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ABSTRACT

In this work we address the problem of adverse effects induced by radiotherapy

on healthy tissues. The goal is to propose a mathematical framework to compare the

effects of different irradiation modalities, to be able to ultimately choose those treat-

ments that produce the minimal amounts of adverse effects for potential use in the

clinical setting. The adverse effects are studied in the context of two types of data:

in terms of the in vitro omic response of human endothelial cells, and in terms of the

adverse effects observed on mice in the framework of in vivo experiments. In the

in vitro setting, we encounter the problem of extracting key information from com-

plex temporal data that cannot be treated with the methods available in literature. We

model the fold changes, the object that encodes the difference in the effect of two ex-

perimental conditions, in the way that allows to take into account the uncertainties of

measurements as well as the correlations between the observed entities. We construct

a distance, with a further generalization to a dissimilarity measure, allowing to com-

pare the fold changes in terms of all the important statistical properties. Finally, we

propose a computationally efficient algorithm performing clustering jointly with tem-

poral alignment of the fold changes. The key features extracted through the latter are

visualized using two types of network representations, for the purpose of facilitating

biological interpretation. In the in vivo setting, the statistical challenge is to establish a

predictive link between variables that, due to the specificities of the experimental de-

sign, can never be observed on the same animals. In the context of not having access to

joint distributions, we leverage the additional information on the observed groups to

infer the linear regression model. We propose two estimators of the regression param-

eters, one based on the method of moments and the other based on optimal transport,

as well as the estimators for the confidence intervals based on the stratified bootstrap

procedure.

Key words: Radiotherapy, Complex temporal data, Joint clustering with align-

ment, Omic network inference, Data fusion, Wasserstein distance.
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RÉSUMÉ

Dans ce travail nous abordons le problème des effets indésirables induits par la

radiothérapie sur les tissus sains. L’objectif est de proposer un cadre mathématique

pour comparer les effets de différentes modalités d’irradiation, afin de pouvoir éven-

tuellement choisir les traitements qui produisent le moins d’effets indésirables pour

l’utilisation potentielle en clinique. Les effets secondaires sont étudiés dans le cadre

de deux types de données : en termes de réponse omique in vitro des cellules endo-

théliales humaines, et en termes d’effets indésirables observés sur des souris dans le

cadre d’expérimentations in vivo. Dans le cadre in vitro, nous rencontrons le problème

de l’extraction d’informations clés à partir de données temporelles complexes qui ne

peuvent pas être traitées avec les méthodes disponibles dans la littérature. Nous modé-

lisons le fold change radio-induit, l’objet qui code la différence d’effet de deux condi-

tions expérimentales, d’une manière qui permet de prendre en compte les incertitudes

des mesures ainsi que les corrélations entre les entités observées. Nous construisons

une distance, avec une généralisation ultérieure à une mesure de dissimilarité, per-

mettant de comparer les fold changes en termes de toutes leurs propriétés statistiques

importantes. Enfin, nous proposons un algorithme computationnellement efficace ef-

fectuant le clustering joint avec l’alignement temporel des fold changes. Les carac-

téristiques clés extraites de ces dernières sont visualisées à l’aide de deux types de

représentations de réseau, dans le but de faciliter l’interprétation biologique. Dans le

cadre in vivo, l’enjeu statistique est d’établir un lien prédictif entre des variables qui,

en raison des spécificités du design expérimental, ne pourront jamais être observées

sur les mêmes animaux. Dans le contexte de ne pas avoir accès aux lois jointes, nous

exploitons les informations supplémentaires sur les groupes observés pour déduire

le modèle de régression linéaire. Nous proposons deux estimateurs des paramètres

de régression, l’un basé sur la méthode des moments et l’autre basé sur le transport

optimal, ainsi que des estimateurs des intervalles de confiance basés sur le bootstrap

stratifié.

Mots clés : Radiothérapie, Données temporelles complexes, Clustering joint avec

alignement, Inférence de réseau omic, Fusion de données, Distance de Wasserstein.
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INTRODUCTION

Radiotherapy is a one of the main types of cancer treatment, along with surgery

and chemotherapy, received by approximately 60% of all cancer patients (Warren et al.,

2008). It is based on using ionizing radiation to either kill cancer cells or block their

ability to divide. Similarly to other types of treatment, radiotherapy may induce ad-

verse effects, that is undesirable changes to healthy tissues situated around the irradi-

ated tumor. Modern technological advances give us access to a vast range of different

modes of irradiation, that may vary in terms of dose, volume, energy, etc. It is of high

interest for potential clinical applications to be able to choose such modes of radiother-

apy that minimize the amount of potential adverse effects.

The ROSIRIS research program (RadiobiOlogie des Systèmes Intégrés pour l’opti-

misation des traitements utilisant des rayonnements ionisants et évaluation du RISque

associé), initiated at IRSN in 2012, aims to improve biological knowledge of the radio-

induced adverse effects by an approach that incorporates knowledge in micro and

nanodosimetry, radiobiology, systems biology and radiopathology. The program con-

sists of three axes:

– Axis 1 (scale of a particle): biological, chemical and physical analysis of ra-

diation effect on the level of a particle, including micro and nanodosimetry

models, and quantitative measures of signaling damages to DNA.

– Axis 2 (scale of a cell): analysis of in vitro response to different modalities

of irradiation through such measures as clonogenic survival, cellular death,

senescence, transcriptional signature, etc.

– Axis 3 (scale of an organ/animal): analysis of in vivo radio-induced adverse

effects through such histological as well as survival and weight loss measures,

performed on mice.
1



This PhD thesis focuses on axes 2 and 3 of the ROSIRIS project, namely on model-

ing phenotypic changes in cells induced by different irradiation modalities on the one

hand, and the adverse effects observed on mice after irradiation on the other hand,

with the ultimate goal of constructing a link between the two in order to predict the

latter with the former.

The most widely used tool in radiobiology to compare two types of treatment is rel-

ative biological effectiveness, or RBE (Valentin, 2003). Currently, RBE is derived from

the linear quadratic model which relates the absorbed dose to the fraction of surviving

cells by performing a clonogenic assay (Munshi et al., 2005). This approach provides

important information but remains too simplistic to accurately predict radio-induced

adverse effects. Indeed, RBE measurements based on cellular clonogenic ability do not

take into account the phenotypic changes in the surviving cells in question. The goal of

this PhD is to propose multi-parametric alternatives to RBE as means to quantitatively

and qualitatively compare different irradiation modalities.

In the framework of the axis 2 of the ROSIRIS project, the Laboratory of Radiobiol-

ogy of Medical Exposures (LRMed) has generated numerous experimental molecular

data measuring changes in omic profiles following irradiation of human endothelial

cells (cells lining the inner surface of blood vessels). These data are rich in information

but also complex to analyze from the statistical point of view. The first part of this the-

sis will focus on developing a mathematical framework extracting key features from

these complex datasets, in order to assess the impact of different irradiation modalities

on cell dysfunction, and to use these features for adverse effects prediction. The pro-

posed approach will be demonstrated on datasets measuring transcriptomic profiles

for multiple time points after irradiation for two different energy levels.

In parallel with this in vitro work, numerous in vivo experiments on mice have

made it possible to collect histological and physiological responses to irradiation. The

data from these experiments, due to the destructive nature of measurements, often

do not allow to directly establish a link between these different types of responses.

In the second part of the thesis, the problem of connecting the variables from in vivo

experiments that are never jointly observed will be addressed, with the aim of con-

structing a predictive model for the adverse effects. In particular, the chosen math-

ematical framework will be used to predict septal thickening with the expression of

pro-inflammatory genes in the context of a study on the effect of irradiated volume on

adverse effects appearing in the lungs.

2



Part 1

MODELING AND ANALYSIS OF CELLULAR

RESPONSE TO IRRADIATION BASED ON IN

VITRO DATA





CHAPTER 1

INTRODUCTION

1.1. Motivation and context

In modern biomedical research, in vitro experiments are a popular choice to study

the effect of a treatment. For instance, in the context of studying the response to differ-

ent modalities of irradiation, in vitro allows to perform experiments on human cells

and subsequently use the findings for predicting adverse effects in patients. Con-

sequently, data resulting from such studies are often encountered in literature. One

the most popular choices is measuring omic bulk response, e.g. gene or protein ex-

pression. The main quantity of interest for such experiments is a fold change, which

represents the difference between the treated (case) and the non-treated (control) con-

ditions. Additionally, the interest often lies in studying the dynamic of the response

after treatment, which is why the fold changes have a temporal character. The set

of fold changes typically contains multiple hundreds of biological entities, the goal is

thus to compare the response to a treatment of multiple entities over time.

Altogether, we have one or multiple of such complex datasets to analyze and com-

pare. The analysis in such cases inevitably involves reducing the datasets to a small

number of representative features, or groups characterized by typical behavior tem-

plates and key actors, which methodologically translates into the task of clustering. It

allows to address different features of the data systematically, based on a clustering-

induced hierarchy, and facilitates interpretation of the findings. Furthermore, it is

known that biological entities such as genes and proteins are causally connected to

one another, forming regulatory networks. In this respect, the temporal aspect of the

data can be leveraged by integrating the alignment into clustering, thus on the one

5



hand aiding the clustering itself, and on the other hand gaining information on tem-

poral cascades and the predictive nature of the considered entities. Finally, the key

features extracted with clustering and alignment have to be visualized in a compre-

hensive manner to render the results accessible and interpretable, which is achieved

through network inference.

In this work, we propose a data-driven mathematical and computational frame-

work extracting key features from complex in vitro omic datasets with specific charac-

teristics. We introduce new estimators of fold changes as well as a new distance that

allow to account for the information on uncertainties and correlations available in the

considered datasets. We developed a procedure performing simultaneous alignment

and clustering, a multivariate computationally efficient equivalent to the approaches

proposed by Sangalli et al. (2010) and Kazlauskaite et al. (2019). We present a num-

ber of additional features, among them a penalty designed to reinforce separation of

positively and negatively expressed entities, which is pertinent in the radiobiological

setting. Lastly, we propose a number of tools for fold changes network visualization

and summary, inspired by gene regulatory networks (Riccadonna et al., 2016; Nguyen

and Braun, 2018).

1.2. Data characteristics

In this work, we consider datasets obtained from in vitro experiments in a generic

setting in order to study the effect of a certain treatment. Figure 1.2.1 illustrates such

experimental setting in the context of studying the response of cells to irradiation.

Datasets of interest share the following characteristics, that constitute their complexity

and lead to a non-trivial statistical problem:

• Presence of two experimental conditions. This feature is necessary to study

the effect of the treatment, the experimental conditions are then case (treated)

and control (non-treated). The focus is put on studying the differences be-

tween the responses for two conditions.

• Presence of multiple time points. This is the case if the interest lies in study-

ing the dynamic of the response to the considered treatment. In case of the

example illustrated in Figure 1.2.1, the goal is to quantify the differences in re-

sponses between the case (irradiated) and the control (non-irradiated) 2 days,

4 days, 1 week, 2 week and 3 weeks after the moment when the case culture is

irradiated. A major statistical challenge arises from the measurements being

of destructive nature, compromising the cells and making them unsuitable for
6



Day 0

Day 2 Day 4 Day 7 Day 14 Day 21Day 0

Contro
l

Irradiated 

Figure (1.2.1) A schematic representation of the experimental design used to
obtain the data considered in this paper. For a given experiment, the condition
measurements for all considered entities are taken simultaneously from the cells
of one culture flask (technical replicate). Due to the destructive nature of the
measurements, every time point is observed on a separate culture flask.

repeated measurements. In our example, the measurements for Day 4 and

later cannot be performed on the same culture flask as for Day 2. Hence, the

measurements for all time points have to be taken on separate flasks. This

implies that we do not have access to temporal correlations in the dataset,

and cannot observe an actual temporal signal and treat the data as longitudi-

nal/time series. In practice, cellular populations used to take measurements

for each time point are separated from one population just prior to the exper-

iments. Hence, the flasks used for different time points contain different cells,

which implies that we can reasonably assume the independence with respect

to the temporal dimension.

• Presence of multiple biological entities. This feature arises since goal is to

study the response in terms of certain omic. The data used as an example in

this work is transcriptomic, which mean that we measure gene expression.

There are typically hundreds of genes that are measured simultaneously from

the same cellular culture. This implies that in such a setting we have access to

correlations between the considered biological entities.

• Presence of multiple replicates. Replicates are necessary in order to be able to

account for measurement uncertainties, which is especially crucial given that

different time points are observed independently. In this case, the mean values

over replicates represent an actual signal, but should not be considered alone

for the inference since it does not include the information on uncertainties.

The features mentioned above present a statistical challenge from perspectives.

First, time series based approaches cannot be used for inference due to the destructive
7



nature of measurements, and the fact that time series inference is based on temporal

covariances. Second, function and stochastic process-based approaches are often un-

suitable in the case were the number of biological entities is significantly larger than

the number of time points. Lastly, the approach has to take into account the available

information on uncertainties and correlations between entities, which excludes simple

techniques such as treating only mean signals. In this work, we propose a statistical

framework that addresses these challenges, while leveraging data characteristics to

render the computations time efficient.

1.3. Existing research

After exhaustive research of the approaches available in literature, we were unable

to find any that had been designed specifically for the kind of data that we treat in this

work. Consequently, the term "state of the art" is not strictly applicable in this context.

Since, in a nutshell, the main goal of this work is clustering of temporal data, the main

mathematical frameworks of interest include functional data analysis, and stochastic

processes frameworks such as Gaussian and auto-regressive processes.

Functional data analysis. Introduced dy James O. Ramsay in Ramsay and Silver-

man (2005), the term refers to modeling data, often temporal data, representing the

dynamic of a process over a continuum. Classical examples of application includ-

ing temperature measurements and growth curves, functional methods are designed

for longitudinal data, based on the idea of reducing the dimension while preserving

functional patterns by projecting the data onto a functional basis. A lot of work ex-

ists involving clustering of functional data, among them works performing clustering

jointly with alignment (Sangalli et al., 2010, 2009), and those targeting gene expres-

sion data (Luan and Li, 2003). While effective when applied to datasets similar to

those they were designed for, these approaches are unsuitable for our purposes since

they expect the temporal data to be actual signal, which is not the case treated here.

Indeed, in our case the only observed signal is the average response, working with

it alone implies ignoring much of the information contained in the replicates. Given

that functional approach was originally intended as the main modeling framework for

out data, we proposed our own functional approach to modeling omic fold changes

that takes into account independently measured time points and replicates, based on

Ramsay and Silverman (2005) and Zhang (2013). The model is presented in Appendix

B, an illustrative example is given in Figure 1.3.1. It has been decided not to pursue

this venue, having concluded that the functional approach is not the best suited for
8



data with such small number of unequally spaced time points, and with a much big-

ger number of individuals considered. Sparse approaches have been developed (Yao

et al., 2005; Müller et al., 2008) to address data with these characteristics but cannot be

employed in our case since the time points are not random.

(a)

(b)

Figure (1.3.1) Example of gene expression curves inferred from one of tran-
scriptomic datasets with functional data analysis. (a) and (b) represent re-
sponses of two different genes. Images on the left contain control (green) and
case (red) responses, and those on the right contain the fold changes.

Gaussian processes. Based on placing a Gaussian prior on functions modeling the

temporal data in question, this framework has been used in the past by Heinonen et al.

(2015) to model the same kind of data as here, but with different goals, in particular for
9



detecting time intervals with differential expression between two experimental condi-

tions. A work by Kazlauskaite et al. (2019) presents a Gaussian processes-based ap-

proach that can be considered as one the closest available alternatives to our method,

since it also performs clustering of temporal data jointly with alignment. However, as

it was designed for longitudinal data with many time points and few curves to align

and cluster, it does not perform well on the kind of data treated in our case, which is

demonstrated in Section 3.2.

Other methods. Alternative approaches that do not fall under the categories of

functional data analysis or Gaussian processes include different variations of time se-

ries inference (Genolini et al., 2016; Heerah et al., 2021) and stochastic differential equa-

tions (Delattre et al., 2016; Donnet et al., 2010). In particular, the approach suggested by

Genolini et al. (2016) is similar to ours on account of also being distance-based (Fréchet

distance) and performing clustering while considering alignments. Nonetheless, it is

based on individual curves only, and cannot take into account the information on joint

distributions of multiple entities. The framework proposed by Heerah et al. (2021) is

based on auto-regressive processes, with a goal of inferring causalities between enti-

ties based on the temporal dynamic of the response. Although the approach does not

include clustering, we test it on our simulated data in order to assess the predictive

qualities of our time warping tool.

Temporal alignment and directed network inference. The framework that we

propose for temporal fold changes alignment (referring to it as time warping, with

a slight abuse of language, since it was inspired by time warping in functional data

analysis) is used not only for nested clustering, but also to infer directed fold changes

networks for visualization and biological hypotheses generation purposes. Current

research in omic network inference revolves mainly around gene regulatory networks

(Riccadonna et al., 2016; Nguyen and Braun, 2018). For instance, the approach pro-

posed by Riccadonna et al. (2016) uses dynamic time warping for directed network

inference. It should be noted, however, that such methods are designed for data sim-

ilar to those generated by GeneNetWeaver (Schaffter et al., 2011), which is based on

relating genes with respect to the covariances only, whereas our goal is to take the

differences in means into account as well.
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CHAPTER 2

EXTRACTING KEY FEATURES FROM IN VITRO

DATASETS

In this chapter, we introduce multivariate estimators of temporal fold changes con-

taining all the available information on measurements uncertainties as well as the joint

distributions of the entities. Next, we propose a distance between these estimators that

allows to take this information fully into account. We define a transformation that we

will refer to as "time warp" and will use to align fold change estimators with respect

to time, and then propose a generalized version of the distance to make it applicable

for aligned fold changes. Finally, we present our procedure performing fold changes

clustering jointly with alignment with its properties. In addition, we describe an ap-

plication of stochastic block model combined as an extension and an alternative to our

main clustering procedure.

2.1. Fold change modeling and estimation

In the multivariate setting, in order to avoid introducing non-existent information

by smoothing the temporal response, we consider time as discrete. For a given dataset,

we define the response variable as Y t
ikj for an entity (gene) i ∈ {1, 2, . . . , ne}, under the

experimental condition k = 0 if control (non-irradiated) and k = 1 if case (irradiated),

at a time point t ∈ {t1, t2, . . . , tp} and for a replicate j ∈ {1, 2, . . . , nr}. Here we as-

sume there are nr observations for both experimental condition and every time point

without loss of generality, given that nr ≥ 2. Two constraints with respect to the co-

variances between the responses follow from the specificity of the experimental design

described in Section 1.2:
11



(1) The measures of expressions for all genes for a given experimental condition

and time point are collected from the same plate, which allows to estimate

cross section covariances between genes, i.e. Cov
(
Y t
ikj, Y

t
i′kj

)
for i 6= i′.

(2) We do not have access to the temporal covariance structure due to the destruc-

tive technique used in collecting measures from a plate for a given time point.

Thus, measures for different time points are produced individually on differ-

ent cells and are not correlated, i.e. given distinct time points t 6= t′, for any

replicate pair (j, j′) ∈ {1, 2, . . . , nr}2 and entity pair (i, i′) ∈ {1, 2, . . . , ne}2 we

have Cov
(
Y t
ikj, Y

t′

i′kj′

)
= 0.

Classical estimators of the fold changes in the multivariate setting are the pointwise

estimators: a set of empirical individual fold changes is denoted by Γ = (Γ1, . . . ,Γne)

where Γi =
(

Γt1i , . . . ,Γ
tp
i

)
such that Γti =

∑nr
j=1 Y

t
i1j −

∑nr
j=1 Y

t
i0j

nr
= Y t

i1 − Y t
i0, represent-

ing the difference between the means of the control and the case response. However,

these estimators do not take into account the information of uncertainties and corre-

lations present in the data. We propose a new definition of fold changes estimators in

order to fully take into account all the information about their estimated distributions:

DEFINITION 2.1.1. The estimator of the fold change of entity i is denoted by Γ̂i, assumed

to be a random Gaussian vector and is defined as follows:

Γ̂i|Γi,ΣΓi ∼ N (Γi,ΣΓi) such that Γti = Y t
i1 − Y t

i0 (the pointwise estimator),

ΣΓi =


σ2

Γ
t1
i

0

. . .

0 σ2

Γ
tp
i

 , and σ2
Γti

=

∑nr
j=1

[
(Y t

i1j − Y t
i1)2 + (Y t

i0j − Y t
i0)2
]

nr − 1
.

REMARK 2.1.1. The fact that the covariance matrix in Definition 2.1.1 is diagonal is a

direct consequence of the second covariance constraint mentioned above.

2.2. Introducing a new distance between fold change estimators

Since the task at hand is clustering of the estimators of fold changes, and thus dis-

tribution clustering, there is a need to choose an appropriate distance. First, we expand

the Definition 2.1.1 to a pair of fold changes by specifying their joint distribution:

12



DEFINITION 2.2.1. The estimator of a pair of fold changes of entities i and i′ is denoted as[
Γ̂ᵀi Γ̂

ᵀ
i′

]ᵀ
, assumed to be a random Gaussian vector and is defined as follows: Γ̂i

Γ̂i′

 ∼ N
Γi

Γi′

 ,
 ΣΓi PΓiΓi′

PᵀΓiΓi′ ΣΓi′

 ,

where the quantities Γi, Γi′ , ΣΓi and ΣΓi′
describing marginal distributions of Γ̂i and Γ̂i′ are

defined according to Definition 2.1.1, and the cross-covariance matrix

PΓiΓi′
=


ρ

ΓiΓ
t1
i′

0

. . .

0 ρ
ΓiΓ

tp

i′



with ρΓiΓti′
=

∑nr
j=1

[
(Y t

i1j − Y t
i1)(Y t

i′1j − Y t
i′1) + (Y t

i0j − Y t
i0)(Y t

i′0j − Y t
i′0)
]

nr − 1
.

The chosen distance is constructed based on L2-distance between normally dis-

tributed fold changes estimators Γ̂i and Γ̂i′ , the latter is constructed as follows (Givens

and Shortt, 1984):

(2.2.1) d2
2

(
Γ̂i, Γ̂i′

)
= E‖Γ̂i − Γ̂i′‖2

2 = ‖Γi − Γi′‖2
2 + Tr(ΣΓi) + Tr(ΣΓi′

)− 2Tr(PΓiΓi′
)

where ‖ · ‖2 is the the Euclidean norm.

DEFINITION 2.2.2. The squared L2-distance between fold changes estimators Γ̂i and Γ̂i′ ,

with the joint distribution given in Definition 2.2.1, will be denoted as d̂2
2 and defined as

follows:

d̂2
2

(
Γ̂i, Γ̂i′

)
=

p∑
l=1

(
Γtli − Γtli′

)2
+

p∑
l=1

σ2

Γ
tl
i

+

p∑
l=1

σ2

Γ
tl
i′
− 2

p∑
l=1

ρ
ΓiΓ

tl
i′
.

Comparison with Wasserstein distance. Wasserstein distance served as inspira-

tion for d̂2
2 and is constructed similarly to Γ̂i′ under Gaussian assumption. In the gen-

eral case, squared 2-Wasserstein distance between two random variables with mar-

ginal distributions P1 and P2 can be expressed as follows (Verdinelli and Wasserman,

2019):

W 2
2 (P1, P2) = inf

J

∫
‖x− y‖2dJ(x, y).

In other words, it performs optimal transport of the marginal P2 to the P1 by choosing

the joint distribution J that produces the optimal mapping. In the Gaussian case, W 2
2

can be rewritten based on the distance presented in (2.2.1). The difference from d̂2
2 is

13
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Figure (2.3.1) The effect of time warping illustrated on a figure, where means
with standard deviation of a pair of normalized transcriptomic fold changes are
plotted. It can be observed that after warping the fold change of the gene CSF2
backwards (continuous line represents the original mean and the dashed one
represents the warped mean), its mean practically coincides with that of the fold
change of the gene FAS.

that W 2
2 seeks to minimize E‖Γ̂i − Γ̂i′‖2

2 by finding PΓiΓi′
that achieves this minimum.

Widely used to compare marginal distributions, it cannot, however, take into account

the information on the joint distribution if it is available.

2.3. Fold change alignment

In this section, we introduce all the mathematical quantities necessary to perform

the temporal alignment of the fold changes, which will be further applied jointly with

clustering. The idea behind alignment is illustrated in Figure 2.3.1. In this example,

fold changes are very similar up to a time shift, which means that alignment should

significantly reduce the distance between them and thus force them to belong to the

same cluster. First, we define a transformation of a pair of time vectors that will be re-

ferred to as a time warp, in analogy with a similar concept in functional data analysis.

DEFINITION 2.3.1. Let T and Ts be sets of time vectors for considered omic datasets. A

time warpWs of step s ∈ Z is a transformation of two time vectors, defined as follows:

Ws : T 2 → T 2
st0

t0

 7→
t11

t12

 where:

14



t0 = {tl}pl=1, t11 =



{tl}p−sl=1 if s > 0

{tl}pl=1−s if s < 0

t0 if s = 0

and t12 =



{tl}pl=1+s if s > 0

{tl}p+sl=1 if s < 0

t0 if s = 0

.

In this definition, we distinguish three major warping types: backward warp (s <

0), forward warp (s > 0) and identity warp (s = 0). Next, we define a warped fold

changes pair in terms of the original fold changes:

DEFINITION 2.3.2. Let t0 ∈ T be a p-dimensional time vector, and s ∈ Z a warp step.

We denote as
[
Γ̂i ◦Ws

ᵀ ̂Γi′ ◦Ws

ᵀ]ᵀ
an s-warped fold changes pair

[
Γ̂ᵀi Γ̂

ᵀ
i′

]ᵀ
such that:

 Γ̂i ◦Ws

̂Γi′ ◦Ws

 =


(

Γ̂
t1
1
i , . . . , Γ̂

t1
p−|s|
i

)ᵀ
(

Γ̂
t1
p−|s|+1

i′ , . . . , Γ̂
t1
2(p−|s|)
i′

)ᵀ


where t1 =Ws(t
0).

REMARK 2.3.1. In order to be able to refer directly to an individual warped fold change,

we denote it as Γ̂i ◦Ws with a slight abuse of notation, since the warping transformation is

applied to a pair of fold changes.

For every fold changes pair only the first fold change is being moved since it al-

lows for a more convenient manipulation of warping results while being able to ex-

amine all warping possibilities if considering both forward and backward type warp-

ing. According to the definitions presented above, the first fold change in the pair is

being warped with a subsequent cutoff of extraneous parts. The second fold change in

the pair does not move, however its parts that do not correspond to remaining post-

warping points of the first one are also being cut off. The calculations are detailed in

the proof of Proposition 2.3.1.

We introduce a new dissimilarity measure between the random fold changes esti-

mators that is a generalization of the distance d̂2
2 in order to take all the covariances

into account in the case where time warping is applied:
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DEFINITION 2.3.3. Let s ∈ Z, and X and Y be p-dimensional Gaussian random variables

with a joint distributionX
Y

 ∼ N
µX

µY

 ,
 ΣX PXY

PᵀXY ΣY

 such that [PXY ]ij = 0 if j 6= i− s.

We define a dissimilarity measure d̂isss between X and Y as follows:

d̂isss (X, Y ) = ‖µX − µY ‖2 + Tr(ΣX) + Tr(ΣY )− 2

p−|s|∑
l=1

[PXY ](
l+s1

Z
∗
+

(s),l+s1
Z
∗
−

(s)
) .

Applying the dissimilarity measure to the warped fold changes, we get the expres-

sion resembling the value of d̂2
2 in the case of non-warped fold changes, with extrane-

ous part getting cut off as a result of warping:

PROPOSITION 2.3.1. Let s ∈ Z be a warp step, and
[
Γ̂i ◦Ws

ᵀ ̂Γi′ ◦Ws

ᵀ]ᵀ
an s-warped

fold changes pair. The value of dissimilarity d̂isss between the fold changes Γ̂i ◦Ws and
̂Γi′ ◦Ws can be expressed in the following form:

d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
=

p∗∑
l=l∗

(
Γtli − Γ

tl+s
i′

)2

+

p∗∑
l=l∗

σ2

Γ
tl
i

+

p∗∑
l=l∗

σ2

Γ
tl+s
i′
− 2

p−|s|∑
l=1+|s|

ρ
ΓiΓ

tl
i′
,

where l∗ = 1− s1Z∗−(s) and p∗ = p− s1Z∗+(s).

Proof We will denote the joint distribution of the fold changes pair
[
Γ̂i ◦Ws

ᵀ ̂Γi′ ◦Ws

ᵀ]ᵀ
in the following way: Γ̂i ◦Ws

̂Γi′ ◦Ws

 ∼ N
Γi ◦Ws

Γi′ ◦Ws

 ,
 ΣΓi ◦Ws PΓiΓi′

◦Ws

(PΓiΓi′
◦Ws)

ᵀ ΣΓi′
◦Ws

 .

Using Definitions 2.3.2 and 2.2.1, the means can be expressed depending on the

warp type:

Γi ◦Ws

Γi′ ◦Ws

 =



[
Γt1i . . .Γ

tp−s
i Γ

t1+s

i′ . . .Γ
tp
i′

]ᵀ
if s > 0[

Γ
t1−s
i . . .Γ

tp
i Γt1i′ . . .Γ

tp+s
i′

]ᵀ
if s < 0

[ΓᵀiΓ
ᵀ
i′ ]
ᵀ if s = 0

,
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Similarly, we can express the elements of the covariance matrix:

ΣΓi◦Ws =




σ2

Γ
t1
i

0

. . .

0 σ2

Γ
tp−s
i

 if s > 0


σ2

Γ
t1−s
i

0

. . .

0 σ2

Γ
tp
i

 if s < 0

ΣΓi if s = 0

, ΣΓi′
◦Ws =




σ2

Γ
t1+s
i′

0

. . .

0 σ2

Γ
tp

i′

 if s > 0


σ2

Γ
t1
i′

0

. . .

0 σ2

Γ
tp+s

i′

 if s < 0

ΣΓi′
if s = 0

.

and K ◦Ws =



0 0

ρ
ΓiΓ

t1+s
i′

0 ρ
ΓiΓ

tp−s
i′

0




if s > 0

0 ρ
ΓiΓ

t1−s
i′

0

ρ
ΓiΓ

tp+s

i′

0 0




if s < 0

ΣΓi′
if s = 0

It can be noted that since the non-zero elements of the matrix K ◦ Ws have been

moved from the diagonal to either sub-diagonal or super-diagonal of order s, its trace

is now equal to zero. Since the condition on the joint distribution given in Definition

2.3.3 is satisfied, we can calculate the value of d̂isss element by element, starting with

the square norm of the difference between means:

‖Γi ◦Ws − Γi′ ◦Ws‖2 =



∑p−s
l=1

(
Γtli − Γ

tl+s
i′

)2

if s > 0∑p
l=1−s

(
Γtli − Γ

tl+s
i′

)2

if s < 0∑p
l=1

(
Γtli − Γ

tl+s
i′

)2

if s = 0

.
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Next, the trace of the covariance matrix of the first warped fold change in the pair:

Tr(ΣΓi ◦Ws) =



∑p−s
l=1 σ

2

Γ
tl
i

if s > 0∑p
l=1−s σ

2

Γ
tl
i

if s < 0∑p
l=1 σ

2

Γ
tl
i

if s = 0

.

Similarly for the second fold change:

Tr(ΣΓi′
◦Ws) =



∑p
l=1+s σ

2

Γ
tl
i

=
∑p−s

l=1 σ
2

Γ
tl+s
i

if s > 0∑p+s
l=1 σ

2

Γ
tl
i

=
∑p

l=1−s σ
2

Γ
tl+s
i

if s < 0∑p
l=1 σ

2

Γ
tl
i

=
∑p

l=1 σ
2

Γ
tl+s
i

if s = 0

.

Finally, the last term containing the cross-covariances is calculated:

p−|s|∑
l=1

[
PΓiΓi′

◦Ws

](
l+s1

Z
∗
+

(s),l+s1
Z
∗
−

(s)
) =



∑p−s
l=1+s ρΓiΓ

tl
i′

if s > 0∑p+s
l=1−s ρΓiΓ

tl
i′

if s < 0∑p
l=1 ρΓiΓ

tl
i′

if s = 0

.

Hence, we obtain the value of the dissimilarity by writing the expression for any step

s ∈ Z. 2

REMARK 2.3.2. It can be noted that d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
= d̂2

2

(
Γ̂i, Γ̂i′

)
in the case

of the identity warp s = 0.

REMARK 2.3.3. We chose to construct time warping in a way that some parts of the fold

changes that move outside of the temporal domain considered, get cut off. This choice was

deemed as preferable to alternatives based on extending the fold changes instead of cutting them,

since they imply adding unobserved information. However, it potentially introduces a bias in

comparison between warped and unwarped sequences, hence it is important to normalize the

dissimilarities with respect to the number of post-warping time points in order to render them

comparable .

2.4. Joint clustering with alignment

The main idea behind our approach to key features selection for a given dataset is

reducing the fold changes to a small number of behavior types up to a time shift, which
18



translates into clustering of aligned fold changes. In order to combine dissimilarities

between fold changes with optimal alignments, we introduce the following matrix:

DEFINITION 2.4.1. Let S ⊂ Z be a finite set of considered warp steps, such that S =

{−smax, . . . , smax}, given a maximal warping step smax ∈ N. The Optimal Warping Dissim-

ilarity matrix, denoted OWD, is a matrix containing the values of the dissimilarity measure

d̂isss for all pairs of fold changes in case of their optimal pairwise alignment over the set of all

possible warps with steps in S, or formally:

OWD =

[
min
s∈S

[
d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)]]
1≤i,i′≤ne

.

According to Definition 2.3.1, alignments are uniquely defined not for a given fold

change, but for a given pair of fold changes. In other words, a fold change may have

different optimal warps when paired with different fold changes, and thus the el-

ements of the OWD matrix are not directly comparable. Hence, the task can only

be approached by iterating between clustering and alignment until convergence. We

choose the framework of clustering with k-medoids (Kaufmann and Rousseeuw, 1987)

since it is based on comparing elements to a medoid, which is an actual member of the

population, thus allowing to keep track of correlations throughout clustering. In com-

parison, many other methods such as k-means or its extensions are unsuitable for the

task for the following reasons:

• K-means applied directly to the OWD matrix: while this approach is poten-

tially applicable to choose clusters, it is not suitable for alignment since it does

not allow to choose fold change warps uniquely.

• K-means through constructing a fold change barycenter: after the first itera-

tion, the information on joint distributions is lost in this case since the barycen-

ters are not observed from the data.

Using k-medoids allows to make alignment clustering-dependent: while compar-

ing elements to medoids for clustering, their warps can also be chosen in a unique

way with respect to medoids. We perform clustering using "k-means like" version of

k-medoids (Park and Jun, 2009) based on a series of random initializations of type

k-means++ (Arthur and Vassilvitskii, 2007). Pseudocode for the state-of-the-art ver-

sion of joint clustering and alignment, applied in the context discussed in this work,

is presented in Algorithm 1. Similar frameworks are used in Sangalli et al. (2010) and

Kazlauskaite et al. (2019).
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Algorithm 1 Joint clustering and alignment algorithm: classical version

Require: Fold changes Γ̂ =
(

Γ̂1, . . . , Γ̂ne

)
, K ∈ N, itmax ∈ N, ninit ∈ N, ε > 0.

1: TC ←∞
2: for init ∈ {1, . . . , ninit} do
3: Initialize centroids C = (C1, . . . , CK) ⊂ {1, . . . , ne}with kmeans++
4: TCit ←∞
5: ∆TC ←∞
6: it← 1
7: while ∆TC > ε and it < itmax do
8: TCnewit ← 0
9: 1. Assign step:

10: for i ∈ {1, . . . , ne} do
11: dmin ←∞
12: for k ∈ {1, . . . ,K} do
13: sk ← arg mins∈S d̂isss

(
Γ̂i ◦Ws, ̂ΓCk ◦Ws

)
. Align FCs with the centroid

14: dk ← d̂isssk

(
̂Γi ◦Wsk , ̂ΓCk ◦Wsk

)
15: if dk < dmin then . Assign FCs to centroids
16: dmin ← dk
17: Cli ← k
18: end if
19: end for
20: end for
21: 2. Update step:
22: for k ∈ {1, . . . ,K} do
23: dmin ←∞
24: for i ∈ clusterk = {i ∈ {1, . . . , ne}|Cli = k} do . Candidate for a centroid
25: dclusterk ← 0
26: for i′ ∈ clusterk do
27: si′i ← arg mins∈S d̂isss

(
̂Γi′ ◦Ws, Γ̂i ◦Ws

)
. Align FCs with the candidate

28: dclusterk ← dclusterk + d̂isssi′i

(
̂Γi′ ◦Wsi′i ,

̂Γi ◦Wsi′i

)
29: end for
30: if dclusterk < dmin then . Choose new centroid
31: dmin ← dclusterk
32: Cnewk ← i
33: end if
34: end for
35: TCnewit ← TCnewit + dmin
36: end for
37: 3. Calculate the change in total cost:
38: ∆TC ← TCit − TCnewit
39: if ∆TC > ε then
40: C ← (Cnew1 , . . . , CnewK )
41: TCit ← TCnewit
42: end if
43: it← it+ 1
44: end while
45: if TCit < TC then
46: C ← (C1, . . . , CK) . centroids labels
47: Cl← (Cl1, . . . , Clne) . cluster labels
48: W ←

(
s1Cl1 , . . . , sneClne

)
. warps

49: TC ← TCit
50: end if
51: end for
52: return C, Cl,W



We propose a modification of the algorithm, that reduces the computation time

by leveraging the low temporal dimensionality of the data in the multivariate setting.

Since the number of time points is typically small, the number of possible warps has to

be even smaller and known in advance, and since the distributions of the fold change

pairs under different warps are known, it is possible to calculate all alignment options

before performing clustering, while reducing computation time and in a non-memory-

intensive way. Consequently, we introduce the following quantity, that will be used in

the modified version of the algorithm:

DEFINITION 2.4.2. Let S ⊂ Z be a finite set of considered warp steps, such that S =

{−smax, . . . , smax}, given a maximal warping step smax ∈ N. The Optimal Warp matrix,

denotedOW , is a matrix containing, for all pairs of fold changes, the values in S corresponding

to the warp steps allowing to achieve their optimal pairwise alignment with respect to the

dissimilarity measure d̂isss, or formally:

OW =

[
arg min

s∈S

[
d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)]]
1≤i,i′≤ne

.

PROPOSITION 2.4.1. The following statements are true for matrices OWD and OW :

(1) OWD is symmetric.

(2) OW is anti-symmetric.

Proof Let (i, i′) ∈ {1, . . . , ne}2 be an entity pair. The statements of the proposition are

equivalent to saying that, for any warp step s ∈ S, we have:

(2.4.1)
mins∈S

[
d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)]
= mins∈S

[
d̂isss

(
̂Γi′ ◦Ws, Γ̂i ◦Ws

)]
arg mins∈S

[
d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)]
= − arg mins∈S

[
d̂isss

(
̂Γi′ ◦Ws, Γ̂i ◦Ws

)] .

Let us denote s∗ = arg mins∈S

[
d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)]
. To prove both parts of the

proposition, it suffices to show that the following is true:

(2.4.2) d̂isss∗

(
̂Γi ◦Ws∗ , ̂Γi′ ◦Ws∗

)
= d̂iss−s∗

(
̂Γi′ ◦W−s∗ , ̂Γi ◦W−s∗

)
Using the expression of the dissimilarity given in Proposition 2.3.1, we can develop

the left-hand side of (2.4.2):

(2.4.3)

d̂isss∗

(
̂Γi ◦Ws∗ , ̂Γi′ ◦Ws∗

)
=

p∗∑
l=l∗

(
Γtli − Γ

tl+s∗
i′

)2

+

p∗∑
l=l∗

σ2

Γ
tl
i

+

p∗∑
l=l∗

σ2

Γ
tl+s∗
i′
− 2

p−|s∗|∑
l=1+|s∗|

ρ
ΓiΓ

tl
i′
.
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Algorithm 2 Joint clustering and alignment algorithm based onOWD andOW matri-
ces

Require: Fold changes Γ̂ =
(

Γ̂1, . . . , Γ̂ne

)
, K ∈ N, itmax ∈ N, ninit ∈ N, ε > 0.

1: Compute OWD and OW
2: TC ←∞
3: for init ∈ {1, . . . , ninit} do
4: Initialize centroids C = (C1, . . . , CK) ⊂ {1, . . . , ne}with kmeans++
5: TCit ←∞
6: ∆TC ←∞
7: it← 1
8: while ∆TC > ε and it < itmax do
9: TCnewit ← 0

10: 1. Assign step:
11: for i ∈ {1, . . . , ne} do
12: Cli ← arg mink∈{1,... ,K}OWDiCk . Assign aligned FCs to centroids
13: end for
14: 2. Update step:
15: for k ∈ {1, . . . ,K} do
16: dmin ←∞
17: for i ∈ clusterk = {i ∈ {1, . . . , ne}|Cli = k} do . Candidate for a centroid
18: dclusterk ←

∑
i′∈clusterk OWDii′

19: if dclusterk < dmin then . Choose new centroid
20: dmin ← dclusterk
21: Cnewk ← i
22: end if
23: end for
24: TCnewit ← TCnewit + dmin
25: end for
26: 3. Calculate the change in total cost:
27: ∆TC ← TCit − TCnewit
28: if ∆TC > ε then
29: C ← (Cnew1 , . . . , CnewK )
30: TCit ← TCnewit
31: end if
32: it← it+ 1
33: end while
34: if TCit < TC then
35: C ← (C1, . . . , CK) . centroids labels
36: Cl← (Cl1, . . . , Clne) . cluster labels
37: W =

(
OW1Cl1 , . . . ,OWneClne

)
. warps

38: TC ← TCit
39: end if
40: end for
41: return C, Cl,W

where l∗ = 1− s∗1Z∗−(s∗) and p∗ = p− s∗1Z∗+(s∗).

Similarly, we develop the right-hand side:

(2.4.4)

d̂iss−s∗

(
̂Γi′ ◦W−s∗ , ̂Γi ◦W−s∗

)
=

p∗∑
l=l∗

(
Γtli′ − Γ

tl−s∗
i

)2

+

p∗∑
l=l∗

σ2

Γ
tl
i′

+

p∗∑
l=l∗

σ2

Γ
tl−s∗
i

−2

p−|−s∗|∑
l=1+|−s∗|

ρ
Γi′Γ

tl
i
.
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where l∗ = 1 − (−s∗)1Z∗−(−s∗) and p∗ = p − (−s∗)1Z∗+(−s∗). These quantities can be

rewritten as l∗ = 1 + s∗1Z∗+(s∗) = l∗ + s∗ and p∗ = p + s∗1Z∗−(s∗) = p∗ + s∗. It can also

be noticed that | − s∗| = |s∗|, and ρ
Γi′Γ

tl
i

= ρ
ΓiΓ

tl
i′

by the symmetry of the covariance.

Hence, we can rewrite (2.4.4) as follows:

d̂iss−s∗

(
̂Γi′ ◦W−s∗ , ̂Γi ◦W−s∗

)
=

p∗+s∗∑
l=l∗+s∗

(
Γ
tl−s∗
i − Γtli′

)2

+

p∗+s∗∑
l=l∗+s∗

σ2

Γ
tl−s∗
i

+

p∗+s∗∑
l=l∗+s∗

σ2

Γ
tl
i′
− 2

p−|s∗|∑
l=1+|s∗|

ρ
ΓiΓ

tl
i′
.

(2.4.5)

It can be noticed that the expression in (2.4.5) is identical to (2.4.3), which concludes

the proof. 2

REMARK 2.4.1. OW allows to interpret the main warping types. For a given fold changes

pair, if the optimal warp is the identity warp, they are referred to as simultaneous. If not, then

one fold change in the pair is warped forward with respect to the other, whereas the other fold

change is being warped backwards with respect to the first. In this case, the fold change that

is warped forward is referred to as ’predictive’ of other one, whereas the latter is labeled as

’predicted’, or ’regulated’.

The modified version of the previous algorithm, presented in Algorithm 2, is based

on integrating time warping in the clustering process through pre-calculated matrices

OWD and OW . The former replaces a standard dissimilarity matrix, the latter is used

to extract final warps. The comparison between the two algorithms leads to the fol-

lowing result:

THEOREM 2.4.1. The following is true about the joint clustering and alignment algo-

rithms:

(1) Algorithm 2 converges in a finite number of iterations.

(2) Algorithms 1 and 2 are equivalent, in the sense that for the same input they produce

the same output.

(3) Algorithms 1 and 2 have polynomial time complexities, that are given in the proof.

Moreover, the degree of the largest polynomials of the time complexity of Algorithm 1

is greater than that of Algorithm 2, meaning that the latter is less complex.

Proof To prove the first statement, it suffices to show that the total cost always de-

creases, that is, for every iteration it, TCit ≥ TCit+1.
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We denote (Cl1, . . . , Clne) and
(
Cl∗1, . . . , Cl

∗
ne

)
cluster labels at iterations it and it+1

respectively. For a given initialization, the cost at iteration it can be written as follows:

(2.4.6) TCit =
K∑
k=1

∑
i∈clusterk

OWDiCk ,

given, for every cluster label k ∈ {1, . . . , K}, clusterk = {i ∈ {1, . . . , ne}|Cli = k} the

current composition of the cluster, and Ck the corresponding centroid. Similarly, the

cost at iteration it+ 1 can be expressed:

(2.4.7) TCit+1 =
K∑
k=1

∑
i∈cluster∗k

OWDiC∗k ,

given, for every cluster label k ∈ {1, . . . , K}, cluster∗k = {i ∈ {1, . . . , ne}|Cl∗i = k} the

current composition of the cluster, and C∗k the corresponding centroid. Additionally,

for a given cluster label k, we denote the migrating sub-clusters:

– the sub-cluster of elements that left cluster k at it+ 1:

cluster∗Ck = {i ∈ {1, . . . , ne}|Cli = k and Cl∗i 6= k},

– the sub-cluster of elements that joined cluster k at it+ 1:

clusterCk = {i ∈ {1, . . . , ne}|Cli 6= k and Cl∗i = k}.

Noticing that clusterk =
(
cluster∗k ∪ cluster∗Ck

)
\ clusterCk , the quantity TCit can be

decomposed as follows:

(2.4.8) TCit =
K∑
k=1

∑
i∈cluster∗k

OWDiCk︸ ︷︷ ︸
A

+
K∑
k=1

∑
i∈cluster∗Ck

OWDiCk︸ ︷︷ ︸
B

−
K∑
k=1

∑
i∈clusterCk

OWDiCk︸ ︷︷ ︸
C

.

First, it follows from the "Update" step by construction that

A =
K∑
k=1

∑
i∈cluster∗k

OWDiCk ≥
K∑
k=1

∑
i∈cluster∗k

OWDiC∗k = TCit+1.

Next, we consider the quantities B and C. It can be noticed, by construction of the

"Assign" step, that for every i ∈ cluster∗Ck there exists a unique k∗ ∈ {1, . . . , K} \ k
such that i ∈ clusterCk∗ and OWDiCk∗ ≤ OWDiCk . In other words, there is a bijection

between the indices in B and C, such that the corresponding elements of the sum in B

are larger than those in C. Therefore, B− C ≥ 0, and TCit = A + B− C ≥ TCit+1.
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Thus, the total cost sequence is decreasing, and, noticing that total cost is positive,

it can be concluded that the sequence has a limit. Finally, there is a finite number of

cluster configurations possible, therefore the sequence of total costs contains a finite

number of values. Hence, the algorithm converges in a finite number of iterations.

The second statement follows directly from Definitions 2.4.1 and 2.4.2. In particu-

lar, we have:

– Line 12 of Algorithm 2 is equivalent to lines 11-19 of Algorithm 1, since:

arg min
k∈{1,... ,K}

OWDiCk = arg min
k∈{1,... ,K}

(
min
s∈S

[
d̂isss

(
Γ̂i ◦Ws, ̂ΓCk ◦Ws

)])
= arg min

k∈{1,... ,K}
(dk),

where dk is the quantity from Algorithm 1 of the final value after the for loop

terminating at line 19.

– Lines 18-22 of Algorithm 2 are equivalent to lines 25-33 of Algorithm 1, since:∑
i′∈clusterk

OWDii′ =
∑

i′∈clusterk

OWDi′i =
∑

i′∈clusterk

d̂isss

(
̂Γi′ ◦Ws, Γ̂i ◦Ws

)
,

due to the symmetry ofOWD, the final quantity being equivalent to the value

of dclusterk at line 33 of Algorithm 1.

– Line 37 of Algorithm 2 is equivalent to line 48 of Algorithm 1.

We obtain the following complexities for different parts of the algorithms:

(1) Assign step: O(neK|S|) for Algorithm 1, and O(neK) for Algorithm 2.

(2) Update step: O(n2
eK|S|) for Algorithm 1, and O(n2

eK) for Algorithm 2.

Thus, adding the complexity of calculating the matrices OWD and OW beforehand,

we obtain in totalO(ninititmaxneK|S|(1+ne)) for Algorithm 1, andO(ninititmaxneK(1+

ne) + n2
e|S|) for Algorithm 2. The degree of the largest polynomial of the former is 6,

and that of the latter is 5, hence Algorithm 2 is less complex. 2

REMARK 2.4.2. In practice, the improvement of Algorithm 2 in terms of the runtime can

be very important because a large value often has to be chosen for ninit. Since such clustering

algorithms tend to be rather initialization sensitive, it is beneficial to perform such a number

of random initializations that covers a sufficiently big range of initial combinations, which

becomes important with higher values of ne.

REMARK 2.4.3. In line 37 of Algorithm 2, the indexing order of OW is important, since

this matrix is anti-symmetric, as shown in Proposition 2.3.1. This specific indexing implies

that the fold changes are being warped with respect to their centroids, which remains static.
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2.5. Stochastic block model: an alternative approach to clustering

Stochastic block model1 is a class of models for random graphs which can be con-

sidered as a clustering technique since it assumes that the graph has a latent commu-

nity structure. Let G = (N , E) be a random graph, where N is the node set repre-

senting biological entities, and E is the edge set. In the framework of stochastic block

models, a latent variable that determines the block structure of the network is intro-

duced. Having fixed the total number of communities K, we define a binary matrix

U = (Uiq)i∈{1,...,ne},q∈{1,...,K} such that Uiq = 1 indicates the entity i belonging to the com-

munity q. Matrix U is a realization of a random variable following multinomial proba-

bility distribution with the parameter λ ∈ {λ ∈ RK
+ |
∑

q λq = 1} such that P(Uiq = 1) =

λq, with Ui ⊥⊥ Ui′ for (i, i′) ∈ {1, . . . , ne}2 such that i 6= i′. The connectedness of nodes

is described by a random adjacency matrix X = (Xii′)(i,i′)∈{1,...,ne}2 , such that Xii′ = 1 if

i and i′ form an edge and Xii′ = 0 otherwise. Given the groups that the vertices belong

to, the appearance of the edge between them follows a Bernoulli distribution with the

parameter π = (πqq′)(q,q′)∈{1,...,K}2 as follows: P(Xii′ = 1|UiqUi′q′ = 1) = πqq′ .

In practice, the block structure of the network is inferred from the given adjacency

matrix. The likelihood P (X|λ, π) can be explicitly written, but in practice it is not cal-

culable due to the number of possible partitions to be explored growing exponentially

with the number of entities in the network. Inference is performed using variational

expectation-maximization algorithm (or VEM). The method introduces a certain dis-

tribution over the latent variable space Q and is based on decomposing the complete

log-likelihood as follows:

P (X|λ, π) = EQ [logP (X,U |λ, π)− logQ(U)] +DKL (Q(U)‖P (U |X,λ, π)) ,

where the last term is the Kullback-Leibler divergence of the distribution Q from

P (U |X,λ, π), the actual unknown distribution of latent variables. The inference con-

sists of integrating into EM a new optimization problem: choosing a distribution Q

over the latent variable space that minimizes the gap between the tractable quantity

EQ [logP (X,U |λ, π)− logQ(U)] and the complete log-likelihood. Hence, the following

double maximization problem is resolved:

max
λ,π,Q

EQ [logP (X,U |λ, π)− logQ(U)] = max
λ,π

P (X|λ, π)−min
Q
DKL (Q(U)‖P (U |X,λ, π)) .

1see Lee and Wilkinson (2019) for more details on stochastic block models
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In the variational context, latent variables Ui are assumed to be independent but

no longer identically distributed. By introducing an additional set of parameters τ =

(τ1, . . . , τne) with τi ∈ RK
+ and

∑
q τiq = 1, we obtain a multinomial distribution of the

latent variables under Q such that PQ(Uiq = 1) = τiq.

2.5.1. Clustering-based SBM. In addition to our main method, we propose de-

tection of communities from the fold changes network using stochastic block model

as a model-based alternative to k-medoids clustering. While accomplishing the task

equivalent to clustering, it exploits properties of the graph constructed from the dis-

similarities in order to infer communities (or blocks) rather than exploiting the dis-

similarities directly. The stochastic block model of omic fold changes is inferred us-

ing the tools provided by the Python package SparseBM (Frisch et al., 2021). The

authors of the package suggest choosing the best result in terms of ICL (Integrated

Completed Likelihood, a criterion commonly used in stochastic block models infer-

ence) produced based on numerous random initializations of the parameters (λ, π, τ).

The reason why a big number of those is needed is that the VEM algorithm is very

initialization-sensitive: different initial parameter combinations lead to falling into dif-

ferent local optima, which are not necessarily close to the global optimum. We propose

initializing the parameters based on clustering performed with d̂2
2-based k-medoids,

thus combining two approaches to community detection along with adding the net-

work aspect and minimizing the effect of bad parameter initialization. Such approach

allows to achieve a network representation with communities close to those identified

by k-medoids, while going even further in terms of cost minimization.

The focus is put on the variational latent variable parameter τ and the edges pres-

ence parameter π. For the fold changes {Γ̂1, . . . , Γ̂ne} partitioned into K clusters, we

proceed as follows:

• τ init: a number ε ∈ R+ is chosen such that ε� 1, then:

τ initiq = (1− ε× (K − 1))× 1Cli=q + ε× 1Cli 6=q,

which is equivalent to starting off the algorithm close to the local optimum

corresponding to the hard clustering obtained with k-medoids;

• πinit: this parameter is chosen randomly so that πqq � πqq′ for q 6= q′, which

forces the algorithm to adjust initial clusters by increasing connectivity within

each of them.
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CHAPTER 3

SIMULATION STUDIES

A series of simulation studies was performed in order to evaluate the proposed

approach to key features extraction in the framework similar to that of temporal omic

fold changes with respect to the existing alternatives. The first group of simulations

focuses on the choice of a distance between random variables on the one hand and

of clustering algorithms on the other hand, whereas the second group of simulations

is aimed at studying different configurations of the proposed approach, such as time

warping and stochastic block model inference. Fold changes were simulated based

on 4 behavior types representing 2 or 4 clusters. These behavior types were meant to

reproduce the characteristics of the real fold changes that were expected to be distin-

guished by the proposed procedure. The simulations we performed are characterized

by a relatively low level of model-imposed features. In particular, we only assume

that the fold changes have estimated probability distributions described by means and

covariances, thus we simulate directly the fold changes estimators. The temporal com-

plexity of the data is independent of the framework we propose, and is only inspired

by the functional patterns we observe in real data.

3.1. Simulation design

Let us consider a set of ne = 300 simulated fold changes over p = 8 time points.

Simulated fold changes are defined by their means and their covariance matrix. Us-

ing the same notation as previously in the context of real datasets, let the means be

represented by Γ = (Γ1, . . . ,Γne), where Γi =
(

Γt1i , . . . ,Γ
tp
i

)
for i ∈ {1, . . . , ne}. The

covariance matrices will be denoted by Ψ = (Ψii′)(i,i′)∈{1,... ,ne}2 , where:
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Ψii′ =


ψ

ΓiΓ
t1
i′

0

. . .

0 ψ
ΓiΓ

tp

i′

 , such that ψΓiΓti′
=


σ2

Γti
if i = i′

ρΓiΓti′
otherwise

for t ∈ {t1, . . . , tp}.

Simulation design includes two scenarios with respect to means (henceforth re-

ferred to as M1 and M2), and 6 scenarios with respect to covariance matrix (C1, C2,

C3, C4, C5 and C6).

3.1.1. Scenarios with respect to means.

3.1.1.1. Scenario M1. This approach to simulating means has been used in the sim-

ulation study focusing on the choice of distance and clustering algorithm (also referred

to as simulation study 1). Here, time points are chosen to be unequally spaced, corre-

sponding to those from the real omic datasets, in particular: (t1, . . . , tp) = (0.5, 1, 2, 3, 4, 7, 14, 21).

For each simulated entity index i ∈ {1, . . . , ne}, the simulated fold change mean is

Γi = (f(t1), . . . , f(tp)), where function f ∈ {f1, f2, f3, f4} is chosen among four func-

tions representing a distinct behavior type, or a cluster, according to the set of cluster

labels, which in its turn is chosen depending on the scenario with respect to the covari-

ances. In particular, f is chosen uniformly among {f1, f2, f3, f4} if the scenario implies

4 distinct clusters, and among {f1, f2} if the number of simulated clusters should be 2.

The four generative models are defined as follows:

• f1 : [0, 21]→ R

x 7→ a

2
x2 + bx+ c

where a ∼ N (0.05, 0.0052), b ∼ N (−10a0, 4a
2
0) with a0

d
= a, and c ∼ N (2, 1);

• f2 : [0, 21]→ R

x 7→ a

3
x3 − a(r1 + r2)

2
x2 + (ar1r2 + c)x+ d

where a ∼ N (−0.01, 0.0012), r1 ∼ N (5, 1), r2 ∼ N (15, 1), c ∼ N (6a0, 4a
2
0) with a0

d
= a,

and d ∼ N (3, 1);
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• f3 : [0, 21]→ R

x 7→ a

3
x3 − a(r1 + r2)

2
x2 + (ar1r2 + c)x+ d

where a ∼ N (0.01, 0.0012), r1 ∼ N (5, 1), r2 ∼ N (15, 1), c ∼ N (6a0, 4a
2
0) with a0

d
= a,

and d ∼ N (3, 1);

• f4 : [0, 21]→ R

x 7→ a

4
x4 − a(r1 + r2 + r3)

3
x3 +

a (r1r2 + r3(r1 + r2))

2
x2 − (ar1r2r3 + b)x+ c

where a ∼ N (5× 10−3, (5× 10−5)2), r1 ∼ N (2, 0.22), r2 ∼ N (10, 0.52), r3 ∼ N (18, 0.22),

b ∼ U([−0.05, 0.05]), and c ∼ N (2, 0.52).

3.1.1.2. Scenario M2. This approach to simulating means has been used in the sim-

ulation study focusing on the effect of time warping as well as stochastic block model

(or simulation study 2). Studying time warping required introducing temporal shifts

to simulated data, leading to the appearance of scalability issues in the context of

the original simulation model. In order to solve this problem, time points have been

changed to almost equidistant: (t1, . . . , tp) = (0.5, 3, 6, 9, 12, 15, 18, 21); and the fourth

generative model has been changed from polynomial to sinusoidal. The remaining

functions have only undergone minor adjustments, and the general procedure stays

unchanged. The four generative models are presented below:

• f1 : [0, 21]→ R

x 7→ a

2
(x− s)2 + b(x− s) + c

where s ∼ U([−10, 10]), a ∼ N (0.05, 0.0022), b ∼ N (−11a0, 4a
2
0) with a0

d
= a, and

c ∼ N (2, 0.52);

• f2 : [0, 21]→ R

x 7→ a

3
(x− s)3 − a(r1 + r2)

2
(x− s)2 + (ar1r2 + c)(x− s) + d

where s ∼ U([−10, 10]), a ∼ N (−0.003, (10−5)2), r1 ∼ N (8, 1), r2 ∼ N (12, 1), c ∼
N (6a0, 4a

2
0) with a0

d
= a, and d ∼ N (3, 0.52);

31



• f3 : [0, 21]→ R

x 7→ a

3
(x− s)3 − a(r1 + r2)

2
(x− s)2 + (ar1r2 + c)(x− s) + d

where s ∼ U([−10, 10]), a ∼ N (0.003, (10−5)2), r1 ∼ N (8, 1), r2 ∼ N (12, 1), c ∼
N (6a0, 4a

2
0) with a0

d
= a, and d ∼ N (2, 0.52);

• f4 : [0, 21]→ R

x 7→ a sin(b(x− s)) + c

where s ∼ U([−7, 7]), a = |a0|with a0 ∼ N (2, 1), b ∼ U([0.3, 0.5]), and c ∼ N (2, 0.52).

It can be noticed that s is the time shift parameter, which is chosen to be uniformly

distributed.

3.1.2. Scenarios with respect to covariance matrix.

3.1.2.1. Independent case. The elements of Ψ are chosen as follows:

ψΓiΓti′

d
=


N (0, 22) if i = i′

0 otherwise
.

This case corresponds to scenarios C1 and C2, the difference being the number of

simulated clusters (4 and 2 respectively). All remaining scenarios simulate 2 clusters.

3.1.2.2. Block-dependent case, low covariance (C3). We denote cl1 and cl2 as sets con-

taining simulated fold change labels belonging to cluster 1 and 2 respectively. The

matrix Ψ is defined as a squared and scaled matrix Ψ′ = (Ψ′ii′)(i,i′)∈{1,... ,ne}2 , where:

Ψ′ii′ =


ψ′

ΓiΓ
t1
i′

0

. . .

0 ψ′
ΓiΓ

tp

i′

 , such that ψ′ΓiΓti′
d
=


|N (0, 22)| if 1cl1(i) = 1cl1(i′)

0 otherwise
.

The final covariance matrix is then Ψ =
Ψ′2

max{ψ′
ΓiΓti′
|i 6= i′, t ∈ {t1, . . . , tp}}

.

3.1.2.3. Block-dependent case, high covariance (C4). The matrix Ψ takes the same form

as in the previous case, but with a different scaling: Ψ =
Ψ′2

20
.

3.1.2.4. Positive vs. negative case, low covariance (C5). We assume here without loss

of generality that cluster labels are ordered in the way that entity labels in cl1 =
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{1, . . . , bne
2
c} correspond to cluster 1, and labels in cl2 = {dne

2
e, . . . , ne} correspond

to cluster 2. Similarly to the previous cases, the matrix Ψ is defined as a squared and

scaled , with the elements of the latter chosen as follows:

ψΓiΓti′

d
=


U([0, 1]) if 1cl1(i) = 1cl1(i′) = 1

U([−1, 0]) if 1cl2(i) = 1cl2(i′) = 1

0 otherwise

.

The final covariance matrix is then Ψ =
Ψ′2

100
.

3.1.2.5. Positive vs. negative case, high covariance (C6). The matrix Ψ takes the same

form as in the previous case, but with a different scaling: Ψ =
Ψ′2

50
.

3.2. Results of simulation studies

3.2.1. Study 1. In order to validate our choice of d̂2
2 for the distance and k-medoids

for the clustering algorithm, we compared their success with other candidates in dif-

ferent simulation scenarios reflecting different properties of the data. Clustering with

k-means algorithm based on Wasserstein distance is chosen as the main competitor. In

addition, Hellinger distance and hierarchical clustering were considered. The means

of the fold changes were simulated according to scenario M1 and are presented in Fig-

ure 3.2.1. The four approaches were applied 10 times for each simulated set of fold

changes in order to account for the variability arising from different random initial-

izations1 of all of them, with the exception of hierarchical clustering which is entirely

deterministic. The adjusted rand index (ARI) and the V-measure index were chosen

as metrics to quantify the success of clustering. The ARI is the corrected-for-chance

version of the Rand index, the latter being defined as RI = TP+TN
TP+FP+FN+TN

, where TP

is the number of true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives (see Chacón and Rastrojo

(2023) for details). The V-measure is an average of homogeneity and completeness:

homogeneity measuring the extent to which the individuals in a cluster are similar,

and completeness measuring the extent to which similar individuals are put together

by the algorithm (both are calculated using the Shannon’s entropy, see Rosenberg and

Hirschberg (2007) for details).

1the random initializations were the same for all methods to
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Study 1: functional representation of simulated means
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Study 1: multivariate representation of simulated means

(b)

Figure (3.2.1) Simulation study 1. a) Functional representation of simulated
means. b) Multivariate representation of simulated means. Columns represent
clusters.

The results of the study are summarized in Figure 3.2.2. Only the means of ARI

and V-measure of the obtained clusters are presented since the standard deviation

turned out to be negligible (the largest one had the order of 10−4). Firstly, a simu-

lation with all 4 clusters was performed where only the independent scenario was

considered, i.e. PΓiΓi′
= 0p,p for any considered fold changes pair with joint distri-

bution

 Γ̂i

Γ̂i′

 ∼ N
Γi

Γi′

 ,
 ΣΓi PΓiΓi′

PᵀΓiΓi′ ΣΓi′

 where i 6= i′. This implies that, since

the main advantage of d̂2
2 with respect to Wasserstein distance is the ability to take K

into account, any differences between the results obtained in the independent scenario

would be due to the choice of algorithm rather than distance. It can be observed that

d̂2
2 k-medoids generally produce better results in terms of both metrics compared to
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Figure (3.2.2) Results of the simulation study comparing distances and clus-
tering algorithms.

Wasserstein k-means and hierarchical clustering, which means that k-medoids algo-

rithm is more adapted to perform clustering of fold changes. An illustrative example

of clustering of simulated fold changes by d̂2
2 k-medoids and Wasserstein k-means is

presented in Figure 3.2.3 (contingency tables in Table 3.2.1). This example demon-

strates the specific differences in outcomes of applying k-medoids and k-means to

cluster fold changes in this context. It can be noted that the first two clusters are par-

ticularly often confused by both algorithms, but despite a big amount of fold changes

in these clusters being wrongly classified, k-medoids manage to choose centroids that

are highly representative of the average behavior in the corresponding clusters. Mean-

while, a severe deformation of the centroids can be observed in case of k-means, which

may lead to mistakes in interpreting the average behavior of the fold changes in a

given cluster. Hellinger distance with k-medoids algorithm appears not as effective

but still comparable to the d̂2
2 k-medoids, which proves once again that it is beneficial

to use k-medoids regardless of the distance choice.

Secondly, with the goal of studying the effect of taking the correlations between

the entities into account and thus validating the choice of a distance, two simulation

scenarios with respect to cross-covariances were designed. In order to be able to carry

out both scenarios, simulations had to be restricted to two clusters out of four. The

two most often confused clusters mentioned above were chosen. The first scenario

produces block-dependent fold changes, and the second produces positively or nega-

tively correlated fold changes depending on the cluster. Both scenarios were simulated

in two configurations, namely with higher or lower overall correlation levels, and were
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Figure (3.2.3) Simulation study 1. a) An example of clusters obtained with
d̂2

2 k-medoids. b) An example of clusters obtained with Wasserstein k-means.

Clustering
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Si
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n 1 17 8 0 0

2 8 14 0 0
3 2 0 20 1
4 3 1 0 24
(a) d̂2

2 k-medoids

Clustering
1 2 3 4

Si
m

ul
at

io
n 1 10 14 0 2

2 8 14 0 0
3 1 0 20 2
4 6 1 0 21

(b) Wasserstein k-means

Table (3.2.1) Contingency tables (%) for d̂2
2-based k-medoids and Wasserstein

k-means clustering performed on the simulated data.

compared to the baseline scenario with independent fold changes. Figure 3.2.2 shows

that the more important the correlations between the fold changes within one clus-

ter, the more successful the clustering obtained with d̂2
2-based k-medoids. The re-

sults produced by Wasserstein k-means are invariant to the level of cross-covariances,
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which implies that it is not adapted for the problems where the latter are to be taken

into account. Hellinger distance-based k-medoids approach shows better results than

Wasserstein k-means but it does not appear to be very sensitive to correlations (in fact,

whatever the difference between scenarios can be observed is most likely due to its

sensitivity to standard deviation rather than correlations). Finally, hierarchical cluster-

ing shows poor clustering results in all cases: although there seems to be no obvious

pattern in its response to changes in cross-covariances, it is clearly not adapted for the

problem at hand.
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Mean 0.22 0.61 0.59 0.38 0.57 0.88 0.39 0.67 0.61 0.43 0.68 0.88

Standard
deviation

0.03 0 0 0.1 0.01 0.01 0.04 0 0 0.1 0.01 0.01

Time
warping

7 4 4 4 7 4 7 4 4 4 7 4

Table (3.2.2) Results of the simulation study of the effect of incorporating time
warping and stochastic block model into clustering.

3.2.2. Study 2. Similarly to the first study, 10 clustering initializations were per-

formed for six approaches: d̂2
2-based k-medoids without time warping, d̂isss-based

k-medoids with time warping, stochastic block model inference with parameters ini-

tialized from the results obtained with the latter (as described in Section 2.5), stochas-

tic block model with parameters initialized randomly in a non-constrained parameter

space, k-means clustering of the UMAP projection coordinates of the matrix D with-

out time warping, and k-means clustering of the UMAP projection coordinates of the

matrix OWD with time warping. The means of the fold changes were simulated ac-

cording to scenario M2 and are presented in Figure 3.2.4.

The results in the form of means and standard deviations of ARI and V-measure for

every approach are presented in Table 3.2.2. Firstly, the observed important difference

between the means of the results obtained with and without time warping indicates

the importance of the latter when dealing with the data associated with remarkable

time shifts that need to be accounted for. A special example of what could go wrong
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Study 2: functional representation of simulated means: unaligned (top) and aligned (bottom)
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Figure (3.2.4) Simulation study 2. a) Functional representation of simulated
means. Top: unaligned means. Bottom: aligned means. b) Multivariate repre-
sentation of simulated means. Top: unaligned means. Bottom: aligned means.
Columns represent clusters.
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2 7 14 0 1
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(a) without time warping

Clustering
1 2 3 4

Si
m

ul
at

io
n 1 25 1 0 0

2 0 21 1 0
3 0 2 21 0
4 0 13 1 15

(b) with time warping

Table (3.2.3) Contingency tables (%) for d̂2
2-based k-medoids without time

warping and d̂isss-based k-medoids with time warping performed on the simu-
lated data.

if alignment is not incorporated into clustering is presented in Figure 3.2.5 (contin-

gency tables in Table 3.2.3). One can notice that the approach without time warping

managed to identify only two behavior types: the monotonously decreasing and the

monotonously increasing. The oscillating character of the fourth cluster is especially

indistinguishable in this case, whereas the approach with time warping managed to

identify all four behavior types.

Secondly, the difference between the means obtained for stochastic block model

initialized randomly and from d̂isss-based k-medoids clustering, with a significant

standard deviation observed in case of the former as opposed to its absence for the

latter, shows that our approach to model parameter initialization serves as a way to

avoid getting stuck in local optima, which are expected to be even more present in

the real data. The example presented in Figure 3.2.6 (contingency tables in Table 3.2.4)

illustrates how bad parameter initialization can guide the model inference in a com-

pletely wrong direction. Nevertheless, it appears that the clusters identification with

stochastic block model may be less efficient than that with d̂isss-based k-medoids al-

gorithm, which means that the corresponding results obtained for the real data should

be carefully compared.

Lastly, the approach that consists in first performing a UMAP projection of the

dissimilarity matrix and then applying any classical clustering (in this case k-means)

to the coordinates, that will be used in the next section to compare our approach to one

of the state-of-the-art alternatives, is also considered in this simulation study. Here we

observe the same tendency as for k-medoids with respect to adding time warping

to clustering for data with horizontal shifts (Figure 3.2.7, contingency tables in Table

3.2.5). It also appears that this method performs remarkably on this simulated dataset.

Having not observed the same effect on real data, it can be concluded that the choice of
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(a) d̂isss k-medoids-based SBM

Clustering
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2 0 19 1 2
3 0 14 0 9
4 0 11 0 17
(b) random SBM

Table (3.2.4) Contingency tables (%) for stochastic block model inference based
on d̂isss k-medoids clustering and on a random initialization performed on the
simulated data.

Simulation
1 2 3 4

C
lu

st
er

in
g 1 19 76 0 0

2 0 8 0 14
3 0 0 23 0
4 0 0 0 28

(a) without time warping

Simulation
1 2 3 4

C
lu

st
er

in
g 1 26 1 0 0

2 0 22 0 0
3 0 0 23 0
4 0 5 0 22

(b) with time warping

Table (3.2.5) Contingency tables (%) for k-means clustering of the UMAP
projection of the the matrixD without time warping andOWD with time warp-
ing performed on the simulated data.

the approach to clustering out of the three presented here should be made depending

on the dataset, as they may perform very differently from one dataset to another.

Finally, we considered two approaches that could be regarded as logical state-of-

the-art alternatives to our method, and tested them on the fold changes with time

shifts simulated in the framework of the second simulation study. The first one by

Kazlauskaite et al. (2019) consists of a Gaussian process-based model (GPLVM) that

learns temporal sequences’ generative model as well as their alignments. Unlike our

approach, it does not produce explicit cluster labels or number of clusters, instead

it summarizes the learned information by producing a projection of the aligned se-

quences on a two-dimensional manifold (heatmap). The clusters can thus be obtained

by applying any clustering procedure for two-dimensional data on the coordinates. In

order to compare the efficacy of this approach to ours on omic fold changes-like data

from simulation study 2, we first compared the obtained heatmap to a UMAP projec-

tion of theOWDmatrix obtained with dissimilarity d̂isss (Figure 3.2.8). By examining

the cluster separation on both figures, where each color corresponds to one of the four

simulated clusters, one can notice that the clusters can be much better distinguished
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Figure (3.2.5) Results of the simulation study 2: the effect of time warping.
a) An example of clusters obtained with d̂2

2 k-medoids without time warping.
b) An example of clusters obtained with d̂isss k-medoids with time warping
(unaligned fold changes). c) An example of clusters obtained with d̂isss k-
medoids with time warping (aligned fold changes).
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Figure (3.2.6) Results of the simulation study 2: the effect of stochastic block
model inference. a) An example of blocks identified based on a random initializa-
tion (unaligned). b) An example of blocks identified based on a random initial-
ization (aligned). c) An example of blocks identified based on d̂isss k-medoids
initialization (unaligned). d) c) An example of blocks identified based on d̂isss

k-medoids initialization (aligned).
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Figure (3.2.7) Results of the simulation study 2: the effect of clustering based
on the UMAP projection of the distance matrix. a) Without time warping, pro-
jection of the D-matrix. b) With time warping, projection of the OWD-matrix
(unaligned). c) With time warping, projection of the OWD-matrix (aligned).
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in the case of d̂isss-based approach. Additionally, clustering performed on the coordi-

nates confirm this conclusion: ARI for GPLVM measures 0.14 with spectral clustering

and 0.24 with k-means, whereas for d̂isss-based approach both clustering algorithms

perform at 0.83. We note here that the method proposed by Kazlauskaite et al. (2019)

was originally designed for data rather different from ours, namely it is expected that

the number of time points is significantly larger than that of sequences. In the omic

datasets that we work with, the opposite is observed, which also leads to GPLVM tak-

ing much longer to perform the computations (several hours compared to less than a

minute with a thousand repetitions for our method).

(a) (b)

Figure (3.2.8) Results of the simulation study 2: a) projection of fold change
coordinates on a manifold of dimension 2 produced by GPLVM (Gaussian pro-
cesses, Kazlauskaite et al. 2019), b) UMAP projection of the OWD matrix.

The second considered alternative method was proposed by Heerah et al. (2021)

and consists in modeling pairs of time series with an auto-regressive model and per-

forming a statistical test in order to assess whether they Granger-cause one another.

The implementation is available through the R package ‘irg’. This approach is not

designed for clustering, it can however be used to validate the part of the procedure

dedicated to alignment by comparing optimal time warps of every pair identified by

our method to the Granger-causality selected as significant by ’irg’. Despite the differ-

ences in the data expected by the two methods, we observe a high correspondence in

the identified causalities (62% or 79% depending on whether we consider bidirectional

connections or not, which is not obvious given the design of simulated data). This re-

sult supports the idea that time warping can serve as means of identification of causal

relationships between entities, potentially leading to underlying biological pathways.
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CHAPTER 4

NETWORK INFERENCE FOR KEY FEATURES

VISUALIZATION

In this chapter, we present two tools for the visualization of the objects encoding

the key features of considered dataset described in Chapter 2: microscopic and meso-

scopic fold change networks. Here we introduce the mathematical formalism behind

these network representations. The networks provide different levels of insight into

the data in question, their analysis and interpretation are discussed in Chapter 5.

4.1. Microscopic network

A classical version of the network of omic fold changes (also referred to as mi-

croscopic to distinguish from the mesoscopic network representation discribed in the

next section) is modeled by a random graph G = (N , E), where N is the node set,

and E is the edge set. The set N consists of biological entities (ex. genes) and is of

size ne, whereas the set E represents connections between these entities. The graph

is described by the binary adjacency matrix X = (Xii′)(i,i′)∈{1,...,ne}2 such that Xii′ = 1

denotes the existence of an edge between entities i and i′, and 0 denotes the absence of

one.

The adjacency matrix for omic fold changes is constructed from a similarity mea-

sure that is formulated based on the dissimilarity between fold changes estimators. In

its simplest form it is calculated based on the Optimal Warping Dissimilarity matrix:

Sim
(

Γ̂i, Γ̂i′
)

=

max
(a,b)∈{1,...,ne}2

OWDab −OWDii′

max
(a,b)∈{1,...,ne}2

OWDab
.
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It can also be reformulated in a minimax form, which makes apparent its link with

the dissimilarity:

Sim
(

Γ̂i, Γ̂i′
)

= min
s∈S

 max
(a,b)∈{1,...,ne}2

d̂isss

(
Γ̂a ◦Ws, Γ̂b ◦Ws

)
− d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
d̂isss

(
Γ̂a ◦Ws, Γ̂b ◦Ws

)
 .

It can be noted that the formulation of the similarity measure in the case without

time warping is achieved through the same definition by considering the degenerate

warping space S = {0}. In all cases, this similarity measure is bounded by 0 from

below and 1 from above, the value in case of i = i′ being 1 and in case of (i, i′) =

arg max
(a,b)∈{1,...,ne}2

d̂2
2

(
Γ̂a, Γ̂b

)
being 0, which makes the measure more easily interpretable

and comparable for different omic datasets.

Let us denote a set of all unique entity pairs as pairs = {(i, i′) ∈ {1, . . . , ne}2|i < i′}.
We define the empirical cumulative distribution function F̂npairs of similarity over the

observed fold change pairs as follows:

F̂npairs(x) =
1

npairs

∑
(i,i′)∈pairs

1Sim(Γ̂i,Γ̂i′)≤x
,

where npairs = (n2
e − ne)/2, and x ∈ [0, 1] is a similarity level. In other words, F̂npairs(x)

represents the proportion of fold change pairs less or as similar as x. For p ∈ [0, 1],

representing sparsity level of the network, an empirical p-quantile is constructed as

follows:

q = inf{x : F̂npairs(x) ≥ p}.

In order to define the elements of the adjacency matrix X = (Xii′)(i,i′)∈{1,...,ne}2 , we

distinguish two cases. If G is undirected, which is used in particular to infer stochastic

block model in Section 2.5, its elements are equal to

(4.1.1) Xii′ = 1Sim(Γ̂i,Γ̂i′)≥q.

This definition implies that all entities that are at least as similar as the quantile cor-

responding to the chosen network sparsity level will be considered as connected, and

not connected otherwise. In case if G is directed, the elements are defined as

(4.1.2) Xii′ = 1Sim(Γ̂i,Γ̂i′)≥q × 1OWii′≥0.

The additional term means that only predictive and simultaneous relations with re-

spect to pairwise warps from OW remain in the directed case. Matrix OW can be
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1 2 3 4 5 6 7 8 9 10 11
1 0 0 1 0 0 0 0 0 0 1 1
2 0 0 1 0 0 0 0 0 0 0 1
3 0 0 0 0 1 1 0 0 0 0 0
4 0 0 1 0 0 0 1 1 1 0 0
5 0 0 0 0 0 1 0 0 1 0 1
6 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 1 0 0 0 0 1 0 1
8 0 0 1 0 0 0 0 0 0 1 1
9 1 0 1 0 1 0 1 1 0 1 0

10 0 0 0 0 0 0 0 0 1 0 1
11 0 0 1 0 0 0 1 1 1 0 0

Table (4.1.1) Example of an adjacency matrix for a directed network.

naturally used in this context since it is anti-symmetric, as stated in Proposition 2.4.1.

The adjacency matrix is thus no longer symmetric: the symmetry is preserved for

non-significant (absent) connections and simultaneous (bidirectional) connections, the

remaining connections being anti-symmetric.

In the package ScanOFC, we propose a visualization for the microscopic fold changes

network. Figure 4.1.1 illustrates an example of such network, calculated based on the

adjacency matrix, presented in Table 4.1.1. In this toy example there are 11 entities,

labeled with numbers from 1 to 11. We suppose that the entities are distributed in 3

clusters: cluster1 = {1, 2, 3}, cluster2 = {4, 5, 6} and cluster3 = {7, 8, 9, 10, 11}, with

the corresponding centroids C1 = 1, C2 = 4 and C3 = 7. It can be noted that the net-

work representation has a block structure, with blocks corresponding to clusters, and

with the centroid nodes bigger than the others. The visualization also distinguishes

between the two types of connections: green edges correspond to predictive connec-

tions, whereas gray to simultaneous ones.

4.2. Mesoscopic network

This section introduces a type of network representation that combines key fea-

tures obtained with both fold changes clustering and network inference described

above. Thus, the notations used here will be a combination of those used in Section 2.4

on clustering and those introduced in the previous section. The mesoscopic network

is modeled by a random graph GM = (NM, EM), where NM is the node set, and EM is

the edge set. As in the microscopic case, the node set NM contains biological entities,
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Figure (4.1.1) A visualization of the microscopic network based on the adja-
cency matrix presented in Table 4.1.1.

but in this case it is of size K, corresponding to the number of clusters, labeled by cen-

troids C = (C1, . . . , CK). The remaining information on clustering is contained in the

associated node set weight function, defined as follows:

wN : NM → N

Ck 7→ #clusterk

= #{i ∈ {1, . . . , ne}|Cli = k}

=
∑

i∈{1,... ,ne}

1Cli=k.

The edge set contains the main information on connections between the clusters

in the form of distributions, encoded in the associated edge set weight function. The

definition of the weight function differs in the undirected and the directed cases. The

undirected case is defined below:

wudE : EM → N

(Ck, Ck′) 7→ wkk′ .
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where wkk′ defines edge thickness and encodes the total number of connections be-

tween the given pair of clusters:

(4.2.1) wkk′ =
∑

i∈clusterk
i′∈clusterk′

1Sim(Γ̂i,Γ̂i′)≥q.

The directed case requires an extended version of the weight function, adding ar-

rowheads on both sides of the edge:

wdE : EM → [0, 1]×N× [0, 1]

(Ck, Ck′) 7→ (ak, wkk′ , ak′) .

where ak and ak′ define the sizes of the arrowheads towards Ck and Ck′ encoding the

proportions of the predictive connections in the corresponding directions. The formal

definitions are given below:

(4.2.2) ak =
1

wkk′

∑
i∈clusterk
i′∈clusterk′

1OWi′i>0 × 1Sim(Γ̂i,Γ̂i′)≥q,

(4.2.3) ak′ =
1

wkk′

∑
i∈clusterk
i′∈clusterk′

1OWii′>0 × 1Sim(Γ̂i,Γ̂i′)≥q.

It can be noticed that the quantities given in (4.2.1), (4.2.2) and (4.2.3) can be ex-

pressed only based on the elements of the adjacency matrix, defined in (4.1.2), instead

of both the similarity and the OW matrix. In particular, the expression for the edge

thickness can be expressed as

(4.2.4) wkk′ =
∑

i∈clusterk
i′∈clusterk′

1min(Xii′ ,Xi′i)=1 =
∑

i∈clusterk
i′∈clusterk′

min(Xii′ , Xi′i),

using the fact that if, for a given pair of entities i ∈ clusterk and i′ ∈ clusterk′ for

k 6= k′, we have Sim
(

Γ̂i, Γ̂i′
)
≥ q, then either Xii′ or Xi′i or both are equal to 1. We

apply a similar reasoning to rewrite the expression for the arrowhead sizes, utilizing

the symmetry of Sim(·, ·) and the anti-symmetry of OW :

(4.2.5) ak =
1

wkk′

∑
i∈clusterk
i′∈clusterk′

1Xii′=0 × 1Xi′i=1 =
1

wkk′

∑
i∈clusterk
i′∈clusterk′

Xi′i(1−Xii′),
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(4.2.6) ak′ =
1

wkk′

∑
i∈clusterk
i′∈clusterk′

1Xii′=1 × 1Xi′i=0 =
1

wkk′

∑
i∈clusterk
i′∈clusterk′

Xii′(1−Xi′i).

Indeed, considering the equations (4.2.2) and (4.2.5), saying that Sim
(

Γ̂i, Γ̂i′
)
≥ q and

OW i′i > 0 is equivalent to saying that Sim
(

Γ̂i′ , Γ̂i

)
≥ q and OW ii′ < 0, which is true

if and only if Xii′ = 0 and Xi′i = 1, based on (4.1.2).

To illustrate the principle behind the mesoscopic network representation and us-

ing the adjacency matrix-based equations (4.2.4), (4.2.5) and (4.2.6), in Figure 4.2.1 we

present the visualization of the latter based on the matrix in Table 4.1.1, produced

with the package ScanOFC. The information on the distributions, encoded in the edges

characteristics, is also provided in a form of labels. For example, the edge between the

clusters 1 and 2, labeled with the corresponding centroids 1 and 4, has "33%-3-67%" to

describe the connectivity distribution. Indeed, the microscopic representation in Fig-

ure 4.1.1 clarifies this label, noticing that there are 3 directed (green) connections of the

members of cluster 1 with those of cluster 2, with 2 directed towards cluster 2, and 1

towards cluster 1.

33%
-3-67%

57%-7-43%

0%-6-67%

1

4

7

Figure (4.2.1) A visualization of the mesoscopic network based on the adja-
cency matrix presented in Table 4.1.1. Edge labels read as follows: "% of con-
nections right→ left - Total number of connections - % of connections left→
right".
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CHAPTER 5

APPLICATION TO REAL DATA

Returning to the radiobiological context, we apply our methodology to two in vitro

datasets obtained through experiments studying the effects of two irradiation modal-

ities differing in energy levels. For both datasets, the transcriptomic response of HU-

VEC cells (Human Umbilical Vein Endothelial Cells) is measured over time, with real

time qPCR under control and under a single irradiation dose of 20 Gy at 0 h at 2.5

Gy/min. One dataset corresponds to irradiation using a LINAC, with the energy level

of 4 MV, while the other encodes the response to SARRP (irradiation at 220 kV). First,

we introduce data preprocessing and a new penalty that were motivated by the data

studied in radiobiological context. Then, we present the analysis of the results ob-

tained by applying our methods to these datasets. In particular, we compare various

key features extracted for the two irradiation types, and perform the enrichment anal-

ysis of clusters and cluster subgroups with cellular processes in order to demonstrate

the utility of the proposed tools.

5.1. Additional features motivated by data

5.1.1. Data preprocessing. Before performing clustering, certain transformations

have to be applied to the raw data in order to amplify those characteristics that are

of particular interest, and reduce those that can be ignored. We perform data scaling

with respect to the following criteria:

• Scaling by standard deviation: performed in order to account for uncertain-

ties, so that the observations with high uncertainty caused by individual vari-

ability appear with lower weight compared to those with low uncertainty.
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Standard deviation estimates are calculated as follows: for i ∈ {1, 2, . . . , ne}
we denote σΓi = (σ

Γ
t1
i
, . . . , σ

Γ
tp
i

) where σΓti
=
√
σ2

Γti
.

• Scaling by the fold change norm: performed with the purpose of diminish-

ing the effect of scale differences between the fold changes. The norm of Γ̂i

associated with the distance d̂2
2 or the dissimilarity d̂isss can be expressed as

follows:

(5.1.1) Norm(Γ̂i) =
√
‖Γi‖2

2 + Tr(ΣΓi) =

√√√√‖Γi‖2
2 +

p∑
l=1

σ2

Γ
tl
i

.

5 10 15 20
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Figure (5.1.1) The effect of raw data scaling illustrated on a figure, where
means with standard deviation of a pair of transcriptomic fold changes are plot-
ted, inferred from the original data on the left and from scaled data on the right.
As a result of scaling, the fold changes of genes TBXAS1 and FUT8 are ren-
dered significantly closer than the original. For instance, it can be observed that
the original fold changes are both characterized by almost monotonous growth
during the whole period after irradiation. On the one hand, the curve of gene
TBXAS1 is more concave, which can be neglected, and the difference is reduced
by the scaling with respect to the norm. On the other hand, the scaling with
respect to the standard deviation reduces the peak in the mean of gene TBXAS1
observed at day 14, which is also negligible due to very high standard deviation
at that point.

The two scaling transformations described above are applied in a consecutive man-

ner: the fold change norm scaling is calculated based on the result of the scaling by

standard deviation, which implies that the norm of the final output is equal to 1. Thus,

we obtain a processed dataset, from which new pairs of random fold changes estima-

tors are constructed, and finally the pairwise distances are calculated. An illustrative

example for the effect of preprocessing on the fold changes can be found in Figure

5.1.1.
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5.1.1.1. Fold change estimation from preprocessed data. After applying the preprocess-

ing to the response Y t
ikj of an entity i at the time point t for a replicate j under the

experimental condition k, the response becomes:

(5.1.2) Ỹ t
ikj =

Y t
ikj

σΓti
×Norm

(
Σ−1

Γi
Γ̂i

) , where σΓti
=
√
σ2

Γti
.

We obtain the following expression by applying the norm defined in (5.1.1) to the fold

change Γ̂i after the scaling by standard deviation:

(5.1.3) Norm
(

Σ−1
Γi

Γ̂i

)
=

√√√√√ p∑
l=1

 Γtli
σ2

Γ
tl
i

2

+ 1

.
The joint distribution of a fold change pair obtained from the preprocessed data

can be rewritten in the following way:̂̃Γî̃
Γi′

 ∼ N

 Γ̃i

Γ̃i′

 ,
 ΣΓ̃i

PΓ̃iΓ̃i′(
PΓ̃iΓ̃i′

)ᵀ
ΣΓ̃i′


 such that:

• Means for x ∈ {i, i′}:

Γ̃x =

 ∑nr
j=1(Y t1

i1j − Y
t1
i0j)

nrσΓ
t1
x
Norm

(
Σ−1

Γx
Γ̂x

) , . . . , ∑nr
j=1(Y

tp
i1j − Y

tp
i0j)

nrσΓ
tp
x
Norm

(
Σ−1

Γx
Γ̂x

)


=
1

Norm
(

Σ−1
Γx

Γ̂x

) ( Γt1x
σ

Γ
t1
x

, . . . ,
Γ
tp
x

σ
Γ
tp
x

)
,

(5.1.4)

• Covariance matrices for x ∈ {i, i′}: ΣΓ̃x
=


σ2

Γ̃
t1
x

0

. . .

0 σ2

Γ̃
tp
x

 ,

with σ2
Γ̃tx

=

∑nr
j=1

[
(Ỹ t

i1j − Ỹ t
i1)2 + (Ỹ t

i0j − Ỹ t
i0)2
]

nr − 1
=

σ2
Γtx

σ2
Γtx

(
Norm

(
Σ−1

Γx
Γ̂x

))2

=
1(

Norm
(

Σ−1
Γx

Γ̂x

))2

.(5.1.5)
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• Cross-covariance matrix: PΓ̃iΓ̃i′
=


ρ

Γ̃
t1
i′ Γ̃

t1
x

0

. . .

0 ρ
Γ̃
tp

i′ Γ̃
tp
x

 ,

with ρΓ̃tiΓ̃
t
i′

=

∑nr
j=1

[
(Ỹ t

i1j − Ỹ t
i1)(Ỹ t

i′1j − Ỹ t
i′1) + (Ỹ t

i0j − Ỹ t
i0)(Ỹ t

i′0j − Ỹ t
i′0)
]

nr − 1

=
ρΓtiΓ

t
i′

σΓt
i′
σΓt

i′
Norm

(
Σ−1

Γi
Γ̂i

)
Norm

(
Σ−1

Γi′
Γ̂i′
) .(5.1.6)

All the subsequent analyses on real data are performed by applying the methodol-

ogy from Chapters 2 and 4 directly to the scaled fold changes.

5.1.2. Sign penalty. From the biological perspective it is important to make a clear

distinction between positively and negatively expressed entities. As a means to rein-

force this distinction in the obtained clusters, we introduce a penalty term that in-

creases the dissimilarity for those pairs of entities with different signs for one or more

corresponding instances. For a warp step s and entity index pair (i, i′) ∈ {1, . . . , ne}2,

the penalty term represents the proportion of time points where the means of the two

considered fold changes have different signs:

Pen
(

Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
=

1

p− |s|

p−|s|∑
l=1

1R− ((Γi ◦Ws)tl × (Γi′ ◦Ws)tl) .

By analogy with the distance matrix, a penalty matrix can be formulated:

[Penii′ ]1≤i,i′≤ne such that Penii′ = Pen
(

Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
.

Finally, the penalized dissimilarity is defined with a penalization hyperparameter

λ ≥ 0:

Pen
(
d
(

Γ̂i ◦Ws, ̂Γi′ ◦Ws

))
= d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
+ λ× Penii′ .

This penalized dissimilarity is integrated into the aligned clustering procedure by

replacing d̂isss

(
Γ̂i ◦Ws, ̂Γi′ ◦Ws

)
in Definitions 2.4.1 and 2.4.2.

5.2. Results

We estimated transcriptomic fold changes of 157 genes for the LINAC dataset and

152 for the SARRP dataset. Gene expression was measured at 2, 4, 7, 14 and 21 days

after irradiation. The estimation was performed based on 3 or 4 replicates. After the
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Figure (5.2.1) Means of cost and silhouette score with standard deviation of
the 20% best outcomes of clustering of the LINAC dataset with d̂isss k-medoids
for the numbers of clusters in the set of fold changes ranging from 2 to 10. The
most distinguishable shoulder for the total cost can be observed for 3 clusters,
whereas the silhouette score declines for larger number of clusters. Both criteria
suggest that smallest number of clusters should be chosen.

fold changes were estimated from the log-transformed data and then preprocessed ac-

cording to the procedures described in Sections 2.1 and 5.1.1, we performed clustering

coupled with alignment based on the sign-penalized optimal warping dissimilarity

matrix computed for both irradiation types.

5.2.1. Model choice evaluated on real data. It has been decided to choose 5 clus-

ters produced by k-medoids clustering for these data based on the appearance of clus-

ters expected from the biological point of view. Classical selection criteria such as total

cost and silhouette score (Rousseeuw, 1987) appear to favor the smallest number of

clusters (Figure 5.2.1). It appears that 5 is the smallest number of clusters that manage

to produce well-separated behavior types. We compared clustering of the LINAC fold

changes into 4 and 5 groups and concluded that 5 cluster version separates cluster 1

and 3 that are mixed together in cluster 4 of the 4 cluster version (Figures 5.2.2 and

5.2.3). This separation is justified biologically since it is important to distinguish the

fold changes that are up-regulated three weeks after irradiation (cluster 3 of 5-cluster

version) from those that are up-regulated early but lose the expression by two weeks

after irradiation (cluster 1 of 5-cluster version). Such a distinction cannot be ensured

merely by the means of having multiple alignment groups, given that having only 5

time points in the dataset the maximal warping step has to be set at 1.
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Figure (5.2.2) Clustering of the LINAC dataset with d̂isss k-medoids in 5
clusters. a) Means of original normalized fold changes (unaligned). b) Means
of warped normalized fold changes (aligned). The following behavior types can
be distinguished (top to bottom): up-regulated and tending towards zero, up-
regulated initially and down-regulated later on, steady growth, down-regulated
initially and up-regulated later on, down-regulated and tending towards zero.
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Figure (5.2.3) Clustering of the LINAC dataset with d̂isss k-medoids in 4
clusters. a) Means of original normalized fold changes (unaligned). b) Means
of warped normalized fold changes (aligned). The following behavior types can
be distinguished (top to bottom): down-regulated and tending towards zero,
down-regulated initially and up-regulated later on, up-regulated initially and
down-regulated later on, up-regulated all along.
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SARRP clusters

1 2 3 4 5

LI
N

A
C

cl
us

te
rs 1 13 4 7 2 0

2 1 4 4 2 4

3 11 0 14 2 2

4 3 4 2 11 11

5 0 1 1 8 38

Table (5.2.1) Contingency table for clusters obtained for LINAC and SARRP.

Regarding the choice of approach to clustering, it has been concluded that on

this transcriptomic dataset d̂isss k-medoids allow identification of pertinent behav-

ior types with better separation than k-means applied to the UMAP projection of the

coordinates of the dissimilarity matrix, or stochastic block model. Despite the suc-

cess of the UMAP-based method on simulated data, its real data clustering produces a

poor separation of some clusters with respect of the expected behavior types, namely

clusters 1 with 3, and 5 with 2 and 4 (Figures 5.2.4 and 5.2.5 for the UMAP projection

and clustering, and Figure 5.2.6 for specific examples of fold changes that are clustered

differently by two methods). One potential explanation may be the UMAP’s lack of ro-

bustness when applied to highly irregular data, which has already been mentioned in

literature (Wang et al., 2022; Hozumi et al., 2021). In line with this idea, the authors of

the UMAP have pointed out its lower potential on small sample sizes of highly noisy

data due to its tendency to assume locally manifold structure (McInnes et al., 2020).

We believe that this assumption is not satisfied for our transcriptomic datasets, mainly

due to the discontinuity introduced by time warping in the context of warps varying

significantly from one pair to another. This effect is remarkably weaker for the simu-

lated data sets, which explains the success of the UMAP in the simulation framework.

As a result, d̂isss k-medoids approach has been chosen as the main, whereas the other

two approaches are used to validate the results.

5.2.2. Cluster and network analysis of real data. The five clusters that were ob-

tained are presented in Figures 5.2.7 (SARRP) and 5.2.2 (LINAC). The colorcode and

the legend on the plots allows to identify which warp group (warped backward with

respect to the centroid, simultaneous with the centroid and warped forward with re-

spect to the centroid) each gene belongs to. Comparing the unaligned and the aligned
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Figure (5.2.4) Clustering of the LINAC dataset with k-means applied to a
UMAP projection of the d̂isss-matrix in 5 clusters. a) Means of original nor-
malized fold changes (unaligned). b) Means of warped normalized fold changes
(aligned). In comparison with d̂isss k-medoids, one can observe in particu-
lar: 1) the positive expression during the first week is less present in cluster 2
(ST8SIA6), which makes it similar to cluster 5 (LTBP4), 2) cluster 1 (MX1)
contains many elements that are generally positively expressed without neces-
sarily following the trend of the centroid.
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Figure (5.2.5) UMAP projection of the d̂isss-matrix from the LINAC dataset
with the subsequent k-means clustering presented. Cluster indices are in the
same order for the UMAP projection and the clustering, but different from the
previous clustering results. The UMAP projection explains the the observations
mention in Figure 5.2.4: 1) the distinction between clusters 3 (ST8SIA6) and 4
(LTBP4) is ambiguous, 2) a large block in cluster 2 (MX1) could be equivalently
assigned to cluster 5 (PLCB4).
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Figure (5.2.6) Examples of means with standard deviation of the fold changes
from the LINAC dataset that have been differently clustered with d̂isss k-
medoids and with k-means applied to a UMAP projection of the d̂isss-matrix.
a) DUT and PASK have been put in cluster 2 by UMAP (centroid ST8SIA6),
while being warped to the right they are much closer to the centroid of cluster
5 (LTBP4) by d̂isss k-medoids. b) Warped to the left, BMPR1B and SOD2 are
both mainly negative, therefore belong more to the cluster 5 (centroid LTBP4
by k-medoids) than cluster 4 (centroid VCAM1 by UMAP). c) ADRB2 and
VTN show profiles corresponding to steady growth, and are extremely close
to centroid of the cluster 3 (CD44), where they have been successfully put by
k-medoids. Such classification is more reasonable than the one suggested by
UMAP (cluster 1, centroid MX1).

versions allows to see more clearly how each group has been transformed in order to

get aligned with the centroid. The aligned version is the one used for clustering, allow-

ing to identify global behavior types up to a time shift, whereas the unaligned version

allows to identify temporal cascades inside every cluster, i.e. the forward-warped pre-

dict simultaneous that predict the backward-warped. It has to be noted that these

plots only contain the means of preprocessed fold changes, giving a rough idea of the

genes’ behavior but can be at times misleading since clustering is performed on full

fold changes, containing not only means but all the information on correlations and

uncertainties that can be inferred from the replicates.
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Figure (5.2.7) Clustering of the SARRP dataset with d̂isss k-medoids in 5
clusters. a) Means of original normalized fold changes (unaligned). b) Means
of warped normalized fold changes (aligned). The following behavior types can
be distinguished (top to bottom): up-regulated and tending towards zero, up-
regulated initially and down-regulated later on, steady growth, down-regulated
initially and up-regulated later on, down-regulated and tending towards zero.
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The clusters are ordered to match between both conditions with respect to the re-

sponse types represented by each cluster. Indeed, we manage to obtain very similar re-

sponse types for both conditions: two clusters 1 and 3 characterized by up-regulation,

being strongly up-regulated early and late respectively, a generally down-regulated

cluster 5 that is roughly symmetric to cluster 1, and two clusters that manifest change

of sign, with 2 being up-regulated early and down-regulated late, and 4 doing the op-

posite. For both irradiation types cluster 2 appears to be much smaller then the others,

while cluster 5 contains almost a third of all fold changes. It can be observed that clus-

ters 1 and 3 show much less striking distinction in case of SARRP compared to LINAC.

It can also be noted that clusters 4 and 5 appear to have very overall consistent behav-

ior across conditions, which is more visible in the unaligned case rather than aligned,

since their centroids belong to different time groups (in case of cluster 4, the LINAC

centroid TIMP3 corresponds to earlier expression then the SARRP centroid IL6, and

the opposite is observed in case of cluster 5).

3

1 5

2 4

(a)

3
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4

1

2

(b)

Figure (5.2.8) Mesoscopic views of the LINAC-specific (a) and SARRP-
specific (b) fold changes network. Nodes represent clusters, labeled with their
centroid genes, with node sizes corresponding to respective cluster sizes, and
edges summarizing the connections between clusters based on the original ad-
jacency matrix.

The next step of the statistical analysis consists in inferring the transcriptomic

fold changes network according to the procedure described in Chapter 4. Package

ScanOFC proposes two major visualization tools for network analysis, based on the

models presented in Chapter 4: mesoscopic and microscopic views. The former is a

way of concisely representing the key features of the network, with clusters as nodes,
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and edges being derived from connectivity distribution between clusters. It allows

in particular to obtain additional distributional information with respect to cluster

migrations thanks to leveraging similarities, information that is inaccessible through

studying the contingency table alone (Table 5.2.1). Depending on the goal, one can

choose to work with full networks, or a part of it. For instance, mesoscopic graphs of

Figure 5.2.8 were build based on condition-specific networks, meaning that the con-

nections that constitute the adjacency matrix, and therefore the inter-cluster connec-

tivity distribution, forming the edges of the mesoscopic graph, only appear in the

corresponding irradiation condition and not the other, which allows to compare two

conditions strictly based on their differences. There are multiple edges that appear

in both graphs, the most important being the one between 1 (FAS/ACTA2) and 3

(CD44/TAGLN). Given that the networks are condition-specific, it suggests that there

is a big number of genes that travel between clusters 1 and 3, which are rather similar

in general for both conditions. The most striking difference between the graphs lies

in edges that are present/important for one condition and absent/not important for

the other. This seems to be particularly the case between clusters 4 (TIMP3/IL6) and 5

(LTBP4/KRT18), the phenomenon that is hard to interpret since it is not clear whether

it is similar genes that change clusters, or genes potentially conserving clusters that

change their similarity. The situation can be clarified by studying another mesoscopic

graph presented in Figure 5.2.9, a hybrid representation of two conditions: the genes

in each node are those associated with the LINAC clustering, while the network itself

(and thus the connections) is the one specific to SARRP. This hybrid graph unsurpris-

ingly demonstrates a bigger overall number of connections since the clustering is not

the one natural for the network, and many connections that are otherwise intra-cluster

appear here as inter-cluster. In particular, the connection between clusters 4 and 5 is

even stronger than that between clusters 1 and 3, which indicates that there is a group

of fold changes in LINAC’s clusters 4 and 5 that are extremely similar for both condi-

tions, with connections that disappear in SARRP, which is most likely caused by them

becoming intra-cluster connections. All of the above suggests that migrations between

clusters 4 and 5 are particularly important in detecting the differences between the two

irradiation types.

The second proposed tool for network visualization sheds additional light on fold

change distribution with respect to cluster migration. Figures 5.2.10 and 5.2.11 are two

examples of multiple modes of representing a microscopic network with different fea-

tures. The first figure illustrates the most natural representation mode of the LINAC
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Figure (5.2.9) Mesoscopic view of the hybrid fold changes network. Nodes
represent clusters (LINAC), labeled with their centroid genes, with node sizes
corresponding to respective cluster sizes, and edges summarizing the connec-
tions between clusters based on the original adjacency matrix (SARRP).

network, whereas the second figure shows a hybrid network that serves specifically

to compare two types of irradiation. For a consistent comparison both are based on

the network containing only the links that are shared by both datasets, as opposed to

the condition-specific graphs on Figure 5.2.8. Moreover, both networks have a block

structure, but the blocks are constructed differently. The blocks of the network on

Figure 5.2.10, denoted each by a distinct color, correspond to clusters inferred from

the LINAC dataset. Within each block, the fold changes are placed around their cen-

troid (bigger node) according to the Kamada-Kawai method. The network on Figure

5.2.11 has a hybrid block structure. In terms of layout, the blocks correspond to clus-

ters inferred from the LINAC dataset, the node positions are the same as those in the

LINAC network view (Figure 5.2.10). The cluster colors match those of the LINAC

network but are assigned according to the SARRP clustering. The bigger nodes are

the centroids with respect to the SARRP clustering. For example, on Figure 5.2.11

gene KRT18 is a bigger node, colored in pink, which is the color of cluster 5 on Figure

5.2.10, but located with cluster 4. This means that this gene is in cluster 4 for LINAC,

but for SARRP it migrated to cluster 5, and also became its centroid.
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Figure (5.2.10) Microscopic views of the LINAC directed fold changes network.

By comparing the graphs, a few observations can be made that support the conclu-

sions made out of the mesoscopic representations. In particular, it is made clear that

approximately a half of LINAC’s cluster 4 becomes a part of cluster 5 for SARRP. It im-

plies that this very group of genes (pink nodes at the cluster 4 position) is responsible

for a big number of previously mentionned connections turning intra-cluster. More-

over, cluster 5 is the only cluster whose centroid for SARRP is in cluster 4 for LINAC.

However, cluster 5 seems to be much more stable than other clusters overall given its

superior size. It can also be noted that clusters 1 and 3 seem to exchange genes mainly

between each other, which is consistent with the idea of them being more similar for

SARRP than for LINAC.

5.2.3. Study of fold change norms. One way to approach the biological effective-

ness of the LINAC irradiation relative to SARRP is to identify those genes that are

characterized by the biggest difference in expression between the two conditions. In

order to do this, the fold changes have to be compared in their original scales, that is

before the scaling by the fold change norms step of the preprocessing. However, com-

paring fold change scales without taking into account their behavior types makes the
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Figure (5.2.11) Microscopic views of the hybrid fold changes network.

results hard to interpret. In order to ensure interpretability, the differences in scales

should be studied separately within each cluster, while taking into account the infor-

mation about the fold change warping groups.

We introduce the following notation for a norm of a fold change of a gene i after

scaling by standard deviation, distinguishing the irradiation condition by adding a

corresponding superscript:

‖Γ̂conditioni ‖ = Norm
(

Σ−1
Γconditioni

Γ̂conditioni

)
.

Consider a pair of clusters with labels (k, k′) ∈ {1, . . . , K}2, indicating the labels

with respect to LINAC and SARRP clusterings respectively. Treating the general case

where k and k′ can be unequal allows to consider both fold changes with a stable be-

havior pattern for both conditions, and those that migrate from one cluster to another.

The goal is to identify all fold changes whose norms are at least as different as a given

threshold τkk′ ∈ R+, or formally the following set:

Ωτ
kk′ =

{
i ∈ clusterLINACk ∩ clusterSARRPk′ | |‖Γ̂LINACi ‖ − ‖Γ̂SARRPi ‖| > τkk′

}
.
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In parallel with the fold change norms per cluster, we consider the information

that we can obtain with respect to their warp groups. The warps between the fold

changes of the same genes estimated from different datasets cannot be explicitly cal-

culated. This difficulty can be overcome by comparing the centroids of the given pair

of clusters and fixing their respective warp groups based on their appearance in fi-

nal clusterings. It can be often easily done for the matching clusters and less so for

clusters with different behavior types. For example, after examining clusterings for

SARRP and LINAC of figures 5.2.7 and 5.2.2 respectively, specifically by matching the

corresponding centroids’ peaks of positive/negative expression, it can be concluded

that for cluster 1, LINAC’s centroid is expressed one time step earlier than that of

SARRP, and the opposite can be observed for cluster 5.

Given s the time shift that has to be applied to CLINAC
k in order to match it with

CSARRP
k′ , we define the time shift between the fold changes of the gene i from LINAC

and SARRP datasets as follows:

(5.2.1) si =
(
OWLINAC

iCLINACk
+ s
)
−OWSARRP

iCSARRP
k′

.

To get a global view of the changes in fold change norms taking place between

LINAC and SARRP, we first consider the distributions of norms across clusters. The

most general observation that can be made is the average difference between the

norms for all fold changes being equal to 1.39. The fact that this value is positive

implies that the fold changes for all genes tend to be more strongly expressed under

LINAC than under SARRP, which is consistent with the biological expectations since

LINAC is associated with higher irradiation energy and is thus supposed to produce

stronger response in the irradiated case. Next, we focus on the average differences be-

tween the fold change norms for every cluster combination, presented in Table 5.2.2.

The diagonal, which represents the fold changes that stay in the same cluster for both

conditions, preserves the global trend, containing only positive values. It is on the

level of cluster 1 that we observe the biggest difference. This fact explains the slight

difference in shapes of cluster 1 for the two conditions: the fold changes demonstrate

a significant difference between early and late response to irradiation in the case of

LINAC, and a more flat shape in the case of SARRP. Whereas in the scale-normalized

case it appears as if SARRP produced more response in the late stage, it is in fact due to

LINAC producing more important response in the beginning, and thus the important

positive difference in norm. The fact that the difference is the most pronounced for

cluster 1 implies that the difference in the effect of these two types of irradiation is the
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best represented by the fold changes that are positively expressed with strong early

expression.

SARRP clusters

1 2 3 4 5

LI
N

A
C

cl
us

te
rs 1 4.04 2.05 -0.06 7.57 -

2 3.11 1.01 -3.89 -0.52 -0.39

3 2.64 - 2.43 -3.9 0.54

4 1.47 -0.94 -1.88 2.01 -1.29

5 - 5.6 -0.86 3.02 1.39

Table (5.2.2) Mean differences in scales (fold change norms) per cluster be-
tween LINAC and SARRP.

When studying the non-diagonal elements of the table, corresponding to the fold

changes that change clusters across conditions, we can in multiple cases observe op-

posite signs for symmetric cluster pairs. In particular, the value is positive for the fold

changes that are in cluster 5 for LINAC and in cluster 4 for SARRP, and negative for

those that are in cluster 4 for LINAC and in cluster 5 for SARRP. This indicates that

cluster 5 is generally characterized by higher norms and therefore more important ex-

pression. To further analyze the table, we can make a distinction between small and

big groups. In the former category we can distinguish the fold changes with very high

norms: those of genes CSF3 and SLIT3 clustered in 1 for LINAC and in cluster 4 for

SARRP, and those of the gene PDGFA clustered in 5 for LINAC and in cluster 2 for

SARRP. In both cases it implies that the change in scale explains the migration: more

significant positive early expression of CSF3 and SLIT3, and more significant negative

early expression of PDGFA, under LINAC. These three genes can serve as potentially

promising candidates to study the radiation response in the experimental setting.

Regarding the big cluster combinations, we can particularly distinguish the fold

changes migrating from 5 under LINAC to 4 under SARRP, and those migrating from

3 under LINAC to 1 under SARRP. Combining this information with typical behav-

ior per cluster, it can be deduced that the first group is characterized by a stronger

early negative expression, whereas the second one by a stronger late expression, while

irradiated with LINAC.
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Mean norm
differences 4.04 2.43 2.01 1.39 3.02 2.64
per cluster

ACTA2 ADRB2 LRRC17 ELN CD34 CD44
Gene names LYVE1 GADD45A COL12A1 PHGDH ANGPT1 SNAI2

in Ωτkk′ FDXR IL1RL1 TIMP3 THBS1 PMAIP1 UCHL1
with τ = 4 CDKN1A IL6 CLU BMPR1B ISG15

IKBIP ACE
CDK1
SELP

DNAJC9
TNFRSF1B

VWF
Table (5.2.3) Results of the analysis of Ωτ

kk′ for the cluster combinations (both
intra-cluster, or preserving cluster, and inter-cluster, or migrating) with the
biggest number of elements and important mean differences in scales (norms).
The genes with the fold changes that are simultaneous for both conditions with
respect to the time shift defined in (5.2.1), that is if si = 0 for a gene i, are
colored in blue.

The results of the analysis of the set Ωτ
kk′ for certain combinations of clusters are

presented in Table 5.2.3. The genes listed in the table are characterized by big dif-

ferences in scale between the two irradiation conditions and can therefore be con-

sidered as potential key predictors of irradiation response. Among these genes can

be found those that are already known as key actors in such cellular processes as

senescence (CDKN1A, IL6, GADD45A), endothelial-mesenchymal transition (ACTA2,

VWF, CD34), and endothelial activation (SELP, CD44). By considering the information

about the time shift groups, we can construct gene cascades that can be potentially in-

dicative of gene pathways. An example of such cascade is presented in Figure 5.2.12.

Here the considered genes are among the ones written in blue in Table 5.2.3, indicat-

ing being simultaneous across conditions with respect to the definition of the time shift

presented in (5.2.1), which makes the differences in scale more apparent and allows to

manually construct the cascade in a natural way.

Another way to propose candidates for potential gene pathways is directly using

the method pathway_search of the package ScanOFC. The method infers all the shortest
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Figure (5.2.12) An example of a gene cascade FDXR→ACTA2→ IL1RL1→
GADD45A constructed out of genes found among the most different in scales
between the two conditions, based on warp groups with respect to centroids.

paths in the given graph using the corresponding functions from the package Net-

workX, and then sorts them with respect to their lengths and a criterion that is derived

from the fold changes network framework. The criterion is a sum of two scores re-

ferred to as the warp score and the cluster score. The warp score corresponds to the

number of connections in the considered path such that the associated warp is strictly

positive. Bigger warp score implies more predictive relationships between genes and

fewer simultaneous ones. The cluster score corresponds to the number of connections

in the path between genes from different clusters. Maximizing the cluster score allows

to obtain connections between different behavior types. Table 5.2.4 contains all the

paths extracted from the network constructed by multiplying the adjacency matrices

of LINAC and SARRP with 67% sparsity restricted to the genes that were previously

identified as the most differentially expressed for the two considered conditions. The

clustering used for the calculation of the cluster score takes both LINAC and SARRP

clusterings into account, by distinguishing migration groups as separate clusters.

A typical example of a path that can be obtained using pathway_search is presented

in Figure 5.2.13. The path demonstrates a consecutive up-regulation pattern, starting

with the genes that get up-regulated immediately after irradiation, followed by those

that are down-regulated initially and get up-regulated later, and ending with those

that show strong down-regulation that disappears towards the end. Such paths are

realistic candidates for radio-induced gene regulatory pathways, which would have
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to be verified experimentally. It has to be noted that certain regulatory patterns ob-

served by biologists cannot be captured in this framework, such as down-regulation

stimulating up-regulation, since these two trends are of opposing nature, whereas our

method can only capture relationships based on proximity.

GENE WARP CLUSTER TOTAL

PATH SCORE SCORE SCORE

ANGPT1→ SELP→ ELN→ IKBIP 3 2 5

CD44→ UCHL1→ ANGPT1→ SELP 3 2 5

3-PATHS UCHL1→ ANGPT1→ SELP→ ELN 3 2 5

UCHL1→ ANGPT1→ SELP→ DNAJC9 3 2 5

FDXR4→ ACTA2→ ISG15→ ADRB2 2 2 4

UCHL1→ ANGPT1→ SELP→ ELN→ IKBIP 4 3 7

4-PATHS CD44→ UCHL1→ ANGPT1→ SELP→ ELN 4 2 6

CD44→ UCHL1→ ANGPT1→ SELP→ DNAJC9 4 2 6

5-PATHS CD44→ UCHL1→ ANGPT1→ SELP→ ELN→ IKBIP 5 3 8

Table (5.2.4) All gene paths obtained from the intersection of LINAC and
SARRP fold changes networks restricted to the genes present in Table 5.2.3.
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Figure (5.2.13) An example of a 4-path CD44 → UCHL1 → ANGPT1 →
SELP→ DNAJC9 presented in Table 5.2.4.

5.2.4. Enrichment analysis with Pathway Studio. In order to gain insight into the

biological interpretation of the quantities and patterns identified using our method-

ology, we performed the enrichment analysis of clusters and cluster subgroups using

Pathway Studio. The analysis can be summarized in 4 steps:
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(1) Choose a list of entities to analyze. In our case, the lists were either genes

that can be found in each cluster for LINAC and SARRP separately, or in clus-

ter subgroups with respect to their migrations depending on the irradiation

condition.

(2) Choose the biological features of interest for the enrichment. We focused on

cellular processes, protein targets, protein regulators, expression targets and

transcription factors.

(3) Extract the results and save in a form of a spreadsheet. The latter contains

the list of biological features found in the literature that match with the given

list of entities, and for each feature the list of entities that are known to be

implicated and their total number, and some statistics such as the associated

p-value.

(4) Combine the information from the spreadsheets for all clusters/subgroups,

and visualize the summary in a form of a distribution diagram.

Among other analyses, we performed the enrichment with cellular processes of the

intersections and differences between the clusters obtained for LINAC and SARRP

in order to link the phenomenon of cluster migration with cellular processes. For

every subgroup, the considered processes were filtered out with respect to the p-value

at the level of 0.01, and with respect to the overlap at the level that was chosen in

order to get a sufficient amount of information for larger clusters and avoid getting

excessive information for smaller clusters. The results summarizing cluster migrations

and the corresponding cellular processes the dominated in the analysis are presented

in Figure 5.2.14, the original barplot with all of the detected cellular processes and

their distributions across subgroups is presented in Figure 5.2.15. It can be observed

that a number of processes are highly represented in multiple subgroups, it is the case

for example of cell proliferation and adhesion. We are particularly interested in those

that are highly represented in only one subgroup and not the others, thus allowing to

conclude that the cellular process in question potentially characterize this subgroup.

For each subgroup we manage to obtain such cellular processes. Some of them are

in coherence with the enrichment analysis performed with Pathfinder, presented in

Section C, in particular:

• the term ’cell death’ detected by Pathway Studio in cluster 1 in common for

LINAC and SARRP is related to the apoptosis term detected in cluster 1 sepa-

rately for LINAC and SARRP by Pathfinder.
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Cell formation, cell countCell commitment & survival, immune & inflammatory response Behaviour, morphogenesis,         Wnt signalling pathway

Cell in
vasion & phenotype,     

colony formation

Figure (5.2.14) Illustration of cluster migrations between LINAC and
SARRP, together with the dominating cellular processes identified for each of
the subgroups of interest as a result of the enrichment analysis performed with
Pathway Studio. The clusters are presented in order (from cluster 1 at the top to
cluster 5 at the bottom), indicated by templates summarizing typical behavior
types.

• terms ’chemosensitivity’ and ’cell polarity’ detected by Pathway Studio in

cluster 4 in common for LINAC and SARRP is associated with chemotaxis

detected in cluster 4 for SARRP by Pathfinder.

• the term ’morphogenesis’ detected by Pathway Studio in LINAC’s cluster 4

migrating to SARRP’s cluster 5 can be linked with the ’regulation of cell shape’

term detected in cluster 5 for LINAC by Pathfinder.

It should be noted, however, that the majority of terms that appear using Pathway

Studio are not comparable to those that appear with Pathfinder, mainly due to the

former being very general and the latter being much more specific.
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Figure (5.2.15) Summary of the enrichment with cellular processes of the sub-
groups of clusters obtained for LINAC and SARRP with respect to intersections
and differences. Cellular processes, listed on the left, are sorted from the most
represented to the least. The enriched subgroups, indicated with different colors,
are those with the most important number of elements, including stable clusters
(e.g. ’Cluster 11’ for the genes that are in cluster 1 for both conditions), and mi-
gration clusters (e.g. ’Cluster 54’ for the genes that are in cluster 5 for LINAC
and in cluster 4 for SARRP). The numbers on the bars indicate the percentage
of overlap with the given process for the given subgroup.
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5.3. ScanOFC: Statistical framework for Clustering with Alignment and Network

inference of Omic Fold Changes

A Python library containing tools for inference of multivariate omic fold changes

from the data, for their subsequent clustering with alignment, and inference and visu-

alisation of a network. The library is available at https://github.com/parsenteva/

scanofc. Here is an overview of the main files:

– scanofc.py

Main script, contains 3 classes: FoldChanges, Clustering and NetworkInfer-

ence. See Appendix A for package documentation.

– simulation_examples.ipynb

A Jupyter notebook containing examples from simulation studies showcasing

frequently observed patterns and some of the potential interesting outcomes.

– simulation_study_1.py

Main script of the first series of simulation studies focusing on the choice of

distance and clustering algorithm.

– simulation_study_2.py

Main script of the second series of simulation studies focusing on the effect

of alignment, and two clustering alternatives: stochastic block model infer-

ence and clustering of the coordinates of the UMAP projection of the distance

matrix.

– scanofc_tutorial.ipynb

A Jupyter notebook demonstrating how to use ScanOFC on two real datasets.

– scanofc_suppl_functions.py

Supplementary functions used in the tutorial.
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Part 2

MODELING AND PREDICTION OF

RADIO-INDUCED ADVERSE EFFECTS BASED ON

IN VIVO DATA





CHAPTER 6

INTRODUCTION

6.1. Motivation and context

In order to study the effects of a certain treatment on a living organism, in vivo ex-

periments are often conducted. In the context of a complex organism response, scien-

tists may be interested in studying multiple variables describing the effect from differ-

ent perspectives. In particular, such variables of interest often include a macroscopic

biomarker only available through in vivo data on the one hand, and a microscopic

biomarker that can also be observed on a cellular level. The interest in this case lies

in predicting the former with the latter. For instance, in the context of studying the

adverse effects induced by radiotherapy on healthy tissues, the potential outcomes of

interest may manifest in the form of lesions, that are quantified in a form a certain

macroscopic biomarker, and the levels of a some predictor such as gene expression.

These measures often require sacrificing the animal. As a result, the quantities of inter-

est cannot be observed on the same animals. Since the goal is to establish relationships

between these variables, a problem of statistical data fusion arises.

In this work we propose an approach to estimate the relationship between the vari-

ables that are not simultaneously observed under the experimental setting described

above, based on a conditional model assuming linear relationship within every com-

ponent (experimental condition). An estimator derived with the method of moments

as well as optimal transport solution using Wasserstein distance are considered for the

real data problem in question.
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Figure (6.2.1) Schematic representation of the design of an in vivo experiment
studying the effect of irradiated volume.

6.2. Example of an in vivo experiment

An illustrative example of an in vivo experiment where the variables of interest

are never observed simultaneously is presented in Figure 6.2.1. In this experiment,

mice are irradiated on the lungs with different volume, with a goal of studying the

role of irradiated volume in the appearing of radio-induced adverse effects. The lat-

ter are assessed by measuring septal thickening, a macroscopic biomarker of radio-

induced adverse effects in the lungs. The other variable that is measured with the

purpose of predicting the adverse effect related variable is the expression of multiple

pro-inflammatory genes. As shown in Figure 6.2.1, there are two independent cohorts

in the study, one is used to measure gene expression, whereas the other for measuring

septal thickness. This is a results of both measures being of destructive nature, which

does not allow them to be taken on the same animals.

Comparing distributions of the measurements arising from the two cohorts, such

as those presented in Figure 6.2.2, one may suspect a correlation or even a linear rela-

tionship between the variables. In order to assert whether such a relationship exists,

one has to connect two variables that are never observed simultaneously, which trans-

lates into solving a data fusion problem. This can be done by taking into account

another variable that is commonly present in such studies. This is a variable indicat-

ing belonging to a certain group for every observation, which is observed for both
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Figure (6.2.2) Distribution of the data, collected from the irradiated patch un-
der SBRT with 3 mm beam size: the expression of the gene IL6 on the left,
and septal thickness on the right. The measurements were made 1, 3, 6 and 12
months after irradiation.

cohorts. In this example, there are four groups indicating time points (1, 3, 6 and 12

months after irradiation) when the corresponding animals are sacrificed and the mea-

surements are taken. Thus, this group variable can be used as an additional variable

in order to link the predictor and the predicted variables between each other.

6.3. Existing research

The task of linking variables that are never jointly observed cannot be approached

as a typical missing values problem, since most methods for inference on incomplete

data require a sufficient overlap, which is completely absent in the case treated here.

As a result, any approaches applying related frameworks such as multiple imputation

in the context of data fusion are unsuitable for our application. For example, Carrig

et al. (2015) use multiple imputation to integrate disparate datasets allowing for the

absence of the overlap, but requiring a calibration dataset, where all the variables of

interest must be jointly observed.

Other approaches to data fusion available in literature include factor analysis (Cud-

eck, 2000), statistical matching (Mitsuhiro and Hoshino, 2020), Bayesian network in-

ference (Triantafillou et al., 2010; Tsamardinos et al., 2012) and Gaussian Markov com-

binations (Massa and Riccomagno, 2017). These methods are designed for linking

variables that are not observed simultaneously through covariates, present for both

variables of interest. This corresponds to the properties of the in vivo data described

in Section 6.2. However, the covariates in these approaches are random variables,
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typically continuous, and often assumed to be Gaussian, which is the case in Cud-

eck (2000) and Massa and Riccomagno (2017).The groups variable available through

in vivo experiments may present in a continuous form, but the presence of such cat-

egories as control and sham makes it impossible to assume continuity and normal-

ity. The Bayesian network approaches introduced by Triantafillou et al. (2010) and

Tsamardinos et al. (2012), aimed at inferring binary causal relationships between vari-

ables, are more suitable for large datasets with a high number of covariates. Finally,

currently available research in statistical matching addresses such aspects as not-at-

random missingness (Mitsuhiro and Hoshino, 2021) and high dimensionality (Mit-

suhiro and Hoshino, 2020). This approach is based on the idea of comparing distances

between the covariates from the datasets of interest, which cannot be done by taking

the group variable as the covariate. It can be noted that the goal of the aforementioned

examples in statistical matching is to group individuals before imputation, which is

not necessary in our case since the groups are already known.
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CHAPTER 7

ESTIMATING THE LINEAR RELATION BETWEEN

VARIABLES THAT ARE NEVER JOINTLY OBSERVED

7.1. Problem and presentation of the different identification approaches

We consider a real random variable Y and a vector of d real valued random regres-

sors X = (X1, . . . , Xd) and suppose that the following linear regression hold

Y = β0 +
d∑
j=1

βjXj + ε.(7.1.1)

The residuals ε are supposed to be independent of the random covariates X1, . . . , Xd,

with zero mean and variance σ2
ε . With destructive in vivo experiments, we can never

observe simultaneously X and Y , meaning that we never have at hand the pair (X, Y )

but only (X, .) and (., Y ). This means that only the marginal moments of X and Y can

be estimated in presence of sampled data.

In the absence of additional information and without any strong additional hy-

pothesis, the parameters (β0, β1, . . . , βd) and the variance of the noise σ2
ε cannot be

identified. Indeed, if for example X1 is centered with symmetric distribution, the coef-

ficient β1 can only be determined up to sign change since β1X1 and β1(−X1) have the

same distribution.

To deal with this identification issue, we consider that we can perform different ex-

periments in which the mean value of X is allowed to vary. For that, we suppose that

there are K groups (corresponding to K different experiments), defined by a discrete

variable G taking values in {1, · · · , K} observed simultaneously with Y and with X .
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This means that we have now access to (X, G) and (Y,G) but not to (X, Y,G). We also

suppose that ε is independent of G.

GivenG = k, for k = 1, . . . , K, we denote by µkY = E(Y |G = k) and µkXj = E(Xj|G =

k), j = 1, . . . , d the expected values within each group. We also denote by πk = P(G =

k) the relative weight of each group in the population.

We now present different approaches developed to identify the vector β = (β0, . . . , βd)

of regression coefficients and the noise variance σ2
ε taking account of the additional in-

formation given by the discrete variable G.

7.1.1. Moment approach. A first and simple approach is based on first moments

identification. Taking the conditional expectation, given G = k, in (7.1.1), we have

µkY = β0 +
d∑
j=1

βjµ
k
Xj
,(7.1.2)

since the residual term ε is supposed to satisfy E(ε|G = k) = 0 for k = 1, . . . , K.

Based on (7.1.2) and introducing the probabilities of belonging to subpopulations, the

following functional can be constructed:

ψ(γ) =
K∑
k=1

P(G = k)

(
E(Y |G = k)− (γ0 +

d∑
j=1

γjE(Xj|G = k))

)2

,

=
K∑
k=1

πk

(
µkY − (γ0 +

d∑
j=1

γjµ
k
Xj

)

)2

.

We denote by µ1,X the K × (d + 1) design matrix, whose kth row is equal to

(1,µk>
X ) with µk

X = (µkX1
, · · · , µkXd)

>, by µY the K dimensional vector with elements

(µ1
Y , . . . , µ

K
Y ), and by π the diagonal matrix with diagonal elements (π1, . . . , πK). We

introduce the following assumption, guaranteeing the identifiability of the model pa-

rameters:

H1 rank(µ1,X) = d+ 1,

meaning that there are at least K ≥ d + 1 groups and that the d + 1 column vectors of

µ1,X span a vector space of dimension d+ 1 in RK .

LEMMA 7.1.1. If assumption H1 is fulfilled, the unique minimizer of the functional ψ over

γ = (γ0, γ1, . . . , γd)
> ∈ Rd+1 can be expressed as follows:

(7.1.3) β =
(
µ>1,Xπµ1,X

)−1
µ>1,XπµY .
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Proof

The functional ψ can be written in the matrix form:

ψ(γ) =
(
µY − µ1,Xγ

)>
π
(
µY − µ1,Xγ

)
,

and thus its gradient:

∇ψ(γ) = −2µ>1,Xπ
(
µY − µ1,Xγ

)
.

Under the assumption H1, µ>1,Xπµ1,X is invertible. It can be noticed that the gradi-

ent is equal to zero for β given in (7.1.3):

∇ψ(β) = −2µ>1,XπµY + 2
(
µ>1,Xπµ1,X

) (
µ>1,Xπµ1,X

)−1
µ>1,XπµY = 0.

Lastly, since ψ is strictly convex under H1, this minimizer is unique. 2

Additionally, the expression for σ2
ε can be directly deduced from (7.1.1) by consid-

ering the variance of Y :

(7.1.4) σ2
ε = σ2

Y − β>−0ΓXβ−0,

where ΓX is the covariance matrix of X, and β−0 = (β1, . . . , βd).

7.1.2. Optimal transport and minimum Wasserstein distance approach. The sec-

ond approach is based on optimal transport, in particular on the idea of estimating the

linear transformation of the distribution of X that is the closest to that of Y with respect

to the Wasserstein distance (see Panaretos and Zemel (2019) for a general introduction

for statisticians).

For two one dimensional distributions D1 and D2 on R with finite p moments,

and cumulative distribution functions F1 and F2, the Wasserstein distance (of order p)

between the two distributions is equal to

Wp(D1, D2) =

(∫ 1

0

∣∣F−1
1 (q)− F−1

2 (q)
∣∣p dq)1/p

,(7.1.5)

in particular, when p = 1:

W1(D1, D2) =

∫
R
|F1(x)− F2(x)| dx.(7.1.6)

When D1 ∼ N (µ1,Γ1) and D2 ∼ N (µ2,Γ2),

W 2
2 (D1, D2) = ‖µ1 − µ2‖2 + tr

(
Γ1 + Γ2 − 2

(
Γ

1/2
2 Γ1Γ

1/2
2

)1/2
)
.(7.1.7)
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When d = 1 and p = 2, the previous equation reduces to

W 2
2 (D1, D2) = (µ1 − µ2)2 + σ2

1 + σ2
2 − 2σ1σ2

= (µ1 − µ2)2 + (σ1 − σ2)2.(7.1.8)

As noted in Panaretos and Zemel (2019), the optimal transport map T between

Gaussian measures on Rd is linear. Thus, considering a linear relation between X and

Y is natural in a Gaussian setting and the Wasserstein distance of order 2 between Y

and γ0 +
∑d

j=1 γjXj + ε is equal to

ϕ0(γ, σ2) =

(
µY − γ0 −

d∑
j=1

γjµXj

)2

+

(
σY −

√
γ>−0ΓXγ−0 + σ2

)2

,(7.1.9)

where ΓX is the covariance matrix of X.

Taking account of the groups given by G we now assume that, for k = 1, . . . , K,

X|G = k ∼ N (µk
X ,Γ

k
X). Thus, given G = k, the Wasserstein distance between Dγ , the

distribution of γ0 + γ>−0X + ε, and DY , the distribution of Y , is equal to

W 2
2 (Dγ, DY |G = k) = (µkY − α0 − γ>−0µ

k
X)2 +

(
σY,k −

√
γ>−0Γ

k
Xγ−0 + σ2

ε

)2

.

Considering the expectation of W 2
2 (Dγ, DY |G), we can define the loss criterion

ϕ(γ, σ2) =
K∑
k=1

πk

[
(µkY − γ0 − γ>−0µ

k
X)2 +

(
σY,k −

√
γ>−0Γ

k
Xγ−0 + σ2

)2
]
.(7.1.10)

LEMMA 7.1.2. If model (7.1.1) holds, and if assumption H1 is fulfilled, ϕ(γ, σ2
ε ) has its

unique minimum at γ = β and σ2 = σ2
ε .

PROOF. Under model (7.1.1), ϕ0(β, σ2
ε ) = 0, and thus ϕ(β, σ2

ε ) = 0. For all γ ∈ Rd+1

and σ2 > 0, ϕ(γ, σ2) ≥ 0, therefore (β, σ2
ε ) minimizes ϕ. Finally, the uniqueness is

guaranteed by the assumption H1. �

We have the following expression for the gradient∇ϕ, which is equal to zero at the
minimum value of ϕ:

∇ϕ =



∂ϕ(γ)

∂γ0

∂ϕ(γ)

∂γ−0

∂ϕ(γ)

∂σ2


=


−2
∑K
k=1 πk

(
µkY − γ0 − γ>−0µ

k
X

)
−2
∑K
k=1 πk

[(
µkY − γ0 − γ>−0µ

k
X

)
µkX +

(
σY,k−

√
γ>−0Γk

X
γ−0+σ2

)
√

γ>−0Γk
X

γ−0+σ2
ΓkXγ−0

]
∑K
k=1 πk

(
1− σY,k√

γ>−0Γk
X

γ−0+σ2

)
.


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7.2. Sampled data and estimators

We suppose that experiments are made for K ≥ 2 different groups and that for

each group k, with k = 1, . . . , K, we have two independent samples (Y k
1 , . . . , Y

k
nky

) and

(Xk
j,1, . . . , X

k
j,nkx

)j=1,...,d, with sizes nky and nkx. For each unit i = 1, . . . , nkx, the vector

of covariates is denoted by Xk
i = (X1,i, . . . , Xd,i). We also define Nx =

∑K
k=1 n

k
x and

Ny =
∑K

k=1 n
k
y , the total number of observations of the response Y and the covariates

X1, . . . , Xd.

We can build estimates of µkY and µkX , as well as the within variance matrices, by

considering their empirical counterparts. For k = 1, . . . , K and j = 1, . . . , d, we define

µ̂kY =
1

nky

nky∑
i=1

Y k
i

µ̂kXj =
1

nkx

nkx∑
i=1

Xk
j,i

σ̂2
Y,k =

1

nky

nky∑
i=1

(
Y k
i

)2 −
(
µ̂kY
)2

Γ̂
k

X =
1

nkx

nkx∑
i=1

Xk
i (X

k
i )
> − µ̂k

X(µ̂k
X)>,

where µ̂k
X = (µ̂kX1

, . . . , µ̂kXd). We also consider the overall empirical mean and variance

µ̂Y =
1

Ny

K∑
k=1

nkyµ̂
k
Y

µ̂X =
1

Nx

K∑
k=1

nkxµ̂
k
X

σ̂2
Y =

1

Ny

K∑
k=1

nky∑
i=1

(
Y k
i

)2 − (µ̂Y )2

Γ̂X =
1

Nx

K∑
k=1

nkx∑
i=1

Xk
i (X

k
i )
> − µ̂Xµ̂

>
X .

Moment estimators of β = (β0, β1, . . . , βd) and σ2
ε can be built by considering the

empirical versions of (7.1.3) and (7.1.4):

β̂
M

=
(
µ̂>1,Xπµ̂1,X

)−1

µ̂>1,Xπµ̂Y

σ̂2,M
ε = σ̂2

Y − (β̂
M

−0)>Γ̂Xβ̂
M

−0,(7.2.1)
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where µ̂Y = (µ̂1
Y , . . . , µ̂

K
Y ), and µ̂1,X aK×(d+1) matrix, with the first column consisting

of ones, and the rest equal to µ̂X . Parameters πk for k = 1, . . . , K are considered to be

known, they can be set for instance as nkx/Nx.

Estimators of β and σ2
ε based on an optimal transport criterion are derived by min-

imizing the empirical version ϕn(γ, σ2) of functional ϕ(γ, σ2) defined by

ϕn(γ, σ2) =
K∑
k=1

πk

[
(µ̂kY − γ0 − γ>−0µ̂

k
X)2 +

(
σ̂Y,k −

√
γ>−0Γ̂

k

Xγ−0 + σ2

)2
]
.(7.2.2)

We denote by (β̂
W
, σ̂2,W ) minimizers of ϕn(γ, σ2) which are obtained with iterative

optimization algorithms based on gradient descent (see (7.1.11)). The algorithm can

be initialized randomly, or with (β̂
M
, σ̂2,M) .

7.3. Consistency and asymptotic distribution

To study the asymptotic behavior of the estimators of β defined in previous Sec-

tion, we suppose that for all groups K and all variables X and Y , the number of obser-

vations tends to infinity. We denote by nmin = min(n1
y, · · · , nKy , n1

x, · · · , nKx ) the smallest

sample size among all experiments. We suppose that nkx/nx → πk > 0 as nmin tends to

infinity.

7.3.1. Consistency.

LEMMA 7.3.1. If E(Y 2) < +∞ and E(‖X‖2) < +∞, and assumption H1 is fulfilled,

the sequence of estimators (β̂
M
, σ̂2,M

ε ) converges in probability to (β, σ2
ε ) when nmin tends to

infinity.

PROOF. First note that the assumptions E(Y 2) < +∞ and E(‖X‖2) < +∞ ensure the ex-

istence of σ2
Y and ΓX . From the law of large numbers, we have that for all k ∈ {1, . . . , K}, µ̂k

1,X →
µk
X and µ̂kY → µkY in probability when nmin tends to infinity.

We deduce from the continuous mapping theorem that µ̂>1,Xπµ̂1,X → µ>1,Xπµ1,X and

µ̂>1,Xπµ̂Y → µ>1,XπµY in probability. Under hypothesis H1, the inverse being continu-

ous in a neighborhood of µ>1,Xπµ1,X another application of the continuous mapping theorem

gives that
(
µ̂>1,Xπµ̂1,X

)−1

→
(
µ>1,Xπµ1,X

)−1 and β̂
M

=
(
µ̂>1,Xπµ̂1,X

)−1

µ̂>1,Xπµ̂Y →(
µ>1,Xπµ1,X

)−1
µ>1,XπµY = β in probability as nmin → +∞.

The law of large numbers gives that Γ̂
2

X → Γ2
X and σ̂2

Y → σ2
Y in probability and we

deduce, with another application of the continuous mapping theorem, that σ̂2
Y − β̂

>
Γ̂

2

Xβ̂ →
σ2
Y − β>Γ2

Xβ = σ2
ε in probability as nmin → +∞. �
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LEMMA 7.3.2. If E(Y 2) < +∞ and E(‖X‖2) < +∞, (β, σ2
ε ) ∈ Θ and Θ is a compact set

that does not contain 0, suppose that model (7.1.1) holds and hypothesis H1 is fulfilled, then the

sequence of estimators (β̂
W
, σ̂2,W

ε ) that minimize (7.2.2) converges in probability to (β, σ2
ε ).

PROOF. The proof is based on Lemma 2.9 in Newey and McFadden (1994) and Theorem

2.1 in Newey and McFadden (1994), which are recalled in Appendix D. Due to the law of large

numbers and the continuous mapping theorem, for all (γ, σ2
γ) ∈ Θ, ϕn(γ, σ2

γ) → ϕ(γ, σ2
γ) in

probability, when nmin tends to infinity.

Consider now (α, σ2
α) ∈ Θ. We have,

∣∣∣(µ̂kY − γ0 − γ>−0µ̂
k
X)2 − (µ̂kY − α0 −α>−0µ̂

k
X)2
∣∣∣ =

∣∣∣∣∣∣(α− γ)T

 1

µ̂k
X

2µ̂kY − (α + γ)T

 1

µ̂k
X

∣∣∣∣∣∣
≤ ‖α− γ‖Akn,

with Cauchy-Schwarz inequality and An,k = Op(1) because ‖µ̂k
X‖ = Op(1), µ̂kY = Op(1) and

for some constant C1 that does not depend on α and γ, ‖α + γ‖ ≤ C1 < ∞ because Θ is

supposed to be compact.

On the other hand, we have∣∣∣∣∣
(
σ̂Y,k −

√
γ>−0Γ̂

k

Xγ−0 + σ2
γ

)2

−
(
σ̂Y,k −

√
α>−0Γ̂

k

Xα−0 + σ2
α

)2
∣∣∣∣∣

=

∣∣∣∣√α>−0Γ̂
k

Xα−0 + σ2
α −

√
γ>−0Γ̂

k

Xγ−0 + σ2
γ

∣∣∣∣ (2σ̂Y,k +

√
α>−0Γ̂

k

Xα−0 + σ2
α +

√
γ>−0Γ̂

k

Xγ−0 + σ2
γ

)
=

∣∣∣∣√α>−0Γ̂
k

Xα−0 + σ2
α −

√
γ>−0Γ̂

k

Xγ−0 + σ2
γ

∣∣∣∣Op(1)

since Θ is compact and ‖Γ̂
k

X‖sp = Op(1), where ‖.‖sp denotes the spectral norm. Because

α>−0Γ̂
k

Xα−0−γ>−0Γ̂
k

Xγ−0 = α>−0Γ̂
k

X

(
α−0 − γ−0

)
+
(
α−0 − γ−0

)>
Γ̂
k

Xγ−0 we have, for some

constant C2,k > 0, ∣∣∣α>−0Γ̂
k

Xα−0 − γ>−0Γ̂
k

Xγ−0

∣∣∣ ≤ C2,k

∥∥∥Γ̂k

X

∥∥∥
sp
‖α− γ‖.(7.3.1)

Using now the fact that function x 7→
√
x is concave and differentiable, we have for x > 0 and

y > 0 that
√
y ≤
√
x+ y−x

2
√
x
. Thus, if y > x > 0 then 0 <

√
y −
√
x ≤ y−x

2
√
x

and if x > y > 0,

then 0 <
√
x −√y ≤ x−y

2
√
y
. Consequently, we have |√y −

√
x| ≤ |x−y|

2 min(
√
x,
√
y)

and we deduce

that, ∣∣∣∣√α>−0Γ̂
k

Xα−0 + σ2
α −

√
γ>−0Γ̂

k

Xγ−0 + σ2
γ

∣∣∣∣ ≤ Bk
n

(
‖α− γ‖+ |σ2

α − σ2
γ|
)

(7.3.2)

where Bk
n = Op(1).
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Combining previous inequalities, we get

∣∣ϕn(γ, σ2
γ)− ϕn(α, σ2

α)
∣∣ ≤ (‖α− γ‖+ |σ2

α − σ2
γ|
) K∑
k=1

πk
(
Bk
n + Akn

)
,(7.3.3)

with
∑K

k=1 πk
(
Bk
n + Akn

)
= Op(1). As a result, it can be deduced from Lemma 2.9 in Newey

and McFadden (1994) that

sup
(γ,σ2

γ)∈Θ

∣∣ϕn(γ, σ2
γ)− ϕ(γ, σ2

γ)
∣∣→ 0 in probability.

We conclude the proof by recalling that ϕ(γ, σ2
γ) attains its unique minimum at (β, σ2

ε ) ∈ Θ

if assumption H1 is fulfilled, so that (β̂
W
, σ̂2,W ) → (β, σ2

ε ) in probability in view of Theorem

2.1 in Newey and McFadden (1994). �

7.3.2. Asymptotic normality. As far as the asymptotic distribution of the estima-

tors is concerned, and for sake of simplicity and lighter notations, we suppose now

that the number of experiments is the same for all groups and all variables, that is to

say n = n1
y = · · ·nKy = n1

x · · · = nKx and πk = 1/K, for k = 1, . . . , K.

PROPOSITION 7.3.1. Assume that the assumptions of Lemma 7.3.1 are fulfilled. Then as

n tends to infinity,
√
n
(
β̂
M
− β

)
 N (0,ΓβM )

where the expression of the asymptotic covariance matrix ΓβM is given in the proof.

PROOF. The central limit theorem applies directly to the independent sequences of indepen-

dent random variables (X1
1, · · · ,X1

n), . . . , (XK
1 , · · · ,XK

n ) and (Y 1
1 , · · · , Y 1

n ), , . . . , (Y K
1 , · · · , Y K

n )

so that, as n tends to infinity

√
n



µ̂1
X − µ1

X

...

µ̂K
X − µK

X

µ̂1
Y − µ1

Y

...

µ̂KY − µKY


 N (0,Γµ)(7.3.4)

where Γµ is a diagonal matrix, with diagonal elements (Γ1
X , . . . ,Γ

K
X , σ

2
Y,1, . . . , σ

2
Y,K), with

Γk
X = Var(X|G = k) = E

(
Xk(Xk)>

)
− µk

X(µk
X)> and σ2

Y,k = β>Γk
Xβ
> + σ2

ε . Consider the
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application g : RdK+K → Rd+1 defined by

g(µ1
X , . . . ,µ

K
X , µ

1
Y , . . . , µ

K
Y ) =

(
µ>1,Xπµ1,X

)−1
µ>1,XπµY .

Application g is differentiable at θ = (µ1
X , . . . ,µ

K
X , µ

1
Y , . . . , µ

K
Y ), with non null Jacobian ma-

trix (see Chapter 8 and more particularly Theorem 8.3 in Magnus and Neudecker (2019))

denoted by Jθ. The application of the Delta method (see Theorem 3.1 in van der Vaart (1998))

permits to get

√
n
(
β̂
M
− β

)
 N (0,ΓβM ) ,

where ΓβM = JθΓµJ
>
θ . �

REMARK 7.3.1. The weak convergence toward a Gaussian result presented in Lemma 7.3.1

would remain true, at the expense of heavier notations, provided that there exist two constants,

0 < c ≤ C such that

(7.3.5) 0 < c ≤
max(n1

y, · · · , nKy , n1
x, · · · , nKx )

min(n1
y, · · · , nKy , n1

x, · · · , nKx )
≤ C < +∞,

and min(n1
y, · · · , nKy , n1

x, · · · , nKx )→∞.

It can be noted that the expression of ΓβM is complicated and thus difficult to com-

pute manually when d > 1.

7.3.2.1. Optimal transport estimators. The asymptotic normality of β̂
W

relies on clas-

sical results for M-estimators recalled in the Appendix (see Theorem D.0.4).

PROPOSITION 7.3.2. If model (7.1.1) holds and hypothesis H1 is fulfilled, E(Y 2) < +∞
and E(‖X‖4) < +∞, (β, σ2

ε ) ∈ Θ and Θ is a compact set that does not contain (0, 0), then, as

n tends to infinity,

√
n

 β̂
W

σ̂2,W
ε

−
β

σ2
ε

 N (0,ΓW ) ,

for some covariance matrix ΓW .

PROOF. The proof consists in checking the different points of Theorem D.0.4. Point (i)

is satisfied by the hypotheses, and the point (ii) follows directly from the fact ϕn(γ, σ2) is

twice-differentiable in a neighborhood of (β, σ2
ε ). To show that (iii) is fulfilled, we consider the
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following expansion, based on the empirical version of the gradient of ϕ given in (7.1.11),

∇ϕn =


−2
∑K

k=1 πk

(
µ̂kY − β0 − β>−0µ̂

k
X

)
−2
∑K

k=1 πk

[(
µ̂kY − β0 − β>−0µ̂

k
X

)
µ̂k
X +

(
σ̂Y,k√

β>−0Γ̂
k
Xβ−0+σ2

ε

− 1

)
Γ̂
k

Xβ−0

]
∑K

k=1 πk

(
1− σ̂Y,k√

β>−0Γ̂
k
Xβ−0+σ2

ε

)


(7.3.6)

Since model (7.1.1) holds, ∇ϕ = 0 and µ̂kY − β0 − β>−0µ̂
k
X = (µ̂kY − µkY )− β>−0

(
µ̂k
X − µk

X

)
,

we thus deduce with (7.3.4) the asymptotic normality of the first component of the gradi-

ent ∇ϕn, that is to say
√
n
(
−2
∑K

k=1 πk

(
µ̂kY − β0 − β>−0µ̂

k
X

))
converges in distribution

to a centered Gaussian distribution. As far as the second component is concerned, it can

be noted that Γ̂
k

X converges in probability to Γk
X and by the continuous mapping theorem,√

β>−0Γ̂
k

Xβ−0 + σ2
ε → σY,k in probability. It can also be noted that, under the moment condi-

tion E [‖X‖4|G = k] < ∞, the central limit theorem gives that
√
n
(
Γ̂
k

X − Γk
X

)
converges in

distribution to a centered Gaussian multivariate distribution, and we deduce with the Cramer-

Wold device, the continuous mapping theorem and Slutsky’s theorem that the second compo-

nent of ∇ϕn multiplied by
√
n also in distribution to a centered Gaussian random vector. It

is immediate to deduce that the same convergence result holds for the third component, which

is to say that
√
n

(∑K
k=1 πk

(
1− σ̂Y,k√

β>−0Γ̂
k
Xβ−0+σ2

ε

))
converges in distribution to a centered

Gaussian random variable. We finally deduce, with the Cramer-Wold device, that (iii) is ful-

filled.
To prove that (iv) also holds, consider the Hessian matrix of functional ϕn, evaluated at

(β, σ2
ε ):

∇00ϕn =


2 2

(∑K
k=1 πkµ̂

k
X

)>
0

2
∑K
k=1 πkµ̂

k
X Ĥ(β−0)

∑K
k=1 πkσ̂Y,k

(
β>−0Γ̂

k
Xβ−0 + σ2

ε

)−3/2
Γ̂
k
Xβ−0

0
∑K
k=1 πkσ̂Y,k

(
β>−0Γ̂

k
Xβ−0 + σ2

ε

)−3/2 (
Γ̂
k
Xβ−0

)>
1
2

∑K
k=1 πkσ̂Y,k

(
β>−0Γ̂

k
Xβ−0 + σ2

ε

)−3/2

 ,

where

Ĥ(β−0) =2
K∑
k=1

πk

[
σ̂Y,k

(
β>−0Γ̂

k

Xβ−0 + σ2
ε

)−3/2
[(

Γ̂
k

Xβ−0

)(
Γ̂
k

Xβ−0

)>
−
(
β>−0Γ̂

k

Xβ−0 + σ2
ε

)
Γ̂
k

X

]
+ µ̂k

X

(
µ̂k
X

)>
+ Γ̂

k

X

]
.
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By similar arguments as those used to show thatϕn(β, σ2
ε ) converges in probability toϕ(β, σ2

ε ),
we deduce that∇00ϕn converges in probability to some matrix H(β, σ2

ε ), defined as follows

H(β, σ2
ε ) =


2 2

(∑K
k=1 πkµ

k
X

)>
0

2
∑K
k=1 πkµ

k
X H(β−0)

∑K
k=1 πkσY,k

(
β>−0ΓkXβ−0 + σ2

ε

)−3/2
ΓkXβ−0

0
∑K
k=1 πkσY,k

(
β>−0ΓkXβ−0 + σ2

ε

)−3/2 (
ΓkXβ−0

)> 1
2

∑K
k=1 πkσY,k

(
β>−0ΓkXβ−0 + σ2

ε

)−3/2


where

H(β−0) =2
K∑
k=1

πk

(
σY,k

(
β>−0Γ

k
Xβ−0 + σ2

ε

)−3/2
[ (

Γk
Xβ−0

) (
Γk
Xβ−0

)> − (β>−0Γ
k
Xβ−0 + σ2

ε

)
Γk
X

]
+ µk

X

(
µk
X

)>
+ Γk

X

)
.

We now must check that H(β, σ2
ε ) is a positive definite matrix. For that we show that

at the minimizer value (β, σ2
ε ) its determinant is strictly positive. We first note that σY,k =(

β>−0Γ
k
Xβ−0 + σ2

ε

)1/2
so that σY,k

(
β>−0Γ

k
Xβ−0 + σ2

ε

)−3/2
= 1

σ2
Y,k

and H(β−0) can be written

in a simpler form,

H(β−0) =2
K∑
k=1

πk

[
µk
X

(
µk
X

)>
+

1

σ2
Y,k

Γk
Xβ−0

(
Γk
Xβ−0

)>]
,(7.3.7)

which is a definite positive matrix under hypothesis H1. Using a block matrix determinant

formula, we have

∣∣H(β, σ2
ε )
∣∣ =

∣∣∣∣∣∣∣
2 0

0 1
2

∑K
k=1

πk
σ2
Y,k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣H(β−0)−C

1
2

0

0 2∑
k

πk
σ2
Y,k

C>

∣∣∣∣∣∣∣(7.3.8)

where C =

(
2
∑K

k=1 πkµ
k
X

∑K
k=1

πk
σ2
Y,k

Γk
Xβ−0

)
and it only has to be verified that the second

determinant at the righthand side of (7.3.8) is strictly positive. We now have to show that

H(β−0)−C

1
2

0

0 2∑
k

πk
σ2
Y,k

C> = 2
K∑
k=1

πkµ
k
X

(
µk
X

)> − 2

(
K∑
k=1

πkµ
k
X

)(
K∑
k=1

πkµ
k
X

)>

+2
K∑
k=1

πk
σ2
Y,k

Γk
Xβ−0

(
Γk
Xβ−0

)> − 2∑
k

πk
σ2
Y,k

(
K∑
k=1

πk
σ2
Y,k

Γk
Xβ−0

)(
K∑
k=1

πk
σ2
Y,k

Γk
Xβ−0

)>(7.3.9)
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is a positive matrix. We can remark that by Cauchy Schwarz inequality, for u ∈ Rd,

u>

(
K∑
k=1

πkµ
k
X

)(
K∑
k=1

πkµ
k
X

)>
u =

(
K∑
k=1

πku
>µk

X

)2

≤
K∑
k=1

πk
(
u>µk

X

)2

= u>

(
K∑
k=1

πkµ
k
X

(
µk
X

)>)
u

using the fact that
∑

k(
√
πk)

2 = 1. It can be noted that if u 6= 0, previous inequality is strict

unless u>µ1
X = · · · = u>µK

X , which can not happen under hypothesis H1. The second part at

the righthand side of (7.3.9) is handled the same way. We have

u>

(
K∑
k=1

πk
σ2
Y,k

Γk
Xβ−0

)(
K∑
k=1

πk
σ2
Y,k

Γk
Xβ−0

)>
u =

(
u>

(
K∑
k=1

πk
σ2
Y,k

Γk
Xβ−0

))2

≤
K∑
k=1

√
πk
σ2
Y,k

2 K∑
k=1

(√
πk
σ2
Y,k

2

u>Γk
Xβ−0

)2

=
K∑
k=1

πk
σ2
Y,k

K∑
k=1

πk
σ2
Y,k

u>Γk
Xβ−0

(
Γk
Xβ−0

)>
u,

and consequently the determinant of H(β, σ2
ε ) is strictly positive.

To finish the proof, it remains to check that in a neighborhood N of (β, σ2
ε ), we have

sup
(γ,σ2

γ)∈N
‖∇00ϕn(γ, σ2

γ)−H(γ, σ2
γ)‖ → 0 in probability.

This is a direct consequence of the continuous mapping theorem, which gives us that for all

(γ, σ2
γ) ∈ N , ‖∇00ϕn(γ, σ2

γ) − H(γ, σ2
γ)‖ → 0 in probability, and the fact that third order

partial derivatives of ϕn(γ, σ2
γ) are bounded in probability for (γ, σ2

γ) so that Theorem D.0.2

can apply.

�

7.4. Bootstrapping for confidence intervals

Since, as noted in the previous section, it is complicated to compute explicitly

the asymptotic variance matrix of β̂
M

and β̂
W

, we consider stratified bootstrap ap-

proaches in order to build confidence sets for β.

Our bootstrap procedure is based on the sampling scheme for all considered es-

timators of β and takes account of the independence between the different groups

k = 1, . . . , K, as well as the independence of inputs (Xk
1 , . . . , X

k
d ) and output Y k within
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each group, meaning more formally that, given G = k, the joint probability measure

Pk of Y and X is a product measure of the marginal measures Pk = PkY ⊗ PkX.

For each group k, we draw, with equal probability and with replacement, nky ob-

servations among Y k
1 , . . . , Y

k
nky

, and denote by µk∗Y the empirical mean of this bootstrap

sample. Then we draw, with equal probability and with replacement, nkx observations

among Xk
1, . . . ,X

k
nkx

and denote by µk∗
X the empirical mean of this bootstrap sample.

Bootstrapped estimators βM,∗ and βW,∗ of β can now be computed.

To build confidence sets for each component of β based on previous bootstrap

procedure, the bootstrap percentile technique, described in Chapter 4 of Shao and Tu

(1995), can be considered.

It can be noted that our estimators are smooth functions of sample means so that

classical bootstrap theory applies (see for example Shao and Tu (1995), Chapter 3). For

simplicity, as in Proposition 7.3.1, we suppose that n = n1
y = . . . = nKy = n1

x = . . . =

nKx . Because of the considered experimental design, our global "empirical distribution"

is made of products of marginal empirical distributions, the bootstrap for means is

almost surely consistent for the Kolmogorov metric, and with Theorem 3.1 in Shao

and Tu (1995) the same result holds for the estimators of β considered in this work.

Then, the application of Theorem 4.1 in Shao and Tu (1995) allows to conclude that

bootstrap percentile method gives consistent confidence sets for each component of β.

PROPOSITION 7.4.1. Suppose that E(Y 2) < ∞ and E‖X‖2 < ∞ and hypothesis H1 is

fulfilled. Then as n → +∞, the bootstrap estimator βM,∗ is strongly consistent for β in the

Kolmogorov metric. Furthermore, for each component of β, the bootstrap percentile approach

provides, for a given nominal level 1− α, a consistent confidence set.

PROOF. The fact that the bootstrap estimator βM,∗ is strongly consistent for β is a

direct consequence of Theorem 3.1 in Shao and Tu (1995), noting that

β̂
M

= g(µ̂1
X , . . . , µ̂

K
X , µ̂

1
Y , . . . , µ̂

K
Y )

is a continuously differentiable function of means at (µ1
X , . . . ,µ

K
X , µ

1
Y , . . . , µ

K
Y ). The

fact that confidence sets based on the percentile approach are consistent is proved by

checking the assumptions in Theorem 4.1 (iii) Shao and Tu (1995), namely the boot-

strap estimator βM,∗ is consistent, β̂
M

is consistent (Lemma 7.3.1), with asymptotic

Gaussian distribution (Proposition 7.3.1). �

PROPOSITION 7.4.2. Suppose that E(Y 2) < ∞ and E‖X‖4 < ∞ and hypothesis H1

is fulfilled. Then as n → +∞, the bootstrap estimator (βW,∗, σ2,W,∗
ε ) is strongly consistent
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for (β, σ2
ε ) in the Kolmogorov metric. Furthermore, for each component of β, the bootstrap

percentile approach provides, for a given nominal level 1− α, a consistent confidence set.

PROOF. We denote by θ0 = (β, σ2,W
ε ) the vector of true parameters, by θ̂ = (βW , σ2

ε )

the sequence of minimum Wasserstein distance estimators and by θ∗ = (βW,∗, σ2,W,∗
ε )

bootstrap estimators of θ0. The vector of parameters θ∗ is the minimizer of functional

ϕ∗n defined as follows,

ϕ∗n(γ, σ2) =
K∑
k=1

πk

[
(µk,∗Y − γ0 − γ>−0µ

k,∗
X )2 +

(
σ∗Y,k −

√
γ>−0Γ

k,∗
X γ−0 + σ2

)2
]
.(7.4.1)

We first show with arguments similar to those employed in the proof of Lemma 7.3.2,

that θ∗ is a consistent estimator for θ0, based on the fact that ϕ∗n is a smooth function

converging to ϕ and the sample mean theorem for bootstrap (see for example The-

orem 23.4 in van der Vaart (1998)). Indeed, we first recall that for all (γ, σ2
γ) ∈ Θ,

ϕn(γ, σ2
γ)→ ϕ(γ, σ2

γ) in probability, when nmin tends to infinity and∣∣ϕ∗n(γ, σ2
γ)− ϕ(γ, σ2

γ)
∣∣ ≤ ∣∣ϕ∗n(γ, σ2

γ)− ϕn(γ, σ2
γ)
∣∣+
∣∣ϕn(γ, σ2

γ)− ϕ(γ, σ2
γ)
∣∣ .(7.4.2)

Since the bootstrap means converge to the empirical ones we deduce with the con-

tinuous mapping theorem that ϕ∗n(γ, σ2
γ) → ϕn(γ, σ2

γ) in probability, when nmin tends

to infinity, so that ϕ∗n(γ, σ2
γ) → ϕ(γ, σ2

γ). We also have, as in (7.3.3), where empirical

means are replaced by bootstrap means,

∣∣ϕ∗n(γ, σ2
γ)− ϕ∗n(α, σ2

α)
∣∣ ≤ (‖α− γ‖+ |σ2

α − σ2
γ|
) K∑
k=1

πk
(
Bk,∗
n + Ak,∗n

)
,(7.4.3)

for any (α, σ2
α) ∈ Θ, with

∑K
k=1 πk

(
Bk,∗
n + Ak,∗n

)
= Op(1). As a result, we deduce from

Lemma 7.3.2, inequality (7.4.2) and Lemma 2.9 in Newey and McFadden (1994) that

sup
(γ,σ2

γ)∈Θ

∣∣ϕ∗n(γ, σ2
γ)− ϕ(γ, σ2

γ)
∣∣→ 0 in probability.

We conclude that θ∗ → θ0 in probability in view of Theorem 2.1 in Newey and Mc-

Fadden (1994).

We now prove that
√
n
(
θ∗ − θ̂

)
and

√
n
(
θ̂ − θ0

)
have the same asymptotic dis-

tribution. By definition of θ̂ and Taylor expansion we have

(7.4.4) ∇ϕn(θ̂) = ∇ϕn(θ0) +∇00ϕn(θ)
(
θ̂ − θ0

)
= 0
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where θ belongs, componentwise, to the segment between θ0 and θ̂. We have a similar

expansion for boostrap estimators, as well as

(7.4.5) ∇ϕ∗n(θ∗) = ∇ϕ∗n(θ0) +∇∗00ϕn(θ
∗
) (θ∗ − θ0) = 0

where θ
∗

belongs, componentwise, to the segment between θ0 and θ∗. Combining

(7.4.4) and (7.4.5), we deduce

θ∗ − θ̂ =
(
∇∗00ϕn(θ

∗
)
)−1

∇ϕ∗n(θ0)−
(
∇00ϕn(θ)

)−1∇ϕn(θ0)

=

((
∇∗00ϕn(θ

∗
)
)−1

−
(
∇00ϕn(θ)

)−1
)
∇ϕ∗n(θ0) +

(
∇00ϕn(θ)

)−1
(∇ϕ∗n(θ0)−∇ϕn(θ0))

(7.4.6)

Noticing that∇∗00ϕn(θ
∗
) and∇00ϕn(θ) both tend in probability to the same limit H(β, σ2

ε )

and we have, with similar arguments as those used in the proof of Proposition 7.3.2,

that ∇ϕ∗n(θ0) is Op(n
−1/2), it can be deduce that

θ∗ − θ̂ =
(
∇00ϕn(θ)

)−1
(∇ϕ∗n(θ0)−∇ϕn(θ0)) + oP (n−1/2).(7.4.7)

Using arguments similar to those employed in the expansion of ∇ϕn in the proof

of Proposition 7.3.2, we make appear the difference between bootstrap means and

empirical means or a differentiable functional of these quantities:

∇ϕ∗n(θ0)−∇ϕn(θ0) =


2
∑K
k=1 πk

(
(µ̂kY − µ

k,∗
Y )− β0 − β>−0

(
µ̂X − µk,∗X

))
2
∑K
k=1 πk

[(
µ̂kY − µ

k
Y − β0 − β>−0µ̂

k
X

)
µ̂kX +

(
σ̂Y,k√

β>−0Γ̂
k
Xβ−0+σ2

ε

− 1

)
Γ̂
k
Xβ−0

]

−2
∑K
k=1 πk

[(
µk,∗Y − µkY − β0 − β>−0µ

k,∗
X

)
µk,∗X +

(
σ∗Y,k√

β>−0Γ
k,∗
X

β−0+σ2
ε

− 1

)
Γk,∗X β−0

]


∑K
k=1

(
σ̂Y,k√

β>−0Γ̂
k
Xβ−0+σ2

ε

−
σ∗Y,k√

β>−0Γ
k,∗
X

β−0+σ2
ε

)

 ,

(7.4.8)

which satisfies the central limit theorem for bootstrap means, or the Delta method for

bootstrap estimators (see the Appendix as well as Theorem 23.4 and Theorem 23.5 in

van der Vaart (1998)). Consequently, ∇ϕ∗n(θ0)−∇ϕn(θ0) and ∇ϕn(θ0)−∇ϕ(θ0) have

the same asymptotic distribution. By Slustky’s theorem, the asymptotic distribution

of
√
n
(
θ∗ − θ̂

)
is thus the same as the asymptotic distribution of H(β, σ2

ε )
√
n∇ϕn(θ0),

and we can conclude that
√
n
(
θ∗ − θ̂

)
and

√
n
(
θ̂ − θ0

)
have also the same asymp-

totic Gaussian distribution.

�
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CHAPTER 8

A SIMULATION STUDY

8.1. Simulation design

8.1.1. General setting. Some simulations have been performed in order to evalu-

ate the finite sample performances of the proposed approaches on data that resemble

in vivo data originating from real experiments on mice. Let K ∈ N be the number of

subpopulations, gk = {0, 1, . . . , k−1} be the level of the grouping variable for subpop-

ulation k ∈ {1, . . . , K}, and the number of animals observed per group was choose for

simplicity n = n1
y = · · · = nKy = n1

x · · · = nKx . For every animal i ∈ {1, . . . , n} and every

subpopulation k ∈ {1, . . . , K} we choose the predictor variable Xk
i in the Gaussian

univariate setting:

Xk
i ∼ N (µkX , σ

2
X,k), where µkX = ∆µgk + Cµ,

where Cµ ∈ R is the global mean scale parameter, and ∆µ ∈ R is the parameter that

determines the difference between groups in terms of the mean. We simulate the pre-

dicted variable independently as follows, with regression parameters β0 and β1:

Y k
i = β0 + β1X

′k
i + εki , where X ′ki ∼ Xk

i and εki ∼ N (0, σ2
ε,k).

It should be noted that Xk
i and X ′ki are independent, we thus recreate the situation of

the predictor and predicted variables not being simultaneously observed.

The variable sets X = (Xk
i )1≤i≤n,1≤k≤K and Y = (Y k

i )1≤i≤n,1≤k≤K are simulated

Nsim ∈ N times. For each simulation, Nboot ∈ N bootstrap samples of the size n are

generated from Xk = (Xk
i )1≤k≤K and Y k = (Y k

i )1≤k≤K for each subpopulation k ∈
{1, . . . , K} independently, then moment estimators µk∗X and µk∗Y are calculated. Finally,
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the bootstrap sample-based estimators βM,∗ = (βM,∗
0 , βM,∗

1 ) and βW,∗ = (βW,∗0 , βW,∗1 ) are

calculated. Based on Nboot estimates, we calculate 95% confidence intervals using the

function quantile of the Python library NumPy. As a result, we obtain Nsim confidence

intervals for each regression parameter, that we use to calculate the following quanti-

ties of interest:

– Coverage rate, i.e. the proportion of intervals including the true value.

– Average amplitude of the intervals.

– Power, i.e. the proportion of intervals not including 0.

Along with the bootstrap procedure, we estimate the confidence intervals for the pa-

rameter estimators of the regression on the means by group with a naive method,

assuming that the deviation of the parameter estimator from the true value divided

by the estimator’s standard error follows a Student’s t-distribution:

β̂j − βj
SE(β̂j)

 tK−(d+1) for j ∈ {0, . . . , d}.

8.1.2. Parameter levels. We fix the following parameters throughout all simula-

tions: the regression parameters β0 = 1 and β1 = 2, the number of simulations

Nsim = 500, the number of bootstrap samples Nboot = 500, the location parameters

of the predictor variable ∆µ = 1 and Cµ = 10. We vary the following parameters to

study their effect:

• The number of animals. We take n ∈ {10, 30}, in particular to test whether

the inference is significantly impaired in case of a small number of animals,

which is often the case for real experimental data.

• The number of groups. We consider K ∈ {4, 10}, 4 being the number of

groups that is often observed in real data, and 10 being a higher number that

may produce sufficiently good results with the naive approach to approximat-

ing confidence intervals with Student distribution.

• The group dispersion. The parameter σ2
X,k can be adjusted to control the ex-

tent to which the observations per group can be easily distinguish one from

another. We set σ2
X,1 = · · · = σ2

X,K , and σ2
X,k ∈ {0.75, 2}, the first value corre-

sponding to lower overlap between groups, and the second to higher overlap.

The difference between the two cases and the effect on simulated data are il-

lustrated on Figure 8.1.1.
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Figure (8.1.1) The effect of different values of σ2
X,k on the data, with σ2

X,1 =

· · · = σ2
X,K , K = 4 and ρ = 1.1. a,b) σ2

X,k = 0.75, or low overlap. c,d)
σ2
X,k = 2, or high overlap. a,c) True distributions of Xk for k ∈ {1, . . . , 4}. b,d)

Boxplots constructed from the simulated values of Xk
i .

• The level of noise. We introduce an additional parameter ρ ∈ R+ controlling

the variance of the response to the variance of noise ratio, i.e. ρ =
σY,k

σε,k
. The

choice of adjusting the noise to signal ratio instead of the quantity of noise

itself through σ2
ε,k is motivated by the fact that σY,k depends on σX,k, hence the

same level of σε,k cannot be interpreted the same way for different values of

σX,k. The variance of the noise can be expressed as follows: σ2
ε,k =

β2
1σ

2
X,k

ρ2 − 1
. The

values of ρ are chosen to correspond to the realistic situation, namely the very

noisy case and a slightly less noisy one: ρ ∈ {1.01, 1.1}. The effect of different

values of ρ on the simulated response variable is illustrated on Figure 8.1.2.

8.2. Results

The results of the simulation study are presented in Figure 8.2.1, namely the ob-

tained coverage rates for the linear regression slope confidence intervals on Figure
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Figure (8.1.2) The effect of different values of ρ on the data, with K = 4 and
σ2
X,1 = · · · = σ2

X,4 = 0.75. a) Boxplots constructed from the simulated values of
Xk
i . b) Boxplots constructed from the simulated values of Y k

i with lower relative
noise level, i.e. ρ = 1.1. c) Boxplots constructed from the simulated values of
Y k
i with higher relative noise level, i.e. ρ = 1.01.

8.2.1a, the amplitudes on Figure 8.2.1b, and the associated test powers on Figure 8.2.1c.

Every figure contains four tables, each corresponding to a combination of parame-

ters with respect to the number of animals Nanim and the number of groups K. The

columns of the tables represent combinations of parameters with respect to the group

dispersion parameter σ2
X,k and the noise to signal ratio ρ. Finally, the lines of each table

indicate the method used to estimate the confidence intervals: the proposed method

of moments and optimal transport based bootstrap estimators, and the classical linear

regression procedure based on estimated means within each group.

In general, it can be observed that the bootstrap estimators produce confidence

intervals with smaller amplitudes and with higher power, but with lower coverage

rate. Whereas the coverage rates in all cases remain within 91-96%, the extent to which

the amplitudes are smaller and the powers are bigger is significantly more important

for the bootstrap estimators in almost all cases. This implies that the naive approach

based on the Student’s distribution is more likely to produce false negatives in terms

of significance.This trend of further amplified by the number of groups parameter:

whereas the results are overall worsened with the decrease in either the number of

animals or groups, it is the case with the small number of groups that demonstrates

the biggest difference in the approaches. Indeed, in almost all cases within the tables

withK = 4 we observe the amplitudes approximately twice as important for the naive

approach, and a similar trend in terms of lower powers. The latter result is important

since lower power implies bigger probability of not detecting a significant relationship

between the predictor and the predicted variables, when it is actually present. Overall,
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these results mean that the proposed bootstrap estimators are more effective if the

experimental design entails a small number of groups.

Concerning the remaining two parameters, as expected, in general the best results

are obtained with lower σ2
X,k and higher ρ. In most case, the results for the naive and

the bootstrap estimators are either both good or both bad in terms of power, with the

latter being slightly better. A particularly complicated case can be distinguished, with

high dispersion and high noise level, with few groups and few animals, where all esti-

mators drastically fail: we observe almost equally bad powers (0.1 for both bootstrap

estimators and 0.09 for the naive estimator), despite the significant difference in am-

plitudes. On the other hand, we can also distinguish two case where the powers of the

bootstrap estimators are more than 90%, whereas those of the naive estimator are un-

der 50%: in both cases there are 4 groups and high noise, in the first case there are only

10 animals but lower dispersion, in the second case high dispersion level is compen-

sated but a higher number of animals. This implies that if the underlying distributions

per group are characterized by a reasonable amount of overlap, or a significant over-

lap is compensated by having more observations, the bootstrap estimators manage to

detect the significant relationship in most cases, unlike the naive estimator.

Lastly, it can be observed that the estimator based on optimal transport produces

confidence intervals with slightly smaller amplitudes compared to the method of mo-

ments estimator. The difference appears to be relatively more important in the cases

with higher group overlap σ2
X,k = 2. However, the powers are not affected by this dif-

ference. This may be explained by a more important bias associated with the optimal

transport estimator. The estimator will likely produce better results in terms of the

power than the method of moments estimator if the bias is corrected.
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CHAPTER 9

APPLICATION TO REAL DATA

In order to illustrate the proposed estimators on real data, we studied the data

from experiments conducted on mice in order to assess the adverse effects induced in

the context of different irradiated volume. In the course of these experiments, mice

were exposed to either stereotactic body radiation therapy (SBRT) with different beam

sizes at 90 Gy on the left lung, or whole-thorax irradiation (WTI) at 19 Gy. For one

cohort, the expressions of three pro-inflammatory genes (IL1 α and β, IL6 and TNF)

were measured, for the other cohort the measurements of the thickness of the alve-

olar septas were made due to its role as a macroscopic biomarker of radio-induced

pulmonary lesions. In the case of the SBRT, the measurements were taken in multiple

locations: the irradiated patch (inside the irradiation field), the remaining part of the

left lung referred to as ipsilateral lung, and the right lung (contralateral lung). The goal

of this statistical analysis is to determine whether there is a statistical association be-

tween the gene expression as predictors and the septal thickening as as outcome. Our

approach is applied since the variables are measured on different animals, but within

each irradiation condition there are shared groups in terms of the measurement time

points.

The linear regression parameters were estimated with three estimators the same

way it was done in the simulation study in Section 8.2. The results are presented in

Table 9.0.1. The focus is placed on estimating the slope parameter β1 in particular. The

table contains the estimations of β1 as well as the estimated confidence intervals for the

slope estimator, and the corresponding test result on the significance of the estimated

relationship.
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METHOD OF MOMENTS OPTIMAL TRANSPORT LIN. REG. ON MEANS

(BOOTSTRAP) (BOOTSTRAP) (STUDENT)

LOC. VOL. GENE β̂1 95% C.I. SIGNIF. β̂1 95% C.I. SIGNIF. β̂1 95% C.I. SIGNIF.

IL1b -0.35 (-1.03, 0.4) 7 -0.19 (-0.44, 0.23) 7 -0.35 (-1.99, 1.28) 7

1 mm IL6 0.43 (-0.23, 1.2) 7 0.2 (-0.2, 0.84) 7 0.43 (-1.32, 2.17) 7

IPSILATERAL TNF 0.2 (-0.23, 0.84) 7 0.16 (-0.18, 0.84) 7 0.2 (-1.26, 1.66) 7

LUNG IL1b 0.9 (0.0, 2.11) 4 1.05 (0.01, 1.44) 4 0.9 (-0.43, 2.24) 7

3 mm IL6 0.05 (-0.34, 0.46) 7 0.06 (-0.33, 0.49) 7 0.05 (-1.65, 1.76) 7

TNF 0.65 (-0.12, 1.6) 7 0.63 (-0.12, 1.46) 7 0.65 (-1.57, 2.87) 7

IL1b 2.31 (-1.73, 3.87) 7 0.82 (-0.48, 0.94) 7 2.31 (-0.73, 5.35) 7

1 mm IL6 0.85 (-0.7, 2.38) 7 0.61 (-0.56, 1.6) 7 0.85 (-3.75, 5.45) 7

IRRADIATED TNF 0.85 (-0.6, 2.3) 7 0.69 (-0.54, 1.53) 7 0.85 (-3.96, 5.66) 7

PATCH IL1b 2.85 (0.84, 5.14) 4 2.59 (0.73, 3.58) 4 2.85 (-1.07, 6.78) 7

3 mm IL6 1.35 (0.22, 2.47) 4 1.3 (0.21, 2.26) 4 1.35 (-1.8, 4.5) 7

TNF 3.81 (1.01, 6.37) 4 3.37 (0.99, 5.33) 4 3.81 (-1.86, 9.48) 7

IL1b -0.92 (-2.2, 1.06) 7 -0.42 (-0.89, 0.51) 7 -0.92 (-3.97, 2.14) 7

0 mm IL6 2.23 (-1.99, 2.28) 7 0.83 (-0.83, 0.97) 7 2.23 (-2.65, 7.12) 7

TNF 2 (-2.0, 2.82) 7 0.88 (-1.0, 1.11) 7 2 (-1.72, 5.72) 7

IL1b 0.63 (-0.82, 2.32) 7 0.23 (-0.33, 0.56) 7 0.63 (-2.95, 4.21) 7

1 mm IL6 1.03 (-0.57, 2.19) 7 0.46 (-0.3, 1.0) 7 1.03 (-0.88, 2.94) 7

RIGHT TNF 1.05 (-0.47, 2.43) 7 0.66 (-0.31, 1.26) 7 1.05 (-1.01, 3.11) 7

LUNG IL1b 1.07 (0.17, 1.97) 4 0.92 (0.17, 1.13) 4 1.07 (-1.96, 4.1) 7

3 mm IL6 0.3 (-1.45, 1.12) 7 0.37 (-0.74, 0.86) 7 0.3 (-4.94, 5.53) 7

TNF 2.02 (0.27, 4.1) 4 1.05 (0.04, 1.44) 4 2.02 (0.03, 4.02) 4

IL1b 6.41 (-11.6, 15.4) 7 1.62 (-2.28, 3.1) 7 6.41 (-16.7, 29.52) 7

7 mm IL6 -0.58 (-1.26, 0.09) 7 -0.6 (-1.23, 0.1) 7 -0.58 (-6.23, 5.08) 7

TNF 0.51 (-1.7, 3.86) 7 0.43 (-1.45, 1.89) 7 0.51 (-23.21, 24.22) 7

WHOLE IL1a 2.93 (-1.18, 6.63) 7 2.47 (-1.49, 3.02) 7 2.93 (-11.08, 16.94) 7

THORAX IL6 3.7 (1.53, 5.99) 4 2.51 (1.39, 3.43) 4 3.7 (1.11, 6.29) 4

IRRADIATION TNF 2.35 (0.57, 4.73) 4 1.67 (0.53, 1.88) 4 2.35 (-3.86, 8.57) 7

Table (9.0.1) Results of estimation of the linear regression slope predicting septal thicken-
ing with the pro-inflammatory genes expression, with three methods, for WTI and SBRT
with different beam sizes, with measurements taken in different parts of lungs.
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Figure (9.0.1) Distribution of the data, collected from the irradiated patch un-
der SBRT with 7 mm beam size: the expression of the gene TNF on the left, and
septal thickness on the right. The measurements were made 30, 45 and 60 days
after irradiation.

Major differences between the results for the naive and the bootstrap estimators

can be observed in terms of the detected significance. On the one hand, the relation-

ship between the pro-inflammatory genes and septal thickening has been identified

by all methods in the case of whole-thorax irradiation (two out of three genes for the

bootstrap estimators, and only one for the naive estimator), which is an expected re-

sult. On the other hand, we also expect to identify a strong correlation in the case of

the measurements taken directly from the irradiated patch. This is only the case for

the bootstrap estimators, but not for the naive one. This results is in accordance with

the results we obtain with simulated data: the confidence intervals are often over-

estimated with the naive approach, which may result in false negatives in terms of

significance.

For the irradiated patch, as well as in all other cases with identified significance, it

is only the case for the beam size of 3 mm, the results that is consistent with literature,

indicating it as the beam size starting with which the long-term lesions start appearing

(Bertho et al., 2020). Multiple significant associations have been identified with the

bootstrap estimators in the ipsilateral lung and in the right lung for the beam size of 3

mm. However, none of the genes has been identified as significantly linked to lesions

in the case of 7 mm. This may be caused by the relationship being of non-linear nature,

as appears to be the case for the gene TNF, presented in Figure 9.0.1.
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Figure (9.0.2) Linear model prediction of septal thickness based on IL6 ex-
pression, plotted for different locations and beam sizes, with the results from
two bootstrap estimators.

Finally, among the cases where a significant relationship has been detected, the

estimated values of the slope are always positive, which indicates a general radio-

induced up-regulation trend. These values are in general bigger in case of the whole-

thorax irradiation and within the patch than for the ipsilateral or right lung for SBRT,

which is also in line with biological knowledge, since the genes are expected to be more

strongly up-regulated in the areas of injury than further away. This effect is illustrated

in Figure 9.0.2 on the example of the linear model prediction made for the gene IL6 .
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DISCUSSION

Limitations and further work

In this work, we introduce modeling frameworks for specific types of data obtained

with in vitro and in vivo experiments, with a goal of exploring the radio-induced ad-

verse effects on cellular and organ/organism levels.

Part 1 of this thesis presents a framework for extracting key features from complex

in vitro data, consisting of modeling and estimating time-dependent fold changes,

constructing a dissimilarity measure for the fold changes that takes account of un-

certainties and correlations, and proposing a time-efficient algorithm performing fold

changes clustering jointly with alignment. Having shown promising results on both

simulations and real data, a number of limitations can be distinguished in the pro-

posed approach.

Limitations induced by modeling choices. Being in the context of data-driven

modeling, the choices that were made were systematically motivated by either the

properties of the data in the general context, or the radiobiology-specific knowledge

in the context of studying radio-induced adverse effects. For example, the alignment

was integrated in the clustering procedure in order to exploit the cascade-like nature

of omic entities, namely to be able to detect potential predictive relationships. As

mentioned in Remark 2.3.3, the way the alignment (here referred to as time warping)

is define requires cutting off some parts of the fold changes that move outside of the

considered temporal domain, which is a modeling choice that was made to avoid in-

troducing unobserved information. However, as a result, some of the information is

inevitably lost in the process. In particular, when comparing two fold changes under

warping, the parts that are removed are often those where they are more significantly

different than elsewhere, making them appear more similar than they are.
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Another questionable aspect associated with alignment arises from the multivari-

ate design and the data with unequally spaced time points, which lead to the appear-

ance of warps of different lengths, i.e. 2-days and 1-week warps. In the application

context treated here the fact of comparing these warps is justified by the same argu-

ment that led to choosing such unequally spaced time points in the first place. Ac-

cording to the biologists, most changes take place in the first week after irradiation,

hence the necessity of having multiple time points during that period, and much less

during the second and third weeks, at which point the measurements are only taken

once a week. In this case, predictive relationships indicated by a 2-days warp during

the first week are not less informative than those indicated by a 1-week warp during

the last two weeks. Nonetheless, this may not be easy to justify in the general case,

and introducing a penalty for longer warps is a potential solution.

An example of a feature motivated by radiobiology-specific knowledge is sign

penalty, presented in Section 5.1.2. The penalty integrates naturally into the frame-

work and reinforces the separation between the fold changes of different signs, which

is of importance in the context of radiobiology. Nonetheless, certain aspects that are

expected from the point of view application are by construction incompatible with the

chosen approach. This is the case of integrating inhibition relationships between the

entities as a clustering principle. For the moment, anti-correlated fold changes are con-

sidered as different in terms of the chosen dissimilarity measure, and introducing the

possibility of relating anti-correlated entities between each other would imply signifi-

cantly altering the framework and may not produce the desired results in combination

with the already chosen features. Such relationships can only be detected empirically

in the post-clustering phase, by comparing cluster templates.

Limitations in simulation design. A number of limitations can be named with

respect to the simulations presented in Chapter 3. The design was intended to make

the simulations as independent as possible from the inference approach in order to

minimize confirmation bias, and as closer as possible to the real experimental data.

More precisely, a natural way to simulate fold changes clusters that would promote

our approach would be to simulate medoids for each cluster and then simulate the

rest of fold changes by adding pointwise noise to the corresponding medoid. Instead,

inspired by the functional data approach, for every cluster we established a group of

functions, corresponding to polynomials of different degrees depending on the cluster
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with random coefficients, and simulated all fold changes according to these distribu-

tions. Such simulation design prioritizes correspondence to real data and what is ex-

pected in terms of results, rather than giving an advantage to the proposed approach.

Nevertheless, the downside of the chosen approach is that we had to make a choice

of simulating the fold changes directly instead of the gene expression data, which

makes the simulations dependent on the assumption that the fold changes are random

variables defined by the location and scale parameters. A potential improvement of

the simulation design can be simulating the original data, and then vary the number

of replicates, since the results are likely to be poor with a small number of replicates.

Another potential extension could be modifying the simulation study with alignment

by making the warps more drastic, which is the case where such methods as UMAP

and SBM are likely to fail, further justifying the choice not to opt for either of the two

as the main clustering approach.

Hyperparameters selection. There are three main hyperparameters, whose selec-

tion has been addressed to a different extent in this work:

– Number of clusters K. Such tools as cost function or silhouette score visu-

alizations are available in the package ScanOFC to guide the user in number

of clusters selection. Despite this fact, as discussed in Section 5.2.1, in prac-

tice we chose the number of clusters different to that suggested by the afore-

mentioned criteria, for the sake of better interpretability. A potential research

direction may be constructing an alternative selection criterion providing op-

timal interpretability of clusters.

– The penalization parameter λ. There is technically no formal way to select

this parameter provided by our framework. In the application to real data, the

choice was done as follows: first, the penalization parameter for the LINAC

dataset was calibrated to obtain the most interpretable clusters, then the one

for the SARRP dataset was chosen to maximize the pairwise cluster correspon-

dence. It is possible for the package users to perform a simple cross-validation

procedure, potentially including the number of clusters parameter, without it

being too computationally costly since the computations can be done in the

matter of seconds.

– The network sparsity p. Introduced in Section 4.1, this parameter has not

been given a lot of attention, and was chosen almost arbitrarily while infer-

ring real fold changes networks, due to the fact that in this work the networks
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are mainly used for visualization purposes, and in this context the results are

not very sensitive to the choice of the sparsity level. Indeed, while interpret-

ing either microscopic or mesoscopic network representations, the interest lies

in identifying general tendencies with respect to cluster connectivity distribu-

tions, which would not be drastically affected by a slight change in sparsity

level. It should be noted, however, that community detection with stochas-

tic block model, presented in Section 2.5, can be sensitive to the choice of the

sparsity parameter, which in its turn has not been addressed in detail since it

is not used as the main approach to clustering.

Part 2 of the thesis focuses on a statistical framework designed for extracting de-

pendencies form in vivo experiments, specifically introducing linear regression esti-

mators in the context where the predictor and the predicted variables are never jointly

observed. In this work we chose the basic linear multivariate setting, prioritizing sim-

plicity and computational feasibility. Particularly, the estimator based on the method

of moments makes no hypotheses on data distribution and can be calculated explic-

itly. The estimator based on optimal transport includes a simple optimization problem,

and is based on the Gaussian form of the Wasserstein distance but does not technically

require the data to be Gaussian, seeking to approximate them with Gaussian variables

in whatever case.

However, these approaches are inapplicable in the cases where linear relationship

hypothesis cannot be satisfied. For instance, it is the case with predicting survival

data with some continuous biomarker, which is of particular interest in research into

radio-induced adverse effects. To be able to consider such scenarios, our model can be

extended to a more general case, namely with generalized linear model. The optimal

transport estimator appears promising in this context given the fact that Wasserstein

distance allows to compare probability distributions of different nature (for example,

continuous and discrete).

Another further research direction lies in investigating alternative methods based

on integrated likelihood and Bayesian approaches, which are likely to produce bet-

ter results in many cases but require putting priors on distributions. Concerning a

likelihood-based approach, the joint likelihood to be maximized can be written in

a factorized form due to the independence of X and Y : L(x, y; β0, β1, µ
k
x, σε, σx) =

LX(x;µx, σx)LY (y; β0, β1, µx, σε, σx) for a group k in the univariate setting. The mar-

ginal likelihoods can be expressed explicitly, assuming that the model (7.1.1) is true,
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and that X|(G = k) ∼ N (µkx, σ
2
x,k), and thus Y |(G = k) ∼ N (β0 + β1µ

k
x, σ

2
ε + β2

1σ
2
x,k),

with the noise ε ∼ N (0, σ2
ε ) independent of X .

Finally, it would be of interest to work on improving theoretical properties of our

estimators, namely correcting the negative bias that appears for both estimators. The

latter is particularly important in the case of the optimal transport estimator, which

appears to arise naturally with the Wasserstein distance according to Larry Wasserman

(Wasserman, 2023). Correcting this bias would considerably improve the estimator,

making it competitive with the approaches mentioned earlier that make numerous

assumptions on the data.

Globally, in this work we addressed the problem of modeling the adverse effects

in the frameworks of axes 2 and 3 of the ROSIRIS project separately. The results pre-

sented here constitute the foundation for building the predictive link between the ad-

verse effects appearing on the two levels, which has not been addressed in this work

and remains a subject for future research. A preliminary idea could be noticing that

the pro-inflammatory genes, studied in the in vivo experiments, appear as key actors

in the analyses conducted on the in vitro data, and thus comparing the expression

levels, with the goal of potentially using the in vitro expression directly to predict the

in vivo adverse effects. While this is a promising idea, it has to be approached with

caution, in the view of cultured cells behaving differently with respect to their normal

environment within the body, which has to be taken into account while comparing

the two. The latter has been shown in particular to be the case with gene expression

in endothelial cells (Afshar et al., 2023; Liu and Bouman Chen, 2023). Nevertheless,

the connection is worth exploring, given its potential utility within the radiobiological

community and beyond.
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APPENDIX A

SCANOFC : PACKAGE DOCUMENTATION
scanofc
ScanOFC : Statistical framework for Clustering with Alignment and
    Network inference of Omic Fold Changes.
 
@author: Polina Arsenteva

 
Classes
        

 
class Clustering(FoldChanges)
    Clustering(data=None, means=None, cov=None, var_names=None, time_points=None, 

           dist='d2hat', time_warp=False, max_warp_step=1, sign_pen=False, 
           pen_param=1, random_gen=None)
 
A class containing tools for clustering fold changes, inherits from
FoldChanges class.
 
Attributes
----------
dist : str
    Distance chosen for clustering, 'd2hat' by default (L2 distance between
    random estimators), can also be 'wasserstein' (Wasserstein distance)
    and 'hellinger' (Hellinger distance).
sign_pen : bool
    If True, then the distance is penalized with sign penalty.
    The default is False.
pen_param : float
    Parameter determining the weight of sign penalty. The default is 1.
time_warp : bool
    If True, then the clustering procedure is coupled with the alignment.
    The default is False.
max_warp_step : int
    If max_warp_step=i>0, then the set of all considered warps is the
    set of all integers between -i and i.
index_pairs : ndarray
    2D array of shape (number of pairs, 2) containing pairs
    of indices in the same order as the pairwise distances array
    'distances'.
distances : ndarray
    1D array of length equal to the number of pairs containing
    pairs of distances between the fold changes in the same order as
    'index_pairs'.
dist_mat : ndarray
    Distance matrix, 2D array of shape with both dimensions
    equal to the number of fold changes (entities). If time_warp is True,
    then the distance matrix used for clustering is OWD
    (Optimal Warping Distance) matrix containing distances that minimize
    the pairwise distance over the set of all considered warps.
optimal_warp_mat : ndarray
    Optimal Warp matrix, 2D array with both dimensions equal to the
    number of fold changes (entities). The values of the upper
    triangular part of the matrix correspond to the warps minimizing
    'warped_distances' (since for every entity pair the one earlier on
    the list and with a smaller index has been warped to get
    'warped_distances', while the other entity remains static),
    whereas those of the lower triangular part have the opposite sign
    (due to the antisymmetric nature of pairwise warping).
    Defined if time_warp is True.
random_gen : RandomState instance or None
    Random number generator, used to reproduce results. If None (default),
    the generator is the RandomState instance used by `np.random`.
    If RandomState instance, random_gen is the actual random
    number generator.
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Methods
-------
init_centroids(k)
    Initializes centroids (medoids pr barycenters) for k clusters.
assign_clusters(centroids, method='k-medoids', wass_dist_mat=None)
    Assigns all fold changes to one of the k clusters based on their
    distances to centroids (medoids or barycenters).
update_centroids(k, clusters, old_centroids, algorithm='k-means-like')
    Recalculates centroids based on the current cluster configuration.
compute_barycenter(k, clusters, cov0, precision=1e-5)
    Calculates barycenters with respect to the Wasserstein distance for
    k clusters by solving a fixed point problem iteratively until the
    stopping criterion is satisfied.
hierarchical_centroids(k, clusters)
    Chooses centroids among the fold changes in clusters after clustering.
    Used for non-centroid based clustering methods, such as hierarchical
    clustering.
calculate_total_cost(centroids, clusters)
    Calculates total cost for all clusters, defined as the sum of distances
    between the fold changes and their centroids with respect to the
    distance matrix. Used in k-medoids clustering as a selection criterion.
choose_k_clusters(k, method='k-medoids', algorithm='k-means-like',
                  verbose=0, plot_umap=True, nb_rep_umap=1,
                  umap_color_labels=None, plot_umap_labels=False)
    Performs clustering in k clusters of a set of random fold changes
    estimators based on one random clusters' initialization.
fc_clustering(k, nb_rep=100, method='k-medoids', verbose=0,
              disp_plot=False, algorithm='k-means-like', nb_best=1,
              tree_cutoff=5, silhouette=False, umap_color_labels=None,
              plot_umap_labels=False)
    Performs a series of clustering attempts of a set of random fold
    changes estimators for different numbers of clusters by trying
    multiple random clusters' initializations and choosing the attempt
    producing the best outcome (in the cases where random initializations
    are applicable).
plot_clusters(k, clusters, centroids, centroid_type='medoid', warps=None,
              nb_cols=4, nb_rows=None, figsize=None)
    Produces a figure with k subplots (or 2 figures if warps are provided),
    each containing plots of the fold changes' means in the corresponding
    cluster. In the case with time warping, produces a figure with
    unaligned (original) and a figure with aligned (with respect to their
    centroids) fold changes.
 
Inherited from FoldChanges.
 

Methods defined here:
__init__(self, data=None, means=None, cov=None, var_names=None, time_points=None, dist='d2hat', time_warp=False, 
               max_warp_step=1, sign_pen=False, pen_param=1, random_gen=None)
Parameters
----------
data : ndarray or None
    If not None, 4D array with the dimensions corresponding to:
    1) nb of time points, 2) two experimental conditions
    (dim 0: control, dim 1: case)), 3) replicates, 4) nb of entities.
    If None (by default), then the fold changes are constructed based
    on 'means' and 'cov'. Either 'data' or 'means' and 'cov' have to be
    non-None, with 'data' having priority for the fold changes
    construction.
means : ndarray or None
    If not None, 2D array of shape (nb_time_pts, nb_var)
    containing data with `float` type, representing fold changes' means
    for each entity and each time point. If 'data' is None, used to
    construct fold changes. Either 'data' or 'means' and 'cov' have to
    be non-None.
cov : ndarray or None
    If not None, 3D array of shape (nb_time_pts, nb_var, nb_var)
    containing data with `float` type, representing fold changes'
    nb_var x nb_var shaped covariance matrices for each time point.
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_ _
    Time-wise cross-covariances are assumes to be 0 due to experimental
    design. In case of Hellinger distance, can also be 4-dimensional
    (natural form): (nb_time_pts, nb_time_pts, nb_var, nb_var).
    If 'data' is None, used to construct fold changes. Either 'data' or
    'means' and 'cov' have to be non-None.
var_names : array-like or None
    1D array-like containing data with `string` type, representing
    names of the measured entities (ex. genes). The default is None.
time_points : array-like or None
    1D array-like containing data with `float` type, representing time
    points at which fold changes were measured. The default is None.
dist : str
    Distance chosen for clustering, 'd2hat' by default (L2 distance
    between random estimators), can also be 'wasserstein'
    (Wasserstein distance) and 'hellinger' (Hellinger distance).
time_warp : bool
    If True, then the clustering procedure is coupled with the
    alignment. The default is False.
max_warp_step : int
    If max_warp_step=i>0, then the set of all considered warps is the
    set of all integers between -i and i.
sign_pen : bool
    If True, then the distance is penalized with sign penalty.
    The default is False.
pen_param : float
    Parameter determining the weight of sign penalty. The default is 1.
random_gen : RandomState instance or None
    Random number generator, used to reproduce results. If None
    (default), the generator is the RandomState instance used by
    `np.random`. If RandomState instance, random_gen is the actual
    random number generator.
assign_clusters(self, centroids, method='k-medoids', wass_dist_mat=None)
Assigns all fold changes to one of the k clusters based on their
distances to centroids (medoids or barycenters).
 
Parameters
----------
centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that act as current centroids (medoids). Used for
    clusters assignment only if method=='k-medoids'.
method : str, optional
    Main approach to clustering, either 'k-medoids' (default, coupled
    with d2hat distance or Hellinger distance) or 'wass k-means'
    (Wasserstein k-means).
wass_dist_mat : ndarray, optional
    2D array of shape (k, nb_var) containing distances between the
    fold changes and the barycenters for all clusters. Used for
    clusters assignment only if method=='wass k-means', otherwise
    None (by default).
Returns
-------
clusters : ndarray
    1D array of length nb_var containing integers in range (0, k)
    indicating clusters to which the fold changes are assigned.
calculate_comparable_cost(self, k, clusters)
Calculates total comparable cost for all clusters, defined as the sum
of distances between all fold change pairs in each cluster with respect
to the distance matrix. Used to compare clustering performed with
different methods (distance matrix should be the same).
 
Parameters
----------
k : int
    Number of clusters.
clusters : ndarray
    1D array of length nb_var containing integers in range (0, k)
    indicating clusters to which the fold changes are assigned.
 
Returns

117



-------
float
    Value of the total comparable cost.
calculate_total_cost(self, centroids, clusters)
Calculates total cost for all clusters, defined as the sum of distances
between the fold changes and their centroids with respect to the
distance matrix. Used in k-medoids clustering as a selection criterion.
 
Parameters
----------
centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that act as current centroids.
clusters : ndarray
    1D array of length nb_var containing integers in range (0, k)
    indicating clusters to which the fold changes are assigned.
 
Returns
-------
float
    Value of the total cost.
choose_k_clusters(self, k, method='k-medoids', algorithm='k-means-like', verbose=0, plot_umap=True, 
                                nb_rep_umap=1, umap_color_labels=None, plot_umap_labels=False)
Performs clustering in k clusters of a set of random fold changes
estimators based on one random clusters' initialization.
 
Parameters
----------
k : int
    Number of clusters.
method : str, optional
    Main approach to clustering, options include:
        - 'k-medoids' (default, coupled with d2hat distance or
        Hellinger distance),
        - 'wass k-means' (Wasserstein k-means),
        - 'hierarchical' (hierarchical clustering based on
        d2hat distance),
        - 'umap' (UMAP projection of the d2hat distance matrix with
        subsequent k-means clustering of the projection coordinates).
algorithm : str, optional
    Indicates a choice of one of the two common variations of k-medoids
    clustering. The default is 'k-means-like' (Park, 2006), can also
    be 'PAM' (Partitioning Around Medoids; Schubert, Rousseeuw, 2019).
verbose : int, optional
    Controls the verbosity, if 1 (or larger) then informs on the
    advancement of clustering.
plot_umap : bool, optional
    If True (default) and method is 'umap', then plots the UMAP
    projection of the distance matrix.
nb_rep_umap : int, optional
    Number of k-means clustering initializations performed on the
    UMAP projection, relevant if method is 'umap'. The default is 1.
umap_color_labels : None or array-like, optional
    Relevant if method is 'umap'. If None (default), then the data
    points on the UMAP projection are colored with respect to the
    cluster labels assigned by k-means. Alternatively, can be a 1D
    array-like of length equal to nb_var, containing integers
    indicating cluster labels assigned to the fold changes.  In this
    case, colors are chosen corresponding to these labels. This option
    is intended for use in the framework of simulation studies.
plot_umap_labels : bool, optional
    Relevant if method is 'umap'. If True, then labels the data points
    on the UMAP projection with corresponding fold changes' indices.
    The default is False (no labels).
 
Returns
-------
List containing the following elements:
    clusters : ndarray
        1D array of length nb_var containing integers in range (0, k)
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        indicating clusters to which the fold changes are assigned.
        Returned as the first element of the list in all cases.
    centroids : ndarray
        1D array of length k containing indices in range (0, nb_var) of
        the fold changes that have been chosen as centroids.
        Returned as the second element of the list in all
        cases except if method=='wass k-means'.
    bary_means : ndarray
        2D array of shape (nb_time_pts, k) representing final
        barycenter means for all clusters. Returned as the second
        element of the list if method=='wass k-means'.
    bary_cov : ndarray
        3D array of shape (nb_time_pts, nb_time_pts, k) representing
        final barycenter covariance matrices for all clusters. Returned
        as the third element of the list if method=='wass k-means'.
    total_cost : float
        Value of the final total clustering cost with respect to the
        metric associated with the chosen clustering method.
        Returned as the last element of the list if method=='k-medoids'
        or method=='wass k-means' (in other cases absent since the cost
        isn't assessed during clustering and should be calculated
        separately if needed).
compute_barycenter(self, k, clusters, cov0, precision=1e-05)
Calculates barycenters with respect to the Wasserstein distance for
k clusters by solving a fixed point problem iteratively until the
stopping criterion is satisfied.
 
Parameters
----------
k : int
    Number of clusters.
clusters : ndarray
    1D array of length equal to 'nb_var' with values of type 'int'
    between 0 and k-1 indicating which cluster every fold change
    belongs to.
cov0 : ndarray
    2D array of shape (nb_time_pts, nb_time_pts), a symmetric positive
    definite matrix that initializes the barycenters' covariance
    matrices.
precision : float, optional
    Stopping criterion, the fixed point equation iterations stop when
    the difference between the old and the new total costs for the
    considered cluster becomes smaller or equal to this value.
    The default is 1e-5.
 
Returns
-------
bary_means : ndarray
    2D array of shape (nb_time_pts, k) representing final barycenter
    means for all clusters.
bary_cov : ndarray
    3D array of shape (nb_time_pts, nb_time_pts, k) representing
    final barycenter covariance matrices for all clusters.
all_costs : ndarray
    1D array of length k containing final total costs per cluster.
fc_clustering(self, k, nb_rep=100, method='k-medoids', verbose=0, disp_plot=False, algorithm='k-means-like', nb_best=1, 
         tree_cutoff=5, silhouette=False, umap_color_labels=None, plot_umap_labels=False)
Performs a series of clustering attempts of a set of random fold
changes estimators for different numbers of clusters by trying
multiple random clusters' initializations and choosing the attempt
producing the best outcome (in the cases where random initializations
are applicable).
 
Parameters
----------
k : int
    Number of clusters.
nb_rep : int, optional
    Number of random initialization attempts (k-means clustering
    initializations performed on the UMAP projection if
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    method=='umap'). The default is 100.
method : str, optional
    Main approach to clustering, options include:
        - 'k-medoids' (default, coupled with d2hat distance or
        Hellinger distance),
        - 'wass k-means' (Wasserstein k-means),
        - 'hierarchical' (hierarchical clustering based on
        d2hat distance),
        - 'umap' (UMAP projection of the d2hat distance matrix with
        subsequent k-means clustering of the projection coordinates).
algorithm : str, optional
    Indicates a choice of one of the two common variations of k-medoids
    clustering. The default is 'k-means-like' (Park, 2006), can also
    be 'PAM' (Partitioning Around Medoids; Schubert, Rousseeuw, 2019).
verbose : int, optional
    Controls the verbosity, if 1 (or larger) then informs on the
    advancement of clustering.
disp_plot : bool, optional
    False by default, if True then plots the mean total cost curve with
    standard deviations or the UMAP projection of the distance matrix
    depending on the method.
nb_best : int, optional
    Number of the best random initialization attempts to be taken into
    account for the total cost plot. The default is 1.
tree_cutoff : int, optional
    Relevant if method is 'hierarchical', the number of dendrogram tree
    levels that are displayed. The default if 5.
silhouette : bool, optional
    The default is False, if True then the mean silhouette score curve
    with standard deviations is displayed along with the total costs.
umap_color_labels : None or array-like, optional
    Relevant if method is 'umap'. If None (default), then the data
    points on the UMAP projection are colored with respect to the
    cluster labels assigned by k-means. Alternatively, can be a 1D
    array-like of length equal to nb_var, containing integers
    indicating cluster labels assigned to the fold changes.  In this
    case, colors are chosen corresponding to these labels. This option
    is intended for use in the framework of simulation studies.
plot_umap_labels : bool, optional
    Relevant if method is 'umap'. If True, then labels the data points
    on the UMAP projection with corresponding fold changes' indices.
    The default is False (no labels).
 
Returns
-------
If k is an integer, returns same as choose_k_clusters. If k is a
container with integers, then returns a list of dictionaries, with
keys corresponding to the considered numbers of clusters, and the
values are the same as returned by choose_k_clusters.
If time_warp is True, an new element warps (or all_warps if
if different numbers of clusters are considered) is added to the list
for all distance matrix-based methods (i.e. all except 'wass k-means').
For a fixed number of clusters it is a 1D array of length nb_var
containing integers in range (-max_warp_step, max_warp_step + 1)
indicating fold changes' warps with respect to their
corresponding centroids.
hierarchical_centroids(self, k, clusters)
Chooses centroids among the fold changes in clusters after clustering.
Used for non-centroid based clustering methods, such as hierarchical
clustering.
 
Parameters
----------
k : int
    Number of clusters.
clusters : ndarray
    1D array of length equal to 'nb_var' with values of type 'int'
    between 0 and k-1 indicating which cluster every fold change
    belongs to.
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Returns
-------
ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that represent cluster centroids.
init_centroids(self, k)
Produces a set of k random centroids to initialize clustering according
to the algorithm k-means++.
 
Parameters
----------
k : int
    Number of clusters.
 
Returns
-------
centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that have been chosen as initial centroids.
plot_clusters(self, k, clusters, centroids, centroid_type='medoid', warps=None, nb_cols=4, nb_rows=None, figsize=None)
Produces a figure with k subplots (or 2 figures if warps are provided),
each containing plots of the fold changes' means in the corresponding
cluster. In the case with time warping, produces a figure with
unaligned (original) and a figure with aligned (with respect to their
centroids) fold changes.
 
Parameters
----------
k : int
    Number of clusters.
clusters : ndarray or dictionary
    If ndarray, 1D array of length nb_var containing integers in range
    (0, k) indicating clusters to which the fold changes are assigned.
    If a dictionary, the keys are numbers of clusters considered, and
    for each such number the value is the latter array.
centroids : ndarray or dictionary
    If centroid_type=='medoid':
        If ndarray, 1D array of length k containing indices in range
        (0, nb_var) of the fold changes that act as centroids.
        If a dictionary, the keys are numbers of clusters considered,
        and for each such number the value is the latter array.
    If centroid_type=='barycenter':
        If ndarray, an array of barycenter means: 2D array of shape
        (nb_time_pts, k) representing final barycenter means for all
        clusters. If a dictionary, the keys are numbers of clusters
        considered, and for each such number the value is the latter
        array.
centroid_type : str, optional
    The default is 'medoid', in which case the centroids are selected
    among the fold changes (see centroids). Another option is
    'barycenter', in this case the barycenters are plotted based on
    their means.
warps : ndarray or dictionary, optional
    If ndarray, 1D array of length nb_var containing integers in range
    (-max_warp_step, max_warp_step + 1) indicating fold changes' warps
    with respect to their corresponding centroids. If a dictionary,
    the keys are numbers of clusters considered, and for each such
    number the value is the latter array. The default is None,
    otherwise the versions with and without time warping are plotted.
nb_cols : int, optional
    Number of columns of the subplot grid. The default is 4.
nb_rows : TYPE, optional
    Number of rows of the subplot grid The default is None, in which
    case nb_rows=int(np.ceil(k/nb_cols)).
figsize : (float, float), optional
    Width and height of the figure(s). The default is None, in which
    case figsize=(15, 6*nb_rows).
 
Returns
-------
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None.
update_centroids(self, k, clusters, old_centroids, algorithm='k-means-like')
Recalculates centroids based on the current cluster configuration.
 
Parameters
----------
k : int
    Number of clusters.
clusters : ndarray
    1D array of length nb_var containing integers in range (0, k)
    indicating clusters to which the fold changes are assigned.
old_centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that act as current centroids (medoids)
    before the update.
algorithm : str, optional
    Indicates a choice of one of the two common variations of k-medoids
    clustering. The default is 'k-means-like' (Park, 2006), can also
    be 'PAM' (Partitioning Around Medoids; Schubert, Rousseeuw, 2019).
 
Returns
-------
centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that act as current centroids (medoids)
    after the update.

 
class FoldChanges(builtins.object)
    FoldChanges(data=None, means=None, cov=None, var_names=None, time_points=None)

 
A class representing a set of fold changes (a measure of difference between
the two experimental conditions over time).
 
Attributes
----------
means : ndarray
    2D array of shape (nb_time_points, nb_var) containing data
    with `float` type, representing fold changes' means for each entity
    and each time point.
cov : ndarray
    3D array of shape (nb_time_pts, nb_var, nb_var) containing
    data with `float` type, representing fold changes' nb_var x nb_var
    shaped covariance matrices for each time point. Time-wise
    cross-covariances are assumed to be 0 due to experimental design.
    In case of Hellinger distance, can also be 4-dimensional (natural form):
    (nb_time_pts, nb_time_pts, nb_var, nb_var).
sd : ndarray
    2D array of shape (nb_time_pts, nb_var) containing data
    with `float` type, representing fold changes' standard deviation for
    each entity and each time point.
time_points : array-like
    1D array-like containing data with `float` type, representing time
    points at which fold changes were measured. If not given then range of
    indices of the corresponding dimension.
nb_time_pts : int
    number of time points measured, i.e. len(time_points) or the size of
    the corresponding dimension.
var_names : array-like or None
    1D array-like containing data with `string` type, representing names
    of the measured entities (ex. genes). If not given then range of
    indices of the corresponding dimension of means.
nb_var : int
    number of entities considered, i.e. len(var_names) or the size of
    the corresponding dimension of means.
 
Methods
-------
compute_distance_pairs(dist='d2hat', sign_pen=False, pen_param=10)
    Computes fold changes' pairwise distances.
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compute_fc_norms(dist='d2hat')
    Computes fold changes' norms with respect to the chosen distance.
compute_dist_mat(index_pairs, distances)
    Transforms the set of pairwise distances into a distance matrix.
compute_cross_distances(bary_means, bary_cov, cluster=None)
    Calculates the Wasserstein distance in different configurations.
compute_warped_distance_pairs(max_warp_step=1, sign_pen=False,
                              pen_param=0.01)
    Computes fold changes' pairwise distances for all considered warps.
compute_warped_dist_mat(index_pairs, warped_distances)
    Calculates an optimal warping distance matrix and an optimal warp
    matrix from the set of pairwise warped distances.
 
  Methods defined here:
__init__(self, data=None, means=None, cov=None, var_names=None, time_points=None)
Parameters
----------
data : ndarray or None
    If not None, 4D array with the dimensions corresponding to:
    1) nb of time points, 2) two experimental conditions
    (dim 0: control, dim 1: case)), 3) replicates, 4) nb of entities.
    If None (by default), then the fold changes are constructed based
    on 'means' and 'cov'. Either 'data' or 'means' and 'cov' have to be
    non-None, with 'data' having priority for the fold changes
    construction.
means : ndarray or None
    If not None, 2D array of shape (nb_time_pts, nb_var)
    containing data with `float` type, representing fold changes' means
    for each entity and each time point. If 'data' is None, used to
    construct fold changes. Either 'data' or 'means' and 'cov' have to
    be non-None.
cov : ndarray or None
    If not None, 3D array of shape (nb_time_pts, nb_var, nb_var)
    containing data with `float` type, representing fold changes'
    nb_var x nb_var shaped covariance matrices for each time point.
    Time-wise cross-covariances are assumes to be 0 due to experimental
    design. In case of Hellinger distance, can also be 4-dimensional
    (natural form): (nb_time_pts, nb_time_pts, nb_var, nb_var).
    If 'data' is None, used to construct fold changes. Either 'data' or
    'means' and 'cov' have to be non-None.
var_names : array-like or None
    If not None, 1D array-like containing data with `string` type,
    representing names of the measured entities (ex. genes).
    The default is None.
time_points : array-like or None
    If not None, 1D array-like containing data with `float` type,
    representing time points at which fold changes were measured.
    The default is None.
compute_cross_distances(self, bary_means, bary_cov, cluster=None)
Designed for the vectorized version of the Wasserstein k-means,
in particular:
    - case 1: to compute distances between the fold changes in one
cluster and the barycenter to update barycenter in function
'compute_barycenter' of the Clustering class.
    - case 2: to compute distances between the fold changes
and their barycenters in all clusters to assess cost in function
'choose_k_clusters'of the Clustering class.
In addition, it is used to compute pairwise
distance matrix for the Wasserstein distance when instantiating a
Clustering class (case 3, not used in k-means).
 
Parameters
----------
bary_means : ndarray
    Case 1: 2D array of shape (nb_time_pts, 1) containing the mean of
            the current barycenter in the fixed point iteration.
    Case 2: 2D array of shape (nb_time_pts, k), where k stands for the
            number of clusters (and hence barycenters). The array
            contains the means of all barycenters in the current
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            iteration of k-means.
    Case 3: 2D array of shape (nb_time_pts, nb_var) containing
            fold changes' means.
bary_cov : ndarray
    Case 1: 2D array of shape (nb_time_pts, nb_time_pts) containing
            the covariance matrix of the current barycenter in the
            fixed point iteration.
    Case 2: 3D array of shape (nb_time_pts, nb_time_pts, k), where k
            stands for the number of clusters (and hence barycenters).
            The array contains the covariance matrices of all
            barycenters in the current iteration of k-means.
    Case 3: 3D array of shape (nb_time_pts, nb_time_pts, nb_var)
            containing marginal (diagonal) covariance matrices of the
            fold changes.
 
cluster : ndarray, optional
    None in cases 2 and 3, in case 1: 1D array of length equal to the
    size of the considered cluster. Contains data of type 'int'
    corresponding to the indices of the fold changes' belonging to
    this cluster.
 
Returns
-------
wass_dist : ndarray
    Case 1: 2D array of shape (1, cluster_size) containing distances
            between the fold changes in the cluster and the barycenter.
    Case 2: 2D array of shape (k, nb_var) containing distances between
            the fold changes and the barycenters for all clusters.
    Case 3: 2D array of shape (nb_var, nb_var) containing pairwise
            distances between the fold changes.
 
K : ndarray
    Case 1: 4D array of shape (1, cluster_size, nb_time_pts, nb_time_pts)
            characterizing the joint distributions of the fold changes
            in the cluster and the barycenter. Central term in the
            fixed point equation.
    Case 2: 4D array of shape (k, nb_var, nb_time_pts, nb_time_pts)
            characterizing the joint distributions of the fold changes
            and all the barycenters.
    Case 3: 4D array of shape (nb_var, nb_var, nb_time_pts, nb_time_pts)
            characterizing the joint distributions of all
            fold changes pairs.
compute_dist_mat(self, index_pairs, distances)
Transforms the set of pairwise distances into a distance matrix.
 
Parameters
----------
index_pairs : ndarray
    2D array of shape (number of pairs, 2) containing pairs
    of indices in the same order as the pairwise distances array
    'distances'.
distances : ndarray
    1D array of length equal to the number of pairs containing
    pairs of distances between the fold changes in the same order as
    'index_pairs'.
 
Returns
-------
dist_mat : ndarray
    Distance matrix, 2D array of shape with both dimensions
    equal to the number of fold changes (entities).
compute_distance_pairs(self, dist='d2hat', sign_pen=False, pen_param=10)
Computes pairwise distances for a set of fold changes encoded in
FoldChanges class instance for a chosen distance. The choice of a
distance is limited to L2 distance between random fold changes'
estimators, and Hellinger distance.
 
Parameters
----------
dist : str
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    Can be either 'd2hat' (L2 distance between random estimators,
    default), or 'hellinger' (Hellinger distance).
sign_pen : bool
    True if sign penalty should be added to the distance, False
    otherwise (default). Sign penalty penalizes fold changes pairs that
    have different signs in one or more time points.
pen_param : float
    Sign penalty hyperparameter (weight of penalty).
 
Returns
-------
index_pairs : ndarray
    2D array of shape (number of pairs, 2) containing pairs
    of indices in the same order as the pairwise distances array
    'distances'.
distances : ndarray
    1D array of length equal to the number of pairs containing
    pairs of distances between the fold changes in the same order as
    'index_pairs'.
compute_fc_norms(self, dist='d2hat')
Computes norms for all fold changes in the class instance with respect
to the chosen distance (so far implemented only for the L2 distance
between random estimators).
 
Parameters
----------
dist : str
    So far 'd2hat' is the default and the only option.
 
Returns
-------
ndarray
    1D array of length equal to the number of fold changes (that is,
    the number of biological entities considered) containing the norms.
compute_warped_dist_mat(self, index_pairs, warped_distances)
Calculates an optimal warping distance matrix and an optimal warp
matrix from the set of pairwise warped distances.
 
Parameters
----------
index_pairs : ndarray
    2D array of shape (number of pairs, 2) containing pairs
    of indices in the same order as the pairwise optimal warping
    distances array 'warped_distances' (with respect to the second
    dimension).
warped_distances : ndarray
    2D array, the first dimension corresponds to all considered warp
    steps, the second corresponds to pairs of warped distances between
    the fold changes in the same order as 'index_pairs'.
 
Returns
-------
warped_dist_mat : ndarray
    Optimal Warping Distance matrix, 2D array with both dimensions
    equal to the number of fold changes (entities). Distances are such
    that minimize the pairwise distance over the set of all considered
    warps.
optimal_warp_mat : ndarray
    Optimal Warp matrix, 2D array with both dimensions equal to the
    number of fold changes (entities). The values of the upper
    triangular part of the matrix correspond to the warps minimizing
    'warped_distances' (since for every entity pair the one earlier on
    the list and with a smaller index has been warped to get
    'warped_distances', while the other entity remains static),
    whereas those of the lower triangular part have the opposite sign
    (due to the antisymmetric nature of pairwise warping).
compute_warped_distance_pairs(self, max_warp_step=1, sign_pen=False, pen_param=0.01)
Computes pairwise distances for a set of considered warps for a set of
fold changes encoded in FoldChanges class instance for a chosen
distance. Warped distances (or distances after alignment) are only
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calculated for the L2 distance between random fold changes' estimators.
 
Parameters
----------
max_warp_step : int
    If max_warp_step=i>0, then the set of all considered warps is the
    set of all integers between -i and i.
sign_pen : bool
    True if sign penalty should be added to the distance, False
    otherwise (default). Sign penalty penalizes fold changes pairs that
    have different signs in one or more time points.
pen_param : float
    Sign penalty hyperparameter (weight of penalty).
 
Returns
-------
index_pairs : ndarray
    2D array of shape (number of pairs, 2) containing pairs
    of indices in the same order as the pairwise distances array
    'distances'.
warped_distances : ndarray
    2D array such that the first dimension is of size
    2 * max_warp_step + 1 corresponding to all considered warps, and
    the second dimension corresponds to the number of fold changes
    pairs in the same order as 'index_pairs'.

 
class NetworkInference(Clustering)
    NetworkInference(data=None, means=None, cov=None, var_names=None, time_points=None, 

                 dist='d2hat', time_warp=False, max_warp_step=1, sign_pen=False, 
                 pen_param=1, random_gen=None, sparsity=0.75, directed=False, 
                 adj_mat=None)
 
A class containing tools for inference of a network of fold changes from
a dataset, inherits from Clustering and FoldChanges classes.
 
Attributes
----------
sparsity : float
    Sparsity of the network determining the cutoff when defining the
    binary adjacency matrix adj_mat based on the weighted one.
 
directed : bool
    If True, the network is directed, and undirected if False.
 
adj_mat : ndarray
    2D array of shape (nb_var, nb_var) indicating whether the fold changes
    are connected (i.e. similar enough) or not. If the network is
    undirected, then has 0 for connected fold changes and 1 for not
    connected (symmetric). A pair of fold changes is considered to be
    connected if their distance-based similarity is bigger then the cutoff
    value, which is equal to the empirical quantile of the similarity
    matrix corresponding to the chosen sparsity. If the network is directed,
    the matrix stops being symmetric, and the edges that exist according
    to the undirected case procedure become either 1 or 0 based on the
    corresponding warp: 1 for the edges with the corresponding warps being
    positive (predictive) or 0 (simultaneous), and 0 for
    those with negative warps (target).
 
Methods
-------
infer_sbm(nb_blocks, clusters, n_init=10, n_iter_early_stop=50,
          random=False, verbosity=0, pi_weight=0.8, random_gen=None)
    Performs stochastic block model inference for the fold changes' network
    based on clustering (i.e. on the constrained parameter space).
compute_network(clusters, centroids, draw_path=False, path=None,
                figtitle='Fold changes network', figsize=(25,25),
                obj_scale=1, graph_type='full', adj_mat_2=None,
                shade_intersect=False)
    Creates a NetworkX object representing the fold changes' network and
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    displays it in a block form arising from clusters. The network is
    represented with a graph where nodes are the considered entities and
    the edges are connections between them (i.e. ones in the adjacency
    matrix). Members of every block are grouped around their centroid
    (its node is bigger then other nodes), and have a color different
    from other blocks.
plot_most_connected_members(clusters, centroids=None, warps=None,
                            nb_components=5)
    Identifies the most connected components within each cluster, and
    displays a plot of the corresponding fold changes' means. If warps are
    given, then also displays the information on the warping groups of
    the components.
compute_entity_path(path_e1_to_e2=None, entity_1=None, entity_2=None,
                    plot=True)
    If entity_1 and entity_2 are given (and path_e1_to_e2 is not),
    computes a shortest path from entity_1 to entity_2, and plots a figure
    with the means of the fold changes in the path. If path_e1_to_e2 is
    given, then produces a plot of the means of the fold changes'
    in path_e1_to_e2.
draw_mesoscopic(clusters, centroids, obj_scale=1, node_label_size=30)
    Displays a mesoscopic representation of the fold changes network, i.e.
    a graph with k=len(centroids) nodes representing clusters, each labeled
    by the name of the corresponding centroid, with sizes proportional to
    respective cluster sizes. The edges represent connections between
    clusters, their thickness is proportional to the respective number of
    connections. If the network is directed, then arrow head sizes are
    proportional to the percentage of connections of the corresponding
    predictive type among all connections between the considered clusters.
    In the latter case edges are annotated with the distribution among the
    connection types (i.e. warps) in the following format: for an edge
    between A and B, the annotation is of the form "% of predictive
    connections from B to A - total number of connections between
    A and B - % of predictive connections from A to B". In the case of
    undirected graph, the edges are annotated with the corresponding
    numbers of connections only.
graph_analysis(clusters, nb_top=10)
    Performs a series of graph analyses of the fold changes network, in
    particular: identifies among the entities nb_top top hits, authorities,
    nodes with respect to pagerank, degree and betweenness centrality. It
    also plots a figure displaying degree distribution of the nodes.
pathway_search(clusters)
    Identifies all shortest paths between entities in the network of length
    3 and bigger, and presents them along with their scores with respect to
    criteria potentially relevant for hypothesis generation.
 
Inherited from Clustering.

Methods defined here:
__init__(self, data=None, means=None, cov=None, var_names=None, time_points=None, dist='d2hat', time_warp=False, 
      max_warp_step=1, sign_pen=False, pen_param=1, random_gen=None, sparsity=0.75, directed=False, adj_mat=None)
Parameters
----------
data : ndarray or None
    If not None, 4D array with the dimensions corresponding to:
    1) nb of time points, 2) two experimental conditions
    (dim 0: control, dim 1: case)), 3) replicates, 4) nb of entities.
    If None (by default), then the fold changes are constructed based
    on 'means' and 'cov'. Either 'data' or 'means' and 'cov' have to be
    non-None, with 'data' having priority for the fold changes
    construction.
means : ndarray or None
    If not None, 2D array of shape (nb_time_pts, nb_var)
    containing data with `float` type, representing fold changes' means
    for each entity and each time point. If 'data' is None, used to
    construct fold changes. Either 'data' or 'means' and 'cov' have to
    be non-None.
cov : ndarray or None
    If not None, 3D array of shape (nb_time_pts, nb_var, nb_var)
    containing data with `float` type, representing fold changes'
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    nb_var x nb_var shaped covariance matrices for each time point.
    Time-wise cross-covariances are assumes to be 0 due to experimental
    design. In case of Hellinger distance, can also be 4-dimensional
    (natural form): (nb_time_pts, nb_time_pts, nb_var, nb_var).
    If 'data' is None, used to construct fold changes. Either 'data' or
    'means' and 'cov' have to be non-None.
var_names : array-like or None
    1D array-like containing data with `string` type, representing
    names of the measured entities (ex. genes). The default is None.
time_points : array-like or None
    1D array-like containing data with `float` type, representing time
    points at which fold changes were measured. The default is None.
dist : str
    Distance chosen for clustering, 'd2hat' by default (L2 distance
    between random estimators), can also be 'wasserstein'
    (Wasserstein distance) and 'hellinger' (Hellinger distance).
time_warp : bool
    If True, then the clustering procedure is coupled with the
    alignment. The default is False.
max_warp_step : int
    If max_warp_step=i>0, then the set of all considered warps is the
    set of all integers between -i and i.
sign_pen : bool
    If True, then the distance is penalized with sign penalty.
    The default is False.
pen_param : float
    Parameter determining the weight of sign penalty. The default is 1.
random_gen : RandomState instance or None
    Random number generator, used to reproduce results. If None
    (default), the generator is the RandomState instance used by
    `np.random`. If RandomState instance, random_gen is the actual
    random number generator.
sparsity : float, optional
    Sparsity of the network determining the cutoff when defining the
    binary adjacency matrix based on the weighted one.
    The default is 0.75.
directed : bool, optional
    If True, the network is directed, and undirected if False (default).
adj_mat : ndarray or None, optional
    If not None (default), 2D array of shape (nb_var, nb_var)
    indicating whether the fold changes are connected (i.e. similar
    enough) or not. If the network is undirected, then has 0 for
    connected fold changes and 1 for not connected (symmetric).
    A pair of fold changes is considered to be connected if their
    distance-based similarity is bigger then the cutoff value, which
    is equal to the empirical quantile of the similarity matrix
    corresponding to the chosen sparsity. If the network is directed,
    the matrix stops being symmetric, and the edges that exist
    according to the undirected case procedure become either 1 or 0
    based on the corresponding warp: 1 for the edges with the
    corresponding warps being positive (predictive) or 0
    (simultaneous), and 0 for those with negative warps (target).
    If 'adj_mat' is specified, the adjacency matrix is defined based 
    its value, otherwise calculated based on the distance matrix and 
    the optimal distance matrix. NB: in the former case 'optimal_warp_mat'
    is recalculated to correspond to 'adj_mat', however 'dist_mat'
    remains the same.
Returns
-------
None.
compute_entity_path(self, path_e1_to_e2=None, entity_1=None, entity_2=None, plot=True, figsize=(10, 7))
If entity_1 and entity_2 are given (and path_e1_to_e2 is not),
computes a shortest path from entity_1 to entity_2, and plots a figure
with the means of the fold changes in the path. If path_e1_to_e2 is
given, then produces a plot of the means of the fold changes'
in path_e1_to_e2.
 
Parameters
----------
path_e1_to_e2 : array-like or None, optional
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    If not None (default), 1D container with strings (elements should
    belong to var_names) containing names of the entities as nodes
    in the path of interest (in the correct order).
    Either 'path_e1_to_e2' or 'entity_1' and 'entity_1' have to be
    non-None, with 'path_e1_to_e2' having priority for the path
    construction.
entity_1 : str or None, optional
   Starting node for path. The default is None.
   Either 'path_e1_to_e2' or 'entity_1' and 'entity_1' have to be
   non-None, with 'path_e1_to_e2' having priority for the path
   construction.
entity_2 : str or None, optional
    Ending node for path. The default is None.
    Either 'path_e1_to_e2' or 'entity_1' and 'entity_1' have to be
    non-None, with 'path_e1_to_e2' having priority for the path
    construction.
plot : bool, optional
    If True (default), displays a figure with the means of the fold
    changes in the path.
figsize : (float, float), optional
    Width and height of the figure(s). The default is (10,7).
 
Returns
-------
path_e1_to_e2 : array-like
    1D container with strings containing names of the entities as nodes
    in the path of interest.
path_e1_to_e2_warps : list
    Contains len(path_e1_to_e2)-1 elements, the warps between the
    consecutive nodes in the path, allows to determine the extend to
    which the path has a predictive character. Returned if the graph
    is directed.
compute_network(self, clusters, centroids, draw_path=False, path=None, figsize=(25, 25), obj_scale=1, 
             graph_type='full', adj_mat_2=None, clusters_2=None, centroids_2=None, 
             shade_intersect=False, degree_view=False)
Creates a NetworkX object representing the fold changes' network and
displays it in a block form arising from clusters. The network is
represented with a graph where nodes are the considered entities and
the edges are connections between them (i.e. ones in the adjacency
matrix). Members of every block are grouped around their centroid
(its node is bigger then other nodes), and have a color different
from other blocks.
 
Parameters
----------
clusters : ndarray
    1D array of length nb_var containing integers indicating clusters
    to which the fold changes are assigned.
centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that act as centroids.
draw_path : bool, optional
    False by default, if True and the path is given then the path is
    displayed on the graph with red nodes and thick red edges with the
    remaining edges thin and colored in light grey (the remaining
    nodes are displayed normally).
path : array-like or None, optional
    If not None (default), 1D container with strings (elements should
    belong to var_names) containing names of the entities as nodes
    in the path of interest (in the correct order).
figsize : (float, float), optional
    Width and height of the figure(s). The default is (25,25).
obj_scale : float, optional
    Parameter used to control the scale of objects in the graph, which
    zooms in if bigger than 1 and zooms out if smaller than 1.
    The default is 1.
graph_type : str, optional
    The following options are possible:
        - 'full' (default) : the whole graph is displayed, with edges
        colored in black if undirected, and grey for simultaneous
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        and green for predictive connections if directed.
        - 'intersection' : if adj_mat_2 is given, displays only the
        intersection between the main network and the network defined
        by adj_mat_2.
        - 'difference' : if adj_mat_2 is given, displays the main
        network without its intersection with the network defined
        by adj_mat_2.
adj_mat_2 : ndarray or None, optional
    If not None (default), 2D array of shape (nb_var, nb_var)
    indicating whether the fold changes are connected or not (same
    to adj_mat). Represents the adjacency matrix of some other set of
    fold changes of interest. Should be based on the measurements for
    the same entities as the base network for a proper comparison.
    Used if graph_type is 'intersection' or 'difference'.
clusters_2 : ndarray, optional
    If not None (default), 1D array of length nb_var containing 
    integers indicating clusters to which the fold changes are assigned.
    This alternative clustering specification serves to color the nodes
    with respect to the corresponding clustering (typically to compare
    clusters to clusters_2).
centroids_2 : ndarray, optional
    If not None (default), 1D array of length k containing indices in 
    range (0, nb_var) of the fold changes that act as centroids. This
    second sets of centroids associated with an alternative clustering
    clusters_2 is used only for centroid node sizes (typically to 
    compare centroids to centroids_2).
shade_intersect : bool, optional
    If True, adj_mat_2 is given, and graph_type is 'full' (makes no
    difference if 'intersection' or 'difference'), displays the entire
    graph but shades the intersection by coloring in lightgrey the
    nodes and the edges that belong entirely to the intersection with
    the network defined by adj_mat_2. The default is False.
degree_view : bool, optional
    If True, the sizes of nodes reflect their degrees (the relationship
    is increasing and non-linear). Otherwise (default), all nodes have 
    the samesizes, except for the centroids that are bigger then the 
    others.
 
Returns
-------
None.
draw_mesoscopic(self, clusters, centroids, obj_scale=1, node_label_size=30, figsize=(20, 20))
Displays a mesoscopic representation of the fold changes network, i.e.
a graph with k=len(centroids) nodes representing clusters, each labeled
by the name of the corresponding centroid, with sizes proportional to
respective cluster sizes. The edges represent connections between
clusters, their thickness is proportional to the respective number of
connections. If the network is directed, then arrow head sizes are
proportional to the percentage of connections of the corresponding
predictive type among all connections between the considered clusters.
In the latter case edges are annotated with the distribution among the
connection types (i.e. warps) in the following format: for an edge
between A and B, the annotation is of the form "% of predictive
connections from B to A - total number of connections between
A and B - % of predictive connections from A to B". In the case of
undirected graph, the edges are annotated with the corresponding
numbers of connections only.
 
Parameters
----------
clusters : ndarray
    1D array of length nb_var containing integers indicating clusters
    to which the fold changes are assigned.
centroids : ndarray
    1D array of length k containing indices in range (0, nb_var) of
    the fold changes that act as centroids.
obj_scale : float, optional
    Parameter used to control the scale of objects in the graph,
    which zooms in if bigger than 1 and zooms out if smaller than 1.
    The default is 1.
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node_label_size : int, optional
    Font size for text labels on nodes (names of centroids).
    The default is 30.
figsize : (float, float), optional
    Width and height of the figure(s). The default is (20,20).
 
Returns
-------
None.
graph_analysis(self, clusters, nb_top=10)
Performs a series of graph analyses of the fold changes network, in
particular: identifies among the entities nb_top top hits, authorities,
nodes with respect to pagerank, degree and betweenness centrality. It
also plots a figure displaying degree distribution of the nodes.
 
Parameters
----------
clusters : ndarray
    1D array of length nb_var containing integers indicating clusters
    to which the fold changes are assigned.
nb_top : int, optional
    Number of top elements to include. The default is 10.
 
Returns
-------
graph_analysis : DataFrame
    2D DataFrame containing the names of entities that appeared in at
    least one of the considered tops as rows, and the following
    information as columns: cluster (number), all of the considered
    tops (1 if among the corresponding top and 0 otherwise), and total
    sum of all columns except the cluster one. Ordered so that the
    entities with the highest total score are at the top.
infer_sbm(self, nb_blocks, clusters, n_init=10, n_iter_early_stop=50, random=False, verbosity=0, pi_weight=0.8, random_gen=None)
        Performs stochastic block model inference for the fold changes' network
        based on clustering (i.e. on the constrained parameter space). This
        code is based on method 'fit' from class 'SBM' of the package SparseBM
        (https://github.com/gfrisch/sparsebm).
 
        Parameters
        ----------
        nb_blocks : int
            Number of blocks (communities/clusters) in the stochastic
            block model.
        clusters : ndarray or dictionary
            If ndarray, 1D array of length nb_var containing integers in range
            (0, k) indicating clusters to which the fold changes are assigned.
            If a dictionary, the keys are numbers of clusters considered, and
            for each such number the value is the latter array.
        n_init : int, optional
            Number of initializations. The default is 10.
        n_iter_early_stop : TYPE, optional
            Number of VEM iterations. The default is 50.
        random : bool, optional
            If True, stochastic block model is initialized on the parameter
            space defined by the original model. If False (default),
            stochastic block model is initialized on the constrained parameter
            space corresponding to base clustering.
        verbosity : int, optional
            Degree of verbosity. Scale from 0 (no message displayed) to 3.
            The default is 0.
        pi_weight : float, optional
            Weight parameter controlling the initialization of pi.
            pi(q,q)~Unif([pi_weight, 1)) and pi(q,q')~Unif([0,1-pi_weight))
            for q!=q'. The default is 0.8.
        random_gen : RandomState instance or None, optional
            Random number generator, used to reproduce results. If None
            (default), the generator is the RandomState instance used by
            `np.random`. If RandomState instance, random_gen is the actual
            random number generator.
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        Returns
        -------
        successful_sbm : SBM instance or None
            Successfully trained stochastic block model, or None in case of
            failure.
,        sbm_centroids : ndarray or None
            1D array of length k containing indices in range (0, nb_var) of
            the fold changes that have been chosen as centroids (calculated
             after stochastic block model is inferred) if SBM is successfully
             inferred, otherwise None.
        comp_cost : float or None
            Value of the total comparable cost if SBM is successfully inferred,
            otherwise None.
pathway_search(self, clusters)
Identifies all shortest paths between entities in the network of length
3 and bigger, and presents them along with their scores with respect to
criteria potentially relevant for hypothesis generation.
 
Parameters
----------
clusters : ndarray
    1D array of length nb_var containing integers indicating clusters
    to which the fold changes are assigned.
 
Returns
-------
all_paths_dict : dict
    Dictionary with keys of type 'string' indicating the path length l,
    and the values are dataframes. Each raw of such dataframe
    corresponds to a path, the names of the nodes listed in the first
    l columns. There are three other columns: warp score (number of
    strictly positive warps in the path, i.e. number of predictive
    relationships), cluster score (number of times there is a change
    in cluster in the path), and total score (sum of the first two).
    Paths in the dataframe are ordered with respect to the total score
    (highest to lowest).
plot_most_connected_members(self, clusters, centroids=None, warps=None, nb_components=5, figsize=None)
Identifies the most connected components within each cluster, and
displays a plot of the corresponding fold changes' means. If warps are
given, then also displays the information on the warping groups of
the components.
 
Parameters
----------
clusters : ndarray
    1D array of length nb_var containing integers indicating clusters
    to which the fold changes are assigned.
centroids : ndarray or None, optional
    If not None (default), 1D array of length k containing indices in
    range (0, nb_var) of the fold changes that act as centroids.
warps : ndarray or None, optional
    If not None (default), 1D array of length nb_var containing
    integers in range (-max_warp_step, max_warp_step + 1)
    indicating fold changes' warps with respect to their
    corresponding centroids.
nb_components : int, optional
    Number of the most connected components to select in each cluster.
    The default is 5.
figsize : (float, float), optional
    Width and height of the figure(s). The default is None.
 
Returns
-------
most_connected_members_within : ndarray
    2D array of shape (nb_blocks, nb_components) containing indices
    in range (0, nb_var) of nb_components most connected components
    for each cluster (block).
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APPENDIX B

FUNCTIONAL DATA APPROACH TO FOLD CHANGE

ESTIMATION

Consider an observation from one of the studied datasets characterized by the fol-

lowing quantities: i ∈ {1, 2, . . . , ne} where ne is the number of considered biological

entities, replicate j ∈ {1, 2, ..., nr}, and experimental condition k = 0 if control and

k = 1 if irradiated. Let yikj(t) be a realization of the expression of a gene i under ex-

perimental condition k for replicate j at time point t ∈ R+. We consider the following

model :

(B.0.1) yikj(t) = µ(t) + 1k=1α(t) + βik(t) + εikj(t).

The variables appearing in the model are as follows : µ(t) is the grand mean func-

tion, α(t) is the global fold change (that is, present in all genes), βik(t) is the individual

gene effect, and εikj(t) ∼ N (0, σ2
ε,ik) is the white noise. We can thus define local fold

change for a gene i: ∆i(t) = βi1(t)− βi0(t).

This model corresponds to a two-way functional ANOVA (f-ANOVA) model (Zhang,

2013), with the general form presented below:

(B.0.2) yikj(t) = µ(t) + αk(t) + βi(t) + θik(t) + εikj(t).

In this model we can distinguish the main-effect of irradiation αk(t) = 1k=1α(t), the

main-effect of a gene βi(t) = βi0(t), and the interaction-effect between irradiation and

a gene: θik(t) = 0 if k = 0 and θik(t) = ∆i(t) if k = 1.
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The model can be rewritten in the following form allowing for direct estimation of

regression parameters as presented in Ramsay and Silverman (2005):

(B.0.3) Y (t) = Zγ(t) + ε(t),

with Y (t) =



y101(t)

y102(t)

y103(t)

y111(t)

y112(t)

y113(t)

y201(t)

...

yN13(t)


, γ(t) =



µ(t)

α(t)

β10(t)

β11(t)

...

βN0(t)

βN1(t)


andZ =

1 1

0 0 0 1 1 1 0 0 0 1 0 1 1 1

1 1 1 0 0

0 0 0 1 1 1 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1





t

.
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APPENDIX C

ENRICHMENT ANALYSIS OF SARRP AND LINAC

CLUSTERS AND SUBGROUPS

From the biological viewpoint, the enrichment analysis of the biological processes

for each cluster after radiation at 220 kV (SARRP) has been carried out (C.0.2-C.0.6).

Cluster 1 is characterized by 2 major functions mainly associated with adhesion and

migration process but also with the apoptotic process or the cellular DNA damage

response. Cluster 2 has fewer terms than Cluster 1 and is mainly defined by the regu-

lation of signaling pathways such as the pi3kinase pathway which has been described

in the literature as involved in the radiation response of endothelial cells (Edwards

et al., 2002; Yentrapalli et al., 2013). Cluster 3 is characterized by TGFbeta and SMAD

family related terms, which have been previously described in the literature on the

endothelial vascular response and a glycosylation related term emerged from the en-

richment analysis of cluster 3 (Milliat et al., 2006; Jaillet et al., 2017; Ladaigue et al.,

2022). Cluster 4 is related to the function of the chemoattraction and cell-cell interac-

tion with the immune system. These major features can be compared with the results

for cluster 1 with respect to the term of adhesion. Moreover, in cluster 4 we see appear

terms related to the control of the apoptotic process, a feature that also appears in the

cluster 1. Cluster 4 is also linked to coagulation processes and fibrinolysis, described

as a mark of radiation-induced endothelial response (Milliat et al., 2008). Lastly, clus-

ter 5 is characterized by the activation of phosphorylation signaling pathways such as

SMADs or the NFKB pathway. This can also be related to the enrichment of TGF feta

in cluster 3. A protein glycosylation term, previously captured in cluster 3, can also be

found in cluster 5, which is in accordance with the results published in the literature
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showing an impact of glycosylation process in the radiation response of endothelial

cells (Jaillet et al., 2017; Ladaigue et al., 2022). The results of the enrichment analysis

coupled with the cluster and network analyses are illustrated in Figure C.0.1.

Microscopic view Mesoscopic view

Response specific 
to endothelial 
vascular cells

Activation of  
phosphorylation 

signalling 
pathways

Inter-cellular interactions 
with immune cells

Signalling of  
DNA damages

Cellular Adhesion 
& Migration

Figure (C.0.1) Summary of the cluster and network analyses performed on
the SARRP dataset with the key biological functions identified as a result of the
enrichment analysis.

The same analysis has been performed on the dataset obtained after irradiation at

4 MV (LINAC). The comparison of deregulated genes after radiation in the two irra-

diation conditions is illustrated through the Venn diagrams C.0.7-C.0.11. The enrich-

ment analysis of biological processes (Figures C.0.12-C.0.16) reveals that irradiation

at 4 MV has an impact on biological processes on all clusters. In particular, there are

senescence-related terms that appear for 4 MV but are absent for 220 kV. This is con-

sistent with the previously published results showing that cellular senescence is more

important at 4 MV than at 220 kV (Paget et al., 2019), this illustrating the robustness of

the analytical methodological approach implemented in this work.

The mathematical model also predicts a particular affinity for clusters 1 and 4 after

irradiation at 220 kV and clusters 4 and 5 after irradiation at 4 MV suggesting that

the terms appear in these various clusters may potentially explain the differences in

response to the 2 energies. Combining the enrichment analyses of clusters 1 and 4 for

220 kV and clusters 4 and 5 for 4 MV, the terms that were globally identified focus

mainly on cell adhesion and chemotaxis, suggesting a global energy-dependent effect

on these inflammation-related parameters. It has already been shown that radiation
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response of endothelial cells after 4MV compared with 220 kV is characterized by more

senescence and more inflammatory induced response with upregulation of IL6 and

IL8 higher at 4 MV than at 220 kV (Paget et al., 2019). These results reinforce the idea

that the physical dose in Gray is not sufficient to predict a biological effect and by

extrapolation a risk. Our results open biological hypotheses concerning the impact of

radiation used in the medical field and in particular radiotherapy on both tumors and

healthy tissues.

Figure (C.0.2) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 1 of the SARRP dataset.
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Figure (C.0.3) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 2 of the SARRP dataset.

Figure (C.0.4) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 3 of the SARRP dataset.
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Figure (C.0.5) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 4 of the SARRP dataset.

Figure (C.0.6) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 5 of the SARRP dataset.
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Figure (C.0.7) Venn diagrams illustrating the distribution of genes of cluster
1 between LINAC (left) and SARRP (right). Red indicates genes that have been
assigned to this cluster by all methods (k-medoids, UMAP and SBM), blue
indicates those that have been assigned to this cluster by two methods out of
three, and black the remaining genes.

Figure (C.0.8) Venn diagrams illustrating the distribution of genes of cluster
2 between LINAC (left) and SARRP (right). Red indicates genes that have been
assigned to this cluster by all methods (k-medoids, UMAP and SBM), blue
indicates those that have been assigned to this cluster by two methods out of
three, and black the remaining genes.
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Figure (C.0.9) Venn diagrams illustrating the distribution of genes of cluster
3 between LINAC (left) and SARRP (right). Red indicates genes that have been
assigned to this cluster by all methods (k-medoids, UMAP and SBM), blue
indicates those that have been assigned to this cluster by two methods out of
three, and black the remaining genes.

Figure (C.0.10) Venn diagrams illustrating the distribution of genes of cluster
4 between LINAC (left) and SARRP (right). Red indicates genes that have been
assigned to this cluster by all methods (k-medoids, UMAP and SBM), blue
indicates those that have been assigned to this cluster by two methods out of
three, and black the remaining genes.
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Figure (C.0.11) Venn diagrams illustrating the distribution of genes of cluster
5 between LINAC (left) and SARRP (right). Red indicates genes that have been
assigned to this cluster by all methods (k-medoids, UMAP and SBM), blue
indicates those that have been assigned to this cluster by two methods out of
three, and black the remaining genes.

Figure (C.0.12) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 1 of the LINAC dataset.
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Figure (C.0.13) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 2 of the LINAC dataset.

Figure (C.0.14) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 3 of the LINAC dataset.
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Figure (C.0.15) Results of the enrichment analysis performed with Pathfinder
on the genes from cluster 4 of the LINAC dataset.

Figure (C.0.16)

Results of the enrichment analysis performed with Pathfinder on the genes from

cluster 5 of the LINAC dataset.
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APPENDIX D

SOME CLASSICAL THEOREMS IN ASYMPTOTIC

STATISTICS

A proof of the classical continuous mapping theorem can be found in van der Vaart

(1998) (Theorem 2.3).

THEOREM D.0.1. (Continuous mapping theorem).

Let g : Rd → Rm be continuous at every point of C such that P[X ∈ C] = 1.

If the sequence of random variables (Xn)n≥1 converges in distribution (resp. probability, resp.

almost surely) to X then (g(Xn))n≥1 converges in distribution (resp. probability, resp. almost

surely) to g(X).

We also recall some well known results that are useful to show the consistency of

estimators θ̂n defined as the minimizers of functionals Qn(θ) which have some regu-

larity properties at the limit.

THEOREM D.0.2. (Lemma 2.9 in Newey and McFadden (1994))

Suppose that θ ∈ Θ and Θ is compact, Q0(θ) is continuous and ∀θ ∈ Θ, Qn(θ) → Q0(θ) in

probability as n tends to infinity. If there is α > 0 and Bn = Op(1) such that

∀(θ̃, θ) ∈ Θ×Θ, |Qn(θ̃)−Qn(θ)| ≤ Bn‖θ̃ − θ‖α

then

sup
θ∈Θ
|Qn(θ)−Q0(θ)| → 0 in probability.

THEOREM D.0.3. (Theorem 2.1 in Newey and McFadden (1994))

Suppose that θ ∈ Θ and Θ is compact, Q0(θ) is continuous ∀θ ∈ Θ. If Q0(θ) is uniquely
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maximized at θ0 and, as n tends to infinity, supθ∈Θ |Qn(θ)−Q0(θ)| → 0 in probability, then

θ̂n → θ0 in probability.

Under additional hypotheses, we also get the asymptotic normality of the sequence

of estimators θ̂n of θ0. we denote by ∇00Qn(θ) the Hessian matrix of functional Qn

evaluated at θ.

THEOREM D.0.4. (Theorem 3.1 in Newey and McFadden (1994))

Suppose that θ̂n → θ0 in probability, (i) θ0 is an interior point of Θ, (ii) Qn(θ) is twice differen-

tiable in a neighborhoodN of θ0, (iii)
√
n∇0Qn(θ0) N (0,Σ), (iv) there is H(θ) continuous

at θ0 and supθ∈N ‖∇00Qn(θ) − H(θ)‖ → 0 in probability (v) H = H(θ0) is non singular.

Then
√
n
(
θ̂n − θ0

)
 N

(
0,H−1ΣH−1

)

We also recall the central limit theorem for bootstrap means (see Theorem 23.4 in

van der Vaart (1998) for a proof).

THEOREM D.0.5. (CLT for bootstrap means)

Let X1, X2, . . . be i.i.d. random vectors with mean µ and covariance matrix Γ. Then condi-

tionally on X1, X2, . . ., for almost every sequence X1, X2, . . .

√
n
(
X
∗
n −Xn

)
 N (0,Γ)

where Xn is the empirical mean and X∗n is the empirical mean of n independent observations

drawn from the empirical distribution.
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