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Abstract

This manuscript sums up the work carried out during a thesis at the MFEE department of
EDF R&D on liquid-gas flows laden with dispersed particles under the supervision of Olivier
Simonin (IMFT), Jérôme Laviéville (EDF), and Nicolas Mérigoux (EDF). The thesis aims at
providing a working environment for the numerical simulation of two-phase bubbly flows and
free-surface flows loaded with particles that can interact with all the fluids present in their
continuous or dispersed form. These flows can be found in industrial situations such as chem-
ical reactors, power plants, or wastewater treatment plants, as well as in natural situations
such as during a flood event. The developed tool allows predictions to be made about the
performance of these industrial devices or the damage caused by exceptional natural events.
The developments are included in the most up-to-date version of neptune_cfd, a multi-fluid
solver developed by EDF, CEA, IRSN, and Framatome, based on the standard multi-fluid
method that allows the simulation of multiphase flow independently of their typology.

The methods implemented are based on well-known two-phase approaches. The stochastic
Lagrangian particle tracking method is adapted so that each particle can interact with all
the fluids. Closures are proposed to determine the impact of each phase on the behavior
of the particles. To verify certain assumptions, a new closure for the Langevin equation on
the fluid velocity seen by the particle is proposed. Its behavior is compared to standard
models and literature on simple verification cases of homogeneous isotropic turbulence and
inhomogeneous cases. The Lagrangian equations obtained are used to close an Eulerian model
based on the probability density function approach. The performance of the two developed
three-phase models is established in terms of particle agitation and turbulence or gravity
drivzen deposition.

A significant part of the thesis focuses on an issue that arose during preliminary checks:
the phenomenon of air entrainment in plunging jets. Indeed, due to the nature of the solver,
bubbles or dispersed droplets can detach from the free-surface depending on the flow condi-
tions. The quantity of these transferred structures and their characteristic size being crucial
quantities which drives their behavior, a new model had to be developed. Mass transfer be-
tween continuous structures and dispersed inclusions is ensured by the model that describes
the evolution of resolved interfaces, the latter was not modified. The one regarding the size of
the created bubbles/droplets is integrated into the evolution equation of the interfacial area,
a quantity that allows tracking the diameter of the inclusions.

All developed models are compared to experimental measurements. The air entrainment
model is first tested without the presence of particles in various cases. A hydraulic jump
case is also considered to establish the generality of the model. Then, the three-phase models
are tested in various configurations. First, configurations without air entrainment to isolate
the behavior of the particles, then with air entrainment. The different cases highlighted the
importance of certain phenomenons and the differences between stochastic Lagrangian and
Eulerian methods.
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Résumé

Ce manuscrit retranscris un travail effectué au cours d’une thèse au département Mécanique
des Fluides Énergie et Environnement d’EDF R&D sur les écoulements liquid-gaz chargés
en particules dispersées sous la direction d’Olivier Simonin (IMFT), de Jérôme Laviéville
(EDF) et de Nicolas Mérigoux (EDF). Le but de la thèse est de fournir un cadre de tra-
vail pour la simulation numérique d’écoulements eau-air à bulles, à phases séparés ou en
régime mixte, chargés en particules pouvant interagir avec les fluides présents sous leur forme
continue ou dispersée. Ces écoulements peuvent se retrouver aussi bien dans des situations
industrielles comme des réacteurs chimiques, des centrales de production d’électricité ou des
usines de traîtement des eaux usées que dans des situations naturelles comme durant la crue
d’un fleuve. L’outil développé permet de faire des prédictions sur les performances de ces
dispositifs industriels ou sur les dégâts causés par des évènements naturels exceptionnels. Les
développements sont inclus dans la version de production du code de calcul neptune_cfd, un
solveur N -fluides développé par EDF, le CEA, l’IRSN et Framatome, basé sur la méthode
multi-fluide qui permet la simulation d’écoulements à plusieurs phases.

Les méthodes mises en place sont basées sur des approches diphasiques bien connues. La
méthode Lagrangienne stochastique de suivi de particules est adaptée pour que chaque par-
ticule puisse interagir avec tous les champs fluides présents. Des fermetures sont proposées
pour déterminer l’impact de chacune de ces phases sur le comportement des particules. Afin
de vérifier certaines hypothèses, une nouvelle fermeture pour l’équation de Langevin sur la
vitesse de fluide vue par la particule est proposée. Son comportement est comparée aux mod-
èles standards et de la littérature sur des cas de vérification simples de turbulence homogène
isotrope et des cas inhomogènes. Les équations Lagrangiennes obtenues sont utilisées pour
fermer un modèle aux moments basé sur l’approche fonction densité de probabilité. Les per-
formances des deux modèles triphasiques développés sont établies en matière d’agitation et
de déposition.

Un pan entier de la thèse se concentre sur une problématique apparue durant des vérifi-
cations préliminaires: le phénomène d’entraînement d’air dans les jets plongeants. En effet, à
partir d’une structure résolue, en fonction des conditions d’écoulements, des bulles ou gout-
telettes dispersées peuvent apparaître. La quantité de ces structures transférées ainsi que leur
taille caractéristique étant des grandeurs primordiales, il a fallu mettre en place un nouveau
modèle prédictif. Le transfert de masse entre structures continues et inclusions dispersées
est assuré par le modèle qui décrit l’évolution des interfaces résolues. Nous ne l’avons pas
modifié. Celui qui concerne la taille des bulles/gouttelettes créées s’intègre dans l’équation
d’évolution de l’aire interfaciale, grandeur qui permet de suivre le diamètre des inclusions.

Tous les modèles développés sont comparés à des mesures expérimentales. Le modèle
d’entraînement d’air est d’abord testé sans la présence des particules sur des cas divers.
Un cas de ressaut hydraulique est aussi envisagé pour établir la généralité du modèle mis
en place. Les modèles triphasiques sont testés sur des configurations variées, d’abord sans
entraînement d’air pour isoler le comportement des particules puis avec tous les phénomènes.
Les différents cas ont permis de mettre en valeur l’importance de certains phénomènes ainsi
que les différences entre les méthodes Lagrangienne stochastique et Eulerienne.
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1 | Scientific and industrial outline

Particles and multiphase flows are at the core of many modern challenges. These flows
are encountered in a number of scenarios in the industry: power plants, chemical re-
actors, wastewater treatment plants and in natural settings: rivers, breaking waves.
Their complexity and importance has driven scientists and engineers to experiment
and simulate phenomenons related to liquid-gas-solid flows. The aim of the current
thesis is to pursue this movement and suggest two new numerical simulation frame-
works allowing the study of such configurations. This thesis took place in the research
department of Électricité de France (EDF) with the collaboration of l’Institut de Mé-
canique des Fluides de Toulouse (IMFT), it is part of a broader project at EDF which
aims at exploring new techniques in Computational Fluid Dynamics (CFD) and ap-
plying those to real-life scenarios, in the nuclear industry or in other research topics.
The purpose of my work at EDF is to expand the capabilities of neptune_cfd, a solver
jointly developed by EDF, CEA, IRSN and Framatome. The main goal being to de-
velop a framework for liquid-gas-solid flows modelling where particles can deposit and
interact with continuous phases and dispersed inclusions. All the developments are
included in a development branch of the solver to ensure its featuring in future official
releases.

In the manuscript, for the sake of simplicity, specifically in the probability density
function formalism, the arguments of some functions are dropped after having been
introduced. This produces a lighter, easier to read, mathematical expression without
hindering its understanding. Indexes i, j and k denotes the three directions unless
specified otherwise whereas f , f ′ and g refer to different phases name. Most frequently,
indexes w and a are used to denote water and air fluids. The index f@p describes an
undisturbed fluid property at a particle position. Finally, the double dash denotes the
fluctuation of a variable x defined along with an averaging operator x 7→ ⟨x⟩ such that:
x = ⟨x⟩ + x′′. In the manuscript upper case letters denote the averaged quantities
whereas lower case letter their instantaneous value (⟨x⟩ = X).

The following chapter aims at presenting the scientific and industrial contexts for
the thesis as well as providing a broad glimpse of what exists in terms of numerical
simulation models for liquid-gas-solid flows.

1.1 Liquid-gas-solid flows settings
Liquid-gas-solid flows are characterised by any combination of identical or distinct ele-
ments in three different state of matter. In this work, two of the phases are fluids (either
gas or liquid) and the third one is a solid phase composed of a large number of small
spherical inclusions. In natural settings, rivers and oceans are regarded as the most
common places to find these types of flows. They tend to transport sediments which
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interact with air bubbles generated in highly turbulent flows or complex geometrical
configurations. These sediments may, during extreme events such as floods, be found
further away from the sea shore or river bed. In the case of human exploitation, this
phenomenon can become of public safety concern (Nones, 2019; Weber et al., 2023).
In industrial applications, there are a wider variety of liquid-gas-solid flows frequently
encountered. Air-water-sediments are important in chemical plants where bubbles may
be introduced in the reactors to amplify the reactions taking place (Kara et al., 1982;
Muroyama and Fan, 1985). They are also important in water treatment power plants
where air bubbles are used to catch debris and bring them to the surface. This can
be an efficient way to remove particles from water in order to make it safer to drink
for example. In the oil and gas industry, this topic is recurring. During hole boring or
oil and gas transportation, water, oil and gas may transport sediments thus creating a
three-phase flow (Cazarez et al., 2010). In this last case, the two continuous phases may
be liquid which is not the subject of this work although all of the models introduced
would be suitable in most cases. It can also be an important topic in mine engineer-
ing where bubbles are used to separated different minerals from each other (Shahbazi
et al., 2010). Depending on the solid particle properties it can be absorbed by the
bubble interface or it can be entrained. The differences in behaviour allow for species
separation. Figure 1.1 shows a variety of three-phase flows encountered in natural or
industrial settings.

Figure 1.1: Different scenarios with three-phase flows. From top left to bottom right,
the purge of a dam with water containing sediments and entraining air bubbles due to
the highly turbulent nature of the flow; river flood transporting sediments to potentially
inhabited locations; laboratory scale particle loaded bubble column encountered in
chemical plants; a hole boring machine used in the oil and gas industry and a dead
tree stuck in a vortex generated by an air entraining waterfall in the town of Belfort.

For EDF, these types of flow may be encountered in different scenarios related to
power generation facilities. In dams, the issues are similar to those faced in natural
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flows. In nominal operation, sediments can be present in the water inlet to the turbine
thus introducing particles in an already consistently aerated water flow. Understanding
the particle behaviour, its interaction with both fluids and its turbulence is key and
allows for a better prediction of turbine blades erosion (Guo et al., 2021) and the whole
system efficiency. In a context where every replacement is expensive and time consum-
ing, these types of models might help preventing damage by identifying the primary
causes of failure and designing systems capable of preventing them. In power plants
and specifically nuclear power plants, these flows can be encountered in water supplies
like in hydroelectric dams but, most of the times, they are encountered in accidental
situations (Couturier, 2004) illustrated in figure 1.2. When the primary circuit linking
the nuclear core to the vapour generators leaks, a loss a coolant accident occurs. This
leak can vary in size, each introducing specific challenges. In that scenario, a large
quantity of high pressure water is ejected from the breach to the inside of the reactor
building. During this ejection, due to the high pressure, debris are formed. These can
be paint particles, glass fibers, beads insulation material or cement particles. Details
about their exact composition (size, density and chemical properties) are difficult to
predict. Most of the time, estimates and sensitivity studies are needed in numeri-
cal simulations and experimental setups to overcome the uncertainty related to these
quantities.

Figure 1.2: Sketch showing the reactor building, the breach in the primary circuit of
the reactor, the safety devices (injection and aspersion), the water tank and the filters
which may face sealing issues (Couturier, 2004). The dashed line represent a circuit
which closes once the tank no longer has enough water to supply it.

In any case, these particles are transported towards the bottom of the reactor
building which fills up with water. Meanwhile, since core cooling cannot be achieved
by the primary circuit anymore, safety systems are turned on. They are twofold. The
first one is a water injection directly inside the primary circuit and the second one is a
water aspersion from the top of the reactor building. In both cases the water comes from
a tank located outside the building and ends up, ultimately, towards its floor. When
the water level in the tank is below a certain level, a recirculating circuit is activated.
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It withdraws water from the bottom of the reactor building and inject it in the two
safety systems. Before being injected, it goes through a series of filters which prevent
debris and particles from damaging the pumps. However, depending on the fluid flows,
particles can agglomerate on the filters and, due to chemical reactions or geometric
accumulation, they might seal the filters and inhibit the safety mechanisms. The
main challenge is therefore to predict the transport of particles in such configurations
including water jets and overflowing nappes which generate a large amount of air
bubbles below the free-surface. These can increase the particle transport by changing
the flow characteristics or by capturing particles on their surface as in water treatment
plants. The huge economic impact illustrated by all possible scenarios where three-
phase flows take place justify the interest they have driven in academic as well as
engineering communities. Understanding them requires thorough experimental and
numerical investigation. Both giving different insights and both improving the other.
The aim of this work is to provide an insight from the numerical simulation standpoint.

1.2 Challenges in liquid-gas-solid flows

The biggest challenge posed by liquid-gas-solid flows is the presence of various scales
and domain of physics. The size of particles and bubbles can vary over several decades
introducing a number of different flow phenomenons. At a local scale, the main chal-
lenge in liquid-gas-solid flows lies in understanding the behaviour of particles going
through a fluid-fluid interface (Magnaudet et al., 2020). When a particle crosses an
interface, many phenomenons are observed. Before impacting the surface, the particle
displaces the fluid separating it from the interface. This displacement tends to decrease
the solid velocity and can be noticeable depending on the fluids-particle characteristics.
When it first makes contact with the free-surface, a particle faces additional forces due
to surface tension effects at the triple contact point (Manga and Stone, 1995; Vella,
2015; Magnaudet et al., 2020). To precisely compute this force, physical, chemical and
geometrical properties of the setup must be carefully accounted for. The sketch in
figure 1.3 shows the forces acting on a partially submerged particle. After the particle
crosses an interface, it is likely to carry a mass of fluid in its wake, drastically changing
its hydrodynamics properties and the flow around it. Depending on the particle and
fluid characteristics, this mass of fluid can be well defined (low velocity and high vis-
cosity) or highly turbulent (high density ratio, high velocity and low viscosity) (Pierson
and Magnaudet, 2018a,b). In both cases, the typical length and time scale of these
perturbations can only be captured at the scale of the particle. Structures may be
entrained well below the interface and contribute to changing the fluid flow near the
surface and the particle. Figure 1.4 shows different scenarios for a particle crossing
an interface. From a numerical point of view, capturing these effects implies resolv-
ing all the relevant scales related to these phenomenons. Because available computing
capabilities are limited, this means drastically reducing the size of the studied sample.
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Fp

Fg FγFγ

Figure 1.3: Forces acting on a partially submerged particle. Fp is the pressure force,
Fg is the particle weight and Fγ is the surface tension force.

Figure 1.4: Wakes observed for solid particles crossing a fluid-fluid interface. Extracted
from Magnaudet et al. (2020).

On the other hand, an ensemble of particles may have an effect on global flow
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phenomenons. Usually, in two-phase flows, when particle or bubble loading increases,
turbulence modulation and collisions start being noticeable and their impact cannot
be neglected anymore (Gai et al., 2020; Liu et al., 2021). Table 1.1 sums up the
different possible regimes for increasing inclusion volume fraction. For very dilute
flows, the fluid dynamics plays the most important role in the particle transport and
particles may not influence the flow. As soon as the loading increases, the behaviour
is primarily driven by collisions then contacts and they have an important effect on
flow phenomenons. Collisions can be accounted for following Grad’s theory of gases
(Grad, 1949). Additionally, Lavieville et al. (1997) showed that a similar approach can
be used to tackle the correlated collision model where the behaviour of particles also
depends on the ratio between particle relaxation time and eddy-particle interaction
time. Illustrating the correlated movement of particles transiting in the same fluid
turbulent eddy.

Very dilute flow αp < 0.01% Transport is imposed by fluid turbulence,
fluid turbulence is slightly influenced by the
presence of particles and collisions can be ne-
glected.

Kinetic regime 0.01% < αp < 5% Transport is dominated by fluid turbulent
fluctuations, particle dispersion is caused by
fluid turbulent fluctuations and inter-particle
collisions. Fluid turbulence is heavily im-
pacted by the presence of particles.

Collisional regime 5% < αp < 50% Transport is dominated by short time col-
lisions and pseudo turbulence is generated
from the particles.

Frictional regime 50% < αp Particle flow is dominated by friction, their
behaviour is expressed with continuum solid
mechanics.

Table 1.1: Solid particle regime depending on the volume fraction (Elghobashi, 1994;
Sommerfeld, 2017).

In three-phase flows, these effects are still present but new interface phenomenons
may be observed. Turbulence modulation is affected by several dispersed phases but
the effect of coupled modulation has not been extensively studied yet. As for collisions,
they can occur within a particular phase or between different species (Gourdel et al.,
2000; Dai et al., 2000; Shahbazi et al., 2010; Chan et al., 2022), changing the overall
flow properties. Dense flows and liquid-gas-solid fluidized bed systems are the classic
configuration where these phenomenons take place (Muroyama and Fan, 1985; Gandhi
et al., 1999; Pan et al., 2016). Depending on the particle, liquid and gas properties, the
mixture can be very aerated with large gas structures or very densely packed without
much movement (Johnson et al., 1953). Understanding the system state and evolution
can be crucial to determine the overall performance of the reactor. Finally, bubble
dynamics is also influenced by high particle loading. Coalescence and breakup are
usually associated with a collision frequency between two entities causing an event (two
bubbles for coalescence, a bubble and an eddy for breakup) and an event efficiency. In
a liquid-gas-solid flow, it is possible that particle-bubble collision would cause a bubble
breakup as well, increasing the overall breakup frequency. Due to a change in film
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drainage properties, the presence of particles may also alter the efficiency of an event
(Ojima et al., 2014).

These overall phenomenons may be captured only if a very large number of particles
are considered. It is clear that these requirements are incompatible from a numerical
point of view. We cannot simulate the surface tension effects on every particle if we
need many of them to observe global phenomenons. We face a modelling choice: rely
on direct numerical simulations to model exactly the physics of particles in multiphase
flows, in which case we can only model a limited amount of particles; or, model the
global behaviour of particles and try to capture the effects they have on the flow.
Since simulation of local phenomenons such as the flow around a finite size particle
crossing an interface is incompatible with the number of particles and domain sizes
encountered in industrial or pilot scale setups, we chose to focus on trying to model
the global behaviour of particles.

1.3 Liquid-gas-solid flows numerical simulations
Liquid-gas-solid flow models are increasingly studied and the rise in computing power
makes these kinds of flows even more accessible. The purpose of this section is to
present a literature review of existing frameworks allowing for their simulation. From
resolved to modelled approaches, we will provide a wide point of view of what is
currently available and detail any advantages or disadvantages for each method.

These three-phase flows can be classified according to their degree of resolution
in turbulence, liquid-gas interface and particle representation. Turbulence is either
completely resolved (Direct Numerical Simulation or DNS), resolved down to a certain
length scale and then modelled with a sub grid turbulence model (Large Eddy Simu-
lation or LES) or completely modelled (Reynolds averaged Navier Stokes or RANS).
Of course, from DNS to RANS frameworks, the computing cost decreases dramati-
cally. Turbulence not being the core aspect studied in the three-phase flows we face,
we mainly focus on the liquid-gas interface and the particle representation. Several
models enable the simulation of liquid-gas interfaces: the Lattice Boltzmann Method
(LBM) (Kim and Pitsch, 2009), the Smooth Particle Hydrodynamics (SPH) (Mon-
aghan and Kocharyan, 1995), the multifluid approach and the one-fluid approach. In
all of them, the mesh size (or equivalent measure in mesh-less approaches) determines
the smallest possible simulated free-surface. Below that scale, liquid-gas interfaces
must be modelled. In the one-fluid approach, there are two classes identified. The in-
terface tracking methods (front tracking Unverdi and Tryggvason (1992); Tryggvason
et al. (2001)) and the interface capturing methods (volume of fluid (Hirt and Nichols,
1981), level-set or particle improved level-set (Enright et al., 2002)). In the first class,
the mesh is updated to follow the interface. This can be costly but a higher accuracy
is expected compared to the second class where the interface is constructed from the
physical quantities in an otherwise static mesh. Again, depending on the configuration,
simulating all the liquid-gas interfaces can greatly increase the computing time since
it must decrease the mesh size (or equivalent measure in mesh-less approaches). In
situations where it is not possible to simulate the interfaces, other methods can be
used. The hybrid PDF-Eulerian method is one example (Simonin, 2000). It allows
for the simulation of gas structures without needing the simulation of every liquid-gas
interface. Another such method is the drift fluxes model (Zaichik, 1999) where one
set of equations describes the mixture of liquid and gas and there is either no addi-
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tional equations (homogeneous) or an additional equation for the drift velocity of the
inclusion phase (inhomogeneous).

Solid particle

Fluid interface
Mixture
Eulerian

Lagrangian
PR

Eulerian Resolved

Figure 1.5: Classification of liquid-gas-solid models according to their degree of reso-
lution. Green dashed lines represent the two new models developed during the thesis:
a Lagrangian Eulerian and a multi-Eulerian hybrid model. Black arrows denotes a
decrease in modelling or an increase in accuracy and computing time.

In particle resolved simulations (PR), the flow around a particle is simulated giving
access to the fluid stresses around each solid. These approaches are very accurate
but require large computing capabilities. They can be performed with mesh moving
frameworks to track the particle surface position (ALE). Most of the time, since mesh
moving methods are not very efficient for large displacements, particles are represented
by an immersed boundary approach which tracks the position of the particle surface
without changing the computing mesh. When particles are sufficiently small compared
to fluid length scales, point particle approaches are preferred. It consists in replacing
the particles by points and tracking the position and velocity of their centre of mass
during time. This model is quite a lot faster than the previous one but requires a closure
for the hydrodynamic forces acting on the particles. In large industrial applications,
this approach can still be out of reach from today’s computing facilities. In such case
averaged models seem to be more suitable such as the multifluid model or the drift
flux approaches. In the multifluid model, the solid phase is described with continuous
fields (velocity, volume fraction...). This increases the number of achievable scenarios
but requires thorough modelling to reproduce the correct particle behaviour for the
solid phase, behaviour lost in the averaging process. These models usually include,
hydrodynamic forces, collisions, friction and cohesion forces. In the drift flux models,
the change is even more drastic. The solid phase is only accounted for through a drift
velocity which characterises its behaviour relative to the carrier phase. In the latter,
it is extremely difficult to take into account specific particle phenomenons. Figure 1.5
sums up all the different models ranked according to their computing requirements.
The following review of existing simulation approaches follows the same classification:
from the most time intensive methods to the most adapted to simulating industrial
scales.

In the following paragraphs, we review existing numerical models for each class
introduced above, detailing, when possible, their specificity and their purpose.
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1.3.1 Direct numerical simulations
The methodology presented in Sun and Sakai (2016) consists in capturing the liquid-gas
interface with a volume of fluid approach and the particles with an immersed boundary
method. Because all phases are simulated on the same grid, a particle volume fraction
ϕp identifies the position of the solid inclusions. Similarly to the VOF approach, the
particle surface is identified by the contour ϕp = 0.5. A specific forcing term ensures
that the particles behave as rigid body solids. As for the particle dynamics, they
include a particle-particle and particle-wall boundary contact forces model based on a
Voigt model Sun and Sakai (2015). Particles are also subject to an additional capillary
force which includes a term based on the Laplace pressure and a term based on surface
tension at the contact line between three different phases. The accuracy of the model
is verified on several test cases including a bubble spreading on a solid sphere and
the simulation of liquid bridges between solid spheres. It gives interesting insights on
academic three-phase configurations. By design, because it overcomes most of the issues
encountered in reduced order models, this method is extremely powerful. However, it is
still far from being computationally viable in industrial or laboratory scales motivating
the current work. Figure 1.6 shows the capabilities of such method. It highlights the
broad range of physical phenomenons it covers. Solid particles, surface tension effects
and free-surfaces can be modelled. Turbulence not being mentioned in the paper, it is
unclear as to whether it is accounted for or not. Considering the scales of the scenarios,
it is assumed it is not taken into consideration.

Figure 1.6: (left) Liquid bridge geometry linking three solid particles in a tetrahedral
configuration. To accurately model the shape of the bridge, the surface tension effects
must be accounted for. Extracted from Sun and Sakai (2016). (right) Sketch illustrat-
ing the capabilities of the PR-DNS framework. It can simulate particles with a finite
volume in air, water or at the interface between the two.

Another example of particle-resolved liquid-gas-solid flow modelling approach can
be found in the JADIM solver. This is a software developed at the IMFT where
liquid gas structures are resolved with a volume of fluid method and solid particles
are tracked with an immersed boundary approach. The hydrodynamic forces on the
particles are computed through a volumetric forcing term rather than the integration
of fluid stresses on the solid surface as in the previous method. Once this external
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force is known, the solid position and orientation (which can be spherical or not) is
tracked with a momentum balance equation. Surface tension effects are modelled at
the fluid-fluid interface but no special treatment is done at the liquid-gas-solid triple
contact line. This is a perspective but it has not been integrated yet. This setup is
especially useful for simulating laboratory scale granular flows interacting with liquid-
gas interfaces. It helps determining important closures for reduced order model and
gain insights on the complex physics behind those kind of flows. They also recently
explored coupling Lagrangian tracking for small bubbles and the transition occurring
when these coalesce into a sufficiently large air pocket for it to be resolved with the
VOF method. Thus opening the way to modelling and simulation of three-phase flows
where gases can be continuous or dispersed.

1.3.2 Multi-Eulerian-Lagrangian approach

Figure 1.7: (left) Front-tracking or volume of fluid method to simulate a large air
structure and Lagrangian particles for the solid inclusions. (right) Lagrangian particles
for the air bubbles (white) and the solid inclusions (black). Each Lagrangian particle
is defined by its position and linear velocity vector.

As exposed above, to reduce computational costs compared to particle resolved DNS,
the solid inclusions can be replaced by point particles. The idea behind this simplifi-
cation is illustrated in figure 1.7. These can then be included in a DNS or a modelled
turbulent simulation. This approach can be used to simulate the behaviour of parti-
cles in liquid flows with resolved liquid-gas interfaces as presented in Li et al. (1999)
or van Sint Annaland et al. (2005) where particles evolve in water and large bubbles
are simulated with the VOF or front tracking (FT) method respectively. In the first
reference, particles are assumed to be influenced by the neighbouring fluid only. Each
experiences hydrodynamic forces (drag, added mass and buoyancy) as well as a surface
tension contribution when they are near a resolved interface. It is a bubble induced
force model. The liquid gas model in that framework completely solves the interface
and adds a continuum surface force to account for surface tension effects. The gas flow
inside the bubble is neglected and the particle effect on the fluids is considered inside
the cell containing a particle with a specific treatment.

The approach and purpose are similar in the second framework (van Sint Annaland
et al., 2005). Particles are tracked in a Lagrangian manner inside the liquid phase.
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Particle experience drag, lift and added mass; collisions are accounted for with the
model from Hoomans et al. (1996). The liquid-gas flow is completely resolved with a
front tracking marker and cell method (Harlow and Welch, 1965) and the continuum
surface force for surface tension effects. A special interpolation is set up to compute
the correct fluid properties at the position of the particles and the position of the effect
a particle has on the flow properties. The main difference with the first approach is the
lack of effect from the interface to the particles. Otherwise, the methods are similar,
they both neglect the fluid turbulence effect on the particle probably because of the
low Reynolds numbers encountered. They both focus on simulating particles in liquid
with a large rising bubble. By design, they can model the behaviour of many particles
but only one bubble. They are not suited for bubbly flows with a lot of different scales
which would make complete liquid-gas interface resolution much more difficult.

Figure 1.8: (left) Multifluid method with Lagrangian particles for the solid inclusions.
The two fluids are immiscible. (right) Multifluid method with Lagrangian particles for
the solid inclusions. In this setup, particles can also interact with bubbles.

Such an approach is also described in Xiao et al. (2019); Guo et al. (2021). Each
particle trajectory is tracked over time by solving a momentum balance equation but
this time, fluid turbulence effects are also taken into account (Gosman and loannides,
1983). The fluids are simulated using the VOF approach. which limits to large inter-
faces the scope of the method. Particles are assumed dilute enough not to consider two-
or four-way coupling. Particle-solid surface impacts are modelled using a restitution
coefficient. This method is a lot less computationally intensive compared to PR-DNS,
it gives access to simulating laboratory scale experiments and simple industrial con-
figurations. It is specifically set up to simulate the effects of water-air-sediments flows
on Pelton turbines and predict the position of maximum erosion on a turbine blade.
Even if there are some limitations, this approach still provides valuable insights on
laboratory or industrial scales situations.

To simulate the behaviour of particles as well as a large amount of bubbles, another
setup must be developed. Instead of solving air-water interfaces, bubbles can be tracked
in the same way as particles are. such frameworks are illustrated in figure 1.8. This
is the idea behind the method presented in Zhang and Ahmadi (2005). The liquid
is solved with a volume-averaged approach. Bubbles and particles are tracked in a
Lagrangian framework, bubble/bubble and particle/particle collisions are taken into
account with a hard sphere model (Hoomans et al., 1996) and bubble/particle collisions
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are also accounted for. When a particle hits a bubble, it always flows through it and
surrounding fluid properties are changed accordingly. It is unclear if this has any
effect on the bubble behaviour or if the particle is experiencing a specific force when
it crosses the interface. The effect bubbles and particles have on the fluid is taken
into account and, again, a special interpolation routine is setup to overcome the bias
between Lagrangian particle positions and the Eulerian grid points. Unfortunately, no
details are given on the turbulence effect for the particles or the bubbles.

Another Eulerian-Lagrangian method for particle loaded bubbly flows is described
in Jianping Wen and Huang (2005). This time, bubbles are accounted for in a two-fluid
model with interpenetration and a discrete particle method tracks the position of a set
of particles. In this setup, the fluid-fluid interface may not be simulated completely
thus introducing dispersed bubbles or droplets in the simulation. The effect of solid
inclusion is accounted for in the fluid equations but no details are given as to the kind of
interpolation setup. They also alter the k-ϵ models chosen for the continuous structures
with an additional source term on the turbulent kinetic energy conservation equation.
The particle experience drag from the two phases described by the multifluid model
(air and water). The interaction with bubbles also includes a special term related to
the velocity gradient induced by the bubble which is not accounted for in other models.
Finally, particles also experience buoyancy effects and contact forces due to collisions.
This framework is mostly used for simulating fluidized beds, it is close to what we are
aiming at developing during the thesis.

The main advantage of the previous methods is their ability to simulate rather
complex scenarios with a large amount of particles and bubbles as well as large resolved
interfaces. To this day, they still generate interest in the scientific community as the
model described in Zhang et al. (2023) attests. The latter introduces an approach with
a population balance framework to account for bubble diameter polydispersion. This
approach enables the simulation of polydisperse bubbly flows carrying particles. Again,
it is mostly used to simulate turbulent bubble columns loaded with solid particles. This
class of models is commonly used in medium sized configurations. It struggles when
the case is too big or when too many particles are required but can still give interesting
insights on cases approaching pilot or industrial scales.

1.3.3 Multi-Eulerian approach
When the number of particles becomes a limiting factor to achieve laboratory or in-
dustrial scale simulations, another step in the reduced order modelling has to be taken.
The main idea is to replace the set of particles where each individual element is tracked
by a continuous field description. By doing so, the number of particles becomes irrel-
evant in the computing time. A drawing illustrates this switch in modelling approach
in figure 1.9.

The model described in Tomiyama and Shimada (2001); Tomiyama et al. (2006)
allows for the simulation of liquid-gas-solid flows with large interfaces, bubbles and
solid particles of various diameter. It is called the N + 2 model and it is a combination
of the multifluid method for the dispersed phases and an interface capturing method for
the free-surface. Continuous liquids and gases are solved with a one-fluid formulation
Tryggvason et al. (2011), they are represented by one velocity field and two volume
fraction fields. Dispersed bubbles and particles are accounted for with a population
balance method: each population is represented by different velocities and volume
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fraction fields. The set of all the evolution equations is coupled through interfacial
transfer terms arising from mass and momentum exchange between dispersed classes
or between dispersed classes and continuous fields. The mass transfer terms are driven
by coalescence and breakup, modelled with classic approaches described in Prince and
Blanch (1990); Luo and Svendsen (1996). Collisions and dense models for particles
are accounted for. These may be modified in the case of dense solid flows, see Ojima
et al. (2014) for more details. This framework is powerful and allows for a wide variety
of complex configurations to be studied numerically even though it is not clear how
the transition between dispersed air bubbles and continuous air takes place. The main
advantage of the method is its ability to simulate bubbly flows with the addition of
particles and large interfaces while being a lot faster than tracking method described.
However, it is still computationally intensive to simulate a wide range of length scales
with the population balance method. The wider the range, the more classes are required
to approximate the density function. Since each requires a set of balance equation to
be solved, it is easy to set up configurations which would be too long to simulate with
this method.

Figure 1.9: (left) Air volume fraction and (right) solid volume fraction in a triple Eu-
lerian framework. The solid particles and bubbles appear as continuous fields. The re-
solved interface in red can be simulated with a dedicated VOF approach as in Tomiyama
and Shimada (2001); Tomiyama et al. (2006) or a general multifluid approach as in
Panneerselvam et al. (2009); Li and Zhong (2015)

Another multifluid model is described in Panneerselvam et al. (2009). This time,
population balance models are not included, the dispersed inclusions are mono-dispersed.
It is based on the same principles of previous Eulerian multifluid methods. A single
pressure is considered and its impact on all the phases is weighted by the phase vol-
ume fraction, turbulence is computed with a k-ϵ model with turbulence modulation
from the particle and bubble phases (Sato et al., 1981). Solid pressure is accounted for
with the model from Gidaspow (1994) and classic closures are selected for interfacial
momentum transfer terms. This model allows for the simulation of liquid-gas-solid
flows with free-surfaces as well as bubbles and particles although it is unclear how the
transition between bubbles and free-surface is enforced.

A liquid-gas-solid model based on a multifluid approach is also presented in Li
and Zhong (2015). Mass and momentum balance equations are solved for each phase.
These are coupled through interfacial transfer terms which represent the exchange of
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momentum between the three phases. In the solid equation, kinetic granular theory
and the works of Gidaspow et al. (1991) give a closure for unresolved terms. A k-ϵ
model allows for the simulation of turbulence for continuous phases but no turbulence
model is included for the solid dispersed phase. This model is adapted for dense flows
where particle motion is not affected by turbulence. Thus restricting the possibilities
of the approach.

A similar approach to the N+2 method can be found in Kihara and Okada (2023).
This model relies on a VOF approach for the continuous structures and a granular
approach for the dispersed solid inclusions. Particles interact with surrounding fluids
through drag and fluid pressure and their turbulent energy is based on kinetic theory
(Gidaspow et al., 1991). The particle shear stress and pressure are closed with expres-
sions found in Lee et al. (2015). Compared to the N + 2 model, it cannot simulate the
presence of bubbles or the interaction between bubbles and particles. However, it can
predict the behaviour of particles crossing liquid-gas interfaces and - most importantly
- the behaviour of densely packed particles.

Compared to Lagrangian approaches, the dense regime is easier to model with
multifluid techniques because they are not restricted by the number of particles. This
illustrates one of the most important advantage of such a method. On the other hand,
the gain in computing time is usually balanced by a loss in accuracy and an increase
in modelling requirements. Additionally, the models are very sensitive and require
extreme care to give consistent results. Figure 1.10 shows the differences between
discrete particle and continuous methods. In Eulerian methods the solid phase is
represented as a continuous field whereas in discrete particle models, each particle
must be represented and tracked during the simulation. The models described above
are similar to the second type of model developed during my work at EDF.

Figure 1.10: Differences in modelling between multifluid (left) and multifluid-
Lagrangian tracking (right) methods for liquid-gas-solid flows. Cases presented in
chapter 5.

1.3.4 Mixture models

A mixture model is described in Kuang et al. (2012) where a conservation equation of
momentum is solved for a mixture field m representing the entire liquid-gas-solid flow.
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Figure 1.11: (left) liquid-gas mixture interacting with a solid phase. (right) liquid-solid
mixture interacting with a gas phase. The arrows represent interface transfers. These
typically include mass, momentum and energy.

A continuity equation is solved for each phase and an additional set of equation
is solved for determining the drift velocities between the dispersed phase and water
Zaichik (1999). Turbulence is accounted for with a Reynolds stress model and solid
closures take into account collisions and kinetic viscosity. This model is applied to the
simulation of flows in cyclones and specifically the determining of the effect of particles
on the device efficiency. The advantage of this method is its low computational cost
compared to multifluid models, DEM approaches or particle resolved simulations, its
accuracy is lower but it remains a tool of choice for industrial settings or real-time
simulations. Similarly to multifluid models, they require extensive modelling to accu-
rately represent reality. Naturally, it is also possible to consider such a mixture for two
out of the three phases present and use well-known two-phase flow modelling approach
for the mixture and the remaining phase. Figure 1.11 illustrates the mixing process
for two different cases. The diagram on the left shows a liquid gas mixture interacting
with the solid phase and the right one shows a liquid-solid mixture interacting with
a gas phase. Depending on the situation, these two simplifications can be more than
enough.

1.3.5 Simplified interaction models

For simple cases with extensive experimental data validating such hypothesis, some
inter-phase interactions can be neglected and two-phase flow models used without any
addition accounting for the third phase. For example, for free-surface flows without
aeration, with particles transported by the liquid phase only, two independent two-
phase flow models without further modelling can be used instead of a complex three-
phase flow model. In figure 1.12, all the possible interactions are illustrated on the left
diagram; while, in the right one, the interaction between solid and gas is neglected.
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Figure 1.12: (left) Diagram illustrating all the possible momentum transfers. (right)
The gas-solid interaction is neglected. The arrows represent interface transfers. These
typically include mass, momentum and energy.

1.4 Structure of the manuscript
The main goal of the manuscript is to present two new modelling frameworks for liquid-
gas-solid flows and to apply them to academic as well as industrial scenarios in order
to show their potential in tackling real-life configurations. The work starts with the
description of current two-phase flow models on which we base our developments in
chapter 2. The Lagrangian stochastic and the Eulerian velocity moments method are
presented along with a thorough discussion on the validity of certain stochastic mod-
els. The numerical framework of neptune_cfd is presented at the end of this chapter.
Chapter 3 focuses mainly on presenting the two three-phase flow models developed
during the thesis: the Lagrangian stochastic and hybrid Eulerian with multiple carrier
fields. This chapter is also an opportunity to present all ad-hoc modifications carried
out in neptune_cfd to make the new models compatible with several other modules of
the software. Finally, a particle deposition model is introduced and compared with ex-
perimental data for the Lagrangian stochastic and hybrid Eulerian models. In chapter
4, we present the air entrainment process, an important phenomenon in the experimen-
tal cases explored during the thesis. The mechanisms of air entrainment are presented
before introducing a new model to take it into account in neptune_cfd. The chapter
also includes a comparison to experimental data from selected air entrainment models
and experimental setups. The final chapter 5 is a compilation of all the experimental
setups used to test the accuracy of our models. Several bubble columns loaded with
particles are explored before tackling the LNHE experiments of impacting and sub-
merged particle loaded jets. The final section of the final chapter is devoted to the
study of the integral case motivating the thesis: the particle loaded jets in the scaled
down reactor building during a loss of coolant scenario. Conclusion and outlook bring
the manuscript to an end.
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2 | General two-phase flow models

In this chapter, we introduce the two-phase flow modelling approaches from which
the liquid-gas-solid models will be developed in chapter 3. This bedrock will clarify
the choices and highlight the challenges encountered when adapting them to the more
complex multi-phase case. The first two-phase method is the Lagrangian stochastic
approach. A framework where point particles are introduced in the domain and their
trajectory is computed through a set a stochastic and ordinary differential equations
(Haworth and Pope, 1986; Thomson, 1987; Reynolds and Cohen, 2002; Sommerfeld,
2017). The second method - the Eulerian multifluid model - consists in deriving the set
of conservation equations of mean quantities for a fluid from the local instantaneous
equilibrium (Delhaye, 1974; Kataoka, 1985; Ishii and Hibiki, 2011) and the evolution
equations for dispersed inclusions in fluids (bubbles, droplets or solid particles) from
the velocity moment method and the Lagrangian closures. The conservation equations
for moments of the probability density function describing the set of particles can
be obtained in a general manner (Simonin, 2000). Then, Lagrangian equations are
used to close the moments equations. Solving these leads to modelling the behaviour
of particles evolving in a fluid as a continuous phase. At the end of the chapter,
some details about the numerical solver neptune_cfd and its modelling approaches are
presented.

2.1 Lagrangian modelling of solid particles in fluid
flows

2.1.1 General Lagrangian framework
A Lagrangian framework is used when dealing with systems of discrete particles. It
consists in considering every solid inclusion individually and following their trajectory
with a momentum balance equation. There are two main classes of methods, the first
is the particle resolved simulations, usually coupled with a direct numerical simulation
for the continuous phase (PR-DNS), with either a body-conforming mesh (Hu et al.,
2001) or an immersed boundary method (Uhlmann, 2005). These approaches are very
accurate since the fluid stresses are simulated around the particles but require a lot of
computing time. As of today, there has been simulations with around at most 1× 104

particles (Picano et al., 2015; Horne and Mahesh, 2019). When more particles need
to be simulated, PR-DNS methods become too expensive and Euler-Lagrange (EL)
methods are used instead. They rely on the point particle hypothesis, models for the
interaction forces between the particles and the surrounding fluid and tracking each
individual particle by solving balance equations 2.1. This requires the particles to be
sufficiently small compared to the fluid Taylor scale and requires the use of a drag
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model which may be challenging depending on the configurations. Since they do not
require the mesh to be as fine as in particle resolved simulations, more particles can
be introduced in the system. In Capecelatro and Desjardins (2013), simulations with
around 1× 107 particles are performed.

If F is the total force acting on a particle per unit mass, d/dt is an increment along
the particle trajectory and (xp,up) are the particle position and velocity, the evolution
equation for one particle reads in a standard reference frame:

dxp,i
dt = up,i(t)

dup,i
dt = Fi(t)

(2.1)

The external force term may include hydrodynamic forces such as drag, lift, added
mass or Basset forces expressed as in Maxey and Riley (1983); Gatignol (1983) but it
can also include external forces such as gravity or electromagnetic forces (Boutsikakis
et al., 2022). Models for F rely on the underlying fluid resolution. From DNS to RANS
simulations, the modelling required increases. In Yeung and Pope (1988); Zahtila et al.
(2023), a DNS is performed and no model is needed to compute the particle trajectory.
In LES, a filtered velocity which contains some information about velocity fluctuations
is available. In cases where the particle inertia is large, the subgrid scale turbulence
seems to have little to no effect on the particle trajectory (Kuerten, 2016). Justifying
the use of the filtered velocity only in the particle behaviour in Wang and Squires
(1996a); Kasper et al. (2019). In the case where subgrid scale becomes important, either
a stochastic model is added (Kuczaj and Geurts, 2006), modelling from scratch the
subgrid scale fluctuation, or a new component is added to the fluid velocity effectively
retrieving the unfiltered quantity (Shotorban and Mashayek, 2005). When coupled to a
RANS simulation, most of the velocity fluctuation information is lost and it cannot be
accessed directly in the particle equations. This requires a modelling of the turbulence
at the position of the particle, usually named stochastic modelling due to its random
character.

Lagrangian point particle modelling also enables the tracking of other particle char-
acteristics. In some more advanced models where combustion is important, particle
diameter, density or temperature can be included in the particle evolution equations.
As long as closure equations are defined for each new variable, their evolution equa-
tions on particle trajectory can be determined. When their behaviour requires the
modelling of a random fluctuating part, stochastic equations may be considered for
these variables as well.

2.1.2 Overview of stochastic models
Initially, stochastic models were used in atmospheric science to predict the dispersion
of fluid elements in single phase flow (Obukhov, 1959; Haworth and Pope, 1986). Their
goal was to reconstruct the fluid velocity from the underlying fluid simulation quantities
and use it in the particle momentum equation in the case of low inertia solid particles.
There are many approaches, the most basic one consists in using the mean fluid velocity
only in the particle equation, effectively neglecting the impact of turbulence on the
particle. It can be appropriate for large dense particles not influenced by turbulent
flows. However, in most scenarios, this assumption is not verified.

18



2.1. Lagrangian modelling of solid particles in fluid flows

In the following paragraphs, for brevity, drag is the only force acting on the particles.
For more details on this hypothesis, see Thomson (1987). A more advanced model
consists in adding a random fluctuation to the fluid velocity increment along a particle
trajectory uf@p (Simonin et al., 1993; Minier and Peirano, 2001; Iliopoulos et al., 2003;
Arcen and Tanière, 2009).

δuf@p,i = Aiδt+BijδWj (2.2)

δup,i = uf@p,i − up,i
τp

δt (2.3)

Where τp is the particle relaxation time in the fluid, Ai and Bij are parameters
of the model and δWj is a random fluctuating term. This method includes turbulent
information on the fluid velocity at the position of the particle through uf@p, used in
the particle momentum equation 2.1. It is widely spread and there are many different
expressions for Ai and Bij. These may include specific terms to tackle the crossing
trajectory effect Simonin et al. (1993); Minier and Peirano (2001) or the effects of
boundary layers Bocksell and Loth (2006); Dehbi (2008). In some cases, it is also
possible to express the stochastic equations in terms of normalized quantities Sikovsky
(2015, 2016). The normalization process allows for the correct particle behaviour to be
predicted when turbulence is no longer homogeneous. Thus improving the deposition
prediction for low stokes numbers.

Another modelling option would be to consider the fluid acceleration at the position
of the particle af@p and to add a fluctuating term in its increment along the particle
trajectory (Reynolds, 1999).

δaf@p,i = A′
iδt+B′

ijδWj (2.4)
δuf@p,i = af@p,iδt (2.5)

This formulation reproduces the exact fluid auto-correlation function even for low
Stokes number particles. This addition has an impact mainly when considering two-
way coupled simulations. In fact, the reverse coupling is mainly the difference between
the fluid-particle covariance and the fluid variance terms which are very sensitive at
low Stokes number. However, this model is strictly limited to homogeneous.

Finally, it is also possible to include the random fluctuating term directly in the
particle equation of motion as it is done in Reeks (1991). There is no need to model
the fluid velocity at the position of the particle which helps avoiding problems related
to crossing trajectory effects but the fluctuating part in the particle equation is harder
to model.

Two-way coupling (particle effect on the fluid) and four-way coupling (particle-
particle interaction) are also routinely included in Lagrangian stochastic models (Eaton,
2009; Zeren et al., 2010; Vreman, 2016). Since they will not be studied in the new
Lagrangian model suggested, we are not detailing them further. However, for future
works where these phenomenons are considered, these references may provide valuable
information.
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2.1.3 Langevin stochastic equation for the fluid velocity seen
by the particle

The main goal of the current and following sections is to introduce the Langevin
stochastic models for the fluid velocity seen by particles in a single phase in order
to introduce the work carried out during the thesis for particles evolving in a multi-
phase flow. To clarify those sections, let us start by defining some preliminary notations
and conventions. A fluid element represents an infinitely low inertia particle. The fluid
velocity at the position of the element is defined as uf@p,i(t) = uf,i(xp(t), t). This notion
introduces the following notations:

u′′
f,i(x, t) = uf,i(x, t)− Uf,i(x, t) ⟨u′′

f,i⟩ = 0
uf@p,i(t)′′ = uf@p,i(t)− Uf@p,i(t) =⇒ ⟨u′′

f@p,i⟩ = 0
uf@p,i(t)′ = uf@p,i(t)− Uf,i(xp(t), t) = u′

f,i(xp(t), t) ⟨u′
f@p⟩ = Vf,i(x, t)

u′′
p,i(t) = up,i(t)− Up,i(t) ⟨u′′

p,i⟩ = 0

(2.6)

Where Vf is the drift velocity and the second order velocity variance and covariance
tensors are defined below.

Rf,ij(x, t) = ⟨u′′
f,iu

′′
f,i⟩(x, t)

Rf@p,ij(x, t) = ⟨u′′
f@p,iu

′′
f@p,j⟩(x, t)

⟨u′
f@p,iu

′
f@p,j⟩(x, t) = Rf@p,ij(x, t) + Vf,i(x, t)Vf,j(x, t)

Rfp,ij(x, t) = ⟨u′′
f@p,iu

′′
p,j⟩(x, t) = ⟨u′

f@p,iu
′′
p,j⟩(x, t)

Rp,ij(x, t) = ⟨u′′
p,iu

′′
p,j⟩(x, t)

(2.7)

The Langevin equation used to predict the fluid velocity at the position of the
particle is presented in equation 2.8 and is inspired from the work of Tanière et al.
(2010). It takes the following form:

δuf@p,i = Af@p,iδt+Bf@p,ijδWf,j (2.8)

Where Af@p and Bf@p,ij are the drift and diffusion tensors - they are function of time
and the particle state vector. The choice for these parameters defines the stochastic
model. δWf is the increment of a vector-valued Wiener process with independent
components which satisfies:

∀τ > 0, ⟨δWf,i(t)Wf,j(t+ τ)⟩ = 0
⟨δWf,i(t)δWf,j(t)⟩ = δtδij

(2.9)

According to Thomson (1987); Minier et al. (2014); Tanière and Arcen (2016), the
choice of the two parameters is restricted. Some properties have to be verified in order
to ensure consistency. However, since the listed properties vary depending on the
authors, it is unclear which to choose for our models. Let us first review the guidelines
here, we will continuously come back to them when defining a new model to make sure
they verify them.
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2.1. Lagrangian modelling of solid particles in fluid flows

1. The drift and diffusion tensors should be written in correct tensor notation and
their expression should verify the usual invariance principles - Galilean and ex-
tended Galilean.

2. The expressions given for A and B should be functions of known variables.

3. Low inertia limit: In the limit of infinitely low inertia particles, the behaviour
should reflect the one of the fluid. According to Thomson (1987); Minier et al.
(2014), this is equivalent to the conservation of fluid elements concentration dis-
tribution.

4. Large inertia limit: In the limit of infinitely large inertia - particles stand still
or have no interaction with the turbulence - the statistics seen by the particle
should match those of the carrier fluid.

5. The predicted turbulent kinetic energy with the fluid velocity seen equation
should give appropriate results in analytical situations. In homogeneous isotropic
turbulence and decaying turbulence the behaviour of particles should match
known results (Batchelor, 2000).

6. Resulting models for drift velocity should match existing models or be justified
with an appropriate model (Wallis, 2020).

7. The model introduced should be consistent with Equilibrium Eulerian approaches
(Balachandar and Eaton, 2010).

We stress the presence of item 4 in the previous list. This criteria is not present
in the guidelines from Thomson (1987) or Minier et al. (2014) but it seems to be the
justification for the addition to the stochastic model made in Arcen and Tanière (2009).
We decide to include this requirement as well when developing a new stochastic model.
It seems a natural addition since infinitely inertial particles do not interact with the
fluid turbulence. Therefore, because their impact on the fluid is neglected, the statistics
seen by the particle set should match the Eulerian statistics. The particles see exactly
what a set of cell centres would in an Eulerian framework.

It is possible to use the fluid conservation of momentum equation to re-write the
Langevin equation on the fluid velocity seen by the particle in terms of fluctuations.
This is not recommended when dealing with two-way coupling (Minier et al., 2014)
since it tends to make things more complicated. However, since we are only focused on
one-way coupling, it can be helpful to write equation 2.8 in terms of fluctuating fluid
velocity seen by the particle u′′

f@p,i. It will also turn out to be extremely useful when
several fluids interact with the particles (see section 3.1).

The fluid momentum conservation equations for incompressible flows reads:

∂Uf,i
∂t

+ Uf,j
∂Uf,i
∂xj

= − 1
ρf

∂Pf
∂xi

+ ∂

∂xj

(
1
ρf
Tf,ij −Rf,ij

)
(2.10)

Where Uf,i is the fluid mean velocity, Pf is its pressure, ρf its density and Tf,ij and
Rf,ij are the mean dissipative part of the fluid stress tensor and the Reynolds tensor.
The increment of fluid velocity seen by the particle along its trajectory can be written,
by definition of the fluctuations (equation 2.6), as:
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δu′
f@p,i = Af@p,iδt+Bf@p,ijδWf,j − δUf,i

= Af@p,iδt+Bf@p,ijδWf,j −
∂Uf,i
∂t

δt− up,j
∂Uf,i
∂xj

δt

=
(
Af@p,i −

∂Uf,i
∂t
− Uf,j

∂Uf,i
∂xj

+ (Uf,j − up,j)
∂Uf,i
∂xj

)
δt+Bf@p,ijδWf,j

(2.11)

There exist many models for Af@p,i in the literature which can be written in terms of
fluctuating fluid velocity seen by the particle (Simonin et al., 1993; Minier and Peirano,
2001; Arcen and Tanière, 2009). We write down a general Langevin equation which
reduces down to known model depending on the parameter Hi (equation 2.13). Since
the model in Minier and Peirano (2001) cannot be written from the general form, we
write it down as well (equation 2.12).

δu′
f@p,i =

[
(⟨up,j⟩ − up,j)

∂Uf,i
∂xj

+Gf@p,iju
′
f@p,j +

∂⟨u′′
f,iu

′′
f,j⟩

∂xj

]
δt+Bf@p,ijδWf,j (2.12)

δu′
f@p,i =

[
(Gf@p,ij −

∂Uf,i
∂xj

)u′
f@p,j +Hi

]
δt+Bf@p,ijδWf,j (2.13)

Where, if Hi = ∂Rfp,ij
∂xj

, we get the model from Arcen and Tanière (2009) and if Hi =
∂Rf,ij
∂xj

, we get the model from Simonin et al. (1993). These three models, assuming the
expression for Gf@p,ij, Hi and Bf@p,ij are appropriate, verify the guidelines expressed
in Thomson (1987) and Minier et al. (2014). However, only the model described by
equation 2.13 with Hi = ∂Rfp,ij

∂xj
verifies the fourth criteria in the guidelines presented

above. The three parameters are function of the Eulerian fields output from the N -
Euler framework. In the most simple case, the fields value are taken at the centre of the
cell the particle is in. For a sufficiently refined mesh, this method introduces a small
interpolation error. However, for coarse grids, this kind of interpolation may introduce
large errors in the computation. By using a P1 interpolation instead, it is possible to
improve the behaviour of the model. However, the effect of such interpolation on the
particle behaviour must be evaluated with care. Let us now detail the expressions for
the two unclosed terms in these models. The expression for Gf@p,ij can be found in
the work from Csanady (1963).

Gf@p,ij = − 1
TL,∗f@p,j

δij (2.14)

Where TL,∗f@p,i is a modified time-scale which corresponds to the integral time scale
of the velocity of the fluid seen. According to Csanady’s theory, this integral time scale
is related to the classic Lagrangian time scale through the following expressions:

TL,∗f@p,1 =
TLf√

1 + β2 3|Ur|2
2k

(2.15)

TL,∗f@p,2 = TL,∗f@p,3 =
TLf√

1 + 4β2 2|Ur|2
3k

(2.16)

22



2.1. Lagrangian modelling of solid particles in fluid flows

Where β = TLf /τp,f is the ratio of the Lagrangian time scale to the Eulerian time
scale, k is the fluid turbulent kinetic energy and Ur is the relative difference between the
particle velocity and the surrounding fluid element velocity. For further computations,
we also define Gfp,ij:

Gfp,ij = Gf@p,ij −
∂Uf,i
∂xj

(2.17)

The expression for the diffusion matrix Bf@p,ij, which closes the stochastic model,
is obtained from considering subsequent simple cases and assuming that the behaviour
of particles in decaying isotropic turbulence and homogeneous isotropic turbulence are
coherent with results from Batchelor (2000).

Bf@p,ij =

√√√√⟨ϵf⟩
(
C0bi

k̃f
kf

+ 2
3(bi

k̃f
kf
− 1)

)
δij (2.18)

Where ϵf is the fluid turbulent kinetic energy dissipation term, bi = TLf

TL,∗
f@p

is the
ratio between the Lagrangian time scale and the fluid seen velocity integral time scale
and k̃f is the fluid turbulent kinetic energy weighted by Csanady’s coefficients. This
allows for the compensation of the anisotropy in the fluid velocity seen time scale.

k̃f =
∑
i bi⟨u′2

f,i⟩∑
i bi

(2.19)

The stochastic models are closed with the expressions of the drift and diffusion
terms. To complete the model, an expression must be provided for the particle relax-
ation time τp. It can be obtained from the external forces acting on the particle. If
drag is the only interaction force, it reads:

τp = ρp
ρf

4dp
3CD∥uf@p − up∥

(2.20)

Where ρp and ρf are the particle and fluid densities, dp is the particle diameter,
CD is the drag coefficient and uf@p and up are the particle and fluid seen velocity
vectors. The drag coefficient CD depends on the type of particles and fluids considered.
A detailed expression is given in section 3.2.4. The equations for the increment of
particle velocity and fluid velocity seen by the particle represent a possible closure for
the probability density function describing the ensemble of particles. In the following
section, we derive the evolution equation for the PDF and demonstrate how to get
Eulerian moment equations from it. The latter can help showing the coherence of the
Lagrangian models but also enables the introduction of a new Eulerian model.

2.1.4 The probability density function formalism
The state of an ensemble of particles is described by a vector in the phase space H. The
one-particle probability density function (PDF) is a function fp defined on the phase
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space for which f(cp, cf ; x, t)δcpδcfδx is the mean number of particles with a centre
of mass xp in the volume Ω = {x,x + δx} and with a velocity up ∈ {cp, cp + δcp}
and a fluid velocity seen uf@p ∈ {cf , cf + δcf} at time t. Along with the PDF, the
number density function np(x, t) defines the probable number of particles at time t in
the volume Ω = {x,x+δx}. By definition, the number density function can be written
in terms of the probability density function.

np(x, t) =
∫
fpdcpdcf (2.21)

According to common practice, fp is solution of the following Liouville evolution
equation (Simonin, 1996, 2000).

∂fp
∂t

+ ∂

∂xj
(cp,jfp) + ∂

∂cp,j

[〈
dup,j

dt |up(t) = cp,uf@p(t) = cf ,xp(t) = x
〉
fp

]

+ ∂

∂cf,j

[〈
duf@p,j

dt |up(t) = cp,uf@p(t) = cf ,xp(t) = x
〉
fp

]

=
(
∂fp
∂t

)
coll

(2.22)

Where a 7→ ⟨a|up(t) = cp,uf@p(t) = cf ,xp(t) = x⟩ is the conditional average of
a knowing up(t) = cp, uf@p(t) = cf and xp(t) = x; and

(
∂fp
∂t

)
coll

is the variation in
time of the PDF due to collisions between particles. In the following derivations, the
equalities as well as some arguments will be neglected in the name of clarity. The
arguments of the probability density function are dropped for similar reasons. From
equation 2.22, it is possible to obtain the evolution equation for moments of fp by
multiplying by ψp, a function of the phase space variables, and integrating over the
phase space variables. By also assuming the mass of particles is constant, this leads to
equation 2.23 (Swailes et al., 1998).

∂

∂t
(npmp⟨ψp⟩) + ∂

∂xj
(npmp⟨up,jψp⟩) = npmp⟨⟨

dup,i
dt |cp, cf ⟩

∂ψp
∂cp,j

⟩

+ npmp

〈
⟨duf@p,i

dt |cp, cf ⟩
∂ψp
∂cf,j

〉
+ npC(mpup,i)

(2.23)

Where mp is the constant mass of a particle and C includes the effects of particle-
particle interactions.

C(mpup,i) =
∫
ψp

(
∂fp
∂t

)
coll

dcpdcf (2.24)

By replacing ψp with the appropriate function of the fluid velocity seen by the
particle, it is possible to obtain evolution equations for the drift velocity Vf defined
in equation 2.6 and the fluid velocity variance Rf@p,ij seen by the particle. Then,
in the limit cases identified above (low and large inertia particles), these equations
are simplified and show the consistencies or the issues of the stochastic model. The
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evolution equation for the drift velocity can be obtained by replacing ψp by cf,i and
then subtracting the evolution equation for the mean fluid velocity Uf@p,i seen by the
particles.

np
∂Vf,i
∂t

+ npUp,j
∂Vf,i
∂xj

= − ∂

∂xj
(npRfp,ij) + npHi + np

(
Gf@p,ij −

∂Uf,i
∂xj

)
Vf,j (2.25)

The evolution equation for the fluid velocity variance Rf@p,ij seen by the particle
is obtained by replacing ψp by cf,icf,j and then subtracting the evolution equation for
the mean fluid kinetic energy Uf@p,iUf@p,j seen by the particles. The latter can be
expressed in terms of the evolution equation for the mean fluid velocity seen by the
particles.

∂

∂t
(npRf@p,ij) + ∂

∂xk
(npUp,kRf@p,ij) = − ∂

∂xk
(np⟨u′′

f@p,iu
′′
f@p,ju

′′
p,k⟩)

− npRfp,ik
∂Vf,j
∂xk

− npRfp,jk
∂Vf,i
∂xk

+ npGfp,ikRf@p,jk + npGfp,jkRf@p,ik

+ npBf@p,ikBf@p,jk

(2.26)

In equation 2.26, the model for Hi appears implicitly in the terms with the drift
velocity Vf . The terms on the right-hand side represent variance transport by fluc-
tuation of the fluid seen, turbulent production due to mean drift velocity gradients,
coupling terms and a pressure-velocity contribution.

2.1.5 Standard analytic cases
The main goals of this section are, on the first hand, to introduce verification cases to
show the correct behaviour of the stochastic models and, on the other hand, to suggest
a new stochastic model, compatible with all the guidelines described above. These cases
have also been used to verify the good behaviour of subsequent new liquid-gas-solid
models developed during the thesis.

Fluid elements dispersion in homogeneous isotropic turbulence

The first analytic case consists in a set of fluid elements (ie particles of infinitely
small inertia), initially located at the centre of a periodic, cubic domain, dispersing in
homogeneous, isotropic turbulence initialised with uf = 0 m s−1, kf = 0.1 m2 s−2 and
ϵf = 1 m2 s−3. The speed at which the particles disperse should match the analytical
results found in Batchelor (2000).

t→ 0 =⇒ ⟨yp(t)yp(t)⟩ = ⟨u2
p⟩t2

t→∞ =⇒ ⟨yp(t)yp(t)⟩ = 2⟨u2
p⟩τp,f t

(2.27)

Figure 2.1 shows the results obtained with three degrees of mesh refinement with
the original model. The model gives satisfactory results with a sufficiently fine mesh.
Those obtained with a coarser mesh are still reasonable but it is more difficult to
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define the initial position of the particle set. Hence the differences in results between
the meshes.
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Figure 2.1: (left) Mesh sensitivity with the standard stochastic model. (right) Com-
parison between the standard model Simonin et al. (1993), the model from Arcen and
Tanière (2009) (AT) and a new model with Hi = ∂

∂xj
(Rf,ij +Rfp,ij −Rf@p,ij) (FJO).

Figure 2.1 also shows the results obtained with the fine mesh with different stochas-
tic models. Results are still satisfactory with the other stochastic equations.

Fluid elements in a mixing layer

This second case consists in the simulation of a set of fluid elements in a mixing layer
formed between two uniform parallel streams of different flow velocities. The goal
of the case is to verify the well-mixed condition and check that Lagrangian statistics
(the mean particle velocity and mean particle velocity variance) match the Eulerian
quantities in the low inertia limit. This case has been used for verification purposes
before, for more details on it, see Bahlali et al. (2020).

Numerical simulations of the fluid flow are carried out in a rectangular domain
of dimensions 10 m × 0.8 m × 0.004 m. The left hand side boundary face is an inlet,
the right hand side boundary face is an outlet and all the other boundary faces are
symmetries. In the inlet, if y < 0.4 m, the fluid velocity is Um = 2 m s−1; if y > 0.4 m,
the fluid velocity is UM = 3 m s−1. It is common practice for this case (Champagne
et al., 1976; Pope, 2000) to define the following quantities to highlight the self-similar
character of the flow:

δ = y0.9 − y0.1 (2.28)
ξ = y

δ
(2.29)

f(ξ) = U − Uc
Us

(2.30)

Where Uc = 1
2(Um + UM), Us = UM − Um and δ is the characteristic length of the

flow. Figure 2.2 sums up the different quantities defined above.
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Figure 2.2: Sketch describing the considered mixing layer case. U represents the flow
velocity.

When the simulation reaches a steady-state, fluid elements respecting the fluid
mass flow are injected in the domain. Then, a second steady-state is reached. From
that point on, Lagrangian quantities are averaged to achieve statistical convergence.
These quantities include the particles average velocity, their velocity variance and their
concentration. Initially, the results are shown with the stochastic model Hi = ∂Rfp,ij

∂xj
.

The results obtained with Hi = ∂
∂xj

(Rf,ij + Rfp,ij − Rf@p,ij) are shown to give better
results in figure 2.5. The introduction of this new model was driven by the lack of
consistency between the Eulerian quantities and Lagrangian statistics in the second-
order moments in the large inertia limit with the standard model. In figure 2.3, we
ensure that the stationary fluid flow reached is coherent with experimental results from
Champagne et al. (1976) and that it is self-similar.
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Figure 2.3: Fluid axial velocity for x = 5 m, 7 m and 9 m. Experimental results can be
found in Champagne et al. (1976)

The well-mixed condition is verified if the particle concentration is constant in the
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Chapter 2. General two-phase flow models

domain when the steady state is reached. Figure 2.4 shows that this condition is
verified. Near the inlet we can see a slight increase of particle concentration due to the
boundary condition. Once the particles are sufficiently well mixed together, they are
uniformly distributed inside the domain.
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Figure 2.4: Particle concentration on an horizontal profile and two vertical profiles.

Eventually, we check the consistency between the Lagrangian and Eulerian tur-
bulent quantities. The averaged particle velocity variance should match the Reynolds
tensor components computed with the RSM turbulence model (Rij-ϵ SSG model). Fig-
ure 2.5 shows that the Lagrangian stochastic model gives satisfactory results. However,
there are still some discrepancies between the two approaches. In the Eulerian compu-
tations, the two components RY Y and RZZ are different (as they are in experimental
results). However, with the standard stochastic model and the model found in Arcen
and Tanière (2009), these two components are equal even though they are not with
the new stochastic model introduced. The new model correctly predicts the difference
between the two components mentioned above and it gives a better prediction for all
the components altogether.
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Figure 2.5: Reynolds components computed with the Lagrangian model (dashed lines)
and with the Eulerian model (solid lines). (left) Stochastic model described by Hi =
∂Rfp,ij
∂xj

and new stochastic model (right).

By writing down the evolution equation for the drift velocity Vf,i and the fluctuating
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2.1. Lagrangian modelling of solid particles in fluid flows
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Figure 2.6: Comparison of Rf,ij (solid lines) and Rf@p,ij (dashed lines) in a rotated
mesh. On the left θr = 20◦ and on the right θr = 40◦.

fluid velocity seen by the particle variance Rf@p,ij, it is possible to understand why these
two models give different results. In a stationary state, these equations reduce down
to:

npUp,j
∂Vf,i
∂xj

= − ∂

∂xj
(npRfp,ij) + npHi + npGfp,ijVf,j (2.31)

and,

∂

∂j
(npUp,jRf@p,ij) = − ∂

∂xk
(np⟨u′′

f@p,iu
′′
f@p,ju

′′
p,k⟩)− npRfp,ik

∂Vf,j
∂xk

− npRfp,jk
∂Vf,i
∂xk

+ npGfp,ikRf@p,jk + npGfp,jkRf@p,ik + npBf@p,ikBf@p,jk

(2.32)

The governing equations vary depending on the expression for Hi. In the model
from Arcen and Tanière (2009), Hi = ∂Rf@p,ij

∂xj
where in the new model developed

Hi = ∂
∂xj

(Rf,ij + Rfp,ij − Rf@p,ij). Since the set of equations are different depending
on the model, it seems reasonable to assume there must also be a difference in the
components of the fluctuating velocity seen variance tensor. Unfortunately, we have
not identified this difference in the equations.

To check the stochastic system is properly solved, the mesh can be rotated by
an angle θr and the same quantities compared. Figure 2.6 demonstrates the correct
behaviour of the models when the mesh is rotated. The simulation protocol is exactly
the same as before. A fluid simulation is performed on the rotated mesh until a
steady state is reach. Then particles are injected and once a steady state is achieved
Lagrangian statistics are computed on a sufficiently high number of time steps.

It seems that results are a little bit less precise, especially in the most extreme case
θr = 40◦. However, results are still satisfactory.

Low and large inertia particles in a channel flow

This verification case consists in an infinite wall bounded channel flow at Reτ = uτ
δ
ν

=
450. Where uτ is the fluid wall shear velocity, δ is the channel half width and ν is
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Chapter 2. General two-phase flow models

the fluid viscosity. Single phase flow simulations are carried out on a 1 m× 1 m× 1 m
domain with one cell in the direction of the flow, one cell in the off plane direction and a
geometric progression in the wall normal direction in order to ensure simulation of the
turbulent sub-layers. The simulations are performed with a second-order model with
wall resolved turbulence (Rij-ϵ EBRSM model (Manceau and Hanjalic, 2002)) with y+

values below 1. The lower boundary is a wall, the upper boundary is a symmetry and
the boundaries on the left and right hand side are periodic (the boundary conditions
are shown in figure 2.7).

Symmetry

Periodic
boundary

Periodic
boundary

Wall
Figure 2.7: Sketch representing the domain and the boundary conditions.

When the steady state is achieved, low inertia particles (fluid elements) are inserted
from the left hand side boundary of the domain. They move through the domain and
exit it at the right hand side boundary. Large inertia particles on the other hand
are initially uniformly distributed inside the domain. Due to their inertia, they tend
not to move at all. After a sufficient number of time steps, Lagrangian statistics are
significant and should match the Eulerian quantities. Similarly to the previous case,
writing down the evolution equations for the drift velocity (Vf,x and Vf,y), the particle
velocity variance Rp,ij and the fluid velocity seen variance Rf@p,ij helps understand the
results obtained with the different models. In the low inertia case the equations reduce
to:

npUp,j
∂Vf,x
∂y

= − ∂

∂y
(npRfp,xy) + npHx + npGfp,xjVf,j (2.33)

npUp,j
∂Vf,y
∂y

= − ∂

∂y
(npRfp,yy) + npHy + npGfp,yjVf,j (2.34)

and,

∂

∂y
(npUp,yRf@p,ij) = − ∂

∂y
(np⟨u′′

f@p,iu
′′
f@p,ju

′′
p,y⟩)− npRfp,iy

∂Vf,j
∂y
− npRfp,jy

∂Vf,i
∂y

+ npGfp,ikRf@p,jk + npGfp,jkRf@p,ik + npBf@p,ikBf@p,jk

(2.35)
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2.1. Lagrangian modelling of solid particles in fluid flows

The stochastic model verifies the guidelines stated in Minier et al. (2014) if npHi =
∂npRfp,ij

∂xj
. As shown in figure 2.8, this is the case for all the models that have been

written earlier. In the large inertia case the equations reduce to:

(
Vf,x
Vf,y

)
= −G−1

fp,ij

(
Hx

Hy

)
(2.36)

and,

Rf@p,xx = Rf@p,xy

Gfp,xx

∂Uf,x
∂y
− 1

2
B2
f@p,yy

Gfp,yy

(2.37)

Rf@p,yy = −1
2
B2
f@p,yy

Gfp,yy

(2.38)

Rf@p,xy = ∂Uf,x
∂y

Rf@p,yy

Gfp,xx +Gfp,yy

(2.39)
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Figure 2.8: Velocity and second order statistics in the channel for the small inertia
limit. Black lines represent results from the Eulerian computation whereas coloured
lines come from Lagrangian statistics.

The stochastic models consistency is ensured as long as Hi = 0. The original model
from Simonin et al. (1993) and the model from Minier and Peirano (2001) do not
verify this equation and mean velocity plots shown in figure 2.9 highlight the lack of
consistency of the former model in the large inertia limit: it is unable to reproduce the
Eulerian quantities (the mean velocity seen by the particles does not equal the mean
fluid velocity or the off diagonal component of the fluid velocity seen variance does
not match the off diagonal component of the fluid velocity variance). The model from
Minier and Peirano (2001) is not shown in figure 2.9 but the lack of consistency can be
seen when plotting RXY . Since the production terms are 0 for this model in the large
inertia case, the model misses this component. However, due to another inconsistency
in the model, this bias does not appear in the mean velocity plots as it does for the
standard model of Simonin et al. (1993). Thus, justifying the introduction of new
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Chapter 2. General two-phase flow models

models such as the one described in Arcen and Tanière (2009) or the one introduced in
the previous section, developed during the thesis. Figures 2.8 and 2.9 also show that,
for particles which centre of gravity is located at y+

p < 100 (near the wall boundary),
Rf@p,ij is further away from its Eulerian counterpart Rf,ij. This is natural since, in
that region, viscous effects dominate the flow and they are not taken into account in
the stochastic equation for the fluid velocity seen. This class of models are not designed
to simulate the behaviour of particles at very small Reynolds number. A similar issue
is pointed out in section 3.3 with several ways to deal with it when it impacts the
behaviour of inertial particles.
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Figure 2.9: Velocity and second order statistics in the channel for the large inertia
limit. Black lines represent results from the Eulerian computation whereas coloured
lines come from Lagrangian statistics.

As in the previous case, this verification also gives the opportunity to check whether
the well-mixed criteria is verified or not. Figure 2.10 shows the normalized particle
concentration along the wall normal direction for three different stochastic models. It
clearly shows that no spurious drift is introduced in the particle behaviour: the criteria
is verified. It is easy to check that the criteria is no longer verified if the term Hi is
neglected in the stochastic equations. This is illustrated with the red curve in figure
2.10. To check there are no spurious drifts, it is also possible to start with a non
uniform particle distribution. If the stochastic models are consistent, the model should
predict a uniform distribution equilibrium condition for the fluid elements. Figure
2.11 shows the particle normalised concentration along the wall normal direction at
different time steps for an initial non uniform distribution. On both figures showing
solid concentration, the black dotted line highlights the uniform theoretical distribution
the models need to match.
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Figure 2.10: Normalised particle concentration C/C0 along the wall normal direction.
The normalizing coefficient C0 is the average particle concentration in the channel.
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Figure 2.11: Normalised particle concentration C/C0 along the wall normal direction
at different time steps with the model from Arcen and Tanière (2009). The normalizing
coefficient C0 is the average particle concentration in the channel. The same scale is
used on all the plots.

Initially, in neptune_cfd, only the stochastic model from Minier and Peirano (2001)
was included. During the thesis, we implemented the literature models from Simonin
et al. (1993), Arcen and Tanière (2009) and the new model introduced.
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Chapter 2. General two-phase flow models

2.2 Multiphase flow modelling for immiscible fluids
This section is devoted to the introduction of multifluid models for continuous mul-
tiphase flows. The hybrid method for two-phase flows is introduced and will provide
a starting point for the presentation of the new method developed during the the-
sis for liquid-gas-solid flows. The latter being described in section 3.2. Eventually,
some details about the solver in particular and how the equations are implemented are
introduced.

2.2.1 Equations for separated continuous phases
In this subsection, we focus on a system of continuous immiscible fluids - no dispersed
inclusions are introduced in the system.

Let us consider a geometrical domain containing different fluids f . If they are
inviscid, the domain can be divided into sub-domains where only one of the two fluid
is present. Thus, for every geometric point M strictly within one of these regions,
there exist a control volume Ω containing only fluid from phase f . In Ω, the fluid
physical quantities necessary to describe the flow can be defined and local instantaneous
single-phase balance equations can be obtained. They reflect the conservation of mass,
momentum and energy of a mechanical continuum Delhaye (1974); Ishii and Hibiki
(2011).

∂

∂t
(ρ) + ∂

∂xj
(ρuj) = 0

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = ∂

∂xj
(σij) + ρgi

(2.40)

Where u is the fluid velocity, ρ is the mass per unit volume, σij = −pδij + τij is the
stress tensor, p is the pressure field, τij is the dissipative part of the stress tensor and g is
the gravity. In an inviscid multiphase flow, it is possible to define the indicator function
of each phase: χf . This function equals 1 inside phase f and 0 everywhere else. Since
the interfaces are infinitely thin (they are of zero measure in the sense of distributions
(Schwartz and Huet, 1961)), system 2.40 can be extended to the entire domain by
including the indicator functions and jump conditions (Delhaye, 1974; Kataoka, 1985;
Ishii and Hibiki, 2011).

∂

∂t
(ρχf ) + ∂

∂xj
(ρujχf ) = −ρ(uj − wj)nf,jδf

∂

∂t
(ρuiχf ) + ∂

∂xj
(ρuiujχf ) = ∂

∂xj
(σijχf ) + ρgiχf + [σij − ρui(uj − wj)]nf,jδf

(2.41)

Where w is the velocity of the interface, nf is the normal to the interface pointed
towards the region not occupied by fluid f and δf is the Dirac delta function associated
with the interface surrounding phase f . The interface has no mass - it has no inertia,
but it is subject to surface tension forces, the jump conditions in the system of equations
2.41 must verify:
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2.2. Multiphase flow modelling for immiscible fluids

∑
f

ρ(uj − wj)nf,jδf = 0 (2.42)
∑
f

[σij − ρui(uj − wj)]nf,jδf = fs,iδs (2.43)

Where δs is the Dirac delta function associated with all the interfaces and fs is the
surface tension force per unit interfacial area. Since there is only one pressure for both
fluids pf = P (Ishii and Hibiki, 2011), there is no pressure jump across an interface.
Therefore, the surface tension force fs = 0. Then, in order to obtain equations on mean
quantities, it is necessary to define an averaging operator x 7→ ⟨x⟩. This operator must
verify Reynolds axioms Monin and Yaglom (1971); it must be linear, idempotent and
must commute with differential operators. An Eulerian mean value Gf associated with
the variable g for phase f is therefore defined as:

αfρfGf = ⟨ρgχf⟩ (2.44)

Where αf = ⟨χf⟩ is the mean volume fraction occupied by phase f and ρf is
its mean density. It is easy to verify this phase averaging operator verifies Reynolds
axioms. Applying this operator to system 2.41 leads to the conservation equations of
the mean quantities describing the fluids.

∂

∂t
(αfρf ) + ∂

∂xi
(αfρfUf,i) =

∑
f ′ ̸=f

Γf ′→f (2.45)

∂

∂t
(αfρfUf,i) + ∂

∂xj
(αfρfUf,iUf,j) = αfρfgi −

∂

∂xj
⟨ρu′′

f,iu
′′
f,jχf⟩+ ∂

∂xj
(αfΣf,ij)

+
∑
f ′ ̸=f

(If ′→f,i + Γf ′→fUf,i)
(2.46)

Where Γf ′→f and If ′→f are the mean transfer terms obtained from averaging the
jump conditions in the local instantaneous equations. Γf ′→f is the mean mass transfer
across an interface between fluids f and f ′, If ′→f is the mean transfer of momentum
across the same interface, u′′

f,i = ui − Uf,i is the velocity fluctuation for phase f and
αfρfΣf,ij = ⟨ρσf,ijχf⟩ is the mean stress tensor. When considering a Newtonian fluid,
the stress tensor can be written as an affine function of the linearised strain tensor
(Batchelor, 2000).

Σf,ij = −Pfδij + Tf,ij = −Pδij + Tf,ij (2.47)

Where Pf is the mean pressure inside fluid f and Tf,ij is the mean dissipative part
of the stress tensor - the viscous stress tensor. The mean momentum conservation
equation can therefore be written as in equation 2.48. In that equation, the interfacial
transfer term from all the phases but f to phase f appears reduced by the mean
pressure contribution, ∑f ′ ̸=f I

′
f ′→f,i = ∑

f ′ ̸=f If ′→f,i − P ∂αf
∂xi

.
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∂

∂t
(αfρfUf,i) + ∂

∂xj
(αfρfUf,iUf,j) = αfρfgi −

∂

∂xj
⟨ρu′′

f,iu
′′
f,jχf⟩+ ∂

∂xj
(αfTf,ij)

− αf
∂P

∂xi
+
∑
f ′ ̸=f

(
I ′
f ′→f,i + Uf,iΓf ′→f

) (2.48)

In the subsequent work, no phase change are considered, thus, Γg→f = 0 in the
mass and momentum conservation equations 2.45 and 2.48. Additionally, no surface
tension effects are taken into account, thus fs = 0.

In equation 2.48 appears the Reynolds stress tensor for fluid f : Rf,ij = ⟨ρu′′
f,iu

′′
f,jχf⟩.

This accounts for velocity fluctuation effects on the fluid mean momentum. It is the
second term - with the interfacial transfer term - that requires closure. Different ap-
proaches are commonly used, in this manuscript we will describe the 2-equations models
(k-ϵ) or Rij-ϵ models - with k the turbulent kinetic energy and Rij the Reynolds stress
tensor. By manipulating the mean momentum equation 2.48, one can get the evolution
equation for the Reynolds stress components Rf,ij.

ρf
∂Rf,ij

∂t
+ ∂

∂xk
(ρfuf,kRf,ij)−

∂

∂xk

(
µf

∂

∂xk
Rf,ij

)
= ∂

∂xk
(Sf,ijk)+Pf,ij+gf,ij+Φf,ij−ρfϵf,ij

(2.49)

Where µf is the dynamic viscosity, Φf,ij is the pressure-velocity correlation term,
gf,ij and Pf,ij are the production terms due to gravity and mean flow strain rate, the
first term on the right-hand side is the diffusive term and ϵf = 3

2ϵf,ii is the turbulent
energy dissipation rate which satisfies equation 2.50.

ρf
∂ϵf
∂t

+ ∂

∂xk
(ρfuf,kϵf )−

∂

∂xk

(
µf
∂ϵf
∂xk

)
= ∂

∂xk
(Sk)+Cϵ,1

ϵf
kf

(P+Gϵ)−ρfCϵ,2
ϵ2
f

k
(2.50)

Where Cϵ,1 and Cϵ,2 are two constants of the model, the first term on the right-
hand side is the diffusion term, kf = 1

2Rf,ii is the turbulent kinetic energy, P = 1
2Pf,ii

and Gϵ = 1
2gf,ii. For more details and information about the way these equations are

derived or about the different possible closures, see for example Speziale et al. (1991).
These equations represent the second order model. By taking the trace of equation
2.49, it is possible to get the equations for a first order model (Launder and Spalding,
1974). It is quite faster since it only solves 1 equation instead of 6 for the turbulent
kinetic energy terms but it is also less accurate. It tends to diffuse the mean velocity
a lot more.

2.2.2 Dispersed inclusions inside a continuous phase
In this section, we focus on dispersed inclusions in one continuous fluids - be it gas
or liquid. We start by deriving the mean quantities conservation equation with the
ensemble averaging approach. Then, we describe the additional hypothesis needed to
couple the interfacial transfer terms with those obtained from the phase averaging and,
finally, we introduce how the turbulence is taken into account.
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2.2. Multiphase flow modelling for immiscible fluids

Mass and momentum conservation equations

The starting point for this section is the conservation equation for the moments of the
PDF fp (equation 2.23). In the previous section, we derived the conservation equation
for the turbulent quantities related to the fluid seen by the solid phase. In this section,
we derive the conservation equation for the particle phase as well as the associated
turbulent quantities. By replacing ψp with the appropriate function of the phase space
variables, it is possible to obtain the conservation equations needed to describe the
particle phase. When ψp = 1, equation 2.23 becomes the particle mass conservation
equation. In the derivation of this equation, it is supposed that there are no mass
transfer with the fluid phase or between the particles.

∂

∂t
(npmp) + ∂

∂xi
(npmpUp,i) = 0 (2.51)

When ψp = cp,i, equation 2.23 becomes the particle mean momentum conservation
equation.

∂

∂t
(npmpUp,i) + ∂

∂xj
(npmpUp,iUp,j) =− ∂

∂xj

(
npmp⟨u′

p,iu
′
p,j⟩
)

+ npmp⟨
dup,i
dt ⟩+ npC(mpup,i)

(2.52)

When deriving this equation, the mean change rate in particle momentum appears:
mp⟨dup,i

dt ⟩. It is the mean particle acceleration between two instantaneous collisions.
This term can include, among other contributions, the fluid to particle momentum
transfer such as drag or Archimedes force Ff→p,i, the long-distance particle-particle
interaction terms such as electrostatic forces ∑p′ Fp′→p,i and external body forces such
as gravity or magnetic fields FB→p,i.

mp
dup,i
dt = mp

Ff→p,i +
∑
p′
Fp′→p,i + FB→p,i

 (2.53)

Coupling the interfacial transfer terms

To highlight the consistency between the PDF approach and the phase averaging, the
momentum transfer terms have to be reorganised. In the PDF framework, the mean
momentum transfer at the interface If→p,i = np⟨Ff→p,i⟩ is the mean force acting on
particles which centre of gravity is located in the control volume.

Ff→p,i =
∫
Sp

(σf@p,ij + δσf,ij)np,jdS = −vp
∂Pf@p

∂xi
+ FD

f→p,i (2.54)

Where Sp is the surface of particles which centre of gravity is located in the volume
average, σf@p,ij is the fluid stress tensor undisturbed by the presence of the particle. We
assume, it only includes the pressure effect. δσf,ij is the fluid stress tensor associated
with the particle presence, np is the normal of the surface S, vp is the volume of a
particle, Pf@p is the undisturbed pressure at the position of the particle and FD

f→p,i
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represents the fluid force on the particle without the contribution of the undisturbed
flow which we limit to drag. It is further assumed that the gradient of the fluid pressure
seen by the particle is equal to the mean pressure gradient.

In contrast, in the phase averaging framework, the mean momentum transfer at the
interface Ip→f,i = −⟨σf,ijnp,jδfp⟩ represents the total force acting from the fluid on the
particle surfaces included in the control volume.

Fp→f,i =
∫

Σp
σf,ijnp,jdS (2.55)

Where δfp is the Dirac delta function associated with the fluid-particle interface
and Σp is the particle surface included in the volume average. From equations 2.54
and 2.55, for partially included particles in the volume, the two mean transfer terms
are not equal. According to Zhang and Prosperetti (1994), the bias introduced in the
system can be written as the divergence of a flux θfp,ij. In homogeneous flows, this bias
is 0 but it is not the case in general. For a volume sufficiently close to a wall boundary
for instance, there can be no particles (distance to the wall smaller than the particle
radius), despite the presence of a particle surface. Figure 2.12 shows the differences
between the two frameworks.
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Figure 2.12: (left) Fluid point of view, all the interfaces included in Ω are used to
compute the interfacial transfer terms. (right) Particle point of view, only the surface
of particles which center of gravity is in Ω is used to compute the same term.

This bias can be seen as a flux of partially included particles on the boundary of Ω:

Ip→f,i + If→p,i = ∂θfp,ij
∂xj

(2.56)

As a first approximation, the bias is only accounted for in the mean pressure contri-
bution term of the interfacial momentum transfer terms. If vp is the volume occupied
by a particle, the bias reads:

IAp→f,i = −IAf→p,i + ∂θfp,ij
∂xj

= −IAf→p,i − npvp
∂P

∂xi
+ P

∂αf
∂xi

(2.57)
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With θfp,ij ≈ −(1 − αf )Pδij, the sum of the mean pressure contribution in the
interfacial transfer term and the pressure term in the stress tensor in equation 2.48 can
be written as:

IAp→f,i −
∂αfP

∂xi
= −αf

∂P

∂xi
(2.58)

Therefore, the contribution not related to mean pressure in the interfacial transfer
terms verifies:

IDp→f,i = −IDf→p,i (2.59)

Thus, even if the transfer term differs in the two approaches, by organising them
correctly, it is possible to demonstrate the consistency between both and it is possi-
ble to close the unknown term in the fluid equations. This justifies the use of the
same framework for the two equations, despite them being obtained from two different
methods. This illustrates the simplest form of bias leading to a consistent system of
equations. It is possible to assume the bias is accounted for in the viscous term as well.
This would end up in a more complex expression more suitable in high viscosity fluids.
For more details on those expressions, see Jackson (2000).

Turbulence modelling for solid inclusions

Different models exist in neptune_cfd to account for particle dispersion. The first one
is the model developed in Mou (1947) and Hinze (1959) later examined by Desjonqueres
et al. (1986). It consists in constitutive relations for the particle velocity variance and
covariance tensors when particle experience drag only. These relations are consistent
if, first of all, the particle Reynolds number is sufficiently small to neglect the non-
linearity in the drag coefficient. Then, the fluid turbulence must be homogeneous,
isotropic and stationary. And, finally, the Lagrangian fluid statistics must match those
computed along a particle trajectory. Following these assumptions, by writing down
the momentum balance for a particle, using the Fourier transform and assuming the
expression of the fluid velocity Lagrangian auto-correlation function, it is possible to
obtain the relations below.

⟨u′′
p,iu

′′
p,j⟩ = ⟨u′′

f,iu
′′
p,j⟩ (2.60)

⟨u′′
f,iu

′′
p,j⟩ = ⟨u′′

f,iu
′′
f,j⟩

TLf@p

TLf@p + τp,f
(2.61)

When the flow is not isotropic, an equivalent kinetic stress model for the particles
can be obtained. It consists in deriving, from the moments equation 2.23, the evolution
equations for the fluid velocity variance Rp,ij and fluid-particle velocity Rfp,ij covariance
tensors and taking the trace of the system obtained. More details on these equations
can be found in appendix A.
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∂

∂t
(npmpRp,ij) + ∂

∂xk
(npmpRp,ijUp,k) = − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)

− npmpRp,jk
∂Up,i
∂xk

− npmpRp,ik
∂Up,j
∂xk

+ npmp
1
τp,f

[Rfp,ij +Rfp,ji − 2Rp,ij] + C(mpu
′′
p,iu

′′
p,j)

(2.62)

∂

∂t
(npmpRfp,ij) + ∂

∂xk
(npmpRfp,ijUp,k) = − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)

− npmpRp,jk
∂Vf,i
∂xk

− npmpRfp,ik
∂Up,j
∂xk

+ npmpGfp,jkRf@p,ki + npmp
1
τp,f

[Rf@p,ij −Rfp,ij]

(2.63)

In the particle kinetic stress equations, the terms on the right hand side repre-
sent variance (covariance) transport by particle velocity fluctuations, modelled with
a Boussinesq-type approximation, the turbulence production due to mean particle or
drift velocity and the interaction between the fluctuating motions of particles and
the fluid. The collision term above can be expressed using Grad’s theory of rarefied
gases (Grad, 1949) by approximately expanding the distribution function with Her-
mite polynomials. The collisional term ends up being written like a return-to-isotropy
contribution analogous to the Rotta term in the fluid Reynolds stress models and an
inelastic collision contribution.

C(mpu
′′
p,iu

′′
p,j) = −npmp

[ γc
τp,c

(
Rp,ij −

2
3qpδij

)
︸ ︷︷ ︸

return-to-isotropy

+ 1− e2
c

3τp,c
2
3qpδij︸ ︷︷ ︸

Inelastic collisions

]
(2.64)

Where qp = 1
2Rp,ij, τp,c is the time separating two inter-particle collisions, ec is the

restitution coefficient and γc is a constant. With particle diameter dp:

τp,c = dp

6αpπ
√

16
π

2
3qp

(2.65)

γc = (1 + ec)(3− ec)
5 (2.66)

ξc = (1 + ec)(49− 33ec)
100 (2.67)

By writing the evolution equation for Sp,ijk = ⟨u′′
p,iu

′′
p,ju

′′
p,k⟩ and using a Boussinesq-

type approximation, following the work in Hanjalić and Launder (1972), the following
relation can be obtained:

Sp,ijk = −Kp,il
∂Rp,jk

∂xl
−Kp,jl

∂Rp,ki

∂xm
−Kp,kl

∂Rp,ij

∂xl
(2.68)
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Where, with constants ξFfp and ξtfp, the diffusivity tensor reads:

Kp,mn =
[
τp,f
ξFfp

Rp,mn +
TLf
ξtfp

Rfp,mn

] [
1 + 5

9τp,f
ξc
τp,c

]−1

(2.69)

In order to simplify the model, Simonin (1996) proposed another formulation, still
compatible with Daly and Harlow (1970) and with the same expression for the diffusion
tensor Kp,mn:

∂Sp,ijk
∂xk

= − ∂

∂xk

[
Kp,kl

∂Rp,ij

∂xl

]
(2.70)

In neptune_cfd, an even simpler version is implemented for the triple correlation
terms. The latter neglects the anisotropy effects in the diffusion tensor:

− ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩) = − ∂

∂xk

(
npmpKp

∂Rp,ij

∂xl

)
(2.71)

Where the diffusivity and viscosities read:

Kp =
[
νfp + 5

9qp
2
3
τp,f
2

] [
1 + 5

9τp,f
ξc
τp,c

]−1

(2.72)

νfp = 1
3qfpT

L
f@p (2.73)

(2.74)

If collisions are strong or if the turbulence is mostly isotropic, a 2-equations model
may be sufficient to describe particle dispersion accurately. To obtain it, the two
previous equations are used to get the evolution equation of the traces qp = 1

2Rp,ii and
qfp = 1

2Rfp,ii.

∂

∂t
(npmpqp) + ∂

∂xk
(npmpqpUp,k) = − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)

− npmpRp,ik
∂Up,i
∂xk

+ Πqp + C(mpqp)
(2.75)

∂

∂t
(npmpqfp) + ∂

∂xk
(npmpqfpUp,k) = − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)

− npmpRp,ik
∂Vf,i
∂xk

− npmpRfp,ik
∂Up,i
∂xk

+ 1
2npmpGfp,ikRf@p,ki + Πqfp

(2.76)

In the 2-equations model, the terms on the right hand side correspond to transport
of the variance (covariance) by the particle velocity fluctuations, the next term is the
turbulence production by mean particle or drift velocity, the following term corresponds
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to fluid-particle fluctuating motion interaction (Πqp and Πqfp) and the last one in the
equation for qp accounts for collisions. In a dilute flow, the coupling terms can be
written:

Πqp = npmp
1
τp,f

(qfp − 2qp) (2.77)

Πqfp = npmp
1
τp,f

(2Rf@p,ii − qfp) (2.78)

Again, an eddy-viscosity type assumption allows the closure of the unknown term
in the previous equations. In the event of high particle loading, the effect of particles
on the fluid must not be neglected. In that case, an additional term might be included
in the evolution equation for the fluid-particle covariance qfp. According to Sun et al.
(2022), in the event of uncorrelated motion, the coupling term between fluid and par-
ticle fluctuations in equation 2.76 Πqfp might contain a destruction term proportional
to the fluid-particle covariance:

Πqfp = npmp
1
τp,f

[
2Rf@p,ii − qfp + npmp

αfρf
qfp

]
(2.79)

Where ρf and αf are the fluid density and volume fraction. Adapting the previous
models and equations in the case of liquid-gas-solid flow is the purpose of section 3.2.

2.2.3 neptune_cfd: general concepts and models
neptune_cfd is a multiphase solver based on the architecture of the open source soft-
ware code_saturne, developed in EDF. All models presented in future chapters are
included in the development version of the software and will be supported in future
versions. It is a 3-dimensional (3D) N -fluid Reynolds averaged Navier-Stokes (RANS)
solver developped by EDF, CEA, IRSN and Framatome initially for nuclear applica-
tions. The 3D full-unstructured finite volume discretisation with colocated variables
is based on the multi-fluid single pressure formulation proposed by Delhaye (1974);
Kataoka (1985); Ishii and Hibiki (2011). The convection scheme for all the variables
but the pressure is Second Order Linear Upwind (SOLU) or Upwind. In general, the
solver is built around a pressure correction fractional step approach and gradients are
computed mostly to the second order accuracy (for regular cells). By design, when ob-
taining the governing equations, some information about the interfacial transfer terms
is lost, the averaged system thus requires the introduction of closures. This procedure
also requires the introduction of turbulence modelling which is readily available in nep-
tune_cfd with 1st order models such as the k-ϵ model Launder and Spalding (1974) or
the k-ϵ model with linear production Guimet and Laurence (2002), and 2nd order model
such as the Rij-ϵ SSG model Speziale et al. (1991) and its wall-resolved equivalent, the
Rij-ϵ SSG-EBRSM model Manceau and Hanjalic (2002). In all our studies, the flows
are adiabatic and there are no phase changes. This causes some simplifications in the
governing system which is shown in equations 2.45 and 2.46 for a fluid f . The mean
mass transfer term Γg→f is neglected in all the manuscript. An additional important
assumption is the fact that all the phases constitute all of the material present in the
domain.
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2.2. Multiphase flow modelling for immiscible fluids

∑
f

αf = 1 (2.80)

In the following paragraphs, in order to describe multiple regimes, we define four
new indexes: cg, dg, cl, dl. They represent continuous gas, dispersed gas, continuous
liquid and dispersed liquid. When not specified, the index refers to the phase in general
without accounting for its morphology. They do not reflect a real segmentation in the
framework but allow for a clearer presentation of the different models.

Interfacial transfer terms in dispersed flows

The main advantage of this method is its natural ability to tackle different flow regimes.
It can simulate separate phases configurations where two continuous phases are sepa-
rated by a free surface and it can simulate dispersed flows where bubbles or droplets are
present inside a continuous phase. This approach also allows any combination of the
two previous cases: two continuous phases separated by a free-surface and containing
dispersed inclusions. The kind of regime the flow is in determines the expression for
the interfacial momentum transfer terms. In the dispersed case, the interfacial transfer
term is divided in a laminar (IL) and a turbulent (IT ) contribution. Let’s assume cl
is a continuous phase and dg is a dispersed phase carried by the continuous field (it
could represent bubbles, droplets or solid particles).

I ′
cl→dg,i = ILcl→dg,i + ITcl→dg,i (2.81)

In neptune_cfd, the laminar contribution includes the usual interaction forces
(drag, lift and added mass) for bubbles or droplets. For solid dispersed inclusions,
drag is usually the only interfacial momentum transfer term.

ILcl→dg =− αdgρclF cl→dg
D Vcl-dg

r − αdgρclCcl-dg
A

dVcl-dg
r

dt
− αdgρclLcl→dg(Udg −Ucl) ∧ (∇×Ucl)

(2.82)

Where F cl→dg
D is the drag coefficient between phase cl and dg, Vcl-dg

r = Udg−Ucl is
the average relative velocity, Ccl-dg

A is the added-mass coefficient and Lcl→dg is the lift
coefficient. There has been - and still is - extensive work regarding the possible closure
for those terms; in neptune_cfd, the closures used for these terms can be found in Ishii
and Zuber (1979); Zuber (1964), Mimouni et al. (2011) and Tomiyama et al. (1998).

The expression for the turbulent term in equation 2.81, which includes the tur-
bulent contributions in drag, lift and added mass; can be found in Laviéville et al.
(2017). Moreover, terms in the turbulent quantities evolution equations are modified
or included to account for modulation due to dispersed inclusions.

Inclusion diameter - interfacial area transport equation method

In the interfacial momentum transfer terms, one of the most important variable is
the equivalent diameter of the inclusions. This value drives all of the coefficients
and plays a key role, as we should see in the following chapters, in the accuracy of
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the models. In neptune_cfd, this diameter can be constant, a value is picked at the
beginning of the simulation and is used throughout the simulation. This approach is
definitely useful when experimental data supports the hypothesis of bubbles all being
the same size. However, in general, there is either no experimental data on the sizes
of the inclusions or it cannot support the hypothesis of a single diameter. In which
case, the polydispersed representation of the diameter is more suitable. The set of
dispersed inclusions is considered through a phase space as is presented in section
2.2.2. This space contains the position of an inclusion x, its size db and the velocity
of its centre of mass w. F is the density function associated to this phase space such
that F (db,w; x, t)δdbδwδx is the probable number of inclusions with size and velocity
(db,w) ∈ {db, db + δdb} × {w,w + δw} in the volume δx centered around x at time t.
The size distribution f is defined as follows:

f(db; x, t) =
∫
F (db,w; x, t)dw (2.83)

The number density function n and the probability density function P per unit size
of an inclusion are classically defined.

n(x, t) =
∫
fddb (2.84)

f(db; x, t) = n(x, t)P (db; x, t) (2.85)

As was done in section 2.2.2, it is possible to obtain an evolution equation for F
- a Liouville equation. It is also straightforward to obtain an Enskog’s type equation
for the evolution of moments of the density function µψ. These moments are defined
through the definition of an ensemble average.

µψ(x, t) = n(x, t)⟨ψ⟩1 =
∫
Fψddbdw (2.86)

Where,

⟨ψ⟩Y =
∫
FψY ddbdw∫
FY ddbdw (2.87)

Thus resulting in the following equation:

∂µψ
∂t

+∇.(µψ⟨w⟩ψ) = n

〈
∂ψ

∂db

ddb
dt

〉
+
∫
Ḟc,bψddbdw︸ ︷︷ ︸

µ̇ψ

(2.88)

Where µ̇ψ reflects the change of the moment due to specific phenomenon (coales-
cence, fragmentation, phase change, growth...) and ⟨w⟩ψ is not - by default - the
velocity of the fluid carrying the inclusions. Since in our cases there are no phase
change and air is incompressible the first term on the right hand side of equation 2.88
is 0. From this point on, many options exist for the description of the polydisper-
sion. The very popular population balance method Carrica et al. (1999) consists in
subdividing the inclusions in classes of similar sizes. A velocity and volume fraction is
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associated to each fraction. Then the evolution equations are solved for all these fields.
It is an accurate way of dealing with the polydispersion. However, it can be costly if
the range of diameters spans several decades. The change in size due to coalescence
or fragmentation are taken into account through source and sink terms in the evolu-
tion equations for all the classes. In order to conserve the mass in the system, these
terms must be introduced carefully (Montoya et al., 2014), their expressions represent
a sizeable challenge.

In neptune_cfd, a moment with an assumption on the shape of the density function
f has been pursued. It consists in reducing the complexity of the problem by solving
equation 2.88 for specific moments only with known relations output from the assumed
density function. Mainly, the moments treated in neptune_cfd are the dispersed phase
volume fraction αdg (the total inclusion volume per unit volume of fluids) and the
interfacial area ai (the total fluid-inclusion surface area per unit volume). We are
rapidly detailing this method but more information about it can be found in the original
work from Ruyer (2007).

∂ai
∂t

+∇.(ai⟨w⟩d2
b
) =

∫
db

∫
w
Ḟc,bπd

2
bdbdw (2.89)

There are more sophisticated models Kim et al. (2021) where second order moments
may be used: see the references for more details on these. The assumed expression for
the probability density function should be simple enough to enable a simple relation
between the moments and a simple expression for the source and sink terms due to
coalescence, fragmentation and phase change. Finding this expression cannot be easy
and some intuitive guesses may not be appropriate. A Dirac delta distribution would
signify a constant diameter which is not very informative. The choice of a log-normal
distribution for example poses some difficulties since it gives an infinite value for the
source term related to a binary fragmentation of bubbles Riou (2002). The main
objective of this assumed PDF is to be statistically accurate rather than to reproduce
accurately the details of the population. Thus, the expression selected for neptune_cfd
for which more details can be found in Ruyer (2007), is the following:

f(x, t) =


3n(x, t)db

4⟨db⟩31
(2⟨db⟩1 − db) , if db < 2⟨db⟩1

0, otherwise
(2.90)

From equation 2.90, it is possible to derive the relationships between the moments
ai, αdg and d3,2.

ai = 6αdg
d3,2

(2.91)

Where d3,2 = 4
3⟨db⟩1 is Sauter mean diameter - the diameter of a sphere having the

same volume over surface ratio as the bubble it represents (Morel et al., 2010).

d3,2 =
∫
d3
bfddbdw∫
d2
bfddbdw (2.92)
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Thus, if the term on the right hand side of the equation 2.89 is closed, solving the
equation determines a diameter which can be used in the interfacial transfer terms. A
mechanistic approach leads to the fragmentation and coalescence terms closure (Luo
and Svendsen, 1996; Yao and Morel, 2004; Ruyer, 2007; Morel et al., 2010). The main
idea is to identify the mechanisms driving coalescence and fragmentation and then to
separate their probability of occurrences with their efficiencies. Coalescence can occur
only when two bubbles collide. Therefore the probability of coalescence is the product
of the probability of collision between two bubbles and the ratio between the number of
coalesced bubbles to the number of collisions. The coalescence efficiency is determined
from modelling the contact time and the drainage time of the film separating two
bubbles (Prince and Blanch, 1990; Yao and Morel, 2004).

Fragmentation occurs when a bubble collides with a similarly sized turbulent eddy
(Luo and Svendsen, 1996). Therefore, the probability of fragmentation is the product
of the number of collisions between a bubble and a similarly sized eddy and the ratio
between the number of fragmented bubbles to the number of such collisions. The
fragmentation efficiency is determined from a critical Weber number and a Weber
number built from the turbulent quantities associated with the bubble diameter Yao
and Morel (2004). This leads to the final expression:

∫
Ḟc,bπd

2
bddbdw = a

5/3
i ϵ

1/3
dg α

1/3
dg ξ(Nc) (2.93)

Where Nc = 8.06a−5/6
i α

5/6
dg ϵ

1/3
√
ρcl/γs, ϵdg is the fluid turbulent kinetic energy dissi-

pation, ξ is a function of Nc only and γs is the surface tension. It contains a contribution
for coalescence ξc(Nc) and another for breakup ξb(Nc). Again, for more details on these
expressions and their derivation, I highly recommend looking at the original work from
Ruyer (2007).

Interfacial transfer term in separated flows (LIM)

In order to apply interfacial models to a simulated interface, it is mandatory to detect
it. The method, transcribed here, can be found in Coste (2013). In neptune_cfd,
depending on the gradient of volume fraction, some cells are flagged as interfacial cells.
In order to prevent issues related to residual phases, nearby cells are also flagged as
interfacial cells (one on each side of the interface). This set of cells matching the fluid-
fluid interface is named the three-cell stencil. A cell contains a large interface (LI) if
the liquid volume fraction gradient ∇αcl exceeds a threshold value. The two adjacent
cells are found by moving away from the LI cell in the normal direction to the interface
n = ∇αcl∥∇αcl∥−1. After locating the interface, the shear stresses on either side can be
estimated with a similar method to those used in boundary layer theory. Eventually,
by also taking into account the surface roughness (Brocchini and Peregrine, 2001a,b),
it is possible to obtain the friction velocities u∗

cg and u∗
cl used to compute momentum

transfer across a large interface. In all the cells but the three-cell stencil, the interfacial
transfer term IDg→l is defined according to usual models (see equation 2.82). In the
three-cell stencil, a normal contribution is kept solely for numerical purposes. It helps
enforce the relation (Ucl−Ucg).n = 0 which would not be verified otherwise. To that,
an anisotropic contribution which depends on the friction velocities and the sub-grid
scale roughness is added to take into account surface friction.
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IDcg→cl,i = αclαcgFD [(ucg − ucl).n] .n−Acg→cl (2.94)

Where FD is the standard drag coefficient used in dispersed flows and Acg→cl is the
friction coefficient along the free surface. The expression for this friction term can be
found in Coste (2013).

Acg→cl = ρlu
∗
clai

ucg − ucl
∥ucg − ucl∥

(2.95)

The turbulent quantities transport equations, specifically the production and dis-
sipation terms, are also modified in the free-surface region in order to account for its
presence (Coste and Laviéville, 2015). Since these have not been explored in this work,
they are not discussed here.

Interfacial transfer terms in multi-regime flows (GLIM)

In the LIM model, cells that are not flagged as containing an interface may still contain
both phases. In those, the momentum transfer term may not represent the real drag
sustained by the dispersed phase. The main idea behind the GLIM model is to avoid
this issue by integrating the models from previous sections in the LIM model. This
process starts by identifying the three-cell stencil in all the domain and by applying the
appropriate interfacial transfer terms in those cells. In other cells containing liquid and
gas that are not flagged as interface cells, the disperse models are applied. Figure 2.13
shows regions which contains continuous and dispersed structures. The continuous-
continuous interfaces are treated with the LIM approach and the small inclusions with
the dispersed model. To maintain consistency, the transition between both models is
continuously made with a weighting coefficient γ (Mérigoux, 2022). The total interfacial
momentum transfer term can be decomposed as:

I′
cl→g = γI′

cl→dg + (1− γ)I′
cl→cg (2.96)

With,

γ = β(1−min(fc, 1)) (2.97)

Where β is a continuous function which equals 0 where αl = 0 and 1 where αl = 1:

β = 1
2

[
tanh

(
20
(
αl −

1
2

))
+ 1

]
(2.98)

fc is proportional to the ratio on the local volume fraction gradient and the maxi-
mum possible surface contained in a cell SM .

fc = min
(

4∥∇αg∥
SM

, 1
)

(2.99)

47



Chapter 2. General two-phase flow models

This weighting method, giving encouraging results, is also tested in a similar manner
in other CFD softwares such as OpenFOAM. For examples see Mathur et al. (2019); De
Santis, Colombo, Hanson and Fairweather (2021); De Santis, Hanson and Fairweather
(2021). Like in the dispersed case and the LIM, turbulent quantities evolution equations
are adapted to account for modulation effects. More detail on those can be seen in
appendix B.

Figure 2.13: Sketch showing the different models applied in different regions of the
domain depending on the flow characteristics. The orange zone is a continuous struc-
tures, the green region includes dispersed inclusions and the interface between the two
is treated with the large interface model. The two point of view combined constitute
the generalized large interface model from neptune_cfd.

The main objective during the thesis has been to develop a particle model in which
large interfaces as well as dispersed phases can be simulated. The idea is to make
the Lagrangian stochastic and Eulerian velocity moments models compatible with the
large interface formulation. Thus introducing the idea that several continuous fields
may interact with the same solid phase. Be it Lagrangian particles in the Lagrangian
stochastic framework or a dispersed field in the Eulerian velocity moments formulation.
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In this chapter, we introduce the two models developed during the thesis. Both allow
for modelling and simulation of particles evolving in multiphase flows. Both are also
enhancements of existing two-phase models presented in the previous chapter. The
Euler-Lagrange model is an evolution of the standard Lagrangian stochastic model
for particles in single phase flows. The multi-Eulerian is the Eulerian counterpart of
the Euler-Lagrange model, obtained from the Lagrangian increments and the velocity
moments equations. In practice, the work carried out during the thesis consists in
merging the existing Lagrangian stochastic models and the Eulerian velocity moments
method with the standard multifluid model.

We start by introducing the two new models before considering updates on gravity
and turbulence driven deposition.

3.1 Euler-Lagrange model
In this section, a new Euler-Lagrange stochastic model is introduced. The main goal
is to combine existing Lagrangian stochastic models with a multifluid solver in order
to simulate the behaviour of particles in liquid-gas flows. In practice, if no assumption
is made on the behaviour of particles, they must be able to interact with every field
present in the N -Eulerian framework independently from the underlying flow morphol-
ogy. As a matter of fact, due to the design of the multifluid framework, one particle is
never exclusively in one continuous phase or the other, it is moving inside a cell in a
domain containing some volume fraction for every phase present in the computation.
Therefore, the new method is not straightforward. Moreover, interfacial momentum
transfer term closures are well documented for two-phase systems; for three or more
phases, there is little to no experimental work on the topic. Some details about them
can be found in Baltussen et al. (2017); Loudet et al. (2020).

The current way Lagrangian stochastic models are used in neptune_cfd is presented
before introducing the limitations and issues arising from the formulation. Then, a
new approach is presented and thoroughly analytically studied before presenting its
behaviour when applied on an academic case.

3.1.1 Combining the existing model with neptune_cfd
Before the work carried out in this thesis, the Lagrangian stochastic model could be
used in two different ways for particles moving in a two-phase flow. The first one
consisted in eliminating the interaction between one continuous phase and the dispersed
solid phase. Doing as if one of the two continuous phases did not exist and as if
the particles were exclusively carried by the other phase. This strong hypothesis can
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be verified but it would require extensive experimental investigation to be confirmed
which can be, in the best case scenario, very expensive. Additionally, the basic case
of particles falling through air and impacting a water free-surface would be impossible
to model with such a model. The second method consists in creating a new mixture
field from the two continuous phases and using this mixture field in the Lagrangian
stochastic model. This is modelling the interaction between the particle phase and
all the continuous phases but the way the mixture fields are defined is unclear. For
example, for a variable X of n continuous fields, the mixture variable Xm could be
defined as the following average:

Xm =
∑n
i=1 αiρiXi∑n
i=1 αiρi

(3.1)

This would work well for the velocity because it would accurately average the overall
drag sustained by the particle but it would make no sense to do the same for the
turbulent fields. Therefore making it difficult to mathematically justify. The second
method is able to predict the behaviour of particles impacting a water free-surface
when turbulence for both fluids is weak. In a test case carried out at the beginning
of the thesis, where particles were flowing inside a rectangular aerated free-surface jet
(Carrillo, Castillo, Marco and García, 2020), particles were seen being ejected from the
free surface due to turbulent values being abnormal in the region near water surface.
Thus highlighting the need for a more suitable model to predict the behaviour of solid
particles crossing a free-surface.

These two methods being unsatisfactory, a new approach had to be thought of.
The main goal being to ensure interaction of particles with more than one fluid inde-
pendently of its nature and topology. As seen in section 2.1, a stochastic Lagrangian
approach for a solid phase p evolving in a fluid f can be described with the following
system of equations.

δxp,i = up,iδt

δup,i = uf@p,i − up,i
τp,f

δt

δuf@p,i = Af@p,iδt+Bf@p,ijδWf,j

(3.2)

The way we want to modify this approach is by assuming the particles exchange
momentum with all the phases that could have a non zero volume fraction at the po-
sition they are in. λf is the weight each fluid f has on the overall momentum transfer
experienced by the particle. Then for each fluid f , a Langevin type stochastic equa-
tion has to be solved in order to appropriately model their turbulence in the particle
momentum balance equation. Figure 3.1 shows a schematic of a particle evolving in
a liquid-gas flow for different kind of flow morphologies. Depending on the expression
of the weight coefficient, this segmentation can have different physical meaning. For
more details about the different models, refer to section 3.1.3.
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a) αg = 1
αl = 0

αg = 0
αl = 1

b) c) αg > 0
αl > 0

Figure 3.1: Different drawings showing a particle evolving in a liquid-gas mixture. The
arrow represents the movement of a particle in time. Figure a) shows a particle moving
through a resolved interface, figure b) shows a particle moving through a fully resolved
bubbly flow and figure c) shows a particle moving through a statistically simulated
liquid-gas flow.

For now, let’s rewrite the Lagrangian stochastic system with the new formulation.
Bearing in mind that there are as many Langevin equations on the fluid velocity seen
by the particles as there are continuous phases they can interact with. Here, there
are n continuous phases. Similarly to the introductory chapter, we decide to write the
stochastic model in terms of the fluctuating fluid velocity seen rather than the total
velocity seen by the particle.

δxp,i = up,i(t)δt

δup,i =
 n∑
f=1

λf
τp,f

(uf@p,i − up,i) +mpgi −mpvp
∂P

∂xi

 δt
∀f ∈ [1, n] ,
uf@p,i = Uf,i + u′

f@p,i

δu′
f@p,i =

[
(Gf@p,ij −

∂Uf,i
∂xj

)u′
f@p,j +Hi

]
δt+Bf@p,ijδWf,j

(3.3)

In this case, it is easier to work with the fluctuating velocity seen by the particle
u′
f@p,i instead of the total velocity seen by the particle uf@p,i. Indeed, the Langevin

equations must be consistent with the mean fluid momentum conservation equations.
Therefore, the interfacial transfer term should be included in the Langevin model. If
it is not included, the pressure gradient faces no counterpart and the particle quickly
behaves abnormally. By assuming there are no turbulent contributions to the interfa-
cial transfer terms, we can simplify the Langevin model by expressing them in terms of
fluctuating velocity seen (as it is done in equations 2.13). Working that way requires
a special attention when it comes to fluctuation manipulation. Also, it seems to make
the models more complex when two-way coupling is taken into account (Minier et al.,
2014). However, since this phenomenon is not included in our new stochastic model,
we prefer to work with the fluctuating component rather than the total velocity. Espe-
cially since, as will be noted in section 3.1.4, it also provides a noticeable improvement
in the model accuracy. For details about the expressions for parameters of the model
(Gf@p,ij, Hi and Bf@p,ij) see the previous chapter.

The way we solve this set of equations is inspired by how it is done in the standard
model of code_saturne. Since the methodology has not been presented in the previous
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chapter and that there are still some important variations that need to be addressed,
we provide a detailed explanation here.

3.1.2 Stochastic system integration
Fully-implicit resolution of the stochastic equation

To solve the entire system, the fluctuation of fluid velocity seen by the particle must
be integrated first. With the original stochastic model (Minier and Peirano, 2001), the
fluid velocity seen components could be integrated independently with the constant
variation method. Since, in the new general case, the velocity seen components are no
longer independent, this method cannot be applied directly. However, for one fluid f ,
the equation for each components constitute a linear stochastic differential system.

δu′
f@p + Au′

f@pδt = Bδt+ CδWf (3.4)

By considering the system without right-hand side terms and by applying the con-
stant variation method, it is possible to obtain a general form for the vector u′

f@p.

uf@p
′ = etAH =

+∞∑
k=0

(tA)k
k! H (3.5)

Where the power series definition of the exponential function is used for computing
matrices exponential and H is determined from the linear stochastic system (system
3.4). It is possible to obtain a general solution to this system, however, this method
is impractical. In order to easily compute the exponential term, A must either be
nilpotent, diagonal or diagonalisable. If that is not the case, the exponential can still
be computed in practice with the Dunford decomposition (Lang, 2002). Unfortunately,
in most cases, computing such a decomposition is time consuming. Since there are po-
tentially many particles and time steps, investigating these possibilities further seemed
inappropriate.

Semi-implicit resolution of the stochastic equation

A faster approach consists in isolating the diagonal terms in A, considering them im-
plicitly and considering the rest of the matrix explicitly. This reduces the accuracy of
the method and increases its dependency to the numerical time step but makes it a lot
faster since it allows us to solve each component independently. We look for a solution
to the stochastic equation written as an exponential term multiplied by a function Ci
to be determined.

u′
f@p,i = Ci(t)e

− t

T
L,∗
f@p,i (3.6)

By assuming u′
f@p,i is a solution to the stochastic equation, Ci must verify:

δCi = e

t

T
L,∗
f@p,i

[(
−∂Uf,i
∂xj

uf@p,j +Hi

)
δt+Bf@p,ijδWf,j

]
(3.7)
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Finally, by integrating between t0 and t, with ∆t = t − t0, the expression for the
fluctuating fluid velocity seen by a particle reads:

u′
f@p,i(t) = u′

f@p,i(t0)e
− ∆t
T
L,∗
f@p,i + TL,∗f@p,i

(
1− e

− ∆t
T
L,∗
f@p,i

)(
Hi −

∂Uf,i
∂xj

u′
f@p,j

)

+Bf@p,ije
− ∆t
T
L,∗
f@p,i

∫ t

t0
e

s

T
L,∗
f@p,i dWf,j(s)︸ ︷︷ ︸
γf,i(t)

(3.8)

Where Bf@p,ij is proportional to δij so that all the components are independent (see
equation 2.18). The expression for the stochastic integral γf,i will be detailed later.
From equation 3.8, by carefully adding the mean velocity seen by the particle, it is
possible to write an expression for the particle velocity and the particle position.

up,i(t) = up,i(t0) e− ∆t
τm +

 n∑
f=1

λf
τp,f

∫ t

t0
e

s
τmUf@p,i(s)ds

 e− t
τm

+
n∑
f=1

λf
τp,f

u′
f@p,i(t0)

τmT
L,∗
f@p,i

TL,∗f@p,i − τm

(
e

− ∆t
T
L,∗
f@p,i − e− ∆t

τm

)

+
n∑
f=1

λf
τp,f

Cf,iT
L,∗
f@p,iτm

(1− e− ∆t
τm

)
− TL,∗f@p,i

TL,∗f@p,i − τm

(
e

− ∆t
T
L,∗
f@p,i − e− ∆t

τm

)
+

n∑
f=1

e− t
τm

λf
τp,f

∫ t

t0
e

s
τm γf,i(s)ds︸ ︷︷ ︸

Γi(t)

(3.9)

and,

xp,i(t) = xp,i(t0) + up,i(t0)τm
(
1− e− ∆t

τm

)
+

n∑
f=1

λf
τp,f

1
2

(
∆t2
2 Uf,i(xp(t), t) + τm

(
∆t e− ∆t

τm − (1− e−
∆t
τm )

)
Uf,i(xp(t0), t0)

)

+
n∑
f=1

λf
τp,f

τm
TL,∗f@p,i

TL,∗f@p,i − τm
uf@p,i(t0)

[
TL,∗f@p,i

(
1− e

− ∆t
T
L,∗
f@p,i

)
− τm

(
1− e− ∆t

τm

)]

+
n∑
f=1

λf
τp,f

τmT
L,∗
f@p,iCf,i

[
∆t− τm

(
1− e− ∆t

τm

)

− TL,∗f@p,i

TL,∗f@p,i − τm

(
TL,∗f@p,i

(
1− e

− ∆t
T
L,∗
f@p,i

)
− τm

(
1− e− ∆t

τm

))
+
∫ t

t0

n∑
f=1

e− s
τm

λf
τp,f

∫ s

t0
e
s′
τm γf,i(s′)ds′ds

︸ ︷︷ ︸
Ωi(t)

(3.10)
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Where τm is a time-scale related to the particle relaxation time in each fluid and
Cf,i = Hi − ∂Uf,i

∂xj
u′
f@p,j.

τm = 1∑n
f=1

λf
τp,f

(3.11)

The three expressions for the particle position, velocity and the fluid velocity at
the position of the particle are of the same form as the original expressions. Their
implementations can coexist. Now the expressions for the stochastic integrals (γf,i, Γi
and Ωi) need to be computed.

Computing the stochastic integrals

For the numerical scheme detailed in equations 3.8, 3.9 and 3.10 to be complete, it
needs the evaluation of the stochastic integral terms X = {γ1,i, . . . , γn,i,Γi,Ωi}. The
covariance matrix C of X can be written as follows:

C =



⟨γ2
1,i⟩ . . . 0 ⟨γf1,iΓi⟩ ⟨γf1,iΩi⟩
... . . . ... ... ...
0 . . . ⟨γ2

n,i⟩ ⟨γfn,iΓi⟩ ⟨γfn,iΩi⟩
⟨γf1,iΓi⟩ . . . ⟨γfn,iΓi⟩ ⟨ΓiΓi⟩ ⟨ΓiΩi⟩
⟨γf1,iΩi⟩ . . . ⟨γfn,iΩi⟩ ⟨ΓiΩi⟩ ⟨ΩiΩi⟩

 (3.12)

In order to practically compute the stochastic integral terms, it is sufficient to eval-
uate CGf , where Gf is a Gaussian vector of dimension n + 2. The components of
Gf follow a zero mean normal distribution and are all independent. However, this
computation can be accelerated by considering the Choleski decomposition of the co-
variance matrix C. Since C is symmetric, positive and definite, it can be decomposed
as C = PPT where the exponent T denotes the transposition operation and P is a tri-
angular matrix. The vector Y obtained by multiplying the Gaussian vector Gf by P is
of zero mean and has a covariance matrix equal to C. It can therefore be used instead
of X to drastically reduce the number of operations needed to solve the stochastic
system. The components of the triangular matrix P are related to the components of
the covariance matrix C in the following manner (Lang, 2002).

∀(i, j) ∈ [1, n+ 2]× [1, n+ 2], i ̸= j,

Pii =

√√√√Cii − i−1∑
k=1

P 2
ik (3.13)

Pij = Cij −
∑j−1
k=1 PikPjk
Pjj

(3.14)

On the other hand, to express the components of the covariance matrix C, we first
need to rewrite X in terms of a simple stochastic integral. This can be done via the
use of the integration by part theorem.
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γf,i(t) = Bf@p,ije
− t

T
L,∗
f@p,i

∫ t

t0
e

s

T
L,∗
f@p,i dWf,j(s) (3.15)

Γi(t) =
n∑
f=1

λf
τp,f

Bf@p,ijθfm,iτm

[
e

− t

T
L,∗
f@p,i

∫ t

t0
e

s

T
L,∗
f@p,i dWf,j(s)− e− t

τm

∫ t

t0
e

s
τm dWf,j(s)

]
(3.16)

Ωi(t) =
n∑
f=1

λf
τp,f

Bf@p,ijθfm,iτm

[
−TL,∗f@p,ie

− t

T
L,∗
f@p,i

∫ t

t0
e

s

T
L,∗
f@p,i dWf,j(s) (3.17)

+TL,∗f@p,i

∫ t

t0
dWf,j(s) + τm,ie

− t
τm

∫ t

t0
e

s
τm dWf,j(s)− τm

∫ t

t0
dWf,j(s)

]
Where,

θfm,i =
TL,∗f@p,i

TL,∗f@p,i − τm
(3.18)

Then, after tedious calculations, with the assumption that fluid fluctuations seen
by the particle are independent, the covariance matrix terms read:

⟨γ2
f,i⟩ = B2

@pf,ij
TL,∗f@p,i

2 (1− e−2∆t/TL,∗
f@p,i) (3.19)

⟨γf,iΓi⟩ = λf
τp,f

θfm,iτmB
2
f@p,ijT

L,∗
f@p,i

1
2(1− e−2∆t/TL,∗

f@p,i)

− τm

TL,∗f@p,i + τm
(1− e−∆t(1/TL,∗

f@p,i+1/τm))
 (3.20)

⟨Γ2
i ⟩ =

∑
f

λ2
f

τ 2
p,f

B2
f@p,ijθ

2
fm,iτ

2
m

TL,∗f@p,i

2 (1− e−2∆t/TL,∗
f@p,i)

− 2
TL,∗f@p,iτm

TL,∗f@p,i + τm
(1− e−∆t(1/TL,∗

f@p,i+1/τm)) + τm
2 (1− e−2∆t/τm)

 (3.21)

⟨γf,iΩi⟩ = λf
τp,f

B2
f@p,ijθfm,iτmT

L,∗
f@p,i

−TL,∗f@p,i

2 (1− e−2∆t/TL,∗
f@p,i)

+ TL,∗f@p,i(1− e−∆t/TL,∗
f@p,i)

+ τ 2
m

TL,∗f@p,i + τm
(1− e−∆t(1/TL,∗

f@p,i+1/τm))− τm(1− e−∆t/TL,∗
f@p,i)


(3.22)

⟨ΓiΩi⟩ =
∑
f

(
λf
τp,f

Bf@p,ijθfm,iτm

)2
(TL,∗f@p,i − τm)

(
TL,∗f@p,i(1− e−∆t/TL,∗

f@p,i)− τm(1− e−∆t/τm)
)

− 1
2

(
TL,∗f@p,i

2(1− e−2∆t/TL,∗
f@p,i) + τ 2

m(1− e−2∆t/τm)
)

+ τmT
L,∗
f@p,i(1− e−∆t(1/TL,∗

f@p,i+1/τm)
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(3.23)

⟨Ω2
i ⟩ =

∑
f

(
λf
τp,f

Bf@p,ijθfm,iτm

)2
(TL,∗f@p,i − τm)

(TL,∗f@p,i − τm)∆t

− 2
(
TL,∗f@p,i

2(1− e−2∆t/TL,∗
f@p,i) + τ 2

m(1− e−2∆t/τm)
)

+ 1
2

(
TL,∗f@p,i

3(1− e−∆t/TL,∗
f@p,i)(1 + e−∆t/TL,∗

f@p,i) + τ 3
m(1− e−∆t/τm)(1 + e−∆t/τm)

)

− 2
TL,∗f@p,i

2
τ 2
m

TL,∗f@p,i + τm
(1− e−∆t(1/TL,∗

f@p,i+1/τm))


(3.24)

With the expression of the components of C and the relation between C and its
decomposition P, it is possible to express the stochastic terms in the general expression
of the particle position, velocity and the fluid velocity seen by the particle. A significant
comment has to be made on the hypothesis of fluids fluctuation independence which was
made to compute the components of the covariance matrix. This assumption cannot be
made in the case of a turbulent coupling between the carrier phases. Additionally, all
the developments have been carried out for an arbitrary number of continuous phases;
the model is, in practice, not limited to liquid-gas-solid flows. The scope of the thesis
on the other hand is limited to these types of flows.

3.1.3 Models for the weight coefficients
As seen in the previous sections, the weight coefficient model represents the main
challenge for the developed method. Fortunately, some related work can be found in
the literature and will help in the determination of this coefficient. The main challenge
is still the fact that the liquid-gas flow is not entirely resolved. Thus, choosing an
indicator function for λf is not suitable. A model needs to be developed in order to take
into account the presence of statistically treated dispersed inclusions and continuous
regions. This model should include various variables from all the phases present at
the position of the particle including - but not limited to - the volume fraction, the
velocity, the mean inclusion diameter if applicable and the physical properties of the
particles and the fluids.

Initially, a natural model for the weight coefficient consists in thinking as if the
particle is still in a liquid-gas mixture and to count the amount of mass from each
phase interacting with it. This is equivalent to λf = αf∑

f ′ αf ′
. However, this is also

equivalent to render the particle velocity not correlated to the phase it evolves in -
which is not ideal for moving particles. Another possibility is to weight the drag
contribution with the fluid density λf = αfρf∑

f ′ αf ′ρf ′
. This correlates the velocity of the

particle to the fluid it evolves in but we struggle to find a mathematical justification to
the expression. Another way of obtaining an expression for the weight coefficient is to
consider a particle moving in a straight line through a randomly generated liquid-gas
flow. Then, λf becomes an output of the numerically computed particle trajectory.
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We set up this case for a particle of diameter dp and mass per unit volume ρp moving
in a random mixture of liquid and gas of mass per unit volume ρl and ρg, kinematic
viscosity νl and νg, volume fraction αl and αg = 1 − αl, the liquid velocity is ul and
the relative velocity between the two phases is ur = ul− ug. The position and velocity
of the particle are t 7→ xp(t) and t 7→ up(t). The volume fraction of the particle is
negligible. At t = 0, the particle is at xp(0) = 0, has a velocity up(0) = u0 and is
found in the dominant phase (the one with the highest volume fraction). The only
force acting on the particle is drag, written following standard practices Wen and Yu
(1966) - more details on those are given in section 3.2.4. The indicator functions 1 are
used to determined whether the particle is in the gas or the liquid phase: they indicate
the presence of each phase. In this scenario, the particle trajectory is defined by the
system of equations 3.25 in a fixed reference frame.

δxp = up(t)δt

δup =
(

1l
up(t)− ul

τp,l
+ 1g

up(t)− ug
τp,g

)
δt

(3.25)

During the simulation, the particle starts in the predominant phase. Then, depend-
ing on the volume fraction, a probability r of collision between the particle and the
dispersed inclusions is computed. This probability can be obtained from a collision
efficiency Ec, the ratio between the number of particles colliding with a bubble per
unit time and the number of particles flowing nearby it (Schulze, 1989). Thus limiting
the time spent by particles in the bubble. Many models exist, depending on the case,
it can be wiser to pick one or the other. The simplest collision efficiency model has
been developed in Langmuir and Blodgett (1946). It predicts the collision efficiency as
follows:

Ec =
(

K

K + 0.2

)2
(3.26)

Where K is the Stokes number for the particles.

K =
ρpvbd

2
p

9ηdb
(3.27)

This model is valid for inertial deposition of particles; limiting its use where col-
lisions are predominantly due to geometric crossing of the trajectories or Brownian
diffusion (Yang et al., 1995). In the model from Sutherland (1948), where bubbles are
inside a potential flow and particles have no inertia, the collision efficiency is expressed
as follows:

Ec = 3dp
db

(3.28)

According to the review from Dai et al. (2000), the most promising model with
regards to experimental comparison is the GSE model (Dukhin et al., 1995). However,
since it includes variables which are not easily accessible in the multifluid solver, we
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choose not to consider it and consider the one from Gourdel et al. (2000) instead. In
that work, the mean time separating two collisions between two different inclusions A
and B is:

τAB = d3
B

6d2
ABαB∥UA −UB∥

(3.29)

Where dAB is the mean between the two inclusions diameter, UA and UB are the
mean velocities for inclusions A and B and αB is the volume fraction of inclusions of
type B. From this expression, the mean number of collisions during a time step δt can
be obtained.

r = max
(
δt

τAB
, 1
)

= max
(

6d2
AB

d3
B

∥UA −UB∥δt, 1
)

(3.30)

At each time step, a random number ω is drawn following a uniform law between
0 and 1. If ω < r then the particle enters a dispersed inclusion and stays in it until
it crosses the other side of the inclusion. When it comes out of it, the same random
process begins again. If ω > r, the particle continues to evolve in the dominant fluid.
This methodology is summed up in algorithm 1.

Algorithm 1: Weight coefficients computation routine. In this scenario the
liquid phase is predominant and the gaseous phase is dispersed.
xp = 0, x0 = 0, up = u0, t = 0, c = 0;
Choose αl and αg (in this case αl > αg)
Choose bubble diameter db, time step δt and maximum time tmax
while t < tmax do

if 1g = 1 then
criteria = ∥x0 − xp∥ < db

end
else

Choose ω ∈ [0, 1] randomly
Compute probability of collision r = max

(
δt
τAB

, 1
)

c← ω < r
end
if c then

if 1l = 1 then
x0 ← xp

end
1l = 0, 1g = 1

end
else

1l = 1, 1g = 0
end
up ← up +−g −

(
1l
up−ul
τp,l

+ 1g
up−ug
τp,g

)
δt

xp ← xp + upδt
end
Evidently, assuming the particle moves in a straight line is a strong assumption. In

reality, a tiny particle with a small relaxation time arriving in the vicinity of a larger
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bubble might never collide with it. The particle would simply follow the streamlines
of the liquid flow around the bubbles and go past it. Even though this is partially
taken into account in the collision probability, its accuracy is still lower than in the
case where the exact particle trajectory is computed. Also, the hydrophobic properties
of the particles or the state of the bubble surface can alter the collision rate between
bubbles and particles (Malgarinos et al., 2016; Vilela and de Souza, 2020). All of
this could, in theory, be included in the model for the collision probability in our
framework. The results obtained for the weight coefficients are shown in figure 3.2 for
different bubble and particle diameters.
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Figure 3.2: λl values computed with the standard models (red and blue) and with the
routine presented above (black). Bubble and particle diameters are shown in mm.

The figure illustrates in general how the real time spent by a particle inside one
or the other phase is not well described by the initial naive model. Finally, it should
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be noted that this representation is not always applicable. In the case of surfactants
trapped on a liquid-gas interface, a case widely occurring in industrial applications,
the particles no longer experience drag as we defined it in the framework. They start
moving along the interface which is itself moving at a certain speed. To enable the sim-
ulation of this scenario, the particle momentum balance equation should be reworked.

3.1.4 Verification case: particles falling through a density in-
terface

In this section, we test the model on a simple verification test case: a particle falling
through a density interface. At first, the model is tested on a standard simulation
before comparing its prediction with an experimental setup. The standard simulation
gives arguments for the use of the fluctuating fluid velocity seen rather than the total
velocity seen in the Lagrangian stochastic model whereas the experimental comparison
gives a more quantitative evaluation of the performance of the model. Figure 3.3 shows
the concept of the test case as well as the pressure field seen by the particle.

z

p (Pa)
0

5.9

4911
Figure 3.3: Drawings showing the particle falling. The particle slows down when it
encounters a denser liquid. On the right is the pressure in Pa in the two-phase flow.
Its gradient is proportional to the fluid density.

In the first test case, different particles of diameter dp and mass per unit volume
ρp, fall vertically through air (ρa = 1.2 kg m−3, νa = 1.5× 10−5 m2 s−1) and hit an air-
water free-surface (ρw = 1× 103 kg m−3, νw = 1× 10−6 m2 s−1). The total height of the
domain is 1 m and the free-surface is located at I. Two 1D Cartesian meshes are used
in this case. The coarse one has 10 elements in the vertical direction and the fine one
has 100. The first step consists in showing the good agreement between the simulation
and expected results. Simulations with particles heavier or lighter than water and
with different diameters are performed and the results are shown in figure 3.4. When
applicable, the terminal velocity of particles in water is compared to analytical values.
Also, particles heavier than water are expected to fall to the lower boundary whereas
particles lighter than water - but still heavier than air - are expected to oscillate near
the free surface. The lighter the particle, the closer to the interface it oscillates.
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Figure 3.4: Simulated particle position as a function of time. The dashed line represents
the position of the interface (I = 0.5 m in this case). (left) Particles are heavier than
water. (right) Particles are lighter than water.

Since the Eulerian fields are not interpolated at the position of a particle, the field
value at the centre of the cell the particle is in is selected. Thus, a different behaviour
between the two meshes is expected when the interface is not located on a cell boundary
face. When the mesh is sufficiently fine, the position of the interface does not matter,
the interpolation errors are small. For an interface located at the centre of a large cell,
a particle falling through air interacts with the interface before physically reaching it.
This can be quantified by comparing the simulation results in the fine and coarse meshes
with a particle of diameter rp = 1 mm and mass per unit volume ρp = 5× 103 kg m−3.
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Figure 3.5: (left) Simulated particle position as a function of time. The thick dashed
lines on the left denotes the position of the interface I = 0.5 m, 0.55 m and 0.6 m.
(right) Simulated results when using the total velocity seen rather than its fluctuation
are shown to give worst results.

With the fine grid, the behaviour of a particle is not related to the position of the
interface - except for the time at which it hits it. On the contrary, as figure 3.5 shows,
with the coarse grid, when the interface is located at a cell centre (I = 0.55 m), the
results are substantially worst than the results obtained with the fine grid compared
to the difference when the interface is located at a cell boundary. The particle entering
the cell which contains the interface is slowed down even though it hasn’t reached the
free-surface because the pressure gradient is not interpolated at the position of the
particle. However, using a stochastic model on the fluctuating velocity seen instead of
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the total velocity seen seems to give better results. This is probably due to the lower
amount of calls to Eulerian fields in the second case. Each call introducing an inter-
polation error (linear interpolation), having less of them naturally improves the results.

The experimental setup of Verso et al. (2019) studies the behaviour of solid particles
falling through a non-finite density interface. The measurements performed through
these experiments constitute a suitable liquid-gas-solid flow dataset to judge the accu-
racy and performance of the new multiphase Lagrangian stochastic model. The fluids
used in the experiments are stacked one on top of the other. 3 different types of par-
ticles are used (P1-P3). The top fluid is indexed by 1 and the bottom one by 2. The
characteristics of the particles and the two fluids are summed up in table 3.1. As in the
previous test case, a 1D Cartesian mesh is used with 100 elements in the vertical direc-
tion to reduce the interpolation errors. In the simulation, the interface is supposed to
be infinitely thin. These will allow us to check the correct behaviour of the particles far
away from the surface. Eventually, simulations are carried out with a density interface
of thickness h = 0.013 m, matching the one in the experiment.

particles ρp dp fluids ρ1 ρ2 ν1 ν2

P1 1033− 1100 850− 1000 976 1025 1.43× 10−6 1.01× 10−6

P2 1150− 1250 425− 500 - - - -
P3 2450− 2550 710− 850 - - - -

Table 3.1: Characteristics for the particles and fluids used in the experiments of Verso
et al. (2019). Mass per unit volumes are in kg m−3, diameters in µm and viscosities in
m2 s−1.

The simulation results are plotted against experimental data from Verso et al. (2019)
in figure 3.6. z is the position of the particle along the vertical axis, z = 0 represents
the top position of the interface in the experiment, v is the particle vertical velocity
and V1 is the terminal velocity of the particle in fluid 1. As can be seen in the figure,
the particle velocity near the free-surface does not match the measurements. However,
the behaviour away from the interface and the position of the particle are satisfactory.
It is thought that differences in velocities near the fluid-fluid interface is due to the
assumption of it being infinitely thin in the simulations compared to finite in size in
the experiments. Even though results are noticeably better when the surface matches
the experimental setup, there still are some discrepancies which are probably due to
the low amount of physics modelled at the interface. In reality, surface tension or the
interface deformation have an impact on the particle behaviour which is neglected in
our case. All in all, we are happy the model gives accurate results for particles crossing
a density interface.

62



3.2. Eulerian velocity moments modelling

0 10 20 30
t tc (s)

2

0

2

4

6

z/
h 

(-)

exp. data (Verso et. al 2019)
current model

1 0 1 2 3 4
z/h (-)

0.0

0.5

1.0

v/
V 1

 (-
)

2 0 2 4
t tc (s)

5

0

5

10

z/
h 

(-)

exp. data (Verso et. al 2019)
current model

1 0 1 2 3 4
z/h (-)

0.8

0.9

1.0

1.1

v/
V 1

 (-
)

0.5 0.0 0.5 1.0
t tc (s)

5

0

5

10

z/
h 

(-)

exp. data (Verso et. al 2019)
current model

1 0 1 2 3 4
z/h (-)

0.95

1.00

1.05

1.10

v/
V 1

 (-
)

Figure 3.6: Simulation results compared with the experimental results from Verso et al.
(2019). The dashed line represent the extent of the density interface in the experiments.
In the simulation the interface is infinitely thin and located at z/h = 0

3.2 Eulerian velocity moments modelling
This section is devoted to the introduction of Eulerian modelling for a solid dispersed
phase in multiphase flows. As is usually done in two-phase flows (liquid-solid or gas-
solid), and as was done in section 2.2.2; it is possible, from the Lagrangian stochastic
model, to get the evolution equation for the solid phase in an Eulerian framework.
In this section, we introduce the new liquid-gas-solid Eulerian model based on the
Lagrangian approach developed in section 3.1. Like the Lagrangian model, it originated
during the thesis. We first present the fluid equations and the velocity moments method
used to derive the particle phase conservation equations. Then, we show the principles
behind the "hybrid" method which enables us to consider the particles and fluids phase
within the same framework. This verification is similar to the one carried out in the
two-phase flow case in section 2.2.2. However, since it is not trivial, it is still important
to demonstrate how the arguments need to be adapted for them to stand even in this
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scenario. Finally, we present the turbulence models and the closures that were obtained
from this formulation.

3.2.1 Hybrid methodology: phase and ensemble average in a
three-phase flows

Let us consider a liquid-gas-solid flow. Each fluid phase can be labelled with the letter
f or g and the solid phase is labelled with the letter p. From the fluids point of
view (see section 2.2), it is possible to obtain the conservation equation for mass and
momentum from the local instantaneous equations and the jump conditions (Delhaye,
1974; Kataoka, 1985; Ishii and Hibiki, 2011). Since particles are also present and have
a different impact on the fluid phases then other fluid phases do, we decided to isolate
their interfacial momentum transfer contribution (Ip→f,i) in the momentum balance
equation. We immediately neglect phase change for the sake of clarity.

∂

∂t
(αfρf ) + ∂

∂xi
(αfρfUf,i) = 0 (3.31)

∂

∂t
(αfρfUf,i) + ∂

∂xj
(αfρfUf,iUf,j) = αfρfgi −

∂

∂xj
⟨ρu′′

f,iu
′′
f,jχf⟩+ ∂

∂xj
(αfTf,ij)

− ∂

∂xi
(αfP ) +

∑
f ′ ̸=f

If ′→f,i + Ip→f,i

(3.32)

With the same jump conditions as in the two-phase case (equation 2.42) and the
same hypothesis (no mass transfer across an interface and a single pressure in all the
fluids).

From the particle point of view, the phase space associated with the ensemble of
particles is more detailed than in the two-phase case. Let us consider an ensemble of
particles evolving in a multifluid flow. The associated phase space H includes time t,
the probable particle position x, velocity cp and the probable fluid velocities seen by the
particle cf1 , . . . , cfn . The fluid-particle joint probability density function fp is defined
on the phase space such that fp(cp, cf1 , ..., cfn ; x, t)δcpδx

∏fn
g=f1 δcg is the number of

particles with a centre of mass at time t in the volume Ω = {x,x + δx}, with a velocity
up ∈ {cp, cp+δcp} and the velocity of fluid f seen by the particle uf@p ∈ {cf , cf +δcf}.
According to common derivation (Simonin, 2000), fp satisfies the following Liouville
transport equation.

∂fp
∂t

+ ∂

∂xj
(cp,jfp) + ∂

∂cp,j

[〈
dup,j

dt |cp, cf1 , . . . , cfn

〉
fp

]

+
fn∑
f=f1

∂

∂cf,j

[
⟨duf@p,j

dt |cp, cf1 , . . . , cfn⟩fp
]

=
(
∂fp
∂t

)
coll

(3.33)

Where the arguments in the conditional averages have been neglected for brevity.
For a detailed definition, see section 2.2.2. An additional hypothesis is necessary to
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match those of the Lagrangian framework. To ensure ⟨u′′
f1@p,iu

′′
f2@p,j⟩ = 0 for f1 ̸= f2,

the PDF must verify:

np⟨u′′
f1@p,iu

′′
f2@p,j⟩

=
∫

[cf1,i − Uf1@p,i][cf2,j − Uf2@p,j]fp(cp, cf1, . . . , cfn)dcp

fn∏
f=f1

dcf

=
∫
cf1

∫
cf2

[cf1,i − Uf1@p,i][cf2,j − Uf2@p,j]ff1−f2(cf1, cf2)dcf1dcf2

= 0

(3.34)

Where the arguments x and t are dropped in fp and ff1−f2 is the joint PDF of the
set of fluids f1 and f2 respectively. This relation is verified when ff1−f2 = ff1ff2 . The
main idea behind this new model is to include all of the fluid phases in the statistical
description since one particle can interact with all of the fluid phases. Then, as in the
two-phase case, it is possible to obtain the moment equations by multiplying the PDF
transport equation by ψp, a function of the phase space variables, and by integrating
over all the possible outcomes for the ensemble of particles. Again, the mass of one
particle is supposed to be constant.

∂

∂t
(npmp⟨ψp⟩) + ∂

∂xj
(npmp⟨up,jψp⟩) + npmp

〈
⟨dup,idt |cp, cf ⟩

∂ψp
∂cp,j

〉

+
∑
f

npmp

〈
⟨duf@p,i

dt |cp, cf ⟩
∂ψp
∂cf,j

〉
+ npC(mpup,i) = 0

(3.35)

Finally, by replacing ψp by the appropriate function, we can get the needed conser-
vation equations for the particle phase. Since, by replacing ψp by 1 or cp,i, equation
3.35 becomes equation 2.23 (the same equation as in the two-phase case), we do not
detail their derivation here.

∂

∂t
(npmp) + ∂

∂xi
(npmpUp,i) = 0 (3.36)

∂

∂t
(npmpUp,i) + ∂

∂xj
(npmpUp,iUp,j) =− ∂

∂xj

(
npmp⟨u′′

p,iu
′′
p,j⟩
)

+ npmp⟨
dup,i
dt ⟩+ npC(mpup,i)

(3.37)

The expression of the particle change rate of momentum is the same as in the two-
phase case except for the fact that more fluids can transfer momentum to the particle.
It is the mean particle acceleration between two instantaneous collisions. Like in the
two-phase case, there is a discrepancy between the way interfacial transfer terms are
computed in both approaches (from the fluids or the particle phase point of view see
equations 2.54 and 2.55 in section 2.2.2). However, by joining all the transfer terms
together and assume the discrepancy is accounted for in the mean pressure contribution
term, it is possible to show that the equations obtained from the two frameworks are
consistent.
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IAp→f,i +
∑
f ′ ̸=f,p

IAf ′→f,i = −P ⟨nf,iδfp⟩ −
∑
f ′ ̸=f,p

P ⟨nf,iδff ′⟩

= −P ⟨nf,iδf⟩

= P
∂αf
∂xi

(3.38)

Additionally, it is possible to close the unknown interfacial transfer term in the
fluids equations.

IDp→f,i = −IDf→p,i (3.39)
Because, for a mixture of strictly more than two components, the phase average of

the normal vector between two phases cannot be written in terms of the gradient of a
volume fraction, it is impossible to get the relation between two distinct phases. We
only get the global relation.

3.2.2 Time increment closures for the particle velocity and
fluid velocity seen

The closure for particle momentum and fluid velocity seen time increments is described
in equation 3.3. The weight coefficient λf has the same meaning and definition as it
does in the Lagrangian framework. We recall them hereafter with the complete set of
forces accounted for in the model:

δup,i =
 n∑
f=1

λf
τp,f

(uf@p,i − up,i) +mpgi −mpvp
∂P

∂xi

 δt
∀f ∈ [1, n] ,
uf@p,i = Uf,i + u′

f@p,i

δu′
f@p,i =

[
(Gf@p,ij −

∂Uf,i
∂xj

)u′
f@p,j +Hi

]
δt+Bf@p,ijδWf,j

(3.40)

Where mp is the mass of a particle, vp is its volume and P is the pressure at the
position of the particle.

3.2.3 Turbulence modelling and closures
Adaptation of Tchen’s turbulence theory to the liquid-gas-solid case

The first approach explored for describing the turbulence of the particle phase in a
mutliphase flow was adapted from Tchen’s turbulence theory (Mou, 1947). It now
takes into account the influence of multiple fluids in the particle turbulence. We start
by describing the particle phase with a simplified stochastic model.

δup,i =
∑
f

λf
τp,f

uf@p,iδt− up,i
∑
f

λf
τp,f

δt (3.41)

δuf@p,i = −uf@p,i

TLf@p
δt+Bf@p,ijδWf,j (3.42)
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Where TLf@p is the fluid Lagrangian integral time scale of velocity fluctuations mea-
sured along a particle trajectory. Since, for some well chosen function g, d⟨g(Z)⟩ = 0:

d⟨u′′
f,iu

′′
f,j⟩ = 0 =⇒ Bf@p,ij = 2

⟨u′′
f@p,iu

′′
f@p,j⟩

TLf@p
(3.43)

d⟨u′′
p,iu

′′
p,j⟩ = 0 =⇒ ⟨u′

p,iu
′
p,j⟩ = 1∑

f
λf
τp,f

∑
f

λf
τp,f
⟨u′

p,iu
′
f@p,j⟩ (3.44)

d⟨u′′
p,iu

′′
f@p,j⟩ = 0 =⇒ ⟨u′′

p,iu
′′
f@p,j⟩ =

∑
f ′

λf ′

τp,f ′
⟨u′′

f ′@p,iu
′′
f@p,j⟩∑

f ′
λf ′

τp,f ′
+ 1

TL
f@p

(3.45)

Then, since there is no covariance between two different velocity seen by the par-
ticle, the expression for the particle velocity correlation and the fluid-particle velocity
covariance follow:

⟨u′′
p,iu

′′
f@p,j⟩ = λf

τp,f

⟨u′′
f@p,iu

′
f@p,j⟩∑

f ′
λf ′

τp,f ′
+ 1

TL
f@p

(3.46)

⟨u′′
p,iu

′′
p,j⟩ = 1∑

f
λf
τp,f

∑
f

λf
τp,f
⟨u′′

p,iu
′′
f@p,j⟩

= 1∑
f

λf
τp,f

∑
f

(
λf
τp,f

)2 ⟨u′′
f@p,iu

′′
f@p,j⟩∑

f ′
λ′
f

τp,f ′
+ 1

TL
f@p

(3.47)

From the Eulerian quantities, the flow characteristics and the equations above, it
is possible to take into account the particle phase turbulence with an updated Tchen
theory of particle agitation. This new formulation takes into account all the fluids in
the particle turbulence.

Kinetic stress model for the particle phase turbulence

During the thesis we also opted for the development of a kinetic stress model to de-
scribe the particle agitation. This choice is motivated by the existence of such a model
for two-phase flows. We wanted to adapt it in order to take into account the impact
of more than one fluid in the particle turbulent terms. The quantities solved in the
equations are the particle Reynolds stress tensor Rp,ij and all the fluid-particle covari-
ance tensors Rfp,ij. For more information on the demonstration of such equations, the
reader can look into appendix A.

To get the evolution equations for the components of the particle Reynolds stress
tensor, ψp in equation 3.35 must be replaced by cp,icp,j. Then, the transport equation of
the mean quantity Up,iUp,j must be subtracted. The latter can be expressed in terms of
the evolution equations of the mean particle velocity and the mean number of particles.

∂

∂t
(npRp,ij) =

∫
cp,icp,j

∂fp
∂t

dcpdcf −
∂

∂t
(npUp,iUp,j) (3.48)
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This leads to the following equation which is independent of the model for Hi:

∂

∂t
(npmpRp,ij) + ∂

∂xk
(npmpRp,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Up,i
∂xk

− npmpRp,ik
∂Up,j
∂xk

+ npmp

∑
f

λf
τp,f

(Rfp,ij +Rfp,ji)
− 2

∑
f

λf
τp,f

Rp,ij

+ C(mpu
′′
p,iu

′′
p,j)

(3.49)

Where the last term on the right hand side, the collision term, is expressed like in
the two-phase case (equation 2.64).

To get the evolution equations for the components of the fluid-particle velocity co-
variance tensors, ψp in equation 3.35 must be replaced by cf,icp,j. Then, the transport
equation of the mean quantity Uf@p,iUp,j must be subtracted. The latter can be ex-
pressed in terms of the evolution equations of the mean particle velocity, the mean
fluid velocity seen by the particle and the mean number of particles.

∂

∂t
(np⟨u′

f@p,iu
′
p,j⟩) =

∫
cf,icp,j

∂fp
∂t

dcpdcf −
∂

∂t
(npUf@p,iUp,j) (3.50)

This leads to the following equation which is also independent from the model for
Hi:

∂

∂t
(npmpRfp,ij) + ∂

∂xk
(npmpRfp,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Vf,i
∂xk

− npmpRfp,ik
∂Up,j
∂xk

+ npmpGfp,jkRf@p,ki + npmp

 λf
τp,f

Rf@p,ij −
∑

f ′

λf ′

τp,f ′

Rfp,ij


(3.51)

When obtaining the last equation, it is assumed that there is no statistical bias in
the fourth term on the right hand side, it can be written:

⟨u′′
f@p,iu

′′
f@p,j⟩ = ⟨u′

f@p,iu
′
f@p,j⟩ (3.52)

This assumption has been validated in large eddy simulations of gas-particle tur-
bulent flows (Simonin, 1996; Wang and Squires, 1996b). For both equations, it is also
assumed that the fluid-fluid velocity covariance tensor is also zero. For two different
fluids f1 and f2, ⟨u′′

f1,iu
′′
f2,j⟩ = 0. The triple correlation terms in the transport equation

for the turbulent quantities are unknown, we have to provide a model for them. One
way of doing so (Simonin, 2000) is by using a Boussinesq type approximation to express
them in terms of known quantities, turbulent viscosities νp and νfp and a diffusivity
constant Kp. These are obtained by writing the equation for the deviatoric part of
Rp,ij (ap,ij = Rp,ij − 2

3qpδij) and Rfp,ij (afp,ij = Rfp,ij − 2
3qfpδij). Then, deviatoric parts

are supposed to be homogeneous, at equilibrium and correlation tensors are supposed
to be slightly anisotropic. Thus obtaining the following relations:
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ap,ij
∑
f

λf
τp,f

=
∑
f

λf
τp,f

afp,ij −
[
Rp,ki

2
∂Up,j
∂xk

+ Rp,kj

2
∂Up,i
∂xk

− 1
3δijRp,kl

∂Up,l
∂xk

]

=
∑
f

λf
τp,f

afp,ij −
1
3qp

[
∂Up,j
∂xk

+ ∂Up,i
∂xk

− 2
3δij

∂Up,k
∂xk

] (3.53)

Eventually, these manipulations lead to:

− ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩) = − ∂

∂xk

(
npmpKp

∂Rp,ij

∂xl

)
(3.54)

Where:

Kp =
∑f

λf
τp,f

νfp∑
f

λf
τp,f

+ 5
9qp

2
3

1
2∑f

λf
τp,f

 [1 + 5
9 τ̃p

ξc
τp,c

]−1

(3.55)

=
[
ν̃fp + 5

9qp
2
3
τ̃p
2

] [
1 + 5

9 τ̃p
ξc
τp,c

]−1

(3.56)

ν̃p =
∑
f

λf
τp,f

νfp∑
f

λf
τp,f

+ 2
3qp

1
2∑f

λf
τp,f

= ν̃fp + 2
3qp

τ̃p
2 (3.57)

νfp = 1
3qfpT

L
f@p (3.58)

Where TLf@p is the fluid Lagrangian integral time scale of velocity fluctuations mea-
sured along a particle trajectory.

n+ 1 equations model for the particle phase turbulence

Exactly as in the two-phase case, it is possible to obtain n+ 1 evolution equations for
the turbulent quantities qp = 1

2Rp,ii and qfp = 1
2Rfp,ii by taking the trace of equations

3.49 and 3.51.

∂

∂t
(npmpqp) + ∂

∂xk
(npmpqpUp,k)

= − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,ik

∂Up,i
∂xk

+ npmp

∑
f

λf
τp,f

qfp

− 2
∑

f ′

λf ′

τp,f ′

 qp


(3.59)

∂

∂t
(npmpqfp) + ∂

∂xk
(npmpqfpUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,ik

∂Vf,i
∂xk

− npmpRfp,ik
∂Up,i
∂xk

+ 1
2npmpGfp,ikRf@p,ki + npmp

 λf
τp,f

Rf@p,ii

2 −
∑

f ′

λf ′

τp,f ′

 qfp


(3.60)
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In equations 3.59 and 3.60, the first term on the right hand side, the one representing
variance (covariance) transport by the particle velocity fluctuation, is modelled using an
eddy-viscosity approach similar to those obtained in the two-phase case and expressed
in equations 3.55.

3.2.4 Additional modelling modifications
Here are some ad-hoc modifications which makes the multiphase framework in nep-
tune_cfd more consistent with the new approach. This makes the new approach com-
patible and more consistent with the drag model and the turbulence two-way coupling.

Drag coefficients for particles in a multiphase flow

Drag constitutive equations have been around since the pioneering work from Ergun
(1952); Wen and Yu (1966). Although there has been a lot of recent updates on what
these should read (Tenneti et al., 2011; Tang et al., 2015; Hardy et al., 2022), the model
implemented in neptune_cfd is based on the very first correlations (Ergun (1952) for
dense particle flows and Wen and Yu (1966) for dilute particle flows). In this work, we
focus primarily on the dilute case. We recall the expression of the drag force introduced
in the previous chapter from a continuous phase f to a dispersed phase s.

IDf→s = −αfρfF f→s
D Vf -s

r (3.61)

With the following expression for the drag coefficient:

CD =
{ 24

Re
(1 + 0.15R0.697

e )α−2.7
s if Re < 1000

0.44α−2.7
s if Re ≥ 1000 (3.62)

Where Re is the Reynolds number associated to the solid inclusion. It is commonly
defined with the inclusion diameter ds, the fluid mass per unit volume ρf and kinematic
viscosity νf as well as the particle to fluid relative velocity Vf -s

r :

Re = dsρfVf -s
r

νf
(3.63)

The main issue with the definition in equation 3.62 is the presence of the solid vol-
ume fraction. Since we are working with possibly many continuous phases interacting
with the solid particles, it seems that this expression might not be consistent with our
global approach. Since we tried some re-normalization without any significant changes
to the simulation results, we do not detail them. This remains an open challenge to
the model.

Two-way coupling in the continuous phase turbulence model

The particle phase naturally has an effect on the mean fluid quantities. However, the
fluid turbulence model in their standard form do not include any inclusion effect. In
neptune_cfd, the small inclusion model (Vermorel et al., 2003) has been implemented.
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3.3. Turbulence and gravity driven particle deposition

If the solid inclusions are small compared to Taylor’s length scale, the impact of parti-
cles on continuous phase turbulence is taken into account as a source term Sk and Sϵ
in the evolution equations of k and ϵ.

Sk =
(
qfp − 2qp + Vd.Vf -s

r

)
CDαpΩ (3.64)

Sϵ = Cϵ
(
qfp − 2qp + Vd.Vf -s

r

) ϵ
k
CDαpΩ (3.65)

Where qfp and qp are the traces of fluid-particle velocity covariance and particle
velocity variance tensors, Vf is the drift velocity between the particle phase and a con-
tinuous phase f , Vf -p

r is the relative velocity between the two, αp is the particle phase
volume fraction CD is the drag coefficient, Ω is the cell volume and Cϵ is a constant.
The modifications consist in including a new constant to match the treatment carried
out in fluid-particle drag. The particle effect on continuous turbulence is weighted by
the coefficient λf to account for the presence of more than one carrier phase. In the
cases explored during the thesis, the new model of reverse coupling gave better results.
However, the requirement for particle size and relaxation time were not verified.

3.3 Turbulence and gravity driven particle deposi-
tion

In the studied cases, particle deposition is an important feature measured experimen-
tally. In order to accurately compare simulations with experimental results, this phe-
nomenon should be taken into account in the models. In this section we present how
it is implemented in the Eulerian and Lagrangian frameworks. Particle deposition can
occur when its trajectory crosses the wall. At that moment, if the energy transferred
to the particle is sufficiently small, the particle adheres to the wall and does not move
anymore. In the present work we do not focus on re-entrainment of particles in the
flow.

Let’s start by introducing general concepts which will be used throughout the de-
scription of the deposition models. As defined previously, the particle relaxation time
is written τp and its diameter is dp. These can be combined with the fluid shear velocity
u∗ =

√
τw/ρl and kinematic viscosity νf to make dimensionless particle attributes. The

deposition rate y 7→ Vd(y) represents the particle flux through a plane A parallel to the
wall at a distance y from it Nerisson (2009). It can also be written in a dimensionless
way using the fluid shear velocity.

y+ = yu∗

νf
(3.66)

d+
p = dpu

∗

νf
(3.67)

τ+
p = τpu

∗2

νf
(3.68)

V +
d (y) = Vd(y)

u∗ = J

C(y)
1
u∗ (3.69)
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Where J is the particle flux through plane A per unit surface area and y 7→ C(y) is
the particle concentration at a distance y from the wall. According to literature Young
and Leeming (1997); Nerisson (2009), for turbulence driven deposition, there are three
deposition regimes depending on the particle relaxation time. Low-inertia particles
are in the diffusion deposition regime where particle deposition slightly decreases with
increasing particle inertia; large-inertia particles are in the inertia-moderated regime
where deposition slightly decreases with particle inertia; and other particles are in the
diffusion-impaction regime where particle deposition increases sharply with the particle
inertia. These regimes are shown in figure 3.7.

Figure 3.7: Experimental results for particle deposition in a vertical channel Young
and Leeming (1997). The solid line represents the possible model for V +

d described by
equation 3.70 for y+ = 30.

Based on the work of Simonin (2008); Nerisson (2009), it is possible to obtain a
formula y 7→ V +

d (y) for the two regimes (τ+
p > 10−1) for particles subjected to gravity

or not. This model is summed up in equation 3.70. It predicts the deposition rate
when looking at the flow at a certain distance y from the wall. This model proved
itself useful to enhance the performance of the Lagrangian method with regards to
sedimentation and to introduce the notion of deposition in Eulerian frameworks.

V +
d (y) =

[
Sctf
κ
ln(y+) + λ(ScB, τ+

p , d
+
p )
]−1

(3.70)

Where 0.7 < Sctf < 1 is the fluid turbulent Schmidt number and κ ≈ 0.41 is Von
Karmann’s constant. λ is a function of the Brownian Schmidt number and the particle
relaxation time.
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ScB =
3πdpν2

fρf

ρpkbT
; λ(ScB, τ+

p ) =
τ+

p
2

ω
+ Sc

−2/3
B

λ0

−1

(3.71)

Where kb is Boltzmann constant, T is the temperature of the system, ω ≈ 2.2×103

and λ0 = 13.7.

3.3.1 Particle deposition in a canal: Lagrangian description
of the solid phase

In the Lagrangian framework, particle deposition is supposed to be driven by gravity
and turbulent effects. In this section, we present how this phenomenon is taken into
account in code_saturne, we show how it can be problematic in some cases and provide
a modification for it to be more effective by using equation 3.70 similarly to what is done
in Aguinaga et al. (2009). In the experimental setups studied, the issues highlighted
here should not have any impact since the deposition is mostly driven by gravity.
However, studying the effects of deposition has been a possible solution to a challenge
faced in industrial simulations.

In code_saturne, standard deposition is taken into account at the wall faces. When
a particle crosses one, it is flagged as deposited. One well known fact about the standard
deposition model is that it overestimates particle deposition velocity for low relaxation
time particles (Guingo and Minier, 2008). One possible way to solve this issue is to
introduce more phenomenons in the behaviour of particles moving close to the wall. A
successful attempt to enhance the Lagrangian stochastic deposition model, built from
the DNS results obtained in Marchioli and Soldati (2002), has been proposed in Guingo
and Minier (2008). This model takes into consideration coherent turbulent structures
near the wall in the stochastic methodology. This complexity in the behaviour of
particles near the wall has given satisfactory results, however, we have not explored
it further. At first, it seemed that this problem originated from the fact that the
mesh was too coarse. Indeed, for low relaxation time particles, the deposition is the
consequence of their interaction with the viscous sub-layer. Since it is not simulated
or modelled in the Lagrangian framework, deposition is not simulated accurately. A
possible way to tackle this issue can be divided into two areas. We could try running
simulations on a mesh which enables simulating the flow to the wall or we could try
implementing wall-law interpolations in the Lagrangian stochastic model so that low-
inertia particles can see and interact with the viscous layer. However, as highlighted in
the following results, none of these methods give satisfying results. Therefore, a new
enhancement is proposed where equation 3.70 is used to determine the probability a
particle crossing a plane parallel to the wall has to deposit. This is equivalent to the
Stochastic model developed in Aguinaga et al. (2009). The last model enables us to
get accurate results for the deposition in a vertical channel mainly by avoiding the
simulation of the interaction between a particle and the viscous layer.

The wall-laws we decided to implement are inspired from Van Driest (1956); Chieng
and Launder (1980). They describe the profiles of the fluid velocity in the direction of
the flow u, the fluid turbulent kinetic energy k and the fluid turbulent kinetic energy
dissipation ϵ as a function of wall distance y in two layers (corresponding respectively
to the linear sub-layer and the logarithmic sub-layer). They are used to interpolate
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the Eulerian fields between the wall face and the first cell centre. Above the first cell
centre, the Eulerian fields are P1-interpolated. The way Eulerian fields are globally
interpolated is described in equations 3.72. For the sake of consistency, we made the
variables of interest dimensionless by using the fluid kinematic viscosity νf and the
fluid shear velocity u∗.

u+ = u

u∗ (3.72)

k+ = k

u∗2 (3.73)

ϵ+ = ϵνf
u∗4 (3.74)

The P1 interpolation is computed with the gradient of the Eulerian variables. These
gradients are computed at the cell centre with the neighbouring cell variable values.
The wall laws are determined by first assuming the wall distance yv at which we tran-
sition from logarithmic to laminar sub-layer. Then, we assume the profiles in the two
regions Launder and Spalding (1974); Chieng and Launder (1980) and define continu-
ous connections between the two. For the velocity, we assume a profile consistent with
Van Driest theory Van Driest (1956).

u+ =
∫ y+

0

2
1 +

√
1 + 4κ2(1− e−ξ/A)2ξ2

dξ (3.75)

k =
 kv

(
y
yv

)2
y ≤ yv

kv + y kn−kv
yn−yv yv ≤ y

(3.76)

ϵ =
 2νkv

y2
v

y ≤ yv

2.83Cµk
3/2
p

κy
yv ≤ y

(3.77)

Where kv and kn are the turbulent kinetic energy at the distance yv from the wall
and at the face opposite that of the wall in the wall cell. Cµ = 0.09 is a well known
turbulence constant Launder and Spalding (1974) and A = 26 is a constant in Van
Driest theory Van Driest (1956).
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y+ = 30 y+ = 20 y+ = 0.08

Figure 3.8: Meshes used for the deposition model verification. Red dots denote the
centre of the wall cell and green line the face opposite to the wall face in the wall cell.
The wall is highlighted at the bottom.
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Figure 3.9: Theoretical profiles obtained with a wall-resolved simulation of the channel
flow and the interpolated values of Eulerian quantities at the position of motionless
particles. The markers represent the values at the centre of the cells. Two coarse
simulations have been carried out to show the consistency of the interpolation method.

In order to check the correct implementation of the interpolation, we set up a
channel flow simulation at Reτ = 450. In the test case, we make a very fine simulation
with a resolved profile near the wall (with the Rij-ϵ EBRSM turbulence model). This
will give us the theoretical profiles we are looking for. The verification simulation
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consists of the same channel flow, very roughly meshed and with modelled turbulence
at the wall (Rij-ϵ SSG turbulence model). In this simulation we distribute particles
with very large inertia inside the domain. Their inertia is sufficiently large for them to
be motionless. If we introduce a sufficiently large amount of particles, by activating the
interpolation with equations from equations 3.76 to 3.77, it is possible to recreate a fine
grained profile of the Eulerian variables, even if the mesh is quite coarse. The main goal
is to compare this fine grained profile with the theoretical profile obtained in the wall
resolved simulation. Figure 3.9 shows the results obtained for this verification case. In
solid lines is the interpolation using the wall-laws (the P1-interpolation is not shown).
The difference further away from the wall is corrected with the P1-interpolation.
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No interpolation
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Concentration wall boundary layer
Experimental database
Aguinaga et al. 2009

Figure 3.10: Simulation results for particle depositing in a vertical channel. Classical
simulations with and without interpolation fail to capture the decrease in deposition
rate which comes with decreasing particle relaxation time. Simulations with equation
3.70 give satisfactory results. The black curve is normalised by the concentration at
y+ = 30.

Then, in order to compare turbulence induced deposition in the Lagrangian frame-
work with experimental results, we set up a fully developed turbulent flow in a vertical
channel. These are well documented experiments Young and Leeming (1997) and sim-
ulating the case is accessible with code_saturne. Since, the lower the inertia of the
particle, the closer the particle gets to the wall before depositing, we expect the inter-
polation of the Eulerian fields to enhance deposition results. The results for particles
depositing in a vertical channel with and without interpolation of the Eulerian fields is
shown in figure 3.10. It can be seen that wall law interpolation has little to no effect on
the deposition rates of particles. A possible explanation would be that the Langevin
stochastic model of the velocity seen by the particle we used in this study is not suited
for the simulation of particles in boundary layers as was already mentioned earlier.
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3.3. Turbulence and gravity driven particle deposition

Since the deposition of particles with low inertia is the result of their interaction with
it, not managing to simulate this interaction could be a major drawback.

This has driven us to introduce another deposition model based on the work of
Aguinaga et al. (2009). This model, based on equation 3.70 presented above, avoids
the simulation of particles inside the boundary layer. Instead, at a certain distance yH
from the wall, the probability of deposition of a single particle is computed. This prob-
ability can be obtained by assuming the expression of the particle velocity probability
density function and assuming the inclusion agitation is in equilibrium with the fluid
turbulence. With that probability, a particle either deposits or bounces off the virtual
plane y = yH . This model shows great results in the prediction of deposition rates in
a vertical channel for a large range of particle relaxation times as exhibited in figure
3.10. More details on it can be found in the original published material.

3.3.2 Particle deposition in a canal: Eulerian description of
the solid phase

In the Eulerian framework, particle deposition is assumed to be exclusively driven by
gravity because our cases allow it. In order to introduce turbulence driven deposition,
equation 3.70 could be used. It has not been carried out during the thesis since gravity
seems to be the main driver for deposition in the studied experimental cases. In
this section we start by introducing several ways gravity driven deposition could be
introduced in our Eulerian simulations, we show the results they give in a standard
case before concluding upon which model to keep for the validation cases.

The main idea for introducing particle deposition in our simulations consists in
removing solid mass on the cells which contain one wall boundary face. This mass
can either be removed from the cell itself by introducing a mass sink in it or through
the specific face by implementing an outlet boundary condition for the particle phase.
The cells which have a wall boundary face will, in this section, be called wall cells. We
assume gravity is the only phenomenon responsible for particle deposition. It is oriented
towards - and perpendicular to - the wall. The mass flux ϕd is defined according to the
settling velocity of particles in equation 3.78.

ϕd = αpρp
τpg

h
(3.78)

Where αp is the particle volume fraction in the cell, ρp its mass per unit volume, τp
is the particle relaxation time, g is gravity (perpendicular to - and oriented towards -
the wall) and h is the distance between the wall face and the opposite face of the wall
cell. Should the gravity not be oriented towards the wall, the g must be replaced by
its projection along the normal to the wall face.

The second way of defining the deposition condition is by assuming the wall face is
an outlet for the particles. In neptune_cfd, this is equivalent to impose the following
Neumann condition for the particle phase in the wall cell:

∂up,n
∂n

= 0 (3.79)

Where n represents the normal to the wall face and up,n is the projection along
this normal of the particle velocity. This condition is equivalent to impose a well flux
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condition on the wall cell but instead of using τpg for the settling velocity, we use the
velocity at the wall cell centre to compute up,n. Turbulence induced deposition can be
taken into account by using equation 3.70 to determine the exiting flux of particles and
adding it to the flux related to gravity. The two models defined above are tested on
a very simple sedimentation test case. It consists of solid particles falling in a liquid
at rest. The main goal of this case is to make sure particles are exiting the domain
at a similar rate. Table 3.2 shows total deposition after 30 s. For consistency, we also
test the case where we impose a flux based on the particle velocity normal to the wall.
This third condition should match the outlet condition. For future studies, we keep
the imposed mass flux condition. It makes it easier to control the deposited particle
mass and enables new modelling to be taken into account if needed.

Imposed mass flux (τpg) Outlet condition Imposed mass flux (up,n)
6.194 g m−2 6.318 g m−2 6.155 g m−2

Table 3.2: Total mass deposited at the bottom of the domain after 30 s depending on
the deposition model.
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4 | Air entrainment modelling

Initially, the thesis was exclusively focused on liquid-gas-solid flows with an emphasis
on particle modelling. However, due to unexpected circumstances, the topic of air
entrainment in air-water flows has come to the forefront. The aimed industrial scale
experiments encountered during the thesis included water jet features and preliminary
air-water studies of this phenomenon proved to be extremely sensitive to the accuracy
of simulated air entrainment.

The goal of this chapter is to review the physics of air entrainment and the existing
models, to provide minor details on small corrections made to the two-phase flow
framework, to suggest a new model for the entrained bubbles diameter and to show its
performance when compared to experimental setups representative of the phenomenon.

Figure 4.1: Scenarios illustrating air entrainment at three different length scales. From
top left to bottom right: laminar and turbulent water jets (Kiger and Duncan, 2011),
breaking waves (from National Park Service website) and stepped chute (Gonzalez and
Chanson, 2007).
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4.1 Air entrainment from a free surface
Air entrainment or air aeration in air-water flows is defined as the transition occurring
when continuous air is transported, as bubbles or air pockets, below the free-surface.
This phenomenon is widely present in natural flows: breaking waves (Sene, 1988; Kiger
and Duncan, 2011), hydraulic jumps (Chanson, 2009; Viti et al., 2018; Valero et al.,
2018) or highly turbulent water flows (Brocchini and Peregrine, 2001a,b). It can also
appear in industrial configurations. Figure 4.1 shows different scenarios where it occurs.
The experimental setup encountered during the thesis is one example representative of
the most widely occurring air entraining mechanism: water jets (Donk, 1981; Bin, 1993;
Ohl et al., 2000; Kiger and Duncan, 2011). In natural flows, aeration can change the
physico-chemical properties of the mass of water near the free-surface disrupting wildlife
(Chanson and Cummings, 1992). Understanding how it takes place helps preventing
damages to ecosystems and measuring the extent of their impact when it cannot be
avoided. In industrial processes, air aeration can enhance and speed up chemical
reactions (Li et al., 2014; Li and Zhong, 2015; Ojima et al., 2014) or help transporting
and separating particles from different species (Shahbazi et al., 2010). This mechanism,
highly sought after or avoided depending on the applications, needs to be modelled
accurately to provide valuable information on its characteristics.

The scope of the thesis only concerns air-water flows but, obviously, this study can
be transposed to other operating immiscible fluids. Also, a similar field of study exists
for the opposite process: continuous water transforming into dispersed inclusions. Since
it is negligible in the experimental setups we explored, it is not considered. More details
on the latter can be found in Baumgarten (2006); Ashgriz (2011). Finally, we focus on
the transition happening when a continuous structure generates dispersed inclusions.
Hypothetically, for very fine meshes, direct numerical simulations should be able to
simulate air entrainment without the need for any modelling at all. However, due to
the large range of scales present in this phenomenon, industrial applications are still
out of reach from this kind of approach. Therefore, there is a serious need for models
describing the transition between resolved and unresolved interfaces.

Figure 4.2: 3 steps describing air entrainment in the low intensity turbulence, small jet
scenario. Inspired from Kiger and Duncan (2011) and Miwa et al. (2018)

Aeration - or air entrainment - can occur in different scenarios but the main mech-
anism causing it is the interaction between a turbulent water eddy and a free-surface.
Depending on the configuration, the turbulent eddies responsible for air entrainment
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are of different sizes: each generates its own particular bubble spectrum. For small
structures with low intensity turbulence, typically, small water jets, the mechanism
responsible for air entrainment is decomposed into several steps. The water impacting
a free-surface creates a dimple or a cusp. If the water mass has sufficient momentum,
the dimple deepens. Then, surface instabilities appear on the water surface in the cusp.
When the momentum grows, these grow as well until, finally, the cusp is thin enough
and the instabilities large enough that singular bubbles are detached and transported
below the free-surface. Figure 4.2 illustrates these steps.

For large structures, the mechanism is different. It is also decomposed into steps.
First, in a turbulent flow, the surface roughen due to the presence of eddies. When
this rough surface impacts a flat liquid interface, it tends to move water away from
it like when a rock impacts a free-surface. When this mass of water comes back to
its equilibrium state, the surface roughness has geometrically entrapped air under the
surface. These air bubbles or pockets are transported well below the free surface by
the water momentum and may be subsequently broken down by turbulent eddies.
Figure 4.3 illustrates these steps. This scenario occurs in large jets with high turbulent
intensity but it can also be observed in breaking waves.

Figure 4.3: Drawing of 3 steps describing air entrainment with high intensity turbu-
lence.

Finally, observations have shown that air can also be pre-entrained or re-entrained
(Bertola et al., 2018). The first scenario can be caused by atomisation and the second
one seems of little interest. Since, we study the transition between continuous and
dispersed structures we do not focus on the two last mechanisms. If the simulation
framework is set up correctly, at least the re-entrainment should be simulated correctly.

To characterise the phenomenon, many experimental studies have recreated the con-
ditions for air entrainment to happen (References related to water jets: Lahey (1991);
Evans et al. (1992); Clanet and Lasheras (1997), hydraulic jumps Zhang et al. (2013)
and breaking waves Garrett et al. (2000); Liu and Duncan (2003); Blenkinsopp and
Chaplin (2007)). The idea is primarily to understand the phenomenon and secondly
to feed numerical models to make them more accurate. The latter is done by provid-
ing macroscopic scale quantities easily transferable to computational fluid dynamics in
order to avoid simulating the smallest scales via DNS. The following list summarises
the physical quantities of interest, the way they are usually measured and how they
can improve numerical simulations other than by constituting a potential verification
basis.
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– Air mass transfer: In steady flows, the water level can be a good indicator of the
total entrained mass of water. Alternatively, from 3D imaging techniques, it is
possible to reconstruct the total amount of air holdup (Roy et al., 2013).
The total amount of entrained air is a great measure to verify if the bubble
size distribution is correctly simulated. It is also useful for creating numerical
entrainment model from experimental data. In fact, many models rely on such
experimental correlations (Ma et al., 2010; Qu et al., 2011).

– Entrained air volume fraction: It can be measured via conductivity probes and
averages of the conductivity time series. This method is easy to setup and has
been consistently used throughout the fluid community. The main disadvantage
is its inability to measure high air volume fractions and its effect it can have on
air structures.
Volume fraction being a simulation output as well, it makes a suitable candidate
for numerical model validation.

– Air bubble sizes: Conductivity probes have been used to measure bubble size, it
is a quantity accessible from the conductivity time series and the gas velocity
under certain assumptions. For this quantity at least two probes are required
to measure air velocity (Cartellier and Achard, 1991). The main disadvantages
are the fact that assumptions are not always verified which sometimes leads to
biased results. 3D imaging techniques have been used to measure bubble size
distribution (Belden et al., 2012; Bertola et al., 2018). They are costly and
complicated to set up but provide accurate data without interfering with the
experiments.
For numerical models, this is the most valuable data. Not only does it provide
a great validation dataset but it can also be used to directly create source terms
to create bubbles at the correct size in numerical simulations.

– Liquid quantities: All available techniques (PIV, LDV...) can be used to mea-
sure fluid properties below the free-surface. They provide access to mean and
fluctuating quantities most of the time Kendil et al. (2012); Boualouache et al.
(2017). A challenge for these techniques is being able to separate liquid from gas
properties.
This data is mostly used as a validation tool. It can sometimes highlight flaws
in the modelling process.

– Bubble penetration depth: It is obtained with imaging techniques and is a good
indicator of bubble size (Iguchi et al., 1998; Kramer et al., 2016). Even though
it is not as precise as bubble size distribution measurements, it can still provide
valuable information for validation purposes.

– Surface roughness: It can be measured with imaging techniques (Davoust et al.,
2002; Guyot et al., 2020). This measure can be coupled to bubble plumes char-
acteristics to determine some kind of correlation between the two. The first one
being accessible in numerical simulations, it could be the basis of a model for
created bubble size distribution.

From a numerical simulation standpoint, the main challenge lies in understanding
how the transition between continuous to dispersed structures happen so that numerical
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models can take it into account when trying to set up a transition between resolved
and unresolved interfaces.

4.2 Existing numerical models
In this section, we review existing numerical models accounting for air entrainment
phenomenons. Some are specifically designed to capture these effects while other are
developed in a general manner and a focus is made on their ability to simulate air
entrainment scenarios. As in the introduction to three-phase flows, these models are
ranked according to the precision to which they resolve the interfaces. This review will
highlight the need for new modelling approaches specifically for the size of inclusions
created from a large interface.

Figure 4.4: Different simulations results obtained from literature material. (top) SPH
from Dalrymple and Rogers (2006), (bottom left) LES+VOF from Khezzar et al. (2015)
and (bottom right) DNS from Deike et al. (2016).

Smooth particle hydrodynamics has been used to simulate air entrainment in various
scenarios (Dalrymple and Rogers, 2006; De Padova et al., 2013; Fonty, 2019; King et al.,
2023). The most challenging part for this method is to have sufficiently small particles
in order to be able to represent correctly a small bubble generated via air entrainment.
Keeping track of surface properties is also complicated due to the discretization process.
This can be an issue since they are crucial to the phenomenon of air entrainment. In
some cases, source terms which are also used in Eulerian simulations may be added.

Direct numerical simulations are an optimal tool to simulate the aeration phe-
nomenon. In theory, if the mesh is fine enough, all the turbulent scales are resolved,
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leading to a resolution of all the liquid-gas interfaces being resolved as well. As men-
tioned earlier, the biggest challenge this method faces is the computing time. Available
resources grow each year but complex industrial configurations are still hard to man-
age. However, there have been studies showing the potential of such approach. The
first one to consider it for air entrainment were Lahey Jr (2009) for impinging jets and
Fuster et al. (2009) for breaking waves. More recently, there has been a serious effort
to characterise the physics of breaking waves through DNS with the Basilisk software
(Popinet, 2015). In the work of Deike et al. (2016), the authors carry out a comprehen-
sive study of bubble generation through different wave breaking scenarios with DNS.
From these numerical simulations and previous macroscopic entrainment models, they
suggest a new turbulent bubble break-up model. In Mostert et al. (2022), the authors
investigate a similar configuration. They carry out simulations of breaking waves in
order to characterise bubbles and droplet generated by the phenomenon. A focus is
made on identifying the laminar-turbulent transition as well as comparing the range of
simulated scales with experimental data from Deane and Stokes (2002). All in all, this
method seems to give satisfying results but might be too computationally expensive
for the industrial applications aimed at during this thesis.

If direct numerical simulations are out of reach in practice, a second approach leads
to considering the volume of fluid method along with large eddy simulation for fluid
turbulence. Less costly than DNS, it solves the turbulent scales down to a certain range
until a subgrid scale turbulent term is needed. However, since the smallest scales are
unresolved, they should be missing in the bubble size distribution as well. If the filter
used in LES is larger than the smallest scale observed in dispersed inclusions, there is
no need to model it. This is done in Khezzar et al. (2015). Unfortunately, most of
the time it is not the case and a specific model has to be introduced to account for
subgrid scale bubbles. This is done in Derakhti and Kirby (2014) for example with an
entrainment model from Ma et al. (2011).

To cut computing costs, it is possible to perform RANS simulations in the VOF
approach. This combination has been used in GENTOP (Hänsch et al., 2012) with four
fields and a population balance method to account for dispersed structures unresolved
by the volume of fluid method. The transition between continuous and dispersed struc-
tures is enforced with general numerical expressions which are also found in multifluid
approaches such as Mathur et al. (2019). The greatest challenge is to describe the tran-
sition between the continuous field and the dispersed inclusions. For the framework
GENTOP, work is still being carried out to define the size distribution of continuous
structures no longer resolved.

Finally, the multifluid RANS approach offers a great framework to model air en-
trainment (Ma et al., 2010; Mathur et al., 2019; De Santis, Colombo, Hanson and
Fairweather, 2021). Their primary advantage, like the VOF+RANS method, is their
low computing cost. The biggest challenge they face, compared to DNS, is the descrip-
tion of dispersed inclusions generated from unresolved continuous structures. The work
carried out in the thesis falls into this category. There are several models widely used
in CFD frameworks to account for mass transfer from continuous air to dispersed air.
More details on those can be found in Moraga et al. (2008); Ma et al. (2011); Castro
et al. (2016); Valero and García-Bartual (2016). They were developed with different
scenarios in mind but are still reasonably effective in configurations they were not de-
signed to be used in. They always rely on some kind of experimental calibration which
embodies their greatest flaw. In the framework from neptune_cfd, the mass transfer
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is an output of the simulation, thus we are not focusing on this modelling part. All we
provide is a model for the transferred mass size distribution.

Another approach which is quite different from the previous one is the surface
density function formalism described in Essadki et al. (2019). It gives a geometrical
description of a fluid-fluid interface and links its properties to dispersed inclusions
described with a statistical approach. This enables modelling of all the transitions
happening near a free-surface.

4.3 Minor preliminary corrections

Before introducing the air entrainment model, a slight modification needs to be in-
troduced to coalescence source terms. From equation 2.93, we recall the form of the
source term Ḟc,b associated to coalescence and breakup. The detailed justification for
its expression can be found in Prince and Blanch (1990); Ruyer (2007), here is its final
expression:

∫
Ḟc,bπd

2∂d∂w = a
5/3
i ϵ

1/3
dg α

1/3
dg (ξc(Nc) + ξb(Nc)) (4.1)

The main issue with this expression in the multi-regime model is that it is written
in terms of the dispersed phase volume fraction αdg. However, as explained in chapter
2, in the two-fluid formulation there is only one field per phase. Therefore, in a region
where air is predominant αg is close to 1 but talking about coalescence is nonsensical
since there are no bubbles. But, by construction, the coalescence source term is not 0
which poses a significant issue. It causes the interfacial area to decrease until it reaches
the minimum value allowed by the software. This is irrelevant as long as continuous
air never becomes dispersed bubbles. It is clear from this short demonstration that it
is a major problem in air entrainment simulations.

To overcome this issue, we decided to include a weighting factor θ in the coales-
cence source term effectively zeroing it when air volume fraction no longer represents
dispersed bubbles. The new coalescence source term reads:

∫
Ḟc,bπd

2∂d∂w = a
5/3
i ϵ

1/3
dg α

1/3
dg (θξc(Nc) + ξb(Nc)) (4.2)

Where θ is a smooth continuous function which equals 1 when αl = 1 and 0 when
αl = 0. This weighting process is consistent with the formulation of the GLIM method
defined in section 2.2. Since breakup is the result of a collision between a bubble and a
similarly sized water turbulent eddy, the breakup source term naturally tends to zero
when air volume fraction is no longer associated with dispersed bubbles but with con-
tinuous structures. It does not require the same treatment. This modification enables
us to control the interfacial area value in regions of continuous air which is important if
we are to model what it becomes when such air is transformed into dispersed bubbles.
Figure 4.5 shows a theoretical coalescence source term before and after the modification
as a function of void fraction.
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Figure 4.5: Differences between the old and new coalescence source terms as a function
of air volume fraction. Water turbulent kinetic energy dissipation, interfacial area and
the coefficient ξ are assumed constant.

4.4 Air entrainment inclusion diameter prediction
In this section we present the model dedicated to the prediction of air bubble diameter
when they are created from air entrainment mechanisms. Here it is included in a
RANS framework with an interfacial area transport equation but it could very well be
adapted to VOF simulations with a population balance model since it only predicts
the inclusion size when air transitions form continuous to dispersed. Before the current
work, an arbitrary interfacial area value was set in the continuous air region which was
transported to a region containing dispersed inclusions. The issues of this approach are
obvious, first, the quantity is independent from the local flow conditions. Second, in the
event of an exploratory simulation with no experimental data, choosing the interfacial
area value can be tricky. Finally, its evolution in time in a region highly affected by
air entrainment may not be consistent.

This work only focuses on providing a model for the interfacial area value of air
transitioning between different regimes. The major impact it has on simulation results
is the key motivation for this work. The development is divided into three parts, first
we describe why mass transfer is not included in the process, then how the interfacial
area transport equation is modified to account for new phenomenons at the interface
and then different source terms are introduced with their limitations and advantages.

4.4.1 Mass transfer modelling
Before describing in details the air entrainment model, we should clarify why we de-
cided not to model mass transfer between the continuous and dispersed air. Since a
unique field is associated to every element, continuous and dispersed air are described
with the same volume fraction and velocity fields. The mass transfer between both
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is therefore implicitly computed during the time integration. Section 2.2 and partic-
ularly equation 2.96 illustrate the fact that on a given cell at a given time, dispersed
and continuous structures both contribute to the total interaction terms. Tracking the
weighting coefficient γ in equation 2.96 gives an idea of mass transfer between the two
regimes. In theory, it is possible to enforce a mass transfer term through a change
to this weighting coefficient. In practice, we decided to keep the weighting coefficient
unchanged.

4.4.2 Interfacial area transport equation modification
As mentioned above, interfacial area is the measure of air-water surface area per unit
volume of dispersed inclusion. This quantity drives the interfacial momentum transfer
terms and determining it with accuracy greatly improves the global output of a simula-
tion. In fact misrepresenting this diameter can have serious impact on total entrained
air mass. Larger bubbles tend to flow back to the surface more rapidly than smaller
ones thus hindering the total air holdup below the free-surface.

To predict the entrained air interfacial area, we need to change the way its evolution
equation is solved. The main idea is to isolate three regions in a domain. The region
containing continuous air, those containing continuous water and dispersed air and the
large interfaces separating the two previous regions. Once these regions are isolated, it
is possible to include different source terms in the interfacial area transport equations
to model the air bubble diameter near the free-surface. The way they are identified
mirrors the work already carried out in drag models with the weighting coefficient
γ. The latter represents a smooth transition between the regions and allows not to
associate each cell to a region. This also allows for the source term to be smoothly
defined in all the computational domain, thus avoiding discontinuities in modelling.
The evolution equation for ai as it is solved in neptune_cfd without any coalescence
or breakup source terms reads:

αgρg
∂X

∂t
−X ∂

∂xi
(αgρgug,i) + ∂

∂xi
(αgρgug,iX) = 0 (4.3)

Where αg and ρg are air volume fraction and mass per unit volume, ug,i is its
velocity and X is such that αgρgX = ai. In a cell I with neighbours in VI between
time steps n and n+ 1, equation 4.3 becomes:

αIρIΩI

δt

(
Xn+1
I −Xn

I

)
−Xn+1

I

∑
J∈VI

ϕIJαIJ +
∑
J∈VI

ϕIJαIJX
n+1
m,IJ = 0 (4.4)

Where ϕIJαIJ is the mass flux between cells I and J , δt is the time step, ΩI is the
cell volume and Xm,IJ is the value used to determine the convective flux of X through
a face separating cells I and J . The last sum on the right-hand side of equation 4.4 is
responsible for transporting interfacial area between regions, it is the one we are going
to modify. The main idea is to write it as a linear combination of the standard flux and
an imposed flux depending on local flow characteristics at the free-surface. To keep
it as simple as possible, only the explicit part of the convective flux accounts for the
presence of a free-surface. The implicit part is kept the same.
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Xn+1
m,IJ = (1− γ)Xfs,IJ + γXn+1

IJ (4.5)

Where Xn+1
IJ is the standard value of X used to compute the flux and Xfs is the

value imposed in a free-surface region to account for air entrainment mechanisms. This
approach is illustrated in figure 4.6 where, for brevity, the flux of X coming out of a
free surface cell is computed completely with Xfs.

I

J

ϕIJαIJX
n
I

I

J

ϕIJαIJXfs

I: standard cells I: free-surface cells
Figure 4.6: On the left, two standard cells; on the right, the cell above contains a large
interface. The convective flux is supposed positive from cell I to cell J .

With an upwind approach, the discretised equation 4.4 becomes:

αIρIΩI

δt
−

∑
ϕIJ<0

ϕIJαIJ

Xn+1
I = αIρΩI

δt
Xn
I −

∑
ϕIJ>0

ϕIJαIJγ(Xn
fs,I −Xn

I )

−
∑
ϕIJ<0

ϕIJαIJ(Xn
m,J + δXJ)

(4.6)

For the equation above to be solved, an expression for Xfs must be provided. This
expression is related to the diameter given to bubbles created from the free-surface
dfs = 6/(ρwXfs). In practice, the resolution of the equation is unchanged compared
to previous versions of the software if not for the modification of some of its terms. In
order to avoid some truncation errors, a θ-scheme was explored. Since the work was
inconclusive, it is not presented here. It is presented in appendix C.

4.4.3 Entrained bubble diameter modelling
This section focuses on the closure expression for Xfs. This term represents the value
of interfacial area given to air transported from a region with a free-surface to a region
with mostly dispersed air bubbles. Various options are explored, their advantages and
limitations are presented before each model is compared to experimental data.
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Diameter based on simulated free-surface interfacial area

The first model is based on the physical definition of the interfacial area. As mentioned
above, it is the ratio between air-water surface area and air volume. For a large
interface, this quantity can be computed from the simulation outputs. In fact, if αg is
the air volume fraction, and ηfs represents a subgrid surface roughness as defined in
Brocchini and Peregrine (2001a,b), the interfacial area in a cell reads:

ai = ∥∇αg∥(1 + ηfs) (4.7)

ai represents the same physical quantity as the modelled interfacial area used in a
bubbly region to describe the bubbles diameter. Therefore, when bubbles are created
from a free-surface, their size must be related to the total surface available at the
interface. Figure 4.7 shows schematically the process behind this inclusion diameter
model.

Figure 4.7: Sketch showing the idea behind the first inclusion model. Air near the
free-surface is entrained below the free-surface. Its interfacial area is computed from
the simulated surface area and a subgrid model accounting for interface roughness.

The rougher a free-surface, the larger the interfacial area, it acts as a surface area
multiplier. An important implicit assumption of the model is the fact that this phe-
nomenon is one-way. Bubbles are created from the interfacial area of a free-surface
but their size is small compared to the size of the large interface. Creating a bubble
thus does not diminish the total amount of air-water surface area. Finer models could
take this into account. Specifically, when bubbles rise to the surface, they momentar-
ily increase the amount of air-water surface area. In our study, this phenomenon is
neglected due to its dissipative nature and relatively low importance compared to the
entrainment mechanism.

In theory this model is consistent, however, due to the numerical aspects of the
framework, some drawbacks can appear and make the model much more complex to
use. The most serious inconsistency stems from the way interfacial area is computed.
Its value changes depending on the mesh, making it impossible to converge spatially.
A possible solution would be to consider a fixed independent mesh from which the
interfacial area is computed. This is a serious issue since it requires a case by case
definition, it lacks generality.
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Diameter based on free-surface curvature computation

The following model is based on the simulated free-surface curvature. As in the previous
example, it computes the source term from local flow characteristics which are outputs
of the simulation. The main idea being that if bubbles are created from the free-surface,
they tend to have the same curvature as the structures they come from (see figure 4.8
for a diagram). The advantage, compared to the previous model, is its independence
with the computational mesh. Better still, the finer the mesh the more accurate the
curvature prediction should be.

ai = 3αgκ (4.8)

Where κ is the computed curvature of the large interface issuing the bubble. The
main disadvantages of this approach is the large computing time required to obtain the
free-surface curvature and the challenges facing this kind of computation. In fact, in
averaged methods, the interface may be smeared across several cells, making its cur-
vature uneasily accessible. Moreover, in highly turbulent flows, this quantity requires
a very fine mesh to be computed accurately. Thus limiting its use to cases where the
surface is well defined. The curvature is also used in De Santis, Colombo, Hanson and
Fairweather (2021) to set a transition limit between resolved and unresolved struc-
tures but its relation to physical quantities is also questioned by the authors. Thus
illustrating the limit of the criteria in averaged frameworks.

Figure 4.8: Sketch showing the idea behind the second inclusion model. Air near the
free-surface is entrained below the free-surface. Its interfacial area is computed from
the simulated surface curvature.

The results obtained with this model are shown in section 4.5. They highlight the
deficiencies of the model in highly turbulent flows where curvature computation is not
straightforward and its great performance in less turbulent cases.

Diameter based on the Hinze scale

The last model explored during the thesis is based on an approach developed in wave
breaking theory (Deane and Stokes, 2002; Deike et al., 2016; Mostert et al., 2022). It
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relies on several hypothesis. First, the entrained air must be created from the free-
surface after its interaction with a turbulent eddy. Second, these air structures must
subsequently be divided into smaller and smaller structures after their interaction with
turbulent eddies of similar size. This breakup cascade, which goes on until bubbles
reach the Hinze scale, must take place in a short period of time compared to flow time
scales. Finally, this process must occur near the free-surface so that we can define a
buffer region close to the large interface where it takes place.

The Hinze scale dH represents the minimum size a bubble can reach after subse-
quently being broken down by velocity fluctuations at its scale (Kolmogorov, 1949;
Hinze, 1955). By assuming the flow is unaffected by the presence of bubbles and is
described by Kolmogorov’s inertial subrange, it is possible to define a turbulent Weber
number for each bubble of diameter db. A non dimensional parameter which is the
ratio between fluid turbulent kinetic energy and surface tension effects.

We = ρw
γs
ϵ2/3
w d

5/3
b (4.9)

Where ρw and γs are the water mass per unit volume and air-water surface tension
and ϵw is the water turbulent kinetic energy dissipation. Critical Weber numbers can
be obtained from experimental studies, the typical range being We,c ∈ [1, 5] (Risso and
Fabre, 1998). Hinze’s scale can be obtained from the turbulent Weber number and its
critical value.

dH =
(
We,cγ

2ρw

)3/5

ϵ−2/5
w (4.10)

In other sources (Mostert et al., 2022), Hinze’s scale appears with a constant instead
of the critical Weber number. This constant must be determined experimentally as well.

Figure 4.9: Sketch showing the idea behind the third inclusion model. A buffer region
separates the continuous air from dispersed air. In that region liquid turbulent eddies
breakup air structures until they reach Hinze’s scale. Dispersed air exits the buffer
region with that size.

By definition, the last source term is independent from the mesh as long as the water
turbulent kinetic energy dissipation is more and more accurate with a mesh refinement.
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Another advantage compared to the second model is the fact that it is more suitable
in highly turbulent cases. On the other hand, this model also has its limitations. The
most important being that it is not applicable to cases where air entrainment is mostly
due to surface instabilities (Air entrainment from cusps). This will be illustrated in
section 4.5 when comparing the results with experimental data. Moreover, its definition
heavily relies on the framework ability to predict ϵw accurately.

4.5 Comparison with experimental data
This section is dedicated to the comparison of experimental measurements and simula-
tion results obtained with the new entrainment models. The three cases are supposed
to represent three different entrainment scenarios. The first one is the entrainment de-
scribed by figure 4.2, the second represents the mechanism described in figure 4.3 and
the last one represent the entrainment caused by highly turbulent free-surface flows.

4.5.1 Small scale water jet
The first case consists in a small size smooth water jet experiment described in Iguchi
et al. (1998). Figure 4.10 shows the geometry of the experimental apparatus.

Qw

10

39
0

200
350

5

Figure 4.10: Geometry describing the small scale water jet experiment (Iguchi et al.,
1998). The blue arrow represents the jet inlet. Distances are in mm.

The purpose of the experiment is to determine how the operating conditions drive
the different observations in terms of bubble production and to quantitatively exam-
ine the liquid flow near the jet impact point with Laser Doppler velocimetry (LDV)
imaging techniques. The circular jet has a diameter of dj = 5 mm, its mass flow rate
is Qw = 5 × 10−2 kg s−1 and the distance between its inlet point and the free-surface
is h = 10 mm. Its turbulent intensity at the inlet has been estimated to be between
5% and 15%. The receiving bath is circular and its dimensions are detailed in fig-
ure 4.10. When the jet is activated, the design of the experiment ensures that the
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distance between the jet inception and impact points remains the same (overflowing
reservoir). The water flowing inside the secondary reservoir (shaded in red in figure
4.10) is then extracted from the bottom and sent to a tank. The measurements include
the depth of the bubble plume and the liquid mean and fluctuating velocities. In this
setup, there are no measurements regarding bubble size distribution. However, the
penetration depth of bubbles is usually a good indicator of their size. In the original
publications, other scenarios are explored, we only focus on the one described above.
The numerical simulations are carried out on a geometry shown in figure 4.11 matching
the experimental setups.

Figure 4.11: Numerical geometry and boundary conditions for simulation of the smooth
water jet. Jet inlet condition in the centre (dark blue), top outlet condition (blue),
tank walls (orange) and inlet tube (red).

Three 3D meshes have been generated without additional refinement near the walls
with 251 775, 1 521 192 and 4 611 756 cells. Boundary conditions are defined in table
4.1. Water and air are supposed to be at atmospheric conditions, water density is
ρw = 1000 kg m−3, its viscosity is µw = 0.001 Pa s; Air density is ρa = 1.2 kg m−3, its
viscosity is µa = 1.8× 10−5 Pa s. The time step is adaptive and ensures the condition
CFL < 1, the turbulence model is a linear production k-ϵ model for water and no model
for air. The generalised large interface method is selected. Initially, the receiving bath
is filled with water, the rest of the domain is filled with air. Water is injected from the
jet inlet. When the simulation reaches a steady-state, physical quantities are averaged
for 20 s.

Boundary condition Color in figure 4.11 Properties
Jet inlet tube red -
Walls orange -
Jet inlet dark blue Flux inlet Qw = 0.05 kg s−1

Water volume fraction αw = 1
Top outlet blue Pressure outlet P = 101 325 Pa

Water volume fraction αw = 0

Table 4.1: Boundary condition definition for the numerical simulation of the smooth
jet case.
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Simulations are first carried out without inclusion model (the entrained bubble
diameter is set at the beginning of the simulation) on the three meshes to ensure spatial
convergence. The diameter is fixed to db = 1 mm for bubbles entrained at the point of
impact of the jet. It is the size qualitatively observed experimentally near the impact
point (Iguchi et al., 1998). Results plotted include the mean axial liquid velocity and
mean turbulent kinetic energy as well as gas volume fraction on the vertical line centered
on the jet and the dimensionless axial mean velocity on three horizontal profiles at
depth 100 mm, 200 mm and 300 mm in the reference mesh (intermediate refinement).
Instantaneous snapshots on a plane containing the jet centre line are shown in figure
4.12. The air volume fraction plot illustrates the ability of the framework to consider
multiple regimes at once. There is the resolved air-water interface (in dark blue in the
figure) and there are dispersed inclusions represented by a non-zero air volume fraction
below the free-surface. The transition between the two at the jet impact point is the
explored phenomenon. The turbulent quantities near the jet impact point are similar
to those in a single-phase jet. High intensity on the jet surface in the mixing layer and
low on the jet centre line. When sufficiently deep, the mixing has homogenised the
turbulent quantities.

Figure 4.12: From top left to bottom right: snapshot of the free-surface and air vol-
ume fraction (αg), liquid velocity magnitude (∥Uw∥ in m s−1), liquid turbulent kinetic
energy (kw in m2 s−2) and liquid turbulent kinetic energy dissipation (ϵw in m2 s−3).

Figure 4.13 shows correct convergence behaviour even though axial mean and tur-
bulent velocities are not sufficiently close to experimental measurements. Moreover, it
also highlights the inaccurate prediction of the bubble penetration depth. Demonstrat-
ing the need for an entrained bubble diameter model which may improve the results
altogether.
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Figure 4.13: Simulation results for the three mesh refinements.

The simulations are now carried out with the two models based on the free-surface
curvature and the Hinze scale described in section 4.4.3 on the reference mesh. These
are shown in figure 4.14. The model based on the curvature is the only one to improve
the mean and turbulent quantities as well as the bubble penetration depth. It still
struggles to predict the exact experimental turbulent kinetic energy on the jet centre
line but its results are generally much better than those obtained without entrainment
model or with the model based on Hinze’s scale. It also improves the horizontal profiles
shown on the bottom left-hand side figure.

Figure 4.14: Simulation results for the three inclusion models on the reference mesh.
No inclusion model (blue), inclusion model based on free-surface curvature (red) and
inclusion model based on Hinze’s scale (light green).

The model based on the free-surface curvature seems to give better bubble diam-
eter prediction because the mechanism driving air entrainment in this configuration
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is mostly geometric. Bubbles tend to be detached from the free-surface by growing
instabilities in the cusp, creating structures of similar size to the cusp. The interface
curvature is therefore a great measure of the created bubble size. On the other hand,
the model based on Hinze’s scale does not give satisfactory results because we think the
configuration does not include the mechanisms responsible for air entrainment covered
by this specific model. We would expect the model to perform better on a rougher,
more turbulent jet.

4.5.2 Large scale over-flowing jet
The second air entrainment scenario explored is an experimental setup developed and
exploited since 2014 (Castillo et al., 2014, 2015; Carrillo, Castillo, Marco and García,
2020; Carrillo, Marco, Castillo and García, 2020; Carrillo, Ortega, Castillo and García,
2020; Carrillo et al., 2021). The choice was motivated on the one hand by the size
of this jet. The large scale means the surface of the jet is rough and the primary air
entrainment mechanism taking place is the one described in figure 4.3. This gives us
the opportunity to assess whether the inclusion model based on Hinze’s scale, more
representative of this mechanism, is more reliable. On the other hand, this case was
chosen also because of its similarities with the industrial setup which motivates the
thesis at EDF. The case consists in two rectangular tanks, one located above the other.
When water is injected in the top tank, it overflows and creates a jet which impacts
the bottom tank. At the impact point, air is entrained and transported towards the
bottom tank outlet located on its right-hand side. Several scenarios have been explored
during the years. Different inlet water fluxes, measurements on the receiving pool or on
the jet aeration. Our goal here is to focus on bottom tank measurements in a specific
scenario defined in table 4.2.

x

y

yC95 dw

H

Ht

xj xw

Ji

Figure 4.15: Experimental setup for the over-flowing jet (Carrillo, Castillo, Marco
and García, 2020). The red dashed line represents the first measurement profile plane
located 10 mm downstream the jet impact point.
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Figure 4.15 represents a sketch of the experimental device. Measurements are done
with an optic fiber probe and a back-flushing Pitot tube on vertical profiles in the plunge
pool downstream the jet impact point. These probes give access to fluid velocity,
air volume fraction, bubble detection frequency and bubble mean Sauter diameter.
High speed cameras were used to measure average bubbles size and for a qualitative
description of the flow. The jet impact point position and plunge pool depth are
determined from these images. Measurements are also performed on air concentration
profiles in the jet itself on planes perpendicular to the jet at different distances to the
jet inception point.

Variable
Top tank height Ht 0.85 m
Jet height H 2.2 m
Plunge pool depth (measurement) yC95 0.32 m
Weir x-coordinate xw 3.0 m
Weir height dw 0.25 m
Jet impact x-coordinate (measurement) xj 0.83 m
Reservoir width Hw 1.05 m
Inlet water flux Ji 0.085 m s−2

Table 4.2: Properties definition for the experimental setup of the over-flowing jet. x = 0
is defined at the jet inception point.

Simulations are carried out on 3D meshes with 367 920, 733 020 and 1 491 690 cells
respectively. Boundary conditions are defined in figure 4.16.

Figure 4.16: Boundary conditions for the simulation of the over-flowing jet. (red) is a
pressure outlet, (light blue) is the walls and (dark blue) is the water inlet. A clipping
of air volume fraction is shown: 0.45 < αg < 0.55.
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Second order Reynolds stress models are selected for continuous turbulence and the
generalised large interface model is selected to describe air-water interaction. Water
and air are supposed to be at atmospheric conditions, water density is ρw = 998 kg m−3,
its viscosity is µw = 0.001 Pa s; Air density is ρa = 1.2 kg m−3, its viscosity is µa =
1.85 × 10−5 Pa s. The time step is adaptive and enforces the condition CFL < 1. Ini-
tially, both tanks are filled when the water is injected from the left-hand side boundary
of the top reservoir. After 5 s, the simulation reaches a steady state and quantities are
averaged for 20 s.

Preliminary simulations without any entrainment model give us the opportunity to
assess the current performance of neptune_cfd on large scale jets as well as provide
us with a reference result. Instantaneous snapshots of these simulation results are
shown in figure 4.17. They illustrate the transition between the resolved interface
and dispersed inclusions near the jet impact point. They also highlight the horizontal
liquid jet that appears near the wall on both side of the stagnation point. A large scale
vortex is also set up on the left-hand side of the receiving tank. It does not appear
on the right-hand side because of the outlet condition. Overall comparison between
early simulation results and experimental setups is acceptable. Table 4.3 sums up the
macroscopic characteristics of the experimental setup and the simulated values. The
configuration is generally well represented apart from the jet thickness. However, it is
difficult to measure such a quantity on simulations due to its diffuse nature. Refining
the mesh should help keep the interface solved down to the jet impact point thus giving
a better estimation of its width. However, the purpose of this chapter is to introduce a
model to perform industrial scale simulations of air entrainment. Trying to solve every
interface is thus out of the scope of the thesis.

Figure 4.17: Snapshots of the simulation results with standard coalescence and frag-
mentation model without correction. (left) Solved air-water interface and dispersed
air structures. (right) Liquid horizontal velocity in the plunge pool. The stagnation
point is visible at the centre of the figure. The transition between resolved interface
and dispersed inclusions happens halfway down the chute.
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Variable Carrillo et al. neptune_cfd
Stagnation point (distance from jet inception) 0.73 m 0.75 m
Plunge pool depth 0.32 m 0.30 m
Jet velocity at the impact point 5.90 m s−1 6.01 m s−1

Jet thickness near the impact point 0.029 m 0.05 m

Table 4.3: Qualitative comparison between experimental and early simulation results.

Simulations to assess the solver’s performance are carried out with a constant bubble
diameter of 2 mm - the most present bubble diameter in the experimental results - and
with a variable bubble diameter both with and without the correction of the coalescence
source term. Figure 4.19 shows the bias originally introduced by the coalescence source
term. Since the interfacial area decreased indefinitely in the continuous air region, when
air was entrained below the free-surface it did so with a huge diameter. Results obtained
with a constant diameter are consistent and provide a strong starting point for the
development of entrained inclusion diameter models. Similarly, results obtained with
the correction to the coalescence source term are coherent with experimental results
but the predicted entrained diameter is slightly too small. The air volume fraction
results illustrate the necessity to predict the correct diameter. If the prediction is too
big, the air holdup tends to be increased thus degrading the results.
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Figure 4.18: Convergence study with an entrainment model based on Hinze’s scale
We,c = 5. These profiles are located 10 mm downstream the jet stagnation point.

The simulations are then performed on the three meshes detailed above. Figure 4.18
shows the spatial convergence for the liquid velocity and air volume fraction. The three
meshes give satisfying results for the air volume fraction. However, only the two finest
meshes can simulate accurately the peak velocity near the wall. For future simulations,
we decide to work with the finest mesh, it gives an appropriate compromise between
computing time and results accuracy. In further plots, the velocity does not appear, it
is always as well simulated as in the convergence study cases.
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Figure 4.19: Predicted bubble diameter and air volume fraction in the plunge pool
on a profile located 10 mm downstream the jet stagnation point. Correction on the
coalescence source terms leads to more reasonable bubble diameters.

After mesh convergence and preliminary studies, the entrainment models are tested.
Figure 4.20 illustrates the results obtained with the two entrainment models based on
the free-surface curvature and Hinze’s scale. It shows the bubble size prediction of the
model based on Hinze’s scale is more accurate mostly because of the fact that curvature
is not computed precisely in the very turbulent region near the jet impact point. On
the other hand, air volume fraction predictions are both satisfactory. This quantity, as
long as the bubble diameters are not too big, seems to be unaffected by the inclusion
size prediction. A key characteristic of the model, one of the reason it was designed
in the first place, is its ability to be independent from the standard diameter set in
the continuous air region. Results are not shown here for brevity but this has been
thoroughly verified on all the different models and variations.
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Figure 4.20: Bubble size and air volume fraction prediction depending on the en-
trainment model selected. The vertical profile is located 10 mm downstream the jet
stagnation point.
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Figure 4.21: Bubble size and air volume fraction prediction depending on the critical
Weber number We,c. The vertical profile is located 10 mm downstream the jet stagna-
tion point.

The dependency on the critical Weber number is highlighted in figure 4.21. When
it increases, the entrained bubble diameter increases as well. This is observed in bub-
ble size prediction near the wall region even if the impact is not significant. This is
consistent with the expression of Hinze’s scale. In terms of air volume fraction, as
noted earlier, a small change in bubble diameter prediction has little to no effect on air
concentration in the plunge pool. Critical Weber number is the only parameter of the
model and its impact on the results is not significant. This highlights the robustness
of the entrainment model.

In all the results presented with the entrainment models, it seems that the predicted
diameter is too small. Since increasing the critical Weber number did not end up in
a substantial increase in predicted entrained bubble diameter, we studied the breakup
model. Indeed, it is the only other term responsible for a decrease in bubble size. In
neptune_cfd, the standard fragmentation model is based on the works of Prince and
Blanch (1990). However, it is possible that this model overestimates the breakup rate
in certain specific air-water scenarios. The breakup model from Luo and Svendsen
(1996), which predicts a lower breakup efficiency, was tested. Figure 4.22 shows the
results obtained without fragmentation model, with the original model from Prince and
Blanch (1990) and with the model from Luo and Svendsen (1996). The results show,
as expected, that bubbles tend to be larger without fragmentation model or with the
one from Luo and Svendsen (1996). The simulated bubbles are closer to experimental
results in size and air volume fraction profiles tend to be satisfactory as well. However,
the model still cannot recreate the clear variation in bubble diameter near the wall.
In the experiments, this variation fades out for profiles further away from the jet stag-
nation point. This makes us believe that there is probably an unsteady phenomenon
happening close to the jet impact point that we are not simulating properly. All in
all, results obtained with the fragmentation model from Luo and Svendsen (1996) are
satisfactory with regards to bubble size and air concentration. In the end, other models
could be tested such as the one from Yao and Morel (2004).
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Figure 4.22: Bubble size and air volume fraction prediction depending on the fragmen-
tation model. Results obtained with We,c = 1. The vertical profile is located 10 mm
downstream the jet stagnation point.

Predicted bubble diameter can be underestimated compared to experimental mea-
sures for a couple of other reasons. First, in the measurements, the reconstruction of
bubble diameter from probe measurement rely on several hypothesis which may not
be verified in the most turbulent part of the receiving tank. Indeed, the measurements
are based on the assumption that bubbles are spherical and moving at the velocity de-
termined by CFD simulations. This might introduce a bias near the jet impact point.
Further away, the flow is less turbulent and the variation in diameter is less pronounced
(see figure 4.23).

Another explanation may be found in the way bubble diameters are plotted from
our simulations. In fact, large resolved structures do not contribute to the average
diameter in all the figures. Only dispersed structures do. In the area near the jet
impact point, we can see large resolved air structures detaching from the free-surface,
being transported a certain distance and then rapidly rise to the surface as shown in
figure 4.24. Unfortunately these large structure tend to increase the mean air diameter
measured near the bottom surface near the jet impact point in the experiment. Since we
are not including these diameters in the plot, we are predicting smaller average bubble
diameters. To overcome this issue, it would be necessary to create a post processing
framework which first identifies the large pockets, evaluates their diameter and take it
into account in the averaging process. However, this would require an entire rework
of the bubble diameter post-processing routine. The fact that air volume fraction
prediction further away from the jet impact point is overestimated clearly shows that
the overall diameter prediction is underestimated (smaller bubbles rise more slowly to
the surface than larger bubbles).
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Figure 4.23: Bubble size and air volume on the nearest and farthest profiles. Simulation
results (black) are obtained with We,c = 1, the fragmentation model from Luo and
Svendsen (1996). Experimental results are shown in red.

Figure 4.24: Air concentration field near the jet impact point. A large resolved air
pocket is found near the bottom wall.

Experiments were also carried out to characterise air concentration within the jet
(Carrillo, Ortega, Castillo and García, 2020). The setup is exactly the same as in the
previous experiments but the inlet water flux is changed from 0.085 m s−2 to 0.072 m s−2.
Air concentration profiles are obtained with conductivity probes on planes perpendicu-
lar to the free-falling jet. Figure 4.25 shows the simulated air volume fraction obtained
without entrainment model but with the correction to the coalescence source term.
Simulated aeration of the jet appears faster than it does in experimental results. This
is probably due to the mesh, inadequate for these kinds of configuration. However, the
final jet aeration near the impact point (green data on figure 4.25) is close to experi-
mental results. Since this is the one driving air entrainment at the jet impact, we are
happy to keep this mesh and not refine it further.
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Figure 4.25: Air concentration profiles on planes perpendicular to the jet. d is the
distance from the plane to the weir crest. X is the distance to the jet centre on the
perpendicular plane and Bj is the jet thickness at the position of the plane.

This case has shown the inclusion model based on Hinze’s scale has great poten-
tial to predict the correct bubble size for air entrained from a large scale turbulent
jet. Fragmentation modelling has been identified as an important modelling choice in
this configuration as well. Further studies on bubble column will arrive at the same
conclusion. The model based on the free-surface curvature does not perform as well.
The high turbulence generated by the jet impact seems to hinder the curvature evalua-
tion. Moreover, air is entrained in regions where the free-surface is no longer simulated
accurately. Hence the poor results obtained with such a method.

4.5.3 Hydraulic jump

This last case is supposed to illustrate another configuration where air entrainment
occurs but is not related to impinging jets. It is a very good test case to check whether
the model gives consistent results in another scenario. It consists in the transition
from a critical flow (Fr > 1) to a sub-critical flow (Fr < 1). Where Fr = is the Froude
number, the ratio between kinetic energy and gravitational potential energy. In a
free-surface flow, it is defined from the liquid mean velocity U , gravity g and stream
depth h on a vertical plane Fr = U/

√
gh. This configuration generates the well-known

hydraulic jump situation where turbulence induces air entrainment downstream the
jump. The goal of this section is to test the air entrainment model based on Hinze’s
scale and to compare its results with experimental data (Murzyn et al., 2005) as well
as VOF+RANS simulations from literature (Witt et al., 2015, 2018). Figure 4.26 and
table 4.4 define the geometric and dynamics properties of the case.
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Variable
Channel dimension length x width x height 12× 0.3× 0.4 m3

Stream height d 0.046 m
Weir x-coordinate xw 2.67 m
Weir height dw 0.041 m
Inlet water velocity Vi 1.64 m s−1

Froude number Fr 2.46 -

Table 4.4: Properties definition for the experimental setup of the hydraulic jump.
Distances are measured from the stream inception point.

Air and water are supposed to be at atmospheric conditions, water density is
ρw = 1000 kg m−3, its viscosity is µw = 0.001 Pa s; Air density is ρa = 1.2 kg m−3,
its viscosity is µa = 1.85 × 10−5 Pa s. The experiments are performed with different
Froude numbers (Fr = 2, 2.46, 3.7 and 4.8), we only explored the case Fr = 2.46.
Other cases must be studied in the future. The bottom panel of the channel has a
roughness around 0.3 mm even if, in the simulation, this parameter is not taken into
account. In experiments, control of the water flows allowed to steady the hydraulic
jump position. An additional square bar was placed near the jump to make it even
more steady. This obstacle is represented by the weir in the simulation which serves
the same purpose. The measurements are done with an optical probe on vertical pro-
files downstream the hydraulic jump. These give access to air volume fraction and
bubble size distribution as long as bubbles are assumed to be spherical. Published
VOF+RANS simulation results from Witt et al. (2015, 2018) provide data including
air volume fraction and bubble size distribution on the same planes. The size distri-
butions are obtained from numerical counting of spherical bubbles at each time step.
For more details on the published simulation work, the reader is invited to browse the
referenced material.

x

y

d dw

xj xw

Vi

Figure 4.26: Geometric properties of the experimental setup. xj is the position of the
jump (Murzyn et al., 2005). Red dashed lines indicate the position of measurement
planes.

The numerical simulation setup is illustrated in figure 4.27. Water is injected with
a uniform velocity Vl = 1.64 m s−1 and the fluid domain stops at the weir. Since, for
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the considered Froude number, 2D simulations seem to be sufficient (Witt et al., 2015),
a 2D Cartesian mesh containing 300 000 cells is used. Second order Reynolds stress
models are used for both phases and coalescence/fragmentation are taken into account
for dispersed air. The entrainment model based on Hinze’s scale is selected. Initially,
the domain is filled with air. Water is injected and flows, without transitioning to
a sub-critical Froude number flow until it reaches the obstacle. There the hydraulic
jump forms and starts travelling upstream until it oscillates around an equilibrium
point. Outlet water fluxes are adapted to make the jump as steady as possible.

Figure 4.27: Numerical setup of the hydraulic jump. Off plane boundaries are symme-
tries, on the bottom left-hand side is the inlet, red denotes a pressure outlet and light
blue a wall.

Unfortunately, even by controlling the outlet water fluxes and adding the obstacles,
we were unable to produce a steady jump. It keeps oscillating around its equilibrium
position. Compared to one-fluid method, two-fluid formulations tend to be less stable
which could explain the discrepancy with the results from Witt et al. (2015). To
overcome this issue, we decided to set up a specific averaging process in the reference
frame of the jump’s toe. The four profiles where measurements are performed are
located at 0.1 m, 0.2 m, 0.3 m and 0.4 m from xj. The idea is to compute time averages
on those profiles which change position during the simulation effectively filtering out
the toe’s main oscillation. By doing so, the results are less diffuse than by simply
averaging on fixed profiles.

Figure 4.28: From top left to bottom right: air volume fraction and clipping showing
the free surface, Water axial velocity magnitude, water turbulent kinetic energy and
water turbulent kinetic energy dissipation.

Figure 4.28 contains instantaneous snapshots of the flow simulation. The air volume
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fraction plot highlights once again the ability of the framework to tackle multiple
regimes at once. There is the air-water resolved interface as well as some large resolved
pockets and there are dispersed bubbles represented by a non-zero volume fraction
below the free-surface. On the turbulent quantities plots shown below, the mixing
layer is visible as well as a turbulent vortex release centered on the jump toe.

Figures 4.29 and 4.30 show the quantitative comparison to experimental and previ-
ous simulation data. yC95 is the vertical coordinate where averaged air volume fraction
reaches 95%, C is the air concentration and db is the bubble mean diameter. Air vol-
ume fraction plots, especially the two most distant from the hydraulic jump toe, shows
the clear increase in air entrainment at the jump’s height. This is satisfactory, how-
ever, in experimental results, this increase is also visible closer to the jump. We think
this is entirely related to the unsteady nature of the phenomenon. Since we did not
manage to keep it in place, even though we adapted the averaging process, we think
there might still be a bias which hides the increase in the first two plots. Similarly, the
fact that we predict more air in the vertical profiles compared to experimental results
can be explained by the unsteady nature of our jump. When no special averaging
was introduced, the amount of air holdup was even larger. This overestimation of air
holdup can also be explained by a poorly simulated air mass transfer from continuous
to disperse. All in all, we are happy to achieve consistent results with VOF+RANS
simulations which are usually more resolved than the method presented here.
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Figure 4.29: Simulated air volume fraction with the entrainment model based on
Hinze’s scale with We,c = 5. Experimental data from Murzyn et al. (2005) and RANS
simulation data from Witt et al. (2015, 2018) are also included.

In terms of air bubble mean size, the results are in agreement with experimental
results. In the bottom part of the vertical profile (y/yC95 < 0.25), the predicted
size is large but it does not affect the results since no air volume fraction is found
below that limit. In the bulk of the profile (0.25 < y/yC95 < 0.75), results match
experimental as well as previous numerical simulations. In the upper part of the profile
(0.75 < y/yC95), the experimental measured bubble size increases. In the simulations
with the entrainment model based on Hinze’s scale, this increase is also noticeable
whereas it is not in the simulation results published in Witt et al. (2015). Tests were
performed without any entrainment model or with the model based on the free-surface
curvature but results were not as satisfactory as those presented here. The predicted
diameter was way too large and the air holdup below the free-surface way too small.
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Figure 4.30: Simulated bubble diameter with the entrainment model based on Hinze’s
scale with We,c = 5. Experimental data from Murzyn et al. (2005) and RANS simula-
tion data from Witt et al. (2015, 2018) are also included.

This case focused on the model based on Hinze’s scale. It showed it is applicable
to scenarios unrelated to plunging jets as well as large jet configurations. Simulation
predictions are close to experimental results even though there is probably more work
needed on the configuration itself to make for an easier post-processing step. Compared
to other simulation models, it shows great potential for an accurate yet fast approach.

4.6 Entrained inclusion diameter modelling relevance
In this chapter, the topic of air entrainment in free-surface flows was introduced. Sev-
eral options for its accounting have been explored before testing them against exper-
imental results. The first proposition was quickly discarded due to mesh refinement
inconsistencies. The options based on free-surface curvature and Hinze’s scale have
shown great potential in different scenarios and compared reasonably well with exper-
imental data. It seems that mass transfer is slightly overestimated with the current
method. It would be beneficial to include existing entrained air mass flux models in
the framework to make it more accurate in that regard.

The model based on free-surface curvature was not kept in the end. Even though it
gave encouraging results in the small jet case, the fact that it is based on curvature can
be troublesome. This model is predicting the size of inclusions from the free-surface
when it is no longer precisely defined. This contradiction led us to favour the last
model instead. We think the previous remark is still a challenge for the last model
but to a lesser degree. Finally, this work focuses on predicting the correct inclusion
size. As was introduced at the beginning of the chapter, mass flux is also an important
quantity describing the phenomenon. To broaden the scope of the thesis, it should be
thoroughly studied as well. First, we would need to compare current mass flux with
existing entrainment model and update the continuous to dispersed transfer criterion
if these two quantities are not matching. This is important since, in the two cases, the
air mass transfer from continuous to disperse seems to be overestimated.
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5 | Analysis of liquid-gas-solid flows
simulations

This last chapter is dedicated to the comparison between the liquid-gas-solid flows
models developed in chapter 3 and experimental results. The main goal is to provide
valuable data illustrating the capabilities and limitations of the Lagrangian stochastic
and Eulerian velocity moments methods. Some cases provide in depth quantitative
comparison while others, more complex, exclusively focus on a more qualitative com-
parison. Two particle loaded bubble columns test case are presented. In the first one,
the solid loading is sufficiently low to enable Lagrangian stochastic as well as Eulerian
simulations. The second case focuses on high particle loading, it is simulated with the
Eulerian approach only. The other configurations consists in experiments carried out
in the LNHE department at EDF R&D. They consists in several scenarios of water-
particle jet. Their goal is to develop a better understanding of the particle behaviour in
liquid-gas flows. Finally, the models are tested on an integral case of primary interest
for the company: the liquid-gas-solid flow in a experimental representation of a reactor
building during a loss of coolant accident.

5.1 Water bubble columns loaded with particles
Bubble columns and particle bubble columns are rarely found in nuclear or hydroelec-
tric power plants. However, partners such as the IMFT are interested and it is a great
opportunity to broaden the application fields of neptune_cfd. Thus reaching different
communities which may not have had an interest in the software yet. It also shows
that the methods are more robust since they can be applied to different configura-
tions. These devices are often found in chemical plants and they are the ideal setup for
Fischer-Tropsch synthesis reaction Basha et al. (2015) to take place. They are usually
safer, easier and more efficient to run than packed bed reactors Duduković et al. (2002).
They consists in a water column with an air inlet on the bottom. It can be rectangular
- as it is in the two cases studied - or circular. The solid particles are already present
in the water column before air is injected. They are therefore laying on the bottom
which can be challenging in numerical simulations due to friction and contact forces.
Air is injected most frequently through small holes at different mass flux. The flow
regime depends on it. For low mass flux the regime is laminar, bubbles are uniformly
dispersed; when the mass flux is increased, a transition regime sets up until the bubble
coalescence regime is reached. In the latter, large air pockets appear, the water height
also increases. If inlet air mass flux grows, the strong turbulence regime is reached.
In this regime, there are no regularities. The flow is highly turbulent, coalescence and
breakup occur at a very high pace. More details on the definition of each regime can
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be found in Li et al. (2014). Inlet bubble size depends on the flow and orifice charac-
teristics. Experimental correlations may help defining its value (Davidson, 1960). The
size, density and mass loading of solid particles play a key role as well in the regime of
the bubble column. Depending on their physico-chemical properties, they can enhance
or inhibit bubble coalescence and breakup. Since the bubble column is highly sensitive
to bubble size, this can have a noticeable impact.

5.1.1 Lightly loaded bubble column

The first scenario consists in a 3D rectangular bubble column described in Li et al.
(2014); Li and Zhong (2015). The particle loading is 3% - sufficiently low to enable
both Lagrangian stochastic and Eulerian simulations. The particle p and fluids char-
acteristics are summed up in table 5.1. g represents the air phase while w represents
the water phase. The global geometry and measurement setup are described in figure
5.1. In the experimental setup, pressure sensors are mounted on the side wall in four
different locations shown in figure 5.1. Since there are no other measurements, this
case primarily allows for a comparison between the two methods rather than a proper
experimental comparison.
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Figure 5.1: Experimental setup sketch inspired from Li et al. (2014). Red stars indicate
pressure probes and the right shape represents the sintered plate for the air inlet.
Distances are in meters.
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Figure 5.2: Pictures taken from the experiments carried out in (Li et al., 2014). In the
initial setup the particles are stacked on the bottom. When the inlet air flux rate is
increased, the flow becomes more and more chaotic (left to right). A clear curvy path
for rising bubbles can be seen from the third picture on.

Particles ρp dp Fluids ρw ρg νw νg
kg m−3 µm kg m−3 kg m−3 m2 s−1 m2 s−1

(m11) 2500 150 1000 1.225 0.001 1.85× 10−5

Column Height Width Depth Air flux Loading Pressure Water heigth
m m m m s−1 - Pa m

(m11) 0.8 0.1 0.01 0.16 3% 101 325 0.12

Table 5.1: Characteristics for the particles, fluids and column used in the experiments
of Li et al. (2014).

Simulations are carried out on the same meshes in both approaches. These contain
60 000 and 100 000 cells. The bottom boundary is an inlet. Air mass flux is qg = 1.94×
10−4 kg s−1, its velocity is vertical, the volume fraction is αg = 0.1 and the associated
diameter is db = 3 mm. The top boundary is a pressure outlet where P = 101 325 Pa.
All other boundaries are walls. Particles do not deposit on the walls, they elastically
bounce off them. The column is initially filled up to the 0.12 m mark and the time
advancement is adaptive. Collisions are not taken into account. In the experiment,
the particles are initially at the bottom of the column. However, this is not simple to
reproduce in the Lagrangian framework. Therefore, to keep things consistent between
the two approaches, we decided to uniformly distribute them near the bottom wall
(y < 0.01 m). Turbulence is second order Reynolds stress model for the two continuous
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phases and dispersed inclusion diameter can vary according to the interfacial area
transport equation method.

Figure 5.3: a) Photograph of the experimental setup (Li and Zhong, 2015), b) sketch of
the bubble column from Li et al. (2014), air volume fraction in the Eulerian simulations
with (c) and the Euler-Lagrange simulations (d) with neptune_cfd.

Figure 5.3 shows instantaneous air volume fraction obtained with the two methods
developed. It also shows a photograph of the experimental setup and a sketch describing
the case by the original authors. In both the simulations and the experiments, air
structure tends to coalescence and rise towards the top of the column in the centre
of the device. This is also observed when plotting averaged vertical air velocity. In
the simulations, larger air structures are seen whereas in the experiments, the bubbles
tend to be limited in size. They form a sort foam rising the water level in the column.
We assume this discrepancy is related to surface tension effects of particles on the
coalescence phenomenon. Since it is not taken into account in the simulations, there
is no limiting factor to the size bubbles can reach. This difference also causes the
simulated pressure to be higher in the column than it is in the experiments as shown
in figure 5.4. The rise in water level is due to an increase in air holdup which tends to
decrease the overall pressure in the apparatus.
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Figure 5.4: Comparison between simulated pressure and experimental data from Li
and Zhong (2015).

Comparison between Lagrangian and Eulerian simulations show the effect of re-
verse coupling on the fluid phases is limited since the results are similar. Similarly,
collisions and reverse coupling in the turbulence model has been seen to have little
effect on the pressure results. This is probably because the particle loading is low
(αp < 0.03). Finally, a sensitivity study was performed on the dispersed bubbles coa-
lescence and fragmentation models. Simulations with constant diameters ranging from
db = 0.1 mm to 1 mm showed there was no influence of such a parameter. Simulations
with different inlet diameters ranging from db = 0.1 mm to 3 mm and activated coa-
lescence and fragmentation models led to a similar conclusion. These can be seen in
figure 5.5.
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Figure 5.5: Simulated pressure sensitivity study. C/F denotes simulations with coales-
cence and fragmentation.

Even though this case is mostly qualitative, it still enabled a successful comparison
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between the two methods and already highlighted some possible ways to improve them.
In the next section, we study, with the Eulerian model, a similar bubble column with
much higher solid fraction leading to a different range of conclusions regarding the
parameters of interest and the behaviour of the model.

5.1.2 Heavily loaded bubble column

The second scenario also consists in a 3D bubble column with square section (Ojima
et al., 2014). This time however, the original study focuses on heavy particle loading
(from 0% to 40%) meaning the Lagrangian stochastic model is not applicable anymore.
The notations are the same as in the previous case. The geometry and measurement
setup are shown in figure 5.6, the fluid and particle characteristics are summed up
in table 5.2. In the original publication, measurements include air volume fraction on
profiles shown in figure 5.6 on the plane y = 0. The uncertainty on those measurements
is between 1 and 2% - precise enough compared to the uncertainty of multiphase flow
simulations. It also includes liquid velocity plots obtained from simulations with the
N + 2 method. Finally, it provides instantaneous snapshots of the bubble column
flow for three different loadings. The two quantities will provide good comparison to
experimental data as well as existing numerical model supposed to be more precise.
The snapshots will be helpful for qualitative understanding of the numerical results.
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Figure 5.6: Experimental setup sketch inspired from Ojima et al. (2014). The right
shape represents the sintered plate for the air inlet and the red dotted lines represent
planes where measurements are made. Distances are in meters.
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Particles ρp dp Fluids ρw ρg νw νg
kg m−3 µm kg m−3 kg m−3 m2 s−1 m2 s−1

2250 100 1000 1.225 0.001 1.85× 10−5

Column Height Width Depth Air flux Loading Pressure Water heigth
m m m m s−1 - Pa m
1.2 0.2 0.2 0.034 0 to 40% 101 325 0.8

Table 5.2: Characteristics for the particles, fluids and column used in the experiments
of Ojima et al. (2014).

Simulations are carried out with the Eulerian velocity moments method only on
three meshes with wall refinement with respectively 576 000, 770 048 and 1 109 760 cells.
The bottom boundary is an inlet. Air mass flux is qg = 1.66×10−3 kg s−1, its velocity is
vertical, the volume fraction is αg = 1 and the associated diameter is db = 1.4 mm. The
superficial velocity JG is defined from the inlet mass flux and surface area. Simulating
each individual hole is time consuming so we chose a modelled approach instead. The
top boundary is a pressure outlet where P = 101 325 Pa. All other boundaries are
walls. Particles rebound on all the boundaries except for the top one which they can
exit from. However, they are not supposed to cross it. Initially, the column is filled
with water up to z = 0.8 m with the particle loading uniformly distributed in water.
We assume that once the steady state is reached, the turbulent mixing is sufficiently
intense to render the initial particle distribution irrelevant. This has been done to
avoid having to simulate a sedimented bed of particles which can be tricky and is not
in the scope of the thesis. Once the computation gets to a steady state, the results are
averaged for 20 s. The first tests allowed us to highlight the major impact bubble size
have on the column height. Smaller bubbles rise slowly to the surface due to reduced
buoyancy while larger bubbles do it much more rapidly. The size of bubbles is related
to the inlet diameter and the coalescence and breakup model. To assess its impact,
several models are tested. They can be found in Prince and Blanch (1990) and Luo and
Svendsen (1996). The difference between the two approaches resides in the breakup
efficiency computation. In the model from Prince and Blanch (1990), the efficiency
is related to the turbulent kinetic energy of the liquid eddy and the surface tension
forces of the bubble to be broken down. The model from Luo and Svendsen (1996)
considers the surface tension forces of child bubbles as well. This change in paradigm
seems to have a sizeable effect in the configurations faced during the thesis as shown
in the results.

Different fragmentation models are explored in the first place. In figure 5.7, simula-
tion results with the original fragmentation model are compared with results obtained
without the fragmentation model or with the new breakup model considered. The
profiles show that for larger bubbles, the upward velocity is greater and the air volume
fraction is smaller as expected.
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Figure 5.7: (left) Air volume fraction compared to experimental probe measurements.
(right) Air upward velocity compared to simulation results with the N + 2 method.
Data is obtained for different fragmentation models on the horizontal profile z = 0.6 m
for an air superficial velocity JG = 0.034 m s−1 and particle loading Cs = 20%.

Simulations are then performed on three meshes to check spatial convergence. Av-
eraged air volume fraction is shown in figure 5.8. The "reference" mesh (with 770 048
cells) seems to be sufficiently fine to capture the correct air behaviour in the column
(It was also the mesh used in the previous fragmentation model study).
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Figure 5.8: Air volume fraction compared to experimental probe measurements. Data
is obtained for different meshes on the horizontal profile z = 0.6 m for an air superficial
velocity JG = 0.034 m s−1 and particle loading Cs = 20%.
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On the reference mesh, different models for the weighting coefficient have been
tested. The aim is to illustrate the limitations of the standard model initially suggested
and justify the use of other expressions.

0.00 0.02 0.04 0.06 0.08 0.10
x (m)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

g(
)

Ojima et al. (2014) - Cs=0.2
f = f

g
g

Particles carried by water only
Complete Lambda model

f = f f

g
g g

0.00 0.02 0.04 0.06 0.08 0.10
x (m)

0.2

0.0

0.2

0.4

0.6

0.8

u g
,z

(m
/s

)

Ojima et al. (2014) - Cs=0.2

Figure 5.9: (left) Air volume fraction compared to experimental probe measurements.
(right) Air upward velocity compared to simulation results with the NP2 method. Data
is obtained for different weighting coefficients on the horizontal profile z = 0.6 m for
an air superficial velocity JG = 0.034 m s−1 and particle loading Cs = 20%.

With the standard model λf = αf/
∑
f ′ αf ′ , the particle velocity is not correlated

to the phase it is in. The predicted time each particle spends in the air is therefore too
large. Thus, in the simulation, air bubbles tend to be dragged down by particles more
then they are in the experiments. For other weight models, the momentum exchange
between particles and bubbles is lower since particle velocity increases when they en-
counter air. This phenomenon is shown in figure 5.9 where a similar effect as for the
different fragmentation models can be seen. When air experiences more drag because of
smaller bubbles or more interaction with particles, the amount of air holdup increases
and its upward velocity decreases. Finally, this figure shows the improvement obtained
with the two carrier field model compared to the one carrier field approach. When
water is the only phase interacting with the particles, bubbles are no longer dragged
by particles which speeds their flow upwards and reduces the air content in the column.

All in all, the results shown by the velocity moments method on this specific bubble
column are satisfactory. They match experimental measurements when they are avail-
able and they compare well with simulation data obtained with advanced modelling
approaches. Another comparison has been performed between the Eulerian method
and the N + 2 method for bubble size distributions. It is shown in figure 5.10.
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Figure 5.10: Air bubble size probability density function comparison between the pub-
lished simulations (dashed lines) and the present study (solid lines). Data is obtained
on the horizontal profile z = 0.6 m for an air superficial velocity JG = 0.034 m s−1

The size distribution is obtained with reconstruction from the interfacial area, the
air volume fraction and expression 2.90. Once the steady state is reached, all the
time steps are used to compute the distribution to widen the statistical sample. There
are several comments worth pointing out in this comparison. First, in the present
simulations, no bubble larger than around db = 20 mm is simulated. This is much
smaller than the biggest bubble reached with the N + 2 method. This has to do with
the way bubbles are accounted for in both methods. In the present study, the conditions
lead to large bubbles being simulated rather than modelled in the dispersed approach
while in the N+2 simulations, there is no transition to resolved interfaces until bubbles
reach the column surface. They are free to grow indefinitely. Snapshots in figure
5.11 illustrate these resolved interfaces and how they are bigger and more frequent
when the particle loading increases in the Eulerian model. Secondly, in the current
simulations, there is no decrease in peak bubble size probability (around db = 10 mm)
with increasing solid loading. This decrease is observed in the bubble size density
distribution obtained with the N + 2 approach. However, it is exclusively caused
by the accounting of larger structures in the size distribution normalisation factor.
Indeed, if the distributions are truncated at db = 20 mm (maximum size modelled in
neptune_cfd) and re-normalised, the decrease in peak probability disappear. In the
high loading case (Cs = 20%), the size of large resolved air pockets reaches db = 50 mm.
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5.1. Water bubble columns loaded with particles

Figure 5.11: Snapshot of three different particle loadings at JG = 0.034 m s−1. a)
Photographs of the experimental apparatus in the near-wall region, b) volume fraction
of bubbles of diameter db = 57 mm simulated with the NP2 method from Ojima et al.
(2014). c) Present simulations air volume fraction αg with the multi-Euler method.
The scale for the Eulerian simulation is shown on the far right side.
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Figure 5.12: (left) Air volume fraction compared to experimental probe measurements.
(right) Air upward velocity compared to simulation results with the N + 2 method.
Data is obtained on the horizontal profile z = 0.6 m for an air superficial velocity
JG = 0.034 m s−1

Finally, results for all particle loadings are shown in figure 5.12. They highlight the
correct behaviour of the simulation when solid concentration increases. Mainly, the
fact that with more particles, air bubbles tend to flow upward more rapidly, decreasing
the air holdup. This mechanism is visible in the experiments and the simulation re-
sults in the N + 2 framework. The correction coefficient introduced in the coalescence
efficiency in the work of Ojima et al. (2014) has been tested but provided no further
improvement in the results.

In the previous section, we provided simulation results for two bubble columns. The
new methods developed, when applicable, showed consistent behaviour. In the case of
high solid concentration, the velocity moments method performs well, its predictions
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are close to experimental results as well as published numerical data. The ability to
capture multiple regimes has been a key property of the framework and its predictions
are consistent with experimental results. To improve the comparison and make it
even more reliable, it would be useful to work on resolved large bubble identification
to include them in the bubble size distribution function. It would be interesting to
explore other fragmentation models since they seem to have a major influence on the
simulation results. An example of such model can be found in Shi et al. (2018).

5.2 Canal with particle loaded water jet
The next three cases explored represent experimental setups developed in the LNHE
department at EDF R&D. They are presented in a chronological order to illustrate the
motivations behind each case. The first case, even if much simpler than the integral
final case, was still too complex. There were too many interacting phenomenons which
made the simulation difficult. It was therefore decided to develop a simpler case where
air entrainment is no longer encountered. Instead, the interaction between bubbles and
particles was studied through the use a bubbler. Thus, the diameter of bubbles is easier
to estimate compared to the plunging jet case. They are all set up around a rectangle
channel open at the top, of length 60 m, height 1.0 m and width 0.6 m. The channel is
modular, it can be divided into smaller portions, it is filled with water up to 0.6 m and
it can enforce a transverse current of qc = 0.1 m s−1. The three cases include a circular
water jet of diameter Dj = 0.08 m. The latter can be located in different positions
and can be loaded with particles depending on the case considered. The water flux in
the jet is around qj = 10 L s−1 and the water supply comes from a ΩT = 1000 L tank
where particles are stirred to ensure uniformity of the solid concentration. This water
flux corresponds to a mean jet velocity at the inlet point of Uj = 2 m s−1. For all the
cases, we consider 25 kg of solid spherical particles of density 2500 kg m−3 and radius
60 µm. This corresponds to 1% volume loading in the tank and jet. Thus, Lagrangian
stochastic simulations are achievable. When the tank is empty, the jet stops. The
detailed experimental protocol is always the same, it is described below.

1. The channel is filled with water

2. If the scenario includes a transverse current, it is activated until a steady state
is reached (the bubbler, if present, is activated as well)

3. The water jet is activated for 100 s. During that time, depending on the scenario,
measurements are made on the flow (solid concentration or PIV).

4. When the water jet stops, the bubbler and transverse current are stopped until
there is no flow in the channel and all the particles have deposited on its bottom.

5. The channel is slowly dried out and particles are weighted in each zones. After
the last step, the channel is ready to be filled with water again.

The emptying of the canal, the weighting and drying of the particles are quite labour
and time consuming steps. Therefore, each experiment can take up to several days.
There are several measurements available in this experimental setup. Particle image
velocimetry has been used to characterise the two-phase flow before the introduction
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of solid particles. This is highly valuable since it enables a thorough evaluation of the
liquid flow in simulations before switching to the more complex liquid-gas-solid case.
Since these studies were performed before the start of the thesis we are not presenting
them here, they were used to check the correct implementation of the new models but
they were not used for comparison purposes. In later configurations solid concentra-
tion sensors have been added to the setup. The output can be directly compared to
simulation data which makes it a powerful comparison tool. These sensors consists in
ultrasound emitters and receivers located on one side of the tank (red dots in figures
5.24 and 5.35). The wave emitted bounces off the facing wall and is received on the
same side it was emitted from. They are first calibrated in a small homogeneous bath
filled with increasing solid concentrations to get the characteristic response and then
bonded to the side of the final channel. Since calibration is done with an homogeneous
bath, no information is available on the sensor behaviour in inhomogeneous flows. Fi-
nally, the total mass deposited in each zone (regions separated by dashed lines in figure
5.13) is weighted. In the results, the total mass measured in each zone is plotted at
the position of the region’s centre.
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Figure 5.13: (top) Deposition regions in the impacting jet case. Only the right-hand
side part is shown here, the other side is symmetric. (bottom) Deposition regions in
the submerged jet case. Distances are in meters and the jet is located at the 0 marker.

5.2.1 Impacting water jet

In the first of three channel cases, the jet is located above the free-surface, it is perpen-
dicular to it and an obstacle is diverting the jet into a cone shape. Details about the
geometry of the setup and the obstacle can be found in figure 5.14. This configuration
aims at representing, in a simpler manner, the situation encountered in the industrial
scale scenario presented in the last section of this chapter. PIV measurements have
been performed and were used to assess the accuracy of the two-phase flow simulations.
Since this work had been carried out prior to my thesis it is not presented here.
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Figure 5.14: Schematic representation of the impacting water and particles jet per-
formed at the LNHE department. Distances are in meters.

Simulations are carried out with the Lagrangian and Eulerian approaches. Details
on the mesh can be seen in figure 5.15 which contains 1 034 456 hexahedron cells,
second order Reynolds stress models are selected for water and air, the generalised
large interface method is selected initially with constant diameter db = 5 mm. The
influence of db will be assessed in the Eulerian simulations. The time step is such
that the CFL condition is CFL < 1. The top boundary is a pressure outlet with
P = 101 325 Pa, there are two water outlets on both ends of the canal which balance
the water jet inlet flux. All other boundaries except the jet inlet defined earlier are
walls. The experimental protocol is followed except for the drying part, we stop the
simulation once 95% of the total particle mass is deposited.

Figure 5.15: Details on the mesh used for the simulation of the impacting jet case.

Euler-Lagrange simulations

Lagrangian simulations are performed first. They are compared with experimental
results as well as with previous Lagrangian simulations carried out without the multi-
carrier field approach. Instantaneous snapshots of the simulation are shown in figure
5.16. They show particles are transported towards both ends of the canal near the
free-surface. They also highlight the low concentration of particles below the jet at
the beginning of the simulation. However, the turbulent mixing ends up homogenising
the solid concentration in this region as well. Thus, this is not reflected in deposition
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profiles. Figure 5.17 illustrates the results obtained with the new method. Before, most
of the particles deposited right below the injection point whereas now, the particles are
more dispersed. This change of behaviour is probably related to the fact that rising
bubbles have an impact on particles when in the previous model their impact was
only accounted through their impact on the water phase. The fluctuating motion of
particles is also more consistent with water and air turbulent quantities compared to
the original method. The method is still unable to predict the deposition of particles
in the region further away from the jet impact point but results are still promising.

Figure 5.16: Instantaneous air volume fraction in the impacting jet case simulated with
the Euler-Lagrange method. Black dots represent Lagrangian particles tracked during
the simulation.

In Lagrangian methods, it is common practice to check not only the spatial and
temporal convergence but also the statistical convergence with regards to the number of
injected particles. Two simulations have been performed with 1 to 5 particles injected
per time step. Figure 5.18 shows that increasing the number of particles does not seem
to have an impact on the results. They are either statistically converged or still need
more particles which computing capabilities do not allow for.
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Figure 5.17: Total mass deposition at the end of the simulation in the Lagrangian
simulations.
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Figure 5.18: Deposited mass depending on the number of particles injected per time
step.

Eulerian velocity moments simulations

Eulerian simulations are performed as well with the kinetic stress model to account
for particle agitation. They are compared to experimental results and the Lagrangian
approach. Figure 5.19 shows instantaneous solid concentration snapshots obtained
with neptune_cfd. They illustrate that particle dispersion is qualitatively similar to
that obtained with the Lagrangian method. Initially, particles tend not to accumulate
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below the jet impact point. As the simulation advances, turbulent mixing transports
particles even in that region but it seems to be at a lower rate than in the Lagrangian
framework. Also, with the current model, it seems that more particles are transported
away from the jet origin. The free-surface and jet properties seem to be unchanged, the
reverse coupling has a negligible effect probably because the jet is oriented downwards.

Figure 5.19: Instantaneous solid volume fraction in the impacting jet case simulated
with the Eulerian method.

The first parameter we looked at is the air bubble diameter at the inception point.
Since it completely changes the air content below the free-surface, it plays a key role
in particle transport as shown in figure 5.20. When air bubbles are smaller, more air is
entrained and its rise velocity is lower as well. This causes particles to flow downwards
more slowly. They then deposit further away from the jet impact point. On the other
hand, when air bubbles are larger, they rise faster to the surface and less air is held up
below the free-surface. This causes particles to fall more slowly thus depositing further
away from the pipe. This shows the importance of having a predictive model for the
entrained inclusion diameter (see chapter 4).
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Figure 5.20: Total deposited mass for two different bubble diameters.
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Figure 5.21: Total deposited mass for different particle deposition boundary conditions.

Another parameter of the simulation, presented in chapter 3, is the type of deposi-
tion model for the particle phase. Three boundary conditions are considered, an outlet
for the particles, a deposition flux based on terminal velocity and a deposition flux
based on the particle vertical velocity in the wall cell. Results in figure 5.21 show that
the three models are equivalent. There are slightly more particles depositing near the
centre of the channel with the outlet condition or the deposition flux based on the cell
vertical velocity but, all in all, the difference is negligible.
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Figure 5.22: Total deposited mass for low solid concentration (re-normalised).

To assess whether particle impact on fluid quantities is important, a simulation with
low solid concentration is performed and results are shown in figure 5.22. They show
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that reverse coupling does not seem to play a major role in the simulation results. This
is probably because the jet is oriented towards the bottom, particle slip remains small.
Eulerian simulations give satisfactory results, the particle dispersion is well predicted
and the parameters of the model have a predictable impact on the results.

Finally, to overcome the issue of fixing the bubble diameter at the beginning of
a simulation, we included the air inclusion entrainment model presented in chapter
4. The numerical setup is the same as in the previous simulations. The main idea
is to verify the results obtained with the additional model are consistent with those
obtained while setting the bubble diameter beforehand. This also gives us the chance
to evaluate the impacts of the initial diameter in the domain db,i and that of the
Weber critical number We,c. As seen on figure 5.23, the inclusion size model enables a
consistent prediction without the need for a parameter optimisation. Also, the results
demonstrate there is no sizeable effect of the initial diameter imposed for the air phase.
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Figure 5.23: Total deposited mass with the air entrainment model for different critical
Weber numbers and different standard diameters.

5.2.2 Immersed water jet
It was shown in the impacting jet case that air bubbles played a key role in the global
behaviour of the experimental setup. Unfortunately, it is also a complex quantity
to predict in neptune_cfd, especially in those transition regimes. Additionally, the
lack of experimental measurements regarding air mass transfer and air bubble size
distribution did not allow to overcome the software limitation. Thus, it was decided to
design a new experimental setup to reduce the uncertainty related with air entrainment
and provide data more easily comparable with CFD simulations. As illustrated in
figure 5.24, the water-particle jet is now positioned below the free-surface in order to
avoid air entrainment. Particles are now exclusively transported by water but the free
surface is still simulated thus justifying the use of the developed liquid-gas-solid models.
Furthermore, this case constitutes a foundation for the next one where a bubbler is
added in the channel to introduce an interaction between bubbles and particles. Thus,
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Chapter 5. Analysis of liquid-gas-solid flows simulations

assessing the precise prediction of the models in this case is a necessity before switching
to the case with the bubbles.

451 4 7 100

Figure 5.24: Schematic representation of the submerged water and particles jet per-
formed at the LNHE department. Distances are in meters. The red dots represent the
positions of the solid concentration sensors.

Simulations are performed on a mesh representing the complete experimental chan-
nel to avoid issues related to boundary conditions. The mesh is composed of 1 502 544
conforming hexahedron cells, there is a refinement near the jet inlet tube wall to better
model turbulence. Details of it can be seen on figure 5.25. The mesh includes the
entire canal and the elbow in the inlet pipe. A boundary layer is used in the pipe in
order to reach acceptable y+ values at the wall. Initially, in the tank and pipe, the
water height is 0.6 m. This means air is trapped in the pipe between the free-surface
and the valve located outside the channel causing an initial burst in air bubbles when
the jet is activated. The kinetic stress model is used to account for particle agitation
in Eulerian simulations.

Figure 5.25: Details on the mesh used for the simulation of the immersed jet case.

Different meshes are first tested to check whether they are refined enough to capture
the turbulence generated by the water jet. Figure 5.26 shows the results are consistent
when the mesh is refined. There is an oscillation which is not captured on the coarser
mesh, thus, the "Reference" mesh is selected for further studies. It captures the main
features of the flow while also being computationally viable. Noticeably, the jet is not
symmetric because of the elbow in the jet inlet pipe. Taking it into account is therefore
important to capture the correct behaviour. Moreover, the effect of the pipe on the
channel current - when it is activated - can be simulated only if the pipe is part of the
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modelling process. The fourth plot highlights the effect of particles on the global jet
direction towards the bottom.
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Figure 5.26: Mesh convergence study carried out with the addition of particles without
current. Axial liquid jet velocity on vertical profiles downstream the jet inlet point.

Jet shape: turbulence, air pocket and reverse coupling effects

Before tackling the liquid-gas-solid configuration, air-water simulations are performed
without the inclusion of particles. This aims at understanding the behaviour of the
liquid jet and choosing the correct modelling parameters. Two simulations are car-
ried out with the k-ϵ and Rij-ϵ turbulence models to justify the use, computationally
more expensive, of the second one. Figures 5.27 and 5.28 show axial liquid velocity
instantaneous snapshots during the water inlet start.

Figure 5.27: Effect of the turbulence model on the jet shape without particles with the
k-ϵ turbulence model.

These results, obtained on the same mesh, show, as expected, that the second order
model is able to reproduce finer velocity fluctuations. The k-ϵ, more diffusive, tends to
predict a mean flow without any fluctuations. It is also unable to reproduce the initial
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vortex generated by the jet inlet clearly simulated with the second order model. This
vortex can accumulate particles or air bubbles which may change the initial behaviour
of the setup.

Figure 5.28: Effect of the turbulence model on the jet shape without particles with the
Rij-ϵ turbulence model.

In the experimental process, air is present in the upper part of the inlet pipe, the
part that is above the water level. This is highlighted in the videos from the experience
where, when the jet is activated, a large air structure is ejected from the pipe. Thus
highlighting the presence of the large vortex obtained in the simulations. However,
since particles are not present in the pipe, this vortex does not have any influence
on their behaviour. It was assessed that both configurations - with and without an
air pocket - led to the same behaviour once the jet reached a steady state. Hence,
simulations are carried out with an inlet pipe initially fully loaded with water. Figure
5.29 shows the initial burst in the experimental setup. It is impossible to compare
the experimental advancing speed of the burst with that in the simulations since the
scale is undefined in the videos. This initial burst cannot explain the initial increase
in concentration in the experiments.

Figure 5.29: Frames of the video of the submerged water jet experiment showing the
initial air pocket bursting out of the jet pipe.

Finally, particles are injected in the domain and their effect on the macroscopic
jet characteristics are evaluated. The major difference between the Lagrangian and
Eulerian frameworks is, in our case, the lack of reverse coupling in the first approach.
The fluids are not impacted by the particle presence while, by design, it is the case in
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the second approach. Unfortunately, since the loading is not negligible - around 1%,
this has an impact on the jet orientation as shown in figure 5.30. In the Eulerian case,
the particles make the jet heavier than the surrounding flow. This causes it to flow
downwards. It was checked that, when the particle concentration is artificially reduced
in the Eulerian framework, the simulations become equivalent to those performed with
the Lagrangian method. Confirming the difference is caused by the reverse coupling
phenomenon.

Figure 5.30: Mean liquid axial velocity with iso-surfaces shown in white. In the Eulerian
case the liquid jet is clearly oriented towards the bottom.

Particle behaviour patterns without bubble plume

As expected from the preliminary studies, results shown in figure 5.31 illustrate the
major difference between the Lagrangian and Eulerian frameworks.
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Figure 5.31: Total deposited mass at the end of the simulation with both methods and
both with and without current. Squares denote experimental measurements.

In the Lagrangian simulations (dashed lines), particles deposit closer to the injection
because they slip towards the bottom of the channel due to gravity without entraining
the water jet with them. In the Eulerian simulations (solid lines), since reverse cou-
pling is taken into account, this slip is slightly slower. Particles are thus transported
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further down the channel. The plot shows, naturally, that in the case with current,
the particles deposit further away from the jet inlet point no matter the framework. It
also highlights the fact that the slip phenomenon is less pronounced. This is probably
due to its relative importance in both cases. In the simulations with current, it seems
there is an increase in particle deposition near x = 12 m which is not present in the
experiment. We struggle to understand why that is the case. The most probable cause
of this discrepancy is the inlet condition. We set a uniform velocity and concentration
inlet but this is probably not the case in the experiment. To assess whether that is the
cause or not, it would be useful to carry out a simulation with a longer inlet pipe to
establish the correct injection profiles. Since it would substantially increase the com-
puting time for relatively low benefits, we did not perform the additional computations.

In the submerged water jet case, compared to the impacting case, solid concentra-
tion sensors were added. These allow for a time evolution comparison, substantially
more informative than a final quantity such as total deposited mass which may not
illustrate local unsteady phenomenons. In the experiment, these sensors have an un-
known spatial extent and their response to non homogeneous flows is unclear. The
first task consists in trying to reduce the uncertainty on these parameters. In the Eu-
lerian simulations, these measurements are carried out in the post-processing step. A
rectangle block is defined around the sensor location. Its width matches the width of
the channel and its section has been varied to assess its impact. Since we do not know
the sensors response to non homogeneous flows, we output the maximum and average
solid concentration on the block on figure 5.32.

Figure 5.32: Solid concentration on the four sensors obtained with Eulerian simulations
without bubbles by considering either the maximum or average concentration on the
sensor block.
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Figure 5.32 shows that, in the simulations, the value matching experimental results
is the maximum solid volume fraction in the block. This seems to indicate the sensors
are extremely non linear. Their response focuses on the maximum volume fraction in
the volume. It seems that the section has little impact on the results. However, if we
reduce the width of the block, the flow in it becomes more and more homogeneous and
averaging or taking the maximum over the volume gives comparable results. Further
away from the jet injection, due to turbulent mixing, the particle concentration is
more and more uniform. At that point, taking the maximum or the average over the
control volume makes no difference at all. In future simulations, the complete width
of the channel is used together with a maximum solid volume fraction. This figure
also illustrates that simulations suffer from a lack of axial particle dispersion. Indeed,
the increase/decrease in particle concentration when the particle cloud arrives/leaves
an ultrasound sensors is too steep in the simulation compared to experimental results.
This difference is clear in the first sensor plot and less marked in the successive ones
since particles have had the time to disperse along the jet axis.

Figure 5.32 also shows the maximum solid concentration is consistent with experi-
mental results. The particle cloud hits the sensors at the correct time and the volume
fraction is well represented if the maximum is taken over the sensor block. However,
there is an initial peak in concentration that we do not predict with the solver. Experi-
mentally, this could be related to an increase in particle concentration at the beginning
of the experiment because the jet inlet pipe gets its water from the bottom of the water
tank. And, even if there is a mixing device, there could, initially, be more particles
at the bottom of the tank compared to its bulk. To qualitatively study this effect,
the solid concentration in the inlet has been changed to match a possible experimental
value. This increase can be schematically seen in figure 5.33.

Figure 5.33: Particle concentration in the jet inlet as a function of time (normalised).
δCi and δti are shown with green arrows.

It is characterised by an increase in concentration δCi and a time length δti. From
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experimental results, it seems that the increase in particle concentration lasts around
δti = 10 s. From experimental data, it seems that this increase in concentration is
around 10%. However, we tried simulating the case with a 10% increase in initial
concentration and did not achieve a noticeable improvement in the results further
down the canal. Thus, we try different values for δCi to see whether a larger increase
can explain the peak observed in experimental results. These results are shown in figure
5.34 for simulations where the jet is not stopped since the initial peak is the main focus.
The only way to get the increase in particle concentration observed experimentally
down the channel is to massively increase the initial concentration (ten times more
particles initially). This does not match with results from the first sensor and cannot
be explained by a surplus in particles due to inconsistent mixing in the tank. Moreover,
when the particle concentration is increased, its behaviour downstream is also impacted
in the simulations. On the other hand, it has to be noted that sensors were calibrated
between 0 kg m−3 and 1 kg m−3. This means that confidence in measurements from it
is low when solid concentration is higher than 1 kg m−3 - which is the case in the first
sensor. In the videos from the experiment, there is no noticeable change in particle
density at the beginning. All in all, we are not able to reproduce the first peak in
concentration observed experimentally. We also struggle to explain it from a physical
point of view. A probable cause of the difference between the simulation and the
experimental results may stem from the use of the concentration sensors. They are at
the edge of their calibration range which could induce a bias but, more importantly,
we do not know how the unsteady phenomenons near the jet injection interact with
the measurements.
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Figure 5.34: Solid concentration on the four sensors with different local increase in
particle volume fraction.

Even considering this issue, results are still encouraging, the liquid-gas-solid models
developed are able to predict the correct deposition pattern and the main features of
solid concentration during the injection. Here, even if the particles do not directly
interact with air, the presence of a free-surface justifies the use of three-phase solvers.
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Simulations were performed without the free-surface and they could not achieve results
as satisfying as these shown here. This is mostly due to the difficulties that arise
when trying to set a boundary condition mimicking a free-surface in a single-phase
computation.

5.2.3 Immersed water jet with bubble column
In this scenario, a bubbler is added on the bottom of the channel near the jet inlet.
The goal is to isolate the interaction of particles and bubbles while minimising the
number of unknown parameters; mainly, the entrained air bubble diameter we had to
set beforehand in the impacting jet case. The added device consists in a metal tube
located on the bottom wall at a distance of 2.6 m from the jet inlet. It is perpendicular
to the jet stream and contains around 50 small holes of diameter 0.35 mm. This device
produces uniformly shaped spherical bubbles with a diameter around db = 5 mm. The
total air flux in the tube is qb = 0.35 L s−1. Otherwise, the experimental setup is
unchanged and can be seen in figure 5.35. The simulation setup is also unchanged and
the mesh identical.
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Figure 5.35: Schematic representation of the submerged water and particles jet with
bubbles injection in the canal performed at the LNHE department. Distances are in
meters. The red dots represent the positions of the solid concentration sensors.

Bubble injection isolated study

Before studying the whole case, a study focused on the bubbler is presented. The aim
is to verify the coarse mesh is consistent with a much finer simulation of the bubble
plume alone. Otherwise, the mesh would have to be locally refined near the air inlet,
increasing the total computing time.

Coarse mesh Fine mesh
δx 10 mm 1 mm
δy 6 mm 0.6 mm
Air bubble inlet width 20 mm 1 mm
Air bubble inlet flux 4.2× 10−4 kg s−1 4.2× 10−4 kg s−1

Number cells/Air bubble 0.5 5

Table 5.3: Properties of the coarse and fine meshes for the isolated bubbler study.

This side study consists in a zoom around the bubbler. The idea is still not to model
each bubble creating hole and resolve every interface but to be a lot finer nonetheless.
The geometry and boundary conditions are defined on figure 5.36 and details about
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the meshes are summarised in table 5.3. The water inlet on the left-hand side of the
domain generates the channel current. The outlet condition on the right-hand side
ensures the water level stays the same during the simulation. The channel free-surface
is not accounted for, it would make the simulations longer for no extra benefit.

Figure 5.36: Geometry, boundary conditions, coarse and fine meshes for the isolated
bubbler study.

After several seconds, the flow becomes steady. Instantaneous snapshots are pre-
sented in figure 5.37. They illustrate the difference in resolved interfaces between the
two cases. In the fine mesh, there are some resolved bubbles whereas in the coarse
case, the flow stays dispersed. Additionally, it seems that, in the finer case, the bub-
ble plume is slightly thinner than in the coarse case. This is also seen in the vertical
velocity plots shown in figure 5.38. This is caused by the increased numerical diffusion
caused by bigger cells. The shape of the bubble plumes in both cases are shown on
the right-hand side of figure 5.37. They are the contour αg = 1 × 10−3 and they also
show the increased numerical diffusion in the coarse case. Interestingly, this diffusion is
mostly generated at the inlet where air is faster. Naturally, the inlet in the coarse case
being wider than in the refined case, this also leads to a larger bubble plume. With all
that considered, the shape is still quite similar.

Figure 5.37: Instantaneous snapshots of the bubbler study on the coarse mesh (left -
blue plume), the fine mesh (centre - red plume) and a comparison between the two
bubble plumes obtained (right).
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Figure 5.38: Mean vertical fluid velocity on fine (solid lines) and coarse meshes (dashed
lines). The black rectangle represents the bubbler position. Dotted black lines are the
mean fluid velocities without air bubbles.

Resolved interfaces shown in figure 5.37 measure around 5 mm. Since they match
experimental observations, this value will be used as the inlet boundary condition in
the general case. The fine mesh results are compared to a coarse mesh simulation
which corresponds to the refinement in the general case. The goal is to check the
momentum transfer between air and water is well represented even in the coarse mesh.
In figure 5.38, the vertical velocity for each phase is plotted in both meshes. The
bubbler location is pictured by a black rectangle at x = 0.5 m. The figure highlights
its impact on the mean flow and shows that the difference between the meshes is not
significant. The coarse mesh can be used to model the bubble plume correctly. To
further reduce the error introduced by the mesh, the inlet air velocity obtained in the
fine simulations is used to determine the boundary conditions on the coarse mesh.

Impact of bubble plume on the particle behaviour

As in the case without bubbles, the total deposited mass at the end of the simulation is
compared to experimental results. An issue immediately arises from standard simula-
tions. It seems that particles are not really affected by the presence of the bubbler in the
simulations. They deposit exactly as they did in the case without bubbles whereas, in
experimental results, the difference is obvious. The particle deposit uniformly through-
out the channel. To try and understand that, we can compare the experimental and
simulated solid concentration evolution in the two different configurations. Figure 5.39
shows this comparison and highlights that there is no noticeable difference between
the two concentration time series. This means that the difference in the experimental
setup occurs after the particle cloud passage or is only visible near the bottom.
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Figure 5.39: Concentration evolution in Eulerian simulations and experiments with
and without additional bubbles.

Similarly, the videos show no clear impact of bubbles on the particle cloud. It is
rather the opposite, the particles seem to have an impact on the bubbler. This is also
what is observed in the simulations as can be seen in figure 5.40. When the cloud hits
the bubble plume, it goes down with it.

Figure 5.40: Instantaneous snapshot showing the particle volume fraction and bubble
plume shape before and after the cloud hits it. The light green line indicates the iso-
surface αg = 0.1.

Our assumption is that the bubbler causes particles on the bottom of the channel
to be injected again in the flow. When this phenomenon happens, they flow down the
channel due to the jet and the current. Additionally, the bubbler and current must stop
at the same time as the jet does. But, due to practical latencies, there is a delay before
they stop completely. Thus, the bubbler re-entrain particles in the flow which has not
stopped completely and therefore transport them further downstream. These processes
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are difficult to model in the simulations, especially in the Lagrangian framework, since,
in practice, after particles deposit, they are no longer in the domain. In the Eulerian
framework, we decided to model this re-entrainment by reducing the deposition rate
ϕd computed at each time step in each cell. When the rate is 0, the particles no longer
deposit, they accumulate on the bottom wall. When everything settles down, the total
mass of particles in each zone is counted, not from the cumulative mass deposition but
rather from the total volume of particles present in the water column above the region.
This is illustrated in figure 5.41 where simulation results with a modified deposition
rate ϕd seem to give better results.
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Figure 5.41: Total deposited mass in the case with bubbles depending on the deposition
rates in Eulerian simulations and Euler-Lagrange simulation.

This comparison shed some light on the fact that, in both methods, the behaviour of
particles accumulating on a wall needs more careful modelling to be taken into account
properly. This means correctly representing the behaviour of particles in a boundary
layer and being able to reproduce the re-entrainment, slip and rebound phenomenons
which may take place. For now, this is a clear limitation of the two methods developed
during the thesis. Limitation which was not encountered in the bubble column case
since deposition was neglected. In general, the cut in computing costs introduced with
the Eulerian method allows for simulation of more complex cases, since they are not
limited to a number of particles.

5.3 Integral case : nuclear reactor building
The last experimental case studied during the thesis highlights the main motivation
for the company to work on liquid-gas-solid flows. It consists in the simulation of a
large scale experimental representation of a reactor building floor during an eventual
loss of coolant accident. As presented in chapter 1, during a loss of coolant accident,
the reactor building water level increases until the safety mechanism start getting
their water from its bottom rather than an isolated tank. If debris accumulate on the
filters located upstream the pumps, they may cause their clogging which would hinder
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the safety devices, slowing down the cooling of the reactor. Predicting the particle
trajectory or their final deposition location is therefore a key feature for liquid-solid-
gas multiphase solver or experimental setups. This is the main focus for this section, use
both methods to predict the deposition pattern in the reactor building under specific
flow conditions matching the experimental setup designed by the LNHE department.

5.3.1 Experimental and numerical setup
A photograph of the setup is shown in figure 5.42 along with the geometry used in the
simulations. The water flowing towards the bottom of the building is represented by
five vertical pipes and five obstacles. Each set of pipe and obstacle is a scaled version
of the one found in the impacting jet study presented above. There are two large, two
medium and one small pipes. Similarly to that case, the jet created has a cone-like
shape which can be seen in figure 5.42.

Figure 5.42: (left) Picture of the experimental setup and (right) associated geometry
used in the numerical simulations.

The experimental protocol is summed up in table 5.4. Water is injected to fill the
bottom pool, when it reaches a certain height, particles are also injected and outlets
are activated so that the water height decreases. After all the particles have been
injected, water continues to flow out of the pipes. Then, when most of the particles
have been deposited, the jets are stopped, the pool is dried and the total deposited
solid mass is dried and weighted in all the regions shown in figure 5.43. Particles have
a density ratio of 2.5, and an equivalent diameter of 60 µm whereas air and water are
considered to be at their standard atmospheric conditions. Other particles were tested
in the experiments but we focus on only one type, the same used in the simpler setups
presented previously.

Step Time (s) Water level (m) Water flux (kg s−1) Particle flux (kg s−1)
1 t0 to t1 0 to h1 ϕw 0
2 t1 to t2 h1 to h0 ϕw ϕp
3 t2 to t3 h0 ϕw 0

Table 5.4: Steps in the experimental protocol.

The first and third steps being irrelevant in numerical simulations, these are started
at the end of step 1, when the water level is nearly at 0.135 m. They are stopped
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when most of the injected particles have deposited. The generalised large interface
method is used in order to account for both free-surfaces and dispersed inclusions in
the simulations. This is slightly more expensive but more accurate. The solid particles
are either tracked with the Lagrangian stochastic method or with the Eulerian velocity
moments method. Turbulence is second order Rij-ϵ for air and water while the particles
turbulence is accounted for with the models described in chapter 3. A pressure outlet
(P = 101 325 Pa) is defined at the top of the domain, the pipes are inlet where water
volume fraction is αw = 1 in Lagrangian simulations and αw = 1 − αp in Eulerian
simulations and the imposed flux depends on the pipe size according to table 5.5. The
particle inlet flux, when there is one, does not depend on the inlet pipe. The same
amount of solid (25 kg) is injected from each pipe. The kinetic stress model is used to
account for particle agitation in Eulerian simulations.

Size Water mass flux (kg s−1) Solid mass flux (kg s−1)
Large 112.8 0.05
Medium 28.2 0.05
Small 18 0
Total 300 0.20

Table 5.5: Inlet water and solid mass fluxes depending on the inlet pipe size.

The bottom of the pool is a rough wall where particles can deposit whereas side
panels, pipes and obstacles are walls where particles bounce off. Water outlet are also
activated during the second step to work at constant water height.

Figure 5.43: Regions where total deposited mass is weighted.

The mesh used contains 1 144 925 hexahedron cells ensuring the condition y+ < 180
at the wall, it is shown in figure 5.44. The time step is constant δt = 5×10−3 s ensuring

141



Chapter 5. Analysis of liquid-gas-solid flows simulations

the condition CFL < 5. Initially, the size of air transitioning from continuous to
dispersed inclusions is set between db = 1 mm and db = 5 mm. In the last computations,
the air bubble inclusion size will be determined by the model described in chapter 4.

Figure 5.44: Top general view of the mesh and detailed view of each injector mesh used
in the simulations.

5.3.2 Preliminary verifications
In earlier studies, LSPIV were performed on the setup without the addition of particles.
The aim was to qualitatively check if the flow prediction was accurate without the
addition of a third phase. Since the comparison was carried out before the start of my
thesis by another researcher, it is not presented here.

Figure 5.45: Clipping at αp = 0.1% of the instantaneous solid volume fraction 2, 10
and 20 seconds after the injection start.

The particle dispersion obtained with the Eulerian method is qualitatively shown
in figure 5.45. At first, particles are found just below the injectors. Then, as time
advances, particles are transported further away. Some reach the outer regions of the
domain and the outlet conditions representing the re-circulation pump channel inlet.
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At the end of the simulation, particles can be found all around the domain as illustrated
in the next section in deposition distribution plots.

5.3.3 Particle deposition distribution study
As in the canal experiments, we compare the total deposited mass in each region with
the experimental measurements. In an early study, with the original Lagrangian track-
ing model, particles were mostly falling right below the injector even though that is
not the case in the experiments. The goal is to determine if the new models predict
a more disperse deposition distribution compared to the standard simulations. Fig-
ure 5.46 shows a comparison between a Eulerian simulation with air bubble diameter
db = 5 mm and previous Lagrangian results obtained without the multi-carrier field
approach. From the figure, it can be seen that the new method predicts a much more
disperse deposition distribution. However, it seems that it also underestimates the
quantity of particles depositing below the jet. Since this phenomenon was already
observed in the impacting jet case, the entrained air bubble diameter was changed to
assess its influence on the global results. Figure 5.47 shows two different results ob-
tained with the Eulerian approach. It shows that the entrained air bubble diameter has
an impact but it does not give a better prediction for solid deposition below the jet as
it did in the channel case. We think this is related to the change in experimental setup.
Indeed, in the reactor building case, the water jet is still active after the particle flux
is stopped. This contributes to changing the way particles are transported altogether.
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Figure 5.46: Total deposited mass at the end of Eulerian simulation with db = 5 mm.

In the Eulerian simulations, more particles tend to be transported towards the
outer parts of the reactor building floor compared to earlier Lagrangian simulations. It
provides a worst case scenario answer to the clogging of the safety device filters. Results
with the new Lagrangian model did not improve compare with original simulations. We
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think this is related to the complexity of the case. We are not able to reach convergence,
thus, results are still as bad as before. To improve them, we would need to increase
the computing power, increase the number of particles and rework the mesh. Similarly,
results with the air entrainment model could not be obtained. The additional model
and the resolution of the interfacial area transport equation is too demanding, it cannot
be afforded in this complex scenario.
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Figure 5.47: Total deposited mass at the end of Eulerian simulations with db = 1 mm
and db = 5 mm.

All in all, the new models provided valuable insights on the behaviour of particles
in the LNHE experiments. In the channel case, the results as well as the differences
between the two methods are well understood and consistent with experimental mea-
surements. In the more complex reactor build setup, the results are less precise.
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6 | Conclusion and perspectives

6.1 Summary of the manuscript

After a brief introduction to liquid-gas-solid flows, the challenges this field of study faces
and the numerical methods already available, we proposed a detailed presentation of the
two-phase flow models over which we based our new modelling approaches (chapter 2).
This preliminary chapter gave us the opportunity to review the Lagrangian stochastic
and Eulerian models that exist in the literature. In that chapter, we also introduced
a new stochastic model for the fluid velocity seen at the position of the particle and
tested in on several analytic or verification cases. This new model was driven by the
inconsistency of existing models in the large inertia case of particles in an established
turbulent channel. Finally, the framework of netpune_cfd is presented at the end of
the chapter.

Chapter 3 focuses on presenting the two new methods for liquid-gas-solid flows
developed during the thesis. The Euler-Lagrange approach is based on the classic
Lagrangian stochastic model. It considers as many fluid velocities seen by the particle
and stochastic equations as there are continuous fluids susceptible to carry each solid
particle. The influence each phase has on the particle is represented with the weight
coefficient λf for which we proposed several closures. A first order numerical scheme
solving the stochastic system is then suggested. Two simple verification cases are
presented. One analytical, where particles fall through an air-water interface and we
ensure the correct behaviour of the solver; the second is similar but with experimental
measurements. From this new Lagrangian model, we derive a multi-Eulerian framework
according to common practice in two-phase flows. A thorough verification is performed
to establish the consistency of the interfacial transfer term between the mean equations
obtained for the continuous phases and the dispersed phases. Then, the Lagrangian
model is used to close the system and obtain evolution equations for the particle phase
mean quantities and its turbulence. Reverse coupling and collisions are rapidly explored
before introducing the turbulence and gravity deposition models used during the thesis.
In this last section we also explore verification test cases with the Lagrangian stochastic
model for particle depositing in a turbulent channel. We suggest using interpolation
or an existing probabilistic model to enhance the results.

In the following chapter 4, air entrainment phenomenon is explored. It constitutes
a sizeable challenge encountered in the experimental cases we tried to reproduce, hence
our interest in it. After a literature review of the mechanism driving air entrainment
and the numerical methods which account for this phenomenon, we propose a model of
our own, embedded in neptune_cfd. This new model’s prediction are then compared
against experimental data for a small size laminar jet, a large over-flowing turbulent jet
and an hydraulic jump. Depending on the case, satisfactory results were obtained with
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different model closures. In the case where air entrainment is driven by small scale
surface instabilities, the model based on the free-surface curvature is more effective
whereas in the case where large turbulent eddies seem to be the cause of aeration, the
model based on Hinze’s scale performs better.

The last chapter compiles the different liquid-gas-solid configurations used to eval-
uate the performance of the methods developed during the thesis. First, we considered
two bubble columns loaded with particles. The main motivation for the subject was to
provide an outlook on other topics which might not be the core interest for EDF but
that still constitute valuable configurations from an academic or industrial standpoint.
Lagrangian and Eulerian simulations could not be performed in both studies which
highlighted the necessity, in some scenarios, for collision and two-way coupling models.
These illustrated the key role played by coalescence, fragmentation models in air-water
bubbly flows. They also highlighted the need for careful weight coefficient closures.
The second series of test cases were based on experiments carried out in the LNHE
department of EDF R&D. These were designed to evaluate the accuracy of numerical
simulation predictions for three-phase flows in order to increase the confidence on the
model’s prediction for an industrial scale experiment presented at the end. Again,
these cases gave us the opportunity to highlight the importance of the air entrainment
phenomenon and the necessity to model it precisely. They also illustrated the differ-
ence between the Lagrangian and Eulerian approaches, specifically in terms of two-way
coupling. Finally, these cases stressed the need in more precise deposition models. A
simple one was introduced and its limitations were clearly visible in the submerged
water jet case.

All in all, both methods were successfully used in different scenarios at different
scales. These put forward their advantages as well as their limitations. The main
quality of the Eulerian approach, at least in the framework we have, is its ability to
naturally take into account the impact of the solid phase on the continuous fields. It is
also quite fast compared to Lagrangian simulations. It requires more equations to be
solved but the time step is not as restricted as in the Lagrangian case and, moreover,
for scenarios with many particles, the time spent solving the stochastic system can be
vastly superior to that spent for the Eulerian equations resolutions. This also enables
simulations with high solid concentration to be carried out. Simulations which would
be impossible with the current Lagrangian approach due to the enormous amount of
particles needed to describe the solid phase. All these comparisons highlighted the
difficulties that arise when experiments are numerically recreated. No matter how
careful the work, there will always be some indefinite experimental parameter which
has an important impact on the numerical results. In our case, several such parameters
have been observed, some are indefinite due to the nature of the measurement device
and some are indefinite due to an inability to extract them from the setup.

6.2 Enhancements of the developed models
The two methods developed during the thesis constitute valuable tools for the numer-
ical simulation of liquid-gas-solid flows in an industrial context. However, there are a
number of areas where improvements are needed. These were not explored during the
thesis but were identified as key perspectives to improve the framework. Hereafter is
a description of these perspectives.
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The most accessible area involves particle deposition modelling. Studies have shown
the limitations of the current approach, working on it would most certainly lead to bet-
ter, more robust results. In the Lagrangian stochastic approach, this is considered as
a major challenge since the current approach lacks consistency for particles near a
boundary layer. Tackling the deposition problem correctly implies, either to rework
the stochastic model and include a more sophisticated approach or, as was hinted at
in chapter 3 to consider a probabilistic approach where particles are not transported
to the boundary face. In the second option, as in deposition/rebound, a probability
could be used to account for particle re-entrainment or slip. If a more sophisticated
stochastic model is chosen, a special focus should be made on particle behaviour when
it hits a boundary face in order to make sure all the possible scenarios are represented.
In Eulerian simulations, the solid mass flux near the wall, which actually represents
particle deposition, could also be used to account for particle slip or re-entrainment.
The model suggested in chapter 5 is very basic and naive, a more consistent model
should be developed instead. Also, in both methods, we could imagine coupling the
deposition model to an immersed boundary method to account for the obstruction gen-
erated by sedimented particles. With an Exner type equation (Paola and Voller, 2005),
it could be possible to determine the evolution of the immersed boundary conditions
due to deposition, re-entrainment (or erosion) and slip. Numerical results from Eule-
rian simulations of solid beds could also help determine the behaviour of such granular
boundary.

Another topic which may benefit from more investigation is turbulence modulation.
As soon as particles are transported in a continuous structure, they impact its turbu-
lence. Either production or damping, their effect depends on the flow characteristics.
In this thesis we only addressed the topic once in chapter 3. This should drive more
interest in the matter. Additionally, there is a serious challenge regarding turbulence
models and the multi-regime modelling approach used in neptune_cfd. Indeed, con-
tinuous turbulence models are applied when a continuous phase is transferred into a
dispersed one. Some terms are added to account for the change in scenario but more
work is necessary to make them more consistent. Additionally, it should be kept in
mind that we assumed, in the Eulerian and Lagrangian frameworks, that there was no
correlation between the velocity fluctuations of two different fluids carrying a particle.
As long as all the fluids are continuous, this is not an issue. However, this is not the
case near a resolved interface and in the multi-regime model in neptune_cfd. In these
cases, the velocity fluctuations of the two fluids are correlated. Thus, additional terms
are required in the Langevin equations to account for this coupling. Also, particles may
have an impact on other dispersed structure turbulence. This is unaccounted for at
the moment but it would be interesting to see its impact and what are the scales where
this phenomenon might be predominant. Not to mention that turbulence modulation
models for two-phase flows are still under development. Lastly, the impact of particles
is not accounted for in the bubble coalescence and fragmentation models. A simple
model was tested in chapter 5 but no clear improvement could be noted. However,
particles may induce breakup when they collide with bubbles or increase coalescence
by promoting film drainage. Thus, an in depth exploration of the topic might lead to
better modelling approaches.

A serious limitation, caused by the current framework we are working on, is the
lack of reverse coupling and collision modelling in the Lagrangian approach. As we
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have seen, this introduces, in many configurations, errors which would be avoided
otherwise. However taking these matters into account is far from easy. As hinted at
in chapter 2, reverse coupling terms might render the fluctuation formulation a lot
more difficult to implement. To take it into account, source terms should be added
in the continuous evolution equations and, in turn, they should be added as well in
the stochastic equations. There are models that already exist for two-phase flows,
they could be adapted to make them compatible with the multi-carrier formulation
presented in chapter 3. Similarly, collisions are not easily accounted for in Lagrangian
frameworks. Even though this phenomenon appears only for high solid volume fraction
hardly accessible with particle tracking methods, being able to take collisions into
account could make the model more accurate. This would not be necessary for the
cases studied during the thesis but it might be in other situations.

One last effect related to particles, not taken into account in this manuscript be-
cause negligible in our case, is the effect particles have on free-surface. Since they carry
air in their wake when crossing a water interface, if many particles are doing it at the
same time, this can have a sizeable effect which requires modelling.

On the topic of air entrainment, there are many possible ways of boosting the model
performance and accuracy. The first modelling aspect which needs more research is
the mass transfer modelling between continuous air and dispersed bubbles. For now,
this transfer is the output of the simulation and it might be overestimated compared
to experimental results. Depending on the flow quantities, a certain fraction of air
is considered continuous while the other is considered dispersed. It would be useful
to be able to introduce a forcing term which defines the mass transfer between the
two structures (continuous and dispersed). This could also be performed with a three
field formulation. Similarly to what is done in GENTOP, by defining the dispersed
inclusions and the continuous structures as separated entities, it is easier to control
the mass transfer between the two. It is also easier to set the inclusion sizes when
mass is transferred. This model might also make it easier to ensure the conservation of
quantities involved in the process. Unfortunately, these assets are balanced out by the
increase in computational cost. Since in industrial applications it is a recurrent chal-
lenge, maybe more efforts are needed in the two field formulation to make them capture
these transition effects rather than switching to a three field formulation directly. If
we choose to keep the interfacial area method to track bubble diameters, further veri-
fication will be needed to assess whether the assumed PDF in the model is compatible
with experimental distribution of entrained bubbles. The models we introduced for
the inclusion diameter might also be subject to enhancements. The main challenge is
that we are trying to determine an inclusion size from free-surface quantities in the
specific situation where the free-surface is not resolved anymore. Therefore, more in-
vestigation is needed to make this method more consistent. Eventually, coalescence
and fragmentation model might also need to be adapted because of the presence of a
free-surface. For now, they are used as if the bubbles were located in a single phase do-
main. Unfortunately, the expression of these terms might be impacted by the presence
of an interface. This has not been investigated yet and might be an important addi-
tion to the interfacial area framework. Especially since their treatment with entrained
inclusion modelling is not straightforward. Finally, another topic which would require
further exploration is the entrained bubble turbulence. The flow characteristics at the
inception point are difficult to determine but might play a major role in the overall
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behaviour of a system.

Finally, another topic which might need further investigation is the modelling of
non-spherical particles. In industrial applications, solid objects are rarely spherical.
Most frequently they are natural compounds which tend to have fibrous geometries
instead. Since the approaches explored during the thesis are limited to spherical par-
ticles, more work is needed to extend the capabilities towards fibrous solid inclusions.
It could be possible, in the Lagrangian framework to consider several point particles
for each fiber and to include a new interaction force between them. This has not been
done and would require extensive modelling and validation.

From a long-term point of view, it seems that particle resolved direct numerical
simulations will overcome all of the challenges faced during the thesis. The transition
from resolved to unresolved interfaces does not exist since all relevant structures are
resolved and every particle and the flow around it is simulated removing the need for
specific modelling. Unfortunately, even if available computing capabilities increases to
the point where such simulations are possible, the power needed to run such simulations
at an industrial scale will be enormous. Therefore, developing models to increase the
scope of current simulation frameworks and reduce their computing time will always
be necessary. Specifically for industrial applications.
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A | Variance and covariance equa-
tions

In this appendix, we would like to detail a little further how the evolution equations
are obtained for the fluid velocity seen and particle velocity variance and fluid-particle
covariance. The main goal is to give the reader enough material to be able to reproduce
the demonstrations without having to overburden the chapters. Notations are the same
as in the chapter 2 and 3. up, uf@p and uf are the particle velocity, the fluid velocity
seen by the particle and the fluid velocities. From these, the usual fluctuations are
defined alongside an averaging operator such that x = ⟨x⟩ + x′′ = X + x′′. ψp is a
moment of the particle density probability function and C accounts for the effect of
collisions, friction and solid pressure. f and g are fluids while p represents the particle
phase and τp,f is the particle relaxation time if it evolves in phase f . In all the following
sections, the increment x 7→ dx is computed along the trajectory of a particle. The
starting equation is always the same. It is reminded hereafter:

∂

∂t
(npmp⟨ψp⟩) + ∂

∂xj
(npmp⟨up,jψp⟩) + npmp

〈
⟨dup,idt |cp, cf ⟩

∂ψp
∂cp,j

〉

+
∑
f

npmp

〈
⟨duf@p,i

dt |cp, cf ⟩
∂ψp
∂cf,j

〉
+ npC(mpup,i) = 0

(A.1)

A.1 Fluid velocity seen variance

As hinted at in chapter 2, to obtain the evolution equation for the fluid velocity seen
variance Rf@p,ij, we need to replace ψp by cf,icf,j in the general moment equation above.
By carefully computing the terms on the right-hand side of the equation, this leads to:

∂

∂t
(npmp⟨uf@p,iuf@p,j⟩) + ∂

∂xk
(npmp⟨uf@p,iuf@p,jup,k⟩) = npmp⟨

duf@p,i

dt uf@p,j⟩

+ npmp⟨
duf@p,j

dt uf@p,i⟩
(A.2)

By using the relation up,k = Up,k + u′′
p,k in the second term on the left-hand side of

the previous equation:

167



Chapter A. Variance and covariance equations

∂

∂t
(npmp⟨uf@p,iuf@p,j⟩) + ∂

∂xk
(npmp⟨uf@p,iuf@p,j⟩Up,k)

+ ∂

∂xk
(npmp⟨uf@p,iuf@p,ju

′
p,k⟩)

= npmp⟨
duf@p,i

dt uf@p,j⟩+ npmp⟨
duf@p,j

dt uf@p,i⟩

(A.3)

By using the relation uf@p,i = Uf@p,i + u′′
f@p,i and the fact that ⟨u′′

f@p,i⟩ = 0, the
previous equation becomes:

∂

∂t
(npmpRf@p,ij) + ∂

∂xk
(npmpRf@p,ijUp,k)

+ ∂

∂t
(npmpUf@p,iUf@p,j) + ∂

∂xk
(npmpUf@p,iUf@p,jUp,k)

+ ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
f@p,ju

′
p,k⟩) + ∂

∂xk
(npmpUf@p,iRfp,jk) + ∂

∂xk
(npmpUf@p,jRfp,ik)

= npmp

[
⟨duf@p,i

dt ⟩Uf@p,j + ⟨duf@p,j

dt ⟩Uf@p,i + ⟨duf@p,i

dt u′′
f@p,j⟩+ ⟨duf@p,j

dt u′′
f@p,i⟩

]
(A.4)

By expanding the partial derivatives and grouping the terms together, we end up
with:

∂

∂t
(npmpRf@p,ij) + ∂

∂xk
(npmpRf@p,ijUp,k)

+ ∂

∂t
(npmpUf@p,iUf@p,j) + ∂

∂xk
(npmpUf@p,iUf@p,jUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
f@p,ju

′
p,k⟩)− npmpRfp,jk

∂Uf@p,i

∂xk
− npmpRfp,ik

∂Uf@p,j

∂xk

+npmp⟨
duf@p,i

dt u′′
f@p,j⟩+ npmp⟨

duf@p,j

dt u′′
f@p,i⟩

+npmp

[
⟨duf@p,i

dt ⟩Uf@p,j + ⟨duf@p,j

dt ⟩Uf@p,i

]
− Uf@p,i

∂npmpRfp,jk

∂xk
− Uf@p,j

∂npmpRfp,ik

∂xk
(A.5)

The terms in red from both side of the previous equation cancel out. This can
be shown by writing down the evolution equation for the fluid velocity seen and the
particle number. The computation is the same in the two next demonstration so we
detail it here:
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A.2. Particle velocity variance

npmp⟨
duf@p,i

dt Uf@p,j⟩+ npmp⟨
duf@p,j

dt Uf@p,i⟩ =

npmpUf@p,i
∂Uf@p,j

∂t
+ npmpUf@p,iUp,k

∂Uf@p,j

∂xk
+ Uf@p,i

∂npmpRfp,jk

∂xk
+

npmpUf@p,j
∂Uf@p,i

∂t
+ npmpUf@p,jUp,k

∂Uf@p,i

∂xk
+ Uf@p,j

∂npmpRfp,ik

∂xk
=

∂

∂t
(npmpUf@p,iUf@p,j⟩) + ∂

∂xk
(npmpUf@p,iUf@p,jUp,k)

+ Uf@p,i
∂npmpRfp,jk

∂xk
+ Uf@p,j

∂npmpRfp,ik

∂xk

(A.6)

Therefore:

∂

∂t
(npmpRf@p,ij) + ∂

∂xk
(npmpRf@p,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
f@p,ju

′
p,k⟩)− npmpRfp,jk

∂Uf@p,i

∂xk
− npmpRfp,ik

∂Uf@p,j

∂xk

+ npmp⟨
duf@p,i

dt u′′
f@p,j⟩+ npmp⟨

duf@p,j

dt u′′
f@p,i⟩

(A.7)

Now we can simplify the two last term on the right-hand side of the previous
equation with the Langevin type stochastic equation:

npmp⟨
duf@p,i

dt u′′
f@p,j⟩ = npmpRfp,ik

∂Uf,j
∂xk

+ npmpRfp,jk
∂Uf,i
∂xk

+ npmpGfp,ikRf@p,kj + npmpGfp,jkRf@p,ki + npmpBfp,ikBfp,jk

(A.8)

Notice that the additional parameter Hi introduced in chapter 2 does not appear in
the variance evolution equation (also the case in the covariance evolution equations).
Its impact is only noticeable in the drift velocity evolution equation. This leads to the
final equation:

∂

∂t
(npmpRf@p,ij) + ∂

∂xk
(npmpRf@p,ijUp,k) = − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
f@p,ju

′
p,k⟩)

− npmpRfp,jk
∂Vf,i
∂xk

− npmpRfp,ik
∂Vf,j
∂xk

+ npmpGfp,ikRf@p,kj + npmpGfp,jkRf@p,ki

+ npmpBfp,ikBfp,jk

(A.9)

A.2 Particle velocity variance
To get the evolution equation for the particle velocity variance, we need to replace ψp
by cp,icp,j in equation A.1.
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∂

∂t
(npmp⟨up,iup,j⟩) + ∂

∂xk
(npmp⟨up,iup,jup,k⟩) = npmp⟨

dup,i
dt up,j⟩

+ npmp⟨
dup,j

dt up,i⟩
(A.10)

By using the relation up,i = Up,i + u′′
p,i, the previous equation becomes:

∂

∂t
(npmpRp,ij) + ∂

∂xk
(npmpRp,ijUp,k) + ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)

+ ∂

∂xk
(npmpUp,iRp,jk) + ∂

∂xk
(npmpUp,jRp,ik)

+ ∂

∂t
(npmpUp,iUp,j) + ∂

∂xk
(npmpUp,iUp,jUp,k)

= npmp⟨
dup,i
dt u′′

p,j⟩+ npmp⟨
dup,j

dt u′′
p,i⟩

npmp⟨
dup,i
dt ⟩Up,j + npmp⟨

dup,j
dt ⟩Up,i

(A.11)

Again, by developing the derivatives on the second line of the previous equation
and transferring them on the right-hand side along with the triple correlation term, we
get:

∂

∂t
(npmpRp,ij) + ∂

∂xk
(npmpRp,ijUp,k)

+ ∂

∂t
(npmpUp,iUp,j) + ∂

∂xk
(npmpUp,iUp,jUp,k)

= − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Up,i
∂xk

− npmpRp,ik
∂Up,j
∂xk

npmp⟨
dup,i
dt u′′

p,j⟩+ npmp⟨
dup,j

dt u′′
p,i⟩

npmp

[
⟨dup,idt ⟩Up,j + ⟨dup,jdt ⟩Up,i

]
− Up,i

∂npmpRp,jk

∂xk
− Up,j

∂npmpRp,ik

∂xk

(A.12)

Then, as in the previous case, the terms in red cancel out. We are left with:

∂

∂t
(npmpRp,ij) + ∂

∂xk
(npmpRp,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Up,i
∂xk

− npmpRp,ik
∂Up,j
∂xk

npmp⟨
dup,i
dt u′′

p,j⟩+ npmp⟨
dup,j

dt u′′
p,i⟩

(A.13)

Now we need to compute the two last terms on the right-hand side of this equation.
This can be done by considering the particle velocity evolution equation.
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npmp⟨
dup,i
dt u′′

p,j⟩ = npmp

∑
f

λf
τp,f

(Rfp,ij −Rp,ij)

= npmp

∑
f

λf
τp,f

Rfp,ij

−
∑

f

λf
τp,f

Rp,ij

 (A.14)

Thus ending up in the following equation:

∂

∂t
(npmpRp,ij) + ∂

∂xk
(npmpRp,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Up,i
∂xk

− npmpRp,ik
∂Up,j
∂xk

+ npmp

∑
f

λf
τp,f

(Rfp,ij +Rfp,ji)
− 2

∑
f

λf
τp,f

Rp,ij


(A.15)

A.3 Fluid seen-particle velocity covariance
Finally, the process is similar with the fluid velocity seen-particle velocity covariance
tensor evolution equation. We need to replace ψp in equation A.1 by cf,icp,j. This leads
to the following relation:

∂

∂t
(npmp⟨uf@p,iup,j⟩) + ∂

∂xk
(npmp⟨uf@p,iup,jup,k⟩) = npmp⟨

duf@p,i

dt up,j⟩

+ npmp⟨
dup,j

dt uf@p,i⟩
(A.16)

Then, as in the previous cases, we can use the two relations uf@p,i = Uf@p,i + u′′
f@p,i

and up,i = Up,i + u′′
p,i to get the following moment equation:

∂

∂t
(npmpRfp,ij) + ∂

∂xk
(npmpRfp,ijUp,k) + ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)

+ ∂

∂xk
(npmpUf@p,iRp,jk) + ∂

∂xk
(npmpUp,jRfp,ik)

+ ∂

∂t
(npmpUf@p,iUp,j) + ∂

∂xk
(npmpUf@p,iUp,jUp,k)

= npmp⟨
duf@p,i

dt u′′
p,j⟩+ npmp⟨

dup,j
dt u′′

f@p,i⟩

+ npmp⟨
duf@p,i

dt ⟩Up,j + npmp⟨
dup,j

dt ⟩Uf@p,i

(A.17)

Then, by developing the derivatives in the two terms on the second line of the
previous equation and transferring them on the right-hand side along with the triple
correlation term, we get:
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∂

∂t
(npmpRfp,ij) + ∂

∂xk
(npmpRfp,ijUp,k)

+ ∂

∂t
(npmpUf@p,iUp,j) + ∂

∂xk
(npmpUf@p,iUp,jUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Uf@p,i

∂xk
− npmpRfp,ik

∂Up,j
∂xk

+npmp⟨
duf@p,i

dt u′′
p,j⟩+ npmp⟨

dup,j
dt u′′

f@p,i⟩

+npmp

[
⟨duf@p,i

dt ⟩Up,j + ⟨dup,jdt ⟩Uf@p,i

]
− Uf@p,i

∂npmpRp,jk

∂xk
− Up,j

∂npmpRfp,ik

∂xk

(A.18)

As in the two previous cases, the terms in red cancel out and we are left with:

∂

∂t
(npmpRfp,ij) + ∂

∂xk
(npmpRfp,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Uf@p,i

∂xk
− npmpRfp,ik

∂Up,j
∂xk

+ npmp⟨
duf@p,i

dt u′′
p,j⟩+ npmp⟨

dup,j
dt u′′

f@p,i⟩

(A.19)

By using the evolution equation for the particle and fluid see velocities, we can
simplify the last two terms on the right-hand side. During the development, the ve-
locity covariance between two fluid velocity seen by the particle appears (Rff ′,ij =
⟨uf@p,iuf ′@p,j⟩). To make it consistent with the stochastic modelling, we neglect these
for f ′ ̸= f .

npmp⟨
duf@p,i

dt u′′
p,j⟩ = npmpRp,jk

∂Uf,i
∂xk

+ npmpGfp,jkRf@p,ki

npmp⟨
dup,j

dt u′′
f@p,i⟩ = npmp

∑
f ′

λf ′

τp,f ′
(Rf ′f,ij −Rfp,ij)

= npmp

 λf
τp,f

Rf@p,ij −
∑

f ′

λf ′

τp,f ′

Rfp,ij


(A.20)

Which leads to the final formulation:

∂

∂t
(npmpRfp,ij) + ∂

∂xk
(npmpRfp,ijUp,k)

= − ∂

∂xk
(npmp⟨u′′

f@p,iu
′′
p,ju

′′
p,k⟩)− npmpRp,jk

∂Vf,i
∂xk

− npmpRfp,ik
∂Up,j
∂xk

+ npmpGfp,jkRf@p,ki + npmp

 λf
τp,f

Rf@p,ij −
∑

f ′

λf ′

τp,f ′

Rfp,ij


(A.21)
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B | Turbulence modulation in the
GLIM approach

In this appendix, we detail the different models used in the GLIM approach to account
for turbulence modulation in multiphase flows. In this approach, the two fluid phases
simulated can either be continuous or dispersed depending on the flow characteristics.
When the two phases are continuous, they are separated by a large interface, when the
volume fraction of one of them becomes too low, it is considered dispersed. In both
cases, if it is taken into account, the turbulence model for each fluid is altered. The
purpose of this appendix is to detail the nature of this alteration.

B.1 Turbulence modulation near a large interface
Near a free-surface, the production terms are modified as if the large interface operates
on the flow exactly like a wall boundary condition would. This allows to progressively
dampen the turbulence near the interface which shows better results than without
treatment in standard stratified flows. It is important to note this modification is
purely numerical and does not reflect a specific theoric development.

B.2 Continuous turbulence modulation in the pres-
ence of inclusions

When the volume fraction of a fluid becomes too small in a GLIM simulation, it
is considered as dispersed. In that case, the interfacial momentum transfer term is
changed accordingly and the turbulence model of the carrier field undergoes some
minor changes to account for the presence of bubbles or droplets. This turbulence
modulation is valid only for small inclusions compared to large turbulence length scales
and is modelled with a supplementary source term Mc,ij in the evolution equation of
the turbulent kinetic stress Rf,ij.

ρf
∂Rf,ij

∂t
+ ∂

∂xk
(ρfuf,kRf,ij)−

∂

∂xk

(
µf

∂

∂xk
Rf,ij

)
= ∂

∂xk
(Sf,ijk) + Pf,ij + gf,ij

+ Φf,ij − ρfϵf,ij + ρfMc,ij

(B.1)

Where, if the dispersed phase is named g, the coupling term reads:

Mc,ij = βαgCD(2
3∥Ur

2∥δij + Ur,iUr,j) (B.2)
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Where CD is the drag coefficient, Ur is the relative velocity between the two phases
and δij is the unit second-order tensor. This term then undergoes the same weighting
operation as interfacial transfer term to make sure they are taken into account only
where there are dispersed inclusions. A similar term is added when using the k-ϵ
turbulence model.
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C | Interfacial area theta-scheme

In order to avoid truncation errors, it has been thought of developing a θ-scheme for the
resolution of the interfacial area transport equation. However, since practical benefits
from it have not been highlighted in experimental comparison, the scheme was dropped.
It is described here for further works. The starting point equation reads:

αIρIΩI

δt

(
Xn+1
I −Xn

I

)
−Xn+1

I

∑
J∈VI

ϕIJαIJ +
∑
J∈VI

ϕIJαIJX
n+1
θ,IJ = 0 (C.1)

Where ΩI is the cell volume, ρI is the fluid density, δt is the time increment, αI is
the fluid volume fraction in cell I, J ∈ VI are the neighbours of I and ϕIJαIJ defines
the mass flux between cells I and J . The main idea is to make sure the imposed flux
value does not cause negative values for X. Otherwise, the value would be truncated
and the conservation of x would not be verified. Following common practice, we define
a field θ such that the imposed flux is:

Xn+1
θ,IJ = θ((1− γ)Xfs,IJ + γXn+1

IJ ) + (1− θ)Xn+1
IJ (C.2)

Rather than:

Xn+1
m,IJ = (1− γ)Xfs,IJ + γXn+1

IJ (C.3)

With an upwind formulation, if the implicit part does not depend on θ, the evolution
equation can be written:

αIρIΩI

δt
−
∑
J∈VI

ϕIJαIJ

Xn+1
I = αρIΩI

δt
Xn
I

−
∑
ϕ>0

ϕIJαIJ((1− θ)Xn
I,fs + θXn

I + δXI)

+
∑
ϕ<0

ϕIJαIJ((1− θ)Xn
J,fs + θXn

J + δXJ)


(C.4)

Which leads to, by developing and passing the implicit part on the left-hand side
of the equation:
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αIρIΩI

δt
−
∑
ϕ<0

ϕIJαIJ

Xn+1
I = αIρIΩI

δt
Xn
I

−
∑
ϕ>0

ϕIJαIJ(1− θ)(Xn
I,fs −Xn

I ) +
∑
ϕ<0

ϕIJαIJ(1− θ)(Xn
J,fs −Xn

J ) +Xn+1
J )

 (C.5)

Eventually, the previous equation can be transposed in a condition on θ for Xn+1
I

to be positive:

αIρIΩI

δt
Xn
I + θ

∑
ϕ>0

ϕIJαIJ(Xn
I −Xn

I,fs) +
∑
ϕ<0

ϕIJαIJ(Xn
J −Xn

J,fs)
 > 0 (C.6)

The correction was implemented in the numerical method but no clear improvement
could be noted.
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Titre : Développement d'un modèle triphasique Euler/Euler/Lagrange pour la simula�on numérique des écoulements liquide-gaz chargés en
par�cules.
Mots clés : Triphasique, Euler/Lagrange, Surface libre, par�cules, turbulence, Jet plongeant
Résumé : Ce manuscrit retranscris un travail effectué au cours d’une thèse au département MFEE d’EDF R&D sur les écoulements liquid-gaz chargés
en par�cules dispersées sous la direc�on d’Olivier Simonin (IMFT), de Jérôme Laviéville (EDF) et de Nicolas Mérigoux (EDF). Le but de la thèse est de
fournir un environnement de travail pour la simula�on numérique d’écoulement eau-air à bulles, à phases séparés ou en régime mixte, chargé en
par�cules qui peuvent interagir avec les fluides présents sous leur forme con�nue ou dispersée. Ces écoulements peuvent se retrouver aussi bien
dans des situa�ons industrielles comme des réacteurs chimiques, des centrales de produc�on d’électricité ou des usines de traitement des eaux
usées que dans des situa�ons naturelles comme durant la crue d’un fleuve. L’ou�l développé permet de faire des prédic�ons sur les performances de
ces disposi�fs industriels ou sur les dégâts causés par des évènements naturels excep�onnels. Les développements sont inclus dans la version la plus
à jour du code de calcul neptune_cfd, un solveur N-fluides développé par EDF, le CEA, l’IRSN et Framatome, basé sur la méthode mul�-fluide
standard qui permet la simula�on d’écoulement à plusieurs phases indépendamment de leur typologie. Les méthodes misent en place sont basées
sur des approches diphasiques bien connues. La méthode Lagrangienne stochas�que de suivi de par�cules est adaptées pour que chaque par�cule
puisse interagir avec toutes les champs fluides présents. Des fermetures sont proposées pour déterminer l’impact de chacune des phases sur le
comportement des par�cules. Afin de vérifier certaines hypothèses, une nouvelle fermeture pour l’équa�on de Langevin sur la vitesse de fluide vue
par la par�cule est proposée. Son comportement est comparée aux modèles standards et de la li�érature sur des cas de vérifica�on simples de
turbulence homogène isotrope et des cas inhomogènes. Les équa�ons Lagrangiennes obtenues sont u�lisées pour fermer un modèle Eulerien basé
sur l’approche fonc�on densité de probabilité. Les performances des deux modèles triphasiques développés sont établies en ma�ère de déposi�on
de par�cules pilotée par la turbulence et la gravité. Un pan en�er de la thèse se concentre sur une probléma�que apparue durant des vérifica�ons
préliminaires: le phénomène d’entraînement d’air dans les jets plongeants. En effet, à par�r d’une structure résolue, en fonc�on des condi�ons
d’écoulements, des bulles ou gou�ele�es dispersées peuvent apparaître. La quan�té de ces structures transférées ainsi que leur taille caractéris�que
étant des grandeurs primordiales, il a fallu me�re en place un nouveau modèle. Le transfert de masse entre structures con�nues et inclusions
dispersées est assuré par le modèle qui décrit l’évolu�on des interfaces résolues. Nous ne l’avons pas modifié. Celui qui concerne la taille des
bulles/gou�ele�es créées s’intègre dans l’équa�on d’évolu�on de l’aire interfaciale, grandeur qui permet de suivre le diamètre des inclusions. Tous
les modèles développés sont comparés à des mesures expérimentales. Le modèle d’entraînement d’air est d’abord testé sans la présence des
par�cules sur des cas divers. Un cas de ressaut hydraulique est aussi envisagé pour établir la généralité du modèle mis en place. Les modèles
triphasiques sont testés sur des configura�ons variées, d’abord sans entraînement d’air pour isoler le comportement des par�cules puis avec tous les
phénomènes. Les différents cas ont permis de me�re en valeur l’importance de certains modèles ainsi que les différences entre les méthodes
Lagrangienne stochas�que et Eulerienne.

Title: Euler/Euler/Lagrange model development for the numerical simula�on of mul�phase flows loaded with par�cles
Key words: free surface flows, Mul�-phase, par�cles, Euler/Lagrange, dispersion, turbulence
Abstract: This manuscript sums up work carried out during a thesis at the MFEE department of EDF R&D on liquid-gas flows laden with dispersed
par�cles under the supervision of Olivier Simonin (IMFT), Jérôme Laviéville (EDF), and Nicolas Mérigoux (EDF). The thesis aims at providing a working
environment for the numerical simula�on of two-phase bubbly flows, free-surface flows or in a mixed regime, loaded with par�cles that can interact
with the fluids present in their con�nuous or dispersed form. These flows can be found in industrial situa�ons such as chemical reactors, power
plants, or wastewater treatment plants, as well as in natural situa�ons such as during a flood. The developed tool allows predic�ons to be made
about the performance of these industrial devices or the damage caused by excep�onal natural events. The developments are included in the most
up-to-date version of neptune_cfd, a mul�-fluid solver developed by EDF, CEA, IRSN, and Framatome, based on the standard mul�-fluid method
that allows the simula�on of mul�phase flow independently of their typology. The methods implemented are based on well-known two-phase
approaches. The stochas�c Lagrangian par�cle tracking method is adapted so that each par�cle can interact with all the fluids. Closures are proposed
to determine the impact of each phase on the behavior of the par�cles. To verify certain assump�ons, a new closure for the Langevin equa�on on
the fluid velocity seen by the par�cle is proposed. Its behavior is compared to standard models and literature on simple verifica�on cases of
homogeneous isotropic turbulence and inhomogeneous cases. The Lagrangian equa�ons obtained are used to close an Eulerian model based on the
probability density func�on approach. The performance of the two developed threephase models is established in terms of par�cle deposi�on
driven by turbulence or gravity. A significant part of the thesis focuses on an issue that arose during preliminary checks: the phenomenon of air
entrainment in plunging jets. Indeed, due to the nature of the solver, bubbles or dispersed droplets can detach from the free-surface depending on
the flow condi�ons. The quan�ty of these transferred structures and their characteris�c size being crucial quan��es which drives their behavior, a
new model had to be developed. Mass transfer between con�nuous structures and dispersed inclusions is ensured by the model that describes the
evolu�on of resolved interfaces, the la�er was not modified. The one regarding the size of the created bubbles/droplets is integrated into the
evolu�on equa�on of the interfacial area, a quan�ty that allows tracking the diameter of the inclusions. All developed models are compared to
experimental measurements. The air entrainment model is first tested without the presence of par�cles in various cases. A hydraulic jump case is
also considered to establish the generality of the model. Then, the threephase models are tested in various configura�ons. First, configura�ons
without air entrainment to isolate the behavior of the par�cles, and then with air entrainment. The different cases highlighted the importance of
certain models and the differences between stochas�c Lagrangian and Eulerian methods.
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