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Résumé en français
Cette thèse est un travail théorique de mécanique des fluides qui pousse les limites d’application du for-
malisme résolvent. Ce dernier est une approche linéaire récente très générale au vaste cadre d’application
qui a déjà démontré sa pertinence pour de nombreuses géométries et des types d’écoulements variés. C’est
une méthode numériquement peu coûteuse, mathématiquement maîtrisée et rigoureuse.

Pourtant, plusieurs freins existent à son application. Tout d’abord, il s’agit d’une méthode relative-
ment nouvelle, introduite dans les années 2000. Ensuite, cette approche peut se révéler inapplicable dans
les cas où l’écoulement se révèle instable, et difficile à interpréter pour des non-spécialistes. En effet,
il s’agit d’une méthode fréquentielle et globale qui produit des modes de forçage que l’écoulement est
particulièrement susceptible d’amplifier pour une fréquence donnée sans pour autant offrir la capacité
d’analyse que permet un calcul de stabilité par exemple.

Ce manuscrit est séparé en 6 sections, une introduction qui rappelle les enjeux de la mécanique des
fluides numérique et la hiérarchie des modèles dans ce domaine, depuis les formalismes les plus précis et
donc les plus coûteux, aux modèles linéaires qui nous concernent dans la suite.

Le second chapitre est un effort d’améliorer la position de la méthode résolvante dans la hiérarchie
des modèles précédente, améliorant sa précision en incorporant des termes de second-ordre. En pratique,
on accomplit cela en allongeant le vecteur d’état du système et la matrice résolvante, un peu comme
pour reformuler une équation d’ordre deux en un système différentiel du premier ordre.

Cette approche s’est révélée fructueuse seulement dans une petite région de l’espace des paramètres,
notamment dû à la difficulté de modéliser de façon linéaire le terme en vélocité-gradient de pression.
En comparant avec les modes extraits d’une Spectral Proper Orthogonal Decomposition d’une simulation
numérique à haute fidélité et ceux obtenus par un calcul de résolvante plus simple avec viscosité turbu-
lente, le nouveau modèle semble moins performant que l’état de l’art. On peut néanmoins constater que
la comparaison dans le cas de l’écoulement canal est particulièrement défavorable au modèle du second
ordre.

Le troisième chapitre concentre le gros de la contribution scientifique de la thèse et commence par
une revue bibliographique des différents phénomènes d’amplification qui existent dans la configuration
envisagée : un jet turbulent tournant.

La méthode résolvante appliquée à un écoulement de type Reynolds-Averaged Navier-Stokes (RANS)
a permis de mettre en lumière deux comportements nouveaux des structures turbulentes. A la lumière de
l’étude précédente, un modèle de viscosité turbulente fut inclut dans le modèle résolvent pour améliorer
la qualité de ses prédictions.

Tout d’abord, en l’absence de rotation mais pour une décomposition azimutale |m| > 1 et à une
fréquence très faible on observe des structures à l’extérieur de la buse, accompagnés de long filaments
des fluctuations dans la couche de cisaillement du jet. Ces structures sont expliquées en invoquant un
phénomène semblable au Lift-Up d’un type nouveau.

Ensuite, l’introduction de rotation brise la symétrie des modes par rapport au signe de m et met
en lumière une amplification spectaculaire à basse fréquence pour m < −1. Aucune des instabilités-
types de ce type de jets n’explique cette amplification, qui semble se manifester à différents degrés
dans différentes parties du mode. L’amplification observée est donc plutôt associée à une manifestation
conjointe de phénomène de Kelvin-Helmholtz et centrifuge.

Le chapitre quatre s’attache à détailler les choix numériques effectués dans le développement du
code SPY qui a permis les résultats précédents. Ces choix sont souvent critiques pour la bonne résolution
numérique du problème et relèvent souvent d’un mélange de bonne pratique, de documentation spécialisée
et d’expérience.

Enfin, le chapitre cinq conclut les travaux de cette thèse. Il est suivi par une bibliographie.
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Chapter 1

Introduction

We are dwarfs perched on the shoulders of giants.
We see more and farther than our predecessors, not because we have
keener vision or greater height, but because we are lifted up and borne
aloft on their gigantic stature.

Bernard of Chartres

This thesis strives to find structure in the chaos that are turbulent flows. Such fluids exhibit a high
Reynolds number, which is associated with the dominance of inertial effects over viscous ones. Depending
on the geometrical configuration, this number can go from as low as a thousand for a flow to qualify as
turbulent. Such flows has long been theorised as chaotic, namely dynamic systems that are so sensitive
to boundary and initial conditions that the slightest change can bring about dramatic influence in the
final flow. Demonstrations of this behaviour can be found in [83, 103].

This behaviour is combined with a strong dependence on the smaller scales. [63] theorised a concept
visible in figure 1.1 that is still fundamental in the field today - energy in these flows cascades down the
spatial scales in a self-similar fashion until it reaches a scale where the resulting eddies are small enough
for viscosity to dominate and dissipate them. In practice though, that scale is painfully small for many
flows of interest.

The difficulty here may be better illustrated with an example. Consider a human swimmer inside
a twenty-five meters swimming pool. The swimmer moves in a flow at rest and makes his way back
and forth a single time. He does so at an average speed of a meter per second. Regular water at room
temperature is not a very viscous fluid, leading to a turbulent Reynolds number that ranges in the
tens of millions. To fully resolve this flow using Computational Fluid Dynamics in a Direct Numerical
Simulation, one would need to capture the Kolmogorov micro-scales, as exposed in [93]. This leads to a
grid requirement ranging in the thousands of billions.

Figure 1.1: Sketch of the eddy cascade by Leonardo da Vinci, XVIth century.

1
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That is not all! Because of the well known Courant Friedrich Levy condition established in [26] which
is essential to numerical stability of an advection-type equation, a naive time marching scheme would
lead to a final result of about a billion square data points... Which amounts to handling a thousand
billion terabytes! By contrast, the Frontier supercomputer at the Oak Ridge National Laboratory, which
is thought to be the fastest in the world, only has about forty-two thousand terabytes of Random Access
Memory, and a typical modern laptop usually ranges in the tens of gigabytes.

This is still only the memory part of the problem, as the number of operations required to march
the scheme forward in time also goes up, yet at this point the picture is pretty clear. Solving turbulent
flows in an exact manner is prohibitively expensive computationally.

It is easy to see how these two traits combined create one of the most difficult scientific and engineering
conundrum of the century. A turbulent flow depends on scales so small that it becomes numerically
unaffordable to solve directly for most applications. At the same time, we know that getting the small
scales right is critical to the overall calculation accuracy because of the chaotic behaviour of the equations.
To an engineer, this is worse than the fact that proving the existence and uniqueness of solutions to the
Navier-Stokes equations with boundary conditions remains an unclaimed Millennium Prize Problem.

Of course, a legitimate way to tackle this issue is forgo the computational approach completely,
perform experiments, and measure the quantity of interest. However, the process of building then
testing a prototype remains orders of magnitude more expensive than a simulation for many applications.
Difficulties can also arise when exploring certain behaviour in detail, such as when instrumentation
intrudes upon the flow especially very close to a boundary. Furthermore, there are legitimate safety
concerns around early prototype airplanes or rockets that should not be allowed to take off with a
numerical proof of concept. Hence, this thesis is focused on numerical models for flows, a field also
known as Computational Fluid Dynamics. It goes without saying that experiment remains the final
judge of any computation or indeed empirical science in general. The objective here is to make the
most of modern computing capabilities and perform fewer experiments in select regimes significant to
the problem at hand according to calculation.

Every actor in the ever growing field that is turbulent fluid dynamics, which ranges from a shipbuilder
to an aerospace engineer all the way to a fountain designer, is confronted to the previous computational
cost issue. Luckily, given the state of knowledge and practises, there are techniques available for every
computational budget, see [118, 132].

This study aims at studying one of these methods in more detail. As a first step, let us take a brief
look at the modelling toolkit of fluid mechanics relative to turbulent flows in general. This will allow us
to better put in context the pros and cons of the chosen method in section 1.1, before we move on to
the class of techniques of interest in section 1.2. Once this context has been given, it will be possible to
present the scope of this thesis in section 1.3.

1.1 On the modelling of turbulent flows

We have seen that numerical modelling of turbulent flows using Computational Fluid Dynamics (CFD)
is driven partly by lingering engineering concerns. This naturally led to a variety of solutions being
developed, which will be briefly reviewed in section 1.1.1 before making a case for a specific method in
section 1.1.2.

1.1.1 A wide range of options

When choosing a modelling method, there has to be a trade-off between how much is modelled and
how insightful the resulting simulation is. In CFD, this dilemma is incarnated in the so-called closure
problem. Indeed, a numerical method is ‘closed’ when it is well-posed and features enough equations and
boundary conditions with respect to its unknowns to attempt to solve it. This is equivalent to choosing
how much is modelled, and how much is resolved.

Direct Numerical Simulation (DNS). The most simple and direct solution to the previously
outlined conundrum remains to compute everything up to the viscous scale. To achieve this, one must
more often than not compromise on the problem’s boundaries, either limiting the maximum computation
time or the breadth of the domain considered. This approach gained traction as numerical resources grew
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Figure 1.2: Restitution of figure 15. of [117] representing the DNS of a compressible pipe at
Reynolds number Re = 7, 500. a is a dilation field, b represents the density gradients close to
the nozzle.

Figure 1.3: Extract of figure 1. of [121] representing the LES of a jet at Re = 106. Axial
fluctuations and baseflow level-sets are presented.

and put complex configurations within reach. Indeed, even moderate Reynolds number are attainable
today. Notice the self similarity between the different scales visible in figure 1.2, as described in [63].

However, there are reasons to believe many cases of interest will remain durably out of reach of DNS.
After all, one cannot expect computing power to infinitely grow - Moore’s law has already been proven
wrong in recent years due to quantum effects, and energy consumption concerns associated with the fight
against rapid climate change do not bide well for unbridled High Performance Computing.

Large Eddy Simulation (LES). This solution can be understood as something of a compromise,
using a space and time-wise filter to smooth out some of the irregularities in a turbulent flow. This is
the most recent of the three alternatives presented here, first detailed in [125]. Initially developed for
the modelling of atmospheric flows with the intent of improving weather forecast accuracy, this model is
now widely used in aerodynamics.

Comparing figures 1.3 and 1.2, it is easy to see that the method makes it possible to attain higher
Reynolds number at the cost of simulation detail. It has seen some success in the industry, however the
most accurate versions of this method remain computationally out of reach for many users.
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Figure 1.4: Restitution of figure 5. of [138] representing the Mach number Ma for a RANS
calculation for a compressible jet for different Nozzle Pressure Ratios (NPR). This study used
the OpenFOAM suite from [94] just like in chapter 3, albeit with a different solver rhoCentralFoam.

Reynolds Averaged Navier Stokes (RANS). This approach is akin to the previous one, but
instead of using a filter makes an argument on ensemble averaging to separate baseflow from fluctuations
or small-scale perturbations. The main difference between ensemble averaging and the usual LES filter is
that the former always commutes with time or space differentiation. Overall, RANS is usually performed
on a coarser grid, cheaper and less precise than LES. Methods of this type pre-date the alternatives listed
here and go as far as [110]. Indeed, once there was no other way to study turbulent flows.

Comparing figure 1.4 to figures 1.3 and 1.2, much has been lost in the way of flow details. However,
the study [20] which is a validation case for [121] from which figure 1.3 is extracted took about 172, 000
core hours to compute. By contrast, figure 1.4 cost about 576 core hours.

For many applications only a few quantities are of actual interest. For instance, the study of jet
noise is mostly concerned with far field behaviour of pressure fluctuations, not the entirety of complex
flow behaviour at all scales. Yet it remains a legitimate research topic recently addressed in [102, 134].
For such uses, it makes sense to look for the solution with the best ratio between computational cost
and resulting insight. That solution is often the same as the cheapest one.

1.1.2 Dive into Reynolds Averaged Navier Stokes

In this thesis we are mainly concerned with the last of the previous three methods, namely RANS type
formalism. This approach is used in different industries as it provides sufficient precision for many
applications while remaining very affordable.

Constitutive equations

The core idea between this approach hinges on ensemble averaging, a Reynolds operator that allows
separation of total flow quantities q into averaged Q and perturbations q.

Starting from the incompressible dimensionless Navier-Stokes Equations (NSE){
∂tu+ ∇u u+∇p−∇ ·

[(
∇u + ∇u T

)
/Re

]
= 0,

∇ · u = 0,
(1.1)

using the conventions detailed in the list of symbols on page iv. The second relation is also called the
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continuity equation and denotes incompressibility. This thesis is concerned only with incompressible
fluids.

Baseflow equations are obtained by performing ensemble average of equation (1.1){
∂tU + ∇U U +∇P −∇ ·

[(
∇U + ∇U T

)
/Re

]
= −∇u u,

∇ · U = 0.
(1.2)

A baseflow Q =
[
UT P

]T
is defined as a vector state satisfying equation (1.2) or more generically

as a flow upon which instability analysis is performed. A word is warranted here. “Baseflow” and “mean
flow” will not be used interchangeably in this thesis, even if by definition Q = q. A mean flow will
be considered not as a solution to an equation, but as the time average of an experimental or DNS
flow instead. This is assumed to be equivalent to an ensemble average because of the ergodic nature of
turbulent flows, which will be be detailed in section 1.2.1. Hence, all mean flows can be baseflows in an
instability analysis sense, but the converse is not true.

The corresponding fluctuation equations are obtained by subtracting relations (1.2) from (1.1){
∂tu+ ∇U u+ ∇u U +∇p−∇ ·

[(
∇u + ∇u T

)
/Re

]
= ∇u u− ∇u u,

∇ · u = 0.
(1.3)

The left-hand sides of equations (1.2) and (1.3) are both linear. So far, the equations are exact,
which also means that nothing has been gained from a modelling perspective. There are two ways to
think about RANS from here. On the one hand, it is a predictive engineering tool at zeroth order, if
only a model could be found for the right-hand side term of the baseflow equations ∇u u. In that case,
equations (1.3) are more often than not completely discarded.

The components of the tensor ∇u u are called Reynolds-stresses, as per their dimensionality in
relations (1.2). Because the incompressibility of the fluctuations, they can also be formulated as the
average of the divergence of the fluctuation velocity correlation tensor ∇u u = ∇ · (uuT ). Intuitively,
this term represents fluctuations feedback, or in other words the influence of turbulent fluctuations on
the baseflow equations (1.2). They play a key role in the energy cascade of [63]. Their importance cannot
be overstated.

Indeed, taking out this tensor entirely and solving the system (1.2) using a naive nonlinear solver in
a turbulent regime on a coarse grid usually leads to a laminar flow, which does not accurately account
for the effect of the small scales and the energy cascade. Laminar flows, as opposed to turbulent flows,
may be formal solutions of system (1.2), but are never observed in practice as they become very unstable
at high Reynolds number.

On the other hand, it is possible to think of perturbation equations (1.3) as a linearisation of a base-
flow around an equilibrium point, and perform an instability analysis. Just like in many other mechanic
problems, one picks a baseflow that is known to bifurcate in some manner and look for instabilities that
could explain large scale behaviour. In that case, ∂tQ = 0 is often assumed, and equations (1.3) are
kept. The two approaches will be reviewed in turn.

Modelling the Reynolds stresses

Establishing a satisfying model so that uuT = g (Q) amounts to solving the closure problem and repre-
sents a whole field of research. Indeed, if a universal and accurate Reynolds Stress Model (RSM) was
found, RANS would be the norm and many CFD practitioners would be out of a job! In practice, only
tailored solutions exist, which can be found in reviews such as [65, 99].

Nonetheless, even with an imperfect model, as long as its evaluation remains numerically cheap, such
an approach yields insight on new design at low cost, which is enough for many engineers. Nothing
constrains g to be linear, in fact, many RSMs are not linear, as the one exposed in [61]. However, there
is a whole class of methods based on the specific assumption

uuT ≈ νt
(
∇U + ∇U T

)
. (1.4)

Equation (1.4) models the effect of turbulence as an additional viscosity. It amounts to considering
the effect of turbulence and the Kolmogorov cascade as a purely dissipative effect on the baseflow. With
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Figure 1.5: Reproduction of figure 8. of [106] studying an Iceland lake landslide showing sim-
ulated in blue compared to the measured maximum inundation in grey in (a). (b) show the
maximum run-up as a function of the azimuth from the centre of the lake. The result of the
model is shown in blue, posteriori optimised depth-integrated simulations are shown in green
and orange and the measured maximum inundation is shown in grey.

this formalism, turbulence never drives anything and only acts as a momentum sink, eating away at the
baseflow more efficiently than usual molecular friction would. While this assumption represents a very
restrictive vision of turbulence, it does reproduce a major consequence of its presence and often improve
the numerical stability of relations (1.2) as a side effect.

A range of models exist for the turbulent eddy viscosity νt, for instance the well-known k − ϵ model
introduced for the first time in [57] and quickly extended by [64]. This is a two-equation model that
emulates turbulent kinetic energy and dissipation at the same time. Other expressions include Cess’s
model derived in [111], a one-equation model designed specifically for channel flow, and the Spalart-
Allmaras (SA) model presented in [126]. Both are one-equation models, the former will reappear in
chapter 2, and the latter in chapters 3 and 4 of this thesis.

This approach is wildly used in the industry, as well as academic research. Indeed, implementing
relations (1.2) with an eddy viscosity (1.4) is fairly straightforward and can serve as a good tractable
model for a turbulent fluid that can be coupled with something else relevant to the case at hand, such
as a chemical reaction, solid mechanics or even nuclear emissions. Such methods are often well validated
and robust, even though they require special treatment near boundaries. So called “wall functions” are
often required to provide numerically required boundary conditions on different types of walls.

For instance, [106] performed a multi-phase computation on an Iceland lake landslide, using the
canonical eddy viscosity k− ϵ model in the fluid to attain Reynolds numbers as high as Re = 1010. The
fluid model was coupled with a granular model for the solid, yielding a three-phase problem. Figure
1.5 is taken from this study, which achieves an average inundation error of about eight metres. Such
an example demonstrates that RANS equations with an eddy-viscosity model can be enough to obtain
useful insight even for challenging problems. This study made use of the OpenFOAM library from [94] to
compute a baseflow with eddy-viscosity in a similar manner as the one developed in chapter 3 of this
thesis, though for a much larger and challenging multi-phase problem.

Instability approach

Instead of trying to obtain a baseflow Q, this approach is more interested in the fluctuations q around
a provided baseflow. In this mindset, the quantities of interest are the perturbations most amplified by
the baseflow. This amounts to looking farther than the averaged quantities for the first order of fluid
mechanics, searching amongst terms allowed to vary with time for the optimal turbulent configuration.

This approach is especially fruitful if the studied configuration is known to exhibit transitions. In this
case an instability-type study can provide valuable insight at very little cost when it comes to controlling
an important change in the flow, such as vortex breakdown as in [80] or the well-known transition to
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turbulence studied in [77] amongst many others.
Indeed, the strong nonlinearity inherent to the NSE is known to enable quite complex flow transitions

for a variety of regimes. In the case of vortex breakdown, a swirling flow can exhibit recirculation as
swirl intensity is increased, which can in turn give rise to new instabilities that would not exist without
a recirculation bubble. Likewise, the turbulent transition is associated with increased drag for aircraft,
but also additional pressure and resistance in pipe flows. The study of such transitions is as old as the
field of fluid mechanics, not only because clear-cut transitions are easy to characterise, but also out of
genuine engineering interest.

Nonetheless, this range of applications may seem constrained compared to the previous approach.
Modelling the Reynolds stresses makes it possible to address almost any flow for a wide range of regimes,
as literature on the subject is extensive, with many different models tailored according to the specific
use case. However, modelling the Reynolds stresses and performing instability analysis are not exclusive.
It is possible to compute a stationary baseflow using an eddy viscosity model in a regime known to be
transition-prone and perform instability analysis on it to better characterise this transition. This amounts
to computing an overall averaged solution, before examining more closely how turbulence might interact
with that baseflow. In fact, such is the approach followed in chapter 3 of this thesis.

There are many ways to think about flow perturbations, and the one followed here is more concerned
with fluctuations - q is defined as having zero ensemble average, not necessarily a small amplitude.
This is significant because most instability models keep the baseflow fixed, which amounts to neglecting
fluctuations feedback into the baseflow. Therefore, if q grows out of control, the resulting flow becomes
non-physical.

In the following, we will restrict the domain of interest further by focusing on linear methods. These
approaches take the spirit of RANS the farthest - modelling fluctuations in a linear, thereby cheap,
manner.

1.2 Various linear methods

This work is mostly concerned about RANS as a framework for instability analysis with the additional
assumption of linearity of the perturbation equations. Amongst many others, three approaches will be
reviewed in the following, namely stability analysis in section 1.2.2, optimal growth in section 1.2.3 and
resolvent analysis in section 1.2.4. Before moving on to these different techniques, a word on the hidden
costs of linear methods is warranted.

1.2.1 The price to pay for linearity

A common trait of linear methods is that they renounce the quest to find an exact representation of
the fluctuations q in time. Instead, they only concern themselves with the most amplified structures
by a given operator. This represents significantly less information than the full time evolution of the
fluctuations, and at the same time this represents one of the driving force behind their computational
appeal.

How much of a loss is it to go from exact time evolution to most amplified structures of turbulent
fluctuations? A known feature of turbulence aside from the chaotic behaviour is ergodicity. This property
means that if q lives in a space H1

Q, it will eventually visit all points of this space with equal probability.
There is no proof of this, yet it remains a recurring observation since the beginning of modern fluid
mechanics. More formally, given measures µH and µR of the relevant spaces, ergodicity may be written
as

∀C ∈ R+,∀V ⊂ H1
Q, µH(V ) = C ⇒ ∃I ⊂ R+|

{
µR(I) = C,

∀t ∈ I, q(t) ∈ V.
(1.5)

This property of turbulence has two important consequences. Firstly, fluctuations are expected to
have a limited memory. Indeed, since fluctuations explore all possible configurations over time, they
are expected to explore most probable configurations in finite time. Past this point, the probability of
turbulent fluctuations to return to a previously attained configuration increases. Therefore, redundant
information will occur when computing exact behaviour over long time-scales.
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Secondly, optimal configurations will be explored as part of the natural evolution of the fluctuations.
If all values are equally attainable, and most of them lead to nothing but some are strongly amplified,
it makes sense to give up on the unimportant parts of fluctuations from the beginning of the modelling
strategy. In other words, in conditions where it can be established that optimal configurations with a
much more drastic impact on the flow than most alternatives exist, these become the natural focus of
study.

As a side note, it might strike the reader as strange that the term ‘coherent’ be used for fields that
have zero ensemble average by definition. This term is used to contrast destabilising modes with the
chaotic picture of turbulent fluctuations in general. Indeed, the most interesting features of turbulence
are those that are ‘coherent’ enough to have significant energy and drive instability.

Last but not least, focusing on linear methods opens the way for Reduced Order Modelling (ROM)
of the flow, an approach which endeavours to correctly reproduce as much of the fluctuation energy as
possible using only a few modes obtained from linear methods. A general approach to achieve ROM at
accuracies relevant for most applications amounts, again, to solving the closure problem by obtaining a
reliable, accurate and cheap CFD method, albeit one limited to the framework of instability studies.

However, the choice of a linear formalism is from the onset fraught with risk. The NSE are not linear,
so it is possible for phenomena that will never be properly captured by a linear formalism to arise in
a real flow. Such phenomena accumulate and build on one another when considering very stiff coupled
equations such as flame behaviour. This is part of the price to be paid when taking the cheapest option
to the closure problem, and it is possible that this approach never manages to capture some important
configurations in a satisfying manner.

1.2.2 Modal stability analysis

Local temporal stability analysis

One of the most popular methods of modelling the fluctuations q is assuming that they satisfy

q(x, t) = q̂(x)eΩt + q̂∗(x)eΩ
∗t, Ω ∈ C. (1.6)

Note that equation (1.6) is not a Fourier decomposition as it allows for amplitude variation. Indeed,
it would amount to a Fourier transform in time if Ω was imaginary. In a two-dimensional case, such
methods will also often assume a parallel flow with no variation in x. Since the baseflow must satisfy
system (1.2), it cannot vary in any other direction than the one orthogonal to motion, U(x) = U(y)ex.
In this framework, local analysis equations go

q(x, y, t) = q̂(y)eκx+Ωt + q̂∗(y)eκ
∗x+Ω∗t, (κ,Ω) ∈ C× C. (1.7)

In itself, these assumptions are not enough to obtain a solution. One must also neglect the non-linear
terms in equation (1.3), which gives{

∇U û+ ∇û U +∇p̂−∇ ·
[(
∇û + ∇û T

)
/Re

]
= −Ωû,

∇ · û = 0.
(1.8)

In the following, the whole fluctuations system will be reformulated as a generalised eigenvalue
problem. Writing

L q̂ =

[
∇U û+ ∇û U +∇p̂−∇ ·

[(
∇û + ∇û T

)
/Re

]
∇ · û

]
, M q̂ =

[
û
0

]
, (1.9)

and further assuming a purely imaginary κ, which amounts to a Fourier transform in x, one can write
equation (1.8) in compact form

L q̂ = −ΩM q̂, κ = ik, (k,Ω) ∈ R× C. (1.10)

From there, one may pick a range of real axial wavenumber k and solve for associated complex Ω to
perform Local Temporal Stability Analysis (LTSA) as in [66, 71] and many others beside.

This process is also called modal analysis, and dates back to [108]. Historically, this is the first tool
in the physicist toolkit, passed on to us from a time when there was no “C” in CFD. A large real part
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of Ω is associated with strong instability and by contrast, finding ℜ(Ω) < 0 for all attainable Ω is an
indicator of a temporally stable flow for a range of wavenumber k.

LTSA has proven fruitful at capturing many behaviours of flows and has been applied for a variety
of configurations, for instance in [39] where it was applied to a rotating plug flow to better characterise
instabilities in such a configuration.

Local spatial stability analysis

Some authors are more interested in spatial growth. Unfortunately equation (1.10) is non-linear with
respect to κ as a κ2 term appears from the viscous term. This can be circumvented in the high Reynolds
number limit by assuming an inviscid flow, which removes the viscous term and leads back to a generalised
eigenvalue problem

ΩM q̂ + L q̂ = −κM q̂,Ω = iω, (κ, ω) ∈ C× R. (1.11)

A more general approach that retains the viscous term involves the so-called companion matrix

method and implies extending the state vector q̂ into q̃ =
[
q̂T κq̂T

]T
. This allows a reformulation of

the problem as

(
κ2A 2 + κA 1 + A 0

)
q̃ = ΩM q̃ ⇔

([
A 0 0
0 − I

]
− Ω

[
M 0
0 0

])
q̃ = −κ

[
A 1 A 2

I 0

]
q̃. (1.12)

In equation (1.11) or (1.12), it is possible just like in LTSA to pick a range of real ω and solve for
associated complex κ as in [72]. Such an approach can be described as Local Spatial Stability Analysis
(LSSA).

Absolute and convective instability

For simple flows, it may be possible to do away with the vectors completely and obtain an explicit
dispersion relation linking κ and Ω, keeping both these numbers complex. Such an approach is best
qualified as Local Spatio-Temporal Stability Analysis (LSTSA). Formally, this amounts to finding Ω(κ)
so that for a set of κ ∈ C, equation (1.11) is always satisfied regardless of q.

It is not always possible to obtain a dispersion relation Ω(κ) for a real flow, nor can it be solved for
any arbitrary wavenumber κ, but some Ω(κ) relations can be surprisingly tractable analytic functions.
For instance, an explicit dispersion was used to characterise rotating plug flow instabilities and used to
derive limit behaviours in [70]. In general, the wavenumbers satisfying

κ0 ∈ C|∂κΩ(κ0) = 0 (1.13)

are of special interest. The quantity ∂κΩ is called group velocity and pilots the mode’s behaviour -
|∂κΩ| > 0 means that the fluctuations are moving and will eventually be convected away at the domain
boundary, even though they may be growing rapidly with respect to time. In this case, the flow is at
worst convectively unstable, even if ∃κ0 ∈ C|ℜ(Ω(κ0)) > 0. However

∃κ0 ∈ C|

{
∂κΩ(κ0) = 0,

ℜ(Ω(κ0)) > 0.
(1.14)

is associated to absolute instability, or unbridled growth of the perturbations at every point of the
domain, see figure 1.6. This is called the Briggs-Bers pinching criterion as it was derived in [14] in the
context of plasma physics.

The dispersion relation Ω(κ) can be hard or even impossible to compute for an arbitrary parallel
baseflow profile. Thankfully, there exists an equivalence between the Briggs-Bers pinching criterion
and a time march given specific initial conditions. As established in [19, 28], it is possible to link the
linear evolution of an impulse along relations (1.8) to absolute or convective instability. Intuitively, an
impulse contains many different spatial wavelengths and therefore taking the time-evolution evolution of
an impulse is akin to exploring many κ at once. If the linear evolution of the impulse leads to oscillations
propagating across the domain in finite time, the flow is absolutely unstable.
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Figure 1.6: Restitution of figure 1. of [52] illustrating the fundamental difference between
convective (b) and absolute (c) instability.

Another way to think about flow behaviour in this formalism is the so-called critical nature of the
flow. Criticality of a flow is a concept taken from compressible literature defined in [23] as follows. A
flow is considered subcritical if a wave with negative group velocity can arise. Conversely, a supercritical
flow only tolerates waves convected downstream.

Subcritical behaviour is a necessary but not sufficient condition for absolute instability, while su-
percriticality implies at most convective instability. In itself, flow criticality gives no information on
fluctuation growth, only on the possible direction of wave propagation.

From local to global analysis

Assuming a parallel flow is a very strong hypothesis. Not only does it neglects Uy, it also imposes no
baseflow variation in x and periodic boundary conditions for fluctuations in the x direction. Doing LTSA
reduces the problem to an infinitesimal slice of flow that is evolving with respect to x as a sinusoidal
wave, oscillating in time, and either growing or decaying exponentially.

In an effort to relax the parallel flow hypothesis, an approach called weakly non-parallel analysis was
developed. The gist of this method is to assume a slowly varying flow and to write equation (1.7) locally
for different planes of constant x. One can then extrapolate a solution throughout the entire domain by
combining the contributions of different waves, each computed in a LTSA framework at a slice. This
method is applied for instance in [92]. However, this does not alleviate the constraints on fluctuations
boundary conditions or on the baseflow.

Some authors such as [80] do away with equation (1.7) completely and perform so-called Global
Temporal Stability Analysis (GTSA) throughout the entire domain at once. Removing the spatial
wavenumber finally allows the fluctuations to grow on a baseflow evolving in x. This method requires
more computing power, but it has gained traction in the community as algorithms and computers continue
to progress.

An example of a GTSA study that is very close to chapter 3 of this thesis is presented in figure 1.7.
For a swirling flow where increasing swirl leads to a transition with the formation of a recirculation bubble
through a process called vortex breakdown, GTSA can help understand this transition by singling out
the modes that contribute most to the instability. These are visible on the lower half-planes numbered
4-5-6 in figure 1.7 and can represent a control objective to pilot this transition.

A subtle impact of moving from a LSTSA to GTSA is the loss of “readability”, so to speak. In practice,
it is often possible to associate every term in a dispersion relation Ω(κ) with a physical mechanism.
LTSA modes also require interpretation as phenomena interact, but have a tendency to separate modes
depending on the driving mechanism and its associated wavelength. On the other hand GTSA provides
an optimal eigenmode with no explanations attached. It is up to the physicist to understand what is
driving this mode.

An approach developed to address this and explain GTSA modes a posteriori is called structural
sensitivity or wavemaker analysis. It practice, it consists of an outer product, multiplying component-
wise momentum modes of the adjoint stability operator and standard stability modes. This provides
a 3 × 3 sensitivity tensor which indicates areas where the fluctuations are most sensible to a baseflow
change, but also hints at the most important interactions with regards to a mode’s growth.



1.2. VARIOUS LINEAR METHODS 11

Figure 1.7: Reproduction of figure 3.1 of [25] concerned with study of a swirling round jet at
Re = 100. In the top left corner, minimum axial velocity on the axis minUx(x, 0) as a function
of swirl intensity S is presented. Growth rates σ = ℜ(Ω) as a function of swirl are visible in
the bottom left corner when the flow is absolutely unstable. Unstable region is in grey in these
curves. x − r planes of the baseflow vorticity and isolines over (x; r) ∈ [−1; 9] × [0; 5], with
unstable eigenmodes on the lower half-plane if available, are presented on the right.

For example, in a flat plate flow, a sensitivity analysis giving a strong interaction between components
of y and z in the adjoint and x in the response is indicative of the lift-up phenomenon, which will be
explored in more details in section 3.1.1.

This method was introduced in [47] and put in practice in [105]. As an illustration of wavemaker
analysis, one can see in figure 1.8 that the region in front of the breakdown bubble is especially significant
for the counter-rotating spiral mode at m = −1. Indeed, a strong growth rate is observed there, especially
for diagonal radial and azimuthal components.

Method limits

It is also important to point out that this method can only address self-sustaining structures in the
long time limit. By design, it is unable to address fluctuations responding to exterior forcing. Another
important drawback of this approach comes from the non-normality of the NSE, which means its eigen-
values can be non-orthogonal. This decreases the utility of a modal approach, as even a modally stable
non-normal system can exhibit significant transient growth.

Figure 1.9 illustrates this phenomenon. An aptly chosen initial condition may exhibit substantial
transient growth even in a temporally stable non-normal system. This is a problem when interpreting
modal stability results when doing CFD of turbulent flows, when operator L is never self-adjoint or
normal. Temporal stability analysis results always stand at long time scales, but important transient
effects are simply not captured by this approach. As pointed out in section 1.1.2, this can be enough to
cast doubt over the relevance of the entire instability approach when feedback into the baseflow equations
is neglected.

1.2.3 Optimal growth

Another popular method of turbulent flows study is called optimal growth. This approach addresses a
major shortfall of the previous one by accounting for time dependence. Starting from equations (1.8),



12

Figure 1.8: Restitution of figure 4. of [105] illustrating real parts of components of the sensitivity
tensor mmH = qqH . The plot colours scale from -2256 (blue) to 2256 (red). This study concerns
the Grabowksi-Berger vortex detailed in section 4.4.1 for Re = 200. The modes were decomposed
azimuthally and only the m = −1 mode is displayed here for a swirl intensity S = 0.915. The
black line show the breakdown bubble.

Figure 1.9: Restitution of figure 2. of [118] illustrating transient growth of a modally stable
non-normal system. f = Φ2−Φ1, time evolution goes from left to right, Φ1 reduces by 20% and
Φ2 by 50% at every iteration.
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one may take the divergence of the velocity equation and obtain the Poisson formulation for pressure

∆p = −∇ · (∇U u+ ∇uU) (1.15)

through use of the fluctuation continuity equation∇·u = 0. Injecting this back into the velocity equations
eliminates pressure and gives

∂tu = L u. (1.16)

This system is deceptively similar to (1.10), but presents a very important difference. The mass
matrix M that was required in relations (1.10) to account for the incompressibility equation is gone.
Without it, one may directly solve the time-varying system given initial conditions u0 as

u = etL u0. (1.17)

This allows the quantification of maximal fluctuations growth at time t1 as

G(t1) = max
u0

∥u∥
∥u0∥

=
∥∥∥et1 L

∥∥∥ . (1.18)

From there, it is natural to focus on the fluctuations that amount to the greatest disturbance at time
t1, namely

ut1 = argmax
u0

∥u∥
∥u0∥

. (1.19)

The latest formulation is close to an eigenvalue problem. Indeed, diagonalising L instantly solves
system (1.16). However, even if equation (1.16) is purely linear, the inclusion of finite time in equation
(1.19) does capture some transient phenomenon. Consider for instance a case where operator L has
a clearly dominant eigenvalue Ω1 with a large real part. This mode is expected to dominate the long
term dynamics because of its largest growth rate, and this is readily supplied by the temporal stability
analysis detailed in 1.2.2. However, if one substitutes for instance t1 = π/2ℑ(Ω1) in equation (1.19) this
mode is expected not to contribute to u at t1, and therefore not to solve (1.19). This example proves
that fluctuations of optimal growth rate with final time t1 are non-trivial.

This method is outlined in more details in [119] and an example of its application may be seen in
[104]. Figure 1.10, taken from the latter work, shows two peaks for every case, low wavenumber peaks
that collapse in inner units and another, significantly weaker peak collapsing in outer units. Both these
peaks are associated to streamwise vortices amplified into streamwise streaks through the lift-up (LU)
mechanism that will reappear in chapter 3.

1.2.4 Resolvent analysis

The resolvent method is more convenient using a Fourier decomposition in time

q(x, t) =

∫ ∞

−∞
q̂(x)e−iωtdω. (1.20)

Then, the previous expression may be injected into equation (1.3), designating the non linear terms
as forcing f̂ {

−iωû+ ∇U û+ ∇û U +∇p̂−∇ ·
[(
∇û + ∇û T

)
/Re

]
= f̂ ,

∇ · û = 0.
(1.21)

Similarly to GTSA, system (1.21) can be put into matrix form(
L − iωM

)
q̂ = B f̂. (1.22)

Indeed, the operator L is different from L associated to the optimal growth method from equation
(1.16) as well as L in LSSA from equation (1.11), but is identical to the GTSA operator in equation
(1.10).

Define B the extensor matrix so that
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Figure 1.10: Reproduction of figure 2. of [104] concerned with optimal growth of a channel
flow of half-height h. Maximum growth rates for streamwise constant perturbations over total
calculation time Gmax are represented as a function of the spanwise wavenumber for the friction
Reynolds numbers Reτ ∈ {500, 1000, 2000, 5000, 10000, 20000} (from right to left on plot (b))
with a vertical dotted line at the optimal spanwise wavenumber β+ = 0.0683. (a) and (b) differ
only in abscissa scaling, the former being in outer and the latter in inner units. See section 2.3.4
for more information on inner scaling.

B f̂ =

[
f̂
0

]
. (1.23)

In this manner, the incompressibility equation remains unforced. Indeed, there are no nonlinear
terms there, and strict respect of incompressibility for both baseflow and fluctuations is crucial to flow
physics. From relation (1.22) one obtains directly

q̂ =
(
L − iωM

)−1
B f̂. (1.24)

Introducing extractor H so that H q̂ = û, equation (1.24) finally yields

û = H
(
L − iωM

)−1
B f̂ ⇔ û = R f̂. (1.25)

The operator on the right-hand side of equation (1.25) is called the resolvent operator as per resolvent
formalism, first established by [38] and crucial to modern operator theory. It is also sometimes charac-
terised as a transfer function that linearly associates forcing to response and thus concisely describes the
flow system.

Looking at equation (1.25), the reader could be forgiven for being unimpressed. After all, the
introduction of unknown forcing terms f does little to lift the closure problem and makes the equation
overall intractable.

However, that would be missing the main advantage of this method. Strictly speaking, relation (1.25)
remains exact. Using Singular Value Decomposition (SVD), which can be thought of as a generalisation
of usual operator diagonalisation, it is possible to obtain

R =
∑
i

σ(i)ψ(i)ϕ(i)H . (1.26)

This decomposition provides the three quantities of interest, namely
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Figure 1.11: Copy of figure 5. of [101] concerned with resolvent analysis of a turbulent jet flow at
Re = 400, 000. On the top (a) are SPOD modes, bottom (b) are resolvent modes at ω = 0. On
the left, the m = 1 azimuthal decomposition is presented and the m = 3 on the right. Red/blue
(respectively yellow/green, magenta/cyan) are isosurfaces of ξ(1)x and ψ(1)

x (resp. (∇× ξ(1))x and
(∇ × ψ(1))x, (∇ × ϕ(1))x). The isosurface level is 25% of maximum and minimum for SPOD
modes and response modes, 5% for forcing vorticity at m = 1, 15% at m = 3, 50% for response
vorticity.

1. The gains σ(i), which can be understood as a ratio of perturbation kinetic energy obtained over
non-linear terms work required to produce them. They are all real positive numbers, which makes
it possible to order modes from the most amplified by the linear operator, associated to σ(1), to
the least amplified.

2. The dominant response mode ψ(1) represents the structure which can be expected to arise in the
flow fluctuations around the fixed point Q, provided σ(1) ≫ 1 and σ(1) ≫ σ(2).

3. The optimal forcing mode ϕ(1) gives the normalised least energetic stimulation that will give rise
to ψ(1) through the linear operator. It does not correspond to favoured flow behaviour, but may
still be useful from an engineering perspective to damp or trigger a specific mode.

This method is fairly modern in the field of fluids mechanics, appearing for the first time in [85] and
publicised in [79].

It has been proven in [13, 135] that response modes ψ(i) collapse onto Spectral Proper Orthogonal
Decomposition (SPOD) modes ξ(i) for an infinitesimal resolution. This is significant because any subset
of the first SPOD modes is guaranteed to be the most complete representation of the flow energy with
regards to the subset dimension. In other words, resolvent analysis provides an accurate representation
of the most relevant turbulent fluctuations relative to energy, which is particularly desirable for ROM.
This comparison will be revisited in chapter 2. One should note that no similar theoretical link between
experiments and linear stability analysis modes obtained by LTSA, LSSA, LSTSA or GTSA.

This important property is illustrated in figure 1.11, where one can see the similarities between the
isocontours of ξ(1)x and ψ

(1)
x as well as the modes axial vorticity. Also clearly visible is the formation

of streaks, with localised forcing at one end of the domain leading to the formation of long elongated
response structures via the LU effect. This will be explored in more details in chapter 3.

Contrary to the previous method, this formalism allows for spatial differentiation of forcing and
response. This separation of scales is often crucial for engineering purposes, and a very desirable feature
in turbulent flows that are known to be susceptible to multi-scale effects. Indeed, if the method is
implemented throughout the domain, it is possible to capture the effect of forcing localised at one end
of the domain on response at the other end.

Most authors perform resolvent calculations globally. This leads to the same “readability” problem
as above, and led authors such as [101] to also use sensitivity analysis by computing the outer product
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Figure 1.12: Magnitude of the baseflow studied in 3.4.3.

ϕ(i)ψ(i)H and studying regions of overlap between forcing and response component by component. This
is relatively straightforward for incompressible flows since ψ(1) and ϕ(1) live on the same space.

1.3 About this work

This thesis was financed throughout by the Direction Générale de l’Armement (DGA) of the French
Armies Ministry.

1.3.1 Objectives

In this thesis, resolvent analysis is seen as a predictive method - a way to access coherent structures of
a turbulent flow given a baseflow.

This thesis will focus on resolvent modes to study coherent structures in turbulent flows. Even though
the advent of the resolvent method is a relatively recent happening in the fluids mechanics community,
it has led to a great deal of interest and been the subject of several other thesis papers such as [11, 45,
50, 85, 100, 113, 130, 133]. Looking at this impressive list of contributions, it is legitimate to wonder if
there remains anything of interest to obtain from this method. The author is convinced this is the case,
and hopefully by the end of this manuscript the reader will too.

This thesis aims at two goals:

1. Improve resolvent accuracy and relevance at low frequencies,

2. Investigate the influence of swirl in a turbulent jet using resolvent analysis.

The first point derives from an observation made in [124], namely that the resolvent method performs
significantly better at high frequencies. Therefore, an original idea was explored, which strive to take
the resolvent operator to a higher order, using techniques taken from Reynold-Stress Modelling to add
the fluctuations correlation tensor uuT to the resolvent state vector.

This idea was directly linked to the next point, as the low-frequency regime is essential for the lift-up
effect, which is expected to play an important role in turbulent jets. Therefore, it seemed appropriate to
develop a tool that could tackle the regime of interest first.

Resolvent analysis on jets is a recent endeavour, as will be outlined in chapter 3, yet it has nonetheless
already enabled notable progress in the field. Swirling jets such as the one displayed in figure 1.12 are
known to display new kinds of instabilities with respect to straight jets, and will be the subject of focus
in this thesis.

Therefore, this thesis’ second objective relates to a more direct application of resolvent analysis to
a category of flows where it has not been commonly used. New instability mechanisms such as the
centrifugal force are expected to manifest as the swirl increases, and shear instability also present in
straight jets is expected to change its shape. The inclusion of a nozzle in the calculations could also
bring about changes in the resolvent modes structure.



1.3. ABOUT THIS WORK 17

1.3.2 Outline
This thesis is structured around the two articles produced during my PhD. The first is published at [24]
and details an extension of resolvent analysis and its application to channel flow in chapter 2.

The second contribution is a Theoretical and Computational Fluid Dynamics draft in chapter 3. At
the time of writing, the manuscript has passed the first round of reviewing.

The first publication represents the first year of the PhD and addresses the first objective, the second
one is the result of the last two years dealing with the second objective. Both publications are not
reproduced in extenso and have been adapted to harmonise them with the rest of the manuscript.

These publications contain related literature reviews as well as reproducibility information, but do
not delve on the technicalities of the developed code. Chapter 4 will present additional motivation and
detail design choices that, while essential to day-to-day work, were not overly influential on scientific
conclusions and therefore deemed unworthy of attention in the publications.

Finally, chapter 5 will conclude this thesis.
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Chapter 2

A second order resolvent formulation
for the analysis of turbulent flow
structures

All models are wrong.
But some are useful.

George E. P. Box

This chapter is an attempt at improving the accuracy of resolvent-based predictions by including
velocity correlations in the linear model. Closure assumptions for unresolved nonlinearities are thus
pushed back to a higher order. Turbulent channel flow is considered as a test case: response and forcing
modes obtained from singular value decomposition of the resolvent model are compared to SPOD modes
extracted from a DNS database. The performance of the approach is also measured against previous
resolvent-based models. The new model does not yield significant global improvement, but does improve
predictions in some regions. Further work on the method should target the linear modeling of the
velocity-pressure gradient correlation tensor.

2.1 Literature review

Incompressible turbulent flows are very diverse and cover a broad range of applications. However,
they are also notoriously difficult to model. In this work the choice was made to solve the NSE in
frequency space instead of approaching time-dependent solutions directly. Here, a novel spectral reduced-
order approach to model incompressible turbulent flows will be presented. This method is derived from
resolvent modeling with an input from RSMs. The resolvent approach detailed in section 1.2.4 proposes
a linear model of a fully turbulent flow at a given frequency. Interpreting nonlinearities in the NSE
as a forcing input into the linearized fluctuation equations, the most amplified response structures are
taken as a prediction for energetic turbulent flow structures, for instance in [53, 135]. This approach
is most often applied in frequency space and comes with all the advantages and drawbacks of a linear
model, namely inability to account for all terms, simplicity of implementation, as well as computational
efficiency. RSMs originate from a theoretical attempt to improve the quality of RANS models by adding
second order terms in the relevant equations as in [103, chapter 11].

Resolvent analysis has already demonstrated its ability to accurately predict large-scale structures in
turbulent channel flow at a given frequency; [82] already exposed excellent agreement between DNS data
and a combination of twelve resolvent modes with weights derived from an optimisation problem com-
puted at every wavenumber in a spectral framework. This excellent correlation persists throughout the
DNS energy spectrum and across the channel without any empirical modeling. Quantifying complexity
in the same study clearly shows the main advantage of reduced-order modeling - indeed, the compu-
tations involved with the resolvent model are more than three orders of magnitude cheaper than the
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relevant DNS, and they nonetheless produce high-quality estimations of the fluctuations. Despite these
encouraging results, this approach provides no information on nonlinear terms in the original equations,
which can also represent an engineering objective.

Indeed, other authors have given thought to the idea of a low-order modelling of turbulent flows that
would be more cost-efficient than DNS - good enough for engineering purposes, and orders of magnitude
less expensive. [2] considers a stratified channel flow and prove that on the limited range of scales
considered, a resolvent model manages to reproduce an energy budget similar to that of a DNS.

As part of the effort to improve resolvent model performance for wall-bounded flows, [114] apply a
decomposition of the velocity field in solenoidal and non-solenoidal parts in the Orr-Sommerfield-Squire
(OSS) formulation. Exact Coherent States (ECS) for simple Couette and Poiseuille flows were used to
validate the model’s performance. An astute method to explicitly compute interaction coefficients as
part of an optimisation problem led to a marked increase in performance. A single resolvent mode was
demonstrated to accurately represent some ECS solutions. Finally, a characterization of nonlinear terms
was performed using the DNS of a channel flow, but stopped at the conclusion that its spectral signature
is non trivial. The most important drawback of this approach is that the OSS formulation makes the
corresponding nonlinear terms much harder to interpret and model, thus limiting the possibility for
further model improvement.

[1] computed SPOD and resolvent modes for a wide range of wavenumbers from a DNS database.
That study avoids the use of eddy viscosity and presents large discrepancies between SPOD and resolvent
modes. Possible explanations include different physical phenomena which dominate various flow regions,
such as the lift-up effect which seems to produce favourable conditions for model and data agreement.
Figures 3 and 4 of [1] display the correlation between SPOD and resolvent modes which clearly illustrate
the appeal of a new reduced-order method that would be more general than the current state of the art.

[88] present good agreement between a DNS power spectral density (PSD) and a modeled one,
using eddy viscosity and a resolvent formalism in a channel flow, as well as an engineered forcing that
corresponds better to true flow statistics than white-noise.

More recently, [89] detailed how to obtain a “coloured” forcing term more representative of flow
physics. This approach results in a tool with predictive value, though its generality is somewhat lessened
by the use of an eddy viscosity model.

[5] present a resolvent-based estimation of turbulent channel flow using wall fluctuations as an input.
This work also highlights the importance of “coloured” forcing in the NSE, as white-noise forcing leads
to large fluctuations in the logarithmic layer.

Another recent study by [128] stresses how the addition of eddy viscosity makes a significant difference
in the resolvent model’s ability to properly capture flow energy. Mainly concerned with the latter
quantity, [128] outline the balance between production, dissipation, and nonlinear transfer of turbulent
fluctuation kinetic energy.

Indeed, the ability of eddy viscosity to improve resolvent models, making it possible to reproduce in
such a formalism fine structures close to the wall present in DNS is desirable in channel flows, as stressed
by [129]. Although the addition of eddy viscosity makes the resolvent model more robust across wave
speeds, the conclusion of [129] is that a scale-dependant eddy viscosity should be considered.

A drawback of resolvent methods listed above is their inability to predict nonlinear terms repre-
sentative of the real flow. Indeed, the analysis of such a linear operator provides response modes of
physical quantities and corresponding optimal forcing terms that represent flow nonlinearities. These
forcing terms are obtained according to optimisation relative to the linear operator without regard for
flow physics. Therefore, they are not representative of physical flow quantities. In an effort to address
this limitation and obtain the “coloured forcing” directly in the new approach, a usual resolvent model
for the velocities was coupled with equations for velocity correlations such as to obtain a “second order
resolvent model” that would accurately account for both dominant order response and nonlinear terms
in the NSE, called forcing terms.

This idea can to some degree be found in the stochastic structure stability theory of [36]. Indeed,
this work details how to obtain a linear model for a turbulent mean flow and the associated Reynolds
stresses where both evolve in time. [36] acknowledges that for large Reynolds numbers the method
becomes highly intractable, preferring instead a reduced order model which uses a few realisations of the
fluctuations forced with random white noise to approximate non-linear terms in the mean flow equations
as the system becomes large.



2.2. METHODOLOGY 21

Another similar approach goes by the name of generalised quasilinear approximation. This formalism
explicitly introduces a range of frequencies that are allowed to interact with one another. [73] explains how
this is a generalisation of the quasilinear approach where a single frequency is considered independently
of all others. Indeed, in order to close the model, some interactions between waves are cut off from the
generalised model. This approach does not always fare well in describing the whole system, but almost
always constitutes an improvement compared to the classical quasilinear approximation.

This paper is organised as follows: section 2.2 presents the methodology of usual resolvent analysis
as well as the additional equations specific to the new approach, section 2.3 gives more details about the
parameter choices and test dataset, section 2.4 presents two linear systems before linking them together,
section 2.5 exhibits results across the wavenumber space and details a specific set of parameters. Finally,
section 2.6 summarises the study.

2.2 Methodology
This section aims at laying out necessary formalism and equations. Starting from the NSE and a given
mean flow, analytical tools to obtain insights into the coherent structures of the flow will be built.

As a side-note, it is accurate to say “mean flow” here because a DNS calculation was used in this
case, see section 2.3.4.

The first goal is to obtain a linear system u = Rf which transforms a given forcing f representing
non-linear terms of the relevant equations into a fluctuation velocity field u through a resolvent operator
R . The standard approach of defining the linear resolvent operator, as widely applied in the recent
literature, is presented in section 2.2.1. The proposition for an extended linear resolvent operator is
introduced in section 2.2.2. Subsequently, section 2.2.3 will explain how a linear system can be exploited
to obtain its most amplified fluctuations and optimal forcing.

2.2.1 First order
Recall the incompressible perturbations equations 1.3 with τ = uuT , and total derivative defined as
Du = ∂tu+∇uU{

Du+ ∇U u+∇p− 1
Re∆u = −∇ ·

(
τ − τ

)
∇ · u = 0

⇔
(
∂tM + L u

)
q
u
=

[
f
u
0

]
. (2.1)

Since the term ∇ ·
(
τ − τ

)
is nonlinear in the fluctuation quantities q

u
=

[
uT p

]T , it may be
interpreted as forcing as per [82].

Note that the first line of the linear system (2.1) relates to the incompressibility condition, which
is not forced. Resolvent analysis thus circumvents the closure problem by labelling unclosed terms as
forcing. Conceptually, one goes from trying to solve for q

u
=

[
uT p

]T to looking for coherent structures
favoured by the linear operator L u.

2.2.2 Second order
The key proposition is to model the τ tensor, in an attempt to increase the accuracy of the resolvent
model. From the second line of (2.1) one obtains

(
D − 1

Re
∆

)
τ + τ ∇U T + ∇U τ =− u∇pT −∇puT − 2

Re

(
∇u

)T ∇u
− u

[
∇ ·

(
τ − τ

)]T −∇ · ( τ − τ
)
uT . (2.2)

The right-hand side of equation (2.2) is considered to be made up of forcing terms denoted f , their
common trait being their nonlinearity with respect to u, p and τ .

This is not satisfying, as the forcing terms are numerous and known to play an important role in flow
physics. [103] details the role of the velocity-pressure gradient tensor u∇pT especially, which appears
critical in redistributing energy amongst perturbation components. It was attempted to model some of
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these terms linearly, but to no avail. Inspiration from RSMs as in section 1.1.2 such as [33, 62] did not
yield satisfying results. As reported in section 1.1.2, many RSMs such as those reported in [55, 65, 81,
99] are not linear which makes their use limited in this formalism.

Replacing the symmetric f and τ tensors with vectors fv and τv, which each contains six indepen-
dent tensor components, equation (2.2) can be cast as a linear system(

∂t I + L τ

)
τv = fv. (2.3)

2.2.3 Resolvent analysis

Recall the approach detailed in section 1.2.4, which gives response and forcing modes. This approach
can be generalised using B , H and L so that u = Rf . Specific matrices will be discussed later for the
relevant systems.

The SVD of the R matrix, R =
∑
i σ

(i)ψ(i)ϕ(i)H , yields ϕ(1) and ψ(1), optimal modes in the sense
that they represent the forcing/response pair associated with the highest gain.

This entire process is not new in the case of system (2.1) and has already been performed in [1, 89],
amongst others.

2.3 Test case: channel flow

2.3.1 Flow configuration

The specific case of a fully developed channel flow between two infinite plates, separated by a distance
2Ly is studied. The presence of viscosity imposes u = 0 at both walls. This naturally translates into
τ = 0 at the wall. Even though there is physical motivation to impose additional boundary conditions
for τ , the order of the system prevents the addition of further constraints.

For a wide range of parameters, forcing and response structures are concentrated near the channel
walls, with very weak coupling between the top and the bottom halves of the channel. This weak coupling
leads to poorly conditioned numerical systems when the full channel height is resolved. To address this
problem, following [1], only the half-channel height was resolved, and symmetry conditions imposed at
the centre line as follows.

With x streamwise, y wall-normal and z spanwise directions, the mean flow goes as U(x, y, z) =
U(y)ex with U a function made strictly even across the channel. If uz is an even (respectively odd)
function, and thus symmetric (resp. anti-symmetric) across the channel centre line, then it follows from
equation (2.5) that p is an even (resp. odd) function. In turn, this gives odd (resp. even) uy, and even
(resp. odd) ux.

The parity of the six components of τ is constant - uxuy and uyuz are always odd, uxuz is always
even, regardless of the parity of uz. For the sake of conciseness, the present analysis is limited to modes
with even uz, yet it was verified that this choice has little influence on results. Symmetry was enforced a
posteriori, after DNS calculations and singular value decomposition, as in [1]. In the following sections,
only a half-channel was studied.

2.3.2 Fourier transforms

Fourier transforms in space and time for all flow quantities go as

q(x, y, z, t) = q̂(y) exp(ikxx+ ikzz − iωt) (2.4)

Note that all terms depending solely on averaged flow quantities disappear through Fourier transform at
non-zero wavenumber. This is crucial because the forcing of equation (2.1) becomes f

u
= −∇ · τ and

the link with system (2.3) is now apparent.
δji is taken to be the Kronecker delta and dU = dU/dy the mean flow shear. The condensed notation

F = −iω+ ikxU − (∂2y − k2x− k2z)/Re is also introduced, so that in the channel flow case, new directional
formulations of equations (2.1) and (2.2) are obtained
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Fûj + dUδxj ûy + ikxτ̂jx + ∂y τ̂jy + ikz τ̂jz + ˆ∂jp = 0, (2.5)

F τ̂ij + dU
(
δxi τ̂jy + δyj τ̂iy

)
= f̂ij . (2.6)

2.3.3 Wall-normal discretisation

Discretisation of the full channel in the wall-normal direction was performed using n = 129 Cheby-
shev–Gauss–Lobatto nodes, with y = 0 being the centre of the channel,

∀k ∈ N, k ≤ ny, yk = Ly cos
kπ

n
, (2.7)

to allow for more points closer to the channel wall. The operator ∂ y is implemented to spectral order,
using Chebyshev polynomials following [109]. A test case for convergence relative to n is detailed in
section 2.5.2.

In the following, the notation d will be used to denote operators discretised using this spacing.
One may now compute an integration matrix W d so that ûHd W dûd ≈

∫ Ly

−Ly
∥û∥2 (y)dy in the chosen

discretisation. Modes computed using the process detailed in section 2.2.3 satisfy

ϕ(i)H
d

ϕ(j)
d

= ψ(i)H

d
ψ(j)

d
= δij , (2.8)

so they are orthonormal for an equal spacing discretisation only. This can be corrected as follows.
Using the Cholesky decomposition W d = C T

d C d, the resolvent is transformed as

R̃ d = C dR d C
−1
d . (2.9)

Then one can then take the Singular Value Decomposition (SVD) of the R̃ d matrix, R̃ d = σ
(i)
d ψ̃

(i)

d
ϕ̃
(i)H

d
,

and obtain the true modes of the system ϕ(i)
d

= C −1
d ϕ̃

(i)

d
and ψ(i)

d
= C −1

d ψ̃
(i)

d
. These new modes are

indeed orthonormal with the chosen spacing, ϕ(i)H
d

W dϕ
(j)

d
= ψ(i)H

d
W dψ

(j)

d
= δij .

2.3.4 DNS dataset

The analysis is based on spectral DNS data of a channel flow. This data was used to extract the time-
averaged mean flow and to compute the leading SPOD modes, against which the linear model results
will be compared as per [13, 120]. This dataset has been validated in previous studies [1, 89].

Two Reynolds numbers are defined as

Re =
UbulkLy

ν
and Reτ = uτRe, (2.10)

where Ubulk is the mean velocity, Ly is the channel half-width, ν is the kinematic viscosity, and uτ =√
max(dU)/Re is the friction velocity. Inner scalings are further defined as x+ = x·uτ/ν and u+ = u/uτ .

Two DNS datasets are used, with (Re = 2, 800 which gives Reτ = 180) and (Re = 10, 000 meaning
Reτ = 550).

The time-wise Fourier transform necessary for SPOD computation was performed using the Welch
method with a second order sinusoidal window of size N = 256, with 75% overlap. The Welch transform
process also featured a force correction to counter the spurious influence of the windowing function
established in [76]. More information on chosen DNS parameters can be found in table 2.1, which
presents the size of the box in streamwise and spanwise directions Lx and Lz, the grid steps in these
directions in inner scaling h+x and h+z , as well as the smallest and largest cells in the normal direction
minh+y and maxh+y .
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Reτ Re Lx Lz h+x h+z minh+y maxh+y
179 2,800 4π 2π 11.78 5.89 5.42 · 10−2 4.42

Table 2.1: Characteristic parameters of the DNS database.

2.4 Final linear systems

In the previous two sections a variety of transformations and hypotheses were described that introduced
heavy notation. For the rest of this study, the hat will be removed from all Fourier coefficients (see
section 2.3.2), as well as the d (see section 2.3.3) subscript and v (see section 2.2.2) superscript in the
interest of clarity.

In this section, the final form of the linear systems of interest in sections 2.4.1 and 2.4.2 will be
brought to light. Section 2.4.3 explains the procedure for the comparison between linear model results
and leading SPOD modes of the DNS data.

2.4.1 First order

Equation (2.5) can be directly discretised to yield a 4n× 4n discrete system, where [dU ]ij = δijdUi and
[F ]ij = δijFi, 

F dU 0 n ikx I n
0 n F 0 n ∂ y
0 n 0 n F ikz I n

ikx I n ∂ y ikz I n 0 n



ux
uy
uz
p

 =
(
L u − iωM

)
q
u
=

[
f
u

0n

]
. (2.11)

The extensor B u and extractor H u operators therefore are non-square identity matrices,

B u =

[
I 3n

0 n

]
, H u = B T

u . (2.12)

So far, this formulation is not novel and appears in [1, 5, 89, 135]. The process detailed in sections
2.2.3 and 2.3.3 yields a resolvent matrix R 1rst order for the so-called “first order system”, as well as
associated response modes ψ(i)

1rst order
and forcing modes ϕ(i)

1rst order
.

The currently most successful resolvent-based modelling of energetic coherent structures in channel
flow uses a first order formulation (section 2.2.1) with an eddy viscosity model, as argued in [88]. For
more information on existing models, please see section 1.1.2. For comparison, the Cess model employed
in reference studies [89, 129] was used

νt
ν

=
1

2

√
1 +

κ2Re2τ
9

(1− y2)2 (1 + 2y2)
2

[
1− exp

(
−Reτ

1− |y|
A

)]2
− 1

2
, (2.13)

using the friction Reynolds number as defined in equation (2.10). In order to verify that the above
model accurately represents the flow dynamics, a comparison between the mean flow computed using
the eddy viscosity (as in section 2 of [111]) and the one obtained by DNS was performed. The velocity
profiles are compared in figure 2.1. Differences between the two curves exist but remain small.

When applied, this model replaces the molecular diffusion term in equation (2.5), ∆u/Re, by a more
complete term ∇ ·

[
(1 + νt/ν)(∇u + ∇u T )

]
/Re. This is the resolvent system used by [1, 89], with

an eddy viscosity representing at least part of the unknown nonlinear terms. Applying once more the
process in sections 2.2.3 and 2.3.3 yields a resolvent matrix R eddy viscosity, as well as associated response
modes ψ(i)

eddy viscosity
and forcing modes ϕ(i)

eddy viscosity
.

2.4.2 Second order

The original proposition in the method is to include equation (2.6) inside a unified resolvent operator
that includes velocity, pressure, and τ in the state vector. Recall that the motivation of this study lies
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Figure 2.1: Mean velocity profiles from DNS and computed as a steady state with the Cess eddy
viscosity model (equation (2.13)).

in improving the capability of the resolvent operator to correctly predict flow physics both in terms of
fluctuations and their first moment.

Equation (2.6) translates to a 6n× 6n linear system with the vector notations τ and f (see section
2.2.2) written as (

L τ − iω I
)
τ = f

τ
. (2.14)

As before, f
τ

represents the forcing of the second order equations. Together, equations (2.11) and
(2.14) form a general system formulation that is 10n× 10n in size,[

L u − iωM A
0 4n L τ − iω I

] [
q
u
τ

]
=

(
L − iωM

)
q =

[
04n
f
τ

]
. (2.15)

The equation above makes use of the coupling matrix A of size 4n× 6n defined as

Aq =

[
∇ · τ
0n

]
. (2.16)

The extensor B and extractor H may be explicitly derived

B =

[
0 4n

I 6n

]
, H u =

[
I 3n 0 7n

]
. (2.17)

The process detailed in sections 2.2.3 and 2.3.3 yields a new resolvent matrix R 2nd order, with its
associated response modes ψ(i)

2nd order
and forcing modes ϕ(i)

2nd order
. Note that the latter corresponds to

the forcing terms of equation (2.6) instead of those of equation (2.5).

2.4.3 Comparison of model versus data

The process detailed above was implemented in a Matlab code version R2019b from [54] using the svds
or subset singular value decomposition function to obtain resolvent modes.

The most amplified response and forcing modes obtained by the new resolvent model were compared
with the most energetic SPOD modes obtained from DNS data. Said SPOD modes are computed using
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the method of snapshots, see [120]. This method allows us to obtain SPOD velocity modes, denoted ξ(i).
The same approach was used to compute SPOD nonlinear modes, denoted ζ(i), obtained directly from
the nonlinear term of equation (1.2) in the DNS.

SPOD modes represent the orthonormal basis that captures the most of the flow energy for any given
rank, see [135]. They are obtained as eigenvectors of a Cross-Spectral Density (CSD) matrix computed
at a given frequency. SPOD may be performed for both velocities and nonlinear terms of the NSE. While
the gain-based ranking of the modes gives an indication of each mode’s prevalence in the flow, there is no
causal association between SPOD nonlinear and forcing modes obtained in this manner. In other words,
ξ(i) is not related to ζ(i), and both modes are computed independently.

The matrix system detailed in equation (2.15) is exact but the flow response q can only be determined
if the forcing f

u
is known. As stated in section 1.2.4, for large gain σ(1) and large gain separation σ(1)/σ(2),

it is expected that the first left-singular vector ψ(1) approximates ξ(1), the actual flow fluctuations
obtained from SPOD, as already mentioned in 1.2.4. This has been observed in previous studies such
as [1, 89], and the coherent structures in a flow are of engineering and scientific interest by themselves,
especially if they are provided by a numerically cheap linear analysis process.

However, as pointed out for instance by Towne et al. [136, section III.c] and by [58], there is no reason
why the nonlinear terms in the actual flow ζ(i) should be approximated by the right-singular vectors
ϕ(i)
1rst order

of the resolvent matrix R 1rst order. Indeed ζ(1) represent the best low-rank approximation
of flow nonlinear terms, whereas ϕ(1)

1rst order
only represents the optimal input to obtain ψ(1)

1rst order
with

respect to R 1rst order.
Thus, there is no real physical insight to explain why ζ(1) and ϕ(1)

1rst order
would have a similar structure,

yet it is accurate to say that only the part that is strongly amplified by the linear operator is expected to
have an important influence on flow behaviour, as argued in [58]. By contrast, ∇ · R τϕ

(1)

2nd order
includes

additional physics that might yield a better approximation of ζ(1).

2.5 Results

2.5.1 Parameter space exploration

For a first comparison with results from [1, 89], the agreement between SPOD data and resolvent pre-
dictions was measured by varying λ+ = [λ+x λ

+
z ]
T , the + superscript denoting inner scaling as defined in

section 2.3.4. This agreement is quantified in terms of the projection coefficient β =
∣∣∣ψ(1)W ξ(1)H

∣∣∣, i.e.
between first resolvent mode and first SPOD velocity mode. As stated in section 2.4.3, the dominant
velocity mode obtained through SPOD from DNS data is compared with the most amplified left-singular
vector of the resolvent operator.

Only the Reτ = 180 (Re = 2, 800) case will be discussed here, but the Reτ = 550 (Re = 10, 000)
case was also explored with similar conclusions. Isocontours of β for the range of λ+ available at the
fixed frequency f+ = 10−2 are shown in figure 2.2.

This graph indicates no clear incentive to use the “second order” resolvent model over the first
order eddy viscosity resolvent model throughout the λ+ plane at this frequency. Even though the new
model performs slightly better over a restricted area in the low λ+x , high λ+z regime, its performance
drops everywhere else. The value f+ = 10−2 was chosen as representative of the near-wall cycle, to be
consistent with [1].

Results obtained with different frequencies (10−4, 10−3, 10−2, 10−1, 1) show a similar pattern. The
isocontours are also shown at f+ = 10−4 in figure 2.3, where one can see that the first order eddy
viscosity outperforms the second order resolvent model throughout the domain much like the f+ = 10−2

case.

2.5.2 Near wall structures

In the following, a case study for (λ+x = 1, 130; λ+z = 113; c+ = ω+λ+x /2π = 12) is presented. This choice
of parameters corresponds to the “near-wall” case discussed by Morra et al. [89, paragraph 3.1]. Indeed,
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(a) Second order, (b) Eddy viscosity.

Figure 2.2: Projection coefficient of first SPOD mode against resolvent response mode β =∣∣∣ψ(1)W ξ(1)H
∣∣∣ at (Re; f+) = (2, 800; 10−2) for a range of wavenumbers λ+.

(a) Second order, (b) Eddy viscosity.

Figure 2.3: Projection coefficient of first SPOD mode against resolvent response mode β =∣∣∣ψ(1)W ξ(1)H
∣∣∣ at (Re; f+) = (2, 800; 10−3) for a range of wavenumbers λ+.
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these wavenumbers represent a particularly energetic point in frequency space for y+ ≈ 15, so relatively
close to the wall.

To verify that results are independent of the number of points n, an additional set of calculations at
n = 257 for the near-wall regime was performed. This calculation using roughly double the y resolution
as the one presented below differed by less than 2% from the following results in all aspects. Therefore,
results are considered converged with respect to n.

Figure 2.4 shows the absolute value of the first SPOD velocity and resolvent response modes for a
variety of models along the three flow directions. It features the “first order model” from section 2.4.1
with and without eddy viscosity, as well as the “second order model” detailed in section 2.4.2. Likewise,
figure 2.5 presents the first SPOD nonlinear and resolvent forcing modes for all directions.

As detailed in sections 2.2 and 2.4.3, the modes compared here are the first modes with respect to
gain obtained from eigenvalue decomposition of a CSD matrix, and from the SVD of a resolvent matrix
for a specific model. There is a noteworthy exception to this, “second order forcing terms” computed
as normalised ∇ · R τϕ

(1)

2nd order
. Thus, all modes presented below verify xHW x = 1. As discussed in

section 2.3.1, only half a channel was considered, supposing the velocity along z to be even for all modes.

All in all, figure 2.4 yields positive results. In the streamwise direction (figure 2.4a), where the
fluctuations are most intense, the “second order” resolvent model succeeds in capturing most of the
SPOD mode. The model captures very well close-wall behaviour in this direction with no need for
empirical eddy viscosity or wall functions. However, the new resolvent model does tend to underestimate
the fluctuation amplitudes in the other two directions (figures 2.4b and 2.4c), performing rather poorly
in the spanwise direction, where it smoothens out the flow oscillations to an extreme degree. As in [89],
the introduction of an eddy viscosity model greatly improves the performance of the resolvent model
(consider the difference between the eddy viscosity and the first order curves).

Figure 2.5 shows that the nonlinear terms of equation (1.2) are better represented overall along the
three directions using the second order model than the first order one. This result was to be expected
as there is no reason behind writing ϕ(1)

1rst order
≈ ζ(1), see section 2.4.3. Notice though that the forcing

components in the wall-normal and spanwise directions are strongly underpredicted by the resolvent
model. The second order model allows again for an accurate restitution of actual flow statistics close
to the wall in the streamwise direction. The capability to predict, to some degree, the properties of the
nonlinear terms may be useful to construct estimators, as in [5].

2.5.3 Large scale structures

In this section, the point in parameter space (λx;λz; c
+) = (4.19; 1.26; 16) is explored. As before, this

choice of parameters and the name of this test case correspond to that of Morra and al. [89, paragraph
3.1]. The denomination “large scale” is inferred from the energetically significant dynamics associated
with these wavenumbers, which exhibit structures that span the entire channel. The scaling is identical
to the previous section, and only the absolute value of the modes is presented. Figure 2.6 presents the
first SPOD velocity and resolvent response modes, whereas figure 2.7 presents the first SPOD nonlinear
and resolvent forcing modes.

Overall, this case study yields more mixed results. In two of the three directions, the model performs
worse than the basic first order resolvent model or the eddy viscosity system. The new model consistently
underestimates real statistics for low y+, and does not improve predictions compared to the simpler first
order model, even in the dominant direction. Worse, the second order model smoothens out variations
of velocity amplitude in the spanwise direction. Here again, the addition of an eddy viscosity yields
significant improvements in the predictions from the first order resolvent model.

Interestingly, the model overestimates the forcing in the x direction in figure 2.7 and underestimates
the rest. In comparison, an eddy viscosity model yields somewhat relevant predictions in the spanwise
direction but otherwise fails to capture the dynamics of the nonlinear terms in the flow. Again, this is
to be expected, as optimal forcing of the resolvent matrix cannot be expected to correspond to actual
flow statistics.
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(a) Streamwise component,

(b) Vertical component,

(c) Spanwise component.

Figure 2.4: Comparison between the first SPOD mode of the DNS data ξ(1) and predictions
from various resolvent models ψ(1). Velocity components are shown for (Reτ ;λ

+
x ;λ

+
z ; c

+) =
(180; 1, 130; 113; 12).
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(a) Streamwise component,

(b) Vertical component,

(c) Spanwise component.

Figure 2.5: Comparison between the first SPOD mode of the DNS data ζ(1) and prediction from
the second order model ∇· R τϕ

(1)

2nd order
. Optimal forcing obtained from first order resolvents are

also shown for reference. Nonlinear and forcing components are shown for (Reτ ;λ
+
x ;λ

+
z ; c

+) =
(180; 1, 130; 113; 12).
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(a) Streamwise component,

(b) Vertical component,

(c) Spanwise component,

Figure 2.6: Comparison between the first SPOD mode of the DNS data ξ(1) and predictions
from various resolvent models ψ(1). Velocity components are shown for (Reτ ;λx;λz; c

+) =
(180; 4.19; 1.26; 16).
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(a) Streamwise component,

(b) Vertical component,

(c) Spanwise component.

Figure 2.7: Comparison between the first SPOD mode of ∇ · τ in the DNS data ζ(1) and
prediction from second order resolvent analysis ∇ · R τϕ

(1). Optimal forcing obtained from first
order resolvents are also shown for reference. Nonlinear and forcing components are shown for
(Reτ ;λx;λz; c

+) = (180; 4.19; 1.26; 16).
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2.6 Conclusion
The resolvent operator, which relates forcing input of a linear system to the associated response, has
been formulated for the Navier-Stokes equations so that the forcing input includes third-order turbulent
correlations, which drive a velocity response indirectly via the τ tensor. In contrast, classical resolvent
analysis, classified as “first order” in this paper, defines forcing input as a substitute for second order
correlations, which drive the velocity response directly.

In this study, it was tested whether the shift of forcing to higher order improves the linear response
predictions in the case of turbulent plane channel flow. The relevant quantities to compare are the
leading SPOD modes extracted from turbulent DNS data, which represent energetic coherent turbulence
structures, and the leading SVD modes from the linear resolvent model. In the present case of a flow
with streamwise and spanwise invariant statistics, such modes are obtained for a range of wavenumbers
for a logarithmic range of frequencies. The reasoning was performed on a half-channel and presented
results for an even uz.

Classical first order resolvent analysis generally yields meaningful predictions of the leading SPOD
modes, but leaving much room for improvement in quantitative accuracy. The limiting assumption of
this approach is that the nonlinear terms in the fluctuation equations can be replaced by white noise.
The currently best available strategy is to use this assumption, in combination with the inclusion of an
eddy viscosity in the linear operator.

Much recent discussion in the community revolves around the question of how to improve the pre-
dictions further by replacing the white noise with “coloured” noise input. The present approach instead
aims to produce the “colour” of ∇ · τ by computing the τ in a spectral setting as a response to forcing
at a higher order. If one assumes that in a real flow, forcing of equations 2.6 follows some kind of white
noise law, this formalism could predict with some accuracy non-linear terms of RANS using the resolvent
method.

The success of this strategy, as far as it has been possible to establish, is not as clear as might have
been hoped. Streamwise velocity fluctuation amplitudes are very well predicted in a “near-wall” setting
in the sense of [1, 89], and the streamwise component of ∇ · τ obtained from the model also compares
well to the corresponding SPOD mode from the DNS. On the other hand, wall-normal as well as spanwise
velocity fluctuations and ∇· τ amplitudes are strongly underpredicted. In the “large-scale” setting in the
sense of [1, 89], the second order model clearly gives less accurate results than the standard first order
resolvent, especially when eddy viscosity is included in the latter.

This observation stands even if an imperfect eddy viscosity model is used, namely one that produces
a different mean flow from the DNS. Worse, this behaviour is consistent throughout the frequency space
and the two Reynolds numbers explored. When the model performance is measured in terms of projection
with SPOD modes throughout the parameter space, the second order model cannot compete with the
first order model with eddy viscosity.

The roadblock to accurate second order resolvent modelling is a typical closure problem, which could
be caused by the velocity-pressure-gradient correlation detailed in section 2.2.1. Efforts to cast this
tensor in the form of a linear function of u, p or τ , so that it could be incorporated into the resolvent
operator, have not been fruitful.

As such, the present study represents a first step in a new direction for improved resolvent analysis
applied to turbulent flow, from where new paths are hoped to emerge. It is possible that this method
proves more promising in another geometry or at Reynolds number higher than the maximum explored
Reτ = 550.
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Chapter 3

Resolvent analysis on a swirling
turbulent jet

Et pourtant, elle tourne !

Galileo Galilei

This study aims at exploring coherent structures in swirling turbulent jets. A stationary axisymmetric
turbulent baseflow was obtained for Re = 200, 000 using the SA eddy-viscosity model and an open source
computational fluid dynamics code. The same eddy-viscosity field was included inside the fluctuation
equations in an effort to improve accuracy of the resolvent method. These fluctuations were then solved
using resolvent analysis, using only the first mode to approximate the most amplified response and
optimal forcing. Several configurations were studied, going gradually from a baseflow with no azimuthal
velocity to one with comparable axial and azimuthal components. Double spiral counter-rotating but
co-winding modes are found to exhibit spectacular amplification at low frequency, to the point that their
gains overtook those of modes associated with the Kelvin-Helmholtz (KH) mechanism. This behaviour is
explained as lift-up (LU) and something more that is not KH. This was done by comparing the alignment
of the mode wavevector with regards to principal shear, using the so-called dot criterion. Another
phenomenon of interest at low frequencies is the development of structures atop the finite-height nozzle
included in the calculations, with is shown to be related to the lift-up effect and jet entrainment.

3.1 Literature review

3.1.1 Straight jet amplification mechanisms

Using resolvent analysis, [101] has been able to describe the fluctuations that arise from a turbulent
baseflow taken out of the LES of [121, section 2]. The resolvent modes computed with an eddy-viscosity
model compare well to SPOD modes extracted from the data, in line with section 1.2.4.

The authors introduced a notion of sensitivity by inspecting correlations between components of
forcing and response throughout the domain. This tool enabled the differentiation between several
amplifying mechanisms, namely Orr, LU, and KH. [101] provides a mapping to where each phenomenon
is expected to dominate throughout the frequency space.

Kelvin-Helmholtz

Literature on KH mechanism and associated instabilities dates back to [108]. This mechanism may be
illustrated in figure 3.2 for a parallel two-dimensional inviscid flow and motivated as in [39, section B.2].
Suppose the flow to be potential on both sides of an interface featuring a point jump of velocity 2U .
Consider a reference frame moving at the mean of the two layers, in which the interface is steady. Further
assume a perturbation along the jump line of wavelength λ and amplitude A.

35
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Figure 3.1: Extract of figure 13 of [101], concerned with the study of a Re = 400, 000 straight
weakly compressible Ma = 0.4 jet. proposing a mechanism map as a function of Strouhal
number St and azimuthal wavenumber m.

Figure 3.2: Figure 3 of [39], illustrating the KH mechanism for a 2D parallel flow.
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Given the previous assumptions, the situation is perfectly symmetrical on either side of the interface,
and so only the top part will be considered. Now consider a point A at the average interface height, then
a point B at a distance λ/4. Because the fluid is irrotational, the perturbation is expected to vanish
away from the interface like e−y/λ. Since A was taken at a point where the surface is unperturbed, we
can write qA = Q. By contrast, qB = Q + q. Supposing an infinite domain, one may project A and B
into A′ and B′ at a very large distance L away from the interface where the effects of the perturbations
have all but vanished and streamlines are straight one more.

Using Bernouilli’s theorem between A and B without gravity for dimensionless quantities gives

u2A
2

+ pA =
u2B
2

+ pB ,

⇔ pA − pB =
1

2
(u2B − u2A),

⇔ −p = Uu+
u2

2
,

⇔ p = −Uu+O(u2) (3.1)

Because of incompressibility, symmetry, and assuming A ≪ λ≪ L one can use conservation of mass
to write

∫ L+A

0

u(xA, y)dy =

∫ L

0

u(xB ,A+ y)dy,

⇔ u

∫ L

A
e−y/λdy = U

∫ A

0

dy,

⇔ u
[
−λe−y/λ

]L
A
= UA,

⇔ u

[
1− A

λ
+O

(
1

λ2

)]
=
A
λ
U. (3.2)

Taken together, equations (3.1) and (3.2) give

p ≈ −Uu
u ≈

(
1− A

λ

)−1 A
λU

}
⇒ p ≈ −

(
1− A

λ

)−1 A
λ
U2. (3.3)

This explains the growth of the mode. Indeed, the decrease in pressure at B is associated to an
increase below the interface by symmetry, which drives vertical flow at B normal to the jump interface,
causing a rise in A. A more formal derivation of the amplification mechanism may be found in [31,
section 1.4], also in the case of a velocity jump.

At the dawn of the twentieth century, [108] studied cylindrical flows using LTSA, as presented in
section 1.2.2 and famously established that for a two dimensional flow, the absence of an inflexion point
x0 in the baseflow that would satisfy ∂2yUx(x0) = 0 is a necessary condition for stability.

It was generalised in the azimuthal direction by [12], where an instability growing simultaneously
on radial shear in the axial and azimuthal directions was proposed. This is the favoured mechanism in
[39, section B.3] for instability growth by LTSA on a plug round jet at high wavenumbers in an inviscid
flow, even after introducing swirl. However, the authors acknowledge that the use of an infinitesimal
flow profile such as the one proposed in that work is known to lead to nonphysical KH solutions that
would be damped by viscosity in a real flow.

Orr mechanism

This phenomena exploits shear by creating structures tilted against baseflow shear that grow as they are
straightened. This phenomena is explained in [22] by considering a parallel baseflow in two-dimensions
U(x) = U(y)ex. From there and following section 1.2.2, perturbations are considered in a two-dimensional
local framework, with q(x, y) = q̂(y)eikxx + q̂∗(y)e−ikxx. Going back to the first equation of (1.3) and
neglecting the right-hand side as well as setting ν = 0 gives
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∂tûx + U ′ûy + iUkxûx + ikxp̂ = 0, (3.4)
∂tûy + iUkxûy + ∂yp̂ = 0, (3.5)

ikxûx + ∂yûy = 0. (3.6)

This system multiplied on the left hand side by uT yields the Reynolds-Orr equation representing
fluctuation energy evolution in time. Assuming a wall on one boundary, u −→

y→∞
0 gives

∂t ∥û∥2 + U ′ûxûy + iUkx ∥û∥2 + ikxûxp̂+ ûy∂yp̂ = 0,

⇒ ∂t

∫ ∞

0

∥û∥2 dy +
∫ ∞

0

U ′ûxûydy + i

∫ ∞

0

Ukx ∥û∥2 dy + ikx

∫ ∞

0

ûxp̂dy +

∫ ∞

0

ûy∂yp̂dy = 0,

⇒ ∂tE +
1

2

∫ ∞

0

U ′ûxûydy +
i

2

∫ ∞

0

Ukx ∥û∥2 dy +
1

2
[p̂ûy]

∞
0 +

1

2

∫ ∞

0

p̂(ikxûx − ∂yûy)dy = 0,

⇒ ℜ
∫ ∞

0

p̂∂yûydy −
1

2
ℜ
∫ ∞

0

U ′ûxûydy = ∂tE.

This shows the perturbation energy density E can increase if ℜ(ûxûy) < 0 assuming U ′ > 0. That
is the definition of a structure tilted against the flow shear. By contrast, a structure tilted with the flow
shear would have ûxûy > 0.

Figure 3.3 illustrates how this mechanism leads to optimal growth for short time, with structures
tilted against the shear growing as they are straightened, and then decay as they become tilted in the
same direction as the shear.

Lift-up

By contrast with the two previous amplification mechanisms, LU cannot be understood with a purely two-
dimensional approach. LU is another shear amplification mechanism that manifests as rolls producing
streaks. It was exhibited in [34], also considering a parallel baseflow U = U(y)ex, but assuming the
perturbations q(y, z) do not depend on x. This mechanism is also inviscid, leading to equations

∂tux + U ′uy = 0, (3.7)
∂tuy + ∂yp = 0, (3.8)
∂tuz + ∂zp = 0. (3.9)

It is possible to introduce a streamfunction φ so that uy = −∂zφ and uz = ∂yφ. Derivating (3.8)
with respect to z and (3.9) with respect to to y, then substracting one from the other eliminates pressure
and gives

∂t∆φ = 0. (3.10)

Equation (3.10) means that it is possible to have a solution for stationary φ, which would lead to
a time-invariant uy. Assuming this, relation (3.7) may be integrated in time u = u0 − uyU

′t. This
shows it is possible to create linear instability growth with these simple perturbations, for instance by
picking φ = A sin(kyy) sin(kzz), which leads to closed, steady streamlines. In such a configuration, fluid
is alternatively picked up from fast baseflow regions to be pulled down into slow regions, or conversely
lifted up from slow regions into fast ones, hence the name lift-up. LU is therefore all about vertical
convection that induces large streamwise streaks.

3.1.2 Rotating jet instabilities

[42, 59, 60, 71, 72, 75] have all conducted LTSA, LSSA or LSTSA analysis of swirling flows at zero to
moderate Reynolds number. These authors all took a prescribed parallel baseflow sometimes as simple
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(a) Figure 6 showing envelopes of maximal energy growth G for different initial conditions. Of most
interest is the thin-dotted line which show actual energy evolution when initialising the flow system with
structures leading to maximum growth at time t = 98,

(b) Figure 8 showing the time evolution of streamwise velocity. a) t = 0, b) t = 50, c) t = 98.

Figure 3.3: Illustrations from [3], applying the optimal growth technique discussed in section
1.2.3 to a boundary layer at Re = 1, 000, which highlights the Orr mechanism at short times.
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as a plug flow then derived dispersion relations analytically or numerically. This has the advantage of
readily supplying growth rates, modes, as well as physical motivation for them.

In the case of [105], the focus was on the Grabowski-Berger vortex, detailed in section 4.4.1. In
the high swirl regime after the apparition of the vortex breakdown bubble, Qadri et al. used GTSA
along a sensitivity analysis to bring to light two regions of the bubble where perturbations are most
amplified. Just ahead of the bubble, radial and azimuthal perturbations are amplified, and around
it, strong shear causes a KH type mechanism. The fact that this publication highlights two different
mechanisms operating at the same time using GTSA contrasts with tradition non-swirling jet analysis
where a single mechanism is often sufficient to explain the observed amplification.

[42] stands out by exploiting the equivalence between the fluctuations impulse response and the
Briggs-Bers pinching criterion detailed in section 1.2.2, albeit in a parallel flow framework. This study
highlights the special role of a region upstream of the recirculation bubble which serves as a wavemaker
for an absolutely unstable double helix mode.

[71] performed LSTSA and additionally plotted critical curves where the transition from convective to
absolute instability takes place depending on co-flow and swirl intensity for every azimuthal wavenumber.
In turn, this allowed him to single out the most unstable azimuthal wavenumbers for a given co-flow as
the first one transitioning into absolute instability when increasing swirl.

[72] and [60] studied the interplay between swirl and compressibility using LSSA and LTSA respec-
tively, finding swirl to be more destabilising than compressibility is stabilising.

[59] also introduced viscosity and discovered additional types of viscous instabilities, again using
LTSA. Furthermore, this work compared the modes obtained numerically to experiments and demon-
strated satisfying agreement for a range of frequencies.

The different authors cited here disagree on which mode is more unstable when introducing swirl,
but this is not surprising as the baseflows considered also differ. [71] argues in favour of the axisymmetric
mode, [105] support a bending mode, whereas [42, 59, 60, 72, 75] claim it to be a spiral mode.

The swirling jet problem was also addressed formally in a LSTSA framework in [39], again for a
plug flow. This approach has the advantage of being purely analytical, thus allowing a clear separation
of the different terms driving instabilities. In turn, this enabled the authors to highlight four separate
mechanisms, namely inertial waves, C, axial and azimuthal KH. However, this study acknowledges that its
baseflow is non physical because of its infinitely thin shear layer. This leads to unbounded amplification
of KH instabilities with wavenumber, and to a damping of C instabilities.

More recently, the work of [80] studied a Grabowski-Berger vortex using GTSA. Performed at very low
Reynolds number in a decidedly laminar regime, the analysis captures the phenomenon of recirculation,
as well as flow instability at high swirl. Furthermore, this analysis studied in detail flow behaviour prior
to vortex breakdown, highlighting the importance of spiral and double spiral modes in the breakdown
process. Through studies of the associated Hopf bifurcation, this paper managed to reproduce behaviour
obtained in Direct Numerical Simulations, most notably a range of swirl intensity where the fluctuation
display hysteresis.

Another study of interest is [30], where coherent structures are obtained in a laminar jet using
numerical bifurcation analysis, going above and beyond critical swirl to study vortex breakdown. In
this study, similarly to [44] discussed in section 4.4.3, the computational domain had a wall on top of
the nozzle. and is not concerned with quantifying gain, yet it does study vortex breakdown as a Hopf
bifurcation that happens first for single or double helix type structures.

In recent years, interest on linear modelling of turbulent jets has steadily increased as numerical
capabilities have evolved, allowing for computations with ever increasing Reynolds number as well as
global analysis on previously inaccessible scales. The closest study to this one would be [86], which used
resolvent analysis on a coaxial swirling jet. The key difference between this work and the present study
are geometry and Reynolds number considered. The former is fully turbulent, whereas the latter was
decidedly laminar.

Centrifugal

When considering rotating flows, C instabilities come into play. [39] outlines the driving force behind
this type of flows by considering a plug round parallel flow in solid body rotation of angular velocity S
and radius R amidst a flow at rest in the long wavenumber limit.
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Figure 3.4: Figure 5 of [39], illustrating the C mechanism for a parallel solid core rotation.

Inside the rotating core, the centrifugal force reads FS = S2rer. Close to the interface, it is compen-
sated by an equal and opposite pressure gradient ∂rP (R−). In general, such a radial pressure gradient
also exists outside the core, but in this ideal scenario it goes to zero immediately after the velocity jump.

A particle displaced along er from inside the core R− to the outside R+ conserves its angular
momentum due to the absence of viscosity. It is therefore subjected to a higher centrifugal force as r
increases, but to a much lower pressure gradient as ∂rP (R+) = 0. Conversely, a fluid particle pulled
from the outside in has insufficient angular momentum to grant it a centrifugal force that would keep it
away from the axis, yet it becomes subject to a strong pressure gradient ∂rP (R−). This phenomenon is
illustrated in figure 3.4.

[107] derived what became known as the Rayleigh criterion in the case of parallel flow with no axial
component. This criterion goes that the existence of a radius where ∂r(r2U2

θ ) < 0 is a necessary condition
for axisymmetric C amplification. In [131], this criterion was found to be sufficient for the case of Couette
flows. It was generalised for a non-uniform axial flow in [41].

A generalised criterion for axially and azimuthally decomposed fluctuations

q(x, r, θ) = q̂(r)ei(kx+mθ) + q̂∗(r)e−i(kx+mθ) (3.11)

with azimuthal wavenumber m ̸= 0 was further derived in [51, section 3]. This paper established a
sufficient condition for stability as

∀x ∈ V |k2 ∂r(r
2U2

θ )

r3
− 2km

r2
Ur∂rUx −

[k∂rUx +m∂r(Uθ/r)]
2

4
≥ 0. (3.12)

[66] argued this criterion is too restrictive and derived a simpler sufficient criterion for instability in
the infinitely large wavenumber limit which reads

∀x ∈ V |Uθ∂r
(
Uθ
r

)[
∂r(rUθ)∂r

(
Uθ
r

)
+ (∂rUx)

2

]
< 0. (3.13)

[35] proved later that the criterion from equation (3.13) was linked to C instability by considering
a coordinate system turning with the fluid, writing associated inertial effects, and falling back on [66]’s
criterion. More recently, further generalisation was performed in [17] and finally in [16, equation (3.25)]
for a wider range of profiles and at a higher order. [16, 17, 35, 51, 66, 107, 131] all used generic flow
profiles in inviscid LTSA as presented in section 1.2.2.

Inertial waves

Also called Kelvin waves, inertial are associated to Coriolis forces. As derived in [90], consider a two-
dimensional baseflow in uniform solid rotation at angular velocity S around axis ew, assume perturbations
independent of x, and write their momentum equation (1.3) in the rotating frame

∂tu+∇p̃+ 2Sez × u = 0 (3.14)

with the centrifugal correction being bundled into pressure.
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(a) Figure 1 illustrating the numerical setup,
(b) Figure 10 showing resol-
vent gains gk = σ(1), see 1.2.4.

Figure 3.5: Figures taken from [86], concerning with the resolvent study of a coaxial swirling jet
at (Re;S) = (200; 1).

Assuming q(x, y, z, t) = q0e
i(k·x−ωt) + q∗0e

−i(k·x−ωt), one obtains from equation (3.14) and the conti-
nuity equation

ux0 = p0
ωky + 2iSkx
ω2 − 4S2

, (3.15)

uy0 = p0
ωkx − 2iSky
ω2 − 4S2

, (3.16)

uz0 = p0
kz
ω
, (3.17)

ω2 =
4S2k2z

k2x + k2y + k2z
(3.18)

A few points immediately stem from these derivations. First, as long as ω < 2S, a solution exists
with real kx, ky, and kz. Therefore, a wide range of inertial waves can exist in any rotating flow. This
continuous set of waves becomes discrete when the waves are confined, as established in [116, chapter
11] where they are referenced as Kelvin waves, or [48, chapter 4].

Secondly, this derivation does not establish an amplification mechanism per se. Indeed, the waves
derived above do not grow in time in the chosen formalism. However, resonant phenomenon has been
observed experimentally by [78] when multiple inertial waves of the same frequency piled atop one
another, leading to flow transition.

[70] mentions interactions between inertial waves and KH modes as a phenomenon that could occur
at low frequencies. According to this author, this has a stabilising effect on m > 0 modes. Sadly, even
though literature on inertial waves is expansive when considering rotating cylinders or large rotating
flows, detailed understanding of the role these waves play in jets remains lacking.

3.1.3 Numerical evidence
On the numerical front, [74] used a line vortices model to study the evolution of rotating jets. These
calculations bring to light complex interplay between KH phenomena in the axial and azimuthal directions
as well as the influence of C effects, as visible in figure 3.6. Indeed, the large rolls visible on the first
moments of that calculation bring to mind the usual KH rolls. However, the introduction of swirl leads
to the apparition of structures in the crest of the rolls that break the overall structure symmetry.

These different phenomena are very sensitive to initial conditions, displaying chaotic behaviour.
One of the major effects of introducing swirl in the flow is the formation of counter-rotating structures.
These structures can in turn be dispersed by strong KH waves or overtake them, hinting at a competition
between KH and C effects.

More recently, [84] performed a LES of a swirling flow and then a SPOD to obtain the most energetic
fluctuations of this flow. This study was performed at relatively low Reynolds number, but attained high
swirl, as the focus of the authors was on the description of vortex breakdown. In the regime that is of
interest to this study, the authors exhibited four spirals at very low frequency, which were considered to
be a consequence of the coordinate system and spurious.
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Figure 3.6: Reproduction of figure 10 of [74], representing a swirling jet computation by the
method of vortex lines experiment with ∆Uθ/∆Ux = 8.2 subject to an axisymmetric perturba-
tion of amplitude 5%, and an azimuthal disturbance of amplitude 0.04%. Shown are side views
at times 0.977 (a), 1.187 (b), and 1.343 (c), along with an end view for t = 51.343 (d).



44 CHAPTER 3. RESOLVENT ANALYSIS ON A SWIRLING TURBULENT JET

Figure 3.7: Excerpt from figure 6 of [69], representing a swirling jet experiment at
(Re;S) = (967; 1.03). In grey and black is the outer shear layer double spiral m = −2, vorticity
contours are superimposed, solid in the outer shear layer and dotted in the inner shear layer.
Velocity field is also represented as a quiver plot. Note the indirect swirl direction.

The Direct Numerical Simulation performed in [115] outright points out at a counter-winding counter-
rotating double spiral being selected in a regime close to vortex breakdown. Concerned with a Grabowki-
Berger vortex, a case further detailed in 4.4.2, this study observes a regime of axisymmetric, another
regime of bending breakdown, and a third regime of helical breakdown depending on the swirl intensity.
The authors found that the local critical nature of the flow was a good measure of the onset of vortex
breakdown. [43] builds upon this study to outline the non-parallel nature of the mechanism, which
behaves like a bluff body in the wake of the jet. Again, breakdown is explained using the transition from
convective to absolute instability.

3.1.4 Experimental evidence

[15, 40, 69, 95] all presented experimental evidence of spiral-type coherent structures in a rotating jet.
The last three especially were able to single out double spirals using dye visualisation as well as Particle
Image Velocimetry.

Through loudspeakers, [40] forced the jet at specific azimuthal wavenumbers and observed the result-
ing flow. In this manner, the robustness of vortex breakdown was established as well as the receptivity
of the flow to double or triple spirals, such as the one presented in figure 3.7.

[92] also performed high fidelity measurements that compared well to weakly non-parallel spatial
stability analysis predictions close to the nozzle at relatively low Reynolds number. When forcing ap-
propriately at the lip, the authors found a double spiral co-winding counter-rotating mode present close
to the nozzle but decaying faster in the downstream direction than the dominant bending mode. This
mode was explained invoking C instabilities, mostly under the argument that this mechanism favours
m < 0. At the time of writing, it is unclear to the present author why this would be the case.

The works of [40, 92] are especially relevant to this study as they feature actuated jets. Reducing
the space of available forcing to a specified azimuthal wavenumber in this manner can only be expected
to facilitate comparison with resolvent modes.

Observing the lack of a resolvent study of a turbulent swirling jet, albeit not a lack of interest, this
work aims for a contribution on the subject. This paper is organised as follows: section 3.2 presents
the procedure followed to obtain the baseflow used for this work as well as its main characteristics. On
a more theoretical note, section 3.3 details the resolvent analysis procedure followed here, as well as
a validation case. Then, section 3.4 showcases the most important results, namely the gains and the
various structures obtained. Finally, section 3.5 summarises the chapter.
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Figure 3.8: Part of figure 25 in [92], representing a wave packet envelope in a swirling jet
experiment at (Re;S) = (20, 000; 0.6). Contours are normalised by their maximum Ae

max that
varies with x as plotted on the bottom right.

3.2 Baseflow

The objective of this section is to obtain a baseflowQ =
[
UT , P

]T
satisfying the stationary incompressible

RANS equations (1.2) with an eddy viscosity{
∇U U +∇P −∇ ·

[
ν
(
∇U + ∇U T

)]
= 0,

∇ · U = 0.
(3.19)

This baseflow can alternatively be called fixed point of equation (3.19) and provides a model for the
baseflow of equation (1.1). Throughout this chapter, viscosity is taken as ν = 1/Re+ νt with Reynolds
number Re = UR/ν0 = 200, 000. ν0 is the molecular kinematic viscosity, U is the reference velocity
defined as the axial velocity at the origin, R the reference length corresponding to the radius of the jet.

νt(U, x) is obtained using the SA model, originally introduced in [126]. Alternatives are presented
in section 1.1.2, where the present approach to RANS is explained. It is possible that the SA model
performs rather poorly in this high Reynolds regime, however it was numerically cheap and easy to
implement, with natural boundary conditions of zero derivative at outlets, and zero value at the walls
and inlet, resulting in a largely laminar inflow.

3.2.1 Case description

The case of interest is an axisymmetric jet with a nozzle represented in figure 3.9. Our coordinate system
is cylindrical and direct, meaning the azimuthal axis is coming towards the reader in figure 3.9. Said
nozzle is of radius and length R. The nozzle has a finite width at the inlet ϵ = 10−4, but sharpens into
a point at the lip.

At the inlet inside the nozzle (see figure 3.9), the baseflow is prescribed as

U inlet(r) = tanh
[
6(1− r2)

]
(ex + Sreθ) . (3.20)

S being swirl intensity, a crucial parameter for flow behaviour. Without loss of generality, this study
only considers positive swirl, meaning that the vortex winds in space in the direct sense defined by the
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Figure 3.9: Case layout.

right-hand rule with respect to the axial direction. Inlet profiles are very similar to those presented in
figure 4.2a, and resemble a smooth plug flow with a solid body rotation of dimensionless vorticity S. This
flow is clearly centrifugally unstable according to Rayleigh’s criterion derived in [108], as the azimuthal
velocity decays exponentially at the nozzle wall.

In practice, this was not enough to obtain a flow using the OpenFOAM code. It is well known that
recirculation regions near outlets with weak convection can lead to numerical challenges as flow is brought
in from outside the numerical domain. To prevent this issue, a weak coflow coaxial to the jet was
introduced, which we specify as

U coflow(r) = 2Umr̃(1− r̃/2)ex (3.21)

with Um = 0.05 and r̃ = (r − 1 − ϵ)/(19 − ϵ). Therefore, the axial coflow profile evolves as a parabola
that goes to zero at the wall and increases to about five percent of the jet axial speed at the domain
top. Velocity is also set to zero at the walls. At the axis of symmetry r = 0 we impose zero radial and
azimuthal velocities, as well as ∂rUx = 0.

For the outlets at the top and the far right of the domain, boundary conditions are stress-free, which
is a mixed boundary condition between the pressure and velocity so that

Pn = ν
(
∇U + ∇U T

)
n (3.22)

with n the vector normal to the boundary - in this case either ex or er. This condition is also sometimes
called ‘free flow’ or ‘outflow’.

This setup allows for a very stiff baseflow, with quite a thin shear layer. To define the shear layer
thickness in the presence of coflow, considerUm(x) = min

r
Ux(x, r),

rm(x) = argmin
r

Ux(x, r),
(3.23)

Π(x, r) =
Ux(x, r)− Um(x)

1− Um(x)
, (3.24)

Θ(x) =

∫ rm

0

Π(x, r) [1−Π(x, r)] rdr. (3.25)

This leads to figure 3.10 and about Θ(R) ≈ 0.02. For reference, the shear layer thickness of the flow
used by [121] obtained by LES is also shown, appropriately adimensionalised. Thus this study’s baseflow
has a very sharp but finite shear layer.
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Figure 3.10: Shear layer thickness Θ for the baseflow of this case with reference.

Figure 3.11: x− r view of the x component of a baseflow at S = 1.6 close to the nozzle.

3.2.2 OpenFOAM calculations

All meshes used in this paper are triangular, unstructured, and non-homogeneous. They were drawn
using gmsh from [46]. Overall, the final mesh used has about 152,000 nodes and 452,000 elements. The
smallest element size is h = 10−3. This is small when compared to the entirety of the domain, but large
with respect to the nozzle height ϵ = 10−4. In the course of the following calculations, structures were
found to be as small as h, which is therefore expected to be an important source of error. However,
convergence relative to the mesh refinement was verified, see section 4.1.4, and several validation cases
are considered in section 4.4.

In order to compute an incompressible turbulent and viscid flow satisfying the geometric constraints
detailed in section 3.2.1, we made use of the OpenFOAM CFD software available at [94], more specifically
the simpleFoam solver. Since this code is based on a finite volume paradigm, calculations were performed
on an azimuthal slice containing a single element.

Calculations were performed from S = 0 all the way to S = 1.6 with a resolution as fine as ∆S = 0.01.
This allowed for confirmation that the SA model was able to capture the vortex breakdown effect and
subsequent recirculation, see figure 3.11. For more information on this phenomenon, see [80]. In this
case, this flow reconfiguration was considered undesirable. Therefore, in the following, S ≤ 1 is enforced
to avoid recirculation effects.

Using a GTSA framework, it has been verified that this regime is modally stable, that is to say all
eigenvalues of the linear fluctuation operator taken across the entire domain have negative real part. and
that the axial velocity on the axis remains positive throughout the domain.

Actual computations were made on an Intel(R) Xeon(R) Gold 6230 CPU with a frequency of 2.10
GHz. 40 cores and an absolute tolerance of η = 10−12 were used for each calculation. The full configu-
ration is available on GitHub under an OpenSource licence.

The result is represented in figure 3.12 for reference. One can see that the jet is fully developed
inside the domain with no discernible effect of the outlet boundaries on the top and to the right. The
largest gradients are of course the edge of the potential core, most importantly around the nozzle tip.

https://github.com/hawkspar/openfoam.git
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(a) Axial direction,

(b) Tangential direction.

Figure 3.12: x− r views of baseflow velocities at S = 1 close to the nozzle.

3.3 Resolvent analysis

3.3.1 Methodology

The objective here is to accurately predict flow fluctuations on a given baseflow. Said fluctuations q =[
uT p

]T are three-dimensional and time-dependant but may be decomposed in azimuthal and frequency
modes

q(x, r, θ, t) =

∞∑
m=−∞

∫ ∞

0

q̂
m,ω

(x, r)ei(mθ−ωt) + q̂∗
m,ω

(x, r)ei(ωt−mθ)dω. (3.26)

In the following, the difference will be made between something wrapped in space around ex, which
we will call winding, and something that is rotating in time. Since the structures of interest are real,
one also expects a sign change of both m and ω to yield the same mode. Thus, ω ≥ 0 is imposed with
no loss of generality. With these conventions, a mode with m < 0 is counter-rotating.

For the purpose of conciseness, q̂
m,ω

will simply be written q in the following. Using this decompo-
sition leads to the operator replacement ∂θ ↔ im and thus ∇ ↔ ∇m. Hence, the fluctuations equations
can be derived{

−iωu+ ∇mu U + ∇0U u+∇mp−∇m ·
[
ν
(
∇mu + ∇mu T

)]
= ∇m ·

(
uuT − uuT

)
,

∇m · u = 0.
(3.27)

At this stage, introducing eddy viscosity in the fluctuation equations has been proven to improve
the accuracy of a resolvent process as in [1, 89]. See [87] for a more quantitative comparison of resolvent
performance with and without eddy viscosity. This is also consistent with considering equations (3.27)
as fluctuations of the baseflow equations (3.19) in the perturbations approach mentioned in section 1.1.2.
Hence, viscosity ν = 1/Re+ νt in equation (3.27) is identical to that used in section 3.2.

The method of resolvent analysis has been detailed in section 1.2.4 as well as in works such as [1, 89,
118, 124] and many others beside. For a given set of parameters (Re;S;m;St), and provided a baseflow
respecting the parameters (Re;S), such an analysis yields three quantities of interest:

1. The gains σ(i), which can be understood as a ratio of fluctuation kinetic energy obtained over
non-linear terms work required to produce them. These allow us to order the modes from the
most amplified by the linear operator, associated to σ(1), to the least amplified.

2. The dominant response mode ψ(1) represents the structure which can be expected to arise in the
flow fluctuations around the fixed point, provided σ(1) ≫ 1 and σ(1) ≫ σ(2).
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3. The optimal forcing mode ϕ(1) gives the normalised least energetic stimulation that will give rise
to ψ(1) through the linear operator. It does not correspond to any actual flow behaviour, but may
still be useful from an engineering perspective to damp a problematic mode.

Resolvent analysis is a linear method of studying instabilities that differs from GTSA in three im-
portant respects:

1. Response modes obtained through resolvent analysis require associated forcing to exist,

2. The use of resolvent permits capturing non-modal phenomena,

3. In the resolvent formalism, frequency is a parameter, whereas modal analysis allows for natural
singling out of resonant frequencies.

A more detailed comparison of the methods is provided in section 1.2. This analysis is also global,
i.e. fully two dimensional with respect to x and r, which is another difference with LTSA literature
making the assumption of parallel flow.

3.3.2 Implementation

In order to perform the process detailed in section 3.3.1 around the baseflow computed in section 3.2, the
FEniCSx software published in [123] was used. More specifically, the usual Taylor-Hood P2-P1 family
was used, solliciting Basix elements detailed in [122]. The problem was formulated in weak form for
finite element resolution in the UFL language published in [4] with no special treatment at the axis of
symmetry. Interpolation between the two codes, OpenFOAM and FEniCSx, was non trivial and required
some smoothing. More details are provided in section 4.2.

In line with section 3.2.1, the fluctuations boundary conditions were set as follows: u = 0 for all
baseflow Dirichlet boundary conditions, stress free at the outlets, and a special boundary condition on
the axis of symmetry dependant on the azimuthal wavenumber m∂rux = ur = uθ = 0 if m = 0,

ux = ∂rur = ∂ruθ = 0 if |m| = 1,
ux = ur = uθ = 0 else.

(3.28)

Once discretisation is performed using finite elements, the SVD is not computed directly. Indeed
there is an equivalence between the SVD of R and the classic diagonalisation of RHW ψ R , W ψ being
the matrix of weights associated with the hermitian inner product of response modes ψ(i)W ψψ

(j)H = δij .
This gives

R =
∑
i

σ(i)ψ(i)ϕ(i)H ⇔ RHW ψ R =
∑
i

σ(i)2ϕ(i)ϕ(i)H . (3.29)

Which allows for formulation of an eigenvalue problem for the first eigenpair

σ(1)2 = max
ϕ

ϕH RHW ψ Rϕ

ϕHW ϕϕ
, ϕ(1) = argmax

ϕ

ϕH RHW ψ Rϕ

ϕHW ϕϕ
. (3.30)

This formulation handles the specificity of cylindrical coordinates in the mass matrices W ψ and
W ϕ as well as inside the operator ∇m.

Weights can also be introduced in matrices B and W ψ. Having B go to zero in a region in
space is equivalent to preventing this region from being forced in relations (3.27). Since that region
is still accounted for in W ϕ, this leads to a range of the forcing vector ϕ that has no influence on the
numerator of equation (3.30), but increases the denominator. Therefore, the eigenvalue solver will always
set that region to zero.

Similarly, having W ψ go to zero for a region in space prevents response from affecting the numerator
of equation (3.30), discouraging forcing that would lead to structures there. ψ(i) and ϕ(i) live in identical
spaces here, so the only added value of considering different weighting matrices is the option of additional
constraint on the response modes.
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(a) S = 0, (b) S = 0.4,

(c) S = 0.6, (d) S = 1.

Figure 3.13: Gains as a function of Strouhal number for different values of S and m.

In the following, B was forced to zero for the top left of the domain to prevent spurious forcing
exploiting baseflow defects. In other words, forcing was constrained to the lower part of the domain for
numerical reasons.

The FEniCSx library alone proved insufficient to perform the eigenvalue calculations required by the
resolvent method detailed in section 3.3.1. Thus the PETSc library of [8–10] and SLEPc of [49] was used.
The parallel version of this library developed in [139] was especially useful. PETSc was accessed through
the petsc4py package published in [27].

In practice the inversion in the R operator was performed using a lower-upper solver levering
MUMPS as in [6, 7] and the eigenvalues calculations using a Krylov-Schur method. Computations
were run on 35 cores of an Intel(R) Xeon(R) Gold 6240Y CPU running at 2.60 GHz. Again, an absolute
tolerance of η = 10−12 was enforced. The complete code is available on GitHub under an OpenSource
licence. Additional information is available in section 4.3.

3.4 Coherent structures

3.4.1 Flow behaviour with increasing swirl

Figure 3.13 represent the evolution of the dominant gains σ(1) as a function of Strouhal number St =
ωR/πU for different azimuthal wavenumbers m. To respect conventions in the field, the Strouhal number
was made dimensionless with respect to diameter, not to radius as is the case for all other quantities.
Each plot was made for a different swirl intensity S.

As expected, introducing swirl breaks axisymmetry in equations (3.27). Indeed, convection terms
are altered with the introduction of non-zero Uθ and the fluctuation equations are no longer invariant
with respect to the transform θ ↔ −θ. Therefore, it stands to reason that curves of constant |m| no
longer collapse on each other, since they become the solutions to different problems. In section 3.3.1, we

https://github.com/hawkspar/spy.git
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detailed that modes complex conjugates have the same gain. This leads to

∀m ∈ N,∀S ∈ R, lim
St→0+

σ(i)
m

∣∣∣
S
= lim
St→0+

σ
(i)
−m

∣∣∣
S
. (3.31)

and this behaviour is readily visible in figure 3.13. Also note that it is expected that gains become
damped as |m| increases in a viscous flow, which is also the case here. Figure 3.13 was limited to |m| < 5
for readability.

The implementation chosen in section 3.3.2 allows for exploration of very low Strouhal numbers,
where strong amplification is observed at high swirl. Because of the boundary conditions detailed in
3.2.1, increasing S amounts to increasing Uθ while keeping Ux constant at the nozzle inlet. Hence, a
higher swirl intensity means more kinetic energy as well as extra shear into the fluid, and an associated
increase in amplification should not come as a surprise.

However, going from S = 0 to S = 1 has less then doubled baseflow kinetic energy and introduced
an additional component of shear ∂rUθ roughly equivalent to ∂rUx already present in the shear layer.
Yet one can see in figure 3.13 this leads to an almost two orders of magnitude increase in the gains.
Therefore, the dependence of σ(1) on swirl intensity, baseflow kinetic energy or shear is highly nonlinear
at low frequencies. Hence, it seems likely that a new amplification mechanism absent in straight jets
comes into play as swirl is increased...

Unaffected bending and axisymmetric modes

First of all, the axisymmetric behaviour does not substantially change with S. KH modes at m = 0
dominate flow behaviour for frequencies St > 0.5 in the absence of swirl in figure 3.13a. This is expected,
as axisymmetric modes lead to the highest gains for pure ∂rUx shear in two dimensions as established
in [31]. When swirl is introduced, the m = 0 curve and associated structures become overtaken by other
azimuthal wavenumbers m > 0 at high frequencies St > 1. This could be because KH instabilities as
described in [39] and section 3.1.1 are growing along flow streamlines. An m = 0 mode is locked in the
ex direction and incapable of evolving along streamlines tilted by the presence of Uθ. Therefore, it is
impossible for an axisymmetric fluctuation to leverage azimuthal KH, no matter the frequency regime.
Hence, other modes overtake the m = 0 one in the swirling regime at high frequencies because higher
wavenumbers are able to leverage KH in the two directions at once.

Bending modes |m| = 1 separate for non-zero swirl as all |m| > 0 modes do, but do not seem to
undergo radical change as S increases. Figure 3.13 seem to imply a phenomenon not unlike Doppler shift,
with a m = 1 curve shifting into the high frequencies, and the m = −1 curve into the low frequencies
with little additional amplification relative to swirl intensity overall.

This is not the conclusion of [71], who argues for a most amplified mode at m = 0 for a swirling jet.
[59, 60, 66, 92] all compute the m = −1 mode taking over the axisymmetric KH mode as swirl increases
and eventually leading the way to instability.

Another derivation in [72] proposes a much higher most unstable azimuthal wavenumber, going as
high as m = 14. The latter case is very different in terms of flow profiles, considering very localised
swirl in the shear layer. [72] also exhibits significant amplification around St = 0. Finally, [32, 39] both
argue in favour of an infinite m, though the former also concedes this is probably due to the choice of
an infinitely thin shear layer.

All the authors above perform LTSA, which includes a parallel flow assumption as presented in
section 3.1. The formalism of [92] is also based on LSSA, but only weakly non parallel. As stated in
3.3.1, there are significant differences between this approach and the one pursued here, which could
explain the disparity between results.

On the influence of swirl on spiral modes

Figure 3.13 features a spectacular amplification of modes with |m| > 1 at low Strouhal numbers, especially
for m < 0. Indeed, the gains obtained in this regime become even larger than the maximum of the
axisymmetric mode at high frequency traditionally associated with KH waves. The phenomenon persists
up to the highest wavenumber studied |m| = 5, but wears off around St ≈ 1.

Even before looking at the mode structure in detail, this points to the LU mechanism as detailed in
[91, 101], which is expected to play an important role in flow physics for |m| > 0 and low St. This will
be discussed in more details later when studying mode structures.
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Figure 3.14: Three first gains as a function of Strouhal number for (S;m) = (1;−2).

This amplification is even more dramatic and longer lasting for m < 0, or counter-rotating modes.
This is not a new result as it has already been observed by [59, 67, 68, 70, 72, 92] that there is a regime of
swirl intensity where such modes are amplified. Authors present different results when quantifying growth
rates, but the simple persistence of counter-rotating modes for the variety of baseflows considered, from
the Batchelor vortex to experimental fitted profiles, does suggest some degree of generality. The difference
between LTSA and resolvent analysis outlined in section 3.3.1 still apply of course, and teachings from
one method do not always carry over to the other.

This behaviour can also be found in the resolvent analysis conducted by [86] for a coaxial jet, whose
gain curves in figure 10 bear striking resemblance to figure 3.13. This study is very similar to the current
case, though it was performed at a significantly lower Reynolds number, and for a co-axial jet.

[84] also extracted a multi-spiral mode |m| = 4 from LES computations in the regime of swirl intensity
that is relevant to this study. This mode has a strong frequency peak at low frequency St ≈ 0.02, but
this mode is dismissed as spurious in the publication.

Finally, experimental evidence of a double spiral in a swirling turbulent jet can be found in [15,
40, 42, 69, 92], where double spiral counter-rotating co-winding structures plays a key role, especially
around conical vortex breakdown. Theses structures where extracted from the flows through a variety
of techniques from hot wire probes to dye visualisations.

Low rank behaviour

A large gain separation σ(1) ≫ σ(2) for as many m and as wide a range of St is desirable for reduced order
modelling, as established in [13]. Indeed, in such a case it is possible to accurately represent the dynamics
around the baseflow using only a single mode pair ϕ(1) and ψ(1) for every m and St. Therefore, obtaining
high gain separation throughout the parameter space is equivalent to a low-rank resolvent operator R
for the case considered.

Figure 3.14, which is representative of relative gains behaviour for all m at high swirl, shows this is
indeed the case, with a large gain separation throughout the range of Strouhal numbers considered.

3.4.2 Kelvin-Helmholtz mode
As a first step when examining modes, it can be verified that the resolvent method reproduces known
phenomena, such as the well-known KH mechanism detailed in section 3.1.1. Figure 3.15 shows that this
is the case.

In this regime which exhibits the largest gain without swirl, one can clearly see structures around
the boundary of the potential core. This potential core is clearly visible in figure 3.12a and goes from the
nozzle tip at (x; r) = (0; 1) to the lower right of figure 3.15 at (x; r) = (14; 0). This mode changes sign
upon entering or leaving the core. Comprised of many rings tightly grouped together in the x direction,
the mode is limited to the edge of the potential core and has no support any distance from it.



3.4. COHERENT STRUCTURES 53

Figure 3.15: Contours of the real part of the first response mode ψ(1)
x in a regime associated to

KH (S;m;St) = (0; 0; 1).

(a) (S;m;St) = (0; 5; 1),

(b) (S;m;St) = (1; 0; 1).

Figure 3.16: Contours of the real part of the first response mode ψ(1)
x in other regimes associated

to KH.

It can easily to see in figure 3.16 the same traits that give away KH as the main amplification
mechanism in other regimes, always at high frequencies St > 0.5. This seems to be the driving force
behind most high frequency modes.

3.4.3 Most amplified mode

The focus of our study naturally lands on the most amplified mode, namely the mode (S;m;St) =
(1;−2; 0.004), located at the highest peak of figure 3.13d. This mode is depicted in 3D in figure 3.17a
alongside its counterpart for m = 2. Isosurfaces of axial forcing and of velocity response are shown at
10% of their respective maximum values.

Both modes wind in the same direction in space, but rotate in opposite directions. Given the
parameters |m| = 2 and St > 0, a double spiral structure was expected for both modes. Visually, the
modes have a very different helix step. They bear close resemblance to modes exhibited in [30] obtained
by numerical continuation.

The case for lift-up

The forcing for both values of m is extremely localised and very similar in appearance. Wrapped around
the nozzle, it acts in the region with the highest shear in both axial and azimuthal directions. The
forcing mode envelope ends at x ≈ 0 whereas the response picks up from x > 4 onward, all the way to
r = 6. Therefore, extremely localised forcing at the nozzle produces a very large response spiral taking
up almost all of the shear layer.

There is no significant overlap between response and forcing modes. That is a characteristic of the
LU phenomenon, where forcing leads to streak formation further downstream in the flow.
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(a) m = −2, (b) m = 2.

Figure 3.17: 3D isocontours at 10% for (S;St) = (1; 0.004), m ∈ {−2; 2}. Axial forcing ϕ
(1)
x

is in cyan-yellow, response ψ(1)
x in blue-red. The black arrows represent main baseflow velocity

components, the nozzle is in transparent black.

Figure 3.18 shows a slice of the forcing vectors superposed over contours of the axial response. As
expected, the forcing is found to pick up fast fluid from inside the nozzle r < 1 and lift it into areas of
strong axial response. In the swirling jet case, rolls are more discrete than the flat plate case presented
in section 3.1.1, yet this is believed to be the same underlying mechanism. This may be an effect of the
case setup that enforces incompressibility but allows for fluid to exit the domain at the top and right
boundaries.

The presence of LU can be further investigated by studying the forcing at the nozzle in detail. In
figure 3.19a one can see forcing structures tightly wrapped around the nozzle, especially focused at its
tip. Also note the tilted structure of the forcing below and above the nozzle, which points to the Orr
amplification mechanism.

Figure 3.19b presents baseflow streamlines and the map of the modulus of the forcing component
orthogonal to the baseflow in the x − r plane, further scaled by the maximum forcing norm across the
image. Formally, this amounts to computing

e⊥ =
1√

U2
x + U2

r

[
Ur
−Ux

]
, ϕ

2D
=

1

max

√
ϕ
(1)
x ϕ

(1)∗
x + ϕ

(1)
r ϕ

(1)∗
r

[
ϕ
(1)
x

ϕ
(1)
r

]
, (3.32)

and from there derive the orthogonal forcing component

ϕ⊥ =
∣∣∣ϕ

2D
· e⊥

∣∣∣ . (3.33)

This is the component that contributes to LU by moving fluid along shear directions. Close inspection
of the nozzle tip in figure 3.19b suggests this component is very important where the gradients of the
baseflow are strongest. LU is therefore expected to manifest at its maximum around the nozzle tip.

The presence of LU and streaks in non-swirling jets was established in [91] using both experimental
data and the resolvent method side to side. It was also listed as a dominant mechanism at low frequency
for all |m| > 0 in [101] also using resolvent analysis. Therefore, the presence of the same mechanism in
a swirling jet at low frequencies is expected.

This explains why bending or axisymmetric modes appear less amplified then the others at low
frequency in figure 3.13. Indeed, an m = 0 mode cannot generate streaks under constraints of incom-
pressibility and therefore, it is impossible for these modes to exhibit LU. As seen in section 3.1.1, LU is
not a phenomenon limited to swirling jets and can arise in straight jets as well. However, the underlying
mechanisms for growth are expected to benefit from additional shear in a swirling jet and it stands to
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Figure 3.18: Cross plane of the forcing ϕ(1) at x = 0 around the nozzle for (S;m;St) =

(1;−2; 0.004). Contours are axial response ψ(1)
x .
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(a) Axial direction, nozzle in white,
(b) Streamlines and orthogonal forcing
component ϕ⊥ (close up, nozzle in black).

Figure 3.19: Forcing ϕ(1) at the nozzle for (S;m;St) = (1;−2; 0.004).
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reason that all things else being equal, a mode purely associated to LU would become more amplified as
swirl increases.

Indeed, looking back in figure 3.17b, the m = 2 mode is similar to a pure streak, as in the figure 5 of
[101] or figure 9 of [91]. However, the presence of LU does not shed light as to why modes with m < 0
are so much more favoured over m > 0 ones, or the presence of a frequency peak.

About Kelvin-Helmholtz

KH instabilities presented in section 3.1.1 are a major candidate to explain the phenomenal gain observed
in figure 3.13. It is easier to think about KH by assuming a parallel flow. Writing U = Ux(r)ex+Uθ(r)eθ
and periodicity, it becomes possible to write

q(x, r, θ, t) =

∞∑
m=−∞

∫ ∞

−∞

∫ ∞

−∞
q̂
k,m,ω

(r)ei(kx+mθ−ωt) + q̂∗
k,m,ω

(r)ei(ωt−mθ−kx)dkdω. (3.34)

instead of equation (3.26). One can then define a wavevector Λ = kex +meθ for the fluctuations and a
principal shear vector Σ = ∂rUxex + ∂r(Uθ/r)eθ for the baseflow.

In this simplified configuration, consider a cylinder of constant radius r. It is possible to see this
cylinder as the interface between two fluids of velocity U(r−) and U(r+). Instabilities on this surface
may be studied in the U −er plane. In the presence of shear and neglecting curvature, taking inspiration
from [39, section B.2] which generalised results of [31, section 1.4], the growth rate of the KH mechanism
on the surface of the cylinder goes like Λ · Σ.

This scalar product may also be derived from the fluctuations phase along streamlines

ϑ = kx+mθ − ωt. (3.35)

By itself, the phase is not informative of fluctuations behaviour. Taking the derivative of relation
(3.35) with respect to time yields the Doppler-shifted frequency

γ = kUx +m
Uθ
r
− ω. (3.36)

This quantity appears in [16, 17, 51, 66] and iγ is called Doppler-shifted growth rate in [16] for a
complex ω. Physically, this quantity relates to fluctuation variation along streamlines.

In a parallel flow, the shear is purely radial. Therefore the important feature of shear modes is
not Doppler-shifted growth rate along streamlines per se but rather its radial distribution. If the local
time-wise evolution of the mode is the same across r, then the mode cannot be labelled a shear mode in
a parallel flow. On the contrary, if it is large in areas of high baseflow shear, this is a strong indication
that the mode is feeding on shear.

Taking its derivative in the radial direction gives

∂rγ = k∂rUx +m∂r

(
Uθ
r

)
⇒ ∂rγ = Λ · Σ. (3.37)

It is proposed to use the dot criterion Λ · Σ as an indicator of the presence of a shear amplification
mechanism. Coincidentally, this product is also of import to C instabilities, whose driving force is
presented in section 3.1.2. ∃r0 ∈ R+|(Λ · Σ)(r0) = 0 is a sufficient condition for C amplification in
[66, equation (5.6)]. Its derivation in that work involves a Doppler-shifted frequency and looking for
a stationary wave in the regime ∥Λ∥ ≫ 1. The same product appears again at leading order in the
Wentzel-Kramers-Brillouin analysis of [16, equation (3.8)] also in the large wavenumber approximation.
At first order, it would appear that the two mechanisms of KH and C work against each other.

However, for a pure LU mode, one would also expect to have Λ · Σ = 0. Indeed, considering a
non-swirling flow where Σ = ∂rUxex, and an idealised response made purely of very long streaks. The
very long streaks mean k → 0 which also leads to Λ · Σ = 0. Therefore, there is no equivalence between
a zero dot criterion and a C mechanism. Indeed, it is only a sufficient condition for its presence.

Of course, the method presented in section 3.3 is not local. So in order to exploit the dot criterion
k must be approximated. Arbitrarily, it was chosen to use an average of the approximate of every
component

k ≈ 1

3
ℑ
(
∂xux
ux

+
∂xur
ur

+
∂xuθ
uθ

)
. (3.38)
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Figure 3.20: Contour of averaged wavenumber-principal shear relative alignment χ as a function
of swirl intensity S and Strouhal number St for m ∈ {−2, 2}.

This approximation makes it possible to compute different criteria and to compare to LTSA results.
For instance, the necessary condition relative to non-axisymmetric centrifugal growth from [51, equation
(20)] rephrased from the sufficient stability criterion of equation (3.12) is written

∃x ∈ V |k2 ∂r(r
2U2

θ )

r3
− 2km

r2
Ur∂rUx −

(Λ · Σ)2

4
< 0. (3.39)

This was verified to hold across all frequencies for (S; |m|) = (1; 2), which is a hint to the presence of
a C mechanism. Note that the dot criterion has a meaning opposite to [66, equation (5.6)] here. Indeed,
for [51] having a high dot criterion is sufficient to lead to a C mechanism, whereas [66] considers this
quantity should be zero instead.

The dot criterion exhibited in equation (3.37) was computed and averaged over the envelope of the
modes. Said envelope was defined as the area where the square of mode amplitude ∥u∥2 = |ux|2+ |ur|2+
|uθ|2 was above ten percent of its maximum value. Taking this region as A10% and its surface area as
A(A10%), the quantity of interest becomes average alignment

χ =
1

A(A10%)

∫
A10%

Λ · Σ
∥Λ∥ ∥Σ∥

dA. (3.40)

This quantity represents an average estimate of the alignment of the local wavevector Λ with respect
to the principal shear direction Σ. If this quantity is high, this is an indication of the predominance of
shear instabilities in the mode. Conversely, if it is low, it indicates another mechanism might be at play.

In the case (S;m;St) = (1;−2; 0.004), χ ≈ 10−3. From this one can come to the conclusion that the
observed dramatic amplification at low Strouhal numbers is not KH, and that it could be C.

This quantity is visible in figure 3.20 for a broader range of the parameter space. Overall, the
alignment increases with St. This is expected as KH becomes the dominant mechanism for driving
growth at high frequency. Conversely, χ remains low in a narrow regime around zero frequency, which is
the region where LU is expected and C could exist, tightly clustered around zero. The region of lowest
alignment χ = 0 remains centred at low frequencies and even narrows down as swirl intensity S increases,
even if low alignment persists for m > 0 up to St = 0.4.

Evolution of alignment relative to S is pretty straightforward in the m = −2 case, with region of low
alignment growing with swirl. Behaviour for m = 2 is less intuitive, with KH instabilities quite quickly
taking over the low frequencies up to S ≈ 0.5. At higher S, there seems to be a valley forming, with
KH receding in the high frequency, high swirl regime. The upper right corner of figure 3.20 is the only
region where the previous observation that χ increases with St is shown wrong.

The bottom-centre region of the domain where S < 0.4 and St < 0.05 seems to be something of a
limited outlier in a region of overall low orientation. In an effort to acquire additional information, a
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Figure 3.21: Contour of standard deviation of wavenumber-principal shear relative alignment Υ
as a function of swirl intensity S and Strouhal number St for m ∈ {−2, 2}.

standard deviation was computed

Υ =

√
1

A(A10%)

∫
A10%

(
Λ · Σ
∥Λ∥ ∥Σ∥

− χ
)2

dA. (3.41)

and displayed in figure 3.21. Regions of high deviation are associated to a very noisy dot criterion over
the mode envelope and therefore reduce confidence in a straightforward interpretation of figure 3.20.
Indeed, if the dot criterion is high in a part of a mode and not in another, this probably means the same
mode is making use of several mechanisms at once.

Overall the distribution of the dot criterion remains contained. For much of the parameter space,
Υ < 0.2, which could be rephrased as the associated regions have over 60% of their dot values within 0.2
of their average, assuming a Gaussian distribution. Minimum values are achieved in a high alignment
regime decidedly associated to KH, when S is low and m > 0.

The deviation increases with swirl, and does so faster for frequencies around St = 1. This is probably
due to the prevalence of KH in this high frequency regime - new mechanisms do not immediately replace
KH but instead smoothly take over as swirl is increased. This leads to modes with coexisting regions of
high and low alignment, increasing Υ. The standard deviation is maximal in the region of interest at
low St, high S for m < 0, which reduces the confidence in the previous low value of average alignment
χ for (S;m;St) = (1;−2; 0.004).

As a point of reference to compare this dot criterion to, the first resolvent gain was also plotted
as a contour plot in figure 3.22. The afore-mentioned drift of the gain peak associated with the KH
mechanism at S = 0 to low frequencies for m = −2 and high frequencies for m = 2 is clearly visible, as
the main peak appearing at high swirl, low frequency for m = −2.

Considering figures 3.20 and 3.22 side by side, their correlation is unclear. Extremes of alignment
χ correspond to a fluctuation mode that could be understood as making the most of the C or KH
amplification mechanism. But this does not seem to lead to higher gains over the entire parameter
space. Indeed, the maximum gain at low swirl is not associated to any alignment maxima, and the drift
of σ(1) with S is not clearly associated with a tendency in χ.

However, when taking figure 3.21 alongside figure 3.22, one can see that σ(1) tends to be maximal
when Υ is maximal. The secret to maximal amplification could be to leverage all mechanisms at once
instead of picking one and sticking to it. Indeed, it is possible for a global mode to exploit different
mechanisms in different regions of the flow.

This seems to be the case for the most amplified mode, as figure 3.23 illustrates strong variation
throughout space with respect to the dot criterion. The mode wavenumber is aligned with principal
shear direction close to the potential core where shear is important, but the dot criterion decays, even



3.4. COHERENT STRUCTURES 59

Figure 3.22: First resolvent gain σ(1) as a function of swirl intensity S and Strouhal number St
for m ∈ {−2, 2}.
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Figure 3.23: Local dot criterion for (S;m;St) = (1;−2; 0.004).

presenting a clear zero arc, as distance to the core increases. Hence, this mode seems to make use of a
combination of mechanisms to achieve amplification in different areas of the domain.

3.4.4 Outer mode

Another point in the parameter space worthy of attention is the St = 0 regime of figure 3.13a for |m| > 1.
The choice of m = 2 makes for easier comparison with the modes of section 3.4.3. Isocontours of this
mode are displayed in figure 3.24a.

Shear outside the nozzle

The response is strongly concentrated on top of the nozzle, latched onto a region of slow moving fluid.
It is not allowed to wind or rotate because of the parameter St = 0 - it has to remain steady. This
behaviour persists for all S. Previous calculations comparable to this one such as [86, 101] that had a

(a) No constrain, (b) Response constrained to x > 1.

Figure 3.24: Axial component of the response ψ(1)
x for (S;m;St) = (0; 2; 0).
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(a) Velocity norm at x = −0.01, (b) Streamlines.

Figure 3.25: Baseflow visualisations on top of the nozzle.

Figure 3.26: Streamlines and orthogonal response component ψ(1)
⊥ (close up) for (S;m;St) =

(0; 2; 0).

wall on top of the nozzle outlet could not witness this. Similar phenomenon was exposed in a conference
by [18] also using the resolvent analysis technique on a jet with fluid evolving atop the nozzle.

If one considers the usual definition of ensemble averaging as a time integral, taking St = 0 leads to
a response mode no longer satisfying q = 0, which leads to a breakdown of the RANS decomposition.
However, this singularity is lifted here by the regularity of the problem - indeed in practice the resolvent
process is found to be continuous around St = 0 for all m, so it is possible to define resolvent modes at
zero frequency by continuation, as a limit case when St→ 0.

To explain the presence of response on top of the nozzle, the baseflow in this area was scrutinised
in more detail. It turns out that the baseflow is subject to gradients only about ten times less intense
above the nozzle compared to below it, see figure 3.25a. It seems these gradients close to the wall are
not entirely generated by the coflow but rather by the significant entrainment induced by the jet visible
on the streamlines of figure 3.25b. This contraction leads to a rapid radial increase in axial velocity atop
the nozzle, and therefore strong shear.

There is evidence of LU to be found in the response structure on top of the nozzle, see figure 3.26.
This figure was drawn in a similar manner as figure 3.19b, plotting the contour of the absolute value of
the orthogonal component of the first response mode. This shows the formation of strong fluctuation
rolls on top of the nozzle. This rolls are tilted compared to usual LU rolls in the case of plates, but they
are still expected to produce streaks.

In the end, the overall slower pace of convection on top of the nozzle could play to the advantage
of LU, since forcing mechanisms there have more time to “build-up” streaks before they get advected
downstream compared to structures underneath. Contrary to the structures studied in section 3.4.3,
here the forcing and response modes are co-located.

This phenomenon also explains the “rebound” of axisymmetric gain curves around St = 0 regardless
of swirl intensity observed in figure 3.13. Since structures in this regime appear fixed on top of the nozzle
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where they are able to leverage KH, they are unaffected by swirl inside it.

Spread-out streaks

Another clearly visible feature of this mode are the streaks created in the shear layer. Figure 3.24a
presents a response concentrated on top of the nozzle, but also a diffuse, weak component of the response
that exists throughout most of the shear layer. This should not be a surprise, as the LU mechanism
detailed in section 3.4.4 is known to produce streaks. These structures are expected to be formed on
top of the nozzle, but manifest downstream. In this process, the streaks are spread over the whole shear
layer.

In order to measure the importance of these streaks in the final gain, the response mass matrix W ψ

of equation (3.30) was weighted to only consider response in the region x > 0 and an extra resolvent
calculation was performed for the same parameters. This process yields figure 3.24b, which is very similar
to 3.24a.

Therefore, the streaks generated downstream are energetic - or simply spread out - enough to secure
the most amplified position on their own, overtaking other structures even though they seem to require
wasting fluctuations kinetic energy atop the nozzle. Moreover, the structure atop the nozzle is damped
but not fully removed after the penalisation. This is significant because by relation (3.30), such a
structure does not directly contribute to the gain yet still costs energy to produce. It seems that the
outer structure response associated to rolls in figure 3.26 is essential to the creation of the streaks,
otherwise it would not have survived the weighting process.

The modes only tell part of the story. Between the two modes in figure 3.24, who are associated to
different operators, there is a gain variation of about sixteen percent. Thus, the streaks play a significant
role in the overall gain even if at any given point in the shear layer their amplitude does not compare to
the outer nozzle structures.

3.5 Conclusion

This study presented the resolvent analysis of a turbulent swirling jet. In section 3.2, the process of
computation for a very stiff baseflow and its associated eddy viscosity was detailed. The use of an open
source solver proved critical to achieve the desired Reynolds number of Re = 200, 000. Section 3.3 briefly
reviewed the theory behind the resolvent method and its implementation for this case. The latter is
available online at this link.

The method yielded two significant results. Firstly, strong gain separation and large amplification of
low frequency structures were noted in section 3.4.1 as swirl increased, which was explained by a detailed
study of the most amplified mode in section 3.4.3. The associated coherent structure was very wide,
taking almost all the shear layer, and manifested some distance away from the nozzle. This double spiral
co-winding counter-rotating mode is amplified by a combination of LU, Orr mechanism and another
amplification mechanism. As a response mode, this structure is associated to forcing and cannot arise
or survive without sustained baseflow fluctuations at the nozzle.

A criterion based on relative alignment of fluctuation wavenumber and principal shear direction
was presented as an indicator of KH predominance for a given response mode. This criterion shed a
new light on the gains exhibited in section 3.4.1 by allowing for easier isolation of regimes where KH
dominates. Taking the analysis further and looking at the dispersion of this criterion brought to light
mixed behaviour for the most amplified mode as far as the shear amplification mechanism is concerned.
Indeed, KH seems to be favoured in a certain region of the mode and negligible in another.

The second result of import coming from the resolvent analysis of the turbulent swirling jet considered
stems from the choice to include a finite height nozzle inside the computational domain. This leads at zero
frequency and in the absence of swirl to a most peculiar behaviour studied in section 3.4.4. This structure
latched outside the nozzle, using entrainment as a source of shear to produce streaks. Contribution of
these streaks to gain was shown to be significant, and the structures outside the nozzle were proved to
be useful to their generation.

Amongst the drawbacks of the proposed approach, the choice of the SA eddy viscosity model in
section 3.2 obviously influenced the final result to an unknown degree. However, inclusion of an eddy

https://github.com/hawkspar/spy.git
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viscosity model in the fluctuations has been shown to improve resolvent accuracy in other works such as
[87].

The chosen grid size was expected to be more than sufficient yet structures of interest around the
nozzle lip turned out to go all the way to the individual cell scale. This is bad news since it means these
structures could be resolved better, but on the other hand there is physical motivation for an inflection
point at the nozzle lip that will lead to cell-sized structures for any grid size. In other words, it could be
that the chosen sharp tip leads to physically infinitesimal structures latched there.

Last but not least, the choice of an azimuthal Fourier decomposition limited dramatically computa-
tional costs, yet it came at the cost of a truly three-dimensional study. It is possible that the additional
constraint imposed on the mode because of the azimuthal decomposition led to occlusion of certain
physics involving interactions between different azimuthal wavenumbers at once.

Future work on the subject could include a more detailed analysis of the dot criterion, such as the
impact of the envelope, limiting the computation of the dot product with regards to mode amplitude
but also shear, evaluate different approximations of the axial wavenumber k, and find a similar criterion
for centrifugal type of instabilities.

Another possible approach would be to reproduce behaviours presented here by experimental or nu-
merical means other than LTSA, LSSA, or LSTSA. Indeed, these methods have already been extensively
performed on swirling jets and are not expected to reproduce the observed behaviour, be it LU or the
important amplification observed at low frequencies. GTSA, LES, DNS or experimental measurements
in the parameter space considered here are probably better suited to reproducing the most amplified
mode of section 3.4.3.

It is also paramount to include a fluid region on top of the nozzle in computations to capture the
outer mode discussed in section 3.4.4 and its own LU mechanism at very low frequency. Such a mode
could be easier to reproduce experimentally because of its even smaller frequency. Indeed, averaging
fluctuations of an experiment reproducing section 3.2.1 is expected to be enough to reproduce this outer
mode.



Chapter 4

Numerical considerations

The devil is in the details.

Gustave Flaubert

As could be expected, a PhD student doing CFD spends most of his time coding. Therefore, this
thesis would not be complete without an overview of arguably the most important contribution of this
thesis to global knowledge. The developed code was called “Swirling Parallel Yet another jet code” (SPY),
as an homage to Chuhan Wang who provided “Yet Another Jet Code” (YAJ) the first building blocks for
this code.

Chuhan’s contribution was concerned with two-dimensional fluctuations for parallel flows. It was
extended to global three dimensions for both baseflow as well as fluctuations and pushed to a parallel
framework.

SPY deals with planar geometries in cylindrical coordinates and is able to handle arbitrary eddy
viscosities as well as any Dirichlet, or stress-free boundary conditions on specified boundaries. The state
vector built into the code holds three components of velocity which must satisfy incompressibility for
baseflow and fluctuations.

The SPY code is available to all on GitHub under an Open Source licence. It is based on the gmsh,
FEniCSx, PETSc and SLEPc libraries.

4.1 Appropriate meshing

4.1.1 Unstructured paradigm
There is an old saying in the CFD community that says “garbage in, garbage out”. In other words, even
for relatively simple geometries such as the ones this thesis is concerned with, it is paramount to feed
into the code a mesh that is properly tailored to the case, or no numerical scheme will ever lead to any
relevant result. As mentioned in section 3.2.2, this was done in this thesis using gmsh from [46]. This
allowed for an unstructured, irregular triangular mesh.

The geometry was relatively simple, as can be seen in figure 4.1. An ill-fated attempt to include
an infinitesimal nozzle led nowhere - although such a geometry can be handled by gmsh and FEniCSx
just fine, this prevents the use of classical continuous basis functions, which makes writing the equations
weak form and boundary conditions much harder.

The unstructured nature of the mesh made it very easy to increase resolution in a region, leading to
a very refined mesh close to the nozzle that became rapidly coarse on the top edge where no phenomenon
of interest is expected to occur. OpenFOAM turned out to be extremely sensitive to the mesh, whereas
FEniCSx’s routines are more robust.

4.1.2 Best of both worlds
Baseflow calculations in OpenFOAM were performed on one mesh and interpolate on a second, smaller
domain using scipy.interpolate.griddata routine with a linear method. This served several purposes:
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Figure 4.1: Mesh used in SPYP calculations in chapter 3.

1. Smoothing out small defects and oscillations from OpenFOAM outputs that turned out to be very
damaging to subsequent linear analysis,

2. Reducing the computational domain for SPYP, since the region of interest for fluctuations is much
smaller than the domain expected to be necessary for satisfying baseflow resolution,

3. Addressing different constraints of OpenFOAM and FEniCSx at the same time, the first favouring a
very refined mesh, the second more stable on coarser meshes,

4. Because of the formalism chosen, much of the computational resources went into the final SPYP,
which meant that there was appeal in resolving SPYP in a relatively coarse manner on the smallest
domain possible,

5. OpenFOAM outputs .vtk file format which FEniCSx cannot natively read. Therefore a conversion
was needed anyway.

Strictly speaking, OpenFOAM is also a finite volume code, not a finite element one. However the wedge
boundary conditions are specifically provided to solve an axisymmetric problem on a small azimuthal
slice. This is the solution that was favoured here, with a very small azimuthal angle of a single degree
and enforcing a single cell in the θ direction in the mesh. Therefore the solution is expected to be close
to an actual finite element two-dimensional calculation.

To reduce interpolation error, a custom Paraview routine was developed to extract the cell centres
along the nodes of the OpenFOAM computation. Provided lists of OpenFOAM times, Reynolds numbers and
swirl intensities, as well as paths to OpenFOAM face results in .vtm format and the SPY case, this macro
will convert the relevant OpenFOAM files into something that the meshio library can read.

1 from paraview . s imple import ∗
2
3 path_openFOAM=’ . / ’
4 path_SPY_case=’SPY/ ca s e s / case / ’
5 times , Res , Ss = [ ] , [ ] , [ ]
6
7 a s s o c i a t i on_d i c t={}
8 f o r i , time in enumerate ( t imes ) : a s s o c i a t i on_d i c t [ s t r ( time ) ]={ ’Re ’ : Res [ i ] , ’ S ’ : Ss [ i ] }
9

10 f o r vtk in a s s o c i a t i on_d i c t :
11 # f i nd source
12 vtm = XMLMultiBlockDataReader ( reg i s t rat ionName=’ case_ ’+vtk+’ . vtm ’ ,

FileName=[path_OpenFOAM+’VTK/case_ ’+vtk+’ . vtm ’ ] )
13
14 # cr ea t e a new ’Append Locat ion Att r ibut e s ’
15 vtm_with_loc = AppendLocationAttr ibutes ( reg i s t rat ionName=’ case_loc ’ , Input=vtm)
16
17 save_str=path_SPY_case+’ base f low /OpenFOAM/Re=’+s t r ( a s s o c i a t i on_d i c t [ vtk ] [ ’Re ’ ] )+\
18 ’_S=’+s t r ( round ( a s s o c i a t i on_d i c t [ vtk ] [ ’ S ’ ] , 3 ) ) . r ep l a c e ( ’ . ’ , ’ , ’ )+ ’ . xmf ’
19 # save data
20 SaveData ( save_str , proxy=vtm_with_loc , ChooseArraysToWrite=1, PointDataArrays=[ ’U ’ ,

’p ’ , ’ nut ’ ] , Cel lDataArrays=[ ’ Ce l lCente r s ’ , ’U ’ , ’ p ’ , ’ nut ’ ] )
21 # c l e a r the p i p e l i n e
22 f o r name in ( ’ case_ ’+vtk+’ . vtm ’ , ’ case_loc ’ ) :
23 source = FindSource (name)
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24 SetAct iveSource ( source )
25 Delete ( source )
26 de l source
27
28 with open ( save_str , ’ r+’ ) as fp :
29 # Read a l l l i n e s
30 l i n e s = fp . r e a d l i n e s ( )
31 fp . seek (0 ) # Move f i l e po in t e r to the beg inning o f a f i l e
32 fp . t runcate ( ) # Erase the f i l e
33 # Cut out clumsy Times and Grids
34 fp . w r i t e l i n e s ( l i n e s [ : 3 ]+ l i n e s [ 5 : 12 ]+ l i n e s [ 15 : 37 ]+ l i n e s [ 3 9 : ] )
35
36 p r in t ( "Handled case_"+vtk+’ . vtm ’ )

After the meshio interpolation process, smoothing was performed using a pseudo-Laplace equation

f = fsmooth + µ∆fsmooth (4.1)

with small µ ≈ 10−4 in SPYB routines. Equation (4.1) can be interpreted as a small regularisation of
second derivatives. This process helped smooth the critical field νt, which was also cut-off at ι = 10−9,
meaning that any νt < ι was forced to zero. The intent behind this was to avoid problems in regions of
eddy viscosity so small it can be neglected with respect to the molecular viscosity, but rapidly fluctuating
nonetheless.

In the end, a third mesh was added which is really just a truncation of the previous one to cut
off saturation at the boundary when switching between baseflow computation in SPYB and instability
analysis in SPYP.

4.1.3 A naive saving scheme

Because of the choice to implement SPY in parallel and the absence of check-pointing options currently
available in FEniCSx, a very naive and direct saving scheme was implemented in src/helpers.py. Every
time a save is required for a given field, every processor takes the owned degrees of freedom and ghost
cells and write them out directly into .npy files.

This saving scheme is simple but extremely useful and possesses numerous advantages:

1. High speed: a faster way to read and write to the disk than a fully parallel pickled scheme is
difficult to imagine,

2. Ease of code and use: encapsulation is performed, the resulting code is largely independent of the
FEniCSx version,

3. Independence of PETSc build: FEniCSx does most of its data management in PETSc which differ-
entiates real and complex mode. Using numpy makes it easy to compute a baseflow in real mode,
and read it back in complex mode.

However, it does mean that the saving scheme is not only number-of-processors dependent, but
also requires meshes to always be read in the same order. Indeed, FEniCSx does the partitioning upon
reading the mesh, and therefore reading meshes in a different order leads to a different partitioning and
a readStuff failure.

4.1.4 Convergence relative to the grid

Many different meshes were tried over this PhD, trying various cell sizes, stretching ratios, different
geometries for refined areas... There are so many parameters implied in the creation of an unstructured
mesh that it would be impossible to exhaustively explore them all.

However, as every numerical physicist knows, studying the convergence of the employed scheme on
the mesh is paramount. It is a necessary and important step in building confidence on produced results.
Therefore a series of meshes with similar zones but differing smallest grid sizes were computed and ran
through the code. In order to allow for better readability to the reader, these different meshes will be
labelled by their number of elements, or triangles.
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(a) x = ϵ, (b) x = 9, (c) x = 19.

Figure 4.2: Velocity magnitude for a variety of slices at different numbers of elements.

Figure 4.3: Gain curves for different number of elements for the case presented in section 3.2.1
and parameters (Re;S;m) = (200, 000; 1;−2).

Baseflow

For baseflow computations, convergence with respect to mesh refinement was verified at S = 0. In the
usual manner, a very refined mesh was taken as reference, and it was checked on a few flow slices at
constant x that results do converge quite quickly to the fine mesh as the number of elements increases,
see figure 4.2. The number of elements considered here vary by almost a full order of magnitude.

An attempt was made at implementing a naive form of adaptive mesh refinement remains in the
SPYB code as a work in progress.

Fluctuations

The choice was made to focus on gains instead to study fluctuations convergence, as this quantity was
more accessible but also allowed for easier exploration of the parameter space. This time, swirl was
maximised, and an azimuthal wavenumber of interest was chosen to compare at a range of frequencies.
Results are displayed in figure 4.3 for a number of elements up to twice more than the mesh used for
most of this study.

This brief analysis clearly demonstrates that the mesh used throughout chapter 3 at 222, 000 elements
is well converged.
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σνt Cb1 Cb2 Cw1 Cw2 Cw3 Cv1 CS κ

2/3 0.1355 0.622 Cb1
κ2 + 1+Cb2

σνt
0.3 2 7.1 0.3 0.41

Table 4.1: SA parameters in OpenFOAM.

4.2 Baseflow computation
SPYB was developed for an axisymmetric and steady baseflow, satisfying equations (3.19).

4.2.1 OpenFOAM

The Open Source code OpenFOAM was used to obtain the eddy viscosity field νt using the SA model as
detailed in 3.2. To that end, the simpleFoam solver was used. This solver makes use of the canonical
SIMPLEC algorithm introduced in [137], a consistent variant of the SIMPLE method presented in [98].
This algorithm will be presented in 1.

Using the Rhie-Chow interpolation, the momentum equation of (3.19) may be reformulated as
F U = H(U) − ∇P . F is diagonal, and one defines H 1 as its average in a neighbourhood [H1]ij =

δij
∑
k∈B(i) [F ]kk.

Algorithm 1 Pseudo-code for the algorithm SIMPLEC.
Q

BC
← Boundary conditions

Q← Initial conditions
Q∗ ← Q
Q′ ← Q+ η1

while
∥∥Q−Q′∥∥ > η do

Q′ ← Q

U∗ ← solution of 1
α F [U∗ − (1− α)U ] = H(U∗)−∇P under UBC

P ← solution of ∇ ·
{

F −1H(U∗) −
[
F −1 −

(
F − H 1

)−1
]
∇P∗ −

(
F − H 1

)−1
∇P

}
= 0 under PBC

U ← F −1H(U∗)−
[
F −1 −

(
F − H 1

)−1
]
∇P ∗ −

(
F − H 1

)−1∇P under UBC

P ∗ ← P
end while
return Q

Notice the use of a relaxation parameter α for velocity, but not for pressure. That is a hallmark
of the SIMPLEC method. To resume the spirit of this algorithm, it uses a pseudo-time-march with a
pressure-correction step, which implies setting boundary conditions for the pressure. The only difference
with SIMPLE lies in the pressure correction. However, this single term change turns out to have a great
effect on stability for the case of interest.

Since the eddy viscosity is the only result kept from these calculations, let us remind the SA equations
instead as implemented in OpenFOAM

νt = ν̃fv1,

∂t(ρν̃) + Ui∂i(ρν̃) = ∇ · [ρ(ν + ν̃)∇ν̃] + Cb2
σνt

ρ ∥∇ν̃∥2 + Cb1ρS̃ν̃ − Cw1fwρ
ν̃2

d̄2
, (4.2)

S̃ = ∥∇ × U∥+ ν̃
κ2d2 fv2, fw = g

(
1+C6

w3

g6+C6
w3

)1/6

,

fv2 = 1− χ
1+χfv1

, g = r + Cw2(r
6 − r),

fv1 = χ3

χ3+C3
v1
, r = min

(
ν̃

S̃κ2d2
, 10

)
,

χ = ν̃/ν,

d being the local minimum distance to wall. The coefficients of the model are detailed in table 4.1. A
few alternatives are reviewed in section 1.1.2.
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To obtain the desired Reynolds number, it was increased gradually with logarithmic steps. Absolute
as well as relative tolerance and relaxation parameter were decreased as well to improve performance,
all the way to final relation parameter α = 0.97, absolute tolerance η = 10−12 and relative tolerance
ι = 10−9. Because OpenFOAM accepts snippets of C++ as boundary conditions of type codedFixedValue,
a changing swirl intensity S was written as a function of OpenFOAM pseudo-time.

Critically, the presence of a non-negligible co-flow and a Dirichlet condition at the top boundary are
necessary for convergence of the OpenFOAM pipeline. Fortunately, the co-flow can be reduced as iterations
progress in the same manner that swirl intensity S is increased, using codedFixedValue. Because of the
different meshes used as detailed in section 4.1.2, it was possible to pick a smaller domain for SPYB and
limit the spurious influence from the top boundary.

As mentioned in section 3.2.2, the OpenFOAM setup is also available on GitHub.

4.2.2 SPYB

Because of small defects in the output from OpenFOAM invisible to the naked eye, the resulting flow could
not be used as is in instability computations. A Newton solver was thus employed to obtain a baseflow
satisfying (3.19) given the eddy-viscosity field νt provided by OpenFOAM, appropriately smoothed and
truncated as detailed in 4.1.2.

SPY makes use of Taylor-Hood P2-P1 elements, which means that velocity is decomposed onto Basix
polynomials of degree two, whereas as pressure is written as a sum of linear hat functions. The eddy
viscosity is interpolated on a P1 element similarly to pressure.

This Newton solver also involved a relaxation parameter which was kept at α = 0.97. Convergence
occurred in under 10 steps for an absolute tolerance η = 10−12 and a relative tolerance ι = 10−9 just
like the rest of the calculation in both OpenFOAM and SPYP.

Another continuation scheme was used for the baseflow computation in SPYB, increasing first Reynolds
number Re then swirl intensity S. A lower-upper solver was used with MUMPS as a preconditioner.
The Navier-Stokes equations were solved in FEniCSx using a finite element framework in the weak form
formulation of (3.19), writing real inner product ⟨·, ·⟩ taking v and s as test functions of momentum
equations and pressure

∀y ∈ H1
Q, y =

[
v
s

]
, ⟨∇ · U, s⟩+

〈
∇U U, v

〉
− ⟨P,∇ · v⟩+

〈
ν
(
∇U + ∇U T

)
, ∇v

〉
= 0. (4.3)

Here, ∇ is implemented in helpers as the axisymmetric operator in cylindrical coordinates.
See [56] for more details on finite elements methods for incompressible CFD. The weak form in

equation (4.3) naturally gives the stress-free boundary condition at all boundaries Γ as defined in section
3.2.1 Pn = ν

(
∇U + ∇U T

)
n. Indeed, this quantity appears when performing an integration by parts

on equation (4.3):

∀y ∈ H1
Q, y =

[
v
s

]
, 0 = ⟨∇ · U, s⟩+

〈
∇U U +∇P −∇ ·

[
ν
(
∇U + ∇U T

)]
, v
〉

+

∫
Γ

[
ν
(
∇U + ∇U T

)
n− Pn

]
vHdl. (4.4)

Looking at equation (4.4), it becomes clear that it is impossible to satisfy this equation for any v
without enforcing the boundary integral as well as the surface terms. As in section 3.2, the total viscosity
ν = 1/Re + νt accommodates an eddy viscosity and therefore varies in space, which prevents the usual
elimination of the second term of the viscous stress as is usual when doing incompressible CFD.

Dirichlet boundary conditions are enforced using geometric indicator functions, collapsed subspaces
and arbitrary interpolated profiles in setup.py files. dolfinx.fem.locate_dofs_geometrical pro-
vides degrees of freedom associated with a particular boundary and a particular collapsed subspace,
dolfinx.fem.dirichletbc allows a specific boundary condition to be computed and stored in a SPY
object using the encapsulation routine SPY.applyBCs. These boundary conditions are then passed to
the dolfinx.nls.petsc.NewtonSolver in SPYB.

Should arbitrary Neumann or mixed boundary conditions be desired, it becomes necessary to change
the weak form in equation (4.3). This was done over the course of this PhD but not retained in the final
version of the SPY code.

https://github.com/hawkspar/openfoam.git
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There are several advantages to write matrices as complex forms over setting them up in the code
explicitly:

• Compacity and clarity of the weak form,

• Ease to mix objects of different types, int, dolfinx.fem.Function, ufl.TestFunction...

• Automated handling of boundary conditions,

• Sparsity patterns and distribution amongst processors handled by FEniCSx,

• Natural FEniCSx syntax.

FEniCSx makes the difference between ufl.TestFunctions and ufl.TrialFunctions - test functions
are the usual right hand side of inner products in weak forms, see [56] for more information on finite-
element methods. Trial functions correspond to the space on which the solution is decomposed - after
all, there is no mathematical requirement for these two spaces to be identical. This being said, in SPY
the usual finite element paradigm of having identical test and trial function spaces and decomposition is
retained.

In the code, ufl.TestFunctions and ufl.TrialFunctions are simply used as a shortcut to make it
easier to write and assemble complex forms correctly. In the baseflow case, specifying y as a ufl.TestFunction
is enough to ensure that the solution of a dolfinx.fem.petsc.NonlinearProblem solver is put into Q.
The difference between ufl.TestFunctions and ufl.TrialFunctions is more important when solving
for the fluctuations, see 4.3.

Another subtlety in the weak form computation regards the volume element inside the inner product.
Indeed, FEniCSx currently handles only Cartesian geometries, with a volume element ufl.dx formulated
as dV = dxdydz. This is not suited for cylindrical geometries that instead have dV = rdxdrdθ. Therefore
for all of the weak forms in SPY, the surface element underwent a multiplication by r to make it a volume
element in the cylindrical sense r*ufl.dx. This multiplication is done after integration by parts, since
the mathematics of this operation are independent of the coordinate system.

Even after the Newton calculations, it was found beneficial to undergo smoothing once again using
equation (4.1) with a small coefficient µ = 10−4, specifically for the component Ur which regularly
appears to be quite noisy.

At this point, it is legitimate to put into question the relevance of even using OpenFOAM in the first
place. Only the turbulent viscosity field νt were used from its computations, and even then smoothed
before being fed into another Newton solver... In the end though, looking at figure 4.4, differences
between the OpenFOAM and SPYB results are undeniable but remain slim. Most importantly, the flow
retains a short potential core reminiscent of an actual turbulent jet, a feature that might be lost if eddy
viscosity was included in the Newton solver directly.

A more detailed comparison on specific slices is presented in 4.5. There are differences, but they
remain contained to few percent.

4.2.3 Performance

A few speed-ups were implemented to improve performance and reduce computation time for abseflow
computations. Since the linearised NSE is the basis for the linear methods of interest in SPYP as detailed
in section 1.2, the Jacobian of the baseflow equations is computed explicitly and passed to the solver. It
takes the form of equation (4.14) with a real inner product and m = 0.

Another implemented feature is the change of boundary conditions according to the required swirl
intensity S which avoids recomputing boundary conditions every time. Instead, only the inlet boundary
condition for the θ component is computed at every iteration.

The usual trade-off between stability and convergence speed for a Newton solver made it necessary
to use a relaxation parameter α = 0.97.

4.3 Numerical linear instability analysis

A quick word about dimensions is needed here. Whenever modelling, there is a strong case to be made in
favour of reducing the problem to its substantial core. Making use of symmetry, using a computational
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(a) OpenFOAM,

(b) SPYP.

Figure 4.4: Baseflow magnitudes for the (Re;S) = (200, 000; 1) case studied in 3.4.3.

(a) x = ϵ, (b) x = 9, (c) x = 19.

Figure 4.5: Axial velocity for a variety of slices from OpenFOAM and SPYB’s Newton computation
using the FEniCSx library dolfinx.
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domain with varying resolution, and cutting out unnecessary dimensions can be understood in the same
spirit as the choice of RANS methods over the alternatives as discussed in section 1.1.1, namely to get
the most insight out of limited computational resources. However, it seems that the three dimensions of
fluctuations are crucial even on a two-dimensional flow in order to capture all phenomena, as established
in [34] even for the simplest flow by LTSA.

Indeed, the well-known Squire theorem established in [127] states that the most unstable perturba-
tions of an incompressible shear flow are two-dimensional, but that statement only hold true for a very
simple baseflow U = U(y)ex and is not expected to be relevant for the general flows considered here.
Furthermore, it considers only the most amplified mode in the stability analysis sense and misses out on
constructive interactions between non-orthogonal modes, as argued in [22].

Notice that there is no contradiction between the existence of lift-up and Squire’s theorem. Both these
results apply to inviscid baseflows written as U(y)ex. [34] states that there exists a three-dimensional
instability growing linearly in time in such a flow, which exploits LU. Squire’s theorem establishes that
the most unstable perturbation is two-dimensional in a LTSA framework. Therefore, LU is simply not
the way to obtain the fastest growing perturbation for such flows in a LTSA sense.

Even without this shortfall, Squire’s theorem does not apply to a general flow. Therefore, three-
dimensional fluctuations are considered in SPYP.

4.3.1 A word on matrices
The mathematics of resolvent analysis have been presented in section 1.2.4. Recall that the method
hinges on the formulation of the operator of the same name

R = H
(
L − iωM

)−1
B (4.5)

or more precisely on the computation of RHW ψ R , see section 3.3.2. Most of the matrices are imple-
mented as assembled weak forms using the complex form of PETSc, using the Hermitian inner product
[·, ·].

Indeed, the matrix M amounts to assembling over the space of the entire Taylor-Hood element

∀(q, y) ∈ H1
Q ×H

1
Q, q =

[
u
p

]
, y =

[
v
s

]
, [u, v] = qHM y. (4.6)

Similarly, W ϕ is written as an inner product over a smaller space containing only the P2 elements
associated to velocity

∀(w, z) ∈ H1
U ×H

1
U , [w, z] = wHW ϕz. (4.7)

Constraints and indicator functions

W ψ and W ϕ would be identical except if an indicator function indic_u is provided. Such a function
once interpolated onto the mesh is denoted 1ψ and appears in the hermitian product. In practice,
matrices H HW ψH were bundled together with a weak form more similar to that of M

∀(q, y) ∈ H1
Q ×H

1
Q, q =

[
u
p

]
, y =

[
v
s

]
, [1ψu, v] = qH H HW ψH y. (4.8)

In the absence of indic_u, H HW ψH is stored as a pointer to M to save memory. This is the
case for most of the computations presented in chapter 3 with the exception of section 3.4.4 where the
importance of streaks was quantified using constraints on W ψ.

Because of the choice of a compact HHWpsiH matrix, the R_class object does not implement R as
present in relation (4.5) but instead a version without an extractor R̃ =

(
L − iωM

)−1
B . B may

also be weighted according to indic_f interpolated as 1ϕ

∀(q, z) ∈ H1
Q ×H

1
U , q =

[
u
p

]
, [1ϕu, z] = qH B z. (4.9)

Indicator functions indic_f are useful to prevent spurious forcing. As stated in section 3.3.2, a
region with the indicator function indic_f going to zero is not forced. This turned out to be critical
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Figure 4.6: Indicator function indic_f used for the calculations in chapter 3. The nozzle walls
are shown in black.

in the calculations, as restricting the forcing turned out to be necessary to obtain physically meaningful
resolvent modes. Indeed, with no constraints on the forcing, oscillations arose on the top left corner even
when increasing mesh refinement or cutting off eddy viscosity in that region.

The current interpretation of this is that the SA model produces an eddy viscosity νt that is strongly
oscillating as it grows in the almost quiescent region, and this leads to an opportunity for forcing to grow
on the top of the shear layer in a very unstructured and unphysical manner.

The only solution that worked in practice was introducing a constraint on the forcing relatively close
to the nozzle. Such an approach has been followed in other studies such as [44], where forcing was only
allowed to exist in the nozzle. The mathematical formulation of the chosen function goes

l(xa, xb, x) =
yb − ya
xb − xa

(x− xa) + ya − y, (4.10)

s(d) = min(max(5d+ 1, 0), 1), (4.11)

1ϕ(x) =

 s(y0 − y) if x < x0,
s(l(x0, x1, x)) if x0 ≤ x ≤ x1,
s(l(x1, x2, x)) else,

(4.12)

using constants

x0 =

[
1
1.1

]
, x1 =

[
1.5
1

]
, x2 =

[
12
3.5

]
(4.13)

In effect, equation (4.10) simply gives the signed distance to a line between xa and xb. Equation
(4.11) scales such a distance d by a factor of five and saturates it at zero and one. The resulting forcing
function in equation (4.12) is defined piecewise as these saturated slopes, leading to figure 4.6. This
masking allows forcing to exist in a small region above the nozzle but cut inside the shear layer before
going up again, preventing forcing from existing at the interface between the coflow and the shear layer.

Thus, the indicator function enforces that forcing only exists in regions where the eddy-viscosity is
relatively smooth, and leaves some space around the nozzle tip for perturbations to grow. Even though
forcing was allowed to exist father from the nozzle, in practice forcing structures were always found
clustered around the nozzle, which makes sense given this is where the strongest baseflow gradients are
located.

The final weighting of forcing takes effect quite close to the structures observed in section 3.4.4.
However, the results are resilient to small changes to the forcing mask, and the modes do not appear
cut-off by the weighting. Any significant radial increase of the forcing envelope was observed to lead
to spurious oscillations, so a fine balance had to be struck between over-restricting the forcing and
abandoning the low frequencies to noise.

It must be stressed that the choice of the system 4.12 was a constraint of the numerical pipeline, an
arbitrary choice that seemed to remove the numerical issues while not affecting the resulting structures
too much. There is an argument to be made to make the forcing box more physical, basing it for instance
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on eddy-viscosity or another indicator of turbulence. Such a box would be more restrictive which could
complicate interpretative of the response modes, but it would also allow for a much smaller resolvent
system which could improve performance.

The linearised Navier-Stokes operator

The most physically meaningful matrix remains L , of course. The linearisation of Navier-Stokes is by
far the most challenging one. It was implemented as a matrix-free PETSc object to avoid ever inverting
it directly. The weak form of L goes

∀(q, y) ∈ H1
Q ×H

1
Q, q =

[
u
p

]
, y =

[
v
s

]
, [∇m · u, s] +

[
∇0U u+ ∇mu U, v

]
− [p,∇m · v]

+
[
ν
(
∇mu + ∇mu T

)
, ∇mv

]
= qH Ly. (4.14)

It is critical to enforce m = 0 on the baseflow gradient as it is axisymmetric. The test function v
however is also expected to have an azimuthal decomposition. The ∇m operator accounts for derivatives
in the azimuthal direction and handles complex numbers, which is the main draw of FEniCSx compared
to its predecessor FEniCs that was used in Chuhan’s SPY code.

Here the previous comment about ufl.TrialFunctions in section 4.2.2 becomes critical. In order
to ensure that the L operator is properly formed, with Q appearing as a constant and the solution
associated to q, the latter is prescribed as a ufl.TrialFunction.

Boundary conditions are handled as dolfinx.fem.dirichletBC objects, which are provided by the
user and subsequently enforced on the L and M matrices.

To stabilise and regularise, or not ?

When computing modes at higher and higher Reynolds number, the quality of obtained resolvent modes
degrades, and spurious oscillations appear. These oscillations are most marked inside the nozzle for the
case detailed in section 3.2.1. It was hypothesised that the problem originated from the centred finite
difference scheme implemented in FEniCSx, and an attempt was made to address this using the Streamline
Upwind Petrov-Galerkin (SUPG) formulation detailed in [21], as well as the “grad-div” method perused
in [37].

Indeed, it is known that centred finite difference schemes have a tendency to produce when convection
becomes strong and the grid Peclet number becomes large. This is illustrated in figure 4.7 for the toy
problem

U∂xu = ν∂2xu, with

{
u(0) = 0,

u(1) = 1.
(4.15)

Both these techniques involve changing the test functions in relation (4.14). SUPG amounts to the
operation v ↔ v+ τSUPG∇v u which can be understood as introducing a bias in centred finite difference
methods to better handle strongly convective flows.

On the other hand, “grad-div” performs a substitution more akin to s↔ s+τGD∇·v∇·u, which can
be understood as a stricter enforcement of fluctuations incompressibility. Both these methods involve
quite complicated prefactors τSUPG and τGD. More information on these two methods may be found in
[29].

In the end, it turned out that a FEniCSx update removed these oscillations as long as the naive weak
form proposed in (4.3) was not multiplied by r. This multiplication was introduced as a way to remove
the r = 0 singularity in the equations, however with the update this precaution proved to be unnecessary.
No special treatment of the axis of symmetry is therefore performed in L at the time of writing.

4.3.2 Temporal stability analysis
SPYP is capable of performing the procedure described in section 1.2.2 as GTSA. Because of the choice
to keep L as a matrix-free object, this severely constrains the possibilities for eigenpair selection
in the slepc4py.SLEPc.EPS object, basically imposing a shift and EPS.Which.TARGET_MAGNITUDE or
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Figure 4.7: Figure 2.1 in [21] representing exact and approximate centred finite difference solu-
tions to problem (4.15) for different grid Péclet number α = Uh/2ν.

EPS.Which.TARGET_REAL. In its current version, SPYP therefore requires a shift to compute eigenvalues
around.

In other words, a Spectral Transform of type shift-invert is a requirement of previous design
choices. The focus was put on computations around zero with a tiny positive shift ε = 10−6 to look
for the most unstable modes in the flow. Indeed, the flow was expected to be modally stable for all the
regimes considered in chapter 3 and an extensive eigenvalue search yielded no unstable mode.

Problem type was specified as an EPS.ProblemType.PGNHEP, which means that the solver is en-
couraged to leverage the semi-definite symmetric nature of M . It turns out this does not lead to the
eigensolver treating M as a mass matrix for a new hermitian product in which the Rayleigh quotient
would be computed as [112, section 3.4.3] could lead to believe. Instead the eigenvalue problem is finally
formulated as

ΩM x = Lx,

⇒ (Ω− ε)M x = (L − εM )x,

⇒
(
L − εM

)−1
M x =

1

Ω− ε
x (4.16)

according to [112, equation (3.7)].
A lower-upper decomposition was used as a pre-conditioner for the KSP object associated to the EPS

object which is concerned with the matrix L − εM . This drives up computational costs significantly.
MUMPS was leveraged to make the most of parallelism. The same absolute and relative tolerance η = 10−12

and ι = 10−9 were imposed as elsewhere.

4.3.3 Resolvent analysis

The setup of the slepc4py.SLEPc.EPS object was similar to section 4.3.2, with the important difference
that shift-invert was no longer necessary here. Because of the choice to operate on the RHW ψ R
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Figure 4.8: Schematics of the full computational process.

matrix instead of R directly, the left-hand side of the eigenvalue problem is by design hermitian and its
type could be specified as EPS.ProblemType.GHEP, opening the door to faster algorithms. Viewed from
the machine, resolvent analysis was performed as

W −1
ϕ RHW ψ Rx = σ2x (4.17)

according to [112, equation (3.4)]. See section 3.3 for the associated reasoning.
The inverse of W ϕ was performed using a Conjugate Gradient method, making use of its symmetric

definite positive nature. The response modes ψ(i) were simply obtained as

ψ(i) =
1

σ(i)
Rϕ(i) (4.18)

4.3.4 Post-processing
Most of the figures presented in chapter 3 were produced directly using visualisation routines, which are
available for two-dimensional cuts at constant x or in the x− r plane as well as in three dimensions.

Three-dimensional visualisation was performed using the Plotly library and isosurfaces. The latter
cannot handle irregular meshes and thus coarse regular meshes were devised for visualisation purposes
in cases/nozzle/print/grids_3d.py. Designed with a specific regime in mind, these Cartesian grids
were then projected onto the θ = 0 plane to be evaluation on the x− r plane using the usual coordinate
transform r2 = y2 + z2, and enriched with azimuthal information using θ = arctan2(z/y). Animations
were devised to visualise modes rotation as well.

4.3.5 Performance
The entire process to obtain resolvent modes is schematically presented in figure 4.8. Overall, the
most time-consuming part of the process is clearly the last one involving SPYP, if only because every
meaningful resolvent analysis involves a handful of azimuthal wave-numbers as well as easily dozens of
different frequencies. For every one of these points in figures such as 3.13 or 3.20 SPYP must compute
a lower-upper decomposition of the matrix L − iωM using a KSP object of the petsc4py library. The
Kolmogorov complexity of the general lower-upper algorithm goes like O(n3), with n numbering in the
hundreds of thousands of points for the case detailed in chapter 3. Every such operation may take a full
minute even using a large number of processors.

It goes without saying that as many operations as possible were kept out of the main loop on S, m
and St. The matrices B , W ϕ, H HW ψH and M can be assembled only once for a given mesh, and
the matrix L only depends on the azimuthal wave-number not on frequency, though the full resolvent
does.

To mitigate costs further, a memoisation approach was thoroughly followed at all steps of the process,
exchanging disk space for computation time. Every time SPYB computes a baseflow or SPYP computes a
mode, it is written to file. If at a later time the library is required to compute it again, it will instead
read the saved file.
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Figure 4.9: Figure 1 of [80] with case schematics.

Another attempt at improving performance was made using FEniCSx’s Just in Time Compiler. Even
though FEniCSx is a python library, it implements matrices and vectors on the fly as C objects to enable
faster executions of vector product operations. It is possible to tweak that compilation in order to
increase performance, by specifying the correct parameters to the compiler.

4.4 Validation cases
In this section results from the developed code will be compared to known publications. This section aims
to prove the validity of design choices outlined in sections 3.2.1, 3.2.2, 3.3.2 and chapter 4 as a whole,
not introducing new phenomena. The relevance of SPY will be demonstrated iteratively, by considering
cases of increasing complexity.

4.4.1 Baseflow
The first, simplest validation case concerned the Newton solver of SPYB. An axisymmetric flow as simple
as the Grabowski-Berger vortex was taken as a first reference from [80]. This usual baseflow may be
written at the input as

U(r) = ex + Seθ

{
r(2− r2) if r ≤ 1
1/r else

(4.19)

with the swirl intensity S as a parameter.
This case is simple, with a rectangular domain presented in figure 4.9 including sponge zones of

varying Reynolds numbers with a minimum of Re = 200. Boundary conditions are stress-free at the
right border Γout, and a conveyor belt at the top Γext. The axis of symmetry was handled in the same
way as in section 3.3.2.

As one can see in figure 4.10, SPYB is capable of reproducing the chosen indicator of vortex breakdown,
namely minimum axial velocity. Furthermore, it finds a critical swirl within 0.01 of Sc = 0.89 from [80].
This grants confidence in SPYB and its Newton solver when it comes to computing swirling flows.

4.4.2 Eigensolver
The second validation case is the natural continuation of the previous one and concerns the GTSA
routines. This is not directly linked with the reasoning developed in section 3.3, but it relates to proper
construction of the L operator.

The case is identical to the one presented in the previous section 4.4.1. Figure 4.11 reproduces part
of the spectrum presented in [80] and most importantly captures the same unstable eigenvalue. Indeed,
the only difference between the two graphs seems to be undersampled by SPY, which performs eigenvalue
calculations around a series of shifts to efficiently compute a spectrum. This means that the values
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(a) SPYB result, (b) Figure 3.(a) of [80].

Figure 4.10: Graph of minimum axial velocity as a function of swirl intensity S for Re = 200.

(a) SPYP result, (b) Figure 7.(a) of [80].

Figure 4.11: Eigenvalues plot for the Grabowski-Berger vortex, (Re;S;m) = (200; 1;−1).

computed on figure 4.11a are naturally clustered around shifted points, especially for σ < 0 where a
continuum of very close eigenvalues exist.

The Grabowski-Berger configuration is also studied in [43, 96, 97, 105, 115]. Indeed, the last study
performed a DNS of this configuration, which made its analysis all the more convenient for other re-
searchers.

The clustering of SPYP values around points regularly spaced in a grid across the domain is a natural
consequence of the shift-invert scheme presented in section 4.3.2. This was considered sufficient proof
that SPYP constructs L and performs GTSA convincingly on swirling flows.

4.4.3 Resolvent

As an intermediate step towards the turbulent jet, the next case features a straight laminar jet. This case
includes a wall on the left-hand side, as presented in figure 4.12. For this reference case, the focus will
be on the laminar part of the study [44] at Re = 103 with an inflow profile U = tanh[5(1− r)]ex at Γi.
The wall Γw has no-slip boundary condition attached, Γo and Γt are considered stress-free boundaries.

A resolvent calculation on the same domain with the same baseflow produced an almost identical
gain curve, as is readily visible in figure 4.13. This establishes that SPYP is capable of handling resolvent
analysis on laminar straight jets.
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Figure 4.12: Figure 1 of [44] with case schematics.

(a) SPYP result, (b) Figure 6.6 of [45].

Figure 4.13: Gains plot for a laminar jet for (Re;m) = (103; 0).
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(a) SPYP result, (b) Figure 4 b) of [101].

Figure 4.14: Squared gains plot for a turbulent straight jet with eddy viscosity Re = 4 · 105.

4.4.4 Turbulent jet
The closest validation case to the one described in section 3.2.1 is the straight jet based on [101]. Here,
the full computational chain described in figure 4.8 was used, making use of OpenFOAM, smoothing, et
caetera. Computation were done similarly to chapter 3 with S = 0 but to better compare with the
reference, the nozzle was cut out and calculations performed on x ∈ [0; 49].

Figure 4.14 compares the two gain curves. This graph differs notably from the reference - gains are
lower than expected, the peak of the m = 0 curve happens at a higher frequency, and the other curves
show a marked increase before the expected monotonic decrease.

A qualitative comparaison of response and forcing modes was also performed in figure 4.15, which
is to be compared to figure 4.16. These structures are qualitatively very close to the reference, though
somewhat shorter.

There are several points where our model substantially differs from the reference:

• Baseflows come from different methods - one is the mean flow result of a LES calculation, the
other a RANS process,

• Eddy viscosity models also differ, one being a length scale model and the other being the SA
model. The fields are similar overall with comparable amplitude, but SA does not decays with x
like the lengthscale model of [101] does, see figure 4.17,

• Flow profiles are dissimilar, with a much thinner shear layer in this work - see figure 3.10 for a
quantitative comparaison.

The OpenFOAM results presented in chapter 3 are made dimensionless with respect to R. In figure
4.17 the reference length scale is taken to be D instead to allow for easier comparison.
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(a) Resolvent response,
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(b) Resolvent forcing.

Figure 4.15: Resolvent modes for (Re;m;St) ∈ {4 · 105} × {0; 1; 3} × {0.05; 0.2; 0.6} obtained
using SPYP. Parameters m and St are provided for every graph at the top left. Scaling is adjusted
to ease comparaison to figure 4.16.

Figure 4.16: Excerpt of figure 9 of [101] showing resolvent response (b) and forcing (c) modes
for a turbulent straight jet with eddy viscosity Re = 4 · 105.
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(a) OpenFOAM result,

(b) Figure 2 of [101] displaying eddy viscosity, black line is 10% of turbulent kinetic energy.

Figure 4.17: Eddy viscosities.
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Chapter 5

Final word

The rest is silence.

Shakespeare (Hamlet)

This thesis started with an overview of the Computational Fluid Dynamics field in general, and
how resolvent analysis, the preferred method for the rest of this thesis, fits in the hierarchy of methods
available to model turbulent flows. The differences with other Reynolds-Averaged Navier-Stokes methods
were particularly emphasised, especially with regards to the canonical temporal and spatial stability
approaches. It was established that resolvent analysis is a method that gives up on an exact description
of turbulence and only describes instability behaviour around a baseflow. However in such a regime,
the method does provide modes that can be compared to experimental results and reproduce a large
part of the turbulent flow fluctuations energy for a very controlled computational cost, as established
in [13]. Chapter 1 concluded with an overview of this thesis objectives and outline. The former will be
reproduced here for convenience:

1. Improve resolvent accuracy and relevance at low frequencies,

2. Investigate the influence of swirl in a turbulent jet using resolvent analysis.

The following will briefly review results attained in this regard, and propositions relative to future
work in the field will follow.

5.1 Summary of contributions

5.1.1 Second order resolvent

In chapter 2, a generalisation of the resolvent method to include correlations of velocity in the state
vector was developed. Motivated by algebraic considerations and feeding on Reynolds Stress Modelling
literature, the approach succeeded at integrating additional physics into the resolvent and to better
reproduce some turbulent stresses present in real flows.

When compared with Spectral Proper Orthogonal Decomposition modes extracted from a DNS, this
method was found to improve accuracy of the resolvent approach for a few select regimes. It notably
improves the predictive performance of resolvent analysis in the main direction and close to the wall,
and it also yields better approximation of fluctuation nonlinear terms for specific wavelengths. However,
it turned out to be less precise overall than traditional ‘first degree’ resolvent enriched with turbulent
eddy viscosity across the parameter space.

Therefore, the results of this thesis align with the current literature as outlined in [87–89, 129] in
saying that the most straightforward way to improve resolvent performance is to include the same eddy
viscosity in the resolvent operator than the one used in computing the baseflow equations. This amounts
to viewing the fluctuations equations in a perturbative manner to the baseflow equations and strays a
little from Navier-Stokes, but it has been established to work better in real conditions.

83
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These results have led to a publication in the peer-reviewed journal Comptes Rendus Mécanique.
They have also been presented at the European Mechanics Society (EUROMECH) colloquium 611, Jet
Noise Modelling and Control, in September 2021 under the name “Reynolds-stress modelling for linear
resolvent analysis”.

5.1.2 Resolvent analysis on a swirling turbulent jet

The main contributions of this thesis can be found in chapter 3, where a swirling turbulent jet was
explored using resolvent analysis. The introduction of swirl and a nozzle were both shown to have
dramatic influence on results at low frequencies, bringing new behaviour to light.

Indeed, strong amplification of the low frequency regime was observed. This gain peak was further
explained as interplay between Orr, lift-up and another amplification mechanism. Kelvin-Helmholtz was
disqualified as the sole explanation for this regime through the use of the dot criterion, a new approach
to discriminate shear instabilities motivated by local linear temporal stability analysis.

Quantifying alignment of fluctuations wavevector with principal shear directions, the dot criterion
is a simple and straighforward way to quantify a posteriori the importance of a Kelvin-Helmholtz type
instability for the most amplified resolvent response mode. Directly linked to a growth rate in an idealised
setting, as present in [39, section B.2], it can also be derived from a double derivative of the Doppler-
shifted frequency in time and in the radial direction. This quantity also appears in literature related to
centrifugal instability such as [66, equation (5.6)] or [16, equation (3.8)].

Through the use of the dot criterion, it was possible to map the importance of Kelvin-Helmholtz type
instabilities throughout the swirl-frequency domain and isolate drastically different behaviour between
co-rotating and counter-rotating co-winding bi-spiral modes. Even if the pattern of average Kelvin-
Helmholtz prevalence not correlated with the gains in any meaningful way, the dispersion of this criterion
seems to be. This could mean that the most amplified modes throughout the parameter space are those
that manage to leverage the Kelvin-Helmholtz and centrifugal phenomena simultaneously.

Because of the inclusion of a nozzle in the calculations, the computations performed in this thesis
brought to light instabilities happening atop of the nozzle. Resolvent analysis outlined structures levering
lift-up and baseflow entrainment to create energetically significant streaks all across the shear layer. These
‘outer modes’ are not expected to appear in temporal stability analysis which is unable to reproduce
lift-up, or in geometries that do not allow for entrainment atop the nozzle.

These results were put together in a draft that will be submitted as soon as possible. They were
also presented at the American Physics Society (APS) 75th Annual Meeting of the Division of Fluid
Dynamics (DFD) on November 2022 under the name “Effect of swirl on linear formation of streaks in
jets”, as well as at the 15th European Community on Flow, Turbulence and Combustion (ERCOFTAC)
SIG33 workshop called Progress in Flow Instability, Transition and Control under the name “Resolvent
analysis of a round swirling turbulent jet”.

5.1.3 SPY library

The swirling turbulent jet contribution was made possible due to extensive development of the SPY library
now available to all on GitHub. This library makes extensive use of parallelism and unstructured meshes,
features three-dimensional azimuthally decomposed perturbations and handles any arbitrary Dirichlet
boundary conditions.

Through the use of finite-elements techniques, a Newton non-linear solver was implemented to obtain
a smooth baseflow on which to perform instability analysis. Various eigenvalue solvers were leveraged to
obtain both temporal stability routines and resolvent ones.

Numerical details may be found in chapter 4, including four validation cases to establish the relevance
of SPY as a tool capable of handling swirling flows, linear stability problems, resolvent analysis and eddy
viscosities. The tool has also demonstrated its stability at high Reynolds numbers.

https://github.com/hawkspar/spy.git
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5.2 Recommendation for future work

5.2.1 Second order resolvent
Regarding second order resolvent, it is probable that considering a case more favourable to a general
method, such as one with more complex boundary conditions and/or geometry, would lead to a more
favourable comparison with eddy viscosity models. In a channel flow case, eddy viscosity models such
as that of Cess, the one used in chapter 2, are very well tailored to the case and reproduce fluctuations
quite convincingly.

Another avenue to making the second order method more predictive is improving turbulent mod-
elling. This remains an ongoing research subject, and the resolvent formalism is constrained by the fact
that a nonlinear model for problematic terms such as the velocity-pressure gradient tensor is not that
straightforward to implement.

Recent advances in computer science such as machine learning could be put to use here, yielding a
linear model that is costly to train, but cheap to evaluate. Though such an approach would undoubtedly
lose generality as any machine learning model would have to be fitted on data, and it will be difficult
to give a precise validity range for such a model, it might still remain more general than the handful of
eddy viscosity models available today.

5.2.2 Resolvent analysis on a swirling turbulent jet
On the subject of swirling turbulent flows, a number of important questions remain to be addressed. The
counter-rotating co-winding double spiral that arises from resolvent analysis as the most amplified mode
of the swirling turbulent flow considered for low frequencies has already been observed experimentally.
This straightens the case for the relevance of resolvent analysis in addressing this complex problem, even
though it may not be the best tool to point out underlying mechanisms driving the instability.

However, the outer mode feeding on entrainment outside the nozzle is not a widespread observation.
Similar modes were presented at [18] obtained by another numerical study. Since this configuration is
also of interest to many engineers, it seems desirable to perform experiments tailored specifically around
this mode to try and single it out.

The prevalence of counter-rotating modes over co-rotating ones is observed but not explained. It
remains unclear to the author at the time of writing why this is the case, or why gains experience such a
sharp drop across zero frequency when moving from counter-winding to co-winding. Some authors have
stopped at saying that more amplification for counter-winding modes is a feature of centrifugal modes,
but it has never been clearly demonstrated to the author.

Open issues such as the influence of inertial waves warrant further study. This phenomenon seems
familiar to part of the fluid mechanics community, especially researchers concerned with ocean waves
where such inertial phenomena play an important role, but the situation of Kelvin waves in jets seems
somewhat less mature. The geometry of a potential core is complex, which greatly complicates things
when trying to evaluate the frequency of inertial waves theoretically. One approach to mitigate this
would be to conduct experiments trying to capture the phenomenon of resonant collapse in a jet as [78]
captured it in a cylinder.

Many applications relative to swirling flows have geometries more complex than the one presented
in section 3.2.1. It could be fruitful to try more complex geometries inside the numerical domain, for
instance including a convergent nozzle.
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Titre : Structures cohérentes dans des écoulements turbulents
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Résumé : Cette thèse s’intéresse à un formalisme
récent, le formalisme résolvent, pour proposer une
modélisation à ordre faible d’écoulements turbulents.
Cette approche linéaire a un intérêt académique
en permettant une meilleure compréhension des
mécanismes concernés, mais aussi pour l’indus-
trie en permettant des cycles de recherche et
développement moins coûteux en calcul. Les travaux
réalisés incluent une approche résolvante enrichie
du tenseur de Reynolds appliquée dans le cas de

l’écoulement canal, et une étude en profondeur du
comportement d’un jet turbulent en rotation. Pure-
ment numérique, cette contribution s’appuie sur la
méthode éléments finis et le formalisme Reynolds-
Averaged-Navier-Stokes. Parmi les résultats obte-
nus, on notera la découverte de nouveaux compor-
tements des jets à basse fréquence ainsi que leur
interprétation. Certains de ces effets ne sont pas à
portée des méthodes précédemment employées.

Title : Coherent structures in turbulent flows

Keywords : Resolvant method, Instability, Linear modelling, Jet, Turbulence, Swirling fluids

Abstract : This thesis is focused on a recent forma-
lism called resolvent formalism, in order to put for-
ward a low rank model of turbulent flows. This linear
approach is of interest from an academical perspec-
tive as a way to better understand the mechanisms
at play, as well as from an industry perspective by
allowing for cheaper development cycles. Works de-
tailed in this thesis include a resolvent approach en-
riched by the Reynolds stress tensor applied in the

channel flow case, and an in depth study of a swirling
turbulent jet. Based on purely numerical endeavours,
this contribution is making ample use of finite element
methods and Reynolds-Averaged–Navier-Stokes for-
malism. Amongst the obtained results, new jet beha-
viours at low frequency were brought to light as well
as interpreted. Some of these effects are simply out
of reach of traditional linear analysis methods.
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