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Nomenclature

Tensors

Q9

Stress tensor

Infinitesimal strain tensor

n-th order tensor

2O
R

Elasticity tensor

Identity tensor of S?(R?)

Identity tensor of R?

Kelvin convention of a tensor representation

An orthonormal basis of K®

Piezoelectricity tensor

The topological derivative of a tensor

Tensor operations

Tensor product

Twisted tensor product

Symmetrized tensor product

Anti-symmetrized tensor product

Contraction of order 2, 4 and n between two tensors

Complete symmetric part of a tensor

Deviatoric part of a tensor

Harmonic product between two harmonic tensors

O] Symmetric tensor product between two tensors
X The skew-symmetric contraction between two totally symmetric tensors
tr Trace of a tensor
X The special tensor product
Spaces
d Dimension of the physical space
E4 Euclidean affine space of dimension d (d = 2, 3)
\& Vector spaces of dimension d
R¢ Real space of dimension d
™ Space of n-th order tensors
Ela(d) Elasticity tensors space of dimension d




Ela™ Positive defined elasticity tensors space
Ela Elasticity tensors space without zero determinant elements
K" n-th order harmonic tensors space in R?
H" n-th order harmonic tensors space in R3
Orb Orbit of elasticity tensors
2n) The open strata of [H]
P The closed strata of [H]
Fix Fixed point set
Piez Space of the piezoelectric law
Cos The space of the Cosserat elasticity law
Z;{u The minimally constrained space of kinematically displacements
U, c Z;IM The subspace of kinematically admissible displacement
Basis
B Orthonormal basis
B Integrity basis
Groups
G A compact group
O(d) Orthogonal groups
SO(d) Special orthogonal groups
r(0) Transformation of rotation by angle 6 in R?
r(n,6) Transformation of rotation by angle § around the unit vector n € R3
my The reflection across the line normal to n
7y, cyclic group with k elements generated by the rotation r(%’r)
Dy, Dihedral group with 2k elements generated by r(2*) and m,,
O The octahedral group
-1 Transformation of inversion
GL(d) The group of invertible linear transformation of R?
Domains
Q Closed domain used to represent a material
Q, Domain of the Representative Volume Element (RVE)
o, Boundary of the domain of the RVE
H, Domain of the circular hole with radius p
Z, Domain of the circular inclusion with radius p
Functions
S Application of totally symmetrisation
L Linear application of a space onto itself(not sure)
p() Polynomial functions
Covy,(+) Polynomial covariant algebra of order n
Others
o Index permutation function of n-th order tensors




B

Transpose of a tensor

* Group action

J Cost function

Ao Penalisation constraint on the volume ratio

J A set of conjugacy classes (symmetry classes)

~ O(2) or SO(3)-equivariant isomorphism
HB(") Harmonic bouquet

© Clips operation

it Number of exotic sets

ic Number of symmetry classes
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Introduction

Anisotropy characterises the way a physical property varies with respect to material directions. Lin-
ear properties, such as elasticity or conductivity, are encoded using constitutive tensors. Depending on
their order, these tensors can model different types of anisotropies ranging from complete anisotropy to
isotropy. These different possibilities are called symmetry classes, and have attracted much interest in
recent years [5, 6, 7].

The geometrical tools developed to determine the symmetry classes of a tensor space have also re-
vealed the richness of these spaces, as well as the existence of a whole range of intermediate possibilities
beyond the symmetry classes. Indeed, these tools allow to describe the linear material space in a very fine
way and to detect materials with non-standard anisotropic properties. These intermediate possibilities

are referred to here as exotic.

This possibility was identified very early on by authors working in this field [8, 9, 10]. For example,
in the case of 2D linear elasticity, P. Vannucci has identified a particular situation which he calls Ry-
orthotropy. He says about it:

"The existence of a particular type of planar orthotropic material, [...] but, [...], not linked to a particu-
lar type of elastic symmetry condition. For this reason, the existence of this type of material cannot be
revealed only by the use of certain symmetry conditions on the Cartesian components of gl.” [9]

At the same moment, J. Rychlewski made some related observations and noticed that -

"The thing is that materials of substantially different anisotropy can behave, in certain situations and in
certain aspects, quite alike or just identically. In particular, some essentially anisotropic materials can

retain certain important features of isotropic materials.” [8]

But these early works seem to be curiosities and have not aroused much interest. This is owing to

two major lacks that limited the applicability of these discoveries to the community:

1. lack of an operative mathematical definition of what an exotic elasticity is. In the contributions cited,
only particular cases of exotic elastic materials have been studied, and no systematic classification

has been undertaken. This is certainly due to the lack of a good definition for such a studys;

2. to the best of our knowledge, mesostructures generating these exotic properties were not determined
at this time?. It is understandable because the topology optimisation was not as mature a technique
as it is now [11, 12] and additive manufacturing was also less democratised than now. In fact, there

was also something missing with regard to practical applications.

Today, these practical locks have been broken. Very efficient multi-scale topology optimisation codes

have been developed by the applied mathematics and mechanics communities [2, 13, 14]. And further,

19 being the elasticity tensor.

21t should be noted, however, that P. Vannucci has determined a stacking sequence of elementary orthotropic layers
producing a global elastic behaviour Rg-othotropic for a laminated plate [9].
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3D printers have almost become standard laboratory tools. These tools have already been applied to
the design of architectured materials. However, all these studies are concerned with the optimisation
of specific coefficients of the stiffness (or compliance) tensor in a given base. While this intuition-based
method is effective in some cases, it is still rather home-made and does not exploit the progress that has

been made in describing the geometry of the elastic material space.

It is hence important to revisit this topic because the understanding of exotic linear behaviours opens
up multiple possibilities for the smart optimal design of architectured materials that can accommodate
seemingly incompatible design constraints. This is particularly true in 3D, and concerns both static and

dynamic applications [15, 16, 17].

To go further in the design of custom elastic materials and to exploit exotic symmetry sets, it is
necessary to understand the geometry of the elastic tensor space. In particular, how to characterise the
strata of this space, i.e. the subsets of tensors of the same anisotropy type. It is from this description

that we will be able to bring out the mathematical concept of exotic anisotropy.

The questions we ask ourselves and which my Ph.D. work proposes to answer are the following:
1. What is the definition of exotic materials?

2. What are the properties of these materials?

3. Can we, a priori, list the different possibilities of exotic situations ?

In order to provide a mathematical definition while keeping a reasonable level of complexity, we will

start in a 2D framework, and then generalise it to 3D.

Following the observations made by Vanucci [9] and Rychlewski [8], we propose to adopt the following

mechanical definition of what an exotic linear material is:
1. Specific design: they satisfy constraints independent of those imposed by symmetry arguments;

2. Hypersymmetric: they produce more symmetrical behaviour than that imposed by material sym-

metries.

It should be noted that some specifically designed materials may have interesting non-standard properties
while not meeting the hypersymmetry requirement. These materials will be referred to as semi-exotic. As
will be seen, this mechanical definition will lead to a mathematical one and is operative since allowing to
enumerate the exotic sets of a constitutive tensor space. As we shall see, in this context, general results

can be obtained.

This Ph.D. thesis is divided into seven chapters. The first two chapters aim to present the state-of-
the-art of this study:

Chapter 1 will present the recent developments in architectured materials, including their different
types, additive manufacturing technologies, and some popular numerical algorithms to design them.
Besides, the non-standard mechanical behaviors emerging from the architectured materials will be

emphasized in this chapter.

Chapter 2 come up with some geometric tools including group theory, harmonic decomposition,
and polynomial invariant theory. These notions will be used in the following chapters to explore

the anisotropic linear properties of materials.
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The aforementioned mathematical framework will be employed to explore the space of 2D linear

elasticity tensor space:

Chapter 3 focuses on the partition of 2D linear elasticity tensor space into 4 different strata according
to their corresponding symmetry classes. The membership to a symmetry class is determined by

polynomial invariant conditions.

Chapter 4 deals with the materials with non-standard anisotropic properties associated with inter-
mediate possibilities beyond symmetry classes. These materials are called exotic materials. And

the only exotic material for 2D linear elasticity will be introduced in this chapter.

Chapter 5 realises the numerical design of an exotic material and a semi-exotic material by using a

level set-based topological derivative algorithm.

We then extended our study into 3D linear elasticity, the structure of the following chapters is the

same as that for the 2D case :

Chapter 6 presents the partition of 3D linear elasticity tensor space into 8 different strata according
to their corresponding symmetry classes. The membership to a symmetry class is determined by

polynomial covariant conditions.

Chapter 7 deals with the identification of exotic materials for 3D linear elasticity. There are 1052

possibilities of exotic materials in total and 3 of them will be discussed as examples.

The design of 3D exotic materials is ongoing, they will be published in the forthcoming paper. And
thus, Chapters 4, 5, and 7 regroup the specific contributions of my Ph.D. Some conclusions and per-
spectives for future developments are drawn in the last conclusion chapter and some technical points are

detailed in the appendices.
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Chapter 1

Architectured materials

1.1 Achitectured Materials (A.M.) in brief . . . . . .. ... oL 9
1.2 Anisotropic linear elasticity of A M. . . . . . . ... 13
1.3 Topology optimisation of multi-scale structure . . . . . . . . .. ... ... 15

This chapter remains a general review of related topics that are involved in my Ph.D. work. Firstly,
a brief introduction to architectured materials is given in section 1.1, and the recent development in this
field shows the importance of their corresponding anisotropic mechanical behavior. Several approaches
that exist in literature are listed in section 1.2 to analyze the anisotropic linear elasticity of a material.

At the end, we present section 1.3 several numerical methods for the design of architectured materials.



1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

1.1 Achitectured Materials (A.M.) in brief

Different types of architectured materials

In response to the demand for lightweight, high-strength, impact- and shock-absorbing components
in the industrial fields, the development of lightweight new materials or architectured materials with
better mechanical properties has become an important research direction [18, 19]. The development of
new materials has a long lead time and high cost, which leads to limited applications. Therefore, the
design of architectured materials with specific mechanical properties has become a common approach.
With the agreement of French mechanics at the conference of Mécamat 2021+1 in Aussois, a definition

of architectured materials is provided:

1.1.1 Definition (Architectured materials)

A material will be said to be architectured if:

1. It presents, between its macrostructure and its microstructure, one or more other scales of orga-

nization of matter;

2. If the intermediate organization scales are commensurable with those of the microstructure

and/or the macrostructure.

According to their spatial organisation modes, the variety of architectured materials can be distin-
guished into three categories: periodic, quasi-periodic, and aperiodic. The applications for the last two
modes can be found in [20, 21, 22, 23]. In my Ph.D., the exotic material will be designed with periodic
mode, thanks to its simple computation limited to a unit cell. And in this case, the second condition
of Definition 1.1.1 will nevertheless not be considered, since the non-standard behaviors of exotic mate-

rials are scale-independent.

A structure is periodic if the space is filled from specific translations of a single unit call. And thanks
to this particular organization, the physical properties are the same in the whole specimen, consider-
ing perfect geometries. The unit cell can be designed by different geometry types, including lattices
(Figure 1.1a [24]), plate lattices (Figure 1.1b [25]), Triply Periodic Minimal Surfaces (TPMS in Fig-
ure 1.1c [26]).

e Lattice materials are spatial structures formed by combining multiple connecting rods in a lattice
or lattice-like arrangement, including the common Face-Centred Cubic (BCC) and Diamond lattice
materials [24, 27];

e Plate lattice materials have a specific arrangement of lattice grids that replace lattice nodes with
plate vertices. By specific combinations, the plate lattice can generate multiple cavities, thereby

achieving specific mechanical functions [28];

e TPMS architectured materials are special spatially structured materials with continuous smooth

surfaces in three independent directions [29].



1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

(a) Lattice [24] (b) Plate lattice [28]

o2 3
BN

) TPMS [30]

Figure 1.1: Different structure types of architectured materials

The choice of a geometry type depends on the application field, since different geometry types pos-
sess different mechanical properties. Lattice materials exhibit excellent fatigue resistance and optimized
bending deformability, making them suitable for the fabrication of bio-metamaterial components [27].
Plate lattice metamaterials have a uniform stress distribution and show minimal stress concentration
when subjected to external loads. They can be used in the lightweight structural design of aerospace,
automotive, and maritime applications [31]. The configuration of TPMS is similar to that of human bone
tissue, exhibiting two distinct regions in space, free from any sharp bumps or depressions, which avoid

stress concentration, and therefore can be used for the production of bone implants [30].

Additive manufacturing

Despite the significant advancements in the design of architectured materials, the conventional sub-
tractive manufacturing methods have proven inadequate in efficiently producing complex geometries. As
a consequence, research on the concept of architectured materials, especially for ultrafine complex struc-

tures, has been relatively limited since it was introduced [18, 19].

To meet the growing demand for producing A.M., the development of more efficient additive manu-
facturing technologies continues. They are technologies based on the discrete-stacking principle (instead
of subtractive processes) for manufacturing metallic or non-metallic components. To be more specific,
this technology discretises a 3D computer-aided design (CAD) model into 2D slices, scans these 2D slices
layer by layer according to their shape, and produces the components according to a specific scan path
and process parameters. Based on the above forming characteristics, additive manufacturing technol-
ogy can produce A.M. with complex shapes and sizes ranging from meter to nanometer level. Since
introduced in the late 1980s, additive manufacturing technology has came up with different processing
methods [32]. They include, among others, StereoLithography Apparatus (SLA) [33], Fused Deposition
Modeling (FDM) [34], Selective Laser Sintering (SLS) [35], Selective Laser Melting (SLM) [36], Lami-
nated Objective Manufacturing (LOM) [37], Three Dimensional Printing (3DP) [38], and Laser Metal
Deposition (LDM) [39]. It should be noted that different additive manufacturing technologies have differ-
ent characteristics due to their distinct forming methods and thus there are significant differences in the

formed materials, including size, resolution, and surface quality. It is necessary to choose an appropriate
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1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

technology based on the requirement of the desired material.

Recent progress in architectured materials

In the past years, remarkable advancements in additive manufacturing [40] have catalyzed an accel-
erated growth of architectured materials. These materials possess special physical properties not found
in natural materials [41]. Since 2014, there have been exciting new studies in the field that significantly
expanded available mechanical property spaces as well as introduced new properties not available before.

They will be introduced as follows.

Figure 1.2 shows some of the examples of the recent developments: Zheng et al. [42] reported an
ultralight and ultra-stiff (a substantial load bearing capability has been observed) materials with the
minimum density of 0.87kg/m3, it is realized based on the rational design of architecture followed by
high-resolution 3D printing (Figure 1.2a). In the same year, Meza et al. [43] reported 3D ceramic lattices
with the same architecture. It performs high stiffness and, moreover, despite the fragility of ceramic,
which tends to undergo plastic deformation or fracture under large deformation, the reported material
could recover its original architecture shape after large deformation. The recent study by Berger et al. [31]
achieved a geometry design (Figure 1.2b) that can realize a theoretical upper bound of isotropic elastic
stiffness and the theoretical limit of Hashin-Shtrikman upper bounds. And it doesn’t end there, there are

many studies in the literature that expanded available material property spaces [44, 45].

Applied load

Axial
stress

(b) A 3D printed model of the foam’s cellular structure with
isotropic elastic stiffness and theoretical limit

Figure 1.2: Recent development on architectured materials

Beyond expanding available property spaces, there have also been works tending to generate new
properties or behaviours. In particular, there have been active studies that harness mechanical instability
for specific behaviours. This topic is addressed in the Ph.D. thesis of Rachel Azulay [46] under the su-
pervisor of Justin Dirrenberger. They proposed a method based on group theory to predict the possible
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1.1. ACHITECTURED MATERIALS (A.M.) IN BRIEF

patterns of a stack of architectured materials following a bifurcation. Besides, Shan et al. [47] and Frenzel
et al. [48] reported architectured materials (Figure 1.3a) with reusable energy absorption by harnessing
mechanical instability. Beyond quasi-static loading conditions, there were also studies reporting archi-
tectured materials for dynamic loading such as elastic wave propagation. Shan et al. [49] reported an
architectured material (Figure 1.3b) with tunable vibration propagation and absorption by triggering
different mechanical instability-induced patter formation; Matlack et al. [50] reported an architectured
material (Figure 1.3c) with low-frequency broadband vibration absorption. Raney et al. [51] reported
stable propagation of mechanical signals in soft media (Figure 1.3d) by storing elastic strain energy using

mechanical instability.
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C 0
TEEE
[EEE 1
LERN_ |,
L 4t e el e

(¢) Unit cell with support lattice material (white) and embed-
ded steel resonators (blue)

—

h‘ﬁﬁ“ﬂﬁﬁﬁ“ﬂ‘ﬂ‘w
ol A B i B AR G i O i e e

._-~.-_.»; LR .q-n-nw

(d) A 1D series of bistable elements connected by soft coupling
elements for stable propagation of mechanical signals in soft
media using stored elastic energy.

Figure 1.3: Four architectured materials in the literature that harness mechanical instability for specific
behaviours.

Moreover, there have been also studies that reported architectured materials with unusual or exotic
properties such as negative Poisson’s ratio materials [52], negative bulk modulus materials [53], pentamode
materials [54]. These examples demonstrate the cases where architectured materials exhibit properties
that are different from their constituents, which gives us intriguing new opportunities for the design of
materials and structure. However, the previously listed exotic properties concern mainly the isotropic
part. Indeed, what makes architectured materials truly intriguing is that their unusual mechanical prop-
erties stem not from the properties of their individual components, but rather from the intricate geometry

of their unit cell. Since the internal geometry is added as a new variable, it is natural to think about the
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1.2. ANISOTROPIC LINEAR ELASTICITY OF A.M.

resulting anisotropy properties. Some non-standard anisotropic linear elasticities have also been observed

by researchers. We introduce as follows two of them.

In 2D, the early paper of Vannucci [9] has shown the existence of a particular type of planar or-
thotropic material, the number of independent elastic constants for this kind of material is three (as for
the case of tetragonal symmetry) instead of four for a general orthotropic layer, meaning that it cannot be
revealed only by using symmetry conditions. Indeed, this kind of material has been obtained by using the
polar formalism, introduced in 1982 by Verchery [55], in which an extra condition is added compared to
a standard orthotropic material. This kind of material is named for the sake of brevity as Rg-orthotropy.
The reasons that make Rg-orthotropic laminate rather interesting for application are well-discussed in [9],
and it comes up with a method to obtain Rg-orthotropic composite laminate. Besides, for the 3D case,
Rychlewsky [8] and He [10] have shown that anisotropic (orthotropic or transversely isotropic) materials
could have their Young or shear or area modulus isotropic. However, the related architectured mate-
rial designs for these cases have never been proposed. Moreover, similar studies on the non-standard

anisotropic properties have not received much attention.

With the current advancement in A.M. technology, we now have the opportunity to revisit this topic

and conduct further research focusing on the following two aspects:

e to explore the whole range of elastic materials and identify the non-standard anisotropic elastic

materials;

e to propose a complete design methodology adapted to architectured materials.

This research is part of the MAX-OASIS (Matériaux Architecturée eXotique, Ondes, AniSotropie,
InStabilités) project funded by ANR (AAP2019). The reason for us to be interested in the aforementioned
aspects is to provide a unified perspective on architectured materials with respect to their anisotropic
mechanical properties and, above all, the cases scattered here and there in the literature can be shown

to be the special ones of what is obtained through the application of these theoretical investigations.

1.2 Anisotropic linear elasticity of A.M.

Anisotropy characterizes the way a physical property varies with respect to material directions. Lin-
ear properties, such as elasticity or conductivity, are encoded using constitutive tensors. Depending on
their order, these tensors can model different types of anisotropies ranging from complete anisotropy
to isotropy. These different possibilities are called symmetry classes. Different definitions of symmetry
classes can be found in the literature [5, 56, 57], and for my thesis, I will adopt the definition proposed by
Forte and Vianello [5], which will be detailed in chapter 2. For linear elasticity, a definite classification was
obtained in the same reference as well as in [57] that the space of 3D elasticity tensors is partitioned into
8 symmetry classes. These results are deduced by using group theory. Based on it, Olive et al. [58, 59]
have developed a tool, called clips operation, to determine the symmetry classes of the direct sum of
two spaces. Combined with the harmonic decomposition, clips operations allow the computation of the

symmetry classes of the elasticity tensor space.

Another question now is how to identify the symmetry class of a given constitutive tensor. For the
case of linear elasticity, in addition to experimental and numerical approaches, the literature is abundant
in theoretical investigations that focus on developing coordinates-free criteria for characterizing the sym-

metry class of a given elasticity tensor. The most elementary approach is based on the matrix of tensor’s
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1.2. ANISOTROPIC LINEAR ELASTICITY OF A.M.

components with respect to a given basis of RS. Some authors have used the Kelvin representation of the
elasticity tensor to achieve this goal [60, 61, 62], which consists in formulating necessary and sufficient
conditions involving multiplicity of the 6 eigenvalues of the Kelvin representation and of the eigenvalues

of its eigentensors (second-order tensors).

Besides, there are alternative treatments in the literature relying on geometrical approaches to provide
a visual intuition on this algebraic problem. For 2D case, the polar method is introduced by Verchery [55]
as early as 1982 to treat anisotropic plan problems, it is a frame-independent approach, for which one can
explicit the symmetry conditions by polar invariant [63]. It is rewritten by Desmorat [64] in a tensorial
form by tensorial polar decomposition: a 2D elasticity tensor can be expressed thanks to two scalars
and to two symmetric second-order deviatoric tensors, through which symmetry classes can be explicitly
appeared. However, as mentioned before, this method is limited to R2. As for R3, Francois [65] has
proposed a pole figure-based approach, the method of which consists in considering a function over a
unit sphere, constructed from the tensor representation, the zeros of which indicate the normal vectors
to physical symmetry planes. Huang et al. [66] extended this method into a 6-th order tensor based on
the fact that to every symmetry class, a set of symmetry planes can be associated. This association is
nevertheless not one-to-one. Remarkable efforts have gone into harmonic decomposition of the elasticity
tensor followed by the initial work of Backus [67]. This approach allows to extract partial information
about the symmetry class of an elasticity tensor from its harmonic components. To this end, Maxwell [68]
has proposed a graphical approach, which is to treat a harmonic tensor of order n as a n-tuple vector,
the Maxwell multipoles. Backus [67] has used these multipoles to detect different symmetry classes of

elasticity tensors. This approach is also used in [69, 70, 71].

More recently, based on the harmonic decomposition, the question of classification of elasticity tensor
is reconsidered in the general framework of Real Algebraic Geometry [72, 73]. For the 2D case, the
computation is quite simple and already done by Vianello [74] (see also [75]) for the full 2D elasticity
tensor. As for 3D, in [76], the authors have used a generating set of the invariant algebra of fourth-
order harmonic tensors proposed in [77] to characterize the symmetry classes of this tensor. However,
this approach becomes increasingly complicated with respect to full 3D elasticity tensor, and to the best
of the author’s knowledge, the determination of its symmetry classes using this approach has not been
documented in the literature. Under this context, the recent work of Olive et al. [78] has proposed an
alternative approach to solve this classification problem via polynomial covariants instead of invariants,
and in this way, the symmetry classes of an elasticity tensor are characterized by polynomial equations
involving its covariants. Moreover, in [79], authors proposed an effective geometrical approach to recover
the normal form of a given elasticity tensor by using its covariants, and based on it, determining its

symmetry class. The aforementioned approaches are summarised in Figure 1.4.

Identification of tensorial symmetries
RG | |R3
I

Harmonic decomposition

Y
Maxwell multipoles Pole figure based

Polynomial invariants

Y Y
Eigenvalues of the tensors Normal form of the tensors [« Polynomial covariants

Figure 1.4: Approaches listed in the literature to identify the 3D tensorial symmetries
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1.3. TOPOLOGY OPTIMISATION OF MULTI-SCALE STRUCTURE

Despite the well-developed approaches in the literature to identify the symmetry classes of elasticity
tensor, the intermediate possibilities (non-standard anisotropic properties such as Rg-orthotropy) beyond
the symmetry classes have never been clearly identified. Indeed, the clips operation allows to describe the
linear material space in a very fine way and to detect materials with non-standard anisotropic properties.
The objective of my Ph.D. is to first establish the whole range of symmetry possibilities both in R? and
R3, and then to identify them by polynomial equations involving invariants or covariants of the elasticity

tensor.

The mesostructure of materials with non-standard anisotropic linear elasticity is obtained using an op-
timization problem and the proposed polynomial conditions can be efficiently integrated into this problem
as the cost function. The cost function is expressed in terms of the effective elasticity tensor computed
using the homogenization approach [80, 81]. Moreover, the formulation of such optimization problem is

not limited to classical elasticity, it can be extended to other constitutive laws.

1.3 Topology optimisation of multi-scale structure

Topology optimization involves optimizing the material distribution within a discretized design do-
main to generate a specific structural layout that maximizes performance while meeting relevant design
specifications. This notion was originally introduced by Bensdoe and Kikuchi [82]. However, due to the
manufacturing difficulties of multi-scale materials, it is generally used in mono-scale structure optimisa-
tion [83, 84, 85] (Figure 1.5a). Over the past few years, along with advances in AM technology, there has
been a renewed enthusiasm in the optimal design of multi-scale structures (Figure 1.5b). The mono-scale
modeling used to mono-scale structure optimisation can also be used to design multi-scale structures by
using finer meshes of the design domain. And it is referred to as full-scale approaches'. However, it re-
quires an enormous augmentation in computational cost. The proposed multi-scale modeling is beneficial
for computational efficiency by using a homogenisation approach [82]. Here, the theory of homogenisation
is proposed to bridge the scale between the microscopic geometries and their effective properties on the
macro-scale. The multi-scale modeling based on homogenisation approach will be used in this thesis for

the design of periodic architectured materials.
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Figure 1.5: Two different optimisation modellings (a) Mono-scale modelling [1] and (b) Multi-scale mod-
elling [2]

Given the rapid development of topology optimisation of multi-scale structures over the last three
decades, a variety of optimisation methods have been proposed, among which the density-based method [84,

85], the level set method [86, 87] and the topological derivative [88] are the most representatives.

ITopology optimisation approaches are classified into mono-scale (or full-scale) and multi-scale approaches, according to
whether or not the separation of length scales is assumed in the modeling.
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1.3. TOPOLOGY OPTIMISATION OF MULTI-SCALE STRUCTURE

Density-based method

The density-based method performs a continuous optimisation strategy instead of the original 0-
1 discrete optimisation problem. For this method, the previously proposed homogenisation approach
will not be used since it is difficult to implement for mathematical complications. Subsequently, an
alternative method named solid isotropic material with penalisation (SIMP) was proposed [89]. This
approach represents the material distribution within a design domain using a scalar field, where each
element in the discretized domain is assigned a relative density value (p = 1 means solid and p = 0 means
empty). Each element is considered as isotropic and homogeneous. Material property (i.e. Young’s
modulus) is obtained by a power law, in which a penalisation parameter p (exponent of the power law)
is involved:

E(pi) = p} Eo

The choice of the penalisation parameter depends strongly on the physical problem being solved [90].
It should be noted that this factor effect only works in the presence of a volume constraint. The SIMP

approach is easy to implement and has been embedded in commercial software [91, 92].

Level set method

The level set method defines the boundary of the design by the zero level smooth contour of the level
set function, the distribution of the material in the design domain depends on the level set value: p =1

if the level set function takes the positive value and p = 0 if inversely [87, 93].

Most often the level set function is updated during the optimisation process via the use of the

Hamilton-Jacobi equation, which is composed of two parts:

e the design evolution (shape sensitivity) in the optimisation process.

e the speed function, scaled by the spatial gradient of the level set function, used to control the design
evolution speed [94]. The speed function is developed by introducing new models or methods,
following the work in [95, 96].

Nevertheless, it is important to acknowledge that this level-set method has certain limitations. One
notable drawback is their constraint on geometry evolution, as they can only modify existing boundaries
and are unable to generate new voids within a solid material, this method primarily facilitates shape
evolution rather than significant changes in topology. Figure 1.6 illustrate the difference between shape

optimisation and topology optimisation.

Shape optimization

(XXXX]-[XXXX]
Topology optimization
A VA VAN

Figure 1.6: Comparison of shape optimisation and topology optimisation [3]

To nucleate new holes, the original form of the Hamilton-Jacobi equation has been augmented by
adding new terms [96, 97]. Although updating the level set function through the solution of the Hamilton-

Jacobi equation has demonstrated significant potential, the numerous formulations of the Hamilton-Jacobi
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1.3. TOPOLOGY OPTIMISATION OF MULTI-SCALE STRUCTURE

equations and the intricacies involved in constructing the speed function introduce additional complexity
to the process. To solve this, another level set method (independent of the Hamilton-Jacobi equation)

that allows for the nucleation of new holes will be discussed later.

Topological derivative method

The use of topological derivatives in topology optimisation was initiated by Eschenauer et al. [98].
The main idea is to predict the influence of introducing an infinitesimal hole at any point in the design
domain. This influence is measured by topological gradient [88, 99]. One interesting branching of this
method is that it connects the sensitivity of the macroscopic effective properties (obtained in the context
of homogenisation) response with changes in the underlying microstructure. And in this way, gives an
optimisation direction to get an optimal design. The main drawback of this procedure is its inability to

add matter in some places where it has been removed 'by mistake’ at the previous iteration [1].

Lately, hybrid approaches have appeared, such as the topological derivative combined with a level-set
domain representation [2]. Unlike the conventional level-set methods relying on the use of the Hamilton-
Jacobi equation, which is highly dependent on the initial guess, the proposed topological derivative allows
all kinds of topology changes. It is already applied to the synthesis of elastic micro-structures [2, 100],

with macroscopic properties estimated by the multi-scale framework and periodic homogenisation.

To be more specific, the topological sensitivity relies on an exact formula, it has been proposed in [101],
considering concepts of topological asymptotic analysis and topological derivative. Therefore, the key ad-
vantage of this method is that the sensitivities are obtained in an exact form, enabling the utilization of
simpler optimization algorithms. This eliminates the need for artificial algorithmic parameters, leading
to a more straightforward and robust optimization process. This method will be used in my thesis to

realise the design of multi-scale architectured materials, more details can be found in chapter 5.
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This chapter is essentially based on publications [75, 102, 103, 104]. These are works starting from
the 1980s, G. Verchery [55], M. Vianello [74], and others built fundamental knowledge on the study of
linear elastic tensors space. During the thesis of N. Auffray [105], these notions have been recapped to
explore the anisotropic linear properties of cellular materials. It is extended later during his collaboration
with mathematicians B. Kolev [76, 106] and M. Olive [58, 59]. This chapter will present their results and

provide some valuable mathematical tools for exploring the geometry of linear elastic tensors space.
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2.1. LINEAR ELASTIC CONSTITUTIVE LAW

2.1 Linear elastic constitutive law

To begin this chapter, we will consider the Euclidean affine space of dimension d (d = 2,3) as a model
of the physical space E?. In this model, the body is considered as a closed domain 2 embedded in E?
(Figure 2.1) and having attached to each of its points P € £ a microstructure. This microstructure can
be a crystalline network, the organization of polymer chains, the weaving of textiles, etc., depending on
the nature of the material being studied [107].

Let O be a fixed origin, and each point P is associated by a unique vector x* = OP in vector space V.
Consider B = {ej, ez, -eq} be an orthonormal basis of V¥ and R = (O, B) the associated coordinate
system, we have:

P
X =x1e; + Taep + - + Tgey.

with (z1, 22, --24)z the corresponding coordinates.

@)
=
lav)
~—

€2

0 €1
Figure 2.1: Representation of the domain {2 in a given reference frame(d = 2)

In the present work, we will assume the hypothesis of infinitesimal strain theory. The stress tensor
o € S?(R%), represents the stress state at each point P, with S?(R?) the vector space of real symmetric

tensors of order 2 in dimension d. The infinitesimal strain tensor has the following definition:

1
s:§@®z+2®m,
in which u is the displacement vector at a point of . In components with respect to B, it has the

following expression:
1
gij = 5 (uij + i),
in which ”,7” denote the partial derivation with respect to x;.

It remains now to describe the relationship between the stress o and the strain € at any point of the
solid. Such a relationship is given by a constitutive law. For linear elasticity, the elasticity tensor C is

introduced to construct a linear relation between o and ¢ [108]:

g =

e

LE, 0 = Cijricki, (2.1)

in which C provides the elastic coefficients of the material located at P.

The elasticity tensor C is a linear application of the space S?(RY) to itself, ie. C € L(S*(RY)).
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2.2. SO(d) AND O(d) LINEAR REPRESENTATION ON Ela(d)

Consequently, C is a fourth-order tensor with minor index symmetries:
Cijit = Cjim = Cijir,

which will be denoted as C(;;))- We also have the major symmetry when we consider the potential

energy associated with the elastic behaviour:

Cijkt = Chiij
which is denoted as Cjj . The index symmetries of C are thus summarised by C;;) ). The space of
tensors with such index symmetries will be denoted by Ela(d) :

Ela(d) := {g € ®'R?| Clij) (k1) }

where d is the dimension of the physical space. To make reading easier, Ela(d) and V¢ will be abbreviated

respectively to Ela and V in this chapter, as there is no ambiguity concerning the dimension.

To be physically admissible, all elasticity tensors should have their inversions. We will denote by Ela*
to represent the space consisting of elasticity tensors possessing their inversions. Compared to Ela, the
elasticity tensors with zero determinant are eliminated in Ela*. Besides, an elasticity tensor, considered

as a quadratic form on S%(R?), should be positive definite, meaning that its eigenvalues \; should verify
IMeR*™, 0< ) <M.

Let us denote by Ela’ the set of elasticity tensors that satisfy this requirement. We have the following

property
VC € Ela™, IS € Ela™, S:C =

4@

$=1

with I = 1 ® 1 the identity of S2(R?), and 1 the identity of R?. Such an element is known as the

compliance tensor and allows inverting the constitutive law
0=C:e &ec=5:0.
In the following the notation S = 9_1 and C = §_1 will be used.

We may consider the application, ¢ :  — Ela, which associates to any point P € Q an elasticity
tensor C(x") (Figure 2.1). Thus, we have:

x5 o(x") = Cx).

In the case of homogeneous materials or structures, the dependence on solid point disappears and for
VP € Q,p(xF) = C. When it comes to mesostructure optimisation, its anisotropy properties will be a
crucial issue. TheNfollowing sections aim to describe how elasticity tensors are transformed when sub-
jected to an orthogonal transformation (i.e. linear isometry). Based on it, we can identify the anisotropic

class to which the given elasticity tensor belongs.

2.2 SO(d) and O(d) linear representation on Ela(d)

The linear elastic anisotropy of a material is related to the invariance properties of its elasticity tensor

with respect to linear isometries (under the transformations of rotation, reflection, and their combination).
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2.2. SO(d) AND O(d) LINEAR REPRESENTATION ON Ela(d)

Group

Before studying how tensors transform, we will investigate, in a first step, the notion of transforma-
tions. Transformations of a material verify a few properties: firstly, carrying out two transformations
one after the other is always equivalent to carrying out a single third transformation. Additionally,
each transformation has an inverse that reverses it thanks to an identity transformation. These kinds of

transformation sets are referred to as group.

2.2.1 Definition (Group)

A group is a set G together with a multiplication on G which satisfies four axioms [109]:

1. (Closed) Multiplication of any ordered pair g,h of elements from the set G imply a unique
“product” g - h which also lies in the set G.

2. (Associative) g+ (h-k) = (g-h) -k for any three (not necessarily distinct) elements from G.

3. (Existence of an identity element) there is an element e € G, called an identity element, such

that g-e=e-g =g for Vg € G.

1

4. (Existence of an inverse) each element g € G has a (so called) inverse g~ which belongs to the

set G and satisfles g™ g =e=g-g .

When we talk about linear isometries, apart from the previous four axioms, they also exhibit another
property: conservation of the scalar product. To exploit the mathematical interpretation of this conser-

vation, we take vectors in the space R? as an example, in which case, the conservation is shown as follows.

Example 1

Let u, v be two vectors in space V¢, let (u,v) their scalar product, and G the group of linear isometries,

for Vg € G, the conservation of scalar product gives us:
(W, v = (g-ug-v)=(u (g gy)=(uv)
Since g7 - g = I,, with I,, the identity tensor of order n, we have :

gh=g (2.2)

The transformation which satisfies the Equation 2.2 is called an orthogonal transformation. Although

the example is given for vectors, it is also valid for n-th order tensors in R¢.

The set of orthogonal transformations is the orthogonal group, denoted by O(d). It is the group of all

linear isometries of R?, defined by :

O(d):={geGLWd) |g" =g '}. (2.3)
with GL(d) the group of invertible linear transformations of R?, i.e.g € GL(d) iff det(g) # 0.

Remark. Let g € O(d), the determinant
det(g - g”) = det(g) x det(g?) = (det(g))? = 1.
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2.2. SO(d) AND O(d) LINEAR REPRESENTATION ON Ela(d)

We can conclude that the elements of the group O(d) can be classified into 2 categories according to

the value of the determinants of g:

e det(g) = 1: they are rotations or products of an even number of reflections. We notice that if
det(g1) = 1 and det(gs) = 1 then det(gig2) = 1, so the rotations form a subgroup of O(d), it is
denoted by SO(d),

e det(g) = —1: these are transformations with an odd number of reflections among them. Note that

these elements do not form a subgroup of O(d) because either det(g;) = —1 or det(gz) = —1, but
det(g1g2) = 1.

Group representation

We have defined the groups O(d) and SO(d) and now we are ready to look how a linear group acts
on an elasticity tensor. Such an action is described by the mathematical theory of group representation,

which is essentially a way to represent the action of the elements of a group on a vector space.

2.2.2 Definition (Group representation)

Let G be any group and V a vector space. A representation of G on V is a morphism from G into

GL(V):

p:G— GL(V)

For each element g1,g> € G, we have p(g182) = p(g1) p(g2) and for the identity element e € G, we
have p (e) = Iy, with Iy the identity tensor on V. The group representation is denoted by (p, V, G), when
there is no ambiguity about G, we simply note (p, V).

Two representations (p1, V1) and (p2, Vo) of G are said to be equivalent if there exists an isomorphism
o such that:
VWi €V,VgeG ¢(g-vi) =g ¢(v1)
meaning that the following diagram is commutative:

)

Vi—2 .V,
pi(g) ‘ ‘/’2(%)

A% Vs

©

Consider now the case V.= T"(R(d)), with T™(R(d)) a n-th order tensorial vector space in R(d), it
will be abbreviated to T™ in later contents. The image of T € T™ by g € G is given by p(g)(T). Its
expression in components reads:

(P(&)(T))ivin- i = Girjrings " Jingn Lisjo--jns

To simplify the reading, * is used to represent the group action g on the space T™ and is expressed in an

orthonormal basis by:
(8% T)ivisein = Givjr Ginja " Gingn Linga-rojun-

For the case of T" = Ela and G = O(d), the notion of representation is used to describe the transfor-
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2.3. HARMONIC DECOMPOSITION

mation of an elasticity tensor. For any g € O(d) and C € Ela, we have:

:g*

@)
@)
™
Nt

In components, with respect to B, this action is as follows:

Cijkl = gimgjngkpglqcmnpq~ (25)

2.3 Harmonic decomposition

As isometric transformations of elasticity tensors are described by O(d) representation on Ela, in
order to know the anisotropic elastic properties of a given material, it remains now to determine the
anisotropic class of a given elasticity tensor. However, since it is a fourth-order tensor, the order of
associated transform reaches to 8 (as illustrated in Equation 2.5, gim¢jngrpgiq is of order 8), and their
different parts transform differently: some components are left fixed while others transform at different
speeds. To understand these different mechanisms of transformation, we will have to decompose the

corresponding space into a direct sum of irreducible elementary spaces under the action of the group

0(d).

Stability and irreducibility

We first introduce some essential notions for the decomposition of V into irreducible spaces V;.

2.3.1 Definition (Stability and irreducibility)
A space V is said to be G-stable if:

VeV VgeG,gxveV

The linear representation (p, V) is irreducible if {0} and V are the only stable subspaces of V.

Due to Peter-Weyl’s theorem [110], it is known that any finite-dimensional representation V of a group
G can be decomposed as a direct sum of irreducible finite-dimensional representations:
VeV, &V, &--- DV

n

Such a decomposition is said to be G-irreducible. For each k;, (pg,, V,) is an irreducible representation

of G, and ~ denotes an G-equivariant isomorphism.

We also consider the isotypic decomposition in which equivalent factors are grouped :

Ve~a Vi, @aoVi, @ ©anVi,, Vi, =

The integer «; indicates the multiplicity of Vy, into the decomposition. The advantage of such irreducible

decomposition is that it allows us to study a complicated object as a collection of simple ones.
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2.4. DEFINITION OF ELASTIC MATERIALS

Harmonic structure

When applied to orthogonal group O(d) (d € {2,3}), the isotypic decomposition is often referred to
as the harmonic decomposition [67]. We denote H"(R?), the space of harmonic tensors. The notion of

harmonic tensors was introduced by G. Backus in [67].
2.3.2 Definition (Harmonic tensors)
A tensor H € H"(R?) is called a harmonic tensor if it satisfies the following properties:
e Tensor of order n;
e Total symmetry with respect to index permutation;

e trH = 0 in which trH represents the contraction of any two indices 1, j.

Any tensor space T" can be decomposed into a finite number of harmonic spaces under the group
O(d) [106], we have:
™ ~ & H" (RY)
=1
with k; < 400 and ~ represents a O(d)-equivariant isomorphism. As mentioned for irreducible decom-

positions, we can group together harmonic spaces of the same order :
T~ & o;HY (RY), oHM (RY) = & HF (RY) (2.6)
i=1 1=1

the integer «; indicates the multiplicity of H": (Rd), such isotypic decomposition is called the harmonic
structure. It is uniquely determined by index symmetries of T™. As for its explicit decomposition, it is

unique only if for Vi, a; = {0, 1}, otherwise there are infinitely many isomorphisms.

It should be noted that the partition of a tensor space with respect to its anisotropic properties does
not require the computation of an explicit harmonic decomposition, only the knowledge of the harmonic
structure is required. The determination of the harmonic structure in the cases Ela(2) and Ela(3) will be

discussed in chapter 3 and chapter 6.

2.4 Definition of elastic materials

When subjected to an isometry, the nature of an elastic material does not change. That is to say that
the transformations of a material in space, through actions g € O(d) on an elasticity tensor, will lead to
a set of tensors that describe the same elastic material. The constitutive law of an elastic material is thus
not characterized by a single elasticity tensor but by the collection of all the elasticity tensors related by
orthogonal transformations. It results that, generically, multiple elasticity tensors are associated to the

same elastic material.

An important point to avoid any misunderstanding is the following. In most parts of this document,
we are considering the active interpretation of a transformation. This means that, with respect to a
fixed reference, the transformation of an object gives rise to a new object which is usually different
from the original object. This interpretation has to be distinguished from the passive interpretation in
which the object is unchanged but the basis used for its description is transformed. The difference is

illustrated Figure 2.2
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2.4. DEFINITION OF ELASTIC MATERIALS

Figure 2.2: Active transformation on the left figure: a new vector is obtained; Passive transformation on
the right figure, in which only the basis is changed.

To speak intrinsically of an elastic material, it is necessary to remove information attached to a partic-
ular elasticity tensor. What follows will define the set of all elasticity tensors describing the same elastic

material.

Two stiffness tensors g,g € Ela are said to be equivalent, and denoted C ~ g, when they are related

by an orthogonal transformation, namely

20
2
o)

& 3JgeO0(d)|C=g*C.

In such case, C and g describe the same elastic material. The collection of all elasticity tensors describing

the same elastic material is a geometric object called the orbit of C and is defined as follows:

2.4.1 Definition (G-orbit of C)

Let, C € Ela, the G-orbit of C is the set

Orb(C,G) = {CeRla|C=g+C g G}

9
~

From a mathematical point of view, an elastic material is defined as the G-orbit! of C as showed

in Figure 2.3.

s C N

’ ~ ‘-
K VT Orb(C,G)
1
: ,"
@ gx( )

A ’

AN L

Figure 2.3: G-Orbit of C: equivalent tensors related by orthogonal transformations

The set of Orb(C,G) in Ela forms an orbit space denoted by Ela/O(d). More mathematical inter-
pretations of orbit space can be found in [76]. In geometric terms, each point in this space represents
an elastic material. As observed by M. Olive in [103], an orbit space has a complicated structure, since,

according to the symmetry class of the elasticity tensor, the orbits can be of various types.

LG = O(2) for bidimensional physical space and G = SO(3) for 3D space
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A natural question is therefore how to distinguish points in Ela/O(d) with respect to their anisotropy
types and to realize the partition of Ela. We will introduce in later chapters the different anisotropy types
for Ela(2) and Ela(3).

2.5 Invariants and integrity basis

The previous questions can be formulated in a more understandable way as asked by Boehler et al.
in [77]: consider the measurements of the same anisotropic elastic materials in two different labs, and
suppose that there is no way to choose, a priori, a specific orientation of the material. These two mea-
surements will result in two different elasticity tensors. How can one decide whether the two tensors
describe, or not, the same material? To answer this question, we need to define O(d)-invariant functions

on Ela which are independent of a specific elasticity tensor.

2.5.1 Definition (Invariant function [ ])

A function F is G-invariant on V if:

F(gxv) =F(v),Vg € G,¥v eV

Since O(d)-invariant functions are constant on each orbit and take different values on different orbits,

they allow to separate the orbits of Ela.

2.5.2 Definition (Separating set [ ])

A finite set S := {k1,..., K} of G-invariant functions is a separating set of Ela/O(d) if for any Q,@

in Ela o
Orb(C) = Orb(C) <= £4(C) = Hi(§)7 i=1,...,m

~ ~
~ ~ ~

A separating set S is said to be minimal if any strict subset S’ of S is no longer a separating set.

Such a set of invariant functions is described in the literature under the generic name of functional
basis [103]. However, there is no known algorithm to obtain them. This is the reason why we have chosen

to focus on polynomial invariants and the integrity basis, for which computations are possible.

Let consider the representation (p,Ela, O(d)), the action is denoted by Equation 2.4, this action
extends to the algebra R[Ela] of polynomial functions defined on Ela with p € R[Ela] by:

p:Ela — R
C — p(Q).

~
~

2.5.3 Definition (Polynomial function [ ])

Let V be a vector space and B a basis, a polynomial function p on V is a function that depends

polynomially on the coordinates of v € V in B

A polynomial function in C is a polynomial in the components of C expressed with respect to a given

basis. We then introduce the ~polynomial invariants:
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2.5.4 Definition (Polynomial invariant [ ])

Let (p,V) be a finite-dimensional representation of G, a polynomial function p on V is a polynomial
G-invariant if
p(g*v) =p(v),Vg e G,Wv €V

We can further consider the algebra R[Ela]®(® of O(d)-invariant polynomials:

R[Ela]0@ = {p € R[Ela], p(g+C)=p(C), VgeO(d), VCe Ela} .

~

A route to compute polynomial invariants of a vector space V is to first decompose this space into
G-irreducible ones [104]. This step is performed based on the harmonic decomposition introduced in sec-
tion 2.3.

As a consequence of Hilbert’s finiteness theorem [112], such polynomial invariants are finitely gener-
ated. The generating property means that any O(d)-invariant polynomial .J € R[Ela]®(@ is a polynomial
function in Iy, ..., In:

J(C) = p(L(C), ... I(C)),  CeBla,

~ ~

where p is a polynomial in N variables. Any finite generating set {I1,..., Iy} of R[Ela]®(? is called an
integrity basis [74] and denoted by ZB(Ela, O(d)).

2.5.5 Definition (Integrity basis)

A finite set {I1,...,In} of invariant polynomials on V is called an integrity basis if every invariant

polynomial on V can be written as a polynomial in I1,...,Iy.

An integrity basis is minimal if no proper subset of it is an integrity basis. Knowing an integrity basis

is interesting for applications since their elements:

e Generate the algebra of O(d)-invariant polynomials: any O(d)-polynomial function can be written as
a polynomial in the elements of the integrity basis, which is finitely generated, i.e. {ZB(Ela, O(d)) <
+ o

e Separate the orbits: the invariants of the integrity basis take the same value if evaluated on two
sets of constitutive tensors that just differ up to an isometry, and take different values if not:

IB(Ela, 0(2))(C1) = ZB(Ela, 0(2))(C2) & C; € Orb(Cy)

The ability to express O(d)-invariant polynomials is twofold in practice, apart from the orbit separa-

tion, it allows the classification of linear anisotropic elastic materials in the orbit space.

2.6 From symmetry group to symmetry class

The purpose of this section is to introduce the right language to speak about the symmetry properties
of the elasticity tensors. In the literature, there are at least five approaches for classifying the symmetry

of a n-th order tensor in R%:

1. Spectral approach: It is an approach based on the eigenstructure of the matrix representation of a
given tensor [61], which will reveal its invariance properties. Since it involves the computation of

eigenvalues of tensors, this approach is also highly sensitive to the inherent noise of the data.
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2.6. FROM SYMMETRY GROUP TO SYMMETRY CLASS

2. Symmetry plane approach: It is a graphical approach extended from the pole figures approach
proposed by Frangois [65], the method of which consists in considering a function over a unit
sphere, constructed from the tensor representation, the zeros of which indicate the normal vectors

to physical symmetry planes.

3. Maxwell’s multipoles approach: Another graphical approach originally proposed by Maxwell [68]
which is to construct a geometrical picture of a harmonic tensor: to decompose a harmonic tensor
of order n as a n-tuple vectors, and in this way to detect its different symmetry classes. In three

dimensions there is a very simple geometrical picture of elasticity tensors given in [69].

4. Covariant based approach: More recently, in [76, 78], the authors have used a generating set of

covariants to characterise the symmetry classes of a tensor.

2.6.1 Symmetry group

The tensors can remain invariant with respect to certain orthogonal transformations g € O(d), and

the set of these symmetry transformations forms a point group, the symmetry group:

2.6.1 Definition (Symmetry group [ ])

The symmetry group of v € V is defined as the collection of all transformations g € G such that
gxvV=v:

Goi={gc G |v=g#v}

Let consider the image @ of C by an isometric transformation:

For some transformations, the resulting tensor may be identical to the original one. The set of such

transformations constitutes the symmetry group of C:
Go:={geO(d) | C=gxC}.

In brief, the symmetry group of an elasticity tensor represents the set of transformations that keep the
tensor unchanged. However, when it comes to an orbit, the notion of symmetry group can not be used
to intrinsically define the anisotropy property of this orbit since the associated symmetry groups of its

elements are different.

To be more specific, we will consider an example in 2D. The obtained symmetry group of an elasticity

tensor C depends on the orientation of the corresponding material in space:

GQ = {m@ } GQ = {mr(g)@, }

with m,, the reflection across the line normal to ey and r(6) the rotation by an angle 6. It can be seen
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2.6. FROM SYMMETRY GROUP TO SYMMETRY CLASS

that these two groups are generated by different elements.

Even though these symmetry groups are different, they can be related by conjugacy.

2.6.2 Definition (Conjugacy)

Two subgroups H; and Hy of G are conjugate if Vhy € Hy, 3hy € Hy and 3g € G such as hy = gh;g™!.

Tensors on the same orbit have conjugate symmetry groups. It is possible to define a weaker equiv-
alence relationship than being on the same orbit, which consists only of having a conjugate symmetry

group. This weaker equivalence relation among elements of Ela is defined as follows:

@)
2
@]

< {3ge€0(d) | Gg = gGgg_l}. (2.7)

This relation indicates that two tensors are equivalent if their symmetry groups are conjugate.

2.6.2 Symmetry class

We define the conjugacy class as the set [H] of all subgroups of G conjugate to H:

2.6.3 Definition (Conjugacy class)

Let H be any subgroup of G, the set of subgroups conjugate to H constitute a conjugacy class [H]:

H] := {gHg',| g € G}

The conjugacy class of a symmetry subgroup Gc of a tensor C is the symmetry class of the tensor C
denoted [G¢]. In other words, two tensors are equlvalent if and only if their symmetry groups belong to

the same symmetry class.

Thus, the G-orbit space can be partitioned into different sets with respect to the symmetry classes of
their elements. From the knowledge of harmonic structures section 2.3, the set of symmetry classes of a
given tensor space can be obtained [58, 59, 106] . To do this, the results from the literature concerning
symmetry classes of irreducible spaces are combined via the clips operation defined by M. Olive during
his Ph.D. The use of this tool allows us to obtain very general results on the symmetry classes of a given

constitutive tensor.

2.6.3 Clips operation

As discussed in section 2.3, the whole vector space V can be decomposed into a direct sum of irre-
ducible V; (i = 1,--- , N). To obtain the symmetry classes of V, we must therefore compute the symmetry
classes of a direct sum V; & --- & Vy, knowing independently the symmetry classes of each space V;. To

do so, we introduce in this section a general theory of clips [102].

Lemma 2.1. Let V be a vector space that decomposes into the direct sum of two G-equivariant subspaces:
V=V, ®V,, wheregxV; C Vi andg*xVy CVy, Vg e G

If 3 is the set of conjugacy classes of V, J; those of V;, then [H] € T if and only if there exist [Hy] € J;
and [Ha] € T2 such that H=H; N Hy
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Lemma 2.1 shows us that the conjugacy classes of a direct sum are related to intersections of classes
of its subspaces. However, as the intersection of classes is meaningless, the result cannot be directly

extended. The clips operation solves this problem.

2.6.4 Definition (clips operation)

For each conjugacy class [Hi] and [Hs], we define the clip operator of [Hy] and [Hs], denoted by
[Hi] © [Hal:
[Hy] © [Ho] := {[H: NgHog™'] ,Vg € G}

This definition immediately extends to two families (finite or infinite) F; and F» of conjugacy classes:

FioF = U  Hlem)
[H1]€.7:1,[H2]€.7:2

This clips operation defines thus an operation on the set of conjugacy classes J which is associative and

commutative. We have moreover
(1] © [H] = [1] and [G] @ [H] = [H]

for every conjugacy class [H], where 1 := {e} and e is the identity element of G.

The conjugacy classes of a direct sum of subspaces are obtained by the clips of their respective

conjugacy classes.
Lemma 2.2. [102] Let (p, V1) and (p,V3) be two linear representations of G. Then
IV1@Vz) =3(V1) @3(Vs)

Using this lemma 2.2, we deduce a general algorithm to obtain the conjugacy classes J(V) of a finite

dimensional representation (p, V,G):

1. a decomposition of space V into irreducible subspaces;
2. the conjugacy classes J for each irreducible subspace;

3. clips operation [H;] ® [Hy] between conjugacy classes of closed subgroups of G.

We will apply clips operation to the linear representation of O(2) and SO(3) in the following chapters.
Besides, this tool will be of crucial importance for the determination of exotic sets for elastic materials

in chapter 4 and chapter 7.

2.7 Symmetry stratum

In this section, we partition the space of Ela based on the idea that two tensors are in the same subset

if they have the same symmetry class [75].

As shown in Equation 2.7 the relation ~ is an equivalence relation on Ela. An equivalence class for
this equivalence relation is called a stratum [113]. More specifically, in what follows X will denote
the equivalent class of elasticity tensors having their symmetry group conjugate to H, with [H] the
corresponding symmetry class [76, 106]. In brief, Ela can be partitioned into different strata (results for

Ela(2) and Ela(3) is given respectively in chapter 3 and chapter 6).
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2.7.1 Definition (stratum)

The G-stratum X denotes the set of tensors whose symmetry groups are conjugate to H

Yu = {T €T"|3g€ G Gr=gHg '}

We distinguish two types of strata:
e Y] the open strata which is the strata of tensors whose symmetry class is exactly [H];
° f[H]: the closed strata which is the strata of tensors whose symmetry class is at least [HJ.

Remark. [t can be noted that generally, an open stratum is not a vector space: for instance, the null
tensor which is isotropic does not belong to a stratum other than Yoy Hence, it prevents Yy from
being a vector space, with H the subgroup of O(d). However, the situation for the closed strata is more

delicate.

An immediate and intuitive picture of the partition of Ela is illustrated in Figure 2.4 with access to
all associated notions: tensors, orbits, and partition of the tensor space. As shown in this figure, an
orbit composed of equivalent elasticity tensors is modeled by a circle, and in this case, we obtain another

illustration of the space of Ela in figure Figure 2.4(2).

Ela

Figure 2.4: Geometric description of linear elastic material space

We present an abstract on the geometric description of linear elastic material space: The orbit of C

allows us to describe linear elastic materials independently of elasticity tensors. Given that two tensors
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lying on the same orbit belong to the same stratum (as showed in Figure 2.4 that there would not be
orbit occupying two sets at the same time), the partition of Ela into different strata naturally partition

the orbit space Ela/O(d) into different sets according to their symmetry classes.

Normal form

Among all the elements C € Ela/H, we define the normal form of Ela/H as the tensor Co, for which
the corresponding symmetry group is exactly H. Before giving an explicit definition of normal form, we

first define the notion of a fixed point set, denoted Fix.

2.7.2 Definition (Fix)
Let H be a subgroup of O(d) in Ela, the Fix of H is defined by [114]:

Fix(H) := {C € Ela,| Vh € HLh» C = C}

Previously, we used the notion of strata to represent all elasticity tensors possessing the same symmetry
class. The proposed notion Fix(H) is to define a collection of elasticity tensors possessing the same

symmetry group. Since independent of the conjugacy relation, it is used to define the normal form.

2.7.3 Definition (Normal form)

Let H be a subgroup of O(d), a normal form of a tensor C € X is a tensor Cp such that for certain

~

g € O(d) (not necessarily unique):
Co = g * C € Fix(H)




Part 11

Anisotropic 2D linear elasticity
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Chapter 3

Geometry of 2D linear elasticity tensors
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The geometric tools introduced in the previous chapter will be used in the particular case of Ela(2).
To simplify the notation, Ela(2) will be abbreviated by Ela in this part. The outline of this chapter is as
follows. After the introduction of the closed-subgroups of O(2) in section 3.1, the harmonic structure of
Ela will be determined in section 3.2 and section 3.3. Having this knowledge at hand, the O(2)-invariant
polynomials are obtained in section 3.5, which allows specifying sets of materials in the orbit space.
The section 3.6 introduces the symmetry classes of Ela and its partition into disjoint isotropy strata. The

transition between these strata is discussed in section 3.7.
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3.1 Group O(2) and its subgroups

The symmetry group of a material’s physical property encoded by a tensor T is defined as the set
of operations that leave this tensor invariant. In R?, these operations are represented by actions of the

orthogonal group g € O(2). The symmetry group Gt of T € T" is defined as:

Gr:={ge€0(2),| T=gxT}

=

meaning that the physical symmetry group of T corresponds to a closed subgroup of O(2) [115].

3.1.1 Definition (Subgroup)

A subset H C G is a subgroup of (G,-) if (H,-) is itself a group.

To be more specific, let us now detail the nature of the subgroups of O(2). Such a collection is infinite
but can be reduced, up to conjugacy, to a finite set. The conjugacy class of a subgroup H of O(2) is
defined as

[H] := {gHg" C O(2),| g € O(2)}

Furthermore, it is known that for a finite-dimensional vector space and for O(2), there is only a finite set

of symmetry classes. These symmetry classes are all conjugate to a closed subgroup of O(2).

3.1.1 Group O(2)

As we are working in R?, we will consider the group of linear isometries of R2. Let O(2) the set of
invertible transformations g of R? satisfying g=! = g7, i.e.
0(2) = {g € CGL(2),g" =g '}

It is the set of vectorial isometries and is called the orthogonal group (Equation 2.3). This group is

generated by
e r(#): the rotation by an angle 6;
e m,: the reflection across the line normal to n,
my:=1-2n®n, [nf=1,
with i the second order identity tensor.
It can be seen that this group is non-commutative, but the generators satisfy the relation
m,r(f) =r(—0)m,

In terms of matrix under the orthonormal basis B = {e;, e,}, we have,

cosf —sinf . 1 0
[r(0)] := with 0 <60 <27 and [mg,]:= ,
sinf  cosf - 0 -1 5

As a special transformation we mention the inversion —1, which matrix representation is simply

-1 0
1) = (0 _1>
B
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in R?2, -1 = r(n).

3.1.2 Subgroups of O(2)

The purpose of this section is to introduce, up to conjugacy, the different subgroups of O(2). A
detailed proof of subgroups of O(2) was given in a book by Amstrong (see [[109], page 20] and [[116],
page 81]), we conclude here that they belong to the following collection [114] :

{1,245 %, Z1, Dy, SO(2), O(2) }r>2
in which:
e 1 stands for the trivial subgroup;

. Z;ne*2 is the group generated by m.,, which is the reflection across the axis normal to ey;

7y, is the cyclic group with k elements generated by the rotation r(%), with the convention that
71 =1

Dy, is the dihedral group with 2k elements generated by r(%’“) and m,,, with the convention that
Mme, -

D, =7,
e SO(2) is the continuous rotation group, it can be viewed as Zoo;
e O(2) is the full orthogonal group, it can be viewed as Do,.

It should be noted that the determination of the symmetry classes of a vector tensor space is not a
straightforward result. Such a determination implies the use of mathematical tools such as the harmonic

structure. The detailed process for symmetry class determination of Ela will be introduced later.

Centrosymmetry and chirality

The classification of subgroups based on generators as introduced earlier can be refined. For this
purpose, we will introduce the notions of chiral groups and centro-symmetric groups. This classification

will be useful to analyse the properties of the constitutive tensors.

3.1.2 Definition (Centrosymmetry and chirality)
A subgroup of O(2) would be said to be:

o centrosymmetric (denoted by i) if it contains the inversion r(7), and non-centrosymmetric (denoted

by i) otherwise;

e chiral (denoted by c) if it does not contain reflection my,, and achiral (denoted by €) otherwise.

It should be emphasised that centrosymmetry and chirality are two distinct invariance properties.

Based on this classification, the set of closed subgroups of O(2) can be divided into four subsets:

’ H 1 (centrosymmetry) ‘ i (non-centrosymmetry) ‘

€ (achiral) Doy, Dog41
¢ (chiral) Zoy, Lok+1

Table 3.1: Classification of O(2) subsets according to their invariance properties
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3.2 2D harmonic tensors space: K"

The space of n-th order harmonic tensors in R? will be denoted by K”. As mentioned in section 2.3,

it is a natural O(2)-irreducible space, and any tensor T € K™ satisfies the following two properties:

e Totally symmetric with respect to index permutation, meaning that

Tiisein, =1

(1)t (2) " to(n)

with o the permutation of the symbols {1,2,---,n};
e Traceless with respect to any two indices ¢, 5, denoted by trT = 0.
In R2, these properties result in the following lemma:

Lemma 3.1 (Dimension of K"). In R?, the dimension of a n-th order harmonic space K" is determined
by:
2, n>1
dim K" =
1, n=0o0r —1

The harmonic spaces with different order can be interpreted as follows [106]:

K~ is the space of pseudo-scalars, or hemitropic coefficients;
e KO is the space of scalars, that is isotropic coefficients;

e K! is the space of vectors;

e K2 is the space of deviators;

e K"(n > 2) is the space of n-th order deviators.

Harmonic parametrisation

The elements of space K’ or K~! can be parameterized by scalars. For higher order space (n > 1), we
present two simple examples of tensor h € K? and tensor He K*, to provide intuitive evidence on such
two-dimensional construction. Since satisfying the re