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Abstract 

The French National Radioactive Waste Management Agency (ANDRA) started in 2000 to build the Meuse/Haut-

Marne Underground Research Laboratory (URL) at Bure in order to demonstrate the feasibility of a radioactive waste 

repository in Callovo-Oxfordian (COx) claystone formation. In this context, predicting the behaviour of the in-situ 

rock mass is of paramount importance to ensure the stability and sustainability of underground structures. In fact, 

progressive increase of gallery convergence, damage evolution, pore water dissipation, etc. can develop around 

underground excavations for a long time after excavation. Therefore, the time-dependent hydromechanical behaviour 

of the COx claystone is one of the key issues being investigated to ensure the safety conditions required for long-

term repository of radioactive wastes. 

The first two parts of the study are based on the phenomenological approach carried out directly at the macroscale. 

Firstly, a quasi-analytical model for the hydromechanical behaviour of a deep spherical cavity excavated in a dilatant 

poro-viscoplastic rock mass is presented, considering three stages of a simplified life cycle: excavation, free 

convergence and post-closure. For each stage, entirely explicit expressions of displacement, stress and water pressure 

fields are derived in the Laplace-transformed domain. A numerical inversion according to the Stehfest algorithm is 

then adopted to obtain the corresponding expressions in the time-domain. A few numerical examples are presented 

to illustrate the applicability of the model. The results show that the assumption of a volumetric viscoplastic strain 

rate as a linear function of the Frobenius norm of deviatoric plastic strain rate can be used to construct an analytical 

model capable to describe the hydromechanical post-closure behaviour of a deep spherical cavity. The viscoplastic 

dilatancy of rock mass induces an outward movement at every point (except at the cavity wall) due to the particular 

spherical symmetry involving an infinite domain. Subsequently, the sensitive and probability analyses are carried out 

using the finite element code Cast3M, in order to investigate the time-dependent extent of the Excavation Damaged 

Zone (EDZ). The results indicate that the Von Mises strain-based criterion, which is coupled with hydraulic damage, 

is considered to be more realistic to provide a more accurate estimate of the extent of the damage zone after 

excavation. The parameters influencing the development of the damaged zone can be ordered in the following order 

of importance: Young’s modulus of the rock, Young’s modulus of the backfill, stress threshold of the rock, rock 

dilatancy, gap between the backfill and the tunnel wall. 

The COx claystones are multiphase porous media having a complex structure and behaviour characterised by 

heterogeneity, damage, and viscosity, existing on a wide range of scales. A multiscale numerical approach is therefore 

employed to investigate its creep and damage behaviour under mechanical condition. Firstly, a micromechanics-

based model within the finite element square (FE2) framework is developed to model the short-term and long-term 

behaviours of saturated COx claystone. A heterogeneous COx claystone is represented at the mesoscale as a 

composite material consisting of rigid elastic mineral inclusions (quartz, calcite, and pyrite) embedded in a clay 

matrix. To describe the damageable rock behaviour and its failure modes at the small scale, interfaces between 

different mineral phases and within the clay matrix are considered. These interfaces between solid mineral grains 

also form a network of pore channels through which fluid can penetrate and flow. The mesostructure of the clayey 

rock is represented in digital 2D Representative Elementary Areas (REAs). For the clay matrix, an elastoplastic 

constitutive law is considered for the short-term behaviour whereas a viscous (elasto-viscoplastic or viscoelastic) 
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constitutive law is considered for the long-term behaviour. For this viscous behaviour, two microscale mechanisms 

have been introduced: the viscoplasticity of the clay aggregates and the viscoelasticity of their contacts. Then, the 

model is validated at mesoscale against experimental data obtained from triaxial and creep compression tests on COx 

claystones. The variability of the material response and the time evolution of the mineral interfacial damage state are 

investigated in relation to small-scale properties, failures, and considering microstructural variability. This part of 

work can provide some valuable insights into the microscopic mechanisms of creep and creep-induced damage from 

a small-scale perspective. 

Then, the creep model of COx claystones developed at small scale (micro and meso scales) is applied to model the 

large-scale creep behaviour at laboratory and gallery scales. The consistency of creep deformation between two scales 

is first verified. Then, from simulation results of laboratory scale, a clear three-stage creep process is reproduced, 

including the primary creep stage, second creep stage and tertiary creep stage. The creep-induced failure and 

anisotropic effect on creep are also investigated. At the gallery scale, the long-term effect of viscosity on the gallery 

convergences, the evolution of EDZ, and the long-term drainage and pore pressure around a gallery are investigated. 

Relation between creep-induced shear strain and failure across scale is an important result given by multiscale 

numerical modelling of time-dependent behaviour and failure of rocks. It is found that the developed multiscale 

model is able to provide some valuable insights into the large-scale creep behaviour of clay rocks through the 

morphological and material small-scale characterization of REA. 

Finally, the above developed double-scale creep model used to simulate saturated cracked medium is extend to partial 

saturated case to study the interaction between rock and the atmosphere which occurs through air circulation within 

underground galleries. The capillary water distribution at the microscale is not modelled, the introduction of capillary 

pressure is therefore from a macroscopic phenomenon consideration, but depends on the variation of the geometry 

(normal interface opening) inside REA. The gas flow is also neglected by assuming a constant gas pressure. The 

ventilation process is reproduced with constant air relative humidity inside the gallery and classical imposition at 

gallery wall. The emphasis is to study the effect of the gallery air ventilation on hydromechanical behaviour of host 

rock, for example the increase of material strength, shear banding, displacement field, pore water pressure, etc. 

Keywords: COx claystone; Quasi-analytical solution; Multiscale numerical model; Homogenised response; 

Hydromechanical coupling; Creep; Creep-induced damage mechanism; Air-rock interaction 
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Chapter 1 Introduction 

1.1. Underground waste repository 

As a promising energy source for the future, nuclear energy currently accounts for roughly 10% of the world's 

electricity production. While nuclear energy offers a solution to the energy crisis in various countries worldwide, the 

safe and effective disposal of the radioactive nuclear waste generated during its use has become a topic of global 

concern and has become a highly critical and complex research topic in nuclear waste management. According to the 

level of radioactive activity per unit mass of solid radioactive material, nuclear waste can be broadly classified as 

(IAEA, 2009): low-level radioactive nuclear waste (LLW), medium-level radioactive nuclear waste (MLW), and 

high-level radioactive nuclear waste (HLW), the latter of which contains a variety of radioactive elements that can 

be extremely harmful to human health. Currently, deep geological disposal is the safest and most viable solution 

internationally recognized for the disposal of medium and high-level radioactive nuclear waste (NEA, 2008). This 

method involves burying the nuclear waste in the natural rock matrix, approximately 500-1000 meters below the 

Earth's surface, effectively isolating it from the biosphere for thousands to tens of thousands of years. Over the past 

few decades, many countries, including Belgium, Switzerland, France, the United States, Germany, China, Japan, 

and Canada, have proposed the concept of deep geological storage for nuclear waste (IAEA, 2009), for example, the 

conceptual scheme illustrated in Figure 1-1. 

 

Figure 1-1 Conceptual scheme of the Cigéo project. Source: French National Agency for Radioactive Waste. 

In the context of the deep geological repository of radioactive wastes, clay rocks are being investigated as one of 

potential host rocks because they generally have a very low hydraulic conductivity, small molecular diffusion and 

significant retention capacity for radionuclides (Armand et al., 2013), providing favourable conditions for a 

repository of radioactive wastes. For example, the Callovo-Oxfordian argillaceous rock (COx) in France, the 

Opalinus clay in Switzerland, and the Boom clay in Belgium (Mánica et al., 2021). In France, the French National 

Agency for Radioactive Waste (ANDRA) is responsible for the long-term management of radioactive waste and was 

commissioned through the Cigéo project to design a safe and reversible disposal system (Labalette et al, 2013). 
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ANDRA started in 2000 in Bure (nearly 300 km east of Paris) to build the Meuse/Haut-Marne Underground Research 

Laboratory (URL) to demonstrate the feasibility of a radioactive waste repository in claystone formations. The host 

formation consists of COx claystone at depths between 420 m and 550 m (Armand et al., 2013). The COx claystones 

are overlaid with poorly permeable carbonate formations. 

1.2. Creep and damage behaviour of COx claystone 

At the macroscale, analyses of in situ measurements (e.g. gallery convergence, deformation, pore pressure) lead to 

the distinction of two major phenomena (Armand et al., 2014): (1) plastic deformations due to damage and (2) creep. 

Firstly, elastoplastic and damage mechanisms seem to dominate the short-term behaviour of the COx claystone 

around large-scale underground galleries. During gallery excavation, irreversible plastic deformations and fracture 

networks are induced rapidly around the galleries due to the quasi-brittle behaviour of the indurated clay rock. By 

contrast, during service life and more importantly during the post-closure period, deformations evolve relatively 

slowly. The time-dependent behaviour of the clay rock, due to the creep of the clay matrix and propagation of induced 

fractures, appears to be more predominant at this stage. Thereby, it significantly affects the design of the support 

system for its long-term stability. Indeed, the confining capacity of a geological barrier for radioactive wastes can be 

affected by the creep deformations and subcritical propagation of cracks in rocks (Bikong et al., 2015; Farhat et al., 

2017; Huang and Shao, 2012; Pardoen, 2015a; Pardoen et al., 2015b, 2015c). Therefore, it is necessary to investigate 

both the short- and long-term behaviour of the host rock around galleries to ensure the safety and sustainability of 

the underground repository. For that purpose, extensive laboratory investigations have shown that the mechanical 

behaviour of clay rocks can be characterised by coupled plastic damage (Abou-Chakra Guéry et al., 2009) and 

exhibits features such as irreversible plastic deformations, pressure sensitivity and significant softening after reaching 

maximal strength at low and moderate confining pressures (e.g. Armand et al., 2017; Mánica et al., 2021). Time-

dependent creep deformation is another important feature of clay rocks (Armand et al., 2017; Pardoen and Collin, 

2017; Sun et al., 2021a, 2021b, 2023a, 2023b, 2023c; Zhao et al., 2022). Rahal et al. (2017) concluded that damage, 

poro-mechanics and viscoplasticity have to be coupled if the complex behaviour of claystone around the gallery is to 

be explained. Classically, the time-dependent inelastic deformation of a material is described by phenomenological 

viscoplastic models (e.g. Bui et al., 2017). Although these models provide efficient mathematical tools for the long-

term analyses of structures, the physical mechanisms of creep deformation are not explicitly considered. In 

consequence, these models cannot account for the effects of mineral composition and geometry of microstructures 

on the mechanical response of argillaceous rocks. Therefore, it is necessary and useful to study the small-scale 

behaviour of clay rock to better explain the time-dependent mechanisms observed from small to large scales, and 

also to provide a better basis for further extension of macroscale constitutive models. 

At the mesoscale, clay rocks are heterogeneous and composed of several types of mineral inclusions embedded in a 

clay matrix (Cosenza et al., 2015a, 2015b; Robinet et al., 2012). At this scale, the behaviour of rocks is characterised 

by the morphological (size and shape) and material properties of the components and their interactions. The 

mesoscopic scale has an important role in the mechanisms of deformation under mechanical loading by cracking 

(Desbois et al., 2017) and creeping (Liu et al., 2018). At the microscale, the clay matrix is composed of clay 

aggregates (made of “clusters” of clay particles, or clay platelets, in turn made of a stack of atomic layers, etc. as 

going downscale (Mitchell and Soga, 2005), interacting between them and with the mineral inclusions. The influence 

and accurate reproduction of these micro- and meso-scale characteristics on the large-scale material behaviour, 
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including damage and viscosity, remain a complex issue. This becomes an essential concern to investigate the short- 

and long-term underground stability of galleries and tunnels during and after the excavation process.  

Considering the complex mesostructure of clay rocks, one possibility to evaluate their mesoscale and macroscale 

overall mechanical responses is to use a multi-scale approach. Such an approach allows studying a statistically 

equivalent Representative Elementary Volume (REV for 3D case) or Representative Elementary Area (REA for 2D 

case) to determine the behaviour of the equivalent homogeneous medium (e.g., Bertrand et al., 2020; Borja et al., 

2020; Choo et al., 2020; Mourlas et al., 2023; Nguyen et al., 2022; Semnani and White, 2020; Shen and Shao, 2014, 

2015; Weng et al., 2023; Zhou et al., 2023). In particular, computational homogenisation methods (Feyel and 

Chaboche, 2000; Kouznetsova et al., 2001), also known as multi-scale analyses have emerged. They include, among 

others, finite element squared (FEM×FEM or FE2) (Bertrand et al., 2020; van den Eijnden et al., 2016; Frey et al., 

2013; Marinelli et al., 2016; Zalamea et al., 2021) and FEM×DEM (Desrues et al., 2019) methods for continuous 

media at the large scale and heterogeneous/discrete material at the small scale. This approach does not introduce any 

explicit expression for the macroscale constitutive equations, as the homogenised response from the mesoscale 

computation serves as a numerical constitutive relation in the macroscale continuum. Theoretically and numerically, 

this involves separate descriptions of each material constituent and their interactions at the microscale, the constituent 

spatial arrangement and heterogeneity at the mesoscale, and then scale transition towards material behaviour at the 

macroscale. To this date, time-dependent behaviour modelling of clay rocks including small-scale characteristics and 

scale transition from the mesoscale to the macroscale remain insufficiently investigated. 

1.3. Scope and objectives 

The thesis mainly focuses on the creep and damage behaviour of COx claystone under its coupling with the pore 

water field at different scales, from the mesoscale to the macroscale (gallery and laboratory scales). The numerical 

developments including the analytical method and double-scale finite element numerical method are used to 

investigate these problems. The specific objectives are as follows: 

(i) To develop a quasi-analytical model accounting for viscoplastic dilatancy of rock, and describe the 

hydromechanical behaviour of a deep spherical cavity during different stages of its simplified life cycle: excavation, 

free convergence, backfill contact and post-closure. 

(ii) To conduct the sensitive analysis and probabilistic study at macroscale on the temporal evolution of the 

Excavation Damaged Zone (EDZ) using finite element code Cast3M. 

(iii) To develop a multiscale creep model of COx claystone, then to discuss the contribution of viscosity in clay 

aggregates and clay aggregate contacts to the overall creep behaviour of claystone and creep-induced damage from 

a small-scale perspective. 

(iv) To model the large-scale creep behaviour of COx claystone from small-scale viscous mechanisms of the rock 

medium using the creep model developed in (iii) within the double scale finite element (FE2) framework. 

(v) To study the the effect of gallery air ventilation on hydromechanical field of large-scale gallery, by extending the 

saturated model within FE2 framework to partial saturated case. 

(vi) To compile and then verify the code for the double-phase flow model at the REA scale by considering adding a 

degree of freedom of gas. 
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1.4. Thesis layout 

The thesis is divided into 8 chapters: 

Chapter 2 presents an overview of the Meuse\Haute-Marne site in France and the behaviour of host rock, COx 

claystone, around in situ galleries. Subsequently, an introduction to COx claystone is given including its mineral 

composition, microstructure, and mechanical behaviour. Finally, different approaches to analyse the underground 

structures have been introudced, from simplified analytical modelling to more sophisticated advancded numerical 

approaches. 

Chapter 3 presents an analytical approach to the hydromechanical behaviour of a deep spherical cavity during 

different stages of its simplified life cycle: (1) excavation, (2) free convergence and (3) backfill contact and post-

closure. The original contribution here is to consider the influence of an important parameter of the rock in the model, 

the viscoplastic dilatancy of rock. Thus, an appropriate dilation law is proposed in which the dilation is incorporated 

by assuming that the volumetric viscoplastic strain rate is a linear function of the Frobenius norm of the deviatoric 

plastic strain rate. A few numerical examples are presented to illustrate the applicability of the model. 

Chapter 4 focuses on the sensitive analyses of the time-dependent extent of the EDZ using finite element code Cast3M. 

The evaluation of this damage zone extension is critical for the design of underground radioactive waste disposal 

sites, preventing the leakage and migration of radioactive particles towards the biosphere. Then, a probability analysis 

based on Monte Carlo method was conducted considering the uncertainty of several key parameters. The focus is on 

the probability analyses with different values of void ratio between gallery wall and backfill. 

Chapter 5 presents the framework of numerical model, finite element squared method (FE2), used for multiscale 

numerical analyses is detailed. The model FE2 allows scale transition of the material behaviour by computational 

homogenisation. Fundamental equations and necessary assumptions are introduced, following by the numerical 

solution of mechanical part of mesoscale Boundary Value Problem. 

Chapter 6 introduces a micromechanics-based approach to model the time-dependent mechanical behaviour of COx 

claystone. The mesostructure of the clay rock is represented in digital 2D Representative Elementary Areas (REAs), 

consisting of elastic mineral inclusions (quartz, calcite, and pyrite) embedded in a clay matrix. The interfaces between 

solid grains are considered to describe the damageable rock behaviour and its failure modes at the mesoscale. Viscous 

effects are incorporated inside the clay aggregates and clay aggregate contacts to investigate their contribution to the 

creep behaviour of clayey rock. The homogenised responses of the mesoscale model are then validated against 

experimental data. The variability of the material response and the creep-induced damage are also discussed.  

Chapter 7 shows the modelling of the large-scale creep behaviour of COx claystone at both laboratory and gallery 

scales from small-scale viscous mechanisms of the rock using a multiscale numerical approach. The study in this 

chapter is the application of the mesoscale model developed in Chapter 5. The consistency of the double-scale 

computing including time-dependent viscous behaviour is verified. A three-stage creep is reproduced and the creep-

induced failure process is discussed at laboratory scale. The convergence of gallery wall is well reproduced and the 

creep-induced shear band around gallery wall is discussed. 

Chapter 8 investigates the effect of gallery air ventilation on hydromechanical field of large-scale gallery, considering 

the interaction between rock and the atmosphere within underground galleries, thereby affecting the damaged zone. 
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For this purpose, the multiscale creep model used to simulate saturated cracked medium is extended to partial 

saturated case. The ventilation process is reproduced with constant air relative humidity inside the gallery and 

classical imposition at gallery wall. The emphasis is to study the effect of the gallery air ventilation on 

hydromechanical behaviour of host rock. 

Chapter 9 summarizes the main contributions of this thesis and gives some perspectives for future studies. 
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Chapter 2 Literature review 

In this chapter, the Meuse\Haute-Marne (MHM) site for underground waste repository in France is introduced with 

the hydromechanical behaviours of large-scale in situ galleries. Then, an introduction to COx claystone is given 

including its mineral composition, microstructure, and mechanical behaviours. Finally, the framework of finite 

element squared method (FE2) used for multiscale numerical analyses is presented. 

2.1. The Meuse\Haute-Marne site for underground waste repository 

French National Radioactive Waste Management Agency (Andra) has built the Meuse\Haute-Marne Underground 

Research Laboratory (MHM URL) at Bure (East of Paris sedimentary basin, as shown in Figure 2-1) since 2000 

aiming to demonstrate the feasibility of an industrial radioactive waste repository in the deep geological formation. 

The target formation is the COx claystone, with depths between 420 and 550 m below the ground surface. COx 

claystone is a stiff rock exhibiting properties that are very favourable for radioactive waste disposal, such as low 

hydraulic permeability (10-22 to 10-20 m2), good resealing capacity, and self-sealing properties (ANDRA, 2005). The 

URL is built at an average depth of 490 m corresponding to the median depth of the COx geological formation 

(Figure 2-1).  

 

Figure 2-1 The Meuse/Haute-Marne Underground Research Laboratory: location and geological profile (Armand et 

al., 2013). 

Understanding the geological and mechanical behaviour of potential host rock formations is a critical issue for 

evaluating and ensuring the feasibility of a safe disposal repository. At the main level of URL (the depth of 490 m), 

galleries were excavated (Figure 2-2) in different directions to study the various properties of the host rock from 

different aspects, such as the mechanical, the hydraulic, and the thermal behaviours of the host rock as well as the 

retention and diffusion properties of radioactive elements. Some galleries are entitled by Andra as Galerie de 

Conception Rigide, Galerie Expérimentale Deux (GED), Galerie de Conception Souple (GCS), etc (Figure 2-2). 

2.1.1. in situ stress condition 

Like many sedimentary rocks, COx claystones exhibit inherent anisotropy due to the preferential morphology and 

orientation of the minerals (Cosenza et al., 2015a, 2015b; Robinet, 2012). At 490 m depth, the initial anisotropic 

stress state is defined as follows (Wileveau et al., 2007): 
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𝜎ℎ = 12 ~ 12.4 MPa ;  𝜎𝐻 = 14.4 ~16.1 MPa ; 𝜎𝑣 = 12 ~12.7 MPa ;  
𝜎𝐻

𝜎ℎ
= 1.2~1.3 

𝑝𝑤 = 4.5～4.7 MPa 

where 𝜎ℎ is the principle total stress in the horizontal direction, corresponding to the minor principal direction, 𝜎𝐻 

is the principle total stress in the orthogonal horizontal direction, corresponding to the major principal direction, 𝜎𝑣 

is the vertical principle total stress and 𝑝𝑤 is the pore water pressure. The anisotropic stress ratio is 𝜎𝐻 𝜎ℎ⁄  close 

to 1.3 and varies with the depth and mineralogical characteristics (Armand et al., 2013, 2014). 

 

Figure 2-2 Map of drifts at the Meuse/Haute-Marne Underground Research Laboratory (Jung et al., 2022). 

2.1.2. EDZ and creep 

The process of excavating underground structures leads to changes in the stress and damage within the surrounding 

medium. As the damage accumulates and reaches a threshold, microcracks are initiated, which can then propagate 

and lead to the formation of macrocracks – interconnected fractures. Different types of fractures may occur, including 

opening or tensile fractures, shear fractures, and mixed-mode fractures, which are a combination of the two. In the 

rock mass around underground galleries, brittle failure mechanisms can occur due to the accumulation of damage 

and coalescence of microcracks. 

According to Pardoen (2015a), an EDZ refers to a region characterized by significant and mainly irreversible changes 

in geochemical and hydromechanical properties. These alterations can cause substantial modifications in flow and 

transport properties including an increase in permeability (Bossart et al., 2004; Armand et al., 2007), thus have the 

potential to impact the safety of the rock mass, making the behaviour of the EDZ a critical issue in the long-term 

management of nuclear waste repositories. The EDZ has been extensively studied in URLs, including for example 

in situ observations, fracture measurements, permeability analyses, and fluid transfers. 

Many field observations and measurements of fractures induced by drilling have been carried out close to Andra's 

URL in COx claystone. Figure 2-3 shows a comprehensive conceptual model of induced fractures around GCS and 

GED galleries drilled in COx claystone. One can observe that the shape of the fractured zone differs for the two main 

drift orientations. In fact, for galleries (e.g. GED) oriented along the minor horizontal principal stress direction, the 
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anisotropy of the stress state in the plane perpendicular to the gallery axis appears to control the fracture pattern in 

the rock. However, even in galleries (e.g. GCS) oriented along the major horizontal principal stress direction, the 

development of fractures in the rock has been observed, presenting isotropic or quasi-isotropic stress states in their 

vertical planes (cross-sections of the gallery). 

The gallery wall continues to evolve after excavation due to the pore water pressure dissipation, creep deformation, 

etc. The creep in the rock matrix, the opening and possible spreading of the induced fractures, seem to be more 

predominant in this phase (Souley et al., 2017). Temporal evolution of the convergence of large-scale underground 

galleries at the MHM URL has been observed for a long period. For example, the in situ monitoring of gallery wall 

convergence (Figure 2-3) for GCS and GED galleries has been carried out by Andra for more than 10 years, no sign 

of stopping the convergence has been observed, but the deformation rate gradually slows down with time. The 

anisotropic convergences have also been observed for both GCS and GED galleries. For the galleries dilled oriented 

along the major principal horizontal stress (e.g. GCS), the ratio of vertical to horizontal convergence is approximately 

0.5, whereas it is around 4 for galleries oriented along the minor principal horizontal stress (e.g. GED) (Armand et 

al., 2013). 

 
  

 

 
 

 (a) (b) 

Figure 2-3 Conceptual model of the induced fractures in COx claystone around (a) GCS gallery and (b) GED 

gallery respectively excavated parallel to the major and minor horizontal principal stresses (Armand et al., 2014). 
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(a) (b) 

Figure 2-4 Convergence measurement of the GCS and GED galleries respectively (a) parallel and (b) perpendicular 

to the major horizontal stress (Dizier et al., 2023). 

2.1.3. Evolution of EDZ with time 

The experiments conducted in URL also show that when the surrounding rock is sufficiently supported by the lining 

of the galleries, the EDZ does not tend to expand but rather to self-seal over time (Armand, 2005). The demonstration 

of the safety of the storage facility assumes that the extension of this damaged zone remains sufficiently limited so 

as not to reduce the effectiveness of the sealing structures or call into question the thickness of healthy clay required 

at the storage zones (guard thickness). The concepts presented by Andra provide for the underground part of the 

storage facility to be backfilled at the end of its operating period. The various linings that ensured their mechanical 

stability will no longer be maintained and, long after the closure of the facility, should lose their mechanical integrity. 

This could result in collapses of support, possible debris falls (depending on the size of the voids left in place), 

convergence movements of the surrounding rock, and after resumption of the construction voids, settling of the 

various fill materials until a new state of mechanical equilibrium is reached. 

Therefore, the behaviour of the EDZ during this mechanical equilibrium period should be studied, especially in terms 

of extension and strength in the damaged areas. The backfill planned by Andra is composed of waste packages 

themselves, placed in cells with several centimetres of processing clearance, leaving a certain "void" rate in the cells. 

Therefore, the safety issues related to Chapter 3 of this paper involve the possibility of Andra's selected intermediate-

level waste storage facility maintaining a sufficient thickness of cover over the long term. 

In addition to nuclear waste storage, studying of time-dependent development of the EDZ around a deep cavity have 

applications in many underground geotechnical works such as oil and gas extraction, gas or hydrocarbon storage, 

urban waste storage, etc. On this topic, past studies can be divided into two groups depending on the considered 

constitutive behaviour of host rock. The first one is related to drilling, excavation and blasting. In this case, the 

drilling process engenders cracks and eventually fractures in a short time. Extensive studies have been conducted on 

evaluating this kind of damaged zone based on theoretical analysis (Carranza-Torres, 2004; Singh et al., 2017; Sun 

et al., 2021b), numerical simulations (van den Eijnden et al., 2017; Pardoen et al., 2015b), and field tests (Souley et 

al., 2018; Tang et al., 2018). The mechanical behaviour of surrounding rock in most studies is considered as elastic 

or elastoplastic. In our case, we will focus on another type of damaged zone, which involves the long-term changes 
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in strains which are associated with deterioration in the mechanical characteristics and ageing of the lining. Thus, it 

is necessary to identify the damage mechanisms of underground structures and to take into account their influence 

on time-dependent behaviour. Several studies have been conducted on this issue. Golshani et al. (2007) proposed a 

micromechanics-based damage model for analysing the lengths of microcracks and the development of the damaged 

zone with time. Millard et al. (2009) and Pellet et al. (2009) investigated the evolution of the damaged zone in 

argillaceous rocks with 3D numerical models. In their studies, Lemaitre’s viscoplastic damageable model was used, 

however they neglected the hydromechanical coupling. Recently, Deng et al. (2020) proposed a long-term 

degeneration law of rock strength to study the response of surrounding rock for a circular tunnel excavation, for 

example, the radius of the EDZ and damage degree of surrounding rock. Zaheri and Ranjbarnia (2023) presented a 

closed-formed solution to simulate the time-dependency behaviour of the damaged zone around the tunnel in order 

to calculate the tunnel convergence. Their method is applicable for the case in which the tunnel excavation is halted 

or for the case in which the tunnel is continuously excavated. 

2.1.4. Permeability evolution 

Permeability variation in rock is an important hydraulic property. The hydraulic permeability in the fractured zone is 

not uniform and can increase significantly, particularly in the presence of interconnected extensional fractures. This 

phenomenon has been observed through measurements (as shown in Figure 2-5) conducted under saturated 

conditions in boreholes drilled around the galleries in various orientations. It should be noted that these measurements 

are indicative of the fracture permeability in the fractured zone and not the permeability of the continuous rock matrix. 

In COx claystones, three distinct zones can be identified (Cruchaudet et al., 2010): an undisturbed zone where 

permeability is less than 10-19 m2, a mildly disturbed zone with permeability ranging from 10-19 m2 to 10-17 m2, and a 

highly disturbed zone located near the gallery with a permeability higher than 10-17 m2, which represents an increase 

of more than two orders of magnitude. Figure 2-6 provides a detailed illustration of the boundaries of the zones, 

which have been overlaid with the experimental data shown in Figure 2-5. A correlation can be observed between 

hydraulic measurements and fracture measurements, and the permeability zones can be attributed to the induced shear 

and tensile fracture zones as shown in Figure 2-6. Consequently, the configuration of the permeability zones varies 

depending on the orientation of the gallery and the anisotropy of the stress state (Armand et al., 2014). 

 

Figure 2-5 The variations of hydraulic permeability in the COx claystone along (a) vertical, (b) oblique at 45°, and 

(c) horizontal boreholes drilled around GED gallery (Armand et al., 2014; Pardoen, 2015a). 
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Figure 2-6 Extensions of (a) hydraulic permeability and (b) fracture zones measured around GED gallery (Pardoen, 

2005). 

2.1.5. Air-rock interaction 

When a material is exposed to the atmosphere, transfers occur at the interface between the two mediums. The effects 

of these interface exchanges, which can include material drainage, desaturation, and stress modification, need to be 

carefully studied, as they can significantly affect hydraulic transfer kinetics and fracturing structure. For porous 

materials like soils and rocks, both liquid and gaseous transfers can occur, potentially leading to significant 

modifications of water saturation close to the contact interface. The liquid exchange typically takes the form of 

seepage flow directed towards the atmosphere, occurring when the porous surface of the material is fully saturated. 

Gaseous (water vapour) transfer, on the other hand, occurs when water evaporates at the surface of the material or 

when water vapour reaches the contact interface, typically realised by fluid transfers (gas flows) inside the material 

that are governed by capillary forces. In nuclear waste repositories, air ventilation is performed in the underground 

galleries during excavation and maintenance phases. However, this ventilation may have short-term effects on 

underground structures due to potential water drainage from the rock. In cases of significant drainage, this process 

can even result in rock desaturation and stress modification, as well as changes in the fracturing structure close to the 

drifts. As a result, the behaviour of the damaged zone could be affected (Matray et al., 2007). 

2.2. Mineral composition and microstructure of COx claystone 

As a multiphase composite material with strong heterogeneity, the COx claystone has a complex (micro)structure 

with multiple characteristic lengths from the length scale of the formation (>  𝑑m) to that of the clay minerals (<

 𝜇m) (Robinet et al., 2012). 2D and 3D spatial distributions of the mineral groups of the COx claystone obtained 

from the analyses of X-ray Computed micro-Tomography (micro-CT) and Scanning Electron Microscopy 

(Backscattered Electrons, SEM BSE) images are shown in Figure 2-7. These analyses lead to the determination of 

mineral groups, spatial distributions, mineral area fractions, and mineral morphology (size, shape, and orientation of 

mineral inclusions). 
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Figure 2-7 Spatial distribution of mineral groups of the COx claystone: (a) 2D SEM image on a section 

perpendicular to the bedding planes; (b) 3D micro-CT subvolume (EST26095) (Robinet et al., 2012). 

From the mineralogy study and microscopic observations, the COx claystone is mainly composed of (Figure 2-7): 

tectosilicates (−SixOy, mainly quartz, 10–40%), carbonates (−CO3, mainly calcite, 15–80%), heavy minerals (FeS2, 

pyrite, in a low proportion of 0–3%), and clay minerals (20–60%) as described by Andra (2005), Armand et al. (2017) 

and Robinet et al. (2012). The COx geological layer is composed of units rich in clay minerals (constituting the main 

part of the total layer thickness) and units rich in carbonates (Armand et al., 2014, 2017). At the main level of MHM 

URL (-490 m), the proportions of quartz, calcite, pyrite and clay minerals are respectively 20%, 20-25%, 3% and 50-

55% (Armand et al., 2014). From the work of Cosenza et al. (2015a, 2015b), the average contents of these four 

minerals in the COx clay-rich lithostratigraphic unit are 18%, 30%, 2%, and 50% based on detailed experimental 

investigations.  

The predominant clay minerals found within the COx geological layer are illite and interstratified illite/smectite, with 

some variation observed in the proportions of these minerals at different stratigraphic levels. Microstructural 

investigations are necessary to have a better understanding of the macroscopic behaviour and physical properties of 

clay-rich soils and rocks. The structural mineralogy of clay minerals from a microscopic point of view is summarised 

as follows: 

• Clay unit cell and layers 

At the microscopic scale, clay minerals are a group of hydrated silicate minerals that are typically present in the clay 

fraction of sediments and soils (Reeves et al., 2006). As shown in Figure 2-8, the layered structure of common 

silicates is composed of two simple structural units, namely, silicon tetrahedra and aluminium or magnesium 

octahedra (Lei, 2015): 

➢ Silicon tetrahedral sheets (also known as silica sheets) are composed of two-dimensional arrays of silicate 

tetrahedra. These tetrahedra are connected to each other in such a way that the bases of the tetrahedra are all 

in the same plane and all the apexes point in the same direction. 

➢ Aluminium or magnesium octahedral sheets are composed of two-dimensional arrays of aluminium/ 

magnesium-oxygen-hydroxyl octahedra.    
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Figure 2-8 Schematic representation of microstructure units of clay minerals (Xu, 2018). 

The unit cells are connected spatially to form the basic unit of a clay layer. The unit layer is the basic repeating 

structural element of clay minerals. Two composite layer structures in clay minerals can be identified and described 

in the middle of Figure 2-8: 

➢ The 2:1 type or dioctahedral layer, represented by the group of minerals that include illite, smectite, 

vermiculite, chlorite, and montmorillonite. 

➢ The 1:1 type or trioctahedral layer, represented by the group of minerals that include kaolinite and halloysite. 

The unit layers of clay minerals are very thin and have similar lengths and widths. Since their edges are rarely straight, 

the unit layers can be considered as thin sheets. 

• Particle 

A typical feature of clay minerals is that layers usually do not exist as individual units but combine to form stacks 

(as shown at the bottom of Figure 2-8). These stacks represent clay particles, consisting of 3-10 aligned coupled 

layers, depending on the bonding strength (Pusch and Yong, 2006). However, the bonding between unit layers is 

different in the two types of clay minerals. In montmorillonite, the bonding between unit layers is achieved through 

cations or van der Waals forces. This type of bonding is weak, and therefore, layer separation or expansion may occur 

when a polar liquid (such as water) is available. In contrast, in kaolinite, the bonding between unit layers is through 

a combination of hydrogen bonding and van der Waals forces. This type of bonding is strong enough to prevent 

swelling between kaolinite unit layers. 

Common clay minerals are typically flake-, lath-, or needle-shaped and are around 2 μm in size (Velde, 1995). Figure 

2-9 displays an electron photomicrograph of these minerals. Well-crystallized kaolinite particles (Figure 2-9(a)) are 

six-sided plates that often group into large crystals reaching up to 20 μm (Beaufort et al., 1998), while 

montmorillonite forms smaller crystals averaging less than 0.5 μm (Figure 2-9(b)). Well-crystallized illite may have 

a hexagonal outline and usually occurs as small, flaky particles mixed with other clay and non-clay materials (Figure 

2-9(c)). However, crystal shapes can vary even within the same mineral group, with kaolin group minerals forming 
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euhedral to hexagonal crystallites and tubular, spherical, or flake shapes in halloysite (Giesse, 1988). Some basic 

properties of the three main groups of clay minerals (kaolinite, illite and smectite) are summarised in Table 2-1. 

  

(a) (b) 

 

 

(c)  

Figure 2-9 Electron photomicrograph of clay minerals: (a) crystals of kaolinite (Wilson et al., 2014); (c) subhedral 

montmorillonite crystals (Fesharaki et al., 2007) (d) flaky illite crystals (Christidis, 2011). 

Table 2-1 Basic properties of the three main groups of clay minerals (Wang, 2021) 

Group of clay minerals Kaolinite Illite Smectite 

Layer 1:1(TO) 2:1(TOT) 2:1(TOT) 

Exchangeable cation - K+ Ca2+, Na+ 

CEC (meq/100g) 3-15 10-40 70-100 

Arrangement of particles Isolated crystal Micaceous aggregate Quasi-crystal 

Swelling property Hardly swelling Moderate swelling Great swelling 

• Clay mineral aggregates and pores 

After introducing the formation, size, shape, and structure of clay minerals, the following is the arrangement of the 

solid particles which constitute the soil structure together with their associated pore space. At the level above 

individual discrete clay particles, a general term ‘MU’ is introduced including such as peds, flocs, clusters, domains, 

aggregate groups, crumbs, etc. All these terms imply the aggregation or agglomeration of particles. These MUs, 

which are aggregates of particles, such as clods, aggregates, and pellets, form the backbone of the macrostructure of 
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rock. In the following parts of this thesis, the term ‘MU’ will be replaced by the term ‘aggregate’ (as shown in Figure 

2-10). 

The microstructure of a rock mass is considered to be defined by the properties of individual aggregates (MUs) and 

the way they bound and interact with each other (Pusch and Yong, 2006). The macrostructure of a rock mass is 

obtained by grouping or combining the microstructures. The physical integrity of a rock mass is determined not only 

by the properties of the microstructure distribution but also by the binding and interaction forces between particles 

within the microstructure and between microstructures, all of which are strongly influenced by the fluid 

physicochemical properties in the rock mass. 

 

Figure 2-10 Aggregates of clay mineral particles and pores (modified after Villar, 2004). 

The primary location of pores in clay rocks is within their clay matrix or at the interface with non-porous minerals, 

typically with sizes ranging from 1 to 100 nm (Yven et al., 2007). These pores probably play a crucial role in 

determining the flow and transport characteristics (Song et al., 2015). The porous space is comprised of pores of 

different sizes, which can be categorized based on the reference system used in gas-adsorption techniques (IUPAC 

Classification) (Yven et al., 2007): 

• micropores (interlayer porosity), with openings smaller than 2 nm, may have a structural origin (in the sense of 

mineral structure) or textural origin due to the local arrangement of clay flakes, thus defining grain-boundary 

microporosity. 

• mesopores (e.g. intra-aggregate porosity), with openings smaller from 2 to 50 nm, are rarely structural and 

intraparticular but consist of pores resulting from the spatial arrangement of elementary particles, such as grain 

joints, intra-aggregate porosity, and even in some cases, inter-aggregate porosity for materials with a high clay 

content. 

• macropores (inter-aggregate porosity), with openings larger than 50 nm, are large pores associated with 

intergranular space and protected against compaction effects. 

Figure 2-11 shows the conceptual model proposed by Yven et al. (2007) based on a combination of different 

experimental techniques, including scanning electron microscope, autoradiography, mercury porosimetry, petroleum, 

helium and nitrogen adsorption. The study revealed that inclusions of calcite and quartz are embedded within the 

clay matrix, with the clay matrix accounting for 45-50% of the mineral composition and the pores being inter-
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connected. Swelling minerals, particularly interlayered illite/smectite, were also observed in some platelets, with a 

clear distinction between swelling and non-swelling layers (Menaceur et al., 2016). As shown in Figure 2-11, the 

pores in COx claystone can be divided into two groups: (1) micrometric pores (between clay matrix and quartz 

inclusions) and submicron pores (between matrix clay and calcite inclusions) located at the interface between the 

clay matrix and other minerals, accounting for about 20% to 40% of the total porosity; (2) sub-micrometric and 

nanometer pores located within the clay matrix, accounting for about 60% to 80% of the total porosity. The average 

pore diameter of COx claystone is around 20 nm based using mercury intrusion porosimetry (MIP) (Figure 2-12) 

(Yven et al., 2007; Boulin et al., 2008). 

 

Figure 2-11 Diagram of the organisation of porosity in COx claystone (Yven et al., 2007). 

 

Figure 2-12 Pore size distribution of air-dried COx claystone (Andra, 2005). 

2.3. Mechanical behaviour of COx claystone 

In the context of radioactive waste disposal, the stability of the host formation is crucial for the safety of the repository. 

The mechanical properties of COx claystones therefore need to be well understood and characterized. 
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2.3.1. Shear behaviour 

The shear behaviours of COx claystone have been studied under different test conditions and test methods. This 

includes uniaxial compression condition (Fabre and Pellet, 2006; Gasc-Barbier et al., 2004; Yang et al., 2011, 2013), 

triaxial compression condition (Liu et al., 2015, 2017, 2018; Liu and Shao, 2016; Sarout et al., 2007; Zhao, 2017), 

micro/nano-indentation (Auvray et al., 2015; Gratier et al., 2014; Zhang et al., 2012) and hollow cylinder triaxial cell, 

etc.(Bemer et al., 2004; Huang et al., 2014; Mohajerani et al., 2011). Figure 2-13 shows the stress-strain curves under 

different confining pressures but on unsaturated COx claystone samples at 90% relative humidity (RH). The imposed 

low strain rate is 10-6 s-1 to ensure satisfactory drainage conditions. The main features of short-term mechanical 

behaviours can be summarized as (Armand et al., 2017): (a) linear anisotropic elastic behaviour at the initial stage of 

the curve; (b) dispersed damage before peak stress; (c) strain softening before the peak stress, corresponding to the 

microcracks grow, accumulate, and propagate; (d) residual deformation, macroscopic cracks have been formed at 

this time, and the rock behaves as a non-cohesive friction material. 

 

Figure 2-13 Deviatoric stress-strain curves of triaxial compression test on COx claystone under different confining 

pressures (taken from Armand et al. (2017)).  

Like other clay rocks, COx claystone exhibits a strong dependence on confining pressure, marked by the transition 

of the rock from brittle to ductile behaviour, where the failure stresses in the two modes differ by about 20 MPa. It 

can be seen from Figure 2-13 that the elastic limit, peak strength, and residual strength all increase with the confining 

pressure. The rock behaves rather brittle failure at low confining pressures, corresponding to the formation of a 

macroscopic shear band. The peak strength corresponds to the maximum one obtained during uniaxial or triaxial 

experiments. From a microscopic point of view, this may correspond to the development of microscopic cracks or 

localization bands, initiated just before the peak. Furthermore, the relationship between peak strength and confining 

pressure is non-linear. As shown in Figure 2-14, Mánica et al. (2021) summarised the influence of loading rate (i.e. 

rate-dependent effect) and confining pressures on the peak strength based on the experimental data of Armand et al. 

(2017). Like many natural materials, COx claystones exhibit variability in physical properties. The mean value of 

peak strength obtained at a confining pressure of 12 MPa is 34.9 MPa with a standard deviation of 2.7 MPa (Armand 

et al., 2017). 
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In typical loading-unloading(-reloading) cycles of deviatoric stress on clay rock samples (Zhang et al., 2019), large 

residual strains in both axial and lateral directions are observed after the unloading of deviatoric stress. Combined 

with microscale analyses of the claystone, this irreversible deformation is essentially related to plastic deformation 

caused by the sliding of clay sheets (Abou-Chakra Guéry et al., 2009). 

The strength and elastic properties of COx claystone are highly sensitive to its water content (Yang et al., 2013). Liu 

and Shao (2016) have studied the moisture effects on damage and failure properties of COx claystone, with four 

different moisture levels (dry, 76, 85 and 98%) in a constant axial strain rate of 0.5×10-5 s-1 and in situ confining 

pressure of 12.4 MPa. The strain–stress relations are shown in Figure 2-15. The experimental results show that as the 

water content increases, the strength of claystone decreases and it becomes more ductile. Moreover, the elastic 

modulus also decreases with increasing water content, while the Poisson's ratio is almost unaffected. These effects 

may be inherently related to changes in the microstructure, pore opening, and matrix swelling of claystone caused by 

variations in water content (Liu and Shao, 2016). 

 

Figure 2-14 Experimental (Armand et al., 2017) and simulated peak strengths as a function of confining pressure 

and strain rate. 
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Figure 2-15 Deviatoric stress-strain curves of triaxial compression test on unsaturated COx claystone with different 

humidities: (a) dried; (b) RH = 76%; (c) RH = 85%; and (d) RH = 98%. 

2.3.2. Damage and microcracking physic 

At the meso- and micro- scales, the deformation in clay rocks is dominated by damage, decohesion, and cracking 

mechanisms. Chiarelli et al. (2003) proposed two deformation mechanisms for COx claystone: plasticity induced by 

the slip of clay sheets and anisotropic damage induced by microcracks at the grain-matrix interfaces; however, they 

provided little corresponding evidence from a microscopic perspective. To better understand the microscopic 

physical deformation mechanisms and improve the macroscopic description of deformation and fluid flow of clay 

rock, Desbois et al. (2017) combined scanning electron microscopy (SEM) and broad ion beam (BIB) polishing to 

study the evolution of microstructure in COx claystone samples under triaxial compression conditions. Figure 2-16 

gives a schematic diagram of these authors how investigated the deformation mechanism of clay rock from the bulk 

scale to the nanoscale. 

The experimental results show that the deformation mechanisms are dominantly cataclastic and that crystal plastic 

mechanisms are minor (Desbois et al., 2017). Potential decohesion mechanisms around mineral inclusions and 

cracking within the clay matrix develop in the clay rock (Desbois et al., 2017; Wang et al., 2015). The microcracking 

includes inter-granular microfractures propagating in the clay matrix (i.e. inter-clay aggregates) and between mineral 

inclusions and clay (i.e. grain/matrix joints), as well as intragranular and trans-granular (i.e. intra- and trans-crystal) 

microfractures propagating in non-clay minerals (Desbois et al., 2017). Furthermore, Desbois et al. (2017) proposed 

the following sequence of micro-mechanisms in the COx claystone based on the observation of microstructure using 

BIB-SEM (Figure 2-17): 
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(1) & (2) The initial deformation is caused by intergranular microfractures that propagate in the clay matrix and 

transgranular and intragranular microfractures that propagate in non-clay minerals, both of which result in the 

fragmentation of the original fabric. 

(3) & (4) Further deformation occurs by frictional sliding affecting the process zone at microfracture boundaries and 

in relay between fractures, initiating from the peak of the stress-strain curve, accompanied by local dilatancy, 

accumulation of fracture at the specimen scale, resulting in a loss of cohesion. 

(5) Resealing of the damage zone by shear and pore collapse, the evolution of clay gouge. 

 

Figure 2-16 Schematic diagram of investigating the deformation mechanism of clay rock from the bulk scale to the 

nanoscale: (a) a triaxial deformation test; (b) volumetric DIC on X-ray microtomography images for displacement 

fields, and (c) SEM imaging on high-quality cross sections prepared by BIB (Desbois et al., 2017). 

 

Figure 2-17 Conceptual model of microstructure evolution in triaxially deformed COx claystone (Desbois et al., 

2017). 



Chapter 2 Literature review 

21 

 

2.3.3. Creep behaviour 

Creep deformation is another important feature of clay rock (Armand et al., 2017; Liu et al., 2018; Zhang et al., 2004, 

2007, 2010, 2019). The loading conditions considered include uniaxial creep loading, triaxial creep loading and 

multi-step creep loading. All these tests indicate the creep behaviour of the COx claystone, with significant creep 

(viscous) deformation under constant mechanical loading. Figure 2-18 shows the evolution of axial creep strain of 

COx claystone during triaxial creep tests (Armand et al., 2017). It can be found that the deviatoric loading level and 

confining pressure both have an important effect on the amplitude of the creep strain. In all creep tests they performed, 

the claystone samples are always compressive, that’s to say the variation trend of volumetric creep strain is similar 

to that of axial creep strain. 

 

Figure 2-18 Axial creep strain with time under different deviatoric stress levels and confining pressures (taken from 

Armand et al. (2017)) 

No creep failure (i.e. tertiary creep) is observed in the creep tests conducted by Armand et al. (2017). However, the 

complete creep process of COx claystone can be divided into three stages in certain conditions (Liu et al., 2018; 

Zhang et al., 2019), following the creep curve as shown in Figure 2-19: a primary creep in the short term with a 

decrease of the creep strain rate, a secondary creep with a constant creep strain rate over time (i.e. steady state creep), 

and a possible tertiary creep in the long term with an increase of the creep strain rate towards creep failure. The 

increase in the creep rate appears to be related to the onset and development of damage (Liu et al., 2018). This can 

further lead to a creep-induced failure of the material. Up to now, only a few results on tertiary creep of COx 

claystones have been obtained from laboratory experiments (Liu et al., 2018; Zhang et al., 2019). In some studies, 

the existence of a stress threshold from which viscoplastic strains start to develop has been highlighted by multi-step 

creep tests (Fabre and Pellet, 2006) and confirmed by one-step creep test (Liu et al., 2015). Moreover, the influence 

of moisture on creep is also investigated by Liu et al. (2018). 
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Figure 2-19 Schematic diagram of creep stages and creep failure induced by the material creep with time (adapted 

from Frenelus et al., 2022). 

Few studies give the experimental evidence of the local creep strain field and cracking process of COx claystone 

during creep. By using X-ray micro-tomography (XMT) and Digital volume correlation (DVC) methods, Shi et al. 

(2021a, 2021b) investigated the influence of material heterogeneity and anisotropy on the progressive localization of 

the strain field of COx claystone samples with applied stress and creep time. Their experimental results show that 

the strain field of COx claystone is non-uniform at the sample scale due to material heterogeneity, and this strain 

localization is accentuated with time. The cracking process that leads to the macro failure of the sample occurs 

suddenly, and multiple cracks can be generated during the cracking. These cracks are mainly located in the area of 

weak mechanical strength of the material. The structural anisotropy also has an effect on the cracking patterns at 

creep failure (Figure 2-20). 

 

Figure 2-20 3D reconstructed cracks of the last scan just before failure in five COx claystone samples with different 

loading orientations (Shi et al., 2021a). 𝜃: loading orientations relative to the horizontal bedding planes. 
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2.3.4. Anisotropic behaviour 

The structural anisotropy of clay rock significantly influences its mechanical behaviour. This anisotropy is primarily 

attributed to the presence of parallel bedding planes, which contribute to the transversely isotropic microstructure of 

COx claystone (Armand et al., 2017). At the gallery scale, the in situ observations show that the inherent anisotropy 

of host rock influences the EDZ shape and gallery wall convergence of the GCS gallery with an isotropic initial stress 

state (as shown in Figure 2-3 and Figure 2-4). At the sample scale, Zhang et al. (2012) found that the elastic modulus, 

axial strain at peak stress as well as peak stress of COx claystone are all affected by structural anisotropy through the 

micro-indentation and mini-compression tests. The modulus of elasticity in the parallel direction is systematically 

higher than that in the perpendicular direction. This difference in elastic modulus is mainly due to the gradual closure 

of the bedding plane in the case of perpendicular loading. Triaxial and uniaxial compressive strengths also strongly 

depend on anisotropy (Zhang et al., 2019). The maximum strength is obtained at 𝜃 = 0° or 90°, while the minimum 

ones are obtained occurred at  𝜃 = 30° - 45°. However, the anisotropy has a limited influence on the creep strain 

and creep strain rate (Zhang et al., 2019), whereas Shi et al. (2021a) found that it has an influence on the cracking 

pattern at creep failure (Figure 2-20). 

2.3.5. Desaturation effects  

The desaturation process has an important effect on the mechanical behaviour of COx claystone (Armand et al., 

2017). Due to the presence of clay elements such as montmorillonite, the mechanical behaviour of claystone is very 

sensitive to water content. Numerous experimental studies have been performed on various clay rocks under partially 

saturated conditions (ANDRA, 2005; Bemer et al., 2004; Chiarelli et al., 2003; Zhang and Rothfuchs, 2004). These 

works generally show that the failure stress of clay rocks decreases and the toughness increases with increasing water 

content. The initial modulus of elasticity decreases with the increase in water content, and Poisson's ratio is less 

affected by water content. This effect of water content is intrinsically linked to changes in the microstructure of 

cohesive rocks (Robinet, 2008). For example, considering that clay rocks have very small pores, the pressure 

difference between gas and water in connected pores creates a huge suction. At the nanoscale, drying and wetting 

processes can change the distance between clay platelets and thus the mechanical properties of clay aggregates 

(Robinet, 2008). In macroscopic studies, water content is usually related to relative humidity and total suction through 

isothermal water retention curves and Kelvin's law. 

2.4. Numerical approaches to analyse the underground structures 

As mentioned before, Andra is building an URL in the COx claystone in eastern France, in which various in situ 

geomechanical experiments are being or will be carried out to characterise the in situ properties of the COx claystone 

and to test disposal technologies in a realistic way to assess the short and long-term safety of the deep radioactive 

waste repository. In parallel, theoretical and numerical models able to reproduce the phenomena observed under 

different types of loading paths must be developed. Therefore, different approaches to analyse/design the 

underground structures have been proposed, from simplified analytical modelling to more sophisticated advancded 

numerical approaches. 

2.4.1. Analytical model 

The analytical model provides a useful benchmark for complex numerical simulations in some cases as well as a 



Chapter 2 Literature review 

24 

 

useful tool for quick preliminary studies. Thus, some analytical models have been performed to provide solutions 

based on idealised conditions, defined by a set of simplifying assumptions (geometry, stress field, material behaviour, 

etc.). In our previous papers (Dufour et al., 2009; Wong et al., 2008a, 2008b), we focused on a quasi-analytical 

approach of the post-closure behaviour of a cylindrical or spherical cavity drilled into a poro-elastic or poro-

viscoelastic medium and submitted to a very simplified scenario (sudden application of the lithostatic stresses on the 

backfill after lining failure). A solution accounting for a more realistic (but still simplified) life cycle of the tunnel 

has been developed by Dufour et al. (2012) in the particular case of poro-elasticity. On the other hand, Cornet et al. 

(2017, 2018) used both analytical and numerical modelling to study the nonlinear viscoelastic closure of salt cavities 

subjected to a combined pressure and shear stress load in the far field. Inelastic strains of deep rocks under loading, 

which have been experimentally observed (Chiarelli et al., 2003; Gatelier et al., 2002; Zhou et al., 2011), have been 

taken into account by considering an elastoplastic behaviour of the rock mass (Carranza-Torres and Zhao, 2009; El 

Jirari et al., 2020). However, it is worth noting that many rocks, in the long-term, exhibit time-dependent irreversible 

strains once the applied stress deviator goes beyond a certain threshold, which has been demonstrated experimentally 

by several authors for different types of rocks (Boidy et al., 2002; Changa and Zoback, 2009; Gasc-Barbier et al., 

2004; Jin and Cristescu, 1998; Tang et al., 2020). In many cases, the long-term creep response due to material 

viscosity is described using viscoplastic theory (Zhou et al., 2008), which is used by many authors to simulate the 

time-dependent responses of underground structures (Kazmierczak et al., 2007; Malan, 2002; Pardoen and Collin, 

2017). Nonetheless, these non-linear modellings generally require sophisticated computational tools to obtain 

solutions and do not easily lend themselves to analytical approaches. Analytical models, however, are very useful to 

obtain quick order-of-magnitude estimates, as well as a better understanding of the intervening physical phenomena 

(thanks to the explicit equations) or to check the validity of more sophisticated numerical models based on idealised 

limiting cases. 

It appears that the viscoplastic volumetric strain has not been considered in these works. Indeed, it can be noticed 

that very few analytical models take into account the effect of dilatancy of the rock mass in the post-closure behaviour 

of the underground structure, although it has been experimentally evidenced (Ribacchi, 2000; Yoshinaka et al., 1998). 

The irreversible volumetric strains impact essentially on the stress and displacement fields, as well as on the extent 

of the EDZ in which important irreversible strains or damage occur. In such situations, creep and dilatancy of the 

rock mass are two significant factors that both need to be considered in a reliable modelling approach. 

2.4.2. Theoretical and numerical model 

For more than 10 years, several coupling models including the development of theoretical and numerical methods 

have been proposed aiming to capture the short- and long-term hydromechanical characteristics of galleries drilled 

in COx claystone, for example GCS and GED. This requires the determination of constitutive models and parameters 

based on experimental results, then the numerical simulation of underground galleries including for example 

construction stage (excavation, e.g. benchmark ‘Transverse action’, Seyedi et al., (2017)), exploitation stage, etc. 

Considering the short-term excavation of underground galleries in quasi-brittle clay rock, the induced rock damage 

and fracturing processes are important to reproduce (Pardoen et al., 2015c). They induce the development of an EDZ 

around underground galleries and nuclear waste cells. In presence of underground water, the hydromechanical 

coupled behaviour of rock is also important to reproduce, especially in damaged and fractured rock media (Armand 

et al., 2013; Mánica et al., 2021; Zhan et al., 2021). Consequently, micromechanics-based models have been 
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developed to reproduce damage and solid-fluid interactions at the mineral grain scale, for instance, the 

hydromechanical model proposed by Frey et al. (2013) within the double-scale finite element framework 

(FEM×FEM or FE2) allows to capture the degradation of geological materials, the physical processes of water flow, 

and the hydromechanical coupling (e.g. hydraulic permeability evolution in microcracks).  

The long-term creep deformation and viscous behaviour of the COx claystone is one of the key issues being 

investigated in underground experiments, to ensure the safety conditions required for long-term repository of 

radioactive wastes. For instance, viscoplastic models have been used to reproduce the time evolution of wall 

convergence of GCS and GED galleries (Cuvilliez et al., 2017; Mánica et al., 2017; Souley et al., 2017). Guayacán-

Carrillo et al. (2016) and Jung et al. (2022) have studied the effect of anisotropic creep on the convergence of deep 

galleries. To simulate EDZ observed around excavation face, advanced numerical models should be introduced, such 

as second gradient regularization (van den Eijnden et al., 2017; Pardoen et al., 2015b, 2015c; Pardoen and Collin, 

2017), non-local models (Mánica et al., 2021), and phase-field models (Yu et al., 2021). Moreover, the extended 

rigid block spring method (Yao et al., 2017) has also been employed. In the model developed by van den Eijnden 

(2015) within FE2 framework, the behaviours of solid grains are all linear elastic and the homogenised permeability 

of rock depends on crack openings. In this case, the gallery wall convergence is induced by the diffusion process of 

pore water. If the skeleton is dry, there is no longer delayed behaviour but only the instantaneous elastic deformation 

caused by the excavation unloading. By comparing the consolidation characteristic times predicted by the poro-

elastic theory with experimental results on claystone, Rahal et al. (2017) found that the delayed behaviour of 

claystone cannot be explained by pore pressure dissipation alone, because it includes creep phenomena due to a high 

clay content. Therefore, they conclude that damage, poro-mechanics and viscoplasticity have to be coupled if the 

complex behaviour of claystone around the gallery is to be explained. 
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Chapter 3 Analytical modelling of post-closure behaviour of a deep spherical cavity in 

a dilatant poro-viscoplastic rock mass 

Deep cavity closure is an important issue in the geotechnics of underground works, such as mining industry (Wong 

et al., 2008a, 2008b), oil and gas extraction (Bérest et al., 2001), and radioactive waste disposal design (Cornet and 

Dabrowski, 2018; Hudson et al., 2001). This chapter first presents an analytical approach for the hydromechanical 

behaviour of a deep spherical cavity during different stages of its simplified life cycle: (1) excavation, (2) free 

convergence and (3) backfill contact and post-closure. The underground cavity is assumed to be excavated in a 

dilatant poro-viscoplastic rock mass, and viscoplasticity is modelled based on the Perzyna’s overstress concept. The 

dilation is incorporated by assuming that the volumetric viscoplastic strain rate is a linear function of the Frobenius 

norm of the deviatoric plastic strain rate. The analytical model proposed in this work completes a previous work of 

the authors (Bui et al., 2014) by adding the consideration of the dilatant behaviour of the rock mass. After presenting 

the analytical developments, a few numerical examples are presented to illustrate the applicability of the model. In 

particular, a parametric study shows the influence of key parameters such as dilation parameter, backfill stiffness, 

viscosity and delay of contact between the rock mass and the internal backfill. Then, a sensitivity analysis is 

conducted on the time-dependent development of the EDZ around an unsupported deep cavity. The von Mises 

equivalent strain is used as a criterion to assess the time–dependent extension of the damaged area. The conclusions 

provide some useful guidelines for the engineering design of underground openings. 

3.1. Description of the problem 

The life cycle of an underground cavity is idealized as 3 stages schematized in Figure 3-1. To simplify the problem 

presentation, at time 𝑡 = 0 consider a non-deformed initial reference configuration for the host rock, which is 

supposed to be in equilibrium with the geostatic pressure with zero displacements and strains. 

 

Figure 3-1 Simplified life cycle of a deep cavity: (1) excavation; (2) free convergence; (3) backfill contact and post-

closure. 

It is assumed that the cavity is at a great depth so that the stress heterogeneity in the surrounding rock mass can be 

neglected. Decompression due to excavation is the main driving force in our problem; the effects of gravity is 

accounted for in the constitution of initial stress and no longer intervene in subsequent stages in a quasi-static analysis. 

The first stage (0 ≤ 𝑡 ≤ 𝑡1= 0+) is related to the excavation of a deep cavity inside the rock mass. Since the time 

required for excavation is very short compared to other stages, the excavation is considered as an instantaneous 
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process. The second stage corresponds to the free convergence of the surrounding rock mass, in the absence of any 

support. It is assumed here that either the rock mass is self-stable, or that the lining installed immediately after 

excavation deteriorates rapidly compared to the duration of the free convergence stage, so that the duration of the 

effective support is negligible. Hence, this period of free convergence starting at time 𝑡1 = 0+ continues until a 

certain time 𝑡2 . At this instant, the cavity wall is supposed to come into contact with a linear elastic backfill. 

Afterwards, the cavity wall continues to converge at a slower speed due to the confinement effect of the backfill.  

3.2. General framework and resolution method  

In the following, the tensor and vector quantities are written in bold and the scalars are denoted in normal font. 

Tensile stresses and strains taken to be positive under material mechanics convention in this thesis. Spherical 

symmetry conditions are assumed, resulting in the dependence of all physical quantities on only two variables, the 

radial coordinate 𝑟 and time 𝑡. Under these conditions and using the spherical coordinate system, the stress and 

strain tensors are diagonal with equal angular components and the displacement field is purely radial: 

𝝈 = [

σr

σθ

σθ

] ;  𝒖⃗⃗⃗ =(
𝑢(𝑟, 𝑡)
0
0

)  ;   𝜺 = [

𝜕𝑟𝑢

𝑢 𝑟⁄

𝑢 𝑟⁄
] (3-1) 

where 𝑢(𝑟, 𝑡) is the radial displacement.  

The volumetric strain 𝜀𝑝 is related to the radial displacement 𝑢 by: 

𝜀𝑝 ≡ 𝑡𝑟(𝜀𝑖𝑖) =
𝜕𝑢

𝜕𝑟
+ 2

𝑢

𝑟
 (3-2) 

The unique non-trivial equilibrium equation in spherical symmetry writes: 

𝜎𝑟 − 𝜎𝜃 = −
𝑟

2

𝜕𝜎𝑟
𝜕𝑟

 (3-3) 

Under the assumption of small strains, the strain tensor can be decomposed into its elastic and visco-elastic parts, 

denoted by superscripts ‘e’ and ‘vp’, respectively: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑣𝑝
 (3-4) 

3.2.1. Elastic constitutive equations 

Based on the Terzaghi’s definition, the effective stress 𝝈′ under spherical symmetry writes: 

𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 + 𝑝𝑤𝛿𝑖𝑗 = [

σr + 𝑝𝑤
σθ + 𝑝𝑤

σθ + 𝑝𝑤

] (3-5) 

where 𝑝𝑤 is the pore water pressure. 

Under spherical symmetry, the (effective) mean stress (𝑝′ ) 𝑝 and deviatoric stress tensor 𝒔 write: 
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 𝑝 ≡
1

3
tr(𝜎𝑖𝑖) =

1

3
(𝜎𝑟 + 2𝜎𝜃)  ; 𝑝

′ = 𝑝 + 𝑝𝑤   ;  𝑠𝑖𝑗 ≡ dev(𝜎𝑖𝑗) =
𝜎𝑟 − 𝜎𝜃
3

[
2

−1
−1

] (3-6) 

where 𝑝 and 𝑝′  are respectively the total and effective mean stresses. According to Eq. (3-6) and the relation 𝜎𝑟 >

𝜎𝜃 (due to the decompression), the Von Mises equivalent stress 𝑞 can be written as: 

𝑞 ≡ √(3 2⁄ )𝑠𝑖𝑗𝑠𝑖𝑗 = |𝜎𝑟 − 𝜎𝜃| = 𝜎𝑟 − 𝜎𝜃 (3-7) 

Substituting Eq. (3-3) into Eq. (3-6), the expression of 𝑞 can be rewritten as: 𝑞 = −(𝑟 2⁄ )𝜕𝑟𝜎𝑟. This chapter will be 

limited to the case of elastic incompressibility, that is to say 𝑣 = 0.5, which implies that the bulk modulus of the 

rock mass will tend to infinity (i.e. 𝐾 → ∞) and the shear modulus 𝐺 is linked to Young's modulus 𝐸 by 𝐺 = 𝐸 3⁄ . 

This amounts to neglect the elastic volume changes relative to their viscoplastic counterparts. Thus, the simplified 

rate form of the Hooke's law writes, on account of spherical symmetry and Eqs. (3-1) and (3-6): 

𝜀𝑖̇𝑗
𝑒 =

1

2𝐺
𝑠̇𝑖𝑗 =

𝜎̇𝑟 − 𝜎̇𝜃
𝐸

[
1

−1 2⁄

−1 2⁄
] (3-8) 

where a dot above a variable indicates the partial derivative with respect to time. 

3.2.2. Viscoplastic constitutive equations 

Based on experimental investigations, the creep behaviour of a relatively large class of geomaterials with low 

volumetric dilatancy can be adequately described by the following creep law based on the overstress concept of 

Perzyna (1966): 

𝜀𝑖̇𝑗
𝑣𝑝
=
〈𝑞 − 𝜎𝑠〉

𝑛

𝜂
𝑚𝑖𝑗 (3-9) 

where 〈𝑥〉 = 𝑥  for 𝑥 ≥ 0 and 〈𝑥〉 = 0 for 𝑥 < 0, the equivalent shear stress 𝑞  is defined in (6), 𝜎𝑠  is a non-

negative stress threshold so that 𝑞 < 𝜎𝑠 defines an elastic domain with zero creep strain rate (𝜀𝑖̇𝑗
𝑣𝑝
= 0), 𝜂 is the 

dynamic viscosity, the positive exponent 𝑛 allows to account for some form of non-linearity. Finally, the tensor 𝑚𝑖𝑗 

(normalised or not) defines the direction of 𝜀𝑖̇𝑗
𝑣𝑝

. In essence, Eq. (3-9) says that the viscoplastic strain rate is zero 

when the stress point is inside an elastic domain defined by 𝑞 − 𝜎𝑠 ≤ 0, and increases as the stress point moves 

further away from the elastic domain. 

A commonly adopted assumption is to identify the tensor 𝑚𝑖𝑗 with the deviatoric stress tensor (𝑚𝑖𝑗 = 𝑠𝑖𝑗) which 

implies isochoric creep strain since then 𝑡𝑟(𝜀𝑖̇𝑖
𝑣𝑝
) = 𝑡𝑟(𝑠𝑖𝑗) = 0. This assumption, initially adopted for metals, leads 

to a simple model applicable to a class of materials with small volume change (metals, saturated clays, etc.). 

Many experimental investigations have been performed to access the various material constants relative to the above 

constitutive law, in particular the stress threshold 𝜎𝑠. While laboratory investigations of relatively short durations 

(commonly a few weeks to exceptionally a few years) indicate positive values, an assumption that makes the 

analytical resolution much easier is to assume that 𝜎𝑠 may approach zero for very long term behaviour. Since the 

identification of the stress threshold below which creep ceases can be particularly difficult for materials such as clays 

(Zhang et al., 2010), this assumption can be seen as a simple and conservative one to assess the maximum extension 
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of the damaged zone likely to develop in the long term around a cavity. In this work, attention is focused on building 

an analytical model to study the case of zero stress threshold: 𝜎𝑠 = 0. Consistently with the objective of developing 

an analytical solution, we will also assume a unit stress exponent, 𝑛 = 1, in the sequel. 

Concerning the non-accounting of dilatancy by taking 𝑚𝑖𝑗 = 3𝑠𝑖𝑗 2𝜎𝑒𝑞⁄ , this assumption which seems satisfactory 

in some cases like salt becomes questionable and may lead to unacceptable errors for other geomaterials. A volume 

dilatancy is introduced to remediate this defect. To this end, the viscoplastic strain rate tensor is expressed as the sum 

of a volumetric and a deviatoric components:  

𝜀𝑖̇𝑗
𝑣𝑝
= 𝜀𝑞̇,𝑖𝑗

𝑣𝑝
+ (

𝜀𝑝̇
𝑣𝑝

3
) 𝐼𝑖𝑗 (3-10) 

where 𝜺̇𝑞
𝑣𝑝

 is defined by Eq.(3-9) with 𝑚𝑖𝑗 = 3𝑠𝑖𝑗 2𝜎𝑒𝑞⁄  and 𝜎𝑠 = 0. For future reference, let us introduce the scalar 

invariant named "equivalent deviatoric viscoplastic strain rate" by the relation: 𝛾̇𝑞
𝑣𝑝
= ‖𝜺̇𝑞

𝑣𝑝
‖. Note that for second-

order symmetric tensors: ‖𝒕‖ = √𝑡𝑖𝑗𝑡𝑖𝑗. 

Under the condition of spherical symmetry and on account of the previous assumptions and notations, the deviatoric 

component of the viscoplastic strain rate tensor can be written as: 

𝜀𝑞̇,𝑖𝑗
𝑣𝑝

=
𝜎𝑟 − 𝜎𝜃
𝜂

[
1

−1 2⁄

−1 2⁄
] (3-11) 

Concerning the volumetric component, it is found in only a few creep models. The viscoplastic models proposed by 

Pellet et al. (2005) and by Bui et al. (2017), which also account for damage behaviour, are two examples. Their 

construction is based on a thermodynamic approach, in which the strain rate tensor is obtained by differentiating a 

dissipation potential. These complex models cannot yield analytical solutions, even with simplified geometry and 

construction stages. In this work, the new model proposed is adopted from a family of classical plastic models in 

which the volumetric plastic strain rate 𝜀𝑝̇
𝑣𝑝

 is expressed as a simple function of the equivalent deviatoric plastic 

strain rate 𝛾̇𝑞
𝑣𝑝

 (Zhao et al., 2020). In the context of underground structures in soil or rock masses, deformations are 

mainly due to tangential relative displacements of non-smooth interfaces or between grains at the microscale 

(Pardoen et al., 2020), inducing normal displacements, which is the physical origin of volumetric dilation. In 

consequence, it is reasonable to assume a correlation between volumetric dilation and shear strain. Note that this 

volumetric dilation has important impact on the shear resistance and the plastic behaviour among geomaterials, which 

is often described by some form of volumetric hardening law, such as the classic Cam-Clay model. A more detailed 

account on different possible correlations between 𝜀𝑝̇
𝑣𝑝

 and 𝛾̇𝑞
𝑣𝑝

 can be found in Yu (2006). The simplest correlation 

is a linear relation, which is consistent with the objective of building an analytical model. We therefore assume the 

following linear form defined by a dilation parameter 𝛼0: 

𝜀𝑝̇
𝑣𝑝
= 𝛼0 𝛾̇𝑞

𝑣𝑝
 (3-12) 

It should be noted that Eq. (3-12) can also take the equivalent incremental form 𝑑𝜀𝑝
𝑣𝑝
= 𝛼0𝑑𝛾𝑞

𝑣𝑝
. The pertinence of 

this simplified dilatancy rule has been confirmed by Tian et al. (1994) through drained creep tests on marine 

sediments at lower stress level, while it has to be replaced by a piecewise linear relation at higher stress level. Several 
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authors (Sekiguchi, 1973; Wang and Yin, 2014) also proposed some other different relationships between 𝑑𝜀𝑝
𝑣𝑝

 and 

𝑑𝛾𝑞
𝑣𝑝

. 

Based on Eqs. (3-7), (3-11) and (3-12), the volumetric plastic strain rate in tensor form 𝜀𝑝̇
𝑣𝑝
𝐼𝑖𝑗 3⁄  writes: 

𝜀𝑝̇
𝑣𝑝

3
𝐼𝑖𝑗 = 𝛼

𝜎𝑟 − 𝜎𝜃
𝜂

𝐼𝑖𝑗;     𝛼 =
𝛼0

√6
 (3-13) 

Therefore, the total viscoplastic strain rate can be written as follows by the sum of Eqs. (3-11) and (3-13): 

𝜀𝑖̇𝑗
𝑣𝑝
= (

𝜀𝑝̇
𝑣𝑝

3
) 𝐼𝑖𝑗 + 𝜀𝑞̇,𝑖𝑗

𝑣𝑝
=
𝜎𝑟 − 𝜎𝜃
𝜂

[
1 + 𝛼

𝛼−1 2⁄

𝛼−1 2⁄
] (3-14) 

Finally, eliminating the strains from Eqs. (3-1), (3-8) and (3-14), we get the following system of partial differential 

equations: 

𝜕𝑢̇

𝜕𝑟
=
1

𝐸
(𝜎̇𝑟 − 𝜎̇𝜃) +

1 + 𝛼

𝜂
(𝜎𝑟 − 𝜎𝜃) (3-15) 

𝑢̇

𝑟
= −

1

2𝐸
(𝜎̇𝑟 − 𝜎̇𝜃) +

𝛼−1 2⁄

𝜂
(𝜎𝑟 − 𝜎𝜃) (3-16) 

To summarize, the problem is governed by a system of 3 equations (3-3), (3-15) and (3-16) on the three variables 𝑢, 

𝜎𝑟 and 𝜎𝜃. 

Concerning the hydromechanical coupling, the equation of hydraulic diffusion can be deduced by combining the 

equation of water mass balance and Darcy's law (see Coussy (2004) for details):  

𝜀𝑝̇ = 𝜕𝑟𝑢̇ + 2
𝑢̇

𝑟
= 𝜆ℎ∆𝑝𝑤 (3-17) 

where 𝜆ℎ is the hydraulic conductivity; ∆= ∇ ⋅ ∇  is the Laplace operator. Note that the effect of the viscoplasticity 

(or damage) on 𝜆ℎ is not taken into account here, which would be too complicated for an analytical model. The 

coupling between mechanical and hydraulic fields intervenes via the term: 𝜀𝑝̇ = 𝜀𝑝̇
𝑣𝑝
= 𝜕𝑟𝑢̇ + 2

𝑢̇

𝑟
≠ 0, due to the 

viscoplastic dilatancy. 

3.2.3. Resolution method 

Except for the first stage (instantaneous excavation) whose solution is trivial, the general resolution method consists 

at first transforming all the variables into the Laplace transform space by 𝑓̅(𝑟, 𝑠) = 𝐿{𝑓(𝑟, 𝑡)} = ∫ 𝑓(𝑟, 𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
, 

leading to a system of ordinary differential equations (ODE's) from which the unknown variables are determined. 

This is followed by the inversion of the solution obtained in the transformed space back to the real time space. 

Considering that this last step cannot be done analytically when the functions are too complex, a numerical inversion 

according to the Stehfest algorithm (Stehfest, 1970) is adopted: 



Chapter 3 Analytical modelling of post-closure behaviour of a deep spherical cavity in a dilatant poro-viscoplastic 

rock mass 

33 

 

𝑓(𝑟, 𝑡) = 𝐿−1[𝑓̅(𝑟, 𝑠)] ≅
𝑙𝑛2

𝑡
∑ 𝜉𝑛𝑓̅ (𝑟, 𝑛

𝑙𝑛2

𝑡
)

𝑁

𝑛=1

 (3-18) 

𝜉𝑛 = (−1)
𝑛+

𝑁
2 ∑

𝑘
𝑁
2(2𝑘)!

(
𝑁
2
− 𝑘) ! 𝑘! (𝑘 − 1)! (𝑛 − 𝑘)! (2𝑘 − 𝑛)!

min (𝑛,
𝑁
2
)

𝑘=𝐼𝑛𝑡(
𝑛+1
2
)

 (3-19) 

where 𝐼𝑛𝑡(𝑥) means the integer part of 𝑥, 𝑁 is an even positive integer; note that the coefficients 𝜉𝑛 verify the 

identity ∑
𝜉𝑛

𝑛
𝑁
𝑛=1 = 1, as pointed out by Dufour et al. (2012). 

3.2.4. Normalization of variables 

In order to better illustrate the physical connection between different parameters and above all to give a compact 

presentation, the variables are normalized relative to their respective characteristic values according to the following 

scheme:  

𝛴𝑟 =
𝜎𝑟
𝑃∞
;  𝛴𝜃 =

𝜎𝜃
𝑃∞
;  𝑈 =

𝐸

𝑃∞

𝑢

𝑎
; 𝑟′ =

𝑟

𝑅𝑎
;  𝑡′ =

𝑡

𝑇0
;  𝑡1

′ =
𝑡1
𝑇0
;  𝑡2

′ =
𝑡2
𝑇0
;  𝑝𝑅

′ =
𝑝𝑅
𝑃∞
;  𝐾𝑅

′ =
𝐾𝑅
𝐸

 

(3-20) 
𝑝𝑤
′ =

𝑝𝑤
𝑃∞
;  𝑝𝑤0

′ =
𝑝𝑤0
𝑃∞

  

where 𝛴𝑟 , 𝛴𝜃 , 𝑈 , 𝑟′ , 𝑡′  are respectively the normalized versions of radial and tangential stresses, radial 

displacement, radial coordinate and time; 𝑝𝑤
′  and  𝑝𝑤0

′  are respectively the normalized pore pressure at current and 

initial state; 𝐾𝑅
′  is the normalized backfill stiffness; 𝑃∞ is the geostatic pressure; 𝑅𝑎 is the cavity radius; 𝑇𝑚 = 𝜂 𝐸⁄  

is the characteristic time of creep, which is identical to the characteristic relaxation time due to the elastic 

incompressibility assumption. The relation between the two characteristic times can be found in Bui et al. (2014). 

The unknowns of the problem are now 𝑈(𝑟′, 𝑡′), 𝛴𝑟(𝑟
′, 𝑡′), 𝛴𝜃(𝑟

′, 𝑡′) and 𝑝𝑤
′ (𝑟′, 𝑡′). 

3.3. First stage: excavation of cavity 

3.3.1. Initial and boundary conditions 

As mentioned above, the first stage corresponds to an instantaneous excavation of a spherical cavity in a 

poro-viscoplastic medium. Considering the finite values of material viscosity and hydraulic conductivity, the creep 

strain and pore water transport must be infinitesimal within an infinitesimal time lapse. On the contrary, elastic strain 

occurs instantaneously due to the change in the stress field, which follows the boundary conditions without delay. 

Therefore, in this first stage, the medium can be considered as poro-elastic and undrained. 

The initial state at 𝑡′ = 0  is used as the initial reference configuration in which the rock mass is under 

hydromechanical equilibrium and characterized by homogenous fields of pore pressure 𝑝𝑤 and geostatic stress 𝑃∞. 

Moreover, the displacements and strains in this initial state are null, Therefore, the initial conditions at 𝑡′ = 0 are: 

𝛴𝑟(𝑟
′, 0) = 𝛴𝜃(𝑟

′, 0) = −1;  𝑈(𝑟′, 0) = 0 (3-21) 
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During excavation, the radial stress 𝜎𝑟 at the cavity wall jumps instantaneously from −𝑃∞ to zero, while the radial 

displacement and stress at infinity remain at their initial values since the perturbation due to excavation of a finite-

size cavity cannot propagate instantaneously to infinity. Therefore: 

𝛴𝑟(1, 0
+) = 0;  𝛴𝑟(∞, 0

+) = −1;  𝑈(∞, 𝑡′) = 0 (3-22) 

During an undrained evolution, considering no water transport takes place, the pore pressures change in accordance 

with the volume change of the elementary particle of the porous solid element. In the present case, since an 

instantaneous stress change induces zero viscoplastic strain and that the elastic volume strain rate is zero due to Eq. 

(3-4), the overall volume strain increment is zero. In consequence, the pore pressures remain unchanged in this first 

stage, except at the cavity wall where it drops instantaneously to zero, presenting a momentary mathematical 

singularity. 

3.3.2. Analytical solution 

With the above initial conditions (3-21) and boundary conditions (3-22), the analytical solution in time domain for 

this stage can be deduced. As the excavation occurs instantaneously, the creep (i.e. viscoplastic) strains of a finite 

rate have no time to develop and therefore remain null; only elastic strains intervene. Since this resolution is classical, 

the computations are not shown. They can be found for example in (Dufour et al., 2012). The solution for the 

displacement and stress fields is given below: 

𝑈+(𝑟′) = −
3

4
𝑟′
−2
;    𝛴𝑟

+(𝑟′) = −[1 − 𝑟′
−3
]  

𝛴𝜃
+(𝑟′) = − [1 +

1

2
𝑟′
−3
] ; 𝑝𝑤

′ +(𝑟′) = 𝑝𝑤0
′  

(3-23) 

The elastic strain field can be obtained by Eq. (3-1). 

3.4. Second stage: free convergence without support 

3.4.1. Initial and boundary conditions 

Time evolution of various field quantities are supposed to be continuous. Their initial values for this second stage 

(i.e. at time 𝑡1
′ = 0+) are therefore given by the solution of Stage 1 in Eq. (3-23). During this second stage, both total 

radial stress and pore pressure are zero at the unlined cavity wall, and are assumed to be unaffected far from the 

cavity. Therefore, in Laplace transform space, we have: 

𝛴̅𝑟(1, 𝑠) = 0 ; 𝛴̅𝑟(∞, s) = −
1

𝑠
 (3-24) 

𝑝𝑤
′̅̅̅̅ (1, 𝑠) = 0; 𝑝𝑤

′̅̅̅̅ (∞, 𝑠) =
𝑝𝑤0
′

𝑠
 (3-25) 

3.4.2. Quasi-analytical solution 

In terms of the normalized variables introduced in Eq. (3-20), Eqs. (3-15) and (3-16) can be rewritten as:  

𝜕𝑈̇

𝜕𝑟′
= 𝛴̇𝑟 − 𝛴̇𝜃 + (1 + 𝛼)(𝛴𝑟 − 𝛴𝜃) (3-26) 
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𝑈̇

𝑟′
= −

𝛴̇𝑟 − 𝛴̇𝜃
2

+ (𝛼 −
1

2
) (𝛴𝑟 − 𝛴𝜃) (3-27) 

where a dot above a variable now represents the partial derivative relative to 𝑡′. The equilibrium equation (3-3) in 

terms of normalized variables writes, respectively in the time domain and Laplace domain: 

𝛴𝑟 − 𝛴𝜃 = −
𝑟′

2

𝜕𝛴𝑟
𝜕𝑟′

;    Σ̅𝑟 − 𝛴̅𝜃 = −
𝑟′

2

𝜕𝛴̅𝑟
𝜕𝑟′

 (3-28) 

Applying the Laplace transform to Eqs. (3-26) and (3-27) and eliminating the tangential stress 𝛴̅𝜃 using Eq. (3-28), 

we get the following two equations on the two variables 𝑈 and 𝛴𝑟: 

𝑠
𝜕𝑈̅

𝜕𝑟′
= −

𝑠 + 1 + 𝛼

2
𝑟′
𝜕Σ̅𝑟
𝜕𝑟′

+ (
𝜕𝑈+

𝜕𝑟′
− 𝛴𝑟

+ + 𝛴𝜃
+) (3-29) 

𝑠
𝑈̅

𝑟′
=
𝑠 + 1 − 2𝛼

4
𝑟′
𝜕Σ̅𝑟
𝜕𝑟′

+ (
𝑈+

𝑟′
+
𝛴𝑟
+ − 𝛴𝜃

+

2
) (3-30) 

Note that the expressions inside the two parentheses involving initial values at 𝑡1
′ = 0+ are both zero, on account of 

(3-23). 

Dividing the difference between Eqs. (3-29) and (3-30) by 𝑟′, followed by an integration relative to 𝑟′ leads to: 

𝑠
𝑈̅

𝑟′
= −

3(𝑠 + 1)

4
Σ̅𝑟 + 𝐴(𝑠) (3-31) 

where 𝐴(𝑠) is an integration constant. Eliminating 𝑠
𝑈̅

𝑟′
 between Eqs. (3-30) and (3-31) leads to the following 

equation on Σ̅𝑟: 

𝑟′
𝜕Σ̅𝑟
𝜕𝑟′

+ Λ(s)Σ̅𝑟 =
4𝐴(𝑠)

𝑠 + 1 − 2𝛼
;   Λ(s) =

3(𝑠 + 1)

𝑠 + 1 − 2𝛼
 (3-32) 

Solving the linear differential Eq. (3-32) and considering the boundary conditions (3-24), we obtain the solution of 

Σ̅𝑟: 

Σ̅𝑟 = −
1

𝑠
[1 − 𝑟′−Λ(s)] (3-33) 

Σ̅𝜃 and 𝑈̅ can then be calculated, respectively, by substituting the above equation into Eqs. (3-28) and (3-30): 

Σ̅𝜃 = −
1

𝑠
[1 + (

Λ(s)

2
− 1)𝑟′−Λ(s)] (3-34) 

𝑈̅ = −
3

4
(
1

𝑠
+
1

𝑠2
) 𝑟′−(Λ(s)−1) (3-35) 

Note that when 𝛼 = 0  (therefore Λ(s) = 3), the solution above is consistent with the case of a non-dilatant 

viscoplastic rock mass. The quasi-analytical solution in the time-domain can be obtained by numerical inversion of 

Eqs. (3-33)-(3-35) using the Stehfest algorithm. However, it is interesting to note that entirely explicit expressions 

can be obtained for quantities at the cavity wall (𝑟′ = 1): 
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Σ𝑟(1, 𝑡′) = 0 (3-36) 

Σ𝜃(1, 𝑡′) = ℒ
−1 [−

3(𝑠 + 1)

2𝑠(𝑠 + 1 − 2𝛼)
] = −

3

2(1 − 2𝛼)
[1 − 2𝛼𝑒−(1−2𝛼)𝑡

′
] (3-37) 

𝑈(1, 𝑡′) = −
3

4
(1 + 𝑡′) (3-38) 

Note that the parameter 𝛼 does not intervene on the cavity wall convergence. This is due to the idealised geometry 

(spherical symmetry and infinite domain) and the linear constitutive model assumed. This fact can be paralleled to 

the famous result that an infinite homogeneous isotropic linear elastic medium outside a spherical/cylindrical cavity 

when subject to an arbitrary temperature field shows zero displacement at the cavity wall, despite an outward 

displacement induced by thermal dilation at every other point (Berest and Weber, 1998). At time 𝑡′ = 𝑡2
′ , the cavity 

wall is supposed to enter into contact with a backfill, which marks the end of Stage 2 of free convergence. 

Considering the normalized variables introduced in Eq. (3-20), Eq. (3-17) is rewritten in the Laplace space: 

𝜕2𝑝𝑤
′̅̅̅̅

𝜕𝑟′2
+
2

𝑟′
𝜕𝑝𝑤

′̅̅̅̅

𝜕𝑟′
= 𝜅′(𝑠𝜁̅ − 𝜁+) (3-39) 

where  𝜅′ =
𝑎2

𝜂𝜆ℎ
= 𝑇ℎ 𝑇𝑚⁄  with 𝑇ℎ =

𝑎2

𝐸𝜆ℎ
 the characteristic hydraulic diffusion time; 𝜁 =

𝜕𝑈

𝜕𝑟′
+ 2

𝑈

𝑟′
 is the 

normalized volumetric strain, and 𝜁+ is the value of 𝜁 at the beginning of this stage (at 𝑡′ = 0+), which is null due 

to the consistency of results between Stages 1 and 2. Considering the expression of 𝑈 in Eq. (3-38), Eq. (3-39) can 

then be expressed as: 

𝜕2𝑝𝑤
′̅̅̅̅

𝜕𝑟′2
+
2

𝑟′
𝜕𝑝𝑤

′̅̅̅̅

𝜕𝑟′
= 𝜅′

3(𝑠 + 1)

4𝑠
(Λ(s) − 3)𝑟′

−Λ(s)
 (3-40) 

The general solution of Eq. (3-40) is known as: 

𝑝𝑤
′̅̅̅̅ = 𝑃(𝑠)𝑟′

2−Λ(s)
−
𝐶1
𝑟′
+ 𝐶2 (3-41) 

where 𝑃(𝑠) =
3𝜅′(𝑠+1)

4𝑠(Λ(s)−2)
. Considering the boundary conditions (3-25), we can get: 

𝐶1 = 𝑃(𝑠) +
𝑝𝑤0
′

𝑠
;  𝐶2 =

𝑝𝑤0
′

𝑠
 (3-42) 

The solution of the normalized pore pressure in the Laplace transform space thus writes: 

𝑝𝑤
′̅̅̅̅ = 𝑃(𝑠) (𝑟′

2−Λ(s)
− 𝑟′

−1
) +

𝑝𝑤0
′

𝑠
(1 − 𝑟′

−1
) (3-43) 

At time 𝑡′ = 𝑡2
′ , the cavity wall is supposed to enter into contact with a backfill, which marks the end of Stage 2 of 

free convergence. 

3.5. Third stage: backfill and post-closure 

At 𝑡′ = 𝑡2
′ , the third stage begins and the convergence of the cavity wall continues, while partially restrained by the 
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presence of a backfiill in contact with the cavity wall. To compute the reaction of the backfill on the converging 

cavity wall, we assume that its mechanical behaviour can be approximated by a linear elastic constitutive law. The 

resolution of this stage constitutes the main part of this part of study. 

3.5.1. Initial and boundary conditions 

The equations for mechanical field to be solved are Eqs. (3-29) and (3-30) in the transformed domain. However, for 

the present Stage 3, the initial values (𝑈+, 𝛴𝑟
+, 𝛴𝜃

+)  at 𝑡 = 0+  in these equations have to be replaced by the 

corresponding values of (𝑈, 𝛴𝑟, 𝛴𝜃) at the end of Stage 2 (i.e. at time 𝑡′ = 𝑡2
′ ), to be computed using expressions 

(3-36)-(3-38). 

Instead of calculating the values separately of 𝑈 ,  Σ𝑟  and Σ𝜃  at 𝑡′ = 𝑡2
′ , we attempt to compute directly the 

expressions inside the parentheses of Eqs. (3-29) and (3-30) as a whole. The following notations are therefore 

introduced: 

∆𝑟(𝑟
′, 𝑡′) = (

𝜕𝑈

𝜕𝑟′
− 𝛴𝑟 + 𝛴𝜃)

𝑡′≤𝑡2
′
;    ∆𝜃(𝑟

′, 𝑡′) = (
𝑈

𝑟′
+
Σ𝑟 − Σ𝜃
2

)
𝑡′≤𝑡2

′
 (3-44) 

In fact, we only need to calculate ∆𝑟 and ∆𝜃 at the instant 𝑡′ = 𝑡2
′ , which we note as ∆𝑟

(2)(𝑟′) and ∆𝜃
(2)(𝑟′). Since 

it is not possible to analytically inverse the expressions (3-36)-(3-38), the Stehfest algorithm is used to obtain 

approximate values. The Laplace transform of ∆𝑟(𝑟
′, 𝑡′) and ∆𝜃(𝑟

′, 𝑡′), using (3-36)-(3-38), can be cast into the 

following form: 

∆̅𝑟(𝑟
′, 𝑠) = 𝐴𝑟(𝑠)𝑟

′−Λ(𝑠);  ∆̅𝜃(𝑟
′, 𝑠) = 𝐴𝜃(𝑠)𝑟

′−Λ(𝑠) (3-45) 

with: 

𝐴𝑟(𝑠) =
3(𝑠 + 1)(1 + 𝛼)

2𝑠2(𝑠 + 1 − 2𝛼)
; 𝐴𝜃(𝑠) =

3(𝑠 + 1)(2𝛼 − 1)

4𝑠2(𝑠 + 1 − 2𝛼)
 (3-46) 

Moreover, introducing the notation ∆̅𝑟𝜃(𝑟
′, 𝑠) ≝ ∆̅𝑟(𝑟

′, 𝑠) − ∆̅𝜃(𝑟
′, 𝑠), we get from (3-45) and (3-46): 

∆̅𝑟𝜃(𝑟
′, 𝑠) = 𝐴𝑟𝜃(𝑠)𝑟

′−Λ(𝑠);   𝐴𝑟𝜃(𝑠) =
3Λ(𝑠)

4𝑠2
 (3-47) 

The two quantities ∆𝑟
(2)

 and ∆𝜃
(2)

 in the time domain, necessary to account for the initial conditions of this Stage 3, 

can then be obtained: 

∆𝑟
(2)=∑𝑏𝑛

𝑛

∆̅𝑟(𝑟
′, 𝜏𝑛) =∑𝑏𝑛

𝑛

𝐴𝑟𝑛𝑟′
−Λ𝑛 

(3-48) 

∆𝜃
(2)=∑𝑏𝑛

𝑛

∆̅𝜃(𝑟
′, 𝜏𝑛) =∑𝑏𝑛

𝑛

𝐴𝜃𝑛𝑟
′−Λ𝑛 

(3-49) 

∆𝑟𝜃
(2)=∑𝑏𝑛

𝑛

∆̅𝑟𝜃(𝑟
′, 𝜏𝑛) =∑𝑏𝑛

𝑛

𝐴𝑟𝜃
𝑛 𝑟′

−Λ𝑛 
(3-50) 

where: 
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𝑏𝑛 = 𝜉𝑛
𝑙𝑛2

𝑡2
′ ;   𝜏𝑛 = 𝑛

𝑙𝑛2

𝑡2
′ ;   𝐴𝑟𝑛 = 𝐴𝑟(𝜏𝑛); 𝐴𝜃𝑛 = 𝐴𝜃(𝜏𝑛); 𝐴𝑟𝜃

𝑛 = 𝐴𝑟𝜃(𝜏𝑛); Λ𝑛 = Λ(𝜏𝑛) (3-51) 

Another initial condition that serves the calculations of this stage is 𝜁(2)(𝑟′) (=  𝜁(𝑟′, 𝑡2
′ )). Based on Eq. (3-35) and 

the definition of 𝜁  just after Eq. (3-39), the Laplace-Transformed expression of 𝜁(𝑟′, 𝑡′)  is formulated as 

𝜁(̅𝑟′, 𝑠) = ℒ[𝜁(𝑟′, 𝑡′)] =
Λ(s)−3

𝑠

3(𝑠+1)

4𝑠
 𝑟′

−Λ(s)
. The approximate solutions of 𝜁(2)  is then obtained by Stehfest’s 

formula and 𝜁(̅𝑟′, 𝑠): 

𝜁(2)(𝑟′) ≈ ∑
𝜉𝑛
𝑛

𝑁

𝑛=1

3(𝜏𝑛 + 1)(Λ𝑛 − 3)

4𝜏𝑛
𝑟′
−Λ𝑛 (3-52) 

Recall that the following identity, as reported in Dufour et al. (2012), applies: 

∑
𝑏𝑛
𝜏𝑛

𝑁

𝑛=1
=∑

𝜉𝑛
𝑛

𝑁

𝑛=1
= 1 (3-53) 

The stress boundary condition at infinity, Eq. (3-23), is still applicable for this stage. However, the radial stress at the 

cavity wall 𝛴𝑟(1, 𝑡′) will no longer be null due to the reaction from the backfill. It is linked to the normalized radial 

convergence (i.e. normalized displacement at the cavity wall) via the following condition (see Section 3.7.1): 

𝛴𝑟(1, 𝑡′) = 𝐾𝑅
′ (𝑈(1, 𝑡′) − 𝑈(1, 𝑡2

′ )) (3-54) 

The above condition writes, in the transformed space: 

 Σ̅𝑟(1, 𝑠) = 𝐾𝑅
′ (𝑈̅(1, 𝑠) −

𝑈(1, 𝑡2
′ )

𝑠
) (3-55) 

3.5.2. Quasi-analytical solution 

A translation of the time coordinate, 𝜏 = 𝑡′ − 𝑡2
′ , is introduced to properly define the Laplace transform at Stage 3. 

Therefore, the following fields are defined: 𝑈̂(𝑟′, 𝜏) = 𝑈(𝑟′, 𝑡′);  𝛴𝑟̂(𝑟
′, 𝜏) = 𝛴𝑟(𝑟′, 𝑡

′); 𝛴𝜃̂(𝑟
′, 𝜏) = 𝛴𝜃(𝑟′, 𝑡

′), with 

𝜏 = 0 corresponding to the beginning of this stage. 

Taking into account the definitions (3-36)-(3-38) and notations ∆𝑟
(2)

 and ∆𝜃
(2)

, Eqs. (3-29) and (3-30) become: 

𝑠
𝜕𝑈̅̂

𝜕𝑟′
= −

𝑠 + 1 + 𝛼

2
𝑟′
𝜕𝛴𝑟̂
̅̅ ̅

𝜕𝑟′
+ ∆𝑟

(2) (3-56) 

𝑠
𝑈̅̂

𝑟′
=
𝑠 + 1 − 2𝛼

4
𝑟′
𝜕𝛴𝑟̂
̅̅ ̅

𝜕𝑟′
+ ∆𝜃

(2) (3-57) 

Dividing the difference between Eqs. (3-56) and (3-57) by 𝑟′, and using expressions (3-48) and (3-49), leads to: 

𝑠
𝜕

𝜕𝑟′
(
𝑈̅̂

𝑟′
) = −

3(𝑠 + 1)

4
 
𝜕𝛴𝑟̂
̅̅ ̅

𝜕𝑟′
+∑𝑏𝑛

𝑛

𝐴𝑟𝜃
𝑛 𝑟′

−(Λ𝑛+1) (3-58) 

Integration with respect to 𝑟′ gives: 
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𝑠
𝑈̅̂

𝑟′
= −

3(𝑠 + 1)

4
 𝛴𝑟̂
̅̅ ̅ − 𝛽(𝑟′) + 𝐶(𝑠) (3-59) 

where 𝐶(𝑠) is an integration constant and 𝛽(𝑟′) is defined by: 

𝛽(𝑟′) =∑
𝑏𝑛𝐴𝑟𝜃

𝑛

 Λ𝑛
𝑟′
−Λ𝑛

𝑛

 (3-60) 

Elimination of the term 𝑠
𝑈̅̂

𝑟′
 between Eqs. (3-57), (3-59) and (3-60) leads to the following equation on the unique 

variable𝛴𝑟̂
̅̅ ̅: 

𝑟′
𝜕𝛴𝑟̂
̅̅ ̅

𝜕𝑟′
+ Λ(s)𝛴𝑟̂

̅̅ ̅ =
𝐶(𝑠)

(𝑠 + 1 − 2𝛼) 4⁄
−∑𝐵𝑛(𝑠)𝑟

′−Λ𝑛

𝑛

 (3-61) 

which admits the solution: 

𝛴𝑟̂
̅̅ ̅ =

𝐶(𝑠)

3
4
(𝑠 + 1)

+ 𝐷(𝑠)𝑟′
−𝛬(𝑠)

+  𝜁(𝑟′, 𝑠) 
(3-62) 

where 𝐷(𝑠) is is an integration constant and the following notations have been introduced: 

𝐵𝑛(𝑠) =
𝑏𝑛

(𝑠 + 1 − 2𝛼) 4⁄
(𝐴𝜃𝑛 +

𝐴𝑟𝜃
𝑛

Λ𝑛
) ;    𝜁(𝑟′, 𝑠) =∑

𝐵𝑛(𝑠)

𝛬𝑛 − 𝛬(𝑠)
𝑟′
−𝛬𝑛

𝑛

 (3-63) 

Introducing the stress boundary condition at infinity (3-24) into Eq. (3-61), we get 𝐶(𝑠) = −
3

4
(
𝑠+1

𝑠
). 𝐷(𝑠) then can 

be determined by taking into account the stress boundary condition at the cavity wall Eq. (3-55): 

𝐷(𝑠) = −𝜁(1, 𝑠) + 𝛾(𝑠);   𝛾(𝑠) =
1

𝜔 + 𝑠
;   𝜔 =

3
4𝐾𝑅

′

1 +
3
4𝐾𝑅

′
 (3-64) 

Hence, the complete Laplace transform solution at Stage 3 is given by:  

𝛴𝑟̂
̅̅ ̅ = −

1

𝑠
+ 𝛾(𝑠)𝑟′

−Λ(s)
+∑𝐵𝑛(𝑠)

𝑟′
−Λ𝑛 − 𝑟′

−Λ(s)

Λ𝑛 − Λ(s)
𝑛

 (3-65) 

𝛴𝜃̂
̅̅ ̅ = −

1

𝑠
+  𝛾(𝑠) (1 −

Λ(s)

2
) 𝑟′

−Λ(s)
+∑𝐵𝑛(𝑠)

(1 −
Λ𝑛
2 ) 𝑟

′−Λ𝑛 − (1 −
Λ(s)
2 ) 𝑟′

−Λ(s)

Λ𝑛 − Λ(s)
𝑛

 (3-66) 

𝑈̅̂

𝑟′
= −

3(𝑠 + 1)

4𝑠
[𝛾(𝑠)𝑟′

−Λ(s)
+∑𝐵𝑛(𝑠)

𝑟′
−Λ𝑛 − 𝑟′

−Λ(s)

Λ𝑛 − Λ(s)
𝑛

] −
1

𝑠
𝛽(𝑟′) (3-67) 
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Recall that Eq. (3-39) and combining Eqs. (3-52) and (3-67), the partial differential equations of normalized pore 

pressure write: 

𝜕2𝑝𝑤
′̂̅̅̅̅

𝜕𝑟′2
+
2

𝑟′
𝜕𝑝𝑤

′̂̅̅̅̅

𝜕𝑟′
= 𝜅′ ((𝐶1 + 𝐶2(𝑠) + 𝐶3)𝑟

′−Λ𝑛 + (𝐶4(𝑠) + 𝐶5(𝑠))𝑟
′−Λ(𝑠)) (3-68) 

where : 

𝐶1 = ∑
𝑏𝑛𝐴𝑟𝜃

𝑛 (Λ𝑛 − 3)

 Λ𝑛

𝑁

𝑛=1

;  𝐶2(𝑠) = ∑𝐵𝑛(𝑠)
3(𝑠 + 1)(Λ𝑛 − 3)

4(Λ𝑛 − Λ(s)) 

𝑁

𝑛=1

 

(3-69) 𝐶3 = −∑
𝜉𝑛
𝑛

𝑁

𝑛=1

3(𝜏𝑛 + 1)(Λ𝑛 − 3)

4𝜏𝑛
;   𝐶4(𝑠) =

3(𝑠 + 1)(Λ(s) − 3)𝛾(𝑠)

4
 

𝐶5(𝑠) = ∑𝐵𝑛(𝑠)
3(𝑠 + 1)(3 − Λ(s))

4(Λ𝑛 − Λ(s))

𝑁

𝑛=1

 

Accounting for the boundary conditions Eq. (3-25), the general solution of 𝑝𝑤
′̂̅̅̅̅  gives: 

𝑝𝑤
′̂̅̅̅̅ =

𝑝𝑤0
′

𝑠
(1 − 𝑟′

−1
) +

𝜅′(𝐶1 + 𝐶2(𝑠) + 𝐶3)

(2 − Λ𝑛)(3 − Λ𝑛)
(𝑟′

2−Λ𝑛 − 𝑟′
−1
) + 

𝜅′(𝐶4(𝑠) + 𝐶5(𝑠))

(2 − Λ(𝑠))(3 − Λ(𝑠))
(𝑟′

2−Λ(𝑠)
− 𝑟′

−1
) 

(3-70) 

Note that the above expressions are continuous relative to the previous stage, as shown in detail in Section 3.7.2, 

ensuring the consistency of the solution. While Eq. (3-67) cannot be inverse-transformed analytically for an arbitrary 

location, this can be done for 𝑟′ =1 to obtain an explicit expression for the normalized displacement at the cavity 

wall: 

𝑈(1, 𝑡′) = −
3

4
[1 + 𝑡2

′ + (
1

𝜔
− 1) (1 − 𝑒−𝜔(𝑡

′−𝑡2
′))] (3-71) 

Detailed computations for getting above equation are shown in Section 3.7.3. The normalized displacement at the 

cavity wall in the third stage can be decomposed into 2 parts: the first part is only the initial value at the beginning 

of this stage, equal to Eq. (3-38), while the second one is the evolution of the convergence expressing the 

simultaneous effects of creep and backfill. The convergence rate slows down continuously and the normalized 

displacement tends towards a final stable value: −
3

4
[
1

𝜔
+ 𝑡2

′ ] at large time. Recall that 𝜔 =
3

4
𝐾𝑅
′

1+
3

4
𝐾𝑅
′
, a stiffer backfill 

reduces the displacement at the cavity wall as expected. And in the case of an infinitely stiff backfill (𝐾𝑅
′ → ∞,𝜔 →

1), the convergence would stop in Stage 3. Moreover, the magnitude of the displacement at a given physical time 𝑡 

is inversely proportional to the material viscosity (via 𝑇0). When the viscosity tends to infinity, the incompressible 

elastic case is restored. 

Based on Eqs. (3-38) and (3-71), it can be seen that the time evolution of the displacement at the cavity wall, as in 

the previous stage, is not dependent on the dilation parameter 𝛼. Based on Eq. (3-54), the normalized backfill 
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pressure (i.e. an elastic reaction to the cavity wall) 𝑃𝑅
′  can be written as 𝑃𝑅

′ (𝑡′) = −𝛴𝑟(1, 𝑡
′) = −𝐾𝑅

′ (𝑈(1, 𝑡′) −

𝑈(1, 𝑡2
′ )), and combining this relation with Eqs. (3-38) and (3-71) gives: 

𝑃𝑅
′ (𝑡′) =

3𝐾𝑅
′

4
[(
1

𝜔
− 1) (1 − 𝑒−𝜔(𝑡

′−𝑡2
′))] (3-72) 

Eq. (3-72) shows that the backfill reaction always tends towards 𝑃∞ at large times. This is due to the absence of 

stress-threshold in the creep model, which implies that static equilibrium with zero strain rates can only be achieved 

with zero deviatoric stress. In consequence, equilibrium can only take place when the internal pressure at the cavity 

wall (supplied here by the backfill) is equal to the geostatic pressure at far field. 

In Eqs. (3-65)-(3-67), there is an apparent singularity when Λ𝑛 − Λ(s) approaches zero. Note that in the numerical 

inversion using the Stehfest algorithm, at a time 𝑡′ > 𝑡2
′ , Λ𝑛 − Λ(s) is evaluated as Λ (𝑛

𝑙𝑛2

𝑡2
′ ) − Λ (𝑚

𝑙𝑛2

𝑡′−𝑡2
′) with 

1 ≤ 𝑚, 𝑛 ≤ 𝑁 (𝑁 is the upper limit of summation in Eq. (3-18)) which can approach zero, hence a mathematical 

singularity. However, this singularity is only apparent, as the numerators also become zero and their corresponding 

ratios approach well-defined limits, on account of the following results: 

lim
Λ(s)→Λ𝑛

𝑟′
−Λ𝑛 − 𝑟′

−Λ(s)

Λ𝑛 − Λ(s)
= −𝑟′

−Λ𝑛𝐿𝑛(𝑟′) (3-73) 

lim
Λ(s)→Λ𝑛

(1 −
Λ𝑛
2
) 𝑟′

−Λ𝑛 − (1 −
Λ(s)
2
) 𝑟′

−Λ(s)

Λ𝑛 − Λ(s)
= [(

Λ𝑛
2
− 1) Ln(𝑟′) −

1

2
] 𝑟′

−Λ𝑛 (3-74) 

 These expressions have been incorporated into the Mathematica program used for the numerical computations.  

3.6. Numerical applications 

In this section, we will show a few numerical examples and parametric studies to illustrate the applicability of the 

quasi-analytical model and the viscoplastic behaviour described by this model. The data concerning the rock mass 

are taken from the previous studies (ANDRA, 2005; Bui et al., 2014) which are relative to a deep geological disposal 

facility for radioactive waste studied in France, and referred to in the following as “reference parameters” (see Table 

3-1). 

Table 3-1 Reference parameters used in the numerical applications. 

𝑅𝑎 = 5 m;  𝛼 = 0.1; 𝑃∞ = 12 MPa; 𝑝𝑤0 =  5 MPa;  𝐸 = 5000 MPa;  𝑣 =  0.5; 

 𝜂 = 2.0 × 1014 MPa. s; 𝜆ℎ = 6.25 ∗ 10
−14 m2MPa−1s−1;  𝐾𝑅 = 1000 MPa; 𝑡0 = 0;  

𝑡1 = 0
+ (or 1 day); 𝑡2 = 3804 years 

Leading to: 

 𝑝𝑤0
′ = 5 12 = 0.41⁄ ; 𝐾𝑅

′ = 0.2;  𝑇𝑚 = 1268 years; 𝑇ℎ = 2438 years; 𝑡2
′ =  3; 𝜅′ = 2 

3.6.1. Hydromechanical evolutions of normalized quantities 

Figure 3-2 and Figure 3-3 show the variation of normalized radial displacement against normalized time and 

normalized radial coordinate, respectively. The negative displacement is consistent with an inward movement, due 
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to decompression. Figure 3-2 shows that at each location (𝑟′ = 1, 1.1, 1.3), there is an instantaneous convergence at 

the initial moment due to excavation. The displacement continues to increase progressively (in absolute value) more 

or less linearly (exactly linearly at 𝑟′ = 1) with time before the cavity wall comes into contact with the backfill. At 

time 𝑡′ = 𝑡2
′ , the cavity wall comes into contact with the backfill and continues to converge at a slower speed due to 

the confinement effect of the latter. Finally, the cavity wall convergence tends to an asymptotic value, which 

represents the long-term mechanical equilibrium state. Figure 3-3 shows that at any time (𝑡′ = 0+(𝑡1
′), 3 (𝑡2

′ ), 10, 50), 

the inward displacement is the largest (in absolute value) at the cavity wall (𝑟′ = 1) and decreases monotonically to 

zero towards infinity, which is consistent with the boundary conditions at near and far field. The evolution of 

convergence at the cavity wall (𝑟′ =1) computed numerically using the Stehfest algorithm (𝑈 ≈ -7.96) is also 

consistent with the exact analytical expression Eq. (3-84). 

  

Figure 3-2 Temporal evolution of normalized 

displacement at three different locations. 

Figure 3-3 Normalized displacement profiles at 

different times. 

Figure 3-4 shows the temporal evolution of the total stresses at different radii (𝑟′ = 1, 1.1, 1.3). The initial jump of 

stress from the geostatic pressure (-1 for the normalized value at all 𝑟′) to zero is not shown for clarity. During Stage 

2 of free convergence, the radial stresses become more compressive at all radii due to creep effects and the inward 

convergence so induced, except at the cavity wall, where it remains at zero due to the no-support boundary condition. 

In the same period, the circumferential stresses also become more compressive due to equilibrium requirements. 

In Stage 3 (𝑡′ > 𝑡2
′ ), immediately after the contact with the backfill, the rate of change of radial stress (in absolute 

value) jumps instantly to a higher value while that of the circumferential stress changes sign suddenly (observe the 

kink at 𝑡′ > 𝑡2
′ ). This discontinuity of the stress rate happens at all radii but is sharper at near field and smoothes out 

quickly towards the far field. It is due obviously to the confinement effect provided by the backfill. After this initial 

period, the radial (resp. circumferential) stresses continue to increase (resp. decrease), and both tend asymptotically 

towards the geostatic pressure. 

Figure 3-5 shows the profiles of normalized stresses at the end of Stage 2, 𝑡′ = 𝑡2
′ = 3, and at two arbitrary times in 

Stage 3, 𝑡′ = 5 and 𝑡′ = 10. Both radial and circumferential stresses remain at the geostatic pressure at far field. 

When going towards the cavity, the radial stress decreases to a minimum while the circumferential stress increases 

to a maximum at the cavity wall (in absolute value). The radial stress is zero at cavity wall (𝑟′ = 1) during Stage 2, 
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in accordance with the free convergence (no-support) assumption. After contact with the backfill (Stage 3, 𝑡′ > 𝑡2
′ ), 

the radial stress becomes progressively more compressive while the circumferential stress becomes less compressive. 

  

Figure 3-4 Temporal evolution of the total stresses at 

different radii (r’ = 1, 1.1, 1.3). 

Figure 3-5 Profiles of normalized principal total 

stresses at t’ = t
’ 

2 = 3 (backfill), at t’ = 5, and at t’ = 10. 

The temporal evolution of the normalized pore pressure at three different locations (𝑟′ = 1.1, 1.3, 2) is plotted in 

Figure 3-6. It can be seen that negative pore pressures developed at the vicinity of the cavity wall at small times, in 

reaction to the dilatant behaviour of the rock mass. Moreover, it is consistent that pore pressure goes towards an 

asymptotic value during free convergence (if 𝑡2
′  is big enough compared to 𝑇𝑚) corresponding to the stationary state 

between 𝑝𝑤
′ (𝑟′ = 1) = 0 and 𝑝𝑤

′ (𝑟′ = ∞) = 𝑝𝑤0
′ . Once in contact with the elastic backfill, the convergence of 

cavity wall will slow down and the contact pressure will induce a faster pore pressure increase.  

 

Figure 3-6 Normalized pore pressure profiles at different times. 

Figure 3-7 illustrates the profiles of normalized pore pressure at different times (𝑡′ = 0.01, 1, 10). It can be found 

that the variation of pore pressure can be divided into two phases. In the first phase (at small normalized times), the 

pore pressure shows a V-shape distribution in the domain. During this first period, negative pore pressures develop 

near the cavity wall due to the more intensive viscoplastic volumetric dilatancy before gradually increasing and 

returning to its initial value at far field (𝑝𝑤
′ (∞) = 𝑝𝑤0

′ = 5/12). In the second phase (at large times), negative pore 
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pressures are completely dissipated and pore pressures are positive everywhere. However, it should be noted that in 

reality, the presence of a damage zone near the cavity wall would significantly increase the permeability, and would 

modify the above results. The existence of this damage zone and its impact will be further investigated in future using 

a numerical approach. 

 

Figure 3-7 Temporal evolution of normalized pore pressure at four different locations.   

3.6.2. Parametric studies 

In this section, a few parametric studies will be shown to illustrate their influence on the results of the analytical 

model. The dilation parameter 𝛼 and rock viscosity 𝜂 are two key parameters here. Moreover, backfill stiffness 𝐾𝑅
′  

and the instant of backfill contact 𝑡2
′  also influence the structural response. However, a variation of 𝜂 also affects 

the time scale (i.e. the normalized time 𝑡′) via the characteristic relaxation time 𝑇0 , which would confuse the 

observation of the actual effects of this parameter. For this reason, the real time scale will be adopted when showing 

the influence of 𝜂 and 𝑡2
′ . 

Here again, let us underline that the time evolution of the displacement at the cavity wall (𝑟′ = 1) is not affected by 

the dilation parameter 𝛼 . To study the influence of 𝛼  on the displacement field, the time evolution of the 

displacement with different values of 𝛼 at two other locations (𝑟′ = 1.1 and 𝑟′ = 1.5) is plotted in Figure 3-8. It 

can be observed that a higher value of 𝛼 corresponds to a smaller convergence, or in other words, a larger outward 

movement. The viscoplastic dilatation is therefore accommodated by an outward movement at every point. This 

result may surprise. In fact, it is due to the particular symmetry (spherical or cylindrical) involving an infinite domain. 

This recalls the well-known result (Bérest and Weber, 1998) according to which a linear elastic medium outside a 

spherical or cylindrical cavity subject to an arbitrary temperature increase exhibits an outward displacement 

everywhere except at the cavity wall where the displacement is identically null. 
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(a) 𝑟′ = 1.1 (b) 𝑟′ = 1.5 

Figure 3-8 Influence of the dilation parameter on the normalized displacement. 

Figure 3-9 shows the influence of the dilation parameter 𝛼 on the normalized pore pressure at 𝑟′ = 1.1. It can be 

seen that a larger 𝛼 corresponds to a smaller pore pressure. This comes from the fact a volume dilation creates 

additional pore volume (solid skeleton and pore fluid are assumed incompressible) hence pore pressure drops and 

water mass is "sucked" from the surrounding volume elements to fill the gap. Consistently, a stronger dilatancy 

corresponds to lower pore pressures. In the case of 𝛼 equals to zero, the pore pressure becomes stationary since no 

volumetric strain occurs, and therefore no effect from variations of mechanical fields on pore pressures.  

 

Figure 3-9 Temporal evolution of the normalized pore pressure at r’ = 1.1 with different dilation parameters. 

Figure 3-10 and Figure 3-11 show the influence of the dilation parameter 𝛼 on the normalized radial, circumferential 

and deviatoric stresses at a point close to the cavity wall (𝑟′ = 1.1). As expected, the radial and circumferential 

stresses both become more compressive (i.e. increase in absolute value) with larger values of 𝛼 since part of the 

volumetric expansion, incompatible with geometric constraints, has to be absorbed by a stress increase (in 

compression). Moreover, it can be seen that the circumferential stress is more sensitively affected than the radial one. 

Figure 3-11 shows that the normalized deviatoric stresses (equal to 𝛴𝑟 − 𝛴𝜃) increase due to the free convergence 
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till the cavity wall comes into contact with the backfill and then decrease progressively to zero (i.e., the equilibrium 

mechanical state of the rock mass, since the viscoplastic threshold is null) due to the confinement effect provided by 

the backfill, and that larger values of 𝛼 correspond to faster rates of increase and decrease. The peak of deviatoric 

stress is also higher with larger 𝛼. 

  

Figure 3-10 Normalized total stresses evolution at 

𝑟′ = 1.1 for different values of dilation parameter 𝛼. 

Figure 3-11 Profiles of normalized deviatoric stress at 

𝑟′ = 1.1 with different values of dilation parameter 𝛼. 

Figure 3-12 plots the temporal evolution of normalized deviatoric stress for a particular radius, 𝑟′ = 1.1, for four 

different normalized backfill stiffness (𝐾𝑅
′ = 0.02, 0.05, 0.1, 0.2). It can be seen that a stiffer backfill reduces the 

deviatoric stress, and thus the potential risk of failure. 

 

Figure 3-12 Influence of the backfill stiffness on the normalized deviatoric stress. 

Figure 3-13 represents the temporal evolution of normalized backfill pressure with different values of rock viscosity 

𝜂. The reference value 𝜂0 (2.0×1020 Pa s) listed in Table 1 has been chosen so that creep effects would be significant 

in order to be well evidenced. It can be found that the backfill pressure tends to geostatic pressure in any case (due 

to absence of viscoplastic threshold) and that the increase of rock viscosity slows down the rise of backfill pressure. 

When rock viscosity is infinity (its behaviour then becomes incompressible elastic), the backfill pressure remains 

zero because in the absence of creep, converging movements of the rock mass stop after excavation.  
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Figure 3-14 shows the influence of rock viscosity on normalized convergence in normal time scale and logarithmic 

time scale. As expected, a larger rock viscosity reduces the equivalent deviatoric plastic strain rate hence the strain 

at a given time (which can be easily seen from Eq. (3-9)), thereby reduces the convergence due to creep. When rock 

viscosity is infinity, the rock mass becomes elastic so no convergence occurs after excavation (absence of Stages 2 

and 3). 

 

Figure 3-13 Temporal evolution of the normalized backfill pressure with different values of rock viscosity. 

  

(a) (b) 

Figure 3-14 Evolution of normalized convergence with different viscosities in (a) normal and (b) logarithmic time 

scales. 

Figure 3-15 and Figure 3-16 illustrate the influence of the time 𝑡2 when the cavity wall comes into contact with the 

backfill on the normalized backfill pressure and on the normalized convergence. Figure 3-15 shows that a delayed 

contact with the backfill can delay the radial stress at the cavity wall. However, this influence declines with time. In 

other words, the load on filler at larger backfill time 𝑡2  will reach the stable value 𝑃∞  with a faster speed. As 

expected, Figure 3-16 shows that the more the backfill contact time is delayed, the more time of free convergence 

without support of the cavity wall, thereby induces a larger convergence at any time. 
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Figure 3-15 Influence of the backfill contact time on 

the normalized backfill pressure. 

Figure 3-16 Influence of the backfill contact time on the 

normalized convergence 

A parametric study on the hydraulic conductivity at 𝑡′ = 10 is carried out in Figure 3-17 to show its influence on 

the pore pressure. The reference value listed in Table 1 (6.25 ∗ 10−14 m2MPa−1s−1) is therefore noted 𝜆ℎ0 . From 

Figure 3-17, the smallest value of 𝜆ℎ considered (𝜆ℎ 𝜆ℎ0 ⁄ = 0.1) leads to significant negative pore pressure at near 

field at 𝑡′ = 10, contrary to the larger ones at the same time. The other pore pressure profiles with larger 𝜆ℎ values 

are already close to the asymptotic stationary state. 

 

Figure 3-17 Profiles of normalized pore pressure with different hydraulic conductivities at t’ = 10. 

The very significant negative pore pressure observed for the case 𝜆ℎ = 0.1𝜆ℎ0 at a large dimensionless creep time 

𝑡′ = 𝑡 𝑇𝑚⁄ = 10 may seem surprising at first view. In fact, the low hydraulic conductivity in this case leads to slow 

pore pressure dissipation. On account of the characteristic hydraulic diffusion time 𝑇ℎ in Table 3-1, for the case 

𝜆ℎ = 0.1𝜆ℎ0, and at 𝑡′ = 10, we have 𝑡 𝑇ℎ⁄ = 0.5. This means the pore-pressure dissipation process is still largely 

on-going, and is consistent with the negative pore pressure not yet dissipated in Figure 3-17. Notice that the maximum 

negative pore pressure in Figure 3-17 (𝜆ℎ = 0.1𝜆ℎ0) at 𝑡 𝑇ℎ⁄ = 0.5, is also consistent with those in Figure 3-18 (𝜂 =

0.1𝜂0), with corresponding values of 𝑡 𝑇ℎ⁄  of 0.04 for Figure 3-18(a) and 4 for Figure 3-18(b). 
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(a)  𝑡 = 100 years (b)  𝑡 = 10000 years 

Figure 3-18 Normalized pore pressure profiles with different rock viscosities at two different times. 

The influence of rock viscosity on the cavity convergence can easily be understood from Eq. (3-14). A larger rock 

viscosity reduces the plastic strain rate hence the strain at a given time, thereby reduces the convergence due to creep. 

Figure 3-18 plot the evolution of normalized pore pressure with four different rock viscosity values (𝜂 𝜂0⁄ = 0.1, 1, 

3 and 10) at two different times, 𝑡 = 100 years and 10000 years. From Figure 3-17 and Figure 3-18, one can observe 

that the intensity of negative pore pressure depends on the relative speeds (or equivalent the ratio of characteristic 

times, 𝑇ℎ 𝑇𝑚⁄ = 𝑎2 (𝜂𝜆ℎ)⁄ , introduced after Eq. (3-39)) of the two phenomena: creep and hydraulic diffusion. High 

negative pore pressure would arise at large values of 𝑇ℎ 𝑇𝑚⁄ , in other words at low viscosity (fast rock creep) or low 

permeability (slow water flow). However, we must bear in mind that the negative pore pressures computed hereabove 

are probably overestimated, due to the assumption of constant permeability. In reality, the intensive stress and strain 

variations near the cavity wall would probably induce a damage zone at near field, with enhanced hydraulic 

conductivity, which would moderate substantially the negative pore pressures. The state-dependency of permeability 

cannot be accounted for in an analytical model. Its consideration is left to a future study. 

3.6.3. Comparison with a numerical simulation 

Although explicit expressions are obtained for all physical quantities (displacements, stresses, strains, pore pressure), 

the evaluation of these expressions still needs some light numerical computations, using codes on formal 

computations such as Mathematica or Maple. It appears judicious to check that these light numerical computations 

are correctly performed. To this aim, numerical simulations based on FEM have been carried out using COMSOL 

software (the module on a system of partial differential equations) to solve the system of partial differential equations 

(3-15)-(3-17). Only Stages 2 and 3 are modelled since the analytical results in Stage 1 (instantaneous elastic 

excavation) are trivially classical which provide the initial field values for Stage 2. The results will be presented in 

normalised forms so that cavity radius will have no influence. In the numerical simulation, the cavity radius was 

taken to be 𝑟1 = 5 m. The backfill (0 < 𝑟 < 5 m) only participates in the third stage of numerical calculation, with 

a perfect contact assumed with the cavity wall. The problem is defined by three field variables, 𝑢, 𝜎𝑟 and 𝑝𝑤, which 

verify three different sets of partial differential equations in the rock mass and backfill. The constitutive behaviour 
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of the backfill is assumed to be elastic compressible leading to spatially homogeneous pore-pressure and mechanical 

field quantities (stress and strain) due to spherical symmetry (Wong et al., 2008a, 2008b). 

Figure 3-19 shows the 1D finite element mesh used to discretize the interval (0 < 𝑟 < 100 m) in Stage 3. The user-

controlled mesh in COMSOL is used in which the maximum element size and maximum element growth rate are 

respectively set as 0.1 m and 1.2. To minimize edge effects of the external boundary, a large domain for the rock 

mass is modelled, from 𝑟1 = 5 m to 𝑟2 = 100 m. The numerical data used in the simulation are summarized in 

Table 1. The Poisson's ratio of the backfill is taken as 0.3 (Dufour et al., 2012), and its Young's modulus can therefore 

be obtained using Eq. (3-76). 

 

Figure 3-19 Finite element mesh of the model in Stage 3. 

The main results of the simulation are presented and compared to the quasi-analytical solutions in the following 

Figure 3-20 - Figure 3-23. A good agreement between numerical and analytical results is observed for both Stages 2 

and 3.  

  

Figure 3-20 Temporal evolution of normalized cavity 

wall convergence. 

Figure 3-21 Temporal evolution of normalized 

backfill pressure. 
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Figure 3-22 Profiles of normalized displacement at 

different times: t’ = 3 and t’ = 10. 

Figure 3-23 Temporal evolution of normalized 

displacement profiles at r’ = 1.3 with different 

dilation parameter values. 

3.6.4. Application to EDZ 

Excessively high values of total strain can damage rocks, deteriorating their mechanical and hydraulic properties. 

Assessing the extent of this damaged zone in the vicinity of underground structures is essential for many applications: 

stability of inclined or horizontal wells drilled to exploit unconventional gases, CO2 injection (Shalev and 

Lyakhovsky, 2013), design of deep geological repositories for radioactive waste (Pellet et al., 2009), etc. In France, 

the configuration of the fractured zone induced by tunneling has been extensively studied in the context of the 

feasibility studies of a deep geological disposal (Armand et al., 2014; van den Eijnden et al., 2017; Pardoen et al., 

2015a). However, the research on temporal evolution of the damage zone remains very limited, while the results of 

our analytical model can be used to provide a first estimate. 

Sakurai (1999) proposed a rupture analysis based on a strain rupture-criterion, especially for monitoring the 

performance of in-situ structures. Su (2005), in the context of the clayey rock studied in France for radioactive 

disposal, proposed a value of 0.5% of accumulated strain for the initiation of ‘diffuse damage’. This proposal, based 

on results from laboratory tests on rock samples, has to be extended into a general 3D criterion applicable to more 

general multiaxial stress states. We have investigated two possible choices for the strain invariant that have to be 

compared to the threshold mentioned above: the maximum principal strain 𝜀𝑚𝑎𝑥 = 𝜀11 and the von Mises equivalent 

strain 𝜀𝑒𝑞 = 2 3⁄ (𝜀11 − 𝜀22). Figure 3-24 shows that both results are close to each other. Considering that 𝜀𝑒𝑞 is 

more representative for multiaxial stress-strain situations, we propose to use an 𝜀𝑒𝑞-based criterion in the following. 
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Figure 3-24 Profile of R
’ 

EDZ versus u’ with two strain-based criterions. 

Five parameters are studied for a sensitive analysis on temporal evolution of the EDZ, including Young’s modulus 

𝐸, the dilation parameter 𝛼 and the threshold value of strain criterion 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 of the rock mass, the stiffness of backfill 

𝐾𝑅, and the gap between cavity wall and backfill 𝑢𝑗𝑒𝑢. A very long time period (2×105 years) is chosen to meet the 

condition that the cavity wall stops converging at the end of calculation. The gap 𝑢𝑗𝑒𝑢 can be linked to the void ratio 

𝑌 left in the structure when it is backfilled (ratio of the volume of voids to the volume of the cavity) through the 

following relation: 

𝑢𝑗𝑒𝑢 = 𝑎 ∙ (1 − √1 − 𝑌
3

) (3-75) 

Therefore, for a cavity with 5 m radius, 𝑌 = 7.4%, 14.6% and 21.6% respectively corresponds to 𝑢𝑗𝑒𝑢 ≈ 12.6 cm, 

25.6 cm and 39 cm. 

From the analytical model in Section 3, one can found that the rock viscosity does not affect the correlation between 

the extent of the damage zone and the cavity wall convergence but only the speed at which these phenomena develop. 

The results on the influence of rock viscosity are therefore not shown here. Figure 3-25 plots the curves of 𝑅𝐸𝐷𝑍
′ −

𝑢′ with different values of Young’s modulus of rock 𝐸, and only a negligibly small influence on the extent of damage 

zone can be observed. Figure 3-26 shows the influence of dilation parameter 𝛼 on the evolution of damage zone. It 

shows that the influence of 𝛼 is not visible at small convergences (𝑢′ less than about 1%) but increases gradually 

and becomes significant at large convergences. 

Figure 3-27 shows the influence of backfill stiffness 𝐾𝑅 on 𝑅𝐸𝐷𝑍
′ . The vertical axis represents the extent of damaged 

zone as the host rock tends to the asymptotic stable state. For the set of parameters considered, 𝐾𝑅 has limited 

influence on the evolution of damaged zone above 5000 MPa. In this case, the cavity wall stops converging rapidly 

after coming into contact with the backfill. The curves of 𝑅𝐸𝐷𝑍
′ − 𝑌 with different threshold values of strain criterion 

(0.1%, 0.3%, 0.5% and 0.7%) are shown in Figure 3-28. As expected, a larger void ratio (i.e. a larger convergence 

before contact) and a smaller value of strain criterion lead to a larger damage zone. 
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Figure 3-25 Profile of R
’ 

EDZ versus u’ with different 

values of Young’s modulus of rock. 

 

Figure 3-26 Profile of R
’ 

EDZ versus u’ with different 

values of dilation parameters. 

 

Figure 3-27 Profile of R
’ 

EDZ versus KR with different 

values of backfill stiffness. 

 

Figure 3-28 Profile of R
’ 

EDZ versus 𝑌 with different 

threshold values of strain criterion. 

3.7. Appendices 

3.7.1. Derivation of the dimensionless backfill stiffness 

We are interested here by the relation between the pressure applied at the exterior surface of a linear elastic solid 

sphere of radius 𝑎, representing the cavity backfill, and its displacement at the same point. Denoting the purely radial 

displacement inside the backfill by 𝑢𝑅, Eqs. (3-1)-(3-3) concerning the form of the strain tensor and the equilibrium 

equation still apply (replacing 𝑢 by 𝑢𝑅). Expressing the elastic stresses in terms of displacement using (3-1) then 

substituting into equilibrium Eq. (3-3) leads to the classic Euler's equation: 𝑟2𝜕𝑟𝑟
2 𝑢𝑅 + 2𝑟𝑢𝑅 − 2𝑢𝑅 = 0 . The 

solution, on account of the zero displacement at the center writes: 𝑢𝑅(𝑟, 𝑡) = 𝑈𝑅(𝑡) ∗ 𝑟, where 𝑈𝑅(𝑡) = 𝑢𝑅(𝑎, 𝑡) 𝑎⁄  

is the dimensionless convergence at the external boundary. Back substitution into Hooke's law gives a homogeneous 

and isotropic stress field such that 𝜎𝑟 = 𝜎𝜃 =
𝐸𝑅

1−2𝜈𝑅
𝑈𝑅 , or in rate form: 𝜎̇𝑟 = 𝜎̇𝜃 =

𝐸𝑅

1−2𝜈𝑅
𝑈̇𝑅 . Since the radial 

displacement and radial stress are continuous at the backfill-rock mass interface (in terms of rates, due to the 
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difference on the origin of time for the displacement), this implies that the dimensionless convergence of the cavity 

wall is linearly proportional to the radial ground stress at that point:  

𝜎̇𝑟(𝑎, 𝑡) = 𝐾𝑅𝑈̇𝑅(𝑎, 𝑡);   𝐾𝑅 =
𝐸𝑅

1 − 2𝜈𝑅
 (3-76) 

Normalizing the stress relative to the initial geostatic pressure 𝑃∞  and on account of the normalisation of 

displacement, we are led to the following expression of the dimensionless backfill stiffness parameter 𝐾𝑅
′  appearing 

in Eq. (3-54): 

𝐾𝑅
′ =

𝐸𝑅
𝐸(1 − 2𝜈𝑅)

 (3-77) 

3.7.2. Consistency of results between Stages 2 and 3 

Recalling the time translation 𝜏 = 𝑡′ − 𝑡2
′  introduced for Stage 3, and using the classic result of Laplace transform, 

we have Σ𝑟(𝑟
′, 𝑡2

′+) = Σ̂𝑟(𝑟
′, 0+) = lim

𝑠→∞
𝑠 Σ̅𝑟(𝑟

′, 𝑠), with Σ̅𝑟(𝑟
′, 𝑠) given by Eq. (3-65). This leads to:  

𝑠 Σ̅𝑟(𝑟
′, 𝑠) = −1 + 𝑠 𝛾(𝑠)𝑟′

−Λ(s)
+∑

𝑠 𝐵𝑛(𝑠)

Λ𝑛 − Λ(s)
𝑛

(𝑟′
−Λ𝑛 − 𝑟′

−Λ(s)
) (3-78) 

It is easy to show that as 𝑠 → ∞: Λ(s) → 3, 𝑠 𝛾(𝑠) → 1, 
𝑠 𝐵𝑛(𝑠)

Λ𝑛−Λ(s)
→

𝑏𝑛

𝜏𝑛
. On account of the identity (3-53): ∑

𝑏𝑛

𝜏𝑛

𝑁
𝑛=1 =

1, The above can finally be recast as: 

Σ𝑟(𝑟
′, 𝑡2

′+) = lim
𝑠→∞

𝑠 Σ̅𝑟(𝑟
′, 𝑠) =∑𝑏𝑛

𝑛

(
𝑟′
−Λ𝑛 − 1

𝜏𝑛
) (3-79) 

However, the above is precisely the numerical inverse Laplace transform of 
𝑟′
−Λ(s)

−1

𝑠
, evaluated at 𝑡′ = 𝑡2

′ , which 

corresponds exactly to expression (3-33). Hence, we have shown that: 

Σ𝑟(𝑟
′, 𝑡2

′+) = Σ𝑟(𝑟
′, 𝑡2

′−) (3-80) 

in our semi-analytical model.    

The proof of the continuity of Σ𝜃, 𝑈 and 𝑝𝑤 can be easily done following the same steps.  

3.7.3. Convergence at cavity wall in Stage 3 

At the cavity wall, r' = 1, expression (3-67) simplifies to: 

𝑈̅̂

𝑟′
= −

3(𝑠 + 1)

4𝑠
𝛾(𝑠) −

1

𝑠
𝛽(1) (3-81) 

From Eq. (3-60), and by definition 𝐴𝑟𝜃
𝑛 = 𝐴𝑟(𝜏𝑛) − 𝐴𝜃(𝜏𝑛) =

3Λ𝑛

4𝜏𝑛
2 , hence: 
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𝛽(1) =∑
𝑏𝑛𝐴𝑟𝜃

𝑛

Λ𝑛
𝑛

=∑𝑏𝑛
𝑛

3

4𝜏𝑛
2 ≈ ℒ

−1 [
3

4𝑠2
]
𝑡′=𝑡2

′
=
3

4
𝑡2
′  (3-82) 

On account of the expression (3-64) of 𝛾(𝑠), we get: 

𝑈̅̂(1, 𝑠) = −
3(𝑠 + 1)

4𝑠(𝜔 + 𝑠)
−
3𝑡2

′

4𝑠
 (3-83) 

The inversion can be done analytically using partial fractions. It is the same as that of the case 𝛼 = 0 given in 

Section 3.7.4: 

𝑈(1, 𝑡′) = −
3

4
[1 + 𝑡2

′ + (
1

𝜔
− 1) (1 − 𝑒−𝜔(𝑡

′−𝑡2
′))] (3-84) 

3.7.4. Solution in the case of zero dilatancy 

Stage 1 (0 < 𝑡′ < 0+). The quantities after excavation, at 𝑡′ = 0+, are still given by expressions (3-23): 

Stage 2 (0+ < 𝑡′ < 𝑡2
′ ). Substituting 𝛼 = 0 into Eqs. (3-33)-(3-35), we get: 

𝛴𝑟 = −1 + 𝑟
′−3;  𝛴𝜃 = −1 −

1

2
𝑟′
−3
;  𝑈 = −

3

4
(1 + 𝑡′)𝑟′

−2
 (3-85) 

Notice that the stress profiles in Stage 2 in the case of zero dilatancy remain immobile, while the convergence itself 

increases linearly with time. 

Stage 3 ( 𝑡2
′ < 𝑡′ < ∞ ). When 𝛼 = 0 , we have: Λ(𝑠) = Λ𝑛 = 3 ; 𝜁(𝑟′, 𝑠) = 0 ; 𝐴𝜃𝑛 = −

𝐴𝑟𝑛

2
⇒ 𝐵𝑛(𝑠) = 0 ; 

𝛽(𝑟′) =
3

4
𝑡2
′ 𝑟′−3, the expressions (3-65)-(3-67) then simplifies to (with 𝜔 defined in Eq. (3-64)): 

𝛴𝑟̂
̅̅ ̅ = −

1

𝑠
+

1

𝑠 + 𝜔
𝑟′
−3
;   𝛴𝜃̂
̅̅ ̅ = −

1

𝑠
+

1

2(𝑠 + 𝜔)
𝑟′
−3
;  𝑈̅̂ = −

3

4
[
𝑠 + 1

𝑠(𝑠 + 𝜔)
+
𝑡2
′

𝑠
] 𝑟′

−2
 (3-86) 

Analytical inversion yields: 

𝛴𝑟 = −1 + 𝑒
−𝜔(𝑡′−𝑡2

′)𝑟′
−3
;  𝛴𝜃 = −1−

1

2
𝑒−𝜔(𝑡

′−𝑡2
′)𝑟′

−3
 

   

(3-87) 
𝑈 = −

3

4
[
1

𝜔
+ (1 −

1

𝜔
)𝑒−𝜔(𝑡

′−𝑡2
′) + 𝑡2

′ ] 𝑟′
−2

 

The solution in this stage can also be obtained by starting anew from Eqs. (3-56) and (3-57) with 𝛼 = 0. 

3.8. Conclusions 

This chapter first presents a quasi-analytical model for the hydromechanical behaviour of a deep spherical cavity 

excavated in a dilatant poro-viscoplastic rock mass, accounting for three stages of a simplified life cycle. The present 

work is an extension of a previous viscoplastic model with zero dilation. For each stage of the considered life cycle, 

explicit expressions of displacement, stress and water pressure fields are deduced in the Laplace transform space. A 

numerical inversion according to the Stehfest algorithm can then provide the corresponding expressions in time-
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domain. A few numerical examples and parametric studies are carried out to illustrate the consistency of the solutions 

and the influence of four key parameters including dilation parameter, rock viscosity, backfill stiffness and the time 

of backfill contact. Subsequently, a sensitive analysis on temporal evolution of the damaged zone around a deep 

cavity is investigated based on proposed analytical model. Despite some simplifying assumptions adopted to make 

the problem solvable analytically (elastic incompressibility, linear viscoplastic dilation law, zero creep-threshold...), 

it provides a valuable tool for checking orders of magnitude at the stage of preliminary studies and also a useful 

benchmark for validating complex numerical simulations using computer codes. The main results are described 

below: 

(a) The assumption of a volumetric viscoplastic strain rate as a linear function of the Frobenius norm of deviatoric 

plastic strain rate can be used to construct an analytical model capable to describe the hydromechanical post-closure 

behaviour of a deep spherical cavity.  

(b) Viscoplastic dilatancy of rock mass induces an outward movement at every point (except at the cavity wall) due 

to the particular spherical symmetry involving an infinite domain. Negative pore pressure may occur in the vicinity 

of the cavity wall in reaction to the volumetric dilatancy of rock mass at times which are small compared to the 

characteristic hydraulic diffusion time. 

(c) The studied parameters influencing the final extent of the damage zone can be arranged in the following order of 

importance: the Young’s modulus of the rock, the backfill stiffness, the rock dilatancy, the gap between the backfill 

and the cavity wall, the critical value of equivalent von Mises strain marking the onset of diffuse damage. Finally, 

the backfill stiffness no longer influences the evolution of the damage zone when its value becomes comparable to 

that of the rock. 

 



Chapter 4 Numerical simulation of sensitive analysis and probabilistic study on temporal evolution of the EDZ 

57 

 

Chapter 4 Numerical simulation of sensitive analysis and probabilistic study on 

temporal evolution of the EDZ 

The development of microcracks in the rock formations, around excavated underground openings makes up the EDZ. 

The configuration of the fractured zone induced by tunnel excavation has been extensively studied (Armand et al., 

2014; van den Eijnden et al., 2017; Mánica et al., 2021; Pardoen et al., 2015a), however, the research on temporal 

evolution of the damage zone is very limited. The damage zone in this study refers to the volume of rock in which 

crack formation becomes important, thereby deteriorating its mechanical and hydraulic properties. The evaluation of 

this damage zone extension is critical for the design of underground radioactive waste disposal sites (Pellet et al., 

2009) or for use in stability of drilling inclined or horizontal wells for unconventional gas recovery or CO2 injection 

(Shalev and Lyakhovsky, 2013). In this chapter, we focus on the sensitive analysis on the extent of the EDZ aiming 

to provide some useful information for the design of underground openings. 

4.1. Numerical model and normalized parameters 

The finite element simulation is performed with Cast3M software. It is a multidisciplinary, multi-physics finite-

element code developed by the French Atomic Energy and Alternative Energies Commission. The simulations 

presented in this study include four stages corresponding to Figure 3-1. Assuming the excavation rate is proportional 

to the diameter of excavated gallery, the average excavation time, about 35 days, in this simulation is used.  

The three-dimensional effects of the tunnel excavation are idealized through a decreasing fictitious pressure applied 

on the tunnel wall when a 2D model is considered. The length of a typical underground tunnel being much larger 

than its diameter (about 10 m), the assumption of plane strain condition is adopted in this numerical model. 

Quadrilateral finite elements with quadratic shape functions are used in the simulation. In order to minimise the 

boundary effects and to exhibit the asymptotic state attainable in the case of large stress threshold values (detailed 

derivation is given in Appendix A), a domain 40 times the size of the tunnel radius is discretized. The element sizes 

are refined near the tunnel wall and gradually increase outward. Considering the cylindrical symmetry and 2D plane 

strain conditions assumed, it is only necessary to model an angular sector (note that this is consistent with the isotropic 

initial stress condition), as shown in Figure 4-1. Hydraulic effects are neglected in the current model. Due to generally 

imperfect backfilling operations in practical situations, a void will be left behind. We assimilate this void as a 

concentric annular space to idealize the problem, with an initial "gap" 𝑢𝑗𝑒𝑢 between the backfill and the tunnel wall, 

the latter being at a radius 𝑅𝑎 immediately after excavation. 

 

Figure 4-1 Schematic diagram of finite element mesh and model dimensions.  

Moreover, the problem is simplified: both the pore pressure and dilation of rock mass are neglected. The rock mass 

is not limited to the case of elastic incompressibility, and the viscoplastic equation of Perzyna’s type Eq. (3-9) is still 

applicable. Therefore, the total strain rate of rock mass writes: 



Chapter 4 Numerical simulation of sensitive analysis and probabilistic study on temporal evolution of the EDZ 

58 

 

𝜺̇ =
1

3𝐾
𝑝̇𝟏 +

1

2𝐺
𝒔̇ + 〈

𝑞 − 𝜎𝑠
𝜂

〉𝑛
3𝒔

2𝑞
 (4-1) 

We will now present a few parametric studies carried out to evaluate its influence on the extent of the damage zone 

𝑅𝐸𝐷𝑍 around a tunnel of circular cross section during free convergence and after backfill contact. On account of this 

observation, we seek to correlate 𝑅𝐸𝐷𝑍  to the radial convergence 𝑢 . Before doing this, some new normalized 

parameters are introduced: 

𝑅𝐸𝐷𝑍
′ =

𝑅𝐸𝐷𝑍
𝑅𝑎

;    𝑢′ =
𝑢

𝑅𝑎
;   𝑢𝑗𝑒𝑢

′ =
𝑢𝑗𝑒𝑢

𝑅𝑎
;   𝑟′ =

𝑟

𝑅𝑎
;   Σ𝑠 = 

𝜎𝑠
𝑃∞
;  Σ𝑒𝑞 = 

𝑞

𝑃∞
 (4-2) 

The strain tensor is be the symmetrised gradient of the normalised displacement field relative to the normalised 

coordinates. 

The normalized "gap" 𝑢𝑗𝑒𝑢
′ , which corresponds to the normalized radial convergence at contact, can be linked to the 

void ratio 𝑌 (ratio of annular space to the tunnel cross section): 

𝑢𝑗𝑒𝑢
′ = 1 − √1 − 𝑌 (4-3) 

The reference parameters are also taken from the claystone and listed in Table 4-1. 

Table 4-1 Reference parameters used in the parametric study. 

𝑅𝑎 = 5  m; 𝑃∞ = 12 MPa;  𝐸 = 5000 MPa;  𝑣 =  0.3; 𝜎𝑠 = 2 MPa; 𝜂 = 2.0 × 10
20 Pa. s; 

𝑛 = 1;   𝑌 = 10 %;  𝐸𝑅 = 400 MPa;  𝑣𝑅 = 0.3 

In Table 4-1, 𝐸𝑅 and 𝑣𝑅 denote the Young's modulus and Poisson ration of backfill, the relation between 𝐸𝑅 and 

𝐾𝑅 is  𝐾𝑅 = 𝐸𝑅 (1 − 2𝜈𝑅)⁄  (Sun et al., 2021b); from Eq. (4-3), 𝑌 = 10 % corresponds to 𝑢𝑗𝑒𝑢 ≈ 25 cm. It is well-

known that determination of a stress threshold is very difficult and is closely linked to the period of observation and 

the confining pressure (Gasc-Barbier et al., 2004; Mánica et al., 2017). Some previous experiments results (Gasc-

Barbier et al., 2004; Zhang et al., 2010) suggested that the stress threshold should be lower than 2 MPa for the long-

term creep behaviour of clayey rock. We therefore draw on these results and set the reference stress threshold as 2 

MPa. Souley et al. (2011) suggests that creep may take place beyond a viscoplasticity threshold of 3 to 5 MPa based 

on the results of creep tests of COx claystone (Su, 2005). Based on these studies, the range of stress threshold to be 

parameterized is given as 0 ≤ 𝜎𝑠 ≤ 5 MPa.  

4.2. Results based on stress criterion 

To find an estimation of the extent of the damage zone 𝑅𝐸𝐷𝑍, two different approaches are considered here: stress-

based criterion and strain-based criterion. We first adopt the former one, that is to say the damage zone is defined as 

where the yield criterion is positive, 𝑓(𝝈)  > 0 , in other words, σ𝑒𝑞 > σ𝑠 . The extent of the damage zone is 

represented by the radius 𝑅𝐸𝐷𝑍 where σ𝑒𝑞 − σ𝑠 changes sign. In this case, we need to check the values of von Mises 

equivalent stress σ𝑒𝑞  at all integration points along the radial direction (as shown in (Figure 4-2) and use 

interpolation to detect at which radius σ𝑒𝑞 − σ𝑠 changes sign. 
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Figure 4-2 Distribution of intergration points. 

We plot the normalized damage zone 𝑅𝐸𝐷𝑍
′  versus normalized radial convergence 𝑢′ with different normalized stress 

thresholds in Figure 4-3. From Figure 4-3, there is a jump in each curve, which represents the damage zone caused 

by the instantaneous excavation, inducing a sudden stress variation. More importantly, extension of the damage zone 

can be very large, up to more than 15 times the tunnel radius, for low thresholds.  

 

Figure 4-3 Profile of R
’ 

EDZ versus u’ with different normalized stress thresholds. 

When stress threshold is large (5 MPa), the tunnel wall stops converging before coming to contact with the backfill. 

This is an interesting phenomenon which means that if stress threshold is large enough, the rock mass may never 

come to contact with the backfill and tends to an asymptotic state at large times at which displacement, stress and 

strain fields all become stationary. To better visualise this physical mechanism, the evolution of the normalized 

equivalent stress Σ𝑒𝑞 along the radius is shown in Figure 4-4 with two different stress thresholds, 𝜎𝑠 = 5 MPa and 

𝜎𝑠 = 1 MPa.  

The damage zone 𝑅𝐸𝐷𝑍
′  is at the point when the curve Σ𝑒𝑞 crosses the horizontal line defined by Σ𝑠. With time, 

Σ𝑒𝑞 decreases at near field and increases at far field, with its form flattening and spreading to the right, inducing 

thereby a progressive rise of 𝑅𝐸𝐷𝑍
′ . At the asymptotic state, Σ𝑒𝑞 coincides with Σ𝑠 for 𝑟′ ≤ 𝑅𝐸𝐷𝑍

′  and decreases 

asymptotically to zero for 𝑟′ > 𝑅𝐸𝐷𝑍
′ . This asymptotic regime can in fact be solved analytically in the case of a 

spherical cavity inside an infinite medium, as shown in Section 4.5. Analytical solution in the case of cylindrical 

symmetry is not accessible, due to the non-linear dependence of the von Mises equivalent stress on the three distinct 

principal stresses, involving variation of Lode's angle, but the physical mechanism remains the same. Conformity of 

behaviour (distribution of the equivalent stress Σ𝑠) with the analytical solution in the case of a spherical cavity does 

provide additional confidence on the correctness of the numerical predictions. 
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Figure 4-4 Evolution of the normalized equivalent stress 𝛴eq along the radius: 𝜎s = 5 MPa (left); 𝜎s = 1 MPa (right). 

In conclusion, it can be seen that a stress-based criterion leads to an excessively large estimation of the long-term 

development damage zone which is contrary to physical intuition. In fact, in the majority of the damage zone so 

determined, strains remain small. Correspondingly, the level of fracturing hence the impact on mechanical (strength 

and stiffness) and hydraulic (conductivity) properties - the essential physical phenomenon from the point of view of 

nuclear safety - remains low. Assimilating such material points to be part of the damage zone (from the point of view 

of hydraulic conductivity and nuclear safety) is therefore unrealistic. This is why we will shift to a strain-based 

criterion in the following section.  

4.3. Results based on strain criterion 

In fact, the total strains may not be significant everywhere where the stress threshold is bypassed. We were thus led 

to the second attempt where we identified a zone as "damaged" when its strain goes beyond a critical value, which is 

assumed to correspond to a critical intensity of cracking. Based on the study of Su (2005), at the time scale of 

laboratory tests on rock samples (maximum a few years), the total strain of claystone at rupture, whether in short-

term compression tests, or in long-term creep tests, are between 1 and 2%. This means that one can determine a 

rupture criterion based on the strain of rock material for the short-term and long-term behaviour, in addition to short-

term stress-based criterion. Sakurai (1999) proposed the same type of rupture analysis, especially for monitoring the 

performance of in-situ structures. For storage structures, the approach using strain-based criterion appears therefore 

particularly applicable to estimate the extent of long-term evolution of the EDZ. In this latter approach, evolution of 

damage and fracture is estimated by analyzing the accumulation of total strains, that is the sum of elastic, plastic and 

viscoplastic strains. Note that due to viscoplastic effects, the stress intensity (as measured by the yield function 𝑓) in 

the near field decreases with time, so is the viscoplastic strain rate. Su (2005) proposed that for argillites, an 

accumulated strain of 0.5% marks the initiation of ‘diffuse damage’. To translate the above result from laboratory 

tests into a general 3D criterion, applicable to multiaxial stresses and strains, two possible choices on the strain 

invariant to be compared to the above threshold value will be studied: amplitude of the maximum principal strain 

𝜀𝑚𝑎𝑥 and the von Mises equivalent strain 𝜀𝑒𝑞. Considering the plane-strain and isochoric condition considered in 

our numerical model (long tunnel under plane strain condition), we have  𝜀22 = −𝜀11  and 𝜀33 = 0, leading to 

𝜀𝑚𝑎𝑥 = 𝜀22 = −𝜀11 and 𝜀𝑒𝑞 = √2 3𝜀𝑖𝑗𝜀𝑖𝑗⁄ = √4 3⁄ 𝜀22.  
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The comparison of extent of damage zone calculated between 𝜀𝑚𝑎𝑥 = 0.5% and 𝜀𝑒𝑞 = 0.5% is shown in Figure 

4-5. From Figure 4-5, it is observed that the results using either 𝜀𝑚𝑎𝑥 or 𝜀𝑒𝑞 as the criterion are close to each other. 

Different from the stress-based criterion, the damage zone is continuous everywhere here and the initial sudden 

expansion of the damage zone disappears. Considering 𝜀𝑒𝑞  to be more representative in 2D/3D condition, we 

propose using an 𝜀𝑒𝑞-based criterion in the following parametric studies. 

The relationship between 𝑅𝑣𝑝
′  and 𝑢′ with diffferent rock viscosities (𝜂 𝜂0⁄ = 0.1, 1, 3, 10) are plotted in Figure 4-6. 

𝜂0 = 2.0 × 10
20 Pa. s is the reference viscosity listed in Table 4-1. From Figure 4-6, one can find that the rock 

viscosity only influences the speed of evolution of 𝑅𝐸𝐷𝑍
′  with time, in that a smaller rock viscosity corresponds to a 

larger 𝑅𝐸𝐷𝑍
′  at any given time. 

  

Figure 4-5 Profile of R
’ 

EDZ versus u’ with two strain-

based criterions. 

Figure 4-6 Profile of R
’ 

EDZ versus u’ with different rock 

viscosities 

Considering a limited experimental data on the values of 𝑛, we study the influence of 𝑛 values from 1 to 3 on the 

damage zone and the results are shown in Figure 4-7. It can be found that the value of 𝑛 has a negligible influence 

on the relation between the extent of damage zone and radial convergence. It only changes the speed (hence the time) 

to attain a given size of damage zone or radial convergence. 

 

Figure 4-7 Profile of R
’ 

EDZ versus u’ with different exponent values. 
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Figure 4-8 shows the influence of stress threshold on the relation of damage zone vs radial convergence. It can be 

seen that the damage zone increases with radial convergence until the rock mass is "stabilised" (all fields become 

stationary) upon contact with the backfill. Similar to the case of stress-based criterion, the rock mass reaches the 

asymptotic stationary state before contacting with backfill in the case of the largest stress threshold of 5 MPa, leading 

to a smaller damage zone. Based on the strain criterion, impact on the damage zone exercised by the stress threshold 

𝜎𝑠 is relatively small inside the interval of realistic values of the latter (𝜎𝑠 < 2 MPa). The impact only becomes 

important at unrealistically large values when the rock mass stabilises before contacting with the backfill, which 

appears practically highly improbable. Indeed, we have a question of great uncertainty on this parameter which can 

lead to critical dispersions of results. 

Figure 4-9 and Figure 4-10 respectively plots the curve of 𝑅𝐸𝐷𝑍
′ − 𝑢′ with different values of rock Young’s modulus 

𝐸 and void ratio ledt at backfilling. Figure 4-9 shows that Young’s modulus od rock has a very slight influence on 

the extent of damage zone at a given radial convergence. In Figure 4-10, each case of void ratio leads to a unique 

curve, but stopping at different points. As expected, a larger void ratio (i.e. a larger convergence) leads to a larger 

damage zone. Compared with stress threshold, the void ratio has a more significant influence. Figure 4-11 shows the 

influence of Young’s modulus of backfill 𝐸𝑅 on 𝑅𝐸𝐷𝑍
′ . The axis represents the extent of damage zone as the host 

rock tends to be stable. One can see 𝐸𝑅 will have practically no influence on the evolution of damage zone when its 

value is larger than 2000 MPa. In this case, the tunnel wall stops converging rapidly after coming into contact with 

the backfill. 

  

Figure 4-8 Profile of R
’ 

EDZ versus u’ with different values 

of stress threshold. 

Figure 4-9 Profile of R
’ 

EDZ versus u’ with different values 

of Young’s modulus of rock. 
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Figure 4-10 Profile of R
’ 

EDZ  versus u’ with different 

values of void ratios left at backfilling. 

Figure 4-11 Profile of R
’ 

EDZ  versus u’ with different 

values of Young’s modulus of rock backfill. 

4.4. Stress fields and radial convergence 

Figure 4-12 plots the profiles of normalized radial and circumferential stresses at different times during free 

convergence.  Since stresses are compressive (i.e. negative), we will refer to their absolute values in the following 

discussion. The radial stress (Figure 4-12(a)) exhibits a very simple and monotonic evolution: it increases with r’ at 

all times, from zero at tunnel wall to the geostatic pressure at far field, whereas it decreases with time at every radius. 

On the other hand, the circumferential stress (Figure 4-12(b)) exhibits an entirely different evolution. Before  a 

critical time, it gradually decreases with 𝑟’ to the geostatic pressure at far field. After this critical time, it first 

decreases with 𝑟’, reaches a local minimum at 𝑟1
′, then increases to a local maximum at 𝑟2

′ where the yield condition 

is just satisfied: 𝜎𝑒𝑞(𝑟2
′) = 𝜎𝑠, before decreasing progressively to the geostatic pressure. Incidentally, this second 

radius also delimits the viscoplastic zone 𝑟′ < 𝑟2
′ in the stress-based approach. This wavy profile exhibiting two 

local extrema is remarkable. During this second period, the local minimum 𝑟1
′ appears immobile whereas the local 

maximum 𝑟2
′ increases with time (expansion of the viscoplastic zone in the stress-based approach), in accordance 

with the results in Figure 4-4. Moreover, at any arbitrary but finite radius, the stresses do not tend to the geostatic 

pressure due to the existence of a positive stress threshold 𝜎𝑠 which is different from the case of zero threshold (Bui 

et al., 2014). 
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(a) normalised radial stress (b) normalized circumferential stress 

Figure 4-12 Profiles of normalized radial and circumferential stresses at different times during free convergence. 

Figure 4-13 shows the influence of stress threshold on the normalized backfill pressure,which represents  an elastic 

reaction to the inward-moving tunnel wall. This pressure increases with time after the contact between backfill and 

rock mass, and tends progressively to an asymptotic limit. At this limit, the rock mass reaches a stationary state where 

all stresses and strains remain constant. In the case of 𝜎𝑠 = 0, the backfill reaction always tends towards the initial 

geostatic pressure at large times (Bui et al., 2014) where a minor imprecision can be seen in the numerical results 

show. A larger stress threshold of the rock mass induces less creep deformation, resulting in a smaller backfill reaction, 

as shown in Figure 4-14. 

The results of the radial convergence calculated by analytical (spherical symmetry condition) (Sun et al., 2023a) and 

numerical models (plane strain and cylindrical symmetry condition) are compared in Figure 4-14. One can find that 

a higher value of stress threshold corresponds to a smaller convergence. Comparing the two curves calculated with 

zero stress threshold (𝜎𝑠 = 0), it can be found that the numerical result of displacement is larger than the analytical 

one due to a smaller arch effect in a cylindrical cavity. It is interesting to note that the ratio between the two 

displacements stays close to the value of 2 during free convergence at all times, which is the ratio between the 

respective elastic radial displacements (−3𝑃∞𝑅𝑎 (4𝐸)⁄  for the spherical cavity and −𝑅𝑎 3𝑃∞𝑅𝑎 (2𝐸)⁄  for the 

cylindrical cavity), and stays close to the value of 1.6-2 after contacting the backfill. The analytical solution for the 

spherical cavity, multiplied by a factor of 2 (free convergence stage) or 1.6-2 (post closure stage), can therefore be 

used as an approximate estimation of the radial convergence of a cylindrical cavity). 
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Figure 4-13 Temporal evolution of normalized backfill 

pressure with different values of stress threshold 

Figure 4-14 Temporal evolution of radial convergence: 

analytical (spherical) and numerical (cylindrical). 

4.5. Asymptotic regime of a spherical cavity inside an infinite viscoplastic medium 

4.5.1. Stage 1: Instantaneous excavation 

Considering no volumetric strain occurs, the mechanical fields after the instantaneous excavation are classical: 

𝜎𝑟
+ = −𝑃∞ [1 − (

𝑅𝑎
𝑟
)
3

] ;  𝜎𝜃
+ = −𝑃∞ [1 +

1

2
(
𝑅𝑎
𝑟
)
3

] ;  (4-4) 

𝑞+ ≝ √
3

 2
 𝒔: 𝒔 =

3

2
𝑃∞ (

𝑅𝑎
𝑟
)
3

;   𝑢+ = −
3𝑃∞
4𝐸

𝑅𝑎
3

𝑟2
 (4-5) 

4.5.2. Stage 2: Free convergence 

The emphasis is focused on the asymptotic state in this stage. As the asymptotic state hypothetically assumed, the 

viscoplastic strain rate comes to zero everywhere in the damage zone, and does not evolve any more. In consequence, 

the extent of 𝑅𝐸𝐷𝑍 also becomes stationary: 𝑅𝐸𝐷𝑍
∞ = lim

𝑡→∞
𝑅𝐸𝐷𝑍, so are the stress and strain fields.  

In the damage zone (𝑅𝑎 < 𝑟 < 𝑅𝑣𝑝
∞ ), we have 𝑞 = σ𝑠 everywhere, leading to: 

𝑞 = 𝜎𝑟 − 𝜎𝜃 = −
𝑟

2

𝜕𝜎𝑟
𝜕𝑟

= 𝜎𝑠 (4-6) 

Integration relative to 𝑟 and accounting for the boundary condition at tunnel wall 𝜎𝑟(𝑅𝑎) = 0 leads to: 

𝜎𝑟 = −2σ𝑠𝐿𝑛 (
𝑟

𝑅𝑎
) ;  𝜎𝜃 = −2σ𝑠𝐿𝑛 (

𝑟

𝑅𝑎
) − σ𝑠 (4-7) 

In the elastic zone, we have: 
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𝑢(𝑟, 𝑡) =
𝐴

𝑟2
 ;  𝜺 =

[
 
 
 
 
 −
2𝐴

𝑟3

𝐴

𝑟3

𝐴

𝑟3]
 
 
 
 
 

= −
𝑟

2𝐸

𝜕𝜎𝑟
𝜕𝑟

[
 
 
 
 
1

−
1

2

−
1

2]
 
 
 
 

 (4-8) 

where 
𝐴

𝑟3
=

𝑟

4𝐸

𝜕𝜎𝑟

𝜕𝑟
 and the boundary condition 𝜎𝑟(∞, 𝑡) = −𝑃∞ leads to: 

𝜎𝑟 = −
4𝐸𝐴

3𝑟3
− 𝑃∞ (4-9) 

Continuity of stress requires that 𝜎𝑟 − 𝜎𝜃 = σ𝑠 as 𝑟 approaches the damage zone 𝑅𝐸𝐷𝑍 from the RHS, hence: 

𝐴 = −
σ𝑠
2𝐸

(𝑅𝐸𝐷𝑍
∞ )3  ;   𝜎𝑟 = −𝑃∞ +

2

3
σ𝑠 (

𝑅𝐸𝐷𝑍
∞

𝑟
)

3

  ;   𝜎𝜃 = −𝑃∞ −
1

3
σ𝑠 (

𝑅𝐸𝐷𝑍
∞

𝑟
)

3

 (4-10) 

Continuity of radial stress at 𝑅𝐸𝐷𝑍
∞  yields: 

𝑅𝐸𝐷𝑍
∞

𝑅
= exp (

𝑃∞
2σ𝑠

−
1

3
) (4-11) 

It is interesting to study the evolution of the equivalent stress 𝑞(𝑟, 𝑡). At 𝑡 = 0+, we have: 

𝑞(𝑅𝑎 , 0
+) =

3

2
𝑃∞ (

𝑅𝑎
𝑟
)
3

 (4-12) 

At the asymptotic state: 

𝑞(𝑟 < 𝑅𝐸𝐷𝑍
∞ , ∞) = 𝜎𝑠  ;   𝑞(𝑟 > 𝑅𝐸𝐷𝑍

∞ ,∞) = 𝜎𝑠 (
𝑅𝐸𝐷𝑍
∞

𝑟
)

3

 (4-13) 

The variation of 𝑞(𝑟, 𝑡) is non-trivial. Assuming 3𝑃∞ 2⁄ > σ𝑠 (otherwise, viscoelastic strain does not develop and 

damage zone does not appear), 𝑞 appears to decrease with time at near field and increase with time at the far field.  

For an infinite region, this asymptotic regime always intervenes, however small is σ𝑠  but positive. For a finite 

domain (case of FEM study), this regime will not intervene when 𝑅𝐸𝐷𝑍
∞  given by a formula analogue to Eq. (4-11) 

is larger than the outer boundary. The above is established for the case of spherical symmetry. A similar situation 

would occur for the case of cylindrical symmetry based on the numerical results in this study. 

4.6. Probabilistic study on temporal evolution of the EDZ 

From the above study, it can be seen that several parameters exert an influence on the extent of the damage zone. 

Symbolically we can write: 

𝑅𝐸𝐷𝑍
′ = 𝐹(𝜂, 𝜎𝑠, 𝐸, 𝐸𝑅; 𝑌, 𝜀𝑒𝑞

𝑐𝑟𝑖𝑡) (4-14) 

However, in any mechanical model, each input parameter exhibits an uncertainty relative to the question: “what is 

the most appropriate value to retain in design calculations”. Uncertainty may arise due to the natural dispersion in 
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experimental measurements, which is the case of the first four parameters (𝜂, 𝜎𝑠, 𝐸, 𝐸𝑅). It may be huge (several 

orders of magnitude for 𝜂) or relatively moderate (𝜎𝑠, 𝐸, 𝐸𝑅). Otherwise, a parameter can vary simply because it is 

"adjustable" (e.g. void ratio left at backfill 𝑌, as part of the design choices), or due toits empirical nature (e.g. 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 

in the strain-based damage criterion), rendering uncertain the appropriate value to retain.  

In the present study, the last two parameters, 𝑌and 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡, can vary, but are not asigned statistical distributions. To 

investigate their influence, a few different values for each of these two parameters are considered in a limited 

parametric study. By assigning a statistical distribution to the other four parameters (𝜂, 𝜎𝑠, 𝐸, 𝐸𝑅), as listed in Table 

4-2, we aim to estimate the statistical distribution of the extent of the damage zone 𝑅𝐸𝐷𝑍. Three different types of 

statictical distribution are considered here: Beta Distribution, Log-Normal Distribution, and the Uniform Distribution.  

The Beta distribution is advocated mainly because of its flexibility and the upper and lower bounds of its domain, 

which in most cases can match the upper and lower bounds of geotechnical variables (Tran et al., 2021; Zhou et al., 

2020). The normal distribution is usually replaced by log-normal distribution for material constants which only take 

positive values, in order to exclude negative values. Table 4-2 summarizes the distribution laws and reference values 

for all associated parameters considered as random variables, in which 𝐴̅ stands for the mean value of A, 𝐶𝑜𝑉 

represents the coefficient of variation (i.e. mean value divided by standard deviation) and Min − Max represents 

respectively minimum and maximum values. The statistic value of rock viscosity 𝜂 corresponds to the Clayey Unit 

in the COx formation; the statistic value of 𝐸 is taken based on contribution of Armand et al. (2017). As for 𝜎𝑠 and 

𝐸𝑅 , we assume their distribution are uniform due to the limited information on these two parameters of COx 

claystone. 

Table 4-2 Input probabilistic parameters for characterizing the uncertainties in damaged zone. 

Parameters Distribution laws Statistic 

Rock viscosity 𝜂 (Pa.s) Log-normal 𝜂̅ = 2 ∗ 1020, 𝐶𝑜𝑉 = 20%, 

Stress threshold 𝜎𝑠 (MPa) Uniform Min − Max: 0 – 5 

Rock Young’s modulus 𝐸 

(MPa) 
Beta 

Min − Max: 2000 – 10000, 𝐸̅ = 6000, 𝐶𝑜𝑉

= 58.33% 

Backfill Young’s modulus 

𝐸𝑅 (MPa) 
Uniform 

Min − Max: 500 – 2000, 𝐸𝑅̅̅̅̅ = 1250, 𝐶𝑜𝑉

= 34.64 % 

4.6.1. The population effect 

The computing resources and time cost when using Monte Carlo to deal with the problem are issues that have to be 

considered. To this end, an appropriate population size is determined in advance by studying the CoV of the input 

variables as a function of the population size. The number of populations must be large enough to ensure little 

fluctuation in the values of the mean, standard deviation and coefficient of variation. In the first step, we generate a 

list of 4 individuals "List1={𝑍1, 𝑍2, 𝑍3, 𝑍4}" and we calculate the 𝐶𝑜𝑉 (ratio of standard deviation to mean) of this 

first list. Then we add another individual (the population of individuals in current list 𝑛𝑝𝑜𝑝 = 5) to obtain a new list 

"List2 = {𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5}", we then also calculate the 𝐶𝑜𝑉 of this list. These steps are repeated until 𝑛𝑝𝑜𝑝 = 

8000. Moreover, we keep the mean of the variable unchanged and the standard deviation increases (relative to the 

reference value) by for example 5%, 10%, 15% and 20%. Then, the 𝐶𝑜𝑉 of these lists are plotted against their 
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population numbers in Figure 4-15. Let 𝑌 and 𝑍 be random variables that respectively follow a Beta distribution 

and a Log-normal distribution. Their statistical parameters are consistent with Table 4-2. One can observe from 

Figure 4-15 that the 𝐶𝑜𝑉s of variables 𝑌  and 𝑍  start to stabilize from 𝑛𝑝𝑜𝑝  = 2000. Considering the time-

consuming, we think 𝑛𝑝𝑜𝑝 = 2000 is an optimal value for the following probability analysis. 

  

(a) (b) 

Figure 4-15 𝐶𝑜𝑉 of a (a) Beta distribution and (b) ) Log-normal distribution in population number function. 

4.6.2. Results and analyses 

Computations using the Monte Carlo approach are performed by combining the codes Matlab and Cast3M. Omitting 

the detailed programming instructions too voluminous to be shown here, conceptually, the main operation steps are 

as follows: 

• Generate randomly 2000 sets of input parameters using Matlab, based on the respective distribution laws for 

each{(𝜂(𝑖), 𝜎𝑠
(𝑖)
, 𝐸(𝑖), 𝐸𝑅

(𝑖)
; 𝑌, 𝜀𝑒𝑞

𝑐𝑟𝑖𝑡) ;  𝑖 = 1 to 2000}. Note that the last two parameters take constant values in 

the 2000 data lists. 

• For each data set i, Matlab calls Cast3M to compute 𝑅𝐸𝐷𝑍
′(𝑖)

= 𝐹 (𝜂(𝑖), 𝜎𝑠
(𝑖)
, 𝐸(𝑖), 𝐸𝑅

(𝑖)
; 𝑌, 𝜀𝑒𝑞

𝑐𝑟𝑖𝑡) 

• The preceding step yields the resulting list {𝑅𝐸𝐷𝑍
′(𝑖)

;  𝑖 = 1 𝑡𝑜 2000}, Matlab then performs statistical analyses on 

this list, to obtain the statistical distribution of 𝑅𝐸𝐷𝑍
′  for a particular combination of the last two input parameters 

(𝑌, 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡). 

• Repeat the above steps for different combinations of (𝑌, 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡): The follow values are considered: 

𝑌 = 10%,15%, 30% ;  𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.1%, 0.3%, 0.5%, 0.7%. This leads to 12 combinations. 

The probability density function (PDF): 𝜌(𝑅𝐸𝐷𝑍
′ ) , and the cumulative density function (CDF): ℱ(𝑅𝐸𝐷𝑍

′ ) =

∫ 𝜌(𝑟′)𝑑𝑟′
𝑅𝐸𝐷𝑍
′

0
 of the normalized damaged zone extent are shown in Figure 4-16-Figure 4-18. In all cases, the general 

shape of the PDF is relatively the same: it starts to emerge from zero at a minimum radius 𝑅𝑚𝑖𝑛
′ , rises to a small 

value at radius 𝑅1
′  then decreases slightly over a relatively long interval (the plateau) until a radius 𝑅2

′ , then rises 

abruptly to a high peak value at 𝑅𝑝𝑒𝑎𝑘
′  and then falls back quickly to zero at a certain radius 𝑅𝑚𝑎𝑥

′ . The wavy nature 

of the PDF over the “plateau” 𝑅1
′ < 𝑅′ < 𝑅2

′  appears to be an artefact due to numerical discretisation and the modest 
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population size of 𝑛𝑝𝑜𝑝  = 2000. A parametric analysis on the population size shows that the oscillation over the 

“plateau” decreases slightly with 𝑛𝑝𝑜𝑝. However, the statistical parameters such as the mean and 𝐶𝑜𝑉 practically 

remain constant for values of 𝑛𝑝𝑜𝑝  above 2000. 

The shape of CDF is relatively simple: it rises slowly from zero until the radius 𝑅2
′  (RHS limit of plateau), then 

increases quickly to 1 at 𝑅𝑚𝑎𝑥
′ . The last part slightly concave is due to the falling branch of the PDF: 𝑅𝑝𝑒𝑎𝑘

′ < 𝑅′ <

𝑅𝑚𝑎𝑥
′ . Variations of the PDF induced by variations of the critical strain 𝜀𝑒𝑞

𝑐𝑟𝑖𝑡 show a conssistent pattern. An increase 

of 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 decreases naturally the extent of the damage zone, inducing in consequence a shift of the PDF to the left 

hand side (𝑅2
′ , 𝑅𝑝𝑒𝑎𝑘

′ , and 𝑅𝑚𝑎𝑥
′  decrease). This left-shift is consistently correlated with a decreasing mean value 

𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ ̅, as can be seen in Table 4-3. 

Table 4-3 Average values and the corresponding CoV with 𝑌 and ε
crit 

eq (other parameters take their reference 

values). 

𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 Y = 10% Y = 15% Y = 30% 

0.1% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 6.82, 𝐶𝑜𝑉 = 15.9% 𝑅𝐸𝐷𝑍

′̅̅ ̅̅ ̅̅ = 8.30, 𝐶𝑜𝑉 = 20.3% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 10.93, 𝐶𝑜𝑉 = 31.3% 

0.3% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 4.06, 𝐶𝑜𝑉 = 14.0% 𝑅𝐸𝐷𝑍

′̅̅ ̅̅ ̅̅ = 4.89, 𝐶𝑜𝑉 = 20.3% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 6.49, 𝐶𝑜𝑉 = 30.9% 

0.5% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 3.14, 𝐶𝑜𝑉 = 13.7% 𝑅𝐸𝐷𝑍

′̅̅ ̅̅ ̅̅ = 3.84, 𝐶𝑜𝑉 = 20.0% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 5.06, 𝐶𝑜𝑉 = 30.5% 

0.7% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 2.69, 𝐶𝑜𝑉 = 13.1% 𝑅𝐸𝐷𝑍

′̅̅ ̅̅ ̅̅ = 3.24, 𝐶𝑜𝑉 = 19.4% 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ = 4.36, 𝐶𝑜𝑉 = 29.3% 

In parallel, the peak of PDF becomes higher and sharper with the horizontal spreading (i.e. the standard deviation) 

diminished. However, the CoV, in other words the ratio between the standard deviation and the mean, stays more or 

less constant since both quantities decrease (Table 4-3). Correspondingly, a reduction of the void ratio 𝑌 induce the 

same tendency as an increase in the crtitcal strain 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡. Lower values of the void ratio logically decreases the duration 

of free convergence hence also decreases the amplitude of viscoplastic strains as well as the extent of the damage 

zone, inducing a left-shift of the PDF. 

As an indicative example of how these results can be put into profit in the making of an engineering decision, suppose 

an important design criterion is to limit the size of the damage zone to 5 time the tunnel radius for a repository located 

at mid-height of a 150 m thick host rock: 𝑅𝐸𝐷𝑍
′ < 5 . The probability of this event, 𝒫(𝑅𝐸𝐷𝑍

′ < 5) = ℱ(5) =

∫ 𝜌(𝑟′)𝑑𝑟′
5

0
, is evaluated for each of the 12 combinations of the two parameters (𝑌, 𝜀𝑒𝑞

𝑐𝑟𝑖𝑡), using the CDF. The results 

are summarized in Table 4-4 here-below. 

Table 4-4 Probability of R
’ 

EDZ ＞ 5 for various combinations of 𝑌 and ε
crit 

eq (other parameters take their reference 

values). 

𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 Y=10% Y=15% Y=30% 

0.1% 0 91% 95% 

0.3% 0 65% 92% 

0.5% 0 0 63% 

0.7% 0 0 32% 

Based on the above results and the set of assumptions, the void ratio 𝑌 = 10% appears to be a viable option whereas 

the value 𝑌 = 30% is to be excluded. The case 𝑌 = 15% is intermediate and necessitates more study on the 
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pertinent value of the critical strain to be used: in this last case, the reference value 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.5% or above allow to 

satisfy the design criterion 𝑅𝐸𝐷𝑍
′ < 5, but a decrease of this value will modify the situation. The analyse described 

above shows how the present approach, properly adapted to individual situations, may provide design guidelines for 

similar engineering projects. 

 

(𝑎) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.1%,𝑌 = 10% 

 

(𝑏) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.3%,𝑌 = 10% 

 

(𝑐) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.5%,𝑌 = 10% 

 

(𝑑)𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.7%,𝑌 = 10% 

Figure 4-16 PDF and CDF of normalized damaged zone extent with 𝑌 = 10% and different values of ε
crit 

eq . 

 

(𝑎) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.1%,𝑌 = 15% 

 

(𝑏) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.3%,𝑌 = 15% 
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(𝑐) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.5%,𝑌 = 15% 

 

(𝑑) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.7%,𝑌 = 15% 

Figure 4-17 PDF and CDF of normalized damaged zone extent with 𝑌 = 15% and different values of ε
crit 

eq . 

 

(𝑎) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.1%,𝑌 = 30% 

 

(𝑏)𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.3%, 𝑌 = 30% 

 

(𝑐) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.5%,𝑌 = 30% 

 

(𝑑) 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 = 0.7%,𝑌 = 30% 

Figure 4-18 PDF and CDF of normalized damaged zone extent with 𝑌 = 30% and different values of ε
crit 

eq . 
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4.7. Conclusions 

The FEM code in Cast3M software is used to investigate the temporal evolution of the extent of damage zone around 

a deep storage gallery. The time-dependent behaviour of surrounding rock is studied based on a simplified Perzyna’s 

overstress model, which is widely used in the civil engineering profession. The simplicity of this constitutive model 

also greatly saves the computation time of the Monte Carlo simulation. The numerical results can be summarized as 

follows: 

(a) The stress-based criterion states that any material points where the yield criterion is reached (i.e. the point of stress 

being outside the elastic domain in the space of the principal stresses) belongs to the damage zone, whatever is the 

amplitude of the strain. However, this criterion leads to an unrealistically excessive overestimation of the long-term 

extent of the latter. In consideration of the proposal by Su (2005), another criterion for estimating the damage zone, 

concomitant with the hydraulic damage, appears more realistic: the material state is considered damaged if its 

equivalent strain in the sense of von Mises exceeds the critical threshold. 

(b) A model based on Perzyna’s overstress concept shows that the rock viscosity does not affect the correlation 

between the extent of the damage zone and the radial convergence of tunnel wall but only the speed at which these 

phenomena develop. The other parameters influencing the development of the damaged zone can be ordered in the 

following order of importance: Young’s modulus of the rock, Young’s modulus of the backfill, stress threshold of 

the rock and the gap between the backfill and the tunnel wall. 

(c) If the stress threshold 𝜎𝑠 is large enough, the rock mass never comes to contact with the backfill but instead, 

tends to an asymptotic state at large times at which damaged zone, displacement, stress and strain fields all become 

stationary. With time, von Mises equivalent stress 𝜎𝑒𝑞  decreases at near field and increases at far field. At the 

asymptotic state, 𝜎𝑒𝑞 coincides with 𝜎𝑠 in the damaged zone and decreases asymptotically to zero outside this area. 

(d) According to a short probabilistic study on the extent of the damage zone 𝑅𝐸𝐷𝑍
′ , the peak of the PDF and the 

corresponding radius depends on the void ratio left at the backfill 𝑌 and the critical strain 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 used to identify the 

damage zone. An increase of 𝑌 or a decrease of 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 would have a similar effect of shifting the PDF of 𝑅𝐸𝐷𝑍

′  to 

the direction of larger radius (i.e. larger damage zone); correspondingly, the mean value 𝑅𝐸𝐷𝑍
′̅̅ ̅̅ ̅̅ ̅ increases. At the same 

time, the standard deviation of 𝑅𝐸𝐷𝑍
′  increases. 

 

 

 



 

 

 

PART II Numerical approach using a double-scale description
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Chapter 5 Numerical formulation of a double-scale approach 

The used double-scale modelling framework is the so-called finite element squared (FE2) method which allows scale 

transition of the material behaviour by computational homogenisation (Figure 5-1). Within the framework of 

computational homogenisation, a mesoscale BVP is carried out on a REA of which the homogenised responses are 

considered as numerical constitutive relations at the macroscale. The method allows a dialogue between the two 

computations: from macro to meso scale (downscaling), several macroscale variables (e.g. the strain tensor, fluid 

pressure, fluid pressure gradient) are transferred to the mesoscale BVP as the REA boundary conditions; from meso 

to macro scale (upscaling), averaging the meso-BVP solution allows to compute the macroscale dual quantities (e.g. 

the stress tensor, fluid mass flux, fluid mass density rate) and tangent stiffness matrix. Furthermore, the entire material 

mesostructure is represented and modelled directly in a REA. Different components at the microscale are described 

by their individual constitutive models. The framework of computational homogenisation has been successfully 

extended for multiphysics coupling problems such as hydromechanical coupling (Frey et al., 2013; Marinelli et al., 

2016; van den Eijnden et al., 2016), partially saturated media (Bertrand et al., 2020), and thermal coupling (Özdemir 

et al., 2008; Zalamea et al., 2021).  

 

Figure 5-1 Schematic diagram of FE2 model (adapted from van den Eijnden et al., 2016). 

5.1. Macroscale FEM equations for saturated porous medium 

The tensile stresses and strains are considered positive here below. The macroscale behaviour of the considered COx 

claystone is quasi-brittle under in situ compression stress range and its failure is related to the development of 

macroscale fractures (Pardoen et al., 2015a). In a double-scale FE² approach, the latter results from the damage and 

cracking at meso and micro scales (van den Eijnden et al., 2016, 2017; Mourlas et al., 2023). Such macroscale strain 

softening behaviour is due, in FE continuous modelling, to the appearance of strain localisation zones (e.g. shear 

bands modelling in COx claystone, Pardoen and Collin, 2017; Pardoen et al., 2015b, 2015c). Strain localisation in 

shear banding is characterised by high strain gradient and deformation flow within the zone, with the strain gradient 

playing a dominant role in the localisation phase (Pardoen et al., 2015b, 2015c). The numerical results show the 

following characteristics: a lack of internal length scale associated with shear banding in constitutive model; the 
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orientation and size of the shear banding respectively depends on the orientation and density of finite element mesh; 

and the dissipation energy inside the shear banding tends to zero as the finite element mesh is densified. 

An effective approach to the strain localisation problem is to introduce an internal length scale in the continuum 

through regularisation methods to maintain the ellipticity of the governing equations. In addition to the elasto-

viscoplasticity acted as a natural regularisation method (Borst and Duretz, 2020), two other popular categories exist: 

the enrichment of the constitutive law with non-local approaches (Manica et al., 2021) or gradient plasticity (Aifantis, 

1984), and the other one is the enrichment of the continuum kinematics with microstructure effects (Cosserat and 

Cosserat, 1909; Germain, 1973). Research results (Oka et al., 1995) show that the effectiveness of introducing viscous 

effects as the regularisation method depends on the viscous parameter when applying constitutive models for classical 

continuous media, and the regularisation mechanism for viscous effects gradually loses its usefulness over time. It 

seems that introducing viscous effects alone as the regularisation does not provide a fully objective description of the 

strain localisation problem.  

Consequently, even if this is not the central objective of this study, the adopted double-scale approach is combined 

with a regularisation method, i.e. the local second gradient model (Collin et al., 2006), to avoid macroscale mesh 

dependency in FE methods involving strain localisation. To implement this theory into finite element code, two 

governing equations are introduced for every kinematically admissible virtual displacement field 𝑢𝑖
∗ through a field 

of Lagrange multipliers 𝜆𝑖𝑗: 

∫ (𝜎𝑖𝑗
𝑡 𝜕𝑢𝑖

∗

𝜕𝑥𝑗
𝑡 + Σ𝑖𝑗𝑘

𝑡
𝜕𝑣𝑖𝑗

∗

𝜕𝑥𝑘
𝑡 − 𝜆𝑖𝑗

𝑡 (
𝜕𝑢𝑖

∗

𝜕𝑥𝑗
𝑡 − 𝑣𝑖𝑗

∗ ))𝑑Ω𝑡

Ω𝑡
= ∫(𝑡𝑖̅

𝑡  𝑢𝑖
∗ + 𝑇̅𝑖

𝑡 𝑣𝑖𝑗
∗  𝑛𝑗

𝑡) 𝑑𝛤𝑡

𝛤𝜎
𝑡

 (5-1) 

∫ 𝜆𝑖𝑗
∗ (

𝜕𝑢𝑖
𝑡

𝜕𝑥𝑗
𝑡 − 𝑣𝑖𝑗

𝑡 )𝑑Ω𝑡 = 0
Ω𝑡

 (5-2) 

The superscript [𝐴]𝑡 refers to the variable A at current time (or in current configuration). Eq. (5-1) is the weak form 

of the momentum balance equation between internal and external virtual works at current material configuration (unit 

volume) Ω𝑡 , in which the quantities with superscript * denote virtual quantities; 𝜎𝑖𝑗
𝑡  are the components of the 

Cauchy stress tensor, 𝑥𝑗
𝑡  are the current coordinates, 𝑢𝑖

∗  is the macroscale displacement field,  𝑣𝑖𝑗
∗  is the 

microkinematic gradient field. Furthermore, Σ𝑖𝑗𝑘
𝑡  are the components of the double (second order) stress tensor. In 

the right hand side of Eq. (5-1), 𝑡𝑖̅
𝑡 is the classical external traction per unit area; 𝑇̅𝑖

𝑡 is an additional external double 

force per unit area, both applied on the part 𝛤𝜎
𝑡 of the boundary 𝛤𝑡 of Ω𝑡, and 𝑛𝑗

𝑡 is the normal unit vector to the 

boundary. 

For the fluid part, a fluid mass balance equation is needed and can be written in weak form as: 

∫ (𝑀̇𝑡𝑝∗ −𝑚𝑖
𝑡 𝜕𝑝

∗

𝜕𝑥𝑖
𝑡)𝑑Ω

𝑡

Ω𝑡
= ∫ 𝑄𝑡𝑝∗𝑑Ω𝑡 −

Ω𝑡
∫𝑞̅𝑡𝑝∗ 𝑑𝛤

𝛤𝑡

 (5-3) 

where 𝑀𝑡 is the fluid mass with 𝑀̇𝑡 its time derivative, 𝑚𝑖
𝑡 is the fluid mass flux, 𝑄𝑡 is a sink term and 𝑞̅𝑡 is the 

boundary input flux per unit area which can be calculated by the product of 𝑚𝑖
𝑡 and the boundary surface normal 

vector 𝑛𝑖
𝑡. 
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The non-linear equations (5-1)-(5-3) to be solved are applicable to macroscale Boundary Value Problem (BVP) 

related to loading paths which is followed for a certain time. Assuming known the configuration Ω𝑡 at time t, the 

objective now is to search the unknowns including 𝑢𝑖, 𝑝, 𝑣𝑖𝑗, and 𝜆𝑖𝑗 for the configuration at the end of current 

time step 𝜏 = 𝑡 + Δ𝑡. Firstly, a test solution Ω𝜏1 is given (it can be the configuration at time t, or the configuration 

obtained by explicit scheme, etc.), and a residual will be obtained in each three field equations. The aim is now to 

find a new configuration Ω𝜏2 for which the residuals meet the iterative convergence requirements. In order to obtain 

a full Newton–Raphson algorithm, a linear auxiliary problem is given in Collin et al. (2006) to iteratively update dΩ 

between Ω𝜏1 and Ω𝜏2 : 

∫ [𝑈(𝑥,𝑦)
∗,𝜏1 ]

𝑇
[𝐸𝜏1][𝑑𝑈𝜏1]𝑑Ω = −𝑅𝜏1

Ω𝜏1
 (5-4) 

where 𝑅𝜏1  is the residuals obtained from last computation, [𝑈(𝑥,𝑦)
∗,𝜏1 ] is a 25-term array, with subsequently the 

components of 
𝜕𝑑𝑢𝑖

𝜕𝑥𝑗
, 𝑑𝑢1

𝜏1, 
𝜕𝑑𝑝𝜏1

𝜕𝑥𝑖
𝜏1 , 𝑑𝑝𝜏1, 

𝜕𝑑𝑣𝑖𝑗
𝜏1

𝜕𝑥𝑘
𝜏1 , 𝑑𝜆𝑖𝑗

𝜏1, 𝑑𝑣𝑖𝑗
𝜏1. The matrix [𝐸𝜏1] includes the following terms: 

[𝐸𝜏1] =

[
 
 
 
 
 
 
 
𝐶(4×4)
𝜏1 + 𝐸1(4×4)

𝜏1 0(4×4) 𝐾ℎ𝑚(4×3)
𝜏1 0(4×8) 0(4×4) −𝐼(4×4)

𝐺1(2×4)
𝜏1 0(2×2) 𝐺2(2×3)

𝜏1 0(2×8) 0(2×4) 0(2×4)

𝐾𝑚ℎ(3×4)
𝜏1 0(3×2) 𝐾ℎℎ(3×3)

𝜏1 0(3×8) 0(3×4) 0(3×4)

𝐸2(8×4)
𝜏1 0(4×4) 0(4×4) 𝐷(8×8)

𝜏1 0(8×4) 0(8×4)

𝐸3(4×4)
𝜏1 0(4×4) 0(4×4) 0(4×8) 0(4×4) 𝐼(4×4)

𝐸4(4×4)
𝜏1 0(4×4) 0(4×4) 0(4×8) −𝐼(4×4) 0(4×4) ]

 
 
 
 
 
 
 

 (5-5) 

To solve the linearized problem of Eq. (5-4), a 2D plane strain isoparametric finite elements are used with eight nodes 

for 𝑢𝑖  and 𝑝, four nodes for 𝑣𝑖𝑗  and one node for 𝜆𝑖𝑗 . Note that matrix [𝐷(8×8)] is obtained from a consistent 

linearization of the isotropic second gradient constitutive model (Mindlin, 1965), which gives the relation between 

double stress Σ𝑖𝑗𝑘 and the gradient of microkinematics 
𝜕𝑣𝑖𝑗

𝜕𝑥𝑘
𝑡  : 

{
 
 
 
 

 
 
 
 
Σ́111
Σ́112
Σ́121
Σ́122
Σ́211
Σ́212
Σ́221
Σ́222}

 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝐷 0 0 0 0 𝐷 2⁄ 𝐷 2⁄ 0
0 𝐷 2⁄ 𝐷 2⁄ 0 −𝐷 2⁄ 0 0 𝐷 2⁄
0 𝐷 2⁄ 𝐷 2⁄ 0 −𝐷 2⁄ 0 0 𝐷 2⁄

0 0 0 𝐷 0 −𝐷 2⁄ −𝐷 2⁄ 0
0 −𝐷 2⁄ −𝐷 2⁄ 0 𝐷 0 0 0
𝐷 2⁄ 0 0 −𝐷 2⁄ 0 𝐷 2⁄ 𝐷 2⁄ 0
𝐷 2⁄ 0 0 −𝐷 2⁄ 0 𝐷 2⁄ 𝐷 2⁄ 0
0 𝐷 2⁄ 𝐷 2⁄ 0 0 0 0 𝐷 ]

 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝜕𝑣̇11 𝜕𝑥1⁄

𝜕𝑣̇11 𝜕𝑥2⁄

𝜕𝑣̇12 𝜕𝑥1⁄

𝜕𝑣̇12 𝜕𝑥2⁄

𝜕𝑣̇21 𝜕𝑥1⁄

𝜕𝑣̇21 𝜕𝑥2⁄

𝜕𝑣̇22 𝜕𝑥1⁄

𝜕𝑣̇22 𝜕𝑥2⁄ }
 
 
 
 

 
 
 
 

 (5-6) 

where Σ́𝑖𝑗𝑘 is the Jaumann rate of double state. See Collin et al. (2006) for the details of matrix. 

5.2. Macro-to-meso scale transition: localization 

Both kinematics fields at meso and macro scales exist and are different in double-scale FE2 framework. Given a 

material point 𝑃̂ of position 𝑥⃗ with a displacement at macroscale 𝑢𝑖(𝑥)the mesokinematics 𝑢𝑖
𝑚(𝑥̂) is defined to 
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be identical: 𝑢𝑖
𝑚(𝑥) = 𝑢𝑖(𝑥). A Taylor expansion of the displacement of a point 𝑃 of position 𝑥⃗ close to 𝑃̂ at the 

macroscale gives the following definition: 

𝑢𝑖(𝑥) ≈ 𝑢𝑖(𝑥) +
𝜕𝑢𝑖

𝑀(𝑥̂)

𝜕𝑥𝑗
(𝑥𝑗 − 𝑥𝑗) + ⋯ (5-7) 

The higher-order terms of the expansion can be neglected at macroscale and only a first-order term is kept. However, 

at the mesoscale, the higher-order terms cannot be neglected since there is no restriction on the displacement field. 

This allows to obtain the separation of scales for displacement field: 

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
(𝑥𝑗 − 𝑥𝑗) + 𝑢𝑖

𝑓(𝑥) ≪ 𝑢𝑖(𝑥) (5-8) 

where 𝑢𝑖
𝑓(𝑥) represents the mesomechanical fluctuation field 𝑢𝑖

𝑓(𝑥), which is a result of the variations in material 

properties within the REA. This equation means that the length scale of the REA should be much smaller than the 

macroscale problem. Simply written， 𝑥𝑖 − 𝑥𝑖 ≪ 𝑢𝑖(𝑥). 

Similarly, the pore water pressure field at mesoscale can be formulated as: 

𝑝𝑚(𝑥) ≈ 𝑝(𝑥) +
𝜕𝑝(𝑥)

𝜕𝑥𝑗
(𝑥𝑗 − 𝑥𝑗) + 𝑝

𝑓(𝑥) (5-9) 

by decomposing it into a macroscale component and a mesokinematical fluctuation. 

The requirement of separation of scales implies that: 

𝜕𝑝(𝑥)

𝜕𝑥𝑗
(𝑥𝑗 − 𝑥𝑗) + 𝑝

𝑓(𝑥) ≪ 𝑝(𝑥) (5-10) 

5.3. Mesoscale BVP 

The formulation of the mesoscale model and of its periodic framework is defined hereafter. This model has been 

developed as a part of a FE2 framework, which allows an upscaling of the material behaviour by computational 

homogenisation (van den Eijnden et al., 2016). As mentioned previously, within the framework of computational 

homogenisation, a mesoscale computation is carried out on an REA of which the homogenised response is considered 

as the local (at a Gauss point) numerical constitutive relation at macroscale. The entire material mesostructure is 

represented and modelled in an REA. Different components at mesoscale are described by their individual 

constitutive models. These microscale models will be described in detail in the next chapter.  

The COx claystone is assumed as a cracked heterogeneous medium at mesoscale, in which rigid mineral grains 

(mainly quartz, calcite, and pyrite) are embedded within a soft clay matrix. To model failure and damage modes at 

small scale, the contact interfaces between solid mineral grains are assumed as microcracks and correspond to two 

types of failure: microcracks between two different mineral phases (inclusion-clay) and within the clay matrix (clay–

clay). These interfaces form a network of pore channels through which fluid can penetrate and flow (Figure 5-2). 
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Figure 5-2 Schematic diagram of fluid network at microscale in present FE2 model. 

5.3.1. Small strain and large rotation  

Considering the existence of discontinuities, as the contact interfaces between the different minerals, the small strain 

assumption is used at the microscale to satisfy the requirement of microscale stress continuity. The macroscale 

deformation gradient tensor 𝑭 is decomposed into a rotational component 𝑹 and a symmetric strain component 𝑼 

(van den Eijnden et al., 2016). In indicial notation, it is defined as: 

𝐹𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑥𝑗

= 𝑅𝑖𝑘𝑈𝑘𝑗 (5-11) 

where 𝑹 is used in both macro-to-meso and meso-to-macro computations. This decomposition introduces two 

coordinate systems (i.e. the macroscale coordinate system and the REA coordinate system) that allow to consider the 

rotation of a REA relative to the global frame. The small strain tensor enforced on the REA is then defined as 𝜀𝑖𝑗 =

𝑈𝑖𝑗 − 𝛿𝑖𝑗, in which 𝜹 is the Kronecker identity tensor. 

5.3.2. Representative Elementary Area with periodic boundary conditions 

The material mesostructure represented in a REA (of configuration Ω) is composed of solid particles, including elastic 

mineral inclusions embedded in a clay matrix, separated by cohesive interfaces. Its role is to reproduce the stress-

strain behaviour of the composite material, including the non-linear behaviour which comes from the plasticity of 

the clay matrix, the microcracking in the clay matrix, and the decohesion at interfaces around mineral inclusions 

(modelled by damage and softening). Macroscale and mesoscale deformations are transferred through the boundary 

conditions of the REA. The commonly used boundary conditions include Dirichlet boundary condition, Neumann 

boundary condition, and periodic boundary condition, of which the first two provide, respectively, an upper and 

lower bound solution. If the REA is not large enough to be representative, they tend, respectively, to overestimate 

and underestimate the material equivalent strength (van den Eijnden, 2015; Pardoen et al., 2020). Moreover, the 

periodic boundary conditions give results bracketed by upper and lower bounds. For these reasons, the periodic 

boundary conditions are applied on the REA. Such conditions have been used by several authors in the framework 

of computational homogenisation (Feyel and Chaboche, 2000; Mourlas et al., 2023; van den Eijnden et al., 2017). 

Figure 5-3 shows a deformed REA with periodic boundary conditions. Due to the existence of contact interfaces with 

displacement discontinuities, the weak formulation requires to take into consideration both the internal interfaces 

Γ𝑖𝑛𝑡 and the external boundary Γ. The latter is the boundary where periodic conditions are imposed and is subdivided 
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into two parts: the "lead" part Γ𝐿 and the "follow" part Γ𝐹. The kinematics of any point on the follow boundary 

depend on the kinematics of its corresponding homologous point on the lead boundary. The distance between these 

two points is defined by the period vector 𝑦⃗: 

𝑥𝑖
𝐹 = 𝑥𝑖

𝐿 + 𝑦𝑖  (5-12) 

The mechanical part of the periodic boundary condition of the REA is defined in terms of the displacement 

relationship between homologous points as: 

𝑢⃗⃗𝐹(𝑥𝐹) = 𝑢⃗⃗𝐿(𝑥𝐿) + ∇𝑢⃗⃗ ∙ 𝑦⃗ (5-13) 

In the same way, the periodic boundary condition for hydraulic part writes: 

𝑝𝐹 = 𝑝𝐿 + ∇𝑝 ∙ 𝑦⃗ (5-14) 

Moreover, the boundary traction 𝑡 and boundary fluid mass flux 𝑞̅ need to satisfy the antiperiodic condition: 

𝑡𝐹 + 𝑡𝐿 = 0 (5-15) 

𝑞̅𝐹 + 𝑞̅𝐿 = 0 (5-16) 

 

Figure 5-3 Homologous points x
F 

i and x
L 

i on periodic boundary segments ΓF and ΓL. 

5.3.3. Mesoscale balance equations 

The assumption of small strains at microscale makes the Cauchy stress tensor 𝜎𝑖𝑗
𝑚 approximately equals to the first 

Piola-Kirchhoff stress tensor 𝑃𝑖𝑗
𝑚. Moreover, gravity is neglected. Therefore, the momentum balance equation of the 

mesoscale BVP reads: 

𝜕𝜎𝑖𝑗
𝑚

𝜕𝑥𝑗
= 0 (5-17) 

The principle of virtual work states that the system is in equilibrium if internal virtual work equals to external one. 

Considering an admissible virtual velocity field 𝑢𝑖
∗, the weak formulation of Eq. (5-17) reads: 

∫ 𝜎𝑖𝑗
𝑚 𝜕𝑢𝑖

∗

𝜕𝑥𝑗
𝑑Ω

Ω

−∫ 𝑐𝑖
+𝑢𝑖

∗,+𝑑Γ
Γ𝑖𝑛𝑡
+

−∫ 𝑐𝑖
−𝑢𝑖

∗,−𝑑Γ
Γ𝑖𝑛𝑡
−

= 0 (5-18) 

by considering the antiperiodic boundary tractions. 
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For the fluid part, the fluid mass balance equation is used: 

𝑀̇𝑚 +
𝜕𝑚𝑖

𝑚

𝜕𝑥𝑖
= 0 (5-19) 

where 𝑀̇𝑚 is the variations of the fluid mass at microscale, 𝑚𝑖
𝑚 is the local fluid mass flux. Under the assumption 

of steady state at the microscale, the former can be neglected. 

Using the kinematically admissible virtual fluid pressure field 𝑝∗𝑚, the mass balance equation can be written in the 

weak form: 

∫ 𝑚𝑖
𝑚 𝜕𝑝

∗𝑚

𝜕𝑥𝑖
𝑡 𝑑Ω

Ω

−∫ 𝑞̅𝑀𝑝∗𝑚 𝑑𝛤

𝛤

= 0 (5-20) 

where 𝑞̅𝑀 is mesoscale fluid mass flux over the REV boundary 𝑞̅𝑀 = 𝑚𝑖
𝑚𝑛𝑖. 

The field equations in mesoscale BVP for saturated case includes mechanical nonlinear equation (5-18) and hydraulic 

mass balance equation (5-20). For these two equations, Eq. (5-18) is first calculated to iteratively update the node 

displacement by linearizing the field equations using a full Newton–Raphson iterative procedure, and these known 

solutions are used to solve Eq. (5-20), which is a linear system after some assumptions and thus does not require 

iterative computations.  

5.4. Meso-to macro scale transition: homogenisation  

Homogenisation of stress 

Hill-Mandel meso homogeneity condition (Hill, 1965; Mandel, 1972) allows to derive the REA averaged responses 

and tangent operators from micro-to-meso transition. This condition requires the average microscale work be equal 

to the mesoscale work. Under the small strain assumption, the microscale stress and strain tensors are obtained by 

microscale FEM computation and the meso homogeneity condition can be formulated in a virtual work formulation: 

𝜎𝑖𝑗𝜀𝑖𝑗
∗ =

1

2Ω
 ∫ 𝜎𝑖𝑗

𝑚 (
𝜕𝑢𝑖

∗𝑚

𝜕𝑥𝑗
+
𝜕𝑢𝑗

∗𝑚

𝜕𝑥𝑖
)  𝑑Ω

Ω

 (5-21) 

However, to overcome the discontinuity of displacement field within REAs due to the introduction of interface 

elements, an equivalent continuous microscale displacement field 𝑢̂𝑖
∗𝑚  has to be introduced. To define the 

equivalent strain 
𝜕𝑢̂𝑖

∗𝑚

𝜕𝑥𝑗
, an interface contact zone is defined with the length l and normal direction ni (Figure 5-4). 
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Figure 5-4 Schematic diagram of interface contact zone with the length l and normal direction ni. 

The two strains are equal outside the contact zone 
𝜕𝑢̂𝑖

∗𝑚

𝜕𝑥𝑗
=

𝜕𝑢𝑖
∗𝑚

𝜕𝑥𝑗
. But inside the contact zone, the equivalent strain 

𝜕𝑢̂𝑖
∗𝑚

𝜕𝑥𝑗
 is equal to the sum of the deformation of the contact zone by the strain 

𝜕𝑢𝑖
∗𝑚

𝜕𝑥𝑗
 and the interface relative 

displacement ∆𝑢𝑖: 

𝜕𝑢̂𝑖
∗𝑚

𝜕𝑥𝑗
=
1

𝑙
(∫

𝜕𝑢𝑖
𝑚

𝜕𝑥𝑗
 𝑑𝑙

𝑙

+ ∆𝑢𝑖𝑛𝑗) (5-22) 

Using Gauss' theorem allows to convert the deformation domain integral in the above equation to a displacement 

boundary integral: 

𝜎𝑖𝑗
𝜕𝑢𝑖

∗

𝜕𝑥𝑗
=
1

Ω
 ∫ 𝜎𝑖𝑗

𝑚 𝜕𝑢̂𝑖
∗𝑚

𝜕𝑥𝑗
 𝑑Ω

Ω

=
1

Ω
 ∫ 𝑡𝑖̅𝑢̂𝑖

∗𝑚 𝑑Γ
Γ

 (5-23) 

Using the periodic boundary conditions, the above relation reduces to: 

𝜎𝑖𝑗
𝜕𝑢𝑖

∗𝑀

𝜕𝑥𝑗
=
1

2Ω
 
𝜕𝑢𝑖

∗

𝜕𝑥𝑗
∫ (𝑡𝑖̅𝑦𝑗 + 𝑡𝑗̅𝑦𝑖) 𝑑Γ
Γ

 (5-24) 

Therefore, the homogenised stress obtained from Hill-Mandel condition under small strain assumption writes as 

follows: 

𝜎𝑖𝑗 =
1

2Ω
 ∫ (𝑡𝑖̅𝑦𝑗 + 𝑡𝑗̅𝑦𝑖) 𝑑Γ
Γ

=
1

Ω
 ∫ 𝜎𝑖𝑗

𝑚 𝑑Ω
Ω

 (5-25) 

In the case solving mesoscale BVP, 𝜎𝑖𝑗 can also be fomulated in terms of noal nodal reaction forces on the follow 

boundary: 

𝜎𝑖𝑗 =
1

2Ω
 ∑(𝑓𝑖

𝐹𝑦𝑗 + 𝑓𝑗
𝐹𝑦𝑖)

Γ𝐹

𝑑Γ 
(5-26) 
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Homogenisation of fluid mass flux 

The homogeneity condition can be used for the fluid part of the balance equations. Similarly, this was used by 

Ozdemir et al. (2008) for thermomechanical problems and by Massart and Selvadurai (2014) for fluid fluxes. The 

macro-homogeneity condition for the fluid (i.e. water) writes: 

𝑀̇𝑝∗ −𝑚𝑖

𝜕𝑝∗

𝜕𝑥𝑖
=
1

Ω
∫ 𝑀̇𝑚𝑝∗ −𝑚𝑖

𝑚 𝜕𝑝
∗

𝜕𝑥𝑖
 𝑑Ω

Ω

 (5-27) 

where 𝑀̇𝑚 and 𝑚𝑖
𝑚 are two variables that need to be defined. 

Considering the steady state conditions assumed at microscopic scale and then separating the timescales of the water 

storage, this reduces temporarily to: 

𝑚𝑖

𝜕𝑝∗

𝜕𝑥𝑖
=
1

Ω
∫ 𝑚𝑖

𝑚 𝜕𝑝
∗

𝜕𝑥𝑖
 𝑑Ω

Ω

=
1

Ω
∫ 𝑞𝑚𝑝∗ 𝑑Γ
Γ

 (5-28) 

The periodic boundary conditions allow to write: 

𝑚𝑖

𝜕𝑝∗

𝜕𝑥𝑖
=
1

Ω

𝜕𝑝∗

𝜕𝑥𝑖
∫ 𝑞𝑚𝑦𝑖 𝑑Γ
Γ

 (5-29) 

Hence, the homogenized fluid mass flux is the integral of the mesoscale boundary mass flux 𝑞̅𝐹 over the follow 

boundary: 

𝑚𝑖 =
1

Ω
∫ 𝑞̅𝐹𝑦𝑖 𝑑Γ

𝐹

Γ𝐹
 (5-30) 

Once more, the integral can be written as the sum of the nodal fluxes on the follow boundary due to discretization of 

finite elements on the boundaries: 

𝑚𝑖 =
1

Ω
 ∑𝑞̅𝐹𝑦𝑗
Γ𝐹

 (5-31) 

Homogenisation of fluid mass 

The mesoscopic fluid mass can be defined directly as the mass of fluid contained in the contact interfaces in the REA. 

The total area of fluid is equal to the integration of the hydraulic opening over the interfaces. Therefore, the total 

fluid mass is calculated as: 

𝑀 =
1

Ω
∫ 𝜌𝑤  𝑑Ω

𝑖𝑛𝑡

Ω𝑖𝑛𝑡
 (5-32) 

A finite difference approximation is made over the macroscale time interval Δ𝑡 to obtain the fluid mass storage term 

𝑀̇: 
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𝑀̇ =
𝑀𝑡 −𝑀𝑡−∆𝑡

∆𝑡
 (5-33) 

Homogenisation of consistent tangent operator 

A simple and conventional way to obtain the consistent tangent operators is the linearization of numerical 

perturbation. However, additional computations are required for the responses to a particular load increment using 

this method, which are too time-consuming especially in multiscale models. A possible alternative with higher 

efficiency and no dependency on the choice of the perturbation is the static condensation within the scheme of 

computational homogenisation (CHSC) (Kouznetsova et al., 2001). van den Eijnden (2015) has extended the CHSC 

for HM coupled FE system of equations for saturated porous cracked medium.  

The mesoscale consistent tangent operator can be obtained by the following equation: 

[
𝐺(4×4)
𝑚𝑚 𝐺(4×3)

𝑚ℎ

𝐺(3×4)
ℎ𝑚 𝐺(3×3)

ℎℎ
] {

𝛿 𝜀(4)
𝛿∇𝑝(2)
𝛿𝑝

} = {

𝛿 𝜎(4)
𝛿𝑞(2)

𝛿𝑀̇

} (5-34) 

where δ[.] represents an infinitesimal variation of a certain quantity. This equation can be simplified as 

[𝐺(7×7)]{𝛿𝑈(7)} = {𝛿𝑅(7)}. 

To obtain [𝐺(7×7)] using the static condensation process, the global system of FEM equations is extended as follows 

after some operations on the matrix: 

[
[𝑇𝐴] [𝑇𝐵]

[𝑇𝐶] [𝑇𝐷]
] {

𝛿𝑈(7)
𝛿𝑈(𝑛𝑖+𝑚𝑖)

} = {
𝛿𝑅(7)
0(𝑛𝑖+𝑚𝑖)

} (5-35) 

where [𝑇𝐴−𝐷] are the reduced matrix, 𝑈(𝑛𝑖+𝑚𝑖) consists in independent microscale degrees of freedom including 

node displacement and fluid pressure at the microscale, 𝑛𝑖 and 𝑚𝑖 are respectively their numbers. 

Eliminating the independent degrees of freedom in the above equation leads to the following condensed system of 

equations: 

[𝐺(7×7)]{𝛿𝑈(7)} = {𝛿𝑅(7)} (5-36) 

with the required mesoscale tangent operator: 

𝐺(7×7) = [𝑇𝐴] − [𝑇𝐵][𝑇𝐷]
−1[𝑇𝐶] (5-37) 

A consistent rotation of these tangent stiffness should be applied to 𝐺(7×7) to get the macroscale tangent operator. 

The derivation details of the relation between macroscale and mesoscale tangent operators can be found in van den 

Eijnden (2015). 
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5.5. Numerical solution of mechanical part in mesoscale BVP 

For mechanical part, the solid elements and interface elements share a set of four nodes, but the former are two-

dimensional and the latter is one-dimensional (i.e. zero thickness). The unknown of the mechanical nonlinear 

equations are the nodal displacements, which are obtained from the nodal residual forces and the consistent tangent 

matrix obtained by linearization. For the hydraulic part, an equivalent one-dimensional hydraulic element with two 

integration points is introduced and its numerical solution is introduced in Appendix C by extending the model to 

partial saturated case. 

Discretization of the continuum 

For the solid grains, the two-dimensional 4-node quadrilateral element with 4 integration points is used for spatial 

discretization. As shown in Figure 5-5, the element has a parent element in the coordinate system with node 

coordinates [∓1,∓1]. 

 

Figure 5-5 Two-dimensional 4-node quadrilateral mechanical element in "parent coordinate" and mapped 

coordinate systems. 

The nodal positions {𝑋𝑁𝑜𝑑𝑒} and its displacements {𝑈𝑁𝑜𝑑𝑒} in global coordinates 𝑥𝑖 are written as the transpose 

of column vector, with the element numbering of nodes: 

{𝑋𝑁𝑜𝑑𝑒} = {𝑥
(1) 𝑦(1) 𝑥(2) 𝑦(2) 𝑥(3) 𝑦(3) 𝑥(4) 𝑦(4)}𝑇 (5-38) 

{𝑈𝑁𝑜𝑑𝑒} = {𝑢𝑥
(1) 𝑢𝑦

(1) 𝑢𝑥
(2) 𝑢𝑦

(2) 𝑢𝑥
(3) 𝑢𝑦

(3) 𝑢𝑥
(4) 𝑢𝑦

(4)}
𝑇

 (5-39) 

The shape functions 𝑁(𝑖) which can express the displacement of any point in the element nodal displacements adopts 

the bilinear interpolation: 

𝑁(1) =
1

4
(1 − 𝜉1)(1 − 𝜉2);   𝑁

(2) =
1

4
(1 + 𝜉1)(1 − 𝜉2)  (5-40) 

𝑁(3) =
1

4
(1 + 𝜉1)(1 + 𝜉2);  𝑁

(2) =
1

4
(1 − 𝜉1)(1 + 𝜉2)  (5-41) 

The strain tensor of an integration point can be formulated with its local coordinates 𝜉𝑖  and node displacement 

𝑈𝑁𝑜𝑑𝑒: 
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{
𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦
}

𝑇

= [𝐿][𝐵]{𝑈𝑁𝑜𝑑𝑒} (5-42) 

where [𝐿] and [𝐵] respectively write: 

[𝐿] =

[
 
 
 
 
 
 
 
 
𝜕𝜉1
𝜕𝑥

𝜕𝜉2
𝜕𝑥

𝜕𝜉1
𝜕𝑦

𝜕𝜉2
𝜕𝑦

𝜕𝜉1
𝜕𝑥

𝜕𝜉2
𝜕𝑥

𝜕𝜉1
𝜕𝑦

𝜕𝜉2
𝜕𝑦 ]
 
 
 
 
 
 
 
 

 (5-43) 

[𝐵] =

[
 
 
 
 
 
 
 
 
 
𝜕𝑁(1)

𝜕𝑥

𝜕𝑁(2)

𝜕𝑥

𝜕𝑁(3)

𝜕𝑥

𝜕𝑁(4)

𝜕𝑥
𝜕𝑁(1)

𝜕𝑦

𝜕𝑁(2)

𝜕𝑦

𝜕𝑁(3)

𝜕𝑦

𝜕𝑁(4)

𝜕𝑦

𝜕𝑁(1)

𝜕𝑥

𝜕𝑁(2)

𝜕𝑥

𝜕𝑁(3)

𝜕𝑥

𝜕𝑁(4)

𝜕𝑥
𝜕𝑁(1)

𝜕𝑦

𝜕𝑁(2)

𝜕𝑦

𝜕𝑁(3)

𝜕𝑦

𝜕𝑁(4)

𝜕𝑦 ]
 
 
 
 
 
 
 
 
 

 (5-44) 

Therefore, the variation of stress tensor at current time writes: 

{𝛿𝜎}𝑇 = {𝛿𝜎11 𝛿𝜎12 𝛿𝜎21 𝛿𝜎22}
𝑇 = [𝐺][𝐿][𝐵]{𝑈𝑁𝑜𝑑𝑒} (5-45) 

The column vector of nodal forces of the solid elements {𝑓𝑒} is therefore written as: 

{𝑓𝑒} = ∫ [𝐵]𝑇[𝐿]𝑇{𝜎}
Ω𝑒

𝑑Ω = ∫ [𝐵]𝑇[𝐿]𝑇{𝜎}𝑑𝑒𝑡(𝐽)
Ω̂𝑒

𝑑Ω̂ (5-46) 

where 𝐽 is the Jacobian matrix of the transformation from the parent element to the global element: 

𝐽 =

[
 
 
 
𝜕𝑥

𝜕𝜉1

𝜕𝑥

𝜕𝜉2
𝜕𝑦

𝜕𝜉1

𝜕𝑦

𝜕𝜉2]
 
 
 

 (5-47) 

The element stiffness matrix [𝑘𝑒] in parrent coordinate system writes: 

[𝑘𝑒] = ∫ [𝐸]
Ω̂𝑒

𝑑𝑒𝑡(𝐽)𝑑Ω̂ (5-48) 

with [𝐸] = [𝐵]𝑇[𝐿]𝑇[𝐺][𝐿][𝐵]. Using the integration points to numerically integrate Eqs. (5-46) and (5-48), the 

nodal forces and stiffness matrix of each element are obtained: 
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{𝑓𝑒} =∑∑[𝐵(𝜉1
𝑖 , 𝜉2

𝑗
 )]

𝑇
[𝐿(𝜉1

𝑖 , 𝜉2
𝑗
 )]

𝑇
{𝜎(𝜉1

𝑖 , 𝜉2
𝑗
 )}

𝑛𝑝𝑖

𝑗=1

𝑛𝑝𝑖

𝑖=1

𝑑𝑒𝑡 (𝐽(𝜉1
𝑖 , 𝜉2

𝑗
 ))𝑊𝑖𝑊𝑗  (5-49) 

[𝑘𝑒] =∑∑[𝐸(𝜉1
𝑖 , 𝜉2

𝑗
 )]𝑑𝑒𝑡 (𝐽(𝜉1

𝑖 , 𝜉2
𝑗
 ))

𝑛𝑝𝑖

𝑗=1

𝑛𝑝𝑖

𝑖=1

𝑊𝑖𝑊𝑗 (5-50) 

with 𝑊𝑖 weights of the Gauss quadrature. 

Discretization of the interfaces 

For the contact interface elements, the one-dimensional 4-node quadrilateral element with 2 integration points is used 

for spatial discretization. As shown in Figure 5-6, the element has a parent element in the coordinate system with 

node coordinates [∓1, 0]. 

 

Figure 5-6 Mechanical part of the interface element in "parent coordinate" and mapped coordinate systems 

The nodal positions {𝑋𝑁𝑜𝑑𝑒} and displacements {𝑈𝑁𝑜𝑑𝑒} written Eqs. (5-38) and (5-39) in sloid elements can be 

used for interface elements. However, the shape functions 𝑁𝐼(𝑖) of interface elements are different, because they 

only have one dimension 𝜉1. 𝜉2 serves as the normal direction of interface elements, and its value is zero: 

𝑁𝐼(1) =
1

2
(1 − 𝜉1);  𝑁

𝐼(2) =
1

2
(1 + 𝜉1) (5-51) 

𝑁𝐼(3) =
1

2
(1 + 𝜉1);  𝑁

𝐼(4) =
1

2
(1 − 𝜉1) (5-52) 

Rather than defining a strain tensor at integration points, the relative displacements are required. Therefore, 

{
Δ𝑢𝑡
Δ𝑢𝑛

} = [𝐿𝐼][𝐵𝐼]{𝑈𝑁𝑜𝑑𝑒} = [𝐿
𝐼] {

1 + 𝜉1
2

(𝑢𝑥
3 − 𝑢𝑥

2) +
1 − 𝜉1
2

(𝑢𝑥
4 − 𝑢𝑥

1)

1 + 𝜉1
2

(𝑢𝑦
3 − 𝑢𝑦

2) +
1 + 𝜉1
2

(𝑢𝑦
4 − 𝑢𝑦

1)

} (5-53) 

where [𝐿𝐼] and [𝐵𝐼] are respectively defined: 

[𝐿𝐼] = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] (5-54) 

[𝐵𝐼] = [−𝑁
𝐼(1) −𝑁𝐼(2) 𝑁𝐼(3) 𝑁𝐼(4)

−𝑁𝐼(1) −𝑁𝐼(2) 𝑁𝐼(3) 𝑁𝐼(4)
] (5-55) 

with 𝜃 the orientation of the interface with respect to the global horizontal axis. 
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Therefore, the variation of cohesive forces at current time using a consistent linearization [𝐺𝐼] writes: 

{
𝛿𝑇𝑡
𝛿𝑇𝑛

} = [𝐺𝐼][𝐿𝐼][𝐵𝐼]{𝑈𝑁𝑜𝑑𝑒} (5-56) 

The column vector of nodal forces of the interface elements {𝑓𝐼𝑒} is therefore written as: 

{𝑓𝑖𝑒} = ∫ [𝐵]𝑇[𝐿]𝑇 {
𝛿𝑇𝑡
𝛿𝑇𝑛

}
Γ̂𝑖𝑒

𝐽𝐼𝑑Γ̂ (5-57) 

where 𝐽𝐼 is the Jacobian matrix of the transformation from the parent element to the global element: 

𝐽𝐼 =
𝜕𝑙

𝜕𝜉1
 (5-58) 

with 𝑙 the length along the interface element. The element stiffness matrix [𝑘𝑖𝑒] in parrent coordinate system writes: 

[𝑘𝑖𝑒] = ∫ [𝐸𝐼]
Γ̂𝑖𝑒

𝐽𝐼𝑑Γ̂ (5-59) 

with [𝐸𝐼] = [𝐵𝐼]𝑇[𝐿𝐼]𝑇[𝐺𝐼][𝐿𝐼][𝐵𝐼]. Using the integration points to numerically integrate Eqs. (5-57) and (5-59), the 

nodal forces and stiffness matrix of each element are obtained: 

{𝑓𝑖𝑒} =∑[𝐵(𝜉1
𝑖  )]

𝑇
[𝐿(𝜉1

𝑖  )]
𝑇
{
𝑇𝑡
𝑇𝑛
} 𝐽𝐼𝑊𝑖

𝑛𝑝𝑖

𝑖=1

 (5-60) 

[𝑘𝑖𝑒] =∑[𝐸𝐼(𝜉1
𝑖  )]𝐽𝐼𝑊𝑖

𝑛𝑝𝑖

𝑖=1

 (5-61) 

Global assembly 

The expression global mechanical nonlinear equations system is built as follows: 

[𝐺𝑚𝑚]{𝛿𝑢} = {𝛿𝑓} (5-62) 

where [𝐺𝑚𝑚] is the global tangent operator which gives the incremental variation between nodal force and nodal 

displacements. [𝐺𝑚𝑚] is obtained from the assemble of element tangent matrix [𝑘𝑒] (Eq. (5-50)) and [𝑘𝑖𝑒] (Eq. 

(5-61)), and {𝛿𝑓} is obtained from the assemble of element nobal forces {𝑓𝑒} (Eq. (5-49)) and {𝑓𝑖𝑒} (Eq. (5-60)). 

The periodic boundary condition of nodal displacement should be enforced in the above equation. The derivation of 

this part is described in next section. 

Periodic condition: implementation by penalization method 

The periodic condition writes, for two opposite nodes i (on lead boundary) and j (on follow boundary), with the 

associated degrees of freedom (𝑖𝑥 , 𝑖𝑦 = 𝑖𝑥 + 1) for node i and (𝑗𝑥, 𝑗𝑦 = 𝑗𝑥 + 1) for node j, the periodic condition 

implies, from Eq. (5-13): 
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𝛿𝑢𝑗𝑥 − 𝛿𝑢𝑖𝑥 = Δ𝜀𝑥𝑥(𝑥𝑗 − 𝑥𝑖) + Δ𝜀𝑥𝑦(𝑦𝑗 − 𝑦𝑖) (5-63) 

𝛿𝑢𝑗𝑦 − 𝛿𝑢𝑖𝑦 = Δ𝜀𝑦𝑥(𝑥𝑗 − 𝑥𝑖) + Δ𝜀𝑦𝑦(𝑦𝑗 − 𝑦𝑖) (5-64) 

One possibility to incorporate such conditions is by rewriting the equations by substitution, which is cumbersome to 

implement. Another possibility is by adding a very large factor 𝐺𝑝 to the corresponding equations (penalization). 

Taking any one of the equations (5-62), one can write: 

𝐺𝑚𝑚,1𝛿𝑢1 + 𝐺𝑚𝑚,2𝛿𝑢2 +⋯+𝐺𝑚𝑚,𝑖𝑥1𝛿𝑢𝑖𝑥1 +⋯+ 𝐺𝑚𝑚,𝑗𝑥1𝛿𝑢𝑗𝑥1 +⋯+ 𝐺𝑚𝑚,𝑁𝛿𝑢𝑁 = 0 (5-65) 

To enforce the periodic condition Eq. (5-63), the above equation is rewritten as: 

𝐺𝑚𝑚,1𝛿𝑢1 +⋯+ (𝐺𝑚𝑚,𝑖𝑥1 + 𝐺
𝑝) 𝛿𝑢𝑖𝑥 +⋯+ (𝐺𝑚𝑚,𝑗𝑥1 − 𝐺

𝑝) 𝛿𝑢𝑗𝑥 +⋯𝐾𝑖𝑥,𝑁 𝛿𝑢𝑁

= 𝐺𝑝[Δ𝜀𝑥𝑥(𝑥𝑗 − 𝑥𝑖) + Δ𝜀𝑥𝑦(𝑦𝑗 − 𝑦𝑖)] 
(5-66) 

A division by 𝐺𝑝 of the above will yield: 

𝐺𝑚𝑚,1
𝐺𝑝

 𝛿𝑢1 +
𝐺𝑚𝑚,2
𝐺𝑝

 𝛿𝑢2 +⋯(
𝐺𝑚𝑚,𝑖𝑥
𝐺𝑝

+ 1)  𝛿𝑢𝑖𝑥 +⋯+ (
𝐺𝑚𝑚,𝑗𝑥

𝐺𝑝
− 1)𝛿𝑢𝑗𝑥 + 

…
𝐺𝑚𝑚,𝑁
𝐺𝑝

𝛿𝑢𝑁 = 𝐺
𝑝 

(5-67) 

Since: 

|𝐺𝑚𝑚,𝑖|

𝐺𝑝
≪ 1  (5-68) 

We get numerically the periodic boundary condition for 𝑥-component: 

𝛿𝑢𝑗𝑥 − 𝛿𝑢𝑖𝑥 = Δ𝜀𝑥𝑥(𝑥𝑗 − 𝑥𝑖) + Δ𝜀𝑥𝑦(𝑦𝑗 − 𝑦𝑖) (5-69) 

Similar operations to the 𝑦-component. 
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Chapter 6 Computations at microscale based on a REA to arrive at a time-dependent 

mechanical behaviour at mesoscale 

Clayey rocks are multiphase porous media having a complex structure and behaviour characterised by heterogeneity, 

damage, and viscosity, existing on a wide range of scales. The mesoscopic scale of mineral inclusions embedded in 

a clay matrix has an important role in the mechanisms of deformation under mechanical loading by cracking and 

creeping. Depending on the mineral composition and properties, creep causes a time-evolution of strain at the 

macroscopic scale. This chapter introduces a micromechanical approach to model the time-dependent mechanical 

behaviour of clayey rocks. A heterogeneous clay rock is represented at the mesoscopic scale as a composite material 

consisting of rigid elastic mineral inclusions (quartz, calcite, and pyrite) embedded in a clay matrix. To describe the 

damageable rock behaviour and its failure modes at the small scale, interfaces between different mineral phases and 

within the clay matrix are considered. Viscous effects are incorporated inside the clay aggregates and intergranular 

microfractures propagating in the clay matrix in order to investigate their contribution to the creep behaviour of 

clayey rock. Furthermore, the overall time-dependent mechanical clay rock behaviour is modelled at the mesoscopic 

scale by representing the heterogeneous spatial arrangement of the multiphase material. The mesostructure of the 

clayey rock is represented in digital 2D Representative Elementary Areas (REAs). The overall mesoscale behaviour 

of the clayey rock under mechanical solicitation is numerically obtained from the REA configuration and 

computational homogenisation within a two-scale finite element squared framework. Then, the model is validated at 

mesoscale against experimental data obtained from triaxial and creep compression tests on a clayey rock. The 

variability of the material response and the time evolution of the mineral interfacial damage state are investigated in 

relation to small-scale properties, failures, and considering the microstructural variability. The results can give some 

valuable insights into creep behaviour of the clay rock from a small-scale perspective. 

6.1. Creep and fracturing behaviour of COx claystone at different scales 

The COx claystones have complex mineralogical compositions and multiscale micro-structures (Aung et al., 2019; 

Barthelemy and Dormieux, 2004). At mesoscale, clayey rocks are heterogeneous and composed of several mineral 

inclusion types embedded in a clay matrix (Cosenza et al., 2015a, 2015b; Robinet, 2008). As an approximation, three 

relevant scales of the claystone behaviour are considered and introduced in the background of this thesis:  

• Macroscale (𝑐𝑚 −𝑚):: laboratory sample scale, large gallery scale, EDZ.  

Once the micro-damage threshold is reached (at the microscale of mineral contact), microcracks and 

mesocracks initiate (in and through the mesostructure), then grow, accumulate, and propagate within the 

material at macroscale. If distributed microcracks start to coalesce, it further leads to the development of 

strain localisation (e.g. shear bands for shear strain localisation). To represent the macro-fracturing process, 

macro shear strain localisation is considered as a precursor to macro-fractures. Concerning the creep 

behaviour at macroscale, it is considered as coming from clay matrix viscosity at smaller scales and can be 

influenced by mechanical interactions between a set of REAs. 

• Mesoscale (𝑚𝑚):: scale of the arrangement of mineral inclusions and of the connected clay matrix which 

are considered in a REA.  
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Under loading, the decohesion appears in a localised manner for a small proportion of mineral contacts 

(Pardoen et al., 2020). If a coalescence of fully damaged mineral contacts occurs, a microcracking path 

develop between the mineral inclusions and goes through the clay matrix (intergranular cracks). The 

microcracking propagates then through the whole mesostructure (REA) to form a meso-crack. The overall 

material behaviour is the homogenised behaviour over the REA. 

• Microscale scale (𝜇𝑚): scale of the mineral inclusions, clay aggregates, fracture porosity.  

The micro characteristics include the inclusion morphology and orientations. The local behaviour is 

considered in each solid phase (elastic mineral inclusion and viscosity in clay aggregates) and at their contact 

(damageable cohesive interface, fluid flow and viscous sliding). Stress loading can engender micro-damage 

at the scale of the mineral contacts, by decohesion. Concerning the creep behaviour, the viscosity in clay 

aggregates and their contacts contacts lead to the viscosity of the clay matrix, which is composed of the 

assembly of the clay aggregates and of the aggregate contacts. 

Examples and evidences of the creep behaviour of the COx claystone at different scales are depicted in Figure 6-1 

(after Armand et al., 2013, 2014; Pardoen and Collin, 2017; Sun et al., 2023a, 2023b). Time evolution of the 

convergence of large-scale underground galleries at the MHM URL has been observed for a long period (Armand et 

al., 2013). For example, the in situ monitoring of gallery wall convergence (Figure 6-1(a)) for the Galerie 

Expérimentale Deux (GED) has been carried out by Andra for more than 10 years. No evidence of convergence 

stabilisation has been observed, but the deformation rate gradually slows down with time. A model benchmark 

exercise has been launched by Andra since 2012 to provide an overall view of the developed models on the in situ 

observations (Seyedi et al., 2017). Several hydromechanical coupling models (van den Eijnden et al., 2017; 

Guayacán-Carrillo et al., 2016; Jung et al., 2022; Mánica et al., 2021; Pardoen et al., 2015b, 2015c; Pardoen and 

Collin, 2017; Souley et al., 2017) have been proposed and aim to capture the long-term hydromechanical 

characteristics of in situ galleries. 

Then, at the scale of laboratory test, irreversible creep strain evolution with time have been measured on 

pluricentimetric laboratory COx claystone samples subjected to constant stress (Figure 6-1(b))). The laboratory 

results indicate that the creep process of clay rock under constant deviatoric stress can be composed in three stages 

(Liu et al., 2018; Shahbodagh et al., 2020; Weng et al., 2023): a primary creep in the short term with a decrease of 

the creep strain rate, a secondary creep with a constant creep strain rate over time (i.e. steady state creep), and a 

possible tertiary creep in the long term with an increase of the creep strain rate towards creep failure (Figure 2-19). 

The creep characteristics can be observed in different types of rock, and their creep curves are basically similar 

despite their different strengths (Chen et al., 2018). The increase of the creep rate appears to be related to the onset 

and development of damage (Liu et al., 2018). This can further lead to a creep-induced failure of the material. Up to 

now, few results have been obtained so far on tertiary creep for COx claystones (Liu et al., 2018; Zhang et al., 2019). 

Reproducing such complete creep behaviour of clay rock using a multiscale approach is one of the objectives in this 

work. In some studies, the existence of a stress threshold from which viscoplastic strains start to develop has been 

highlighted by multi-step creep tests (Fabre and Pellet, 2006) and confirmed by one-step creep test (Liu et al., 2015). 

Moreover, the laboratory tests on COx claystone conducted by Armand et al. (2017) show that the deviatoric loading 

level and confining pressure both have an important effect on the amplitude of the creep strain.  
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(a)                        (b)                            (c) 

Figure 6-1 Creep behaviour of COx claystone at different scales. 

As shown in Figure 6-1(c), the interfaces between two different mineral phases (inclusion-clay) and within the clay 

matrix (clay–clay aggregate contacts) are assumed as potential microcracks to describe the failure and damage modes 

at different scales. Note that the intergranular (micro)pores inside the clay matrix is not considered in the current 

mesostructure modelling, the porous space therefore only refers to cracks between solid mineral grains (contact 

interfaces) and is assumed to be saturated by fluid (water). In order to model the creep behaviour of the clay rock 

from a small-scale mechanics, the viscosity is introduced by the development of two viscous mechanisms, the 

“diffuse” viscoplastic flow of the clay aggregates or the viscous sliding between large rigid clay aggregates (at their 

contacts) (Sun et al., 2023a, 2023b). 

6.2. Meso- and micro- scale behaviours 

The macroscale behaviour of rocks significantly depends on their mesoscale granular structure, which in turn depends 

on the microscale properties of each mineral component. At the meso- and micro- scales, the deformation in clay 

rocks is dominated by damage, decohesion, and cracking mechanisms. With a combination of scanning electron 

microscopy (SEM) and broad ion beam (BIB), microstructural observations on COx claystone at microscale show 

that the deformation mechanisms are dominantly cataclastic and that crystal plastic mechanisms are minor (Desbois 

et al., 2017). Potential decohesion mechanisms around mineral inclusions and cracking within the clay matrix develop 

in the clay rock (Desbois et al., 2017; Wang et al., 2015). The microcracking includes inter-granular microfractures 

propagating in the clay matrix (i.e. inter-clay aggregates) and between mineral inclusions and clay (i.e. grain/matrix 

joints), as well as intragranular and trans-granular (i.e. intra- and trans-crystal) microfractures propagating in non-

clay minerals (Desbois et al., 2017). The microcracking is more prone to develop along the contacts (interfaces) 

between non-clay minerals and clay matrix. The microcracks within the clay matrix and the decohesion around the 

inclusions take their origin from heterogeneities at the scale of mineral inclusions.  
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Furthermore, viscoplastic deformations develop in clay rocks. Plasticity and creep deformation are generally assumed 

to mainly occur within the clay matrix (Abou-Chakra Guery et al., 2009; Farhat et al., 2017). In fact, clay behaviour 

under solicitation is usually dominated by irreversible strain and the physical mechanisms of short-term plastic and 

time-dependant viscous deformations may be due to smaller scale heterogeneities in the clay mineral (e.g. clay 

aggregates, particles, platelets, etc.). At small scale inside the microscale clay particles (i.e. clay platelets), the main 

inelastic deformation mechanism takes place as plastic sliding of clay sheets (unit layers of clay minerals), along 

parallel inter-layers (Abou-Chakra Guéry et al., 2009; Zeng et al., 2014). Moreover, the physical mechanism of creep 

deformation in clay rocks mainly includes two phenomena: the viscosity of the clay matrix (from smaller scale clay 

heterogeneities) and the subcritical propagation of microcracks inside the clay matrix (Bikong et al., 2015; Dascalu 

et al., 2010).  

6.3. Modelling approach 

Following the above observations, clay rocks are considered as an heterogeneous assembly of constituents (as 

heterogeneous polycrystalline rocks) at the mesoscale with plasticity and viscosity considered in the clay matrix. The 

numerical simulations are conducted under pure mechanical condition, the influence of pore water is therefore not 

considered in this study, but is already part of the multiscale modelling framework (van den Eijnden, 2015). A 

schematic A schematic representation of the mesoscopic structure of the COx claystone is illustrated in Figure 6-2 

with: the mineral inclusions embedded in the mesoscopic clay matrix, the microstructural rupture modes, and the 

viscoplastic deformation. The microstructural rupture modes are modelled by decohesion of interfaces around the 

mineral inclusions and crack mechanisms within the clay matrix (van den Eijnden et al., 2016; Pardoen et al., 2020). 

The crystal plasticity and microfractures of the mineral inclusions (e.g. non-clay mineral grain breakage) are not 

represented in the model. The irreversible plastic and creep behaviour of the COx claystone is considered by 

introducing viscoplastic deformation of the clay matrix. The short-term plastic deformation is considered inside the 

clay matrix by assuming that the clay aggregates deform due to small scale processes (e.g. between clay layers inside 

clay particles). The time-dependent viscous deformation is considered by assuming two possible scales of viscosity: 

either at the mesoscopic scale of the clay matrix or at the microscopic scale of the clay aggregates (corresponding to 

smaller scale deformations in clay aggregates, particles, platelets, etc.).  

 

Figure 6-2 Schematic representation of the mesoscopic structure of the COx claystone with microstructural rupture 

modes and viscoplastic deformation. 

Mineral inclusions. 

Clay matrix. 

Inclusion/clay decohesion. 

Potential cracks in clay matrix. 

Viscous sliding between clay aggregates. 

Viscoplastic flow of the clay matrix. 

50 µm 

Clay aggregate 

Clay cluster 
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The viscosity is then introduced by the development of two viscous mechanisms schematically represented in Figure 

6-2. Firstly, the "diffused" viscoplastic flow of the clay matrix is considered. This intra- aggregate viscoplastic flow 

is assumed to be due to smaller scale heterogeneities as clay particles, platelets, and layers. Secondly, a viscous 

sliding between large clay aggregates is considered. This inter-clay aggregate viscous sliding is assumed to develop 

as microcracks propagate through the clay matrix. Furthermore, morphologically representative mesostructures 

(REAs) are modelled to obtain an accurate reproduction of the material structure and behaviour (Pardoen et al., 2020).  

6.4. Microscale constitutive model 

Microscale computation allows to assign different constitutive relations to each component. Based on the 

microstructural observations of Section 2.2 an isotropic, linear and elastic behaviour is assumed for the quartz, calcite, 

and pyrite mineral inclusions, while plasticity and viscosity are considered for the clay matrix. Moreover, the contact 

interfaces between solid minerals are modelled, accounting for failure and damage modes at small scale. To do so, 

the contact interfaces around mineral inclusions and within the clay matrix are considered as decohesive zones and 

potential microcracks.  

For the clay matrix, an elastoplastic constitutive law is considered for the short-term behaviour whereas a viscous 

(elasto-viscoplastic or viscoelastic) constitutive law is considered for the long-term behaviour. For this viscous 

behaviour, two microscale mechanisms have been introduced: the viscoplasticity of the clay aggregates and the 

viscoelasticity of their contacts. 

6.4.1. Cohesive model of mineral contacts 

Figure 6-3 illustrates the scheme of cohesive forces acting on the internal boundaries Γ𝑖𝑛𝑡, which is subdivided into 

lower and upper parts Γ𝑖𝑛𝑡
−/+

 of outward normal 𝑛−/+. Cohesion (𝑐𝑖
−/+

; 𝑖 = 𝑡, 𝑛) and displacements (𝑢𝑖
−/+

 ; 𝑖 = 𝑡, 𝑛) 

can be decomposed into normal (𝑖 = 𝑛) and tangential (𝑖 = 𝑡) parts, in order to account for the displacement 

discontinuity (i.e. interfacial opening and relative sliding) Δ𝑢𝑖 = 𝑢𝑖
+ − 𝑢𝑖

−  across the interface. As illustrated in 

Figure 6-3, the solid phases are separated by cohesive cracks defined both in the normal and tangential directions to 

the mineral grain boundary. The appearance of the microcracks is due to the deformation by solid mineral grain 

movements (displacements) and their behaviour can be simulated by damageable cohesive interface models.  

 

Figure 6-3 Concept of microscale mechanical modelling. 
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As shown in Figure 6-4, an interface damageable cohesive model including an elastic, a constant cohesion, a 

softening, and a complete decohesion behavioural phases (Salih et al., 2018) is used. The purpose of this constant 

cohesion stage is to take into account the local plasticity of the crack tip, thus avoiding the need for a global 

elastoplastic analysis when only local plasticity is involved (Salih et al., 2018). Although the plastic deformation is 

not considered in the current interface model, this consideration mat be useful in subsequent interface model 

development. 

The model provides some flexibilities arising from the four parameters {𝐷𝑡/𝑛
0 , 𝐷𝑡/𝑛

1 , 𝛿𝑡/𝑛
𝑐 , 𝑐𝑡/𝑛

𝑚𝑎𝑥} representing, 

respectively, the damage initiation, the cohesion softening initiation, the critical relative displacements for complete 

decohesion, and the maximum cohesive forces. For example, setting 𝐷𝑡/𝑛
0 = 𝐷𝑡/𝑛

1 = 0 leads to a linear interface 

cohesive model; while setting 𝐷𝑡/𝑛
0 = 𝐷𝑡/𝑛

1 ≠ 0 leads to a bilinear interface cohesive model. 

  

(a) (b) 

Figure 6-4 Damageable cohesive interface model in the (a) normal and (b) tangential directions of contacts between 

mineral grains. 

As indicated in Figure 6-4, the development of the cohesive normal and tangential forces cn and ct with interface 

opening Δ𝑢𝑛 and sliding Δ𝑢𝑡 (relative displacements in the normal and tangential directions) can be divided into 

four stages: (1) from 𝛥𝑢𝑡/𝑛 𝛿𝑡/𝑛
𝑐⁄ =0 to 𝐷𝑡/𝑛

0 , the interface undergoes a pure elastic stage; (2) from 𝛥𝑢𝑡/𝑛 𝛿𝑡/𝑛
𝑐⁄ =

𝐷𝑡/𝑛
0  to 𝐷𝑡/𝑛

1 , the cohesive interface starts to degrade, meanwhile, the cohesion force reaches the critical cohesive 

strength of the interface; (3) as the interface opening/sliding further increases beyond the point 𝛥𝑢𝑡/𝑛 𝛿𝑡/𝑛
𝑐⁄ = 𝐷𝑡/𝑛

1  

to 1, softening occurs and the interface cohesive force decreases continually to zero (complete decohesion); (4) when 

the interface opening/sliding reaches its maximum value 𝛥𝑢𝑡/𝑛 𝛿𝑡/𝑛
𝑐⁄ = 1 , it is completely debonded and the 

cohesive force in the interface disappears.  

The damage parameter 𝐷𝑡/𝑛 represents the current interface state based on time history (0 ≤ 𝜏 ≤ 𝑡): 

𝐷𝑡/𝑛 = min(max(𝐷𝑡/𝑛
0 ,

1

𝛿𝑡/𝑛
𝑐  max0≤𝜏≤𝑡(|∆𝑢𝑡/𝑛

𝜏 |)) , 1) (6-1) 

If 𝐷𝑡/𝑛 = 𝐷𝑡/𝑛
0 , then the interface is in the elatic stage; if 𝐷𝑡/𝑛

0 < 𝐷𝑡/𝑛 ≤ 𝐷𝑡/𝑛
1 , then the interface is in the degrade 

stage without softening; if 𝐷𝑡/𝑛
1 < 𝐷𝑡/𝑛 < 1, then the interface is in the damaged softening stage; if 𝐷𝑡/𝑛 = 1, then 
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the interface is completely damaged. A more intuitive damage parameter at softening stage is written as 

(max(|∆𝑢𝑡/𝑛
𝜏 |) − 𝐷𝑡/𝑛

1 𝛿𝑡/𝑛
𝑐 ) (𝛿𝑡/𝑛

𝑐 − 𝐷𝑡/𝑛
1 𝛿𝑡/𝑛

𝑐 )⁄  related to the cohesive force at 𝐷𝑡
1, however it is less convenient in 

coding the interface model. 

Taking the normal components of interface cohesion as an example, the cohesive force 𝑐𝑛
𝑡  at current time 𝑡 is 

represented mathematically as: 

𝑐𝑛
𝑡 =

{
  
 

  
 

𝐸𝑛
0 ∆𝑢𝑛

𝑡

𝑐𝑛
𝑚𝑎𝑥(1 − 𝐷𝑛

1)
    

𝑐𝑛
𝑚𝑎𝑥(1 − 𝐷𝑡/𝑛) ;

0 ;

𝐸𝑛
𝑢𝑛 ∆𝑢𝑛

𝑡  ;

𝑐𝑛
𝑡+ − 𝜅 ∆𝑢𝑛

𝑡 2 ;

 

∆𝑢𝑛
𝑡 ≤ 𝐷𝑛

0𝛿𝑛
𝑐

𝐷𝑛
0𝛿𝑛

𝑐 < ∆𝑢𝑛
𝑡 ≤ 𝐷𝑛

1𝛿𝑛
𝑐    

𝐷𝑛
1𝛿𝑛

𝑐 < ∆𝑢𝑛
𝑡 ≤ 𝛿𝑛

𝑐

𝛿𝑛
𝑐 < ∆𝑢𝑛

𝑡

0 ≤ ∆𝑢𝑛
𝑡 < max(∆𝑢𝑛

𝑡 )

∆𝑢𝑛
𝑡 ≤ 0

 (6-2) 

where Eqs. (6-2) correspond to the cohesive force during the opening loading stage, Eq. (6-2)-5 corresponds to the 

elastic closing unloading / reopening reloading stage, and Eq. (6-2)-6 corresponds to the case of ∆𝑢𝑛
𝑡 < 0 avoiding 

interpenetration of minerals. In Eq. (6-2)-6, 𝑐𝑛
𝑡+  is the cohesion calculated with one of the Eqs. (6-2), and the 

parameter 𝜅𝑝  is a penalty coefficient whose value should be taken large to obtain physically relevant contacts 

avoiding mineral interpenetration of solid minerals (∆𝑢𝑛
𝑡 < 0), but not too large for the numerical accuracy of the 

system of equations. In Eq. (6-2)-1, the initial elastic normal stiffness 𝐸𝑛
0 reads: 

𝐸𝑛
0 =

𝑐𝑛

∆𝑢𝑛
=
𝑐𝑛
𝑚𝑎𝑥(1 − 𝐷𝑛

0)

𝐷𝑛
0𝛿𝑛

𝑐  (6-3) 

The constant softening slope of interface cohesion is given by: 

𝐸𝑛
𝑠 = −

𝑐𝑛
𝑚𝑎𝑥

𝛿𝑛
𝑐  (6-4) 

Furthermore, for the standard interface cohesive model under elastic unloading (i.e. interface closing), the crack is 

fully closed (Salih et al., 2018) and the cohesion returns to zero following the relationship 𝑐𝑛
𝑡 = 𝐸𝑛

𝑢𝑛 ∆𝑢𝑛
𝑡  (Eq. (6-2) 

-5). The subsequent reloading follows the same path as illustrated in Figure 6-4. In Eq. (6-2)-5, 𝐸𝑛
𝑢𝑛 is the elastic 

normal stiffness at unloading (closing) and reloading (reopening) stages and is defined by: 

𝐸𝑛
𝑢𝑛 =

𝑐𝑛
𝑡

∆𝑢𝑛
𝑡  (6-5) 

The above developments for the normal cohesive forces can be replicated to the tangential cohesive forces which 

develop under sliding 𝛥𝑢𝑡 (tangential relative displacements) of solid minerals in contact. In this case, the tangential 

contact behaviour is symmetric for both sliding directions 𝛥𝑢𝑡 < 0 and 𝛥𝑢𝑡 > 0. 

With the above equations, the mechanical behaviour of solid mineral contacts (interfaces), which are assumed as 

potential microcracks within the clay matrix and decohesion zones around mineral inclusions, is completely defined. 

The independent (unrelated) constitutive laws used for normal and tangential mechanical behaviours of mineral 

interfaces imply a decoupled relationship between them. Thus, both damage components can develop on the same 

mineral contact. Although the dependence between the tangential and normal interface behaviours is not explicitly 
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accounted for by the microscale cohesive model, the homogenised mechanical response of the mesoscale model 

(REA) can capture the mean stress dependence of the clay rock shear strength (van den Eijnden et al., 2015). 

If 𝐷𝑡/𝑛
0 = 𝐷𝑡/𝑛

1 ≠ 0, the model beocmes a bilinear interface cohesive model (Figure 6-5) which has been used in van 

den Eijnden et al. (2016) and Pardoen et al. (2020).  

  

(a) (b) 

Figure 6-5 Damageable cohesive interface model in the case of D
0  

t/n  = D
1  

t/n  ≠ 0. 

In this case, the cohesive forces at two directions are formulated as: 

𝑐𝑛
𝑡 =

{
 
 

 
 𝑐𝑛

𝑚𝑎𝑥(1 − 𝐷𝑛
𝑡)
1

𝐷𝑛
𝑡

∆𝑢𝑛
𝑡

𝛿𝑛
𝑐 ,                       𝑖𝑓 ∆𝑢𝑛

𝑡 ≥ 0 

𝑐𝑛
𝑚𝑎𝑥(1 − 𝐷𝑛

𝑡 )
1

𝐷𝑛
𝑡

∆𝑢𝑛
𝑡

𝛿𝑛
𝑐 − 𝜅∆𝑢𝑛

𝑡 2,       𝑖𝑓 ∆𝑢𝑛
𝑡 < 0 

 (6-6) 

𝑐𝑡
𝑡 = 𝑐𝑡

𝑚𝑎𝑥(1 − 𝐷𝑡
𝑡)
1

𝐷𝑡
𝑡

∆𝑢𝑡
𝑡

𝛿𝑡
𝑐  (6-7) 

6.4.2. Elastic model of solid grains 

The mineral inclusions including tectosilicates, carbonates and heavy minerals are conformed to an isotropic, linear 

elastic relation. The same applies to the elastic component of the clay aggregates behavior. The elastic stress-strain 

relation writes: 

𝜎𝑖𝑗 = 𝜆𝑡𝑟(𝜀𝑖𝑖)𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗  (6-8) 

or written in another expression: 

𝜎𝑖𝑗 = (2𝐾𝕁 + 2𝜇𝕂): 𝜺
𝑒  (6-9) 

where 𝜆 and 𝜇 are Lame constants and are respectively related to Young’s modulus 𝐸 and Poisson's ratio 𝑣 by 𝜆 =
𝐸𝑣

(1+𝑣)(1−𝑣)
  and 𝜇 =

𝐸

2(1+𝑣)
; 𝐾 is the bulk modulus and can be calculated by 𝐾 =

𝐸

2(1−𝑣)
. 𝕁 and 𝕂 are the spherical 

and deviatoric operators, respectively defined by 𝕁 =
1

2
𝜹⊗ 𝜹 and 𝕂 = 𝕀 − 𝕁. The term 𝕀 denotes the fourth-order 

symmetric identity tensors. Note that these parameters and their relations are defined in 2D case. Young's modulus 

𝐸3𝐷 and Poisson's ratio 𝑣3𝐷 at 3D case can be connected to the 2D cases by the following expressions: 
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𝐸 =
𝐸3𝐷

(1+𝑣3𝐷)(1−𝑣3𝐷)
 ; 𝑣 =

𝑣3𝐷

1−𝑣3𝐷
 (6-10) 

Instead of writing the stress-strain equation into the FE2 program, a linear function of the variation between stress 

𝜎𝑖𝑗 and the deformation gradient tensor 𝐹𝑖𝑗 is formulated: 

[

2𝜇 + 𝜆 0 0 𝜆
0 𝜇 𝜇 0
0 𝜇 𝜇 0
𝜆 0 0 2𝜇 + 𝜆

]{

𝛿𝐹11
𝛿𝐹12
𝛿𝐹21
𝛿𝐹22

} = {

𝛿𝜎11
𝛿𝜎12
𝛿𝜎21
𝛿𝜎22

} (6-11) 

6.4.3. Elastoplastic model of clay aggregates 

The plastic behaviour of the clay matrix and clay aggregates is modelled hereafter. In the following equations, 

compressive stresses and strains are considered negative according to the material mechanics sign convention. Under 

the assumption of small strains, the strain tensor of the clay aggregates at microscale can be decomposed into its 

elastic and plastic parts, denoted, respectively, by superscripts ‘e’ and ‘p’: 

𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗
𝑒 + 𝜀𝑖̇𝑗

𝑝
 (6-12) 

The problem is simplified as a 2D problem here under the framework of double-scale FEM; the out-of-plane stress 

and strain are not defined. That’s to say the stress tensor 𝜎𝑖𝑗 (𝑖, 𝑗 = 1,2) and strain tensor 𝜀𝑖𝑗  (𝑖, 𝑗 = 1,2) are both 

2×2 matrices. Their mean values and deviatoric parts are defined by: 

𝑝 =
𝑡𝑟 (𝝈)

2
=
𝜎𝑖𝑖
2
   ;    𝑠𝑖𝑗 = 𝜎𝑖𝑗 − 𝑝 𝛿𝑖𝑗    ;    𝑞 = √

3

2
𝑠𝑖𝑗𝑠𝑖𝑗 (6-13) 

𝜀𝑚 =
𝑡𝑟 (𝜺)

2
=
𝜀𝑖𝑖
2
   ;    𝑒𝑖𝑗 = 𝜀𝑖𝑗 − 𝜀𝑚𝛿𝑖𝑗   ;    𝛾 = √

2

3
𝑒𝑖𝑗𝑒𝑖𝑗 (6-14) 

where 𝑝 and 𝜀𝑚 are the mean stress and strain; 𝑠 and 𝑒 are the deviatoric parts of the stress and strain tensors, and 

𝑞 and 𝛾 are the equivalent deviatoric stress and strain. 

The elastoplastic model used in this work is taken from Abou-Chakra Guéry et al. (2009). A modified Drucker-Prager 

yield criterion is used to model the shear strength of the clay aggregates. The yield function 𝐹𝑒𝑝 reads: 

𝐹𝑒𝑝(𝜎𝑖𝑗, 𝛾
𝑝) = 𝑞 + 𝛼𝑝(𝑝 − 𝑐0) (6-15) 

where 𝑐0 represents the hydrostatic tensile strength related to material cohesion of the clay aggregates, and 𝛼𝑝 

represents their shear strength dependency to the mean stress level (internal friction parameter). The consistency 

condition enforces that the stress state always remains on the yield surface during plastic deformation: 𝐹𝑒𝑝 = 0 and 

𝐹̇𝑒𝑝 = 0 . A higher compression with 𝑝 < 0  will make 𝐹𝑒𝑝  more negative hence delay shear-induced yielding. 

Moreover, 𝛼𝑝 is a hardening function depending on the internal variable 𝛾𝑝, which is the equivalent deviatoric 

plastic strain (or plastic distortion), written as: 
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𝛼𝑝(𝛾𝑝) = 𝛼𝑚
𝑝
− (𝛼𝑚

𝑝
− 𝛼0

𝑝
) e−𝑏𝛾

𝑝
 (6-16) 

𝛾̇𝑝 = √
2

3
𝑒̇𝑖𝑗
𝑝
𝑒̇𝑖𝑗
𝑝
     ;      𝛾𝑝 = ∫ 𝛾̇𝑝 𝑑𝜏

𝑡

0

 (6-17) 

where Ȧ is the rate of variable A, 𝑏 controls the kinetics of the evolution of plastic hardening, 𝒆𝑝 is the deviatoric 

part of the plastic strain tensor, 𝛾̇𝑝 is the rate of the equivalent deviatoric plastic strain, 𝛼0
𝑝

 and 𝛼𝑚
𝑝

 are the slopes 

of the initial yield and failure surfaces. Therefore, the hardening process is described by the variation of  𝛼𝑝 from 

its initial threshold 𝛼0
𝑝

 to its ultimate value 𝛼𝑚
𝑝

. A non-associated flow rule is considered here with the plastic 

potential, defining the direction of the plastic strain rate, defined as: 

𝐺𝑒𝑝(𝜎𝑖𝑗, 𝛾
𝑝) = 𝑞 + 𝛽𝑝(𝛾𝑝) 𝑝 (6-18) 

where 𝛽𝑝(𝛾𝑝) is a parameter controlling plastic volumetric strain rate, and we have compressibility for 𝛽𝑝 ≤ 0 and 

dilatancy for 𝛽𝑝 > 0. 𝛽𝑝 is also a function of the hardening plastic variable 𝛾𝑝: 

𝛽𝑝(𝛾𝑝) = 𝛽𝑚
𝑝
− (𝛽𝑚

𝑝
− 𝛽0

𝑝
) e−𝑏

′𝛾𝑝 (6-19) 

where 𝛽0
𝑝

 and 𝛽𝑚
𝑝

 are the initial and final dilatancy parameters and 𝑏′  controls the rate kinetics of the plastic 

volumetric strain. Such expressions of Eqs. (6-16) and (6-19) make the values of 𝛼𝑝  and 𝛽𝑝  vary within an 

increment of equivalent deviatoric plastic strain 𝛾𝑝. 

Using the expression of the plastic potential 𝐺𝑒𝑝, the plastic strain rate is written as follows: 

𝜀𝑖̇𝑗
𝑝
= 𝜆̇𝑝

𝜕𝐺𝑒𝑝
𝜕𝜎𝑖𝑗

 (6-20) 

where 𝜆𝑝 ≥ 0 is the plastic multiplier and the volumetric 𝜀𝑝̇
𝑝
 and deviatoric 𝜀𝑞̇

𝑝
 plastic strain rates are defined by: 

𝜀𝑝̇
𝑝
= 𝜆̇𝑝

𝜕𝐺𝑒𝑝
𝜕𝑝

;     𝜀𝑞̇
𝑝
= 𝜆̇𝑝

𝜕𝐺𝑒𝑝
𝜕𝑞

 (6-21) 

Combining Eqs.(6-17), (6-20) and (6-21), the hardening variable can be formulated as: 

𝛾̇𝑝 = 𝜆̇𝑝 = 𝜀𝑞̇
𝑝

 (6-22) 

The relation (6-22) is useful for the elastoplastic stress update in Appendix A. 

6.4.4. Elasto-viscoplastic model of clay aggregates 

Similar to the elastoplastic part, under the assumption of small strains, the strain tensor of clay aggregates at 

microscale can also be decomposed into its elastic and viscoplastic parts, denoted, respectively, by superscripts ‘e’ 

and ‘vp’: 

𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗
𝑒 + 𝜀𝑖̇𝑗

𝑣𝑝
 (6-23) 
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The viscoplastic model for clay aggregates is established based on Perzyna’s overstress concept (Perzyna, 1966) and 

Lemaitre’s creep model (Lemaitre and Chaboche, 1990). The latter one is well documented and has an extensive 

experimental basis. The classic Lemaitre’s model neglects the volumetric creep strain and uses an associated flow 

rule. Both of these points are not realistic for rock materials. We aim to revise these points in the present study. 

For the viscoplastic yield function, we suggest the following form: 

𝐹𝑣𝑝 = 𝑞 + 𝛼
𝑣𝑝 𝑝 − 𝜎𝑠 (6-24) 

where 𝛼𝑣𝑝 ≥ 0 is a material constant quantifying the mean stress level sensitivity of the creep behaviour and 𝜎𝑠 is 

the creep threshold above which viscoplastic strains start to develop. The viscoplastic potential 𝐺𝑣𝑝  takes the 

following form: 

𝐺𝑣𝑝 = 𝑞 + 𝛽
𝑣𝑝 𝑝 (6-25) 

where 𝛽𝑣𝑝 > 0 corresponds to viscous dilatancy of rock and 𝛽𝑣𝑝 < 0 corresponds to viscous contraction. Then, the 

viscoplastic flow rule reads: 

𝜀𝑖̇𝑗
𝑣𝑝
= 𝜆̇𝑣𝑝

𝜕𝐺𝑣𝑝

𝜕𝜎𝑖𝑗
 (6-26) 

where 𝜆𝑣𝑝 ≥ 0  is the viscoplastic multiplier and 𝐺𝑣𝑝  is the non-associated viscoplastic potential defining the 

direction of viscoplastic strain rate. 

In practice for rocks, although contraction may be observed under small shear strain or before becoming dilatant at 

the beginning of creep tests (Cristescu, 1994; Pellet et al., 2005), creep dilatancy is still prevalent in most rocks. To 

reproduce the transition between creep contraction and dilation, 𝛽𝑣𝑝 should not be a constant but must vary from 

negative (contraction) to positive (dilation) values. Some authors mentioned the concept of variable dilatancy 

parameter for plasticity (Detournay, 1986) as well as for viscoplasticity (Cristescu, 1994). In this case, the dilatancy 

parameter can be defined as a function of the damage variables and the plastic deformation. However, this progressive 

change of dilatancy is out of the scope of this paper. In the following sections, 𝛽𝑣𝑝 will be considered to be a positive 

constant. 

Inspired by Lemaitre’s model, the viscoplastic multiplier 𝜆̇𝑣𝑝 is defined as follows: 

𝜆̇𝑣𝑝 =
1

𝜂
⟨
𝐹𝑣𝑝
𝜎𝑟
⟩
𝑛

𝑒−𝑘 𝛾
𝑣𝑝

 (6-27) 

where 𝐹𝑣𝑝 is the viscoplastic yield function, 〈 〉 stands for the Macaulay’s brackets with ⟨𝑥⟩ = 𝑚𝑎𝑥(0, 𝑥), while 

𝜂, 𝑛 and 𝑘 are model parameters, 𝜎𝑟 is the material constant used to normalised the stress. The parameters 𝑛 ≥ 1 

and 𝑘 ≥ 0 represent, respectively, the effect of stress intensity and strain hardening on the creep strain rate. The 

parameter 𝜂 (in seconds) represents the clay aggregates viscosity and 𝜎𝑟 is a reference stress (𝜎𝑟 = 1 MPa, used to 

get a dimensionless quantity in the Macaulay’s brackets). The power form of the hardening variable 𝛾𝑣𝑝−𝑘 (note 

that an appropriate initial value between 10-6 and 10-5 should be given for 𝛾𝑣𝑝  in this case when conducting 

microscale computation in this form) in the original Lemaitre’s model is replaced by an exponential form e−𝑘𝛾
𝑣𝑝

 

after comparing their simulation results with experimental data from Armand et al. (2017). 
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The viscoplastic distortion 𝛾𝑣𝑝  (i.e. the equivalent deviatoric viscoplastic strain) is chosen as the hardening 

parameter: 

𝛾̇𝑣𝑝 = √
2

3
𝑒̇𝑖𝑗
𝑣𝑝
𝑒̇𝑖𝑗
𝑣𝑝
= 𝜆̇𝑣𝑝 (6-28) 

where 𝑒𝑣𝑝 denotes the deviatoric part of the viscoplastic strain tensor. Nevertheless, if the material is viscoplastically 

incompressible, i.e. 𝛽𝑣𝑝 = 0, this hardening variable is the same as for the original Lemaitre’s model where the 

hardening variable is the accumulated deviatoric viscoplastic strain. 

Injecting Eqs. (6-24), (6-25), and (6-28) into (6-26), the viscoplastic strain rate is finally expressed as follows: 

𝜀𝑖̇𝑗
𝑣𝑝
=
1

𝜂
⟨
𝑞 + 𝛼𝑣𝑝𝑝 − 𝜎𝑠

𝜎𝑟
⟩

𝑛

𝑒−𝑘 𝛾
𝑣𝑝
(
3𝑠𝑖𝑗

2𝑞
+
𝛽𝑣𝑝

2
𝛿𝑖𝑗) (6-29) 

Note that the consistency condition does not apply for viscoplasticity; thus, the viscoplastic yield function can be 

positive 𝐹𝑣𝑝 > 0. When the current stress state is located outside the viscoplastic loading surface (overstress concept 

with 𝐹𝑣𝑝 > 0), viscoplastic deformations 𝜀𝑖̇𝑗
𝑣𝑝
> 0 are generated (Pardoen and Collin, 2017). The viscoplastic strain 

rate reduces with the accumulation of viscoplastic distortion 𝛾𝑣𝑝 and can become null if the current stress state 

returns to the interior of the viscoplastic yield surface. Lastly, the thermodynamic consistency of the proposed 

viscoplastic model has to be verified. From Eq. (6-29), the viscoplastic dissipation is defined as: 

Φ𝑣𝑝 = 𝜎𝑖𝑗𝜀𝑖̇𝑗
𝑣𝑝
=
1

𝜂
⟨
𝑞 + 𝛼𝑣𝑝𝑝 − 𝜎𝑠

𝜎𝑟
⟩

𝑛

𝑒−𝑘 𝛾
𝑣𝑝
(𝑞 + 𝛽𝑣𝑝𝑝) (6-30) 

The thermodynamic consistency implies that Φ𝑣𝑝 ≥ 0 (i.e. the viscoplastic dissipation must be non-negative). In 

regard to the form of Eq. (6-30), this requirement should be examined considering two cases: 𝜎𝑖𝑗 ≥ 0 (tensile stress 

for i=j) and 𝜎𝑖𝑗 < 0 (compressive stress for i=j). In the first case, it can be seen that 𝐺𝑣𝑝 = 𝑞 + 𝛽
𝑣𝑝𝑝 ≥ 0 and 

thereby Φ𝑣𝑝 ≥ 0. In the second case, considering the overstress concept that creep deformation develops only if the 

stress state is outside the elastic domain, i.e. 𝐹𝑣𝑝 = 𝑞 + 𝛼
𝑣𝑝𝑝 − 𝜎𝑠 > 0, the non-negativity of Φ𝑣𝑝 leads to the 

following requirement: 

𝛼𝑣𝑝 ≥ 𝛽𝑣𝑝 (6-31) 

Indeed, Eq. (6-25) leads to 𝐺𝑣𝑝 = 𝑞 + 𝛽
𝑣𝑝 𝑝 = 𝑞 + 𝛼𝑣𝑝 𝑝 + (𝛼𝑣𝑝 − 𝛽𝑣𝑝)(−𝑝) > 0  if the inequality (6-31) is 

fulfilled. The inequality (6-31) is realistic for geomaterials for which associated viscoplastic flow rules might predict 

too much creep dilatancy, and for which non-associated viscoplastic flow rules are more suitable. Its physical 

meaning implies that the creep dilatancy is smaller than the creep yield sensitivity to the mean stress level. It is quite 

similar to the observation, under elastoplastic behaviour, that the dilation angles of clays and clay rocks are generally 

smaller than their friction angles. Moreover, these parameters 𝛼𝑣𝑝  and 𝛽𝑣𝑝  need to be calibrated based on 

experimental data. 
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6.4.5. Viscoelastic model of clay aggregates contacts 

As aforementioned, another possible consideration of the clay rock viscosity is to add it into the microcracks within 

the clay matrix. Thus, the contact interfaces between elastic clay aggregates are assumed as viscoelastic. The 

corresponding rheological model, commonly denominated as the Standard Linear Solid model (SLS) or alternatively 

Zener model is represented in Figure 6-6. It consists of a damageable elastic spring (the top part in Figure 6-6) 

connected in parallel with one Maxwell element, composed of an elastic spring and a viscous dashpot (the bottom 

part in Figure 6-6). The behaviour of the damageable elastic spring is described using a bilinear interface cohesive 

model, setting 𝐷𝑡/𝑛
0 = 𝐷𝑡/𝑛

1 ≠ 0 in the damageable cohesive interface model (Figure 6-4). The total viscoelastic 

relative displacement ∆𝑢𝑡/𝑛
𝑣𝑒  is the sum of the elastic and the viscous parts: 

∆𝑢𝑡/𝑛
𝑣𝑒 = ∆𝑢𝑡/𝑛 + ∆𝑢𝑡/𝑛

𝑣  (6-32) 

and the total cohesive forces are the sum of the elastic and viscous cohesions: 

𝑐𝑡/𝑛
𝑣𝑒 = 𝑐𝑡/𝑛 + 𝑐𝑡/𝑛

𝑣  (6-33) 

The relation between the elastic and the viscous cohesive forces is linked using a material parameter 𝛽, such as 

𝑐𝑡/𝑛
𝑣 = 𝛽 𝑐𝑡/𝑛 leading to 𝑐𝑡/𝑛

𝑣𝑒 = (1 + 𝛽) 𝑐𝑡/𝑛. The evolution law for the viscoelastic opening and sliding is taken as: 

∆𝑢̇𝑡/𝑛
𝑣 =

𝛿𝑡/𝑛
𝑐 𝑐𝑡/𝑛

𝑣

𝜇𝑡/𝑛
 (6-34) 

where 𝜇𝑡/𝑛 is the viscosity of the clay aggregate contacts (i.e. clay-clay interfaces). The derivation of the update of 

the cohesion and of the consistent tangent operator using recursive algorithm can be found in the work of Simo and 

Hughes (1998). 

 

Figure 6-6 Schematic representation of the viscoelastic model of clay aggregate contacts. 

For clarity, take the elastic cohesive forces equal to Eqs. (6-6) and (6-7) as an example, to give the derivation of the 

update of stress and tangent operator. In this case, the viscous traction writes: 

𝑐𝑖
𝑣 = 𝛽𝐸𝑖

(𝑢𝑟𝑖 − 𝑢𝑟𝑖
𝑣 )

𝛿𝑖
𝑐  (6-35) 

where 𝐸𝑖 =
𝑐𝑖
𝑚𝑎𝑥(1−𝐷𝑖)

𝐷𝑖
 is the damaged elastic modulus. Now we can write the total traction 𝑐𝑖 : 
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𝑐𝑖
𝑣𝑒 = 𝑐𝑖 + 𝑐𝑖

𝑣 = 𝐸𝑖
∆𝑢𝑖
𝛿𝑖
𝑐 + 𝛽𝐸𝑖

∆𝑢𝑖
𝑣𝑒 − ∆𝑢𝑖

𝑣

𝛿𝑖
𝑐  (6-36) 

The evolution of viscoelastic opening 𝑢𝑟𝑖
𝑣  can be expressed in the integration form as: 

∆𝑢𝑖
𝑣 = ∆𝑢𝑖

𝑣𝑒 − ∆𝑢𝑖 = ∆𝑢𝑖
𝑣𝑒 −∫ 𝑒

𝑡−𝜏
𝜆𝑖 ∆𝑢̇𝑖

𝑣𝑒(𝜏)
𝑡

−∞

𝑑𝜏 (6-37) 

where 𝜆𝑖 =
𝜇𝑖

(
𝑐𝑖
𝑚𝑎𝑥(1−𝐷𝑖

0)

𝐷𝑖
0 )

 is the relaxation time. In the 𝑛-th time step, the incremental time is Δ𝑡, and the times at the 

start and the end of the increment are respectively 𝑡𝑛 and 𝑡𝑛+1. After some mathematical calculations, we can get 

𝑐𝑖
𝑣 at 𝑡𝑛+1 as follows: 

𝑐𝑖
𝑣 =

𝑐𝑖
𝑚𝑎𝑥(1 − 𝐷𝑖)

𝐷𝑖𝛿𝑖
𝑐 (∆𝑢𝑖)𝑛+1 = 𝛽

𝑐𝑖
𝑚𝑎𝑥(1 − 𝐷𝑖)

𝐷𝑖𝛿𝑖
𝑐 (𝑒

−
∆𝑡
𝜆𝑖 (∆𝑢𝑖)𝑛 +

1 − 𝑒
−
∆𝑡
𝜆𝑖

∆𝑡
𝜆𝑖

𝛿∆𝑢𝑖
𝑣𝑒) (6-38) 

where (∆𝑢𝑖)𝑛  is the elastic opening at time 𝑡𝑛 ; 𝛿∆𝑢𝑖
𝑣𝑒 = (∆𝑢𝑖

𝑣𝑒)𝑛+1 − (∆𝑢𝑖
𝑣𝑒)𝑛  is the incremental interface 

opening at current time step. 

The total cohesion force (asuuming 𝐷𝑡/𝑛
0 = 𝐷𝑡/𝑛

1 ≠ 0) at time 𝑡𝑛+1 is finally written as: 

𝑐𝑖
𝑣𝑒 = 𝑐𝑖 + 𝑐𝑖

𝑣 =
𝑐𝑖
𝑚𝑎𝑥(1 − 𝐷𝑖)

𝐷𝑖

∆𝑢𝑖
𝑣𝑒

𝛿𝑖
𝑐 + 𝛽

𝑐𝑖
𝑚𝑎𝑥(1 − 𝐷𝑖)

𝐷𝑖𝛿𝑖
𝑐 (𝑒

−
∆𝑡
𝜆𝑖 (∆𝑢𝑖

𝑣𝑒)𝑛 +
1− 𝑒

−
∆𝑡
𝜆𝑖

∆𝑡
𝜆𝑖

∆𝑢𝑖
𝑣𝑒) (6-39) 

For the tangent modulus update, two cases should be considered, in which at the case of loading: 

𝜕𝑐𝑖
𝑣𝑒

𝜕∆𝑢𝑖
𝑣𝑒 = −𝑐𝑖

𝑚𝑎𝑥 𝛿𝑖⁄ +  𝛽
𝑐𝑖
𝑚𝑎𝑥(1 − 𝐷𝑖)

𝐷𝑖𝛿𝑖
𝑐

𝜆𝑖
∆𝑡
(1 − 𝑒

−
∆𝑡
𝜆𝑖) − 

𝛽
𝛿𝑖

(∆𝑢𝑖
𝑣𝑒)

2

𝑐𝑖
𝑚𝑎𝑥

𝛿𝑖
𝑐 (𝑒

−
∆𝑡
𝜆𝑖(∆𝑢𝑖

𝑣𝑒)𝑛 +
1− 𝑒

−
∆𝑡
𝜆𝑖

∆𝑡
𝜆𝑖

∆𝑢𝑖
𝑣𝑒)  

(6-40) 

and at the case of unloading: 

𝜕𝑐𝑖
𝑣𝑒

𝜕∆𝑢𝑖
𝑣𝑒 = 𝑐𝑖

𝑚𝑎𝑥 1 − 𝐷𝑖
𝐷𝑖𝛿𝑖

+ 𝛽
𝑐𝑖
𝑚𝑎𝑥(1 − 𝐷𝑖)

𝐷𝑖𝛿𝑖
𝑐

𝜆𝑖
∆𝑡
(1 − 𝑒

−
∆𝑡
𝜆𝑖) (6-41) 

6.5. Mesoscale structure and algorithm of mesoscale BVP 

The clay rock mesostructure is represented in digital Representative Elementary Areas (REAs) including microscale 

physical and morphological characteristics of the minerals. The mesostructure generation and the solution of the 

mesoscale mechanical problem are detailed hereafter. 
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6.5.1. Mesostructure generation 

An algorithm, based on Voronoï tessellation from the work of van den Eijnden et al. (2017) and Pardoen et al. (2020), 

is adopted to generate periodic 2D REAs with random microstructures. The algorithm allows to generate several 

REAs with a certain variability of the mesostructure, for instance, with a variability of its heterogeneity (spatial 

variability of the mineral inclusion positions) or of its mineral content. Several parameters are added into the 

algorithm to control the constituent geometry statistics and to accurately capture several mesostructure characteristics 

of the COx claystone in the numerical definition of the 2D mesoscale elementary areas. These characteristics are: the 

type of mineral phases and their area fractions; the size, elongation, orientation, and roundness of the mineral 

inclusions; as well as the characteristic size of representative elementary volumes (Pardoen et al., 2020). Numerically, 

REAs are dimensionless for numerical homogenisation and validity of the separation of scales. However, they have 

a physical (artificial) size based on the typical dimensions of their mineral constituents, which are characterised 

experimentally for the mineral inclusions. Thus, REAs with different numbers of numerical Voronoï cells, which 

represent the mineral inclusions and clay aggregates, have different artificial characteristic sizes. A 

"morphologically" representative REA size based on experimental measurements is of 100×100 μm (Robinet et al., 

2012; Cosenza et al., 2015a). For the COx claystone, this corresponds to 250 Voronoï cells contained in one REA. 

An example of a large mesostructure of 150×150 μm (with 500 cells) is given in Figure 6-7. A brief description of 

the algorithm is described as follows and the details can be found in Pardoen et al. (2020): 

(1) Pre-tessellation — Mineral types (Figure 6-7(b)): Each cell site represents a solid phase and each solid phase is 

represented by a different colour. The number of inclusions of each mineral type depends on its area fraction and 

granulometry. 

(2) Pre-tessellation — Distance condition (Figure 6-7(b)): For each mineral phase, a specific elliptical distance 

condition, based on experimental observations, is imposed around each cell site. It defines exclusion zones for other 

seeds, thereby allowing to define the morphology (elongation, orientation, and size) of the mineral constituents, 

especially of the mineral inclusions. 

(3) Post-tessellation — Vertex adaptations (Figure 6-7(c-d)): After the tessellation, an optimisation of the vertex 

positions of the cells is realised. Then, the cell shape is verified for convexity to obtain a better quality of FE mesh 

(Figure 6-7(e)). 
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Figure 6-7 Generation of clay rock mesostructure (REA): (a) example of mesostructure of 150×150 μm (with 500 

numerical cells), (b) seeding of Voronoï sites with distance condition, (c) tessellation, (d) vertex adaptations, and 

(e) material assignment and FE meshing (taken from Pardoen et al., 2020). 

As for the REA size, the characteristic length of the mesostructure is LREA  ≈ 100 μm defined experimentally (Cosenza 

et al., 2015a, 2015b). Note that, if from a morphological point of view, the chosen size of the REAs is considered 

sufficient, this is not quite the case from the point of view of the homogenised mechanical response. As for the 

mineral inclusions size, an artificial size is assigned to the mineral grains by considering the mean area of quartz and 

carbonate inclusions measured experimentally. For each type of mineral, Pardoen et al. (2020) give a good agreement 

between the numerical and experimental results: the minimal-mean-maximal sizes are: 6–72–230 μm2 for quartz, 6–

43–115 μm2 for carbonates, and 6–35–84 μm2 for pyrite. 

The 2D elementary areas that are considered are representative of (vertical) planes normal to the (horizontal) bedding 

planes. This would have an influence on the failure and micro-cracks propagation (Pardoen et al., 2020). In addition, 

previous results have shown that the 2D model overestimates material dilatancy (van den Eijnden et al., 2017), which 

is related to the displacement of the solid constituents and to the opening of interfaces between them. Since 

rearrangement of solid constituents is not considered in the mesoscale model, this opening at solid constituent 

contacts occurs regardless of the deformation state. A more accurate depiction of the material microstructure can be 

achieved through a 3D model. However, before going to this more realistic 3D representation, the use of 2D 

calculations serves as a valuable foundation, providing reference results for subsequent analyses involving 3D 

computations. As shown in Figure 6-7, the 2D microstructure is enriched by taking into account realistic properties 

of mineral inclusions, such as morphology, area fraction, and orientation. orientation, measured experimentally in 

2D material sections. 

6.5.2. Solution of the mesoscale mechanical problem 

A mesoscale finite element procedure is used to solve the homogenised response of the REA. In double-scale FE² 

computing, the homogenised response is used as an implicit constitutive law at each macroscale integration point (or 

Gauss point). It is implemented as an independent constitutive law in the finite element code Lagamine (Charlier, 

1
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1987) and gives the possibility to define macroscale constitutive relations based on the mesostructures behaviour of 

the REA. The nonlinear equations are solved iteratively using the Newton-Raphson method for both macroscale and 

mesoscale problems.  

Since an updated Lagrangian configuration is considered in the finite element algorithm, the domain of integration 

is the current configuration, which means that the initial configuration at each mesoscale time step is described by 

node positions 𝑥𝑡𝑛, interface damage state parameter 𝐷𝑡𝑛, and plastic hardening variable 𝛾𝑡𝑛. The global scheme for 

solving the elastoplastic problem on a REA (i.e. on a macroscale material point) is described in detail by van den 

Eijnden (2015). It is summarised in Table 6-1 during one mesoscale time step Δ𝑡 from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 (i.e. 

from configuration Ω𝑡𝑛  to Ω 𝜏2 ) by considering the time-dependent behaviour of the material. The subscript 𝜏2 

represents the solutions or variables at current updated configuration. 

From Table 6-1, the deformation gradient  𝑭𝑡𝑛+1
𝑀   at time 𝑡𝑛+1 and time interval Δ𝑡 are first introduced into the 

mesoscale REA (i.e. macroscale material point) calculation followed by a substep routine. The load step is then 

discretised into several small steps and the configuration updates from Ω𝑡𝑛 to Ω 𝜏2. Note that the design of substep 

is not a required item, but serves to mitigate the mesoscale non-convergence problem. The outputs are the 

homogenised stress tensor 𝝈𝑀 and tangent stiffness matrix 𝑮𝑀. In step 2.2, 𝑥𝜏2 and 𝐷𝜏2 are equal to their initial 

values 𝑥𝑡𝑛 and 𝐷𝑡𝑛 in the first substep loop and then are forced into the microscale iterative computation after step 

2.3. The mechanical periodic boundary conditions of the REA are implemented by considering a penalty 𝑐𝑝𝑒𝑛 for 

the displacements of the homologous point (for example, a pair of points at 𝑥𝐿 and 𝑥𝐹 in Figure 5-3) in the first 

iteration. This allows for the convenient introduction of mesoscale deformation updates. Further, for the periodic 

boundary conditions, the displacements of the lower-left corner node in 𝑥 and 𝑦 directions are fixed to eliminate 

rigid body displacements. Again, this is done using a penalisation method on the stiffness matrix. The convergence 

of the microscale problem is checked using a dimensionless variable 𝑟𝑛𝑜𝑟𝑚, which is defined as the square root of 

the ratio of 𝑟𝑜𝑢𝑡 and 𝑟𝑒𝑥𝑡: 𝑟𝑛𝑜𝑟𝑚 = √𝑟𝑜𝑢𝑡 𝑟𝑒𝑥𝑡⁄ , in which 𝑟𝑜𝑢𝑡 and 𝑟𝑒𝑥𝑡 represent, respectively, the summations 

of out-of-balance forces and reaction forces. 𝑐𝑛𝑜𝑟𝑚 in step 2.4.3 is the stress convergence criterion of the mesoscale 

mechanical computation (non-linear part). It should be chosen as small as possible to get a better homogenised 

response, and we set its value as 10-6 in the FE code. 𝑨  and 𝒓⃗⃗ are the Jacobian matrix and the residual vector 

obtained from the Newton-Raphson method at mesoscale. The computation on the REA during a current mesoscale 

time step is finished after the complete substeps loop. 
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Table 6-1 Global scheme for solving the mesoscale mechanical problem during one time step. 

Input: 𝑭𝑡𝑛+1
𝑀  and Δ𝑡. 

Output: 𝝈𝑀 and 𝑮𝑀. 

1. Input  𝑭𝑡𝑛+1
𝑀  and Δ𝑡. 

2. Do substeps loop 

  2.1 Calculate 𝑭𝜏2
𝑀  and Δ𝑡𝜏2 based on subsize of timestep. 

  2.2 Input 𝑭𝜏2
𝑀 , Δ𝑡𝜏2, 𝑥𝜏2, 𝐷𝜏2, 𝝈𝑡𝑛

𝑀 , and 𝛾𝑡𝑛 microscale Newton-Raphson iterations. 

  2.3 Set 𝑟𝑛𝑜𝑟𝑚 = 1 and 𝑖 = 1. 

  2.4 Do while 𝑟𝑛𝑜𝑟𝑚 > 𝑐𝑛𝑜𝑟𝑚 and 𝑖 < 𝑖𝑚𝑎𝑥. 

     (2.4.1) Impose the displacements and the boundary conditions. 

           assemble ±𝑐𝑝𝑒𝑛δ𝑢𝑖
𝐹 ∓ 𝑐𝑝𝑒𝑛δ𝑢𝑖

𝐿 = ±𝑐𝑝𝑒𝑛∆𝑈𝑖𝑗
𝑀𝑦𝑗  for 𝑖 = 1. 

           assemble ±𝑐𝑝𝑒𝑛δ𝑢𝑖
𝐹 ∓ 𝑐𝑝𝑒𝑛δ𝑢𝑖

𝐿 = 0           for 𝑖 ≠ 1. 

     (2.4.2) Build the mechanical equations to be solved. 

     (2.4.3) If 𝑟𝑛𝑜𝑟𝑚 > 𝑐𝑛𝑜𝑟𝑚 or 𝑖 = 1 then 

             Solve 𝑨 𝑑𝒙⃗⃗⃗ = −𝒓⃗⃗.  

             Update the nodal positions 𝒙⃗⃗⃗. 

             Set 𝑖 = 𝑖 + 1, reset 𝑨  and 𝒓⃗⃗. 

           End if 

   End do 

   2.5 Go back to Step 2.1 and update 𝑭 𝜏2
𝑀 , Δ𝑡𝜏2, 𝑥𝜏2, 𝐷𝜏2. 

End substeps loop. 

3. Calculate the mesoscale homogenised stress  𝝈𝜏2
𝑀 . 

4. Calculate the mesoscale consistent tangent operators 𝑮𝑀. 

5. Save 𝑥𝜏2, 𝐷𝜏2 ,  𝝈𝜏2
𝑀 , and 𝛾𝜏2  as the candidate.  

 

The update of stress and tangent modulus is completed during step 2.4.2 in Table 6-1. The complete procedures for 

updating the elastoplastic stress and the viscoplastic stress in the clay aggregates are detailed in Appendix A and B. 

Especially, we summarise the viscoplastic stress update procedure in Table 6-2. 
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Table 6-2 Viscoplastic update procedure in the clay matrix aggregates of the mesostructure. 

Input: 𝝈𝑡𝑛 , 𝜺𝜏2 , 𝜺𝑡𝑛 , 𝛾𝑡𝑛
𝑣𝑝

, and Δ𝑡𝜏2. 

Output: 𝝈𝜏2 , 𝛾𝜏2
𝑣𝑝

, and ℂ𝜏2
𝑣𝑝

. 

1. Calculate the elastic stress predictor (i.e. elastic trial stress) 𝝈𝑡𝑟 = ℂ𝑒: 𝜺𝑒 =

ℂ𝑒: (𝜺𝜏2 − 𝜺𝑡𝑛
𝑣𝑝
). 

2. Evaluate the viscoplastic yield function 𝐹𝑣𝑝 with 𝝈𝑡𝑟. 

3. if 𝐹𝑣𝑝 < 0 then 

      Elastic step. Set 𝝈𝜏2 = 𝝈
𝑡𝑟, 𝛾 𝜏2

𝑣𝑝
= 𝛾𝑡𝑛

𝑣𝑝
 and ℂ𝑣𝑝 = ℂ𝑒. 

4. else 

5.     Viscoplastic step. Calculate the Jacobian matrix 𝑨 and the residual vector 𝒓⃗⃗. 

6.     Calculate ∆𝒙⃗⃗⃗ = 𝑨−𝟏𝒓⃗⃗ ; then update  𝝈𝜏2 and 𝛾𝑣𝑝 using ∆𝒙⃗⃗⃗. 

7.     Repeat steps 5-7 until convergence: ∑ √∆𝑥𝑘
25

𝑘=1 ≤ 𝑠𝑛𝑜𝑟𝑚 = 10−6. 

8.     Update consistent tangent operator ℂ𝑣𝑝. 

end if 

6.6. Assessment of mesoscale model 

In this section, numerical predictions from mesostructure calculations are compared with experimental data obtained 

on the COx claystone to examine the efficiency of the proposed model to reproduce the claystone creep deformations. 

To minimize the influence of mineralogical variability on experimental results, Armand et al. (2017) performed 

triaxial and creep compression tests on COx claystone samples extracted from horizontal boreholes in the same 

geological horizon and in the same area of the Andra’s URL. The results of the numerical modelling are compared 

hereafter to these experimental data. Concerning the numerical modelling, morphologically representative 

mesostructures are firstly generated. Unless otherwise specified, several morphological characteristics of the 

mesostructures (REAs) are fixed: the mineral contents of quartz, carbonates, pyrite, and clay are considered as being 

their average values in the COx clay-rich unit of 18%, 30%, 2%, and 50%, respectively; the preferential orientation 

of mineral inclusions is parallel to the (quasi-)horizontal bedding planes; the angularity and elongation of mineral 

inclusions reproduce their morphology according to experimental evidences (Cosenza et al., 2015a, 2015b; Robinet 

et al., 2012) and previous generations of morphologically representative mesostructures (Pardoen et al., 2020). Then, 

mesoscale deviatoric compression tests and creep tests are numerically reproduced. The elastoplastic part of the 

model is first evaluated, followed by the viscous part of the models of clay aggregates and of their contacts. Note 

that the elastoplastic and viscoplastic models of clay aggregates are two separate models, both of which have no 

influence on each other. Lastly, the mechanical material response and the time-evolution of creep strain is analysed. 

The influence of several microscale characteristics on the mesoscale mechanical material response is studied through 

sensitivity analyses, followed by the study of temporal evolution of interface damage state. 

6.6.1. Cohesive interface model 

The influence of parameter 𝐷𝑡/𝑛
1  on homogenised behaviour of REA (shown in Figure 6-8(a)) is studied in this 

section. Three value of 𝐷𝑡/𝑛
1  are considered, 𝐷𝑡/𝑛

1 = 0.1, 0.3 and 0.5. One can find that with the increase of 𝐷𝑡/𝑛
1 , 
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the maximum cohesive forces decrease (Figure 6-8(a)), and this leads to smaller deviatoric stresses (Figure 6-8(b)) 

and larger creep deformations (Figure 6-8(c)). This is easy to explain that lower cohesive forces reduce the rock 

strength and make interfaces easier to deformation. Though it may not necessary in current model, the introduction 

of parameter 𝐷𝑡/𝑛
1  is useful if the local plasticity of interfaces is involved in the future (Salih et al., 2018). 

 

 

 

 

(a) 

  

(b) (c) 

Figure 6-8 Influence of interface model parameter D
1  

t/n  on homogenised behaviour of REA with LREA ≈ 100 μm: 

(a) schematic diagram of interface model and selected mesotructure, (b) deviatoric stress responses, and (c) vertical 

creep strain, with different D
1  

t/n  values. 

6.6.2. Elastoplastic modelling of claystone 

The accuracy of the elastoplastic modelling of the clay aggregates (Section 6.4.3) is assessed in this section by 

modelling the material stress-strain behaviour for validation against experimental results. The characteristic length 

of the mesostructure is LREA ≈ 100 μm. The mineral inclusion behaviours are considered as being elastic and all 

mineral contact behaviours are modelled with the cohesive model (Section 6.4.1). The elastic parameters of the 

minerals as well as the strength and damage parameters of their contacts have been calibrated by van den Eijnden et 

al. (2016) and Pardoen et al. (2020), based on the results of triaxial compression tests, and are listed in Table 6-3. 
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However, the plastic parameters of the clay aggregates remain to be calibrated to reproduce the stress-strain behaviour 

of the clay rock.  

Table 6-3 Microscale elastoplastic parameters of solid mineral constituents and their damageable contacts. 

Materials 𝐸 (GPa) 𝑣 (-) 

Tectosilicates (quartz) 95 0.074 

Carbonates (calcite) 84 0.317 

Heavy minerals (pyrite) 305 0.154 

Clay matrix 2.3 0.110 

Clay 

aggregates 
𝛼𝑚
𝑝

 𝛼0
𝑝

 𝑏 𝑐0 (MPa) 𝛽0
𝑝

 𝛽𝑚
𝑝

 𝑏′ 

 3.0 0.1 300 14 0 0.8 300 

Interfaces 𝛿𝑡/𝑛
𝑐  (-) 𝐷𝑡/𝑛

0  (-) 𝐷𝑡/𝑛
1  (-) 𝑐𝑡

𝑚𝑎𝑥(MPa) 𝑐𝑛
𝑚𝑎𝑥(MPa) 

 0.1 0.001 0.01 2.5 1.0 

Previous results have shown that the heterogeneity of the clay rock mesostructure with spatial variability of the 

mineral inclusions (random positions) has an influence on the overall response of different mesostructures subjected 

to deviatoric loading (Pardoen et al., 2020). Therefore, several mesostructures of the COx claystone are generated 

and mechanically solicitated with 2D biaxial (deviatoric) compression tests. 10 REAs of 100×100 μm are randomly 

generated with the same morphological characteristics of the mineral inclusions (granulometry, elongation, 

angularity, and preferential orientation). An example is given in Figure 6-10(b). A confining pressure of 𝜎11
𝑀=12 MPa 

is applied on the REAs which corresponds to the amplitude of the in situ stress at the median depth of the COx 

formation. Therefore, this confining pressure has been considered in all the compression tests presented hereafter. 

The isotropic confining phase is followed by a deviatoric loading phase, with controlled global (homogenised) 

vertical strain rate (strain rate of  𝜀2̇2
𝑀=3.5*10-6 s−1) and constant lateral stress 𝜎11

𝑀 .  

The numerical results of the global mechanical responses of the mesostructures are detailed in terms of deviatoric 

homogenised stress 𝑞𝑀  versus vertical homogenised strain 𝜀22
𝑀  curves in Figure 6-9. They are compared to 

experimental data (from Armand et al., 2017; Pardoen and Collin, 2017). The variability of the rock mechanical 

response at mesoscale (as observed by Pardoen et al., (2020)), due to the mesostructural mineral spatial variability, 

is visible and only the range of the response curves is shown from most and least resistant responses. The plastic 

parameters of the clay aggregates are calibrated, as it was done for other micromechanical properties (Pardoen et al., 

2020), on a set of several mesostructures (10 REAs) and by considering their average mechanical response. The 

average response is assumed to be representative of the material. The calibrated plastic parameters are listed in Table 

6-3. 
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Figure 6-9 Variability of clay rock mechanical responses at mesoscale under biaxial compression. 

It should be noted that a 2D case is simulated at mesoscale to reproduce the experimental data from macroscale 

triaxial compression test. The numerical results concern individual REAs and interactions of different REAs at 

macroscale are therefore not included. Thus, the comparison is meaningful only for homogeneous modes of 

deformation (before the peak-deviatoric stress in material response curves). Macroscale non-homogeneous 

deformation modes, induced for example by strain localisation or fractures, will lead to structural responses which 

cannot be compared directly to the constitutive behaviour. Moreover, the macroscale responses exhibit a much more 

pronounced softening behaviour than the constitutive responses due to the macroscale non-homogeneous 

deformation. The comparison of the results after the peak stress (in the strain softening stage) is feasible in the case 

of a simulation at the scale of laboratory specimen by conducting FE2 simulations, which is out of the scope of this 

paper. 

Figure 6-10 shows the evolution of the deviatoric homogenised stress 𝑞𝑀 with the vertical homogenised strain 𝜀22
𝑀  

during the loading. A certain degree of variation exists in the material response from the most resistant samples to 

the least resistant ones due to the variability of the mesostructure. However, an overestimation of the material 

dilatancy (indicated by the homogenised lateral strain 𝜀11
𝑀 ) is observed, which is related to the displacement of the 

solid constituents and to the opening of interfaces between them. Since rearrangement of solid constituents is not 

considered in the mesoscale model, this opening at solid constituent contacts occurs regardless of the deformation 

state. 

Figure 6-10(a) enlightens the influence of the slope of the failure surface 𝛼𝑚
𝑝

 on the 𝑞𝑀 − 𝜀22
𝑀  response curve for 

one mesostructure under biaxial compression. The selected mesostructure shown in Figure 6-10(b) and labelled 

REA250_1 allowed to calibrate the clay plastic parameters of Table 6-3. This plastic parameter 𝛼𝑚
𝑝

 defines the 

dependency of the clay aggregates shear strength on their mean stress level (internal friction parameter), at the end 

of the clay hardening. From Eqs. (6-15)-(6-16), a smaller value of 𝛼𝑚
𝑝

 means that the material yields at a lower 

deviatoric stress, leading to higher plastic deformations in the clay matrix at the same level of deviatoric loading. 

Thus, a reduction of this plastic parameter causes a reduction of the mesostructure overall shear strength 𝑞𝑚𝑎𝑥
𝑀  as 

well as an increase of the mesostructure overall deformation. This is visible in the response curves in Figure 6-10(a). 

On the contrary, a large value of 𝛼𝑚
𝑝

 corresponds to an increase of the clay matrix shear strength and a reduction of 
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its plastic deformation. An increase of this parameter increases the rock overall shear strength 𝑞𝑚𝑎𝑥
𝑀  and reduces its 

overall deformation (under the same deviatoric stress level). This delays the clay rock overall deformation, e.g. 𝜀11
𝑀  

and 𝜀22
𝑀 , at which the effect of the clay matrix plastic strain becomes dominant in the overall stress-strain behaviour 

(Figure 6-10(a)). Furthermore, if the plastic deformation of the clay aggregates is not considered, by assuming that 

they are elastic, the overall non-linearity of the microstructure behaviour is due to the initiation and development of 

micro-damage. 

 

 

 

 

(a) (b) 

Figure 6-10 Influence of the internal friction parameter 𝛼p 

m of the clay aggregates (a) on the clay rock mechanical 

responses of (b) one mesostructure under biaxial compression. 

6.6.3. Viscous modelling: elasto-viscoplasticity of clay aggregates 

The viscous behaviour of the clay rock is now considered. The behaviour of mineral inclusions remains elastic while 

that of the contacts around them (i.e. contacts between inclusions or between an inclusion and the clay matrix) is still 

described by the cohesive model (Section 6.4.1). However, the creep behaviour of the clay matrix within the COx 

claystone is added. It is introduced by two microscale viscous mechanisms: the elasto-viscoplasticity of the clay 

aggregates (Section 6.4.4) or the viscoelasticity of their contacts (Section 6.4.5) studied separately.  

The statistical averages of mineral contents in the COx clay-rich unit are again represented in numerical 

mesostructures of size 100×100 μm. A representative example is given in Figure 6-13(d). The viscoplastic parameters 

of the clay aggregates and the viscoelastic parameters of their contacts remain to be calibrated to reproduce the creep 

behaviour of the clay rock. 

Similarly to macroscale creep tests on laboratory specimen, the numerical simulations (in 2D) of creep tests under 

deviatoric loading on clay rocks consist of three stages. Firstly, the sample is subjected to an isotropic confining 

loading 𝜎11
𝑀 = 𝜎22

𝑀 = 𝜎𝑖𝑛𝑖
𝑀 . Secondly, the confining pressure 𝜎11

𝑀  is then kept constant and the axial stress 𝜎22
𝑀  is 

gradually increased until the designed deviatoric stress 𝑞𝑀 = 𝜎22
𝑀 − 𝜎11

𝑀  is reached. Lastly, the creep deformation 

occurs in the third stage, during which the confining stress 𝜎11
𝑀  and the axial stress 𝜎22

𝑀 , and thus the deviatoric 

stress 𝑞𝑀, are kept constant for a period of time. 
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Verification of the elasto-viscoplastic model of clay matrix 

 

Figure 6-11 Microstructure used for the verification of the micromechanical model. 

First, we use a REA with simple microstructure as shown in Figure 6-11 to derive the analytical solution of creep 

strain during constant load condition. The blue parts represent horizontal and vertical contact interfaces, and the other 

parts are solid grains. To verify the viscoplastic model of clay aggregates, we set all solid parts are clay aggregates 

and a very stiff interfaces, leading to the overall homogenised deformation comes from the solid part.  

In the biaxial compressive stress state (0 ≥ 𝜎11 ≥ 𝜎22), we get the following viscoplastic strain rate from Eq. (6-29): 

𝜀11
𝑣𝑝
= 𝛾𝑣𝑝 (

3

4
+
𝛽𝑣𝑝

2
) ; 𝜀22

𝑣𝑝
= 𝛾𝑣𝑝 (−

3

4
+
𝛽𝑣𝑝

2
) (6-42) 

where the rate of hardening parameter is calculated by combining Eqs. (6-27) and (6-28): 

𝛾̇𝑣𝑝 = 𝜆̇ =
1

𝜂
〈
𝐹𝑣𝑝

𝜎𝑟
〉𝑛 exp(−𝑘𝛾𝑣𝑝) (6-43) 

During creep stage where stress level is kept constant and damage is assumed not to evolve, Eq. (6-43) can be 

integrable with the assumption that the initial viscoplastic distortion and time of the creep test are both zero, defined 

as: 

𝛾𝑣𝑝 =
1

𝑘
𝑙𝑛 [1 + 𝑘

1

𝜂
〈
𝐹𝑣𝑝
𝜎𝑟
〉𝑛 𝑡] (6-44) 

Combining Eqs. (6-42) and (6-44) we can get analytical expression of 𝜀11
𝑣𝑝

 and 𝜀22
𝑣𝑝

 with time.  

𝜀22
𝑣𝑝
= 𝐵 ∗ 𝑙𝑛(𝐴) + 𝐵𝑙𝑛(𝑡) (6-45) 

𝜀11
𝑣𝑝
= 𝐶 ∗ 𝑙𝑛(𝐴) + 𝐶𝑙𝑛(𝑡) (6-46) 

where 𝐴 = 𝑘
1

𝜂
〈
𝐹𝑣𝑝

𝜎𝑟
〉𝑛; 𝐵 =

−
3

4
+
𝛼𝑣
2

𝑘
;   𝐶 =

3

4
+
𝛼𝑣
2

𝑘
. 

We then consider a creep test for 100 days with 12 MPa of confining pressure, and 43.4 MPa of axial pressure. The 

comparison between analytical and numerical results during are shown in Figure 6-12, and a good consistency can 

be found. 
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Figure 6-12 Comparison between analytical and numerical results for a creep test. 

Comparison with experimental results 

In this case, the clay aggregates are elasto-viscoplastic (Section 6.4.4) and the inter-aggregate contacts are modelled 

with the damageable cohesive interface model (Section 6.4.1). The calibration of the viscoplastic parameters is, as 

previously (Section 6.6.2), realised by considering the average mechanical response of a set of several mesostructures 

(10 REAs used in Section 6.6.2). In Eq. (6-25), 𝛽𝑣𝑝 is a volumetric deformation parameter. Considering the very 

small dilatancy of clay rocks (Pardoen and Collin, 2017), we fix the value of 𝛽𝑣𝑝 = 0. This is a simplifying 

assumption in which the phenomenon of progressive transition from contractive to dilative behaviour of most rocks 

is neglected. The viscoplastic stress threshold 𝜎𝑠, in Eq. (6-24), above which creep strain develops in clay aggregates 

should be a small-scale parameter which is not known. At macroscale, its determination is very difficult and it is 

closely linked to the duration of observation and to the confining pressure (Mánica et al., 2017). Some previous 

experimental results (Zhang et al., 2007) suggest that the viscoplastic stress threshold should be lower than 2 MPa 

for the long-term creep behaviour of clay rock. Souley et al. (2011) suggests that creep may take place beyond a 

threshold of 3 to 5 MPa based on the results of creep tests on COx claystone (Su, 2003), and Mánica et al. (2017) 

gives the threshold as 4 MPa in their study. A value of 𝜎𝑠 = 3 MPa is considered. Furthermore, in Eq. (6-27), the 

parameter 𝜂 represents the clay aggregates viscosity and 𝑛 controls the rates (slope of the time evolution curve) of 

the viscoplastic strain for a short period of time as well as the difference in strain magnitude when different deviatoric 

stress levels are applied under the same confining pressure. Then, the parameter 𝑘 controlling the hardening effect 

influences the viscoplastic strain rate at larger times. The calibrated viscoplastic parameters are listed in Table 6-4. 
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Table 6-4 Microscale parameters of viscoplastic clay aggregates and damageable mineral contacts. 

Clay 

aggregates 
𝜂 (s) 𝛼𝑣𝑝 𝛽𝑣𝑝 𝜎𝑠 (MPa) 𝑛 𝑘 

 9.8*1012 0.1 0 3 4.62 260 

Interfaces 𝛿𝑡/𝑛
𝑐  (-) 𝐷𝑡/𝑛

0  (-) 𝐷𝑡/𝑛
1  (-) 𝑐𝑡

𝑚𝑎𝑥(MPa) 𝑐𝑛
𝑚𝑎𝑥(MPa) 

 0.1 0.001 0.01 2.5 1.0 

Creep experiments under 𝜎11
𝑀=12 MPa of confining pressure and for different deviatoric stress levels, 𝑞𝑀 𝑞𝑚𝑎𝑥⁄  = 

50%, 75%, and 90% (Armand et al., 2017), are numerically reproduced. The statistical mean value of the maximal 

deviatoric stress that the clay rock can sustain 𝑞𝑚𝑎𝑥 = 34.9 MPa (Armand et al., 2017), i.e. its shear strength, under 

12 MPa of confining pressure is used as a reference for the creep experiments. A comparison of numerical and 

experimental evolution of vertical strains during the creep stage is shown in Figure 6-13 at different stress levels of 

𝑞𝑀 𝑞𝑚𝑎𝑥⁄  = 50%, 75%, and 90%, corresponding to thus 𝑞𝑀=17.5 MPa, 26.2 MPa and 31.4 MPa. After parameter 

calibration of 𝜂, 𝛼𝑣𝑝, 𝑛, and 𝑘 (Figure 6-13), one can observe that the numerical model reproduces well the strain 

evolution (i.e. the vertical homogenised creep strain 𝜀22
𝑣𝑝,𝑀

) of the COx claystone over time. As for previous 

modelling, a variability of the rock mechanical response, related to the mineral spatial variability at mesoscale, is 

obtained. In fact, with identical mineral contents, the Voronoï tessellation allows to generate periodic 2D REAs with 

random mesostructures (i.e. random positions of mineral inclusions), which is one of the origins of the mesoscale 

behaviour scattering (Pardoen et al., 2020). This influence of the mesostructure spatial variability can be observed in 

Figure 6-13, leading to a range of creep material response for each deviatoric stress level. As previously, only the 

range of the response curves is shown from most and least development of viscous strain with time. Figure 6-13(d) 

shows the geometrical configuration of the mesostructured REA250_1 exhibiting an average numerical creep 

material response (strain versus time). It allowed to calibrate the viscoplastic parameters of the clay aggregates. This 

mesostructure is considered as a reference REA for the following sensitivity analyses, small‑scale damage state 

analyses, and double-scale numerical simulation. 

Furthermore, the deviatoric stress level has a significant influence on the creep behaviour, as depicted in Figure 

6-13(a-c). A higher constant deviatoric stress engenders a larger development of creep strain with time, as observed 

experimentally.  
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(a) (b) (c) (d) 

Figure 6-13 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests for three 

deviatoric stress levels qM /qmax = (a) 90%, (b) 75%, (c) 50% of the maximum deviatoric stress qmax = 34.9 MPa, 

and (d) reference REA with average numerical creep material response. 

Sensitivity analyses on creep deformation 

In this section, the influence of several mesostructure properties and viscoplastic parameters on the creep behaviour 

of the COx claystone is investigated. Firstly, the clay content variation is considered. Experimental studies have 

shown that a certain variability of the mineralogical composition exists within the COx claystone (Armand et al., 

2014, 2017; Cosenza et al., 2015a, 2015b; Robinet et al., 2012).  It is expected that a larger clay content will produce 

larger creep deformation, due to its viscous nature. To enlighten this, REAs with the same characteristic length (LREA 

≈ 100 μm) but different clay contents of 30%, 40%, 50% and 60% are considered. For each clay content, creep tests 

are modelled on 10 REAs under constant confining pressure of 𝜎11
𝑀  = 12 MPa and deviatoric stress level of 

𝑞𝑀 𝑞𝑚𝑎𝑥⁄ = 75% . The results are shown in Figure 6-14 and compared to experimental measurements on a 

macroscale sample from the clay-rich unit of the COx claystone, thus for 50% of clay mineral content (Figure 6-14 

(c)). As expected, the homogenised creep strains become greater as clay content increases. The average REA vertical 

creep strains for these four mineral content cases at 100 days of creeping are, respectively, 𝜀22
𝑣𝑝,𝑀

 = 0.36%, 0.54%, 

0.77% and 1.04%. The increase of the vertical creep strain as a function of the clay mineral content is represented in 

Figure 6-15. A quasi-linear relation can be found between the vertical creep strain and the clay mineral content for 

the configurations considered here. It seems that under a deviatoric stress level of 75% of the rock shear strength 

(under 𝜎11
𝑀  = 12 MPa), each 10% increase in clay content increases the vertical creep strain by 0.23%. 
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(a) (b) (c) (d) 

Figure 6-14 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests considering 

viscoplastic clay aggregates, under a constant deviatoric stress level of qM /qmax = 75%, for four proportions of clay 

mineral contents: (a) 30%, (b) 40%, (c) 50% and (d) 60% of clay. 

 

Figure 6-15 Influence of the clay mineral content on the average vertical creep strain, under a constant deviatoric 

stress level of qM /qmax = 75%, after 100 days of biaxial creep test. 

Secondly, the influence of the characteristic size 𝐿𝑅𝐸𝐴 of the mesostructure is considered, for 50% of clay content. 

To study the influence of the mesostructure size on the material creep response, we generate REAs with an increasing 

number of Voronoï cells of 50, 100, and 250 numerical cells, corresponding to 𝐿𝑅𝐸𝐴  ≈ 50, 70, and 100 μm, 

respectively. The variability of the material responses, in term of vertical creep strain evolution during creep 

simulations, over 10 tested REAs for each case of mesostructure size is shown in Figure 6-16. One can observe that 

a range exists in the material response for each case. The response under the same model parameters and simulation 

conditions are similar but its variability decreases with the increase of the REA size. In fact, the larger the REA, the 

more representative this behaviour is. The partial lack of representativeness of small mesostructures can be avoided 

by increasing the REA size; however, this increases the computation time. The creep response dispersion of 


 = 12 MPa

          Numerical average

          Numerical max.-min.

 Experimental

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Quartz - carbonates - pyrite 

- clay: 27-40-3-30%

V
er

ti
ca

l 
cr

ee
p
 s

tr
ai

n
 

v
p

,M
2
2

 [
%

]

Time [days]


 = 12 MPa

          Numerical average

          Numerical max.-min.

 Experimental

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

V
er

ti
ca

l 
cr

ee
p
 s

tr
ai

n
 

v
p

,M
2
2

 [
%

]

Time [days]

Quartz - carbonates - pyrite 

- clay: 24-33-3-40%


 = 12 MPa

          Numerical average

          Numerical max.-min.

 Experimental

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Quartz - carbonates - pyrite 

- clay: 18-30-2-50%

V
er

ti
ca

l 
cr

ee
p

 s
tr

ai
n

 
v

p
,M

2
2

 [
%

]

Time [days]


 = 12 MPa

          Numerical average

          Numerical max.-min.

 Experimental

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Quartz - carbonates - pyrite 

- clay: 12-27-1-60%

V
er

ti
ca

l 
cr

ee
p
 s

tr
ai

n
 

v
p

,M
2
2

 [
%

]

Time [days]

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2


 = 12 MPa

qM/qmax = 75%

 Numerical result

 Fitting line

A
v
er

ag
e 

v
er

ti
ca

l 
cr

ee
p
 s

tr
ai

n
 

v
p
,M

2
2

 [
%

]

Clay mineral content [%]

y = x−

R2 = 0.99



Chapter 6 Computations at microscale based on a REA to arrive at a time-dependent mechanical behaviour at 

mesoscale 

117 

 

microstructures of 100×100 μm (250 cells) is relatively limited and is a good compromise between representativeness 

and computation time cost (Pardoen et al., 2020). 

 

Figure 6-16 Variability of clay rock mechanical creep response due to different characteristic sizes of the 

mesostructure during biaxial creep test under a constant deviatoric stress level of qM /qmax = 75%. 

The influence of viscous parameters of the clay aggregates is now considered. Figure 6-17 (a-b) show the influence 

of the hardening parameter 𝑘 and of the viscoplastic threshold 𝜎𝑠 on the creep deformation. In Figure 6-17(a), it 

can be seen that reducing 𝑘 engenders an increase of the creep strain rate and thus of the creep strain in the long 

term. Therefore, as aforementioned, the hardening parameter 𝑘 can be determined by comparing the slope of creep 

strain curves in the long term between numerical and experimental results. In Figure 6-17(b), as expected, larger 

values of the viscoplastic threshold 𝜎𝑠  generate lower viscous deformations. The vertical creep strain 𝜀22
𝑣𝑝,𝑀

 

decreases from 0.9% to 0.67% after 100 days of creeping when the threshold increases from 0 to 5 MPa. The 

viscoplastic threshold has mainly an influence on the creep strain generated during a short time period because the 

curves are nearly parallel in the long term. 

  

(a) (b) 

Figure 6-17 Influences of (a) the hardening parameter 𝑘 and of (b) the viscoplastic threshold σs on the overall 

vertical creep deformation during biaxial creep test under a constant deviatoric stress level of qM /qmax = 75%. 
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Creep-induced micro‑damage of mineral contacts 

Figure 6-18 illustrates the mesostructure (reference REA250_1) deformation and interface damage state for different 

times and vertical total strains, 𝜀22
𝑀  = 0.89%, 1.9%, and 2.6%. These strains correspond to the end of deviatoric 

compression phase, creep deformation after 1 year, and creep deformation after 100 years, respectively. The interface 

states (degrade, softening, and full damage) are indicated by different colours and a larger symbol corresponds to the 

greater interface relative displacements and damage. From Figure 6-18, one can observe that the interface damage 

can develop with time under constant stress conditions due to the viscosity of the clay aggregates. The creep 

deformation of clay aggregates leads to a gradual increase and accumulation of damage (i.e. cohesion softening) of 

the mineral contacts, as more mineral interfaces becomes partially damaged over time. Note that the damage develops 

preferentially in the interfaces around mineral inclusions rather than between the clay aggregates. Desbois et al. 

(2017) have observed similar decohesion and microcrack developments, after shear failure tests, with analyses using 

a combination of scanning electron microscopy and broad ion beam (SEM-BIB). Two explanations can be envisaged: 

firstly, the stresses at the matrix-inclusion interfaces are higher than those between clay aggregates due to the higher 

contrast in stiffness (between the stiff mineral inclusions and the soft clay matrix), and therefore lead to larger relative 

displacements; the second reason is that only the clay aggregates generate creep deformation, and this tends to reduce 

substantially the stresses generated at the interface between clay aggregates, hence also their relative displacements. 

This increase of damage at the mineral contacts during material creeping, due to the clay matrix viscosity, might 

further lead to the development of microcracks (i.e. complete decohesion at mineral contacts, or fully damaged 

interfaces) for very large creep deformations in the long term 
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(a) (b)  

Figure 6-18 Evolution of clay rock damage at different vertical total strains under biaxial creep test: (a) material 

response and (b) patterns of mineral interface damage state. 
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In order to better investigate the creep-induced damage state of the mineral interfaces as shown in Figure 6-19, four 

indicators are introduced to quantify its development. The first indicator (Figure 6-19(a)) is the maximal values of 

damage in the tangential 𝐷𝑡
𝑚𝑎𝑥 and normal (opening) 𝐷𝑛

𝑚𝑎𝑥 directions among all interfaces. It is a local indicator 

which specifies when the most damaged mineral contact in a mesostructure starts to become partially damaged, in 

softening, or fully damaged. The second indicator (Figure 6-19(a)) 𝐷𝑡/𝑛
𝑚𝑒𝑎𝑛 is the mean values of damage of all 

mineral interfaces in their two directions. It is a global indicator which reflects the average damage state of the 

mesostructure in shear or opening mode. The third indicator (Figure 6-19 (b)) is the proportions of all interfaces that 

are currently in the elastic (𝐷𝑡/𝑛 ≤ 𝐷𝑡/𝑛
0 ), degraded (𝐷𝑡/𝑛

0 < 𝐷𝑡/𝑛 ≤ 𝐷𝑡/𝑛
1 ), softening in shear mode (𝐷𝑡

1 < 𝐷𝑡 ≤ 1) 

and softening in opening mode (𝐷𝑛
1 < 𝐷𝑛 ≤ 1). This indicator reflects the trend of the interfaces in different states 

and their quantity. The last indicator (Figure 6-19(c)) is the proportions of interfaces in the partially damage state 

(degrade and softening) which damage in the tangential direction is greater (𝐷𝑡  >  𝐷𝑛) or lower (𝐷𝑡  <  𝐷𝑛) than 

that in the opening direction. It allows to determine the dominant deformation and damage mode of the REA which 

can be in shear or in opening mode. The complete decohesion mode (𝐷𝑡 or 𝐷𝑛 > 1) is not indicated here since no 

mineral interface have reached this state under the REA creep test.  

   

(a) (b) (c) 

Figure 6-19 Indicators of the development of mineral interface damage state considering viscoplastic clay 

aggregates under biaxial creep test: (a) maximal and average interface damage in tangential and normal directions, 

(b) proportions of interfaces in different states, and (c) proportions of interfaces undergoing more relative 

displacements in tangential or normal direction. 

The curves in Figure 6-19 start at the end of the isotropic compression, at which the proportions of the interface in 

elastic, degrade, shear softening, and open softening are, respectively, 89%, 10%, 0% and 0% (Figure 6-19(b)). It 

can be seen that at the end of the isotropic compression about one tenth of the interfaces have already undergone a 

certain relative displacement to reach the degrade state. Nevertheless, Figure 6-19(a) indicates that 𝐷𝑡
𝑚𝑎𝑥 increases 

linearly with the vertical strain increase, during the deviatoric loading and the creep test, and both 𝐷𝑛
𝑚𝑎𝑥 and 𝐷𝑡

𝑚𝑎𝑥 

are less than 0.1 when the vertical strain has reached 𝜀1
𝑀 = 2.6%, after 100 years. It means that the mineral contacts 

are far away from reaching a complete debonding (i.e. complete decohesion) at the end of the creep phase. Moreover, 

𝐷𝑡
𝑚𝑎𝑥 (𝐷𝑡

𝑚𝑒𝑎𝑛) is usually a bit larger than 𝐷𝑛
𝑚𝑎𝑥 (𝐷𝑛

𝑚𝑒𝑎𝑛). This indicates that the generated relative displacement in 

the tangential direction of all mineral interfaces is larger than that in the normal direction in opening. This is because 

the REA is subjected to a deviatoric loading. 
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During the deviatoric loading, which is the second stage of the simulation, the proportions of interface damage state 

vary most significantly, for each damage state (Figure 6-19(b)). At the end of the deviatoric loading, the majority of 

the elastic interfaces becomes degraded and a small proportion already enters the shear softening and open softening 

states.  

Afterwards, during the creep phase, the proportions of elastic and degraded interfaces decrease and thus, the 

proportion of interfaces in softening regime increase. This indicates that the proportion of interfaces entering the 

degraded state from elasticity is smaller than the proportion of interfaces entering the softening state from the 

degraded state. During the creep phase (Figure 6-19(b)), the relative displacements occurring at the mineral contacts 

lead to a transition of the interface damage state from degraded to softening. At the end of the creep phase after 100 

years, the vertical strain reaches 𝜀1
𝑀 = 2.6% the proportion of elastic interfaces is very small, only 4%, and the 

proportion of interfaces in softening mode has increased to reach 39% in shear and 10% in opening mode. At any 

time, a majority of the mineral interfaces undergo larger tangential relative displacement (Figure 6-19(c)).  

The results of Figure 6-18 and Figure 6-19 highlight that shearing is the dominant mode of deformation (relative 

movements) and damage at the mineral contacts. In fact, under deviatoric loading, shear deformations and tangential 

relative movements between mineral grains (at clay-clay aggregate, clay-inclusion, and inclusion-inclusion contacts) 

are predominant (Pardoen et al., 2020). As time increases during the creeping of the entire mesostructure of the clay 

rock, tangential sliding displacement and normal opening displacement of mineral contacts, especially at interfaces 

between clay aggregates and mineral inclusions, occur due to the creep deformation of the clay aggregates. Therefore, 

the internal damage accumulates and the creep deformation of the clay matrix can be a driving factor of time-

dependent micro-damage processes.  

6.6.4. Viscous modelling: viscoelasticity of clay aggregate contacts 

Comparison with experimental results 

In this approach, it is considered that the viscous behaviour of the clay rock, in the clay matrix, is related to the 

development of viscous relative displacements (i.e. a time-dependent sliding and opening) between large clay 

aggregates. The latter are considered as rigid elastic entities. As previously, the elastic parameters of the minerals as 

well as the parameters of their contacts are listed in Table 6-3. A biaxial creep test has been simulated on COx 

claystone mesostructures with viscous contacts between clay aggregates, i.e. clay-clay interfaces. The creep test 

modelling has been performed on the 10 REAs of 100×100 μm having a 50% clay content, which have been used in 

Section 6.6.3. The modelling has been performed under a confining stress of 𝜎11
𝑀  = 12 MPa and under a deviatoric 

stress of 𝑞𝑀/𝑞𝑚𝑎𝑥 = 75% and 90%, thus 𝑞𝑀 = 26.2 MPa and 31.4 MPa. Figure 6-20(a) and (b) show the time 

evolution of the vertical creep strain 𝜀22
𝑣𝑝,𝑀

 under two constant deviatoric stresses. When viscosity exists only in the 

contact between clay aggregates, one can observe that the overall (homogenised) vertical creep deformation 𝜀22
𝑣𝑝,𝑀

 

generated by the viscosity is small compared to experimental data, in both short and long terms. The creep strains 

finally tend asymptotically towards constant values due to the used viscoelastic model, which corresponds to the 

secondary creep (creep deformation reaching a steady state). However, this behaviour may become different when 

the applied deviatoric stress is much closer to the peak stress. This will be discussed in the following. 
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(a) qM /qmax = 90% (b) qM /qmax = 75% 

Figure 6-20 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests considering 

viscoelastic clay aggregate contacts under two deviatoric stress levels of qM /qmax = (a) 90% and (b) 75%. 

Sensitivity analyses on creep deformation 

Taking the mesostructure REA250_1 as an example (Figure 6-13(d)), the influence of the viscous parameters 𝛽 and 

𝜇𝑡/𝑛 is shown in Figure 6-21(a) and (b). The simulation conditions and the other model parameters are the same as 

before. As expected, the viscosity of the clay aggregates contacts 𝜇𝑡/𝑛 only influences the rate at which the creep 

deformation reaches a steady state (Figure 6-21(a)), not its final value. On the other hand, a larger value of the viscous 

parameter 𝛽 leads to a larger vertical creep strain development; however, this effect reduces as the value of 𝛽 

increases. Note that the clay aggregate interface elastic stiffness also depends on 𝛽, which can be seen from Figure 

6-6. However, A more realistic modelling of the clay aggregate contacts should consider their irreversible relative 

sliding and opening. This will be further investigated in future studies. 

As shown in Figure 6-22, the characteristic size of the mesostructure is also studied in this section when the viscosity 

is only considered in clay aggregate contacts. Similar to the results shown in Figure 6-16, the response variability 

decreases with the increase of the REA size. 
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Figure 6-21 Influence of (a) clay aggregate contact viscosity 𝜇t/n and (b) viscous parameter 𝛽 on the vertical creep 

deformation under qM /qmax = 75%. 

 

 

Figure 6-22 Influence of characteristic sizes of the mesostructure on vertical creep strain under qM /qmax = 75%. The 

viscosity is only considered in clay aggregate contacts. 

The influence of clay content variation on the vertical creep deformation is shown in Figure 6-23. For each case, 10 

different heterogeneous mesostructures with a dimension of LREA ≈ 100 μm are generated. As expected, the creep 

strains become greater as clay content increases; however, the creep strains are still small compared to the 

experimental measurements. Based on the above numerical results, one can find that the viscosity of the clay 

aggregate contacts has an influence on the overall creep deformation of the clay rock; however, this seems not 

sufficient to accurately reproduce the creep strain amplitude and the experimental data. A more realistic modelling 

of the clay aggregate contacts should consider their irreversible relative sliding and opening. This will be further 

investigated in future studies. 

    

(a) (b) (c) (d) 

Figure 6-23 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests considering 

viscoelastic clay aggregate contacts, under a constant deviatoric stress level of qM /qmax = 75%, for five proportions 

of clay mineral contents: (a) 30%, (b) 40%, (c) 50% and (d) 60% of clay. 
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Creep-induced micro‑damage of mineral contacts 

The mesostructure REA250_1 (Figure 6-13(d)) is again considered with 50% of clay content, viscoelastic clay 

aggregate contacts, and the following clay-clay interface parameters: 𝑐𝑡
𝑚𝑎𝑥 = 0.025 MPa, 𝑐𝑛

𝑚𝑎𝑥 = 0.01 MPa, 𝛿𝑡/𝑛
𝑐  

= 0.1, 𝐷𝑡/𝑛
0 = 0.001,  𝐷𝑡/𝑛

1 = 0.01, 𝛽 = 100, and 𝜂 = 109 MPa s. Under confining pressure of 𝜎11
𝑀  = 12 MPa and 

biaxial compression (loading rate of 𝜀2̇2
𝑀=3.5×10-6 1/s), the mesostructure deviatoric stress 𝑞𝑀 versus axial strain 

𝜀22
𝑀  response is visible in Figure 6-24(a). Under this confining pressure, the maximal deviatoric stress (i.e. the shear 

strength) that the mesostructure can sustain is about 𝑞𝑚𝑎𝑥
𝑀 = 47 MPa. Then, a creep test is performed under constant 

confining pressure of 𝜎11
𝑀  = 12 MPa and deviatoric stress of 𝑞𝑀 = 44 MPa. 

A high value of the constant deviatoric stress is chosen close to the shear strength of the REA to study the possible 

damage induced by the creep. Three stages of creep can develop in viscous materials as clay rocks: a primary creep 

in the short term with a decrease of the creep strain rate (rate decelerating), a secondary creep with a stabilisation of 

the creep strain rate over time (steady state creep with constant rate), and a possible tertiary creep in the long term 

with an increase of the creep strain rate (rate accelerating) towards creep failure (Liu et al., 2018). These three stages 

of creep developed by our model are shown in Figure 6-24(a) and Figure 6-26(a). The tertiary creep occurs for 

materials exhibiting a softening, damageable, or quasi-brittle behaviour, as dense soils, overconsolidated clays, and 

rocks (Shahbodagh et al., 2020). These three creep stages are also observed for the COx claystone during creep tests 

under triaxial compression conditions (Liu et al., 2018). Even if it has been seldom observed in rocks, the increase 

of the creep rate appears to be related to the onset and development of damage (Liu et al., 2018). The later can further 

lead to a creep-induced failure of the material.  

Figure 6-24(a) illustrates both the evolution of the vertical total strain 𝜀22
𝑀  and the deviatoric loading and with time, 

which corresponds to the creep process. An interesting result is observed when the applied constant deviatoric stress 

(44 MPa) is close to the peak deviatoric stress (47 MPa): the third stage of creep (accelerated creep stage) which can 

lead to the creep failure is observed. Indeed, the creep deformation rate starts to increase after a time period of 16 

year and then increases rapidly. Furthermore, the development of microscale damage and mesocracking pattern 

induced by the material creep with time is shown in Figure 6-24 (b), at the end of the deviatoric loading and during 

the accumulation of creep deformation. It is observed that the overall material damage at mineral contacts increases 

and that only a few interfaces reach full decohesion at the end of the creep, after 19.5 years. In fact, at the end of the 

creep, the complete decohesion appears in a localised manner for a small proportion of mineral contacts. Therefore, 

the creep strain development induces damage accumulation which leads to the initiation of the mesostructure cracking 

and failure. Similarly, tertiary creep with damage accumulation and creep failure was observed during creep at 

macroscale in the COx claystone by Liu et al. (2018). Numerically, the finite element computation is performed until 

it fails to converge at the point of failure. 
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𝜀22
𝑀 = 3.1% (end of 

deviatoric loading) 
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𝑀 = 4.4% 

 (𝑡 = 2.7 years) 

  

𝜀22
𝑀 = 8.5% 

(𝑡 = 19.5 years)  

 

 

(a) (b)  

Figure 6-24 Creep stages and induced failure in clay rock during biaxial creep test considering viscoelastic clay 

aggregate contacts: (a) material response, (b) microscale damage and mesoscale cracking pattern induced by the 

material creep with time. 

Four indicators, as described in Section 6.4.4, are analysed in Figure 6-25 to better investigate the creep-induced 

damage state of the interfaces between minerals for the results shown in Figure 6-24. As aforementioned, shearing is 

the dominant mode of deformation, relative movements, and damage under deviatoric loading. Then, during creep 

stage after deviatoric compression, when viscosity exists at the contacts between clay aggregates, it implies an 

increase of the damage and relative displacements between mineral grains. This overall microscale damage increase 

was also observed for viscous clay aggregates (Section 6.4.4, Figure 6-19). Moreover, there are only 2 mineral 

interfaces (over a total of 1582 interfaces) that have reached the complete decohesion state in the tangential direction 

(black symbols in Figure 6-24(b)) after 19.5 years of creep. The microscopic damage induced by the creep is therefore 

very localised. These fully damaged contacts are not viable in Figure 6-25(b) due to their small proportion. 

-60 -40 -20 0 20 40

Tertiary creep

Secondary creep

Primary creep

Creep failure

cr
ee

p
 p

ro
ce

ss

10

8

6

4

2


 =  MPa

 qM = 44 MPa

Clay content: 50%

44 MPa

qM [MPa]

 

 




Time [years]

 Deviatoric loading

 Creep L
R

E
A  =

 1
0

0
 μ

m
 



Chapter 6 Computations at microscale based on a REA to arrive at a time-dependent mechanical behaviour at 

mesoscale 

125 

 

   

(a) (b) (c) 

Figure 6-25 Indicators of the development of mineral interface damage state considering viscoelastic clay aggregate 

contacts under biaxial creep test: (a) maximal and average interface damage in tangential and normal directions, (b) 

proportions of interfaces in different states, and (c) proportions of interfaces undergoing more relative 

displacements in tangential or normal direction. 

6.6.5. Influence of viscous modes on tertiary creep and creep failure 

Although tertiary creep has been rarely observed to date on clay rocks, it may occur and lead to claystone failure over 

time under certain conditions (Liu et al., 2018). The possible occurrence of creep failure has been studied from a 

mesostructural perspective by considering the material heterogeneity at the mesoscale with various mineral spatial 

arrangement. To investigate the influence of the viscosity of the clay matrix (both of clay aggregates and of their 

contacts) on the overall creep deformation, several mesostructures are generated and submitted to a creep test with 

an applied constant deviatoric stress close to their peak stress value. Three REAs with 50% of clay content have been 

randomly generated with different heterogeneous mesostructures of 100×100 μm, labelled REA250_1, REA250_2, 

and REA250_3.  

Hereafter, the viscosity of the clay aggregates and of their contacts is studied separately, considering either 

viscoplastic clay aggregates and damageable mineral contacts as in Section 6.4.4, either viscoelsatic clay aggregate 

contacts and elastic clay aggregates as in Section 6.6.4. For each mesostructure, the microscale constitutive 

parameters are the same as those used previously in Section 6.4.4. For the former mesostructure REA250_1, the 

effect of the viscosity of the clay aggregate contacts has already been studied and has led to tertiary creep and creep 

failure (Figure 6-24). Then, the viscosity of the clay aggregates is now considered. For the latter mesostructures 

REA250_2 and REA250_3, both viscosity types are considered. The deviatoric strengths of the mesostructures 1, 2, 

and 3 under biaxial compression with 𝜎11
𝑀  = 12 MPa (strain rate of  𝜀2̇2

𝑀  = 3.5×10-6 s−1) are, respectively, of 𝑞𝑚𝑎𝑥
𝑀  

= 47 MPa, 46 MPa, and 39.1 MPa. The applied constant deviatoric stresses during the creep phase are, respectively, 

of 𝑞𝑀 = 44 MPa, 44 MPa, and 37 MPa.  

Figure 6-26 shows the relation between the evolution of the creep deformation (Figure 6-26(a)) and the micro-damage 

and mesocracking patterns induced by the viscosity of the clay aggregates (Figure 6-26(b)) or of their contacts (Figure 

6-26(c)), for the three mesostructures. These patterns are shown, for each mesostructure, for a vertical total strain 𝜀1
𝑀 

inducing the mesoscale tertiary creep by one or the other mode of clay matrix viscosity. From the creep curves shown 

in Figure 6-26(a), one can observe that the viscosity in clay aggregates or in their contacts can both cause accelerated 
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creep of the rock (e.g. mesostructures REA250_1 and REA250_2). Furthermore, under the same vertical total strains, 

the clay aggregate interface viscosity induces more damage between minerals in the mesostructure, which can be 

seen in terms of damage magnitude and distribution (Figure 6-26(b-c)). The analyses of the numerical results indicate 

that the viscosity at the clay aggregate contacts is more likely to cause rock damage and may have an important 

contribution to the creep-induced failure of the claystone. 

  
Viscosity in  

clay aggregates 

Viscosity in clay 

aggregate contacts 

REA250_1 

 
  

REA250_2 

 
  

REA250_3 

 
  

 (a) (b) (c) 

Figure 6-26 Relation between (a) creep deformation evolution under and (b-c) induced micro-damage and 

mesocracking patterns for several mesostructures when viscosity is considered in clay aggregates or at clay 

aggregate contacts. 
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6.7. Conclusions  

In order to investigate the time-dependent mechanical behaviour of heterogeneous clay rocks, the contribution of 

microscale viscous characteristics of minerals to the mesoscale creep behaviour of the Callovo-Oxfordian (COx) 

claystone has been investigated. This has been achieved by micromechanical approach in which the clay rock is 

considered as a composite medium consisting of rigid elastic mineral inclusions (quartz, calcite, and pyrite) 

embedded in a clay matrix.  

At the microscale, the damage and failure modes have been reproduced by considering potential decohesion around 

mineral inclusions and potential microcracking within the clay matrix. The latter are modelled at the interfaces 

between solid mineral grains as damageable cohesive contacts. Considering the viscosity of the claystone, it is 

assumed to be originated from the time-dependent creep deformation of the clay matrix. Two origins have been 

considered: either viscous clay aggregates or viscous intergranular microfractures propagating in the clay matrix 

between rigid clay aggregates. Both viscous modes have been considered either by a viscoplastic behaviour for the 

clay aggregates or by a viscoelastic behaviour of the inter-clay aggregate contacts. The viscoplastic model of the clay 

aggregates, satisfying the thermodynamic consistency conditions, is based on Lemaitre’s form, in which a mean 

stress dependence and a non-associated flow rule are introduced. The new hardening law based on an exponential 

function instead of a power law obtains a creep evolution that is more consistent with experiment results. 

The microscale behaviour of the mineralogical constituents, of their interactions (i.e. intergranular contacts), of the 

rupture modes, as well as their representative micro-structural characteristics (e.g. grain morphology) and properties, 

have been considered at larger scale in the clay rock heterogeneous mesostructure. At the mesoscale, the mineral 

spatial arrangement and variability are numerically modelled in a two-dimensional Representative Element Area 

(REA), considering the material characteristic size and its representativeness. Such approach allows to enhance the 

understanding of large-scale material behaviour with meso- and micro-structural physically-based phenomena, which 

is a significant advantage compared to macroscale phenomenological models. The overall behaviour of the REA is 

related to its mesoscale heterogeneity, meaning to the mineralogical composition (i.e. mineral contents) and to the 

arrangement or variable positions of the mineral inclusions. The latter engender a variability of the mesostructural 

mechanical response if the REA is too small to be representative of the material behaviour. If the REA is larger and 

representative of the material behaviour, this variability reduces or even cancels.  

The contributions of the two considered microscale origins of the clay matrix viscosity to the mesoscale creep 

behaviour of the COx claystone have been both studied. The numerical results indicate that the viscosity, in both 

cases, has an influence on the overall creep deformation of the clay rock. Considering the viscosity in the clay 

aggregates allows to reproduce the time evolution of the COx claystone creep strain with a good agreement to 

experimental measurements from triaxial creep tests. Nevertheless, considering the viscosity at the contacts between 

clay aggregates generates a smaller creep deformation of the rock compared to experimental measurements. 

Furthermore, stress level and mineralogical composition affect the overall creep deformation of the claystone. 

Numerical results indicate that both high the deviatoric stress level and the high clay content increase the creep 

deformation, as observed by experimental studies. In the context of radioactive waste repositories in the COx 

claystone, it is therefore crucial to understand the phenomena involved during the long-term creep of the rock around 

the galleries excavated in the clay-rich lithostratigraphic unit. During material creep under deviatoric loading, 
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shearing is the dominant mode of deformation and of relative displacement at the contacts between mineral grains. 

Creep-induced relative movements between mineral grains (at clay-clay aggregate, clay-inclusion, and inclusion-

inclusion contacts) occur mainly by sliding (i.e. tangential movements) along the interfaces, resulting in shear 

deformations inside the mesostructure.  

A particular attention has to be paid to creep when it occurs at a high deviatoric stress level, for a long period of time, 

and in an indurated clay rock which exhibits a quasi-brittle behaviour (softening behaviour). Under these conditions, 

an increase of the creep strain rate (tertiary creep) can occur and may lead to creep-induced failure. In addition to the 

first stages of creep (primary and secondary creep), this phenomenon of accelerated creep strain in the long term has 

also been reproduced and demonstrated numerically. Considering the material damage, creep deformation can be a 

driving factor of time-dependent microscale damage and cracking processes. It has been found that that creep strain 

development can induce the accumulation of damage at mineral grain contacts in a localised manner, leading to 

microcrack development. The microcracks induced by creep deformation tend to preferentially develop at the 

interfaces around mineral inclusions rather than between clay aggregates. Eventually, these phenomena lead to the 

initiation of mesostructure cracking and rock failure. Furthermore, both origins of viscosity can lead to creep failure 

of the claystone as long as the damage of contact interfaces between mineral grains reaches a certain damage level.  
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Chapter 7 Double-scale computations: modelling the creep behaviour and induced 

failure of saturated clay rock at large scale  

The large-scale creep behaviour of Callovo-Oxfordian (COx) claystone is modelled from small-scale viscous 

mechanisms of the rock using a multiscale approach in the context of radioactive waste repositories. At the mesoscale, 

the saturated non-homogeneous rock is represented in digital 2D Representative Elementary Areas (REAs) as a 

cracked composite material consisting of rigid elastic mineral inclusions (quartz, calcite, and pyrite) embedded in a 

clay matrix. The modelling of these materials is considered within double-scale finite element framework 

(FEMxFEM or FE²), in which the homogenised responses of the REA to the enforced global kinematics serve as a 

numerical constitutive relation at the macroscale. Considering that deformations under mechanical solicitation often 

cause damage through microcracks, interfaces between different mineral phases and within the clay matrix are 

modelled to describe the damageable rock behaviour and its failure modes at small scale. To reproduce the rock 

creeping, two viscous mechanisms have been introduced to consider the creep of the clay matrix: either the 

viscoplasticity of the clay aggregates or the viscoelasticity of their contacts, or both. Firstly, laboratory biaxial creep 

tests of clay rock samples are simulated. A three-stage creep stage is reproduced and the creep failure process is 

discussed. Then, large-scale underground engineering structures are modelled to reproduce the time-dependent 

behaviour of underground galleries drilled in COx claystone formation. It is found that the developed multiscale 

model is able to provide some valuable insights into the large-scale creep behaviour of clay rocks through the 

morphological and material small-scale characterization of REA. 

7.1. Simplified interface model and channel flow model 

7.1.1. Interface cohesive model 

The interface model introduced in Section 6.4.1 is used in this section with 𝐷𝑡/𝑛
0 = 𝐷𝑡/𝑛

1 , which implies that the 

degrade stage is not considered here. In this case, the schematic diagram of interface model is shown in Figure 7-1. 

  

(a) (b) 

Figure 7-1 Damageable cohesive interface model in (a) normal direction; and (b) tangential direction. 

The cohesive forces at two directions are therefore simplified as (van den Eijnden et al., 2016): 
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𝑐𝑛
𝑡 =

{
 
 

 
 𝑐𝑛

𝑚𝑎𝑥(1 − 𝐷𝑛
𝑡)
1

𝐷𝑛
𝑡

∆𝑢𝑛
𝑡

𝛿𝑛
𝑐 ,                       𝑖𝑓 ∆𝑢𝑛

𝑡 ≥ 0 

𝑐𝑛
𝑚𝑎𝑥(1 − 𝐷𝑛

𝑡 )
1

𝐷𝑛
𝑡

∆𝑢𝑛
𝑡

𝛿𝑛
𝑐 − 𝜅∆𝑢𝑛

𝑡 2,       𝑖𝑓 ∆𝑢𝑛
𝑡 < 0 

 (7-1) 

𝑐𝑡
𝑡 = 𝑐𝑡

𝑚𝑎𝑥(1 − 𝐷𝑡
𝑡)
1

𝐷𝑡
𝑡

∆𝑢𝑡
𝑡

𝛿𝑡
𝑐  (7-2) 

7.1.2. Channel flow model 

Several assumptions are adopted for microscale hydraulic problems: steady state conditions due to separation of 

scales, fluid incompressibility, and laminar flow. The water density 𝜌𝑤 depends on the macroscale water pressure 

𝑝𝑤: 

𝜌𝑤 = 𝜌𝑤0 exp (
𝑝𝑤
𝐾𝑤
) (7-3) 

where 𝜌𝑤0 (= 1000 kg/m
3) is the initial water density at zero fluid pressure; 𝐾𝑤(= 2.2 ∗ 10

3 MPa) is the bulk 

modulus of water. 

Considering an interface with two endpoints 𝑠𝑖 and 𝑠𝑗, the fluid mass flux 𝜛 [kg.m−1. s−1] of the channel is given 

by: 

𝜛 = −𝜙 (𝑝𝑤(𝑠
𝑗) − 𝑝𝑤(𝑠

𝑖)) (7-4) 

where 𝑝𝑤(𝑠
𝑖) and 𝑝𝑤(𝑠

𝑗) are the fluid pressure at the extremity of each channel, 𝜙 [s] is a hydraulic transmissivity 

term, written as: 

𝜙 =
𝜌𝑤

𝜇𝑤
(∫

1

𝜅

𝑠𝑖

𝑠𝑗
𝑑𝑠)

−1

 ;   𝜅 =
Δ𝑢ℎ

3

12
 (7-5) 

The variable 𝜅(𝑠) [𝑚3] in above equation represents the geometric transmissivity function of the channel with the 

𝑠 coordinate along this channel, formulated with classic cubic relation between the hydraulic equivalent opening of 

interface Δ𝑢ℎ, and dynamic viscosity of water 𝜇𝑤  (≈ 10
−9 MPa ∙ s). The hydraulic opening ∆𝑢ℎ is defined as a 

piecewise function of mechanical normal opening ∆𝑢𝑛 (van den Eijnden et al., 2017):  

∆𝑢ℎ = max(∆𝑢ℎ
𝑚𝑖𝑛, ∆𝑢ℎ

𝑚𝑖𝑛 − ∆𝑢𝑛
𝑡𝑟𝑎 + ∆𝑢𝑛) (7-6) 

where ∆𝑢ℎ
𝑚𝑖𝑛 and ∆𝑢𝑛

𝑡𝑟𝑎 are introduced to control the initial and minimum permeability of the REA and avoid 

negative hydraulic conductivity. 

7.2. Double-scale numerical simulation at laboratory scale 

In this section, the viscous behaviour of clay rock under constant deviatoric stress has been studied at macroscale, on 

pluricentimetric clay rock specimen. As the deviatoric loading conditions are applicable to the long-term in situ 

loading conditions on the clay rock around galleries and creep strain develops around the underground engineering 

structure under such condition. The hydraulic opening parameters between mineral grains are ∆𝑢ℎ
𝑚𝑖𝑛 = 1 × 10−4 

mm and ∆𝑢𝑛
𝑡𝑟𝑎 = −1 × 10−4  mm in Eq. (7-6), leading to initial major and minor intrinsic permeabilities 
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respectively 5.5 × 10−18 m2 and 3.0 × 10−18 m2. These large permeabilities (compared with in situ values) allow 

to neglect the influence of negative pore water pressure. Firstly, the results of macroscale and mesoscale responses 

are compared to validate the application of double-scale model in creep simulations (Section 7.2.1). This validation 

is performed for homogeneous macroscale deformation for which identical mesoscale and macroscale behaviours are 

expected. Secondly, the relation of the shear deformation between meso- and macro- scales is investigated (Section 

7.2.2). Lastly, a complete three-stage creep of clay rock is well reproduced under high deviatoric stress levels and 

the creep-induced failure process is discussed (Section 7.2.3). The influence of rock anisotropy on creep behaviour 

is also studied. 

Concerning the clay rock viscosity, at microscale, the viscosity of the clay matrix is implemented in the clay 

aggregates or in the clay aggregate contacts, or in both. At mesoscale, REAs with a representative length LREA ≈ 

100 μm are used and creep test are reproduced on macroscale samples. It has to be reminded that the mesoscale 

behaviour is upscaled at macroscale (on each macroscale material point), by scale transition and computational 

homogenisation, in a double-scale finite element squared (FE2) framework. Therefore, in this section, we go 

beyond the mesoscale REA (i.e. material point) calculations (thoroughly conducted in Sun et al.(2023a)) and 

conduct 2D plane strain simulations of macroscale BVP using the double-scale numerical model. The elastic, 

plastic, and viscous parameters of solid mineral constituents and their damageable contacts have been calibrated 

using REAs with a representative length LREA ≈ 100 μm (van den Eijnden et al., 2017; Pardoen et al., 2020; Sun et 

al., 2023a). They are listed in Table 7-1 and Table 7-2 

Table 7-2, and are used in the following numerical analyses unless otherwise specified. 

Table 7-1 Microscale elastic parameters of solid mineral constituents and their damageable contacts. 

Materials 𝐸 (GPa) 𝑣 (-) 

Tectosilicates (quartz) 95 0.074 

Carbonates (calcite) 84 0.317 

Heavy minerals (pyrite) 305 0.154 

Clay matrix 2.3 0.110 

Interfaces 𝛿𝑡/𝑛
𝑐  (-) 𝐷𝑡/𝑛

0  (-) 𝑐𝑡
𝑚𝑎𝑥(MPa) 𝑐𝑛

𝑚𝑎𝑥(MPa) 

 0.1 0.001 2.5 1.0 

 

Table 7-2 Microscale parameters of viscoplastic clay aggregates and viscoelastic clay aggregate contacts. 

Viscoplastic parameters of 

clay aggregates 
𝜂 (s) 𝛼𝑣𝑝 𝛽𝑣𝑝 𝜎𝑠 (MPa) 𝑛 𝑘 

 9.8*1012 0.1 0 3 4.62 260 

Viscoelastic parameters of 

clay aggregate contacts 
𝛿𝑡/𝑛
𝑐  (-) 𝐷𝑡/𝑛

0  (-) 𝑐𝑡
𝑚𝑎𝑥(MPa) 𝑐𝑛

𝑚𝑎𝑥(MPa) 𝜇𝑡/𝑛(MPa s) 𝛽 

 0.1 0.001 0.025 0.01 107 100 
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7.2.1. Creep behaviour at macroscopic and mesoscopic scales 

Figure 7-2(a) and (b) shows the schematic representation of the macroscale numerical model in Lagamine finite 

element code and the mesostructure with 250 numerical cells (LREA ≈ 100 μm) assigned to each integration point of 

the macroscale finite elements. A clays rock sample having a width of 25 mm and a height of 50 mm, and thus a 

slenderness ratio of 2, is considered under biaxial loading creep conditions. The sample is discretised using 10×20 

quadrilateral 9-node elements. The tangential displacements are allowed along the top and bottom surfaces of the 

sample (i.e. smooth boundaries), the vertical displacement of the bottom surface is blocked (i.e. smooth and rigid 

boundary), and the displacement of the central node of the bottom surface is blocked in both directions to avoid rigid 

body horizontal translation. Considering the case of saturated rock, drainage is applied on the top and bottom surfaces 

of the sample. The biaxial creep test is divided in three phases. An isotropic confining pressure of 𝜎11 = 12 MPa is 

firstly applied on the sample external surfaces. Secondly, the vertical loading 𝜎22 on the sample upper surface is 

progressively increased to reach the desired values of deviatoric stress 𝑞 = 𝜎22 − 𝜎11 and of the ratio 𝑞 𝑞𝑚𝑎𝑥⁄ , in 

which 𝑞𝑚𝑎𝑥 = 34.9 MPa is the statistical mean value of the maximal deviatoric stress from macroscale triaxial creep 

experiments under 12 MPa of confining pressure (Armand et al., 2017). Then, a creep phase is performed under 

constant 𝜎11 and 𝑞, for 𝑞 𝑞𝑚𝑎𝑥⁄  = 50%, 75% and 90%. At the mesoscale, similar creep tests have been conducted 

on the REA and used for comparison. 

A comparison between the macroscale (double-scale) and the mesoscale creep response is shown in Figure 7-2(c). 

The viscosity is considered both in clay aggregates and clay aggregate contacts. One can observe that the macro- and 

meso-scale curves for each deviatoric stress ratio 𝑞 𝑞𝑚𝑎𝑥⁄  are in good agreement, which demonstrates the 

consistency between the double-scale and mesoscale models.  

  

LREA ≈ 100 μm 

 

(a) (b) (c) 

Figure 7-2 Double-scale biaxial compression test: (a) schematic representation of the macroscopic configuration 

and boundary conditions; (b) the mesostructure assigned to each integration point of macroscale finite elements; (c) 

comparisons of double-scale and mesoscale creep responses obtained during biaxial creep simulation. 
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7.2.2. Shear orientation tendency at macroscopic and mesoscopic scales 

Following the analyses in Pardoen et al. (2020), it has been shown that, under deviatoric compression condition, the 

relative movements between mineral grains (at clay-clay aggregate, clay-inclusion, and inclusion-inclusion contacts) 

occur mainly by (tangential) slipping along their interfaces, resulting in shear deformations inside the mesostructure. 

Therefore, an overall mesoscale shear strain of the REA can develop under loading, depending on the loading type 

(e.g. deviatoric) and on the mesostructure representativeness of the clay rock mechanical behaviour (related to the 

REA size and the mineral spatial arrangement). Under deviatoric loading and creep, with stress applied 

perpendicularly to the REA external faces, it is expected that overall strains develop in the principal loading direction 

(i.e. vertical and lateral). This is the case when the mesostructure is large enough to be representative of the material 

behaviour. When the considered material mesostructure is smaller and less representative of the material behaviour, 

mesoscale shear strain 𝜀12
𝑀  can develop. Figure 7-3(a) shows a typical mode of mesostructural shear deformation of 

the REA. The case 𝜀12
𝑀 < 0 corresponds to the overall shear deformation in counterclockwise direction and 𝜀12

𝑀 >

0 corresponds to the clockwise direction. 

To investigate the relationship of shear deformation and shear orientation tendency between macro- and meso- scales 

during deviatoric creep, we analyse the material response curves of 𝜀12
𝑀  time evolution of several mesostructures. 

Three different heterogeneous REAs having different sizes have been considered: a representative one of 100×100 

μm (the reference mesostructure REA250_1 composed of 250 numerical cells, of Figure 7-2(b)) and two less 

representative of 50×50 μm (composed of 50 numerical cells).  

Creep simulations have been conducted, under constant confining pressure of 𝜎11(𝜎11
𝑀) = 12 MPa and at a deviatoric 

stress level of 𝑞(𝑞𝑀) 𝑞𝑚𝑎𝑥⁄  = 75%. This confining pressure corresponds to the amplitude of the in situ stress at the 

median depth of the COx formation. The results of mesoscale tests on REAs and of macroscale tests on laboratory 

samples in terms of creep strain evolution (creep curves) are shown Figure 7-3(b). One can observe that the large 

representative mesostructure exhibits a very small development of shear deformation (both in short- and long-terms) 

while the small less-representative mesostructures deform in shearing due to their lack of representativity of the 

material long-term creep behaviour. At the macroscale, similar creep tests have been conducted on claystone samples 

and used for comparison. The macroscale creep strain evolutions are shown in Figure 7-3(b) and have a good 

consistency with the mesoscale creep curves. The deformations of the samples after 100 days of creep are shown in 

Figure 7-3(c). From the results of Figure 7-3(a-c), one can clearly observe that a small bending of the sample is 

induced by the macroscale shear deformation during the creep test, when considering small REAs. This phenomenon 

is more obvious under large shear strain. On the other hand, almost no macroscale sample shearing or bending is 

observed when considering large representative REAs, which is representative of the material macroscale creep 

behaviour under the considered loading conditions. Moreover, the shear orientation tendency at the two scales is also 

consistent (Figure 7-3(b)), which means that the shear deformation at macroscale is correctly related to the mesoscale. 

These results validate the meso-macro double-scale FE² computation considering time-dependent material behaviour. 
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(a) (b) 

𝐿𝑅𝐸𝐴 ≈ 30 𝜇𝑚 (𝜀12
𝑀 > 0) 𝐿𝑅𝐸𝐴 ≈ 100 𝜇𝑚 (𝜀12

𝑀 > 0) 𝐿𝑅𝐸𝐴 ≈ 30 𝜇𝑚 (𝜀12
𝑀 < 0) 

   

(c) 

Figure 7-3 Shear deformation at two scales: (a) schematic representation of the shear deformation of the 

mesostructure (REA); (b) comparison of time evolution of shear strain ε
M 

12 (ε
 

12) of different REAs at two scales; (c) 

deformation diagrams of rock samples at 100 days (black solid line: initial configuration; red dash line: deformed 

configuration). 

7.2.3. Creep failure process 

The creep strain rate is defined as follows to better describe the different stages of creep process: 

𝜀𝑖̇𝑗
𝑣𝑝
=
𝜀𝑖𝑗; 𝑡2
𝑣𝑝

− 𝜀𝑖𝑗; 𝑡1
𝑣𝑝

𝑡2 − 𝑡1
=
∆𝜀𝑖𝑗

𝑣𝑝

∆𝑡
 (7-7) 

where 𝜀𝑖̇𝑗
𝑣𝑝

 is the creep strain rate (either vertical 𝜀2̇2
𝑣𝑝
 or lateral 𝜀1̇1

𝑣𝑝
); 𝜀𝑖𝑗; 𝑡1

𝑣𝑝
 and 𝜀𝑖𝑗; 𝑡2

𝑣𝑝
 are the creep strains at time 

𝑡1 and 𝑡2, respectively, and ∆𝜀𝑖𝑗
𝑣𝑝

 is the creep strain increment. 

Considering the double-scale modelling time consumption, a smaller mesostructure with dimension LREA ≈ 50 μm 

(with 50 cells, labelled REA50_1) is used instead of the larger mesostructure of Figure 7-2(b). This mesostructure is 

used to reproduce the complete creep behaviour (all stages) under a high constant deviatoric stress. First, a biaxial 

compression test is simulated to obtain its peak strength under confining pressure of 𝜎11 = 12 MPa at laboratory 

scale. From the results of deviatoric stress – vertical strain curves, the maximum deviatoric stress that the material 

can sustain is 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚 = 38.9 MPa is obtained. Double-scale numerical simulations of macroscale biaxial creep tests 
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are then carried out considering three cases under a constant confining pressure of 𝜎11 = 12 MPa and a constant 

deviatoric stress of 𝑞 = 80% ∙ 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚 = 31 MPa: 

• case 1: viscosity is considered only in the clay aggregates. 

• case 2: viscosity is considered only at the contact between clay aggregates. 

• case 3: viscosity is considered both in the clay aggregates and at their contacts.  

The numerical simulation results until creep failure (maximal creep of the material) for each viscous case are shown 

in Figure 7-4(a)-(c). The results exhibit the clay rock overall creep behaviour by the evolutions of total vertical strain 

𝜀22, total lateral strain 𝜀11, and creep rates (Eq. (7-7)) with time. First, the instantaneous total strains under isotropic 

and deviatoric compression loading are of about 𝜀22 = 1.4% vertically and 𝜀11 = -1.0% laterally. Slightly lower 

short-term strains (0.1% lower) are obtained if the viscosity is considered only at the contact between clay aggregates 

(viscous case 2, Figure 7-4(b)). Then, the long-term time-dependant strain evolution is visible. From Figure 7-4(a)-

(c), a clear three-stage creep process can be observed in both two directions for all the three cases of viscous material 

behaviour. During the primary and secondary creep, the magnitude order of the vertical and lateral creep strain rates 

of both viscous cases 1 and 3 are between 10-7 and 10-8 s-1 and 10-9 s-1 for the viscous case 2. More precisely, the 

creep rates are: the lower (~1×10-9 s-1) if viscosity is considered only at the contact between clay aggregates (duration 

of ~740h to reach the creep failure), slightly larger (~0.5×10-8 s-1) if viscosity is considered only in the clay aggregates 

(duration of ~45h to reach the creep failure), and larger (1×10-7 s-1) if viscosity is considered both in the clay 

aggregates and at their contacts (duration of ~24h to reach the creep failure). This indicates that considering both 

viscosities simultaneously accelerates the material creep process. During the tertiary creep stage, the creep rates 

increase rapidly until reaching a maximum value of about 10-4 s-1. This accelerated third stage creep leads to the 

material creep-induced failure. It can be found that the magnitude order of the creep rates in the first two creep stages 

are similar between numerical simulations and experiments of Liu et al. (2018) and Zhang et al. (2019). The final 

total strains at creep failure for all viscous cases are all around 𝜀22 = 2.2% in the vertical direction and around 𝜀11 

= -2.0% in the lateral direction. One can observe that the generated creep strains are smaller in the primary and second 

creep if the viscosity is considered only at the contact between clay aggregates (in the viscous case 2, Figure 7-4(b)); 

however, the creep strains are larger in the tertiary creep compared to the other two viscous cases (cases 1 and 3, 

Figure 7-4(a),(c)) especially the strain differences during creep failure between cases 1 and 2. Another possible way 

to show this comparison is illustrated in Figure 7-4(d). A new set of parameters are selected for clay aggregates in 

case 1 to have similar creep strains in the first two phases compared to case 2. The similar results can be observed 

from this comparison. When the total vertical strain in case 1 reaches to the strain (1.18%) where the creep failure 

begins in case 2, it continues to evolve until it reaches about 2.07% (closer to 2% in Figure 7-4(a)) where creep failure 

begins. Therefore, the viscosity of the clay aggregate contacts (i.e. the time-dependant viscous sliding between rigid 

clay aggregates) seems to have a slightly lower effect on primary and secondary creep stages than the viscosity of 

the clay aggregates (i.e. the time-dependant overall creep of the clay matrix), but an important contribution to the 

creep-induced failure process of the claystone. 

Comparing the viscous cases 1 and 2 (Figure 7-4 (a)-(b)) to case 3 (Figure 7-4 (c)) indicates that the final total vertical 

and lateral deformations at failure are very close, which indicates that the creep deformation caused by the viscosity 

in the clay aggregates or at their contacts is not a simple superposition. As long as the micro-damage at the mineral 
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contacts (interfaces) accumulates to a certain extent, the tertiary creep will occur until reaching failure. The similar 

observations can also be found at mesoscale (Sun et al., 2023a). However, considering both viscosities 

simultaneously significantly accelerate the material creep process and reduces the time needed to reach the creep 

failure.  

Furthermore, the lateral expansive total strain is lower than the vertical compressive total strain |𝜀11| < |𝜀22| under 

the considered deviatoric loading and creep deformation process, for all creep stages until creep failure. This indicates 

a global (total) contractive volumetric behaviour. However, the lateral expansive creep strain rate is larger than the 

vertical compressive creep strain rate |𝜀1̇1
𝑣𝑝
| > |𝜀2̇2

𝑣𝑝
|, indicating an incremental (rate) dilative volumetric behaviour 

during the creep process. This is different from the results of laboratory observations (Armand et al., 2017; Liu et al., 

2018) in which the axial compressive creep strain rates are greater than the lateral expansive ones in all tests, leading 

to an important volumetric compaction under creeping. The reason for this difference is that the current mesoscale 

model overestimates the material dilation, which is related to the displacement of the solid mineral constituents and 

to the opening of the interfaces between them. Since the rearrangement of the solid constituents is not considered in 

the mesoscale model, this opening at solid constituent contacts occurs regardless of the deformation state.  

The creep results shown in Figure 7-4(a) and Figure 7-4(c) are very similar except for the time to reach creep failure. 

Moreover, we only have calibrated viscosity parameters for clay aggregates from mesoscale study (Sun et al., 2023a). 

Therefore, the viscosity is only considered in the clay aggregates for the rest of the numerical simulations if not 

specifically stated. Considering the galleries may be excavated in clay rocks with a low level of confining pressure, 

the effect of the confining pressure on the creep deformation of the claystone should be investigated (Armand et al., 

2017; Liu et al., 2018). Firstly, a laboratory biaxial compression test is simulated under the confining pressure 𝜎11 = 

6 MPa, leading to the determination of its maximum deviatoric stress in this case, 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚 = 27.4 MPa. A laboratory 

biaxial creep test is then simulated under constant 𝜎11 =  6 MPa and constant deviatoric stress level 𝑞 =

80%× 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚 = 21.9 MPa (Figure 7-5). In this case, the magnitude order of the creep strain rate is 10-10 – 10-9 s-1, 

which is smaller than 10-7 – 10-8 s-1 obtained under 𝜎11 = 12 MPa as shown in Figure 7-4 (b). Therefore, a higher 

mean stress level and confining pressure increases the creep strain rates of the clay rock. This has been observed in 

laboratory tests (Liu et al., 2018) and in previous micromechanical modelling (Sun et al., 2023a). 
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(a) Viscosity only of the clay aggregates. 
(b) Viscosity only of the contacts between clay 

aggregates. 

  

(c) Viscosity of both clay aggregates and at their 

contacts. 

(d) Comparison of vertical total strain when the 

viscosity is considered in clay aggregates or in their 

contacts. 

Figure 7-4 Temporal evolution of total strains and creep rates under σ11 = 12 MPa and q = 80%.q
num 

max  = 31 MPa. 
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Figure 7-5 Temporal evolution of total strains and creep strain rates under constant σ11 = 6 MPa and q = 80%.q
num 

max  = 

21.9 MPa.  

Figure 7-6(a) shows the comparisons of the evolution of total vertical strain and creep rate at laboratory (macro 𝜀22 

and 𝜀2̇2
𝑣𝑝

) and REA (meso 𝜀22
𝑀  and 𝜀2̇2

𝑣𝑝,𝑀
) scales, under constant isotropic confining pressure of 𝜎11 = 12 MPa and 

deviatoric stress of q = 31 MPa. Different from the results shown in Figure 7-2(c) without the appearance of tertiary 

creep, the two curves of creep strain, at the two different scales (i.e. mesoscale and macroscale), no longer maintain 

consistency at larger times at laboratory scale. The vertical creep strain rate at laboratory scale 𝜀2̇2
𝑣𝑝

 shows a clear 

three-stage variation, whereas the vertical creep strain rate at mesoscale 𝜀2̇2
𝑣𝑝,𝑀

 decreases all the time due to the effect 

of viscoplastic hardening. The difference between the two curves gradually increases after 31h of creep, from the 

time tc in Figure 7-6(a), at which the macroscale creep rate 𝜀2̇2
𝑣𝑝

 begins to increase. Later during the tertiary material 

creep, the fields of Von Mises’ equivalent deviatoric strain 𝛾 = √2𝑒𝑖𝑗𝑒𝑖𝑗 3⁄  close to the start of the creep failure 

(time tb) and at creep failure (time ta, end of creep) are shown in Figure 7-6(b) and (c). At macroscale, deviatoric 

deformation concentrates in the macroscale sample on the left side of the top surface in this simulation and it is one 

order of magnitude larger than that in the other locations of the sample. To enlighten the relation between the 

developments of creep deformation and creep-induced failure across scales, the damage patterns in three deformed 

mesostructures at different locations in the clay rock sample are shown in Figure 7-6(c). In Figure 7-6(c), 𝐷𝑡
𝑚𝑎𝑥 and 

𝐷𝑛
𝑚𝑎𝑥 represent the maximum damage parameter at tangential and normal directions respectively, and 𝑃(𝐷𝑡 > 𝐷𝑛) 

is the proportion of interfaces in the partially damage state which damage in the tangential direction is greater than 

that in the opening direction. In the zones where macroscale deviatoric strain develops, it has been observed, at meso- 

and micro- scales, that damage mainly in shearing develops at the interfaces between mineral grains. It develops 

mainly and rapidly in the tertiary stage of creep and eventually leads to creep-induced failure (Figure 7-6(c)). A 

creep-induced microcrack, represented by full decohesion between mineral grains or in the clay matrix (black parts), 

develops through the entire mesostructure. However, outside the zone of intense deviatoric strain at macroscale, the 

material mesostructure is almost not deformed neither damaged. This enlighten a clear relation between creep-

induced failure across scales.  
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(a) (b) Tertiary creep (time tb)  

     

(c) Creep failure (time ta) 

Figure 7-6 Creep behaviours of macroscale laboratory sample and of the mesostructure REA50_1 (LREA ≈ 50 μm), 

under σ11(σ
M 

11 ) = 12 MPa and q(qM) = 80%.q
num 

max  = 31 MPa: (a) comparisons of creep at laboratory scale; macroscale 

Von Mises’ equivalent deviatoric strain field in claystone sample (b) during tertiary creep (at time tb) and (c) at 

creep-induced failure (at time ta) with deformed mesostructures. 

To better show the damage characteristics inside rock sample, Figure 7-7 gives the temporal evolution of several 

damage indicators (as introduced in Figure 6-19) at locations PA and PB (Figure 7-6(c)). One can observe that the 

shear deformation at the interface between solid grains is dominant. The creep-induced failure of the rock sample 

occurs suddenly, with a sudden and large interface deformation both in tangential (sliding) and normal (opening) 

directions in strain concentration zone. It results in the decohesion of interfaces and the fractures through entire REA, 

which are reflected as strain concentrations at macroscale. 
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(a) point PA (b) point PB 

Figure 7-7 Evolution of several damage indicators with time at (a) point PA and (b) point PB. 

The influence of the mesoscopic heterogeneity of the clay rock, from its mineral spatial variability at small scale, on 

the creep-induced failure at macroscale is studied hereafter. This is done by using another mesostructure (of 

dimension LREA ≈ 50 μm and labelled REA50_2) as shown in Figure 7-8. The creep deformation development is 

studied under a constant confining pressure of σ11 = 12 MPa and deviatoric stress of q = 30.5 MPa, corresponding to 

85% (stress ratio of 85% is used to make tertiary creep appear) of the mesostructure peak strength q = 85% ∙ 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚. 

Comparing the creep strain curves of Figure 7-6(a) and Figure 7-8(a) obtained for two different material 

mesostructures, the creep strain during the tertiary creep for the second mesostructure (in Figure 7-8(a)) is larger. 

Correspondingly, differences between the development of creep-induced localised deviatoric strain pattern at 

macroscale and creep-induced localised crack pattern at mesoscale are observed at creep failure and shown in Figure 

7-6(c) and Figure 7-8(b). For the second mesostructure, a large macroscale shear band, represented by a localised 

deviatoric strain zone, develops in the bottom of the sample. In this zone of intense macroscale deviatoric strain, a 

crack develops through the entire mesostructure. Again, this enlighten a clear relation between creep-induced failure 

across scales, which is observed for different mesostructures. Shi et al. (2021a, 2021b) have observed similar 

developments of crack patterns through uniaxial compression creep tests on COx claystone, using X-ray micro-

tomography and image analyses.  
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 (a) 

      

  (b) 

Figure 7-8 Creep behaviours of macroscale laboratory sample and of the mesostructure REA50_2 (LREA ≈ 50 μm) 

under σ11(σ
M 

11 ) = 12 MPa and q(qM) = 85%.q
num 

max  = 30.5 MPa: (a) comparisons of total vertical strains and creep rates 

at laboratory and meso- scales; (b) macroscale Von Mises’ equivalent deviatoric strain field in claystone sample at 

creep-induced failure and deformed mesostructures. 

From the numerical results shown in Figure 7-6(a), the microcrack development is not visible in the clay rock just 

before creep failure (point PB in Figure 7-6(a)). However, the micro-damage accumulates rapidly with time which 

lead to the development of microcracking through the entire mesostructure (Figure 7-6(b)-(c) and Figure 7-8(b)). 

This indicates that the creep strain and its rate is an important factor of long-term engineering safety; therefore, the 

monitoring of creep strain and rate is essential in engineering practice. Tertiary creep control (mitigation) is still 

difficult because of the high degree of rock damage involved. However, it is crucial to accurately estimate the 

remaining life time of deep tunnels drilled in rocks after the onset of the tertiary creep. In the absence of precise data, 

the tunnel should be automatically deactivated to eliminate safety hazards (Frenelus et al., 2022). 

Like many sedimentary rocks, the COx claystone exhibits significant anisotropic properties due to the preferential 

orientation of quasi-horizontal sedimentary layers and bedding planes (Zhang et al. 2019). The latter can constitute 

material weakness planes. The petrogenesis processes, involved in the origin and formation of rocks, induce particular 

microscale morphology of the mineral grains which leads to larger scale anisotropy of the material. The macroscale 

anisotropy of the material mechanical response under mechanical loading is often due to the morphology of the 

mineral inclusions at the microscale. Experimental mineralogical and microstructural measurements have been 

performed in vertical sections perpendicular to the COx claystone bedding planes (Robinet et al., 2012). The results 

have shown that quartz (tectosilicates) and calcite (carbonates) mineral inclusions are elongated and have a 

preferential horizontal average orientation parallel to the bedding plane direction (Robinet et al., 2012). Furthermore, 
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the carbonate inclusions are smaller, more elongated, and oriented more horizontally (with a less variable orientation) 

than quartz inclusions. Experimental characterisations have emphasised that the macroscale cross-anisotropic 

behaviour of the COx claystone structure is related to the orientation and morphology of its mineral inclusions. 

Therefore, these microscale morphological characteristics (i.e. mineral grain elongation, orientation, and size) are 

accounted for in the generation of the numerical mesostructures and are considered in the mesoscale numerical model 

(Pardoen et al., 2020). 

To investigate the influence of the clay rock anisotropy on its creep behaviour, the anisotropy of the shear strength 

(i.e. the maximal deviatoric stress) of the clay rock is firstly studied using the mesostructure labelled REA50_2 

submitted to a biaxial deviatoric loading. A rotation angle 𝜃 is defined as the orientation of the mesostructure 

bedding planes with respect to the horizontal direction of the confining stress σ11 (Figure 7-9(a)); this angle also 

corresponds to the orientation of the main vertical σ22 and deviatoric q = σ22-σ11 loading relative to the normal 

direction to the bedding planes. For instance, an angle of 𝜃 = 0° corresponds to a deviatoric loading perpendicular 

(⊥) to the bedding planes and an angle of 𝜃 = 90° corresponds to a deviatoric loading parallel (//) to the bedding 

planes. Such definition of loading direction relative to the material structure allows to study the anisotropic 

mechanical response of the material. The peak strengths of the rock mesostructure under different rotation angles 

𝑞𝑚𝑎𝑥
𝑛𝑢𝑚(𝜃) are shown in Figure 7-9(b). It can be clearly seen that the rock shear strength is related to the loading 

direction. The shear strengths for inclined deviatoric loadings between 𝜃 = 30° and 𝜃 = 60° are significantly 

lower than those of the two principal material directions, i.e. the shear strength perpendicular to the bedding 

planes  𝑞𝑚𝑎𝑥
𝑛𝑢𝑚,⊥

 for 𝜃 = 0°  and the shear strength parallel to the bedding planes 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚,//

 for 𝜃 = 90° . This 

corresponds to a material shear weakness orientation. It can be explained by the fact that the shear failure process of 

the rock can be enhanced by localised relative sliding between mineral grains along the preferential structural 

orientation related to bedding structure, mineral grain morphology and orientation. These numerical results on 

anisotropic shear strength are consistent with experimental observations reported in clay-rich stratified rocks (e.g. 

Liu et al. 2015; Togashi et al. 2017; Zhang et al. 2019). Moreover, the fields of 𝜀𝑒𝑞 at macroscale field derived from 

biaxial compression test under different rotation angles are shown in Figure 7-9(c). One can find that the anisotropy 

has an influence on the shear band, for example, location, intensity, orientation, etc. See more details on this part in 

Pardoen (2015a). 
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(a) (b) 

     

𝜃 = 0° 𝜃 = 30° 𝜃 =60° 𝜃 = 90°  

(c) 

Figure 7-9 Influence of structural anisotropy on clay rock strength, under σ11 = 12 MPa and 𝑞 = 21.1 MPa: (a) 

rotation angle 𝜃 defining the orientation of the deviatoric loading relative to the mesostructure bedding planes; (b) 

peak deviatoric stress for different orientations of the loading; (c) macroscale Von Mises’ equivalent deviatoric 

strain field derived from the biaxial compression tests.  

After the analysis of the anisotropic material shear strength, the anisotropy of the clay rock creep behaviour is studied. 

Figure 7-10(a) shows the evolution of total vertical strain 𝜀22 and vertical creep strain rate 𝜀2̇2
𝑣𝑝

 with different 

mesostructure rotation angles (i.e. different deviatoric load orientations relative to the bedding planes) of 𝜃 = 0°, 

30°, 60°, and 90° under constant confining 𝜎11 = 12 MPa and deviatoric 𝑞 = 21.1 MPa stresses (80% of the peak 

strength with 𝜃 = 60°, q = 80%.𝑞𝑚𝑎𝑥
𝑛𝑢𝑚 (𝜃 = 60°)). The rock mesostructure exhibits a creep behaviour for all loading 

orientations and the mesostructure subjected to a deviatoric constant loading inclined of 𝜃 = 60° deforms unstably 

up to rupture. On the contrary, when the mesostructure is subjected to the other constant deviatoric loading 

orientations with, 𝜃 = 0°, 30°, and 90°, it deforms gradually with time. As for the short-term (instantaneous) failure, 

a material weakness is observed for the long-term (time-dependant) creep-induced failure for an inclined loading 
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direction at 𝜃 = 60° relatively to the material preferential structure. The similar analyses are shown in Figure 7-10(b) 

but under same deviatoric stress level, 𝑞 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚⁄ = 70%. No tertiary creep occurs for five cases in this case. A very 

limited effect of structural anisotropy on creep is also observed. 

Furthermore, the time evolutions of the vertical creep strains for oriented loadings of 𝜃 = 0°, 30°, and 90° are 

relatively parallel which corresponds to similar creep rates, as shown in Figure 7-10(a). The difference between these 

three strain-time curves comes mainly from the rapid short-term strain increase during the initial deviatoric loading. 

The creep strain rate for the inclined loading of 𝜃 = 60° during the first two creep stages (primary and secondary 

creep) is close to that of the other three loading orientation cases. However, it increases with time during tertiary 

creep stage until creep-induced rupture. This indicates that the anisotropy of the clay rock shear strength and its 

oriented weakness have an effect on the short-term deformation but only a limited effect on the long-term creep strain 

development under the constant deviatoric load. These numerical results are consistent with the experimental 

observations from Zhang et al. (2019). However, the anisotropy of the clay rock seems to have an influence on creep-

induced cracking patterns (Shi et al., 2021a), which is out of scope of present study. 

  

(a) (b) 

Figure 7-10 Influence of structural anisotropy on clay rock creep with and σ11 = 12 MPa: (a) under same deviatoric 

stress 𝑞 = 21.1 MPa, and (b) under same deviatoric stress level q/q
num 

max  = 70%. 

7.3. Double-scale numerical simulation at gallery scale 

Assessing gallery construction and operational phases are crucial to ensure the stability and sustainability of 

underground structures, as those required for the deep repository of nuclear wastes. Consequently, the short-term 

excavation and the induced damaged zone (EDZ) development as well as the long-term convergence evolutions are 

studied hereafter with the double-scale FE² approach. 

At the main level of MHM URL (about -490 m), the in situ compressive principal stresses are estimated to be 𝜎𝑣 =

12.7 MPa in the vertical direction, 𝜎𝐻 = 1.3 𝜎ℎ = 16.1 MPa in the horizontal direction corresponding to the major 

principal stress direction, and 𝜎ℎ = 12.4 MPa in the horizontal direction corresponding to the minor principal stress 

direction. The simulated gallery is denoted as GED (Galerie Expérimentale Deux) in the Andra’s URL. It has a radius 
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of 2.6 m and is excavated along the minor principal horizontal stress 𝜎ℎ, which corresponds to an anisotropic state 

of stress in the gallery cross section, 𝜎𝑥 = 𝜎𝐻 and 𝜎𝑦 = 𝜎𝑣. 

7.3.1. Numerical model 

A quarter of the gallery is modelled by assuming symmetry along the x and y axes as shown in Figure 7-11(a). The 

size of the domain and the distance to the outer boundaries is 50 meters. All computations are performed in a two-

dimensional plane strain state. Considering the larger deformation, induced by the excavation and evolving with time, 

in the rock in the vicinity of the gallery, the mesh has been defined with a finer discretisation close to the gallery wall. 

The mesh has a total of 8181 nodes and 2080 finite elements. The gravity effect is neglected to consider a 

homogeneous anisotropic initial stress state. The initial pore water pressure field is uniform and equal to pw0 = 4.7 

MPa everywhere corresponding to the in situ pore water pressure at the main level of the MHM URL. The far-field 

boundaries are under drained conditions with constant pore water pressure pw,0 and constant total stresses 𝜎𝑥,0 = 𝜎𝐻 

and 𝜎𝑦,0 = 𝜎𝑣 in the normal direction to the boundaries. The symmetry of the model is established by assuming 

impermeable boundaries and zero normal displacements along the symmetry axes (x and y axes). It should be noted 

that for the modelling that involves strain localisation to reproduce the EDZ by shear bands and the second gradient 

model, the normal derivative of radial displacements should be equal to zero along the axis of symmetry. This is 

because of the existence of gradient terms in the governing equation Eq. (5-1). 

Concerning the excavation operation, the boundary conditions at the gallery wall is modelled by the mechanical and 

hydraulic deconfinement curves, using the following relations (see Figure 7-11(b)): 

𝜎⃗𝑔𝑎𝑙 = (𝜎⃗0 − 𝜎⃗𝑟𝑒𝑠)(1 − 𝜆𝑚) + 𝜎⃗𝑟𝑒𝑠   (7-8) 

𝑝𝑤,𝑔𝑎𝑙 = 𝑝𝑤,0(1 − 𝜆𝑤) (7-9) 

where 𝜎⃗𝑔𝑎𝑙 and 𝑝𝑤,𝑔𝑎𝑙 are respectively the stress vector and pore water pressure applied on the gallery wall, 𝜎⃗0 

and 𝑝𝑤,0 are their corresponding initial values, 𝜎⃗𝑟𝑒𝑠 is the applied residual stress vector after excavation, 𝜆𝑚 and 

𝜆𝑤 are two deconfinement rate (unloading parameters) which control the stresses and the pore water pressure on the 

gallery wal (i.e. control the unloading process). As shown in the deconfinement curves of Figure 7-11(b), the 

excavation stage is performed in 28 days with 𝜆𝑤  evolving from 0 to 1 to reproduce the 3D effect of the 

advancement of the gallery drilling. After 14 days, the excavation front comes across the studied 2D gallery section 

and the pore water pressure therefore rapidly drops to zero (Pardoen and Collin, 2017).  

After the excavation phase, the long-term operational phase of the unsupported gallery is numerically reproduced. 

Considering an unsupported gallery (i.e. no gallery wall support), the total stresses and pore water pressure on the 

gallery wall after the excavation are respectively 𝜎𝑥,𝑟𝑒𝑠 = 𝜎𝑦,𝑟𝑒𝑠 = 0.1 MPa and 𝑝𝑤,𝑔𝑎𝑙 = 0 Pa. These stress and 

pore water pressure are kept constant at gallery wall in the long term to highlight time-dependant deformation, 

convergence, and possible induced damage. 
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(a) 

  

(b) (c) 

Figure 7-11 Schematic representation of the gallery model: (a) numerical model with boundary conditions and 

finite element mesh; (b) variation of deconfinement rates λm and λw; (c) random distributions of two mesostructures 

of dimension LEA ≈ 30 μm at macroscale. 

To consider the spatial heterogeneity and variability of the claystone composition, different mesostructures 

containing different mesostructural characteristics are assigned at each macroscale integration point, within the 

double-scale FE² framework. Mesostructures of dimension LEA ≈ 30 μm (with 20 numerical cells) are chosen for 

gallery simulation due to the computational time consumption. Moreover, considering the use of several 

mesostructures with different mesostructural characteristics (as morphologies and mineral arrangements) lead to 

different material behaviours which can increase the representativeness of the COx claystone behaviour at macroscale. 

A competition study for random macro-variability of different EAs for the gallery excavation can be found in Mourlas 

et al. (2023). Therefore, two different mesostructures were chosen to increase the representativeness (by variability) 
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of the clay rock behaviour at large-scale. These two mesostrucutres are respectively labelled EA20_1 and EA20_2 

as shown in Figure 7-11(c) and are randomly assigned at each integration point of macroscale elements. 

7.3.2. Behaviour of selected mesostructures 

The parameters used for the microscale constitutive models are adopted from previous calibrations, from Table 7-1 

and Table 7-2. The mechanical responses of the considered mesostructures (EA20_1 and EA20_2) under biaxial 

deviatoric compression test perpendicular to the bedding planes and under a confining pressure of σ11 = 12 MPa are 

shown in Figure 7-12(a). Considering hereunder the mesoscale material behaviour, from simulation results, of each 

mesostructure imply that the interactions between different EAs at macroscale are neglected. It must be emphasised 

that the comparison to experimental data on macroscale laboratory samples is meaningful only for homogeneous 

modes of deformation (before the peak-deviatoric stress) (Pardoen et al., 2020). Moreover, due to the existence of 

possible non-homogeneous deformations, comparing the mesoscale and macroscale deviatoric stress responses only 

allows a calibration of the micromechanical properties up to the deviatoric stress peak. In Figure 7-12(a), one can 

observe that the variability of the material responses is affected by the material mesostructures (Pardoen et al., 2020). 

For example, the shear strengths of two EAs are respectively of 𝑞𝑚𝑎𝑥
𝑛𝑢𝑚  = 35.7 MPa and 𝑞𝑚𝑎𝑥

𝑛𝑢𝑚   = 36.8 MPa at the 

vertical strains 𝜀22
𝑀 = 2%  and 𝜀22

𝑀 = 2.3% . and the initial stiffnesses estimated by the Young’s moduli 

corresponding to the strain 𝜀22
𝑀 = 0.2% are respectively of EM  = 4325 MPa and EM  = 4686 MPa.  

After characterising the short-term mechanical response under deviatoric loading, the long-term creep behaviour of 

the selected mesostructures is evaluated. The simulation results of biaxial creep test with stress ratios qM /qmax of 90%, 

75%, and 50% are shown in Figure 7-12(b). The results highlight the evolution of the creep strain with time as well 

as the increase of creep deformation under higher deviatoric stress level qM /qmax in accordance to experimental 

measurements (Armand et al., 2017) and previous modelling (Sun et al., 2023a). Furthermore, a large variability of 

the rock creep responses can be observed due to small size of the mesostructures (Sun et al., 2023a). 
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(b) 

Figure 7-12 Short- and long- term mechanical responses of selected clay rock mesostructures used in gallery 

simulation under: (a) biaxial deviatoric compression test and (b) biaxial deviatoric creep tests with stress ratios of 

qM /qmax = 50%, 75%, and 90%. 

Figure 7-13 shows the mechanical response curve up to 𝜀22
𝑀 = 7% under the confining pressure of 𝜎11

𝑀  = 12 MPa 

and the microcracking patterns at different vertical total strains (𝜀22
𝑀 = 1%, 3%, 5% and 7%). The whole deformation 

of the REA, the solid constituent movements, and the mineral interface damage states are also depicted. The interface 

states (softening and full damage) are indicated by different colours and a larger symbol corresponds to the greater 

interface displacements. As described in Section 7.1.1, the relative displacement of interface can occur independently 

in normal and tangential directions; however, only the greater damage state (i.e. max (Dn,Dt)) is depicted in the 

figures. From Figure 7-13, it can be seen that in the pre-peak regime that the overall deformation of the REA is 

relatively limited and that the interface state is mainly and locally in softening regime. It results in a loss of linearity 

of the homogenised material response in the pre-peak regime. Then, with the deformation increase in post-peak 

regime, one can observe that the softening and decohesion behaviours of mineral contact appear in a localised manner 

for a small proportion of mineral contacts, leading to the appearance of micro-cracks. When a coalescence of fully 

damaged mineral contacts occurs, a microcracking path develop between the mineral inclusions and goes through 

the clay matrix (intergranular cracks). The microcracking propagates then through the whole mesostructure (REA) 

to form a meso-crack. Regarding the overall material mechanical response, the micro- and meso- cracks induce a 

strain softening behaviour of the global material response of the mesostructured. 
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 𝜀22
𝑀 = 1% 𝜀22

𝑀 = 3% 𝜀22
𝑀 = 5% 𝜀22

𝑀 = 7% 

 

EA20_1 

 

    

EA20_2 

    

Figure 7-13 Evolution of interface damage state under biaxial compression test at different vertical total strains. 

Concerning the hydraulic behaviour at small scale, the hydraulic opening parameters between mineral grains are 

∆𝑢ℎ
𝑚𝑖𝑛 = 5 × 10−4  mm and ∆𝑢𝑛

𝑡𝑟𝑎 = −5 × 10−4  mm in Eq. (7-6), leading to initial major and mior intrinsic 

permeabilities respectively 4.3 × 10−19  m2 and 2.9 × 10−19  m2. The initial intrinsic permeabilities from the 

numerical model are set larger than the in situ permeability measurements. This is because the permeability evolution 

due to mesostructure deformation and damage is underestimated in the current mesoscale FE model (and thus at 

macroscale in the double-scale FE2 framework) due to the modelling of the mesostructure in a 2D model (van den 

Eijnden et al. 2017). Therefore, the initial permeabilities are increased to mitigate this shortcoming. 

7.3.3. Gallery excavation and long-term behaviour 

The excavation of the GED gallery is numerically reproduced, followed by the long-term operational phase of the 

unsupported gallery. The hydro-mechanical material behaviour and parameters have been detailed in the previous 

section.  

Strain localisation 

The evolution of the shear strain localisation patterns around the gallery during and after the excavation is shown in 

Figure 7-14. It is depicted at four moments: at the passage of the front of excavation at the studied section (14 days), 

at the end of the excavation (28 days), then in the long term after the excavation at 100 days and 1000 days. The 

shear damage, shear failure, and EDZ induced by the excavation in the rock surrounding the gallery is reproduced 

by macroscale shear bands (Pardoen et al., 2015b, 2015c; Pardoen and Collin, 2017; Mourlas et al., 2023). The latter 

correspond to shear strain localisation and accumulation in restricted areas around the gallery and are considered as 

a precursor to material shear failure. The results are shown in terms of the Von Mises’ equivalent deviatoric strain 

which corresponds to the global amplitude of the shear strain. One can observe that the strain localisation appears 

slightly during the excavation and keep developing over time. At the end of excavation (at 28 days), shear bands 

have already appeared close to gallery wall. Considering that the vertical stress is smaller than the horizontal stress 

σv < σH, the fractured zone develops mostly in the vertical direction, as the EDZ observed in situ (Armand et al., 

2014). In the long term after the excavation, the continuous development of the shear band is due to the development 
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of the creep strain in the clay matrix at microscale, which engenders creep-induced failure at mesoscale (tertiary 

creep), and creep-induced shear bands which form around the gallery at macroscale. This relation between creep-

induced shear stain and failure across scale is even more detail hereafter and is an important result given by multi-

scale modelling of time-dependent behaviour and failure of rocks. 

14 days 

(excavation front crossing the studied section) 

28 days 

(end of excavation) 

    

100 days 

(long term EDZ evolution) 

1000 days 

(long term EDZ evolution) 

    

Figure 7-14 Evolution of macroscale shear band (shear strain localisation) pattern representing the EDZ around the 

GED gallery parallel to the minor horizontal principal stress σh. 

The current activity of the shear deformation process can be show by the Von Mises’ equivalent deviatoric strain 

rates. These fields are again shown at four moments in Figure 7-15: when the excavation crosses the studied section 

(14 days), at the end of the excavation (28 days), and in the long term after the excavation at 100 days and 1000 days. 

It can be observed that the maximum Von Mises’ equivalent deviatoric strain rate increases during the excavation 

whereas it gradually decreases in the long term after the excavation. This is mainly due to the increasingly significant 

viscoplastic hardening effect. From Eqs. (6-26) and (6-27), the hardening term exp(−𝑘𝛾𝑣𝑝)  decreases the 

viscoplastic strain rate 𝜀𝑖̇𝑗
𝑣𝑝

 with the accumulation of deviatoric viscoplastic strain in time. When a shear band is 

formed in the vicinity of the gallery, the activity of the deformation process varies significantly at different material 
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locations. The development of the rock shear deformation is mainly concentrated within the shear bands at 100 days; 

however, after a longer time, the deformation is active mainly in one most significant shear band (see the shear band 

shown Figure 7-15). This indicates that the creep of the rock at large times seems to be mainly influenced by the 

deformation within one (or maybe few) most significant shear band. These dominant shear bands dominate the long-

term behaviour of the EDZ around the gallery. 

     

      

Figure 7-15 Evolution of macroscale shear band activity pattern in the EDZ around the GED gallery parallel to the 

minor horizontal principal stress σh. 

Diametrical convergence 

The numerically computed and experimentally observed (in situ measurements from Armand et al., 2013; Dizier et 

al., 2023) horizontal and vertical diametrical convergences of the GED gallery are shown and compared in Figure 

7-16. Firstly, the analysis has been performed without considering the creep deformations. The results are shown in 

dashed lines in Figure 7-16. In the short-term during the excavation, the simulation results give a good consistency 

for the vertical diametral convergence of the gallery walls and a different magnitude between the convergences in 

vertical and horizontal directions corresponding to convergence anisotropy. However, the vertical convergence and 

the ratio between vertical and horizontal convergences are underestimated. In the long-term, the convergences remain 

constant due to the end of consolidation, which is not in agreement with the in situ observations. To reproduce the 

gallery convergence evolution in the long term during the operational phase, the viscosity of the clay matrix (i.e. of 

the clay aggregates) is considered. One can observe that the material creep has a small influence during the short-
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term excavation stage since similar convergences are obtained, in comparison to the case without material creep. 

Nevertheless, the convergences increase rapidly due to the creep, which shows a good agreement with the in situ 

observations, at least in the vertical direction. This demonstrates the importance of incorporating creep in the 

modelling of the long-term behaviour of clay-rich rock. 

  

(a) (b) 

Figure 7-16 Evolutions and comparisons of the numerical and experimental gallery diametrical convergences in 

the: (a) horizontal and (b) vertical directions. Solid line: considering material creep; dashed line: without 

considering material creep. 

Damaged mesostructures 

The evolution of deformed and damaged mesostructures around the gallery at different locations inside and outside 

macroscale shear bands are illustrated in Figure 7-17. Three moments are chosen to show the material creep effects 

on the relation between macro- and meso- scale deformations: the end of excavation (28 days) and in the long term 

after the excavation at 100 days and 1000 days. The development and evolution of localised micro-damage and meso-

crack path with time due to clay aggregate viscosity is clearly observed in Figure 7-17. Creep-induced shear micro-

damage at mineral grain contacts leads to shear meso-failure, with meso-shear-cracking developing through the entire 

EA at mesoscale, are observed. The latter lead to creep-induced shear macro-strain localisation bands (precursor to 

macro-shear-fracture) at macroscale. Connected meso-crack paths, developing through the entire EA by micro-

damage coalescence in microscale localised zones, are visible in the macro-shear band in the long term, after 100 

and 1000 days, but not at the end of the gallery excavation at 28 days. The convergence of the host rock (Figure 7-17) 

and the extent of the shear band zone representing the EDZ (Figure 7-17) also increases with time due to the clay 

matrix viscosity. The EDZ refers to the volume of rock in which crack formation becomes important, thereby 

deteriorating its mechanical and hydraulic properties. Consequently, a particular attention should be paid to the EDZ 

because the evaluation of the damage zone extension is critical for the design of underground radioactive waste 

disposal sites (Pellet et al., 2009). The latter prevent the leakage and migration of radioactive particles (i.e. 

radionuclides), in the underground and towards the biosphere, thanks to an engineer and geological multi-barrier 

system. 
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(a) 

          

(b) 

        

(c) 

Figure 7-17 Evolution of macroscale shear band (shear strain localisation) pattern representing the EDZ around the 

GED gallery and of deformed mesostructures (LEA ≈ 30 μm) at different locations at (a) the end of excavation (28 

days) and after the excavation at (b) 100 days and (c) 1000 days. 
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Furthermore, a same EA located at different locations at macroscale is subjected to different stress conditions and 

can therefore exhibit different meso-crack paths. This can also be due to the interactions between several EAs at the 

macroscale and to their variable behaviour, which cannot be reflected at the scale of only one EA. Furthermore, the 

interfaces between soft clay aggregates and stiff mineral inclusions (see the mineral properties in Table 7-1) seem 

more likely to be damaged under the excavation (deviatoric) unloading condition. For instance, a transverse fracture 

through the entire EA20_1 first appears above the gallery wall under intense deviatoric stress condition. Moreover, 

the microscale damage state of mineral contact interfaces inside a EA develops with time due to the clay aggregates 

viscosity, which can play the role of a mesoscale shear crack attractors and then of a macroscale shear strain 

localisation attractors, which consequently engenders a larger development zone of shear bands and EDZ. 

7.4. Conclusions 

The creep behaviours of the Callovo-Oxfordian (COx) claystone at several scales are modelled from small-scale 

viscous mechanisms of the rock medium using double-scale numerical modelling, in a finite element (FE²) 

framework. To reproduce the claystone viscous behaviour, two microscale mechanisms have been introduced in the 

clay matrix: the viscoplasticity of clay aggregates and the viscoelasticity of their contacts (Sun et al., 2023a). The 

viscous behaviour of the clay rock has been studied at macroscale, firstly by the modelling of laboratory creep tests 

on pluricentimetric clay rock samples under deviatoric loading. A consistency of the strain evolution and of the shear 

strain orientation exist between the two scales, which implies that the macroscale creep behaviour can be reproduced 

from its mesostructural behaviour. This validates the double-scale computing including time-dependent viscous 

behaviour. This allows further possibilities of double-scale numerical modelling of large-scale engineering problems, 

as the prediction of the behaviour of underground structures constructed in rocks. Relation between creep-induced 

shear strain and failure across scale is an important result given by multi-scale modelling of time-dependent behaviour 

and failure of rocks. 

The time-dependent creep behaviour of the claystone is studied under constant deviatoric loading condition as it 

corresponds to the stress solicitation in the rock surrounding underground galleries in the long term. From the 

simulation results of laboratory biaxial deviatoric creep tests, a clear three-stage creep process is reproduced. It 

includes primary creep stage with strain rate deceleration, secondary creep stage with constant creep strain rate, and 

tertiary creep stage with accelerating strain rate. Such creep behaviour of the COx claystone has been observed by 

laboratory triaxial creep tests of Liu et al. (2018). The viscosity in the clay aggregate contacts has a slight effect on 

the primary and secondary creeps, but it has an important contribution to the creep-induced failure of the claystone. 

This indicates that the microscale damage at the interface between mineral grains develops mainly and rapidly in the 

tertiary stage, leading eventually to creep failure. The creep strain and its rate is an important factor of long-term 

engineering safety; therefore, the monitoring of creep strain and rate is essential in engineering practice. The final 

total strains that develops in the claystone sample are similar whether the viscosity is considered in the clay aggregates, 

or in the clay aggregate contacts, or in both. It indicates that as long as the microscale damage at the interface between 

mineral grains reaches a certain state, the tertiary creep will occur until inducing failure. During tertiary creep, the 

creep-induced shear strain localisation zone can appear at macroscale, originated from the initiation, growth, 

accumulation, propagation and coalescence of microcracks and mesocracks within the material at macroscale. 

Furthermore, the small‑scale heterogeneity of the clay rock and the mineral arrangement lead to different rupture 
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patterns at large scale. These results enlighten a clear relation between creep-induced failure across scales. Finally, 

the anisotropy of the clay rock has limited effect on the creep strain rate. 

Then, the excavation and operational phase of the in situ Galerie Expérimentale Deux (GED) have been modelled. 

The simulation results show that the developed multi-scale viscous model is able to simulate the evolution of the 

long-term gallery convergences due to the viscoplasticity of the clay aggregates. The modelled vertical convergence 

of the gallery walls has a good consistency compared to in situ measurements; however, the horizontal convergence 

is overestimated. Moreover, the clay aggregate viscosity leads to long-term development of the shear strain localised 

zone representing the Excavation Damaged Zone (EDZ) around the gallery with time. Different micro-damage states 

and meso-crack paths are also observed in the rock in the vicinity of the gallery, depending on the macroscale 

locations. The modelling has also shown that the creep of the rock at large times seems to be mainly influenced by 

the deformation within one (or maybe few) most significant shear band. These dominant shear bands dominate the 

long-term behaviour of the EDZ around the gallery. This has been observed through the analyses of macro-shear 

bands around the gallery and through meso-shear cracks and micro-shear damage induced by the material creep 

within the shear bands at large scale. From the numerical results at laboratory and gallery scales, the creep-induced 

shear failure with meso-shear-cracking can develop through the mesostructure, leading to creep-induced shear macro-

strain localisation bands (precursor to macro-shear-fracture) at macroscale. 
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Chapter 8 Double-scale computations: the air ventilation effect on the 

hydromechanical behaviour of cracked rock media around large-scale gallery 

The interaction between rock and the atmosphere occurs through air circulation within underground galleries, thereby 

affecting the hydromechanical long-term behaviour of the rock in the vicinity of galleries and its drainage. To study 

this air-rock interaction, a coupled hydromechanical model within a double-scale finite element framework 

(FEM×FEM or FE²) is improved to simulate partial saturated case at small-scale in the crack network. The capillary 

water distribution at the microscale is not modelled. The introduction of the capillary pressure is therefore realised 

from a macroscopic phenomenon consideration, but it depends on the evolution of the mesoscopic structure and 

geometry (as the normal opening of mineral contacts) inside 2D Representative Elementary Areas. The gas flow is 

also neglected by assuming a constant gas pressure. Then, the developed model is applied to model an underground 

gallery ventilation process, which is reproduced with constant air relative humidity inside the gallery and classical 

imposition at gallery wall. The emphasis is to study the effect of the air-rock interaction and of the gallery air 

ventilation on the hydromechanical behaviour of the host rock, for example: the water drainage, the pore water 

pressure, the displacement field, and the development of shear fractures (by shear banding). The numerical simulation 

results show that long-term gallery air ventilation induces a drainage of the liquid water present in the rock towards 

the gallery that leads to an obvious desaturation process close to the gallery wall. Furthermore, the gallery air 

ventilation inhibits the development of shear strain localisation around the gallery. 

8.1. Constitutive models 

8.1.1. Effective stress of solid grains 

The total stress field 𝜎𝑖𝑗
𝑚 for unsaturated materials is defined with a pore water pressure 𝑝𝑤 (Marinelli et al., 2016; 

Pardoen et al., 2015b) following a generalised Bishop’s stress definition: 

𝜎𝑖𝑗
𝑚 ′ = 𝜎𝑖𝑗

𝑚 + 𝑆𝑤𝑝𝑤𝛿𝑖𝑗 (8-1) 

where 𝜎𝑖𝑗
𝑚 ′ is the local effective stress tensor (𝜎𝑖𝑗

𝑚 < 0 and 𝜎𝑖𝑗
𝑚 < 0 for compression), 𝑆𝑤 is the saturation degree 

of water, 𝑝𝑤 is the pore water pressure. Note that the effective stress in the FE2 model does not require a Biot’s 

coefficient as usually used in macroscale constitutive laws for homogenised medium. Marinelli et al. (2016) has 

confirmed this point by comparing the numerical results obtained from the FE2 model with the analytical solution of 

a classical oedometric test using the poro-elastic theory of Biot. The fluid forces acting on the solid mineral grains 

are negatives when the water flow is partially saturated in a crack (mineral interface), in order to model the suction 

that holds the mineral grains together and bring additional strength. 

The capillary pressure (suction) 𝑝𝑐 is defined as: 

𝑝𝑐 = 𝑝𝑔 − 𝑝𝑤 (8-2) 

in which 𝑝𝑔 is the macroscale gas pressure assumed equal to the atmospheric pressure, 𝑝𝑔 = 𝑝𝑎𝑡𝑚 = 0.1 MPa. 

From Eq. (8-2), the introduction of capillary pressure is from a macroscopic phenomenon consideration since the 
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capillary water distribution at the microscale is not modelled; however, it depends on the evolution and deformation 

of the mesostructure (Eq. (8-5)). 

8.1.2. Retention and water relative permeability curves 

The water retention in the rock and its desaturation are considered at small scale in cracked rock media. They are 

considered through the relation between the water saturation degree 𝑆𝑤  and the capillary pressure 𝑝𝑐  of the 

material mesostructure (REA). A global value at the mesoscale, over the entire mesostructure, is considered. The van 

Genuchten (vG) water retention curve (van Genuchten, 1980; Mualem, 1976) gives following relations: 

𝑆𝑤 = 𝑆𝑟𝑒𝑠 + (𝑆𝑚𝑎𝑥 − 𝑆𝑟𝑒𝑠) (1+(
𝑝𝑐
𝑝𝑐𝑒
)

1
(1−𝜆)

)

−𝜆

 (8-3) 

𝑘𝑟𝑤 = √𝑆𝑤 [1 − (1 − 𝑆𝑤
1 𝜆⁄ )

𝜆
]
2

 (8-4) 

where 𝑆𝑟𝑒𝑠 and 𝑆𝑚𝑎𝑥 are residual and maximum water degree of saturation, 𝜆 is a model parameter, 𝑝𝑐𝑒 is the 

current air-entry capillary pressure of the material mesostructured, 𝑘𝑟𝑤 is the relative permeability of water which 

introduced to affect the water flux in the cracks under partial saturation by revising Darcy equation.  

The minimal capillary pressure needed to desaturate the material pores is represented by the air-entry pressure. 

Furthermore, the water desaturation process in porous media is related to the capillary behaviour in the pores (primary 

porosity) or in the crack apertures (secondary crack porosity). It has been observed that, related to the capillary 

behaviour, material desaturation (i.e. introduction of air in the pores) is eased in materials having large pores or large 

crack opening. For instance, the effect of dry density and void ratio on the water retention curve has been shown on 

compacted clay material (bentonite) by Seiphoori et al. (2014). Therefore, material deformation or damage with 

increase of pore volume (dilation) or of crack aperture ease the desaturation process and thus reduce the air-entry 

pressure (Figure 8-1). This hydromechanical coupling is considered hereafter in partially saturated damaged and 

cracked rock media. The effect of opening crack development on the water retention curve is shown in Figure 8-1. 

To describes the role of crack development on the hydraulic properties, the air-entry pressure has been related to the 

rock mesostructure evolution, to its deformation, damage, and change of crack porosity. It is assumed to evolve as a 

power function of the hydraulic opening between the solid mineral grains as: 

𝑝𝑐𝑒 = 𝑝𝑐𝑒0 (
∆𝑢ℎ0
∆𝑢ℎ

𝑚𝑎𝑥)

𝑚

 (8-5) 

where 𝑝𝑐𝑒0 is the initial air-entry pressure, ∆𝑢ℎ0 is the initial hydraulic interface openings, and 𝑚 is a model 

parameter controlling the air-entry pressure. In porous medium, similar phenomenological laws related to the 

hydraulic response of the porous medium have been adopted in water retention models where the air-entry pressure 

evolves as a function of the void ratio (Gallipoli et al., 2003; Gallipoli, 2012; Tarantino and De Col, 2008). In our 

model, to account for the actual capillary behaviour, the maximal hydraulic opening of all mineral contacts and cracks 

in the rock mesostructure is related to the minimal air-entry pressure. Thus, the mesoscale value of the air-entry 

pressure should be the smallest of all microscale values obtained in the cracks. This indicates that the air can easily 

penetrate the cracked medium through the largest fracture corresponding to the smallest air-entry value (Figure 8-1); 
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thus, the material desaturates first in the largest open cracks. The evolution of the water retention curve in cracked 

rock is indicated in Figure 8-1 with a schematic representation of the initiation of desaturation, related to the crack 

apertures and to the air-entry capillary pressure. 

 

 

(a) (b) 

Figure 8-1 Evolution of the hydraulic response in cracked rock media: (a) water retention curve evolution, with 

schematic representation of the initiation of desaturation, related to (b) crack apertures and air-entry capillary 

pressure evolutions. 

In addition to the retention curve, the unsaturated behaviour of the material is described by defining also a water 

relative permeability curve from Mualem–van Genuchten’s model (Mualem, 1976; Van Genuchten, 1980). This 

curve is about the flow model in cracked media. Considering air-rock interaction and water drainage, these 

expressions of Eqs. (8-3) and (8-4) reproduce the decrease of the water mass and of the water permeability during 

material drying. The parameters of van Genuchten’s model come from experimental data fitting as shown in Figure 

8-2, and the hydraulic parameters are 𝜆 = 0.33, 𝑝𝑐𝑒,0 = 15 MPa, 𝑆𝑚𝑎𝑥 = 1 and 𝑆𝑟𝑒𝑠 = 0.01. 

  

Figure 8-2 Retention curve (left) and horizontal water permeability curve (right) of the COx claystone obtained 

from van Genuchten’s model, based on experimental data from Charlier et al. (2013). 
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8.2. Numerical simulation 

The above developments have been applied to the modelling of the clay rock partially saturated behaviour in this 

section. The modelling will be realised at two scales: the mesoscale of clay rock REA and the macroscale of 

underground structures. The modelling includes hydromechanical couplings, considering the effects of desaturation 

kinetics in cracked rock media and of suction on material shear strength and fracturing process. The clay rock 

behaviour at the mesoscale is studied following by the modelling of large-diameter galleries considers the short-term 

excavation as well as the long-term ventilation.  

8.2.1. Mesoscale clay rock behaviour 

The improved hydromechanical FE2 model, considering unsaturated material conditions, is applied in this section to 

investigate the capillary suction effect on the clay rock shear strength. For the COx claystone, the mechanical 

parameters of the solid mineral constituents and of their damageable contacts at the microscale are listed in Table 

8-1. They were calibrated by van den Eijnden (2015), Pardoen et al. (2020), and Sun et al. (2023b, 2023c) for 

saturated case. Combined with the hydraulic parameters in Table 8-2, they are used in the following numerical 

simulations. However, the parameter 𝑚 controlling the air-entry pressure in Eq. (8-5) and 𝑐𝑛/𝑡
𝑚𝑎𝑥 related to shear 

strength of rock will be determined in the following section under partial saturated case. 

Table 8-1 Microscale mechanical parameters of the solid mineral constituents and of their damageable contacts. 

Minerals 𝐸 (GPa) 𝑣 (-) 

Tectosilicates (quartz) 95 0.074 

Carbonates (calcite) 84 0.317 

Heavy minerals (pyrite) 305 0.154 

Clay matrix 2.3 0.110 

Clay aggregates 𝜂 (s) 𝛼𝑣𝑝 𝛽𝑣𝑝 𝜎𝑠 (MPa) 𝑛 𝑘  

 9.8*1012 0.1 0 3 4.62 260  

Interfaces 𝛿𝑡/𝑛
𝑐  (-) 𝐷𝑡/𝑛

0  (-) 𝑐𝑡
𝑚𝑎𝑥(MPa) 𝑐𝑛

𝑚𝑎𝑥(MPa) 

 0.1 0.001 1.5 0.6 

 

Table 8-2 Hydraulic parameters of the COx claystone.  

Symbol Name Value Unit 

𝜌𝑤,0 Initial water density at zero water pressure 1000 kg/m3 

𝐾𝑤 Bulk modulus of water 2.2 × 103 MPa 

𝜇𝑤 Dynamic viscosity of water 10-3 Pa.s 

∆𝑢ℎ
𝑚𝑖𝑛 Minimum hydraulic interface opening 5×10-5 mm 

∆𝑢𝑛
𝑡𝑟𝑎 Parameter controlling initial hydraulic interface opening -5×10-5 mm 

𝜆 van Genuchten coefficient 0.33 - 

𝑚 Parameter controlling the air-entry pressure. 0.3 - 



Chapter 8 Double-scale computations: the air ventilation effect on the hydromechanical behaviour of cracked rock 

media around large-scale gallery 

160 

 

Symbol Name Value Unit 

𝑝𝑐𝑒,0 Initial air-entry pressure 15 MPa 

∆𝑢ℎ,0 Hydraulic opening related to 𝑝𝑒0 1.7 × 10-5 mm 

𝑆𝑚𝑎𝑥 Maximum water degree of saturation 1 - 

𝑆𝑟𝑒𝑠 Residual water degree of saturation 0.01 - 

Suction effect on shear strength 

The hydromechanical coupling of suction effect on the material shear strength is studied hereafter. It has been 

observed that negative pore or crack pressures pw < 0 and capillary pressure pc > 0 developing in soils and rocks 

under partially saturated conditions increase the shear strength of the materials (Liu and Shao, 2016; Xu et al., 2018). 

Furthermore, this dependence evolves with the desaturation kinetics, thus with the air-entry pressure variation in 

cracked rock media. Normally, the model parameter 𝑚 in Eq. (8-5) depends on the rock structure at a small scale 

and can be determined by experiments (Bertrand et al., 2020; Seiphoori et al., 2014) on material samples subjected 

to drying. In this study, biaxial compression tests under a confining pressure of  𝜎11  = 12 MPa and different 

experimental values of the surrounding air relative humidity (RH = 76%, 85%, and 98%) are modelled on 10 REAs 

with a length of 75 μm (corresponding to 100 numerical cells) and random mesostructures (i.e. random positions of 

mineral inclusions in the clay matrix). Then, the obtained trend of the evolution of the peak failure deviatoric stresses 

qmax with various air RH values are compared with experimental results from Liu and Shao (2016).  

The results are shown in Figure 8-3 with 𝑐𝑡
𝑚𝑎𝑥 = 1.5 MPa, 𝑐𝑡

𝑚𝑎𝑥 = 0.6 MPa and two power 𝑚 values, 𝑚 = 0.3 in 

Figure 8-3 (a) and 𝑚 = 1 in Figure 8-3 (b). One can observe that an increase in moisture content results in a decrease 

in mechanical shear strength. A smaller 𝑚 value can enhance the sensitivity of the peak failure deviatoric stress to 

the relative humidity (i.e. increase of the variation |dqmax/dRH|), but at the same time the maximal deviatoric stress 

qmax is increased. When 𝑚  = 0.3, the slope of the peak failure stress – RH curves obtained by the numerical 

simulation (Figure 8-3 (b)) are similar to that of the experiment. Therefore, 𝑚 = 0.3 will be used in the following 

simulations. In fact, this suction effect on the increase of material strength in the current modelling is due to the 

hydromechanical coupling at the mineral contacts at microscale.  

Figure 8-4 shows the influence of air-entry pressure 𝑝𝑐𝑒 on microscale damage patterns of a REA with 75 μm length. 

The whole deformation of the REA, the solid constituent movements, and the mineral interface damage states are 

also depicted. The interface states (softening and full damage) are indicated by different colours and a larger symbol 

corresponds to the greater interface displacements. As described in Section 7.1.1, the relative displacement of 

interface can occur independently in normal and tangential directions; the damage state in these two directions (i.e. 

Dn, Dt) are therefore respectively depicted in the figures. These states are obtained after a biaxial compression under 

𝜎11 = 12 MPa, RH = 90% and up to 𝜀22 = 10%. At this point, the global mechanical response has reached softening 

state and decohesion can be observed at several grain contacts. The response curves of deviatoric stress and air-entry 

pressure with three 𝑚 values, 𝑚 = 0.3, 0.6 or 1 are illustrated in Figure 8-4 (a). As expected, the peak failure stress 

decreases with the increase of m. The air-entry pressure gradually decreases with the deformation and stable flat due 

to the property of the power function Eq. (8-5). The deformed mesostructure and damage states in normal (opening 

mode) or tangential (shear mode) direction are shown in Figure 8-4 (b) under different air-entry pressures (by giving 

different values of 𝑚). One can observe intuitively that the mesostructure undergoes a large deformation due to 
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compression. The three damage patterns of opening mode are almost identical; however, this becomes different for 

shear mode in which a higher air-entry pressure corresponds to more microcracking paths, which in turn leads to 

lower material strength. From the numerical results, the air-entry pressure which depends on the interface opening 

has an influence on microscale damage pattern of material under compression condition, more specifically, the 

damage pattern of shear mode. 

  

(a) (b) 

Figure 8-3 Evolution of clay rock shear strength with relative humidity (RH = 76%, 85%, and 98%) considering 

air-entry pressure variation in cracked media: for (a) 𝑚 = 0.3 or (b) 𝑚 = 1.  
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Shear mode 

   

(a) (b) 

Figure 8-4 Influence of air-entry pressure on deformations and damage under biaxial compression with RH = 90%: 

(a) material responses and (b) microcracking patterns for ε22 = 10% under 𝑚 = 0.3, 0.6 or 1. 
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Selected mesostructures for gallery-size modelling 

For the further gallery-size modelling, two mesostructures of a reduced size of 30×30 μm are selected in order to 

be compatible with time consumption of double-scale numerical FE2 modelling. These two mesostrucutres are 

labelled EA20_1 and EA20_2 as shown in Figure 8-6 (b). The mechanical responses of these clay rock mesostructures 

under a biaxial deviatoric compression condition under 𝜎11  = 12 MPa and RH = 90% are shown in Figure 8-5 (a). 

Each mesoscopic structure implies that the interactions between different EAs on the macroscale are ignored. It is 

worth noting that the comparison between the simulations and experimental data obtained from macroscale 

laboratory samples is only meaningful for homogeneous modes of deformation (before the peak-deviatoric stress), 

due to the existence of possible non-homogeneous deformations (Pardoen et al., 2020). As shown in Figure 8-5 (b), 

the long-term creep behaviour of the selected mesostructures is also evaluated by biaxial creep test under the same 

𝜎11 and RH value, with stress ratios 𝑞 𝑞𝑚𝑎𝑥⁄  of 50%, in which 𝑞𝑚𝑎𝑥 = 34.9 MPa is the statistical mean value of 

the maximal peak failure stress under 𝜎11 = 12 MPa (Armand et al., 2017). From Figure 8-5, it is evident that the 

material responses exhibit variability, which is significantly influenced by the specific mesostructures employed in 

the study (Pardoen et al., 2020). 

  

(a) (b) 

Figure 8-5 Mechanical responses of clay rock mesostructures selected for gallery simulation under: (a) biaxial 

deviatoric compression test and (b) biaxial deviatoric creep tests with stress ratios of q /qmax = 50%. 

8.2.2. Double-scale gallery excavation and air ventilation 

The previously developed double-scale numerical model is applied to large-scale simulations of short-term gallery 

excavation and long-term gallery air ventilation. The numerical model is defined hereafter, including the rock 

structure as well as the initial and boundary conditions. The objective is to highlight the effect of air-rock interaction 

and gallery air ventilation on the hydromechanical behaviour of the surrounding rock. 

Numerical model and rock structure 

At the main level (about -490 m) of Meuse Haute-Marne Underground Research Laboratory (MHM URL, Andra), 

the in situ compressive principal stresses are estimated to be 𝜎𝑣 = 12.7  MPa in the vertical direction, 𝜎𝐻 =
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1.3 𝜎ℎ = 16.1 MPa in the major horizontal direction, and 𝜎ℎ = 12.4 MPa in the minor horizontal direction. The 

simulated gallery is denoted as Galerie Expérimentale Deux (GED) in the Andra’s URL. It has a radius of 2.6 m and 

is excavated along the minor principal horizontal stress 𝜎ℎ, which corresponds to an anisotropic state of stress in the 

gallery cross section, 𝜎𝑥 = 𝜎𝐻 and 𝜎𝑦 = 𝜎𝑣. 

A quarter of the gallery is modelled by assuming symmetry along the x and y axes as shown in Figure 8-6 (a). The 

size of the domain and the distance to the outer boundaries is 50 meters. All macroscale computations are performed 

in a two-dimensional plane strain state. The mesh has a total of 8181 nodes and 2080 finite elements. The gravity 

effect is neglected to consider a homogeneous anisotropic initial stress state. The initial pore water pressure field is 

initially uniform and equal to pw0 = 4.7 MPa everywhere, corresponding to the in situ pore water pressure at the main 

level of the MHM URL. The far-field boundaries are under drained hydraulic conditions with constant pore water 

pressure pw,0 and constant total stresses 𝜎𝑥,0 = 𝜎𝐻 and 𝜎𝑦,0 = 𝜎𝑣 in the normal direction to the boundaries. The 

symmetry of the model is established by assuming impermeable boundaries and zero normal displacements along 

the symmetry axes (x and y axes). The values of hydraulic opening parameters are ∆𝑢ℎ
𝑚𝑖𝑛 = 5 × 10−4 mm and 

∆𝑢𝑛
𝑡𝑟𝑎 = −5 × 10−4  mm, leading to the initial major and minor permeabilities of the EA respectively as 

4.3 × 10−19 m2 and 2.9 × 10−19 m2. In order to correctly represent the macroscale shear fractures, the elastic 

modulus ‘D’ of the second gradient mechanical model which defines an internal length scale for the description of 

the shear bands and its regularisation has to be characterised. A value of D = 5000 N is used in the modelling. 

As shown in Figure 8-6 (b), two mesostrucutres labelled EA20_1 and EA20_2 are randomly assigned at each 

integration point of the macroscale elements to consider a bit of spatial heterogeneity and variability of the clay rock 

composition in the double-scale modelling (Mourlas et al., 2023). This triggers more easily the shear strain 

localisation at macroscale; thus, to see shear bands appearance and EDZ development. Considering the boundary 

conditions, the excavation stage is performed in 28 days in which the total stresses and the pore water pressure at the 

gallery wall decrease from their initial values to the atmospheric pressure of 0.1 MPa. Then, the calculation is 

extended to a thousand days under constant stress to highlight possible hydromechanical transient effects (Figure 

8-7) related to material viscosity and to progressive water drainage due to the air-rock interaction at gallery wall. In 

order to simulate the air ventilation within the gallery, it is assumed that the liquid water inside the rock is in 

equilibrium with the water vapor of the gallery air (Pardoen et al., 2015a, 2015b, 2016). This equilibrium is described 

by Kelvin’s law, which provides the concentration of water vapor in the gas phase as follows: 

RH = 𝑒𝑥𝑝 (
−𝑝𝑐𝑀𝑣
𝑅𝑇𝜌𝑤

) (8-6) 

where RH is the air relative humidity of the gaseous phase, 𝑀𝑣 is the molar mass of water vapour (0.018 kg/mol), 

𝑅 is the universal gas constant (8.3143 J/mol.K), 𝜌𝑤  is the water density (1000 kg/m3), and 𝑇 is the absolute 

temperature (K). Based on Andra’s measurements performed during an in situ ventilation experiment (Cruchaudet et 

al., 2010), an average value of 25 ℃ (𝑇 = 298.15 K) is adopted. 

 

 

 



Chapter 8 Double-scale computations: the air ventilation effect on the hydromechanical behaviour of cracked rock 

media around large-scale gallery 

164 

 

 

(a) 

         

(b) 

Figure 8-6 Schematic representation of the gallery model: (a) numerical model with boundary conditions and finite 

element mesh, (b) random distributions at macroscale of two mesostructures of dimension LEA ≈ 30 μm. 

Two cases are considered to show the effect of water drainage and rock desaturation process. The first case refers to 

a numerical study during which no ventilation is considered inside the gallery after the excavation; thus, the gallery 

air is saturated with water vapour and this maximal concentration corresponds to an air RH = 100%. Following the 

air-rock equilibrium equation (Kelvin’s law, Eq. (8-6)), the corresponding pore water pressure at gallery wall is 𝑝𝑤 

= 𝑝𝑎𝑡𝑚 = 0.1 MPa, which equals to the atmospheric pressure. The pore water pressure is then maintained constant 

in the long term, after the excavation, and the clay rock will remain saturated. In fact, the liquid water will be drained 

from the rock towards the gallery due to the pore pressure gradient (between the in situ far field pore pressure and 

the gallery wall pore pressure); however, the surrounding clay rock remains in saturated conditions. The rock 

desaturation process is considered in the second case. This is realised by air ventilation with a dryer gallery air 

(RH<100%) which can drain the liquid water from the rock and, eventually, desaturate it in the long term. These 

hydraulic phenomena can induce mechanical effects (hydromechanical coupling), leading to changes in the rock 
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structure, in the fracturing pattern, and of the size of the damaged zone (Pardoen et al., 2015b, 2016). In this case, 

the air injected into the gallery is dryer than previously and a lower gallery air relative humidity of RH = 80% is 

considered. According to Eq. (8-6) , this humidity corresponds to a pore water pressure of 𝑝𝑤 = -30.6 MPa at the 

gallery wall. This decrease in pore water pressure is realised in two steps: first, it is decreased from its initial value 

to atmospheric pressure after the passage of the front of excavation at the studied section (15 days), and then an 

initiation phase of ventilation (of 40 days) is considered to reach the final value of the air ventilation. After this 

initiation phase, a constant ventilation is maintained. Figure 8-7 shows the evolution of the imposed total stresses and 

pore water pressure at the gallery wall for two considered cases.  

 

Figure 8-7 Evolution of the total stresses and the pore water pressure at the gallery wall without air ventilation (RH 

= 100%) and with air ventilation (RH = 80%). 

Results on fracturing, fluid transfer, and convergence evolution 

The influence of gallery air ventilation on the clay rock behaviour in the gallery vicinity is considered hereafter.   

Figure 8-8 illustrates the development of the EDZ with shear fractures represented by plastic shear bands. This figure 

illustrates the comparison of shear strain localisation patterns with (RH = 80%) and without air ventilation (RH = 

100%), at several moments: at the end of excavation, at both 100 and 1000 days of ventilation. It is observed that the 

developed shear band zone has a larger dimension in the vertical direction than in the horizontal direction, as observed 

in situ around galleries excavated parallel to the minor principal horizontal stress 𝜎ℎ (as the considered GED gallery, 

Armand et al., 2014). The shear strain localisation zones can be found in the case without air ventilation; however, 

the shear bands disappear when the air ventilation is considered in current simulation (Pardoen et al., 2015b, 2016). 

According to Eq. (8-1) which defines the effective stress, the higher the capillary pressure, the higher the compressive 

effective stress, resulting in a more resistant material relative to shear failure. In the latter case, the area close to the 

gallery wall becomes elastic again and the shear strain localisation zone around the gallery is being inhibited. 
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 With ventilation (RH = 80%) Without ventilation (RH = 100%) 

 

28 days 

(after 

excavation) 

  

100 days 

 

   

1000 days 

   

 Figure 8-8 Evolution of shear strain localisation with and without air ventilation: at the end of excavation (28 

days) and during air ventilation (100 and 1000 days). 

The evolution of pore water pressure along vertical and horizontal cross-sections, from the crown and the springline 

of the gallery (thus along the y and x symmetry axes of the model), is detailed in Figure 8-9. As expected, the effect 

of ventilation is obvious in the rock areas close to the gallery wall, but gradually diminishes deeper into the rock. For 

the model without ventilation, a small suction (i.e. negative pore water pressure) induced by shear dilatancy can be 

observed at 100 days close to the gallery wall. The effect of ventilation on the spatial distribution of pore water 

pressure becomes increasingly evident with time. 
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(a) (b)  

Figure 8-9 Evolution of pore water pressure along (a) vertical and (b) horizontal cross-sections, at the end of 

excavation (28 days) and during air ventilation (100 and 1000 days). 

The evolution of water saturation along the cross-sections is illustrated in Figure 8-10. For the model without 

ventilation, the saturation of the rock close to the gallery wall decreases a little after the excavation, and is fully 

saturated after a distance of about 4 m in the rock. For the model with ventilation, a strong desaturation is observed 

close to the gallery wall. Figure 8-11 shows the evolution of water saturation degree at the gallery wall, at the crown 

and springline, showing more clearly the evolution of the desaturation. 

  

 

(a) (b)  

Figure 8-10 Evolution of the water saturation degree along (a) vertical and (b) horizontal cross-sections, at the end 

of excavation (28 days) and during air ventilation (100 and 1000 days). 
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Figure 8-11 Evolution of the water saturation degree with time at the gallery wall. 

Another objective concerning the long-term rock behaviour around gallery is to be able to predict the gallery 

convergences and their anisotropy. The evolutions of the vertical and horizontal gallery convergences during and 

after gallery excavation are shown in Figure 8-12. One can observe that the vertical convergence is well captured by 

the modelling when the model is extended to the unsaturated case and consider viscous deformation (i.e. material 

time-dependant creeping), while on the contrary, the horizontal convergence is overestimated. However, an 

anisotropy of the short-term convergence is reproduced, with a larger vertical convergence in the direction towards 

which the shear bands develops more, as observed around the GED gallery parallel to the the minor principal 

horizontal stress 𝜎ℎ (Armand et al., 2013, 2017). For the modelling with ventilation, the convergence in the long 

term is significantly smaller than in the absence of ventilation, and the wall convergence after excavation is found 

very limited. Based on the previous analyses, this is because the air ventilation increases the compressive effective 

stress after excavation and the material becomes more resistant and remain globally elastic. Consequently, the 

desaturation of the rock close to the gallery wall inhibits the shear strain localisation ( Figure 8-8), which has the 

effect of limiting further deformation. For the GED gallery drilled in the direction of the minor principal horizontal 

stress, the convergence anisotropy in the long term mainly originates from the creep deformation influenced by 

anisotropic stress in the gallery section, reproduced in the boundary conditions of the numerical model. Therefore, 

the gallery air ventilation also reduces the anisotropic convergences and behaviour of gallery in the long term. 

Figure 8-13 illustrates the displacement evolution along vertical and horizontal cross-sections. In the vertical 

direction, a slight fluctuation in the displacement curves induced by the shear strain localisation bands are observed 

close to the gallery wall until the end of the calculation. Horizontally, this influence is not observed because the cross-

section does not cross the shear strain localisation zone. For the model without ventilation, displacements are 

important both during and after the excavation in both directions. When gallery air ventilation is applied, the 

displacements do not increase much after the excavation due the suction, the gain of material strength, and the overall 

elastic state of the rock in the gallery surrounding. 
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(a) Vertical (b) Horizontal 

Figure 8-12 Evolution of the (a) vertical and (b) horizontal diametral convergences after gallery excavation, of the 

GED gallery parallel to the minor principal horizontal stress, obtained from numerical simulation and in situ 

measurement (Armand et al., 2013, 2017). 

  

 

(a) Vertical (b) Horizontal  

Figure 8-13 Evolution of displacements along the (a) vertical and (b) horizontal cross-sections, during air 

ventilation (100 and 1000 days).  

Figure 8-14 shows the deformed mesostructures (LEA ≈ 30 μm) at different locations around the GED gallery in the 

long term (at 1000 days). For the model without ventilation, long-term creep-induced shear micro-damage at mineral 

grain contacts leads to shear meso-failure (Sun et al., 2023c), with meso-shear-cracking developing through the entire 

EA at mesoscale, are observed. The latter lead to creep-induced shear macro-strain localisation bands (precursor to 

macro-shear-fracture) at macroscale. When there is gallery air ventilation, only softening can be observed in the 

contact interfaces of solid mineral grains in current model. From a small-scale perspective, air ventilation influences 

the contact damage state of solid mineral grains and inhibits the further development of microcracks.  
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(a) With ventilation  

 

(b) Without ventilation  

Figure 8-14 Evolution of deformed mesostructures (of dimension LEA ≈ 30 μm) at different locations around the 

GED gallery at 1000 days, (a) with and (b) without ventilation. 

Furthermore, Figure 8-15 shows the probability density function (PDF) of mineral contact damage parameters 𝐷𝑡 

and 𝐷𝑛 in the long term (at 100 and 1000 days) and at location P1 of Figure 8-14. It is obvious that the damage of a 

portion of mineral interfaces in the rock mesostructure (REA) increases with time, in both normal (opening) and 

tangential (sliding) directions. When there is ventilation, the PDF curve of 𝐷𝑡 moves slightly to the right with time, 

but the two curves of 𝐷𝑛 at 100 and 1000 days almost coincide. This indicates that only the tangential damage of 

microscale mineral contacts evolves with time. The mineral interface damage development in the normal direction 

is however more affected (restricted) by the air ventilation. This, in turn, affects the evolutions of the flow transfers 

and transport properties of rock. 

LEA ≈ 30 μm 
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(a) 𝐷𝑡 (b) 𝐷𝑛  

Figure 8-15 Probability density function of mineral contact damage parameters at location P1 and at 1000 days in 

(a) tangential and (b) normal interface directions. 

8.3. Conclusions 

The hydromechanical short-term and long-term behaviours of clay rocks, as the Callovo-Oxfordian claystone, is of 

paramount importance in the context of deep geological storage to ensure the building of sustainable underground 

disposal solutions. In the long-term air ventilation is performed inside underground galleries during the maintenance 

phase and can affect the water flow around the galleries. In fact, the gallery air ventilation and the air-rock interaction 

can drain the water from the rock and causes the desaturation of the rock surrounding the galleries. To take into 

account these effects on the rock hydromechanical behaviour, the FE2 model used to simulate saturated medium in 

Chapter 6 and Chapter 7 is extended to partial saturated case. It allows to enrich the macroscopic material behaviour 

with mesoscopic and microscopic coupled HM phenomena of water flow in partially saturated and cracked rock 

formations. Thenceforward, a double-scale FE2 model used to simulate saturated medium has been improved to 

partially saturated case. The material water retention and desaturation are considered at small scale in cracked rock 

media. The state-dependent air-entry pressure is related to the material structure at small scale, more precisely to 

material deformation, damage, and change of (crack) porosity at the mesoscale. The air-entry pressure is assumed to 

evolve as a power function of the hydraulic opening between solid mineral grains. The maximal hydraulic opening 

of all mineral contacts in the rock mesostructure (REA) is related to the minimal air-entry pressure. This indicates 

that the gas can easily penetrate the cracked medium through the largest fractures corresponding to the smallest air-

entry value; thus, the material desaturates first in the largest open cracks.  

According to the numerical simulation results, a water drainage and an obvious desaturation process close to the 

gallery wall is observed during the long-term gallery air ventilation. The gallery air ventilation engenders a decrease 

of the pore water pressure in the rock leading to suction (negative pore water pressure) and a rock desaturation around 

galleries. This desaturation tends to disappear deeper in the rock mass, where the clay rock remains fully saturated. 

Moreover, the suction and rock desaturation engender an increase of the rock strength around the gallery, which 
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therefore inhibits the development of macroscale shear bands (i.e. shear strain localisation) around the gallery. At 

small-scale, the air ventilation influences the damage development at the contacts between mineral grains and inhibits 

the further development of microcracks. At large-scale, concerning the diametral gallery convergences, although the 

vertical convergence is well reproduced, the horizontal convergence still needs improvement. This requires better 

definition of the anisotropy of the rock. Furthermore, the numerical results provide information on the rock structure 

within damaged zones (e.g. Excavation Damaged Zone); however, the rock state and its properties still need to be 

improved. Characterizing the effect of rock damage and fracturing on the mechanical and hydraulic properties 

remains an important and challenging problem. 
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Chapter 9 Conclusions and perspectives 

9.1. General conclusions 

The time-dependent creep and damage behaviour of the clay rocks under hydromechanical coupling is one of the key 

issues being investigated to ensure the safety conditions required for long-term repository of radioactive wastes. The 

present work is devoted to solve problems related to creep and damage behaviour of underground galleries through 

analytical and multiscale numerical methods, aiming at providing valuable analysis and insights into the complex 

time-dependent mechanical and coupling processes of the long-term stability of underground galleries. The studied 

clay rock is COx claystone, the host rock in the French concept of high-level radioactive waste disposal at great 

depth, due to their low hydraulic permeability, good resealing capacity, and self-sealing properties.  

Theoretical and numerical studies, as well as developments, on the time-dependent behaviour of deep underground 

galleries were carried out in a two-stage approach. In the first stage, analyses using a phenomenological approach 

including analytical modelling and classic FEM simulation were carried out directly at the macroscale. In the second 

stage, a complementary study will be done at the local scale within the framework of double-scale FEM (or finite 

element square method, FE2), taking into account the meso- and micro-structural viscous properties of COx claystone, 

followed by an upscaling (homogenisation) to obtain the hydromechanical behaviour at the macroscale. Based on the 

obtained results and discussions, the main conclusions of this thesis can be summarized as follows. 

9.1.1. Analytical modelling and FEM modelling at macroscale 

A quasi-analytical model is developed for the hydromechanical behaviour of a deep spherical cavity excavated in a 

dilatant poro-viscoplastic rock mass, accounting for three stages of a simplified life cycle: (1) excavation, (2) free 

convergence and (3) backfill contact and post-closure. The results show that the assumption of a volumetric 

viscoplastic strain rate as a linear function of the Frobenius norm of deviatoric plastic strain rate can be used to 

construct an analytical model capable to describe the hydromechanical post-closure behaviour of a deep spherical 

cavity. The viscoplastic dilatancy of rock mass induces an outward movement at every point (except at the cavity 

wall) due to the particular spherical symmetry involving an infinite domain. Negative pore pressure may occur in the 

vicinity of the cavity wall in reaction to the volumetric dilatancy of rock mass at times which are small compared to 

the characteristic hydraulic diffusion time. 

Sensitive analysis and probability analysis were then conducted on the temporal evolution of the extent of damage 

zone around a deep storage gallery using the FEM code Cast3M. The results show that the stress-based criterion that 

any material point where the criterion is reached belongs to the damage zone 𝑅𝐸𝐷𝑍
′  will lead to an unrealistic 

excessive overestimation of the long-term extent of the latter. Inspired by Su (2005), another criterion for estimating 

the damage zone, concomitant with the hydraulic damage is more realistic: the material state is considered damaged 

if its equivalent deformation in the sense of von Mises exceeds the critical threshold of 0.5%. The studied parameters 

influencing the final extent of the damage zone can be arranged in the following order of importance: the Young’s 

modulus of the rock, the backfill stiffness, stress threshold of the rock, the rock dilatancy, the void ratio left at the 

backfill 𝑌, the critical value of equivalent von Mises strain 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡 marking the onset of diffuse damage. Finally, the 

backfill stiffness no longer influences the evolution of the damage zone when its value becomes comparable to that 

of the rock. According to a short probabilistic study on the extent of 𝑅𝐸𝐷𝑍
′ , the peak of the PDF and the corresponding 
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radius depends on 𝑌 and 𝜀𝑒𝑞
𝑐𝑟𝑖𝑡. An increase of 𝑌 or a decrease of 𝜀𝑒𝑞

𝑐𝑟𝑖𝑡 would have a similar effect of shifting the 

PDF of 𝑅𝐸𝐷𝑍
′  to the direction of larger radius (i.e. larger damage zone); correspondingly, the mean value 𝑅𝐸𝐷𝑍

′̅̅ ̅̅ ̅̅ ̅ 

increases. At the same time, the standard deviation of 𝑅𝐸𝐷𝑍
′  increases. 

9.1.2. Multiscale FEM modelling  

Modelling at micro and meso scales 

A micromechanics-based model was developed in order to investigate the time-dependent mechanical behaviour of 

heterogeneous clay rocks. A heterogeneous clay rock is represented at the mesoscopic scale as a composite material 

consisting of rigid elastic mineral inclusions (quartz, calcite, and pyrite) embedded in a clay matrix. At the microscale, 

the damage and failure modes have been reproduced by considering potential decohesion around mineral inclusions 

and potential microcracking within the clay matrix. The latter are modelled at the interfaces between solid mineral 

grains as damageable cohesive contacts. Two origins of rock viscosity have been considered in clay matrix: either 

viscous clay aggregates or viscous intergranular microfractures propagating in the clay matrix between rigid clay 

aggregates. They are respectively considered by a viscoplastic model or viscoelastic model. The numerical results 

indicate that the viscosity, in both cases, has an influence on the overall creep deformation of the clay rock. 

Considering the viscosity in the clay aggregates allows to reproduce the time evolution of the creep strain of COx 

claystone with a good agreement to experimental measurements from triaxial creep tests. Nevertheless, considering 

the viscosity at the contacts between clay aggregates generates a smaller creep deformation of the rock compared to 

experimental measurements. Furthermore, stress level and mineralogical composition affect the overall creep 

deformation of the claystone. Numerical results indicate that both high deviatoric stress level and high clay content 

increase the creep deformation, as observed by experimental studies. During material creep under deviatoric loading, 

shearing is the dominant mode of deformation and of relative displacement at the contacts between mineral grains. 

Considering the material damage, creep deformation can be a driving factor of time-dependent microscale damage 

and cracking processes. It has been found that that creep strain development can induce the accumulation of damage 

at mineral grain contacts in a localised manner, leading to microcrack development. The microcracks induced by 

creep deformation tend to preferentially develop at the interfaces around mineral inclusions rather than between clay 

aggregates. Eventually, these phenomena lead to the initiation of mesostructure cracking and rock failure. 

Furthermore, both origins of viscosity can lead to creep failure of the claystone as long as the damage of contact 

interfaces between mineral grains reaches a certain damage level.  

Modelling at macroscales 

The large-scale creep behaviour of COx claystone is then modelled from small-scale viscous mechanisms of the rock 

medium using double scale finite element (FE²) framework. Relation between creep-induced shear strain and failure 

across scale is an important result given by multi-scale modelling of time-dependent behaviour and failure of rocks. 

From the simulation results of laboratory biaxial deviatoric creep tests, a clear three-stage creep process is reproduced. 

It includes primary creep stage with strain rate deceleration, secondary creep stage with constant creep strain rate, 

and tertiary creep stage with accelerating strain rate. Such creep behaviour of the COx claystone has been observed 

by laboratory triaxial creep tests of COx claystone. The viscosity in the clay aggregate contacts has a slight effect on 

the primary and secondary creeps, but it has an important contribution to the creep-induced failure of the claystone. 

This indicates that the microscale damage at the interface between mineral grains develops mainly and rapidly in the 
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tertiary stage, leading eventually to creep failure. The creep strain rate is an important factor of long-term engineering 

safety; therefore, the monitoring of creep strain rate is essential in engineering practice. The final total strains that 

develops in the claystone sample are similar whether the viscosity is considered in the clay aggregates, or in the clay 

aggregate contacts, or in both. It indicates that as long as the microscale damage at the interface between mineral 

grains reaches a certain state, the tertiary creep will occur until inducing failure. During tertiary creep, the creep-

induced shear strain localisation zone can appear at macroscale, originated from the initiation, growth, accumulation, 

propagation and coalescence of microcracks and mesocracks within the material at macroscale. Furthermore, the 

small‑scale heterogeneity of the clay rock and the mineral arrangement lead to different rupture patterns at large scale. 

These results enlighten a clear relation between creep-induced failure across scales. Finally, the anisotropy of the 

clay rock has limited effect on the creep strain rate. 

Then, the excavation and operational phase of the in situ Galerie Expérimentale Deux (GED) have been modelled. 

The modelled vertical convergence of the gallery walls has a good consistency compared to in situ measurements; 

however, the horizontal convergence is overestimated. Moreover, the clay aggregate viscosity leads to long-term 

development of the shear strain localised zone representing the Excavation Damaged Zone (EDZ) around the gallery 

with time. Different micro-damage states and meso-crack paths are also observed in the rock in the vicinity of the 

gallery, depending on the macroscale locations. The modelling has also shown that the creep of the rock at large times 

seems to be mainly influenced by the deformation within one (or maybe few) most significant shear band. These 

dominant shear bands dominate the long-term behaviour of the EDZ around the gallery. From the numerical results 

at laboratory and gallery scales, the creep-induced shear failure with meso-shear-cracking can develop through the 

mesostructure, leading to creep-induced shear macro-strain localisation bands (precursor to macro-shear-fracture) at 

macroscale.  

Finally, the FE2 model used to simulate saturated medium is extended to partial saturated case to take into account 

the effect of gallery air ventilation. The state-dependent gas entry pressure is linked to the material structure at a 

small scale by assuming it is a power function of the hydraulic opening between solid grains, in which the maximum 

one is chosen to obtain the minimum gas entry pressure, indicating that the gas can penetrate the cracked medium 

through the largest fracture corresponding to the smallest gas entry value. According to the numerical simulation 

results, a water drainage and an obvious desaturation process close to the gallery wall is observed during the long-

term gallery air ventilation. The gallery air ventilation engenders a decrease of the pore water pressure in the rock 

leading to suction (negative pore water pressure) and a rock desaturation around galleries. This desaturation tends to 

disappear deeper in the rock mass, where the clay rock remains fully saturated. Moreover, the suction and rock 

desaturation engender an increase of the rock strength around the gallery, which therefore inhibits the development 

of macroscale shear bands (i.e. shear strain localisation) around the gallery. At small-scale, the air ventilation 

influences the damage development at the contacts between mineral grains and inhibits the further development of 

microcracks. At large-scale, concerning the diametral gallery convergences, although the vertical convergence is well 

reproduced, the horizontal convergence still needs improvement. This requires better definition of the anisotropy of 

the rock. Furthermore, the numerical results provide information on the rock structure within damaged zones (e.g. 

Excavation Damaged Zone); however, the rock state and its properties still need to be improved. Characterizing the 

effect of rock damage and fracturing on the mechanical and hydraulic properties remains an important and 

challenging problem. 
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9.2. Perspectives 

Multiscale modelling of material behaviours provides effective ideas and methods for studying the link between the 

microscale and macroscale responses of materials. Some potential developments of the present work are summarised 

as follows: 

➢ Development of interface cohesive model, including for example, irreversible deformation of interface, 

fatigue behaviour under cyclic loading, etc. 

 

➢ Development of 3D model within FE2 framework for a more realistic modelling and aim to reduce the 

predicted dilation and increase the fluid flow within cracks. In addition, it also requires the method with GPU 

acceleration. 

 

➢ Cracking process induced by temperature change can be investigated.
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Appendix A Elastoplastic stress update 

The procedures for updating the elastoplastic stress in the clay aggregates is defined hereafter. For brevity of notation, 

the subscript 𝑛 + 1  at the end of a time step is omitted to express the quantities in the new current material 

configuration, i.e. at the actual time 𝑡 = 𝑡𝑛+1. The implicit Euler scheme is adopted here and also for the viscoplastic 

stresses update in Appendix B. During a time interval ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛  from times 𝑡𝑛  to 𝑡𝑛+1, the elastoplastic 

model can be described with the following incremental forms: 

∆𝝈 = ℂ𝑒: ∆𝜺𝒆 = ℂ𝑒: (∆𝜺 − ∆𝜺𝒑) (A-1) 

∆𝜺𝒑 =
1

2
∆𝜀𝑝

𝑝
𝜹 + ∆𝜀𝑞

𝑝
𝒏 (A-2) 

∆𝛾𝑝 = ∆𝜀𝑞
𝑝
 (A-3) 

and the plastic function: 

𝐹𝑒𝑝(𝑝, 𝑞, 𝛾
𝑝) = 0 (A-4) 

In Eq. (A-1), ℂ𝑒 is the Hooke elastic constitutive tangent tensor. The stress at the end of the current time step is 

elastically predicted: 

𝝈 = 𝝈𝑡𝑛 + ∆𝝈 = 𝝈𝑡𝑛 + ℂ
𝑒: (∆𝜺 − ∆𝜺𝒑) = 𝝈𝑡𝑟 − 𝐾∆𝜀𝑝

𝑝
𝜹 − 2𝐺∆𝜀𝑞

𝑝
𝒏 (A-5) 

𝝈𝑡𝑟 = 𝝈𝑡𝑛 + ℂ
𝑒: ∆𝜺 (A-6) 

where the superscript ‘tr’ represents the elastic trial state. Thus, 𝝈𝑡𝑟 is the elastic stress predictor or elastic trial stress. 

Moreover, the elastic parameters are G the shear modulus and K the bulk modulus of the material. From Eq. (A-5), 

the mean stress 𝑝 and the deviatoric stress 𝑞 are obtained as follows: 

𝑝 = 𝑝𝑡𝑟 − 𝐾∆𝜀𝑝
𝑝
 (A-7) 

𝑞 = 𝑞𝑡𝑟 − 2𝐺∆𝜀𝑞
𝑝

 (A-8) 

After some algebraic operations, the following relation is obtained: 

𝒏 = 𝒏𝑡𝑟 =
3𝒔𝑡𝑟

2𝑞𝑡𝑟
 (A-9) 

A residual vector 𝒓⃗⃗ = {𝑟1  𝑟2}T is then defined, in which 𝑟1 and 𝑟2 are written as follows: 

𝑟1 = ∆𝜀𝑝
𝑝 𝜕𝐺𝑒𝑝
𝜕𝑞

− ∆𝜀𝑞
𝑝 𝜕𝐺𝑒𝑝
𝜕𝑝

 (A-10) 
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𝑟2 = 𝐹𝑒𝑝(𝑝, 𝑞, 𝛾
𝑝) (A-11) 

The unknows in the above two equations are 𝒙⃗⃗⃗ = {∆𝜀𝑝
𝑝

∆𝜀𝑞
𝑝
}
T
. To find a solution 𝒙⃗⃗⃗′ that cancels the residuals such 

that 𝒓⃗⃗(𝒙⃗⃗⃗′) = 𝟎⃗⃗⃗, the well-known Newton-Raphson method is used to solve the equations since it has a second order 

(i.e. quadratic) convergence rate. In each iteration, the corrections of the unknowns 𝑑∆𝜀𝑝
𝑝
 and 𝑑∆𝜀𝑞

𝑝
 , giving the 

unknow correction vector 𝑑𝒙⃗⃗⃗ = {𝑑∆𝜀𝑝
𝑝

𝑑∆𝜀𝑞
𝑝
}
T
, are obtained by solving: 

𝑨 𝑑𝒙⃗⃗⃗ = −𝑑𝒓⃗⃗    ⟺   [
𝐴11 𝐴12
𝐴21 𝐴22

] {
𝑑∆𝜀𝑝

𝑝

𝑑∆𝜀𝑞
𝑝} = − {

𝑑𝑟1
𝑑𝑟2

} (A-12) 

where the four components of the Jacobian matrix 𝐴𝑖𝑗 (i, j = 1, 2) are defined at the end of this section. The stress at 

the end of the time step, i.e. at time 𝑡 = 𝑡𝑛+1, can then be updated using Eq. (A-5). 

The consistent tangent modulus provides a softer overall REA response, but can increase the stability of the local 

constitutive integration and homogenisation process (Doghri and Ouaar, 2013). Therefore, the consistent tangent 

operator instead of continuum tangent operator is used hereafter. The commonly used elastoplastic consistent tangent 

modulus is 
𝜕𝝈

𝜕𝜺
 which is defined as the variation of stress caused by the variation of total strain at the end of the time 

step. However, another form of elastoplastic consistent tangent modulus is used here: 

ℂ𝑒𝑝 =
𝜕𝝈

𝜕𝜺𝑡𝑟
 (A-13) 

where ℂ𝑒𝑝  is defined as the variation of stress caused by the variation of elastic trial strain (i.e. elastic strain 

predictor): 

𝜺𝑡𝑟 = 𝜺𝒆 = 𝜺 − 𝜺𝑡𝑛
𝑝
= 𝜺𝑡𝑛 + ∆𝜺 − 𝜺𝑡𝑛

𝑝
 (A-14) 

at the end of current time step. Such scheme proposed by Lee and Zhang (1991) is able to deal with certain extreme 

cases without extra matrix inversion, and has been successfully implemented by Zeng et al. (2019, 2020). 

Differentiating Eq. (A-5) gives: 

𝑑𝝈 = ℂ𝑒𝑝: 𝑑𝜺𝑡𝑟 = (ℂ𝑒 − 𝐾𝜹⊗
𝜕∆𝜀𝑝

𝑝

𝜕𝜺𝑡𝑟
− 2𝐺𝒏⊗

𝜕∆𝜀𝑞
𝑝

𝜕𝜺𝑡𝑟
− 2𝐺∆𝜀𝑞

𝑝
𝜕𝒏𝑡𝑟

𝜕𝜺𝑡𝑟
) : 𝑑𝜺𝑡𝑟 (A-15) 

and differentiating Eqs. (A-10) and (A-11) gives: 

𝑨 𝑑𝒙⃗⃗⃗ = −𝑑𝒓⃗⃗ = [
𝐴11 𝐴12
𝐴21 𝐴22

] {
𝑑∆𝜀𝑝

𝑝

𝑑∆𝜀𝑞
𝑝} = − {

𝑏11𝑑𝑝
𝑡𝑟 + 𝑏12𝑑𝑞

𝑡𝑟

𝑏21𝑑𝑝
𝑡𝑟 + 𝑏22𝑑𝑞

𝑡𝑟} (A-16) 
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where the values of coefficients 𝑏𝑖𝑗 (i,j=1,2) are defined in function of the expression of 𝐹𝑒𝑝 and 𝐺𝑒𝑝 (in Eq. (A-

21)). Solving the above equations gives the linear relationship between 𝑑∆𝜀𝑝
𝑝
, 𝑑∆𝜀𝑞

𝑝
, 𝑑𝑝𝑡𝑟, and 𝑑𝑞𝑡𝑟. 

𝑑∆𝜀𝑝
𝑝
= 𝑐11𝑑𝑝

𝑡𝑟 + 𝑐12𝑑𝑞
𝑡𝑟 (A-17) 

𝑑∆𝜀𝑞
𝑝
= 𝑐21𝑑𝑝

𝑡𝑟 + 𝑐22𝑑𝑞
𝑡𝑟 = 𝑞𝑡𝑟 − 2𝐺∆𝜀𝑞  

where 𝑐11 =
𝐴12𝑏21−𝑏11𝐴22

𝑑𝑒𝑡(𝑨)
； 𝑐12 =

𝐴12𝑏22−𝑏12𝐴22

𝑑𝑒𝑡(𝑨)
；  𝑐21 =

𝐴21𝑏11−𝑏21𝐴11

𝑑𝑒𝑡(𝑨)
；  𝑐22 =

𝐴21𝑏12−𝑏22𝐴11

𝑑𝑒𝑡(𝑨)
;   𝑑𝑒𝑡 (𝑨) =

𝐴11𝐴22 − 𝐴12𝐴21. 

Finally, the consistent tangent modulus ℂ𝑒𝑝 writes (Zeng et al., 2020): 

ℂ𝑒𝑝 = ℂ𝑒 − 𝑐11𝐾
2𝜹⊗ 𝜹 − 2𝑐12𝐾𝐺𝜹⊗𝒏𝑡𝑟 − 2𝑐21𝐾𝐺𝒏

𝑡𝑟⊗𝜹− 4𝐺2𝑐22𝒏
𝑡𝑟⊗𝒏𝑡𝑟

−
4𝐺2∆𝜀𝑞

𝑝

𝑞𝑡𝑟
(
3

2
𝕂 − 𝒏𝑡𝑟⊗𝒏𝑡𝑟) 

(A-18) 

where the fourth-order deviatoric identity tensor (projection tensor) 𝕂 writes, in indicial notation, K𝑖𝑗𝑘𝑙 = I𝑖𝑗𝑘𝑙 −

J𝑖𝑗𝑘𝑙  with the fourth-order symmetric identity tensor I𝑖𝑗𝑘𝑙 =
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) and the fourth-order volumetric 

(spherical) identity tensor J𝑖𝑗𝑘𝑙 =
1

2
𝛿𝑖𝑗𝛿𝑘𝑙. 

Eventually, for 𝐹𝑒𝑝 and 𝐺𝑒𝑝 given by Eqs. (6-15) and (6-18), and their hardening functions 𝛼𝑝 and 𝛽𝑝 from Eqs. 

(6-16) and (6-19), the expressions of the coefficients of 𝐴𝑖𝑗 and 𝑏𝑖𝑗 are given by: 

𝐴11 =
𝜕𝑟1

𝜕∆𝜀𝑝
𝑝 = 1 ;   𝐴12 =

𝜕𝑟1

𝜕∆𝜀𝑞
𝑝 = −𝛽𝑝(𝜀𝑞

𝑝
) + ∆𝜀𝑞

𝑝 𝜕𝛽
𝑝(𝜀𝑞

𝑝
)

𝜕∆𝜀𝑞
𝑝  ; 

𝐴21 =
𝜕𝑟2

𝜕∆𝜀𝑝
𝑝 = −𝐾𝛼𝑝(𝜀𝑞

𝑝
) ;   𝐴22 =

𝜕𝑟2

𝜕∆𝜀𝑞
𝑝 = −2𝐺 + (𝑝𝑡𝑟 − 𝐾∆𝜀𝑝

𝑝
− 𝑐0)

𝜕𝛼𝑝(𝜀𝑞
𝑝
)

𝜕∆𝜀𝑞
𝑝  ; 

(A-19) 

𝜕𝛼𝑝(𝜀𝑞
𝑝
)

𝜕∆𝜀𝑞
𝑝 = 𝑏(𝛼𝑚

𝑝
− 𝛼0

𝑝
) 𝑒

−𝑏(𝜀𝑞;𝑛
𝑝
+∆𝜀𝑞

𝑝
)
 ;  

𝜕𝛽𝑝(𝜀𝑞
𝑝
)

𝜕∆𝜀𝑞
𝑝 = 𝑏′(𝛽𝑚

𝑝
− 𝛽0

𝑝
) 𝑒

−𝑏′(𝜀𝑞;𝑛
𝑝
+∆𝜀𝑞

𝑝
)
 (A-20) 

𝑏11 =
𝜕𝑟1

𝜕𝑝𝑡𝑟
= 0;  𝑏12 =

𝜕𝑟1

𝜕𝑞𝑡𝑟
= 0;   𝑏21 =

𝜕𝑟2

𝜕𝑝𝑡𝑟
= 𝛼𝑝(𝜀𝑞

𝑝
);   𝑏22 =

𝜕𝑟2

𝜕𝑞𝑡𝑟
= 1 (A-21) 
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Appendix B Viscoplastic stress update 

The procedures for updating the viscoplastic stress in the clay aggregates is defined hereafter. As previously, we drop 

the subscript 𝑛 + 1 of the variable at time 𝑡𝑛+1 for brevity of notation. During a time interval ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 from 

times 𝑡𝑛 to 𝑡𝑛+1, the viscoplastic rate equations (6-26) and (6-29) are defined in incremental forms as: 

∆𝜺𝑣𝑝 = ∆𝑡 [(1 − 𝜃)𝜺̇𝑡𝑛
𝑣𝑝
+ 𝜃𝜺̇𝒗𝒑] (B-1) 

∆𝛾𝑣𝑝 = ∆𝑡 [(1 − 𝜃)𝛾̇𝑡𝑛
𝑣𝑝
+ 𝜃𝛾̇𝑣𝑝] (B-2) 

where 𝜃 is an integration parameter ranging from 0 to 1. 𝜃 = 0 corresponds to an explicit Euler time integration 

scheme and 𝜃 = 1 to an implicit Euler scheme.  

For a viscoplastic model like Eq.(6-29), the stress tensor and the hardening variable at time 𝑡 = 𝑡𝑛+1 can be written 

as: 

𝝈 = 𝝈𝑡𝑟 − ℂ𝑒: ∆𝜺𝒗𝒑 = 𝝈𝑡𝑟 −
∆𝑡

𝜂
ℂ𝑒: (𝐹𝑛 𝑒−𝑘𝛾

𝑣𝑝
 
𝜕𝐺𝑣𝑝
𝜕𝝈

) (B-3) 

𝛾𝑣𝑝 = 𝛾𝑡𝑛
𝑣𝑝
+ ∆𝛾

𝑣𝑝
= 𝛾𝑡𝑛

𝑣𝑝
+ ∆𝑡 𝛾̇𝑣𝑝 (B-4) 

where ℂ𝑒 is the fourth-order elastic stiffness tensor; 𝝈𝑡𝑟 = 𝝈𝑡𝑛 + ℂ
𝑒: ∆𝜺 is the elastic stress predictor at time 𝑡 =

𝑡𝑛+1; ⟨
𝐹𝑣𝑝

𝜎𝑟
⟩
𝑛

 is replaced by 𝐹𝑛 = ⟨
𝐹𝑣𝑝

𝜎𝑟
⟩
𝑛

 for writing simplicity. The residual equations based on Eqs. (B-3) and (B-

4) are written as follows: 

𝒓1 = 𝝈 − 𝝈
𝑡𝑟 +

∆𝑡

𝜂
ℂ𝑒: (𝐹𝑛 e−𝑘𝛾

𝑣𝑝 𝜕𝐺𝑣𝑝

𝜕𝝈
) (B-5) 

𝑟2 = 𝛾
𝑣𝑝 − 𝛾𝑡𝑛

𝑣𝑝
−
∆𝑡

𝜂
(𝐹𝑛 e−𝑘𝛾

𝑣𝑝
) (B-6) 

Symbolically, Eq. (B-5) is a tensor equation, but we can assume it to be vectorised so that the total residual vector 

may be defined as 𝒓⃗⃗ = {𝒓1  𝑟2}T, where 𝒙⃗⃗⃗ = {𝝈 𝛾𝑣𝑝}
T
 is the vectorised set of unknowns.  

To find a solution 𝒙⃗⃗⃗′ that cancels the residuals such that 𝒓⃗⃗(𝒙⃗⃗⃗′) = 𝟎⃗⃗⃗, the Newton-Raphson method is used to solve 

the equations and the following Jacobian matrix 𝑨 is needed in each iteration: 

𝑨 = [
𝑨11 𝑨⃗⃗⃗12

𝑨⃗⃗⃗21
𝑇 𝐴22

] =

[
 
 
 
 
𝜕𝒓1

𝜕𝝈

𝜕𝒓1

𝜕𝛾𝑣𝑝

𝜕𝑟2
𝜕𝜎

𝜕𝑟2
𝜕𝛾𝑣𝑝]

 
 
 
 

 (B-7) 
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Note that 𝑨11 is a 4 × 4 submatrix for full 2D applications, 𝑨⃗⃗⃗12 and 𝑨⃗⃗⃗21
𝑇  are column and row vectors, and 𝐴22 is 

a scalar. The elements in the matrix 𝑨 include: 

𝑨11 =
𝜕𝒓1

𝜕𝝈
= 𝕀 +

∆𝑡

𝜂
ℂ𝑒: [𝑒−𝑘𝛾

𝑣𝑝
(𝐹𝑛

𝜕𝐺𝑣𝑝
2

𝜕2𝝈
+
𝜕𝐹𝑛

𝜕𝝈
⊗
𝜕𝐺𝑣𝑝
𝜕𝝈

)] (B-8) 

𝑨⃗⃗⃗12 =
𝜕𝒓1

𝜕𝛾𝑣𝑝
=
∆𝑡

𝜂
ℂ𝑒: [−𝑘 𝑒−𝑘𝛾

𝑣𝑝
𝐹𝑛 (

3𝒔

2𝑞
+
𝛼𝑣𝑝

2
𝜹)] (B-9) 

𝑨⃗⃗⃗21 =
𝜕𝑟2
𝜕𝝈

=
∆𝑡

𝜂
(−𝑒−𝑘𝛾

𝑣𝑝 𝜕𝐹𝑛

𝜕𝝈
) (B-10) 

𝐴22 =
𝜕𝑟2
𝜕𝛾𝑣𝑝

= 1 +
∆𝑡

𝜂
(𝑘 𝑒−𝑘𝛾

𝑣𝑝
𝐹𝑛) (B-11) 

where 𝕀  is the fourth-order symmetric unit tensor writes I𝑖𝑗𝑘𝑙 =
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) . The initial values of the 

unknows at the beginning of the iteration correspond to the converged solutions at the last time step in implicit 

method (or to the results calculated by the explicit method in the current time step). The update of the unknowns after 

the i-1th iteration then writes: 

𝒙⃗⃗⃗𝑖 = 𝒙⃗⃗⃗𝑖−1 − (𝑨𝑖−1)
−1
𝒓⃗⃗𝑖−1 (B-12) 

According to the chain rule, the updated algorithm viscoplastic tangent modulus ℂ𝑣𝑝 at time 𝑡𝑛+1 is calculated by: 

ℂ𝑣𝑝 = (𝑨11
′ )

−1
: ℂ𝑒 (B-13) 

where 𝑨11
′  is the value of 𝑨11 evaluated at the converged local configuration 𝒙⃗⃗⃗′. 

Another possibility is to adapt the proposal of Owen & Hinton, a direct implicit scheme. We start with: 

 𝜺̇
𝑣𝑝
≈ 𝜺̇𝑡𝑛

𝑣𝑝
+ (

𝜕𝜺̇𝑣𝑝

𝜕𝝈
)
𝑡𝑛

𝝈𝑡𝑛 + (
𝜕𝜺̇𝑣𝑝

𝜕𝛾𝑣𝑝
)
𝑡𝑛

𝛥𝛾𝑡𝑛 (B-14) 

Denoting ℍ𝑡𝑛 = (
𝜕𝜺̇𝑣𝑝

𝜕𝝈
)
𝑡𝑛

and noticing that: 

𝜕𝜺̇𝑣𝑝

𝜕𝛾𝑣𝑝
= −𝑘

1

𝜂
〈
𝐹 (𝝈)

𝜎𝑟
〉𝑚 𝑒−𝑘𝛾 (

3

2𝑞
𝒔 +

𝛼𝑣
3
𝑰) = −𝑘𝜺̇𝑣𝑝 (B-15) 

we have: 
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𝜺̇
𝑝
≈ (1 − 𝑘𝛥𝛾𝑡𝑛)𝜺̇𝑡𝑛

𝑝
+ℍ𝑡𝑛𝛥𝝈𝑡𝑛 (B-16) 

Substitution into Eq. (B-3) leads to: 

𝛥𝝈𝑡𝑛 = ℂ̂𝑡𝑛 [𝛥𝜺𝑡𝑛 − 𝛥𝑡(1 − 𝜃𝑘𝛥𝛾𝑡𝑛)] 𝜺̇𝑡𝑛
𝑝

 (B-17) 

ℂ̂𝑡𝑛 ≝ [𝕀 + 𝜃𝛥𝑡ℂ𝑒ℍ𝑡𝑛]
−1
ℂ𝑒 (B-18) 
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Appendix C Verification of double-phase flow model at REA scale 

In the main text of the thesis, the gas flow is not considered, the gas degrees of freedom is therefore not added into 

the model. When it comes to the BVP with controlled gas pressure, it is necessary to consider adding a degree of 

freedom of gas at the node of the fluid element (Figure C-1). Inspired by the work of Bertrand (2020), we developed 

a simplified double phase flow model at REA scale and then verified the code, focusing on the static condensation 

of tangent matrix. 

 

Figure C-1 Hydraulic interface element (orange) with two integration points in its equivalent mechanical interface 

element (gray). 

In the case of neglecting water vapour (with Kelvin’s law) and dissolved air (with Henry’s law), several equations 

related to gas kinematics in the mesoscale model are the same with the water part and will not be detailed here. These 

equations include: 

Eq. (5-10) → separation of scales. 

Eq. (5-14) → periodic boundary condition for fluid pressure. 

Eq. (5-16) → periodic boundary condition for boundary fluid mass flux. 

Eq. (5-20) → mass balance equation of fluid. 

Eq. (5-31) → fluid flux. 

Eq. (5-33) → fluid content mass. 

Mass balance equations of water and gas 

When considering gas, the effective stress 𝜎𝑖𝑗
′  at each solid node is defined by the total stress reduced by the fluid 

pressures weighted by the degree of saturation of each phase: 

𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 + [𝑆𝑟𝑝𝑤 + (1 − 𝑆𝑟)𝑝𝑔]𝛿𝑖𝑗 (C-1) 

Based on van Genuchten (vG) model (Mualem, 1976; van Genuchten, 1980), the relative permeabilities of water 

𝑘𝑟𝑤 and gas 𝑘𝑟𝑔 are introduced to revise Darcy equation. 𝑘𝑟𝑤 is formulated by Eq. (8-4) and 𝑘𝑟𝑔 writes: 

𝑘𝑟𝑔 = √1 − 𝑆𝑤[1 − 𝑆𝑤
1 𝜆⁄ ]

2𝜆
 (C-2) 

For the gaseous phase, the ideal gas law is assumed. The state equations of ideal gas (Clapeyron’s equation) and 

Dalton’s law yield: 

𝜌𝑔 =
𝑀𝑔

𝑅𝑇
𝑝𝑔 (C-3) 
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where 𝜌𝑔 is the gas density of dry air, 𝑝𝑔 is the gas pressure, 𝑀𝑔 is the molar mass of gas, 𝑅 is the universal gas 

constant (8.3143 [J/mol.K]), 𝑇 is the absolute temperature. An average value of 25 [℃] (𝑇 = 298.15 [ K]) is adopted. 

Figure C-2 shows the concept drawing of pore channel network with periodic boundary. 𝜛 represents the mass flux 

of water or gas in each channel. The mass balance equations in the intersection points of the channel p5 allows to 

build the following system of equations: 

[𝐺𝑤𝑤]{𝛿𝑝𝑤
𝑚} = {Σ𝜛𝑤} (C-4) 

with 

[𝐺𝑤𝑤] =
𝑘𝑟𝑤𝜌𝑤
𝜇𝑤

[
 
 
 
 
 
𝜙𝐴 −𝜙𝐴

𝜙𝐵 + 1 −𝜙𝐵

−𝜙𝐴 −𝜙𝐵 𝜙𝐴 + 𝜙𝐵 + 𝜙𝐶 +𝜙𝐷 −𝜙𝐶 −𝜙𝐷

−𝜙𝐶 𝜙𝐶

−𝜙𝐷 𝜙𝐷 ]
 
 
 
 
 

 (C-5) 

where Σ𝜛𝑤 indicates the water mass balance of channels connected to the intersections. For the channel network 

shown in Figure C-2, we can write: 

𝑘𝑟𝑤𝜌𝑤
𝜇𝑤

[
 
 
 
 
 
𝜙𝐴 −𝜙𝐴

𝜙𝐵 + 1 −𝜙𝐵

−𝜙𝐴 −𝜙𝐵 𝜙𝐴 + 𝜙𝐵 + 𝜙𝐶 + 𝜙𝐷 −𝜙𝐶 −𝜙𝐷

−𝜙𝐶 𝜙𝐶

−𝜙𝐷 𝜙𝐷 ]
 
 
 
 
 

{
  
 

  
 𝑝𝑤

(1)

𝑝𝑤
(2)

𝑝𝑤
(3)

𝑝𝑤
(4)

𝑝𝑤
(5)
}
  
 

  
 

=

{
  
 

  
 Σ𝜛𝑤

(1)

Σ𝜛𝑤
(2)
+ 𝑝𝑒𝑛

Σ𝜛𝑤
(3)

Σ𝜛𝑤
(4)

Σ𝜛𝑤
(5)

}
  
 

  
 

 (C-6) 

 

Figure C-2 Schematic diagram of hydraulic channel network (𝜛 represents the mass flux of each channel). 

Similarly, for the gas part: 

[𝐺𝑔𝑔]{𝛿𝑝𝑔
𝑚} = {Σ𝜛𝑔} (C-7) 

[𝐺𝑔𝑔] =
𝑘𝑟𝑔𝜌𝑔

𝜇𝑔

[
 
 
 
 
 
𝜙𝐴 −𝜙𝐴

𝜙𝐵 + 1 −𝜙𝐵

−𝜙𝐴 −𝜙𝐵 𝜙𝐴 + 𝜙𝐵 + 𝜙𝐶 + 𝜙𝐷 −𝜙𝐶 −𝜙𝐷

−𝜙𝐶 𝜙𝐶

−𝜙𝐷 𝜙𝐷 ]
 
 
 
 
 

 (C-8) 
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and 

𝑘𝑟𝑔𝜌𝑔

𝜇𝑔

[
 
 
 
 
 
𝜙𝐴 −𝜙𝐴

𝜙𝐵 + 1 −𝜙𝐵

−𝜙𝐴 −𝜙𝐵 𝜙𝐴 + 𝜙𝐵 +𝜙𝐶 + 𝜙𝐷 −𝜙𝐶 −𝜙𝐷

−𝜙𝐶 𝜙𝐶

−𝜙𝐷 𝜙𝐷 ]
 
 
 
 
 

{
 
 
 

 
 
 𝑝𝑔

(1)

𝑝𝑔
(2)

𝑝𝑔
(3)

𝑝𝑔
(4)

𝑝𝑔
(5)
}
 
 
 

 
 
 

=

{
 
 
 

 
 
 Σ𝜛𝑔

(1)

Σ𝜛𝑔
(2) + 𝑝𝑒𝑛

Σ𝜛𝑔
(3)

Σ𝜛𝑔
(4)

Σ𝜛𝑔
(5)

}
 
 
 

 
 
 

 (C-9) 

Static condensation of tangent matrix 

In order to obtain the macroscopic stiffness matrix, we first build an empty matrix framework: 

[
 
 
 
 
[](10×10) [](10×𝑛𝑚) [](10×𝑛𝑤) [](10×𝑛𝑔)

[](𝑛𝑚×10) [](𝑛𝑚×𝑛𝑚) [](𝑛𝑚×𝑛𝑤) [](𝑛𝑚×𝑛𝑔)

[](𝑛𝑤×10) [](𝑛𝑤×𝑛𝑚) [](𝑛𝑤×𝑛𝑤) [](𝑛𝑤×𝑛𝑔)

[](𝑛𝑔×10) [](𝑛𝑔×𝑛𝑚) [](𝑛𝑔×𝑛𝑤) [](𝑛𝑔×𝑛𝑔) ]
 
 
 
 

{
 
 

 
 
𝛿𝑈(10)
𝛿𝑢𝑚(𝑛𝑚)
𝛿𝑝̂𝑤

𝑚
(𝑛𝑤)

𝛿𝑝̂𝑔
𝑚
(𝑛𝑔)}

 
 

 
 

=

{
 
 

 
 

[](10)
𝛿𝑓𝑚(𝑛𝑚)

𝛿𝑞𝑤
𝑉
(𝑛𝑤)

𝛿𝑞𝑔
𝑉
(𝑛𝑔) }

 
 

 
 

 (C-10) 

where 𝛿𝑈(10) contains infinitesimal variations of macroscale variables. Note that the variations of microscale water 

and gas pressures are decomposed into two parts in above matrix equation: 

𝛿𝑝𝑤
𝑚 = 𝛿𝑝𝑤 + 𝛿𝑝̂𝑤; and 𝛿𝑝𝑔

𝑚 = 𝛿𝑝𝑔 + 𝛿𝑝̂𝑔 (C-11) 

in which 𝑝̂ represents the micromechanical fluctuation. 

The system of equations is ill-posed for now. First, the partial derivatives equations describing the variations of 

responses are derived for fluid fluxes, specific fluid mass and nodal forces 𝑓𝑚. Then, the dependent degrees of 

freedom are eliminated through periodic boundary condition and homogenisation of stress and fluid flux. In the 

following, the derivations of partial derivatives equations are given. 

• Partial derivatives for the variation of fluid fluxes 

The variation of fluid fluxes of water and gas 𝛿𝑞𝑚 is split into two parts, the volumetric part 𝛿𝑞𝑚,𝑉 corresponding 

to 𝛿𝑝̂  and 𝛿𝑢𝑚 , and rheological part 𝛿𝑞𝑅  corresponding to 𝛿𝑝 . The volumetric part depends on the REA 

configuration and pressure gradients whereas the rheological part is only dependent on macroscale fluid pressures. 

The volumetric part: 

𝛿𝑞𝑤
𝑚,𝑉 = [𝐺𝑤𝑚]{𝛿𝑢

𝑚} + [𝐺𝑤𝑤]{𝛿𝑝̂𝑤} + [𝐺𝑤𝑔]{𝛿𝑝̂𝑔} (C-12) 

𝛿𝑞𝑔
𝑚,𝑉 = [𝐺𝑔𝑚]{𝛿𝑢

𝑚} + [𝐺𝑔𝑤]{𝛿𝑝̂𝑤} + [𝐺𝑔𝑔]{𝛿𝑝̂𝑔} (C-13) 

The element matrix [𝐺𝑤𝑚] holds for the following relation: 

{𝛿𝑞𝑤
𝑚,𝑉}

𝑒
= [𝐺𝑤𝑚]

𝑒{𝛿𝑈𝑁𝑜𝑑𝑒} (C-14) 
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The relation between interface fluid mass flux 𝜛𝑤
𝑙  and the residual mass balance at the interface hydraulic nodes 

{𝑞𝑤
𝑚,𝑉}

𝑒
 writes: 

{𝑞𝑤
𝑚,𝑉}

𝑒
= [

−1
1
]𝜛𝑤

𝑙  (C-15) 

considering 

𝜛𝑤
𝑙 =

𝑘𝑟𝑤𝜌𝑤
𝜇𝑤

𝜙𝑙[𝑝𝑤
𝑚(𝑠2) − 𝑝𝑤

𝑚(𝑠1)] (C-16) 

with 

𝛷𝑙 = (∫
1

𝜅(𝑠)
𝑑𝑠

𝑠2
𝑠1

)
−1
= (∫

1

𝜅(𝜉1)
𝐽𝑑𝜉

+1

𝜉=−1
)
−1

; 𝜅(𝑠) =
Δ𝑢ℎ

3

12
 (C-17) 

Therefore, we need to calculate the partial derivative 
𝜕𝜛𝑤

𝑙

𝜕𝑈𝑁𝑜𝑑𝑒
: 

𝜕𝜛𝑤
𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

=
𝑘𝑟𝑤𝜌𝑤
𝜇𝑤

[𝑝𝑤
𝑚(𝑠2) − 𝑝𝑤

𝑚(𝑠1)]
𝜕𝛷𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

+
𝜕𝑘𝑟𝑤

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

𝜛𝑤
𝑙

𝑘𝑟𝑤
 (C-18) 

in which 

𝜕𝛷𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

= −(𝛷𝑙)
2 𝜕

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒 (∫

1

𝜅(𝜉)
𝐽Γ𝛶𝑑𝜉

+1

𝜉=−1

)

−1

=∑36(𝛷𝑙)
2
Δ𝑢ℎ(𝜉)

−4𝐽Γ𝛶𝑊𝑖

𝑛𝑝𝑖

𝑖=1

𝜕Δ𝑢ℎ(𝜉)

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

 (C-19) 

Finally, we can obtain: 

[𝐺𝑤𝑚]
𝑒 =

𝑘𝑟𝑤𝜌𝑤
𝜇𝑤

(𝑝𝑤
𝑚(𝑠2) − 𝑝𝑤

𝑚(𝑠1)) [
−1
1
]
𝜕𝛷𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

+
𝜕𝑘𝑟𝑤

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

𝜛𝑤
𝑙

𝑘𝑟𝑤
 (C-20) 

If m equals to 0 which means that the gas entry pressure is a constant, the last term in above equation will vanish. 

Using the chain rule, 
𝜕𝑘𝑟𝑤

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒 can be obtained by 

𝜕𝑘𝑟𝑤

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒 =

𝜕𝑘𝑟𝑤

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑝𝑒

𝜕𝑝𝑒

𝜕∆𝑢ℎ
𝑚𝑎𝑥

𝜕∆𝑢ℎ
𝑚𝑎𝑥

𝜕∆𝑢ℎ

𝜕∆𝑢ℎ

𝜕∆𝑢𝑛

𝜕∆𝑢𝑛

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒. 

The matrix [𝐺𝑤𝑤]
𝑒 has been defined in Eq. (C-5) when solving the fluid system of equations. The matrix [𝐺𝑤𝑔]

𝑒
 

is null if the vapour is not considered. 

For the gaseous part, 

[𝐺𝑔𝑚]
𝑒
= [

−1
1
]
𝜕𝜛𝑔

𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

 (C-21) 

where 
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𝜕𝜛𝑔
𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

=
𝑘𝑟𝑔𝜌𝑔

𝜇𝑔
(𝑝𝑔

𝑚(𝑠2) − 𝑝𝑔
𝑚(𝑠1))

𝜕𝛷𝑙

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

+
𝜕𝑘𝑟𝑔

𝜕𝑈(𝑖)
𝑁𝑜𝑑𝑒

𝜛𝑔
𝑙

𝑘𝑟𝑔
 (C-22) 

The matrix [𝐺𝑔𝑔] has been defined in Eq. (C-8) when solving the gasous system of equations. The matric [𝐺𝑔𝑤] is 

null if the vapour is not considered. 

The rheological part: 

In a matric form, the rheological parts of fluid fluxes variation write:  

𝛿𝑞𝑤
𝑚,𝑅 = [𝑀𝑤𝑤

1 ]𝛿𝑝𝑤 + [𝑀𝑤𝑔
1 ]𝛿𝑝𝑔 (C-23) 

𝛿𝑞𝑔
𝑚,𝑅 = [𝑀𝑔𝑤

1 ]𝛿𝑝𝑤 + [𝑀𝑔𝑔
1 ]𝛿𝑝𝑔 (C-24) 

The variation of this part only depends on microscale nodal displacements and macroscale fluid pressures, easily 

obtain: 

[𝑀𝑤𝑤
1 ] = (

1

𝑘𝑤
+

1

𝑘𝑟𝑤

𝜕𝑘𝑟𝑤

𝜕𝑝𝑤
) [
𝑞𝑤1
𝑞𝑤2

]; [𝑀𝑤𝑔
1 ] =

1

𝑘𝑟𝑤

𝜕𝑘𝑟𝑤

𝜕𝑝𝑔
[
𝑞𝑤1
𝑞𝑤2

] (C-25) 

[𝑀𝑔𝑔
1 ] = (

𝜌𝑔0

𝜌𝑔

1

𝑝𝑔0
+

1

𝑘𝑟𝑔

𝜕𝑘𝑟𝑔

𝜕𝑝𝑔
) [
𝑞𝑔1
𝑞𝑔2

]; [𝑀𝑔𝑤
1 ] =

1

𝑘𝑟𝑔

𝜕𝑘𝑟𝑔

𝜕𝑝𝑤
[
𝑞𝑔1
𝑞𝑔2

] 
(C-26) 

• Partial derivatives for the variation of specific fluid mass 

The water mass 𝑀𝑤 and the gas mass 𝑀𝑔 write: 

𝑀𝑤 = 𝑆𝑤𝜌𝑤𝑉𝑡𝑜𝑡; 𝑀𝑔 = (1 − 𝑆𝑤)𝜌𝑔𝑉𝑡𝑜𝑡 (C-27) 

The variation of them writes: 

𝛿𝑀𝑤 = 𝛿𝑆𝑤𝜌𝑤𝑉𝑡𝑜𝑡 + 𝑆𝑤𝛿𝜌𝑤𝑉𝑡𝑜𝑡 + 𝑆𝑤𝜌𝑤𝛿𝑉𝑡𝑜𝑡 (C-28) 

𝛿𝑀𝑔 = 𝛿(1 − 𝑆𝑤)𝜌𝑤𝑉𝑡𝑜𝑡 + (1 − 𝑆𝑤)𝛿𝜌𝑤𝑉𝑡𝑜𝑡 + (1 − 𝑆𝑤)𝜌𝑤𝛿𝑉𝑡𝑜𝑡 (C-29) 

In above equations, the terms related to the variation of total porous volume 𝛿𝑉𝑡𝑜𝑡 belong to the volumetric parts, 

and the other terms belong to the rheological parts. Therefore, for the rheological parts, the matrices required by static 

condensation include: 

 𝛿𝑀𝑤
 𝑅 = [𝑀𝑤𝑤

2 ]{𝛿𝑝𝑤} + [𝑀𝑤𝑔
2 ]{𝛿𝑝𝑔} (C-30) 

 𝛿𝑀𝑔
 𝑅 = [𝑀𝑔𝑔

2 ]{𝛿𝑝𝑔} + [𝑀𝑔𝑤
2 ]{𝛿𝑝𝑤} (C-31) 

The matrices derivation is straightforward: 

[𝑀𝑤𝑤
2 ] = (

1

𝑘𝑤
+

1

𝑆𝑤

𝜕𝑆𝑤

𝜕𝑝𝑤
)𝑀𝑤; [𝑀𝑤𝑔

2 ] =
1

𝑆𝑤

𝜕𝑆𝑤

𝜕𝑝𝑔
𝑀𝑤 (C-32) 
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[𝑀𝑔𝑔
2 ] = (

−1

1−𝑆𝑤

𝜕𝑆𝑤

𝜕𝑝𝑔
)𝑀𝑔; [𝑀𝑔𝑤

2 ] =
−1

1−𝑆𝑤

𝜕𝑆𝑤

𝜕𝑝𝑤
𝑀𝑔 (C-33) 

For the volumetric parts, the matrices required by static condensation include: 

𝛿𝑀𝑤
𝑉 = [𝑉𝑤

1]{𝛿𝑢𝑚}; 𝛿𝑀𝑔
𝑉 = [𝑉𝑔

1]{𝛿𝑢𝑚} (C-34) 

The matrices derivation needs the relation between the variation of hydraulic opening δΔ𝑢ℎ and the variation of 

nodal coordinates 𝛿𝑈𝑁𝑜𝑑𝑒: 

δΔ𝑢ℎ = [0
𝜕Δ𝑢ℎ
𝜕Δ𝑢𝑛

] [𝑇𝐼][𝐵𝐼]{𝛿𝑈𝑁𝑜𝑑𝑒} (C-35) 

Therefore, the element matrices needed for volumetric parts are formulated as: 

[𝑉𝑤
1]𝑒 =

1

Ω𝑅𝐸𝐴
∑ (𝜌𝑤𝑆𝑤 +

𝑀𝑤

𝑆𝑤

𝜕𝑆𝑤

𝜕Δ𝑢ℎ
) [0

𝜕Δ𝑢ℎ

𝜕Δ𝑢𝑛
] [𝑇𝐼][𝐵𝐼]𝐽Γ𝛶𝑊𝑖𝑛𝑝𝑖

𝑖=1    (C-36) 

[𝑉𝑔
1]
𝑒
=

1

Ω𝑅𝐸𝐴
∑(𝜌𝑔(1 − 𝑆𝑤) +

𝑀𝑤
(1 − 𝑆𝑤)

𝜕𝑆𝑤
𝜕Δ𝑢ℎ

) [0
𝜕Δ𝑢ℎ
𝜕Δ𝑢𝑛

] [𝑇𝐼][𝐵𝐼]𝐽Γ𝛶𝑊𝑖

𝑛𝑝𝑖

𝑖=1

 (C-37) 

The global matrices [𝑉𝑤
1] and [𝑉𝑔

1] are obtained by by assembly of above element matrices. 

• Partial derivatives for the variation of nodal forces 

The variation of microscale nodal residual forces 𝛿𝑓𝑚 depends on the microscale nodal displacement 𝛿𝑢𝑚, and 

macroscale water pressure 𝛿𝑝𝑤 and gas pressures 𝛿𝑝𝑔: 

𝛿𝑓𝑚 = [𝐺𝑚𝑚]{𝛿𝑢
𝑚} + [𝐺𝑚𝑤]{𝛿𝑝𝑤} + [𝐺𝑚𝑔]{𝛿𝑝𝑔} (C-38) 

The matrix [𝐺𝑚𝑚] has been given in Eqs. (5-60)-(5-62) for constant fluid pressures and gas entry pressure. If the 

latter is not a constant, the term −𝑝𝑐
𝜕𝑆𝑤

𝜕{𝑈𝑁𝑜𝑑𝑒}
 should be included in [𝐺𝑚𝑚]. 

The derivation of the matrices [𝐺𝑚𝑤] and [𝐺𝑚𝑔] need to the consider the variation of water (𝛿𝑓𝑝𝑤 ) and gas 

pressures (𝛿𝑓𝑝𝑔) acting normally on the solid grain boundaries, considering the formulation of effective stress Eq. 

(8-1), we write: 

{𝛿𝑓𝑝𝑤} = [
0

−𝛿(𝑆𝑤𝑝𝑤)
]; {𝛿𝑓𝑝𝑔} = [

0

−𝛿 ((1 − 𝑆𝑤)𝑝𝑔)
] (C-39) 

Therefore, the numerical integrations of variations of fluid pressures on the residual nodal forces write: 

[𝐺𝑚𝑤]
𝑒 =∑[

𝜕𝑓𝑡
𝑝𝑤

𝜕𝑝𝑤

𝜕𝑓𝑛
𝑝𝑤

𝜕𝑝𝑤
]

𝑡

[𝑇𝐼][𝐵𝐼]𝐽Γ𝛶𝑊𝑖

𝑛𝑝𝑖

𝑖=1

 (C-40) 

[𝐺𝑚𝑔]
𝑒
=∑[

𝜕𝑓𝑡
𝑝𝑔

𝜕𝑝𝑔

𝜕𝑓𝑛
𝑝𝑔

𝜕𝑝𝑔
]

𝑡

[𝑇𝐼][𝐵𝐼]𝐽Γ𝛶𝑊𝑖

𝑛𝑝𝑖

𝑖=1

 (C-41) 
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The global matrices [𝐺𝑚𝑤] and [𝐺𝑚𝑔]are obtained by by assembly of above element matrices. 

Assembly 

The systems of equations containing variations of nodal residual forces, fluid flux and fluid mass are assembled as: 

[
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
0(4×4) 0(4×2) 0(4×1) 0(4×2) 0(4×1)

0(2×4) 0(2×2) 𝑀𝑤𝑤
1

(2×1)
0(2×2) 𝑀𝑤𝑔

1
(2×1)

0(1×4) 0(1×2) 𝑀𝑤𝑤
2

(1×1)
0(1×2) 𝑀𝑤𝑔

2
(1×1)

0(2×4) 0(2×2) 𝑀𝑔𝑤
1

(2×1)
0(2×2) 𝑀𝑔𝑔

1
(2×1)

0(1×4) 0(1×2) 𝑀𝑔𝑤
2
(1×1)

0(1×2) 𝑀𝑔𝑔
2
(1×1) ]

 
 
 
 
 
 

[
 
 
 
 
 
 
0(4×𝑛𝑚) 0(4×𝑛𝑤) 0(4×𝑛𝑔)

0(2×𝑛𝑚) 0(2×𝑛𝑤) 0(2×𝑛𝑔)

𝑉𝑤
1
(1×𝑛𝑚)

0(1×𝑛𝑤) 0(1×𝑛𝑔)

0(2×𝑛𝑚) 0(2×𝑛𝑤) 0(2×𝑛𝑔)

𝑉𝑔
1
(1×𝑛𝑚)

0(1×𝑛𝑤) 0(1×𝑛𝑔)]
 
 
 
 
 
 

[

0(𝑛𝑚×4) 0(𝑛𝑚×2) 𝐺𝑚𝑤(𝑛𝑚×1) 0(𝑛𝑚×2) 𝐺𝑚𝑔(𝑛𝑚×1)
0(𝑛𝑤×4) 0(𝑛𝑤×2) 0(𝑛𝑤×1) 0(𝑛𝑤×2) 0(𝑛𝑤×1)
0(𝑛𝑔×4) 0(𝑛𝑔×2) 0(𝑛𝑔×1) 0(𝑛𝑔×2) 0(𝑛𝑔×1)

] [

𝐺𝑚𝑚(𝑛𝑚×𝑛𝑚) 0(𝑛𝑚×𝑛𝑤) 0(𝑛𝑚×𝑛𝑔)

𝐺𝑤𝑚(𝑛𝑤×𝑛𝑚) 𝐺𝑤𝑤(𝑛𝑤×𝑛𝑤) 𝐺𝑤𝑔(𝑛𝑤×𝑛𝑔)

𝐺𝑔𝑚(𝑛𝑔×𝑛𝑚)
𝐺𝑔𝑤(𝑛𝑔×𝑛𝑤)

𝐺𝑔𝑔(𝑛𝑔×𝑛𝑔)

]

]
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
𝛿𝜀(4)
𝛿∇𝑝𝑤(2)
𝛿𝑝𝑤

𝛿∇𝑝𝑔(2)
𝛿𝑝𝑔

𝛿𝑢(𝑛𝑚)
𝑚

𝛿𝑝̂𝑤 (𝑛𝑤)
𝛿𝑝̂𝑔 (𝑛𝑔)}

 
 
 
 
 

 
 
 
 
 

=

{
 
 
 
 
 

 
 
 
 
 

0(4)

𝛿𝑞𝑤 (2)
  𝑅

𝛿𝑀̇𝑤

𝛿𝑞𝑔 (2)
𝑅

𝛿𝑀̇𝑔

𝛿𝑓(𝑛𝑚)
𝑚

𝛿𝑞𝑤 (𝑛𝑤)
𝑚,𝑉

𝛿𝑞
𝑔 (𝑛𝑔)
𝑚,𝑉

}
 
 
 
 
 

 
 
 
 
 

 

                            (C-42) 

Reduction 

By considering the periodic boundary conditions, homogenisation of responses and the nodal balance in mechanical 

and hydraulic elements, Eq. (C-42) is reduced as (see the work of van den Eijnden (2015) for details): 

[
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑍1(4×4) 0(4×2) 𝑍2(4×1) 0(4×2) 𝑍3(4×1)

𝑍4(2×4) 𝑍5(2×2) 𝑀𝑤𝑤
1

(2×1)
0(2×2) 𝑀𝑤𝑔

1
(2×1)

𝑍6(1×4) 0(1×2) 𝑀𝑤𝑤
2

(1×1)
0(1×2) 𝑀𝑤𝑔

2
(1×1)

𝑍7(2×4) 0(2×2) 𝑀𝑔𝑤
1

(2×1)
𝑍8(2×2) 𝑀𝑔𝑔

1
(2×1)

𝑍9(1×4) 0(1×2) 𝑀𝑔𝑤
2
(1×1)

0(1×2) 𝑀𝑔𝑔
2
(1×1) ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑍10(4×𝑛𝑚∗ ) 0(4×𝑛𝑤∗ ) 0(4×𝑛𝑔∗ )

𝑍11(2×𝑛𝑚∗ ) 𝑍12(2×𝑛𝑤∗ ) 𝑍13(2×𝑛𝑔∗ )

𝑉𝑤
1
(1×𝑛𝑚

∗ ) 0(1×𝑛𝑤∗ ) 0(1×𝑛𝑔∗ )

𝑍14(2×𝑛𝑚∗ ) 𝑍15(2×𝑛𝑤∗ ) 𝑍16(2×𝑛𝑔∗ )

𝑉𝑔
1
(1×𝑛𝑚

∗ )
0(1×𝑛𝑤∗ ) 0(1×𝑛𝑔∗ ) ]

 
 
 
 
 
 

[

𝑍17(𝑛𝑚∗ ×4) 0(𝑛𝑚∗ ×2) 𝐺𝑚𝑤(𝑛𝑚∗ ×1) 0(𝑛𝑚∗ ×2) 𝐺𝑚𝑔(𝑛𝑚∗ ×1)

𝑍18(𝑛𝑤∗ ×4) 𝑍19(𝑛𝑤∗ ×2) 0(𝑛𝑤∗ ×1) 𝑍20(𝑛𝑤∗ ×2) 0(𝑛𝑤∗ ×1)

𝑍21(𝑛𝑔∗×4) 𝑍22(𝑛𝑔∗×2) 0(𝑛𝑔∗×1) 𝑍23(𝑛𝑔∗×2) 0(𝑛𝑔∗×1)

] [

𝐺𝑚𝑚(𝑛𝑚∗ ×𝑛𝑚∗ ) 0(𝑛𝑚∗ ×𝑛𝑤∗ ) 0(𝑛𝑚∗ ×𝑛𝑔∗ )

𝐺𝑤𝑚(𝑛𝑤∗ ×𝑛𝑚∗ ) 𝐺𝑤𝑤(𝑛𝑤∗ ×𝑛𝑤∗ ) 𝐺𝑤𝑔(𝑛𝑤∗ ×𝑛𝑔∗ )

𝐺𝑔𝑚(𝑛𝑔∗×𝑛𝑚∗ )
𝐺𝑔𝑤(𝑛𝑔∗×𝑛𝑤∗ )

𝐺𝑔𝑔(𝑛𝑔∗×𝑛𝑔∗ )

]

]
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝛿𝜀(4)
𝛿∇𝑝𝑤(2)
𝛿𝑝𝑤

𝛿∇𝑝𝑔(2)
𝛿𝑝𝑔

𝛿𝑢(𝑛𝑚∗ )
𝑚

𝛿𝑝̂𝑤 (𝑛𝑤∗ )

𝛿𝑝̂𝑔 (𝑛𝑔∗ ) }
 
 
 
 
 

 
 
 
 
 

=

{
 
 
 
 
 

 
 
 
 
 
𝛿𝜎(4)

𝛿𝑞𝑤 (2)
  𝑅

𝛿𝑀̇𝑤

𝛿𝑞𝑔 (2)
  𝑅

𝛿𝑀̇𝑔

0(𝑛𝑚∗ )
0(𝑛𝑤∗ )
0(𝑛𝑔∗ ) }

 
 
 
 
 

 
 
 
 
 

 

             (C-43) 

Condensation 

Eq. (C-43) can be shorten as: 

[
[𝐴] [𝐵]
[𝐶] [𝐷]

] {
𝛿𝑈(10)
𝛿𝑈𝑚

} = {
𝛿𝑅(10)
0

} (C-44) 

Using the static condensation, we can finally get the systems of equation only containing the constitutive relations 

needed by macroscale computation: 

[𝐺(10×10)]{𝛿𝑈(10)} = {𝛿𝑅(10)} (C-45) 

where 𝐺(10×10)  is the macroscale stiffness matrix, obtained from static condensation by computational 

homogenisation; 𝑈(10)  contains infinitesimal variations of macroscale variables, and 𝑅(10)  includes their 

responses. 

Eq. (C-45) can be reformulated as: 
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[

𝐺(4×4)
𝑚𝑚 𝐺(4×3)

𝑚𝑤 𝐺(4×3)
𝑚𝑔

𝐺(3×4)
𝑤𝑚 𝐺(3×3)

𝑤𝑤 𝐺(3×3)
𝑤𝑔

𝐺(3×4)
𝑔𝑚

𝐺(3×3)
𝑔𝑤

𝐺(3×3)
𝑔𝑔

]

{
 
 

 
 
𝛿𝜀(4) 
𝛿𝛻𝑝𝑤 (2)
𝛿𝑝𝑤 

𝛿𝛻𝑝𝑔 (2)
𝛿𝑝𝑔 }

 
 

 
 

=

{
 
 

 
 
𝛿𝜎(4) 
𝛿𝑞𝑤 (2) 
𝛿𝑀𝑤
𝛿𝑞𝑔 (2) 
𝛿𝑀𝑔 }

 
 

 
 

 (C-46) 

Verification of tangent operators 

The tangent stiffness matrix  [𝐺(7x7)] in Eq. (C-46) obtained by computational homogenization through static 

condensation (SC) for full hydromechanical problems contains the linearization of the constitutive relations at 

microscale, and serves as the tangent operator for the macroscale FEM computation. To assess the quality of the 

tangent operator for double-phase flow model at REA scale, another tangent operator calculated by numerical 

perturbation (NP) method is chosen and the relative error of each individual components is taken as the evaluation 

index:  ∆𝐺𝑖𝑗 = ‖
𝐺𝑖𝑗
𝑆𝐶

𝐺𝑖𝑗
𝑁𝑃 − 1‖ . Different values of ∈𝑚  and ∈ℎ  are respectively used for perturbation of mechanical and 

hydraulic variables.  

In the case without water vapour and dissolved gas (i.e. 𝐺𝑤𝑔 = [0], 𝐺𝑔𝑤 = [0]), three tangent operators related to 

gaseous part in Eq. (C-46) need to be verified, including 𝐺𝑚𝑔, 𝐺𝑔𝑚 and 𝐺𝑔𝑔. The mesostructure REA50_2 (Figure 

7-8) is chosen and subjected to a biaxial compression loading path until the axial strain reached 4.0% with 𝑝𝑤 = 5 

MPa, 𝑝𝑔 = 10 MPa, ∂𝑝𝑤/𝑔 ∂𝑥1 = 1⁄  MPa/m/s and ∂𝑝𝑤/𝑔 ∂𝑥2 = 10⁄  MPa/m/s at the same time, at which point full 

damage occurs in REA. The parameters used for unsaturated part are taken from Table 8-1 and Table 8-2. The 

comparisons are shown in Figure C-3. It can be seen that 𝐺𝑚𝑔 have a good consistency under small perturbation 

values. However, several terms related to the variation of the macroscale fluid flux in 𝐺𝑔𝑚 show a high inconsistency 

at different perturbation values. The same inconsistency can also be observed in 𝐺𝑔𝑔 . van den Eijnden (2015) 

explains that this is due to the strong dependence of the hydraulic field on the mechanical field, which causes a 

precision problem in the determination of the hydraulic flux. 

   

Figure C-3. Relative error in three tangent operator terms obtained from static condensation and numerical 

perturbation with different perturbation values. 
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