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Abstract
The central problem of statistical physics is to understand how to describe a system with
macroscopic equations, which are usually deterministic, starting from a microscopic de-
scription, which may be stochastic. This task requires taking at least two limits: a “large
N” limit and a “local equilibrium” limit. The former allows a system of N particles to be
described by a phase-space distribution function, while the latter re�ects the separation
of time scales between the fast approach to local equilibrium and the slow evolution of
hydrodynamic modes. When these two limits are taken, a deterministic macroscopic
description is obtained. For both theoretical and modeling reasons (N is large but not
in�nite, the time-scale separation is not perfect), it is sometimes important to under-
stand the �uctuations around this macroscopic description. Fluctuating hydrodynamics
provides a framework for describing the evolution of macroscopic, coarse-grained �elds
while taking into account �nite-particle-number induced �uctuations in the hydrody-
namic limit.

This thesis discusses the derivation of �uctuating hydrodynamics from the micro-
scopic description of particle dynamics. The derivation of the �uctuating hydrodynamics
is twofold. First, the “large N” limit must be re�ned to account for �uctuations beyond
the average behavior of the system. This is done by using large deviation theory to es-
tablish kinetic large deviation principles that describe the probability of any evolution
path for the empirical measure beyond the most probable path described by the kinetic
equation. Then, the �uctuating hydrodynamics is derived by studying the hydrodynam-
ical limit of the kinetic large deviation principle, or the associated �uctuating kinetic
equation. This thesis is structured in two parts, re�ecting the two steps of this program.

The main original result of the �rst part is the derivation of kinetic large deviation
principles for Hamiltonian systems of particles coupled by a long-range interaction po-
tential, extending the classical Landau and Balescu-Guernsey-Lenard kinetic theories.
We also provide a general introduction to the interplay between large deviation theory
and kinetic theory. In the second part of the thesis, we review methods to bridge from the
kinetic large deviation principle to the �uctuating hydrodynamics description. We apply
them to derive the �uctuating compressible and incompressible Navier-Stokes equations
starting from the kinetic large deviation principle associated with the Boltzmann equa-
tion. We also derive, for the �rst time, a �uctuating hydrodynamics description of a
dilute system of aligning active particles interacting through binary collisions from mi-
croscopic dynamics. Finally, we discuss the relevance of these methods in the special
case where the hydrodynamical limit is a scalar conservation law. In particular, we em-
phasize their inability to assess the probability of non-regular hydrodynamic pro�les.
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Résumé
Comprendre comment décrire un système avec des équations macroscopiques, qui sont
généralement déterministes, en partant d’une description microscopique, qui peut être
stochastique est le problème fondamental de la physique statistique. Souvent, cette tâche
implique au moins deux limites : une limite “grand N” et une limite “d’équilibre lo-
cal”. La première permet de décrire un système de N particules par une fonction de
distribution dans l’espace des phases, tandis que la seconde re�ète la séparation des
échelles de temps entre l’approche rapide de l’équilibre local et l’évolution lente des
modes hydrodynamiques. En supposant ces deux limites, on obtient une description
macroscopique déterministe. Pour des raisons à la fois théoriques et de modélisation
(N est grand mais pas in�ni, la séparation des échelles de temps n’est pas parfaite), il
est parfois important de comprendre les �uctuations autour de cette description macro-
scopique. L’hydrodynamique �uctuante fournit un cadre pour décrire l’évolution des
champs macroscopiques tout en prenant en compte les �uctuations induites par le nom-
bre de particules �nies dans la limite hydrodynamique.

Cette thèse traite de la dérivation de l’hydrodynamique �uctuante à partir de la de-
scription microscopique de la dynamique des particules. La dérivation de l’hydrodynamique
�uctuante se fait en deux étapes. Premièrement, la limite “grandN” doit être a�née pour
prendre en compte les �uctuations au-delà du comportement moyen du système. Pour
ce faire, nous utilisons la théorie des grandes déviations pour établir des principes de
grandes déviations qui décrivent la probabilité de tout chemin d’évolution pour le sys-
tème de particule au-delà du chemin le plus probable décrit par l’équation cinétique.
Ensuite, nous dérivons la l’hydrodynamique �uctuante en étudiant la limite hydrody-
namique du principe de grande déviation cinétique, ou l’équation cinétique �uctuante
associée. Cette thèse est structurée en deux parties, re�étant les deux étapes de ce pro-
gramme.

Le principal résultat original de la première partie est la dérivation des principes de
grandes déviations cinétiques pour les systèmes Hamiltoniens de particules couplées par
un potentiel d’interaction à longue portée, étendant les théories cinétiques classiques de
Landau et de Balescu-Guernsey-Lenard. Nous fournissons également une introduction
générale à l’interaction entre la théorie des grandes déviations et la théorie cinétique.
Dans la deuxième partie de cette thèse, nous discutons plusieurs méthodes permettant
de passer du principe de grandes déviations cinétique à l’hydrodynamique �uctuante.
Nous les appliquons pour dériver les équations de Navier-Stokes �uctuantes compress-
ibles et incompressibles à partir du principe de grandes déviations associé à l’équation de
Boltzmann. Nous déduisons également, pour la première fois, une description hydrody-
namique �uctuante d’un système dilué de particules actives s’alignant via des collisions
binaires, à partir de la dynamique microscopique. En�n, nous discutons de la perti-
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nence de ces méthodes dans le cas particulier où la limite hydrodynamique est une loi
de conservation scalaire. Dans ce contexte, nous soulignons leur incapacité à évaluer la
probabilité de pro�ls hydrodynamiques non réguliers.
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1. Introduction

This dissertation delves into the study of the hydrodynamic limit of particle systems, uti-
lizing the framework of large deviation theory. The primary objective is to investigate
the derivation of �uid equations that can depict matter as a continuum at a macroscopic
scale, starting from the discrete microscopic dynamics of particles. A signi�cant fo-
cus of this manuscript is on the study of �uctuations within the hydrodynamical limit,
which involves quantifying the error in describing a particle system as a continuum and
accounting for �nite numbers of particle e�ects in the �uid description. While histori-
cally, the statistical mechanics techniques presented in this manuscript were developed
to bridge the molecular description of gases to their �uid description [157, 158, 69, 14],
they are also applicable to a wide range of systems. For instance, they can be used to
investigate large conglomerate of stars [41, 124, 68], synchronization in the �ring of
large assemblies of neurons [193], and even collective motion of bird �ocks or bacteria
[40, 12, 23]. Hence, the terms "particle" and "microscopic dynamics" do not necessarily
refer to physically small objects but rather to the fundamental entities of a system com-
posed of a large number of them. This dissertation begins by introducing the concept
of particle dynamics, kinetic theory, and hydrodynamic equations, and the connections
between these di�erent levels of description.

1.1. Equations of motion and hydrodynamic
equations

A way to describe the evolution of a classical particle systems is through equations of
motion. In this dissertation, we consider the equations of motion as the starting point,
whether they are a consequence of Newton’s laws of motion, or if they are phenomeno-
logically postulated. We label {rn(t),vn(t)}1≤n≤N the positions and velocities of the
N particles at a given time t ∈ [0, T ]. Typically, rn ∈ R3 orT3 which means that the
particles evolve in a continuum space of dimension 3, that might be in�nite or periodic.
These equations can be Ordinary Di�erential Equations (ODEs) or Stochastic Di�erential
Equations (SDEs). For instance, in the case of a Hamiltonian dynamics, with Hamilto-
nian

H =
1

2
m

N∑
n=1

v2 +
1

2

∑
p 6=n

W (rn − rp) ,
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Chapter 1 Introduction

the equations of motion are ODEs:
drn
dt = vn,

m
dvn
dt = −

∑
p6=n

∇W (rn − rp),
(1.1)

where W is the pairwise interaction potential, prescribing the interaction of a particle
with another, and m is the mass of a particle. Equations (1.1) are nothing else than a re-
formulation of Newton’s second law. In principle, it is possible to predict the trajectories
of particles given the initial conditions for equations (1.1), through numerical integra-
tion for instance. However, there are two inherent limitations in this approach. Firstly,
an accurate prediction of trajectories can only be achieved with in�nitely precise knowl-
edge of the initial data, especially if the system is sensitive to initial conditions, i.e. if
the system is chaotic. Secondly, if N the number of particles is large, the time required
to numerically integrate (1.1) is at least1 proportional to N . For example, if we wanted
to model the air�ow around the wing of an airplane, we would not go to the trouble of
solving (1.1) for every molecule of nitrogen or oxygen surrounding the airplane, assum-
ing we knew how they interacted individually. In the 19th century, despite widespread
skepticism about the existence of atoms and molecules, great advances were made in
�uid dynamics. Obviously, at that time the equations of motion of the molecules were
never used to describe �uid dynamics. Instead, engineers and physicists used �uid equa-
tions. The incompressible Navier-Stokes system is probably the most widely used set of
�uid equations in physics and engineering:

{
∂tu + u · ∇u +∇

(
P
ρ0

)
= ν∆u,

∇ · u = 0.
(1.2)

It is a set of Partial Di�erential Equations (PDEs) that describe the time-evolution of
the velocity �eld u (r, t) and pressure �eld P (r, t) of an incompressible and viscous
�uid, characterized by its viscosity ν and density ρ0. Although mathematical questions
about the existence and smoothness of solutions to the Navier-Stokes equations remain
open [149, 62, 143, 188], their direct numerical simulation provided a breakthrough in a
number of applications such as aerodynamics and weather forecasting [185, 174, 6].

1.2. Importance of the statistical physics approach to
hydrodynamics

By de�nition, the velocity �eld in (1.2) is de�ned at all points in space and describes
matter as a continuum. A common way to understand the origin of (1.2) is to see it as

1If W is a long-range potential, meaning that each particle is interacting with all others, the calculation
time could be proportional to N logN or N2 depending on the solver [129].
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1.3 From particles to hydrodynamics: a derivation that implies two limits

the conservation of momentum equation for the �uid. More speci�cally, the hydrody-
namical equations can be obtained as a consequence of Newton’s second law applied to
a control volume: “a region of space through which �uid �ows” as explained in [211], of
size conveniently chosen to obtain a simple result. A control volume is an abstract ob-
ject that can neither be observed nor precisely de�ned. For many applications, including
educational ones, this justi�cation of the Navier-Stokes equations is useful. From the
statistical physicist’s point of view however, it is intriguing to try to explain how the
Navier-Stokes equation can be related to the Newton’s equations (1.1) that govern the
behavior of the �uid at the molecular scale. “[Connecting] the atomistic view to the laws
of motion of continua” is part of Hilbert’s Sixth Problem [81, 212], which states goals for
the axiomatization of physics, including the clear de�nition of the asymptotic processes
that lead to the descriptions of matter from the atomic scale to the macroscopic scale.

Understanding the microscopic derivation of �uid equations does not only have an
axiomatic purpose. It also allows a better understanding of the range of validity of the
�uid description. How many particles is enough to describe a system as a continuum
�uid? How can we assert the accuracy of the �uid description of a discrete system?
Why is the macroscopic evolution of the system predicted by hydrodynamics irreversible
while its microscopic dynamics is not? These are key questions that not only require a
precise understanding of the derivation of hydrodynamical equations, but also imply the
need for new tools to assert their accuracy. As is common in statistical physics, the key
point is that when the number of particles in a system is large, we can treat them in a
statistical way, rather than having to track the behavior of each particle individually. In
this sense, the �uid equations can be seen as a Law of Large Numbers (LLN): when there
are many particles, it is su�cient to describe their average behavior; for example, their
average velocity at a certain point in space, which is given by the data of a velocity �eld.
However, this approach does not allow to quantify possible deviations from the average
behavior. Although very rare, such deviations can have drastic e�ects on the system
(triggering a phase transition for instance). The appropriate probabilistic tool to deal
with the study of such rare events is called Large Deviation Theory. It is used extensively
in this manuscript not only to derive the hydrodynamical equations from the particle
dynamics, but also to quantify the probability that the actual behavior of the particle
system deviates from the average evolution path predicted by the hydrodynamics. To
better understand where the LLN comes into play in the derivation of hydrodynamics
and how to take into account �uctuations in the hydrodynamical limit, we heuristically
introduce the notion of hydrodynamical limit in the next section.

1.3. From particles to hydrodynamics: a derivation
that implies two limits

Let us �rst try to imagine how a description in terms of trajectories {rn(t),vn(t)} can be
linked to a velocity �eld description u (r, t). Naively, we can try to compute the velocity
�eld at a certain point in space u (r, t) by computing a local average of the velocity

7



Chapter 1 Introduction

particles nearby:

u (r, t) ≈ 1

|B(r, l)|
∑

rn∈B(r,l)

vn (t) , (1.3)

where B (r, l) is a ball of center r and radius l, and |B(r, l)| is the number of particles in
such a ball. Then, since we know the equations (1.1) ruling the time evolution of the vn
and rn, we can compute the time evolution of the velocity �eld u. However, there are
two main issues with guessing the velocity �eld through (1.3).

1. For equation (1.3) to make sense, we must ensure that within any ball of radius
l of the system, we can �nd at least one particle. Then, since the velocity �eld
is computed as a local average, we also have to ensure there is not only one but
many particles in such a ball. If ρ0 = N/L3 is the average density of the system,
and L the size of the system, this requirement can be mathematically translated as
ρ0l

3 � 1. This assumption is in some sense a LLN assumption: when ρ0l
3 � 1,

the empirical average computed in (1.3) is close to the statistical average.

2. However, the radius of the ball l cannot be too large. If l has the same order of
magnitude as the system size L, then u (r, t) would globally have the same value
at any point in the system r, and would correspond to the global average velocity
of all the particles in the system, rather than to a velocity �eld. A way to ensure
that the velocity �eld constructed from (1.3) does not su�er this issue is to choose
a radius l much smaller than the size of the system: l � L. This is necessary but
not su�cient depending on the nature of the particle system.

These two points reveal that the derivation of the �uid equations from the equations of
motion of the particles involves two limits. As can be easily guessed, the �rst limit is
related to the LLN and is a large N limit called the kinetic limit. Less obviously, for the
hydrodynamical equations to make sense, the system must also exhibit a large separation
of scales between the scale of the particle dynamics and the scale at which we observe
the macroscopic system. This limit of large scale separation is called the hydrodynamical
limit.

1.4. Kinetic theory: the large N limit
A �rst step toward the derivation of hydrodynamics starting from a particle dynamics
is to obtain a kinetic description. The main idea of kinetic theory is, in the spirit of a
LLN, that when the particle number N is large, instead of describing the trajectories
{rn(t),vn(t)}0≤t≤T

1≤n≤N of every particles, it is su�cient to describe the statistics of their
positions and velocities. This is done by introducing the distribution function f . The
distribution function f is a function that depends on the velocity and the position vari-
able, and also on time. Its physical interpretation is that

f (r,v, t) drdv

8



1.4 Kinetic theory: the large N limit

is the average number of particles that have a position r up to dr, a velocity v up to dv
at a certain time t. The goal is to establish a PDE that rules the time evolution of the
distribution function. Such a PDE is called the kinetic equation. For a dynamics such as
(1.1), the kinetic equation generally reads

∂tf + v · ∇f︸ ︷︷ ︸
transport term

= Q (f)︸ ︷︷ ︸,
collision term

(1.4)

where the transport term accounts for transport of the particles due to their own ve-
locities, and the collision2 term generically accounts for the e�ect of the interactions
on the velocity distribution. A common way to obtain an evolution equation for the
distribution function f is to start from Liouville’s theorem, that states that the N parti-
cles joint distribution function fN part (r1,v1, · · · , rN ,vN , t) is conserved by the Hamil-
tonian dynamics (1.1). Then, by successive integration of the Liouville equation, one
can express the time evolution of the distribution function f as a function of the two-
particle joint distribution in phase space f2 (r1,v1, r2,v2, t). This method is known as
the BBGKY hierarchy. A way to close this hierarchy is to assume that at leading order,
f2 (r1,v1, r2,v2, t) ≈ f (r1,v1, t) f (r2,v2, t). This is exactly true when there is no in-
teraction between the N particles and when they are initially uncorrelated. Otherwise,
the accuracy of this approximation is not only linked to the number of particles in the
system, but also to the strength of the interaction. There are two main scenarios where
we can justify this approximation, at least from a theoretical physics point of view. First,
when the interactions between particle are rare enough so that we can consider them
almost statistically independent. This is the case for the dilute gas, i.e. when the inter-
action potential W in (1.1) is short-ranged, that is described at the kinetic level by the
Boltzmann equation, namely (1.4) where the collision term is de�ned by

Q(f)(r,v) =

∫∫∫
dv2dv′1dv′2w(v′1,v

′
2; v,v2) [f(r,v′1)f(r,v′2)− f(r,v)f(r,v2)] .

(1.5)

Another important situation is when all the particles are interacting with every other
one, but with a weak interaction potential. This corresponds to the case where W is
long-ranged but proportional to 1/N so that the sum of the forces exerted on a particle
is still of order one. In this case, when the system is homogeneous in space, it can be
described by the Balescu-Guernsey-Lenard kinetic equation

∂tf =
∂

∂v
·
(∫

dv2 B [f ] (v,v2) ·
(
− ∂f

∂v2

f(v) + f(v2)
∂f

∂v

))
, (1.6)

with

B [f ] (v1,v2) =
π

L3

∫ +∞

−∞
dω

∑
k∈(2π/L)Z3

Ŵ (k)2 k⊗ k

|ε[f ] (k, ω)|2
δ (ω − k.v1) δ (ω − k.v2) , (1.7)

2The terminology “collision term” is historical and refers to the interaction term of the Boltzmann equa-
tion accounting for the e�ect of actual elastic collisions between particles on the distribution function.
We still use the term collisions even if the interaction between particle is not collisional.
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Chapter 1 Introduction

where this time f only depends on the velocity variable as a consequence of spatial
homogeneity, Ŵ is the Fourier transform of the potential, and ε is the dielectric function,
that depends nonlinearly on f and will be introduced in detail in chapter 4.

The dilute gas, described by the Boltzmann equation, and the systems of particles
with long-range interactions, described by the Balescu-Guernsey-Lenard equation will
be discussed at length throughout this thesis, as they constitute paradigmatic examples
of kinetic theories. The speci�c asymptotic regime in which they are valid will be clar-
i�ed later in the manuscript, but both of them require the number of particles in the
system to go to in�nity. In both cases, the distribution function f is obtained as LLN for
the µ-space empirical measure

fN (r,v, t) =
1

N

N∑
n=1

δ (r− rn (t)) δ (v − vn (t)) ,

a distribution on the µ-space (the one-particle phase space) that depends on the exact
N particle trajectories, that allows to bridge from particle to kinetic description in the
large N limit.

The interest in uncovering such kinetic theories is twofold. First, kinetic equations
such as the Boltzmann and the Balescu-Guernsey-Lenard (1.6) equations give physical
information about the system that was not obvious from the equations of motion. A
striking example is that both equations describe the relaxation to equilibrium, i.e. that
the velocity distribution relaxes toward a Gaussian distribution, the so-called Maxwell-
Boltzmann equation. More interestingly, the Boltzmann equation is also the �rst step in
deriving hydrodynamic equations such as the Navier-Stokes equations starting from the
molecular dynamics.

1.5. From kinetic equations to hydrodynamic
equations

Once we established a kinetic equation describing the time evolution of the distribution
function f in some asymptotic regime linked to a large N limit, it is possible to inves-
tigate the time evolution of hydrodynamical �elds. Such �elds are typically linked to
moments of the distribution function with respect to the velocity variable. For instance,
the zeroth, �rst, and second moment

ρ (r, t) =

∫
dv f (r,v, t) ,

ρu (r, t) =

∫
dv vf (r,v, t) ,

ρe (r, t) =

∫
dv

v2

2
f (r,v, t) ,
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1.5 From kinetic equations to hydrodynamic equations

can be interpreted as the average number of particles ρ, the average velocity u, and
the average kinetic energy e at a given point in space r and time t. In general, it is not
possible to obtain evolution equations for the hydrodynamic �elds by simple integration
of the kinetic equation over the velocity variable. Without further assumptions, the
evolution of the hydrodynamic �elds depends on the whole distribution function and
not only on the other hydrodynamic �elds. This problem can be overcome by a precise
study of the conservation laws associated with the particle dynamics and its relationship
with local equilibria of the kinetic equation, i.e. distribution functions that cancels the
collision operatorQ (f) = 0. Assuming that the kinetic equation relaxes toward its local
equilibria on time scales much shorter than the macroscopic observation time scale, it
is possible to obtain closed equations on the hydrodynamic �elds. For the Boltzmann
equation for instance, a way to achieve this program is to look for a solution of the
Boltzmann equation as a Chapman-Enskog expansion close to a local equilibrium of the
Boltzmann equation, which is nothing else than a Gaussian distribution (the Maxwell-
Boltzmann distribution). This procedure is an asymptotic one and is associated with a
small parameter: the Knudsen number, that is the ratio between the microscopic and
macroscopic (time or length) scales of the system. Depending on the scaling we chose
between the time and length scales of the system, it allows to recover the compressible
or incompressible Euler and Navier-Stokes equations from the Boltzmann equation.

Equations of motion for the N particles {rn(t),vn(t)}1≤n≤N
Ex: Newton’s 2nd law (1.1)

Kinetic equation for the distribution function f (r,v, t)
Ex: The Boltzmann equation (1.4-1.5)

Fluid equations for the hydrodynamical modes (density ρ(r, t), velocity u(r, t), ...)
Ex: The incompressible Navier-Stokes equations (1.2)

Limit of large numbers of particles
LLN for the empirical measure

Limit of large scale separation
Hydrodynamical limit

Figure 1.1.: Asymptotic procedures that bridge molecular and �uid descriptions.
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Chapter 1 Introduction

1.6. Fluctuations in the kinetic and hydrodynamic
limits

The �uid equations derived following the steps detailed in �gure 1.1 are valid in the limit
as N goes to in�nity. Hence, they fall short at describing �nite N e�ects. For example,
by running a molecular dynamics simulation using the equations of motion (1.1) and
numerically reconstructing the empirical velocity �eld (1.3), we can observe that the
resulting evolution of the �eld is a noisy one. More precisely, the empirical velocity
�eld should look like the solution of the deterministic �uid equations (with appropriate
initial conditions) up to some random �uctuations around it. The noisiness is eventually
smoothed out as the number of particles increases. This is analogous to the fact that if we
sampleN realizations of identically normally distributed random variables and represent
the sampling in a histogram, the histogram appears smoother and closer to the normal
distribution as the number of realizations increases. From this observation, it has been
postulated than in a large N regime, it is reasonable to assume that the evolution of the
empirical hydrodynamical �elds can be seen as the one of a deterministic �eld derived
from the LLN, plus a random noise that becomes smaller as N increases. This is for
instance what is predicted by the �uctuating incompressible Navier-Stokes system (also
known as the Landau-Lifshitz-Navier-Stokes system) �rst derived in [147, 113, 42, 137]:{

∂tu + u · ∇u +∇
(
P
ρ0

)
= ν∆u +∇ · J,

∇ · u = 0.
(1.8)

where J is a random Gaussian tensor whose components Jij satisfy

E (Jij (r, t) Jkl (r
′, t′)) =

2νkBT0

ρ0

(
δikδjl + δilδjk −

2

3
δijδkl

)
δ(t− t′)δ(r− r′), (1.9)

where T0 is the average temperature, ρ0 the average density, and kB is the Boltzmann
constant. From the variance of the noise term (1.9), we recover than in the large N limit
(at �xed volume), the noise term vanishes and we recover the incompressible Navier-
Stokes equation as a LLN3. Even if the Landau-Lifshitz-Navier-Stokes system is widely
used in its nonlinear form (1.8), most works dedicated to its derivation are restricted to
the linearized case [147, 113, 42, 137]. Those derivations either rely on adding a noise
term to the linearized Navier-Stokes equations on the basis of thermodynamics con-
siderations4, or using the Mori-Zwanzig formalism [161, 42, 128]. Such a technique al-
lows to add a noise term to the linearized Boltzmann kinetic equation, whose average

3It should be noted that the interpretation of the Navier-Stokes equations as a law of large numbers must
be treated with caution. For instance, the dynamics of a passive scalar advected by the incompressible
Navier-Stokes equations and subjected to thermal �uctuations seems to remain stochastic even in
the vanishing di�usion and thermal noise limit [103, 28]. This phenomenon is essentially related
to the roughness of the advection term and is called spontaneous stochasticity. In this manuscript, the
denomination “law of large numbers” comes from the fact we derive the �uid equation from the kinetic
equation which is actually a law of large numbers for the empirical measure.

4Here, “thermodynamics considerations” means a priori knowledge of the stationary state distribution
of probability of the macrostate. This is obviously granted though not restricted to thermodynamical
equilibrium situations.
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1.6 Fluctuations in the kinetic and hydrodynamic limits

value and correlation structure is based on �uctuation-dissipation relations. A �rst-
principle derivation of the nonlinear �uctuating Navier-Stokes equations is proposed
in [100, 101, 162], based on [214] that obtained a generalized functional Fokker-Planck
equation for the hydrodynamic �elds. In the mathematical literature, the characteri-
zation of �uctuations beyond the Navier-Stokes equations were notably discussed by
Quastel and Yau. In [182], they established a large deviation result for the incompress-
ible Navier-Stokes equations starting from the stochastic dynamics of a lattice gas, in an
e�ort to understand how to establish rigorous results about the microscopic derivation
of the Navier-Stokes equations without assumption on the regularity of its solutions.

The consistence of the �uctuating Navier-Stokes equations with molecular dynamics
approaches have been numerically assessed and con�rmed in [118, 119, 153]. It should
be noted that the �uctuation-dissipation relations based derivations of the �uctuating
Navier-Stokes equations assume the expression of the noise term either at the kinetic or
hydrodynamic level from �uctuation-dissipation relations rather than deriving it from
the microscopic dynamics. Notably, their starting point is the deterministic Boltzmann
equation, that somehow already assumes a large N limit. Their validity is restricted to
cases where the underlying microscopic system has a time-reversible dynamics. This
assumption is valid for the dilute gas dynamics, from which we can derive (1.8), but fall
short to describe more generic, out-of-equilibrium systems. Another question stemming
from those derivations comes from their starting point: a �uctuating Boltzmann equa-
tion with a Gaussian noise term. Given the dynamics of the underlying particle system
there is no reason for this noise to be Gaussian, and a priori, no reason either for the
noise term in the �uctuating hydrodynamics to be Gaussian.

The more general and microscopic approach taken in [100, 101, 162] allows for deriva-
tions that could be extended in out-of-equilibrium contexts. These derivations rely on
the manipulation of Stochastic Partial Di�erential Equations (SPDEs) which are the right
tool to describe small �uctuations driven by �nite N e�ects.

In this dissertation, we take a di�erent but complementary approach to the derivation
of �uctuating hydrodynamics, also starting from the particle dynamics but leveraging
large deviation theory instead of SPDEs. As explained in section 2.4, �niteN e�ects dis-
appear in the kinetic equation through a LLN approximation. Hence, we aim to re�ne
the large N asymptotics at this level to keep track of �uctuations within the hydrody-
namic limit. Rather than simply describing the evolution of the average of the empirical
measure, namely the distribution function at the kinetic level, we introduce large devia-
tion principles to quantify the probability of large �uctuations of the empirical measure
in the large N limit. In some cases, these �uctuations can be represented by a �uctuat-
ing kinetic equation with a small noise term that describes �nite N e�ects, with some
prescriptions that will be explained in the next chapter. We then consider the hydro-
dynamical limit to derive �uctuating hydrodynamics equations either as SPDEs, such
as (1.8) or as large deviation principles for the empirical hydrodynamical �elds. Large
deviation theory has been widely used to describe �uctuations in macroscopic �eld de-
scriptions of particle systems, notably including the Macroscopic Fluctuation Theory
(MFT) describing �uctuations of the density �eld beyond its di�usive dynamics [32] for
a wide range of particle systems, including the celebrated lattice exclusion processes. For
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Chapter 1 Introduction

these systems, there is no notion of velocity (particles hop from a node to a neighboring
one at �xed rates), there is no kinetic theory and the route to obtain �uctuating hydro-
dynamics is slightly di�erent. Here, we recall the main works that precisely focused on
establishing large deviations principles for kinetic theories that describe large N behav-
ior particle systems whose dynamics is given by di�erential equations on their positions
and velocities as in (1.1). The literature includes works that have formally understood
large deviations for the Boltzmann equation [50], mathematically for Boltzmann-like
toy-models [184, 126, 18]; recently rigorous large deviations results were established
starting from the hard sphere dynamics for short times [46, 45]. Central limit theorem
results were already understood and coincide with the large deviations ones for small
�uctuations [191, 192]. For weakly interacting particles (through a mean-�eld interac-
tion), we refer to the pioneering work of Dawson and Gartner [82], who established a
large deviation result for the empirical measure of N Ito di�usions coupled in a mean-
�eld way. This result was reinterpreted as a �uctuating kinetic equation known as the
Dean-Kawasaki equation by physicists [86, 136].

1.7. Applications of fluctuating hydrodynamics
Before diving into the outline of this dissertation, we discuss here some of the motiva-
tions driving us to study �nite N �uctuations within the hydrodynamical and kinetic
limits. So far, we mainly focused on theoretical ones. These theoretical motivations are
detailed in chapter 3, but the main point is that by constructing a statistical approach of
trajectories rather than static (equilibrium) con�gurations, large deviations for kinetic
theories and �uid equations naturally generalizes to out of equilibrium systems. Here,
we focus on a few possible applications of �uctuating hydrodynamics. Generally speak-
ing, �nite N �uctuations, or thermal �uctuations as they are referred to in the historical
literature, become prominent when the molecular nature of matter cannot be ignored.
This is the case when dealing with a �uid at micro or nanoscales [43], with surface
interactions, and when biological [165, 178, 91] or chemical processes are implied. As
a consequence, the development of numerical schemes to simulate �uctuating hydro-
dynamics such as the Landau-Lifshitz-Navier-Stokes (LLNS) system (1.8) allowed major
breakthrough in these �elds [9, 39, 96]. Notably, in [170], the authors numerically predict
through the LLNS system the giant concentration �uctuations5 observed in the di�usive
mixing of water and glycerol in molecular dynamics simulations [95] and experiments
[204, 80, 203]. Another �eld of application of the �uctuating Navier-Stokes equations
is the study of turbulence. As suggested by the seminal work of Betchov [35, 36, 37],
thermal �uctuations seems to modify the spectrum of the kinetic energy cascade in tur-
bulence. These e�ects have been numerically [117] and analytically [102, 13, 19] studied
starting from the �uctuating hydrodynamics description.

5When studying the mixing of two liquids in the absence of gravity (with microgravity techniques for
instance), it is known that the spectrum of the intensity of the concentration �uctuations scales like
k−4 with the wavenumber k [85], yielding thermally sourced propagative macroscopic �uctuations at
small wavenumbers.
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1.8 Contents of the manuscript

All these works starts from the �uctuating Navier-Stokes equations, for which the
noise terms were already characterized from thermodynamics consideration. More in-
terestingly, the microscopical derivation of �uctuating hydrodynamics becomes crucial
when the noise term cannot be assumed from equilibrium thermodynamics. An impor-
tant example is the one of active matter. Active systems are composed of units able to
extract non-thermal energy from the environment and dissipate it to self-propel. Bac-
teria or mammals can be example of such units. The modeling of such system usually
starts from particle dynamics that explicitly breaks detailed balance, as in the paradig-
matic case of the Vicsek model [209]. Fluctuating hydrodynamics descriptions of such
systems are crucial, given that in the biological applications, the particle number remains
relatively small. Given the absence of thermodynamics argument, the noise term in such
description is usually added ad hoc [199, 200, 198].

1.8. Contents of the manuscript
This manuscript deals with the derivation of �uctuating hydrodynamics from the par-
ticle dynamics. Its organization naturally follows the two steps of such a derivation.
The �rst part of the dissertation deals with the derivation of dynamical large deviation
principles for kinetic theories starting from the particle dynamics; and the second part is
concerned with the derivation of �uctuating hydrodynamics starting from kinetic large
deviation principles.

The �rst chapter of the �rst part (chapter 3) serves as a general introduction to large
deviation theory and how it relates to kinetic theory. It also includes generic methods
to obtain kinetic large deviation principle, as well as the derivation of large deviation
principles for N di�usions coupled in a mean-�eld way, and N independent particles
submitted to a jump (Run-And-Tumble) process. These are not new results, but they
are used throughout the manuscript and serve as pedagogical examples in this chapter.
In chapter 4, we obtain the dynamical large deviation principle extending the Balescu-
Guernsey-Lenard equation, which is the kinetic equation describing the large N behav-
ior of a Hamiltonian system of particles coupled via a long-range potential. This is the
�rst new result of this dissertation. The next chapter (5) focuses on the derivation of
the dynamical large deviation principle associated with the Landau kinetic equation. It
is obtained as an approximation of the Balescu-Guernsey-Lenard result, when the inter-
action potential is a Coulomb potential and the scales investigated much smaller than
the Debye length. The large deviation result for the Landau equation is also linked to
the results about the large deviations for the Boltzmann equation within the grazing
collision limit. This result is also an original one, and is notably connected with recent
results on the gradient-�ow structure of the Landau equation [65, 66]. Alongside already
established results about large deviations for the Boltzmann equation, those two large
deviations results for the Balescu-Guernsey-Lenard and the Landau equations complete
the picture of the large deviations for classical kinetic theories.

The second part of the dissertation begins with chapter 6 that introduces the tools used
in the following chapters to bridge from kinetic large deviation principles to �uctuating

15



Chapter 1 Introduction

hydrodynamics. This is done by investigating the derivation of the �uctuating di�usion
equation for N independent particles di�using via a jump (Run-And-Tumble) process.
The derivation of this equation is not new, but it serves a pedagogical goal, and it allows
to introduce the key conceptual tools used in the second part: the Chapman-Enskog
expansion, the contraction principle of the kinetic large deviation principle toward the
hydrodynamic large deviation principle, and the “Gaussianization” of the large devia-
tion principle within the hydrodynamic limit. We apply this program in chapter 7 to
the microscopical derivation of the �uctuating compressible and incompressible Navier-
Stokes equations, with the large deviations for the Boltzmann equation as a starting
point. A notable side result of this chapter, is the obtaining of gradient-�ow structures,
as a consequence of the large deviations principles, for the incompressible (respectively
compressible) Navier-Stokes equations, illustrating the geometry of the dissipation of
the kinetic energy (resp. the negative of the entropy) in these equations. In chapter 8,
we derive a kinetic large deviation principle and the ensuing �uctuating hydrodynamics
for an active particle gas (similar to the Vicsek model) in the dilute limit. This work is
also original and is one of the �rst6 to propose a microscopical derivation of the noise
term in a �uctuating hydrodynamics description of an active system. Another inter-
esting technical point of this chapter is the derivation of �uid equations for a particle
system that lacks conservation laws, using the notion of Generalized Collision Invariant
�rst introduced by Degond [87]. In chapter 9, we assess the robustness of the deriva-
tion of �uctuating hydrodynamics from kinetic large deviation principle in the speci�c
case where the hydrodynamical limit is a hyperbolic conservation law. Such PDEs are
known to exhibit non-unique solutions with steep gradients, and we explain, with the
example of a 1D Run-And-Tumble process that the asymptotic expansions we used to
obtain �uctuating hydrodynamics might be wrong to quantify the probability of certain
non-smooth weak solutions hydrodynamic pro�les. In particular, there is no reason for
the Jensen-Varadhan functional (derived in [133, 205] for the Totally Asymmetric Exclu-
sion Process) that quanti�es the probability of non-entropic shocks to hold in general.

6Alongside [29]. To our knowledge, it is the �rst work that derives the noise term for a particle model
based on binary interactions.
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2. Introduction en français
Cette thèse traite de l’étude de la limite hydrodynamique de systèmes de particules dans
le cadre de la théorie des grandes déviations. L’objectif principal est d’étudier la dériva-
tion d’équations �uides décrivant la matière comme un continuum à l’échelle macrosco-
pique, à partir de la dynamique microscopique discrète des particules. Plus particulière-
ment, ce manuscrit s’intéresse à l’étude des �uctuations dans la limite hydrodynamique,
par exemple à la quanti�cation de la précision de la description d’un système de parti-
cules comme un continuum et la prise en compte d’e�et de nombre de particules �ni dans
la description du �uide. Bien qu’historiquement, les techniques de mécanique statistique
présentées dans ce manuscrit aient été développées pour faire le lien entre la description
moléculaire des gaz et leur description �uide [157, 158, 69, 14], elles sont applicables
à un large éventail de systèmes. Par exemple, elles peuvent être utilisées pour étudier
les grands conglomérats d’étoiles [41, 124, 68], la synchronisation dans l’activation des
neurones [193], ainsi que le mouvement collectif de nuées d’oiseaux ou de colonies de
bactéries [40, 12, 23]. Ainsi, les termes “particule” et “dynamique microscopique” ne se
réfèrent pas nécessairement à des objets physiquement petits mais plutôt aux entités
fondamentales d’un système composé d’un grand nombre d’entre elles. Dans la suite,
nous commençons par introduire les concepts de dynamique microscopique des parti-
cules, de théorie cinétique et d’équations hydrodynamiques, ainsi que les liens entre ces
di�érents niveaux de description.

2.1. Equations du mouvement pour les particules et
équations hydrodynamiques

Une façon de décrire l’évolution d’un système de particules classique est la donnée
d’équations du mouvement pour la vitesse et la position de chacune des particules. Dans
cette thèse, nous considérons les équations du mouvement pour les particules comme le
point de départ, qu’elles soient une conséquence des lois de Newton ou qu’elles soient
postulées phénoménologiquement. Nous appelons {rn(t),vn(t)}1≤n≤N les positions et
les vitesses desN particules à un instant donné t ∈ [0, T ]. Généralement, rn ∈ R3 ouT3,
ce qui signi�e que les particules évoluent dans un espace continu de dimension 3, qui
peut être in�ni ou périodique. Ces équations peuvent être des équations di�érentielles
ordinaires (EDO) ou des équations di�érentielles stochastiques (EDS). Par exemple, dans
le cas d’une dynamique Hamiltonienne, avec un Hamiltonien

H =
1

2
m

N∑
n=1

v2 +
1

2

∑
p 6=n

W (rn − rp) ,

17
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les équations du mouvement sont des EDO :


drn
dt = vn,

m
dvn
dt = −

∑
p6=n

∇W (rn − rp),
(2.1)

où W est le potentiel d’interaction par paire, prescrivant l’interaction d’une particule
avec une autre, etm est la masse d’une particule. Les équations (2.1) ne sont rien d’autre
qu’une reformulation de la seconde loi de Newton. En principe, il est possible de pré-
dire les trajectoires des particules à partir des conditions initiales des équations (2.1),
par intégration numérique par exemple. Cependant, cette approche présente deux li-
mites inhérentes. Premièrement, une prédiction précise des trajectoires ne peut être ob-
tenue qu’avec une connaissance in�niment précise des données initiales, en particulier
si le système est sensible aux conditions initiales, c’est-à-dire si le système est chaotique.
Deuxièmement, siN le nombre de particules est grand, le temps nécessaire pour intégrer
numériquement (2.1) est au moins1 proportionnel àN . Par exemple, si nous voulions mo-
déliser l’écoulement de l’air autour de l’aile d’un avion, il serait inenvisageable d’intégrer
(1.1) pour chaque molécule de diazote ou de dioxygène entourant l’avion, en supposant
que nous sachions comment elles interagissent individuellement. Au XIXe siècle, mal-
gré le scepticisme généralisé quant à l’existence des atomes et des molécules, de grandes
avancées ont été réalisées dans le domaine de la dynamique des �uides. Il est évident qu’à
cette époque, les équations du mouvement des molécules n’étaient jamais utilisées pour
décrire la dynamique des �uides. Les ingénieurs et les physiciens utilisaient plutôt des
équations �uides (ou hydrodynamiques). Les équations de Navier-Stokes pour un �uide
incompressible sont probablement les équations �uides les plus utilisées en physique et
en ingénierie :

{
∂tu + u · ∇u +∇

(
P
ρ0

)
= ν∆u,

∇ · u = 0.
(2.2)

Il s’agit d’un ensemble d’équations di�érentielles partielles (EDP) qui décrivent l’évolu-
tion temporelle du champ de vitesse u (r, t) et du champ de pression P (r, t) d’un �uide
incompressible et visqueux, caractérisé par sa viscosité ν et sa masse volumique ρ0. Bien
que les questions mathématiques concernant l’existence et la régularité des solutions des
équations de Navier-Stokes restent ouvertes [149, 62, 143, 188], leur simulation numé-
rique directe (DNS) a permis des avancées dans un certain nombre d’applications telles
que l’aérodynamique et les prévisions météorologiques [185, 174, 6].

1Si W est un potentiel à longue portée, c’est-à-dire que chaque particule interagit avec toutes les autres,
le temps de calcul pourrait être proportionnel à N logNou N2 selon l’algorithme utilisé [129].
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2.2. Intérêts et importance d’une approche statistique
de l’hydrodynamique

Par dé�nition, le champ de vitesse dans les équations de Navier-Stokes (2.2) est dé�ni
en tout point de l’espace et décrit la matière comme un continuum. Une façon courante
de comprendre l’origine de ces équations (2.2) est de le considérer comme les équations
de conservation de la quantité de mouvement pour le �uide. Plus précisément, les équa-
tions hydrodynamiques peuvent être obtenues comme une conséquence de la deuxième
loi de Newton appliquée à un volume de contrôle du �uide : “une région de l’espace à
travers laquelle le �uide s’écoule” comme expliqué dans [211], de taille commodément
choisie pour obtenir un résultat simple. Un volume de contrôle est un objet abstrait qui
ne peut être ni observé ni dé�ni avec précision. Pour de nombreuses applications, y com-
pris éducatives, cette justi�cation des équations de Navier-Stokes est utile. Du point de
vue du physicien statisticien, il est cependant intrigant d’essayer d’expliquer comment
les équations de Navier-Stokes peuvent être reliées aux équations de Newton (2.1) qui
régissent le comportement du �uide à l’échelle moléculaire. “Relier la vision atomistique
aux lois du mouvement du continuum” est une question intégrée au sixième problème
de Hilbert [81, 212], qui énonce certains objectifs de l’axiomatisation de la physique, tels
que la dé�nition claire des processus asymptotiques qui conduisent aux descriptions de
la matière de l’échelle atomique à l’échelle macroscopique.

La compréhension de la dérivation microscopique des équations hydrodynamiques
n’a pas seulement un objectif axiomatique. Elle permet également de mieux maitriser le
domaine de validité de la description hydrodynamique. A partir de combien de particules
est-il raisonnable de décrire un système de particule discret comme un �uide continu?
Comment pouvons-nous quanti�er la précision de cette approximation? Pourquoi l’évo-
lution macroscopique du système prédite par les équations hydrodynamiques est-elle ir-
réversible alors que sa dynamique microscopique ne l’est pas? Il s’agit de questions clés
qui nécessitent non seulement une compréhension précise de la dérivation des équa-
tions hydrodynamiques, mais qui impliquent également le besoin de nouveaux outils
pour quanti�er leur précision. Comme c’est souvent le cas en physique statistique, le
point clé est que lorsque le nombre de particules composant le système est important,
nous pouvons les traiter de manière statistique, plutôt que de façon déterministe en pré-
disant le comportement de chaque particule individuellement. En ce sens, les équations
hydrodynamiques peuvent être considérées comme une Loi des Grands Nombres (LGN) ;
lorsqu’il y a beaucoup de particules, il su�t de décrire leur comportement moyen, par
exemple, leur vitesse moyenne en un certain point de l’espace, qui est donnée par la va-
leur du champ de vitesse en ce point. Toutefois, cette approche ne permet pas de quan-
ti�er les écarts éventuels d’une réalisation du système par rapport à son comportement
moyen. Bien que rares, de tels écarts peuvent avoir des e�ets radicaux sur le système (en
déclenchant une transition de phase, par exemple). L’outil probabiliste approprié pour
l’étude de ces événements rares est la théorie des grandes déviations. Elle est largement
utilisée dans ce manuscrit, non seulement pour dériver les équations hydrodynamiques
depuis la dynamique des particules, mais aussi pour quanti�er la probabilité que le com-
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portement macroscopique du système de particules s’écarte de la trajectoire d’évolution
moyenne prédite par l’hydrodynamique. Pour mieux comprendre où la LGN entre en jeu
dans la dérivation de l’hydrodynamique et comment prendre en compte les �uctuations
dans la limite hydrodynamique, nous introduisons de manière heuristique la notion de
limite hydrodynamique dans la section suivante.

2.3. Des particules à l’hydrodynamique : une
dérivation qui implique deux limites

Essayons d’abord d’imaginer comment une description en termes de trajectoires {rn(t),vn(t)}
peut être liée à une description en terme de champ de vitesse u (r, t). Naïvement, nous
pouvons essayer de calculer le champ de vitesse en un certain point de l’espace u (r, t)
en calculant une moyenne locale des particules de vitesse situées à proximité :

u (r, t) ≈ 1

|B(r, l)|
∑

rn∈B(r,l)

vn (t) , (2.3)

où B (r, l) est une boule de centre r et de rayon l, et |B(r, l)| est le nombre de particules
dans une telle boule. Puisque nous connaissons les équations (2.1) régissant l’évolution
temporelle de vn et rn, nous pouvons en théorie calculer l’évolution temporelle du champ
de vitesse u. Cependant, l’estimation du champ de vitesse par la formule empirique (2.3)
pose deux problèmes.

1. Pour que l’équation (2.3) ait un sens, nous devons nous assurer que dans toute
boule de rayon l du système, nous pouvons trouver au moins une particule. Puisque
le champ de vitesse est calculé comme une moyenne locale, nous devons également
nous assurer qu’il n’y a pas qu’une seule particule dans cette boule, mais qu’il y
en a beaucoup. Si ρ0 = N/L3 est la densité moyenne du système, et L la taille du
système, cette exigence peut être traduite mathématiquement par ρ0l

3 � 1. Cette
hypothèse est en quelque sorte une hypothèse de type LGN : lorsque ρ0l

3 � 1, la
moyenne empirique calculée dans (2.3) est proche de la moyenne statistique.

2. Cependant, le rayon de la boule l ne peut pas être trop grand. Si l a le même ordre
de grandeur que la taille du système L, alors u (r, t) aurait globalement la même
valeur en tout point r du système, et correspondrait à la vitesse moyenne globale
de toutes les particules du système, plutôt qu’à un champ de vitesse. Une façon de
s’assurer que le champ de vitesse construit à partir de (2.3) ne sou�re pas de ce
problème est de choisir un rayon l beaucoup plus petit que la taille du système :
l � L. Ceci est nécessaire mais pas su�sant en fonction de la nature du système
de particules.

Ces deux écueils potentiels révèlent que la dérivation des équations hydrodynamiques à
partir des équations du mouvement des particules implique deux limites. Comme on peut
aisément le deviner, la première limite est liée à la LGN et est une limite de type “grand
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N”, appelée limite cinétique. De manière moins évidente, pour que les équations hydro-
dynamiques aient un sens, le système doit également présenter une grande séparation
d’échelles entre l’échelle microscopique de la dynamique des particules et l’échelle à la-
quelle nous observons le système macroscopique. Cette limite de séparation des grandes
échelles est appelée limite hydrodynamique.

2.4. La théorie cinétique : la limite “grand N”
Une première étape vers la dérivation de l’hydrodynamique à partir de la dynamique des
particules consiste à obtenir une description cinétique. L’idée principale de la théorie
cinétique est, dans l’esprit d’une LGN, que lorsque le nombre de particules N est grand,
au lieu de décrire les trajectoires {rn(t),vn(t)}0≤t≤T

1≤n≤N de chaque particule, il su�t de
décrire les statistiques de leurs positions et de leurs vitesses. Pour ce faire, on introduit
la fonction de distribution f . La fonction de distribution f est une fonction qui dépend
de la vitesse et de la variable de position, ainsi que du temps. Son interprétation physique
est la suivante :

f (r,v, t) drdv

est le nombre moyen de particules qui ont une position r à dr près, une vitesse v à
dv près, à un certain instant t. L’objectif de la théorie cinétique est d’établir une EDP
qui régit l’évolution temporelle de la fonction de distribution. Une telle EDP est appe-
lée équation cinétique. Pour une dynamique telle que (2.1), l’équation cinétique s’écrit
généralement comme suit :

∂tf + v · ∇f︸ ︷︷ ︸
terme de transport

= Q (f)︸ ︷︷ ︸,
terme de collision

(2.4)

où le terme de transport rend compte du transport des particules dû à leurs propres vi-
tesses, et le terme de collision2 rend compte de manière générique de l’e�et des interac-
tions sur la distribution des vitesses. Une façon courante d’obtenir une équation d’évolu-
tion pour la fonction de distribution f est de partir du théorème de Liouville, qui stipule
que la fonction de distribution conjointe des N particules fN part (r1,v1, · · · , rN ,vN , t)
est conservée par la dynamique Hamiltonienne (2.1). Ensuite, par intégration succes-
sive de l’équation de Liouville, on peut exprimer l’évolution temporelle de la fonction
de distribution f en fonction de la distribution conjointe à deux particules dans l’es-
pace des phases f2 (r1,v1, r2,v2, t). Cette méthode est connue sous le nom de hiérar-
chie BBGKY. Une façon de clore cette hiérarchie est de supposer qu’à l’ordre dominant,
f2 (r1,v1, r2,v2, t) ≈ f (r1,v1, t) f (r2,v2, t). C’est exactement le cas lorsqu’il n’y a pas
d’interaction entre lesN particules et qu’elles ne sont pas initialement corrélées. Dans le

2La terminologie “terme de collision” est historique et se réfère au terme d’interaction de l’équation de
Boltzmann qui rend compte de l’e�et des collisions élastiques entre les particules sur la fonction de
distribution. Nous utilisons toujours le terme “collisions” même si l’interaction entre les particules
n’est pas collisionnelle.
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cas contraire, la précision de cette approximation n’est pas seulement liée au nombre de
particules dans le système, mais aussi à l’intensité de leurs interactions. Il y a principa-
lement deux scénarios où l’on peut justi�er cette approximation, du moins du point de
vue de la physique théorique. Premièrement, lorsque les interactions entre les particules
sont su�samment rares pour que l’on puisse les considérer comme statistiquement in-
dépendantes. C’est le cas pour le gaz dilué, c’est-à-dire lorsque le potentiel d’interaction
W dans (2.1) est à courte portée, qui est décrit au niveau cinétique par l’équation de
Boltzmann, à savoir (2.4) où le terme de collision est dé�ni par

Q(f)(r,v) =

∫∫∫
dv2dv′1dv′2w(v′1,v

′
2; v,v2) [f(r,v′1)f(r,v′2)− f(r,v)f(r,v2)] .

(2.5)

Une autre situation importante est celle où toutes les particules interagissent entre elles,
mais avec un potentiel d’interaction faible. Cela correspond au cas où W est à longue
portée mais proportionnel à 1/N , de sorte que la somme des forces exercées sur une
particule est toujours d’ordre un. Dans ce cas, lorsque le système est spatialement ho-
mogène, il peut être décrit par l’équation cinétique de Balescu-Guernsey-Lenard

∂tf =
∂

∂v
·
(∫

dv2 B [f ] (v,v2) ·
(
− ∂f

∂v2

f(v) + f(v2)
∂f

∂v

))
, (2.6)

with

B [f ] (v1,v2) =
π

L3

∫ +∞

−∞
dω

∑
k∈(2π/L)Z3

Ŵ (k)2 k⊗ k

|ε[f ] (k, ω)|2
δ (ω − k.v1) δ (ω − k.v2) , (2.7)

où cette fois f ne dépend que de la variable vitesse en raison de l’homogénéité spatiale,
Ŵ est la transformée de Fourier du potentiel, et ε est la fonction diélectrique, qui dépend
de façon non linéaire de f et sera introduite en détail dans le chapitre 4.

Le gaz dilué, décrit par l’équation de Boltzmann, et les systèmes de particules avec
des interactions à longue portée, décrits par l’équation de Balescu-Guernsey-Lenard,
seront discutés en détail tout au long de cette thèse, car ils constituent des exemples
paradigmatiques de théories cinétiques. Le régime asymptotique spéci�que dans lequel
elles sont valides sera clari�é plus loin dans le manuscrit, mais toutes deux requièrent
que le nombre de particules dans le système aille à l’in�ni. Dans les deux cas, la fonction
de distribution f est obtenue comme une LGN pour la mesure empirique

fN (r,v, t) =
1

N

N∑
n=1

δ (r− rn (t)) δ (v − vn (t)) ,

une distribution sur l’espace µ (l’espace de phase à une particule) qui dépend des trajec-
toires exactes des N particules, et qui permet de passer de la description particulaires à
la description cinétique dans la limite des grands N .

L’intérêt d’étudier de telles théories cinétiques est double. Premièrement, les équations
cinétiques telles que les équations de Boltzmann et de Balescu-Guernsey-Lenard donnent
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des informations physiques sur le système qui ne découlent pas de façon immédiate des
équations de mouvement. Un exemple frappant est que ces deux équations décrivent la
relaxation vers l’équilibre, c’est-à-dire que la distribution des vitesses relaxe vers une
distribution normale, communément appelée distribution de Maxwell-Boltzmann. Plus
intéressant encore, l’équation de Boltzmann est également la première étape dans la
dérivation des équations hydrodynamiques telles que les équations de Navier-Stokes à
partir de la dynamique moléculaire.

2.5. Des équations cinétiques aux équations
hydrodynamiques

Une fois que nous avons établi une équation cinétique décrivant l’évolution temporelle
de la fonction de distribution f dans un régime asymptotique lié à une limite de grand
N, il est possible d’étudier l’évolution temporelle des champs hydrodynamiques. Ces
champs sont généralement liés aux moments de la fonction de distribution par rapport
à la variable de vitesse. Par exemple, les moments d’ordre zéro, un et deux

ρ (r, t) =

∫
dv f (r,v, t) ,

ρu (r, t) =

∫
dv vf (r,v, t) ,

ρe (r, t) =

∫
dv

v2

2
f (r,v, t) ,

peuvent être interprétés comme le nombre moyen de particules ρ, la vitesse moyenne
u, et l’énergie cinétique moyenne e en un point donné de l’espace r et du temps t. En
général, il n’est pas possible d’obtenir des équations d’évolution des champs hydrody-
namiques par simple intégration de l’équation cinétique sur la variable de vitesse. Sans
autre hypothèse, l’évolution des champs hydrodynamiques dépend de l’ensemble de la
fonction de distribution et pas seulement des autres champs hydrodynamiques. Ce pro-
blème peut être surmonté par une étude précise des lois de conservation associées à la
dynamique des particules et de leur relation avec les équilibres locaux de l’équation ci-
nétique, c’est-à-dire les fonctions de distribution qui annulent l’opérateur de collision
Q (f) = 0. En supposant que l’équation cinétique relaxe vers ses équilibres locaux sur
des échelles de temps beaucoup plus courtes que l’échelle de temps d’observation ma-
croscopique, il est possible d’obtenir des équations fermées sur les champs hydrodyna-
miques. Pour l’équation de Boltzmann par exemple, une façon de réaliser ce programme
est de chercher des solutions à l’équation de Boltzmann comme un développement de
Chapman-Enskog au voisinage d’un équilibre local de l’équation de Boltzmann (une dis-
tribution de Maxwell-Boltzmann). Cette procédure est asymptotique et est associée à un
petit paramètre : le nombre de Knudsen, c’est-à-dire le rapport entre les échelles mi-
croscopique et macroscopique (temps ou longueur) du système. Selon le scaling choisi
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entre les échelles de temps et de longueur du système, il est possible de dériver les équa-
tions d’Euler et de Navier-Stokes compressibles ou incompressibles dans la limite de
petit Knudsen à partir de l’équation de Boltzmann.

2.6. Fluctuations dans les limites cinétiques et
hydrodynamiques

Les équations �uides dérivées en suivant les étapes détaillées précédemment sont va-
lables dans la limite d’un nombre de particules in�ni. Par conséquent, elles ne peuvent
pas décrire les e�ets de “N �ni”. Par exemple, en e�ectuant une simulation de dynamique
moléculaire à l’aide des équations du mouvement (2.1) et en reconstruisant numérique-
ment le champ de vitesse empirique (2.3), nous pouvons observer que l’évolution résul-
tante du champ de vitesse est bruitée. Plus précisément, le champ de vitesse empirique
devrait ressembler à la solution des équations hydrodynamiques déterministes (avec les
conditions initiales appropriées) auxquelles se superposent de petites �uctuations, visi-
blement aléatoires. A mesure que le nombre de particules augmente, l’amplitude de ces
�uctuations décroît. Ceci est analogue au fait que si nous échantillonnonsN réalisations
de variables aléatoires identiquement, indépendamment et normalement distribuée et re-
présentons l’échantillonnage dans un histogramme, l’histogramme apparaît plus lisse et
plus proche de la distribution normale au fur et à mesure que le nombre de réalisations
augmente. À partir de cette observation, il a été postulé que dans un régime de grand
N , il est raisonnable de supposer que l’évolution des champs hydrodynamiques empi-
riques peut être considérée comme l’addition de celle d’un champ déterministe dérivé
de la LGN, et d’un bruit aléatoire qui devient plus petit à mesure que N augmente. C’est
par exemple ce que prédit le système de Navier-Stokes incompressible �uctuant (égale-
ment connu sous le nom de système de Landau-Lifshitz-Navier-Stokes) dérivé pour la
première fois dans [147, 113, 42, 137] :

{
∂tu + u · ∇u +∇

(
P
ρ0

)
= ν∆u +∇ · J,

∇ · u = 0.
(2.8)

où J est un tenseur aléatoire de statistique Gaussienne dont les composantes Jij satisfont

E (Jij (r, t) Jkl (r
′, t′)) =

2νkBT0

ρ0

(
δikδjl + δilδjk −

2

3
δijδkl

)
δ(t− t′)δ(r− r′), (2.9)

où T0 est la température du �uide, ρ0 sa masse volumique, et kB la constante de Boltz-
mann. À partir de la variance du terme de bruit (2.9), nous constatons que dans la limite
d’un grand nombre de particulesN , le terme de bruit disparaît et nous retrouvons l’équa-
tion de Navier-Stokes incompressible en tant que LGN. 3 Même si le système de Landau-
Lifshitz-Navier-Stokes est largement utilisé dans sa forme non linéaire (2.8), la plupart

3Il convient de noter que l’interprétation des équations de Navier-Stokes en tant que loi des grands
nombres doit être traitée avec prudence. Par exemple, la dynamique d’un scalaire passif advecté par
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des travaux consacrés à sa dérivation se limitent au cas linéarisé [147, 113, 42, 137]. Ces
dérivations reposent soit sur l’ajout d’un terme de bruit aux équations de Navier-Stokes
linéarisées sur la base de considérations thermodynamiques, soit sur l’utilisation du for-
malisme de Mori-Zwanzig [161, 42, 128]. Ce formalisme permet d’ajouter un terme de
bruit à l’équation cinétique de Boltzmann linéarisée, dont la valeur moyenne et la struc-
ture de corrélation sont basées sur des relations de �uctuation-dissipation. Une déri-
vation à partir des “premiers principes” des équations de Navier-Stokes �uctuantes non
linéaires est proposée dans [100], sur la base de [214] qui dérive une équation de Fokker-
Planck fonctionnelle généralisée pour les champs hydrodynamiques. L’a�rmation de
“premier principe” dans cette dérivation se réfère au point de départ de [214] qui est
une équation de Liouville pour des champs hydrodynamiques “microscopiques” coarse-
grainés dont la relation avec la dynamique réelle des particules n’est pas explicite. Dans
la littérature mathématique, la caractérisation des �uctuations au-delà des équations de
Navier-Stokes a notamment été discutée par Quastel et Yau. Dans [182], ils établissent
un résultat de grandes déviations pour les équations de Navier-Stokes incompressibles
à partir de la dynamique stochastique simpli�ée d’un gaz sur réseau, dans la perspec-
tive d’établir des résultats rigoureux sur la dérivation microscopique des équations de
Navier-Stokes sans hypothèse sur la régularité de ses solutions.

La cohérence des équations de Navier-Stokes �uctuantes avec les approches de dyna-
mique moléculaire a été évaluée numériquement et con�rmée [118, 119, 153]. Il convient
de noter que toutes les dérivations des équations de Navier-Stokes �uctuantes supposent
l’expression du terme de bruit au niveau cinétique ou hydrodynamique à partir des rela-
tions de �uctuation-dissipation plutôt que de le dériver depuis la dynamique microsco-
pique. Notamment, leur point de départ est l’équation de Boltzmann déterministe, qui,
d’une certaine manière, suppose déjà une limite de N in�ni. De plus, leur validité est li-
mitée aux cas où le système microscopique sous-jacent a une dynamique réversible dans
le temps, permettant l’utilisation de théorèmes de �uctuation-dissipation. Cette hypo-
thèse est valable pour la dynamique des gaz dilués, mais ne permet pas de décrire des
systèmes plus génériques et hors d’équilibre. Une autre question découlant de ces dé-
rivations provient de leur point de départ : une équation de Boltzmann �uctuante avec
un terme de bruit Gaussien. Etant donné la dynamique du système de particules sous-
jacent, il n’y a aucune raison pour que ce bruit soit Gaussien, et a priori, aucune raison
non plus pour que le terme de bruit dans l’hydrodynamique �uctuante soit Gaussien.

Dans cette thèse, nous adoptons une approche di�érente pour dériver l’hydrodyna-
mique �uctuante, en ayant la dynamique microscopique des particules comme point de
départ. Comme expliqué précédemment, les e�ets de N �ni disparaissent dans l’équa-
tion cinétique grâce à une approximation de type LGN. Par conséquent, nous visons à
a�ner les asymptotiques de grand N à ce niveau pour garder une trace des �uctua-

les équations de Navier-Stokes incompressibles et soumis à des �uctuations thermiques semble res-
ter stochastique même dans la limite de di�usion et du bruit thermique allant vers zéro[103, 28]. Ce
phénomène est essentiellement lié à la rugosité engendrée par le terme d’advection et est appelé sto-
chasticité spontanée. Dans ce manuscrit, la dénomination “loi des grands nombres” vient du fait que
nous dérivons l’équation des �uides de l’équation cinétique qui est de fait une loi des grands nombres
pour la mesure empirique.
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tions dans la limite hydrodynamique. Plutôt que de décrire simplement l’évolution de la
moyenne de la mesure empirique, à savoir la fonction de distribution au niveau cinétique,
nous introduisons des principes de grandes déviations pour quanti�er la probabilité de
grandes déviations de la mesure empirique dans la limite de grand N . Dans certains cas,
ces �uctuations peuvent être représentées par une équation cinétique �uctuante avec un
petit terme de bruit qui décrit les e�ets de N �ni. Nous considérons ensuite la limite hy-
drodynamique pour dériver des équations hydrodynamiques �uctuantes, telles que 2.8.
La théorie des grandes déviations a été largement utilisée pour décrire les �uctuations
dans les champs macroscopiques des systèmes de particules. Un des xemples les plus cé-
lèbres est la théorie des �uctuations macroscopiques (Macroscopic Fluctuation Theory,
MFT) qui décrit les �uctuations du champ de densité au-delà de sa dynamique di�usive
[32] pour un large éventail de systèmes de particules, tels que les processus d’exclusion
simples. Pour ces systèmes, il n’y a pas de notion de vitesse (les particules sautent d’un
nœud à un voisin à des taux �xes), il n’y a pas de théorie cinétique et le chemin pour
obtenir l’hydrodynamique �uctuante est légèrement di�érent. Ici, nous rappelons les
principaux travaux qui se sont précisément concentrés sur l’établissement de principes
de grandes déviations pour les théories cinétiques qui décrivent des systèmes de parti-
cules dont la dynamique est donnée par des équations di�érentielles sur leurs positions
et leurs vitesses, comme dans (2.1). La littérature à ce sujet comprend des travaux qui
ont formellement compris les grandes déviations pour l’équation de Boltzmann [50], ma-
thématiquement pour des modèles-jouets de type Boltzmann [184, 126, 18] ; récemment
des résultats rigoureux de grandes déviations ont été établis à partir de la dynamique du
gaz de sphères durs pour des temps courts [46, 45]. Des résultats de type théorème cen-
tral limite pour l’équation de Boltzmann ont déjà été établis et coïncident avec ceux des
grandes déviations pour décrire les petites �uctuations autour de l’équilibre [191, 192].
Pour les particules interagissant faiblement (à travers une interaction de type champ
moyen), nous nous référons au travail pionnier de Dawson et Gartner [82], qui établit
un résultat de grandes déviations pour la mesure empirique deN particules Browniennes
couplées par une interaction de type champ moyen. Ce résultat a été réinterprété comme
une équation cinétique �uctuante connue sous le nom d’équation de Dean-Kawasaki par
les physiciens [86, 136].

2.7. �elques applications des équations
hydrodynamiques fluctuantes

Avant de se lancer dans les grandes lignes de cette thèse, nous discutons dans ce para-
graphe de certaines des motivations qui nous poussent à étudier les �uctuations dans
les limites hydrodynamiques et cinétiques. Jusqu’à présent, nous nous sommes princi-
palement concentrés sur les motivations théoriques. Ces motivations théoriques sont
détaillées dans le chapitre 3. En résumé, construire une approche statistique des trajec-
toires plutôt que des con�gurations statiques (d’équilibre) à travers les grandes dévia-
tions pour la théorie cinétique, permet une généralisation naturelle aux systèmes hors
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d’équilibre. Ici, nous nous concentrons sur quelques applications possibles de l’hydro-
dynamique �uctuante. D’une manière générale, les �uctuations deN �ni, ou les �uctua-
tions thermiques comme on les appelle dans la littérature historique, deviennent impor-
tantes lorsque la nature moléculaire de la matière ne peut pas être ignorée. C’est le cas
lorsqu’on étudie un �uide à des échelles micro ou nanométriques [43], avec des interac-
tions de surface, et lorsque des processus biologiques [165, 178, 91] ou chimiques sont
impliqués. En conséquence, le développement de schémas numériques pour simuler l’hy-
drodynamique �uctuante comme le système de Landau-Lifshitz-Navier-Stokes (LLNS)
2.8 a permis des avancées majeures dans ces domaines [9, 39, 96]. Notamment, des �uc-
tuations géantes de concentration ont été prédites par l’hydrodynamique �uctuante via
le système de LLNS dans [170]4, lors du mélange di�usif de l’eau et du glycérol, ce qui
avait déjà été observé dans des simulations de dynamique moléculaire [95] et expérimen-
talement [204, 80, 203]. Un autre domaine d’application des équations de Navier-Stokes
�uctuantes est l’étude de la turbulence. Comme le suggèrent les travaux fondateurs de
Betchov [35, 36, 37], les �uctuations thermiques semblent modi�er le spectre de la cas-
cade d’énergie cinétique en turbulence. Ces e�ets ont été étudiés numériquement [117]
et analytiquement [102, 13, 19] à partir de la description hydrodynamique �uctuante.

Tous ces travaux partent des équations de Navier-Stokes �uctuantes, pour lesquelles
les termes de bruit ont déjà été caractérisés à partir de considérations thermodyna-
miques. Lorsque le terme de bruit ne peut pas être supposé à partir de la thermody-
namique d’équilibre, la dérivation microscopique de l’hydrodynamique �uctuante de-
vient cruciale. Un exemple important est celui de la matière active. Les systèmes actifs
sont composés d’unités capables d’extraire de l’énergie non thermique de leur environ-
nement et de la dissiper pour se propulser. Les bactéries ou les mammifères sont des
exemples de tels unités. La modélisation d’un tel système commence généralement par
une dynamique des particules qui rompt explicitement le bilan détaillé, comme dans le
cas paradigmatique du modèle de Vicsek [209]. Les descriptions hydrodynamiques �uc-
tuantes de ces systèmes sont cruciales, étant donné que dans les applications biologiques,
le nombre de particules reste relativement faible. En l’absence d’argument thermodyna-
mique, le terme de bruit dans une telle description est généralement ajouté de façon ad
hoc [199, 200, 198].

2.8. Contenu du manuscrit
Ce manuscrit traite de la dérivation des équations hydrodynamiques �uctuantes à par-
tir de la dynamique microscopique des particules. Son organisation suit naturellement
les deux étapes d’une telle dérivation. La première partie du manuscrit traite de la dé-
rivation des principes de grandes déviations dynamiques pour les théories cinétiques à
partir de la dynamique des particules ; et la deuxième partie concerne la dérivation de

4En étudiant le mélange de deux liquides en l’absence de gravité (avec des techniques de microgravité par
exemple), on sait que le spectre de l’intensité des �uctuations de concentration est proportionnel à k−4
avec le nombre d’ondes k [85] ce qui donne des �uctuations macroscopiques propagatives d’origine
thermique à de petits nombres d’ondes.
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l’hydrodynamique �uctuante à partir des principes de grandes déviations cinétiques.
Le premier chapitre de la première partie (chapitre 3) sert d’introduction générale à

la théorie des grands déviations et son lien avec la théorie cinétique. Il comprend éga-
lement des méthodes génériques pour obtenir des principes de grandes déviations ci-
nétiques, ainsi que la dérivation de principes de grandes déviations pour N di�usions
couplées en champ moyen, et N particules indépendantes soumises à un processus de
saut (Run-And-Tumble). Ces résultats ne sont pas nouveaux, mais ils sont utilisés tout
au long du manuscrit et servent d’exemples pédagogiques dans ce chapitre. Dans le cha-
pitre 4, nous obtenons le principe de grandes déviations dynamique étendant l’équation
de Balescu-Guernsey-Lenard, qui est l’équation cinétique décrivant le comportement à
grand N d’un système Hamiltonien de N particules couplées par l’intermédiaire d’un
potentiel à longue portée. Il s’agit du premier résultat original de cette thèse. Le chapitre
suivant (5) se concentre sur la dérivation du principe de grandes déviations dynamique
associé à l’équation cinétique de Landau. Il est obtenu comme une approximation du
résultat de celui associé à l’équation de Balescu-Guernsey-Lenard, lorsque le potentiel
d’interaction est un potentiel de Coulomb et que les échelles étudiées sont beaucoup plus
petites que la longueur de Debye. Le résultat de grandes déviations pour l’équation de
Landau est également lié aux résultats concernant les grandes déviations pour l’équation
de Boltzmann dans la limite des collisions rasantes. Ce résultat est également original et
est notamment lié à des résultats récents sur la structure de �ot-gradient de l’équation de
Landau [65, 66]. En plus des résultats déjà établis sur les grandes déviations pour l’équa-
tion de Boltzmann, ces deux résultats sur les grandes déviations pour les équations de
Balescu-Guernsey-Lenard et de Landau complètent le triptyque des grandes déviations
pour les théories cinétiques classiques.

La deuxième partie de la thèse commence par le chapitre 6 qui introduit les outils
utilisés dans les chapitres suivants pour passer des principes de grandes déviations ciné-
tiques à l’hydrodynamique �uctuante. Pour ce faire, on étudie la dérivation de l’équation
de di�usion �uctuante pour N particules indépendantes di�usant via un processus de
saut (Run-And-Tumble). La dérivation de cette équation n’est pas nouvelle, mais elle sert
un objectif pédagogique et permet d’introduire les outils conceptuels clés utilisés dans la
deuxième partie : le développement de Chapman-Enskog, le principe de contraction du
principe de grandes déviations cinétique vers le principe de grandes déviations hydro-
dynamique, et la “Gaussianisationé du principe de grande déviation dans la limite hy-
drodynamique. Nous appliquons ce programme dans le chapitre 7 à la dérivation micro-
scopique des équations de Navier-Stokes compressibles et incompressibles �uctuantes,
avec le principe de grandes déviations pour l’équation de Boltzmann comme point de
départ. Un résultat secondaire notable de ce chapitre est l’obtention de structures de �ot-
gradient, comme conséquence des principes de grandes déviations, pour les équations
de Navier-Stokes incompressibles (respectivement compressibles), illustrant la géomé-
trie de la dissipation de l’énergie cinétique (respectivement de la néguentropie) dans ces
équations. Dans le chapitre 8, nous dérivons un principe de grandes déviations ciné-
tique et l’hydrodynamique �uctuante qui en découle pour un gaz de particules actives
(similaire au modèle de Vicsek) dans la limite diluée. Un point technique intéressant de ce
chapitre est la dérivation des équations hydrodynamiques pour un système de particules

28



2.8 Contenu du manuscrit

manquant de lois de conservation, en utilisant la notion d’invariant de collision géné-
ralisé introduite par Degond [87]. Dans le chapitre 9, nous évaluons la robustesse de la
dérivation de l’hydrodynamique �uctuante à partir des principes des grandes déviations
cinétiques dans le cas spéci�que où la limite hydrodynamique est une loi de conserva-
tion hyperbolique. De telles EDP sont connues pour présenter des solutions non uniques
avec des gradients abrupts, et nous expliquons, avec l’exemple d’un modèle-jouet en une
dimension, que les développement asymptotiques que nous avons utilisées pour obte-
nir l’hydrodynamique �uctuante à partir de la dynamique des particules pourraient être
erronées pour quanti�er la probabilité de certains pro�ls hydrodynamiques non lisses.
En particulier, nous expliquons qu’il n’y a aucune raison pour que la fonctionnelle de
Jensen-Varadhan (dérivée dans [133, 205] pour le processus d’exclusion totalement asy-
métrique, ASEP) qui quanti�e la probabilité de chocs non-entropiques soit valable en
général.
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Part I.

Dynamical large deviations for
kinetic theories
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3. Introduction to the dynamical
large deviations for kinetic
theories

In this chapter, we introduce some concepts of large deviation theory. We also explain
how they can be useful to comprehend kinetic theory. We illustrate the link between
dynamical large deviation theories in two toy models. Some of the sections are adapted
from [106, 105]. All the examples and properties discussed in this chapter are used
throughout the manuscript.

3.1. Beyond equilibrium statistics and relaxation to
equilibrium: dynamical fluctuations

In the �eld of statistical physics, the literature that describes the static �uctuations of a
system around equilibrium and its relaxation to equilibrium is very rich. For instance,
working in the appropriate thermodynamic ensemble, we can express the probability of
observing a given state of a system as a function of the corresponding thermodynamic
potential. Beyond equilibrium, classical kinetic theories describe the relaxation to equi-
librium in some asymptotic regimes. For instance the Boltzmann equation describes the
relaxation to equilibrium of a dilute gas in the Boltzmann-Grad limit, and the Balescu-
Guernsey-Lenard equation in the opposite limit of particles with long range interactions,
for instance plasma in the weak coupling limit or self-gravitating systems. The Landau
equation is either an approximation of the Balescu-Guernsey-Lenard equation that de-
scribes the relaxation of plasma at a scale much smaller than the Debye length, or an
approximation of the Boltzmann equation in the grazing collision limit. All those clas-
sical kinetic equations describe the relaxation of the empirical measure

fN(r,v, t) ≡ 1

N

N∑
n=1

δ(v − vn(t))δ (r− rn(t)) ,

where δ are Dirac delta functions, t is time, (rn(t),vn(t))1≤n≤N are the N particle po-
sitions and velocities. The six-dimensional space of one-particle position-velocity, with
points (r,v), is called the µ-space. fN is a distribution over the µ-space that evolves
with time.
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The probability Peq (fN = f 0) to observe fN close to a given distribution f0 of the
µ-space, at some �xed arbitrary time, in the microcanonical ensemble, satis�es

Peq
(
fN = f 0

)
∝ eN

S[f0]
kB . (3.1)

This is the classical Einstein formula relating the speci�c entropy S[f 0] of the macrostate
f 0 with its equilibrium probability. kB is the Boltzmann constant. This can be seen as a
de�nition of the Boltzmann entropy S[f 0] of the macrostate f 0. For a dilute gas, because
the particles are independent at leading order, for systems with long range interactions,
because the two-body interactions are weak, it is known that S is the negative of the
Boltzmann H function (S[f 0] = −kB

∫
drdv f 0 log f 0) if the macrostate f 0satis�es the

conservation laws (mass, momentum and energy), and S [f 0] = −∞ otherwise.
However all those classical works and results in equilibrium statistical mechanics and

kinetic theory do not describe the probability of paths that may lead to any macrostate
f 0. More generally, the macroscopic or mesoscopic stochastic process for fN is not de-
scribed by classical theories, and dynamical description is restricted to relaxation to equi-
librium. In principle, very rarely, the microscopic dynamics can lead the distribution
function to follow other paths than the relaxation paths described by the kinetic equa-
tion. What is the probability of such rare excursions? How do these probabilities depend
on the paths? Those are key questions. Answering them is the starting point for solving
many other non-equilibrium problems, as explained in section 3.5. Moreover, if the mi-
croscopic dynamics is time-reversible (in the sense of dynamical systems), for instance
if the microscopic dynamics is Hamiltonian, then we expect the stochastic process for
fN to be also time-reversible (in the sense of stochastic processes). It is a fundamental
question to describe this stochastic process for the empirical measure fN .

More precisely we need to estimate the probability P
(
{fN(t)}0≤t≤T = {f(t)}0≤t≤T

)
to observe the evolution of {fN(t)} to be in a neighborhood of any prescribed path
{f(t)}, for times 0 ≤ t ≤ T , in some asymptotic limit when the kinetic description is
valid, with the prescription that fN(t = 0) is in the neighborhood of f(t = 0). The
mathematical and theoretical formalism adapted to this problem is large deviation the-
ory.

3.2. Short introduction to large deviation theory
Large deviation theory is the branch of probability theory that formalizes the study of
extreme events in random systems in some asymptotic regime. In section 3.2.1, we in-
troduce the large deviation principle for the sum of N i.i.d. random variables, also re-
calling results about the law of large numbers and the central limit theorem: the two
other asymptotic frameworks of probability theory. In section 3.2.2, we introduce the
Freidlin-Wentzell theory that allows to establish large deviation results for dynamical
systems subjected to small random perturbations, and to bridge from SDEs with Gaus-
sian noise to large deviation principles. In section 3.2.3, we discuss the contraction prin-
ciple in large deviation theory. For a mathematical introduction to large deviation theory
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and a rigorous de�nition of the large deviation principle, we refer to [206, 89]. For the
discussion of some physical applications, we refer to [17, 201, 202].

3.2.1. Sum of N independent random variables
We start by discussing the paradigmatic example of the sum of N independent random
variables and its associated limiting theorems. We consider N i.i.d. random variables
{Xi}1≤i≤N taking values in R. We de�ne the cumulant generating function for k ∈ R
as following

λ (k) = logE (exp (kX1)) .

We de�ne the empirical average SN = 1
N

∑N
i=1Xi of these random variables. The �rst

limiting theorem about the large N asymptotics of SN is the Law of Large Numbers
(LLN). The only required assumption is that the Xi have a �nite average: E (X1) = µ
and it states that the empirical average converges almost surely toward the average of
the Xi:

lim
N→+∞

SN = µ.

To study small �uctuations of the empirical average around its expected value, the cor-
rect tool is the Central Limit Theorem (CLT). If in addition to having a �nite average,
the random variables have a �nite variance σ2, then their empirical average converges
in distribution as N goes to in�nity toward a normal distribution with the following
scaling

√
N (SN − µ) ∼ N

(
0, σ2

)
.

Finally, if all the cumulants of the random variables are �nite, or equivalently there is an
interval J such that 0 ∈ J̊ and for all k in J , λ (k) is �nite, we can assess the probability
of rare realization of the empirical average. The result is a Large Deviation Principle
(LDP), i.e. a logarithmic equivalence describing the large N asymptotics of P (SN = s)
when s 6= µ and is known as the Cramér theorem [79]. It reads

P (SN = s) �
N→+∞

e−NI(s),

where the symbol �
N→+∞

roughly means a logarithmic equivalence (aN �
N↑∞

exp(Na) ⇐⇒
limN↑∞N

−1 log aN = a), 1/N is called the large deviation rate and I is the large devi-
ation function. I is given by Legendre-Fenchel transform of the cumulant generating
function:

I(s) = sup
k∈J
{ks− λ (k)} .

Typically, the large deviation rate function is convex as the Legendre-Fenchel transform
of a convex function.
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There is a heuristic way to understand how the assumption on the cumulant gener-
ating function enables to compute the probability of any realization for the empirical
average. This is because when all the cumulants are �nite, the possible amplitudes of
every realization of Xi are highly constrained as their probability density function can-
not have large tails. As a result, the most probable way to achieve a large deviation of
the empirical average is by having realizations of Xi that contribute equally to this de-
viation. Conversely, it is highly unlikely to achieve a large deviation of the empirical
average driven by a very large deviation of only one or a few realizations of Xi due to
the constraints on the cumulants. In other words, of all the ways to obtain an unlikely
event, the least improbable way is overwhelmingly more likely than the others.

3.2.2. Freidlin-Wentzell theory and the SDE-LDP (in)equivalence
Freidlin-Wentzell theory deals with establishing LDPs for the evolution paths of dynam-
ical systems subjected to small random perturbations [115]. In this section, we give an
informal account of the Freidlin-Wentzell theorem, allowing to estimate the probabil-
ity that the trajectory of a Ito di�usion deviates from its mean path. Let us consider a
positive number ε and a family of stochastic processes{Xε,t}0≤t≤T taking values in Rn

evolving according to the following Ito SDE

dXε,t = b (Xε,t) dt+
√

2εσ (Xε,t) dWt, (3.2)

where σ : Rn → Rn×m, b : Rn → Rn and Wt is a m-dimensional Wiener process with
uncorrelated components. The LLN guarantees that when ε goes to zero, if at initial time
we have

lim
ε→0

Xε,0 = x0,

then for all t ∈ [0, T ] , we have

lim
ε→0

Xε,t = x̄ (t) ,

where

dx̄
dt = b(x̄), and x̄ (t = 0) = x0. (3.3)

In other words, as ε goes to zero, the evolution paths of Xε,t concentrate close to its
mean path, whose trajectory is given by the zero-noise equation (3.3). The terminology
"law of large numbers" may seem inappropriate since we are investigating a small noise
limit rather than a large N limit. It can be understood when discretizing the evolution
equation (3.2). In this case, the evolution ofXε,t is the result of the sum of a large number
of small amplitude, random and independent moves, whose average e�ect is zero. In this
case, the “large numbers” terminology refers to the large number of random increments
driving the evolution of the stochastic process.
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To assess the probability of any other evolution path, one has to turn to large deviation
theory. The Freidlin-Wentzell theorem establishes the following large deviation estimate
for the probability of any evolution path of (3.2):

P
(
{Xε,tε(t)}0≤t≤T = {x(t)}0≤t≤T

)
�
ε→0

e− 1
ε
IT [x], (3.4)

where

IT [x] =

∫ T

0

dt 1

4
(ẋ− b(x))> a−1 (x) (ẋ− b(x)) , (3.5)

where the dot denotes a time derivative, and a (x) = σ (x)σ (x)>. This result is exten-
sively used throughout the manuscript, and we assume it is still valid when the stochastic
dynamics takes value on functional spaces. In particular, the LDP (3.4) implies the LLN.
As ε goes to zero, the probability of all the evolution paths becomes exponentially small
except for the one that satis�es IT [x̄] = 0. This path, called the relaxation path, is
nothing else than the solution of (3.3).

It is customary to formulate the large deviation rate function with a Hamiltonian for-
malism. Introducing the Hamiltonian

H (x, p) = sup
ẋ

{
ẋ · p− 1

4
(ẋ− b(x))> a−1 (x) (ẋ− b(x))

}
= p>a (x) p+ b (x) · p,

which is still a convex function, one can rewrite the rate function without the need to
inverse a (which can be a non invertible operator in higher dimension)

IT [x] =

∫ T

0

dt sup
p
{ẋ · p−H (x, p)} .

We say that the LDP is Gaussian when the Hamiltonian is quadratic in its conjugate
momentum p. A general result is that every SDE with a Gaussian noise is associated with
a Gaussian LDP. An important remark is that this is not a one-to-one correspondence.

A counterexample can be obtained by adding a deterministic term of order
√
ε to (3.2)

dXε,t =
[
b (Xε,t) +

√
εc (Xε,t)

]
dt+

√
2εσ (Xε,t) dWt. (3.6)

One can show that (3.6) satis�es the LDP (3.4) with the rate function (3.5)1, even if typical
evolution paths of (3.6) di�er from the one of (3.2). This remark highlights two key
points when hopping from SDEs with Gaussian noises to Gaussian LDPs:

1. There is no one-to-one relationship between SDEs with Gaussian noise, and Gaus-
sian LDPs. In particular, two di�erent SDEs can satisfy the same LDP.

1Tools to prove such a result are introduced in section 3.6 of this chapter.
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2. The LDP does not include all the information about the central limit theorem. For
instance, from the LDP, we cannot quantify small �uctuations around the mean
evolution path as �nely as with the CLT. We would typically miss deterministic
terms of order

√
ε. However, if we look at a rare realization of (3.6) that deviates

largely from the mean path (3.3), the SDE without deterministic terms of order√
ε is still relevant. Indeed, in those cases, the deviations created by the noise

are of order 1 with respect to ε and the deterministic term of order
√
ε becomes

negligible.

Throughout the manuscript, we switch casually from Gaussian LDP to S(P)DEs with
Gaussian noise. However, each S(P)DE will have to be understood from the large devi-
ation perspective, in the sense that it is a way to represent the Gaussian LDP. It is also
important to stress that the associated S(P)DE, even if not equivalent to a CLT, is still
relevant to investigate rare realizations of the noise yielding large deviations from the
mean path.

3.2.3. The contraction principle
Let us assume we know the rate function I(x) describing the large deviations of a certain
random variable Xε in the small ε regime

P (Xε = x) �
ε→0

e− 1
ε
I(x). (3.7)

If Yε = f (Xε) is another random variable that can be expressed as a smooth function of
Xε, it also satis�es a LDP, with speed ε and rate function

J (y) = inf
x
{I (x) , y = f(x)} .

This result is called a contraction principle [89]. It is also another instance of the prin-
ciple stating that “an unlikely event is overwhelmingly likely to be realized in the least
unlikely way”. The contraction principle is fundamental as it allows to turn several large
deviation problems into optimization ones. We use it extensively in the manuscript to
obtain large deviations for hydrodynamic �elds starting from kinetic LDPs.

3.3. Large deviation for kinetic theories: a natural
framework for the statistical mechanics of
trajectories

A kinetic theory describes the LLN for the µ-space empirical measure of a particle sys-
tem. Generally, we will work with a rescaled empirical measure

fε(r,v, t) = ε

N∑
n=1

δ(v − vn(t))δ (r− rn(t)) ,
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where ε is a small parameter associated to the kinetic limit. ε could be 1/N , but it depends
on the physical system under consideration.

Assuming that the empirical measure concentrates close to a given distribution at an
initial time:

lim
ε→0

fε(t = 0) = f0, (3.8)

the kinetic theory would be the following LLN
lim
ε→0
{fε(r,v, t)}0≤t≤T = {f(r,v, t)}0≤t≤T ,

where f is a distribution on the µ-space, the phase space of a single particle, that solves
a certain PDE

∂tf = Kin [f ] with f (t = 0) = f0,

called the kinetic equation, and where Kin is a (integro-)di�erential operator depending
on the particle dynamics of the system. To quantify large deviations of the empirical
measure rather than its average behavior, we need to estimate the asymptotics of the
logarithm of its own probability distribution

logP
(
{fε(t)}0≤t≤T = {f(t)}0≤t≤T

)
.

In other words, we need to prove the following LDP

P
(
{fε(t)}0≤t≤T = {f(t)}0≤t≤T

)
�
ε→0

e−
1
ε

∫ T
0 dt Supp{∫ ḟp drdv−H[f,p]}, (3.9)

where ḟ is the time derivative of f , p is a function over the µ-space and is called the
conjugated momentum of ḟ , the Hamiltonian H is a functional of f and p that charac-
terizes the dynamical �uctuations. We note that H is not the Hamiltonian of the mi-
croscopic dynamics but H rather de�nes a statistical �eld theory that quanti�es the
probabilities of paths of the empirical measure. H is associated with a Lagrangian
L
[
f, ḟ
]

= Supp
{∫

ḟp drdv −H[f, p]
}

and an action
∫ T

0
dt L

(
f, ḟ
)

. An important
question at this stage is how to de�ne the expectation and the probability in those equa-
tions when the microscopic dynamics is chaotic but deterministic. For such systems, the
randomness comes from the initial conditions. We then de�ne the probability with re-
spect to an ensemble of initial conditions for the positions and velocities (rn (0) ,vn (0))
distributed according to a measure f 0

N (r1,v1, · · · , rn,vn)
∏N

n=1 drndvn. The require-
ment (3.8) can then be satis�ed by taking the tensor product measure f 0

N = f⊗N0 , but
this not necessarily the case.

3.4. Expected properties of a dynamical large
deviation principle for a kinetic theory

In this section, we describe the expected properties of any such large deviation principle
for the kinetic theory of the empirical measure. A more detailed account of a similar
discussion can be found in [50].
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Most probable evolution. We consider the properties of a stochastic process whose
rare �uctuations are described, at the level of large deviations, by the action

A [f ] =

∫ T

0

dt L
[
f, ḟ
]

=

∫ T

0

dt sup
p

[∫
pḟ −H [f, p]

]
. (3.10)

The kinetic equation is expected to be the most probable evolution corresponding to the
action (3.10), and with initial condition fr(t = 0) = f0. It is also called a relaxation
path issued from f0. It solves ∂fr

∂t
= R [fr], with initial condition fr(t = 0) = f0, where

R [f ] = arg inf ḟ L
[
f, ḟ
]
. Then one easily proves that

ḟ =
δH

δp
[f, p = 0] , (3.11)

is the kinetic equation.

�asipotential and macrostate entropy. We assume that the stochastic process fε
has a stationary distribution Ps following the LDP

Ps(f) ≡ E [δ (fε − f)] �
ε↓0

exp

(
−U [f ]

ε

)
, (3.12)

where U is called the quasipotential. In order to simplify the following discussion, we
also assume that the relaxation equation has a single �xed point f0 and that any solution
to the relaxation equation converges to f0 . Then the quasipotential satis�es

U [f ] = inf
{{g(t)}−∞≤t≤0|g(−∞)=f0 and g(0)=f }

∫ 0

−∞
dt L [g, ġ] . (3.13)

The minimizer of this variational problem, that is the most probable path starting from
f0 and ending at f , is denoted fi(t, f) and is called the fluctuation path ending at f .

For many kinetic theories, we expect from equilibrium statistical mechanics that the
quasipotential U [f ] is the opposite of the entropy S [f ] = −kB

∫
dvdr f log f con-

strained by the conserved quantities (for instance mass, momentum and energy here)

U [f ] =

{
−S [f ] /kB + Sm(E)/kB if

∫
drdv f = 1,

∫
drdv vf = 0, and

∫
drdv v2

2
f = E

−∞ otherwise. ,

where

Sm (E) = sup
f

{
S [f ]

∣∣∣∣∫ drdv f = 1,

∫
drdv vf = 0, and

∫
drdv

v2

2
f = E

}
is the equilibrium entropy.

We have the following properties which are direct consequences of the de�nitions of
H and L, and whose proofs are classical and given for example in sections 7.2 to 7.4 of
[50]:
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3.4 Expected properties of a dynamical large deviation principle for a kinetic theory

1. H is a convex function of the variable p and H [f, p = 0] = 0.

2. The quasipotential solves the stationary Hamilton–Jacobi equation

H

[
f,
δU

δf

]
= 0. (3.14)

3. The �uctuation paths solve

ḟ = F [f ] ≡ δH

δp

[
f,
δU

δf

]
.

4. As H is convex, the quasipotential decreases along the relaxation paths

dU
dt [fr] = H[fr, 0]−H

[
fr,

δU

δf
[fr]

]
+

∫
drdv

δH

δp
[fr, 0]

δU

δf
[fr] ≤ 0. (3.15)

For kinetic theories, because the quasipotential is the negative of the entropy
whenever the conservation laws are veri�ed, we can immediately conclude that
the entropy will increase along the solution of the kinetic equation.

5. As H is convex, the quasipotential increases along the �uctuation paths

dU
dt [fi] = H[fi, 0]−H

[
fi,

δU

δf
[fi]

]
+

∫
drdv

δH

δp

[
fi,

δU

δf
[fi]

]
δU

δf
[fi] ≥ 0 (3.16)

For kinetic theories, because the quasipotential is the negative of the entropy
whenever the conservation laws are veri�ed, we can immediately conclude that
the entropy will decrease along the �uctuation paths.

6. Generalized detailed balance. Let I be an involution that characterizes time-
reversal symmetry (for instance the map that corresponds to velocity or momen-
tum inversion in many systems). We assume that I is self adjoint for the L2 scalar
product, that is

∫
drdv I [f ] p =

∫
drdv fI [p]. For any systems for which the mi-

croscopic dynamics is time reversible, we can infer that the stochastic process of
the empirical measure has to be time-reversal symmetric, that reads

PT (fε(T ) = f2 |fε(0) = f1 )Ps (fε = f1) = PT (fε(T ) = I [f2] |fε(0) = I [f2] )Ps (fε = I [f2]) ,

(3.17)

where Ps is the stationary distribution given by (3.12), and PT is the transition
probability obtained by minimizing the large deviation action constraining on the
initial and �nal point

PT (fε(T ) = f2 |fε(0) = f1 ) �
ε↓0

exp

(
−1

ε
inf

f(0)=f1,f(T )=f2

∫ T

0

dt sup
p

[∫
pḟ −H [f, p]

])
.
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(3.18)

The generalized detailed balance condition (3.17), and the one for the quasipoten-
tial U : U [f ] = U [I [f ]] , yields at the level of the large deviation Hamiltonian the
following symmetry

H [I [f ] ,−I [p]] = H

[
f, p+

δU

δf

]
. (3.19)

7. If the generalized detailed balance conditions is veri�ed, then U satis�es the sta-
tionary Hamilton-Jacobi equation (3.14). Indeed, with p = 0, (3.19) readsH

[
f, δU

δf

]
=

H [I [f ] , 0]. Then, using the de�nition of the Hamiltonian and the fact that inf ḟ L
[
f, ḟ
]

=

0, we obtain the stationary Hamilton-Jacobi equation

H

[
f,
δU

δf

]
= H [I [f ] , 0] = sup

ḟ

{
−L

[
I [f ] , ḟ

]}
= 0.

8. If the generalized detailed balance condition is veri�ed, and if U is the quasipo-
tential, then for a path {f(t)}0≤t≤T and its time reversed one {I [f(T − t)]}0≤t≤T
we have the symmetry for the path probability

P
[
{fε(t)}0≤t≤T = {f(t)}0≤t≤T

]
e−

U [f(t=0)])
ε = P

[
{fε(t)}0≤t≤T = {I [f(T − t)]}0≤t≤T

]
e−

U [I[f(t=T )]]
ε .

(3.20)

9. Conserved quantities. At the level of the large deviations, the condition forC [f ]
to be a conserved quantity is either

for any f and ḟ , L
[
f, ḟ
]

= +∞ if
∫

drdv
∂f

∂t

δC

δf
6= 0,

or

for any f and p,
∫

drdv
δH

δp
[f, p]

δC

δf
= 0. (3.21)

Kinetic theories can conserve mass, momentum and energy but not necessarily.
Sometimes there is an in�nite number of conserved quantities (for instance the
Vlasov equation), for instance, when dealing with integrable systems. Under-
standing macroscopic �uctuations arising in coarse-grained descriptions of such
systems is a hot topic [84, 151].

10. A su�cient condition for U to be the quasipotential. If U solves the Hamil-
ton–Jacobi equation, ifU has a single minimum f0 withU [f0] = 0, and if for any f
the solution of the reverse �uctuation path dynamics ∂g

∂t
= −F [g] = − δH

δp

[
g, δU

δg

]
with g(0) = f converges to f0 for large times, then U is the quasipotential.
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3.5. Some motivations to study large deviations for
kinetic theories

In this section, we discuss the interest of uncovering such statistical �eld theories to
describe extended physical systems, by exhibiting some results we can extract from the
existence and the computation of the LDP (3.9).

Irreversibility paradox. Let us consider an equilibrium situation where the equa-
tions of motion at the microscopic scale are time-reversible. The kinetic theory breaks
this time-symmetry, because it describes the relaxation to equilibrium of the system
in a time-arrowed way. This is what is known as the irreversibility paradox. How an
irreversible macroscopic evolution can emerge from a time-reversible microscopic dy-
namics? The large deviation structure gives a clear answer to this question, and erases
this seemingly paradox.

First, the LDP contains the information about the kinetic theory. As explained in 2.
of section 3.4, the most probable evolution path {fc}0≤t≤T for the empirical measure is
given by the so-called relaxation path and satis�es

∂fc
∂t

=
δH

δp
[fc, p = 0] .

This equation is the kinetic theory and describes the relaxation to equilibrium of the sys-
tem. The LDP (3.9) also describes the probability of any evolution path for the empirical
measure other than the solution of the kinetic theory. At the large deviation level any
evolution path is possible for the empirical measure, but as ε goes to zero, only the most
probable one will be observable with an overwhelming probability. This most proba-
ble evolution path breaks the time-reversibility symmetry. However, the large deviation
Hamiltonian still keeps track of the time-reversibility of the microscopic dynamics by
exhibiting symmetry properties (see 7. in section 3.4).

�asipotential and out-of-equilibrium generalization of thermodynamic po-
tential. It is also possible to extract from a LDP the information about the stationary
state of the system, whether it is an equilibrium state or a non-equilibrium steady state.
Assuming the LDP (3.9) holds, if we know that our system reaches a stationary state,
described by fs, its stationary probability density function in µ-space, we can compute
a large deviation estimate of the stationary probability Ps,ε to observe any other state f .
In this case, the large deviation rate function is nothing else than the quasipotential Ufs

Ps,ε [f ] �
ε↓0

exp

(
−Ufs [f ]

ε

)
.

In an equilibrium context, the quasipotential U coincides with the thermodynamical
potential. However, the quasipotential does not require thermodynamic equilibrium to
be de�ned. When we study a system that does not relax to equilibrium, but for an in-
stance to a non-equilibrium steady state, the quasipotential generalizes the notion of
thermodynamical potential.

43



Chapter 3 Introduction to the dynamical large deviations for kinetic theories

Bistability and Eyring–Kramers formula. One of the main motivation to compute
large deviations for kinetic theory, is the study of systems exhibiting multistability, es-
pecially in a out of equilibrium context.

Let us take the example of the study of transitions between two attractors in a bistable
system submitted. In classical statistical mechanics, there is a well known relation, called
the Eyring–Kramers formula, that links the transition rate between two stable attractors
for a bistable system, to the height of the potential barrier between these two attractors
[8, 142, 104]. It is not possible to make use of such a formula in an out-of-equilibrium
context where there is no obvious way to de�ne this potential. However, the large devi-
ation structure and the quasipotential allow to generalize the Eyring–Kramers formula.

Let us assume that the probability density f in µ-space of the system exhibits two
attractors, meaning that the kinetic theory has two stationary solutions. For instance,
such bistability is possible in system with long-range interactions [167]. Finite-number
of particles induced �uctuations can trigger transitions between two stable states fA
and fB that are not described by the kinetic theory. Other detailed accounts of non-
equilibrium situations exhibiting metastability can be found in [26, 25, 8, 123].

If out-of-equilibrium, the classical Eyring–Kramers formula cannot give information
about the transition rate of the system between this two attractors either. This is where
the large deviation structure is useful. It is possible to establish a similar formula from the
Freidlin-Wentzell theory [115] by de�ning the height of the potential barrier with respect
to the large deviation quasipotential. Assuming the existence of a quasipotential from
a LDP (3.13), the mean transition time τA→B from attractor fA to attractor fB follows a
LDP

E (τA→B) �
ε↓0

exp

(
UfA [f∗]

ε

)
, (3.22)

where f∗ is the saddle-point between the two attractors. This formula is very useful
when studying bistability and possible transition between stable attractors. A recent
work [54] managed to extend this LDP by computing the preexponential factor in (3.22),
in relation with the geometry of the quasipotential, and the most probable path taken by
the system during the transition. Such a path is called an instanton and can be obtained
by solving a variational problem on the large deviation action:

arginf
f s.t. f(0)=fA and f(T )=fB

∫ T

0

dt supp
{∫

ḟp drdv −H[f, p]

}
.

Within the large deviations framework, the notion of quasipotential allows to gen-
eralize a lot of other results from classical equilibrium statistical mechanics to out of
equilibrium situations, such as the Gallavotti-Cohen �uctuation theorem [148], in rela-
tion with formula (3.20) from section 3.4. The computation of LDPs to extend kinetic
theories is a truly fundamental question. It provides a natural generalization of classi-
cal statistical mechanics concepts to non-equilibrium situations. It does so by studying
trajectory statistics instead of stationary con�guration statistics. Therefore, we should
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emphasize that this manuscript focuses speci�cally on dynamical large deviations prin-
ciples, i.e. we try to compute the probability of evolution paths of the empirical measure
rather than its stationary statistics.

Gradient-flow structure. It is customary and classical to observe that many dynami-
cal models related to kinetic theories and mesoscopic systems in interaction with thermal
baths have a gradient-transverse structure

∂f

∂t
= −GradfH [f ]− T [f ] , (3.23)

where H might be the free energy or the negative of the entropy, where for any f
(GradfH,G) = 0. Gradf is the gradient with respect to a f -dependent norm (p, C [f ] p),
where C is a quadratic form: GradfH [f ] = C [f ] δH

δf
. T is often associated to the micro-

scopic reversible dynamics or the free transport.
For example, for the Fourier law ∂tρ = D∆rρ, has this structure [171, 210], where

H =
∫

dr ρ log ρ is the negative of the relative entropy, the metric used to compute
the gradient is the Wasserstein distance with C [f ] (r, r′) = D∆r (ρ(r)δ (r− r′)), and
T = 0. Another classical example is the McKean-Vlasov equation [171, 210].

Even if this gradient-transverse structure is customarily observed, it is not always easy
to determine the quadratic form C . Moreover a general explanation of the source of this
structure is of interest. In [160], a close relation between the large deviations of the
empirical measure of particle system with detailed balance, and the gradient-transverse
�ow structure of the partial di�erential equations that describe kinetic theories is estab-
lished. Whenever the detailed balance condition (3.19) is satis�ed at the large deviations
level, and whenever the large deviation Hamiltonian is quadratic in p, H is the quasipo-
tential, and the metric used to compute the gradient in (3.23) is given by the quadratic
part of the large deviation Hamiltonian.

The gradient-�ow structure of a PDE (3.23) can then be used as an analytical tool to
study existence and behavior of the PDE’s solutions [5, 134, 171], or as a practical tool
to implement numerical schemes for its simulation [131].

This list of motivations and applications is far from being exhaustive, but it aims to
show why uncovering such statistical �eld theories is important.

3.6. A few ways to compute the large deviation
Hamiltonian

In this section, we present two important frameworks that allow to compute dynamical
large deviations: on one hand, large deviations due to N independent small increments
leading to an e�ect of order 1, and on the other hand, large deviations for slow-fast
systems.

The results are given in the case where the stochastic processes take value in �nite
dimensional space. In order to obtain formal results on the empirical measure of physical
particle systems, we will assume that they hold more generally.

45



Chapter 3 Introduction to the dynamical large deviations for kinetic theories

3.6.1. Large deviation rate functions from the infinitesimal
generator of a continuous time Markov process

When the evolution of a stochastic process is the consequence of the e�ect of a large
number of small amplitude and statistically independent moves, in the limit of a large
number of moves, a LLN naturally follows. For continuous time Markov processes, for
instance di�usions with small noises as in section 3.2.2, or more generally locally in-
�nitely divisible processes2, a general framework can be developed in order to estimate
the probability of large deviations. In this section, taken from [50, 106] and initially in-
spired by [109, 115], we present this framework brie�y and the main result: the formula
(3.25) for computing the large deviation Hamiltonian in this case.

We consider {Xε(t)}0≤t≤T , where for any t, Xε(t) ∈ Ω, a family of continuous time
Markov processes parametrized by a real number ε. We denote Gε the in�nitesimal
generator of the process Xε. Gε acts on the space of test functions φ : Ω → R. It is
de�ned by

Gε [φ] (x) = lim
t↓0

Ex [φ(Xε(t))]− φ(x)

t
, (3.24)

where Ex is the average over the stochastic process {Xε(t)}0≤t≤T conditioned on the
initial condition Xε(t = 0) = x. We assume that for all p ∈ Ω the limit

H[x, p] = lim
ε↓0

εGε

[
e 1
ε
〈p,·〉
]

(x) e− 1
ε
〈p,x〉 (3.25)

exists. Then the family Xε satis�es a LDP with rate ε and rate function

L [x, ẋ] = sup
p
{〈p, ẋ〉 −H [x, p]} . (3.26)

This means that the probability that the path {Xε(t)}0≤t<T be in a neighborhood of
{x(t)}0≤t<T , with the prescription that Xε(t = 0) is in the neighborhood of x(t = 0),
satis�es

P
(
{Xε(t)}0≤t<T = {x(t)}0≤t<T

)
�
ε↓0

exp

(
−
∫ T

0
dt L [x, ẋ]

ε

)
. (3.27)

This result is proven for speci�c cases (di�usions, locally in�nitely divisible processes)
in the Theorem 2.1, page 127, of the third edition of Freidlin-Wentzell textbook [115].
A general heuristic derivation is given in section 7.1.2 of [50]. The main idea of this
derivation is to decompose the path Xε (t) into subpath using the Markov property.
Then, applying a Gartner-Ellis type formula to the Newton ratio (Xε (t)− x) /t for small
t and reconstructing the path Xε (t) with a path integral yields the LDP (3.27).

2An in�nitely divisible process is a process whose probability distribution can be seen as the one of a sum
of an arbitrary number of independent and identically distributed random variables. A Lévy process
is an example of an in�nitely divisible process.
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3.6 A few ways to compute the large deviation Hamiltonian

In formula (3.25) the in�nitesimal generator is tested through the function x 7→ e 1
ε
〈p,x〉.

In the small ε limit, this tests changes of the observable which are of order of ε. The ε
prefactor in the right hand side of equation (3.25) means that the overall e�ect of these
small changes of order ε is expected to be of order 1/ε. H in formula (3.25) thus ac-
counts for the e�ects of a large number (of order 1/ε) of small amplitude statistically
independent moves (each one of order ε).

3.6.2. Large deviation for slow-fast systems
Another classical framework for large deviations are large deviations for the e�ective
dynamics of the slow variable in a slow-fast dynamics (time averaging of the fast degrees
of freedom). This classical framework is discussed in the case of stochastic processes in
[208, 115]. When the slow dynamics is deterministic similar results have been proven
for instance by Kifer [141].

We consider the slow-fast dynamics{ dXε
dτ = α(Xε, Yε)

dYε = 1
ε
β(Xε, Yε)dτ + 1√

ε
γ(Xε, Yε)dWτ

, (3.28)

where Xε is the slow variable, Yε the fast variable, W a Wiener process, and ε quanti�es
the time scale separation. We assume that the dynamics for Yε is mixing over timescales
of order ε, i.e. on these timescales the process for Yε looses the memory of its initial
condition. The following discussion would apply for other classes of dynamics for Yε,
beyond di�usions, with little modi�cations, for instance for chaotic deterministic sys-
tems with mixing hypothesis.

We are interested in the slow dynamics forXε. Then for generic hypotheses, with the
prescription that Xε(τ = 0) is in the neighborhood of x(τ = 0), we have the LDP

P (Xε = x) �
ε→0

e− 1
ε

∫ T
0 Supp{ẋ.p−H(x,p)}dτ (3.29)

with H(x, p) = lim
T→∞

1

T
logEx

{
exp

[
p ·
∫ T

0

α(x, Yx(t))dt
]}

, (3.30)

where p is conjugated to ẋ, the average Ex is an average over the Yx process with frozen
x (the solution of dYx

dt = β (x, Yx) + γ (x, Yx)
dW
dt ).

This classical result is proven in the case of stochastic processes in [208, 115]. A sim-
ple heuristic account for any Markov dynamics is given in [51]. The result (3.28-3.30)
is heuristically understood as L(x, ẋ) = supp {ẋ.p−H(x, p)} appears as a large-time
large deviations result, of the Freidlin-Wentzell type, for the Newton increment of the
slow variable

Xε(τ + ∆τ)− x
∆τ

=
1

∆τ

∫ ∆τ

0

α (Xε(u), Yε (u)) du ' ε

∆τ

∫ ∆τ
ε

0

α (x, Yx (t)) dt.
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Then formula (3.30), with L(x, ẋ) = Supp {ẋ.p−H(x, p)}, appears as a Gärtner–Ellis
formula for the large time large deviations

Ex
[
δ

(
Xε(τ + ∆τ)− x

∆τ
− ẋ
)]
�
ε→0

e−
L(x,ẋ)∆τ

ε .

This last formula is the temporal increment of formula (3.30).
[51] discusses also at length the case when the fast variable is an Ornstein-Uhlenbeck

and the coupling with the slow variable is through a quadratic form. In this speci�c case
the Hamiltonian can be computed by solving a matrix Riccati equation.

We will use formula (3.28-3.30) in chapter 4 to investigate large deviations associated
with the kinetic theory of particles with long-range interactions.

3.7. Derivation of the kinetic large deviation principle
for two toy-models

In this section, we derive dynamical LDPs for the empirical measure of two families
of microscopic dynamics. First, we describe the large deviations of the empirical mea-
sure of N di�usions in section 3.7.1. In section 3.7.2 we describe the large deviations
of the empirical measure of N particles undergoing a run-and-tumble dynamics, which
corresponds to a jump process for the particles dynamics. The derivation of the large
deviation Hamiltonians for these two toy models encapsulates the main ideas needed to
understand large deviations of the empirical measure of more realistic particle models,
which we will address in the remainder of the manuscript.

3.7.1. Large deviations for the empirical measure of N di�usion
processes

In section 3.7.1.1 we derive the large deviation rate function for the empirical measure
de�ned as fN(v, t) = 1

N

∑N
n=1 δ (rn(t)− r) δ (vn(t)− v) of N independent particles,

where each (rn(t),vn(t)) is governed by a Markov dynamics with in�nitesimal genera-
tor G.

In section 3.7.1.2 we apply this to the case when theN independent Markov dynamics
are Ito di�usions of inertial particles

{
ṙn = vn

dvn =
[
b (vn) + ∂

∂v
.D (vn)

]
dt+

√
2σ (vn) dWn,t,

(3.31)

where we de�ned D the di�usion tensor as D = σσ> and (Wn,t)1≤n≤N are independent
Wiener processes. In section 3.7.1.3 when the particles are not independent anymore
but are coupled in a mean �eld way, as in (4.17). For each of these cases we prove that
with the prescription that fN(t = 0) is in the neighborhood of f(t = 0)

P
(
{fN(t)}0≤t≤T = {f(t)}0≤t≤T

)
�

N→∞
e−NSupp

∫ T
0 {

∫
dv ḟp−H[f,p]}, (3.32)
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where the corresponding H are given by formula (3.35), (3.38) and (3.44), respectively.
The Hamiltonian associated with the di�usions of the velocities in (3.31) is a well-known
result. The method we present in this section allows to easily extend them to the kinetic
case (when there the velocity of a particle actually a�ects its position) by computing the
terms of the Hamiltonian associated with the transport.

3.7.1.1. Large deviations for the empirical measure of N independent Markov
processes

We considerN continuous time independent Markov processes {rn(t),vn(t)}t∈[0,T ],1≤n≤N ,
where each (rn(t),vn(t)) is governed by a Markov dynamics with in�nitesimal genera-
tor G. G acts on functions φ : R3 × R3 → R and is de�ned by

G [φ] (r,v) = lim
t→0

Er,v [φ (r1 (t) ,v1 (t))]− φ (r,v)

t
. (3.33)

Then, with the prescription that fN(t = 0) is in the neighborhood of f(t = 0), the
empirical measure fN satis�es a LDP

P(fN = f) �
N→∞

e−NSupp
∫ T
0 {

∫
drdv ḟp−H[f,p]} (3.34)

where

H[f, p] =

∫
drdv f(r,v)G

[
ep(·,·)

]
(r,v)e−p(r,v), (3.35)

in this expression, the variable p is the conjugate momentum to ḟ , and it is a scalar func-
tion of the position and the velocity r,v. We abusively use the notation G

[
ep(·,·)

]
(r,v)

to note G [φ] (r,v) where φ : (r,v) 7→ ep(r,v).

Formal proof. The empirical measure fN is also itself a continuous time Markov pro-
cess. We denote Gf its in�nitesimal generator, de�ned by

GfN [ψ] (f) = lim
t→0

Ef [ψ (fN (t))]− ψ (f)

t
, .

where ψ is a functional. Then, from the result explained in section 3.6.1, we know that
if the limit

H[f, p] = lim
N→∞

1

N
e−N

∫
drdv pfGfN

[
eN

∫
drdv p×·

]
(f) ,

exists (see (3.25)), then we have the LDP (3.34). Using the de�nition of the empirical
measure

exp

(
N

∫
drdv pfN

)
= exp

(
N∑
n=1

p (rn (t) ,vn (t))

)
,
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Chapter 3 Introduction to the dynamical large deviations for kinetic theories

we �nd

GfN

[
eN

∫
drdv p×·

]
(f) = lim

t→0

(
Ef
[
eN

∫
drdv pfN

]
− eN

∫
drdv pf

)
/t, (3.36)

= lim
t→0

(
Ef
[
e
∑N
n=1 p(rn(t),vn(t))

]
− e

∑N
n=1 p(rn(0),vn(0))

)
/t.

Then, using that the particles are independent

H[f, p] = lim
N→∞

lim
t→0

1

Nt

(
N∏
n=1

E
(
e∆p(rn(t),vn(t))

)
− 1

)
,

where E
(
e∆p(rn(t),vn(t))

)
= E

(
ep(rn(t),vn(t))

)
e−p(rn(0),vn(0)). Furthermore, using the de�-

nition of the in�nitesimal generator of the process for a single particle (3.33), we have

E
(
e∆p(rn(t),vn(t))

)
= 1 + tG

[
ep(·,·)

]
(rn (0) ,vn(0)) e−p(rn(0),vn(0)) + o(t) (t→ 0) .

To the same precision we can compute the product for 1 ≤ n ≤ N

N∏
n=1

E
(
e∆p(rn(t),vn(t))

)
− 1 = t

N∑
n=1

G
[
ep(·,·)

]
(rn (0) ,vn(0)) e−p(rn(0),vn(0)) + o(t) (t→ 0) .

From this expansion, it is possible to compute the limit as t goes to 0

lim
t→0

1

Nt

(
N∏
n=1

E
(
e∆p(rn(t),vn(t))

)
− 1

)
=

N∑
n=1

G
[
ep(·,·)

]
(rn (0) ,vn(0)) e−p(rn(0),vn(0)).

It is important to note that the order of the limits N → ∞ and t → 0 is crucial. From
there, we have

H[f, p] = lim
N→∞

1

N

N∑
n=1

G
[
ep(·,·)

]
(rn (0) ,vn(0)) e−p(rn(0),vn(0)),

= lim
N→∞

∫
drdv fN (r,v)G

[
ep(·,·)

]
(r,v) e−p(r,v).

Recalling the prescription that the fN concentrate close to f , we obtain

H[f, p] =

∫
drdv f(r,v)G

[
ep(·,·)

]
(r,v)e−p(r,v).

We remark that the Hamiltonian (3.35) is in general not quadratic in p, re�ecting the
fact that the large deviations are not Gaussian, although they arise from the sum of N
independent contributions.
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3.7 Derivation of the kinetic large deviation principle for two toy-models

3.7.1.2. Large deviations for the empirical measure of N independent
di�usions

From equation (3.35), it is straightforward to compute the Hamiltonian that describes
the large deviations for the empirical measure of N inertial particles with independent
di�usions.

Let us consider the dynamicsN particles with positions and velocities {rn,vn}1≤n≤N
whose velocities are di�using following a Ito di�usion dynamics:

{
ṙn = vn

dvn =
[
b (vn) + ∂

∂v
·D (vn)

]
dt+

√
2σ (vn) dWn,t,

(3.37)

where (Wn,t)1≤n≤N are independent Wiener processes. This dynamics is a Klein–Kramers
dynamics without external potential [142], i.e. an underdamped Langevin dynamics. We
call f the probability density function of (rn,vn) for some n. It does not depend on n
as we consider N non-interacting particles, we can write the Fokker-Planck equation
associated with the di�usion of a particle

∂f

∂t
+ v · ∂f

∂r
=

∂

∂v
·
{
−fb + D

∂f

∂v

}
.

This equation describe the average behavior of the empirical measure

fN(v, t) =
1

N

N∑
n=1

δ (rn(t)− r) δ (vn(t)− v) .

We want to compute H[f, p] the Hamiltonian associated with the LDP for the empirical
measure

P(fN = f) �
N→∞

e−NSupp
∫ T
0 {

∫
drdv ḟp−H[f,p]}

We showed in section 3.7.1.1 that in the case where the N particles are independent, H
is given by

H[f, p] =

∫
drdv f(r,v)G

[
ep(·,·)

]
(r,v)e−p(r,v),

where G is the in�nitesimal generator of the stochastic process described by the trajec-
tory of one particle (r1,v1). It is a classical result in stochastic analysis that the in�nites-
imal generator G of the di�usion stochastic process (3.37) is

G = v · ∂
∂r

+ b · ∂
∂v

+
∂

∂v
·
(

D · ∂
∂v

)
,
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Chapter 3 Introduction to the dynamical large deviations for kinetic theories

the adjoint of the Fokker-Planck operator [120]. This leads to the Hamiltonian associ-
ated with the empirical measure of N particles undergoing independent Klein-Kramers
dynamics

H [f, p] =

∫
drdv f

{
v · ∂p

∂r
+ b · ∂p

∂v
+

∂

∂v
·
(

D · ∂p
∂v

)
+ D :

∂p

∂v

∂p

∂v

}
, (3.38)

where the symbol “:” means the contraction of two second order symmetric tensors:
M : N = Tr (MN) =

∑
ijMijNij .

We remark that the Hamiltonian (3.35) is quadratic in p. As discussed in section 3.2.2,
this means that the large deviations are Gaussian. This re�ects the fact that the large
deviations arise from the sum of N independent Gaussian increments. Because of this
property, we can also recover from the Hamiltonian an equivalent stochastic di�erential
equation for the empirical measure fN that involves a Gaussian noise. More precisely, a
quadratic Hamiltonian

H [f, p] =

∫
drdvA[f ] (r,v) p (r,v)+

∫∫
drdr′dvdv′p (r,v)C [f ] (r, r′,v,v′) p (r′,v′)

(3.39)

is the Hamiltonian that describes the dynamical large deviations of the stochastic di�er-
ential equation

∂fN
∂t

= A [fN ] (r,v) +

√
2

N
η (r,v, t) (3.40)

with

E (η (r,v, t) η (r′,v′, t′)) = C [hN ] (r, r′,v,v′) δ (t− t′) . (3.41)

Using partial integration, we can identifyA[f ] and C [f ] for the Hamiltonian (3.38). The
associated stochastic di�erential equation for the empirical measure is

∂fN
∂t

+ v · ∂fN
∂r

=
∂

∂v
·
{
−fNb + D · ∂fN

∂v

}
+

√
2

N
η (r,v, t) (3.42)

with,

E (η (r,v, t) η (r′,v′, t′)) =
∂2

∂v∂v′
: (fN(v)δ (v − v′) D) δ (r− r′) δ (t− t′) .

It should be noted that the mathematical meaning of equation (3.42) is not clear and in
this manuscript it should be considered as a notation referring to the underlying LDP.
Recalling that D = σσ>, we can rewrite equation (3.42) as a conservative equation

∂fN
∂t

+ v · ∂fN
∂r

=
∂

∂v
·
{
−fNb + D · ∂fN

∂v
+

√
2

N
fNσξ (r,v, t)

}
,

with ξ a tridimensional Gaussian noise that satis�es
E
(
ξi (r,v, t) ξj (r′,v′, t′)

)
= δijδ (r− r′) δ (v − v′) δ (t− t′) .
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3.7 Derivation of the kinetic large deviation principle for two toy-models

3.7.1.3. Large deviations for N di�usions with mean field coupling

In the previous section, we have derived the large deviation Hamiltonian for the em-
pirical measure of N independent inertial particles driven by the di�usion (3.37). We
now consider the case when the drift and di�usion coe�cients depend on the empirical
measure itself:

{
drn
dt = vn

dvn =
[
b [fN ] (vn) + ∂

∂v
·D [fN ] (vn)

]
dt+

√
2σ [fN ] (vn) dWn,t,

(3.43)

with fN(v, t) = 1
N

∑N
n=1 δ (rn(t)− r) δ (vn(t)− v) .We denote D [fN ] = σ [fN ]σ [fN ]>.

For this case, the particles are no more statistically independent. However, for such a
mean �eld coupling, it is possible to adapt the derivation that leads to the Hamiltonian
(3.35) in section 3.7.1.1 to this speci�c case3. We �nd that the Hamiltonian that describes
the large deviation of the empirical measure is

HMF [f, p] = HT [f, p] +HMF,h [f, p] ,

where

HT [f, p] =

∫
drdv fv · ∂p

∂r
,

and

HMF,h [f, p] =

∫
drdv f

{
b [f ] .

∂p

∂v
+

∂

∂v

(
D [f ]

∂p

∂v

)
+ D [f ] :

∂p

∂v

∂p

∂v

}
. (3.44)

The subscript T denotes the transport part of the Hamiltonian and MF, h denotes that
this is the Hamiltonian for a mean �eld dynamics without spatial structure4. We note
that this Hamiltonian is the same as (3.38), but with drift and di�usion constant that
depend of f . The corresponding stochastic dynamics is

∂fN
∂t

+v·∂fN
∂r

=
∂

∂v
·
{
−fNb [fN ] + D [fN ] · ∂fN

∂v
+

√
2

N
fNσ [fN ] ξ (r,v, t)

}
, (3.45)

with ξ a tridimensional Gaussian noise that satis�es

E
(
ξi (r,v, t) ξj (r′,v′, t′)

)
= δijδ (r− r′) δ (v − v′) δ (t− t′) .

3The key point is that in (3.36), at �xed empirical measure fN (t) = f , the particles
(rn (t+ δt) ,vn (t+ δt))1≤n≤N are independent for small δt.

4This means HMF,h would be the large deviation Hamiltonian for the velocity empirical measure
1
N

∑
δ (v − vn (t)) whose dynamics is given by the second equations of (3.43) and the position vari-

able plays no role.
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Chapter 3 Introduction to the dynamical large deviations for kinetic theories

Remark: link with the Dean–Kawasaki equation and possible misinterpreta-
tions. If we start from the dynamics

drn =

[
b [fN ] (rn) +

∂

∂v
·D [fN ] (rn)

]
dt+

√
2σ [fN ] (rn) dWn,t, (3.46)

i.e. the dynamics of N di�usions with a mean-�eld coupling for the position variable,
where the velocity does not play a role anymore, we can obtain a large deviation result
for the empirical density ρN = N−1

∑
δ (r− rn (t)) and derive an equation analogue

to (3.45). The result is nothing else than the Dean–Kawasaki equation [86, 136, 82] for
the empirical density ρN = N−1

∑
δ (r− rn (t))

∂ρN
∂t

= ∇ ·
{
−ρNb [ρN ] + D [ρN ] · ∇ρN +

√
ρN
N
σ [ρN ] ξ (r, t)

}
. (3.47)

We stress that in (3.47), ρN is an empirical density N−1
∑
δ (r− rn (t)) rather than a

smooth density �eld. Hence, it is not obvious how to make sense of the SPDE (3.47)
mathematically. In most cases, the only meaning that can be given to (3.47) is a refor-
mulation of the equations of motion (3.46)5. However, recent works [76, 77] seem to
indicate that a regularized version of (3.47) could have solutions that describe the law
of �uctuations for the particle system in the large N limit. The arguments of [76, 77]
does not seem to apply in the case the dynamics is not the one of N di�usions weakly
coupled in a mean-�eld way. Our only claim here is that the large deviations behavior
of the solutions of (3.47) is the same as the one of the empirical density of N di�usions
coupled in a mean �eld way. In other words, we consider the SPDE a symbolic way to
rephrase the underlying Gaussian LDP.

Relaxation paths and most probable evolution. Using the equation for relaxation
paths (equation (3.11) in section 3.4) we check that the most probable evolution path for
the empirical measure is the nonlinear Fokker–Planck equation

∂f

∂t
=
δHMF

δp
[f, p = 0] = −v · ∂f

∂r
+

∂

∂v
·
{
−fb [f ] + D [f ] · ∂f

∂v

}
. (3.48)

Relative entropy and quasipotential. In section 3.6.1 we de�ne the quasipotential
for the empirical measure fN . It is de�ned as P (fN = f) �

N→∞
e−NU [f ]. As the N

particles are coupled only in a mean �eld way, in view of Sanov’s theorem adapted for
this case [186], it is natural to conjecture that the quasipotential for the dynamics of the
empirical measure is U [f ] = −Srel [f ] where Srel is the relative entropy

Srel [f ] = −
∫

drdv f log
(
f/feq

)
,

5This is how (3.47) is derived in [86]. The author obtains the equation on the empirical density by
applying Ito’s lemma and rewriting the noise term thanks to a large N simpli�cation that they call
“thermal averaging”.
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3.7 Derivation of the kinetic large deviation principle for two toy-models

where feq is the stationary solution of the Fokker–Planck equation (3.48). A necessary
condition for Srel to be the quasipotential is the stationary Hamilton--Jacobi equation

HMF [f,−δSrel/δf ] = 0. (3.49)

We check in the appendix A.1 that this stationary Hamilton–Jacobi equation is indeed
veri�ed when b [f ] = b and D [f ] = D do not depend on f , i.e. when the N di�usions
are independent from each other. However, we also check that this is no more the case in
general if b [f ] and D [f ] actually depend on f . As noted in appendix A.1, a notable case
where (3.49) holds with b [f ] and D [f ] depending non-trivially on f , is when b [f ] and
D [f ] are chosen to mimic the Balescu-Guernsey-Lenard equation at the kinetic level.

3.7.2. Large deviations for the empirical measure of N particles
submi�ed to Run-and-Tumble dynamics

In this section, we now examine the case of the large deviation for the empirical mea-
sure of N particles undergoing a stochastic jump process rather than a di�usion. More
precisely, we derive a LDP that describes the probability for an evolution path of the
rescaled empirical measure fε(r, θ, t) = ε

∑
n δ (rn − r) δ (θn − θ) of N non-interacting

particles undergoing a Run-and-Tumble dynamics to be close to the evolution path of a
prescribed smooth distribution f . The LDP reads

P
[
{fε(t)}0≤t<T = {f(t)}0≤t<T

]
�
ε↓0

exp

(
−1

ε

∫ T

0

dt sup
p

(∫
drdθ pḟ −HRT [f, p]

))
,

(3.50)

where ε is the small kinetic parameter, related to 1/N and to be determined, p(r, θ) is the
momentum conjugated to ḟ , andHRT is the large deviation Hamiltonian, a functional of
both f and p. In section 3.7.2.1, we introduce the Run-and-Tumble particle dynamics. In
section 3.7.2.2, we explain how to computeHRT in the case of Run-and-Tumble particles.

3.7.2.1. Particle dynamics and kinetic description.

We consider N non-interacting particles in a two-dimensional periodic box of size L
traveling at a constant speed v0. Since the modulus of their velocity is �xed, the velocity
of the n-th particle is noted θn and is an angle that we call its orientation. A particle
changes its orientation from θ to θ′ with a rate λ following a distribution Pt on [−π, π)
which is even. Such a dynamics is called a Run-and-Tumble dynamics because a particle
alternates between “running” (ballistic motion at �xed velocity) and “tumbling” events
that instantly change its velocity. Figure 3.1 illustrates this dynamics for a single particle.

At the kinetic level the distribution function f(r, θ, t) of the position and orientation
of the N particles satis�es

∂tf + v0eθ · ∇f = −λf + λ

∫
dθ′ Pt (θ′ − θ) f (θ′) ,
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Chapter 3 Introduction to the dynamical large deviations for kinetic theories

v = v0eθ

v′ = v0eθ′
θ θ′

Figure 3.1.: A particle with orientation θ travels balistically with a velocity v = v0eθ =
v0 (cos θ, sin θ). It undergoes a tumbling event at a rate λ. As the particle tumbles, its
orientation is updated to θ′ = θ + θjump where θjump is drawn in [−π, π) according to
the distribution Pt.

where
∫

drdθ f = 1. This kinetic equation is heuristically obtained by only considering
the average e�ect of tumbling events on the distribution function. We de�ne the mean
free path, i.e. the average distance traveled by a particle between two tumbling events,
` = v0/λ and we rescale space and time r′ = r/`, t′ = tv0/`. Dropping the primes, it
yields

∂tf + eθ · ∇f = −f +

∫
dθ′ Pt (θ′ − θ) f (θ′) . (3.51)

We consider the rescaled empirical measure

fε(r, θ, t) = ε
∑
n

δ (rn − r) δ (θn − θ) ,

with ε = L2/ (N`2) being the inverse of the number of particles in a box of the size
of the mean free path. Equation (3.51) can be seen as a LLN for the empirical measure
fε: in the limit as ε goes to zero, the random object fε concentrates on the distribution
function f which is a solution of (3.51). This equation tells us about the average e�ect of
tumbling events on the distribution function. For the kinetic equation to makes sense as
a LLN for the empirical measure, there must be many particles in the typical evolution
length for the distribution function, which here is the mean free path `. That is why we
choose ε to be the small kinetic parameter rather than 1/N .

3.7.2.2. Large deviations for the empirical measure

We now assess the probability of any evolution path for the empirical measure. Since
we are interested in the dynamics of the empirical measure of N independent Markov
processes, it is possible to use the result (3.35) from section 3.7.1.1 to derive the large
deviation Hamiltonian. However for the sake of pedagogy, we will start again from the
result (3.25) of section 3.6.1. To do so, we have to compute the in�nitesimal generator of
the Markov process describing the evolution of the empirical measure fN . Then, from
the in�nitesimal generator Gf , the large deviation Hamiltonian is deduced through the
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3.7 Derivation of the kinetic large deviation principle for two toy-models

following formula

HRT [f, p] = lim
ε↓0

εGfε

[
e 1
ε

∫
drdθ p×·

]
(f) e− 1

ε

∫
drdθ pf , (3.52)

where the de�nition of the in�nitesimal generator is

Gfε [φ] (f) = lim
t→0

Ef [φ [fε (t)]]− φ [f ]

t
, (3.53)

where φ is a test functional of the empirical measure. In (3.53), Ef denotes an expectation
over the stochastic process fε conditioned by fε(t = 0) = f . The generator can be split
into two terms

Gfε = Gf,T +Gf,tumb,

whereGf,T is due to free transport, andGf,tumb to tumbling events. A Taylor expansion
of φ [fε (t)] at small times allows to compute the transport part of the generator

Gf,T [φ] (f) = −
∫

drdθ eθ · ∇f
δφ

δf (r, θ)
. (3.54)

To compute Gf,tumb, we need to evaluate the e�ect of tumbling events on the empirical
measure. If f is the empirical measure, the rate of tumbling events that change the
orientation of a particle from θ1 to θ′1 in the volume element dr1 centered at point r1 is:

1

ε
f(r1, θ1, t)Pt (θ1 − θ′1) dθ1dθ′1dr1. (3.55)

Each tumbling event of this type changes the empirical measure from f (r, θ) to f (r, θ)−
εδ (r− r1) δ (θ − θ1) + εδ (r− r1) δ (θ − θ′1) . Therefore, from (3.53) and (3.55), we de-
duce the part of the in�nitesimal generator due to tumbling events

Gf,tumb[φ] (f) =
1

ε

∫
drdθ1dθ′1 f(r, θ1, t)Pt (θ1 − θ′1)

(
φ[f̃ ]− φ[f ]

)
, (3.56)

where f̃ (r0, θ, t) = f (r0, θ, t)+εδ(r0−r) (−δ(θ − θ1) + δ(θ − θ′1)). We can then apply
(3.52) to deduce the large deviation Hamiltonian

HRT [f, p] = HT [f, p] +Htumb [f, p] , (3.57)

where

HT [f, p] = −
∫

drdθ p(r, θ, t)eθ · ∇f(r, θ, t), (3.58)

Htumb [f, p] =

∫
drdθ1dθ′1 f(r, θ1, t)Pt (θ1 − θ′1)

{
e−p(r,θ1,t)+p(r,θ

′
1,t) − 1

}
. (3.59)

The most probable evolution for the empirical measure is the one that maximizes the
right hand side of the LDP (3.50). This maximization condition is simply the Hamilton
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Chapter 3 Introduction to the dynamical large deviations for kinetic theories

equation associated with the large deviation Hamiltonian (3.57), which gives: ∂tf =
δHRT
δp

[f, p = 0] or, explicitly, equation (3.51).
Tumbling events conserve locally the number of particles N [f ] =

∫
drdθ f . Accord-

ing to the property 10. of section 3.4, this is checked at the level of large deviations as
the following property holds∫

drdθ δHRT

δp(r, θ)

δN

δf
= 0.

The large deviation Hamiltonian HRT is non-quadratic in the conjugated momentum
p. This means that, if we wanted to write a stochastic partial di�erential equation for
the empirical measure, it would contain non-Gaussian noise. This is typical when the
particle dynamics is a jump process rather than a di�usion process.

3.7.2.3. �asipotential and time-reversibility

In the absence of interactions, the quasipotential is given by Sanov’s theorem; the prob-
ability for the empirical measure to be close to a certain distribution f is given by the
number of phase-space con�gurations that are compatible with this distribution f :

PS (fε = f) �
ε↓0

exp

(
1

ε
S [f ]

)
, (3.60)

where S [f ] = −
∫

drdθ f log f is the entropy. According to property 11. of section 3.4,
a necessary condition for the compatibility of (3.60) and the LDP (3.50) is provided by
the Hamilton–Jacobi equation:

HRT

[
f,−δS

δf

]
= 0 (3.61)

which can be explicitly checked to hold. This fact is related to the presence of the gen-
eralized time-reversal symmetry θ → θ + π, t→ −t. We note that this symmetry holds
as a consequence of the one of the tumbling probability Pt (θ) = Pt (−θ). De�ning
I[f ](r, θ, t) = f(r, θ + π,−t), this symmetry translates into the following identity for
the large deviation Hamiltonian:

HRT

[
I [f ] ,−I [p]

]
= HRT

[
f, p− δS

δf

]
, (3.62)

as predicted by the property 7. of section 3.4.
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4. Dynamical large deviations for the
kinetic theory of long-range
interacting particles: beyond the
Balescu-Guernse-Lenard equation

In this chapter we derive the main result of the �rst part of the manuscript: the derivation
of a large deviation principle for the empirical measure of N particles submitted to a
Hamiltonian dynamics, coupled through a long-range interaction potential. This chapter
is mainly an adaptation of [107]. The speci�c case of the one-component plasma, i.e.
when the interaction potential is the Coulomb one is discussed in the next chapter.

4.1. Introduction: particles with long-range
interaction, kinetic theory, and large deviations

We consider the Hamiltonian dynamics of particles that interact through a mean-�eld
potential. The dynamics reads

drn
dt = vn

dvn
dt = − 1

N

∑
m6=n

d
drn

W (rn − rm)

(4.1)

where {rn}1≤n≤N are the positions and {vn}1≤n≤N the velocities. This set-up is relevant
for plasmas in the weak coupling regime [169], self-gravitating systems [172, 73], and
many particle systems with long range interactions [52]. It also shares many theoretical
analogies with two-dimensional and geostrophic turbulence, through the point vortex
model [72, 139]. The kinetic theory of systems with mean-�eld potentials (or long range
interactions) is a classical piece of theoretical physics. The relaxation to equilibrium of
the empirical measure1

gN(r,v, t) =
1

N

N∑
n=1

δ(r− rn(t))δ(v − vn(t)),

1In this chapter and the next one, the empirical measure is noted gN instead of fN , because the letter f
will be used to denote the velocity distribution, as customary in plasma phyiscs.
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Chapter 4
Dynamical large deviations for the kinetic theory of long-range interacting particles:

beyond the Balescu-Guernse-Lenard equation

is described by the Balescu-Guernsey-Lenard kinetic equation in the limit of a large
number of particles. This result has been formally derived by Balescu, Guernsey and
Lenard [10, 11]. In the context of plasma physics where we considerN charged particles
submitted to Coulomb interactions, we refer to Nicholson [169] for a derivation using
the BBGKY hierarchy, or to Lifshitz and Pitaevskii [150] who follow the Klimontovich
approach.

In this chapter we extend this classical kinetic theory by describing the statistics of
the large deviations for time dependent trajectories (paths) of the empirical measure.
For simplicity, we restrict our analysis to paths of the empirical measure which re-
main close to homogeneous distributions2. We consider the projection of the empir-
ical measure on homogeneous distributions: fN (v, t) = N−1L−3

∫
dr gN (r,v, t) =

N−1L−3
∑N

n=1 δ(v − vn(t)), where L3 is the volume of the system. The natural evolu-
tion of fN occurs on time scales of order N (except in dimension d = 1 [213]). After
time rescaling τ = t/N , we study the probability of f sN (v, τ) = fN (v, Nτ) (by abuse of
notation and for convenience, we still denote f sN = fN ). We justify that the probability
that a path {fN(τ)}0≤τ≤T remains in the neighborhood of a prescribed path {f(τ)}0≤t≤T
satis�es the large deviation principle

P
(
{fN(τ)}0≤τ≤T = {f(τ)}0≤τ≤T

)
�

N→∞
e−NL3

∫ T
0 dτ Supp{∫ dv ḟp−HBGL[f,p]}e−NI0[f0], (4.2)

where ḟ is the time derivative of f , p is a function over the velocity space and is the
conjugated momentum to ḟ , the Hamiltonian HBGL is a functional of f and p that char-
acterizes the dynamical �uctuations, I0 is a large deviation rate function for the initial
conditions3 of fN . We note that HBGL is not the Hamiltonian of the microscopic dynam-
ics.

The main result of this chapter is the �rst computation of an explicit expression for
HBGL and the study of its symmetry properties. The explicit expression for HBGL is

HBGL [f, p] = − 1

4πL3

∑
k

∫
dω log {1− J [f, p] (k, ω)} , (4.3)

with

J [f, p] (k, ω) = 4π

∫
dv1dv2

∂p

∂v1

·A [f ] (k, ω,v1,v2)·
{
∂f

∂v2

f(v1)− f(v2)
∂f

∂v1

}
+ 4π

∫
dv1dv2

{
∂p

∂v1

∂p

∂v1

− ∂p

∂v1

∂p

∂v2

}
: A [f ] (k, ω,v1,v2) f(v1)f(v2), (4.4)

where the A (k, ω,v1,v2) is a symmetric tensor which can be expressed through the
Fourier transform of the interaction potential and the dielectric function.

2We discuss the generalization to inhomogeneous systems in section 5.7.
3The prescription of the rate function for the initial condition is not necessary but aims at recalling that

the probability considered here are with respect to the measure on the ensemble of initial conditions
of the particles’ positions and velocities.
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4.1 Introduction: particles with long-range interaction, kinetic theory, and large
deviations

Equations (4.3-4.4) clearly show that the Hamiltonian is not quadratic in the conju-
gated momentum p. This shows that the �uctuations that lead to large deviations are
not locally Gaussian, by contrast with many other cases, for instance when di�usive
limits are involved as in the case of macroscopic �uctuation theory [32], or for plasma
�uctuations at scales much smaller than the Debye length [106] (that are discussed in
the next chapter). It is striking that it is possible to get explicit formulas (4.3-4.4) for the
large deviation Hamiltonian, for which cumulants of all order are relevant and non triv-
ial. The four key theoretical ideas and technical tools we use are: making the connection
with large deviation theory for slow-fast systems and identifying the statistics of the fast
motion, expressing the Hamiltonian as a functional determinant on a space of functions
that depend both on time and velocity, using the Szegö–Widom theorem to reduce this
functional determinant to a simpler one on a space of functions that depend on velocity
only, and �nally computing explicitly those determinants on the space of functions that
depend on velocity only.

The key point of this work is to establish large deviation principles for particle systems
with Hamiltonian dynamics. At �rst sight it might seem surprising to obtain a stochas-
tic process for an e�ective kinetic description, starting from a deterministic dynamics.
However it is well known that, after taking the limit with an in�nite time scale separa-
tion between the slow and fast degrees of freedom, the e�ective dynamics of a slow-fast
dynamical system, with chaotic fast degrees of freedom, is stochastic. At the level of
large deviations, for deterministic dynamical systems, mathematicians have proven the-
orems that establish large deviation principles for the e�ective stochastic process of the
slow variable, from natural hypotheses [140, 141]. This behavior can also be illustrated
numerically, for instance coupling a slow dynamics with a fast chaotic Lorenz model
dynamics [159]. This work, also reported in [106, 107] along with [45, 50, 46] establish
the �rst large deviation principles, in kinetic theory that do not start from stochastic
dynamics, like for instance in macroscopic �uctuation theory [32]. While in [45, 46] the
result is proven for dilute gases in the Boltzmann–Grad limit for times of order of the
collision time, our derivations are not mathematical proofs. All the steps of our deriva-
tion are however exact computations, once natural hypothesis are made, in the spirit
of the most precise classical works by theoretical physicists in kinetic theory, and the
result is expected to be valid for times much larger that the kinetic times.

Our large deviation principle for paths immediately implies a gradient �ow structure
for the Balescu-Guernsey-Lenard operator, adapting to this speci�c case the general con-
nection between path large deviation and gradient �ows �rst discussed in [160] and sim-
ply explained in section 5 of [50] or section 3.5 of this manuscript. As far as we know, no
gradient �ow structure was known before for the Balescu-Guernsey-Lenard operator.

The subject of plasma �uctuations is a classical one, see for instance §51 of [150], or
chapter 11 of [4], among hundreds of other publications. For instance, the space-time
two-point correlations for the �uctuations of the distribution function and potential of a
plasma with a non-equilibrium distribution function which is stable for Vlasov dynam-
ics, for times much smaller than the evolution time of the distribution function itself, can
be computed either from a Klimontovich approach [150], a truncation of the BBGKY hi-
erarchy [169], or using equipartition of local van Kampen modes [163]. One may wonder
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how the present work connects to those classical results. First, as will be clear in section
4.4.2, our derivation starts from the classical formulas for the local in time �uctuations
of non-equilibrium stable distributions. Then our approach is fully consistent with the
classical results of �uctuations in plasma. However, we address a question of a nature
that has never been considered so far: the probability that those local �uctuations lead
to a large deviation in the long term evolution of the distribution function. Our main
result, the large deviation Hamiltonian that describes the long term path probability for
the distribution function, is thus entirely new, as far as we know. It is fully compatible
with the classical theories of local �uctuations in plasmas.

In parallel to our results, many mathematical results have been obtained for the kinetic
theory of plasma and systems with long range interactions. The derivation of the Vlasov
equation from the N particle dynamics had been �rst proved by Neunzert [168], Braun
and Hepp [58] and Dobrushin [94], for interactions through a smooth potential. This
question is still under study for interaction potentials with singularities, for instance
with the Coulomb interaction (see for instance [125]). Kiessling’s review [138] provides
a recent report on the mathematical justi�cation of the Vlasov equation from the micro-
scopic dynamics of interacting particles. The stability of stationary states of the Vlasov
equation, for describing the dynamics of the empirical measure over time scales that
diverge with N , but which are much smaller than the kinetic time, has been proven in
[63]. The description of Gaussian �uctuations of the potential, for dynamics close to the
Vlasov equilibrium, has been established by Braun and Hepp for smooth interaction po-
tentials, or in the book [192]. More recent works [144, 145, 146, 175, 207, 97] discuss the
Gaussian process of the �uctuations of the potential close to a Vlasov solution. A recent
proof has been proposed for the the validity of the Balescu-Guernsey-Lenard equation
up to time scales of order N r with r < 1 [98].

In section 4.2 we de�ne the Hamiltonian dynamics, as well as the classical kinetic
equation that describes the relaxation to equilibrium. In section 4.5, we establish a large
deviation principle for the empirical measure using the slow-fast decomposition of the
quasilinear dynamics. In section 4.5, we provide an explicit computation of the large
deviation Hamiltonian. In section 4.6, we check that this Hamiltonian is fully compatible
with the conservation laws of the system, as well as its time-reversal symmetry, and that
it is consistent with statistics in the microcanonical ensemble. The main steps of the
derivation are summed up in �gure 4.1.

4.2. Dynamics of particles with long range
interactions

In this section we set up the de�nitions, and present classical results about the kinetic
theory of the dynamics of N particles with long range interactions, in the limit of large
N . In section 4.2.1, we de�ne the Hamiltonian dynamics. In section 4.2.2, we introduce
the Vlasov equation that describes the evolution of the empirical measure on timescales
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Equations of motion for the N particles

drn
dt = vn, dvn

dt = − 1

N

∑
m6=n

d
drn

W (rn − rm)

Klimontovich equation on
the empirical measure gN(r,v, t)

Slow evolution of the homogeneous part of the emp. meas. fN
driven by inhomog. fast �uctuations δfN

BGL kinetic equation
on the average of fN

LDP for the evolution
paths of fN

Reformulation in terms of the
empirical measure (Chain’s rule)

Slow-fast decomposition
and quasi-linear
approximation

Averaging of the e�ect of the fast variable Large deviations for slow-fast systems

Figure 4.1.: Derivation scheme of the Balescu-Guernsey-Lenard kinetic equation and
its associated LDP for the homogeneous part of the empirical measure

of order one. In section 4.2.3, we introduce the Balescu-Guernsey-Lenard equation that
describes the long time relaxation of the empirical measure, from Vlasov stationary so-
lutions to the Maxwell-Boltzmann equilibrium distribution, and some of its important
physical properties.
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4.2.1. Hamiltonian dynamics of N particles with long range
interactions

We consider N particles with positions {rn}1≤n≤N and velocities {vn}1≤n≤N governed
by a Hamiltonian dynamics

drn
dt = vn

dvn
dt = − 1

N

∑
m 6=n

d
drn

W (rn − rm)

(4.5)

where the interaction potential W (r) is an even function of r. In the following, we con-
sider that rn belongs to a 3-dimensional torus of size L3, and vn ∈ R3. We stress that our
results are actually valid for any space dimension d > 1. We assume that the potential
W is a long range potential: the decay of W is slow enough, so that the interaction is
dominated by the collective e�ects of the N particles rather than by local e�ects. In an
in�nite space this condition would be met if the potential decays asymptotically like a
power law 1/rd or more slowly. This condition is met in many physical systems, for
instance self-gravitating systems or weak interacting plasma (with a large plasma pa-
rameter). For any �nite L, the condition that the potential decays more slowly than
1/rd is a su�cient condition for the potential to be long range.

We call µ−space the (r,v) space. The µ−space is of dimension 6. Let us de�ne gN
the µ−space empirical measure for the positions and velocities of the N particles

gN(r,v, t) =
1

N

N∑
n=1

δ(r− rn(t))δ(v − vn(t)).

In the following, we will study the stochastic process of the asymptotic dynamics of gN ,
as the number of particles N goes to in�nity.

4.2.2. The Vlasov equation
From equation (4.5), one immediately obtains the Klimontovich equation

∂gN
∂t

+ v · ∂gN
∂r
− ∂V [gN ]

∂r
· ∂gN
∂v

= 0, (4.6)

where V [gN ](r, t) =
∫

dv′dr′W (r−r′)gN(r′,v′, t). This is an exact equation for the evo-
lution of gN , if W is regular enough. For the Coulomb interaction, the formal equation
(4.6) has to be interpreted carefully. In the following, we do not discuss the divergences
that might occur related to small scale interactions. At a mathematic level, this would be
equivalent to considering a potential which is regularized at small scales, and smooth.
The Klimontovich equation (4.6) contains all the information about the trajectories of
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4.2 Dynamics of particles with long range interactions

the N particles. We would like to build a kinetic theory, that describes the stochastic
process for gN at a mesoscopic level.

An important �rst result is that the sequence {gN } obeys a law of large numbers when
N → +∞. More precisely, if we assume that there is a set of initial conditions {g0

N }
such that limN→+∞ g

0
N (r,v) = g0 (r,v), then over a �nite time interval t ∈ [0, T ],

limN→+∞ gN (r,v, t) = g (r,v, t) where g solves the Vlasov equation

∂g

∂t
+ v · ∂g

∂r
− ∂V [g]

∂r
· ∂g
∂v

= 0 with g (r,v, t = 0) = g0 (r,v) . (4.7)

While the solution of the Klimontonvich equation is a distribution that carries the whole
information about the positions and velocities of all the particles, the Vlasov equation
describes the evolution of a continuous mesoscopic density for the same dynamics. As
the Klimontovich and the Vlasov equations are formally the same, this law of large num-
bers is actually a stability result for the Vlasov equation in a space of distributions. Such
a result has �rst been proven for smooth potentials by Braun and Hepp [58] , Neunzert
[168] and Dobrushin [94].

The Vlasov equation has in�nitely many Casimir conserved quantities4. As a conse-
quence, it has an in�nite number of stable stationary states [213]. Any homogeneous
distribution g (r,v) = f(v) is a stationary solution of the Vlasov equation. In the fol-
lowing, we will consider dynamics close to any homogeneous f which is a linearly stable
stationary solution of the Vlasov equation. This linear stability can be assessed by study-
ing the dielectric susceptibility ε[f ](k, ω) [169, 150], de�ned by

ε[f ] (k, ω) = 1− Ŵ (k)

∫
dv

k. ∂f
∂v

k.v − ω − iη , (4.8)

where Ŵ (k) is the k-th Fourier component of the interaction potential: Ŵ (k) =∫
dr exp (−ik.r)W (r). Equation (4.8) and every other equations involving ±iη have

to be understood as the limit as η goes to zero with η positive. The dielectric suscepti-
bility function ε plays the role of a dispersion relation in the linearized dynamics, and
a solution f is stable if ε[f ] has no zeros except for ω on the real line. We note that
ε [f ] (−k,−ω) = ε∗ [f ] (k, ω). Another important property of the dielectric suscepti-
bility is ε [I [f ]] (k,−ω) = ε∗ [f ] (k, ω), where I [f (v)] = f (−v). This last property,
associated to the time-reversal symmetry of the Hamiltonian dynamics, will be used in
section 4.6.2. In this section we have discussed the linear stability of stationary solutions
of the Vlasov equation while [213] de�nes di�erent notions of stability.

From the point of view of dynamical systems, those homogeneous solutions might
be attractors of the Vlasov equation, with some sort of asymptotic stability. At a linear
level, this convergence for some of the observables, for instance the potential, is called
Landau damping [169, 150]. Such a stability might also be true for the full dynamics.
Indeed some non-linear Landau damping results have recently been proven [164].

4We say that C [g] (t) =
∫

drdv c [g (r,v, t)] is a Casimir conserved quantity for the Vlasov equation if
dC [g] /dt = 0, when g evolves according to the Vlasov equation.
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In the following we will study the dynamics of gN , when its initial condition is close to
a homogeneous stable state f(v). On time scales of order one, the distribution is stable
and remains close to f according to the Vlasov equation. However a slow evolution
occurs on a timescale τ of order N , in spaces of dimension d > 1. For this reason, such
f are called quasi-stationary states [213]. In the following section, we explain that this
slow evolution is described by the Balescu-Guernsey-Lenard equation for most initial
conditions.

As a conclusion, the Balescu-Guernsey-Lenard equation appears as a mesoscopic de-
scription of the solution of the Klimontovich equation, for homogeneous solutions, which
is valid up to time scales of order N , while the Vlasov equation is valid only up to time
scales of order one. The Balescu-Guernsey-Lenard equation is a crucial correction to the
Vlasov equation close to homogeneous solutions. Indeed homogeneous solution have no
evolution through the Vlasov equation as they are stationary, while they have an evo-
lution of order one over times scales of order N through the Balescu-Guernsey-Lenard
equation.

4.2.3. The Balescu-Guernsey-Lenard equation
With the rescaling of time τ = t/N , we expect a law of large numbers in the sense that
“for almost all initial conditions” the empirical measure gN converges to f , with f that
evolves according to the Balescu-Guernsey-Lenard equation

∂f

∂τ
=

∂

∂v
.

∫
dv2 B [f ] (v,v2)

(
− ∂f

∂v2

f(v) + f(v2)
∂f

∂v

)
, (4.9)

with

B [f ] (v1,v2) =
π

L3

∫ +∞

−∞
dω

∑
k∈(2π/L)Z3

Ŵ (k)2 kk

|ε[f ] (k, ω)|2
δ (ω − k.v1) δ (ω − k.v2) , (4.10)

where kk denotes the tensor product k⊗ k. The tensor B is called the collision kernel
of the Balescu-Guernsey-Lenard equation (by analogy with the Boltzmann equation).

A recent proof has been proposed for the the validity of the Balescu-Guernsey-Lenard
equation up to time scales t of orderN r with r < 1 [98]. We know no mathematical proof
of such a result for time scales t of order N (τ of order one). In the theoretical physics
literature, this equation is derived as an exact consequence of the dynamics once natural
hypotheses are made. Two classes of derivations are known, either the BBGKY hierar-
chy detailed in [169] or the Klimontovich approach presented for instance in [150]. The
Klimontovich derivation is the more straightforward from a technical point of view. We
now recall the main steps of the Klimontovich derivation, that will be useful later.

In the following we will consider statistical averages over measures of initial con-
ditions for the N particle initial conditions {r0

n,v
0
n}. We denote ES the average with
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respect to this measure of initial conditions. As an example the measure of initial con-
ditions could be the product measure

∏N
n=1 g

0 (r0
n,v

0
n) drndvn. But we might consider

other measures of initial conditions. We assume that for the statistical ensemble of initial
conditions, the law of large numbers limN→∞ g

0
N (r,v) = g0 (r,v) is valid at the initial

time. This is true for instance for the product measure. In the following, for simplicity,
we restrict the discussion to cases when the initial conditions are statistically homoge-
nous: g0 (r,v) = P 0(v). In the following, we de�ne f as the statistical average of gN
over the initial conditions f(v, t) = ES (gN(r,v, t)).

We de�ne the �uctuations δgN by gN(r,v, t) = f(v)+δgN/
√
N . The scaling 1/

√
N is

natural when we see the Vlasov equation (4.7) as a law of large numbers for the empirical
measure. For the potential we obtain V [gN ] = V [δgN ] /

√
N , as f is homogeneous. If

we introduce this decomposition in the Klimontovich equation (4.6), we obtain

∂f

∂t
=

1

N
ES
(
∂V [δgN ]

∂r
· ∂δgN
∂v

)
, (4.11)

∂δgN
∂t

+ v · ∂δgN
∂r

− ∂V [δgN ]

∂r
· ∂f
∂v

=

1√
N

[
∂V [δgN ]

∂r
· ∂δgN
∂v

− ES
(
∂V [δgN ]

∂r
· ∂δgN
∂v

)]
. (4.12)

In the �rst equation, the right hand side of the equation 1
N
ES
(
∂V [δgN ]

∂r
· ∂δgN

∂v

)
is called

the averaged non linear term and is responsible for the long term evolution of the distri-
bution f . The right hand side of the second equation 1√

N

[
∂V [δgN ]

∂r
· ∂δgN

∂v
− ES

(
∂V [δgN ]

∂r
· ∂δgN

∂v

)]
describes the �uctuations of the non-linear term. For stable distributions f, and on
timescales much smaller than

√
N , we can neglect this term, following Klimontovich

and classical textbooks [150]. Please see [63] for a mathematical proof of a su�cient
condition of stability on time scales of order Nα, for some α < 1. Neglecting the terms
much smaller than

√
N closes the hierarchy of the correlation functions. The Bogoliubov

approximation then amounts to using the time scale separation between the evolution
of f and δgN . Then for �xed f , the equation for δgN (4.12) is linear when f is �xed. One
computes the correlation function ES

(
∂V [δgN ]

∂r
· ∂δgN

∂v

)
resulting from (4.12) with �xed

f , and argues that this two point correlation function converges to a stationary quantity
on time scales much smaller than

√
N . Using this quasi-stationary correlation function

ES
(
∂V [δgN ]

∂r
.∂δgN
∂v

)
, one can compute the right hand side of (4.11) as a function of f .

After time rescaling τ = t/N , we de�ne gsN (r,v, τ) = gN (r,v, Nτ). By abuse of
notation and for convenience, we still denote gsN(τ) = gN(τ). The closed equation for
gN(τ), which is obtained from (4.11) is the Balescu-Guernsey-Lenard equation (4.9). We
do not reproduce these lengthy and classical computations that can be found in plasma
physics textbooks, for instance in Chapter 51 of [150]. A natural conjecture is that we
have a law of large numbers limN→∞ gN (r,v, τ) = f(v, τ), where f solves the Balescu-
Guernsey-Lenard equation (4.9), and valid for any �nite time τ .
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Symmetries and conservation properties. The Balescu-Guernsey-Lenard equation
(4.9) has several important physical properties:

1. It conserves the massM [f ], momentum P[f ] and total kinetic energyE[f ] de�ned
by

M [f ] =

∫
dv f (v) , P[f ] =

∫
dv vf (v) and E[f ] =

∫
dv

v2

2
f (v) . (4.13)

2. It increases monotonically the entropy S[f ] de�ned by

S[f ] = −kB
∫

dv f (v) log f (v) , (4.14)

where kB is the Boltzmann constant.

3. It converges towards the Boltzmann distribution for the corresponding energy

fB (v) =
β3/2

(2π)3/2
exp

(
−βv2

2

)
.

4.2.4. The Balescu-Guernsey-Lenard equation as a non-linear
Fokker-Planck equations

It is possible to consider the Balescu-Guernsey-Lenard as a non-linear Fokker-Planck
equation. Indeed, introducing the drift and the di�usion terms

{
b [f ] (v) =

∫
dv2B [f ] (v,v2) ∂f

∂v2

D [f ] (v) =
∫

dv2B [f ] (v,v2)f(v2),
(4.15)

the Balescu-Guernsey-Lenard equation writes

∂f

∂t
=

∂

∂v

{
−fb [f ] + D [f ]

∂f

∂v

}
. (4.16)

This is the functional form of a Fokker-Planck equation, but by contrast with the linear
Fokker-Planck equation with constant drift and di�usion coe�cient, the drift and di�u-
sion coe�cients depend on f .

As noticed in section 3.7.1.3, this equation could be obtained from the dynamics of N
particles governed by the Ito di�usion

dvn = b[fN ] (vn) dt+
∂

∂v
.D[fN ] (vn) dt+

√
2σ[fN ] (vn) dWn,t, (4.17)
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with

fN (v, t) =
1

NL3

N∑
n=1

δ (vn(t)− v) , (4.18)

where σ is such that D[fN ] (vn) = σ[fN ] (vn)σ[fN ] (vn)>, and Wn,t are Wiener pro-
cesses that satisfy E (dWm,tdWn,t′) = δm,nδ (t′ − t) dt. In this equation, the drift and
di�usion coe�cients b [fN ] and D[fN ] and the matrix σ depend on a mean �eld way on
the empirical measure fN .

The law of large numbers for the empirical measure fN for these N particles with
mean �eld coupling insures that limN→∞ fN = f where f satis�es the Balescu-Guernsey-
Lenard equation (4.16). From this remark, a natural question is whether the dynamical
large deviations for the empirical measure fN in (4.17-4.18) are the same as the dynami-
cal large deviations ofN particles undergoing the Hamiltonian dynamics (4.5) (the large
deviation of the Balescu-Guernsey-Lenard equation). We discuss this hypothesis in the
following section.

4.3. Large deviations for N di�usions with mean field
coupling

The aim of this section is to address the following question: are the dynamical large
deviations for the empirical measure fN in (4.17) the same as the dynamical large devi-
ations of N particles with mean �eld interactions (the large deviations for the Balescu-
Guernsey-Lenard equation)?

In section 3.7.1.3 of chapter 3 we discussed the large deviations associated withN par-
ticles di�using in velocity space with mean-�eld coupled drift and di�usion parameters.
We proved that with the prescription that fN(t = 0) is in the neighborhood of f(t = 0)

P
(
{fN(t)}0≤t≤T = {f(t)}0≤t≤T

)
�

N→∞
e−NL3Supp

∫ T
0 {

∫
dv ḟp−HMF,h[f,p]}, (4.19)

where

HMF,h [f, p] =

∫
dv f

{
b [f ] .

∂p

∂v
+

∂

∂v

(
D [f ]

∂p

∂v

)
+ D [f ] :

∂p

∂v

∂p

∂v

}
. (4.20)

More precisely, the result stated above is an instance of the discussion of section 3.7.1.3
in the special case where there is no spatial dynamics nor dependence on the position
of the distribution function. The velocity empirical measure (4.18) is renormalized by
the volume of the system because it is interpreted as distribution on the µ-space of a
homogeneous system rather than a velocity distribution.

Even though the most probable evolution path of the empirical measure associated
with the Hamiltonian (4.20) is the Balescu-Guernsey-Lenard equation (see paragraph
3.7.1.3), it cannot describe the large deviations for the empirical measure of particles un-
dergoing the Hamiltonian dynamics (4.5). First, the Hamiltonian (4.20) is not consistent
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with the conservation of momentum and energy expected for the dynamics (4.5). From
10. in section 3.4, we know that if C [f ] is a conserved quantity of the dynamics, the
following symmetry of the large deviation Hamiltonian should hold∫

dv
δC

δf

δHMF,h

δp
= 0.

From there, we note that momentum P[f ] =
∫

dv vf (v) and kinetic energy E[f ] =∫
dv v2

2
f (v) conservations are not consistent with the Hamiltonian (4.20). This means

that evolution paths of the empirical measure that do not conserve total momentum and
kinetic energy could have non-zero probability from the large deviation principle (4.19).
As a consequence it cannot be a good large deviation description of the Hamiltonian
dynamics (4.5). Of course, this is not surprising since the stochastic dynamics (4.17)
from which we derive the Hamiltonian (4.20) does not conserve momentum or energy.

4.4. Derivation of the large deviation principle from
the quasi-linear dynamics

In this section, we derive a large deviation principle for the empirical measure of N
particles with long range interactions, directly from the dynamics (4.5).

In section 4.4.1, we introduce the quasi-linear dynamics of the empirical measure of
N long range interacting particles, for which the law of large numbers is the Balescu-
Guernsey-Lenard kinetic theory. In section 4.4.1, we explain that this quasi-linear dy-
namics for the empirical measure can be seen as a slow-fast system, for which we can
de�ne the path large deviation functional for the slow variable. In section 4.4.2, we char-
acterize the stochastic process for the quasi-linear dynamics of the �uctuations of the
empirical measure as a stationary Gaussian process.

4.4.1. The Klimontovich approach, quasilinear and slow-fast
dynamics

We begin by equations which are similar to (4.11-4.12), but by contrast to the discussion
of the previous section, we will not compute just the average for the e�ect of �uctuations
on the evolution of fN , but all the cumulants after time averaging.

We consider the empirical measure

gN (r,v, t) =
1

N

N∑
n=1

δ (v − vn (t)) δ (r− rn (t)) ,

of N particles which interact through a long range pair potential according to the dy-
namics (4.5). From these equations of motion, we can deduce the Klimontovich equation

∂gN
∂t

+ v · ∂gN
∂r
− ∂V [gN ]

∂r
· ∂gN
∂v

= 0. (4.21)
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We consider the decomposition

gN (r,v, t) = fN (v) +
1√
N
δgN (r,v, t) ,

where fN (v, t) = 1
L3

∫
dr gN (r,v, t) is the projection of gN on homogeneous distribu-

tions (distributions that depend on velocity only) and δgN describes the inhomogeneous
�uctuations of the empirical measure gN . Alternatively, we can understand fN as the
empirical measure of the N particles in the velocity space:

fN (r,v, t) =
1

NL3

N∑
n=1

δ (v − vn (t)) .

From the Klimontovich equation (4.21), we straightforwardly write

∂fN
∂t

=
1

NL3

∫
dr

(
∂V [δgN ]

∂r
.
∂δgN
∂v

)
, (4.22)

∂δgN
∂t

= −v.
∂δgN
∂r

+
∂V [δgN ]

∂r
.
∂fN
∂v

(4.23)

+
1√
N

[
∂V [δgN ]

∂r
.
∂δgN
∂v

− 1

L3

∫
dr

(
∂V [δgN ]

∂r
.
∂δgN
∂v

)]
. (4.24)

Just like in the section 4.2.2, we will consider statistical averages over a probability mea-
sure for the initial conditions {r0

n,v
0
n} of the N particles. As the microscopic dynamics

is deterministic, the only source of randomness is the ensemble of initial conditions. We
assume that this ensemble of initial conditions is sampled from a spatially homogeneous
measure and that the set of corresponding gN is concentrated close to homogeneous dis-
tributions in the (r,v) space. Moreover we assume that the large deviation principle

P
(
fN (t = 0) = f 0

)
�

N→∞
e−NI0[f0], (4.25)

holds, where I0 is a large deviation rate function for fN(τ = 0) the initial conditions of
fN . As an example, the measure of initial conditions {r0

n,v
0
n} could be the homogeneous

product measure
∏N

n=1 P
0 (v0

n) dvndrn/L
3, with

∫
dvP 0 (v) = 1. Then I0 would then

be the Kullback–Leibler divergence of f 0 with respect to P 0. But we might consider
other ensembles of initial conditions.

We now assume the validity of the quasi-linear approximation5, which amounts to
neglecting terms of order N−1/2 in the evolution equation for δgN . We also change the
timescale τ = t/N and obtain the quasilinear dynamics

∂fN
∂τ

=
1

L3

∫
dr

(
∂V [δgN ]

∂r
.
∂δgN
∂v

)
, (4.26)

∂δgN
∂τ

= N

{
−v.

∂δgN
∂r

+
∂V [δgN ]

∂r
.
∂fN
∂v

}
. (4.27)

5It is still an open question to justify the validity of this approximation at the level of the large deviations.
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When N goes to in�nity, we observe that the equation for δgN is a fast process, with
timescales for τ of order 1/N , while the equation for fN is a slow one with timescales
for τ of order 1. For such slow-fast dynamics, it is natural to consider fN �xed (frozen)
in equation (4.27) on time scales for τ of order 1/N. For �xed fN the dynamics for δgN
is linear and can be solved. Computing then the average of the term

∫
dr ∂V [δgN ]

∂r
.∂δgN
∂v

,
for the asymptotic process for δgN for �xed fN leads to the Guernsey–Lenard–Balescu
equation, as explained in section 4.2.3. Those computation can be found in classical text-
books [150].

In the following we want to go beyond these classical computations, by estimating not
just the average of the right hand side in (4.22),

∫
dr ∂V [δgN ]

∂r
.∂δgN
∂v

, but all the cumulants
of the time averages

∫ ∆T

0

∫
dr ∂V [δgN ]

∂r
.∂δgN
∂v

in order to describe the large deviations for
the process fN . For slow-fast dynamics, the theory for the large deviations of the e�ec-
tive evolution of the slow variable is a classical one both in theoretical physics (see for
instance [51]) and mathematics. In the mathematics literature, it is for instance treated
for di�usions [115, 208], or chaotic deterministic systems [140, 141]. The result for the
path large deviations for the slow dynamics is explained in section 3.6.2 (see equations
(3.28-3.30)). After rescaling time τ = t/N , we then have

P
(
{fN (v, τ)}0≤τ≤T = {f (v, τ)}0≤τ≤T

)
�

N→∞
e−NL3Supp

∫ T
0 dτ{∫ dv ḟp−HBGL[f,p]}e−NI0[f0],

(4.28)

where I0 is a large deviation rate function for the initial conditions of fN , see equation
(4.25), and with

HBGL [f, p] = lim
T→∞

1

TL3
logEf

[
exp
(∫ T

0

dt
∫

dv p (v)

∫
dr′

∂V [δgN ]

∂r′
.
∂δgN
∂v

)]
(4.29)

and where Ef denotes the expectation on the process for δgN , evolving according to

∂δgN
∂t

= −v.
∂δgN
∂r

+
∂V [δgN ]

∂r
.
∂f

∂v
. (4.30)

In this equation, fN = f is �xed and time independent. We note that the classical
mathematical results to justify (4.29) would require to prove mixing properties for the
fast process, and stability of the invariant measure, that nobody has proven yet for (4.30).

We note that to obtain equation (4.29) from equation (3.30), we have considered fN
as a function of the µ-space. Then the conjugated momentum p (r,v) should also be a
function of the µ-space and the scalar product be the one of the µ-space. However, rec-
ognizing that for homogeneous f , p should also be homogeneous (p (r,v) = p (v)), and
performing trivial integration over r leads to (4.29). The L3 factor in the large deviation
principle (4.28) also comes from a trivial integration over r of ḟp. In the de�nition of H ,
in (4.29) we have divided the scaled cumulant generating function byL3 for convenience,
such that the action in (4.28) appears as a natural action for homogeneous distributions.

The goal of the following sections and the contribution of this work is to obtain an
explicit expression for (4.29).
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4.4.2. The quasi-stationary Gaussian process for δgN
In order to compute (4.29), we need to estimate averages over the stochastic process
which corresponds to generic sets of initial condition for δgN , and where δgN satis�es
equation (4.30). We �rst note that for �xed f , equation (4.30) is linear. If the set of initial
conditions for δgN(t = 0) is a Gaussian random variable, then the stochastic process
{δgN(t)}t≥0 will be a Gaussian process. Several mathematical works [144, 145, 146, 175,
207, 97] discuss some properties of the Gaussian process of the �uctuations close to a
Vlasov solution. For instance [146] proves that, when starting from sets of Gaussian ini-
tial conditions of the form of relevant central limit theorems, at long times, the stochastic
process converges to a statistically stationary Gaussian process. The fact that for generic
sets of initial conditions, the stochastic process of the �uctuations δgN converges to a
stochastically stationary process, which is independent of the initial conditions, has long
been understood by physicists. This is for instance explained in §51 of [150], where the
asymptotic stationary process is precisely characterized. This striking convergence re-
sult, despite the lack of dissipation in the equation for δgN , is related to the Landau
damping and the fact that we deal with particle systems. The work [49] derives another
characterization of this stationary process, based on an integral equation, and illustrates
numerically the convergence. In the following we will thus consider averages in equa-
tion (4.29) as averages over this stationary Gaussian process. Such stationary averages
are denoted ES .

We do not reproduce the classical and lengthy computations of the correlation func-
tions of this stationary process, but just report the formulas which can be found for in-
stance in §51 of [150]. The potential autocorrelation function is homogeneous because
of the space translation symmetry. Then

ES (V [δgN ] (r1, t1)V [δgN ] (r2, t2)) = CV V (r1 − r2, t1 − t2) ,

We de�ne ϕ̃ the space-time Fourier transform of a function ϕ as

ϕ̃ (k, ω) =

∫
[0,L]3

dr

∫ ∞
−∞

dt e−i(k.r−ωt)ϕ (r, t) , (4.31)

following the same convention as in [150]. According to equation (51.20), §51 of [150],
with the identi�cation V = eφ and Ŵ (k) = 4πe2/k2, the space-time Fourier transform
of the autocorrelation function of the potential then reads

C̃V V (k, ω) = 2π

[∫
dv′ f (v′) δ (ω − k.v′)

]
Ŵ (k)2

|ε [f ] (k, ω)|2
. (4.32)

Similarly the time stationary correlation function between the potential and distribu-
tion �uctuation is space-time homogeneous

ES (V [δgN ] (r1, t1) δgN (r2,v, t2)) = CV G (r1 − r2, t1 − t2,v) .

According to equation (51.21) of [150], its space-time Fourier transform reads

C̃V G (k, ω,v) = − k

ω − k.v − iη .
∂f

∂v
(v) C̃V V (k, ω)+2π

Ŵ (k)

ε [f ] (k, ω)
f (v) δ (ω − k.v) .
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(4.33)

We also de�ne the autocorrelation function of the distribution �uctuations
ES (δgN (r1,v1, t1) δgN (r2,v2, t2)) = CGG (r1 − r2, t1 − t2,v1,v2) .

According to equation (51.23) of [150], its space-time Fourier transform reads

C̃GG (k, ω,v1,v2) = 2πδ (v1 − v2) f (v1) δ (ω − k.v1) (4.34)

+
C̃V V (k, ω)

(ω − k.v1 + iη) (ω − k.v2 − iη)
k.
∂f

∂v
(v1) k.

∂f

∂v
(v2)

− 2πŴ (k)k.
∂f

∂v
(v1)

f(v2)δ (ω − k.v2)

ε (k, ω) (ω − k.v1 + iη)

− 2πŴ (k)k.
∂f

∂v
(v2)

f(v1)δ (ω − k.v1)

ε∗ (k, ω) (ω − k.v2 − iη)
.

We note that the order in the correlation functions for V and gN matters. We have
ES (δgN (r1,v, t1)V [δgN ] (r2, t2)) = CGV (r1 − r2, t1 − t2,v) ,

with
C̃V G (k, ω,v) = C̃GV (−k,−ω,v) = C̃GV

∗
(k, ω,v) .

We also note the symmetry property for C̃GG: C̃GG (k, ω,v1,v2) = C̃GG (−k,−ω,v2,v1).
It is a consequence of the symmetry CGG (r, t,v1,v2) = CGG (−r,−t,v2,v1). Moreover,
sinceCGG is real, we have C̃GG (−k,−ω,v2,v1) = C̃GG

∗
(k, ω,v2,v1). We thus have the

symmetry

C̃GG (k, ω,v1,v2) = C̃GG
∗

(k, ω,v2,v1) . (4.35)

We note that as a mere consequence of the de�nition of V [δgN ], we have the following
relations between the two-point correlation functions

C̃V G (k, ω,v1) = Ŵ (k)

∫
dv2 C̃GG (k, ω,v1,v2) , (4.36)

C̃V V (k, ω) =
(
Ŵ (k)

)2
∫

dv1dv2 C̃GG (k, ω,v1,v2) . (4.37)

4.5. Computation of the large deviation Hamiltonian
In this section, we obtain an explicit formula for the large deviation functional of the
empirical measure of N particles with long range interactions, starting from equation
(4.29). We noticed in section 4.4.2 that the �uctuations of the homogeneous part empiri-
cal measure are described by the average of a quadratic form over a Gaussian stationary
process. In section 4.5.1, we explain how this makes the computation of the Hamiltonian
(4.29) equivalent to the computation of a functional determinant. In section 4.5.3, this
functional determinant is explicitly computed, using the Szegö–Widom theorem and an
explicit computation of determinants in the space of observables over velocity distribu-
tions.
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4.5.1. The large deviation Hamiltonian as a functional Gaussian
integral

Within the quasi-linear approximation, the �uctuations of the empirical measure δgN
follow a stationary Gaussian process over functions of the µ-space. The goal of this sub-
section is to show that the computation of the large deviation Hamiltonian is equivalent
to the computation of a Gaussian functional integral of the �uctuations of the empirical
measure δgN .

We considerHv, the Hilbert space of complex functions over the velocity space, with
〈., .〉, the Hermitian product: 〈a, b〉 =

∫
dv a∗ (v) b (v). We can conveniently express

the argument of the exponential in the formula (4.29) for the large deviation Hamilto-
nian using a spatial Fourier decomposition of the �uctuations of the empirical measure
δĝ (k,v, t) =

∫
[0,L]3

dr e−ik.rδgN (r,v, t). Using this Fourier decomposition, the de�ni-
tion of the potential V [δgN ] and partial integration with respect to the velocity integral,
we obtain

∫
dv p (v)

∫
dr′

∂V [δgN ]

∂r′
.
∂δgN
∂v

=
1

2

∑
k∈(2π/L)Z3

〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉,

(4.38)

where we de�ne the Hermitian operator M (k) acting on ϕ ∈ Hv as

M (k) [ϕ] (v1) =

∫
dv2M (k; v1,v2)ϕ (v2) , (4.39)

with the kernel M de�ned by

M (k; v1,v2) =
i

L6
Ŵ (k) k.

{
− ∂p
∂v

(v1) +
∂p

∂v
(v2)

}
. (4.40)

There is a factor 1/2 on the r.h.s. of (4.38) because we chose to symmetrize the expres-
sion, such that M (k; v1,v2) = M (k; v2,v1)∗. M (k) is then an Hermitian operator.

The goal of the following of this subsection is to express the sum on the r.h.s. of (4.38)
as a sum of independent terms to make the computation of (4.29) easier. Since for every
k ∈ (2π/L)Z3, M (k) is an Hermitian operator, M (k)∗ = M (−k), and

δĝ∗N (k, ·, t) = δĝN (−k, ·, t) ,
we have the following relation

〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉 = 〈δĝN (−k, ·, t) ,M (−k) [δĝN (−k, ·, t)]〉. (4.41)

This implies that on the r.h.s. of (4.38), the contribution of an index k ∈ (2π/L)Z3 will
be equal to the contribution of its negative −k.

Because the stochastic process δgN(r, ·, t), for the �uctuations of the distribution func-
tion is spatially homogeneous, the stochastic process δĝN (k, ·, t) is statistically mutually
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independent with every other δĝN (k′, ·, t) as long as k′ 6= −k. Because δĝN (k, ·, t) is
not statistically independent from δĝN (−k, ·, t), it is useful to treat them together. We
de�ne Z3

± = Z3/Z2 the quotient of group Z3 with Z2, the cyclic group of order 2. In
other words, Z3

± is the set of triplets of integers where we identify a triplet (a, b, c) ∈ Z3

with its negative (−a,−b,−c). Then, using (4.41), the sum over k ∈ (2π/L)Z3 can be
rewritten as

1

2

∑
k∈(2π/L)Z3

〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉 =
∑

k∈(2π/L)Z3
±

〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉 .

(4.42)

As a consequence, the r.h.s of (4.42) is a sum of statistically independent terms. We can
then use the fact that the expected value of a product of independent random variables
is the product of their expected values, as well as equations (4.38) and (4.42) to obtain

E
[

exp
(∫ T

0
dt
∫

dv p (v)

∫
dr′∂V [δgN ]

∂r′
.
∂δgN
∂v

)]
=

∏
k∈(2π/L)Z3

±

E
[
exp

(∫ T

0
dt 〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉

)]
. (4.43)

We can then go back to (4.29) using (4.41) and (4.43) to express the large deviation
Hamiltonian as a sum over the wavevectors

HBGL [f, p] =
∑

k∈(2π/L)Z3

Ĥ [f, p] (k) , (4.44)

where

Ĥ [f, p] (k) = lim
T→∞

1

2TL3
logE

[
exp
(∫ T

0

dt 〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉
)]

.

(4.45)

4.5.2. The Szegö–Widom theorem
The computation of (4.44-4.45) requires to estimate large time large deviations of a
quadratic functional of a Gaussian stochastic process. More precisely, the Gaussian pro-
cess involved in (4.45) is the stochastic process of the k-th Fourier mode of the �uctua-
tions of the empirical measure δĝN (k, ·, t), and the quadratic functional is de�ned by the
Hermitian operator M (k) (4.39). Since δĝN (k, ·, t) is a Gaussian process, it is possible
to compute (4.45) via functional determinants. Thanks to the Szegö–Widom theorem, it
is possible to evaluate the asymptotics of this Fredholm determinant in terms of much
simpler determinants of an operator onHv. This program was �rst implemented in [57],
with a nice application to a model inspired by 2D and geophysical turbulence. Here is a
simple statement of this theorem in a case where the Hilbert space has a �nite dimension.
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We �rst de�ne integral operators on L2 ([0, T ] ,Cn). We considers maps ϕ : [0, T ]→
Cn and K : R → Mn (C), where Mn (C) is the set of n × n complex matrices. We
de�ne the integral operator KT by

KTϕ (t) =

∫ T

0

K (t− s)ϕ (s) ds, (4.46)

KT is a linear operator of L2 ([0, T ] ,Cn). K is called the kernel of the operator KT .
The Szegö–Widom theorem allows to compute large T asymptotics of the logarithm

of the Fredholm determinant of the integral operator Id + KT . The result is

log det
[0,T ]

(Id + KT ) ∼
T→∞

T

2π

∫
dω log det

(
In +

∫
R

eiωtK (t) dt
)
, (4.47)

where In is the n × n identity matrix. Whereas the determinant on the l.h.s. of this
expression, denoted by the subscript [0, T ] is a Fredholm determinant, the determinant
on the r.h.s. is a matrix determinant which can be more easily computed. Further details
about this theorem and its possible applications can be found in [57].

4.5.3. Application of the Szegö-Widom theorem
In appendix A.2 we explain the details of this program for Gaussian processes with com-
plex variables. The result (A.5) of the appendix A.2, adapted to the case where the Hilbert
space isHv, reads

logE
[

exp
(∫ T

0

dt 〈δĝN (k, ·, t) ,M (k) [δĝN (k, ·, t)]〉
)]

∼
T→∞

− T

2π

∫
dω log det

Hv

(uk,ω) ,

(4.48)

where, for any k and ω, and ϕ ∈ Hv, uk,ω [ϕ] is de�ned by

uk,ω [ϕ] (v1) = ϕ (v1) +

∫
dv2dv3M (k; v1,v2) C̃GG (k, ω,v2,v3)ϕ (v3) .

uk,ω is a linear operator ofHv. The subscriptHv in (4.48) indicates that the determinant
is a determinant of an operator over Hv. Then, combining equations (4.45) and (4.48)
yields

Ĥ [f, p] (k) = − 1

4πL3

∫
dω log det

Hv

(uk,ω) . (4.49)

Our next task to obtain an explicit formula for Ĥ [f, p] (k) and thus for the full large
deviation Hamiltonian H (4.44) is to compute det

Hv

(uk,ω). This determinant can be easily
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computed once we realize that the range of uk,ω − Id is two-dimensional. The explicit
computation is performed in appendix A.3. The result reads

det
Hv

(uk,ω) = 1− J [f, p] (k, ω) , (4.50)

with

J [f, p] (k, ω) = −2

∫
dv1 k.

∂p

∂v1

=
(
C̃V G (k, ω,v1)

)
−
∫

dv1dv2 k.
∂p

∂v1

k.
∂p

∂v2

{
C̃V G (k, ω,v1) C̃V G (k, ω,v2)∗

− C̃V V (k, ω) C̃GG (k, ω,v1,v2)
}
. (4.51)

Using the expressions of the two-point correlation functions (4.32-4.34), we obtain that

J [f, p] = L [f, p] +Q [f, p, p] , (4.52)

where L depends linearly on p and Q depends on p as a quadratic form. We have

L [f, p] (k, ω) = 4π

∫
dv1dv2 A [f ] (k, ω,v1,v2) :

∂p

∂v1

{
∂f

∂v2

f(v1)− f(v2)
∂f

∂v1

}
(4.53)

and

Q [f, p, q] (k, ω) = 2π

∫
dv1dv2 A [f ] (k, ω,v1,v2) :

{
∂p

∂v1

∂q

∂v1

+
∂p

∂v2

∂q

∂v2

− ∂p

∂v1

∂q

∂v2

− ∂p

∂v2

∂q

∂v1

}
f(v1)f(v2), (4.54)

with

A [f ] (k, ω,v1,v2) = π
kkŴ (k)2

|ε [f ] (k, ω)|2
δ (ω − k.v1) δ (ω − k.v2) . (4.55)

We note that the tensor A is related to the tensor B of the Balescu-Guernsey-Lenard
equation (4.9):

B [f ] (v1,v2) =
1

L3

∑
k

∫
dωA [f ] (k, ω,v1,v2) ,

and that it shares all of its properties: it is symmetric as a tensor, it is symmetric in its
velocities argument

A (k, ω,v1,v2) = A (k, ω,v1,v2)

78



4.5 Computation of the large deviation Hamiltonian

(momentum conservation), and we have
A (k, ω,v1,v2) . (v1 − v2) = 0

(energy conservation). These properties are related to the conservation laws of the phys-
ical system, as we will see in section 4.6.1. Using ε [f ] (−k,−ω) = ε∗ [f ] (k, ω), we also
have

A [f ] (k, ω,v1,v2) = A [f ] (−k,−ω,v1,v2) .

A also has a symmetry property related to the time reversal symmetry. Recalling that
I [f ] (v) = f (−v) is the velocity inversion involution, we recall that ε [I [f ]] (k,−ω) =
ε∗ [f ] (k, ω) and as a consequence

A [I [f ]] (k,−ω,−v1,−v2) = A [f ] (k, ω,v1,v2) .

We will discuss more deeply this property in section 4.6.2.

Using equations (4.44), (4.49) and (4.50) we obtain an explicit formula for the large
deviation Hamiltonian

HBGL [f, p] = − 1

4πL3

∑
k

∫
dω log {1− J [f, p] (k, ω)} , (4.56)

where J [f, p] (k, ω) is de�ned in equations (4.52-4.54).
As a conclusion, in this section, we have established the path large deviation principle

P
(
{fN(τ)}0≤τ≤T = {f(τ)}0≤τ≤T

)
�

N→∞
e−NL3

∫ T
0 dτ Supp{∫ dv ḟp−HBGL[f,p]}e−NI0[f(τ=0)],

(4.57)

where H is given by (4.56) and where τ = t/N .

Density-current formulation of the large deviation principle. We de�ne the cur-
rent as

jN (v, t) = − 1

NL3

∫
dr

(
∂V [δgN ]

∂r
δgN

)
.

In appendix A.4, we prove that the large deviation principle (4.57) is equivalent to a
empirical measure-current formulation:

P
(
{fN(τ), jN (τ)}0≤t≤T = {f(τ), j (τ)}0≤t≤T

)
�

N→∞
e−NA[f,j]e−NI0[f(τ=0)], (4.58)

where jN (τ) should be interpreted as a time-averaged current after time rescaling, with

A [f, j] =

{
L3
∫ T

0
dτ L̃ [f, j] if ḟ+ ∂

∂v
·j=0,

+∞ otherwise.

and where L̃ [f, j] = Sup
E

{∫
dv j · E− H̃[f,E]

}
, and H̃ is de�ned by HBGL [f, p] =

H̃ [f, ∂p/∂v].

79



Chapter 4
Dynamical large deviations for the kinetic theory of long-range interacting particles:

beyond the Balescu-Guernse-Lenard equation

4.6. Properties of the large deviation Hamiltonian
In this section we check that the large deviation Hamiltonian (4.56) satis�es all the ex-
pected symmetry properties. In section 4.6.1, we check that the Hamiltonian (4.56) is
consistent with the mass, momentum and energy conservation laws. In section 4.6.2, we
show that the Hamiltonian (4.56) has a time-reversal symmetry, and has the negative of
the entropy, with conservation law constraints and up to constants, as a quasipotential.

4.6.1. Conservation laws
As stated in section 3.4, any conservation law is equivalent to a symmetry property of
the large deviation Hamiltonian. More precisely, we know that a functional C[f ] is a
conserved quantity of the large deviation principle (4.28) if and only if for any f and p∫

dv
δHBGL

δp (v)

δC

δf (v)
= 0, (4.59)

or equivalently, if for any f , p and α ∈ R:

HBGL[f, p] = HBGL

[
f, p+ α

δC

δf

]
. (4.60)

We will need the expression of the functional derivative of the Hamiltonian HBGL with
respect to its conjugate momentum p throughout this section. It reads

δHBGL

δp (v)
[f, p] =

1

4πL3

∑
k

∫
dω

δJ
δp(v)

[f, p] (k, ω)

1− J [f, p] (k, ω)
, (4.61)

with

δJ
δp (v)

[f, p] (k, ω) =

−4π

∫
dv2

∂

∂v

{
A (k, ω,v,v2)

[
∂f

∂v2
f(v)− ∂f

∂v
f(v2) + 2f(v)f(v2)

(
∂p

∂v
− ∂p

∂v2

)]}
.

(4.62)

Mass conservation. The conservation of the total mass M [f ] =
∫

dv f is immedi-
ately visible from equation (4.60) as H only depends on the derivative of the conjugated
momentum p.

Momentum conservation. We de�ne the total momentum P [f ] =
∫

dv vf. It fol-
lows that δP

δf(v)
= v. Using equation (4.62) and partial integration, the relation∫

dv1
δJ

δp (v1)
[f, p] (k, ω)

δP

δf (v1)
= 0
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is a direct consequence of the symmetry A (k, ω,v1,v2) = A (k, ω,v2,v1) . Then, using
the relation (4.61) between the functional derivatives of J and HBGL, we obtain∫

dv1
δHBGL

δp (v1)
[f, p] (k, ω)

δP

δf (v1)
= 0.

We have thus checked that the large deviation principle conserves momentum.
The conservation of mass and momentum should have been expected as momentum

and mass conservations were already granted from the expression of the Hamiltonian
(4.29), as a direct consequence of mass and momentum conservations for fN that can be
deduced from either equation (4.22) or equation (4.26) .

Energy conservation. We de�ne the total kinetic energyE [f ] =
∫

dv v2

2
f. It follows

that δE
δf(v)

= v2/2. Using equation (4.62) and partial integration, one can check that the
relation∫

dv1
δJ

δp (v1)
[f, p] (k, ω)

δE

δf (v1)
= 0

is a direct consequence of the following symmetries of the tensor:

A (k, ω,v1,v2) . (v1 − v2) = 0,

and

A (k, ω,v1,v2) = A (k, ω,v2,v1) .

Then, using the relation (4.61) between the functional derivatives of J andH , we obtain∫
dv1

δHBGL

δp (v1)
(k, ω)

δE

δf (v1)
= 0.

From the result (4.59) we deduce that the large deviation principle conserves the kinetic
energy.

The conservation of the kinetic energy is not a trivial consequence of equation (4.22) or
equation (4.26). Indeed, from equation (4.22) or equation (4.26), at any time some energy
can be exchanged between the kinetic part

∫
dv v2

2
fN and the potential part related to

δgN . However
∫ T

0
dt
∫

dv v2

2
∂fN
∂t

is equal to the negative of the variations of the potential
energy. Then, over any time T , these variations should remain bounded, for the system
to stay close to the set of homogenous solutions. As a consequence, in accordance with
our hypothesis of spatial homogeneity, lim

T→∞
1
T

∫ T
0

dt
∫

dv v2

2
∂fN
∂t

= 0. This is the reason
why we should have expected the conservation of kinetic energy by the large deviation
principle. The conservation of kinetic energy by the large deviation principle, which is
a conservation for the slow e�ective dynamics for the empirical measure, should thus
be interpreted as a conservation for time averages for the fast process. If the system
became inhomogeneous, this conservation could be broken.
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4.6.2. Time-reversal symmetry, quasipotential, and entropy
For the Hamiltonian dynamics (4.5), we consider the microcanonical measure with �xed
energy E and momentum �xed and equal to zero, and denote Em averages with respect
to the microcanonical measure. We expect the stationary probability to observe fN = f ,
to satisfy a large deviation principle

Ps [fN = f ] �
N→∞

exp {−NU [f ]} , (4.63)

where this large deviation principle de�nes the quasipotential U .
From classical equilibrium statistical mechanics considerations, for this system with

long range interactions, it is easy to justify that the quasipotential is

U [f ] =

{
−S[f ]

kB
+ Sm(E)

kB
if
∫

dv f = 1,
∫

dv vf = 0, and
∫

dv v2

2
f = E;

+∞ otherwise,
(4.64)

where

S [f ] = −kB
∫

dv f log f

is the entropy of the macrostate f and

Sm(E) = −kB inf
f

{∫
f log f

∣∣∣∣∫ dv f = 1,

∫
dv vf = 0, and

∫
dv

v2

2
f = E

}
.

is the equilibrium entropy. We have Sm(E) = kB [3 log(E)/2 + 3 log(4π)/2 + 3/2].
It is also classically known that the Hamiltonian dynamics (4.5) is time-reversible: the

dynamics is symmetric by the change of variable (t, rn,vn) → (−t, rn,−vn). This is
equivalent to say that if {rn(t),vn(t)}t∈[0,T ] is a solution of the Hamiltonian dynamics,
then {rn(T − t),−vn(T − t)}t∈[0,T ] is also a solution. In order to take into account the
change of sign for the velocity, we de�ne the linear operator on the set of function of
the velocity I [f ] (v) = f (−v). We note that I is an involution: I2 = Id. From the
time reversal symmetry for the Hamiltonian dynamical system, it is straightforward
to conclude that the stochastic process for the empirical measure fN should verify a
generalized detailed balance symmetry. This symmetry writes

PT (fN (T ) = f2 |fN (0) = f1 )Pm (fN = f1) = PT (fN (T ) = I [f2] |fN (0) = I [f2] )Pm (fN = I [f2]) ,

(4.65)

where Pm is the stationary measure with respect to the microcanonical measure, PT
are the transition probabilities for the microcanonical measure. The term “generalized”
means that the symmetry holds using the involution I . As discussed in section 3.4, the
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detailed balance condition (4.65) implies a detailed balance symmetry at the level of the
Hamiltonian: for any f and p,

HBGL [I [f ] ,−I [p]] = HBGL

[
f, p+

δU

δf

]
. (4.66)

From the relation (4.64) between the quasipotential U and the entropy S, using the con-
servation law symmetries of the large deviation Hamiltonian (4.60) we can conclude that
the generalized detailed balance symmetry (4.66) is equivalent to the symmetry: for any
f and p,

HBGL [I [f ] ,−I [p]] = HBGL

[
f, p− 1

kB

δS

δf

]
. (4.67)

One may directly check this symmetry, from (4.56), using the time reversal symmetry
for A:

A [I [f ]] (k,−ω,−v1,−v2) = A [f ] (k, ω,v1,v2) .

It is however simpler to �rst note that for spatially homogeneous systems, which is the
case in this paper, one has the further symmetry :

HBGL [I [f ] , I [p]] = HBGL [f, p] .

This symmetry can be checked starting from (4.56) and (4.52), using

A [I [f ]] (k,−ω,−v1,−v2) = A [f ] (k, ω,v1,v2) ,

to conclude that

J [I [f ] , I [p]] (k, ω) = J [f, p] (k,−ω) .

With this remark, we can conclude that the generalized detailed balance condition is
equivalent to: for any f and p,

HBGL [f,−p] = HBGL

[
f, p− 1

kB

δS

δf

]
. (4.68)

This last condition is a detailed balance condition at the level of large deviations. In order
to check directly (4.68), one can start from (4.56) and (4.52), and see that this follows from
J
[
f, p− k−1

B δS/δf
]
− J [f,−p] = 0. One can see that this last equality is equivalent

to the relation: for any f and p, L [f, p] = Q
[
f, p, k−1

B δS/δf
]
, using (4.52) and that L is

linear andQ quadratic with respect to p. Using (4.53) and (4.54) and ∂/∂v(δS/δf)/kB =
1/f∂f/∂v, this is easily veri�ed using A [f ] (k, ω,v1,v2) = A [f ] (k, ω,v2,v1).

As a �nal remark, we note that the quasipotential and the entropy are solutions to the
stationary Hamilton-Jacobi equation

HBGL

[
f,
δU

δf

]
= HBGL

[
f,− 1

kB

δS

δf

]
= 0.
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Those are direct consequences of any of the detailed balance symmetries: (4.68), (4.66)
or (4.67).

In this section we have explained that U (4.64) is the quasipotential. We have argued
that the large deviation Hamiltonian satis�es the generalized detailed balance symme-
try (4.67) as a consequence of the microscopic time reversibility, and checked directly
this relation from the explicit Hamiltonian equations. We have moreover justi�ed that
that the large deviation Hamiltonian satis�es the detailed balance symmetry (4.68). This
proves that U satis�es the stationary Hamilton-Jacobi equation.

4.7. Perspectives
The main result of this chapter is the derivation of a large deviation principle (4.2), for
the velocity empirical measure, for the Hamiltonian dynamics of N particles which in-
teract through a pairwise long-range interaction potential. We have obtained an explicit
formula for the large deviation Hamiltonian (4.3-4.4) and we have checked all its conser-
vation and symmetry properties. This result opens many mathematical and theoretical
questions, as well as interesting applications.

This large deviation result relies on natural assumptions. Some of these assumptions
are also required to establish the Balescu-Guernsey-Lenard kinetic equation, but the hy-
potheses made to obtain the large deviation principle seem stronger. The �rst assump-
tion is the validity of the quasilinear approximation: we neglected non linear terms of
order 1/

√
N in the equation for the �uctuations of the empirical measure. This amounts

to neglecting possible e�ects of large deviations of the �uctuations, and describing the
�uctuation process at a Gaussian level only. The second assumption is the convergence
of the process of �uctuations to a stationary Gaussian process and more speci�cally the
convergence of the large time asymptotics for the large deviation estimates over this
process. A proof would also require the study of the mixing properties for this Gaussian
process. The mixing properties are critical to justify the Markov behavior described by
the slow-fast large deviation principle. While the proofs of these assumptions are be-
yond the scope of this paper, they open very interesting questions for both theoretical
physicists and mathematicians.

Systems with long range interactions are important for many phenomena. However,
more elaborate models than the one we used in this paper could be more appropriate to
describe physical situations where rare event are important for applications. Of special
interest would be the dynamics ofN point-vortices for two-dimensional hydrodynamics.
Another generalization should also consider dynamics of particles driven by stochastic
forces, which generically lead to irreversible stochastic processes. For those systems,
explicit results for the large deviation theory would be extremely useful for explaining
non-equilibrium phase transitions in two dimensional [56] and geostrophic turbulence
[55], or in systems with long range interactions [167, 166]. Finally, another direction
that could be taken is the extension of this work to 1D system. For 1D system with long
range interactions, the Balescu-Guernsey-Lenard operator vanishes and the relaxation
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to equilibrium of the distribution function is driven by 1/N2 e�ects (3-body correlation
e�ects)[112, 111]; the large deviation theory extending the kinetic theory has yet to be
established.
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5. Dynamical large deviations for the
kinetic theory of plasmas: beyond
the Landau equation

In this chapter, we derive a large deviation principle for the empirical measure of N
same-charge particles within the Landau approximation when the interaction poten-
tial is a repulsive Coulomb one. The kinetic equation associated with the dynamics of
such a system is the Landau equation. The Landau equation can be obtained from the
Balescu-Guernsey-Lenard equation ignoring collective e�ects. Interestingly, the Landau
equation can also be connected to the Boltzmann equation in the grazing collision limit.
In this chapter, we derive the large deviation principle associated with the Landau equa-
tion using two methods. First, by using already existing work on the large deviations
associated with the Boltzmann equation [50]. Then, we show that the same result can be
recovered from the large deviations associated with the Balescu-Guernsey-Lenard equa-
tion, describing the dynamics of particles coupled with a generic long-range potential,
in the so-called Landau approximation.

This chapter is an adaption of the following articles: [106, 108, 107].

5.1. The dynamics of the Coulomb plasma
Let us consider of a Coulomb plasma ofN particles with positions {rn}1≤n≤N and veloc-
ities {vn}1≤n≤N , and with equal charge e and mass m. The dynamics is a Hamiltonian
one with

drn
dt = vn

dvn
dt = − e2

4πε0m

∑
m6=n

d
drn

W (rn − rm)

(5.1)

where ε0 is the vacuum permittivity and W is the Coulomb potential. In both a �nite
box and an in�nite space, W can be de�ned through its Fourier transform

Ŵ (k) =

∫
dr e−ik.rW (r) ,

with

Ŵ (k) =
1

k2
,
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and where k = |k| (this de�nition is equivalent to −∆W = δ(r)). We de�ne the Debye
length λD =

(
ε0kBTL

3

e2N

)1/2

, where kB is the Boltzmann constant and T the temperature.
This length is the typical length beyond which Coulomb interaction are screened [169].
We also de�ne the plasma electron frequency ωpe =

(
e2N
ε0mL3

)1/2

, which is the pulsation
of the Langmuir waves in a plasma [169], and the thermal velocity vT = λDωpe =√
kBT/m. Then, if we use the dimensionless variables

r̃ = r/λD, ṽ = v/vT and t̃ = ωpet,

the dimensionless dynamical equations (5.1) read
dr̃n

dt̃
= ṽn

dṽn

dt̃
= − 1

Λ

∑
m6=n

d
dr̃n

W̃ (r̃n − r̃m)

(5.2)

where Λ ≡ N (λD/L)3 is the so-called plasma parameter. Λ is the number of particles
in a box of size of the Debye length. In this new system of units, called plasma units,
r̃n belongs to the 3-dimensional torus (L/λD)T3. The dimensionless Coulomb potential
W̃ is de�ned by

Ŵ
(
k̃
)

=

∫
dr̃ e−ik̃.r̃W̃ (r̃) ,

with Ŵ
(
k̃
)

= 1
k̃2 . For simplicity, in the following we omit the tildes when referring to

the dimensionless variables. We will work in dimensionless variables, and give the main
results in both dimensionless and physical variables.

We note that (5.2) is a speci�c instance of the generic dynamics of particles with long-
range interaction (4.5), with the speci�city that the force is renormalized by the plasma
parameter rather than the number of particles.

We call µ−space the (r,v) space. The µ−space is of dimension 6. Let us de�ne gΛ the
µ−space rescaled empirical distribution function for the positions and velocities of the
N particles rescaled by the plasma parameter

gΛ(r,v, t) =
1

Λ

N∑
n=1

δ(r− rn(t))δ(v − vn(t)). (5.3)

In the following we will consider the large plasma parameter limit, Λ→∞. Considering
that Λ is the number of particles in a box of size of the Debye length, and that in our
non-dimensional units the Debye length is �xed, the scaling 1/Λ in front of the empirical
density (5.3) is natural.
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If the box size L is larger than the Debye length λD, the interactions are screened
beyond the Debye length and the e�ective interaction length scale is λD. Otherwise,
if the size of the box is smaller than the Debye length, then the interactions are not
screened in the box and they take place on a length scale L. We call ` = min {λD, L}
the e�ective interaction length scale.

In the following, we study the asymptotic dynamics of gΛ as the number of particles
in a box of the size of the e�ective interaction length scale, e.g. N`3/L3 goes to in�nity.
If L > λD, this asymptotic regime is the limit of a large plasma parameter Λ; if L < λD,
it is the limit of a large number of particles N . In this paper, we present detailed results
for the case L > λD, and we brie�y discuss the slight modi�cations relevant for the case
L < λD in section 5.5.

5.2. Kinetic description of the Coulomb plasma within
the Landau approximation

Although mathematically more intricate as some of the integrals involved may diverge,
the large Λ asymptotic dynamics of gΛ is formally the same as the large N asymp-
totics of gN for a generic long-range interaction potential. In particular, after time
rescaling, τ = t/Λ, assuming a set of initial conditions that limΛ↑∞ gΛ(r,v, t = 0) =
f0 (v) where f0 is a stable stationary solution of the Vlasov equation (4.7), we have
that limΛ↑∞ gΛ(r,v, t) = f (v, t) where f solves the Balescu-Guernsey-Lenard equation
(4.9).

Neglecting the collective e�ects in the Balescu-Guernsey-Lenard equation, i.e., setting
the dielectric function (4.8) to 1, we obtain the Landau equation

∂f

∂τ
=

∂

∂v
.

∫
dv2 B(v,v2)

(
− ∂f

∂v2

f(v) + f(v2)
∂f

∂v

)
, (5.4)

where B for the Landau equation is given by the same expression as the one for B in
equation (4.10), but with ε (k, ω) = 1:

B(v1,v2) = π

(
λD
L

)3 ∫ +∞

−∞
dω

∑
k∈2π(λD/L)Z∗3

Ŵ (k)2 kkδ (ω − k.v1) δ (ω − k.v2) ,

(5.5)

where the interaction potential is the Coulomb potential: Ŵ (k) = k−2. The Landau
approximation of the Balescu-Guernsey-Lenard equation is valid to describe plasma at
scales which are much smaller than the Debye lengthλD (associated with large wavenum-
bers compared to 1/λD), or globally when the e�ect of those scales dominate the col-
lision kernel B. Within this approximation, we can assume that ε (k, ω) = 1 which
means that the dielectric susceptibility does not depend on the distribution f anymore.
This approximation is relevant for many applications in plasma physics [169].
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All the properties of the Balescu-Guernsey-Lenard equation discussed in section 4.2.3
still hold for the Landau equation. The Landau equation conserves total mass, momen-
tum and kinetic energy associated with the distribution function. It increases monoton-
ically the entropy (4.14); and its stationary solutions are the Boltzmann distriutions.

5.3. Large deviations associated with the Landau
kinetic theory from the Boltzmann kinetic theory

The Landau equation has been presented in section 5.2 as an approximation of the
Balescu-Guernsey-Lenard equation. However it also has a strong link with the Boltz-
mann equation that describes a dilute gas of particles in the Boltzmann-Grad limit. One
can look for instance in [150] for a �rst account of this connection. Moreover, the large
deviation Hamiltonian for the Boltzmann equation has already been obtained, for toy
models which are analogue to the dilute gas dynamics [184] or for the dilute gas dy-
namics [45, 50]. The aim of this section is to derive the large deviation Hamiltonian
associated with the Landau equation from the large deviation Hamiltonian associated
with the Boltzmann equation.

In section 5.3.1, we introduce the notations for the Boltzmann equation and the large
deviation Hamiltonian for a dilute gas in the Boltzmann–Grad limit. In section 5.3.2,
following [150], we derive the Landau equation from the Boltzmann equation using the
grazing collision limit. Using the same limit but for the large deviation Hamiltonian,
rather than for the kinetic equation, we derive the large deviation Hamiltonian for the
Landau equation (5.20) in section 5.3.3. In section 5.3.4, we show that this Hamiltonian
satis�es all the expected symmetries and conservation properties. In section 5.3.5, we
derive the gradient �ow structure of the Landau equation associated with this Hamilto-
nian.

5.3.1. The Boltzmann equation for a dilute gas

We consider the dynamics of a dilute gas composed of atoms or molecules. We ne-
glect any internal degrees of freedom. We assume that the N particles evolve through a
Hamiltonian dynamics with short range two body interactions, for instance hard sphere
collisions.

Let us �rst de�ne the collision kernel and the collision cross-section. We consider a
thread of particles with velocities v1 that meets a thread of particles with velocities v2.
We assume that particles of each velocity type are distributed according to a homoge-
neous Poisson point process with densities %(v1)dv1 and %(v2)dv2, respectively. These
particle distributions will give rise to collisions where (v1,v2) particle pairs undergo a
random change towards pairs of the type (v′1,v

′
2), up to (dv′1, dv′2). This occurs at a

rate per unit of time and unit of volume which is proportional to the v1 incident par-
ticle number %(v1)dv1, the v2 incident particle number %(v2)dv2, dv′1, and dv′2. The
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proportionality coe�cient is called the collision kernel and is denoted

w0 (v′1,v
′
2; v1,v2) /2. (5.6)

The local conservation of momentum and energy implies that

w0(v′1,v
′
2; v1,v2) = σ0(v′1,v

′
2; v1,v2)δ (v1 + v2 − v′1 − v′2) δ

(
v2

1 + v2
2 − v′

2
1 − v′22

)
,

(5.7)

where σ0 is the di�usion cross-section. σ0 is of the order of a2 where a is a typical atom
size. We detail the di�erent symmetry properties of the collision kernel in appendix A.6.

Several length scales are important to describe a dilute gas: a typical atom size a,
that we will de�ned more precisely below in relation with the di�usion cross-section,
a typical interparticle distance 1/ρ1/3 where ρ is the averaged gas density, the mean
free path which is the averaged length a particle travels between two collisions, and
a typical box size L. The mean free path is given by l = c/a2ρ, where c is a non-
dimensional number that depends on the collision kernel. The gas is said dilute if we
have the following relation between those scales

a� 1

ρ1/3
� l.

A limit in which those inequalities are satis�ed is called a Boltzmann–Grad limit. We
consider the 4 physically independent parameters a, L, N and the inverse temperature
β (ρ = N/L3). From those four, we can choose two independent non-dimensional pa-
rameters. In the following we choose N and the Knudsen number α = l/L as those two
independent parameters. The inverse of the number of particles in a volume of the size
l is then ε = 1/l3ρ = a2/l2 = a6ρ2 and is another non-dimensional parameter.

We will use the large deviation result in the limitN →∞with �xed Knudsen number
α 1. In this limit, from l = c/a2ρ we see that a2 = c/αN . As the di�usion cross-section
σ0 is of the order of a2, in the limit N → ∞, it is thus natural to consider the rescaled
cross-section σ = Nσ0. Moreover, in the following it will be convenient to consider
momentum exchange. We thus use the following de�nition of w

w

(
v1 +

1

2
q,v2 −

1

2
q; q

)
= γNw0(v1 + q,v2 − q; v1,v2), (5.8)

where q is the momentum transfer between the incident particles with momenta (v1,v2)
and the scattered particles with momenta (v1 + q,v2 − q). Writing the collision kernel
this way automatically takes into account momentum conservation during the collision
process. In this reasoning, the coe�cient γ is any non-dimensional coe�cient which is
held �xed in the limit N → ∞. In the following sections, for the speci�c case of the
Coulomb interaction, we will consider

γ =

(
λD
L

)3

,

1In the second part of the manuscript, we study the limit α → 0 which is the hydrodnamical limit for
the dilute gas.
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where λD is the Debye length and L the size of the box.
We de�ne a rescaled empirical density

gγ (r,v, t) = (γN)−1
N∑
n=1

δ(v − vn(t))δ (r− rn(t)) . (5.9)

We note that with γ = (λD/L)3, gγ coincides with gΛ (r,v, t) = Λ−1
∑N

n=1 δ(v −
vn(t))δ (r− rn(t)) (see (5.3), page 88). When these N particles undergo a dilute gas
dynamics, the empirical density gγ has a law of a large numbers. More precisely, if
we assume that for a set of initial conditions, an initial law of large numbers holds:
limN→∞ gγ (r,v, 0) = g0 (r,v), then we have at a time t the law of large numbers
limN→∞ gγ (r,v, t) = g (r,v, t), where g is a solution of the Boltzmann equation.

∂g

∂t
+v.

∂g

∂r
=

∫
dv2dqw

(
v +

1

2
q,v2 −

1

2
q;q

)
[g (v + q, r) g (v2 − q, r)− g (v, r) g (v2, r)] ,

(5.10)

with initial condition g (r,v, 0) = g0 (r,v). We refer to classical textbooks in kinetic
theories, for instance [150], or [50] for a detailed presentation of an heuristic derivation
of the Boltzmann equation.

In [50], a large deviation principle for the empirical density is derived (equations (1) to
(3) in [50]). This large deviation is derived in the limit ε = 1/Nα3 → 0. In this chapter,
we will consider the limit γN → ∞, with �xed Knudsen number and �xed γ. In this
limit, we have ε = 1/Nα3 → 0. Then the large deviation result justi�ed in [50] can be
directly used in this paper. After adapting equations (1) to (3) in [50] to the notations
(5.8) and (5.9), with the prescription that gγ(t = 0) is in the neighborhood of g(t = 0),
we have

P
(
{gγ(r,v, t)}0≤t≤T = {g(r,v, t)}0≤t≤T

)
�

N→∞
e−γN

∫ T
0 Supp{∫ drdv ġp−HB [g,p]}, (5.11)

where

HB [g, p] = HC [g, p] +HT [g, p] , (5.12)

and with the collision Hamiltonian

HC [g, p] =
1

2

∫
dv1dv2dqdrw

(
v1 +

1

2
q,v2 −

1

2
q; q

)
× g(r,v1)g (r,v2)

{
e[−p(r,v1)−p(r,v2)+p(r,v1+q)+p(r,v2−q)] − 1

}
, (5.13)

and the free transport Hamiltonian

HT [g, p] = −
∫

drdv p(r,v)v.
∂g

∂r
(r,v). (5.14)
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The steps used to compute the Boltzmann large deviation Hamiltonian (5.12) are very
close to the one presented in section 3.7.2 for the derivation of the large deviation prin-
ciple associated with the dynamics of N particles undergoing a Run-and-Tumble dy-
namics. Both Hamiltonian are the ones of jump processes of the empirical measure, ex-
plaining the exponential dependence in the conjugate momentum p. For the Boltzmann
dilute gas, the particles are interacting, in the sense that the jump rate of the empirical
measure depends on the empirical measure quadratically as it stems from a binary colli-
sion process. This is why at variance with the tumbling Hamiltonian (3.59), the collision
Hamiltonian (5.13) is quadratic in g.

5.3.2. From the Boltzmann to the Landau equations
In the case of long-range interactions between particles, e.g. Coulomb type interactions,
the two-particle collisions are dominated by small-angle scattering events. This allows
some simpli�cation. The related limit is called the grazing collision limit. In this
section we justify that in the grazing collision limit and for a homogeneous gas, from
the Boltzmann equation one obtains the Landau equation

∂f

∂t
=

1

Λ

∂

∂v

∫
dv2 B(v,v2)

(
− ∂f

∂v2

f(v) +
∂f

∂v
f(v2)

)
, (5.15)

where the tensor B is de�ned by (5.5), page 89. In equation (5.4) of section (5.2), we
expressed this equation with the time variable τ = t/Λ rescaled by the plasma parameter.
This is why there is no factor Λ−1 in the right hand side of equation (5.4).

The following derivation of the Landau equation from the Boltzmann equation is
strongly inspired by the paragraph §42 of [150]. However, here we present a slightly
di�erent derivation. First, we consider homogenous solutions of the Boltzmann equa-
tion g (r,v, t) = f (v, t) that do not depend on the position variable. The homogeneous
Boltzmann equation reads

∂f

∂t
=

∫
dv2dqw

(
v +

1

2
q,v2 −

1

2
q; q

)
[f(v + q)f(v2 − q)− f(v)f(v2)]︸ ︷︷ ︸

I(v)

. (5.16)

From there, we will work in the grazing collision limit, meaning that we will only
take into account collisions that imply small transfer of momentum. More precisely, we
consider only collisions with |q| � |v|, |v2|. This approximation is relevant and often
used in plasma physics, where Coulomb interactions tend to make collisions with small
scattering angles more numerous and more in�uential than the other ones, see the �rst
chapter of [169] for quantitative arguments. In order to understand at which precision
we shall use this approximation, let us �rst give the relation between B and the collision
kernel:

B(v1,v2) =
1

2
Λ

∫
dqw(v1,v2; q)q⊗ q, (5.17)
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where q1 ⊗ q2 is the tensor product of the two vectors q1 and q2 (a tensor of rank
2). In appendix A.5, we prove that for Coulomb interaction the two expressions for B,
(5.17) and (5.5) are equal. In the following, we will omit the tensor product symbol, and
a product of vector without a dot should be understood as a tensor product: q1q2 ≡
q1⊗q2. In the case of the Landau equation, the tensor B is well known and has a list of
properties related to the geometry and the physics of the collisions (conservation laws
and symmetry properties). For our study, we will retain that B is a symmetric tensor,
that B is symmetric with respect to the exchange of its two arguments: B(v1,v2) =

B(v2,v1), and that B(v1,v2).(v1 − v2) =
−→
0 , we prove these properties in appendix

A.6.2. We will make a link between those properties and the symmetries of the Landau
equation (5.15) in section 5.3.4.2.

In appendix A.7.1, we develop I in the Boltzmann equation (5.16) at order 2 in q and
we obtain the Landau equation (5.15). We have thus justi�ed the Landau equation as an
approximation of the Boltzmann equation in the grazing collision limit.

5.3.3. Deriving Landau’s large deviation principle from
Boltzmann’s large deviation principle

In this section we derive the Hamiltonian for the path large deviations of the Landau
equation from the Hamiltonian for the path large deviations of the Boltzmann equation,
using the grazing collision limit.

We start from the large deviation principle discussed in section (5.3.1). Adapting the
discussion of section (5.3.1), with

gΛ (r,v, t) = Λ−1

N∑
n=1

δ(v − vn(t))δ (r− rn(t)) ,

and with γ = (λD/L)3, with the prescription that gΛ(τ = 0) is in the neighborhood of
g(τ = 0), we have

P
(
{gΛ(r,v, τ)}0≤τ≤T = {g(r,v, τ)}0≤τ≤T

)
�

Λ→∞
e−Λ

∫ T
0 Supp{∫ drdv ġp−ΛHB [g,p]}dτ ,

where HB is given by (5.12) and where we used the rescaled time variable τ = t/Λ by
the plasma parameter Λ in the large deviation action.

In the following we will be interested in the case of homogeneous distributions, i.e.
distributions that only depend on the velocity variable, denoted by the letter f : g (r,v, τ) =
f (v, τ). Then the large deviation principle reads

P(gΛ = f) �
N→∞

e−Λ
∫ T
0 Supp{∫ drdv ḟp−H[f,p]}dτ , (5.18)

with the prescription that gΛ(τ = 0) is in the neighborhood of f(τ = 0), and with

H [f, p] =
Λ

2

∫
drdv1dv2dqw

(
v1 +

1

2
q,v2 −

1

2
q; q

)
× f(v1)f (v2)

{
e[−p(v1)−p(v2)+p(v1+q)+p(v2−q)] − 1

}
. (5.19)
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The idea to obtain the large deviation Hamiltonian for the Landau equation, is to use
the same hypothesis of grazing collisions used in section (5.3.2). As in section (5.3.2), we
will make a Taylor expansion in q at order 2. Rather than doing this expansion for the
Boltzmann equation, we do it in the large deviation Hamiltonian (5.19). The full com-
putation is detailed in appendix A.7.2, and we �nd that the large deviation Hamiltonian
HLandau[f, p] for the Landau equation is

HLandau[f, p] = HMF,h [f, p] +HI [f, p] , (5.20)

with

HMF,h [f, p] =

∫
drdv1f

{
b [f ] .

∂p

∂v1

+
∂

∂v1

(
D [f ]

∂p

∂v1

)
+ D [f ] :

∂p

∂v1

∂p

∂v1

}
,

and

HI [f, p] = −
∫

drdv1dv2f(v1)f(v2)
∂p

∂v1

∂p

∂v2

: B (v1,v2) ,

where b [f ] and D [f ] are de�ned in equation (4.15), and in which we recognize that
HMF,h is the mean �eld Hamiltonian (3.44) and a new additional term HI .

We have thus justi�ed a large deviation principle for the rescaled empirical density
gΛ in the limit of a large plasma parameter Λ. It reads

P
(
{gΛ(r,v, τ)}0≤τ≤T = {f(v, τ)}0≤τ≤T

)
�

Λ→∞
e−ΛSupp

∫ T
0 dτ {∫ drdv ḟp−HLandau[f,p]}, (5.21)

with the prescription that gΛ(τ = 0) is in the neighborhood of f(τ = 0), and where
HLandau is de�ned in (5.20).

We note that this Hamiltonian is quadratic in its conjugate momentum p. Then, in
the grazing collision limit, the large deviations are Gaussian. This is a consequence of
neglecting the collisions that involve large changes of velocity for the particles. This
constrains the �uctuations of the empirical density gΛ in a reduced range where they
can be considered as Gaussian �uctuations. As mentioned in section 3.7.1.3, a quadratic
large deviation Hamiltonian can be associated with a stochastic di�erential equation
involving a Gaussian noise. In this case,

∂gΛ

∂τ
=

∂

∂v
·
{
−gΛb + D

∂gΛ

∂v

}
+

√
2

Λ
η (v, τ) , (5.22)

with

E
(
η (r,v, τ) η

(
r′,v′, τ ′

))
=

∂2

∂v∂v′
:
(
gΛ(v)δ

(
v − v′

)
D− gΛ(v)gΛ(v′)B

(
v,v′

))
δ
(
r− r′

)
δ
(
τ − τ ′

)
.

The Gaussian �uctuations have a non-trivial correlation structure.
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5.3.4. Verification of the expected properties of the Hamiltonian
Let us check all the expected properties for the Hamiltonian (5.20).

5.3.4.1. Most probable evolution

First, we should verify that the most probable evolution associated with this Hamiltonian
is the Landau equation, i.e. that

∂f

∂τ
=
δHLandau

δp
[f, p = 0] =

∂

∂v1

{
−fb [f ] + D [f ]

∂f

∂v1

}
. (5.23)

We start by computing the functional derivative of HLandau term by term

δHMF,h

δp
[f, p = 0] =

∂

∂v1

{
−fb [f ] + D [f ]

∂f

∂v1

}
and

δHI

δp
[f, p] = −2

∂

∂v1

{∫
dv2 f(v1)f(v2)B(v1,v2)

∂p

∂v2

}
,

in particular, δHI
δp

[f, p = 0] = 0. Thus, property (5.23) is veri�ed. It is important to notice
that, since we rescaled the time variable τ = t/Λ by the plasma parameter, there is no
factor Λ−1 in the right hand side of (5.23).

5.3.4.2. Conservation laws

From the result (3.21) of section 3.4, we know that a functional C[f ] is a conserved
quantity if and only if

∫
drdv δHLandau

δp
δC
δf

= 0 or equivalently, if for any f , p and α:
HLandau[f, p] = HLandau[f, p+ α δC

δf
].

Mass conservation. It is easily checked that the massM [f ] de�ned asM [f ] =
∫

dvf
is conserved. Indeed, δM

δf
= 1 andHLandau [f, p+ α] = HLandau [f, p] asH does not depend

explicitly on p but only on its derivatives.

Momentum conservation. Let us check the conservation of P the momentum de-
�ned as P[f ] =

∫
dvvf . First, we notice that δP

δf
= v. The functional derivative of H

is

δHLandau
δp

=

∫
dv2

∂

∂v

{
−B(v,v2)

[
∂f

∂v2
f(v)− ∂f

∂v
f(v2) + 2f(v)f(v2)

(
∂p

∂v
− ∂p

∂v2

)]}
.

Hence, integrating by parts we have∫
drdv δHLandau

δp

δP

δf
=

∫
drdvdv2 B(v,v2)

[
∂f

∂v2
f(v)− ∂f

∂v
f(v2) + 2f(v)f(v2)

(
∂p

∂v
− ∂p

∂v2

)]
.

96



5.3 Large deviations associated with the Landau kinetic theory from the Boltzmann
kinetic theory

Then, using the fact that B(v,v2) = B(v2,v), we �nd∫
drdv

δHLandau

δp

δP

δf
= 0.

This means that the total momentum P is conserved by the dynamics. During this cal-
culation, it is interesting to notice that both linear term in p and the quadratic term in p
ofHLandau preserve the momentum independently. This means that both the determinis-
tic part of HLandau and the noise part of HLandau preserve the momentum independently.
More precisely, the last term that came up with our approach, which did not appear
when investigating the large deviations for N di�usions coupled in a mean-�eld way in
section 4.3, compensates the contribution of the last term of HMF . Another interesting
property, is that a necessary condition for the deterministic part of the Hamiltonian to
conserve the momentum is the following relation between the deterministic drift b and
the deterministic di�usion coe�cient D:

∫
dv f (v)

{
b [f ] + ∂

∂v
·D [f ]

}
= 0.

Energy conservation. Now we should check that the total kinetic energy E is con-
served, with E[f ] = 1

2

∫
dv v2f . Here, δE

δf
= 1

2
v2. Using an integration by part we can

write

∫
dv

δHLandau

δp

δE

δf
=

∫
dvdv2 B(v,v2)

{(
∂f

∂v2

f(v)− ∂f

∂v
f(v2)

)
.v

+2

(
f(v)f(v2)

(
∂p

∂v
− ∂p

∂v2

))
.v

}
,

and because B(v,v2) = B(v2,v), we have∫
dv

δHLandau

δp

δE

δf
=

∫
dvdv2

{
∂f

∂v2

f(v) + 2f(v)f(v2)
∂p

∂v

}
B(v,v2).(v − v2).

We have seen in appendix (A.6.2), that B(v,v2).(v − v2) =
−→
0 , as a consequence of

energy conservation in each collision. Then the integrand of the last formula is zero and
we �nd that the total kinetic energy is conserved. Here too, both the deterministic part
and the noise part of H preserve energy independently.

5.3.4.3. Entropy, quasipotential and time reversal symmetry

Entropy and quasipotential. We de�ne S[f ] the entropy functional:

S[f ] = −kB
∫

dvf log f (5.24)

Using results from section 3.4, we are going to check that−S is a quasipotential as long
as the conservation laws of mass, momentum and energy hold. Here, we only check
the necessary condition which is that −S satis�es the Hamilton-Jacobi equation, more
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precisely that: HLandau

[
f,− δS

δf

]
= 0. Given the de�nition of S, δS

δf
= − log f + c where

c is a constant which, because of the mass conservation, has no e�ect and we have

HLandau

[
f,−δS

δf

]
=

∫
drdvdv2

(
f(v)f(v2)

∂2B

∂v∂v2

− ∂f

∂v

∂f

∂v2

B

)
.

Integrating by parts twice the second term, we �nd out that the integrand is zero and
that −S satis�es the Hamilton-Jacobi equation: H

[
f,− δS

δf

]
= 0.

Time reversal symmetry. We de�ne the time reversal operator I by I[f ](v) = f(−v).
One can easily check that HLandau [I[f ],−I[p]] = HLandau

[
f, p− δS

δf

]
. The computation

is very close to the one above, that was performed to prove that the entropy is the
negative of the quasipotential up to conservation laws. We stated in section 3.4 that
HLandau [I[f ],−I[p]] = HLandau

[
f, p− δS

δf

]
implies a time reversal symmetry of the path

{f(t)}0≤t≤T at the level of large deviations. The �uctuation paths are thus the time re-
versed of the relaxation paths. Moreover, from results (3.16) and (3.15) of section 3.4, we
deduce that entropy increases along the relaxation paths. Thanks to the time reversal
symmetry of the large deviation structure, we can also conclude that the entropy de-
creases along the �uctuation paths.

As a conclusion, we have derived the Hamiltonian for the Landau equation and we
have checked all its expected properties.

5.3.5. The gradient flow structure of the Landau equation
derived from the large deviation Hamiltonian

In section 3.5 and in section 5 of [50], we explain simply, following [160], that there
is a close relation between large deviations associated with a kinetic equation and its
gradient-transverse structure.

If we apply this general result to the Landau equation, using the large deviation prin-
ciple that we just derived (5.20-5.21), we can conclude that the Landau equation has a
gradient �ow structure

∂f

∂t
= −GradfU [f ]

(in this case G = 0 for homogeneous distribution). More precisely, the Landau equation
reads

∂f

∂t
=

∫
dv′C [f ] (v,v′)

δS

δf
(v′) (5.25)

where S [f ] = −
∫

dvf log f is the Boltzmann entropy functional (the negative of the
quasipotential), and C [f ] is the quadratic part of the Hamiltonian (5.20) and reads

C [f ] (v,v′) =
∂2

∂v∂v′
: (f(v)δ (v − v′) D [f ] (v)− f(v)f(v′)B [f ] (v,v′)) . (5.26)
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5.4 From the Balescu-Guernsey-Lenard large deviation Hamiltonian to the Landau
Hamiltonian

As discussed in section 3.5, for independent particles, for instance independent Brow-
nian motion leading to the Fourier law, the gradient is computed with respect to the
Wasserstein distance. For particles with mean �eld interactions, for instance leading to
the McKean–Vlasov equation, the relevant metric is still the Wasserstein one. More gen-
erally for particles with mean �eld interaction with a di�usion coe�cient that might be
non-uniform and f dependent, as described in section 3.7.1.3, from the quadratic part
of the Hamiltonian one �nds C [f ] (v,v′) = ∂2

∂v∂v′
: (f(v)δ (v − v′) D [f ] (v)). This

metric is still a kind of deformed Wasserstein one, that involves a f dependent di�usion
coe�cient. However for plasma in the weak coupling limit, and the Landau equation,
one can see from equation (5.26) that the metric is no more simply related to the Wasser-
stein distance. One see in equation (5.26), that to the Wasserstein like term linear in f
associated to independent motion of particles, one has to add a quadratic term in f re-
lated to the weak two-body interactions. This metric has also been recognized as the
appropriate one to describe the Landau equation in [65, 66].

5.4. From the Balescu-Guernsey-Lenard large
deviation Hamiltonian to the Landau Hamiltonian

In the previous chapter, we derived a large deviation principle for the empirical measure
of N particles with generic long range interactions, directly from the dynamics (4.5).
All the computations on the dynamics of the empirical measure, especially its slow-fast
structure, still hold in the speci�c case where the interaction potential is the Coulomb
potential and the time-scale separation parameter is the plasma parameter Λ rather than
the number of particles N . In particular, the Hamiltonian (4.56) is still valid to describe
the large deviations of the empirical measure of N particles coupled with a Coulomb
potential. With the appropriate scaling of space and time introduced in section 4.2, and
the prescription that the sequence {fΛ (v, 0)}Λ concentrates close to f (v, 0), the large
deviation principle (4.2) can be recast into

P
(
{fΛ (v, τ)}0≤τ≤T = {f (v, τ)}0≤τ≤T

)
�

Λ→∞
e−ΛSupp

∫ T
0 dτ{∫ drdv ḟp−Hs

BGL[f,p]}, (5.27)

where

fΛ (v, τ) =
1

Λ

(
λD
L

)3 n∑
n=1

δ (v − vn (τ)) ,

and

Hs
BGL [f, p] = − 1

4πL3

∑
k∈2π(λD/L)Z3

∫
drdω log {1− J [f, p] (k, ω)} , (5.28)

where J is still de�ned by (4.52)2.
2We note that Hs

BGL =
∫

drHBGL. All the integrations on the spatial variable r in (5.27-5.28) are trivial
and yield a global (L/λD)

3 if performed. We chose not to perform them for the sake of generality and
to compare the result with the one derived from the Boltzmann Hamiltonian (5.18).
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As explained in section 5.2, it is possible to derive the Landau equation from the
Balescu-Guernsey-Lenard equation within the Landau approximation: i.e. when the ef-
fects of scales much smaller than the Debye length dominate. Hence, we expect to re-
cover the Landau large deviation Hamiltonian (5.20) from the Hamiltonian (5.28) within
the same Landau approximation.

As noted in section 5.3.3, the Hamiltonian for the Landau equation is quadratic in
its conjugate momentum p, whereas the one for the Balescu-Guernsey-Lenard equation
(5.28) is not. However, we can expand the logarithm in (5.28) using

log (1− x) = −
+∞∑
n=1

xn

n
.

As shown in appendix A.8, within the Landau approximation kλD � 1, only the the
two �rst terms of the logarithm series expansion are relevant for the large deviation
Hamiltonian (5.28) and we recover the Landau large deviation Hamiltonian (5.20) derived
from the Boltzmann Hamiltonian. We then have

Hs
BGL [f, p] '

kλD�1
HLandau [f, p] ,

where the symbol '
kλD�1

means that the two sides are asymptotically equivalent as all
the wavevectors’ magnitudes satisfy kλD � 1.

Although this Hamiltonian is exactly the one we derived in section 5.3 from the large
deviation Hamiltonian associated with the Boltzmann equation, the large deviation prin-
ciple (5.27) is slightly di�erent from (5.21). Indeed, the large deviation principle (5.21)
describes large deviations of the empirical density gΛ, whereas the large deviation prin-
ciple (5.27) only describes the large deviations for fΛ which is the projection of gΛ over
homogeneous distributions. However, it is possible to obtain (5.27) from (5.21) through
the use of the contraction principle. In large deviation theory, the contraction princi-
ple states that if we know a large deviation principle for a random variable X with a
large deviation function I (x) it is possible to obtain a large deviation principle for any
function ϕ (X) of this random variable and the associated large deviation function is
Iϕ (y) = infϕ(x)=y I (x). The two results are thus fully consistent.

5.5. Large deviations for the Landau equation when
L < λD

Whenever the size of the domain is smaller than the Debye length, the relevant large
deviation parameter is the number of particles in a box of the size of the e�ective inter-
action length scale ` = L; i.e. the relevant large deviation parameter is N . We can then
study the asymptotics of the empirical density gΛ and its homogeneous projection as N
goes to in�nity. Because Λ = (λD/L)3N , when L < λD the large N limit implies the
large Λ limit, which is responsible for the kinetic behavior of the empirical density. In
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5.6 Large deviations for the Landau equation expressed in physical variables

order to make explicit that N is the natural large deviation rate, we perform the triv-
ial integral on the positions in the large deviation principle (5.27). It is then possible to
rephrase the large deviation principle (5.27) as following

P(fΛ = f) �
N→∞

e−NSupp
∫ T
0 {

∫
dv ḟp−HLandau,h[f,p]}, (5.29)

with the prescription that fΛ(τ = 0) is in the neighborhood of f(τ = 0), and by de�ning
HLandau,h as the large deviation Hamiltonian divided by the volume of the domain, such
that

HLandau =

∫
drHLandau,h =

(
L

λD

)3

HLandau,h,

and

HLandau,h [f, p] =

∫
dv1f

{
b [f ] .

∂p

∂v1

+
∂

∂v1

.

(
D [f ]

∂p

∂v1

)
+ D [f ] :

∂p

∂v1

∂p

∂v1

}
−
∫

dv1dv2f(v1)f(v2)
∂p

∂v1

∂p

∂v2

: B (v1,v2) .

Using this same relation between N and Λ, we already have remarked that

fΛ (v, t) =
1

Λ

(
λD
L

)3 N∑
n=1

δ (v − vn (t)) =
1

N

N∑
n=1

δ (v − vn (t)) = hN (v, t) ,

where hN is the velocity empirical density rescaled by the number of particles. Then,
we have the following large deviation principle for hN

P(hN = f) �
N→∞

e−NSupp
∫ T
0 {

∫
dv ḟp−HLandau,h[f,p]},

with the prescription that hN(τ = 0) is in the neighborhood of f(τ = 0).
If in addition to L < λD we have L � λD, then, because the wavevectors k are

elements of 2π (λD/L)Z3 we have for all scales k � 1. This amounts at saying that
the Landau approximation holds at all scales and that the large deviations described by
(5.27) are Gaussian regardless of the scale of the �uctuations.

5.6. Large deviations for the Landau equation
expressed in physical variables

In section 5.3.3, we established a large deviation principle (equations (5.20)-(5.21)) that
describes the large deviations of the probability of homogeneous evolution paths for
the empirical density gΛ (r,v, t) = Λ−1

∑N
n=1 δ(v−vn(t))δ (r− rn(t)). As discussed in

section 5.4, this result is consistent with the large deviation principle for the projection of
the empirical density on homogeneous paths fΛ (v, t) = Λ−1 (λD/L)3∑N

n=1 δ (v − vn (t)) .
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So far, we expressed those results in a set of non-dimensional variables adapted to Coulomb
plasmas.

We can express this large deviation result in physical variables, with the change of
variables

vϕ = vTv,kϕ = k/λD, tϕ = Λτ/ωpe,

where vT the thermal velocity, λD the Debye length, and ωpe the plasma electron fre-
quency are de�ned in section 5.1., and we denoted dimensional variables expressed in
physical units with a subscript ϕ.

In the following we omit the subscript ϕ. The result is a large deviation principle for
the empirical density in physical units

gΛ (r,v, t) =
1

Λ

N∑
n=1

δ(v − vn(t))δ (r− rn(t))

which reads

P
(
{gΛ}0≤t≤T = {f}0≤t≤T

)
�

Λ→∞
e−ΛSupp

∫ T
0 dt{∫ drdvḟp−HLandau[f,p]},

with the prescription that gΛ(t = 0) is in the neighborhood of f(t = 0), and where

HLandau [f, p] =

∫
drdv1f

{
b [f ] .

∂p

∂v1

+
∂

∂v1

.

(
D [f ]

∂p

∂v1

)
+ D [f ] :

∂p

∂v1

∂p

∂v1

}
−
∫

drdv1dv2f(v1)f(v2)
∂p

∂v1

∂p

∂v2

: B (v1,v2) .

with {
b [f ] (v) =

∫
dv2B(v,v2) ∂f

∂v2

D [f ] (v) =
∫

dv2B(v,v2)f(v2),
(5.30)

and

B (v1,v2) =
Λq4

m2ε20

π

L3

∑
k∈(2π/L)Z∗3

(
Ŵ (k)

)2

kkδ (k.v2 − k.v1) . (5.31)

And the associated Landau equation reads

∂f

∂t
=

∂

∂v
.

∫
dv2 B (v1,v2)

(
− ∂f

∂v2

f(v) + f(v2)
∂f

∂v

)
. (5.32)

This di�ers slightly with the Landau equation one can �nd in the plasma literature [189,
150, 169] by a factor Λ in the tensor B (5.31). Typically, in those references, the Landau
equation is an evolution equation for the average of the non-rescaled empirical density.
Here, we rescaled the empirical density by the plasma parameter Λ. In order to recover
the Landau equation of [189, 150, 169], one should replace f in equation (5.32) by f0/Λ.
The resulting evolution equation for f0 would be the usual Landau equation, where
f0 = E (ΛgΛ) is the distribution function typically used in plasma textbooks
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5.7. Inhomogeneous systems: astrophysics, plasma
physics

All the large deviation principles and kinetic equations described in this chapter and
the previous one only apply to the study of spatially homogeneous systems with long-
range interactions. From a technical point of view, this is very convenient since the
kinetic description reduces to the evolution of the velocity distribution f (v) of the parti-
cles, instead of the evolution of the µ-space distribution g (r,v). However, inhomogene-
ity is ubiquitous in systems with long-range interactions. For instance, if we consider an
attractive gravitational potential instead of a repulsive electrostatic one, particles tend
to cluster, favoring inhomogeneous con�gurations of the system [41]. Spatial inhomo-
geneities can also emerge in purely repulsive plasmas [64, 197]. It is then a crucial ques-
tion to study these systems for various astrophysics and plasma physics applications.
This is an exciting application, that would open the way to the study of the rare destabi-
lization of globular clusters or galaxies, or the formation of inhomogeneous structures
of smaller scales in self gravitating systems

However, when the interaction potential has su�cient symmetries taking advantage
of the structure of Hamiltonian systems, a well chosen change of coordinates makes the
problem easier. Instead of describing the position and velocity (ri,vi) of each particles,
we turn to angle-action coordinates (θi,Ji) [121, 48, 41]. As a consequence, at the ki-
netic level, the distribution g (θ,J) of the particles over the one particle angle-action
phase space (θ,J) only depends on the action coordinate and reduces to f (J) and its
time-evolution can be described with Landau and Balescu-Guernsey-Lenard type kinetic
equations [74, 127]. The homogeneous case is retrieved when the angles are the posi-
tions of the particles θi = ri and their actions are their velocities Ji = vi.

With Jean-Baptiste Fouvry, we developed the large deviation theory associated with
the inhomogeneous Landau equation that describes the kinetic behavior of particle sys-
tems with long-range interactions neglecting collective e�ect [108]. The extension to the
study of large deviations associated with the inhomogeneous Balescu-Guernsey-Lenard
equation is still an open question. The main technical obstacle to the extension of the
computations of chapter 4 is that in the inhomogeneous case, the correlation structure
of the �uctuations of the empirical measure described in section 4.4.2 is more intricate,
as the Fourier modes are not delta-correlated.

5.8. Perspectives and conclusions of the first part
The main result of this chapter is the derivation of a large deviation principle (5.21) for
the empirical measure of N particles coupled via a Coulomb repulsive potential. We
have obtained an explicit formula for the large deviation Hamiltonian (5.12-5.14) and
we have checked all its symmetry properties. This result has been obtained both from
the large deviations associated with the Boltzmann equation; and from the Hamiltonian
associated with the Balescu–Guerseny–Lenard obtained in chapter 4 within the Landau
approximation.
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Another important result of this chapter is the derivation of a gradient-�ow structure
for the Landau equation, giving a new insight on the geometry of the entropy creation
associated with the Landau equation.

In this �rst part of the manuscript, we introduced and motivated dynamical large devi-
ations for kinetic theories. First, we presented well-known results about large deviations
of the empirical measure of N independent particles undergoing various stochastic dy-
namics. More interestingly, the two main results of the �rst part are the derivation of
large deviation principles for the empirical measure of N particles undergoing a Hamil-
tonian dynamics and coupled by a long-range potential in the general case, and within
the Landau approximation when the potential is a Coulomb one. Alongside previous re-
sults about the large deviation associated with the dilute gas and the Boltzmann equation
[45, 46, 50], these results complete the picture of dynamical large deviations associated
with classical kinetic theories: the Boltzmann equation, the Landau equation, and the
Balescu-Guernsey-Lenard equation.

A natural follow-up question is to study how �uctuations at the level of the kinetic
theory can be transferred to macroscopic �uctuations. For instance, it is known that one
can obtain the Navier–Stokes equations describing the macroscopic behavior of �uids
from the Boltzmann equation through a Chapman–Enskog expansion. In the next part
of the manuscript, we will study how to carry �uctuations at the kinetic level through
hydrodynamical limits.
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Part II.

Large deviations in the
hydrodynamical limit
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6. From the kinetic to the
hydrodynamic scales: a large
deviation perspective

The second part of this manuscript is devoted to the derivation of �uctuating hydrody-
namics from kinetic LDPs. First, we have to brie�y recall the main tools to bridge from
kinetic to hydrodynamic equations. Kinetic equations generally describe the evolution
of the distribution function f (r,v, t) that gives the information about the average num-
ber of particles having a velocity v, a position r at a time t. The hydrodynamic equations
only describe the evolution of the �rst moments with respect to the velocity variable of
the distribution function. For example, the zero order moment corresponds to the den-
sity �eld

∫
dv f (r,v, t), the �rst order moment to the velocity �eld

∫
dv vf (r,v, t), and

the second order moment to the kinetic energy �eld
∫

dv v2f (r,v, t) /2. As explained
in the introduction, without further assumptions, it is in general impossible to obtain
closed equations for those hydrodynamic �elds from the kinetic equation. One way to
overcome this problem is to use the Chapman-Enskog method, which in a regime of
large separation of time and space scales allows to obtain closed equations for the hy-
drodynamic �elds.

The Chapman–Enskog method [69] was originally developed to derive the Navier-
Stokes equations starting from the Boltzmann equation – the kinetic equation associ-
ated with the dynamics of a dilute gas. This procedure is an asymptotic one and relies
on a perturbative analysis of the solutions of the Boltzmann equation. In addition to
the hydrodynamical limit which leads to the Navier-Stokes equations, the Chapman-
Enskog method can be applied to obtain various �uid descriptions such as magnetohy-
drodynamics or relativistic �uid equations, starting from the associated kinetic theories
[130, 183]. Perhaps one of the greatest achievements of the Chapman-Enskog method
is the computation of transport and di�usion coe�cients from the microscopic parame-
ters of the particle model. For the Navier-Stokes equation, the Chapman-Enskog method
gives microscopic expressions for the viscosity and the thermal di�usivity, agreeing with
experimental results for dilute gases [69]. However, there are still some open questions
regarding the mathematical understanding of such asymptotic expansions, and for cer-
tain type of particle dynamics, the Chapman-Enskog expansion is known to diverge
[122, 61, 187].

In this manuscript, we adopt a more general approach to the hydrodynamical limits
of kinetic equations. We are interested in the derivation of �uctuating hydrodynamics,
rather than deterministic �uid equations, that also quantify �nite number of particles
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�uctuations. Fluctuating hydrodynamics can be expressed as Stochastic PDEs (SPDEs),
PDEs with a noise term, that characterize the e�ective evolution of continuum macro-
scopic �elds with a noise term sourced by �nite N �uctuations, or alternately as a LDP
for the empirical hydrodynamic �elds, that directly allows to quantify the probability of
any evolution path for the empirical hydrodynamic �elds in the large N limit.

To do so, instead of taking the kinetic equation as a starting point, we study the hy-
drodynamical limit of the kinetic LDP in order to keep track of the �nite N �uctuations
in the hydrodynamical limit. This can be done by a formal Chapman–Enskog expansion
of the �uctuating kinetic equation, which is the SPDE for the empirical measure that is
associated with the kinetic LDP. In this case, the computations are very close to the ones
that lead to the classic deterministic �uid equation, with a supplementary term sourced
by a noise term. However, the mathematical meaning of such SPDEs is still unclear, and
the SPDE formulation only allows a complete characterization of the noise term when
the kinetic LDP is Gaussian. Although the computations are formally equivalent, in this
manuscript, when possible we also explain how to obtain �uctuating hydrodynamics as
LDPs for the empirical hydrodynamic �elds, starting from the kinetic LDP and working
at the level of the large deviation functionals, in the spirit of [16]. This is also a �rst step
toward a rigorous derivation of such results.

In this introductory chapter, we take the example of the derivation of the �uctuating
hydrodynamics of N particles independently di�using according to a Run-and-Tumble
process in 2D. We apply the program explained in the previous paragraph to this sys-
tem. The outline of this chapter is summed up in �gure 6.1. In section 6.1, we recall the
kinetic description of the N independent Run-and-Tumbling particles model, that we
use to introduce the derivation of �uctuating hydrodynamics. In section 6.2, we intro-
duce the di�erent rescalings of space and time that can be used to obtain hydrodynamic
equations when there is a large separation between the microscopic and macroscopic
scales of the system. In section 6.3, we explain how to identify the hydrodynamic �elds
of the model, and their relationship with the local equilibria of the kinetic equation and
its conserved quantities. In section 6.4, we use a Chapman-Enskog expansion to obtain
the deterministic evolution equation for the hydrodynamic �eld. In section 6.5, we ex-
tend this computation, starting from the noisy �uctuating kinetic equation describing
�nite N �uctuations derived from the kinetic LDP, to obtain �uctuating hydrodynam-
ics describing the �nite N �uctuations of the empirical hydrodynamic �eld. In section
6.6, instead of working with SPDEs, we obtain �uctuating hydrodynamics by studying
the convergence of the kinetic LDP that describes �uctuations of the empirical measure
toward the hydrodynamic LDP for the empirical hydrodynamic �eld.
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6.1 The example of the �uctuating di�usion equation for N independent
Run-and-Tumbling particles

Equations of motion for the N particles

Kinetic equation (6.1) for
the distribution function f

Kinetic LDP (6.3) for
the empirical measure fε

Fluctuating kinetic
equation for fε

Fluctuating di�usion
equation (6.37) for the empirical

density �eld ρε

hydrodynamic
LDP (6.50-6.54)for ρε

Di�usion equation (6.25)
for the density �eld ρ

Law of Large Numbers (large N ) Large Deviation Principle (large N )

SPDE reformulation
of the kinetic LDP

Chapman-Enskog
expansion with noise
(small α) (section 6.5)

Deterministic Chapman-Enskog
expansion (small α) (section 6.4)

Convergence of the
kinetic large deviation
functional in the
small α limit (section 6.6)

Reformulation of
the Gaussian

LDP as a SPDE
with Gaussian noise

Figure 6.1.: Outline of the chapter. Starting from the kinetic description of the particle
model recalled in section 6.1, we derive its �uid description. If we take the kinetic
equation (the LLN for the empirical measure) as a starting point, we obtain in the
small Knudsen number (α) limit the deterministic hydrodynamic equation (section
6.4). Starting from the kinetic LDP, we can either derive �uctuating hydrodynamics
working from a SPDE formulation of the kinetic LDP in the small Knudsen number
(section 6.5), or we can directly derive a hydrodynamic LDP describing the �uctuations
of the empirical hydrodynamic �eld (section 6.6).

6.1. The example of the fluctuating di�usion equation
for N independent Run-and-Tumbling particles

In this section, we will take as an illustrative example a system of N independent par-
ticles undergoing a Run-and-Tumble dynamics described in section 3.7.2.1. We recall
the main results of section 3.7.2.1. The rescaled empirical measure of the position and
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orientation (velocity) of the particles

fε (r, θ, t) = ε

N∑
n=1

δ (r− rn (t)) δ (θ − θn (t)) ,

where ε = L2/ (N`2) is the inverse of the number of particles in a box of the size of the
mean free path, admits a law of large numbers. With the prescription that

lim
ε→0

fε (r, θ, 0) = f0 (r, θ) ,

then

lim
ε→0

fε (r, θ, t) = f (r, θ, t) ,

where f is a solution of the kinetic equation

∂tf + eθ · ∇f = L [f ] and f (r, θ, 0) = f0 (r, θ) , (6.1)

where eθ = (cos θ, sin θ), P is the tumbling reorientation distribution probability and

L [f ] = −f +

∫
dθ′ P (θ′ − θ) f (θ′) . (6.2)

We also established the following LDP for the empirical measure

P
(
{fε(t)}0≤t<T = {f(t)}0≤t<T

)
�
ε↓0

exp

(
−1

ε
IT [f ]

)
, (6.3)

where

IT [f ] =

∫ T

0

dt sup
p

(∫
drdθ p (∂tf − eθ · ∇f)−Htumb [f, p]

)
, (6.4)

and

Htumb [f, p] =

∫
drdθdθ′ f(r, θ, t)P (θ − θ′)

{
e−p(r,θ,t)+p(r,θ

′,t) − 1

}
. (6.5)

We noticed that the large deviation Hamiltonian is non quadratic, making the large de-
viations non Gaussian, as usual for jump processes. Given the isotropic, di�usive nature
of the particle dynamics1, it does not come as a surprise that the density �eld ρ of N
non-interacting Run-and-Tumbling particles2 evolves according to a di�usion equation
[23, 195]

∂tρ = D∆ρ,

1This is an important precision. If the tumbling probability distribution is biased toward a certain direc-
tion, the resulting hydrodynamic equation would be a transport equation. Another interesting case is
if the bias is small (with respect to the Knudsen number), in this case, we obtain a transport-di�usion
equation as the hydrodynamical limit.

2Since the particles are independent, the density �eld can also be understood as the spatial probability
distribution of a single particle.
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where D is a di�usion coe�cient. Recalling arguments from Dean and Kawasaki [86,
136, 82], one could further conjecture that the empirical density

ρε (r, t) = ε

N∑
n=1

δ (r− rn (t))

obeys the Dean-Kawasaki equation

∂tρε = D∆ρε +∇ ·
(√

2γεDρεζ
)

(6.6)

where ξ is a tridimensional Gaussian noise with correlation matrix

E (ζ (r, t)⊗ ζ (r′, t′)) = Idδ (r− r′) δ (t− t′) ,

and γ is a number to be determined depending on the parameters of the model. As
previously stated, the meaning of the SPDE (6.6) is not obvious (see [76, 77]), and in this
manuscript we consider it as a rewriting of the Gaussian LDP for the empirical density

P
(
{ρε (t)}0≤t≤T = {ρ (t)}0≤t≤T

)
�
ε↓0

e−
1
εγ
Ihydro[ρ], (6.7)

where

Ihydro [ρ] =

∫ T

0

dt sup
pρ

{∫
dr pρ∂tρ−Hhydro [ρ, pρ]

}
, (6.8)

with

Hhydro [ρ, pρ] = D

∫
dr
(
pρ∆ρ+ ρ |∇pρ|2

)
, (6.9)

In this section, we introduce several ways to retrieve the �uctuating hydrodynamics
equation (6.6) starting from the kinetic LDP (6.3). We also explain in which asymptotic
regime the �uctuating hydrodynamics is relevant. An important point is that in (6.6),
the noise term is Gaussian, whereas the large deviations of the probability distribution
for the evolution paths of the empirical measure is clearly non Gaussian according to
the LDP (6.3). In section 6.6, we explain how non Gaussian �uctuations at the kinetic
level can lead to Gaussian �uctuating hydrodynamics.

6.2. Hydrodynamic scaling
As explained in section 2.1 of the introduction, to obtain hydrodynamics equation from
the particle dynamics, not only we have to consider largeN asymptotics, but the micro-
scopic and macroscopic scales must be well-separated. Quantitatively, we introduce the
Knudsen number α

α =
Microscopic length
Macroscopic length =

`

L
,
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where ` = v0λ is the mean free path of a particle, i.e. the average distance spanned by
a particle between two tumbling events, and L is the size of the system. For a system
of interacting particles, ` would be the average distance traveled by a particle between
two interactions. We expect that a hydrodynamic description of the system should be
accurate in the regime of small Knudsen numbers. Then, hydrodynamic �elds, such as
the density �eld should evolve on time and length scales much larger than the typical
kinetic time (the typical evolution time of the distribution function, here this is the in-
verse of the tumbling rate λ−1). The �rst step to derive hydrodynamics is thus to rescale
time and space in line with the hydrodynamics scales. The precise rescaling we choose
depends on whether we expect the dynamics of the hydrodynamic �elds to be a di�u-
sive one, or a wave propagation one [135, 196]. A parabolic choice of scaling is made by
rescaling space and time as following:

r̃ = αr, t̃ = α2t, (6.10)

and is suited to describe the dynamics of quantities that have a di�usive dynamics. The
terminology “parabolic” refers to the parabolic nature of the PDE that would describe
the evolution of the hydrodynamic �elds. The Fourier heat law and the incompressible
Navier-Stokes equations are instances of such PDEs.

We can also choose a hyperbolic rescaling:

r̃ = αr, t̃ = αt, (6.11)

that is suited to describe transport phenomena and wave propagation. This is typically
the rescaling that leads to transport and conservation laws PDEs, e.g. the compressible
Euler equations, that are hyperbolic PDEs.

To describe the hydrodynamical limit of N Run-and-Tumbling particles, we expect a
di�usion equation, we then turn to a parabolic rescaling. With the new choice of space
and time units (6.10) and dropping the tildes for convenience, the kinetic equation (6.1)
reads

α2∂tf
α + αeθ · ∇fα = L [fα] , (6.12)

where the distribution function now depends on α, as reminded by the superscript.

6.3. Conservation laws, hydrodynamic modes, and
local equilibria of the kinetic equation

This manuscript has not yet addressed the issue of the identi�cation of the hydrody-
namic modes: the macroscopic �elds that exhibit non-trivial dynamics on time scales of
order 1/α as α goes to zero. In general, each quantity that is conserved by the particle
dynamics, and thus the kinetic equation, will be associated with a hydrodynamic mode.
The underlying key point is that hydrodynamic modes are linked to the elements of the
kernel of the adjoint of the collision operator. We illustrate this in the speci�c case of
the dynamics of the Run-and-Tumbling particles.
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If we start from (6.12), in the small α limit we note that solutions quickly relax toward
local equilibria feq that cancel the r.h.s. of the kinetic equation:

L
[
feq
]

= 0.

The characterization of such local equilibria is related to the conservation laws and the
hydrodynamic modes of the system. For the collision operator L [f ] (6.2), the local equi-
libria are the distribution functions that are uniform in angle, and depend only on the
position. Thus, they are indexed by a density �eld ρ (r, t) that fully characterizes a local
equilibrium:

feq (r, θ, t) =
1

2π
ρ (r, t) .

This density �eld is the only hydrodynamic mode forN independent Run-and-Tumbling
particles. We note that the fact that any distribution that does not depend on the orien-
tation is a local equilibrium can be rewritten kerL = span {1} , where 1 : θ 7→ 1 is a
function that does not depend on the orientation variable. Since L is self-adjoint3 with
respect to the scalar product

〈a, b〉 =

∫
dθ a(θ)b(θ), (6.13)

we also have kerL† = span {1} , where L† is the adjoint of L. In other words, we have∫
dθ L [g] (θ) = 0 (6.14)

for every distribution g. From the particle point of view, this is a consequence of the
conservation of the number of particles, or at the kinetic level of the total mass M [f ] =∫

drdθ f of the system. However, hydrodynamic modes do not have to be associated
with a conservation law, they can also be associated with spontaneous symmetry break-
ing (e.g. Goldstone modes), or be the slow mode associated with the critical slowing
down for a system that exhibits a bifurcation [31]. For instance, in chapter 8 we gen-
eralize the notion of collision invariant (element of the kernel of the adjoint collision
operator) based on [87] to obtain a �uid equation on the velocity for a particle dynamics
that does not conserve momentum.

6.4. From the kinetic equation to hydrodynamics
In this section, we explain how to derive a deterministic evolution equation for the hy-
drodynamic mode starting from the kinetic equation in the small Knudsen number limit.
The starting point is to build a Chapman-Enskog expansion. In other words, we look for

3The collision operator is not necessarily self-adjoint. This actually depends on the dynamics under
consideration.
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a solution of the kinetic equation (6.12) close to a local equilibrium, indexed by the den-
sity �eld ρ:

fα (r, θ, t) =
1

2π
ρ (r, t) + αg1 (r, θ, t) + α2g2 (r, θ, t) +O

(
α3
)
, (6.15)

where
∫

dθ gi (r, θ, t) = 0 for i ∈ {1, 2} so that the hydrodynamic content of fα is
described by ρ. Introducing (6.15) in the kinetic equation after the parabolic rescaling
(6.12) yields4

α2

2π
∂tρ+

α

2π
eθ · ∇ρ+ α2eθ · ∇ (g1) = αL [g1] + α2L [g2] +O

(
α3
)
. (6.16)

The objective of this computation is to get a closed equation on the density �eld ρ. At
leading order in α, (6.16) yields

1

2π
eθ · ∇ρ = L [g1] . (6.17)

The collision operator L satis�es a Fredholm alternative [114], which means that the
equation L [a] = b has a solution if b ∈ (kerL)⊥ (i.e.

∫
dθ b = 0), and this solution is

unique if a ∈ (kerL)⊥ (i.e.
∫

dθ a = 0). Since
∫

dθ eθ = 0 and
∫

dθ g1 = 0, we can
fully determine g1 by inverting L. Once we know g1, we use the conservation of the
total mass at the kinetic level, or equivalently the relation (6.14) to obtain an equation
for the time evolution of the density. More precisely, the integration of (6.16) over the
orientation variable θ yields5

∂tρ+

∫
dθ eθ · ∇ (g1) = O (α) , (6.18)

where g1 can be computed from (6.17). Given the de�nition of the collision operator L,
we can take advantage of working in the Fourier space introducing the de�nition of the
k-th Fourier mode for k ∈ Z

f̂k =

∫
dθ e−ikθf (θ) , (6.19)

and the inversion formula

f (θ) =
1

2π

∑
k

eikθf̂k.

Using that L is diagonal on the basis
{
θ 7→ eikθ

}
k∈Z:

(̂L[f ])k = f̂k

(
P̂k − 1

)
, (6.20)

4Because we deal with a system of independent particles, the collision operator L is linear. In general,
in the Chapman-Enskog expansion, L would be replaced by the linearization of the collision operator
close the local equilibrium around which we look for solutions of the kinetic equation.

5Conveniently, g2 does not appear in this equation as a consequence of the mass-preserving property of
the kinetic equation, or more weakly, because 1 ∈ kerL†.
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we can compute its inverse when it exists:

L−1[g] (θ) =
1

2π

∑
k

eikθ ĝk

P̂k − 1
, (6.21)

i.e. when
∫

dθ g = 0, or equivalently when g ∈ (kerL)⊥. Hence, it is possible to invert
(6.17) to obtain

g1 =
1

2π

eθ · ∇ρ
P̂1 − 1

. (6.22)

Introducing (6.22) in (6.18) yields an equation on ρ that does not depend on g1 anymore:

∂tρ+
1

2π

∫
dθ eθ · ∇

(
eθ · ∇ρ
P̂1 − 1

)
= O (α) . (6.23)

Using
∫

dθ eθ ⊗ eθ = πId, where Id is the 2 × 2 identity matrix, and introducing the
di�usion coe�cient

D =
1

2
(

1− P̂1

) , (6.24)

we can recast (6.23) into

∂tρ = D∆ρ+O (α) , (6.25)

which is the expected hydrodynamic equation for the density �eld ρ when we drop
higher order terms inα. One of the success of the Chapman-Enskog expansion is that we
obtain an explicit relationship between the microscopical parameter of the model (here
P̂1 the �rst Fourier mode of the tumbling probability distribution) and the macroscopic
di�usion coe�cient D. As expected, the di�usion coe�cient (6.24) is positive (P̂1 < 1
by triangle inequality) and diverges if the tumbling probability distribution is a Dirac
delta distribution P (θ) = δ (θ), which corresponds to an absence of tumbling event. All
these computations were made in the speci�c case where P (θ) = P (−θ). They can be
extended to the case where this symmetry does not hold, by replacing every occurrence
of P̂1 by its real part <P̂1.

6.5. Toward fluctuating hydrodynamics: the SPDE
approach

In the previous section, we explained how to derive the deterministic hydrodynamic
equation starting from the kinetic equation in the small Knudsen number limit. A com-
mon way to quantify dynamical �uctuations of the hydrodynamic �eld is to write �uctu-
ating hydrodynamics as a SPDE for the hydrodynamic �elds, where the noise terms mod-
els �niteN �uctuations of those �elds. In this section, starting from a �uctuating kinetic
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equation (a SPDE for the µ-space empirical measure), we obtain a SPDE describing the
evolution and the �uctuations of the empirical density slightly adapting the Chapman-
Enskog expansion presented above. The �uctuating kinetic equation is obtained as the
Gaussian SPDE associated with the kinetic LDP where we assumed the Hamiltonian to
be quadratic.

6.5.1. From the kinetic LDP to the fluctuating kinetic equation
The �rst step is to establish the �uctuating kinetic equation, i.e. the SPDE modeling the
evolution of the empirical measure of the N particles. As explained in equations (3.39-
3.41) of chapter 3, we can associate a LDP with a quadratic Hamiltonian, to a S(P)DE with
Gaussian noise whose small noise large deviations are described by the aforementioned
LDP. However, here the Hamiltonian (6.5) is non quadratic. In this section, we truncate
the Hamiltonian Htumb to its quadratic part

H(2) [f, p] =
1

2

∫
drdθdθ′ f(r, θ, t)Pt (θ − θ′) (−p(r, θ, t) + p(r, θ′, t))

2
. (6.26)

In section 6.6, we justify this approximation for this speci�c model by studying the con-
vergence of the kinetic large deviation functional in the small Knudsen number regime.

Applying result (3.39-3.41) from section 3.7.1, we can write the following SPDE for
the empirical measure

∂tfε + eθ · ∇fε = L [fε] +
√
εη [fN ] (r, θ, t) , (6.27)

where η is a Gaussian noise characterized by its covariance operator

E (η [fε] (r, θ, t) η [fε] (r′, θ′, t′)) = δ (t− t′) δ (r− r′)Qfε , (6.28)

where Qf [ϕ] = δH(2)

δp
[f, ϕ] . The covariance (6.28) has to be understood as an operator

through its action on test functions ϕ, ψ:∫
drdr′dθdθ′ ϕ (r, θ, t)ψ (r′, θ′, t′)E (η [fε] (r, θ, t) η [fε] (r′, θ′, t′))

= δ (t− t′)
∫

drdθ ϕ (r, θ, t)Qfε [ψ] (r, θ, t) . (6.29)

As we explained in chapter 3, the small-noise SPDE to LDP correspondence is not a
one-to-one correspondence. Then, the �uctuating kinetic equation (6.27) is only one
equation among many others whose small noise large deviations are described by the
large deviation Hamiltonian (6.26).

6.5.2. Chapman-Enskog expansion with noise
The next step is to establish a SPDE ruling the evolution of the empirical density ρε in
the small Knudsen number regime. As previously, we proceed to a parabolic rescaling
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(6.10) with respect to the Knudsen number and we keep the same notation (we omit the
tildes) for the sake of readability. The resulting �uctuating kinetic equation reads

α2∂tf
α
ε + αeθ · ∇fαε = L [fαε ] +

√
α4εη [fαε ] (r, θ, t) . (6.30)

The α dependency of the noise term within the parabolic rescaling is obtained by di-
mensional analysis (as its covariance should be proportional to the square of the inverse
of a distance, and to the inverse of a time). Let us look for a solution to the �uctuating
kinetic equation as a Chapman-Enskog expansion

fαε (r, θ, t) =
1

2π
ρε (r, t) + αg1 (r, θ, t) + α2g2 (r, θ, t) +O

(
α3
)
.

From now on, we adapt the computations led in section (6.4), with an extra stochastic
term. Integrating (6.30) over the orientation variable yield at leading order in α

∂tρε +

∫
dθ eθ · ∇ (g1) = O (α) , (6.31)

but this time the leading order term of (6.30) contains a stochastic part

1

2π
eθ · ∇ρε = L [g1] +

√
α2εη

[ ρε
2π

]
.

We know de�ne gd and gs where

L [gd] =
eθ · ∇ρε

2π
,

accounts for the deterministic part of g1 and

L [gs] = −
√
α2εη

[ ρε
2π

]
,

accounts for the stochastic part of g1, such that

gd + gs = g1. (6.32)

In the deterministic case of section 6.4, we had g1 = gd, and we already computed its
expression, hence

gd =
1

2π

eθ · ∇ρε
P̂1 − 1

. (6.33)

To compute gs, we also need to invert L. This is possibly if and only if
∫

dθ η = 0, i.e.
if η ∈ (kerL)⊥. This the case as a consequence of the conservation of the total mass at
the level of the kinetic LDP, i.e. any realization of the kinetic noise η that violates mass
conservation has zero probability. Hence, we obtain

gs = −
√
α2εL−1

[
η
[ ρε

2π

]]
. (6.34)

117



Chapter 6 From the kinetic to the hydrodynamic scales: a large deviation perspective

Combining (6.32-6.34) and (6.31) yield the SPDE for ρN

∂tρε = D∆ρε +
√
α2ε∇ · ξ [ρε] (r, t) +O (α) , (6.35)

with

ξ [ρε] (r, t) = −
∫

dθ eθL
−1
[
η
[ ρε

2π

]]
.

In order to compare our result (6.35) with the Dean-Kawasaki equation, we need to char-
acterize the correlation structure of the Gaussian noise term ξ.

6.5.3. Correlation function of the noise

Since L−1 is self-adjoint with respect to the scalar product (6.13), and using L−1 [eθ] =(
P̂1 − 1

)
eθ we can rewrite the noise term

ξ [ρε] (r, t) =
−1

P̂1 − 1

∫
dθ eθη

[ ρε
2π

]
, (6.36)

where we used L−1 [eθ] = eθ/
(
P̂1 − 1

)
.We can then use the formula (6.29) to compute

the autocorrelation function of ξ. We �rst notice that

Qρε/(2π) [ϕ] =
1

2π

δH(2)

δp
[ρε, ϕ] = − 2

π
ρεL [ϕ] .

As a consequence introducing (6.36) into (6.29) yields,

E (ξ [ρε] (r, t)⊗ ξ [ρε] (r′, t′)) =
−2

π
(
P̂1 − 1

)2 δ (r− r′)

∫
dθ ρεeθ ⊗ L [eθ] δ (t− t′)

Now we use L [eθ] =
(
P̂1 − 1

)
eθ to obtain

E (ξ [ρε] (r, t)⊗ ξ [ρε] (r′, t′)) = 2DρεIdδ (r− r′) δ (t− t′) .

Introducing the delta-correlated tridimensional Gaussian �eld ζ such that

E (ζ (r, t)⊗ ζ (r′, t′)) = Idδ (r− r′) δ (t− t′) ,

we can recast the �uctuating hydrodynamics (6.35) into

∂tρε = D∆ρε +∇ ·
(√

2α2εDρεζ
)

+O (α) , (6.37)
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which is the expected equation from the Dean-Kawasaki theory6, with the precision
that γ = α2. The value of this coe�cient γ is important to assess the asymptotic regime
where the �uctuating hydrodynamics gives a relevant description of the particle sys-
tem. Here, the interpretation of (6.37) is delicate because it does not grant that the next
deterministic terms in the Chapman-Enskog expansion of higher order in α are negli-
gible compared to the noise term. This SPDE is useful to assess rare trajectories of the
empirical density, driven by large realization of the noise term. A regularized version
of the Dean-Kawasaki equation may also be able to describe small �uctuations around
the hydrodynamic evolution, as it is widely used to do so by physicists and justi�ed in
[76, 77]. However, from our computations there is no indication that this is the case.
We only consider it a rephrasing of the underlying quadratic hydrodynamic LDP for the
empirical density. We derive this hydrodynamic LDP directly from the kinetic LDP in
the next section.

6.6. Convergence of the large deviation functionals
and contraction principle

In this section, we obtain �uctuating hydrodynamics as a LDP for the evolution paths of
the empirical density, as in (6.7-6.9). This is done by studying the small α asymptotics
of the kinetic LDP.

We know that the hydrodynamic evolution of the density �eld is obtained after a
double limit

ρ (r, t) = lim
α→0

lim
ε→0

∫
dθ fαε (r, θ, t) .

Now, we are not only interested in the most probable evolution path for the the empirical
density

ραε (r, t) =

∫
dθ fαε (r, θ, t) , (6.38)

which is given by the hydrodynamic equation for the density (6.25), but we want to
quantify the large deviations of such a �eld in the small α limit. In other words, we want
to estimate the asymptotics of

lim
ε→0

(
−ε logP

(
{ραε (t)}0≤t<T = {ρ(t)}0≤t<T

))
,

6This is actually a dimensionless version of the Dean-Kawasaki equation. Inverting the change of vari-
able we made to obtain the kinetic and the hydrodynamic equations and dropping higher order terms
in α, (6.37) would yield in physical units

∂tρN = D̃∆ρN +∇ ·
(√

2D̃ρNζ

)
,

where the empirical density is normalized such that
∫

dr ρN = N , and where D̃ = v20D/λ with v0
being the velocity of the particles, and λ their tumbling rate.
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as α goes to zero.
Under the parabolic rescaling (6.10), the kinetic rate function (6.4) that we rename IαT

to emphasize its dependence on α reads

IαT [f ] =
1

α4

∫ T

0

dt sup
p

(∫
drdθ p

(
α2∂tf − αeθ · ∇f

)
−Htumb [f, p]

)
. (6.39)

The time T in the time integral is also rescaled by α2, but we abusively rede�ne it to
keep the same notations, since it does not play any role in the following. Our goal is
to derive a LDP for the empirical density ρε =

∫
dθ fε in the small α limit, to describe

dynamical �uctuations of the density �eld. Using a contraction principle (see section
3.2.3), we expect such a LDP to read

P
(
{ραε (r, t)}0≤t<T = {ρ(t)}0≤t<T

)
�
ε→0

e
− 1
ε

inf∫
dθ f=ρ

IαT [f ]

. (6.40)

However, in general there is no simple way to compute inf∫
dθ f=ρ

IαT [f ]. The key point

here, is that in the hydrodynamical limit as α goes to zero, the dynamics of the empirical
measure concentrates close to local equilibria of the kinetic equation. In this case, as α
goes to zero we expect the minimizers of IαT [f ] to be distributions that are uniform in
angle. Then, the constraint

∫
dθ f = ρ in the in�mum amounts to specifying the density

pro�le associated with a uniform in angle distribution that minimizes IαT [f ]. The object
of this section is then to study the small α asymptotics of (6.40), by solving the following
variational problem in the small α limit:

inf∫
dθ f=ρ

IαT [f ] . (6.41)

For convenience, we introduce

Ihydro [ρ] = lim
α↓0

αν inf∫
dθ f=ρ

IαT [f ] (6.42)

the leading order term of (6.41) as α goes to zero, where ν has to be determined so the
limit is �nite.

In this section, we do not assume any hypothesis about the Gaussianity of the large
deviation functional and we explain how it arises from the computations. Our goal is to
compute Ihydro [ρ] the leading order term in α of (6.41).

6.6.1. Optimization on p
Let us start by computing the supremum on p in (6.39), i.e. by rephrasing the Hamilto-
nian formulation of the rate function into a Lagrangian formulation. To do so, we use a
Taylor series representation of the tumbling Hamiltonian with respect to the conjugate
momentum p:

Htumb [f, p] =

∫
drdθ pL [f ] +H(2) [f, p] +H(3) [f, p] +H(h.o.) [f, p] ,
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where L [f ] is the collision operator and is de�ned in (6.2), H(2) gathers the terms that
are quadratic in p;H(3), the cubic terms in p,andH(h.o.) the terms that are at least quartic.
For instance,

H(2) [f, p] =
1

2

∫
drdθdθ′ f(r, θ, t)Pt (θ − θ′) (−p(r, θ, t) + p(r, θ′, t))

2
.

We then have to compute

sup
p

(∫
drdθ p

(
α2∂tf + αeθ · ∇f − L [f ]

)
−H(2) [f, p]−H(3) [f, p]−H(h.o.) [f, p]

)
.

(6.43)

A di�erentiation with respect to p in (6.43) yields an equation on the optimal p

α2∂tf + αeθ · ∇f − L [f ] =
δH(2)

δp
[f, p] +

δH(3)

δp
[f, p] +

δH(h.o.)

δp
[f, p] . (6.44)

If L [f ] is of order one (O (1) as α goes to zero), the optimal p solving (6.44) is of order
one too (O (1) as α goes to zero), since δH(2)

δp
[f, p] is linear in p. This would make the

rate functional IαT [f ] (6.39) of order one as well. However, in order to minimize IαT [f ],
a better choice would be to have the optimal p solving (6.43) of order α, thus making
IαT [f ] of order α2. This can be done by imposing L [f ] to be of order α, i.e. by having f
to be close to a local equilibrium of the kinetic equation. Note that we cannot have the
optimal p to be smaller than α because of the presence of terms of order α on the r.h.s.
of (6.44). Hence, the optimal f minimizing (6.41) can be written f = f 0 +O (α) , where
f 0 ∈ kerL.

Using the constraint on the in�mum:
∫

dθ f = ρ, the local equilibrium f 0 has to be
ρ/ (2π). We then expand f up to order 2 in α

f =
1

2π
ρ+ αg1 + α2g2 + o

(
α2
)
, (6.45)

with the constraint that
∫

dθ g1 = 0 and
∫

dθ g2 = 0 to ensure
∫

dθ f = ρ. Thanks to this
remark, the computation of the supremum on p (6.43) becomes easier and we show in
the following that it only involves the quadratic part of the large deviation Hamiltonian.

The optimal p (6.44) then solves

α2∂tρ

2π
+

α

2π
eθ · ∇ρ+ α2eθ · ∇g1 − αL [g1]− α2L [g2] =

δH(2)

δp
[f, p] +

δH(3)

δp
[f, p] +

δH(h.o.)

δp
[f, p] + o

(
α2
)
. (6.46)

Since δH(2)

δp
[f, p] is linear in p, p has to be of order α for the l.h.s. and the r.h.s. to be

equated, as wished for7. We then look for p order by order in α:
p = αp1 + α2p2 + o

(
α2
)
.

7It is crucial to remark that this reasoning collapses when the gradients are not of order one in (6.46).
For instance, the transport term eθ · ∇ρ can be of order 1/α, if the hydrodynamic description allows
shock solutions over such scales.
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A posteriori, we realize that we do not p2 as a consequence of the mass conservation
property of the collision operator L, however at this stage there is no reason to omit it.
All in all, at order α2 the optimal (p1, p2) solves

α2∂tρ

2π
+

α

2π
eθ · ∇ρ+ α2eθ · ∇g1 − αL [g1]− α2L [g2] =

α

2π

δH(2)

δp
[ρ, p1]+α2 δH

(2)

δp
[g1, p1]+

α2

2π

δH(2)

δp
[ρ, p2]+

α2

2π

δH(3)

δp
[ρ, p1]+o

(
α2
)
.

Noticing that the term involving the cubic part of the Hamiltonian vanishes8

δH(3)

δp
[ρ, p1] = 0

and

δH(2)

δp
[ρ, p1] = −2ρL [p1] ,

the optimal (p1, p2) has to solve

α
∂tρ

2π
+

1

2π
eθ · ∇ρ+ αeθ · ∇g1 − L [g1]− αL [g2] =

− 1

π
ρL [p1] + α

δH(2)

δp
[g1, p1] +

α

2π

δH(2)

δp
[ρ, p2] + o (α) .

This is actually a crucial part of the computation, as it makes valid the a priori quadratiza-
tion of the kinetic large deviation Hamiltonian. In order to compute p1 in the expression
above, we have to invert L. This is possible only if

α
∂tρ

2π
+

1

2π
eθ ·∇ρ+αeθ ·∇g1−L [g1]−αL [g2]−αδH

(2)

δp
[g1, p1]− α

2π

δH(2)

δp
[ρ, p2] (6.47)

is in (kerL)>, which is satis�ed if
∫

dθ (6.47) = 0, i.e. if

∂tρ+

∫
dθ eθ · ∇g1 = 0.

We note than p2 does not play a role here and we can adjust only p1 in order to optimize
(6.43). Then, the optimal p1 satis�es at leading order

− 1

π
ρL [p1] =

1

2π
eθ · ∇ρ− L [g1] ,

8In all the cases studied in his manuscript, H(3) does not play a role in the hydrodynamical limit, for
various reasons: the hydrodynamic variable is not a conserved quantity, or a supplementary symmetry
cancels H(3). Here, H(3) [ρ, p1] = 0 as a consequence of the symmetry of the tumbling distribution:
P (θ) = P (−θ), which among other grants the time-reversibility of the microscopic dynamics.
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i.e.

p1 =
π

ρ
g1 −

1

2ρ
L−1 [eθ · ∇ρ]

with the constraint that

∂tρ =

∫
dθ eθ · ∇g1. (6.48)

Introducing the optimal p1 in (6.39), we can compute the in�mum of the large deviation
functional IαT [f ] at leading order in α, we obtain

Ihydro [ρ] = lim
α↓0

α2 inf∫
dθ f=ρ

IαT [f ] = inf
g1

{−1

2π

∫ T

0

dt
∫

drdθ (ρp1L [p1]) , ∂tρ =

∫
dθ eθ · ∇g1

}
,

(6.49)

with

p1 =
π

ρ
g1 −

1

2ρ
L−1 [eθ · ∇ρ] .

We remark that the correct scaling in (6.42) is ν = 2. At this point, the problem of �nding
the optimal f minimizing (6.41) can be seen as an optimization on g1 and g2 given the
Chapman-Enskog like expansion of f (6.45).

6.6.2. Minimization of the Lagrangian and negative Sobolev
norm H−1

Now, we want to connect the hydrodynamic rate function (6.49) with the Dean-Kawasaki
LDP (6.7-6.9). We introduce gd and gs such that

gd =
1

2π
L−1 [eθ · ∇ρ] ,

gs =
ρ

π
p1

and gd + gs = g1
9. Doing so, the rate function for ρ reads

Ihydro [ρ] = inf
gs

{−π
2

∫ T

0

dt
∫

drdθgsL [gs]

ρ
, ∂tρ−

1

2π

∫
dθ eθ · ∇L−1 [eθ · ∇ρ] =

∫
dθ eθ · ∇gs

}
,

However, recalling the computation (6.33) of section 6.5, we know that the constraint
can be rewritten:

∂tρ−D∆ρ =

∫
dθ eθ · ∇gs.

9We use a decomposition of g1 similar to the one we made during the noisy Chapman-Enskog expansion
in section 6.5.
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Chapter 6 From the kinetic to the hydrodynamic scales: a large deviation perspective

All in all, we have the hydrodynamic LDP for the evolution paths of the empirical density

P
(
{ραε (r, t)}0≤t<T = {ρ(t)}0≤t<T

)
�
ε→0

e−
1
εα2 Ihydro[ρ], (6.50)

with

Ihydro [ρ] = inf
gs

{−π
2

∫ T

0

dt
∫

drdθgsL [gs]

ρ
, ∂tρ−D∆ρ =

∫
dθ eθ · ∇gs

}
. (6.51)

To compute this in�mum, we use thatL is diagonal on the Fourier basis, as seen in (6.20).
On one hand, we have

−π
2

∫
dθ gsL [gs]

ρ
=

1

4ρ

∑
k

ĝ−ks ĝks

(
1− P̂k

)
. (6.52)

On the other hand, the constraint can be rewritten using the Fourier modes of gs as
following

∂tρ−D∆ρ = ∇ ·
(
<ĝ−1

s

=ĝ−1
s

)
, (6.53)

where<,= denote the real and imaginary parts. From (6.53), it is clear that the constraint
on gs only apply to its Fourier modes k = −1, 1. A �rst step in order to minimize (6.52)
is to take ĝks = 0 for all k /∈ {−1, 1}. Then, the minimization of (6.52) amounts to
minimizing

−π
2

∫
dθ gsL [gs]

ρ
=
|ĝ−1
s |

2

4Dρ
,

with the constraint on ĝ−1
s given by (6.53). This optimization problem is nothing else

than the de�nition of the H−1 Sobolev norm of ∂tρ−D∆ρ. We can then write (6.51),

Ihydro [ρ] =
1

2

∫ T

0

dt
∫

dr ‖∂tρ−D∆ρ‖2
−1,2Dρ, (6.54)

where the norm is de�ned by

‖a‖2
−1,h = inf

ϕ

{∫
dr
|ϕ|2
h
, ∇ · ϕ = a

}
. (6.55)

This norm also has a dual formulation

‖a‖2
−1,h = 2 sup

ψ

{∫
dr aψ − 1

2

∫
drh |∇ψ|2

}
,

allowing to bridge from (6.54) to the Hamiltonian formulation predicted in (6.8). We �nd
that our result (6.54) is consistent with the Dean-Kawasaki theory, with γ = α2, as also
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predicted by the SPDE approach of the previous section. This is not surprising, given
that the Sobolev norm (6.55) is deeply related to the Wasserstein distance [179], which
is known to be the right tool to describe distances in the space of empirical density of
N Brownian di�usions10 [110]. The approach we took here was based on the contrac-
tion principle, but it could be rephrased in terms of Γ-convergence of the kinetic large
deviation functionals in the small α limit. We refer to [27, 155, 16, 1] that discuss the
relevance of Γ-convergence approaches to compute large deviation functionals.

6.7. Outline of the part
In this second part of the manuscript, we apply the framework we presented here to
obtain �uctuating hydrodynamics for various systems, with sometimes additional chal-
lenges. In chapter 7, starting from the LDP associated with the Boltzmann equation,
we derive the �uctuating compressible and incompressible Navier-Stokes equations. In
chapter 8, we derive the kinetic LDP, and the associated �uctuating hydrodynamics for
a system of active particles with alignment interaction. For such a system, there exists a
hydrodynamic �eld (the orientation �eld), that is not associated with a conservation law.
In chapter 9, we focus on the large deviation theory of scalar conservation laws. Such
PDEs are known to exhibit shock solutions and the application of the approach detailed
in the present chapter fails to describe the probability of those.

10It is well-known than a Run-and-Tumbling particle and a Brownian di�using particle are described by
the same di�usion equation for the density at the level of deterministic hydrodynamics [180, 195].
This computation also indicates that their description in terms of large deviations for the empirical
density is similar.
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7. Microscopical derivation of the
fluctuating (in)compressible
Navier-Stokes equations

In this chapter, we derive the �uctuating compressible and incompressible Navier-Stokes
equations, starting from the large deviation principle associated with the Boltzmann,
describing the probability of evolution paths of the empirical measure of N particles
of a dilute gas. The results are the following set of SPDEs for the density ρ, velocity
u and temperature θ �elds1. Within the hyperbolic scaling, we obtain the �uctuating
compressible Navier-Stokes system
∂tρ+∇ · (ρu) = 0,

ρ∂tu + ρ (u · ∇) u + kB
m
∇(ρθ) = 1

2
∇ · (νσ (u)) +∇ · J,

3
2
kB
(
ρ∂tθ + ρθ∇ · u + 3

2
ρ (u · ∇) θ

)
= ∇ · (κ∇θ) + 1

2
mνσ (u) : σ (u) +∇ · (mu · J + q) ,

where J and q are Gaussian random �uxes characterized by their correlation functions

E(Jij (r, t) Jkl (r
′, t′)) =

2νkBθ

m

[
δikδjl + δilδjk −

2

3
δijδkl

]
δ(t− t′)δ(r− r′),

E(qi (r, t) qj (r′, t′)) = 2κk2
Bθ

2δijδ(t− t′)δ(r− r′),

and

E(qi (r, t) Jkl (r
′, t′)) = 0,

where kB is the Boltzmann constant,m the mass of a particle, κ and ν are di�usive coe�-
cients that can be related to the microscopic dynamics, andσ is the stress tensor that will
be de�ned later. Within the parabolic scaling, we obtain the �uctuating incompressible
Navier-Stokes system

∇ (ρ+ θ) = 0,

∂tu + u · ∇u +∇
(
P
ρ0

)
= ν∆u +∇ · J,

∇ · u = 0,

∂tθ + u · ∇θ = κ∆θ +∇ · q,
1More precisely, the unknowns of these SPDEs are the empirical hydrodynamical �elds and they still

depend on the number of particles. For the sake of clarity, and in agreement with commonly used
notations, in this chapter and the next one, we omit the N subscript to denote them.
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with

E(Jij (r, t) Jkl (r
′, t′)) =

2νkBT0

ρ0

[
δikδjl + δilδjk −

2

3
δijδkl

]
δ(t− t′)δ(r− r′),

E(qi (r, t) qj (r′, t′)) =
2κT 2

0

ρ0

δijδ(t− t′)δ(r− r′),

where ρ0 is the average density and T0 the average temperature.
In section 7.1, we recall the large deviation principle associated with the Boltzmann

equation and the di�erent scalings leading to the compressible and incompressible Navier-
Stokes equations. We also justify the quadratization of the kinetic large deviation Hamil-
tonian in the hydrodynamical limit. This allows to translate the LDP for the Boltzmann
equation into a �uctuating Boltzmann equation, that will be the starting point of the
Chapman-Enskog expansion. In section 7.2, we show that using a hyperbolic rescaling,
the hydrodynamical limit of the �uctuating Boltzmann equation is the �uctuating com-
pressible Navier-Stokes equations. In section 7.3, within the parabolic rescaling we ob-
tain the �uctuating incompressible Navier-Stokes equations as a hydrodynamical limit.
In section 7.4, we connect our results to the ones of the literature by introducing back
the physical dimensions of the di�erent �elds. In section 7.5, we discuss the gradient-
�ow structures associated with the compressible and incompressible �uctuating Navier-
Stokes equations. This microscopical derivation of the �uctuating Navier-Stokes equa-
tions is one of the �rst that actually starts from the particle dynamics without assuming
the noise terms from �uctuation-dissipation theorems. A more detailed bibliographical
account about the derivations of the �uctuating Navier–Stokes equations and its appli-
cations is given in the introductive chapter.

In this chapter, all the derivations are carried out at the level of the SPDEs, using
a noisy Chapman-Enskog expansion of the �uctuating Boltzmann equation. However,
they are essentially a large deviation result, and they could also be led at the level of the
large deviation functionals, in the spirit of the derivation of section 6.6.

7.1. Path large deviations for the empirical measure
and the Boltzmann equation

In this section, we summarize the result of [50] on the dynamical large deviations from
the Boltzmann equation. In section 7.1.1, we present the large deviation Hamiltonian
that characterizes the probabilities of evolution paths for the empirical measure on the
µ-space for a dilute gas of N particles. This Hamiltonian is non quadratic in the conju-
gate momentum variable, thus it characterizes non Gaussian �uctuations of the µ-space
empirical measure. However, in sections 7.1.2 and 7.1.3, we show that formally, when
looking at the hydrodynamical limit, i.e. for small Knudsen number, only the quadratic
part of this Hamiltonian plays a role. As a consequence, in section 7.1.4 we rephrase the
dynamical large deviation principle for the Boltzmann equation as a �uctuating Boltz-
mann equation with Gaussian noise.
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7.1 Path large deviations for the empirical measure and the Boltzmann equation

7.1.1. Hamiltonian for the Boltzmann fluctuations
Our starting point is the large deviation principle for the empirical measure of particles
derived in [50], already introduced in section 5.3.1 (with slightly di�erent notations).
We call N the total number of particles, V the total volume, ` the mean free path. ε =
(N`3/V )−1 is the inverse of the typical number of particles inside a volume of linear size
the mean free path. We consider a Boltzmann-Grad limit, that is ε → 0, N → ∞, with
εN ≥ 1 (εN can be much larger than 1).

We denote (ri(t),vi(t))1≤i≤N the positions and velocities of the particles We use the
thermal velocity vT =

√
kBT0/m as the velocity unit, ` as the space unit, and the typical

time between collisions `vT as the time unit. In this context, it is shown in [50] that the
rescaled empirical measure

fε(r,v, t) = ε

N∑
i=1

δ(r− ri(t))δ(v − vi(t))

satis�es a large deviation principle

P
(
{fε(r,v, t)}0≤t≤T = {f(r,v, t)}0≤t≤T

)
�
ε↓0
e
− 1
ε

{∫ T
0 dt sup

p
[
∫

drdv p∂tf−H[f,p]]
}
,

with rate ε and Hamiltonian

H[f, p] = HT [f, p] +HC [f, p],

where p(r,v) is the conjugate momentum �eld, ans HT and HC are the Hamiltonians
associated with free transport and collisions respectively:

HT [f, p] = −
∫

drdv p(r,v)v · ∇f (7.1)

and

HC [f, p] =
1

2

∫
drdv1dv2v

′
1dv′2w(v′1,v

′
2; v1,v2) f(r,v1)f(r,v2)

×
[
ep(r,v

′
1)+p(r,v′2)−p(r,v1)−p(r,v2) − 1

]
, (7.2)

where w is the collision rate. The large deviation functional is then

IT [f ] =

∫ T

0

dt
{

sup
p

∫
drdv p(r,v)∂tf −HT [f, p]−HC [f, p]

}
.

The deterministic evolution is given by ∂tf =
(
δ
(
HT +HC

)
/δp
)

[f, p = 0], and is, as it
should, Boltzmann equation:

∂tf + v · ∇f = Q(f, f), (7.3)
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with the collision operator

Q(f, f)(r,v) =

∫
dv2dv′1dv′2w(v′1,v

′
2; v,v2) [f(r,v′1)f(r,v′2)− f(r,v)f(r,v2)] .

This collision operator vanishes on the Maxwellian functions Mρ,u,θ, parameterized by
a local density, velocity and temperature �elds ρ(r, t),u(r, t), θ(r, t):

Mρ,u,θ(v) =
ρ

(2πθ)
3
2

e−
1
2

(v−u)2

θ . (7.4)

Those Maxwellian functions are the local equilibria of the Boltzmann equation, and the
hydrodynamical �elds indexing the local equilibria are related to mass, momentum, and
energy conservation at the level of the microscopic dynamics.

We are interested in the large time and large scale dynamics: we shall then use ap-
propriate time and space scales, rescaled with the Knudsen number α = `/L, where L
is a typical macroscopic length scale. Our goal in the following two subsections is to ar-
gue that under the appropriate scaling for the compressible and incompressible Navier-
Stokes equation respectively, it is legitimate to truncate this Hamiltonian at quadratic
order. This argument is similar to the one used in section 6.6 to justify the quadratization
of the Hamiltonian in the hydrodynamical limit.

7.1.2. �adratic approximation for the Hamiltonian:
compressible Navier-Stokes equations

We �rst use the appropriate hyperbolic scaling discussed in section 6.2 to derive the
compressible Euler and Navier-Stokes equations. We introduce the macroscopic space
and time variables r̃, t̃

r̃ = αr , t̃ = αt .

To avoid cumbersome notations, we remove the tildes in the following. The e�ect of
the new variables is to introduce α factors in the large deviation rate function, which
becomes

IαT [f ] =
1

α4

∫ T

0

dt
{

sup
p

∫∫
drdvαp(r,v)∂tf − αHT [f, p]−HC [f, p]

}
. (7.5)

HC can be written as a sum of three terms

HC [f, p] = H
(1)
C [f, p] +H

(2)
C [f, p] +H

(h.o.)
C [f, p] (7.6)

where H(1)
C , H

(2)
C , H

(h.o.)
C are respectively linear in p, quadratic in p and higher order in

p. In particular

H
(1)
C [f, p] =

∫∫
drdv pQ(f, f), (7.7)
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7.1 Path large deviations for the empirical measure and the Boltzmann equation

whereQ(f, f) is the deterministic collision term. In the following we compute the supre-
mum in p in (7.5) perturbatively in the small α limit.

The supremum in p in (7.5) requires to solve in p the equation:

δH
(2)
C

δp
+
δH

(h.o.)
C

δp
= α∂tf + αv · ∇f −Q(f, f). (7.8)

We are interested in computing the large deviation rate for functions f close to be hy-
drodynamical solutions, that is

f(r,v, t) = Mρ,u,θ(r,v, t) +O(α), (7.9)

where Mρ,u,θ is the Maxwellian (7.4). Since Q(Mρ,u,θ,Mρ,u,θ) = 0, we have Q(f, f) =
O(α). The right hand side in (7.8) is then of order α. The �rst term in the left hand side
is linear in p; we conclude that the optimal p is of order α:

popt = αp(1) +O(α2),

and furthermore the leading order p(1) is entirely determined byH(2)
C , the quadratic term

of the collision Hamiltonian. From (7.5), we conclude that the leading order (in α) of the
large deviation function is O(1), and does not involve H(h.o.)

C . However, this leading
order corresponds to compressible Euler equations, the leading order of the hydrody-
namical equations in the scaling we have used; compressible Navier-Stokes equations
require to go one step further in the expansion in α, which corresponds to order α in
the large deviation function. A priori, this order includes a term H

(3)
C [f, p(1)], where

H
(3)
C [f, p] is the cubic in p term of HC . Using (7.9), this term is at leading order∫

drdv1dv2dv′1dv′2w(v′1, dv
′
2; v1,v2)Mρ,u,θ(r,v1)Mρ,u,θ(r,v2)

× [p(r,v′1) + p(r,v′2)− p(r,v1)− p(r,v2)]
3
,

where Mρ,u,θ is the appropriate Maxwellian, and it should be eventually evaluated at
p = p(1). We use now symmetry properties of w and energy conservation:

Mρ,u,θ(r,v1)Mρ,u,θ(r,v2)w(v′1,v
′
2; v1,v2) = Mρ,u,θ(r,v

′
1)Mρ,u,θ(r,v

′
2)w(v′1,v

′
2; v1,v2),

to conclude that this term vanishes2. Hence, up to orderα in the large deviation function,
which is the relevant order for compressible Navier-Stokes equations, the terms of order
more than quadratic in p play no role in the hydrodynamical limit. We shall then neglect
them, and consider the noise is Gaussian already at kinetic level.

An important remark is in order: throughout the above discussion, we have tacitly
assumed that f does not change on temporal or spatial scales of order α, so that ∂tf ,
v ·∇f are of order 1. This rules out the possibility of hydrodynamical shocks. Hence the
statistical weight of such shock pro�les may not be correctly described by this quadratic
Hamiltonian. We shall detail this observation in chapter 9.

2Similarly to the case of independent Run-and-Tumbling particles, the symmetry of w canceling the
cubic term of the Hamiltonian is linked to the microscopic time-reversibility of the particle dynamics.
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7.1.3. �adratic approximation for the Hamiltonian:
incompressible Navier-Stokes equations

The appropriate macroscopic space and time variables (r̃, t̃) to derive the incompressible
Navier-Stokes equations is parabolic

r̃ = αr , t̃ = α2t .

The e�ect of these new variables is to introduce α factors in the large deviation rate
function, which becomes (again removing the tildes for convenience):

IαT [f ] =
1

α5

∫ T

0

dt
{

sup
p

∫∫
drdvα2p(r,v)∂tf − αHT [f, p]−HC [f, p]

}
. (7.10)

We introduce some de�nitions. M(v) is the reference Maxwellian:

M(v) =
1

(2π)
3
2

e−
1
2
v2

. (7.11)

We are interested in computing the large deviation rate for distributions f close to the
reference Maxwellian, that is

f(r,v, t) = M(v)
(
1 + αg +O(α2)

)
, (7.12)

where g is

g = ρ(r, t) + u(r, t) · v + θ(r, t)
v2 − 3

2
+O(α) (7.13)

We de�ne the operators Q (quadratic) and L (linear):

Q(g, g) =
1

M
Q(Mg,Mg) , L[g] = − 2

M
Q(M,Mg); (7.14)

we shall use in the velocity space the scalar product weighted with M :

〈f, g〉M =

∫
dv fgM

With this scalar product, L is self-adjoint. Furthermore,

KerL = Span(1,v,v2).

Then the function g (7.13) is in KerL, and for f as in (7.12):

Q(f, f) = α2MQ(g, g) +O(α3), (7.15)

Equation (7.8) becomes

δH
(2)
C

δp
+
δH

(h.o.)
C

δp
= α3∂tg + α2v · ∇g −Q(f, f). (7.16)
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7.1 Path large deviations for the empirical measure and the Boltzmann equation

with Q(f, f) = O(α2) because of (7.15). Hence the optimal p is now a priori of order
α2:

popt = α2p(2) +O(α3).

Incompressible Navier-Stokes equation (and its �uctuations) appear at order α3, when
the ∂tg term comes into play. We see on (7.10) that this corresponds to an order α2

for IαT . But H(h.o)[f, popt] is of order at least α3, hence it does not contribute to the
hydrodynamical large deviation function. We conclude again that all non Gaussian terms
in the noise formally disappear in the hydrodynamical limit. We will then assume that
the noise is Gaussian at the kinetic level, i.e. keep only the quadratic approximation for
the collision Hamiltonian.

As already noted at the end of paragraph 7.1.2, this quadratic approximation assumes
that the pro�le f of which we want to estimate the probability does not have too steep
gradients.

7.1.4. A SPDE formulation
Large deviation principles associated with quadratic in p Hamiltonians can be rewritten
as Ito stochastic PDEs with small Gaussian noise. Let us proceed �rst formally. Consider
the large deviation principle for the spatio-temporal stochastic process fλ (r, t) with
speed λ and quadratic HamiltonianH[f, p], with a deterministic dynamics ∂tf+K(f) =
0:

P
(
{fλ(t)}0≤t≤T = {f(t)}0≤t≤T

)
�
λ↓0

e
− 1
λ

{∫ T
0 dt sup

p
[
∫

dr p(∂tf+K(f))−H[f,p]]
}
.

Performing the optimization over p, one gets

P
(
{fλ(t)}0≤t≤T = {f(t)}0≤t≤T

)
�
λ↓0

e−
1

4λ

∫ T
0 dt

∫
dr
(
∂tf+K(f)

)
L−1
f

(
∂tf+K(f)

)
,

where Lf is the linear operator such that δH
δp

[f, p] = 2Lf (p). The following stochastic
PDE formally recovers the same large deviation principle:

∂tf +K(f) =
√
λη(r, t),

where η is a Gaussian noise with correlations

E (η(r, t)η(r′, t′)) = 2δ(t− t′)δ(r− r′)Lf .

The expression above for the correlations has to be understood with respect to test func-
tions ψ and ϕ of the space variable as following∫

drdr′ ψ (r)ϕ (r′)E (η(r, t)η(r′, t′)) = δ (t− t′)
∫

drψ (r)Lf (ϕ) (r) .

In the following, we apply this formalism to express the Boltzmann large deviation prin-
ciple for the empirical measure as a stochastic PDE. Although it may be di�cult to give a
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precise mathematical meaning to the obtained nonlinear stochastic PDE, it will be easier
to manipulate at the formal level than the Large Deviation Principle. In both scalings
leading to the compressible and incompressible Navier-Stokes equations, we showed in
section 7.1.3 that at leading order in the Knudsen number α, we can assume the large
deviation Hamiltonian is quadratic in p and only retain its quadratic part:

HQ [f, p] = HT [f, p] +H
(1)
C [f, p] +H

(2)
C [f, p] ,

where HT and H(1)
C are linear in p and are de�ned in equations (7.1-7.7) and

H
(2)
C [f, p] =

∫
drdv1dv2dv′1dv′2w(v′1,v

′
2; v1,v2) f(r,v1)f(r,v2)

× (p(r,v′1) + p(r,v′2)− p(r,v1)− p(r,v2))
2
.

Stochastic PDE for compressible Navier-Stokes equations. With the hyperbolic
scaling that leads to the compressible Navier–Stokes equations, the kinetic deterministic
equation is

α(∂tf + v · ∇f)−Q(f) = 0, (7.17)

which contains a small parameter α. The large deviation rate is λ = εα4. The associated
stochastic PDE is

α(∂tf + v · ∇f)−Q(f) = λ
1
2η [f ] (7.18)

which can be rewritten

∂tf + v · ∇f − 1

α
Q(f) =

(
εα2
) 1

2 η [f ] , (7.19)

where

E (η [f ] (r,v, t) η [f ] (r′,v′, t′)) = 2δ(t− t′)δ (r− r′)Lf (7.20)

with

Lf (p) (r,v, t) =
δH

(2)
C

δp (r,v, t)
[f, p] ,

=− f (v)

∫
drdv2dv′1dv′2w(v′1,v

′
2; v,v2)f(v2) [p (v′1) + p (v′2)− p (v)− p (v2)] .

When the distribution function f is a Maxwellian Mh = Mρ,u,θ (with h = (ρ,u, θ)); we
have LMh

· g = MhLMh
where LMh

= − 2
Mh
Q(Mh,Mhg). This will be useful later as

LMh
appears naturally when linearizing the collision operator close to a Maxwellian.
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Stochastic PDE for incompressible Navier-Stokes equations. With the parabolic
scaling that leads to the incompressible Navier–Stokes equations, the kinetic determin-
istic equation is

α3∂tg + α2v · ∇g + αL(g)− α2Q(g, g) = 0, (7.21)

and the large deviation rate is εα5. The associated SPDE is

α3∂tg + α2v · ∇g + αL(g)− α2Q(g, g) = (εα5)
1
2
η [M ]

M
,

or

α∂tg + v · ∇g + α−1L(g)−Q(g, g) = (εα)
1
2
η [M ]

M
, (7.22)

where the correlations for η are given by

E (η [M ] (r,v, t) η [M ] (r′,v′, t′)) = 2Mδ(t− t′)δ (r− r′)L. (7.23)

In the above equations, operators Q,L are de�ned in (7.14). To express (7.23), we have
used that when the distribution function f is the absolute Maxwellian M de�ned in
(7.11) we have LM = ML. When dropping the non-linear term, equation (7.22) is the
�uctuating Boltzmann equation derived in [191] from a central limit theorem approach.

7.2. Derivation of the fluctuating compressible
Navier–Stokes and Euler equations

In this section, we derive the �uctuating compressible Navier–Stokes system using the
SPDE formalism introduced in section 6.5; the starting point is the �uctuating Boltzmann
equation (7.19) with Gaussian noise in the hyperbolic scaling with respect to the Knudsen
number

∂tf + v · ∇f =
1

α
Q(f, f) +

√
εα2η [f ] . (7.24)

The strategy is to follow the standard deterministic computations, as in [14], adding the
noise term in the expansion.

7.2.1. Chapman–Enskog expansion
At leading order for small α, we obtain Q(f 0, f 0) = 0, which ensures that f 0 has the
following Maxwellian form:

f 0 (r,v, t) = Mh (r,v, t) =
ρ

(2πθ)3/2
e−

1
2

(v−u)2

θ , (7.25)
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where h (r, t) = (ρ(r, t),u(r, t), θ(r, t)) are the hydrodynamical �elds, respectively the
density, velocity and temperature �elds.

The goal of the Chapman–Enskog expansion is to reduce the evolution of the distri-
bution function f to the evolution of its hydrodynamical �elds (ρ(r, t),u(r, t), θ(r, t))
as the Knudsen number tends to 0. We shall look for an expansion in α: f = f 0 +O(α).
We recall the de�nition of the linearized kinetic operator

LMh
: g 7→ − 2

Mh

Q(Mh,Mhg), (7.26)

which is self adjoint with respect to the L2 weighted scalar product

〈a, b〉Mh
=

∫
dv a (v) b (v)Mh,

its kernel is span(1,v, v2)3 as explained in appendix B.1. It satis�es a Fredholm alterna-
tive, i.e. the equation

LMh
[g] = a

has a solution only if a ∈ ker(LMh
)⊥ and in this case this solution is unique if ones adds

the condition g ∈ ker(LMh
)⊥. We will write this solution as g = L−1

Mh
[a]. We denote Π

the projection operator on hydrodynamical modes

Π[f ] =

 ∫
fdv∫
vfdv

1
2

∫
v2fdv

 . (7.27)

Note that g ∈ ker(LMh
)⊥ is equivalent to Π[Mhg] = 0. We now build a Chapman-

Enskog expansion to solve the �uctuating Boltzmann equation (7.24):

f = Mh(1 + αg1
α + α2g2

α +O
(
α3
)
). (7.28)

We require that Π[Mhg
k] = 0 for any k ≥ 1: this means that all the "hydrodynamical

content of f is captured by Mh; this condition requires that the gk (and also Mh) keep a
dependence in α, emphasized as an index in (7.28).

Inserting (7.28) into the �uctuating Boltzmann equation (7.24) yields

(∂t + v · ∇)[Mh] = −MhLMh
[g1
α] +
√
εα2η [Mh] +O(α). (7.29)

We note that at leading order in α, the noise term only depends on Mh and not on the
full distribution function. Now, applying Π to (7.29), using the conservation laws of
the kinetic equation (i.e. ker(L†Mh

) = ker(LMh
) = span(1,v, v2)) and the conservation

properties obeyed by the noise (B.2) (see appendix B.1) , we are left with

Π[(∂t + v · ∇)[Mh]] = O(α). (7.30)
3span(1,v,v2) denotes the span of the functions of the velocity variable v 7→ 1, v 7→ v, and v 7→ v2.
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If we drop theO (α) terms, (7.30) is the compressible Euler system for the hydrodynam-
ical �elds4:

∂tρ+∇ · (ρu) = 0, (7.31)
∂t(ρu) +∇ · (ρu⊗ u) +∇(ρθ) = 0, (7.32)
3

2
ρ∂tθ + ρθ∇ · u +

3

2
ρ (u · ∇) θ = 0. (7.33)

It is worth noticing the equation on the temperature θ (7.33) can be rephrased as the
conservation of energy equation:

∂t

(
3

2
ρθ +

1

2
u2

)
+∇ ·

((
5

2
ρθ +

1

2
u2

)
u

)
= 0,

where the �rst term is the time-derivative of the total energy, and the second term is
the divergence of the enthalpy �ux. We note that at this order in the Knudsen number
α, there is no noise term. To obtain dissipative and noise terms, we have to push the
expansion further in α. To do so, we need to solve for g1

α in (7.29):

LMh
[g1
α] = −(∂t + v · ∇)[Mh]

Mh

+
√
εα2

η

Mh

+O(α).

We expand g1
α = g1 +O(α), where g1 is the unique solution of

LMh
[g1] = −(∂t + v · ∇)[Mh]

Mh

+
√
εα2

η

Mh

, Π[Mhg
1] = 0.

Decomposing g1 into a deterministic and a stochastic part, we write

g = g1,d + g1,s

where

LMh
[g1,d] = −(∂t + v · ∇)[Mh]

Mh

, (7.34)

and

LMh
[g1,s] =

√
εα2

η

Mh

. (7.35)

We �rst focus on the deterministic term. The explicit form of Mh (7.25) and the com-
pressible Euler equations (7.31-7.32) yield

(∂t + v · ∇)[Mh]

Mh

= A (V) · ∇θ√
θ

+
1

2
B (V) : σ (u) , .

4It is interesting to note that the derivation of the compressible Euler system only requires the knowledge
of: the local equilibria that cancel the collision operator, and the content of the kernel of the adjoint
of its linearization close to a local equilibrium. In other words, a di�erent collision operator, sharing
the same local equilibria and conserved quantities would yield the exact same hydrodynamical limit,
at order 1 in the Knudsen number. The BGK collision operatorQ (f) = −f+f0 where f0 = Mh with
h = Π [f ], satis�es these requirements [38].
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where we introduced the reduced velocity V = (v − u) /
√
θ, the vector

A(V) =
1

2

(
V 2 − 5

)
V, (7.36)

the tensor

B (V) = V ⊗V − 1

3
V 2Id, (7.37)

and the stress tensor σ whose components are given by

σij (u) = ∂jui + ∂iuj −
2

3
δij∂kuk (7.38)

Since A and B are in (kerLMh
)⊥, we can compute L−1

Mh
[A] and L−1

Mh
[B]. According to

[14], and using similar notations, we have
L−1[A](V) = −a(V )A(V) , L−1[B](V) = −b(V )B(V) .

With these new de�nitions, we can rephrase (7.34)

g1,d = a (V ) A (V) · ∇θ√
θ

+
1

2
b(V )B (V)) : σ (u) . (7.39)

The stochastic term can also be explicitly obtained by inverting LMh

g1,s =
√
εα2L−1

Mh

[
η

Mh

]
. (7.40)

The inversion is possible because of the conservation properties of the noise (B.2)5. From
there, we can compute g1 at leading order in α in (7.29) and push the expansion (7.28) to
the Navier-Stokes (dissipative) order. In order to do so, we once again look for a solution
of the �uctuating Boltzmann equation as a Chapman-Enskog expansion close to a local
equilibriumMh. In other words, we insert (7.28) into (7.24), but this time, we also gather
terms of order α, yielding
(∂t + v · ∇)[Mh] + α(∂t + v · ∇)[g1] = −MhLMh

[
g1
α

]
−MhLMh

[
g2
α

]
+ αMhQ(g1

α, g
1
α) +

√
εα2η +O(α2).

Applying Π, the r.h.s. furnishes only a O(α2) term. Hence

Π[(∂t + v · ∇)[Mh]] + αΠ[v · ∇g1] = O(α2). (7.41)

We have also used that Π and ∂t commute, and that Π[g1] = 0. Dropping the O(α2)
remainder, (7.41) is the �uctuating compressible Navier-Stokes system, where g1 =
g1,d + g1,s is given by (7.39-7.40). It can be rewritten more explicitly

∂tρ+∇ · (ρu) + α∇ ·
(∫

dv vg1Mh

)
= 0, (7.42)

ρ∂tu + ρ (u · ∇) u +∇(ρθ) + α∇ ·
(∫

dv v ⊗ vg1Mh

)
= 0, (7.43)

3

2
ρ∂tθ + ρθ∇ · u +

3

2
ρ (u · ∇) θ +

1

2
α∇ ·

(∫
dv v2vg1Mh

)
= 0. (7.44)

5More precisely, a noise realization for the �uctuating kinetic equation that violates mass, momentum
or energy conservation would be associated with a zero probability.
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Recalling that Π[g1Mh] = 0, we see that the terms of order α vanish in the equations for
ρ. Hence there is no dissipation nor noise in the �rst equation. The explicit computations
of the terms involving g1 is given in appendix B.2. The �nal result reads

∂tρ+∇ · (ρu) = 0 (7.45)
ρ∂tu + ρ (u · ∇)u +∇(ρθ) = α∇ · (νσ) +

√
εα4∇ · J, (7.46)

3

2
ρ∂tθ + ρθ∇ · u +

3

2
ρ (u · ∇) θ = α

(
∇ · (κ∇θ) +

ν

2
σ : σ

)
+
√
εα4∇ · Jθ, (7.47)

where

σij (u) = ∂jui + ∂iuj −
2

3
δij∂kuk,

Jij = θ5/2

∫
dV b (V )Bij (V) η

(√
θV + u

)
,

and

Jθj = θ5/2

∫
dV

(
θ1/2a (V )Aj (V) + uib (V )Bij(V)

)
η
(√

θV + u
)
.

The expressions for ν (7.48) and κ (7.49) are given in the next paragraph and derived in
Appendix B.2.

7.2.2. Noise correlations
The noise terms in (7.46-7.47) are Gaussian and delta-correlated in space and time. To
obtain explicit form of the �uctuating compressible Navier-Stokes system, we now only
have to compute their correlations. We have to compute E [JijJkl] and E

[
Jθi J

θ
j

]
. We

forget now the dependency on space and time, since it is trivial.We will need to compute
quantities such as∫

ϕ(v)ψ(v′)E[η(v)η(v′)]dvdv′.

Going back to the correlations of η (7.23), we have that∫
ϕ(v)ψ(v′)E[η(v)η(v′)]dvdv′ = 2

∫
MhϕLMh

[ψ]dv.

The correlation functions of the noise terms are computed in section B.2.4. The result
reads

E (Jij (r, t) Jkl (r
′, t′)) = 2θν

(
δikδjl + δilδjk −

2

3
δijδkl

)
δ (r− r′) δ (t− t′)

and

E
(
Jθi (r, t) Jθj (r′, t′)

)
= 2

(
θ2κδij + θνBij (u)

)
δ (r− r′) δ (t− t′) ,
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where

ν = − 2

15

ρθ√
2π

∫ ∞
0

dV V 6b (V ) e−V 2/2, (7.48)

and

κ = −1

6

ρθ√
2π

∫ ∞
0

dV V 4
(
V 2 − 5

)2
a (V ) e−V 2/2. (7.49)

a and b are negative functions of the norm of the reduced velocity V [14]. As a conse-
quence the viscosity ν and the thermal di�usivity κ are positive. Because the collision
operator Q(f) is quadratic in the distribution function, we can show that a and b are
proportional to the inverse of the density ρ. An alternate way to rewrite the �uctuat-
ing compressible Navier–Stokes equations is to introduce the stochastic �ux q that is
Gaussian and satis�es

E (qi (r, t) qj (r′, t′)) = 2θ2κδijδ (r− r′) δ (t− t′) .

Doing so, the compressible Navier–Stokes system reads

∂tρ+∇ · (ρu) = 0 (7.50)
ρ∂tu + ρ (u · ∇) u +∇(ρθ) = α∇ · (νσ) +

√
εα4∇ · J, (7.51)

3

2
ρ∂tθ + ρθ∇ · u +

3

2
ρ (u · ∇) θ = α∇ · (κ∇θ) + α

ν

2
σ : σ +

√
εα4∇ · (u · J + q) .(7.52)

In the following, we call J the �uctuating stress and q the �uctuating heat density �ux.
It is straightforward to check that the stochastic �uxes u · J + q and Jθ have the same
correlation structure. In addition to this, the cross-correlation between J and q vanishes:
E (J⊗ q) = 0.

These equations are expressed in a set of physical units in section 7.4. To our knowl-
edge, this is the �rst derivation of the �uctuating compressible Navier-Stokes equations
starting from the microscopic dynamics (in the sense that the noise in the �uctuating
Boltzmann equation stems from the underlying kinetic large deviation principle rather
than thermodynamic considerations).

7.3. Derivation of the fluctuating incompressible
Navier–Stokes equations

In this section, we derive the �uctuating incompressible Navier–Stokes system start-
ing from (7.22), the Chapman-Enskog expansion of the �uctuating Boltzmann equation
within the parabolic rescaling.
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7.3 Derivation of the �uctuating incompressible Navier–Stokes equations

7.3.1. Chapman–Enskog expansion
Let us recall �rst that when investigating the incompressible limit, we look for a solu-
tion of the Boltzmann equation as a Chapman-Enskog expansion close to an absolute
Maxwellian:

f(r,v, t) = M(v)
(
1 + αg +O(α2)

)
, with M(v) =

1

(2π)
3
2

e−
1
2
v2

.

Making α→ 0 in (7.22) imposes that g ∈ KerL at leading order, that is at leading order

g = ρ+ u · v + θ
v2 − 3

2
, (7.53)

as was already anticipated in the section (7.1).
As shown in appendix (B.1), Q(g, g) and 1

M
η are in (kerL)⊥ with respect to the L2

scalar product weighted by the absolute Maxwellian

〈a, b〉M =

∫
dv a (v) b (v)M (v) .

Hence, taking the scalar product of (7.22) against the elements of kerL and making
α → 0, we obtain the incompressibility and Boussinesq equations (we obtain only 4
equations, since the elements of kerLv 7→ 1 and v 7→ v2 both yield the incompressibility
equation):

∇ · u = 0, (7.54)
∇(ρ+ θ) = 0. (7.55)

These equations do not contain any noise term.
Now let us look at the order 1 term in α in (7.22). Taking the scalar product of (7.22)

with v, and dividing by α, we have

∂t〈v, g〉M +
1

α
〈v ⊗ v, g〉M = 0,

which we rewrite

∂t〈v, g〉M +∇P +
1

α
∇〈B(v), g〉M = 0,

where P = (1/α) 〈v2g/3〉M is the pressure and B is the tensor de�ned in (7.37). Using
the expression for g (7.53), we obtain that the �rst term above tends to ∂tu when α→ 0.
To compute the third one, we use that L is self adjoint, and that B(v) is in (kerL)⊥

〈B(v), g〉M = 〈L−1[B](v),L[g]〉M .

Going back to (7.22), we use

1

α
L [g] = −v · ∇g +Q(g, g) +

√
εα

M
η +O(α). (7.56)
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Thus
1

α
〈B, g〉M = −∇〈L−1[B]⊗v, g〉M+〈L−1[B],Q(g, g)〉M+

√
εα〈L−1[B],

1

M
η〉M+O(α).

(7.57)

To compute these scalar products, we need to invert L−1 on (kerL)⊥. This was already
done in the last section, and we recall the notations

L−1[A](v) = −a(v)A(v) , L−1[B](v) = −b(v)B(v) .

Then, the �rst (resp. second) term on the r.h.s. of (7.57) yields the viscosity (resp. inertial)
term in the momentum equation of the Navier-Stokes system. The third term provides
the noise. The �nal equation is

∂tu + u · ∇u +∇P = ν∆u +
√
εα∇ · J (7.58)

where

ν = − 2

15

1√
2π

∫ ∞
0

dv b (v) v6e−v2/2. (7.59)

and the �uctuating stress tensor reads

Jij = 〈
(
L−1[B]

)
ij
,

1

M
η(r,v, t)〉M .

We follow the same route to obtain the equation for θ: taking the scalar product of (7.22)
with (v2 − 5)/2, and dividing by α:

∂t〈
(v2 − 5)

2
, g〉M +

1

α
∇ · 〈A(v), g〉M = 0,

where A is de�ned in (7.36). Now, again using that L is self adjoint, and that A(v) is in
(kerL)⊥, we have

〈A(v), g〉M = 〈L−1[A](v),L[g]〉M .
With (7.56), we obtain, since 〈 (v2−5)

2
, g〉M tends to 3θ/2− ρ:

∂t

(
3θ

2
− ρ
)

= ∂i∂j〈L−1[A]ivj, g〉M − ∂i〈L−1[A]i,Q(g, g)〉M −
√
εα∂i〈L−1[A]i,

1

M
η〉M .

The �rst term in the r.h.s. above yields the temperature di�usion, together with an
explicit expression for the thermal di�usivity; the second term yields the temperature
advection. The third term is the �uctuating heat density �ux. With ∂tρ = 0, the �nal
equation is

∂tθ + u · ∇θ = κ∆θ +
√
εα∇ · q, (7.60)

where

κ = −1

6

1√
2π

∫ ∞
0

dv a (v) v4
(
v2 − 5

)2 e−v2/2, (7.61)

and

qi = −2

3
〈
(
L−1[A]

)
i
,

1

M
η(r,v, t)〉M .
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7.4 Connection between the microscopic non-dimensional and the macroscopic set of
units

7.3.2. Noise correlations

Computations very similar to the one done in section B.2.4 give the correlation of the
stochastic �uxes:

E(Jij (r, t) Jkl (r
′, t′)) = 2ν

[
δikδjl + δilδjk −

2

3
δijδkl

]
δ(t− t′)δ(r− r′), (7.62)

and

E (qi (r, t) qj (r′, t′)) = 2κδijδ (t− t′) δ (r− r′) , (7.63)

where ν and κ are the di�usive coe�cients de�ned in (7.59-7.61). We note that the
cross-correlations vanish: E(J (r, t) ⊗ q (r′, t′)) = 0. We connect the result (7.58-7.62)
with the literature in section 7.4 by expressing it in a set of physical units rather than
the dimensionless ones we have used so far.

7.4. Connection between the microscopic
non-dimensional and the macroscopic set of units

In the following, we denote by a subscript ϕ the variables (rϕ,vϕ, tϕ) expressed in phys-
ical units. To obtain the Boltzmann equation (7.3), we used the following set of variable
suited to the kinetic description, subscripted by a k

rk = rϕ/`, vk = vϕ/vT , tk = vT tϕ/`,

where ` is the mean free path of particle, and vT =
√
kBT0/m is the thermal velocity,

where kB is the Boltzmann constant, T0 the average temperature, and m the mass of
particle.

7.4.1. Compressible Navier–Stokes equations in physical units

To obtain the compressible Navier–Stokes equations, we rescaled the kinetic time and
space units by the Knudsen number α = `/L as following

r̃ = αrk, t̃ = αtk.

Thus the dictionary between physical units and the set of dimensionless units used in
section 7.2 is:

r̃ = rϕ/L, t̃ = vT tϕ/L,

ρ = ρϕ/ρ0, u = uϕ/vT , ν = νϕ/ (ρ0`vT ) , θ = kBθϕ/(mv
2
T ), κ = κϕ/ (ρ0`vT )
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where ρ0 = N/L3 is the average density. Expressing equations (7.50-7.52) with the set
of physical units introduced above, and dropping the ϕ subscripts yield
∂tρ+∇ · (ρu) = 0,

ρ∂tu + ρ (u · ∇) u + kB
m
∇(ρθ) = 1

2
∇ · (νσ (u)) +∇ ·

(√
νkBθ
m

J
)
,

3
2
kB
(
ρ∂tθ + ρθ∇ · u + 3

2
ρ (u · ∇) θ

)
= ∇ · (κ∇θ) + 1

2
mνσ (u) : σ (u) +∇ ·

(√
mνkBθu · J +

√
κk2

Bθ
2q
)
,

with

E(Jij (r, t) Jkl (r
′, t′)) = 2

[
δikδjl + δilδjk −

2

3
δijδkl

]
δ(t− t′)δ(r− r′),

E(qi (r, t) qj (r′, t′)) = 2δijδ(t− t′)δ(r− r′),

and

E(qi (r, t) Jkl (r
′, t′)) = 0.

This is exactly the �uctuating compressible Navier-Stokes system employed in the com-
putational �uid dynamics literature [96, 95, 9].

7.4.2. Incompressible Navier–Stokes equations in physical units
To obtain the incompressible Navier–Stokes equations, we rescaled kinetic time and
space units by the Knudsen number α = `/L as following

r̃ = αrk, t̃ = α2tk.

Thus the dictionary between physical units and our set of units is:

r = rϕ/L, t = `vT tϕ/L
2, u = uϕ/(αvT ),

θ = kBθϕ/(αmv
2
T ), κ = κϕ/(`vT ), ν = νϕ/(`vT ).

Using that v2
T = kBT0/m, where T0 is the average temperature of the system, we can

rephrase the �uctuating incompressible Navier–Stokes equation for the velocity (7.58)
in physical units dropping the ϕ as following

∂tu + u · ∇u +∇
(
P

ρ0

)
= ν∆u +∇ · J, (7.64)

where

E(Jij (r, t) Jkl (r
′, t′)) =

2νkBT0

ρ0

[
δikδjl + δilδjk −

2

3
δijδkl

]
δ(t− t′)δ(r− r′),
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and ρ0 = N/L3. The temperature equation (7.60) in physical units reads

∂tθ + u · ∇θ = κ∆θ +
√
εα∇ · q,

with

E(qi (r, t) qj (r′, t′)) =
2κT 2

0

ρ0

δijδ(t− t′)δ(r− r′).

Linearizing those equations close to a uniform temperature and velocity pro�le yields
the linearized Landau-Lifshitz-Navier-Stokes system, historically reported in [147].

7.5. Gradient-flow structure for the Navier–Stokes
equation

From the �uctuating hydrodynamics equations derived in the previous sections, one ob-
tains a transverse-gradient-�ow structure both for the incompressible and compressible
Navier-Stokes equations. These gradient �ow structures are natural in the sense that
they emerge from the underlying microscopic dynamics [160].

We expect that we can write the incompressible Navier-Stokes equation as following

∂tu = −P (u · ∇u)− GraduK [u] , (7.65)

where

K [u] =
1

2

∫
dr u2

is the total kinetic energy, P is the Leray projector on the space of divergence-free vector
�elds, and Gradu is the gradient with respect to a u-dependent norm that has to be
determined and that will be linked to the correlation structure of the noise term in the
�uctuating incompressible Navier-Stokes equation.

For the compressible Navier-Stokes system, we expect the energy functional for the
gradient-�ow to be the negative of the total entropy S [ρ,u, θ], so that the compressible
Navier-Stokes equations can be rewritten as

∂t

 ρ
u
θ

 = −T ·

 ρ
u
θ

− Gradρ,u,θ (−S [ρ,u, θ]) , (7.66)

where T is a transport operator (or equivalently the compressible Euler operator). The
transport terms in both the compressible and incompressible Navier-Stokes equations
also satisfy a transversality (orthogonality) condition with the dissipative terms with
respect to the L2 scalar product, granting that the transport terms do not increase nor
decrease the quasipotential. The gradient-�ow energy functional can be obtained either
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from equilibrium thermodynamics, from the quasipotential for the Boltzmann large de-
viation principle, or from the large deviation structure underlying the �uctuating Navier-
Stokes equations. In this section, we use the latter option to obtain (7.65-7.66).

In section 7.5.1, we explain how starting from a small noise SPDE describing the evo-
lution of a macroscopic �eld, whose underlying microscopic dynamics is time-reversible
one can uncover the gradient-�ow structure for the noiseless deterministic PDE. In sec-
tion 7.5.2, we derive the gradient-�ow structure for the incompressible Navier-Stokes
equations. In section 7.5.3, we obtain the gradient-�ow structure for the compressible
Navier-Stokes equations.

7.5.1. Generic transverse gradient-flow structure of a SPDE
whose large deviations are Gaussian

This section is a reminder of the results of [160] on the relationship between the LDP
and gradient-�ow structures. Consider a macroscopic �eld6 φλ (r, t) that takes values in
a vector space E, and whose evolution is ruled by a small-noise SPDE:

∂tφλ = −T [φλ] +D [φλ] +
√

2λΣ · η [φλ] , (7.67)

such that

E (η [φλ] (r, t)⊗ η [φλ] (r′, t′)) = C [φλ] (r, r′) δ (t− t′) ,
where η [φλ] takes values in another vector �eld F , Σ is a linear operator from F to E,
C [φλ] (r, r′) is a linear operator on F . When the SPDE is conservative, Σ would typically
be a divergence operator. T is a linear operator on E that represents a transport term.
D is an operator on E (that is not necessarily linear), it could be a di�usion term. From
the Freidlin-Wentzell theory result [115] introduced in section 3.2.2, that we here apply
to an in�nite-dimensional setting, we know that the probability of the evolution paths
of the �eld φλ follows a large deviation principle in the small noise regime

P
(
{φλ(t)}0≤t≤T = {φ(t)}0≤t≤T

)
�
λ↓0

e
− 1
λ

{∫ T
0 dt sup

p
[
∫

dr p∂tφ−H[φ,p]]
}
, (7.68)

with a quadratic large deviation Hamiltonian

H [φ, p] = H(1) [φ, p] +H(2) [φ, p] ,

H(1) [φ, p] =

∫
dr p (−T [φ] +D [φ]) ,

and

H(2) [φ, p] =

∫
drdr′ p (r, t)A [φλ] (r, r′) p (r′, t) ,

6A �eld whose evolution equation has been obtained by the coarse-graining of a certain microscopic
dynamics.
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where

A [φλ] (r, r′) = Σ>C [φλ] (r, r′) Σ.

This discussion is a reformulation of the one of section 7.1.4, where we adapted the
notation for the noise term in order to take into account that the noise coming into play
in the �uctuating Navier-Stokes equations can be written as the divergence of a random
tensor or vector.

We assume that we know the quasipotential U associated with the LDP (7.68). We
also assume that the LDP satis�es a detailed balance condition, such that the relation
(3.20) holds with respect to the quasipotential U . As explained in section 3.4, U solves
the stationary Hamilton-Jacobi equation

H

[
φ,
δU

δφ

]
= 0.

Under these assumptions, we can then write the relaxation path (the noiseless PDE)
associated with (7.67) as a transverse gradient-�ow decomposition. Introducing the φ-
dependent scalar product,

〈ϕ, ψ〉φ =

∫
drdr′ ϕ (r, t)A [φ] (r, r′)ψ (r′, t) , (7.69)

the relaxation path associated with (7.67) (the noiseless PDE) can be rewritten

∂tφ = −T [φ] +D [φ] , (7.70)

with

D [φ] = −GradφU = −
∫

dr′A [φ] (r, r′)
δU

δφ (r′, t)
,

and the transversality condition with respect to the L2 scalar product∫
dr T [φ]

δU

δφ
= 0, (7.71)

where U is the quasipotential associated with (7.68). This is the transverse gradient-�ow
decomposition for the PDE (7.70). More precisely, it decomposes the r.h.s. of the PDE
(7.70) as the sum of a transport term, that does not modify the quasipotential U , and a
dissipative term, that is the negative of the gradient of the quasipotential with respect
to the φ-dependent scalar product (7.69). With respect to the L2 scalar product (7.71),
the transport term and the dissipative terms are orthogonal, as a consequence of the
Hamilton-Jacobi equation. Such a structure highlights the geometry of the dissipation
of the quasipotential U along the trajectories of (7.70)7. In particular, if φ is a solution of

7The trajectories of the noiseless PDE (7.70) are the relaxation paths associated with the dynamics (7.67).
The decrease of the quasipotential along those trajectories was then already expected from the prop-
erty 4. of section 3.4.

147



Microscopical derivation of the �uctuating (in)compressible Navier-Stokes equations

the PDE (7.70), we can obtain an estimate for the decrease of the quasipotential involving
the φ-dependent scalar product (7.69). Indeed, the chain’s rule yields

d
dtU [φ] =

∫
dr ∂tφ

δU

δφ
.

Then using that φ is a solution of (7.70) and the transversality condition (7.71), we are
left with

d
dtU [φ] =

∫
drD [φ]

δU

δφ
= −

∫
drdr′

δU

δφ (r, t)
A [φ] (r, r′)

δU

δφ (r′, t)
.

We conclude by noticing the r.h.s. can be expressed with the φ-dependent scalar product
(7.69) :

d
dtU [φ] =

〈
δU

δφ
,
δU

δφ

〉
φ

≤ 0. (7.72)

We expect in the compressible case the quasipotential to be the negative of the en-
tropy, and in the incompressible case, the quasipotential should be the kinetic energy.
In both cases, φ will be the hydrodynamic �elds, T [φ] the transport terms in the �uid
equations, and D [φ] the di�usive terms. The two next sections are dedicated to bridge
from the �uctuating (in)compressible Navier-Stokes equations that are SPDEs with small
noises to large deviation principles with quadratic Hamiltonian, from which we can di-
rectly deduce a transverse-gradient-�ow structure. We will check that the conjectured
quasipotentials are the good ones in each case, by verifying that they satisfy the required
Hamilton-Jacobi equation (see the discussion of equation (3.14)).

7.5.2. Gradient structure for the incompressible Navier–Stokes
equations

We �rst consider the incompressible Navier–Stokes equation without the temperature
equation. This is legitimate, as the velocity equation is not coupled to the temperature
equation, neither for the deterministic terms, nor for the noise terms. In this section,
we use the set of non-dimensional units adapted to the derivation of the hydrodynamics
equation. We start from the equations

∂tu + (u · ∇) u +∇P = ν∆u +
√
εα∇ · J and ∇ · u = 0,

where ν is the kinematic viscosity, and ε is the small kinetic parameter, α the Knudsen
number, so that εα is also a small parameter. J is the �uctuating stress tensor, with
Gaussian statistics, and correlation function given in (7.62).

Following the reasoning of section 7.5.1, it is possible to write the quadratic large
deviation Hamiltonian associated with a SPDE with Gaussian noise. We apply this gen-
eral result to the stochastic incompressible Navier-Stokes equation. In order to properly
take into account the incompressibility condition, we consider the Leray projector onto
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the space of divergence free vector �elds, denoted P. We then write the incompressible
stochastic Navier–Stokes equations as

∂tu + P (u · ∇u) = ν∆u +
√
εαP∇ · J. (7.73)

The remaining of the implementation of the program of section 7.5.1 is detailed in ap-
pendix B.3.1. Brie�y, we start by bridging from the small noise SPDE (7.73), to the corre-
sponding Gaussian LDP. Then, we check that the kinetic energy is indeed the quasipo-
tential for this LDP. Finally, we identify the quadratic part of the large deviation Hamil-
tonian, de�ning the geometry of the dissipation of the kinetic energy as generically
explained in the previous section.

The result of this program is the following transverse gradient-�ow decomposition of
the incompressible Navier-Stokes equation

∂tu = −P ((u · ∇) u)︸ ︷︷ ︸
transport

−
∫

dr′A (r, r′)
δK

δu (r′, t)︸ ︷︷ ︸
gradient of the kinetic energy

, (7.74)

where the quasipotential K is the total kinetic energy

K [u] =
1

2

∫
dr u2,

and the operator A is
A (r, r′) = −ν∆δ (r− r′) .

The transversality condition for the transport part of (7.74) reads∫
dr

(
δK

δu

)
· ((u · ∇) u) = 0, (7.75)

where the dot is the R3 Euclidean scalar product, which is nothing else than the conser-
vation energy relation for the incompressible Euler (inviscid) equation. The dissipation
of the kinetic energy is then best described within the geometry induced by the following
scalar product related to the quadratic part of the large deviation Hamiltonian:

(a,b)i = ν

∫
dr 〈∇Pa,∇Pb〉i with 〈T,R〉i =

1

2
Tr
((

T + T>
) (

R + R>
))
.

This scalar product is positive de�nite on the space of vectors that have non-zero Leray
projection. If we note Tkl the components of a tensor T, we have

〈T,T〉i = 2
∑
k,l

T 2
kl > 0,

unless T = 0. As a consequence of the transverse-gradient �ow decomposition (7.74-
7.75), we obtain the following kinetic energy dissipation inequality

d
dtK [u] = − (u,u) i ≤ 0, (7.76)

when the velocity �eld solves (7.74). We note than the scalar product in (7.76) does not
depend on the �eld u itself, as a consequence of the additive nature of the noise in the
�uctuating incompressible Navier-Stokes equation.
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7.5.3. Gradient structure for the compressible Navier–Stokes
equations

We now check that the entropy is the negative of the quasipotential for the �uctuat-
ing compressible Navier–Stokes equations and we look for the associated gradient-�ow
structure. For the sake of generality, in this section we do not assume the �uid is an ideal
nor a monoatomic gas. We still assume that the �uctuating compressible Navier–Stokes
equations we derived in section 7.2 hold in this context.

Density, velocity, entropy formulation of the compressible Navier-Stokes equa-
tions. To work in this more general context, we consider as independent variables the
density, velocity and entropy, and we work in the same set of non-dimensional units as
in section 7.2. We start from the equations

∂tρ+∇ · (ρu) = 0, (7.77)

∂tu + u · ∇u = −∇P
ρ

+ α
∇ ·Π
ρ

, (7.78)

ρθ (∂ts+ u · ∇s) = ∇ · (u ·Π)− α∇ ·Ξ, (7.79)

where Π is the rank 2 tensor

Π = νσ (u) + ζ (∇ · u) Id +
√
εα2J,

where ν is the shear viscosity, ζ the bulk viscosity8, and Ξ the vector

Ξ = −κ∇θ +
√
εα2q,

and where the �uctuating stress tensor J and �uctuating heat density �ux q are respec-
tively a Gaussian random rank 2 tensor and a Gaussian random vector with correlations
functions

E (Jij (r, t) Jkl (r
′, t′)) = 2νθ

(
δikδjl + δilδjk +

(
γ − 2

3

)
δijδkl

)
δ (r− r′) δ (t− t′) ,

(7.80)

E (qi (r, t) qj (r′, t′)) = 2κθ2δijδ(t− t′)δ(r− r′), (7.81)
8For a monoatomic gas, the bulk viscosity is zero ζ = 0. However, the gradient-�ow structure of the

compressible Navier-Stokes system applies in a more general framework than the one we used to
derive it from the Boltzmann equation. For the sake of generality, we keep the contribution of ζ in the
stress tensor.
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with γ = ζ/ν and E (J⊗ q) = 0. We also note that the entropy s per unit mass, energy
ε per unit mass, enthalpy w per unit mass, pressure P and density ρ are related through
the thermodynamic relations dε = θds + Pdρ/ρ2, ω = ε + P/ρ and dω = dP/ρ. As
an example, for a perfect gas, we have s = − log

(
P/θ3/2

)
+ Cst, ε = 3θ/2, w = 5θ/2,

and P = ρθ . With the perfect gas assumption and a vanishing bulk viscosity ζ = 0, the
equations (7.77-7.79) can be recast into (7.45-7.47). We now discuss the physical insights
gained from this formulation of the �uctuating compressible Navier-Stokes system.

In order to �rst discuss the conservation laws, we write the hydrodynamic equations
(7.78-7.79) in their conservative form. We have

∂t (ρu) +∇ · (ρu⊗ u) = ∇ · (−P + αΠ) ,

and

∂t

(
1

2
ρu2 + ρε

)
+∇.

[
ρu

(
1

2
ρu2 + ρw

)]
= α∇ · (u ·Π−Ξ) .

These equations show that the �uctuating stress J and heat density �ux q act on the
�uxes but do not break the structure of the local conservation laws. As a consequence,
mass, momentum and energy are local and global conservation laws, as should be ex-
pected.

We now apply the result of the discussion of section 7.5.1 to the �uctuating compress-
ible Navier–Stokes equations (7.77-7.79). The momenta conjugated to the �elds ρ, u and
s are denoted pρ, pu, and ps respectively. The detailed computations can be found in
appendix B.3.2.

The result reads

∂t

 ρ
u
s

 =

 −∇ · (ρu)
−u · ∇u− ∇P

ρ

u · ∇s


︸ ︷︷ ︸

transport terms

−B(ρ,u,s)

[
−δS
δρ
,−δS

δu
,−δS

δs

]
︸ ︷︷ ︸

gradient of the negentropy

,

where
B(ρ,u,s) [pρ,pu, ps] = α

(
0, Bpu(ρ,u,s) [pρ,pu, ps] , B

ps
(ρ,u,s) [pρ,pu, ps]

)
,

with

Bpu(ρ,u,s) [pρ,pu, ps] = −1

ρ
∇.
{
νθ

[
∇
(
pu

ρ

)
+

(
∇
(
pu

ρ

))>]
+
ηνp

ρ

[
∇u + (∇u)

>
]}

+
1

ρ
∇
{(

ζ − 2

3
ν

)[
−θ∇.

(
pu

ρ

)
+
ps
ρ
∇.u

]}
,

and

Bps(ρ,u,s) [pρ,pu, ps] = −ν
ρ
.

{
∇u.

[
∇
(
pu

ρ

)
+

(
∇
(
pu

ρ

))>]}
+
νps
ρ2θ
∇u.

[
∇u + (∇u)

>
]

− 1

ρ

(
ζ − 2

3
ν

)
∇.
(
pu

ρ

)
∇.u +

ps
ρ2θ

(
ζ − 2

3
ν

)
(∇.u)

2 −∇.
[
κθ2∇

(
ps
ρθ

)]
,
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and where the quasipotential is the negative of the total entropy up to conservation
laws9

−U =

{
S =

∫
dr ρs if

∫
dr ρ = M and

∫
dr
(

1
2
u2 + 3

2
θ
)

= E,
−∞ otherwise. .

The transversality condition reads

∫
dr

 −∇ · (ρu)
−u · ∇u− ∇P

ρ

u · ∇s

 ·
 − δS

δρ

− δS
δu

− δS
δs

 = 0.

This time, the norm de�ned by the dissipative operator B(ρ,u,s) depends on the hydro-
dynamical �elds, as a consequence of the multiplicativity of the noise term in the �uc-
tuating compressible Navier-Stokes equations.

7.6. Conclusion
In this chapter, we derived the �uctuating incompressible and compressible Navier-
Stokes equations starting from the large deviation principle associated with the Boltz-
mann equation. Within the incompressible scaling, we retrieve the �uctuating incom-
pressible Navier-Stokes equations with additive noise that is usually found in the liter-
ature. Within the compressible scaling, we derive the �uctuating compressible Navier-
Stokes equations with a multiplicative noise that acts on the equations for the velocity
and the temperature. In both cases, it is to our knowledge the �rst derivation of noise
terms from the microscopic dynamics for the �uctuating Navier-Stokes equations that
does not rely on linearization of the equations nor �uctuation-dissipation relations. The
computation is done at the level of the SPDEs using a noisy Chapman-Enskog expan-
sion but the result should be interpreted as the underlying quadratic (Gaussian) large
deviation principle for the empirical hydrodynamical �elds. In particular, when looking
at typical realization of the noise in the �uctuating hydrodynamics, it might be negligi-
ble compared to the terms of higher order in α that could enter the Chapman-Enskog
expansion (the so-called Burnett terms [61]). This structure allows to obtain a tranverse
gradient-�ow decomposition for the Navier-Stokes equations. This structure naturally
illustrates the geometry of the kinetic energy dissipation in the incompressible case, and
of the entropy creation in the compressible case. It should be noted that all these deriva-
tions were made using small α (Knudsen number) expansions. Some of the arguments
may break down in the presence of shocks (gradient of the hydrodynamic �elds may be-
come of order 1/α). Such singularities are ubiquitous for hyperbolic conservation laws
PDEs. In chapter 9, studying a simpler particle system whose hydrodynamic limit is a
1D conservation law, we explain that the �uctuating hydrodynamics we obtain using the
techniques presented in this manuscript may not be adequate to compute the probability
of non-entropic shocks.

9One should also account for momentum conservation, depending on the boundary conditions.
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8. Fluctuating hydrodynamics for
dilute active gases

This chapter is adapted from [105]. It deals with the derivation of a kinetic large devia-
tion principle and the corresponding �uctuating hydrodynamics for a system of active
particles where particles interact through binary collisions. The result is a set of SPDEs
(8.25, 8.27, 8.28), that describe the evolution of the density and orientation �elds of the
particles, with a noise term in the orientation equation accounting for �nite N �uctua-
tions, that is derived from the microscopic dynamics. The novelty of this chapter, com-
pared to the derivation of �uctuating hydrodynamics led in chapter 6 and 7, is that the
microscopic dynamics only conserves the total number of particles. To obtain an equa-
tion for the orientation �eld despite the lack of conservation laws, we use the notion of
Generalized Collision Invariant (GCI), �rst introduced in [87].

8.1. Introduction: hydrodynamical theories for active
ma�er

Active systems are composed of units able to extract non-thermal energy from the en-
vironment and dissipate it to self-propel [152]. Examples span a broad range of scales,
from bacteria to animals in the biological world, and signi�cant e�ort has been devoted
recently to build synthetic active systems in the laboratory using self-propelled granular
particles [90], Janus particles [173] or Quincke rollers [60] to name just a few examples.
Active systems break detailed balance microscopically, as opposed to more classical non-
equilibrium systems where detailed balance is broken by boundary driving. As such,
they are capable of novel collective behaviours that are impossible in equilibrium sys-
tems, whose characterization and control attracted a signi�cant attention recently [152].
When the dominant interaction among particles is to align their direction of motion,
which can be caused by collision when particles have anisotropic shape, or by reaction
to sensing, a well-known collective behavior of active systems emerges: �ocking. This
is a ferromagnetic-like state where all particles move in average along a given direction;
broken detailed balance allows for long range order even in two-dimensions and a scale-
free structure giving rise to long-range correlations without the need of �ne-tuning to
criticality [209, 198].

One of the main tools used to investigate the collective behavior of active systems
are �uctuating hydrodynamic theories. These theories can be derived via two com-
plementary paths. On one hand, they can be written on the basis of symmetry argu-
ments [152, 200, 67]; this approach is particularly useful for studying active systems,
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given that their complexity often does not allow to build �rst-principle models even
at the microscopic level; it had great success to unveil new generic and universal (i.e.
qualitative and quantitative properties independent of system details) physics induced
by activity. It has two shortcomings though: �rst, symmetries do not allow to relate
microscopic parameters to those entering in the �uctuating hydrodynamics. Second, in
active systems the noise term is not constrained by the �uctuation-dissipation theorem,
and it is unclear how to specify it a-priori, except when dealing with critical systems
(cases in which Renormalization Group arguments allow to discard irrelevant nonlin-
earities). It should be noted that this feature is at variance not only with equilibrium
systems, but also with non-equilibrium ones weakly driven by the boundaries; in these,
at least for weak coupling, the noise term is constrained by linear response theory [32].
Hence, this makes the approach to �uctuating hydrodynamics we adopt in this disserta-
tion extremely relevant to active systems. There is something to learn from linking the
microscopic and macroscopic descriptions of active systems even if the starting point are
phenomenological particle models often chosen only on the basis of simplicity. Several
works in the literature have been indeed focused on this program [31, 30, 87, 71].

Kinetic and hydrodynamic theories have been widely employed for describing sys-
tems of self-propelled particles interacting via alignment. This route has indeed been
followed both within the weak-interactions limit [87] and within the Boltzmann-like
framework of dilute systems [31, 30, 71]. The Dean-Kawasaki approach has been widely
employed to derive the �uctuating kinetic theory and �uctuating hydrodynamics of mi-
croscopic active matter models. This is justi�ed when interactions are long-ranged, as it
happens for dilute microswimmer suspensions in which the primary source of interac-
tions are low-Reynolds �uid �ows created by the motion of the swimmers [181, 194, 190].
Yet, the fact that hydrodynamics noise is independent of interactions within the Dean
approach motivated some authors to use it even for short-ranged aligning particles [29],
even if these systems are clearly out of the regime of applicability of the method. For
dilute systems, indeed, although particle di�usion will give rise to a Dean-like noise, one
can expect another contribution from particle-particle collisions.

In this chapter, we describe how to derive the �uctuating kinetic theory and the cor-
responding �uctuating hydrodynamics of active particles that interact by aligning after
undergoing binary collisions. The �uctuating kinetic theory is obtained in the dilute
limit, analogous to the Boltzmann-Grad limit of perfect gases. This leads to a noise term
at kinetic level that is not Gaussian. We then derive the corresponding �uctuating hydro-
dynamics. This result extends to the dilute limit, both at the deterministic and �uctuating
levels, previous results that have been obtained in the weak-interactions limit [87], and
it is valid when the Knudsen number is small. We also quickly explain how to extend
to the �uctuating level the hydrodynamical limit obtained in [31, 30] in the limit as the
distance to the order-disorder phase transition goes to zero. Interestingly, the noise en-
tering at the �uctuating level is Gaussian, and we explicitly compute its variance. The
latter turns out to be proportional to the square of the density �eld and to depend ex-
plicitly on the interactions among particles; both these facts di�erentiate our conclusion
from the results obtained in the Dean-Kawasaki approach, where the noise variance is
linear in the density and independent from particle-particle interactions [29].
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8.2 De�nition of the particle-based model, kinetic theory and dynamical large
deviations

The chapter is organized as follows. In section 8.2 we specify the particle-based model
we consider and, under an extended molecular chaos type hypothesis, derive its kinetic
theory and the associated �uctuating kinetic theory, described as a kinetic LDP. The
large deviation Hamiltonian we obtain is not quadratic, which corresponds to a �uctu-
ating kinetic theory with a non Gaussian noise. In section 8.3, we start from the �uctuat-
ing kinetic theory to derive �uctuating hydrodynamic equations at leading order in the
Knudsen number α. In particular, we show that in this limit α → 0, the noise becomes
Gaussian.

8.2. Definition of the particle-based model, kinetic
theory and dynamical large deviations

We start by introducing the particle-based model we consider, that we term the Boltz-
mann–Vicsek particle model, in section 8.2.1; in section 8.2.2 we describe its well-known
kinetic description at the deterministic level (known as Boltzmann–Vicsek equation). We
then introduce a suited non-dimensional system of units that allows to investigate �uc-
tuations at the kinetic level in section 8.2.3. Adapting the arguments of [50], we derive
in section 8.2.4 the �uctuating kinetic theory associated with the particle-based model
as a large deviation principle.

8.2.1. Boltzmann-Vicsek particle model

We consider N particles evolving in a periodic two-dimensional box of size L × L. We
denote (ri, θi)1≤i≤N their positions and orientations according to some arbitrary axis.
The dynamics is the one �rst introduced in [31]. Particles move ballistically with con-
stant speed v0: dri/dt = v0(cos θi, sin θi), until they collide. When two particles i and j
are close enough (i.e. |ri − rj| ≤ 2R, R being the interaction radius) a collision occurs
with a rate (v0/R)K(θi − θj) where K is a cross-section chosen to mimic hard-sphere
collisions. This rate is furthermore chosen so that when two particles meet, they have a
probability to interact of order 1. When a collision occurs, particles update their orien-
tation according to the following rule

θout
i = θ̄ + ζi, θ

out
j = θ̄ + ζj,

where θ̄ = arg
(

eiθin
i + eiθin

j

)
and the superscript “in” (resp. “out”) denotes incoming

(resp. outcoming) orientations. ζi and ζj are independent random variables distributed
according to Pσ(θ) over [−π, π) with variance σ2. At low variance of the noise, this
interaction favors the polar alignment of particles.

It should be observed that in the model, at variance with the standard Vicsek model
that is often considered in computational works [209, 70], only binary collisions are con-
sidered. The collision process is schematically presented in �gure 8.1. In the following,
this model is called the Boltzmann-Vicsek particle model.
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θin
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θin
2

θout
2
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1

Figure 8.1.: Schematic representation of a collision event. In this speci�c case, θ̄ =

arg
(

eiθin
1 + eiθin

2

)
= 0 with respect to the dotted axis, ζ1 = θout

1 , and ζ2 = θout
2 .

8.2.2. Boltzmann-Vicsek equation
The deterministic kinetic description associated with the Boltzmann–Vicsek particle
model was derived in [31] and reads

∂tfe(r, θ, t) + v0eθ · ∇fe(r, θ, t) = v0RIcol[fe](r, θ, t) (8.1)

where fe(r, θ, t) is the one-particle distribution function in the phase-space (represent-
ing the number of particles at a position r, with orientation θ at a certain time t) nor-
malized such that

∫
drdθ fe = N . In (8.1) the collision term is given by

Icol[fe](r, θ, t) =

∫∫
dθ1dθ2 fe(r, θ1, t)fe(r, θ2, t)K(θ2−θ1) {Pσ(θ −Ψ(θ1, θ2))− δ(θ − θ1)} ,

(8.2)

where K(θ2 − θ1) = 2
∣∣sin ( θ2−θ1

2

)∣∣ is the scattering cross-section, and Ψ(θ1, θ2) =
arg
(
eiθ1 + eiθ2

)
is the average of the orientations (θ1, θ2) .

The Boltzmann–Vicsek equation (8.1) relies on the molecular chaos hypothesis and it
is expected to be a valid description of the particle system in the limit of a large number
of particles in the Boltzmann-Grad limit, as is made explicit in the next section. Quanti-
tative arguments in favor of the validity of the molecular chaos hypothesis for a locally
mean-�eld Vicsek-like particle model can be found in [75, 132], when the mean free path
is much larger than the interaction radius.

8.2.3. The rescaled Boltzmann–Vicsek equation
We introduce a set of units that are suited to investigate the kinetic limit: space is mea-
sured in units of the mean free path ` = 1/(Rρ0), where ρ0 = N/L2 is the mean
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density, and time in units of `/v0, which is the average time between two collisions.
We also de�ne ε = (ρ0`

2)
−1, the inverse of the number of particles in a region of sur-

face `2. By performing a space-time rescaling r′ = r/`, t′ = tv0/` and by rescaling
the distribution function f(r′, θ, t′) = εfe(r

′, θ, t′) (primes are dropped afterwards), the
Boltzmann–Vicsek equation reads

∂tf + eθ · ∇f = Icol[f ]. (8.3)

As we shall see below, the Boltzmann–Vicsek equation is a valid description of the mi-
croscopic model in the limit N → +∞, ε→ 0 (and under the molecular chaos hypoth-
esis). It should be noticed that ε = R/` = NR2/L2, meaning that the limit yielding a
Boltzmann-type kinetic description is opposite to a weak-interaction limit for which the
number of particles in an interaction radius goes to in�nity.

In the next section, we go beyond this law of large numbers, taking into account
�uctuations by determining the LDP for the empirical measure.

8.2.4. Large deviations from the Boltzmann–Vicsek equation
We now aim at deriving the �uctuating kinetic theory associated with the microscopic
model introduced in section 8.2.1, along the same lines as in 3.7.2 where we derived the
LDP for N independent Run-and-Tumbling particles. We expect a LDP for the rescaled
empirical measure

fε (r, θ, t) = ε
N∑
n=1

δ (rn (t)− r) δ (θn (t)− θ) , (8.4)

in the form

P
[
{fε(t)}0≤t<T = {f(t)}0≤t<T

]
�
ε↓0

exp

(
−1

ε
JT [f ]

)
, (8.5)

where

JT [f ] =

∫ T

0

dt sup
p

(∫
drdθ ∂tfp−HBV [f, p]

)
, (8.6)

HBV [f, p] = lim
ε↓0

εGf

[
e 1
ε

∫
drdθ pfε

]
e− 1

ε

∫
drdθ pf , (8.7)

and where Gf the in�nitesimal generator of the stochastic process for the empirical
measure ofN particles whose dynamics is the one described in section 8.2.1. In (8.5) and
in every other equivalences that involve ε → 0, we also implicitly take the N → +∞
limit.

We start from the de�nition of the in�nitesimal generator (3.24) and apply it to com-
pute the in�nitesimal generator of the stochastic process for the empirical measure.
This time, the expectation Ef denotes an expectation over the stochastic process of the
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Chapter 8 Fluctuating hydrodynamics for dilute active gases

rescaled empirical measure fε ofN particles submitted to the Boltzmann–Vicsek dynam-
ics conditioned by fε(t = 0) = f . We can decompose the in�nitesimal generator in two
terms

Gf = Gf,T +Gf,col,

where Gf,T is the in�nitesimal generator accounting for free transport, already com-
puted in (3.54), and Gf,col accounts for two-body collisions. To evaluate Gf,col, we need
the rate of two-body collisions, which change the orientation of two particles from
(θ1, θ2) to (θ′1, θ

′
2) in the volume element dr centered at point r. If f is the rescaled

empirical measure, this rate reads

1

2ε
K(θ2−θ1)f(r, θ1, t)f(r, θ2, t)Pσ (θ′1 −Ψ(θ1, θ2))Pσ (θ′2 −Ψ(θ1, θ2)) dθ1dθ2dθ′1dθ′2dr.

(8.8)

As we did to justify the Boltzmann–Vicsek equation (8.1), we assumed the molecular
chaos hypothesis to express the rate (8.8) as a function of the one-particle distribution
function only. As for tumbling events, collisions change the empirical measure; f (r, θ)
is changed into

f (r, θ)− εδ (r− r1) δ (θ − θ1)− εδ (r− r1) δ (θ − θ2)

+ εδ (r− r1) δ (θ − θ′1) + εδ (r− r1) δ (θ − θ′2) .
(8.9)

The in�nitesimal generator term accounting for collisions thus reads

Gf,col[φ] =
1

2ε

∫
dθ1dθ2dθ′1dθ′2drK(θ2 − θ1)

× f(r, θ1, t)f(r, θ2, t)Pσ
(
θ′1 −Ψ(θ1, θ2)

)
Pσ
(
θ′2 −Ψ(θ1, θ2)

) (
φ[f̃ ]− φ[f ]

)
. (8.10)

where f̃ (r0, θ, t) = f (r0, θ, t)+εδ(r0−r) (−δ(θ − θ1)− δ(θ − θ2) + δ(θ − θ′1) + δ(θ − θ′2)).
The large deviation Hamiltonian is deduced using (8.7)

HBV [f, p] = HT [f, p] +Hcol [f, p] , (8.11)

where HT is given by

HT [f, p] = −
∫

drdθ p(r, θ, t)eθ · ∇f(r, θ, t), (8.12)

and the collision term of the Hamiltonian reads

Hcol[f, p] =
1

2

∫
dθ1dθ2dθ′1dθ′2drK(θ2 − θ1)f(r, θ1, t)f(r, θ2, t)×

Pσ (θ′1 −Ψ(θ1, θ2))Pσ (θ′2 −Ψ(θ1, θ2))

{
e−p(r,θ1,t)−p(r,θ2,t)+p(r,θ

′
1,t)+p(r,θ

′
2,t) − 1

}
.

(8.13)
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8.3 Fluctuating hydrodynamics in the ordered phase

Equation (8.11) along with (8.12,8.13) is the �uctuating kinetic theory for the Boltzmann-
Vicsek model. The most probable evolution path satis�es the deterministic evolution
equation given by the Hamilton equation associated with HBV

∂tf(r, θ, t) =
δHBV

δp(r, θ, t)
[f, 0] = −eθ · ∇f(r, θ, t) + Icol[f ](r, θ, t) (8.14)

which is the deterministic Boltzmann–Vicsek equation (8.3).
Just as in the Run-and-Tumble case, collisions conserve locally the number of parti-

cles, and this is re�ected in the fact that
∫

drdθ δHcol/δp(r, θ) = 0. Furthermore,HBV is
again non-quadratic in the conjugated momentum p. This means that dynamical large
deviations of the empirical measure are non-Gaussian. Contrary to the tumbling Hamil-
tonian (3.57), the Hamiltonian for collisions is quadratic in f , because collisions consid-
ered in the Boltzmann–Vicsek dynamics are binary. The Hamiltonian HBV share some
similarities with the one derived in [50] for the Boltzmann equation describing the dy-
namics of a passive dilute gas: quadraticity in the distribution function f and exponential
dependence on the conjugated momentum. At variance with that case, however, the col-
lision rules of the Vicsek-Boltzmann model break time-reversal symmetry, and does not
conserve momentum nor kinetic energy.

8.3. Fluctuating hydrodynamics in the ordered phase

In this section, we derive the �uctuating hydrodynamics from the Boltzmann–Vicsek
LDP given by (8.5) and (8.11). This is done as a Chapman-Enskog expansion of the �uc-
tuating kinetic equation, i.e. a perturbative expansion in a small parameter, the Knudsen
number α = `/L, where ` is the mean free path and L is the system size. α is also the
time scale to reach a local equilibrium1. As a �rst step, we introduce in section 8.3.1
the macroscopic scaling with the Knudsen number, and associate a �uctuating Boltz-
mann–Vicsek equation with the Boltzmann–Vicsek LDP. From there we adapt to the
�uctuating case the framework developed in a deterministic setting in [87]. In section
8.3.2 we discuss the local equilibria of the Boltzmann–Vicsek equation. These local equi-
libria are characterized by two slow modes: the density �eld, and the orientational order
�eld. Then, in section 8.3.3 we obtain �uctuating hydrodynamic equations for these two
slow modes. Further, we show that at leading order in the Knudsen number α, the noise
appearing in these hydrodynamic equations is Gaussian. In section 8.3.4, we connect
our result with the Toner-Tu equations, widely used in the active matter community to
describe large scale behavior of aligning active systems.

1This derivation can also without any supplementary e�orts lead at the level of the large deviation
functional.
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Chapter 8 Fluctuating hydrodynamics for dilute active gases

8.3.1. Macroscopic scaling and rephrasing of the Large Deviation
Principle as a Stochastic PDE

Since we are interested in large scales and long times, we introduce the macroscopic
variables t̃ = αt, r̃ = αr, and de�ne f̃(r̃, θ, t̃) = f(α−1r̃, θ, α−1t̃), p̃(r̃, θ) = p(α−1r̃, θ).
Then

HT [f, p] =
1

α
H̃T [f̃ , p̃] (8.15)

Hcol[f, p] = α−2H̃col[f̃ , p̃],

∫
drdθ p∂tf =

1

α

∫
dr̃dθ p̃∂t̃f̃ ; (8.16)

we remove the tildes in the following. Isolating the linear part in p (which contributes
to the deterministic evolution), the collision Hamiltonian can be written

Hcol[f, p] =

∫
drdθ p(r, θ)Icol[f ](r, θ) +Hcol,stoch,

where Hcol,stoch gathers all terms of order at least 2 in p. The empirical measure then
satis�es a large deviation principle with speed ε−1 and rate function

JT [f ] =
1

α3

∫ T

0

dt sup
p

{∫
drdθ p(r, θ)

(
α∂tf + αeθ · ∇f − Icol[f ]

)
−Hcol,stoch[f, p]

}
.

(8.17)

Notice the overall factor α−3 coming from the change of time and space variables; the
�nal time T and the system size have also been rescaled. Formally, this LDP can be recast
as a stochastic PDE:

α
(
∂tf + eθ · ∇f

)
− Icol[f ] = ξ(r, θ, t), (8.18)

where the left hand side is the deterministic Boltzmann-Vicsek equation, and the right
hand side is a noise whose distribution satis�es the LDP

P
[
{ξ(t)}0≤t<T = {u(t)}0≤t<T

]
�
ε↓0

exp

(
− 1

εα3
Jf [u]

)
, (8.19)

with

Jf [u] =

∫ T

0

dt sup
p

(∫
drdθ pu−Hcol,stoch[f, p]

)
. (8.20)

A consequence of (8.19) is that we can express the variance of ξ through the large devi-
ation Hamiltonian

E [ξ [f ] (r, θ, t) ξ [f ] (r′, θ′, t′)] = εα3 δ2HBV

δp(r, θ, t)δp(r′, θ′, t′)
[f, p = 0] . (8.21)

Note that only Hcol,stoch contributes to the second functional derivative of HBV with
respect to p. From the original LDP, which is a statement on the probability distribution
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8.3 Fluctuating hydrodynamics in the ordered phase

of f , to the above statement about the probability distribution of ξ, there is a change of
variable, which should introduce a Jacobian factor. At the large deviations level however,
this factor is negligible. We stress that the noise ξ bears several features that are in stark
contrast with the �uctuating kinetic theories derived in the weak-interaction limit [86,
32]: it is multiplicative at the kinetic level (since its distribution depends on f ), it is
non-Gaussian (this is encoded in the fact that HBV is not quadratic in p), and it depends
explicitly on the particle-particle interactions.

Finally, the local conservation of the number of particles implies that whenever
∫

dθ u (r, θ) 6=
0, Jf [u] = +∞. Indeed, take any momentum �eld p(r) independent of θ; thenHcol,stoch[f, p] =
0 and

∫
dθ u(r, θ)p(r) = p(r)

∫
dθ u 6= 0. A good choice of p(r) then makes the supre-

mum in (8.20) as large as we wish. In the stochastic PDE (8.18), this translates in the fact
that the noise conserves the number of particles:∫

dθ ξ(r, θ, t) = 0. (8.22)

Contrary to the case of passive dilute gases (where also momentum and energy are con-
served), there is no other conservation law, re�ecting the absence of these conservation
laws at the level of the microscopic collisions.

8.3.2. Local equilibria
We now discuss the local equilibria of the Boltzmann-Vicsek equation, i.e. distributions f
that make the collision kernel vanish Icol[f ] = 0. This is the crucial ingredient to derive
the �uctuating hydrodynamics deeply in the ordered state because any initial condition
should relax fastly (over time scales of order α−1) towards these local equilibria.

For clarity, we choose the noise distribution Pσ in the collision kernel (8.2) to be a Von
Mises distribution Pσ (θ) = Vs(θ) = (2πI0 (s))−1 exp (s cos θ), but any other choice for
Pσ with similar qualitative characteristics would be admissible. This distribution has a
circular variance σ2 (s) = 1 − I1(s)/I0(s), where Ij is the modi�ed Bessel function of
order j. The variance σ2 is a decreasing function of s.

The local equilibria are the solutions of the integral equation

Icol[f ] (θ) = 0 ⇐⇒ f (θ) =

∫∫
dθ1dθ2 f (θ1) f (θ2)K (θ2 − θ1)Vs (θ −Ψ (θ1, θ2))∫

dθ1 f (θ1)K (θ1 − θ)
.

(8.23)

The homogeneous isotropic state (f independent of the angle) is always a solution. This
is the unique one when σ > σc: here the system is described by a single hydrodynamic
variable, the density ρ(r, t). We are interested in the regime σ < σc, when non isotropic
local equilibria emerge. By rotation invariance, they are indexed by a local angle ϕ(r, t);
the local equilibria are then of the form ρ(r, t)Mϕ(r,t) and there are two hydrodynamic
�elds: ρ and ϕ. By rotational symmetry, the dependence on ϕ is simple: there exists a
function m such that Mϕ(θ) = m(θ − ϕ).
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Figure 8.2.: Pro�le of the local equilibria Mϕ(θ) for di�erent values of σ and ϕ = π.

Although Mϕ(r,t) cannot be found analytically when σ < σc, �nding it numerically is
straightforward using the �xed-point formulation (8.23). We did this by implementing a
�xed-point iteration method. For σ > σc, our algorithm correctly converges towards a
constant solution, while for σ < σc, we obtain a solution for (8.23) which carries a pref-
erential orientation. Our numerical solutions for Mϕ(r,t) as a function of σ is provided
in Fig. 8.2. As it should be, the weaker this noise is, the narrower the local equilibrium
Mϕ is around the local orientation ϕ. Obtaining Mϕ(r,t) with this method is very fast
computationally, requiring only a few iterations unless σ is set very close to σc. The
value of σc can be computed analytically [30]. To do so, one has to assess the linear
stability of the collision operator Icol linearized close to a uniform in angle distribution
f(r, θ, t) = ρ(r, t). With the speci�c choice of a Von Mises distribution for the micro-
scopical noise distribution Pσ, we have σc =

√
3/3 ≈ 0.58.

8.3.3. Chapman–Enskog expansion close to a local equilibrium

In order to get the �uctuating hydrodynamics, we now want to compute evolution equa-
tions for the density ρ and the orientation �eld ϕ that specify the local equilibria. To do
so, we look for solutions to the kinetic equation (8.18) as a Chapman–Enskog expansion
close to a local equilibrium. This amounts to expand f for small α as

f (r, θ, t) = ρ (r, t)Mϕ(r,t) (θ) + αg (r, θ, t) +O
(
α2
)
.

At leading order in α, we obtain from (8.18) that

(∂t + eθ · ∇) (ρMϕ)− ρLϕ[g] =
1

α
ξ [ρMϕ] , (8.24)

where Lϕ is the linearization of Icol close to ρMϕ:

Lϕ[g](θ) =

∫∫
dθ1dθ2Mϕ (θ1) g (θ2)K (θ2 − θ1) {2Vs (θ −Ψ (θ1, θ2))− δ (θ − θ1)− δ (θ − θ2)} .
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8.3 Fluctuating hydrodynamics in the ordered phase

Classically, the Chapman–Enskog expansion then proceeds integrating (8.24) against
conserved quantities, over the velocity variables (here the angle θ). Each conserved
quantity then yields an evolution equation for a hydrodynamic mode.

A di�erence with respect to the classical case arises here: we only have a single con-
served quantity (density) and want to obtain evolution equations for both the density
ρ and the orientation �eld ϕ. Such problem was already discussed and solved in [87]
noting that, to obtain the evolution equation for the slow modes, we only need to inte-
grate against quantities χ that are in the kernel of L†ϕ, the adjoint operator of Lϕ. The
elements of the kernel of L†ϕ which do not correspond to conservation laws are known
as Generalized Collisional Invariant (GCI).

8.3.3.1. Equation for the density field.

We observe that constants are in the kernel of L†ϕ. Hence, integrating the �uctuating
kinetic equation (8.24) over θ yields the hydrodynamic equation for the density �eld

∂tρ+ c1∇ · (ρeϕ) = 0, (8.25)

where c1 =
∫

dθ cos (θ − ϕ)m (θ − ϕ) , and eϕ = (cosϕ, sinϕ) is the orientational
order �eld. We have used the density preserving property of the noise (8.22).

8.3.3.2. Equation for the orientational order field.

In order to obtain a second hydrodynamic equation for the orientation �eld, we need to
�nd another element of kerL†ϕ to integrate (8.24) against. In the classical kinetic theory
of passive gases, this second element is usually the velocity variable [14], which is a
manifestation of momentum conservation at the level of the kinetic equation. For active
particles, momentum conservation is broken and a GCI is needed.

Since Icol [Mϕ] = 0 for all ϕ, Icol [Mϕ+δϕ] = 0 for any perturbation δϕ. This implies
that not only Mϕ ∈ kerLϕ but also ∂Mϕ

∂ϕ
= −m′(θ − ϕ) ∈ kerLϕ, which provides two

elements in kerLϕ as soon as the system is locally ordered. Hence kerL†ϕ is also two-
dimensional, spanned by the constants and another element which we call ψϕ: this is
the GCI.

As it was the case for Mϕ, ψϕ cannot be found analytically, but it can be determined
numerically. In order to compute ψϕ, we numerically solve the equation L†ϕ[ψϕ] = 0
by discretizing [0, 2π). Then, L†ϕ[ψϕ] = 0 is a simple matrix equation that one can solve
for ψϕ. Observe that by rotational symmetry, the generalized collision invariant satis�es
ψϕ (θ) = −ψ−ϕ (−θ). In �gure 8.3, we plot ψϕ for ϕ = π and for several values of σ.

Integrating (8.24) over θ and against ψϕ and using that L†ϕ[ψϕ] = 0 yields the hydro-
dynamic equation for the orientation �eld

α

∫
dθ ψϕ (∂t + eθ · ∇r · ρMϕ) =

∫
dθ ψϕξ [ρMϕ] , (8.26)

We see that for a smooth evolution of the orientation �eld ϕ(r, t), the left hand side is
of order α, which corresponds to the noise αη =

∫
dθ ψϕξ [ρMϕ] to be of order α as

163



Chapter 8 Fluctuating hydrodynamics for dilute active gases

0 1 2 3 4 5 6

θ

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ψ
ϕ
(θ
)

σ = 0.05

σ = 0.1

σ = 0.3

σ = 0.5

Figure 8.3.: Pro�le of the GCI ψϕ(θ) for di�erent values of σ and ϕ = π. This quantity
is de�ned whenever σ < σc.

well. Contracting the probability distribution of ξ given in (8.18) and (8.19) to obtain the
distribution of αη, and expanding for small α, it is easy to see that only the quadratic
part of the distribution of αη contributes to leading order in α. This is equivalent to
saying that the noise becomes Gaussian in the hydrodynamic limit at leading order in α.

The explicit computation of the di�erent terms in (8.26) yields the �uctuating hydro-
dynamic equation for the orientational order:

ρ (∂teϕ + c2eϕ · ∇eϕ) + c3∇⊥ρ = ηe⊥ +O(α), (8.27)

where the O(α) term represents the error committed in neglecting the higher order
terms in the Chapman-Enskog expansion. In (8.27), e⊥ = eϕ+π/2, ∇⊥ρ = (e⊥ · ∇ρ)e⊥
is the gradient of ρ along the direction which is orthogonal to eϕ and

c4 =
−1∫

dθ ψϕ (θ)m′ (θ − ϕ)
,

c2 = −c4

∫
dθ ψϕ (θ) cos (θ − ϕ)m′ (θ − ϕ) ,

and

c3 = c4

∫
dθ ψϕ (θ) sin (θ − ϕ)m (θ − ϕ) .

Using the two-point correlations for ξ (8.21), we can characterize the Gaussian noise η

E [η (r, t) η (r′, t′)] = αεCρ2 (r, t) δ (r− r′) δ (t− t′) +O(α2) , (8.28)

and

C = c2
4 (C1 + C2 + C3 + C4 + C5) ,
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with

C1 =

∫
dθdθ′ ψϕ (θ)2Mϕ (θ)Mϕ

(
θ′
)
K
(
θ − θ′

)
,

C2 =

∫
dθdθ′ ψϕ (θ)ψϕ

(
θ′
)
Mϕ (θ)Mϕ

(
θ′
)
K
(
θ − θ′

)
,

C3 =

∫
dθdθ′1dθ′2 ψϕ (θ)2Mϕ

(
θ′1
)
Mϕ

(
θ′2
)
K
(
θ′1 − θ′2

)
Vs
(
θ −Ψ

(
θ′1, θ

′
2

))
,

C4 =

∫
dθdθ′dθ′1dθ′2 ψϕ (θ)ψϕ

(
θ′
)
Mϕ

(
θ′1
)
Mϕ

(
θ′2
)
K
(
θ′1 − θ′2

)
Vs
(
θ −Ψ

(
θ′1, θ

′
2

))
Vs
(
θ′ −Ψ

(
θ′1, θ

′
2

))
,

C5 = −4

∫
dθdθ′dθ1 ψϕ (θ)ψϕ

(
θ′
)
Mϕ (θ)Mϕ (θ1)K (θ1 − θ)Vs

(
θ′ −Ψ (θ, θ1)

)
.

Although it is not apparent from the above expressions, we have checked numerically
that C is positive and an increasing function of σ, as expected.

The structure of the �uctuating equation for the local orientation �eld (8.27) is not
usual. In relation with the lack of momentum conservation, (8.27) contains a noise term
but no di�usive terms. These would give corrections at O(α) in (8.27) and we expect
that they can be obtained by similar lines as in [88] where they were derived for the
Vicsek model within the weak-interaction limit; we leave this for future investigations.
We should however observe that (8.27) allows already to obtain the path probability for
eϕ to �rst order in α, which is the central result of this Section.

The two main novelties of our results are the following. First, we obtain the hydro-
dynamics of self-propelled aligning particles for dilute systems, deeply in the ordered
phase, which was not even known at the deterministic level, since the results of [87] were
derived in the weak-interaction limit. Second, we obtained also the hydrodynamics at
the �uctuating level. The fact that we work in the dilute regime implies that the hydro-
dynamic noise variance is proportional to ρ2, and that the noise depends explicitly on the
collision rules (interactions) among particles. Both of these facts are at variance with the
�uctuating hydrodynamics obtained in the weak-interaction regime – the regime where
one particle interacts with many others and noise comes from angular di�usion rather
than collisions [29]. For the sake of clarity, we only consider noise that stems from colli-
sions. Adding angular di�usion to the model would slightly modify the kinetic equation
by adding a di�usion term as well as a Dean-like noise. At the deterministic hydrody-
namics level, this would result in a modi�cation of the linearized collision kernel Lϕ,
the shape of the local equilibrium Mϕ, and thus of the hydrodynamic coe�cients. At
the �uctuating level, there would be a new noise term whose variance is proportional to
ρ instead of ρ2. We expect this noise to be the dominant one at low densities.

8.3.4. Connection with the Toner-Tu equations
In [31, 30, 29, 177], the authors derive Toner-Tu like �uid equations starting from the
Boltzmann-Vicsek kinetic equation. They derive the �uid equations by using that when
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approaching the phase transition exhibited by the Boltzmann-Vicsek equation, the polar
order parameter

p = (px, py) =

(∫
dθ f cos θ,

∫
dθ f sin θ

)
,

associated with the distribution function f , becomes a hydrodynamic mode. However,
this derivation do not include the noise term. We de�ne the distance to the phase tran-
sition µ (σ) = σc− σ. In our paper [105], we derive in the small but positive µ limit, the
�uctuating Toner-Tu equations from the Boltzmann-Vicsek equation. Our result is the
following set of SPDEs for the polar order parameter and and the density �uctuation δρ
around a stationary and uniform pro�le ρ0

∂tδρ+∇ · p = 0, (8.29)

∂tp + λ1 (p · ∇) p + λ2 (∇ · p) p− λ2

2
∇
(
p2
)

=
(
a− bp2

)
p− c3∇δρ+DT∆p + η,

(8.30)

and η = (ηi)i=1,2 is an isotropic Gaussian white noise whose correlations read

E[ηi(r, t)ηj(r
′, t′)] =

1

2
ζ (ε, α, µ) ρ2

0δ(t− t′)δ(r− r′), (8.31)

where ζ (ε, α, µ) is a small parameter whose size depends on the smallness of ε the kinetic
parameter, α the Knudsen number, and µ the distance to the transition. The exact value
of ζ is derived from the microscopic dynamics for the �rst time in the section 4 of [105],
where we also recall the main steps to derive the Toner-Tu system.

Although the Toner-Tu equations are derived in the limit where the system is close to
the phase transition, they are widely used deeply in the ordered phase [200]. We now
examine the connection between the Toner-Tu system and the equation we derive for
the orientation �eld in the previous section (8.27). Assuming the norm of the polarity
�eld to be �xed to p0 =

√
a/b, which is reasonable deep in the ordered phase, we look

for solutions with uniform magnitude of the local polar order p = p0eϕ, where eϕ is a
unit 2d-vector parametrized by the angle ϕ. Projecting (8.30) onto e⊥ = eϕ+π/2 yields

p0∂teϕ + λ1p
2
0

[
(eϕ · ∇)eϕ

]
= −c3∇⊥δρ+DTp0(e⊥ ·∆eϕ)e⊥ + (e⊥ · η)e⊥ (8.32)

We recognize in (8.32) all the terms present in (8.27). However these two equations di�er
for two reasons. First, the dependence of the parameters entering the hydrodynamic
description on the microscopic ones di�ers in the two cases, both at deterministic and
�uctuating level. Second, the Laplacian term in (8.32) is of the same order as transport
terms, while these Laplacian terms were subdominant (and hence neglected) in (8.27).
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8.4. Conclusions
We focused on active matter systems where polar alignment is the dominant interaction
in the dilute regime. Within this framework, we have extended the Boltzmann-Vicsek
deterministic kinetic theory to its �uctuating counterpart. This is best described through
a large deviation theory formalism, given that �uctuations in the kinetic theory are not
Gaussian. The large deviation Hamiltonian associated with it is given in (8.11), (8.13).
Our �uctuating Boltzmann-Vicsek equation has the same regime of validity as the orig-
inal Boltzmann-Vicsek equation: ε� 1, where ε−1 = ρ0`

2 is the number of particles in
an area equal to the square of the mean free path `.

We have then derived the associated �uctuating hydrodynamics. Our �nal result is
(8.25), (8.27), (8.28), which allows to obtain the path probability of the density and the
orientational �eld to leading order in the Knudsen number α = `/L, whereL is a macro-
scopic length-scale (e.g. the size of the system). In this regime and for dilute systems,
even the derivation of the deterministic hydrodynamics was not known. We stopped the
perturbative expansion at leading order in α, which corresponds to neglecting di�usive
terms, but the same technique could be employed to obtained them, along the lines of
the computations previously done in the weak-interactions regime [87]. These di�usive
terms might be important to help better de�ne the solutions of the deterministic and
�uctuating hydrodynamic equations we derived.

The derivation of the hydrodynamic noise in the dilute regime di�ers in two important
aspects from the one obtained in the weak-interactions regime [86, 29]. First, it depends
explicitly on the particle interactions and, re�ecting the binary nature of the collisions,
its variance is quadratic in the density.

We conclude with three remarks. First, we have presented results on polar particles
with polar aligning interactions, but we expect that these can be generalized to polar par-
ticles with nematic interactions or to fully active nematic systems. Second, in most real
systems stochasticity at hydrodynamic level can originate both from interactions and
from single-particle di�usion; independent spatial di�usion of every particles would just
add a “Dean-Kawasaki like” noise term to the hydrodynamic equations, whose variance
is proportional to ρ rather than ρ2. Lastly, while our derivation of the hydrodynamic
theory deeply in the ordered state can be considered controlled from a mathematical
viewpoint, it should be noted that our results assume a small noise on top of a smooth
evolution at the hydrodynamic level: our scaling hypothesis might break down in the
presence of shocks. The analysis of large deviations in their presence is a much harder
problem that is addressed in the next chapter.
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9. Large deviations for scalar
conservation laws

In this chapter, we assess the ability of a �uctuating hydrodynamics approach to esti-
mate the probability of density pro�les that are (non-entropic) weak solutions of the
�uid equations for a particle system whose hydrodynamical limit is a scalar conserva-
tion law. This is motivated by the questions raised in the derivation of the �uctuating
hydrodynamics in the previous two chapters. More precisely, in chapter 7, we derive
the �uctuating compressible Navier-Stokes equations, starting from the Large Devia-
tion Principle (LDP) associated with the Boltzmann equation. We did so by using a
Gaussian approximation of the kinetic LDP, allowing to rephrase the LDP in terms of a
�uctuating Boltzmann equation with Gaussian noise. We then used a Chapman-Enskog
expansion of the �uctuating Boltzmann equation to obtain the �uctuating compressible
Navier-Stokes equations in the small Knudsen number (α) limit, in agreement with the
literature. However, this expansion as well as the Gaussianity assumption on the LDP
does not seem to hold when the distribution function changes on length and time scales
of order α, yielding gradient of order 1/α, seemingly ruling out the possibility of hy-
drodynamic shocks. We can also rephrase the �uctuating compressible Navier-Stokes
equation into a large deviation principle for the empirical hydrodynamic �elds. Another
question is whether we can study the vanishing di�usion and noise limit α → 0 in this
large deviation principle to characterize the probability of weak solutions to the com-
pressible Euler (inviscid) system.

To explore these questions, in this chapter we turn to the study of a simpler particle
system in one dimension, that is described at the hydrodynamic level by a scalar conser-
vation law. To do so, we study a system of N particles undergoing a Run-and-Tumble
dynamics on the real line, with a tumbling rate that depends on the local density. We de-
rive the �uctuating hydrodynamics for this system as a large deviation principle for the
empirical density, using a small Knudsen number expansion. From there, we compute
the probability of observing a certain non-entropic shock density pro�le and we retrieve
the classical Jensen-Varadhan result characterizing the probability of non-entropic shock
density pro�les in the limit of vanishing noise and di�usion. However, in the presence
of a shock, it is not obvious that the small Knudsen number expansion still makes sense.
We �nd that there is no reason for the Jensen-Varadhan result to hold in general. We
show that it can be retrieved in a “quasi-incompressible” regime.
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Chapter 9 Large deviations for scalar conservation laws

9.1. Introduction: scalar conservation laws
We consider a scalar conservation law

∂tρ+ ∂x (a (ρ)) = 0, (9.1)

where ρ = ρ (x, t) with x ∈ R, and we assume a : ρ 7→ a(ρ) to be convex. It is known
that the Cauchy problem for (9.1) in general does not have globally de�ned smooth so-
lutions [93]. We call ρ(x, t) a weak solution of (9.1) if for all regular enough functions
ϕ(x, t) with compact support in R× R+, the following identity holds∫

R
dx
∫ ∞

0

dt (∂tρ+ ∂x (a (ρ)))ϕ = 0.

Note that if ρ is not regular enough, we make sense of this previous identity with partial
integration:

−
∫
R

dx
∫ ∞

0

dt (ρ∂tϕ+ a (ρ) ∂xϕ)−
∫
R

dx ρ (x, 0)ϕ (x, 0) = 0. (9.2)

When all weak solutions to (9.2) are considered, uniqueness fails for the initial value
problem, which indicates that (9.1) misses some relevant physics. Among those weak
solutions, (9.1) is known to exhibit weak shock solutions of the form:

ρ(x, t) =

{
ρL ifx ≤ vst,

ρR ifx > vst,

where vs is the speed of the shock, given by the Rankine-Hugoniot relation: vs =
(a (ρL)− a (ρR)) / (ρL − ρR) . In the following, we assume ρL and ρR to be positive.

In this chapter, we understand (9.1) as the hydrodynamic limit of a certain particle
system. More precisely, we consider ρ as a density and a(ρ) as a particle �ux. a′(ρ) is
the velocity at density ρ. The convexity of a implies that a′(ρL) > a′(ρR) i� ρL > ρR.
Then, this shock solution is a physical solution i� ρL > ρR: the particles on the left
"catch up" on the particles on the right. This is why we designate such solutions as
shocks, whereas shock solution with ρL < ρR are called antishocks 1. Both situations
are qualitatevely depicted in �gure 9.1. We explain how a shock solution can emerge in
the speci�c case of the Burgers’ equation (i.e. (9.1) with a (ρ) = ρ2/2) with a Gaussian
initial condition in �gure 9.2.

1The situation is more complicated when a is neither convex nor concave.
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9.1 Introduction: scalar conservation laws

shock antishock

Figure 9.1.: A shock and an antishock weak solutions to the scalar conservation law.
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(a)The density is initially normally dis-
tributed.
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(b) Since the �ux function ρ 7→ a (ρ) is
convex, the local velocity ρ 7→ a′ (ρ)
is an increasing function of the den-
sity.
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(d) Ultimately, the mass acumulates be-
hind a frontline separating a high
and a low density zone and leads to
the formation of a shock.

Figure 9.2.: Shock formation in the Burgers equation (∂tρ+∂x (a (ρ)) = 0 with a (ρ) =
ρ2/2) with a Gaussian initial density pro�le ρ (x, 0) = 3e−2x2 . The plots are snapshots
of a simulation using a �rst-order upwind scheme [78]. 171



Chapter 9 Large deviations for scalar conservation laws

A way to discriminate shocks from antishocks, is to introduce a small viscosity term:

∂tρ+ ∂x (a (ρ)) = α∂x (D (ρ) ∂xρ) . (9.3)

This is natural when thinking about (9.1) as the leading order term in a small α (Knudsen
number) Chapman-Enskog expansion. In the small α limit, we retrieve the conservation
law. When α is non zero, regularized shocks are still solutions to (9.3) but regularized
antishocks are not anymore [116]. Now, when thinking about the conservation laws as
the hydrodynamic limit of a particle system, it makes sense to take into account �nite
size e�ects by adding a small conservative noise to (9.3):

∂tρN + ∂x (a (ρN)) = α∂x (D (ρN) ∂xρN) +
√
αν/N∂x (σ (ρε) η) , (9.4)

where η is Gaussian and fully characterized by

E (η (x, t) η (x′, t′)) = δ (x− x′) δ (t− t′) ,

and ν is an exponent to be determined. This setting raises another question: what is the
probability to observe a given spatio-temporal pro�le ρN(x, t), which is not necessarily
a solution of (9.3)? In the small noise and viscosity limit (α → 0, N → +∞), it turns
out that weak solutions, shocks and antishocks, are overwhelmingly more probable than
other pro�les, and that shocks are overwhelmingly more probable than antishocks. How
to derive a large deviation principle characterizing this fact is the topic of this chapter.

Once we established that shocks and solutions of (9.4) are overwhelming more prob-
able than antishocks, to compute the probability of a certain spatio-temporal density
pro�le that is a weak solution to the conservation law (9.1), we only have to compute
the weight of an antishock. We then retrieve the weight of a generic weak solution by ad-
ditivity. Such a work has been �rst led by Jensen and Varadhan [133, 205] that obtained
a large deviation principle for the probability to observe an antishock for the density
pro�le whose underlying particle dynamics is the TASEP, a lattice exclusion model that
is a continuous-time Markov process on {0, 1}Z. Their result is the derivation of the
rate function encoding the probability of an antishock de�ned by a couple of densities
(ρL, ρR) , the so-called Jensen-Varadhan functional and it reads

IJV
[
ρA
]

=
1

4

∫
R

dx
∫ ρR

ρL

du D(u)

σ2 (u)
(vsρL − a (ρL)− vsu+ a(u)) , (9.5)

where D and σ are the di�usive coe�cients of the conservation law with a small noise
and di�usion (9.4). It is important to note that the TASEP does not admit a kinetic de-
scription and the tools to analyze its hydrodynamical limit are di�erent that the one
presented in this manuscript. As we explain in this chapter, starting from a particle
dynamics, that admits several velocities and evolves on a continuum space is a very
di�erent problem. The derivation of the Jensen-Varadhan functional (9.5) encoding the
probability of antishocks starting from (9.4) is the question addressed in [154, 20], and
then [15, 21] in more than one dimension. In this manuscript, we are interested in
the derivation of the Jensen-Varadhan functional (9.5) starting from a certain particle
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dynamics, that can be described non-trivially at the kinetic level (at variance with the
TASEP). We explain in this chapter than even if the derivation of the Jensen-Varadhan
from the �uctuating hydrodynamics description (9.4) is well-understood, it seems that
the assumptions one has to use to derive the �uctuating hydrodynamics (9.4) from cer-
tain particle dynamics break down in the presence of steep gradients for the density
pro�le.

More generally, the study of �uctuations within the hydrodynamical limit for systems
whose macroscopic description is hyperbolic or ballistic (rather than di�usive) has been
a very active topic, motivated by the study of conservation laws and transport phenom-
ena. Notable results include the �uctuating hydrodynamics description of the Weakly
Asymmetric Exclusion principle [34, 33], and the study of its associated shock solutions
[44, 99]. As discussed in chapter 8, such systems are also of interest in active matter. In
[2, 3], the authors study �uctuations in the hydrodynamic limit for an active lattice parti-
cle system whose �uid limit is a transport equation. From the point of view of integrable
systems, progress has also recently been made toward a Ballistic Macroscopic Fluctua-
tion Theory (in reference to the MFT for di�usive systems described in [32]) based on
�uctuation-dissipation theorems.

In this chapter, we explain that the assumptions typically made to obtain the �uctuat-
ing conservation law with small di�usion (9.4) and used throughout the manuscript to
obtain �uctuating hydrodynamics collapse in the presence of shocks. As a consequence,
the Jensen-Varadhan description of antishocks does not hold for the particle model we
consider. The outline of the chapter is summarized in �gure 9.3. In section 9.2, we in-
troduce the particle model as well as its kinetic description (via a LDP for the empirical
measure). Ignoring the possible presence of shocks, we show in section 9.3 that we can
derive the �uctuating hydrodynamics description from the particle dynamics, as a LDP
for the empirical density that is equivalent to (9.4). Ignoring the e�ect of steep gradi-
ents in the small Knudsen number expansions, we then explain in section 9.4 how to
obtain the Jensen-Varadhan LDP quantifying the probability of antishocks as a small
Knudsen number convergence of the hydrodynamical large deviation functional, repro-
ducing the computations from [154, 20]. In section 9.5, considering the e�ects of shocks
in the asymptotic expansions that led to obtaining �uctuating hydrodynamics, we ex-
plain that this derivation is no longer possible. We present the steps to obtain a large
deviation result characterizing antishocks directly from the particle dynamics, and show
that in general we do not obtain the Jensen-Varadhan functional. Remarkably, we �nd
that within a quasi-incompressible regime (where the shocks are regularized on length
scales much larger than the microscopic scales), we recover the Jensen-Varadhan result.

9.2. Microscopic and kinetic model
In this section, we introduce a simple particle toy-model admitting the conservation law
(9.1) as a hydrodynamical limit, and which large deviation structure is well-known. It
can be seen as a one-dimensional version of the Run-and-Tumble model introduced in
chapter 3, with density dependent tumbling rates. Run-and-Tumble dynamics are widely
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N large
(Sec. 9.2)

Microscopic
model (Sec. 9.2) Kinetic LDP

α small
(Sec. 9.3)

Hydrodynamic LDP
(small di�usion)

Γ−convergence
α→ 0
(Sec. 9.4)

Jensen-Varadhan’s
functional

α→ 0

(Sec. 9.5)

Figure 9.3.: Synoptic scheme of the chapter. In section 9.2, we introduce the micro-
scopic model and the associated kinetic description. In section 9.3 we derive from
the kinetic large deviation principle the �uctuating hydrodynamics description in the
form of a LDP for the empirical density. In section 9.4, we derive the Jensen-Varadhan
functional giving the probability to observe an antishock pro�le for the density as
a Γ−convergence of the LDP for the empirical density. In section 9.5, we compute
the probability of an antishock starting directly from the kinetic LDP. However, the
Jensen-Varadhan’s functional is only retrieved with the supplementary assumption of
“quasi-incompressibility”.

used in biology and biophysics to describe the behavior of bacteria (see for instance
[24, 23, 180]); we only use it here as a simple tractable model. The results of this section
are the derivation of the kinetic equation describing the distribution of position and
velocity of the particles, and of a large deviation principle quantifying the probability
of evolution paths of the µ−space empirical measure. Because it stems from a jump
process, the associated large deviation Hamiltonian is non quadratic with respect to
the conjugated momentum, making the large deviations non Gaussian. We discuss the
appropriate macroscopic scaling to obtain the hydrodynamical limit and the validity of
the truncation of the Hamiltonian to its quadratic part within this limit.

Microscopic model. We consider a model of N particles in a domain of size L with
positions (xn)1≤n≤N ∈ RN . There are two kinds of particles: particles with velocity u
and particles with velocity−u. Particles switch velocity at a rate depending on the local
density ρ̄N,R(x, t):

ρ̄N,R(x, t) =
L

NR

N∑
n=1

1B(x,R) (xn (t)) ,
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9.2 Microscopic and kinetic model

where 1B(x,R) is the indicator function of {y ∈ R | |y − x| ≤ R}. The particles velocities
evolve according to the Markov jump process:

+u
λg−(ρ̄N,R)−→ −u,

−u
λg+(ρ̄N,R)−→ +u,

(9.6)

where the subtext on the arrows indicates the transition rates. g± are dimensionless
functions, chosen so that for any y: g+(y) + g−(y) = 1; λ is a rate. Writing xn(t), vn(t)
for the position and velocity of particle n (vn = ±u), the positions dynamics is simply
ẋn = vn. To be complete, we should de�ne the boundary conditions; we take for in-
stance periodic boundary conditions: (xn)1≤n≤N ∈ (R/LZ)N , but they do not play an
important role in the following.

This model has three length scales: the interaction range R, the size of the system L
and the mean free path

` =
u

λ
.

We assume in the following R� `� L.

Kinetic equation. In an appropriate large N limit, this microscopic model can be
described by a kinetic equation.

We use in this paragraph the typical time between velocity switches λ−1 as time unit
and the mean free path ` as space unit, so that the particles’ velocities are ±1. We
de�ne the empirical measures on the µ-space, i.e. the one particle phase-space which is
{−1, 1} × R/LZ,

fN,± (x, t) =
L

N`

N∑
i=1

δ
(
x− xi(t)

)
δ (vi(t),±1) (9.7)

where L is the size of the system. ε−1 = N`/L is the typical number of particles in
an interval of size the mean free path; we assume this number to be large. With this
normalization, the phase space densities fN,± typically take values of order 1.

In the limit ε → 0, the empirical measures fN,± approach the limiting functions f±,
which satisfy the kinetic equation:{

∂tf+ + ∂xf+ = −g−f+ + g+ (1R ∗ ρ) f−

∂tf− − ∂xf− = −g+f− + g− (1R ∗ ρ) f+

,

where ρ(x, t) = f+(x, t) + f−(x, t), and 1R(x) = L
R

1B(0,1)

(
x
R

)
is the rescaled indicator

function of [−R,R].
Then, in the limit of vanishing interaction radius R→ 0 (which corresponds in phys-

ical units to the limit R� `), 1R ∗ ρ tends to ρ, and the kinetic equation becomes{
∂tf+ + ∂xf+ = −f+ +M+ (ρ)

∂tf− − ∂xf− = −f− +M− (ρ)
, (9.8)
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where M±(ρ) = ρg±(ρ) (we have used here g+(ρ) + g−(ρ)− = 1). This last kinetic
equation is the starting point for many mathematical works (see for instance [59, 7]),
which are often interested in proving the hydrodynamical limit in an appropriate scaling,
and sometimes look for e�cient numerical methods to simulate conservation laws. The
kinetic equation (9.8) can also be interepreted as a BGK-like kinetic equation, for a system
with two velocities and M± playing the role of the Maxwellian distribution.

Large deviations. Since the microscopic dynamics is a jump process, we can also
characterize dynamical �uctuations of the empirical measure with the following large
deviation principle, as done for instance in chapter 3 for the 2D Run-and-Tumble model
or in chapter 8 for the Boltzmann-Vicsek model. The result is the following LDP for the
empirical measures

P
(
{fN,+(t), fN,−(t)}0≤t≤T = {f+(t), f−(t)}0≤t≤T

)
�

N→+∞
e−NIT [f ], (9.9)

with f = (f+, f−). The large deviation functional reads

IT [f ] =

∫ T

0

dt
∫
R

dx sup
p
{p+∂tf+ + p−∂tf− −H [f, p]} (9.10)

where p = (p+, p−) and

H [f, p] = HT [f, p] +HQ [f, p] .

HT is the transport Hamiltonian

HT [f, p] = −p+∂xf+ + p−∂xf−, (9.11)

and HQ is the jump Hamiltonian

HQ [f, p] =
f+M− (1R ∗ ρ)

1R ∗ ρ
(
e−p++p− − 1

)
+
f−M+ (1R ∗ ρ)

1R ∗ ρ
(
e−p−+p+ − 1

)
. (9.12)

According to the hypothesis R � 1 (i.e. the interaction radius is much smaller than
the mean free pathR� ` in physical units), we may take the smallR limit in (9.12): the
convolution 1R ∗ ρ is replaced by ρ and the Hamiltonian becomes purely local.

Macroscopic scaling. To study the hydrodynamical limit, we focus in situations where
the size of the system L is much larger than the mean free path `. Hence it makes sense
to consider pro�les f± which vary over length and time scales much larger than ` and
λ−1. We then introduce the Knudsen number α = `/L, where L is a macroscopic length,
and rescale space and time as t̃ = αt, x̃ = αx: this is a hyperbolic rescaling. The kinetic
equation becomes:

α (∂tf± ± ∂xf±) = −f± +M± (ρ) . (9.13)
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In the small α limit, one then expects the phase space distributions f± to be close to the
functions M± (ρ). At leading order in α, one then obtains the equation for ρ = f+ + f−:

∂tρ+ ∂x
(
a(ρ)

)
= 0, with a(ρ) = M+(ρ)−M−(ρ). (9.14)

This is a nonlinear conservation law, and plays the role of Euler equation in standard
hydrodynamics. An expansion in the parameter α would add a di�usive term of order
α to (9.14), and turn it to a one-dimensional analogue of compressible Navier-Stokes
equations.

Under this hyperbolic rescaling, the rate function (9.10) reads

IαT [f ] = α−2

∫ T

0

dt
∫
R

dx sup
p
{α (∂tf+p+ + ∂tf−p− + p+∂xf+ − p−∂xf−)−HQ[f, p]} .

(9.15)

The Hamiltonian HQ contains a linear in p part which contributes to the deterministic
kinetic equation (9.13), and a part of order quadratic in p or higher which describes
the stochastic �uctuations around (9.13). It is convenient to separate both terms, so we
rewrite the rate function:

IαT [f ] = α−2

∫ T

0

dt
∫
R

dx sup
p
{α (∂tf+p+ + ∂tf−p− + p+∂xf+ − p−∂xf−)

+(f+ −M+)p+ + (f− −M−)p− − H̃Q[f, p]
}
, (9.16)

where we have and de�ned H̃Q by removing the linear in p part of HQ:

H̃Q[f, p] = HQ[f, p]− (f+ −M+)p+ − (f− −M−)p−.

�adratic approximation. The microscopic jump process naturally creates a Pois-
sonian noise, expressed by the Hamiltonian (9.12). In the macroscopic scaling however,
this Poissonian noise is often replaced by a Gaussian approximation, which amounts to
use a quadratic approximation to the Hamiltonian. For instance, we showed in chap-
ter 6 that this approximation was valid when investigating the di�usive dynamics of N
independent Run-and-Tumbling particles.

This quadratic approximation for the Hamiltonian is valid as long as the conjugated
momentum p remains small. For a given pro�le f = (f+, f−), the corresponding mo-
menta p+, p− maximizing the supremum in (9.16) solve the equation

α (∂tf± ± ∂xf±) + f+ −M± =
δH̃Q

δp±
,

where the leading order at small p on the right hand side is linear. From this equation
we see that in the small α regime, p remains small under the two following hypotheses:
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1. f± is close to M±: this amounts to consider pro�les which are close to local equi-
librium;

2. α(∂tf± ± ∂xf±) is small: this amounts to consider pro�les which do not vary too
steeply in space and time.

In the following, we shall use that quadratic approximation for the Hamiltonian and
discuss its validity; in particular, we can check with the above criterion that our compu-
tations are consistent. The jump Hamiltonian truncated at quadratic order reads:

HQ [f, p] = −p+ (f+ −M+)−p− (f− −M−)+
1

2ρ
(f+M− + f−M+) (p+ − p−)2 . (9.17)

Lagrangian formulation of the large deviation functional. Under the quadratic
approximation for the Hamiltonian (9.17), it is easy to solve the optimization on p in
(9.10), and to obtain a Lagrangian expression for the kinetic rate function. The optimiza-
tion in p is

sup
p
{α (∂tf+p+ + ∂tf−p− + p+∂xf+ − p−∂xf−)

+ (f+ −M+) p+ + (f− −M−) p− −
1

2ρ
(f+M− + f−M+) (p+ − p−)2

}
.

By di�erentiation with respect to p+ and p−, we have that the optimal p = (p+, p−)
satis�es

α (∂tf+ + ∂xf+) + f+ −M− =
1

ρ
(f+M− + f−M+) (p+ − p−) ,

α (∂tf− − ∂xf−) + f− −M− = −1

ρ
(f+M− + f−M+) (p+ − p−) .

Summing these two equalities, we obtain a constraint that has to be satis�ed in order
for the supremum to exist

∂tρ+ ∂x (f+ − f−) = 0. (9.18)
Using the constraint (9.18), we notice that the quantity to maximize can be rewritten as
following

α (∂tf+p+ + ∂tf−p− + p+∂xf+ − p−∂xf−) + (f+ −M+) p+ + (f− −M−) p− =

(α (∂tf+ + ∂xf+) + f+ −M+) (p+ − p−) .

As a consequence, we can express the supremum over p only as a function of the optimal

p+ − p− =
ρ

f+M− + f−M+

{α (∂tf+ + ∂xf+) + f+ −M+} . (9.19)

From there, the kinetic rate function can be expressed as follows:

IαT [f ] = α−2

∫ T

0

dt
∫
R

dx ρ

4 (f+M− + f−M+)
{α (∂tf+ + ∂xf+) + f+ −M+}2 , (9.20)

if ∂tρ+ ∂x (f+ − f−) = 0 and IT [f ] = +∞ otherwise.
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9.3 Fluctuating hydrodynamics from the kinetic LDP (without shocks)

9.3. Fluctuating hydrodynamics from the kinetic LDP
(without shocks)

In this section, we start from the rate function (9.20) of the kinetic LDP, obtained in the
hyperbolic scaling and in the quadratic approximation. Our goal is to derive a �uctuating
hydrodynamics description in terms of a large deviation principle for the empirical den-
sity �eld ρN = fN,+ + fN,− in the small α limit. At the deterministic level, we have seen
that one obtains in the small α limit a Euler-like equation at leading order (9.14). The
next to leading order in α is a Navier-Stokes-like equation, which includes a di�usion
term of order O(α). From (9.20), we want to compute both this di�usion term and the
stochastic �uctuations around this Navier-Stokes-like equation. To be more precise, we
�x a density pro�le ρ(x, t), which we assume to be regular. Our goal is to compute at the
large deviation level and in the small α limit the probability to observe ρ. As discussed
in section 6.6 of chapter 6, the hydrodynamic LDP that allows to quantify the probability
to observe a given density pro�le ρ stems from the contraction principle in the small α
limit:

P
(
{fN,+(t), fN,−(t)}0≤t≤T = {f+(t), f−(t)}0≤t≤T s.t.f+ + f− = ρ

)
�
ε→0

e
− 1
ε

inf
f++f−=ρ

IαT [f ]

.

(9.21)

In other words the probability of a certain density pro�le ρ is given by the probability
of the most probable couple of distribution functions (f+, f−) according to the kinetic
LDP 9.9, that satis�es f+ + f− = ρ. The goal of this section is then to estimate the small
α asymptotics of inf

f++f−=ρ
IαT [f ].

Let us �rst assume that

∂tρ+ ∂x
(
a(ρ)

)
= O(1). (9.22)

In other words, ρ is far from being an approximate solution of Euler equation (9.14). Then
it is not possible to choose (f+, f−) to be close to the local equilibrium (M+(ρ),M−(ρ)):
indeed the constraint ∂tρ+ ∂x (f+ − f−) = 0 would impose ∂tρ+ ∂x

(
a(ρ)

)
to be small.

We conclude that the minimal IαT [f ] (9.20) is of order α−2, which eventually becomes
in�nite in the small α limit.

We now assume that

∂tρ+ ∂x
(
a(ρ)

)
= O(α). (9.23)

It is then possible to choose (f+, f−) to be close to the local equilibrium (M+(ρ),M−(ρ)),
and we can anticipate that the minimal IαT [f ] (9.20) is of order 1 in α (the integrand
is of order α2 and compensates the α−2 prefactor). We conclude that density pro�les
ρ that are approximate solutions of the Euler equation (9.14) are in the small α limit
overwhelmingly more probable than density pro�les which are not. We now compute
the leading order of IαT [f ].
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Chapter 9 Large deviations for scalar conservation laws

De�ne g = (g+, g−) such that

f± = M±(ρ) + αg± +O
(
α2
)
, (9.24)

where g+ + g− = 0 (so that M± captures all the hydrodynamical content of f±: ρ =
f+ + f− = M+(ρ) + M−(ρ)). At leading order in α, we can rewrite the rate function
(9.20) as following

IαT [f ] =

∫ T

0

dt
∫
R

dx ρ

8M+M−
{∂tM+ + ∂xM+ + g+ +O (α)}2 ,

with the constraint

∂tρ+ ∂x (a (ρ)) + α∂x (g+ − g−) = 0,

where we recall a (ρ) = M+(ρ)−M−(ρ). Now, instead of minimizing over f = (f+, f−)
such that f+ + f− = ρ, we optimize on g = (g+, g−) such that g+ + g− = 0. We further
split g± in a deterministic and a stochastic part: g± = gd± + gs±, where the deterministic
parts are �xed

gd± = − (∂tM± ± ∂xM±) ,

and we still have to optimize over the stochastic parts gs±. A quick computation gives

gd+ − gd− = −D (ρ) ∂xρ

where

D (ρ) = 1− a′(ρ)2.

With these new notations, the optimization of (9.20) on f± becomes an optimization on
gs+

inf
f++f−=ρ

IαT [f ] = inf
gs+

∫ T

0

dt
∫
R

dx ρ

8M+M−

{
gs+ +O (α)

}2
,

with the constraint

∂tρ+ ∂x (a (ρ))− α∂x (D (ρ) ∂xρ) + α∂x
(
gs+ − gs−

)
= 0.

Noticing that gs+ + gs− = O (α) , we �nally get that the constraint reads

αgs+ =
1

2

∫
x

(∂tρ+ ∂x (a (ρ))− α∂x (D (ρ) ∂xρ)) + cte.

All in all, we can compute the leading order of the rate function as α goes to zero and
the �nal result reads

inf
f++f−=ρ

IαT [f ] =
1

α2
Iαhydro [ρ] , (9.25)
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where we introduce the hydrodynamical large deviation functional

Iαhydro [ρ] =

∫ T

0

dt
∫
R

dx ρ

8M+M− (u2 − u1)2

{∫
x

(∂tρ+ ∂x (a (ρ))− α∂x (D (ρ) ∂xρ))

}2

.

(9.26)

where the constant in the primitive is chosen so as to minimize Iαhydro. In other words,
Iαhydro describes the large deviation of the rescaled empirical density ρε (x, t) = ε

∑
δ (x− xn(t)),

through the following LDP in the small α limit

P
(
{ρε (x, t)}0≤t≤T = {ρ (x, t)}0≤t≤T

)
�
ε→0

e−
1
α2ε

Iαhydro[ρ]. (9.27)

We see from (9.26) that if ρ satis�es (9.23) (i.e. ρ is an approximate solution of the Euler
equation), Iαhydro is of order α2, meaning that the associated probability in the LDP (9.27)
is of order 1. We also recover from (9.26-9.27) that if ρ satis�es (9.22), i.e. if ρ is not an
approximate solution of the Euler equation, then Iαhydro is of order 1, and the associated
probability in (9.27) is exponentially small. However, we must keep in mind that al-
though this order of magnitude is correct, the expression of (9.26) is not if ∂tρ+∂x (a (ρ))
is of order one.

A SPDE for the empirical density with the large deviation behavior required by (9.26)
would read

∂tρε + ∂x (a (ρε)) = α∂x (D (ρ) ∂xρε) + ∂x

(√
2α2εM+M−

ρε
η

)
= 0, (9.28)

where

E (η (x, t) η (x′, t′)) = δ (x− x′) δ (t− t′) .
The SPDE (9.28) is the equivalent of the �uctuating compressible Navier-Stokes equa-

tion when the particle dynamics is the one of a dilute gas. Equation (9.28) is also the
starting point of [154, 20] to derive the Jensen-Varadhan functional.

We have used in this computation the quadratic approximation to the Hamiltonian.
We may question whether the conditions listed in 9.2 to use this approximation are
ful�lled. Clearly, they are not when ρ satis�es (9.22). However, when ρ satis�es (9.23),
we have seen that the optimal kinetic function f = (f+, f−) that minimizes IT [f ] with
f+ + f− = ρ is close to a local equilibrium, so the �rst condition is met. The second
condition requires that the space and time derivatives of ρ remain of order 1, or at least
smaller thanα−1. This is actually a very stringent condition put on the pro�les ρ, because
solutions of conservation laws (9.14) typically develop shocks.

9.4. Jensen-Varadhan large deviation functional
Section 9.3 provides the large deviation speed and rate function for density pro�les
which are approximate solutions of the scalar conservation law (9.1) and are regular
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Chapter 9 Large deviations for scalar conservation laws

enough. We start from the hydrodynamic LDP (9.26) assuming it is also valid for steep
density pro�les, and use it to compute the weight of antishocks when α → 0. In this
context, we recover the Jensen-Varadhan functional that quanti�es the probability of
antishocks. We know it may not be correct, but it will provide a comparison with the
direct computations which follow.

First, we �x an antishock ρA, and we compute lim infρα→ρA I
α
hydro [ρα], i.e. we look for

a sequence of regularized pro�les ρα approaching the steep antishock pro�le ρA while
maximizing their probability according to the hydrodynamic LDP (9.26). Technically,
this is a Γ− convergence result for the rate function (9.25). This is essentially a "physi-
cist’s view" of the results of Mariani et al [154, 20], which provide an almost complete
proof of the Γ− convergence. We shall obtain in the end the same Jensen-Varadhan’s
functional as in [154, 20].

Let ρA be an antishock between ρL and ρR, with speed vs = (a (ρR)− a (ρL)) / (ρR − ρL).
We have to �nd a family (ρα) of regularized pro�les approximating ρA in the α→ 0 limit
in an optimal way (in the sense that they minimize Iαhydro [ρα]).

Figure 9.4.: An antishock pro�le ρA (dashed line) between ρL and ρR and a density
pro�le ρα approximating the antishock with a regularization length `reg (solid line).

First assume that (ρα) regularizes ρA over a spatial scale `reg. The regularization length
of a regularized pro�le ρα is the length needed for ρα to vary smoothly from ρL to ρR (see
�gure 9.4). Then far from the discontinuity, ρα is uniform and does not contribute to the
rate function (9.26). In a window of width `reg around the discontinuity, ∂tρα + ∂xa(ρα)
and ∂x (D(ρα)∂xρ

α) are of order `−1
reg and `−2

reg respectively. After taking the primitive,
the square and integrating over space we see that the hydrodynamic rate function (9.26)
is of order `reg +α2`−1

reg: this order of magnitude is clearly smallest for `reg ∝ α. We have
proved that the optimal spatial scale over which ρα regularizes the antishock ρA is α,
in the sense that any smoother or steeper regularization corresponds to a much larger
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9.4 Jensen-Varadhan large deviation functional

value of the rate function.
Hence we may then parameterize ρα by (the opposite of) its associated di�usion co-

e�cient D̃, where D̃ is de�ned by the equation:

∂tρ
α + ∂x (a (ρα)) = −α∂x

(
D̃ (ρα) ∂xρ

α
)
. (9.29)

We also de�ne σ (ρ) =
√

4M+M−
ρ

. The goal is now to �nd the best possible sequence ρα,
or equivalently the best possible D̃, and compute the limit when α → 0 of Iαhydro [ρ]. In
other words, we want to compute the leading order in α of

inf
D̃|ρα→ρA

Iαhydro [ρα] , (9.30)

i.e. in�mum of the hydrodynamic rate function Iαhydro [ρα] over the regularized density
pro�les ρα (parametrized by D̃) approaching the antishock ρA in the small α limit. This
rate function will ultimately give the probability to observe a certain antishock pro�le
ρA.

With these new notations, the rate function reads

inf
D̃|ρα→ρA

Iαhydro [ρα] = inf
D̃

α2

4

∫ T

0

dt
∫
R

dx 1

σ2 (ρα)

((
D̃ (ρα) +D (ρα)

)
∂xρ

α
)2

. (9.31)

We introduce the new variables: z = x−vst, ρα (x, t) = U (z/α) . z is a position variable
that follows the antishock, and U parametrizes the pro�le of the antishock. Then, we
can recast the de�nition (9.29) of D̃ as follows:

−vsU ′ + a′(U)U ′ = −
(
D̃ (U)U ′

)′
,

where the primes denote derivatives. Integrating the previous identity gives

D̃ (U)U ′ − vSU + a (U) = C, (9.32)

where C is a constant. We can compute this constant C for instance by looking at
z → −∞, we obtain: C = −vsρL+a (ρL) .With the change of variables t→ z = x−vst
and using (9.32) we have the following identity

(∂xρ
α)2 = U ′2 = U ′ (−vsρL + a (ρL)− a(U) + vsU) /D̃ (U) .

Introducing this identity in the rate function (9.31) yields

inf
D̃|ρα→ρA

Iαhydro [ρα] = inf
D̃

α2

4

∫
R

dx
∫ α−1(x−vsT )

α−1x
dz 1

σ2 (U)

(
D + D̃

)2

D̃
U ′ (−vsρL + a (ρL) + vsU − a(U)) .

Finally, we introduce the following change of variable: u = U(z), and we have

inf
D̃|ρα→ρA

Iαhydro [ρα] = inf
D̃

α2

4

∫
R

dx
∫ ρR

ρL

du 1

σ2 (u)

(
D (u) + D̃ (u)

)2

D̃(u)
(−vsρL + a (ρL) + vsu− a(u)) .
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(9.33)

We see that for the in�mum to be non-trivial in (9.33) we need to introduce the rescaled
rate functional:

IJV
[
ρA
]

= inf
D̃|ρα→ρA

1

α2
Iαhydro [ρα] . (9.34)

Now, we want to compute (9.34), i.e. to perform the minimization on D̃. Then the
optimal D̃ that minimizes (9.33) is obtained by derivation with respect to D̃(u) and has
to satisfy D̃(u) = D(u). This extremum is indeed a minimum, because 1

σ2(u)
> 0 and by

convexity of a : ρ 7→ a(ρ), −vsρL + a (ρL) + vsu− a(u) ≥ 0.
The �nal result is the Jensen-Varadhan large deviation functional

IJV
[
ρA
]

=
1

4

∫
R

dx
∫ ρR

ρL

du D(u)

σ2 (u)
(vsρL − a (ρL)− vsu+ a(u)) , (9.35)

that quanti�es the probability of a certain antishock, de�ned by its densities (ρL, ρR) to
be observed through the following LDP in the small α limit

P
(
ρA = (ρL, ρR)

)
�
ε→0

e−
1
ε
IJV [ρA].

This rate function measures the "entropy production", with the entropy function s, such
that s′′(u) = D(u)/σ2(u). This is the Jensen-Varadhan functional found in [154] starting
from the hydrodynamic LDP (9.26).

9.5. Weight of an antishock directly from the kinetic
LDP

In section 9.3 we have obtained, under appropriate hypotheses, the rate function for
the density at the di�usive (Navier-Stokes) level, for small but �nite Knudsen number
α; then in section 9.4 we have taken the limit α → 0 to obtain the Jensen-Varadhan
functional. This requires in particular that the optimal kinetic function f remains close
to a local equilibrium of the kinetic equation, which is a priori not guaranteed for an
antishock. In order to shed light on the validity of the rate function (9.35), in this section
we start directly from the kinetic rate function (9.20), and we compute the probability of
an antishock. Technically, we need to perform a contraction from the kinetic functions
"f−space" to the density functions "ρ−space, with the extra di�culty that the target
density ρ is not regular. We show that there is no reason that the optimal kinetic function
f corresponding to the antishock remains close to a local equilibrium, and no reason that
the Jensen-Varadhan’s functional (9.35) remains valid.

In general, the large deviation rate function replacing (9.35) that we obtain is not very
explicit. However, we also identify the regime where (9.35) is valid: it corresponds to the
cases where the length over which shocks and antishocks are regularized is large with
respect to the mean free path; it also corresponds to a quasi incompressible regime.
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The starting point is the kinetic rate function

IαT [f ] =

∫ T

0

dt
∫
R

dx ρα

4 (f−M+ + f+M−)
{α (∂tf+ + ∂xf+) + f+ −M+}2 , (9.36)

if ∂t(f+ + f−) + ∂x (f+ − f−) = 0 and IT [f ] = +∞ otherwise.
Let ρA be an antishock between ρL and ρR, with speed vs = (a (ρR)− a (ρL)) / (ρR − ρL).

In principle, our goal is to perform a contraction from the kinetic LDP, ie to compute

inf
f++f−=ρ

(
IT [f ], f+ + f− = ρA

)
.

However, ρA is singular; thus the possible f+, f− would be singular too, and would cor-
respond to an in�nite value for the rate function. We then introduce (ρα) a family of
regularized pro�les approximating ρA in the α→ 0 limit, to be determined. We param-
eterize the family (ρα) by the di�usion coe�cient D̃(ρ), through the equation

∂tρ
α + ∂x(a(ρα)) = −α∂x

(
D̃(ρα)∂xρ

α
)
.

Note that since ρα regularizes an antishock, the di�usion is negative. Furthermore, ρα
regularizes the antishock ρA over a lengthscale

`reg ∼ α
D

a′
. (9.37)

Our goal is to compute

Ih [ρα] = lim
α→0

inf
f++f−=ρα

(IT [f ], f+ + f− = ρα) , (9.38)

and to minimize it over the approximating pro�le ρα, that is minimizing it over D̃(ρ)
which characterizes ρα.

Let f± = M±(ρα) + g±, without assuming a priori that g± is of order α. g± are the
deviations with respect to the local equilibrium. Since f+ + f− = M+(ρα) +M−(ρα) =
ρα, we have g+ + g− = 0.

We now split g± between a deterministic and a stochastic part g± = gd± + gs±, with

gd+ + α(∂t + ∂x)g
d
+ = −α(∂t + ∂x)M+ (9.39)

gd− + α(∂t − ∂x)gd− = −α(∂t − ∂x)M− (9.40)

Introducing the notations T±h = (∂t ± ∂x)h, this is solved as

gd± = −α
(
Id + T −1

±
)
· T±M±.

Furthermore, the constraint for the kinetic large deviation functional to be �nite reads

∂tρ
α + ∂x

(
a(ρα)

)
+ ∂x(g

d
+ − gd−) = −∂x(gs+ − gs−)

i.e.

gs+ − gs− = D̃∂xρ
α − (gd+ − gd−);
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the constant which appears in the integration over x is seen to vanish by considering
the behavior far from the antishock: there g± = 0. Using gs+ + gs− = −(gd+ + gd−), we
conclude

gs+ = −gd+ +
1

2
D̃∂xρ

α (9.41)

gs− = −gd− −
1

2
D̃∂xρ

α (9.42)

We can now compute the integrand of the rate function (9.38). First
α (∂tf+ + ∂xf+) + f+ −M+ = (Id + T+)gs+

= T+M+ +
1

2
(Id + αT+)D̃∂xρ

α

=
1

2
(D(ρα) + D̃(ρα))∂xρ

α

+
1

2
α
[
T+D̃∂xρ

α − (1 + a′)∂x(D̃∂xρ
α)
]
. (9.43)

In the above computation, we have used the de�nition of D: D(ρ) = 1− a′(ρ)2.
The �nal step is to rewrite (9.36) using (9.43) and minimize it with respect to the

di�usion coe�cient D̃. This is in general a di�cult task. One thing is clear however:
the result is not the Jensen-Varadhan functional as found in 9.4. We also remark that
if, for the optimal D̃, the regularization length (9.37) is much larger than α, then the
second term on the right hand side in (9.43) is much smaller than the �rst one: indeed,
α∂xρ

α ∼ α/`reg � 1. By the same reasoning, in this case gd± and gs± are small, so
that local equilibrium holds. We have seen in 9.4 that in such a situation the optimal D̃
is D̃ = D, and that the limit rate function becomes at leading order Jensen-Varadhan
functional. If D̃ = D, the `reg � α hypothesis rewrites:

1− a′2
|a′| � 1⇔ |a′| � 1.

This condition should be satis�ed for all densities spanned by the antishock, ie [ρR, ρL].
a′(ρ) is of the same order of magnitude as the antishock velocity; it can be interpreted
as a typical "macroscopic velocity". Hence the above condition amounts to a small Mach
number. We have shown here that this small Mach number condition, which is not sur-
prising if one wants to ensure local equilibrium for typical density pro�les, is actually
also su�cient for local equilibrium to hold for non typical density pro�les, at large devi-
ation level. Finally, from (9.36) and (9.43), it is not di�cult to compute the �rst correction
to the Jensen-Varadhan functional, of order α/`reg. It is not however particularly illumi-
nating.

To summarize, we have shown:
1. In general, the Jensen-Varadhan functional (9.35) does not describe the large devi-

ation of the density.

2. However, in the regime where shocks are regularized over length scales much
larger than the mean free path, which corresponds to small Mach numbers, the
Jensen-Varadhan functional for the large deviation of the density is recovered.
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9.6. Conclusions
In the context of a toy-model whose hydrodynamical limit is a conservation law, we
have shown that in general the �uctuating hydrodynamics approach fails to describe
the probability of the density to be an antishock weak solution of the conservation law.
This is because, when gradients become steep in the Chapman-Enskog expansion (or
generally in the hydrodynamical limit computations), several assumptions collapse: at
the deterministic level, the distribution function does not have to remain close to a local
equilibrium, at the �uctuating level, the noise term has no reason to become Gaussian.
However, in a quasi-incompressible regime where the shocks are regularized at scales
much larger than the microscopic scale, implying that their velocity is small compared to
the microscopical one (i.e. the Mach number is small), we showed that the the previously
mentioned assumptions still hold. In the context of our 1D toy-model, we recover the
Jensen-Varadhan large deviation functional quantifying the probability of an antishock.

Even if we are far from understanding the possible shocks of the Navier-Stokes equa-
tions, these results seem to indicate that the �uctuating hydrodynamics we derived in
chapter (7) should not be able to describe the probability of hydrodynamical pro�les in
the presence of shock, at least in the compressible case. Besides the questions related to
the shocks for the Navier-Stokes equations, the understanding of hydrodynamic �uctu-
ations around non-regular hydrodynamic pro�les can be of importance for the study of
transport phenomena exhibiting dynamical phase transitions. In [22] the authors study
a 1D system similar to the one discussed in this chapter, except the particles evolve on
a lattice and change velocities according to a local Ising rule. Such a system exhibits
a �ocking state (all the particles locally have the same velocity) that can rarely reverse
its direction, driven by �nite N �uctuations that propagate through the �ock with a
non-regular front.
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10. Conclusions

In this �nal chapter, we summarize the content of the thesis manuscript and discuss the
perspectives emanating from this work.

10.1. Summary
This thesis discusses the derivation of �uctuating hydrodynamics starting from the mi-
croscopic description of the particle dynamics. Fluctuating hydrodynamics can describe
the evolution of macroscopic, coarse-grained �elds while still taking into account �uctu-
ations induced by �nite particle number e�ects. Such a result can either be expressed as
a stochastic PDE for the (empirical) hydrodynamic �elds, or as a large deviation principle
for the same �elds. The derivation of �uctuating hydrodynamics is two-fold, as re�ected
by the structure of this dissertation. First, one needs to bridge from the particle descrip-
tion to a kinetic large deviation principle, that describes dynamical �uctuations of the
empirical measure, whose most probable path (law of large numbers) is predicted by the
kinetic equation. Then, we obtain a �uctuating hydrodynamics description by studying
either the asymptotics of the kinetic large deviation principle within the hydrodynamic
limit, or the asymptotics of the associated �uctuating kinetic equation.

More precisely, in the �rst part of the manuscript, we introduced the general frame-
work of the large deviation approach to kinetic theory. We also derived two original
results that are large deviation principles that estimate the probability of any evolution
path for the empirical measure of a Hamiltonian systems of N particles coupled by a
long-range pair potential, in the largeN limit, in the general case, and within the Landau
approximation for plasmas. These two results extend the classical Balescu-Guernsey-
Lenard and Landau kinetic theories. Alongside other works on the large deviations
associated with the Boltzmann kinetic theory [184, 50, 45, 46], these results complete
the picture of kinetic large deviation principles for Hamiltonian systems whose kinetic
theory is well-known.

In the second part of the manuscript, we explained how to derive �uctuating hydro-
dynamics starting from kinetic large deviation principles. We review two methods: one
based on the generalization of the Chapman-Enskog expansion to �uctuating kinetic
equations, that allows to compute �uctuating hydrodynamics as SPDEs for the hydrody-
namic �elds. The other method consists in studying the asymptotics of the kinetic large
deviation functional in the hydrodynamical limit, through the lens of the contraction
principle, to obtain a large deviation principle for the evolution paths of the empirical hy-
drodynamical �elds. In both cases, we argue that in some of the examples studied in this
manuscript, the resulting hydrodynamical large deviation principle is Gaussian, regard-
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less of the Gaussianity of the underlying kinetic large deviation principle. This allowed
us to derive the compressible and incompressible �uctuating Navier-Stokes equations,
SPDEs describing thermal �uctuations for �uids, starting from the large deviation prin-
ciple for the Boltzmann equation. This is to our knowledge one of the �rst microscopic
derivation of the stochastic �uxes in these equations. We also derived the �uctuating
hydrodynamics for a dilute gas of active particles aligning through binary collisions. In
this case, the microscopic derivation allowed to obtain the correlation structure of the
noise, which appeared to be quadratic in the density. This highlights the relevance of the
microscopic derivation of �uctuating hydrodynamics when the shape of the noise terms
cannot be obtained by equilibrium thermodynamics considerations. In the last chapter
of this manuscript, we bring a nuance to our approach when the hydrodynamic limit is a
conservation law, in the case of a one-dimensional toy model. In this context, it is known
that the �uid equation admits shock solutions as weak solutions. We show that in this
case, the asymptotic developments carried out to obtain the �uctuating hydrodynamics
have no more reason to be valid. However, in a quasi-incompressible limit, it becomes
possible to quantify the probability of hydrodynamic pro�les including non-entropic
shocks.

10.2. Prospects
We discuss here the perspectives opened by the work presented in the �rst part of the
manuscript. It is surprising that the derivation of the large deviation principle asso-
ciated with the Balescu-Guernsey-Lenard equation lead to explicit expressions for the
large deviation Hamiltonian, through the use of the Szegö-Widom theorem. It is then
interesting to wonder if such approaches can be applied to other systems. There is a
wide variety of systems whose kinetic description is based on a similar slow-fast aver-
aging, for which the understanding of large deviations is crucial and could be achieved
through the techniques presented in this manuscript. Here, we focus on systems related
to long-range interacting particle systems. We obtained conclusive results not listed in
this document for the extension to inhomogeneous systems with long-range interac-
tions, and to long-rang interacting particles forced out-of-equilibrium by a stochastic
external �eld. This last system o�ers a wide non-equilibrium phenomenology (bista-
bility, phase transitions) [166, 167] and a large deviation approach could give concrete
insights to characterize those dynamical phase transitions through the estimations of
transition time, or the computations of typical transition paths. Ultimately, the system
discussed in [166, 167] is partially motivated by its deep connection with the kinetic re-
duction used to study the mid-latitude atmospheric �uid dynamics in geophysics [53].
It is then a natural perspective to obtain dynamical large deviation principles for such
a system, that also exhibits dynamical phase transitions of importance for the study of
the climate.

Then, the large deviation approach to the derivation of �uctuating hydrodynamics
opens both theoretical and physical questions. The theoretical aspects are largely dis-
cussed in this dissertation and the formalization of the notion of convergence of the
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kinetic large deviation principle to a hydrodynamic large deviation principle plays a
central role in it. We used the contraction principle to obtain such results, but the
Γ−convergence approach seems to yield similar result, as well as a starting point to
rigorous approaches [47, 83, 16, 155] and more systematic studies of �uctuating hydro-
dynamics. Another point raised in this manuscript is that all the stochastic PDEs de-
rived are rephrasings of underlying large deviation principles. As a consequence, they
are appropriate do describe rare trajectories of the hydrodynamical evolution driven by
extreme realization of the noise term, but they might not accurately describe small �uc-
tuations. However, it has been observed that the �uctuating Navier-Stokes equations
accurately describe small thermal �uctuations close to the deterministic evolution. This
implies that there might be an argument that makes our large deviation approach rele-
vant to describe small �uctuations close to the hydrodynamic evolution.

From a more physical perspective, the most exciting perspectives for the derivations of
�uctuating hydrodynamics concern non equilibrium systems. Typically, in active matter,
the role of �uctuations is prominent due to the relatively small size of the systems, and
the di�erent �uctuation induced phase transitions that have been observed [156, 92].
Large deviations approaches are natural to study such phenomena, providing tools to
compute transition paths and frequency.

Active matter systems being deeply out-of-equilibrium, there is no way to infer the
expression of the noise term in �uctuating hydrodynamics description with respect to
microscopic parameters on the basis of thermodynamics. Our �rst-principle approach is
then relevant for them, and the derivation of �uctuating hydrodynamics for other classes
of active systems, that either display an interesting phenomenology, or o�er useful ap-
plications; such as active nematics [29], or active particles in a quenched disorder [176]
is a natural follow-up to our work.

In conclusion, it should be noted that this work is based on the kinetic and hydrody-
namic scaling limits approach to statistical mechanics. The deterministic macroscopic
equations are obtained as a law of large numbers from particle dynamics. From there,
it is possible to study �uctuations around the deterministic limit thanks to the usual
tools of probability theory: the central limit theorem and the large deviation principle.
However, it is not obvious that this paradigm holds for some physical systems because
of the strong assumptions needed to derive the kinetic equations. Typically, the kinetic
approach is mathematically rigorous when the particle system is in the dilute limit, or
in the opposite mean-�eld interacting limit. This is far from being true for most phys-
ical �uids, such as liquid water, and remains a physically unattainable limit in general.
Using asymptotic descriptions to describe physical systems that do not quite approach
them is of course common in physics, and often yields useful results. However, in [13]
the authors suggest that �uctuating hydrodynamics may be relevant on scales as small
as a fraction of the Kolmogorov length, which is much larger than the molecular scale
(the mean free path). This does not disqualify the derivation of hydrodynamic LDPs
presented in this thesis. On the contrary, it raises interesting questions about how to
interpret them. Even if the formal mapping from SPDE to LDP seems easy to grasp, one
of the key points is how to interpret the noise term, e.g. how to set a relevant cut-o�
for a numerical implementation. Answering this question would allow to clarify the

191



Chapter 10 Conclusions

range of validity of the scaling limit approach to �uctuating hydrodynamics undertaken
in this thesis, i.e. at which scales it is possible to consider �uctuating hydrodynamics as
a small correction to deterministic hydrodynamics. So far, these remarks are not sup-
ported by any experimental observations and an attempt to address these problems from
an experimental point of view would be an interesting continuation of this work.
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A. Appendices relative to the first
part

We report here the appendices relative to the �rst part of the dissertation.

A.1. The relative entropy for N independent
di�usions solves the stationary Hamilton–Jacobi
equation

We consider the relative entropy

Srel [f ] = −
∫

drdv f log
(
f/feq

)
,

where feq is the equilibrium distribution. In this appendix, we shows that −Srel solves
the stationary Hamilton-Jacobi equation (HMF [f,−δSrel/δf ] = 0), for the case of N
independent di�usions (3.37). We recall that HMF [f,−δSrel/δf ] = 0 is a necessary
condition for −Srel to be the quasipotential. By contrast, when those N di�usions are
coupled in a mean �eld way (in 3.43) and the drift and di�usion coe�cients depend
actually on f , we are no more able to conclude that HMF [f,−δSrel/δf ] = 0 and we
believe this is actually wrong in general.

In both cases, the large deviation Hamiltonian for the empirical density fN reads

HMF [f, p] = HT [f, p] +HMF,h [f, p] ,

where

HT [f, p] =

∫
drdv fv · ∂p

∂r
,

and

HMF,h [f, p] =

∫
drdv f

{
b [f ] .

∂p

∂v
+

∂

∂v

(
D [f ]

∂p

∂v

)
+ D [f ] :

∂p

∂v

∂p

∂v

}
.

In the simple case where the N di�usions are independent, the drift and the di�usion
coe�cients do not depend on the actual distribution f : b [f ] = b and D [f ] = D.
In order to check that the relative entropy Srel is the opposite of the quasipotential,
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according to property 11 from section 3.4, we shall check that it solves the stationary
Hamilton–Jacobi equation

HMF [f,−δSrel/δf ] = 0 (A.1)

We have

− ∂

∂r

(
δSrel

δf

)
=

1

f

∂f

∂r
− 1

feq

∂feq

∂r
,

− ∂

∂v

(
δSrel

δf

)
=

1

f

∂f

∂v
− 1

feq

∂feq

∂v
, (A.2)

and feq solves the stationary Fokker–Planck equation

−v · ∂feq

∂r
+

∂

∂v
·
(

D
[
feq
]
· ∂feq

∂v
− b

[
feq
]
feq

)
= 0. (A.3)

Using (A.2) we have

HMF

[
f,−δSrel

δf

]
=

∫
drdv

{
− f

feq
v · ∂feq

∂r
+ b [f ] · ∂f

∂v
− f

feq

∂feq

∂v
· b [f ]

+D [f ] · ∂feq

∂v

1

feq2

·
(
∂f

∂v
feq −

∂feq

∂v
f

)}
.

Now, we integrate by parts the �rst and the last term of the expression above, noting
that

1

feq2

(
∂f

∂v
feq −

∂feq

∂v
f

)
=

∂

∂v

(
f

feq

)
,

and

−f ∂b [f ]

∂v
− f

feq

∂feq

∂v
b [f ] = − f

feq

∂

∂v

(
b [f ] feq

)
.

We obtain

HMF

[
f,−δSrel

δf

]
=

∫
dv

f

feq

{
−v · ∂feq

∂r
+

∂

∂v
·
(

D [f ]
∂feq

∂v
− b [f ] feq

)}
.

We see that if for any f

−v · ∂feq

∂r
+

∂

∂v
·
(

D [f ]
∂feq

∂v
− b [f ] feq

)
= 0, (A.4)

thenHMF

[
f,− δSrel

δf

]
= 0 for any f . When b [f ] = b and D [f ] = D do not depend of f ,

i.e. when the N di�usions are independent, this identity is equivalent to the stationary
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A.2 Long time large deviations for quadratic observables of Gaussian processes,
functional determinants and the Szegö–Widom theorem for Fredholm determinants

Fokker–Planck equation (A.3). It thus holds. It follows that the Hamilton–Jacobi equa-
tion (A.1) is veri�ed and that the negative of the relative entropy solves the stationary
Hamilton–Jacobi equation, for the case of N independent di�usions.

However, when the drift and the di�usion coe�cient do depend on the distribution,
(A.4) is no more true for any f . Then, we cannot conclude anymore that the relative
entropy solves the stationary Hamilton–Jacobi equation.

An interesting remark is that in the speci�c case where b [f ] and D [f ] are chosen to
mimic a Balescu-Guernsey-Lenard dynamics as in (4.15), with the precision that

B (v,v′) · (v − v′) = 0

to ensure momentum conservation, then the identity (A.4) holds for all f with

feq (v) =
β3/2

(2π)3/2
exp

(
−βv2

2

)
.

A.2. Long time large deviations for quadratic
observables of Gaussian processes, functional
determinants and the Szegö–Widom theorem for
Fredholm determinants

In this appendix, we explain how we can use the Szegö–Widom theorem in order to eval-
uate the large time asymptotics of Fredholm determinants that appears when computing
the cumulant generating function of a quadratic observable of a Gaussian process. We
follow the ideas in [57], adapting the discussion for the case of Gaussian processes with
complex variables.

Let Yt be a stationary Cn-valued Gaussian process with correlation matrix C (t) =
E (Yt ⊗ Y ∗0 ) and with a zero relation matrix R(t) = E (Yt ⊗ Y0) = 0, let M ∈ Mn (C)
be a n× n Hermitian matrix. The aim of this appendix is to prove that

logE exp

(∫ T

0

dt Y ∗ᵀt MYt

)
∼

T→∞
− T

2π

∫
dω log det

(
In −MC̃ (ω)

)
, (A.5)

where C̃ (ω) =
∫
R eiωtC (t) dt is the Fourier transform of the correlation matrix C (t)

and In is the n×n identity matrix. We note that the determinant of the r.h.s. of (A.5) is a
real number. Indeed, as Yt is a stationary process, C̃ (ω) and M are Hermitian matrices,
then the determinant is the determinant of a Hermitian operator and is a real number.

For pedagogical reasons, in this appendix the result (A.5) is stated for a process Yt
that takes values in a �nite-dimensional space. However with adapted hypotheses, this
result can be generalized when Yt is a stationary H-valued Gaussian process, where H
is a Hilbert space, and where M is a Hermitian operator onH.

In section A.2.1, we state the Szegö–Widom theorem. In section A.2.2, we explain
that the left hand side of (A.5) is the log of the determinant of a Gaussian integral,
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that this quantity can be expressed as a functional determinant for linear operators on
L2 ([0, T ] ,Cn), and that Szegö–Widom theorem reduces it to the computation of fre-
quency integrals of determinants of operators on the space Cn, as expressed by (A.5).

A.2.1. The Szegö–Widom theorem
We �rst de�ne integral operators on L2 ([0, T ] ,Cn). We considers maps ϕ : [0, T ]→ Cn

and K : R →Mn (C), whereMn (C) is the set of n × n complex matrices. We de�ne
the integral operator KT by

KTϕ (t) =

∫ T

0

K (t− s)ϕ (s) ds, (A.6)

KT is a linear operator of L2 ([0, T ] ,Cn). K is called the kernel of the operator KT .
The Szegö–Widom theorem allows to compute large T asymptotics of the logarithm

of the Fredholm determinant of the integral operator Id + KT . The result is

log det
[0,T ]

(Id + KT ) ∼
T→∞

T

2π

∫
dω log det

(
In +

∫
R

eiωtK (t) dt
)
, (A.7)

where In is the n × n identity matrix. Whereas the determinant on the l.h.s. of this
expression, denoted by the subscript [0, T ] is a Fredholm determinant, the determinant
on the r.h.s. is a matrix determinant which can be more easily computed. Further details
about this theorem and its possible applications can be found in [57].

A.2.2. Expectation of functionals of Gaussian processes
Let Yt be a Cn-valued stationary Gaussian process with correlation matrix

C (t) = E (Yt ⊗ Y ∗0 ) ,

and with zero relation matrix

R(t) = E (Yt ⊗ Y0) = 0.

We will compute the large time asymptotics of

U (T ) = logE exp

(∫ T

0

dt Y ∗ᵀt MTYt

)
,

where MT is an integral operator on L2 ([0, T ] ,Cn) whose integral kernel is given by
M (t) (see the de�nition (A.6)). We assume that for all times t, M (t) is a n× n Hermi-
tian matrix. As Yt is a Gaussian process we can compute the expectation as a Gaussian
integral. It is straightforward to check that

E exp

(∫ T

0

dt Y ∗ᵀt MTYt

)
= det

[0,T ]
(Id− (MC)T )−1 ,
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where (MC)T is the integral operator whose kernel is (M?C)(t) the convolution prod-
uct on [0, T ] of the kernels M(t) and C(t).

Then, we can deduce the following expression for u

U (T ) = − log det
[0,T ]

(Id− (MC)T ) ,

where the determinant is the Fredholm determinant of the integral operator Id−(MC)T .
Generally, it is not obvious how to compute this kind of Fredholm determinant. Fortu-
nately, we can use the Szegö–Widom theorem to obtain an expression for large T asymp-
totics as a �nite-dimensional determinant. Using the result (A.7) from section A.2.1, we
get

U (T ) ∼
T→∞

− T

2π

∫
dω log det

(
In −

∫
R

e−iωt (M ? C) (t) dt
)
.

In the special case when MT is a diagonal integral operator, i.e. when its kernel is
M(t) = Mδ(t), we can write

U (T ) ∼
T→∞

− T

2π

∫
dω log det

(
In −M

∫
R

e−iωtC (t) dt
)
,

which is the result (A.5). In these expressions, the determinant to be computed on the
r.h.s. is the determinant of a n× n matrix.

A.3. Computation of the determinant of the operator
uk,ω

In this appendix, we compute the determinant of the operator uk,ω, encountered in sec-
tion 4.5.3, and de�ned by

uk,ω [ϕ] (v1) = ϕ (v1)−
∫

dv2dv3M (k,v1,v2) C̃GG (k, ω,v2,v3)ϕ (v3) ,

for any ϕ ∈ Hv, Hv being the Hilbert space of complex functions over the velocity
space. Using equation (4.40), we can simplify this expression

uk,ω [ϕ] (v1) = ϕ (v1)−iŴ (k) k·
∫

dv2dv3 C̃GG (k, ω,v2,v3)

{
∂p

∂v
(v2)− ∂p

∂v
(v1)

}
ϕ (v3) .

(A.8)

We note that the operator uk,ω has the form

uk,ω : ϕ 7−→ ϕ− 〈w,Qϕ〉 v − 〈v,Qϕ〉w, (A.9)

where Q is a Hermitian operator over Hv, w and v are complex functions over the
velocity space, and 〈., .〉 denotes the Hermitian product: 〈a, b〉 =

∫
dv a∗ (v) b (v).
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The connection is made between formulas (A.8) and (A.9) by setting v (v) = −ik. ∂p
∂v

, w (v) = Ŵ (k) and Q [φ] (v1) =
∫

dv2 C̃GG (k, ω,v1,v2)φ (v2). Using (4.35), we see
that Q is a Hermitian operator. We note that, whenever ∂p

∂v
is not a constant in the

velocity space, v and w are linearly independent.
Formula (A.9) shows that uk,ω − Id is a rank two linear operator. Then detHv uk,ω is

the determinant of the operator uk,ω restricted to span(v, w):

det
Hv

uk,ω =

∣∣∣∣1− 〈w,Qv〉 − 〈w,Qw〉− 〈v,Qv〉 1− 〈v,Qw〉

∣∣∣∣ .
Then

det
Hv

uk,ω = 1− 2< [〈v,Qw〉] + 〈v,Qw〉 〈v,Qw〉∗ − 〈w,Qw〉 〈v,Qv〉 .

where we have used 〈w,Qv〉 = 〈Qw, v〉 = 〈v,Qw〉∗, as Q is an Hermitian operator.
We can explicitly compute the determinant of (A.8). We have

〈v,Qv〉 =

∫
dv1dv2 k.

∂p

∂v1

k.
∂p

∂v2

C̃GG (k, ω,v1,v2) ,

〈v,Qw〉 = i

∫
dv1 k.

∂p

∂v1

C̃V G (k, ω,v1)∗ ,

and

〈w,Qw〉 = C̃V V (k, ω) ,

where C̃V G, C̃V V and C̃GG are the two-point correlations functions of the quasi-linear
problem computed in section 4.4.2, and we have used (4.36-4.37).

We conclude that

det
Hv

(uk,ω) = 1 + 2

∫
dv1 k.

∂p

∂v1

=
(
C̃V G (k, ω,v1)

)
+

∫
dv1dv2 k.

∂p

∂v1

k.
∂p

∂v2

{
C̃V G (k, ω,v1) C̃V G (k, ω,v2)∗ − C̃V V (k, ω) C̃GG (k, ω,v1,v2)

}
.

A.4. Current formulation of the large deviation
principle

Because the particle number is conserved, it is clear that the dynamics of the empirical
density has a conservative form ∂fN

∂t
+ ∂

∂v
· jN = 0. For the microscopic dynamics (before

time averaging), this is a consequence of equations (4.22) or (4.26) with

jN (v, t) = − 1

NL3

∫
dr

(
∂V [δgN ]

∂r
δgN

)
.
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A.4 Current formulation of the large deviation principle

After time averaging, we could have obtained the path large deviations by studying
the large deviations of the time averaged current. Alternatively, we can rephrase our
large deviation principle as a large deviation principle for the current, through a change
of variable. This is the subject of this appendix.

The conservative nature of the dynamics is visible because the large deviation Hamil-
tonian H (4.56) does depend on the conjugate momentum p only through its gradient
∂p/∂v. We de�ne H̃ as H̃ [f, ∂p/∂v] = H [f, p] . We start from the de�nition of the
large deviation Lagrangian

L
[
f, ḟ
]

= Supp
{∫

dv ḟp−H[f, p]

}
.

Writing ḟ as the divergence of a current ḟ + ∂/∂v · j = 0, we have

L
[
f, ḟ
]

= Sup
{j|ḟ+ ∂

∂v
·j=0}

Supp
{
−
∫

dv p
∂

∂v
· j−H[f, p]

}
.

Using H [f, p] = H̃ [f, ∂p/∂v], and integrating by part, we have

L
[
f, ḟ
]

= Sup
{j|ḟ+ ∂

∂v
·j=0}

L̃ [f, j]

with

L̃ [f, j] = Sup
E

{∫
dv j · E− H̃[f,E]

}
.

where E designates the conjugate quantity of the current j.
We thus have the large deviation principle

P
(
{fN(τ)}0≤τ≤T = {f(τ)}0≤τ≤T

)
�

N→∞
e
−NL3 Sup

{j|ḟ+ ∂
∂v
·j=0}

∫ T
0 dτ L̃[f,j]

e−NI0[f(τ=0)].

(A.10)

We note that we can also write a large deviation principle for the joint probability of the
empirical density and the time averaged current jN (τ)

P
(
{fN(τ), jN (τ)}0≤t≤T = {f(τ), j (τ)}0≤t≤T

)
�

N→∞
e−NA[f,j]e−NI0[f(τ=0)],

with

A [f, j] =

{
L3
∫ T

0
dτ L̃ [f, j] if ḟ+ ∂

∂v
·j=0,

+∞ otherwise.
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A.5. Consistence of the two definitions of the tensor B

We prove that for Coulomb interaction the two expressions for B, (5.17) and (??) are
equal.

The �rst expression for B, (5.17), is

B(v1,v2) =
1

2
Λ

∫
dqw(v1,v2; q)q⊗ q,

Expressing w in terms of the cross-section σ0 through (5.8) with γ = (λD/L)3, using
(5.7), and choosing for σ0 the Rutherford di�usion cross-section

σ0(v1 + q,v2 − q; v1,v2) =
1

4π2Λ2q4
,

for two-body collisions of particles with electrostatic interactions [189], we obtain

B(v1,v2) =

∫
dq

q⊗ q

8π2q4
δ (2q. (v2 − v1)) . (A.11)

We perform the integration over q angle in (A.11) to get

B(v1,v2) = C
g2Id− gg

g3
,

with C = (8π)−1 ∫∞
0
q−1dq, g = v2 − v1, and where Id is the identity matrix in three-

dimension. We note that B(v1,v2) is proportional to g2Id−g⊗g, which is the projector
on the plane orthogonal to v2 − v1. This should have been expected as a consequence
of symmetries.

In order to obtain the proportionality coe�cient C we follow equations (6.3.15-6.3.21)
in chapter 6.3 of Schram’s textbook [189]. This chapter explains how one can deal with
the logarithmic divergence arising in the computation ofC . Brie�y, one has to regularize
the Coulomb interaction at large and small scales by introducing cut-o�s, justi�ed by the
geometry of grazing collision at small scales, and by the Debye shielding at large scales.
The �nal result reads

B(v1,v2) =
1

8π
ln Λ

g2Id− gg

g3
. (A.12)

Following the computations in chapter 8.4 of Schram’s textbook [189], we can show
in a similar way that the de�nition of B given by (5.5) is also equal to (A.12). We have
thus conclude that the two expression for B, (5.17) and 5.5 are equal.
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A.6. Symmetries and conservation laws associated
with the collision kernels

A.6.1. The Boltzmann collision kernel
The time reversal symmetry of the microscopic Hamiltonian dynamics imposes that

w0(v′1,v
′
2; v1,v2) = w0(−v1,−v2;−v′1,−v′2). (A.13)

The space rotation symmetry imposes that for any rotation R that belongs to the or-
thogonal group SO(3)

w0(v′1,v
′
2; v1,v2) = w0(Rv1,Rv2; Rv′1,Rv′2).

The combination of the time reversal symmetry and of the space rotation symmetry for
R = −I, where I is the identity operator, implies the inversion symmetry

w0(v′1,v
′
2; v1,v2) = w0(v1,v2; v′1,v

′
2). (A.14)

The local conservation of momentum and energy implies that

w0(v′1,v
′
2; v1,v2) = σ(v′1,v

′
2; v1,v2)δ (v1 + v2 − v′1 − v′2) δ

(
v2

1 + v2
2 − v′

2
1 − v′22

)
,

(A.15)
where σ is the di�usion cross-section. σ is of the order of a2 where a is a typical atom
size.

A.6.2. The Landau collision kernel
The tensor B de�ned by

B(v1,v2) =
Λ

2

∫
dqw(v1,v2; q)q⊗ q, (A.16)

involved in the Landau equation (5.15) has properties related to the symmetry and con-
servation properties of the collision process. In equation (A.16), w(v1,v2; q) is an ap-
proximation at order zero of the collision kernel w(v1 + q/2,v2 − q/2; q) associated
with the collision of two particles with momenta (v1,v2) that exchange a momentum
q. We have:

1. w(v1,v2; q) = w(v2,v1; q) because the incident particles are indiscernible,

2. q. (v1 − v2) = 0 at leading order in q because of the energy conservation condi-
tion v2

1 + v2
2 = (v1 + q)2 + (v2 − q)2,

3. w(v1,v2; q) = w(v1,v2;−q), which is a direct consequence of (A.14) and the
de�nition of w (5.8).

We notice that the momentum conservation is already built-in in the de�nition ofw. The
�rst property implies B(v1,v2) = B(v2,v1). The second property implies B(v1,v2). (v1 − v2) =
0. In addition to that, B(v1,v2) is by construction a symmetric tensor for every pair
(v1,v2).
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A.7. Asymptotic expansions leading to the Landau
equation and its large deviation Hamiltonian

A.7.1. Asymptotic expansions leading to the Landau equation
In this appendix, we start from the collision operator of the Boltzmann equation (the
right hand side of equation (5.16)), we develop it at order 2 in q , and we prove that we
recover the collision term of the Landau equation (5.15).

We start from the expression of I in equation (5.16). Noting that [f(v + q)f(v2 − q)− f(v)f(v2)]
has no term of order zero, in order to compute an expansion at order 2 in q = |q|, it will
be su�cient to work with the expansions:
w(v + 1

2
q,v2 − 1

2
q; q) = w(v,v2; q) + 1

2

(
∂w
∂v
− ∂w

∂v2

)
.q +O(q2), and

f(v + q)f(v2 − q)− f(v)f(v2) =
(
∂f
∂v
f(v2)− ∂f

∂v2
f(v)

)
.q+

+
(

∂2f
∂v∂v

f(v2) + ∂2f
∂v2∂v2

f(v)− 2 ∂f
∂v

∂f
∂v2

)
: qq +O(q3).

Let us now compute the collision integral I(v) order by order. We directly notice that
there is no term of order zero in q. Let us compute I(1)(v) the term of order 1 of the
collision integral

I(1)(v) = Λ

∫
dv2dqw(v,v2; q)

(
∂f

∂v
f(v2)− ∂f

∂v2

f(v)

)
.q.

We use thatw(v,v2; q) is an even function of q (point 3 of appendix (A.6.2)). This makes
the integrand an odd function of q, and implies that I(1)(v) = 0.

At order 2 in q we have

I(v) =
Λ

2

∫
dv2dq

{(
∂w

∂v
− ∂w

∂v2

)(
∂f

∂v
f(v2)− ∂f

∂v2
f(v)

)
+w

(
∂2f

∂v∂v
f(v2) +

∂2f

∂v2∂v2
f(v)− 2

∂f

∂v

∂f

∂v2

)}
: qq.

To obtain the Landau equation, we have to write I(v) as a divergence involving the tensor B. In
order to do so, we integrate by parts the term involving ∂w

∂v2
while keeping the terms involving

∂w
∂v . This gives

I(v) =
Λ

2

∫
dv2dq

{
∂w

∂v

(
∂f

∂v
f(v2)− ∂f

∂v2
f(v)

)
+ w

∂

∂v

(
∂f

∂v
f(v2)− ∂f

∂v2
f(v)

)}
: qq.

Now, by noting that I(v) can be written as a total divergence with respect tov and using equation
5.17 we obtain

I(v) =
∂

∂v

∫
dv2B(v,v2)

(
− ∂f

∂v2
f(v) +

∂f

∂v
f(v2)

)
+ o

(
q2
)
, (A.17)

with B(v,v2) = Λ
∫

dqw(v,v2;q)q ⊗ q/2 (see equation (5.17)), and o
(
q2
)

means that we
omitted terms of order larger than 2. The term of order 2 is the collision operator of the Landau
equation (5.15).
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A.7 Asymptotic expansions leading to the Landau equation and its large deviation
Hamiltonian

A.7.2. Asymptotic expansions leading to the large deviation
Hamiltonian associated to the Landau equation

In this section, we detail the computation of the large deviation Hamiltonian for the Landau
equation starting from the Hamiltonian (5.19) for the Boltzmann equation and using the grazing
collision limit.

First, let us rewrite this Hamiltonian

H[f, p] =
Λ

2

∫
drdv1dv2dqw

(
v1 +

1

2
q,v2 − q;q

)
f(v1)f(v2)

{
e[−p(v1)−p(v2)+p(v1+q)+p(v2−q)] − 1

}
.

In order to obtain a Hamiltonian associated with the Landau equation, we will use the same
hypothesis of grazing collisions and a Taylor expansion in q to the same order
w(v1 + 1

2q,v2 − 1
2q;q) = w(v1,v2;q) + 1

2

(
∂w
∂v1
− ∂w

∂v2

)
.q +O(q2)

e[−p(v1)−p(v2)+p(v1+q)+p(v2−q)] − 1 =
(
∂p
∂v1
− ∂p

∂v2

)
.q+

+1
2

{
∂2p

∂v1∂v1
+ ∂2p

∂v2∂v2
+
(
∂p
∂v1
− ∂p

∂v2

)(
∂p
∂v1
− ∂p

∂v2

)}
: qq +O(q3).

We evaluate the terms of H order by order. There is no term of order zero. The term of order
one in q is

Λ

2

∫
drdv1dv2dqw(v1,v2;q)f(v1)f(v2)

(
∂p

∂v1
− ∂p

∂v2

)
.q,

which is zero because w(v1,v2;q) is an even function of q (see point 3 of appendix (A.6.2)). At
second order in q the Hamiltonian reads

HLandau[f, p] =
Λ

4

∫
drdv1dv2dq f(v1)f(v2)

{
w

[
∂2p

∂v1∂v1
+

∂2p

∂v2∂v2
+

(
∂p

∂v1
− ∂p

∂v2

)(
∂p

∂v1
− ∂p

∂v2

)]
+

(
∂p

∂v1
− ∂p

∂v2

)(
∂w

∂v1
− ∂w

∂v2

)}
: qq.

In this expression, in order to make appear the tensor B(v,v2) = Λ
∫

dqw(v,v2;q)qq/2 (see
equation (5.17)), we integrate by parts the terms involving ∂w

∂v1
and ∂w

∂v2
, we develop the deriva-

tives of products generated by partial integration, we use equation (5.17) and we obtain

HLandau[f, p] =
1

2

∫
drdv1dv2 B(v1,v2)

{
f(v1)f(v2)

(
∂p

∂v1
− ∂p

∂v2

)(
∂p

∂v1
− ∂p

∂v2

)
+

+

(
∂p

∂v1
− ∂p

∂v2

)(
∂f

∂v2
f(v1)− ∂f

∂v1
f(v2)

)}
.

Using the property that B(v1,v2) = B(v2,v1) (see appendix A.6.2), we have for every function
g of (v1,v2):

∫
dv1dv2B(v1,v2)g(v1,v2) =

∫
dv1dv2B(v1,v2)g(v2,v1). Using this property

we have
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HLandau[f, p] =

∫
drdv1dv2 B(v1,v2)

{
f(v1)f(v2)

(
∂p

∂v1

∂p

∂v1
− ∂p

∂v1

∂p

∂v2

)
+
∂p

∂v1

∂f

∂v2
f(v1)− ∂p

∂v1

∂f

∂v1
f(v2)

}
.

We integrate by parts the last term with respect to v1 to obtain

HLandau[f, p] =

∫
drdv1dv2 f(v1)

{
∂p

∂v1
B(v1,v2)

∂f

∂v2

+
∂p

∂v1

∂p

∂v1
B(v1,v2)f(v2) +

∂

∂v1

(
B(v1,v2)f(v2)

∂p

∂v1

)}
−
∫

drdv1dv2 f(v1)f(v2)
∂p

∂v1

∂p

∂v2
B(v1,v2).

From here, using equation (4.15) we obtain

HLandau[f, p] = HMF [f, p] +HI [f, p] , (A.18)

with

HMF [f, p] =

∫
drdv1f

{
b [f ] .

∂p

∂v1
+

∂

∂v1

(
D [f ]

∂p

∂v1

)
+ D [f ] :

∂p

∂v1

∂p

∂v1

}
,

and

HI [f, p] = −
∫

drdv1dv2f(v1)f(v2)
∂p

∂v1

∂p

∂v2
: B (v1,v2) .

A.8. From the Balescu–Guernsey–Lenard Hamiltonian
to the Landau Hamiltonian

In this appendix, we show that the Hamiltonian describing the large deviations associ-
ated with the Landau equation can be recovered from the one describing the large devi-
ations associated with the Balescu–Guernsey–Lenard equation, within the Landau ap-
proximation. In section A.8.1, we perform a series expansion of the logarithm in the large
deviation Hamiltonian for the Balescu–Guernsey–Lenard equation. In section A.8.2, we
show that within the Landau approximation, only the �rst two terms of the series expan-
sion are relevant, and we recover the quadratic large deviation Hamiltonian associated
with the Landau equation.
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A.8 From the Balescu–Guernsey–Lenard Hamiltonian to the Landau Hamiltonian

A.8.1. Series expansion of the logarithm

In this appendix, we expand H from the formula (5.28) in powers of p. This amounts at
a cumulant expansion for the statistics of the �uctuations. We expand the logarithm in
formula (5.28) to obtain

H [f, p] =
1

4πL3

∑
k

∫
dω

+∞∑
n=1

1

n
(J [f, p] (k, ω))n =

+∞∑
n=1

H(n) [f, p] . (A.19)

The second equality de�nesH(n) as being the terms homogeneous of order n in p in this
expansion. It is the n-th cumulant.

We also de�ne B(m) as

B(m) (v1, . . . ,v2m) =
(2π)2m

4πmL3

∑
k

∫
Γ

dω W (k)2m

|ε (k, ω)|2m
k⊗2m

2m∏
i=1

δ (ω − k.vi) .

B(m) is a rank 2m tensor. l(k) and q(k) are de�ned by the relations. We have J [f, p] =
L [f, p] + Q [f, p, p] , where L and Q are de�ned in equations (4.53) and (4.54). We will
need to compute (L [f, p])k, which is L [f, p] to the power k. We de�ne l(k) and q(k) by

(L [f, p])k =

∫
dv1 · · · dv2k l

(k) [f, p]
k∏
j=1

A (k, ω,v2j−1,v2j) ,

and

(Q [f, p, p])k =

∫
dv1 · · · dv2k q

(k) [f, p, p]
k∏
j=1

A (k, ω,v2j−1,v2j) .

l(k) and q(k) are both tensors of order 2k. l(k) depends on p as a homogeneous function
of order k. q(k) depends on p as a homogeneous function of order 2k.

In the expansion of (J [f, p])n using J [f, p] = L [f, p] + Q [f, p, p] , we see that for
all m ∈ [n/2, n] ∩ N, L2m−n [f, p]Qn−m [f, p, p] is homogeneous of order n in p. Using
this remark, from equation (A.19) we obtain

H(n) [f, p] =
∑

m∈[n/2,n]∩N

∫
dv1 · · · dv2m

(
m

2m− n

)
1

(2π)2m

×B(m) (v1, . . . ,v2m) : l(2m−n) [f, p] q(n−m) [f, p, p] , (A.20)

where the symbol ” : ” means a contraction of a tensor of order 2m with another tensor
of order 2m.
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A.8.2. Hierarchy of the series expansion within the Landau
approximation

Let us �rst recall that we can obtain the Landau equation from the Balescu–Guernsey–
Lenard equation. The collision kernel for the Balescu–Guernsey–Lenard equation con-
verges to the Landau collision kernel in the limit where all the wavevectors in (??) satisfy
kλD � 1. In our system of plasma unit, where the length unit is renormalized by the
Debye length, this means that the Balescu–Guernsey–Lenard collision kernel converges
toward the Landau collision kernel in the limit of in�nitely large wavevectors. In a sim-
ilar way, we obtain the large deviation Hamiltonian for the Landau equation HLandau
from the large deviation Hamiltonian H (A.19) of the empirical measure of N Coulomb
interacting particles using the same limit. In the expression of the tensor B(1) = B

B(1) = B(v1,v2) = π

(
λD
L

)3 ∫ +∞

−∞
dω
∑

k

kk

k4n |ε[f ] (ω,k)|2
δ (ω − k.v1) δ (ω − k.v2) ,

the Landau approximation implies that k � 1. In this context, we can consider that
the dielectric function ε is equal to one. From there, a clear hierarchy appears in the
cumulant series expansion (A.19) . For n ≥ 2, the terms involving

B(n) (v1, . . . ,v2n) =
(2π)2n

4πn

(
λD
L

)3∑
k

∫
Γ

dω k⊗2n

k4n |ε (k, ω)|2n
2n∏
i=1

δ (ω − k.vi)

will be negligible with respect to the terms involving B(1) = B.
Let us de�ne

B
(n)
k (v1, . . . ,v2n) =

∫
Γ

dω k⊗2n

k4n |ε (k, ω)|2n
2n∏
i=1

δ (ω − k.vi) ,

such that

B(n) (v1, . . . ,v2n) =
(2π)2n

4πn

∑
k

(
λD
L

)3

B
(n)
k (v1, . . . ,v2n) .

Let us evaluate the size of B
(n)
k in terms of the wavevectors k. We have,

B
(n)
k (v1, . . . ,v2n) = k1−4n m⊗2n

|ε (k, ω)|2n
2n∏
i=2

δ (m. (v1 − vi)) ,

where m = k/k. Then,

(
λD
L

)3

B
(n)
k =

k�1
O
((

λD
Lk

)3(
1

k

)4n−4
)
, (A.21)

where O (km) means that the term is of order km.
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Furthermore, we note the wavevectors k are of the form 2π (λD/L) l with l ∈ Z3.
Then

(
λD
Lk

)3 is of order one at most. Thus, we can conclude that within the Landau ap-
proximation (k � 1 within the set of non-dimensional plasma units) all the tensors B(n)

are negligible except for B(1) = B. We have presented all the computation and this
estimation in a �nite box of length L. However similar reasoning generalize easily to an
in�nite box.

As a conclusion, at leading order, we can just keep the terms involving B(1) in the cu-
mulant series expansion, and the large deviations Hamiltonian for the Landau equation
reads

HLandau [f, p] =

∫
drdv1f

{
b [f ] .

∂p

∂v1

+
∂

∂v1

(
D [f ]

∂p

∂v1

)
+ D [f ] :

∂p

∂v1

∂p

∂v1

}
−

∫
drdv1dv2f(v1)f(v2)

∂p

∂v1

∂p

∂v2

: B (v1,v2) . (A.22)

This is exactly the Hamiltonian we derived from the Boltzmann equation large deviation
Hamiltonian in section 5.3.3.
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B. Appendices relative to the second
part

In these appendices, we detail the computations relative to the microscopic derivation
of the �uctuating Navier-Stokes equations and the ensuing gradient-�ow structure.

B.1. Properties of the kinetic noise and the linearized
kinetic operator

We �rst discuss conservation properties of the �uctuating Boltzmann equation.

B.1.1. Conservation laws for the kinetic equation
The Boltzmann equation (7.3) preserves total mass, momentum and energy

M [f ] =

∫
dv f, P [f ] =

∫
dv vf, E [f ] =

∫
dv

v2

2
f,

as a consequence of the symmetries of its collision kernel, explained in appendix A.6.1.
These conservation properties can been seen at the level of the collision operator

Π [Q (f, f)]] =

 ∫
dvQ (f, f)∫

dv vQ (f, f)∫
dv v2

2
Q (f, f)

 = 0. (B.1)

As a consequence of (B.1) and the de�nition (7.26) of LMh
, we have that {1,v,v2/2} ⊂

ker
(
L†Mh

)
= ker

(
L†Mh

)
for the scalar product weighted by the Maxwellian Mh.

B.1.2. Conservation laws for the kinetic noise
As a consequence of the microscopical conservation laws of the system (mass, momen-
tum, energy), the kinetic noise η satis�es the following conservation properties:

Π[η] = 0. (B.2)

This is a consequence of the symmetry at the level of the large deviation Hamiltonian,
explained in 9. of section 3.7.2.3. Then, realizations of η violating mass, momentum, or
energy conservation is then associated with a zero probability.
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B.2. Computation of the viscous and noise terms for
the compressible Navier–Stokes equations

In this section, we present the explicit computation that allows to bridge from equations
(7.31-7.33) to the compressible �uctuation Navier–Stokes system. The computation of
the deterministic term is essentially the one presented in [14]. The novelty here is the
computation of the stochastic term coming from the noise term in the �uctuating Boltz-
mann equation. The starting point of this appendix is

∂tρ+∇ · (ρu) + α∇ ·
(∫

dv vg1Mh

)
= 0, (B.3)

ρ∂tu + ρ (u · ∇) u +∇(ρθ) + α∇ ·
(∫

dv v ⊗ vg1Mh

)
= 0, (B.4)

3

2
ρ∂tθ + ρθ∇ · u +

3

2
ρ (u · ∇) θ +

α

2
∇ ·
(∫

dv v2vg1Mh

)
= 0, (B.5)

where the order α terms can be computed through

g1 = g1,d + g1,s,

where

LMh
[g1,d] = −(∂t + v · ∇)[Mh]

Mh

, (B.6)

LMh
[g1,s] =

√
εα2

η

Mh

. (B.7)

B.2.1. Equation for the density
We start by computing the order one in α terms of the density equation (B.3). We de�ne

Cρ,d = ∇ ·
(∫

dv vg1,dMh

)
, and Cρ,s = ∇ ·

(∫
dv vg1,sMh

)
which account respectively for the deterministic and the stochastic order α correction
in the density equation (B.3), such as

∇ ·
(∫

dv vg1Mh

)
= Cρ,d + Cρ,s.

It is straightforward to show that Cρ,s vanishes because g1,s =
√
εα2L−1

Mh

[
η
Mh

]
∈

ker (LMh
)>. To compute Cρ,d we use

A′ = L−1
Mh

[A] = −aA , B′ = L−1
Mh

[B] = −bB,
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where a and b are negative functions depending on ρ, θ and V the norm of the reduced
velocity V = θ−1/2 (v − u) . In the following, we omit the dependence in ρ and θ when
writing a (V ) and b (V ). To compute Cρ,d, the �rst step is to use the change of variable
V = θ−1/2 (v − u) in the integral over v. Then, using parity and symmetry arguments
such as∫

dVViVjb (V ) e−V 2/2 =
1

3
δij

∫
dVV 2b (V ) e−V 2/2, (B.8)

and ∫
dVV 4a (V ) e−V 2/2 = 5

∫
dVV 2a (V ) e−V 2/2, (B.9)

one can show that Cρ,d also vanishes. In conclusion, the density equation has no correc-
tion term of order α and it still reads

∂tρ+∇ · (ρu) = 0

in the compressible Navier–Stokes system.

B.2.2. Equation for the velocity
To compute the order α correction in the velocity equation (B.4), we de�ne

Cu,d = ∇ ·
(∫

dv v ⊗ vg1,dMh

)
, and Cu,s = ∇ ·

(∫
dv v ⊗ vg1,sMh

)
.

Computation of the viscous (deterministic) term. We start by computing the de-
terministic contribution Cu,d. Once again, we start by change of variable V = θ−1/2 (v − u)
in the integral over v and we use

g1,d = a (V )
∇θ√
θ
·A(V) +

1

2
b (V ) B(V) : σ(u). (B.10)

Using parity arguments and the symmetry relation (B.8), we obtain

(Cu,d)i = ∂j

{
θ

2 (2π)3/2
ρσkl

∫
dV ViVj

(
VkVl −

1

3
V 2δkl

)
b (V ) e−V 2/2

}
, (B.11)

where Einstein summation is implied and (Cu,d)i denotes the i-th component of Cu,d.
Because b only depends on the norm of the reduced velocity V, it is possible to show∫

dV ViVjVkVlb (V ) e−V 2/2 =
1

15

∫
dV V 4b (V ) e−V 2/2 {δijδkl + δikδjl + δilδjk} .

Inserting this symmetry relation in (B.11) leads to the viscous term

(Cu,d)i = −∂j
{

1

2
νσkl (u)

(
δikδjl + δilδjk −

2

3
δijδkl

)}
, (B.12)
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where we introduced the viscosity

ν =
−2

15

ρθ√
2π

∫ ∞
0

dV V 6b (V ) e−V 2/2. (B.13)

(in agreement with Bardos-Golse-Levermore). Note that the integral in (B.13) is per-
formed over the norm of the velocity, rather than the 3d velocity vector itself. Recalling
the de�nition of the stress tensor

σij (u) = ∂jui + ∂iuj −
2

3
δij∂kuk, (B.14)

we have

σkl (u)

(
δikδjl + δilδjk −

2

3
δijδkl

)
= 2σij (u) .

We conclude that the viscous term (B.12) reads
Cu,d = −∇ · {νσ (u)} .

Computation of the stochastic term. Using

g1,s =
√
εα2L−1

Mh

[
η

Mh

]
,

the stochastic term in the velocity equation (B.4) reads

Cu,s =
√
εα2∇ ·

(∫
dv v ⊗ vL−1

Mh

[
η

Mh

]
Mh

)
.

Performing the change of variable V = θ−1/2 (v − u) yields

Cu,s =
√
εα2∇ ·

{
ρ

(2π)3/2

∫
dV

(
θ

(
B (V) +

1

3
V 2Id

)
+ u⊗ u

+
√
θ (u⊗V + V ⊗ u)

)
L−1
M

[ η
M

]
e−V 2/2

}
,

whereL−1
M

[
η
M

]
is evaluated in the velocity

√
θV+u and where we usedMh

(√
θV + u

)
=

ρθ−3/2M (V) whereM is the absolute Maxwellian (7.11). Now, we recall thatL−1
M

[
η
M

]
∈

kerL> for the scalar product weighted by the absolute Maxwellian distribution and that
L−1
M is self-adjoint with respect to this same scalar product. Hence,

Cu,s = −
√
εα2∇ ·

{
θ5/2

∫
dV b (V ) B (V) η

(√
θV + u

)}
.

Thus, the velocity equation in the compressible Navier–Stokes system reads

ρ∂tu + ρ (u · ∇) u +∇(ρθ) =
α

2
∇ · (νσ (u)) +

√
εα4∇ ·

(√
θJ
)
, (B.15)

with

Jij = θ2

∫
dV b (V )Bij (V) η

(√
θV + u

)
.
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B.2.3. Equation for the temperature
To compute the order α correction in the temperature equation (B.5), we de�ne

Cθ,d =
1

2
∇ ·
(∫

dv v2vg1,dMh

)
, and Cθ,s =

1

2
∇ ·
(∫

dv v2vg1,sMh

)
.

Computation of the deterministic term. The �rst step is to write Cθ,d in reduced
velocity variable and to use the formula (B.10) for g1,d

Cθ,d = −1

2
∇ ·
{

ρ

(2π)3/2

∫
dV

(
θV 2 + u2 + 2

√
θu ·V

)(√
θV + u

)
×
(
a (V )

∇θ√
θ
·A(V) +

1

2
b (V ) B(V) : σ(u)

)
e−V 2/2

}
.

Then, using parity and symmetry arguments, we can decompose Cθ,d such as

Cθ,d = CA
θ + CB

θ ,

where CA
θ is the part yielding the thermal di�usion term

CA
θ = −1

2
∇ ·
{
∇θ ρθ

6 (2π)3/2

∫
dV a (V )V 4

(
V 2 − 5

)
e−V 2/2

}
,

and CB
θ is the term yielding the viscous term

CB
θ = −1

2
∂j

{
ρθuiσkl(u)

2 (2π)3/2

∫
dV b (V )ViVjBkl (V) e−V 2/2

}
.

We de�ne the thermal di�usivity in agreement with [14]

κ = −1

6

ρθ

(2π)1/2

∫ ∞
0

dV a (V )V 4
(
V 2 − 5

)2 e−V 2/2. (B.16)

Using the symmetry relation (B.9), we establish

CA
θ = −∇ · (κ∇θ) .

The computation of the viscous term is very close to the one of the velocity equation
and the result is

CB
θ = −∇ · (νu · σ (u)) .

Recalling that σ is a traceless symmetric tensor and using its de�nition (B.14), we note
2∇ · (νu · σ (u)) = νσ (u) : σ (u) . Finally the order α deterministic correction to the
temperature equation reads

Cθ,d = −∇ · (κ∇θ)− 1

2
νσ (u) : σ (u) .
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Computation of the stochastic term. Using

g1,s =
√
εα2L−1

Mh

[
η

Mh

]
,

the stochastic term in the energy equation (B.5) reads

Cθ,s =
1

2

√
εα2∇ ·

(∫
dv v2vL−1

Mh

[
η

Mh

]
Mh

)
.

Performing the change of variable V = θ−1/2 (v − u) yields

Cθ,s =
1

2

√
εα2∇ ·

{
ρ

(2π)3/2

∫
dV

(
θV 2 + u2 + 2

√
θu ·V

)(√
θV + u

)
L−1
Mh

[
η

Mh

]
e−V 2/2

}
,

whereMh and η are evaluated in the velocity
√
θV+u. Now, we recall thatL−1

Mh

[
η
Mh

]
∈

kerL> for the scalar product weighted by the absolute Maxwellian distribution and that
L−1
Mh

is self adjoint with respect to this same scalar product. Hence,

Cθ,s =
1

2

√
εα2∇ ·

{
ρ

(2π)3/2

∫
dV

(
θ3/2V 2V + 2θ (u ·V) V

)
L−1
Mh

[
η

Mh

]
e−V 2/2

}
.

Let us recall that V 2V = 2A (V) + 5V and V ⊗ V = B (V) + 1
3
V 2Id to express the

stochastic term Cθ,s in terms of the vector A and the tensor B

Cθ,s =
1

2

√
εα2∇ ·

{
ρ

(2π)3/2

∫
dV

(
2θ3/2A (V) + 2θu · B(V)

)
L−1
Mh

[
η

Mh

]
e−V 2/2

}
.

Using the fact that L−1
Mh

is self-adjoint, we obtain

Cθ,s = −
√
εα2∇ ·

{
θ3/2

∫
dV

(
θ3/2a (V ) A (V) + θb (V ) u · B(V)

)
η
(√

θV + u
)}

.

In conclusion, the energy equation of the compressible Navier–Stokes system reads

3

2
ρ∂tθ+ρθ∇·u+

3

2
ρ (u · ∇) θ = α∇·(κ∇θ)+α

ν

2
σ (u) : σ (u)+

√
εα4∇·

(
Jθ
)
, (B.17)

with

Jθ = θ3/2

∫
dV

(
θ3/2a (V ) A (V) + θb (V ) u · B(V)

)
η
(√

θV + u
)
. (B.18)

B.2.4. Computation of the correlation functions
In this section, we show how to compute the correlation functions of the stochastic �uxes
J and Jθ.
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B.2.4.1. Correlation function for the velocity.

In this paragraph, we compute the correlation function E (Jij (r, t) Jkl (r
′, t′)) of the ve-

locity noise �ux of the �uctuating compressible Navier-Stokes equation (B.15). We recall
the expression for the components of the tensor J

Jij (r, t) = θ2

∫
dV b (V )Bij (V) η

(√
θV + u (r, t) , r, t

)
.

The correlation structure of the noise η is given by the operator LMh
according to (7.20).

More precisely, we can compute correlations between functions ϕ and ψ of the reduced
velocity V as following∫

dVdV′ ϕ (V)ψ (V′)E
(
θ2η
(√

θV + u (r, t) , r, t
)
η
(√

θV′ + u (r′, t′) , r′, t′
))

= 2δ (r− r′) δ (t− t′)
∫

dVϕ (V)LMh
(ψ) (V)Mh

(√
θV + u (r, t)

)
. (B.19)

Then,

E (Jij (r, t) Jkl (r
′, t′)) = −2δ (r− r′) δ (t− t′) ρθ2

(2π)3/2

∫
dV b (V )Bij (V)Bkl (V) e−V 2/2.

We already computed this integral to �nd the viscous terms of the Navier–Stokes equa-
tion, the result reads

−ρθ
(2π)3/2

∫
dV b (V )Bij (V)Bkl (V) e−V 2/2 = ν

(
δikδjl + δilδjk −

2

3
δijδkl

)
.

We conclude

E (Jij (r, t) Jkl (r
′, t′)) = 2θν

(
δikδjl + δilδjk −

2

3
δijδkl

)
δ (r− r′) δ (t− t′) .

B.2.4.2. Correlation function for the energy.

In this paragraph, we compute the correlation functionE
(
Jθi (r, t) Jθj (r′, t′)

)
of the tem-

perature noise �ux of the �uctuating compressible Navier-Stokes equation (B.17). As
previously, we will use the relation (B.19) to compute correlations. Using (B.18), we
have

E
(
Jθi (r, t) Jθj (r′, t′)

)
= E

(
θ3

∫
dVdV′

(
θ3/2a (V )Ai (V) + θuib (V )Bik(V)

)
×
(
θ3/2a (V ′)Aj (V′) + θulb (V ′)Bjl(V

′)
)
η
(√

θV′ + u′
))

.
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Then, if we apply (B.19), the correlations can be recast as following

E
(
Jθi (r, t) Jθj (r′, t′)

)
= −2δ (r− r′) δ (t− t′) θ3/2

×
∫

dV
(
θ3/2a (V )Ai (V) + θukb (V )Bik(V)

) (
θ3/2Aj (V) + θulBjl(V)

)
Mh (V) .

We recall that
−ρ

(2π)3/2

∫
dV 4θ3a (V )Ai (V)Aj (V) e−V 2/2 = 4θ2κδij,

and
−ρθ

(2π)3/2

∫
dV b (V )Bij (V)Bkl (V) e−V 2/2 = ν

(
δikδjl + δilδjk −

2

3
δijδkl

)
.

Then we obtain

E
(
Jθi (r, t) Jθj (r′, t′)

)
= 2

(
θ2κδij + θνBij (u)

)
δ (r− r′) δ (t− t′) .

B.3. Derivation of the gradient-flow structure for the
Navier-Stokes equations

In section 7.5.1, we explained how to compute the transverse gradient-�ow decompo-
sition for a PDE whose the relaxation path for the large deviations of a macroscopic
�eld, describing a time-reversible microscopic dynamics. Once the quadratic part of the
Hamiltonian is computed, the transverse gradient-�ow decomposition can be directly
obtained. This appendix is dedicated to the computation of the quadratic large deviation
Hamiltonian associated with the SPDEs we derived: the compressible and the incom-
pressible �uctuating Navier-Stokes equaions.

B.3.1. Gradient-flow structure for the incompressible
Navier-Stokes equations

For the case of the incompressible Navier–Stokes equation, the large deviation rate is
λ = εα, E is the space of divergence free vector �elds, and F is the space of tensor
�elds. η is J/2, a random Gaussian tensor �eld with correlations given in (7.62). We
have Σ · T = P∇ · T, where T is a second order tensor, and ∇ the linear operator that
corresponds to the divergence of a tensor. By de�nition of the noise cross correlation
(7.62), and by analogy with 7.5.1, the operator C is a fourth order tensor

Cijkl (r, r′) = ν

[
δikδjl + δilδjk −

2

3
δijδkl

]
δ(r− r′).

The operator A from vector �elds to vector �elds is thus

A = −P∇C∇P,
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where we have used that the adjoint of the divergence of a tensor �eld, for the L2 norms,
is the opposite of the gradient of a vector �eld (the second∇ in the formula takes a vector
as an argument and gives back a tensor), and we have used that P is self adjoint with
respect to the L2 norm.

We denote p(r) the conjugated momentum associated to u(r). The quadratic term in
the large deviation Hamiltonian is then,

H(2) [u,p] = (p,p),

with (p,p) = ν
∫

dr 〈∇Pp,∇Pp〉 and where

〈T,R〉 =

[
δikδjl + δilδjk −

2

3
δijδkl

]
TijTkl, (B.20)

where we sum over repeated indices. As
[
δikδjl + δilδjk − 2

3
δijδkl

]
is the covariance of

a Gaussian �eld, it is a positive operator, and 〈., .〉 is positive. We now check this more
directly. We see that the �rst term for the local contribution of 〈T,T〉 is δikδjlTijTkl =
TijTij = Tr

(
T2
)

(where the product is contraction of two tensors, and Tr is the trace ).
The second term is δilδjkTijTkl = T : T> = Tr

(
T · T>

)
. This suggests to decompose the

tensors into their symmetric and antisymmetric parts: T = Ts + Ta, with 2Ts = T + T>.
Then the sum of the two �rst terms is Tr

(
T2
)

+ Tr
(
T · T>

)
= 2Tr

(
T2
s

)
. Finally we note

that δijδklTijTkl = (TrT)2. Hence

〈T,R〉 = 2Tr (TsRs)−
2

3
(TrTa) (TrRa) .

We note that the bilinear form is positive de�nite on the set of symmetric tensors, and
equal to zero on the set of antisymmetric tensors, and that the set of symmetric tensor
is orthogonal to the set of antisymmetric tensors for this bilinear form. We also note
that Tr (∇v) = 0 for divergence free vector �elds v. Then the quadratic term in the
Hamiltonian is

(p,p)i = ν

∫
dr 〈∇Pp,∇Pp〉i with 〈T,R〉i =

1

2
Tr
((

T + T>
) (

R + R>
))

The Hamiltonian that describes the large deviations for the incompressible Navier-Stokes
equation is then

H [u,p] =

∫
dr [ν 〈∇Pp,∇Pp〉i + p. (−P (u · ∇u) + ν∆u)] .

If we now restrict p to the set of divergence free vector �elds, we can write more simply

H [u,p] =

∫
dr
[ν

2
Tr
(
∇p +∇p>

)2 − p. (u · ∇u) + νp.∆u
]
.

Moreover, denoting S = 1
2

(
∇p +∇p>

)
, we have 2Tr (S)2 = 2S : ∇p = 2∇ : (Sp) −

2p : ∇S = 2∇. (Sp)− p.∇p, where for the last equality we have used that ∇ · p = 0.
Hence a simpler expression for H is

H [u,p] =

∫
dr [−p. (u · ∇u) + νp. (∆u−∆p)] .
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We expect the kinetic energy

K [u] =
1

2

∫
dr u2

to be the quasipotential for the large deviations. This is easily proved by checking that
δK
δu

= u solves the stationary Hamilton–Jacobi equation: H
[
u, δK

δu

]
= 0, and using that

the deterministic Navier–Stokes equation has a single attractor u = 0. H
[
u, δK

δu

]
= 0 is

easily proved using that∫
dr
δK

δu
. (u · ∇u) = 0,

which is at the same time the classical energy conservation result and the transversal-
ity condition for the reversible part of the deterministic dynamics, with respect to the
quasipotential. Moreover, we also note that for any divergence free �eld p(

p,
δU

δu

)
i

= −ν
∫

dr p ·∆u,

which proves that ∆u is the opposite of the gradient of K with respect to the noise
scalar product (., .)i.

B.3.2. Gradient-flow structure for the compressible
Navier-Stokes equations

For the case of the compressible Navier–Stokes equations, we independently consider
the evolution equation for ρ, which is deterministic, and the ones for the �elds (u, s),
which are stochastic. With the notations of section 7.5.1, E is the vector space of the
�elds (u, s), while F is the space of �elds (J,q). The large deviation rate is λ = εα4.
The linear operator Σ is de�ned by

Σ (J,q) =
1

2

(∇ · J
ρ

,
m∇ · (u · J)−∇ · q

ρθ

)
,

and the covariance operator C is block diagonal: C = Ct + Cv, where Ct acts only of
the tensor part of the space F , while Cv acts only on the vector part, and with

Ct
ijkl (r, r

′) = νθ

[
(δikδjl + δilδjk) +

(
γ − 2

3

)
δijδkl

]
δ(r− r′)

and

Cv = κθ2Idδ(r− r′).

Then, we have

Σ> (pu, ps) =

(
−∇

(
pu

ρ

)
+
ps∇u

ρθ
,∇
(
ps
ρθ

))
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For a rank 2 tensor T, we have Ct ·T = νθ
[(

T + T>
)

+
(
γ − 2

3

)
Tr (T) Id

]
δ(r− r′), and

for a vector q, we have Cv · q = κθ2qδ(r− r′). Hence

CΣ> (pu, ps) =

(
νθ

[
−∇

(
pu

ρ

)
+
ps∇u

ρθ
−∇

(
pu

ρ

)>
+

(
ps∇u

ρθ

)>
+

(
γ −

2

3

)(
−∇.

(
pu

ρ

)
+
p∇.u
ρθ

)
Id
]
, κθ2∇

(
ps

ρθ

))
δ(r− r′)

from which we can write the HamiltonianH = Hr +Hi+Hq, withHr time symmet-
ric linear part in p (reversible deterministic evolution), Hi the time antisymmetric linear
part in p (irreversible deterministic evolution) and Hq the quadratic one (stochastic evo-
lution). Hr and Hi are chosen so that

∂t

 ρ
u
s

 =


δHr
δpρ
δHr
δpu
δHr
δps

+


δHi
δpρ
δHi
δpu
δHi
δps

 .

is the deterministic compressible Navier–Stokes system, where the �rst term on the r.h.s.
is the transport term, and the second term on the r.h.s. is the di�usive term. As discussed
above, the quadratic part of the Hamiltonian should read

Hq [ρ,u, s, pρ,pu, ps] =

∫
dr (pu, ps)

> · A (pu, ps)

where A = ΣCΣ>. The �nal result reads

Hr [ρ,u, s, pρ,pu, ps] = −
∫

dr

[
pρ∇ · (ρu) + pu ·

(
u · ∇u +

∇P
ρ

)
+ psu · ∇s

]
,

Hi [ρ,u, s, pρ,pu, ps] = α

∫
dr

{
νpu

ρ
· ∇ ·

[(
∇u + (∇u)>

)
+

(
γ −

2

3

)
(∇ · u) Id

]
,

+
psν

ρθ

[
1

2

(
∇u + (∇u)>

)2
+

(
γ −

2

3

)
(∇ · u)2

]
+
ps

ρθ
∇. (κ∇θ)

}
.

and

Hq [ρ,u, s, pρ,pu, ps] = α

∫
dr

νθ
[∇(pu

ρ

)
−
ps∇u

ρθ
+∇

(
pu

ρ

)>
−
(
ps∇u

ρθ

)>]2
∣∣∣∣∣∣∣∣∣∣∣+

(
γ −

2

3

)[
∇ ·
(

pu

ρ

)
−
ps∇ · u
ρθ

]2
)

+ κθ2

[
∇
(
ps

ρθ

)]2
}
.

�asipotential for the fluctuating compressible Navier-Stokes equations. We
expect the quasipotential to be negative of the total entropy up to conservation laws

U = −S =

{
−
∫

dr ρs if
∫

dr ρ = M and
∫

dr
(

1
2
u2 + 3

2
θ
)

= E.
+∞ otherwise (B.21)

This is easily checked by verifying the Hamilton–Jacobi equationH
[
ρ,u, s, δU

δρ
, δU
δu
, δU
δs

]
=

0, using thatH has the conservation law symmetries, and taking for granted that for any
initial condition with mass M and energy E, the deterministic hydrodynamic equation
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Chapter B Appendices relative to the second part

converges to the equilibrium state with mass M and energy E. In order to check the
Hamilton–Jacobi equation, we use that δU

δρ
= −s, δU

δu
= 0, and δU

δs
= −ρ. By identi�ca-

tion and by performing part integrations, it is easily checked that

Hr [ρ,u, s,−s, 0,−ρ] = 0

and that

Hi [ρ,u, s,−s, 0,−ρ] +Hq [ρ,u, s,−s, 0,−ρ] = 0.

We can thus conclude that U (B.21) is the quasipotential.
We also check the time reversal symmetry of the Hamiltonian. We expect the re-

versible part of the Hamiltonian Hr to be time reversible. De�ning the time reversal
involution by I [ρ,u, s] = [ρ,−u, s] and I [pρ,pu, ps] = [pρ,−pu, ps] (we also note that
I [P ] = P , where P is the pressure), this requires

Hr [I [ρ,u, s] ,− [pρ,pu, ps]] = Hr

[
ρ,u, s, pρ +

δU

δρ
,pu +

δU

δu
, ps +

δU

δs

]
,

or equivalently

Hr [ρ,−u, s,−pρ,pu,−ps] = Hr [ρ,u, s, pρ − s,pu, ps − ρ] .

This can be checked by direct computations. We expect the irreversible and stochastic
parts of the Hamiltonian Hi +Hq to have the symmetry

(Hi +Hs) [ρ,u, s, pρ,pu, ps] = (Hi +Hs)

[
ρ,−u, s, pρ +

δU

δρ
,−pu +

δU

δu
, ps +

δU

δs

]
= (Hi +Hs) [ρ,−u, s, pρ − s,pu, ps − ρ] .

This is also easily checked.

Transverse-gradient-flow structure. For any given [ρ,u, s], the quadratic part of
the Hamiltonian considered as functional over the �elds [pρ,pu, ps] de�nes a semi-norm
(it is positive but not de�nite positive has the action on pρ is zero, and it conserves the
energy). We have

Hq [ρ,u, s, pρ,pu, ps] =< [pρ,pu, ps] , B(ρ,u,s) [pρ,pu, ps] >

where< [a,b, c] , [c,d, e] >=
∫

dr (ac+ b · d + ce) is theL2 scalar product andB(ρ,u,s)

is the non negative symmetric operator B(ρ,u,s) = α
(

0, Bpu
(ρ,u,s), B

ps
(ρ,u,s)

)
with

Bpu
(ρ,u,s)

[pρ,pu, ps] = −
1

ρ
∇.
{
νθ

[
∇
(

pu

ρ

)
+

(
∇
(

pu

ρ

))>]
+
ηνp

ρ

[
∇u + (∇u)>

]}
+

1

ρ
∇
{(

ζ −
2

3
ν

)[
−θ∇.

(
pu

ρ

)
+
ps

ρ
∇.u

]}
,

(B.22)

and

B
ps
(ρ,u,s)

[
pρ,pu, ps

]
= −

ν

ρ
∇u.

[
∇
(

pu

ρ

)
+

(
∇
(

pu

ρ

))>
]

+
νps

ρ2θ
∇u.

[
∇u + (∇u)

>
]

−
1

ρ

(
ζ −

2

3
ν

)
∇.
(

pu

ρ

)
∇.u +

ps

ρ2θ

(
ζ −

2

3
ν

)
(∇.u)

2 − ∇.
[
κθ

2∇
(
ps

ρθ

)]
. (B.23)
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B.3 Derivation of the gradient-�ow structure for the Navier-Stokes equations

This de�nes the gradient structure. Indeed, it is easily checked that the dissipative op-
erator

D =

[
0,
∇. (Πd(u))

ρ
,∇u.Πd(u) +

∇. (κ∇θ)
ρθ

]
is the gradient of the quasipotential (minus the entropy) with respect to the norm de�ned
by Hq:

D (ρ,u, s) = −GradHq,(ρ,u,s)(−S) = −B(ρ,u,s)

(
−δS
δρ
,−δS

δu
,−δS

δs

)
= −B(ρ,u,s) (s, 0, ρ) .
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Ouassim FELIACHI
Grandes déviations dans les limites cinétiques et

hydrodynamiques

Résumé :
Comprendre comment décrire un système avec des équations macroscopiques, qui sont généralement détermin-
istes, en partant d’une description microscopique, qui peut être stochastique est le problème fondamental de la
physique statistique. Souvent, ce�e tâche implique au moins deux limites : une limite "grand N " et une limite
"d’équilibre local". La première permet de décrire un système de N particules par une fonction de distribution
dans l’espace des phases, tandis que la seconde reflète la séparation des échelles de temps entre l’approche
rapide de l’équilibre local et l’évolution lente des modes hydrodynamiques. En supposant ces deux limites, on
obtient une description macroscopique déterministe. Pour des raisons à la fois théoriques et de modélisation (N
est grand mais pas infini, la séparation des échelles de temps n’est pas parfaite), il est parfois important de com-
prendre les fluctuations autour de ce�e description macroscopique. L’hydrodynamique fluctuante fournit un
cadre pour décrire l’évolution des champs macroscopiques tout en prenant en compte les fluctuations induites
par le nombre fini de particules dans la limite hydrodynamique.
Ce�e thèse traite de la dérivation de l’hydrodynamique fluctuante à partir de la description microscopique de la
dynamique des particules. La dérivation de l’hydrodynamique fluctuante se fait en deux étapes. Premièrement,
la limite "grand N " doit être a�inée pour prendre en compte les fluctuations au-delà du comportement moyen
du système. Pour ce faire, nous utilisons la théorie des grandes déviations pour établir des principes de grandes
déviations qui décrivent la probabilité de tout chemin d’évolution pour le système de particule au-delà du
chemin le plus probable décrit par l’équation cinétique. Ensuite, nous dérivons la l’hydrodynamique fluctuante
en étudiant la limite hydrodynamique du principe de grande déviation cinétique, ou l’équation cinétique
fluctuante associée. Ce manuscrit contient l’explication de ce programme et son application à divers systèmes
physiques allant du gaz dilué aux particules actives.

Mots clés : Grandes déviations, Théorie cinétique, Limites hydrodynamiques, Hydrodynamique fluctuante,
Matière active

From Particles to Fluids: A Large Deviation Theory Approach to Kinetic and
Hydrodynamical Limits

Abstract:
The central problem of statistical physics is to understand how to describe a system with macroscopic equations,
which are usually deterministic, starting from a microscopic description, which may be stochastic. This task
requires taking at least two limits: a “large N” limit and a “local equilibrium” limit. The former allows a system
of N particles to be described by a phase-space distribution function, while the la�er reflects the separation
of time scales between the fast approach to local equilibrium and the slow evolution of hydrodynamic modes.
When these two limits are taken, a deterministic macroscopic description is obtained. For both theoretical and
modeling reasons (N is large but not infinite, the time-scale separation is not perfect), it is sometimes important
to understand the fluctuations around this macroscopic description. Fluctuating hydrodynamics provides a
framework for describing the evolution of macroscopic, coarse-grained fields while taking into account finite-
particle-number induced fluctuations in the hydrodynamic limit.
This thesis discusses the derivation of fluctuating hydrodynamics from the microscopic description of particle
dynamics. The derivation of the fluctuating hydrodynamics is twofold. First, the “large N” limit must be refined
to account for fluctuations beyond the average behavior of the system. This is done by using large deviation
theory to establish kinetic large deviation principles that describe the probability of any evolution path for the
empirical measure beyond the most probable path described by the kinetic equation. Then, the fluctuating
hydrodynamics is derived by studying the hydrodynamical limit of the kinetic large deviation principle, or the
associated fluctuating kinetic equation. This dissertation discusses this program and its application to several
physical systems ranging from the dilute gas to active particles.

Keywords : Large deviation theory, Kinetic theory, Hydrodynamical limits, Fluctuating hydrodynamics, Active
ma�er
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