTI location. The KHMH
equation (eq. 5.3) provides insights into the interplay of various mechanisms affecting
the balance of the turbulent kinetic energy at a given location for various scales such as
the interscale transfer, transport in physical space, effects of pressure, viscous diffusion
mechanisms in physical and scale space and the viscous dissipation.

Due to the various stages of the analysis being rather independent of each other, the
conclusions are given separately in sections 5.2.7, 5.3.4, 5.4.5 and 5.5.2 in detail. In the
current section, we give a general conclusion for the entire chapter, gathering the observations
from previous sections.

We begin our analysis by looking at the scale-by-scale KHMH balance averaged along
the IES of ω2

th/ω2
re f = 10−3 by placing the centroid X on the IES location. It has been

shown that all terms of the KHMH equation (eq. 5.3) are active, on average, for most of the
scales associated with various separations in the interface normal direction rn. The kinetic
energy associated with scales rn ⪅ 10η is observed to increase in a reference frame moving
with the flow i.e., (⟨Dt⟩I + ⟨Ty⟩I)> 0.

The KHMH terms are also computed for the IES of ω2
th/ω2

re f = 10−6. The results show
the robustness of the qualitative picture for the balance between various terms of the KHMH
equation (eq. 5.3).

The TNTI-average results of the interscale transfer ⟨Tr⟩I and the transfer in physical space
⟨Ty⟩I analysed in the present study in the vicinity of the TNTI of a temporally developing
jet, are observed to be qualitatively similar to the results obtained for the TNTI of spatially
developing wakes by Zhou and Vassilicos (2020).

Following this, we performed an analysis by conditioning the KHMH statistics on local
parameters along the IES i.e., local mean curvature Hm and the local propagation velocity vl

n

(ED conditions introduced in section 4.11). This conditioning revealed notable distinctions
between entrainment and detrainment regions concerning various KHMH terms, as well as
disparities between concave and convex regions in relation to the pressure-velocity term (see
figure 5.11). The main observations are discussed below.

A very approximate balance between the TNTI-averaged interscale transfer and the
dissipation terms (⟨Tr⟩I ≈ −⟨ε⟩I) is observed for the conditions with the highest rate of
occurrence along the IES i.e., E2 and E3 conditions (see figures 5.11b and 5.11c), which
does not exist for the unconditioned case (figure 5.3b). This observation shows that the
approximate balance between ⟨Tr⟩I and ⟨ε⟩I does not hold for the unconditioned statistics
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due to the contribution from the regions where KHMH terms attain much higher values
compared to the mean i.e., E6 condition (see figure 5.11d).

The effects of the pressure field vary significantly between the concave and convex
regions. The direct relation between the pressure-velocity term Tp and the irrotational part
of the interscale transfer rate T I

r is given by the eq. 5.6. Considering this relation, ⟨Tp⟩I

contributes in the direction of an inverse cascade i.e. ⟨T I
r ⟩I > 0 in the interface normal

direction at convex regions with local entrainment (see figure 5.12c for the E3 condition).
At the location of the IES of ω2

th/ω2
re f = 10−3, the solenoidal part of the interscale transfer

⟨T S
r ⟩I is observed to attain its maximal contribution at rn ≈ λ for scales in the direction

of the TNTI normal axis. Similar observations have been made in terms of the scales for
which the contribution of Tr is highest in different flows, such as turbulent channel flow
(Apostolidis et al., 2023) and forced homogeneous turbulence (Yasuda and Vassilicos, 2018)
(where they apply an averaging over all the directions of r) and decaying grid-generated
turbulence (Obligado and Vassilicos, 2019) (where the isotropic form of interscale transfer
rate is considered).

Moreover, we conducted an analysis of the KHMH balance at different locations along
the TNTI normal axis, specifically at yI/η =−6 and yI/η =−10. These centroid locations
were selected based on their significance in terms of the non-linear production of enstrophy
Pω2 for E2 and E6 conditions. A Kolmogorov-like balance has been observed (⟨Tr⟩I ≈ ⟨ε⟩I)
at yI/η =−10 for scales rn > 10η .

Further examination of the solenoidal and irrotational parts, ⟨T S
r ⟩I and ⟨T I

r ⟩I at yI/η =

−10 revealed that, for scales fully contained within the turbulent side of the IES, ⟨T S
r ⟩I

predominantly contributes to the total interscale transfer rate (see figure 5.17f). In contrast,
for scales extending beyond the IES location, ⟨Tr⟩I is entirely attributed to the irrotational
part, ⟨T I

r ⟩I , which is directly linked to pressure effects as described by eq. 5.6. On the
other hand, the contour fields of ⟨T S

r ⟩I and ⟨T I
r ⟩I in figure 5.19c show that in the tangential

direction, the picture is much more different and there is a significant contribution from the
⟨T S

r ⟩I enhancing the energy transfer towards smaller scales i.e. forward cascade. The ⟨T I
r ⟩I

contributes in the direction of an inverse cascade.
Finally, we focused on the interscale/interspace energy transfer terms. We analyzed

the compression/stretching motions on average with the use of TNTI-averaged statistics
⟨δu ·r⟩I at the location of the interface, due to the direct relationship between the average
compression/stretching and the direction of the local energy cascade across the scales for
each direction. The unconditioned results obtained in the present study are observed to be
qualitatively similar to the results obtained for the TNTI of spatially developing turbulent
wake in the study of Zhou and Vassilicos (2020), where compression in the interface normal
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direction and stretching in the tangential direction is reported. The TNTI-average statistics
of the interscale energy flux ⟨δu ·r|δu|2⟩I are observed to align with the findings by Zhou
and Vassilicos (2020). These observations are also in parallel with the conclusions given by
Watanabe et al. (2020), where they investigate the scale-by-scale energy transfer by applying
a filtering operation and the analysis of the sub-grid scale energy budget equations near the
TNTI of a turbulent front in shear-free turbulence.

Conditioning the TNTI-averaged statistics on the local propagation velocity vl
n allows us

to analyze the compression/stretching events separately for the entrainment and detrainment
regions. The average compression and stretching motions in the interface normal and
tangential directions are observed to change when the detrainment regions are considered.
At the regions of local entrainment, compression motion is present in the interface normal
direction on average, while stretching is observed in the tangential direction. Conversely, at
the regions of detrainment, stretching is observed on average in the interface normal direction,
and compression is observed in the tangential direction.

Similarly, the interscale energy flux is also shown to vary between the regions of local
entrainment and detrainment across the interface. The average forward cascade in the normal
direction and inverse cascade in the tangential direction observed for the unconditioned
statistics are also present for the entrainment regions. On the other hand, in the detrainment
regions, a forward cascade is present in the tangential direction, while an inverse cascade is
observed for the scales associated with rn/δ > 0.38 in the interface normal direction. This
difference between the entrainment/detrainment regions highlights the local nature of the
interscale energy transfer in both scale space and the physical space.



Chapter 6

Conclusion

6.1 Conclusions

The TNTI is a highly localized phenomenon within the flow. Being a sharp boundary that
separates the turbulent and non-turbulent regions, it is a subject of significant interest due to
its complex structure, dynamics, and the intricate local processes responsible for entraining
non-turbulent fluid into the turbulent region. In this study, we undertake a comprehensive
examination of the TNTI of a temporally developing turbulent planar jet, employing both
global and local approaches for the analysis.

We conducted highly resolved simulations of the temporally developing turbulent planar
jet, aligning with the objectives outlined in section 1.2. The details of the simulations and
discussions on the resolution have been given in chapter 2. Chapter 3 is based on a global
approach, for the investigation of the propagation velocity and the inner structure of the TNTI.
On the other hand chapters 4 and 5 focus more on localized analyses, utilizing a methodology
based on TNTI-averaging. Additionally, chapter 5 employs the KHMH equation to explore
various mechanisms acting on the kinetic energy balance at the TNTI location, considering
the energy transfer in both physical and scale space.

The observations and conclusions at each stage of the analysis have been given at the end
of each chapter. These concluding sections include various points, some being entirely novel,
others being partially or thoroughly observed by previous studies in the literature. Some of
the prominent novel conclusions of the entire thesis may be summarized as:

• The TNTI is a continuous layer containing various iso-enstrophy surfaces (IES) associ-
ated with a wide range of enstrophy values. In chapter 3 the variation of the geometrical
properties of these IES has been demonstrated in terms of the fractal dimension D f of
the IESs which we have found to vary across the thickness of the TNTI layer. Going
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towards the non-turbulent region, the TNTI becomes less and less contorted and D f

reduces to 2. A relationship has also been obtained for the average propagation velocity
of the TNTI vn in eq. 3.26, which accounts for the variation of vn across the thickness
of the TNTI. Eq. 3.26 exhibits a dependence of vn on ω2

th/ω2
re f through the dependence

on ω2
th/ω2

re f of the fractal dimension D f of the associated IES.

• In the reference frame of the TNTI, a non-zero TNTI-average velocity exists in the
normal direction ⟨vl⟩I . This observation is to be contrasted with the global cross-stream
velocity, averaged across the homogeneous (x− z) plane, V , which is zero at each y
location along the cross-stream direction. The profile of ⟨vl⟩I along the TNTI normal
axis is found to be dominated by the correlation between the fluctuations of velocity u

and the face-normal vector ey with respect to their TNTI-averaged values i.e., ⟨u′′ ·e′′y ⟩I

(see figure 4.7b).

• A balance between interscale transfer and dissipation (⟨Tr⟩I = ⟨ε⟩I) is observed for
scales rn > 10η in the interface normal direction, for the centroid placed at yI/η =−10
(see figure 5.16f). This balance holds for scales exceeding the TNTI extent in size
(corresponds to rn > 20η in figure 5.16f). The decomposition of the interscale transfer
term into irrotational/solenoidal parts shows that, for rn > 20η , the solenoidal part
⟨T S

r ⟩I is zero, implying that ⟨Tr⟩I consists solely of the irrotational part i.e., ⟨Tr⟩I =

⟨T I
r ⟩I . It is shown by Larssen and Vassilicos (2023) that ⟨T I

r ⟩I is directly related to the
pressure-velocity term by eq. 5.6. This highlights the importance of the pressure in the
vicinity of the TNTI for the transfer of the kinetic energy in scale space. Conversely, at
the IES location (yI/η = 0), both the solenoidal and irrotational contributions ⟨T S

r ⟩I

and ⟨T I
r ⟩I are comparable in magnitude for the entire range of scales analyzed (see

figure 5.5).

• Conditioning the TNTI-average statistics on the local mean curvature Hm and the local
propagation velocity vl

n shows that the directions of the average compression/stretching
differ in local entrainment and detrainment regions (see figure 5.21). In the regions of
local entrainment, average compression is observed in the interface normal direction.
Conversely, average stretching is present in the tangential direction of the interface. At
the regions of local detrainment, this picture is inverted and the stretching motion is,
on average, present in the normal direction while compression is, on average, present
in the tangential direction.

The direction of the interscale energy cascade also changes with entrainment/detrainment
characteristics of the local regions of the interface. In figure 5.21, it has been shown
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that forward/backward cascade is present for the normal/tangential directions respec-
tively, at the regions of local entrainment. On the contrary, considering the regions of
local detrainment, the cascade is backward/forward in the normal/tangential directions
respectively.

In addition to the points given above, the current analysis has led to a number of more
specific but significant results for certain aspects of the TNTI and/or the entrainment pro-
cess. Moreover, the high-resolution dataset and the local methodology based on the TNTI-
averaging operation have allowed us to confirm and support several observations made in the
literature, some having been made for flows that differ from the present study because of
their spatially developing nature or because of the absence of mean shear acting on the TNTI.
These further conclusions can be summarized as follows:

• In the case of a temporally developing planar jet, it has been observed that the scalings
of velocity and length scales in time remain unaffected for various turbulent dissipa-
tion scaling regimes, in contrast to the spatially developing planar jets (Cafiero and
Vassilicos, 2019) and axisymmetric wakes (Obligado et al., 2016). The length scales δ ,
λ and η all exhibit the time dependency of t1/2, while the velocities u0, uλ , uη and vn

all vary with t−1/2 and Reλ remains constant in time, independent of the dissipation
scaling regime being equilibrium or non-equilibrium.

• The importance of the high enough grid resolution is demonstrated for capturing
accurately the PDF of the quantities containing high-order derivatives of the veloc-
ity/vorticity fields i.e., Hm and vl

n, especially at the external regions of the TNTI. A
difference of 50% is observed between the values of ⟨vl

n⟩I obtained for the IES of
ω2

th/ω2
re f = 10−3 with grid resolutions dy/η = 1.4 and dy/η = 0.46. This disparity is

more significant for the IESs associated with lower ω2
th values.

• An average rotating motion, aligned in the local spanwise direction and rotating
counter-clockwise, is observed in the turbulent side of the TNTI-averaged local fields.
This average motion is found to be associated with the turbulent fluctuation field u′

with respect to the (x− z) averaging (see figure 4.16) and has been detected (figure
4.39a) in the reference frame of the TNTI, suggesting that it is linked with the shape of
the interface. This rotating motion may be related to the vortical structures residing in
the vicinity of the interface mentioned by da Silva and Taveira (2010), da Silva and
dos Reis (2011), da Silva et al. (2011) and Watanabe et al. (2017).

• Analyzing the PDFs of scalar products of the face-normal vector ey and the global
streamwise, cross-stream, and spanwise unit vectors i, j, and k reveals that the local
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entrainment regions predominantly face downstream. This observation suggests that
these regions are positioned on the streamwise side of the concave surfaces formed
around the vortical structures depicted in figure 4.39b. Conversely, the detrainment
regions are located in the upstream-facing regions of the interface, likely on the
upstream side of the concave surfaces. These observations align with the results
presented by Watanabe et al. (2014a) considering the orientation of the local regions
along the TNTI with different orientations.

• In the regions of fast local entrainment (E6 condition), a significant peak in ⟨Pω2⟩I is
observed near the IES location, at yI/η ≈ −6. Interestingly, in these same regions,
the total TNTI thickness δI and TSL thickness δω2 are halved compared to the uncon-
ditioned case, while the VSL thickness δν does not decrease as significantly as the
former two.

• In regions of local entrainment, the TNTI-average velocity field points towards the
interface from the turbulent side i.e., ⟨vl⟩I > 0 (see figures 4.32c, 4.32d, and 4.32e).
Conversely, in the local detrainment regions, the TNTI-average velocity field is directed
towards the turbulent core i.e., ⟨vl⟩I < 0 (see figure 4.32b). Examination of the TNTI-
averaged profiles of the terms of the enstrophy balance for different ED conditions
highlights the crucial role of the ⟨vl⟩I on the local enstrophy balance at the regions of
entrainment and detrainment (see figure 4.34).

The transport of vorticity/enstrophy by ⟨vl⟩I towards the interface enhances the pro-
duction of enstrophy Pω2 close to the IES (figure 4.34d), resulting in much sharper
enstrophy gradient and enhancing local propagation velocity towards the non-turbulent
region vl

n. Conversely, the transport of vorticity/enstrophy further away from the inter-
face leads to less sharp regions of the interface, where the mechanisms of production
and diffusion cannot overcome the viscous dissipation of enstrophy resulting in the
IES retreating towards the turbulent core relative to the flow. These conclusions align
with the findings presented in the literature for the TNTI of the spatially developing
turbulent planar jet (Watanabe et al., 2014a) and temporally developing turbulent jet
(Watanabe et al., 2017).

• The PDF of relative helicity ĥ reveals that the orientation of u and ω vectors tends
to become more orthogonal as we move towards the non-turbulent region across the
TNTI. This results in a slower decrease rate of the non-linear enstrophy production
term ⟨Pω2⟩I in the interface normal direction, compared to the case where the PDF of
the relative orientation of u and ω remains similar to the turbulent core. It is worth
noting that ⟨Pω2⟩I contributes at some locations to the propagation of the TNTI into
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the non-turbulent region, by maintaining ⟨Dω2/Dt⟩I > 0, even though the viscous
dissipation is higher than the diffusion of the enstrophy i.e., (⟨Dω2⟩I −⟨εω2⟩I)< 0.

• The analysis of the local KHMH balance near the TNTI reveals significant contributions
from all the different terms specified in eq. 5.3. This highlights the importance
of considering all these mechanisms together to gain a complete understanding of
the KHMH balance at the TNTI location. The KHMH balance is observed to be
qualitatively similar at various IES locations associated with different threshold values
ω2

th/ω2
re f (see figures 5.3 and 5.4).

• In the interface normal direction, the kinetic energy associated with scales rn < 11.4η

is observed to increase in a reference frame moving with the flow ((⟨Dt⟩I + ⟨Ty⟩I)> 0)
for the IES of ω2

th/ω2
re f = 10−3 in figure 5.3b (the same observation holds for scales

rn < 17.6η for the IES of ω2
th/ω2

re f = 10−6, as seen in figure 5.4b). This is an
interesting observation as (Dt +Ty)< 0 is observed for all ranges of scales (including
the small scales) when the KHMH centroid point is moved towards the turbulent side
of the IES. A possible relation might be suggested with the reporting of Cimarelli et al.
(2021) that the kinetic energy is transferred from the internal region of the turbulent
jet towards the interfacial region, meanwhile, the cascade in the scale space exhibits
mainly a forward transfer towards the smaller cross-stream scales.

• The profile of ⟨vl⟩I reveals a compressive motion in the normal direction, as illustrated
in figure 4.4a. Additionally, a stretching motion on average in the tangential plane
of the interface has been observed from the 3D TNTI-averaged velocity fields given
in figure 4.14a. The variation of this compression/stretching behaviour, on average,
in the normal/tangential directions at the interface location is further shown by the
TNTI-averaged statistics of ⟨δu · r⟩I , as presented in figure 5.20a. This finding is
similar to the observations made for the TNTI of shear-free turbulence (Watanabe et al.,
2020) and spatially developing wakes (Zhou and Vassilicos, 2020).

• A forward cascade in the interface normal direction and an inverse cascade in the
tangential direction is observed in figure 5.20b. This observation is largely in line
with the overall trend of compression and stretching that has been discussed for the
TNTI-average velocity fields locally at the TNTI location in chapter 4. The qualitative
similarity has been noted between the results of the current study and the results
presented for spatially developing wake by Zhou and Vassilicos (2020), suggesting
that the observations made in the present study may be more general than just for the
TNTI of temporally developing jets.
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6.2 Perspectives

The current study has aimed to enhance our understanding of the TNTI layer’s structure, the
mechanisms influencing the kinetic energy balance in both physical and scale spaces near the
TNTI, and the entrainment and detrainment processes. Even though various analyses have
been conducted using global and local approaches, as well as different equations employed
such as the one-point enstrophy balance equation and the KHMH equation, there are still
numerous avenues for further research on the TNTI. Some perspectives concerning the
directions for future studies include:

• The investigation of the KHMH balance in section 5.4 yields intriguing results. Notably,
it reveals a balance between the interscale transfer ⟨Tr⟩I and the dissipation ⟨ε⟩I

at yI/η = −10, which resembles Kolmogorov equilibrium but is nevertheless very
different for at least two reasons: it occurs in a very inhomogeneous region of the flow
and it appears as account of pressure variations.

Decomposing ⟨Tr⟩I into its solenoidal and irrotational parts reveals that both contribu-
tions are required for the balance between ⟨Tr⟩I and ⟨ε⟩I , for scales inside the turbulent
region. On the contrary, this balance exists solely due to ⟨T I

r ⟩I at scales extending to
the non-turbulent region. Further investigation of these very large scales may thus be
interesting in order to understand their role in the kinetic energy transfer across the
TNTI and in the development of the jet.

• The 2D spectra presented in figure 2.3 and the visual inspection of enstrophy cut
sections in figures 2.2c and 2.6 indicate that the scale separation between turbulent
length scales is not very wide, primarily due to the limited Reynolds number (ReG) of
the PJx-HR simulations. To gain deeper insights into the distinct roles of each scale, it
would be beneficial to utilize datasets with higher ReG values. This would offer more
room for comparisons with studies such as da Silva and dos Reis (2011); da Silva et al.
(2011); da Silva and Taveira (2010), which discuss the roles of various scales in the
TNTI phenomenon. However, as demonstrated in chapter 2, this would require much
higher computational resources to keep an acceptable spatial resolution as required
by the KHMH analysis and statistics conditioned on local mean curvature and local
propagation velocity of the IES.

• The methodology employed in this study can be combined with coherent structure
detection methods to further investigate the localized influence of specific structures
on the TNTI and the local KHMH balance.
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• Applying the local TNTI analysis to spatially developing jets and wakes could yield
valuable insights into the connection between different dissipation scaling regimes and
local scale-by-scale energy balance near the TNTI.

• Examining the spatially developing jet could also be intriguing because of the increase
in mass flux while momentum is conserved along the streamwise direction. This is a
fundamental difference from its temporally developing counterpart, where the mass
flux is conserved over time. This unique characteristic of the temporally developing jet
does impose limitations when addressing certain questions related to the entrainment
of mass.

• In the present study, we have investigated the TNTI-average values of the terms related
to the various mechanisms playing a role in the KHMH balance (eq. 5.3). As has
been shown by Larssen and Vassilicos (2023); Yasuda and Vassilicos (2018); Yuvaraj
(2021), the fluctuations of these terms can be high compared to their mean values.
Thus the fluctuations can also be included in further analysis of the KHMH balance in
the vicinity of the TNTI.
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