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ABSTRACT 
The TARPON (Traitement Automatique des Résumés de Passage aux urgences dans le but de 

créer un Observatoire National du traumatisme) project aims to demonstrate the feasibility 

of setting up a French observatory of trauma. Emergency Departments (EDs) generate a large 

volume of health-related data and approximately one-third of ED visits are the result of 

trauma. Most of the information contained in electronic health records is in the form of free 

text format and manual information extraction is time and resource consuming. Artificial 

Intelligence (AI) and particularly Natural Language Processing (NLP) could optimize this 

process. NLP has seen a recent breakthrough with the introduction of deep learning and in 

particular the Transformer architecture. These Large Language Models (LLMs) have reached 

the state-of-the-art for most NLP tasks and their use for clinical and medical data is promising. 

To explore the potential of Transformers for trauma classification (multi-class), we conducted 

an evaluation using free-text clinical notes from a single large University Hospital (Bordeaux) 

ED. A total of 69,110 free-text clinical notes generated between 2012 and 2019 were manually 

annotated, with 22,481 identified as traumas. To compare the performance of traditional 

machine learning classifiers and Transformer models, we employed different architectures 

(BERT and GPT-2), varied sizes, pre-training corpora languages and tokenizers (OSCAR, Wiki, 

and CCNET). Additionally, we investigated the impact of incorporating a pre-training step on 

a domain-specific corpus. Our findings revealed that bagging algorithms and Light Gradient 

Boosting exhibited similar results to the lower-performing Transformers. Interestingly, we 

discovered that larger models did not necessarily translate to better performance, but the 

choice of pre-training corpora significantly influenced the outcomes. The best results, with an 

average F1-score of 0.976, were achieved using a GPT-2 architecture with two steps of pre-

training utilizing a French corpus then with a domain-specific corpus. These results highlight 

the potential of Transformers, particularly when an unsupervised pre-training with a domain-

specific corpus is performed, in the accurate classification of traumas based on free-text 

clinical notes. 

Our contribution to the TARPON project laid the groundwork for the use of LLMs for 

processing clinical notes. These models, which are becoming increasingly efficient and 

powerful, have led to a recent paradigm shift in NLP. Most AI applications currently in use in 

emergency medicine are based on NLP and automatic speech recognition because of the 

privileged documentation medium of free or semi-structured text or the practitioner-patient 

interaction. However, these applications lack proper derivation, validation, or impact 

evaluations that are performed rigorously and independently. Building a trustworthy, safe, 

and explainable AI requires a holistic approach that encompasses all sociotechnical aspects 

involved. Human factors such as participatory design and multi-stakeholder approaches are 

important for building such AI systems. Inclusiveness begins at the very beginning of the 

design step, with the inclusion of stakeholders. All possible biases and risks should be 

identified and documented before any initiation, and they should be monitored continuously. 

However, when emergency medicine is concerned with the development of AI applications, 

several principles mentioned above collide, and trade-offs must be determined. How can we 

determine the trade-off among interpretability and performance, time, and explainability? 
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How can transparency be ensured when intellectual property is involved? How can liability be 

determined when AI harms? 

To ensure the safety of patients, healthcare professionals and researchers, we need to bring 

together all the stakeholders involved in the development of such healthcare tools. 

Legislators, decision-makers, insurers and public authorities have a duty to work together to 

provide the best possible support for a change that is taking place in spite of them. 

 

Keywords : Artificial Intelligence, Natural Language Processing, Transformer, Emergency, 

Trauma, Public Health Surveillance 
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RÉSUMÉ 
Le projet TARPON (Traitement Automatique des Résumés de Passage aux urgences dans le 

but de créer un Observatoire National du traumatisme) vise à démontrer la faisabilité de la 

mise en place d'un observatoire français des traumatismes. Les services d'urgences génèrent 

un volume important de données de santé et environ un tiers des visites aux urgences sont 

liées à des traumatismes. La plupart des informations contenues dans les dossiers médicaux 

électroniques sont sous forme de texte libre, et l'extraction manuelle d'informations est une 

tâche chronophage qui nécessite beaucoup de ressources. L'intelligence artificielle (IA) et plus 

particulièrement le traitement automatique du langage naturel (TALN) pourraient optimiser 

ce processus. Le TALN a connu un changement de paradigme récent avec l'introduction de 

l'apprentissage profond et en particulier l'architecture de type Transformer. Ces larges 

modèles de langage (LLMs) ont atteint l'état de l'art pour la plupart des tâches de TALN et leur 

utilisation pour les données cliniques et médicales est prometteuse. 

Afin d’explorer le potentiel des Transformers dans la classification multi-classe des 

traumatismes, nous les avons évalués sur des notes cliniques en texte libre provenant d'un 

centre hospitalier universitaire (Bordeaux). Un total de 69 110 notes cliniques en texte libre 

générées entre 2012 et 2019 ont été annotées manuellement, parmi elles, 22 481 ont été 

identifiées comme des traumatismes. Nous avons comparé les performances d’outils de 

classification issus du machine learning traditionel à des modèles de type Transformer. 

Concernant ces derniers, nous avons utilisé différentes architectures (BERT et GPT-2), des 

tailles de modèles variables et des modèles pré-entrainés avec des langues et des tokenizers 

différents pour les corpus de pré-entraînement (OSCAR, Wiki et CCNET). De plus, nous avons 

étudié l'impact de l'ajout d'une étape de pré-entraînement sur la base de données non 

labelisée des urgences. Les algorithmes de bagging et le Light Gradient Boosting ont obtenu 

des résultats similaires aux Transformers les moins performants. De plus, nous avons 

découvert que des modèles plus grands n’induisaient pas nécessairement par de meilleures 

performances, en revanche, le choix des corpus de pré-entraînement influençait les 

performances en classification. Les meilleurs résultats, avec un score F1 moyen de 0,976, ont 

été obtenus avec une architecture de type GPT-2 comprenant deux étapes de pré-

entraînement non supervisé utilisant un corpus français puis la base de données entière. Ces 

résultats mettent en évidence la capacité des Transformers, en particulier lorsqu'un pré-

entraînement non supervisé avec un corpus spécifique au domaine est effectué, dans la 

classification précise des traumatismes à partir de notes cliniques en texte libre. 

Notre contribution au projet TARPON a posé les bases de l'utilisation des LLM pour la 

classification des notes cliniques. Ces modèles, de plus en plus efficaces et puissants, ont 

récemment entraîné un changement de paradigme dans le domaine du TALN. La plupart des 

applications d'IA actuellement utilisées en médecine d'urgence sont basées sur le TALN et la 

reconnaissance vocale automatique en raison mode de documentation privilégié (texte libre 

ou semi-structuré) des professionnels de santé ou de l'interaction entre le praticien et le 

patient. Cependant, ces applications ne bénéficient pas d’études de validation et de dérivation 

ou d'évaluations d'impact adéquates et effectuées de manière rigoureuse et indépendante. 

La construction d'une IA fiable, sûre et explicable nécessite une approche holistique englobant 

tous les aspects sociotechniques impliqués. Des facteurs humains tels que la conception 
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participative et les approches transversales sont importants pour la construction de tels 

systèmes d'IA Dès le commencement de l'étape de conception, il est essentiel d'adopter une 

approche inclusive en impliquant activement toutes les parties prenantes. Il est impératif 

d'identifier et de documenter tous les biais et risques potentiels avant de déployer une IA, et 

de les surveiller de manière continue par la suite. 

Néanmoins, lorsqu'il s'agit du développement d'applications d'IA en médecine d'urgence, 

divers principes mentionnés précédemment entrent en conflit, nécessitant ainsi 

l'établissement de compromis. Comment pouvons-nous trouver un juste équilibre entre 

interprétabilité et performance, le facteur temps lié à l’urgence (parfois vitale) et l’explicabilité 

? Comment assurer la transparence lorsqu'il y a des enjeux de propriété intellectuelle ? 

Comment déterminer la responsabilité en cas de préjudice causé par l'IA ? 

Aussi afin de garantir la sécurité des patients et des professionnels de santé, mais aussi des 

chercheurs, il convient de fédérer tous les acteurs impliqués dans le développement de tels 

outils en santé. Les législateurs, les instances décisionnaires, les assureurs et les pouvoirs 

publics ont le devoir de s’unir pour accompagner au mieux un changement qui est en train de 

se passer, malgré eux.  

 

Mots clés : Intelligence Artificielle, Traitement Automatique du Langage, Transformer, GPT, 

Urgences, Traumas, Surveillance, Santé Publique  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

REMERCIEMENTS 
 

A mon directeur de thèse, Pr. Emmanuel Lagarde, Merci pour ton accompagnement, tes idées 

novatrices qui repoussent les limites du NLP pour les données de santé et ta détermination 

concernant ce projet qui a encore des promesses à tenir.  

 

Au Professeur Pierre-Antoine Gourraud, Merci de présider le jury de cette thèse. Soyez assuré 

de ma reconnaissance pour votre apport lors de cette soutenance. 

 

Aux rapporteurs, Pr. Aurélie Névéol et Pr. Stefan Darmoni, C’est un réel honneur d’avoir soumis 

mon travail à votre expertise. Je n’aurais pas pu espérer mieux et je suis heureuse que vous 

ayez accepté de porter ce travail.  

 

Aux autres membres du jury, le Dr. Vianney Jouhet et le Dr. Beltzer. Je vous remercie d’avoir 

accepté de participer à mon jury de thèse, d’avoir pris le temps de lire ce document et de vous 

être intéressés à mes travaux de recherche.  

 

Au Professeur Rodolphe Thiebaut, je te remercie de m’avoir fait confiance et de m’avoir choisie 

parmi les candidats français pour le Master en public health data science. Tu as su voir mon 

potentiel et ma détermination sans failles et sans cela ce doctorat n’aurait pas été possible.  

 

Aux membres de mon comité de suivi de thèse, Pr. Emmanuel Bacry, Pr. Gayo Diallo et Dr. Anne 

Gallay, Je tiens à vous exprimer ma gratitude dans cet accompagnement au cours de ces 

années de doctorat marquées par une pandémie et certains changements. Votre apport 

structuré et bienveillant aura permis que cette thèse se déroule dans les meilleures conditions 

possibles.  

 

A l’équipe AHead, je ne saurais jamais assez vous exprimer toute ma gratitude, en particulier 

Antoine, Gayo, Cédric, Éric, Dylan, Hélène, Benjamin et Alexandre. J’ai découvert avec vous 

une réelle ouverture d’esprit, une stimulation intellectuelle sans faille, une ambiance 

professionnelle bienveillante et valorisante où les qualités de chaque membre sont mises en 

lumière pour créer une véritable émulation.  Vous m’avez convaincue qu’il existe des milieux 

professionnels sains.  

A Marie-Odile, ta bienveillance et ton empathie auront concouru à ce que ce doctorat se passe 

au mieux. Tu auras été un phare et je te suis très reconnaissante. 

 



7 
 

A tou.te.s les infirmière.e.s des urgences qui ont participé de près ou de loin au projet TARPON. 

Votre investissement et votre dynamisme aura permis de constituer une base de données 

labelisée de qualité.  

 

Aux membres du Heath Data Hub, Laureen Majed, Jade Viarigi, Metty Mavounia, Emmanuel 

Bacry et Stéphanie Combes, Je vous remercie pour cette collaboration riche, innovante et 

instructive. Harold, notre serveur est né grâce à vous.  

Aux stagiaires de Master 2 que j’ai pu accompagner, Melissa et Chloé, je vous remercie de 

m’avoir aidée à grandir et de m’avoir permise de continuer à exercer cette pédagogie qui m’est 

si chère.  

 

Aux frenchies de sci-kit learn et Hugging face.  

 

A ma famille, mes enfants, amis, et à toi.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

TABLE OF CONTENT 
LIST OF ACRONYMS .................................................................................................................... 1 

LIST OF FIGURES ......................................................................................................................... 3 

LIST OF TABLES ........................................................................................................................... 6 

I. GENERAL CONTEXT ............................................................................................................. 7 

I.1 Traumas and Injury: a Global and Public Health Burden............................................. 7 

I.1.1 Definitions ............................................................................................................ 7 

I.2 Injury: A Leading Cause of the Global Burden of Disease ........................................... 8 

I.2.1 French Epidemiology of Traumas ......................................................................... 8 

I.2.2 Trauma Prevention ............................................................................................... 9 

I.3 Building a National Trauma Surveillance System ...................................................... 10 

I.3.1 Existing trauma related surveillance systems in France .................................... 10 

I.3.2 French Injury Surveillance System: a political will and an ongoing project ....... 12 

I.3.3 Injury surveillance system requirements ........................................................... 13 

I.3.4 French emergency surveillance system ............................................................. 15 

I.3.5 From Electronic Health Record to ED visit summaries for trauma .................... 17 

II. NATURAL LANGUAGE PROCESSING FOR CLINICAL DATA ................................................. 19 

II.1 Narrative Clinical data ............................................................................................... 19 

II.1.1 Natural Language and Sub-languages ................................................................ 20 

II.1.2 Natural Language Processing for French Clinical Textual Data .......................... 21 

II.2 Natural Language Processing for Text Classification ................................................. 24 

II.2.1 Setting the Frame ............................................................................................... 24 

II.2.2 Document representation and feature selection .............................................. 27 

II.2.3 Statistical and Traditional Machine Learning classification algorithms ............. 39 

II.2.4 Deep Learning versus Statistical and Traditional Machine Learning ................. 45 

II.2.5 Artificial Neural Networks .................................................................................. 46 

II.2.6 Data Augmentation in NLP ................................................................................. 75 

II.2.7 Language Model Evaluation ............................................................................... 78 

III. NATURAL LANGUAGE PROCESSING FOR PUBLIC HEALTH SURVEILLANCE: THE TARPON 

PROJECT .................................................................................................................................... 82 

III.1 TARPON: Context ....................................................................................................... 82 

III.1.1 Project aim ......................................................................................................... 82 

III.2 TARPON: Methods ..................................................................................................... 82 

III.2.1 Medical ethics regulations and GDPR ................................................................ 82 



9 
 

III.2.2 Database ............................................................................................................. 82 

III.2.3 Exploratory text analysis .................................................................................... 83 

III.2.4 Labeling strategy ................................................................................................ 85 

III.2.5 Models and experiment settings........................................................................ 87 

III.2.6 Self-supervised learning and Fine-tuning phase ................................................ 93 

III.2.7 Test phase........................................................................................................... 93 

III.2.8 Labeled datasets ................................................................................................. 93 

III.2.9 Error analysis ...................................................................................................... 95 

III.3 TARPON: Results ........................................................................................................ 95 

III.3.1 Clinical notes’ structure ...................................................................................... 95 

III.3.2 Linguistic features .............................................................................................. 96 

III.3.3 Topic Modeling ................................................................................................... 98 

III.3.4 Fine-tuning performance of models ................................................................ 100 

III.3.5 Performance of models .................................................................................... 101 

III.3.6 Error analysis .................................................................................................... 104 

III.4 TARPON: Discussion ................................................................................................. 107 

III.4.1 Transformers: a new state of the art ............................................................... 107 

III.4.2 Self-supervised training on domain specific corpus and tokenizer ................. 108 

III.4.3 Taxonomy ......................................................................................................... 108 

III.5 TARPON: Conclusion ................................................................................................ 109 

III.6 TARPON: Perspectives ............................................................................................. 109 

III.6.1 Improvement of the annotation grid ............................................................... 109 

III.6.2 Future epidemiological steps of the TARPON project ..................................... 110 

III.6.3 Towards a French trauma surveillance system ................................................ 110 

IV. ARTIFICIAL INTELLIGENCE IN EMERGENCY MEDICINE: VIEWPOINT OF CURRENT 

APPLICATIONS AND FORESEEABLE OPPORTUNITIES AND CHALLENGES ............................... 112 

IV.1 Flow Challenges in Emergency Departments .......................................................... 112 

IV.1.1 Factors of Emergency Departments crowding ................................................. 112 

IV.1.2 Consequences of Emergency Departments crowding ..................................... 113 

IV.2 ARTIFICIAL INTELLIGENCE : A POSSIBLE SOLUTION ................................................. 113 

IV.2.1 Artificial Intelligence in Emergency Medicine: Current Applications and 

Foreseeable Opportunities ............................................................................................. 113 

IV.2.2 ED and EMD data processing enhanced by AI for public health surveillance .. 122 



10 
 

IV.3 CHALLENGES POSED BY ARTIFICIAL INTELLIGENCE FOR EMERGENCY MEDICINE AND 

PUBLIC HEALTH SURVEILLANCE .......................................................................................... 123 

IV.3.1 Ethical and legal challenges posed by the implementation of Artificial 

Intelligence in Emergency Medicine ............................................................................... 123 

IV.3.2 Safety, fairness and bias management ............................................................ 124 

IV.3.3 Transparency, Accountability and Liability ...................................................... 129 

IV.3.4 Explainability and Interpretability .................................................................... 130 

IV.3.5 Autonomy ......................................................................................................... 131 

IV.3.6 Privacy-Enhanced ............................................................................................. 132 

IV.4 Technical challenges ................................................................................................ 132 

V.2.1 Training and data challenges ............................................................................ 132 

IV.4.1 Integration Into Routine Clinical Workflow ..................................................... 133 

IV.5 Conclusion................................................................................................................ 134 

V. GENERAL CONCLUSION ................................................................................................... 135 

VI. BIBLIOGRAPHY ............................................................................................................. 136 

VII. PUBLICATIONS ............................................................................................................. 161 

VIII. APPENDIX .................................................................................................................... 162 

 

 

 

 

 



LIST OF ACRONYMS 
 

AI    Artificial Intelligence 
AIC    Akaike Information Criterion 
ANN    Artificial Neural Networks   
ARS    Agence Régionale de Santé 
ASR    Automatic Speech Recognition 
ATIH    Agence Technique de l’Information sur l’Hospitalisation 
AUC    Area Under Curve   
BERT     Bidirectional Encoder Representations from Transformers   
BIC    Bayesian Information Criterion   
BPE    Byte-Pair Encoding   
BBPE    Byte-level Byte-Pair Encoding   
BOW    Bag of Words   
CART    Classification And Regression Trees   
CCNet    Criss-Cross attention for semantic segmentation 
CDSS     Criss-Cross attention for semantic segmentation 
CHAID    Chi-squared Automatic Interaction Detector   
CNN    Convolutional Neural Network   
DL    Deep Learning   
E2E   End-to-End 
ED   Emergency Department 
EM    Emergency Medical Dispatch 
EMT    Emergency Medical Technician 
EHR    Electronic Health Record 
ER    Emergency Room   
FlauBERT    French Language Understanding via Bidirectional Encoder Representations from 

Transformers   
FFNN    Feed-Forward Neural Networks 
GloVe    Global Vectors for word representation   
GP    General Practitioner 
GPT Generative Pre-trained Transformer  
GPU    Graphical Per Unit 
HDH Health Data Hub 
ICD-10    International Classification of Diseases v10 
ICECI    International Classification of External Causes of Injury 
ICU Intensive Care Unit 
IE    Information Extraction 
INVS    Institut National de Veille Sanitaire   
KNN    K-Nearest Neighbor   
LDA   Latent Dirichlet Allocation 
LLM   Large Language Model 
LSA    Latent Semantic Analysis 
LSTM    Long Short-Term Memory   
MAD    Median Absolute Deviation   
MCC   Matthews Correlation Coefficient 
MDS   Minimum Data SET 
ML    Machine Learning   



2 
 

MLM Masked Language Model 
MLP    Multi-Layer Perceptron 
MAUP    Modifiable Areal Unit Problem 
MVA     Motor Vehicle Accident 
NLP    Natural Language Processing   
NSO National Suicide Observatory 
ODS   Optional Data Set 
OHCA   Out of Hospital Cardiac Arrest 
OSCAR    Open Super-large Crawled Aggregated coRpus   
OSCOUR    Organisation de la Surveillance Coordonnée des Urgences 
OOV    Out Of Vocabulary 
ORU            Observatoire Régional des Urgences 
PFM Pre-trained Foundation Model 
POS    Part-Of-Speech 
PLSA    Probabilistic Latent Semantic Analysis 
RTA    Road Traffic Accident 
RNN    Recurrent Neural Network   
RoBERTa    Robustly Optimized BERT Pretraining   
TARPON    Traitement Automatique des Résumés de Passage aux Urgences dans le but de 

créer un Observatoire National des traumatismes 
TF-IDF    Term-Frequency - Inverse Document Frequency   
SD    Standard Deviation 
SEDV    Summary of Emergency Department Visit 
SMART    System for the Mechanical Analysis and Retrieval of Text   
SPF    Santé Publique France 
SVC    Support Vector Classification   
SVM    Support Vector Machine 
RCT    Randomized Controlled Trial 
RNN    Recurrent Neural Network 
RPU    Résumé de Passage aux Urgences 
UHCD    Unité d’Hospitalisation de Courte Durée 
UMAP    Uniform Manifold Approximation and Projection for Dimension Reduction 
UTF-8    Universal Character Set Transformation Format-8 bits   
VSM    Vector Space Model   
YLL    Years of Lost Life 

 

 

 

 

 

 

 

 

 

 

 



3 
 

LIST OF FIGURES  
 

Figure I.1 Proportions of total deaths in France, 2017, regarding the injury causes7 ............... 8 

Figure I.2 Public health approach to injury prevention. ............................................................ 9 

Figure I.3 Building blocks of an Injury Surveillance System ..................................................... 15 

Figure I.4 Stakeholders involved in French Emergency Surveillance. ...................................... 16 

Figure I.5 Example of a trauma-related clinical note extracted from Bordeaux University 

Hospital database. TC: Trauma Crânien, PCI: Perte de Connaissance Initiale, G: Gauche ...... 18 

Figure II.1 Tasks and their prevalence in Wu et al. study from the NLP and the clinical 

perspective. .............................................................................................................................. 21 

Figure II.2 Growth of broad architectures in deep learning over the years. Wu et al.56 ......... 23 

Figure II.3 Data Mining Techniques .......................................................................................... 25 

Figure II.4 Natural Language Processing Pipeline .................................................................... 27 

Figure II.5 Euclidean distance illustration ................................................................................ 29 

Figure II.6 Cosine similarity illustration .................................................................................... 30 

Figure II.7 Two different ways of splitting a text with word tokenization ............................... 36 

Figure II.9 Character-level tokenization ................................................................................... 37 

Figure II.10 Byte Pair Encoding with bigrams ........................................................................... 38 

Figure II.11 Artificial Intelligence, Machine Learning and Deep Learning connections ........... 46 

Figure II.12 Types of Artificial Neural Networks ...................................................................... 47 

Figure II.13 Convolutional Neural Network132.......................................................................... 48 

Figure II.14 Unrolled RNN135..................................................................................................... 50 

Figure II.15 Types of RNN ......................................................................................................... 51 

Figure II.16 LSTM units with the 4 interacting layers135 ........................................................... 53 

Figure II.17 Sigmoid layer of an LSTM cell135 ............................................................................ 53 

Figure II.18 Cell state of an LSTM135 ......................................................................................... 54 

Figure II.19  Forget gate layer of LSTM135 ................................................................................ 54 

Figure II.20 Input gate of LSTM135 ............................................................................................ 55 

Figure II.21 Output gate of LSTM135 ......................................................................................... 55 

Figure II.22 Output gate of LSTM135 ......................................................................................... 55 

Figure II.23 GRU structure 𝑧𝑡 and 𝑟𝑡 represent the update gate and reset gate respectively140

 .................................................................................................................................................. 56 

Figure II.24 The transformer architecture proposed by Vaswani et al.66 ................................ 58 

Figure II.25 Encoder/decoder components of the Transformer66. .......................................... 58 

Figure II.26 Encoder component of the Transformer142 .......................................................... 59 

Figure II.27 Decoder component of the Transformer142 .......................................................... 59 

Figure II.28 Mapping of the words, their matching index ID and Embeddings142 ................... 59 

Figure II.29 Flow of the words in the bottom encoder142 ........................................................ 60 

Figure II.30 Weights and Query/key/value matrix for each word142 ....................................... 60 

Figure II.31 Illustration of the dot product of query and key vectors142 .................................. 61 

Figure II.32 Illustration of the production of the output of the self-attention layer142 ........... 61 

Figure II.33 Illustration of the matrix calculation of self-attention142...................................... 62 

Figure II.34 Multi-head attention of the Transformer66 .......................................................... 62 

Figure II.35 Illustration of the separated weight matrices in Transformer142.......................... 63 

Figure II.36 Concatenation and linear normalization layers of the Transformer66 .................. 63 

Figure II.37. Illustration of the summary of the attention process142 ...................................... 63 



4 
 

Figure II.38 Encoder-decoder attention layer of the Transformer66 ........................................ 64 

Figure II.39 Bottom decoder layer of the Transformer66 ......................................................... 64 

Figure II.40  Illustration of the final linear and softmax layer142 .............................................. 65 

Figure II.41 BERTbase and BERTlarge size and architecture illustration (from Hugging face 

blog179) ...................................................................................................................................... 69 

Figure II.42 Pre-training procedure of BERT. (from 67) ............................................................. 70 

Figure II.43 BERT input representation (from 67) ..................................................................... 70 

Figure II.44 Decoder blocks of a decoder-only Transformer. The first decoder block Is 

expanded. (From142) ................................................................................................................. 72 

Figure II.45 GPT architecture and training objectives (From188) .............................................. 73 

Figure II.46 GPT-2 sizes and dimensionality (from142) ............................................................. 74 

Figure II.47 Methods of paraphrasing in text data augmentation ........................................... 75 

Figure III.1 Composite variable type of trauma based on the annotation grid variables. ....... 86 

Figure III.2 Example of a clinical note ....................................................................................... 87 

Figure III.3 Example of clinical notes ........................................................................................ 93 

Figure III.4 Distribution of the Number of Tokens per clinical notes categories. .................... 96 

Figure III.5 Distribution of the major Part-Of-Speech tags (over 2%) normalized on length 

among clinical notes for both physicians and nurses’ categories (french-camembert-postag-

model's confidence scores are given upon each bar) .............................................................. 98 

Figure III.6 : Distribution of all the Part-Of-Speech tags normalized on length among clinical 

notes for both physicians and nurses’ categories. ................................................................... 98 

Figure III.7 Top 5 topics identified by BERTopic with their most frequent words and scores . 99 

Figure III.8 Hierarchical clustering of the top 50 topics identified by BERTopic ...................... 99 

Figure III.9 Example of clinical notes generated by GPTanam after self -supervised pre-training 

step. CT: Cranial Trauma, LOC: Loss Of Consciousness, MVA: Motor Vehicle Accident, LV: Light 

Vehicle .................................................................................................................................... 100 

Figure III.10 F1-score curves for CamemBERT-CCNET, FlauBERT-small, BelGPT2 and GPTanam 

on the validation dataset. ...................................................................................................... 101 

Figure III.11 Confusion matrix of GPTanam model on the full test dataset .......................... 104 

Figure III.12 Plot of micro F1-scores of all models for each class for both the complete test 

dataset (blue bars) and the test dataset without potentially ambiguous content as regard to 

its classification (grey bars). ................................................................................................... 106 

Figure III.13 Confusion matrix of GPTanam model on the test dataset without ambiguous 

content ................................................................................................................................... 107 

Figure III.14 From “Harnessing the Power of LLMs in Practice: A Survey of ChatGPT and 

Beyond”218 The evolutionary tree of modern LLMs traces the development of language models 

in recent years and highlights some of the most well-known models. ................................. 111 

Figure IV.1 AI business Landscape in Emergency Medicine in 2022 ...................................... 114 

Figure IV.2 The emergency patient journey and where Artificial Intelligence is making or can 

make an impact. ..................................................................................................................... 115 

Figure IV.3 Gradient boosting explanation ............................................................................ 120 

Figure IV.4 The human digital twin ........................................................................................ 121 

Figure IV.5 Lifecycle and Key Dimensions of an AI System. National Institute of Standards and 

Technology (NIST) 299 .............................................................................................................. 123 

Figure IV.6 AI actors across AI lifecycle stages. Note that AI actors in the AI Model dimension 

are separated as a best practice, with those building and using the models separated from 



5 
 

those verifying and validating the models. TEVV: Test, Evaluation, Verification and Validation

 ................................................................................................................................................ 124 

Figure IV.7 Misaligned goals in artificial intelligence (AI) ...................................................... 124 

Figure IV.8 A centralized-server approach to federated learning (From 397) ......................... 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

LIST OF TABLES  
 

Table II.1 Summary of Large Language Models (inspired from178). Models are chronologically 

presented in the table. ............................................................................................................. 68 

Table II.2 BERTbase and BERTlarge size and architecture ....................................................... 69 

Table III.1 Labels Distribution among Train, validation and test dataset. MVA: Motor Vehicle 

Accident .................................................................................................................................... 94 

Table III.2 Train, validation and test dataset characteristics ................................................... 94 

Table III.3 Availability of clinical notes in the TARPON database............................................. 95 

Table III.4 Average Document Length for both the complete set of notes and for notes 

excluding those with an outlier number of tokens (in parentheses) ....................................... 95 

Table III.5 Vocabulary differences by category ........................................................................ 96 

Table III.6 Parts-of-speech matching for each tag of the French Treebank dataset218 ........... 97 

Table III.7 Micro F1-scores for all classes and average F1-score for all models AE: Accident of 

Exposure (to Bodily Fluids), MVA: Motor Vehicle Accident ................................................... 102 

Table III.8 Micro F1-scores for all classes and selected models with micro average F1-scores 

and macro average precision on the complete test dataset. ................................................. 103 

Table III.9 Micro F1-scores for all classes and selected models with micro average F1-scores 

and macro average precision on the test dataset without ambiguous content. ................... 106 

Table IV.1 Examples of potential legal outcomes related to artificial intelligence (AI) use in 

clinical practice383 ................................................................................................................... 130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

I. GENERAL CONTEXT 
 

 

I.1 Traumas and Injury: a Global and Public Health Burden 
 

With an estimated proportion of 30%, traumas represent of large portion of French 

Emergency Departments (ED) activity1.  

 

I.1.1 Definitions 
 

An injury, also known as physical trauma, is defined as the physical damage that results when 

a human body is suddenly or briefly subjected to intolerable levels of energy. It can be a bodily 

lesion resulting from an acute exposure to an energy exceeding the threshold of physiological 

tolerance in amount, or it can be an impairment of function resulting from a lack of one or 

several vital elements (i.e., air, water, warmth), as in drowning, strangulation or freezing. The 

time between exposure to the energy and the appearance of an injury is short. The energy 

causing an injury may be2:  

- mechanical (e.g., an impact with a moving or stationary object, such as a surface, knife 

or vehicle) 

- radiant (e.g., a blinding light or a shock wave from an explosion) 

- thermal (e.g., air or water that is too hot or too cold) 

- electrical 

- chemical (e.g., a poison or an intoxicating or mind-altering substance such as alcohol 

or a drug) 

In other words, injuries are the acute, physical conditions listed in Chapter XIX (Injury, 

poisoning, and certain other consequences of external causes) and Chapter XX (External 

causes of morbidity and mortality) in the International Statistical Classification of Diseases and 

Related Health Problems, Tenth revision(ICD-10)3. 

The most common events causing injuries are4:  

- interpersonal violence and sexual abuse; 

- collective violence including wars, civil insurrections and riots; 

- traffic collisions and 

- incidents at home, at work and while participating in sports and other recreational 

activities  

Injuries can occur in every environment from homes to the workplace, recreational settings 

including sports settings, and in transportation settings between these multiple 

environments.  They can be classified in different ways such as by cause (intentional, 

accidents), by modality, by location and/or by activity5.  
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I.2 Injury: A Leading Cause of the Global Burden of Disease 
 

Trauma represents a leading cause of mortality and morbidity worldwide. According to the 

Global Burden of Diseases study in 2017, injuries account for 8.02% (CI:7.74-8.17%) of deaths 

and 11.86% (CI:11.46-12.13%) of Years of Lost Lifes (YLLs) worldwide6. 

 

I.2.1 French Epidemiology of Traumas 
 

In 2017 in France, traumas and injuries accounted for 7.01% (CI:6.75- 7.33%) of deaths with a 

decreasing trend since 1990 while they represented 11.1% (CI:10.71- 11.47%) of the total of 

YLLs7. 34.87% (CI:33.37-36.3%) of total deaths in 2017 were attributable to injuries among 15 

to 49-year-old French people.  

Bege and al. showed in 2019 that patients admitted for trauma in French hospitals had a 5.9% 

mortality rate within 30-days. The patients' age and severity of injuries were strong predictors 

for mortality, while being female was a protective factor. They suggested that aging is a 

deleterious process in terms of mortality risk as a major increase of death rate was found 

among patients older than 75 years old8. The leading causes of death when people are injured 

are falls, unintentional injuries and road traffic accidents as can be seen on Figure I.1. 

 

Figure I.1 Proportions of total deaths in France, 2017, regarding the injury causes7 
The bubble sizes match the value of deaths percentages. 
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I.2.2 Trauma Prevention 
 

The scale of the injury problem is not a matter of dispute. As previously indicated, the number 

of people who die from injury every year runs into the millions. However, deaths are only a 

small part of the total injury problem; for each person killed, many more are seriously and 

permanently disabled, and even more are suffering from minor, short-term disabilities. The 

costs of injury mortality and morbidity are immense, not only in terms of lost economic 

opportunity and demands on national health budgets, but also in terms of personal suffering9. 

Despite this, few countries have surveillance systems that generate reliable information on 

the nature and extent of injuries, especially with regards to non-fatal injuries.  

The traditional view of injuries as “accidents” or random events has resulted in the historical 

neglect of this area of public health10. Yet, for the last decades, public health officials have 

been recognizing injuries as preventable events and have been promoting evidence-based 

interventions for the prevention of injuries, worldwide5. 

 

 

 
Figure I.2 Public health approach to injury prevention. 

Redesigned from the National Center for Injury Prevention and Control’s graphic. 

 

Many injuries can be prevented through effective approaches as seen on Figure I.2. For 

example, if injury indices are accurately calculated and reported, they can be used to develop 

policy and mitigate the burden of injury, as well as to optimize service provision11. 

Many injury interventions are already in place (e.g., transportation requirements such as 

setting speed limits, safe automobile design, seatbelt and other safety restraint use, helmet 

and protective equipment use, workplace safety program implementation, and ergonomic 

design) and achieved significant public health improvements including reduction of injury 

occurrence12. The collection, centralization and analysis of injury data depends on the 

resources and political will of each country, and some targeted solutions already exist in 

France, such as surveillance of road traffic accidents or suicide. A more comprehensive trauma 

surveillance system could be added to the existing French public health surveillance system. 

In the next section, we will describe in detail the existing trauma and public health surveillance 

systems in France, the requirements and the expected benefits of a comprehensive trauma 

surveillance system. 
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I.3 Building a National Trauma Surveillance System 
 

I.3.1 Existing trauma related surveillance systems in France  
 

Certain types of trauma are already the subject of targeted surveillance, two of which are road 

traffic accident surveillance and the suicide observatory. 

 

I.3.1.1. Road Traffic Accident Surveillance 

 

The purpose of Road Traffic Accident (RTA) surveillance is to examine accidents based on the 

severity of the injuries in order to identify ways to intervene and prevent them. This 

surveillance also keeps track of changes in the number of serious injuries for different types 

of users and areas.  

In France, data on RTA are collected by the police or law enforcement authorities at the 

location of the accident. This data includes details such as the type and number of vehicles 

involved, the traffic environment, and sometimes the cause of the accident. However, there 

is a problem of underreporting as the police may not be informed of all types of accidents. In 

France, the number of injuries reported in the national road accident database by law 

enforcement officials is underestimated because they are not always called to the scene of 

accidents where there are no fatalities, especially for micro-mobility vehicles such as bikes, 

electric scooters, and skateboards.  

Additionally, the police often rely on immediate evaluations to determine the severity of 

injuries recorded in road safety databases. However, misreporting is common due to the fact 

that the police are not equipped to conduct thorough medical assessments to determine the 

actual severity of an injury.  

Thanks to a model built by comparing the data from the Rhône Register with that of the 

national file of road accidents, and by projecting at the national level the registered accidents, 

the Gustave Eiffel University makes it possible to estimate the number of road injuries in 

France. The Rhône Register has aimed since 1995 to list all the victims of road accidents that 

have occurred in the Rhône department. The data comes directly from 245 hospital 

emergency departments, whether the injured persons are hospitalized, or only treated in the 

ED. The Rhône Register has been able to estimate the under-reporting ratios between law 

enforcement reports and the data from the register and has shown great discrepancies for 

slightly to moderately injured persons. As an example, people aged from 14 to 19 years old 

who had an accident while riding a bike were 17 times more frequent within the Rhône 

register than in the law enforcement database from 2012 to 201613. A table with all ratios 

between total number of law enforcement injuries and Gustave Eiffel University estimate on 

average over 2012-2016 is presented in Appendix H.  

 

The implementation of the Electronic Health Record (EHR) has improved the completeness 

and quality of the Register data collection, yet it still requires a heavy investment of time and 

labor for healthcare professionals. In order to obtain a comprehensive data collection for the 

whole French territory, other solutions must be considered. 
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I.3.1.2. The National Suicide Observatory 

 

In mainland France, attempted suicide results in almost 100,000 hospital admissions and 

around 200,000 ED visits per year, or around 20 suicide attempts for every death14.  

The suicidal risk is higher for people with a history of suicide attempts: 

- 75% of recidivism occurs within 6 months of a suicide attempt; 

- The occurrence of an attempt multiplies by 20 the risk of another attempt in the 

following year, and by 4 the risk of a subsequent suicide. 

 

Created in 2013, the French National Suicide Observatory (NSO) is responsible for: 

- coordinating the various data producers;  

- identifying research topics, prioritizing them, and promoting them among researchers;  

and defining indicators for monitoring suicide prevention policy. 

and its scope includes suicidal behavior as a whole, "ranging from suicidal ideation to suicide 

planning, suicide attempt and suicide."15.  

The NSO led to the creation of the VigilanS system16. Launched in 2015 in the Hauts-de-France 

region, the overall objective of the VigilanS system is to help reduce the number of suicides 

and repeat suicide attempts. The system consists of a contact and alert system that organizes 

a network of health professionals around people who have attempted suicide, who keep in 

touch with them. As of February 2023, VigilanS has been implemented in 17 regions, including 

4 overseas regions, and 92 departments. Anyone hospitalized for a suicide attempt is offered 

enrollment in VigilanS upon discharge. At the same time, the patient's general practitioner 

and psychiatrist, if any, receive a letter informing them of the organization and their patient's 

enrollment. They also have a dedicated phone number to answer any questions they may 

have. 

Plancke et al. showed a 15% reduction in suicide recurrence with the VigilanS program, but 

pointed out that patients who had attempted suicide and were not hospitalized could not 

benefit from this program17. 

 

However, the NSO has not yet reached its full potential due to several issues that need to be 

addressed: 

The actual data sources allow identification of only suicide attempts that resulted in contact 

with the health care system. Indeed, Attempted suicide data on which the ONS relies are 

derived from the private and public hospital billing system as well as ED visit summaries that 

are sent to the Oscour network (detailed in section I.3.2), therefore they do not include suicide 

attempts that did not require hospital treatment (i.e. the least serious from a somatic point of 

view). Attempted suicide and suicide underestimation has been pointed by the WHO15 and in 

France, the CépiDc-Inserm evaluates this underestimation at about 10%18.  

 

The actual data lacks detailed information about attempted suicide. Indeed, the ED visit 

summaries sent to Oscour comprise solely ICD-10 main and secondary diagnosis code. 

Previous attempts, proximal risk factors (i.e. conflict with partner or family, death of a relative, 

financial problems) and the suicide specific method used are absent features.  

 

In conclusion, these national observatories rely on partial information and underestimation is 

a major drawback, despite the will to monitor RTA and suicide attempts. 
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I.3.2 French Injury Surveillance System: a political will and an ongoing project 
 

The benefits of injury surveillance systems are the possibility to: 

- investigate: to confirm the cluster of injury issues, to get primary evidence about how 

and why certain injuries occur in specific risk groups; 

- perform epidemiological studies; 

- design and apply appropriate interventions; 

- monitor the results and assess the impacts of interventions; 

- provide arguments to support budget requests or resources.  

 

 

I.3.2.1. Benefits for road safety monitoring and prevention 

 

In the field of road safety, the existing French system is based on the reports produced by law 

enforcement. It has been shown that this system largely underestimates road morbidity (up 

to 70% for certain types of accidents such as bicycle accidents)18. Led by the Ministry of the 

Interior, this system has no strong link with the health system. In addition, the monitoring of 

the risk of RTAs related to medical incapacity to drive on the one hand and to the use of 

medication on the other is based on the CESIR observatory (matching law enforcement reports 

and medical insurance databases) which covers 20% of the drivers involved in an accident that 

has been reported by the police19.  A full surveillance system would provide a more statistically 

powerful tool for the evaluation of the health consequences and costs of road insecurity. 

 

I.3.2.2. Drug consumption study 

 

The traumatic risk related to drug use does not only concern traffic accidents. Each year, more 

than 5 million visits to the ED are motivated by a non-road accident trauma. The French 

epidemiological surveillance system does not currently allow the study of this risk. 

On the side of voluntary trauma, a surveillance system would constitute a powerful source of 

information for the study of the suicidal risk related to the consumption of drugs (e.g. 

isotretinoin).  

The impact of accidental events on drug consumption on the one hand, and on the entry into 

addiction to psychotropic drugs on the other hand, are subjects that have not been explored 

and that could benefit fully from such an information system. 

 

I.3.2.3. Benefits for fall monitoring and prevention 

 

As seen in section I.2.1, falls represent the main trauma cause, and the elderly are at risk for 

this type of trauma20. Drugs have been found to be on the main risk factors for falls among 

this particular population21, however, in France, the study of the association between drugs 

and falls is mostly based on cohorts and is not exhaustive22. A linkage between a surveillance 

system and reimbursement data would provide powerful studies for this public health 

problem.  
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I.3.2.4. Benefits for violence monitoring and prevention 

 

In France, crime statistics are collected through law enforcement using complaint files. 

However, this method of collection suffers from several biases that are difficult to control (for 

example influenced by police forces activity levels) and makes temporal and geographical 

comparisons uncertain. A health services-based system for recording violence would provide 

an unprecedented tool for guiding public policy in terms of the fight against delinquency and 

domestic violence. 

Moreover, in the case of domestic violence, in addition to the problem of under-

representation due to the methods of collection, the current preventive measures are primary 

and not targeted or secondary. A detailed and precise registration in terms of location would 

make it possible to mobilize appropriate and targeted resources. A real-time monitoring of 

domestic violence would also speed up immediate political decisions to provide primary 

prevention and reinforce common measures such as text messages, code words given to 

trained people (e.g. pharmacists, shopkeepers, bar owners), the increase of shelters23.   

 

I.3.2.5. Benefits for the French heath system 

 

In the area of planning and optimization of health services, an exhaustive and real-time 

surveillance can produce useful statistics for the entire health system. Decision-makers and 

healthcare managers need predictive data to adjust resources within the emergency 

department and downstream (hospitalization, medical and psychosocial care, prevention). For 

example, when several EDs can receive trauma patients in urban areas, a poorly managed 

allocation of resources can lead not only to a loss of chance for the patient, but also to 

overcrowding in a single department. As an example, the distribution of destinations for 

trauma victims upstream of the ED when, in urban areas, several EDs are available, is based 

on poorly controlled logics and is detrimental to the regional organization and planning of 

rescue and emergency services. 

 

An optimal emergency surveillance system can allow a better knowledge of the distribution 

of diseases of the populations attending the ED and can also be a tool for the evaluation of 

primary health interventions. It can identify groups and neighborhoods with high rates of ED 

visits and measure the impact on the weeks following discharge from the ED. It can also 

facilitate health prevention initiatives delivered in the ED. The benefits of such a trauma 

surveillance system are numerous, yet, mandatory requirements have to be drawn for its 

optimization.  

 

 

I.3.3 Injury surveillance system requirements 
 

Injury surveillance is defined as: “...the ongoing systematic collection, analysis, and 

interpretation of injury data, for use in planning, implementation and evaluation of prevention 

activities. Injury prevention programs use surveillance data to assess the need for new policies 

or programs and to evaluate the effectiveness of those that already exist.”24 

 

Surveillance produces data describing:  
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• the size of and characteristics of a health problem 

• the population at risk 

• the risk factors 

• the trends 

 

A performant and optimal surveillance system includes specific attributes such as: 

- Secure and privacy-enhanced. 

- Simplicity: All needed data should be produced but in the most straightforward and 

simple way possible. Data format should be easy to understand and complete and 

more importantly should not add workload or waste staff time. 

- Flexibility: The system should be easy to change, especially when ongoing evaluation 

shows that change is necessary. 

- Acceptability: Involving staff in the design, evaluation and improvement of data entries 

may help ensure that end users are getting the results they need from the system. 

- Reliability: The system should fully record injury events will all relevant information 

being described and classified accorded to stated definitions. The system should also 

exclude non-injury events. Sampling should be avoided.  

- Utility: The system should be practical and affordable. It should not put unnecessary 

burdens on an agency’s staff and budget. 

- Timeliness: The system should be able to generate up-to-date information whenever 

that information is needed. 

 

As suggested by the WHO, the Minimum Data Set (MDS) for injury surveillance system 

includes demographic and injury-related variables, such as place of occurrence, activity, injury 

mechanism, intent and nature of injury5.  The core Optional Data Set (ODS) recommended by 

the WHO includes variables such as the external cause of the injury, whether alcohol or 

another substance was a factor, the severity of the injury, the disposition of the person. Figure 

I.3 illustrates the building blocks (datasets) of an injury surveillance system. An example of 

form is provided in Appendix I. 
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Figure I.3 Building blocks of an Injury Surveillance System 

 

To achieve this goal and apply WHO's injury surveillance guidelines5, many countries use 

digital data for injury data management25,26. However, the European association for injury 

prevention and safety promotion noted that the management of injury data is a difficult and 

challenging process27. 

 

I.3.4 French emergency surveillance system 
 

The lack of unified injury data collection method and the absence of a framework for 

cooperation among healthcare facilities are the main challenge ahead of effective injury data 

collection. Several data sources can provide the necessary information for an injury 

surveillance system: health clinic records, general practitioners’ (GP) records, ED records, ICU 

(Intensive Care Unit) admission records, death certificates, ambulance or Emergency Medical 

Technician (EMT) records, police traffic accident reports, police reports… Ideally, use should 

be made of existing data sources and each source of data has its own set of advantages and 

drawbacks. For instance, ED data can be relatively complete but less reliable if healthcare 

providers have to spend extra time on documentation. Using existing data sources and 

systems provide sustainability for an injury surveillance system and the automatic and daily 

reporting of ED visit summaries and emergency care activities (ORU and Oscour) provides a 

powerful real-time monitoring tool for ED data in France as seen on Figure I.4 . The Oscour 

Network was set up in 2004 by the INVS (Institut National de Veille Sanitaire), back by Santé 

Publique France after a heat wave with exceptional health consequences hit France28. The 

health phenomenon led, on the one hand, to massive recourse to the emergency care system 
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and, on the other hand, to a sudden increase in morbidity.  The first perceived consequence 

was the saturation of the health care system, while the health monitoring services and 

networks, which did not have warning indicators, did not have the expected responsiveness. 

This crisis showed that such phenomena, in their origin, geographical scope and 

consequences, exist and would inevitably recur, which has been the case with the Coronavirus 

outbreak. The Oscour Network aims at identifying health situations requiring an adapted 

public health response, but also to ensure the measurement of the impact of epidemics or 

expected events. In fact, data is collected by directly extracting information from the patient's 

EHR, which is created for each patient coming to an ED. For data homogeneity purposes, a 

single data format called RPU (Résumé de Passage aux Urgences) has been defined. It contains 

several types of variables: socio-demographic, medical and hospital trajectory variables as 

shown in Appendix A Résumé de Passage aux Urgences v2, variable 

definition and formatAppendix A and Appendix B-F.  

 

 

 
Figure I.4 Stakeholders involved in French Emergency Surveillance. 

RPU: Résumé de Passage aux Urgences, UHCD : Unité d’Hospitalisation de Courte Durée, 

ORU : Observatoire Régional des Urgences, INVS : Institut National de Veille Sanitaire, ATIH : 

Agence Technique de l’Information sur l’Hospitalisation, ARS : Agence Régionale de Santé. 

 

Since its inception, the Oscour network has recorded more than 130 million ED visits. On April 

16, 2019, the French Health Minister, Agnès Buzyn, announced that the Oscour database 

would be hosted by of the Health Data Hub29 (HDH). This Hub aims to cross-reference all 

French health databases and facilitate their use by research and development teams. This link 

between the Oscour network and other databases such as those of the social security system 

will make it possible to form cohorts to investigate a wide range of questions to improve 

health surveillance in France. In May 2022, the Oscour database was fully integrated in the 

HDH30.   

When considering a comprehensive and real time trauma surveillance system, the use of such 

a network would represent an opportunity. However, when injuries are reported, the sole 

information available are the main and secondary diagnoses (ICD-10 codes) and is not 

sufficient to establish surveillance indicators related to trauma because the type of event and 

the injury mechanism remain undocumented. 
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I.3.5 From Electronic Health Record to ED visit summaries for trauma 
 

The addition of trauma related MDS and ODS, as advocated by the WHO guidelines5 to the ED 

visit summaries managed by the OSCOUR network would allow for an optimal near real-time 

injury surveillance system. If we consider this option for this surveillance system, the 

requirements as proposed by WHO guidelines must be assessed (section I.3.3).  

 

I.3.5.1. Mandatory structured form for trauma data 

 

The major constraint associated with the RPU is that the data implemented must be 

structured. 

One could consider adding directly unstructured data to the RPU and extracting trauma 

related information from text once the RPU has navigated through the network and has 

arrived to INVS or Santé Publique France. However, clinical notes contain identifying data31 

and according to GDPR, this type of data should remain locally. Therefore, the Secure and 

privacy-enhanced criteria of the surveillance system would not be met.  

 

I.3.5.2. Trauma classification 

 

To fulfill the reliability criteria, the system should fully record trauma events will all relevant 

information being described and classified accorded to stated definitions. Should a specific 

thesaurus be used or created, or can other general classification tools or ontologies be used?  

ICD-103 and ontologies such as SNOMED32, UMLS33  or the Thésaurus of the French Society of 

Emergency Medicine (Société Française de Médecine d'Urgence, SFMU)34 are unable to 

provide a detailed description of trauma mechanisms. Therefore, a specific ontology or a 

classification grid needs to be used or created specifically for these criteria. The International 

Classification of External Causes of Injury (ICECI)35 seemed be the best option for benefiting a 

standardized classification tool in line with WHO recommendation. Released in 2001 (with a 

last update in 2004), ICECI was a system of classification designed to enable systematic 

description of how injuries occur. ICECI had a multi-axial and hierarchical structure: core 

module including seven items (mechanism of injury, objects/substances producing injury, 

place of occurrence, activity when injured, the role of human intent, use of alcohol, use of 

(other) psycho-active drugs) and five additional modules to enable the collection of additional 

data on special topics (violence, transport, place, sports, occupational injury). However, no 

French version of the ICECI was released, validated and tested. And, as mentioned in the 

Discussion section above, in 2022, the WHO announced that the ICECI was no longer 

maintained. Other solutions have to be envisaged and will be detailed in the discussion part.  

 

 

I.3.5.3. Emergency Department EHR data 

 

When a patient arrives at the ED, several mandatory and optional information and data are 

implemented in the EHR by administrative and medical professionals, such as age, weight, 

blood pressure, chief complaint, mean time of arrival... As a reminder, an optimal trauma 
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monitoring system implies simplicity, so it should not increase workload or waste staff time, 

and if ED professionals had to implement all the necessary criteria for MDS and ODS, this 

would represent up to 15 fields, which is time consuming. The trauma-related information 

needs to be captured elsewhere. Much of the available clinical data is in narrative form 

(unstructured) often named clinical note, resulting from transcription of dictation, direct entry 

by providers, or the use of voice recognition applications36,37. A clinical narrative or note is a 

brief summary of specific events experienced by patients. It describes imaging observations, 

physical symptoms, and in the case of emergency medicine, circumstances of trauma, such as 

the location, activity or consumption of substances. This type of data is called "unstructured": 

it cannot be easily organized using pre-defined structures, unlike structured data which is 

organized into specific fields as part of a schema, with each field having a defined purpose. 

Narrative data account for a large component of the information that is gathered in the care 

of patients. Studies mention a proportion of 70% of unstructured data for ED EHR38 or 75% for 

general EHR39. Furthermore, a great proportion of data related to trauma mechanisms is 

available in clinical notes as seen in the example below on Figure I.5. 

 

 

 

 

 

 

 

In conclusion, the specifications for adding defined trauma information to the French 

emergency surveillance system are to extract information from unstructured clinical notes 

written in French without adding workload for healthcare professionals. Extracting trauma 

information from unstructured text data without human intervention can be performed with 

Natural Language Processing (NLP) and this specific area has been the subject of numerous 

research previously. The following chapter will navigate through this specific matter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chute mécanique d’une marche de caravane en état d’ébriété. TC sans PCI. Douleur de l’hallux 

G avec impotence fonctionnelle totale.  

Figure I.5 Example of a trauma-related clinical note extracted from Bordeaux University Hospital 
database. TC: Trauma Crânien, PCI: Perte de Connaissance Initiale, G: Gauche 
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II. NATURAL LANGUAGE PROCESSING FOR CLINICAL DATA 
 

The rapid adoption of EHR and the parallel increase in narrative data in electronic form, along 

with the need to improve the quality of care and reduce medical errors are both strong 

incentives for the development of Natural Language Processing (NLP). Much of the available 

clinical data is in narrative form as mentioned above36,37. This free-text form is convenient for 

expressing concepts and events, but is difficult for research, summarization, classification, 

decision support or statistical analysis. To reduce errors and improve control, labeled data is 

needed. This is where text mining and NLP, specifically information extraction (IE) and 

classification, is needed.  

 

II.1 Narrative Clinical data 

 
Narrative data account for a large component of the information that is gathered in the care 

of patients. A narrative tells a story: it allows seeing the patient through a description and 

complicated events are easier to describe in text rather than filling them in codes. It has a lot 

of contexts and can be both alphabetical and numerical data. Clinical notes contain objective 

and subjective assessments of a patient’s condition. Such raw notes contain the intuitions and 

observations healthcare professionals who regularly monitor the patient. This valuable 

patient-specific information present in clinical notes has the potential to uncover hidden clues 

about the mental state and the health of a patient40. Several challenges come along with the 

analysis and modeling if clinical notes such as high-dimensionality, rawness, sparsity, and 

linguistic complexity41. Healthcare professionals prefer using natural language and free text 

for documentation over restrictive structured forms42, but healthcare professionals have 

adapted to time-intensive note-writing by relying on overloaded and inconsistent medical and 

language abbreviations as well as rich medical jargon43. 

 

Some issues come along with the unstructured form of clinical notes: 

 

1. Differences of length at various scales:  

Patients: for patients who may have had complex circumstances or multiple 

histories with numerous encounters with the health care system, clinical note can 

be dramatically long44. 

Healthcare providers: some of the professionals are more inclined to write 

exhaustively than others45. Some professionals might also find it easier to type on 

a computer while using more than two fingers for typing46,47. Furthermore, using 

computers while taking care of a patients require multi-tasking skills which directly 

depend on practitioner's baseline skills48,49. 

Time: writing clinical notes is time consuming, therefore their length can vary 

depending on the moment of the day/week/month and the workload of the ED 

department50. 

2. Heterogeneity of language at different levels: 
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Healthcare providers: disparities can be observed within and between health 

care professionals45 from a gender51, social groups52 or individual personalities53 

perspective. Differences could also be seen between graduated professionals and 

students. 

Hospital: language, abbreviations and even the type of information collected 

leading to a clinical note can vary between ED departments. 

Region: language, abbreviations and expressions are different from a region 

to another. 

 

 
Textbox II.1 Narrative information ambiguity 

Ambiguity as a prominent obstacle in the field of NLP. When attempting to comprehend the 

intended sense of a word, multiple factors come into play. These factors encompass the 

contextual usage of the word, our personal understanding of the world, and the conventional 

usage of the word within society. The meanings of words are subject to change over time, and 

they can also exhibit divergent interpretations across various domains. This phenomenon 

becomes evident in instances of homographs, where two words share identical spellings but 

originate from different etymologies. Furthermore, polysemy exemplifies the occurrence of a 

single word carrying multiple distinct meanings. 

 

II.1.1 Natural Language and Sub-languages 
 

Sublanguage, a subset of natural language, is another challenge for NLP. Medical language is 

a sublanguage with a subset of vocabulary and different vocabulary rules from the main 

language. To extract meaning from sublanguage, NLP systems must understand the rules of 

that language. Social media, for example, is a sublanguage. It uses abbreviations and 

emoticons to express meaning (versus using words for the same concepts). With these 

differences, analysts cannot run an NLP system trained on newspaper text on social media and 

expect it to extract the meaning.   

 

Medical language has different sublanguages within it. For example, medical blogs and clinical 

notes use different language. Because of these differences, health systems should not 

purchase or use off-the-shelf NLP systems built for one sublanguage and use it on another. 

Developers and analysts must tailor NLP systems for use on a specific language (e.g., 

healthcare)., and that tailoring process takes time. Patient comments such as "I'm dizzy" or 

"my stomach hurts" can tell clinicians a lot about a person's health, as can other information 

such as zip code, employment status, access to transportation, and so on. This critical 

information, however, is captured as free text, or unstructured data, making it impossible for 

traditional analytics tools to exploit. 
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II.1.2 Natural Language Processing for French Clinical Textual Data 
 

In addition to the semantic peculiarities due to the specific nature of clinical notes, the 

language used is a non-negligible component. The number of published articles related to NLP 

in medicine had increased drastically for the last two decades and France is one of the most 

productive countries as shown by Wang et al.54. In 2018, Névéol et al. counted 111 

publications when searching for clinical NLP in other languages than English55.  

 

II.1.2.1. Natural Language Processing tasks 

 

When processing clinical data from EHR, 4 main tasks can be defined: 

- Text classification 

- Clinical Named Entity Recognition1 

- Relation extraction 

- Others (i.e. information retrieval, natural language generation, abbreviation 

disambiguation.) 

 

In a systematic review conducted by Wu et al. in 2020, it was found that text classification 

using deep learning on clinical data from HER was the most prevalent task in the literature, 

accounting for 40.5% of the studies, followed by Named Entity Recognition (34%) and relation 

extraction (13.7%)56.  

 

They also pointed out that the top clinical tasks were (as seen on Figure II.1): 

- Clinical concept extraction (i.e., the extraction of common clinical concepts, such as 

problem, lab test, treatment, time expressions, and events) 

- Phenotyping (i.e., the broad characterization of patients’ conditions) 

- Clinical relation extraction (i.e., the identification of relations between the common 

clinical concepts) 

 

 
Figure II.1 Tasks and their prevalence in Wu et al. study from the NLP and the clinical 

perspective. 
Most journal articles analyzed comprised several tasks, hence the percentages56. 

 

In order to obtain the necessary information for the implementation of the trauma 

surveillance system several strategies were considered.  

 
1 Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important 
concepts (named entities) from clinical narratives. 
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For example, for the 2018 CLEF eHealth Task 1 challenge57 which objective is to extract ICD-

10 codes from death certificates provided by the CépiDc (Centre for Epidemiology of Medical 

Causes of Death), several strategies were considered. The team of Cossin et al.58 tested an 

approach based on ontologies, while Flicoteaux et al.59 proposed an approach using a 

probabilistic CNN (Convolutional Neural Network) and Amin-Nejah and al.60 resorted to the 

association of a RNN with a CNN. 

For our project, Named Entity Recognition was envisaged due to the large possibilities of using 

ontologies and terminologies. Indeed, French medical NLP can benefit from initiatives such as 

HeTOP61 for mapping onto-terminology codes. This initiative held by the Rouen Hospital 

gather more than 3 millions of concepts with 100 terminologies and ontologies. Using onto-

terminologies such as UMLS, SNOMED-CT or the thesaurus of the Société Française de 

Médecine d’Urgence (as mentioned in section I.3.5.2) with NER could have been an optimal 

solution. However, many necessary concepts such as the type of suicide or the type of 

counterpart in RTA (Road Traffic Accident) are not available in French onto-terminologies.  

As an example, Metzger et al., while classifying French ED clinical notes for suicide, extracted 

medical and clinical concepts with UrgIndex which is a tool for extracting and encoding 

medical concepts from ED clinical notes62. This method has shown good performance on intra-

hospital syndromic surveillance with an overall recall of 85.8% (95% CI: 84.1-87.3) for 

respiratory syndromes and cutaneous63. However, despite the use of a powerful French-

language medical multi-terminology indexer developed by the CISMeF (Catalogue and index 

of French-language medical sites)64 which comprises several termino-ontologies, this type of 

tool cannot be used for retrieving a precise description of trauma mechanism.  

 Without a validated French trauma classification tool (i.e. ICECI), mapping is currently not 

possible. Hence, the chosen task for our project was classification, and the rest of this 

manuscript will cover this particular area.  

 

 

 

 

II.1.2.2. Related Work Summary 

 

As seen on Figure II.1, the main goals of classification for clinical NLP are phenotyping, ICD-10 

coding, and symptom severity description. Considerable work has been done on text 

classification for medical texts and clinical notes. These works are mostly based on traditional 

and classical methods such as support vector machines (SVMs), Naives Bayes, random forest 

or k-nearest neighbor (kNN). Recently, deep learning has gained great attention from 

researchers for addressing classification tasks on clinical notes as seen on Figure II.256. 
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Figure II.2 Growth of broad architectures in deep learning over the years. Wu et al.56 

 

In 2020, Wu et al. showed in their review that RNN variants were the most common (n = 129, 

60.8%) deep learning methods used for all NLP tasks concerning EHR, CNNs were second 

(n = 83, 39.2%), traditional feed-forward networks were third (n = 22. 10.4%), and 

embeddings-only were fourth (n = 21, 9.9%)56. For text classification, in recent years, CNNs 

attracted attention and achieve competitive results on classification tasks for EHR65. 

Meanwhile, models using attention mechanism have gained increasing interest. NLP has seen 

a recent breakthrough with the introduction of deep learning, and particularly the transformer 

architecture. Introduced in 2017 by Google and proposed in the article Attention is All You 

Need by Vaswani et al. 66, transformers have an architecture that allows the implementation 

of a mechanism for processing the sequence of tokens that form a sentence in a self-attentive 

way, i.e. relating each of these tokens to each of the others in the sentence. They have the 

particularity of being able to be pre-trained from a corpus of text which can be very large since 

it does not require a coding stage. This phase leads to a generative model which is capable, 

for example, of constructing artificial text by iteration. The Bidirectional Encoder 

Representations from Transformers (BERT) is one of these transformer-type models pre-

trained on large corpora of text67. The BERT model is a bidirectional transformer, composed 

only of encoder blocks. Bidirectional indicates that BERT learns information from both the 

right and the left side of a token’s context during the (pre)-training phase. BERT is composed 

of a stack of N =12 identical layers. Each layer has two sub-layers. The first is a multi-head self-

attention mechanism, and the second is a simple, position-wise fully connected feed-forward 

network. In other words, text encoder turns text into a numeric representation. For many 

tasks, including text classification, its performance is systematically superior to the 

convolutional and auto-regressive models used until then67. 

French derivatives such as FlauBERT68 and CamemBERT69 of the BERT model have been trained 

on very large and diverse French corpora. FlauBERT is a French BERT trained on a very large 
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and heterogeneous French corpus. Models of different sizes were trained using the Jean Zay 

supercomputer of the CNRS (Centre national de la recherche scientifique). There are three 

sizes: small (54 million parameters), base cased (138M) and uncased (137M) as well as large 

(373M). CamemBERT is based on RoBERTa70, an evolution of BERT in several aspects, including 

the use of the masked language model as the sole pre-training objective. CamemBERT, like 

FlauBERT, is available with different sizes: base (110M) and large (335M), but also with 

different training corpora such as OSCAR (either 138GB or 4GB of text)71, CCNET (either 135GB 

or 4GB)72 or French Wikipedia (4GB). 

One of the most interesting examples of transformer architecture is GPT-2, released by 

OpenAI in 2019. GPT-2 (Generative Pre-Training 2) is a large transformer-based model, 

composed solely of decoder blocks, with 1.5 billion parameters on its extra-large version, 

trained on a dataset of 8 million web pages to predict the next word from the previous 

words.17 Three other sizes of GPT-2 have been released before the largest one: with 124 

(small), 355 (medium), 774 (large) million parameters. This model’s ability for text generation 

quickly attracted the attention of the community because of the difficulty to distinguish the 

artificial texts produced from texts written by humans, suggesting that some of the meaning 

present in natural language was embedded. Moreover, beyond its ability to generate coherent 

texts, the GPT-2 can perform other tasks such as answering questions or classifying 

documents. As with BERT, the conservation of several self-attention blocks weights from a 

pre-trained model is sufficient to transfer contextual representations into another dataset. 

The training of the GPT-2 model is thus carried out in two distinct phases: the first phase of 

self-supervised generative pre-training, consists of the reading of a corpus of texts. It leads to 

the ability to generate texts automatically. The second supervised training phase consists in 

resuming the learning process from a corpus of annotated texts in order to create a system 

capable of performing specific tasks (classification for example). BelGPT2 is a Belgian small 

GPT2 pre-trained on French corpus of 60GB (Common Crawl, Project Gutenberg, Wikipedia, 

EuroPARL...) that was released at the end of 202073. Recent studies have shown the 

effectiveness of transformers on classification tasks for EHR free-text data such as ICD 

coding74,75, phenotyping76 or readmission prediction77.  

We propose, in the next section, to go deeper in the NLP pipeline as well as models’ 

architecture and performances for EHR clinical text classification and evaluation.  

 

  

 

 

II.2 Natural Language Processing for Text Classification 
 

II.2.1 Setting the Frame  
 

II.2.1.1. Descriptive versus Predictive tasks 

 

To apply text mining algorithms or NLP models to medical and/or clinical data, an 

understanding of the nature of data mining algorithms and their functions is useful. 

Descriptive and Predictive algorithms are two categories of data mining or NLP algorithms78,79 

as seen on Figure II.3:  
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• Descriptive: data mining groups data by determining the object's similarity (or clinical 

notes) and detecting patterns that are unknown, or associations in the data whereby 

users are unable to recognize in a massive data pool. Descriptive data is investigative. 

• Predictive: data mining that comprises classification, regression, time series analysis 

and prediction80 implies predicting rules from training data then the rules are 

employed to unpredicted/unclassified data81.  

 

 
Figure II.3 Data Mining Techniques 

 

On one hand, descriptive mining tasks provide the general data properties in the database and 

provides characteristics and descriptions without having any predefined target. On the other 

hand, for predictive mining tasks, inference is made on explicit values based on patterns 

identified by known results.   

 

 

II.2.1.2. Learning Approaches of Text Mining and NLP 

 

The 3 learning approaches in data mining and NLP algorithms are: 

• Supervised: the algorithm works with a set of examples with known labels whose 

values are nominal/categorical in classification task, or numerical in regression task. 

• Unsupervised: the algorithm aims at grouping examples according to the similarity of 

their attribute values with unknown labels, characterizing a clustering task. 

• Semi-supervised: learning is conducted when there is availability of a small subset of 

labelled examples, concurrent with many unlabeled examples (i.e.  few-shot learning).  

The task of categorizing is regarded as a supervised or semi-supervised technique in which 

each instance belongs to a given class, specified by the value of a special goal attribute or the 

class attribute82. 

 



26 
 

II.2.1.3. Text Mining and NLP differences 

In addition, a delineation must be set clear between Text Mining and NLP. Both Text Mining 

and NLP aim to extract information from unstructured data. Text mining is concentrated on 

text documents and mostly depends on a statistical and probabilistic model to derive a 

representation of documents. NLP tries to get semantic meaning from all means of human 

natural communication like text, speech or even an image. 

 

The term text mining is used for automated machine learning and statistical methods used for 

this purpose. It is used for extracting high-quality information from unstructured and 

structured text. Information could be patterned in text or matching structure but the 

semantics in the text is not considered.   

 

II.2.1.4. Development life cycle 

  

For developing an NLP system, the general development process will have the following steps: 

• Understand the problem statement. 

• Decide what kind of data or corpus we need to solve the problem. Data collection is a 

basic activity toward solving the problem. 

•  Analyzing collected corpus. What is the quality and quantity of the corpus? According 

to the quality of the data and problem statement, we need to do pre-processing. 

• Once done with pre-processing, start with the process of feature engineering. Feature 

engineering is the most important aspect of NLP and data science-related applications. 

Different techniques like parsing, semantic trees are often used for this unless we 

know in advance which features we are looking for (i.e. classification of disease). 

• Having decided on an extracted features from the raw pre-processed data, we are to 

decide which computational technique is used to solve our problem statement, for 

example, do we want to apply machine learning techniques or rule-based techniques? 

For modern NLP systems, advanced ML models based on Deep Neural Networks are 

used most of the time. 

• Now, depending on what techniques we are going to use, we should read the feature 

files that we are going to provide as an input to your decision algorithm. 

• Run the model, test it and look for best parameters. 

• Iterate through the above step to get the desired accuracy. 

 

II.2.1.5. NLP Pipeline 

 

Several steps are carried out during NLP process. Each step of the text mining and NLP pipeline 

as seen on Figure II.4 depends on the task we aim to perform and not all pre-processing steps 

are mandatory.  
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Figure II.4 Natural Language Processing Pipeline 

ETDA: Exploratory Text Data Analysis 

 

II.2.2 Document representation and feature selection 
 

One of the challenges associated with modeling text is the presence of inherent messiness or 

noise in textual data. This can pose difficulties for machine learning algorithms, which tend to 

perform optimally when dealing with well-defined inputs and outputs of fixed length. 

 

II.2.2.1. Pre-processing 

 

The first step in text categorization is to normalize the text. Several techniques are performed 

depending on the vectorizer and the classifier model chosen such as:  

- Stopwords removal: stopwords are frequent words that carry no information (i.e. 

pronouns, prepositions, conjunctions) in traditional machine learning 

- Tags removal: URL, special characters such as "@", "https://"  

- Lower casing 

- Expanding contractions: in English contraction is the shortened form of a word like 

don’t stands for do not, aren’t stands for are not 

- Punctuation removal 

- Digits removal 

- Extra white space removal 

- Stemming: a process to reduce the word to its root stem for example run, running, 

runs, runed derived from the same word as run. Stemming removes the prefix or suffix 

from word like “ing”, “s”, es, etc. The stemming technique is not used for production 
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purposes because it is not so efficient technique and most of the time it stems the 

unwanted words. 

- Lemmatizing: similar to stemming, used to stem the words into root word but differs 

in working. In fact, Lemmatization is a systematic way to reduce the words into their 

lemma by matching them with a language dictionary.  

 

Not all cleaning techniques have to be applied to a given corpus and their use depend on the 

vectorizer/tokenizer and classifier chosen and the aim of modeling.  

 

The pre-processing step for EHR clinical data is important, but no clear consensus process was 

identified for EHR clinical notes. As an example, removing negation words can modify the 

meaning of a given concept, specific tools should be used when vectorizers are used83. 

Speculation words such as “might”, “suspected” should also be taken into account when 

classifying moderate symptoms. Redundancy can also impact performances when performing 

exploratory data analysis, hence it should be considered before this step84. Expanding 

contractions or abbreviations has also been the subject of research and has brought a lot of 

controversy. Indeed, abbreviations in clinical notes have several meanings and rule-based 

disambiguation decreases the generalizability of a model. Authors have been using the UMLS 

in order to reduce ambiguity. However, 31% of UMLS abbreviations have multiple meanings85. 

Regarding the word reduction step, Pomares Quimbaya et al. showed that adding a fuzzy and 

a stemming step improved the recall on a NER task86.  

Anonymization, even if our project does not comprise such a step, can also represent a pre-

processing step for clinical notes. Information loss due to data manipulation can reduce NLP 

tasks. As an example, Stavros et al. concluded that, the loss of predictive power as a function 

of the information loss due to aggregation and suppression process varies considerably, 

depending on the nature of the chosen classifier (traditional machine learning) on Greek 

clinical notes87. 

 

II.2.2.2. Exploratory Text Data Analysis (EDTA) 

 

The structure of a corpus can be assessed regarding its structure, its vocabulary or linguistic 

features and its topics. Exploratory text data analysis is a critical component of NLP and text 

mining research. It involves using statistical and visualization techniques to gain insights into 

textual data, identify patterns, and explore relationships between different variables. The 

purpose of EDTA is to uncover underlying structures, trends, and features in the data that can 

inform subsequent analysis and modeling. Identifying key topics and themes that are 

prevalent in the documents as well as the relationships between these topics and contextual 

variables is also an important step before modelling. 

 

Length structure 

 

One can assess the length distribution of a corpus by examining the word count of each 

document and computing the average length. This approach may aid in determining the 

maximum length and in padding for a tokenizer. To identify outliers, the median absolute 

deviation (MAD) can be utilized. The MAD is a reliable measure of variability similar to the 

standard deviation88. The MAD is defined as the median of the absolute deviations (see the 
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equation below) from the data's median which reduces the effect of extreme outliers. This is 

especially important in high-tail distributions. 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑋̌|) (𝐼𝐼. 1) 

 

With: X̌ = median(X) 

 

The length of EHR clinical notes can vary depending on their type (e.g. progress note, discharge 

summary) or the department or ward from which it is written. In other departments than ED, 

notes are often “bloated”: excessively long and often filled with information considered 

redundant and unnecessary for clinical decision-making. Use of copy/paste as well as shortcut 

features to drop in large blocks of templated text contribute to bloated notes that are hard to 

navigate, lack clinical value, and may contribute to safety risks and diagnostic errors89. In ED 

settings, patients mostly come once for a given medical or trauma problem, therefore, there 

is no use of copy/paste and redundancy may be limited. However, the length of the ED clinical 

notes might be influenced by the history of the patient or their age90.  

When considering using Transformers for clinical notes, the prior analysis of clinical notes’ 

length can influence the choice of the maximum sequence length for a given model or even 

the type of model. Indeed, with Transformer models, there is a limit to the lengths of the 

sequences that can be can passed to the models. Most models handle sequences of up to 512 

or 1024 tokens and will crash when asked to process longer sequences. There are two 

solutions to this problem:      

- Use a model with a longer supported sequence length such as Longformer or 

- Truncate the sequences. 

 

 

Vocabulary structure 

 

When documents belong to given categories (if known beforehand) or when comparing two 

corpora vocabularies, the structure of each category or corpus can be modelled by extracting 

the frequency distribution of the unique words in each corpus or category (here 𝑝𝑖) and testing 

the similarity. To measure the distance between two corpora vocabularies or categories, there 

are several methods that can be used. 

 

 

Euclidean distance:  

 

 
Figure II.5 Euclidean distance illustration 
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This method calculates the distance between two points (in this case, the frequency 

distribution of the words in each corpus or category) by taking the square root of the sum of 

the squared differences between the corresponding elements of the two vectors as seen on 

Equation II.2. The smaller the Euclidean distance, the more similar the two corpora are since 

the distance calculated using this formula represents the smallest distance between each pair 

of points. 

 

𝑑(𝑷, 𝑸)  =  || 𝑷 − 𝑸||0 = √∑ (𝑝𝑖  −  𝑞𝑖)2
𝑛

𝑖=1
 

 

          = √(𝑝1 − 𝑞1)2 + ((𝑝2 − 𝑞2)2 + … + (𝑝𝑛 − 𝑞𝑛)2 (𝐼𝐼. 2) 

 

 

 

Cosine similarity 

 
Figure II.6 Cosine similarity illustration 

This method measures the similarity between two vectors by calculating the cosine of the 

angle between them. The closer the cosine value is to 1, the more similar the two corpora are 

(in terms of words frequency distribution). 

 

Cosine Distance  =  1 −  Cosine Similarity 

                  =  1 − cos(𝐏, 𝐐) 

             =  1 − 
P.Q

||P||.||Q||
 

                              

                           = 1 −
∑ 𝑃𝑖

𝑛
𝑖=1 .𝑄𝑖

√∑ 𝑃𝑖
2𝑛

𝑖=1 .√∑ 𝑄𝑖
2𝑛

𝑖=1

(𝐼𝐼. 3) 

  

 

 

 Pearson correlation distance 
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The Correlation distance quantifies the strength of the linear, monotonic relationship between 

two attributes. Furthermore, It uses the covariance value as an initial computational step. 

However, the covariance itself is hard to interpret and doesn’t show how much the data are 

close or far from the line representing the trend between the measurements. 

 

                                  Correlation_Distance = 1 − Correlation_Similarity 

                                     = 1 − 
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃, 𝑄)

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃). √𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑄)
 

                                                   

= 1 −  
∑ (𝑝𝑖𝑗 − (

1
𝑛) . ∑ 𝑝𝑖𝑗). (𝑞𝑖𝑗 − (

1
𝑛) . ∑ 𝑞𝑖𝑗)𝑛

𝑗=1
𝑛
𝑗=1

𝑛
𝑖=1

√∑ (𝑝𝑖𝑗 − (
1
𝑛) . ∑ 𝑝𝑖𝑗)𝑛

𝑗=1
𝑛
𝑖=1

2

. √∑ (𝑞𝑖𝑗 − (
1
𝑛) . ∑ 𝑞𝑖𝑗)𝑛

𝑗=1
𝑛
𝑖=1

2

 

                           (II. 4) 

 

 

Assessing the vocabulary structure, when clinical note datasets are concerned, can be 

performed prior to a given NLP task or afterwards when performing an error analysis. As an 

example, when Wang et al. compared word embeddings from several corpora, the correlation 

coefficient used by the authors was the Pearson one. Despite some investigations into 

alternatives, cosine similarity has persistently remained the default choice across research 

into similarity measures for textual embeddings91. However, Zhelezniak et al. showed that in 

practice, for commonly used word vectors, cosine similarity is equivalent to the Pearson 

correlation coefficient, motivating an alternative statistical view of word vectors. They also 

characterized when Pearson correlation was applied inappropriately and showed that these 

conditions hold for some word vectors but not others, providing a basis for deciding whether 

cosine similarity is a reasonable choice for measuring semantic similarity 91.  

 

Topic Modelling 

 

Topic modeling is a technique in NLP that is used to discover underlying topics or themes in a 

collection of documents. It is an unsupervised machine learning approach that analyzes 

patterns of word co-occurrence in the text data to identify the main topics or themes present 

in the corpus. 

 

Latent Dirichlet Allocation (LDA) 

 

The most popular topic modeling technique is Latent Dirichlet Allocation (LDA)92 which is a 

generalization of Probabilistic Latent Semantic Analysis (PLSA). LDA assumes that each 

document is a mixture of a small number of topics, and each topic is a distribution over words. 

By analyzing the frequency of words in each document, LDA infers the topics present in the 

corpus and their distribution across documents. 

Let’s denote:  

• 𝐃 = (𝐰1, … , 𝐰D) : a collection of documents 

• zd,n : the chosen topic for the word 𝐰𝐝,𝐧 

• θd : the topic distribution of the document d 
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• α and η: a priori distributions of, respectively, θ and β where βk describe the 

distribution of topic k 

The main goal of LDA is to determine the a posteriori distribution of the hidden variables given 

the document (and parameters α and β):  

 

p(θ, 𝐳|𝐰, α, β) =
p(θ, 𝐳, 𝐰|α, β)

p(𝐰|α, β)
(II. 5) 

 

 

This distribution is very difficult to compute, therefore an exact inference using the a 

posteriori distribution of the parameters is impossible. But there are several approximate 

inference methods that can be used for LDA, using for example the variational approximation 

or the Markov chain Monte Carlo. LDA’s major drawback is that it can produce ambiguous or 

incoherent topics, especially if the data is noisy, sparse, or heterogeneous. LDA relies on the 

assumption that the words in each topic are related and meaningful, but this may not always 

be the case. For example, some words may have multiple meanings, some topics may overlap 

or be too broad, and some documents may contain multiple or unrelated topics. Another 

disadvantage of LDA is that it can be computationally expensive and time-consuming, 

especially if the data is large, the number of topics is high, or the model is complex. An 

advantage of LDA is that it is a flexible and adaptable method, that can be applied to different 

types of text data. The number of topics, the hyperparameters, and the evaluation metrics 

can also be customized. Although LDA is  

effective at modeling long conventional text collections, it performs poorly on less 

conventional text such as short documents93,94. Other algorithms like the biterm topic model 

(BTM)95 are successful in modeling topics in short texts such as ED clinical notes. However, a 

common weakness between LDA and BTM is that the models cannot capture the context of 

words. As a result, the models lack generalizability across different domains, where different 

words are used to describe similar concepts94. 

 

 

 

BERTopic 

 

Recently, a new approach of Topic modeling has been proposed by Grootendorst in 

“BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure”96. BERTopic is a topic 

model that extracts coherent topic representations through the development of a class-based 

variation of TF-IDF. More specifically, BERTopic generates document embedding with pre-

trained transformer-based language models, clusters these embeddings, and finally, 

generates topic representations with the class-based TF-IDF procedure. A Uniform Manifold 

Approximation and Projection for Dimension Reduction (UMAP) and a Hierarchical Density-

Based Spatial Clustering of Applications with Noise97 (HDBSCAN) are used to, respectively, 

reduce the dimensionality of document embeddings and model clusters. Studies comparing 

LDA to BERTopic are yet to be conducted. However, some authors managed to show that 

BERTopic HDBSCAN shows superior performance with regards to topic coherence and 

diversity in a university-wide model98. 
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Topic modelling and classification for clinical notes  

 

Topic Modelling can also be a suitable approach to deal with the few resources available for 

clinical text mining in other languages than English. As an example, Lebeña et al.99 tested LDA 

and Partially Labelled Latent Dirichlet Allocation (PLDA), the supervised approach of the 

former, for an ICD-10 classification task on Spanish clinical notes. They evaluated their 

methods with metrics to determine topic coherence and the relationship between topics and 

ICD labels; they found that PLDA using a multi-layer perceptron as a classifier had better 

results than with KNN. They also argue that PLDA is interpretable and aid the explainability in 

artificial intelligence (XAI) since PLDA promotes topic-to-ICD semantic consistency while 

conveying human intuition of keywords.  

 

II.2.2.3.  Vectorization 

 

Vectorization is the general process of turning a collection of text documents into numerical 

feature vectors. The concept is to get some distinct features out of the text for the model to 

train on, by converting text to numerical vectors. A popular and simple method of feature 

extraction with text data is called the bag-of-words model of text. 

 

Bag of Words (BOW) 

 

A very common feature extraction procedure for sentences and documents is the bag-of-

words approach (BOW). In this approach, we look at the histogram of the words within the 

text, i.e. considering each word count as a feature100. 

A bag-of-words is a representation of text that describes the occurrence of words within a 

document. It involves: 

- A vocabulary of known words 

- A measure of the presence of known words. 

  

It's the simplest of all the techniques. It involves three operations: 

- Tokenization: First, the input text is tokenized. A sentence is represented as a list of its 

constituent words, and it’s done for all the input sentences.  

- Vocabulary creation: Of all the obtained tokenized words, only unique words are 

selected to create the vocabulary and then sorted by alphabetical order. 

- Vector creation: Finally, a sparse matrix is created for the input, out of the frequency 

of vocabulary words. In this sparse matrix, each row is a sentence vector whose length 

(the columns of the matrix) is equal to the size of the vocabulary.  

 

The Bag-of-words model is an orderless document representation. Documents are described 

by word occurrences while completely ignoring the relative position information of the words 

in the document. 

When dealing with a large corpus of text, certain words (such as "the", "a", and "is" in English) 

are expected to appear frequently and are therefore of little significance in conveying 

meaningful information about the content of the document. If the count data for these words 

is utilized directly in a classifier, they would dominate the frequency of less common, but 

potentially more significant terms. To mitigate this issue, the count features are typically re-
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scaled into floating-point values that can be effectively employed by a classifier. The 

commonly used technique to accomplish this is known as "tf-idf" transformation. 

 

Term Frequency-Inverse Document Frequency (TF-IDF) 

 

The most popular weighting schema is Term Frequency-Inverse Document Frequency (TF-

IDF)101 . It provides each word in a document a weight according to the following two criteria: 

- The frequency of its usage in the specified document (TF) 

- The rarity of its appearance in the other documents in the corpus (IDF)102  

Term Frequency-Inverse Document Frequency is the product of two statistics, term frequency 

and inverse document frequency: 

 

tfidf(t, d, D) = tf(t, d) × idf(t, D) (II. 6) 
 

Where t denotes the terms; d denotes each document; D denotes the collection of documents. 

Term frequency tf(t, d) is the number of times a term occurs in a document and can be defined 

as: 

tf(d, t) =
ftd

∑ ft′,dt′∈d

(II. 7) 

 

 

Where ftd is the raw count of a term in a document, i.e., the number of times that term t 

occurs in document t.  

In other words:  

TF  =
term frequency in document

total words in document
(II. 8) 

 

 

The inverse document frequency is a measure of how much information the term provides, 

i.e., if it's common or rare across all documents. It is the logarithmically scaled inverse fraction 

of the documents that contain the term (obtained by dividing the total number of documents 

by the number of documents containing the term, and then taking the logarithm of that 

quotient): 

 

idf(t, D) = log
| D |

1 + | {d ∈ D: t ∈ d} |
(II. 9) 

 

 

The denominator: | {d ∈ D: t ∈ d} | implies the total number of times in which term t 

appeared in all of a document d (the d ∈ D restricts the document to be in the current 

document space). Note that this implies it does not matter if a term appears 1 time or 100 

times in a document, it will still be counted as 1, since it simply did appear in the document. 

As for the plus 1, it is there to avoid zero division. 

In other words:  

 



35 
 

idf(t, D) = log2 (
total documents in corpus

documents with term
) (II. 10) 

 

 

The simpler bag-of-words model and TF-IDF are very simple to understand and implement and 

offers a lot of flexibility for customization on your specific text data. They have been used with 

great success on prediction problems like language modeling and documentation 

classification. 

  

However, it suffers from some shortcomings, such as: 

- Vocabulary: The vocabulary requires careful design, most specifically to manage the 

size, which impacts the sparsity of the document representations. 

- Sparsity: Sparse representations are harder to model both for computational reasons 

(space and time complexity) and for information reasons, where the challenge is for 

the models to harness so little information in such a large representational space. 

- Meaning: Discarding word order ignores the context, and in turn meaning of words in 

the document (semantics). Context and meaning can offer a lot to the model, that if 

modeled could tell the difference between the same words differently arranged (“this 

is interesting” vs “is this interesting”), synonyms (“old bike” vs “used bike”), and much 

more. 

 

When used with traditional machine learning classifiers, TF-IDF can have high performance on 

EHR clinical notes103,104.  As seen on Figure II.2, word and document embedding emerged as 

the alternative to BoW and TF-IDF offering a representation in a low-dimensional space in 

which semantically similar tokens are closely positioned as they have similar representations. 

In contrast to BoW and TF-IDF, word embeddings are represented by a real-valued vector of 

tens or hundreds of dimensions, having a great performance when representing documents 

with large vocabulary.  

 

II.2.2.4. Tokenization for deep learning 

 

Tokenizing a text is splitting it into words or subwords, which then are converted to ids 

through a look-up table. Converting words or subwords to ids is straightforward and leads to 

embeddings2. 

 

Word Tokenization 

 

Word tokenization is the most used tokenization algorithm. It splits a piece of text into 

individual words based on a certain delimiter. Depending upon delimiters, different word-level 

tokens are formed. Pretrained Word Embeddings such as Word2Vec 105 and GloVe 106 comes 

under word tokenization. As an example, the Error! Reference source not found. shows two 

types of segmentation, the objective being to divide the raw text into words and find a 

numerical representation for each word: 

 
2 An embedding is a numerical representation of a piece of information, for example, text, documents, images, 
audio, etc. The representation captures the semantic meaning of what is being embedded. 
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Figure II.7 Two different ways of splitting a text with word tokenization 

 

Word tokenization comes along with two major drawbacks:  

- Size of vocabulary: The tokenizer employed can result in extensive vocabularies that 

contain a large number of distinct tokens present in the corpus. Each word is assigned 

a unique ID, beginning with 0 and extending to the vocabulary size, which is utilized by 

the model to identify the words. To have complete coverage of a language using a 

word-based tokenizer, an identifier is required for each word in the language, resulting 

in an enormous number of tokens. For instance, the English language has more than 

500,000 words, necessitating the tracking of that many IDs to establish a mapping from 

each word to an input ID. Moreover, words such as "dog" and "dogs" are represented 

differently, and initially, the model will be unaware that they are similar, regarding 

them as distinct words. Similarly, the model will not initially recognize the similarity 

between other similar words, such as "run" and "running." 

- Out of Vocabulary (OOV) words: When testing, encountering new words that are not 

present in the vocabulary is known as Out of Vocabulary (OOV) words. These words 

pose a challenge for the methods used since they lack representation in the 

vocabulary. To address this, one approach is to establish the vocabulary with the Top 

K Frequent Words and replace infrequent words in the training data with an unknown 

token (UNK). This approach enables the model to learn the representation of OOV 

words utilizing the UNK tokens. Thus, during testing, any word not present in the 

vocabulary can be mapped to a UNK token. However, this method has certain 

drawbacks. Firstly, the entire information associated with the OOV word is lost by 

mapping it to a UNK token. Secondly, each OOV word is assigned the same 

representation. 

 

Character Tokenization 

 

Character-based tokenizers split the text into a set of characters, rather than words. This has 

two primary benefits:  

- The vocabulary is much smaller than word-level tokenization 

- It handles OOV words by preserving the information of the word.  

  

Character tokens solve the OOV problem but the length of the input and output sentences 

increases rapidly as we are representing a sentence as a sequence of characters. As a result, 

it becomes challenging to learn the relationship between the characters to form meaningful 

words. But there again, there are questions about spacing and punctuation as seen in Figure 

II.8. 
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Figure II.8 Character-level tokenization 

Although this approach has its drawbacks as well. Rather than using words, the representation 

is built on characters, which some may argue is less meaningful since each character may not 

hold significant meaning on its own, unlike words. However, this can vary depending on the 

language; for instance, Chinese characters convey more information compared to Latin 

characters. 

To achieve a balance between these two approaches, a third technique called subword 

tokenization can be employed. 

 

Subword tokenization 

 

Subword Tokenization splits the piece of text into subwords (or n-gram characters). Subword 

tokenization algorithms rely on the principle that frequently used words should not be split 

into smaller subwords, but rare words should be decomposed into meaningful subwords. For 

instance, “walking” might be considered a rare word and could be decomposed into “walk” 

and “ing”. These are both likely to appear more frequently as standalone subwords, while at 

the same time the meaning of “walking” is kept by the composite meaning of “walk” and “ing”. 

This allows to have relatively good coverage with small vocabularies, and close to no unknown 

tokens. 

 

Byte-Pair Encoding, as used in GPT (Generative Pre-trained Transformer) 

 

Byte Pair Encoding (BPE)107 is a simple data compression technique that iteratively replaces 

the most frequent pair of bytes in a sequence with a single, unused byte. This algorithm was 

adapted by Sennrich and al.108 for word segmentation. Instead of merging frequent pairs of 

bytes, characters or character sequences are merged. When applied to words, the principle is 

to represent frequent words with fewer symbols and less frequent words with more symbols. 

BPE is a widely used tokenization method among transformer-based models. BPE addresses 

the issues of word and character Tokenizers: 

- BPE tackles OOV effectively. It segments OOV as subwords and represents the word in 

terms of these subwords. 

- The length of input and output sentences after BPE are shorter compared to character 

tokenization.  

 

 

 

Steps to learn BPE are:  

- Split the words in the corpus into characters after appending </w>, each (unicode) 

character corresponds to a symbol in the final vocabulary. 

- Initialize the vocabulary with unique characters in the corpus; 

- Compute the frequency of a pair of characters or character sequences in corpus; 

- Merge the most frequent pair in corpus; 
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- Save the best pair to the vocabulary; 

- Repeat the frequency of a pair of characters or characters sequences in corpus ; 

 

 
Figure II.9 Byte Pair Encoding with bigrams 

 

BPE tokenizes by merging frequent character n-grams or whole words into a single symbol, 

removing the need for a shortlist. The final vocabulary size is the initial size plus the number 

of merge operations, the only hyperparameter. For example, GPT's vocabulary size is 40,478, 

with 478 base characters and 40,000 merges. However, the model may still encounter unseen 

characters in the test or supervised training set during pre-training. This can cause embedding 

vectors for unseen characters to differ significantly from the trained embeddings, even if an 

ID is created for them. One solution is to create a vocabulary based on a large dataset that 

includes all necessary characters. Another approach is to use a student-teacher method, 

where a teacher model is distilled, and a student model is trained using a reduced vocabulary 

by feeding inputs tokenized with both the student and teacher models109. This approach has 

been used with Bidirectionnal Transformers for Language Understanding110 (BERT), ELMo111, 

and GPT models, and BBPE has also been explored by Wang et al. in 2020112. 

 

Byte-level Byte-Pair Encoding (BBPE), as used in GPT2 
 

When considering all possible base characters, a base vocabulary can become very large, 

especially if using all Unicode characters. To address this, text can be encoded using UTF-8, 

which represents each Unicode character with 1 to 4 bytes. However, representing text as a 

sequence of bytes can result in a longer and more computationally demanding representation 

compared to a character sequence. To overcome this, byte sequences can be segmented into 

variable-length n-grams, or byte-level "subwords", using a BPE vocabulary. This extends the 

UTF-8 byte set with byte n-grams and does not require out-of-vocabulary tokens, enabling 

language transfer between vocabularies. GPT-2 uses bytes as the base vocabulary to ensure 

that every base character is included, and its tokenizer can tokenize all text without the need 

for a special <unk> symbol. Its vocabulary size of 50,257 includes the 256 bytes base tokens, 

an end-of-text token, and symbols learned with 50,000 merges. 

 

WordPiece, as used in BERT 

 

WordPiece is the subword tokenization algorithm used for transformers such as BERT, 

DistilBERT113, and Electra114. The algorithm was outlined in Japanese and Korean Voice Search 
115 and is very similar to BPE.  

 

The WordPiece algorithm is iterative and the summary of the algorithm according to the paper 

is as follows: 
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- Initialize the word unit inventory with the base characters (i.e. [CLS]). 

- Build a language model on the training data using the word inventory from 1. 

- Generate a new word unit by combining two units out of the current word inventory. 

The word unit inventory will be incremented by 1 after adding this new word unit. The 

new word unit is chosen from all the possible ones so that it increases the likelihood 

of the training data the most when added to the model. 

- Go to 2 until a pre-defined limit of word units is reached or the likelihood increase falls 

below a certain threshold. 

 

The only difference between WordPiece and BPE is the way in which symbol pairs are added 

to the vocabulary. At each iterative step, WordPiece chooses a symbol pair which will result 

in the largest increase in likelihood upon merging. Maximizing the likelihood of the training 

data is equivalent to finding the symbol pair whose probability divided by the probability of 

the first followed by the probability of the second symbol in the pair is greater than any other 

symbol pair. 

II.2.3 Statistical and Traditional Machine Learning classification algorithms 

 

Some key methods, which are commonly used for text classification are as follows: 

 

• Decision Trees: Decision trees are designed with the use of a hierarchical division of 

the underlying data space with the use of different text features. The hierarchical 

division of the data space is designed to create class partitions which are more skewed 

in terms of their class distribution. For a given text instance, we determine the partition 

that it is most likely to belong to a class and use it for the purposes of classification. 

 

• Pattern (Rule)-based Classifiers: In rule-based classifiers we determine the word 

patterns which are most likely to be related to the different classes. We construct a set 

of rules, in which the left-hand side corresponds to a word pattern, and the right-hand 

side corresponds to a class label. These rules are used for the purposes of classification.  

 

 

• Support Vector Machines (SVM) Classifiers: SVM Classifiers attempt to partition the 

data space with the use of linear or non-linear delineations between the different 

classes. The key in such classifiers is to determine the optimal boundaries between the 

different classes and use them for the purposes of classification.  

 

• Neural Network Classifiers: Neural networks are used in a wide variety of domains for 

the purposes of classification. In the context of text data, the main difference for neural 

network classifiers is to adapt these classifiers with the use of word features. We note 

that neural network classifiers are related to SVM classifiers; indeed, they both are in 

the category of discriminative classifiers, which are in contrast with the generative 

classifiers. 

 

 

• Bayesian (Generative) Classifiers: In Bayesian classifiers (also called generative 

classifiers), we attempt to build a probabilistic classifier based on modeling the 
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underlying word features in different classes. The idea is then to classify text based on 

the posterior probability of the documents belonging to the different classes based on 

the word presence in the documents. 

 

• Other Classifiers: Almost all classifiers can be adapted to the case of text data. Some 

of the other classifiers include nearest neighbor classifiers, and genetic algorithm-

based classifiers. We will discuss some of these different classifiers in some detail and 

their use for the case of text data. 

 

In the following sections, we describe some of the algorithms for text categorization that have 

been frequently proposed and used for medical and clinical data mining. First, the general 

notation is given: Let 𝐝 = {d1, … . , dM} be the document vector to be classified and c1, … . . , ck 

the possible classes. Further assume that we have a training set consisting of 𝐍 document 

vectors 𝐝𝟏, … . , 𝐝𝐍 with true classes y1, … . , yN. Nj is then the number of training documents 

for which the true class is ij. 

 

II.2.3.1. Naïve Bayes 

 

The naive Bayes classifier41 is constructed by using the training data to estimate the probability 

of each class given the document feature values of a new instance. Bayes theorem is used to 

estimate the probabilities:  

 

P(cj|𝐝) =
P(cj)P(𝐝|cj)

P(𝐝)
(II. 11) 

  

The denominator in the above equation does not differ between categories and can be left 

out. Moreover, the naive part of such a model is the assumption of word independence, i.e 

we assume that the features are conditionally independent given the class variable. This 

simplifies the computations yielding: 

 

P(cj|d) = P(cj) ∏ P(dj|cj)

M

i=1

(II. 12) 

 

 

 

An estimate P̂(cj) for P(cj) can be calculated from the fraction of training documents that is 

assigned to class cj :  

 

P(C = cj) =
Nj

N
(II. 13) 
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Moreover, an estimate P̂(dj|cj)for P(dj|cj) is given by: 

  

 

P̂(dj|cj) =
1 + Nij

M + ∑ Nkj
M
k=1

(II. 14) 

 

where Nij is the number of times word i occurred within documents from classe cj in the 

training set. 

Even though the assumption of conditional independence is generally not true for word 

appearance in documents, the Naive Bayes classifier is surprisingly effective116,117. 

 

 

II.2.3.2. K-nearest neighbor (KNN) 

 

To classify an unknown document vector 𝐝, the k-nearest neighbor (kNN) algorithm118 ranks 

the document's neighbors among the training document vectors and use the class labels of 

the 𝐤 most similar neighbors to predict the class of the input document. The classes of these 

neighbors to predict the class of the input document. The classes of these neighbors are 

weighted using the similarity of each neighbor to 𝐝, where similarity may be measured by 

Euclidean distance or the cosine between the two document vectors for example. 

KNN is a lazy learning instance-based method that does not have an off-line training phase. 

The main computation is the on-line scoring of training documents given a test document to 

find the 𝐤 nearest neighbors. 

 

II.2.3.3. Decision Trees 

 

In this approach, the document vector 𝐝  is matched against a decision tree to determine 

whether the document is relevant for a given category. The decision tree is constructed from 

the training samples, and one of the most popular approaches is the CART (Classification And 

Regression Trees)119  algorithm that is described below. 

 

CART 

 

CART builds a binary decision tree by splitting the set of training vectors at each node 

according to a function of one single vector element. The first task is therefore to decide which 

of the vector elements makes the best splitter, i.e the one that partitions the set in as 

homogeneous subsets as possible. This means that the best splitter is the one that decreased 

the diversity of the set of training samples by the greatest amount, i.e one wants to maximize:  

diversity(before split) − [diversity(left child) + diversity(right child)] 
One of the commonly used diversity measures is entropy:  

 

                                                                      ∑ p(cj|t)logp(cj|t)

k

j=1

                                                   (II. 15) 
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Where p(cj|t) is the probability of a training sample being in class cj given that it falls into 

node t. This probability can be estimated by: 

 

p(cj|t) =  
Nj(t)

N(T)
 (II. 16) 

 

where Nj(t) and N(t)are the number of samples of class cj and the total number of samples 

at node t respectively.  

To choose the best splitter at a node in the tree, each component of the document vector is 

considered in turn. A binary search is performed to determine the best split value for the 

component, using the decrease in diversity as the measure of goodness. Having found the best 

split value, one compares the decrease in diversity to that provided by the current best 

splitter. The component that matches to the largest decrease in diversity is chosen as the 

splitter for the node. 

This procedure is repeated until no sets can be partitioned any further. The nodes at the 

bottom of the tree are denoted leaf nodes, and at the end of the tree-growing process, every 

sample of the training set has been assigned to some leaf of the full decision tree. 

Each leaf can now be assigned a class. The error rate of a leaf measures the probability of 

samples reaching this leaf being misclassified. The error rate, E(T), of the whole tree is the 

weighted sum of the error rates of all the leaves.  

 

Other Algorithms 

 

Two other well-known decision tree algorithms are C4.5120 and CHAID (CHi-squared Automatic 

Interaction Detector)121. 

C4.5 differs from CART in that it produces trees with varying numbers of branches per node. 

CHAID differs from CART and C4.5 in that rather than first overfitting the data, then pruning, 

CHAID attempts to stop growing the tree before overfitting occurs. CHAID is restricted to 

categorical variables. 

 

 

 

II.2.3.4. Support Vector Machines (SVM) 

 

Support Vector Machines (SVMs) have shown to yield good generalization performance on a 

wide variety of classification problems. The SVM integrates the dimension reduction and 

classification. In a binary classification task, the SVM classifies a vector 𝐝 to either -1 or 1 using:  

 

                                                     s = 𝐰T∅(𝐝) + b =  ∑ αiyiK(𝐝, 𝐝i) + b                          (II. 17)

N

i=1

 

and  

 

                                                  y = {
1 if s >  s0

−1 otherwise
                                                                    (II. 18) 
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Here{𝐝i}i=1
N  is the set of training vectors as before and {yi}i=1

N  are the corresponding classes 

(yi  ∈  −1,1) is denoted a kernel and is often chosen as a polynom of degree d, i.e. 

 

                                                             K(d, di) = (dT di + 1)d                                              (II. 19) 

 

The training of the SVM consists of determining the 𝐰 that maximizes the distance between 

the training samples from each pair of class. 

 

II.2.3.5. Voted Classification 

 

Many researchers have investigated the technique of combining the predictions of multiple 

classifiers to produce a single classifier. This process is often denoted voting. Voting algorithms 

takes a classifier and a training set as input and trains the classifier multiple times on different 

versions of a training set. The generated classifiers are then combined to create a final 

classifier that is used to classify the test set. 

Voting algorithm can be divided into two types: bagging and boosting algorithms. The main 

difference between the two types is the way the different versions of the set are created. We 

give, in the following, a closer description of the two types of algorithms. 

 

Bagging 

 

Bagging122 takes as input a classification algorithm f(. )  and a training set T and returns a set 

of classifiers f ∗(. ) = f1(. ), … . . , fR(. ). Here fr(. ) is a classifier that is learned from a bootstrap 

sample Tr of the training set. The bootstrap sample is formed by uniform probability random 

selection from T with replacement N times, where N is the size of the training set. This will 

create a training set with the same number of samples as the original, but some cases may be 

represented more than once, while others may not be represented at all. The expected 

frequency with which the cases from T are represented in a single bootstrap sample Tr is 

described in the discrete Poisson distribution. 

To classify a new sample 𝐝, each classifier fr(. )  from $ f ∗(. ) is applied to 𝐝 resulting in labels 

f1(𝐝), f2(𝐝), … … , fR(𝐝) . The result of the voting classifier is the class that obtains the most 

votes from the single classifiers when applied to 𝐝:  

 

                                                f ∗(𝐝) = argmaxy ∑ 1                                                 (II. 20)

r:fr(𝐝)=y

 

 

 

Boosting 

 

Boosting123 encompasses a family of methods. Like bagging, these methods choose a training 

set of size N for classifier f_r by randomly selecting with replacement examples from the 

original training set. Unlike bagging, however, the probability of selecting a sample is not the 

same for all samples of the training set. It depends instead on how often that sample was 

misclassified by the previous k − 1 classifier. Thus, boosting attempts to produce new 
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classifiers that are better able to correctly classify examples from which the performance of 

the current classifiers is poor.  

Different forms of boosting generate the probabilities for selecting samples in different ways. 

We will describe two approaches here: the AdaBoost, AdaBoost.MH and gradient boosting. 

 

 

 

AdaBoost 

 

Let the probability of selecting the sample 𝐝i for training set Tr be pir. Initially, all the 

probabilities are equal, i.e. pir = 1/N for all samples 𝐝i. To determine the pir's for classifier 

fr+1(. ) AdaBoost first computes the sum, εr, of the probabilities corresponding to the samples 

that were misclassified using classifier f_r(. ):  

 

                                                                          εr = ∑ pir                                               (II. 21)

i:fr(di)≠yi

 

 

Finally, the probabilities are re-normalized so that they again sump up to 1. 

After this procedure has been repeated for R iterations, R classifiers f1(. ), … . , fr(. ) and R 

values α1, … , αR remain. To classify a new sample 𝐝, each classifier fr(. ) from f ∗(. ) is applied 

to 𝐝 resulting in labels f1(𝐝), f2(𝐝), … … , fR(𝐝). Unlike bagging, one does not assign equal 

importance to each of the classification results, but instead weight the results using the 

αr values that were previously used to update the probabilities pir. This means that the final 

class 𝐝 is given by:  

 

                                                           f ∗(𝐝) = argmaxy ∑ αr

k:fr(𝐝)=y

                                   (II. 22) 

 

A main mis advantage with AdaBoost is that is not very good at solving multi-class problems. 

In addition, it doesn't handle cases where a document may belong to more than one class. An 

extension of AdaBoost called AdaBoost.MH124 can effectively handle multi-class and multi-

label problems.  

 

AdaBoost.MH 

 

Let the weight of sample 𝐝i and label ck in iteration r be pikr . Initially, all weights are equal, 

i.e  pikr =
1  

N
 for all samples 𝐝i  and all labels ck. For each round, the AdaBoost.MH algorithm 

estimates K classifiers fr(d, k). The sign of fr(di, k)reflects whether the label ck is or is not 

assigned to the training sampe 𝐝i, while the magnitude of fr(di, k) is interpreted as a measure 

of the confidence in the prediction. The weights are updated using the following formula: 

                                                                 pik(r+1) = pikrexp(−yikfr(di, k))                          (II. 23) 

 

Here yik is 1 if labelck is among the possible true labels of sample 𝐝i  and -1 otherwise. After 

updating the weights, they are re-normalized so that ∑ ∑  kp_{ik(r+1)} = 1i .  
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After this procedure has been repeated for R iterations, one has RxK classifiers fr(𝐝, k). To 

classify a new sample 𝐝, each classifier is applied to 𝐝 and the final class of 𝐝 is given by:  

 

                                                           f ∗(𝐝, k) = ∑ fr(𝐝, k)                                                   (II. 24)

R

r=1

 

 

GradientBoosting 

 

AdaBoost and related algorithms were recast in a statistical framework first by Breiman122 

calling them ARCing (Adaptive Reweighting and Combining) algorithms. Each step in an arcing 

algorithm consists of a weighted minimization followed by a recomputation of the classifiers 

and weighted input. While the AdaBoost model identifies the shortcomings by using high 

weight data points, gradient boosting performs the same by using gradients in the loss 

function. 

 

II.2.3.6. Traditional machine learning classifiers for EHR clinical notes 

 

Since the beginning of computerized EHR, traditional machine learning has been widely used 

for extracting information from clinical notes. Many algorithms have been tested on various 

classifying tasks and some trends have been drawn regarding how to perform on clinical notes. 

As mentioned in section II.1.2.2, SVM has been found by Wang et al.125 to be the most 

frequently used algorithm. When considering NLP techniques for chronic disease, E. H. 

Houssein et al. showed in their systematic review that SVM and Naïve Bayes were widely 

used126. Barrett et al. 127 found similar results while comparing SVM, Naïve Bayes and 

Maximum Entropy for adverse drug reaction detection with a classification task. Similar results 

were found by Sarker et al.127 for the same task. Roberts et al.128 proposed an approach to use 

SVM with various features to extract anatomic sites of appendicitis-related findings.  

As clinical notes have high-dimensional feature spaces and sparse instance vectors, these 

issues were found to be well addressed by SVMs41. They have been recognized for their 

generalizability and are largely used for phenotyping54. On the other hand, Metzger et al., 

while classifying French ED clinical notes for suicide with a multi-class classification, compared 

several traditional machine learning models and neural network and found random forest to 

be the most accurate model with a 95.3 F-measure, while SVM reached 90.462.  

 

II.2.4 Deep Learning versus Statistical and Traditional Machine Learning  
 

Deep learning is a class of machine learning algorithms based on artificial neural networks 

with representation learning129  as seen on Figure II.10. Machine learning is defined as the 

study of computer algorithms that improve automatically through experience which is seen 

as a subset of artificial intelligence130. For a long time, the majority of methods used to study 

NLP problems employed shallow machine learning models and time-consuming, hand-crafted 

features. This led to problems such as the curse of dimensionality since linguistic information 

was represented with sparse representations (high-dimensional features). However, with the 

recent popularity and success of word embeddings (low dimensional, distributed 
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representations), neural-based models have achieved superior results on various language-

related tasks as compared to traditional machine learning models. 

 
Figure II.10 Artificial Intelligence, Machine Learning and Deep Learning connections 

Deep learning uses multiple layers to progressively extract higher level features from the raw 

input. For example, in image processing, lower layers may identify edges, while higher layers 

may identify the concepts relevant to a human such as digits or letters or faces131. 

 

 

II.2.5 Artificial Neural Networks 
 

Artificial neural networks form the core of deep learning applications. Neural networks are 

arrangements of multiple nodes or neurons, arranged in multiple layers as seen on Figure II.11. 
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Figure II.11 Types of Artificial Neural Networks 

 

The information enters the neural network through the input layer, which is the primary 

outermost layer. The final layer through which information passes is the output layer. The 

input and output layers may or may not have additional layers between them. The layers, if 

any, present between the input and output layers are called hidden layers. An artificial neural 

network is considered to be a “deep” neural network if it has multiple hidden layers. Generally, 

every neuron in any layer is interconnected to all neurons in its adjacent layers. 

Every layer of the neural network breaks down the input into a simpler form to interpret and 

classify the content. For instance, consider a simple neural network that is used to identify the 

pictures of cats. The different layers of the neural network perform different functions and 

analyze different elements of input images. For example, the first later could simply scan for 

contours in the images. The next layer can identify different colors. Similarly, the subsequent 

layers can make increasingly detailed analyses to identify more subtle features, ultimately 

allowing the neural network to identify the images of cats distinctly. A high number of layers 

means that there can be a higher number of pathways for information to travel through the 

network, potentially allowing the network to perform highly complex tasks. 

Until recently, the 3 most commonly used types of neural networks in AI were:  

• Feed Forward Neural Networks: used to perform basic pattern and image recognition 

• Convolutional Neural Networks (CNNs): used in object recognition and video analysis 

• Recurrent Neural Networks (RNNs): used in Natural Language Processing and speech 

recognition 

In 2017, the Transformer architecture revolutionized NLP, and the recent popularity of 

ChatGPT has not only given visibility to this type of model but has opened the field of 

possibilities in a non-finite number of areas.  
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II.2.5.1. Convolutional Neural Network (CNN) 

 

Convolutional Neural Network (CNNs) are deep learning models that are most used for 

computer vision applications (such as classifying images), and in some cases used for natural 

language processing tasks (such as text classification). A CNN is made up of an input layer, 

hidden layers, and an output layer. The hidden layers in a CNN include one or more layers that 

perform convolutions. A convolution layer computes a dot product of the convolution kernel 

with the layer's input matrix, usually using a ReLU activation function. The convolution kernel 

slides along the input matrix for the layer, generating a feature map which contributes to the 

input of the next layer. Other layers such as pooling layers, fully connected layers, and 

normalization layers may follow. 

 
Figure II.12 Convolutional Neural Network132 

 

Convolution Layer 

 

The convolution layer is the core building block of the CNN. It carries the main portion of the 

network’s computational load. This layer performs a dot product between two matrices, 

where one matrix is the set of learnable parameters otherwise known as a kernel, and the 

other matrix is the restricted portion of the receptive field.  

In the case of NLP tasks, i.e., when applied to text instead of images, we have a 1-dimensional 

array representing the text. Here the architecture of the CNN is changed to 1D convolutional-

and-pooling operations. One of the most typically tasks in NLP where CNN are used is sentence 

classification, that is, classifying a sentence into a set of pre-determined categories by 

considering n-grams, i.e. it’s words or sequence of words, or also characters or sequence of 

characters. 

Given a sequence of words w1:n = w1, … , wn , where each is associated with an embedding 

vector of dimension d. A 1D convolution of width-k is the result of moving a sliding-window 

of size k over the sentence and applying the same convolution filter or kernel to each window 

in the sequence, i.e., a dot-product between the concatenation of the embedding vectors in 

a given window and a weight vector u, which is then often followed by a non-linear activation 

function g. 

Considering a window of words, wi, … , wi+k the concatenated vector of the ith window is 

then: 
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                                                      xi = [wi, wi+1, … , wi+k]

∈  ℝk×d                                                  (II. 25) 
 

The convolution filter is applied to each window, resulting in scalar values ri , each for the ith 

window:  

ri = g(xi ⋅ u) ∈ ℝ (II. 26) 

 

 

In practice one typically applies more filters, u1, … , ul , which can then be represented as a 

vector multiplied by a matrix U and with an addition of a bias term b : 

 

ri = g(xi ⋅ U + b) (II. 27) 

 

With 

 

                                             ri ∈ Rl,    xi ∈ R k × d,    U ∈ R k ⋅ d ×l   and b 

∈ Rl                                 (II.28)  

 

Pooling 

 

The pooling operation is used to combine the vectors resulting from different convolution 

windows into a single l-dimensional vector. This is done again by taking the max or the average 

value observed in resulting vector from the convolutions. Ideally this vector will capture the 

most relevant features of the sentence/document. This vector is then fed further down in the 

network, hence, the idea that CNN itself is just a feature extractor, most probably to a full 

connected layer to perform prediction. 

 

CNN for EHR clinical notes classification 

 

Deep models such as CNNs have attracted attention and achieved very competitive results in 

classification tasks. One of the first attempts was by Hughes et al133, who applied a CNN to 

classify clinical text at the sentence level. The model structure had four convolutional layers 

after the sentence embedding input, and at the end a fully connected layer was applied to 

predict the sentence labels. They compared their method with a variety of traditional machine 

learning methods and different sentence embeddings, including logistic regression, doc2vec 

embeddings, and bag-of-words features. Results from Hughes et al. and others have 

demonstrated that deep models, including word embeddings and CNN models, are 

competitive with, and can even outperform, TF-IDF and topic modeling features133,134. 
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II.2.5.2. Recurrent Neural Network (RNN) 

 

Overview of RNN 

 

RNNs have been applied to various NLP tasks, including machine translation, image captioning, 

and language modeling, among others. Compared to CNN models, RNN models can be equally 

effective or even better at specific natural language tasks but not necessarily superior, as they 

model different aspects of the data, depending on the semantics required by the task at hand. 

However, simple RNNs are challenged by the vanishing gradient problem, which makes 

learning and tuning the parameters in the earlier layers difficult. 

Recurrent Neural Networks (RNNs) utilize loops to perform recurrent operations, which make 

them more intricate than feed-forward networks and capable of tackling complex tasks such 

as language generation and text prediction. Unlike feed-forward networks, RNNs allow 

connections to go back to neurons in the same layer, which widens the scope of operations. 

RNNs perform recursive computations for every instance of an input sequence based on the 

previous computed results. Typically, these sequences are represented by a fixed-size vector 

of tokens that are fed sequentially to a recurrent unit. A simple RNN framework is illustrated 

in the Figure II.13 below. 

 

 
Figure II.13 Unrolled RNN135 

 

RNNs are designed to take two inputs at each time step: an input xt and a hidden state ht. The 

second input vector and the first hidden state are used to generate the output of that time 

step. RNNs are particularly useful for modeling context dependencies in inputs of arbitrary 

length and creating an appropriate composition of the input by memorizing the results of 

previous computations and using that information in the current computation.  

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Types of RNN 

 

Five main types of RNN are depicted on Figure II.14:   

 
Figure II.14 Types of RNN 

 

• One to One RNN is the most basic and traditional type of Neural network giving a single 

output for a single input, as can be seen in the above image. It is also known as Vanilla 

Neural Network. It is used to solve regular machine learning problems. 

• One to Many is a kind of RNN architecture is applied in situations that give multiple 

output for a single input. A basic example of its application would be Music generation. 

In Music generation models, RNN models are used to generate a music piece (multiple 

output) from a single musical note (single input). 

• Many to One RNN architecture is usually seen for sentiment analysis model as a 

common example. As the name suggests, this kind of model is used when multiple 

inputs are required to give a single output. 

• Many-to-Many RNN architecture takes multiple input and gives multiple output, but 

Many-to-Many models can be two kinds as represented above: 

1. When input and output layers have the same size. This can be also 

understood as every input having a output, and a common application can be 

found in NER. 

2. Many-to-Many architecture can also be represented in models where input 

and output layers are of different size, and the most common application of 

this kind of RNN architecture is seen in Machine Translation. For example, “He 

fell” in English is translated to 3 words in French, “Il est tombé”. Thus, machine 

translation models can return words more or less than the input string because 

of a non-equal Many-to-Many RNN architecture works in the background. 

 

RNN Drawbacks 

 

Gradient definition 

 

The gradient is a is a partial derivative with respect to its inputs. In other words, it describes 

the slope or rate of change of a function with respect to its input parameters. Specifically, the 

gradient of a function is a vector that points in the direction of steepest ascent of the function 
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at a particular point in its domain. Higher the gradient, steeper the slope and the faster a 

model can learn. If the slope is almost zero, the model stops to learn. A gradient simply 

measures the change in all weights regarding the change in error. 

In the context of deep learning, the function of interest is the loss function, which measures 

the discrepancy between the predicted output of a neural network and the true output. The 

gradient of the loss function with respect to the network's parameters (i.e., the weights and 

biases of its neurons) tells us how much each parameter should be adjusted to reduce the 

loss. 

To compute the gradient of the loss function, backpropagation is used, which involves 

recursively applying the chain rule of calculus to propagate the derivatives of the loss function 

through the layers of the network. The resulting gradient vector can then be used to update 

the network's parameters using an optimization algorithm such as stochastic gradient descent 

(SGD). 

 

Gradient issues in RNN 

 

During the training of an RNN algorithm, it is possible for the gradient to become either too 

small or too large. As a result, the training process of the algorithm can become challenging. 

This can lead to various issues such as poor performance, low accuracy, and an extended 

training period. 

Exploding Gradient 

If we assign significant importance to the weights in a neural network, it can result in the 

problem of an exploding gradient. This occurs when the gradient values become excessively 

large, causing the slope to grow exponentially. To address this issue, several techniques can 

be used, including identity initialization, truncated back-propagation, and gradient clipping. 

Vanishing Gradient 

The problem of vanishing gradient136 occurs when the gradient values become too small 

during model training, causing the learning process to either slow down significantly or come 

to a halt. To overcome this issue, several methods can be employed, including weight 

initialization, selecting appropriate activation functions, and incorporating gating 

mechanisms. Gating mechanisms have been developed to alleviate some limitations of the 

basic RNN, resulting in two prevailing RNN types: long short-term memory (LSTM)137 and gated 

recurrent unit (GRU)138. 

 

RNNs for EHR clinical notes classification 

 

As highlighted by Wang et al.125, RNNs (LSTM comprised) are the most frequently algorithms 

used for information extraction from EHR clinical notes. As an example, Futoma et al. 139 

developed an RNN classifier to detect sepsis in EHRs. They framed the problem as a 

multivariate time series classification problem. By using a multitask Gaussian process and 

feeding into an RNN, they were able to achieve significant improvements over baselines and 

clinical benchmarks with significantly higher precision. Specifically, compared with vanilla 

RNN, the model improved the precision by 0.1; compared with non-deep learning methods, 

the model improved the precision by 0.3-0.4.  
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LSTM  

 

In 1997, Hochreiter and Schmidhuber introduced LSTM137 to address the long-term 

dependency problem.  

LSTM rely on 2 states, the hidden state and the cell state and 3 gates:  

• Forget Gate (ability to forget information when it is no longer useful) 

• Input Gate (ability to consider new relevant information) 

• Output Gate (determines the state of the cell at time t, given the forget gate and input 

gate) 

 

Let’s denote:  

- xt ∈  ℝd : input vector to the LSTM unit 

- ft ∈ (0,1)h : forget gate's activation vector 

-  it ∈ (0,1)h: input/update gate's activation vector 

- ot ∈ (0,1)h : output gate's activation vector 

- ht ∈ (−1,1)h: hidden state vector also known as output vector of the LSTM unit 

-  c̃t ∈ (−1,1)h: cell input activation vector 

- ct ∈ ℝd: cell state vector 

-  W ∈  ℝh×d, U ∈  ℝh×h and b ∈  ℝh: weight matrices and bias vector parameters which need 

to be learned during training where the superscripts d and h refer to the number of input 

features and number of hidden units, respectively. 

 

 

 
Figure II.15 LSTM units with the 4 interacting layers135 

In an LSTM neural network, a sigmoid layer as seen on Figure II.16 is used to control the flow 

of information through the cell state Figure II.17. The sigmoid function is a mathematical 

function that maps any input value to a value between 0 and 1. 

 

 
Figure II.16 Sigmoid layer of an LSTM cell135 
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Figure II.17 Cell state of an LSTM135 

 

Specifically, there are three sigmoid layers used in an LSTM network: 

1. The forget gate (Figure II.18): This gate determines how much of the previous cell state 

ct−1 should be forgotten. The forget gate takes as input the current input xt and the 

previous hidden state ht−1, and outputs ft a value between 0 and 1 for each element 

in the cell state ct. 

 
Figure II.18  Forget gate layer of LSTM135 

 

2. The input gate (Figure II.19): The input gate is a sigmoid layer that takes as input the 

current input xt and the previous hidden state ht−1. The output it of the input gate 

determines how much new information should be added to the cell state ct . 

Specifically, the input gate output it is multiplied elementwise with the output of the 

tanh layer c̃t.  

The tanh layer is another layer in an LSTM that takes as input the current input xt and 

the previous hidden state ht−1. The output of the tanh layer c̃t is a value between -1 

and 1 for each element in the cell state ct. This product output of the input gate it is 

multiplied elementwise with the output of the tanh layer c̃t determines how much new 

information should be added to the cell state. If the output of the input gate is close 

to 0, then very little new information will be added to the cell state. If the output of 

the input gate it is close to 1, then a lot of new information will be added to the cell 

state ct. 

The purpose of the tanh layer is to normalize the new input before it is added to the 

cell state. This is important because the cell state can grow very large or small over 

time, which can make it difficult to train the network. By using the tanh function, the 

new input is scaled to a range between -1 and 1, which helps to prevent the cell state 

from growing too large or too small. 
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Figure II.19 Input gate of LSTM135 

 

3. The output gate is the final layer that produces the output of the network.  

Before the activation of the output gate, the old cell state, ct−1 is updated into the new 

cell state ct as seen on Figure II.20. The previous steps already decided what to do, we 

just need to actually do it. The old state ct−1 is multiplied by ft, forgetting the 

unnecessary information, then c̃t is added resulting in the new candidate values scaled 

by how much each value state was updated.  

 
Figure II.20 Output gate of LSTM135 

 

Finally, the output layer takes as input the previous hidden state  ht−1 and applies a 

linear transformation to this input. The output of the output layer is then passed 

through an activation function, which is often a softmax function in the case of 

sequence classification or language modeling, but here is a tanh function. The softmax 

or tanh function normalizes the output into a probability distribution over a set of 

output classes. In some cases, the output layer may include additional layers or 

regularization techniques, such as dropout or batch normalization, to improve the 

performance of the network. 

 

 
Figure II.21 Output gate of LSTM135 
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GRU  

GRU (Gated Recurrent Unit) is a type of recurrent neural network that is similar to LSTM (Long 

Short-Term Memory) but has fewer parameters and is faster to train. Like LSTM, GRU is 

designed to model sequential data by processing input sequences of variable length. GRU 

works by using gating mechanisms to control the flow of information through the network. 

The basic GRU unit consists of two gates: an update gate and a reset gate.  

 
Figure II.22 GRU structure 𝑧𝑡 and 𝑟𝑡 represent the update gate and reset gate respectively140 

 

The update gate zt determines how much of the previous hidden state ht−1 should be retained 

and how much of the new input should be used to update the hidden state ht. The reset gate 

rt determines how much of the previous hidden state ht−1 should be forgotten. At each time 

step, the input xt is concatenated with the previous hidden state ht−1, and the resulting vector 

is passed through a linear layer. The output of this layer is then split into two vectors, one of 

which is used to compute the reset gate, and the other is used to compute the update gate. 

The reset gate rt is computed using a sigmoid activation function, which maps the input to a 

value between 0 and 1. The update gate is also computed using a sigmoid function, which 

determines how much of the new input should be used to update the hidden state. 

Once the reset and update gates have been computed, the previous hidden state is multiplied 

by the reset gate. This multiplication essentially determines how much of the previous hidden 

state should be forgotten. The new input is then passed through a tanh activation function, 

which scales the input to a value between -1 and 1. 

Finally, the scaled input and the previous hidden state multiplied by the reset gate are 

combined to compute the new hidden state. The update gate determines how much of the 

new input should be used to update the hidden state, and the remaining proportion of the 

previous hidden state is used to maintain the long-term memory of the network. 

GRU is a simpler and faster alternative to LSTM that is often used for modeling sequential 

data, such as natural language processing, speech recognition, and video analysis. 

 

II.2.5.3. Attention Mechanism 

 

Attention, as introduced is a mechanism in deep learning that allows a model to focus on 

certain parts of the input while processing it. The attention mechanism works by assigning a 

weight to each input element based on its relevance to the current output. These weights are 

then used to compute a weighted sum of the input elements, which is used as a contextual 

representation for the current output. 
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The attention mechanism typically consists of three components: 

1. Query: The current output of the model, which is used to compute the weights for 

each input element. 

2. Key: The set of input elements, which are used to compute the weights for each 

element. 

3. Value: The set of input elements, which are weighted and combined to produce the 

contextual representation for the current output. 

To compute the weights for each input element, the attention mechanism typically uses a 

scoring function, which takes the query and the key as inputs and produces a scalar score. The 

score is then transformed into a weight using a softmax function, which ensures that the 

weights sum to one. 

There are several types of scoring functions that can be used for the attention mechanism, 

including dot product, additive, and multiplicative. Each has its own advantages and 

disadvantages depending on the task at hand. 

Once the weights have been computed, they are used to compute a weighted sum of the 

values, which produces the contextual representation for the current output. This contextual 

representation can then be used as input to the next layer of the model, or as the final output 

of the model. 

 

II.2.5.4. Transformers 

 

In recent years, the rapid development of Large language Models (LLMs) based on 

Transformer architecture has been revolutionizing the field of NLP141. We will explain in detail 

the vanilla Transformer architecture, self-attention, unsupervised pre-training. Then, we will 

go in depth into BERT and GPT models. 

 

The transformer architecture 

 

Introduced in 2017 by Google and proposed in the article “Attention is All You Need” by 

Vaswani et al66, transformers have an architecture that allows the implementation of a 

mechanism for processing the sequence of tokens that form a sentence in a self-attentive 

manner, that is, relating each of these tokens to each of the others in the sentence. They have 

the particularity of being able to be pretrained on a corpus of text, which can be very large 

because it does not require a coding stage. This phase leads to a generative model that is 

capable, for example, of constructing artificial text by iteration. 
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Figure II.23 The transformer architecture proposed by Vaswani et al.66 

 

The major components of a Transformer are the encoder and decoder. The encoding 

component is a stack of encoders (6 in the original architecture). The decoding component is 

a stack of decoders of the same number as seen on Figure II.24.  

 
Figure II.24 Encoder/decoder components of the Transformer66. 

 

 

 

 

Encoder 

Decoder 
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Figure II.25 Encoder component of the Transformer142 

The encoders are all identical in structure. The 

encoder’s inputs first flow through a self-

attention layer – a layer that helps the encoder 

look at other words in the input sentence as it 

encodes a specific word). The outputs of the self-

attention layer are fed to a feed-forward neural 

network. The exact same feed-forward neural 

network (FFNN) is independently applied to each 

position. 

 

 
Figure II.26 Decoder component of the Transformer142 

The decoder has both those layers, but 

between them is an attention layer that 

helps the decoder focus on relevant parts of 

the input sentence. 

 

 

To understand how it operates, we will walk through the Transformer architecture. 

 

 

The embedding algorithm 
Figure II.27 Mapping of the words, their matching index ID and Embeddings142 

The first step of modeling with  

Transformer is the 

transformation of inputs 

(words) into embeddings. 

Each input word is turned 

into a vector using an 

embedding algorithm as seen 

in paragraph II.2.2.4. 

Embedding is used to map 

words or phrases from a 

vocabulary to a 

corresponding vector of real 

numbers. This vector 

representation has two 

important and advantageous 

properties: 

- Dimensionality Reduction  

(more efficient representation) 

- Contextual Similarity  

- (more expressive representation) 
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Since the model has been trained from a large corpus of unique words. Each of these words 

have a unique ID, known as vocabulary index. Therefore, the embedding algorithm converts 

the input word into its corresponding word embedding. The embedding only happens in the 

bottom-most encoder. The input goes through a positional encoding which allows to know 

the place of each word in the text. Important for context. 

 
Figure II.28 Flow of the words in the bottom encoder142 

After embedding, each of the words flows 

through each of the two layers of the 

encoder. The key property of the 

Transformer is that the word in each position 

flows through its own path in the encoder. 

There are dependencies between these 

paths in the self-attention layer. However, 

the feed-forward layer does not have those 

dependencies, and thus the various paths 

can be executed in parallel while flowing 

through the feed-forward layer.  

 

 

Self-attention in detail 

As the model processes each word (each position in the input sequence), self- attention allows 

it to look at other positions in the input sequence for clues that can help lead to a better 

encoding for this word. 
 

 
Figure II.29 Weights and Query/key/value matrix for each word142 

The first step in calculating self-attention is 

to create three vectors from each of the 

encoder’s input vectors (in this case, the 

embedding of each word).  For each word, 

a Query vector, a Key vector, and a Value 

vector is created by multiplying the 

embedding by three matrices that are 

trained during the training process. 

Multiplying X1 by the WQ weight matrix 

produces q1. The weights are already 

learned when the model has been trained 

on large amount of data. 
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The second step in calculating 

self-attention is to calculate a 

score which determines how 

much focus to place on other 

parts of the input sentence. It 

is calculated by taking the dot 

product of the query vector 

with the key vector. The score 

of the word in the first 

position is the dot product of 

q1 and k1. The second score would be the dot product of q1 and k2. 

 
Figure II.31 Illustration of the production of the output of the self-attention layer142 

The third and fourth steps are to divide the 

scores by the square root of the dimension of 

the key vectors (64 for the vanilla 

Transformer), leading more stable gradients. 

The result is then passed through a softmax 

operation leading to positive scores add up to 

1. This softmax score determines how much 

each word will be expressed at this position.  

The fifth step is to multiply each value vector 

by the softmax score (in preparation to sum 

them up). The intuition here is to keep intact 

the values of the word(s) we want to focus on 

and drown-out irrelevant words. 

The sixth step is to sum up the weighted value 

vectors. This produces the output of the self-

attention layer at this position (for the first 

word). The resulting vector can be sent along 

to FFNN.  

 

 

 

 

 

 

 

Figure II.30 Illustration of the dot product of query and key vectors142 
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Matrix Calculation of Self-Attention 

The first step is to calculate the Query, 

Key, and Value matrices. To do so, the 

embeddings are packed into a matrix X 

which is multiplied by the trained weight 

matrices trained (WQ, WK, Wv). Every 

row in the X matrix corresponds to a 

word in the input sentence.  

Finally, step two to six can be condensed 

in one formula to calculate the outputs 

of the self-attention layer. 

 

 

 

 

 

 

 

 

Multi-head attention 
 

Figure II.33 Multi-head attention of the Transformer66 

Multi-head attention is the most 

important module of the whole 

architecture, it defines the essence of 

the transformer. This improves the 

performance of the attention layer in 

two ways: 

- It expands the model’s ability to 

focus on different positions. As seen 

on Figure II.33, z1 contains a little bit 

of every other encoding, but it could 

be dominated by the actual word 

itself.  

- It gives the attention layer multiple 

“representation subspaces”. With 

multi-headed attention we have not only one, but multiple sets of Query/Key/Value 

weight matrices (the vanilla Transformer uses 8 attention heads, resulting in 8 sets for 

each encoder/decoder). Each of these sets is randomly initialized. Then, after training, 

each set is used to project the input embeddings (or vectors from lower 

encoders/decoders) into a different representation subspace. 

 

 

Figure II.32 Illustration of the matrix calculation of self-attention142 
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Figure II.34 Illustration of the separated weight matrices in Transformer142 

With multi-headed attention, the Q/K/V 

weight matrices are maintained 

separated for each head resulting in 

different Q/K/V matrices. As we did 

before, we multiply X by the 

QWi
Q, KWi

K, VWi
V matrices to produce 

(Q, K, V) matrices. 

 

 

 

MultiHead(Q, K, V) = Concat(head1, … , headh)WO 

Where headi = Attention(QWi
Q, KWi

K, VWi
V) 

 

 
Figure II.35 Concatenation and linear normalization layers of the Transformer66 

The feed-forward layer is designed to receive a single matrix (a 

vector for each word) as input, not eight separate matrices. To 

accommodate this, the matrices of the attention heads are 

concatenated, resulting in a combined matrix. This matrix is then 

multiplied by a weight matrix W0, which was trained alongside the 

model. The resulting z matrix contains information from all the 

attention heads and is passed on to the FFNN for further 

processing. 

 

 

 

Summary of the attention process 

 

 
Figure II.36. Illustration of the summary of the attention process142 
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Decoding step 
  

Figure II.37 Encoder-decoder attention layer of the Transformer66 

The encoder starts by processing the input sequence. 

The output of the top encoder is then transformed into 

a set of attention vectors K and V. These are used by each 

decoder in its “encoder-decoder attention” layer as seen 

on Figure II.37. which helps the decoder focus on 

appropriate places in the input sequence. After finishing 

the encoding phase, we begin the decoding phase. Each 

step in the decoding phase outputs an element from the 

output sequence. 

 

 

 

 

 

 

 
 

Figure II.38 Bottom decoder layer of the Transformer66 

The following steps repeat the process until a special 

symbol is reached indicating the transformer decoder 

has completed its output. The output of each step is fed 

to the bottom decoder in the next time step, and the 

decoders bubble up their decoding results just like the 

encoders did. And just like we did with the encoder 

inputs, we embed and add positional encoding to those 

decoder inputs to indicate the position of each word. 

The self-attention layers in the decoder operate in a 

slightly different way than the one in the encoder, in 

fact, in the decoder, the self-attention layer is only 

allowed to attend to earlier positions in the output 

sequence. This is done by masking future positions 

(setting them to -inf) before the softmax step in the self-

attention calculation. The “Encoder-Decoder Attention” 

layer works just like multiheaded self-attention, except 

it creates its Queries matrix from the layer below it and takes the Keys and Values matrix from 

the output of the encoder stack. 
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The Final Linear and Softmax Layer 

 
Figure II.39  Illustration of the final linear and softmax layer142 

The final linear layer followed by a softmax 

layer turns the output vectors to words. The 

linear layer is a simple fully connected neural 

network that projects the vector produced by 

the stack of decoders, into a larger vector called 

a logits vector. The softmax layer then turns 

these scores into probabilities (all positive, all 

add up to 1.0). The cell with the highest 

probability is chosen, and the word associated 

with it is produced as the output for this time 

step.  

 

 

Transformers Unsupervised Pre-Training  

 

The main strength of language models based on Transformers, that powered them to reach 

states of the art performance on various NLP tasks, is inherited from their unsupervised pre-

training step. Unsupervised pre-training refers to the step in which language models learn a 

contextual representation from large unlabeled data prior to a task-specific training step.  

Once pre-trained, these models are named pre-trained foundation models143 (PFMs).  

 

When pretraining techniques are applied to the NLP domain, well-trained language models 

can capture rich knowledge beneficial for downstream tasks, such as long-term dependencies, 

hierarchical relationships, etc. 

Early pretraining is a static technique, such as Word2vec105, but static methods were difficult 

to adapt to different semantic environments. Therefore, dynamic pretraining techniques are 

proposed, such as BERT67 and XLNet144. 

 

Training hyperparameters 

 

Several training hyperparameters are to be defined for the pre-training step, as most of them 

are also involved in supervised training.  

 

- Epoch: refers to one cycle through the full training dataset. 

- Iteration: number of batches or steps through partitioned packets of the training data, 

needed to complete one epoch. 

- Batch size: number of samples propagated through the network. 

- Learning rate: parameter that scales the magnitude of the model’s weight updates in 

order to minimize the network's loss function. 

- Optimizer: parameter managing the weights or learning rate variations.  

 

All these hyperparameters are intricated, and optimizing hyperparameters with LLM is not 

straightforward.  
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The learning rate controls how quickly the model is adapted to the task. Smaller learning rates 

require more training epochs given the smaller changes made to the weights each update, 

whereas larger learning rates result in rapid changes and require fewer training epochs. As 

found in145,146, larger models can typically use a larger batch size, but require a smaller learning 

rate.  

Regarding the optimizer, stochastic gradient descent (SGD) is still the most used algorithm in 

deep learning. However, adaptive methods like Adam147 have been observed to outperform 

SGD across important tasks, such as attention models148.  

 

Unsupervised pre-training advantages 

 

Erhan et al.149 have demonstrated that pre-training acts as a regularization scheme, enabling 

better generalization in deep neural networks. Unsupervised pre-training provides an unusual 

form of regularization: minimizing variance and introducing bias towards configurations of the 

parameter space that are useful for unsupervised learning.  

The regularization effect is a consequence of the pre-training procedure establishing an 

initialization point of the fine-tuning procedure inside a region of parameter space in which 

the parameters are henceforth restricted. The parameters are restricted to a relatively small 

volume of parameter space that is delineated by the boundary of the local basin of attraction 

of the supervised fine-tuning cost function. 

Unsupervised pre-training also mitigates problems with data scarcity by pre-training over a 

large, diverse dataset. Indeed, training data can be derived from any unlabeled text corpus, 

that is, there is an unlimited amount of training data in the pretraining process. Therefore, 

data augmentation use is not always useful when using Transformer models.  

 

Embeddings and pre-training corpora for clinical notes 

 

The choice of the embeddings used for clinical NLP tasks, thus the corpora on which they have 

been trained on can have an impact on downstream tasks. Embeddings are a useful and 

versatile tool with the ability to perform well in many predictive tasks. Their utility extends to 

(often noisy) clinical note data. Embeddings trained on domain specific corpora can capture 

valuable information contained in clinical free-text, at relatively low cost (without the need 

for manual annotation or expert curation). As an example, Wang et al. compared word 

embeddings from several corpora before performing clinical information extraction, 

biomedical information retrieval, and relation extraction150. They found that word 

embeddings trained from clinical notes and literature capture word semantics better than 

more general corpora such as GloVe or Google News. Huang et al.151 tested their ClinicalBERT 

(embeddings trained on MIMIC-III152, a 2 million clinical notes dataset) model on downstream 

tasks such as predicting hospital readmission within 30 days using the MIMIC-III dataset. They 

used both discharge summaries and early clinical notes for hospital readmission prediction. 

ClinicalBERT outperformed the state-of-the-art in both cases. Alsentzer et al.153 evaluated 

ClinicalBERT model on two NER tasks (concept extraction and entity extraction), and a natural 

language inference task; they showed that Clinical BERT performed better than the original 

BERT and BioBERT on NER and NLI tasks.  

To acquire embeddings, massive volumes of domain-specific corpus are required, as explained 

in Dieng et al. work154, and one of the main issues for clinical data is that data privacy policies 
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often prevent the release of any models learned from those data. The result is that researchers 

are forced to create their own models using their own data which leads to difficulties in 

reproducibility. However, recently, great efforts have also been made for providing French 

clinical annotated corpora such as MERLOT (Medical Entity and Relation LIMSI annOtated Text 

corpus)155, CAS (Corpus of Clinical Case)156 or CLISTER (Corpus for Semantic Textual Similarity 

in French Clinical Narrative)157. 

 

Unsupervised pre-training drawback 

 

The large amount of scrapped data used for unsupervised pre-training has drawbacks: 

 

- Compute Requirements: Pre-training large language models induces computational 

costs in terms of time and memory. However, the supervised fine-tuning step of these 

models is quicker leading to a faster convergence towards better accuracy.  

 

- The limits and bias of learning about the world through text: Books and text readily 

available on the internet do not contain complete or even accurate information about 

the world. Recent work has shown that certain kinds of information are difficult to 

learn via just text and other work has shown that models learn and exploit biases in 

data distributions. 

 

- Still brittle generalization: Although most approaches improve performance across a 

broad range of tasks, current deep learning NLP models still exhibit surprising and 

counterintuitive behavior - especially when evaluated in a systematic, adversarial, or 

out-of-distribution way.  

 

Pre-training tasks  

 

Several pre-training tasks can be performed such as:  

- predict the next word (GPTs) 

- predict a mask of a token (BERT) 

- predict a mask of several tokens (SpanBERT) 

- change the order of the tokens and find those that have been changed 

(ELECTRA) 

- training with several languages (XLM) 

- training with corruptions (BART, T5) 

 

Different types of Transformers  

Unlike previous approaches that use convolutional and recurrent modules to extract features, 
BERT learns bidirectional encoder representations from transformers trained on large 
datasets as contextual language models. Similarly, the Generative Pretrained Transformer 
(GPT) method uses transformers as feature extractors and is trained on large datasets using 
an autoregressive paradigm.  
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Transformer models differ in their training strategies, model architectures, and use 
cases.  They can be categorized into two types: encoder-decoder or encoder-only language 
models and decoder-only language models. The Table II.1 summarizes the characteristics and 
the representative LLMs of each type available in 2023.  

 Characteristics LLMs 

Encoder-
Decoder or 
Encoder-only  
(BERT-style) 

Training:  
Model type:  
Pre-train 
task:  

Masked Language Models 
Discriminative 
Predict masked words 

ELMo111, BERT67, 
RoBERTa70, DistilBERT113, 
BioBERT158, XLM159, Xlnet, 
ALBERT160, ELECTRA114, 
T5161, GLM, XLM-E162, ST-
MoE163,164, AlexaTM163 

Decoder-only  
(GPT-style) 

Training:  
Model type:  
Pre-train 
task:  

Autoregressive Language 
Models 
Generative 
Predict next word 

GPT-3165, OPT166, 
PaLM167, BLOOM168, MT-
NLG169, GLaM170, 
Gopher171, chinchilla172, 
LaMDA173, GPT-J174, 
LLaMA175, GPT-4, 
BloombergGPT176, PALM-
E177 

Table II.1 Summary of Large Language Models (inspired from178). Models are chronologically 
presented in the table. 

 

BERT  

Developed in 2018 by researchers at Google AI Language, BERT (Bi-directional Encoder 
Representations from Transformers)67 is a transformer decoder-only model that predicts 
which words are masked and determine whether two sentences are contextual.   

BERT architecture  

Let’s define:   

- Parameters: Number of learnable variables/values available for the model  
- Transformer Layers: Number of Transformer blocks. A transformer block transforms a 

sequence of word representations to a sequence of contextualized words (numbered 
representations).  

- Hidden Size: Layers of mathematical functions, located between the input and 
output, that assign weights (to words) to produce a desired result.  

- Attention Heads: the size of a transformer block  
- Processing: Type of processing unit used to train the model  
- Length of Training: Time it took to train the model  

  

When BERT was introduced in “BERT: Pre-training of Deep Bidirectional Transformers for 

Language Understanding”67, 2 model sizes were available: BERTbase and BERTlarge as seen 

on with the sizes and architectures depicted in Table II.2 BERTbase and BERTlarge size and 

architecture 
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. 

  

 

Figure II.40 BERTbase and BERTlarge size and architecture illustration (from Hugging face 
blog179) 

 

  
Transformer 

Layers  
Hidden 

Size  
Attention 

Heads  
Parameters  Processing  

Length of 
Training  

BERTbase  12  768  12  110M  4 TPUs  4 days  

BERTlarge  24  1024  16  340M  16 TPUs  4 days   

Table II.2 BERTbase and BERTlarge size and architecture 

 

BERT is a trained Transformer Encoder stack. Both BERT model sizes have a large number of 
encoder layers, 12 for BERTbase and 24 for BERTlarge. These also have larger feedforward-
networks (768 and 1024 hidden units respectively), and more attention heads (12 and 16 
respectively) than the default configuration in the reference implementation of the 
Transformer in the initial paper (6 encoder layers, 512 hidden units, and 8 attention heads) as 
seen on Figure II.40. 

BERT uses bidirectional self-attention which allows each token’s representation to be 
adapted based on all other tokens within a sequence. 

BERT pre-training  

WordPiece embeddings180 with a 30,000 tokens as seen in section II.2.2.1 were used for pre-
training BERT. The input representation is able to represent both a single and a pair of 
sentences in one token sequence. The first token of every sequence is always a special 
classification token [CLS]. The final hidden state corresponding to this token is used for the 
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classification task. The two sentences are separated using the [SEP] token. In the case of 
sentence pair, a segment embedding is added which indicates whether the token belongs to 
sentence A or sentence B as seen on Figure II.41. 

 

Figure II.41 Pre-training procedure of BERT. (from 67)  

 

For a given token, its input representation is constructed by adding the corresponding token, 
segment and position embedding. A visualization of this construction can be seen in Figure 
II.42. 

  

 

Figure II.42 BERT input representation (from 67) 

 

BERT was trained on a large corpus of English texts (Wikipedia and BookCorpus) in a self-
supervised manner. 
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Wikipedia is a large collection of 4.4 million articles that contains 1.9 billion words in its 2022 
version (21.26 GB). Devlin et al.67 used a filtered version of this corpus by extracting only the 
text passages and ignoring lists, tables, and headers, resulting in a 2.5 million words.   

BookCorpus is a large collection of free novel books written by unpublished authors, which 
contains 11,038 books (around 74M sentences and 1G words) of 16 different sub-genres (e.g., 
Romance, Historical, Adventure, etc.) which represents a dataset of 4.85 GB181  

BERT was pre-trained using two different tasks:   

• Masked language modeling: the model randomly masks 15% of the words in 
the input, sequence by sequence, then run the entire masked sentence through 
the model and must predict the masked words. It allows the model to learn a 
bidirectional representation of the sentence.  
• Next sentence prediction: the models concatenates two masked sentences as 
inputs during pretraining. Sometimes they correspond to sentences that were next 
to each other in the original text, sometimes not. The model then has to predict if 
the two sentences were following each other or not.  

The model learns an inner representation of the English language that can then be used to 
extract features useful for downstream task such as classification or named entity recognition.  

BERT fine-tuning  

Fine-tuning is an approach to transfer learning in which the weights of a pre-trained model 
are trained on new data. Fine-tuning can be done on the entire artificial neural network or on 
only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen". 
Models such as BERT are usually fine-tuned by reusing the model's parameters as a starting 
point and adding a task-specific layer trained from scratch182. Fine-tuning BERT is 
straightforward since the self-attention mechanism in the Transformer allows BERT to model 
many downstream tasks (whether they involve single text or text pairs) by swapping out the 
appropriate inputs and outputs. For each task, the task-specific inputs and outputs are 
plugged into BERT and fine-tune all the parameters end-to-end.  

BERT models and performances for clinical NLP tasks 

 

Since its creation, several models based on the BERT architecture have been proposed, some 

of which are dedicated to health data. As of May 2023, 202,934 BERT models were available 

in the Hugging Face library. BERT can be: 

- pre-trained on a various number of languages;  

- multilingual; 

- cased: the text is the same as the input text (no changes) and the accent marks are 

preserved; 

- uncased: the text is lower cases and the accent marks will be removed prior to the 

WordPiece tokenization step 

- fine-tuned on domain specific corpora 

- fine-tuned for specific tasks  

Several BERT models have been proposed for different NLP tasks specific to health data, such 

as BioBERT158, MedBERT183, BEHRT184,185, G-BERT, etc. Most of these models are trained on 
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English biomedical language, but recently DrBERT (a French biomedical model) has been 

published and has shown an improvement in performance on most tasks compared to 

previous techniques. In fact, DrBERT was evaluated on 11 different practical biomedical 

applications for French, including named entity recognition (NER), part-of-speech tagging 

(POS), binary/multi-class/multi-label classification, and multiple-choice question answering. 

The results showed that the from-scratch pre-trained strategy is still the most effective for 

BERT language models on French biomedical text186. Regarding ED EHR clinical notes,  

Valmianski et al187 compared 6 different BERT based models for a multi-class classification task 

on the ED chief of complaint. They used BERT-base, BioBERT, ClinicalBERT, they also pre-

trained ClinicalBERT on patient progress notes (from encounters unrelated to the ED) and 

added another step of pre-training with a chief of complaint dataset. They also used TF-IDF 

embeddings with the last model as a baseline. They found that the model trained on both 

progress notes and chief of complaint clinical notes had better performance.  

 

 

 GPTs  

 

GPT architecture 

 

Language models such as GPT-3165 have revolutionized modern deep learning applications for 

NLP. Interestingly, however, most of the technical novelties of GPT-3 were inherited from its 

predecessors GPT and GPT-2188,189. As such, an understanding of GPT and GPT-2 is useful.  

Both GPT and GPT-2 use a decoder-only transformer architecture. Therefore, the entire 

encoder and encoder-decoder self-attention blocks in the decoder are absent from GPT 

architecture. Each layer of the decoder consists of a masked self-attention layer followed by 

a feed forward neural network as can be seen on Figure II.43. Using masked self-attention 

yields an autoregressive architecture (i.e., meaning that the model’s output at time t is used 

as input at time t+1) that can continually predict the next token in a sequence. 

  

 

Figure II.43 Decoder blocks of a decoder-only Transformer. The first decoder block Is 
expanded. (From142) 
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Original GPT architecture 

 
Figure II.44 GPT architecture and training objectives (From188) 

 

Introduced in 2018 by Radford et al.188, GPT uses a 12-layer, decoder-only transformer 

architecture that matches the original transformer decoder66 (aside from using learnable 

positional embeddings). This model was first proposed by Liu et al190 and had several 

purposes: 

- Reduce model parameters for a given hyper-parameter set 

- Reduce error propagation from both input and output time-steps during training (since 

the vanilla Transformer is forced to predict the next token in the input as well as the 

output) 

- Limit redundant information re-learning about language in the encoder and decoder 

when monolingual tasks text-to-text are performed 

- Ease the optimization. 

 

GPT applies a multi-headed self-attention operation over the input context tokens followed 

by position-wise feedforward layers to produce an output distribution over target tokens188: 

h0 = UWe + Wp 

h1 = transformerblock(hl−1)∀𝑖i
∈ [1, n] (II. 29) 

 

P(u) = softmax (hnWe
T)  

 

 

Where U = (u−k, … , u−1) is the context vector of tokens, n is the number of layers, We is the 

token embedding matrix, and Wp is the position embedding matrix. 

GPT has 12 layers with masked self-attention heads (768 dimensional states and 12 attention 

heads). For the position-wise feed-forward networks, 3072 dimensional inner states were 

used. The optimizer was Adam147  with a maximum learning rate of 2.5e-4.  
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The tokenizer used was the BPE as described in the section Byte-Pair Encoding, as used in GPT 

section.  The vocabulary was set to with 40,000 merges108. Residual, embedding, and attention 

dropouts with a rate of 0.1 for regularization were used. The activation function used was the 

Gaussian Error Linear Unit. Just like BERT, GPT was pre-trained with the BooksCorpus181 

corpora.  

 

 

GPT-2 architecture 

Released in 2019 by Radford et al.189, GPT-2 model largely follows the details of the GPT model 

with a few modifications: 

- Expansion of the vocabulary to 50,257 (40,000 for GPT) merges 

- Increase of the context size (from 512 to 1024) 

- Moving of the layer normalization to the input of each sub-block 

- Addition of a layer after the final self-attention block 

 

The initial GPT-2 model had several sizes going from 12 decoder blocks and 768 dimensions 

to 48 decoder blocks and 1600 dimensions. GPT-2 small had 117 million parameters while 

GPT-2 had 1542 million parameters making it the largest language model in 2019.  

 
Figure II.45 GPT-2 sizes and dimensionality (from142) 

 

The model was pre-trained with WebText, a dataset containing 8 million documents 

representing 40GB of text. The authors scraped web pages solely curated/filtered by humans.  

The model is pre-trained using a language modeling objective, but it performs no fine-tuning, 

choosing to solve downstream tasks in a zero-shot manner instead. Put simply, GPT-2 

performs multi-task learning by: 

- Pre-training a generic LM over raw textual data 

- Using textual “prompts” to perform zero-shot inference on a variety of tasks 

 

GPT models and performances  

 

Decoder-only models such as GPT have gradually come to dominate the development of LLMs. 

In the early stages of LLM development, decoder-only models were not as popular as encoder-

only (BERT) and encoder-decoder models. However, after 2021, with the introduction of the 
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game-changing LLMs - GPT-3 - decoder-only models experienced a significant boost. 

Meanwhile, encoder-only models began to fade after the initial explosive growth brought 

about by BERT.  

An example of pre-trained foundation model application is ChatGPT. ChatGPT is fine-tuned 

from the generative pretrained transformer GPT-3.5. ChatGPT applies reinforcement learning 

from human feedback191, which has become a promising way to align LLMs with humans’ 

intent192.  

However, when EHR clinical notes are concerned, studies about the use of GPT for information 

extraction is sparse.  

 

II.2.6 Data Augmentation in NLP 

 

When dealing with classification for medical data, datasets are usually imbalanced193–195. This 

issue has been addressed with several techniques such as re-sampling methods or data 

augmentation at several steps of the pipeline. Data augmentation (DA) refers to methods used 

to increase the amount of data by adding slightly modified copies of already existing data or 

newly created synthetic data from existing data. Such methods alleviate data scarcity 

scenarios where deep learning techniques may fail.  

DA methods can be framed into three categories, including paraphrasing, noising, and 

sampling: 

 

II.2.6.1. Paraphrasing 

 

The paraphrasing-based methods generate augmented data that has limited semantic 

difference from the original data, based on proper and restrained changes to sentences. The 

augmented data convey very similar information as the original form. 

Paraphrasing consists of several levels, including lexical paraphrasing (word level), phrase 

paraphrase, and sentence paraphrase.  

 
Figure II.46 Methods of paraphrasing in text data augmentation 

 

Word-level:  

- Synonym or hypernyms replacement with thesauri: Words can be replaced in the 

original text with their synonyms and hypernyms to obtain a new way of expression 
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while keeping the semantics of the original text as unchanged as possible196. Thesauri 

like WordNet197 contain such lexical triplets of words and are often used as external 

resources. Thesauri are easy to use but the scope and Part-Of-Speech (POS) of 

augmented words are limited. The sentence semantics can also be affected if there are 

too many substitutions.  

 

- Semantic embedding replacement: This method overcomes the limitations of 

replacement range and parts of speech in the thesaurus-based method. It uses pre-

trained word embeddings, such as Glove106, Word2Vec105, FastText198, etc., and 

replaces the original word in the sentence with its closest neighbor in embedding 

space. Semantic embeddings are easy to use and have a higher replacement hit rate 

and a more comprehensive range. However, this method cannot resolve the ambiguity 

problem (see section II).  

 

- Language models: Pretrained language models have become mainstream models in 

recent years due to their excellent performance. Masked language models (MLMs) 

such as BERT67 and RoBERTa70 can predict masked words in text based on context, 

which can be used for text data augmentation. Moreover, this approach alleviates the 

ambiguity problem since MLMs consider the whole context.  

 

Sentence-level: 

- Machine translation: translation is a natural means of paraphrasing. With the 

development of machine translation models and the availability of online APIs, 

machine translation is popular as an augmentation method in many tasks. Back 

translation is a method where the original text is translated into other languages, and 

then translated back to obtain the augmented text in the original language. Different 

from word-level methods, back-translation does not directly replace individual words 

but rewrites the whole sentence in a generated way. Unidirectional translation 

method directly translates the original text into other languages once, without 

translating it back to the original language. This method usually occurs in a multilingual 

scene. These methods have a wide range of applications and guarantees of correctness 

of syntax and unchanged semantics but there is a poor controllability and limited 

diversity because of the fixed machine translation models.  

 

- Model generation: Some methods employ Seq2Seq, Gan or Transformers models to 

generate paraphrases directly. Such models output more diverse sentences given 

proper training objects. These models have a wide range of applications, but they 

require training data and have a high computing cost.  

 

All levels:  

Rules: To ensure the preservation of sentence meaning, a particular approach in NLP 

requires the use of heuristics. Some studies have utilized existing dictionaries or fixed 

heuristics to generate word-level and phrase-level paraphrases while employing 

regular expressions to modify the form of the text without altering the semantics. This 

includes the use of abbreviations and verb prototypes, as well as the handling of modal 

verbs and negation. Other studies have generated sentence-level paraphrases for the 
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original sentences by utilizing rules based on dependency trees. This involves rotating 

the target fragment around the root of the dependency parse structure, which does 

not negatively affect the original meaning of the sentence. Although this rule-based 

method preserves the original sentence semantics, it requires artificial heuristics and 

has a limited range of coverage and variation. 

 

 

II.2.6.2. Noising 

 

Noising-based methods add more continuous or discrete noises to the original data and 

involve more changes. The noising-based methods add faint noise that does not seriously 

affect the semantics, to make it appropriately deviate from the original data. Humans greatly 

reduce the impact of weak noise on semantic understanding through their grasp of linguistic 

phenomena and prior knowledge, but this noise can pose challenges for models. Thus, this 

method not only expands the amount of training data but also improves model robustness. 

 

Noising can be performed with199 :  

- Random Insertion: selection of a random (non stopword) word in a sentence, selection 

of a random synonym of this word and random insertion of it, n times200 

- Random Swap: Random selection of two words in the sentence and swap their 

positions; n times. 

- Random Deletion: Randomly remove each word in the sentence with probability p. 

- Random Substitution: Randomly replace words or sentences with other strings. 

Different from the above paraphrasing methods, this method usually avoids using 

strings that are semantically similar to the original data. 

 

II.2.6.3. Sampling 

 

Sampling-based methods master the distribution of the original data to sample new data as 

augmented data. The sampling-based methods are task-specific and require task information 

like labels. Such methods not only ensure validity but also increase diversity. 

 

- Non-pre-trained models: Train a target-to-source model and use the model to 

generate source sentences from target sentences by learning the internal mapping 

between the distributions of the target and the source201.  

 

- Pre-trained models: Use of pre-trained Transformers for data augmentation with 

dedicated models such as LAMBADA202 (GPT2-based) or SSMBA203 (BERT-based) or 

adapted generative models mostly based on GPT2204–206 

- Self-training: Use of fine-tuned Transformers on the original data, then use the model 

to label unlabeled sentence pairs207 or use of data distillation into the self-training 

process208 or transfer existing models from other tasks to generate pseudo-parallel 

corpus209,210 
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- Mix-up: Use of virtual embeddings instead of generated natural language form text as 

augmented samples. The existing data is used as the basis to sample in the virtual 

vector space, and the sampled data may have different labels than the original data. 

 

 

Imbalance also has to be taken into account for the choice of the metrics when evaluating 

models or pipelines for our classification task. Despite numerous studies on medical image 

data augmentation, EHR data augmentation has not been studied much.  

 

 

II.2.7 Language Model Evaluation 

 

Two different approaches can be used to evaluate and compare language models: 

- Extrinsic evaluation: This approach involves evaluating the models by employing them 

in an actual task (such as text generation) and looking at their final loss/accuracy. This 

is the best option as it’s the only way to tangibly see how different models affect the 

task we’re interested in. However, it can be computationally expensive and slow as it 

requires training a full system. 

 

- Intrinsic evaluation: This approach involves finding some metric to evaluate the 

language model itself, not taking into account the specific tasks it’s going to be used 

for. Perplexity is an intrinsic evaluation method. 

  

II.2.7.1. Perplexity 

 

Perplexity (PPL) is one of the most common metrics for evaluating language models. Perplexity 

is defined as the exponentiated average negative log-likelihood of a sequence. If we have a 

tokenized sequence X = (x0, x1, … , xt) , then the perplexity of X is:  

 

PPL(X) = exp {−
1

t
∑ log pθ (xi|x<i)

t

i

} (II. 30) 

 

where log pθ (xi|x<i)  is the log-likelihood of the ith token conditioned on the preceding 

tokens x<i according to the model. Intuitively, it can be thought of as an evaluation of the 

model’s ability to predict uniformly among the set of specified tokens in a corpus. Importantly, 

this means that the tokenization procedure has a direct impact on a model’s perplexity which 

should always be taken into consideration when comparing different models.  

 

 

  

II.2.7.2. Macro Average Precision  

 

Precision expresses the proportion of units a model classifies as positive that are actually 

positive. In other words, precision indicates how much one can trust the model when it 

predicts that a record is classified in a given class. 
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In the case of a multi-class classification, Macro Average Precision over all classes i can be 

evaluated by the macro-averaging, where the precision over each i class is first calculated and 

then the precisions over all n classes are averaged. Macro-averaging methods tend to 

compute an overall average of different measurements, because the numerators of the 

macro-average precision and macro-average recall are composed of values in the interval 

[0,1]. There is no relationship with class size, as classes of different sizes are also weighted in 

the numerator.  This implies that the effect of the larger classes has the same importance as 

that of the smaller ones211. Macro-average precision is equal to True Positive Value. Therefore, 

each clinical note has the same importance using this measure. Note, TP: True Positives and 

FP: False Positives.    

 

Precisioni =
TPi

TPi + FPi

(II. 31) 

 

 

Macro precision =
∑ precisioni

n
i=1

n
(II. 32) 

 

 

Macro precision = i
∑

TPi
TPi  +  FPi

n
i=1

n
(II. 33)

 

 

II.2.7.3. Micro Precision 

 

Micro Precision =
∑ TPi

n
i=1

∑ TPi
n
i=1  +  ∑ FPi

n
i=1

(II. 34) 

 

 

 Since in a multi-class framework all false instances are counted, it turns out that: 

∑ 𝐹𝑃𝑖

𝑛

𝑖=1

= ∑ 𝐹𝑁𝑖

𝑛

𝑖=1

(II. 35) 

 

 

Since: 

Micro Recall =
∑ TPi

n
i=1

∑ TPi
n
i=1  +  ∑ FNi

n
i=1

(II. 36) 

   

Then: 

Micro  Precision   =   Micro Recall 
 

II.2.7.4. Micro F1-score 

 

Micro F1-score is defined as a harmonic mean of precision and recall in binary class problem. 

To extend F1- measure to multi-class, two types of average, micro-average and macro-average 

are commonly used. In micro-averaging, the F1-measure is computed globally over all class 
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decisions, precision and recall being obtained by summing over all individual decisions. Micro-

averaged F1-measure gives equal weight to each clinical note and is therefore considered as an 

average over all the clinical note/category pairs212. Let’s note that Recall is equal to Sensitivity. 

The f1-score being defined as the harmonic mean of precision and recall: 

Score F1 = 2.
precision ∗  recall

precision +  recall
(II. 37) 

 

 

in a multi-class framework:  

Micro F1 Score  =  
2 ∗ ∑ TPi

n
i=1

2 ∗ ∑ TPi
n
i=1 + ∑ FPi

n
i=1 + ∑ FNi

n
i=1

\
∑ TPi

n
i=1

∑ TPi
n
i=1 + ∑ FPi

n
i=1

(II. 38) 

 

  

Then: 

Micro Precision = Micro Recall = Micro F1score 
 

II.2.7.5. Macro f1-score 

  

MacroF1Score = 2.
Macro precision ∗  recall

Macro precision +  recall
(II. 39) 

 

 

II.2.7.6. Top-k accuracy 

 

The top-k accuracy function is a generalization of the accuracy score. The difference is that a 

prediction is considered correct as long as the true label is associated with one of the top-k 

predicted scores. If f̂i,j is the most predicetd class for the ith matching sample with the 

maximum jth score predicted and that yi is the true value, then the correct predictions fraction 

on  nsamples is defined as below: 

  

topkaccuracy(y, f̂) =
1

nsamples
∑ ∑ 1(fi,ĵ = yi)

k

j=1

nsamples−1

i=0

(II. 40) 

 

 

 

 

II.2.7.7. Matthews Correlation Coefficient (MCC) for Multi-class Classification 

 

In a binary classification setting, accuracy and F1-score score, although popular, can generate 

misleading results on imbalanced datasets, because they fail to consider the ratio between 

positive and negative elements. The Matthews correlation coefficient (MCC) can solve this 

issue, through its mathematical properties that incorporate the dataset imbalance and its 

invariantness for class swapping213.  

MCC is a contingency matrix method of calculating the Pearson product-moment correlation 

coefficient between actual and predicted values:  
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MCC =
TP ×  TN −  FP × FN

√(TP + FN)(TP + FP)(TN + FN)(FN + FP)
(II. 41) 

 

 

In a multi-class classification setting the Matthews correlation coefficient can be defined in 

terms of a confusion matrix C for K classes: 

 

  

MCC =
c ×  s − ∑ pk ×K

k tk

√(s2 − ∑ pk
2)K

k (s2 − ∑ tk
2)K

k

(II. 42)
 

 

 

With:  

• c =  ∑ Ckk
K
k  : the total number of elements correctly predicted. 

• s =  ∑ ∑ Cij
K
j

K
i : the total number of elements. 

• pk = ∑ Cki
K
i : the number of times that class k was predicted. 

• tk = ∑ Cik
K
i : the number of times that class k truly occurred. 

 

MCC ranges in the interval [ −1, +1], with extreme values –1 and +1 reached in case of perfect 

misclassification and perfect classification, respectively, while MCC = 0 is the expected value 

for the coin tossing classifier.  
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III. NATURAL LANGUAGE PROCESSING FOR PUBLIC HEALTH 

SURVEILLANCE: THE TARPON PROJECT 
 

III.1 TARPON: Context 
 

III.1.1 Project aim 
 

The TARPON project (Traitement Automatique des Résumés de Passage aux urgences dans le 
but de créer un Observatoire National, aims to demonstrate the feasibility of setting up a 
national observatory of trauma. We propose, hereby, to compare the performances of several 
models for the classification of ED visits for trauma based on clinical notes from the adult 
emergency department of the Bordeaux University Hospital. We compared the transformers 
FlauBERT, CamemBERT, BelGPT2 and a French GPT2 model pre-trained on a domain-specific 
corpus called GPTanam here to several traditional machine learning classifiers.  To the best of 
our knowledge, no previous performance evaluation of multiple transformers for a 
classification application has been conducted on complex and unstructured clinical data from 
ED combining common French language, medical data and jargon. 
 

When related to clinical notes, CNN, RNN and BERT models have often shown greater 

performance than traditional machine learning methods 133,134. However, when related to 

French ED clinical notes, Metzger et al. 62 found that traditional methods were more accurate 

than neural network. Models used for comparing traditional machine learning methods are 

often shallow neural networks, therefore we aimed at comparing Transformers models with 

a large panel of traditional classifiers.   

The corpora on which models are trained also has an influence on NLP tasks performances 

150,151,153; we aimed at assessing the influence of the self-supervised training corpus and of a 

supplementary domain-specific supplementary self-supervised training step as shown by 

Valmianski et al187 for ED clinical notes.  

Furthermore, the size of Transformer models has been shown to not necessarily improve 

performance on NLP tasks44, we aimed at assessing these findings on our clinical notes.  
 

III.2 TARPON: Methods 
 

III.2.1 Medical ethics regulations and GDPR 

 

This study was authorized by the Bordeaux University Hospital Ethical Board under number 

GP-CE2021-21. A data management plan was created and reviewed by the privacy security 

board to meet institutional and national requirements in French for GDPR compliance. 
 

III.2.2 Database 
 

The clinical notes were extracted from the EHR of the adult emergency department stored in 

the information system of the University Hospital of Bordeaux, France. They correspond to 

375,478 medical records of visits to the adult emergency department of Bordeaux Hospital 
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from 2012 to 2020. The variables available were age, sex, date and time of the visit, the clinical 

note generated by the doctors/interns and the clinical note written by the triage nurses. 

 

III.2.3 Exploratory text analysis 
 

Before modeling, we performed an exploratory text data analysis of the full corpus which 

comprised 390653 records.  

 

III.2.3.1. Distributions 

 

We started our investigation with an assessment of the availability of clinical notes depending 

on categories in the TARPON database. We used a chi square test to evaluate the hypothesis 

that distribution of missing values is equal among both categories.  

 

III.2.3.2. Length 

 

We pursued with an exploration of document length, focusing on the average number of 

words per category of healthcare provider (nurse or physician). The text of each clinical note 

was tokenized using the python Gensim package214. The average length of the notes was 

calculated. Since clinical notes are written by both a nurse and a physician for a given patient, 

a paired t-test was performed for the records where both clinical notes were available 

(n=305697). Since clinical notes provide detailed information about a patient encounter, it 

makes sense that the length of a note would be strongly associated with the severity and 

complexity of a patient's condition or treatment. To account for this variability, we performed 

an additional analysis by removing notes with an outlier word count.  

Outliers were identified using the median absolute deviation (MAD). Outliers were selected at 

a threshold of ±3 MAD.  

 

III.2.3.3. Vocabulary 

 

In a second set, we investigated the vocabulary of each of the clinical note categories. We first 

identified the total number of words and the set of unique words for each category. Next, we 

calculated the symmetric difference between the set of unique words for each pair of 

categories. The symmetric difference provides the number of terms that appear in either 

category, but not both. This value was then normalized to the total size of the two 

vocabularies, providing a measure of the proportion of overlap of terms used between two 

categories. With this metric, a value of 1 would represent two completely distinct 

vocabularies, while a value of 0 would indicate that the two vocabularies are identical. 

 

III.2.3.4. Linguistic Features in clinical notes 

 

Part-of-Speech Tagging 

 

As our prior analyses demonstrated differences between the length and the vocabulary of 

each category, we moved to investigate the possibility of linguistic differences between the 
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categories. We first analyzed the distribution of the parts of speech used for each word across 

the different note categories. Part-of-speech (POS) tags describe the characteristic structure 

of lexical terms within a sentence or text; therefore, it can be used for making assumptions 

about semantics. Other applications of POS tagging include Named Entity Recognition, Co-

reference Resolution, Speech Recognition215. Identifying deviations between the part of 

speech distributions between the two different note categories would further support the 

notion that additional consideration must be given to the source of clinical data in order to 

provide accurate contextual analysis. We used the french-camembert-postag-model216  which 

is a part of speech tagging model for French that was trained on the the French Tree Bank 

(FTB) dataset217. The FTB is a unique, richly annotated (and manually validated) lexical and 

syntactic resource for linguists and NLP218 built by the 'Formal Linguistic Laboratory' 

(Laboratoire de Linguistique Formelle). The base tokenizer and model used for training the 

french-camembert-postag-model is 'camembert-base'. The comparison between note 

categories was performed using the paired t-test, with all low frequency tags (under an 

expected value of 2%) pooled into another category.  

 

 

Cosine Similarity 

 

Next, to make the vocabulary analysis presented in the note structure section more formal, 

we compared the vocabularies of the nursing and medical notes using cosine similarity. The 

most straightforward and effective method was to use a powerful model (e.g. transformer) to 

encode sentences to get their embeddings and then use a similarity metric (e.g. cosine 

similarity) to compute their similarity score219. We used the distiluse-base-multilingual-cased-

v1220 available on SentenceTransformer library3. This model is a multilingual knowledge 

distilled version of multilingual Universal Sentence Encoder that supports French. We encoded 

both our clinical notes datasets, retrieved the embeddings and computed the cosine similarity 

between each dataset embeddings to measure the average semantic similarity of two 

categories. We broke the analysis down further, calculating the similarity between individual 

notes written by both health care providers for a given patient.  

 

Topic Modeling of clinical notes 

 

Topic modeling was performed with the help of BERTopic96 which is a topic model that extracts 

coherent topic representation through the development of a class-based variation of TF-IDF. 

More specifically, BERTopic generates document embedding with pre-trained transformer-

based language models, clusters these embeddings, and finally, generates topic 

representations with the class-based TF-IDF procedure. A Uniform Manifold Approximation 

and Projection for Dimension Reduction221 (UMAP) and a Hierarchical Density-Based Spatial 

Clustering of Applications with Noise97 (HDBSCAN) are used to, respectively, reduce the 

dimensionality of document embeddings and model clusters. 

 

 

 
3 https://www.sbert.net/index.html 
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III.2.4 Labeling strategy 
 

69,110 clinical notes were randomly extracted for manual annotation. Our coding team 

consisted of trauma epidemiologists, emergency physicians, emergency nurses, research 

assistants, and biostatisticians, for a total of 16 coders. The annotation phase lasted 5 months.  

For each clinical note, a code describing the content of the text was assigned. The annotation 

grid Appendix J-K used for the coding was developed for the needs of the project. The code 

associated with each clinical notes consisted of 9 fields. The fields were: "First visit (to the 

emergency department for this reason)", "Location (of the trauma)", "Activity (performed 

during the trauma)", "Type of Sport (practiced during the trauma)", "Subject under the 

influence", "Notion of pre-traumatic discomfort", "MVA (Motor Vehicle Accident)-Secondary 

Prevention Elements", "MVA-Antagonist", "Type of trauma or Mode of travel for the MVA". 

The objective being to classify the types of trauma, we used mainly the data of the field "Type 

of trauma or Mode of movement for the MVA". The distribution of the latter being 

unbalanced, we created a composite variable containing 8 mutually exclusive classes in order 

to have a larger number of clinical notes per class. Therefore, we grouped certain types of 

trauma (i.e. "Fall" which included "Fall from own height," "Fall from a given height," and "Fall 

on stairs"). The composite variable included the following classes/labels: "Accident of 

exposure to body fluids (blood exposure accident, unprotected sex at risk)" (AEF), "Assault", 

"Motor Vehicle Accident (MVA)", "Foreign body in eyes" (FBE), "Fall (except sports)", "Sports 

accident" (Acc. sport), "Intentional Injury", "Other trauma" as seen in Figure III.1. The inter-

annotator agreement was assessed with a random sample of 1000 clinical notes labelled by 

two annotators leading to a Cohen’s kappa score222 of 0.84. 
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Figure III.1 Composite variable type of trauma based on the annotation grid variables. 

 

In total, 22,481 manually labeled clinical notes from Bordeaux University Hospital were 

included in the study. Indeed, one-third (22,481/69,110) of the total annotated clinical notes 

were labeled as visit to the ED resulting from a trauma. The average number of sentences of 

the corpus was of 3.25 (min:1, max:63, std:2.56). The average length of clinical notes was of 

58 words with a minimum of 1 (e.g., AES, Accident d’exposition au sang), a maximum of 630 

and a standard deviation of 38 words. Unique unigrams, bigrams and trigrams were 

respectively equal to 70499, 395827 and 777459. 
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Figure III.2 Example of a clinical note 

 

A sensitivity analysis was performed in order to study the impact of potentially ambiguous 

content as regard to its classification. Therefore, the test sample was re-read by an expert. 

Potentially ambiguous content as regard to its classification is defined here as the 

accumulation of several mechanisms or types of trauma and/or a major difficulty in assigning 

a label to a clinical note given its text. 

 

III.2.5 Models and experiment settings 
 

The models selected for comparison and freely available as open-source content were: 

- TF-IDF with several classifiers 

- Transformers with different (further details in section III.2.5.3):  

- Architecture: BERT and GPT-2 

- Sizes: number of heads and dimensions 

- Pre-training corpora languages and tokenizers: OSCAR, Wiki and CCNET 

- Pre-training step on domain specific corpora strategy 

 

III.2.5.1. Pre-processing  

 

All clinical notes were: 

- lower-cased 

- punctuation stripped, since clinical texts often exhibit varying levels of fragmentation 

and grammatical correctness (gensim) 

- non alphanumerical characters stripped (gensim) 

- multiple whitespaces stripped (gensim) 

- stop-words removed with the French nltk223 stopwords corpus to which we added the 

single letters 'h' (abbreviated term for hour), 'g' (for grams) and 'a’. 

The proper handling of numerical elements in text remains an open question in the NLP 

community. This transformation has the potential to incorrectly bias the interpretation of 

analyses, particularly those which use vocabulary similarities or rely on normalized word 
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frequencies. We did not strip the digits for the next step of the work since we plan to use 

semantic representations. 

 

Vectorization and feature extraction for traditional machine learning  

 

To tokenize, count occurrences and normalize the raw text of each clinical note, the sci-kit 

learn class TfidfVectorizer224 was used. The encoding was left as default to "utf-8". The scikit 

learn formula for TF-IDF is as follow:  

idf(t) = log
1 + n

1 + df(t)
+ 1 (𝐼𝐼𝐼. 1) 

 

where n is the total number of documents in the document set, and df(t) is the number of 

documents in the document set that contain term t.  

The effect of adding “1” to the idf in the equation above is that terms with zero idf, i.e., terms 

that occur in all documents in a training set, will not be entirely ignored. 

The resulting tf-idf vectors are then normalized by the Euclidean norm: 

 

vnorm =
v

||v||
2

=
v

√v1
2  +  v2

2 + . . . + vn
2 

(III. 2) 

 

 

III.2.5.2. Traditional machine learning classifiers 

 

As seen in section II.2.3.6, SVM has been shown to have the best performance for a 

classification task on EHR clinical notes, however, Metzger et al. found that SVM might not be 

the best classifier for French ED clinical notes. Therefore, and as we wanted our analysis to be 

exhaustive, we tested 17 different machine learning classifiers listed below. For each classifier, 

the best parameters of estimators were searched exhaustively using GridSearchCV4 class from 

scikit learn. Most of the models were provided by scikit-learn library. The time for execution 

(in seconds) was calculated for each model.  

 

Linear models tested were:  

 

- Logistic Regression method despite its name, is a linear model for classification rather 

than regression225. Logistic regression is also known in the literature as logit regression, 

maximum-entropy classification (MaxEnt) or the log-linear classifier. In this model, the 

probabilities describing the possible outcomes of a single trial are modeled using a 

logistic function. Here, logistic regression was used with the 'elasticnet' penalty which 

uses both l1 and l2 penalties, the l1 ratio was set to 0.5. The solver chosen was 'saga', 

tolerance was left as default to 1e−4 

Since the classes were imbalanced, the 'weight_class' parameter was set to 'balanced' 

which uses the values of y to automatically adjust weights inversely proportional to 

class frequencies in the input data as nsamples/(nclasses ∗ np. bincount(y)) 

 

 
4 https://scikit-learn.org/stable/modules/grid_search.html 
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- Linear Support Vector Machines for Classification (SVC) which were described in 

section II.2.3.4. The aim is a risk minimization for the equation with a “one-versus-one” 

approach for multi-class classification226,227:  

 

C ∑ ℒ(f(xi), yi) + Ω(w)

i=1,n

(III. 3) 

 

where:  

- xi ∈ Rp are training vectors.  

- w ∈ Rp are weights. 

- C is used to set the amount of regularization. 

- ℒ is a loss function of our samples and the model parameters. 

- Ω is a penalty function of the model parameters. 

The penalty used was l2 and the loss was hinge where the following primal problem is 

solved:  

min
w

1

2
wTw + C ∑(max(0,1 − yiw

Txi))
2

1

i=1

(III. 4) 

 

 

  LinearSVC implements “one-vs-the-rest” multi-class strategy. Tolerance was set to 

1e−5 and the class weight was set to 'balanced'.  

 

- Stochastic Gradient Descent (SGD) which is a simple yet very efficient approach to 

fitting linear classifiers under convex loss functions such as (linear) Support Vector 

Machines and Logistic Regression228,229. Stochastic gradient descent is an optimization 

method for unconstrained optimization problems. In contrast to (batch) gradient 

descent, SGD approximates the true gradient of  E(w, b) by considering a single 

training example at a time. The class SGDClassifier implements a first-order SGD 

learning routine. The algorithm iterates over the training examples and for each 

example updates the model parameters according to the update rule given by:  

w ← w − η [α
∂R(w)

∂w
+

∂L(wTxi + b, yi)

∂w
] (III. 5) 

 

where η is the learning rate which controls the step-size in the parameter space. The 

intercept b is updated similarly but without regularization. 

On our dataset, after an hyperparameters search, it has been used with its default loss 

function which is 'hinge', returning a linear SVM (Support Vector Machines), the 

penalty was 'l2' and class_weight was set to 'balanced'.  

 

- Perceptron230 is a simple classification algorithm suitable for large scale learning. By 

default, it does not require a learning rate, it is not regularized (penalized), it updates 

its model only on mistakes. The parameters were as follow: alpha to 0.0001, no 

penalty, class_weight to 'balanced', tolerance to '0.001', number of iterations with no 

improvement to wait before early stopping to 10. 
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- Passive Aggressive classifier231 is an online learning algorithm. Each instance is 

represented by a vector and the prediction mechanism is based on a hyperplane which 

divides the instance space into two half-spaces. The margin of an example is 

proportional to the distance between the instance and the hyperplane. The PA 

algorithm utilizes the margin to modify the current classifier. The update of the 

classifier is performed by solving a constrained optimization problem. The loss function 

used was hinge which is equivalent to PA-I in the paper.  

 

- Ridge Classifier with Cross Validation232 first converts binary targets to −1,1 and then 

treats the problem as a regression task, optimizing the same objective as above. The 

predicted class corresponds to the sign of the regressor’s prediction. For multi-class 

classification, the problem is treated as multi-output regression, and the predicted 

class corresponds to the output with the highest value. It might seem questionable to 

use a (penalized) Least Squares loss to fit a classification model instead of the more 

traditional logistic or hinge losses. However, in practice, all those models can lead to 

similar cross-validation scores in terms of accuracy or precision/recall, while the 

penalized least squares loss used by the RidgeClassifier allows for a very different 

choice of the numerical solvers with distinct computational performance profiles. The 

RidgeClassifier can be significantly faster than e.g. Logistic Regression with a high 

number of classes because it can compute the projection matrix (XTX)−1XT only once. 

This classifier is sometimes referred to as a Least Squares Support Vector Machines 

with a linear kernel. The parameters were set to 'sparce_cg' as solver, a 5-fold cross-

validation and class weights to 'balanced'.  

 

The leveraged trees classifiers were:  

 

- Decision Trees classifier119 is a non-parametric supervised learning method. Under the 

method "DecisionTreeClassifier", scikit-learn uses an optimized version of the CART 

(Classification And Regression Tree) algorithm as described in section II.2.3.3. This 

algorithm was used with a 'gini' loss criterion and a max depth of 14 nodes.   

 

- Extra Trees algorithm233 builds an ensemble of unpruned decision or regression trees 

according to the classical top-down procedure. Its two main differences with other 

tree-based ensemble methods are that it splits nodes by choosing cut-points fully at 

random and that it uses the whole learning sample (rather than a bootstrap replica) to 

grow the trees. The Extra-Trees algorithm builds an ensemble of unpruned decision or 

regression trees according to the classical top-down procedure. Its two main 

differences with other tree-based ensemble methods are that it splits nodes by 

choosing cut-points fully at random and that it uses the whole learning sample (rather 

than a bootstrap replica) to grow the trees. 

 

 

Nearest Neighbors tested was: 

 

- K-Nearest Neighbors classifier has been described in section II.2.3.2. It has been used 

with 50 neighbors and the Euclidean distance as weights.  
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Naive Bayes algorithm assessed was:  

 

- Complement Naive Bayes classifier as available with scikit-learn was proposed by 

Rennie and al. in 2003234. This algorithm corrects two specific problems. First of all, 

when one class has more training examples than another, Naive Bayes selects poor 

weights for the decision boundary. Secondly, with Naive Bayes, features are assumed 

to be independent. As a result, even when words are dependent, each word 

contributes evidence individually. Thus, the magnitude of the weights for classes with 

strong word dependencies is larger than for classes with weak word dependencies. 

When applied to text data, transforming multinomial naïve bayes on term and 

document frequencies in addition to a transformation based on length of the 

document improves the performance of the regular naïve bayes classification 

algorithm. For our dataset, alpha was left to 0, force_alpha was left to True, and norm 

was set to True.  

 

We also explored ensemble methods such as: 

 

- Random Forest classifier119  is a meta estimator that fits a number of decision tree 

classifiers on various sub-samples of the dataset and uses averaging to improve the 

predictive accuracy and control over-fitting. For our dataset, after a GridSearch, the 

criterion chosen was 'gini', the maximum depth of the trees was set to None. 

 

- Bagging algorithm as defined in section II.2.3.5 was used with the two most performing 

classifiers: the Linear Support Vector classifier and the Stochastic Gradient Descent 

classifier. We kept the same parameters for both classifiers as used in previous settings 

without bagging. The number of estimators was set to 500. 

 

- AdaBoost classifier123 is a meta-estimator that begins by fitting a classifier on the 

original dataset and then fits additional copies of the classifier on the same dataset but 

where the weights of incorrectly classified instances are adjusted such that subsequent 

classifiers focus more on difficult cases. The sci-kit learn library's adaboost classifier 

implements the algorithm known as AdaBoost-SAMME. After hyper-parameters 

tuning (245 minutes), the settings for the Decision-Tree classifier (base estimator) 

were 10 for the maximum depth of the tree and 5 for the minimum number of samples 

required to be at a leaf node. The AdaBoost had a learning rate of 0.01 and 10 

estimators.  

 

- Histogram Gradient Boosting classifier is a histogram-based Gradient Boosting 

Classification Tree provided by the scikit-learn library and is inspired by LightGBM235. 

These histogram-based estimators can be orders of magnitude faster than the classic 

Gradient Boosting Classifier. These fast estimators first bin the input samples X into 

integer-valued bins (typically 256 bins) which tremendously reduces the number of 

splitting points to consider and allows the algorithm to leverage integer-based data 

structures (histograms) instead of relying on sorted continuous values when building 

the trees.  
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- Extreme Gradient Boosting classifier236 provides a parallel tree boosting. This algorithm 

is available with the xgboost library5. After hyper-parameters tuning the algorithm had 

the following settings: the maximum depth was of 9, the minimum children weight 

(minimum sum of instance weight (hessian) needed in a child) was of 1, gamma 

(minimum loss reduction required to make a further partition on a leaf node of the 

tree) was set to 0.1, the subsample (denotes the fraction of observations to be 

randomly samples for each tree) was set to 0.8, the columns sample by tree was set to 

0.8, alpha (L1 regularization term on weight) was set to 1. 

 

- Light Gradient Boosting Machine237 was introduced in 2017. LightGBM uses histogram-

based algorithms, which bucket continuous feature (attribute) values into discrete 

bins. This speeds up training and reduces memory usage. LightGBM has many of 

Boost’s advantages, including sparse optimization, parallel training, multiple loss 

functions, regularization, bagging, and early stopping. A major difference between the 

two lies in the construction of trees. LightGBM does not grow a tree level-wise — row 

by row — as most other implementations do. Instead, it grows trees leaf-wise. It 

chooses the leaf it believes will yield the largest decrease in loss. Besides, LightGBM 

does not use the widely used sorted-based decision tree learning algorithm, which 

searches the best split point on sorted feature values, as Boost or other 

implementations do. Instead, LightGBM implements a highly optimized histogram-

based decision tree learning algorithm, which yields great advantages on both 

efficiency and memory consumption. The LightGBM algorithm utilizes two novel 

techniques called Gradient-Based One-Side Sampling and Exclusive Feature Bundling 

which allow the algorithm to run faster while maintaining a high level of accuracy. This 

algorithm has been used with a learning rate of 0.1, a max number of leaves in one 

tree of 30, a maximum bin (max number of bins that feature values will be bucketed 

in) of 255 on 100 iterations. 

   

 

III.2.5.3. Deep Learning algorithms 

 

Transformers models pre-trained on French corpora were chosen. In order to test the effect 

of different corpora we used the CamemBERT69 pre-trained with either OSCAR238, Wikipedia 

or CCNET.  

In order to test the effect of the model sizes, we used FlauBERT small, cased and large. The 

main results are presented for the most performing model among CamemBERT and FlauBERT 

models. 

The GPT2 model which was trained on a French corpus and named BeglGPT2 was also used.  

We then chose the most performing model (BelGPT2) and fine-tuned it with the remaining 

306,368 unlabeled clinical notes, this model being called, here, GPTanam.  

For all transformers the optimizer was AdamW with an epsilon of 1e-8 and the maximum 

length was of 512.  GPTanam had training and evaluation batch sizes of 5 and the learning rate 

was of 2e−5. For FlauBERT and CamemBERT, batch sizes for training was of 16 and 20 for 

 
5 https://xgboost.readthedocs.io/en/latest/python/index.html  

https://xgboost.readthedocs.io/en/latest/python/index.html
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evaluation and the learning rate was of 5e-5. Models were trained with the hugging face 

library under Pytorch framework on our workstation with a single Titan RTX (Nvidia©) GPU 

with 24GB of VRAM. Performance analysis was performed with scikit-learn and imbalance-

learn v0.9.1 
 

III.2.6 Self-supervised learning and Fine-tuning phase 
 

Considering the GPTanam model, a first step comprising a self-supervised learning was 

performed with 306,368 clinical notes with one epoch239. For all models, a random sample of 

80% (n= 18166) of the labeled as trauma (n=22481) was dedicated to supervised learning. This 

dataset was divided into a training sample (n=14532) and a validation sample (n=3634) with 

an 80/20 ratio. We trained each model 9 times with different seeds on 7 epochs for 

CamemBERT and FlauBERT models and 5 epochs for BelGPT2 and GPTanam. In order to obtain 

a single prediction for the 9 different executions of the chosen epoch (based on maximum 

validation micro F1-score) for each model, a vote was taken. 
 

III.2.7 Test phase 
 

The test sample contained 20% of the labeled dataset, i.e. 4315 records. The second reading 

of these clinical notes resulted in 467 being tagged as clinical notes with potentially complex 

and/or ambiguous content as regard to its classification. The analysis therefore included both 

the complete test dataset (n=4315) and the dataset without complex and/or ambiguous 

content (n=3848). In order to obtain the probabilities for each prediction, a softmax activation 

layer was applied to the 4 transformer models. 
 

III.2.8 Labeled datasets 
 

The label distribution among the corpus and each train, validation and test dataset is 

presented in Table III.1. The most common type of trauma was the class "Fall" followed by 

"Other trauma" and "Motor Vehicle Accident". An example of clinical notes translated from 

French is given Figure III.3. 

 

 
Figure III.3 Example of clinical notes 
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Type of Trauma 
Train dataset Validation 

dataset 

Test dataset Total 

  n  %  n %  n %  n % 

Accident of Exposure 

to Bodily Fluids 

132 (0.9%) 40 (1.1%) 41 (1%) 213 (0.9%) 

Assault 1587 (10.9%) 393 (10.8%) 498 (11.5%) 2478 (11%) 

Fall 4778 (32.9%) 1162 (32%) 1554 (36%) 7494 (33.3%) 

Foreign Body in Eye 642 (4.4%) 180 (5%) 186 (4.3%) 1008 (4.5%) 

Intentional Injury 341 (2.3%) 73 (2%) 112 (2.6%) 526 (2.3%) 

MVA 2028 (14%) 495 (13.6%) 568 (13.2%) 3091 (13.7%) 

Other trauma 3713 (25.6%) 950 (26.1%) 985 (22.8%) 5648 (25.1%) 

Sport Accident 1311 (9%) 341 (9.4%) 371 (8.6%) 2023 (9%) 

Total 14532 (64.6%) 3634 (16.2%) 4315 (19.2%) 22481 (100%) 

Table III.1 Labels Distribution among Train, validation and test dataset. MVA: Motor Vehicle 
Accident 

 

On the labeled dataset, the median age at the visit was 37 years (1st and 3rd quartiles [24–
58]) and 58.5% of patients were male. Electronic health record was introduced in year 2012 
in Bordeaux University hospital, which explains the lower proportion of data for this particular 
year. Year 2019 saw a decrease in ED venues while in 2020 there have been a significant 
increase. Table 3 summarizes the characteristics of the train, validation and test datasets for 
the concerned population. Distribution of the variables age, sex and year of venues at the ED 
were comparable among the 3 datasets. 

 

 Train dataset Validation 

dataset 

Test Total 

  n                % n                % n                % n                % 

Age 37 (24-58) 37 (24-57) 37 (24-58) 37 (24-58) 

Sex. Male 8486 (58.3%) 2181 (59.9%) 2476 (57.5%) 13143 (58.5%) 

Year of ED 

venue 

 
 

      

2012 218 (1.9%) 52 (1.8%) 66 (1.9%) 336 (1.9%) 

2013 1389 (12.2%) 359 (12.4%) 418 (12.3%) 2166 (12.2%) 

2014 1444 (12.6%) 385 (13.3%) 386 (11.3%) 2215 (12.3%) 

2015 1502 (13.1%) 326 (11.2%) 425 (12.5%) 2253 (12.6%) 

2016 1419 (12.4%) 365 (12.6%) 426 (12.6%) 2210 (12.3%) 

2017 1493 (13.1%) 370 (12.8%) 461 (13.5%) 2324 (12.9%) 

2018 1425 (12.5%) 405 (13.9%) 474 (13.9%) 2304 (13.5%) 

2019 690 (6%) 175 (6%) 218 (6.4%) 1083 (6.2%) 

2020 1856 (16.2%) 468 (16.1%) 532 (15.6%) 2856 (16%) 

Missing values 3118 (27.3%) 737 (25.4%) 899 (26.4%) 4724 (20.9%) 

Table III.2 Train, validation and test dataset characteristics 

Numbers are given along with percentages for sex and year of emergency department venue 

variables. Median, first quartile and fourth quartile are given for age. 
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III.2.9 Error analysis 
 

An error analysis was performed with uni and bigrams for the best performing model. All 

clinical notes misclassified were read by an expert to determine whether the human 

annotation label was appropriate or not.  

 

III.3 TARPON: Results 
 

III.3.1 Clinical notes’ structure 
 

III.3.1.1. Missing value distribution  

 

Firstly, the Table III.3 shows the distribution of missing clinical notes among categories and at 
the intersection of both categories for a given patient. Percentages are expressed in 
parentheses. There were statistically (CI:95) more missing notes for emergency physicians 
than for nurses (p<0.001).  
 
 

Clinical notes  Triage Nurses Emergency Physician Both Nurse and 
Physician 

Available 373728 (99.53%) 295570 (78.72%) 2938020 (78.25%) 
Missing 1750 (0.47%) 79908 (21.28%) 81658 (21.75%) 

Table III.3 Availability of clinical notes in the TARPON database 

 

III.3.1.2. Length 

 

The results for narratives length evaluation can be found in Table III.4. Pairs of nursing and 
medical clinical notes had statistically significant different lengths at 95% confidence for both 
the complete set of notes and for the set excluding notes with an outlier number of tokens. 
Distributions of the number of tokens per clinical notes can been seen on Fig XX. 
 
 

Note type  Mean word count Word Count SD Total Notes 

Triage Nurses 17.34 (15.97) 6.61 (7.55) 373728 (354955) 
Emergency Physicians 31.47 (27.75) 21.60 (15.67) 295570 (293820) 

Table III.4 Average Document Length for both the complete set of notes and for notes excluding 
those with an outlier number of tokens (in parentheses) 

 
 



96 
 

 
(a) Distribution of the Number of Tokens per      (b) Distribution of the Number of Tokens per clinical 
clinical notes written by emergency physicians           notes written by triage nurses 

 

Figure III.4 Distribution of the Number of Tokens per clinical notes categories. 

The dashed vertical lines represent the +3 Mean Absolute Deviation threshold. 

  
 

III.3.1.3. Vocabulary 

 

Next, Table III.5 provides the results for the vocabulary analysis. Within this table the first two 
columns present the normalized symmetric differences between the unique tokens found in 
each category. The symmetric difference is the set of terms existing in either category, but not 
both, and is normalized by the total unique word count of both categories. The final two 
columns represent the count of total words, and unique words present in each category 
respectively. The detail analysis of the words not appearing in both sets reveals that those 
words are mostly misspelled or that spaces between words are missing (i.e. "abcesde', 
'abcesinflammatoire', 'abcesl', 'abcse'). Cosine similarity (as defined in section III.2.3.4) 
between the 2 corpus was of 0.87, and the Jaccard distance was of 0.72.  
 
 

 Normalized Symmetric 
Difference (%) 

  

 Triage Nurses Emergency 
Physicians 

Total Words Total Unique Words 

Triage Nurses 0 0.56 6,741,895 111,765 
Emergency Physicians 0.56 0 9,679,841 132,452 

Table III.5 Vocabulary differences by category 

 

III.3.2 Linguistic features 
 

We started the linguistic analysis with an assessment of the differences between each 

categories' parts of speech distribution performed by the french-camembert-postag 

transfomer240 that was trained on the free-french-treebank dataset241 for which the matching 
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tags and categories are available in Table III.6. The normalized tag proportions (over 2%) are 

represented on Figure III.5 and Figure III.6  depicts the whole tags distribution. 

 

Tag Category 

ADJ adjectif 
ADJWH adjectif 

ADV adverbe 

ADVWH adverbe 

CC conjonction de coordination 

CLO pronom 

CLR pronom 

CLS pronom 

CS conjonction de subordination 

DET déterminant 

DETWH déterminant 

ET mot étranger 

I interjection 

NC nom commun 

NPP nom propre 

P préposition 

P+D préposition + déterminant 

PONCT signe de ponctuation 

PREF préfixe 

PRO autres pronoms 

PROREL autres pronoms 

PROWH autres pronoms 

U ? 

V verbe 

VIMP verbe imperatif 

VINF verbe infinitif 
VPP participe passé 

VPR participe présent 

VS subjonctif 

Table III.6 Parts-of-speech matching for each tag of the French Treebank dataset218 
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Figure III.5 Distribution of the major Part-Of-Speech tags (over 2%) normalized on length 

among clinical notes for both physicians and nurses’ categories (french-camembert-postag-
model's confidence scores are given upon each bar) 

 
Figure III.6 : Distribution of all the Part-Of-Speech tags normalized on length among clinical 

notes for both physicians and nurses’ categories. 

 

Nurses’ notes contained significantly more adjectives, verbs and abbreviations (tagged as 'U' 
and/or 'ET' here) but also fewer specifiers (fr: déterminants, e.g. un, une, des), prefix (fr: 
prépositions, e.g. dans, chez, sous). 
 
 

III.3.3 Topic Modeling 
 

The top 5 topics as seen on Figure III.7 were: 
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• Symptom-based with neck pain, associated with seatbelt which could be related to 

Motor Vehicle Accident (MVA), broken femur or hematoma (on head) 

• Based on trauma mechanism with scooter accident or assault with head trauma 

 

When selecting 50 topics, the aggregation was based on symptoms, trauma mechanism, body 

parts or type of patients or sport.  

 
Figure III.8 Hierarchical clustering of the top 50 topics identified by BERTopic 

 

 

Figure III.7 Top 5 topics identified by BERTopic with their most 
frequent words and scores 
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III.3.4 Fine-tuning performance of models 
 

Unlike machine learning methods such as TF-IDF, supervised fine-tuning of the transformer 

models is time-consuming and is greatly accelerated with the use of GPUs (Graphics 

Processing Unit). The self-supervised fine-tuning step for GPTanam model took approximately 

12 hours. At that point, GPTanam could generate artificial clinical notes as seen in Figure III.10, 

which could not easily be differentiated from the original ones.  

 

 

 
Figure III.9 Example of clinical notes generated by GPTanam after self -supervised pre-

training step. CT: Cranial Trauma, LOC: Loss Of Consciousness, MVA: Motor Vehicle Accident, 
LV: Light Vehicle 

 

One epoch of supervised fine-tuning took 15, 16, 15, 23, 19 and 18 minutes for, respectively, 

CamemBERT (all 3 pretraining corpora), FlauBERT-base, FlauBERT-small, FlauBERT-large, 

BelGPT2 and GPTanam. When looking deeper into each transformer model’s F1-scores on the 

validation dataset, the Figure III.10 shows that CamemBERT reached its maximum F1-score 

(0.873) at Epoch 6, FlauBERT-small achieved 0.874 at epoch 5, BelGPT2 was at its peak (0.890) 

faster at Epoch 3 and GPTanam reached 0.980 at epoch 2. Moreover, GPTanam’s F1-score on 

the validation dataset was the highest among the 4 transformers models. We conjecture that 

self-supervised step on domain-specific corpus for GPTanam contributed to a learning of the 

semantic representations which resulted in a faster convergence in the learning of the 

classification task.  
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III.3.5 Performance of models 
 

When considering all models as seen on Table III.7, bagging algorithms and Light Gradient 

Boosting had similar results to Transformers except for GPTanam. As for CamemBERT, the pre-

training corpus for transformers had a slight influence on the average micro f1-scores with a 

maximum gain of 0.01.  A larger transformer doesn’t imply better performances, and when 

the larger model of FlauBERT is trained for our classification task, the micro f1-score does not 

increase. 

 

The following results will be kept in line with the journal article we published in “Deep Learning 

Transformer Models for Building a Comprehensive and Real-time Trauma Observatory: 

Development and Validation Study”242, hence, the TF-IDF (Terms Frequency-Inverse 

Document Frequency)/SVM (Support Vector Machine) was kept as a baseline model and the 

best CamemBERT and FlauBERT models were kept (CamemBERT-CCNET and FlauBERT-small).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.10 F1-score curves for CamemBERT-CCNET, FlauBERT-small, BelGPT2 
and GPTanam on the validation dataset. 
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Model AE Assault Fall Foreign 
body in 
the eye 

Intent. 
Injury 

MVA Other Sport 
accident 

Average type of 
classifier 

AdaBoost 0.69 0.83 0.86 0.29 0.67 0.89 0.68 0.33 0.740 Ensemble 

Bagging LinearSVC 0.90 0.91 0.91 0.83 0.80 0.91 0.81 0.82 0.873 Ensemble 

BelGPT2 0.83 0.91 0.92 0.82 0.77 0.91 0.85 0.85 0.887 Transformer 

Bagging SGD 0.88 0.91 0.91 0.82 0.80 0.91 0.82 0.82 0.875 Ensemble 

CamemBERT CCNET 0.84 0.91 0.92 0.84 0.76 0.90 0.83 0.83 0.878 Transformer 

CamemBERT OSCAR 0.83 0.91 0.91 0.83 0.73 0.91 0.83 0.82 0.875 Transformer 

CamemBERT Wiki 0.82 0.90 0.91 0.82 0.72 0.90 0.82 0.81 0.869 Transformer 

Complement NB 0.90 0.80 0.86 0.77 0.74 0.91 0.70 0.8 0.816 Naive Bayes 

Decision Tree 0.80 0.84 0.85 0.77 0.68 0.91 0.71 0.71 0.799 Tree 

Extra Trees 0.87 0.90 0.88 0.83 0.62 0.92 0.79 0.65 0.834 Tree  

FlauBERT cased 0.84 0.92 0.91 0.82 0.73 0.91 0.82 0.83 0.873 Transformer 

FlauBERT large 0.86 0.92 0.92 0.82 0.71 0.91 0.82 0.82 0.876 Transformer 

FlauBERT small 0.79 0.91 0.92 0.83 0.75 0.91 0.83 0.82 0.878 Transformer 

GPTanam 0.91 0.96 0.98 0.97 0.84 0.97 0.98 0.94 0.969 Transformer 

Hist Gradient 
Boosting 0.87 0.84 0.89 0.78 0.70 0.94 0.78 0.78 0.850 Ensemble 

KNN 0.80 0.83 0.83 0.78 0.71 0.89 0.78 0.61 0.783 Nearest Neighbor 

LGBM 0.82 0.90 0.92 0.79 0.77 0.91 0.82 0.81 0.873 Ensemble 

Linear SVC 0.83 0.90 0.90 0.79 0.75 0.91 0.80 0.82 0.864 Linear 

Logistic Regression 0.78 0.90 0.91 0.81 0.79 0.91 0.80 0.80 0.864 Linear 

Passive Aggressive 0.86 0.89 0.88 0.78 0.72 0.91 0.77 0.79 0.842 Linear 

Perceptron 0.85 0.89 0.88 0.78 0.70 0.91 0.78 0.80 0.846 Linear 

Random Forest 0.87 0.91 0.88 0.80 0.66 0.93 0.79 0.66 0.840 Ensemble 

Ridge CV 0.87 0.90 0.91 0.79 0.75 0.91 0.80 0.82 0.866 Linear 

SGD 0.88 0.91 0.91 0.8 0.80 0.90 0.81 0.82 0.870 Linear 

XGB 0.83 0.91 0.91 0.79 0.74 0.90 0.82 0.8 0.870 Ensemble 

N per class (Test) 41 498 1554 186 112 568 985 371 4315  
Table III.7 Micro F1-scores for all classes and average F1-score for all models AE: Accident of 

Exposure (to Bodily Fluids), MVA: Motor Vehicle Accident 

 

Average macro precision and micro F1-scores were systematically higher with the 

transformers than with the TF-IDF/SVM couple on the complete test dataset, as seen in Table 

III.7. Among the transformers, GPTanam achieved an average micro F1-score of 0.969, 

outperforming CamemBERT, FlauBERT and BelGPT2 for which F1-scores were 0.878, 0.873 and 

0.887 respectively. Macro-average precision was higher than F1-score in almost all cases, 

except for TF-IDF/SVM where macro precision was lower than micro F1-score (macro precision 

= 0.860, micro F1-score = 0.864). 
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Type of trauma N 
TF-IDF/ 
SVM 

CamemBERT-

CCNET 
FlauBERT-

small 
Bel-GPT2 GPTanam 

Accident of Exposure to 

Bodily Fluids 
41 0.83 0.84 0.84 0.83 0.91 

Assault 498 0.90 0.91 0.92 0.91 0.96 
Fall 1554 0.90 0.92 0.91 0.92 0.98 
Foreign Body in Eye 186 0.79 0.84 0.82 0.82 0.97 
Intentional Injury 112 0.75 0.76 0.73 0.77 0.84 
MVA 568 0.91 0.90 0.91 0.91 0.97 
Other trauma 985 0.80 0.83 0.82 0.85 0.98 
Sport Accident 371 0.82 0.83 0.83 0.85 0.94 

Total 4315      

Micro F1-score  0.864 0.878 0.873 0.887 0.969 

Macro precision   0.860 0.880 0.880 0.89 0.970 

Table III.8 Micro F1-scores for all classes and selected models with micro average F1-scores 
and macro average precision on the complete test dataset. 

 

The distribution of n clinical notes per class not being balanced, the micro-F1 scores were, in 

all cases, lower with the classes where n was lower. Concerning the micro F1-score of the 

different classes, GPTanam had higher scores than the other transformers and TF-IDF. The 

performance of GPTanam was high for all classes except for intentional injuries. We made the 

assumption that these results might be associated with the semantic heterogeneity and variety 

of this particular class. Indeed, this class encompassed self-arm (self-mutilation, punching due 

to rage, self-stabbing) and suicide attempts (shooting, alcohol or drug poisoning, car crashing) 

with few examples per injury. On the other hand, classes such as MVA or fall have semantic 

consistency with larger number of examples. The confusion matrix is given in Figure III.11. An 

error analysis of the “intentional injury class, as well as the other classes, is provided in the 

next section. 
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Figure III.11 Confusion matrix of GPTanam model on the full test dataset  

 

III.3.6 Error analysis 
 

Accident of exposure to bodily fluids: The unigram analysis showed that the key words 

"contact blood" were absent in the top 10 bigrams in the incorrectly classified clinical notes, 

while on the other hand unigrams analysis shows that "HIV" is the 9th unigram (after "aes", 

"blood", "needle", "source", "intercourse", "dakin", "work", "sexual"). 

 

Assault:  Regarding the class “Assault”, the top-3 bigrams were "physical assault", "declare 

having", and "punch" (fr: coup poing) for the correctly classified clinical notes while "left 

hand", "hand trauma", "mechanical fall" were the most frequent bigrams. The verification of 

the 18 clinical notes manually annotated as “Assault” showed that for 11 of them the label 

predicted by the model was correct (1 fall, 8 self-harm, 1 MVA, 1 sport accident paintball).  

 

MVA: The acronym “mva” (n=700) was the most represented unigram in the correctly 

classified corpus while “pain” was the most represented one in the clinical notes classified as 

not MVA.  When analyzing the 6 incorrectly classified clinical notes, 3 of them were wrongly 

labeled as they were in fact referring to an assault, a fall and a basketball accident. The 3 

remaining clinical contained two types of trauma such as falling on the street. 

 

Foreign body in the eye: The unigram analysis for this class showed that the unigrams "eye" 

and "theeye" were the most represented (n=140) while "left" and "hear" were the top-2 

unigrams in the clinical notes classified as not being “foreign body in the eye”. In fact, one of 

these clinical notes was related to a foreign body in the ear and two others were assault 

without mention of eye trauma.  
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Fall: The top-3 bigrams for the correctly classified clinical notes were "mechanical fall", "loss 

of consciousness", "cranial trauma" and were "right ankle", "ankle trauma", "left ankle" for 

the incorrectly classified ones. Twenty-one of the incorrectly classified clinical notes 

encompassed a double mechanism of trauma involving a sport accident, 16 MVA and 4 assault 

as well as a fall were present. Nine notes mentioned back pain, ankle and knee twists, pain 

while getting off of a truck, a patient found at the bottom of stairs, without mention of falling.  

 

Intentional Injury: The most frequent uni and bigrams were different between the correctly 

and wrongly classified clinical notes. The most represented unigram and bigram were, 

respectively, “imv” (fr, voluntary drug intoxication) and “suicide attempt” in the correctly 

classified corpus of clinical notes while, “hand” and “punch given” were the most common in 

the correctly classified notes. Indeed, the model classified 10 clinical notes as assault while 

these clinical notes were related to a patient having punched something or himself. 

 

Sport: The most frequent unigrams for correctly classified clinical notes were "pain", "left" and 

"trauma" and the bigrams were "right ankle", "functional impotence" and “left knee". The 

most frequent unigrams and bigrams for the incorrectly classified notes were, respectively 

“fall", "trauma", "bike" and "bike fall", "right knee", "knee pain". Thirteen falls occurred while 

biking without mention of the place and were classified as MVA. Five incorrectly classified 

notes were eye trauma while practicing sport.  

 

 

Removing complex/ambiguous clinical notes is associated with an increase of performance for 

all models, the average gain of F1-scores being 0.04 for TF-IDF/SVM, CamemBERT, FlauBERT and 

BelGPT2. The average gain of micro F1-score was 0.01 for GPTanam, which seems more robust 

to complex and/or ambiguous content.  

Difference in performance when potentially complex/ambiguous content is taken into account 

was greater with TF-IDF/SVM, CamemBERT, FlauBERT and BelGPT2 than with GPTanam, 

especially with the classes MVA and Sport Accident where the average gain of micro F1-score 

per class was 0.07 as seen in Figure III.10. Performance for the class "Accident of exposure to 

bodily fluids" did not improve for TF-IDF/SVM, CamemBERT and FlauBERT when 

complex/ambiguous content was removed from the test dataset. Performance of GPTanam did 

not improve for the GPTanam with the classes "Foreign body on the eye" and "Other trauma" 

but F1-scores were already very high with, respectively, F1-scores of 0.97 and 0.98. 

Performance was slightly improved for ’Assault’, ’Fall’, ’MVA’, ’Sport Accident’ and ’Other 

trauma’ when potentially complex and/or ambiguous content was removed from the test 

dataset for all models as seen in Table III.9 and confusion matrix in Figure III.13. 
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Type of trauma N 
TF-IDF/ 
SVM 

CamemBERT FlauBERT Bel-GPT2 GPTanam 

Accident of Exposure to 
Bodily Fluids 

36 0.81 0.84 0.84 0.84 0.90 

Assault 474 0.93 0.93 0.94 0.93 0.97 
MVA 541 0.97 0.97 0.97 0.98 0.99 
Foreign Body in Eye 177 0.80 0.85 0.83 0.83 0.97 
Fall 1348 0.95 0.96 0.95 0.97 0.99 
Sport Accident 318 0.89 0.91 0.91 0.93 0.98 

Intentional Injury 95 0.79 0.80 0.75 0.81 0.85 

Other trauma 859 0.84 0.86 0.86 0.89 0.98 
Total 3848      

Micro F1-score  0.904 0.921 0.918 0.932 0.981 

Macro precision   0.902 0.921 0.919 0.932 0.982 

Table III.9 Micro F1-scores for all classes and selected models with micro average F1-scores 

and macro average precision on the test dataset without ambiguous content. 

 

 

 

 

 

Figure III.12 Plot of micro F1-scores of all models for each class for both the complete test 
dataset (blue bars) and the test dataset without potentially ambiguous content as regard to 

its classification (grey bars). 

 



107 
 

 
Figure III.13 Confusion matrix of GPTanam model on the test dataset without ambiguous 

content 

 

III.4 TARPON: Discussion 
 

III.4.1 Transformers: a new state of the art 
 

The transformers applied to the free text data from the ED of the Bordeaux University Hospital 

showed interesting results reaching an average micro F1-score of 0.969 for a GPT2 model with 

a French tokenizer and with a self-supervised training step on a domain specific corpus in 

addition to a large French corpus. This model showed better performance than TF-IDF/SVM 

and the other transformer models on average metrics and on all classes. In 2018, when 

reviewing deep learning algorithms for clinical NLP, Wu et al. projected the rise in popularity 

of Transformer models.36 However, some studies show that traditional approaches, when 

tailored to the specific language and structure of the text inherent to the classification task, 

can achieve or exceed the performance of more recent ones based on contextual embeddings 

such as BERT37. Further study could involve comparing our model’s performance to Bi-LSTM 

with pre-trained embeddings such as Word2Vec or transformers embeddings and CNN. 
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III.4.2 Self-supervised training on domain specific corpus and tokenizer 
 

The decision to use pre-trained models on French corpora with a French tokenizer has 

probably contributed to the global performance of the chosen transformer models. General 

language transformer models pre-trained on a cross-domain text corpus in a given language 

have flourished recently. BelGPT2 was the first GPT2 model fine-tuned on a French 

heterogeneous corpus (CommonCrawl, French Wikipedia, EuroParl...) released on the hugging 

face platform. Self-supervised training of transformers on a specific domain can improve task 

performance such as classification38, text generation39 and predicting hospital readmission.40 

Despite lots of experiments using BERT, GPT-2 hasn’t been studies as well as BERT yet. Our team 

showed that the number of data required to achieve a given level of performance (area under 

the curve over 0.95) was reduced by a factor of 10 when applying self-supervised training on 

emergency clinical notes to a binary classification task.41 Here, we confirm the benefits of a 

self-supervised training step on a domain-specific corpus. However, it is questionable whether 

this approach will be applicable when extending the TARPON project to data from other EDs in 

France, as each region or ED uses a specific language in addition to the medical language, 

which uses many abbreviations that can vary locally (i.e. assault is written "brawl" in Bordeaux, 

"hep" means hepatitis...). A possible solution would be to train the model on a corpus resulting 

from the extraction of ED notes at a national level. Similarly, the treatment of medical 

concepts and abbreviations remains an area for improvement, as not all EDs use the same 

abbreviations in the same context. The use of ontologies developed in the field of emergencies 

could constitute an area for improvement. Transformers have also recently been tested for 

the identification and replacement of abbreviations with good results for BERT42,43,  however, 

there has not yet been a test on data from a mixture of common language and medical terms 

in French. 

In addition, as the authors who proposed the CamemBERT model did not compare the 

different models from the OSCAR, CCNet and Wikipedia datasets on a classification task, a 

future work could compare the different sets on our database. In this logic, it would be 

appropriate, while we have only used the basic models of CamemBERT, FlauBERT and GPT-2, 

to test the different sizes of pre-training datasets on a classification task as well as the different 

sizes of models. Indeed, Martin’s team has shown that the standard CamemBERT model (110 

million parameters) trained on all 138GB of OSCAR text, does not massively outperform the 

model trained "only" on the 4GB sample in morphosyntactic labeling, syntactic parsing, 

Named Entity Recognition (NER) and Natural Language Inference (NLI)44. One perspective 

considered is to test different models of French transformers that have been released since 

CamemBERT, FlauBERT or BelGPT2 such as Pagnol or BARThez. 
 
 

III.4.3 Taxonomy 
 

The performance of the models improved when we excluded the clinical notes that we 

considered to be the most complex and/or ambiguous from our test dataset. The classification 

errors analysis showed that when clinical notes encompassing two mechanisms of trauma (i.e. 

“fall from bike on the street”) were removed from the test dataset, models performed better. 

This expected result shows that since the advent of transformers, the margin of progress in a free 

text classification task is nowadays low. This behavior was less important with GPTanam, which 
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seems to have benefited from the self-supervised pre-training phase for reducing 

classification errors by learning semantic representations beforehand. However, the 

annotation grid created for the project is partly responsible for some classification errors in 

the sense that there are areas of semantic overlap between classes. In addition, the coding 

system used did not allow for the coding of several traumatic mechanisms (e.g., a collision 

between two individuals, followed by a fall). To be able to account for these situations, a new 

coding system will be used for the next phases of the project, using the recently released 

version of trauma classification grid used by the FEDORU (Fédération des Observatoires 

Régionaux des Urgences) and OSCOUR. 

 

III.5 TARPON: Conclusion 
 

Transformers have shown great effectiveness in a multi-class classification task on complex data 

encompassing narrative, medical data and jargon. The choice of this type of architecture in the 

automatic processing of emergency department summaries in order to create a national 

observatory is relevant. Applying a self-supervised training step on a specific domain corpus has 

substantially improved classification performances with a French GPT2 model.  

 

III.6 TARPON: Perspectives 
 

The first phase of the TARPON project has enabled: 

- The creation of a first annotation grid (Appendix J and Appendix K) 

- The development and validation of a Transformer model for the classification of clinical 

notes written by ED professionals from a single hospital’s EHR243.  

- The application of this model for calls to the EMD in Gironde department244. 

- The creation of a de-identification algorithm using a Transformer31. 

 

III.6.1 Improvement of the annotation grid 
 

Firstly, the annotation grid developed for the TARPON project did not allow for the manual 

labeling of several traumatic mechanisms (e.g., a collision between two individuals, followed 

by a fall) resulting in ambiguous classifications for both the annotators and our model. 

Furthermore, multiclass classification had not been envisaged in the labeling strategy which 

led to a unique class attributed to a given medical record. The underlying reason was that in 

the daily reporting hosted by the Oscour Network, one and only trauma mechanism would be 

added. To overcome this shortcoming, an improved annotation grid was discussed.  

 

Several strategies were discussed, and the adoption of the International Classification of 

External Causes of Injury35 seemed be the best option for benefiting a standardized 

classification tool in line with WHO recommandations5. Hence, to improve ergonomics and 

accuracy, we translated the entire ICECI into French and created training material and a 

dedicated annotation software. 

The ICECI was related to the External Causes chapter of the ICD-10245. Both the ICECI and the 

External Causes chapter of the ICD-10 provided ways to classify and code external causes of 

injuries. Different design criteria have resulted in considerable differences between the two 



110 
 

systems, and comprehensive mapping at fine level was not possible. In 2022, the WHO 

announced that the ICECI was no longer maintained. Indeed, the experience with ICECI had 

informed the redesign of the relevant chapter of the ICD-11 and the different elements of 

ICECI had been included as extension codes in the ICD-11. The ICD-11 was released in 2018 

and endorsed by WHO in 2019246. To date, the disease classification used in France is still ICD-

10; ICD-11 has not yet been translated or validated. 

 

Meanwhile, in 2021, the FEDORU (Fédération des Observatoires Régionaux des Urgences) set 

up the ground rules for the improvement of the emergency field data collection. The 

objectives of this work, carried out by FEDORU, are multiple and include the extension of data 

collection to EMD (SAMU, SMUR), technical platforms and downstream services, but also the 

increase in the frequency of data transmission (every 5 minutes) and the modification of the 

RPU format247. Some key elements of the RPU such as the circumstances and the setting of 

occurrence as well as the patients’ acuity (with the triage score) are planned to be added in 

the future version of the RPUs (v3). Based on the experience with the TARPON annotation grid 

and the adaptation of the ICECI, we were able to collaborate with the FEDORU to propose a 

thesaurus for the circumstances of the event (which include the mechanisms of trauma) and 

the chiefs of complaint. We also proposed the addition of items such as activity during the 

event, intentionality, antagonist in the case of a traffic accident and suspected alcohol and/or 

drug use in order to follow the WHO guidelines for injury surveillance systems.  

 

III.6.2 Future epidemiological steps of the TARPON project 
 

The validation of the trauma classification tool made it possible to assign labels to the entire 

emergency database of the Bordeaux University Hospital. These labels, derived from the initial 

annotation grid, allow a precise description of each trauma by associating concepts such as 

pre-traumatic faint, suspicion of alcohol or drug consumption and, in the case of public road 

accidents, the means of transport, the counterpart and protective equipment.  

Thanks to this comprehensive database, studies are being or will be carried out on road traffic 
accidents, triage and, more importantly, medical factors (such as drug use and medical 
conditions) of exposure to trauma risks. This last project is being carried out in collaboration 
with the Health Data Hub, which allows our database to be linked to the SNDS (Système 
National des Données de Santé), and its main objective is to demonstrate the possibility of 
carrying out epidemiological studies using automatic labelling. 
 

III.6.3 Towards a French trauma surveillance system 
 

As the proof of concept for the clinical note's classification tool has been validated, further 

steps are needed before moving to a national scale. As mentioned in section 19II, clinical 

notes' structure (length, framework) and language can vary across professional categories, 

genders, social groups, personalities, hospitals, areas and regions. Hence, the heterogeneity 

of all clinical notes across France must be accounted for. The second phase of the TARPON 

project aims to collect ED databases from diverse regions and types of hospitals to evaluate 

the pipeline or enhance it. So far, about 10 hospitals agreed to participate (Agen, Arcachon, 

Blayes, Langon, Libourne, Limoges, Mont de Marsan, Pau, Poitiers and Bordeaux Saint-André 

ED). In collaboration with the FEDORU, a standard agreement has been drawn up to regulate 
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the hosting of files on the project server. It has already been signed by the Regional Hospital 

of Agen and will then have to be sent to all the other partner sites.  

 

 
Figure III.14 From “Harnessing the Power of LLMs in Practice: A Survey of ChatGPT and 
Beyond”218 The evolutionary tree of modern LLMs traces the development of language models 
in recent years and highlights some of the most well-known models.  

Models on the same branch have closer relationships. Transformer-based models are shown 
in non-grey colors: decoder-only models in the blue branch, encoder-only models in the pink 
branch, and encoder-decoder models in the green branch. The vertical position of the models 
on the timeline represents their release dates. Open-source models are represented by solid 
squares, while closed-source models are represented by hollow ones. The stacked bar plot in 
the bottom right corner shows the number of models from various companies and institutions. 

 

The challenge of the increase in heterogeneity as a result of the aggregation of different 

databases could be addressed by the Large Language Models (LLMs) currently being proposed. 

As the development and open-sourcing of LLMs has increased exponentially in recent years 

and months, as can be seen in Figure III.14, the possibility of performance improvement for 

our model increases all the time. However, the use of this type of model raises technical, 

ethical and alignment issues. We propose to go further by raising the level of reflection to the 

use of AI in emergency medicine in the following section.  
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IV. ARTIFICIAL INTELLIGENCE IN EMERGENCY MEDICINE: 

VIEWPOINT OF CURRENT APPLICATIONS AND 

FORESEEABLE OPPORTUNITIES AND CHALLENGES 
 

 

IV.1 Flow Challenges in Emergency Departments  
 
Emergency Departments (EDs) and related services such as Intensive Care Units and 

Emergency Medical Dispatch (EMD) have recently been in the spotlight due to the covid-19 

pandemic. Overcrowded services, very long waiting times, and staff exhaustion have 

highlighted a fragile system with difficulties in responding to such exceptional situations. Even 

in period with routine activity levels, waiting times, and the optimization of the patient 

healthcare pathway have already been the subject of national efforts in France, pointing the 

need to rethink the emergency system. Indeed, the number of ED visits worldwide has 

increased faster than the rate of population growth in the past decades248–250.  

 

IV.1.1 Factors of Emergency Departments crowding 
 
The identified causes of increasing ED attendance include non-urgent visits, frequent visitors, 

extending boarding times, staff shortages, and repeated reductions of downstream beds251.  

Using the conceptual model of ED crowding developed by Asplin et al.252, which divides ED 

crowding into three interdependent components, the causes of crowding can be broadly 

categorized as identifying input, throughput or output causes: 

 
- Input: Causes of crowding related to the input phase of the ED process suggest 

increases in patients’ venues with urgent and complex needs253–256 , with low-acuity 

chiefs of complaints257, or represented by the elderly 253,255,258,259 , as the main factors. 

Access to appropriate care outside of the ED has also been identified as an issue as 

well 255,257,260   

 
- Throughput: Internal factors of ED crowding identified are ED nursing staff shortages 

261,262, delays in receiving laboratory test results and delays in patient management 

decisions 263. 

 

- Output: All studies that reported on output factors as a cause of ED crowding 

concluded that access block, that is, the inability to transfer a patient out of the ED to 

an inpatient bed once their ED treatment has been completed, was the major 

contributor263–268.  
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IV.1.2 Consequences of Emergency Departments crowding 
 

The negative effects of ED crowding include impact on several patient oriented outcomes such 
as mortality 249,269,270, complication rates248 , walkouts271 , time to treatment 248,272, 
satisfaction273, and length of stay274. Furthermore, ED crowding has been pointed as a major 
stress factor for healthcare professionals leading to burnouts275 and medical errors276. So far, 
solutions and efforts have mainly focused on improving patient workflow within the ED, 
however, a more comprehensive approach appear more effective277.  
 

 

 

IV.2 ARTIFICIAL INTELLIGENCE : A POSSIBLE SOLUTION 
 

 

IV.2.1 Artificial Intelligence in Emergency Medicine: Current Applications and 

Foreseeable Opportunities 

 

The field of emergency medicine has received considerable interest in the application of AI to 

health care owing to the unique nature of this medical practice. With challenges related to 

organization and coordination as well as the need for rapid and accurate decision-making for 

patients categorized as high acuity, novel approaches provided by AI are promising in 

emergency medicine and services. AI techniques have already been shown to be promising 

for improving diagnosis, imaging interpretation, triage, and medical decision-making within 

an ED setting278. However, most research on AI in emergency medicine is retrospective and 

has not led to applications beyond the proof of concept. Therefore, the potential for AI 

applications in routine clinical care settings is yet to be achieved. Critical appraisal of evidence 

supporting whether a clinical digital solution involving AI has an impact on patient outcomes 

should be mandatory279. Specifically, an independent evaluation by an objective independent 

entity (or authorized entities), both during development and use, should be performed. The 

independent evaluation would address verification, validation, and impact on patient 

outcomes and safety. To date, few system suppliers have challenged their products and 

services in terms of key health metrics280. However, some applications have already been 

deployed for prehospital, EMD, and ED (Figure IV.1). In this contribution, we attempt to depict 

the landscape of AI-based applications currently used in the daily emergency field. For each 

section, we will provide a context based on recent reviews, the AI applications’ algorithms or 

models used (if available), how they were validated, and whether the desired impact on 

patients’ outcomes was assessed. We also propose future directions and perspectives. Our 

second objective is to examine the legal and ethical specificities of AI use in the emergency 

field. 
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Figure IV.1 AI business Landscape in Emergency Medicine in 2022 

 

The journey of a patient who requires care in the ED includes several steps that can or could 

be impacted by AI Figure IV.2. Before coming to an ED, several steps can be carried out such 

as checking symptoms on the internet and contacting the emergency call center or their 

general practitioner. 



115 
 

 
Figure IV.2 The emergency patient journey and where Artificial Intelligence is making or can 

make an impact. 
AI: artificial intelligence; ED: emergency department; EMD: emergency medical dispatch. 
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IV.2.1.1. Pre-hospital 

 

The use of patient-facing clinical decision support systems (CDSSs) has 

continuously increased in recent years years281. Tools assisting laypersons in their self-

assessment of whether and where to seek urgent professional medical care and for what 

diagnoses based on the users’ input of symptoms and medical history are termed symptom 

checkers. To date, symptom checkers provided by free websites or mobile apps have proven 

to be inconsistent, supplying generally risk-averse advice and often recommending more 

urgent care than necessary necessary282,283. Digital tools that impact care delivery and 

behaviors should undergo rigorous evaluation that enables evidence-based determination of 

their efficacy. However, evaluations of the effectiveness of self-sorting apps often provide 

limited evidence as they rely heavily on observational studies284. Schmieding et al285 recently 

assessed the triage accuracy of 22 symptom checkers and showed that their performance did 

not improve between 2015 and 2020. For 2 cases of use, the triage performance decreased 

(advice on when emergency care is needed and when no health care is required for the 

moment). The apps sample of 2020 less frequently mistook self-care cases and nonemergency 

cases for emergencies; at the same time, it more often misclassified emergencies as non-

emergencies285. Regarding the algorithms or models used by these proprietary websites or 

apps, information about their architecture, development, and validation is sparse. When the 

information is available, most symptom checkers and their decision support systems rely on 

probabilistic or graphical algorithms (Bayesian decision trees or Bayesian-directed graphs286–

291). Some apps, such as Babylon Health292, use a chatbot that presents the user with unique 

or multiple-choice questions for symptom assessment293. Although there is no clear 

explanation of the algorithm used by Babylon, the team has released open-sourced Neural 

Temporal Point Processed models294, which are integrated into an encoder-decoder 

framework based on deep learning. This indicates that the app likely uses this type of model295. 

To ensure the safety of symptom checker users, transparency about the algorithms used 

should be maintained. Further research and development also seem necessary for improving 

these self-sorting tools. The use of deep learning models for these apps should be considered 

to attempt improving their limited efficacy (Textbox IV.1).  

 

 
Textbox IV.1 Summary of pre-hospital clinical decision support systems’ assessment 

 

Pre-hospital emergency care and ambulance demands have significantly 

increased over the past decade296–298. Emergency medical dispatch involves the receipt and 

management of demands for urgent medical assistance. It encompasses 2 main dimensions: 



117 
 

call answering, where emergency medical calls are received and events are classified 

according to their priority (triaged) and coordinating, where the best available resources are 

dispatched to manage the event. 

 

EMD Data Entry 

Emergency medical dispatchers at EMD centers play a pivotal role in coordinating prehospital 

care. The interaction between the dispatcher and patient results in documentation that can 

be guided (structured form), semiguided (semistructured), or free (unstructured). Although 

effective in narrow and predictable domains, structured data entry can be quite slow when 

events are wide ranging and heterogeneous. To address this issue, the already-in-use Corti299 

system assists emergency dispatchers by analyzing the caller’s speech and description. This 

system provides advice on which questions to ask next, indicating when a patient may have a 

particular presentation, such as myocardial infarction or stroke. It also helps in data extraction, 

where the system can extract and pull information on the caller’s address and location to 

reduce the time needed to complete the call and dispatch emergency medical services. The 

framework of Corti contains 2 models: an automatic speech recognition (ASR) model that 

transcribes speech to text and an out of hospital cardiac arrest (OHCA) detection model that 

predicts OHCA events from transcribed speech in real time. The ASR is a deep neural network 

using a model based on Connectionist Temporal Classification300. This end-to-end (E2E) deep 

learning framework is based on a recurrent neural network, and the network outputs are 

transformed into a conditional probability distribution over label sequences (letters, words, 

or sentences of the caller). The network can then be used as a classifier by selecting the most 

probable label for a given input sequence [38]. For each second of raw audio, the classifier 

predicts whether there is an OHCA based on the accumulated audio sequence299. The efficacy 

of the AI-guided system provided by Corti was assessed for OHCA by Byrsell et al, and it was 

shown that the E2E model recognized OHCA faster than dispatchers299. Despite the promising 

results for OHCA, the study assessing the system was retrospective, and other critical 

conditions were not tested. 

Semistructured or free-structured text observations are the most frequently used input 

format for EMD, according to Miller et al301. If dispatchers require this format to be continued 

in the future, solutions to facilitate, speed up, and optimize this type of input should be 

considered. Computed free text involves natural language processing (NLP), and a recent 

breakthrough revolutionized this area in 2018 when the Transformer architecture was 

introduced by Vaswani et al66 in “Attention is all you need.” The Transformer aims to solve 

sequence-to-sequence tasks while easily handling long-range dependencies (problems for 

which the desired output depends on inputs presented at times far in the past). It relies 

entirely on self-attention to compute its input and output representations without using 

sequence-aligned recurrent neural networks or convolutions. The Transformer architecture 

has evolved, and some models such as the Bidirectional Encoder Representations from 

Transformers189 and the Generative Pretrained Transformer 2189 have achieved 

unprecedented performances on various NLP tasks such as classification, question answering, 

named entity-recognition, relation-extraction, or sentence-similarity tasks 183,302. A major 

efficient feature of Transformers that dispatchers could benefit from is text generation 

through autocompletion42,60. By proposing a text complement fitting the string of characters 

that the dispatcher would have started to type, the autocomplete would allow to speed up 

the typing process and thus save time for the dispatcher. The autocomplete would also limit 
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typing errors by entering the characters that remain to be typed without human intervention. 

Finally, the autocomplete would avoid the dispatcher having to correct their typing errors if 

necessary. 

 

EMD Call Waiting Time 

 

EMD calls can increase drastically under exceptional circumstances such as mass shooting, 

wildfires, or when it is recommended to call the center before seeking care (eg, COVID-19) 
303,304. To reduce the waiting time before reaching a dispatcher for very acute patients in 

ordinary and exceptional situations, some solutions such as prioritized queue with the help of 

an ASR model and a classifier are starting to be considered and designed305. To the best of our 

knowledge, such solutions have not been tested or even developed yet. 

 

EMD Triage and ambulance dispatch 

 

A large proportion of prehospital deaths when emergency medical services are involved are 

preventable, with 4.9% to 11.3% potentially preventable deaths and 25.8% to 42.7% definitely 

preventable deaths, as shown by Pfeifer et al306. The most frequent reasons evoked in this 

systematic review were delayed treatment of patients with trauma (27%-58%), management 

errors (40%-60%), and treatment errors (50%-76.6%)306. Treatment delays and caller 

management are often the result of dispatch algorithms that provide triage of patients 

categorized as high acuity for critical care and patients categorized as low acuity for diversion 

or nonurgent transport. Most of the current dispatch algorithms are rule based or encompass 

a human review of rule-based algorithms301. To date, 2 retrospective studies have shown that 

statistical machine learning and deep learning can improve or outperform rule-based 

algorithms307,308. Further validation and impact studies are needed to improve the current 

dysfunctional EMD triage, and AI should be considered for enhancing the dispatch algorithms. 

Start-up companies are making proposals to help reduce response times and ensure data 

transmission from connected devices before or during calls. For example, the RapidSOS 

system is an emergency response data platform that securely links data from connected 

devices and sensors directly to first responders during emergencies. Another promising 

system provided by the Israeli start-up MDGo is the use of advanced AI technology to help 

dispatchers know if a car accident requires an ambulance. When a car crash occurs, the system 

creates a medical report in real time with data regarding the forces applied on the passenger 

(eg, duration, moment, and vector). These data are sent automatically to the Israeli 

emergency medical services. 

 

IV.2.1.2. Emergency Departments 

 

Whether generated from a symptom checker with a self-triage step, from a 

call to an EMD center, or a connected device, all collected data concerning patients could 

benefit EDs. Linking emergency medical services to ED data allows a continuum of care 

assessment and improvement in patient outcomes309. Concerns regarding interoperability, 
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security, accurate patient match algorithms, and the reliability of wireless networks as 

potential barriers to adoption were identified in a review conducted by Martin et al310. Several 

studies have demonstrated the feasibility of various statistical models for electronic health 

record (EHR) linking with EMD systems310. For example, Redfield et al311 used logistic 

regression to link Boston’s EMD electronic patient care reports with their hospital EHR and 

achieved an unprecedented success rate of linkage without manual review (99.4% sensitivity). 

The next few years will likely reveal an expansion in the use of these techniques in new ways. 

For patients arriving at the ED by their own means, an initial medical screening could be 

performed by asking a small number of questions using a smartphone or a digital kiosk set up 

at the ED entrance. To date, all trials entailing the redirection of patients categorized as low 

acuity within EDs involved human intervention and were unsuccessful or discontinued owing 

to adverse public relations incidents277,312. In a fully digitalized world, the acceptance of such 

solutions accompanied by awareness campaigns should be more substantial. 

 

 

The check-in desk at the entrance of the ED is the first point of contact for a 

patient requiring emergency care where administrative agents open a specific section of the 

EHR. The patient then becomes a future occupant of the ED room or cubicle after being 

assessed by the triage nurse. Triage is a sorting process in which the “triage nurse” is required 

to quickly assess a large number of patients to decide the urgency of their condition and the 

location in the ED in which they will be evaluated and treated. Triage includes the attribution 

of a triage score to each patient, and several scales have been developed worldwide, with no 

evidence of superiority for one of them313,314. Even with the adoption of 5-level triage scales, 

the assessment still relies heavily on the subjective judgment of the triage nurse, which is 

subject to significant variation315. Furthermore, Hinson et al316, in their systematic review, 

found several studies reporting low sensitivity (<80%) in identifying patients who had critical 

illness outcomes or died during the hospitalization. To address the lack of accuracy in the 

triage process, several AI-based solutions have been tested, and the authors found that there 

was an improvement in the health care professionals’ decision-making, thereby leading to 

better clinical management and patient outcomes317,318. However, these solutions were not 

dedicated to triage but outcomes such as hospital admissions, mortality, or ED length of stay. 

An example of a real-time AI application that is already used in 16 US hospitals is provided by 

KATE236,319. Unlike most proprietary software, a validation study has been published that 

showed that KATE’s accuracy using an extreme gradient boosting model236 (explained on 

Figure IV.3) was 27% (P<.001) higher than the average nurse accuracy. However, no impact 

study has yet been published.  
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Figure IV.3 Gradient boosting explanation 

 

Similar to dispatchers, the documentation workload of triage nurses can benefit from AI 

applications. Health care professionals currently spend up to 50% of their time documenting 

information in EHR320–322. The time spent performing documentation tasks induces both poor 

and inconsistent data, which may impact the quality of care323,324. Physicians prefer using free 

text over restrictive structured forms, but clinical notes often lack readability owing to an 

overload of acronyms and jargon37,43, which leads to noisy, ambiguous, and incomplete data. 

A first improvement lever could be autocompletion, which combines automatic annotation 

with labels of clinical concepts. Greenbaum et al325 and Gopinath et al42 set up the foundations 

of such technologies. The Massachusetts Institute of Technology clinical machine learning 

group, led by Gopinath et al42, developed a tool called Medknowts that aims to autocomplete 

clinical terms in the EHR while note-taking. This tool was assessed in a real ED environment 

and showed a 67% reduction in the keystroke burden of clinical concepts326. The model used 

is fully disclosed and is based on a shallow dual branch neural network for a minimal latency 

(time taken to process 1 unit of data) of approximately 0.2 milliseconds. In addition, 

MedKnowts allows the retrieval and display of context-specific information from a patient’s 

EHR while unifying the documentation and search process326. However, the language aimed 

to be autocompleted with these systems is strictly medical and does not reflect the reality of 

clinical notes containing both nonmedical and medical concepts. Using new NLP deep learning 

models such as Transformers, as mentioned previously, can help handle the complexity of 

these type of data. Transformers have reached a state-of-the-art status for ASR by reducing 

the word error rate to <5 (the lower the better) on several libraries and languages327. 

Nonetheless, some challenges remain to be addressed such as latency, streaming, and 

adaptation capabilities for implementing E2E models. The growing progression in the 

technological capabilities of hospitals (servers and graphics cards) will allow for real-time 

efficiency without affecting the workflow. Another solution is to retrieve relevant information 

from real-time dialogues between health care professionals and patients. Ideally, the system 

would write down information in free-text form but would also extract entities such as 

symptoms or medications and predict scores, risk factors, and diagnosis. Vocal AI assistants 

such as Suki328 and Dragon Medical One329 are already available for health care practitioners, 

claiming a documentation time reduction of 72%. So far, no peer-reviewed derivation or 

validation studies have been found to support the legitimacy of these solutions’ commercial 

claims. 
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The Digital Hospital Concept 

A digital hospital concept in the image of the digital twin330 (Figure IV.4) would allow real-time 

bed availability. The admission and discharge data, currently collected by the admissions 

departments, could be transferred to the digital hospital, and the estimation of the projected 

bed availability rate could be made available in each department. Traditional models 

estimating length of stay are mostly statistical331 or based on machine learning using the 

previous length of stay as input. The digital hospital model would be based on the same 

foundation and would also be adjusted regularly owing to a trend toward shorter lengths of 

stay and a shift to ambulatory medicine. The model would also be able to adjust to external 

data such as environmental and epidemiological factors (e.g., epidemics) in real time. Thus, if 

visibility on downstream beds is guaranteed, not only can waiting time in the ED be reduced 

when hospitalization is needed, but transfers to downstream services can also be facilitated 

in the event of congestion. Creating a network of all digital hospitals at the regional or state 

level could ensure the availability and visibility of beds and facilitate transfers between health 

care facilities. On a comprehensive scale, these data can provide real-time visibility of 

foreseeable ED arrivals and allow resources to be adapted accordingly. 

 

 
Figure IV.4 The human digital twin 

 

  Improving the Patient’s Waiting Time Experience 

Patient experience or satisfaction with ED care is a growing area of research, and the literature 

has demonstrated a correlation between high overall patient experience and improved 

patient outcomes, cost-effectiveness, and other health care system goals332–334. Several 

factors lead to better patient satisfaction in emergency medicine such as actual waiting 

times335, perceived waiting times, staff-patient communication, and staff empathy and 

compassion336. 

Waiting time to care in ED is the cumulative result of the time from registration assessment 

and the time from assessment to the initiation of medical care. This waiting time is modulated 

by triage in EDs when dedicated triage staff are available. Inadequate staffing has been 

identified as a major throughput factor associated with longer waiting times251. Apart from 

alleviating documentation tasks and facilitating flow management in ED, AI cannot propose 

solutions when political decisions or executives regulate staff quotas. In contrast, perceived 

waiting time could benefit from innovation. Waiting without information provided about 

delays can be a tedious and frustrating experience among people seeking urgent care, and 
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lack of information magnifies patients’ sense of uncertainty and increases their psychological 

distress sometimes, leading to violent behaviors337,338. Transparency is a major determinant 

of patient satisfaction related to waiting time275,308. Patients provided with written or gamified 

ED processes tend to have a higher level of satisfaction339,340. Information about the estimated 

waiting time is provided by triage nurses or signboards at the admission desk in some 

hospitals. However, it has been shown that this information is not given for most patients341. 

Accurate waiting time for patients can be derived from the digital hospital with a dashboard 

of available places and beds. A screen indicating the waiting time in real time can be installed 

in the waiting room342. Additional information such as major events impacting the waiting 

time could be displayed on the screen (e.g., a pileup on the highway), and mobilizing the 

patient’s empathy could reduce self-centered perception of care343. Patient-specific 

information on personalized waiting time estimates can also be provided via a mobile app. A 

positive environment can also improve a patient’s perception of waiting time344. Distracting 

activities such as the use of personal cell phones can be difficult for some patients in ED rooms. 

The benefits of virtual reality glasses have already been demonstrated in pain management345 

and in the reduction of preoperative anxiety346. Hence, virtual reality glasses can also be 

proposed for distraction and counseling. 

 

IV.2.2 ED and EMD data processing enhanced by AI for public health surveillance 
 

EDs and EMD centers generate a large volume of diverse health-related data. For public health 

surveillance aims, these data are most often used retrospectively and by sampling hospitals346. 

Some near–real-time surveillance systems use information extracted from EHR in addition to 

manual implementation provided by health care professionals347. These non-exhaustive 

procedures are time and resource consuming and are mostly based on voluntary work. 

Automatic signal extraction from EHR would allow real-time monitoring and ensure the 

responsiveness sought in any surveillance system244,348. The use of new state-of-the-art NLP 

models such as Transformers would bypass the difficulties in extracting fine-grained and 

standardized data from the most frequently used entries (free text) in ED and EMD. 

Furthermore, with the appropriate network infrastructure, data should be collected and 

analyzed in real time, enabling early, accurate, and reliable signals of health anomalies and 

disease outbreaks. In addition, AI provides an opportunity to use various new or 

underexploited data sources for public health surveillance purposes, particularly those not 

originally or intentionally designed to answer epidemiological questions. A large amount of 

nontraditional data is self-generated by the public through their ubiquitous use of smart 

devices and social media. Public health has the potential to use real-time longitudinal data 

collected for health surveillance349. 
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IV.3 CHALLENGES POSED BY ARTIFICIAL INTELLIGENCE FOR 

EMERGENCY MEDICINE AND PUBLIC HEALTH 

SURVEILLANCE 
 

IV.3.1 Ethical and legal challenges posed by the implementation of Artificial Intelligence 

in Emergency Medicine 
 

Despite the potential of AI for improving emergency clinical care, numerous ethical and legal 

challenges prevail. An ethical principle is a statement of a duty or a responsibility and when 

applied to AI technologies for health, it covers their lifecycle (Figure IV.5 and Figure IV.6). 

 

 
Figure IV.5 Lifecycle and Key Dimensions of an AI System. National Institute of Standards and 

Technology (NIST) 299 

 

 

A trustworthy AI is safe, fair and biased, is managed, transparent and accountable, explainable 

and interpretable, it protects human autonomy, and is privacy-enhanced350,351. A sense of 

common responsibility among all the actors involved in an AI lifecycle should prevail and 

healthcare providers have a special duty to adhere to these requirements because of patients’ 

dependence on their care, should AI systems be used to assist healthcare practitioners in 

clinical decision-making352. In order to lay the foundations of trustworthy AI in emergency 

medicine, the ethical considerations cannot be dissociated from the legal answers that are or 

will be provided.  
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Figure IV.6 AI actors across AI lifecycle stages. Note that AI actors in the AI Model dimension 
are separated as a best practice, with those building and using the models separated from 
those verifying and validating the models. TEVV: Test, Evaluation, Verification and Validation 

 

IV.3.2 Safety, fairness and bias management   
 

AI systems “should not, under defined conditions, cause physical or psychological harm or lead 

to a state in which human life, health, property, or the environment is endangered”353. 

Identifying, mitigating, and minimizing risks and potential harms associated with AI 

applications, especially in emergency medicine, are essential steps towards the development 

of safe AI systems and their appropriate and responsible use. Addressing AI risks and bias 

prospectively and continuously throughout the AI lifecycle aims at preventing misalignment 

(Figure IV.7)354,355. 

 

Figure IV.7 Misaligned goals in artificial intelligence (AI) 

 

 

Current attempts to address the harmful effects of AI bias remain focused on computational 

factors. However, systemic, human, institutional, and societal factors are also important 

sources of AI bias and are currently overlooked. We hereby propose to initiate the discussion 
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and lay the groundwork for managing the risks associated with the use of AI in emergency 

medicine by identifying the biases that can be anticipated. 

 

IV.3.2.1. Bias in data and design 

 

Once end users (e.g. health care professionals) start interacting with an AI system or 

application, any early design and development decisions that were poorly specified and based 

on narrow perspectives can be exposed, leaving the process vulnerable to additive statistical 

or human biases356.  

 

Dataset bias challenge 

 

Several categories of biases are held by health data sets used for training AI. 

First, the choice of the data set for either pretraining or training can produce a sampling bias 

leading to a distributional shift357, which is a mismatch between the data or environment in 

which the system is trained and that used in operation. Would training an AI application on 

EHRs of a local ED in a given region or state with given protocols and EHR architecture lead to 

the same results in the neighboring state’s university hospital? When considering a physician-

patient vocal assistant, how can language variety (regional or social dialects), linguistic 

variations (pronunciation, prosody, word choice, and grammar), and foreign speakers be 

considered? 

Large-scale data sets are increasingly deployed for decision support applications, often in high-

risk settings such as emergency medicine, and off-label uses result in representation bias 

harms. Low-represented populations or conditions should be carefully handled with 

rebalancing techniques such as data augmentation, oversampling, or weighting systems. 

Causal models and graphs can also be used to detect direct discrimination in the data 358,359. 

 

Aggregation Bias (or ecological fallacy) arises when false conclusions are drawn about 

individuals from observing the entire population. An example of this type of bias in an 

emergency setting would be patients calling or presenting themselves with heart failure. 

Symptoms of heart failure differ in complex ways across genders360,361. Therefore, a model 

that ignores individual differences will likely not be well suited for gender groups in the 

population. This is true despite an equal representation in the training data. Any general 

assumptions regarding subgroups within the population can result in aggregation bias362. 

 

Simpson’s paradox should also be considered at the designing step. The Simpson paradox is a 

type of aggregation bias that arises in the analysis of heterogeneous data363. The paradox 

arises when an association observed in aggregated data disappears or reverses when the same 

data are disaggregated into their underlying subgroups. For example, if an AI-guided CDSS was 

to be built for naloxone administration, when testing the model, if the clinical presentation 

severity or opioid type is unequally distributed among groups, the Simpson paradox will likely 

contribute to different rates of naloxone administration364. 

 

Modifiable Areal Unit Problem (MAUP) is a statistical bias in geospatial analysis that arises 

when modeling data at different levels of spatial aggregation365. This bias results in different 

trends learned when data are aggregated at different spatial scales. For example, when 
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designing an AI system for ambulance demand, only estimates based on minimal-resolution 

data should be relied upon, as ambulance demand using aerial data is potentially misleading 

due to the MAUP366. 

 

Omitted variable bias can also arise from variable selection for an emergency AI application. 

For example, when considering a triage application in which care protocols and treatment 

guidelines vary based on the patient’s insurance status, omitting this variable could lead to 

errors in the triage score. However, considering this variable for better accuracy will lead to 

unfairness, which is already present in a real-world setting. 

 

High quality input data are essential for the constructing a realistic AI system. Missing data 

bias is common in EHR data input quality management, and its gestion should be considered 

during the design step367. Several authors suggest that explicitly representing the presence or 

absence of data in the underlying logic of a CDSS can improve prediction performance368. 

Owing to the specificity of ED activities, data entry also comes with several biases such as recall 

bias (as health care practitioners often enter data several minutes or hours after the 

emergency has occurred), or confirmation bias (as healthcare practitioners often rely on 

heuristic-based decision369). It has recently been shown that serious games can improve 

physicians' heuristic judgment by providing them with a simulated experience. Additional 

experiments could lead to better data capture for less biased datasets370. 

 

Human biases, whether conditioned socially or cognitive, may influence data selection, 

preprocessing, annotation (attributing labels to an unlabeled dataset), and analysis process. 

Annotator biases could lead to biases in the training and test dataset. Hence, proper training 

on the annotation task, sufficient incentives, facilitating background and expertise diversity 

among annotators (e.g., nurses, physicians, researchers, and students), and the inclusion of a 

follow-up procedure with agreement evaluation could help in reducing these label biases371. 

 

Systemic institutional biases are also to be expected in the health datasets used to model 

underlying AI applications. The issue of “flattening” the societal and behavioral factors within 

the datasets themselves is problematic, but often overlooked372. If these biases are left 

unattended, AI applications are likely to reproduce human bias such as triage errors for 

women, the elderly and minor ethnicities373,374.  

 

Bias in AI model choice and validation 

 

The choice of models and their training process is a crucial step in the AI life cycle, and multiple 

biases can result from this. Most AI applications presented in the Actual and Possible 

Applications of AI for Emergency Services section are based on NLP, and concerns regarding 

the biases introduced by the growing use of large language models (ie, Bidirectional Encoder 

Representations from Transformers, Generative Pretrained Transformer 2, and XLNET) are 

relevant375. 

 

Semantic biases: Embeddings are the most common text inputs represented in NLP systems, 

and they have been shown to pick up on racial and gender biases in the training data376. As 

large language models are pretrained on almost the entire text corpus available from the 
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internet, they are prone to the same societal biases as those that prevail on the internet. 

Semantic biases hold not only for word embeddings but also for contextual representations. 

Debiasing sentence representation is at the heart of the efforts of some research teams. 

However, the impact and applicability of debiased embeddings are unclear for a wide range 

of downstream tasks377. 

 

Algorithmic effect: The algorithmic complexity can vary greatly from one AI model to another. 

The number of parameters that mathematically encode the training data can range from 1 to 

1 trillion. Simple models with fewer parameters are often used because they tend to be 

cheaper to build, have better latency and better generalizability, are more explainable and 

transparent, and are easier to implement. However, these models can exacerbate statistical 

biases because restrictive assumptions about the training data often do not hold with nuanced 

demographic data. Complex models are often used for nonlinear and multimodal data such as 

text and images. These models can capture latent systemic biases in ways that are difficult to 

recognize and predict. Expert systems, another AI paradigm, can encode cognitive and 

perceptual biases in the accumulated knowledge of practitioners from which the system is 

designed to draw. 

 

The objective function bias: The choice of the model’s objective function, upon which the 

model’s definition of accuracy is based, can reflect bias. In an emergency context, decisions 

must often be taken rapidly, meaning that AI should not increase the time required to reach 

a decision that would divert the patient to appropriate care. Not taking the vital and time 

context into consideration during model selection could harm patients. In addition to task-

specific metrics, streaming and adaptation must be considered. 

 

Validation bias: Performing tests on an AI system involved in health care under optimal 

conditions is challenging. Rigorous simulation and in-domain testing of time-specific windows 

or given locations should be performed before generalization. Randomized controlled trials 

and prospective studies in compliance with guidelines specific to AI interventions such as 

CONSORT-AI (Consolidated Standards of Reporting Trials–AI)378 or SPIRIT-AI (Standard 

Protocol Items: Recommendations for Interventional Trials–AI)379 should be conducted to 

ensure the transparency and validation of the application. The CONSORT-AI extension 

recommends that investigators provide clear descriptions of the AI intervention, including 

instructions and skills required for use, the setting in which the AI intervention is integrated, 

the handling of inputs and outputs of the AI intervention, the human-AI interaction, and the 

analysis of error cases. 

 

IV.3.2.2. Bias in deployment 

 

Inclusiveness bias 

 

AI should encourage equitable use in emergency and primary care independent of age, 

gender, ethnicity, income, language spoken, or ability to comprehend. When considering a 

smartphone app or a digital lock at the entrance of an ED, different languages should be 

proposed. Accessibility devices for disabilities (visual, hearing, moving, and reading 



128 
 

impairments) should also be made available. Access to these technologies is particularly 

challenging for older adults, and alternative solutions should be proposed for this population. 

 

Automation complacency 

 

Health care practitioners may have a propensity to trust suggestions from AI decision support 

systems, which summarize large numbers of inputs into automated real-time predictions, 

while inadvertently discounting relevant information from nonautomated systems. Some 

information about the visual, behavioral, and intuitive analysis of a patient does not 

necessarily lead to rigorous documentation in EHR, yet this information contributes to clinical 

decision-making. Moreover, can this type of information can be captured by an AI model? 

Fully relying on a triage score prediction provided by an AI application without the necessary 

hindsight toward the added value of one’s experience, common sense, and observation skills 

could lead to inaccurate resource allocation or priority levels for patients during triage. 

 

 

Selective adherence 

 

In contrast, health care practitioners can selectively adopt the AI advice when it matches their 

preexisting beliefs and stereotypes, leading to biases in the overall performance of the system. 

 

IV.3.2.3. Monitoring 

 

Continuous measurement and monitoring of an algorithm’s performance is necessary to 

assess whether it has a detrimental impact on patients or groups of patients. Tests and 

evaluations should cover the potential differential performance of the model according to age, 

gender, and relevant characteristics. As health care facilities benefit from quality and safety 

certification by public health and governmental agencies, AI technologies in health care should 

be audited periodically and externally. The report of these evaluations should be made public 

and intelligible to ensure transparency. In addition, assessing algorithm errors or deviations 

from human decisions can lead to reinforcement learning and an improvement in the model. 

Safe AI refers to the ability to modify misaligned systems. For this purpose, adversarial training 

procedures should be developed both as part of the training phase and the implementation. 

 

IV.3.2.4. Fairness and inclusiveness 

 

Fairness  

 

Fairness in AI includes concerns for equality and equity by addressing issues such as bias and 

discrimination. Fairness standards can be complex and difficult to define in emergency 

medicine because of disparities across health care systems (eg, in the United States, where 

hospital care protocols and treatment guidelines vary depending on the patient’s insurance 

status), policies, and geographic areas. 
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Inclusiveness  

 

Inclusiveness requires that AI used in health care be tailored to support the broadest possible 

appropriate and equitable use and access, regardless of age, gender, income, ability, ethnicity, 

language spoken, or ability to comprehend. AI should be developed, deployed, and monitored 

by people from diverse disciplines, expertise, backgrounds, and cultures. AI technology should 

be designed and evaluated by those required to use the system including patients (who are 

themselves diverse). 

 

IV.3.3 Transparency, Accountability and Liability 
 

In the interest of patient safety and trust, a certain amount of transparency must be ensured. 

Transparency reflects the extent to which information about an AI system or application is 

available to individuals. Its scope ranges from design decisions to training data, the structure 

of the model, its intended use case, and how and when deployment or end-user decisions 

were made and by whom. Transparency and participation can be increased by the use of open-

source software for the underlying design of an AI technology or by making the source code 

of the software publicly available (eg, Babylon Health). However, there may be some legitime 

issues related to intellectual property protection380. 

The use of AI technologies in health care requires the assignment of responsibility within 

complex systems in which responsibility is distributed among different actors. When medical 

decisions made by AI technologies harm individuals, the responsibility and accountability 

processes must clearly identify the relative roles of manufacturers and clinical users in that 

harm. This is an evolving challenge that remains unsolved in the laws of most countries381. 

Institutions have not only a legal responsibility but also a duty to take responsibility for the 

decisions made by the algorithms they use. To avoid the diffusion of liability, a seamless 

liability model (“collective responsibility”), in which all stakeholders involved in the 

development and deployment of an AI technology are held accountable, can encourage all 

actors to act responsibly and minimize harm. Another proposition made by Maliha et al 382 is 

the creation of a compensation program that does not consider liability but instead assesses 

fees stakeholders. 

Health care practitioners and health systems may be liable for malpractice or negligence. 

Imagine a dispatcher fully relying on an AI application that did not correctly classify the patient 

as high risk of having an OHCA, inducing delay in assistance and eventually death. To what 

extent would the dispatcher be liable for malpractice? So far, tort law protects health 

practitioners from liability as long as they follow the standards of care, regardless of its 

effectiveness in a particular case. AI involvement in emergency medicine has induced a 

previously unregulated paradigm shift. Possible legal outcomes depend on whether the AI 

application’s recommendation follows the standard of care and on the AI accuracy, 

practitioner action, and patient outcome, as proposed by Price et al Table IV.1383. 
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AI 
recommendation 

AI accuracy Practitioner 
action 

Patient 
outcome 

Legal outcome 
(probable) 

Standard of care Correct Follows Good No injury and no liability 

Rejects Bad Injury and liability 

Incorrect (standard 
of care is incorrect) 

Follows Bad Injury but no liability 

Rejects Good No injury and no liability 

Nonstandard of 
care 

Correct (standard   
of care is incorrect) 

Follows Good No injury and no liability 
Rejects Bad Injury but no liability 

Incorrect Follows Bad Injury and liability 

Rejects Good No injury and no liability 

Table IV.1 Examples of potential legal outcomes related to artificial intelligence (AI) use in 
clinical practice383 

 

Clinical malpractice, whether involving AI or not, leading to injury often induces 

compensation, as mentioned in Table IV.1 ED physicians already have higher rates of 

malpractice insurance owing to the higher risk of lawsuits. Does the malpractice insurer 

encompass the use of AI in high-risk fields such as emergency medicine? If so, how do we 

ensure that health care professionals receive the necessary insurance coverage? How can 

health care professionals be defended in court when they are threatened by claims involving 

AI? These questions remain to be answered by the legal community. 

 

IV.3.4 Explainability and Interpretability 
 

Explainability refers to a representation of the mechanisms underlying the operation of an 

algorithm or model, whereas interpretability refers to the meaning of an AI system’s output. 

Laws and regulations such as the European General Data Protection Regulation (GDPR) state 

that automated (or guided) decision-making should come along with the logic involved, as well 

as the significance and the envisaged consequences of such processing for the data subject 

(Article 13{2}). When considering the possible application of emotion detection in voice during 

emergency calls to detect urgent conditions, the transparency and explainability of an AI 

solution is challenging. In emergency situations, the time requirements and explanation 

details collide. Thus, information regarding the outputs of an AI application should be 

meaningful and straightforward. Traditional machine learning models are mostly based on 

techniques that are inherently explainable. In contrast, deep learning models are considered 

as “black boxes” and have a higher computational cost (memory requirements and inference 

time). Explainable AI (XAI) is a recent field of research that attempts to provide solutions to 

confer trust in AI for practitioners384. XAI has additional features that enable better 

interpretability for end users. These features or explanations are provided for the model’s 

process as a whole (global) or for an individual prediction (local). This explanation emerges 

directly from the prediction process (self-explaining) versus processing post hoc385. Depending 

on the stakeholder’s expectations, the explanations and the way they are provided differ. 

There is a lack of consensus about which explanations can be used in different health care 

settings and how to measure them. Most studies have focused on subjective measurements, 

such as user satisfaction, goodness of explanation, acceptance, and trust in the system 386. 

Further studies are required to evaluate the performance of XAI in health care settings. 
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IV.3.5 Autonomy 
 

IV.3.5.1. For emergency health-care providers 

 

The adoption of AI in health care will lead to situations in which decision-making power can 

be, or is at least partially, transferred to machines. Protecting autonomy implies that humans 

remain in control of medical and health care system decisions. The opacity and “black-box” 

problem of an AI system387 can make it difficult for health care professionals to ascertain how 

the system arrived at a decision and how an error may occur. How health care providers can 

be expected to remain in full control of their AI-assisted decisions when interpreting AI 

decisions is opaque even for developers. To what extent should health care providers inform 

patients that they do not fully interpret the recommendation provided by the AI system? AI 

systems should be designed to assist health care providers in making informed decisions. 

Moreover, to account for an AI application, ranking decisions and providing confidence score 

should be mandatory. For example, in the case of an emergency triage score, for each score 

proposed by an AI system, the predictions with highest accuracy should be given along with 

their associated probabilities. 

 

IV.3.5.2. For patients 

 

AI technology should not be used without the patient’s valid informed consent. Owing to the 

patient’s sometimes life-threatening condition, consent based on clear and intelligible 

information is not always feasible. Therefore, the responsibility for making an AI-assisted 

decision has shifted to health care professionals. Informed consent and its exceptions, without 

the use of AI, are equally regulated in the United States and Europe, with a tendency to not 

render practitioners liable for decisions taken in critical situations388. However, these statutory 

exceptions do not protect against litigation for malpractice and lack of informed consent389. 

Should health care practitioners use the AI-guided CDSS when obtaining informed consent is 

not possible? European Union has taken several steps to address the issue of liability when AI 

is involved in clinical decision-making. GDPR Article 13 (2): “[...] the controller shall, at the time 

when personal data are obtained, provide the data subject with the following further 

information necessary to ensure fair and transparent processing: (f) the existence of 

automated decision-making, including profiling, referred to in Article 22 (1) and (4) and, at 

least in those cases, meaningful information about the logic involved, as well as the 

significance and the envisaged consequences of such processing for the data subject.” 

Under Article 22 (1) and (3), “The data subject (i.e., the patient) shall have the right not to be 

subject to a decision based solely on automated processing, including profiling, which 

produces legal effects concerning him or her or similarly significantly affects him or her” unless 

the decision is “based on the data subject’s explicit consent.” However, the GDPR does not 

provide regulations for specific situations such as those mentioned Transparency, 

Accountability, and Liability section, but the European Commission is currently working on a 

liability directive to address and regulate liability for AI use 390,391.   
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IV.3.6 Privacy-Enhanced 
 

Privacy generally refers to norms and practices that help to preserve individual autonomy, 

identity, and dignity. Privacy-related values, such as anonymity, confidentiality, and control, 

should generally guide choices in the design, development, and deployment of AI systems. For 

example, the characteristics of AI and the novel risks associated with privacy protection are 

addressed in the European GDPR. Developing a compatible international framework to 

protect personal information would benefit stakeholders, and particularly patients, involved 

in AI for health care392. Clear information regarding the use of patient data for AI development 

purposes should be made available at any point of the emergency care trajectory. The right to 

erasure (right to be forgotten) as stated by GDPR Article 17 (“the data subject shall have the 

right to obtain from the controller the erasure of personal data concerning him or her without 

undue delay and the controller shall have the obligation to erase personal data without undue 

delay under given conditions”) should be made possible, although it is problematic for AI 

developers. 

 

 

IV.4 Technical challenges  
 

The implementation of systems using artificial intelligence or traditional machine learning in 

emergency services raises several issues on the practical and technical aspects.  

 

V.2.1 Training and data challenges 
 

The quality, diversity and the size of the training dataset is a keystone for trustworthy AI 

applications. Acquiring or producing such datasets often is a time-consuming and expensive task. 

This procedure involves several entities collecting the data, transferring it to a central data 

repository, and fusing it to build a model. If EHR datasets originated from several hospitals were 

to be collected, the processes may violate laws such as the General Data Protection Regulation 

(GDPR) of the European Union, the California Consumer Privacy Act (CCPA), and Health Insurance 

Portability and Accountability Act (HIPAA)393.  

 

The setting up of a regulated and approved health data center or hub aimed at collecting all the 

necessary data is one of the future steps to be taken by the TARPON project. In compliance with 

laws and regulations, this type of center in conjunction with GPUs equipped servers will further 

push the boundaries of retrospective research. However, this type of center will not allow real-

time data collection nor real-time modelling for a given patient and a given AI application. 

 

Cloud-based digital health platforms could, on the other hand, bring together EHR, data 

connectivity, and powerful analytics. In doing so they address strategic issues for providers where 

monolithic EHR-centric application architectures cannot meet the changing demands of patients 

and clinical staff. A legal framework still has to be developed for this type of solution.  

 

Recent work proposes the concept of federated learning (FL)394 as seen on Figure IV.8 to tackle 

privacy and technical issues. FL enables the training of AI models locally (at the location of the 
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data) and only shares the resulting model, which is not reverse-engineerable, with the requesting 

party. Therefore, FL avoids the need to share the private datasets and sensitive data to others, 

preventing exposition to entities conducting studies and enabling data usage for broader 

purposes395. A central entity manages the learning process and distributes the training algorithm 

to each participating data holder. Each participant generates a local model trained with their 

private data and shares the resulting parameters with the central entity. Finally, the central entity 

employs an aggregation algorithm to combine the parameters of all local models into a single 

global model.396 

 

 
Figure IV.8 A centralized-server approach to federated learning (From 397) 

 

 

IV.4.1 Integration Into Routine Clinical Workflow 
 

Once there is enough clinical evidence and a suitable regulatory framework in place, the 

integration of AI into the clinical workflow of an emergency department will encounter the 

final challenges in fully unlocking its potential. 

 

The usability and ergonomics of AI applications is a key component of their integration into 

the clinical environment. Change resistance and full integration into the ED specific clinical 

environment should be considered before any implementation.  

 

The second obstacle stems from the fact that numerous digital healthcare solutions have been 

developed as intricate monolithic systems. While these legacy systems are marketed as 

comprehensive digital healthcare solutions, their complexity and size make them challenging 

to use and integrate with current clinical systems. Additionally, they necessitate a substantial 

commitment from hospitals or healthcare systems interested in implementing the technology, 

as it often requires a complete overhaul of existing information technology systems. These 

factors combined contribute to significant hesitancy and hinder the adoption of artificial 

intelligence technologies398. 
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To mitigate these challenges, AI programs could start as narrower, almost modular, solutions 

focused on specific clinical (for example, fast, accurate triaging in the ED). This would make 

them easier to integrate into existing clinical information technology infrastructure, allowing 

the technology to be adopted more quickly and across a broader range of health care 

environments398.  

 

 

 

IV.5 Conclusion 
 

AI has gained increasing attention owing to its potential advantages in health care and 

especially in emergency medicine for which several applications are currently used. Most ED 

and EMD AI applications are based on NLP and ASR because of the privileged documentation 

medium of free or semistructured text or the practitioner-patient interaction. There are 

limited studies on the types of models used and their validation methods. We noted a lack of 

evidence for symptom checkers with decreasing performance over time. Overall, AI-based 

applications in emergency medicine lack proper derivation, validation, or impact evaluations 

that are performed rigorously and independently. 

Building a trustworthy, safe, and XAI requires a holistic approach that encompasses all 

sociotechnical aspects involved. Human factors such as participatory design and 

multistakeholder approaches are important for building such AI systems. Inclusiveness begins 

at the very beginning of the design step, with the inclusion of stakeholders (including end 

users) from diverse disciplines, expertise, backgrounds, and culture. All possible biases and 

risks should be identified and documented before any initiation, and they should be 

monitored continuously. 

However, when emergency medicine is concerned with the development of AI applications, 

several principles mentioned above collide, and trade-offs must be determined. How can we 

determine the trade-off among interpretability and performance, time, and explainability? 

How can transparency be ensured when intellectual property is involved? How can liability be 

determined when AI harms? 

AI should alleviate the high burden placed on health care professionals, but despite the ethical 

foundations laid, the actors gravitating around health care systems such as legislators, 

regulatory agencies, and insurers are not federated to ensure the safety of stakeholders. 
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V. GENERAL CONCLUSION 
 

 

Our contribution to the TARPON project laid the groundwork for the use of large language 

models for classifying clinical notes. These models, which are becoming increasingly efficient 

(accuracy) and powerful (with respect to database size), have led to a recent paradigm shift in 

NLP. It is likely that these models have not yet demonstrated their full potential in healthcare 

data (and elsewhere). However, unlike web-scraped corpora, health data corpora, especially 

in a language other than English, are difficult to build due to their level of sensitivity and legal 

protection. The weights of models trained on pseudonimized data are also an issue for sharing. 

Open-sourcing pre-trained models on EHR databases has little chance of success under 

current pre-training conditions. Investment in techniques for anonymizing any text from 

medical databases, with perfect performance and therefore 100% specificity, should be an 

absolute priority in the coming years. It will also be necessary to study the impact of data 

anonymization on the performance of classification, relation extraction and NER, since the 

legitimate question of information degradation arises. Another priority is to have sovereign 

models that do not depend on actors from outside the healthcare system and/or outside the 

country or the EU. Using the most efficient tools available today is equivalent to sending 

patient records to the United States. 

 

One of the perspectives of the TARPON project are aimed at studying the impact of drugs on 

the risks of trauma, first at the local level in Bordeaux, then taking into account the 15 

databases hosted by the Bordeaux hospital server. Ultimately, a fully functional system will 

generate signals on certain molecules and their associations thanks to a real time 

implementation of the data related to the trauma and a linkage with the SNDS. As the main 

purpose of TARPON is preventive, a prospective point of view seems to be the most efficient 

option. All the actors involved in the prevention of trauma and accidents in daily life share this 

vision. However, legal, technological and financial barriers need to be overcome. Meanwhile, 

technology related to artificial intelligence will continue to explode exponentially, making it 

even more difficult to align prevention to it. And in the face of resistance to change on the one 

hand, and regular paradigm shifts on the other, an area of overlap must be found in the 

interest of the people. 
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Appendix H Ratios between total number of BAAC (law enforcement) 
injuries and Gustave Eiffel University estimate for MAIS1-2 and 

MAIS3+ on average over 2012-2016 
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Appendix I Form to collect core minimum and optional data on any 
case of Injury (From WHO guidelines5) 
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Appendix K. TARPON annotation grid 
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USING NATURAL LANGUAGE PROCESSING TECHNIQUES TO STUDY AND REGULATE 

EMERGENCY DEPARTMENT FLOWS 
Development and application to the study of trauma risks based on ED venues in Bordeaux. 

 

Abstract : 
The TARPON (Traitement Automatique des Résumés de Passage aux urgences dans le but de créer un 

Observatoire National du traumatisme) project aims to demonstrate the feasibility of setting up a French 

observatory of trauma. Emergency Departments (EDs) generate a large volume of health-related data and 

approximately one-third of ED visits are the result of trauma. Most of the information contained in electronic 

health records is in the form of free text format and manual information extraction is time and resource 

consuming. Artificial Intelligence (AI) and particularly Natural Language Processing (NLP) could optimize this 

process. NLP has seen a recent breakthrough with the introduction of deep learning and in particular the 

Transformer architecture. These Large Language Models (LLMs) have reached the state-of-the-art for most NLP 

tasks and their use for clinical and medical data is promising. 

To explore the potential of Transformers for trauma classification (multi-class), we conducted an evaluation using 

free-text clinical notes from a single large University Hospital (Bordeaux) ED. A total of 69,110 free-text clinical 

notes generated between 2012 and 2019 were manually annotated, with 22,481 identified as traumas. To 

compare the performance of traditional machine learning classifiers and Transformer models, we employed 

different architectures (BERT and GPT-2), varied sizes, pre-training corpora languages and tokenizers (OSCAR, 

Wiki, and CCNET). Additionally, we investigated the impact of incorporating a pre-training step on a domain-

specific corpus. Our findings revealed that bagging algorithms and Light Gradient Boosting exhibited similar 

results to the lower-performing Transformers. Interestingly, we discovered that larger models did not necessarily 

translate to better performance, but the choice of pre-training corpora significantly influenced the outcomes. 

The best results, with an average F1-score of 0.976, were achieved using a GPT-2 architecture with two steps of 

pre-training utilizing a French corpus then with a domain-specific corpus. These results highlight the potential of 

Transformers, particularly when an unsupervised pre-training with a domain-specific corpus is performed, in the 

accurate classification of traumas based on free-text clinical notes. 

Our contribution to the TARPON project laid the groundwork for the use of LLMs for processing clinical notes. 

These models, which are becoming increasingly efficient and powerful, have led to a recent paradigm shift in 

NLP. Most AI applications currently in use in emergency medicine are based on NLP and automatic speech 

recognition because of the privileged documentation medium of free or semistructured text or the practitioner-

patient interaction. However, these applications lack proper derivation, validation, or impact evaluations that 

are performed rigorously and independently. Building a trustworthy, safe, and explainable AI requires a holistic 

approach that encompasses all sociotechnical aspects involved. Human factors such as participatory design and 

multistakeholder approaches are important for building such AI systems. Inclusiveness begins at the very 

beginning of the design step, with the inclusion of stakeholders. All possible biases and risks should be identified 

and documented before any initiation, and they should be monitored continuously. 

However, when emergency medicine is concerned with the development of AI applications, several principles 

mentioned above collide, and trade-offs must be determined. How can we determine the trade-off among 

interpretability and performance, time, and explainability? How can transparency be ensured when intellectual 

property is involved? How can liability be determined when AI harms? 

To ensure the safety of patients, healthcare professionals and researchers, we need to bring together all the 

stakeholders involved in the development of such healthcare tools. Legislators, decision-makers, insurers and 

public authorities have a duty to work together to provide the best possible support for a change that is taking 

place in spite of them. 

 

Keywords : Artificial Intelligence, Natural Language Processing, Transformer, GPT, Emergencies, Traumas, 

Surveillance, Public Health  
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