
HAL Id: tel-04552933
https://theses.hal.science/tel-04552933v1

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulations hémodynamiques pour l’IRM : contrôle
qualité, optimisation et intégration à la pratique clinique

Morgane Garreau

To cite this version:
Morgane Garreau. Simulations hémodynamiques pour l’IRM : contrôle qualité, optimisation et inté-
gration à la pratique clinique. Imagerie médicale. Université de Montpellier, 2023. Français. �NNT :
2023UMONS040�. �tel-04552933�

https://theses.hal.science/tel-04552933v1
https://hal.archives-ouvertes.fr


THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Mathématiques et Modélisation

École doctorale : Information, Structures, Systèmes

Unité de recherche : Institut Montpelliérain Alexander Grothendieck

Simulations hémodynamiques pour l’IRM :
contrôle qualité, optimisation et intégration à

la pratique clinique

Simulations hémodynamiques pour l’IRM :
contrôle qualité, optimisation et intégration à

la pratique clinique

Présentée par MORGANE GARREAU
Le 21/11/2023

Sous la direction de FRANCK NICOUD
et SIMON MENDEZ

Devant le jury composé de

FRANCK NICOUD Professeur, IMAG, Univ. Montpellier Directeur

SIMON MENDEZ Chargé de recherche, CNRS, Univ. Montpellier Co-directeur

SEBASTIAN KOZERKE Professeur, ETH Zürich Rapporteur

MATTHIAS STUBER Professeur, CIBM MRI CHUV-UNIL Rapporteur

ALAIN LALANDE MCU-PH, Physicien, CHU Dijon Bourgogne Examinateur

OLIVIER MEYRIGNAC PU-PH, Radiologue, Assistance Publique - Hôpitaux de Paris Président du jury

MONICA SIGOVAN Chargée de recherche, CNRS, CREATIS Lyon Examinatrice

DANIEL GIESE Magnetic Resonance, Siemens Healthcare GmbH, Erlangen Invité

THOMAS PUISEUX Spin Up, ALARA Group, Strasbourg Invité

RAMIRO MORENO Physicien médical, ALARA Expertise, ALARA Group, Strasbourg Encadrant





Résumé
Les maladies cardiovasculaires sont les maladies non transmissibles causant la
plus forte mortalité dans le monde [1]. L’étude de l’hémodynamique, c’est-à-dire
de la dynamique du sang, est considérée par la communauté médicale comme
un biomarqueur essentiel pour caractériser l’apparition et le développement de
ces pathologies. Ainsi, des examples d’études de l’hémodynamique en lien avec
les anévrismes, l’athérosclérose, les sténoses ou encore les thromboses ont été
rapportés [2, 3, 4].

Au cours des dernières décennies, des techniques d’imagerie médicale ont
permis d’obtenir des informations sur la perfusion sanguine, et même de quantifier
l’écoulement sanguin. Parmi celles-ci se trouve l’imagerie par résonance magnétique
(IRM), technique non-invasive et non-ionisante, et en particulier l’IRM cinétique
à contraste de phase tridimensionnelle, aussi appelée IRM de flux 4D [5]. En
plus de produire une image 3D de la morphologie d’une région d’intérêt, cette
dernière donne accès à l’évolution temporelle du champ de vitesse du sang (ou de
tout autre liquide biologique en mouvement tel que le liquide cérébrospinal) dans
les trois directions de l’espace. Bien que prometteuse, cette technique reste peu
utilisée dans la pratique clinique étant donné sa faible résolution spatio-temporelle
et sa longue durée d’acquisition. De plus, elle souffre d’artéfacts inhérents à la
physique de l’IRM et au processus d’acquisition.

Une stratégie alternative pour mesurer l’hémodynamique consiste à utiliser la
mécanique des fluides numérique (MFN, aussi connue sous son acronyme anglais
CFD pour Computational Fluid Dynamics). Avec sa résolution spatio-temporelle
plus fine, la MFN a le potentiel de donner accès à des biomarqueurs inatteignables
en imagerie pure. Plusieurs études combinant données IRM et simulations de
MFN ont été présentées dans la littérature, aussi bien pour valider les simulations
numériques contre des données expérimentales [6, 7, 8] que pour vérifier in vitro
la qualité d’images IRM par rapport à la MFN [9, 10]. Cependant, les simulations
d’écoulements sanguins souffrent de certaines limitations notamment dues aux
choix d’hypothèses de modélisation et aux approximations numériques [11, 12, 13].

D’autre part, des simulations numériques du processus d’acquisition IRM
ont aussi été proposées dans la littérature. Ces simulations sont utiles pour
le développement et l’optimisation de séquences IRM, car elles sont exemptes
d’artéfacts expérimentaux et d’imperfections matérielles du scanner. Elles peuvent
aussi être utilisées pour analyser des méthodes de reconstruction des images IRM
ou à des fins éducatives [14, 15, 16]. Parmi ces simulateurs IRM, certains ont
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été développées en particulier pour les séquences d’IRM à contraste de phase
[17, 18, 19].

Ce manuscrit s’inscrit dans la continuité des travaux de thèse de Thomas
Puiseux dans le contexte du contrôle qualité des séquences d’IRM de flux 4D, en
particulier des séquences dites accélérées, et vers l’optimisation de paramètres
grâce à la simulation numérique [20]. C’est le fruit de la collaboration entre le
laboratoire académique IMAG (Institut Montpelliérain Alexandre Grothendieck)
et la société Spin Up (Alara Group, Strasbourg, France) spécialisée dans la gestion
des risques IRM (assurance qualité, sécurité, formations).

Le chapitre 1 est un chapitre introductif, donnant un aperçu de l’état de l’art
à propos de la mesure hémodynamique et de sa modélisation. La modélisation
du processus IRM est également évoquée, en particulier dans le cas de l’IRM à
contraste de phase.

Le chapitre 2 est dédié à l’introduction de concepts fondamentaux de l’IRM.
L’accent est mis sur l’IRM à contraste de phase, en particulier sur l’IRM de
flux 4D. Les principaux artéfacts et limitations de l’IRM à contraste de phase
sont détaillés. Enfin, des méthodes d’accélération du temps d’acquisition sont
présentées.

Le chapitre 3 est consacré à la modélisation de l’IRM. Un "modèle-jouet"
simplifié est tout d’abord présenté. Puis, le code de calcul YALES2BIO développé
en interne est introduit. Finalement, des détails sont apportés sur le solveur
implémenté dans YALES2BIO et dédié à la simulation d’acquisitions IRM à partir
de séquences constructeur.

Dans le chapitre 4, l’influence de l’utilisation de séquences accélérées sur
la qualité des champs de vitesse reconstruits est étudiée. En effet, l’un des
enjeux de l’IRM de flux 4D est son long temps d’acquisition qui ralentit son
adoption dans la pratique clinique. Deux types d’accélération sont étudiées ; d’une
part le GRAPPA une technique d’imagerie parallèle, c’est-à-dire exploitant la
dépendance spatiale des multiples éléments de l’antenne réceptrice du signal IRM,
et d’autre part la méthode de l’acquisition comprimée (compressed sensing), qui
consiste en une acquisition très sous-échantillonnée reconstruite via un processus
itératif d’optimisation. Ainsi, en plus d’une acquisition non-accélérée, quatre
acquisitions accélérées ont été réalisées sur un fantôme imageur de flux conçu en
interne par Puiseux et al. [10] : trois acquisitions de type GRAPPA avec des
facteurs d’accélération R = 2, 3, 4 et une acquisition de type compressed sensing
avec R = 7.6. Des simulations MFN à partir des champs de vitesse mesurés
expérimentalement sont également conduites. Les champs de vitesse obtenus sont
comparés sur des quantités non-dérivées : profils de vitesse, débits et vitesses
maximales. Qualitativement, toutes les modalités aussi bien expérimentales que
simulées présentent des motifs hémodynamiques similaires (bien que très bruité
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pour GRAPPA R = 4). Une visualisation tridimensionnelle des champs de vitesse
est présentée sur la Fig. 1.

Figure 1: Visualisation tridimensionnelle des champs de vitesse. NA : non-accéléré,
CS : compressed sensing.

Figure 2: Illustration du fantôme de flux et débits pour les champs de vitesse
sans et avec correction des courants de Foucault. Les débits sont présentés au
pic systolique le long de deux chemins : coude en vert et collatérale en orange.
non-accéléré, GRAPPA 3, compressed sensing et MFN.

Cependant, toutes les acquisitions IRM semblent surestimer les profils de vitesse
ainsi que les vitesses maximales par rapport aux acquisitions MFN dans des régions
associées avec une vitesse et/ou une accélération élevée. Des comparaisons voxel-à-
voxel entre les images IRM mettent en évidence que les erreurs les plus importantes
se trouvent dans les voxels proches de la paroi du fantôme. Enfin, la correction
des courants de Foucault dans les images IRM apparaît comme essentielle afin de
rapporter des mesures de débits respectant le principe de conservation de la masse
(cf Fig. 2). Une fois cette correction effectuée, de bons accords sont trouvés entre
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les débits expérimentaux in vitro et ceux issus de la simulation numérique. Ces
travaux ont fait l’objet d’un article scientifique publié sous Garreau et al. (2022)
dans le journal Magnetic Resonance in Medicine [21].
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Figure 3: Champ de vision de l’acquisition IRM, fantôme numérique et débits. A
droite, les deux débits étudiés sont présentés: en haut le débit quasi sinusoïdal issu
de l’expérimental et en bas le débit suivant une fonction analytique modélisant
un débit aortique. Les points rouges correspondent aux temps moyens de chaque
phase cardiaque.

Le chapitre 5 est dédié à l’étude de l’écho partiel, un paramètre souvent utilisé
en IRM à contraste de phase mais dont l’utilisation ne fait pas consensus au sein
de la communauté de l’IRM de flux 4D [22]. En effet, cette technique permet
de réduire le temps d’écho et donc d’atténuer des artéfacts dits de déplacement,
voire elle permet dans certains cas d’avoir une résolution temporelle plus fine.
Cependant, elle consiste par ailleurs à une réduction du volume de données acquises,
et donc à une potentielle détérioration de la qualité des images reconstruites. Des
simulations ont été réalisées avec le solveur dédié à la simulation d’IRM de
flux 4D sur la configuration du fantôme de flux déjà utilisée dans le chapitre 4.
Deux séquences ont été testées : une sans écho-partiel (écho complet) et l’autre
avec un écho partiel tel que seulement 75% de l’écho complet est acquis. Deux
régimes d’écoulement en entrée sont étudiés : l’un avec un débit expérimental
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s’approchant d’une sinusoïdale et l’autre avec un débit suivant une fonction
analytique modélisant un débit dans l’aorte ascendante (cf. Fig. 3). Pour chacun
des deux débits, des motifs hémodynamiques similaires sont visuellement observés
pour les simulations sans et avec écho partiel, ainsi que pour les simulations de
MFN correspondantes. Des niveaux d’erreurs plus élevées sont rapportés pour
l’écho complet que pour l’écho partiel par rapport aux simulations de MFN sur
l’entièreté du cycle cardiaque. L’utilisation de l’écho partiel réduit les erreurs
faites sur la composante de la vitesse encodée selon la direction de lecture (c’est-
à-dire la direction de l’écho), comme présenté sur la Fig. 4. Cependant, les deux
séquences engendrent des erreurs quand elles sont comparées aux simulations de
MFN. L’énergie cinétique de turbulence et l’accélération apparaissent comme de
bons indicateurs complémentaires des régions associées avec les niveaux d’erreurs
les plus élevés. Etant donnée la nature pulsatile des écoulements étudiés, des
images "fantômes" (artéfact de "ghosting") apparaissent pour certaines phases
cardiaques. Cet artéfact pourrait être responsable des erreurs qui ne sont corrélées
ni avec l’énergie cinétique de turbulence, ni avec l’accélération. En un mot, ce
chapitre illustre le potentiel du cadre de simulation IRM en matière de prise de
décision pour l’optimisation de paramètres, tout en permettant de reproduire des
artéfacts intrinsèques au processus de l’acquisition IRM.
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Figure 4: Evolution des erreurs au cours du cycle cardiaque, à gauche pour le débit
"sinusoïdal" et à droite pour le débit "aortique". Les lignes pleines représentent les
acquisitions sans écho partiel et les pointillées celles avec écho partiel. Les erreurs
sont normalisées par la vitesse maximale attendue VENC = 0.7 m/s.

Enfin, les principaux résultats de cette thèse sont rappelés au chapitre 6 qui
conclut ce manuscrit. Des perspectives pour des applications cliniques et de
futures recherches sont données. Ainsi, bien que le simulateur IRM-MFN présenté
dans cette thèse permet de simuler des séquences constructeurs réalistes, il ne
modélise pas tous les phénomènes physiques présents dans l’acquisition IRM tels
que les gradients concomitants (ou termes de Maxwell), les courants de Foucault
ou les non-linéarités des gradients. Ajouter ces sources de distorsion du champ
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magnétique permettrait d’étudier comment ceux-ci affectent les images recon-
struites (morphologiques et de champs de vitesse). Cela permettrait aussi de
tester des algorithmes de reconstruction. Les profils de sensibilité des bobines
pourraient aussi être modélisés dans les simulations pour investiguer des méthodes
de reconstruction d’imagerie parallèle. Avec l’émergence de l’apprentissage ma-
chine (machine learning) et des réseaux neuronaux dits "informés par la physique"
(physics-informed neural networks, PINN), l’environnement de simulation IRM
apparaît comme un outil précieux pour générer des ensembles de données synthé-
tiques ou pour construire des dictionnaires de signaux utiles dans la technique dite
d’ "identification par les empreintes digitales" en résonance magnétique (magnetic
resonance fingerprinting, MRF) [16, 23, 24].
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1.1 Motivation
Cardiovascular diseases (CVDs) account for the largest number of deaths from
non-communicable diseases. In 2017, 31.8% of the deaths worldwide could be
imputed to CVDs, a number constantly rising since 1990 [1]. To alleviate this
burden, research has been aiming towards providing metrics to diagnose CVDs, to
monitor the disease progression, and to plan and adapt medical treatments [25].
Over the past decades, it has appeared that hemodynamic parameters are relevant
biomarkers of the onset and development of cardiovascular pathologies. To name
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a few, hemodynamics has been studied in relation with aneurysms, atherosclerosis,
stenoses and thromboses [2, 3, 4]. Thus, useful insights on cardiovascular health
can be gained by measuring the hemodynamics.

In recent decades, noninvasive imaging techniques to assess blood perfusion
and even to quantify flow have known great and fast progress [26]. The present
work focuses on the three-dimensional cine phase-contrast MRI, also known as
4D Flow MRI. This imaging modality allows retrospective flow quantification at
any location within the acquired volume, hence giving access to hemodynamic
biomarkers. Even though this technique could become the new gold standard to
assess blood flow, its translation in the clinical practice remains hindered by its
low spatio-temporal resolution and long scan times, as well as artifacts inherent
to the physics and process of acquiring MR images. Over the years, various
strategies have been proposed to accelerate the scan time, relying on coil design
and geometry, and signal undersampling. The present work is part of the current
research about quality control of accelerated MR scans, and towards parameters
optimization through numerical simulations.

1.2 The cardiovascular system
The cardiovascular system is a closed circuit including the heart, blood vessels
(arteries, veins, and capillaries) and blood. It is composed of two loops: the
pulmonary circulation and the systemic circulation. In the first loop, the deoxy-
genated blood rich in carbon dioxide flows from the right side of the heart to the
lungs. Gas exchange occurs in the pulmonary capillaries and the re-oxygenated
blood low in carbon dioxide flows to the left heart. The systemic circulation
describes the circulation of the oxygenated blood from the left heart to the ex-
tremities of the body and to other organs, and back to the right heart. The
blood circulation permits delivering nutrients, dioxygen and hormones to cells
throughout the body. It also participates in removing waste products. The cardiac
cycle is continuously repeated with the heart acting as a muscular pump. The
cardiovascular system is illustrated in Fig. 1.1.
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Figure 1.1: Sketch of the cardiovascular system and heart. The oxygenated blood
is depicted in red, whereas the deoxygenated blood rich in CO2 is in blue. Image
extracted from [27].
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1.2.1 Heart and cardiac cycle
The heart is composed of four chambers: on each side of the heart (right and
left), the upper chamber is called the atrium and the lower chamber the ventricle.
Four valves ensure unidirectional blood flow through the heart. The atria act as
receiving chambers, collecting blood from the vena cava for the right atrium and
from the pulmonary veins for the left one. The blood is pushed into the ventricles
as the atria contract. The atrium and ventricle are separated by the tricuspid
valve on the right side and by the bicuspid mitral valve on the left side. As the
ventricles contract, they pump the blood respectively to the lungs through the
pulmonary valve on the right side and to the rest of the body through the aorta
via the aortic valve on the left side. Thereby, the heart can be seen as a double
pump.

Figure 1.2: Sketch of the cardiac cycle. Image extracted from [27].

The cardiac muscle has a unique property: it possesses specialized cells that
can initiate an electrical impulse at a fixed rate that propagates throughout the
heart. It is this impulse that triggers the cardiac contractions and propel the
blood. The electrical signal of the heart can be recorded with surface electrodes
placed on the body. The recording is called electrocardiogram (ECG) and is a
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useful clinical tool to investigate the heart function. The cardiac cycle along
with the corresponding normal ECG are presented in Fig. 1.2. Note the large
QRS complex, where the peak of the R-wave corresponds to the beginning of
the ventricular contraction. The contraction of the heart is referred to as the
systole, whereas the period of relaxation when the chambers are filled with blood
is known as the diastole. As the R-wave is the most prominent peak on the ECG,
the cardiac cycle duration can be calculated from the RR-interval.

1.2.2 Blood vessels
Blood vessels distribute the blood through the body. Three main types of blood
vessels can be established: the arteries that carry blood away from the heart, veins
that transport blood back to the heart and tiny capillaries at the merging of the
two first types, where the nutrients and waste exchange occurs. The arteries form
a relatively high-pressure system due to their proximity with the heart, whereas
the venous system presents lower pressure. Thereby, the arteries have thicker
walls and smaller lumens than the veins, and appear round in cross-section, in
contrast to the flattened appearance of the veins. All vessels but the capillaries
are composed of three layers called tunics. The most interior one is the tunica
intima made up of epithelial and connective tissue layers. The middle layer is the
tunica media and consists in smooth muscle and in connective tissue containing
mostly elastic fibers. It is usually the thickest layer in arteries (except for the
largest ones). Thus, especially in the arterial system, the vasoconstriction and
vasodilation enabled by the smooth muscle can respectively decrease and increase
the blood flow. Finally, the outer layer is called the tunica externa or adventia
and is made up of connective tissue composed primarily of collagenous fibers. It
is usually the thickest layer in veins and helps to keep the vessel in its relative
position.

The largest arteries (typically larger than 10 mm in diameter) are the ones
closest to the heart with the thickest walls. They have the particularity to contain
a high percentage of elastic fibers in all three of their layers. Examples of the
so-called elastic arteries are the aorta, pulmonary arteries and the aortic arch
branches. The aorta, illustrated in Fig. 1.3, is the largest artery in the body. It
consists in three main segments: the ascending aorta starting from the aortic
valve, the aortic arch and the descending aorta, which then divides into the two
common iliac arteries at the level of the fourth lumbar vertebra. Traveling along
the arterial tree, the arteries diameter decreases, as well as their amount of elastic
fibers. In addition to blood supply, the design of the arterial tree allows to cushion
the heart pulsations, so that the blood flow is almost continuous in the capillaries.
According to the consensus propagation model, the distribution of the elastic
properties in the arteries allows the generation of a pressure wave along the tree
and reflected retrograde waves. Whereas in young subjects the retrograde waves
help in enhancing the coronary flow, elastic arteries dilate and stiffen with aging,
leading to a higher aortic pulse wave velocity and thereby an increase in the peak
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Figure 1.3: The aorta and its three main segments: the ascending aorta, the aortic
arch and the descending aorta, which can be subdivided into the thoracic aorta
above the diaphragm and the abdominal aorta below. The three major aortic
arch branches are the brachiocephalic artery, the left common carotid artery, and
the left subclavian artery ; all of which have elastic artery characteristics. Image
extracted from [27].

systolic and end diastolic pressures [28, 29, 30].

1.2.3 Blood and hemodynamics
The last main component of the cardiovascular system is blood. While its primary
function is to deliver oxygen and remove metabolic waste products from body
cells, blood is also implicated in the immune system and maintenance of the
chemical balance of the body (e.g. temperature, pH, water content of body
cells). It is made up of cellular elements (red blood cells, white blood cells
and platelets) in suspension in a fluid extracellular matrix, the plasma. This
combination of fluid and solid components gives blood its complex rheology and
its non-Newtonian behavior. Understanding the blood flow dynamics at the
microscopic scale is an ongoing field of research. Hemodynamics also closely
interacts with cell activity and arterial wall mechanics in the process of vascular
growth and remodeling. Furthermore, the mechanical properties of blood and
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blood vessels evolve through one’s life due to aging, external factors such as
smoking and air pollution, or diseases such as diabetes, obesity or cholesterol.
Hemodynamics is also an important factor to take into account in the design
and optimization of medical devices in contact with blood, which are prone to
device-related thrombosis [31].

1.3 Measuring hemodynamics

1.3.1 Invasive measurements

Various invasive measurement techniques have been used to directly or indirectly
measure hemodynamics. Catheters are widely used for such measurements, as
they can be equipped with various type of sensors for pressure, temperature
(thermodilution) [32] or blood flow velocity [33]. Catheterization is even considered
as a gold standard in certain cases, e.g. for intraarterial pressure measurement
[34], or risk stratification of arterial stenosis [35]. Another less invasive technique
is transesophageal echocardiogram, where a transducer is introduced into the
esophagus of anesthetized patients. This echocardiography can image the heart in
one, two or three dimensions, and Doppler technique can be used to assess blood
flow. As invasive technologies are associated with complications, research has
been focusing on the past years in developing non-invasive techniques providing
the same accuracy and precision. Yet, invasive procedures remain recommended
for critically ill patients, and does not add additional risk in operations including
catheters anyway [32, 34].

1.3.2 Echocardiography

As opposed to transesophageal echocardiography mentioned earlier, transthoracic
echocardiography is a non-invasive imaging technique. It conventionally relies
on the Doppler effect to measure blood flow in a method called color Doppler
imaging, where a color map is used to display the magnitude and direction of
blood flow. However, this technique only allows to catch the velocity component
along the direction of the transmitted ultrasound beam. Hence, the measurement
is restrained to a unidirectional velocity and depends on the beam-to-flow angle.
Another method, called ultrasound vector flow imaging (VFI), has been developed
over the past years, where both angle and magnitude of blood flow velocities are
estimated. Several approaches have been investigated in order to achieve 2D or 3D
[36] and even time-resolved imaging thanks to ECG-gating [37, 38]. An example
of 4D ultrasound VFI is illustrated in Fig. 1.4.
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Figure 1.4: In vivo 3D intraventricular vector flow mapping, extracted from [38].

1.3.3 Phase-Contrast Magnetic Resonance Imaging
(PC-MRI)

Magnetic Resonance Imaging (MRI) is a non-invasive technique used to image
soft tissue anatomy, as well as physiological processes of the body. It relies on the
phenomenon of nuclear magnetic resonance occurring when specific nuclei (e.g.
hydrogen) are subjected to strong magnetic fields and high-frequency magnetic
variations. Among MRI sequences, phase-contrast MRI allows to reconstruct the
blood velocity, based on controlled dephasing of the measured MR signal. While
the opportunity to encode velocity is known since the early developments of MRI
[39], progress in hardware and computational power made it possible to expand
this technique to three-dimensional time-resolved PC-MRI, often referred to as
4D Flow MRI [5, 40] and illustrated in Fig. 1.5. More details about fundamentals
of MRI with a specific focus on PC-MRI can be found in Chapter 2. In a nutshell
4D Flow MRI gives access to 3D velocity fields in a volume of interest resolved in
time. In contrast to PC-MRI where the slices of interest have to be positioned
by the user beforehand, the slices can be freely chosen in a retrospective manner
as the whole volume is being imaged in 4D flow MRI. Thereby, this technology
appears a relevant tool to assess hemodynamics and has the potential to become
a gold standard. Various hemodynamic biomarkers derived from 4D Flow velocity
fields and pertinent to CVDs have already been reported in the literature, such
as pressure field, wall shear stress and turbulent kinetic energy [41, 42, 43, 44].
However, the accuracy and reliability of 4D flow measurements can be put in
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question due to limited spatio-temporal resolution. Furthermore, 4D flow does not
give access to instantaneous velocity fields, but only to a time-averaged field due to
its acquisition process. 4D flow MRI is also subjected to artifacts, such as partial
volume effects at the vessel walls or misregistration due to time offsets between
the different encodings that occur during the acquisition. Another limitation of
conventional 4D flow MRI is its long acquisition time. Ongoing research effort
has been put towards developing techniques to accelerate data acquisition, in
particular parallel imaging and sparse undersampling techniques (e.g. compressed
sensing) [45].

Figure 1.5: In vivo intracardiac 4D Flow MRI, extracted from [22].

1.4 Modelling hemodynamics
1.4.1 Computational Fluid Dynamics
Computational Fluid Dynamics (CFD) have known an increased interest to study
physiologic flows and as a tool in cardiovascular medicine thanks to the progress
in hardware and software, and the increase in computational power [46]. With
its higher spatio-temporal resolution, it has the potential to grant assess to
hemodynamics biomarkers not accessible with imaging techniques only, such as
arterial wall shear stress. Thereby, CFD has already been investigated to study
CVDs such as aortic [47, 48, 49] and cerebral aneurysms [50, 51], aortic dissection
[52, 53] and coronary artery disease [54, 55]. CFD has also been used to design
devices and to control their deployment and outcomes, in particular for stents [56]
and ventricular assist device [57, 58].

Studies incorporating both MRI data and CFD simulations have been proposed
in the literature. Both validation of the numerical simulation against 4D flow
MRI measurements [6, 7, 8] and in vitro verification of MRI acquisitions with
respect to CFD simulations have been presented [9, 10]. Both MRI and CFD
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have also been included in cross-validation studies against other modalities, such
as particle image velocimetry (PIV) [59, 60] and laser Doppler velocimetry [61].
CFD has been employed to create synthetic MRI-like data as well, e.g. to feed
deep learning algorithms [62] or to compute velocity and turbulence maps [63],
while having the matching highly resolved CFD as ground truth for comparison.
Finally, CFD has been exploited to enhance 4D flow MRI [64, 65], and some
research has been conducted towards data fusion of both modalities in order to
address their inherent limitations [66, 67].

1.4.2 Limitations of CFD in the context of
hemodynamics

Blood flow simulations also present some limitations, especially due to modelling
assumptions and numerical approximations.

A first complexity comes from the modeling of blood. As blood is a dense
suspension of cells, its behavior is far from being Newtonian. At the macroscopic
level, blood is however often modelled as homogeneous and as a Newtonian or
a shear-thinning fluid. Fung states that it is reasonable to consider the fluid
as homogeneous in large blood vessels, as their diameter is much larger than
the characteristic size of red blood cells (the largest cell type in blood) [68].
Furthermore, he reports experimental results showing that at high shear rate the
blood behaves as a Newtonian fluid. Yet, this assumption does not hold in regions
associated with low shear rate. For in vitro studies, a common choice is to use
blood mimicking fluid whose rheology is perfectly characterized in order to avoid
the modelling uncertainties associated with blood.

A second limitation occurs from turbulence handling. Indeed, turbulence may
develop in the cardiovascular system, especially in the aorta and in regions such
as stenoses, valves and bifurcations, as well as when flow decelerates [12]. Yet,
this natural phenomenon is often neglected and the flow is assumed to be laminar
[7, 65, 69]. Whereas direct numerical simulations are extremely demanding in
computational power, two main approaches have emerged to simulate turbulence:
Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
The first strategy consists in modelling all the scales of turbulent spectrum, while
in the latter one only the smallest scales are modelled and the largest scales are
explicitly resolved. Thereby LES is more computationally demanding. However,
while RANS models perform well in the context of fully developed turbulence
at very high Reynolds numbers, they are not predictive enough in capturing the
laminar-turbulent transition [70]. LES models have proven to be more accurate
when dealing with transitional flows and do no require adapting model parameters
[12, 58].

Another important feature of CFD simulations is the choice of numerical scheme.
Valen-Sendstad and Steinman warn about low-order stabilization terms often used
by default in commercial CFD software for robustness and which generate artificial
dissipation to the solution [11]. Concerning LES, dissipation-free schemes must
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be preferred. For example, better results have been reported with second-order
centered scheme than with higher-order upwind biased (dissipative) scheme [12].

A last limitation concerns the choice of boundary conditions in various aspects.
Idealized velocity profiles such as blunt [71], flat [72] or fully developed profiles
[63, 73] have been proposed as inlet boundary condition. Such idealized profiles
can greatly impact the solution and can lead to erroneous results [13]. Morbiducci
reports that prescribing experimental PC-MRI velocity profiles at the inlet may be
accurate enough to capture disturbed shear, hence avoiding the need to prescribe
realistic 3D profiles [74]. In the context of transitional flows, injection of small
perturbations at the inlet has been shown to greatly improve the accuracy and
robustness of the results with respect to turbulence prediction [58]. Additionally,
the choice of the outflow boundary condition also has a significant impact on the
resulting velocity and pressure fields. Many in vivo situations include multiple
outlets, from the aorta bifurcation into the aortic arch branches (Fig. 1.3) to the
complex networks such as the circle of Willis. Simplistic zero or constant pressure,
as well as zero-traction condition, fail to reproduce the flow distribution in multi-
outlet models [75, 76]. Good agreement with in vivo data have been reported
when prescribing the more physiological dynamic three-element Windkessel model
at each outlet. For in vitro models, outlets can be merged into a unique outlet to
circumvent this issue (cf in-house phantom in Section 4.2.1). Finally, the rigid
wall approximation is widely used, whereas blood vessels and in particular the
aorta have moving compliant walls. Fluid-structure interactions models have
been developed, but there is no consensus on how best to define the structural
constitutive properties of vessel walls, as well as how these properties distribute
within the vessel [52]. Image-based simulations are an alternative, where the
motion of the walls is imposed thanks to medical imaging [77].

As presented in this section, numerical simulations rely on many assumptions
and care should be taken in the choice of the CFD strategy for a given problem.

1.4.3 Modelling hemodynamics... and the process of
MRI acquisition

Various numerical simulations of MRI experiments have been proposed in the
literature [14, 15, 78, 79]. These simulations can serve a variety of purposes. They
can be a useful tool in the field of pulse sequence development and optimization,
since simulations are free of experimental artifacts and hardware imperfections.
They can also serve to analyze reconstruction methods or for educational purposes
[16]. Additionally, these simulations permit generating synthetic data, which can
be used to train machine learning models, or to construct signal dictionaries in
magnetic resonance fingerprinting [80, 81].

Among the MRI simulators, some have been developed specifically for phase-
contrast MRI. Petersson et al. have simulated a 3D PC-MRI with three-directional
flow-encoding on a turbulent non-pulsatile flow in a straight rigid pipe with a
stenosis. Using an Eulerian-Lagrangian approach, the flow is first resolved with
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LES for 125 timeframes. The Bloch equations are then solved for each spin using
particle trajectories randomly chosen from the computed timeframes. The out-
comes against experimental PC-MRI and intravoxel velocity standard deviation
are successfully validated [17]. Xanthis et al. have simulated 2D PC-MRI on
an analytic laminar flow within a straight tube thanks to the high performance
multi-GPU MRISIMUL simulator, now commercialized for educational purposes
by Corsmed (Stockholm, Sweden) [79, 82]. Klepaczko et al. have numerically in-
vestigated conventional 2D and 3D PC-MRI sequences against an EPI-accelerated
2D PC-MRI sequences in the context of kidney vasculature thanks to their compu-
tational framework [18]. Fortin et al. have implemented an extension to include
3D fluid flows in JEMRIS, one of the most used general MRI simulator. They have
investigated in particular a 2D and a 3D PC-MRI sequence on a cerebral venous
network [19]. It is worth mentioning that another trend consists in synthesizing
PC-MRI or 4D flow MRI data from CFD simulations without solving the Bloch
equations. Instead, these methods use a model equation for the MR signal based
on the CFD velocity fields and turbulence data, and are less computationally
expensive [63, 73, 83, 84].

Besides Bloch simulations, where the Bloch equations are solved in the spatial
domain, extended phase graphs (EPG) have been proposed. In this approach, the
Bloch equation are indirectly solved in the Fourier domain. In his review, Weigel
discusses how motion can be accounted for using this formalism [85]. However, up
to the author’s knowledge, no simulations of PC-MRI has been proposed yet using
EPG. Furthermore, Guenthner et al. have recently presented a hybrid approach
that combined Bloch equations and EPG [81].

In the present work, the MR simulator initiated by Puiseux during his PhD
thesis has been further developed [86]. This simulator has been initially sought
to investigate time-resolved 3D PC-MRI sequences, i.e. 4D flow MRI, in the
context of pulsatile transitional flows in complex geometries. It uses an Eulerian-
Lagrangian formalism, where the Bloch equations are advanced on Lagrangian
tracers simultaneously with the Navier-Stokes equations for the flow.

1.5 Thesis objectives and overview
1.5.1 Objectives
The present work follows on from Thomas Puiseux’s PhD thesis [20]. It is a
collaboration between the academic laboratory IMAG (Institut Montpelliérain
Alexandre Grothendieck) and Spin Up (Alara Group, Strasbourg, France), a
company working with management of risks in MRI (quality assurance, safety,
trainings).

The first objective of this work takes place in the context of quality control
and integration to the clinical practice. As mentioned earlier, the long scan times
inherent to 4D flow MRI still hamper its clinical use. In the present work, two
types of acceleration of MRI sequences are investigated: GRAPPA, a parallel
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imaging technique which is nowadays conventionally used to acquire PC-MRI
data [87], and the more recent compressed sensing method [88]. The quality of
the reconstructed velocity images have been assessed against a fully-sampled MRI
acquisition and CFD thanks to the framework proposed by Puiseux to compare
experimental MRI data with corresponding CFD simulation. This framework
includes the use of a well-controlled flow phantom presenting complex geometry
yielding flow patterns similar to the structures observed in the cardiovascular
system [10].

The second objective is related to optimization of existing PC-MRI sequences
in order to investigate the influence of parameters on the reconstructed velocity
field. As highlighted before, MRI simulation is the ideal tool, as it allows changing
only a parameter at once without having to deal with experimental artifacts. The
4D Flow MRI simulation platform initiated by Puiseux is expanded in the present
work, especially towards versatility to simulate constructor sequences.

1.5.2 Thesis overview
The second chapter of this thesis provides an introduction to fundamental concepts
of MRI. It also includes a specific focus on PC-MRI, and in particular on 4D flow
MRI. The main artifacts and limitations found in PC-MRI are detailed. Finally,
typical methods to accelerate the scan time are presented.

The third chapter is devoted to MRI modelling. A toy model is first presented.
Then the in-house YALES2BIO solver dedicated to the numerical simulation of
blood flows is introduced. Finally, the in-house simulator of MRI acquisitions
from constructor chronograms is detailed.

In the fourth chapter, accelerated sequences of 4D flow MRI using GRAPPA
and compressed sensing are compared to conventional non-accelerated MRI and
CFD. The acquisitions and simulations are performed on the pulsatile phantom
developed by Puiseux et al. under complex flow conditions [10]. Hemodynamics
biomarkers are investigated: velocity profiles, flow rates, and peak velocities. The
content of this chapter has been published as Garreau et al. (2022) in the journal
Magnetic Resonance in Medicine [21].

The fifth chapter is devoted to the study of partial echo, a technique often
used in PC-MRI acquisition to reduce the echo time and potentially increase the
temporal resolution. It appears that there is no consensus about partial echo in
4D flow MRI [22]. While using this technique reduces the volume of data acquired,
which could deteriorate the reconstructed images, it also allows to reduce the
misregistration artifact [89]. Simulations are performed using the 4D flow MRI
simulation framework to better understand the impact of partial echo on the
outcomes.

Finally, a summary of the main results is given in the last chapter. Perspectives
for clinical applications and future researches are provided.
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2.1 The Nuclear Magnetic Resonance
phenomenon

The Nuclear Magnetic Resonance (NMR) is a phenomenon first described by Rabi
in the 1930s [90]. It is a property of atomic nucleus possessing a non-zero nuclear
spin when they interact with an external magnetic field. The NMR phenomenon is
the basis for NMR spectroscopy, used to access the structure of organic compounds,
as well as for Magnetic Resonance Imaging (MRI), a medical application where
the hydrogen atoms are usually targeted to produce images.

Like its mass or charge, the nuclear spin I is a quantum property of each
nuclear species. It can be either an integer or a half-integer. In the presence of
a magnetic field B0, the nuclear spin gives rise to a spin magnetic moment µ
with an amplitude proportional to the nuclear spin. The spin magnetic moment
precesses around the axis of the magnetic field B0, like a spinning top around its
vertical axis. The precession frequency is called the Larmor frequency ω0 and is
proportional to the magnitude B0 of the magnetic field such that

ω0 = γB0 (2.1)

with γ the gyromagnetic ratio (in rad.T−1.s−1) and B0 the magnitude of the
magnetic field (in T). The γ constant is characteristic of each isotope. Note that
isotope whose nuclear spin equals zero can not interact with the external magnetic
field and thus can not be observed in NMR or MRI (e.g. 12C and 16O have a zero
nuclear spin).

The equation of motion arising from the interaction between the spin and the
external magnetic field can be derived as [91]:

dµ

dt
= γµ×B0 (2.2)

An illustration of the spin precession is given in Fig. 2.1. This figure corresponds
to the γ > 0 case and results in a clockwise precession around B0, which is
usually positively oriented along the z axis. Using the convention that the Larmor
frequency ω0 is positive, the associated angular velocity vector Ω0 has to oppose
to B0 such that Ω0 = −ω0êz.
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B0

µ
ω0 dµ

Figure 2.1: Precession of the magnetic moment vector µ around the axis of the
applied magnetic field B0.

Let us now consider a specific nuclear species, namely the hydrogen atoms.
The hydrogen nuclei are composed of one proton H+ with a spin 1/2 and a
gyromagnetic ratio γ = 267.513× 106 rad.T−1.s−1. Protons are mostly targeted
in MRI, since they are highly present within biological tissues due to their high
content in water. With their one-half spin, a proton can be seen as a small
magnetic dipole, like a compass needle. Without any exterior magnetic field, it is
oriented randomly. As soon as it is in the presence of an external magnetic field
B0, the spin will align either parallel ("spin-up") or anti-parallel ("spin-down") to
the field. According to quantum mechanics and the Zeeman effect, this leads to
two discrete energy values:

E = −µ ·B0 =⇒


E+1/2 = −1

2γh̄B0 ("spin-up")

E−1/2 = +1
2γh̄B0 ("spin-down")

(2.3)

where h̄ = h
2π is the reduced Planck constant (h = 6.626×10−34 J.s). Based on

energetic considerations, there will statistically be more spins "up" (lowest energy
state) than "down". This excess in spins oriented parallel to B0 gives rise to a
macroscopic magnetization M such that in a volume V containing N protons, we
can add the contribution of each spin magnetic moment:

M = 1
V

N∑
i=1
µi (2.4)

At thermal equilibrium, the resulting magnetic vector M0 can be defined as

M0 ≈
ρ0γ

2h̄2

4kT B0 (2.5)

where ρ0 is the proton density per unit of volume, k the Boltzmann constant
(k = 1.380649× 10−23 J.K−1) and T the temperature (in K).
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2.2 NMR signal and Bloch equations
The principle of NMR relies on disrupting the precession movement of M around
B0 thanks to an additional temporary B1(t) magnetic field in the orthogonal
plane. This first step of the NMR experience is called excitation. Once the B1(t)
field is removed,M will recover its initial movement around B0 only. This second
step is called relaxation. When the M returns to equilibrium, it produces an
electromagnetic field, which can be measured: the NMR signal.

2.2.1 Excitation and rotating frame of reference
By convention,B0 is oriented along the z-axis, so thatB0 = B0êz, andM0 = M0êz
at equilibrium. The B1(t) magnetic field occurs in the (xy)-plane to rotate M
away from the z-axis. Contrary to B0, which is a static magnetic field, B1(t) is
an oscillating magnetic field.

From then on, it appears natural not to work in the fixed laboratory frame of
reference (êx, êy, êz) any longer, but in the rotating frame of reference (ê′x, ê′y, êz)
illustrated in Fig. 2.2. Let us define Ω = −ωêz the rotational angular velocity
vector associated with the latter frame of reference (clockwise-rotating frame of
reference). For any magnetic field B, combining Equations (2.2) and (2.4) leads
to

dM

dt
=
(
dM

dt

)′
+ Ω×M

=⇒
(
dM

dt

)′
= dM

dt
+M ×Ω

= γM ×B +M ×Ω

= γM ×Beff with Beff = B + Ω
γ

(2.6)

In the rotating frame of reference associated with the frequency ω0, the static
field contribution B0êz = ω0

γ
êz vanishes, and Beff = B1(t).

The oscillating magnetic fieldB1 applied during the excitation step is called the
Radio-Frequency (RF) pulse. In the laboratory frame, this field can be expressed
as B1(t) = B1(t) cos(ω1t)êx −B1(t) sin(ω1t)êy. It can be rewritten in the rotating
frame as B1,x′(t)

B1,y′(t)
B1,z′(t)

 =

cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1


 B1(t) cos(ω1t)
−B1(t) sin(ω1t)

0



=

B1(t) cos ((ω − ω1) t)
B1(t) sin ((ω − ω1) t)

0

 (2.7)

To be able to tip the magnetization vector M out of its alignment with B0, the
RF pulse has to be applied close to the Larmor frequency ω0. If the on-resonance
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(a) z

y

x

B0

M

ω0

(b) z

y′

x′

B0

M

ω0

Figure 2.2: Magnetic vector M precession from (a) the laboratory frame of
reference and (b) a rotating frame of reference. If the angular frequency of the
rotating reference frame is equal to ω0, the rotational motion of M is frozen.

condition is met, that is ω = ω0 = ω1, Equation (2.7) reduces to B1(t) = B1(t)ê′x.
Thereby, M rotates around the (x′)-axis and is located in the (y′z)-plane. The
angle by which M is tipped away from the axis (z) is called the flip angle α
(presented in Fig. 2.3) and is defined as

α = γ
∫ trf

0
B1(t)dt (2.8)

with trf the duration of the RF pulse (∼ 1 ms) and B1(t) the envelope of the RF
pulse.

z

y′

x′

B0

M

α

B1

Figure 2.3: Flip angle α viewed from the rotating frame of reference.
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2.2.2 Relaxation
After the RF pulse has been applied, the magnetization vectorM relaxes towards
its equilibrium state aligned with the B0-axis. That means that the longitudi-
nal component Mz grows again to its initial value M0, whereas the transverse
components Mx and My disappear.

Felix Bloch proposed a model in 1946 to describe the NMR phenomenon
[92]. He introduced two relaxation time constants, T1 and T2, which respectively
reflects the regrowth of the longitudinal magnetization and the decay of the
transverse components. These time constants depend on tissues and were defined
phenomenologically. The T1-relaxation comes from energy exchanges between the
spins and their surroundings. The T2-relaxation occurs because of several reasons:
T1-relaxation, spins dephasing due to local magnetic fields, spin-spin "flip-flop"
interactions where a pair of spins exchange their longitudinal angular momentum
leading to a loss of T2 coherence.

In the laboratory frame of reference, the Bloch equations are given by
dM (t)
dt

= γM(t)×B(t)︸ ︷︷ ︸
Precession

+ 1
T1

(M0 −Mz(t))êz −
1
T2

(Mx(t)êx +My(t)êy)︸ ︷︷ ︸
Relaxation

(2.9)

whereM0 is the longitudinal component ofM at equilibrium: M (t→∞) = M0êz.
In the rotating frame, according to Eq. (2.6), they are rewritten as

dM (t)
dt

= γM(t)×Beff(t) + 1
T1

(M0−Mz(t))êz−
1
T2

(M ′
x(t)ê′x +M ′

y(t)ê′y) (2.10)

where M and Beff have to be expressed in the rotating frame as well.
M (t) = M ′

x(t)ê′x +M ′
y(t)ê′y +Mz(t)êz (2.11)

and, according to Eq. (2.7),

Beff(t) = B0 +B1(t) + Ω
γ

(2.12)

= B1(t) cos ((ω − ω1) t) ê′x +B1(t) sin ((ω − ω1) t) ê′y + (B0 −
ω

γ
)êz

The Bloch equations in the rotating frame (Eq. (2.10)) can be expressed in
matrix form as

d

dt

M
′
x(t)

M ′
y(t)

Mz(t)

 = γ

M
′
x(t)

M ′
y(t)

Mz(t)

×
 B1(t) cos((ω1 − ω)t)
−B1(t) sin((ω1 − ω)t)

ω0−ω
γ

+


−M ′x(t)

T2

−M ′y(t)
T2

M0−Mz(t)
T1



=

 − 1
T2

∆ω0 γB1(t) sin(∆ω1t)
−∆ω0 − 1

T2
γB1(t) cos(∆ω1t)

−γB1(t) sin(∆ω1t) −γB1(t) cos(∆ω1t) − 1
T1


M

′
x(t)

M ′
y(t)

Mz(t)



+

 0
0
M0
T1

 (2.13)
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where ∆ω0 = ω0 − ω and ∆ω1 = ω1 − ω.
If the on-resonance condition is met, i.e. ω = ω0 = ω1, Eq. (2.13) reduces to

d

dt

M
′
x(t)

M ′
y(t)

Mz(t)

 =

−
1
T2

0 0
0 − 1

T2
γB1(t)

0 −γB1(t) − 1
T1


M

′
x(t)

M ′
y(t)

Mz(t)

+

 0
0
M0
T1

 (2.14)

A generalization of the Bloch equations to account for the transfer of magneti-
zation by diffusion has been proposed in 1953 by H.C. Torrey [93]. The diffusion
term ∇ · (D∇M ), where D is the diffusion tensor, is added in the Bloch-Torrey
equations. This equation is however out of the scope of the present thesis.

2.2.3 Analytical solutions
Excitation

Because the RF is of short duration, it is considered that ω1 �
1
T1
,

1
T2

and thereby
the relaxation effects are often disregarded. In the on-resonance rotating frame of
reference, Eq. (2.14) becomes

d

dt

M
′
x(t)

M ′
y(t)

Mz(t)

 =

0 0 0
0 0 γB1(t)
0 −γB1(t) 0


M

′
x(t)

M ′
y(t)

Mz(t)

 (2.15)

To solve the system of differential equations, let M ′
yz(t) = (M ′

y + iMz)(t).

d

dt
(M ′

y + iMz)(t) = −iγB1(t)(M ′
y + iMz)(t) (2.16)

=⇒
∫ trf

0

d((M ′
y + iMz)(t))

(M ′
y + iMz)(t)

= −iα

=⇒ (M ′
y + iMz)(t) = (M ′

y + iMz)(0)e−iα

where α is the flip angle introduced in Eq. (2.8). With the usual initial conditions
M0 = (0, 0,M0) , Eq. (2.16) reduces to:


M ′

x(t) = 0
M ′

y(t) = M0 sin(α)
Mz(t) = M0 cos(α)

(2.17)

Thereby, when the on-resonance condition is met, the magnetization vector M is
well tipped in the (y′z)-plane by the flip angle α. One can notice that if there are
off-resonance terms (∆ω0 in Eq. (2.13)), the magnetization vector experiences an
additional azimuthal angle.
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Relaxation

As stated in the last paragraph, due to the short duration of the RF, it is considered
that relaxation begins when B1 goes back to zero. Thereby, the Bloch equations
on-resonance become

d

dt

M
′
x(t)

M ′
y(t)

Mz(t)

 =

−
1
T2

0 0
0 − 1

T2
0

0 0 − 1
T1


M

′
x(t)

M ′
y(t)

Mz(t)

+

 0
0
M0
T1

 (2.18)

The transverse magnetization components M ′
x and M ′

y are decoupled from the
longitudinal magnetization component Mz. Thus, the complex representation of
the transverse magnetization is used: M ′

xy(t) = M ′
x(t) + iM ′

y(t) = |M ′
xy(t)|eiφ(t),

where |M ′
xy(t)| is the modulus of the transverse magnetization and φ(t) its phase.

Note that an ensemble of spins with the same phase, meaning that they all precess
at the same Larmor frequency, is call a spin isochromat. The physical concept
of isochromat allows to study its behavior from a classical physics point of view,
and not to deal with the particularities of quantum mechanics [94]. Yet, in the
literature, the term "spins" is often used as a synonym for "(spin) isochromats".

The analytic solutions are given as M ′
xy(t) = M ′

xy(t0)e−
t−t0
T2

Mz(t) = (Mz(t0)−M0)e−
t−t0
T1 +M0

(2.19)

where t0 ≥ trf denotes the end of the RF pulse., i.e. the beginning of relaxation.
It is easy to express M back in the laboratory frame of reference, as rotating a
complex number z through an angle θ results in multiplying z by eiθ. Hence, in
the laboratory frame, Eq. (2.19) become Mxy(t) = Mxy(t0)e−iω0te

− t−t0
T2 = |Mxy(t0)|e−i(ω0t−φ(t0))e

− t−t0
T2

Mz(t) = (Mz(t0)−M0)e−
t−t0
T1 +M0

(2.20)

2.3 Radiofrequency coils
To produce the time-varying magnetic field B1(t), radiofrequency coils are needed.
This type of coils is also used to record the NMR signal. Transmit and receive
RF coils are usually separate coils, but combined transmit/receive coil do exist
and are used for specific applications (e.g. head and knee imaging, ultrahigh-field
MRI).

2.3.1 Producing the B1(t) field
To stimulate the spins, the B1(t) field must have two characteristics. First, its
components need to rotate near the resonant frequency ω0, and secondly, it has
to be applied perpendicular to the static magnetic field B0.
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The B1 field is produced by RF-transmit coils, fed by powerful electrical
currents. The transmit coils can be located in the inner walls of the MR scanner
(body coils), or placed near the patient via cables (patient coils). Their design
have two main goals: to provide a homogeneous B1 field in the sample to be
investigated and to minimize the time needed to flip the magnetization.

Before arriving into the coils, the electrical currents have to go through a
electronic chain. First, a frequency synthesizer produces a continuous sinusoidal
carrier wave at or near the Larmor frequency. This signal will be used as a reference
for demodulating the MR signal in the RF-receiver chain (see Section 2.3.2). In the
RF-transmit chain, the carrier wave is then modulated by the desired low frequency
RF-pulse envelope in the RF pulse generator and amplified. To achieve a field in
the rotating frame such that B1(t) = B1(t) cos(ω1t)êx−B1(t) sin(ω1t)êy = B1(t)ê′x
(cf Eq. (2.7)), a circularly polarized transmission, also known as quadrature, is
usually chosen. While a linearly polarized coil can only provide a one dimensional
sinusoidal field, e.g. B1(t) = B1(t) cos(ω1t)êx in the laboratory frame, combining
two linearly polarized RF fields allows to produce the desired B1(t) field. The
left-circularly polarized RF field is obtain by adding two linearly RF fields with
the same frequency and peak amplitude. In addition to being perpendicular to
the static field B0, they have to be localized perpendicularly to one another.
With respect to time dependence, they need to be 90° out of phase. One can
demonstrate that the quadrature coil arrangement provides a better RF spatial
homogeneity and less power to produce the same flip angle compared to a single
linearly polarized coil [91].

2.3.2 Signal detection
As the net magnetization relaxes, its precession around B0 results in a time-
varying magnetic flux in the receive RF coil, which creates a voltage in the receive
RF coil called the electromotive force (emf). It is a consequence of Faraday’s law
of induction. Let us consider a receive coil of area S and B(t) a time-dependent
magnetic field. The magnetic flux Φ through the coil is defined as

Φ =
∫∫

S
B(t) · ndS (2.21)

where n is the unit vector normal to the surface S. According to Faraday’s law of
induction, the electromotive force is given as

emf = −dΦ
dt

= − d

dt

∫∫
S
B(t) · ndS (2.22)

Based on the principle of reciprocity, Haacke et al. details in [91] how to express
Eq. (2.22) not as a surface integration over the receive coil area any longer, but
as a volume integration over a region of non-zero magnetization. Elements of
explanation can be found in 7.1. Such a formulation appears more useful in MRI
in order to understand the factors which act on the signal amplitude. In this
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case, only the flux ΦM through a coil due to a magnetization source is taken into
account. Thereby, Eq. (2.22) can be reformulated as

emf = −dΦM

dt
= − d

dt

∫∫∫
V
M (r, t) ·Br(r)d3r (2.23)

where Br(r) = B(r)
I

is the magnetic field per unit current that would be produced
by the receive coil at the location r. This quantity is also called the coil profile or
sensitivity. Note that a spatial dependence is added to the magnetization vector
M (r, t), and that the emf has an implicit dependence on the excitation field B1
through M (cf Eq. (2.16)). The RMN signal is proportional to the emf.

2.3.3 Classic coil designs
For RF transmission, the most popular coil arrangement is the birdcage coil (see
Fig. 2.4). This design equips almost all body coils, and it is common to image
the head and knee [95, 96, 97, 98]. It presents a quadrature arrangement, with
excellent radial field uniformity. However, its field homogeneity decays in the axial
direction [91].

(a) (b)

Figure 2.4: Birdcage designs. (a) Low-pass version of the birdcage as initially
introduced by Hayes [95] (a - Circular end ring, b - leg, c - capacitor), (b)
Illustration of the experimental setup to image a knee with a birdcage, extracted
from [98].

For RF reception, the coils are designed to present two main properties: to
maximize the Signal-to-Noise Ratio (SNR) achieved by the coil, and to insure
homogeneity of the RF receive response over the sample to be imaged [91].
Concerning in particular receive coils, their SNR depends on their sensitivity and
their associated noise. The noise originates from contributions of the coil itself,
of the surrounding electronics and mainly of the sample being imaged. Thus,
positioning the coil the closest to the region-of-interest increases the SNR. So
does decreasing the volume to which the coil is sensitive to (i.e., the volume from
which the coil receives a signal) [99].
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Except for knee and head imaging for which birdcages are also particularly
useful for signal reception, the most common type of receive RF-coils are surface
coils. As this type of coils are placed directly on the patient’s body, they are well
adapted to image features that are close to the body surface [100]. The most
basic surface coil consists in a single coil placed on the body, which does not allow
the detection of quadrature magnetic fields. However, various surface coil designs
exist of which circularly-polarized ones as well, as illustrated in Fig. 2.5.

Figure 2.5: Various surface coil designs, adapted from [100]. Linearly-polarized
coil configurations are presented in the first row, while circularly-polarized ones
are displayed in the second row.

One or more surface coils can be used to image part of the body. They can
be assembled in a set, called a phased array coil. Examples of phased arrays are
shown in Fig. 2.6. By combining the signals received in each coil, a larger region
can be covered uniformly than if an individual coil had been used. Furthermore,
utilizing a set of small individual coils offers higher SNR compared to a single
large coil [100, 101]. However, care should be taken with respect to the noise, that
has to be uncorrelated from coil to coil. Each coil should have its own electronic
receive circuit and the neighbor coils are usually overlapping in order to achieve a
zero mutual inductance between them by using the principle of reciprocity and
Faraday’s law of induction [91].

A particular type of phased arrays are parallel arrays. These arrays are
used in parallel imaging, an MRI acceleration technique that exploit the spatial
dependence and sensitivity of the individual elements of the array [101]. More
details will be given about parallel imaging in Section 2.9.2. To be able to take
advantage of these additional information, each individual coil element has to
be free of magnetic interactions. Usually it is done by using a coil decoupling
circuitry and by placing the coil elements apart from one another at a distance
large enough to minimize their interaction [100].
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(a)

(b)

Figure 2.6: Phased array coils. (a) Phased array of four coils to image the spine,
extracted from [101]. Each coil element Ci={1,2,3,4} produces an image weighted
by its sensitivity. These four images can be combined into the bottom image. (b)
Two designs of 32-channel phased arrays for brain imaging, extracted from [102].

2.4 Basic types of NMR signals

As seen previously, RF pulses produced by specific coils are used to excite the
spins and detect the signal that they produce as they relax to the equilibrium net
magnetization. Additional coils called the gradient coils can be used to interact
with the magnetization. This section focuses on basic NMR signals obtained using
one RF pulse only, multiple RF pulses, or an RF pulse combined with a gradient.

26



CHAPTER 2. FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING

2.4.1 Free Induction Decay
The simplest MRI experiment is the Free Induction Decay (FID). It consists in
a single RF excitation pulse applied uniformly to the sample, which produces a
global signal of all excited spins. According to Eq. (2.23), the RMN signal s(t) is
proportional the emf such that

(2.24)s(t) ∝ − d

dt

∫∫∫
V

(
Mx(r, t)Brx(r) +My(r, t)Bry(r) +Mz(r, t)Brz(r)

)
d3r

Recalling the expression of M in Eq. (2.20) in the laboratory frame, the
time-derivative are such that

dMxy

dt
= −

(
iω0 + 1

T2

)
|Mxy(r, t0)|e−i(ω0t−φ(r,t0))e

− t−t0
T2

dMz

dt
= − 1

T1
(Mz(r, t0)−M0)e−

t−t0
T1 (2.25)

As ω0 is at least 4 orders of magnitude larger than 1
T1

and 1
T2
, the longitudinal

magnetization is neglected, and the transverse magnetization is approximated as:

dMxy

dt
≈ −iω0|Mxy(r, t0)| (cos(ω0t− φ(r, t0))− i sin(ω0t− φ(r, t0))) e−

t−t0
T2

=⇒


dMx

dt
≈ −ω0|Mxy(r, t0)| sin(ω0t− φ(r, t0))e−

t−t0
T2

dMy

dt
≈ −ω0|Mxy(r, t0)| cos (ω0t− φ (r, t0)) e−

t−t0
T2

(2.26)

Thereby, the signal presented in Eq. (2.24) reduces to

(2.27)s(t) ∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)|
(
sin(ω0t− φ(r, t0))Brx(r)

+ cos(ω0t− φ(r, t0))Bry(r)
)
d3r

Eq (2.27) can be further simplified, when expressing the transverse sensitivity
of the receive coil as a complex number: Brxy(r) = |Brxy(r)|eiθBr (r). The signal is
then given as

s(t) ∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)| sin(ω0t+ θBr(r)− φ(r, t0))d3r (2.28)

The signal is dominated by the rapid oscillations at the Larmor frequency ω0
in the sinusoidal term. These oscillations are removed by an electronic step called
the demodulation, based on the reference sinusoidal carrier wave used to generate
the B1(t) field (cf Section 2.3.1). The on-resonance hypothesis ω = ω0 = ω1 is
assumed. The demodulation results in viewing the signal from the rotating frame
of reference.
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The demodulation is performed by multiplying the signal by sin(ω0t) on the one
hand and by − cos(ω0t) on the other hand, resulting in two channels to store the
signal. The first channel is called the real channel and the second the imaginary
channel. Let us focus on the first sinusoidal term with β = θBr(r)− φ(r, t0):

sin(ω0t) sin(ω0t+ β) = 1
2 (cos(−β) + sin(2ω0t+ β)) (2.29)

The high-frequency 2nd term is eliminated by low pass filtering. Thereby, the
demodulated and low pass filtered real channel is

sre(t) ∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)| cos (φ(r, t0)− θBr(r)) d3r (2.30)

∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)|<
(
ei(φ(r,t0)−θBr (r))

)
d3r

Similarly, the demodulated and low pass filtered imaginary channel is

sim(t) ∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)| sin (φ(r, t0)− θBr(r)) d3r (2.31)

∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)|=
(
ei(φ(r,t0)−θBr (r))

)
d3r

Finally, the signal collected by the receive coil is a complex signal S(t) =
sre(t) + isim(t) given by

S(t) ∝ ω0

∫∫∫
V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)|ei(φ(r,t0)−θBr (r))d3r (2.32)

∝ ω0

∫∫∫
V
Mxy(r, t)B∗xy(r)d3r

where B∗xy(r) = |Brxy(r)|e−iθBr (r) is the complex conjugate of Brxy(r) andMxy(r, t) =
e
− t−t0

T2 |Mxy(r, t0)|eiφ(r,t0) the transverse magnetization as viewed from the rotating
frame of reference due to the demodulation. That is why the term ω0t is missing
in the complex exponential in comparison to Eq. (2.20).

The FID experiment chronogram and its corresponding signal are represented
in Fig. 2.7. The continuous emf signal is sampled by the analog-to-digital converter
(ADC).
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(a)

t

B1(t)

t0

t

s(t)

(b)

t

B1(t)

t0

t

s(t)

Figure 2.7: FID experiment before demodulation viewed from (a) the laboratory
frame of reference (Eq. (2.27)) and (b) the rotating frame of reference. The signal
s(t) in (b) can also be interpreted as one of the channels of the demodulated
signal.

In practice, the precession frequency of an isochromat at position r can have a
spatio-temporal dependency because of variations in the z-component of the local
magnetic field. Instead of precessing at the Larmor frequency ω0, it precesses at

ω(r, t) = ω0 + γBz(r, t) = ω0 + ∆ω(r, t) (2.33)

where ∆ω(r, t) represents the frequency shift. The phase of the transverse magne-
tization in the laboratory frame is then expressed as:

φ(r, t) = φ(r, t0)−
∫ t

t0
ω(r, t′)dt′ = φ(r, t0)− ω0(t− t0)−

∫ t

t0
∆ω(r, t′)dt′ (2.34)

Recall from Fig. 2.1 that the precession is left-handed with respect to the magnetic
field, hence the minus sign in front of the integral. In the rotating frame, the
ω0(t− t0) term vanishes and Eq. (2.34) reduces to:

φ(r, t) = φ(r, t0)−
∫ t

t0
∆ω(r, t′)dt′ (2.35)

When taking into account the spatio-temporal dependence, the complex signal in
Eq. (2.32) becomes

S(t) ∝
∫∫∫

V
ω(r, t)e−

t−t0
T2 |Mxy(r, t0)||Brxy(r)|ei(φ(r,t0)−

∫ t
t0

∆ω(r,t′)dt′−θBr (r))
d3r

(2.36)
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As ω(r, t) is largely dominated by ω0, it can be taken out of the integrand, but
it cannot be ignored in the phase. Introducing a constant Λ including the gain
factors due to the electronic detection system, the complex signal is then expressed
as:

S(t) = ω0Λ
∫∫∫

V
e
− t−t0

T2 |Mxy(r, t0)||Brxy(r)|ei(φ(r,t0)−
∫ t
t0

∆ω(r,t′)dt′−θBr (r))
d3r (2.37)

Instead of expressing the complex signal as a function of the magnetizationM ,
it can be rewritten in terms of the proton spin density (per unit volume). Indeed,
at t0, combining Eq. (2.5) and (2.17), the transverse magnetization equals to

|Mxy(r, t0)| = M0(r) sin(α) = ρ0(r)γ
2h̄2

4kT sin(α)B0 (2.38)

The signal can be finally written under the condensed form

S(t) =
∫∫∫

V
e
− t−t0

T2 ρ(r)eiφ(r,t)d3r =
∫∫∫

V
ρ(r, T2)eiφ(r,t)d3r (2.39)

where ρ(r, T2) = e
− t−t0

T2 ρ(r) = e
− t−t0

T2 ω0Λγ2h̄2

4kT sin(α)B0B∗xy(r)ρ0(r) represents the
effective spin density.

2.4.2 Spin Echo (SE)
Until now, the decay of the transversal magnetization has been considered to be
described by the relaxation time T2. A more accurate definition is to take into
account an additional phase dispersion (dephasing) of the magnetization due to
external field inhomogeneities. The observed relaxation time T ∗2 is thus defined as

1
T ∗2

= 1
T2

+ 1
T ′2

(2.40)

where T2 arises from thermodynamic effects, while T ′2 accounts for machine and
sample dependent variations in the external magnetic field. The T ′2 signal loss can
be recovered in the spin echo RF pulse sequence. This sequence is characterized
by the use of two successive RF pulses: a first pulse applied along the x′-axis of
flip angle α = 90° (the π

2 -pulse), followed by a π-pulse along the y′-axis of flip
angle. This second refocusing RF-pulse allows to compensate the dephasing at a
specific time TE, called the echo time.

Let us investigate the accumulated phase of a spin at the position r through
the steps of the spin echo. The π

2 -pulse is applied at t = t0 and the π-pulse at
t = τ , where both are assumed to be instantaneous. Besides the main static
homogeneous field B0 = B0êz, a small time-independent constant spatial variation
B0(r) = b0z(r)êz is present, such that the magnetic field along the z-direction
and its associated precession frequency are expressed as :

Bz(r) = B0 + b0z(r) ; ω(r, t) = ω0 + γb0z(r) (2.41)
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Similarly to Eq. (2.35), the phase of the MR signal from an excited isochromat at
position r is given by:

φ(r, t) = φ(r, t0)− γ
∫ t

t0
b0z(r)dt′ = φ(r, t0)− γb0z(r)(t− t0) (2.42)

With the initial phase φ(r, t0) = 0 and t0 = 0, the phase evolves through the
pulse sequence such that

for 0 < t < τ−: φ(r, t) = −γb0z(r)t (2.43)
at t = τ+: φ(r, τ+) = −φ(r, τ−) = γb0z(r)τ
for t > τ+: φ(r, t) = φ(r, τ+)− γb0z(r)(t− τ) = −γb0z(r)(t− 2τ)

t

B1(t)

I II III IV

TE

τ τ

(
π
2

)
x′

(π)y′

t

s(t)

TE

∝ e−t/T2

∝ e−t/T
∗
2

(a) Pulse sequence and signal viewed from the rotating frame of reference. The numbers
I-IV refer to Fig. 2.8b.

I

z

y

x

M0

II

z

y

x

III

z

y

x

IV

z

y

x

M0e
−TE

T2

(b) Evolution of groups of spins during SE - I. Tipping in the transverse plane, II. Spins
groups precess at different angular speeds due to local microscopic fields, III. Spins
groups are flipped, and start to rephase as they continue to precess, IV. Complete
rephasing at TE = 2τ .

Figure 2.8: Spin Echo experiment.

The echo time is defined as TE ≡ 2τ and corresponds to the time instant where
the phase of all spins in the sample returns to zero, no matter their position r or
the value of b0z. The realignment of the spins at TE is called the spin echo. The

31



CHAPTER 2. FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING

chronogram of the sequence is presented in Fig. 2.8 together with a sketch of the
behavior of spin isochromats during the experiment. As highlighted in Fig. 2.8b,
the first RF pulse tip all spins in the transverse plane. As a flip angle of π

2 is used,
the transverse magnetization just after the pulse is equal to the initial longitudinal
magnetization M0. Because of local microscopic fields, the isochromats perceive
magnetic fields which differ from B0 only depending on their position r. Thereby,
the isochromats do not dephase in the same manner; some are precessing more
rapidly and others slowlier (Fig. 2.8b - II). Due to this additional dephasing (T ′2),
the signal does not follow a T2 decay but a T ∗2 decay (Fig. 2.8a). The second RF
pulse allows to reverse the phase. The dephasing continue, but in the opposite
direction as if the isochromats were retracing their steps. It is the rephasing, which
is illustrated in Fig. 2.8b - III. Finally, as shown in Eq. (2.43), the isochromats
are totally rephased at t = 2τ , and the T ′2 signal loss is recovered.

Repeating the experiment for various values of τ or collecting the data for
several echoes by applying multiple π-pulses after a single π

2 -pulse gives access to
the relaxation time T2 thanks to an exponential fit.

2.4.3 Gradient Echo (GRE)
Another way to create an echo is to use a spatially linearly varying field, called
a gradient, after the application of a unique RF pulse. Unlike Spin Echo, GRE
sequences typically have an RF flip angle less than 90°, which allows them to be
faster since the T1 recovery occurs over a shorter period of time [89]. The gradient
G(t) is defined as

G(t) = Gx(t)êx +Gy(t)êy +Gz(t)êz

= ∂Bz

∂x
(t)êx + ∂Bz

∂y
(t)êy + ∂Bz

∂z
(t)êz (2.44)

The magnetic field gradients are applied through additional coils. After the RF
pulse, the effective magnetic field and the precession frequency of an isochromat
at position r become:

Beff(t) = B0 +G(t) · rêz

=
(
ω0

γ
+Gx(t)x+Gy(t)y +Gz(t)z

)
êz (2.45)

ω(r, t) = ω0 + γG(t) · r (2.46)

In the rotating frame of reference, the associated phase is given by:

φ(r, t) = φ(r, t0)− γ
∫ t

t0
G(t′) · rdt′ (2.47)
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Figure 2.9: Gradient echo (GRE) pulse sequence and signal viewed from the
rotating frame of reference.

Let us focus on a gradient that acts only on the x-direction, so that G(t) =
G(t)êx. The gradient echo is formed after the application of two lobes of the
gradient of opposite polarity. As presented in Fig. 2.9, after an RF-pulse of flip
angle α ≤ 90° is applied at t0 = 0, the gradient is equal to −Gx between t1 and
t2, Gx between t3 and t4 and 0 elsewhere. The phase of a spin due to the gradient
at the position r in the rotating frame is such that

for 0 < t < t1: φG(r, t) = 0
for t1 < t < t2: φG(r, t) = γGx(t− t1)x
for t2 < t < t3: φG(r, t) = γGx(t2 − t1)x
for t3 < t < t4: φG(r, t) = γGx(t2 − t1)x− γGx(t− t3)x (2.48)

The echo time TE ≡ t3 + t2 − t1, when the phase returns to 0 for all values of
x. The first lobe is usually referred to as the ’dephasing lobe’, while the second
one is called the ’rephasing lobe’. The phase during the rephasing lobe can be
rewritten in function of TE:

φG(r, t) = −γGx(t− TE)x (2.49)

Note that the echo occurs during the rephasing lobe at a time delay equal to the
duration of the dephasing lobe (TE − t3 = t2 − t1).

In contrary to the spin echo experiment, the gradient echo does not allow to
recover the dephasing due to static-field inhomogeneities. Indeed, when considering
an additional spatial variation in the magnetic field such as in Eq. (2.42), there is
no process in the GRE sequence to rephase the isochromats in contrast to the
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second RF pulse used in the SE sequence as illustrated in Fig. 2.8 - III. The
T ∗2 -decay can cause a significant reduction in signal intensity before the gradient
echo occurs.

2.5 Localization of the signal
In the previous sections, basic pulse sequences to acquire the global NMR signal
of a whole sample have been presented. The aim of MR imaging is to be able
to spatially localize the magnetic contribution of each isochromat in order to
reconstruct an image. To do so, additional gradient magnetic fields presented in
Section 2.4.3 are used. They provide a spatial magnetic field variation, which
adds to the homogeneous static field B0. The frequency content of the MR
signal received allows to determine the local spatial distribution of the spins. In
the following sections, the conventional 3D gradient echo sequence is presented
step-by-step.

2.5.1 One-dimensional localization: frequency-encoding
The simplest gradient echo sequence presented in Section 2.4.3 composed of a
unique RF pulse followed by two lobes of opposite gradient strength Gx allows
to localize the signal in one direction. With the relaxation effects neglected, the
signal given in Eq. (2.39) can be written as

S(t) =
∫
ρ(x)eiφ(x,t)dx (2.50)

where ρ(x) =
∫∫
ρ(r)dydz represents the effective 1D spin density.

The signal is collected during the rephasing lobe, also called the readout
gradient, of duration τr equal to two times the duration of the dephasing lobe,
also known as the prephasing gradient. Let us first consider a continuous infinite
reception of the signal during this gradient:

S(t) =
∫ +∞

−∞
ρ(x)ei

∫ t
0 (−γGx(t′)x)dt′dx (2.51)

=
∫ +∞

−∞
ρ(x)e−iγx

∫ t
0 Gx(t′)dt′dx

The MR image that one would like to reconstruct is the distribution of the spin
density ρ along the x-direction. The form of Eq.2.51 reminds of the Fourier
transform. As a remainder, for a function f , its Fourier transform f̂ is given as

f̂(k) =
∫ +∞

−∞
f(x)e−i2πkxdx (2.52)

By analogy, the time-dependent spatial frequency kx = kx(t) associated with the
x-direction is defined as

kx(t) = γ

2π

∫ t

0
Gx(t′)dt′ (2.53)
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Concerning the spin density, it can be found by taking the inverse Fourier transform
of the signal. The signal S(kx) and the image ρ(x) form a Fourier transform
pair given as (note that the convention used to define the Fourier integrals with
the factor 2π in the complex exponentials suppresses the need for normalization
factors 1

2π or 1√
2π ):

S(kx) = ρ̂(k) =
∫ +∞

−∞
ρ(x)e−i2πkxxdx (2.54)

ρ(x) =
∫ +∞

−∞
S(kx)e+i2πkxxdk (2.55)

However, the signal is sampled over a gradient of finite duration, i.e. a finite
number of spatial frequencies. Sampling the signal is mathematically modeled as
multiplying it with a sum of evenly spaced Dirac delta functions, while truncating
the signal results in multiplying it by a rectangular window function. N points
are sampled, so that the width of the window function is W = N∆kx where
∆kx represents the spacing between the Dirac functions. The measured signal
distribution sm (m stands for measured) is then given by

sm(kx) = ∆kx
N−1∑
p=0

S(p∆kx)δ(k − p∆kx) (2.56)

Hence, the reconstructed image for finite sampling rhor (r stands for reconstructed)
is found to be

ρr(x) =
∫ +∞

−∞
sm(kx)ei2πkxxdk (2.57)

= ∆kx
N−1∑
p=0

S(p∆kx)ei2πp∆kxx (2.58)

Note the periodicity property of the Fourier transform: ρr(x) = ρr(x+ 1
∆kx ). The

interval Lx = 1
∆kx corresponds to the spatial distance over which the reconstructed

image replicates itself and is often referred to as the field-of-view (FOV). According
to the Nyquist sampling criterion, the object to be imaged in MRI has to be
smaller than Lx. If the object is bigger, the image will fold over itself, an artifact
called aliasing.

Just like the measured signal, the reconstructed image is discretized and
truncated as well. As both measured signal and reconstructed image form a
Fourier-pair, it is obvious that N spatial points will be reconstructed over a
spatial interval of length Lx = N∆x, where ∆x represents the resolution of the
reconstructed image. Similarly to Eq. (2.56), the reconstructed image is given by

ρr(x) = ∆x
N−1∑
q=0

ρ(q∆x)δ(x− q∆x) (2.59)

=⇒ sm(kx) = ∆x
N−1∑
q=0

ρ(q∆x)e−i2πkxq∆x
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Moreover, the steps ∆x and ∆kx are related:

∆kx∆x = 1
Lx

Lx
N

= 1
N

(2.60)

Finally, the Fourier pair composed of the finite-discrete measured signal and
reconstructed image, presented in Eq. (2.57) and (2.59), can be expressed as

sm(p∆kx) = ∆x
N−1∑
q=0

ρr(q∆x)e−i2π
pq
N (2.61)

ρr(q∆x) = ∆kx
N−1∑
p=0

sm(p∆kx)e+i2π pq
N (2.62)

Since the signal is collected by sweeping over all spatial frequencies kx(t), this
type of encoding is called the frequency encoding. Recalling that the relaxation
effects have been neglected so far, each collected signal is in fact weighted by the
multiplying term e

− t−t0
T2 in the sum of the reconstructed image, where t matches

the time instant of sampling and t0 the center of the RF pulse.
As the signal is measured on both sides of the echo time TE during the readout

gradient and k(TE) = 0 in this most simple GRE sequence, the convention in MRI
is to consider the signal sampled at TE to match the 0th spatial frequency (DC
point). The spatial frequencies occurring before TE are called negative kx values,
while the ones happening after are the positive kx values. The coverage of the k
values, from the most negative to the most positive, is referred to as the k-space.
Thereby, the summation in Eq. (2.62) is rather done from −n to n for an odd
number of frequencies N = 2n + 1, and from −n to n − 1 for an even number
N = 2n in order not to straddle the DC point. This slightly asymmetric pattern
is the most common sampling strategy, as the Fast Fourier Transform (FFT) is
an efficient algorithm to calculate the discrete Fourier transform for a number of
points equals to a power of two.

Example with 3 spin isochromats

To illustrate the process of acquiring and reconstructing an image, an example
is given below in considering N = 3 isochromats. Let us define three positions
xA = −∆x, xB = 0 and xC = +∆x and their associated spin densities ρA, ρB
and ρC , respectively. The pulse sequence described in Section 2.4.3 is played, and
the signal is sampled at the time instants t3 = TE −∆t, TE and t4 = TE + ∆t.
According to Eq. (2.49), the phase is given as

φ(x, TE −∆t) = γGx∆t x = 2π∆kxx (2.63)
φ(x, TE) = 0

φ(x, TE + ∆t) = −γGx∆t x = −2π∆kxx

∆t is in fact a machine-parameter related to the bandwidth BW of the receive coil.
The bandwidth, in Hz per pixel, is the inverse of the total sampling time. That
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is the sometimes called dwell time ∆t = 1
N×BW with N the number of collected

points, or pixels reconstructed in the MR image. Hence, it appears that the
gradient strength Gx is completely determined by the pulse sequence and machine
parameters.

Let us write the signal collected over the frequencies −∆kx, 0 and ∆kx:

sm(−∆kx) = ∆x
1∑

q=−1
ρr(q∆x)e−i2π

(−1)×q
3 = ∆x

(
ρAe

−i 2π
3 + ρB + ρCe

+i 2π
3
)

sm(0) = ∆x
1∑

q=−1
ρr(q∆x)e−i2π

(0)×q
3 = ∆x (ρA + ρB + ρC)

sm(+∆kx) = ∆x
1∑

q=−1
ρr(q∆x)e−i2π

(1)×q
3 = ∆x

(
ρAe

+i 2π
3 + ρB + ρCe

−i 2π
3
)

(2.64)

The spin density reconstructed in the first pixel is given by:

ρr(−∆x) = ∆kx
1∑

p=−1
sm(p∆kx)e+i2π p×(−1)

3

= ∆kx∆x
((
ρAe

−i 2π
3 + ρB + ρCe

+i 2π
3
)
e+i 2π

3 + (ρA + ρB + ρC) e0

+
(
ρAe

+i 2π
3 + ρB + ρCe

−i 2π
3
)
e−i

2π
3
)

= 1
3
(
3ρA + ρB(e 2π

3 + 1 + e−i
2π
3 ) + ρC(e 4π

3 + 1 + e−i
4π
3 )
)

= 1
3

3ρA + ρB (e 2π
3 + 1 + ei

4π
3 )︸ ︷︷ ︸

=0

+ρC (e 4π
3 + 1 + ei

2π
3 )︸ ︷︷ ︸

=0


= ρA

(2.65)

To derive the solution, properties of roots of unity are used, especially the fact
that the sum of nth roots of unity is zero, i.e. ∑n−1

h e
2πih
n = 0 for h > 2. Similarly,

the spin density are well reconstructed as ρr(0) = ρB and ρr(+∆x) = ρC .

2.5.2 Two-dimensional localization: phase-encoding
Similarly to the frequency-encoding, a gradient Gy is added to the sequence to
encode the y-direction. The measured signal definition can be extended to a
double summation:

sm(px∆kx, py∆ky) = ∆x∆y
Nx−1∑
qx=0

Ny−1∑
qy=0

ρr(qx∆x, qy∆y)e−i2π( pxqx
Nx

+ pyqy
Ny

) (2.66)

In analogy with kx(t), the spatial frequencies associated with the y-axis are
introduced as ky(t) = γ

2π
∫ t

0 Gy(t′)dt′. The definition of the k-space is extended to
a 2D space of size Nx ×Ny. The most frequent strategy to fill the k-space is the
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Cartesian trajectory, presented in Fig. 2.10. The idea is to first select a line along
the ky axis, before collecting the signal from kx,min to kx,max in the same way as
presented for frequency encoding.

kx

ky
∆kx

∆ky

kx,min kx,max

ky,min

ky,max

Figure 2.10: Example of a Cartesian k-space of size Nx = 13 × Ny = 9. The
dashed line represents the acquisition of one line. The k-space is usually swept
from left to right and from top to bottom.

Two conclusions are drawn from this pattern. First the encoding along ky has
to be performed before the frequency-encoding occurs. Then the sequence has to
be looped over as many times as lines to be encoded. Each repetition is done with
the same two-lobe gradient Gx but a different gradient Gy in order to sweep over
all ky frequencies. In practice, a gradient of constant duration τy is chosen and
its strength Gy will vary in a step-like manner for each repetition of duration TR.
This pattern can be referred to as a gradient table and is added into the sequence
illustrated in Fig. 2.11. Thus, for the ith repetition time,

ky(TE) = γ

2π

∫ ty+τy

ty
Gy(TR,i)dt = γ

2πGy(TR,i)τy (2.67)
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t

α

B1(t)

t
Gy(t)

t
TE

Gx(t)

Figure 2.11: Two-dimensional GRE pulse sequence. The dashed line corresponds
to the one highlighted in Fig. 2.10.

By definition ky,max = γ
2πGy,maxτy. As there are maximal specifications for the

values of the gradient, the minimal τy achievable only depends on the sequence and
maximal gradient strength (related to machine parameters or MR safety require-
ments). During the application of the gradient Gy, the isochromats experience
a local change in frequency depending on their position along the y-axis. Once
the gradient returns to zero, their precession frequency returns to the Larmor
frequency ω0 (if no other gradient is played simultaneously). However, they are
dephased with respect to each other, as after application of the gradient Gy(TR,i)
the phase is modified by φGy(r, t) = γGy(TR,i)τyy. Hence, this type of encoding
is called phase-encoding.

2.5.3 Slice-selection

In the previous sections, how to excite the spins of a specific slice has been omitted.
The usual convention in MRI is to define the z-axis as the slice selection axis,
which is by definition the direction orthogonal to the plane of the desired slice.
Another coordinate system than the gradient coordinate system is usually used in
medical imaging based on the patient anatomy. The patient is usually positioned
within the MRI magnet head first and lying on the back. If the slice-selection
is along the axis from head to toes, the slice-orientation is said to be transverse.
If it is oriented along the left-right axis, it is said to be sagittal and finally the
posterior-anterior axis defines a coronal slice-orientation. These three anatomical
planes are summarized in Fig. 2.12.
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Figure 2.12: The three anatomical planes used in medical imaging.

The slice-selection is made by combining a spatially selective RF pulse with
a gradient field in the z-direction. Adding a slice-selection gradient field GSS

along the z-direction induces a change in the precession frequency such that
ω(r, t) = γGSSz in the rotating frame. The goal of the slice selection is to excite
uniformly the isochromats in a specific slice centered at the position z0 and of
thickness ∆z, that means that within the slice the isochromats must have the
same phase and flip angle after slice selection. Thereby, only the isochromats in
the spatial interval [z0− ∆z

2 , z0 + ∆z
2 ] have to be excited, which corresponds to the

precession frequencies between ∆ω = [γGSS(z0 − ∆z
2 ), γGSS(z0 + ∆z

2 )]. Thereby,
the desired RF pulse should have a frequency profile equals to unity over ∆ω and
zero outside. The ideal RF pulse should therefore be proportional to a rectangular
function of bandwidth BWRF

BWRF = ∆ω
2π = 1

2π

(
γGSS

(
z0 + ∆z

2

)
− γGSS

(
z0 −

∆z
2

))
= γ

2πGSS∆z

(2.68)
Back to the time domain, as the inverse Fourier transform of a rectangular

function is a sinc function, the temporal envelope of the RF pulse is such that

B1(t) ∝ sinc(πBWRF (t− t0)) (2.69)

∝ sinc
(
π(t− t0)

∆tRF

)
(2.70)

where t0 denotes the time instant when the peak RF amplitude occurs (middle
of the pulse) and ∆tRF is one-half the width of the central lobe (interval from t0
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to the first zero-crossing). To produce a perfect rectangular slice-selection, the
sinc function has to be infinite. In practice, the sinc function is truncated in time,
which is equivalent to a multiplication of the RF pulse by a rectangular function
of duration τRF . In the frequency domain, this operation results in a convolution
of the rectangular slice-selective function with a sinc function, which will cause
ripples along the rectangular function. This artifact, known as Gibbs ringing, can
be mitigated thanks to a process called apodization, which consists of multiplying
the truncated sinc function by a window function.

B1(t) =

 AW (t) sinc
(
π(t− t0)

∆tRF

)
for − τRF

2 < t < τRF
2

0 otherwise
(2.71)

Common apodization functions used in MRI are the Hanning and the Hamming
windows functions:

W (t) = (1− α) + α cos
(
π(t− t0)
Nc∆tRF

)
(2.72)

with Nc the number of zero-crossings and α = 0.5 for the Hanning window and
α = 0.46 for the Hamming one.

The isochromats of interest are well selected. However, due to the slice-selecting
gradient, they are dephased with respect to one another. Similarly to the pair of
dephasing-rephasing lobes to produce the gradient echo, an additional rephasing
gradient is needed. In the approximation that the spins are flipped instantaneously
in the transverse plane at the time instant t0, the dephasing occurs only in the
second half of the RF-pulse. Under this hypothesis, the rephasing gradient is of
inverse polarity −GSS and lasts half the duration of the slice-encoding gradient,
that is τRF

2 . This approximation is only valid for small flip angles.
Contrary to the analytical solutions for excitation presented in Section 2.2.3,

there is a concurrent gradient so that Eq. (2.15) becomes

d

dt

M
′
x(t)

M ′
y(t)

Mz(t)

 =

 0 γGzz 0
−γGzz 0 γB1(t)

0 −γB1(t) 0


M

′
x(t)

M ′
y(t)

Mz(t)

 (2.73)

For small tip angles (α < 30°), cos(α(t)) ≈ 1 with α(t) the instantaneous flip
angle at any point during the RF pulse [89]. Hence, it can be hypothesized that
Mz(t) ≈ M0 during the RF pulse, and thus dMz(t)

dt
≈ 0. Eq. (2.73) then reads

simply:
d

dt

M
′
x(t)

M ′
y(t)

Mz(t)

 =

 0 γGz(t)z 0
−γGz(t)z 0 γB1(t)

0 0 0


M

′
x(t)

M ′
y(t)
M0

 (2.74)

This leads to the following complex differential equation for the transverse magne-
tization M ′

xy:
dM ′

xy

dt
(t) = −iγGz(t)zM ′

xy(t) + iγB1(t)M0 (2.75)
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The equation can be solved using the integrating factor technique that states that
for a first order ordinary different equation of the form dy(x)

dx
+ f(x)y(x) = g(x),

the equation can be solved as eF (x)y(x) =
∫
g(x)eF (x)dx where F (x) =

∫
f(x)dx.

With the initial magnetization state M (t0 − τRF
2 ) = [0, 0,M0], the solution at the

end of the RF pulse, i.e. t = t0 + τRF
2 , is given as:

e
iγz
∫ t0+ τRF

2
t0−

τRF
2

Gz(s)ds
M ′

xy(t) = iγM0

∫ t0+ τRF
2

t0−
τRF

2

B1(t)eiγz
∫ t
t0−

τRF
2

Gz(s)ds
dt (2.76)

M ′
xy(t) = iγM0

∫ t0+ τRF
2

t0−
τRF

2

B1(t)e
iγz

(∫ t
t0−

τRF
2

Gz(s)ds−
∫ t0+ τRF

2
t0−

τRF
2

Gz(s)ds
)
dt

M ′
xy(t) = iγM0

∫ t0+ τRF
2

t0−
τRF

2

B1(t)e−iγz
∫ t0+ τRF

2
t

Gz(s)dsdt

For a constant gradient Gz(t) = GSS during the RF pulse,
∫ t0+ τRF

2
t Gz(s)ds =

GSS( τRF2 − t) and the equation becomes

M ′
xy(t) = iγM0e

−iγzGSS
τRF

2

∫ t0+ τRF
2

t0−
τRF

2

B1(t)e+iγzGSS(t−t0)dt (2.77)

= iγM0e
−iγzGSS

τRF
2 F−1(B1(t)) (2.78)

where F−1 denotes the inverse Fourier transform. As stated in [91], if B1(t) is a
real and symmetric function, so is its inverse Fourier transform. The dephasing
across the slice is thereby only contained in the exponential term e−iγzGSS

τRF
2 . To

refocus the isochromats, the rephasing gradient GRP of duration τRP should verify
GRP τRP = −GSS

τRF
2 . At the end, the choice of a rephasing gradient of value

−GSS and duration τRF
2 is well adapted to compensate the dephasing induced

during slice selection.

2.5.4 3D volume imaging
To image a volume, one strategy is the multi-slice 2D imaging, which is based on
the slice selection presented in Section 2.5.3. To recreate the volume, various RF
pulses are used, each of them centered at a different frequency and hence exciting
a different slice. The RF profiles are imperfect by nature, as they are not infinite
in time. Thereby, isochromats close to the excited slice might be excited as well.
To avoid the artifact called slice crosstalk and ensure that the spins are back to
the equilibrium before their slice is excited, it is common to leave a gap between
the slices, or to encode the slices such that two consecutive slices are not adjacent.

A more conventional 3D imaging strategy consists in exciting a thicker slice
corresponding to the volume of interest, called a slab. The slices within the
slab, called partitions, are phase-encoded by adding a second gradient table
along the slice selection direction. The phase-encoding works the same way as
presented in Section 2.5.2 for 2D imaging sequence. The dephasing due to the
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two phase-encoding steps before the readout gradient starts is such: φG(r, t) =
γ(Gyτyy+Gzτzz), such that every line in every slice has a different phase encoding
before being frequency encoded. To keep the same notations as the other directions,
∆z denotes the partition thickness and the slab thickness is TH = Nz∆z, where
Nz corresponds to the number of slices encoded. The k-space where the data are
collected is generalized to 3D and the measured signal definition is extended:

(2.79)
sm(px∆kx, py∆ky, pz∆kz)

= ∆x∆y∆z
Nx−1∑
qx=0

Ny−1∑
qy=0

Nz−1∑
qz=0

ρr(qx∆x, qy∆y, qz∆z)e
−i2π

(
pxqx
Nx

+ pyqy
Ny

+ pzqz
Nz

)

TR

t

α α
B1(t)

I

t

II

Gz(t)

t

III

Gy(t)

IV
t

TE

Gx(t)

(a) Pulse sequence. The numbers I-IV refer to Fig. 2.13b

y

x
z

I II III IV

(b) Illustration of the encoding process on a FOV of 3× 3× 3 voxels, where voxels of
the same color represent the same dephasing. I. FOV excitation, II. Slice selection, III.
Phase-encoding, IV. Frequency-encoding.

Figure 2.13: Three-dimensional GRE pulse sequence.

The 3D gradient echo imaging experiment is presented in Fig. 2.13, where
the lines and slices directions, orthogonal to the read direction, are both phase
encoded. Note that two combinations of gradients are needed along the z-axis:
the first dephasing-rephasing couple corresponds to the slab selection (Fig. 2.13a
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- I), while the second gradient represented by a phase-encoding gradient table
corresponds to the slice-selection within the excited slab (Fig. 2.13a - II). Should
this figure represent the multi-slice 2D imaging strategy, this second gradient
would not be needed, but the dephasing-rephasing slice-selecting gradients would
change for each repetition in order to excite different slices. In 3D volume imaging,
the same slab is excited throughout the sequence, which means that the same
dephasing-rephasing gradients are used for every repetition.

To encode one line, the time needed is the repetition time TR. Hence, to
encode all lines in the images, the experiment has to be repeated the number of
phase encoding steps. The total acquisition time for the 3D GRE is given by

Tacq = NyNzTR (2.80)

Note that in the sequence shown in Fig. 2.13, the gradients are played one
after the other. They can also be played concurrently, except for the readout
gradient in order to collect parallel lines of data in the 3D k-space in the Cartesian
strategy. Other sampling patterns do exist such as radial [103, 104] or spiral
[105, 106] paths. These strategies are out of scope of the present thesis, and
difficult to reconstruct as they lead to non-rectilinear k-spaces, and hence the
Fourier transform can not be directly performed.

2.6 Fast gradient echo imaging
In addition to the echo time TE, the already mentioned repetition time TR is
an important parameter of the MR pulse sequence. For a GRE sequence, it
corresponds to the time between two consecutive RF excitation pulses. Recall that
the relaxation is governed by two time constants, namely T1 for the recover of the
longitudinal magnetization and T2 for the decay of the transverse magnetization,
where T1 > T2 (except in specific cases, which are not observed in the clinical
practice [107]). If TR � T1, the magnetization vector goes back to its equilibrium
state M0 between each repetition. In basic GRE imaging, TR � T2, so that the
transverse component of the magnetization has completely decayed before the
new repetition. However, the longitudinal component can not recover completely.
After a few RF excitations, it will converge towards a reduced value, called the
steady-state magnetization. Finally, in the case where TR < T2, a situation
referred to as fast GRE imaging, the transverse magnetization does not completely
disappear before the next RF excitation pulse. Strategies to destroy the transverse
magnetization prior to the next RF pulse can be adopted, such as RF-spoiled
GRE.

2.6.1 Steady-state
Let us first focus on the case TR � T2, but TR < T1. According to the analytical
solutions derived in Section 2.2.3, after the application of a first RF pulse of flip
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angle α centered on t0 = 0, the longitudinal magnetization is such that

Mz(0+) = M0 cos(α)

Mz(T−R ) = (Mz(0+)−M0)e−
TR
T1 +M0

= Mz(0−) cos(α)e−
TR
T1 +M0(1− e−

TR
T1 ) (2.81)

where the notations + and − refer to time instants respectively after and before
an RF pulse and Mz(0−) = M0. After n repetitions, it can be derived from Eq.
(2.81) that the longitudinal magnetization is equal to:

Mz(nT−R ) = Mz((n− 1)T−R ) cos(α)e−
TR
T1 +M0(1− e−

TR
T1 ) (2.82)

For a sufficient number n of RF pulses, the longitudinal magnetization reaches a
new equilibrium MSS

z called the steady-state such as:

Mz(nT−R ) = MSS
z (2.83)

This phenomenon is called partial saturation. Once the steady-state is met, two
consecutive RF pulses repetitions m − 1 and m verify Mz(mT−R ) = Mz((m −
1)T−R ) = MSS

z . Hence, based on Eq. (2.82), an expression of MSS
z can be found:

MSS
z = MSS

z cos(α)e−
TR
T1 +M0(1− e−

TR
T1 )

MSS
z = M0(1− e−

TR
T1 )

1− cos(α)e−
TR
T1

(2.84)

Repetitions of RF pulses are usually performed at the beginning of GRE sequences
in order to achieve this longitudinal magnetization before starting to collect data.

An optimal flip angle α to maximize the signal can be derived. This corresponds
to finding the α value, which maximizes the transverse magnetization. According
to Section 2.2.3 and Eq. (2.84), the steady-state transverse magnetization MSS

xy is
given by:

MSS
xy = MSS

z sin(α) = M0
sin(α)(1− e−

TR
T1 )

1− cos(α)e−
TR
T1

(2.85)

The transverse magnetization is maximized when its derivative with respect to α
cancels out:

dMSS
xy

dα
= M0

(
1− e−

TR
T1

)(
cos(α)− e−

TR
T1

)
(

1− cos(α)e−
TR
T1

)2 = 0

⇐⇒ cos(α) = e
−TR
T1

⇐⇒ α = arccos
(
e
−TR
T1

)
(2.86)
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This optimal flip angle is called the Ernst angle, often denoted θE. More than
optimizing the intensity for a specific T1, meaning a specific type of tissue (e.g.
the blood with or without injection of contrast agent), the goal in MR imaging is
often to optimize the contrast between different tissues. Hence, the Ernst angle
might not always be appropriate.

2.6.2 Spoiling

Fast GRE, also known as steady-state free precession (SSFP) sequences, correspond
to the case where TR � T1 and < T2. This leads to the build-up of a steady-state
of the transverse magnetization as well, as it does not fully decay before each new
RF pulse. Thereby in addition to α, TR and T1, signal intensities also depend on
T2, which might make the contrast in the image difficult to interpret and cause
image artifacts. With this in mind, the transverse magnetization needs to be
eliminated prior the next RF pulse, a process call spoiling.

A first method consists in adding gradients at the end of the repetition, that
is between the readout and the next RF pulse. These gradients are called spoiler
gradients and are meant to dephase the isochromats within each voxel. Consider
isochromats in one arbitrary voxel. If the phase dispersion is sufficient within this
voxel, the sum of the contributions of each isochromat within the voxel averages
to zero. Hence, the contribution of the voxel to the total transverse magnetization
is zero. It is often enough to implement a spoiler along a single axis, usually along
the slice-select direction, and whose strength varies from one repetition time to
the next. As gradients produce spatially-varying magnetic fields, this type of
spoiling suffers from spatial non-uniformities.

Note that spoilers gradients might also refer to the simple lengthening of the
readout gradient, that is without varying its strength between each repetition
time. This causes some dephasing, but residual transverse magnetization subsists,
making the reconstructed images prone to motion- and flow-induced artifacts
[108].

A more efficient and frequent strategy is the RF-spoiling, often combined with
the latest definition of spoiler gradient. This method consists of quadratically
incrementing the phase of the RF pulse from repetition to repetition. RF pulses
provide the same flip angle, but the orientation of the magnetization in the
transverse plane (xy) varies. Zur et al. showed that for a phase increment of 117°
or 123°, the transverse magnetization is efficiently spoiled. [109]. To avoid spatial-
dependency of the RF spoiling, additional phase-encoding rewinder gradients are
needed. These gradients are meant to "rewind" the effect of the phase-encoding
gradients used at the beginning of the repetition, and consists in applying the
same gradients but with inverse polarity.
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2.7 Phase-contrast imaging
Magnetic resonance angiography (MRA) gathers the pulse sequences, which aim to
image blood vessels. Among them, phase-contrast MRI (PC-MRI) is a technique
used to quantify blood velocity. Until now, only static isochromats, localized by
their time-independent position, have been considered. However, the presence
of moving spins (e.g. blood, cerebrospinal fluid...) causes additional phase shift,
proportional to their velocity. Hence, the phase of the collected signal can provide
quantitative spatially-encoded information on the velocity.

Recall the expression of the phase for an isochromat at position r(t) given in
Eq. (2.47) at the echo time TE (where t0 = 0 is defined as the center of the RF
pulse):

φ(r, TE) = φ0 − γ
∫ TE

0
G(t) · r(t)dt (2.87)

where φ0 = φ(r, 0)+γ
∫ TE

0 b0z(r(t))dt is an additional background phase depending
on the initial phase and potential field inhomogeneities. The position r(t) of the
isochromats can be expanded in Taylor series at an arbitrary time instant texp
such that

r(t) =
∞∑
n=0

r(n)(texp)
n! (t− texp)

= r(texp) + (t− texp)
dr

dt

∣∣∣∣
texp

+ (t− texp)2

2
d2r

dt2

∣∣∣∣
texp

+ ... (2.88)

The development of r(t) is introduced in Eq. (2.87), leading to a new expression
of the phase:

(2.89)

φ(r, TE) = φ0 − γr(texp) ·
∫ TE

0
G(t)dt︸ ︷︷ ︸
M0

−γu(texp) ·
∫ TE

0
G(t)(t− texp)dt︸ ︷︷ ︸

M1

−γa(texp)
2 ·

∫ TE

0
G(t)(t− texp)2dt︸ ︷︷ ︸

M2

+...

where the following notations are introduced for the sake of clarity: u(texp) =
[u(texp), v(texp), w(texp)] = dr

dt

∣∣∣∣
texp

and a(texp) = d2r
dt2

∣∣∣∣
texp

. Furthermore, Mn =∫ TE
0 G(t)(t− texp)ndt denotes the nth gradient moment with respect to texp.

In phase-contrast MRI, the assumption is made that the velocity is constant
over a repetition time, hence the acceleration and terms of superior order are
neglected. Thereby, the velocity is independent of time over a repetition time:
u = [u, v, w] and a = [0, 0, 0]. Velocity encoding is usually performed using bipolar
gradients, which are gradients composed of two lobes of inverse polarity but same
duration. This kind of gradients cancels out the zeroth-order moment at TE, but

47



CHAPTER 2. FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING

not the first-order termM1, as shown below. Let us investigate adding a bipolar
gradient Gu of duration τu along the x-direction, as illustrated in Fig. 2.14.

t

α
B1(t)

Gu

−Gu

t
TEtu

tu + τuGx(t)

Figure 2.14: One-dimensional GRE pulse sequence with bipolar gradient.

For t0 = 0, the dephasing φu(r, t) due to this bipolar gradient is such that:

φu(r, tu + τu) = φ0 − γr(texp) ·
∫ tu+τu

0
G(t)dt− γu ·

∫ tu+τu

0
G(t)(t− texp)dt

= φ0 − γx(texp)Gu

(
[t− texp]tu+ τu

2
tu

− [t− texp]tu+τu
tu+ τu

2

)
︸ ︷︷ ︸

=0

−γuGu

[(t− texp)2

2

]tu+ τu
2

tu

−
[

(t− texp)2

2

]tu+τu

tu+ τu
2


= φ0 + γuGu

(
τu
2

)2

= φ0 − γuM1

(2.90)

The phase still includes the background phase φ0. To remove its effect and
thus isolate the velocity-encoded phase shift, two measurements are needed with
different moments M1. A bipolar gradient of inverse polarities can be played
in order to create a first moment of opposite sign than the first measurement.
Another possibility is to perform a second measurement, where both M0 and
M1 are cancelled at TE. Such a measurement is said to be flow-compensated. In
the readout direction, the flow-compensation is performed by adding two extra
lobes to the couple of dephasing-rephasing lobes. One lobe of same duration and
opposite gradient strength is added before the rephasing lobe, and a second lobe
of same duration and value is superposed to the rephasing lobe. The design is
presented on Fig. 2.15.
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t
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B1(t)
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Figure 2.15: One-dimensional GRE pulse sequence (prephasing and readout
gradient in and , respectively) with flow compensation (in ).

The flow-compensated phase φfc(r, t) throughout the sequence reads:

φfc(r, TE)

= φ0 − γx(texp)Gr

(
[t− texp]tfc+

τr
2

tfc
− 2 [t− texp]tfc+τrtfc+ τr

2
+ [t− texp]tfc+

3τr
2

tfc+τr

)
− γuGr

2

([
(t− texp)2

]tfc+ τr
2

tfc
− 2

[
(t− texp)2

]tfc+τr
tfc+ τr

2
+
[
(t− texp)2

]tfc+ 3τr
2

tfc+τr

)
= φ0 − γx(texp)Gr

(
τr
2 − 2τr2 + τr

2

)
︸ ︷︷ ︸

=0

−γuGr

2

((
tfc + 3τr

2 − texp
)2
− (tfc − texp)2 + 3

(
tfc + τr

2 − texp
)2

− 3 (tfc + τr − texp)2
)

= φ0 − γu
Gr

2

(3τr
2

(
2(tfc − texp) + 3τr

2

)
+ 3

(−τr
2

)(
2(tfc − texp) + 3τr

2

))
︸ ︷︷ ︸

=0
(2.91)

Note that if the velocity of interest is along the readout direction, both
sequences have to be flow-compensated, and one of them has to include the
velocity-encoding bipolar gradient on top of that. Indeed, if there is only a bipolar
gradient followed by the dephasing-rephasing readout gradient, the phase will
include extra dephasing due to these two lobes. The design of a flow-compensated
phase-encoding waveform is presented by Nishimura et al. The details about this
flow-compensation can be found in [110]. However, they state that these type of
gradients are at least 2.41 times longer than non-compensated phase-encoding
tables.

The two sequences are acquired as two distinct k-spaces, which can both be
reconstructed by inverse Fourier transform (cf Section 2.5). Here, the two sequences
can refer either to two sequences with opposite polarity of their bipolar gradient, or
to one sequence with flow-compensation and the other with flow-compensation and
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a bipolar gradient. Note that the reconstructed images are complex-valued due
to the extra dephasing that they include (background phase, velocity-encoding).
They can be reconstructed as magnitude images on the one hand and phase images
on the other hand. The velocity is reconstructed by subtracting the phase images.
The subtraction order depends on the sequences considered. For example, let
us consider φ(0) the phase for the flow-compensated subsequence and φ(x) the
phase associated with the flow-compensated velocity-encoded along the x-axis
subsequence. The phase difference is given by

∆φ(r, TE) = φ(x)(r, TE)− φ(0)(r, TE) = γu∆M(x)
1 (2.92)

where ∆M(x)
1 =M(x)

1 −M
(0)
1 = −Gu

(
τu
2

)2
denotes the moment difference. The

expression of the velocity is obtained as

u = ∆φ(r, TE)
γ∆M(x)

1
(2.93)

The phase φ(r, t) is the argument of the complex transverse magnetization
Mxy(r, t), and thereby it is defined on the interval ]− π,+π], and so is the phase
difference ∆φ(r, t). The gradients design, and consequently the moment difference,
have to be chosen so that the maximal velocity present within the field-of-view
results in a phase difference of π. This user-defined parameter, which needs an a
priori knowledge of the expected flow, is called the velocity sensitivity or velocity
encoding and is defined in the x direction as:

uenc = π

γ∆M(x)
1

(2.94)

If |u| > uenc, a phenomenon called phase aliasing (or phase wrapping) occurs, in
which the velocity is incorrectly encoded. On the other hand, MR images suffer
from noise, and in particular for PC-MRI, the noise is proportional to uenc [111].
The choice of the velocity sensitivity has to be a compromise between these two
aspects.

The method to encode the velocity along the readout direction can be expanded
to the other spatial directions. This is done by playing additional identical
sequences, yet with a bipolar velocity-encoding gradient along the phase-encoding
direction or the slice-select direction. It can be noticed that the flow-compensated
sequence can be used as a common reference to encode the three spatial directions,
hence only four measurements are required instead of six if one were to use bipolar
gradients only. Defining the maximal velocity vector as VENC = [uenc, venc, wenc],
the velocity is reconstructed as:

u = uenc
π

∆φx(r, TE)

v = venc
π

∆φy(r, TE)

w = wenc
π

∆φz(r, TE) (2.95)
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To encode in velocity the three spatial directions, other schemes can be
followed. Instead of using only one bipolar gradient per sequence, bipolar gradients
along various directions can be combined. The velocity vector [u, v, w] is then
reconstructed by linear combinations of the phase obtained for each sequence
[112].

2.7.1 4D flow MRI: three-dimensional cine PC-MRI

In order to take into account the pulsatile nature of blood flow in the human
vascular system, namely in the heart and great vessels, there is a need to resolve
the velocity field not only in space, but also in time with respect to the cardiac
cycle. Three-dimensional cine PC-MRI sequences, often referred to as 4D flow MRI
(3D in space and 1D in time), have emerged since the late 1990s [40, 113, 114].

4D flow MRI is based on an RF-spoiled 3D GRE sequence, already presented in
Section 2.6. Bipolar gradients and flow-compensation are added to this sequence
to be able to reconstruct the velocity field, as mentioned in the previous section.
In order to add a fourth dimension in time, the cardiac cycle is recorded simul-
taneously with the MRI signal, via an electrocardiogram (ECG) or a peripheral
pulse transducer. The cardiac cycle of averaged duration Tc is divided into time
frames, or cardiac phases, of duration ∆tp. At each cardiac cycle, only a few lines
per k-space can be filled for each cardiac phases. Indeed, a cardiac cycle is well
shorter than the acquisition time, and the reference and velocity-encoded k-spaces
are filled progressively over numerous cardiac cycles. The k-space is said to be
segmented, where the number of segments Nseg refers to the number of lines that
can be acquired within a cardiac phase [114]:

∆tp = 4TRNseg (2.96)

Note the multiplying factor of 4, as in the most usual scheme, one reference and 3
velocity-encoded k-spaces are acquired. The total acquisition time is thus given
by:

Tacq = NyNz

Nseg

Tc (2.97)

The synchronization of the MR signal with the ECG is a process called triggering
or gating, which can be prospective or retrospective. In prospective gating, the
MR data acquisition begins after the detection of a desired physiologic event, such
as the R-peak of the ECG. The signal is then acquired for a user-defined number
of phases Np, where ∆tpNp ≤ Tc. Once the Np cardiac phases have been filled, no
data is acquired up to the next R-peak, as it is represented in Fig. 2.16. Thereby,
some part of the cardiac cycle is never acquired.
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R R

...

∆tp
Tc

Figure 2.16: Scheme of a prospective ECG-gated 4D flow, where 2 segments are
encoded by cardiac phase. Tc refers to the average duration of a cardiac cycle
and ∆tp is the duration of a cardiac phases. The rectangles represent the k-space
being filled: reference, u, v w.

Acquired phases 1 12 3 4 5 6 7 8

Reconstructed
phases

I
II

III
IV

V
VI

VII
VIII

IX

Figure 2.17: View-sharing principle, based on the scheme presented in Fig. 2.16.
Here the rectangles and represent two different line number encoded in the
k-spaces. The 8 acquired phases are indicated above in Arabic numerals, while
an example to reconstruct 9 phases by view-sharing from these data is presented
below in Roman numerals. Phase I corresponds to phase 1; phase II to the artificial
phase 1.875 (= 1× 1

8 +2× 7
8); phase III to the artificial phase 2.75 (= 2× 2

8 +3× 6
8)

etc.

In retrospective gating, the MR signal is continuously recorded without any
physiological trigger, so that the whole cardiac cycle is covered. A physiological
signal, such as an ECG, a pulse or a respiratory level, is stored simultaneously.
This physiological data allows to retrospectively reorder the MR signal and group
it into cardiac phases after the acquisition. This is the typical gating used in
4D flow MRI. This type of gating is often combined with a technique called
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view-sharing [115]. The main idea of this process is to reuse k-space data from
adjacent acquired cardiac phases in order to create a combined k-space, matching
an artificial straddling time frame. The procedure is illustrated in Fig. 2.17, where
an example to reconstruct 9 cardiac phases from 8 acquired phases is presented.

2.8 MRI artifacts
Artifacts related to MR imaging have been mentioned at different places throughout
this chapter. Indeed, artifacts are almost always present in MRI. They come from
different sources: motion, hardware, physics etc. A brief non-exhaustive overview
of MR artifacts, particularly relevant to PC-MRI, is given in this section.

2.8.1 Motion-related artifacts
As it has been seen along the last sections, the whole k-space data collected over
the MR acquisition time is required to reconstruct an MR image. The quality of
the reconstructed MR image is thus particularly sensitive to motion, as it will
lead to errors in the magnetization magnitude and phase.

Patient motion

Patient motions are inevitable during MR acquisition. They can be distinguished
in two categories: aperiodic and period motion. Aperiodic motions, such as bulk
patient motion, eye movement, swallowing or peristalsis, induce blurring in the
images and are rather difficult to correct due to their random character. Periodic
motions, like cardiac motion, arterial pulsation and respiration, are responsible
for well-known ghosting artifacts. Ghosts are repeated copies of image features
overlapping the true morphological image. Various methods to mitigate periodic
motion artifacts exist. Patient can be asked to hold their breath for certain rapid
imaging sequences (< 20 − 30 s). During longer free-breathing measurements,
as for 4D flow MRI, it is common to monitor respiratory displacement via a
diaphragmatic navigator. In the usual respiratory gating, the data collected is
accepted only if the diaphragm position lies into a predefined acceptable range
(usually during end expiration when the diaphragmatic motion is minimal). Other
methods exist where the data is continuously acquired. The data is then either
retrospectively triggered, corrected or the respiratory motion can be resolved as
well [116].

Misregistration and velocity displacement artifact

Misregistration artifacts, also known as (spatial) displacement artifacts, happen
whenever the moving spins change position between phase- and frequency-encoding.
As illustrated in Fig. 2.18, this artifact occurs especially in oblique flows with
respect to the gradient axes. The higher the velocity and/or the longer the time
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between phase-encoding and readout, the greater the displacement. In sequences
not meant to measure spin velocities, this artifact can be eliminated with flow-
compensation [117]. In PC-imaging, it leads to mapping the velocities to incorrect
spatial locations [118].
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Figure 2.18: Misregistration artifact. Within the vessel, a moving spin is encoded
in phase at position P1, yet in frequency at position P2 due to flow, inducing a
misregistration at position M .

Velocity displacement artifact, also called acceleration artifact, is a second kind
of misregistration. It is due to the acceleration of spins during spatial and velocity
encodings, which leads to incorrect velocities assigned to the spatial locations.
Indeed, 4D flow MRI relies on the assumption of negligible acceleration during a
repetition time, which is not always accurate. However, Kouwenhoven et al. warn
not to misinterpret the Taylor expansion of the phase given in Eq. (2.89). The
common choice is to define texp as the center of the RF excitation pulse t0. This
choice for texp can result in an apparent sensitivity to acceleration, since t0 does
not match the time when velocity is actually encoded. They introduce the concept
of gradient gravity time center to determine the exact time point at which velocity
is encoded, which correspond to nullifyM2 in Eq. (2.89). This time point turns
out to be a more logical expansion time for the Taylor series [119]. Note that this
expansion time differs according to the direction investigated.

Based on these conclusions, the misregistration artifacts can be mitigated by
synchronizing the spatial and velocity encoding to occur simultaneously. It is
possible in conventional Cartesian 4D flow MRI, except for the spatial frequency-
encoding which necessarily occurs during the readout [117]. An interesting pa-
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rameter to investigate the displacement artifact is the so-called displacement time
TD, which is the time difference between the velocity encoding and TE.

Inflow

Inflow effect, also known as flow enhancement, is a consequence of partial saturation
presented in Section 2.6.1. After the application of successive RFs with short
TR, the spins within the FOV reach a steady-state longitudinal magnetization
MSS

z . However, moving spins ("fresh" blood) entering the imaged volume have
not experienced the train of RF pulses. These unsaturated spins produce a signal
that is significantly higher than the signal produced by the partially-saturated
spins. The artifact is astutely used in time-of-flight (TOF) MRA to image the
vascular system without contrast agent.

2.8.2 Tissue-related artifacts
Chemical shift

Chemical shift artifact occurs due to small changes in a given proton’s resonance
frequency due to magnetic field variations induced by its molecular surroundings.
Indeed, atomic nuclei are encompassed in electron clouds, which act as a shield
against the main magnetic field and thereby modify the magnetic field experienced
by protons. A well known example of chemical shift appears at fat/water interfaces.
The protons of fat find themselves primarily in long chains of triglycerides. They
are more shielded from B0 effects than water protons. Thereby, a fat proton
resonates at a slightly lower frequency than a water proton. This results in an
incorrect mapping of fat and water pixels in the MR image. Techniques have been
developed to separate water and fat in MR images, or to eliminate the signal
coming from either water or fat.

Magnetic susceptibility

Magnetic susceptibility, or magnetizability, is a property characterizing the ability
of a material to become magnetized in an applied magnetic field. Materials that
disperse the main field are called diamagnetic, while materials that concentrate
the field are said to be paramagnetic. Almost all biological tissues are weakly
diamagnetic, but accumulation of metals in some tissues can make them become
paramagnetic. Furthermore, many metallic foreign bodies are ferromagnetic, mean-
ing that they possess permanent magnetization. These additional contributions to
the magnetic field lead to a spatially nonlinear field, and thus a nonlinear variation
in protons precession frequencies. This results in image distortion, especially near
metals (e.g. implants, dental restorations, jewelry...) and air cavity, as air is
slightly paramagnetic. Shorter TE and increased gradient strength can mitigate
this artifact.
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2.8.3 Technique-related artifacts
Partial volume effect

Partial volume effects appear when voxels are larger than the object features to
be imaged, for example when there is more than one type of tissues within a voxel.
This results in the reconstructed voxel as an average of these features. This occurs
in particular at tissue boundaries. One way to alleviate this artifact is to reduce
the voxel size.

Aliasing

Aliasing, also known as wrap-around or folding, occurs when the Nyquist sampling
theorem, which states that the digital sampling rate must be at least twice the
highest frequency contained within the signal, is violated. Although rare, it can
occur along the frequency-encoding direction. However, it is more frequent along
the phase-encoding directions. It happens when spins are excited beyond the
prescribed range of the FOV (i.e. the imaged object is larger than the FOV). The
phase of the excited spins outside the FOV is misidentified, and their associated
object regions beyond the FOV appear as folding over the true anatomical image
as illustrated in Fig. 2.19. This artifact can be solved with phase oversampling,
which consists in an increased FOV, but where only the original smaller FOV is
reconstructed.

(a)

−180° 0° 360° 450°
First phase-encoding step

(b)

0° 360°

Figure 2.19: Aliasing artifact. In the first phase-encoding step, the gradient is set
to produce a 360° phase shift across the FOV (rectangle). As the object to be
imaged (gray ellipse) encompasses the FOV dimensions in (a), regions outside the
FOV are incorrectly phase-encoded, resulting in the aliased image in (b).

In PC-MRI, velocity-aliasing can occur due to similar causes. In analogy to the
choice of a FOV, which is too small in comparison with the object to be imaged,
the choice of a Venc that is too low in comparison to the maximal velocity to be
imaged causes velocity aliasing, also known as phase wrap-around. The velocity
that are above Venc (or below −Venc) are incorrectly mapped to the 2π range of
phase variation between [−Venc, Venc]. It appears in velocity-images as voxels that
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flow in the opposite direction in comparison to their neighbors. Algorithms have
been developed to correct this artifact in post-processing [120, 121, 122].

Gibbs ringing

Gibbs’ ringing, or truncation artifact, is caused by the lack of high-frequency
components to describe sharp boundaries within the MR image. They are found in
the directions associated with a few number of voxels, usually the phase-encoding
directions. They are noticeable on the images as ripples parallel to sharper edges.
Gibbs ringing may be avoided by increasing the matrix size (i.e. the number of
voxels) for a given FOV. The ringing can also be softened by filtering the k-space
data prior to the Fourier transformation.

Figure 2.20: Gibbs’ ringing artifact. A rectangular function and its description as
a Fourier series using only the first 8 harmonics.

2.8.4 Gradient field distortions
Concomitant gradients

Whenever a linear magnetic field gradient is activated, it generates additional
nonlinear spatially dependent magnetic fields as a consequence of Maxwell’s
equations. Bernstein et al. show that the magnitude of the magnetic field vector
presented in equation (2.45) becomes B0 +G · r +BC , where at the lowest order:

BC(x, y, z, t) = 1
2B0

(
G2
xz

2 +G2
yz

2 +G2
z

x2 + y2

4 −GxGzxy −GyGzyz

)
(2.98)

This contribution is referred to as concomitant field-terms or Maxwell terms [123].
As it can be seen from Eq. (2.98), the Maxwell terms are more important at low
fields (i.e. small B0) and/or with stronger gradients. If not corrected, they are
associated with a variety of artifacts: geometric distortion, image shift, ghosting
etc. [89]. Phase correction during image reconstruction based on the knowledge
of the gradient waveforms in the pulse sequence have been developed to correct
these terms [123, 124, 125].
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Eddy currents

Eddy currents, also known as Foucault’s currents, are a consequence of the
Faraday’s law of induction. They appear particularly due to the rapidly changing
magnetic field gradients, which induce electrical currents resulting in unwanted
time-varying gradients and contamination of the main field B0. The higher
the gradient amplitude or the faster the slew rates, the most significant the
eddy currents. They can be mitigated with actively shielded gradient coils.
Furthermore, gradients waveforms can be pre-emphasized. That means that the
current waveform input into the gradient coil is distorted beforehand, so that this
distortion cancels the subsequent eddy-current distortion [89]. Usually the pre-
emphasis compensates up to the first-order of the spherical harmonic expansion
of the eddy-current magnetic field. An illustration of the waveform pre-emphasis
is given in Fig. 2.21.

(a) (b)

(c) (d)

Figure 2.21: (a) Original gradient waveform and (b) the resulting distorted gradient
due to eddy currents. (c) Pre-emphasized gradient waveform and (d) the resulting
corrected gradient. Figure adapted from [126].

Gradient nonlinearities

Although linear near the magnet isocenter, gradient coils linearity drops off
significantly towards the periphery of the magnet. This creates spatial distortions
and blurring at the margins of MR images. These artifacts can be reduced
by positioning the region to be imaged close to the scanner isocenter and by
shimming, a correction process to remove field inhomogeneities in the magnet.
Post-processing techniques are also available to correct the geometric distortions,
such as precomputed displacement tables and phase mapping. For PC-MRI, Markl
et al. report that gradient nonuniformity affects both the magnitude of encoded
velocity and the direction of velocity-encoding. They propose a method to correct
for the gradient nonlinearities in the reconstruction of the velocity fields in [127].
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2.9 Reducing the scanning time in MRI
As highlighted by Eq. (2.97), the long time acquisition of 4D flow MRI scans is
an obstacle to its adoption in clinical practice. A broad range of techniques have
been developed over the years to shorten the scanning time. Some of them are
presented in this subsection and will be investigated in the coming chapters.

2.9.1 Partial Fourier
Partial Fourier is a technique where the data is not collected symmetrically: one
half of the k-space is completely filled, while only a small amount of the other
half is. It relies on the fact that if a real object is imaged, its Fourier transform
is Hermitian. It means that the real part of its Fourier transform is symmetric,
whereas the imaginary part is antisymmetric around the k-space center. Thereby,
theoretically only one-half of the k-space is required to reconstruct the MR image.
However, the reconstructed image is usually complex due to phase shifts, for
example related to artifacts mentioned in Section 2.8. Recall that in PC-MRI in
particular, information about the velocity is collected thanks to additional phase
shifts. Usually between 55 and 75% of the k-space data is collected in partial
Fourier acquisitions to be able to reconstruct magnitude images (morphological
images). Several algorithms have been proposed to reconstruct partial Fourier
data, where the most common are zero-filling, homodyne processing or iterative
homodyne processing [89, 128, 129, 130]. However, only the zero-filling ensures
that phase information is preserved in the low-spatial frequency range (i.e. near the
center of k-space). Zero-filling reconstruction has been shown to introduce fewer
artifacts when reconstructing PC-MRI data over methods enforcing Hermitian
symmetry [44]. When reconstructing PC-MRI images with zero-filling, it is
recommended that at least 75% of the k-space is collected [89].

(a)

kx

ky (b)

kx

ky

Figure 2.22: (a) Partial Fourier along kx, or partial echo. (b) Partial Fourier along
ky. Filled circles represent collected data points and dotted circles non-acquired
data points.

As illustrated in Fig. 2.22, partial Fourier can be used in the frequency-
direction or in the phase-encoding direction, which does not result in the same
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effect. When using partial Fourier along the phase-encoding direction, the main
goal is to reduce scan time. This can be seen from Eq. (2.97), as Ny (or Nz)
decreases. One can see from the same equation that the reduction in the number
of frequency-encoded points Nx does not affect the scan time. However, partial
Fourier along the frequency-direction allows reducing TE, and consequently the
displacement time TD mentioned in Sec. 2.8.1. Often called partial echo, it is
widely used in angiographic and cardiac applications, in order to reduce flow and
motion artifacts. An analysis of the impact of partial echo on 4D flow MRI images
is conducted in Chapter 5.

2.9.2 Parallel imaging techniques
Parallel imaging stems from the parallel RF coils presented in Sec. 2.3.3 to collect
the signal [131]. The main idea behind parallel imaging is to approximate part
of the k-space in the phase-encoding direction thanks to additional RF coil data,
namely the spatial sensitivities of each coil of the RF array. Indeed, for each coil,
the reconstructed image is weighted by its sensitivity. As some phase-encoding
steps are not acquired, scan time is saved. Obviously the direct or indirect measure
of the sensitivities is the key of this process to reconstruct images.

km

km + ∆k

km + 2∆k

km+1

kx

ky

Figure 2.23: Undersampled k-space for parallel imaging with R = 3. Only 1 line
out of 3 is acquired.

Parallel imaging consists in acquiring undersampled k-spaces, where only one
line out of R lines of the fully sampled k-space is acquired. R is called the
acceleration factor and is de facto inversely proportional to the acquisition time.
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An illustration for R = 3 is presented in Fig. 2.23, where km denotes the acquired
lines and ∆k is the phase-encoding step size required for Nyquist sampling, that
is ∆k = 1/Ly.

Parallel-imaging techniques can be divided into two main categories. The
x-space approach consists in reconstructing the images from the undersampled
k-spaces for each coil, which results in aliased images, as they violate the Nyquist
sampling theorem. The aliasing artifact is removed afterwards. By contrast, in the
k-space approach, the missing k-space lines are synthesized before reconstruction.
This section restricts itself to this last approach, as one of these techniques
(GRAPPA) is investigated in Chapter 4.

SMASH

SMASH, standing for SiMultaneous Acquisition of Spatial Harmonics [132, 133],
relies on the idea that coil sensitivities provide a spatial weighting of the received
MR signal, in the same manner as complex exponential Fourier-encoding functions
provide a spatial weighting. Thereby, it should be possible to approximate the
Fourier functions corresponding to the missing k-space phase-encoding lines as
linear combinations of the individual coil sensitivities.

Let us consider the 1D signal along the phase-encoding direction, in the same
manner as defined along the readout direction in Section 2.5.1

S(ky) =
∫
ρ(y)e−i2πkyydy (2.99)

where ρ(y) =
∫∫
ρ(r)dxdz represents the effective 1D spin density. Recalling that

the effective spin density is proportional to the transverse magnetization Mxy and
the coil profile B∗xy, ρ(y) can be rewritten as:

ρ(y) = Mxy(y)B∗xy(y) (2.100)

Combining the two equations and dropping the xy and y subscript for the sake of
clarity, the signal sj collected by the jth RF coil at a measured frequency km is
given by:

sj(km) =
∫
M(y)Bj(y)e−i2πkmydy (2.101)

with j = 1, 2, ..., Nc the number of individual coils.
Now the composite signal s̃ that one would like to reconstruct is:

s̃(km) =
∫
T (y)M(y)e−i2πkmydy (2.102)

s̃(km + p∆k) =
∫
T (y)M(y)e−i2π(km+p∆k)ydy

=
∫
T (y)M(y)e−i2πkmye−i2πp∆kydy (2.103)
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where T (y) is the target sensitivity function for normalization. The goal of SMASH
is to synthesize the complex exponentials e−i2πp∆ky using linear combinations of
coil sensitivities, such that [91]:

Nc−1∑
j=0

apjBj(y) = T (y)e−i2πp∆ky (2.104)

Note in particular that for p = 0:
Nc−1∑
j=0

a0
jBj(y) = T (y) (2.105)

T (y) can be defined by the weights a0
j (e.g. uniform unity weights), or in the

contrary a0
j are fitted to a chosen T (y). A common choice for T (y) is to be a

sum-of-squares of coil profiles: T (y) =
√∑Nc−1

j=0 |Bj(y)|2.
If the combination in Eq. (2.104) exists, the signal at km + p∆k becomes:

s̃(km + p∆k) =
∫
M(y)e−i2πkmy

Nc−1∑
j=0

apjBj(y)dy

=
Nc−1∑
j=0

apj

∫
M(y)Bj(y)e−i2πkmydy

=
Nc−1∑
j=0

apjsj(km) (2.106)

In this way, the missing k-space lines can be reconstructed from the acquired lines.
Note also that as km+R∆k = km+1, the signal s̃(km+p∆k) = s̃(km+1 +(p−R)∆k)
can both be determined as the pth positive harmonic adjacent to line km or as
the (p−R)th negative harmonic adjacent to km+1. This alternative definition can
alleviate the fact that approximating harmonic orders comparable to the number
of individual coils can be difficult.

That being said, the weights apj still needs to be determined. Rewriting Eq.
(2.104) with the following formalism:

Nc−1∑
j=0

byjajp = fyp (2.107)

which is a matrix equation of the form:

BA = F =⇒ A = B−1F (2.108)

The coil sensitivities are usually measured from the imaged object. It can be done
from a separate low-resolution calibration scan, as long as this scan encompasses
the region to be reconstructed. In general the coil sensitivities matrix B is
not a square matrix, and B−1 is obtained via pseudoinverse or singular value
decomposition.
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AUTO-SMASH

Instead of directly measuring the coil sensitivities, extra Nyquist-sampled lines can
be acquired around the k-space center to indirectly measure the sensitivities. This
additional lines, called autocalibration signal (ACS) lines, are used to determine
the weights apj . In AUTO-SMASH, R− 1 ACS lines are collected as illustrated in
Fig. 2.24.

sACS
j (km)

sACS
j (km + ∆k)

sACS
j (km + 2∆k)

sACS
j (km+1)

A
C

S
lin

es

kx

ky

Figure 2.24: k-space for AUTO-SMASH for R = 3. In addition to the lines
acquired according to Fig. 2.23, autocalibration (ACS) lines are collected (gray
circles) in order to determine the weighting factors to reconstruct the missing
lines (dotted circles).

According to Eq. (2.106), the composite ACS k-space lines can be expressed
as:

s̃ACS(km + p∆k) =
Nc−1∑
j=0

apjs
ACS
j (km) (2.109)

Moreover, combining Eq. (2.103) and (2.105), the ACS lines are such that:

s̃ACS(km + p∆k) =
∫ Nc−1∑

j=0
a0
jBj(y)M(y)e−i2π(km+p∆k)ydy

=
Nc−1∑
j=0

a0
j

∫
Bj(y)M(y)e−i2π(km+p∆k)ydy

=
Nc−1∑
j=0

a0
js
ACS
j (km + p∆k) (2.110)
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The process is illustrated in Fig. 2.25.
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Figure 2.25: Reconstruction for AUTO-SMASH, with 3 coils and R = 3. Each
circle represents a phase-encoded line, where the black circles are acquired km
values, the gray ones ACS lines and the dotted ones missing lines. As illustrated
with the arrows, a single line km acquired in each coil is fit to a single ACS
composite point.

By choosing the a0
j weights, the a

p
j for p > 0 are found in requiring the following

equation to hold, where:
Nc−1∑
j=0

apjs
ACS
j (km) =

Nc−1∑
j=0

a0
js
ACS
j (km + p∆k) (2.111)

Note that a certain number of ACS lines are required to determine the apj , and
that additional equations can be obtained by fitting the Nyquist-sampled lines
present within the ACS region. The same procedures as for SMASH can be used
to reconstruct the missing k-space lines.

GRAPPA

GRAPPA, standing for Generalized Autocalibrating Partially Parallel Acquisitions,
is an extension of AUTO-SMASH. As for AUTO-SMASH, an ACS region around
the center of k-space is collected. In contrary to SMASH and AUTO-SMASH,
where a composite k-space is created, individual k-spaces for each coil are created,
where data from all coils are used to estimate missing lines for each coil. For a
given coil j, the weights in GRAPPA are introduced over the ACS lines as:

s̃ACSj (km + p∆k) =
Nc−1∑
l=0

Nb−1∑
b=0

ap,bj,l s
ACS
l (km + bR∆k) (2.112)

where Nb is the number of blocks, or kernels, used for the reconstruction and
defined as an acquired Nyquist-sampled k line and R− 1 missing lines. Note that
for a given number of blocks, more than one reconstruction is possible for each
missing line (sliding block reconstruction) as illustrated in Fig. 2.26. The multiple
reconstructions for each unacquired line can be combined into a weighted average
to create the final reconstructed line.
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(a)
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A block
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(a)

Coil 1 - s1

Coil 2 - s2

Coil 3 - s3
A block
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Figure 2.26: (a) Reconstruction for the third coil for GRAPPA, with 3 coils and
R = 3. Each circle represents a phase-encoded line, where the black circles are
acquired km values, the gray ones ACS lines and the dotted ones missing lines.
More than one line acquired in each coil are fit to an ACS line collected by a single
coil (here, the third coil). (b) Another possible reconstruction for the same ACS
line acquired by the third coil to perform sliding block reconstruction. Note that
no composite signal is created, as opposed to the AUTO-SMASH reconstruction
presented in Fig. 2.25.

Once the k-spaces for each individual coil are created, Nc single coil images
are reconstructed. They are then combined into the final image, usually using a
sum-of-squares reconstruction.

2.9.3 Compressed Sensing

Compressed sensing (CS) is another technique to highly accelerate MRI scans,
which has seen increased interest in the past years. The main idea underlying
CS MRI is to collect only essential components of the k-space rather than the
fully-sampled k-space and to use an iterative optimization process to reconstruct
the image. Unlike parallel-imaging, it relies on an incoherent undersampling of
the k-space. The two other key elements for CS are sparsifying transformation
and nonlinear reconstruction [134].

A typical flowchart of the CS procedure is given in Fig. 2.27 and detailed
below [88].
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Semi-random undersampled k-space collection (y)

Initialization: Fourier transform reconstruction (x)

Iteration: Updated image (x)

Sparsifying transform

Sparsified data denoising

Inverse sparsifying transform + Inverse Fourier transform

Difference k-space ||y − Fx||22

Difference x-space

Reconstructed final image
if ||y − Fx||22 ≤ ε

else

Figure 2.27: Flowchart of a typical compressed-sensing procedure.

First, the undersampled k-space is collected. Coherent undersampling, as
for SMASH and GRAPPA, is avoided in order not to have aliasing. Incoherent
sampling on the contrary allows to have diffuse noise within the whole image, which
is easier to remove. Furthermore, a semi-random pattern is usually followed, as low
frequencies contain more information than high frequencies. Preferential sampling
near the k-space center can be obtained with a variable density Poisson-disc [135],
Gaussian [136] or Golden-angle radial schemes [137].

Once this highly undersampled k-space is acquired, an iterative algorithm is
used to reconstruct the image. First, the k-space is Fourier-transformed to create
an initial noisy image. A sparsifying transform is applied to this noisy image.
This transform possesses the particularity to concentrate meaningful imaging
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information in few high-intensity pixels, while the noise is distributed over many
pixels of lower intensity. The most common sparsifying transformation is wavelet
transformation. The sparsified data is then denoised by nullifying pixels, whose
value is below a certain threshold, digital filtering, or subtraction. The denoised
data is inverse sparsifying transformed and inverse Fourier transformed, so that a
denoised whole k-space is obtained. A difference k-space is created by subtracting
this denoised k-space to the measured undersampled k-space and by setting to zero
the initially non-acquired points. If the difference k-space is below a predefined
threshold ε in the least-squares sense, the denoised k-space is deemed consistent
enough with the measured k-space. The difference k-space is Fourier transform to
create a difference image, which is added to the initial noisy image to build the
final image. If the data consistency is not verified, the noisy image is still updated
by adding the difference image and the process is reiterated. The algorithm
is repeated until the least-square difference of the difference k-space is below ε
or until a predefined maximal number of iterations is reached. Mathematically,
the compressed sensing consists in solving the following optimization problem
[88, 134]:

minx
(
||y − Fx||22 + λ||Φx||1

)
(2.113)

where x is the reconstructed image, y the measured k-space data, F the Fourier
transform, Φ a sparsifying transform and λ a regularization parameter weighing
the relative importance of data consistency (first term) and sparsity (second term).
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In this chapter, several ways to model MRI are presented. First, an in-house
code has been developed to illustrate the concepts developed in Chapter 2 in
simple configurations. Simplistic GRE and PC-MRI sequences can be build with
predefined gradients functions. Corresponding images can be plotted, as well
as the evolution of the isochromats phase over time. Second, the YALES2BIO
solver is introduced [138, 139]. This in-house numerical software is designed to
perform numerical simulations of blood flows in complex geometries. Indeed,
computational fluid dynamics coupled with MRI measurements can bring insights
into similarities and differences observed with 4D flow MRI. The YALES2BIO
solver inherits from the massively parallel YALES2 code developed at CORIA
and dedicated to research in turbulent flows. The Navier-Stokes equations (NSE)

69



CHAPTER 3. MRI MODELLING

are solved on unstructured meshes using a finite-volume method and a high-order
non-dissipative numerical scheme. Finally, a framework to simulate MR images
is presented in the last part of this chapter, from a manufacturer sequence to
reconstruction. The Bloch equations are solved on particles together with the
NSE thanks to a dedicated solver within the YALES2BIO platform.

3.1 A toy model to illustrate the Bloch
equations

To understand and illustrate some phenomena involved in obtaining the NMR
signal and reconstructing the MR image based on this signal, a toy model has
been developed in Python. The goal of this demonstrator is to build the MRI
pulse sequence brick by brick, where each gradient consists in a parametrizable
function. Several functions are proposed to follow how the magnetization of the
spins evolves over time and to reconstruct an idealized image of the morphology
or the velocity.

This tool is meant for educational purposes only and is not meant to take all the
subtleties of MRI into account. Indeed, the following assumptions and idealizations
are made. The equations are solved in the rotational frame of reference, where
no off-resonance effects are included. The static magnetic field is considered
uniform. The gradients are modelled as perfect rectangles, which is physically
impossible to achieve. A more accurate depiction of gradients would be trapezoidal.
Nevertheless, rectangular waveforms can be sought as trapezoids with infinite
slew rates. Concerning the domain to be imaged, only 1D or 2D images can be
simulated. Indeed, 3D images consist in adding a second phase-encoding direction
in the same manner as for 2D images. Thereby 2D images are deemed sufficient to
illustrate basic MRI phenomena. Furthermore, the field-of-view is discretized in
order to have a one-to-one correspondence between the input proton densities and
the reconstructed images. That means there is one isochromat per pixel, localized
by its position on a Cartesian grid. Each isochromat is associated to initial input
data: a proton density, a velocity vector and potentially an acceleration vector.
Moreover, only one species is considered, so all isochromats are characterized by
the same relaxation times. Finally, the RF pulse is modelled as a rectangular
pulse, often called hard pulse, equal to B1 over a short duration τRF . Even though
this kind of RF pulses are non-selective, the assumption made here is that all
isochromats along the line or within the slice of interest are excited in the exact
same manner, with the same flip angle and spins outside the field-of-view are
neglected.

3.1.1 Input file
To design the sequence, some parameters are needed as inputs. The conventional
MRI coordinate system presented in Section 2.5 is used in the code: x refers to

70



CHAPTER 3. MRI MODELLING

the frequency-encoded direction (readout), y to the (first) phase-encoded direction
and z to the slice-select direction (not modelled here, where only one perfect slice
is excited).

As mentioned above, the RF pulse is modelled as a hard pulse. The sequence
is designed such that the RF pulse starts at t = 0. The amplitude B1 (in µT) and
the flip angle α (in degrees) are needed as inputs. The duration of the RF pulse
is such that:

τRF = α

γB1

π

180 (3.1)

The RF pulse is oriented along x and the initial magnetization vector is such that
M0 = [0, 0,M0], so that the magnetization vector after the RF pulse is only in
the (yz)-plane. Field-of-view data are required, namely the size of the domain to
be imaged Lx × Ly and the pixel resolution ∆x ×∆y. They are related to the
number of pixels Nx ×Ny as:

Nx = Lx
∆x ; Ny = Ly

∆y (3.2)

Two machine parameters are needed: the maximal gradient strength Gmax (in
mT/m) and the bandwidth BW of the receiver coil (in Hz/pixel). BW is equivalent
to the digitization rate of the signal, and is thus related to the sampling time Ts
by:

BW = Nx

Ts
(3.3)

The densities, velocities and accelerations are declared in a table format. In
these tables, each cell localized at the coordinates (i, j) is interpreted as the spin
isochromat in the pixel (i, j), with coordinates x = i∆x and y = j∆y. Thereby,
at each position, a scalar density, a velocity vector and an acceleration vector are
associated (note that they can be potentially equal to zero). Global T1 and T2
relaxation times are required as well. Finally, the velocity-encoding parameter
VENC in the 3 directions has to be set as well.

3.1.2 Gradients as building blocks
The gradients can be seen as the building blocks of the MR pulse sequence. In
chapter 2, various types of gradients have been mentioned, to spatially encode
the signal, to compensate artifacts induced by flow or on the contrary to encode
information about the velocity. Four sets of gradients are available in the Python
MR demonstrator: the readout and prephasing gradients, the flow-compensation
along the readout direction, the velocity-encoding bipolar gradient and the phase-
encoding gradients. The gradients are added one after the other in a so-called
chronogram, where their changes in amplitude over time are kept. The time
instants saved in the chronogram are only the ones when at least one gradient
changes amplitude. This defines the pulse sequence.
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Readout and prephasing gradients

As mentioned in Section 2.5.1, the readout gradient is the gradient during which
the signal is acquired. A prephasing gradient is required before the readout
gradient in order to form an echo during the readout lobe. Both gradients are
modelled in the same function, as they work together. The echo happens in the
middle of the readout lobe when the full k-space is acquired, at the time instant
TE. The gradient strength Gr of the readout and its duration τr are defined as:

Gr = 2πBW
γLx

; τr = Ts = Nx

BW
(3.4)

The duration of the readout gradient is by definition equal to the sampling time.
The dwell time, which is the delay between two consecutive sampling instants, is
given by:

td = 1
BW

(3.5)

For an odd number of points, as the k-space is sampled in a symmetrical manner,
the first instant collected is at tr,b + 1

2BW , where tr,b denotes the beginning of the
readout gradient. For an even number of points, the k-space is collected in an
asymmetrical way, where there is one spatial frequency kx more in the negative
range compared to the positive one. The first instant collected therefore matches
the beginning of the readout lobe. With these designs, the frequency kx = 0 is
collected at TE for both odd and even number of points.

Concerning the prephasing gradient, it is only the area under its lobe which
determines when the echo peak forms for static isochromats. In this case, the
area under the prephasing lobe should be equal to half the area under the readout
gradient. In the demonstrator, two options are available to design the pre-phasing
gradient. The first option is to use the maximal gradient strength Gmax. This
leads to the shortest possible prephasing gradient and can be used for a static
image. The second option is the one that has to be chosen to produce images
of the velocity. The gradient strength of the prephasing gradient is set to −Gr

and its duration lasts half the one of the readout gradient. Such a gradient is
compatible with the flow-compensating gradient along the readout direction.

Flow-compensating gradient along the readout direction

The flow-compensating gradient is an extra bipolar gradient, which is meant to
cancel the 0th and 1st-order moments at TE in Eq. (2.89).

As it is important to minimize the time between the RF pulse and the echo
time TE because of T2 relaxation and the presence of body-induced background
magnetic field gradients [91], the flow-compensating gradient is usually combined
with the pre-phasing and readout gradients in a so-called 121 waveform [89],
where the pre-phasing gradient is defined by the second option mentioned in last
paragraph. In this design, the pre-phasing gradient has to be such that its gradient
strength is the opposite of the one of the readout gradient and its duration is
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half the one of the readout. Concerning the flow-compensating gradient, it is a
bipolar gradient, whose 2nd lobe is superimposed on the pre-phasing gradient. The
duration of the flow-compensating gradient is the same as the readout gradient
and the magnitude of the 1st lobe is equal to Gr and the 2nd one −Gr.

Velocity-encoding bipolar gradient

As mentioned earlier in Section 2.7, the shape of the gradient used to encode
velocity is bipolar, with two lobes of same duration and opposite gradient strengths.
In the present MR demonstrator, the choice has been made to set the duration of
the velocity-encoding bipolar gradient equal to τr, so that it can be superposed
with the flow-compensating and pre-phasing gradients along the (x)-direction.
Thereby, the gradient strength of the positive lobe is given by:

Gv = π

γVENC( τr2 )2 (3.6)

with VENC in m.s-1 corresponds to the maximal expected velocity
To reconstruct the velocity, two sequences are needed in order to cancel out

the background phase effects (φ0). A first possibility is to play two sequences with
the same bipolar gradient, yet with opposite polarity. In this particular case, there
is no need for a flow-compensating gradient, only the pre-phasing and readout
gradients are required in addition to the bipolar gradient. Another method, which
is preferentially used in 4D flow MRI (cf. Section 2.7), is to have a reference
sequence (e.g. a pulse sequence velocity-compensated along the readout direction)
and the same sequence yet with a bipolar gradient.

Note that the bipolar gradient design presented here can be used to encode
any direction x, y or z.

Phase-encoding gradient

To reconstruct 2D images, besides being encoded in frequency, the isochromats
have to be encoded in phase by the so-called phase-encoding gradient. While the
readout gradient should be sampled at specific time instants corresponding to the
needed kx, the phase-encoding gradient is such that it leads to a different ky at
each repetition time TR, where there are as many repetition times as the number
of lines Ny along the y-direction in the image. This means that in comparison to
the previous paragraphs, the aforementioned basis sequence will be repeated Ny

times, yet the phase-encoding gradient will be incremented for every repetition
time.

The usual design of the phase gradient for a Cartesian sampling is to go from
the most positive ky frequency to the most negative one. Thereby, to encode the
most positive frequency, the maximum gradient strength Gmax is usually chosen.
The most positive frequency ky,max is thus given by:

ky,max = γ

2π

∫ ty,b+τy

ty,b

Gmax dt = γGmaxτy
2π (3.7)
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where ty,b is the beginning of the phase-encoding gradient and τy its duration. As
there are ny−1

2 spatial frequencies sampled from each side of ky = 0, ky,max is also
defined as

ky,max = ny − 1
2 ∆ky = ny − 1

2
1
Ly

(3.8)

Combining these two expressions of ky,max results in the following condition on τy:

τy = π(Ny − 1)
γGmaxLy

(3.9)

For the next TR, the duration τy is kept, and the gradient strength decreased
such that for the ith TR:

Gy(TR,i) = Gmax

(
1− 2i

Ny − 1

)
(3.10)

3.1.3 Analytic 1D example
In this analytic example, the phase behavior associated with the gradients pre-
sented in the last section is derived for a simple 1D case. From now on, a
slightly different convention is followed to express the signal in order to define the
dephasing as a positive quantity. Eq. (2.39) becomes:

S(t) =
∫∫∫

V
e
− t−t0

T2 ρ(r)e−iφ(r,t)d3r (3.11)

The study is restrained to the x direction, with the position and the velocity
having components along this direction only (no acceleration term is considered).
Furthermore, only the case of an odd number of pixels Nx is presented, which
implies a symmetrical sampling during the readout. With the new convention,
the general expression given in Eq. (2.89) for the phase in 1D, expanded from the
initial time instant texp = t0, reduces to:

φ(x(t), t)− φ0 = γx0

∫ t

t0
Gx(t′)dt′ + γvx

∫ t

t0
Gx(t′)(t′ − t0)dt′ (3.12)

Gx

prephasing readout

t0 TE − τr

TE −
τr
2 TE

TE + τr
2

−Gr

+Gr
t1 t2 t3 t4 t5

Figure 3.1: Chronogram with a prephasing and a readout gradient. Time instants
of collected signal for Nx = 5 are displayed in red.

74



CHAPTER 3. MRI MODELLING

Let us first consider only the prephasing and readout gradients, presented
in Fig. 3.1. Note the choice for the prephasing gradient to be compatible with
flow-compensation. The chronogram of this sequence contains two fixed time
instants: t0, which corresponds to the end of the RF pulse, and TE the echo time
in the middle of the readout gradient. By construction, the prephasing gradient
starts at TE − τr and ends at TE − τr

2 , which matches the beginning of the readout.
The readout ends at TE + τr

2 . Furthermore, let us call tp the pth time instant when
the signal is collected (with p = [1, 2, ..., Nx]), such that

tp = TE + τr
2

(2p− 1
Nx

− 1
)

(3.13)

Note that in order to comply with the definitions of the readout duration τr
and dwell time td = tp+1 − tp, given respectively in Eq. (3.4) and (3.5), the first
time instant does not occur at TE − τr

2 , but at t1 = TE − τr
2

(
1− 1

Nx

)
. The last

time instant occurs at tNx = TE+ τr
2

(
1− 1

Nx

)
for symmetric reasons. Furthermore,

tp = TE for p = Nx+1
2 .

The spatial frequency kx collected at tp is given by:

kx(tp) = γ

2π

∫ tp

t0
Gx(t)dt = 1

2π
γGrτr

2

(2p− 1
Nx

− 1
)

(3.14)

The phase can be analytically solved at these specific time instants:

φ(x, TE − τr)− φ0 = 0

φ(x, TE −
τr
2 )− φ0 = γx0

∫ TE− τr2

TE−τr
(−Gr)dt+ γvx

∫ TE− τr2

TE−τr
(−Gr)(t− t0)dt

= −γGrτr
2

(
x0 + vx

(
(TE − t0)−

3
4τr

))

φ(x, tp)− φ0 = φ(x, tp)− φ(x, TE −
τr
2 ) + φ(x, TE −

τr
2 )− φ0

= γx0Gr

∫ TE+ τr
2 ( 2p−1

Nx
−1)

TE− τr2
dt+ γvxGr

∫ TE+ τr
2 ( 2p−1

Nx
−1)

TE− τr2
(t− t0) dt

− γGrτr
2

(
x0 + vx

(
(TE − t0)−

3
4τr

))
= γGrτr

2

(2p− 1
Nx

− 1
)

(x0 + vx(TE − t0))

+ γGrτ
2
r

8 vx

((2p− 1
Nx

− 1
)2

+ 2
)

= 2πkx(tp) (x0 + vx(TE − t0)) + 2π2

γGr

k2
x(tp) + γGrτ

2
r

4 vx

(3.15)
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In particular, for tNx+1
2

= TE, the phase is:

φ(x, TE)− φ0 = γGrτ
2
r

4 vx (3.16)

As expected, the phase does not cancel out at TE when the isochromats are
moving. This additional phase shift leads to blurring and signal loss [91]. Note
also that the first term in Eq. (3.15) shows a shift in position ; the spin is spatially
encoded at the position x0 +vx(TE− t0), instead of x0, which matches the position
of the spin at the echo.

Gx

flow-compensation

t0

TE −
3τr
2 TE − τr

TE −
τr
2

−Gr

+Gr

(a) Partial chronogram with flow-compensating gradient

Gx

t0

TE −
3τr
2 TE − τr

TE −
τr
2 TE

TE + τr
2

−2Gr

+Gr

(b) Full chronogram for flow-compensated frequency-encoding.

Figure 3.2: Sequence with flow-compensation in the readout direction. 3.2b
corresponds to the superposition of the partial sequences in Fig. 3.1 and Fig. 3.2a.

Let us now investigate how adding a velocity-compensating gradient allows to
achieve a phase back to zero at echo time, as it would have been the case with
static isochromats. The pulse sequence is presented in Fig. 3.2. By construction,
this bipolar gradient starts at TE − 3τr

2 and ends when the readout starts at
TE − τr

2 .
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The phase is evaluated at the time instants, when the gradient changes:

φ(x, TE −
3τr
2 )− φ0 = 0

φ(x, TE − τr)− φ0 = γx0

∫ TE−τr

TE− 3τr
2

Grdt+ γvx

∫ TE−τr

TE− 3τr
2

Gr(t− t0)dt

= γGrτr
2

(
x0 + vx

(
(TE − t0)−

5
4τr

))

φ(x, TE −
τr
2 )− φ0 = γx0

∫ TE− τr2

TE−τr
(−2Gr)dt+ γvx

∫ TE− τr2

TE−τr
(−2Gr)(t− t0)dt

+ γGrτr
2

(
x0 + vx

(
(TE − t0)−

5
4τr

))

= −γGrτr
2

(
x0 + vx

(
(TE − t0)−

τr
4

))

φ(x, tp)− φ0 = γx0Gr

∫ TE+ τr
2 ( 2p−1

Nx
−1)

TE− τr2
dt+ γvxGr

∫ TE+ τr
2 ( 2p−1

Nx
−1)

TE− τr2
(t− t0) dt

− γGrτr
2

(
x0 + vx

(
(TE − t0)−

τr
4

))

= γGrτr
2

(2p− 1
Nx

− 1
)

(x0 + vx(TE − t0)) + γGrτ
2
r

8

(2p− 1
Nx

− 1
)2
vx

= 2πkx(tp) (x0 + vx(TE − t0)) + 2π π

γGr

k2
x(tp)vx

(3.17)

At tNx+1
2

= TE, by definition kx(TE) = 0 and the phase equals zero as well
thanks to the flow-compensation. Haacke et al. [91] underline that more than
being equal to zero, this means that the phase at the echo is constant and does
not depend on the velocity vx. Furthermore, they state that for most physiological
velocities, the effect of the non-linear velocity-dependent last term in Eq. (3.17)
can be neglected.
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Gx

velocity-encoding

t0
TE −

3τr
2

TE − τr
TE −

τr
2

−Gv

+Gv

(a) Partial chronogram with velocity-encoding gradient.

Gxt0

TE −
3τr
2 TE − τr

TE −
τr
2 TE

TE + τr
2

−2Gr +Gv

+Gr −Gv

+Gr

(b) Full chronogram for flow-compensated velocity-encoding along (x).

Figure 3.3: Sequence with a velocity-encoding gradient in the readout direction.
3.3b corresponds to the superposition of the gradients in Fig. 3.2b and Fig. 3.3a

.

Let us now add a bipolar gradient in the sequence in order to encode the
velocity along x. The sequence is illustrated in Fig. 3.3.

The phase evolves during the sequence as:

φ(x, TE −
3τr
2 )− φ0 = 0

φ(x, TE − τr)− φ0 = γx0

∫ TE−τr

TE− 3τr
2

(Gr −Gv)dt+ γvx

∫ TE−τr

TE− 3τr
2

(Gr −Gv)(t− t0)dt

= γ(Gr −Gv)τr
2

(
x0 + vx

(
(TE − t0)−

5
4τr

))

φ(x, TE −
τr
2 )− φ0 = γx0

∫ TE− τr2

TE−τr
(−2Gr +Gv)dt

+ γvx

∫ TE− τr2

TE−τr
(−2Gr +Gv)(t− t0)dt

+ γ(Gr −Gv)τr
2

(
x0 + vx

(
(TE − t0)−

5
4τr

))
= −γGrτr

2 (x0 + vx(TE − t0)) + γ(Gr + 2Gv)
2

(
τr
2

)2
vxt
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φ(x, tp)− φ0 = γx0Gr

∫ TE+ τr
2 ( 2p−1

nx
−1)

TE− τr2
dτ + γvxGr

∫ TE+ τr
2 ( 2p−1

nx
−1)

TE− τr2
(t− t0) dt

− γGrτr
2 (x0 + vx(TE − t0)) + γ(Gr + 2Gv)

2

(
τr
2

)2
vx

= 2πkx(tp) (x0 + vx(TE − t0)) + 2π π

γGr

k2
x(tp)vx + γGv

(
τr
2

)2
vx

= 2πkx(tp) (x0 + vx(TE − t0)) + 2π π

γGr

k2
x(tp)vx + π

VENC
vx

(3.18)

At TE,M1 6= 0, since φ(x, TE)− φ0 = π

VENC
vx.

Let us denote φx the phase obtained in Eq. (3.18) and φref the phase obtained
in Eq. (3.17). At each position x for each readout instant tp, the phase difference
is given by:

φx(x, tp)− φref (x, tp) = π

VENC
vx (3.19)

The phase difference allows to reconstruct the velocity along the x-direction,
providing that |vx|≤ VENC . It leads otherwise to phase wrapping. One has
to keep in mind that this "perfect" velocity reconstruction is made under the
assumption that the velocity is constant over time during encoding (i.e. there is
no acceleration), and even from one sequence to the other.

To image a two-dimensional image, a phase-encoding gradient is necessary
to encode the second dimension. Let us investigate the theoretical example of
a sequence only composed of a phase-encoding gradient, presented in Fig. 3.4.
Indeed, to encode a 1D image, the usual process is to encode the signal in frequency
only. As it will be shown by studying the phase evolution during the sequence,
the signal does not depend on TE and the time instant when the signal has to
be collected is completely arbitrary as long as it occurs after the phase-encoding
gradient. The spatial frequency ky collected at TE (or any time greater than ty,f ,
the end of the phase-encoding gradient) for the ith TR is given by:

ky(TE) = γ

2π

∫ tE

t0
Gy(t)dt = γ

2πGy(TR,i)τy (3.20)
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Gy

TR,1
TR,2
...

...
TR,Ny

Gx

phase-encoding readout
−Gmax

+Gmax

t0 TE

ty,b ty,f

Figure 3.4: Sequence with a phase-encoding gradient. ty,b and ty,f = ty,b + τy are
the start and end time of the phase-encoding gradient, respectively. This sequence
has to be repeated Ny times, with the gradient strength decreasing from +Gmax

to −Gmax. The readout gradient is reduced to only one time instant, where the
only sampled frequency is kx = 0 (and thereby Gx = 0).

The phase for each repetition time TR,i is given by:
φ(y, ty,b)− φ0 = 0

(3.21)

φ(y, ty,f)− φ0 = γy0

∫ ty,f

ty,b

Gy(TR,i)dt+ γvy

∫ ty,f

ty,b

Gy(TR,i)(t− t0)dt

= γGy(TR,i)(ty,f − ty,b)
(
y0 + vy

(
ty,b + ty,f

2 − t0
))

= 2πky(TR,i)
(
y0 + vy

(
ty,b + ty,f

2 − t0
))

One can remark some similarities with the frequency-encoded sequence with a
flow-compensating gradient. Instead of encoding the phase at the position y0, it
is encoded at the shifted position where the isochromats are located in the middle
of the phase-encoding gradient y0 + vy

(
ty,b+ty,f

2 − t0
)
. Recall that in the former

example, the isochromats were encoded in the middle of the readout gradient, i.e.
at the echo time TE. In contrary to this latter example, there is no additional
contribution of vy which would correspond to noise in the phase-encoding direction.
However, one can note that frequency- and phase-encoding lead to a difference
in the position where the isochromats are encoded. Since the phase-encoding
gradient has to be over before the readout gradient starts, the two spatial direction
can never be encoded simultaneously. This delay leads to the well-known flow
misregistration artifact, already mentioned in Sec. 2.8.1. Furthermore, while
the spatial and velocity encoding can be synchronized along the phase-encoding
direction, this is not the case for the readout direction.

3.1.4 Demonstrator examples
Some examples coming from the MR demonstrator are presented in this section
to illustrate the concepts introduced in the previous chapter. The demonstrator
has been restricted to gradient echo sequences.
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Sequence building

An example of how a sequence is built by adding the gradients one after the other
is provided in Fig. 3.5. All the available gradients are presented in this sequence.
The pre-phasing and readout gradients are first added into the chronogram (a),
as they are the basis of a 1D GRE sequence. The pulse sequence is then flow-
compensated along the same direction (b). A bipolar velocity-encoding gradient
can be added, e.g. along the z (c). In order to extend the FOV to a 2D image, a
phase-encoding gradient is needed along the y direction (d). Note that the order
to add the gradients does not matter.

(a) (b)

(c) (d)

Figure 3.5: Illustration of a sequence building. (a) Pre-phasing and readout
gradients. (b) Adding the flow-compensation gradient along the readout direction.
(c) Adding a bipolar velocity-encoding gradient along z. (d) Adding a phase-
encoding gradient along y (only the first encoding step for ky,max is displayed).

Signal and moments

Following the example in the last paragraph, a flow-compensated 1D gradient
sequence including a bipolar gradient along the z direction is built. The resulting
chronogram is presented in Fig. 3.6. Since this is a 1D sequence, only the ky = 0
frequency is phase-encoded, and the gradient along y is zero during the whole
sequence.
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Figure 3.6: Flow-compensated 1D gradient sequence with a bipolar gradient.

The gradient moments of order 0 and 1 (cf. Section 2.7) produced by this
sequence are displayed in Fig. 3.7. In this example, there are 3 orders of magnitude
of difference betweenM0 andM1. As expected, both moments along x cancel
out in the middle of the readout thanks to the flow-compensation. Should there
be no flow-compensation, M1,x cancels at a different time instant as illustrated in
Fig. 3.8.

Figure 3.7: Zeroth (upper graph) and first (lower graph) moments associated to
the sequence in Fig. 3.6. The sequence is plotted with the same color coding in
thin lines for reference (arbitrary units).
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Figure 3.8: Zeroth (upper graph) and first (lower graph) moments without flow-
compensation.

Finally, the demonstrator allows to plot the evolution of the signal during the
sequence using Eq. (3.11), where the volume integral is replaced by a summation
on the isochromats. The signal obtained for 13 isochromats only located by
their x-coordinate (unidimensional FOV) is displayed in Fig. 3.9. In (a), the
isochromats are static while in (b) they move with a constant velocity along z.
Their phase can be expressed in this 1D example as:

φ(x(t), t)− φ0 =γx0

∫ t

t0
Gx(t′)dt′

+ γ
∫ t

t0
(vxGx(t′) + vyGy(t′) + vzGz(t′)) (t′ − t0)dt′ (3.22)

Note that the gradient Gy and Gz do not appear in the first term, as the voxels
are only localized along x in this specific case (y0 = z0 = 0). Yet, each "1D voxel"
is associated with an initial velocity vector v(t0) = [vx, vy, vz]. v(t0) = [0, 0, 0] in
(a), while v(t0) = [0, 0, vz] in (b). Thereby according to Eq. (3.11) and (3.22),
only the T2-relaxation acts on the signal during the bipolar gradient in (a), as
there is no spatial dependency along z. However, the non-zero vz in (b) induces
an additional dephasing during the bipolar gradient, which is also noticeable in
the readout.
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(a)

(b)

Figure 3.9: Signal evolution for T2 = 0.15 s throughout the sequence (a) for static
isochromats and (b) for isochromats moving with a constant velocity along z.

Magnitude reconstruction in 1D

The k-space is computed for a flow-compensated 1D GRE pulse sequence. The
magnitude image along x is reconstructed by taking the magnitude of the inverse
FFT of the k-space. The resulting images are presented in Fig. 3.10 for T2 = 0.15
s and T2 →∞, where the latest corresponds to neglecting the relaxation. When
the relaxation is omitted, the proton density is perfectly reconstructed, while a
lower density is reconstructed when taking the relaxation into account. Yet, the
morphology is well-captured.

84



CHAPTER 3. MRI MODELLING

(a) (b)

Figure 3.10: Magnitude reconstruction (a) for T2 = 0.15 s and (b) for T2 →∞.

Associating a velocity vx to the isochromats allows to illustrate the misregistra-
tion artifact (cf. Section 2.8.1). The aliasing artifact coming from an undersampled
k-space, as represented in Section 2.9.2 on parallel imaging (cf. Fig. 2.23), can also
be illustrated on this example. If only a frequency out of 3 (R = 3) is collected,
three repetitions of the object to be imaged are reconstructed, yet with a lower
amplitude. Both artifacts are displayed in Fig. 3.11. Note the additional ringing
artifact observed in (a).

(a) (b)

Figure 3.11: Artifacts in magnitude reconstruction. (a) Misregistration artifact
(and Gibbs’ ringing) (b) Aliasing due to k-space undersampling.

Magnitude and velocity reconstruction in 2D

A second dimension can be added in the demonstrator thanks to the phase-
encoding gradient. Two sequences are simulated and displayed in Fig. 3.12: a 2D
GRE reference sequence with flow-compensation and the same sequence with an
additional bipolar gradient to encode the through-plane velocity vz.
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(a) (b)

Figure 3.12: (a) Reference sequence. (b) Sequence with velocity-encoding in the
z-direction. Note that the y-axis is scaled by the greatest gradient present in the
sequence. That is why the scale differs between the two images.

Their simulations lead to two complex k-spaces. As mentioned earlier, the
magnitude of the inverse FFT allow to reconstruct a magnitude image for each
sequence, as illustrated in Fig. 3.13 for the reference sequence. While for T2 →∞
the input proton density is perfectly reconstructed, this figure corresponds to
the case T2 = 0.15 s. An attenuation on the reconstructed magnitude image is
noticeable due to the T2-relaxation. To reconstruct the velocity, the phase of the
inverse FFT of both k-space is required according to Eq. (2.95). The expected
and reconstructed velocity field in the z direction are presented in Fig. 3.14. The
velocity field is accurately reconstructed, since both phase images are impacted
by the T2-relaxation in the same manner.

(a) (b)

Figure 3.13: (a) Input proton density (a.u.). (b) Reconstructed magnitude image
(a.u.). The values in some pixels are specified in gray for reference.
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(a) (b)

Figure 3.14: (a) Input velocity field vz (m/s). (b) Reconstructed velocity field vz
(m/s). The values in some pixels are specified in gray for reference.

As in the previous example, adding a velocity field in the x-direction induces
misregistration. The phenomenon produced by adding a constant velocity field vx
is illustrated in Fig. 3.15 for both the reconstructed magnitude image and velocity.
Note that this test case is really unlikely, as the velocity is prescribed along the
object plane. For impermeable walls, this plane velocity is necessarily very low.
(a) (b)

Figure 3.15: (a) Misregistered reconstructed magnitude image (a.u.). (b) Misregis-
tered reconstructed velocity field vz (m/s). The values in some pixels are specified
in gray for reference.

3.2 Complex hemodynamics simulations: the
YALES2BIO solver

3.2.1 Incompressible Navier-Stokes equations
Blood is a suspension composed of cells and proteins in a liquid plasma, presents
a non-Newtonian behavior with complex rheological properties. However, its
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behavior in the context of large vessels experiencing high shear rates can be well
modelled as an incompressible Newtonian fluid [140]. The well-known Navier-
Stokes equations (NSE) describe the motion of an incompressible Newtonian fluid
as: 

∂u

∂t
+∇ · (u⊗ u) = −∇p

ρ
+ ν∇ · (∇u) + f

ρ
∇ · u = 0

(3.23)

where u is the velocity vector, p the pressure, ρ the fluid density, ν the kinematic
viscosity and f a possible volumetric force. The first equation expresses the
conservation of momentum of the system, and the second the mass conservation.
No analytical solution of the NSE has been found yet. The YALES2BIO code
provides a numerical method to approximate the solution. It uses a finite-volume
fourth-order scheme, adapted to unstructured meshes, that will be introduced in
the next sections.

3.2.2 Finite-volume spatial discretization
In order to numerically solve the NSE, the fluid domain of interest has to be
divided in smaller mesh elements. A finite-volume method is used in YALES2BIO,
where the spatial discretization procedure is based on the integration of the
equations on small polyhedral control volumes (CVs). This approach is common
in the field of computational fluid dynamics, as the integral formulation of the
discretized surface forces conserves the momentum. The node-centered CV, of
nodal volume Vi, utilized in the code are illustrated in 2D in Fig. 3.16. The set of
CVs is referred to as the dual mesh.

Ωi

i

j

Sij

Figure 3.16: Control volume Ωi around the node i of an unstructured triangular
mesh. The CV is built by linking the centroids of adjacent mesh elements (red
dots) and the midpoints of the edges containing the node i (blue dot). The surface
patch Sij to the node pair (i, j) is highlighted in blue, and Sij = Sijnij is its
associated non-normalized pair face normal.
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Integrating the momentum equation given in Eq. (3.23) over the control
volume Ωi presented in Fig. 3.16 leads to:∫

Ωi

∂u

∂t
dV =

∫
Ωi
∇ ·

(
−u⊗ u− p

ρ
I + ν∇u

)
dV +

∫
Ωi

f

ρ
dV (3.24)

The first volume integral in the right-hand side of the equation can be expressed
as a surface integral thanks to Ostrogradsky’s theorem:∫

Ωi

∂u

∂t
dV =

∮
∂Ωi

(
−u⊗ u− p

ρ
I + ν∇u

)
· dS +

∫
Ωi

f

ρ
dV (3.25)

where ∂Ωi denotes the boundary of the control volume Ωi. As illustrated in Fig.
3.16, to each pair of nodes (i, j) is associated a part of the CV surface. The face
associated to the node pair (i, j) is denoted Sij, of normal vector Sij = Sijnij.
Note that here the use of ij does not refer to an implicit summation, but to the
node pair (i, j). Thereby, the control volume is bounded by Nfi faces of surface
Sij and the close surface integral can be rewritten as the sum of the integrals on
each face:

∫
Ωi

(
∂u

∂t
− f
ρ

)
dV =

Nfi∑
j=1

∫
Sij

(
−u⊗ u− p

ρ
I + ν∇u

)
· dS (3.26)

From the last equation, it appears that there is a need to express the integral of
the unsteady terms and body force over the control volume. This is equivalent to
finding the average of these quantities over the control volume, since the average
of an arbitrary function φ over the CV Ωi is defined as:

φ̄Ωi = 1
Vi

∫
Ωi
φdV (3.27)

Using Einstein notation, the second-order Taylor expansion about the CV node i
of coordinates xi is given by:

φ = φ|i+(xk − xki )
∂φ

∂xk

∣∣∣∣
i
+ 1

2(xk − xki )(xl − xli)
∂2φ

∂xk∂xl

∣∣∣∣
i
+O

(
∆x3

)
(3.28)

where ∆x refers to the length scale representative for the size of the CV. The
volume integral of φ can be rewritten according to this expansion in Taylor series:∫

Ωi
φdV =

∫
Ωi
φ|idV

+
∫

Ωi
(xk − xki )

∂φ

∂xk

∣∣∣∣
i
dV

+
∫

Ωi

1
2(xk − xki )(xl − xli)

∂2φ

∂xk∂xl

∣∣∣∣
i
dV

+
∫

Ωi
O
(
∆x3

)
dV (3.29)
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In the same manner, the surface integral in the right-hand side of Eq. (3.26)
has to be discretized. The average of the variable φ over the pair face Sij is given
by:

φ̄Sij = 1
Sij

∫
Sij
φdS (3.30)

The pair face Sij depends on the contributions of both CV nodes i and j. In the
following, φ|ij represents the value of φ at the midpoint of the edge connecting
the nodes i and j and of coordinates xij such that

φ|ij=
φ|i+φ|j

2 (3.31)

where φ|i and φ|j represents respectively the contribution of i and j.

The second-order spatial discretization, thoroughly described in the PhD
thesis of Vantieghem [141], is first presented. The average of φ over the CV is
approximated by its nodal value:∫

Ωi
φdV ≈ φ|iVi (3.32)

This first-order accurate expression becomes second-order accurate if the center
of mass of the CV, that is xī = x̄Ωi = 1

Vi

∫
Ωi x̄dV , is located at the node position

i. This is true on locally orthogonal meshes.
The gradient, divergence and Laplacian operator can be discretized using the

same method. The gradient of a function φ is approximated as:∫
Ωi
∇φdV ≈ ∇φ|iVi (3.33)

Moreover, the Ostrogradsky’s theorem allows to rewrite the volume integral as a
surface integral:

∫
Ωi
∇φdV =

∮
∂Ωi

φdS =
Nfi∑
j=1

∫
Sij
φdS ≈

Nfi∑
j=1

φ|ijSij (3.34)

Expressing the value φ at the midpoint of the edge between the nodes i and j
using Taylor series gives

∫
Ωi
∇φdV ≈

Nfi∑
j=1

φ|i+φ|j
2 Sij (3.35)

This approximation is second-order accurate by construction of the CV, as demon-
strated in [141]. Thereby, the discretization stencil for the gradient operator G is
given by:

G(φ)|i=
1
Vi

Nfi∑
j=1

φ|i+φ|j
2 Sij (3.36)
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The same approach is used to define the stencil for the discrete divergence of
a vector u:

D(u)|i=
1
Vi

Nfi∑
j=1

u|i+u|j
2 · Sij (3.37)

The same process is also used for the Laplacian operator. Indeed, the most
direct way to compute the Laplacian would be to apply the gradient operator
followed by the divergence operator. However, this would lead to a non-compact
stencil, source of non-physical behavior when solving a Poisson equation. Similarly
to Eq. (3.34), the volume integral can be rewritten as:∫

Ωi
∇ · ∇φdV =

∮
∂Ωi
∇φ · dS ≈

Nfi∑
j=1

(∇φ)|ij·Sij (3.38)

If Sij is parallel to the edge connecting the nodes i and j, as would be the case
for an orthogonal mesh, a second-order accurate estimate of the scalar product is
found to be:

(∇φ)|ij·Sij = φ|j−φ|i
||xj − xi||

||Sij||+O
(
∆x2

)
(3.39)

and the Laplacian operator becomes:

L(φ)|i=
Nfi∑
j=1

φ|j−φ|i
||xj − xi||

||Sij|| (3.40)

On unstructured meshes, the assumption that a CV face normal is parallel to
the (i, j) edge is generally not true and all components of the gradient have to be
approximated at the CV face. To minimize the errors associated to the Laplacian
operator presented in last equation, care should be taken in using meshes with a
cell skewness as low as possible. Besides, Vantieghem proposes the addition of a
skewness correction term in the computation of the Laplacian [141].

A fourth-order accurate spatial discretization scheme on regular grids is also
implemented in YALES2BIO, and detailed in the PhD thesis of Kraushaar [142].
The first step, called deconvolution of the finite-volume integration, consists in
expressing the nodal values as a function of the volume averages calculated at the
CV barycenter. The second step entails calculating the fluxes between neighboring
CVs thanks to the resulting nodal values.

According to the Taylor expansion in (3.29) and with the assumption that the
gradients are uniform on the cell, the average of a function φ over the CV can be
rewritten:

φ̄Ωi = φ|i+δxi
k ∂φ|i
∂xk

+ 1
2δ

2xi
kl ∂2φ|i
∂xk∂xl

+O
(
∆x3

)
(3.41)

where

δxi
k = 1

Vi

∫
Ωi

(xk − xki )dV (3.42)

δ2xi
kl = 1

Vi

∫
Ωi

(xk − xki )(xl − xli)dV (3.43)
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According to Kraushaar [142], Eq. (3.41) can be inverted since it can be seen as a
continuous filtered field. The nodal value φ|i is thus given by:

φ|i= φ̄Ωi − δxi
k ∂φ̄Ωi
∂xk

−
(1

2δ
2xi

kl − δxi
k
δxi

j
)
∂2φ̄Ωi
∂xk∂xl

+O
(
∆x3

)
(3.44)

In particular, at the barycenter of the CV denoted xī, the equation reduces to:

φ|̄i= φ̄Ωi −
(1

2δ
2xī

kl
)
∂2φ̄Ωi
∂xk∂xl

+O
(
∆x3

)
(3.45)

The deconvolution is then applied to compute the flux over the CV boundary ∂Ω,
shared between i and j nodes. The value of φ at the pair midpoint, as defined in
Eq. (3.31), can be rewritten using the 2nd-order Taylor expansion in Eq. (3.28).
After some algebra (cf. [142] for details), φ|ij reads:

(3.46)

φ|ij =
(
φ̄Ωi + φ̄Ωj

2

)
+ 1

2
(
δxi

k + δxj
k
) ∂

∂xk

(
φ̄Ωi + φ̄Ωj

2

)

+ 1
2

δxkī,ijδxlj̄,ij + δxkī δx
l
j̄

2 −
δ2xkl

ī
+ δ2xkl

j̄

2

 ∂2

∂xk∂xl

(
φ̄Ωi + φ̄Ωj

2

)

+O
(
∆x3

)
where δxkī,ij = xkij − xkī .

For this higher order spatial discretization, the spatial scheme is fourth-order
accurate for regular (orthogonal) grids, and reduces to third-order for quasi-
homogeneous unstructured meshes [142].

3.2.3 Time advancement scheme
One issue when numerically solving the incompressible Navier-Stokes equations is
the absence of state equation that drives the evolution of the pressure. Pressure
and velocity are implicitly coupled due to the mass conservation equation, and
pressure can be interpreted as a variable to enforce continuity. So-called fractional-
step methods are used to separate the pressure gradient from the other terms
in the momentum equation. The idea is to project the velocity field u onto a
divergence-free field, thanks to an intermediate velocity u∗. The fractional-step
method implemented in YALES2BIO is based on the original algorithm developed
by Chorin [143], later modified by Kim and Moin [144].

Let us first consider an Euler explicit scheme to illustrate the algorithm, where
the NSE are semi-discretized in time as:

un+1 − un

∆t = −un · ∇un + ν∇ · (∇un)−∇
(
p

ρ

)n+ 1
2

+ fn

ρ
(3.47)
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Note that in YALES2BIO, the velocity is expressed at time steps n and n + 1,
whereas the pressure is computed at shifted time steps n− 1/2 and n+ 1/2. The
velocity un+1 can not directly be calculated, as

(
p
ρ

)n+ 1
2 is unknown.

Based on the known velocity un, a first intermediate velocity field û is com-
puted, including the pressure gradient at time n− 1

2 :

û− un

∆t = −un · ∇un + ν∇ · (∇un)−∇
(
p

ρ

)n− 1
2

+ fn

ρ
(3.48)

with the boundary condition û|∂Ω= un+1|∂Ω. The pressure contribution at n− 1
2

is removed from the second intermediate velocity field u∗:

u∗ − û
∆t = ∇

(
p

ρ

)n− 1
2

(3.49)

While û is only first-order time-accurate, the following boundary conditions are
second-order accurate:

u∗|∂Ω = un+1|∂Ω+∆t∇
(
p

ρ

)n− 1
2

(3.50)

∂pn+ 1
2

∂n

∣∣∣∣
∂Ω

= 0 (3.51)

Now that u∗ has been defined, one can write that:

un+1 − u∗

∆t = −∇
(
p

ρ

)n+ 1
2

(3.52)

Applying the divergence operator on Eq. (3.52) results in :

∇ ·
(
un+1 − u∗

∆t

)
= −∇ · ∇

(
p

ρ

)n+ 1
2

(3.53)

This equation results in an elliptic Poisson equation on the pressure due to the
incompressibility constraint ∇ · un+1 = 0:

∇ · u∗

∆t = ∇ · ∇
(
p

ρ

)n+ 1
2

(3.54)

Using the Laplacian operator discretization presented in Section 3.2.2, this equation
can be written as a linear system Ap = b, where A is the Laplacian operator
weights and b the integral of divergence of predicted velocity u∗ divided by time
step. Iterative methods of the type Conjugate Gradient are well-suited to solve
such linear systems. Several iterative solvers are available in YALES2BIO. A
Deflated Preconditioned Conjugate Gradient (DPCG) algorithm, developed by
Malandain [145], is used in the present work.
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The intermediate velocity û is advanced in time using a low-storage 4th-order
Runge-Kutta scheme (RK4). Other time schemes are implemented in YALES2BIO,
such as the TFV4A scheme [142], but are not presented here. Rewriting Eq. (3.48)
as a function f :

û− un

∆t = f(un, pn− 1
2 ) (3.55)

the velocity û is advanced with the RK4 scheme such that:



u(1) = un + 1
4∆t f(un, pn− 1

2 )

u(2) = un + 1
3∆t f(u(1), pn−

1
2 )

u(3) = un + 1
2∆t f(u(2), pn−

1
2 )

û = un + ∆t f(u(3), pn−
1
2 )

(3.56)

3.2.4 Turbulence modelling

In fluid dynamics, the Reynolds number Re is a dimensionless quantity character-
istic of the laminar-turbulent transition, which can be expressed as:

Re = ρuL

µ
(3.57)

where ρ is the fluid density, µ the dynamic viscosity, u the characteristic velocity
and L the characteristic length. It can be interpreted as the ratio of the inertial
forces to the viscous forces, thereby quantifying their relative importance for a
given flow configuration.

Low Reynolds numbers correspond to laminar flow regimes, where flow stream-
lines remain almost parallel from one to another. At high Reynolds numbers (i.e.
when inertia is much larger than viscous damping), turbulence arises. Turbulent
flows experience chaotic three-dimensional changes in pressure and flow velocity
and contain a large range of temporal scales and spatial structures. The typical
Reynolds numbers found in the large arteries indicate that their associated flow
regimes fall into the laminar-turbulent transition, and therefore turbulence has to
be taken into account when simulating blood flows.
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Resolved scales in DNS

Modelled scales in RANS
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Figure 3.17: Overview of the different CFD approaches on a typical spectrum
of turbulent kinetic energy E as function of the wavenumber K (proportional to
the inverse of the length scales). KC denotes the cut-off wavenumber associated
to the filtering operator applied to the NSE in LES. KL and Kη are respectively
associated with the largest and with the dissipative scales.

Different numerical methods exist in order to simulate turbulent flows. The
most straightforward approach is the Direct Numerical Simulation (DNS). In such
simulations, the mesh should be fine enough to explicitly resolve all the spatio-
temporal scales generated by turbulence. However, this approach require large
computational resources. Another approach is the Reynolds-Averaged Navier-
Stokes (RANS), where only the time-averaged flow field is computed and all
the scales of the turbulent spectrum are modelled. Although attractive as less
computationally demanding, RANS models have been reported to be poorly
predictive in the case of transitional flows at moderate Reynolds numbers [70].

In the present work, a third approach is followed called the Large-Eddy
Simulations (LES). In LES, the large turbulent structures (eddies) are resolved by
solving spatially low-pass filtered Navier-Stokes equations, whereas the smaller
scales are modelled using a subgrid-scale (SGS) model. The three CFD approaches
are summarized in Fig. 3.17.

The low-pass spatial filtering process in LES corresponds to a spatial convolu-
tion product such that for a field of interest Φ(x, t), the filtered field Φ(x, t) is
given by:

Φ(x, t) =
∫

Ω
Φ(y, t)G∆(y − x)dy (3.58)

where G∆ is the filtering kernel associated to the filter size ∆, that is the cube
root of the mesh cell volume, and Ω the flow domain. G∆ satisfies a normal
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distribution, so that
∫

ΩG∆(x)dx = 1. Now that the filter operator has been
introduced, the variable Φ can be split into a resolved component Φ involving
scales larger than ∆ and a modelled sub-grid fluctuating component Φ′ for the
scales smaller than ∆:

Φ(x, t) = Φ(x, t) + Φ′(x, t) (3.59)

Under the hypothesis that filtering and differentiation commute, applying the
filter operator . to Eq. (3.23) leads to:

∂[u]
∂t

+∇ · [u⊗ u] = −∇[p]
ρ

+ ν∇ · (∇[u]) + f

ρ
∇ · [u] = 0

(3.60)

which can be rewritten using Einstein notation as
∂ui
∂t

+ ∂uiuj
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂2xj

+ fi
ρ

∂ui
∂xi

= 0
(3.61)

One would like to split up the nonlinear filtered advection term uiuj , as it requires
the knowledge of the unknown unfiltered velocity field. Let us introduce the
residual stress tensor

τR(ui, uj) = τRij = uiuj − uiuj (3.62)

which allows rewriting Eq. (3.61) as:
∂ui
∂t

+ ∂ui uj
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂2xj

−
∂τRij
∂xj

+ fi
ρ

∂ui
∂xi

= 0
(3.63)

Germano proposes the following decomposition of the residual stresses [146]:

τRij = uiuj − ui uj︸ ︷︷ ︸
Lij

+uiu′j + u′iuj − ui u′j − u′i uj︸ ︷︷ ︸
Cij

+u′iu
′
j − u′iu′j︸ ︷︷ ︸
Rij

(3.64)

Lij is the Leonard stress, which represents the interactions among large scales,
and can be computed from the filtered values. Cij is the sub-grid scale cross stress
representing the energy transfer between large and small structures and Rij is
the sub-grid scale Reynolds stress representing the energy dissipation of the small
scales.

τRij describes the effect of unresolved scales, it is therefore unknown and needs
the introduction of a turbulent sub-grid scale (SGS) model to close the momentum
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conservation equation. The Boussinesq eddy viscosity assumption states that the
dissipative effects can be modeled with an eddy viscosity νSGS such that:

τRij = −2νSGSSij (3.65)

where Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
is the rate of strain tensor of the resolved scales. Under

this hypothesis, Eq. (3.63) become:
∂ui
∂t

+ ∂ui uj
∂xj

= −1
ρ

∂p

∂xi
+
(
ν + νSGS

) ∂2ui
∂2xj

+ fi
ρ

∂ui
∂xi

= 0
(3.66)

As highlighted in this equation, only the sub-grid scale turbulent viscosity νSGS
needs to be modelled under the Boussinesq hypothesis. Various SGS models have
been developed in the literature. Most of them share the following form:

νSGS = (C∆)2D(u) (3.67)

where D is a differential operator of the model acting on the resolved velocity
field and C is the model constant, determined theoretically or numerically to
produce the proper amount of dissipation in the simple case of decaying isotropic
turbulence. The first model of this kind is the classical Smagorinsky model, which
defines the differential operator as:

D(u) = 2
√
SijSij (3.68)

However, this model is known to be very dissipative near walls, preventing the
transition to turbulence from occurring.

The SGS model preferred in the present thesis is the σ-model developed by
Nicoud et al. [147]. The differential operator is computed as:

D(u) = σ3(σ1 − σ2)(σ2 − σ3)
σ2

1
(3.69)

where σ1 ≥ σ2 ≥ σ3 ≥ 0 are the three singular values of the resolved velocity
gradient tensor and the model constant C ≈ 1.35 upon initial model development.
This model meets several interesting properties to simulate cardiovascular flows.
The SGS viscosity vanishes for a variety of canonical flows, where the structure of
the velocity gradient tensor indicates laminar flow features, hence where no SGS
viscosity is expected. This property is well suited for transitional flows. Further-
more, the σ-model has shown better agreement than the dynamic Smagorinsky
model compared to experimental data in the case of a pulsatile jet impinging a
flat-plate in the presence of a cross-flow [148]. Such a configuration is relevant to
cardiovascular flows [77].
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3.3 From a realistic sequence to a synthetic
MRI

3.3.1 Bloch solver
A numerical approach to simulate 4D flow MRI has been developed and validated
by Puiseux during his PhD [20], where the Navier-Stokes and Bloch equations are
simultaneously solved using an Eulerian-Lagrangian formalism. The YALES2BIO
solver previously introduced in Section 3.2 is used to resolve the Navier-Stokes
equations. The Bloch equations are solved on isochromats, carrying a magneti-
zation vector advanced in time. The isochromats are modelled as Lagrangian
particles, whose position is updated at each iteration. The main steps of the CFD-
MRI simulation procedure are illustrated in Fig. 3.18 and are briefly presented
hereinafter. More details, including validation test cases, can be found in [20, 86].

Figure 3.18: Main steps of the CFD-MRI procedure as implemented in
YALES2BIO. NSE: Navier-Stokes Equations, BC: Boundary Conditions, tf : final
time of the simulation. The gray block corresponds to the simulation framework
kernel, while the red and blue blocks are respectively the inputs and outputs of
the simulation. Figure taken from [86].

Particles seeding and RF-spoiling

The isochromats are modelled as Np Lagrangian particles within the fluid domain.
At the initial RF pulse, Np,el particles are injected inside each element of the dis-
cretized fluid Eulerian grid following a uniformly random distribution. According
to [19], at least 3 particles/direction/voxel are required to achieve en error on the
MR signal below 1.5%. Puiseux et al. reported the use of a spin density of 48
particles/voxel to mitigate the error on the MR signal while keeping a reasonable
simulation time [86]. For a given isotropic voxel size, this corresponds to the
injection of 8 particles per tetrahedral element of the same characteristic length.
Each particle p has an associated set of magnetic properties (T1, T2,M0) and an
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isochromat volume defined as wp = Vel
Np,el

, where Vel corresponds to the volume of
the element where the particle p is located. Furthermore, each injected particle
is prescribed with an initial magnetization Minj = (0, 0,MSS

z ), where MSS
z is

the steady-state magnetization defined in Section 2.6.1. As mentioned in Section
2.7.1, 4D flow MRI sequences are usually RF-spoiled in order to eliminate the
transverse magnetization at the end of a repetition before the next RF pulse. The
particles seeding strategy takes advantage of this spoiling. Instead of simulating
the RF-spoiling, it is modelled by suppressing the particles of the fluid domain
and by re-seeding the Np particles at the state of the initial RF pulse, with their
magnetization vector reset to their initial value Minj. This allows to have a
perfect spoiling, as the transverse magnetization is back to zero, while keeping a
homogeneous distribution of the particles and avoiding areas of spurious signal
due to either accumulation or lack of particles.

Fluid-particle velocity interpolation and temporal discretization

To advance the position of the particles, the Navier-Stokes equations are first
solved on the fixed numerical mesh of the fluid domain, as presented in Section
3.2.3. The Eulerian velocity field is advanced of a time step ∆tCFD, which is fixed
by a Courant–Friedrichs–Lewy (CFL) condition. The CFL number is computed
at each edge n as

CFLn = Un∆t
∆xn

(3.70)

where Un is the velocity at the pair n and ∆xn the pair element length. The
stability condition for the convection term in the Navier-Stokes equations states
that max(CFLn) ≤ CFLstab. In the present work, CFLstab = 0.9, such that
during an iteration, a fluid particle can not travel more than 90% of the smallest
mesh element size. Once advanced, the CFD velocity field is interpolated on the
particles with an inverse distance weighting interpolation. The particle position
xp can then be advanced as:

xp(t+ ∆tMRI) = xp(t) +
∫ t+∆tMRI

t
u(xp, t)dt (3.71)

where ∆tMRI is the time step associated to the particle advancement and u the
interpolated velocity. The integration is performed with a third-order Runge-Kutta
method (RK3).

The numerical time-step ∆tMRI depends on the discretization of the Bloch
equations. To ensure numerical stability and sufficient temporal resolution, a
multi-criterion time-stepping approach is adopted, such that

∆tMRI = min(∆tCFD,∆tstab,∆tmag,∆tgrad,∆tseq) (3.72)
∆tstab is a stability criterion derived for the explicit Runge-Kutta scheme used

to numerically advance the Bloch equations and is defined as:

∆tstab = 2

T2

(
1
T 2

2
+
(
γ
2πBz,max

)2
) (3.73)
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where Bz,max corresponds to the maximum z-component of the magnetic field
prescribed to a particle.

∆tmag is another time step constraint to capture the stiff variations of the
magnetization induced by abrupt changes in the effective magnetic field. Recall
that in the rotating frame of reference, the effective magnetic field is expressed as
(cf. Eq. (2.12) and (2.45)):

Beff =

 B1(t) cos (∆ω1t)
−B1(t) sin (∆ω1t)
G(t) · r + ∆Bz(r, t)

 =︸︷︷︸
on-resonance

condition

 B1(t)
0

G(t) · r

 (3.74)

This additional constraint is defined as:

∆tmag = 2πbn
γBeff,max

(3.75)

where Beff,max is the maximum effective magnetic field imposed to a particle and
the user-defined dimensionless Bloch number bn corresponds to the fraction of
revolution described by the spin with maximum precessing frequency during
one iteration. In the present work, bn is set equal to 1 accordingly to the time
convergence study in Puiseux’s PhD work [20].

∆tgrad is an additional time step to ensure that each gradient ramp is sampled
with at least ten time points:

∆tgrad = mini={x,y,z}
(

0.1Gi,max

|∂Gi
∂t
|

)
(3.76)

where Gi,max is the maximum gradient strength specified in the sequence along
the axis i = {x, y, z}.

Finally, ∆tseq is a time constraint based on the sequence chronogram to ensure
adequate sampling of the RF waveform and of the gradients, as well as to collect
the signal at the correct time instants during the readout.

Note that to avoid redundant CFD computations, the fluid velocity is kept
constant during a fluid iteration, that is until the sum of all ∆tMRI equals to
∆tCFD.

Semi-analytic solution to the Bloch equations

A semi-analytical solution to the Bloch equations is implemented in the Bloch
solver. During RF excitations, a full numerical integration (RK4) is used, whereas
a less computationally-demanding analytical resolution is performed when gradient-
only magnetic events or relaxation occur. This approach is valid as long as the
gradient waveforms can be described analytically.

In the analytical resolution, the gradients waveforms are described as piecewise
linear functions over a set of time intervals [tm, tm+1]. Thereby, the phase can be
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decomposed as a sum of piecewise analytical expressions over these time intervals
and reads:

φ(xp, tn) =
n−1∑
m=0

γ
(
am∆tm + bm (∆tm)2 + cm (∆tm)3

)
(3.77)

where

∆tm = tm+1 − tm

am = xp(tm) ·G(tm)

bm = 1
2x

p(tm) · dG
dt

∣∣∣∣
m

+ up(tm) ·G(tm)

cm = 1
3u

p(tm) · dG
dt

∣∣∣∣
m

(3.78)

The transverse magnetization is computed by introducing the description of the
phase derived in Eq. (3.77) in the following equation:

Mxy(xp, tn) = |Mxy(xp, t0)|eiφ(t0)e
− (tn−t0)

T2 e−iγφ(xp,tn) (3.79)

where t0 denotes the end of the last RF pulse. The particle position is updated
from the velocity vector at the end of each sub-iteration on the particles.

Signal reception

Mxy is integrated over the entire flow domain Ω at each readout events. The
collected complex signal is obtained as the following sum over the Np particles
present in Ω:

s(tn) =
Np∑
p=1

wpMxy(xp, tn)Bxy(xp) (3.80)

where Bxy is the receive coil sensitivity profile and wp the isochromat volume (cf.
Section 3.3.1). In the present work, only one coil perfectly uniform over the entire
domain is considered Bxy = 1.

3.3.2 MR sequence as input to the Bloch solver
In Puiseux’s PhD work, the MR sequences used as inputs were generated using
the JEMRIS sequence development interface [15]. The format used as input to
the Bloch solver has been extended in the present work to be able to read more
realistic MR sequences, namely issued from IDEA (Siemens Healthineers, Erlangen,
Germany), the Siemens Healthineers’ software to design MR sequences. The
primary feature of this software consists in programs for writing pulse sequences.
It also provides a user interface, where imaging parameters can be adjusted as if
one were to launch a protocol on an actual MR scanner. This interface allows for
example to use the same set of parameters of an experimental protocol, as long
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as the sequence to be used is available in the IDEA environment. Simulating a
sequence in IDEA through this user interface generates several files, containing
the resulting discretized chronogram, global sequence parameters (e.g. dimension
of the FOV, pixels number...) or information on the individual TR. The design of
new pulse sequences is out of scope of the present thesis. Yet, commercialized 3D
FLASH (SSFP sequence, see Section 2.6.2) and prototype 4D flow MRI sequences
have been provided by Siemens and studied in the present work, with different
sets of parameters. Note that both sequences are RF-spoiled.

In-house scripts have been developed in Python to convert these files into
YALES2BIO inputs under the HDF5 format. The gradients are expressed as
trapezoidal waveforms, so that the points of interest are the start and end points
of each ramp and plateau. Only these time points and their associated gradient
strength are gathered in the HDF5 files, and a file for each gradient direction
(readout, phase-encoding and slice-selection) are created. As mentioned earlier,
an idealized RF-spoiling is performed and particles are suppressed and reinjected
at each RF pulse. Thereby, data about gradients occurring after the ADC and
participating in the spoiling such as rewinders are discarded from the input files,
as well as all gradients happening during repetitions, where no ADC is present.
Indeed, the effect of these gradients on the transverse magnetization would be
lost as soon as the RF-spoiling occurs.

Concerning the excitation pulse, IDEA files provide the duration and flip
angle of the RF pulse, as well as a very refined temporal discretization. This
discretization would result in a large number of time steps to simulate the RF
pulse. Knowing that the pulses in the sequences that are used in this work are of
the Hanning-filtered sinc type, this function is fitted to the discrete points provided
by the files to adjust amplitude and timing. Based on the fit, a description of
the RF with fewer points is found. The number of points to describe the RF is
deemed large enough, if the relative difference between the prescribed flip angle
and the flip angle induced by the RF pulse description with fewer points is lower
than 1.5%. The same RF pulse is used throughout the sequences investigated in
this work, so that the input file relative to the RF only contains data about the
first RF. Only the starting time instants of each RF are needed to simulate all RF
pulses in the sequence. This information, along with the start points of the ADC
throughout the sequence and the dwell time between two consecutive sampling
instants during the readout, is stored in an additional input file with sequence
parameters.

3.3.3 Reconstruction
Magnitude and velocity images are reconstructed with an in-house Python script.
When simulating a 3D FLASH sequence, the signal collected at the time instant tn
corresponds to a unique point (kx, ky, kz). Yet, when simulating a 4D flow sequence,
this signal at tn corresponds to a unique point (kx, ky, kz, phase number, direction),
where direction stands either for the reference or for the velocity-encoded direction
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of the repetition time. Note that the reference or the velocity-encoded direction
can also be a combination of different directions (e.g. vx − vy + vz [112]). While
the input files are created, an extra file is concurrently written as a "k-space
map" that documents the order how the signal will be collected. This map allows
to reorganize the signal collected during the simulation, in which each data is
saved one after the other. The signal can then be reconstructed for each phase
number and each direction. In order to reorder each k-space according to the
input order expected by the inverse FFT function of the Pythonic NumPy library
(https://numpy.org), each k-space is first multiply by a mask to compensate for
the half field-of-view and the one-half pixel shifts [89]. Finally, for a given phase
and a given direction, the complex image I is reconstructed from the reordered
complex k-space S as:

I = FFT−1(S) (3.81)
and the magnitude image is given by:

Imag = |I| (3.82)

The velocity map ui along each encoding direction i is obtained as:

ui = arg
(
Ii
Iref

)
VENC,i
π

(3.83)
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3.3.4 Test cases
Two test cases have been developed to ensure that the new format adopted to
read Siemens-based input sequences allowed to reconstruct the expected images.
The first one consists in simulating a 3D FLASH sequence on a simple geometry
to control that the reconstruction process does not generate false geometric
distortions. The second test case presents a 4D flow simulation on an analytical
Poiseuille flow in a pipe.

3D FLASH on a pipe

A 3D FLASH (Fast Low Angle SHot) sequence has been generated in IDEA with
the following properties: fully-sampled k-space with 64 × 32 × 8 voxels and a
field-of-view of 320× 150× 40 mm3. The object to be imaged in a pipe, whose
mesh has a characteristic length of 5 mm. The mesh and the FOV are presented
together in Fig. 3.19. Note that the object to be imaged is fully included within
the FOV, so that no aliasing is expected. In particular, the FOV dimension along
the readout direction is very large due to limitations in IDEA, probably as it is
not meant to model such reduced FOV. This also means that the oversampling is
superfluous in this test case. Yet, the oversampling along the readout direction
(here, X direction) is set by default to 2 in Siemens sequences. Hence, 128 points
are collected along this direction.

Figure 3.19: Field-of-view and object to be imaged in the test case using a 3D
FLASH sequence.

The simulation lasted slightly over a minute and a half on 4 processors.
The reconstruction is presented in Fig. 3.20 along the three midplanes. The
reconstruction is in good agreement with the boundaries of the pipe geometry.
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(a)

(b)

(c)

Figure 3.20: Reconstructed magnitude image. The black lines represent the outline
of the pipe in the slice depicted. (a) Coronal midplane. (b) Transverse midplane.
(c) Sagittal midplane.
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4D flow on an analytical pulsatile Poiseuille flow

A 4D Flow MRI sequence has been generated in IDEA with the following properties:
fully-sampled k-space with 64× 35× 8 voxels and a field-of-view of 320× 150× 40
mm3. The VENC is set to 1 m/s in each direction. There is an oversampling in the
readout direction (X) set to 2, as well as partial Fourier, so that 112 points are
collected along this direction. An analytical pulsatile Poiseuille flow is prescribed
in a pipe of radius R = 40 mm, oriented along the slice-selection direction Z. The
pulsatile through-plane velocity w is prescribed as

w(r, t) = wmax

(
1− r2

R2

)
(1 + cos(2π

T
t))

2 (3.84)

where r is the radial coordinate with respect to the center of the pipe, wmax = 0.6
m/s is the peak velocity, and T = 1.0296 s is the time period of the velocity, which
can be assimilated to the RR-interval in vivo. The velocity along the two other
directions is zero. The FOV and the geometry are presented in Fig. 3.21.

Figure 3.21: Geometry and through-plane velocity field within the FOV to be
imaged using a 4D flow MRI sequence.

To reconstruct the magnitude and velocity images, the k-spaces are zero-
filled for the non-acquired points due to the use of partial Fourier [44, 89]. The
magnitude image is presented in the coronal and sagittal midplanes in Fig. 3.22.
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(a)

(b)

Figure 3.22: Reconstructed magnitude image. The black lines represent the outline
of the pipe in the slice depicted. (a) Coronal midplane. (b) Sagittal midplane.

Figure 3.23: Reconstructed velocity field along Z. The black line represents the
outline of the pipe. The white and gray lines are the midlines along which the
velocity profiles are plotted in Fig. 3.24.
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The reconstructed velocity for one phase is presented in Fig. 3.23 and the
associated velocity profiles along X and Y are plotted against the analytic velocity
field in Fig. 3.24. Good agreement is found between the reconstructed and analytic
velocity field for each phase within the pipe. Note that only the fluid mesh is
seeded with particles, such that no signal is collected outside the pipe, leading to
random phases in the exterior voxels. This can explain the reconstructed velocity
outside the Poiseuille flow, which is not zero, contrary to what was expected.
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Figure 3.24: Velocity profiles along (a) the x-midline (white line in Fig. 3.23) and
(b) the y-midline (gray line in Fig. 3.23).
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In this chapter, hemodynamic biomarkers obtained by accelerated sequences
of 4D flow MRI are evaluated under complex flow conditions. The investigated
sequences are GRAPPA with acceleration factor R = 2, 3 and 4, and compressed
sensing with R = 7.6. The assessment of the accelerated sequences are per-
formed on an in-house pulsatile flow phantom, together with a nonaccelerated
fully-sampled acquisition. CFD simulations based on the experimentally measured
flow fields are conducted for additional comparison. The velocity fields are com-
pared on non-derived quantities: velocity profiles, flow rates and peak velocities.
While all modalities (experimental and simulated) depicted qualitatively similar
hemodynamic patterns, a trend for all MR scans to overestimate velocity profiles
and peak velocities as compared to CFD is noticed in regions associated with
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high velocity or acceleration. Voxel-wise comparisons between the MRI scans
highlight larger discrepancies at the voxels located near the phantom’s boundary
walls. Correcting the MR images for eddy currents appears essential to report
flow rates measurements complying with the principle of mass conservation and
achieve a good agreement between all modalities.

This chapter is part of: Morgane Garreau, Thomas Puiseux, Solenn Toupin,
Daniel Giese, Simon Mendez, Franck Nicoud, and Ramiro Moreno. Accelerated
sequences of 4D flow MRI using GRAPPA and compressed sensing: A compari-
son against conventional MRI and computational fluid dynamics. Published in
Magnetic Resonance in Medicine, 88(6):2432-2446, December 2022. [21]

4.1 Introduction
2D phase-contrast (PC) MRI is a well-established blood flow measurement tech-
nique to evaluate cardiovascular disorders such as valvular diseases, aortopathies,
or congenital heart diseases [149, 150]. More recently, time-resolved 3D PC imag-
ing, referred to as 4D flow MRI, has gained significant interest for its ability to
provide in-vivo quantification of blood flow dynamics inside a 3D volume over
the cardiac cycle [151, 152]. Whereas 2D PC imaging is operator-dependent for
plane positioning, 4D flow imaging provides a retrospective flow quantification at
any location within the acquired volume. In addition to providing comprehensive
velocity and vascular motion in a single scan, 4D flow MRI also opens access to
advanced hemodynamic biomarkers such as wall shear stress (WSS) [42], pulse
wave velocity [45] or relative pressure [41]. To this respect, 4D flow MRI has the
potential to become a gold-standard practice in clinical routine. However, the clin-
ical applicability of this technology remains hampered by its inherently long scan
duration, which is further worsened by respiratory gating techniques for motion
compensation. Despite the use of parallel imaging techniques (e.g., GRAPPA and
SENSE) with typical acceleration factors of 2-3, 4D flow scan times still range
between 5 and 15min. Therefore, alternative acceleration techniques have been
developed over the years to further shorten 4D flow scan duration, by exploiting
spatiotemporal correlations: k-t GRAPPA [153, 154], broad-use linear acquisition
speed-up technique (k-t BLAST) [155], and non-Cartesian acquisition sampling
[106], to cite a few. However, these strategies are limited by long reconstruction
times, mostly offline, making them hardly compatible with clinical workflows.

In the last years, a compressed sensing (CS) 4D flow framework has shown great
potential for decreasing the scan time with a reconstruction performed inline in
less than 5 min [156, 157]. This performance was achieved using a k-t accelerated
Cartesian pulse sequence with a variable-density phyllotaxis undersampling and
L1-regularized wavelet-based reconstruction. Ma et al. [156] first demonstrated
the feasibility of this framework in vitro using a realistic aorta flow phantom
with various CS acceleration factors, and for 20 healthy volunteers with a CS
acceleration factor of R=7.7. Pathrose et al. [157] assessed the same framework
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on patients with aortic diseases with three different CS factors (R=5.7, 7.7 and
10.2) compared to a GRAPPA-accelerated sequence (R=2). Both studies have
consistently shown a significant underestimation of measured maximum velocity
and flow within 10%-15%, as for derived parameters like wall shear stress (WSS).
The higher the CS acceleration factor, the higher the underestimation. However,
the factors leading to this underestimation are still not fully understood, even
though both studies suggest that spatiotemporal undersampling and regularization
could be responsible for this trend. Moreover, whereas GRAPPA-accelerated
sequences are considered as clinical gold standard, they are expected to induce
additional flow quantification errors as compared to fully sampled (FS) k-space
sequences [158]. To characterize the nature of the errors, it is relevant to compare
a CS-accelerated sequence with a FS sequence, where no undersampling is involved.
Also, standalone parameters such as the mass conservation can also be relevant to
estimate the degree of discrepancies [22], with no need of reference measurement.
Additionally, significant underestimations of WSS are generally observed, partly
because of partial volume effects and low spatiotemporal resolution [159]. Given
the growing interests for evaluating the WSS clinically, substantial efforts are
being undertaken to propose sophisticated reconstruction methods [42, 83, 160].
However, whereas little attention is generally paid to assess the quality of the
input velocity measurements, it is a prerequisite step to properly reconstruct the
WSS.

Alternatively, the flow field can be predicted by coupling MRI measurements
with Computational Fluid Dynamics (CFD) [6, 8, 161, 162]. This approach
bypasses the experimental limitations inherent to MRI acquisitions, such as
spatiotemporal resolution or noise, while satisfying the fluid mechanics laws. CFD
coupled to MRI has already proven capable of providing the flow fields with
high fidelity under well-controlled in vitro conditions [10, 163], whereas moderate
correlations have been reported for patient-specific MRI-based simulations [53,
164], or superresolution of 4D flow MRI using CFD [67] for velocity and flow
rates. Indeed, the choice of the CFD strategy is crucial to accurately predict the
hemodynamics, particularly in such flow regimes where boundary conditions [165]
and turbulence models [69, 166], as well as numerical schemes [11], have shown to
greatly influence the resulting flow field. In this context, CFD may be used as
a third-party modality, yet without being considered a ground-truth, to confirm
and quantify the discrepancies observed with 4D flow MRI.

The main objective of this study was to investigate the flow errors induced
by GRAPPA- and CS-accelerated 4D flow MRI sequences under complex flow
conditions. The experiments were conducted on a previously designed pulsatile
flow phantom for which the geometry yields flow patterns similar to the complex
flow structures observed in vivo: recirculation, flow split, large-scale transitioning
turbulence features etc. High correlation between nonaccelerated 4D flow MRI
sequence and CFD was already demonstrated in this well-controlled environment
following appropriate postprocessing methods [10]. In the present study, several
4D flow MRI scans with GRAPPA (R=2, 3, 4, abbreviated respectively G2, G3 and
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G4 in the following) and CS (R=7.6) accelerations were acquired and compared
with a conventional full k-space sampling sequence. Moreover, a high-fidelity
CFD solution fed by boundary conditions compatible with the measured flow
field was generated and used as a supplementary means to characterize the flow
measurement errors

4.2 Methods
The phantom experiment, along with the CFD simulation process, have been
described previously in Puiseux et al. [10], where more details are available. A
summary is given hereafter.

4.2.1 Phantom experimental setup

Figure 4.1: Phantom geometry and flow regime. (A) Sketch of the flow phantom.
(B) Analogy with cardiovascular system. (C) Flow rate at the inlet for the fully
sampled 4D flow acquisition corrected according to the postprocessing procedure
detailed in the corresponding section. The square and the diamond correspond
to peak systole and end diastole, respectively. (D) Photograph of the 3D-printed
flow phantom.

A rigid flow phantom made up with nylon was designed to reproduce complex
flow patterns as reported in the cardiovascular system 4.1(A-B). The phantom
was embedded into a silicone bath to increase the signal-to-noise (SNR) and
connected to a programmable pump (CardioFlow 5000 MR, Shelley Medical
Imaging Technologies, London, Ontario, Canada) installed outside the 5 Gauss
line via pipes. The pulsatile flow rate delivered by the pump 4.1(C) was measured
by means of an ultrasonic flowmeter (UF25B100 Cynergy3 components Ltd,
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Wimborne, Dorset, UK) placed upstream of the entrance of the phantom. A
schematic representation of this experimental setup can be found in [10]. By
analogy with the cardiac cycle, the times of maximum and minimum flow rates
are referred to as peak systole and end diastole, respectively. A blood-mimicking
fluid was supplied to the phantom circuit with kinematic viscosity ν = 4.02× 10−6

m2/s, density ρ = 1020 kg/m3, and relaxation times T1 = 0.85 s and T2 = 0.17 s
at 1.5 Tesla.

4.2.2 MRI data acquisitions

MRI data were obtained thanks to a 1.5T Siemens MAGNETOM Sola (Siemens
Healthcare, Erlangen, Germany) using a prototype 4D flow MRI sequence. The
sequence was retrospectively gated using a simple 4-point velocity-encoding scheme
[112]. The electrocardiogram trigger needed for gating was simulated by means of
an MRI-compatible fake finger (MR Finger, Shelley Medical Imaging Technologies,
London, Ontario, Canada). It delivered an infrared signal synchronized with
the pump waveform cycle and interpreted as an electrocardiogram signal via the
peripheral pulse unit of the MRI scanner. Thereby, what is referred to as cardiac
cycle in the following is the pump cycle, whose averaged duration is close to 1
s. A FS sequence and several GRAPPA (R=2,3,4) and CS (R=7.6) accelerated
sequences were acquired. The acquisition and reconstruction frameworks used
for the latter pulse sequence can be found in [156]. The main scan parameters,
among which are echo time TE, repetition time TR, and 3D velocity encoding
(VENC), are listed in 4.1.

Imaging technique FS G CS
Acceleration rate, R - 2 3 4 7.6
Scan time (min:s) 42:40 21:20 14:40 10:40 5:35

FOV (mm3) 256× 256× 72
Acquired voxel size (mm3) 2× 2× 2

Receiver bandwidth (Hz/pixel) 383
Flip angle (°) 7

VENC (x, y, z) (cm/s) 70-20-70
TE (ms) 4.15 3.70
TR (ms) 6.48 6.04

Temporal resolution (ms) 51.8 48.3
Number of reconstructed cardiac phases 20 25

Table 4.1: Imaging parameters. CS, compressed sensing; FS, fully sampled; G,
GRAPPA; VENC, velocity encoding.
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4.2.3 CFD simulations

The simulations were carried out using the in-house YALES2BIO solver presented
in Section 3.2. Due to the complex geometry used in this study to induce large scale
fluctuations, as well as the flow regime being in the laminar–turbulent transition,
the large eddy simulation (LES) strategy was preferred to the Reynolds-averaged
Navier-Stokes (RANS) modeling, where all the scales are averaged and the entire
turbulence spectrum is modeled.

The fluid was modeled as incompressible Newtonian with the already men-
tioned mechanical properties. A tetrahedral-based mesh of the phantom with a
characteristic cell size of 0.7 mm was generated with GAMBIT 2.4.6 (ANSYS, Inc.,
Canonsburg, PA) and used to solve the incompressible Navier-Stokes equations. A
zero-pressure condition was prescribed at the outlet, whereas a no-slip condition
was imposed at the solid boundaries. Regarding the inlet boundary condition,
a pixel-based inflow was derived from the MRI acquisition velocity field, which
was corrected according to the postprocessing procedure detailed in the following
section. Hence, one CFD simulation by MR acquisition was generated.

The mesh cell size was defined using a mesh sensitivity analysis. Four different
tetrahedral-based meshes were investigated based on the inlet provided by the FS
acquisition: a coarse one with 622 thousand cells (cell size = 1.3 mm), a medium
one with 1284 thousand cells (cell size = 1.0 mm), a fine one with 3812 thousand
cells (cell size = 0.7 mm), and a finer one with 27 million cells (cell size = 0.35
mm). The relative error on the phase-averaged velocity magnitude (cf. definition
in the postprocessing section) between the two latter meshes came to 0.9% of the
maximum velocity magnitude found for the finer mesh. Thereby, the velocity field
was considered to be spatially converged and independent of the spatial resolution
for the fine mesh. More details on the numerical accuracy (sensitivity analysis on
mesh, phase-averaging, and turbulence resolution) can be found in [167].

Figure 4.2: Distortion correction presented as a threshold on the image magnitude.
(A) Before distortion correction. (B) After correction. The correction is applied
on the whole phantom, but its effect is more noticeable at the inlet and outlet, as
highlighted by the orange arrows.
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4.2.4 Postprocessing

The 4D flow data went through an in-house postprocessing procedure programmed
in Python (http://www.python.org, version 3.8.2). Maxwell terms [123], as well
as in-plane distortions induced by the nonlinearities of the magnetic gradient
field, were corrected within the reconstruction process of the MRI system. An
additional correction in the through-plane direction based on the knowledge
of the phantom geometry was performed. To do so, the distorted volume was
segmented thanks to a threshold on the magnitude images and a second-order
polynomial fit was performed on the coordinates of the centerline throughout
the parallel branches of the main pipe. The fit found was used to relocate the
voxels position along the through-plane direction such that the centerline lies
in the coronal plane. Note that every voxel underwent this correction, but the
further away from the isocenter (localized above the collateral), the greater the
position shift (see Fig. 4.2). Further corrections consisted in noise masking
and phase unwrapping. A presegmentation of the flow volume was obtained by
thresholding the image magnitude averaged over time for registration purposes
only. The resulting presegmented volume was registered onto the computational
model thanks to an iterative closest point algorithm. Finally, an eddy current
correction was implemented according to Lorenz et al. method [168], based on the
assumption that the velocity field measured in static regions should be exactly
zero. The silicone bath surrounding the flow phantom was used for this purpose.
After segmentation, the voxels belonging to this static region were fitted with a
linear function of the space coordinates using a least squares method. This was
done for each time frame and velocity direction. The corrected velocity field was
obtained by subtraction of the fitted plane. The velocity field resulting from the
application of all the corrections described above is referred to as the corrected
MR in what follows. All MR acquisitions underwent these same postprocessing
steps.

To compare MRI acquisitions with CFD simulations, the latter went through
phase-averaging and downsampling following the procedure described in Puiseux
et al [10]. The reason for phase-averaging the CFD velocity field is that there are
cycle-to-cycle fluctuations when simulating such an unsteady flow lying in the
laminar-turbulent transition [77]. Furthermore, the MR signal is also acquired over
numerous cardiac cycles. Thereby, 40 cardiac cycles were simulated. The first 10
cycles were taken out of the comparison to cancel the effect of the initial condition
(zero velocity condition). The resulting CFD velocity field, phase-averaged over
the last 30 simulated cardiac cycles, was then downsampled on an image grid with
the same spatial resolution as the MRI acquisitions. This "low-resolution" field is
referred to as CFD_LR thereafter, whereas CFD_HR refers to the “true” CFD.

Because both the CFD_LR and corrected MR velocity fields were finally
expressed on the same grid, and the phantom geometry is a priori known, the
segmentation of the flow volume was obtained by thresholding the CFD_LR
velocity magnitude averaged over time.
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4.2.5 Comparison methods
The different MRI modalities were quantitatively compared by conducting Bland-
Altman analysis to evaluate the agreement (bias ± standard deviation, SD)
between the pointwise velocity fields obtained from FS and accelerated MR
sequences, as well as with the CFD_LR fields. Furthermore, the L2-norm (also
called Euclidean distance) was used as a metric to measure the pointwise similarity
between the velocity fields obtained from the different methods. The normalized
L2-norm calculated at each node position x and at each time instant t for two
fields A and B is expressed as:

L2(x, t) =

√
(uA − uB)2 + (vA − vB)2 + (wA − wB)2

||ubulk||
(4.1)

where u = (u, v, w) is the velocity vector associated to the node at the position x,
and ||ubulk|| = 0.144 m/s is the time-averaged bulk velocity magnitude measured
at the inlet surface for the FS acquisition.

Figure 4.3: Labeling of the planes used to analyze the differences between the
velocity fields measured with the different modalities. The planes in the main
duct are numbered 1–19 from inlet to outlet, and the planes in the collateral duct
are numbered I to VI. The planes in red are highlighted for better readability of
4.10.

116



CHAPTER 4. ASSESSMENT OF ACCELERATED SEQUENCES OF 4D FLOW MRI

Velocity profiles, flow rates, and peak velocities were studied in 19 planes along
the main duct and 6 along the collateral duct, numbered respectively 1 to 19 and
I to VI from the inlet side to the outlet side (see Fig. 4.3). Some comparisons
are said to be performed on all voxels, whereas others are done on inner voxels
only. All voxels designates all the voxels segmented from the flow volume (cf.
Section 4.2.4) with edge voxels straddling the phantom walls included, whereas
inner voxels corresponds to the voxels strictly included in the phantom without
the edge voxels. For each MRI modality, the segmentation includes about 53,500
voxels, against around 26,800 inner voxels.
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Figure 4.4: Velocity fields in the coronal plane at (A) peak systole and (B) end
diastole (cf. 4.1(C)). The rows represent the velocity components u = (u, v, w).
The columns show the low-resolution downsampled CFD (CFD_LR) and MRI
acquisitions. CFD, computational fluid dynamics; CFD_LR, computational fluid
dynamics–low-resolution; CS, compressed sensing; FS, fully sampled; G, GRAPPA.

118



CHAPTER 4. ASSESSMENT OF ACCELERATED SEQUENCES OF 4D FLOW MRI

4.3 Results
Scan times achieved for the FS; G2; G3; G4; and CS 4D flow MRI are 42:40,
21:20, 14:40, 10:40, and 5:35 min, respectively. Investigating whether this strong
acceleration comes with a measurable degradation of the quality of the results is
the objective of the following subsections.

4.3.1 Flow structures and velocity profiles
As presented in Fig. 4.4, the main flow structures are similarly captured by all
sequences and by CFD_LR for the velocity components u and w both at peak
systole and end diastole, whereas more disturbed results are found for the low
velocity field v. From now on, the results presented in this study will focus on the
FS, G3 and CS acquisitions for the sake of clarity. Indeed, because it can already
be visually noticed in Fig. 4.4, the G4 velocity field appears noisier in comparison
to the other sequences, and the quantitative comparisons lead to poor outcomes
for this acquisition. Good results are found for G2, but due to its long acquisition
time the preference has been to present the comparisons with G3. To further
motivate this choice, the global L2-norm over all voxels is presented in Fig. 4.5.

Figure 4.5: Global L2-norm of the velocity vector differences along the cardiac
cycle for all MR acquisitions. On the left, the accelerated MR sequences are
compared to the fully sampled MR acquisition. On the right, the MR sequences
are compared to CFD_LR. The solid lines refer to the average over all voxels of
the segmented volume, whereas the dashed ones correspond to the average over
the voxels strictly included inside the phantom segmentation.
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The flow structures are further apprehended thanks to vector-based visualiza-
tion of the MRI and corresponding CFD_HR and CFD_LR. Fig. 4.6 displays
the velocity vector field in the whole phantom, as well at the middle plane of
the aneurysm-like region for the FS acquisition along with the corresponding
CFD_HR and CFD_LR fields. Although the CFD_LR partially mimics the MRI
acquisition process, the flow structures localizations are well reproduced. At peak
systole, counterrotating vortices are observed for both the FS acquisition and the
CFD simulations, although localized higher in the slice for the MRI as compared
to CFD simulations.

Figure 4.6: 3D vector-based visualization of the FS acquisition and the CFD
simulations at peak systole (on the top row) and end diastole (on the bottom
row). The whole phantom is displayed on the left-hand side, whereas a slice in
the middle of the aneurysm-like region (corresponding to the slice II in Fig. 4.3)
is presented on the right-hand side. The vectors are scaled by velocity magnitude.

The velocity profiles for the three MRI methods are presented in Fig. 4.7,
along with those obtained from the CFD simulations. Whereas velocity profiles
are globally in good agreement for all MRI modalities, the MRI velocity tends
to overestimate the CFD one, especially in regions and at time instants of high
velocity or acceleration (e.g., sections V and 17 at peak systole in Fig. 4.7).
Moreover, a lateral shift of the MR profiles with respect to the CFD profiles is
noticeable in the collateral duct. Finally, a small overestimation of the FS as
compared to CS and G3 (14.7% and 12.3% for peak velocity, respectively) can be
observed at peak systole in section V.
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Figure 4.7: Velocity profiles along lines located in the coronal plane passing
through the middle of the phantom. The velocity displayed corresponds to the
projection onto the normal of the planes perpendicular to the ducts, referenced
as in Fig. 4.3 (the corresponding slice number is indicated in the corner of each
graph).

4.3.2 Statistical comparison
A Bland-Altman analysis is performed to assess the velocity magnitude agreement
between FS acquisition and the other modalities. Results are displayed in Fig.
4.8. It is observed that the voxels straddling the phantom wall are responsible for
the most part of the velocity dispersion for all sequences and time points. Indeed,
when comparing 4D flow acquisitions two by two with all voxels, the maximal
errors on velocities form linear patterns seen on both sides of the bias in the plots.
The voxels forming these lines correspond to the limit case, where one of the
velocity magnitudes is almost zero (as expected close to the wall), whereas the
other is not, producing the slope of ±2. One can observe that this line is only
seen in the upper part of the plot for the comparison against CFD_LR. This
is because of the noise-free high-resolution CFD, given that the downsampling
process consists in interpolating the high-resolution CFD velocity field onto a
subdivision of the MRI grid and to average the velocities of the subvoxels present
within each voxel of the MRI grid. Thereby, a voxel straddling the phantom
wall will have a CFD_LR velocity, which is an average of velocities for subvoxels
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within the phantom and zeros for subvoxels outside. In contrast, an MR edge
voxel is capturing isochromats velocities and noise.

Figure 4.8: Bland–Altman plots for analyses of FS MR acquisition against G3, CS,
and CFD_LR. “All points” refers to comparisons where all voxels of the phantom
are included, whereas the voxels straddling the wall are removed in the “inner
points” comparisons.
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Once these edge voxels are taken out of the comparison, good agreement is
found with low bias and narrow 95% confidence interval. In this latter comparison,
the velocity magnitude difference (reported as bias ± 1.96 SD, in [m/s]) between
FS and, respectively G3, CS and CFD_LR are found to be 0.00 ± 0.04, 0.00 ±
0.04, and 0.02 ± 0.08 at peak systole and 0.00 ± 0.03, 0.00 ± 0.03, and 0.00 ±
0.06 at end diastole. It has yet been noticed that whereas the velocity scattering is
rather symmetrical for the comparison with the accelerated MR sequences, there
is some shift towards higher velocity magnitudes for FS as compared to CFD_LR.

To have an overview of the global error distribution over time, the L2-norm
over all voxels is computed and presented in Fig. 4.9. Good agreements are found
with respect to the FS acquisition, with an average L2-norm [unitless] decreasing
from 0.193 to 0.141 for G3 and from 0.188 to 0.143 for CS when removing the
edge voxels. When comparing the MR data with CFD_LR, the error increases
from 0.248 to 0.254 for FS and from 0.262 to 0.266 for CS, whereas there is a
decrease from 0.277 to 0.255 for G3 when taking the edge voxels out of the norm
computation. For reference, the average L2-norm when comparing CFD_LR with
CFD_HR is respectively 0.022 and 0.018 [-], respectively, with and without the
edge voxels.

Figure 4.9: Global L2-norm of the velocity vector differences along the cardiac
cycle. On the left, the accelerated MR sequences are compared to the FS MR
acquisition. On the right, the MR sequences are compared to CFD_LR. The solid
lines refer to the average over all voxels of the segmented volume, whereas the
dashed ones correspond to the average over the voxels strictly included inside the
phantom segmentation.
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4.3.3 Flow rates and peak velocities

Figure 4.10: Flow rates (computed on all voxels) and peak velocities (computed
on inner voxels only) for the velocity fields before (on the top) and after eddy
current correction (at the bottom). Both are divided in (A) flow rates and (B)
peak velocities at peak systole and end diastole. Above: along the main duct,
from planes 1 to 19. Below: along the collateral duct, from planes 1–3, I–VI, and
17–19, as referenced in Fig. 4.3. The slice numbers in red indicate the planes,
which were highlighted in Fig. 4.3 and are only meant to make the plots more
readable.

Volumetric flow rates and peak velocities are presented in Fig. 4.10(A) and (B),
respectively. These quantities are presented for the MR velocity fields before and
after eddy currents correction to highlight how this correction acts on the data.
The patterns observed for the three MR modalities are globally quite similar. The
eddy currents correction helps in regularizing the measured flow rates throughout
the phantom, thereby better complying with the principle of mass conservation
(note that the CFD method used here is designed to meet this principle). Indeed,
the flow rates observed at the inlet and at the outlet are more consistent with
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each other when the effect of the eddy currents is removed. Also note the drop
in the aneurysm-like region (between planes III and IV), which disappears when
the correction is applied, leading to better agreement between the measurements
along the collateral. At peak systole, the flow rates observed in the main duct tend
to be overestimated by the MR acquisitions with respect to the CFD simulation.
Concerning the peak velocities, although those from the CFD are globally smaller
than those from the MRI, similar patterns are observed. Note that to avoid
any noise due to partial volume effects at the phantom wall, the peak velocities
are computed only on inner voxels, as for the Bland-Altman plots in Fig. 4.8.
Yet, it has been reported that keeping the edge voxels improves the flow rates
measurements [169]. Thus, these voxels are included to compute the flow rates
displayed in Fig. 4.10.

4.4 Discussion
The aim of this study is to evaluate several acceleration techniques of 4D flow
MRI, namely GRAPPA R=2, 3, 4 and prototypal CS R=7.6 sequences, against
gold-standard FS k-space as well as CFD simulations. In order to compare all
acquisitions under the same well-controlled conditions, a rigid flow phantom is
used in vitro and simulated in silico. Such a setup presents many advantages as
compared to in vivo situations because it removes some sources of uncertainties
associated with wall motion, segmentation errors, and blood rheology. The usual
postprocessing (Maxwell terms, distortions, noise masking, phase unwrapping and
eddy currents correction) is applied to MR images and the CFD data is phase-
averaged and downsampled towards the MRI resolution to enable comparison on
the same grid.

Qualitatively, all modalities show good visual velocity agreement along in-
plane directions x and z. However, the through-plane (y) velocity v appears to
be less replicable from a modality to another. Low velocity-to-noise ratio (VNR)
related to generally low v velocities [111] as well as high flow fluctuations could
be responsible for these discrepancies.

Quantitatively, the good agreement between both CS and G3 accelerated MRI
techniques and the FS acquisition is further confirmed in the Bland-Altman and
global L2-norm plots. For both indicators, a better agreement is found when
the voxels located at the phantom walls are removed. The velocities recorded at
these points suffer from a poor VNR due to both low velocities and low SNR at
the interface. Indeed, the complex signals recorded at voxels straddling the edge
include random velocity variations between ±VENC due to the plastic phantom
walls.

Even though the FS, G3 and CS acquisitions globally agree with each other,
some local discrepancies have been noticed. One explanation could be the SNR,
which varies depending on the chosen modality. Jung et al. [158] reported
higher SNR for Parallel MRI with extended and averaged GRAPPA kernels
(PEAK-GRAPPA) as compared to conventional GRAPPA, due to the intrinsic
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temporal averaging properties of the first method, which is based on the k-t
GRAPPA technique. Since the CS sequence used in this study is also based
on a k-t accelerated method, higher SNR is expected for this acquisition, hence
higher quality of the PC images. Another ground for the differences between
the MR images could arise from the reconstruction framework. Both FS and G3
are reconstructed using the scanner’s adaptive combination method [170], which
according to Ros et al. [171] leads to signal loss in magnitude images and errors in
phase determination. Furthermore, shortening TE has been shown to compensate
for higher-order motion encoding [172], and a shorter TE is used for the CS
acquisition. Signal loss is also visually noticed for all MR modalities at the outlet
region downstream of the collateral branch, especially at peak systole (see Fig.
4.11). O’Brien et al. [173] reported signal attenuation associated with flow errors
in high-velocity turbulent jets as studied on a stenotic phantom under steady
flow. They suggested that turbulence could be one of the reasons of intravoxel
dephasing, leading to signal loss. The dephasing could be further amplified under
pulsatile flow, due to temporal accelerations.

Figure 4.11: Image magnitude before any correction at peak systole (above) and
end diastole (below) for the FS, G3 and CS 4D flow MRI acquisitions.

Regarding the comparison with low-resolution CFD, once edge voxels are
taken out of the L2-norm, all MRI modalities present similar outcomes. However,
whereas removing the edge voxels reduces the global L2-norm for each time frame
for G3, the error increases for FS and CS for the time instants between peak
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systole and end diastole. One explanation of this phenomenon could again come
from the averaging of edge voxels. The contribution of the random phase noise in
MRI edge voxels can virtually lead to a maximal voxel-wise L2-error comprised
between [−2VENC , 2VENC ] when comparing two MRI modalities with each other
and between [−VENC , VENC ] when comparing MRI with CFD. Thereby, lower
error levels are expected in these voxels in the comparison with respect to CFD.
It appears that for FS and CS, the contribution of the edge voxels to the global
L2-norm is lower than the errors arising from the higher velocities found in the
inner voxels.

Some discrepancies are also observed between MRI and CFD_LR velocity
profiles, notably in the collateral duct and around the junction with the descending
main pipe. Concerning peak velocities, they tend to be overestimated by all MRI
techniques in regions and time instants associated with high velocity, such as in
the main duct at peak systole; or with high acceleration, such as in the narrowing
collateral duct (cross-sections IV to VI). These deviations could be related to
velocity- and acceleration-induced displacement artifacts [174]. In 4D flow MRI, a
spatial misregistration arises when the spins move during the spatial encoding
along the different directions. Similarly, velocity-displacement artifacts are induced
by acceleration of the spins during the three velocity encodings. Regarding the
eddy current correction, it does not appear to affect the trend observed for the
peak velocity measurements. Nevertheless, this correction improves the flow rates
for all modalities. As the eddy current correction acts everywhere, it benefits the
aneurysm-like region in which cross-sections are wider and velocity levels lower; in
that region, the improvement of the flow rate assessment is spectacular. Yet, the
overall good agreement between MRI and low-resolution CFD for flow rates could
also result from compensations of the errors arising from various artifacts (e.g.,
spatial misregistration, partial volume effects), which do not affect the velocity in
the same manner depending on voxel locations. CFD limitations are other sources
of differences in the comparisons. A first limitation comes from the boundary
condition at the inlet, which is prescribed from experimental data. To study the
sensitivity of the inflow waveform onto the predicted flow field, additional CFD
simulations have been conducted with the inlet velocity imposed by a 2D cine
PC-MRI scan with both a finer voxel size (0.8x0.8x6 mm vs. 2x2x2 mm) and
higher temporal resolution (30 reconstructed cardiac phases vs. 20 for the FS
acquisition). The 2D cine PC-MRI was acquired during the same protocol as
the 4D flow MRI acquisitions, during which the pulsatile flow rate over time was
controlled using an ultrasonic flowmeter. Although the 2D cine PC-MRI could not
be corrected for eddy currents due to lack of static tissues in the thick acquired
slice, no significant differences have been observed between the CFD simulations
computed using this experimental acquisition or the 4D flow ones, as illustrated
in Fig. 4.12 and 4.13.
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Figure 4.12: Velocity profiles along lines located in the coronal plane passing
through the middle of the phantom. The velocity displayed corresponds to the
projection onto the normal of the planes perpendicular to the ducts, referenced
as in Fig. 4.3. It is the analogous plot of Fig. 4.7, where the curves from the
additional downsampled CFD simulations based on a 2D PC-MRI have been
added (CFD_LR_FROM_2D). The former curves are kept for reference.

Nevertheless, both the 4D flow acquisitions and the 2D cine PC-MRI scans
were acquired with the magnet isocenter centered above the collateral duct. Thus,
the inlet boundary of the phantom is more prone to geometric distortion and errors
in velocity encoding [127]. Another limitation of our CFD simulations consists of
the time instants when the comparisons are made, which could result in a temporal
shift between the MRI acquisitions and the simulations. For each cardiac phase,
the three velocity directions are sequentially encoded in the PC-MRI acquisition,
whereas the simulation displays the velocity vector at the middle of this encoding
time window. In particular, the k-space encoding pattern in our acquisitions was
the following: flow-compensated reference, y-direction, x-direction, and z-direction.
This could potentially explain the flow structures observed in Fig. 4.6, where the
MRI patterns seem to be in advance as compared to the CFD, as well as the
higher flow rates recorded along the main pipe at peak systole (Fig. 4.10).
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Figure 4.13: Flow rates (computed on all voxels) and peak velocities (computed
on inner voxels only) for the velocity fields after eddy current correction, divided
in (A) Flow rates and (B) Peak velocities at peak systole and end diastole. Above:
along the main duct, from planes 1–19. Below: along the collateral duct, from
planes 1–3, I–VI and 17–19, as referenced in Fig. 4.3. It is the analogous plot of
Fig. 4.10, where the curves from the additional downsampled CFD simulations
based on a 2D PC-MRI have been added (CFD_LR_FROM_2D). The former
curves are kept for reference.

As reported by Ma et al. [156] in their flow phantom, good visual agreement
and voxel-wise comparison are observed between the CS and conventional 4D flow.
Even if some underestimations of the peak velocities by CS with respect to G3
can be noticed in the collateral duct, CS is not clearly found to underestimate
the flow rates. An explanation for this discrepancy between the two studies could
be the flow phantom and its circuit. The present study is a simplified setup in
comparison to the more complex in vivo cardiovascular conditions. By contrast,
the phantom developed by Ma et al. was based on the aorta of a healthy subject.
Furthermore, the flow was controlled by a pneumatically driven ventricular assist
device and pump control unit, whereas a programmable pump is used in the
present work. Finally, a realistic aorta pulsatile flow was generated by Ma et al.,
whereas a sinusoidal flow is investigated in this study. Prescribing an aorta-like
inflow waveform, as well as accounting for the blood vessel compliance, could
be first steps toward introducing more realistic flow patterns in our phantom
circuit. However, the latter would require either knowledge of the wall location
during the cardiac cycle or of the mechanical properties of the vessel wall to
perform fluid-structure interaction CFD simulations. Also, blood behaves as a
non-Newtonian fluid, which makes its rheology more complex than the assumed
Newtonian blood-mimicking fluid used in this setup.

In this study, artifacts inherent to all MR modalities have been highlighted.
Future work could include implementing postprocessing methods to compensate
for artifacts on velocity fields due to acceleration-induced displacement [117] and
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to gradient field distortions [127]. Another perspective is to simulate 4D flow MRI
to further characterize the observed divergences [86], for instance by considering
the Rician distribution of the noise in the magnitude images in MRI [175] or
computing acceleration-induced displacement artifacts [118].

4.5 Conclusion
This study demonstrated under in vitro conditions that the highly accelerated
CS 4D flow MRI at R = 7.6 shows good agreement with the nonaccelerated FS
acquisition, as well as with conventional GRAPPA. However, all modalities suffered
from artifacts inherent to the PC acquisition procedure. Further investigations
could be carried on in more physiological conditions. Moreover, CFD simulations
are a tool of interest to investigate the observed discrepancies, even though it also
presents some limitations and care should be taken in modeling the investigated
problem.
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5.1 Introduction
Partial Fourier corresponds to an asymmetric sampling of k-space, as introduced
earlier in Section 2.9.1. When this type of sampling is chosen along the phase-
encoding and/or slice-encoding direction, it reduces the scan time as less gradient
steps along these directions are needed. According to the 2015 consensus statement
on 4D Flow MRI [22], a full coverage of the k-space is preferred to ensure high
resolution and signal-to-noise ratio (SNR). Should partial Fourier along these two
directions be used, the recommendation is to collect at least 75 % of the data.
If available on the scanner, it is recommended to prefer the use of an elliptical
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k-space, which corresponds to a sampling pattern where the corners of the k-space
are omitted, in order to reduce the scanning time. Few recommendations are
found about the use of partial Fourier along the readout direction, often referred to
as partial echo, asymmetric echo or fractional echo [176]. While it does not reduce
the scan time, it is frequently used in 3D MR angiography (MRA) as it mitigates
flow artifacts. Indeed, the purpose of this technique is to create an echo occurring
before the middle of the readout gradient. As such, it consists in a reduction of
the strength and/or duration of the prephasing gradient, and of the potential flow-
compensation gradient. This contributes to a reduction of all gradient moments
(see Section 2.7), and in particular of the high-order flow artifacts (acceleration,
jerk...) when flow-compensation is used [177]. This also mitigates the signal
loss in disturbed flows [177, 178]. It reduces the displacement time TD as well;
TD represents the time delay between the position and velocity encoding times
and the echo time TE, which is by definition the spatial frequency-encoding time
[110, 117, 118]. All in all, partial echoes participate in the diminution of the
misregistration artifacts. Yet, they lead to an undersampled k-space, and possible
errors in the reconstructed velocity fields [179].

Simulation of MRI sequences has emerged as a useful tool to develop and
optimize pulse sequences. Several methods specific to phase-contrast MRI simula-
tions have been proposed in the literature. To name a few, Steinman et al. have
numerically simulated spatial and velocity displacement artifacts for the encoding
times occurring in a 2D and a 3D PC-MRI sequence on an anastomosis geometry
[118]. Marshall has simulated a 3D PC-MRI sequence for a normal and a stenosed
carotid bifurcation [180]. Petersson et al. proposed a simulation of 3D PC-MRI
sequences in the context of non-pulsatile turbulent flow in a stenotic flow phantom
[17]. Fortin et al. have performed 2D and 3D PC-MRI simulations on a model of
cerebral venous network. These different frameworks and their validation against
experimental acquisitions show the feasibility and potential of simulating synthetic
PC-MRI images. Going beyond the validation step, numerical simulations have
also been used to investigate differences between various sequences. In partic-
ular, Klepaczko et al. have developed a numerical framework to simulate MR
angiography protocols. They have investigated vessel segmentation algorithms
on synthetic 3D time-of-flight (TOF) and PC-MRI images of a normal and a
stenosed carotid bifurcation model [181]. They have later expanded their method
to evaluate an accelerated 2D PC-MRI with an echo-planar imaging (EPI) readout
against conventional 2D and 3D PC-MRI sequences in the context of several
models of renal vasculatures [18].

In this work, the impact of partial echo on 4D flowMRI sequences is investigated
in the light of MR simulations coupled with CFD. The numerical framework
initiated by Puiseux [86] is expanded as presented in Section 3.3. The simulations
are conducted in the in-house pulsatile flow phantom geometry presented in
Chapter 4. Two flow regimes are imposed at the inlet. The first comes from an
almost sinusoidal flow rate, while the second follows a function that models the
aortic flow rate. Two realistic 4D flow MRI sequences are investigated: one with
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full echo, and the other with a partial echo fraction of 0.75.

5.2 Methods
5.2.1 Sequence design
The 4D flow MRI sequences used in this work have been directly provided by
Siemens Healthineers. No access to the source code used to generate the sequences
has been provided, as the goal of the present study is not to develop a new sequence,
but to evaluate realistic clinical sequences. Thanks to the POET sequence
simulation tool (Siemens Healthineers, Erlangen, Germany), the parameters of
the sequences can be chosen as if one were to use a scanner operator console. The
parameters of the two sequences used in this work are summarized in Table 5.1.
An explanation about the choices made is provided below.

Partial echo (PE) No Yes
Echo symmetry fraction (ESF) 1.0 (full echo) 0.75
Field-Of-View, FOV (mm3) 136× 56× 192
Acquired voxel size (mm3) 2× 2× 2

Flip angle (°) 7
Velocity encoding, VENC (x, y, z) (cm/s) 70-20-70

Echo time, TE (ms) 4.20 4.16
Repetition time, TR (ms) 6.52 6.49
Temporal resolution (ms) 52.16 52.20

Number of acquired cardiac phases 17
Cardiac period (s) 1.01712 1.01860

Displacement time, TD (ms) 1.99 1.52

Table 5.1: Sequence parameters. Note that the cardiac period and the displacement
time can not be directly specified in IDEA. The displacement time has been
computed once the sequence had been generated.

The choice of the parameters aims at matching the experimental parameters
presented in chapter 4 [21]. This means that the parameters are adjusted so that
the cardiac period matches the cycle duration of 1 s. As in the experimental setup,
the acquisition is made in the coronal orientation: the readout, phase-encoding
and slice-selecting directions corresponds to the Z, X and Y axes in the scanner
reference frame, respectively. Note that there is an oversampling of 2 along the
readout direction (Z) by default. The voxels are isotropic (2 mm3). The VENC is
set to 70 cm/s for the in-plane velocities (along X and Y ) and 20 cm/s for the
through-plane velocity.

Yet, some modifications have been made. The first modification concerns the
size of the FOV. Contrarily to the experimental phantom, there is no static tissue
around the flow domain in the digital phantom. Hence, the dimensions of the
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FOV have been reduced up to the limit where aliasing would occur. This allows
to reduce the simulation time. The size of the FOV with respect to the phantom
mesh is presented in Fig. 5.1. Note that the size along (Z) is much larger than
the size of the object due to the oversampling.
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Figure 5.1: Field-of-view, phantom and flow rates. On the left-hand side, the
field-of-view and the phantom mesh are depicted. On the right, the two studied
flow regimes used as input to the CFD simulations are drawn in black: above
the sinusoidal flow rate from experimental data (cf Chapter 4) and below the
analytical physiological flow rate (cf Eq. (5.2)). The red dots correspond to the
averaged time of each cardiac phase. The number associated to the phases studied
hereafter are indicated.

The second modification is due to a limitation of the POET tool used in this
work. Indeed, the cardiac cycle duration could not be set, nor could a physiologic
signal (e.g., an ECG) be used as input to the simulation. Hence, the temporal
parameters have been adjusted in order to achieve a cardiac cycle duration
the closest to 1 s. While a retrospective gating has been experimentally used,
the prospective gating is found to be more flexible to adjust the parameters, in
particular to control the number of acquired (and not reconstructed by view sharing
[115]) cardiac phases. Even with this versatility, an uncontrollable and irreducible
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time delay exists between two successive cardiac cycles, as experimentally the
acquisition stops after collecting the required number of cardiac phases and waits
to be triggered by the next desired physiologic event (e.g., next R-wave).

Nevertheless, the fully-sampled sequence with no partial echo is first designed
with all the considerations made so far and with the minimal echo time TE and
repetition time TR. An interleaved symmetric 4-point velocity-encoding scheme
is selected [5, 112], which corresponds to the successive acquisition of the same
phase-encoding line, yet with four different combinations of velocity-encoding
gradients. 2 segments per velocity-encoding direction are collected in each cardiac
phase (i.e. 2× 4 = 8 segments).

The cardiac duration closest to 1 s is achieved when 17 cardiac phases per
cycle are acquired. The second sequence is set to present a "strong" partial echo
according to Siemens’ denomination. This corresponds to sampling only half of
the negative k frequencies and all of the positive ones. Hence, 75% of the expected
full k-space is sampled. In order to compare the two sequences, the same TR is
chosen, but the TE is reduced to the minimal value available. Note that the small
difference of TR values between the two sequences is due to the rounding up to
one digit after decimal in the POET console. Concerning the temporal resolution,
the small deviation is likely due to the time delay for retrospective triggering.

In the context of flow MRI, an additional relevant time parameter is the
displacement time, which can be defined as the total duration over which the
spatial and velocity encoding occur [118]. In the sequences used in this work and as
presented by Thunberg et al. [117], all velocity encoding and the spatial encoding
along the phase and slice encoding directions can be synchronized. However, by
definition, the spatial encoding along the frequency encoding direction occurs
during the readout gradient after all other gradients have been played, for a
Cartesian sampling. According to Steinman et al. [118], the effective encoding
time texp can be estimated as the time instant when the sensitivity S2 cancels out,
where the sensitivities Sn are defined as:

Sn = γ

n!

∫ TE

t0
∆G(t)(t− texp)ndt (5.1)

t0 denotes the center of the RF pulse and ∆G(t) is the difference in gradients
between the positive and negative velocity encoding lobes associated with the
velocity component w encoded along the readout direction. The displacement
time TD is then computed as the delay between texp and TE. TD equals 1.99 ms for
full echo and reduces to 1.52 ms for partial echo. While the partial echo resulted
in a reduction of the TE value of about 1%, the reduction in TD is found to be
close to 25%.

5.2.2 MRI-CFD simulations
The simulation were carried out using the MRI-CFD framework implemented in
YALES2BIO and presented in Section 3.3. As in the previous chapter, the fluid is
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modeled as incompressible and Newtonian with the following characteristics of
the blood-mimicking fluid: ν = 4.02× 10−6 m2/s, ρ = 1020 kg/m3, T1 = 0.85 s
and T2 = 0.17 s at 1.5 T. The tetrahedral-based mesh of the phantom, generated
in Gambit 2.4.6 (ANSYS, Inc., Canonsburg, PA), has a characteristic cell size of
2 mm. The mesh is presented on the left side of Fig. 5.1. 8 particles are seeded
by mesh cell, resulting in an initial spin density of 48 particles/voxels to keep a
reasonable computing time.

Two pulsatile flow regimes are studied. The first follows the experimental flow
rate already presented in Chapter 4, yet dilated to match the cardiac periods,
which are slightly above 1 second. From now on, this flow rate is referred to as
sinusoidal, since its shape is close to a sinusoid. The second investigated flow is
derived from a mathematical model function proposed by Stevens et al., which
presents characteristics of the flow into the ascending aorta [182]. The flow rate
Q is governed by the following equation:

Q(t) = Q0 sinn(ωt) cos(ωt− φ) (5.2)

where ω = π
Tc
, Tc the period of the cardiac cycle, n = 13 and φ = π

10 as determined
by Stevens et al. Q0 is a multiplying factor, here tuned to achieve a maximal flow
rate comparable to the sinusoidal flow rate, hence minimizing the probabilities
to produce velocities higher than the Venc. Both flow rates are presented on the
right-hand side of Fig. 5.1.

The use of idealized velocity profiles as inlet boundary conditions have been
reported to negatively impact the CFD solution [13]. Hence, one would like to
prescribe experimental data instead. Here, only one of the two flow rates comes
from experimental data, where pixel-based velocity fields are available. In order to
use the same pre-processing method for both flow rates, an averaged normalized
velocity field at the inlet is computed. This averaged field is based on the 20
experimentally acquired phases from the non-accelerated sequence presented in
chapter 4. The inlet velocity field is then multiplied by the sinusoidal-like and
the physiological flow rates, respectively. Note that this means that the CFD
simulation conducted in this chapter for the sinusoidal flow is not the same as in
chapter 4. Although the flow rate is identical, the velocity profile differs since it
is built from the averaged experimental velocity field. In total, four simulations
are conducted, that is for both flow rates with and without partial echo (PE).
For each simulation, 40 cycles without the coupling with the MRI sequence are
first run to evacuate the effect of the initial conditions and for phase-averaging as
mentioned in the previous chapter. The last cycle of this CFD simulation is used
as input to the four MRI-CFD coupled simulation.

5.2.3 Post-processing
The signal output by the CFD-MRI simulation is reconstructed according to
the procedure described in Section 3.3.3. The signal is reorganized in 17 × 4
k-spaces, i.e. one by cardiac phase and velocity-encoded direction. For the signal
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including partial echo, the non-acquired frequencies are zero-filled. While more
sophisticated reconstructions of missing k-space frequencies exist, they generally
rely on the assumption of Hermitian symmetry of the k-space and of smooth
spatial variation of the phase to estimate the phase images. Hence, these methods
do not preserve phase information and are not suitable for phase-contrast imaging
[89, 183]. Lower noise levels have been reported when reconstructing 4D flow MRI
data with zero-filling in contrast to the more complex homodyne reconstruction and
projection onto convex sets (POCS) algorithm [184]. No gradient field distortions
are modelled in the simulations, hence no correction of the Maxwell terms and
eddy currents is required.

The CFD simulations used to compare with the synthetic MRI images (SMRI)
are the ones simulated before the coupled CFD-SMRI simulation. From now on,
all CFD velocity maps presented refer to the downsampled velocity fields, which
have been phase-averaged at the averaged time of the corresponding cardiac phase.
The phase-averaging and downsampling processes are performed as detailed in
Section 4.2.4.

5.2.4 Comparison methods
The SMRI images without and with the use of partial echo are compared with
each other, and also with their corresponding CFD simulation. As highlighted
in Fig. 5.1, the FOV is much longer along the (Z) direction. To qualitatively
compare all modalities, the SMRI images are thresholded by a binary mask made
from the phase-averaged and downsampled CFD velocity fields averaged over the
cardiac phases. As already mentioned in the comparison methods in the previous
chapter, the normalized L2-norm, hereafter called root-mean-square error (RMSE),
is computed. In order to compare the four SMRI, the normalization is made with
respect to the highest expected velocity, that is VENC = 0.7 m/s. For two fields A
and B, it reads:

RMSE(x, t) =

√
(uA − uB)2 + (vA − vB)2 + (wA − wB)2

max (VENC) (5.3)

where u = (u, v, w) is the velocity vector associated to the node at the position
x. The normalized absolute velocity difference along each direction is computed
using the same normalization.

5.2.5 Metrics to investigate the sources of errors
The discrepancies observed between CFD and SMRI can occur from various
sources or phenomena, such as the acceleration, the turbulence, or the multiple
encoding times inherent to the image acquisition process. Acceleration-induced
artifacts due to the time delay between velocity and spatial encoding have been
reported in the literature [118, 174]. As for turbulence, signal loss and consequent
flow errors have been observed in stenotic jets [17, 173].
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During the CFD simulation, the acceleration Du
Dt

is computed as the sum of
the local ∂u

∂t
and convective (u · ∇)u accelerations. The local acceleration is

computed using a first-order upwind finite difference scheme. The acceleration
field is phase-averaged in the same manner as the velocity field.

The instantaneous velocity field computed during the simulation can be seen
as the sum of the phase-averaged velocity u and of an additional fluctuating part
u′. The resolved turbulent kinetic energy (TKE) can then be computed as

TKE(x, t) = 1
2
(
u′2(x, t) + v′2(x, t) + w′2(x, t)

)
(5.4)

where · stands for the phase-averaging.

Finally, another source of discrepancy comes from the multiple encoding times.
For instance, the images Ii and Iref in Eq. (3.83) are not acquired at the same
time with respect to one cardiac phase duration. To assess this difference, CFD
solutions are output for the averaged time of each segment. That corresponds to
8 solutions for each of the 17 phases. The sequences have been created following
a symmetric 4-point velocity-encoding scheme, which is similar, yet not exactly
equivalent to the balanced 4-point velocity-encoding scheme in [112]. Similarly
to this scheme, each acquisition does not encode a specific direction, but a linear
combination of velocities. Thereby, for each acquisition, bipolar gradients are
played along the 3 directions, with different polarities. Here, the combinations
are chosen so that for 4 successive acquisitions, vx is reconstructed using the first
and the second acquisitions, vz using the first and the third and vy using the
first and the fourth. The first acquisition somehow plays the role of reference,
even though it includes bipolar gradients along the 3 encoding-directions as well.
On top of that, 2 segments are acquired by cardiac phase. That means that the
acquisition pattern is repeated twice. One can then consider that to reconstruct a
given velocity at a given cardiac phase, data acquired at 4 distinct time instants
(or more exactly 4 distinct time periods) are needed. In an attempt to quantify
the impact of these differences in time on the velocity fields, the 8 solutions per
cardiac phase are grouped to construct 4 mean velocity fields corresponding to
the 4 successive acquisition (the mean is performed on the 2 segments of the
same acquisition gradients pattern for a given cardiac phase). Then error maps
are constructed for each velocity-encoding direction. For instance for vx, the
mean velocity field corresponding to the first acquisition is subtracted to the
mean velocity field corresponding to the second acquisition. For vz, the mean
velocity field corresponding to the "reference" acquisition is subtracted to the third
acquisition. This leads to three "time difference" maps for each cardiac phase.
In this work, ∆u denotes the mean of these three "difference" mappings of the
velocity fields, and should not be confused with the Laplacian operator.
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Figure 5.2: Velocity maps for the sinusoidal flow rate in the coronal middle plane.
The phases presented are the ones highlighted in Figure 5.1. ||u|| is the magnitude
of the velocity vector [u, v, w].
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Figure 5.3: Velocity maps for the physiological flow rate in the coronal middle
plane. The phases presented are the ones highlighted in Figure 5.1. ||u|| is the
magnitude of the velocity vector [u, v, w].
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5.3 Results
5.3.1 Flow structures
The velocity maps for the sinusoidal and physiological flow rates are shown in
Fig. 5.2 and 5.3, respectively. Recall that two CFD simulations for each flow are
performed to meet the slightly different parameters of the sequences with and
without PE. As both simulations are very similar, only the CFD corresponding
to the acquisition with PE is presented. Overall, the main flow structures are
well represented by SMRI, without and with the use of partial echo. Despite the
downsampling, the SMRI velocity fields appear more blurry. Some discrepancies
can already be noticed, such as in the collateral for the phase 0 in Fig. 5.2 or in
the aneurysm-like region for the phase 10 in Fig. 5.3.

5.3.2 Impact of the use of partial echo
To quantify the differences when using partial echo or not, the normalized absolute
differences and the RMSE are computed. The evolution of the errors over time
are displayed in Fig. 5.4 and 5.5, respectively for the sinusoidal and for the
physiological flow rates. Error maps matching the velocity maps already presented
above are shown in Fig. 5.6 and 5.7. From the graphs over time, it appears that the
lowest errors are found for the sequence with partial echo for both the sinusoidal
and the physiological flow, with the exception of phase 13 of the sinusoidal flow.
As expected, the lowest contribution to the average error comes from the low
velocities of the velocity component v. The highest contribution comes from the
velocity component w, which corresponds to the readout direction z. It is also
this contribution that is significantly reduced when partial echo is used. Along
x and y, the errors are almost not impacted by the use of partial echo. For the
physiological flow, the highest RMSE is found at the phase 10, when the inlet
flow is decelerating after peak systole. Concerning the sinusoidal inlet flow rate,
while the highest errors are found at peak systole for the full echo readout, they
are happening at phase 13 for the partial echo. This phase is characterized by
both an increase in the flow rate at the inlet, and backward flow in the collateral
and aneurysm according to the velocity maps in Fig. 5.2, and thereby potential
sign changes of the velocity components. Contrary to the other cardiac phases for
the sinusoidal flow where most of the errors occur around the collateral duct in
the partial echo sequence, the errors are spread all over the phantom both for u
and w. More generally, the use of partial echo for both types of inlet flow rate
reduces the errors in the U-bend, which are mostly found for the w-component.
Furthermore, the errors in the collateral and around (aneurysm and jet) seen for
the RMSE between SMRI and CFD are not observed for the RMSE between the
SMRI. This is especially noticeable for the physiological flow rate. While it shows
a relatively good agreement between the two sequences in these regions, it also
indicates that there is a discrepancy with the CFD velocity on which SMRI is
based.
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Figure 5.4: Evolution of the errors throughout the cardiac cycle for the sinusoidal
flow rate. The plain lines represent the acquisition without PE, while the dashed
lines represent the acquisition with PE. All errors are normalized by the maximal
VENC = 0.7m/s.
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Figure 5.5: Evolution of the errors throughout the cardiac cycle for the sinusoidal
flow rate. The plain lines represent the acquisition without PE, while the dashed
lines represent the acquisition with PE. All errors are normalized by the maximal
VENC = 0.7m/s.
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Figure 5.6: Error maps for the sinusoidal flow rate. For each phase, the 1st and
2nd columns compare the SMRI, respectively without and with PE, against the
corresponding CFD. The last column compares both SMRI fields. All errors are
normalized by the maximal VENC = 0.7m/s.
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Figure 5.7: Error maps for the sinusoidal flow rate. For each phase, the 1st and
2nd columns compare the SMRI, respectively without and with PE, against the
corresponding CFD. The last column compares both SMRI fields. All errors are
normalized by the maximal VENC = 0.7m/s.
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5.3.3 Origins of errors inherent to the SMRI procedure
As underlined in the last paragraph, while partial echo seems to reduce the
RMSE and the errors on w between SMRI and CFD overall (cf. Fig. 5.4 and
5.5), discrepancies are still present between both modalities. In an attempt to
understand the origins of these errors inherent to the SMRI procedure, three
metrics detailed in section 5.2.5 are investigated: the norm of the acceleration∣∣∣∣∣∣Du
Dt

∣∣∣∣∣∣, the norm of the velocity difference due to the timings of the different
segments within a cardiac phase ||∆u||, and the turbulent kinetic energy (TKE).
Thresholds on the RMSE and these three metrics are displayed in Fig. 5.8 and 5.9,
respectively for the sinusoidal and the physiological inflow. The threshold on the
RMSE corresponds to regions, where the error is higher than 7.5% of the VENC .
Concerning

∣∣∣∣∣∣Du
Dt

∣∣∣∣∣∣ and ||∆u||, the areas correspond respectively to accelerations
and velocities, which would induce a displacement greater than a voxel over the
duration of one cardiac phase. Finally, the highlighted regions for TKE are the
ones above 10% of the mean kinetic energy injected at the inlet.
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Figure 5.8: Thresholds on the RMSE (≥7.5%), acceleration (≥1.48 m/s2), velocity
difference (≥0.038 m/s) and TKE (≥0.002 m2/s2) for the sinusoidal inflow.

The acceleration catches numerous patterns similar to the regions of high
RMSE, in particular in the collateral, and in the jet and recirculation when presents.
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For the sinusoidal inflow, it seems to be related to the errors in the collateral
for the decelerating phase 6 and accelerating phase 13. For the physiological
inflow, both

∣∣∣∣∣∣Du
Dt

∣∣∣∣∣∣ and ||∆u|| are correlated with the errors in the collateral for
the accelerating and decelerating phases (6 and 10). The TKE mainly explains
the errors occurring in the aneurysm-like region, such as in phases 6 and 13 for
the sinusoidal flow, and to a lesser extent in phase 8 for the physiological inflow.

Of course, the 3 metrics are not independent, and their simultaneous effects
impact the discrepancies between the SMRI and CFD fields. One can note that
regions of high acceleration, for instance at the inlet of the physiological flow
(phases 6 and 10), do not necessarily result in a high level of error. Furthermore,
some regions of high RMSE appear to be uncorrelated with the metrics presented
in this study.
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Figure 5.9: Thresholds on the RMSE (≥7.5%), acceleration (≥1.48 m/s2), velocity
difference (≥0.038 m/s) and TKE (≥0.0008 m2/s2) for the physiological inflow.

5.4 Discussion
The aim of this work is to investigate the use of partial echo in the context of 4D
flow MRI. In silico CFD-MRI simulations are conducted on a rigid flow phantom
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for two kinds of pulsatile inflow (sinusoidal and close to the ascending aorta flow
rate). A full echo and a partial echo covering only 75% of the expected readout
are simulated, with all other parameters kept identical up to the restrictions of the
sequence design software. This numerical setup allows to investigate the impact
of this sequence parameter on the MRI process without experimental artifacts.
Indeed, no motion of the phantom itself is simulated, nor are Maxwell terms, eddy
currents or gradient nonlinearities. The reconstructed synthetic SMRI velocity
fields are compared to the phase-averaged and downsampled velocity fields derived
from the CFD fields used to simulate the MRI process.

Qualitatively, the SMRI images are in good agreement with the CFD velocity
fields for all components and for both inflows, without and with partial echo.
Quantitatively, higher levels of absolute errors are found for the component w of
the velocity for the full echo than for the partial echo. Concerning the other two
components u and v, the errors levels are pretty similar between both acquisitions.
Furthermore, the errors on w are the highest with respect to the other components,
although they seem to be reduced to levels comparable to the component u when
using partial echo. While u and v are encoded along phase-encoding directions,
w is encoded along the frequency-encoded direction. Hence, whereas the spatial
and velocity encodings are synchronized for the two first components, there is
an incompressible delay between the velocity and the spatial encodings, which
occurs around TE, along the z direction. In the two investigated sequences, the
gradients along x (phase-encoding direction) and y (slice-selecting direction) have
the same gradient amplitudes and durations. Along the z-axis, not only is the
readout gradient shorter, yet with same strength, but the gradients occurring
before (prephasing, flow-compensation and velocity-encoding) present a visible
reduced amplitude. These differences between the two sequences induce a decrease
of the displacement time TD of about 25% for the partial echo, which can be
accountable for the lower errors reported on w [117].

The acceleration shares a lot of common patterns with the RMSE. Indeed, the
main assumption of PC-MRI relies on slow changes of the velocities with respect
to the temporal resolution, which allows considering velocities as constant and
to neglect the higher-order terms [185]. Yet, even in the context of steady flow,
convective acceleration can occur in complex geometries, for instance in stenoses
or curved vessels [186, 187]. Furthermore, when handling pulsatile flows as in the
aorta, the time dependence of acceleration cannot be neglected. While for GRE
sequences the temporal resolution matches the repetition time TR, the common
four-point encoding scheme used in the present work result in a four-fold increase,
which has to be multiplied by the number of segments per point. Due to the
phantom design with its complex geometry and the pulsatile inflows studied in
this work, it is not reasonable to assume that velocities are constant over a cardiac
phase.

In this work, the metric ||∆u|| is presented in an attempt to assess the errors
due to the velocity variation from segment to segment. While this quantity is close
to zero for all phases of the sinusoidal inflow, its level increases around the systolic
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peak for the physiological inflow. While it seems to be related to the RMSE, its
impact on the error is probably already accounted for in the acceleration.

According to the TKE values, turbulence occurs mainly in the aneurysm-like
region, as well as in the jet exiting the collateral. TKE appears as complementary
to the acceleration to understand the RMSE. Note that this quantity could not be
assessed based on the intravoxel spin velocity standard deviation (IVSD) method
proposed by Dyverfeldt et al. [71, 73, 188] due to the symmetric 4-point encoding
scheme used in this study. This scheme leads to the same first gradient moments
for each segment, which is the only restriction in the use of this method. An
asymmetric 4-point encoding scheme could be investigated in a future work to
evaluate TKE with this method as well.

Some RMSE regions remain not explained by the three metrics proposed in this
work, for instance in the aneurysm and its prolongation above the inlet in phases
6 and 10 of the physiological inflow. The errors in this area could be related to the
ghosting artifact. Indeed, the periodic motion of the pulsatile inflow can create
coherent phase-shifting in the acquired k-space [189, 190]. The magnitude images
corresponding to the reference k-space for the two phases mentioned above, as well
as the velocity magnitude fields, are displayed in Fig. 5.10. While at first sight only
the expected phantom geometry is observed, saturating the signal intensity reveals
one replicate. The inlet and outlet are especially highlighted in the magnitude
images. The fact that the replicate propagates along the phase-encoding axis
indicates that it is due to an inter-view motion, that is on a timescale longer
than TR [189]. Since two copies of the phantom are noticed, it is likely that the
ghosting is related to the fact that 2 segments are encoded per cardiac phase.

There are some limitations to this work. Although more realistic than the
sequences used in the preliminary study conducted by Puiseux et al. [86], the
sequences are still idealized concerning the spoiling. Indeed, a numerical perfect
spoiling is performed instead of being simulated. Furthermore, the frequency of
the pulsatile inflow is perfectly matched to the prospective sequence, which does
not allow for the consideration of irregular heartbeats. While their absence makes
it possible to distinguish sources of errors which only arise from the sequence
and the MR process in itself, gradient field distortions (see Section 2.8.4) could
be modelled to investigate their impact on the reconstructed velocity fields. In
order to achieve a reasonable computing time, a coarse mesh has been used in this
study with a characteristic cell size of 2 mm. It would be of interest to conduct
additional simulations with finer spatial resolutions. Yet, the CFD resolution used
is still below the SMRI resolution, which should mitigate the errors. Furthermore,
the spin density exceeds the recommendation of 3 particles/direction/voxel made
in [19] to keep an error on the MR signal below 1.5%. Another limitation of the
phantom used in this study is its rigid walls. Studying a geometry with moving
walls and thereby with properties closer to the elastic walls of the aorta or the
heart muscle would be of interest to assess the impact of motion artifacts on the
reconstructed velocity fields.

Despite these limitations, the CFD-MRI framework used in this work appears
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Figure 5.10: Ghosting artifact as seen on magnitude images and velocity magnitude
for the physiological inflow. The artifact is visible for phases 6 and 10. Phase 12
is presented as a reference image free of ghosting.
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as a useful tool to investigate the design of 4D flow MRI sequences. The present
study could be expanded by investigating other strategies to fill the k-spaces. If
filled in a Cartesian manner, different interleaved patterns could be investigated,
as well as asymmetric encoding scheme for the velocity-encoding. Additionally,
the CFD-MRI framework used in this work has the potential to simulate radial or
spiral samplings as well. Concerning the phantom presented in this study, other
geometries could be investigated such as stenoses. For both flows investigated
in this study, partial echo provides better outcomes than full echo as it reduces
the displacement artifacts along the readout direction. Yet, reconstructed SMRI
velocity fields are not free from errors as compared to the CFD fields, and artifacts
inherent to the 4D flow MRI process could be reproduced. These synthetic 4D
flow data could be used as input datasets to train machine learning models and
physics-informed neural networks [24, 191, 192].
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The present thesis focuses on 4D flow MRI. The performances of this sequence
are assessed with an in vitro experimental set-up, CFD simulations fed with
experimental data, as well as SMRI-CFD simulations. Acceleration techniques
and their impact on the reconstructed velocity fields are questioned. The effect of
the use of the partial echo is evaluated thanks to numerical simulations.

6.1 Main results
6.1.1 Acceleration of 4D flow MRI sequences
In chapter 4, hemodynamic biomarkers are evaluated in accelerated 4D flow
MRI sequences, namely GRAPPA with an acceleration factor R = 2, 3, 4 and
compressed sensing with R = 7.6. The same biomarkers are also quantified
for a nonaccelerated fully sampled k-space acquisition, and for matching CFD
simulations based on these five experimentally measured flow fields. All in vitro
and in silico experiments are conducted on an in-house pulsatile flow phantom,
whose geometry allows investigating complex flow patterns similar to the ones
found in the cardiovascular system. Similar hemodynamic patterns are observed
for all modalities. Concerning voxel-wise comparisons, the highest discrepancies
between the MRI scans are found in the voxels located near the boundary walls of
the flow phantom. When compared to the CFD velocity fields, all MRI scans tend
to overestimate velocity profiles as well as peak velocities in the regions associated
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with high velocity or/and high acceleration. Finally, this study highlights the
importance of correcting the eddy currents in the MR images to report flow
rates that comply with the principle of mass conservation. Once this correction
is performed, good agreement is found between the experimental in vitro flow
rates and the ones reported by the CFD simulations [21]. This study suggests
that the highly accelerated compressed sensing acquired in 5 min 35 s provides
reconstructed velocity fields in good agreement with the almost 43-minute-long
fully sampled acquisition. Such a short scan time could help to generalize the use
of the 4D flow MRI technology into the clinical routine. Yet, the findings of this
study are limited by the use of a rigid phantom with a sinusoidal inflow. Further
investigations seem necessary to assess accelerated 4D flow MRI sequences in
conditions representative of the in vivo.

6.1.2 Impact of the partial echo on simulated 4D flow
MRI sequences

In chapter 5, the CFD-MRI simulation framework initially developed by Puiseux
[86] is expanded to simulate more realistic 4D flow MRI sequences issued by
manufacturers. The framework is used to investigate the partial echo, a well-
known parameter commonly used in angiography, but whose impact on 4D flow
MRI reconstructed velocity fields remains unclear. The simulations are conducted
in the in-house flow phantom for two types of inflow: an experimental almost
sinusoidal one and another one which models the flow rate in the ascending aorta.
For both inflows, two 4D flow MRI sequences are investigated: a full echo and a
partial echo, which samples only 75% of the full echo. For each inflow, similar
hemodynamic patterns are visually observed for the full echo and the partial echo,
as well as for their matching CFD simulations. Higher levels of errors with respect
to the CFD simulations are reported for the full echo than for the partial echo
over the whole cardiac cycle. The use of partial echo mitigates the errors made
on the velocity component encoded along the readout direction. Yet, both MRI
sequences are not free from errors as compared to the CFD simulations. The
turbulent kinetic energy (TKE) and the acceleration appear as complementary
good indicators of the regions associated with high levels of errors. Due to the
pulsatility of the inflow, ghosting artifact occurs and is potentially responsible
for the errors, which could not be explained by the TKE or the acceleration. In
a nutshell, the MRI simulation framework has proven its potential in decision-
making for parameters optimization, while allowing to reproduce artifacts inherent
to the MR process.

6.2 Perspectives
This thesis takes place in the continuity of Puiseux’s PhD thesis [20], where proofs
of concept for quality control and simulation of 4D flow MRI have been initiated.
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In the present work, accelerated sequences of 4D flow MRI have been investi-
gated. Assessing the quality of these sequences is crucial, as the translation of
4D flow MRI into the daily clinical practice is hampered by its long scan time
and accelerated sequences have the potential to overcome this issue. Besides,
being able to quantify the errors made in such sequences would allow building
trustful biomarkers, or at least with known accuracy range, which could be used
for decision-making by clinicians. In chapter 4, the comparison of experimental
MRI with CFD also allows to highlight the presence of field distortions and errors
on flow rates when no appropriate corrections are applied. Hence, this comparative
environment appears as a tool of interest to investigate correction algorithms.

The second axis of this work is the development of an MRI simulation framework
to simulate realistic constructor sequences. Thought to help with sequence design
and optimization of sequence parameters, this framework is used to investigate
the partial echo parameter, a parameter which lacks consensus about its usage
[22, 176]. Other parameters could be investigated using the same framework:
voxel size, number of segments etc. It could also be used to investigate k-space
sampling patterns: Cartesian strategies, but also radial or spiral sampling. The
MRI simulation framework could be further expanded to simulate other types of
MR sequences, such as other magnetic resonance angiography (MRA) sequences,
echo-planar imaging (EPI) or diffusion MRI.

While more realistic sequences are simulated in the present thesis, the MRI
simulator still does not model some common physical phenomena, such as con-
comitant gradients, eddy currents or gradient nonlinearities. Adding these sources
of gradient field distortions would allow investigating how they affect the recon-
structed images and velocity fields, but also to test correction algorithms. Coil
sensitivity profiles could also be added into the simulations to investigate parallel
imaging reconstruction methods.

With the emergence of machine learning and physics-informed neural networks,
the MRI simulation framework appears now as a valuable tool to generate synthetic
training datasets, or to build signal dictionaries [16, 23, 24].
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7
Appendix

7.1 Reformulation of the electromotive force
In this appendix, the reformulation of the emf from Eq. (2.22) to Eq. (2.23) is
derived, as presented in [91].

Let us start again from Eq (2.22):

emf = −dΦ
dt

= − d

dt

∫∫
S
B(t) · ndS

According to Maxwell’s equations,

∇ ·B = 0 (7.1)

Using the vector identity ∇ · (∇× V ) = 0 that for any vector V , one can
write that B derives from a magnetic vector potential A such that:

B = ∇×A (7.2)

Thereby, using Stokes’ theorem, the Eq. (2.21) expressing the flux Φ can be
rewritten in terms of A:

Φ =
∫∫

S
B(t) · dS =

∮
A · dl (7.3)

Furthermore, according to Ampère’s circuital law (with Maxwell’s addition),

∇×H = J + ∂D

∂t
(7.4)

where B = µH , D = εE, ε the dielectric constant, µ the permeability and J the
electric current density (current per unit area). In MRI, the time dependence is
generally ignored. Indeed, the static field independent of time and the gradient
fields have mild time dependence. Concerning the RF pulse, it is rather a low
frequency signal [91]. In this manner static methods can be used and Eq. (7.4)
reduces to:

∇×B = µ0J (7.5)
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where µ0 is the permeability of free space. According to Eq. (7.2), the curl of B
can be expressed as:

∇×B = ∇× (∇×A) (7.6)
= ∇ (∇ ·A)−∇2A (7.7)

A can be freely chosen. With the assumption that ∇ ·A = 0, one can write that:

∇×B = −∇2A (7.8)
=⇒ ∇2A = −µ0J (7.9)

It can be shown that the solution to this equation is:

A(r) = µ0

4π

∫
V

J(r′)
|r − r′|

d3r′ (7.10)

= µ0

4π
∑

loops i
Ii

∫ dli
|r − r′|

(7.11)

where the second line corresponds to a current distribution J , which is a sum
over a set of i discrete loops carrying a current Ii.

Several phenomena contribute to the current density J . In particular, the
magnetization current JM corresponds to the contribution of the magnetization
M and expresses as:

JM(r, t) = ∇×M(r, t) (7.12)
Combining Eq. (7.3), (7.10) and (7.12) with the help of an integration by

parts and of the vector identity U · (V ×W ) = − (U ×W ) · V , the flux ΦM

through a coil due to a magnetization source can be expressed as:

ΦM =
∮ µ0

4π

∫∫∫
V

∇′ ×M(r′)
|r − r′|

d3r′ · dl

= µ0

4π

∫∫∫
V

∮ ((
−∇′ 1

|r − r′|

)
×M (r′)

)
· dld3r′

= µ0

4π

∫∫∫
V
M (r′) ·

(
∇′ ×

∮ dl

|r − r′|

)
d3r′

=
∫∫∫

V
M (r′) ·

(
∇′ × µ0

4π

∮ dl

|r − r′|

)
d3r′ (7.13)

Taking the curl of Eq. (Eq:solution_vector_potential_2), the term in paren-
theses in Eq. (7.13) can be identified as the magnetic field per unit current that
would be produced by one coil carrying a current I at the point r′:

B(r′)
I

= ∇′ ×A(r′)
I

= 1
I

(
∇′ × µ0

4πI
∮ dli
|r − r′|

)

= ∇′ × µ0

4π

∮ dli
|r − r′|

(7.14)
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The magnetic field per unit current is denoted Br and corresponds to the coil
sensitivity. With this notation, Eq. (7.13) reduces to

ΦM =
∫∫∫

V
M (r) ·Br(r)d3r (7.15)

Finally, the derivation of Eq. (7.15) with respect to time allows to find Eq.
(2.23):

emf = −dΦM

dt
= − d

dt

∫∫∫
V
M(r, t) ·Br(r)d3r (7.16)

where the time dependence of M is made explicit.
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Abstract

The study of hemodynamics, i.e. the dynamics of blood flow, is considered by the medical community as an
essential biomarker to characterize the onset and the development of cardiovascular pathologies. Historically,
magnetic resonance imaging (MRI), a non-invasive and non-ionizing technique, allows reconstructing morpho-
logical images of the biological tissues. Recent progresses have made it possible to access the temporal evolution
of the blood velocity field in the three spatial directions. This technique, known as 4D flow MRI, is still little
used in the clinical practice due to its low spatiotemporal resolution and its long scan time.

This thesis aims at studying how the 4D flow MRI sequence performs. To begin with, the impact of ac-
celerated sequences (GRAPPA, compressed sensing) on reconstructed velocity fields is studied in a framework
combining experimental measurements in a flow phantom and computational fluid dynamics (CFD) simulations.
It is shown that the highly accelerated sequence with compressed sensing is in good agreement with numerical
simulation as long as appropriate corrections are applied, namely with respect to the eddy currents. Then,
the impact of a sequence parameter, namely partial echo, is investigated. The study is conducted thanks to
a methodology coupling the simulation of the MR acquisition process with CFD and allowing to reconstruct
synthetic MR images (SMRI). This configuration is freed from experimental errors and allows to only focus on
the errors intrinsic to the MRI process. Two realistic constructor sequences, without and with partial echo, are
simulated for two types of flow in a numerical flow phantom. For both flows, the sequence with partial echo
results in overall better results. It suggests that the mitigation of the displacement artifacts made possible by
the partial echo has a greater impact than the reduced MR signal acquired that it induces. Furthermore, the
coupled MRI-CFD simulation appears as a tool of interest in the context of sequence design and optimization.
It could be expanded to other types of MR sequences.

Keywords : Hemodynamics, Computational fluid dynamics (CFD), 4D flow MRI, MRI simulation.

Résumé

L’étude de l’hémodynamique, c’est-à-dire de la dynamique du sang, est considérée par la communauté
médicale comme un biomarqueur essentiel pour caractériser l’apparition et le développement de pathologies
cardiovasculaires. Historiquement, l’imagerie par résonance magnétique (IRM), technique non-invasive et non-
ionisante, permet de reconstruire des images morphologiques des tissus biologiques. De récents progrès lui
donnent aussi accès à l’évolution temporelle du champ de vitesse du sang dans les trois directions de l’espace.
Cette technique, connue sous le nom d’IRM de flux 4D, est encore peu utilisée dans la pratique clinique étant
donné sa faible résolution spatio-temporelle et sa longue durée d’acquisition.

Cette thèse a pour but d’étudier les performances de la séquence de flux 4D. Dans un premier temps, l’impact
de séquences accélérées (GRAPPA, compressed sensing) sur la reconstruction des champs de vitesse est étudié
dans un cadre combinant mesures expérimentales sur un fantôme imageur de flux et simulations de mécanique
des fluides numérique (MFN). On montre que l’acquisition hautement accélérée avec compressed sensing est en
bon accord avec la simulation numérique si les corrections appropriées sont appliquées, notamment par rapport
aux courants de Foucault. Dans un second temps, l’impact d’un paramètre de séquence, l’écho partiel, est exa-
miné. L’étude est conduite avec une méthodologie couplant la simulation du processus d’acquisition IRM avec
la MFN et permettant de reconstruire des images synthétiques d’IRM. Cette configuration permet de s’affran-
chir des erreurs expérimentales pour s’intéresser uniquement aux erreurs intrinsèques au processus IRM. Deux
séquences constructeur réalistes, sans et avec écho partiel, sont simulées sur deux types d’écoulement dans un
fantôme de flux numérique. Pour les deux écoulements, la séquence avec écho partiel donne globalement de
meilleurs résultats. Il est ainsi suggéré que l’effet d’atténuation des artéfacts de déplacement permis par l’écho
partiel est plus important que celui de réduction du signal IRM acquis. De plus, la simulation couplée IRM-MFN
apparaît comme un outil d’intérêt dans le contexte de la conception et de l’optimisation de séquences IRM et
pourrait être étendu à d’autres types de séquences.

Mots-clefs : Hémodynamique, Mécanique des fluides numérique (MFN), IRM de flux 4D, simulation d’IRM.
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