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Nomenclature

Tensors

σ
∼

Stress tensor

ε
∼

Infinitesimal strain tensor

T n-th order tensor

C
≈
, S

≈
Elasticity tensor

I
≈

Identity tensor of S2(R2)

1
∼

Identity tensor of R2

K Kelvin convention of a tensor representation

K(n) An orthonormal basis of Kn

P
≃

Piezoelectricity tensor

DT (·) The topological derivative of a tensor

Tensor operations

⊗ Tensor product

⊗ Twisted tensor product

S2 Symmetrized tensor product

Λ2 Anti-symmetrized tensor product

: , :: ,
n· Contraction of order 2, 4 and n between two tensors

(·)s Complete symmetric part of a tensor

(·)d Deviatoric part of a tensor

∗ Harmonic product between two harmonic tensors

⊙ Symmetric tensor product between two tensors

× The skew-symmetric contraction between two totally symmetric tensors

tr Trace of a tensor

⊠ The special tensor product

Spaces

d Dimension of the physical space

Ed Euclidean affine space of dimension d (d = 2, 3)

Vd Vector spaces of dimension d

Rd Real space of dimension d

Tn Space of n-th order tensors

Ela(d) Elasticity tensors space of dimension d
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Ela+ Positive defined elasticity tensors space

Ela Elasticity tensors space without zero determinant elements

Kn n-th order harmonic tensors space in R2

Hn n-th order harmonic tensors space in R3

Orb Orbit of elasticity tensors

Σ[H] The open strata of [H]

Σ[H] The closed strata of [H]

Fix Fixed point set

Piez Space of the piezoelectric law

Cos The space of the Cosserat elasticity law

Ũµ The minimally constrained space of kinematically displacements

Uµ ⊂ Ũµ The subspace of kinematically admissible displacement

Basis

B Orthonormal basis

IB Integrity basis

Groups

G A compact group

O(d) Orthogonal groups

SO(d) Special orthogonal groups

r(θ) Transformation of rotation by angle θ in R2

r(n, θ) Transformation of rotation by angle θ around the unit vector n ∈ R3

mn The reflection across the line normal to n

Zk cyclic group with k elements generated by the rotation r( 2πk )

Dk Dihedral group with 2k elements generated by r( 2πk ) and me2

O The octahedral group

−1 Transformation of inversion

GL(d) The group of invertible linear transformation of Rd

Domains

Ω Closed domain used to represent a material

Ωµ Domain of the Representative Volume Element (RVE)

∂Ωµ Boundary of the domain of the RVE

Hρ Domain of the circular hole with radius ρ

Iρ Domain of the circular inclusion with radius ρ

Functions

S Application of totally symmetrisation

L Linear application of a space onto itself(not sure)

p(·) Polynomial functions

Covn(·) Polynomial covariant algebra of order n

Others

σ Index permutation function of n-th order tensors
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(·)T Transpose of a tensor

⋆ Group action

J Cost function

λv Penalisation constraint on the volume ratio

I A set of conjugacy classes (symmetry classes)

≃ O(2) or SO(3)-equivariant isomorphism

HB(·) Harmonic bouquet

⊚ Clips operation

♯E Number of exotic sets

♯C Number of symmetry classes
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Introduction

Anisotropy characterises the way a physical property varies with respect to material directions. Lin-

ear properties, such as elasticity or conductivity, are encoded using constitutive tensors. Depending on

their order, these tensors can model different types of anisotropies ranging from complete anisotropy to

isotropy. These different possibilities are called symmetry classes, and have attracted much interest in

recent years [5, 6, 7].

The geometrical tools developed to determine the symmetry classes of a tensor space have also re-

vealed the richness of these spaces, as well as the existence of a whole range of intermediate possibilities

beyond the symmetry classes. Indeed, these tools allow to describe the linear material space in a very fine

way and to detect materials with non-standard anisotropic properties. These intermediate possibilities

are referred to here as exotic.

This possibility was identified very early on by authors working in this field [8, 9, 10]. For example,

in the case of 2D linear elasticity, P. Vannucci has identified a particular situation which he calls R0-

orthotropy. He says about it:

”The existence of a particular type of planar orthotropic material, [...] but, [...], not linked to a particu-

lar type of elastic symmetry condition. For this reason, the existence of this type of material cannot be

revealed only by the use of certain symmetry conditions on the Cartesian components of C
≈
1.” [9]

At the same moment, J. Rychlewski made some related observations and noticed that

”The thing is that materials of substantially different anisotropy can behave, in certain situations and in

certain aspects, quite alike or just identically. In particular, some essentially anisotropic materials can

retain certain important features of isotropic materials.” [8]

But these early works seem to be curiosities and have not aroused much interest. This is owing to

two major lacks that limited the applicability of these discoveries to the community:

1. lack of an operative mathematical definition of what an exotic elasticity is. In the contributions cited,

only particular cases of exotic elastic materials have been studied, and no systematic classification

has been undertaken. This is certainly due to the lack of a good definition for such a study;

2. to the best of our knowledge, mesostructures generating these exotic properties were not determined

at this time2. It is understandable because the topology optimisation was not as mature a technique

as it is now [11, 12] and additive manufacturing was also less democratised than now. In fact, there

was also something missing with regard to practical applications.

Today, these practical locks have been broken. Very efficient multi-scale topology optimisation codes

have been developed by the applied mathematics and mechanics communities [2, 13, 14]. And further,

1C
≈

being the elasticity tensor.
2It should be noted, however, that P. Vannucci has determined a stacking sequence of elementary orthotropic layers

producing a global elastic behaviour R0-othotropic for a laminated plate [9].
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LIST OF TABLES

3D printers have almost become standard laboratory tools. These tools have already been applied to

the design of architectured materials. However, all these studies are concerned with the optimisation

of specific coefficients of the stiffness (or compliance) tensor in a given base. While this intuition-based

method is effective in some cases, it is still rather home-made and does not exploit the progress that has

been made in describing the geometry of the elastic material space.

It is hence important to revisit this topic because the understanding of exotic linear behaviours opens

up multiple possibilities for the smart optimal design of architectured materials that can accommodate

seemingly incompatible design constraints. This is particularly true in 3D, and concerns both static and

dynamic applications [15, 16, 17].

To go further in the design of custom elastic materials and to exploit exotic symmetry sets, it is

necessary to understand the geometry of the elastic tensor space. In particular, how to characterise the

strata of this space, i.e. the subsets of tensors of the same anisotropy type. It is from this description

that we will be able to bring out the mathematical concept of exotic anisotropy.

The questions we ask ourselves and which my Ph.D. work proposes to answer are the following:

1. What is the definition of exotic materials?

2. What are the properties of these materials?

3. Can we, a priori, list the different possibilities of exotic situations ?

In order to provide a mathematical definition while keeping a reasonable level of complexity, we will

start in a 2D framework, and then generalise it to 3D.

Following the observations made by Vanucci [9] and Rychlewski [8], we propose to adopt the following

mechanical definition of what an exotic linear material is:

1. Specific design: they satisfy constraints independent of those imposed by symmetry arguments;

2. Hypersymmetric: they produce more symmetrical behaviour than that imposed by material sym-

metries.

It should be noted that some specifically designed materials may have interesting non-standard properties

while not meeting the hypersymmetry requirement. These materials will be referred to as semi-exotic. As

will be seen, this mechanical definition will lead to a mathematical one and is operative since allowing to

enumerate the exotic sets of a constitutive tensor space. As we shall see, in this context, general results

can be obtained.

This Ph.D. thesis is divided into seven chapters. The first two chapters aim to present the state-of-

the-art of this study:

Chapter 1 will present the recent developments in architectured materials, including their different

types, additive manufacturing technologies, and some popular numerical algorithms to design them.

Besides, the non-standard mechanical behaviors emerging from the architectured materials will be

emphasized in this chapter.

Chapter 2 come up with some geometric tools including group theory, harmonic decomposition,

and polynomial invariant theory. These notions will be used in the following chapters to explore

the anisotropic linear properties of materials.

2



LIST OF TABLES

The aforementioned mathematical framework will be employed to explore the space of 2D linear

elasticity tensor space:

Chapter 3 focuses on the partition of 2D linear elasticity tensor space into 4 different strata according

to their corresponding symmetry classes. The membership to a symmetry class is determined by

polynomial invariant conditions.

Chapter 4 deals with the materials with non-standard anisotropic properties associated with inter-

mediate possibilities beyond symmetry classes. These materials are called exotic materials. And

the only exotic material for 2D linear elasticity will be introduced in this chapter.

Chapter 5 realises the numerical design of an exotic material and a semi-exotic material by using a

level set-based topological derivative algorithm.

We then extended our study into 3D linear elasticity, the structure of the following chapters is the

same as that for the 2D case :

Chapter 6 presents the partition of 3D linear elasticity tensor space into 8 different strata according

to their corresponding symmetry classes. The membership to a symmetry class is determined by

polynomial covariant conditions.

Chapter 7 deals with the identification of exotic materials for 3D linear elasticity. There are 1052

possibilities of exotic materials in total and 3 of them will be discussed as examples.

The design of 3D exotic materials is ongoing, they will be published in the forthcoming paper. And

thus, Chapters 4, 5, and 7 regroup the specific contributions of my Ph.D. Some conclusions and per-

spectives for future developments are drawn in the last conclusion chapter and some technical points are

detailed in the appendices.

3



Contents

I State of the art 7

1 Architectured materials 8

1.1 Achitectured Materials (A.M.) in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Anisotropic linear elasticity of A.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Topology optimisation of multi-scale structure . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Geometry of tensor spaces 18

2.1 Linear elastic constitutive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 SO(d) and O(d) linear representation on Ela(d) . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Harmonic decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Definition of elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Invariants and integrity basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 From symmetry group to symmetry class . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Symmetry group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Symmetry class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.3 Clips operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Symmetry stratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Anisotropic 2D linear elasticity 33

3 Geometry of 2D linear elasticity tensors space 34

3.1 Group O(2) and its subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Group O(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Subgroups of O(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 2D harmonic tensors space: Kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Harmonic decomposition of Ela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Parametrisation of elasticity tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Harmonic parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Polar parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Parametrisation of the inverse of a tensor . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Invariants and integrity basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Symmetry classes of Ela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Conditions of belonging to a symmetry class . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.1 Covariant-based conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.2 Polynomial invariant conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7.3 Inverse stability of the symmetry class . . . . . . . . . . . . . . . . . . . . . . . . . 51

4



CONTENTS

4 2D exotic and semi-exotic sets 53

4.1 Mechanical definition of exotic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Exotic elastic materials: R0-orthotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Semi-exotic elastic materials: Cauchy elasticity . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Generalisation to other constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 A general theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Application to coupled constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Mesostructure design of 2D exotic materials 62

5.1 Multi-scale based homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Topological sensitivity of the homogenized elasticity tensor . . . . . . . . . . . . . . . . . 67

5.3 Topological derivative-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Finite element implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Numerical result for exotic material: R0-Orthotropy . . . . . . . . . . . . . . . . . . . . . 78

5.6 Numerical results for semi-exotic material: Cauchy elasticity . . . . . . . . . . . . . . . . 79

5.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

III Extension to 3D linear elasticity 83

6 Geometry of 3D linear elasticity tensors space 84

6.1 From O(3) to SO(3) subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 O(3) and its subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 Symmetry group of an even order tensor . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.3 SO(3) and its subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Harmonic decompositions of Ela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 3D harmonic tensor space: Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Harmonic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 Explicit harmonic decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Symmetry classes of Ela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Condition of belonging to a symmetry class . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Polynomial invariants and their limitation . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.2 Covariants: a geometric path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.3 Covariant-based membership relations . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 3D exotic sets 105

7.1 Exotic sets of Ela(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.1 Clips operation for Ela(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.2 Determination of exotic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Covariants conditions for exotic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Exotic elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.1 R0-orthotropy in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.2 Triclinic exotic elastic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.3 Anisotropic materials with isotropic Young’s modulus . . . . . . . . . . . . . . . . 123

5



CONTENTS

IV Conclusions and perspectives 126

A Mathematical notations 130

B Level set based topological derivative algorithm 133

B.1 Flowchart of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2 Defining subdomains for different materials . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3 Line search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.4 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C Covariant criteria for tensor’s symmetry 136

D Generic and exotic sets of Ela(3) 140

D.1 Preliminary results of exotic sets for Ela(3) . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D.2 Complete list of exotic sets for Ela(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6



Part I

State of the art

7



Chapter 1

Architectured materials

1.1 Achitectured Materials (A.M.) in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Anisotropic linear elasticity of A.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Topology optimisation of multi-scale structure . . . . . . . . . . . . . . . . . . . . . . . . . 15

This chapter remains a general review of related topics that are involved in my Ph.D. work. Firstly,

a brief introduction to architectured materials is given in section 1.1, and the recent development in this

field shows the importance of their corresponding anisotropic mechanical behavior. Several approaches

that exist in literature are listed in section 1.2 to analyze the anisotropic linear elasticity of a material.

At the end, we present section 1.3 several numerical methods for the design of architectured materials.

8



1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

1.1 Achitectured Materials (A.M.) in brief

Different types of architectured materials

In response to the demand for lightweight, high-strength, impact- and shock-absorbing components

in the industrial fields, the development of lightweight new materials or architectured materials with

better mechanical properties has become an important research direction [18, 19]. The development of

new materials has a long lead time and high cost, which leads to limited applications. Therefore, the

design of architectured materials with specific mechanical properties has become a common approach.

With the agreement of French mechanics at the conference of Mécamat 2021+1 in Aussois, a definition

of architectured materials is provided:

1.1.1 Definition (Architectured materials)

A material will be said to be architectured if:

1. It presents, between its macrostructure and its microstructure, one or more other scales of orga-

nization of matter;

2. If the intermediate organization scales are commensurable with those of the microstructure

and/or the macrostructure.

According to their spatial organisation modes, the variety of architectured materials can be distin-

guished into three categories: periodic, quasi-periodic, and aperiodic. The applications for the last two

modes can be found in [20, 21, 22, 23]. In my Ph.D., the exotic material will be designed with periodic

mode, thanks to its simple computation limited to a unit cell. And in this case, the second condition

of Definition 1.1.1 will nevertheless not be considered, since the non-standard behaviors of exotic mate-

rials are scale-independent.

A structure is periodic if the space is filled from specific translations of a single unit call. And thanks

to this particular organization, the physical properties are the same in the whole specimen, consider-

ing perfect geometries. The unit cell can be designed by different geometry types, including lattices

(Figure 1.1a [24]), plate lattices (Figure 1.1b [25]), Triply Periodic Minimal Surfaces (TPMS in Fig-

ure 1.1c [26]).

• Lattice materials are spatial structures formed by combining multiple connecting rods in a lattice

or lattice-like arrangement, including the common Face-Centred Cubic (BCC) and Diamond lattice

materials [24, 27];

• Plate lattice materials have a specific arrangement of lattice grids that replace lattice nodes with

plate vertices. By specific combinations, the plate lattice can generate multiple cavities, thereby

achieving specific mechanical functions [28];

• TPMS architectured materials are special spatially structured materials with continuous smooth

surfaces in three independent directions [29].
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1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

(a) Lattice [24] (b) Plate lattice [28]

(c) TPMS [30]

Figure 1.1: Different structure types of architectured materials

The choice of a geometry type depends on the application field, since different geometry types pos-

sess different mechanical properties. Lattice materials exhibit excellent fatigue resistance and optimized

bending deformability, making them suitable for the fabrication of bio-metamaterial components [27].

Plate lattice metamaterials have a uniform stress distribution and show minimal stress concentration

when subjected to external loads. They can be used in the lightweight structural design of aerospace,

automotive, and maritime applications [31]. The configuration of TPMS is similar to that of human bone

tissue, exhibiting two distinct regions in space, free from any sharp bumps or depressions, which avoid

stress concentration, and therefore can be used for the production of bone implants [30].

Additive manufacturing

Despite the significant advancements in the design of architectured materials, the conventional sub-

tractive manufacturing methods have proven inadequate in efficiently producing complex geometries. As

a consequence, research on the concept of architectured materials, especially for ultrafine complex struc-

tures, has been relatively limited since it was introduced [18, 19].

To meet the growing demand for producing A.M., the development of more efficient additive manu-

facturing technologies continues. They are technologies based on the discrete-stacking principle (instead

of subtractive processes) for manufacturing metallic or non-metallic components. To be more specific,

this technology discretises a 3D computer-aided design (CAD) model into 2D slices, scans these 2D slices

layer by layer according to their shape, and produces the components according to a specific scan path

and process parameters. Based on the above forming characteristics, additive manufacturing technol-

ogy can produce A.M. with complex shapes and sizes ranging from meter to nanometer level. Since

introduced in the late 1980s, additive manufacturing technology has came up with different processing

methods [32]. They include, among others, StereoLithography Apparatus (SLA) [33], Fused Deposition

Modeling (FDM) [34], Selective Laser Sintering (SLS) [35], Selective Laser Melting (SLM) [36], Lami-

nated Objective Manufacturing (LOM) [37], Three Dimensional Printing (3DP) [38], and Laser Metal

Deposition (LDM) [39]. It should be noted that different additive manufacturing technologies have differ-

ent characteristics due to their distinct forming methods and thus there are significant differences in the

formed materials, including size, resolution, and surface quality. It is necessary to choose an appropriate
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1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

technology based on the requirement of the desired material.

Recent progress in architectured materials

In the past years, remarkable advancements in additive manufacturing [40] have catalyzed an accel-

erated growth of architectured materials. These materials possess special physical properties not found

in natural materials [41]. Since 2014, there have been exciting new studies in the field that significantly

expanded available mechanical property spaces as well as introduced new properties not available before.

They will be introduced as follows.

Figure 1.2 shows some of the examples of the recent developments: Zheng et al. [42] reported an

ultralight and ultra-stiff (a substantial load bearing capability has been observed) materials with the

minimum density of 0.87kg/m3, it is realized based on the rational design of architecture followed by

high-resolution 3D printing (Figure 1.2a). In the same year, Meza et al. [43] reported 3D ceramic lattices

with the same architecture. It performs high stiffness and, moreover, despite the fragility of ceramic,

which tends to undergo plastic deformation or fracture under large deformation, the reported material

could recover its original architecture shape after large deformation. The recent study by Berger et al. [31]

achieved a geometry design (Figure 1.2b) that can realize a theoretical upper bound of isotropic elastic

stiffness and the theoretical limit of Hashin-Shtrikman upper bounds. And it doesn’t end there, there are

many studies in the literature that expanded available material property spaces [44, 45].

(a) Octet-truss unit cells packed into a cubic microlattice [42]

(b) A 3D printed model of the foam’s cellular structure with
isotropic elastic stiffness and theoretical limit

Figure 1.2: Recent development on architectured materials

Beyond expanding available property spaces, there have also been works tending to generate new

properties or behaviours. In particular, there have been active studies that harness mechanical instability

for specific behaviours. This topic is addressed in the Ph.D. thesis of Rachel Azulay [46] under the su-

pervisor of Justin Dirrenberger. They proposed a method based on group theory to predict the possible
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patterns of a stack of architectured materials following a bifurcation. Besides, Shan et al. [47] and Frenzel

et al. [48] reported architectured materials (Figure 1.3a) with reusable energy absorption by harnessing

mechanical instability. Beyond quasi-static loading conditions, there were also studies reporting archi-

tectured materials for dynamic loading such as elastic wave propagation. Shan et al. [49] reported an

architectured material (Figure 1.3b) with tunable vibration propagation and absorption by triggering

different mechanical instability-induced patter formation; Matlack et al. [50] reported an architectured

material (Figure 1.3c) with low-frequency broadband vibration absorption. Raney et al. [51] reported

stable propagation of mechanical signals in soft media (Figure 1.3d) by storing elastic strain energy using

mechanical instability.

(a) An architectured material
with reversible energy absorption

(b) A material with tun-
able control of elastic wave
propagation

(c) Unit cell with support lattice material (white) and embed-
ded steel resonators (blue)

(d) A 1D series of bistable elements connected by soft coupling
elements for stable propagation of mechanical signals in soft
media using stored elastic energy.

Figure 1.3: Four architectured materials in the literature that harness mechanical instability for specific
behaviours.

Moreover, there have been also studies that reported architectured materials with unusual or exotic

properties such as negative Poisson’s ratio materials [52], negative bulk modulus materials [53], pentamode

materials [54]. These examples demonstrate the cases where architectured materials exhibit properties

that are different from their constituents, which gives us intriguing new opportunities for the design of

materials and structure. However, the previously listed exotic properties concern mainly the isotropic

part. Indeed, what makes architectured materials truly intriguing is that their unusual mechanical prop-

erties stem not from the properties of their individual components, but rather from the intricate geometry

of their unit cell. Since the internal geometry is added as a new variable, it is natural to think about the
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1.2. ANISOTROPIC LINEAR ELASTICITY OF A.M.

resulting anisotropy properties. Some non-standard anisotropic linear elasticities have also been observed

by researchers. We introduce as follows two of them.

In 2D, the early paper of Vannucci [9] has shown the existence of a particular type of planar or-

thotropic material, the number of independent elastic constants for this kind of material is three (as for

the case of tetragonal symmetry) instead of four for a general orthotropic layer, meaning that it cannot be

revealed only by using symmetry conditions. Indeed, this kind of material has been obtained by using the

polar formalism, introduced in 1982 by Verchery [55], in which an extra condition is added compared to

a standard orthotropic material. This kind of material is named for the sake of brevity as R0-orthotropy.

The reasons that make R0-orthotropic laminate rather interesting for application are well-discussed in [9],

and it comes up with a method to obtain R0-orthotropic composite laminate. Besides, for the 3D case,

Rychlewsky [8] and He [10] have shown that anisotropic (orthotropic or transversely isotropic) materials

could have their Young or shear or area modulus isotropic. However, the related architectured mate-

rial designs for these cases have never been proposed. Moreover, similar studies on the non-standard

anisotropic properties have not received much attention.

With the current advancement in A.M. technology, we now have the opportunity to revisit this topic

and conduct further research focusing on the following two aspects:

• to explore the whole range of elastic materials and identify the non-standard anisotropic elastic

materials;

• to propose a complete design methodology adapted to architectured materials.

This research is part of the MAX-OASIS (Matériaux Architecturée eXotique, Ondes, AniSotropie,

InStabilités) project funded by ANR (AAP2019). The reason for us to be interested in the aforementioned

aspects is to provide a unified perspective on architectured materials with respect to their anisotropic

mechanical properties and, above all, the cases scattered here and there in the literature can be shown

to be the special ones of what is obtained through the application of these theoretical investigations.

1.2 Anisotropic linear elasticity of A.M.

Anisotropy characterizes the way a physical property varies with respect to material directions. Lin-

ear properties, such as elasticity or conductivity, are encoded using constitutive tensors. Depending on

their order, these tensors can model different types of anisotropies ranging from complete anisotropy

to isotropy. These different possibilities are called symmetry classes. Different definitions of symmetry

classes can be found in the literature [5, 56, 57], and for my thesis, I will adopt the definition proposed by

Forte and Vianello [5], which will be detailed in chapter 2. For linear elasticity, a definite classification was

obtained in the same reference as well as in [57] that the space of 3D elasticity tensors is partitioned into

8 symmetry classes. These results are deduced by using group theory. Based on it, Olive et al. [58, 59]

have developed a tool, called clips operation, to determine the symmetry classes of the direct sum of

two spaces. Combined with the harmonic decomposition, clips operations allow the computation of the

symmetry classes of the elasticity tensor space.

Another question now is how to identify the symmetry class of a given constitutive tensor. For the

case of linear elasticity, in addition to experimental and numerical approaches, the literature is abundant

in theoretical investigations that focus on developing coordinates-free criteria for characterizing the sym-

metry class of a given elasticity tensor. The most elementary approach is based on the matrix of tensor’s
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components with respect to a given basis of R6. Some authors have used the Kelvin representation of the

elasticity tensor to achieve this goal [60, 61, 62], which consists in formulating necessary and sufficient

conditions involving multiplicity of the 6 eigenvalues of the Kelvin representation and of the eigenvalues

of its eigentensors (second-order tensors).

Besides, there are alternative treatments in the literature relying on geometrical approaches to provide

a visual intuition on this algebraic problem. For 2D case, the polar method is introduced by Verchery [55]

as early as 1982 to treat anisotropic plan problems, it is a frame-independent approach, for which one can

explicit the symmetry conditions by polar invariant [63]. It is rewritten by Desmorat [64] in a tensorial

form by tensorial polar decomposition: a 2D elasticity tensor can be expressed thanks to two scalars

and to two symmetric second-order deviatoric tensors, through which symmetry classes can be explicitly

appeared. However, as mentioned before, this method is limited to R2. As for R3, François [65] has

proposed a pole figure-based approach, the method of which consists in considering a function over a

unit sphere, constructed from the tensor representation, the zeros of which indicate the normal vectors

to physical symmetry planes. Huang et al. [66] extended this method into a 6-th order tensor based on

the fact that to every symmetry class, a set of symmetry planes can be associated. This association is

nevertheless not one-to-one. Remarkable efforts have gone into harmonic decomposition of the elasticity

tensor followed by the initial work of Backus [67]. This approach allows to extract partial information

about the symmetry class of an elasticity tensor from its harmonic components. To this end, Maxwell [68]

has proposed a graphical approach, which is to treat a harmonic tensor of order n as a n-tuple vector,

the Maxwell multipoles. Backus [67] has used these multipoles to detect different symmetry classes of

elasticity tensors. This approach is also used in [69, 70, 71].

More recently, based on the harmonic decomposition, the question of classification of elasticity tensor

is reconsidered in the general framework of Real Algebraic Geometry [72, 73]. For the 2D case, the

computation is quite simple and already done by Vianello [74] (see also [75]) for the full 2D elasticity

tensor. As for 3D, in [76], the authors have used a generating set of the invariant algebra of fourth-

order harmonic tensors proposed in [77] to characterize the symmetry classes of this tensor. However,

this approach becomes increasingly complicated with respect to full 3D elasticity tensor, and to the best

of the author’s knowledge, the determination of its symmetry classes using this approach has not been

documented in the literature. Under this context, the recent work of Olive et al. [78] has proposed an

alternative approach to solve this classification problem via polynomial covariants instead of invariants,

and in this way, the symmetry classes of an elasticity tensor are characterized by polynomial equations

involving its covariants. Moreover, in [79], authors proposed an effective geometrical approach to recover

the normal form of a given elasticity tensor by using its covariants, and based on it, determining its

symmetry class. The aforementioned approaches are summarised in Figure 1.4.

Identification of tensorial symmetries

Eigenvalues of the tensors

Polynomial invariants

Polynomial covariantsNormal form of the tensors

Pole figure basedMaxwell multipoles

Harmonic decomposition

Figure 1.4: Approaches listed in the literature to identify the 3D tensorial symmetries

14



1.3. TOPOLOGY OPTIMISATION OF MULTI-SCALE STRUCTURE

Despite the well-developed approaches in the literature to identify the symmetry classes of elasticity

tensor, the intermediate possibilities (non-standard anisotropic properties such as R0-orthotropy) beyond

the symmetry classes have never been clearly identified. Indeed, the clips operation allows to describe the

linear material space in a very fine way and to detect materials with non-standard anisotropic properties.

The objective of my Ph.D. is to first establish the whole range of symmetry possibilities both in R2 and

R3, and then to identify them by polynomial equations involving invariants or covariants of the elasticity

tensor.

The mesostructure of materials with non-standard anisotropic linear elasticity is obtained using an op-

timization problem and the proposed polynomial conditions can be efficiently integrated into this problem

as the cost function. The cost function is expressed in terms of the effective elasticity tensor computed

using the homogenization approach [80, 81]. Moreover, the formulation of such optimization problem is

not limited to classical elasticity, it can be extended to other constitutive laws.

1.3 Topology optimisation of multi-scale structure

Topology optimization involves optimizing the material distribution within a discretized design do-

main to generate a specific structural layout that maximizes performance while meeting relevant design

specifications. This notion was originally introduced by Bensdoe and Kikuchi [82]. However, due to the

manufacturing difficulties of multi-scale materials, it is generally used in mono-scale structure optimisa-

tion [83, 84, 85] (Figure 1.5a). Over the past few years, along with advances in AM technology, there has

been a renewed enthusiasm in the optimal design of multi-scale structures (Figure 1.5b). The mono-scale

modeling used to mono-scale structure optimisation can also be used to design multi-scale structures by

using finer meshes of the design domain. And it is referred to as full-scale approaches1. However, it re-

quires an enormous augmentation in computational cost. The proposed multi-scale modeling is beneficial

for computational efficiency by using a homogenisation approach [82]. Here, the theory of homogenisation

is proposed to bridge the scale between the microscopic geometries and their effective properties on the

macro-scale. The multi-scale modeling based on homogenisation approach will be used in this thesis for

the design of periodic architectured materials.

(a) (b)

Figure 1.5: Two different optimisation modellings (a) Mono-scale modelling [1] and (b) Multi-scale mod-
elling [2]

Given the rapid development of topology optimisation of multi-scale structures over the last three

decades, a variety of optimisation methods have been proposed, among which the density-based method [84,

85], the level set method [86, 87] and the topological derivative [88] are the most representatives.

1Topology optimisation approaches are classified into mono-scale (or full-scale) and multi-scale approaches, according to
whether or not the separation of length scales is assumed in the modeling.
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Density-based method

The density-based method performs a continuous optimisation strategy instead of the original 0-

1 discrete optimisation problem. For this method, the previously proposed homogenisation approach

will not be used since it is difficult to implement for mathematical complications. Subsequently, an

alternative method named solid isotropic material with penalisation (SIMP) was proposed [89]. This

approach represents the material distribution within a design domain using a scalar field, where each

element in the discretized domain is assigned a relative density value (ρ = 1 means solid and ρ = 0 means

empty). Each element is considered as isotropic and homogeneous. Material property (i.e. Young’s

modulus) is obtained by a power law, in which a penalisation parameter p (exponent of the power law)

is involved:

E(ρi) = ρpiE0

The choice of the penalisation parameter depends strongly on the physical problem being solved [90].

It should be noted that this factor effect only works in the presence of a volume constraint. The SIMP

approach is easy to implement and has been embedded in commercial software [91, 92].

Level set method

The level set method defines the boundary of the design by the zero level smooth contour of the level

set function, the distribution of the material in the design domain depends on the level set value: ρ = 1

if the level set function takes the positive value and ρ = 0 if inversely [87, 93].

Most often the level set function is updated during the optimisation process via the use of the

Hamilton-Jacobi equation, which is composed of two parts:

• the design evolution (shape sensitivity) in the optimisation process.

• the speed function, scaled by the spatial gradient of the level set function, used to control the design

evolution speed [94]. The speed function is developed by introducing new models or methods,

following the work in [95, 96].

Nevertheless, it is important to acknowledge that this level-set method has certain limitations. One

notable drawback is their constraint on geometry evolution, as they can only modify existing boundaries

and are unable to generate new voids within a solid material, this method primarily facilitates shape

evolution rather than significant changes in topology. Figure 1.6 illustrate the difference between shape

optimisation and topology optimisation.

Figure 1.6: Comparison of shape optimisation and topology optimisation [3]

To nucleate new holes, the original form of the Hamilton-Jacobi equation has been augmented by

adding new terms [96, 97]. Although updating the level set function through the solution of the Hamilton-

Jacobi equation has demonstrated significant potential, the numerous formulations of the Hamilton-Jacobi
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equations and the intricacies involved in constructing the speed function introduce additional complexity

to the process. To solve this, another level set method (independent of the Hamilton-Jacobi equation)

that allows for the nucleation of new holes will be discussed later.

Topological derivative method

The use of topological derivatives in topology optimisation was initiated by Eschenauer et al. [98].

The main idea is to predict the influence of introducing an infinitesimal hole at any point in the design

domain. This influence is measured by topological gradient [88, 99]. One interesting branching of this

method is that it connects the sensitivity of the macroscopic effective properties (obtained in the context

of homogenisation) response with changes in the underlying microstructure. And in this way, gives an

optimisation direction to get an optimal design. The main drawback of this procedure is its inability to

add matter in some places where it has been removed ’by mistake’ at the previous iteration [1].

Lately, hybrid approaches have appeared, such as the topological derivative combined with a level-set

domain representation [2]. Unlike the conventional level-set methods relying on the use of the Hamilton-

Jacobi equation, which is highly dependent on the initial guess, the proposed topological derivative allows

all kinds of topology changes. It is already applied to the synthesis of elastic micro-structures [2, 100],

with macroscopic properties estimated by the multi-scale framework and periodic homogenisation.

To be more specific, the topological sensitivity relies on an exact formula, it has been proposed in [101],

considering concepts of topological asymptotic analysis and topological derivative. Therefore, the key ad-

vantage of this method is that the sensitivities are obtained in an exact form, enabling the utilization of

simpler optimization algorithms. This eliminates the need for artificial algorithmic parameters, leading

to a more straightforward and robust optimization process. This method will be used in my thesis to

realise the design of multi-scale architectured materials, more details can be found in chapter 5.
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This chapter is essentially based on publications [75, 102, 103, 104]. These are works starting from

the 1980s, G. Verchery [55], M. Vianello [74], and others built fundamental knowledge on the study of

linear elastic tensors space. During the thesis of N. Auffray [105], these notions have been recapped to

explore the anisotropic linear properties of cellular materials. It is extended later during his collaboration

with mathematicians B. Kolev [76, 106] and M. Olive [58, 59]. This chapter will present their results and

provide some valuable mathematical tools for exploring the geometry of linear elastic tensors space.
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2.1. LINEAR ELASTIC CONSTITUTIVE LAW

2.1 Linear elastic constitutive law

To begin this chapter, we will consider the Euclidean affine space of dimension d (d = 2, 3) as a model

of the physical space Ed. In this model, the body is considered as a closed domain Ω embedded in Ed

(Figure 2.1) and having attached to each of its points P ∈ Ω a microstructure. This microstructure can

be a crystalline network, the organization of polymer chains, the weaving of textiles, etc., depending on

the nature of the material being studied [107].

Let O be a fixed origin, and each point P is associated by a unique vector xP = OP in vector space Vd.
Consider B =

{
e1, e2, · · · ed

}
be an orthonormal basis of Vd and R = (O,B) the associated coordinate

system, we have:

xP = x1e1 + x2e2 + · · ·+ xded.

with (x1, x2, · · ·xd)B the corresponding coordinates.

Figure 2.1: Representation of the domain Ω in a given reference frame(d = 2)

In the present work, we will assume the hypothesis of infinitesimal strain theory. The stress tensor

σ
∼
∈ S2(Rd), represents the stress state at each point P, with S2(Rd) the vector space of real symmetric

tensors of order 2 in dimension d. The infinitesimal strain tensor has the following definition:

ε
∼
=

1

2
(u⊗ ▽+ ▽⊗ u),

in which u is the displacement vector at a point of Ω. In components with respect to B, it has the

following expression:

εij =
1

2
(ui,j + uj,i),

in which ”, i” denote the partial derivation with respect to xi.

It remains now to describe the relationship between the stress σ
∼
and the strain ε

∼
at any point of the

solid. Such a relationship is given by a constitutive law. For linear elasticity, the elasticity tensor C
≈

is

introduced to construct a linear relation between σ
∼
and ε

∼
[108]:

σ
∼
= C

≈
: ε
∼
, σij = Cijklεkl, (2.1)

in which C
≈

provides the elastic coefficients of the material located at P.

The elasticity tensor C
≈

is a linear application of the space S2(Rd) to itself, i.e. C
≈

∈ L(S2(Rd)).
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2.2. SO(d) AND O(d) LINEAR REPRESENTATION ON Ela(d)

Consequently, C
≈

is a fourth-order tensor with minor index symmetries:

Cijkl = Cjikl = Cijlk,

which will be denoted as C(ij)(kl). We also have the major symmetry when we consider the potential

energy associated with the elastic behaviour:

Cijkl = Cklij ,

which is denoted as Cij kl. The index symmetries of C
≈

are thus summarised by C(ij) (kl). The space of

tensors with such index symmetries will be denoted by Ela(d) :

Ela(d) := {C
≈
∈ ⊗4Rd | C(ij) (kl)},

where d is the dimension of the physical space. To make reading easier, Ela(d) and Vd will be abbreviated
respectively to Ela and V in this chapter, as there is no ambiguity concerning the dimension.

To be physically admissible, all elasticity tensors should have their inversions. We will denote by Ela∗

to represent the space consisting of elasticity tensors possessing their inversions. Compared to Ela, the
elasticity tensors with zero determinant are eliminated in Ela∗. Besides, an elasticity tensor, considered

as a quadratic form on S2(Rd), should be positive definite, meaning that its eigenvalues λi should verify

∃ M ∈ R∗+, 0 < λi ≤M.

Let us denote by Ela+ the set of elasticity tensors that satisfy this requirement. We have the following

property

∀C
≈
∈ Ela+, ∃!S

≈
∈ Ela+, S

≈
.. C
≈
= C

≈
.. S
≈
= I

≈
,

with I
≈

= 1
∼

⊗ 1
∼

the identity of S2(R2), and 1
∼

the identity of R2. Such an element is known as the

compliance tensor and allows inverting the constitutive law

σ
∼
= C

≈
.. ε
∼

⇔ ε
∼
= S

≈
.. σ
∼
.

In the following the notation S
≈
= C

≈
−1 and C

≈
= S

≈
−1 will be used.

We may consider the application, φ : Ω 7→ Ela, which associates to any point P ∈ Ω an elasticity

tensor C
≈
(xP) (Figure 2.1). Thus, we have:

xP
φ7−→ φ(xP) = C

≈
(xP).

In the case of homogeneous materials or structures, the dependence on solid point disappears and for

∀P ∈ Ω, φ(xP) = C
≈
. When it comes to mesostructure optimisation, its anisotropy properties will be a

crucial issue. The following sections aim to describe how elasticity tensors are transformed when sub-

jected to an orthogonal transformation (i.e. linear isometry). Based on it, we can identify the anisotropic

class to which the given elasticity tensor belongs.

2.2 SO(d) and O(d) linear representation on Ela(d)

The linear elastic anisotropy of a material is related to the invariance properties of its elasticity tensor

with respect to linear isometries (under the transformations of rotation, reflection, and their combination).
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2.2. SO(d) AND O(d) LINEAR REPRESENTATION ON Ela(d)

Group

Before studying how tensors transform, we will investigate, in a first step, the notion of transforma-

tions. Transformations of a material verify a few properties: firstly, carrying out two transformations

one after the other is always equivalent to carrying out a single third transformation. Additionally,

each transformation has an inverse that reverses it thanks to an identity transformation. These kinds of

transformation sets are referred to as group.

2.2.1 Definition (Group)

A group is a set G together with a multiplication on G which satisfies four axioms [109]:

1. (Closed) Multiplication of any ordered pair g,h of elements from the set G imply a unique

”product” g · h which also lies in the set G.

2. (Associative) g · (h · k) = (g · h) · k for any three (not necessarily distinct) elements from G.

3. (Existence of an identity element) there is an element e ∈ G, called an identity element, such

that g · e = e · g = g for ∀g ∈ G.

4. (Existence of an inverse) each element g ∈ G has a (so called) inverse g−1 which belongs to the

set G and satisfies g−1 · g = e = g · g−1.

When we talk about linear isometries, apart from the previous four axioms, they also exhibit another

property: conservation of the scalar product. To exploit the mathematical interpretation of this conser-

vation, we take vectors in the space Rd as an example, in which case, the conservation is shown as follows.

Example 1

Let u, v be two vectors in space Vd, let ⟨u, v⟩ their scalar product, and G the group of linear isometries,

for ∀g ∈ G, the conservation of scalar product gives us:

⟨u∗, v∗⟩ = ⟨g · u,g · v⟩ =
〈
u, (gT · g)v

〉
= ⟨u, v⟩

Since gT · g = In with In the identity tensor of order n, we have :

gT = g−1 (2.2)

The transformation which satisfies the Equation 2.2 is called an orthogonal transformation. Although

the example is given for vectors, it is also valid for n-th order tensors in Rd.

The set of orthogonal transformations is the orthogonal group, denoted by O(d). It is the group of all

linear isometries of Rd, defined by :

O(d) :=
{
g ∈ GL(d) | gT = g−1

}
. (2.3)

with GL(d) the group of invertible linear transformations of Rd, i.e.g ∈ GL(d) iff det(g) ̸= 0.

Remark. Let g ∈ O(d), the determinant

det(g · gT ) = det(g)× det(gT ) = (det(g))2 = 1.
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2.2. SO(d) AND O(d) LINEAR REPRESENTATION ON Ela(d)

We can conclude that the elements of the group O(d) can be classified into 2 categories according to

the value of the determinants of g:

• det(g) = 1: they are rotations or products of an even number of reflections. We notice that if

det(g1) = 1 and det(g2) = 1 then det(g1g2) = 1, so the rotations form a subgroup of O(d), it is

denoted by SO(d),

• det(g) = −1: these are transformations with an odd number of reflections among them. Note that

these elements do not form a subgroup of O(d) because either det(g1) = −1 or det(g2) = −1, but

det(g1g2) = 1.

Group representation

We have defined the groups O(d) and SO(d) and now we are ready to look how a linear group acts

on an elasticity tensor. Such an action is described by the mathematical theory of group representation,

which is essentially a way to represent the action of the elements of a group on a vector space.

2.2.2 Definition (Group representation)

Let G be any group and V a vector space. A representation of G on V is a morphism from G into

GL(V):

ρ : G → GL(V)

For each element g1,g2 ∈ G, we have ρ (g1g2) = ρ (g1) ρ (g2) and for the identity element e ∈ G, we

have ρ (e) = IV, with IV the identity tensor on V. The group representation is denoted by (ρ,V,G), when

there is no ambiguity about G, we simply note (ρ,V).

Two representations (ρ1,V1) and (ρ2,V2) of G are said to be equivalent if there exists an isomorphism

φ such that:

∀v1 ∈ V1,∀g ∈ G φ(g · v1) = g · φ(v1)

meaning that the following diagram is commutative:

Consider now the case V = Tn(R(d)), with Tn(R(d)) a n-th order tensorial vector space in R(d), it
will be abbreviated to Tn in later contents. The image of T ∈ Tn by g ∈ G is given by ρ(g)(T). Its

expression in components reads:

(ρ(g)(T))i1i2···in = gi1j1gi2j2 · · · ginjnTj1j2···jn ,

To simplify the reading, ⋆ is used to represent the group action g on the space Tn and is expressed in an

orthonormal basis by:

(g ⋆ T)i1i2···in = gi1j1gi2j2 · · · ginjnTj1j2···jn .

For the case of Tn = Ela and G = O(d), the notion of representation is used to describe the transfor-
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2.3. HARMONIC DECOMPOSITION

mation of an elasticity tensor. For any g ∈ O(d) and C
≈
∈ Ela, we have:

C
≈
= g ⋆ C

≈
. (2.4)

In components, with respect to B, this action is as follows:

Cijkl = gimgjngkpglqCmnpq. (2.5)

2.3 Harmonic decomposition

As isometric transformations of elasticity tensors are described by O(d) representation on Ela, in

order to know the anisotropic elastic properties of a given material, it remains now to determine the

anisotropic class of a given elasticity tensor. However, since it is a fourth-order tensor, the order of

associated transform reaches to 8 (as illustrated in Equation 2.5, gimgjngkpglq is of order 8), and their

different parts transform differently: some components are left fixed while others transform at different

speeds. To understand these different mechanisms of transformation, we will have to decompose the

corresponding space into a direct sum of irreducible elementary spaces under the action of the group

O(d).

Stability and irreducibility

We first introduce some essential notions for the decomposition of V into irreducible spaces Vi.

2.3.1 Definition (Stability and irreducibility)

A space V is said to be G-stable if:

∀v ∈ V,∀g ∈ G , g ⋆ v ∈ V

The linear representation (ρ,V) is irreducible if {0} and V are the only stable subspaces of V.

Due to Peter-Weyl’s theorem [110], it is known that any finite-dimensional representation V of a group

G can be decomposed as a direct sum of irreducible finite-dimensional representations:

V ≃ Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkn

Such a decomposition is said to be G-irreducible. For each ki, (ρki ,Vki) is an irreducible representation

of G, and ≃ denotes an G-equivariant isomorphism.

We also consider the isotypic decomposition in which equivalent factors are grouped :

V ≃ α1Vk1 ⊕ α2Vk2 ⊕ · · · ⊕ αnVkn , αiVki :=
αi

⊕
l=1

Vki

The integer αi indicates the multiplicity of Vki into the decomposition. The advantage of such irreducible

decomposition is that it allows us to study a complicated object as a collection of simple ones.
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2.4. DEFINITION OF ELASTIC MATERIALS

Harmonic structure

When applied to orthogonal group O(d) (d ∈ {2, 3}), the isotypic decomposition is often referred to

as the harmonic decomposition [67]. We denote Hn(Rd), the space of harmonic tensors. The notion of

harmonic tensors was introduced by G. Backus in [67].

2.3.2 Definition (Harmonic tensors)

A tensor H ∈ Hn(Rd) is called a harmonic tensor if it satisfies the following properties:

• Tensor of order n;

• Total symmetry with respect to index permutation;

• trH = 0 in which trH represents the contraction of any two indices i, j.

Any tensor space Tn can be decomposed into a finite number of harmonic spaces under the group

O(d) [106], we have:

Tn ≃
q
⊕
i=1

Hki
(
Rd
)

with ki < +∞ and ≃ represents a O(d)-equivariant isomorphism. As mentioned for irreducible decom-

positions, we can group together harmonic spaces of the same order :

Tn ≃
m
⊕
i=1

αiHki
(
Rd
)
, αiHki

(
Rd
)
=

αi

⊕
l=1

Hki
(
Rd
)

(2.6)

the integer αi indicates the multiplicity of Hki
(
Rd
)
, such isotypic decomposition is called the harmonic

structure. It is uniquely determined by index symmetries of Tn. As for its explicit decomposition, it is

unique only if for ∀i, αi = {0, 1}, otherwise there are infinitely many isomorphisms.

It should be noted that the partition of a tensor space with respect to its anisotropic properties does

not require the computation of an explicit harmonic decomposition, only the knowledge of the harmonic

structure is required. The determination of the harmonic structure in the cases Ela(2) and Ela(3) will be
discussed in chapter 3 and chapter 6.

2.4 Definition of elastic materials

When subjected to an isometry, the nature of an elastic material does not change. That is to say that

the transformations of a material in space, through actions g ∈ O(d) on an elasticity tensor, will lead to

a set of tensors that describe the same elastic material. The constitutive law of an elastic material is thus

not characterized by a single elasticity tensor but by the collection of all the elasticity tensors related by

orthogonal transformations. It results that, generically, multiple elasticity tensors are associated to the

same elastic material.

An important point to avoid any misunderstanding is the following. In most parts of this document,

we are considering the active interpretation of a transformation. This means that, with respect to a

fixed reference, the transformation of an object gives rise to a new object which is usually different

from the original object. This interpretation has to be distinguished from the passive interpretation in

which the object is unchanged but the basis used for its description is transformed. The difference is

illustrated Figure 2.2
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2.4. DEFINITION OF ELASTIC MATERIALS

Figure 2.2: Active transformation on the left figure: a new vector is obtained; Passive transformation on
the right figure, in which only the basis is changed.

To speak intrinsically of an elastic material, it is necessary to remove information attached to a partic-

ular elasticity tensor. What follows will define the set of all elasticity tensors describing the same elastic

material.

Two stiffness tensors C
≈
,C
≈
∈ Ela are said to be equivalent, and denoted C

≈
∼ C

≈
, when they are related

by an orthogonal transformation, namely

C
≈
∼ C

≈
⇔ ∃g ∈ O(d) | C

≈
= g ⋆ C

≈
.

In such case, C
≈
and C

≈
describe the same elastic material. The collection of all elasticity tensors describing

the same elastic material is a geometric object called the orbit of C
≈

and is defined as follows:

2.4.1 Definition (G-orbit of C
≈
)

Let, C
≈
∈ Ela, the G-orbit of C

≈
is the set

Orb(C
≈
,G) =

{
C
≈
∈ Ela | C

≈
= g ⋆ C

≈
,g ∈ G

}

From a mathematical point of view, an elastic material is defined as the G-orbit1 of C
≈

as showed

in Figure 2.3.

Figure 2.3: G-Orbit of C
≈
: equivalent tensors related by orthogonal transformations

The set of Orb(C
≈
,G) in Ela forms an orbit space denoted by Ela/O(d). More mathematical inter-

pretations of orbit space can be found in [76]. In geometric terms, each point in this space represents

an elastic material. As observed by M. Olive in [103], an orbit space has a complicated structure, since,

according to the symmetry class of the elasticity tensor, the orbits can be of various types.

1G = O(2) for bidimensional physical space and G = SO(3) for 3D space
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A natural question is therefore how to distinguish points in Ela/O(d) with respect to their anisotropy

types and to realize the partition of Ela. We will introduce in later chapters the different anisotropy types

for Ela(2) and Ela(3).

2.5 Invariants and integrity basis

The previous questions can be formulated in a more understandable way as asked by Boehler et al.

in [77]: consider the measurements of the same anisotropic elastic materials in two different labs, and

suppose that there is no way to choose, a priori, a specific orientation of the material. These two mea-

surements will result in two different elasticity tensors. How can one decide whether the two tensors

describe, or not, the same material? To answer this question, we need to define O(d)-invariant functions

on Ela which are independent of a specific elasticity tensor.

2.5.1 Definition (Invariant function [77])

A function F is G-invariant on V if:

F(g ⋆ v) = F(v),∀g ∈ G,∀v ∈ V

Since O(d)-invariant functions are constant on each orbit and take different values on different orbits,

they allow to separate the orbits of Ela.

2.5.2 Definition (Separating set [111])

A finite set S := {κ1, . . . , κr} of G-invariant functions is a separating set of Ela/O(d) if for any C
≈
,C
≈

in Ela
Orb(C

≈
) = Orb(C

≈
) ⇐⇒ κi(C≈

) = κi(C≈
), i = 1, . . . , r.

A separating set S is said to be minimal if any strict subset S ′ of S is no longer a separating set.

Such a set of invariant functions is described in the literature under the generic name of functional

basis [103]. However, there is no known algorithm to obtain them. This is the reason why we have chosen

to focus on polynomial invariants and the integrity basis, for which computations are possible.

Let consider the representation (ρ,Ela,O(d)), the action is denoted by Equation 2.4, this action

extends to the algebra R[Ela] of polynomial functions defined on Ela with p ∈ R[Ela] by:

p : Ela → R
C
≈

7→ p(C
≈
).

2.5.3 Definition (Polynomial function [77])

Let V be a vector space and B a basis, a polynomial function p on V is a function that depends

polynomially on the coordinates of v ∈ V in B

A polynomial function in C
≈
is a polynomial in the components of C

≈
expressed with respect to a given

basis. We then introduce the polynomial invariants:
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2.5.4 Definition (Polynomial invariant [77])

Let (ρ,V) be a finite-dimensional representation of G, a polynomial function p on V is a polynomial

G-invariant if

p(g ⋆ v) = p(v),∀g ∈ G,∀v ∈ V

We can further consider the algebra R[Ela]O(d) of O(d)-invariant polynomials:

R[Ela]O(d) :=
{
p ∈ R[Ela], p(g ⋆ C

≈
) = p(C

≈
), ∀g ∈ O(d), ∀C

≈
∈ Ela

}
.

A route to compute polynomial invariants of a vector space V is to first decompose this space into

G-irreducible ones [104]. This step is performed based on the harmonic decomposition introduced in sec-

tion 2.3.

As a consequence of Hilbert’s finiteness theorem [112], such polynomial invariants are finitely gener-

ated. The generating property means that any O(d)-invariant polynomial J ∈ R[Ela]O(d) is a polynomial

function in I1, . . . , IN :

J(C
≈
) = p(I1(C≈

), . . . , IN (C
≈
)), C

≈
∈ Ela,

where p is a polynomial in N variables. Any finite generating set {I1, . . . , IN} of R[Ela]O(d) is called an

integrity basis [74] and denoted by IB(Ela,O(d)).

2.5.5 Definition (Integrity basis)

A finite set {I1, . . . , IN} of invariant polynomials on V is called an integrity basis if every invariant

polynomial on V can be written as a polynomial in I1, . . . , IN .

An integrity basis is minimal if no proper subset of it is an integrity basis. Knowing an integrity basis

is interesting for applications since their elements:

• Generate the algebra ofO(d)-invariant polynomials: any O(d)-polynomial function can be written as

a polynomial in the elements of the integrity basis, which is finitely generated, i.e. ♯IB(Ela,O(d)) <

+ ∝;

• Separate the orbits: the invariants of the integrity basis take the same value if evaluated on two

sets of constitutive tensors that just differ up to an isometry, and take different values if not:

IB(Ela,O(2))(C1
≈
) = IB(Ela,O(2))(C2

≈
) ⇔ C1

≈
∈ Orb(C2

≈
)

The ability to express O(d)-invariant polynomials is twofold in practice, apart from the orbit separa-

tion, it allows the classification of linear anisotropic elastic materials in the orbit space.

2.6 From symmetry group to symmetry class

The purpose of this section is to introduce the right language to speak about the symmetry properties

of the elasticity tensors. In the literature, there are at least five approaches for classifying the symmetry

of a n-th order tensor in Rd:

1. Spectral approach: It is an approach based on the eigenstructure of the matrix representation of a

given tensor [61], which will reveal its invariance properties. Since it involves the computation of

eigenvalues of tensors, this approach is also highly sensitive to the inherent noise of the data.
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2. Symmetry plane approach: It is a graphical approach extended from the pole figures approach

proposed by François [65], the method of which consists in considering a function over a unit

sphere, constructed from the tensor representation, the zeros of which indicate the normal vectors

to physical symmetry planes.

3. Maxwell’s multipoles approach: Another graphical approach originally proposed by Maxwell [68]

which is to construct a geometrical picture of a harmonic tensor: to decompose a harmonic tensor

of order n as a n-tuple vectors, and in this way to detect its different symmetry classes. In three

dimensions there is a very simple geometrical picture of elasticity tensors given in [69].

4. Covariant based approach: More recently, in [76, 78], the authors have used a generating set of

covariants to characterise the symmetry classes of a tensor.

2.6.1 Symmetry group

The tensors can remain invariant with respect to certain orthogonal transformations g ∈ O(d), and

the set of these symmetry transformations forms a point group, the symmetry group:

2.6.1 Definition (Symmetry group [5])

The symmetry group of v ∈ V is defined as the collection of all transformations g ∈ G such that

g ⋆ v = v:

Gv := {g ∈ G, | v = g ⋆ v}

Let consider the image C
≈

of C
≈

by an isometric transformation:

C
≈
= g ⋆ C

≈
, g ∈ O(d).

For some transformations, the resulting tensor may be identical to the original one. The set of such

transformations constitutes the symmetry group of C
≈
:

GC
≈
:= {g ∈ O(d) | C

≈
= g ⋆ C

≈
}.

In brief, the symmetry group of an elasticity tensor represents the set of transformations that keep the

tensor unchanged. However, when it comes to an orbit, the notion of symmetry group can not be used

to intrinsically define the anisotropy property of this orbit since the associated symmetry groups of its

elements are different.

Example 2
To be more specific, we will consider an example in 2D. The obtained symmetry group of an elasticity

tensor C
≈

depends on the orientation of the corresponding material in space:

with me2 the reflection across the line normal to e2 and r(θ) the rotation by an angle θ. It can be seen
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that these two groups are generated by different elements.

Even though these symmetry groups are different, they can be related by conjugacy.

2.6.2 Definition (Conjugacy)

Two subgroups H1 and H2 of G are conjugate if ∀h1 ∈ H1, ∃h2 ∈ H2 and ∃g ∈ G such as h2 = gh1g
−1.

Tensors on the same orbit have conjugate symmetry groups. It is possible to define a weaker equiv-

alence relationship than being on the same orbit, which consists only of having a conjugate symmetry

group. This weaker equivalence relation among elements of Ela is defined as follows:

C
≈
∼ C

≈
⇔ {∃g ∈ O(d) | GC

≈
= gGC

≈
g−1}. (2.7)

This relation indicates that two tensors are equivalent if their symmetry groups are conjugate.

2.6.2 Symmetry class

We define the conjugacy class as the set [H] of all subgroups of G conjugate to H:

2.6.3 Definition (Conjugacy class)

Let H be any subgroup of G, the set of subgroups conjugate to H constitute a conjugacy class [H]:

[H] := {gHg−1, | g ∈ G}

The conjugacy class of a symmetry subgroup GC
≈
of a tensor C

≈
is the symmetry class of the tensor C

≈
,

denoted [GC
≈
]. In other words, two tensors are equivalent if and only if their symmetry groups belong to

the same symmetry class.

Thus, the G-orbit space can be partitioned into different sets with respect to the symmetry classes of

their elements. From the knowledge of harmonic structures section 2.3, the set of symmetry classes of a

given tensor space can be obtained [58, 59, 106] . To do this, the results from the literature concerning

symmetry classes of irreducible spaces are combined via the clips operation defined by M. Olive during

his Ph.D. The use of this tool allows us to obtain very general results on the symmetry classes of a given

constitutive tensor.

2.6.3 Clips operation

As discussed in section 2.3, the whole vector space V can be decomposed into a direct sum of irre-

ducible Vi (i = 1, · · · , N). To obtain the symmetry classes of V, we must therefore compute the symmetry

classes of a direct sum V1 ⊕ · · · ⊕VN , knowing independently the symmetry classes of each space Vi. To
do so, we introduce in this section a general theory of clips [102].

Lemma 2.1. Let V be a vector space that decomposes into the direct sum of two G-equivariant subspaces:

V = V1 ⊕ V2, where g ⋆ V1 ⊂ V1 and g ⋆ V2 ⊂ V2, ∀g ∈ G

If I is the set of conjugacy classes of V, Ii those of Vi, then [H] ∈ I if and only if there exist [H1] ∈ I1

and [H2] ∈ I2 such that H = H1 ∩H2
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Lemma 2.1 shows us that the conjugacy classes of a direct sum are related to intersections of classes

of its subspaces. However, as the intersection of classes is meaningless, the result cannot be directly

extended. The clips operation solves this problem.

2.6.4 Definition (clips operation)

For each conjugacy class [H1] and [H2], we define the clip operator of [H1] and [H2], denoted by

[H1]⊚ [H2]:

[H1]⊚ [H2] :=
{[

H1 ∩ gH2g
−1
]
,∀g ∈ G

}
This definition immediately extends to two families (finite or infinite) F1 and F2 of conjugacy classes:

F1 ⊚ F2 :=
⋃

[H1]∈F1,[H2]∈F2

[H1]⊚ [H2]

This clips operation defines thus an operation on the set of conjugacy classes I which is associative and

commutative. We have moreover

[1]⊚ [H] = [1] and [G]⊚ [H] = [H]

for every conjugacy class [H], where 1 := {e} and e is the identity element of G.

The conjugacy classes of a direct sum of subspaces are obtained by the clips of their respective

conjugacy classes.

Lemma 2.2. [102] Let (ρ,V1) and (ρ,V2) be two linear representations of G. Then

I(V1 ⊕ V2) = I(V1)⊚ I(V2)

Using this lemma 2.2, we deduce a general algorithm to obtain the conjugacy classes I(V) of a finite

dimensional representation (ρ,V,G):

1. a decomposition of space V into irreducible subspaces;

2. the conjugacy classes I for each irreducible subspace;

3. clips operation [H1]⊚ [H2] between conjugacy classes of closed subgroups of G.

We will apply clips operation to the linear representation of O(2) and SO(3) in the following chapters.

Besides, this tool will be of crucial importance for the determination of exotic sets for elastic materials

in chapter 4 and chapter 7.

2.7 Symmetry stratum

In this section, we partition the space of Ela based on the idea that two tensors are in the same subset

if they have the same symmetry class [75].

As shown in Equation 2.7 the relation ∼ is an equivalence relation on Ela. An equivalence class for

this equivalence relation is called a stratum [113]. More specifically, in what follows Σ[H] will denote

the equivalent class of elasticity tensors having their symmetry group conjugate to H, with [H] the

corresponding symmetry class [76, 106]. In brief, Ela can be partitioned into different strata (results for

Ela(2) and Ela(3) is given respectively in chapter 3 and chapter 6).
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2.7.1 Definition (stratum)

The G-stratum Σ[H] denotes the set of tensors whose symmetry groups are conjugate to H

Σ[H] := {T ∈ Tn, | ∃g ∈ G,GT = gHg−1}

We distinguish two types of strata:

• Σ[H]: the open strata which is the strata of tensors whose symmetry class is exactly [H];

• Σ[H]: the closed strata which is the strata of tensors whose symmetry class is at least [H].

Remark. It can be noted that generally, an open stratum is not a vector space: for instance, the null

tensor which is isotropic does not belong to a stratum other than Σ[O(d)]. Hence, it prevents Σ[H] from

being a vector space, with H the subgroup of O(d). However, the situation for the closed strata is more

delicate.

An immediate and intuitive picture of the partition of Ela is illustrated in Figure 2.4 with access to

all associated notions: tensors, orbits, and partition of the tensor space. As shown in this figure, an

orbit composed of equivalent elasticity tensors is modeled by a circle, and in this case, we obtain another

illustration of the space of Ela in figure Figure 2.4(2).

Figure 2.4: Geometric description of linear elastic material space

We present an abstract on the geometric description of linear elastic material space: The orbit of C
≈

allows us to describe linear elastic materials independently of elasticity tensors. Given that two tensors
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lying on the same orbit belong to the same stratum (as showed in Figure 2.4 that there would not be

orbit occupying two sets at the same time), the partition of Ela into different strata naturally partition

the orbit space Ela/O(d) into different sets according to their symmetry classes.

Normal form

Among all the elements C
≈
∈ Ela/H, we define the normal form of Ela/H as the tensor C0

≈
, for which

the corresponding symmetry group is exactly H. Before giving an explicit definition of normal form, we

first define the notion of a fixed point set, denoted Fix.

2.7.2 Definition (Fix)

Let H be a subgroup of O(d) in Ela, the Fix of H is defined by [114]:

Fix(H) := {C
≈
∈ Ela, | ∀h ∈ H,h ⋆ C

≈
= C

≈
}

Previously, we used the notion of strata to represent all elasticity tensors possessing the same symmetry

class. The proposed notion Fix(H) is to define a collection of elasticity tensors possessing the same

symmetry group. Since independent of the conjugacy relation, it is used to define the normal form.

2.7.3 Definition (Normal form)

Let H be a subgroup of O(d), a normal form of a tensor C
≈
∈ Σ[H] is a tensor C0

≈
such that for certain

g ∈ O(d) (not necessarily unique):

C0
≈

= g ⋆ C
≈
∈ Fix(H)
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Chapter 3

Geometry of 2D linear elasticity tensors
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The geometric tools introduced in the previous chapter will be used in the particular case of Ela(2).
To simplify the notation, Ela(2) will be abbreviated by Ela in this part. The outline of this chapter is as

follows. After the introduction of the closed-subgroups of O(2) in section 3.1, the harmonic structure of

Ela will be determined in section 3.2 and section 3.3. Having this knowledge at hand, the O(2)-invariant

polynomials are obtained in section 3.5, which allows specifying sets of materials in the orbit space.

The section 3.6 introduces the symmetry classes of Ela and its partition into disjoint isotropy strata. The

transition between these strata is discussed in section 3.7.
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3.1 Group O(2) and its subgroups

The symmetry group of a material’s physical property encoded by a tensor T is defined as the set

of operations that leave this tensor invariant. In R2, these operations are represented by actions of the

orthogonal group g ∈ O(2). The symmetry group GT of T ∈ Tn is defined as:

GT := {g ∈ O(2), | T = g ⋆ T}

meaning that the physical symmetry group of T corresponds to a closed subgroup of O(2) [115].

3.1.1 Definition (Subgroup)

A subset H ⊂ G is a subgroup of (G, ·) if (H, ·) is itself a group.

To be more specific, let us now detail the nature of the subgroups of O(2). Such a collection is infinite

but can be reduced, up to conjugacy, to a finite set. The conjugacy class of a subgroup H of O(2) is

defined as

[H] := {gHgT ⊂ O(2), | g ∈ O(2)}

Furthermore, it is known that for a finite-dimensional vector space and for O(2), there is only a finite set

of symmetry classes. These symmetry classes are all conjugate to a closed subgroup of O(2).

3.1.1 Group O(2)

As we are working in R2, we will consider the group of linear isometries of R2. Let O(2) the set of

invertible transformations g of R2 satisfying g−1 = gT , i.e.

O(2) := {g ∈ GL(2),gT = g−1}

It is the set of vectorial isometries and is called the orthogonal group (Equation 2.3). This group is

generated by

• r(θ): the rotation by an angle θ;

• mn: the reflection across the line normal to n,

mn := 1
∼
− 2n⊗ n, ∥n∥ = 1,

with 1
∼
the second order identity tensor.

It can be seen that this group is non-commutative, but the generators satisfy the relation

mnr(θ) = r(−θ)mn

In terms of matrix under the orthonormal basis B = {e1, e2}, we have,

[r(θ)] :=

(
cos θ − sin θ

sin θ cos θ

)
B

with 0 ≤ θ < 2π and [me2
] :=

(
1 0

0 −1

)
B

,

As a special transformation we mention the inversion −1, which matrix representation is simply

[−1] :=

(
−1 0

0 −1

)
B
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in R2, −1 = r(π).

3.1.2 Subgroups of O(2)

The purpose of this section is to introduce, up to conjugacy, the different subgroups of O(2). A

detailed proof of subgroups of O(2) was given in a book by Amstrong (see [[109], page 20] and [[116],

page 81]), we conclude here that they belong to the following collection [114] :

{1,Z
me2

2 ,Zk,Dk,SO(2),O(2)}k≥2

in which:

• 1 stands for the trivial subgroup;

• Z
me2

2 is the group generated by me2 , which is the reflection across the axis normal to e2;

• Zk is the cyclic group with k elements generated by the rotation r( 2πk ), with the convention that

Z1 = 1

• Dk is the dihedral group with 2k elements generated by r( 2πk ) and me2 , with the convention that

D1 = Z
me2

2

• SO(2) is the continuous rotation group, it can be viewed as Z∞;

• O(2) is the full orthogonal group, it can be viewed as D∞.

It should be noted that the determination of the symmetry classes of a vector tensor space is not a

straightforward result. Such a determination implies the use of mathematical tools such as the harmonic

structure. The detailed process for symmetry class determination of Ela will be introduced later.

Centrosymmetry and chirality

The classification of subgroups based on generators as introduced earlier can be refined. For this

purpose, we will introduce the notions of chiral groups and centro-symmetric groups. This classification

will be useful to analyse the properties of the constitutive tensors.

3.1.2 Definition (Centrosymmetry and chirality)

A subgroup of O(2) would be said to be:

• centrosymmetric (denoted by i) if it contains the inversion r(π), and non-centrosymmetric (denoted

by i) otherwise;

• chiral (denoted by c) if it does not contain reflection mn, and achiral (denoted by c) otherwise.

It should be emphasised that centrosymmetry and chirality are two distinct invariance properties.

Based on this classification, the set of closed subgroups of O(2) can be divided into four subsets:

i (centrosymmetry) i (non-centrosymmetry)

c (achiral) D2k D2k+1

c (chiral) Z2k Z2k+1

Table 3.1: Classification of O(2) subsets according to their invariance properties
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3.2 2D harmonic tensors space: Kn

The space of n-th order harmonic tensors in R2 will be denoted by Kn. As mentioned in section 2.3,

it is a natural O(2)-irreducible space, and any tensor T ∈ Kn satisfies the following two properties:

• Totally symmetric with respect to index permutation, meaning that

Ti1i2···in = Tiσ(1)iσ(2)···iσ(n)

with σ the permutation of the symbols {1, 2, · · · , n};

• Traceless with respect to any two indices i, j, denoted by trT = 0.

In R2, these properties result in the following lemma:

Lemma 3.1 (Dimension of Kn). In R2, the dimension of a n-th order harmonic space Kn is determined

by:

dimKn =

2, n ≥ 1

1, n = 0 or − 1

The harmonic spaces with different order can be interpreted as follows [106]:

• K−1 is the space of pseudo-scalars, or hemitropic coefficients;

• K0 is the space of scalars, that is isotropic coefficients;

• K1 is the space of vectors;

• K2 is the space of deviators;

• Kn(n ≥ 2) is the space of n-th order deviators.

Harmonic parametrisation

The elements of space K0 or K−1 can be parameterized by scalars. For higher order space (n ≥ 1), we

present two simple examples of tensor h
∼
∈ K2 and tensor H

≈
∈ K4, to provide intuitive evidence on such

two-dimensional construction. Since satisfying the restriction of traceless and totally symmetric, these

two matrices are constructed as follows:

[h
∼
] :=

(
h1 h2

h2 −h1

)
B

[H
≈
] :=


H1 −H1

√
2H2

−H1 H1 −
√
2H2√

2H2 −
√
2H2 −2H1


K

with H
≈

expressed under the Kelvin convention1. It can be seen that each matrix is formed by two inde-

pendent components.

What follows will show us how g ∈ O(2) acts on T ∈ Kn.

1Kelvin convention will be presented in subsection 3.4.1
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O(2)-representation on Kn

For the case n = 0,−1, the O(2)-representation ρn remains on the one dimensional space R. Specif-

ically, ρ0 is the trivial representation of the identity O(2)-action and ρ−1 is the multiplication by the

determinant of O(2)-action. For g ∈ O(2), we have:

ρ0(g) := 1, ρ−1(g) := det(g)

When it comes to the space Kn(n ≥ 1), since they are two-dimensional, let us introduce K(n) =

(k
(n)
1 , k

(n)
2 ) an orthonormal basis of Kn(n ≥ 1) constructed from the canonical basis B of R2 (the con-

structions for K(2) and K(4) are detailed in subsection 3.4.1) [117]. Based on Lemma 6.1 (see also a

detailed information in [118]), for T ∈ Kn(n ≥ 1), we have2:

T = T1k
(n)
1 + T2k

(n)
2

As a consequence, we define for two-dimensional tensor T a vector:

{T}K(n) := (T1, T2)
T
K(n) (3.1)

For each integer n ≥ 1, the representation ρn of O(2)-action is given by:

[ρn(r(θ))] :=

(
cosnθ − sinnθ

sinnθ cosnθ

)
K(n)

, [ρn(me2)] :=

(
1 0

0 −1

)
K(n)

, (3.2)

which means that a transformation of rotation by angle θ on a n-th order tensor acts as a rotation of nθ

on its associated vector (Equation 3.1), further details can be found in [74, 119] and a graphical repre-

sentation of rotations for elements in K2 and K4 are given in Figure 3.1.

3.3 Harmonic decomposition of Ela

Harmonic structure

A classical result is that any tensor space of R2 can be decomposed into a finite number of harmonic

spaces (mentioned in section 2.3). The harmonic structure of Ela can easily be determined using the

Clebsh-Gordan formula:

Lemma 3.2 (Clebsh-Gordan formula). The tensor product of two O(2)-irreducible spaces is reducible and

decomposes according to:

⊗ Kn K0 K−1

Km
{
Km+n ⊕K|m−n|, m ̸= n

K2n ⊕K0 ⊕K−1, m = n
Km Km

K0 Kn K0 K−1

K−1 Kn K−1 K0

In the case where the spaces are identical, the tensor product can be decomposed into S2 and Λ2,

represent respectively, a symmetrized product and an anti-symmetrized product3:

2Any component Ti1i2···in of tensor T can be expressed as the linear combination of {T1, T2}
3let V a vector space of dimension d, and vi the basis of V, thus the basis of V⊗V is defined by: B(V⊗V) = vi ⊗ vj, we
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∀n ≥ 1,Kn ⊗Kn = S2 (Kn)⊕ Λ2 (Kn)

Therefore, Lemma 3.2 is completed by the following lemma:

Lemma 3.3 (Clebsh-Gordan formula). For all n ≥ 1, we have the following isotropic decompositions, in

which meaningless products are indicated by ×:

S2 Kn K0 K−1

Kn Km+n ⊕K0 × ×
K0 × K0 ×
K−1 × × K0

Λ2 Kn K0 K−1

Kn K−1 × ×
K0 × 0 ×
K−1 × × 0

Proposition 3.1. The space Ela possess the following harmonic structure [106]:

Ela ≃ 2K0 ⊕K2 ⊕K4 (3.3)

in which ≃ indicates an O(2)-equivariant isomorphism.

Proof. Ela can be seen as S2
(
S2(R2)

)
:

Ela ≃ S2
(
S2(R2)

)
≃ S2

(
S2(K1)

)
≃ S2

(
K0 ⊕K2

)
≃ S2

(
K0
)
⊕ S2

(
K2
)
⊕ (K0 ⊗K2)

≃ 2K0 ⊕K2 ⊕K4

Let us denote by f an explicit harmonic decomposition, each elasticity tensor C
≈
∈ Ela can be written

as:

C
≈
= f(α, β, h

∼
,H
≈
),

The O(2)-equivariance property verifies:

∀g ∈ O(2), g ⋆ C
≈
= f(α, β,g ⋆ h

∼
,g ⋆H

≈
).

The harmonic decomposition splits any elasticity tensor C
≈

into an

• isotropic part defined by two scalars α and β ;

• anisotropic part comprising h
∼
∈ K2 and H

≈
∈ K4.

Harmonic bouquet

In order to facilitate further discussion, the set of {h
∼
,H
≈
} will be referred to as the harmonic bouquet of

C
≈
, and denoted by HB(C

≈
) [111]. Following Figure 3.1 and Equation 3.2, we illustrate how the harmonic

bouquet transforms under a θ-angle rotation:

have:

B(S2(V)) =
1

2
(vi ⊗ vj + vj ⊗ vi)

B(Λ2(V)) =
1

2
(vi ⊗ vj − vj ⊗ vi)
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Figure 3.1: The action of r(θ) on h
∼
and H

≈

Explicit harmonic decomposition

Note that any linear combination of α, β ∈ K0 leads to another explicit decomposition of the elasticity

tensor, hence there is no uniqueness of the explicit harmonic decomposition. For instance, α, β can be

regarded as the Lamé numbers λ and µ, but can also be regarded as the shear modulus G and the bulk

modulus K, which are related to the former by a linear relation (in 2D):

G = µ, K = λ+ µ

In 2D, the different decompositions are almost identical and their differences only concern the isotropic

part4. Among the different possibilities, the following one (known as the Clebsch-Gordan harmonic

decomposition [120]) will be considered:

Proposition 3.2. The tensor C
≈
∈ Ela admits the uniquely defined Clebsch-Gordan harmonic decomposition

associated with the family of projectors {J
≈
,K
≈
} 5:

C
≈
= αJ

≈
+ βK

≈
+

1

2
(1
∼
⊗ h

∼
+ h

∼
⊗ 1

∼
) + H

≈
, (3.4)

in which in which
(
α, β, h

∼
,H
≈

)
∈ K0×K0×K2×K4. Conversely, the different elements of the decomposition

can be computed as a function of C
≈
:

4In 3D, as will be seen in chapter 6, the choice of a decomposition also involves the anisotropic components and is
therefore more important.
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K0 K2 K4

β = K
≈
.... C

≈

h
∼
= J

≈
: C
≈
: 1
∼

α = 1
2D≈

.... J
≈

H
≈
= D

≈
− αJ

≈

in which D
≈
= J

≈
: C
≈
: J
≈
is used to characterise the deviatoric linear elasticity.

Proof of this proposition is provided here:

Proof. The stress tensor σ
∼
∈ S2(R2) (or strain tensor ε

∼
) admits the following decomposition:

σ
∼
= σ

∼
d + σ

∼
s

where σ
∼
d and σs are, respectively, the deviatoric and spheric part of σ

∼
. We have :

σ
∼
s =

1

2
1
∼
: σ
∼
: 1
∼

σ
∼
d = σ

∼
− 1

2
1
∼
: σ
∼
: 1
∼

with 1
∼
the identity tensor of S2(R2).Two projectors K

≈
and J

≈
are introduced here such that:

σ
∼
s = K

≈
: σ
∼
, σ

∼
d = J

≈
: σ
∼
.

with

K
≈
=

1

2
1
∼
⊗ 1

∼
, J

≈
= I

≈
− 1

2
1
∼
⊗ 1

∼
.

I
≈
is the fourth-order identity tensor of S2(S2(R2)), by definition: Iijkl =

1
2 (δikδjl+ δilδkj). The projector

J
≈
and K

≈
satisfies the following relations :

J
≈
: σ
∼
d = σ

∼
d K

≈
: σ
∼
s = σ

∼
s J

≈
: J
≈
= J

≈
J
≈
: K
≈
= K

≈
: J
≈
= 0

≈
K
≈
: K
≈
= K

≈

Since C
≈
is a linear application on S2(R2), let us now extend the previous procedure to fourth-order tensor

C
≈
:

σ
∼
= σ

∼
s + σ

∼
d = K

≈
: σ
∼
+ J

≈
: σ
∼

= K
≈
: C
≈
: ε
∼
+ J

≈
: C
≈
: ε
∼

= K
≈
: C
≈
: (J

≈
: ε
∼
+K

≈
: ε
∼
) + J

≈
: C
≈
: (J

≈
: ε
∼
+K

≈
: ε
∼
)

= (K
≈
: C
≈
: J
≈
+K

≈
: C
≈
: K
≈
+ J

≈
: C
≈
: J
≈
+ J

≈
: C
≈
: K
≈
) : ε

∼

Thus, C
≈

is decomposed into 4 parts, with the definition of two harmonic components:

β =
1

2
(1
∼
: C
≈
: 1
∼
) h

∼
= J

≈
: C
≈
: 1
∼
= 1

∼
: C
≈
: J
≈

we have:

K
≈
: C
≈
: K
≈
= βK

≈
J
≈
: C
≈
: K
≈
+K

≈
: C
≈
: J
≈
=

1

2
(1
∼
⊗ h

∼
+ h

∼
⊗ 1

∼
)

5The deviatoric projector J
≈

and spheric projector K
≈

are defined in the proof of proposition 3.2.
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J
≈
: C
≈

: J
≈
result in a deviatoric tensor, which consists in writing the elasticity tensor as a symmetric

linear application on K4 ⊕K0. In this case, we write:

J
≈
: C
≈
: J
≈
= H

≈
+ αJ

≈

with H
≈
the fourth order harmonic tensor and α an associated scalar, if we apply a scalar product for each

side by J
≈
, we get:

α =
1

2
(J
≈
: C
≈
: J
≈
) .... J

≈

In consequence, the decomposition of C
≈

is expressed in respect of α, β, h
∼
and H

≈
:

C
≈
= αJ

≈
+ βK

≈
+

1

2
(1
∼
⊗ h

∼
+ h

∼
⊗ 1

∼
) + H

≈

This particular form of harmonic decomposition amounts to considering the constitutive law of linear

elasticity in Equation 2.1 as a coupled behaviour in which the deviatoric part and the spherical part are

considered independent. σ∼
d = C

≈
dd : ε

∼
d +C

≈
ds : ε

∼
s

σ
∼
s = C

≈
sd : ε

∼
d +C

≈
ss : ε

∼
s

. (3.5)

The elasticity tensor appears to be structured by blocks:

C
≈
=

C
≈
dd C

≈
ds

C
≈
ds C

≈
ss

 , (3.6)

in which

C
≈
dd = H

≈
+ αJ

≈
, C

≈
ds =

1

2
h
∼
⊗ 1

∼
, C

≈
sd =

1

2
1
∼
⊗ h

∼
, C

≈
ss = βK

≈

3.4 Parametrisation of elasticity tensors

3.4.1 Harmonic parametrisation

The generalized Hooke’s law reads

σij = Cijklεkl

in which C
≈

is a fourth-order tensor. High-order tensors are not easy objects to handle and it is often

convenient to rewrite them as matrices. There are two well-known conventions to do that, the Voigt’s

convention and the Kelvin’s one.

The Kelvin convention consists of introducing a tensor-based basis for the space S2(R2), denoted K,

and to write σ
∼
and ε

∼
as a vector with respect to it. As a consequence, C

≈
can be rewritten as a matrix

with regard to K.

In R2 the Kelvin basis is as follows:

K = {e1 ⊗ e1, e2 ⊗ e2,

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1)}

Differ from the Voigt notation(another common practice representation), the advantage of Kelvin

notation is that it performs the same for stress- and strain-type quantities based on the same orthonormal
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3.4. PARAMETRISATION OF ELASTICITY TENSORS

basis, For 2D linear elasticity, the transformation is performed as follows:

σij → {σ
∼
}K = (σ11, σ22,

√
2σ12)

T
K

εij → {ε
∼
}K = (ε11, ε22,

√
2ε12)

T
K

As a consequence, stress-strain relations Equation 2.1 for a linear elastic material can be written as

follows : 
σ11

σ22√
2σ12


K

=


C1111 C1122

√
2C1112

C2222

√
2C2212

2C1212


K


ε11

ε22√
2ε12


K

As is shown, such Kelvin convention acts as a simple replacement of fourth-order tensors having the

necessary symmetries by 3× 3 matrices and symmetric second-order tensors by vectors in R3.

Equation 3.4 shows that an elasticity tensor C
≈

can be expressed by harmonic components. To this

end, followed by Equation 3.1, the components of h
∼

and H
≈

in the two-dimensional spaces K2 and K4,

defined through:

h
∼
= h1k

(2)
1 + h2k

(2)
2 H

≈
= H1k

(4)
1 +H2k

(4)
2

with [119],

k
(2)
1 =

√
2

2
(e1 ⊗ e1 − e2 ⊗ e2) k

(2)
2 =

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1)

k
(4)
1 =

√
2

2
(k

(2)
1 ⊗ k

(2)
1 − k

(2)
2 ⊗ k

(2)
2 ) k

(4)
2 =

√
2

2
(k

(2)
1 ⊗ k

(2)
2 + k

(2)
2 ⊗ k

(2)
1 )

thus, the Kelvin representation of C
≈

in terms of harmonic components is:
α
2 + β

2 + h1√
2
+ H1

2
√
2

−α
2 + β

2 − H1

2
√
2

h2

2 + H2

2

−α
2 + β

2 − H1

2
√
2

α
2 + β

2 − h1√
2
+ H1

2
√
2

h2

2 − H2

2

h2

2 + H2

2
h2

2 − H2

2 α− H1√
2


K

(3.7)

3.4.2 Polar parametrisation

The mechanical property of a material is represented by a tensor using Cartesian components. It

is widely used because of its simplicity in seeing the phenomena in classical mechanics and performing

tensor operations. But anisotropy is the dependence of a mechanical property on the direction. In this

case, the Cartesian representation meets its limitation since it is not an intrinsic representation, saying

that it is strongly dependent on the chosen reference.

Thus, we make desirable a different tensor representation, based on tensor invariants, i.e. describing

the mechanical behaviour of a material by intrinsic quantities. Apart from the empirical algebraic ap-

proach that obtaining invariants from the harmonic decomposition (section 3.3, section 3.5), we describe

here the polar method based on complex variables proposed by Verchery[55]. The objectives of polar

parametrisation in this section are twofold:

1. To establish a precise connection between polar components and harmonic components;

2. Since the polar components of the inverse tensor C
≈
−1 can be easily obtained as functions of those

of C
≈

[9], it can be used to deduce the inverse components for harmonic parametrisation.
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3.4. PARAMETRISATION OF ELASTICITY TENSORS

The construction of polar parametrisation is outlined in great detail in [9, 63], and for the reader’s

convenience, we present here the final results for C
≈
∈ Ela. The polar components expressed in terms of

the Cartesian ones obtained as follows:

8T0 = C1111 − 2C1122 + 4C1212 + C2222,

8T1 = C1111 + 2C1122 + C2222,

8R0e
4iΦ0 = C1111 − 2C1122 − 4C1212 + C2222 + 4i(C1112 − C1222),

8R1e
2iΦ1 = C1111 − C2222 + 2i(C1112 + C1222).

(3.8)

with {T0, T1, R0, R1,Φ0,Φ1} the polar components of C
≈
, and inversely we obtain the polar parametrisation

of C
≈
, compared to that of harmonic parametrisation, we have :

Harmonic parametrisation Polar parametrisation

C1111

C1112

C1122

C1212

C1222

C2222

α/2 +β/2 +h1/
√
2 +H1/2

√
2

h2/2
√
2 +H2/2

√
2

−α/2 +β/2 −H1/2
√
2

α/2 −H1/2
√
2

h2/2
√
2 −H2/2

√
2

α/2 +β/2 −h1/
√
2 +H1/2

√
2

T0 +2T1 +4R1cos2Φ1 +R0cos4Φ0

2R1sin2Φ1 +R0sin4Φ0

−T0 +2T1 −R0cos4Φ0

T0 −R0cos4Φ0

2R1sin2Φ1 −R0sin4Φ0

T0 +2T1 −4R1cos2Φ1 +R0cos4Φ0

which indicates the following relations:

α = 2T0 β = 4T1 h
∼
→ 4R1e

2iΦ1 H
≈
→ R0e

4iΦ0 (3.9)

where ” → ” means to represent a given tensor in the polar coordinate. The following harmonic quantities

in terms of polar components will be used in the upcoming inverse computation (subsection 3.4.3):

• Scalars

h
∼
: h
∼
= 32R2

1 H
≈
:: H

≈
= 8R2

0; h
∼
: H
≈
: h
∼
= 64R0R

2
1 cos 4(Φ0 − Φ1)

• 2nd order harmonic tensor

H
≈
: h
∼
→ 8R0R1e

(4Φ0−2Φ1)i

• 4th order harmonic tensor

h
∼
∗ h

∼
→ 8R2

1e
4iΦ1

with ∗ the harmonic product between two harmonic tensors:

h
∼
∗ h

∼
:= (h

∼
⊗ h

∼
)s − 1

2
(1
∼
⊗ (h

∼
· h
∼
))s

(·)s represent the complete symmetrisation of a tensor, for T1,T2 ∈ Tn:

(T1 ⊗ T2)
s =

1

2
(T1 ⊗ T2 +T2 ⊗ T1)

3.4.3 Parametrisation of the inverse of a tensor

The polar components of the inverse tensor C
≈
−1 can be easily found since Equation 3.8 are also valid

for C
≈
−1, and if the Cartesian components of C

≈
−1 are expressed in terms of those of C

≈
and the latter by

their polar components, the polar components of C
≈
−1, in the following designated by lower case letters

{t0, t1, r0, r1, φ0, φ1}, are obtained in terms of {T0, T1, R0, R1,Φ0,Φ1} :

44



3.5. INVARIANTS AND INTEGRITY BASIS

t0 = 4
T0T1 −R2

1

∆
, t1 =

T 2
0 −R2

0

∆
, (3.10)

r0e
4iφ0 = 4

(R1e
2iΦ1)2 − T1R0e

4iΦ0

∆
, r1e

2iφ1 = −2R1e
2iΦ1

T0 −R0e
4i(Φ0−Φ1)

∆
. (3.11)

with

∆ = 16T1
(
T 2
0 −R2

0

)
− 32R2

1 [T0 −R0 cos 4 (Φ0 − Φ1)]

The explicit decomposition of S
≈
= C

≈
−1 has the same structure as that of C

≈

C
≈
−1 = S

≈
= f(α−, β−, h

∼
−,H

≈
−),

in which {α−, β−, h
∼
−,H

≈
−} denotes the harmonic components of C

≈
−1. The relations between polar com-

ponents and harmonic components of C
≈

established in subsection 3.4.2 is also valid for that of C
≈
−1.

Therefore, the harmonic components {α−, β−, h
∼
−,H

≈
−} can be expressed in terms of those of C

≈
:

α− =
1

4△
(4αβ − h

∼
: h
∼
), β− =

1

2△
(2α2 −H

≈
:: H

≈
), (3.12)

h
∼
− =

1

∆
(H
≈
: h
∼
− αh

∼
), H

≈
− =

1

2∆
(h
∼
∗ h

∼
− 2βH

≈
), (3.13)

with ∆ defined as:

∆ = α2β − 1

2
βH
≈
:: H

≈
− 1

2
αh
∼
: h
∼
+

1

2
h
∼
: H
≈
: h
∼
,

3.5 Invariants and integrity basis

Since the space Ela has been explicitly decomposed into a collection of O(2)-irreducible spaces in

proposition 3.1, the question is now to determine an associated integrity basis (introduced in section 2.5).

It has to be noted that this result has been known since the second half of the 90’ [74, 121, 122] (see also

the recent paper [117]). Such an integrity basis has the following structure:

{I1, J1, I2, J2, I3}

in which Ik indicates a homogeneous polynomial of degree k in C
≈
. From the explicit harmonic decompo-

sition (Equation 3.4), we have the following result:

Theorem 3.1: Integrity basis of Ela

A minimal integrity basis for O(2)-action on Ela is given by

IB = {I1, J1, I2, J2, I3}.

in which

I1 = α, J1 = β, I2 = h
∼
: h
∼
, J2 = H

≈
:: H

≈
, I3 = h

∼
: H
≈
: h
∼
.

These elements are independent, meaning that they are not related by any polynomial relation. They

satisfy, however, the following inequalities [75]:

I2 ≥ 0, J2 ≥ 0, I22J2 − 2I23 ≥ 0. (3.14)
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As such, they define a closed domain of R5, denoted by V. The last inequality implies that I3 = 0 as

soon as I2 or J2 is zero.

These invariants can be expressed in terms of the harmonic components with respect to the basis

K(n), and tensor components Cijkl with respect to the canonical tensor basis B:

• Linear invariants

I1 = α =
1

4
(C1111 − 2C1122 + 4C1212 + C2222)

J1 = β =
1

2
(C1111 + 2C1122 + C2222)

• Quadratic invariants

I2 = h
∼
: h
∼
= 2(h21 + h22)

= 2(C1112 + C1222)
2 +

1

2
(C1111 − C2222)

2

J2 = H
≈
:: H

≈
= 8(H2

1 +H2
2 )

= 2(C1112 − C1222)
2 +

1

8
(C1111 − 2C1122 − 4C1212 + C2222)

2

In terms of the graphical interpretation introduced in Figure 3.1, these quantities are nothing but

the square norms of the vectors in the harmonic bouquet HB(C
≈
).

• Cubic invariants

I3 = 4
∣∣∣h
∼

∣∣∣2 ∣∣∣H
≈

∣∣∣ cos (β − 2α) = h
∼
: H
≈
: h
∼

= 4h21H1 − 4h22H1 + 8h1h2H2

=
1

8
(C3

1111 − (2C1122 + 4C1212 + C2222)C
2
1111 + (4(C1112 + C1222)(3C1112 − 5C1222)

+(4C1122 + 8C1212 − C2222)C2222)C1111 + C3
2222 + 8(C1122 + 2C1212)(C1112 + C1222)

2

−2(C1122 + 2C1212)C
2
2222 − 4(5C1112 − 3C1222)(C1112 + C1222)C2222)

This last invariant can be seen as a tensor product in K4 between H
≈

and h
∼
∗ h

∼
.

Remark. We define the following application from Ela to orbit space Ela/O(2) which associates to a

tensor its (uniquely defined) elastic material:

IB(C
≈
) :=

(
I1(C≈

), J1(C≈
), I2(C≈

), J2(C≈
), I3(C≈

)
)
.

This application introduces coordinates on the orbit space.

Let us now parameterise the invariants of S
≈
= C

≈
−1 in terms of those of C

≈
. The invariants of S

≈
are

denoted
(
I−1 , J

−
1 , I

−
2 , J

−
2 , I

−
3

)
and are rational functions of those of C

≈
:

I−1 =
1

4∆
(4I1J1 − I2) , J−

1 =
1

2∆

(
2I21 − J2

)
,

I−2 =
1

∆2

(
1

2
J2I2 − 2I1I3 + I21I2

)
, J−

2 =
1

4∆2

(
1

2
I22 − 4J1I3 + 4J2

1J2

)
,

and

I−3 =
1

2∆3

(
I23 − 1

4
I22J2 − J1J2I3 − I1I2I3 + 2I1J1I2J2 +

1

2
I21I

2
2 − 2I21J1I3

)
,
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in which ∆ is the determinant of C
≈
:

∆ =
1

2
(I3 − I1I2 − J1J2 + 2I21J1).

It is obvious that for C
≈

to be invertible ∆ ̸= 0. These relations can be obtained using the results of

subsection 3.4.3.

3.6 Symmetry classes of Ela

So far, the question of the symmetry classes of Ela has been postponed. As indicated in 2.6.2, their

determination can be achieved from the harmonic structure of Ela.

To do this, and as the procedure in subsection 2.6.3 indicates, this determination supposes to know

the symmetry classes of the Kn spaces. This is the object of the following theorem [106]:

Theorem 3.2: Symmetry classes of Kn

The symmetry classes for the O(2)-irreducible space Kn are:

I(Kn) =


{[SO(2)], [O(2)]}; n = −1

{[O(2)]}; n = 0

{[Dn], [O(2)]}; n ≥ 1

with the convention D1 = Z
me2

2

The symmetry classes of Ela can now be computed using iterated clips operations and the following

table:

Theorem 3.3: Clips operations between O(2)-closed subgroups

⊚ [Id] [Zσx
2 ] [Zn] [Dn] [SO(2)] [O(2)]

[Id] [Id]

[Zσx
2 ] [Id] [Id] , [Zσx

2 ]

[Zm] [Id] [Id]
[
Zd(n,m)

]
[Dm] [Id] [Id] , [Zσx

2 ]
[
Zd(n,m)

] [
Zd(n,m)

]
,
[
Dd(n,m)

]
[SO(2)] [Id] [Id] [Zn] [Zn] [SO(2)]

[O(2)] [Id] [Zσx
2 ] [Zn] [Dn] [SO(2)] [O(2)]

where Z1 := 1, D1 := Z
me2

2 and d(n,m) := gcd(n,m). Due to the commutativity of the clips

operator, this table is symmetric and only a half part has been filled.

The space of Ela can be partitioned into strata based on the fact that two tensors are in the same

stratum if they have the same symmetry class.
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Theorem 3.4: Strata of Ela
Ela is partitioned into 4 strata [74]:

Ela = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)] (3.15)

Proof. The symmetry classes of Ela can be obtained using clips products. This determination starts with

the harmonic structure of Ela:
Ela ≃ 2K0 ⊕K2 ⊕K4.

Since I(K0) = [O(2)] the symmetry classes of Ela are given by

I(Ela) = I(K2)⊚ I(K4).

The symmetry classes of the harmonic components are

I(K2) = {[D2] , [O(2)]} , I(K4) = {[D4] , [O(2)]} .

it results that

I(Ela) = {[D2], [O(2)]}⊚ {[D4], [O(2)]}

= {[D2]⊚ [D4]} ∪ {[D2]⊚ [O(2)]} ∪ {[O(2)]⊚ [D4]} ∪ [O(2)]

= {[Z2], [D2], [D4], [O(2)]}

Remark. In mechanical terms, Σ[Z2] corresponds to the set of biclinic tensors, Σ[D2] to the set of or-

thotropic tensors, Σ[D4] to the set of tetragonal tensors and Σ[O(2)] to the isotropic tensors.

3.7 Conditions of belonging to a symmetry class

3.7.1 Covariant-based conditions

Let us start by defining a totally generic elasticity tensor with the lowest level of spatial invariance.

Genericity

The inequality I22J2−2I23 > 0 defines a totally generic elasticity tensor with the lowest level of spatial

invariance. Almost all elasticity tensors are generic, meaning the probability is 1 of randomly picking

elasticity tensors satisfying these relations.

From a geometric point of view, the anisotropic harmonic bouquet HB = {h
∼
,H
≈
} is non-degenerated,

i.e.

• neither h
∼
nor H

≈
is nil;

• they are not aligned, meaning that (h
∼
∗ h

∼
)×H

≈
̸= 0;

in which ∗ and × stand, respectively, for the harmonic and generalised cross product as defined in Ap-

pendix A. This last condition motivates the introduction of the concept of Homogeneous Harmonic

Bouquet HHB = {h
∼
∗h
∼
,H
≈
}, in which all elements belong to the same harmonic space and therefore trans-

form in the same way. This notion will allow us to introduce the harmonic normal form of an elasticity
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tensor. To this end, recall the orthonormal basis K(n) = (kn1 , k
n
2 ) of Kn mentioned in section 3.2. Since

elasticity tensors sharing the same orbit have conjugate HHB, the following result is natural

∀C
≈
∈ Ela, ∃g ∈ O(2) s.t. (g ⋆H

≈
)1 > 0, (g ⋆H

≈
)2 = 0

with (H
≈
)i = H

≈
.... k

(4)
i . A generic tensor C

≈
is in its harmonic normal form, if (H

≈
)1 > 0, and (H

≈
)2 = 0.

Geometrically, this corresponds to the configuration depicted on Figure 3.2.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.2

0.0

0.2

0.4

k(4)
1

k(4)
2

H
h*h

Figure 3.2: Harmonic normal form of a generic elasticity tensor.

Harmonic bouquets not satisfying the genericity conditions are said degenerated. Tensors that are

invariant w.r.t. some spatial transformations usually possess degenerated bouquet6. But, as will be seen,

this mechanism is not surjective, meaning that some degenerated systems may not imply a specific spatial

invariance. This is particularly true for tensors with a large harmonic bouquet.

The four strata in Theorem 3.4 are organized as follows7:

Σ[Z2]

(h
∼
∗h
∼
)×H

≈
=0
// Σ[D2]

h
∼
:h
∼
=0

// Σ[D4]

H
≈
::H
≈
=0

// Σ[O(2)]. (3.16)

Geometrically, the harmonic normal forms of elasticity tensors in the three remaining classes are8:

2 1 0 1 2

0.4

0.2

0.0

0.2

0.4

k(4)
1

k(4)
2

For orthotropic elasticity tensors

H
h*h

2 1 0 1 2

k(4)
1

k(4)
2

For tetragonal elasticity tensors

2 1 0 1 2

k(4)
1

k(4)
2

For isotropic elasticity tensors

Figure 3.3: Harmonic normal form of non-generic elasticity tensors.

6The case of even-order tensors is a bit special, since generic even-order tensors are Z2-invariant.
7It should be noted that such an in-line structure is exceptional and is very specific to 2D linear elasticity.
8A tetragonal tensor C

≈
is in its harmonic normal form if (h

∼
∗ h

∼
)1 = 0, and (h

∼
∗ h

∼
)2 > 0.
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The symmetry class of the elements belonging to the open stratum Σ[H] is exactly [H]. The closed

strata Σ[H] on its side contains elements whose symmetry classes are at least [H]. Since the lattice of

symmetry classes is linear (3.16):

Σ[Z2] = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)](= Ela),

Σ[D2] = Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)],

Σ[D4] = Σ[D4] ∪ Σ[O(2)],

Σ[O(2)] = Σ[O(2)].

At the exception of Σ[O(2)], open strata are not vector spaces. The simplest reason for this is that the

identity element does not belong to strata other than the isotropic one. For the closed strata, the situation

is different. Since elements within a stratum have conjugate symmetry groups, the stability with regard

to linear combination is not automatic. It can be proved that for 2D linear elasticity, all closed strata,

except the orthotropy one, are vector spaces [74, 123].

3.7.2 Polynomial invariant conditions

For the least symmetric class, that is for biclinic elastic materials, the polynomial invariants of IB
are algebraically independent. A biclinic material is described by five independent quantities, that is by

a point in V ⊂ R5. The location of this point is not any, since constrained by the relations (3.14).

For elastic materials with higher symmetries, polynomial relations (also called syzygies) between

elements of IB appear. For example, for (at least) orthotropic materials the following polynomial relation

is satisfied:

I22J2 − 2I23 = 0,

hence orthotropic materials belong to ∂V which is a 4D surface in R5. These relations for all strata are

provided in the following table.

Table 3.2: Polynomial conditions for membership of an open stratum

stratum Tensor representations Polynomial conditions

Σ[Z2] (α, β, h
∼
,H
≈
) I22J2 − 2I23 > 0

Σ[D2] (α, β, h
∼
,H
≈
) I22J2 − 2I23 = 0 and I2 ̸= 0

Σ[D4] (α, β, 0,H
≈
) I2 = 0 and J2 ̸= 0

Σ[O(2)] (α, β, 0, 0) I2 + J2 = 0

Polynomial transitions are summed up on the following lattice:

Σ[Z2]

I22J2−2I23=0 // Σ[D2]
I2=0 // Σ[D4]

J2=0 // Σ[O(2)] .

In the case of 2D elasticity, the geometry of the elastic material space can be visualized9.

9Without taking the positive definiteness condition into account.
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Figure 3.4: Semi-algebraic variety of elastic materials with respect to (I2, J2, I3).

Figure 3.4 depicts the elastic material space with respect to (I2, J2, I3). The surface, which corresponds

to the polynomial equation: I22J2 − 2I23 = 0 contains all the at-least-orthotropic materials (stratum

Σ[D2] = Σ[D2] ∪Σ[D4] ∪Σ[O(2)]). The condition I22J2 − 2I23 > 0 indicates on which side of the orthotropic

surface are the biclinic materials located (stratum Σ[Z2]). Finally, we get that, independently of the values

of the isotropic invariants I1 and J1:

• point O corresponds to isotropic materials (stratum Σ[O(2)]);

• open ray ]OA) corresponds to tetragonal materials (stratum Σ[D4]);

• surface without {O}∪ ]OA)∪ ]OB) corresponds to ordinary orthotropic materials (stratum Σ[D2]);

• biclinic materials (stratum Σ[Z2]) are strictly inside the volume defined by the surface.

3.7.3 Inverse stability of the symmetry class

From a physical point of view, and for a given material, the stiffness tensor and the compliance tensor

are two equivalent ways of describing the macroscopic behaviour resulting from an identical microstruc-

ture. It therefore seems natural that their symmetry groups, and thus their symmetry classes, coincide.

This seems so natural that, up to the author’s best knowledge, no mathematical proof of this point has

been given. A simple proof of that point is provided here.

Theorem 3.5: Inverse stability of symmetry group

If C
≈

and S
≈
are two elasticity tensors satisfying S

≈
.. C
≈
= C

≈
.. S
≈
= I

≈
then GC

≈
= GS

≈
.

Proof. Let consider C
≈

as a symmetric second-order tensor on S2(R3), and denote by [C
≈
] its matrix

representation with respect to a basis of R3. Let pC
≈
(X) be the characteristic polynomial of [C

≈
],

p(X) = X3 − σ1X
2 + σ2X − σ3
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in which σk are elementary symmetric polynomials:
σ1 = λ1 + λ2 + λ3 = tr(C

≈
),

σ2 = λ1λ2 + λ2λ3 + λ1λ3,

σ3 = λ1λ2λ3 = det(C
≈
),

It should be noted that symmetric polynomials are O(3)-invariant polynomials of C
≈
, i.e.

∀g ∈ O(3), σk(g ⋆ C≈
) = σk(C≈

)

Hence since σk are O(3)-invariant, they are also O(2)-invariant for any O(2) subgroups of O(3).

From the Cayley-Hamilton theorem, it is known that p(C
≈
) = 0, i.e.

p(C
≈
) = C

≈
3 − σ1C≈

2 + σ2C≈
− σ3 I≈

= 0

Multiplying this relation on the left by S
≈
, and since σ3 ̸= 0, we obtain that

S
≈
=

1

σ3

(
σ2 I≈

− σ1C≈
+C

≈
2
)

Hence S
≈
is polynomial in C

≈
, S
≈
= P(C

≈
). Let g ∈ G(C

≈
≈

),

g ⋆ S
≈
= g ⋆ P(C

≈
) = P(g ⋆ C

≈
) = P(C

≈
) = S

≈

hence, G(C
≈
) ⊂ G(S

≈
). Since C

≈
can be expressed in the same way as a polynomial function in S

≈
, the same

reasoning leads to the reverse inclusion and to the final conclusion that

G(C
≈
) = G(S

≈
)
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The geometric methods developed in the previous chapter are used to characterise spaces of linear

materials in a very fine way. It can be observed that these spaces are very rich and a whole range

of intermediate possibilities exist beyond symmetry classes. Materials with non-standard anisotropic

properties associated with these intermediate possibilities are called exotic materials. This topic will be

studied in this chapter section 4.1 gives a mechanical definition of what is an exotic set of materials, this

definition allowed us to verify in section 4.2 that the space of 2D elasticity tensors has only one exotic

set. And we also introduce an example of semi-exotic sets in section 4.3. This definition also allows us

to obtain in section 4.4 a general result concerning any 2D constitutive tensor space.
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4.1. MECHANICAL DEFINITION OF EXOTIC MATERIALS

4.1 Mechanical definition of exotic materials

The mechanical metamaterials are widely investigated in earlier work due to their superior mechan-

ical performances, as in the important contribution by Vannucci [9] on R0-orthotropic materials. The

number of independent elastic constants for this type of material is three, but they have only two or-

thogonal axes of symmetry, such property makes R0-orthotropic materials rather attractive for certain

applications, especially when linked to laminate manufacturing. Apart from the anisotropic materials, a

special isotropic material with negative Poisson’s ratio is raised long ago by Lakes [124], which is then

followed by subsequently related articles [125][126][127].

The goal of our research is to give a unified perspective towards these mechanical metamaterials and,

above all, to show that these cases scattered here and there in the literature can be shown to be the

special ones of what is obtained through the application of geometric tools presented in chapter 3.

To avoid being too abstract, we come back to 2D materials, and it can be observed in Table 6.3 that

for isotropic and tetragonal materials, the spatial symmetries imply the vanishing of invariant polyno-

mials. But this mechanism does not exhaust all possibilities since, for instance, no spatial symmetry

results from the conditions J2 = 0 or I3 = 0. It follows that if one wants to design a mesostructure such

that the effective elasticity tensor verifies these relationships, this cannot be done by imposing symmetry

restrictions alone. These relations must be imposed by a specific design of the mesostructure. This aspect

satisfies the first point of the properties defining exotic materials.

It may be tempting to define as exotic any material defined by the vanishing of polynomial quantities

not associated to a symmetry invariance. However, it is not sufficient because it does not produce a

paradoxical behaviour that is more symmetrical in appearance than expected.

As previously said, the mechanical definition of exotic materials is given out here:

4.1.1 Definition (Exotic materials)

An elasticity material will be said to be exotic, provided

1. it satisfies constraints independent of those that may be imposed by symmetry arguments;

2. its behaviour appears to be more symmetrical than that imposed by the material symmetries.

It should be noted that the second point excludes isotropic materials from the family of exotic materi-

als. Indeed, since the material is already fully isotropic, a specific design, even if possible and potentially

interesting, cannot produce a paradoxical increase in symmetry. Therefore, our definition here is adapted

to anisotropic exotic behaviours.

Elastic materials that do not fulfill this second requirement will be referred to as semi-exotic. Even

though such materials don’t have a symmetry-related paradoxical behaviour, some of them do have other

interesting physical performances. For 2D materials, a semi-exotic material will be introduced in sec-

tion 4.3.

In order to select from the many possibilities that really define exotic materials, we will recall the

geometrical considerations in section 3.6 and section 3.7. At the core of this approach is the clip product,

a tool for deducing the symmetry classes of a tensor space from its harmonic decomposition. It also
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4.2. EXOTIC ELASTIC MATERIALS: R0-ORTHOTROPY

allows us to distinguish the exotic sets from the symmetry classes.

It is important to note that this approach extends almost directly to 3D situations [102]. This is the

great strength of this approach.

4.2 Exotic elastic materials: R0-orthotropy

The symmetry classes of the harmonic bouquet {h
∼
,H
≈
} in K2⊕K4 are obtained by the different possible

clips of these elementary symmetry classes (obtained in section 3.6). Specifically, we have:

I(K2)⊚ I(K4) [D4] [O(2)]

[D2] [Z2] , [D2] [D2]

[O(2)] [D4] [O(2)]

Several things can be observed from this Ela partition:

1. non-nil covariants h
∼
and H

≈
generates classes:

• [Z2], which corresponds to a generic orientation of the pair (h
∼
,H
≈
), i.e.

(h
∼
∗ h

∼
)×H ̸= 0,

• [D2], which corresponds to the alignment of the pair, i.e.

(h
∼
∗ h

∼
)×H

≈
= 0.

2. the symmetry class [D2] is obtained in two different manners1

[D2](h
∼
,H
≈
) = {[D2]h

∼
⊚ [D4]H

≈
, [D2]h

∼
⊚ [O(2)]H

≈
},

It results that the stratum Σ[D2] can be divided into two subsets:

Σ[D2] = Σg[D2]
∪ Σe[D2]

.

with the harmonic bouquet being of type

(
[D2]h

∼
, [D4]H

≈

)
for Σg[D2]

while being

(
[D2]h

∼
, [O(2)]H

≈

)
for Σe[D2]

.

The first subset will be said generic2, while the second will be called exotic, their graphic representations

are given in Figure 4.1.

Elements in Σe[D2]
, which corresponds to the polynomial condition J2 = 0, satisfy the following points:

1. this restriction does not only come from a symmetry requirement but also should satisfy an extra

constraint;

2. the cancellation of H
≈
results in an orthotropic material for which the deviatoric elasticity is isotropic,

and thus more symmetrical than it should be. This will be clearer in the forthcoming Equation 4.2.

1The notation [H]X indicates the symmetry class of X
2It should be noted that Σg

[D2]
is divided into two separate connected components, the membership of an elastic material

to one or the other component is indicated by the sign of I3.
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Figure 4.1: Harmonic normal form of generic and exotic orthotropic elasticity tensors.

Thus, following the Definition 4.1.1, these materials are called exotic, and can be represented by the

harmonic components:

C
≈
= f(α, β, h

∼
, 0). (4.1)

The set of such elastic materials is located on the open ray ]OB) in Figure 3.4. It corresponds to a subset

of the stratum Σ[D2]. An important remark is that this property is not stable with respect to inversion.

The harmonic components for S
≈
= C

≈
−1 are denoted by {α−, β−, h

∼
−,H

≈
−}, and their expressions can be

found in Equation 3.12. It can be observed that, in the case of H
≈
= 0, the expression of H

≈
− reduces to,

H
≈
− =

2

∆
(2h

∼
∗ h

∼
) ̸= 0,

with ∆ ̸= 0. Hence,

C
≈
∈ Σe[D2]

⇒ S
≈
̸∈ Σe[D2]

.

and conversely. A symmetry class is intrinsic to an elastic material, it is a property that does not depend

on the choice of its description in terms of stiffness or compliance. Specifically, exotic sets of elastic

materials can not be considered as symmetry classes. It results that exotic orthotropic materials can

either be defined with respect to stiffness or with respect to compliance. But these materials are distinct

since their respective inverse are not exotic [9].

In the end, this gives the following complete structure of transition between the different strata:

Σ[Z2]

J2=0
{{

I22J2−2I23=0, J2 ̸=0

##
Σe[D2]

I2=0

��

Σg[D2]

I2=0

��
Σ[D4]

J2=0{{
Σ[O(2)]
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4.3. SEMI-EXOTIC ELASTIC MATERIALS: CAUCHY ELASTICITY

which can be detailed as a coupled elastic law (Equation 3.6) as followsH
≈
+ αJ

≈
1
2h∼

⊗ 1
∼

1
2 1∼

⊗ h
∼

βK
≈


J2=0xx

I22J2−2I23=0, J2 ̸=0

&& αJ
≈

1
2h∼

⊗ 1
∼

1
2 1∼

⊗ h
∼

βK
≈



I2=0

��

H
≈
+ αJ

≈
1
2h∼

⊗ 1
∼

1
2 1∼

⊗ h
∼

βK
≈


I2=0

��H
≈
+ αJ

≈
0

0 βK
≈


J2=0

xxαJ≈ 0

0 βK
≈


This gives the following anisotropic elasticity law for a R0-orthotropic materialσ

d

∼
= αε

∼
d + 1

2 tr(ε∼
s) h

∼

σ
∼
s = 1

2

(
h
∼
.. ε
∼
d
)
1
∼
+ βε

∼
s

. (4.2)

Finally, it can be shown that the set Σ
e

[D2] is stable by linear combinations, i.e. it is a linear vector space.

However, this property is not generically fulfilled by orthotropic tensors.

It should be noted that this is the only situation satisfying our definition that emerges through the

clips product analysis. This exotic situation has been identified in the literature and is sometimes known

as the R0-orthotropy
3, while those in compliance are referred to as r0-orthotropic. We just demonstrate

that it is the only exotic possibility for Ela. For example, the apparently interesting case corresponding

to I3 = 0, does not produce a paradoxical symmetric situation and therefore cannot be considered as

an exotic elastic material. This situation is called semi-exotic. The following section will introduce an

example of semi-exotic materials.

4.3 Semi-exotic elastic materials: Cauchy elasticity

It is a well-known fact that by imposing an extra constraint, the index symmetry of the elasticity tensor

can be increased. As a result, it becomes completely symmetric with respect to index permutation. The

constraint to be imposed is usually known as the Cauchy relation [128, 129]. Does Cauchy relation define

an exotic set of materials? The answer is given in 2D by the following results:

Lemma 4.1. A 2D elasticity tensor C
≈

with an explicit expression

C
≈
= αJ

≈
+ βK

≈
+

1

2
(1
∼
⊗ h

∼
+ h

∼
⊗ 1

∼
) + H

≈
,

3This name comes from the polar parameterization of bi-dimensional elasticity tensors [9]
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4.4. GENERALISATION TO OTHER CONSTITUTIVE LAWS

is totally index symmetric if and only if

2α = β. (4.3)

Proof. Following the definition of harmonic tensors, the anisotropic part of an elasticity tensor denoted

by C
≈
= f(0, 0, h

∼
,H
≈
) is totally symmetric4. As a result, we focus here on the isotropic part. The isotropic

elasticity tensor reads:

C
≈
= αJ

≈
+ βK

≈
.

In the case of 2D, some properties are satisfied:

J
≈
=

1

2
(I2
≈
+ I3

≈
− I1

≈
), K

≈
=

1

2
I1
≈
,

and a totally symmetric tensor C
≈
sym is defined by:

C
≈
sym = λ(I1

≈
+ I2

≈
+ I3

≈
)

with λ any real number, (I1
≈
)ijkl = δijδkl, (I2

≈
)ijkl = δilδjk and (I3

≈
)ijkl = δikδjl.

We get

C
≈
=
β

2
I1
≈
+
α

2
(I2
≈
+ I3

≈
− I1

≈
).

2α = β implies that C
≈

is totally symmetric because the coefficients for I1
≈
, I2

≈
and I3

≈
are identical, and

vice versa.

This result can also be obtained using the polar formalism T0 = T1, which can be deduced from Equa-

tion 3.9, and is firstly given in [130].

Obviously, this constraint can not be only enforced by imposing symmetry requirements and hence

resorting on a specific design. Since relying on a constraint upon isotropic components, the resulting

behaviour does not produce a paradoxical increase of symmetry. Hence, in 2D, and according to a strict

application of our definition, the set of Cauchy anisotropic materials is not an exotic set but a semi-exotic

one5. The advantage of such materials is, that since the two isotropic components are related, their

material modulus, e.g. Young’s modulus and bulk modulus are isotropic.

Since the Equation 3.12 provides expressions for the covariants of S
≈
in terms of those of C

≈
, we have:

 α− = 1
4△ (4α2 − h

∼
: h
∼
)

β− = 1
2△ (2α2 −H

≈
:: H

≈
)

⇒ 2α− ̸= β−

which shows that the Cauchy relations cannot be satisfied at the same time by C
≈

and S
≈
, meaning that

this property is not stable by inversion.

4.4 Generalisation to other constitutive laws

The aim of this section is twofold. First, it will be a question of deriving a general result concerning

linear constitutive laws in R2. We will then illustrate this result in two non-trivial situations (subsec-

tion 4.4.2).

4It is a very specific case of R2 that the tensor (1
∼
⊗ h

∼
+ h

∼
⊗ 1

∼
) belongs to S4(R2)

5The 3D response is different anyway and leads to a truly exotic set of materials.
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4.4. GENERALISATION TO OTHER CONSTITUTIVE LAWS

4.4.1 A general theorem

The approach used for elasticity in section 3.3 and 4.2 can be generalised to any linear constitutive

law in R2 based on the fact that in R2, harmonic spaces are bi-dimensional. To obtain the number of

exotic sets, one must enumerate all the particular geometric configurations that can occur between the

components of the harmonic decomposition of a given tensor. In practice, one must enumerate:

• the number of possible cancellations of harmonic components;

• for a given configuration, the number of possible alignments between the non-zero harmonic com-

ponents.

and subtract from this the number of symmetry classes. The number of exotic sets is given by the

following result:

Theorem 4.1: The number of exotic anisotropic sets of T

Consider T a space of bidimensional constitutive tensors. Let N and M be, respectively, the

number of harmonic spaces of order > 0 and −1 in the harmonic structure of T. The number of

exotic anisotropic sets of T is

♯E =

(
N∑
p=0

(
N

p

)
(2p − p)

)
2M − ♯C.

with ♯C the number of O(2) symmetry classes of T.

Proof. As indicated by Theorem 3.2, the symmetry classes of Kn are:

I(Kn) =


n ≥ 1, {[Dn] , [O(2)]}

n = −1, {[SO(2)] , [O(2)]}

n = 0, {[O(2)]}

.

Thus, the K0 play no role in the counting of classes, the K−1 are on or off but independent of orientation,

while the non-zero Kn≥1 have an orientation. It results that, for p, q ≥ 1,

I (Kp ⊚Kq) = {
[
Zd(p,q)

]
,
[
Dd(p,q)

]
, [Dp] , [Dq] , [O(2)]}.

with d(p, q) := gcd(p, q). Since no relative orientation is involved, the situation is simpler when p = q = −1

and

I
(
K−1 ⊚K−1

)
= {[SO(2)] , [O(2)]}.

Therefore, the presence of M harmonic spaces of type K−1 in the harmonic decomposition of T generate

2M different combinations.

Let N , the number of harmonic spaces Kn≥1 in the harmonic decomposition of T. Let us first assume

that none of the associated harmonic components is zero. We then have a collection of N non-zero

vectors. Among them, some can be aligned with others. We need to count the different alignments that

can occur. There is a configuration with no alignment,
(
N
2

)
configurations with a pair of aligned vectors,(

N
3

)
with 3 vectors, and so on... In the end, we can count 2N −N configurations going from the generic

configuration to the complete alignment. Suppose now that among those N harmonic components p of

them are null. There are
(
N
p

)
different manner to cancel p components among N , and each of them

generated 2p − p alignment configurations. Hence, by combining the vanishing and the alignments of
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4.4. GENERALISATION TO OTHER CONSTITUTIVE LAWS

harmonic components we obtain (
N∑
p=0

(
N

p

)
(2p − p)

)
,

different configurations generated by harmonic tensors of order greater than 0. The total number of

configurations is then obtained by taking into account the configurations of hemitropic components K−1,

hence

♯S =

(
N∑
p=0

(
N

p

)
(2p − p)

)
2M .

To obtain the number of exotic situations, we need to remove those that generate genuine symmetry

classes. Thus, the final formula used to obtain the number of exotic sets shown in Theorem 4.1 is

obtained.

4.4.2 Application to coupled constitutive laws

This result is applied here to two classical coupled constitutive laws in the literature: piezoelectric-

ity [131] and Cosserat elasticity [132].

Piezoelectricity

This constitutive law couples the mechanical state with the electric one. The electrical state is

described by two vector fields: the electric displacement d
∼
and the electric field e

∼
. As in the mechanical

situation, these fields are connected by a constitutive law that describes the behaviour of each different

material. For linear conductivity, this relation can be written

d
∼
= S

∼
· e
∼

in which S
∼

is a second-order tensor, known as the permittivity tensor [133]. For non-centro symmetric

materials, these two phenomena are not independent but coupled [133]. In this situation, the constitutive

law reads σ∼ = C
≈
: ε
∼
− P

≃
· e
∼

d
∼
= P

≃
: ε
∼
+ S

∼
· e
∼

(4.4)

in which a third-order tensor P
≃
, known as the piezoelectricity tensor, responsible for the coupling appears6.

The different constitutive tensors are summed up in the following table.

Tensor Symmetries T Physical meaning

C
≈

T(ij) (kl) Ela Fourth-order elasticity tensor

P
≃

Ti(jk) Piez Piezoelectric tensor

S
∼

T(ij) Con Dielectric susceptibility tensor

The determination of the number of exotic sets requires the knowledge of the harmonic structure of

the constitutive tensors. These structures together with the number of exotic sets are provided in the

table below:

6Depending on the considered set of primary variables, four different conventions can be used to express the law of
piezoelectricity [134]. The one chosen here is regarded as the most general according to the IEEE Standard on Piezoelec-
tricity [134]. In any case, the results are independent of the chosen convention
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T H N M ♯S ♯C ♯E
Ela 2K0 ⊕K2 ⊕K4 2 0 5 4 1

Piez 2K1 ⊕K3 3 0 15 4 11

Con K0 ⊕K2 1 0 2 2 0

We denote the space of the piezoelectric law by Piez, its harmonic structure is obtained from those

of the constitutive tensors that compose it

Piez = 3K0 ⊕ 2K1 ⊕ 2K2 ⊕K3 ⊕K4.

Knowing that this law has 7 symmetry classes, the number of exotic sets is then determined

N = 6; M = 0; ♯C = 7 ⇒ ♯E = 530.

We observe that the number of exotic sets of the coupled law is not the sum of the exotic set of its

constituents.

Cosserat elasticity

We consider here the classical formulation of Cosserat elasticity in small-strain as introduced for in-

stance in [135, 136], using the linear stretch strain tensor e
∼
and the linear wryness tensor κ. By duality,

we define the stress tensors: s
∼

the asymmetric stress tensor, and m the couple-stress tensor. It should

be emphasised that in contrast to the standard elasticity, the strain and stress tensors e
∼
and s

∼
are not

symmetric. Consequently, the constitutive law of linear Cosserat elasticity is expressed as:s
∼
= A

≈
.. e
∼
− B

≃
. κ

m = B
≃
T .. e

∼
+ d

∼
. κ

The harmonic structure of this coupled elastic law has been derived in [132], and associated results are

provided in the following table:

Tensor Symmetries T H N M ♯S ♯C ♯E
A
≈

Tij kl Cos K−1 ⊕ 3K0 ⊕ 2K2 ⊕K4 3 1 30 6 24

B
≃

Tijk Cou 3K1 ⊕K3 4 0 49 4 45

d
∼

T(ij) Rot K0 ⊕K2 1 0 2 2 0

Table 4.1: Number of exotic sets for tensor spaces in linear cosserat elasticity

We denote by Cos the space of the Cosserat elasticity law, its harmonic structure is obtained from

those of the constitutive tensors that compose it

Cos ≃ K−1 ⊕ 4K0 ⊕ 3K1 ⊕ 3K2 ⊕K3 ⊕K4.

Knowing that this law has 10 symmetry classes [132], the number of exotic sets is then determined:

N = 1; M = 1; ♯C = 10 ⇒ ♯E = 11064.

Following these two examples, we can observe that the number of exotic sets for a given constitutive tensor

space is significantly greater than the sum of the numbers of exotic sets for its constituent subspaces.
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Chapter 5

Mesostructure design of 2D exotic

materials

5.1 Multi-scale based homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Topological sensitivity of the homogenized elasticity tensor . . . . . . . . . . . . . . . . . 67

5.3 Topological derivative-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Finite element implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Numerical result for exotic material: R0-Orthotropy . . . . . . . . . . . . . . . . . . . . . 78

5.6 Numerical results for semi-exotic material: Cauchy elasticity . . . . . . . . . . . . . . . . 79

5.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

The proposed exotic and semi-exotic materials will be designed by mesostructure in this chapter. We

will use the level set-based topological derivative algorithm introduced by S. Amstutz et al. in [2].

This chapter is organized as follows. First, in section 5.1, a comprehensive review of the multi-scale

based homogenization technique is presented, aiming to derive the macroscopic elasticity tensor. In

section 5.2, we introduce the concept of topological sensitivity derived from the asymptotic expansion,

which serves as the fundamental component of the topological derivative algorithm. Following that, the

level set-based topological derivative algorithm in [2] is introduced in section 5.3. Subsequently, we present

the implementation of this algorithm in section 5.4, along with several numerical examples in section 5.5

and section 5.6, these are materials already discussed in the literature, but their mesostructure design

has never been realized.

62



5.1. MULTI-SCALE BASED HOMOGENIZATION

5.1 Multi-scale based homogenization

Beyond the external geometry control in the structural optimisation of a material, the recent progress

in additive manufacturing enables microstructure control within the printed geometry, which leads to the

increased popularity in the design of architectured materials. This issue has been well discussed in the

vast related literature [137, 138], which proposes a systematic shape optimisation based on the classic

method of shape sensitivity. However, the main drawback is that it cannot vary the topology of the ini-

tial configuration. We introduce in this chapter a topology optimisation algorithm based on the so-called

multi-scale constitutive theories [139, 140, 2].

Let D be a bounded and open subset of Rn (n = 2, 3). A macro-continua solid is therefore modelised

by a closed domain Ω ⊂ D, and any point X (the corresponding coordinate is x) of the macro-continua

solid (Figure 5.1) is associated to a local Representative Volume Element (RVE) with its domain denoted

by Ωµ and the boundary ∂Ωµ. Its characteristic length Lµ is much smaller than the characteristic length

L of the macro-continua domain Ω. And the coordinate of any point Y is denoted by y ∈ Ωµ. Such

theories enable the connection between micro-geometric inputs and macroscopic mechanical behaviour

response, as a result of the use of homogenization techniques (detailed in later content of this section).

Figure 5.1: Macro-continua solid with a local microstructure

The optimisation problems encountered in this work are modeled as follows:

min
Ωµ∈E

J(Ωµ,u(x, y)) (5.1)

which is to minimize the cost function J(Ωµ,u(x, y)) with u(x, y) the solution of a certain PDE posed in

Ωµ, we note later J(Ωµ,u(x, y)) = J(Ωµ).

Some methods are proposed in the literature for addressing this issue (Equation 5.1) in topology

optimization problems:

• the SIMP (Solid Isotropic Material with Penalization) method [3, 141];

• the level-set based shape optimization [14, 96];

• the topological derivative method [1].

In this work, we will concentrate on the last method combined with a level-set domain representa-

tion [2]. Unlike the conventional level-set methods relying on the use of the Hamilton-Jacobi equation

(firstly proposed by S.Osher [93]), which is highly dependent on the initial guess, the proposed topological
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derivative allows the nucleation of a new hole in the domain.

Based on the original RVE domain Ωµ, to apply the concept of topological asymptotic expansion and

topological derivative in the framework of multi-scale model, we define the perturbation domain Ωµρ
by

first introducing a circular hole Hρ of radius ρ centered at an arbitrary point Y ∈ Ωµ and then fill this hole

by a circular inclusion Iρ of a different material. The perturbed domain is defined as Ωµρ
= (Ωµ\Hµ)∪Iρ

(Figure 5.2).

Figure 5.2: Topological perturbation at microscale

We follow here the method as introduced by Armstutz in [11, 2], for which four ingredients are

considered:

• the strain/stress averaging relation: the macroscopic strain/stress tensor of a point in the macro-

scopic continuum is described as the volume average of its microscopic counterpart;

• the choice of the space of kinematically admissible displacement fluctuations;

• the mechanical equilibrium of the RVE;

• the Hill-Mandel principle of macro-homogeneity which connects the relation between micro- and

macro-scales.

The strain and stress averaging relation

We begin with the assumption that the macroscopic strain tensor at a point X of the macro-continua

solid, denoted by ε̄
∼
, is defined as the volume average1 of its microscopic strain field ε

∼
(y) := ▽su(y) over

the RVE:

ε̄
∼
=

1

Vµ

∫
Ωµ

▽su(y) dV (5.2)

with Vµ the volume of Ωµ and ▽s the symmetric gradient operator. The strain tensor at y ∈ Ωµ consists

of two parts: an average contribution ε̄
∼
and a fluctuation part ε̃

∼
(y):

ε
∼
(y) = ε̄

∼
+ ε̃

∼
(y) (5.3)

In the same manner, the microscopic stress field is defined as:

σ
∼
(y) = σ̄

∼
+ σ̃

∼
(y)

1To simplify the notation, any macroscopic quantity a(x) on point X ∈ Ω defined as the volume average over Ωµ will be
abbreviated to ā.
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with the macroscopic stress tensor σ̄
∼

obtained by the volume average of this microscopic stress field,

meaning σ̄
∼
=
∫
Ωµ
σ
∼
(y) dV .

Space of kinematically admissible displacements

Generally, the displacement is decomposed into three parts:

u(x, y) = u(x) + ε̄
∼
· y + ũ(y) (5.4)

u(x) represents the rigid displacement of the point x, ε̄
∼
·y is the linear displacement component based on

the idea of average strain and ũ(y) is the displacement fluctuation field. However, the rigid displacement

u(x) will not be taken into account in the following, which allows an additional constraint of zero average

of the fluctuation field such that
∫
Ωµ

ũ(y) dV = 0.

Thus, the Equation 5.4 can be reduced to:

u(y) = ε̄
∼
· y + ũ(y)

Based on this, we define the minimally constrained space Ũµ of kinematically displacements so that any

fluctuation displacement ũ(y) is encompassed by this space:

Ũµ := {v ∈ [H1(Ωµ)]
2 :

∫
Ωµ

v dV = 0,

∫
∂Ωµ

v ⊗s n dS = 0}

with H1(Ωµ) the Sobolev space.

However, this constraint on kinematically admissible displacements is not sufficient, the complete

characterization of the multi-scale model is obtained by defining a subspace of kinematically admissible

displacement fluctuations Uµ ⊂ Ũµ. Three different cases of Uµ are discussed in [2]. In this work, since the

mesostructure is generated by periodic repetition. The displacement fluctuations must satisfy periodic

conditions on the boundary of the RVE. We have:

Uµ := {ũ ∈ Ũµ : ũ(y+) = ũ(y−), ∀(y+, y−) ∈ P} (5.5)

with P the set of corresponding one-to-one periodicity points on opposite sides of the RVE boundary.

Mechanical equilibrium of RVE

We assume here that the external surface loads and body force field of the RVE vanish. The principle

of virtual work establishes that the RVE is in equilibria if and only if the variational equation holds:∫
Ωµ

σ
∼
(y) : ▽sη dV = 0 ∀η ∈ Uµ (5.6)

with σ
∼
(y) denotes its microscopic stress field. This variational equation of equilibria over the RVE can be

equivalently written in the strong form, which can be found in [1]. This information will not be presented

here as it is not relevant to the subsequent content.

The microscopic stress tensor field σ
∼
(y) satisfies:

σ
∼
(y) = C

≈
(y) : ▽su(y)
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C
≈
(y) is a pointwise fourth-order isotropic elasticity tensor field. Our work now is to find the displacement

field u(y) in Ωµ which satisfies this linear elasticity system.

Hill-Mandel principle of macro-homogeneity

The Hill-Mandel principle of macroscopic homogeneity [142, 143], which connects the mechanical

energies of the micro- and macro-scales, plays a fundamental role in the formulation of multi-scale con-

stitutive models:

Lemma 5.1. Let ε
∼
(y) be a kinematically admissible strain field and σ

∼
(y) be a statically admissible stress

field, then [144]:

1

Vµ

∫
Ωµ

σ
∼
(y) : ε

∼
(y) dV − σ̄

∼
: ε̄
∼
=

1

Vµ

∫
∂Ωµ

ũ(y) · σ̃
∼
(y) · n dV (5.7)

The periodic boundary of fluctuation displacement results in ũ(y) periodic and σ̃
∼
(y) anti-periodic.

(5.7) can be simplified by:
1

Vµ

∫
Ωµ

σ
∼
(y) : ε

∼
(y) dV − σ̄

∼
: ε̄
∼
= 0 (5.8)

Variational formulation

Lemma 5.2. It exists ũ(y) ∈ Uµ so that:∫
Ωµ

( ε̄
∼
+ ▽sũ(y)) : C

≈
(y) : ▽sη dV = 0 ∀η ∈ Uµ (5.9)

Proof. (5.3)+(5.4)+(5.8):

1

Vµ

∫
Ωµ

σ
∼
(y) : ( ε̄

∼
+ ε̃

∼
(y)) dV − σ̄

∼
: ε̄
∼

=
1

Vµ

∫
Ωµ

σ
∼
(y) : ε̄

∼
dV +

1

Vµ

∫
Ωµ

σ
∼
(y) : ε̃

∼
(y) dV − σ̄

∼
: ε̄
∼

=
1

Vµ

∫
Ωµ

σ
∼
(y)dV : ε̄

∼
+

1

Vµ

∫
Ωµ

σ
∼
(y) : ε̃

∼
(y) dV − σ̄

∼
: ε̄
∼

= σ̄
∼
: ε̄
∼
+

1

Vµ

∫
Ωµ

σ
∼
(y) : ε̃

∼
(y) dV − σ̄

∼
: ε̄
∼

=
1

Vµ

∫
Ωµ

σ
∼
(y) : ε̃

∼
(y) dV

= 0

Since σ
∼
(y) = ( ε̄

∼
+ ε̃

∼
(y)) : C

≈
(y) and ε̃

∼
(y) = ▽sũµ(y), Equation 5.9 is proved.

The above variational formulation (5.9) is not well-posed because of the existence of rigid body

motions. This is done by considering an additional vectorial penalisation parameter λ and considering

the following variational problem:

Find (ũµ(y), λ) ∈ Uµ × R2 such that:∫
Ωµ

( ε̄
∼
+ ▽sũ(y)) : C

≈
(y) : ▽sη dV +

∫
Ωµ

(λη + λ̂ũ(y)) dV = 0 ∀(η, λ̂) ∈ Uµ × R2 (5.10)
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The homogenized elasticity tensor

The scalar-valued cost functions J(Ω) for the optimization of architectured materials in this work are

defined in terms of homogenized elasticity tensors. As noted by S.Amstutz in [2], this can be obtained by

the method proposed in [145]. More specifically, it is realized by rewriting Equation 5.10 as a superposition

of linear problems associated with the individual Cartesian components of the macroscopic strain tensor.

The components of the homogenized elasticity tensor C
≈
, in the orthonormal basis B, can be written as:

Cijkl =
1

Vµ

∫
Ωµ

(σ
∼
(u(kl)(y)))ij dV (5.11)

with respect to the Equation 5.4, the canonical microscopic displacement field u(kl)(y) associated with

the strain tensor ε
∼
(kl) = ek ⊗ el is the sum of:

u(kl)(y) = (ek ⊗ el) · y + ũ(kl)(y)

So that the homogenized tensor component in Equation 5.11 can be obtained by the variational formu-

lation 5.10 by substituting ũ(y) with ũ(kl)(y):∫
Ωµ

( ε̄
∼
+ ▽sũ(kl)(y)) : C

≈
(y) : ▽sη dV +

∫
Ωµ

(λη + λ̂ũ(kl)(y)) dV = 0 ∀(η, λ̂) ∈ Uµ × R2 (5.12)

5.2 Topological sensitivity of the homogenized elasticity tensor

To simplify the analysis, only two phases will be considered for the unit cell: the matrix phase denoted

by Ωmµ and the inclusion phase denoted by Ωiµ. The perturbation Iρ is of the same material property and

the inclusion phase, we have Iρ ⊂ Ωiµ . The pointwise elasticity tensor C
≈
(y) in Equation 5.11 is defined

as:

C
≈
(y) :=

E(y)

1− ν2(y)
[(1− ν(y)) I

≈
+ ν(y)(1

∼
⊗ 1

∼
)]

with E(y) and ν(y) Young’s modulus and Poisson’s ratio field of the RVE:

E(y) :=

{
Em y ∈ Ωmµ

Ei y ∈ Ωiµ
and ν(y) :=

{
νm y ∈ Ωmµ

νi y ∈ Ωiµ
(5.13)

It will be assumed that Ei = γEm, and νi = νm = ν, with γ defining the contrast between Young’s

modulus of the matrix phase and the inclusion phase. The domain Ωiµ will be considered as void when

γ → 0.

The homogenized elasticity tensor for the unperturbed RVE domain Ωµ is denoted by C
≈
. Within the

above context, the topological asymptotic expansion of C
≈

reads [2]:

Theorem 5.1: Topological asymptotic expansion of C
≈

The topological asymptotic expansion of the macroscopic homogenised elasticity tensor C
≈

in the

present context is given by

C
≈
ρ(y) = C

≈
+ f(ρ)DTC≈

(y) + o(ρ2)

in which

• C
≈
ρ(y): the microscopic elasticity tensor of perturbed domain Ωρµ, the corresponding macroscopic
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homogenised elasticity tensor reads C
≈
ρ;

• f(ρ): the volume fraction of the inserted inclusion, defined by:

f(ρ) =
πρ2

Vµ

f(ρ) → 0 when ρ→ 0 and o(ρ2) contains all terms of higher order of f(ρ).

• DTC≈
(y): the topological derivative of C

≈
for the unperturbed domain Ωµ. It is a fourth-order tensor

field with its Cartesian components read:

(DTC≈
)ijkl(y) = σ

∼
(u(ij)(y)) : H

≈
(y) : σ

∼
(u(kl)(y)) (5.14)

it provides a rigorous first-order approximation to the change of C
≈

resulting from the insertion of

a circular inclusion of radius ρ at y ∈ Ωmµ . The field u(ij)(y) and u(kl)(y) can be obtained by the

solution of Equation 5.12 and the fourth order tensor H
≈
(y) is defined as

H
≈
(y) := − 1

E
(
1− γ∗

1 + αγ∗
)[4 I

≈
− 1− γ∗(α− 2β)

1 + βγ∗
(1
∼
⊗ 1

∼
)] (5.15)

with γ∗ = γ if y ∈ Ωmµ and γ∗ = 1/γ if y ∈ Ωiµ. And

α =
1 + ν

1− ν
β =

3− ν

1 + ν

For the case of γ → 0, the tensor H
≈
(y) in Equation 5.15 will be simplified by:

H
≈
(y) :=


− 1

E
(4 I

≈
− 1

∼
⊗ 1

∼
) y ∈ Ωmµ

1

αE
(4 I

≈
+
α− 2β

β
(1
∼
⊗ 1

∼
)) y ∈ Ωiµ

(5.16)

The detailed derivation of the topological derivative of C
≈

can refer to [2].

5.3 Topological derivative-based algorithm

The previous analytical formula of topological derivative (Equation 5.14) provides an efficient strat-

egy for topology optimization problems. We will use it as a descent direction in the level-set domain

representation [1, 11]. A brief summary of this algorithm is provided below.

We begin by adapting the optimisation problem in Equation 5.1 into the present context as follows:

min
Ωm

µ ⊂Ωµ

J(Ωmµ ) = h(C
≈
) + λv

|Ωmµ |
Vµ

(5.17)

in which λv is a fixed2 penalisation parameter imposing a constraint on the volume ratio of Ωmµ , i.e.

fv =
|Ωm

µ |
Vµ

and h is a generic function of the homogenized elasticity tensor C
≈
. In the following sections, C

≈
is used to characterize optimised effective properties in the corresponding microstructure synthesis. For

instance, the properties of interest such as the homogenised Young’s, shear and bulk moduli. To this end,

it is convenient to define the following types of functions h(C
≈
):

2the value will not be changed throughout the iterations of optimisation. We have proposed to update it during the
optimisation process with RL-Dual Gradient Descent method. However, we have decided against applying it here due to
its requirement for an outer loop and its associated high computational cost.
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• the first type

h(C
≈
) = C

≈
−1 :: φ

∼

mn ⊗ φ
∼

pq

of which φ
∼
mn and φ

∼
pq are second-order tensors with φ

∼
mn = em⊗ en, it is yet to be defined for each

specific case.

• the second type

h(C
≈
) =

C
≈
−1 :: φ

∼
mn ⊗ φ

∼
pq

C
≈
−1 :: φ

∼
kl ⊗ φ

∼
rs

• the third type

h(C
≈
) = C

≈
:: φ

∼

mn ⊗ φ
∼

pq

• the fourth type

h(C
≈
) = (C

≈
:: φ

∼

mn ⊗ φ
∼

pq)(C
≈
:: φ

∼

kl ⊗ φ
∼

rs)

The topology sensitivity of C
≈

in Equation 5.14 as well as the construction of h(C
≈
) allows the exact

derivative of the cost function J(Ωmµ ) by the application of the conventional rules of differential calculus:

DTJ(Ω
m
µ )(y) = ⟨Dh(C

≈
), DTC≈

(y)⟩+ λv (5.18)

in which ⟨·⟩ denotes the appropriate product between Dh(C
≈
) the derivative of h and DTC≈

(y) the topo-

logical derivative of C
≈
. More specifically, the topological derivative of the cost function J with respect to

the above four types of the function h is completed:

• the first type

DTJ(Ω
m
µ )(y) = −(C

≈
−1 : DTC≈

(y) : C
≈
−1) :: φmn ⊗ φpq + λv

• the second type

DT J(Ωm
µ )(y) =

−(M
≈

:: φmn ⊗ φpq)(C
≈
−1 :: φkl ⊗ φrs) + (M

≈
:: φkl ⊗ φrs)(C

≈
−1 :: φmn ⊗ φpq)

(C
≈
−1 :: φkl ⊗ φrs)2

+ λv

with M
≈

= C
≈
−1 : DTC≈

(y) : C
≈
−1.

• the third type

DTJ(Ω
m
µ )(y) = DTC≈

(y) :: φmn ⊗ φpq + λv

• the fourth type

DT J(Ωm
µ )(y) = (DTC

≈
(y) :: φmn ⊗ φpq)(C

≈
:: φkl ⊗ φrs) + (DTC

≈
(y) :: φkl ⊗ φrs)(C

≈
:: φmn ⊗ φpq) + λv

The aforementioned topological derivative formulations are used to measure the sensitivity of J to

changes in the topology. To minimize the cost function in Equation 5.17, these formulations provide

a feasible descent direction and thus allow the algorithm to interchange matrix materials and inclusion

materials. This procedure relies on a level-set domain representation described below. The detailed al-

gorithm is devised by S. Amstutz in [1].
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With the adoption of a level-set domain representation, the material domain Ωiµ and Ωmµ is charac-

terised by a function ψ ∈ L2(Ωµ) such that:

Ωmµ = {y ∈ Ωµ, ψ(y) < 0}, (5.19)

Ωiµ = {y ∈ Ωµ, ψ(y) > 0}. (5.20)

According to [1], an obvious sufficient condition of local optimality of Equation 5.17 under circular

inclusion perturbations is:

DTJ(Ωµ)(y) > 0 y ∈ Ωµ (5.21)

In order to devise a level set-based algorithm that generates a topology satisfying Equation 5.21, it is

advantageous to introduce a topological gradient function g(y):

g(y) :=

{
− DTJ(Ω

m
µ )(y) y ∈ Ωmµ

DTJ(Ω
i
µ)(y) y ∈ Ωiµ

(5.22)

By definition, at a point y ∈ Ωµ, the topological gradient g(y) is a number that measures the sensitivity

of the criterion J(Ωµ)(y) with respect to the creation of a small hole around y. Thus, the condition 5.21

is satisfied if the following equivalent condition is fulfilled:

θ := arccos

[ ⟨g, ψ⟩
∥g∥L2∥ψ∥L2

]
= 0 (5.23)

with g and ψ denote the vectors which store all the pointwise values of the function g(y) and ψ(y) at

point y ∈ Ωµ. The inner product ⟨·, ·⟩ and the norm ∥·∥ refer to the Hilbert space L2(Ωµ). θ is the

non-oriented angle between the vectors g and ψ. The optimality condition is satisfied when θ is smaller

than a pre-specified convergence tolerance ϵθ.

Figure 5.3: Illustration of vectors g and ψ

Let us now discuss the level set function of i-th iteration, denoted by (ψi(y))i∈N, which describes

the corresponding RVE topologies. It provides successive approximations to the sufficient optimality con-

dition 5.23. We define firstly Pψ(y)⊥ the orthogonal projector onto the orthogonal complement of ψ(y), i.e.

Pψ(y)⊥(g(y)) = g(y)−
⟨g, ψ⟩∥∥ψ∥∥2

L2

ψ(y) (5.24)

The resulting vector of Pψ(y)⊥(g(y)) is denoted by Pψ⊥(g). The sequence (ψi)i∈N of level set functions:
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ψi+1(y) = cos(κiθi)ψi(y) + sin(κiθi)
Pψ⊥

i
(g(y))∥∥∥Pψ⊥
i
(g)
∥∥∥ (5.25)

with κi ∈ [0, 1] the step size (yet to be defined) and θi defined in Equation 5.23.

By using trigonometric formulas, and normalizing the level set function in each iteration (
∥∥ψi

∥∥
L2 = 1),

the following relation is obtained:

ψi+1(y) =
1

sin θi

[
(sin ((1− κi)θi)ψi(y) + sin (κiθi))

gi(y)∥∥gi∥∥ L2

]
(5.26)

as it indicates, the updated level set function ψi+1(y) depends on the step size value, which combines

the previous level set function ψi(y) and topological gradient function gi(y): the larger the step size, the

greater the impact of perturbation factor from gi(y) will be taken into account.
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5.4 Finite element implementation

The finite element implementation has been done for FEniCS version 2019.1.0, and the code can be

downloaded at “A level set based optimisation code using FEniCS”.

The present algorithm is of simple implementation, since exact formulas are given for each step, no

artificial algorithmic parameters or post-processing strategies are required throughout the iterations. The

computation starts from the finite element discretization of the Equation 5.12, the nodal-valued solution

of ũ(kl) under the periodic boundary condition 5.5 is obtained. Then the homogenized elasticity tensor

C
≈

and its topological derivative DTC≈
are completed respectively with Equation 5.11 and Equation 5.14.

These two solutions will be used for the computation of DTJ with Equation 5.18. The updated level

set function ψi+1(y) is generated according to Equation 5.26, which is a linear combination between

the known function ψi(y) and the corresponding function gi(y) (it depends on DTJ according to Equa-

tion 5.22). In this step, a finite element approximation by a smoothed nodal version of gn will be used.

The material associated by Ωmµ (resp. Ωiµ) is assigned to the field with negative (resp. positive) level set

function value. From the description above, we propose an overall algorithm:

Algorithm 1 A level set-based optimisation algorithm

Initialization: Choose an initial level set function ψ0 and an initial step κ0.
if The target value of J is not reached then ▷ stopping criteria in Appendix B

Construct the domain Ωµ by (5.19)
Solve the elasticity problem (5.12)
Compute the topological gradient g(y) by (5.22)
Update the level set function by (5.26)
if Ji+1 > Ji then

Line search by adjusting the step size ▷ line search process in Appendix B
Update the level set function

else if Ji+1 < Ji then
Continue

end if
else if The target value of J is reached then

if Optimality condition is not satisfied then
Refinement of RVE

else if Optimality condition is satisfied then
Stop

end if
end if

A complete flowchart of this algorithm is given in Appendix B. It can be seen that the implementation

process described previously is primarily based on the fundamental mathematical framework. In addition

to this, it also includes other crucial implementation processes: subdomain definition, line search as well

as stopping criteria. They are all detailed in Appendix B.

Here, we come up with some numerical examples:

5.4.1 Initialization

The RVE domain is taken as a unit square cell Ωµ = (0, 1) × (0, 1) with Vµ = 1, the mesh is built

using the line:

1 mesh=RectangleMesh(Point (0.0 ,0.0),Point (1,1),Nx,Ny,"crossed")
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The class RectangleMesh creates a mesh in a 2D rectangle spanned by two points (opposing corners)

of the rectangle. The arguments Nx, Ny specify the number of divisions in x and y directions, and the

optional argument crossed means that each square of the grid is divided into four triangles realized by

the crossing diagonals of the square. The choice of this mesh type is crucial for achieving symmetric

deformation, thereby ensuring consistent symmetry in the design throughout the optimization iterations.

We set initially Nx=Ny=40 and the initial topology is given by the following level set function:

ψ(y) =
1

N
(cos2 (π (yx − 0.5)) cos2 (π (yy − 0.5))− 0.5) (5.27)

0.250.25 0.30.3 0.350.35 0.40.4 0.450.45 0.50.5 0.550.55 0.60.6 0.650.65 0.70.7 0.750.75
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Figure 5.4: Illustration of the initial level set function

with y = (yx, yy) the coordinate of the point y ∈ Ωµ and N is the normalizing constant that ensures

∥ψ∥L2 = 1. The initial topology of the RVE domain is illustrated as follows:
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Figure 5.5: Initial microstructure (a) Initial finite element mesh adopted and (b) Initial topology

The mesh consists of 6400 triangular elements and a total of 3281 nodes. Note that the level set based

RVE domain topology depends directly on the fineness of the mesh (i.e. the rough contour in Figure 5.5a),

a uniform mesh refinement will be used throughout the iterations to further improve the accuracy of the

results and the resolution of the optimized topology.

73



5.4. FINITE ELEMENT IMPLEMENTATION

The elasticity parameters of Young’s modulus and Poisson ratio used for each phase are Em = 1,

Ei = γ∗ and νm = νi = 0.3. Following the Kelvin convention, we write the homogenized elasticity tensor

C
≈

of the initial topology in Figure 5.5a in matrix form:

[C
≈
] =


0.646 0.167 0

0.167 0.646 0

0 0 0.344


K

⇒ [C
≈
−1] =


1.659 −0.429 0

−0.429 1.659 0

0 0 11.300


K

(5.28)

it is of tetragonal symmetry (I2 = 0 and J2 ̸= 0 in section 3.7). Since the effective material prop-

erties, i.e. the Young’s, bulk and shear moduli as well as the Poisson’s ratio (numerical result given

in subsection 5.4.2), are all related to the component of the compliance tensor S
≈
(S
≈
= C

≈
−1), its Kelvin

representation is:

[S
≈
] =


(S
≈
)1111 (S

≈
)1122 0

(S
≈
)1122 (S

≈
)1111 0

0 0 2(S
≈
)1212


K

=


1

E
− ν

E
0

− ν

E

1

E
0

0 0
2

G


K

with E and ν the effective Young’s moduli and Poisson’s ratio. G is the effective in-plane shear modulus.

5.4.2 Numerical examples

The application of the above optimisation algorithm to the mesostructure design is illustrated here

by several simple numerical examples. These examples are widely discussed in the literature, the object

here is to validate our implementation.

For the following examples, the function h(C
≈
) is all of the first type. The elasticity parameters of

Young’s modulus and Poisson’s ratio are Em = 1, Ei = 0.01 and νm = νi = 0.3, meaning that the phase

contract parameter γ∗ is set to 0.01.

Before introducing the numerical examples, it has to be noted that the maximisation of material

parameters such as Young’s modulus and shear modulus by reducing the fraction of Ωmµ is not possible

(as can be observed, for the following first two examples, the optimised material parameters are smaller

than the initial ones), thus we introduce the volume constraint by λv, which prevents the trivial solution

of a unit domain without inclusion and allows us to obtain an optimisation design with maximised value

of parameters based on a volume fraction considered.

Horizontal rigidity maximization

The function h(C
≈
) is defined with φ

∼
mn = φ

∼
pq = e1 ⊗ e1, we have:

h(C
≈
) := (C

≈
−1)1111 =

1

E

the penalisation parameter λv is chosen as 10 (same value as is chosen in [2]). Thus, the corresponding

cost function is:

J(Ωmµ ) = (C
≈
−1)1111 + 10fv

the minimisation of J(Ωmµ ) corresponds to the optimisation of the longitudinal Young’s modulus E with

less volume fraction of Ωmµ .
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The initialisation is given in subsection 5.4.1 with the initial Young’s modulus as E = 0.614. The

optimized topology is shown in Figure 5.6 with the volume fraction of Ωmµ is fv = 0.4 and the associated

optimised Young’s modulus is E = 0.41.

(a) (b)

Figure 5.6: Horizontal rigidity maximization: (a)Optimised RVE topology, and (b) Corresponding peri-
odic mesostructure.

The optimized elasticity tensor is:

[C
≈
−1] =


2.461 −0.738 0

−0.738 55.167 0

0 0 313.972


K

The evolution of the cost function and angle θ throughout the iterations are shown in Figure 5.7. Since

the residual angle θ is not sufficiently small at iteration 20, a mesh refinement step has been performed

at the subsequent iteration, resulting in a significant decrease of the angle θ and the final convergence is

attained.

(a) (b)

Figure 5.7: Horizontal rigidity maximization. Convergence history: (a) Cost function, and (b) Angle θ

There exists an analytical solution for the elasticity tensor homogenisation of a two-component lam-

inate [146]. The elasticity tensors C
≈
m, C

≈
i are considered to be isotropic. An analytical solution of

homogenized elasticity tensor for a finite-rank microstructure is given in [146]:

(C
≈
hom)−1 = (C

≈
m)−1 + c2((C≈

i)−1 − (C
≈
m)−1) : [ I

≈
− c1 f≈

: (((C
≈
i)−1 − (C

≈
m)−1)−1 + c1 f≈

)−1]

with,

• cr:The volume fraction of each component, here c1 = c2 = 0.5;

• I
≈
: Identity tensor of order 4,( I

≈
)ijkl =

1
2 (δikδjl + δilδjk);

• C
≈
r: Elasticity tensor for each component r = m or i, we have for 2D case
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(C
≈
r)ijkl = λrδijδkl + µr(δikδjl + δilδjk)

with λr =
νrEr

(1 + νr)(1− 2νr)
for 3D case and λr =

νrEr

(1 + νr)(1− νr)
for 2D case, and µr =

Er

2(1 + νr)
.

we define here Em = 1, Ei = 1× 10−3 and νm = νi = 0.3.

• f
≈
: f
≈
= Em

∑N
n=1 pn(tn⊗tn)⊗(tn⊗tn); E1 is the Young’s modulus of rigid phase, and tn represents

the tangent vector of layer n, while pn ≥ 0 describes the relative contribution of the n−th layer.

Thus, the analytical homogenized elasticity tensor is:

[C
≈
−1] =


2.463 −0.739 0

−0.739 55.186 0

0 0 313.426


K

It can be observed that the numerical result closely aligns with this analytical result. Thus, we validate

this optimisation code. It is used to do some benchmarks with the following two cases.

Shear modulus maximization

Shear modulus G is defined as the ratio of shear stress σ12 and shear strain ε12. Thus, we take here

φ
∼
mn = φ

∼
pq = e1 ⊗ e2 so that the function h(C

≈
) is defined by:

h(C
≈
) := 4(C

≈
−1)1212 =

4

G

For the maximisation of the shear modulus with the volume constraint (the penalisation parameter is

chosen as λv = 50), we propose the cost function:

J(Ωmµ ) = 4(C
≈
−1)1212 + 50fv

the minimisation of J(Ωmµ ) corresponds to the maximisation of the shear modulus G with less volume

fraction of Ωmµ . Equation 5.28 indicates that the initial shear modulus is G = 0.18.

The optimized topology is shown in Table 5.2 on the left side. The rest two designs are benchmarks

in literature, respectively, the middle one is obtained in [2] with the same algorithm and the right one is

obtained in [147] by deep learning algorithm.

Shear modulus maximization

My result
Amstutz S. results
[Amstutz2010,p12]

Deep learning results
[Kollmann2020, p11]

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Iteration_17

h(C
≈
) = 28.78 fv = 0.51 - - - fv = 0.47

Table 5.1: Comparison between optimised topology for shear modulus maximization
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It can be seen that our mesostructure design has achieved a perfect match with other results. It is

evident that there are noticeable curves appearing in the contours of the mesostructure, which is crucial

for a more refined structural design. The optimized elasticity tensor is:

[C
≈
−1] =


9.115 −6.510 0

−6.510 9.115 0

0 0 14.388


K

The optimised shear modulus is G = 0.14 with its corresponding volume fraction fv = 0.51.

Minimization of a modified Poisson’s ratio

The modified Poisson’s ratio is defined as
ν

E
, which corresponds to the opposite of the homogenised

tensor component (C
≈
)1122. We take here φ

∼
mn = e1 ⊗ e1 and φ

∼
pq = −e2 ⊗ e2 so that the function h(C

≈
) is:

h(C
≈
) := −(C

≈
−1)1122 =

ν

E

The penalisation parameter is chosen as λ = 0.5, thus the cost function is:

J(Ωmµ ) = −(C
≈
−1)1122 + 0.5fv

Equation 5.28 indicates that the initial value of modified Poisson’s ratio is
ν

E
= 0.429. The optimized

topology is shown in Table 5.2 on the left side as well as the two benchmarks.

Minimization of modified Poisson’s ratio

My result
Amstutz S. results
[Amstutz2010,p12]

Deep learning results
[Kollmann2020, p11]

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Iteration_59

ν = −0.22 fv = 0.51 ν = −0.42 - - fv = 0.66

Table 5.2: Comparison between optimised topology for minimization of a modified Poisson’s ratio

In this example, although our design fits well with the result obtained from the deep learning algorithm,

it does not achieve a ’rod joints’ lattice structure, as observed in the result obtained in [2] using the same

algorithm. This could be primarily attributed to different choices of penalisation parameters, mesh

refinement, and step size setting strategies.

The optimized elasticity tensor is:

[C
≈
−1] =


9.570 2.140 0

2.140 9.570 0

0 0 66.667


K

The minimised function value is h(C
≈
) =

ν

E
= −2.140. The volume fraction of the obtained topology is

fv = 0.51.
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Several observations can be made from the implementation of previous examples:

• The optimised topology depend on the initial geometry. For the following topology optimisations,

the geometry of the initial inclusion is recommanded to be of the same symmetry type as its

corresponding target symmetry class;

• The optimisation parameters such as step size κ and penalisation parameter λv will influence the

processes of how the optimisation carries out. For different optimisation cases, they are supposed

to be determined accordingly.

5.5 Numerical result for exotic material: R0-Orthotropy

We aim here to provide a geometry of a unit cell that generates an effective R0-othotropic elastic

material. We do not claim that it is the only specific design producing such exotic behaviour, nor the

best one. For our computation, the rigid matrix phase is constituted of an elastic isotropic material with:

Em = 1, νm = 0.3.

while the soft is considered with Ei = γ∗, with γ∗ = 10−3 and νi = 0.3.

The initial unit cell contains an ellipsoidal soft inclusion (cf. Figure 5.8), and is intended to initiate

the algorithm from an effective orthotropic material. The considered level set is

ψ(y) = cos2(0, 55π(yx − 0, 5)) cos2(0, 3π(yy − 0, 5))− 0, 95.

A structured mesh is considered in order to preserve, at best, the symmetries of the unit cell, and hence

of the effective tensor. The following calculations were performed using a mesh of 57600 standard linear

triangular elements.

(a) (b)

Figure 5.8: Initialisation: (a)Initial unit cell used for computation and (b) Initial lattice assembled of
unit cells

The matrix form of the initial effective tensor resulting from these choices is:

[C
≈
] = 10−1


6.49 2.03 0

2.03 8.48 0

0 0 4.60


K

.

with the following set of invariants

(I1, J1, I2, J2, I3) = (9.52 · 10−1, 5.03 · 10−1, 1.98 · 10−2, 3.66 · 10−3, 8.46 · 10−4).

The ratio
J2
I2

∼ 20% is not small enough to consider J2 as being negligible with respect to I2. Hence the
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initial elastic material should be considered as orthotropic, but not R0-orthotropic.

The cost function to be minimised by the algorithm was chosen to be

J = h(C
≈
) = aJ2(C≈

) +
b

I2(C≈
)
.

and we specifically consider (a, b) = (20000, 0.5). This condition corresponds to the characterisation of the

open set Σe[D2]
(4.1). Without considering any constraint on the volume fraction of Ωmµ , adding the term

b

I2(C≈
)
prevents the trivial solution of a unit domain without inclusion3. Considering this cost function,

the optimal mesostructure depicted on Figure 5.9 is obtained.

(a) Initial unit cell (b) Initial lattice

Figure 5.9: Optimised design

The matrix form of the effective tensor obtained at the end of the optimisation process is:

[C
≈
] = 10−1 ·


0.367 0.490 0

0.490 3.920 0

0 0 1.640


K

.

The invariants of the effective stiffness tensor of the optimal geometry are

(I1, J1, I2, J2, I3) = (2.634 · 10−1, 1.647 · 10−1, 6.312 · 10−2, 9.113 · 10−7, 4.261 · 10−5).

The optimized elastic material is obviously R0-orthotropic since J2 is negligible with respect to I2, the

ratio
J2
I2

∼ 0.0014% . To the contrary, the invariants of the associated compliance tensor are

(
I−1 , J

−
1 , I

−
2 , J

−
2 , I

−
3

)
= (2.318 · 101, 1.380 · 101, 4.394 · 102, 2.922,−5.313 · 102).

which obviously shows that the resulting material is not r0-orthotropic. This numerical result substanti-

ates the statement in section 4.2 that R0-orthotropic is not inverse stable.

5.6 Numerical results for semi-exotic material: Cauchy elasticity

We now consider the geometry of a unit cell that generates an effective Cauchy elasticity material.

Since the condition for Cauchy elasticity concerns only the isotropic harmonic components, the optimized

topology depends strongly on the initial geometry. Thus, two types of level set functions will be applied,

one of tetragonal symmetry and the other of orthotropic symmetry:

• Tetragonal

ψ(y) = cos2(π(yx − 0.5)) cos2(π(yy − 0.5))− 0.5.

3Such a trivial case is isotropic and hence verify J2 = I2 = 0.
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• Orthotropic

ψ(y) = cos2(0.55π(yx − 0.5)) cos2(0.3π(yy − 0.5))− 0.95.

The computations will be performed using a mesh of 14400 standard linear triangular elements (with

Nx = Ny = 60). The material properties are set the same as for R0-orthotropic case, such as Em =

1, Ei = 0.01 and νm = νi = 0.3.

The initialization is illustrated as follows:

(a) Tetragonal (b) Orthotropic

Figure 5.10: Initial unit cell of different symmetry types

The initial effective tensor is :

• Tetragonal

[C
≈
] = 10−1 ·


6.43 1.66 0

1.66 6.43 0

0 0 3.42


K

.

(I1, J1, I2, J2, I3) = (4.10 · 10−1, 8.09 · 10−1, 0, 9.11 · 10−3, 0).

• Orthotropic

[C
≈
] = 10−1 ·


7.12 2.23 0

2.23 8.86 0

0 0 5.10


K

.

(I1, J1, I2, J2, I3) = (5.43 · 10−1, 1.022, 1.5 · 10−2, 2 · 10−3, 5 · 10−4).

The condition for Cauchy elasticity is 2I1 − J1 = 0, since no constraint should be made on (I2, J2, I3),

we will evaluate the initial value of 2I1 − J1 with respect to I1:

• Tetragonal

|2I1 − J1
I1

| ∼ 2.7%

• Orthotropic

|2I1 − J1
I1

| ∼ 11.8%

All these ratios are not small enough to consider |2I1 − J1| as being negligible with respect to I1. Hence,

the initial elastic materials in Figure 5.10 are not considered as Cauchy elasticity.

We propose here a cost function h(C
≈
):

J = h(C
≈
) = a(2I1 − J1)

2 +
b

I21
+ λfv (5.29)
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As this formula shows, the constraint of the volume fraction of Ωmµ is incorporated into the optimization
of Cauchy elasticity. Based on our observation, the addition of this component allows to speed up the
convergence process. I1 = J1 = 0 is a special case of Cauchy elasticity, which will not be considered here.

Thus, the components
b

I21
is added to avoid the omitting of (I1, J1). In terms of the components of the

elasticity tensor, it reads:

J = a(C1122 − C1212)
2 +

b

(C1111 − 2C1122 + 4C1212 + C2222)2

We will specifically consider (a, b) = (3000, 1), λ = 5 for the tetragonal case, and λ = 20 for the

orthotropic one, the optimal mesostructures are obtained as follows.

• Tetragonal

(a) Optimised unit cell (b) Optimised lattice

(c) Convergence history of the cost function

Figure 5.11: Design for Cauchy elasticity materials with tetragonal initialisation

the optimized topology remains as tetragonal symmetry with the volume ratio of rigid material

fv = 0.778. As we can see in the convergence history, the algorithm does not converge well initially

(the value of J stops decreasing with θ = 20◦ at iteration 7). We perform a uniform mesh refinement

at iteration 8 and obtain a better convergence with the final topology having θ < 5◦. The kelvin

representation of the corresponding C
≈

is:

[C
≈
] = 10−1 ·


6.226 1.554 0

1.554 6.226 0

0 0 3.109


K

.

(I1, J1, I2, J2, I3) = (0.389, 0.778, 0, 1.2212 · 10−2, 0).

The ratio | 2I1−J1I1
| ∼ 0.03% is much smaller than the initial value of 2.7%. The obtained topology

is thus considered as Cauchy elasticity.

• Orthotropic
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(a) Optimised unit cell (b) Optimised lattice

(c) Convergence history of the cost function

Figure 5.12: Design for Cauchy elasticity materials with orthotropic initialisation

the volume ratio of rigid material is fv = 0.8. No mesh refinement has been applied during optimi-

sation process. The kelvin representation of the corresponding C
≈

is:

[C
≈
] = 10−1 ·


6.12 1.53 0

1.53 6.65 0

0 0 3.06


K

.

(I1, J1, I2, J2, I3) = (3.958 · 10−1, 7.921 · 10−1, 1.418 · 10−3, 1.601 · 10−2, 1.271 · 10−4).

since I22J2 − 2I23 ∼ 0, the optimised topology remains as orthotropic symmetry. And the ratio

| 2I1−J1J1
| ∼ 0.1%, the final topology is thus considered as Cauchy elasticity.

Remark. It can be noted that regardless of whether tetragonal or orthotropic initialization is used, the

optimized geometry converges into an octagonal shape with four sides on diagonals being relatively shorter

than the others.

5.7 Synthesis

This chapter introduces an algorithm proposed by S. Amstutz et al. [1] for the optimization of

mesostructure. This approach is based on an exact formula for the topological derivative of the macro-

scopic elasticity tensor and a level set representation. This algorithm is used in [2] to realize the mesostruc-

ture design for some classical examples, and in this chapter, some of them are recapped. Furthermore, to

realize the design of exotic or semi-exotic materials, the existing proposed function type of h(C
≈
) is not

sufficient, and we proposed two new types in section 5.3. They are used to construct the cost function

for optimizing exotic materials. Based on it, the mesostructure for R0-orthotropic material and Cauchy

elasticity material is realised. These two materials are already well-discussed in the literature, but their

mesostructure design has seldom been reached.
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Extension to 3D linear elasticity
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Chapter 6

Geometry of 3D linear elasticity tensors

space

6.1 From O(3) to SO(3) subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 O(3) and its subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 Symmetry group of an even order tensor . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.3 SO(3) and its subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Harmonic decompositions of Ela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 3D harmonic tensor space: Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Harmonic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 Explicit harmonic decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Symmetry classes of Ela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Condition of belonging to a symmetry class . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Polynomial invariants and their limitation . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.2 Covariants: a geometric path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.3 Covariant-based membership relations . . . . . . . . . . . . . . . . . . . . . . . . . 102

The geometric tools proposed in chapter 2 will be applied to 3D linear elasticity in this chapter. To

simplify the notation, Ela(3) will be abbreviated to Ela. In the particular case of an even order tensor,

we will show in section 6.1 that the symmetry classification can be reduced to SO(3) instead of O(3).

To fully explore Ela, this space will be decomposed into harmonic spaces in section 6.2 along with some

classical explicit decompositions. The symmetry classes of Ela can be naturally obtained (section 6.3) by

using clips operations. They will be identified by polynomial covariant conditions in section 6.4.
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6.1 From O(3) to SO(3) subgroups

By definition, the symmetry group of a physical property described by a tensor T ∈ Tn is defined as

the set of operations g ∈ O(3) leaving this tensor invariant. The symmetry group of T in R3 is :

GT := {g ∈ O(3), | T = g ⋆ T} (6.1)

meaning that the physical symmetry group of T corresponds to a closed subgroup of O(3). Hence,

in subsection 6.1.1, O(3) and its subgroups will be introduced. In the particular case of an even order

tensor, the symmetry classification can be reduced to SO(3), this point will be detailed in the following

content of this section.

6.1.1 O(3) and its subgroups

For R3, let O(3) be the set of invertible transformations g of R3 defined as:

O(3) := {g ∈ GL(3),gT = g−1}

The complete collection of the subgroups of O(3) is provided in [102, 107]. These subgroups are classified

into three types with regard to the nature of their elements:

Type I (Chiral) A subgroup Γ is of type I if it is a subgroup of SO(3). Type I subgroups are also said to

be chiral subgroups;

Type II (Centrosymmetric) A subgroup Γ is of type II if −1 ∈ Γ. In that case, Γ = K ⊗ Zc2 where

K is some SO(3) closed subgroup and Zc2 := {e,−1}. Type II subgroups are also said to be

centrosymmetric;

Type III A subgroup Γ is of type III if −1 /∈ Γ and Γ is not a subgroup of SO(3).

The three associated generators: rotations, reflections and inversions are detailed in the formula as

follows.

• Rotations

It is denoted by r(n, θ), the rotation of angle θ around the unit vector n ∈ R3 is provided by

well-known Rodrigues formula [148], consider ρ as its representation, we have 1:

r(n, θ) = cos(θ)1
∼
− sin(θ)ϵ

≃
· n + (1− cos(θ))n⊗ n

in which 1
∼
= gTg and ϵ

≃
denotes the Levi-Civita third-order tensor in R3, specifically:

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)

−1 if (i, j, k) is (3, 2, 1), (2, 1, 3) or (1, 3, 2)

0 if i = j or j = k or k = i

(6.2)

Let B = {e1, e2, e3} be the orthonormal basis of R3, in the case of n = e3, its matrix reads:

[r(e3, θ)] :=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


B

(6.3)

1The representation of an element g of group SO(3), denoted by ρ(g), will be simplified by g, and thus its matrix form
reads [g].
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which represents the anticlockwise rotation around the axis e3. The rotation r(e3, θ) is a proper

transformation.

• Reflections

It is denoted by mn, the reflection through a plane of normal n:

mn = 1
∼
− 2n⊗ n

The matrix representation of me3 reads:

[me3 ] :=


1 0 0

0 1 0

0 0 −1


B

The reflection mn is an improper transformation.

• Inversion

It is denoted by −1, the inversion with respect to the origin. Its matrix representation in B =

{e1, e2, e3} is :

[−1] :=


−1 0 0

0 −1 0

0 0 −1


B

The inversion −1 is an improper transformation.

Moreover, we have the following property:

Proposition 6.1. In R3, any improper transformation g ∈ O(3) \ SO(3) can be broken down as follows:

∀g ∈ O(3) \ SO(3) g = (−1) · r, r ∈ SO(3) (6.4)

We illustrate it through the following example:

Example 3

Let g = me3 ∈ O(3) \ SO(3), it can be written as the product of inversion −1 and rotation r(e3, π),

that is:

me3 = (−1) · r(e3, π)

In terms of matrix, it reads,
1 0 0

0 1 0

0 0 −1


B

=


−1 0 0

0 −1 0

0 0 −1


B


−1 0 0

0 −1 0

0 0 1


B

6.1.2 Symmetry group of an even order tensor

To get knowledge of possible symmetry groups of an even order tensor, the following observation is

preliminary:

(−1) ⋆ T2n = (−1)2nT2n = T2n (6.5)
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which indicates that the inversion −1 always belong to GT2n , i.e. (−1) ∈ GT2n .

Based on the observation of Equation 6.4 and Equation 6.5, it can be observed that any g ∈ O(3) \
SO(3) acts on an even order tensor T2n reads:

g ⋆ T2n = r ⋆ T2n

As such, any symmetry group of an even-order tensor is defined as follows:

GT2n = H⊗ Zc2, Zc2 = {1,−1} and H ∈ SO(3).

GT2n is conjugate to a type II subgroups of O(3) with H a subgroup of SO(3). Since the only relevant

part for the classification of Ela is the closed subgroup H, it is customary to classify symmetry properties

of even order tensors with respect to SO(3) [5, 149]. In this case, the definition in Equation 6.1 can be

”reduced” to SO(3):

GT2n := {r ∈ SO(3), | T2n = r ⋆ T2n}

To simplify the notation, in the following content, even-order tensors will be denoted by T instead of T2n.

Remark.

1. a physical symmetry problem encoded by an even order tensor can be reduced to SO(3). However,

the classification of material symmetry should still be deduced with respect to O(3).

2. the reduction of O(d) → SO(d) is not true for d = 2, it depends on the dimension of the physical

space.

3. when combining even and odd order tensors (for instance for piezoelectricity [150] or strain-gradient

elasticity [151]), this reduction is not allowed and should be classified with respect to O(3).

As already pointed out in the notion of the symmetry group, the orientation of the elements with

respect to a reference is important. The symmetry class2 of the even-order tensor T, denoted by [GT], is

thus defined here as the conjugacy class of its symmetry group, i.e.

[GT] := {rGTr
T , |r ∈ SO(3)}

Physically speaking, the symmetry classes of T correspond to its symmetry group modulo its orientation

in SO(3). Furthermore, it is known that for orthogonal groups, there is only a finite number of symmetry

classes [102], these symmetry classes are conjugate to the subgroups of SO(3).

6.1.3 SO(3) and its subgroups

The special orthogonal group SO(3) is defined as:

SO(3) := {g ∈ GL(3)|gT = g−1,detg = 1}

The group SO(3) is generated by r(n, θ), with n a unit vector in R3. Every closed subgroup of SO(3) is

conjugate to an element of the following collection [152]:

{[1] , [Zn] , [Dn] , [T ] , [O] , [I] , [SO(2)] , [O(2)] , [SO(3)]}n≥2

2The determination of the symmetry classes of odd-order tensors is detained in [59].
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Remark. The generators for subgroup Dn in 2D and 3D are different. In 2D it is generated by rotation

rθ and reflection me2 . In 3D, since the out-of-plane rotation is possible, it is generated by two rotations

r(e3, θ) and r(e1, π), and r(e1, π) can be regarded as the extension of me2 in 2D (denoted by m2D
e2 ) to 3D.

In terms of matrix, we have the following observation from 2D → 3D:

The closed subgroups of SO(3) can be distinguished into two parts:

Plane groups: {[1] , [Zn] , [Dn] , [SO(2)] , [O(2)]}n≥2.

They are the closed subgroups of O(2), with:

• 1 is the trivial subgroup, containing only the unit element;

• Zn is the cyclic subgroup of SO(2) generated by r(n, θ), with the convention that Z1 = 1;

• Dn is the dihedral group generated by r(n, θ) and r(k, π) (n and k are orthogonal vectors), with the

convention that D1 = 1;

• SO(2) is the group of rotations r(n, θ), with θ ∈ [0, 2π[;

• O(2) is the orthogonal group generated by r(n, θ) and r(k, π) (n and k are orthogonal vectors).

Exceptional groups: {[T ] , [O] , [I] , [SO(3)]}.

They are the groups leaving invariant the Platonic solids (Table 6.1) and sphere. Specifically:

• T is the tetrahedral group of order 12 of the rotations fixing the tetrahedron;

• O is the octahedral group of order 24 of the rotations fixing the cube and the octahedron;

• I is the icosahedral group of order 60 of the rotations fixing the icosahedron and the dodecahedron;

• SO(3) is the special orthogonal group that leaves the sphere invariant.

Since they will not be used in my thesis, the detailed information on associated generators of these groups

will not be detailed here and can be found in many elasticity literature including [5, 115, 153, 154].

T O I
Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Table 6.1: The Platonic solids
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6.2 Harmonic decompositions of Ela

The symmetry classes of Ela can be deduced by group theory. To be more specific, a group action

g ∈ SO(3) will be imposed to C
≈
∈ Ela by:

C̄
≈
= g ⋆ C

≈

and the symmetry group of C
≈
is described by a set of g ∈ SO(3) which keep C

≈
unchanged, i.e. C

≈
= g ⋆C

≈
.

Since C
≈

is a fourth-order tensor, the index form of the action g ∈ SO(3) on C
≈
∈ Ela is:

(g ⋆ C
≈
)i1i2i3i4 = gi1j1gi2j2gi3j3gi4j4Cj1j2j3j4 , g ∈ SO(3), C

≈
∈ Ela

it can be observed that the object gi1j1gi2j2gi3j3gi4j4 is of eight-order which complicates the orthogonal

transformation of C
≈
.

In what follows, to simplify this problem, we will use the notion of harmonic decomposition to de-

compose the tensor space Ela into a direct sum of harmonic spaces Hn with smaller dimensions.

Remark. The dimension of the space Ela is 21, i.e. an elasticity tensor for a general anisotropic material

in R3 has 21 independent components as it should.

6.2.1 3D harmonic tensor space: Hn

The spaces of n-th order harmonic tensors in R3 will be denoted by Hn, which are SO(3)-irreducible

spaces3. Any tensor H ∈ Hn satisfies the following two properties:

• Totally symmetric with respect to index permutation:

Hi1i2···in = Hiσ(1)iσ(2)···iσ(n)

with σ a permutation of the symbols {1, 2, · · · , n};

• Traceless with respect to any two indices :

trH := (

3∑
i=1

Hiσ(1)iσ(2)···iσ(n−2)ii)ei1 ⊗ ei2 ⊗ · · · ein−2
= 0

with trH ∈ Hn−2 and thus 0 here represents the null of (n− 2)-th order tensor.

These properties result in the following lemma [[107], Corollary 1.4.3]:

Lemma 6.1 (Dimension of Hn). For n ≥ 0, we have:

dimHn = 2n+ 1

Example 4

• H0 is the space of scalars, that is isotropic components;

• H1 is the space of vectors;

• H2 is the space of deviators;

• Hn(n ≥ 2) is the space of n-th order deviators.

3Recall that a space V is said to be G-irreducible if V and {0} are distinct and are the only two G-stable subspaces.
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The harmonic parametrisation of tensors in Hn are necessary for further use. Consider here the vector

v ∈ H1, the tensor h
∼
∈ H2 and H

≈
∈ H4, the former two are rather standard and well known, while the

last case is not classical. Their representations are given as follows in terms of matrix representations.

With respect to the orthogonal basis B = {e1, e2, e3}, a vector v ∈ H1 can be written as:

[v] := (v1, v2, v3)
T
B

For h
∼
∈ H2, the following parametrisation can be used:

[h
∼
] :=


h1 + h5 h2 h3

∗ −h1 + h5 h4

∗ ∗ −2h5


B

(6.6)

The advantage of this parametrisation is that it well-behaves with respect to a rotation around e3. We

define an orthonormal basis C = {c1, c2, c3, c4, c5} as follows:



c1 =
√
2
2 (e1 ⊗ e1 − e2 ⊗ e2)

c2 =
√
2
2 (e1 ⊗ e2 + e2 ⊗ e1)

c3 =
√
2
2 (e1 ⊗ e3 + e3 ⊗ e1)

c4 =
√
2
2 (e2 ⊗ e3 + e3 ⊗ e2)

c5 =
√
6
6 (e1 ⊗ e1 + e2 ⊗ e2 − 2e3 ⊗ e3)

within this basis, h
∼
can be rewritten as:

{h
∼
}C =

√
2(h1, h2, h3, h4,

√
3h5)

T
C = (h̄1, h̄2, h̄3, h̄4, h̄5)

T
C

Using this basis, the transformation of an element of H2, i.e. r(e3, θ), can thus be expressed as:


h∗
1

h∗
2

h∗
3

h∗
4

h∗
5


C

=


cos (2θ) − sin (2θ) 0 0 0

sin (2θ) cos (2θ) 0 0 0

0 0 cos (θ) − sin (θ) 0

0 0 sin (θ) cos (θ) 0

0 0 0 0 1


C


h̄1

h̄2

h̄3

h̄4

h̄5


C

The parametrization of H
≈
∈ H4 has received little attention in the mechanical community. We define

a Kelvin basis K = {k(4)1 , k
(4)
2 , k

(4)
3 , k

(4)
4 , k

(4)
5 , k

(4)
6 } as follows:



k
(2)
1 = e1 ⊗ e1

k
(2)
2 = e2 ⊗ e2

k
(2)
3 = e3 ⊗ e3

k
(2)
4 =

√
2
2 (e2 ⊗ e3 + e3 ⊗ e2)

k
(2)
5 =

√
2
2 (e1 ⊗ e3 + e3 ⊗ e1)

k
(2)
6 =

√
2
2 (e1 ⊗ e2 + e2 ⊗ e1)

Based on it, a parametrization in Kelvin representation is proposed in [155]:
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

−H8 −H9 H9 H8

√
2(−H5 −H6)

√
2H2

√
2H1

∗ −H7 −H9 H7

√
2H5

√
2(−H2 −H4)

√
2H3

∗ ∗ −H7 −H8

√
2H6

√
2H4

√
2(−H1 −H3)

∗ ∗ ∗ 2H7 2(−H1 −H3) 2(−H2 −H4)

∗ ∗ ∗ ∗ 2H8 2(−H5 −H6)

∗ ∗ ∗ ∗ ∗ 2H9


K

Remark. If we take the harmonic component H1 for example, its basis is expressed as
√
2
2 (k

(2)
1 ⊗ k

(2)
6 +

k
(2)
6 ⊗ k

(2)
1 ), we have:

√
2

2
(k

(2)
1 ⊗ k

(2)
6 + k

(2)
6 ⊗ k

(2)
1 )

=

√
2

2
(

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e1) +

√
2

2
(e1 ⊗ e1)⊗ (e1 ⊗ e2 + e2 ⊗ e1))

=
1

2
(e1 ⊗ e2 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ⊗ e1 + e1 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e2 ⊗ e1)

It can be observed that it’s totally symmetric.

6.2.2 Harmonic structure

In general, we can decompose any tensor space Tn into harmonic spaces, and by grouping the same

order harmonic tensor spaces we can obtain its harmonic structure (also called isotypic structure [75] in

maths). The detailed information is given by the following proposition [156]:

Proposition 6.2. For any linear SO(3)-representation of finite dimension (ρn,Tn), we have:

Tn ≃
q
⊕
i=1

Hki

with ki < +∞ and ≃ represents a SO(3)-equivariant isomorphism. We can group together harmonic

spaces of the same order and obtain its harmonic structure:

Tn ≃
m
⊕
i=1

αiHki , αiHki =
αi

⊕
l=1

Hki (6.7)

the integer αi indicates the multiplicity of Hki .

To be more specific, for the case of Ela, as indicated at the very beginning of this section, the advantage

of its harmonic structure lies in the ability to derive the set of symmetry classes of Ela. To this end, we

are supposed to determine the αi in Equation 6.7 for Ela. As illustrated by [67, 69, 107], it can be done

by considering the tensor product of harmonic spaces and using Clebsch-Gordan formulas.

Lemma 6.2 (Clebsch-Gordan formulas). The product of 2 harmonic spaces are reducible and can decompose

as:

Hi ⊗Hj =
i+j
⊕

k=|i−j|
Hk

In the case where the spaces are identical, the tensor product can be decomposed into a symmetrized

product S2 and an anti-symmetrized product Λ2:
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Lemma 6.3 (Clebsch-Gordan formulas). The product of 2 identical harmonic spaces is reducible and can

decompose as:

∀n ≥ 1,Hn ⊗Hn = S2 (Hn)⊕ Λ2 (Hn)

The definition of S2 and Λ2 is given section 3.3. The previous formula can be completed by:

Lemma 6.4 (Clebsch-Gordan formulas). For all n ≥ 1, we have the following harmonic structures:

S2 (Hn) =
n
⊕
k=0

H2k, Λ2 (Hn) =
n
⊕
k=1

H2k−1

for n = 0, the previous formulas become S2
(
H0
)
= H0 and Λ2

(
H0
)
= 0.

Based on these lemmas, the harmonic structure of Ela is provided:

Proposition 6.3. The space Ela has the following harmonic structure [67, 69, 157]:

Ela ≃ 2H0 ⊕ 2H2 ⊕H4

in which ≃ indicates SO(3)-equivariant isomorphism.

Proof. Ela can be seen as S2
(
S2(R3)

)
:

Ela ≃ S2
(
S2(R3)

)
≃ S2

(
S2(H1)

)
≃ S2

(
H0 ⊕H2

)
≃ S2

(
H0
)
⊕ S2

(
H2
)
⊕ (H0 ⊗H2)

≃ 2H0 ⊕ 2H2 ⊕H4

Based on this harmonic structure, we can split any elasticity tensor C
≈

into an

• isotropic part defined by two scalars α, β ∈ H0;

• anisotropic part with h
∼
a, h

∼
b ∈ H2 and H

≈
∈ H4, for which (h

∼
a, h

∼
b,H

≈
) is called a harmonic triplet in

R3.

As already pointed out, the harmonic structure of a tensor space is sufficient to determine its symme-

try classes [5], the result for Ela is given in section 6.3 by using clips operation [156, 58]. However, it does

not provide an explicit construction of the decomposition. In what follows, this problem will be addressed.

It is important to recall that when the harmonic structure contains several spaces of the same order,

its explicit decomposition is not uniquely defined (as mentioned in section 2.3). The knowledge of this

non-unicity is important since many different harmonic decompositions are possible, and possess different

physical meanings. These different physical content will be exploited for defining different exotic materi-

als. In other words, it gives a mechanical interpretation of hypersymmety mentioned in the definition of

exotic materials.

For Ela(2) case, the non-unicity concerns only the isotropic part. However, for Ela(3), it involves both
the isotropic and anisotropic parts and therefore is more complicated.

92



6.2. HARMONIC DECOMPOSITIONS OF Ela

6.2.3 Explicit harmonic decompositions

Let us denote by f an explicit harmonic decomposition, each elasticity tensor C
≈
∈ Ela can be written

as:

C
≈
= f(α, β, h

∼
a, h

∼
b,H

≈
) (6.8)

The SO(3)-equivariance property means:

∀g ∈ SO(3), g ⋆ C
≈
= f(α, β,g ⋆ h

∼
a,g ⋆ h

∼
b,g ⋆H

≈
)

Several explicit harmonic decompositions can be found in the literature [67, 69, 77, 5, 158]. We introduce

here three of them [159]:

Generalized Lamé

This decomposition is the most classical one to be found in publications [77, 5], which can be considered

as an anisotropic generalization of Lamé’s isotropic parametrization by (λ, µ)4. However, it has the

disadvantages that the corresponding basis is not orthogonal, and it lacks physical content.

Proposition 6.4. The tensor C
≈
∈ Ela admits the uniquely defined Lamé harmonic decomposition

C
≈
= α1

∼
⊗ 1

∼
+ β1

∼
⊗ 1

∼
+ 2(h

∼
a ⊗ 1

∼
+ 1

∼
⊗ h

∼
a) + (h

∼
b ⊗ 1

∼
+ 1

∼
⊗ h

∼
b) + H

≈

with ⊗ the tensorial product defined as (a
∼
⊗ b

∼
)ijkl =

1
2 (aikbjl + aijbkl)

It can be expressed in components:

Cijkl = αδijδkl +
β

2
(δikδjl + δilδjk) + (δikh

a
jl + δjlh

a
ik + δilh

a
jk + δjkh

a
il) + (δijh

b
kl + δklh

b
ij) +Hijkl

For isotropy, this generalized Lamé decomposition reduces to:

C
≈
= α1

∼
⊗ 1

∼
+ β1

∼
⊗ 1

∼

with α = λ and β = 2µ.

Clebsch-Gordan

It is based on the spherical-deviatoric decomposition (the case for Ela(2) is introduced in section 3.3).

It is a generalisation of the Bulk-Shear modulus parameterization of isotropic tensors. A detailed con-

struction of this decomposition is given below.

We decompose the space S2(R3) into a deviatoric space and a spherical space:

S2(R3) ≃ H2︸︷︷︸
Deviatoric space

⊕ H0︸︷︷︸
Spheric space

the projectors {J
≈
,K
≈
} from S2(R3) onto H2 and H0 are defined in R3 as follows:

K
≈
=

1

3
1
∼
⊗ 1

∼
, J

≈
= I

≈
− 1

3
1
∼
⊗ 1

∼

4The shear modulus µ is denoted by G later when paired to the bulk modulus K.
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with ( I
≈
)ijkl =

1

2
(δikδjl + δilδjk). The projectors {J

≈
,K
≈
} verify:

J
≈
: J
≈
= J

≈
J
≈
: K
≈
= K

≈
: J
≈
= 0

≈
K
≈
: K
≈
= K

≈

The elasticity tensor space Ela is a symmetric linear application on S2(R3):

Ela ≃ Ls(H2 ⊕H0) ≃ Ls(H2)⊕ Ls(H0,H2)⊕ Ls(H0)

Hence, from a mechanical point of view, C
≈
∈ Ela can be interpreted in blocks:

σ∼d
σ
∼
s

 =

C
≈
dd C

≈
ds

C
≈
sd C

≈
ss

ε∼d
ε
∼
s

 (6.9)

in which t
∼
s, t

∼
d denote respectively the spheric and deviatoric part of t

∼
and each tensor:

C
≈
dd ∈ Ls(H2); C

≈
ds ∈ L(H0,H2); C

≈
ss ∈ Ls(H0)

Proposition 6.5. The tensor C
≈
∈ Ela admits the uniquely defined Clebsch-Gordan Harmonic Decomposi-

tion associated with the family of projectors {J
≈
,K
≈
}:

C
≈
= αJ

≈
+ βK

≈
+ h

∼
a ⊠ 1

∼
+

1

3
(h
∼
b ⊗ 1

∼
+ 1

∼
⊗ h

∼
b) + H

≈
, (6.10)

in which
(
α, β, h

∼
a, h

∼
b,H

≈

)
∈ H0 ×H0 ×H2 ×H2 ×H4, the tensor h

∼
a belongs to H2 in Ls(H2) and h

∼
b is

from Ls(H0,H2). ⊠ is the special tensorial product defined as follows:

a
∼
⊠ b

∼
=

1

7
(−4(a

∼
⊗ b

∼
+ b

∼
⊗ a

∼
) + 6(a

∼
⊗ b

∼
+ b

∼
⊗ a

∼
))

Conversely, the different elements of the decomposition can be computed as a function of C
≈
:

H0 H2 H4

β = 1
3 1∼

: C
≈
: 1
∼

h
∼
b = J

≈
: C
≈
: 1
∼

α = 1
5D≈

.... J
≈

h
∼
a = (tr13D≈

) : J
≈

H
≈
= D

≈
− h

∼
a ⊠ 1

∼
− αJ

≈

in which D
≈
= J

≈
: C
≈
: J
≈
is used to characterise the deviatoric linear elasticity.

The index form for special tensorial product defined as:

(a
∼
⊠ b

∼
)ijkl =

1

7
(3(aikbjl + ailbjk + ajlbik + ajkbil)− 4(aijbkl + aklbij))

Thus, Equation 6.10 reads:

(C
≈
)ijkl =

α

2
(δikδjl + δilδjk −

2

3
δijδkl) +

β

3
δijδkl +

3

7
(haikδjl + hailδjk + hajlδik + hajkδil −

4

3
haijδkl −

4

3
haklδij) +

1

3
(δijh

b
kl + δklh

b
ij) +

Hijkl
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With these definitions, Equation 6.9 can be interpreted by:σ∼d
σ
∼
s

 =

H
≈
+ h

∼
a ⊠ 1

∼
+ αJ

≈
1
3h∼

b ⊗ 1
∼

1
3 1∼

⊗ h
∼
b βK

≈

ε∼d
ε
∼
s

 (6.11)

For isotropic elasticity tensor, the Clebsch-Gordan decomposition reduces to:

C
≈
= αJ

≈
+ βK

≈

which corresponds to the Shear Modulus (G) and Bulk modulus (K) parameterization with α = 2G and

β = 3K.

Schur-Weyl

This decomposition is based on the decomposition of the elasticity tensor into a complete symmetric

(index symmetry) part and an asymmetric one, the corresponding spaces are orthogonal. The related

work can be found in [67, 69]. The process is to first consider the decomposition of Ela into GL(3)-

irreducible spaces, and then each space is decomposed to SO(3)-irreducible spaces. It is summarized in

the diagram as follows:

C
≈
∈ Ela

Sym
vv

Asym=Id−Sym

''
S4(R3)

H
��

S2(S2(R3))

H
��

(β, h
∼
b,H

≈
) ∈ H0 ⊕H2 ⊕H4 (α, h

∼
a) ∈ H0 ⊕H2

with Sym, Id and H represent respectively: complete index symmetrization, identity and trace removal.

The first layer of decomposition reads:

Lemma 6.5 (GL(3)-irreducible decomposition of Ela). The decomposition of Ela into irreducible compo-

nents under the action of GL(3) is given by:

Ela = S4(R3)⊕ S2(S2(R3))

the elements S
≈
∈ S4(R3) and A

≈
∈ S2(S2(R3)) are defined by:

Sijkl =
1

3
(Cijkl + Cikjl + Ciljk), Aijkl =

1

3
(2Cijkl − Cikjl − Ciljk)

The completely symmetrical element S
≈

corresponds to the so-called Cauchy elasticity introduced

in subsection 4.4.2. The asymmetrical element A
≈

verifies the relation:

Aijkl +Aiklj +Aiklj = 0

Once this first layer of decomposition has been done, it remains now to decompose the space S4(R3) and

S2(S2(R3)) into SO(3)-irreducible spaces. To this end, an explicit harmonic decomposition is proposed

as follows:
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6.3. SYMMETRY CLASSES OF Ela

Proposition 6.6. The tensor C
≈
∈ Ela admits the uniquely defined Schur-Weyl harmonic decomposition:

C
≈
= α1

∼
⊗(2,2) 1∼

+ β1
∼
⊗(4) 1∼

+ h
∼
a ⊗(2,2) 1∼

+ h
∼
b ⊗(4) 1∼

+H
≈

(6.12)

in which
(
α, β, h

∼
a, h

∼
b,H

≈

)
∈ H0 × H0 × H2 × H2 × H4, the symmetrized tensor products ⊗(4) and ⊗(2,2)

between two symmetric second-order tensors (t1
∼
, t2
∼
) are defined as: t1

∼
⊗(4) t2

∼
= 1

6
(t1
∼
⊗ t2

∼
+ t2

∼
⊗ t1

∼
+ 2t1

∼
⊗ t2

∼
+ 2t2

∼
⊗ t1

∼
)

t1
∼
⊗(2,2) t2

∼
= 1

6
(2t1

∼
⊗ t2

∼
+ 2t2

∼
⊗ t1

∼
− t1

∼
⊗ t2

∼
− t2

∼
⊗ t1

∼
)

In terms of harmonic tensors, this gives us:

S
≈
= β1

∼
⊗(4) 1∼

+ h
∼
b ⊗(4) 1∼

+H
≈

A
≈
= α1

∼
⊗(2,2) 1∼

+ h
∼
a ⊗(2,2) 1∼

This decomposition has a physical meaning with regard to the propagation of waves [160, 161], damage

mechanics [162, 163, 164] and also used to define an exotic anisotropic material with isotropic Young’s

modulus as observed by He in [10] (see also the relevant work in [165]).

Note that this list of explicit harmonic decomposition is not exhaustive and other constructions can

be proposed. Anyway, in what follows only the Clebsch-Gordan and Schur-Weyl decompositions will be

considered (in the next chapter) for investigating 3D elastic exotic materials.

6.3 Symmetry classes of Ela

The symmetry classes of Ela have been obtained for the first time by Vianello [5]. In this section,

following the work of Olive [156, 58], we will use clips operations to retrieve this result. This approach

combines the symmetry class of elementary harmonic tensors. These elementary results have been ob-

tained by Irigh and Golubitsky in [166]. We start with the following results:

Theorem 6.1: Symmetry classes of H2 and H4

The symmetry classes of H2 are:

[D2], [O(2)], [SO(3)]

The symmetry classes of H4 are:

[1], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]
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6.3. SYMMETRY CLASSES OF Ela

The above results can be combined using the clips products detailed in the table below.

Theorem 6.2: Clips operations between SO(3)-closed subgroups

⊚ [Zn] [Dn] [T ] [O] [I] [SO(2)] [O(2)]

[Zm] [1], [Zd]

[Dm]
[1], [Zd]
[Zd2 ]

[1]
[Z2], [Zd]
[Ddz], [Dd]

[T ]
[1]

[Zd2 ]
[Zd3 ]

[1], [Z2]
[Zd3 ], [Dd2 ]

[1], [Z2]
[Z3], [D2]

[T ]

[O]

[1]
[Zd2 ]
[Zd3 ]
[Zd4 ]

[1], [Z2]
[Zd3 ], [Zd4 ]
[Dd2 ], [Dd3 ]

[Dd4 ]

[1], [Z2]
[Z3], [D2]

[T ]

[1], [Z2]
[Z3], [Z4]
[D2], [D3]
[D4], [O]

[I]

[1]
[Zd2 ]
[Zd3 ]
[Zd5 ]

[1], [Z2]
[Zd3 ], [Zd5 ]
[Dd2 ], [Dd3 ]

[Dd5 ]

[1], [Z2]
[Z3], [T ]

[1], [Z2]
[Z3], [D3]

[T ]

[1], [Z2]
[Z3], [Z5]
[D3], [D5]

[I]

[SO(2)] [1], [Zn]
[1], [Z2]
[Zn]

[1], [Z2]
[Z3]

[1], [Z2]
[Z3], [Z4]

[1], [Z2]
[Z3], [Z5]

[1]
[SO(2)]

[O(2)]
[1], [Zd2 ]
[Zn]

[1], [Z2]
[Dk2 ], [Dn]

[1], [Z2]
[Z3], [D2]

[1], [Z2]
[D2], [D3]

[D4]

[1], [Z2]
[D2], [D3]

[D5]

[1], [Z2]
[SO(2)]

[Z2], [D2]
[O(2)]

Table 6.2: Clips operations for SO(3)

with the following notations:

d := gcd(m,n), d2 := gcd(n, 2), k2 := 3− d2,

d3 := gcd(n, 3), d5 := gcd(n, 5),

dz := 2, if m and n even, dz := 1, otherwise,

d4 := 4, if 4 divide n, d4 := 1, otherwise,

Z1 = D1 := 1

The symmetry classes of Ela can now be computed using the above theorems. We have:

Theorem 6.3: Strata of Ela
Ela is partitioned into 8 strata [107] :

Ela = Σ[1] ∪ Σ[Z2] ∪ Σ[D2] ∪ Σ[D3] ∪ Σ[D4] ∪ Σ[O(2)] ∪ Σ[O] ∪ Σ[SO(3)] (6.13)

Proof. As established above, the space of elasticity tensor is decomposed into harmonic spaces as follows:

Ela ≃ 2H0 ⊕ 2H2 ⊕H4

The symmetry classes of the harmonic spaces are obtained by Theorem 6.1:

I(H2) = {[D2] , [O(2)] , [SO(3)]}

I(H4) = {[1] , [Z2] , [D2] , [D3] , [D4] , [O(2)] , [O] , [SO(3)]}
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6.4. CONDITION OF BELONGING TO A SYMMETRY CLASS

Using the previous results and the clips operation table provided in Theorem 6.2, we compute iteratively:

I(H2 ⊕H2) = I(H2)⊚ I(H2) = {[1], [Z2], [D2], [O(2)], [SO(3)]},

then

I(Ela) = I(H4)⊚ I(H2 ⊕H2) = {[1] , [Z2] , [D2] , [D3] , [D4] , [O(2)] , [O] , [SO(3)]}

Thus,

Ela = Σ[1] ∪ Σ[Z2] ∪ Σ[D2] ∪ Σ[D3] ∪ Σ[D4] ∪ Σ[O(2)] ∪ Σ[O] ∪ Σ[SO(3)]

Remark. In mechanical terms, Σ[1] corresponds to the set of triclinic tensors, Σ[Z2] to the set of monoclinic

tensors, Σ[D2] to the orthotropic tensors, Σ[D3] to the set of trigonal tensors, Σ[D4] to the set of tetragonal

tensors, Σ[O(2)] to the set of transverse isotropic tensors, Σ[O] to the set of cubic tensors and Σ[SO(3)] to

the set of isotropic tensors.

The transition between the different symmetry classes is (the number in parentheses indicates the

dimensions of the corresponding fixed point spaces [76]):

Figure 6.1: A complete structure of different symmetry classes of Ela

6.4 Condition of belonging to a symmetry class

Since the 8 symmetry classes have been obtained in Theorem 6.3, a natural question is now, given an

elasticity tensor, how to determine its symmetry class? If the matrix of this tensor is expressed with a

symmetry-adapted basis, e.g. in its normal form, the question is rather simple. But it turns out to be

rather complicated if the matrix is expressed within a random basis.

This issue has been widely discussed in the literature and several approaches are proposed including:
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6.4. CONDITION OF BELONGING TO A SYMMETRY CLASS

• Spectral approach: it concerns the use of Kelvin representation of the elasticity tensor [61], which

formulates sufficient conditions involving the multiplicity of the 6 eigenvalues of the Kelvin repre-

sentation and of the eigenvalues of its eigenvectors;

• Maxwell multipoles: based on the harmonic decomposition of the elasticity tensor C
≈
= f(α, β, h

∼
a, h

∼
b,H

≈
),

this approach consists in decomposing a harmonic tensor of order n as a n-tuple vectors, and in

this way to detect the different symmetries of C
≈

(see the relevant work in [67, 167]);

• Polynomial invariants relations: based on the harmonic decomposition of the elasticity tensor, this

approach has been used to determine the symmetry class of C
≈

in R2 [75]. More recently, in [76],

the authors have used polynomial relations between elements of the integrity basis to characterise

the symmetry class of a fourth-order harmonic tensor H
≈
∈ H4.

We aim to extend the polynomial invariants approach for studying Ela in R3. However, it becomes far

too complex, and to the best of the author’s knowledge, the determination of its symmetry classes using

this approach has not been carried out in the literature. The limitation of this approach is explained as

follows.

6.4.1 Polynomial invariants and their limitation

Our study for R2 case in section 3.5 and section 3.7 indicates that once the invariants of an elasticity

tensor are available, it is possible to establish polynomial relations between them to characterise its sym-

metry class. However, it should be noted that the number of invariants constituting the integrity basis

and their degrees are very large in R3 (we have 294 invariants in total). This makes it almost impossible

to extend the approach from R2 to R3.

To understand the question of the large number of invariants for 3D elasticity, several things need to

be clarified.

Functional basis VS. integrity basis: strictly speaking, if we need to separate orbits, i.e. give different

names to different elastic materials, what we need is a separating basis. In mechanics, such a basis

is called a functional basis. The definition of functional basis can be found in section 2.5. The

determination of such a basis is a geometric problem and there is currently no algorithm for simply

finding such a basis. Instead, we determine an integrity basis, i.e. a basis of the algebra of G-

invariant polynomials, which we know how to formulate and solve. Besides, any minimal integrity

basis constitutes a functional basis that is not necessarily minimal. Thus, the cardinal of the system

will be higher than the minimal number of invariants ensuring separation.

Singularity problem VS. overall problem: since our objective is to identify the different symmetry classes

of Ela, to this end, from a geometrical point of view, finding the separators for a given tensor space

means finding a set of quantities that allow the elasticity tensor to be reconstructed in all possible

symmetry classes. It is this all that leads to the explosion of the problem, a point well detailed in

a publication by Smith in the case of a simpler situation [168]. To well understand the underlying

mechanism of this complexity, we recall in Figure 6.2 the illustration of the partition of tensor

space with respect to their symmetry classes: Since [H2] is more symmetric than [H1], additional

invariants are required to impose more restrictive conditions on [H2]. Thus, a separating set used

to separate the orbits of symmetry class [H1] is supposed to be the subset of the separating set for

that of symmetry class [H2].
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6.4. CONDITION OF BELONGING TO A SYMMETRY CLASS

Figure 6.2: Illustration of the partition of tensor space with respect to their symmetry classes

If the elasticity tensor is generic, i.e. absolutely arbitrary with no cancellation or ’alignment’ of the

elements of its harmonic decomposition, then we need 18 quantities5. It should be noted here that

generic is even more restrictive than triclinic because special triclinics can be defined (More details

of this observation can be found in the beginning of chapter 7). However, these 18 quantities are not

enough, because if a harmonic component is zero, I would need a Plan B to ensure reconstruction. A

system of minimal separators is a system that provides for all backup plans. The analysis of inverse

clips carried out in chapter 7 shows that we can already count around 170 degenerate configurations

of the triplet (h
∼
a, h

∼
b,H

≈
). The minimal number of separators is necessarily very high.

Recall the harmonic structure of Ela:

Ela ≃ 2H0 ⊕ 2H2 ⊕H4

from this collection of harmonic spaces, we can define two types of invariants:

• Proper invariants: They characterise each covariant of the harmonic decomposition separately, which

can be seen as norms. For Ela, we have 15 proper invariants in total: one invariant for each space

H0, 2 for each space H4 (that would be {tr(h
∼
a)

2
, tr(h

∼
a)

3
, tr(h

∼
b)

2
, tr(h

∼
b)

3
}) and 9 for space H4 (listed

in [[169], Equation 5.1]);

• Joint invariants: They include different covariants of the harmonic decomposition. These quantities

can be seen as evaluating the relative ’orientation’ of the different covariants. For Ela, the joint

invariants are obtained from the couples of H2 ⊕ H2 and two H2 ⊕ H4, as well as the triplet

H2 ⊕H2 ⊕H4. We have 279 joint invariants in total.

The determination of integrity basis involves not only the proper invariants but also the joint ones.

The joint invariants of H2 ⊕ H2 has been analysed by Boehler [77]. The most challenging aspect is to

determine the joint invariants implied by H4, i.e. H2 ⊕ H4 and H2 ⊕ H2 ⊕ H4. Before my Ph.D. study,

this issue was addressed by the collaboration work between N. Auffray and mathematicians B. Kolev and

M. Olive and a computer scientist M. Petitot, from which M. Olive has determined a minimal integrity

basis for elasticity tensor in [78]:

5The strata dimension of Ela 21 minus the 3 parameters of SO(3) gives the orbit dimension of Ela/SO(3), which is 18.
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Theorem 6.4: Integrity basis for Ela

The minimum integrity basis of the Ela for the SO(3)-action consists of 294 elements. The number,

type and degree of these elements are summarized in the following table:

degree H0 H2 H4 H2 ⊕H2 H2 ⊕H4 H2 ⊕H2 ⊕H4 Σ

1 1 2

2 1 1 1 4

3 1 1 2 2 1 10

4 1 1 4 6 16

5 1 7 18 33

6 1 10 36 57

7 1 11 53 76

8 1 10 45 66

9 1 5 10 21

10 1 2 2 7

11 1 2

Total 2× 1 2× 2 9 4 2× 52 171 294

Remark. It should be noted that this basis is minimal for the polynomial invariant algebra of Ela, the

result for functional basis (algebraically independent) can be further reduced.

This result closes the question posed previously, i.e. the integrity basis to separate the orbit space

Ela/SO(3). However, the obtained basis is of more academic than practical interest. To be able to build

conditions of belonging to a symmetry class, we will refer to another strategy via covariants formula-

tions [78].

6.4.2 Covariants: a geometric path

In this section, following the recent work of M. Olive et al. in [78], a definitive answer to the classifi-

cation problem for Ela will be given, using covariants instead of invariants.

We give a brief definition of covariant as follows [78]. A more general and abstract definition of this

concept can be found in [170].

6.4.1 Definition (Covariant)

Let V and W be finite-dimensional representations of a group G. The covariant algebra of V of type

W, noted Cov(V,W), is defined as the invariant algebra

Cov(V,W) := R[V⊕W∗]G,

where W∗ is the linear application of W.

In our case, we will consider G = SO(3) with V = Ela and W=R3. Based on the harmonic decom-

position, the linear application of R3 is of type Sn(R3). Thus, the covariant algebra of Ela of type R3 is

defined as:

Cov(Ela,R3) := R[Ela⊕ Sn(R3)]SO(3)

in the following content, since there is no ambiguity on covariant algebra type (always R3) and we want
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6.4. CONDITION OF BELONGING TO A SYMMETRY CLASS

to clarify the order of polynomial covariants, the notion Cov(Ela,R3) will be rewritten as Covn(Ela).

Remark. The polynomial covariants of Ela of order n = 0 can be considered as its invariants.

Any polynomial covariant p(C
≈
) ∈ Covn(Ela) of C≈ ∈ Ela is SO(3)-equivariant:

p(g ⋆ C
≈
) = g ⋆ p(C

≈
), ∀C

≈
∈ Ela, g ∈ SO(3)

It can be seen that the five harmonic components α, β, h
∼
a, h

∼
b,H

≈
are covariants of C

≈
, with respectively:

• α, β ∈ Cov0(Ela), they are invariants of C
≈

• h
∼
a, h

∼
b ∈ Cov2(Ela)

• H
≈
∈ Cov4(Ela)

It should be noted that the characterisation of the symmetry classes by covariants is independent of

the choice of an explicit harmonic decomposition. Apart from the three covariants {h
∼
a, h

∼
b,H

≈
} of C

≈
, the

following covariants will be used (an explicit list of covariants has been computed in [[78], Table2]) to

characterise the symmetry classes of elasticity tensors :

d2
∼

:= tr13H≈
2, d3

∼
:= tr13H≈

3, ck
∼

:= H
≈
k−2 : d2

∼
, k ≥ 3

where H
≈
n := H

≈
: H
≈
n−1 for n ≥ 2 and tr13A≈

is defined in orthonormal basis as (tr13A≈
)ij := (A

≈
)kikj . We

will also use the simplified notation a
∼
b
∼
:= a

∼
· b
∼

and let a
∼
d be the deviatoric part of a

∼
. The quadratic

covariant d2
∼

was first introduced in [77] and plays an important role in the classification of the fourth-

order harmonic tensor (Appendix C).

The symmetry class of an elasticity tensor is thus characterised by polynomial equations involving

its covariants. From the mechanical point of view, these polynomial equations provide necessary and

sufficient conditions for membership in each of the eight symmetry classes. Based on the harmonic

decomposition, the advantage of using covariants-based criteria is that they are particularly simple. One

merely needs to verify the vanishing of certain polynomial functions defined on the harmonic components

of the elasticity tensor. It offers a more geometric perspective rather than relying solely on complex

algebraic equation systems.

6.4.3 Covariant-based membership relations

Let’s start by introducing a few operations on tensors.

6.4.2 Definition (Symmetric tensor product)

The symmetry tensor product between two tensors T(p) ∈ Tp(R3) and T(q) ∈ Tq(R3) is defined as

T(p) ⊙ T(q) := (T(p) ⊗ T(q))s ∈ Sp+q(R3)

The total symmetrisation of a tensor T ∈ Tn(R3), noted Ts ∈ Sn(R3) is defined as:

T si1i2···in :=
1

n!

∑
σ∈Gn

Tiσ(1)iσ(2)···iσ(n)

with σ the permutation of the letters {1, 2, · · · , n} and Gn is the corresponding symmetric group on n

letters.
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6.4.3 Definition (Generalised cross product)

The generalised cross product between two totally symmetric tensors T(p) ∈ Sp(R3) and T(q) ∈ Sp(R3)

is defined as

T(p) × T(q) := −(T(p) · ε
≃
· T(q))s ∈ Sp+q−1(R3).

where ε
≃
is the Levi-Civita tensor. On any orthonormal basis, we get

(T(p) × T(q))i1···ip+q−1
:= ((ε

≃
)i1jkT

(p)
ji2···ipT

(q)
kip+1···ip+q−1

)s

Note first that the symmetry class of C
≈

is the same as the symmetry class of the triplet (h
∼
a, h

∼
b,H

≈
).

The covariants used to characterise the symmetry classes of an elasticity tensor are:

{h
∼
a, h

∼
b,H

≈
,d2
∼
,d3
∼
, c3
∼
, c4
∼
}

The following theorem has been proved in [78]:

Theorem 6.5: Characterisation of the symmetry class of C
≈
∈ Ela

Let C
≈

= f(α, β, h
∼
a, h

∼
b,H

≈
) ∈ Ela be an harmonic decomposition of an elasticity tensor C

≈
, where

α, β are scalars, h
∼
a, h

∼
b ∈ H2 and H

≈
∈ H4. Then,

1. C
≈
∈ Σ[SO(3)] if and only if h

∼
a = h

∼
b = d2

∼
= 0.

2. C
≈
∈ Σ[O] if and only if h

∼
a = h

∼
b = dd2

∼
= 0 and d2

∼
̸= 0.

3. C
≈
∈ Σ[O(2)] if and only if (h

∼
a, h

∼
b,d2

∼
) is transversely isotropic and

H
≈
× h

∼
a = H

≈
× h

∼
b = H

≈
× d2

∼
= 0.

4. C
≈
∈ Σ[D4] if and only if (h

∼
a, h

∼
b,d2

∼
) is transversely isotropic and

tr(H
≈
× h

∼
a) = tr(H

≈
× h

∼
b) = tr(H

≈
× d2

∼
) = 0,

and H
≈
× h

∼
a ̸= 0 or H

≈
× h

∼
b ̸= 0 or H

≈
× d2

∼
̸= 0.

5. C
≈
∈ Σ[D3] if and only if (h

∼
a, h

∼
b,d2

∼
) is transversely isotropic and

h
∼
a × (H

≈
: h
∼
a) = h

∼
b × (H

≈
: h
∼
b) = d2

∼
× (H

≈
: d2

∼
) = 0,

and tr(H
≈
× h

∼
a) ̸= 0 or tr(H

≈
× h

∼
b) ̸= 0 or tr(H

≈
× d2

∼
) ̸= 0.

6. C
≈
∈ Σ[D2] if and only if the family of second-order tensors Fo is orthotropic.

Fo = {h
∼
a, h

∼
b,d2

∼
, c3
∼
, c4
∼
,H
≈
: h
∼
a,H

≈
: h
∼
b,H

≈
: (h

∼
a)2,H

≈
: (h

∼
b)2}

7. C
≈
∈ Σ[Z2] if and only if the family of second-order tensors Fm is monoclinic.

Fm = {h
∼
a,h
∼
b,d2

∼
,c3
∼
,c4
∼
,H
≈
: h
∼
a,H
≈
: h
∼
b,H
≈
: (h

∼
a)2,H

≈
: (h

∼
b)2,H

≈
: (h

∼
ah
∼
b)s,H

≈
: (h

∼
ad2
∼
)s,H

≈
: (h

∼
bd2
∼
)s}

8. C
≈
∈ Σ[1] if and only if none of the preceding conditions hold.

This theorem is completed by the following remarks:
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Remark.

1. If C
≈

is transversely isotropic, tetragonal or trigonal then the triplet (h
∼
a, h

∼
b,d2

∼
) is transversely

isotropic. The explicit covariant conditions for (h
∼
a, h

∼
b,d2

∼
) to be of this symmetry class is provided

in Theorem C.1;

2. The explicit covariant conditions on the finite family Fo,Fm to characterise the corresponding sym-

metry classes are given in Theorem C.1;

3. Covariant conditions of transitions from one symmetry class to another (as is done for 2D case

in Equation 3.16) are not yet completely obtained.

The corresponding harmonic representation for these 8 situations is shown below:

Table 6.3: Polynomial conditions for membership of an open stratum

stratum Covariant conditions Tensor representations

Σ[1] Condition 8 (in Theorem 6.5)

(α, β, h
∼
a, h

∼
b,H

≈
)

Σ[Z2] Condition 7

Σ[D2] Condition 6

Σ[D3] Condition 5

Σ[D4] Condition 4

Σ[O(2)] Condition 3

Σ[O] Condition 2 (α, β, 0, 0,H
≈
)

Σ[SO(3)] Condition 1 (α, β, 0, 0, 0)

From the point of view of the tensor representations, it can be observed that not all types of tensor

representations are included, for instance, (α, β, h
∼
a, h

∼
b, 0) and (α, β, 0, h

∼
b,H

≈
) are not listed, which are

considered as the exotic sets beyond symmetry classes. Besides these, there exist plenty of other exotic

possibilities, which will be detailed in chapter 7.

We will introduce in the next chapter several examples of exotic sets, which are mainly obtained

from the explicit decompositions in subsection 6.2.3 and based on it, their characterization by covariants

conditions will also be discussed.
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Chapter 7

3D exotic sets
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In this chapter, inspired by the determination of exotic sets in R2, we will revisit the same topic in

R3. The situation will be more intricate, as what could be simplified in a 2D context now requires careful

consideration within a 3D problem. In this way, it provides a more general framework for studying exotic

sets of other constitutive laws. We start by clips operations in section 7.1 along with the determination

of a complete list of exotic sets for Ela(3). These exotic sets are then identified by polynomial covariant

conditions in section 7.2. Among all the exotic possibilities, three of them are discussed in section 7.3

along with some mechanical interpretations.
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7.1. EXOTIC SETS OF Ela(3)

7.1 Exotic sets of Ela(3)

It is known that the symmetry class [G] of C
≈
∈ Ela can be seen as the symmetry class of its harmonic

bouquet (h
∼
a, h

∼
b,H

≈
) [[78], Section 6], in which ([G1]h

∼
a , [G2]h

∼
b , [G3]H

≈
) denotes the corresponding symmetry

classes of its components. Here, the notation [G]X indicates the symmetry class of X. A careful analysis

reveals that the symmetry class [G] of Ela is not uniquely obtained, such diversity comes from two aspects

of consideration:

• Aspect I: For a given symmetry class [G], the symmetry classes of individual components, that is

([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
), is not necessarily unique.

• Aspect II: For a given triplet ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
), the underlying symmetry classes of coupled

components, that is ([G4](h
∼

a,h
∼

b), [G5](h
∼

a,H
≈
), [G6](h

∼
b,H

≈
)), is not necessarily unique.

These two aspects of the ”not necessarily unique” phenomenon constitute the fundamental basis of what

we call exotic materials. The definition of exotic materials is recalled here :

7.1.1 Definition (Exotic materials)

An elasticity material will be said to be exotic, provided

1. Specific design: it satisfies constraints independent of those that may be imposed by symmetry

arguments;

2. Hypersymmetric: its behavior appears to be more symmetrical than that imposed by the material

symmetries.

To summarise, we say that the harmonic bouquet (h
∼
a, h

∼
b,H

≈
) being of type:

([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
, [G4](h

∼
a,h

∼
b), [G5](h

∼
a,H

≈
), [G6](h

∼
b,H

≈
)) (7.1)

Following what introduced previously, this harmonic bouquet type is not necessarily unique to determine

the symmetry class [G] of (h
∼
a, h

∼
b,H

≈
), meaning that the corresponding strata of [G], denoted by Σ[G] can

be partitioned into different subsets accordingly. Besides, among all the subsets of Σ[G], the corresponding

subsets for exotic materials will be referred to as exotic sets, denoted by Σe[G], and the others are called

generic sets denoted by Σg[G]. We have:

Σ[G] = Σg[G] ∪ Σe[G]

Unlike the 2D case that there is just one exotic set, it should be noted that in 3D case, for a given [G],

Σe[G] is not always unique. We have:

Σe[G] =
⋃
i∈N

Σei[G]

To simplify the upcoming expressions, a symmetry class [G] with its corresponding stratum of type

Σg[G] will be referred to as generic, and exotic otherwise. The associated notations are clarified as follows:

generic exotic

Σ[G] generic sets: Σg[G] exotic sets: Σe[G]

materials - exotic materials
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The previous initial observations indicate the richness of elasticity tensor space, it is not only domi-

nated by 8 symmetry classes but also by intermediate possibilities (referred to as exotic) beyond symmetry

classes. The objectif of this chapter is to determine all these exotic sets of Ela and, through some exam-

ples, to investigate the underlying mechanical properties which make them being hypersymmetric.

Remark. We consider a symmetry class [G] as exotic based on the observation that, for some solliciations,

its linear elasticity behaves more symmetric than its ground symmetry class. Be careful that in this process,

we do not create any new symmetry classes. There are only 8 symmetry classes of Ela and all C
≈
∈ Ela

possess one symmetry class among these 8 possibilities.

Thus, to determine the exotic sets of Ela, we will reproduce the clips operation between I(H4),

I(H2) and I(H2) with fully taking into account the intermediate results of clips product between coupled

harmonic components. A natural successive step is to identify these obtained exotic sets by polynomial

covariant conditions. The polynomial conditions stated in Theorem 6.2 serve solely to determine the

membership to symmetry class within the 8 distinct symmetry classes of Ela. They do not possess the

ability to differentiate between generic and exotic. To deal with all these issues, a three-step process is

proposed as below :

Step-1: Harmonic structure of the constitutive tensors space: the result for Ela is given in sec-

tion 6.2;

Step-2: A complete iterative clips operation between symmetry classes of different harmonic spaces.

It will be introduced in subsection 7.1.1;

Step-3: Distinguish between the generic sets and exotic sets from the results of Step-2 and then

characterise the exotic sets by polynomial covariant conditions, this will be introduced

in section 7.2.

Remark. This three-steps structure is general, meaning that it can be applied to any other constitutive

tensors space to determine their exotic sets.

7.1.1 Clips operation for Ela(3)

In response to the two aspects mentioned earlier, here we will correspondingly introduce two clips

products: a simple case and a complete case. The results of both operations play a crucial role in

enumerating exotic sets.

Clips operation: direct product

Consider the harmonic structure of the elasticity tensor space Ela = 2H0⊕2H2⊕H4, the clips operation

between individual symmetry classes ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
) will result in the symmetry class [G]:

[G1]h
∼

a ⊚ [G2]h
∼

b ⊚ [G3]H
≈
= [G] (7.2)

To illustrate this clips product, we put in each horizontal stage (Figure 7.1) the clips product be-

tween [G1]h
∼

a ∈ I(H2) and [G2]h
∼

b ∈ I(H2). On the vertical axis are addressed the symmetry classes of

[G3]H
≈
∈ I(H4), a successive clips product between the previous result of [G1]h

∼
a ⊚ [G2]h

∼
b and [G3]H

≈
will

be computed. As a consequence, we show in the horizontal block the final results of [G1]h
∼

a⊚[G2]h
∼

b⊚[G3]H
≈
.

Here comes an example:
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7.1. EXOTIC SETS OF Ela(3)

Example 5

Figure 7.1: Illustration of
clips operations

We show here an example of the clips operation of [O(2)] ⊚

[O(2)]⊚ [O(2)] for Ela case. It can be observed that it results

in four different symmetry classes, we will define later [O(2)]

as generic while the others are exotic.

As shown in this example, the resulting symmetry class [G] is not the only outcome of this operation.

This situation is in fact general, and has strong implication when it comes to ”inverse” the clips operation:

[G] = [G1]h
∼

a ⊚ [G2]h
∼

b ⊚ [G3]H
≈

(7.3)

the symmetry class [G] can be obtained from different collections ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
), and the corre-

sponding strata will result in two situations: generic sets or exotic sets. Take the case in Figure 7.1 for

instance, the obtained [O(2)] is generic while [1], [Z2] and [D2] are exotic.

This allows us to explore the possibilities of exotic sets in a direct manner. The operation is simple and

yield very tentative results (listed in Figure 7.3). However, the problem with this direct approach, is that

it does not count the diverse combinations producing the same result. From the view of clips product, it

lacks one-to-one correspondence between the obtained exotic set and its triplet collection, which make it

incapable of insight into the determination of complete exotic sets. Consider for instance the orthotropic

class [D2] obtained from the triple ([O(2)]h
∼

a , [O(2)]h
∼

b , [O(2)]H
≈
). The Figure 7.1 only indicates that this

outcome is possible, to count the diverse combination leading to this result, it is important to consider

also symmetry classes of pairs, as illustrated in Table 7.1.

[G] [G1] [G2] [G3] [G4] [G5] [G6] Number

[D2] [O(2)] [O(2)] [O(2)] [D2] or [O(2)] [D2] or [O(2)] [D2] or [O(2)] 2× 2× 2

Table 7.1: An example of complete clips operation structure.

From this example, it can be observed that the exotic set [D2] obtained by simple clips operation

[O(2)]h
∼

a ⊚ [O(2)]h
∼

b ⊚ [O(2)]H
≈
encompasses greater possibilities of exotic sets, provided that the interme-

diate results of coupled clips product, that is ([G4](h
∼

a,h
∼

b), [G5](h
∼

a,H
≈
), [G6](h

∼
b,H

≈
)), are taken into consider-

ation. These coupled results were previously introduced as Aspect II consideration. For this example, we

obtain 8 exotic sets instead of 1.

Clips operation: complete product

Based on the preceding discussion, we present here the complete one-to-one correspondence structure

of the clips operations [G1]h
∼

a ⊚ [G2]h
∼

b ⊚ [G3]H
≈
:
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[G] = {[G1]h
∼

a ⊚ [G2]h
∼

b ⊚ [G3]H
≈

| [G1]h
∼

a ⊚ [G2]h
∼

b = [G4], [G1]h
∼

a ⊚ [G3]H
≈
= [G5], [G2]h

∼
b ⊚ [G3]H

≈
= [G6]}

(7.4)

To illustrate this complete clips product, we present the following structure:

Figure 7.2: Illustration of com-
plete clips operations structure

It shows the structure of complete clips operation

of Equation 7.4 for Ela case. The final result is

placed within an equilateral triangle, and its deriva-

tion takes into account:

1. Aspect I the symmetry classes of the individual

components (placed in green rectangles located

at the sides of the triangle);

2. Aspect II the symmetry classes of the paired

components (placed in blue parallelogram lo-

cated at vertices of the triangle).

Remark. The restriction on the symmetry class of the paired components can be seen as the restriction

imposed on the ”orientation” between these components.

The results of both these cases of clips operation will be listed in the next subsection, and thus help

us to determine the exotic sets.

7.1.2 Determination of exotic sets

We recalled the clips operations, a tool for deducing the symmetry classes of a tensor space from its

harmonic decomposition. For Ela, we previously discussed two cases of clips operation, and now we will

furnish two distinct outcomes in alignment with those cases. At this juncture, a natural question arises:

how to select from the many possibilities of [G] that really define exotic materials ? To address this, the

outcomes will be presented in a manner that is both comprehensible and intuitive.

Intermediate classification of exotic sets

The example in Figure 7.3 is extended here to obtain the intermediate classification of exotic sets for

Ela. Since there exist 8 symmetry classes for H4 and 3 symmetry classes for H2, we have 3× 3 horizontal

blocks and 8 stages. Obviously, since two H2 are involved, the 9 horizontal blocks are symmetric, we will

illustrate only a part of the results. To easily distinguish between them, the different symmetry classes

are illustrated by different colors, it reads:

{[1], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]}

And our result reads:
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Figure 7.3: Clips operation results for Ela

Remark. Apart from [SO(3)] and [O], the other symmetry classes can be generated differently.

Indeed, from the result obtained above, we can determine whether a symmetry class [G] is exotic

or not: according to the definition of exotic materials in Definition 7.1.1, among all the same type of

symmetry class [G], the so-called generic is the one that results from a collection of triplet symmetry

classes which are the least symmetric among all.
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[G]
I(H2) I(H2) I(H4)

Number Nature
[G1] [G2] [G3]

[SO(3)] [SO(3)] [SO(3)] [SO(3)] 1 Generic

[O] [SO(3)] [SO(3)] [O] 1 Generic

[O(2)]

[O(2)] [O(2)] [O(2)] 1 Generic

[O(2)] [SO(3)] [O(2)] 2

Exotic

[O(2)] [O(2)] [SO(3)] 1

[O(2)] [SO(3)] [SO(3)] 2

[SO(3)] [SO(3)] [O(2)] 1

[D4]

[O(2)] [O(2)] [D4] 1 Generic

[O(2)] [SO(3)] [D4] 2

Exotic

[SO(3)] [SO(3)] [D4] 1

[O(2)] [O(2)] [O] 1

[SO(3)] [O(2)] [O] 2

[D3]

[O(2)] [O(2)] [D3] 1 Generic

[SO(3)] [O(2)] [D3] 2

Exotic

[SO(3)] [SO(3)] [D3] 1

[O(2)] [O(2)] [O] 1

[SO(3)] [O(2)] [O] 2

Table 7.2: Intermediate clips operation results for Ela and determination of exotic sets

Remark. The number here counts the possibilities of exotic set within the intermediate classification.

The number equal to 2 is based on the fact that the clips product between symmetry classes of two H2 is

commutative.

We’ve just listed in Table 7.2 the possibilities for [SO(3)], [O], [O(2)], [D4] and [D3], the ones for [D2],

[Z2] and [1] are too numerous, we’ll put them in section D.1. The cases marked with a gray background

are generic ones. To summarize, there are intermediately 163 exotic sets in total for tensors in Ela.
Specifically, we have 6 exotic sets of Σ[O(2)], 6 exotic sets of Σ[D4], 6 exotic sets of Σ[D3], 36 exotic sets

of Σ[D2], 52 exotic sets of Σ[Z2] and 57 exotic sets of Σ[1]. As the symmetry degree of the considered

symmetry class decreases, the number of exotic sets increases sharply.

Certainly, as we’ve learned from the previous discussion about the clips operation that the outcomes

obtained through direct clips products do not encompass all exotic sets. A complete list of exotic sets

will be provided in the subsequent part of this subsection.

This does not mean, however, that the results obtained lack precision; on the contrary, they have

some significance: in what follows we shall find that many of the exotic sets expressed in the complete

product manner (Equation 7.4) can be simplified to the intermediate results given here, which allow us

to simplify the characterization of these exotic sets. For instance, the three examples of exotic materials

presented in section 7.3 can all be reduced to results obtained by a direct clips product without having

to consider the symmetry classes of the pairs.

Complete list of exotic sets

The results obtained previously are not exhaustive. As shown in Table 7.1, when considering the

symmetry classes of coupled components, a previously obtained exotic set might encompass additional

exotic sets. Thus, by applying the Equation 7.4, we enumerate the complete exotic sets. The results for

[SO(3)], [O], [O(2)], [D4] and [D3] are as follows:
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[G] [G1] [G2] [G3] [G4] [G5] [G6] Number Generic/Exotic

[SO(3)] [SO(3)] [SO(3)] [SO(3)] [SO(3)] [SO(3)] [SO(3)] 1 Generic

[O] [SO(3)] [SO(3)] [O] [SO(3)] [O] [O] 1 Generic

[O(2)]

[O(2)] [O(2)] [O(2)] [O(2)] [O(2)] [O(2)] 1 Generic

[O(2)] [SO(3)] [O(2)] [O(2)] [O(2)] [O(2)] 2

Exotic
[O(2)] [O(2)] [SO(3)] [O(2)] [O(2)] [O(2)] 1

[O(2)] [SO(3)] [SO(3)] [O(2)] [O(2)] [SO(3)] 2

[SO(3)] [SO(3)] [O(2)] [SO(3)] [O(2)] [O(2)] 1

[D4]

[O(2)] [O(2)] [D4] [O(2)] [D4] [D4] 1 Generic

[O(2)] [SO(3)] [D4] [O(2)] [D4] [D4] 2

Exotic
[SO(3)] [SO(3)] [D4] [SO(3)] [D4] [D4] 1

[O(2)] [O(2)] [O] [O(2)] [D4] [D4] 1

[SO(3)] [O(2)] [O] [O(2)] [O] [D4] 2

[D3]

[O(2)] [O(2)] [D3] [O(2)] [D3] [D3] 1 Generic

[SO(3)] [O(2)] [D3] [O(2)] [D3] [D3] 2

Exotic
[SO(3)] [SO(3)] [D3] [SO(3)] [D3] [D3] 1

[O(2)] [O(2)] [O] [O(2)] [D3] [D3] 1

[SO(3)] [O(2)] [O] [O(2)] [O] [D3] 2

Table 7.3: clips operation results for Ela and determination of exotic sets

It’s worth noting that the final results are consistent with what was obtained in Table 7.2, meaning

that for a given set ([G1], [G2], [G3]), the corresponding set ([G4], [G5], [G6]) is unique. This phenomenon

is easy to be explained: as the obtained degree of symmetry increases, the requirements for symmetry

class pertaining to each individual component, as well as the symmetry class of the coupled components,

become more stringent. This will not be the case for symmetry classes with lower symmetry, that is

[D2], [Z2], [1], the results for these three cases can be found in section D.2.

To summarise, we obtain 8 generic sets and 1052 exotic sets in total. The exotic sets are respectively

6 for Σ[O(2)], 6 for Σ[D4], 6 for Σ[D3], 58 for Σ[D2], 283 for Σ[Z2] and 693 for Σ[1].

It should be noted that the obtained results outlined the theoretical potential of exotic sets, and they

remain in the mathematical stage. However, whether their corresponding materials can actually exist,

or how the so-called ”exotic” are specifically manifested in mechanical behavior, is not yet known at this

stage. It is necessary to combine the current results with a specific harmonic decomposition in order

to describe the ”hypersymmetric” behavior stated in Definition 7.1.1 to really define an exotic material.

This will be discussed in section 7.3.

7.2 Covariants conditions for exotic sets

The Theorem 6.5 used to characterise the symmetry class of an elasticity tensor is based on the fact

that the symmetry class of C
≈

is the same as the symmetry class of the harmonic bouquet (h
∼
a, h

∼
b,H

≈
),

that is [G](h
∼

a,h
∼

b,H
≈
), or simply written as [G]. It characterise the generic state by imposing conditions on

hamronic components as well as the pairs. These conditions can be used to identify different Σ[G], but

for a given [G], it can not be used to distinguish different Σei[G]. In other words, the exotic sets obtained

in the previous section cannot be charecterised by using these polynomial conditions. To characterise the

exotic sets, it is necessary to add to these conditions new conditions involving either the norms of the

harmonic components, the ”orientations” or even both (the same as we done for Ela(2)).
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Thus, in this section, based on the results (Theorem 6.5) in the previous chapter, along with the

framework laid by M. Olive et al.’s work in [78], we propose here complete polynomial covariant conditions.

These conditions aim to characterise the symmetry class [G](h
∼

a,h
∼

b,H
≈
) of C≈

while taking into account the

symmetry class set ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
, [G4](h

∼
a,h

∼
b), [G5](h

∼
a,H

≈
), [G6](h

∼
b,H

≈
)). The construction of these

conditions includes the following tripartite elements :

• Polynomial covariant conditions used to characterise the symmetry class of (h
∼
a, h

∼
b,H

≈
);

• Extra covariant conditions used to impose restrictions on the symmetry class of each element h
∼
a,

h
∼
b and H

≈
;

• Extra covariant conditions used to impose restrictions on the symmetry class of the pair (h
∼
a, h

∼
b),

(h
∼
a,H

≈
) and (h

∼
b,H

≈
).
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The conditions of first aspect have been clarified in Theorem 6.5. For the conditions of the second

aspect, by combining Lemma C.1 and Theorem C.2 in Appendix C (based on the work of M. Olive et al.

in [78]), we have:

Theorem 7.1: Characterisation of the symmetry class for second-order harmonic tensors [78]

For a second-order harmonic tensor h
∼
, its symmetry class is characterised as follows:

Symmetry class Covariants conditions

[D2] h
∼
× h

∼
2 ̸= 0

[O(2)] h
∼
× h

∼
2 = 0, h

∼
̸= 0

[SO(3)] h
∼
= 0

Theorem 7.2: Characterisation of the symmetry class for fourth-order harmonic tensors [78]

For a fourth-order harmonic tensor H
≈
, its symmetry class is characterised as follows:

Symmetry class Covariants conditions

[1] None of the following conditions satisfied

[Z2]

(tr(d2
∼

× c3
∼
) ̸= 0, (c4

∼
tr(d2

∼
× c3

∼
))× tr(d2

∼
× c3

∼
) = 0) or

(tr(d2
∼

× c4
∼
) ̸= 0, (c3

∼
tr(d2

∼
× c4

∼
))× tr(d2

∼
× c4

∼
) = 0) or

(tr(c3
∼
× c4

∼
) ̸= 0, (d2

∼
tr(c3

∼
× c4

∼
))× tr(c3

∼
× c4

∼
) = 0)

[D2]
v5
∼

= v6
∼

= 0; tr(d2
∼

× c3
∼
) = 0 and

(d2
∼

× d22
∼

̸= 0 or c3
∼
× c23

∼
̸= 0 or d2

∼
× c3

∼
̸= 0)

[D3] d2
∼

× d22
∼

= 0, dd2
∼

̸= 0, (H
≈
: d2

∼
)× d2

∼
= 0 and tr(H

≈
× d2

∼
) ̸= 0

[D4] d2
∼

× d22
∼

= 0, dd2
∼

̸= 0, H
≈
× d2

∼
̸= 0 and tr(H

≈
× d2

∼
) = 0

[O(2)] d2
∼

× d22
∼

= 0, dd2
∼

̸= 0, H
≈
× d2

∼
= 0

[O] d2
∼

̸= 0, dd2
∼

= 0

[SO(3)] d2
∼

= 0 or H
≈
= 0

with

d2
∼

= tr13(H≈
2) d3

∼
= tr13H≈

3, ck
∼

= H
≈
k−2 : d2

∼
, k ≥ 3

v5
∼

= ε
∼
: (d2

∼
c3
∼
) v6

∼
= ε

∼
: (d2

∼
c4
∼
)

and ϵ
≃
denotes the Levi-Civita third-order tensor in R3 defined in Equation 6.2.
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The construction of polynomial conditions for the third aspect can be seen as the special case of the

first aspect (the relative contents are discussed in [78]): (h
∼
a, h

∼
b) is the special case of (h

∼
a, h

∼
b,H

≈
) with

H
≈

= 0 or I(H4) = [SO(3)]. (h
∼
a,H

≈
) can be considered as (h

∼
a, h

∼
b,H

≈
) with h

∼
b = 0 or I(H2) = [SO(3)]

and likewise for (h
∼
b,H

≈
). Therefore, we apply the Theorem 6.5 to the current context and derive the

following theorem, The proofs of the two aforementioned theorems can be done by combining Theorem 6.5

and Theorem C.1.

Theorem 7.3: Characterisation of the symmetry class of pair (h
∼
a, h

∼
b) [78]

Let h
∼
a, h

∼
b ∈ H2, then

1. (h
∼
a, h

∼
b) ∈ Σ[SO(3)] if and only if h

∼
a = h

∼
b = 0;

2. (h
∼
a, h

∼
b) ∈ Σ[O(2)] if and only if there exists h

∼
i (i = a or b) such that

(h
∼
i)d ̸= 0, h

∼
i × (h

∼
i)2 = 0 and h

∼
a × h

∼
b = 0

3. (h
∼
a, h

∼
b) ∈ Σ[D2] if and only if

tr(h
∼
a × h

∼
b) = 0,

and there exists h
∼
i (i = a or b) such that h

∼
i × (h

∼
i)2 ̸= 0 or h

∼
a × h

∼
b ̸= 0

4. (h
∼
a, h

∼
b) ∈ Σ[Z2] if and only if w := tr(h

∼
a × h

∼
b) ̸= 0 and

(h
∼
iw)× w = 0, i = a or b.

5. (h
∼
a, h

∼
b) ∈ Σ[1] if and only if none of the preceding conditions hold.

115



7.2. COVARIANTS CONDITIONS FOR EXOTIC SETS

Next, we will discuss the situation for (h
∼
a,H

≈
) and (h

∼
b,H

≈
), since they hold the same results, we will

only discuss (h
∼
a,H

≈
) here.

Theorem 7.4: Characterisation of the symmetry class of (h
∼
a,H

≈
)

Let h
∼
a ∈ H2 and H

≈
∈ H4, then

1. (h
∼
a,H

≈
) ∈ Σ[SO(3)] if and only if h

∼
a = d2

∼
= 0.

2. (h
∼
a,H

≈
) ∈ Σ[O] if and only if h

∼
a = dd2

∼
= 0 and d2

∼
̸= 0.

3. (h
∼
a,H

≈
) ∈ Σ[O(2)] if and only if (h

∼
a,d2

∼
) is transversely isotropic and

H
≈
× h

∼
a = H

≈
× d2

∼
= 0.

4. (h
∼
a,H

≈
) ∈ Σ[D4] if and only if (h

∼
a,d2

∼
) is transversely isotropic and

tr(H
≈
× h

∼
a) = tr(H

≈
× d2

∼
) = 0,

and H
≈
× h

∼
a ̸= 0 or or H

≈
× d2

∼
̸= 0.

5. (h
∼
a,H

≈
) ∈ Σ[D3] if and only if (h

∼
a,d2

∼
) is transversely isotropic and

h
∼
a × (H

≈
: h
∼
a) = d2

∼
× (H

≈
: d2

∼
) = 0,

and tr(H
≈
× h

∼
a) ̸= 0 or tr(H

≈
× d2

∼
) ̸= 0.

6. (h
∼
a,H

≈
) ∈ Σ[D2] if and only if the family of second-order tensors Fo is orthotropic.

Fo = {h
∼
a,d2

∼
, c3
∼
, c4
∼
,H
≈
: h
∼
a,H

≈
: (h

∼
a)2}

7. (h
∼
a,H

≈
) ∈ Σ[Z2] if and only if the family of second-order tensors Fm is monoclinic.

Fm = {h
∼
a,d2

∼
,c3
∼
,c4
∼
,H
≈
: h
∼
a,H
≈
: (h

∼
a)2,H

≈
: (h

∼
ad2
∼
)s}

8. (h
∼
a,H

≈
) ∈ Σ[1] if and only if none of the preceding conditions hold.

Unlike the characterisation of the symmetry class of C
≈

in Theorem 6.5, which omits the essential co-

variants conditions for symmetry classes of ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
, [G4](h

∼
a,h

∼
b), [G5](h

∼
a,H

≈
), [G6](h

∼
b,H

≈
)), the

preceding four theorems make up for this limitation.

For a given exotic set, the final conditions to characterise it are obtained by first imposing indepen-

dently the tripartite conditions (stated in Theorem 6.5, Theorem 7.1, Theorem 7.2, Theorem 7.3 and The-

orem 7.4) and then eliminating the overlapping ones. It’s worth noting that this process can be signifi-

cantly simplified in many cases: as stated in Table 7.3, after determining the symmetry classes of individ-

ual harmonic components ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
), the symmetry classes ([G4](h

∼
a,h

∼
b), [G5](h

∼
a,H

≈
), [G6](h

∼
b,H

≈
))

of paired components formed by these individual ones can be uniquely determined. To characterise these

exotic sets, only the conditions for ([G](h
∼

a,h
∼

b,H
≈
), [G1]h

∼
a , [G2]h

∼
b , [G3]H

≈
) will be considered.

In the next section, we will present three such examples. Since the symmetry classes of paired compo-

nents are uniquely determined, they will be illustrated in a way like in Figure 7.1 instead of in Figure 7.2.

These three cases will be detailed in the next section, once a specific explicit harmonic decomposition
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has been chosen, the corresponding exotic materials can be accordingly defined, and they exhibit exotic

mechanical properties, which we refer to as hypersymmetric in the Definition 7.1.1. Interestingly, these

examples have already been mentioned, either directly or indirectly, within the literature under different

frameworks [10]. This highlights the robustness and applicability of our approach, and it provides theo-

retical support for further investigations into a wider array of exotic materials.

7.3 Exotic elastic materials

In this section, three types of exotic materials will be described in detail (through some extensions,

a total of 5 exotic materials will be mentioned). Before starting, consider again the two conditions for

defining exotic materials:

1. Special design: The point is to impose additional requirements that are independent of those that

can be imposed by symmetry arguments. This is achieved by first determining exotic sets based

on clip operations and then characterizing them by polynomial conditions. These processes have

been discussed previously, and the proposed exotic materials are all listed in the previous results,

of course, detailed explanations are given for each of these cases;

2. Hypersymmetric: This second condition will be the focus of this section. Based on specific ex-

plicit harmonic decompositions (Clebsch-Gordan and Schur-Weyl), we will show the hypersymmetric

properties of each proposed exotic material.

In order to demonstrate that the corresponding elasticity tensors of these exotic materials are pos-

itive definite, we will provide examples of matrix representation (under the Kelvin convention) of their

corresponding stiffness tensor C
≈
. On this matrix will be then performed the Clebsch-Gordan and the

Schur-Weyl harmonic decomposition and the different exotic anisotropic properties will be analysed ac-

cordingly. All the matrix representations come from the computation by using Wolfram Mathematica

software in file “Examples of exotic materials”.

7.3.1 R0-orthotropy in R3

A generic set of [D2] is obtained by clips operation:

[D2] = [D2]h
∼

a ⊚ [D2]h
∼

b ⊚ [D2]H
≈

and apart from the Condition 6 in Theorem 6.5, the additional polynomial covariants conditions used to

characterise this generic set Σg[D2]
is :

h
∼
a × (h

∼
a)2 ̸= 0, h

∼
b × (h

∼
b)2 ̸= 0, v5

∼
= v6

∼
= 0 and

(d2
∼

× d22
∼

̸= 0 or c3
∼
× c23

∼
̸= 0 or d2

∼
× c3

∼
̸= 0)

Based on this, we will be interested in an exotic orthotropic material, which can be considered as the

extension of R0-orthotropy in R2 to R3. To this end, we will reuse the Clebsch-Gordan parameterization:

C
≈
= αJ

≈
+ βK

≈
+ h

∼
a ⊠ 1

∼
+

1

3
(h
∼
b ⊗ 1

∼
+ 1

∼
⊗ h

∼
b) + H

≈
,

Remark. Based on the choice of the basis in this explicit decomposition, the linear combination of (h
∼
a, h

∼
b)

has been fixed, and their physical significations are different. Thus, the commutativity of h
∼
a and h

∼
b will
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be no longer valid.

Namely, the aim of this decomposition is to re-write the elasticity tensor as:σ∼d
σ
∼
s

 =

C
≈
dd C

≈
ds

C
≈
sd C

≈
ss

ε∼d
ε
∼
s

 (7.5)

with C
≈
dd = H

≈
+ h

∼
a ⊠ 1

∼
+ αJ

≈
, C
≈
ds = 1

3h≈
b ⊗ 1

∼
, C
≈
sd = 1

3 1∼
⊗ h

≈
b and C

≈
ss = βK

≈
. This expresses elasticity as

a coupled behaviour: spherical elasticity (denoted by exponent s) and deviatoric elasticity (denoted by

exponent d).

Example 6
To be more specific, a random orthotropic elasticity tensor is given :

[C
≈
] =



58 20 10 0 0 0

∗ 47 −9 0 0 0

∗ ∗ 52 0 0 0

∗ ∗ ∗ 46 0 0

∗ ∗ ∗ ∗ 100 0

∗ ∗ ∗ ∗ ∗ 144


K

(7.6)

It is generated from a 6× 6 random diagonal matrix whose elements are only strictly positive:

{73.6, 72, 58.2, 50, 25.2, 23}

Based on it, we obtain the terms of the decomposed elasticity tensor in Equation 7.5:

[C
≈
dd] =



193
9 − 59

9 − 134
9 0 0 0

∗ − 274
9 − 215

9 0 0 0

∗ ∗ 349
9 0 0 0

∗ ∗ ∗ 46 0 0

∗ ∗ ∗ ∗ 100 0

∗ ∗ ∗ ∗ ∗ 144


K

[C
≈
ds] =



65
9

65
9

65
9 0 0 0

∗ − 25
9 − 25

9 0 0 0

∗ ∗ − 40
9 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0


K

[C
≈
sd] =



65
9 − 25

9 − 40
9 0 0 0

∗ −25
9 − 40

9 0 0 0

∗ ∗ − 40
9 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0


K

[C
≈
ss] =

199

9



1 1 1 0 0 0

∗ 1 1 0 0 0

∗ ∗ 1 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0


K

Characterisation of 3D R0-orthotropy

The expression Equation 7.5 allows reproducing the same non-standard mechanical property as R0-

orthotropy in R2, that is an orthotopic material possesses its deviatoric elasticity isotropic. This situation

is defined by the following harmonic structure:

C
≈
= f(α, β, 0, h

∼
b, 0) (7.7)
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with the second order harmonic tensor h
∼
b being of type [D2]h

∼
b . From a mechanical point of view:σ∼d

σ
∼
s

 =

 αJ
≈

1
3h≈

b ⊗ 1
∼

1
3 1∼

⊗ h
≈
b βK

≈

ε∼d
ε
∼
s

 (7.8)

It can be observed that it satisfies the first point of the Definition 7.1.1, that is, the restriction

does not only come from a symmetry requirement but also should satisfy extra constraints, which are

h
∼
a = 0,H

≈
= 0. Besides, despite the anisotropic coupling between spherical and deviatoric modes, the

deviatoric elasticity is isotropic. It produces more symmetrical behaviour than imposed by material sym-

metries since isotropic deviatoric elasticity only manifests generically for isotropic materials. Thus, it

satisfies the second requirement in Definition 7.1.1. We can conclude that it is an exotic elastic material.

As stated before, this situation is the 3D generalisation of R0-orthotropy and is called 3D R0-orthotropy.

Now we are ready to come back to the discussion of the polynomial covariant condition used to

characterise 3D R0-orthotropy. It is defined by eliminating a second-order harmonic component and the

fourth-order harmonic component in its harmonic structure, which is illustrated as follows :

Table 7.4: 3D R0-orthotropy

⊚ [D2] = [SO(3)]h
∼

a ⊚ [D2]h
∼

b ⊚ [SO(3)]H
≈

Conditions h
∼
a = 0, H

≈
= 0, and h

∼
b × (h

∼
b)2 ̸= 0

The polynomial condition for the transition between the strata of generic orthotropy (denoted by

Σg[D2]
) and 3D R0-orthotropy (denoted here by Σe[D2]

) is:

Σg[D2]

h
∼

a=0, H
≈
=0

−−−−−−−→ Σe[D2]

Example 7
Based on the random generic orthotropic elasticity tensor represented in Equation 7.6, by applying

the conditions in Table 7.4, we provide an example of a matrix that the corresponding material can be

called as 3D R0-orthotropy:

[C
≈
] =

1

45



3929 53 −22 0 0 0

∗ 3029 −472 0 0 0

∗ ∗ 2879 0 0 0

∗ ∗ ∗ 3426 0 0

∗ ∗ ∗ ∗ 3426 0

∗ ∗ ∗ ∗ ∗ 3426


K

(7.9)

it is positive definite with its eigenvalues strictly positive {87.4, 76.1, 55, 38, 38, 38}. Despite the diag-

onal values of the 3 × 3 bottom-left submatrix being the same, the matrix [C
≈
] belongs to none of the

matrix normal form listed in [[79], Section 2], it remains as totally anisotropic (triclinic).

Among all terms in Equation 7.5, it can be observed that the three same values in the 3 × 3
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bottom-left submatrix come from the term C
≈
dd :

[C
≈
dd] =

1

45



2284 −1142 −1142 0 0 0

∗ 2284 −1142 0 0 0

∗ ∗ 2284 0 0 0

∗ ∗ ∗ 3426 0 0

∗ ∗ ∗ ∗ 3426 0

∗ ∗ ∗ ∗ ∗ 3426


K

(7.10)

this matrix is characterised by 3 different parameters (one of which is dependent on the two others,

that is 3426 = 2× (2284+1142)), and presents the same structure of an isotropic matrix. We conclude

then that the deviatoric elasticity is isotropic.

Besides, the r0-orthotropic materials can be defined by the same process, its harmonic structure reads:

C
≈
−1 = f(α−, β−, 0, h

∼
b−, 0) (7.11)

with {α−, β−, h
∼
a−, h

∼
b−,H

≈
−} the harmonic components of C

≈
−1. The covariant conditions used to define

r0-orthotropy are also changed accordingly. With the aforementioned example, it is possible to show that

R0-orthotropy is not stable by inversion, since:

[S
≈
dd] =

1

45



0.0092 −0.0045 −0.0046 0 0 0

∗ 0.0088 −0.0043 0 0 0

∗ ∗ 0.0089 0 0 0

∗ ∗ ∗ 0.026 0 0

∗ ∗ ∗ ∗ 0.026 0

∗ ∗ ∗ ∗ ∗ 0.026


K

(7.12)

the matrix normal form of isotropic symmetry class is no longer kept in [S
≈
dd].

Extension to another exotic material

It should be noted that an anisotropic material with its deviatoric elasticity isotropic is not uniquely

defined in R3, a new situation appears for which h
∼
b is transversely isotropic. Its clips operation is

illustrated as follows, compared to the 3D R0-orthotropy, this situation changes the symmetry class of

h
∼
b from [D2] to [O(2)]:

Table 7.5: Transversely isotropic materials with its deviatoric elas-
ticity isotropic

⊚ [O(2)] = [SO(3)]h
∼

a ⊚ [O(2)]h
∼

b ⊚ [SO(3)]H
≈

Conditions
h
∼
a = 0, H

≈
= 0 and

h
∼
b × (h

∼
b)2 = 0, h

∼
b ̸= 0

It is an exotic transversely isotropic elastic material, the deviatoric elasticity of which is isotropic.

The complete transition from generic orthotropic to 3D R0-orthotropy (denoted by Σe[D2]
) and then to

this exotic transversely isotropy (denoted by Σe[O(2)]) are given as follows:
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Σg[D2]

h
∼

a=0, H
≈
=0

−−−−−−−→ Σe[D2]

h
∼

b×(h
∼

b)2=0, h
∼

b ̸=0

−−−−−−−−−−−−→ Σe[O(2)]

7.3.2 Triclinic exotic elastic material

We continue using the Clebsch-Gordan decomposition here to introduce another type of exotic mate-

rial: a decoupled triclinic exotic material. This kind of material can be obtained starting from a general

triclinic material. A generic set of [1] is obtained by clips operation:

[1] = [D2]h
∼

a ⊚ [D2]h
∼

b ⊚ [1]H
≈

and the polynomial covariant conditions used to characterise this generic set is the Condition 8 in The-

orem 6.5 and Condition for [1] in Theorem 7.2 as well as :

h
∼
a × (h

∼
a)2 ̸= 0, h

∼
b × (h

∼
b)2 ̸= 0

Based on it, the decoupled triclinic exotic material is defined as follows:

Table 7.6: Triclinic exotic elastic materials

⊚ [1] = [D2]h
∼

a ⊚ [SO(3)]h
∼

b ⊚ [1]H
≈

Conditions h
∼
b = 0, h

∼
a × (h

∼
a)2 ̸= 0

The polynomial condition of the transition between the corresponding strata of these two different

symmetry classes is:

Σg[1]

h
∼

b=0

−−−→ Σe[1]

The cancellation of h
∼
b cannot be done by imposing symmetry restrictions alone, it must be imposed by

a specific design of the mesostructure, this aspect satisfies the first requirement of the properties defining

exotic materials, as stated in Definition 7.1.1.

From a mechanical standpoint, this situation can be interpreted by Clebsch-Gordan parametrisation.

We have:

σ∼d
σ
∼
s

 =

H
≈
+ h

∼
a ⊠ 1

∼
+ αJ

≈
0

0 βK
≈

ε∼d
ε
∼
s

 (7.13)

It corresponds to the triclinic situation in which the coupling tensor has been canceled. This decoupling

occurs for symmetry reasons from the cubic classes, thus from the much higher symmetry classes. In

consequence, it results in an exotic elastic behaviour. And it is not difficult to find that this exotic

behaviour occurs specifically in 3D cases and it is stable by inversion.

121



7.3. EXOTIC ELASTIC MATERIALS

Example 8
We provide an example of a matrix that can be used to characterise a decoupled exotic triclinic material:

[C
≈
] =

1

3



154 71 51 −15 −29 1

∗ 198 7 30 55 −2

∗ ∗ 218 −15 −26 1

∗ ∗ ∗ 198 33 30

∗ ∗ ∗ ∗ 225 51

∗ ∗ ∗ ∗ ∗ 63


K

(7.14)

it is triclinic and positive definite with its eigenvalues {101.9, 92, 59.7, 58.1, 27.9, 12.2}. Given 1
∼

an

eigentensor of C
≈
, we have:

[C
≈
: 1
∼
] =


92 0 0

∗ 92 0

∗ ∗ 92


Hence the spheric and deviatoric modes are uncoupled.

This situation leads to the fact that a sphere of material under hydrostatic loading deforms isotrop-

ically. However, in the standard triclinic case, the deformation would be an ellipse whose parameters

would be related to the spectral properties of h
∼
b. In order to illustrate it, a numerical test will be im-

plemented on FEniCS: a spherical-shaped triclinic material under hydrostatic loading. To this end, the

initial state of this material can be observed in Figure 7.4a, along with its mesh. The hydrostatic loading

is imposed upon the external surface of the sphere and is normal to the boundary facets. For the first

test, a randomly generated triclinic elasticity tensor is used to characterise the linear elasticity of this

material. And then, by solving the linear problem based on Hookle’s law, we can obtain the deformed

state of this material. In Figure 7.4b, it is possible to notice that a triclinic material does not react with

the same behaviour in all directions, but becomes more elliptical with respect to the traction/compression

force applied.

(a) Initial sphere of radius 1 (b) Deformed state

Figure 7.4: Result of a numerical test on a coupled triclinic material under hydrostatic loading (compres-
sion)

We then perform the same test on a decoupled triclinic material characterised by Equation 7.13. The

former randomly generated triclinic elasticity tensor will be replaced by a decoupled triclinic tensor to

define a new linear problem. After solving the problem, we are able to plot the new result in Figure 7.5.

It is easy to see that the deformed sphere maintains a spherical shape.
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Figure 7.5: Result of a numerical test on a decoupled triclinic material under hydrostatic loading (com-
pression)

7.3.3 Anisotropic materials with isotropic Young’s modulus

Young’s modulus of a linear elastic isotropic material is isotropic or orientation-independent. Is it

possible for an anisotropic material to exhibit an isotropic Young’s modulus? This section is inspired by

the work of He [10], in which he concluded that an anisotropic material exhibiting an isotropic Young’s

modulus can be only either transversely isotropic or orthotropic. This definitive answer will be deduced

as follows. Moreover, we aim at giving complete polynomial covariant conditions to characterise these

kinds of exotic materials.

Given n as a unit direction vector, Young’s modulus of a material can be expressed in function of

n, that is E(n). The parameter
1

E(n)
depends on the compliance tensor S

≈
= C

≈
−1 only through the

associated totally symmetric tensor S
≈
s (Cauchy elastic tensor) [10, 165], that is:

1

E(n)
= S

≈
s :: n⊗

4

(7.15)

To get knowledge on what the totally symmetric tensor S
≈
s specifically represents for, in the other

words, its relationship with harmonic components {α−, β−, h
∼
a−, h

∼
b−,H

≈
−} of S

≈
, we will apply the explicit

harmonic decomposition of Schur-Weyl:

S
≈
= α−1

∼
⊗(2,2) 1∼

+ β−1
∼
⊗(4) 1∼

+ h
∼
a− ⊗(2,2) 1∼

+ h
∼
b− ⊗(4) 1∼

+H
≈
− (7.16)

This formulation is well adapted to our problem, effectively decomposing S
≈
into a totally symmetric part

and an asymmetric part. Among these five harmonic components {α−, β−, h
∼
a−, h

∼
b−,H

≈
−}, the totally

symmetric part concerns only three of them, that is {β−, h
∼
b−,H

≈
−}. Thus, the orientation distribution of

1

E(n)
in Equation 7.15 take the forms:

1

E(n)
= S

≈
s :: n⊗

4

= β− + h
∼
b− : n

∼
⊗2

+H
≈
− :: n

≈
⊗4

(7.17)

It is now immediately from Equation 7.16 that an isotropic Young’s modulus requires the condition

h
∼
b− = 0 and H

≈
− = 0. Observe that in this case the corresponding elastic compliance tensor S

≈
can be

anisotropic since h
∼
a− ̸= 0. Thus, this situation can be defined by the following harmonic structure:

C
≈
−1 = f(α−, β−, h

∼
a−, 0, 0)

Since only one anisotropic component h
∼
a− ∈ H2 has been concerned in this harmonic structure, the
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7.3. EXOTIC ELASTIC MATERIALS

resulting symmetry classes of S
≈
is either orthotropic [D2] or transversely isotropic [O(2)]. We obtain the

following two exotic materials:

• Orthotropic materials with isotropic Young’s modulus:

Table 7.7: Orthotropic materials with isotropic Young’s modulus

⊚ [D2] = [D2]h
∼

a− ⊚ [SO(3)]h
∼

b− ⊚ [SO(3)]H
≈

Conditions h
∼
a− × (h

∼
a−)2 ̸= 0, h

∼
b− = 0 and H

≈
− = 0

The identification of this kind of material requires additional conditions independent of those im-

posed by the symmetry argument:

Σg[D2]

h
∼

b−=0, H
≈

−=0

−−−−−−−−−→ Σe[D2]
(7.18)

It fulfils the first requirement stated in Definition 7.1.1 while displaying the characteristic of so-

called hypersymmetric, as evidenced by its isotropic Young’s modulus. Consequently, we can ascer-

tain that it’s an exotic material.

Example 9
We provide an example of a matrix that can be used to characterise this orthotropic material

with isotropic Young’s modulus:

[C
≈
] =



1377 −1071 −306 0 0 0

∗ 1113 42 0 0 0

∗ ∗ 348 0 0 0

∗ ∗ ∗ 476 0 0

∗ ∗ ∗ ∗ 612 0

∗ ∗ ∗ ∗ ∗ 2142


K

(7.19)

it is positive definite with its eigenvalues {2357.2, 2142, 612, 476, 425.9, 254.8}. The associated

compliance tensor is:

[S
≈
] =

1

4284



30 28 23 0 0 0

∗ 30 21 0 0 0

∗ ∗ 30 0 0 0

∗ ∗ ∗ 9 0 0

∗ ∗ ∗ ∗ 7 0

∗ ∗ ∗ ∗ ∗ 2


K

(7.20)

Thus, we obtain isotropic directional Young modulus:
1

E(n)
= S

≈
(n) =

5

714
.

• Transversely isotropic materials with isotropic Young’s modulus:
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7.3. EXOTIC ELASTIC MATERIALS

Table 7.8: Transversely isotropic materials with isotropic Young’s
modulus

⊚ [O(2)] = [O(2)]h
∼

a− ⊚ [SO(3)]h
∼

b− ⊚ [SO(3)]H
≈

Conditions h
∼
a− × (h

∼
a−)2 = 0, h

∼
a− ̸= 0, h

∼
b− = 0 and H

≈
= 0

Thus, this exotic case can be obtained based on a generic [O(2)] case, the transition between these

two cases is:

Σg[O(2)]

h
∼

b−=0, H
≈

−=0

−−−−−−−−−→ Σe[O(2)] (7.21)

it can also be obtained based on the previous case in Equation 7.18, the transition between each

other shows as follows:

Σg[D2]

h
∼

b−=0, H
≈

−=0

−−−−−−−−−→ Σe[D2]

h
∼

a×(h
∼

a)2=0, h
∼

a ̸=0

−−−−−−−−−−−−−→ Σe[O(2)] (7.22)

These two different manners to get Σe[O(2)] indicate two possibilities to realise the corresponding

material design, either by an initialisation of a generic transversely isotropic material and setting

the cost function by covariant condition in Equation 7.21, or by initialisation of a generic orthotropic

material and setting the cost function by covariant condition in Equation 7.22.

Synthesis

In this section, we’ve listed 5 different exotic materials (Table 7.4-7.8). Among these five exotic mate-

rials, we found that some of them possess the same construction of ([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
). For instance,

both the 3D R0-orthotropic materials and orthotropic materials with isotropic Young’s modulus fall in

the case of Table 7.4, indicating that their respective strata Σe[D2]
are identical. However, they refer to

two totally different materials, since the underlying mechanical meanings of harmonic components are

differently defined.

This observation highlights the heightened complexity exhibited by the exotic sets within Ela(3).
Firstly, within a specific symmetry class, there exist multiple distinct exotic sets. Secondly, for each of

these exotic sets, varying interpretations arising from explicit decomposition lead to the emergence of

diverse exotic materials.
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Conclusions and perspectives
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Conclusions

This Ph.D. thesis opens a great perspective on the theoretical investigation of anisotropy of a physical

property encoded by constitutive tensors. The basic mathematical framework can be dated to 1970 [67],

the researchers use symmetry classes (based on the group theory) to identify the anisotropy properties of

a given material. Based on this, and thanks to the upcoming work of N. Auffray and its collaboration with

mathematicians [107], they have developed an axe of research focused on the geometry of tensor spaces,

including clips operation between symmetry classes and the construction of polynomial invariant/covari-

ant conditions to identify each symmetry class. Thanks to this geometrical description of tensor space in

a very fine way, my Ph.D. work is aimed at exploring the complete intermediate anisotropy possibilities

beyond symmetry classes for a given constitutive law. Some examples have been already documented a

priori in the literature [9, 10]. The advantage of these materials is that they process exotic mechanical

behaviour. These findings indicate the great potential in this research field.

This thesis focuses on the linear elasticity for 2D and 3D, the important results are as follows:

1. Determination of a whole range of exotic sets beyond symmetry classes. The geometrical tools have

been applied to linear elasticity, and based on our proposed definition of exotic materials, it can be

concluded that there is only one exotic set for 2D linear elasticity and there are 1052 exotic sets in

3D. Moreover, the corresponding mechanical interests of some cases have been discussed, which is

mainly through the use of harmonic decomposition.

2. Identification of exotic sets by polynomial conditions. The polynomial condition for an exotic set in

2D case (that is R0-orthotropy) has already been well-developed in literature. This thesis provides

a comprehensive overview of various conditions, encompassing polynomial invariant conditions,

polynomial covariant conditions, and polar component conditions. Furthermore, it elucidates the

interconnections among these conditions and undertakes an extended investigation into the inverse

stability of this exotic set. It allows revealing that the compliance behaviour of a R0-orthotropic

material does not exhibit this particular property. However, we have shown that the situation for

3D is rather complex and the characterisation of exotic sets is possible only by using polynomial

covariant conditions. Instead of giving polynomial covariant conditions for all these 1052 exotic sets,

we came up with a strategy on how to construct these conditions based on several practical tables.

And it was applied to three interesting cases: 3D R0-orthotropy, triclinic exotic elastic materials

and anisotropic materials with isotropic Young’s modulus.

3. Mesostructure design of exotic materials. The aforementioned polynomial conditions serve as cost

functions in topology optimisation problems. Based on it, we realized the numerical design of

R0-orthotropic material and a Cauchy elasticity material by using the level set-based topological

derivative algorithm.

Despite focusing mainly on linear elasticity, this methodology can be extended to other constitutive

laws. For the 2D case, an exact formula is given to compute the total number of exotic sets for a given

constitutive law, e.g. Cosserat elasticity and piezoelasticity The design of 3D exotic materials is still

ongoing.

Perspectives

The advantage of our theory is that we provide a unified perspective on the design of architectured

materials with anisotropic exotic behaviors and, above all, the cases scattered here and there in the
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literature can be shown to be the special ones of what is obtained through applying our theoretical

tools which indicates a great perspective of the upcoming possibilities. Certainly, as is shown within this

document, our study predominantly focused on the theoretical phase and constitutes an attempt at linear

elasticity. Based on it, future research can unfold in the following directions.

Design of exotic materials in Ela(3)

We believe that the outcome of architectured material design will be encouraging since it avoids re-

maining just on the theoretical aspect and by additive manufacturing of these architectured materials,

the underlying exotic mechanical properties can be identified by experimental tests.

In the case of 2D materials, we have presented a complete research strategy, ranging from theoretical

determination of exotic materials to practical material design in terms of periodic mesostructure (R0

orthotropy). However, in the case of 3D materials, this thesis is primarily concerned with the theoretical

investigation, with the completion of the material design still pending. Nevertheless, this design is within

reach, since the polynomial covariant conditions (they are used to define the cost functions for optimisation

problems) for the three exotic cases are already given in section 7.3. Thus, we will simply extend the

optimization algorithm from 2D to 3D to directly implement the optimization design. This work is still

ongoing and will be published in a forthcoming paper.

Identification and validation by experimental tests

Despite major experimental work that has been carried out in the past on the anisotropy of standard

materials [171], the study of architectured materials has remained very limited. This is largely due to

the complexity of their behaviour, which requires a wide range of loadings and measurements (standard

biaxial tests can be used to perform tension in 2 perpendicular directions and shear, but always in the

same main frame of reference).

The execution of the work in this aspect is independent of the research on exotic materials. A testing

machine for periodic architectured materials (Figure 7.6) has already been developed by our partnership

with M. Poncelet and T. Dassonville [172] under the MAX-OASIS project. The designed exotic materials

during my Ph.D. study require further experimental validation to study the feasibility of theoretical

architectures and the sensitivity of their behaviour to manufacturing defects.

Figure 7.6: Testing device for architectured materials

Instability-induced exotic anisotropy

When composed of slender elements, architectured materials can undergo large deformations, exhibit-

ing geometric non-linearities through buckling or snapping behaviours of the cell walls [46]. This can
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create a new pattern in the material with different properties than the original structure. This can be

observed from the hexagonal honeycomb example in Figure 7.7.

The research in this field constitutes one of the threefold axes in MAX-OASIS project and will be

accomplished within the Ph.D. study of Rachel Azulay entitled Conception numérique de matériaux

architecturés à instabilités contrôlées. They proposed a method based on group theory to predict the

possible patterns of an architectured material following a bifurcation. Such a method aligns closely with

the theoretical foundations of the approaches used in my work. Thus, I hold the prospect of combining our

works to potentially extend the investigation of exotic materials within the instability-induced context.

That is, to design a peculiar architectured material, which presents a normal anisotropic property in

its initial state but will emerge exotic anisotropy when a specific instability-induced pattern generation

occurs. This represents an extension of my current research both in terms of theory and applications

(especially with regard to dynamic control of wave propagation).

Figure 7.7: In compression, the hexagonal honeycomb generates different patterns depending on its
boundary conditions [4] (from right to left: initial geometry, under uniaxial compression, under biaxial
compression, and under equibiaxial compression)
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Appendix A

Mathematical notations

Index symmetries:

• T(ij)kl : minor index symmetry, T(ij)kl ⇔ Tijkl = Tjikl;

• Tij kl : major index symmetry, Tij kl ⇔ Tijkl = Tklij ;

• T(ijkl) : totally index symmetry of a tensor (with respect to any permutation of their indices);

Spaces:

• V : vector space, noted by Vd if there is ambiguity about the dimension ;

• Rd: Rd = {(x1, x2, · · · , xd) : x1 ∈ R, x2 ∈ R, · · · , xd ∈ R}, represents the real vector space of

dimension d;

• Tn(Rd) : = ⊗nRd, vector space of tensors of order n on Rd, T ∈ Tn(Rd). Noted by Tn when there’s

no ambiguity about the dimension.;

• Sn(Rd) : the space of totally index symmetric tensors, it is the subspace of Tn(Rd);

• Ela(Rd) : vector space of elasticity tensors on Rd. Ela(Rd) :=
{
C
≈
∈ ⊗4Rd | C(ij) (kl)

}
and Ela(Rd) ∈

T4;

• Hn(Rd) : vector space of harmonic tensors of order n in dimension d. For d = 2, Hn(R2) denotes

Kn; For d = 3, Hn(R3) denotes Hn;

• K−1 : pseudo-scalar space,a physical quantity represented by a number that changes sign when the

physical system undergoes polar symmetry or inversion.

• Md (R) : vector space of real matrices of dimension d× d.

Operations:

• trT: trace of tensor T. It is obtained by the contraction of any two indices i, j of T.

• ⊗ : standard tensor product and ⊗n indicates its power of n.;

• ⊕ : represents the direct sum of vector spaces;

• ⊚ : clips operation between symmetry classes;
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• ∗ : harmonic product between two harmonic tensors, in R2 it is defined as X ∗ Y := X ⊗ Y −
1
2 tr (X ·Y) J

≈
, with X,Y ∈ Kn;

•
n· : contraction of order n between two tensors, T

n· K := Ti1i2i3···ikp1p2···pnKp1p2···pnj1j2···jl ;

• (·)s: complete symmetrisation of a tensor;

• ⊙: symmetric tensor product between two tensors, in R2 we have S1⊙S2 := (S1⊗S2)
s ∈ Sn1+n2(R2),

with S1 ∈ Sn1(R2), S2 ∈ Sn2(R2);

• ∗: the harmonic product between two harmonic tensors, in R2 it is defined as K1 ∗K2 the projection

of the classical tensor product on Kn1+n2 . This product is computed as follows

(K1 ∗K2) = K1 ⊙K2 −
1

2
(1
∼
⊗ (K1 ·K2))

s

with K1 ∈ Kn1 and K2 ∈ Kn2 ;

• ×: the skew-symmetric contraction between two totally symmetric tensors, in R2 it is defined as:

(S1 × S2) := −(S1 · ϵ∼ · S2)s ∈ Sn1+n2−2(R2),

with S1 ∈ Sn1(R2), S2 ∈ Sn2(R2) and ϵ
∼
is the Levi–Civita tensor.

• S: Symmetrized product

• Λ: Anti-symmetrized product

Tensors:

• Tensors of order 0,1,2,4 are respectively represented by α, v, a
∼
, A
≈
;

• 1
∼
: identity tensor of order 2, 1ij = δij ;

• I
≈
: identity tensor of order 4 for S2(R2) , Iijkl =

1
2 (δikδjl + δilδjk);

• K
≈

: spherical projector of R2 , Kijkl = ( 12 1≈
⊗ 1

≈
)ijkl =

1
2δijδkl;

• J
≈
: deviatoric projector of R2, Jijkl = Iijkl −Kijkl =

1
2 (δikδjl + δilδjk − δijδkl).

• T(1)
ijkl = (1

≈
⊗ 1

≈
)ijkl = δijδkl

• T(2)
ijkl = (1

≈
⊗1

≈
)ijkl = δikδjl

• T(3)
ijkl = (1

≈
⊗1

≈
)ijkl = δilδjk

Groups:

• GL(Vd) : group of invertible linear transformations of a vector space Vd, if Vd = Rd, GL(Vd) is

denoted by GL(d);

• O(d) : group of orthogonal transformations. As a matrix group:

O(d) :=
{
M ∈ Md (R) | MTM = Id

}
where MT is the transpose of M.

Divers:
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• Id : identity matrix of dimension d× d ;

• L(E,F) : space of linear applications from E to F;

• ≃ : isomorphism relationship;

• ∼ : equivalence relation between two tensors;

• IB : integrity basis;

• ⟨a, b⟩ : scalar product between two vectors ;

• [T] : matrix representation of tensor T ∈ Tn;

• Σ[H] : stratum of tensors whose symmetry class is exactly [H];

• ui,j : partial derivative of u:
∂ui
∂xj
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Appendix B

Level set based topological derivative

algorithm

B.1 Flowchart of the algorithm

We summarize in Figure B.1 the algorithm for the optimization of microstructures based on an exact

formula for the topological derivative of the macroscopic elasticity tensor (estimated by a multi-scale

theory) and a level-set representation [2].

B.2 Defining subdomains for different materials

Different material phases are defined as subdomains in FEniCS by class SubDomain, and the material

parameters can be defined accordingly. To this end, we first use the level set function to define the

boundary, it acts as a shortcut to the subdomain definition. As showed in lines:

1 class Omega_0(SubDomain):

2 def inside(self , x, on_boundary):

3 return lsf_project(x[0],x[1]) <=0+tol

with lsf_project is the output of the level set function projects onto a MeshFunction1 space, which

allows evaluating the level set value on each vertex. FEniCS will call the inside function for each vertex

in a cell to determine whether or not the cell belongs to a particular subdomain. Saying that a triangular

cell belongs to a subdomain if at least two of its vertices belong to it.

Remark. For this reason, it is important that the test holds in cells aligned with the boundary. We use a

tolerance tol = 1 × 10−14 to make the cells both above and below the internal boundary belong to either

Ωmµ or Ωmµ . That explains the existence of the rough interface contour.

In our implementation, the subdomain of Ωmµ is tagged with the number 0, and the complementary

part Ωiµ is tagged with number 1. The material property parameters can be assigned to the corresponding

subdomains by the values of these tags.

1The discrete function that can be evaluated at a set of so-called mesh entities.
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B.3. LINE SEARCH

B.3 Line search

The line search process is dominated by step size κ ∈ [0, 1] (cf. Equation 5.26) in order to decrease the

value of the cost function J . In this context, the line search algorithm is separated into two situations

based on the different cost function variations (decrease or increase).

• Jn+1 < Jn:

In this case, the main iteration will go on. In order to speed up the algorithm, we divide the current

value κ by 0.8 to take larger steps.

• Jn+1 > Jn:

In this case, we jump out of the current loop and return to the previous level set function. The step

size κ will be reduced by multiplying it by 0.8, then the level set function will be updated with this

new step size. This processes will be stopped and go back to the main loop until the cost function

is reduced.

B.4 Stopping criterion

The iterative process is stopped when the maximum difference between the value of the cost function

at the current iteration and the values of the four previous iterations is below a certain tolerance. In

order to take a smaller tolerence when the mesh gets finer, it will be defined in terms of the mesh size,

read 2J
N2

x
.

However, if at this stage, the optimality condition 5.23 is not satisfied, which means that the value

θ is larger than the desired degree of accuracy ϵθ = 5◦, a uniform mesh refinement of the RVE will be

carried out, and the iteration will continue.
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B.4. STOPPING CRITERION

In
iti

al
iz

at
io

n

Mesh generation

Periodic conditions
Optimisation parameter

O
pt

im
is

at
io

n

Unit cell volume: 

Structured triangular mesh (initial):  

Young's module:  Poisson's ratio:

Line search step size:

Unit cell:

No

Line search: 

No

No

Yes

Phase contrast:

Initial guess of level set function

 Initial geometry model
Material prameters

Iteration number: 

Level set function based subdomain definition:

Multi-scale based Homogenization  

Stress field: 
  Homogenized elasticity tensor: 

Define the cost function     :

with and

Topological derivative of     :

Exact topological derivative of the cost function     :

Define the subdomain-depend function          :

Renewed level-set function obtained by an
explicitly algorithm

Yes

Yes

Coordinate of the point             : 

with: 

Angle between the vector      and        :

Start

Normalizing constant that ensure                 :   N       

Else:

If               : 

End

Figure B.1: Flowchart of the level set based topological derivative algorithm
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Appendix C

Covariant criteria for tensor’s symmetry

The main results of this annex are mainly used to characterise the symmetry classes for a given tensor

or an n-tuple tensors, which is used to complete the Theorem 6.5. The proofs are provided in [78].

Lemma C.1 (Second order tensors’ symmetry). Let a
∼
be a symmetric second-order tensor. Then, a

∼
is at

least transversely isotropic if and only if a
∼
× a

∼
2 = 0.

Theorem C.1: Characterisation of the symmetry class for n-tuple second-order tensors

Let (a1
∼
, · · · , an

∼
) be an n-tuple of second-order symmetric tensors. Then:

1. (a1
∼
, · · · , an

∼
) is isotropic if and only if

adk
∼

= 0, 1 ≤ k ≤ n,

where adk
∼

is the deviatoric part of ak
∼
.

2. (a1
∼
, · · · , an

∼
) is transversely isotropic if and only if there exists aj

∼
such that

adj
∼

̸= 0, aj
∼
× a2j

∼
= 0,

and

aj
∼
× ak

∼
= 0, 1 ≤ k ≤ n and j ̸= k

3. (a1
∼
, · · · , an

∼
) is orthotropic if and only if

tr(ak
∼

× al
∼
) = 0, 1 ≤ k, l ≤ n

and there exists aj
∼

such that aj
∼
× a2j

∼
̸= 0 or there exists a pair (ai

∼
, aj
∼
) such that ai

∼
× aj

∼
̸= 0

4. (a1
∼
, · · · , an

∼
) is monoclinic if and only if there exists a pair (ai

∼
, aj
∼
) such that w := tr(ai

∼
×aj

∼
) ̸= 0

and

(ak
∼
w)× w = 0, 1 ≤ k ≤ n.

In what follows, we will be interested in the characterisation of symmetry classes of a given fourth-

order harmonic tensor H
≈

∈ H4. Any homogeneous polynomial covariant of C
≈

∈ Ela of type Sn(R3) can

thus be identified with a polynomial in Covn(Ela).
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Lemma C.2 (Relations between Cov1(H≈
) and Cov2(H≈

)). Let H
≈
∈ H4 be a fourth-order harmonic tensor.

Then

1. Cov1(H≈
) = {0} if and only if Cov2(H≈

) is at least orthotropic;

2. dimCov1(H≈
) = 1 if and only if Cov2(H≈

) is monoclinic;

3. dimCov1(H≈
) = 3 if and only if Cov2(H≈

) is triclinic;
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Theorem C.2: Symmetry classes of H
≈

Let H
≈
∈ H4 be a fourth order harmonic tensor. The following propositions are equivalent.

Case 1

1. Cov2(H≈
) is isotropic;

2. H
≈

is either cubic (d2
∼

̸= 0) or isotropic (d2
∼

= 0);

3. d2
∼

is isotropic.

Case 2

1. Cov2(H≈
) is transversely isotropic;

2. H
≈

is trigonal, tetragonal or transversely isotropic;

3. the pair (d2
∼
,c3
∼
) is transversely isotropic.

Case 3

1. Cov2(H≈
) is orthotropic;

2. H
≈

is orthotropic;

3. v5
∼

= v6
∼

= 0 and the pair (d2
∼
,c3
∼
) is orthotropic.

where v5
∼

:= ε
∼
: (d2

∼
c3
∼
) and v6

∼
:= ε

∼
: (d2

∼
c4
∼
).

Case 4

1. Cov2(H≈
) is monoclinic;

2. H
≈

is monoclinic;

3. the triplet (d2
∼
,c3
∼
,c4
∼
) is monoclinic.

Case 5

1. Cov2(H≈
) is triclinic;

2. H
≈

is triclinic;

3. the triplet (d2
∼
,c3
∼
,c4
∼
) is triclinic.

This theorem is completed by the following lemma which allows to distinguish between the symmetry

classes in case 2: trigonal, tetragonal and transversely isotropic.

Lemma C.3 (Distinguish between the symmetry classes in case 2). Let H
≈
∈ H4 be a fourth-order harmonic

tensor. Then
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1. H
≈

is transversely isotropic if and only if d2
∼

is transversely isotropic and

H
≈
× d2

∼
= 0;

2. H
≈

is tetragonal if and only if d2
∼

is transversely isotropic and

H
≈
× d2

∼
̸= 0, and tr(H

≈
× d2

∼
) = 0;

3. H
≈

is trigonal if and only if d2
∼

is transversely isotropic,

tr(H
≈
× d2

∼
) ̸= 0, and (H

≈
: d2

∼
)× d2

∼
= 0

Lemma C.4 (Symmetry class of a pair (H
≈
, h
∼
)). Let H

≈
be a cubic fourth-order harmonic tensor (H

≈
∈ Σ[O])

and h
∼
∈ S2(R2) be transversely isotropic (h

∼
∈ Σ[O(2)]). Then

1. (H
≈
, h
∼
) is tetragonal if and only if

tr(H
≈
× h

∼
) = 0;

2. (H
≈
, h
∼
) is trigonal if and only if

tr(H
≈
× h

∼
) ̸= 0, and h

∼
× (H

≈
: h
∼
) = 0;

3. (H
≈
, h
∼
) is orthotropic if and only if

h
∼
× (H

≈
: h
∼
) ̸= 0, and tr(h

∼
× (H

≈
: h
∼
)) = 0

4. (H
≈
, h
∼
) is monoclinic if and only if

tr(h
∼
× (H

≈
: h
∼
)) ̸= 0, and tr(h

∼
× (H

≈
: h
∼
))× tr(h

∼
× (H

≈
: h
∼
)2) = 0
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Appendix D

Generic and exotic sets of Ela(3)

We will consider Σg[G] or Σei[G] as the minimal unit of strata of Ela. The resulting symmetry class

[G](h
∼

a,h
∼

b,H
≈
) is thus determined by the elementary symmetry classes of the following

• Proper harmonic tensors: h
∼
a, h

∼
b and H

≈
;

• Joint harmonic tensors: (h
∼
a, h

∼
b), (h

∼
a,H

≈
) and (h

∼
b,H

≈
).

which means that [G](h
∼

a,h
∼

b,H
≈
) is determined by the knowledge of:

([G1]h
∼

a , [G2]h
∼

b , [G3]H
≈
, [G4](h

∼
a,h

∼
b), [G5](h

∼
a,H

≈
), [G6](h

∼
b,H

≈
))

In what follows, the representation of these symmetry classes will be simplified by:

([G1], [G2], [G3], [G4], [G5], [G6])

The computation of the results of generic and exotic sets of Ela(3) requires the following frequently

used clips products.

⊚ [Z2] [D2] [D3] [D4] [O(2)] [O]

[Z2] [1], [Z2]

[D2] [1], [Z2]
[1]

[Z2], [D2]

[D3] [1] [1], [Z2]
[1], [Z2]
[Z3], [D3]

[D4] [1], [Z2]
[1], [Z2]
[D2]

[1], [Z2]
[1], [Z2]
[Z4], [D2]

[D4]

[O(2)] [1], [Z2]
[1], [Z2]
[D2]

[1], [Z2]
[D2], [D3]

[1], [Z2]
[D4]

[Z2]
[D2], [O(2)]

[O] [1], [Z2]
[1], [Z2]
[D2]

[1], [Z2]
[D2], [Z3]

[D3]

[1], [Z2]
[Z4], [D2]

[D4]

[1], [Z2]
[D2], [D3]

[D4]

[1], [Z2]
[Z3], [Z4]
[D2], [D3]
[D4], [O(2)]
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D.1 Preliminary results of exotic sets for Ela(3)

[G]
I(H2) I(H2) I(H4)

Number Generic/Exotic
[G1] [G2] [G3]

[SO(3)] [SO(3)] [SO(3)] [SO(3)] 1 Generic

[O] [SO(3)] [SO(3)] [O] 1 Generic

[O(2)]

[O(2)] [O(2)] [O(2)] 1 Generic

[O(2)] [SO(3)] [O(2)] 2

Exotic

[O(2)] [O(2)] [SO(3)] 1

[O(2)] [SO(3)] [SO(3)] 2

[SO(3)] [SO(3)] [O(2)] 1

[D4]

[O(2)] [O(2)] [D4] 1 Generic

[O(2)] [SO(3)] [D4] 2

Exotic

[SO(3)] [SO(3)] [D4] 1

[O(2)] [O(2)] [O] 1

[SO(3)] [O(2)] [O] 2

[D3]

[O(2)] [O(2)] [D3] 1 Generic

[SO(3)] [O(2)] [D3] 2

Exotic

[SO(3)] [SO(3)] [D3] 1

[O(2)] [O(2)] [O] 1

[SO(3)] [O(2)] [O] 2

[D2]

[D2] [D2] [D2] 1 Generic

[D2] [O(2)] [D2] 2

Exotic

[D2] [SO(3)] [D2] 2

[O(2)] [O(2)] [D2] 1

[O(2)] [SO(3)] [D2] 2

[SO(3)] [SO(3)] [D2] 1

[D2] [D2] [D4] 1

[D2] [O(2)] [D4] 2

[D2] [SO(3)] [D4] 2

[O(2)] [O(2)] [D4] 1

[D2] [D2] [O(2)] 1

[D2] [O(2)] [O(2)] 2

[D2] [SO(3)] [O(2)] 2

[O(2)] [O(2)] [O(2)] 1

[O(2)] [SO(3)] [O(2)] 2

[D2] [D2] [O] 1

[D2] [O(2)] [O] 2

[D2] [SO(3)] [O] 2

[O(2)] [O(2)] [O] 1

[O(2)] [SO(3)] [O] 2

[D2] [D2] [SO(3)] 1
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[D2] [O(2)] [SO(3)] 2

[D2] [SO(3)] [SO(3)] 2

[O(2)] [O(2)] [SO(3)] 1

[Z2]

[D2] [D2] [Z2] 1 Generic

[D2] [O(2)] [Z2] 2

Exotic

[D2] [SO(3)] [Z2] 2

[O(2)] [O(2)] [Z2] 1

[O(2)] [SO(3)] [Z2] 2

[SO(3)] [SO(3)] [Z2] 1

[D2] [D2] [D2] 1

[D2] [O(2)] [D2] 2

[D2] [SO(3)] [D2] 2

[O(2)] [O(2)] [D2] 1

[O(2)] [SO(3)] [D2] 2

[D2] [D2] [D3] 1

[D2] [O(2)] [D3] 2

[D2] [SO(3)] [D3] 2

[O(2)] [O(2)] [D3] 1

[O(2)] [SO(3)] [D3] 2

[D2] [D2] [D4] 1

[D2] [O(2)] [D4] 2

[D2] [SO(3)] [D4] 2

[O(2)] [O(2)] [D4] 1

[O(2)] [SO(3)] [D4] 2

[D2] [D2] [O(2)] 1

[D2] [O(2)] [O(2)] 2

[D2] [SO(3)] [O(2)] 2

[O(2)] [O(2)] [O(2)] 1

[O(2)] [SO(3)] [O(2)] 2

[D2] [D2] [O] 1

[D2] [O(2)] [O] 2

[D2] [SO(3)] [O] 2

[O(2)] [O(2)] [O] 1

[O(2)] [SO(3)] [O] 2

[D2] [D2] [SO(3)] 1

[D2] [O(2)] [SO(3)] 2

[O(2)] [O(2)] [SO(3)] 1

[1]
[D2] [D2] [1] 1 Generic

[D2] [O(2)] [1] 2
Exotic

[D2] [SO(3)] [1] 2

[O(2)] [O(2)] [1] 1

[O(2)] [SO(3)] [1] 2
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[SO(3)] [SO(3)] [1] 1

[D2] [D2] [Z2] 1

[D2] [O(2)] [Z2] 2

[D2] [SO(3)] [Z2] 2

[O(2)] [O(2)] [Z2] 1

[O(2)] [SO(3)] [Z2] 2

[D2] [D2] [D2] 1

[D2] [O(2)] [D2] 2

[D2] [SO(3)] [D2] 2

[O(2)] [O(2)] [D2] 1

[O(2)] [SO(3)] [D2] 2

[D2] [D2] [D3] 1

[D2] [O(2)] [D3] 2

[D2] [SO(3)] [D3] 2

[O(2)] [O(2)] [D3] 1

[1]
[O(2)] [SO(3)] [D3] 2

Exotic
[D2] [D2] [D4] 1

[D2] [O(2)] [D4] 2

[D2] [SO(3)] [D4] 2

[O(2)] [O(2)] [D4] 1

[O(2)] [SO(3)] [D4] 2

[D2] [D2] [O(2)] 1

[D2] [O(2)] [O(2)] 2

[O(2)] [SO(3)] [O(2)] 2

[O(2)] [O(2)] [O(2)] 1

[D2] [D2] [O] 1

[D2] [O(2)] [O] 2

[D2] [SO(3)] [O] 2

[O(2)] [O(2)] [O] 1

[O(2)] [SO(3)] [O] 2

[D2] [D2] [SO(3)] 1

[D2] [O(2)] [SO(3)] 2
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D.2 Complete list of exotic sets for Ela(3)

What follows are the final results. As we can see, for a given set ([G1], [G2], [G3]) of these resulting

symmetry classes, the corresponding set ([G4], [G5], [G6]) is unique. This will not be the case for lower

symmetry classes, that is [D2], [Z2], [1].

[G] [G1] [G2] [G3] [G4] [G5] [G6] Number

[SO(3)] [SO(3)] [SO(3)] [SO(3)] [SO(3)] [SO(3)] [SO(3)] 1

[O] [SO(3)] [SO(3)] [O] [SO(3)] [O] [O] 1

[O(2)]

[O(2)] [O(2)] [O(2)] [O(2)] [O(2)] [O(2)] 1

[O(2)] [SO(3)] [O(2)] [O(2)] [O(2)] [O(2)] 1× 2

[O(2)] [O(2)] [SO(3)] [O(2)] [O(2)] [O(2)] 1

[O(2)] [SO(3)] [SO(3)] [O(2)] [O(2)] [SO(3)] 1× 2

[SO(3)] [SO(3)] [O(2)] [SO(3)] [O(2)] [O(2)] 1

[D4]

[O(2)] [O(2)] [D4] [O(2)] [D4] [D4] 1

[O(2)] [SO(3)] [D4] [O(2)] [D4] [D4] 1× 2

[SO(3)] [SO(3)] [D4] [SO(3)] [D4] [D4] 1

[O(2)] [O(2)] [O] [O(2)] [D4] [D4] 1

[SO(3)] [O(2)] [O] [O(2)] [O] [D4] 1× 2

[D3]

[O(2)] [O(2)] [D3] [O(2)] [D3] [D3] 1

[SO(3)] [O(2)] [D3] [O(2)] [D3] [D3] 1× 2

[SO(3)] [SO(3)] [D3] [SO(3)] [D3] [D3] 1

[O(2)] [O(2)] [O] [O(2)] [D3] [D3] 1

[SO(3)] [O(2)] [O] [O(2)] [O] [D3] 1× 2

[D2]

[D2] [D2] [D2] [D2] [D2] [D2] 1

[D2] [O(2)] [D2] [D2] [D2] [D2] 1× 2

[D2] [SO(3)] [D2] [D2] [D2] [D2] 1× 2

[O(2)] [O(2)] [D2]

(
[D2]

[O(2)]

)
[D2] [D2] 2

[O(2)] [SO(3)] [D2] [O(2)] [D2] [D2] 1× 2

[SO(3)] [SO(3)] [D2] [SO(3)] [D2] [D2] 1

[D2] [D2] [D4] [D2] [D2] [D2] 1

[D2] [O(2)] [D4] [D2] [D2] [D4] 1× 2

[D2] [SO(3)] [D4] [D2] [D2] [D4] 1× 2

[O(2)] [O(2)] [D4]

(
[D2]

[O(2)]

)
[D4] [D4] 2

[D2] [D2] [O(2)] [D2] [D2] [D2] 1

[D2] [O(2)] [O(2)] [D2] [D2]

(
[D2]

[O(2)]

)
2× 2

[D2] [SO(3)] [O(2)] [D2] [D2] [O(2)] 1× 2

[O(2)] [O(2)] [O(2)]

(
[D2]

[O(2)]

) (
[D2]

[O(2)]

) (
[D2]

[O(2)]

)
2× 2× 2
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[O(2)] [SO(3)] [O(2)] [O(2)]

(
[D2]

[O(2)]

)
[O(2)] 2× 2

[D2] [D2] [O] [D2] [D2] [D2] 1

[D2] [O(2)] [O] [D2] [D2]

(
[D2]

[D4]

)
2× 2

[D2] [SO(3)] [O] [D2] [D2] [O] 1× 2

[O(2)] [O(2)] [O]

(
[D2]

[O(2)]

) (
[D2]

[D3]

) (
[D2]

[D3]

)
2× 2× 2

[O(2)] [SO(3)] [O] [O(2)] [D2] [O] 1× 2

[D2] [D2] [SO(3)] [D2] [D2] [D2] 1

[D2] [O(2)] [SO(3)] [D2] [D2] [O(2)] 1× 2

[D2] [SO(3)] [SO(3)] [D2] [D2] [SO(3)] 1× 2

[O(2)] [O(2)] [SO(3)] [D2] [O(2)] [O(2)] 1

[Z2]

[D2] [D2] [Z2]

(
[Z2]

[D2]

)
[Z2] [Z2] 2

[D2] [O(2)] [Z2]

(
[Z2]

[D2]

)
[Z2] [Z2] 2× 2

[D2] [SO(3)] [Z2] [D2] [Z2] [Z2] 1× 2

[O(2)] [O(2)] [Z2]


[Z2]

[D2]

[O(2)]

 [Z2] [Z2] 3

[O(2)] [SO(3)] [Z2] [O(2)] [Z2] [Z2] 1× 2

[SO(3)] [SO(3)] [Z2] [SO(3)] [Z2] [Z2] 1

[D2] [D2] [D2]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) (
[Z2]

[D2]

)
2× 2× 2

[D2] [O(2)] [D2]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) (
[Z2]

[D2]

)
2× 2× 2

[D2] [SO(3)] [D2] [D2] [Z2] [D2] 1× 2

[O(2)] [O(2)] [D2]


[Z2]

[D2]

[O(2)]


(
[Z2]

[D2]

) (
[Z2]

[D2]

)
3× 2× 2

[O(2)] [SO(3)] [D2] [O(2)] [Z2] [D2] 1× 2

[D2] [D2] [D3] [D2] [Z2] [Z2] 1

[D2] [O(2)] [D3] [D2] [Z2]


[Z2]

[D2]

[D3]

 3× 2

[D2] [SO(3)] [D3] [D2] [Z2] [D3] 1× 2

[O(2)] [O(2)] [D3]

(
[D2]

[O(2)]

) 
[Z2]

[D2]

[D3]



[Z2]

[D2]

[D3]

 2× 3× 3

[O(2)] [SO(3)] [D3] [O(2)] [Z2] [D3] 1× 2
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[D2] [D2] [D4]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) (
[Z2]

[D2]

)
2× 2× 2

[D2] [O(2)] [D4]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) (
[Z2]

[D2]

)
2× 2× 2× 2

[D2] [SO(3)] [D4] [D2] [Z2] [D4] 1× 2

[O(2)] [O(2)] [D4]


[Z2]

[D2]

[O(2)]


(
[Z2]

[D4]

) (
[Z2]

[D4]

)
2× 2× 3

[O(2)] [SO(3)] [D4] [O(2)]

(
[Z2]

[D4]

)
[D4] 2× 2

[D2] [D2] [O(2)]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) (
[Z2]

[D2]

)
2× 2× 2

[D2] [O(2)] [O(2)]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) 
[Z2]

[D2]

[O(2)]

 2× 2× 3× 2

[D2] [SO(3)] [O(2)] [D2] [Z2] [O(2)] 1× 2

[O(2)] [O(2)] [O(2)]


[Z2]

[D2]

[O(2)]




[Z2]

[D2]

[O(2)]




[Z2]

[D2]

[O(2)]

 3× 3× 3

[O(2)] [SO(3)] [O(2)] [O(2)] [Z2] [O(2)] 1× 2

[D2] [D2] [O]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) (
[Z2]

[D2]

)
2× 2× 2

[D2] [O(2)] [O]

(
[Z2]

[D2]

) (
[Z2]

[D2]

) 
[Z2]

[D2]

[D3]

[D4]

 2× 2× 4× 2

[D2] [SO(3)] [O] [D2] [Z2] [O] 1× 2

[O(2)] [O(2)] [O]


[Z2]

[D2]

[O(2)]



[Z2]

[D2]

[D3]

[D4]




[Z2]

[D2]

[D3]

[D4]

 3× 4× 4

[O(2)] [SO(3)] [O] [O(2)] [Z2] [O] 1× 2

[D2] [D2] [SO(3)] [Z2] [D2] [D2] 1

[D2] [O(2)] [SO(3)] [Z2] [D2] [O(2)] 1× 2

[O(2)] [O(2)] [SO(3)] [Z2] [O(2)] [O(2)] 1

[1]

[D2] [D2] [1]


[1]

[Z2]

[D2]

 [1] [1] 3

[D2] [O(2)] [1]


[1]

[Z2]

[D2]

 [1] [1] 3× 2

[D2] [SO(3)] [1] [D2] [1] [1] 1× 2
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[O(2)] [O(2)] [1]


[Z2]

[D2]

[O(2)]

 [1] [1] 3

[O(2)] [SO(3)] [1] [O(2)] [1] [1] 1× 2

[SO(3)] [SO(3)] [1] [SO(3)] [1] [1] 1

[D2] [D2] [Z2]


[1]

[Z2]

[D2]


(

[1]

[Z2]

) (
[1]

[Z2]

)
3× 2× 2

[D2] [O(2)] [Z2]


[1]

[Z2]

[D2]


(

[1]

[Z2]

) (
[1]

[Z2]

)
2× 2× 3× 2

[D2] [SO(3)] [Z2] [D2] [1] [Z2] 1× 2

[O(2)] [O(2)] [Z2]


[Z2]

[D2]

[O(2)]


(

[1]

[Z2]

) (
[1]

[Z2]

)
2× 2× 3

[O(2)] [SO(3)] [Z2] [O(2)] [1] [Z2] 1× 2

[D2] [D2] [D2]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

 3× 3× 3

[D2] [O(2)] [D2]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

 3× 3× 3× 2

[D2] [SO(3)] [D2] [D2] [1] [D2] 1× 2

[O(2)] [O(2)] [D2]


[Z2]

[D2]

[O(2)]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

 3× 3× 3

[O(2)] [SO(3)] [D2] [D2] [1] [D2] 1× 2

[D2] [D2] [D3]


[1]

[Z2]

[D2]


(

[1]

[Z2]

) (
[1]

[Z2]

)
2× 2× 3

[D2] [O(2)] [D3]


[1]

[Z2]

[D2]


(

[1]

[Z2]

) 
[1]

[Z2]

[D2]

[D3]

 3× 2× 4× 2

[D2] [SO(3)] [D3] [D2] [1] [D3] 1× 2

[O(2)] [O(2)] [D3]


[Z2]

[D2]

[O(2)]




[1]

[Z2]

[D2]

[D3]




[1]

[Z2]

[D2]

[D3]

 3× 4× 4

[O(2)] [SO(3)] [D3] [O(2)] [1] [D3] 1× 2
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D.2. COMPLETE LIST OF EXOTIC SETS FOR Ela(3)

[D2] [D2] [D4]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

 3× 3× 3

[D2] [O(2)] [D4]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D4]

 3× 3× 3× 2

[D2] [SO(3)] [D4] [D2] [1] [D4] 1× 2

[O(2)] [O(2)] [D4]


[Z2]

[D2]

[O(2)]




[1]

[Z2]

[D4]




[1]

[Z2]

[D4]

 3× 3× 3

[O(2)] [SO(3)] [D4] [O(2)] [1] [D4] 1× 2

[D2] [D2] [O(2)]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

 3× 3× 3

[D2] [O(2)] [O(2)]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[Z2]

[D2]

[O(2)]

 3× 3× 3× 2

[D2] [SO(3)] [O(2)] [D2] [1] [O(2)] 1× 2

[O(2)] [O(2)] [O(2)]


[Z2]

[D2]

[O(2)]




[Z2]

[D2]

[O(2)]




[Z2]

[D2]

[O(2)]

 3× 3× 3

[D2] [D2] [O]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

 3× 3× 3

[D2] [O(2)] [O]


[1]

[Z2]

[D2]




[1]

[Z2]

[D2]




[1]

[Z2]

[D2]

[D3]

[D4]


3× 3× 5× 2

[D2] [SO(3)] [O] [D2] [1] [O] 1× 2

[O(2)] [O(2)] [O]


[Z2]

[D2]

[O(2)]




[1]

[Z2]

[D2]

[D3]

[D4]





[1]

[Z2]

[D2]

[D3]

[D4]


3× 5× 5

[O(2)] [SO(3)] [O] [O(2)] [1] [O] 1× 2

[D2] [D2] [SO(3)] [1] [D2] [D2] 1

[D2] [O(2)] [SO(3)] [1] [D2] [O(2)] 1× 2

Thus, we obtain 8 generic sets and 1052 exotic sets. The exotic sets are respectively 6 for Σ[O(2)], 6

for Σ[D4], 6 for Σ[D3], 58 for Σ[D2], 283 for Σ[Z2] and 693 for Σ[1].
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