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Titre : Invariance Adiabatique dans les Mouvements Rythmiques Volontaires Humains 

Mots clés : Espace des Phases, Variables action-angles, Mouvements Humains 

Résumé : Les mouvements humains sont toujours 
complexes. Même une tâche simple comme prendre 
un verre d'eau implique de nombreux degrés de liberté 
i.e., différents groupes de muscles, plusieurs 
articulations et un nombre infini de trajectoires 
possibles pour le bras. Néanmoins, les mouvements 
sont facilement disponibles aux sujets sains et 
semblent être naturellement optimisés par le système 
nerveux central. Cela est souvent modélisé par la 
minimisation d'un paramètre donné du système, tel 
que l'énergie ou l'à-coup, qui sont des candidats 
naturels. Malheureusement, ces approches sont 
souvent limitées dans leur portée et ne peuvent pas 
décrire les mouvements périodiques dans des 
environnements changeant dans le temps. Dans de tels 
systèmes, les invariants adiabatiques sont des 
observables pertinentes issues de la mécanique 
hamiltonienne. L'objectif de cette thèse de doctorat est 
d'étudier le rôle et l'utilisation des invariants 
adiabatiques dans le contrôle moteur humain. 
 

Pour ce faire, nous avons réalisé une série 
d'expériences. Tout d'abord, nous les avons étudiées 
en tant que contrainte pour la stabilité globale de la 
marche, même lorsqu'elle est exposée à une tâche 
altérant la variabilité, telle que le maintien d'un 
rythme dicté par un métronome. Ensuite, nous avons 
utilisé des résultats récents en physique pour évaluer 
la variabilité inhérente à la marche à longue distance 
en tant que phénomène de diffusion de la distribution 
des invariants adiabatiques. Enfin, nous les avons 
explorés dans des environnements temporels 
changeants, notamment en modifiant la "gravité" à la 
fois dans une centrifugeuse et dans un contexte de vol 
parabolique, où ils semblent être des quantités 
pertinentes pour montrer les changements dans les 
stratégies motrices. Les différents résultats de cette 
thèse indiquent que les invariants adiabatiques 
révèlent des contraintes génériques cachées affectant 
les mouvements humains périodiques. 

 

 

Title : Adiabatic Invariance in Voluntary Rhythmic Human Motion 

Keywords : Phase Space, Action-angle variables, Human Motion 

Abstract : Human motion is inherently complex. 
Even an ordinary task like lifting a glass of water 
involves many degrees of freedom i.e., different 
muscle groups, multiple joints and an infinite number 
of trajectories for the arm. Nevertheless, motion is 
readily available to healthy subjects, and seems to be 
naturally optimized by the central nervous system. 
This is often modelized as the minimization of a 
given parameter of the system e.g., energy or jerk, 
which appear as natural candidates. Unfortunately, 
these approaches are often limited in their scopes, 
and cannot describe periodic motion in time-
changing environments. In such systems, adiabatic 
invariants are relevant observables originating from 
Hamiltonian mechanics. The aim of this doctoral 
dissertation is to investigate the role and use of 
adiabatic invariants in human motor control. 

This was done in a series of experiments. First, we 
studied them as a constraint for the global stability of 
gait, even when exposed to a variability-altering task, 
such as metronome keeping. Then, we used recent 
results in physics to assess the inherent variability of 
long-range walking as a diffusion phenomenon of the 
distribution of adiabatic invariants. Finally, we 
explored them in time-changing environments, 
specifically by altering “gravity” both in a centrifuge 
and a parabolic flight context, where they seem to be 
relevant quantities to show changes in motor 
strategies. The different findings in this dissertation 
point to adiabatic invariants revealing generic hidden 
constraints affecting periodic human motion. 
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Chapter 1

French summary

Introduction

Les mouvements, et en particulier la locomotion, sont l’une des clés de voûte
de la vie sur Terre. Tous les animaux sont mobiles ne serait-ce que pour une
partie de leur vie, et les humains ne font pas exception. Que ce soit pour se
nourrir, découvrir de nouveaux environnements ou se reproduire, la mobilité
a formé l’arbre évolutif sur lequel nous nous tenons.

La nature des mouvements volontaires est riche. Ce qui apparâıt comme
automatique est en fait le résultat d’interactions sophistiquées. Par exemple,
un martinet noir chassant des insectes semble glisser dans le ciel sans effort,
alors qu’en réalité il doit intégrer des retours sensoriels complexes de son
environnement, comme la vitesse et la direction du vent en temps réel pour
garder un contrôle précis de ses ailes. Son système nerveux central possède
une représentation des lois de la physique qui lui permet de prédire sa tra-
jectoire ainsi que celle de l’insecte, le tout en volant avec des pointes à plus
de 100 km/h.

Quoi qu’il en soit, qu’ils semblent simples ou complexes les mouvements
sont inhéremment contraints par le corps, que ce soit physiologiquement
ou neurologiquement. En effet, même le simple acte de marcher implique
plusieurs combinaisons de flexions, extensions et rotations des trois articula-
tions principales de la jambe, contrôlées par la contraction d’une dizaine de
muscles (Rose and Gamble 2006, ch. 1). Ainsi que différentes structures neu-
rales, avec des commandes émanant du système nerveux central et du réseau
locomoteur spinal. Cela rend l’étude des mouvements particulièrement diffi-
cile puisque le nombre de variables à analyser est très large, c’est le problème
de Bernstein (Bernstein 1967). Néanmoins, même à travers cette pléthore de
combinaisons et la taille de l’espace de configuration, le système nerveux cen-
tral semble automatiquement choisir la meilleure stratégie motrice en temps
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CHAPTER 1. FRENCH SUMMARY 2

réel (Rose and Gamble 2006, ch. 5).
En plus de ces considérations biomécaniques, les mouvements sont aussi

contraints par l’environnement direct. Par exemple, marcher sur de l’herbe,
de l’asphalte ou du sable est légèrement différent, c’est aussi le cas pour
des environnements plus exotiques comme une centrifugeuse ou la station
spatiale internationale. Le système nerveux central intègre ces retours en-
vironnementaux pour corriger des erreurs perçues. Bien qu’évident, il est
aussi bon de rappeler que le corps humain est fondamentalement un objet
physique et doit donc suivre ses lois.

Contrôle moteur

Dans la vie courante, tous les êtres humains sont amenés à réaliser des mouve-
ments volontaires, qui nous semble automatiquement disponibles. Néanmoins,
ces mouvements doivent être planifiés. Pour un individu sain, attraper une
balle est une tâche simple, mais cette apparente simplicité est en réalité le
résultat d’une série d’interactions complexes entre différentes structures, tels
que les muscles, les nerfs périphériques et le système nerveux central. Tout
d’abord, la position de la balle par rapport au corps est perçue par différents
sens (vision, proprioception, etc.) La masse, la forme et la trajectoire de
la balle doivent aussi être estimées pour prédire la posture adaptée à la
réception. Ses informations nerveuses sont ensuite envoyées aux différents
muscles pour pouvoir adopter cette posture. Chacune de ces étapes encourt
des délais. Néanmoins, les êtres humains sont capables de réaliser ce genre
de tâches qui requiert des timings précis. Pour ce faire, le système nerveux
central essaye en permanence de prédire et d’anticiper les événements qui
prennent place autour de nous, et de s’adapter à eux (Rosenbaum 2009).

Ce mécanisme a lieu grâce aux modèles internes (Kawato 1999). Un
exemple simple d’exécution motrice avec un modèle direct, est le suivant :
quand une commande motrice est générée par le système nerveux central,
une copie de cette commande est envoyée à un modèle interne qui prédit
les conséquences de cette commande en même temps qu’elle est effectuée.
Toute différence entre l’action exécutée et la prédiction faite est envoyée au
système nerveux central pour corriger et adapter la commande motrice. Dans
notre exemple cela signifie que si une rafale de vent perturbe la trajectoire
de la balle, la commande motrice envoyée à l’effecteur n’est plus pertinente,
puisqu’elle n’est plus cohérente avec la prédiction faite par le modèle in-
terne qui interprète les retours de l’environnement en permanence. Cette
différence est signalée au système nerveux central qui modifie alors la com-
mande motrice pour prendre en compte la perturbation.

Ces modèles internes et leurs prédictions rendent nos mouvements parti-
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culièrement adaptables, puisqu’ils nous permettent de deviner les propriétés
de notre environnement et prédire des stratégies motrices optimales, même
face à des contextes (relativement) nouveaux puisque nous pouvons corriger
nos mouvements presque en temps réel.

Bien que ces représentations internes expliquent en partie notre adapt-
abilité à des situations nouvelles, un autre problème courant du contrôle
moteur est le suivant: comment le système nerveux central choisit-il la com-
mande motrice à envoyer en premier lieu ?

En effet, le corps humain possède de très nombreux degrés de liberté re-
dondants disponibles pour réaliser n’importe quelle tâche (Bernstein 1967).
Même un mouvement apparemment anodin comme attraper une balle im-
plique en réalité plusieurs groupes de muscles avec différents niveaux d’activation
possibles, plusieurs articulations pouvant se combiner avec divers angles et
un nombre infini de trajectoires. Néanmoins, quand on réalise des mouve-
ments le système nerveux central semble rapidement et automatiquement
choisir une commande motrice précise. Il semble impossible que le système
nerveux essaye de prédire et de traiter l’information d’un nombre infini de
possibilités et il est raisonnable de supposer que celui-ci se repose sur des
principes physiques ou généraux pour réduire le nombre de configurations
à explorer. Ces principes sont couramment étudiés dans le contexte de la
théorie du contrôle optimal. Ces principes reposent souvent sur la minimi-
sation de certaines grandeurs, comme le temps, la force, la quantité de mou-
vement, le coût énergétique ou le jerk, à savoir la dérivée de l’accélération
(Nelson 1983).

Ce jerk est couramment utilisé pour décrire les mouvements du bras, par
exemple. Originellement proposé par (Hogan 1982), ce principe propose que
les mouvements naturels tendent à être lisses, c’est-à-dire sans à-coup ou
soudaines accélérations, ce qui revient à minimiser le jerk. Cela peut être
formalisé comme la minimisation de l’action:

S =

∫ t1

t0

...
x 2dt. (1.1)

Où t0 et t1 représentent respectivement le temps de début et de fin du mou-
vement. x représente la position de l’effecteur, par exemple la main. Cela
signifie que les mouvements sont étudiés en terme d’espace extracorporel, ce
qui rend ce modèle facile d’utilisation puisqu’il ne fait pas d’hypothèse par
rapport à la biomécanique du bras.

Cependant, les solutions issues de ce genre de principes ne sont pas
périodiques. Ce n’est donc pas une approche adaptée pour étudier les mou-
vements rythmiques telle que la marche. L’étude de ces mouvements nous
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conduit donc à explorer de nouveaux modèles.

Gravité

Par sa nature omniprésente, la gravité est intuitivement comprise et difficile à
isoler. Par exemple, bien que ce soit une contrainte universelle dans les mou-
vements terrestres, pesant constamment à g = 9,81m/s2, il n’y a pas d’organe
unique dédié à sa mesure, et son intégration par le système nerveux central
est nécessairement un processus multisensoriel. Néanmoins, elle est prise en
compte par le système nerveux pour planifier des mouvements optimaux.

Par exemple, lorsque l’on pointe horizontalement du doigt d’un objet à un
autre, le profil de vitesse réalisé par le bras est symétrique: le bras accélère
pendant la première partie du mouvement et décélère dans la deuxième
moitié. Ce n’est pas le cas pour les mouvements verticaux, c’est-à-dire dans
la direction où la gravité agit. En effet, un mouvement dirigé vers le haut
atteint son maximum de vitesse plus tôt qu’un mouvement dirigé vers le
bas. Cette intégration de la gravité dans le mouvement aide à réduire le
coût énergétique des mouvements verticaux, où le bras se laisse accélérer et
décélérer par la force de gravité (Pozzo et al. 1998).

Pour étudier la robustesse des théories et des représentations de la gravité,
il est particulièrement intéressant de pousser les expériences hors de la zone
de confort du système nerveux central et dans des environnements où la
“gravité” est différente. Il existe deux tels régimes : l’hypergravité (g > 1)
typiquement étudié dans les centrifugeuses, où la rotation et la force cen-
tripète résultante permettent de générer des environnements avec de grandes
accélérations; et le régime hypogravitaire (g < 1) typique des chutes libres,
comme celles survenant dans les vols paraboliques ou dans la station spatiale
internationale.

Malheureusement, les phases de transitions d’un environnement gravitaire
à un autre sont difficilement modélisables. C’est en général le cas pour tout
changement de paramètre au cours du temps.

Physique

Face à ces deux problèmes, à savoir la difficulté de modéliser des mouve-
ments périodiques et des mouvements avec des changements de paramètres
extérieurs au cours du temps, la physique semble offrir une solution de choix
avec les invariants adiabatiques.

Ces derniers sont naturellement apparus dans le contexte de la mécanique
hamiltonienne. En effet, l’une des premières choses à faire pour comprendre
un système physique est trouver les grandeurs qui restent constantes au cours
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du temps. Une méthode courante pour trouver ces grandeurs consiste en un
changement de variables –procédure rendue simple par l’utilisation de trans-
formations dites canoniques, qui conservent la forme des équations décrivant
l’évolution d’un système– spécifiquement pour les variables d’action-angle,
où la variable d’action I est constante par définition.

La variable d’action est définie comme telle (Landau and Lifchitz 1988):

Iα ≡ 1

2π

∮
Cα

pαdq
α (1.2)

où α est une projection de l’espace des phases, p un moment conjugué, q une
position et C une courbe fermée dans l’espace des phases. Cette équation a
une interprétation simple puisqu’elle donne l’aire de la courbe Cα à un facteur
1/2π près.

Pour un oscillateur harmonique, modèle fréquent de mouvements périodiques,
d’équation

H =
p2

2
+

ω2q2

2
(1.3)

cela donne

I =
E

ω
(1.4)

où E est l’énergie cinétique et ω la pulsation du mouvement. Comme I est
une constante du mouvement, cette interprétation implique une contrainte
forte sur les mouvements périodiques harmoniques: le rapport de l’énergie et
de la pulsation doit rester constant d’un cycle à l’autre du mouvement.

Trouver des constantes du mouvement est rendu difficile quand le système
est susceptible d’évoluer dans le temps. Heureusement, la mécanique hamil-
tonienne a aussi une solution dans ce cas: le théorème adiabatique qui indique
que, si la dépendance temporelle du système est suffisamment lente, il existe
des variables qui restent approximativement constantes. Ces variables sont
les variables d’actions (Landau and Lifchitz 1988).

Pour un oscillateur harmonique dont la fréquence dépend du temps ω =
ω(t), la relation (1.4) implique alors que lorsque la fréquence du mouvement
augmente, l’énergie doit changer proportionnellement, de manière à garder I
constant.

Dans cette thèse, nous assimilons les mouvements humains périodiques
à des oscillateurs harmoniques, et nous les étudions à travers le cadre des
invariants adiabatiques.
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Objectifs et hypothèses

Planifier des mouvements est une tâche importante pour correctement attein-
dre des objectifs moteurs et s’adapter à des nouvelles situations. Cependant,
il est difficile de savoir comment le système nerveux central sonde ou ig-
nore les stratégies inintéressantes face à l’infinité de possibilités résultantes
de la redondance des degrés de liberté de notre corps. En effet, dans la
vie courante les individus sains sont capables de produire des commandes
motrices pertinentes de manière apparemment automatique.

Pour expliquer ce phénomène, plusieurs principes sont supposément em-
ployer par le système nerveux central, tel que la minimisation du jerk, avec
son propre domaine d’application et ses limites. En effet, une limite com-
mune de ses principes est la caractérisation des mouvements périodiques ou
des changements de paramètres du système au cours du temps. Dans ce con-
texte, nous proposons de calculer des grandeurs pertinentes : les invariants
adiabatiques. Ces invariants se basent sur les lois de la physique décrites
par la mécanique hamiltonienne. Ceci représente une approche purement
mécanique et extra-corporelle qui est donnée a priori et qui ne repose sur
aucune hypothèse par rapport à la biomécanique du système. L’objectif
de cette thèse est d’étudier ce nouveau modèle mécanique des mouvements
périodiques dans une variété de contextes expérimentaux.

Dans une première expérience, avant de sonder des environnements plus
complexes, nous testons la dynamique générale de notre modèle (1.4) dans
le cas de la marche, sans changement de paramètres. Par la nature générale
du modèle nous faisons l’hypothèse qu’il est maintenu quelles que soient les
conditions expérimentales. Pour explorer cette hypothèse nous utilisons deux
conditions connues comme produisant des structures temporelles largement
différentes: la marche libre et la marche sous métronome.

Dans une seconde étude de la même expérience, nous testons la capacité
qu’a notre approche à modéliser une facette importante de la motricité hu-
maine: la variabilité. En effet, nous traitons les mouvements comme étant la
réalisation d’un oscillateur harmonique qui devrait être parfaitement régulier,
ce qui n’est clairement pas le cas dans les mouvements humains. Des ar-
guments récents de physique suggèrent que l’addition d’un terme pertur-
batif à l’hamiltonien du système est suffisant pour imiter la distribution de
l’invariant adiabatique dans l’espace des phases, ce qui est assimilable à la
variabilité. Nous testons cette théorie dans le cas humain.

Enfin, dans une deuxième et troisième expérience avec des protocoles rela-
tivement similaires, nous testons la capacité de notre modèle à caractériser les
mouvements dans des environnements changeants dans le temps. Spécifiquement,
nous avons utilisés des données expérimentales issues de sessions de centrifu-
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gation et de vols paraboliques qui représentent des environnements extrêmes
où la “gravité” change. Bien que le système nerveux central ne soit pas fam-
ilier avec ces environnements, nous faisons l’hypothèse que notre approche
mécanique est maintenue.

De manière générale, cette thèse vise à mieux comprendre les contraintes
du contrôle moteur en proposant et en explorant une nouvelle manière de
modéliser les mouvements volontaires périodiques humains dans des environ-
nements susceptibles de changer au cours du temps.

Première expérimentation

Dans une première expérience (Buisseret et al. 2022), nous avons examiné
le rôle des invariants adiabatiques dans le contexte de la marche humaine.
En effet, la marche est un processus simultanément globalement stable et lo-
calement variable, i.e., la forme générale de la foulée reste constante pendant
le mouvement, mais de petites variations apparaissent d’un pas à l’autre.
La variabilité de la marche a fait l’objet de nombreuses études, cependant
il existe toujours des inconnues quand à l’origine de cette stabilité globale.
Dans ce contexte, les invariants adiabatiques semblent pertinents puisqu’ils
définissent des quantités qui restent constantes pendant les mouvements
périodiques.

Pour cette expérience, nous avons recruté vingt-cinq participants sains
pour marcher pendant dix minutes à une allure confortable, avec et sans
métronome indiquant la fréquence préférée de marche, une condition connue
comme altérant la variabilité dans l’intervalle de foulée, comme définie par des
paramètres tels que l’exposant de Hurst, la dimension fractale ou l’entropie
d’échantillon, mais dont l’effet sur la stabilité n’est pas connu.

Nous avons réitéré un résultat connu: calquer sa foulée sur un métronome
change la variabilité du mouvement d’autocorrélée à presque aléatoire. En re-
vanche, l’invariant adiabatique est préservé dans les deux conditions expérimentales,
rendant compte de la stabilité globale de la marche. Par conséquent, les in-
variants adiabatiques semblent révéler des contraintes sur la stabilité globale
qui sont cachées derrière l’apparente variabilité locale de la marche.

Deuxième expérimentation

Au cours d’une deuxième expérience (Boulanger et al. 2023), nous avons ex-
aminé une nouvelle manière de modéliser la variabilité à long terme de la
marche, avec une méthode basée sur l’effet du bruit sur le modèle théorique
esquissé dans l’expérimentation précédente. En effet, des développements
récents en mécanique hamiltonienne ont montré que des perturbations stochas-
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tiques influent sur les valeurs que prennent les invariants adiabatiques qui
obéissent désormais à une équation de Fokker-Planck décrivant leur distribu-
tion statistique avec une dépendance temporelle.

Comme nous le savons, il est impossible de réaliser deux fois le même
exact mouvement. Il est donc attendu que la marche humaine, étudiée par
le déplacement vertical du centre de masse, puisse être modélisée comme
un système dynamique perturbé stochastiquement. Cela résulterait en une
diffusion dans l’espace des phases, i.e., les cycles du mouvement seraient
légèrement déformés d’un cycle au suivant.

Nous avons étudié cette possibilité en travaillant sur la marche de vingt-
cinq participants sains marchant pendant dix minutes à vitesse spontanée.
Nous avons en effet observés de la variabilité d’un cycle à l’autre résultant
en une diffusion dans l’espace des phases qui est compatible avec une solu-
tion de l’équation de Fokker-Planck. Cette distribution constitue un nouvel
outil pour étudier la variabilité à long terme de la foulée, et est une autre
contrainte inhérente à la marche humaine. Nous avançons l’hypothèse que
la forme de cette distribution statistique change avec des facteurs tels que
l’âge, l’environnement ou encore des pathologies.

Troisième expérimentation

Au cours de cette troisième expérience (Boulanger et al. 2020), nous avons
investigué le réel potentiel des invariants adiabatiques, à savoir leurs car-
actères approximativement constants quand les paramètres du système qu’ils
représentent varient lentement dans le temps, ce qui est une limite typique des
modèles courants du mouvement. Bien qu’il y ait plusieurs paramètres candi-
dats à varier pendant un mouvement, l’une des quantités les plus fondamen-
tales pour les mouvements sur Terre est la gravité. Celle-ci apparâıt comme
un candidat naturel puisqu’elle est incorporée par le système nerveux central
pour optimiser les mouvements de manière routinière. De plus, très peu de
personnes auront expérimenté avec des environnements loin de 1 g pendant
des périodes de temps prolongées, ainsi étudier ce genre d’environnement
permettrait de sonder la manière qu’à le système nerveux central à réagir à
ces situations.

Pour ce faire, nous avons exposé six participants à deux sessions de cen-
trifugation de manière à ce que l’accélération ressentie le long du corps varie
de un à trois g. Pendant ces sessions, les participants ont réalisé des mouve-
ments rythmiques du bras à une allure libre.

Bien que les participants n’ont jamais connu de tels environnements gravito-
inertiels, nous observons maintenant une relation linéaire entre l’invariant
adiabatique et l’accélération ressentie, comme attendu par la théorie adiaba-



CHAPTER 1. FRENCH SUMMARY 9

tique. Cela met davantage en évidence que les invariants adiabatiques sem-
blent révéler des contraintes génériques du mouvement naturellement prises
en compte dans les environnements changeant avec le temps.

Quatrième expérimentation

Pour cette quatrième expérience (Boulanger et al. 2021), nous avons con-
tinué de varier des paramètres fondamentaux de l’environnement, à savoir la
gravité, et sommes allés plus loin en sondant des mouvements plus complexes
et le cas singulier où g = 0. Nous avons aussi sondé la capacité d’adaptation
des mouvements périodiques humains à des nouveaux environnements sous
contraintes, de nouveau avec une tâche de maintien de rythme signalé par
un métronome.

Pour cette expérience, le protocole expérimental a été réalisé à bord d’un
vol parabolique, où le pilote réalise une série de manœuvres qui expose les
participants à 0, 1 et 1,8 g. Onze participants ont été recrutés pour réaliser
des mouvements du bras en forme de lemniscate pendant six paraboles. Les
participants ont été divisés en deux groupes, allure libre et métronome.

Le lien linéaire entre la gravité ressentie et l’invariant adiabatique est
une fois de plus observé pour les deux contraintes dans la direction verticale
du mouvement, et ça même dans le cas extrême g = 0. Comme attendu,
l’invariant adiabatique reste constant dans la direction horizontale, là où la
gravité n’agit pas. Une dynamique relevant de dérivées d’ordre supérieur ap-
parâıt dans la troisième direction, suggérant de nouveaux axes de recherche.

Conclusion

L’objectif de cette thèse a été d’introduire la robustesse du cadre de la
mécanique hamiltonienne à l’étude du mouvement humain. Cela a été fait
en utilisant les invariants adiabatiques pour étudier un problème courant du
contrôle moteur: les mouvements périodiques dans des environnements avec
des dépendances temporelles. Notre approche mécanique simple est capa-
ble de prédire le comportement observé dans ces systèmes sans devoir faire
d’hypothèse sur la biomécanique de l’effecteur et ce même dans des environ-
nements pourtant inconnus du système nerveux central, le tout en se reposant
sur des principes physiques établis a priori.

Étant par nature exploratoire, cette thèse est ouverte et prévoit de nom-
breuses perspectives de recherche. Premièrement, notre modèle est basé
sur l’oscillateur harmonique. Bien que ce soit un candidat naturel pour les
mouvements périodiques, les mouvements humains le sont rarement. Pour
représenter au mieux les mouvements réels il faudrait alors ajouter des termes
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anharmoniques ou utiliser d’autres types d’oscillateurs, comme l’oscillateur
de Duffing dont les mouvements horizontaux de notre expérience en vol
parabolique se rapprochent. Il est intéressant de noter que l’oscillateur de
Duffing peut présenter des régimes chaotiques.

De plus, des dérivées d’ordre supérieur sont parfois nécessaires pour cor-
rectement décrire et modéliser les mouvements. Malheureusement, la précision
expérimentale de nos expériences ne nous a pas permis d’explorer ces ques-
tions, qui pourraient révéler de nouvelles perspectives et trouver des parallèles
avec d’autres méthodes utilisant les dérivées supérieures tels que les modèles
minimisant le jerk.

Par ailleurs, l’interaction de différentes caractéristiques du mouvement
pourrait être étudier en changeant certaines conditions expérimentales. Par
exemple, les transitions d’un environnement gravito-inertiel à un autre dans
notre expérience en centrifuge sont très rapides, ce qui génère du stress.
Des transitions plus lentes permettraient de sonder l’adaptation du système
nerveux central sans pour autant le mettre à mal. Cela permettrait aussi de
tester la théorie adiabatique qui précise que si les changements d’accélération
sont suffisamment lents, l’invariant adiabatique du système resterait complètement
constant. Néanmoins, le système nerveux central cherche constamment à
adapter les mouvements en fonction des retours qu’il obtient de son environ-
nement pour être plus efficace, et pourrait donc naturellement changer de
stratégie pendant ces transitions. Les échelles de temps de ces interactions
sont inconnues.

Ces perspectives ne représentent qu’un petit nombre des directions de
recherches possibles issues de cette thèse et nous invitons la communauté du
contrôle moteur à se saisir de ces concepts et de les explorer.



Chapter 2

Introduction

Motion, and in particular locomotion, is one of the hallmark of life on Earth.
Every animal is motile for at least part of its life, and the vast majority is
motile throughout it; and humans are no exception. Whether it is to feed, to
reproduce, or to discover and conquer new environments, motility has shaped
the very evolutionary tree we stand on.

The nature of volitional motion is rich and complex. What appears auto-
matic, innocuous and trivial to us is in fact the very opposite. For example, a
common swift hunting for insects appears to glide effortlessly across the sky,
but in reality it has to integrate complex feedback from its environment like
wind speed and direction in close to real time to keep precise control of its
wing angle. Its central nervous system has a deep understanding of physics
to predict the trajectory of the insect and its own all the while flying with
peak speeds at over 100 km/h. The swift also breeds and sleeps while flying
(Hedenström et al. 2016).

Even the unconscious act of level walking in healthy adults includes
changes in direction and speed, variability across a basic periodic pattern,
multiple muscles and joints, complex neural commands and structures (Rose
and Gamble 2006). This is further complicated by factors like age, pathology,
direct environment, etc.

All in all, what appears as a simple or complex motion is inherently
constrained by the body, in both a physiological and neurological sense. In-
deed, for the walking example, it necessarily involves many combinations of
flexions, extensions and rotations of the three main leg joints, controlled by
contractions of tens of muscles. This also involves different neural structures,
with command emanating from the central nervous system, and central pat-
tern generators (their structure and role in human beings is still debated
(Minassian et al. 2017).) This makes the study of motion a particularly
complex endeavor as the number of variables to analyze or isolate (for those

11
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which can be isolated) is very large. This is known as Bernstein’s degree of
freedom problem (Bernstein 1967, ch. 3.5). Nevertheless, even through this
plethora of combinations and the size of configuration space, the nervous
system automatically chooses and adjusts to the best strategy (by some def-
inition of best, as we discuss in section 3.4.2) in real time (Rose and Gamble
2006, ch. 5).

In addition to these biomechanical considerations, motion is constrained
by its direct environment. Indeed walking on grass, concrete or asphalt is
slightly different. This is before taking into account things like treading on
water or more exotic environments like centrifuges, the International Space
Station or the Moon. The central nervous system though, having evolved
with many of those constraints, can efficiently integrate and even take advan-
tage of them. For example, gravity –one of the most fundamental constraint
on motion– is routinely taken into account when performing vertical motion
where it helps accelerate downward movements and decelerate upward ones,
giving rise to asymmetric speed profiles (Pozzo et al. 1998). The central
nervous system is also not passive during motion, but can integrate sensory
feedback –be it by sight, sound, haptics, proprioception, etc.– to correct for
perceived errors, whether explicitly or implicitly. This is particularly relevant
to periodic motion where feedback from one cycle of motion can be applied
to the next. While obvious, it is also important to recall that the human
body, or any animal for that matter, is fundamentally a physical system and
therefore obeys the laws of physics. As with the swift example, the brain
is thought to have an intuitive understanding of these laws (Zbären et al.
2023).

Finally, task-specific requirements also constrain motion, e.g. walking
while being on the phone is cognitively demanding and therefore affects mo-
tion (Sarvestan et al. 2022), a task might require high speed or high precision,
resulting in a well known speed-accuracy trade-off (Fitts 1954).

Nevertheless, through the sheer complexity and interconnectedness of it
all, motion is readily available to us, and the central nervous system auto-
matically picks optimal, energy-minimizing, strategies in real time. This fact
leads some neuroscientists to argue that movement production is the reason
for the existence of brains in the first place (Wolpert 2011).

Over the years, many models of human motion have been put forward
to try and solve the different problems cited above. Each with its successes
and drawbacks. Modern approaches rely on minimizing a certain parameter
or functional of a system representing the task at hand. For example, in the
context of reaching tasks, minimum-jerk approaches have been very success-
ful at modeling non-periodic human motion (Flash and Hogan 1985). This
technique is based on the minimization of the magnitude of the jerk, i.e., the
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derivative of acceleration: ȧ =
...
x . It can be interpreted as maximizing the

smoothness of motion. In Lagrangian mechanics, this would be formulated
as the minimizing of the action

S =

∫ tf

ti

...
x 2 dt. (2.1)

Unfortunately, this type of principle does not give rise to periodic solutions,
and is therefore unable to model locomotion. Another limiting factor is the
need for precise and therefore expensive instrumentation as differentiating
numerically can lead to errors, as we discuss later in chapter 8.

Another natural candidate for minimization, from a biological and phys-
ical point of view, is energy. Indeed, it stands to reason that reducing
metabolic costs is an evolutionary advantage; it is also common for phys-
ical systems to tend to their lowest energy state. This has been applied to
periodic motion, such as walking. It also appears to be a guiding principle
of locomotion, as a change in minimum due to exterior forces results in a
change of gait parameters (Abram et al. 2019). Nevertheless, this also has
limitations as energy conservation principles are no longer guaranteed when
time-dependent external forces act on a system during motion.

In this work, we propose a new general mechanistic approach based on
Hamiltonian mechanics to model motion in the case of a (quasi-)periodic
movement, all the while allowing for time-dependent perturbations, so that
mechanical energy is not conserved. One motivation for this approach relies
on a point made earlier: as a mechanical system the body necessarily obeys
the laws of physics. The robust framework of Hamiltonian mechanics can
unearth some of the physical constraints inherent in motion in a model-
independent way and guide towards a new description and a more powerful
analysis of motion.

Hamiltonian mechanics as a framework is based on the coordinates q and
momenta p, which we identify as the position x and speed v in this work, and
the geometric properties of phase-space, that is the plane (q, p). While most
approaches are based on the study of x(t), Hamiltonian mechanics proposes
to describe periodic motion without an explicit time dependency. This might
lead to new perspectives and insights as to the nature of human motion.

One tool particularly useful in the context of Hamiltonian mechanics are
adiabatic invariants I (Landau and Lifchitz 1988). They can be defined in
multiple ways, but their most important property is that they stay approxi-
mately constant when changes to the physical system they represent is slow.
Geometrically, adiabatic invariants I for periodic systems represent the nor-
malized area enclosed by the curve that the system draws in phase-space
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(q, p). We discuss their origins and give a more complete overview of the
theoretical aspects of the thesis in chapter 3.

This work also relies on experimental data obtained in various studies.
Greater experimental context is given in chapter 3.

After setting the theoretical and experimental background, we discuss the
hypotheses and goals of this thesis in chapter 4.

In chapter 5, based on our publication (Buisseret et al. 2022), we probe the
use of adiabatic invariants in the most common of periodic motion: walking.
Indeed, a definition of the adiabatic invariant reveal a strong constraint on
periodic motion: without external perturbations, the ratio of average kinetic
energy to the frequency of a cycle remains constant cycle to cycle, i.e.

I =
Ēk

πf
= cst. (2.2)

This is indeed what we observe experimentally, even with external factors
known to drastically alter movement variability such as metronome keeping.

In reality, motion is noisy and it is impossible to perform the exact same
movement twice. This implies stochastic perturbations that impact mod-
elization: there is diffusion in phase-space (Bazzani et al. 1994a). This phe-
nomenon is investigated through statistical mechanics tools such as Fokker-
Planck equations, in chapter 6, recounting our paper (Boulanger et al. 2023).

Then, we use adiabatic invariants to their full potential by varying pa-
rameters during motion. Adiabatic theory is still adapted to this kind of
environment: the area of phase space now depends linearly in the perturbed
variable. One such variable, also the most fundamental parameter on Earth,
is gravity. We use data from two “gravity-changing” experiments to probe
its usefulness in chapter 7, published in (Boulanger et al. 2020), with simple
harmonic motion. In chapter 8, published as (Boulanger et al. 2021), we
study the limit g = 0 case and more complex motion.

To summarize, the plan of the thesis is as follows: in chapter 3, we lay
out the theoretical aspects of the physics and motor control concepts needed
and we detail the different experimentations that were carried out or used.
We explore the use of adiabatic invariants in human gait in chapters 5 and 6;
and in more challenging environments in chapters 7 and 8. Finally, we give
perspectives and conclude in 9.

At the beginning of each experimental chapter, we give a brief summary
of the analyses performed and results obtained.



Chapter 3

Theoretical background

3.1 Action-angle variables

In physics, there exist many ways to describe a given movement: Newto-
nian, Lagrangian or Hamiltonian mechanics. Each formulation has its own
peculiarities and interests (Jose and Saletan 1998).

Newtonian mechanics is of particular historic interest as it is the first
physical theory to use the concept of derivatives, as such it was the foundation
of classical mechanics and of the theories that followed. It relies on Newton’s
laws of motion making it easy to use.

In turn, Lagrangian mechanics rely on the principle of least action, i.e.,
the trajectories of motion are stationary points (minima, maxima, or sad-
dle points) of the system’s action functional, an action being a quantity of
a system, like energy or momentum, with SI units kg·m2·s-1. The action
functional is

S[q(t)] =

∫ t2

t1

L(q(t), q̇(t), t)dt, (3.1)

where q is the generalized coordinate, q̇ = dq/dt its associated velocity and
L the Lagrangian of the system, that is a function that contains all the
relevant information on a system and the forces acting on it, usually the
difference between kinetic and potential energy. In essence, for a system with
Lagrangian L, among all possible trajectories q(t) between points q1 = q(t1)
and q2 = q(t2), the trajectory that the system actually follows is one that
minimizes, maximizes or saddles the action S, this is summarized in figure
(3.1).

The stationary points of equation (3.1) are the trajectories q that satisfy

15
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Figure 3.1: Representation of the least action principle. Blue
lines represent possible trajectories, the actual trajectory is a station-
ary point of (3.1) represented in red. Public domain by Maschen
retrieved from https: // commons. wikimedia. org/ wiki/ File: Least_

action_ principle. svg on 29/06/2023.

the Euler-Lagrange equation:

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (3.2)

Although the Lagrangian formulation of mechanics has shown great suc-
cess with results of crucial importance such as Noether’s theorem, or the
fact that it is the basis for the standard model of particle physics, it is not
always the easiest or best suited set of techniques to solve physical problems.
Indeed, Lagrange’s formalism relies on the computation of the generalized
coordinates q and velocities q̇, and while the first derivatives of q are simple,
derivatives of q̇ are present in the Euler-Lagrange equation which can make
computations difficult.

Hamiltonian mechanics avoids this problem by proposing a first-order
reformulation of a system’s dynamics based on momenta

pα =
∂L

∂q̇α
(3.3)

rather than generalized velocities q̇. Here, α specifies a projection of phase
space, i.e. if motion takes place in the space (x, y, z), α refers to one of those
direction. This allows for a more geometric interpretations of dynamics since
motion is now studied in what is referred to as phase space, the space (q, p),
in our case we can assimilate it to (x, vx). In this space, every degree of
freedom and every state of a dynamical system are uniquely represented. It

https://commons.wikimedia.org/wiki/File:Least_action_principle.svg
https://commons.wikimedia.org/wiki/File:Least_action_principle.svg
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is also a departure from “classical” ways to study motion as there is now
no direct time dependence. An illustration of phase space for a pendulum is
given in figure (3.2).

Figure 3.2: Typical time series and phase space for a pendulum. Different
states of the system are highlighted with colored dots. CC BY-SA 4.0 by
Krishnavedala retrieved from https: // commons. wikimedia. org/ wiki/

File: Pendulum_ phase_ portrait_ illustration. svg on 29/06/2023.

Another benefit is found in easier computations as the first derivatives of
both p and q can be derived via Hamilton’s canonical equations:

q̇α =
∂H

∂pα
, (3.4)

ṗα = −∂H

∂qα
. (3.5)

where H is the Hamiltonian of the system, i.e. a function that, given initial
conditions (qα0 , pα,0), describes the evolution of the system. The interested
reader will find more details about Hamiltonian mechanics in (ch.8 Gold-
stein et al. 2002; Landau and Lifchitz 1988). Formulating a problem in
terms of Hamilton’s canonical equations makes it usually easier to solve as
they are first order differential equations, a type of equation for which many
techniques were developed both analytically and numerically (Hairer et al.
1993).

Even this formulation of mechanics cannot lead to analytical solutions for
the equations of motion of most dynamical systems. However, there are ways
to obtain qualitative information about even the most complex of systems.

Indeed, one advantage of Hamilton’s formulation of mechanics is that it
offers a lot of freedom in performing changes of (qα, pα) coordinates that
do not alter the form of Hamilton’s canonical equations. The transforma-

https://commons.wikimedia.org/wiki/File:Pendulum_phase_portrait_illustration.svg
https://commons.wikimedia.org/wiki/File:Pendulum_phase_portrait_illustration.svg
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tions that preserve the form of the canonical equations are called canonical
transformations.

A common idea is then to perform a canonical transformation from an
open domain of phase space (qα, pα) to (ϕα, Iα) where the local variable Iα is
a constant of motion (with dimensions of an action, i.e., energy × time) and
ϕ is called an angle variable. Therefore, the new phase space variables are
called action-angle variables (Landau and Lifchitz 1988). While this type of
transformation is not strictly always possible to carry out, it can be done in
the limited case of periodic motion we study. The usefulness of such variables
is that, for some class of systems:

H(q, p)
C.T.−−→ H ′(I) = K (3.6)

Here, C.T. refers to any kind of canonical transformation. This transfor-
mation defines a new Hamiltonian K that is dependent on the constants of
motion by virtue of Hamilton’s canonical equations.

ϕ̇ =
∂H ′

∂I
, İ = −∂H ′

∂ϕ
= 0. (3.7)

In this new set of coordinates, I is a constant of motion and K is a constant
that can be set to zero with no loss of generality, we give details below.

For an integrable system with one degree of freedom, if the motion is
bounded in phase space then it is restricted to closed curves, which are topo-
logically similar to circles meaning that they can be continuously distorted
into one. Similarly, for a system with two degrees of freedom closed curves
appear in both (ϕ1, I1) and (ϕ2, I2). Therefore, motion takes place on the
product of two circles, a torus. Different sets of variables (ϕ, I) will results
in different non-intersecting closed curves and thus different non-intersecting
tori.

While this makes for a neat visualization of motion, it can be quite a hard
task to guess the coordinates for which a system’s dynamics can be expressed
on such tori. Action-angle variables (I, ϕ) are new coordinates that directly
specify both the specific curves and the point on the curves on which motion
is performed.

We can write the generating function of this canonical transformation in
terms of qα and Iα since Iα specifies the curve in the α projection of phase
space and qα gives, up to the sign of pα, the point on this curve. We set
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W̃ (qα, Iα) a second type generating function, that is

pα =
∂W̃

∂qα
, (3.8)

ϕα =
∂W̃

∂Iα
. (3.9)

Because we want the variable ϕα to describe a point on a closed curve, we
assimilate it to an angle and we normalize it as such∮

Cα
dϕα = 2π. (3.10)

With the previous definitions:

2π =

∮
Cα

dϕα, (3.11)

=

∮
Cα

∂2W̃

∂qα∂Iα
dqα, (3.12)

=
∂

∂Iα

∮
Cα

∂W̃

∂qα
dqα, (3.13)

=
∂

∂Iα

∮
Cα

pαdq
α. (3.14)

This relation defines the action variable (Landau and Lifchitz 1988):

Iα ≡ 1

2π

∮
Cα

pαdq
α. (3.15)

which equals the area enclosed in the curves Cα, up to a factor 1/2π.
Because the action variable I specifies an invariant torus, it itself is in-

variant. Therefore,

İα = − ∂H

∂ϕα
= 0 (3.16)

and in the new coordinates (ϕ, I) the Hamiltonian is only a function of the
action variable I.

The other canonical equation reads

ϕ̇α =
∂H

∂Iα
. (3.17)

Because the I are constants of motion, this is

ϕα(t) =
∂H

∂Iα
t+ δ. (3.18)
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With the normalization of ϕα and its interpretation, ∂H/∂Iα = ωα are con-
stants representing the 2π times the frequencies at which the curve Cα is
passed through. ϕα progresses linearly in time and δ is the initial angle, at
t = 0.

3.2 Adiabatic theory

An important task in order to gain insight on the dynamics of a given physical
system is to find the constants of motion within that system. As we have just
shown, there are systematic ways to find these constants through canonical
transformations. Unfortunately, it is usually not trivial for Hamiltonians
without any time dependency as we will show in the next section, and is
even harder for time dependent systems. This problem is partly solved by
adiabatic theory which states that when the time dependence within the
Hamiltonian of the system is sufficiently slow, as parameters change so does
the action variable I. In that case it is called an adiabatic invariant. In some
cases, I even stays constant (Jose and Saletan 1998).

Let H(q, p, λ) be a completely integrable Hamiltonian. Here, λ = λ(t) is
the parameter through which the time-dependency is borne. In our thesis,
we make “gravity” time-dependent so we can assimilate g(t) = λ(t). In
general, λ(t) could represent time-dependent muscle tension or any other
physiological parameter given that human motion is inherently variable with
time. Of course, if no change in the parameter λ(t) occur then H does not
change with time. This is the case for overground walking where λ(t) = g
stays constant, hence I stays constant.

The action-angle variables associated with the system will depend on the
parameter λ:

I(q, p, λ)

ϕ(q, p, λ).

To probe how this new time dependence impacts the Hamiltonian of the
system, we can compute

Ḣ =
∂H

∂q
q̇ +

∂H

∂p
ṗ+

∂H

∂λ
λ̇. (3.19)

Hamilton’s canonical equations (3.4 and 3.5) cancel out the first terms mean-
ing that it is indeed λ that carry the change in the Hamiltonian, and if we
are interested in the change in H within a given time ∆T , we are left with

∆H =

∫ ∆T

0

∂H

∂λ
λ̇dt. (3.20)
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As previously stated, the adiabatic theory only works for slow rate of
change in the parameter λ, we therefore assume that λ̇ is constant in the
integration interval and can be written as

λ̇ ≃ ∆λ

∆T
, (3.21)

injecting in 3.20, we have

∆H =
∆λ

∆T

∫ ∆T

0

∂H

∂λ
dt. (3.22)

For I to be an adiabatic invariant under a slow change of parameter, or

I(∆T ) ≃ I(0), (3.23)

we need to show that the areas of phase space at t = 0 and t = ∆T are equal.
Since E = H(q, p, λ(t)) it is required that ∆H is sufficiently small, that is
obtained under the adiabatic condition:

τ
∆λ

∆T
≪ λ. (3.24)

where τ is the period of motion. This condition means that the change of
parameter have to be small compared to the typical cycle of motion.

For quantitative arguments as to the exact change in I incurred by
changes in λ in different physical systems we refer the reader to (ch.12.3
Goldstein et al. 2002)

Adiabatic invariants have a wide range of applications. They are used
in thermodynamics, plasma physics, classical dynamics and have been stud-
ied during the early Solvay Conferences where they were the basis for early
quantum theories (Pérez 2008).

In the next section, we show two derivations for the adiabatic invariants
of two common systems in physics.

3.3 Examples

3.3.1 Harmonic oscillator

A common example of an adiabatic system is a weight experiencing a force
proportional to its displacment, i.e., a mass on a spring. In mechanics this is
called a harmonic oscillator. The Hamiltonian for such a system is (Landau
and Lifchitz 1988):

H =
p2

2
+

ω2q2

2
. (3.25)
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With the canonical equations, we find

q =

√
2E

ω2
sin(ωt) (3.26)

p =
√
2E cos(ωt) (3.27)

As defined in 3.15, the action variable I can be computed for this system:

I =

∮
pdq (3.28)

by substituting p and q, we find:

I =
2E

ω

∫ 2π

0

cos2 θdθ =
2πE

ω
(3.29)

In terms of frequency, this is:

I =
E

f
. (3.30)

In this thesis, we assume that basic periodic motion can be assimilated to
harmonic oscillations and we do so in every experiment. It is specifically this
property of harmonic motion that we study in this work. Without external
perturbations this is a constant of motion, linking the energy and frequency
of harmonic motion.

In reality, an harmonic oscillator is a small-angle approximation of the
planar pendulum, an analytically more complicated case. Fortunately, even
for angles up to 23◦, the difference in period is less than 1% (Lima and
Arun 2006), a seemingly reasonable error in the context of motor control
experiments. Nevertheless, we show the computation for the action variable
in the case of the pendulum in the next section for completeness.

As discussed in the previous section, the real strength of the action vari-
ables are their capacity to stay (approximately) constant with regards to
slow external changes to the system. Let us explore that property by making
ω explicitly dependent on time. In that case, the equation of motion for I
becomes (ch. 12.5 Goldstein et al. 2002):

İ = − ω̇

ω
I cos(4πω0). (3.31)

ω0 representing the pulsation for the unperturbed system. As previously
stated, adiabatic invariance is only observed for slow and small changes, this
is the case if we assume

ω̇

ω
= ϵ (3.32)
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ϵ being short-hand for a small positive parameter, i.e., ϵ ≪ 1. This is observed
for frequencies of the form (ch. 12.5 Goldstein et al. 2002):

ω ≈ ω0(1 + ϵt). (3.33)

In this thesis, we assume frequencies of this type when parameters, like
gravity, change. We explore this phenomenon in more detail in chapters (7)
and (8).

Note that adiabatic invriance means that as I stays approximately con-
stant, a change in frequency must now results in a corresponding change in
the energy, to keep their ratio constant.

3.3.2 Pendulum

Generally, the adiabatic invariant of a system is not that easy to find. In
this section we compute the action variable for a more complicated system,
the planar frictionless pendulum. This system is drawn in figure 3.3. In this
section, m refers to the mass of the bob, g to the gravitational acceleration,
l to the length of the pendulum’s arm and θ to the angle of the pendulum.
This is an original derivation.

Figure 3.3: Schematic of a simple pendulum oscillation. Public domain
by Chetvorno retrieved from https: // commons. wikimedia. org/ wiki/

File: Simple_ gravity_ pendulum. svg on 29/06/2023.

Such a system has for Lagrangian

L =
m

2
l2θ̇2 +mgl cos θ, (3.34)

https://commons.wikimedia.org/wiki/File:Simple_gravity_pendulum.svg
https://commons.wikimedia.org/wiki/File:Simple_gravity_pendulum.svg
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and energy

E =
m

2
l2θ̇2 −mgl cos θ. (3.35)

Because the energy is conserved we have

E = E0 = −mglcosθ0. (3.36)

where θ0 denotes the maximum angle, if the pendulum is initially released
with no velocity it is also the initial angle.

To compute the action variable, we need to obtain expressions for p and
q. Clearly in this system q = θ and,

p =
∂L

∂θ̇
= ml2θ̇. (3.37)

We do not know θ̇, so we invert the previous equation to get

θ̇2 =
p2

m2l4
(3.38)

to inject in E

E =
p2

2ml2
−mgl cos θ. (3.39)

This allows us to get an expression of p with no dependency in θ̇:

p2 = 2ml2(E +mgl cos θ) = 2m2l3g(cos θ − cos θ0). (3.40)

With trigonometry rules, this can be rewritten as

p2 = 4m2l3g(sin2 θ0
2
− sin2 θ

2
). (3.41)

We set

k2 = sin2 θ0
2

and, n2 =
g

l
(3.42)

for convenience.
In our case,

I =
1

2π

∮
pdq =

4

2π

∫ θ0

0

pdθ (3.43)

since to complete an entire cycle of motion the pendulum m has to go from
θ = θ0 to θ = 0, from 0 to −θ0, from −θ0 to 0 and back to θ0.

We can finally compute the action variable

I =
4

2π

∫ θ0

0

pdθ =
8

2π
l2mn

∫ θ0

0

√
k2 − sin2 θ

2
dθ. (3.44)
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To find this integral we set

sin
θ

2
= k sinφ, φ ∈ R. (3.45)

Simplifying,

k2 − sin2 θ

2
= k2

(
1− sin2 φ

)
= k2 cos2 φ. (3.46)

We change the variable of integration to φ. The Jacobian of the trans-
formation is

1

2
cos

θ

2
dθ = k cosφdφ. (3.47)

The limit of integration becomes

φ0 =
π

2
(3.48)

leaving us with a new integral:

I =
16

2π
l2mn

∫ π/2

0

k2 cos2 φ

cos φ
2

dφ. (3.49)

With the usual trigonometric formula we find

k2 cos2 φ = k2 − k2 sin2 φ. (3.50)

The action angle for a pendulum is then

I =
8

2π
l2mn

[
2

∫ π/2

0

k2 − 1√
1− k2 sin2 φ

dφ+ 2

∫ π/2

0

√
1− k2 sin2 φdφ

]
(3.51)

We recognize the well-known complete elliptic integral of the first and
second kinds (Lozier et al. 2010):

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

E(k) =

∫ π/2

0

√
1− k2 sin2 φdφ

With these simplified notations

I =
16

2π
ml2n

(
[k2 − 1]K(k) + E(k)

)
. (3.52)
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This can be somewhat simplified again. First by noting the fact that the
period of oscillation is

T =
4

n
K(k), (3.53)

and remembering
E = −mgl cos θ0, (3.54)

one finds

I =
4

π
mgl

(
2E(k)− (cosθ0 + 1)

nT

4

)
, (3.55)

= −m

π
gl(1 + cosθ0)T +

8

π
mnl2E(k), (3.56)

= −m

π
gl +

ET

π
+

8

π
mnl2E(k). (3.57)

As we have reviewed,
∂(2πI)

∂E
= T. (3.58)

From naive derivation of (3.57) it seems that

∂(2πI)

∂E
= 2T. (3.59)

This simply means that a dependency in E is hidden in the E(k) term.
The dependency can be found using a property of complete elliptic inte-

gral, namely

E(k) = (1− k2)

[
k
dK

dk
+K(k)

]
. (3.60)

Taking an earlier definition, we have

2πI = 16mnl2(1− k2)k
dK

dk
. (3.61)

With another elliptic integral property (Lozier et al. 2010),

d

dk

[
k(1− k2)

dK

dk

]
= kK, (3.62)

we have

d(2πI)

dk
= 16mnl2kK(k)

= 4mglkT,
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or

T =
1

4mgl

1

k

d(2πI)

dk
. (3.63)

Furthermore,

d(2πI)

dE
=

d(2πI)

d(mgl[2k2 − 1])

=
dk

d(mgl[2k2 − 1])

d(2πI)

dk

=
1

4mgl

1

k

d(2πI)

dk
.

We finally find that
d(2πI)

dE
= T, (3.64)

which is a similar expression to the one found for the harmonic oscillator.
Here, we computed the action variable for a system with no time depen-

dency, in this case I(t) = I is trivially an adiabatic invariant. However, for
a slow enough change of parameter, for example slowly lengthening the pen-
dulum arm, motion would have to change to ensure that the derivative of the
first order complete elliptic integral counteracts the change of arm length.

As seen in this section, even for a relatively complicated system the ac-
tion variable and its property allow for a universal method to probe the
relationships between parameters of a problem, revealing the strength of this
approach.

3.4 Motor Control

In everyday life, all humans are led to perform voluntary motion, and mo-
tion is readily available to us, even unconsciously. Nevertheless, voluntary
motion must be planned: by its very nature it refers to intentional, planned
movements in pursuit of a goal.

For healthy individuals, catching a ball is a simple task, but that apparent
simplicity is ultimately the result of a complex series of interactions between
different bodily structures such as muscles, peripheral nerves and the central
nervous system. This voluntary action also necessitates multiple steps. For
example, the position of the ball in the air, and also relative to the body
is perceived by different sensory stimuli (e.g. vision, proprioception, etc).
The mass and shape of the ball must also be estimated in order to correctly
predict the stance required to successfully execute the task, i.e. catching it.



CHAPTER 3. THEORETICAL BACKGROUND 28

The required nervous inputs to prepare that stance must then be sent to the
relevant muscle groups. This is not performed instantaneously as there are
delays at every one of those steps, whether it is the time it takes to receive
sensory information from the different sensory structures, to process that
information, or simply to send it to the next structure in the chain. Nev-
ertheless, even through those inherent delays, humans can perform precise
motion, like catching a ball, which requires tight timings. To overcome this,
the central nervous system constantly tries to predict and anticipate events
all around us (Rosenbaum 2009).

To plan and predict motion, the central nervous system must be able to
simulate the responses from the body and from the environment that would
results from said motion. The dynamics from the body and the environment
are also in constant evolution, in mechanical terms: the Hamiltonian de-
scribing one individual’s movement may be time-dependent, either because
of individual variability or external changes. This results in errors –be it be-
cause of variability or poor planning– around the motion actually performed,
that must be compared to the predicted motion in order to correct the sys-
tem’s behavior and update the models involved, if needed. Before generating
any voluntary motion, the central nervous system has to go through these
different steps. It first plans a motor command and simulates its effects, and
then executes the command, and possibly corrects it. This is done through
what are called internal models.

3.4.1 Internal models

An internal model is a process that simulates the input and/or output of
the motor apparatus, through their representation of the body, their envi-
ronment, etc (Kawato 1999).

There exists two main types of internal models: inverse models and for-
ward models (Kawato 1999).

The simplest model, the inverse model, generates the motor command
with regards to the current state of the system and the desired state. In the
ball-catching example, this means that the central nervous system takes into
account two things: first, the current state of the individual and of the ball
(their positions and trajectories, for example) and second, the desired state
i.e., the ball is caught, to generate the appropriate motor command.

The forward model is different as it predicts the consequences of the motor
command at the same time that the command is executed. Any discrepancy
between the executed action and its prediction is sent to the central nervous
system, to correct and adapt the motor command. In our example, this
means that if a gust of wind blows the ball off course, the motor command
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is no longer relevant to the task, and the forward model constantly accruing
feedback sees this discrepancy and modifies the motor command to account
for the perturbation. This is illustrated in figure 3.4.

Figure 3.4: Schematic modelization of an internal model. CC SA 3.0 by
Easportz retrieved from https: // commons. wikimedia. org/ wiki/ File:

Basic_ Internal_ Model. png on 29/06/2023.

These internal models, and their prediction and feedback mechanisms
make our movements particularly adaptable as we can guess properties of our
environment and predict optimal strategies, even when faced with (relatively)
new contexts as we can correct motion in (near) real time.

The training of our internal models happens through exploring multiple
types of environments, but also through repetition. The experience that
comes from repeating a movement gives rise to adaptability and optimiza-
tions, in terms of speed, both of execution and reaction (Ariani et al. 2020),
precision (Gentili et al. 2006), cost of treating relevant information (Fisk
and Schneider 1984) and overall energetic costs, for example. These opti-
mizations are particularly relevant in our framework as they show that the
central nervous system possesses an intuitive understanding of the laws of
physics, as we discuss in the next sections. The feedback also occurs through
many different channels (sight, proprioception, discussed below). The redun-
dant information is necessary for the central nervous system to have a robust
representation of the environment.

3.4.2 Optimal control

While these internal representations of the environment, motion and their
consequences represent a complex process, another issue appears to the cen-
tral nervous system whenever motion is present: the human body possesses a

https://commons.wikimedia.org/wiki/File:Basic_Internal_Model.png
https://commons.wikimedia.org/wiki/File:Basic_Internal_Model.png


CHAPTER 3. THEORETICAL BACKGROUND 30

very large number of degrees of freedom. Indeed, even a simple arm motion,
like grabbing a glass, involves multiple muscle groups and joints, and can
be done via different activation levels and an infinite number of trajectories.
This is Bernstein degrees of freedom problem (Bernstein 1967). In Hamilto-
nian mechanics, phase-space contains all the degrees of freedom (qα, pα) of
a system, as such it appears to be the natural theoretical domain in which
to study motor control. In that context, Bernstein’s problem could be refor-
mulated as follows: the optimal motor strategy chosen by an individual is
contained in a subspace of the total phase-space.

Nevertheless, when performing motion the central nervous system seems
to quickly and automatically pick one specific motor command. It seems
impossible that the central nervous system would try to predict and treat
the information from an infinite number of possibilities and it can reasonably
be argued that it would rely on physical and other overarching principles to
reduce the number of configurations to explore and produce motion. In the
next three sections we explicit some of those principles.

Speed-accuracy trade-off

The speed-accuracy trade-off is a fundamental property of human movement
coordination. It essentially is the observation that the faster we move the less
accurate we are, and vice versa. Movements being therefore characterized by
a balance between speed and accuracy.

The trade-off has been modeled by Fitts’s law in (Fitts 1954):

MT = a+ b log2

(
2D

W

)
(3.65)

where MT stands for movement time, a and b are constants, D the distance
between starting point and target, and W the width of the target which can
be interpreted as error tolerance. In that case, a wider target and thus a
lesser needed accuracy leads to a faster movement time.

While it was originally stated for human-computer interface, it has been
shown to apply to a large variety of conditions with few exceptions (Hoffman
1991; Kerr 1973). By this seemingly universal nature, the speed-accuracy
trade-off might be one of the principles taken into account by the central
nervous system when planning motion.

Once again, phase space seems to be the natural setting for this principle
as it relates coordinates q to their associated momentum p.

Other principles are proposed in the framework of optimal control theory.
Here optimal is used in the sense of mathematical optimization, i.e., max-
imizing or minimizing a function and does not necessarily mean “ideal” or
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“efficient”. Many such minimizing principles have been proposed, like with
the minimization of: time, force, impulse, energy or jerk (Nelson 1983). We
briefly present two extensively studied cases: jerk and energy.

Energetic cost minimization

Another natural candidate from a biological and physical point of view is
energetic cost minimization. It is particularly well studied in gait, where it is
posited to be one of the biggest factor involved in determining the parameters
of our gait, alongside stability and maneuverability, for example (Rose and
Gamble 2006).

This is a general assumption present almost everywhere in gait literature,
and it appears true at least for healthy normal level walking, where changing
one’s preferred gait results in an increase in metabolic cost, which is not
preferable. When faced with new constraints on gait through pathology (i.e.
fracture, amputation, etc.) or synthetically, we naturally adapt and update
our internal models to the new pattern with minimal energetic cost (Abram
et al. 2019; Selinger et al. 2019).

Nevertheless, it cannot constitute the only general principle for the pro-
duction of motion as it is rarely the regime in which humans walk, for exam-
ple. Indeed, there are other implicit task goals that are not easily quantifi-
able, like adhering to social norms and cues or preventing fall, that compete
with the goal of energy minimization. These other goals are relevant in the
context of rehabilitation, where energy-optimal gaits might not be reachable
or even desirable goals.

This is also true for minimum-jerk approaches (and optimal control theory
in general). Motion is complex, and it is reasonable to assume that it does
not come from a single objective function, but rather a complex interaction
of continuously changing goals.

Jerk minimization

A popular principle for motion production was originally proposed by Hogan
in (Hogan 1982), and further studied in (Flash and Hogan 1985; Hogan 1984).
This principle posits that natural motion tends to be smooth, i.e. without
sudden hitches or acceleration transients, which would mean minimizing the
derivative of acceleration (

...
x = v̈ = ȧ): jerk. A representation of position,

speed, acceleration and jerk is given in figure 3.5.
This can be formalized in variational calculus as the minimization of the

action:
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Figure 3.5: Generic profile for position, speed, acceleration and
jerk for a unidirectional movement. CC BY-NC-SA 4.0 by Autopi-
lot retrieved from https: // commons. wikimedia. org/ wiki/ File:

Schematic_ diagram_ of_ Jerk,_Acceleration,_and_ Speed. svg on
29/06/2023.

S =

∫ t1

t0

...
x 2dt (3.66)

in the case of unidirectional motion.
Here the variable x is the position of the end of the effector, e.g., the

position of the hand. This means that this model studies motion in term
of extracorporal space and not in terms of joints angles, etc. This makes
this model easy to use as it makes no assumption with regards to the dy-
namics of the arm or the neural inputs required to produce motion. We
note that action principles involving higher derivatives go beyond standard,
Newtonian, mechanics. They are known to generally lead to unstable move-
ments, unless restricted to very specific models, see (Pais and Uhlenbeck
1950). Such higher-derivative models can be expressed in phase-space too
thanks to Ostrograski’s method (Tai-jun et al. 2013). It has been shown that
adiabatic invariants can be defined for models allowing bounded trajectories

https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_Jerk,_Acceleration,_and_Speed.svg
https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_Jerk,_Acceleration,_and_Speed.svg
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(Boulanger et al. 2019), but the action principle (3.66) does not belong to
the latter models.

There is a good fit between experimental data from arm movement and
trajectories computed from the minimum-jerk principle which points towards
motion being planned in extracorporal space, with higher level planning of
the trajectory and then a lower level translating the desired trajectory into
neural commands to produce the required torques and forces to perform the
motion.

Unfortunately for our case, minimizing the action S does not give rise
to periodic solution and it might therefore not be how the central nervous
system plans rhythmic movements such as gait. Some variational princi-
ples generalizing harmonic oscillators –and therefore periodic motion– with
higher-derivatives exist, but they have not yet been studied in the case of
human motion.

These models are similar to the one we propose, as they do not make
assumptions with regards to the biomechanical and neural structures involved
with motion. A more complete view of human motion would surely involve
investigating these aspects of motion, this is beyond the scope of this thesis.

3.4.3 Rhythmic motion

Central Pattern Generators

Periodic motion is an important subset of human motion. Indeed, one of the
very aspects that makes us human is bipedal motion, or walking, which is
periodic by nature. The basic neural structures that govern bipedal motion
are called central pattern generators (CPG). They are a network of neurons
located in the spinal chord that can produce rhythmic signals even in the
absence of rhythmic input, there structure is schematized in figure 3.6. Fur-
thermore, once started, they can produce periodic motion without receiving
commands from the motor cortex (Steuer and Guertin 2019).

Of course, internal or external changes in the system happen during mo-
tion, making it necessary for CPG to integrate feedback, this is done through
other nervous structures, like the vestibular system discussed in the next sec-
tion. During periodic motion incorporating feedback is particularly relevant
as it can usually be done at the timescale of the period of motion, thus re-
sponses to changes in the environment can be integrated from one cycle of
motion to the next. Studying those changes can therefore reveal the adap-
tative mechanisms of the body. Moreover, human motion is noisy. As it
is impossible to perform the exact same motion twice, motion cannot be
strictly periodic but is at most quasi-periodic, i.e. holding a basic pattern
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Figure 3.6: Structure of a central pattern generator. CC BY-NC-SA
4.0 by Casey Henley retrieved from https: // openbooks. lib. msu.

edu/ neuroscience/ chapter/ spinal-control-of-movement/ on
22/06/2023.

over which variations are experienced, Bernstein called it “repetition without
repetition” (Bernstein 1967). This can make modelizing motion complicated
as we need new measures and indices to characterize this behavior of mo-
tion, usually from fractal or chaos theory such as Sample Entropy, the Hurst
exponent, the Lyapunov exponent, etc. In mechanics, the study of chaotic
systems provide many examples of quasi-periodic motion, e.g., a Van der Pol
oscillator (Jose and Saletan 1998).

While “noise” around the repeating pattern used to be smoothed out or
completely removed, it now appears to be an important feature of dynamic
systems. Indeed, variability can be characteristic of many situations. It can
arise from errors in motor performance, and is expected to diminish with skill
acquisition, but it can also reflect the abundance of motor strategies and the
adaptability of a skilled expert. It can also denote health or pathologies in
human beings for example (Stergiou and Decker 2011). In all these cases,
the general structure of “noise” differ.

Treadmill and variability

While gait is not the only quasi-periodic motion experienced by humans, it
is the most commonly studied. This is usually done with treadmills, which
consist of a large conveyor belt driven by a motor allowing the user to walk
or run in place. Like any experimental device this comes with advantages
and limits.

The advantages of treadmill studies are that they can be conducted ir-
respective of the weather, and more particularly in controlled conditions

https://openbooks.lib.msu.edu/neuroscience/chapter/spinal-control-of-movement/
https://openbooks.lib.msu.edu/neuroscience/chapter/spinal-control-of-movement/


CHAPTER 3. THEORETICAL BACKGROUND 35

(e.g., with control of the temperature, wind, speed, ascent/descent angle
etc.) They can also be conducted in a laboratory setting, with access to rele-
vant equipment. This is useful as studying the oxygen consumption (V̇ O2) of
a participant outdoors requires them to carry equipment, which might hinder
more realistic (e.g. unencumbered) measures for example. Another obvious
advantage of the treadmill is the ability to walk or run without changes in
direction or elevation for long periods of time, which can make analysis more
complicated for experiments ran in stadium settings. Finally, treadmills have
been common for a long time and the study of there effect on health has been
going on since at least the nineteenth century (Hutchinson 1823).

Unfortunately, there are also drawbacks to using treadmills for experi-
mental (or clinical) purposes. The most evident limit is that treadmills are
driven at a constant speed, which is not usually the case for human gait,
normally experiencing varying periods of slower and higher speeds. Study-
ing rough terrains or simply different ground surfaces is also not doable.
Moreover, the conveyor belt is usually made of rubber and is slightly sus-
pended, which makes the ground reaction forces experienced during gait on a
treadmill uncharacteristic of regular ground surfaces. These differences with
regards to usual walking or running conditions can produce differences in
angular and temporal kinematics, but also in variability of gait in treadmill
compared to overground (Hooren et al. 2019; Terrier and Dériaz 2011).

Typical dynamic gait measurements established on treadmills are speed,
stride length and interval. Physiological measurements can also be made
such as the maximal oxygen consumption (V̇ O2,max) or heart rate and heart
rate variability or electromyograms, the kinematics of motion can also be
established such as joint angles. Because of the peculiarities of individuals,
these measurements are often particular to the participant and cannot always
be meaningfully compared to other individuals and comparisons are usually
done against different groups (i.e., healthy vs pathologic). In this thesis, the
study of gait was limited to its dynamics.

Periodic motion is not limited to the dynamics of the lower body and
specifically gait. During this thesis we also studied motion performed by the
arm, for which studies are rarer and protocols are usually developed on a
study-by-study basis.

We studied free-pace and metronome walking on a treadmill in experi-
ments (5) and (6).
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3.5 Gravity

By its ubiquitous nature, the force of gravity is both intuitively understood
and complex to isolate. For example, even though it is a universal constraint
on motion on Earth, weighing constantly at g = 9.81m/s2, there is no one
organ dedicated to measuring its effects, and its integration by the central
nervous system is necessarily a multisensory affair.

In humans, there exist three main systems that integrate gravitational
information. First, the vestibular system which creates the sense of balance
and spatial orientation that are needed to maintain postural control. It
is situated in the inner ear and is comprised of two main structures: the
semicircular canals capable of perceiving rotational motion and the otoliths
which measure linear accelerations (Angelaki and Cullen 2008). Their shape
within the inner ear is given in figure 3.7. This is enough to meaningfully
integrate any movement as they can always be broken down into a series of
rotations and translations. For example, even without any other stimulus,
a person riding an elevator can intuitively tell whether it is accelerating up
or down. Unfortunately, this system cannot always be relied upon (Lawson
and Riecke 2014) and illusions of moving when one is static or rotating when
one is not can be dangerous. For example, it is of particular concern when
training plane pilots (Kritzinger 2016). Lucikly, it is not the only system
that the central nervous system relies upon.

Figure 3.7: The organs forming the vestibular system. Public domain re-
trieved from https: // www. nasa. gov/ pdf/ 58294main_ The. Brain. in.

Space. pdf on 30/06/2023.

The somatosensory system is the network of structures capable of per-
ceiving temperature, pain and most importantly in our case, touch and pro-
prioception, the sense of body position. The sense of touch is relevant to

https://www.nasa.gov/pdf/58294main_The.Brain.in.Space.pdf
https://www.nasa.gov/pdf/58294main_The.Brain.in.Space.pdf
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the representation of gravity as we constantly are in contact with a surface.
For example, when standing upright, the reaction force from the constant
pull of gravity is felt through the mechanoreceptors of the feet, relating once
again indirect information to the central nervous system. The proprioception
information relates the position of body parts to each others via muscle and
tendon tension. In this case, the sag of the arms while standing upright is
also relevant information processed by the central nervous system to take
part in its representation of gravity.

The visual system performs many tasks. In the context of motor control
it is mostly used to ground oneself in its direct environment, for precise motor
control (notably through eye-hand coordination), and for motion perception.
The role of the visual system in the perception of gravity is obvious: the
environment around us continuously sends stimuli of the direction of gravity.
This is the direction in which trees take their roots, branches stoop and rain
falls, when picking up a glass of water, it is the force we have to overcome.
This gives us a constant appreciation for local up and down.

It is the integration of those three systems that is responsible for our
internal representation of gravity. Having experienced this field for our entire
lives, human beings have a deep understanding of it, and consequently the
central nervous system takes it into account to plan and use it innately to
optimize motion.

For example, when pointing from one point to another horizontally, the
speed profile is symmetric, as the arm is first accelerated during the first half
of the motion, and then decelerated during the second phase and stops upon
reaching the target. This is not the case when there is a vertical component
to the motion, i.e. in the direction gravity acts. Indeed, upward motion
of the forearm reaches its maximum velocity sooner than a downward one
(Pozzo et al. 1998), as can be seen in figure 3.8. This means that for upward
motion more time is spent decelerating than accelerating, and inversely for
downward motion. This integration of gravity into motion planning helps
reduce the energetic cost of up-down motion, as the arm is also accelerated
and decelerated by the external force of gravity (Gaveau et al. 2014).

3.5.1 Variable gravity

As a way to study the robustness of our theories and humans’ representation
of gravity, it is of particular interest to push experiments outside of the
comfort zone of the central nervous system and into environments where
“gravity” is variable. Here, there exist two regimes, hypergravity, where the
acceleration felt is greater than 1 g, and hypogravity, lower than 1 g. It
is significantly easier to probe the hypergravity regime as we can simulate
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Figure 3.8: Typical velocity profile for up-down motion around the shoulder.
Grey indicates downward motion, black upward. Inset represents the motion
performed. Adapted from (Gaveau et al. 2014).

acceleration with the centripetal force, as is the case in centrifuges.

Centrifugation

There are multiple different designs of centrifuges, but they are all comprised
of the same basic components. A gondola, where the participant is placed
to perform an experiment, with equipment to constantly monitor their state,
like cameras, microphones and electrocardiographs data being fed to a control
room. The gondola is attached to an arm while it itself is fixed to an engine
responsible for the rotation of the whole apparatus.

The acceleration felt in the gondola caused by the centrifugation depends
on the speed of rotation and the length of the centrifuge’s arm. The direction
of the acceleration also depends on the orientation of the gondola which
can usually be varied to simulate different environments. The perceived
acceleration, g⃗(t) is the sum of gravity and the rotational acceleration in the
centrifuge, i.e., g⃗(t) = g⃗ + a⃗c(t). In our case, we simulate acceleration in the
vertical direction of the body, i.e., the direction in which gravity is usually
felt.

As said previously, it is rare for human beings to be exposed to acceler-
ations far from 1 g for extended period of times and we are not particularly
made to withstand these conditions, it can therefore have adverse effects.
Most obviously, it affects our weight (recall that P⃗ = mg⃗) which can make
moving particularly difficult. Transitions between different accelerational
environments can also cause motion sickness. Transitions around 1 g are
particularly nauseogenic and it is recommended not to move the head during
centrifugation. In the case of vertical downward acceleration, it also pushes
blood to the lower limbs and away from the brain, making loss of conscious-
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Figure 3.9: The long-arm centrifuge at the QinetiQ Flight Physiological Cen-
tre in Linköping, Sweden. Credit: QinetiQ.

ness a real concern during centrifugation. Tolerance to centrifugation varies
significantly from individuals, and can be trained (Whinnery and Forster
2013).

During this thesis we used data from centrifugation sessions performed
in the centrifuge pictured in figure (3.9). This is developed in chapter (7).

Centrifuges are mainly used to train and test pilots and astronauts, but
they are also used in research to study the effect of higher accelerational
environments on humans, animals, plants, plasmas, etc. Unfortunately, cen-
trifuges are not capable of producing accelerations lower than 1 g, and this
regime must be explored in other experimental contexts, like free-fall.

Parabolic flights

The best environment to perform experiments with low gravity is space.
Unfortunately, this is usually not doable because of the exorbitant cost of
space freight, the limited space and personnel aboard the International Space
Station, and the stringent constraints that any object must follow to even
be allowed on the station. Luckily, weightlessness can be achieved on Earth,
albeit for short times in drop towers or parabolic flights.
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Figure 3.10: Diagram of a typical parabola. Credit: ESA

A parabolic flight is performed by a specially modified plane, an Airbus
A310 ZeroG in the case of the French National Centre for Space Studies
(CNES). It consists of a series of maneuvers that allows the passenger to
experience hyper- and zero-gravity for a short time (typically ∼20 s). The
maneuver, called a parabola, is composed of multiple phases represented in
figure 3.10. First, the plane is flying horizontally experiencing 1 g, then the
plane climbs to a 50◦ pitch angle with a speed of 685 km/h. This gives rise
to a sensation of 1.8 g for about 20 s. The plane then lowers its speed to
380 km/h while lowering its nose, during this phase passengers experience
free-fall (0 g) for ∼20 s. After reaching a 42◦ angle of negative pitch, the
airplane stabilizes back to horizontal flight, during this transition the pas-
sengers experience hypergravity of around 1.8 g for ∼20 s once again. The
airplane then stays in horizontal flight for a few minutes, before performing
another parabola. A typical parabolic flight operated by the CNES performs
31 such parabola, for a total of around 30 min of altered gravity, 10 min of
which are in weightlessness.

While experimenting in parabolic flights is easier than in the International
Space Station, it still comes with constraints. First, the phases of altered
gravity are very short and do not allow to study the behavior of systems (e.g.,
the central nervous system, a mechanical system, etc.) at long timescales.
This can be problematic as the internal modelization of gravity comes from
a lifetime of experience that cannot a priori be replicated in such a flight.
Secondly, the abrupt changes of environment can cause a lot of stress to the
body and it is therefore complicated to interpret baseline readings in flight,
as they are necessarily “polluted”. Finally, like in the case of centrifuges, the
change of accelerational environment can cause motion sickness and nausea,
appropriately planes operating parabolic flights are often nicknamed “vomit
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comets”. To combat that, passengers are usually given the drug Scopolamine,
which can have side effects such as tachycardia or bradycardia.

Effects of such flights are further explored in chapter (8).
During our thesis we used both experimental contexts to study how par-

ticipants adapt to changes in g⃗(t) when performing rhythmic motion.
Because of the prohibitive cost of those experimental contexts, it is rarely

possible to include large numbers of participants, the number of participants
is therefore limited for our studies. For similar reasons and the involved
nature of those contexts, probing populations such as young participants,
participants with pathologies should first be done in simpler experiments,
e.g., with overground walking.



Chapter 4

Hypothesis and goals

Globally, this work aims to better understand the underpinnings of motor
control by proposing and exploring a new way to model voluntary rhythmic
motion in human in time-varying environments.

As discussed in the previous chapter, planning motion is a very important
task to be able to correctly achieve motor goals and adapt to new situations.
However, it is not clear how the central nervous system probes or weeds out
uninteresting strategies in the face of the infinite possibilities laid out by the
redundancy in the degrees of freedom of our body. Indeed, in everyday life
people routinely reach their motor goals seemingly without having to think
about it. To explain this phenomenon, many strategies have been purported
to be employed by the central nervous system, like the minimization of the
jerk or the energy of the motion, each with its domain of application and
limits. A common issue in these principles is the characterization of periodic
motion or changes in the environment during motion. Here, we propose to
compute relevant quantities in this context: adiabatic invariants, which are
based on Hamiltonian mechanics. This is a purely extracorporal mechanistic
approach that is given a priori and that makes no assumptions with regards
to the biomechanics of the system, and simply requires slow (if any) changes
in the environment in which motion takes place. The goal of this thesis is to
study this novel mechanistic physical property of rhythmic motion in humans
in a variety of experimental contexts.

In our first experiment (chapter 5), before turning to more complex en-
vironments, we first probe the general motor behavior of our model in the
well studied context of gait, without changing any parameter during the ex-
perimentation. By its general nature we hypothesize that the model should
hold whatever the experimental conditions are. To explore this claim, we
look at two different experimental conditions that are known to have widely
different temporal structures, free-pace and metronome-keeping gaits.
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In a second study (chapter 6) of the same experiment, we test the capacity
of our approach to model an important aspect of human motion: variabil-
ity. Indeed, we assume that motion is akin to an harmonic oscillator which
should be perfectly regular. Statistical mechanics arguments suggest that
the addition of a small noise term should be enough to mimic diffusion in
phase space. We test that theory in the case of human motion and noise.

In our second and third experiment (chapters 7 & 8), in two somewhat
similar protocols, we finally probe the capacity that our model has to char-
acterize motion in time-changing environments. Specifically, we studied ex-
perimental data from centrifugation sessions and parabolic flights which are
extreme environments where “gravity” changes. Even though the central ner-
vous system has a hard time planning efficient motion in these environments,
we hypothesize that our mechanistic model still holds.



Chapter 5

Adiabatic invariants and
human walking

5.1 Summary

In this first experiment, we have examined the role of adiabatic invariants in
the context of human walking. Indeed, human walking is both simultaneously
a globally stable and locally variable process, i.e. while the general shape of
strides stays constant during motion, it is variable from one step to the next.
The variability of gait has been well studied, unfortunately it is still not
clear what drives global stability. In that context, adiabatic invariants seem
relevant as they define quantities that stay constant during periodic motion,
despite fluctuations of other parameters such as energy or frequency (Landau
and Lifchitz 1988).

For that purpose we recruited twenty five healthy participants to walk for
ten minutes at a comfortable pace, with and without a metronome indicating
preferred step frequency, a condition known to alter variability in the stride
interval, as defined by parameters such as the Hurst exponent, fractal di-
mension or sample entropy, but whose effect on stability is unknown (Kantz
and Schreiber 2003). Global stability was assessed by quantifying the whole-
body center-of-mass motion while local dynamic variability, predictability
and complexity was assessed using the stride interval.

We reiterate a previous result: metronome keeping indeed alters the stride
interval variability and predictability, from autocorrelated to almost random
dynamics. However, the adiabatic invariant is preserved in both the normal
and metronome condition, assessing the global stability of gait. Therefore, it
appears that adiabatic invariants reveal global stability constraints that are
“hidden” behind apparent local stride variability.
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5.2 Introduction

Human gait can be considered a quasiperiodic phenomenon. Despite the ap-
parent stability of walking at a constant speed, gait exhibits an inherent local
variability that can be observed at the level of basic parameters such as the
stride-to-stride interval time or simply referred to as the stride interval (SI).
The global stability during gait is typically assessed by quantifying the whole
body centre-of-mass (COM) motion. Local variability can be modulated to
maintain global stability (Emmerik et al. 2016).

It is well known that gait variability is a hallmark of healthy individu-
als and has properties that are far more complex than stochastic variability.
Since the seminal works of Haussdorff et al. (Hausdorff et al. 1995; Haus-
dorff et al. 1997), it has been shown that the variability, more exactly the
predictability, of SI over a long period of time – typically several hundred
gait cycles – is autocorrelated, just as it is in chaotic systems. These auto-
correlations can be assessed by computing the Hurst exponent or H Hurst
1951; Kantz and Schreiber 2003, which typically ranges from 0.7 to 0.9 in
young healthy adults (Ravi et al. 2020). Note that H= 0.5 implies random
variability. Although the physiological mechanism that generates SI autocor-
relations is still controversial, neurodegenerative diseases significantly alter SI
variability (Moon et al. 2016), and the use of indices other than H can help
distinguish between different pathologies (Dierick et al. 2021; Phinyomark
et al. 2020). Other disturbances during walking, such as the execution of
a cognitive task (Dierick et al. 2020) or following a rhythmic auditory cue
(Terrier and Dériaz 2012) also alters SI variability.

Realistic values for H can be obtained by resorting to simple mechanical
models of the inverted pendulum type, in which one or two parameters are
randomly updated at the beginning of each step (Ahn and Hogan 2013; Gates
et al. 2007). Although mechanical approaches are used to model gait variabil-
ity, it is worth noting that developments in Mechanics, such as action-angle
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variables in the Hamiltonian formalism, have proven remarkably successful
in finding conserved quantities for complex and even chaotic systems (Jose
and Saletan 1998; Landau and Lifchitz 1988), i.e. quantities with invari-
ant value over time. Identifying such a conserved quantity for human gait
would be to find dynamical constraints “hiding” behind SI variability that
could provide new insights into how dynamical systems, in which behaviors
evolve over time, maintain their current state or stability while allowing for
variability/predictability. Whereas energy is not necessarily conserved over
time with stochastic variation in system parameters, adiabatic invariants are
good candidates for (almost) conserved quantities. An adiabatic invariant,
I, is a quantity that remains approximately constant during the evolution
of a dynamical system even under slow external changes, i.e. an adiabatic
transformation (Landau and Lifchitz 1988). One way to define an adiabatic
invariant, I, relevant to the analysis of rhythmic human motion for a given
degree of freedom Q(t) for which the kinetic energy has the standard form
Ek =

m
2
Q̇2 (Boulanger et al. 2021), with m a mass scale, is through

Ek = π I f , (5.1)

where π = 3.1415 . . . , f is a given cycle frequency (the inverse of its duration)
and Ek is the averaged kinetic energy on the cycle under consideration. In
the model (Eq. 5.1), Ek and f are assumed to change significantly over
time, but their ratio, which is proportional to I, should remain invariant.
Here, Ek during each gait cycle will be computed from the whole body COM
vertical displacement. The term “adiabatic invariant” will therefore refer to
the quantity (5.1) computed from the vertical displacement of the COM. It
is an important restriction since, in principle, adiabatic invariants may be
found in the other directions and for other degrees of freedom while walking.
Another important remark is the following. The term “invariant” will be
used to denote a function of the dynamical variables whose value does not
change over time during the evolution of a dynamical system, while the word
“constant” will be used for a parameter whose value is not modified by the
experimental condition. A textbook example is that of a simple pendulum
without friction: Total energy is invariant but not constant since it depends
on the amplitude.

Biological systems are the most noteworthy nonconservative systems that
derive forces from internal energy reservoirs (Kugler et al. 1990). In previous
work, the adiabatic invariant has been successfully applied to human move-
ment (Kugler et al. 1990). In biological systems, it is also important to note
that adiabatic invariants can be considered only as an approximation and
are not rigorously but rather approximately invariant
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Previous work has shown that the relations (5.1) holds for rhythmic arm
movements (Kadar et al. 1993; Kugler et al. 1990) and for walking (Turvey
et al. 1996). In the latter work, participants walked for 3 minutes, and SI
variability was not examined. More, limit cycle attractors in phase-space
(Q, Q̇), i.e. the average gait cycle of a participant, were not drawn while
they can also be used as visual representation of gait pattern. Human mo-
tion, and particularly walking is indeed highly stereotyped, though noisy, and
gait patterns are highly consistent for an individual over time (Broscheid et
al. 2018). The attractors may also distinguish between walking and run-
ning, as the transition from walking to running can be viewed as a change
from one stable attractor to another (Raffalt et al. 2020). Therefore, these
attractors could help distinguish between participants and conditions. The
area enclosed by the phase-space trajectory of system over one cycle is the
adiabatic invariant I.

From the perspective of understanding the role played by the neuro-
musculoskeletal system in constraining coordination and reducing the degrees
of freedom (Bernstein 1967), adiabatic invariants of motion are relevant quan-
tities since two or more variables are linked by a single invariant. Therefore,
the primary objective of this study is to investigate whether the adiabatic in-
variant model (5.1) holds in a population of healthy young adults walking at
spontaneous speed on a motorized-treadmill during a sufficient number (typ-
ically more than 500) of cycles to also assess SI variability, predictability,
and complexity. The secondary objective is to understand how a constraint
applied on the system, in our case a rhythmic auditory cue (metronome)
indicating preferred step frequency, impact global stability (assessed by the
adiabatic invariant I) and SI variables. Our hypotheses were that equa-
tion (5.1) holds during walking on a treadmill regardless of the metronome
constraint, and that the latter constraint significantly alters variability and
predictability indices as shown in (Terrier and Dériaz 2012).

5.3 Materials and Methods

Protocol

The protocol was performed in a session of approximately 60 minutes. It
has been validated by the Academic Ethical Committee Brussels Alliance for
Research and Higher Education (protocol B200-2021-123). Participants were
healthy students recruited in the Department of Physiotherapy of the Haute
Ecole Louvain en Hainaut (Montignies-sur-Sambre, Belgium). After being
informed about the study, each participant signed an informed consent. The
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same experimenters (F.P. and G.H.) were responsible for the measurements.
First, participants’ age and biometric data (mass and height) were col-

lected. Participants were asked to wear a tight outfit. Participants’ pelvic
movements were recorded by a Vicon opto-electronic system (Vicon Motion
Systems Ltd, Oxford Metrics, Oxford, United Kingdom) composed of 8 cam-
eras (Vero v.2.2) with a sampling frequency of 120 Hz. Four 14-mm-diameter
reflective markers were placed on the pelvis of the participants following the
Plug-In-Gait model (Oxford Metrics, Oxford, United Kingdom): Left Ante-
rior Superior Iliac Spine [LASI], Right Anterior Superior Iliac Spine [RASI],
Left Posterior Superior Iliac Spine [LPSI], and Left Posterior Superior Iliac
Spine [RPSI].

Then, participants took place on the belt of an instrumented motorized-
treadmill (N-Mill, Motekforce Link, The Netherlands). The vertical ground
reaction force and center of pressure of each foot was recorded at a sampling
rate of 500 Hz using the manufacturer’s software (CueFors 2, Motekforce
Link, The Netherlands). Spontaneous walking speed was determined and
recorded during a 3-minute habituation period. After a 1-minute rest, the
participant walked at a spontaneous speed on the treadmill for 10 minutes
(control condition, CTRL). The average step frequency, f , was automatically
computed by the CueFors 2 software. The positions of the 4 markers, x⃗a,
were recorded with the Vicon system via the Vicon Nexus software (v.2.7.1,
Oxford Metrics, Oxford, UK). After a short break of 3 minutes, the partic-
ipant walked on the treadmill at a spontaneous speed for 10 minutes with
instructions to synchronize his or her steps with the clicks of a metronome
whose tempo corresponded to the number of steps per minute calculated
in the CTRL condition (metronome condition, METRO). This allowed the
participants to adjust their gait tempo on a step basis whilst ensuring they
adopted their own comfortable pace. The duration of the successive gait
cycles and the positions of the 4 markers were recorded in the METRO con-
dition.

To estimate the whole body COM vertical trajectory, Q(t), the mean
vertical position of all pelvic markers (RASI, LASI, LPSI, RPSI) was taken
at each time step. Furthermore, to reduce measurement artefacts, Q(t) was
filtered using a low-pass fourth order Butterworth filter adjusted to each time
series so that it kept 99.99% of the signal’s power. In order to alleviate the
low sampling rate of the measurement system a cubic spline interpolation
was conducted on the data, multiplying the frequency by 10 to 1200 Hz. The
speed and acceleration were then obtained through a finite difference scheme.
The data was processed using R software (v. 4.1.0) (R Core Team 2021).
Typical phase-space trajectories are shown in Fig. 5.1.
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Figure 5.1: Two typical plots of whole body COM vertical trajectories
in phase-space (Q,P ) in the two studied conditions: CTRL (green) and
METRO (blue). Attractors, computed as the mean cycle in phase-space, are
also displayed in the two studied conditions: CTRL (dark green line) and
METRO (dark blue line). The same subject has been chosen in both condi-
tions.

Adiabatic invariant I (global stability)

We assume that the vertical motion of the whole body COM during walking
is governed by the Hamiltonian H = 1

2
(P 2 + Q2)(ω + ϵ ξ(t)) with 0 < ϵ ≪

1 and ξ(t) a stochastic noise. This model is based on a forced harmonic
oscillator with a frequency that fluctuates randomly around a mean ω . The
noise accounts for physiological noise (i.e., the impossibility for the human
locomotor system to be steadily in the same state) and should be low in
healthy individuals. The momentum P is defined as P = Q̇ as in standard
Hamiltonian mechanics. This general class of Hamiltonians fits the form
considered in the Appendix A, where the computational details are given. As
developed in this Appendix, the action variable (5.1) is an adiabatic invariant
of the system: its value does not change over time except for small random
fluctuations around the mean. In summary, the linear relationship (5.1) is to
be expected in the analysis of the vertical motion of COM in healthy walking
individuals.

A step is defined by the collection of data points between two maxima
in Q(t). A gait cycle consists of two consecutive steps. For each gait cycle
identified, denoted Ci, the frequencies fi and the average kinetic energy Eki

were computed. Recall that i typically ranges from 1 to 500. For a given



CHAPTER 5. ADIABATIC INVARIANTS AND HUMAN WALKING 50

participant in a given condition we computed Ekm = E(Eki), fm = E(fi)
and I = Ekm

π fm
, where E(xi) denotes the arithmetic mean of an arbitrary set of

values xi. Equation (5.1) is valid for all values of (fi, Eki) and we assume that
I is constant according to adiabatic invariant theory (Landau and Lifchitz
1988). Taking into account Eq. (5.1) together with Ekm = π I fm leads to

Eki

Ekm

=
fi
fm

. (5.2)

Therefore, a prediction of our model is that Eki

Ekm
versus fi

fm
should behave as

a straight line with slope 1 and a zero intercept.
After each gait cycle was identified, an average cycle was computed. To

do this, each cycle was normalized to a unit duration and a spline of 1200
equally spaced points was computed for each cycle. Then 1200 bins -one
for each frame- were created and filled with the data from the splines of all
cycles of a given participant in a given condition. The mean and standard
deviation were computed for each bin.

SI variability, predictability, and complexity

Time series T with durations Ti of successive gait cycles were computed from
heel strikes of the right foot identified by CueFors 2 software. At the end
of the session, two time series were generated for each subject in the CTRL
and METRO conditions. Typical plots are shown in Fig. 5.2.

CTRL

METRO
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Figure 5.2: Typical plots of the SI time series obtained in the two studied
conditions: CTRL (green) and METRO (blue). Parameters in CTRL condi-
tion are: SI= 1.12 s, CV=0.0282, H=0.988, S=1.59, D=1.35. Parameters in
METRO condition are: SI= 1.12 s, CV=0.0132, H=0.383, S=2.20, D=1.51.
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First, the average SI was computed as well as the coefficient of variation,
CV=SD(T )/SI, estimating the magnitude of SI fluctuations. The Hurst ex-
ponent, H, was then computed by resorting to Detrended Fluctuation Analy-
sis following the guidelines in (Ravi et al. 2020); more technical details about
the algorithm we used can be found in (Dierick et al. 2017). By definition,
H is mainly a measure of time series’ predictability (Hurst 1951; Kantz and
Schreiber 2003). Therefore, it is relevant to complement it with other vari-
ability indices (Crevecoeur et al. 2010; Dierick et al. 2021; Phinyomark et al.
2020), of which we have chosen the Minkowski fractal dimension, D, (Dier-
ick et al. 2017), and the sample entropy, S, both as measures of complexity
(Emmerik et al. 2016). Computational details for D can be found in (Dierick
et al. 2017), while S was computed using the method described in (Yentes
et al. 2013). All SI data analysis was performed with R (v. 4.1.0).

Fig. 5.2 gives a first hint of SI variability, predictability, and complexity.
Fluctuations around the mean value have a smaller magnitude in METRO
condition (smaller CV), but a simpler temporal structure. Indeed, the latter
fluctuations show increasing or decreasing trends during several tenths of
cycles in CTRL conditions, resulting in a larger predictability (larger H).
The lower predictability in METRO condition also results in a larger sample
entropy, meaning that the fluctuations are closer to a random process in
METRO condition. Indeed, S is maximal for a random process.

As discussed in Appendix A, CV provides an estimate of ϵ, the mag-
nitude of the time-dependent noise modelling the quasiperiodic nature of
human motion. As our approach is only valid for ϵ well smaller than 1, the
measured values of CV must be well smaller than 1 too for our approach to
be consistent.

Statistical analysis

Data assessing SI variability, predictability, and complexity were tested for
normality (Shapiro-Wilk) and equality of variance. A paired t-test was per-
formed and used to examine the effects of condition (CTRL or METRO) on
SI, CV, H, D and S. The significance level was set at p = 0.05. In the case
of a failed normality test, a Wilcoxon signed rank test was performed. The
adiabatic invariant I was compared in CTRL and METRO conditions using
the same methodology. All these statistical procedures were performed with
SigmaPlot software version 11.0 (Systat Software, San Jose, CA).

An ANCOVA with zero intercept and significance level p = 0.05 was

performed to compare the linear trends of Ek

Ekm
versus f

fm
in conditions CTRL
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and METRO, i.e. according to model

Ek

Ekm

= k
f

fm
, (5.3)

where k is the experimentally observed slope. A linear regression with zero

intercept of Ek

Ekm
versus f

fm
was also performed independently of the condition,

and the 95% confidence interval of the slope was computed. ANCOVA was
performed with R software (v. 4.1.0).

Dynamic Time Warping (DTW), an algorithm developed to measure “dis-
tances” between similarly patterned time series, was then run to compare the
distance between CTRL and METRO conditions for each participant whole
body COM vertical position (Q) and speed (P ) as a function of time. The
distances were computed for Q and compared to that computed for P using
a paired t-test. The ‘dtw’ package in R was used and the time series were
z-normalized before comparison between time series.

5.4 Results

Population

The general characteristics of our participants can be found in Table 5.1.

Table 5.1: General characteristics of our population. Results are reported
in the form mean± SD. The number of gait cycles performed by the partici-
pants in 10 minutes is reported in the form median [q1-q3] regardless of the
condition.

N 25
Age (years) 22.8±5.2
Mass (kg) 68.1±13.6
Height (m) 1.65±0.32
Sex (M/F) 9/16
Gait cycles 532 [513-552]

M: male; F: female

SI variability, predictability, and complexity

A comparison of the results obtained in the CTRL and METRO conditions
in the analysis of the SI time series is shown in Table 5.2. SI and D are
not significantly changed. CV and H significantly decreased in the METRO
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condition, with H> 0.5 in CTRL condition and < 0.5 in METRO condition.
S marginally increased in the METRO condition. The significant differences
are shown in Fig. 5.3 graphically.

Table 5.2: Comparison between results in conditions CTRL and METRO for
the SI analysis. Results are reported in the form mean±SD if a paired t-
test was performed, or median and first-third quartiles [q1-q3] if a Wilcoxon
signed rank test was performed. Significant p-values are in bold.

Condition SI (s) CV H D S
CTRL 1.184 [1.126-1.269] 0.0261±0.0071 0.848 [0.781-0.951] 1.633±0.116 1.759±0.228
METRO 1.187 [1.119-1.273] 0.0193±0.0060 0.373 [0.265-0.560] 1.667±0.129 1.891±0.249

p 0.258 0.001 < 0.001 0.282 0.063
SI: stride interval; CV: coefficient of variation; H: Hurst exponent;

D: Minkowski fractal dimension; S: sample entropy.
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Figure 5.3: (A) Comparison of the mean values of CV in CTRL and METRO
conditions. The error bar is equal to 1 SD. (B) Boxplots comparing the
distribution of H in CTRL and METRO conditions. (C) Same graphical
representation as in (A) for π I. The stars (*) denote significant differences
between the means or medians between the two conditions.

Phase-space dynamics

The adiabatic invariant is significantly increased in METRO condition:
π I =0.0149±0.0063 J.s/kg against π I =0.0143±0.0058 J.s/kg (p = 0.009).
The difference is displayed in Fig. 5.3.

The linear trend (Eq. 5.3) is confirmed by the ANCOVA (p < 0.001), and
the slope does not depend on the condition (p = 0.700). The observed slope
has a 95% confidence interval of [0.998, 1.002]: k = 1 is compatible with
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the latter interval. The quality of the linear regression can be graphically
appraised in Fig. 5.4A. Figure 5.4B shows the dispersion of the data around

the linear relation (5.2). It can be seen that the values of Ek

Ekm
− f

fm
are well

peaked around the zero value, which is related to the high value reached for
R2 .

Figure 5.4: (A) Computed pairs
(

f
fm

, Ek

Ekm

)
(points) compared to a global

regression of the form (Eq. 5.3) (black line and gray band indicating the 95%
confidence interval). The coefficient of determination R2 of the regression
is indicated. The model (Eq. 5.2) is also shown (dashed red line). (B)

Computed pairs with the linear trend (5.2) removed
(

f
fm

− 1, Ek

Ekm
− f

fm

)
.

The densities of the points along the two axes are shown above (density of
f
fm

) and to the right side of the plot (density of Ek

Ekm
− f

fm
).

The average DTW distance between CTRL and METRO conditions was
10.3± 3.8 for Q and 12.9± 7.4 for P . A paired t-test finds these values not
statistically different with p = 0.099.
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5.5 Discussion

The objectives of this study were twofold: (1) to investigate whether the
adiabatic invariant model (Eq. 5.1) holds in a population of healthy young
adults walking at spontaneous speed on a motorized-treadmill, and (2) to
understand how a constraint applied on the system i.e. a metronome impacts
global stability and SI variables. The major findings were that: (1) the
invariant model was verified, and (2) SI variabilty (CV) and predictability
(H) significantly decreased in the METRO condition, and global stability (I)
significantly increased in the METRO condition.

The originality of this work is that it simultaneously measured the global
stability, and local variability, predictability, and complexity of motorized-
treadmill walking in two conditions. In the first, CTRL, participants walked
at spontaneous speed. In the second, METRO, participants adjusted heel
strikes to a tone emitted by a metronome whose frequency matched each
participant’s preferred frequency. The latter condition is known to induce
significant changes in step-to-step variation (Terrier and Dériaz 2012), and
this was also the case in our study. We first comment on the SI variability,
predictability, and complexity results. The values we found are typical of
the long-range variability observed in healthy young adults; see, e.g. (Dier-
ick et al. 2017; Phinyomark et al. 2020) for CV, H, and D, and (Crevecoeur
et al. 2010) for S. A salient feature of our results is the decrease of H from
correlated (H=0.848) to anti-correlated (H=0.373) values. This phenomenon
was previously observed in (Terrier and Dériaz 2012). The metronome that
clicks at the spontaneous frequency of a participant “destroys” the normal SI
autocorrelation pattern (Terrier and Dériaz 2012). This can be interpreted
by the additional constraint that the metronome imposes. Here, the par-
ticipant is not free to adapt his/her variability as would be the case with
an optimal motor strategy, but must inhibit any change in SI variability to
remain synchronous with the metronome. This blocking mechanism leads to
anti-correlation and also to a much smaller CV in the METRO condition.
Note that CV is well smaller than 1 in both conditions, so it is consistent
with our mechanical approach where the magnitude of the time-dependent
noise is assumed to be small. S is almost significantly higher in the METRO
condition. This could be related to the fact that q3 value of H in METRO
condition is equal to 0.56: a non-negligible fraction of our participants has
H around 0.5, and random variability has maximum entropy.

Our major observation is that the model (5.3) holds in both CTRL and
METRO conditions. Although the participants change their SI variability
and predictability, the dynamical stability constraint induced by the adia-
batic invariance is verified: Ek of the whole body COM and f of a given cycle
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are linearly correlated. Note that the model (5.3) does not forbid changing
the value of I in the different conditions. By the way, the adiabatic invariant

I is significantly higher in the condition METRO. On the one hand I = Ek

πf
.

On the other hand, f does not change significantly in the METRO condition
because T does not change. Thus, the increase in I is associated with a higher
Ek per gait cycle. Regarding phase-space dynamics, the DTW distance for
P is not significantly different from that for Q. This result does not allow
to infer that the change in I is mostly due to a change of behaviour in one
of the variables P or Q. Instead it shows that the change in I is due to a
simultaneous change of both P and Q behaviours.

Strategies for human locomotion based on adiabatic invariance have al-
ready been developed and computed from the total (translational and rota-
tional) body’s kinetic energy per stride (Turvey et al. 1996). In this study,
they used a multi-segmental model in which the body segments were treated
as an ensemble of systems in motion, each characterized within a stride by the
summed changes in kinetic energies from and about their respective centers-
of-mass. In this model, walking is viewed as a sequence of joint rotations
and is referred to as a “segmental” approach (Tesio and Rota 2019). Here,
we extend the results of this previous work, as we were able to show the
validity of the theory of adiabatic invariance in walking using a single-point
kinematic model represented by the vertical component of the whole body
COM. The latter is known to provide summarized information about all
body segments during walking. In contrast to the previous model, walking
is considered as achieving a forward motion of the whole body system (Tesio
and Rota 2019). Even more interesting is that the vertical displacement of
the whole body COM is related to the metabolic cost (Ortega and Farley
2005). Therefore, we hypothesize that I is related to the metabolic cost of
walking and that participants are able to follow the metronome constraint at
the expense of a larger oxygen consumption (V̇O2). This picture is coherent
with (Rock et al. 2018), in which it is shown that an altered SI variability
correlates with higher V̇O2. However, the changes in variability in the latter
study were due to different walking speeds, which are not comparable with
our protocol. It has also been shown that the nervous system uses predic-
tions of the optimal gait to optimize the energetic cost of each new step
(Selinger et al. 2019). This has also been demonstrated in other activities
such as pedalling (Takaishi et al. 1994). We think that keeping a constant
value for I during walk with a given set of external conditions is one of the
constraints involved in the prediction of the nervous system. The presence
of such a constraint may actually improve the efficiency of prediction by ex-
cluding irrelevant motor strategies and reducing the degrees of freedom of
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the neuro-musculoskeletal system (Bernstein 1967).
From a methodological viewpoint, we choose to compute Ek of the whole

body COM only in the vertical direction (sagittal plane motion) and not
in the anteroposterior and mediolateral directions (horizontal and transverse
plane motion). This choice could be justified by the methodology imple-
mented for SI variables assessment requiring numerous gait cycles. Walking
on a motorized-treadmill is not similar to walking on the ground and station-
keeping on the belt is impossible and surely less important than not falling
(Wang and Srinivasan 2014). Displacement of the whole body COM in the
horizontal and transverse planes is mainly related to foot placement dynam-
ics on the belt that may be affected by the motion strategy adopted by the
participants, for example if they want to avoid the belt’s edge (Wang and
Srinivasan 2014). Therefore, the displacement of the COM in horizontal
and transverse planes was excluded from our analyses since the motion in
this plane is not representative of a spontaneous motion from a walk on the
ground. Moreover, a drift correction method should have been considered
before calculating the adiabatic invariants, which is out of the scope of our
paper. As a consequence only one adiabatic invariant has been computed
while, from the separability hypothesis, three adiabatic invariants should be
possibly computed from the COM motion during walk, one per direction.
Further studies are now necessary to explore this statement.

The present study has some limitations that should be addressed. First,
we considered the CTRL condition as a reference to compare the effects of
the metronome. However, walking on a motorized-treadmill results in an
anti-correlated pattern in the stride speed fluctuations (Terrier and Dériaz
2012). Therefore, the best reference condition is walking on the ground, but
recording the kinematics of the pelvis during a large number of cycles is
not possible without moving to half-turns in the calibrated volume, which
would lead to a disturbance of the locomotor rhythm. Second, V̇O2 was not
measured during walking. However, a direct relationship between total body
kinetic energy and V̇O2 was previously observed at various constant walking
speeds (Turvey et al. 1996). Measurement of V̇O2 would have allowed us
to test our hypothesis formulated above regarding the relationship between
I and the metabolic cost of walking. Third, we use a reduced kinematic
pelvic model with four markers to estimate the whole body COM position
instead of a whole body kinematic model. However, we believe that our
pelvic model is more robust than the single sacral marker method that is a
too rough approximation of COM given that the latter can move with respect
to the sacrum (Tesio and Rota 2019). The pelvic model is also theoretically
controlled for pelvic tilt motion (Saini et al. 1998) and assume that the pelvis
position could be an approximation of the whole body COM position (Wang
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and Srinivasan 2014). More, the pelvic model is favoured by clinicians during
routine gait analysis to reduce the experimental and postprocessing times.
Therefore, we hope that the reduced kinematic pelvic model used here will
be an incentive to test the existence of global stability of the whole body
COM in pathological populations.

In summary, we have shown for the first time that an adiabatic invariant,
I (see Eq. (5.1)), is a robust dynamical stability constraint on SI variabil-
ity and predictability. In other words, the vertical speeds and positions
of one individual’s COM during successive walking cycles are not arbitrary
but such that I is invariant. The value of the adiabatic invariant does not
change during walk as expected from a mechanical model, although external
perturbations (here, rhythmic auditory cues from a metronome + physio-
logical noise) may change the latter value, arguably because a larger I is
related to a larger energy expenditure in response to external perturbation.
To what extent this constraint still holds in patients with motor disorders –
e.g. Parkinson’s disease – and unveiling its relationship with physiological
mechanisms are open problems that we hope address in future work.
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Chapter 6

Phase-space diffusion and
human walking

6.1 Summary

In the previous study we have found adiabatic invariance to be a phenomenon
present at the population level when treating gait as a realization of an har-
monic oscillator. Here, we propose to look at the variability of gait through
a perturbation of that oscillator. At this order, we can interpret variability
as a diffusion process in phase-space.

Particularly, in this second study, we have examined a new way to model
the long-range variability of walking, one that is based on the effect of noise
on the theoretical model outlined in the previous experimentation. Indeed,
recent developments in Hamiltonian mechanics have shown that stochastic,
time-dependent perturbations influence the values of the adiabatic invariants
that then obey a specific probability distribution that changes with time,
informed by a Fokker-Planck equation.

As we know, it is impossible to exactly perform the same motion twice,
and it is therefore expected that human walking, as framed by the vertical
displacement of the body’s center-of-mass as in the previous experimenta-
tion, can be modeled as a stochastically perturbed dynamical system. This
would result in a diffusion in phase space, i.e. the cycle of motion is slightly
deformed from one cycle to the next.

We examine this possibility by studying the gait of twenty five healthy
participants walking for ten minutes at spontaneous speed. We indeed ob-
serve variability from one cycle to the next that results in diffusion in phase
space that is compatible with the solution of a Fokker-Planck equation. This
distribution constitutes a new tool for studying long-range variability in walk-
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ing and is another constraint inherent in human walking. We hypothesize
that the shape of that distribution changes with things such as age, pathol-
ogy, the environments or task-specific requirements.

The content of this chapter as been published as Boulanger N., Buisseret
F., Dehouck V., Dierick F., White O., (2023)Diffusion in phase space as
a tool to assess variability of vertical centre-of-mass motion during
long-range walking, Physics DOI: 10.3390/physics5010013.

This constitutes the author manuscript, over which they retain full rights
under European law (Directive 2019/790) and journal policy
(https://www.mdpi.com/about/openaccess, consulted on 05/02/2023).

6.2 Introduction

Action-angle coordinates (Iα, θ
α), with α = 1, . . . , n , are of central im-

portance in the study of deterministic classical systems with finitely many
degrees of freedom. A time-independent integrable Hamiltonian may in-
deed be formulated as a separable function of the action variables only:
H =

∑n
i=α H0α(Iα) . The equations of motion for such a system read (Landau

and Lifchitz 1988, Ch. 45):

İα = −∂H

∂θα
= 0, θ̇α =

∂H

∂Iα
=: ωα . (6.1)

The action variables are constants of the motion and therefore ωα is also
constant, implying that the angle coordinates read θα = ωα t + θα0 where
ωα = 2π

Tα
and Tα is the period of the motion in the plane (Iα, θ

α). Since the
Kolmogorov-Arnold-Moser theorem (see (Arnold 1963; Kolmogorov 1954;
Möser 1962) and (Dumas 2013) for a historical overview) and the work
of Nekhoroshev (Nekhoroshev 1972, 1977), the action-angle variables have
proven to be the most useful for the study of stability of dynamical systems,
including chaotic systems. We now restrict our formalism to systems with
n = 1, whose sole degrees of freedom consist in the pair (I, θ) .

Suppose that H depends on a function λ(t) . The action variable I then
becomes time-dependent and is called an adiabatic invariant. On the one
hand, if λ changes slowly during the typical period of a cycle, then the
adiabatic invariant also changes slowly: İ ∼ λ̇ (Henrard 1993; Jose and
Saletan 1998; Landau and Lifchitz 1988). On the other hand, if λ is a per-
turbative stochastic noise, the adiabatic invariant also becomes randomly
time-dependent and the deviation from its average value remains perturba-
tive. Detailed demonstrations and bounds for the deviation may be found in

https://www.mdpi.com/about/openaccess
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(Cogburn and Ellison 1992; Khasminski 1966). Moreover, for a Hamiltonian
H(I, λ(t)) with perturbative stochastic noise λ(t), it has been shown that
the density ρ(I, t) of the values of the adiabatic invariant as a function of
time obeys a Fokker-Planck equation (Bazzani et al. 1995, 1994b; Bazzani
and Beccaceci 1998). The latter phenomenon is a diffusion process in phase
space. Besides its intrinsic interest, such a formalism has already found an
important application in plasma physics, where it allows to relax standard
simplifying assumptions and describe the problem in a less model-dependent
way (Kominis et al. 2010). The Fokker-Planck equation has also been re-
cently applied to the study of robustness in gene expression (Degond et al.
2020).

Biomechanical models of voluntary rhythmic movements in humans (of
which walking has been studied most extensively) may also benefit from the
above results. Such movements are quasi-periodic because of physiological
noise, which prevents an individual from being in the same invariant state
during repeated movements. The resulting variability has motivated many
studies of human gait, most of which rely on the computation of nonlinear
indices to assess variability (Hurst exponent, fractal dimension, etc.). See
(Hausdorff et al. 1995; Hausdorff et al. 1997) for the pioneering studies and
(Ravi et al. 2020; Stergiou 2018) for recent reviews. To our knowledge, the
variability of gait has never been studied by assessing the shape and time
evolution of the distribution ρ(I, t). In the present work, we show that that
the distribution ρ(I, t) in human walking indeed obeys a Fokker-Planck equa-
tion, i.e. that diffusion in phase space is experimentally observable in walking.
Biomechanical models can then inherit the advantages of this formalism.

The paper is structured as follows. In section 6.3, diffusion in phase space
and its use in modelling human walking is proposed. Then, in section 6.4,
the experimental setup is presented and numerical results are given in section
6.5. Finally, in section 6.6, the results are discussed and concluding remarks
are given.

6.3 Diffusion in phase space

Generalities

Let us consider a one-dimensional Hamiltonian H0(I), where I and θ are the
action and angle coordinates, respectively. Suppose that a time-dependent
stochastic perturbation is added to H0 and that the latter Hamiltonian satis-
fies the stability assumptions underlying the Nekhoroshev theorem (Nekhoro-
shev 1972, 1977). The total Hamiltonian H may be written as follows:
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H = H0(I) + ϵ ξ(t) V(I, θ) , (6.2)

where 0 < ϵ ≪ 1, and where ξ(t) is a stochastic noise with vanishing mean
value. Under the dynamics controlled by H, the action variable becomes
time-dependent and the deviation from the initial value I0 is of order

√
ϵ up

to a time of order 1/ϵ or even better (Cogburn and Ellison 1992; Khasminski
1966). More precisely, |I(t) − I0| = O(

√
ϵ) and a time-dependent density

distribution ρ(I, t) of the values of the adiabatic invariant can be associated
with its time evolution I(t) . As shown and illustrated in (Bazzani et al.
1995, 1994b; Bazzani and Beccaceci 1998), the density distribution ρ(I, t)
obeys a particular Fokker-Planck equation given by

∂tρ = ∂I(D(I)∂Iρ) , (6.3)

where the function D(I) is called the diffusion function and ∂I ≡ ∂/∂I .
Considering the Fourier decomposition V(I, θ) =

∑
k Vk(I) e

ikθ of the pertur-
bation function that appears in the Hamiltonian, the following expression is
obtained (Bazzani and Beccaceci 1998) for the diffusion function:

D(I) =
ϵ2

2

∑
k

k2|Vk(I)|2ϕ̃(kω) , (6.4)

where ϕ̃(ν) is the noise spectral density, i.e. ϕ̃(ν) =
∫ +∞
−∞ ϕ(u) cos(νu) du

with the autocorrelation function

ϕ(u) = lim
T→+∞

1

T

∫ T

0

ξ(t)ξ(t+ u) du . (6.5)

Two particular cases can be highlighted. First, when H = (ω + ϵ ξ(t))I ,
only the k = 0 mode V0 is nonzero and D = 0. There is no diffusion in
a pure harmonic oscillator with randomly perturbed frequency (Bazzani et
al. 1994b). Second, in the case of constant diffusion coefficient, the nor-
malised solution of (6.3) on the interval I ∈ [0,+∞[ with boundary con-
ditions ρ(I, 0) = δ(I − I0)Θ(t) , Θ being the Heaviside step function, and
ρ(0, t) = 0 = limI→+∞ ρ(I, t), may be obtained:

ρ(I, t) = Θ(t)
e−

(I−I0)
2

4Dt − e−
(I+I0)

2

4Dt

√
4πDt erf

(
I0√
4Dt

) = Θ(t)
e−

(I−I0)
2

4Dt

√
4πDt

1− e−
I I0
Dt

erf
(

I0√
4Dt

) . (6.6)

The normalisation is such that
∫ +∞
0

ρ(I, t) dI = Θ(t). Hereafter, we will
be interested in the second case of a constant but non-vanishing diffusion
fonction.
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For a general discussion about the construction of solutions of the Fokker–Planck
equation, see (Risken and Caugheyz 1991), and (Fa 2005; Lin and Ho 2012)
for explicit solutions with non-constant and nonzero diffusion and drift coef-
ficients.

Application to human walking

It is known that the vertical displacement of the body’s centre-of-mass (COM)
during human bipedal walking at spontaneous speed is compatible with a
simple, spring-mass-like, model, see for example the seminal work (Cavagna
et al. 1976). It is therefore tempting to model the vertical motion of the COM
by the harmonic oscillator Hamiltonian H0 = 1

2
(P 2 + ω2Q2) = ω I , where

P and Q are the vertical momentum and position of the COM, respectively.
By definition, and assuming the standard relation P ∝ Q̇ , one has

I =
1

2π

∮
Γ

P dQ =
TEc

π
, (6.7)

with Γ a cycle in phase space, T the duration of the cycle and Ec the averaged
kinetic energy over Γ .

Some phenomena suggest that the inclusion of other terms, at least in
the perturbation, is necessary to obtain a more realistic model. First, the
minimum (maximum) of the potential energy and the maximum (minimum)
of kinetic energy are not reached at exactly the same time: a time shift of
about 3 % of the gait cycle duration is observed (Cavagna and Legramandi
2020). Such a feature requires a time-dependent correction to be added.
Second, the Hamiltonian H0 corresponds to a linearised pendulum only in
the limiting case of small amplitudes. Anharmonic corrections should be
added. The interested reader will find in (Whittington and Thelen 2008) a
more explicit model of the pendulum in which the potential term is nonlinear,
and in (Brizard 2013) a computation of action-angle variables for the fully
non-linear pendulum with Hamiltonian H0 = P 2

2
+ 1 − cosQ. Third, the

parameters of the model (ω in our case) must have some time-dependent
variability due to physiological noise; the state of a complex system like the
human body is not identical from one gait cycle to another.

In view of the above discussion, a Hamiltonian of the form (6.2) in which
H0 is not a pure harmonic oscillator seems to be a relevant model of the
vertical COM dynamics in action-angle formalism. As far as the perturbation
H1(I, θ) = ϵ ξ(t) V(I, θ) is concerned, we will consider the simplest nontrivial
ansatz with a constant but non-vanishing diffusion coefficient D . Referring
to (6.4), this implies that all the functions Vk(I) are constant so that H1(I, θ)
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only depends on the angle variable θ . It does not depend on the total amount
of action or energy in the system but only on time through the stochastic
noise ξ(t) and on the position in the cycle through V(θ) . Therefore, we
assume that the influence of physiological noise on walking is related to the
position in the gait cycle and not to the total action or the averaged kinetic
energy of the walker – recall that I ∼ Ec.

Consequently, Eq. (6.3) with a nonzero diffusion coefficient yields the
heat equation

∂tρ = D∂2
Iρ , (6.8)

and the diffusion of the adiabatic invariant should be observable experimen-
tally.

6.4 Experimental setup

Protocol

The protocol was validated by the Academic Ethical Committee Brussels
Alliance for Research and Higher Education (B200-2021-123). Participants
were healthy students recruited in the physiotherapy department of the Haute-
Ecole Louvain en Hainaut (Montignies-sur-Sambre, Belgium). After being
informed about the study, each participant signed an informed consent form.

Biometric data were first collected (age, weight, height), as well as infor-
mation on the wearing of orthopaedic insoles and the participant’s medical
and trauma history. The participant is then asked to put on a tight-fitting
garment. In order for his or her movements to be recorded by a Vicon op-
toelectronic system (Vicon Motion Systems Ltd, Oxford Metrics, Oxford,
UK) consisting of 8 cameras (Vero v.2 .2) with a recording frequency of 120
Hz, 4 reflective markers with a diameter of 14 mm were placed on the par-
ticipant according the Plug-In-Gait model (Oxford Metrics, Oxford, United
Kingdom): Left Anterior Superior Iliac Spine [LASI], Right Anterior Supe-
rior Iliac Spine [RASI], Left Posterior Superior Iliac Spine [LPSI], and Left
Posterior Superior Iliac Spine [RPSI].

After this preparatory phase, the participant walked for 3 minutes on
an N-Mill instrumented treadmill (Motekforce Link, The Netherlands). The
purpose of this familiarisation phase is to determine the participant’s spon-
taneous walking speed. No other data were recorded during this period.
After the walking speed was recorded, the participant walked on the tread-
mill for 10 minutes at the previously determined spontaneous speed. During
these 10 minutes, the average number of steps per minute was measured by
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Table 6.1: Features of the population. Results are written under the form
median [Q1–Q3], with Q1 and Q3 being the first and third quartiles, respec-
tively.

Participants (n) 25
Age (years) 23 [20−23]
Mass (kg) 65.0 [58.8−73.4]
Height (cm) 169 [164−176]

Walking speed (km/h) 3.9 [3.5−4.2]
Sex (men/women) 9/16

Gait cycles 532 [513-552]

the treadmill and the three-dimensional trajectory of the 4 markers, x⃗a(t),
was recorded by the Vicon system using the Vicon Nexus software (v.2.7.1,
Oxford Metrics, Oxford, UK).

The general characteristics of our participants are listed in Table 6.1.
Let us not that an initial analysis of these data was presented in a recent
work (Buisseret et al. 2022), in which we showed that an adiabatic invariant
exists in the vertical motion of the COM. Here we go further in the analysis
to assess whether or not the variability of the latter adiabatic invariant is
modelled by Eq. (6.8).

Data processing

For a given participant, the position of the centre-of-mass is defined as the
average position of the four markers: x⃗COM =

∑
a x⃗a/4. A focus in the study

here is on the vertical component of the COM motion, Q(t). To reduce mea-
surement artefacts, Q(t) was filtered with a fourth-order Butterworth low-
pass filter, preserving 99.99% of the signal power. Cubic spline interpolation
of the data was also performed, multiplying the frequency by 10 to 1200 Hz.
The speed Q̇ is computed from the time series Q by finite differentiation.

An identification P = Q̇ is performed, i.e., we assume standard Hamilto-
nian dynamics and set the mass scale equal to 1 (this normalisation removes
the variability induced by participants’ masses). We then identify gait cycles
by analysing the peaks in Q(t): The duration of gait cycles i, Ti = ti+2 − ti,
were computed from the times ti at which the peaks occur. The times ti may
be defined as the times at which a new step begin, a gait cycle consisting in
two steps (left and right). Then the average kinetic energies, Eci , were com-
puted as the mean values of Q̇2/2 on the successive cycles, and the adiabatic
invariants
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Ii =
TiEci

π
(6.9)

were also computed.
The values collected in the sets Ai = {Ij≤i} are then binned according to

Sturges rule (Sturges 1926), leading to n bins. The centres I
(i)
a and frequen-

cies φ
(i)
a , i.e. the number of items in bina divided by total number of items,

are computed, with a = 1, . . . , n. The experimentally computed distribution
ρexp(ti, I) of the adiabatic invariant after a walking duration ti is defined via

ρexp(ti, I) =
(
I
(i)
a , φ

(i)
a

)
.

A fit of the form (6.6) is then performed on the sets ρexp(ti≥100, I) using the
least-squares method and the parameters I0i and Di are recorded. The latter
parameters are the fitted values of I0 andD at time ti. No fit was made for the
first 100 points. This threshold is arbitrary but avoids situations where the
distribution has too little structure for the adjustment to be relevant. Finally,
we compute the average values I0 = E(I0i) and D = E(Di), resulting in a
distribution (6.6) called the model, ρth(t, I).

The compatibility of the experimental distributions ρexp(ti≥100, I) and the
model predictions ρth(ti, I) is assessed by a Kolmogorov-Smirnov test with a
significance level 0.05. Let us note Π, the percentage of tests with p > 0.05,
i.e., the percentage of cases in which the model is incompatible with the
experimental data. One-sample t-tests were performed with null hypothesis
of zero mean for I0 and D.

All the above computations were performed using the free software R (R
Core Team 2021, p. v. 4.1.0).

6.5 Results

The attractors of the centred vertical position and speed of the COM versus
time are shown in Fig. 6.1 A and B, and a typical phase space trajectory is
also shown in Fig. 6.1 C. The attractor is computed as follows. After each
step cycle is identified, an average cycle is computed. For this purpose, each
step was normalised to a duration of 1 time unit (0–100%). Then 1200 bins,
one for each frame, were created and filled with the data of all steps of a given
participant under a given condition. For each bin, the mean and standard
deviation were computed. This yields the average cycle, which we refer to as
the attractor, following works such as those of (Broscheid et al. 2018; Raffalt
et al. 2020). The attractor may be interpreted as the basic motor pattern
that a participant tries to achieve during each step cycle – without achieving
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it exactly due to intrinsic physiological noise.
From the attractor, it is easy to see that the effective dynamics is not a

pure harmonic oscillator, as it moves away from an elliptical shape in the first
quadrant (indicated by a straight arrow in Fig. 6.1 C).1 The deformation is
systematic and present in all participants. Therefore, the model presented
in section 6.3 may be applied since the diffusion coefficient can be nonzero.
Here, each step cycle starts when the COM is at its higher position and its
speed is null, i.e., when the subject is in midstance: one foot on the ground,
the knee is extended and the other foot is in swing phase and crossing the
stance leg. The direction of the trajectory of the COM in phase space is
clockwise: from fourth to first quadrant. In the fourth and third quadrants,
the COM position decreases (downward movement) and the speed is negative.
The attractor shape is elliptical as in a spring-mass model of the stance leg
(Whittington and Thelen 2008), inducing a harmonic motion. In the second
and first quadrants, the COM position increases (upward movement) and its
speed is now positive. In the fourth quadrant, the participant is in single leg
stance (SS) on one foot and this phase continues during the first part of the
third quadrant. In the second part of the third quadrant, the participant is
in dual stance (DS), that begins when the COM speed is at its lowest value
and ends when the COM postion is at its lowest value (Adamczyk and Kuo
2009). At the end of the second quadrant and the first one, the participant
is in single leg stance on the other foot.

Table 6.2: Results of the fits of experimental distributions of the adiabatic in-
variants to model (6.6). Results are written under the form median [Q1−Q3].
The p−values of the one-sample t-tests are given in the last column.

D (10−9 m2/s) 11.618 [6.024−37.712] <0.001
π I0 (J.s/kg) 0.0123 [0.0061−0.0178] <0.001

Π (%) 100 [98.6-100]

It appears that the fit is relevant since Π > 97% for 20 participants out of
25. Hence, the model (6.6) fairly well agrees with the time evolution of the
distribution of the adiabatic invariant. Fitted parameters are summarized in
Table 6.2. The mean value of I reads

⟨I⟩ =
∫ +∞

0

ρ(I, t)dI =
Θ(t)

erf
(

I0√
4Dt

) I0 , (6.10)

1We use the trigonometric convention in order to split the plane into four quadrants,
with the angle going from 0 to π/2 in the first quadrant, from π/2 to π in the second
quadrant, etc.
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Figure 6.1: A: Attractor of the centred vertical position of the COM versus
time, expressed in % of step time. B: Attractor of the vertical speed of the
COM versus time, expressed in % of step time. C: Typical plot of COM
vertical trajectory in phase space (solid green lines representing 508 gait
cycles) during walking for a participant and of the corresponding attractor
(solid black line). The straight arrows outline the deviation from genuine
harmonic oscillator. The curved arrow is the arrow of time. Note that
a closed loop corresponds to one step cycle, a complete gait cycle being
composed of two step cycles. The blue dotted line separate the single stance
(SS) and dual stance (DS) phases.

and its behaviour versus time is displayed in Fig. 6.2. The mean value stays
of order I0 during the protocol: Less than 10 % of variation is observed. The
values obtained are comparable to the mean value found by an independent
analysis in (Buisseret et al. 2022): π I =0.0143±0.0058 J.s/kg.

The ability of the model to fit the data can be appraised in Fig. 6.3, where
a typical plot of the fitted distributions versus experimental observations is
displayed for one participant. All participants show the same qualitative
agreement between the model and the data.

6.6 Discussion

By studying the vertical motion of the healthy participant during walking, we
have shown that the phenomenon of phase space diffusion can be observed
through the distribution of adiabatic invariant values over time. To our
knowledge, this is the first time that such an observation is made in human
motion.
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Figure 6.2: Plot of π ⟨I⟩ versus time (green line). The median value given
in Table 6.2 is indicated (dashed line), as well as the average value found in
(Buisseret et al. 2022) (dotted line).

The time evolution of the distribution of the adiabatic invariant over time
is compatible with the Fokker-Planck equation with constant diffusion coef-
ficient for healthy young adults walking at spontaneous speed of progression.
Thus, up to our experimental precision, we observe no drift and no defor-
mation of the constant-D distribution for high or low values of I. A change
in the most likely value of I can presumably be associated with a change in
energy expenditure during walking. As argued in (Buisseret et al. 2022), the
value of the adiabatic invariant should be proportional to oxygen consump-
tion during walking, and an increase in the former should be associated with
an increase in the latter.

There are a number of immutable factors in the environment in which we
live. One is gravity. The brain, instead of fighting against the effects caused
by its presence (e.g. the emergence of a weight that counteracts movements)
has developed strategies to make the most of it and optimize movements
(White et al. 2020). In other words, humans move more optimally in the
presence than in the absence of a gravitational field. One can make a par-
allel with the existence of noise in physiological systems. These emerge at
every level of the decision-action chain, from perception to motoneurons.
Authors have proposed in the optimal movement variability framework, that
the central nervous system could actually exploit the presence of noise and
hence, act more optimally in the presence of certain levels of uncertainties.
Following (Emmerik et al. 2016; Goldberger et al. 2002; Stergiou et al. 2006)
we interpret the variability measured by the distribution not as an “imper-
fection” but rather as an indication of the adaptability of the participants
to the motor task. A given value of the adiabatic invariant corresponds to a
given area in phase space for the step cycle under consideration. Thus, the
changes in I indicate that the participants have access to a wide range of
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Figure 6.3: A: Adiabatic invariant versus time (gray points) for a given par-
ticipant. Lines are added to guide the eyes, and time is expressed in cycle
number. B: Typical plots showing the comparison between the theoretical
distribution ρth(ti, I) (solid line) and the experimental one ρexp(ti, I) (his-
tograms) after 50, 150, 250, 350, 400 and 450 cycles for the same participant
as in A, with Π = 99.4%. Fitted parameters are equal to π I0 = 0.0123 J.s/kg
and D = 1.05 10−8 m2/s.

motor strategies, visualised as closed step cycles in phase space. The distri-
bution becomes wider and wider over time: more and more different motor
patterns are “explored”. In the approach given in this paper, there is no drift:
the most likely value of I, i.e. the attractor defined as the ideal trajectory in
phase space that the participant is aiming for, does not change with time.

We conjecture that the shape of the distribution ρ(I, t) might be sensitive
to the experimental condition and/or to each participant, as shown in Fig.
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Figure 6.4: Schematic representation of several types of adiabatic invariant
densities. Here is assumed that the black solid line is the density of a young,
healthy, individual. The “locked” (dashed line) and “random” (dotted line)
curves correspond to, respectively, smaller and higher diffusion coefficients
than the optimal one. The “higher energy” curve (gray solid line) has an
optimal diffusion coefficient but a higher maximally probable I∗, denoted I∗’
on the horizontal axis.

6.4. In particular, there should be an optimal value for the diffusion coeffi-
cient D and for I0 for a young, healthy individual. Too large a value for D
would reflect a lack of or altered motor control of the participant, leading to
variability that tends to be random, as observed in stride interval variability
of patients with neurodegenerative diseases (Moon et al. 2016) for example.
Too small a value for D could be related to insufficient adaptability of the
participant: the number of available patterns (i.e. different values of I) is not
maximal. Such a case is observed, for example, in the electrocardiographic
signal of patients with cardiovascular disease (Goldberger et al. 2002) or in
healthy children, whose walking patterns are more stereotyped than in adults
(Hausdorff et al. 1999). The diffusion coefficient then offers a novel way to
quantify the general behaviour of internal models developed for a given task.
Indeed, wide distribution (high D) are observed after time spent to expe-
rience or explore a task. On the other hand, narrow distributions (small
D) may reflect a lack of generalisation of the motor strategies adopted. In
motor control – and rehabilitation in particular – the concept of generalisa-
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tion is tightly linked to the one of transfer (Criscimagna-Hemminger et al.
2003; Dizio and Lackner 1995; Sarwary et al. 2015). When working toward
recovering lost or impaired motor functions, the challenge is to find the best
possible movements that may be transferred to as many functional tasks as
possible. These movements may be interpreted as fundamental bricks of the
action repertoire. An interesting question is why would a participant opt
for a narrow distribution? One possible explanation for this is related to
the way motor learning works. There are different learning mechanisms, the
most powerful being error-based learning. In this one, one plans the best
possible action by minimising a cost function that includes target reaching
in the general sense and effort. An error signal is observed in case of dis-
crepancy between observation and what has been predicted by forward mod-
els (Shadmehr and Mussa-Ivaldi 1994; Thoroughman and Shadmehr 2000)
which induces strategic changes, and encourage exploration. Another learn-
ing mechanisms, however, co-exists, with a slower dynamics: use-dependent-
learning. When relying on this mechanism, one tends to repeat the same
action if it led to success in the past, thereby discouraging exploration in
task space. Adopting this strategy results from a compromise between cost
and benefit: the target may be reached, but the control policy may be stuck
in a local minima of the cost function.

We hope to apply the present formalism to participants with different ages
or experimental conditions to investigate the effects of deviations from the
optimal “healthy young adult state” on ρ(I, t) in future work. More precisely,
we hope to design appropriate experimental contexts that would manipulate
I and D independently, then providing a better functional understanding of
these indexes in motor control.
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Chapter 7

Rhythmic arm motion in
centrifuge

7.1 Summary

In this third experiment, we have investigated the true potential of adiabatic
invariants, namely their capacity to describe changes in the system when its
parameters vary slowly with time, which is a typical limitation of biome-
chanical models of motion. While there are many candidate parameters to
fluctuate during motion, one of the most fundamental quantity for motion
on Earth, gravity, appears as a natural candidate as it is routinely taken
into account by the central nervous system to optimize motion. Nonetheless,
very few people have experienced environments outside of 1 g for extended
periods of time, and probing those environments might provide insights as
to how the nervous system copes.

To achieve that goal, we have exposed six participants to two sessions of
centrifugation, such that the acceleration along the body axis varied from one
to three g. During those sessions participants performed voluntary rhythmic
one-dimensional motion with their forearm at a free pace.

While participants have never experienced such gravitoinertial environ-
ments, we now observe a linear relationship between the adiabatic invariant
and gravity, as expected from adiabatic theory. This further highlights the
fact that adiabatic invariants seem to reveal generic hidden constraints of
motion, naturally taken into account in time-varying environments.

The content of this chapter as been published as Boulanger N., Buisseret
F., Dehouck V., Dierick F., White O., (2020) Adiabatic invariants drive
rhythmic human motion in variable gravity, Physical Review E DOI:
10.1103/PhysRevE.102.062403.
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This constitutes the author manuscript, over which they retain full rights
under European law (Directive 2019/790) and journal policy
(https://journals.aps.org/pre/authors, consulted on 01/12/2020).

7.2 Introduction

All living organisms experience a constant terrestrial gravitational accel-
eration, denoted as 1g (9.81 m/s2). Gravity, “the first thing which you
don’t think” (A. Einstein), is the most persistent sensory signal in the brain.
However, the sensory experiences it generates lack the clear phenomenology
of an identifiable stimulus event that characterises sound, sight and even
taste. Critically, gravity influences human behaviour more pervasively than
any other sensory signal. Exposure to Earth-discrepant gravity – as dur-
ing spaceflight – leads to dramatic structural and functional changes in the
human physiology, including alterations in the cardiovascular (Aubert et al.
2016), neural (White et al. 2016) and musculoskeletal systems (Lang et al.
2017). Nowadays the cerebellum appears to be a major structure in grav-
ity perception (Angelaki et al. 2004; MacNeilage and Glasauer 2018). From
experiments done on rhesus monkeys, the latter reference reports on results
showing the relevance of the cerebellum in the detection of the gravitational
field and inertial motions. This includes the neural network analyses sensed
by the otolith organs in the inner ear, see (Angelaki et al. 2004) and refs.
therein.

Recent neurocomputational approaches explain behaviour by a mixture
of feedback and feedforward mechanisms, conceptualized by internal models
(Kawato 1999): the brain plans an action using available sensory information
and makes predictions about the consequences of that action in the environ-
ment. Any mismatch between this prediction and the information conveyed
by feedback will yield a prediction error used to improve other actions. This
mechanism drives motor adaptation. On Earth, gravity is immutable and
plays a primary role in minimizing prediction errors by providing a strong
prior reference.

What is the best way to fundamentally address the role of gravity in mo-
tor control? One approach consists in challenging the brain by changing a
feature of the environment that is never supposed to change: gravity itself.
Our original approach is to assess the impact of time-changing gravity on
rhythmic biological motion from a purely mechanical vantage point, thereby
providing further insights into the fundamental representation of gravity that
shapes motor actions. In Mechanics, the more robust way to track the adap-
tation of a dynamical system to a slow change in the external conditions

https://journals.aps.org/pre/authors
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is through the study of adiabatic invariants and their related action-angle
variables describing the system, see e.g. (Landau and Lifchitz 1988) and Sec.
7.3.

Obviously, living organisms are extraordinarily more complex than a sim-
ple point-particle body. It is not at all clear a priori that the actions of a
minded human being can be reduced to a standard, simple Lagrangian. Let
us give an everyday example: Lifting a glass of water off a table requires es-
timating its weight to adjust the grasping force accordingly. Drinking half of
its content with a straw while the glass rests on the table does not, however,
allow the brain to program a smaller grasping force, more adapted to the
lighter glass (Nowak and Hermsdörfer 2003). Explicit knowledge of the sim-
plest change in object dynamics is not sufficient to update internal models,
and one can hardly hope to model such behaviours by a standard Lagrangian
or Hamiltonian. Nevertheless our working hypothesis is that some human ac-
tions, one of them being presented in Sec. 7.4, comply with the behaviour of a
simple mechanical system, even if subject to a slowly changing environment,
like a slowly varying gravitational field.

7.3 Adiabatic invariants and human motion

An adiabatic invariant determines a property of a system that stays approx-
imately constant when external changes occur slowly. Despite their power
in revealing constraints on complex dynamical systems, adiabatic invariants
have been poorly investigated in biomechanics. For instance, in arm rhyth-
mic motion, the changes in frequency (df) occurring during a one-dimensional
periodic motion are correlated with changes in energy (dE) (Turvey et al.
1996) such that the action variable

I =
1

2π

dE

df
(7.1)

is constant. Action-angle coordinates are usually adopted when the Hamil-
tonian does not depend explicitly on time. The present work goes beyond
previous approaches by immersing participants in a time-dependent gravita-
tional environment where the action variables are not necessarily constant
unless the changes in time are adiabatic.

The action-angle variables appeared in the context of classical mechanics
in order to study the integrability of dynamical systems with finitely many
degrees of freedom. Such systems are said to be integrable if the Hamilton-
Jacobi equation describing them is completely separable. In the early sixties,
the famous Kolmogorov-Arnold-Moser theorem — see (Dumas 2013) for a
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very interesting book telling the history behind this theorem — brought
back the action-angle variables on the scene of classical Mechanics in order
to characterise chaotic Hamiltonian systems. Since then and with the seminal
works of Nekhoroshev (Nekhoroshev 1972, 1977) their importance has never
faded out. When a Hamiltonian H(Pα, Q

α) , α = 1, . . . , n , is integrable and
leads to bounded trajectories in phase space, action variables may be defined
as follows, in terms of a set of phase-space coordinates that separates the
Hamiltonian:

Iα =
1

2π

∮
Γα

Pα dQ
α , (7.2)

where Γα is the projection of the bounded trajectory in the plane (Pα, Q
α)

for fixed α . Once the Hamilton-Jacobi equation is separated in the variables
(Qα, Pα) , on the solution of Hamilton’s canonical equations each momentum
variable Pα will depend only on its canonically conjugate variable Qα and on
the initial conditions. The action variables give all the conserved quantities of
the dynamical system under study, as certified by the Bour-Liouville theorem.
They can be geometrically interpreted as the area enclosed by Γα.

If the Hamiltonian is time-dependent and slowly varying in comparison
with the typical period of a cycle, then the action variables are slowly varying
too. They are called adiabatic invariants (Henrard 1993; Jose and Saletan
1998; Landau and Lifchitz 1988) and may be used in a wide range of appli-
cations such as in electromagnetism (Tennyson et al. 1986), plasma physics
(Notte et al. 1993) and cosmology (Cotsakis et al. 1998). Previous works in
biomechanics showed the invariance of the action variable when experimen-
tal conditions are time-independent (Kadar et al. 1993; Kugler et al. 1990;
Turvey et al. 1996). To the best of our knowledge, this concept has never
been applied to human motion in time-varying environments. Our approach
can reveal the important and otherwise hidden quantities on which the brain
relies to plan actions. Advances in this field can potentially not be reached
with other, more classical, methods that rest on energy conservation (Alexan-
der 1997). We therefore designed an experimental set up in which external
factors are time-dependent. It is described in the next section, together with
its mechanical model.
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7.4 The experiment

Setup

Six right-handed male participants (40.1 ± 7.2 years old) took part in two
centrifugation sessions at QinetiQ’s Flight Physiological Centre in Linköping,
Sweden. The centrifuge was controlled to deliver specific g(t)-profiles. The
real-time control of the orientation of the gondola ensured alignment of local
gravity with the long body axis (Fig. 7.1 inset). One session of centrifugation
consisted in a ramp up followed by a ramp down g(t)-profile for 180s. There
were two equivalent sessions separated by a five-minute break bringing the
centrifuge back to idle position. The initial 1g phases (idle) lasted for 27.4s.
Then, the system generated 1.5g, 2g, 2.5g, 3g, 2.5g, 2g, 1.5g and 1g . Each
phase lasted 18.4s and transitions lasted 1.6s (average rate of 0.31g/s), except
for the first and last ones. We label a given transition by T±

n where it is meant
that g(t) goes from the value (n + 1)g/2 to the value (n + 1 + η)g/2, with
η = ±1 . The increasing (decreasing) gravitational transitions correspond to
η = +1 (−1) . In both cases, n ∈ {1, 2, 3, 4} . The first decreasing-g series is
T−
4 while the last one is T−

1 (Fig. 7.1). A medical flight doctor assessed the
participant’s health status before the experiment.The clinical examination
consisted in the recording of an electrocardiogram and the measurement of
arterial pressure in addition to a health questionnaire that aimed at esti-
mating life style (smoker, sport activities etc). The protocol was reviewed
and approved by the Facility Engineer from the Swedish Defence Material
Administration (FMV) and an independent medical officer. The experiment
was overseen by a qualified medical officer. The study was conducted in
accordance with the Declaration of Helsinki (1964). All participants gave in-
formed and written consent prior to the study. A similar protocol was used
in a previous study where the human centrifuge is described in detail (White
et al. 2018).

Participants were ask to perform upper arm rhythmic movements about
the elbow at a free, comfortable pace and amplitude only during the tran-
sitions between gravitational environments, to limit fatigue. The elbow was
first in contact with the support. When prompted by a GO signal, the par-
ticipant started to perform the movement while holding a test object. This
wireless test object (mass of 0.13 kg) embedded an accelerometer that mea-
sured combined gravitational and kinematic accelerations along the object’s
long axis (AIS326DQ, range 30m/s2, accuracy ±0.2m/s2). The acceleration
signal was sampled at a frequency of 120Hz. The upper arm produced move-
ments of about 30o with the horizontal. When the operator announced the
STOP signal, the participant gently let the object touch the support again
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while still securing it with his hand. A schematic representation of raw data
(acceleration vs time) of one session for one subject is displayed in Fig. 7.1.
We refer the interested reader to (White et al. 2018) for more detail and
pictures about the experimental setup.

Figure 7.1: Typical plot of raw data recorded by the accelerometer (coloured
line) during a single session of centrifugation (inset). The black line depicts
local gravity. All measured accelerations are expressed in units of g = 9.81
m/s2. The plateau phases are shown for the first and last transitions. For
the other transitions, plateau phases and rest periods are not displayed for
the sake of clarity but are replaced by vertical lines.

Harmonic oscillator and participant’s motion

Accelerations a(t) were numerically integrated and linearly detrended after
subtraction of g(t) to yield the object’s speed and position x(t). The link

a = −ω2 x (7.3)

is observed for all participants within a given transition (96 time series):
averaged Pearson’s correlation coefficient between a and x is indeed equal to
−0.82± 0.1. A typical plot is shown in Fig. 7.2; the behaviour observed for
all the participants is similar. In average, ω = 6.3 Hz leading to a typical
period of T= 0.99 s. Hence, we are on safe grounds to assume that the
effective dynamics of the test object along the body axis is compatible with
that of a harmonic oscillator, i.e., with a Hamiltonian of the form
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Figure 7.2: Typical plot of acceleration versus position for the test object
during one centrifugation session, same participant as Fig. 7.1 (coloured
points). A global linear regression is shown (solid line). The inset quantifies
the significant linear relationship between ω and g. Dots result from a fit of
the form (7.3) by bins of 0.1 g.

H =
P 2

2
+

1

2
ω(t)2Q2 , with P = Q̇ and Q = x . (7.4)

The parameter of model (7.4) is the function ω(t) . Careful inspection of
experimental data let us conclude that ω(t) versus g(t) is compatible with a
weakly increasing linear shape, see Fig. 7.2 inset. Hence we assume

ω(t) = ϖ

(
1 +

ϵ

g
g(t)

)
(7.5)

and we will perform computations up to first order in ϵ through the rest
of the paper. Equation (7.5) has the following physiological interpretation:
muscle stiffness increases with gravitational acceleration to account for the
larger motor commands required to perform the same movement. This leads
to a modified frequency and to ϵ > 0 .

Figure 7.3 depicts a typical phase-space of a complete centrifugation
session. Elliptic cycles are clearly visible and are the consequence of the
harmonic-oscillator dynamics. The area of these ellipses is slowly changing
with g as expected from adiabatic invariant’s theory (Landau and Lifchitz
1988) that we now use to model the experiment described above.
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Figure 7.3: Left panel: Typical phase-space plot of the test object trajectory
during one centrifugation session, same participant as Fig. 7.1. Right panel:
Same data but the consecutive cycles are now unfolded along the time di-
mension.

The model

Let us now focus on a given transition T±
n . Equation (7.5) can be adapted

to the peculiar shape of g(t) imposed during the centrifugation, compatible
with

ωn(t) = ϖn (1 + ϵ s(t)) , ϖn = ω0

(
1 +

ϵ

2
(n− 1

2
)
)
,

s(t) =
η

4
sin(Ωt) , η = ±1 , with t ∈

[
− π

2Ω
,
π

2Ω

]
. (7.6)

Action-angle coordinates (I, ϕ) may be defined from (7.4) through the
standard definition (Landau and Lifchitz 1988)

Q =

√
2I

ω
sinϕ , P =

√
2Iω cosϕ (7.7)

and their equations of motion read

İ = − ω̇

ω
I cos 2ϕ , ϕ̇ = ω +

ω̇

2ω
sin 2ϕ . (7.8)

We have shown in (Boulanger et al. 2019) that I(t) and ϕ(t) can be
analytically computed at order ϵ from Eq. (7.8) when g(t) is of trigonometric
form. This gives
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I(t) = Ī

[
1− ϵ η

Ω

16

(
1

ω+
sin[2(ω+t+ α)] + (+ ↔ −)

)]
, (7.9)

ϕ(t) = α +ϖnt− ϵ η
ω0

4Ω
cos(Ωt)

− ϵ η
Ω

32

(
1

ω+
cos[2(ω+t+ α)] + (+ ↔ −)]

)
, (7.10)

with ω± = ω0 ± Ω
2
and ω0 > Ω .

The action variable takes a simpler form when P = 0, i.e. for tk such
that

ϕ(tk) = (2k + 1)π/2 =: ϕk , k ∈ Z , (7.11)

see Eq. (7.7). The analytical shape of the times tk such that ϕ(tk) = ϕk may
be complicated but since our goal is the computation of I(tk), it is sufficient
to work with the lowest order solution tk =

ϕk−α
ω0

, leading to

I(tk) = Ī

(
1− ϵ

Ω2

4ω2
0 − Ω2

s(tk)

)
. (7.12)

For a given transition T±
n , g(t)/g = n+6

2
+ s(t) . Hence, I(tk) = An,η +

B g(tk), where An,η and B are real constants, and where B = dI/dg does not
depend on n and η . It allows us to append the transitions and get an affine
relation between I(tk) and g(tk) during the whole centrifugation session:

I(tk) =: I0 + I1 g(tk) , (7.13)

with I0 ∈ R+ and I1 ∈ R . The shift in I(t) predicted by Eqs. (7.9) and (7.13)
extend previous results obtained in Ref. (Kulsrud 1957) where an analytical
shape is obtained for I(t) with arbitrary ω(t) provided that the latter is not
C∞ . Equation (7.13) defines a model that can be compared to experimental
data.

7.5 Results

We have computed phase-space trajectories of all participants in both cen-
trifugation sessions. It is therefore possible to compute the action variable
as a function of time. Indeed, Eq. (7.2) can be rewritten as I(t) =

∫ t∗

t
Q̇2 dt
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from (7.4), with t∗ the end of the phase-space cycle starting at t. The in-
stant t∗ > t is such that the distance between the points (Q(t), P (t)) and
(Q(t∗), P (t∗)) in phase space is minimal and the difference t∗ − t is numeri-
cally as close as possible to T. Once the action variables I(t) are known, the
times tk such that P (tk) = 0 are computed as well as the action variables
I(tk). Continuous values I(tk) of all participants and all trials are finally
discretized into 0.1 g-bins ranging from 1 to 3 g. Each bin contains between
14 and 23 data points. Average values and standard deviations (SD) of I
normalized to the 1g value (Inorm) are finally displayed in Fig. 7.4.
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Figure 7.4: Mean values (and 1 SD error bars) of the adiabatic invariant Inorm
per bin, normalized to the 1g value, versus g(t). Significant linear regressions
of the experimental data are depicted as a solid black line together with
their Pearson’s correlation coefficients and p-values. The left panel presents
data in the ascending g(t) phase and the right panel presents data in the
descending g(t) phase. Note that in the descending phase, the horizontal
axis is decreasing in order to provide a continuous and chronological reading
of the evolution of Inorm.

The adiabatic invariant exhibits a strong and significant positive (I1 > 0)
linear relationship with gravity both in the increasing and decreasing phases
(Fig. 7.4). According to Eq. (7.1), it shows an expected higher energetic
cost in high gravity for a given change in frequency, which is expected since
raising the test object by a height ∆h has a potential energetic cost of order
mg∆h.

Despite this overall coherent dependence of I over g , we observed asym-
metries in the slopes I1 Eq. (7.13) between ascending and descending phases.
To quantify this effect, we ran a 2-way repeated measures ANOVA with fac-
tors session (1 or 2) and phase (increasing or decreasing). This analysis shows
that the slope I1 is significantly larger in the increasing phase than in the
decreasing phase (I1 = 0.296 ± 0.306 > 0.523 ± 0.219, p = 0.037). This
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asymmetry was not influenced by session (p = 0.130). Behavioral asymme-
tries with respect to gravity have already been reported in other tasks such
as collisions between an object and a target (White et al. 2012) and in grip-
load force modulation in rhythmic movements executed in ascending and
descending hyper-gravity phases (White et al. 2018). The stronger reliance
of the adiabatic invariant on g may reflect a more salient cognitive strategy
in situations when mechanical constraints become more challenging due to
the increase of gravity.

It may be conjectured that the adiabatic invariant is eventually modu-
lated by vestibular and/or proprioceptive gains and re-adjustments of central
pattern generators (CPGs) during that phase. At a spinal cord level indeed,
rhythmic movements in mammals are organized by a network of interneurons
and motor neurons called CPGs (Marder and Bucher 2001; Zehr et al. 2004).
The observation of rapid adaptation of rhythmic forearm movements may
suggest that vestibular and proprioceptive feedback are the major source of
information used by CPGs to ensure adjustments to altered gravity, espe-
cially when it increases and becomes more demanding for the control of the
task.

The variability of Inorm at a given g is globally lower in the decreasing
than in the increasing-g phase as can be seen from the error bars in Fig. 7.4.
It suggests habituation takes place because the decreasing-g phase always
followed the increasing-g one. The higher variability during the increasing
phase is consistent with the realization of a movement in a new situation.
During the decreasing phase, motor learning achieved in the previous phase
made it possible to induce a gradual reduction of variability in order to
optimize the movement patterns that are compatible with a simple harmonic
oscillator.

Of course, anharmonic corrections are expected at higher orders in ϵ .
Still, it is remarkable that such a simple textbook model of harmonic os-
cillator with time-dependent frequency can capture the essential features of
human motor control when facing variable gravity.

7.6 Conclusion

In summary, participants show a spontaneous adaptation of their motion
that is compatible with the expectation of a simple harmonic oscillator with
weakly gravity-dependent frequency. Previous analyses using the same cen-
trifuge data did not involve the computation of the action variable and fo-
cused instead on other physical quantities, like the grip force (White et al.
2018). Here participant’s adaptation is assessed by the computation of adi-
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abatic invariants, whose experimental behaviour versus g complies with our
model’s prediction. Adiabatic invariants may thus be a relevant model of the
choices made by spinal and supraspinal nervous structures among an infinite
number of possible solutions to a given problem, i.e., the motion of our test
object in the present case. It is worth noting that, according to our model,
I ∼ T Ēc, with T one cycle’s period and Ēc the average kinetic energy on
this period. The behaviour of I versus g reveals a “hidden” constraint in
participants movements: They may show variability in the cycle durations
and speed profiles, still they will be such that the product T Ēc will be that
imposed by adiabatic invariants theory. It is the first time, to our knowledge,
that such a simple mechanical constraint is revealed behind the complexity
of the human actions involved in the forearm motion.

Future works might go beyond the harmonic oscillator description of the
effective dynamics but still in a phase-space based formalism. As shown in
(Boulanger et al. 2019), adiabatic invariants can be computed in the case
of higher-derivative Hamiltonians of Pais-Uhlenbeck type. Such Hamiltoni-
ans could describe rhythmic motions with several frequencies and discrete
movements through, e.g., minimal jerk models (Flash and Hogan 1985). We
are currently investigating how our model can be generalized by analyzing
complex trajectories performed during parabolic flight, therefore also includ-
ing the very particular case of an absence of gravity (Boulanger et al. 2021;
White et al. 2008).
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the “Conseil Général de Bourgogne” (France) and by the “Centre National
d’Etudes Spatiales” grant 4800000665 (CNES).

Author contributions Conceptualization, N. Boulanger, F. Buisseret
and O. White; methodology, F. Buisseret and O. White; formal analysis,
N. Boulanger and F. Buisseret; data acquisition O. White, J.-L. Thonnard
and J. Hermsdörfer; data curation, V. Dehouck; software, V. Dehouck;
writing–draft preparation, review and editing, N. Boulanger, F. Buis-
seret, V. Dehouck, F. Dierick and O. White. All authors have read and
agreed to the published version of the manuscript. More information about
the authors in the published version: (Boulanger et al. 2020).



Chapter 8

Parabolic flight and rhythmic
arm motion

8.1 Summary

For this fourth study, we continued to study the adiabatic invariant model
with the varying of fundamental parameters of the environment, namely
gravity, and went a step further and tried to probe more complex motion
and also the singular case g = 0. We also probed the adaptation of periodic
human motion in a new environment when under constraint, again with a
metronome keeping task.

For the purpose of this study, experiments were conducted in parabolic
flights where airplanes perform a series of maneuvers to expose participants to
0, 1 and 1.8g. Eleven participants were recruited each performing lemniscate-
shaped motion with their entire arm during six parabola. The participants
were divided into two groups, a free pace and a metronome keeping one.

The linear link between gravity and the adiabatic invariant is once again
observed for both constraints in the vertical direction of motion, and stays
true even at the extreme g = 0 case, a common point of failure. As ex-
pected, the adiabatic invariant stays constant in the horizontal direction
where gravity does not act. Differences between the free and metronome-
driven conditions show that participants’ adaptation to variable gravity is
maximal without constraint. Our results show that adiabatic invariants are
relevant quantities to show the changes in motor strategy in time-dependent
environments. Interestingly, higher derivative dynamics are hinted at in the
third direction, suggesting further directions of studies.

The content of this chapter as been published as Boulanger N., Buisseret
F., Dehouck V., Dierick F., White O., (2021) Motor strategies and
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adiabatic invariants: The case of rhythmic motion in parabolic
flights, Physical Review E DOI: 10.1103/PhysRevE.104.024403.
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8.2 Introduction

Gravity obviously plays a role in human motor control, but it is not easy to
isolate. On one hand, the perception and internal representation of gravity
in the brain results from a widely distributed sensory process, including the
vestibular system, vision, and somatosensory information (White et al. 2020).
On the other hand, the constant immersive nature of the body in the Earth
gravitational field calls for holistic experimental approaches in contrast to
focused interventions on isolated body parts. In these settings, participants
are exposed to variable gravito-inertial fields generated by human centrifuges
or parabolic flights. The rationale behind these experimental approaches rest
on Einstein’s equivalence principle (see e.g. (Einstein 1916; Wald 1984)):
Physics in an accelerated spacecraft (1g) is undistinguishable from physics
on the ground. It does, however, not mean that the brain does not attempt to
identify the possible different sources that give rise to the same consequences.
Beyond the brain’s role, it is well-known that variable gravity induces various
changes in human physiology, typically at the cardiovascular (Aubert et al.
2016), neural (White et al. 2016) and musculoskeletal levels (Lang et al.
2017). In the present work, we do not focus on a particular physiological
aspect but rather adopt a global (bio)mechanical point of view. Our main
goal is to show that tools derived from mechanics may lead to conserved
measurable parameters that the brain can exploit to plan and execute actions
instead of relying on an estimate of gravity acquired through a noisy and
distributed process.

Finding such conserved quantities demands to know the underlying dy-
namics, which is not an easy task in human motion where a same – even
simple – action requires sometimes very different motor commands. For in-
stance, consider reaching for a cup of coffee on the breakfast table or in an
aircraft subject to turbulences, or drinking while seated or while walking.
Planning efficient actions is challenging for the brain. It is therefore natural
that the central nervous system relies on constants in this jungle of variabil-
ity. Previous research demonstrated that some classes of actions result from
an optimization process in which movements features are taken into account,
such as minimizing jerk (Viviani and Flash 1995), metabolic cost (Alexander

https://journals.aps.org/pre/authors
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1997; Berniker et al. 2013) or maintaining a nearly constant mechanical en-
ergy in level walking (Cavagna et al. 1976). Here we study rhythmic motion
in time-changing gravity as a peculiar case of time-dependent dynamical sys-
tem with bounded motion. The most powerful tools known so far to study
such systems are adiabatic invariants (Henrard 1993; Jose and Saletan 1998;
Landau and Lifchitz 1988). They have been applied in a wide range of appli-
cations such as plasma physics (Notte et al. 1993) and cosmology (Cotsakis
et al. 1998). In biomechanics, several studies have shown the invariance of
the action variable in time-independent conditions (Kadar et al. 1993; Kugler
et al. 1990; Turvey et al. 1996). In a previous work, we went a step further
and proposed to use adiabatic invariants to study the changes in the motion
of upper arm rhythmic movements about the elbow at free pace and ampli-
tude in a centrifuge where the perceived gravity’s intensity changed stepwise
from 1 to 3 g and from 3 back to 1 g (Boulanger et al. 2020). The direction of
g⃗ was unchanged. It appeared that the behaviour of the adiabatic invariant
I = 1

2π

∮
Γ
P dQ computed from the latter one-degree-of-freedom motion was

compatible with a theoretically predicted linear increase with g (Boulanger
et al. 2019).

An obvious direction to generalize the framework of Ref. (Boulanger et
al. 2020) is that of motions involving more than 1 degree of freedom. We
first show in Sec. 8.3 that a linear link between the adiabatic invariant and
g is expected for any potential energy, only assuming a separable dynamics.
Our model is then applied to analyse the data of Ref. (White et al. 2008) in
Sec. 8.4. In this last work, participants were asked to continually perform
an ∞−shaped trajectory during a parabolic flight. The three-dimensional
kinematics of the hand has been recorded and adiabatic invariants can be
computed from it. Gravity during the parabolas varied between 0 and 1.8 g.
We present our results in Sec. 8.5 and discuss them in Sec. 8.6.

8.3 The model

Adiabatic invariants in variable gravity

We assume that human voluntary rhythmic motion in variable gravity g(t)
may be seen as a dynamical system with bounded motion in phase space, de-
scribed by a separable Hamiltonian H(Iα, θ

α, λ(t)) =
∑D

α=1 Hj(Iα, θ
α, λ(t)).

The Hamiltonian depends on action-angle variables Iα and θα respectively
and on a time-dependent function λ(t), accounting for the modifications in-
duced by g(t). The various ingredients underlying the latter assumption de-
serve further comments. First, Hamiltonian dynamics being the most power-
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ful formulation of classical Mechanics, it is rather natural to adopt a Hamil-
tonian approach. This being said, not every dynamics is Hamiltonian: A
sufficient criterion for a Hamiltonian to exist is that the total time-derivative
applied to the Poisson bracket of two functions defined on phase-space obeys
the Leibniz rule (Jose and Saletan 1998, Chapter 5). The latter criterion
cannot a priori be checked from our experimental setup: We will a posteriori
confirm that the observed phase-space trajectories are not incompatible with
a Hamiltonian dynamics. Second, the dynamics has a priori no reason to be
separable. The main interest we have in assuming the separability is that it
allows a clear separation between vertical and horizontal directions (with re-
spect to g⃗), the dynamics in the vertical direction being intuitively the most
strongly impacted by the variations of g . Again, the separability hypothesis
will only be checked a posteriori by observing the phase-space trajectories,
see next Section.

It can then be shown that (Landau and Lifchitz 1988, Eqs (50, 10)-(50,
11))

İα = −∂H

∂θα
= −

(
∂Λ

∂θα

)
Iα,λ

λ̇ , (8.1a)

θ̇α =
∂H

∂Iα
= ωα +

(
∂Λ

∂Iα

)
θα,λ

λ̇ , (8.1b)

where the partial derivatives have to be computed while keeping constant
the indexed variables and where ωα are the motion’s frequencies. The func-
tion Λ is the action of the system; it is sufficient for our purpose to state
that it is a periodic function of the angle variables. Hence, according to

(Landau and Lifchitz 1988), Λ =
∑+∞

ℓ1=−∞ · · ·
∑+∞

ℓD=−∞ eiℓ⃗·θ⃗Λℓ⃗ with Λℓ⃗ ∈ C,
ℓ⃗ = (ℓ1, . . . , ℓD) ∈ ZD and

∂Λ

∂θα
=

+∞∑
ℓ1=−∞

· · ·
+∞∑

ℓD=−∞

iℓαe
iℓ⃗·θ⃗Λℓ⃗ . (8.2)

We moreover assume that λ = λ0 + ϵg(t) with ϵg(t) ≪ λ0, i.e. that the
modifications induced by variable gravity may be computed at first-order in
ϵ. Equation (8.1a) therefore leads to

İα = −ϵ ġ

+∞∑
ℓ1=−∞

· · ·
+∞∑

ℓD=−∞

iℓαe
iℓ⃗·θ⃗Λℓ⃗ , (8.3)

or
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dIα
dg

= −ϵ

+∞∑
ℓ1=−∞

· · ·
+∞∑

ℓD=−∞

iℓαe
iℓ⃗·θ⃗Λℓ⃗ . (8.4)

Let us define the times tn such that the values θα(tn) are all equal (modulo
2π). The existence of tn is guaranteed for periodic dynamics such as the one
that we consider here. Then it can be said that

dIα
dg

∣∣∣∣
t=tn

= I1 ⇒ Iα(tn) = Iα;0 + Iα;1 g(tn), (8.5)

with Iα;0 and Iα;1 two real numbers such that |Iα;1/Iα;0| ≪ 1. Equation (8.5)
defines our model: The adiabatic invariant is expected to behave linearly in
g when computed at a given position in the consecutive cycles performed.

Definition of Iα

The action variables are defined from positions (Qα) and momenta (Pα)
degrees of freedom as follows:

Iα =
1

2π

∮
Γα

Pα dQ
α , (8.6)

where Γα is the projection of the bounded trajectory in the plane (Qα, Pα)
for fixed α . Note that, with a kinetic energy of the standard form Ec ∼∑D

α=1 Q̇
α 2, one is led to a form for the adiabatic invariant which is straight-

forward to compute:

Iα(t) ∼
∫ t+T

t

Q̇α 2(u) du , (8.7)

with T the period of the phase-space cycle Γα starting at t.
This last equation provides a way to compute the adiabatic invariant from

experimental data provided Qα(t) is known, which is not so obvious since a
mathematical description of voluntary human motion may involve higher
derivative dynamics, see e.g. (Hagler 2015; Hogan 1984; Nelson 1983). Two
cases should therefore be considered. First, the motion’s dynamics does not
involve higher derivative terms. In this case Qα may directly be identified
to, say, one anatomical landmark’s trajectory xα(t), and Pα ∼ ẋα. Second,
the motion’s dynamics is a higher-derivative one. Then Qα and Pα can, in
principle, be computed from xα(t) but their definition is more involved. We
refer the interested reader to the case of Pais-Uhlenbeck oscillator (Pais and
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Uhlenbeck 1950), that is a higher-derivative generalization of standard har-
monic oscillator for which adiabatic invariants can be analytically computed
(Boulanger et al. 2019).

8.4 The experiment

Parabolic flights

During parabolic flights, participants were asked to continually perform an
∞-shaped trajectory oriented crosswise to the body around two virtual obsta-
cles situated 3 m in front of them. An optoelectronic device (OptoTrak 3020
system, Northern Digital, Waterloo, Ontario, Canada) recorded the position
of three infrared LEDs placed on the object with a resolution of 0.1 mm. A
three-dimensional accelerometer fixed on the floor of the aircraft recorded its
acceleration. The two synchronized acquisition systems recorded parameters
at a sampling rate of 200 Hz. During a parabola, the aircraft performs a
series of manoeuvres to allow for changes of effective gravity. This allows one
to run experiments at 0 (microgravity), 1 and approximately 1.8 g (hyper-
gravity), albeit for a short time. The micro and hyper gravity phases last
around 20 s with transition periods shorter than 5 s. Typical plots of the
motion performed and of the g(t)-profile are shown in Fig. 8.1. The cartesian
frame we use is also displayed.

Figure 8.1: (a) Typical plot of the ∞−shaped motion in frontal plane (x, y)
during one parabola. A participant in FREE condition has been chosen. (b)
g(t) profile during the same parabola. (c) The Cartesian frame is displayed.
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Participants executed ∞−shaped movements in two conditions. In the
free condition (FREE), the motion was self-paced. Four participants, to-
talling 24 parabolas, performed the motion in FREE condition. In the
metronome condition (METRO), participants had to adopt 1.5-second con-
stant pace prompted by a metronome. Seven participants, totalling 42
parabolas, performed the motion in METRO condition. Before starting the
parabolic flights, participant’s health was assessed by their individual Na-
tional Centres for Aerospace Medicine as meeting the requirement “Jar Class
II” for parabolic flight. No participant reported sensory or motor deficits
and they all had normal or corrected-to-normal vision. All participants gave
their informed consent to participate in this study and the procedures were
approved by the European Space Agency (ESA) Safety Committee and by
the local ethics committee. Their motion was recorded during 6 consecutive
parabolas. We refer the reader to Ref. (White et al. 2008) for a more detailed
presentation of the experiment.

Phase-space trajectories and action variables

The speeds vα = ẋα are first computed from the positions xα recorded by the
optoelectronic device through a finite differentiation. Typical speed-position
plots are shown in Fig. 8.2.

The x and y directions show (quasi)-periodic trajectories of elliptic type,
compatible with a standard Hamiltonian dynamics. Hence we proceed as
follows to compute the action variables. First, we identify Qα to xα and Pα

to Q̇α – up to an arbitrary mass scale that is set equal to 1 kg. Second, the
beginning and end of each cycle Γα in phase-space plane (Qα, Pα) are com-
puted. The end of the cycle starting at t is chosen as the time t⋆ which is the
smallest time after t at which the euclidean distance between (Qα(t⋆), Pα(t

⋆))
and (Qα(t), Pα(t)) is minimal. Once t⋆ is identified, the adiabatic invariant

is computed by quadrature from Eq. (8.4): Iα(t) =
∫ t+t⋆

t
Q̇α 2(u) du . Then,

to apply our model, only adiabatic invariants corresponding to a given value
of the angle variable have to be collected. We only consider the instants at
which Pα = 0 and Qα was maximal since they are easily identified.

As can be seen in Fig. 8.2, the trajectory in (z, vz) plane intersects
itself during one cycle. The underlying dynamic is therefore called non-
autonomous, in the theory of dynamical systems. Participant’s motion in
the z−direction actually contains two distinct frequencies. One is the whole
∞-shaped movement’s pulsation, say ω, and the other is a forward-backward
oscillation at 2ω. A trajectory of the form
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Figure 8.2: (a) Typical speed-position plot of the motion in (x, vx) plane
during several cycles, same participant as Fig. 8.1. (b) and (c) Same data
in the (y, vy) and (z, vz) planes respectively. The crosses show the trajectory
obtained from Eq. (8.8) with A0 = 0.092 m, A1 = 0.065 m, A2 = 0.060 m,
ω = 2π rad/s, ϕ1 = 0 rad and ϕ2 = −1 rad.

z(t) = A0 +
∑
j=1,2

Aj sin(jωt+ ϕj) (8.8)

has the qualitative features of what is observed in the (z, vz) plane for ap-
propriate values of the real constants ω, Ai and ϕi.

Several effective models may produce trajectories such as (8.8). (1) An os-
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cillator with pulsation ω plus an external, time-dependent, periodic force with
pulsation 2ω. A textbook example is the Duffing oscillator. The complete
set of solutions of a forced, non-harmonic oscillator is unknown a priori but
some special solutions are known that perfectly match the observed motion.
(2) A system of coupled harmonic oscillators oscillating near its equilibrium
position provided that the frequencies of some normal modes are equal to ω
and 2ω. The dynamics of the various joints of the arm may be approximated
by such a system. (3) A second-order Pais-Uhlenbeck harmonic oscillator.
As shown in Appendix B, an autonomous higher-derivative oscillator may
actually mimic the dynamics of one peculiar degree of freedom in a system
of coupled oscillators. An obvious advantage in resorting to Pais-Uhlenbeck
harmonic oscillators is that the effective dynamics in the z−direction would
be autonomous and that adiabatic invariants are well-defined once phase-
space is properly built from the position degree of freedom and its time
derivatives (Boulanger et al. 2019). Hence, our model can in principle be
adapted to the z−direction. However, such higher-derivative adiabatic in-
variants involve not only ż but at least z̈ and

...
z (Boulanger et al. 2019). The

experimental precision reached in the measurement of z does not allow for a
reliable computation of those higher derivatives from our experimental data
and we chose not to make further computations as far as the (z, vz) plane is
concerned.

8.5 Action variables in terms of gravity: The

results

We have linearly fitted Iα versus g for each available parabola in order to
check whether Model (8.5) is observed at an individual level or not. The vari-
able g refers to the average value of g(t) within the considered cycle Γα. The
parameters of the fit are I1;α (slope), rα (Pearson’s correlation coefficient) and
I0;α (intercept). A two-way ANOVA may be performed on the parameters
of the fit with factors condition (FREE or METRO) and parabola number
(1 to 6). The latter factor is introduced to check whether a learning effect
is present or not during the consecutive parabolas a given participant has
experienced. The ANOVA was performed using SigmaPlot software (v.11.0,
Systat Software, San Jose, CA, United States of America), with significance
level 0.05. It appears that no significant effect of the parabola number can
be found in the fit parameters which means that the model parameters are
stable over time, with values set from the outset. Interactions between condi-
tion and parabola number are not significant either. However, the condition
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has a significant impact on I0;α, I1;y and ry, as shown in Table 8.1.
From Table 8.1, the following global features of participant’s motion can

be deduced. (a) The action variable Ix does not show a well-defined linear
behaviour versus g: both the slopes and the Pearson’s correlation coefficients
are comparable with 0. The action variable Ix can be considered as constant
with g, although it is significantly lower in METRO condition than in the
FREE condition. Let us note that the x−direction is orthogonal to gravity
while the y−direction is aligned with gravity (see frame in Fig. 1). This
observation may intuitively explain why there is no trend versus g for the
x−dynamics. (b) However, the trend of Iy vs g is compatible with model
(8.5) for positive I1;y well smaller than the intercept I0;y. It is coherent with
our initial assumption to work at first-order in g. Furthermore, the slope and
the intercept are significantly lower in METRO condition than in the FREE
one. (c) The clearest linear trend is observed for the action variable Iy in the
FREE condition. An example of linear fit is displayed in Fig. 8.3.

r = 0.405 (<0.01)0.8
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Figure 8.3: Adiabatic invariant Iy versus g computed from experimental data
in the FREE condition for the same participant as in Fig. 8.1 (points), com-
pared to the best linear fit of the form (8.5). Pearson’s correlation coefficients
is also indicated. Iy has been normalized so that its average value is 1 at 1g.

The global trend of Iy vs g can be observed by averaging Iy over partic-
ipants by condition (FREE and METRO) and by gravity condition, i.e. by
gathering computed adiabatic invariants into bins of 0.1 g, ranging from 0
to 1.8 g. Only the bins containing more than 10 points were finally kept.
This threshold is arbitrary but avoids almost empty bins in the fast tran-
sition regions between 0 and 1 g and between 1 and 1.6 g. The results
of this analysis are displayed in Fig. 8.4. The observed trends are com-
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Direction Condition I1;α (kg.m) rα I0;α (J.s)
x FREE [−0.014, 0.005] [−0.150, 0.082] [0.327, 0.371]

METRO [−0.010, 0.004] [−0.182, 0.109] [0.177, 0.205]
p 0.884 0.969 < 0.001

y FREE [0.017, 0.033] [0.291, 0.518] [0.187, 0.296]
METRO [0.005, 0.14] [0.117, 0.332] [0.106, 0.120]
p < 0.001 0.014 < 0.001

Table 8.1: 95 % confidence intervals for the slopes I1;α, Person’s correla-
tion coefficients rα and intercepts I0;α obtained through the fit (8.5) of the
computed Iα vs g in each parabola for all conditions. The p− values of the
ANOVA for the effect of condition are also given.

patible with IFREE
y = 0.210 + 0.015 g and IMETRO

y = 0.106 + 0.015 g; an
ANCOVA further shows that the slopes are not significantly different with
condition (p = 0.994), while the intercepts significantly depend on condition
(p < 0.001). Finally, it is also worth highlighting the fact that some bins
(e.g. [1.3; 1.4[) capture values of gravity in the ascending but also descending
parts of the parabolic profile.
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METRO
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Figure 8.4: Adiabatic invariant Iy versus g computed from experimental data
in the FREE (grey points) and METRO (yellow points) conditions. A linear
fit is given (solid lines) with its 95% confidence interval (colored bands) in
each condition. Pearson’s correlation coefficients are also indicated. The 1-g
bin is marked with a vertical dashed line.
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8.6 Discussion of the results

The trajectory in the z−direction contains two distinct frequencies leading to
intersecting trajectories in the (z, vz) plane, see Fig. 8.2. Effective dynamics
in this plane therefore cannot be described by a time-independent standard
dynamics: Either higher-derivatives or time-dependent forces have to be in-
cluded. We believe that the appearance of such features could be explained
by shoulder biomechanical constraints. The main shoulder movements re-
quired to execute the ∞−shaped movement are abduction and adduction.
During shoulder abduction-adduction movements, rotations are usually ob-
served (Assi et al. 2016). It is well known that external rotation of the
shoulder is adopted during abduction to clear the major tubercule of humerus
from beneath acromion for preventing impingement (Hurov 1986; Peat 1986).
The movement strategy spontaneously chosen by participants is therefore not
located on a single plane with constant z, leading to the observed nontriv-
ial pattern. As previously said, the current experimental accuracy along
the z−axis does not allow for a more detailed study of a potential higher-
derivative effective dynamics. Note that it has already been successfully
conjectured that a higher-derivative action principle such as S =

∫ ...
x 2 dt –

a jerk-based cost function – may constrain non-rhythmic voluntary human
motion (Hogan 1984). However, such an action principle does not lead to
periodic solutions, that is why a Pais-Uhlenbeck oscillator seems more rele-
vant to us. In the motion we observe, the two frequencies have an integer
ratio, therefore stability of the motion is not guaranteed in such a resonant
case (Boulanger et al. 2019). It has recently been understood that extra in-
teraction terms may stabilize periodic solutions of resonant higher-derivative
oscillators (Kaparulin et al. 2020): We hope to investigate the applicability
of such models to human rhythmic motion in future works.

By definition, the adiabatic invariant in x and y−directions is propor-
tional to

Iα ∼ T ⟨Ec,α⟩ , (8.9)

where T is a given cycle duration in the vertical direction – the duration of
the cycle starting at the same time is twice that value in the x−direction
–, and where ⟨Ec,α⟩ is the averaged kinetic energy on the considered cycle.
The protocol of White et al. 2008 is such that T FREE < TMETRO: The
pace imposed by the metronome was chosen to be slower than participants’
spontaneously chosen paces. Since, at given g, the adiabatic invariant in
FREE condition is always larger than in METRO condition, it can be con-
cluded that

〈
EFREE

c,α

〉
>

〈
EMETRO

c,α

〉
. The smaller kinetic energy in METRO

condition thus follows from the fact that participants have to move slower
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than in FREE condition in order to follow metronome’s pace. Note that
IMETRO
1;y < IFREE

1;y : The extra constraint imposed by the metronome actu-
ally prevents the participant from optimally adapting his/her motion when
g is changing, assuming that the optimal motor strategy is reached in FREE
condition. It is also known that T is a decreasing function of g in either
METRO or FREE conditions (White et al. 2008). Since I1;y > 0, ⟨Ec,y⟩ has
to be an increasing function of g: The participant’s arm moves with higher
typical vertical speed at higher values of g.

Definition (8.9) explicitly makes appear the links between adiabatic in-
variant and kinetic energy. Another interpretation of the adiabatic invariant,
focusing on external forces, is relevant to clarify the influence of gravity on
it. To this aim, the virial theorem may be used to state that

Iα ∼ T ⟨Fαx
α⟩ , (8.10)

where Fα is an external force acting on the point-like object whose trajectory
is xα. The latter force should involve muscular forces as well as gravity. One
can reasonably assume that Fα = F0α+F1αg, in coherence with the previously
found linear trend of Iα vs g. A priori, F1y ≫ F1x since gravity’s influence
should mostly concern the vertical direction. Changes induced by F1x are
probably unnoticeable up to our current experimental precision.

Around 1g, Iy is lower than expected from the 95% confidence interval
of the linear fit. In that familiar environment, participants “know” the most
economic strategy when they are allowed to move freely in Earth’s gravity.
In METRO condition, that drop in Iy is not observable: The extra constraint
imposed by the metronome does not allow participants to follow that optimal
strategy. Furthermore, our results also reveal that microgravity is a special
case. While the linear fit holds true for the whole explored gravitational
values ([0g; 1.8g]), there is a significant gap between 0.3 g and 0.7 g in our
data. Hypogravity values are not explored. Our study again reveals that 0 g
acts as a singular value for the brain (White et al. 2008). Finally, adiabatic
invariants do not behave like parameters measured in most motor control
investigations. Indeed, while errors in reaching movements perturbed by
force fields require tens of trials to vanish (Shadmehr and Mussa-Ivaldi 1994),
safety margins in object manipulation in altered gravity need an exposure to
6 parabolas to decrease to normal values (Augurelle et al. 2003) and some
behaviours in conflicting force-fields or visuomotor rotations do not even
adapt at all (Cothros et al. 2008), adiabatic invariants seem to be set to
their nominal values from the outset.
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8.7 Concluding comments

To conclude this work, it is worth linking them to well-known frameworks in
motor control.

Participants have many more kinematic degrees of freedom than necessary
to fulfill the demanded task, i.e. the ∞−shaped movement. The coordina-
tion of kinematically redundant systems was formulated by Bernstein as the
degrees of freedom problem (Bernstein 1967). The main difficulty of Bern-
stein’s problem is that the nervous system must conciliate two apparently
conflicting abilities: (1) the realization of a movement from the choice of
one among an infinite number of motor patterns; (2) the absence of univocal
relationship between the movement realized and motor patterns used, known
as motor equivalence. Although it remains unclear as to whether and how
the brain can estimate adiabatic invariants, such quantities puts constraints
on the allowed strategies, i.e. strategies keeping Iα invariant at constant g.
In this picture, an increase (decrease) in Iα(g) may be related to an increase
(decrease) of the allowed motor patterns.

When subjects are free to point to a target, they automatically scale
movement duration with movement amplitude and choose a trade off between
movement speed and accuracy to touch the target. It is known as Fitts’s law
(Fitts 1954). The adiabatic invariant is the area of a closed trajectory in
phase space: Iα ∼ Aα v

max
α , with Aα and vmax

α the amplitude and maximal
speed of the movement in the direction α respectively. Its invariance at given
g implies that, if maximal speed increases (decreases), amplitude decreases
(increases). In our experiment, the maximal speed is an obvious measure
of movement’s speed, and the amplitude can be seen as an index of preci-
sion. Indeed,the instruction given to the participant is to avoid 2 targets by
turning around. Thus, if amplitude decreases (increases), the participant in-
creases (decreases) the chances of hitting the target, and he/she is less (more)
precise. The adiabatic invariant can then be seen as an explicit realization
of the speed-accuracy-trade off scenario. The modification of its value with
g actually changes the acceptable values of maximal speed and amplitude
involved in this trade off.

In summary, our results indicate that adiabatic invariants deserve a par-
ticular attention in biomechanical approaches of human motion. They are
indeed able to capture one individual’s reaction to time-dependent external
conditions, even in extreme cases such as variable gravity. Adiabatic invari-
ants seem very robust in this context. Further studies are now needed to
clarify the links between adiabatic invariant theory and celebrated motor
control paradigms such as speed-accuracy-trade off.
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Chapter 9

Conclusion

Our agility within our movements is, among other things, what makes us
(healthy) human beings. Bipedal locomotion allowed us to distinguish our-
selves from our evolutionary ancestors and develop our brain, to become the
dominant species on the planet. This mobility is both so fundamental and
complex that some neuroscientists argue that it is the reason why evolution
has “given” us a brain in the first place.

Although mobility is not exclusive to the animal kingdom, its study for
beings equipped with a nervous system is its own field of study: motor con-
trol. This field spans many disciplines as it is interested in the integration
of sensory information, the neural structures and the nature of the signals
involved, the biomechanics of the system under investigation, the differences
between reflexes and voluntary motion, etc. Motor control has evolved a
lot since its inception, and is now very different from the first essays on the
subject written by Aristotle. Nevertheless, one of the central questions in
the coordination of motion, namely Bernstein’s degrees of freedom problem
is still without a definitive answer decades after its formulation.

Many approaches have been explored. One of the most common among
them appears within the framework of optimal control theory and is based on
the minimization of a cost function, such as jerk. This approaches are well-
suited to describe reaching motion, but are not adapted to periodic problems,
which are the subject of this work.

To derive general principles a priori, we based our approach in the world
of physics. Between the three main formulations of mechanics –Newtonian,
Lagrangian and Hamiltonian– we selected the latter for its interesting prop-
erties for the study of (quasi-)periodic motion, such as adiabatic invariance.

We explored this property in the context of voluntary human motion over
the course of several experiments.

In a first experiment (chapter 5), we probed the use of adiabatic invari-
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ants to characterize gait. In that context, they act as a global constraint
on motion as they link different variables together thereby reducing the de-
grees of freedom in motor coordination. This was indeed observed in a very
simple whole-body center-of-mass model, highlighting the ease of use of our
approach. Furthermore, this stayed true regardless of the experimental con-
dition: free-pace or metronome, even though they exhibit wildly different
local variability. This confirms the adiabatic invariant to be a dynamical
constraint on variability to preserve the global stability of gait, as speed and
frequency do not evolve arbitrarily but such that their ratio stays constant.

In a second experiment (chapter 6), we reused the experimental data of
the first study. This was done specifically to explore the variability inherent in
human motion which is now a staple of motor control. In fact, gait is at best
merely quasi-periodic and there are variations from one step to the next due
to the presence of physiological noise. Adiabatic invariants, which have been
used for the study of chaotic systems, are still relevant in this context. Indeed,
by simply adding a small perturbation term to the system the Fokker-Planck
equation now dictates the distribution of values that adiabatic invariants can
take. This was observed experimentally and we extracted the shape of those
distributions. Furthermore, noise does not detail imperfection in motion,
but rather is an indication of our adaptability. Therefore, we interpret the
distribution of the adiabatic invariant to be a way to assess this adaptability.

In a third experiment (chapter 7), we explored using adiabatic invariants
to characterize motion in gravity-varying environments. Indeed, gravity ap-
pears as the most pervasive signal dictating motion, and is readily taken into
account by the central nervous system. Therefore, it is not clear how motion
is planned by the brain when gravity changes. In this context, adiabatic
invariants are once again relevant quantities as they can easily be computed
even when changes in parameters occur during motion. Experimentally, we
observed rhythmic arm motion during centrifugation and saw agreement with
our mechanistic approach, revealing spontaneous adaptation of movements
to a new environment. This points towards adiabatic invariants being con-
straints that the central nervous system relies on.

In a fourth experiment (chapter 8), ostensibly a continuation of the
third experiment this time in parabolic flights, we also explored hypogravity
regimes and more complex motion with different experimental conditions.
Again, we observe experimentally what is expected from adiabatic theory.
A salient result of this experiment is the absence of effect of the parabola
number on the value of the adiabatic invariants while adaptation to a new
environment usually requires plenty of trials. This reinforces the hypothesis
that adiabatic invariance is a global constraint on motion.

It is important to note that adiabatic invariance constitutes a physi-
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cal property of periodic motion that is applicable in human motion as we
have shown in this work and not something that the central nervous sys-
tem achieves through motor planning. Indeed, the central nervous system
is bound by the laws of physics. However, this does not mean that motor
strategies cannot be molded by this property, just like they are by fundamen-
tal parameters such as gravity. This is of course speculative as it is unclear
how the central nervous system would incorporate such a property. It might
rule out “unphysical” trajectories that result in arbitrary kinetic energy and
frequency of motion, but probing such behavior would surely involve novel
and exotic experimental designs that go beyond the scope of this thesis.

All in all, this thesis has revealed the formulation of motor control prob-
lems within the framework of Hamiltonian mechanics to be valuable in a novel
way, as it has shown how the laws of physics necessarily constrain and guide
motion; particularly for periodic motion with time-dependent perturbations.

Perspectives

This thesis being in nature exploratory is open-ended and allows for many
new directions of study, in this section we outline a few of these directions
and also ways to make this first fray into Hamiltonian mechanics richer.

Firstly, we have so far only been interested in point-like kinematic data
of the parts of the body under investigation, mainly because this is the type
of data that we have been able to gather during our experiments. While this
already reveals rich possibilities for human motion study, it could be further
enriched by the use of other types of data. For example, electromyography
can be used to probe the tension in a muscle which can be likened to the
stiffness of a spring. In our gravity-changing experiments, where the motions
performed are harmonic, this could be used to model the change of muscle
activity as a result of stress or poor internal model planning due to the
novelty of the environment.

As we have just pointed out, our models are based on harmonic motion.
While this is a natural candidate for rhythmic motion, real world motion
rarely is, but rather necessitates small corrections, indeed harmonic oscilla-
tors are already a small-angle approximation of planar pendulums. This is
particularly apparent when we look at the center-of-mass motion in our gait
experiment (figure 9.1) or at the motion performed during parabolic flights.
This departure from harmonicity might be modeled by adding anharmonic
terms to the Hamiltonian of the system, or by using different types of oscilla-
tors. Fortunately, the identification of the oscillator describing the motion of
the system can be readily made by looking at the curves it produces in phase
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space, as can be seen in figure 8.2 where we see the similarities between the
horizontal motion and a Duffing oscillator, interestingly known to produce
chaotic regimes.
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Figure 9.1: Typical COM profile for the gait of a participant during experi-
ment 5.

As discussed with our parabolic flight experiment, sometimes higher deriva-
tives are needed to accurately describe and model motion. Unfortunately,
we could not explore this idea due to poor experimental precision. Access to
this type of data could help reveal new insights, and draw parallel to other
paradigms using higher derivatives, like minimum-jerk models.

Another common issue with this type of experiment is the averaging over
all participants in order to obtain robust statistics, glossing over individ-
ual differences. It could be beneficial to perform longer experiments on a
single participant, or repeat the experiment over long periods of time (e.g.
days, weeks, etc.) to be able to follow the evolution of an individual and
meaningfully study their specificities.

Furthermore, what we have studied here constitutes different types of
perturbations to a system; sometimes controlled, deterministic i.e. changes
in gravity or following a regular metronome, and sometimes stochastic i.e. the
distribution of the adiabatic invariant as it diffuses in phase space. But, as we
discussed in our first gait experiment (chapter 5), the nature of physiological
signals lies between those two regimes, in an auto-correlated state. During
this thesis we have tried to probe this regime in the framework of optimal
variability and Hamiltonian mechanics, unfortunately without being able to
finalize the analysis, this is discussed in appendix C.
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Moreover, the variations of the scaling of I with g around the mean, as seen
in figure (8.3), present a limit of the current analysis. Indeed, we make several
assumptions with regards to motion and its perturbation in order to observe
adiabatic invariance. As previously stated, the motion performed here is not
strictly harmonic and corrections should be added for a better fit. The other
two assumptions are that the perturbation is small compared to the main
Hamiltonian term, both in its value and its timescale. Unfortunately, there
is no agreed-upon threshold as to what constitutes a change “small enough”,
and we might be at the limit of application. For example, the transition from
one effective gravity to the next is of the order of 2 − 3s, while the motion
has a cycle period of 1.5s. This might not be “slow enough” for adiabatic
theory to be applied without further corrections.

More so, the variations around the mean may reflect modulation of motion
induced by neural control going further than a passive mechanical approach.
The interplay between the physical nature of the body and its ability to
change strategies to account for changes in the environment could be ex-
plored by tightening the experimental protocols closer to the assumptions
of adiabatic invariance, i.e., slower and smaller transitions. This would also
alleviate the amount of stress that participants experience in already quite
exotic experimental environments.

As said at the beginning of this section, this only covers a small set of
possible directions that the use of Hamiltonian mechanics brings to the table.
We hope to be able to engage in further research brought by ideas this thesis
sparked, and we urge the motor control community to use the tools laid out
here to further understand human motion.
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Appendix A

Adiabatic invariants and
random noise

The dynamical state of a system coordinatized by configuration space vari-
ablesQα, α = 1, . . . , n can be summarized by its trajectory in 2n−dimensional
phase-space (Qα, Pα), where Pα are the momentum degrees of freedom. In
standard dynamics, Pα = mQ̇α with m a mass scale, although Hamiltonian
dynamics can be formulated for more general systems. The trajectory is
generated by a set of initial conditions (Qα

0 , P0α) and an evolution operator
called a Hamiltonian, H(Qα, Pα), which leads to the equations of motion
(Landau and Lifchitz 1988, Ch. 45)

Q̇α =
∂H

∂Pα

, Ṗα = − ∂H

∂Qα

. (A.1)

If the Hamiltonian has a standard, separable, time independent form,
H =

∑n
β=1

[
1
2
P 2
β + Vβ(Q

β)
]
, then Q̇α = Pα and the momentum can be inter-

preted as the body velocity. Separability allows to focus on a Hamiltonian
system with n = 1, knowing that the results can be straightforwardly ex-
tended. Let us consider the Hamiltonian H = P 2

2
+ V (Q). If the potential

V allows for bounded trajectories in phase-space, the action variable can be
defined as

I =
1

2π

∮
Γ

P dQ , (A.2)

where Γ is the bounded trajectory in the plane (Q,P ). The relation (Eq.
5.1) is equivalent to (Eq. A.2) in our case. Then, the Hamiltonian can be
reformulated as a function of only the action variables: H = H0(I) which
is always true for an integrable system. The equations of motion for the
integrable system now reads (Landau and Lifchitz 1988, Ch. 45)
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İ = −∂H0

∂θ
= 0, θ̇ =

∂H0

∂I
= ω(I), (A.3)

where θ is the angle variable. The action variables are therefore invariant
and θ = ω(I) t+ θ0.

In attempting to model the quasiperiodic nature of human motion, it is
of interest to assume that

H = H0(I) + ϵ ξ(t) V(I, θ), (A.4)

where 0 < ϵ ≪ 1, and where ξ(t) is a stochastic noise with vanishing mean
value. It is also assumed that H0(I) must satisfy the assumptions under-
lying the Nekhoroshev theorem (Nekhoroshev 1972, 1977). According to
(Khasminski 1966, theorems 1.1 and 3.1), the action variable becomes time-
dependent because of the random noise (I becomes Iϵ(t)), but the deviation
from the value I (which can be taken as the initial value) remains small, of
order

√
ϵ , up to a time of order 1/ϵ or even better (Cogburn and Ellison

1992), up to time of order 1/ϵ2 . More precisely, |Iϵ(t)− I| =
√
ϵ Y (t) with

Y (t) a Gaussian Markov process.
Assuming that deviations from the time-independent dynamics are of

order ϵ, a given observable Λ should behave approximately as Λ(t) = Λ(1 +
ϵ f(t)). Hence, the coefficient of variation of Λ, CVΛ, defined as the ratio
between its standard deviation and its mean value Λ, is of order ϵ: CVΛ ∼ ϵ.



Appendix B

Higher derivative dynamics and
rhythmic motion

Let us consider a system with N degrees of freedom xα described by the
Lagrangian

L =
1

2
gαβ(x)ẋ

αẋβ − U(xγ) (B.1)

with gαβ the components of a real, symmetric and positive-definite matrix G
that we call the kinetic matrix. Note that it is not necessarily constant and
may depend on the dynamical variables. If necessary after a translation of the
origin of the coordinates, we may assume that xα = 0 (∀ α) is an equilibrium
position: ∂U

∂xα

∣∣
xγ=0

= 0 . Such a Lagrangian may model the motion of several
joints, the potential energy U being an a priori complicated function of the
degrees of freedom. If only small oscillations around equilibrium position are
considered, the equations of motion read ẍα + γαδUδβx

β = 0 , with γαβ the
components of the inverse of the matrix G0 of components γαβ := gαβ(0) . In
other words, one has γαδγδβ = δαβ . One defines the potential matrix U with
components

Uαβ =
∂2U

∂xα∂xβ

∣∣∣∣
xδ=0

. (B.2)

Solving the eigenequation V α
β ξ

β
a = λa ξ

α
a for the matrix V = G−1

0 U with
components V α

β = γαδ Uδβ , with a = 1, . . . , N , allows to solve the equations
of motion in terms of the normal coordinates Qa(t):

xα = ξαa Qa(t) with Q̈a = −λa Q
a (B.3)
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and without any summation over the index a . Therefore, for the given
dynamical system described by the variables xα, any small oscillatory motion
about the minimum of the potential in configuration space can therefore
be decomposed as a linear combination of elementary oscillations along the
normal modes, each one at the frequency νa = ωa/2π , where λa = ω2

a . In
particular, for appropriate initial conditions it is possible to only excite the
normal mode Qa(t) for a given value of the index a . The dynamical system
as a whole will then oscillate at the single frequency νa , without exciting
the modes Qb(t) with b ̸= a . The interested reader may find a detailed
discussion about small oscillations around an equilibrium position in (Landau
and Lifchitz 1988, Chapter 5), or in (Arnold 1989, Part 2, Chapter 5) for a
more precise mathematical formulation.

Note that, from the datum of the normal modes Q’s with their frequencies
ν’s, one can go back and access the information contained in the kinetic and
potential matrices G and U . This is because the normal modes are orthog-
onal with respect to the metric G , and using the latter metric together with
the eigenvalues of V := G−1U gives U up to a reordering of the dynamical
variables xα .

In a human rhythmic motion, if the participant is asked to perform a
periodic motion, say with the forearm, one observes that the projection of
the motion of the hand along the three spatial directions gives rise to a
very small set of frequencies that are all integer multiples of a fundamental
one. In this description, we neglect the quasi-periodic motion of the forearm
due to physiological noise. Of course, the forearm is a very complicated
system with dozens of components linked in a complicated fashion, giving
rise to a configuration space Q of very large dimension N . In principle (but
not in practice), it is possible to describe it by a Lagrangian of the form
(B.1) and there will N normal modes Qa’s with possible degeneracies in
the frequencies. The observed motion of the forearm of the participants is,
instead, very simple and degenerate.

Instead of trying to find the realistic Lagrangian description (B.1) of the
forearm, from the sole observation of a very limited set of forced periodic
motions with distinct frequencies ωa’s, motions that we view as analogous
to the distinct normal modes of a dynamical system, we propose an effective
model whose purpose it to reproduce those “normal modes” without any
diagonalisation of any potential matrix V . The operator

F = Πn
a=1

(
1 +

1

ω2
a

d2

dt2

)
(B.4)

is such that Fxα = 0 for all α because FQa = 0 for all a , by construc-
tion. Here, by an abuse of notation we have denoted by Qa(t) the n ≪ N
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simple and pure harmonic modes observed in the participant’s motion. The
latter describes the motion in a configuration space of very large dimension
N whereas we effectively reduce the dynamics to a configuration space of
dimension n way smaller than N . Therefore, in our effective description of
the motion based on a specific set of harmonic oscillations observed in the
forearm’s motion, every single dynamical variable xα for α fixed obeys the
equation of motion of a Pais-Uhlenbeck oscillator whose Lagrangian reads
LP−U = −1

2
xα F xα (Pais and Uhlenbeck 1950). If at least two frequencies

ωa are different, the effective dynamics of a given degree of freedom can be
mimicked by a particular solution of the equations of motion of a higher-
derivative harmonic oscillator.



Appendix C

Experiment on pointing task
with fractal stimulus

Introduction

For a long time, noise has been considered detrimental to experimental stud-
ies and seen as something to minimize, correct or outright remove to obtain
robust results. Recently though, after observing variability in numerous sig-
nals (for example in humans: electroencephalograms (Acharya et al. 2015;
Rahmani et al. 2018), heart beat and heart beat variability (Peng et al. 1995;
Penzel et al. 2003), gait (Dierick et al. 2017; Hausdorff et al. 1995), etc.) it
has been hypothesized that variability is actually an important feature of
a healthy system (Stergiou and Decker 2011). Indeed, in these situations,
healthy, optimal or energy-minimizing systems have a variability that lies in
an auto-correlated regime i.e. neither completely random nor strictly deter-
ministic. This can be affected by health condition, or external stimuli such
as cognitive load like metronome keeping (Marmelat et al. 2014).

Variability is a nebulous term used in many contexts. In this appendix we
use the term variability to refer to the Hurst exponent, i.e. the measure of the
long-term memory of a signal. It has been measured here by using Detrended
Fluctuation Analysis (DFA) a technique developed in (Peng et al. 1994) and
Rescaled range methods first proposed in (Hurst 1951). A Hurst exponent
H of 0 refers to a perfectly anti-correlated time series i.e. a time series where
adjacent values switch between highs and lows, H = 0.5 corresponds to a
random time series and H = 1 to a completely auto-correlated one. Healthy
systems being somewhat auto-correlated usually lie in the 0.5 < H < 1
regime, that is to say that high values tend to be followed by high values,
and similarly for low values of the time series.
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In this experiment, instead of measuring the variability inherent in hu-
man motion, we tried to synthetically force the participant into a certain
variability to probe its effect on performance. To do so we devised a tracing
task during which participants followed targets appearing with a timing fol-
lowing a certain variability and we computed its effect on various indices. We
hypothesize that motion is most efficient and therefore optimal from a perfor-
mance point of view for Hurst exponents lying in a somewhat auto-correlated
regime, i.e., far from H = 1 or H = 0.5, but rather around intermediate val-
ues H ∼ 0.7.

Protocol

The protocol was validated by a local ethics committee and was performed
over a period of 90 minutes. Thirteen participants were selected, they were
healthy students from the University of Burgundy (Dijon, France). The
participants gave their informed consent after being briefed about the study.
The same experimenter (V. Dehouck) was responsible for all measurements.

Participants’ hand motion was recorded using a drawing tablet (Wacom
DTH-3220, Wacom; Kazo, Saitama, Japan) and its stylus. Participants were
sat comfortably in front of the tablet and were allowed to manipulate and
trace on the tablet to familiarize themselves with the device. The stylus
position was sampled at a frequency of 100Hz.

Participants took part in 18 (3x6 conditions) blocks composed of 10 trials
each. The order of the blocks was randomized for each participant. At the
start of each block a ready check was performed by the participant them-
selves. Participants were then instructed to follow the appearance of green
dots on the screen with the stylus. The timing of appearance followed not an
isochronous metronome but a fractal one, identified by its Hurst exponent (H
= 0.5, 0.6, 0.7, 0.8, 0.9, 1; a condition) generated via a Gaussian noise gen-
erator and controlled using Detrended Fluctuation Analysis and Rescaled
Range techniques. Each of the timing series was 256-point long. After a
period during which the participant was asked to follow the metronome, a
red dot was randomly flashed on the screen (a trial). The participant was
instructed to connect with the dot as quickly as possible.

The green dots were placed on the vertices of a square of side 14.5 cm
centered in the middle of the screen. The red target was flashed randomly
on the screen within a square of side 21.8 cm.
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Limits

This experiment had to overcome several hurdles. First of all, this exper-
iment was originally designed for a Phantom system (Phantom Premium,
3Dsystems; Rock Hill, USA) allowing for motion in three directions. Unfor-
tunately, after a few participants took part in the experiment, the machine
was broken heavily delaying us. After being assured that the machine could
not be fixed, the experiment had to be quickly ported to a new system with
its own limitations, the drawing tablet. Most obviously, the motion per-
formed on the tablet is akin to writing on a table, already strongly changing
the nature of the expected motion from a whole-arm 3D motion, to a 2D
movement mostly with the forearm; therefore severely reducing the number
of degrees of freedom available.

Secondly, the targets, with which the performance indices were computed,
were randomly flashed on the screen, both in time and position. This resulted
in enormous error bars with regards to the time it took for participants to
reach the target but also the speed at which they did, and therefore negatively
impacted the analysis.

Furthermore, the protocol was hard to follow. Indeed, the time series
dictating the isochronous metronome pace had a very large coefficient of
variation, of the order of 25%. This further worsened the problem discussed
above, but also made the interval of time between two ticks of the metronome
vary between 0.4s and 1.2s, putting participants between a continuous and
a discrete motion regime.

Finally, this experiment was heavily delayed because of the COVID-19
pandemic, and with the time constraints that came with porting the experi-
ment to another system, we were unable to rework and fine tune the experi-
ment. We hope to be able to revise the protocol and revisit our hypothesis
in the future with the experience gained with this exploration.
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