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Infine, per ultimo perché il più importante, grazie Mansu di credere sempre in me,
di sostenermi in ogni mia scelta, di sopportarmi durante le giornate ansiose, di accom-
pagnarmi in tutti i miei progetti. Senza di te avrei comunque terminato la stesura di
questa tesi -forse-, ma non l’avrei fatto con la stessa serenità d’animo che mi trasmetti
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Résumé

Dans la première partie de cette thèse, nous abordons la tâche non triviale de constru-
ire des surfaces de volatilité implicite sans arbitrage qui puissent être utilisées par les
opérateurs de marché à des fins pratiques. Nous étudions en profondeur les contraintes
d’arbitrage statique pour les portefeuilles d’options et nous les appliquons à des modèles
de volatilité implicite connus. Tout d’abord, nous caractérisons complètement l’absence
d’arbitrage Butterfly dans le modèle SVI de Gatheral, et nous étudions le cas de cer-
tains modèles sous-SVI à 3 paramètres, tels que le SVI symétrique, le SVI Vanishing
Upward/Downward et le SSVI. Nous reconsidérons ensuite ce dernier modèle, étendu
à plusieurs maturités, et nous combinons les conditions d’absence d’arbitrage Butterfly
ainsi identifiées avec les conditions d’absence d’arbitrage Calendar Spread, déjà connues
grâce à [Hendriks et Martini, The extended SSVI volatility surface, Journal of Comp
Finance, 2019]. En conséquence, nous identifions un algorithme de calibration globale
garantissant l’absence d’arbitrage pour le modèle eSSVI.

Dans un second temps, nous étudions la caractérisation d’une notion plus faible
d’absence d’arbitrage Butterfly (que nous baptisons “weak no arbitrage condition”),
c’est-à-dire les deux conditions de monotonie des fonctions d1 et d2 de la formule de
Black-Scholes, identifiées par [Fukasawa, The normalizing transformation of the implied
volatility smile, Math Fin, 2012]. Nous nous plaçons dans le cadre des smiles paramétrés
en delta (suivant la convention typique sur les marchés de taux de change), et, comme
résultat, nous caractérisons l’ensemble des smiles de volatilité satisfaisant cette condition
faible de non arbitrage statique.

Enfin, en nous basant sur la remarque – simple mais, à notre connaissance, pas encore
exploitée – que les options Call peuvent être vues comme des Calls écrits sur d’autres
Calls, nous étudions les propriétés dynamiques de ces contrats.

Dans la deuxième partie, nous considérons le problème de la quantification du risque
de contrepartie pour les portefeuilles d’options auquel les Chambres de compensation
sont confrontées quotidiennement. Nous identifions une nouvelle formule model-free
pour la VaR à court terme des portefeuilles d’options qui montre d’avoir des meilleurs
performances que celles de l’approche classique de la Filtered Historical Simulation dans
nos tests numériques. Enfin, nous considérons la notion d’Expected Shortfall, dont nous
comparons différents types de mesures de backtesting.
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Abstract

In the first part of this thesis we address the non trivial task of building arbitrage-free im-
plied volatility surfaces which could be used by market operators for practical purposes.
We study in depth static arbitrage constraints for option portfolios and apply them to
notorious implied volatility models. We firstly fully characterize the absence of Butterfly
arbitrage in the SVI model by Gatheral, and study the case of some 3-parameter sub-
SVIs models, such as the Symmetric SVI, the Vanishing Upward/Downward SVI, and
SSVI. We then reconsider the latter model, extended to multiple maturity slices, and
combine the so identified conditions of no Butterfly arbitrage with the already known
conditions of no Calendar Spread arbitrage by [Hendriks and Martini, The extended
SSVI volatility surface, Journal of Comp Finance, 2019]. As a result, we identify a
global calibration algorithm for the eSSVI model ensuring the absence of arbitrage.

Secondly, we study the characterization of a weaker notion of absence of Butter-
fly arbitrage (which we call “weak no arbitrage condition”), i.e. the two monotonicity
requirements of the functions d1 and d2 in the Black-Scholes formula, identified by [Fuka-
sawa, The normalizing transformation of the implied volatility smile, Math Fin, 2012].
We consider the framework of smiles parameterized in delta (following the typical con-
vention on FX markets), and, as a result, we characterize the set of volatility smiles
satisfying this weak condition of no static arbitrage.

Finally, based on the – simple but, to our knowledge, not yet exploited – remark
that Call options can be seen as Calls written on other Calls, we study the dynamic
properties of these contracts.

In the second part, we consider the problem of quantifying the counterparty risk for
option portfolios that Central Clearing Counterparties face daily. We identify a new
model-free formula for the short-term VaR of option portfolios which performs better
than the classical approach of Filtered Historical Simulation in our numerical tests.
Finally, we look at the notion of Expected Shortfall, and compare different types of
backtesting measures.
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α
)] > EH0 [G(X, ÊS
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Chapter 1

Introduction

The two general objectives of this thesis are:

� to study the problem of building implied volatility models that are simultane-
ously sufficiently handy and easy to apply in practice and compatible with the
no-arbitrage constraints, especially considering the point of view of Central Clear-
ing Counterparty houses (CCP);

� to directly address the problem of quantifying and backtesting the risk in option
portfolios faced by CCPs.

These large institutions play the role of a central node in a financial network, providing
the network participants protection against the so-called contagion risk, that is the
propagation of the shock in the case of default of one of the members of the network.
In order to guarantee such a protection, CCPs require initial margins to their Clearing
Members, which are computed based on mathematical methods for risk management
of financial portfolios and rely on the capability of generating future market scenarios
that are sufficiently rich and diverse, while still being compatible with the fundamental
requirement of absence of arbitrage opportunities on the market. Mathematically, this
principle translates into the martingale property for the admissible stochastic models
and it results into both static, that is to say at a given point in time, and dynamic, that
is at different subsequent dates, no arbitrage conditions.

In particular for option portfolios, the surface of vanilla option prices on a financial
asset, parameterized by the option maturity and the strike price, is one of the funda-
mental objects to work with. Equivalently, one can work with the implied volatility
surface defined by such prices. Market operators on options hugely work with implied
volatility since it allows to normalize prices among different underliers or different daily
quotations on the same underlier. Implied volatility models have then the fundamental
role to describe option prices by either a volatility smile (i.e. for a fixed maturity) or
a whole surface indexed by the strike and the maturity. In practice, these models are
used to both calibrate market prices and to interpolate/extrapolate prices in illiquid
markets, with the additional benefit for parametric models of squeezing all the market

1



1. Introduction

information into a few smile/surface parameters. In particular, implied volatility models
are used with two possible main objectives:

� The calibrated surface can be used as input in the calibration of diffusion models
such as Local Stochastic Volatility;

� The history of calibrated parameters is a way to encode the history of past option
prices that demands only little storage capacity. The time series of calibrated
parameters can then be used to inspect past option dynamics by looking at the
variations of parameters, or to predict future moves or future price distributions
via evolution models (starting from the basic Filtered Historical Simulation).

In order to accomplish such tasks, an implied volatility model has to satisfy the no
arbitrage requirements.

1.1 Static Arbitrage-free representation and
parametrization of implied volatility surfaces

When calibrating a surface of prices at a fixed point in time, the requirements which must
be satisfied are of static type. Assuming there is a perfect market for the underlying
asset and for the Call options, with short-selling allowed, and that there is no static
buy-sell strategy involving the underlying asset and a finite set of Call options with a
profit and loss which is strictly positive, the requirements of no static arbitrage can be
classified into two categories: looking at the surface for a fixed slice, i.e., at a fixed
maturity, prices must not present Butterfly arbitrages; looking at the relation among
different slices, there must not be Calendar Spread arbitrages. The former arbitrage
lives in the strike dimension; to be avoided, Call prices with fixed maturity T must
be non-increasing and convex functions of the strike, bounded between the discounted
(by the discount factor D0(T )) Call payoff evaluated at the forward value F0(T ), and
the discounted forward. Observe that if the third property is satisfied, then the second
one implies the first one because an increasing convex function cannot be bounded.
Under the assumption of deterministic interest rates, the latter arbitrage arises when a
normalized (by the discounted forward) Call with smaller maturity is quoted at a higher
price than a normalized Call with larger maturity and same moneyness, so that the
requirement is that normalized Call prices with fixed moneyness are a non-decreasing
function of the time-to-maturity. We can sum up the requirements for no static arbitrage
as in Table 1.1.

Among all implied volatility models, the most well-known and used ones are the
Stochastic Volatility Inspired (SVI) model [33] for equity markets and the Stochastic
Alpha Beta Rho (SABR) model [43] for rate markets. However, these two models do
not automatically guarantee the absence of arbitrage and, so far, there were no explicit
sufficient conditions on parameters for no arbitrage, even though the formulation of
the models is very simple. The difficulty is hidden in the non-linear conditions for no
arbitrage in terms of the implied volatility.
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Type of arbitrage Axis Requirement on normalized Call prices

Butterfly
Fixed
maturity

In [(1 − k)+, 1]
Non-increasing in moneyness

Convex in moneyness

Calendar Spread Fixed moneyness Non-decreasing in time-to-maturity

Table 1.1: Requirements on normalized Call prices for no static arbitrage.

1.1.1 No arbitrage SVI

In Chapter 3 we study the SVI model, which is a model for the implied total variance
(meaning, the square of the implied volatility times the time-to-maturity), and which
was firstly proposed by Jim Gatheral in 2004:

SVI(k) = a+ b(ρ(k −m) +
√

(k −m)2 + σ2)

where k is the log-forward moneyness, and (a, b, ρ,m, σ) parameters. This formula
quickly became the benchmark at least on Equity markets, due to its ability to pro-
duce very good fits. Fabien Le Floch (head of research at Calypso) has a blog article on
a situation where SVI does not fit, which is a good indicator of how rare such a situation
is in practice. The practitioner literature on SVI and its variants is plentiful ([25], [45],
[58], [11], [46]), and SVI is now part of every reference textbook on volatility models
([34], [39]).

In 2009, the whitepaper on the Quasi-explicit calibration of Gatheral’s SVI ([26],
also part of Stefano De Marco PHD thesis) proposed a simple trick to disambiguate the
calibration of SVI, and became itself a reference calibration algorithm.

A remarkable fact is that, despite the simplicity of the formula, no Butterfly arbitrage
conditions for a SVI smile remained up to now too intricate. So for instance in the
algorithm [26] there is no guarantee that the calibrated parameter will be arbitrage-free.
An interesting practical approach is provided in [29], where the no arbitrage constraints
are expressed as a discretized set of Durrleman conditions and encoded as non-linear
constraints in the optimizer; stricto sensu there also, there is no guarantee though that
the calibrated parameter will be arbitrage-free. In this chapter, we solve this long-
standing issue, fully characterizing the no Butterfly arbitrage for SVI smiles.

To do so, we deeply study the beautiful result by Fukasawa in [32], which states that
the inverse functions of the −d1 and −d2 coefficients of the Black-Scholes formula should
be increasing under no Butterfly arbitrage. In the following we will call these conditions
the Fukasawa weak conditions of no (Butterfly) arbitrage.

Finally, it turns out that the fully explicit domain of the SVI parameters for which no
Butterfly arbitrage holds is straightforward to code, resorting to root finding numerical
routines (like the Brent algorithm) for the evaluation of the thresholds characterized in
the computations. There are then 2 byproducts of this parametrization of the domain
of high practical interest:
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� a quick check routine that a given SVI parameter lies in the domain or not, which
disentangles between 4 possible situations of arbitrage;

� a calibration algorithm, using any least-squares type objective function and a min-
imizer able to handle bounds.

Observe that the Calendar Spread arbitrage is not treated in this chapter, but it is
reconsidered for a sub-SVI model in Chapter 5.

1.1.2 Explicit no arbitrage domain for sub-SVIs via
reparametrization

From the SVI model, many sub-SVIs (meaning SVI with some frozen parameters, or
re-parametrizations of SVI with less than 5 parameters) can be developed and studied.
One among all, the Surface SVI (SSVI) model introduced in [36], with implied total
variance of the form

ω(k, T ) =
θ(T )

2

(
1 + ρφ(T )k +

√
(φ(T )k + ρ)2 + (1 − ρ2)

)
. (1.1)

SVI is known to fit very well a large set of market data, and the challenging question
of characterizing no Butterfly arbitrage in SVI is solved in Chapter 3 with a practical
parametrization of the no arbitrage domain, leading to an efficient implementation of
a calibration algorithm ensuring no Butterfly arbitrage. So why would one care about
these sub-SVIs?

In fact, for several reasons. The first one is that SVI might be too rich in the sense
that an excellent fit could also be achieved in most cases by sub-SVIs, with the additional
benefit to stabilize the variation of the calibrated optimal parameter from one day to
another, or between different maturity slices. A good theoretical reason to suspect this
follows from considering SVI smiles with ρ = 0 and m ̸= 0: indeed the correspondence
with stochastic volatility models dictates that models with a zero correlation should yield
symmetric smiles, which implies m = 0; in this sense SVI smiles with ρ = 0 and m ̸= 0
should correspond to smiles which are not associated to stochastic volatility models, and
are not very likely to be met in real-life market data. In this direction, one could also
note that the result by Gatheral and Jacquier [35] that the Long Term Heston smile goes
to SVI shows in fact that it goes to a sub-SVI, and in particular to an SSVI; indeed the
SVI parameters are given by

a =
θ

2
(1 − ρ2), b =

θφ

2
, ρ = ρ̃, m = − ρ

φ
, σ =

√
1 − ρ2

φ
,

so that the long-term smile depends eventually only on the 3 parameters (θ, ρ, φ), with
the constraint ρ = 0 =⇒ m = 0 enforced.

The second reason is that it is difficult to obtain no Calendar Spread arbitrage
conditions on two SVI smiles attached to two different maturities, as discussed in [36].
This has been achieved for smiles corresponding to SSVI parameters, which are sub-SVI
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1.1. Static Arbitrage-free representation and parametrization of IV surfaces

ones with 3 parameters instead of 5, as shown in [44]. So in order to obtain tractable
no arbitrage SVI surfaces, it may be required in practice to restrict the set of SVI
parameters. Note that, in relation to the first point above, given the poor ability of
SSVI to fit especially on the short term, the right balance between fitting ability and
tractability might lie in-between SVI and SSVI, in some sub-SVI with 4 parameters.

Another hope is that there might be simplifications, due to the special structure of
the different sub-SVIs under study, in the characterization of the no Butterfly arbitrage
domain as described in Chapter 3, where it requires: the computation of the boundary
of the Fukasawa domain, corresponding to the weak necessary condition of no arbitrage
obtained by Fukasawa [32], via some root-finding algorithm; and two minimizations to
get the lower bound of the no arbitrage domain for the SVI parameter σ.

In Chapter 4 we study in detail the following sub-SVIs:

1. The Vanishing SVI where a = 0 and ρ = ±1, with its two flavors Vanishing upward
(ρ = 1), and Vanishing downward (ρ = −1); the second family may correspond to
real-life smiles and is given by

w(k) = b
(
−(k −m) +

√
(k −m)2 + σ2

)
;

2. The Symmetric SVI where ρ = m = 0, so that

w(k) = a+ b
√
k2 + σ2;

3. SSVI (slices) given by

w(k) =
θ

2

(
1 + ρφk +

√
(φk + ρ)2 + 1 − ρ2

)
.

For all those sub-SVIs, the objective is to find out an explicit parametrization for
the Fukasawa domain and, when possible, of the full no arbitrage domain. Up to now
and to the best of our knowledge, the only known volatility model (meaning: a formula
for the implied volatility) with an explicit no arbitrage domain was the SSVI slice, with
the (restrictive) conditions obtained by Gatheral and Jacquier [36], and extended to the
characterization of the full no arbitrage domain in the decorrelated case in [41]. To
this extent, the present work is a big leap forward, since we obtain 3 new families: the
Vanishing Downward/Upward one, the Symmetric one, and the correlated SSVI, with
explicit no arbitrage domains (a single-variable boundary function has to be computed
numerically for SSVI).

The studied sub-SVIs are 3 parameters SVI; as discussed above, 3 parameters may
be too little to produce a good fit on market data, so we would say that the interest
here is essentially of academic nature: we hope that those families can help in the inves-
tigation of the theoretical properties of volatility smiles, or come as handy illustrations
of those properties. Note though that the Vanishing Downward SVI could have a prac-
tical application to the case of decreasing market smiles which are often encountered
for not-too-short maturities. Also, SSVI is used in practice; our investigation yields a
parametrization of the SSVI slices satisfying the no Butterfly arbitrage property which
is much more effective than the generic one presented in Chapter 3.
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1.1.3 No arbitrage global parametrization for the eSSVI volatility
surface

In Chapter 4 one of the studied sub-SVIs is SSVI, which has 3 parameters (θ, ρ, φ) for
each slice k → ω(k):

� θ is the At-The-Money (ATM) total implied variance;

� ρ is the correlation parameter, proportional to the slope of the smile at the ATM
point;

� φ is proportional to the ATM curvature.

In [36], the authors formulated conditions for the surface to be arbitrage-free, in
particular they found sufficient no Butterfly arbitrage conditions and, requiring the
correlation parameter to be constant, no Calendar Spread arbitrage conditions. For what
concerns Butterfly arbitrage, in Chapter 4 we already applied results obtained for SVI
in Chapter 3 to SSVI and found the no arbitrage domain in terms of parameters, whose
computation requires the minimization of a function depending on the two parameters
θ and ρ. In order to simplify such domain and lighten algorithm computations, we
reparametrized the no arbitrage domain, finally finding a domain that is a product of
intervals for fixed ρ. The new domain only requires a root finding algorithm depending
on the sole parameter ρ.

Even though these surfaces perform well and are of easy implementation, their cal-
ibration performances are not always satisfactory in practice because of the constraint
of the constant correlation parameter. Hendriks and Martini [44] managed to extend
the model by formulating no Calendar Spread conditions between two SSVI slices with
different ρs and generalized the conditions to a continuous surface, giving birth to the
extended SSVI (eSSVI). The quantitative research team at Zeliade Systems has then
proposed a convenient way to robustly calibrate eSSVI surfaces in [20]. This calibration
procedure can be summarized in a nutshell as follows:

1. Consider the SSVI model Equation (1.1) by Gatheral and Jacquier to model im-
plied variance slices at fixed maturity;

2. Associate to each available option maturity on the market a slice (θ, ρ, φ) of SSVI
parameters (not the same parameters for all slices), fulfilling the sufficient no But-
terfly arbitrage condition obtained by Gatheral and Jacquier ([36] Theorem 4.2);

3. Calibrate the SSVI parameters of each slice sequentially with respect to option
maturities, in a way that ensures the absence of Calendar Spread arbitrage as
formulated by Hendriks and Martini ([44] Proposition 3.5);

4. Interpolate/extrapolate linearly the parameters; it can be proven that this even-
tually produces an arbitrage-free surface.
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1.1. Static Arbitrage-free representation and parametrization of IV surfaces

All in all, such a calibrated eSSVI is parametrized by a set of 3 × N parameters
where N is the set of maturities to which the model is calibrated, while SSVI would
have 2 ×N + 1 parameters.

The eSSVI calibration takes as underlying hypothesis the market availability of
strikes and volatilities near the ATM point for each slice, since total variance is con-
strained to go through these points. The methodology works efficiently when market is
very liquid, but when it is not the case, approximations of the ATM volatility could cause
discrepancies between the calibrated model and real data. Furthermore, the arbitrage-
free bounds are re-written based on a first order approximation, and they may not
guarantee absence of arbitrage in case of illiquid markets.

These observations naturally bring the necessity of a more generic and global pro-
cedure, which is attained in Chapter 5 with a new calibration algorithm, based on a
re-parametrization of the no-arbitrage domain of eSSVI as a product of intervals, suit-
able to be crunched by an optimization algorithm. Parameters calibration is no more
performed sequentially slice by slice but globally on all slices. Hence, this is why we dub
Global eSSVI the new model.

Figure 1.1 shows an example of the calibration performances of the Global eSSVI
for the TA35 index computed by the Tel Aviv Stock Exchange. The global algorithm
guarantees that, for every maturity, the eSSVI smile is Butterfly arbitrage-free and that
there is no Calendar Spread arbitrage between different maturities. These arbitrage con-
straints together with the low market data liquidity entail that the first smile calibrates
well essentially only the ATM point, while other maturities are overall well fitted.

1.1.4 Smiles in delta

So far, we have worked in the moneyness dimension for smiles, so that all no arbitrage
conditions for the implied volatility have been stated using the moneyness notation.
Indeed, the target SVI models are particularly used in equity markets, where all quotes
are expressed via strike. However, this is not the case for FX markets, where OTC options
are quoted in delta through the At-The-Money volatility, and risk reversal and strangle
prices for different delta points. Furthermore, on Equity and Commodity markets, many
trading firms analyze the risk of options portfolios at a given maturity on a grid of deltas
instead of a grid of strikes. This fundamentally relates to the high-view of the risk as
being driven at first order by a delta risk and a vega risk, which underpins in particular
CME’s SPAN methodology, which, although dated back to 1988, is still widely used in
CCPs.

From this perspective, a first immediate question is whether the transformation of a
smile σ̂ in the strike space to a smile σ in the delta space is well-defined. In Chapter 6 we
show that it is the case under the assumption that the map k → δ(k) := N(d1(k, σ̂(k))

is decreasing, where d1,2 = − k
σ̂(k)

√
T
± σ̂(k)

√
T

2 denotes the classical quantity in the Black-

Scholes formula, N the Gaussian cumulative density function, and k the log-forward
moneyness. Thanks to a result of Fukasawa [32], we know that this property is fulfilled
by smiles with no Butterfly arbitrage. Given the fact that a smile has no Butterfly
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Figure 1.1: An example of Global eSSVI performances: calibrated
implied volatility against real implied volatility for the Tel Aviv
Stock Exchange index TA35 on the date 2021/10/26. Note the
extremely short first maturity (2 days).

arbitrage if and only if the symmetrical smile (in log forward-moneyness) has no Butterfly
arbitrage, such smiles will also have the property that the map k → δ̄(k) := N(d2(k, σ̂(k))
is decreasing, since d1(k, σ̂(−k)) equals −d2(−k, σ̂(−k)).

The possibility of transforming a smile in the delta space into a smile in the strike
space is also studied in this chapter, and a characterization of such smiles is obtained.
This result sustains the widespread practice of the industry to calibrate smiles in the
delta space to recover smiles in the strike space used to determine margins of options
in strike. The chapter does not look at the question of reconstructing a smile in strike
from the ATM, Butterfly and risk reversal market quotes in delta, which is sustained in
[60]. The two main differences are that we work with full smiles in delta instead of the
standard FX market quotes, and also that we account for no Butterfly arbitrage.

The second immediate question is how the no Butterfly arbitrage condition translates
in the delta space. Surprisingly, this question is essentially an open one. Some results
on the absence of arbitrage for implied volatility surfaces in the delta space can be
found in [51]. We do not address the no Butterfly arbitrage in delta in this work, but
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we consider instead the weaker condition obtained by Fukasawa that the two mappings
k → d1,2(k, σ̂(k)) are decreasing, and obtain an explicit parametrization of the smiles in
delta fulfilling those conditions. This family can be useful in practice, since such smiles
are expected to be not too far from fully (strongly) no arbitrage ones. Practitioners
wishing to calibrate arbitrage-free smiles should then take into consideration such a
parametrization since every arbitrage-free smile in delta can be represented through it.

From a theoretical view point, another take on our work is to consider the open ques-
tion of parametrizing all the smiles with no Butterfly arbitrage. Such a parametrization
would allow practitioners to calibrate implied volatility smiles with the certainty of ful-
filling no Butterfly arbitrage and without range restrictions coming from the choice of a
particular model (like Gatheral’s SVI, see for example [34]). This question is probably
a difficult one, and our work can be seen as a solution to the same question for a notion
of weak arbitrage, through a move to the delta space. This could suggest that there is
some hope to solve also the initial question in the delta space.

1.1.5 Options are also options on options: how to smile with
Black-Scholes

Up to now, we have treated options as contracts written on an underlier, which could
be an equity stock as in the SVI case, or a FX rate in the delta representation or
a commodity, a rate, and so on. In Chapter 7 we rather exploit the remark that a
(European-type) Call option with a strike L > K on an underlier S can be also seen as a
Call option with a strike L−K written on the Call with strike K and the same maturity
T ; indeed when L > K it holds for every value of the underlier S(T ) at maturity:

(S(T ) − L)+ =
(
(S(T ) −K)+ − (L−K)

)
+
.

Under assumptions of perfect market (so that every asset has a single price, with no
bid-asks) and no static arbitrage, this entails that the price (say, at time 0) of the two
assets is the same. Denoting by C(S,L) the price of standard Calls with strike L (the
maturity T is the same for all the contracts), and ĈK(·, ⋆) the relative pricing function
on the Call on Call contract, it means that the following equality holds:

C(S,L) = ĈK
(
C(S,K), L−K

)
since the underlier price of the latter contract is the price of the Call with strike K.

This has no relation with the practice of the early days of equity-to-credit consisting
in modeling the price of a stock as a Call option on the value of the underlying company,
which led in turn to the fact that Calls on the stock can be valued with an option-on-
option formula, as obtained by Merton in [55].

Here we study the relations between the price of options on options and the initial
Call or Put prices at other strikes, finding that Calls are Calls on Calls, and Puts are
Calls on Puts. Furthermore, the relative Call on Call pricing function leads to a natural
transformation on the space of normalized (by the value of the underlier) Call prices as
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functions of the moneyness, that we call the Tehranchi space, given by

Tkc(x) :=
c
(
k + c(k)x

)
c(k)

where k = K
S and c is the normalized Call price. The derivative at zero with respect

to the moneyness of Tkc is in general strictly larger than −1, which corresponds to the
fact that the underlier C(S,K) vanishes with a positive probability at maturity. For
this reason, we extend the family of transformations Tk to 2-parameter transformations,
which allows to get a derivative at zero equal to −1.

These 2-parameter transformations allow to generate new close pricing formulas for
options. Furthermore, the transformation that guarantees a derivative equal to −1 at
the origin is somehow linked to the inversion of the volatility smile in the moneyness
space. Indeed, applying twice this inversion in the case where the underlier may vanish
at maturity provides a pricing function on an underlier which does not vanish at maturity
and allows to define lifted Call on Call prices. We then study both Calls on Calls and
lifted Calls on Calls, also looking at the properties of their implied volatility.

1.2 Risk metrics and margin computations for CCPs

The counterparty risk for exchange trades is generally mitigated thanks to CCPs, which
take the role of the counterparty for each position: the CCP becomes the seller in front
of the buyer and the buyer in front of the seller. In case of default of a clearing member,
the CCP replaces the member until the defaulting member’s positions are distributed
among the surviving members through a liquidation of the portfolio performed through
brokers and/or through an auction. The 2008 financial crisis entailed a strengthening
of the regulations for CCPs, requiring solid risk frameworks in order to achieve the task
of covering potential losses incurred by a default situation. As an example, the EMIR
regulation lists the principles that a CCP must adopt to safely operate. In particular, in
order to cover for the possible losses due to the liquidation of the defaulting member’s
portfolio, the CCP requires from its members to deposit collateral under the form of
initial margin, of additional margins to cover liquidity and concentration or other specific
risks, and of default fund contributions.

In this thesis, we focus on the initial margin, which is supposed to cover for the
losses incurred in the case of liquidation of a given portfolio in normal market conditions.
Article 41 of [22] requires CCPs to collect margins from the parties entering a transaction
in a measure to be sufficient to cover the CCP potential exposures while liquidating the
position. The margin must also be sufficient to cover at least 99.5% of these exposures in
the case of Over-The-Counter (OTC) derivatives, and 99% for other financial products
over the Margin Period Of Risk (MPOR), as recommended in article 24 of [23]. The
MPOR is the required period for the portfolio liquidation, usually ranging between 2
days (for standard products) and 5 days (for OTC derivatives).

Therefore, CCPs face significant problems in calculating provisions: margins on mem-
ber portfolios are computed based on the evaluation of the loss into which the CCP
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could incur in case of the member’s default, while liquidating its positions. The margin
modeling is not universally specified among CCPs and there is not an industry standard,
especially for complex products such as options. In this thesis we try to identify a simple
and robust methodology which can be adopted by CCPs to margin option portfolios.

1.2.1 A closed form model-free approximation for the Initial Margin
of option portfolios

Since the drafting of the EMIR regulation, CCPs have exploited different ways to com-
pute margins for option portfolios. A first notorious methodology for complex portfolios
is the SPAN algorithm of CME Group, which simulates joint risk scenarios for the un-
derlier and the implied volatility and infers a conservative margin from these scenarios.
However, this methodology has been overcome by more refined ones, which in most
cases apply a Filtered Historical Simulation (FHS)-type algorithm [8] to selected risk
factors in order to generate scenarios consistent with historical moves (examples are the
SPAN2 by CME and the IRM2 by ICE). FHS is widely used among CCPs but its use on
option markets is tricky and questionable. In particular, a straightforward use of FHS
breaks down the structural relationships between risk factors, possibly generating highly
implausible scenarios.

Different techniques rather than FHS for options margining have been studied in
theory and eventually implemented. Some of these aim at reducing procyclicality, i.e.
the excessive fluctuation of margins. As an example, the procyclicality control model
by Wong and Zhang from OCC [67] relies on a scaling factor adjusting the dynamics
of the ATM IV log returns to be higher during low-volatility periods and lower dur-
ing high-volatility periods. More academic papers such as [24, 18] also look at the
issue of computing option initial margins, additionally ensuring the absence of arbitrage
for the generated scenarios. Indeed, in [24] the authors describe a generic algorithm
which penalizes arbitrageable scenarios (in a static sense), which can be upgraded to
any scenario generation algorithm already in production. In particular, the authors
apply their methodology to Generative Adversarial Networks to simulate arbitrage-free
implied volatility surfaces. In [18], an affine factor model for normalized Call option
prices is defined and then calibrated, minimizing dynamic and static arbitrages. Sce-
narios are subsequently generated by neural SDEs which constrain the paths to live in
the polytope defined by the no static arbitrage conditions. In this panorama, it is worth
including the works by Bergeron at al. [10, 59] on the application of Variational Au-
toencoders used to reconstruct missing data on implied volatility surfaces (eventually
with no arbitrage), and which can be tweaked to simulate scenarios based on historical
movements.

In Chapter 8 we have two main objectives: the first one is to provide a practical
and concrete panorama in options margining; the second, more ambitious, is to design
a closed formula for the VaR of option portfolios, which is easy to understand and to
implement. Specifically, we compute a short-term VaR formula which is model-free and
coincides with an approximation of the VaR in Stochastic Volatility models and with
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Figure 1.2: Margins obtained with the FHS algorithm (blue) and the short-term model-
free VaR (orange), for a calendar spread ATM 1M-6M portfolio (left) and a Butterfly
spread 3M with moneyness (0.9, 1, 1.1) portfolio (right).

the exact VaR in the particular affine factor model for normalized Call prices proposed
in [18] as the neural-SDE model. For the latter model, we show that it is actually
possible to directly infer the VaR formula without any need of simulating scenarios, so
that once the parameters of the model are calibrated, these can be plugged into a quasi-
explicit formula to obtain the required margin. Also, considering the limit for small time
steps, the formula becomes closed and it has the same form of our short-term model-free
formula. Testing the short-term model-free formula, we obtain well-behaved margins
which actually outperform the classic FHS ones in terms of regularity and adaptation
to the market current behavior. For these reasons, we believe that the suggested short-
term model-free formula could lay the foundations to a practical model-free formula for
options margining.

Figure 1.2 compares margins obtained using FHS and margins from the short-term
model-free formula. The tested portfolios are a calendar spread ATM 1M-6M and a
Butterfly spread 3M with moneyness (0.9, 1, 1.1), both on the S&P500, throughout year
2019. While the FHS VaR presents fewer breaches, it is much more irregular and it seems
to move without a clear link to market patterns, compared to the short-term model-free
VaR.

1.2.2 Backtesting Expected Shortfall

Article 49 of [23] is dedicated to the backtesting procedures that a CCP shall adopt in
order to assess its margin coverage. Backtests are required to be performed daily and
the coverage shall meet the levels identified by the EMIR regulation. For this reason,
backtests need to be theoretically well-posed in order to output significant results.
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CCPs compute margins via two possible metrics: a Value-at-Risk (VaR) or an Ex-
pected Shortfall (ES). While the former metric has several simple and robust statistical
tests such as the Kupiec and Christoffersen tests, the latter metric lacks of a clear back-
testing test, and this is one of the reasons why CCPs may prefer to use a VaR metric
rather than an ES one. Several authors have addressed their studies to the ES backtest-
ing, resulting in a lot of papers, each one claiming the efficacy of its test. In Chapter 9
we survey and compare the most common test statistics, in particular the Moldenhauer
and Pitera test [57] and the Z2, the Z3 and the minimally biased tests by Acerbi and
Szekely [1, 3].
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Chapter 2

Introduction (français)

Les deux objectifs généraux de cette thèse sont les suivants:

� étudier le problème de la construction de modèles de volatilité implicite qui soient
simultanément suffisamment maniables et faciles à appliquer en pratique et com-
patibles avec les contraintes de non-arbitrage, en particulier en considérant le point
de vue des chambres de compensation (CCP);

� aborder directement le problème de quantification et de backtesting du risque dans
les portefeuilles d’options auxquels sont confrontées les CCP.

Ces grandes institutions jouent le rôle d’un noeud central dans un réseau financier,
fournissant aux participants du réseau une protection contre le risque de contagion, c’est-
à-dire la propagation du choc en cas de défaut de l’un des membres du réseau. Pour
garantir une telle protection, les CCP exigent des marges initiales à leurs membres de
compensation, qui sont calculées sur la base de méthodes mathématiques de gestion des
risques des portefeuilles financiers et reposent sur la capacité à générer des scénarios de
marché futurs suffisamment riches et diversifiés, tout en étant compatibles avec l’exigence
fondamentale d’absence d’opportunités d’arbitrage sur le marché. Mathématiquement,
ce principe se traduit par la propriété de martingale pour les modèles stochastiques
admissibles et se traduit par des conditions d’absence d’arbitrage à la fois statiques, c’est-
à-dire à un moment donné, et dynamiques, c’est-à-dire à différentes dates ultérieures.

En particulier pour les portefeuilles d’options, la surface des prix d’options vanille
sur un actif financier, paramétrée par la maturité de l’option et le prix d’exercice, est
l’un des objets fondamentaux à traiter. De manière équivalente, on peut travailler avec
la surface de volatilité implicite définie par ces prix. Les opérateurs de marché sur les
options travaillent énormément avec la volatilité implicite car elle permet de normaliser
les prix entre différents sous-jacents ou différentes cotations quotidiennes sur le même
sous-jacent. Les modèles de volatilité implicite ont alors le rôle fondamental décrire les
prix des options par un smile de volatilité (c’est-à-dire pour une maturité fixe) ou une
surface entière indexée par le prix d’exercice et la maturité. En pratique, ces modèles
sont utilisés à la fois pour calibrer les prix de marché et pour interpoler/extrapoler
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les prix dans des marchés illiquides, avec l’avantage supplémentaire pour les modèles
paramétriques de condenser toutes les informations de marché en quelques paramètres
de smile/surface. En particulier, les modèles de volatilité implicite sont utilisés avec
deux objectifs principaux possibles:

� La surface calibrée peut être utilisée en entrée dans la calibration de modèles de
diffusion tels que la Volatilité Stochastique Locale;

� L’historique des paramètres calibrés est une manière d’encoder l’historique des
prix d’options passés qui demande seulement peu de capacité de stockage. La série
chronologique des paramètres calibrés peut alors être utilisée pour inspecter la
dynamique des options passées en observant les variations des paramètres, ou pour
prédire les mouvements futurs ou les distributions de prix futures via des modèles
d’évolution (en commençant par la Simulation Historique Filtrée de base).

Pour accomplir de telles tâches, un modèle de volatilité implicite doit satisfaire aux
exigences de non-arbitrage.

2.1 Représentation statique sans arbitrage et
paramétrisation des surfaces de volatilité implicite

Lors de la calibration d’une surface de prix à un moment fixe, les exigences qui doivent
être satisfaites sont de type statique. En supposant qu’il existe un marché parfait pour
l’actif sous-jacent et pour les options d’achat, avec la possibilité de vente à découvert,
et qu’il n’y a pas de stratégie d’achat-vente statique impliquant l’actif sous-jacent et un
ensemble fini d’options d’achat avec un profit et une perte strictement positifs, les exi-
gences de non-arbitrage statique peuvent être classées en deux catégories: en examinant
la surface pour une tranche fixe, c’est-à-dire à une maturité fixe, les prix ne doivent
pas présenter d’arbitrages de type Butterfly; en examinant la relation entre différentes
tranches, il ne doit pas y avoir d’arbitrages de type Calendar Spread. L’arbitrage
précédent vit dans la dimension du prix d’exercice; pour être évité, les prix des options
d’achat avec une maturité fixe T doivent être des fonctions non croissantes et convexes du
prix d’exercice, limitées entre la valeur actualisée (par le facteur d’actualisation D0(T ))
du payoff de l’option d’achat évaluée à la valeur forward F0(T ), et le forward actualisé.
Remarquez que si la troisième propriété est satisfaite, alors la deuxième implique la
première car une fonction convexe croissante ne peut pas être bornée. Sous l’hypothèse
de taux d’intérêt déterministes, l’arbitrage suivant se produit lorsqu’une option d’achat
normalisée (par le forward actualisé) avec une maturité plus courte est cotée à un prix
plus élevé qu’une option d’achat normalisée avec une maturité plus longue et la même
moneyness, de sorte que l’exigence est que les prix des options d’achat normalisées avec
une moneyness fixe soient une fonction non décroissante du temps jusqu’à l’échéance.
Nous pouvons résumer les exigences pour l’absence d’arbitrage statique comme dans le
Table 2.1.
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Type d’arbitrage Axe Exigence sur les prix des options d’achat normalisées

Butterfly
Maturité
fixe

Dans [(1 − k)+, 1]
Non croissant en moneyness

Convexe en moneyness

Calendar Spread Moneyness fixe Non décroissant en temps jusqu’à l’échéance

Table 2.1: Exigences sur les prix des options d’achat normalisées pour l’absence
d’arbitrage statique.

Parmi tous les modèles de volatilité implicite, les plus connus et les plus utilisés sont
le modèle Stochastic Volatility Inspired (SVI) [33] pour les marchés d’actions et le modèle
Stochastic Alpha Beta Rho (SABR) [43] pour les marchés de taux. Cependant, ces deux
modèles ne garantissent pas automatiquement l’absence d’arbitrage et, jusqu’à présent,
il n’y avait pas de conditions suffisantes explicites sur les paramètres pour qu’il n’y ait
pas d’arbitrage, même si la formulation des modèles est très simple. La difficulté est
cachée dans les conditions non linéaires pour l’absence d’arbitrage en termes de volatilité
implicite.

2.1.1 No arbitrage SVI

Dans le Chapter 3, nous étudions le modèle SVI, qui est un modèle pour la variance totale
implicite (c’est-à-dire, le carré de la volatilité implicite fois le temps jusqu’à l’échéance),
et qui a été proposé pour la première fois par Jim Gatheral en 2004:

SVI(k) = a+ b(ρ(k −m) +
√

(k −m)2 + σ2)

où k est la log-forward moneyness, et (a, b, ρ,m, σ) sont des paramètres. Cette formule
est rapidement devenue la référence au moins sur les marchés actions, en raison de sa
capacité à produire des ajustements très précis. Fabien Le Floch (responsable de la
recherche chez Calypso) a un article de blog sur une situation où SVI ne fit pas, ce
qui est un bon indicateur de la rareté d’une telle situation en pratique. La littérature
pratique sur SVI et ses variantes est abondante ([25], [45], [58], [11], [46]), et SVI fait
maintenant partie de tous les manuels de référence sur les modèles de volatilité ([34],
[39]).

En 2009, le white paper sur la Calibration quasi-explicite du SVI de Gatheral ([26],
également partie de la thèse de doctorat de Stefano De Marco) a proposé un simple
astuce pour dissiper l’ambigüıté de la calibration de SVI, et est devenu lui-même un
algorithme de calibration de référence.

Un fait remarquable est que, malgré la simplicité de la formule, la condition d’absence
d’arbitrage Butterfly pour un smile SVI est restée jusqu’à présent trop complexe. Ainsi,
par exemple, dans l’algorithme [26], il n’y a aucune garantie que le paramètre calibré
sera sans arbitrage. Une approche pratique intéressante est fournie dans [29], où les con-
traintes de non-arbitrage sont exprimées sous forme d’un ensemble discret de conditions
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de Durrleman et encodées comme contraintes non linéaires dans l’optimiseur; stricto
sensu là aussi, il n’y a cependant aucune garantie que le paramètre calibré sera sans
arbitrage. Dans ce chapitre, nous résolvons ce problème de longue date, caractérisant
pleinement l’absence d’arbitrage Butterfly pour les smiles SVI.

Pour ce faire, nous étudions en profondeur le magnifique résultat de Fukasawa dans
[32], qui stipule que les fonctions inverses des coefficients −d1 et −d2 de la formule de
Black-Scholes doivent être croissantes sous l’absence d’arbitrage Butterfly. Dans ce qui
suit, nous appellerons ces conditions les conditions faibles de Fukasawa pour l’absence
d’arbitrage (Butterfly).

Enfin, il s’avère que le domaine entièrement explicite des paramètres SVI pour
lesquels il n’y a pas d’arbitrage Butterfly est simple à coder, en utilisant des routines
numériques de recherche de racines (comme l’algorithme de Brent) pour l’évaluation des
seuils caractérisés dans les calculs. Il y a alors 2 sous-produits de cette paramétrisation
du domaine d’un intérêt pratique élevé:

� une routine de vérification rapide qu’un paramètre SVI donné se trouve dans le
domaine ou non, ce qui dissocie entre 4 situations possibles d’arbitrage;

� un algorithme de calibration, utilisant une fonction objective de type moindres
carrés et un minimiseur capable de gérer des bornes.

Remarquez que l’arbitrage Calendar Spread n’est pas traité dans ce chapitre, mais il
est réexaminé pour un modèle sous-SVI dans le Chapter 5.

2.1.2 Explicit no arbitrage domain for sub-SVIs via
reparametrization

Du modèle SVI, de nombreux sous-SVI (ce qui signifie SVI avec certains paramètres figés,
ou reparamétrisations de SVI avec moins de 5 paramètres) peuvent être développés et
étudiés. Parmi ceux-ci, le modèle Surface SVI (SSVI) introduit dans [36], avec une
variance totale implicite de la forme

ω(k, T ) =
θ(T )

2

(
1 + ρφ(T )k +

√
(φ(T )k + ρ)2 + (1 − ρ2)

)
. (2.1)

On sait que SVI s’adapte très bien à un large éventail de données de marché, et la question
difficile de caractériser l’absence d’arbitrage Butterfly dans SVI est résolue dans le Chap-
ter 3 avec une paramétrisation pratique du domaine sans arbitrage, conduisant à une
implémentation efficace d’un algorithme de calibration garantissant l’absence d’arbitrage
Butterfly. Alors pourquoi s’intéresser à ces sous-SVI?

En fait, pour plusieurs raisons. La première est que SVI pourrait être trop riche
dans le sens où un excellent ajustement pourrait également être obtenu dans la plupart
des cas par des sous-SVI, avec l’avantage supplémentaire de stabiliser la variation du
paramètre optimal calibré d’un jour à l’autre, ou entre différentes tranches de maturité.
Une bonne raison théorique de soupçonner cela découle de la considération des smiles
SVI avec ρ = 0 et m ̸= 0: en effet, la correspondance avec les modèles de volatilité
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stochastique indique que les modèles avec une corrélation nulle devraient produire des
smiles symétriques, ce qui implique m = 0; dans ce sens, les smiles SVI avec ρ = 0
et m ̸= 0 devraient correspondre à des smiles qui ne sont pas associés à des modèles
de volatilité stochastique, et il est peu probable qu’ils se produisent dans des données
de marché réelles. Dans cette direction, on pourrait également noter que le résultat de
Gatheral et Jacquier [35] selon lequel le smile à long terme de Heston tend à SVI montre
en fait qu’il tend à un sous-SVI, et en particulier à un SSVI; en effet, les paramètres SVI
sont donnés par

a =
θ

2
(1 − ρ2), b =

θφ

2
, ρ = ρ̃, m = − ρ

φ
, σ =

√
1 − ρ2

φ
,

de sorte que le smile à long terme dépend finalement seulement des 3 paramètres (θ, ρ, φ),
avec la contrainte ρ = 0 =⇒ m = 0 imposée.

La deuxième raison est qu’il est difficile d’obtenir des conditions d’absence d’arbitrage
Calendar Spread sur deux smiles SVI attachés à deux maturités différentes, comme
discuté dans [36]. Cela a été réalisé pour des smiles correspondant aux paramètres SSVI,
qui sont des sous-SVI avec 3 paramètres au lieu de 5, comme le montre [44]. Ainsi, pour
obtenir des surfaces SVI sans arbitrage gérables en pratique, il peut être nécessaire de
restreindre l’ensemble des paramètres SVI. Noter que, par rapport au premier point ci-
dessus, compte tenu de la faible capacité de SSVI à s’adapter notamment sur le court
terme, le bon équilibre entre capacité d’ajustement et gérabilité pourrait se situer entre
SVI et SSVI, dans un certain sous-SVI avec 4 paramètres.

Une autre espérance est qu’il puisse y avoir des simplifications, en raison de la struc-
ture spéciale des différents sous-SVI étudiés, dans la caractérisation du domaine sans
arbitrage Butterfly comme décrit dans le Chapter 3, où cela nécessite: le calcul de la
frontière du domaine de Fukasawa, correspondant à la condition nécessaire faible de
non arbitrage obtenue par Fukasawa [32], via un algorithme de recherche de racines; et
deux minimisations pour obtenir la borne inférieure du domaine sans arbitrage pour le
paramètre SVI σ.

Dans le Chapter 4 nous étudions en détail les sous-SVI suivants:

1. Le Vanishing SVI où a = 0 et ρ = ±1, avec ses deux variantes Vanishing up-
ward (ρ = 1), et Vanishing downward (ρ = −1); la deuxième famille pourrait
correspondre à des smiles réels et est donnée par

w(k) = b
(
−(k −m) +

√
(k −m)2 + σ2

)
;

2. Le Symmetric SVI où ρ = m = 0, donc

w(k) = a+ b
√
k2 + σ2;

3. SSVI (tranches) donné par

w(k) =
θ

2

(
1 + ρφk +

√
(φk + ρ)2 + 1 − ρ2

)
.
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Pour tous ces sous-SVI, l’objectif est de trouver une paramétrisation explicite pour
le domaine de Fukasawa et, si possible, du domaine sans arbitrage complet. Jusqu’à
présent et à notre connaissance, le seul modèle de volatilité (c’est-à-dire une formule pour
la volatilité implicite) avec un domaine sans arbitrage explicite était la tranche SSVI,
avec les conditions (restrictives) obtenues par Gatheral et Jacquier [36], et étendues à
la caractérisation du domaine sans arbitrage complet dans le cas décorrélé dans [41]. À
cet égard, le présent travail est un grand pas en avant, car nous obtenons 3 nouvelles
familles: celle du Vanishing Downward/Upward, celle du Symmetric, et le SSVI correlé,
avec des domaines sans arbitrage explicites (une fonction de frontière à une seule variable
doit être calculée numériquement pour le SSVI).

Les sous-SVI étudiés sont des SVI à 3 paramètres; comme discuté ci-dessus, 3
paramètres peuvent être trop peu pour produire un bon ajustement sur les données
de marché, donc nous dirions que l’intérêt ici est essentiellement d’ordre académique:
nous espérons que ces familles peuvent aider à l’étude des propriétés théoriques des smiles
de volatilité, ou servir d’illustrations pratiques de ces propriétés. Remarquez cependant
que le SVI Vanishing Downward pourrait avoir une application pratique dans le cas des
smiles de marché décroissants qui sont souvent rencontrés pour des maturités pas trop
courtes. De plus, le SSVI est utilisé en pratique; notre étude donne une paramétrisation
des tranches SSVI satisfaisant à la propriété de non arbitrage Butterfly qui est bien plus
efficace que celle présentée de manière générique dans le Chapter 3.

2.1.3 No arbitrage global parametrization for the eSSVI volatility
surface

Dans le Chapter 4, l’un des sous-SVI étudiés est le SSVI, qui a 3 paramètres (θ, ρ, φ)
pour chaque tranche k → ω(k):

� θ est la variance totale implicite At-The-Money (ATM);

� ρ est le paramètre de corrélation, proportionnel à la pente du smile au point ATM;

� φ est proportionnel à la courbure ATM.

Dans [36], les auteurs ont formulé des conditions pour que la surface soit sans ar-
bitrage, en particulier, ils ont trouvé des conditions suffisantes d’absence d’arbitrage
Butterfly et, en exigeant que le paramètre de corrélation soit constant, des conditions
d’absence d’arbitrage Calendar Spread. En ce qui concerne l’arbitrage Butterfly, dans
le Chapter 4, nous avons déjà appliqué les résultats obtenus pour SVI dans le Chapter 3
à SSVI et trouvé le domaine sans arbitrage en termes de paramètres, dont le calcul
nécessite la minimisation d’une fonction dépendant des deux paramètres θ et ρ. Afin
de simplifier ce domaine et d’alléger les calculs d’algorithmes, nous avons reparamétré
le domaine sans arbitrage, trouvant enfin un domaine qui est un produit d’intervalles
pour ρ fixé. Le nouveau domaine ne nécessite qu’un algorithme de recherche de racines
dépendant du seul paramètre ρ.
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Bien que ces surfaces se comportent bien et soient faciles à implémenter, leurs per-
formances de calibration ne sont pas toujours satisfaisantes en pratique en raison de la
contrainte du paramètre de corrélation constant. Hendriks et Martini [44] ont réussi
à étendre le modèle en formulant des conditions sans arbitrage Calendar Spread entre
deux tranches SSVI avec des ρs différents et ont généralisé les conditions à une surface
continue, donnant naissance au SSVI étendu (eSSVI). L’équipe de recherche quantita-
tive de Zeliade Systems a ensuite proposé un moyen pratique de calibrer de manière
robuste les surfaces eSSVI dans [20]. Cette procédure de calibration peut être résumée
en quelques mots comme suit:

1. Considérer le modèle SSVI Equation (2.1) de Gatheral et Jacquier pour modéliser
les tranches de variance implicite à maturité fixe;

2. Associer à chaque maturité d’option disponible sur le marché une tranche (θ, ρ, φ)
de paramètres SSVI (pas les mêmes paramètres pour toutes les tranches), satis-
faisant la condition suffisante d’absence d’arbitrage Butterfly obtenue par Gatheral
et Jacquier ([36] Théorème 4.2);

3. Calibrer les paramètres SSVI de chaque tranche séquentiellement par rapport aux
maturités des options, de manière à garantir l’absence d’arbitrage Calendar Spread
comme formulé par Hendriks et Martini ([44] Proposition 3.5);

4. Interpoler/extrapoler linéairement les paramètres; il peut être prouvé que cela
produit finalement une surface sans arbitrage.

Dans l’ensemble, un tel eSSVI calibré est paramétré par un total de 3×N paramètres
oùN est l’ensemble des maturités auxquelles le modèle est calibré, tandis que SSVI aurait
2 ×N + 1 paramètres.

La calibration eSSVI part de l’hypothèse sous-jacente de la disponibilité sur le marché
des strikes et des volatilités près du point ATM pour chaque tranche, puisque la variance
totale est contrainte à passer par ces points. La méthodologie fonctionne efficacement
lorsque le marché est très liquide, mais lorsque ce n’est pas le cas, des approximations de
la volatilité ATM pourraient entrâıner des écarts entre le modèle calibré et les données
réelles. De plus, les bornes sans arbitrage sont réécrites sur la base d’une approximation
du premier ordre, et elles peuvent ne pas garantir l’absence d’arbitrage en cas de marchés
peu liquides.

Ces observations amènent naturellement la nécessité d’une procédure plus générique
et globale, qui est atteinte dans le Chapter 5

2.1.4 Smiles in delta

Jusqu’à présent, nous avons travaillé dans la dimension de la moneyness pour les smiles,
de sorte que toutes les conditions de non-arbitrage pour la volatilité implicite ont été
énoncées en utilisant la notation de la moneyness. En effet, les modèles SVI cibles
sont particulièrement utilisés sur les marchés des actions, où toutes les cotations sont
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Figure 2.1: Un exemple des performances du Global eSSVI:
volatilité implicite calibrée par rapport à la volatilité implicite
réelle pour l’indice TA35 de la Bourse de Tel Aviv à la date du 26
octobre 2021. Notez la première échéance extrêmement courte (2
jours).

exprimées par strike. Cependant, ce n’est pas le cas pour les marchés des changes, où
les options OTC sont cotées en delta à travers la volatilité At-The-Money, et les prix
risk reversal et strangle pour différents points delta. De plus, sur les marchés des actions
et des matières premières, de nombreuses sociétés de trading analysent le risque des
portefeuilles d’options à une échéance donnée sur une grille de deltas plutôt que sur une
grille de strikes. Cela est fondamentalement lié à la vision globale du risque comme étant
principalement drivé par un risque delta et un risque vega, qui sous-tend en particulier la
méthodologie SPAN de CME, qui, bien que datée de 1988, est encore largement utilisée
parmi les CCP.

Dans cette perspective, une première question immédiate est de savoir si la transfor-
mation d’un smile σ̂ dans l’espace des strikes en un smile σ dans l’espace des deltas est
bien définie. Dans le chapitre Chapter 6, nous montrons que c’est le cas sous l’hypothèse

que la fonction k → δ(k) := N(d1(k, σ̂(k)) est décroissante, où d1,2 = − k
σ̂(k)

√
T
± σ̂(k)

√
T

2

22



2.1. Représentation statique sans arbitrage et paramétrisation des surfaces de VI

désigne les quantités classiques dans la formule de Black-Scholes, N la fonction de densité
cumulative gaussienne, et k la moneyness logarithmique forward. Grâce à un résultat de
Fukasawa [32], nous savons que cette propriété est remplie par les smiles sans arbitrage
Butterfly. Étant donné le fait qu’un smile n’a pas d’arbitrage Butterfly si et seulement si
le smile symétrique (en moneyness forward logarithmique) n’a pas d’arbitrage Butterfly,
de tels smiles auront également la propriété que la fonction k → δ̄(k) := N(d2(k, σ̂(k))
est décroissante, puisque d1(k, σ̂(−k)) équivaut à −d2(−k, σ̂(−k)).

La possibilité de transformer un smile dans l’espace des deltas en un smile dans
l’espace des strikes est également étudiée dans ce chapitre, et une caractérisation de tels
smiles est obtenue. Ce résultat soutient la pratique généralisée de l’industrie consistant
à calibrer des smiles dans l’espace des deltas pour récupérer des smiles dans l’espace des
strikes utilisés pour déterminer les marges des options en strike. Le chapitre ne traite
pas de la question de la reconstruction d’un smile en strike à partir des cotations ATM,
des risk reversals et des strangles du marché en delta, qui est soutenue dans [60]. Les
deux principales différences sont que nous travaillons avec des smiles complets en delta
au lieu des cotations standard du marché des changes, et aussi que nous tenons compte
de l’absence d’arbitrage Butterfly.

La deuxième question immédiate est de savoir comment la condition de non-arbitrage
Butterfly se traduit dans l’espace des deltas. Étonnamment, cette question est es-
sentiellement ouverte. Certains résultats sur l’absence d’arbitrage pour les surfaces
de volatilité implicite dans l’espace des deltas peuvent être trouvés dans [51]. Nous
n’abordons pas l’absence d’arbitrage Butterfly en delta dans ce travail, mais nous con-
sidérons plutôt la condition plus faible obtenue par Fukasawa selon laquelle les deux
fonctions k → d1,2(k, σ̂(k)) sont décroissantes, et obtenons une paramétrisation explicite
des smiles en delta remplissant ces conditions. Cette famille peut être utile en pra-
tique, car de tels smiles sont censés ne pas être très éloignés des smiles entièrement
(fortement) sans arbitrage. Les praticiens souhaitant calibrer des smiles sans arbitrage
devraient donc prendre en considération une telle paramétrisation puisque chaque smile
sans arbitrage en delta peut être représenté à travers elle.

D’un point de vue théorique, une autre approche de notre travail consiste à con-
sidérer la question ouverte de la paramétrisation de tous les smiles sans arbitrage But-
terfly. Une telle paramétrisation permettrait aux praticiens de calibrer des smiles de
volatilité implicite avec la certitude de ne pas avoir d’arbitrage Butterfly et sans restric-
tions provenant du choix d’un modèle particulier (comme le SVI de Gatheral, voir par
exemple [34]). Cette question est probablement difficile, et notre travail peut être vu
comme une solution à la même question pour une notion d’arbitrage faible, à travers
un passage à l’espace des deltas. Cela pourrait suggérer qu’il y a un espoir de résoudre
également la question initiale dans l’espace des deltas.
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2.1.5 Options are also options on options: how to smile with
Black-Scholes

Jusqu’à présent, nous avons traité les options comme des contrats écrits sur un sous-
jacent, qui pourrait être une action comme dans le cas du SVI, ou un taux de change
dans la représentation delta ou une matière première, un taux d’intérêt, etc. Dans le
chapitre Chapter 7, nous exploitons plutôt la remarque selon laquelle une option d’achat
(de type européen) avec un prix d’exercice L > K sur un sous-jacent S peut également
être vue comme une option d’achat avec un prix d’exercice L − K écrite sur l’option
d’achat avec un prix d’exercice K et la même échéance T ; en effet, lorsque L > K, cela
est vrai pour chaque valeur du sous-jacent S(T ) à l’échéance:

(S(T ) − L)+ =
(
(S(T ) −K)+ − (L−K)

)
+
.

Sous des hypothèses de marché parfait (de telle sorte que chaque actif a un prix
unique, sans bid-ask) et d’absence d’arbitrage statique, cela entrâıne que le prix (disons,
au temps 0) des deux actifs est le même. En notant par C(S,L) le prix des options
d’achat standard avec un prix d’exercice L (l’échéance T est la même pour tous les
contrats), et par ĈK(·, ⋆) la fonction relative de prix d’option d’achat sur option, cela
signifie que l’égalité suivante est vérifiée:

C(S,L) = ĈK
(
C(S,K), L−K

)
puisque le prix du sous-jacent du dernier contrat est le prix de l’option d’achat avec un
prix d’exercice K.

Cela n’a aucune relation avec la pratique des premiers jours d’equity-to-credit con-
sistant à modéliser le prix d’une action comme une option d’achat sur la valeur de
l’entreprise sous-jacente, ce qui a conduit à son tour au fait que les options d’achat sur
l’action peuvent être valorisées avec une formule d’option-sur-option, comme obtenue
par Merton dans [55].

Ici, nous étudions les relations entre le prix des options sur options et les prix initiaux
des options d’achat ou de vente à d’autres prix d’exercice, constatant que les options
d’achat sont des options d’achat sur des options d’achat, et que les options de vente sont
des options d’achat sur des options de vente. De plus, la fonction relative de prix des
options d’achat sur options d’achat conduit à une transformation naturelle sur l’espace
des prix des options d’achat normalisés (par la valeur du sous-jacent) en fonction de la
moneyness, que nous appelons l’espace de Tehranchi, donnée par

Tkc(x) :=
c
(
k + c(k)x

)
c(k)

où k = K
S et c est le prix normalisé de l’option d’achat. La dérivée en zéro par rapport

à la moneyness de Tkc est en général strictement supérieure à −1, ce qui correspond au
fait que le sous-jacent C(S,K) s’annule avec une probabilité positive à l’échéance. Pour
cette raison, nous étendons la famille de transformations Tk à des transformations à 2
paramètres, ce qui permet d’obtenir une dérivée en zéro égale à −1.
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Ces transformations à 2 paramètres permettent de générer de nouvelles formules de
prix pour les options qui sont fermées. De plus, la transformation qui garantit une
dérivée égale à −1 à l’origine est d’une certaine manière liée à l’inversion du smile de
volatilité dans l’espace de la moneyness. En effet, en appliquant deux fois cette inversion
dans le cas où le sous-jacent peut s’annuler à l’échéance, on obtient une fonction de prix
sur un sous-jacent qui ne s’annule pas à l’échéance et permet de définir des prix d’achat
sur options élargis. Nous étudions ensuite à la fois les options d’achat sur options d’achat
et les options d’achat sur options d’achat élargies, en examinant également les propriétés
de leur volatilité implicite.

2.2 Métriques de risque et calcul des marges pour les
CCP

Le risque de contrepartie pour les échanges sur une bourse est généralement atténué grâce
aux CCP, qui prennent le rôle de la contrepartie pour chaque position: la CCP devient le
vendeur face à l’acheteur et l’acheteur face au vendeur. En cas de défaut d’un membre de
compensation, la CCP remplace le membre défaillant jusqu’à ce que ses positions soient
réparties entre les membres survivants grâce à une liquidation du portefeuille effectuée
par l’intermédiaire de courtiers et/ou par le biais d’une enchère. La crise financière de
2008 a entrâıné un renforcement de la réglementation des CCP, exigeant des cadres de
risque solides afin d’accomplir la tâche de couvrir les pertes potentielles encourues en
cas de situation de défaut. À titre d’exemple, le règlement EMIR énumère les principes
qu’une CCP doit adopter pour fonctionner en toute sécurité. En particulier, afin de
couvrir les éventuelles pertes dues à la liquidation du portefeuille du membre défaillant,
la CCP exige de ses membres de déposer des garanties sous forme de marge initiale,
de marges supplémentaires pour couvrir les risques de liquidité et de concentration ou
d’autres risques spécifiques, ainsi que des contributions au fonds de défaut.

Dans cette thèse, nous nous concentrons sur la marge initiale, censée couvrir les
pertes encourues en cas de liquidation d’un portefeuille donné dans des conditions de
marché normales. L’article 41 de [22] exige que les CCP collectent des marges auprès
des parties entrant dans une transaction dans une mesure suffisante pour couvrir les
expositions potentielles de la CCP lors de la liquidation de la position. La marge doit
également être suffisante pour couvrir au moins 99, 5% de ces expositions dans le cas
des dérivés Over-The-Counter (OTC), et 99% pour d’autres produits financiers sur la
période de risque de marge (MPOR), comme recommandé par l’article 24 de [23]. La
MPOR est la période requise pour la liquidation du portefeuille, généralement comprise
entre 2 jours (pour les produits standard) et 5 jours (pour les dérivés OTC).

Par conséquent, les CCP sont confrontées à des problèmes importants dans le calcul
des provisions: les marges sur les portefeuilles des membres sont calculées sur la base de
l’évaluation de la perte dans laquelle la CCP pourrait incurer en cas de défaut du mem-
bre, tout en liquidant ses positions. La modélisation des marges n’est pas spécifiée uni-
versellement entre les CCP et il n’existe pas de norme de l’industrie, en particulier pour
les produits complexes tels que les options. Dans cette thèse, nous essayons d’identifier
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une méthodologie simple et robuste qui peut être adoptée par les CCP pour marger les
portefeuilles d’options.

2.2.1 A closed form model-free approximation for the Initial Margin
of option portfolios

Depuis la rédaction du règlement EMIR, les CCP ont exploité différentes méthodes pour
calculer les marges pour les portefeuilles d’options. Une première méthodologie notoire
pour les portefeuilles complexes est l’algorithme SPAN du groupe CME, qui simule des
scénarios de risque conjoints pour le sous-jacent et la volatilité implicite et en déduit
une marge conservatrice à partir de ces scénarios. Cependant, cette méthodologie a
été remplacée par des méthodes plus raffinées, qui dans la plupart des cas utilisent un
algorithme de type Filtered Historical Simulation (FHS) [8] pour des facteurs de risque
sélectionnés afin de générer des scénarios cohérents avec les mouvements historiques
(des exemples sont le SPAN2 du CME et le IRM2 de l’ICE). FHS est largement utilisé
parmi les CCP, mais son utilisation sur les marchés d’options est délicate et discutable.
En particulier, une utilisation directe de FHS casse les relations structurelles entre les
facteurs de risque, générant ainsi des scénarios hautement invraisemblables.

Différentes techniques plutôt que FHS pour le calcul des marges sur options ont
été étudiées en théorie et finalement mises en oeuvre. Certaines visent à réduire la
procyclicité, c’est-à-dire la fluctuation excessive des marges. Par exemple, le modèle
de contrôle de la procyclicité de Wong et Zhang de l’OCC [67] repose sur un facteur
d’échelle ajustant la dynamique des rendements logarithmiques de la volatilité implicite
ATM pour être plus élevée pendant les périodes de faible volatilité et plus faible pendant
les périodes de forte volatilité. Des articles plus académiques comme [24, 18] examinent
également la question du calcul des marges initiales des options, garantissant également
l’absence d’arbitrage pour les scénarios générés. En effet, dans [24], les auteurs décrivent
un algorithme générique qui pénalise les scénarios arbitragés (d’un point de vue statique),
qui peut être rajouté à n’importe quel algorithme de génération de scénarios déjà en pro-
duction. En particulier, les auteurs appliquent leur méthodologie aux réseaux génératifs
antagonistes pour simuler des surfaces de volatilité implicite sans arbitrage. Dans [18],
un modèle de facteur affine pour les prix normalisés des options d’achat est défini puis
calibré, minimisant les arbitrages dynamiques et statiques. Les scénarios sont ensuite
générés par des SDE neuronaux qui contraignent les trajectoires à vivre dans le polytope
défini par les conditions d’absence d’arbitrage statique. Dans ce panorama, il faut inclure
les travaux de Bergeron et al. [10, 59] sur l’application des autoencodeurs variationnels
utilisés pour reconstruire les données manquantes sur les surfaces de volatilité implicite
(éventuellement sans arbitrage), et qui peuvent être ajustés pour simuler des scénarios
basés sur les mouvements historiques.

Dans Chapter 8, nous avons deux objectifs principaux: le premier est de fournir
un panorama pratique et concret du calcul des marges sur les options; le second, plus
ambitieux, est de concevoir une formule fermée pour le VaR des portefeuilles d’options,
qui soit facile à comprendre et à mettre en oeuvre. Plus précisément, nous calculons une
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2.2. Métriques de risque et calcul des marges pour les CCP

Figure 2.2: Marges obtenues avec l’algorithme FHS (bleu) et la VaR model-free pour les
courts termes (orange), pour un portefeuille de calendar spread ATM 1M-6M (gauche)
et un portefeuille de Butterfly spread 3M avec des moneyness (0.9, 1, 1.1) (droite).

formule de VaR à court terme qui est libre de modèle et cöıncide avec une approximation
du VaR dans les modèles de volatilité stochastique et avec le VaR exact dans le modèle
de facteur affine particulier pour les prix normalisés des options d’achat proposé dans
[18] en tant que modèle de SDE neuronal. Pour ce dernier modèle, nous montrons
qu’il est en fait possible d’inférer directement la formule de VaR sans avoir besoin de
simuler des scénarios, de sorte que une fois que les paramètres du modèle sont calibrés,
ceux-ci peuvent être introduits dans une formule quasi explicite pour obtenir la marge
requise. De plus, en considérant la limite pour de petits laps de temps, la formule devient
fermée et elle a la même forme que notre formule de modèle libre à court terme. En
testant la formule modèl-free pour les courts termes, nous obtenons des marges qui se
comportent bien et en fait mieux que celles du FHS classique, en termes de régularité
et d’adaptation au comportement actuel du marché. Pour ces raisons, nous pensons
que la formule model-free pour les courts termes suggérée pourrait poser les bases d’une
formule model-free pratique pour le calcul des marges sur les options.

Figure 2.2 compare les marges obtenues en utilisant FHS et les marges de la formule
model-free pour les courts termes. Les portefeuilles testés sont un calendar spread ATM
1M-6M et un Butterfly spread 3M avec des moneyness (0.9, 1, 1.1), tous deux sur le
S&P500, tout au long de l’année 2019. Bien que la VaR FHS présente moins de violations,
elle est beaucoup plus irrégulière et semble évoluer sans lien clair avec les tendances du
marché, par rapport à la VaR model-free pour les courts termes.

2.2.2 Backtesting Expected Shortfall

L’article 49 de [23] est consacré aux procédures de backtesting qu’une CCP doit adopter
afin d’évaluer sa couverture de marge. Les backtests doivent être effectués quotidien-
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nement et la couverture doit atteindre les niveaux identifiés par la réglementation EMIR.
Pour cette raison, les backtests doivent être théoriquement bien posés afin de produire
des résultats significatifs.

Les CCP calculent les marges via deux mesures possibles: un Value-at-Risk (VaR)
ou un Expected Shortfall (ES). Alors que la première mesure dispose de plusieurs tests
statistiques simples et robustes tels que les tests de Kupiec et Christoffersen, la seconde
mesure manque d’un test de backtesting clair, et c’est l’une des raisons pour lesquelles
les CCP peuvent préférer utiliser une mesure VaR plutôt qu’une mesure ES. Plusieurs
auteurs ont consacré leurs études au backtesting ES, ce qui a donné lieu à de nombreux
articles, chacun revendiquant l’efficacité de son test. Dans le Chapter 9, nous passons
en revue et comparons les statistiques de test les plus courantes, en particulier le test
de Moldenhauer et Pitera [57] ainsi que les tests Z2, Z3 et le test minimally biased par
Acerbi et Szekely [1, 3].
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Chapter 3

No arbitrage SVI

Abstract

We fully characterize the absence of Butterfly arbitrage in the SVI formula for
implied total variance proposed by Gatheral in 2004. The main ingredient is an
intermediate characterization of the necessary condition for no arbitrage obtained
for any model by Fukasawa in 2012 that the inverse functions of the −d1 and −d2
of the Black-Scholes formula, viewed as functions of the log-forward moneyness,
should be increasing. A natural rescaling of the SVI parameters and a meticulous
analysis of the Durrleman condition allow then to obtain simple range conditions on
the parameters. This leads to a straightforward implementation of a least-squares
calibration algorithm on the no arbitrage domain, which yields an excellent fit on
the market data we used for our tests, with the guarantee to yield smiles with no
Butterfly arbitrage.

From:
C. Martini and A. Mingone, No arbitrage SVI, SIAM Journal on Financial Mathemat-
ics, 13, 227-261, 2022.

3.1 Structure of the chapter

The main objective of this chapter is to find a full characterization of no Butterfly
arbitrage for Stochastic Volatility Inspired (SVI) smiles. SVI is a model for the implied
total variance with formulation

SVI(k) = a+ b(ρ(k −m) +
√

(k −m)2 + σ2)

where k is the log-forward moneyness, and (a, b, ρ,m, σ) parameters. We do not impose
the condition a ≥ 0, as is often done without justification; we work out the necessary
and sufficient conditions in the full domain of the SVI parameters.

We start in Section 3.3 with a precise discussion of the meaning of no Butterfly
arbitrage, which is based on [66] and on [62] for the corresponding statements in terms
of volatility.
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We proceed in Section 3.4 with a slight generalization of the beautiful result by
Fukasawa in [32], which states that the inverse functions of the −d1 and −d2 coefficients
of the Black-Scholes formula should be increasing under no Butterfly arbitrage. We need
this generalization to handle all the configurations of SVI parameters. In this section we
also clarify when and how Call and Put SVI option prices, given by the Black-Scholes
formula with the SVI formula as argument, can be represented as expectations, using
the results in [66].

The main ingredient (Section 3.5) is then to use a natural rescaling of SVI: we work
with the parameters α, µ where a = σα and m = σµ, and the dummy variable l = k−m

σ
instead of k. It turns out that the Fukasawa conditions for SVI in the new parameters
do not involve σ. An interesting property of those conditions is that they provide the
positivity of the first term of the Durrleman condition; based on the fact that in our case
the complementing second term reads 1

2σG2(l) where G2 does not depend on σ, ensuring
the Durrleman condition yields a simple condition on σ. In Section 3.6 we give the full
characterization of the Fukasawa conditions for SVI, and Section 3.7 finishes the work
with the full characterization of no Butterfly arbitrage.

We provide in the last section (Section 3.8) numerical tests performed on data on
index options purchased from the CBOE.

SVI models a volatility smile, not a volatility surface, so without ambiguity when we
use the no arbitrage wording for SVI, we mean the absence of Butterfly arbitrage.

3.2 Domain of SVI parameters

The SVI model is defined when a,m ∈ R, b ≥ 0, |ρ| ≤ 1, σ ≥ 0. We recall that SVI is
a convex function, with a minimum value given by a+ bσ

√
1 − ρ2 (possibly attained at

infinity if |ρ| = 1) and which goes to infinity as k goes to ±∞ (for |ρ| < 1). Since SVI
models total variances, it is therefore required that a+ bσ

√
1 − ρ2 ≥ 0.

If ρ = −1 the SVI smile decreases from ∞ to a, and if ρ = +1 the SVI smile increases
from a to ∞.

3.3 The Durrleman condition and no arbitrage for SVI

Let S0 denote the underlying asset value of standard Call options with a fixed maturity
t > 0. Without loss of generality we assume that there is no interest rates nor dividend
rates. In case of deterministic interest r and dividend rates δ, all the statements in this
section still hold once S0 is replaced by the Forward corresponding to the option maturity
Ft = S0 exp

∫ t
0 (rs − δs)ds and working with the numéraire of the option maturity.

3.3.1 Axiom of no Butterfly arbitrage

The condition of no Butterfly arbitrage is achieved when the Call price function with
respect to the strike is (we follow the very careful treatment in [66]):
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� convex;

� non-increasing;

� with value in the range [(S0 −K)+, S0].

These properties assume only that there is a perfect market for the underlying asset
and for the Call options, with short-selling allowed, and that there is no static buy-sell
strategy involving the underlying asset and a finite set of Call options with a Profit and
Loss which is strictly positive.

We recall in particular that the large moneyness behaviour stating that the Call price
function should go to zero at ∞ is an additional assumption, and does not strictly follow
from the no arbitrage axiom.

In the case of a Call price function specified through an implied volatility: C(K) =
CBS(k,

√
w(k)) where w is the implied total variance σ2T and CBS(k, a) is the Black-

Scholes formula expressed as a function of the log-forward moneyness k = log K
S0

and
the implied total volatility, the third property is automatically granted since the CBS

function is increasing with respect to its second argument and since the range bounds
correspond to the limit when a goes to 0 and ∞.

Observe now that if the third property is satisfied, then the first one implies the
second one because an increasing convex function cannot be bounded.

3.3.2 Smiles vanishing at some point

Can a volatility smile reach 0 at some (finite) point? Assume that it is the case, so
w(km) = 0 at the log-forward moneyness km corresponding to some strike Km. Then it
means that the Call price with this strike is equal to its intrinsic value (S0 −Km)+. If
Km lies on the right of S0, the price is therefore 0, and by the property 2 above all the
Call prices with K > Km will also be 0. If Km lies on the left of S0, the option price
is S0 − Km; as the option price with a strike 0 is equal to S0 = S0 − 0, the convexity
property implies that all the Call prices with K < Km are smaller than S0−K which is
the value of the chord between the points 0 and Km. Since this value S0−K is also lower
bound for the Call prices, they are eventually equal to this value. So, in the implied
volatility space, this means that w = 0 for K ≥ Km in the first case, and w = 0 for
K ≤ Km in the second case.

This means that no arbitrage implies that smiles reaching 0 above (respectively
below) the At-The-Money (forward) point will vanish above (respectively below) this
point. In the case of SVI, smiles reach zero at most at a single strike, and only if
a + bσ

√
1 − ρ2 = 0 and |ρ| < 1, in which case they are strictly positive for other strike

values, and there is a Butterfly arbitrage. So we can discard this case and assume
a+ bσ

√
1 − ρ2 > 0 when |ρ| < 1.
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3.3.3 No Butterfly arbitrage criterion for SVI

At this stage we know that SVI smiles with no Butterfly arbitrage are positive, and that
the third property above is automatically satisfied. So there is no Butterfly arbitrage
if and only if the first property holds. Now for positive smiles, as recalled in [36] after
Lemma 2.2, with w(k) = SVI(k):

p(K) :=
d2CBS

dK2

∣∣∣∣∣
K=S0ek

=
d2CBS(k,

√
w(k))

dK2

∣∣∣∣∣
K=S0ek

=
g(k)

S0ek
√

2πw(k)
exp

(
−
d2(k,

√
w(k))2

2

) (3.1)

where d2 is the standard coefficient of the Black-Scholes formula:

d1,2(k, σ) = −k
σ
± σ

2
.

So convexity is equivalent to ask the function g(k) ([36], equation 2.1)

g(k) :=

(
1 − kSVI′(k)

2SVI(k)

)2

− SVI′(k)2

4

(
1

SVI(k)
+

1

4

)
+

SVI′′(k)

2
(3.2)

to be non-negative, which is usually called the Durrleman condition (cf. Theorem 2.9,
condition (IV3) of [62]).

Note that the first derivative of the Call function with respect to the strike necessarily
goes to 0 as K goes to ∞, and to a finite limit between −1 and 0 as K goes to 0, which
means that the total mass of p is less than one, but not necessarily one, meaning that
there could be a non-zero mass at zero. It will sum to one if and only if the limit is
−1; in this case, p can be interpreted as a probability measure; the expectation of the
underlying asset under this measure will be strictly less than the underlying asset value,
unless the additional property that the Call price vanishes at infinity holds, in which
case it will be exactly the underlying asset value (cf. Theorem 2.1.2 of [66]).

The above discussion can be translated in properties of the smile: we know from
Theorem 2.9 in [62] that the large moneyness behaviour is one-to-one with the fact that
d1(k) goes to −∞ at infinity:

lim
k→∞

d1(k,
√
w(k)) = −∞.

The fact that there is no mass at zero, or, equivalently, that the derivative of the Call
price with respect to the strike goes to −1 when the strike goes to zero, is equivalent to
(cf. [31], Proposition 2.4):

lim
k→−∞

d2(k,
√
w(k)) = +∞.

In the case of SVI, the first condition translates to b(1 + ρ) < 2 and the second one
to b(1 − ρ) < 2. In particular the following Lemma holds:
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3.3. The Durrleman condition and no arbitrage for SVI

Lemma 3.1. In SVI, the limit of d1(k,
√
w(k)) for k going to ∞, is

� −∞ if b(1 + ρ) < 2;

� 0 if b(1 + ρ) = 2;

� ∞ if b(1 + ρ) > 2.

The proof is simple and it is omitted. An important consequence to this result is
that when b(1 + ρ) = 2, the Call prices do not go to zero when the strike goes to infinity
and so they are not given as the expectation of the payoff; we will come back to this
situation in detail in Section 3.4. In such a case, this does not necessarily lead to an
arbitrage and so the request b(1 + ρ) < 2 is not a necessary condition fo the absence of
arbitrage. We can summarize the previous discussion as follows:

Proposition 3.1 (No Butterfly arbitrage criterion for SVI). A necessary condition for
no Butterfly arbitrage to hold in SVI is that SVI(k) > 0 for all k. Under this condition,
there is no arbitrage in SVI if and only if the function g in Equation (3.2) is non-
negative. In this case, the function p(K) in Equation (3.1) where K = S0e

k, and S0 is
the underlying asset value, defines a positive density on R+ such that

∫
p(x)dx ≤ 1.

Moreover, the Call prices in SVI go to zero when the strike goes to infinity if and
only if b(1 + ρ) < 2, and the derivative of the Call price (expressed in numéraire of the
maturity) with respect to the strike goes to −1 if and only if b(1 − ρ) < 2. In the first
case

∫
xp(x)dx = S0 and in the second case

∫
p(x)dx = 1.

Note that the two conditions b(1 + ρ) = 2 and b(1− ρ) = 2 can occur simultaneously
if and only if b = 2 and ρ = 0.

3.3.4 Expectation-based representation of the Calls and Put prices in
SVI

The issue of the representation of the Call and Put price functions by an expectation
under our purely analytical assumptions has been settled by Tehranchi in [66]. Indeed
re-starting from the assumption that the implied volatility function is such that the Call
price function K → C(K) is convex, one can note that we are exactly in the situation
of Theorem 2.1.2 in [66]. So there exists a non-negative random variable ST such that
E[ST ] ≤ S0 and C(K) = S0 − E[K ∧ ST ]. What about the Put price? Synthesizing the
strategy of selling a Call with strike K, buying the underlying and selling a quantity K
of cash at time 0 yields a payoff (XT −K)+ −XT +K = (K −XT )+, where XT is the
realized value of the underlying at maturity and the assumption of no arbitrage leads to
P (K) = C(K) − S0 +K which is the Put-Call parity and gives the pricing formula for
the Put P (K) = K − E[K ∧ ST ]. It is interesting to note that:

C(K) = S0 − E[K ∧ ST ] = E[(ST −K)+] + S0 − E[ST ],

whereas the usual expectation for the Put formula still holds:

P (K) = K − E[K ∧ ST ] = E[(K − ST )+].
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3. No arbitrage SVI

Going back to SVI, when b(1 +ρ) < 2 we are in the situation where C(K) → 0 when
K → ∞, so that E[ST ] = S0 in the above representation. In the case b(1+ρ) = 2 one has
limk→∞ d1(k) = 0, which plugged into the Black-Scholes formula gives limK→∞C(K) =
S0
2 ; in turn this gives E[ST ] = S0

2 .
Observe also that since the equality PBS(k, σ(k)) = CBS(k, σ(k)) − S0 + K holds

from the definition of the Black-Scholes functions CBS and PBS, it follows that P (K) =
PBS(k, σ(k)), so the Calls and Puts with the same strike have the same implied volatility.
We can now state the following:

Proposition 3.2. Let C(K) := CBS(k,
√

SVI(k)) and P (K) := PBS(k,
√
SVI(k)) be the

Call and Put prices in SVI. Then there exists a positive random variable ST such that:

1. P (K) = K −E[K ∧ ST ] = E[(K − ST )+] and C(K) = S0 −E[K ∧ ST ] = E[(ST −
K)+] + S0 − E[ST ];

2. if b(1 + ρ) < 2, C(K) → 0 when K → ∞, E[ST ] = S0 and C(K) = E[(ST −K)+];

3. if b(1 + ρ) = 2, C(K) → S0
2 when K → ∞, E[ST ] = S0

2 and C(K) = E[(ST −
K)+] + S0

2 .

We turn now to the weak no Butterfly condition obtained by Fukasawa. Charac-
terizing this intermediary condition will eventually lead us to our full characterization
result.

3.4 Fukasawa necessary condition for no Butterfly
arbitrage

We recall the beautiful model-free necessary no Butterfly arbitrage condition obtained
by Fukasawa in [32]. Following Fukasawa, let us denote the Black-Scholes prices as
CBS(k, σ) = S0Φ(d1(k, σ))−S0ekΦ(d2(k, σ)) for Calls and PBS(k, σ) = S0e

kΦ(−d2(k, σ))
−S0Φ(−d1(k, σ)) for Puts; the implied total volatility is

√
w(k) = σ(k); for a given total

implied volatility let us set
f1,2(k) = −d1,2(k, σ(k)).

Fukasawa proved in Theorem 2.8 of [32] that (under the hypothesis that option prices
are given by the expectation of their payoff) if a total variance smile w, expressed as a
function of the log-forward moneyness, has no Butterfly arbitrage, then the two functions
f1 and f2 are necessarily strictly increasing with f ′1,2 > 0.

3.4.1 A slight generalization of Fukasawa result

In the following, we generalize Fukasawa’s result to the case where the only request on
the Put prices is their convexity and differentiability, without requiring that they are
given by the expectation of the payoff. Note that in the SVI case Proposition 3.2 (item 1)
tells us that Put prices have actually this property. Nevertheless, we believe the section
has its own interest. The proof is essentially Fukasawa’s one.
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3.4. Fukasawa necessary condition for no Butterfly arbitrage

Lemma 3.2. Let Put prices be defined as the Black-Scholes Put prices with a total
volatility σ(k): P (K) = PBS(k, σ(k)), where K = S0e

k. If the function P is convex and
the total volatility is differentiable, then the functions f1,2 are strictly increasing.

Proof. Because the total volatility is differentiable, then also the Put prices are differ-
entiable. Define DBS(K) := 1

K
∂PBS
∂k (k, σ) |σ=σ(k)= Φ(f2(k)) and D(K) := dP

dK (K). Note
that here we do not use the equality D(K) = E[IK>ST

] whose proof requires that the Put
prices are the expectation of their payoff. Since the Put prices are given by the Black-
Scholes formula, they lie between (K − S0)

+ and K, and since the function K → P (K)
is convex, then its derivative lies necessarily between 0 and 1: 0 ≤ D(K) ≤ 1. It holds

D(K) =
d

dK
PBS

(
log(K/S0), σ(log(K/S0))

)
= DBS(K) +

1

K

∂PBS

∂σ

(
log(K/S0), σ(log(K/S0))

)dσ
dk

(
log(K/S0)

)
= DBS(K) + ϕ

(
f2
(
log(K/S0)

))dσ
dk

(
log(K/S0)

)
.

(3.3)

We now check that

f2(k)
dσ

dk
(k) < 1.

From the previous equations, dσ
dk (k) = D(S0ek)−DBS(S0ek)

ϕ(f2(k))
and because of the bounds for

D(K), this quantity lies in
[
−1−Φ(−f2(k))

ϕ(−f2(k)) , 1−Φ(f2(k))
ϕ(f2(k))

]
. So when f2(k) is non-negative,

f2(k)dσdk (k) ≤ f2(k)1−Φ(f2(k))
ϕ(f2(k))

. Otherwise, f2(k)dσdk (k) ≤ −f2(k)1−Φ(−f2(k))
ϕ(−f2(k)) . Both quanti-

ties are less than 1.

At this point, we verify that

f1(k)
dσ

dk
(k) < 1. (3.4)

It holds KD(K) ≥ P (K). Indeed, since P is convex, its tangent at K lies below
the function P itself, so for any x ≥ 0 one has P (K) + (x − K)D(K) ≤ P (x) and
evaluating at x = 0 we obtain the target inequality since P (0) = 0. From this in-
equality, using Equation (3.3) and writing the explicit formula of P (K), one gets 0 ≤
S0Φ(f1(k)) + S0e

kϕ(f2(k))dσdk (k) = S0Φ(f1(k)) + S0ϕ(f1(k))dσdk (k). If f1 is non-positive,

then f1(k)dσdk (k) ≤ −f1(k)1−Φ(−f1(k))
ϕ(−f1(k)) < 1. Otherwise, Equation (3.4) is automati-

cally satisfied when dσ
dk (k) is non-positive, while when it is positive, we notice that

f1(k)dσdk (k) = f2
dσ
dk (k) − σ dσdk (k) < 1 − σ dσdk (k) < 1.

Finally, we show that f1 and f2 are strictly increasing. Indeed, from their definition,
df1,2
dk (k) = 1

σ(k)

(
1 − dσ

dk (k)
(

k
σ(k) ±

σ(k)
2

))
= 1

σ(k)

(
1 − dσ

dk (k)f2,1(k)
)
> 0.

What if we start from convex Call prices defined by the Black-Scholes Call prices
instead of Put prices? In such case, as discussed in Section 3.3.4, one observes first that
the Put prices come from the Black-Scholes Put prices and they are convex. Secondly,
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3. No arbitrage SVI

looking at the Put-Call parity, one notices that the Call prices are convex iff the Put
prices are convex. Applying the previous Lemma one finds again f ′1,2(k) > 0.

The last ingredient we will require is a natural change of parameters in SVI, that we
describe in the next section altogether with the main argument of our full characteriza-
tion.

3.5 Normalizing SVI

We now rescale SVI in the following way, which is natural:

SV I(k) = ασ + bσ

(
ρ
k −m

σ
+

√(k −m

σ

)2
+ 1

)
= σN

(
k −m

σ

)
with α := a/σ and N(l) := α + b(ρl +

√
l2 + 1). With this rewriting, the derivatives of

the SVI model become

SV I ′(k) = N ′
(
k −m

σ

)
,

SV I ′′(k) =
1

σ
N ′′
(
k −m

σ

)
.

Observe that the second derivative N ′′ is positive so N is strictly convex. Its only
critical point is a minimum that we call l∗ = − ρ√

1−ρ2
. We gather the important prop-

erties of N in the following:

Lemma 3.3 (Normalized SVI). Let N(l) := α+ b(ρl+
√
l2 + 1) where a = ασ. Then N

is strictly convex with a minimum at l∗ = − ρ√
1−ρ2

, where N(l∗) = α+ b
√

1 − ρ2. Also:

N ′(l) = b

(
ρ+

l√
l2 + 1

)
,

N ′′(l) =
b

(l2 + 1)
3
2

.

In particular as l → ±∞:

N(l) ∼ α+ b(ρ± 1)l, N ′(l) → b(ρ± 1), N ′′(l) → 0,

and for every k

SV I(k) = σN
(k −m

σ

)
.

In the above Lemma, note that the statement N(l) ∼ a′ + b(ρ± 1)l covers the cases
b = 0 and b ̸= 0.
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3.5. Normalizing SVI

Hereafter we will also put m = µσ, so that k = σ(l + µ) and

SV Ia,b,ρ,m,σ(k) = σNα,b,ρ

(
k

σ
− µ

)
where the parameters have the following constraints:

b ≥ 0, |ρ| ≤ 1, µ ∈ R, σ ≥ 0, α+ b
√

1 − ρ2 ≥ 0.

3.5.1 Expressing g with f1,2 in rescaled parameters, and our main
argument

There is a nice expression of g involving the functions f1,2; indeed as shown e.g. in [27]
(eq. A9) and [49] (eq. 14):

∂2C

∂K2

∣∣∣∣∣
K=S0ek

= ϕ(f2(k))
(
f ′1(k)f ′2(k)

√
w(k) + (

√
w)′′(k)

) 1

S0ek

where ϕ is the standard Gaussian density. By identification this yields

g(k) =
(
f ′1(k)f ′2(k)

√
w(k) + (

√
w)′′(k)

)√
w(k).

With our rescaled parameters, we have

g(k) =

(
1 −

kN ′( k
σ − µ

)
2σN

(
k
σ − µ

))2

−
N ′( k

σ − µ
)2

4

(
1

σN
(
k
σ − µ

) +
1

4

)
+
N ′′( k

σ − µ
)

2σ

and writing G(l) := g(σ(l + µ)) we find

G(l) =

(
1 − (l + µ)N ′(l)

2N(l)

)2

− N ′(l)2

4

(
1

σN(l)
+

1

4

)
+
N ′′(l)

2σ
.

We can rewrite G as

G(l) =

(
1 −N ′(l)

(
(l + µ)

2N(l)
+

1

4

))(
1 −N ′(l)

(
(l + µ)

2N(l)
− 1

4

))
+

1

2σ

(
N ′′(l) − N ′(l)2

2N(l)

)
= G1(l) +

1

2σ
G2(l)

where

G1(l) :=

(
1 −N ′(l)

(
(l + µ)

2N(l)
+

1

4

))(
1 −N ′(l)

(
(l + µ)

2N(l)
− 1

4

))
,

G2(l) := N ′′(l) − N ′(l)2

2N(l)
.
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Call G1+ the first factor of G1 and G1− the second one. Then f ′1,2(σ(l + µ)) =

f ′1,2(k) = 1√
σN
(

k
σ
−µ
)(1 − N ′( k

σ − µ
)(

k

2σN
(

k
σ
−µ
) ± 1

4

))
= G1±(l)√

σN(l)
and the Fukasawa

conditions correspond to G1± > 0, which entails that G1 > 0.
Completing the identification yields G1

(
k
σ−µ

)
= f ′1(k)f ′2(k)w(k) and 1

2σG2

(
k
σ−µ

)
=

(
√
w)′′(k)

√
w(k).

It is now instrumental to observe that:

g(k) = G(l) = G1(l) +
1

2σ
G2(l)

where

� G1 depends only on α, b, ρ, µ,

� G2 depends only on α, b, ρ,

so that the dependency of G in σ is particularly simple; this is the main benefit of our
rescaling of SVI.

Our main argument is now as follows: the Fukasawa conditions yield that it is nec-
essary that G1 > 0; for a given choice of b, ρ, α, this will give a condition on µ, which
therefore characterizes the Fukasawa conditions in SVI. Given then a parameter µ sat-
isfying this condition, the positivity of g (or G) can be casted as a simple condition on
σ:

σ ≥ sup
l

G2(l)

G1(l)

which yields the full characterization of no Butterfly arbitrage in SVI.
In Section 3.6 we investigate the conditions on G1 related to the Fukasawa conditions,

and in Section 3.7 this latter condition on σ.

3.5.2 Classifying the normalized SVI parameters

We will use the following notations to clarify the assumptions made on the SVI param-
eters:

� (A1) α+ b
√

1 − ρ2 > 0 and |ρ| < 1,

� (A2) α ≥ 0 and |ρ| = 1,

� (B1) b(1 ± ρ) < 2,

� (B2) b(1 + ρ) < 2 and b(1 − ρ) = 2,

� (B3) b(1 + ρ) = 2 and b(1 − ρ) < 2,

� (B4) b(1 + ρ) = 2 and b(1 − ρ) = 2, which is equivalent to b = 2, ρ = 0.

In the sequel, to avoid singularities in our computations, we will assume b positive
since the case b = 0 is the Black-Scholes case, which is a trivial case of no arbitrage, and
exclude the boundary cases |ρ| = 1, so work under assumption (A1). We revisit those
boundary cases in Section 3.7.4 where we will assume (A2).
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3.6. Investigating Fukasawa necessary no arbitrage conditions

3.6 Investigating Fukasawa necessary no arbitrage
conditions

3.6.1 Limits at infinity

We have the following:

Lemma 3.4 (Limits of G1).

lim
±∞

G1(l) =
(1

2
− b(ρ± 1)

4

)(1

2
+
b(ρ± 1)

4

)
.

In particular, G1(∞) ≥ 0 and G1(−∞) ≥ 0 iff simultaneously b(1 ± ρ) ≤ 2.

These conditions are conditions on the asymptotic slopes of the total variance smile,
and are therefore related to the Roger Lee Moment formula [48]; this is a general fact
for the Fukasawa conditions: [32] contains several asymptotic statement on f1 and f2
which are directly related to the asymptotic behaviour of w(k)

k .

3.6.2 The conditions as an interval for µ

Let us investigate the corresponding Fukasawa conditions of positivity of G1+ and G1−
in terms of SVI parameters. We start with the following:

Lemma 3.5. Let

L±(l;α, b, ρ) := 2N(l)
( 1

N ′(l)
∓ 1

4

)
− l (3.5)

where L+ is defined on ]l∗,+∞[ and L− on ] − ∞, l∗[.Then G1± > 0 if and only if
supl<l∗ L−(l) < inf l>l∗ L+(l) and

µ ∈ Iα,b,ρ :=] sup
l<l∗

L−(l), inf
l>l∗

L+(l)[.

Proof. In order to have G1± > 0, we need supl<l∗ L±(l) < µ < inf l>l∗ L±(l). Indeed

G1±(l) = 1 − N ′(l)
(
(l+µ)
2N(l) ±

1
4

)
so that G1±(l) > 0 iff 1 ∓ N ′(l)

4 > N ′(l) (l+µ)2N(l) . Since

L+(l) < L−(l) for every l, we obtain an interval for µ given by supl<l∗ L−(l) < µ <
inf l>l∗ L+(l).

Remark 3.1. In order to alleviate the notations, we will often suppress the list of
parameters in L±, or when we need it just denote the dependency in α, (b, ρ) being fixed.

What are the basic properties of L− and L+?
Note that L−(l∗−) = −∞ and, under b(1 − ρ) < 2, L−(−∞) = −∞. It follows

that l− such that L−(l−) = supl<l∗ L−(l) lays in ] − ∞, l∗[. Similarly, L+(l∗+) = +∞
and L+(+∞) = +∞ when b(1 + ρ) < 2, so l+ such that L+(l+) = inf l>l∗ L+(l) lays
in ]l∗,+∞[. When b(1 − ρ) = 2 then L−(−∞) = −α

2 while when b(1 + ρ) = 2 then

L+(+∞) = α
2 . Indeed at infinity L− behaves as 2α

(
1

b(ρ−1) + 1
4

)
+ 2+b(ρ−1)

2 l while L+ as
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2α
(

1
b(ρ+1) −

1
4

)
+ 2−b(ρ+1)

2 l. In these cases the supremum of L− (or the infimum of L+),

could be reached at −∞ (or +∞).
Experiments show that not every choice of (α, b, ρ) leads to L−(l) < −ϵ < 0 for all

l < l∗ and L+(l) > ϵ > 0 for all l > l∗, so the interval for µ could be empty: for example,
for α = −0.8, b = 1 and ρ = 0.5, we have L−(l−) > L+(l+). This suggests that the
situation is intricate; we show below that when α ≥ 0, the interval is non-empty.

The case α ≥ 0

In the case α ≥ 0, we can indeed demonstrate that the interval for µ is non-empty, with
the following easy argument:

L− is negative for l < l∗ iff N
2N ′ (4+N ′)− l is negative. In this domain N ′ is negative,

so the previous condition is equivalent to ask N(4 + N ′) − 2lN ′ > 0, or equivalently
2(N − lN ′) + N(2 + N ′) > 0. Let us consider the first term. We have N − lN ′ = α +

b
√
l2 + 1− bl2√

l2+1
which is greater than 0 iff, multiplying by

√
l2 + 1, also α

√
l2 + 1+b > 0

or equivalently α > − b√
l2+1

. This holds for α ≥ 0 (note that the latter quantity reaches

its maximum at −∞ where it equals 0, so this proof cannot handle the case α < 0).
We can now consider the second term. We want 2 + N ′ > 0. Since N ′ > b(ρ − 1),

then 2 +N ′ > 2 + b(ρ− 1) ≥ 0. So L− is always strictly negative for l < l∗ and α ≥ 0.
Similarly, L+ is positive for l > l∗ iff 2(N − lN ′) + N(2 −N ′) > 0. With the same

arguments as before we obtain that L+ is strictly positive for l > l∗ and α ≥ 0.
Under (B1), we showed L−(−∞) = −∞ and L+(∞) = ∞, so the interval I is

non-empty.
When b(1 − ρ) = 2 or b(1 + ρ) = 2 this result is still valid. Since in such cases

L−(−∞) = −α
2 and L+(+∞) = α

2 respectively, then L− is negative in [−∞, l∗[ while
L+ is positive in ]l∗,+∞] for α > 0. Otherwise if α = 0, supl<l∗ L−(l) = L−(−∞) = 0
and inf l>l∗ L+(l) = L+(+∞) = 0 respectively.

We have proven the following:

Lemma 3.6 (SVI parameters fulfilling Fukasawa necessary no arbitrage conditions: case
α ≥ 0). Assume (A1). For every (α, b, ρ) with α ≥ 0:

� under (B1), the interval Iα,b,ρ is non-empty and contains 0;

� under (B2),

– if α > 0, the interval Iα,b,ρ is non-empty and contains 0;

– if α = 0, the interval I0,b,ρ is non-empty and has 0 as left boundary;

� under (B3),

– if α > 0, the interval Iα,b,ρ is non-empty and contains 0;

– if α = 0, the interval I0,b,ρ is non-empty and has 0 as right boundary;

� under (B4),
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3.6. Investigating Fukasawa necessary no arbitrage conditions

– if α > 0, the interval Iα,2,0 is non-empty and contains 0;

– if α = 0, the interval I0,2,0 is empty.

Computation of the interval for µ under (B1)

We tackle now the computation of the interval for µ in the general case where α is not
necessarily positive, which is less straightforward. In this section we will assume (B1);
we deal with the other cases in the dedicated Section 3.6.2.

We consider the function L− for l < l∗ and L+ for l > l∗. We have L′
±(l) =

1 ∓ N ′

2 − 2NN ′′

N ′2 and it follows that L′
−(l−) = L′

+(l+) = 0.

The corresponding equations in l are:

1 ∓ b

2

(
ρ+

l√
l2 + 1

)
− 2(α+ b(ρl +

√
l2 + 1))

b
√
l2 + 1(ρ

√
l2 + 1 + l)2

= 0.

Actually, we don’t need to solve these equations. Accordingly, we set:

g±(b,ρ)(l) =
(
ρ
√
l2 + 1 + l

)2(√
l2 + 1

(
1

2
∓ bρ

4

)
∓ bl

4

)
−
(
ρl +

√
l2 + 1

)
(3.6)

where g+(b,ρ) is defined on [l∗,∞[ and g−(b,ρ) on ]−∞, l∗]. Then L′
±(l) = 0 iff g±(b,ρ)(l) =

α
b .

The following technical result turns to be a key one:

Proposition 3.3. Assume (A1) and (B1), and let g±(b,ρ) defined by Equation (3.6).

Then g±(b,ρ)(l
∗) = −

√
1 − ρ2, g±(b,ρ)(±∞) = ∞, and g±(b,ρ) is either monotonous or

with a single local minimum. Let s± = l∗ if g±(b,ρ) is monotonous and s± ̸= l∗ such that

g±(b,ρ)(s±) = −
√

1 − ρ2 otherwise. Then:

� L−(x; bg−(b,ρ)(x)) = supl<l∗ L−(l; bg−(b,ρ)(x)) for any x < s−, L−(x; bg−(b,ρ)(x)) →
−∞ when x→ −∞, the function L−(x; bg−(b,ρ)(x)) is increasing and the function
g−(b,ρ) is decreasing on ] −∞, s−[;

� L+(x; bg+(b,ρ)(x)) = inf l>l∗ L+(l; bg+(b,ρ)(x)) for any x > s+, L+(x; bg+(b,ρ)(x)) →
+∞ when x → +∞, and both the functions L+(x; bg+(b,ρ)(x)) and g+(b,ρ) are
increasing on ]s+,∞[.

The proof is provided in Section 3.A. We display a typical plot of g−(b,ρ) and g+(b,ρ)

in Figure 3.1.

This proposition has in turn two important corollaries:

Corollary 3.1. Assume (A1) and (B1). There is a unique (l−, l+) such that l− < l∗ < l+
and α = bg−(b,ρ)(l−) = bg+(b,ρ)(l+). The interval Iα,b,ρ is non-empty iff L−(l−;α) <
L+(l+;α). In this case the distance between L+(l+;α) and L−(l−;α) increases with α.
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3. No arbitrage SVI

Figure 3.1: Typical plot of the functions g±(b,ρ) with b = 2
3 and ρ = 1

2 . The horizontal

dotted line corresponds to the level −b
√

1 − ρ2.

Proof. This follows directly from the previous analysis: the function g+(b,ρ) is increasing
on ]s+,∞[ and the function g−(b,ρ) is decreasing on ] − ∞, s−[ with g±(b,ρ)(±∞) = ∞.

So the solutions l± = l±(α) of bg±(b,ρ)(l±) = α exist for α > −b
√

1 − ρ2 = bg±(s±), and
l± are monotone with respect to α. In turn, the function L+(l+; bg+(b,ρ)(l+)) increases
and the function L−(l−; bg−(b,ρ)(l−)) decreases. Note that l− < s− and l+ > s+ because

α > −b
√

1 − ρ2 from (A1). We can also use the fact that

d

dα
(L+(l+;α) − L−(l−;α)) = L′

+(l+)
d

dα
l+ − L′

−(l−)
d

dα
l− + ∂αL+(l+;α) − ∂αL−(l−;α)

= ∂αL+(l+;α) − ∂αL−(l−;α)

where l+ and l− are functions of α given by α = bg+(b,ρ)(l+) = bg−(b,ρ)(l−). Now, the

RHS is equal to 2
(

1
N ′(l+)−

1
N ′(l−)−

1
2

)
and since 1

N ′(l+) >
1
2 and − 1

N ′(l−) >
1
2 , the previous

quantity is greater than 1.

Let F (b, ρ) denote the unique value of α such that L+(l+;α) = L−(l−;α) if there
exists such a value for α > −b

√
1 − ρ2, otherwise let F (b, ρ) = −b

√
1 − ρ2. Then

L+(l+;α) > L−(l−;α) if and only if α > F (b, ρ). In other words we define F (b, ρ) as:

F (b, ρ) := inf{α | L+(l+;α) > L−(l−;α)} ∨ −b
√

1 − ρ2

under the assumptions (A1) and (B1). We name F the Fukasawa threshold of SVI.

Figure 3.2 shows:

� in blue the function l− → L−(l−; bg−(b,ρ)(l−)) with l− < s− where s− is such that

g−(b,ρ)(s−) = −
√

1 − ρ2;

� in green the corresponding value of l− → L+(l+(bg−(b,ρ)(l−)); bg−(b,ρ)(l−)).
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3.6. Investigating Fukasawa necessary no arbitrage conditions

Figure 3.2: Plot of L−(l−) and L+(l+(bg−(b,ρ)(l−))) as functions of l−, with b = 25
21 and

ρ = 2
5 . The vertical dotted line corresponds to the level −b

√
1 − ρ2.

The following corollary gives an easy criterion of existence of a Butterfly arbitrage:

Corollary 3.2. Assume (A1) and (B1). If α ≤ F (b, ρ) then for every choice of µ and
σ, the SVI model does not satisfy the Fukasawa conditions.

Study of the Fukasawa threshold under (B1)

In the previous section we showed that the difference L+(l+; bg+(b,ρ)(l+)) −
L−(l−; bg−(b,ρ)(l−)) goes to infinity when increasing α = bg+(b,ρ)(l+) = bg−(b,ρ)(l−) to
infinity, so there exists ᾱ such that the interval for µ is non-empty; from the previous
corollaries for each α > ᾱ the interval for µ is also non-empty. Decreasing α, we could
bump into two situations:

� α reaches the value F (b, ρ) > −b
√

1 − ρ2 for which L+(l+;F (b, ρ)) = L−(l−;F (b, ρ));

� α reaches the value F (b, ρ) = −b
√

1 − ρ2. In such case l± = s±.

Our simulations suggest that the first scenario always occurs.
Could we prove this? In this respect we can observe the following: it is equivalent

to prove that L+(s+;−b
√

1 − ρ2) < L−(s−;−b
√

1 − ρ2).
If s+ = l∗ then L+(s+;−b

√
1 − ρ2) = −l∗ and the function L+(l+; bg+(b,ρ)(l+)) is

increasing. It follows that the function L−(l−; bg−(b,ρ)(l−)) cannot be increasing and

s− < l∗. We should show that L−(s−;−b
√

1 − ρ2) > −l∗.
When s− = l∗ then L−(s−;−b

√
1 − ρ2) = −l∗ and the function L−(l−; bg−(b,ρ)(l−))

is increasing. Again, the function L+(l+; bg+(b,ρ)(l+)) cannot be increasing so s+ > l∗.

In this case we should prove that L+(s+;−b
√

1 − ρ2) < −l∗.
In the final case when both g±(b,ρ) have a minimum, it is enough to prove

L−(s−;−b
√

1 − ρ2) > −l∗ and L+(s+;−b
√

1 − ρ2) < −l∗.
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3. No arbitrage SVI

So to sum up, it would remain to prove that when g−(b,ρ) (or g+(b,ρ)) has a minimum,

L−(s−;−b
√

1 − ρ2) > −l∗ (or L+(s+;−b
√

1 − ρ2) < −l∗) to obtain the result in each
case. We did not manage to conclude along those lines though.

Remark 3.2. We don’t know whether F (b, ρ) > −b
√

1 − ρ2 but we conjecture it. Indeed
we prove in Section 3.B that there is a closed formula for F (b, 0) which satisfies F (b, 0) >
−b; the statement F (b, ρ) > −b

√
1 − ρ2 can be also assessed numerically.

Symmetries

We can exploit the symmetry property of N with respect to ρ in order to restrict the
required computations to the function L− only.

Indeed N(l;α, b, ρ) = N(−l;α, b,−ρ), N ′(l; b, ρ) = −N ′(−l; b,−ρ) and N ′′(l; b) =
N ′′(−l; b). This brings to the consideration that

L−(l;α, b, ρ) = −L+(−l;α, b,−ρ), L+(l;α, b, ρ) = −L−(−l;α, b,−ρ),

so that

inf
l>l∗(ρ)

L+(l;α, b, ρ) = − sup
l>l∗(ρ)

L−(−l;α, b,−ρ)

= − sup
l<−l∗(ρ)

L−(l;α, b,−ρ)

= − sup
l<l∗(−ρ)

L−(l;α, b,−ρ)

so L+(l+(α, b, ρ);α, b, ρ) = −L−(l−(α, b,−ρ);α, b,−ρ).
Note that l+(α, b, ρ) is the unique l > l∗(ρ) such that L′

+(l;α, b, ρ) = 0 while
l−(α, b,−ρ) is the unique l < l∗(−ρ) such that L′

−(l;α, b,−ρ) = 0. Since L′
+(l;α, b, ρ) =

L′
−(−l;α, b,−ρ) and −l−(α, b,−ρ) > −l∗(−ρ) = l∗(ρ), then l+(α, b, ρ) = −l−(α, b,−ρ).

Lemma 3.7. Assume (A1) and (B1). Then:

� L+(l+(α, b, ρ);α, b, ρ) = −L−(l−(α, b,−ρ);α, b,−ρ);

� l+(α, b, ρ) = −l−(α, b,−ρ);

� Iα,b,ρ =
]
L−(l−(α, b, ρ);α, b, ρ),−L−(l−(α, b,−ρ);α, b,−ρ)

[
.

From the above equations we also have g+(b,ρ)(l) = g−(b,−ρ)(−l) so with easy argu-
ments one gets s+(b, ρ) = −s−(b,−ρ).

The cases (B2), (B3) and (B4)

Assume (B2) or (B4). Using the same definitions and following the proof of Propo-
sition 3.3, we obtain that g−(b,ρ)(l) is increasing. Now since g−(b,ρ) is increasing on

] − ∞, l∗] and since g−(b,ρ)(l
∗) = −

√
1 − ρ2, it follows that there is no solution to the
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3.6. Investigating Fukasawa necessary no arbitrage conditions

equation g−(b,ρ)(l−) = α
b . In this case so, the supremum of L− is attained at −∞ and it

is −α
2 . Under (B3) or (B4), for symmetrical reasons L+ attains its infimum α

2 at ∞.

Under (B2), L+ reaches its infimum in ]l∗,+∞[ while under (B3), L− reaches its
supremum in ] −∞, l∗[. Finally under (B4), Iα,2,0 =

]
−α

2 ,
α
2

[
.

We can extend the definition of the Fukasawa threshold to the cases (B2), (B3) and
(B4):

� under (B2), F (b, ρ) denotes the unique value of α such that L−(l−(α, b,−ρ);α, b,−ρ)
= α

2 if there exists such a value for α > −b
√

1 − ρ2, otherwise F (b, ρ) = −b
√

1 − ρ2:

F (b, ρ) := inf{α | L+(l+;α) > −α
2 } ∨ −b

√
1 − ρ2;

� under (B3), F (b, ρ) denotes the unique value of α such that L−(l−(α, b, ρ);α, b, ρ) =
α
2 if there exists such a value for α > −b

√
1 − ρ2, otherwise F (b, ρ) = −b

√
1 − ρ2:

F (b, ρ) := inf{α | α2 > L−(l−;α)} ∨ −b
√

1 − ρ2;

� under (B4), F (2, 0) := 0.

From Lemma 3.6, under cases (B2) and (B3) it holds F (b, ρ) < 0.

3.6.3 Conclusion

We can now state the full characterization of the Fukasawa necessary no arbitrage con-
ditions for SVI:

Theorem 3.1 (SVI parameters (α, b, ρ, µ, σ) fulfilling Fukasawa necessary no arbitrage
conditions). Assume (A1). Then:

� under (B1), F (b, ρ) < 0 and the interval Iα,b,ρ =
]
L−(l−(α, b, ρ);α, b, ρ),

−L−(l−(α, b,−ρ);α, b,−ρ)
[
is non-empty iff α > F (b, ρ);

� under (B2) (resp. (B3)), F (b, ρ) < 0 and the interval Iα,b,ρ =
]
−α

2 ,
−L−(l−(α, b,−ρ);α, b,−ρ)

[
(resp. Iα,b,ρ =

]
L−(l−(α, b, ρ);α, b, ρ), α2

[
) is non-empty

iff α > F (b, ρ);

� under (B4), the interval Iα,2,0 =
]
−α

2 ,
α
2

[
is non-empty iff α > F (2, 0) = 0.

In every case, the Fukasawa conditions are satisfied iff µ ∈ Iα,b,ρ.

Except for F (2, 0), the result F (b, ρ) negative holds even in the case F (b, ρ) >
−b
√

1 − ρ2 because we have proven that for α ≥ 0 the interval for µ is always non-
empty. In terms of the usual SVI parameters the conditions translate into a

σ > F (b, ρ)
and m

σ ∈ I a
σ
,b,ρ.

Is the existence of the Fukasawa threshold surprising? We would say no: indeed the
values of α too close to the lower bound −b

√
1 − ρ2 correspond to values of the smile

too close to zero, and this will lead to an arbitrage as discussed in Section 3.3.2, so that
one even expects that F (b, ρ) > −b

√
1 − ρ2.
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The explanation of the range constraint for µ is less intuitive to us; we would say
that it results from the geometrical constraint that the Fukasawa conditions impose on
the shape of SVI, as follows from our computations.

3.6.4 Numerics

F (b, ρ) at a fixed b We plot in Figure 3.3 the Fukasawa threshold at fixed b = 1
2 as a

function of ρ.

Figure 3.3: Plot of F (b, ρ) as a function of ρ, with b = 1
2 .

The graph is symmetric with respect to ρ because F (b, ρ) is the value of α such that
L+(l+(α, b, ρ);α, b, ρ) − L−(l−(α, b, ρ);α, b, ρ) = 0, where bg±(b,ρ)(l±(α, b, ρ)) = α. But
L+(l+(α, b, ρ);α, b, ρ) = −L−(l−(α, b,−ρ);α, b,−ρ) so we look for α such that

L−(l−(α, b,−ρ);α, b,−ρ) + L−(l−(α, b, ρ);α, b, ρ) = 0

and this is symmetric with respect to ρ.
The red line is the level α = −b

√
1 − ρ2 and it again supports our conjecture that

F (b, ρ) > −b
√

1 − ρ2.
From the previous graph, it seems that F (b, ρ) has monotonicity of the same sign as

ρ.
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F (b, ρ) at fixed ρ as a function of b In Figure 3.4 we plot the Fukasawa threshold
at fixed ρ = 1

5 as a function of b.

Figure 3.4: Plot of F (b, ρ) as a function of b, with b = 1
5 .

L−(l−(F (b, ρ), b, ρ);F (b, ρ), b, ρ) and L−(l−(F (b, ρ), b,−ρ);F (b, ρ), b,−ρ) as functions
of ρ The following Figure 3.5 shows in blue the function L−(l−(F (b, ρ), b, ρ);F (b, ρ), b, ρ)
(denoted for brevity as L−(F (b, ρ), ρ)) with respect to ρ while in green the function
L−(l−(F (b, ρ), b,−ρ);F (b, ρ), b,−ρ) (or L−(F (b, ρ),−ρ)) with respect to ρ. The fixed
value for b is 3

5 .

Figure 3.5: Plot of L−(l−(F (b, ρ), ρ) and L−(F (b, ρ),−ρ) as functions of ρ, with b = 3
5 .

This graph also shows in blue the value of the two bounds for µ when they shrink to
one point. Note that for ρ = 0 this is 0 for every b, while it depends on b for the other
values of ρ.

The function ρ→ L−(l−(F (b, ρ), b, ρ);F (b, ρ), b, ρ) is odd due to the symmetry of ρ→
F (b, ρ). Furthermore, from the graph it seems that ρ and L−(l−(F (b, ρ), b, ρ);F (b, ρ), b, ρ)
have the same sign.

L−(l−(F (b, ρ), b, ρ);F (b, ρ), b, ρ) as a function of b Figure 3.6 shows the function
L−(l−(F (b, ρ), b, ρ);F (b, ρ), b, ρ) (denoted as L−(F (b, ρ), ρ)) with respect to b. Here we
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3. No arbitrage SVI

fix ρ = 1
2 .

Figure 3.6: Plot of L−(l−(F (b, ρ), ρ) as a function of b, with ρ = 1
2 .

3.6.5 Algorithm

We can parametrize the normalized SVI parameters satisfying the Fukasawa conditions
as follows:

1. choose ρ ∈] − 1, 1[ and b positive such that b(1 ± ρ) ≤ 2 by choosing b′ ∈]0, 1] and
setting b = b′ 2

1+|ρ| ;

2. compute numerically F (b, ρ), and parametrize α by setting α = F (b, ρ) + u for
positive u;

3. compute numerically (L−, L+) for this value of u, and parametrize µ by setting

µ = (1+q)
2 L+ + (1−q)

2 L− for q ∈] − 1, 1[.

The values in point 3 can be computed using the same functions employed to find
F (b, ρ), indeed it is sufficient to evaluate L−(l−(α, b, ρ);α, b, ρ) and −L−(l−(α, b,−ρ);α, b,
−ρ).

If we are interested only by a test that a given parameter satisfies the Fukasawa
conditions, we have the corresponding waterfall of failure possibilities that we define as
follows:

1. b(1 − ρ) > 2 or b(1 + ρ) > 2: failure of type 1 ; otherwise:

2. α ≤ F (b, ρ): failure of type 2 ; otherwise:

3. µ not in Iα,b,ρ: failure of type 3.
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Application to Axel Vogt parameters

The so-called Axel Vogt example (cf [36]) became the archetypal example of a smile with
arbitrage. The SV I parameters are

(a, b, ρ,m, σ) = (−0.041, 0.1331, 0.3060, 0.3586, 0.4153),

and they are known to lead to a Butterfly arbitrage. Do they satisfy the Fukasawa
conditions?

No, since the respective value for µ is 0.86347, while its arbitrage free interval is
] − 0.72407, 0.82939[.

The Fukasawa conditions are not satisfied because of µ. However α = −0.09872 and
F (b, ρ) = −0.12663, so α > F (b, ρ) and the interval for µ is non-empty. The problem
here is due to µ, which is too large: we face a failure of type 3.

3.7 No arbitrage domain for SVI

3.7.1 Behaviour of the function G2

Recall that the function G2 is defined as

G2(l) := N ′′(l) − N ′(l)2

2N(l)
(3.7)

and that it depends only on (α, b, ρ). As discussed in Section 3.5.1, G2 is positively
proportional to the second derivative of the volatility smile, meaning of

√
SVI(k). Since

the variance smile is convex and asymptotically linear on both sides, it is expected that
G2 will be asymptotically negative, while it is positive around the minimum of the smile.
In particular it is expected that it will have zeros, on both sides of the minimum of the
smile.

The zeros of G2

In this section we prove the following:

Lemma 3.8 (Zeros of G2). G2 has exactly two zeros l1, l2 which satisfy l1 < l∗ ∧ 0 and
l2 > l∗ ∨ 0 such that G2(l) > 0 ⇐⇒ l ∈]l1, l2[. Furthermore, G2(l) → 0− for l → ±∞.

Proof. For l → ±∞ we have that the first addend behaves as bl−3 while the second as
− b(ρ±1)

2 l−1, so G2 behaves as − b(ρ±1)
2 l−1. This means that G2 goes to 0− as l → ±∞.

Since G2(l
∗) = N ′′(l∗) > 0 and G2 is continuous, then there exists an interval ]l1, l2[

containing l∗ such that for every l in this interval, G2 is positive. It follows that G2 has
at least two zeros. Deriving, we find the following interesting relationship between G′

2

and G2:

G′
2(l) = N ′′′(l) − N ′(l)

N(l)
G2(l).
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We will prove now that this relationship entails that the first zero of G2 is negative.
Indeed if l1 > 0 is the first zero of G2, since

N ′′′(l) = − 3bl

(l2 + 1)
5
2

, (3.8)

we have G′
2(l1) < 0, which is not possible because G2(l) is negative for every l < l1. If

l1 = 0, then G′
2(0) = 0 but 0 cannot be a point of local maximum for G2, otherwise

there would be a following zero l2 > 0. In such case, G′
2(l2) < 0 for Equation (3.8) but

having G2 so far negative, it should be increasing in l2. Then 0 could at most be an
inflection point. However,

G′′
2(l) = N iv(l) − N ′(l)N ′′′(l)

N(l)
+

(
2
N ′(l)2

N(l)2
− N ′′(l)

N(l)

)
G2(l)

so G′′
2(0) = N iv(0) = −3b, which is negative since b > 0. Therefore, the first zero l1 of

G2 is necessarily negative. With similar arguments we obtain that the next zero l2 must
be non-negative. Suppose l2 = 0. Then, as before, G′

2(0) = 0 and G′′
2(0) = −3b < 0, so

it would be a point of local maximum, which is not possible. Then l2 must be positive.

Moreover, there cannot be other zeros for G2. Indeed, suppose l3 was the first zero
after l2. Then l3 > 0 and from Equation (3.8) it should be G′

2(l3) < 0 but this cannot
be true since G2 is negative in the left neighborhood of l3.

This leads to the conclusion that G2 has exactly two zeros, one positive and the

other one negative. As a consequence, G2(0) = b
(
1− bρ2

2(α+b)

)
> 0. This could have been

obtained also from the fact that α+ b
√

1 − ρ2 ≥ 0 due to the positivity of N .

Then, we find that G2 > 0 in [l∗, 0] when ρ ≥ 0 or in [0, l∗] when ρ < 0.

Substituting the explicit formulas for N,N ′ and N ′′ in Equation (3.7), we obtain

G2(l) =
b

(l2 + 1)
3
2

− b2(ρ
√
l2 + 1 + l)2

2(l2 + 1)(α+ b(ρl +
√
l2 + 1))

which leads to the remark that G2(l)
b = G̃2,α

b
,ρ(l) where G̃2,x,ρ(l) := 1

(l2+1)
3
2

−
(ρ
√
l2+1+l)2

2(l2+1)(x+(ρl+
√
l2+1))

, which reduces in general the study of G2 to the study of a 2-

parameters function.

In order to find the zeros of G2 we should solve 2αb + b(2− l2)
√
l2 + 1− ρ2(l2 + 1)

3
2 −

2ρl3 = 0 or equivalently 2αb − 2ρl3 = ((ρ2 + 1)l2 + ρ2 − 2)
√
l2 + 1.

Note that when ρ = 0 this equation is explicitly solvable.

Plot of a typical G2 function

We plot in Figure 3.7 the function G2 for the parameters α = 1
10 , b = 1

2 , ρ = − 3
10 .
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Figure 3.7: Plot of G2 with α = 1
10 , b = 1

2 and ρ = − 3
10 .

3.7.2 The final condition on σ under (A1)

We recall that the non-negativity of the Durrleman condition in the case of SVI amounts
to the non-negativity of the function

G(l) = G1(l) +
1

2σ
G2(l) (3.9)

where G1 and G2 do not depend on σ.
We have proven that:

1. for every (α, b, ρ) with b(1±ρ) ≤ 2 and α > F (b, ρ), where F (b, ρ) ≤ 0, there exists
an interval for µ such that G1 is positive on R (in fact each factor of G1 is positive
on R). Moreover it is necessary that the conditions on (α, b, ρ) hold and that µ
lies in this interval under no arbitrage.

2. for every (α, b, ρ) with b(1± ρ) ≤ 2 there exists an interval ]l1, l2[ containing 0 and
l∗ such that G2(l) > 0 iff l ∈]l1, l2[.

We insist here again on the key property brought by the Fukasawa condition that it is
necessary that G1 is positive. This structures a lot the picture; previous to Fukasawa’s
observation, people investigating the positivity of G could not assume this. Another
consequence is that under the Fukasawa conditions of Section 3.4, G is granted to be
positive on [l1, l2].

The last step is to exploit the fact that thanks to our re-parametrization, the de-
pendency of G in σ is very simple. Let Π stand for a fixed set of parameters (α, b, ρ, µ)
fulfilling the Fukasawa conditions. Then given the fact that G2(l) < 0 for some l, it
follows that if G is non-negative everywhere for (Π, σ), then G is also non-negative
everywhere for every (Π, τ) with τ > σ. As a consequence, there exists a function
Π → σ∗(Π) such that G is non-negative everywhere for (Π, τ) iff τ ≥ σ∗(Π).

53



3. No arbitrage SVI

The value of σ∗ can be obtained asking the RHS of Equation (3.9) to be non-negative,

which holds for σ ≥ supl−
G2(l)
2G1(l)

. Then

σ∗(α, b, ρ, µ) := sup
l<l1∨l>l2

− G2(l)

2G1(l)
.

Since G2(l
−
1 ) = G2(l

+
2 ) = 0− and G2(±∞) = 0−, the maximum of − G2(l)

2G1(l)
for

l < l1 ∨ l > l2 is reached for a finite real value in ] −∞, l1] ∪ [l2,+∞[.

We have therefore proven the following:

Theorem 3.2 (Necessary and sufficient no Butterfly arbitrage conditions for SVI under
(A1)). No Butterfly arbitrage in SVI entails that G1 is positive, which requires b(1±ρ) ≤
2. Under this condition:

� each of the factors of the function G1 is positive on R if and only if α > F (b, ρ)
and µ ∈ Iα,b,ρ;

� for such µ’s, calling l1 < 0 < l2 the only zeros of G2, the function G is positive
in ]l1, l2[ for every σ ≥ 0 and the function G is non-negative on R if and only if
σ ≥ σ∗(α, b, ρ, µ).

Practical computation of σ∗

Computationally, it would be easier to implement an algorithm with bounded intervals
for l. It is enough to substitute h = 1

l to obtain

σ∗(α, b, ρ, µ) := sup
1
l1
<h< 1

l2

−
G2(

1
h)

2G1(
1
h)
.

Under (A1) and (B1), for h which goes to 0±, the function G2 goes to 0− while G1

is always positive under the Fukasawa conditions. So the function f
(
1
h

)
= − G2(

1
h
)

2G1(
1
h
)

goes

to 0+. This is a point of minimum for f in the interval
]
1
l1
, 1
l2

[
because here the function

is always positive.

To numerically compute σ∗ we can use an algorithm which finds the maximum of f
in
]
1
l1
, 0
[

and in
]
0, 1

l2

[
and then compares the two maxima.

It can be shown that f ′
(
1
h

)
goes to 4b(ρ−1)

(2−b(ρ−1))(2+b(ρ−1)) < 0 when h goes to 0− while

it goes to 4b(ρ+1)
(2−b(ρ+1))(2+b(ρ+1)) > 0 when h goes to 0+. Furthermore, f ′

(
1
l1

)
> 0 and

f ′
(
1
l2

)
< 0.

We plot in Figure 3.8 the function f
(
1
h

)
with b = 1

2 , ρ = − 3
10 , α = 1

10 and µ = 1
10 .

The function f
(
1
h

)
seems to have always three extrema: two points of maximum (one

in each interval
]
1
l1
, 0
[

and
]
0, 1

l2

[
) and one point of minimum at 0. The sign of ρ does

not imply in which of the two intervals the maximum lies.
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3.7. No arbitrage domain for SVI

Figure 3.8: Plot of f( 1
h) as a function of h, with b = 1

2 , ρ = − 3
10 , α = 1

10 and µ = 1
10 .

For ρ = 0 and µ = 0 the maxima have the same height, furthermore the two points of
maximum are symmetrical with respect to 0, this last one is also the point of minimum.
This follows from the fact that G2 is symmetric for ρ = 0 and that when µ = 0, also G1

is symmetric.

Note that we have not proven that there is a single maximum on each side of 0. So
a strict implementation should take into account the possibility that there are several
ones, and use a global optimizer on each side. We strongly conjecture that there is in
fact a single maximum on each side.

3.7.3 Algorithm under (A1)

We can now complete the algorithms stated for the Fukasawa conditions. For the
parametrization of the no arbitrage domain, we just need to add the final step which
specifies the range of σ:

1. choose ρ ∈] − 1, 1[ and b positive such that b(1 ± ρ) ≤ 2 by choosing b′ ∈]0, 1] and
setting b = b′ 2

1+|ρ| ;

2. compute numerically F (b, ρ), and parametrize α by setting α = F (b, ρ) + u for
positive u;

3. compute numerically (L−, L+) for this value of u, and parametrize µ by setting

µ = (1+q)
2 L+ + (1−q)

2 L− for q ∈] − 1, 1[;

4. compute numerically σ∗(α, b, ρ, µ), and parametrize σ by setting σ = σ∗ + v where
v ≥ 0.

The main benefit of this parametrization is that it is eventually a simple product of
intervals:

(ρ, b′, u, q, v) ∈] − 1, 1[×]0, 1]×]0,∞[×] − 1, 1[×[0,∞[
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3. No arbitrage SVI

and this is perfectly suitable to feed optimization algorithms working with bounds, like
the standard ones in the scipy.optimize scientific library.

A drawback to keep in mind is that sampling this product sub-space in a uniform
way corresponds to a distorted sampling in the initial space.

There again, we can specify an algorithm which decides whether a SVI parameter
lies or not in the no arbitrage domain:

1. b(1 − ρ) > 2 or b(1 + ρ) > 2: failure of type 1; otherwise:

2. α ≤ F (b, ρ): failure of type 2; otherwise:

3. µ not in Iα,b,ρ: failure of type 3; otherwise:

4. σ < σ∗: failure of type 4.

3.7.4 The monotonous case (A2)

In all the previous discussion, we have assumed |ρ| < 1 to avoid singular cases in our
computations. What happens when |ρ| = 1? We discuss below the case ρ = −1, the
case ρ = 1 follows by symmetry.

In this case the SVI smile is (convex) decreasing, and reaches its minimum α at
infinity, so the domain of α is now α ≥ 0. Note that the boundary value 0 is allowed,
unlike in the regular case, because the implied volatility does not vanish at any finite
strike. The negative slope condition requires b ≤ 1, and the positive (rightmost) one is
automatically fulfilled.

Regarding the Fukasawa conditions, the proofs in Section 3.4 still hold with the con-
vention that l∗ = +∞ so that N is decreasing. The interval for µ becomes
Iα,b,−1 =]L−(l−(α, b,−1);α, b,−1),+∞[, so exactly equal to Iα,b,ρ with the convention
L−(l−(α, b, 1);α, b, 1) = −∞. For α ≥ 0, we have L−(l) < 0 for every l so
L−(l−(α, b,−1);α, b,−1) < 0 also, and this interval always contains [0,∞[. We can then
extend the definition of the Fukasawa threshold to the case ρ = −1, putting F (b,−1) = 0.
This implies that the interval for µ is non-degenerate even when α = F (b,−1) = 0.

The function G2 has only one negative zero l1, above which it is always positive with
G2(+∞) = 0+ while G2(−∞) = 0−. So σ∗ = supl<l1 −

G2(l)
2G1(l)

.

Theorem 3.3 (Necessary and sufficient no Butterfly arbitrage conditions for SVI,
ρ = −1). No Butterfly arbitrage in SVI entails that G1 is positive, which requires b ≤ 1
and α ≥ 0. Under these conditions:

� each of the factors of the function G1 is positive on R if and only if µ > L−(l−;α, b,
−1);

� for such µ’s, calling l1 < 0 the only zero of G2, the function G is positive on
]l1,∞[ for every σ ≥ 0 and the function G is non-negative on R if and only if

σ ≥ σ∗(α, b,−1, µ) where σ∗(α, b,−1, µ) = supl<l1 −
G2(l)
2G1(l)

.
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3.8. Calibration experiments

Application: SVI decreasing to zero

Let us consider the case ρ = −1 and a = 0, so SVI is given by the formula SVI(k) =
b(−(k − µσ) +

√
(k − µσ)2 + σ2) with b ≤ 1.

Can we compute the lower bound for µ? Consider the equation g−(b,−1)(l) = 0

or equivalently from Equation (3.6), (−
√
l2 + 1 + l)

(√
l2 + 1

(
1
2 − b

4

)
+ bl

4

)
+ 1 = 0.

Simplifying, we obtain 2l(1 − b)
√
l2 + 1 = 2(1 − b)l2 − (b+ 2) and squaring we find the

two solutions l = ± b+2

2
√

3(1−b)
when b < 1. The positive one does not solve the initial

equation, so with the notations used in Section 3.4, we finally find s− = − b+2

2
√

3(1−b)
. If

b = 1, then s− = +∞. Note that s− corresponds to l− when α = 0, and we get that
L−(l−(0, b,−1); 0, b,−1) = −

√
3(1 − b).

So for α = 0:

� the Fukasawa conditions are satisfied if and only if µ > −
√

3(1 − b);

� the unique zero of G2 does not depend on b and is given by l1 = − 1√
3
, and the

parameters with no arbitrage are eventually given by b ≤ 1, µ > −
√

3(1 − b),

σ ≥ σ∗(0, b,−1, µ) = supl<−1/
√
3−

G2(l)
2G1(l)

.

3.8 Calibration experiments

Now that we have parametrized the no arbitrage domain, the design of a calibration
algorithm is straightforward:

1. choose an objective function;

2. choose a starting point policy;

3. for the chosen starting points (possibly several of them), run a minimization algo-
rithm of the objective function over the no arbitrage domain;

4. pick up the optimal parameters.

As objective function, we choose the classical least squares criterion, which takes as
input the differences of the data and model total variances on the available set of log-
forward moneyness. This will give equal weights to far-from-the-money points, where
the precise value of the implied volatility, and so the accuracy of the calibration, matters
less, and to close-to-the-money ones, which is not a desirable feature: it can be easily
patched by adding weights given by the Vegas (computed once for all with the data
points), so that the errors are more in line with losses, unit-wise. This would moreover
stabilize the calibration from one day to another one, especially on illiquid markets, as
discussed in detail in [58].

Now the big question for us is rather whether or not the no arbitrage constraint will
deteriorate the quality of the fit, and we will also work on model generated data or on
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3. No arbitrage SVI

index options data which are liquid ones, whence our choice of a standard non-weighted
objective function.

Regarding the starting point policy, we are not big fans of smart guess strategies
which try to compute the best starting point from the data. Such strategies can work
brilliantly in many favorable situations, yet they might fail heavily on data with low
quality (e.g. due to a dubious treatment by an internal department), or when faced with
new market behavior and configurations. There is a clear risk of over-engineering here
also. We would be more confident by using a set (with small cardinality) of starting
points, possibly produced by a machine learning algorithm duly trained on the markets
in scope. We implement a very basic version of this idea, which picks up uniformly
generated points within the hyperrectangle of the no arbitrage domain, irrespective of
the data.

The scipy function here used is the least_squares which lies in the optimize library.
The method used is the dogbox, which handles bounds. The tolerances regarding the
change of the cost function (ftol), the change of the independent variables (xtol) and
the norm of the gradient (gtol) are all set at the Python numpy machine epsilon. The
maximum number of function evaluations (max_nfev) is set at 1000.

Even though the arbitrage region does not impose an upper bound for α and σ, we
choose arbitrary ones. In particular, we ask

σ ≤ max

(
|k0|
r
,
|kN |
r
, 1.5σ∗

)
with r as parameter to be chosen by the user (default value equal to 0.1). This bound

is related to the fact that when |ki|
σ is below a threshold r, then the smile is almost flat

and this causes uncertainty on the parameters to be chosen.
The upper bound for α is left to be chosen by the user. For the index option data

we set α < 1 since it is enough to achieve a very good fit, while for the model generated
data, in order to have an almost perfect calibration, the upper bound actually depends
on the α parameter used to generate data. We set in every case α < 3, since we know a
priori that all the data are generated with α lower than 3.

We provide below our calibration results on model generated data and then on market
data.

3.8.1 On model data

To check the robustness of the algorithm we firstly run it on data generated by arbitrary
SVI parameters with no arbitrage, and on the Axel Vogt parameters. We take a vector
of 13 log-forward strikes taken from Table 3.2 of [29].

The parameters chosen for each of the graphs in Figure 3.9 are arbitrage-free. The
red and the blue lines, which represent the total variances generated from the arbitrary
parameters and the total variances obtained from the calibrated parameters respectively,
overlap.

The fact that the fit is excellent can be seen by the Frobenius relative errors in
Table 3.1.
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3.8. Calibration experiments

Figure 3.9: Model total variances generated by arbitrage-free parameters (in red) and
calibrated total variances (in blue).

a b ρ m σ Relative error (×10−16)

0 0.10 1.0 -0.306 0.10 0.30 1.48
1 -0.10 1.1 0.200 0.00 0.60 1.63
2 0.01 0.1 -0.600 -0.05 0.10 2.30
3 0.80 0.2 0.800 1.00 0.90 1.77
4 1.40 1.9 0.000 -0.10 0.50 2.35
5 0.90 1.2 0.500 0.20 0.85 2.25

Table 3.1: Frobenius relative errors for the total variances with arbitrage-free parameters
calibrated on model total variances.
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3. No arbitrage SVI

a b ρ m σ Relative error (×10−14)

0 0.10 1.0 -0.306 0.10 0.30 0.10
1 -0.10 1.1 0.200 0.00 0.60 0.30
2 0.01 0.1 -0.600 -0.05 0.10 0.06
3 0.80 0.2 0.800 1.00 0.90 20.00
4 1.40 1.9 0.000 -0.10 0.50 0.10
5 0.90 1.2 0.500 0.20 0.85 3.00

Table 3.2: Frobenius relative errors for the parameters calibrated on model total vari-
ances.

a b ρ m σ

Original -0.041 0.1331 0.306 0.3586 0.4153
Calibrated -0.0198444 0.102745 0.180754 0.266125 0.310459

Table 3.3: Axel Vogt parameters vs best fitting no arbitrage.

Figure 3.10: Total variances generated by the Axel Vogt parameters (in red) and total
variances with arbitrage-free parameters (in blue).

Furthermore, also the Frobenius relative error on the parameters is low (Table 3.2).
This means that the algorithm is robust and recovers the original data.

Axel Vogt parameters

For a matter of completeness we run our algorithm on the notorious Axel Vogt param-
eters, which lead to an arbitrage SVI. The original and the calibrated parameters are
reported in Table 3.3 while the graphs of the original and arbitrage-free total variances
are shown in Figure 3.10.
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3.8. Calibration experiments

Figure 3.11: Plot of the functions g with the the Axel Vogt parameters (in red) and with
the arbitrage-free parameters (in blue).

Figure 3.12: On the left, plot of the total variances generated by the Axel Vogt parameters
(in red), the total variances with the arbitrage-free parameters (in blue) and the total
variances with the Gatheral-Jacquier parameters (in green). On the right, plot of the
function g with the the Axel Vogt parameters (in red), with the arbitrage-free parameters
(in blue) and with the Gatheral-Jacquier parameters (in green).

Of course, the calibration is not perfect as in the previous case and the Frobenius
error between the Axel Vogt total variances and the non arbitrage SVI corresponding
total variances is 2.15%.

We compare the function g defined in Equation (3.2) with the original Axel Vogt
parameters and the same function with the new arbitrage-free parameters in Figure 3.11.

From the plot it can be seen that the function g with the new arbitrage-free param-
eters can be very close to zero, but it is always positive.

In the following study, we compare the results obtained with the new arbitrage-free
parameters and the ones with the parameters described in Example 5.1 of [36], which
are also arbitrage free. Figure 3.12 shows that the fit of our new parameters is better
than the one of Gatheral and Jacquier.

In Table 3.4 we compare the relative errors on the total variances for the two sets of

61



3. No arbitrage SVI

a b ρ m σ Relative error

Arbitrage-Free -0.0198444 0.102745 0.180754 0.266125 0.310459 0.022
Gatheral-Jacquier -0.0305199 0.102717 0.100718 0.272344 0.412398 0.133

Table 3.4: Frobenius relative errors for the total variances with arbitrage-free parameters
vs Gatheral-Jacquier parameters.

arbitrage-free parameters.

3.8.2 On data from CBOE

We now turn to market data. We work with market data of good quality bought from
the CBOE data store by Zeliade. They cover daily files for the DJX, SPX500 and NDX
equity indices, with bid and ask prices.

To obtain implied total variances from the prices, we operate the classical treatment
of inferring the discount factor and forward values at each option maturity by performing
a linear regression of the (mid) Call minus Put prices with respect to the strike. Since
the markets under study are very liquid, the fit is excellent and the residual error is
extremely small.

Then, given the discount factor and forward values for each maturity, we are able
(after working out the exact maturity of each contract from its code, if not provided
explicitly) to compute the implied volatilities, for the bid and ask prices.

We feed the objective function with the implied volatility corresponding to the mid
price, and plot below the implied volatilities for the calibrated model and the bid and
ask market data. Results are reported in Figures 3.13 to 3.15.
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3.8. Calibration experiments

Figure 3.13: Fitted implied volatilities with arbitrage-free parameters (in green) and bid
(in blue) and ask (in red) implied volatilities for the DJX index.

63



3. No arbitrage SVI

Figure 3.14: Fitted implied volatilities with arbitrage-free parameters (in green) and bid
(in blue) and ask (in red) implied volatilities for the SPX500 index.
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Figure 3.15: Fitted implied volatilities with arbitrage-free parameters (in green) and bid
(in blue) and ask (in red) implied volatilities for the NDX index.

3.8.3 Discussion

From our experiments we draw several positive conclusions:

� the quality of fit is excellent, and there is no big loss resulting from the no arbitrage
constraint;

� the implementation we have designed seems sufficiently robust in practice; of course
such a statement should be re-assessed continuously;

� the payload of the root finding algorithms used to compute the Fukasawa threshold
and the bounds for µ and σ is not an issue, the calibration is still reasonably fast
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3. No arbitrage SVI

on a basic chip; the average for each maturity for the DJX data is 51.598 seconds,
for the SPX data 36.490 seconds and for the NDX data 44.900 seconds.

Of course, there is room for improvement, at least at the level of the starting point
strategy. One could also think of precomputing the numerical functions computed on
the fly, or to design once for all explicit proxies for them, which would speed massively
the execution of the algorithm.

3.9 Conclusion

Fukasawa’s remark that the inverse of d1 and d2 functions of the Black-Scholes formula
have to be increasing under no Butterfly arbitrage, paired with the natural rescaling of
the SVI parameters which consists in scaling a and m by σ, allow us to fully describe
the domain of no Butterfly arbitrage for SVI.

The no Butterfly arbitrage domain can be parametrized as an hyperrectangle, with 2
downstream algorithms of practical importance: one for checking that a SVI parameter
lies or not in the no arbitrage domain, and the other one to effectively perform a cali-
bration. Three functions have to be computed numerically by resorting to root-finding
type algorithms; due to the fact that our careful mathematical analysis provided safe
bracketing intervals for those functions, this can be achieved in a very quick manner.
We provide calibration results on model and market data, the latter showing that there
is no loss of fit quality due to imposing the no arbitrage constraint.

This analysis settles one important issue in the SVI saga. Other ones are still pending,
like the study of sub-SVI parametrizations with 4 parameters instead of 5, in the spirit of
SSVI (which has 3 parameters slice-wise), which could display more parameter stability
than SVI and a better fit quality than SSVI; and also the question of the characterization
of no Calendar Spread arbitrage for two SVI slices corresponding to different maturities.

66



3.A. Proof of Proposition 3.3

3.A Proof of Proposition 3.3

Proof. Observe that at the point l∗, ρ
√
l2 + 1 + l = 0 and also after computations,

ρl +
√
l2 + 1 =

√
1 − ρ2, so we have g±(b,ρ)(l

∗) = −
√

1 − ρ2. Furthermore, under (B1)
it is easy to verify that g±(b,ρ)(±∞) = ∞.

We have d
dαL±(l±) = L′

±(l±) d
dα l± + ∂αL±(l±) = ∂αL±(l±). Deriving Equation (3.5)

with respect to α, we find ∂αL±(l±) = 2
(

1
N ′(l±) ∓

1
4

)
.

Since N ′(l) > 0 iff l > l∗ and 4 ∓N ′ > 0, we have ∂αL−(l−) < 0 and ∂αL+(l+) > 0.
So the function α→ L−(l−, α) is decreasing while α→ L+(l+, α) is increasing. It means
that the bounds for µ are an increasing family of sets (possibly empty) parametrized
by α. Consider the lower bound, so l < l∗. We can write the expression for g−(b,ρ) in
another way. Note that

N(l) = α+ lN ′(l) +N ′′(l)(l2 + 1) (3.10)

so we have

L′
−(l) = 1 +

N ′(l)

2
− 2N ′′(l)

N ′(l)2
(α+ lN ′(l) +N ′′(l)(l2 + 1)).

Evaluating this in l−, the LHS becomes 0 and we can isolate α, obtaining

g−(b,ρ)(l) =
1

b

(
N ′(l)2

2N ′′(l)

(
1 +

N ′(l)

2

)
− lN ′(l) −N ′′(l)(l2 + 1)

)
. (3.11)

From this expression, we get the derivative of g−(b,ρ) such as g′−(b,ρ)(l) = N ′(l)2

4b

(
3 −

N ′′′(l)
N ′′(l)2 (N ′(l) + 2)

)
, which is positive iff the second factor is positive. Substituting with

the explicit expressions, we find that this holds iff 3
b

√
l2 + 1

(
l(2 + bρ) + b

√
l2 + 1

)
> 0 or

equivalently −l(2 + bρ) < b
√
l2 + 1.

Note that since b(1 − ρ) ≤ 2, then 2 + bρ > 0. If ρ < 0 then the equation is true
for l ≥ 0. For negative ls we can square, obtaining that it holds iff (b2(ρ2 − 1) + 4bρ +
4)l2 < b2. For b(1 − ρ) < 2, the coefficient of l2 is positive, so the inequality holds iff
l > − b√

b2(ρ2−1)+4bρ+4
:= m−. Since ρ is negative, m− < l∗. So in this case g−(b,ρ)(l) is

increasing for l > m− and decreasing for l < m−.

If ρ ≥ 0, we proceed in a similar way taking the square and obtaining that, if
b(1 − ρ) < 2, the inequality holds iff l > − b√

b2(ρ2−1)+4bρ+4
:= m−. If b ≤ 2ρ

1−ρ2 , then

m− ≥ l∗ and g− is always decreasing. Otherwise if b > 2ρ
1−ρ2 , then m− < l∗ and g−(b,ρ)

is increasing for l > m− and decreasing for l < m−. We can write α as a function of l−,
indeed α = bg−(b,ρ)(l−). This function has the same monotonicity as g−(b,ρ).

We obtain from the previous analysis that the function x→ L−(x; bg−(b,ρ)(x)) is:

� increasing for x < m− and decreasing for x > m− when b > 2ρ
1−ρ2 ;

� increasing for every x < l∗ when b ≤ 2ρ
1−ρ2 .
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Using Equation (3.10) and Equation (3.5) and substituting α with bg−(b,ρ)(x) con-
sidered as in Equation (3.11), we obtain

L−(x; bg−(b,ρ)(x)) =
N ′(x)2

N ′′(x)

(
1 +

N ′(x)

2

)(
1

N ′(x)
+

1

4

)
− x. (3.12)

From here it can be seen that L−(x; bg−(b,ρ)(x)) goes to −l∗ when x goes to l∗−.
Similarly, we can do all the equivalent computations for L+. First, the function g+(b,ρ)

can be re-written as

g+(b,ρ)(l) =
1

b

(
N ′(l)2

2N ′′(l)

(
1 − N ′(l)

2

)
− lN ′(l) −N ′′(l)(l2 + 1)

)
while

L+(x; bg+(b,ρ)(x)) =
N ′(x)2

N ′′(x)

(
1 − N ′(x)

2

)(
1

N ′(x)
− 1

4

)
− x

and even in this case L+(x; bg+(b,ρ)(x)) goes to −l∗ when x goes to l∗+. We can study

the monotonicity of g+(b,ρ), obtaining g′+(b,ρ)(l) = N ′(l)2

4b

(
−3 + N ′′′(l)

N ′′(l)2 (N ′(l) − 2)
)
.

Considering the second factor and substituting with the explicit expressions, the
latter quantity is positive iff −3

b

√
l2 + 1

(
−l(2 − bρ) + b

√
l2 + 1

)
> 0 or equivalently

l(2 − bρ) > b
√
l2 + 1.

Here, since b(1 + ρ) ≤ 2, then 2 − bρ > 0. If ρ > 0 then the equation is false for
l ≤ 0. For positive ls we can square, obtaining that it holds iff (b2(ρ2 − 1) − 4bρ +
4)l2 > b2. For b(1 + ρ) < 2, the coefficient of l2 is positive, so the inequality holds iff
l > b√

b2(ρ2−1)−4bρ+4
:= m+. Since ρ is positive, m+ > l∗. So in this case g+(b,ρ)(l) is

increasing for l > m+ and decreasing for l < m+.

If ρ ≤ 0, we proceed in a similar way taking the square and obtaining that, if
b(1 + ρ) < 2, the inequality holds iff l > b√

b2(ρ2−1)−4bρ+4
:= m+. If b ≤ − 2ρ

1−ρ2 , then

m+ ≤ l∗ and g+(b,ρ) is always increasing. Otherwise if b > − 2ρ
1−ρ2 , then m+ > l∗ and

g+(b,ρ) is increasing for l > m+ and decreasing for l < m+. Remember that the function
α→ L+(l+, α) is increasing. To recap, the function x→ L+(x; bg+(b,ρ)(x)) is:

� increasing for x > m+ and decreasing for x < m+ when b > − 2ρ
1−ρ2 ;

� increasing for every x > l∗ when b ≤ − 2ρ
1−ρ2 .

If b ≤ − 2ρ
1−ρ2 then ρ < 0 and b > 2ρ

1−ρ2 while if b ≤ 2ρ
1−ρ2 then ρ > 0 and b > − 2ρ

1−ρ2 .

This means that L+(x; bg+(b,ρ)(x)) and L−(x; bg−(b,ρ)(x)) cannot be both monotonous.

The last statement of the proposition is a direct consequence to the fact that
d
dxL±(x; bg±(b,ρ)(x)) = ∂αL±(x; bg±(b,ρ)(x))bg′±(b,ρ)(x) where ∂αL−(x) < 0 and ∂αL+(x)
> 0.
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3.B Computation of F (b, 0)

In this appendix we compute F (b, 0) and prove that F (b, 0) > −b.
With ρ = 0 we have l∗ = 0 and

N = α+ b
√
l2 + 1,

N ′ =
bl√
l2 + 1

,

N ′′ =
b

(l2 + 1)
3
2

.

Consider the particular case b = 2. Then we have already shown F (2, 0) = 0, which
is greater than −2.

Consider b ̸= 2. Since b > 2ρ
1−ρ2 = 0, then the function l− → L−(l−; bg−(b,0)(l−)) is

increasing iff l− < m− where m− = − b√
4−b2 . Furthermore the interval for µ is Iα,b,0 =]

L−(l−(α, b, 0);α, b, 0),−L−(l−(α, b, 0);α, b, 0)
[

so it is symmetrical with respect to 0.
The Fukasawa threshold F (b, 0) is then the solution to L−(l−(F (b, 0), b, 0);F (b, 0), b, 0) =
0.

From equation Equation (3.12) we obtain

L−(l−; bg−(b,0)(l−)) = b
l2−
2

(
2
√
l2− + 1 + bl−

)(√l2− + 1

bl−
+

1

4

)
− l−.

For l− < 0, this expression is equal to 0 iff (8 + b2)l = −6b
√
l2 + 1 and so iff l− equals

l∗− := − 6b√
b4−20b2+64

. Then

F (b, 0) = bg−(b,0)

(
− 6b√

b4 − 20b2 + 64

)
where g−(b,0)(l) = l2

4 (2
√
l2 + 1 + bl) −

√
l2 + 1.

We now need to prove g−(b,0)(l
∗
−) > −1 or equivalently l∗− < s−. From the expression

of g−(b,0), we immediately find that s− satisfies 2(l2 − 2)
√
l2 + 1 = −bl3 − 4, so we look

for a negative root such that −bl3−4
l2−2

> 0. This happens iff l lies outside the interval[(
−4
b

) 1
3
,−

√
2
]

if b ≤
√

2, or outside the interval
[
−
√

2,
(
−4
b

) 1
3
]

if b >
√

2. Squaring

the previous equation and simplifying by l3 we find (4 − b2)l3 − 12l− 8b = 0. Call Pb(l)
the LHS.

At 0, this polynomial and its derivative are negative. Its local maximum is at − 2√
4−b2

and its value at this point is 16√
4−b2 − 8b which is always positive. So the polynomial has

two negative roots and a positive one.

We can observe that P√
2(−

√
2) = P√

2

((
−4
b

) 1
3
)

= 0 with
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� Pb(−
√

2) = 2
√

2(b−
√

2)2 > 0,

� Pb

((
−4
b

) 1
3
)

= −4
b

(
b2 − 3(2b)

2
3 + 4

)
< 0.

Then if b <
√

2 the root of interest s− is the second negative root of the polynomial
while if b ≥

√
2 it is the first negative root.

The value of the polynomial in l∗− is

−8b((b2 − 16)2 − 36
√
b4 − 20b2 + 64)

(b2 − 16)2

which is positive iff b < b̃ where
√

8
5 < b̃ <

√
2. The derivative of the polynomial

evaluated in l∗− is 24(5b2−8)
16−b2 , which is positive iff b >

√
8
5 .

Then:

� if b ≤ b̃ the polynomial is positive in l∗− and s− is its second root, so l∗− < s−;

� if b̃ < b <
√

2 the polynomial is negative in l∗− while its derivative is positive and
s− is its second root, so l∗− < s−;

� finally if b ≥
√

2 the polynomial is negative with a positive derivative in l∗− so even
if s− is now its first root we have l∗− < s−.
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Chapter 4

Explicit no arbitrage domain for
sub-SVIs via reparametrization

Abstract

The no Butterfly arbitrage domain of Gatheral SVI 5-parameters formula for the
volatility smile has been recently described. It requires in general a numerical min-
imization of 2 functions altogether with a few root finding procedures. We study
here the case of some sub-SVIs (all with 3 parameters): the Symmetric SVI, the
Vanishing Upward/Downward SVI, and SSVI, to which we apply the SVI results
to provide the no Butterfly arbitrage domain. As side results: we prove that under
simple requirements on parameters, SSVI slices always satisfy the weak conditions
of no arbitrage by Fukasawa, i.e. the corresponding Black-Scholes functions d1 and
d2 are always decreasing; and we find a simple subdomain of no arbitrage for the
SSVI which we compare with the well-known Gather and Jacquier’s subdomain. We
simplify the so obtained no arbitrage domain into a parametrization with only one
immediate numerical procedure required, proving an easy-to-implement calibration
algorithm. Finally we show that the Long Term Heston SVI is in fact an SSVI, and
characterize the horizon beyond which it is arbitrage-free.

From:
C. Martini and A. Mingone, Explicit no arbitrage domain for sub-SVIs via reparametriza-
tion, arXiv preprint https://arxiv.org/abs/2106.02418, 2021.
C. Martini and A. Mingone, Refined analysis of no Butterfly arbitrage domain for SSVI
slices, Journal of Computational Finance, 27(2), 1-32, 2023.

4.1 Structure of the chapter

In this chapter we apply results in Chapter 3 and [53] to sub-SVI smiles with 3 pa-
rameters. We start with a look at general results on SVI regarding the no Butterfly
arbitrage conditions in Section 4.2.1, where we remind theorems of [53] and illustrate a
re-parametrization paradigm in the context of the bounds for σ.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

This stage requires to compute the minimum of a function f̃(l; γ, b, ρ, µ), on an
interval which depends on the parameters (γ, ρ); we know that f̃ goes to infinity at the
bounds of this interval. Our strategy is then to study the critical points of f̃ . It turns
out that in full generality, the equation characterizing those critical points l̄ reads

p(l̄; γ, ρ, µ) = b2q(l̄; γ, ρ, µ).

In some circumstances, we can then use l̄ as a parameter, and obtain b2 as p(l̄;γ,ρ,µ)

q(l̄;γ,ρ,µ)
. In

other circumstances, we use the fact that the equation p− b2q = 0 is, in full generality,
quadratic in µ, and we use the same trick to back up µ once l̄ is promoted to the status
of a parameter.

Now this is only the easy part of the story, since the critical points of f̃ may cor-
respond to other local minima than the absolute one, or, even worse, to local maxima.
The hard part is to show that the chosen critical point l̄, in a given domain, corresponds
indeed to the global minimum of f̃ ; one way to prove this is that there is a unique
solution to the critical points equation above. We manage to prove this unicity for the
Symmetric and Vanishing case, and resort to a numerical proof for SSVI.

This leads to the following results:

� in Propositions 4.2 and 4.3 of Section 4.3, we obtain a fully explicit parametrization
of the no arbitrage domain for the Vanishing Upward and the Vanishing Downward
SVI

w(k) = b
(
−(k −m) +

√
(k −m)2 + σ2

)
;

� in Proposition 4.4 of Section 4.4, we find a parametrization of the no arbitrage
domain for the Extremal Decorrelated SVI

w(k) = a+ 2
√

(k −m)2 + σ2;

� in Proposition 4.5 of Section 4.5, we get the no arbitrage domain for the Symmetric
SVI

w(k) = a+ b
√
k2 + σ2;

� in Corollary 4.1 of Section 4.6, we find that SSVI slices

w(k) =
θ

2

(
1 + ρφk +

√
(φk + ρ)2 + 1 − ρ2

)
are always free of weak arbitrage, i.e. they always have decreasing d1 and d2
functions, and we derive the no arbitrage domain for SSVI in Proposition 4.6. The
domain is quasi-explicit, in the sense that it requires the computation of a point of
minimum depending on two parameters. With the aim of simplifying this domain,
in Section 4.6.1 we find a new parametrization (Proposition 4.7) of free of arbitrage
SSVI slices which allows for easier and quicker computations. In particular, the
new domain is a product of intervals for fixed ρ and it only requires a root finding
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depending on the sole parameter ρ. As a side result, we find a smart subdomain of
no arbitrage and compare it in Section 4.6.1 with Gatheral and Jacquier sufficient
conditions of no arbitrage for SSVI. In Section 4.6.2 we also re-visit the Long
Term Heston SVI appoximation and show it is in fact of SSVI type; we prove in
Proposition 4.9 that it is indeed free of Butterfly arbitrage as soon as T is larger
than some fully explicit threshold, which completes Gatheral and Jacquier result.

4.2 Notations and preliminaries

As duly described in section 2.1 of [53], a smile is free of Butterfly arbitrage if the Call
price function with respect to the strike is convex, non-increasing, and bounded between
the discounted Call payoff evaluated at the forward value and the discounted forward.
In the case of smiles defined via a model for the implied volatility, the third condition
is always satisfied. As a consequence, the first condition implies the second, so that the
only requirement to be satisfied for implied volatility models is the convexity of prices.

Furthermore, Fukasawa proved in [32] that any arbitrage-free volatility smile has de-

creasing functions d1,2(k) = − k√
ω(k)

±
√
ω(k)

2 . We call this necessary condition absence of

weak arbitrage. Smiles satisfying the absence of weak arbitrage have been characterized
in Theorem 2.2 of [51], where Lucic finds a necessary and sufficient parametrization for
smiles σ(k)

√
T =

√
ω(k) of the form

σ(k)
√
T =


−
√

2k − ϕ(k) +
√
−ϕ(k) if k ≤ k∗,√

2k − ϕ(k) +
√
−ϕ(k) if k∗ < k ≤ k∗,√

2k + ϕ(k) −
√
ϕ(k) if k > k∗

(4.1)

where k∗ < 0 < k∗ and ϕ(k) is a continuous increasing function such that ϕ(k∗) = 2k∗,
ϕ(k∗) = 0, and ϕ′(k) > 2 for k < k∗, ϕ

′(k) < 2 for k∗ < k ≤ k∗.

With this in mind, in the next section we reconsider the conditions of no Butterfly
arbitrage for the SVI model and in the following section we apply them to the sub-SVIs.

From now on, we denote with SVI the model for the implied total variance of the
form

SVI(k; a, b,m, ρ, σ) = a+ b
(
ρ(k −m) +

√
(k −m)2 + σ2

)
where k is the log-forward moneyness, a, m ∈ R, b ≥ 0, ρ ∈ [−1, 1], σ ≥ 0, a +
bσ
√

1 − ρ2 ≥ 0.

4.2.1 Necessary and sufficient no Butterfly arbitrage conditions for
SVI

We set γ = a
bσ and µ = m

σ . Let us redefine the quantity

N(l; γ, ρ) := γ + ρl +
√
l2 + 1
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

such that SVI(k) = bσN
(
k−m
σ

)
. The derivatives of N are

N ′(l; ρ) = ρ+
l√

l2 + 1
, N ′′(l) =

1

(l2 + 1)
3
2

so that N has a unique critical point which is a point of minimum equal to l∗ = − ρ√
1−ρ2

.

Since N is a rescaled total variance, it must be positive, so the constraint on the new
variables are γ ≥ −

√
1 − ρ2, b ≥ 0, ρ ∈ [−1, 1], µ ∈ R, σ ≥ 0. When b = 0, we recover

the Black-Scholes case, which is free of Butterfly arbitrage under σ > 0. Then, when
formulating theorems of non-arbitrage, we consider only the more difficult cases b > 0.

We define

h(l; γ, ρ, µ) := 1 −N ′(l; ρ)
l + µ

2N(l; γ, ρ)
,

g(l; ρ) :=
N ′(l; ρ)

4
,

g2(l; γ, ρ) := N ′′(l) − N ′(l; ρ)2

2N(l; γ, ρ)
,

(4.2)

andG1(l; γ, b, ρ, µ) := G1+(l; γ, b, ρ, µ)G1−(l; γ, b, ρ, µ) := (h(l; γ, ρ, µ)−bg(l))(h(l; γ, ρ, µ)
+ bg(l; ρ)).

The requirement that an SVI is (Butterfly) arbitrage-free is equivalent to the require-
ment that the function

G1 +
1

2σ
bg2

is non-negative. Fukasawa proved in [32] that the condition G1+ > 0 and G1− > 0 are
also necessary. Theorem 5.10 of [53], that we rewrite here, characterizes these conditions
in the case of SVI. The statement requires the definition of the functions:

L−(l; γ, b, ρ) := 2N(l)
( 1

N ′(l)
+
b

4

)
− l,

g−(b,ρ) :=
(
ρ
√
l2 + 1 + l

)2(√
l2 + 1

(1

2
+
bρ

4

)
+
bl

4

)
−
(
ρl +

√
l2 + 1

)
.

When γ +
√

1 − ρ2 > 0 and |ρ| < 1, preliminary propositions show that under the case
b(1 ± ρ) < 2, there exist a unique l−(γ, b, ρ) < l∗ and a unique l−(γ, b,−ρ) < l∗ such
that g−(b,ρ)(l−(γ, b, ρ)) = γ and g−(b,−ρ)(l−(γ, b,−ρ)) = γ. In such way, the quantity

F̃ (b, ρ) := inf
{
γ| − L−(l−(γ, b,−ρ); γ, b,−ρ) > L−(l−(γ, b, ρ); γ, b, ρ)

}
∨ −

√
1 − ρ2

is well-defined and it is called the Fukasawa threshold. If instead b(1−ρ) = 2 (or b(1+ρ) =
2), there exists a unique l−(γ, b,−ρ) < l∗ (resp. l−(γ, b, ρ)) such that g−(b,−ρ)(l−) = γ
(resp. g−(b,ρ)(l−) = γ). When the former case arises while the latter does not, the

Fukasawa threshold is defined as F̃ (b, ρ) := inf
{
γ| − L−(l−(γ, b,−ρ); γ, b,−ρ) > − bγ

2

}
∨

−
√

1 − ρ2. Vice versa, when it is the second case to be active while the first is not, the
quantity is defined as F̃ (b, ρ) := inf

{
γ| bγ2 > L−(l−(γ, b, ρ); γ, b, ρ)

}
∨−

√
1 − ρ2. Finally,

when both cases are valid, so b = 2 and ρ = 0, the threshold is F̃ (2, 0) := 0. The
aforementioned theorem is:
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Theorem 4.1 (SVI parameters (γ, b, ρ, µ, σ) fulfilling Fukasawa necessary no arbitrage
conditions). Assume γ +

√
1 − ρ2 > 0 and |ρ| < 1. Then:

� if b(1 ± ρ) < 2, F̃ (b, ρ) < 0 and the interval Iγ,b,ρ =
]
L−(l−(γ, b, ρ); γ, b, ρ),

−L−(l−(γ, b,−ρ); γ, b,−ρ)
[
is non-empty iff γ > F̃ (b, ρ);

� if b(1 − ρ) = 2 (or b(1 + ρ) = 2) and ρ ̸= 0, F̃ (b, ρ) < 0 and the interval Iγ,b,ρ =]
− bγ

2 ,−L−(l−(γ, b,−ρ); γ, b,−ρ)
[
(resp. Iγ,b,ρ =

]
L−(l−(γ, b, ρ); γ, b, ρ), bγ2

[
) is

non-empty iff γ > F̃ (b, ρ);

� if b = 2 and ρ = 0, the interval Iγ,2,0 =
]
−γ, γ

[
is non-empty iff γ > F̃ (2, 0) = 0.

In every case, the Fukasawa conditions are satisfied iff µ ∈ Iγ,b,ρ.

The final necessary and sufficient conditions for no Butterfly arbitrage in the case
γ +

√
1 − ρ2 > 0 and |ρ| < 1 are summed up in Theorem 6.2 of [53], in which σ∗ is

defined as

σ∗(γ, b, ρ, µ) := sup
l<l1∨l>l2

− bg2(l)

2G1(l)

where l1 < 0 < l2 are the only zeros of g2.

Theorem 4.2 (Necessary and sufficient no Butterfly arbitrage conditions for SVI,
γ +

√
1 − ρ2 > 0 and |ρ| < 1). No Butterfly arbitrage in SVI entails that G1 is pos-

itive, which requires b(1 ± ρ) ≤ 2. Under this condition:

� each of the factors of the function G1 is positive on R if and only if γ > F̃ (b, ρ)
and µ ∈ Iγ,b,ρ;

� for such µ’s, calling l1 < 0 < l2 the only zeros of g2, the function G1 + 1
2σ bg2

is positive in ]l1, l2[ for every σ ≥ 0 and it is non-negative on R if and only if
σ ≥ σ∗(γ, b, ρ, µ).

In the case of |ρ| = 1 and γ ≥ 0, Theorem 6.3 of [53] holds:

Theorem 4.3 (Necessary and sufficient no Butterfly arbitrage conditions for SVI,
ρ = −1). No Butterfly arbitrage in SVI entails that G1 is positive, which requires b ≤ 1
and γ ≥ 0. Under these conditions:

� each of the factors of the function G1 is positive on R if and only if µ > L−(l−; γ, b,
−1);

� for such µ’s, calling l1 < 0 the only zero of g2, the function G1+ 1
2σ bg2 is positive on

]l1,∞[ for every σ ≥ 0 and it is non-negative on R if and only if σ ≥ σ∗(γ, b,−1, µ)

where σ∗(γ, b,−1, µ) := supl<l1 −
bg2(l)
2G1(l)

.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

From now on, we denote

f := − bg2
2G1

, f̃ := −G1

g2
.

In this way, the value of the supremum of f is equal to b times half the reciprocal of the
infimum of f̃ , and the point at which the supremum of f is reached is exactly the point
at which the infimum of f̃ is reached.

We present here some general observations that will be used in the next sections.
In order to calculate σ∗, one should find the supremum of the function f over a

domain constituted of two open intervals: on the left of l1, the first zero of g2, and on
the right of l2, the second zero of g2. From a computational point of view, one needs
to perform two maximum searches and to compare the two found values to choose the
highest. Sometimes this double search is not necessary, indeed for the sub-SVIs studied
in this chapter, the signs of ρ and µ determine the interval where the global supremum
of f lies. Since l1 < 0 < l2, the trick will be to compare the two quantities f(l) and
f(−l), but first of all, it is necessary to study the two intervals of interest. In particular,
the following Lemma holds:

Lemma 4.1. If ρ ≥ 0 and l > 0, then g2(l) ≤ g2(−l) and l2(γ, ρ) ≤ −l1(γ, ρ).
If ρ < 0 and l > 0, then g2(l) > g2(−l) and l1(γ, ρ) > −l2(γ, ρ).

Proof. Fix l > 0, then for ρ ≥ 0, it holds

g2(−l) − g2(l) =
lρ
(

(l2 + 1)(1 − ρ2) + 2γ
√
l2 + 1 + 1

)
(l2 + 1)N(l)N(−l)

≥
lρ
(√

(l2 + 1)(1 − ρ2) − 1
)2

(l2 + 1)N(l)N(−l)
≥ 0

since γ ≥ −
√

1 − ρ2. So g2(l) ≤ g2(−l) and in particular g2(−l1) ≤ g2(l1) = 0 so
l2(γ, ρ) ≤ −l1(γ, ρ). These inequalities are strict for ρ strictly positive. Similarly for
ρ < 0, we find g2(l) > g2(−l) and l1(γ, ρ) > −l2(γ, ρ).

This Lemma has a direct consequence, which is that for ρ ≥ 0, the supremum of f
on the right of l2 is higher than its supremum on the right of −l1, since in the first case,
f could attain it between l2 and −l1: supl>l2 f(l) ≥ supl>−l1 f(l). If we can show that
for positive ls, f(l) ≥ f(−l), then the last term is greater than supl>−l1 f(−l). Making
a change of variable, this quantity is equal to supl<l1 f(l) so this means that σ∗ can be
found as the supremum of f on the right of l2.

The request f(l) ≥ f(−l) is satisfied if, for example, G1(l) ≤ G1(−l) because in the
above Lemma we showed g2(l) ≤ g2(−l). The difference between G1(l) and G1(−l) can
be written as (h(l)−h(−l))(h(l) +h(−l))− b2(g(l)− g(−l))(g(l) + g(−l)). The quantity
g(l) − g(−l) is equal to l

2
√
l2+1

, which is positive, while g(l) + g(−l) is ρ
2 , which again is

non-negative for ρ ≥ 0. Showing that the product with the h functions is non-positive
would then be enough to reach the desired inequality.

76



4.2. Notations and preliminaries

Lemma 4.2. Let ρ = 0. If µ ≥ 0, then σ∗(γ, b, 0, µ) = supl>l2 f(l) while if µ < 0, then
σ∗(γ, b, 0, µ) = supl<l1 f(l).

Proof. In the case ρ = 0, it holds l2 = −l1 since g2 is symmetric. It can be shown that
in general

h(l) − h(−l) = − l√
l2 + 1

ρ
(
γ
√
l2 + 1 + 1

)
+ µ

(
γ + (1 − ρ2)

√
l2 + 1

)
N(l)N(−l)

,

h(l) + h(−l) =

(
γ
√
l2 + 1 + 1

)(
2γ + 2

√
l2 + 1 − ρµ

)
+ l2

(
γ + (1 − ρ2)

√
l2 + 1

)
√
l2 + 1N(l)N(−l)

.

In particular for ρ = 0 and positive l, the sign of the former quantity is the sign
of −µ while the numerator of the latter quantity is (γ +

√
l2 + 1)(2γ

√
l2 + 1 + l2 + 2),

which is always positive for γ > −1. Then G1(l)−G1(−l) = (h(l)−h(−l))(h(l)+h(−l))
follows the sign of −µ and so does f(−l)− f(l). If µ is non-negative, f(l) ≥ f(−l) so its
supremum must be searched on the right of l2. If µ is negative, the opposite inequality
holds for f and its supremum lies on the left of l1.

These Lemmas will be useful for the sub-SVIs studied in this chapter, however it
must be noticed that the inequality f(l) ≥ f(−l) does not hold in general.

4.2.2 Smile inversion

Tehranchi proved in [66] that a curve of Call prices (with unit underlyer) parametrized
by the strike κ is free of Butterfly arbitrage if and only if it is convex and satisfies
1 ≥ C(κ) ≥ (1 − κ)+ for every κ ≥ 0. Moreover, C has these properties if and only if
C∗(κ) := 1 − κ+ κC

(
1
κ

)
has them.

Assume now that in addition 1 > C(κ) for every κ. Then there is a unique total
variance function w(k) such that CBS(κ,

√
w(k)) = C(κ) where CBS is the (normal-

ized) Black-Scholes Call price function and k = log κ, and a unique w∗(k) such that
CBS(κ,

√
w∗(k)) = C∗(κ). By the Put-Call parity for the Black-Scholes model it holds

that

PBS(κ,
√
w∗(k)) = CBS(κ,

√
w∗(k)) + κ− 1 = κC

(1

κ

)
.

Now the LHS is equal to κN
(

k√
w∗(k)

+

√
w∗(k)
2

)
−N

(
k√
w∗(k)

−
√
w∗(k)
2

)
and the RHS

is equal to κ
(
N
(

k√
w(−k)

+

√
w(−k)
2

)
− 1

κN
(

k√
w(−k)

−
√
w(−k)
2

))
. By the monotonicity

of the function u → CBS(κ, u) it follows then that w∗(k) = w(−k). Eventually, we can
reword the symmetry of Tehranchi involution C → C∗ at the implied volatility level: a
smile w is free of Butterfly arbitrage if and only if the inverse smile k → w(−k) is.

Let us now relate the implied volatility of C with that of C∗.
In the case of SVI, this reduces to have

a+b
(
ρ(k−m)+

√
(k −m)2 + σ2

)
= a∗+b∗

(
ρ∗(−k−m∗)+

√
(−k −m∗)2 + σ∗2

)
(4.3)

77
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for all k. We prove that this happens iff a∗ = a, b∗ = b, ρ∗ = −ρ, m∗ = −m and σ∗ = σ.
Of course, a∗, b∗, ρ∗, m∗ and σ∗ do not depend on k∗ so neither on k. Making the
derivative with respect to k at the latter equality gives

b

(
ρ+

k −m√
(k −m)2 + σ2

)
= b∗

(
−ρ∗ +

k +m∗√
(k +m∗)2 + σ∗2

)
. (4.4)

Evaluating this for k going to ±∞, it must hold b(ρ± 1) = b∗(−ρ∗ ± 1) or equivalently
b∗ = b and ρ∗ = −ρ. In the same equation, consider k = m, then it must hold

bρ = b

(
ρ+

m+m∗√
(m+m∗)2 + σ∗2

)
which reduces to m∗ = −m. At this point, Equation (4.4) becomes k−m√

(k−m)2+σ2
=

k+m∗√
(k+m∗)2+σ∗2 so σ∗ = σ. Finally, from Equation (4.3), it follows a∗ = a.

Proposition 4.1 (Absence of Butterfly arbitrage for the inverse SVI). The SVI(a, b, ρ,
m, σ) is Butterfly arbitrage-free iff the SVI(a, b,−ρ,−m,σ) is Butterfly arbitrage-free.

4.2.3 The b∗ approach: reparametrizing from the critical point
equation

We now explain how to properly switch the roles of the parameter b and of the critical
point l̄ depending on b of f̃ . The key passage will be the exploitation of the characteristic
equation of these critical points: h(l̄)p(l̄) − b2g(l̄)q(l̄) = 0. Three hypothesis must be
verified:

1. the Fukasawa bound for γ must be a monotone function in b;

2. there is uniqueness for the critical points of f̃ ;

3. the functions p and q do not vanish at the same point.

In [53], the Fukasawa conditions read γ > F̃ (b, ρ). Firstly, suppose that for fixed ρ,
the function b → F̃ (b, ρ) is monotone and surjective from

[
0, 2

1+|ρ|
]
to [−1, 0].

Then, its inverse F̃−1(·, ρ) is well defined on [−1, 0] and we shall extend it to

G̃(γ, ρ) :=

{
F̃−1(γ, ρ) if γ ∈] − 1, 0],

2
1+|ρ| if γ > 0.

Secondly, suppose we have proven that for l > l2, the function f̃ has exactly
one critical point l̄(γ, b, ρ, µ) for ρ ∈ [−1, 1], γ > −1, b ∈ [0, G̃(γ, ρ)], µ ∈]L−, L+[.
This critical point must then be a local and global point of minimum. Note that we
require the uniqueness also for b = 0 and b = G̃(γ, ρ). This point satisfies f̃ ′(l̄) = 0 or
equivalently

h(l̄)p(l̄) − b2g(l̄)q(l̄) = 0
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with h(l̄) = G1+(l) + G1−(l) > 0, g(l) > 0 and p(l) := h(l)g′2(l) − 2h′(l)g2(l) and
q(l) := g(l)g′2(l) − 2g′(l)g2(l).

In particular, either q(l̄) = p(l̄) = 0 or

b2 =
h(l̄)

(
h(l̄)g′2(l̄) − 2h′(l̄)g2(l̄)

)
g(l̄)

(
g(l̄)g′2(l̄) − 2g′(l̄)g2(l̄)

)
when q(l̄) ̸= 0.

It is natural to define on the set B(γ, ρ, µ) := {l ∈]l2(γ, ρ),∞[: p(l)q(l) > 0} a positive
function b∗ by the formula

b∗2(l) :=
h(l)p(l)

g(l)q(l)
. (4.5)

Note that the function b∗ might go on B(γ, ρ, µ) to levels not allowed for b; yet
this function is continuous on its domain of definition and when q(l̄) ̸= 0 it holds
that b2 = b∗2(l̄). As an immediate consequence, note that if b1 ̸= b2 are such that
l̄(γ, b1, ρ, µ), l̄(γ, b2, ρ, µ) ∈ B(γ, ρ, µ), then l̄(γ, b1, ρ, µ) ̸= l̄(γ, b2, ρ, µ). Note also that we
don’t know if B is one-piece, i.e. connected.

The question of interest is now the location of the set Z(γ, ρ, µ) := {l̄(γ, b, ρ, µ), b ∈
]0, G̃(γ, ρ)[} (note that we exclude 0, this will turn to be more convenient below) with
respect to the sets B(γ, ρ, µ) and {p = q = 0}. The third and last hypothesis is that,
for the fixed parameters (γ, ρ, µ), the set {p = q = 0} is empty. Then Z(γ, ρ, µ)
is contained in B(γ, ρ, µ). From the above remark, the function l̄(γ, ·, ρ, µ) is injective;
however at this stage we don’t know whether it is continuous (which would imply it is
either continuous increasing or continuous decreasing).

Remember that the proof of the uniqueness of the critical point of f̃ still holds for
b = G̃(γ, ρ). Then for (l, b) ∈]l2,∞] × [0, G̃(γ, ρ)], the equation

h(l)p(l) − b2g(l)q(l) = 0

characterizes the points l̄(γ, b, ρ, µ), since f̃ has a single local and global minimum. As
discussed above, in the open set B(γ, ρ, µ), this equation defines a continuous function
b∗; from the characterizing property we get that Z(γ, ρ, µ) eventually coincides with
b∗−1(]0, G̃(γ, ρ)[) ⊆ B(γ, ρ, µ), so that in particular Z(γ, ρ, µ) is an open set. Further-
more, the function b→ l̄(γ, b, ρ, µ) is the inverse of b∗ : Z(γ, ρ, µ) →]0, G̃(γ, ρ)[.

It remains to prove that Z(γ, ρ, µ) is one-piece. Indeed, take a sequence (bn)n such
that l̄n = l̄(γ, bn, ρ, µ) goes to l̄ ∈ Z̄(γ, ρ, µ). Since (bn)n is a bounded sequence, it
has a subsequence converging to a certain b ∈ [0, G̃(γ, ρ)]; call such subsequence as the
original one, then the correlated subsequence of l̄n still converges to l̄. Since for every
n we have h(l̄n)p(l̄n) − b2ng(l̄n)q(l̄n) = 0 where all the functions are continuous, then
taking the limit, it holds h(l̄)p(l̄) − b2g(l̄)q(l̄) = 0. From the characteristic equation
above, this yields in turn that l̄ = l̄(γ, b, ρ, µ). Also, b is unique because either b = b∗(l̄)
or p(l̄) = q(l̄) = 0, but the set {p = q = 0} is empty. Then it must hold either
that l̄ ∈ Z(γ, ρ, µ) or that l̄ is the unique critical point l̄(γ, b, ρ, µ) of f̃ when b = 0 or
b = G̃(γ, ρ). The boundary of Z(γ, ρ, µ) is the set {l̄(γ, 0, ρ, µ), l̄(γ, G̃(γ, ρ), ρ, µ)} and
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Figure 4.1: Vanishing Upward SVI with b = 1
2 , m = −1 and σ = 1.

because Z(γ, ρ, µ) is an open set, we get that Z(γ, ρ, µ) =]l̄(γ, 0, ρ, µ), l̄(γ, G̃(γ, ρ), ρ, µ)[
or Z(γ, ρ, µ) =]l̄(γ, G̃(γ, ρ), ρ, µ), l̄(γ, 0, ρ, µ)[.

As a consequence we also get that l̄(γ, ·, ρ, µ) is either strictly increasing or strictly
decreasing, and that Z(γ, ρ, µ) is a single connected component of B(γ, ρ, µ), with a
boundary point l̄(γ, 0, ρ, µ) which is the single zero of p, and the other boundary point
lying within B(γ, ρ, µ).

4.3 Vanishing SVI

4.3.1 Vanishing (Upward) SVI

In this section, we work with the Vanishing Upward SVI and immediately recover the
final results on the Vanishing Downward SVI in Section 4.3.4.

The Vanishing Upward SVI is the sub-SVI obtained by setting ρ = 1 and a = 0. The
corresponding SVI formula becomes

SVI(k; 0, b, 1,m, σ) = b(k −m+
√

(k −m)2 + σ2).

With our notations, N(l) = l +
√
l2 + 1. Note that the Roger Lee conditions require

0 < b ≤ 1.
We plot in Figure 4.1 a Vanishing Upward SVI with b = 1

2 , m = −1 and σ = 1.
The wording Vanishing refers to the fact that the smile goes to 0 on the left, up-

ward meaning it is increasing. The symmetric smile with ρ = −1 will be a Vanishing
Downward one.

4.3.2 The Fukasawa conditions

Since γ = 0, the Fukasawa condition on γ is automatically satisfied. We cite here a
result obtained in paragraph 5.3.1 of [53].

Lemma 4.3 (Fukasawa conditions for the Vanishing Upward SVI). A Vanishing Upward
SVI with 0 < b ≤ 1 satisfies the Fukasawa conditions iff µ <

√
3(1 − b).
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4.3.3 The condition on σ

Let us define the two following auxiliary functions:

µ∗(x) :=

2(1 − x)(2x2 − 8x− 1) +

√
4b2x6 + 8b2x5 + 8x4(8 − b2) − 4x3(5b2 + 32)

+x2(96 − b2) + 2x(5b2 − 16) + 4 + 3b2

2
√

1 − x2(2x2 − 2x− 1)
,

(4.6)

σ∗(x) := − 4b
√

1 − x2(1 − x− 2x2)

4
(
2 − x− µ∗(x)

√
1 − x2

)2 − b2(1 + x)2
(4.7)

We show then the following:

Proposition 4.2 (Fully explicit no arbitrage domain for the Vanishing Upward SVI).
A Vanishing Upward SVI with b = 1 is arbitrage-free iff µ < 0 and σ ≥ −µ

2 .

A Vanishing Upward SVI with 0 < b < 1 is arbitrage-free iff it can be parametrized
as

SVI(k) = bσ

(
k

σ
− µ∗(x) +

√(
k

σ
− µ∗(x)

)2

+ 1

)
(4.8)

where 2+b
4−b < x < 1 and σ ≥ σ∗(x).

Proof of Proposition 4.2

Note that

G1(l) =

(
1 − (l + µ)

2
√
l2 + 1

)2

− b2

16

(
1 +

l√
l2 + 1

)2

,

g2(l) =
1

(l2 + 1)
3
2

−
√
l2 + 1 + l

2(l2 + 1)
.

The g2 function has only one positive zero. Indeed, its zeros solve 2 = l2 + 1 + l
√
l2 + 1,

or yet 1− l2 = l
√
l2 + 1. The only possible solution satisfies l2 ≤ 1, so l2 = 1√

3
. In order

to have no arbitrage, we then need σ ≥ σ∗ = supl∈]l2,+∞[−
bg2(l)
2G1(l)

.

From now on, we operate a change of variable setting x = l√
l2+1

so that the points

l = l2 and l = ∞ correspond to x = 1
2 and x = 1 respectively. Also, 1√

l2+1
=

√
1 − x2.

We call J1 and j2 the functions G1 and g2 evaluated at x, so

J1(x) =

(
1 − x

2
− µ

2

√
1 − x2

)2

− b2

16
(1 + x)2,

j2(x) =

√
1 − x2

2
(1 − x− 2x2).
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The first derivative of j2 is j′2(x) = 1
2
√
1−x2 (6x3 + 2x2 − 5x− 1) which is positive iff

x > 2+
√
10

6 := xm2 . Also, j′′2 (x) = −12x4−2x3+18x2+3x−5

2(1−x2)
3
2

and the only inflection point of

j2 in
[
1
2 , 1
]

is 1
2 . Then, the function j2 is null at 1

2 , decreases to its minimum j2(xm2) =

−34
√
2−5

√
5

108 and then increases to 0 for x = 1, furthermore it is always convex.

Let us turn to the study of J1. We have J1(1) = 1−b2
4 and we know that for the

Fukasawa conditions, both J1+ and J1− are positive, where J1 = J1+J1− and J1± = 1−
x
2−

µ
2

√
1 − x2∓ b

4(1+x). Considering the first derivatives, we know J ′
1 = J ′

1+J1−+J1+J
′
1−

where

J ′
1±(x) = −1

2
+
µ

2

x√
1 − x2

∓ b

4
. (4.9)

If µ ≤ 0, then J1± are decreasing and so is J1. In particular, it attains its minimum
at x = 1 and we get that J = J1 + 1

2σ bj2 is always positive for

σ ≥ −bj2(xm2)

2J1(1)
=

(34
√

2 − 5
√

5)b

54(1 − b2)

when b < 1. We have therefore the explicit no arbitrage sub-domain:

Lemma 4.4 (No arbitrage sub-domain for the Vanishing Upward SVI). A Vanishing

Upward SVI with 0 < b < 1, µ ≤ 0 and σ ≥ (34
√
2−5

√
5)b

54(1−b2) is arbitrage-free.

This explicit sub-domain was obtained with not too much effort. Let us turn now to
the more difficult task to obtain an explicit parametrization for the whole domain.

Uniqueness of the critical point of f̃ for the Vanishing SVI Let us study
ϕ̃(x; b, µ) = −J1(x;b,µ)

j2(x;b)
. We want to prove that for each b ∈ [0, 1] and µ ∈]−∞,

√
3(1 − b)[,

there exists a unique value x∗ := x∗(b, µ) ∈
[
1
2 , 1
]

such that infx∈] 1
2
,1[ ϕ̃(x) = ϕ̃(x∗).

The existence is obvious. The derivative of ϕ̃ is

ϕ̃′(x; b, µ) =
[
4µ2(1 − x2)(2x2 − 2x− 1) − 8µ(1 − x)

√
1 − x2(2x2 − 8x− 1)+

+ 2x4(4 − b2) − 6x3(b2 + 12) + 3x2(52 − b2) + 4x(b2 − 22) + 3b2
]

/
[
8(1 − x2)

3
2 (1 + x)(2x− 1)2

]
. (4.10)

The denominator of the above formula is always positive. Looking at the numerator,
for b = 1 every coefficient of µ is negative when x ∈

]
1
2 , 1
[

and µ < 0, required from the

Fukasawa condition. Then ϕ̃′(x; 1, µ) is always negative and the inferior point of ϕ̃ is
reached at 1 for every µ < 0, so that x∗(1, µ) = 1. From now on we consider b < 1. Since
for finite values of µ, ϕ̃(12 ; b, µ) = ϕ̃(1; b, µ) = ∞, the points which attain the infimum of

ϕ̃ are points of minimum belonging to
]
1
2 , 1
[

and such that ϕ̃′(x∗; b, µ) = 0.

What happens when µ = −∞? Dividing by µ2 we still have ϕ̃′(x∗;b,µ)
µ2

= 0, so
making µ going to −∞ and relying on the linearity of the limits, we obtain the equation
4(1 − x∗2)(2x∗2 − 2x∗ − 1) = 0, whose only solution in

[
1
2 , 1
]

is 1, so x∗(b,−∞) = 1.
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Take now µ ≤ 0 and |ν| < −µ (note in particular that µ < ν) and consider the
quantity ϕ̃(x; b, µ) − ϕ̃(x; b, ν). Unless a factor b−1(1 + x)−1(2x − 1)−1, it is equal to

(ν−µ)
(
2−x− (µ+ν)

2

√
1 − x2

)
and, as a consequence, the quantity ϕ̃′(x; b, µ)− ϕ̃′(x; b, ν)

times (1 + x)(2x− 1) equals

(ν − µ)

(
−1 +

(µ+ ν)

2

x√
1 − x2

)
+ (4x+ 1)

(
ϕ̃(x; b, ν) − ϕ̃(x; b, µ)

)
.

The function ϕ̃ is decreasing in µ, indeed ∂µϕ̃(x) = −2−x−µ
√
1−x2

b(1+x)(2x−1) and 2−x−µ
√

1 − x2 >

2 − x −
√

3
√

1 − x2 ≥ 0. So given the fact that ϕ̃ is decreasing in µ, we get in turn
ϕ̃′(x; b, µ) − ϕ̃′(x; b, ν) < 0. This entails that if there is uniqueness, x∗(b, ν) < x∗(b, µ)
under those conditions.

We prove that indeed the uniqueness holds. We prove that if ϕ̃′ ≥ 0, then ϕ̃′′ > 0,
which means that once ϕ̃′ becomes zero, then it will necessarily increase and it can never
become 0 again (note that this property is slightly weaker than the convexity of ϕ̃).

We have ϕ̃′ =
J1j′2−J ′

1j2
j22

≥ 0 but the term −J ′
1j2 is negative, so j′2 must be positive. It

holds ϕ̃′′ =
J1j′′2−J ′′

1 j2
j22

− 2ϕ̃′
j′2
j2

, where we have proven −2ϕ̃′
j′2
j2

≥ 0. We now look at the

quantity n = J1j
′′
2 − J ′′

1 j2 and show that it is strictly positive to obtain the conclusion.
Indeed, the denominator of n is 32

√
1 − x2(1 − x) which is positive while its numerator

is a quadratic function of µ with quadratic coefficient −4(1− x2)(2x− 1)(4x2 − 2x− 3),
linear coefficient 16

√
1 − x2(1 − x)(2x − 1)(2x2 − 5x − 4) and free term depending on

b. The quadratic coefficient is positive, so n is a convex parabola as a function of
µ. Furthermore, the linear coefficient, corresponding to ∂µn(x;µ)|µ=0 unless a positive
factor, is negative, so n(x; 0) < n(x;µ) for every µ < 0. Then for negative µ’s it is
enough to prove that n(x; 0) is positive for every x. We already know that j′′2 is positive.

In addition, J ′′
1 = J ′′

1+J1− + 2J ′
1+J

′
1− + J1+J

′′
1− where J ′′

1±(x; 0) = µ

2(1−x2)
3
2

∣∣∣
µ=0

= 0 and

J ′
1±(x; 0) < 0. Then J ′′

1 (x; 0) > 0 and n(x; 0) = J1(x; 0)j′′2 (x; 0) − J ′′
1 (x; 0)j2(x; 0) > 0.

For the final case µ > 0, we need to introduce the µ∗-function.

The µ∗ approach for the Vanishing SVI Assume b < 1 so that J1(1) > 0 and
let us make µ vary towards its upper bound defined by the Fukasawa condition. Then
the function J1 will eventually reach the x-axis level at a point x∗+(b). This point is nec-
essarily a critical point of J1 with µ set at the value of the upper bound. So J1(x

∗
+(b)) =

J ′
1(x

∗
+(b)) = 0. Now observe that ϕ̃′ =

J1j′2−J ′
1j2

j22
so that ϕ̃′(x∗+(b); b,

√
3(1 − b)) = 0 also.

In particular, if we know that ϕ̃ (for this critical value of µ) has a single critical point,
this must be x∗+(b).

We look for the solutions to J1(x) = 0 when µ =
√

3(1 − b). J1− is always positive

on
]
1
2 , 1
[

while J1+(x) = 1− x
2 −

µ
2

√
1 − x2− b

4(1+x) satisfies
((

1− b
4

)
x−

(
1
2 + b

4

))2
= 0.

This yields

x∗+(b) =
1
2 + b

4

1 − b
4

=
2 + b

4 − b

83



4. Explicit no arbitrage domain for sub-SVIs via reparametrization

which is clearly larger than 1
2 for positive b and smaller than 1 when b < 1.

As a sanity check we should verify that also J ′
1(x) = 0 at this point. Indeed,

J ′
1(x

∗
+(b)) = J ′

1+(x∗+(b))J1−(x∗+(b)) + J1+(x∗+(b))J ′
1−(x∗+(b)) = J ′

1+(x∗+(b))J1−(x∗+(b)).

From Equation (4.9) we have that J ′
1+ is null for µ =

√
3(1 − b) and x = x∗+(b).

In the limiting case b = 1 and µ = 0, we have already seen that J1 is decreasing and
attains its minimum at 1. Furthermore, ϕ̃(1; 1, 0) = 0, so also ϕ̃ reaches its minimum at
1. We can then set x∗(1) = 1. The uniqueness of x∗ follows from the fact that J1 and
so ϕ̃ are positive in

[
1
2 , 1
[
.

Take x ∈]x∗+(b), 1[. From Equation (4.10) we can see that ϕ̃′ is a concave parabola

as a function of µ. So in order to have a unique µ = µ∗(x)-solution to ϕ̃′(x; b, µ) =
0, it is enough to prove ϕ̃′(x; b,

√
3(1 − b)) > 0. Note that x∗+(b) is a zero and a

point of minimum for ϕ̃(·; b,
√

3(1 − b)), so in a right neighborhood of x∗+(b) we have

ϕ̃′(x; b,
√

3(1 − b)) > 0. If for a certain x we rather have ϕ̃′(x; b,
√

3(1 − b)) < 0, then
there exists a x∗−(b) > x∗+(b) point of maximum such that ϕ̃′(x∗−(b); b,

√
3(1 − b)) = 0

and ϕ̃′′(x∗−(b); b,
√

3(1 − b)) < 0. We show that this is not possible.

Let us look at J ′
1. From Equation (4.9), we see that J ′

1+(x) is positive iff x√
1−x2 >

b+2
2µ

or x > 2+b√
4µ2+(2+b)2

. For µ =
√

3(1 − b) we obtain exactly that x has to be greater than

x∗+(b). On the other side, J ′
1−(x) is positive iff x > 2−b√

4µ2+(2−b)2
which corresponds to

x > 2−b√
b2−16b+16

for µ =
√

3(1 − b). This quantity is inferior to x∗+(b) so also J ′
1−(x)

is positive. Then J ′
1(x

∗
−(b)) > 0. Suppose x∗−(b) ≥ xm2 , then j′2(x

∗
−(b)) ≥ 0 and

consequently ϕ̃′(x∗−(b)) > 0, which is not possible. So if it exists, x∗−(b) must be smaller
than xm2 .

We have ϕ̃′′ =
J1j′′2−J ′′

1 j2
j22

− 2ϕ̃′
j′2
j2

so when evaluating in x∗−(b), the second term is

null. The quantities J1(x
∗
−(b)), −j2(x∗−(b)) and j′′2 (x∗−(b)) are strictly positive. Also,

J ′′
1 = J ′′

1+J1− + 2J ′
1+J

′
1− + J1+J

′′
1− and J ′′

1±(x) = µ

2(1−x2)
3
2

which are positive. Since

also J1± and J ′
1± are positive in x∗−(b), then J ′′

1 (x∗−(b)) > 0. So ϕ̃′′(x∗−(b); b,
√

3(1 − b))
cannot be negative and this leads to a contradiction.

Consequently, for fixed b ∈]0, 1[, there is a unique function x → µ∗(x) such that
ϕ̃′(x; b, µ∗(x)) = 0 is well defined for x ∈]x∗+(b), 1[ and takes values in ]−∞,

√
3(1 − b)[.

It is also continuous since it is defined as the first root of a second degree polynomial
with continuously changing parameters. In particular, µ∗ is defined as in Equation (4.6).

Note that the function µ∗ cannot be extended to b = 1 since the inferior point of ϕ̃
is reached at 1 for every µ < 0. On the other hand, it can be extended to b = 0 since all
the previous statements still hold.

We have already seen that for x in the preimage of ]−∞, 0], the function µ∗(x) is injec-
tive. We show that this still holds in the preimage of ]0,

√
3(1 − b)[. If this is not the case,

there exists a critical point x̂ such that µ∗′(x̂) = 0. Taking the derivative with respect to
x at the members of ϕ̃′(x;µ∗(x)) = 0, we obtain ϕ̃′′(x;µ∗(x)) +∂µϕ̃

′(x;µ∗(x))µ∗′(x) = 0,
so at x̂ it holds simultaneously ϕ̃′(x̂;µ∗(x̂)) = 0 and ϕ̃′′(x̂;µ∗(x̂)) = 0. We want to prove
that this is not possible.
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4.3. Vanishing SVI

At x̂, we have ϕ̃′′ |µ=µ∗(x̂)=
J1j′′2−J ′′

1 j2
j22

|µ=µ∗(x̂). Since we have already proven that

j′′2 > 0 on
]
1
2 , 1
[
, it is enough to prove that J ′′

1 > 0. We consider µ ≥ 0. It can be

shown that J ′′
1 (x) = (4−b2−4µ2)(1−x2)2+4µ

√
1−x2(2x3−3x+2)

8(1−x2)2 and J ′′′
1 (x) = 3µ(2x−1)

2(1−x2)
5
2

, which

is positive iff x > 1
2 . So J ′′

1 is increasing. We have J ′′
1

(
1
2

)
= − b2

8 − µ2

2 + µ√
3

+ 1
2 which

is positive iff −4µ2 + 8√
3
µ + 4 − b2 > 0; this concave parabola is positive at zero and

its positive root is 2+
√
16−3b2

2
√
3

. This quantity is greater than
√

3(1 − b) so J ′′
1 is always

positive for µ ∈ [0,
√

3(1 − b)[.

The proof that the function µ∗(x) is injective corresponds to the proof of the unique-
ness of x∗(b, µ) in the set ]x∗+(b), 1[. In order to obtain the uniqueness in the whole]
1
2 , 1
[
, we prove now that ϕ̃ is strictly decreasing in

]
1
2 , x

∗
+(b)

[
, so that any critical point

x∗ cannot live in this set. For the continuity of µ∗ and since µ∗(1) = −∞, for every
µ ≤ 0 there exists x > x∗+(b) such that µ∗(x) = µ. Furthermore, for any fixed x, we

have proven that there is at most one possible µ ≤ 0 such that ϕ̃′(x; b, µ) = 0. So if
x < x∗+(b), there is no µ ≤ 0 satisfying the latter equation.

Consider now µ > 0. Firstly, we prove that ϕ̃′ is increasing with respect to µ. From

Equation (4.10) it is evident that it holds true iff µ < (1−x)(2x2−8x−1)√
1−x2(2x2−2x−1)

. The right hand

side is a decreasing function for x ∈
]
1
2 , 1
[

so it is enough to check the inequality in x∗+(b).

Here the condition becomes µ < b2−8
b2+4b−8

√
3(1 − b) and this is greater than

√
3(1 − b),

so the inequality holds true.

So in order to prove that ϕ̃′(x; b, µ) is negative, it is enough to prove that
ϕ̃′(x; b,

√
3(1 − b)) is non-positive. Suppose now that there exists x < x∗+(b) such that

ϕ̃′(x; b,
√

3(1 − b)) > 0. Since ϕ̃′(12 ; b,
√

3(1 − b)) is negative, there is an intermediate

point at which ϕ̃′ is null and then becomes positive up to x. Also ϕ̃′(x∗+(b); b,
√

3(1 − b)) is

null so there is x∗− < x∗+(b) such that ϕ̃′(x∗−; b,
√

3(1 − b)) > 0 and ϕ̃′′(x∗−; b,
√

3(1 − b)) =

0. However it holds that ϕ̃′′(x∗−; b,
√

3(1 − b)) =
J1(x∗−)j′′2 (x

∗
−)−J ′′

1 (x
∗
−)j2(x∗−)

j2(x∗−)2
−2ϕ̃′(x∗−)

j′2(x
∗
−)

j2(x∗−) .

We have already proven that J ′′
1 is positive for all x ∈

]
1
2 , 1
[

so the first term is positive

in x∗− < x∗+(b). Then, it must be ϕ̃′(x∗−)
j′2(x

∗
−)

j2(x∗−) > 0 or equivalently j′2(x
∗
−) < 0. Note

that J ′
1(x

∗
−) is negative because J ′′

1 is positive in
]
1
2 , 1
[

and for µ =
√

3(1 − b) the func-

tion J1 is null at x∗+(b). Then ϕ̃′(x∗−) =
J1(x∗−)j′2(x

∗
−)−J ′

1(x
∗
−)j2(x∗−)

j2(x∗−)2
is negative, which is a

contradiction.

To sum up, we have shown that for fixed b ∈ [0, 1[ and µ <
√

3(1 − b), there is
only one x such that ϕ̃′(x; b, µ) = 0 and this x lives in ]x∗+(b), 1[. Furthermore, for

fixed b ∈ [0, 1[ and x ∈]x∗+(b), 1[, there is only one µ in ] − ∞,
√

3(1 − b)[ such that

ϕ̃′(x; b, µ) = 0. If b = 1 and µ < 0, the function ϕ̃(x; 1, µ) is decreasing and reaches its
infimum −µ

2 at x = 1.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Figure 4.2: Comparison between the Vanishing Upward SVI arbitrage-free sub-domain
and domain as functions of b.

Numerical illustration of Proposition 4.2.

Figure 4.2 compares the no arbitrage sub-domain for σ reported in Lemma 4.4 with
the full no arbitrage domain found in Proposition 4.2, as functions of b. The red line
represents the sub-domain. The blue line corresponds to the full domain for x∗ equal to
the zero of the µ∗-function. The reason why we take this point, which depends on b, is
that the sub-domain is defined for µ ≤ 0, so x∗ must be greater than the zero of µ∗(·).
Then, the green line shows the full domain for x∗ = 0.99 (for the chosen values of b, 0.99
is always greater than the zero of µ∗(·)) and the light blue line is the full domain for an
intermediate point between the blue and the green ones. As expected, the red line is
above all the other lines.

4.3.4 Vanishing (Downward) SVI

The Vanishing Downward SVI is the sub-SVI obtained by setting ρ = −1 and a = 0.
The corresponding SVI formula becomes

SVI(k; 0, b,−1,m, σ) = b(−k +m+
√

(k −m)2 + σ2).

We plot in Figure 4.3 a Vanishing Downward SVI with b = 1
2 , m = 1 and σ = 1.

From Proposition 4.1, we know that the Vanishing Downward SVI is arbitrage-free
iff SVI(k; 0, b, 1,−m,σ) is arbitrage-free, and this corresponds to a Vanishing Upward
SVI. This means that the previous results still hold for the Vanishing Downward SVI
setting m(ρ = −1) = −m(ρ = 1). In particular, we redefine the quantity σ∗ as

σ∗(x) := − 4b
√

1 − x2(1 − x− 2x2)

4
(
2 − x+ µ∗(x)

√
1 − x2

)2 − b2(1 + x)2

and Proposition 4.2 becomes:
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4.4. Extremal Decorrelated SVI

Figure 4.3: Vanishing Downward SVI with b = 1
2 , m = 1 and σ = 1.

Proposition 4.3 (Fully explicit no arbitrage domain for the Vanishing Downward SVI).
A Vanishing Downward SVI with b = 1 is arbitrage-free iff µ > 0 and σ ≥ µ

2 .
A Vanishing Downward SVI with 0 < b < 1 is arbitrage-free iff it can be parametrized

as

SVI(k) = bσ

(
−k
σ
− µ∗(x) +

√(
k

σ
+ µ∗(x)

)2

+ 1

)
(4.11)

where 2+b
4−b < x < 1 and σ ≥ σ∗(x).

4.4 Extremal Decorrelated SVI

The coefficient ρ in SVI should correspond to the leverage factor in stochastic volatility
models, i.e. the stock/vol returns correlation. In particular, when it is zero, the volatility
is independent from the stock which leads to symmetric smiles (see e.g. [61, 65]). In
terms of SVI parameters this means that m should also be zero.

This is not automatically enforced in SVI, where ρ and m are distinct parameters.
Therefore we call:

� Decorrelated SVI sets of SVI parameters where ρ = 0;

� Extremal Decorrelated SVI a Decorrelated SVI with b = 2;

� Symmetric SVI a Decorrelated SVI with m = 0.

The two latter families intersect into an SVI with b = 2 and ρ = m = 0.
The Extremal Decorrelated SVI is the sub-SVI obtained by setting b = 2 and ρ = 0.

The corresponding SVI formula becomes

SVI(k; a, 2, 0,m, σ) = a+ 2
√

(k −m)2 + σ2.

With our notations, N(l) = γ +
√
l2 + 1.

We plot in Figure 4.4 an Extremal Decorrelated SVI with a = 8, m = 2 and σ = 2.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Figure 4.4: Extremal Decorrelated SVI with a = 8, m = 2 and σ = 2.

4.4.1 The Fukasawa conditions

The Roger Lee conditions on b and ρ are satisfied. In subsection 5.2.5 of [53] we prove
that the Fukasawa conditions are satisfied iff γ > F̃ (2, 0) = 0 and µ ∈ Iγ,2,0 =] − γ, γ[.
Setting µ = qγ we obtain the following.

Lemma 4.5 (Fukasawa conditions for the Extremal Decorrelated SVI). An Extremal
Decorrelated SVI satisfies the Fukasawa conditions iff it can be parametrized by

SVI(k) = 2σ

(
γ +

√(k
σ
− qγ

)2
+ 1

)
(4.12)

with γ > 0, q ∈] − 1, 1[ and σ > 0.

4.4.2 The condition on σ

We will prove the following characterization of the no Butterfly arbitrage domain for the
Extremal Decorrelated SVI:

Proposition 4.4 (Fully explicit no arbitrage domain for the Extremal Decorrelated
SVI). An Extremal Decorrelated SVI is arbitrage-free iff it can be parametrized as

SVI(k) = 2σ

(
γ +

√(k
σ
− qγ

)2
+ 1

)
(4.13)

with γ > 0, q ∈] − 1, 1[ and σ ≥ 1
γ(1−|q|) .

Proof of Proposition 4.4

Setting µ = qγ with q ∈] − 1, 1[, the function G1 is

G1(l) =
−2qγl3 + l2((3 + q2)γ2 + 3) − 4qγl + 4(1 + γ2) + 2γ

√
l2 + 1(l2 − 2qγl + 4)

4(l2 + 1)(γ +
√
l2 + 1)2
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4.5. Symmetric SVI

and since ρ = 0, g2(l) = − (l2−2)
√
l2+1−2γ

2(l2+1)
3
2 (γ+

√
l2+1)

is symmetric, so l1 = −l2. In particular,

working with l ≥ 0, to find its roots it is sufficient to solve a third degree equation in√
l2 + 1.

We operate the substitution y =
√
l2 + 1 so that

G1(l(y)) =
2γy3 + ((3 + q2)γ2 + 3)y2 + 6γy + 1 + (1 − q2)γ2 − 2qγl(y)(y2 + 2γy + 1)

4y2(y + γ)2
,

g2(l(y)) = −y
3 − 3y − 2γ

2y3(y + γ)
.

From Lemma 4.2, it follows that the function f = − bg2
2G1

is such that for l > l2 and q
negative, f(l) < f(−l) while for q positive, f(l) > f(−l) and for q = 0 it is symmetric.
So if we want to find the supremum of f in ] − ∞, l1[∪]l2,∞[, it is enough to look at
] −∞, l1[ for q < 0 and ]l2,∞[ for q ≥ 0. Note also that f(l; γ, q) = f(−l; γ,−q).

Suppose q ≥ 0 and l > l2. The function f has its limit at ∞ equal to 1
γ(1−q) . We

want to prove that this is also the supremum of f . This would be true iff f(l) < 1
γ(1−q)

for every l or equivalently iff −g2(l)γ(1 − q) < G1(l). Using the change of variable, this
reads also

y3 − 3y − 2γ

y3(y + γ)
γ(1 − q) <

[
2γy3 + ((3 + q2)γ2 + 3)y2 + 6γy + 1 + (1 − q2)γ2+

− 2qγ
√
y2 − 1(y2 + 2γy + 1)

]
/(2y2(y + γ)2).

Multiplying by 2y3(y + γ)2 and simplifying, one gets

2γqy4 + (γ2(1 + q)2 + 3)y3 + 6γ(2 − q)y2 + (γ2(1 − q)(q + 11) + 1)y+

4γ3(1 − q) − 2γqy
√
y2 − 1(y2 + 2γy + 1) > 0.

Since
√
y2 − 1 < y, the LHS is greater than

(γ2(1 − q)2 + 3)y3 + 4γ(3 − 2q)y2 + (γ2(1 − q)(q + 11) + 1)y + 4γ3(1 − q).

Each of the coefficients of this polynomial is positive and y > 0 so the whole polynomial
is positive and f reaches its supremum at ∞.

In the case q < 0, the conclusion follows immediately from Proposition 4.1.

4.5 Symmetric SVI

The Symmetric SVI is the sub-SVI obtained by setting ρ = 0 and m = 0. The corre-
sponding SVI formula becomes

SVI(k; a, b, 0, 0, σ) = a+ b
√
k2 + σ2.

With our notations, N(l) = γ +
√
l2 + 1.

We plot in Figure 4.5 a Symmetric SVI with a = 0.64, b = 1.6 and σ = 0.4.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Figure 4.5: Symmetric SVI with a = 0.64, b = 1.6 and σ = 0.4.

4.5.1 The Fukasawa conditions

The Roger Lee conditions imply 0 < b ≤ 2. In Appendix B of [53] we prove that the Fuka-

sawa conditions are satisfied iff γ > F̃ (b, 0) = g−(b,0)

(
− 6b√

b4−20b2+64

)
= − (b2+32)

√
4−b2

(16−b2)
3
2

.

Since ρ = 0, the interval for µ is symmetric and being µ = 0, the Fukasawa condition on
µ is automatically satisfied.

Lemma 4.6 (Fukasawa conditions for the Symmetric SVI). A Symmetric SVI with

0 < b ≤ 2 satisfies the Fukasawa conditions iff γ > F̃ (b, 0) = − (b2+32)
√
4−b2

(16−b2)
3
2

.

For notation simplicity, from now on we drop the dependence of F̃ to ρ = 0. For every
value of b, we have F̃ (b) ∈]−1, 0] and in particular F̃ (2) = 0. We can extend the definition

of F̃ to the point b = 0, setting F̃ (0) = −1. Furthermore, dF̃
db (b) = 108b3

(16−b2)
5
2
√
4−b2

> 0

for positive b. So the inverse function F̃−1 : [−1, 0] → [0, 2] is well defined. As in
Section 4.2.3, we define

G̃(γ) =

{
F̃−1(γ) if γ ∈] − 1, 0],

2 if γ > 0.
(4.14)

It can be shown, working out the calculation of the roots of a 3rd degree polynomial,
that the explicit formula of G̃ in the case γ ≤ 0 is

G̃(γ) = 2

√√√√√6
√

8γ2 + 1 cos

(
1
3 arccos

(
−8γ4+20γ2−1

(8γ2+1)
3
2

))
− 4γ2 − 5

1 − γ2
. (4.15)

4.5.2 The condition on σ

Before enunciating the main Proposition of this chapter, we need to introduce some
notation. In this section, for positive ls we will operate a change of variable setting
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4.5. Symmetric SVI

z = 1√
l2+1

, whose domain is ]0, 1]. Then we define the functions J1(z) := G1(l(z)),

j2(z) := g2(l(z)), η(z) := h(l(z)) and j(z) := g(l(z)). In particular,

j2(z; γ) = z
2γz3 + 3z2 − 1

2(γz + 1)
,

η(z; γ) = 1 − 1 − z2

2(1 + γz)
,

j(z) =
1 − z2

4
.

(4.16)

In the following, the symbol ′ indicates the derivative with respect to z if not differ-
ently specified.

We also define the functions

γ∗(u) := u

√
6u3 + 15u2 + 14u+ 6 + (1 + u)2

√
3(12u2 + 12u+ 11), (4.17)

b∗(z, γ) :=

√
η(z)(η(z)j′2(z) − 2η′(z)j2(z))

j(z)(j(z)j′2(z) − 2j′(z)j2(z))
, (4.18)

σ∗(z, γ) := − b∗(z, γ)j2(z)

2(η(z)2 − b∗(z, γ)2j(z)2)
. (4.19)

The final result of this subsection will be:

Proposition 4.5 (Fully explicit no arbitrage domain for the Symmetric SVI). An
arbitrage-free Symmetric SVI must have γ > −1.

A Symmetric SVI with b = 2 is arbitrage-free iff γ > 0 and σ ≥ 1
γ .

Call z∗(γ∗(u), 0) = u
γ∗(u) and z∗(γ, G̃(γ)) =

√
(4−G̃(γ)2)(16−G̃(γ)2)

G̃(γ)2+8
.

� If γ = −
√

9+5
√
3

18 , the Symmetric SVI is arbitrage-free iff b < 2
√

3
√

3 − 5 and

σ ≥ − bj2(ẑ)
2(η(ẑ)2−b2j(ẑ)2) where ẑ =

√
3−

√
3

2 .

� If γ ̸= −
√

9+5
√
3

18 and b < 2, a Symmetric SVI is arbitrage-free iff it can be
parametrized as

SVI(k) = σb∗(z, γ∗(u))

(
γ∗(u) +

√(k
σ

)2
+ 1

)
(4.20)

where

□ u > −1,

□ z ∈]z∗(γ∗(u), 0), z∗(γ∗(u), G̃(γ∗(u)))[ if γ∗(u) < −
√

9+5
√
3

18 or

z ∈]z∗(γ∗(u), G̃(γ∗(u))), z∗(γ∗(u), 0)[ if γ∗(u) > −
√

9+5
√
3

18 ,

□ σ ≥ σ∗(z, γ∗(u)).
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Proof of Proposition 4.5

When b = 2, we are in the case of the Extremal Decorrelated SVI with q = 0, so the
arbitrage conditions are satisfied iff γ > 0 and σ ≥ 1

γ .
From now on we consider b < 2. Since ρ = 0, the g2 function is symmetric with

respect to l and since µ = 0, the G1 function is symmetric too. Then f̃ = −G1
g2

is
symmetric as a function of l and we consider l ≥ 0. Recall that we are interested in the
value of σ∗ = supl>l2

b
2f̃(l)

.

The function ϕ̃(z) := f̃(l(z)) goes to ∞ at 0 and at the non trivial zero of j2, which
we call z2(γ). Then ϕ̃ has at least one point of minimum in ]0, z2[.

Study of j2 To find z2, we should solve p1(z) := 2γz3 + 3z2 − 1 = 0. It can be shown
that for γ negative, the polynomial has three roots but only the second one lies in the
interval ]0, 1[. If γ is null, then z2(0) = 1√

3
. If γ is positive but not greater than 1, the

polynomial has three roots and only the third lies in the interval ]0, 1[. Finally, if γ > 1,
there is only one root. Using the trigonometric notation, z2(γ) is

z2(γ) =



− 1
γ cos

(
1
3 arccos(1 − 2γ2) − 2π

3

)
− 1

2γ if γ < 0,

1√
3

if γ = 0,

1
γ cos

(
1
3 arccos(2γ2 − 1)

)
− 1

2γ if 0 < γ ≤ 1,

1
γ cosh

(
1
3 arccosh(2γ2 − 1)

)
− 1

2γ if γ > 1.

Let us show that j2 has a single critical point zm2 where it achieves its minimum. It
holds

j′2(z) =
6γ2z4 + 14γz3 + 9z2 − 1

2(γz + 1)2
,

j′′2 (z) =
6γ3z4 + 19γ2z3 + 21γz2 + 9z + γ

(γz + 1)3
.

Since j′2(0) = −1
2 and j′2(1) = 3γ+4

γ+1 , which is positive having γ > −1, then j2 has at
least one critical point in ]0, 1[.

� The function j′′2 is positive if γ ≥ 0 so j2 has exactly one critical point in this case,
which is a point of minimum.

� Consider the case γ < 0. The polynomial p2(z) := 6γ2z4 + 14γz3 + 9z2 − 1 has
derivative p′2(z) = 2z(12γ2z2 + 21γz + 9), so its three critical points are 0, − 3

4γ

and − 1
γ . Since γ > −1, the third critical point, which is a point of minimum, is

greater than 1 and, since 0 is the first critical point and since −1 = p2(0) < 0 <
p2(1) = 6γ2 + 14γ + 8 = 2(γ + 1)(γ + 4), p2 has exactly one zero in ]0, 1[. So again
j2 has only one critical point in this interval.
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4.5. Symmetric SVI

Because j2 is negative before z2 then j′2(z2) > 0, furthermore j′2(0) < 0 so the critical
point zm2 of j2 (a point of minimum) lies in ]0, z2[.

We have already seen that if γ ≥ 0, then j2 is strictly convex in ]0, 1[.
We can moreover show that j2 has a single inflection point if γ is negative. In such

case, call the numerator of j′′2 as p3(z) := 6γ3z4 + 19γ2z3 + 21γz2 + 9z + γ. It holds
p3(0) = γ < 0 and p3(1) = 6γ3 + 19γ2 + 22γ + 9, which is a third degree polynomial
in γ with only root equal to −1 and a positive leading order term, so it is positive for
γ > −1. Then p3 has at least one zero in ]0, 1[. Moreover, p′3(z) = 3(γz + 1)2(8γz + 3),
whose zeros are − 3

8γ and − 1
γ > 1. The former is a point of maximum for p3 while the

latter is an inflection point. Gathering all the informations, it follows that p3 has exactly
one zero in ]0, 1[. Since j′′2 > 0 at the point of minimum of j2 and j′′2 (0) < 0, the only
inflection point zi2(γ) of j2 lies in ]0, zm2 [.

Study of J1 It holds J1(z) = η(z)2 − b2j(z)2 =
(

1 − 1−z2
2(1+γz)

)2
− b2 1−z

2

16 .

We write here a general result which holds for every SVI.

Lemma 4.7. Under the Fukasawa conditions, G1 is strictly decreasing at the second
zero of g2.

Proof. Since G′
1 = G′

1+G1− + G1+G
′
1− and G′

1+ < G′
1− for l > l∗, then it is enough to

prove G′
1−(l2) < 0. Remember that G1−(l2) = 1 −N ′(l2)

( l2+µ
2N − b

4

)
. From the formula

of g2, we have that N ′′(l2) = N ′(l2)2

2N(l2)
. Then

G′
1−(l2) = −N

′′(l2)(l2 + µ) +N ′(l2)

2N(l2)
+
N ′(l2)

2(l2 + µ)

2N(l2)2
+
bN ′′(l2)

4

=
N ′(l2)

2(l2 + µ)

4N(l2)2
+
bN ′(l2)

2

8N(l2)
− N ′(l2)

2N(l2)
.

For the absence of arbitrage, µ < inf l>l∗ L+(l) = inf l>l∗
(
2N(l)
N ′(l) −

bN(l)
2 − l

)
so this holds

in particular in l2 > l∗. Substituting with the formula of L+ we obtain

G′
1−(l2) <

N ′(l2)
2

4N(l2)2

(
l2 +

2N(l2)

N ′(l2)
− bN(l2)

2
− l2

)
+
bN ′(l2)

2

8N(l2)
− N ′(l2)

2N(l2)
= 0.

Observe that

J ′
1(z) =

γz4(b2γ2 + 4) + z3(3b2γ2 + 8γ2 + 8) + 3γz2(b2 + 8) + z(b2 + 8γ2 + 8) + 4γ

8(γz + 1)3
,

J ′′
1 (z) =

b2

8
+
γ2z4 + 4γz3 + 6z2 + (4γz + 1)(2 − γ2)

2(γz + 1)4
,

J ′′′
1 (z) =

6z(γ2 − 1)2

(γz + 1)5
.

So:
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

� For γ ≥ 0, J ′
1 is always greater than 0 so J1 is increasing and has its minimum in

0.

� If γ < 0, J ′
1 is negative for z = 0 and we know that G′

1(l2) < 0 so J ′
1(z2) > 0. Then

J1 has at least a point of minimum in ]0, z2[. Also, the minimum of J ′′
1 is reached

at 0 and it is b2−4γ2+8
8 . This quantity is positive iff γ2 < b2+8

4 , so for example for
every γ < 0 because γ is greater than −1. In such case J1 is always convex and it
has exactly one critical point zm1 , which is a point of minimum, in ]0, z2[.

Note also that when γ goes to its Fukasawa limit, J1+(z) = 1− 1−z2
2(γz+1) −

b
√
1−z2
4 goes

to 0 in z∗+(b) :=

√
(4−b2)(16−b2)

b2+8
, which is also a point of minimum for J1. It is easy to

shown that if γ > − (b4−38b2+64)(b2+8)

(4−b2)
3
2 (16−b2)

3
2

:= M(b), then j2(z
∗
+(b))) > 0, so z∗+(b) > z2(γ),

otherwise z∗+(b) ≤ z2(γ). Note that M(b) ≥ F̃ (b) (the equality holding iff b = 0), so

when γ goes to F̃ (b), J1 reaches its minimum before z2(γ) (or at z2(γ) if b = 0).
Then J1 has in any case one point of minimum: in the case γ ≥ 0, this is 0, while

when γ < 0, it is zm1(γ, b). Also, J1 is convex if γ2 ≤ b2+8
4 (in particular γ < 0 given that

γ should be larger than −1) while it has a unique inflection point zi1(γ, b) if γ2 > b2+8
4 .

Uniqueness of the critical point of ϕ̃ for the Symmetric SVI From the formula

for ϕ̃′ =
J1j′2−J ′

1j2
j22

, given that J1 > 0 and j2 < 0 we have that:

� for γ < 0: all the critical points of ϕ̃ must lie in [zm1 , zm2 ] ∪ [zm2 , z2 ∧ zm1);

� for γ ≥ 0: all the critical points of ϕ̃ must lie in ]0, zm2 [ since J ′
1j2 is negative.

Considering now the second derivative of ϕ̃, so ϕ̃′′ =
J1j′′2−J ′′

1 j2
j22

−2ϕ̃′
j′2
j2

and evaluating

it at a point of maximum of ϕ̃, the second term becomes null and necessarily ϕ̃′′ ≤ 0.
Then it must hold j′′2J

′′
1 ≤ 0 (the equality holding when both factors are 0). In particular:

1. for γ < 0: if ϕ̃ has a point of maximum, it lies in [zm1 , zi2(γ)[ because in such case
J ′′
1 > 0, j′′2 < 0 in [0, zi2(γ)[;

2. for 0 ≤ γ ≤
√

b2+8
4 : ϕ̃ cannot have a point of maximum, because J1 and j2 are

strictly convex, so it has one point of minimum which lies in ]0, zm2 [;

3. for γ >
√

b2+8
4 : J1 has one inflection point zi1 and if ϕ̃ has a point of maximum,

it lies in ]0, zm2 ∧ zi1 [.

We consider the first case and show that zm1 > zi2(γ) or equivalently that J ′
1(zi2) < 0,

so that there is no point of maximum. The quantity zi2(γ) does not depend on b so
∂b2(J ′

1(zi2)) = ∂b2J
′
1(zi2) =

zi2
8 > 0. We can then check that for every −1 < γ < 0 we

have indeed J ′
1(zi2 ; b = 2) < 0 in Figure 4.6.
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4.5. Symmetric SVI

Figure 4.6: J ′
1(zi2 ; b = 2) as a function of γ.

Let us now consider the last case. Since γ >
√

b2+8
4 , then in particular γ2 > 2.

Suppose we are at a critical point of ϕ̃, then J1 =
J ′
1
j′2
j2 and its second derivative evaluated

at this point is ϕ̃′′ =
J1j′′2−J ′′

1 j2
j22

=
J ′
1j

′′
2−J ′′

1 j
′
2

j2j′2
. In the set ]0, zm2 ∧ zi1 [, the denominator is

always positive. The numerator times 16(γz + 1)6 is equal to

b2
(
6γ6z8 + 36γ5z7 + 91γ4z6 + 126γ3z5 + 3γ2(γ2 + 34)z4 + 2γ(5γ2 + 23)z3+

+ 3(4γ2 + 3)z2 + 6γz + 1
)

+ 24γ4z8 + 96γ3(γ2 + 1)z7 + 4γ2z6(148γ2 + 17)+

+ 24γz5(8γ4 + 48γ2 − 3) + 12z4(50γ4 + 81γ2 − 6) + 16γz3(44γ2 + 25)+

+ 12z2(33γ2 + 8) + 120γz + 4γ2 + 8.

All coefficients of z are positive quantities, indeed the only minus involved are in the
expressions 8γ4+48γ2−3 > 8×4+48×2−3 > 0 and 50γ4+81γ2−6 > 50×4+81×2−6 > 0.
Then ϕ̃′′ is positive and ϕ̃ cannot have a point of maximum even in this case.

We denote from now on the well-defined single point of minimum of ϕ̃ with z∗(γ, b).

Limits of z∗ with respect to γ When γ goes to ∞, the ratio between the numerator
of ϕ̃′ and γ4 goes to 2z6(48 + b2(z2 − 3)), which is null for z = 0, so z∗(∞, b) = 0.

On the other side, let γ go to F̃ (b). Then, from the above study of J1, the minimum

point of J1 is z∗+(b) =

√
(4−b2)(16−b2)

b2+8
< z2(F̃ (b)) and it coincides with the minimum

point z∗(F̃ (b), b) of ϕ̃, at which ϕ̃ is null.
If b = 0, it still holds z∗(∞, 0) = 0 and it is easy to show that at the point z∗(0) =

z2(F̃ (0)) = 1 the function ϕ̃ with γ = F̃ (b) vanishes.

The b∗ approach for the Symmetric SVI Let γ ∈]−1,∞[ be fixed. With reference
to the definition of G̃(γ) in Equation (4.14), we want to prove that for every b ∈]0, G̃(γ)[
the corresponding z∗(γ, b) lies in ]z∗(γ, 0), z∗(γ, G̃(γ))[ (or in ]z∗(γ, G̃(γ)), z∗(γ, 0)[).
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Remark 4.1. Note that if γ > 0, b could actually attain the value G̃(γ) = 2 but we have
already seen in the Extremal Decorrelated scenario that in such case the function f̃ is
increasing and has its minimum (which is not necessarily a critical point) in z = 0. So
in the following we will always consider b < G̃(γ).

Remember the definition of η and j in Equation (4.16) and the fact that we use ′ to
indicate the derivative with respect to z.

The proof of the uniqueness of the critical point of ϕ̃ still holds for b = 0 and
b = G̃(γ), and we proved z∗(γ, G̃(γ)) = z∗+(G(γ)). In particular, the single point of

minimum z∗(γ, b) defined above of ϕ̃ lies in ]0, z2[.

In a following paragraph we show that the only solution to p(z) = q(z) = 0 is for

γ̂ = −
√

9+5
√
3

18 at ẑ =

√
3−

√
3

2 . Take γ ̸= γ̂. With reference to the observations in

Section 4.2.3, we can conclude that the set Z(γ) of the critical points of ϕ̃ is equal to the
interval with extrema the only zero of p = ηj′2 − 2η′j2, denoted z∗(γ, 0), and the point
z∗(γ, G̃(γ)).

For γ = γ̂, the minimum point of ϕ̃ does not depend on b and it is z∗(γ̂, b) = ẑ.

In such case, G̃(γ̂) = 2
√

3
√

3 − 5. In the following we see what happens for the other
values of γ.

It holds q(z) = −2z4γ2(z2−3)+4z3γ(z2−3)+3z4−8z2+1

8
√
1−z2(γz+1)2

. Suppose zq(γ) is a zero of q, then

solving the equation q(zq) = 0 in γ, the only solution greater than −1 is γ = γq(zq) :=
1−z2q

z2q
√

2(3−z2q )
− 1

zq
. It can be shown that γ′q(z) = 1

z2

(
1 − z4−3z2+6

z
√
2(3−z2)

3
2

)
< 0 for every

z ∈]0, 1[. This means that γq is invertible from ]0, 1[ to ] − 1,∞[ and that for fixed γ,
q has a unique zero. Observe that γq(ẑ) = γ̂. Since q(0) < 0, on the left of its zero
zq(γ), q is negative while on the right it is positive. Also, if γ < γ̂, then zq(γ) > ẑ.

We now look at p(z) = 2γ2z6+12γ3z5+3z4(10γ2−1)+28γz3+12z2−1
4(γz+1)3

. Substituting γ with γq(z)

in the last expression, we find p
(
z; γ = γq(z)

)
= − z2

(
2z4−3z2−3+z

√
2(3−z2)

3
2

)
1−z2 . We call

r(z) := 2z4 − 3z2 − 3 + z
√

2(3 − z2)
3
2 , then r(ẑ) = r(1) = 0 and r(0) = −3 < 0.

Furthermore r′(z) = −(4z2−3)(
√

2(3 − z2)−2z), where the second factor is positive for

z < 1, so r is increasing in
[
0,

√
3
2

[
∋ ẑ and decreasing in

]√
3
2 , 1

[
, with unique zeros at ẑ

and 1. This means that for the previous choice of γ < γ̂, p(zq(γ)) < 0, so z∗(γ, 0) > zq(γ)
because z∗(γ, 0) is the unique zero of p. Remember that q is positive in ]zq(γ), z∗(γ, 0)[.
Since b∗ defined in Equation (4.5) lives where p and q have the same sign and since the
set Z(γ) is an interval, the latter will lie on the right of z∗(γ, 0), indeed on the immediate
left we have seen that p is negative while q is positive. The reasoning is similar for γ > γ̂,
with the conclusion that the previous set is on the left of z∗(γ, 0).

Limits of z∗ with respect to b When b goes to 0 and γ is not γ̂, the value of z∗(γ, b)
is the only solution smaller than z2(γ) to p(z) = 0, or

2γ2z6 + 12γ3z5 + 3z4(10γ2 − 1) + 28γz3 + 12z2 − 1 = 0. (4.21)
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4.5. Symmetric SVI

Figure 4.7: Study of
±
√

Γ±z2(±
√

Γ±)

u as functions of u.

Since the equation is of sixth degree, the solution cannot be written explicitly, but it can
be found by a numeric routine in the interval ]0, z2(γ)[.

Another cunning way to find z∗(γ, 0) is to use again the trick of changing the role
between parameters and variables. Firstly, note that if γ = 0, the only solution to
Equation (4.21) is z = 1√

6+
√
33

. If γ ̸= 0, substitute z = u
γ in the above equation, then

we look for u solving

γ4 − 2u2(6u3 + 15u2 + 14u+ 6)γ2 + u4(3 − 2u2) = 0. (4.22)

The interval where u lives is such that 0 < u
γ < z2(γ), or equivalently γz2(γ)

u > 1. If u
is negative, it must hold 0 > u > γz2(γ) > γ > −1, so for sure u > −1. Imagine to fix
u, then equation Equation (4.22) is quadratic in γ2 and has four (eventually complex)
solutions ±

√
Γ±, with Γ± = u2

(
6u3 + 15u2 + 14u+ 6 ± (1 + u)2

√
3(12u2 + 12u+ 11)

)
.

The solution γ must have the same sign of u, since z > 0. If u is positive, the solution√
Γ− is smaller than u, so also

√
Γ−z2(

√
Γ−) is smaller than u. Then, the only possible

solution could be
√

Γ+. We plot in Figure 4.7 (left) the graph of

√
Γ+z2(

√
Γ+)

u to check
whether it is greater than 1. If u is negative, we plot in Figure 4.7 (right) the graphs of
−
√

Γ±z2(−
√

Γ±)

u and check again whether these quantities are greater than 1.

We can see that for every u > 0, the solution
√

Γ+ is admissible and that for −1 <
u < 0, the only admissible solution is −

√
Γ+. To sum up, for u > −1, the solution to

Equation (4.22) in terms of γ is Equation (4.17) and it ranges from −1 to ∞. Observe
that if u = 0, the value of u

γ∗(u) is exactly 1√
6+

√
33

, so the definition is well posed even

in this case.

Numerical illustration of the interval for z∗

We report in Figure 4.8 the graphs of z∗(γ, 0), which is the only zero of p(z, γ) in]
0, z2(γ)

[
, and of z∗(γ, G̃(γ)).
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Figure 4.8: z∗(γ, 0) and z∗(γ, G̃(γ)) as functions of γ ranging from −1 to −0.98 (left)
and from −1 to 0.4 (right).

4.6 SSVI

An SSVI slice is a sub-SVI classically parametrized as

SSVI(k; θ, φ, ρ) =
θ

2

(
1 + ρφk +

√
(φk + ρ)2 + 1 − ρ2

)
. (4.23)

It can be easily checked that the corresponding SVI parameters are (a, b,m, ρ, σ) =(
θ(1−ρ2)

2 , θφ2 ,−
ρ
φ , ρ,

√
1−ρ2
φ

)
, so that γ =

√
1 − ρ2 and the special property µ = − ρ√

1−ρ2
=

l∗ hold, where l∗ is the unique critical point of the smile, which is a point of minimum,
of N . The corresponding SVI formula becomes

SVI

(
k; bσ

√
1 − ρ2, b, ρ,− ρσ√

1 − ρ2
, σ

)
=

bσ

(√
1 − ρ2 + ρ

(k
σ

+
ρ√

1 − ρ2

)
+

√(k
σ

+
ρ√

1 − ρ2

)2
+ 1

)
.

We recall the general notations defined in Section 4.2.1 in the specific case of SSVI:

N(l; ρ) =
√

1 − ρ2 + ρl +
√
l2 + 1

N ′(l; ρ) = ρ+
l√

l2 + 1

N ′′(l) =
1

(l2 + 1)
3
2
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4.6. SSVI

Figure 4.9: SSVI with b = 1, ρ = 1
2 and σ = 1

2 .

from which we find

h(l; ρ) = 1 − N ′(l)

2N(l)

(
l − ρ√

1 − ρ2

)
=

1

2

(
1 +

1√
1 − ρ2

√
l2 + 1

)
g(l; ρ) =

N ′(l)

4
=

1

4

(
ρ+

l√
l2 + 1

)
g2(l; ρ) = N ′′(l) − N ′(l)2

2N(l)
=

1

(l2 + 1)
3
2

− 1

2
(√

1 − ρ2 + ρl +
√
l2 + 1

)(ρ+
l√

l2 + 1

)2
G1(l; b, ρ) = (h(l) − bg(l))(h(l) + bg(l))

(4.24)
where the explicit expressions have been computed via simple substitutions and simpli-
fications.

We plot in Figure 4.9 an SSVI with b = 1, ρ = 1
2 and σ = 1

2 .

Absence of weak arbitrage in SSVI

In this section we prove that SSVI smiles authomatically satisfy the absence of weak
arbitrage condition, i.e. that SSVI smiles always have decreasing functions d1(k) and
d2(k). To this aim, we use results in Theorem 4.1.

Since γ > 0, we always have γ > F̃ (b, ρ). Thanks to the following lemma, we get
that also the condition on µ is verified for γ > 0.

Lemma 4.8. Assume b(1 + |ρ|) ≤ 2 and γ > 0. Then for every SVI, l∗ ∈ Iγ,b,ρ.

Proof. Consider the case ρ ≥ 0, so that l∗ ≤ 0. Note thatN(l)−γ = lN ′(l)+N ′′(l)(l2+1).

Then the condition L−(l) < l∗ for l < l∗ becomes γ+lN ′(l)+N ′′(l)(l2+1)
2N ′(l) (4 + bN ′(l)) < l+ l∗

or equivalently γ > N ′(l)
4+bN ′(l)(2l

∗ − l(2 + bN ′(l))) −N ′′(l)(l2 + 1).
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

The term −N ′′(l)(l2 + 1) is strictly negative and if 2l∗ − l(2 + bN ′(l)) ≥ 0, also the
first term is negative, so that if γ ≥ 0 we automatically have L−(l) < l∗ for every l < l∗.
When ρ > 0 (or ρ = 0 and b < 2), since b(1 + ρ) ≤ 2, it holds b(1 − ρ) ̸= 2. Because
L−(−∞) = L−(l∗−) = −∞ and L− is continuous, it holds supl<l∗ L−(l) = L−(l−) where
l− ∈] −∞, l∗[. Then if we show L−(l) < l∗ for every l < l∗, it follows l∗ > supl<l∗ L−(l).
If ρ = 0 and b = 2, it holds b(1 − ρ) = 2, so l− = −∞ and L−(l−) = −γ. In such case,
the only annoying situation arises for γ = 0, because it holds l∗ = 0 = supl<l∗ L−(l).
Taking γ > 0 this case does not arise.

Consider the quantity 2l∗ − l(2 + bN ′(l)). Since b(1 + ρ) ≤ 2, it is greater than

−2
(
−l∗ + l

(
1 + N ′(l)

1+ρ

))
, which is positive iff, substituting and dividing by −2, the

quantity c(l) := ρ√
1−ρ2

+ l
1+ρ

(
1 + 2ρ + l√

l2+1

)
is negative. Observe that for l going to

−∞, c goes to −∞ when ρ > 0 and to 0− when ρ = 0. Furthermore c(l∗) = 0. The

derivative of c is c′(l) = 1
1+ρ

(
1 + 2ρ+ l(l2+2)

(l2+1)
3
2

)
. We would like c′ to be positive, so that

c would be increasing and, from the previous analysis, negative for l < l∗. However, this
does not always happen. Indeed, the minimum point of c′ is reached at −

√
2 and it is

1
1+ρ

(
1 + 2ρ − 4

3

√
2
3

)
, which is non-negative iff ρ ≥

(
2
3

) 3
2 − 1

2 = ρ̄. Therefore, we are

annoyed by the cases where ρ < ρ̄. Under this hypothesis, call l̄(ρ) the first zero of c′, that
is also the only zero of c′ smaller than −

√
2. We need to prove that d(ρ) := c(l̄(ρ); ρ) < 0.

Observe that d
dρd(ρ) = ∂ρc(l̄(ρ); ρ) + c′(l̄(ρ); ρ) ddρ l̄(ρ) = ∂ρc(l̄(ρ); ρ). The latter quantity

is 1

(1−ρ2)
3
2

+ l
(1+ρ)2

(
1− l√

l2+1

)
, which is increasing in l and so it is smaller than its value

at l = −
√

2. Then ∂ρc(l̄(ρ); ρ) ≤ 1

(1−ρ2)
3
2
−

√
2

(1+ρ)2

(
1 −

√
2
3

)
and it is negative for ρ < ρ̄.

Then, it is enough to show d(0) < 0. For ρ = 0, we have l̄(0) = −∞ and it is easy to see
that d(0) = 0− as desired.

Remember that if l∗ > 0 (i.e. ρ < 0), then l∗ > L−(l−) because L−(l−) ≤ 0 for
Lemma 4.4 in [53]. Then we have proven that supl<l∗ L−(l) < l∗ for every γ > 0 and ρ.

Using the symmetries, we have that for every ρ

l∗(ρ) > L−(l−(ρ); ρ) = −L+(−l−(ρ);−ρ) = −L+(l+(−ρ);−ρ)

or equivalently l∗(−ρ) < L+(l+(−ρ);−ρ).

In particular this lemma holds for any SSVI with b ≤ 2
1+|ρ| , or equivalently, with

θφ ≤ 4
1+|ρ| . Then, we have as an immediate consequence the following:

Corollary 4.1 (Absence of weak arbitrage for SSVI). An SSVI with θφ ≤ 4
1+|ρ| is always

free of weak arbitrage, i.e. the corresponding functions

d1,2(k) = − k√
SSVI(k; θ, φ, ρ)

±
√
SSVI(k; θ, φ, ρ)

2

are automatically decreasing.
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4.6. SSVI

The above corollary entails that any SSVI smile with θφ ≤ 4
1+|ρ| has a parametriza-

tion of the form Equation (4.1). In particular, ϕ(k) can be defined by ϕ(k) =
−d1(k)|d1(k)|, as Lucic does in the proof of Theorem 2.2 of [51]. At this point, the
quantities k∗ and k∗ can be found setting ϕ(k∗) = 0 and ϕ(k∗) = 2k∗. In Section 6.5.3 it
will be shown

k∗ = − 8θ

(4 + θφ(1 + ρ))(4 − θφ(1 − ρ))
.

Easily, it can be shown

k∗ =
8θ

(4 + θφ(1 − ρ))(4 − θφ(1 + ρ))
.

No Butterfly arbitrage domain for SSVI

Since the Fukasawa conditions for the SSVI are automatically satisfied as soon as b ≤
2

1+|ρ| , the only condition required for the absence of Butterfly arbitrage is σ ≥ σ∗(γ, b, ρ, µ),
as stated in Theorem 4.2. In the case of SSVI, the function

σ∗(γ, b, ρ, µ) = sup
l<l1(γ,ρ)∨l>l2(γ,ρ)

− bg2(l; γ, ρ)

2G1(l; γ, b, ρ, µ)

can be slightly simplified as it will be done in this section. Firstly observe that the
dependence on γ and µ are superfluous since γ =

√
1 − ρ2 and µ = − ρ√

1−ρ2
.

Secondly, the following remark holds.

Remark 4.2. From Proposition 4.1, the smile SV I(a, b,−ρ,−m,σ) is arbitrage-free
iff SV I(a, b, ρ,m, σ) is arbitrage-free. For SSVI, it holds SV I(k; a, b,−ρ,−m,σ) =
SV I(−k; a, b, ρ,m, σ) where a = bσ

√
1 − ρ2 and m = −σ ρ√

1−ρ2
. So an SSVI with

ρ < 0 is arbitrage-free iff the SSVI with parameter −ρ > 0 is arbitrage-free.

As a consequence, the quantity σ∗ becomes

σ∗(b, ρ) = sup
l<l1(|ρ|)∨l>l2(|ρ|)

− bg2(l; |ρ|)
2G1(l; b, |ρ|)

.

Thirdly, the set where to look for the point of maximum of f = −b g2
2G1

can be
restrained thanks to the following remark.

Remark 4.3. Suppose ρ ≥ 0, then for Lemma 4.1, l2 ≤ −l1. Fix l > l2 > 0. For the
particular case of SSVI, h(−l) − h(l) = 0 so the difference between G1(l) and G1(−l)
is given by −b2 ρl

4
√
l2+1

, which is negative. Since g2(l) ≤ g2(−l), then f(l) ≥ f(−l), so
supl>l2 f(l) ≥ supl<l1 f(l).

The immediate consequence is that we can write

σ∗(b, ρ) = sup
l>l2(|ρ|)

− bg2(l; |ρ|)
2G1(l; b, |ρ|)

.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Finally, we can explicitly compute the quantity l2(|ρ|). Indeed, we will prove in
Proposition 4.6 that the only positive zero of g2 for ρ ≥ 0 is

l2(ρ) =
1

tan
(arccos(−ρ)

3

) . (4.25)

From now on, we will also work with x = l√
l2+1

, whence

√
1 − x2N(l(x)) = 1 + ρx+

√
1 − ρ2

√
1 − x2,

N ′(l(x)) = x+ ρ,

N ′′(l(x)) = (1 − x2)
3
2 .

Remark 4.4. We redefine the useful functions when using the x variable and set:

Π(x) := N(l(x)), j2(x) := g2(l(x)), j(x) := g(l(x)), J1(x) := G1(l(x)), ϕ̃(x) := f̃(l(x)).

The derivative with respect to l is indicated with ′, so for example the function j′2(x)
corresponds to g′2(l(x)) rather than dj2

dx (x).

We can now state the first important result for SSVI, which is the necessary and
sufficient requirements on parameters for no Butterfly arbitrage. This corresponds to
Theorem 4.2 applied to the SSVI case.

Proposition 4.6 (No arbitrage domain for SSVI). Let g2, G1 given by Equation (4.24).
The following statements hold:

� (SVI parametrization) If an SSVI is arbitrage-free then b ≤ 2
1+|ρ| . In such case, the

SSVI is arbitrage-free iff σ ≥ supl>l2(|ρ|)−
bg2(l;|ρ|)

2G1(l;b,|ρ|) where l2(|ρ|) = 1

tan
(

arccos(−|ρ|)
3

) .
� (Native parametrization) If an SSVI is arbitrage-free then θφ ≤ 4

1+|ρ| . In such

case, the SSVI is arbitrage-free iff (θφ)2 ≤ inf l>l2(|ρ|)
4θ
√

1−ρ2h(l;|ρ|)2

θ
√

1−ρ2g(l;|ρ|)2−g2(l;|ρ|)
where

l2(|ρ|) = 1

tan
(

arccos(−|ρ|)
3

) .
Proof. Thanks to Remark 4.2, we can restrain the attention to the case ρ ≥ 0. In the
study of g2 in [53], we recall that the function has one positive zero l2 > l∗. Thanks to
Remark 4.3, the function σ∗ is obtained with a superior taken for l > l2(|ρ|).

Let us study the location of the unique positive zero x2 of j2(x) = (1 − x2)
3
2 −

(x+ρ)2
√
1−x2

2(1+ρx+
√

1−ρ2
√
1−x2)

. Note that j2(1) = 0; so for x < 1, j2(x) = 0 iff

2(1 − x2)(1 + ρx+
√

1 − ρ2
√

1 − x2) = (x+ ρ)2. (4.26)
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4.6. SSVI

Isolating the radical and squaring yields that the zeros of j2 solve the polynomial root
equation

4(1 − ρ2)(1 − x2)3 =
(
(x+ ρ)2 − 2(1 + ρx)(1 − x2)

)2
. (4.27)

The key observation is that −ρ is a root of Equation (4.27) and not of Equation (4.26).
This leads to the following factorization of the polynomial (x+ ρ)(4x5 + 8ρx4 + (4ρ2 −
3)x3 − 5ρx2 − ρ2x + ρ3). Now −ρ is again a root of the rightmost factor which factors
in turn in (x + ρ)(4x4 + 4ρx3 − 3x2 − 2ρx + ρ2)... and the miracle continues! Indeed,
−ρ is again a root of this later factor, leading to the fact that the zeros of j2 solve
ρ = x(3 − 4x2).

In particular:

� ρ = 0, assuming we can exclude x = 0, gives x =
√
3
2 < 1

� ρ = 1 gives the polynomial equation 4x3−3x+1 = 0 which reads 4(x+1)
(
x− 1

2

)2
=

0, whence x = 1
2 .

Taking the derivative with respect to ρ gives 1 = 3x′(ρ)(1 − 4x(ρ)2) which gives in
turn that ρ → x(ρ) is decreasing when x > 1

2 . We can now either solve the 3rd degree

polynomial root problem, or take x as a parameter varying in the range
[
1
2 ,

√
3
2

]
, and

backup ρ by the formula ρ(x) = 3x− 4x3.

Going the latter route, we note that the polynomial Qρ(x) := 4x3 − 3x+ ρ satisfies

Qρ
(
1
2

)
= −1 + ρ < 0, Qρ

(√
3
2

)
= ρ ≥ 0 and also Q′

ρ(x) = 3(4x2 − 1) which is positive in

the range
]
1
2 ,

√
3
2

]
, so it has a unique real root in this range. Its unique local maximum

is located at x = −1
2 where Qρ

(
−1

2

)
= 1 + ρ > 0, with, together with the observation

that Qρ(−1) = ρ− 1 < 0 and Qρ(
1
2) < 0, gives that Qρ has 2 other real roots located in]

−1,−1
2

[
and

]
−1

2 ,
1
2

[
, so that x2(ρ) is the largest of the roots of Qρ. The three solutions

have explicit formula

cos

(
arccos(−ρ) − 2πk

3

)
, k = 0, 1, 2

and the greatest is x2(ρ) = cos
(arccos(−ρ)

3

)
. It follows that l2(ρ) is given by Equa-

tion (4.25).

The proof in the native parametrization follows from the above proof. Indeed,
the first statement is immediate from the identity b = θφ

2 . The second statement

follows from the fact that σ =

√
1−ρ2
φ . Also, G1 is positive thanks to the Fuka-

sawa conditions, then looking at the expression for σ∗(b, ρ), there is no arbitrage iff

4G1(l; b, |ρ|)
√

1−ρ2
φ ≥ −θφg2(l; |ρ|) for every l > l2(|ρ|). The function G1(l; b, |ρ|) is equal

to h(l; |ρ|)2 − (θφ)2

4 g(l; |ρ|)2, so that the previous condition holds iff

4θ
√

1 − ρ2h(l; |ρ|)2 ≥
(
θ
√

1 − ρ2g(l; |ρ|)2 − g2(l; |ρ|)
)

(θφ)2
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

for every l > l2(|ρ|). Since the function g2 is negative in this domain, the conclusion
immediately follows.

4.6.1 Arbitrage-free parametrization for SSVI

Proposition 4.6 characterizes the no Butterfly arbitrage domain for SSVI. The characteri-
zation requires the computation of the point of minimum of the function fSSVI(l; θ, |ρ|) :=

4θ
√

1−ρ2h(l;|ρ|)2

θ
√

1−ρ2g(l;|ρ|)2−g2(l;|ρ|)
for l bigger than an explicit quantity l2(|ρ|). The point of maxi-

mum can also be computed looking at the zeros of the derivative of fSSVI. These points
depend on the two parameters θ and ρ, so that, when calibrating a free of arbitrage
SSVI slice, the no arbitrage domain must be computed at every new choice of either θ
or ρ.

Computations can be actually simplified and in this section we provide a new
parametrization of the SSVI smile requiring a root-finding depending on the unique
parameter ρ. This means that for a fixed ρ, the root-finding can be performed once for
all and the calibration algorithm can then proceed with extremely fast computations,
simply requiring explicit function evaluations.

The new arbitrage-free SSVI parametrization requires the definition of some useful
functions:

b∗(l, ρ) :=

√
h(l, ρ)

(
h(l, ρ)g′2(l, ρ) − 2h′(l, ρ)g2(l, ρ)

)
g(l, ρ)

(
g(l, ρ)g′2(l, ρ) − 2g′(l, ρ)g2(l, ρ)

) , (4.28)

φ∗(l, ρ) := −2(h(l, ρ)2 − b∗(l, ρ)2g(l, ρ)2)

b∗(l, ρ)g2(l, ρ)

√
1 − ρ2. (4.29)

Proposition 4.7 (No arbitrage parametrization for SSVI). Consider an SSVI smile as
in Equation (4.23). If b < 2

1+|ρ| and ρ ≥ 0, define l̄(0, ρ) the only root in ]l2(ρ),∞[

of b∗(l, ρ) = 0. Let G1, g2 given by Equation (4.24). Then, under the assumption
that the function f̃ = −G1

g2
has a unique critical point (that we sustain numerically in

Section 4.A), an SSVI with ρ ∈ [−1, 1] is arbitrage-free iff it can be parametrized as

SSVI(k) =
b∗(l, |ρ|)

φ

(
1 + ρφk +

√
(φk + ρ)2 + 1 − ρ2

)
where l ≥ l̄(0, |ρ|) and φ ≤ φ∗(l, |ρ|).

We stress again the fact that the no arbitrage domain is here a product of intervals
for fixed ρ. In Section 4.6.1 we will see how to implement this domain into a calibration
algorithm.

Proof of Proposition 4.7

As in the proof of Proposition 4.6, we restrain the attention to the case ρ ≥ 0.
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4.6. SSVI

Study of j2: uniqueness of xm2 In the proof of Proposition 4.6, we have shown that
the function g2 has one positive zero l2 > l∗ which coincides with 1

tan
(

arccos(−ρ)
3

) . We now

prove that g2 has unique point of minimum m2 at the right of l2.

Using the parametrization in x, we have to prove that j2 has a unique point of
minimum xm2 at the right of x2. The zeros of j′2 solve

(x+ρ)3 = 2(1−x2)
(
ρx+

√
1 − ρ2

√
1 − x2 +1

)(
3x
(
ρx+

√
1 − ρ2

√
1 − x2 +1

)
+x+ρ

)
.

(4.30)
In particular for ρ = 0 this reads x2 = 2(1 − x2)

(
1 +

√
1 − x2

)(
4 + 3

√
1 − x2

)
. Isolating

the radical and squaring yields the polynomial equation
(
x2 + 2(1 − x2)(3x2 − 7)

)2
=

4 × 49(1 − x2)3; 0 is a root, whereas it is not a solution of Equation (4.30). Letting
X = 1−x2, the polynomial factorizes into (1−X)2(36X2−16X+ 1), yielding two roots

in ]0, 1[, 4+
√
7

18 and 4−
√
7

18 , with only the latter one solving Equation (4.30), giving in turn

xm2(ρ = 0) =

√√
7

18 + 7
9 .

Let us turn now to ρ = 1. In this case Equation (4.30) simplifies to 1 = 2(1−x)(3x+

1), or yet 6x2 − 4x− 1 = 0, yielding xm2(ρ = 1) = 2+
√
10

6 .

Before investigating the general case, we can observe that if we set x = ρ in Equa-
tion (4.30) we get an equation in ρ which is 8ρ3 = 4(1 − ρ2) · 8ρ, or yet ρ2 = 4(1 − ρ2)
which gives xm2

(
ρ = 2√

5

)
= 2√

5
.

Let us prove now that in the general case g2 has a unique critical point.

Note that ∂ρN(l) = l + l∗, so ∂ρg2(l) = −∂ρ N
′(l)2

2N(l) = −N ′(l)
N(l)

(
1 − N ′(l)

2N(l)(l + l∗)
)

=

−N ′(l)
N(l) h(l) < 0 because h(l) = (G1+(l) + G1−(l))/2 > 0. From the formula g′2(l) =

N ′′′(l)− N ′(l)
N(l) g2(l), we find ∂ρg

′
2(l) = −

(
∂ρ

N ′(l)
N(l)

)
g2− N ′(l)

N(l) ∂ρg2 since N ′′′ does not depend

on ρ. The second term is positive while the first has the factor ∂ρ
N ′(l)
N(l) = 1

N(l)

(
1−N ′(l)

N(l) (l+

l∗)
)

= 1

N(l)
√
l2+1

√
1−ρ2

> 0. Then ∂ρg
′
2(l) > 0.

We have seen that for ρ = 0 and ρ = 1, the function g2 has a unique critical
point m2. Since ∂ρg

′
2(l) > 0, then for every ρ < 1, the critical points of g2 must be

greater than m2(ρ = 1) = 2
√
2+

√
5

3 . A critical point in the l-variable is still a critical

point in the x-variable and viceversa, because df
dx(x) = f ′(l(x)) dldx(x) = f ′(l(x))

(1−x2)
3
2

with the

convention ′ = d
dl . Then, showing the convexity of g2 in the x-variable for x > xm2(ρ = 1)

automatically proves the uniqueness of its critical point in any variable (even if g2 is not
convex in the l-variable).

We have d2j2
dx2

(x) =
(
dl
dx(x)

)2
j′′2 (x)+j′2(x) d

2l
dx2

(x) = (j′′2 (x)+3x
√

1 − x2j′2(x))(1−x2)−3
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

and

j′′2 (x) + 3x
√

1 − x2j′2(x) =

(
Πiv(x) − Π′′(x)2

Π(x)
− Π′(x)Π′′′(x)

Π(x)
+

5Π′(x)2Π′′(x)

2Π(x)2
+

− Π′(x)4

Π(x)3

)
+ 3x

√
1 − x2

(
Π′′′(x) − Π′(x)Π′′(x)

Π(x)
+

Π′(x)3

2Π(x)2

)
.

(4.31)

Since 3x
√

1 − x2 = −Π′′′(x)
Π′′(x) , the terms −Π′(x)Π′′′(x)

Π(x) and −3x
√

1 − x2 Π
′(x)Π′′(x)
Π(x) simplify.

Also, Πiv(x)+3x
√

1 − x2Π′′′(x) = 3(1−x2)
5
2 (2x2−1), which is positive since x > 2+

√
10

6 >
1√
2
. The term −Π′′(x)2

Π(x) becomes positive with the sum of Π′(x)2Π′′(x)
2Π(x)2

, indeed it becomes

−Π′′(x)
Π(x)

(
Π′′(x) − Π′(x)2

2Π(x)

)
= −Π′′(x)

Π(x) j2(x) > 0. Note that the remaining 4Π′(x)2Π′′(x)
2Π(x)2

is

positive. Finally, −Π′(x)4

Π(x)3
compensates with 3x

√
1 − x2 Π′(x)3

2Π(x)2
summing to

Π′(x)3

Π(x)2

(
3

2
x
√

1 − x2 − Π′(x)

Π(x)

)
=

Π′(x)3

2Π(x)3
(
x+ 3ρx2 − 2ρ+ 3x

√
1 − ρ2

√
1 − x2

)
.

Now 3ρx2 − 2ρ is positive iff x >
√

2
3 and this is true, so also the previous quantity

is positive. Then, since the negative terms of d2j2
dx2

are smaller in magnitude than its
positive terms, j2 is convex in the x-variable.

As a consequence, j2 has a unique critical point for x > x2 and it lies between
xm2(ρ = 1) and xm2(ρ = 0).

In order to study xm2 in the general case, let us isolate the radical of Equation (4.30)
and square. We get the daunting polynomial root equation

(
(ρ+ x)3 − 2(1 − x2)

(
3(1 − ρ2)x(1 − x2) + (ρx+ 1)(3x(ρx+ 1) + (ρ+ x))

))2
=

4(1 − ρ2)(1 − x2)3
(
6x(ρx+ 1) + ρ+ x

)2
.

There again, we observe that −ρ is a root, whereas it does not solve the initial equation.
This leads to an iterative factorization where eventually −ρ is a root of order 4. The
remaining factor is

ρ2 + 2ρ(12x5 − 16x3 + 5x) + (36x6 − 56x4 + 21x2).

For x ∈ [xm2(ρ = 1), xm2(ρ = 0)], the only positive ρ solution is

ρ(x) = x(−12x4 + 16x2 − 5 + 2(1 − x2)
√

36x4 − 24x2 + 1).

Since ∂ρj
′
2 < 0, also ∂ρ

dj2
dx < 0 and the function ρ(x) is invertible in [xm2(ρ = 1), xm2(ρ =

0)] =
[
2+

√
10

6 ,

√√
7

18 + 7
9

]
and its inverse gives the value of xm2 for fixed ρ.
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Study of J1 From Remark 4.4, J1(x) = η2(x) − b2j2(x) where η(x) = 1
2

(
1 +

√
1−x2
1−ρ2

)
and j(x) = x+ρ

4 . The formulas for η and j can be easily recovered from Equation (4.24).
The function j is of course positive and increasing in x, while η is positive decreasing in
x, since dη

dx(x) = − x

2
√

1−ρ2
√
1−x2

< 0. Then J1 is decreasing and it attains its minimum

at 1, equal to 1
16

(
2 − b(1 + ρ)

)(
2 + b(1 + ρ)

)
.

Looking at the condition σ ≥ supx>x2 −
bj2(x)
2J1(x)

, we then have that for every x > x2,

it holds − bj2(x)
2J1(x)

< − bj2(xm2 )

2J1(1)
= − 8bj2(xm2 )

4−b2(1+ρ)2 , from which one immediately finds a no

arbitrage subdomain for SSVI:

Lemma 4.9 (Simple no arbitrage subdomain for SSVI). An SSVI with b(1 + |ρ|) ≤ 2

and σ ≥ −8bj2(xm2 (|ρ|),|ρ|)
4−b2(1+|ρ|)2 is arbitrage-free.

Equivalently, an SSVI with

θφ ≤ min

(
4

1 + |ρ|
,

√
16θ
√

1 − ρ2

θ(1 + |ρ|)2
√

1 − ρ2 − 16j2(xm2(|ρ|), |ρ|)

)
is arbitrage-free.

The above lemma is of high interest since the subdomain is easy to be computed.
Furthermore, we already know a no arbitrage subdomain for SSVI given by the conditions
of Gatheral and Jacquier in [36], so we compare the two subdomains in Section 4.6.1. We
will see that the subdomain of Lemma 4.9 is generally less stringent than the Gather-
Jacquier subdomain.

Uniqueness of the critical point of f̃ for SSVI Observe that Remark 4.3 can be
re-written in terms of the function f̃ = −G1

g2
. Indeed, it holds σ∗ = b

2 infl>l2
f̃(l)

for ρ ≥ 0.

Remember that we consider the case ρ ≥ 0. Then, we look at the infimum of f̃(l)
for l > l2, letting b be eventually 0. For b < 2

1+ρ , it holds f̃(l+2 ) = ∞ = f̃(∞) and f̃ > 0,

so f̃ must have a critical point which is a point of minimum. We want to prove that in
such case f̃ has a unique critical point in ]l2,∞[. When b = 2

1+ρ , it can be shown that

the derivative of f̃ vanishes at ∞. We prove that even in this case this is the unique
point of minimum of f̃ .

To show that f̃ has a unique critical point, we can prove that dϕ̃
dx has a unique zero,

where we recall from Remark 4.4 ϕ̃(x) = f̃(l(x)) = −J1(x)
j2(x)

.
We have seen that J1 is decreasing as a function of x. A critical point must satisfied

dϕ̃
dx = 0 or J1

dj2
dx − dJ1

dx j2 = 0. Looking at the sign of the previous functions, it must

hold dj2
dx > 0 so the critical point is on the right of xm2 . At the critical point, it holds

j22
d2ϕ̃
dx2

= J1
d2j2
dx2

− d2J1
dx2

j2 := n, so in order to prove the uniqueness of the critical point,
we could show that n is positive for every x > xm2 .

We have ∂b2n = −j2 d
2j2
dx2

+2( djdx
2
+j d

2j
dx2

)j2 = −Π′2

16
d2j2
dx2

+ j2
8 < 0, so it is enough to show

the positivity of n|
b= 2

1+ρ

for x > xm2 or, more generally, for x > xm2(ρ = 1) = 2+
√
10

6 .
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Figure 4.10: Plots of n|b= 2
1+ρ

for different ρ values.

We show it numerically in Section 4.A. We plot in Figure 4.10 the function n|
b= 2

1+ρ

for

x > xm2(ρ = 1) for different values of ρ.

Proposition 4.8. Let G1, g2 given by Equation (4.24). Then, under the hypothesis
that f̃ = −G1

g2
has a unique critical point in ]l2(ρ),∞] (that we sustain numerically in

Section 4.A), an SSVI with b = 2
1+|ρ| is arbitrage-free iff σ ≥

√
1 − ρ2.

Equivalently, under the hypothesis that f̃ has a unique critical point, an SSVI with
θφ = 4

1+|ρ| is arbitrage-free iff φ ≤ 1.

Proof. The limit of f̃ at ∞ is finite iff b = 2
1+ρ and, for any SVI, it equals 1

2

(
γ

1+ρ − µ
)

,

which corresponds to 1

2
√

1−ρ2
for SSVI. Under the hypothesis that f̃ has a unique critical

point in ]l2(ρ),∞] and since for b = 2
1+ρ the derivative of f̃ at ∞ is null, the critical

point of f̃ must be ∞. Also, f̃(l+2 ) = ∞, so the critical point is a point of minimum and

the function is strictly decreasing. Then, σ∗ =
√

1 − ρ2.

Using the SSVI notation, b = θφ
2 and σ =

√
1−ρ2
φ and the conclusion follows imme-

diately.

Application of the b∗ approach to SSVI We have numerically shown that f̃ has
at most one critical point in ]l2,∞] and this is a point of minimum. The case b = 2

1+ρ

has already been treated in Proposition 4.8. Consider now b < 2
1+ρ and the reasoning in

Section 4.2.3 regarding the b∗ approach which allows to reparametrize the no arbitrage
domain from the critical point condition. The idea is to reparametrize the arbitrage
bound on σ discussed in Proposition 4.6. The bound requires to compute the minimum
of f̃ = −G1

g2
, on an interval which depends on ρ. The strategy is to study the critical
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points of f̃ , knowing that f̃ goes to infinity at the bounds of this interval. The equation
characterizing those critical points l̄ reads

p(l̄; ρ) = b2q(l̄; ρ).

Using l̄ as a parameter we can obtain b2 as p(l̄;ρ)

q(l̄;ρ)
. Since f̃ has a unique critical point

l̄ ∈]l2,∞[, it satisfies b2 = b∗(l̄)2 or p(l̄) = q(l̄) = 0. In the latter case, we should

have 2h′(l̄)
h(l̄)

= 2g′(l̄)
g(l̄)

but the right hand side is always positive while we have shown that

the left hand side is negative. Then we can apply the observation in Section 4.2.3 and
obtain that the set of the critical points of f̃ for ρ fixed is equal to the interval starting
from the maximum between all the zeros of p, coinciding with l̄(0, ρ), and ending at

l̄
(

2
1+ρ , ρ

)
= ∞. Fix ρ ≥ 0, b < 2

1+ρ , choose l ∈ [l̄(0, ρ),∞[. Then σ∗ = b∗(l)

2f̃(l;ρ)
. Also, the

requirement σ ≥ σ∗ coincides with the requirement φ ≤
√

1−ρ2
σ∗ = φ∗.

Limits of l̄ Because of the uniqueness of the critical points of ϕ̃, when b goes to 0, the
critical point satisfies ηj′2 − 2η′j2 = 0. The numerator of ηj′2 − 2η′j2 is√

1 − ρ2
(
−4ρx6+2(6ρ2−5)x5+24ρx4+(31−14ρ2)x3−13ρx2+5(ρ2−4)x+ρ(ρ2−4)

)
+

+
√

1 − x2
(
2(2ρ2 − 1)x5 + 4ρ(4 − 3ρ2)x4 + (21 − 22ρ2)x3+

+ ρ(8ρ2 − 15)x2 + 5(3ρ2 − 4)x+ ρ(3ρ2 − 4)
)
.

If ρ = 0, possible solutions are x = 0 and x =
√√

6 − 3
2 but since x must be greater

than the unique zero of j2, x2 = cos
(arccos(−ρ)

3

)
=

√
3
2 , the latter is the searched solution.

If ρ = 1, the only possible solution is x = 1. In terms of l, these two points correspond

to
√

9 + 4
√

6 and ∞.

The above expression can also be written as

2u
√

1 − x2
[
2x(1 − x2)u− x(x+ ρ)2 −

√
1 − x2(x+ ρ+ 3xu)v

]
+ (x+ ρ)3v

or

φ(x) := −2u2
√

1 − x2
[
x
√

1 − x2
(
3
√

1 − ρ2 +
√

1 − x2
)

+ x+ ρ
]

+ (x+ ρ)3v

where u = 1+ρx+
√

1 − x2
√

1 − ρ2 and v =
√

1 − x2+
√

1 − ρ2. Observe that (u, v)(x =
1) =

(
1 + ρ,

√
1 − ρ2

)
and (u, v)(x = ρ) =

(
2, 2
√

1 − ρ2
)

so that

� φ(1) = (1 + ρ)3
√

1 − ρ2 > 0;

� φ(ρ) = −48ρ(1 − ρ2)
3
2 ≤ 0;

and φ has a zero in the range ]x2(ρ) ∨ ρ, 1[.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

Lemma 4.10 (Computation of l̄(0, ρ)). The only root of b∗(l) = 0 is
√

9 + 4
√

6 if ρ = 0,
∞ if ρ = 1 and, in the general case, it lies in ] min(l2(ρ),−l∗(ρ)),∞[. It can be computed

as l̄(0, ρ) = x̄(0,ρ)√
1−x̄(0,ρ)2

, where x̄(0, ρ) is the only zero of

√
1 − ρ2

(
−4ρx6+2(6ρ2−5)x5+24ρx4+(31−14ρ2)x3−13ρx2+5(ρ2−4)x+ρ(ρ2−4)

)
+

+
√

1 − x2
(
2(2ρ2 − 1)x5 + 4ρ(4 − 3ρ2)x4 + (21 − 22ρ2)x3+

+ ρ(8ρ2 − 15)x2 + 5(3ρ2 − 4)x+ ρ(3ρ2 − 4)
)
,

which lies in ] min(x2(ρ), ρ), 1[ where x2(ρ) = cos
(arccos(−ρ)

3

)
.

The Gatheral-Jacquier sufficient conditions

How does the boundary in Lemma 4.9 compare with the sufficient conditions found by
Gatheral and Jacquier in Theorem 4.2 of [36]? The theorem asserts that an SSVI is free
of Butterfly arbitrage if θφ(1 + |ρ|) ≤ 4 and θφ2(1 + |ρ|) ≤ 4. Equivalently, an SSVI is
free of Butterfly arbitrage if

θφ ≤ min

(
4

1 + |ρ|
,

√
4θ

1 + |ρ|

)
.

We can compare with some plots the Gatheral-Jacquier sufficient condition with the
sufficient condition of Lemma 4.9 and the necessary and sufficient condition of Proposi-
tion 4.6:

θφ ≤ min

(
4

1 + |ρ|
, inf
l>l2(|ρ|)

√
4θ
√

1 − ρ2h(l; |ρ|)2

θ
√

1 − ρ2g(l; |ρ|)2 − g2(l; |ρ|)

)
.

We plot the levels below which the product θφ must lie. In the first couple of graphs
in Figure 4.11, ρ is fixed while θ ranges in

]
0, 12
[
; in the second couple of graphs in

Figure 4.12, θ is fixed and ρ ranges in ] − 1, 0[ as markets generally reflect negative ρs.

We can see that the sufficient condition of Lemma 4.9 is generally weaker than the
Gatheral-Jacquier’s one, which means that it is less strict and it allows the parameters
to live into a larger space, which is still free of arbitrage. In this sense, a calibra-
tion performed with Gather-Jacquier sufficient conditions could fit much worse market
data, because it obliges parameters to live into a smaller space than the one allowed by
Lemma 4.9.

Calibration algorithm

Proposition 4.7 allows us to design an algorithm for the calibration of arbitrage-free SSVI
slices. Indeed, for a fixed maturity T , suppose we have market Call prices for different
strikes: {(K,Cmkt(K,T ))}. We want to find the best triplet (θ, φ, ρ) which fits with a
good calibration error market prices. The calibration error can be computed as squared
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4.6. SSVI

Figure 4.11: Comparison of Gatheral-Jacquier sufficient conditions, Lemma 4.9 suffi-
cient conditions and Proposition 4.6 necessary and sufficient conditions as functions of
θ. The area below each line represents the (sub)domain of no arbitrage where θφ can lie.

Figure 4.12: Comparison of Gatheral-Jacquier sufficient conditions, Lemma 4.9 suffi-
cient conditions and Proposition 4.6 necessary and sufficient conditions as functions of
ρ. The area below each line represents the (sub)domain of no arbitrage where θφ can lie.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

differences and its minimization can be performed via least squares. In other words, we
want to minimize the function

ε(θ, φ, ρ) =
∑
K

w(K,T )
(
Cmod

(
K,T,SSVI(k; θ, φ, ρ))

)
− Cmkt(K,T )

)2
where k = log K

F is the log-forward moneyness and

Cmod(K,T, ω) = D(T )
(
N(d1)F (T ) −N(d2)K

)
d1,2 = − k√

ω
±

√
ω

2
.

(4.32)

The weights w(K,T ) can be arbitrarily chosen and they could be, for example, the
inverse vegas. In this way, the calibration would be on implied volatilities rather then
on prices.

Using Proposition 4.7, we look for parameters (l, φ, ρ) satisfying ρ ∈ [−1, 1], l ≥
l̄(0, |ρ|) and φ ≤ φ∗(l, |ρ|). Then, the corresponding θ parameter is equal to 2b∗(l,|ρ|)

φ .
Calibration routines such as the least_squares in the scipy.optimize Python library
only allow for constant bounds on the parameters. Then, a reparametrization is needed.
It is easy to see that defining

Λ =
l̄(0, |ρ|)

l
Φ =

φ

φ∗(l, |ρ|)

allows to set constant bounds on the new parameters (Λ,Φ, ρ), i.e.

Λ ∈ ]0, 1]

Φ ∈ [0, 1]

ρ ∈ [−1, 1].

Given a triplet (Λ,Φ, ρ), the original SSVI parameters can be recovered sequentially
computing

l(Λ, ρ) =
l̄(0, |ρ|)

Λ
φ(Φ,Λ, ρ) = Φφ∗(l(Λ, ρ), |ρ|)

θ(Φ,Λ, ρ) =
2b∗(l(Λ, ρ), |ρ|)
φ(Φ,Λ, ρ)

.

(4.33)

In particular, the function to be minimized which has to be given as input to the cali-
bration algorithm is

ε̃(Λ,Φ, ρ) =
∑
K

w(K,T )
(
Cmod

(
K,T,SSVI(k; θ(Φ,Λ, ρ), φ(Φ,Λ, ρ), ρ))

)
−Cmkt(K,T )

)2
.

(4.34)
and parameters (Λ,Φ, ρ) can live in the product of intervals ]0, 1] × [0, 1] × [−1, 1].
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4.6. SSVI

Observe that the computation of φ(Φ,Λ, ρ) and θ(Φ,Λ, ρ) requires to know the quan-
tity l(Λ, ρ), which in turn has to be computed from l̄(0, |ρ|). The latter quantity is the
only one to require more complex computations. Indeed, it involves a root-finding algo-
rithm which can be settled using Lemma 4.10. In particular, l̄(0, |ρ|) is the only root in
the interval ] min(x2(ρ), ρ), 1[ of√

1 − ρ2
(
−4ρx6+2(6ρ2−5)x5+24ρx4+(31−14ρ2)x3−13ρx2+5(ρ2−4)x+ρ(ρ2−4)

)
+

+
√

1 − x2
(
2(2ρ2 − 1)x5 + 4ρ(4 − 3ρ2)x4 + (21 − 22ρ2)x3+

+ ρ(8ρ2 − 15)x2 + 5(3ρ2 − 4)x+ ρ(3ρ2 − 4)
)

(4.35)

A possible root-finding algorithm can be the brentq function in the scipy.optimize

Python library. In Algorithm 1 we describe how to perform the computation.

Algorithm 1 Computation of l̄(0, ρ)

Input Parameter ρ.
Output Quantity l̄(0, ρ).

1: Give to the built-in root-finding function the target function in Equation (4.35);
2: Give to the built-in root-finding function the bound ] min(x2(ρ), ρ), 1[ where x2(ρ) =

cos
(arccos(−ρ)

3

)
;

3: Let the built-in root-finding function run and find the only zero x̄(0, ρ);

4: Compute l̄(0, ρ) = x̄(0,ρ)√
1−x̄(0,ρ)2

.

At this point, we detail the calibration algorithm in Algorithm 2.

Algorithm 2 Calibration algorithm for arbitrage-free SSVI slices

Input Set of market Calls and strikes for a fixed maturity T : {(K,Cmkt(K,T ))}.
Output SSVI parameters (θ, φ, ρ) which best fit market prices.

1: Give to the built-in calibration function the target function ε̃(Λ,Φ, ρ) in Equa-
tion (4.34);

2: Give to the built-in calibration function the parameters bounds ]0, 1]× [0, 1]× [−1, 1];
3: Let the built-in calibration function run and find the best fit parameters (Λ,Φ, ρ);
4: Compute (θ, φ, ρ) from (Λ,Φ, ρ) as in Equation (4.33).

4.6.2 The Long Term Heston SVI is an SSVI

In this section, we look at the Long Term Heston SVI introduced by Gatheral and
Jacquier in [35]. The authors prove that, under an appropriate hypothesis on the Heston
parameters, the Heston implied volatility converges to an SVI implied volatility when
the time-to-maturity goes to infinity. Here we show that it actually converges to an
SSVI.
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4. Explicit no arbitrage domain for sub-SVIs via reparametrization

In the Heston model, the underlying process St follows the stochastic differential
equation of the form

dSt =
√
vtStdWt, S0 > 0

dvt = κ̃(θ̃ − vt)dt+ σ̃
√
vtdZt, v0 > 0

< W,Z >t = ρ̃dt.

We use the ∼ hat to distinguish Heston parameters from SVI and SSVI parameters.
In [35] it is shown that setting

θ :=
4κ̃θ̃T

σ̃2(1 − ρ̃2)

(√
(2κ̃− ρ̃σ̃)2 + σ̃2(1 − ρ̃2) − (2κ̃− ρ̃σ̃)

)
,

φ :=
σ̃

κ̃θ̃T
,

the Heston model converges to an SVI with parameters

a =
θ

2
(1 − ρ2), b =

θφ

2
, ρ = ρ̃, m = − ρ

φ
, σ =

√
1 − ρ2

φ
. (4.36)

In the following proposition we state our main result of this section: the Long Term
Heston SVI is an SSVI and we find a lower bound for T which grants no arbitrage.
Intuitively, choosing T large enough grants no arbitrage in the SVI Long Term Heston
parametrization since it approximates the Heston smile, which is itself arbitrage-free.
Now the convergence in the proof of Gatheral and Jacquier is pointwise, so the no
arbitrage property at a fixed T is still to be proven.

Proposition 4.9 (No arbitrage subdomain for the Long Term Heston SVI). The Long
Term Heston SVI approximation defined by Equation (4.36) is an SSVI. There is no
Butterfly arbitrage in the Long Term Heston SVI approximation as soon as

T ≥ − 8bσ̃g2(m2(|ρ|), |ρ|)
κ̃θ̃
√

1 − ρ2(4 − b2(1 + |ρ|)2)

where m2(ρ) is the only positive point of minimum of the function g2(·, ρ) defined in

Equation (4.24), and b = 2
σ̃(1−ρ̃2)

(√
(2κ̃− ρ̃σ̃)2 + σ̃2(1 − ρ̃2) − (2κ̃− ρ̃σ̃)

)
.

Proof. Recall the canonical SSVI Equation (4.23). From Equation (4.36), observe that it
holds γ =

√
1 − ρ2 and µ = − ρ√

1−ρ2
= l∗. In this way it is evident that the Long Term

Heston corresponds to a sub-SVI with three parameters and, in particular, it corresponds
to an SSVI with parameters (θ, ρ, φ).

From Corollary 4.1, an SSVI always satisfies the Fukasawa conditions. The only
requirement needed for a no arbitrage parametrization is σ > σ∗(b, ρ). Then, a Long
Term Heston is free of arbitrage iff it satisfies Proposition 4.6. Since σ depends linearly

to T , indeed σ =
k̃θ̃
√

1−ρ2
σ̃ T , it increases with T . On the other hand, b and ρ are constant
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4.6. SSVI

with respect to T so σ∗(b, ρ) is also constant and σ will eventually become greater than
the arbitrage bound for T going to ∞.

Suppose ρ ≥ 0, then from Remark 4.3, f reaches its superior on the right of l2, the
second zero of g2. The requirement σ ≥ − bg2(l)

2(h2(l)−b2g2(l)) for every l > l2 can be rewritten

substituting σ with its expressions in terms of the Heston parameters, as

T ≥ A sup
l>l2

− g2(l)

h2(l) − b2g2(l)
(4.37)

with A := bσ̃

2κ̃θ̃
√

1−ρ2
=
(√

(2κ̃− ρ̃σ̃)2 + σ̃2(1 − ρ̃2)−(2κ̃− ρ̃σ̃)
)
/
(
κ̃θ̃(1− ρ̃2)

3
2

)
. Note that

the argument of the supremum does only depend on ρ and on b =
2

σ̃(1−ρ̃2)

(√
(2κ̃− ρ̃σ̃)2 + σ̃2(1 − ρ̃2) − (2κ̃− ρ̃σ̃)

)
.

The numerator attains its minimum at the locus of the unique minimum of g2 on
the right of l2, that we denoted m2(ρ). We have proven that for SSVI, h is a decreasing
function so it is always greater than h(∞) = 1

2 , while g is increasing with limit g(∞) =
(1+ρ)

4 . In this way, for T ≥ − 8bσ̃g2(m2(ρ))

κ̃θ̃
√

1−ρ2(4−b2(1+ρ)2)
, the inequality in Equation (4.37) is

satisfied.
In the case ρ < 0, from Proposition 4.1 it follows that the previous discussion still

holds substituting ρ with −ρ.

It is worth observing that Proposition 4.9 actually corresponds to Lemma 4.9 using
the Long Term Heston notations.
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4.A Numerical evidence of the uniqueness of the critical
point of f̃ in SSVI

As discussed in Section 4.6.1, to prove the uniqueness of the critical point of f̃ for

SSVI, it is enough to show that the function n = J1
d2j2
dx2

− d2J1
dx2

j2 is positive for every

x > xm2(ρ = 1) = 2+
√
10

6 setting b = 2
1+ρ .

Observe that from Remark 4.4, Π(x) = N(l(x)). In the following code, we call Pik
the k-th derivative of N(l) with respect to l, evaluated in l(x). In Section 4.6.1 we
denoted such quantity as Π(k). Then,

j2(x) = g2(l(x)) = Π′′(x) − Π′(x)2

2Π(x)
,

and the derivative of j2 with respect to x can be computed starting from these quantities.

In particular, using Equation (4.31), it holds d2j2
dx2

(x) = (j′′2 (x) + 3x
√

1 − x2j′2(x))(1 −
x2)−3 and

j′′2 (x) + 3x
√

1 − x2j′2(x) =

(
Πiv(x) − Π′′(x)2

Π(x)
− Π′(x)Π′′′(x)

Π(x)
+

5Π′(x)2Π′′(x)

2Π(x)2
−

+
Π′(x)4

Π(x)3

)
+ 3x

√
1 − x2

(
Π′′′(x) − Π′(x)Π′′(x)

Π(x)
+

Π′(x)3

2Π(x)2

)
.

The check consists into evaluating the target function at ρ spanning from 0 to 0.999

and x spanning from 2+
√
10

6 to 0.999, choosing for each variable 1000 points between the
extrema. The algorithm is the following:

import numpy as np

def Pi fun (x , rho ) : return (1.+ rho*x ) /np . s q r t (1.=x**2)+np . s q r t (1.= rho
**2)

def Pi1 fun (x , rho ) : return x+rho

def Pi2 fun ( x ) : return (1.=x**2) * * ( 3 . / 2 . )

def Pi3 fun ( x ) : return =3.*x*(1=x**2) **2

def Pi4 fun ( x ) : return 3 . * ( 5 . * x**2=1.) *(1.=x**2) * * ( 5 . / 2 . )

def e ta fun (x , rho ) : return ( 1 . + np . s q r t ((1.=x**2) /(1.= rho **2) ) ) /2 .

def e t a d e r f u n (x , rho ) : return =x / ( 2 .* np . s q r t (1.= rho **2) *np . s q r t (1.=
x**2) )

def e t a d e r 2 f u n (x , rho ) : return =1./(2.*np . s q r t (1.= rho **2) *(1.=x**2)
* * ( 3 . / 2 . ) )
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def j f u n (x , rho ) : return ( x+rho ) /4 .

def j d e r f u n ( ) : return 1 . / 4 .

def j 2 f u n (x , rho ) : return Pi2 fun ( x )=Pi1 fun (x , rho ) **2/(2 .* Pi fun (x ,
rho ) )

def j 2 d e r 2 f u n (x , rho ) :

Pi = Pi fun (x , rho )

Pi1 = Pi1 fun (x , rho )

Pi2 = Pi2 fun ( x )

Pi3 = Pi3 fun ( x )

j22 = Pi4 fun ( x ) = Pi2 **2/ Pi = Pi1*Pi3/Pi + 5 .* Pi1 **2*Pi2 / ( 2 .* Pi **2)
= Pi1 **4/ Pi **3

j21 = Pi3 = Pi1*Pi2/Pi + Pi1 **3/(2 .* Pi **2)

return j 22 + 3 .* x*np . s q r t (1.=x**2) * j 21

def n fun (x , b , rho ) :

eta = eta fun (x , rho )

return =2*( e t a d e r f u n (x , rho )**2+ eta * e t a d e r 2 f u n (x , rho )=b**2*
j d e r f u n ( ) **2) * j 2 f u n (x , rho ) +\\

( eta**2=b**2* j f u n (x , rho ) **2) * j 2 d e r 2 f u n (x , rho )

def n f u n b f i x e d (x , rho ) :

return n fun (x , 2 . / ( 1 . + rho ) , rho )

def c h e c k u n i c i t y ( ) :

rho check = np . l i n s p a c e ( 0 . , 0 . 9 9 9 , 1 0 0 0 )
x check = np . l i n s p a c e ((2 .+ np . s q r t ( 1 0 . ) ) /6 . , 0 . 9 9 9 , 1 0 0 0 )

rho v , x v = np . meshgrid ( rho check , x check )

x = np .sum( [ n f u n b f i x e d ( x v , rho v ) <0. ] )

i f x == 0 . : return ’ There  i s  u n i c i t y ’
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else : return ’No  u n i c i t y ’

The result is that at the chosen points, the function is positive, indeed the command

c h e c k u n i c i t y ( )

returns:

’ There  i s  u n i c i t y ’
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Chapter 5

No arbitrage global
parametrization for the eSSVI
volatility surface

Abstract

This chapter describes a global and arbitrage-free parametrization of the eSSVI
implied volatility surfaces introduced by [Hendriks, Martini, J. Comput. Finance,
2019]. A calibration of such surfaces has already been proposed by the quantitative
research team at Zeliade Systems [Cohort, Corbetta, Laachir, Martini, Decis. Econ.
Finance, 2019], but the calibration algorithm is sequential in expiries (one maturity
is calibrated after the other) and lacks of a global view on the surface. The alterna-
tive calibration suggested in this chapter targets all maturities at once and always
guarantees an arbitrage-free fit of market data.

From:
A. Mingone, No arbitrage global parametrization for the eSSVI volatility surface, Quan-
titative Finance, 22(12), 2205-2217, 2022.

5.1 Structure of the chapter

This chapter focuses on the SSVI model studied in Chapter 4 and [54], enriched to a
surface as in [44]. In particular, we firstly analyze the conditions of absence of Calendar
spread and Butterfly arbitrage for the SSVI model in Section 5.2. Then, in Section 5.3,
we define the new global parametrization and prove it automatically satisfies the above
conditions. In Section 5.4 we detail a calibration algorithm and show calibration re-
sults. Numerical results are on data from the Israel index TA35 and the exchange rate
NIS/USD between the Israeli shekel and the American dollar and they are the outcome
of a collaboration between the research team at Zeliade Systems and Tel Aviv Stock
Exchange (TASE), to calibrate end-of-day implied volatility surfaces with no arbitrage.
We compare these results with calibration results output by another model (that we
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5. No arbitrage global parametrization for the eSSVI surface

dub Carr-Pelts-Tehranchi and present in Section 5.4.3). Finally, we describe a way to
interpolate and extrapolate SSVI parameters between different maturities, in Section 5.5.

5.2 No arbitrage conditions for the eSSVI model

The SSVI model introduced by Gatheral and Jacquier [36] is a model for the implied
total variance σ2imp(K,T )T where σimp(T,K) is the implied volatility for a vanilla option
with strike K and maturity T :

SSVI(K,T ) =
θ(T )

2

(
1 + ρφ(T )k +

√
(φ(T )k + ρ)2 + (1 − ρ2)

)
,

where k is the log-forward moneyness k = log K
F0(T )

and F0(T ) is the forward.

It has been extended to the eSSVI model by Hendriks and Martini [44]:

eSSVI(K,T ) =
θ(T )

2

(
1 + ρ(T )φ(T )k +

√
(φ(T )k + ρ(T ))2 + (1 − ρ(T )2)

)
.

From this formula, the option prices can be recovered with the classic Black-Scholes
formula

C(K,T ) = D0(T )(F0(T )Φ(d1) −KΦ(d2)),

d1 =
σimp(K,T )

√
T

2
− k

σimp(K,T )
√
T
,

d2 = d1 − σimp(K,T )
√
T ,

setting σimp(K,T ) =

√
eSSVI(K,T )

T , where D0(T ) is the discount factor and Φ the cumu-
lative standard normal distribution function.

Setting ψ := θφ, the eSSVI formula in terms of the parameters (θ, ρ, ψ) becomes

eSSVI(K,T ) =
1

2

(
θ(T ) + ρ(T )ψ(T )k +

√
(ψ(T )k + θ(T )ρ(T ))2 + θ(T )2(1 − ρ(T )2)

)
.

5.2.1 Calendar spread arbitrage

A Calendar spread arbitrage occurs when two Calls with different maturities T1 < T2 and
same moneyness are such that C(T1) > C(T2). In general, the absence of such arbitrage
is guaranteed by the requirement for the Call price function to be non-decreasing in
time-to-maturity for fixed moneyness.

Given two maturities with SSVI parameters (θ1, ρ1, ψ1) for the first and (θ2, ρ2, ψ2)
for the second, the no Calendar spread arbitrage conditions have been characterized by
Hendriks and Martini in Proposition 3.5 of [44]:

� necessary conditions: θ2 > θ1; ψ2 > ψ1 max
(1+ρ1
1+ρ2

, 1−ρ11−ρ2

)
≥ ψ1;
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5.2. No arbitrage conditions for the eSSVI model

� sufficient conditions: the necessary conditions above and one between condition

ψ2 ≤ ψ1

θ1
θ2 or condition

(
ρ1 − ψ2

ψ1
ρ2
)2 ≤ ( θ2θ1 − 1

)(ψ2
2θ1

ψ2
1θ2

− 1
)
.

We will consider the condition ψ2 ≤ ψ1

θ1
θ2 rather than

(
ρ1− ψ2

ψ1
ρ2
)2 ≤ ( θ2θ1 −1

)(ψ2
2θ1

ψ2
1θ2

−
1
)
, since it is more tractable and a natural candidate for a global parametrization. We

leave anyways open the possibility of studying a new parametrization using the second
condition.

5.2.2 Butterfly arbitrage

A Butterfly arbitrage arises when it is possible to build a portfolio of three Calls with
same maturity and different strikes such that

C((1 − α)K1 + αK2) > (1 − α)C(K1) + αC(K2).

Indeed, the absence of Butterfly arbitrage is guaranteed if and only if the Call price
function coming from the model is convex and bounded between the discounted Call
payoff evaluated at the forward value D0(T )(F0(T ) −K)+ and the discounted forward
D0(T )F0(T ).

In the case of Call prices obtained injecting an implied volatility in the Black-Scholes
formula, in order to avoid Butterfly arbitrage it is of course sufficient to satisfy the
requirement of convexity, see section 2.1 of [53].

Given a maturity with SSVI parameters (θ, ρ, ψ), the necessary and sufficient no
Butterfly arbitrage conditions have been described in [54] and will be explained in Sec-
tion 5.2.2. For efficiency reasons, it is also possible to consider a set of sufficient but not
necessary no-arbitrage conditions, which are easier to compute and implement and will
be presented in Section 5.2.2.

The Gatheral-Jacquier (GJ) no Butterfly arbitrage sufficient conditions

These conditions are so named since they consist of the sufficient (but not necessary) no
Butterfly arbitrage conditions by Gatheral and Jacquier [36] in Theorem 4.2, together
with the necessary (but not sufficient) asymptotic conditions related to the Roger Lee
Moment formula [48]:

� necessary conditions: ψ ≤ 4
1+|ρ| ;

� sufficient conditions: the necessary conditions above and ψ2 ≤ 4θ
1+|ρ| := fGJ(θ, |ρ|).

The Martini-Mingone (MM) no Butterfly arbitrage necessary and sufficient
conditions

The name of these conditions comes from the explicit no Butterfly arbitrage conditions
in Proposition 2.11 of Martini and Mingone [54]. In the article, the parametrization used
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5. No arbitrage global parametrization for the eSSVI surface

is the SVI one, with implied total variance

SVI(k) = a+ b(ρ(k −m) +
√

(k −m)2 + σ2).

The SVI parameters are mapped to the SSVI parameters through

a =
θ(1 − ρ2)

2
, b =

θφ

2
=
ψ

2
,

m = − ρ

φ
= −θρ

ψ
, σ =

√
1 − ρ2

φ
=
θ
√

1 − ρ2

ψ
,

and viceversa

φ =

√
1 − ρ2

σ
, θ =

2bσ√
1 − ρ2

so that ψ = 2b.
The authors show that an SSVI with b(1 + |ρ|) ≤ 2, corresponding to ψ ≤ 4

1+|ρ| , au-
tomatically satisfies the necessary Fukasawa conditions of monotonicity of the functions

k → f1,2(k) :=
k√

SSVI(k)
∓
√

SSVI(k)

2
,

see [32]. Then, the only additional required condition is

σ ≥ − bg2(l, |ρ|)
2(h2(l, |ρ|) − b2g2(l, |ρ|))

(5.1)

for every l > l2(|ρ|) = tan
(arccos(−|ρ|)

3

)−1
, where

g(l, ρ) :=
N ′(l, ρ)

4
,

h(l, ρ) := 1 −
(
l − ρ√

1 − ρ2

)N ′(l, ρ)

2N(l, ρ)
,

g2(l, ρ) := N ′′(l, ρ) − N ′(l, ρ)2

2N(l, ρ)
,

N(l, ρ) :=
√

1 − ρ2 + ρl +
√
l2 + 1,

and derivatives are taken with respect to l. The denominator in Equation (5.1) for σ
is positive thanks to the Fukasawa conditions, so that using the SSVI parameters, the
inequality becomes (θ

√
1 − ρ2g2(l, |ρ|)− g2(l, |ρ|))ψ2 ≤ 4θ

√
1 − ρ2h2(l, |ρ|), and since g2

is negative in the considered domain for l, the inequality can be written as

ψ2 ≤ 4θ
√

1 − ρ2h2(l; |ρ|)
θ
√

1 − ρ2g2(l; |ρ|) − g2(l; |ρ|)
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5.3. A global parametrization

for all l > l2(|ρ|). Eventually, the necessary and sufficient no Butterfly arbitrage condi-
tions for SSVI read

ψ ≤ 4

1 + |ρ|
,

ψ2 ≤ inf
l>l2(|ρ|)

4θ
√

1 − ρ2h2(l; |ρ|)
θ
√

1 − ρ2g2(l; |ρ|) − g2(l; |ρ|)
:= fMM (θ, |ρ|).

5.2.3 Final no Calendar spread and no Butterfly arbitrage conditions
for eSSVI

All in all, the Calendar spread and Butterfly constraints for successive SSVI slices
(θ1, ρ1, ψ1) and (θ2, ρ2, ψ2) can be summed up to:

θ2 > θ1 > 0,

ψ1 ≤ min

(
4

1 + |ρ1|
,
√
f(θ1, |ρ1|)

)
,

0 < ψ1 max

(
1 + ρ1
1 + ρ2

,
1 − ρ1
1 − ρ2

)
< ψ2 ≤ min

(
ψ1

θ1
θ2,

4

1 + |ρ2|
,
√

f(θ2, |ρ2|)
) (5.2)

where the function f can be either from the MM model (f = fMM ) or from the GJ model
(f = fGJ).

Since the MM conditions are less strict then the GJ conditions, it could seem natural
to implement the former in a calibration routine. However, in contrast with the latter
ones, they are not explicit and require to use a minimization algorithm to evaluate
fMM (θ, |ρ|), causing an increase in calibration time.

5.3 A global parametrization

5.3.1 The case with two maturities

Let us consider the model with only two SSVI slices and in particular the conditions on
the second maturity parameters. In order to achieve the condition on θ2, we could write
θ2 = θ1 + ã2 and choose ã2 > 0. The condition on ψ2 requires that ψ2 lies in an interval
]Aψ2 , Cψ2 [ where

Aψ2 := ψ1p2,

Cψ2 := min

(
ψ1

θ1
θ2, f2

)
,

p2 := max

(
1 + ρ1
1 + ρ2

,
1 − ρ1
1 − ρ2

)
,

f2 := min

(
4

1 + |ρ2|
,
√
f(θ2, |ρ2|)

)
,
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5. No arbitrage global parametrization for the eSSVI surface

so that setting ψ2 = c2(Cψ2 − Aψ2) + Aψ2 with c2 ∈]0, 1[ would guarantee the absence
of arbitrage, if indeed Cψ2 > Aψ2 . However, the requirement Cψ2 > Aψ2 is not auto-
matically guaranteed and it depends on the conditions of the first maturity parameters.
Indeed, one needs p2 <

θ2
θ1

and ψ1p2 < f2. The first requirement is easily attained setting
θ2 = p2θ1 + a2 with a2 > 0, while the second requirement is guaranteed if and only if in
the calibration of ψ1 we also impose ψ1 <

f2
p2

. More specifically, ψ1 can be calibrated as
ψ1 = c1Cψ1 where c1 ∈]0, 1[ and

Cψ1 := min

(
4

1 + |ρ1|
,
√

f(θ1, |ρ1|),
f2
p2

)
.

5.3.2 The general case

The Global eSSVI is a model which uses a new global parametrization for a set of con-
secutive SSVI slices, satisfying the above no-arbitrage conditions. Given N maturities,
the parametrization involves 3 ×N parameters as the eSSVI classical one (since it is a
more practical re-parametrization of it).

The new parameters are

ρ1, . . . , ρN , θ1, a2, . . . , aN , c1, . . . , cN ∈] − 1, 1[N×]0,∞[N×]0, 1[N (5.3)

where the ρi are the original eSSVI parameters while the ai and ci are defined as

ai = θi − θi−1pi,

ci =
ψi −Aψi

Cψi
−Aψi

,

and

pi := max

(
1 + ρi−1

1 + ρi
,

1 − ρi−1

1 − ρi

)
if i > 1,

fi := min

(
4

1 + |ρi|
,
√
f(θi, |ρi|)

)
if i ≥ 1,

Aψ1 := 0 if i = 1,

Aψi
:= ψi−1pi if i > 1,

Cψ1 := min

(
f1,

f2
p2
, . . . ,

fN∏N
j=2 pj

)
if i = 1,

Cψi
:= min

(
ψi−1

θi−1
θi, fi,

fi+1

pi+1
, . . . ,

fN∏N
j=i+1 pj

)
if i > 1.

(5.4)

The original SSVI parameters are sequentially obtained through the ordered relations

θ2 = θ1p2 + a2, . . . , θN = θN−1pN + aN ,

ψ1 = c1(Cψ1 −Aψ1) +Aψ1 , . . . , ψN = cN (CψN
−AψN

) +AψN
.

(5.5)

It can be useful to note that:
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5.3. A global parametrization

� pi ≥ 1 with pi = 1 iff ρi = ρi−1;

� 0 < fi ≤ 4.

The following result guarantees that the Global eSSVI parametrization has no arbi-
trage.

Proposition 5.1. For any integer N > 0 and any parameters

ρ1, . . . , ρN , θ1, a2, . . . , aN , c1, . . . , cN ∈] − 1, 1[N×]0,∞[N×]0, 1[N ,

the set of N SSVI slices

eSSVIi(K,Ti) =
1

2

(
θi + ρiψik +

√
(ψik + θiρi)2 + θ2i (1 − ρ2i )

)
,

with today’s forward F0(Ti) for increasing maturities Ti, log-forward moneyness k =
log K

F0(Ti)
and parameters (θi, ρi, ψi) defined through Equation (5.4) and Equation (5.5),

is free of Butterfly and Calendar spread arbitrage.

Proof. We now prove that with such parametrization the arbitrage constraints in Equa-
tion (5.2) are satisfied. Indeed,

� θ1 > 0 is chosen from the start, and θi = θi−1pi + ai > θi−1pi ≥ θi−1;

� ψ1 = c1Cψ1 > 0 and ψ1 ≤ c1f1 < f1 (by assumption on the domain of c1), which
is the no Butterfly arbitrage for the first maturity.

We need to show that if ψi = ci(Cψi
−Aψi

) +Aψi
, then

Aψi
< ψi ≤ min

(
ψi−1

θi−1
θi, fi

)
.

We have already seen that this holds true for i = 1, where it holds even that Aψ1 <
ψ1 < Cψ1 . We now show by induction that if Aψi−1

< ψi−1 < Cψi−1
then Aψi

< Cψi
.

This will ensure the no-arbitrage condition, since then, by definition, ψi = ci(Cψi
−

Aψi
) +Aψi

so that Aψi
< ψi < Cψi

and also Cψi
= min

(
ψi−1

θi−1
θi, fi,

fi+1

pi+1
, . . . , fN∏N

j=i+1 pj

)
≤

min
(ψi−1

θi−1
θi, fi

)
.

For induction, we suppose we have proven Aψi−1
< Cψi−1

. If Cψi
= ψi−1

θi−1
θi, the

requirement θi > θi−1pi implies Aψi
= ψi−1pi < Cψi

. Otherwise, the inequality holds

true iff ψi−1 <
1
pi

min
(
fi,

fi+1

pi+1
, . . . , fN∏N

j=i+1 pj

)
. By the above consequence of the induction

hypothesis,

ψi−1 < Cψi−1
= min

(
ψi−2

θi−2
θi−1, fi−1,

fi
pi
, . . . ,

fN∏N
j=i pj

)
≤ min

(
fi
pi
,
fi+1

pipi+1
, . . . ,

fN∏N
j=i pj

)
=

1

pi
min

(
fi,

fi+1

pi+1
, . . . ,

fN∏N
j=i+1 pj

)
.
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5. No arbitrage global parametrization for the eSSVI surface

This shows the induction step. Observe that the case i = N is easily proven by

observing that CψN
= min

(
ψN−1

θN−1
θN ,

4
1+|ρN | ,

√
f(θN , |ρN |)

)
.

The above proof shows that consecutive slices are free of arbitrage and the result can
be immediately extended from two consecutive slices to any pair of slices.

5.4 Calibration strategy

The Global eSSVI parametrization can be easily implemented for calibration purposes.
The calibration function can either target the market total implied variance or the market
option prices. Indeed, model prices can be easily recovered through the Black-Scholes

formula, given implied volatility

√
eSSVI(K,T )

T .

We performed tests on real market data on two different assets: the Israel index TA35
and the exchange rate NIS/USD between the Israeli shekel and the American dollar. We
describe the procedure which led to the calibration results shown in Section 5.4.3.

5.4.1 Routine

The eSSVI calibration consists of finding the parameters {ρi}Ni=1, θ1, {ai}Ni=2, {ci}Ni=1 such
that the model eSSVI prices best match the basket of available option prices. In our
experiments, parameters are chosen to minimize the possibly weighted squared difference
between market option prices C̃(K,T ) and model option prices C(K,T ):∑

K,T

(
C̃(K,T ) − C(K,T )

)2
ω(K,T ).

Weights ω can be arbitrarily chosen by the user. In particular, they can be chosen to
match the inverse of squared market Black-Scholes vegas, in order to have a calibration
in implied volatilities at the first order, instead of a calibration in prices.

Recall that the minimum search can be performed over the product of intervals
Equation (5.3), which is an appealing feature when using standard minimization routines
such as the least_squares function. In our tests, the calibration is performed using
the least_squares function in the scipy.optimize library. The maximum number of
function evaluations is set at 1000 and the argument for convergence ftol is set at its
default value 10−8.

Observe that in general, trades in the market have different timestamps, so that
available option prices are not simultaneous. Then when computing model prices starting
from eSSVI new global parameters as described in Algorithm 3, these prices are evaluated
using the forward computed at the timestamp of the corresponding market option, so
it could be possibly different for different options. This is linked to the fact that model
parameters are supposed to be constant in logforward-moneyness. In particular, given
a market option with strike K and maturity T traded (or quoted) at timestamp t, the
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5.4. Calibration strategy

corresponding model price is:

C(K,T ) = DC(T )(Ft(T )Φ(d1) −KΦ(d2)),

d1 = − k

σimp(K,T )
√
T − t

+
σimp(K,T )

√
T − t

2
,

d2 = d1 − σimp(K,T )
√
T − t,

σimp(K,T )
√
T − t =

√
θ(T ) + ρ(T )ψ(T )k +

√
(ψ(T )k + θ(T )ρ(T ))2 + θ(T )2(1 − ρ(T )2)

2
,

k = log
K

Ft(T )
,

(5.6)
where DC(T ) is the discount factor at closing time (here we suppose it does not change
a lot during the day) and Ft(T ) = FC(T ) St

SC
is the current forward.

Algorithm 3 Computation of model prices from eSSVI new global parameters

Input Parameters {ρi}Ni=1, θ1, {ai}Ni=2, {ci}Ni=1; maturities {Ti}Ni=1; set of strikes
{Ki}Ni=1.

Output Model prices {C(K,Ti)}K∈Ki,i=1 ... N .

1: With input parameters ρ1, . . . , ρN compute intermediate quantities p2, . . . , pN in
Equation (5.4);

2: With input parameters θ1, a2, . . . , aN compute from Equation (5.5) and the pi the
model parameters θ2, . . . , θN ;

3: Compute from the θi and the ρi the intermediate quantities f1, . . . , fN ;
4: Compute the intermediate quantity Cψ1 ;
5: With input parameter c1 compute the model parameter ψ1 from c1, Cψ1 and Aψ1 = 0;
6: for i = 2, . . . , N do:
7: With input parameter ci compute the intermediate quantities Aψi

, Cψi
,

8: Compute the model parameter ψi;
9: for K ∈ Ki do

10: Compute the model price C(K,Ti) from Equation (5.6).
11: end for
12: end for

5.4.2 Parameters domain and initial conditions

We set the following initial conditions:

� the a parameters are obtained guessing initial values for the θs from the ATM total
implied variances;

� initial ρs are set to the intermediate value 0;
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5. No arbitrage global parametrization for the eSSVI surface

� initial cs are set to 0.5.

The a parameters could lie in an infinite range but, for optimization reasons, it is a
good practice to bound them. After many tests on TA35 and NIS/USD data, we chose
to impose a to be smaller than 0.05. If the maximum of the initial values for the as is
larger than the fixed upper bound, we double the latter bound. The other parameters
are already bounded from the definition of the Global eSSVI model, indeed ρ ∈] − 1, 1[
and c ∈]0, 1[.

The calibration weights ω(K,T ) are taken to be constant.

5.4.3 Numerical experiments

We show here the numerical results obtained with the GJ conditions for the Global eSSVI
parametrization and compare them with the well-know rich and flexible parametric price
surface of Carr and Pelts, which we describe in the following section.

The Carr-Pelts-Tehranchi model

Carr and Pelts presented in 2015, at a conference in honour of Steven Shreve at Purdue
university (see e.g. [15]), an explicit arbitrage-free parametrization for FX option prices.
In 2019, in a deep and brilliant paper on a subtle property of the Black-Scholes formula
[66], Mike Tehranchi re-discovered independently this family of models, with the more
mathematical perspective of semi-groups acting on sets of convex functions (Calls and
Puts normalized prices). Therefore, from now on we name this model using the acronym
CPT.

Unlike eSSVI, CPT gives a direct formula for the vanilla price, not its implied volatil-
ity. The implied volatility is not a natural object in the CPT family (except of course
in the case of the Black-Scholes model itself, which indeed belongs to this family); if one
needs to get the implied volatility, it is required to resort to numerical algorithm like the
excellent rationale approach by Jaeckel.

In order to perform calibrations, we use the approach accurately described in section
3 of [5]. Denote St the current value of the underlyer (in case of dividends and rates
not null, St should be replaced by the Forward Ft) and pick up a log-concave density
f = e−h on R. Then, under the risk-neutral measure, the law of the underlyer S at fixed
maturity will be given by

S(τ) := St
f(τ + Z)

f(Z)

where Z is a random variable with law f , and τ some real positive parameter. It holds

E[(S(τ) −K)+] = St

∫
R
f(τ + z)dz −K

∫
R
f(z)dz

where R :=
{
z
∣∣f(τ+z)
f(z) ≥ K

St

}
. Observe now that z → f(τ+z)

f(z) is non-increasing, indeed

d
dz

(
log f(τ+z)

f(z)

)
= −h′(τ + z) +h′(z) where h = − log f is convex (so its second derivative
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is positive). It follows that

df (τ, k) := sup
{
z
∣∣ log

f(τ + z)

f(z)
= k

}
= sup

{
z
∣∣h(τ + z) − h(z) = −k

}
is well defined and that R = {z ≤ df (τ, k)}, where k = log

(
K
St

)
. Eventually

E[(S(τ) −K)+] = StΩ(df (τ, k) + τ) −KΩ(df (τ, k))

where Ω is the cumulative density function of f .

All the above generalizes the Black-Scholes formula, which corresponds to the par-
ticular case f(x) = 1√

2π
exp
(−x2

2

)
.

The second ingredient to CPT is based on the remarks that:

1. if τ < z, then for every K > 0, E[(S(τ) −K)+] < E[(S(z) −K)+].

2. StΩ(df (τ, k) + τ) −KΩ(df (τ, k)) = (St −K)+ iff τ = 0.

It follows that if one chooses any non-decreasing continuous function T → τ(T ) such
that τ(0) = 0, then the price surface:

(K,T ) → StΩ(df (τ(T ), k) + τ(T )) −KΩ(df (τ(T ), k))

is free of arbitrage.

In Antonov et al. specification, the function τ is a piecewise-linear function and h a
piecewise-quadratic differentiable convex function. It is calibrated using a grid of 2NCPT

node points. Then, the algorithm requires to make a choice on the number of nodes used
to calibrate the model density. There is always a trade-off between taking NCPT large,
which could allow for an increased fitting ability at the price of more instability in the
results if there are too few options in the calibration basket, and choosing a smaller
NCPT with the opposite benefits or issues. A rational start is to compare eSSVI and
CPT number of parameters; eSSVI has 3N parameters, while CPT has N + 2NCPT

parameters, so equating them gives NCPT = N . In practice, on both the TA35 market
and the NISUSD one, the choice of NCPT = 6 gives very good fit results and it is coherent
with the fact that data always consists of no more than 7 maturities.

Price and volatility plots

The calibration algorithm has as a target the market prices. First, we show the Call
and Put prices on the date 2021/10/26 for both the TA35 index (spot of 1871.67) and
the NIS/USD Forex (spot of 319.98). The calibration basket is composed of both trade
and quote prices in the last 10 minutes of trading, filtered to remove noisy data and
aggregated to a synthetic market price per option. The GJ Global eSSVI and the CPT
models are calibrated and the corresponding model prices are shown in Figures 5.1
and 5.2 with the following notation:
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5. No arbitrage global parametrization for the eSSVI surface

Figure 5.1: Comparison of calibrated Call and Put prices on TA35
with the eSSVI and the CPT models. Markers × indicate quotes,
markers · indicate trades, black markers indicate model prices out-
side the bid-ask.

� the marker × indicates a quote;

� the marker · indicates a trade;

� the vertical line indicates the bid-ask prices;

� a black marker indicates a model price outside the bid-ask.

Figures 5.1 and 5.2 can be summarized into Tables 5.1 and 5.2 comparing the percent-
age of calibrated prices falling outside the bid-ask spread and outside twice the bid-ask
spread. The number of Calls, respectively Puts, to be calibrated is 64, respectively 107,
for TA35 and 16, respectively 12, for NISUSD. Observe that, for the TA35 index, the
number of calibrated prices falling outside the bid-ask spread is primarily due to the
first slice, whose time to maturity is 2 days and whose bid-ask spreads are very small.
Indeed, among the prices outside the bid-ask spread for the eSSVI model, 81% of Calls
and 63% of Puts come from the first maturity, and among the prices outside twice the
bid-ask spread these percentages arise to 83% and 89%. We retrieve the well-known fact
that very short maturities are difficult to be calibrated with parametric models.
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Figure 5.2: Comparison of calibrated Call and Put prices on
NIS/USD with the eSSVI and the CPT models. Markers × in-
dicate quotes, markers · indicate trades, black markers indicate
model prices outside the bid-ask.

TA35 Calls Puts

eSSVI 25.00 9.38 37.38 17.76

CPT 57.81 26.56 34.58 14.02

Table 5.1: Percentage of calibrated Calls and Puts outside the bid-ask spread and outside
twice the bid-ask spread for TA35.

NIS/USD Calls Puts

eSSVI 6.25 0.00 0.00 0.00

CPT 6.25 6.25 25.00 8.33

Table 5.2: Percentage of calibrated Calls and Puts outside the bid-ask spread and outside
twice the bid-ask spread for NIS/USD.
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Figure 5.3: Comparison of calibration errors in basis points to the
Forward for OTM options, for TA35 in the eSSVI and the CPT
models.

The corresponding absolute errors in basis point to the Forward are shown in Fig-
ures 5.3 and 5.4.

For those plots, we also report the corresponding implied volatilities in Figures 5.5
and 5.6.

Calibration results are very satisfactory for the GJ Global eSSVI model since they
are comparable if not even better than the CPT model’s ones. In particular, typically
the tested markets have an average calibration error (in absolute value) of 10 basis points
to the Forward (for more liquid markets, the average calibration error can decrease to
4 basis points to the Forward). In the above tests, the eSSVI average calibration errors
are 1.92 basis points to the Forward for TA35 and 1.29 for NIS/USD, while the CPT
ones are 2.19 for TA35 and 1.86 for NIS/USD. The calibration of the shortest maturity
is typically more difficult in terms of error reduction, which explains the high number of
black dots in the Call and Put prices graphs in Figures 5.1 and 5.2, as also quantified in
Tables 5.1 and 5.2. However, the ATM prices are always well calibrated.

In general, the GJ Global eSSVI calibration is preferable to the CPT for four reasons:

� from a theoretical point of view, it is easier to understand the role of its parameters
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Figure 5.4: Comparison of calibration errors in basis points to the
Forward for OTM options, for NIS/USD in the eSSVI and the
CPT models.

133



5. No arbitrage global parametrization for the eSSVI surface

Figure 5.5: Comparison of calibrated smiles for TA35 in the eSSVI
and the CPT models.

and how to tune them in order to change the smile shape;

� it directly models a volatility surface, so that the calibrated implied smiles have
more natural and desirable shapes. Also, working with implied volatilities allows
to compare between underlyers and dates, while directly comparing prices is less
obvious;

� it is much easier and straightforward to be coded;

� calibration times are 10 times smaller than CPT calibration times.

5.4.4 No-arbitrage check

As a sanity check of the code implementation, we implemented an arbitrage identifier
routine as described in Section 3 of [17]. It is worth noticing that such routine is not
necessary since models have been shown to be arbitrage-free. However, numerical ap-
proximations could arise in computed prices, even though calibration parameters live in
the no-arbitrage domain.
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5.4. Calibration strategy

Figure 5.6: Comparison of calibrated smiles for NIS/USD in the
eSSVI and the CPT models.
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5. No arbitrage global parametrization for the eSSVI surface

We take all model prices resulting from the calibration routine and verify (with linear
constraints) whether there is any kind of arbitrage. In particular, we check the positivity
of prices and look for what Reisinger et al. [17] call Vertical Spread, Vertical Butterfly,
Calendar Spread, Calendar Vertical Spread, and Calendar Butterfly arbitrage.

We run the Reisenger algorithm on all calibration results for trading dates from
2019/01/01 to 2021/10/27 on both TA35 and NIS-USD. Arbitrage check outputs confirm
the lack of arbitrage in prices resulting from both the Global eSSVI and the CPT models.
Some little arbitrage caused by numerical approximations could arise with the former
model for values of ρ near ±1. A way to avoid this is to bound ρ in a smaller interval,
such as ] − 0.95, 0.95[. Calibration results in terms of overall calibration error do not
suffer from this choice.

5.5 Interpolation and extrapolation

This section describes how to interpolate and extrapolate eSSVI parameters on maturi-
ties which differ from the ones used in the calibration, in order to guarantee the absence
of arbitrage. These methodologies are taken from [20].

5.5.1 Interpolation

Suppose we have calibrated the model on two maturities T1 < T2 with eSSVI parameters
(θ1, ρ1, ψ1) for the first one and (θ2, ρ2, ψ2) for the second. How could we interpolate
arbitrage-free parameters for a maturity t ∈ [T1, T2]? Similarly to what is done in section
5.1.2 of [20], we define the new parameters (θt, ρt, ψt) through the scheme:

� θt = (1 − λ)θ1 + λθ2

� ψt = (1 − λ)ψ1 + λψ2

� ψtρt = (1 − λ)ψ1ρ1 + λψ2ρ2

where λ = t−T1
T2−T1 . We now show that in such way arbitrage conditions are satisfied.

We look at the Calendar Spread conditions and take T1 ≤ t < u ≤ T2 with λ = t−T1
T2−T1

and µ = u−T1
T2−T1 . First, it is immediate that θu > θt. Second, the sufficient condition

ψuθt − ψtθu ≤ 0 can be rewritten as (µ − λ)(ψ2θ1 − ψ1θ2) ≤ 0, which is verified since
the two calibrated slices are arbitrage-free. Last, the second necessary condition is
equivalent to ψu(1±ρu)−ψt(1±ρt) > 0. Substituting and simplifying as above, we find
(µ− λ)(ψ2(1 ± ρ2) − ψ1(1 ± ρ1)) > 0, which again holds true.

The Butterfly arbitrage conditions at time t are proven in [20].

5.5.2 Extrapolation

The extrapolation procedure is also taken from [20], sections 5.2 and 5.3. In the following,
for completeness we give full proofs of the consistency of this choice.
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5.5. Interpolation and extrapolation

Before the first maturity

For t smaller than the first calibrated maturity T1, we set

� θt = λθ1

� ψt = λψ1

� ρt = ρ1

where λ = t
T1
< 1.

It is easy to verify that the fact that the parameters θ and ψ are increasing while
ρ is constant, combined with the arbitrage-free calibration of these parameters on the
first maturity, guarantees the absence of arbitrage for the extrapolated triple (θt, ρt, ψt).
Indeed, the absence of arbitrage is easily checked observing that the implied volatility
on maturities t and T1 is the same for fixed k, so that total variances are increasing with
respect to maturity and cannot have Butterfly arbitrage, given that the smile on T1 is
Butterfly arbitrage-free.

To show that the implied volatilities coincide, we look at the eSSVI formula on
maturity T1

eSSVI(K,T1) =
1

2

(
θ1 + ρ1ψ1k +

√
(ψ1k + θ1ρ1)2 + θ21(1 − ρ21)

)
and on maturity t

eSSVI(K̃, t) =
1

2

(
λθ1 + ρ1λψ1k̃ +

√
(λψ1k̃ + λθ1ρ1)2 + (λθ1)2(1 − ρ21)

)
.

It is easy to see that if k = k̃, corresponding to K̃ = K F0(t)
F0(T1)

, then eSSVI(K̃, t) =

λeSSVI(K,T1) = t
T1

eSSVI(K,T1) and the conclusion immediately follows.

After the last maturity

Extrapolation on the right of the last calibrated maturity TN is performed setting

� θt = θN +
θN−θN−1

TN−TN−1
(t− TN )

� ψt = ψN

� ρt = ρN

where t > TN . The first bullet point is such that θt preserves the last slope available,
but it can be replaced with any positive angular coefficient.

Since ψ and ρ are constant, θ is increasing and the parameters satisfy no-arbitrage
conditions at maturity TN , it is straightforward to show that the extrapolated parameters
have no arbitrage.
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5. No arbitrage global parametrization for the eSSVI surface

TA35 2021/10/28 2021/11/04 2021/11/25 2021/12/30

Excluded 77.36 40.00 52.38 28.00

Not excluded 71.70 16.67 19.05 4.00

Table 5.3: Percentage of calibrated prices (Calls and Puts) outside the bid-ask spread
for TA35. Comparison between the calibration where the maturity is excluded (hence
interpolated or extrapolated) and the calibration where it is not excluded.

TA35 2021/10/28 2021/11/04 2021/11/25 2021/12/30

Excluded 1.29 2.57 4.76 10.64

Not excluded 0.93 0.92 1.33 6.70

Table 5.4: Average calibration absolute error in basis points to the Forward for OTM
options for TA35. Comparison between the calibration where the maturity is excluded
(hence interpolated or extrapolated) and the calibration where it is not excluded.

5.5.3 Numerical experiments on interpolation and extrapolation

This section aims to verify the efficiency of the interpolation and extrapolation method-
ologies. We remark that it is out of the main scope of this paper and that results can be
improved by choosing other interpolation and extrapolation routines still verifying the
no-arbitrage conditions.

For each of the 4 maturities of the TA35 index on day 2021/10/26, we calibrate
eSSVI parameters excluding such maturity and then interpolate/extrapolate them for the
considered maturity. In order to numerically appreciate the interpolation/extrapolation
capacity of the model, we use two metrics:

� the percentage of prices (both Calls and Puts) outside the bid-ask spread on the
excluded maturity (Table 5.3);

� the average calibration absolute error in basis points to the Forward for OTM
options on the excluded maturity (Table 5.4).

We compare these metrics with the corresponding metrics computed on the same
maturity but using the original calibration of Section 5.4.3, with no maturity excluded.

We can see from Tables 5.3 and 5.4 that interpolation and extrapolation method-
ologies can sometimes significantly decrease the precision of the calibration, which is
somehow expected. However, the result highly depends on data and in particular on
the number of maturities, on the number of traded options of non-excluded maturities,
on the number of traded options of the excluded maturity. Overall, the methodologies
reported in Sections 5.5.1 and 5.5.2 provide reasonable results, while being very simple.
This is confirmed by looking at interpolated/extrapolated smiles plots in Figure 5.7,
whose shapes are well-captured and still consistent with the market ones. As expected,
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5.5. Interpolation and extrapolation

Figure 5.7: Plot of the results of the interpolation/extrapolation
procedures described in Sections 5.5.1 and 5.5.2 for TA35. More
precisely, we exclude one maturity from the calibration set, cali-
brate no arbitrage eSSVI on the remaining maturities, and plot the
smile generated by the calibrated model for the excluded maturity.

the performance of the eSSVI model in the maturity that has been excluded is worse than
the calibration in Figure 5.5 but we can observe that eSSVI model manages to provide
reasonable interpolation/extrapolation procedures for smiles slices. It is likely that these
methodologies could be further improved by choosing other interpolation/extrapolation
schemes.
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Chapter 6

Smiles in delta

Abstract

Fukasawa introduced in [Fukasawa, Math Finance, 22(4):753-762, 2012] two neces-
sary conditions for no Butterfly arbitrage on a given implied volatility smile which
require that the functions d1 and d2 of the Black-Scholes formula have to be decreas-
ing. In this chapter, we characterize the set of smiles satisfying these conditions,
using the parametrization of the smile in delta. We obtain a parametrization of the
set of such smiles via one real number and three positive functions, which can be
used by practitioners to calibrate a weak arbitrage-free smile. We also show that
such smiles and their symmetric smiles can be transformed into smiles in the strike
space by a bijection. Our result motivates the study of the challenging question of
characterizing the subset of Butterfly arbitrage-free smiles using the parametrization
in delta.

From:
A. Mingone, Smiles in delta, Quantitative Finance https://doi.org/10.1080/146976

88.2023.2258932, 2023.

6.1 Structure of the chapter

In this chapter we look at the notion of absence of Butterfly arbitrage in the delta
notation. We start in Section 6.2 with a description of the delta notation and a detailed
discussion of the no Butterfly arbitrage conditions in the delta space.

In Section 6.3.1 we characterize the set of smiles in delta that can be converted to
smiles in log-forward moneyness, i.e. the set of smiles that allow to unambiguously define
a delta function k → δ(k) from the relation δ(k) = N(d1(k, σ(δ(k))). Looking at a similar
question but from the strike perspective, Section 6.3.2 achieves the characterization of
the set of smiles in delta which correspond to an existing smile in strike, i.e. smiles that
are defined from a strike function δ → k(δ) satisfying δ = N(d1(k(δ), σ̂(k(δ))). The two
sets are shown to coincide, so that a smile in delta belonging to them can be transformed
into a smile in strike and re-transformed in the original smile in delta. We synthetize in
Section 6.3.4 a practical methodology to calibrate smiles satisfying this property.
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6. Smiles in delta

Section 6.4 summarizes some properties of the smiles in delta which have a corre-
sponding smile in strike. In particular, we write in the delta notation the notions of
maximum and minimum points in the smiles, the second order approximation of the
smiles around 0 and the Lee asymptotic conditions in [48].

Section 6.5 deals with the set of smiles in delta which satisfy the weak no arbitrage
conditions of monotonicity of the functions d1 and d2. These smiles contain the subset
of the Butterfly arbitrage-free smiles and are for this reason of interest for practitioners
calibrating smiles in the delta notation. In particular, the result in Theorem 6.1 shows
that such set can be parametrized by a real number and three positive functions:

σ(δ)
√
T =


N−1(δ) +

√
N−1(δ)2 + 2

(∫ 1
2
δ λ(x) dx+

∫ δ̃
1
2
µ(x) dx

)
if δ ≤ 1

2 ,

N−1(δ) +

√
2
∫ δ̃
δ µ(x) dx if 1

2 < δ ≤ δ̃,

N−1(δ) −
√

2
∫ N−1(δ)

N−1(δ̃)
xβ(x) dx if δ > δ̃.

The functions λ, µ and β are required to satisfy some weak conditions (positiveness
and diverging integrals) that can be easily achieved. We also compare our result with
the parametrization in the strike space obtained by Lucic in Theorem 2.2 of [51]. In
Section 6.5.2 we describe a calibration routine which can be adopted by practitioners to
fit market smiles in delta with weak arbitrage-free functions.

The section ends with practical examples of smiles in the weak no arbitrage set. In
particular, both skew-shaped smiles and W-shaped smiles can be easily obtained with
appropriate choices of the functions λ, µ and β (see Section 6.5.3).

6.2 Notations and preliminaries

In Table 6.1 we summarize the notations that will be used in the chapter.

For a fixed maturity T , we denote by CBS(k, σ̂(k)) the Black-Scholes pricing formula
for a Call option with maturity T , strike F0(T )ek, forward value F0(T ), discounting
factor D0(T ), and implied volatility σ̂(k):

CBS(k, σ̂(k)) = D0(T )F0(T )
(
N(d1(k, σ̂(k)) − ekN(d2(k, σ̂(k))

)
,

d1,2(k, σ̂(k)) = − k

σ̂(k)
√
T

± σ̂(k)
√
T

2
.

For easier notation, we will sometimes denote with d1(k) and d2(k) the functions d1(k, σ̂(k))
and d2(k, σ̂(k)) respectively.

Let a number C(k) lie strictly between D0(T )(F0(T )−K)+ and D0(T )F0(T ). Then
the implied volatility σ̂(k) is well defined in ]0,∞[ by the equation CBS(k, σ̂(k)) = C(k).
In turn, this defines the quantity delta by

δ(k) := N(d1(k, σ̂(k))). (6.1)
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6.2. Notations and preliminaries

Remark 6.1. Observe that the pair (δ(k), σ̂(k)) allows to recover the log-forward mon-
eyness k, indeed

k =
(
−N−1(δ(k)) +

σ̂(k)
√
T

2

)
σ̂(k)

√
T .

6.2.1 No Butterfly arbitrage and convexity of Call prices

Under the hypothesis of a perfect market for the underlying asset and for the Call
options, a Call price function with respect to the strike is free of Butterfly arbitrage if
and only if (cf. e.g. [66]) it is

1. convex,

2. non-increasing,

3. contained in the interval [D0(T )(F0(T ) −K)+, D0(T )F0(T )].

In the case of Call prices specified with the Black-Scholes formula through an implied
volatility, the third property is automatically satisfied. Indeed, the Black-Scholes formula
is increasing with respect to the implied volatility and it tends to the two bounds when
the implied volatility goes to 0 and ∞ respectively. Given that the third property is
granted, then the first property implies the second one since an increasing and convex
function cannot be bounded.

Therefore, in our context, there is no Butterfly arbitrage if and only if Call prices
are convex.

As shown in Theorem 2.9 condition (IV3) of [62], in the case of twice differentiable
implied volatility functions, the requirement of convexity corresponds to the requirement
that the function

σ̂′′(k) + d′1(k, σ̂(k))d′2(k, σ̂(k))σ̂(k) (6.2)

Symbol Meaning

σ Smile in delta
σ̂ Smile in log-forward moneyness, here abbreviated as smile in strike
Σ Set of smiles in delta
R+ Real numbers strictly larger than 0
R+
∗ Non-negative real numbers

C(A,B) Set of continuous functions from the open interval A to the open interval B
D Subscript for sets related to the transformation of a smile in delta into a

smile in strike
K Subscript for sets and functions related to the transformation of a smile in

strike into a smile in delta
a.e. almost everywhere

Table 6.1: Symbols used in the chapter and their meaning.
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6. Smiles in delta

is non-negative. This requirement is sometimes called the Durrleman condition [28].

6.2.2 Behavior of d1 and d2 under convexity assumptions

As shown in section 2.3 of [53], the condition of vanishing Call prices for increasing
strikes is not necessary for the absence of arbitrage. Such condition is one-to-one with
the behavior of the function d1 at ∞. In particular, it holds true if and only if the
property

P1. limk→∞ d1(k, σ̂(k)) = −∞

is satisfied. This follows from the fact that the arithmetic mean exceeds the geometric
mean, so that the function d2(k, σ̂(k)) is smaller than −

√
2k and goes to −∞ at ∞. For

negative z, the Mills ratio N(z)
n(z) , where n is the Gaussian pdf, satisfies N(z)

n(z) <
1
|z| . Observe

that n(d2(k, σ̂(k)) < n(−
√

2k) = e−k
√
2π

, so that the quantity ekN(d2(k, σ̂(k)) is smaller

than the Mills ratio applied to z = d2(k, σ̂(k)) (divided by the constant
√

2π), which in
turn is smaller than (|d2(k, σ̂(k))|

√
2π)−1. Then, the value of a Call price at ∞ is

C(∞) = D0(T )F0(T )N(d1(∞)). (6.3)

From now on and only in this section, we work under the assumption that Call
prices are convex, i.e. that the function K → C(K) = CBS(k, σ̂(k))

∣∣
k=log K

F0(T )
is convex.

Under the hypothesis of convex prices and P1, for every K ≥ 0, Call prices have the
representation

C(K) =

∫
R+
∗

(x−K)+µ(dx)

where µ is a probability measure supported by R+
∗ . Then, using the identity (x−K)+ =∫∞

K 1y<x dy and Fubini’s theorem, the following formula holds:

C(K) =

∫ ∞

K
(1 − Fµ(x)) dx,

where Fµ(K) = µ([0,K]) is the CDF of the measure µ. Taking the right derivative of
the above formula, it holds C ′

+(K) = −1 +Fµ(K), so that µ({0}) = Fµ(0) = 1 +C ′
+(0).

Observe that the bounds of the Call prices function imply that its slope for K going to
0 lies between −1 and 0. Then, the limit corresponds to −1 if and only if there is no
mass of the underlying in 0. This in turn is equivalent to the fact that the left limit of
the function d2 is ∞:

P2. limk→−∞ d2(k, σ̂(k)) = ∞,

which follows from the fact that d2(−∞) = −N−1(µ({0})) as shown in proposition
2.4 of [31].
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Remark 6.2. P1 and P2 are not necessary conditions for Butterfly arbitrage-free Call
prices. P1 implies that Call prices vanish for increasing strikes. Under the assumption
of convex prices, P2 implies that Call prices have a slope of −1 for null strikes and that
there is no mass of the underlying in 0.

P1 and P2 imply some easy consequences that we state in the following proposition.
The Lee conditions can be found in [48], Lemmas 3.1 and 3.3.

Proposition 6.1. P1 holds if and only if d1(k) is surjective, and P2 holds if and only
if d2(k) is surjective. Furthermore,

� P1 implies the Lee right wing condition, i.e. σ̂(k)
√
T <

√
2k for k large enough;

� P2 implies the Lee left wing condition, i.e. σ̂(k)
√
T <

√
−2k for k small enough.

Proof. Since the arithmetic mean exceeds the geometric mean, the function k → d1(k, σ̂(k))
is greater than

√
−2k for every k ≤ 0 (see Lemma 3.5 of [32]). As a consequence,

d1(k, σ̂(k)) always goes to ∞ as k goes to −∞. Similarly with the same proof, the func-
tion d2(k, σ̂(k)) always goes to −∞ at ∞ since it is smaller than −

√
2k. Then, under

P1 and P2, the functions d1(k) and d2(k) are surjective. The if implication is trivial.
Since the function k → d1(k, σ̂(k)) goes to −∞ on the right under P1, it must be

negative for k large enough, which implies the right wing Lee condition. Similarly, since
the function k → d2(k, σ̂(k)) explodes on the left, it must be positive for k small enough
and the left wing Lee condition holds.

Observe that Lee shows that the left wing condition holds for every arbitrage-free
smile if and only if P (ST = 0) < 1

2 , and in particular that no mass in 0 implies the
left wing condition, as in the above proposition. Furthermore, the proof for the only if
implication can also be found in Lemmas 3.2 and 3.5 of [32].

We will often use necessary conditions for the absence of Butterfly arbitrage found
by Fukasawa in Theorem 2.8 of [32]. We recall them in the following generalized remark
from Lemma 3.1 of [53].

Remark 6.3 (Weak no Butterfly arbitrage conditions/Fukasawa necessary no Butterfly
arbitrage conditions). If k → C(k) is convex and k → σ̂(k) is differentiable, then

F1 k → d1(k, σ̂(k)) is strictly decreasing,

F2 k → d2(k, σ̂(k)) is strictly decreasing.

6.2.3 No Butterfly arbitrage in the delta notation

As discussed above, a difficult challenge is to parametrize the set of implied volatility
functions corresponding to functions k → C(k) with no Butterfly arbitrage. We will
denote with ΣA the set of such implied volatility functions (in the delta notation δ →
σ(δ)) satisfying also P1 and P2. In the following, we will show that these delta smiles
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6. Smiles in delta

can be transformed into strike smiles and, given the above study, they will guarantee
the monotonicity and surjectivity of functions d1(k, σ̂(k)) and d2(k, σ̂(k)). Even though
we will not reach the aim of parametrizing the set ΣA, we will be able to achieve the
parametrization of the larger set of smiles satisfying the two monotonicity conditions on
the functions d1(k, σ̂(k)) and d2(k, σ̂(k)).

The range of the functions δ and δ̄

In this section we consider properties P1 and P2 in the delta notation, since they
influence the range of the function δ(k) in Equation (6.1) and of its symmetric delta
δ̄(k) defined as

δ̄(k) := N(d1(k, ˆ̄σ(k))) (6.4)

where
ˆ̄σ(k) = σ̂(−k).

Proposition 6.2. The function δ(k) defined in Equation (6.1) has range
] C(∞)
D0(T )F0(T )

, 1
[
,

and this coincides with ]0, 1[ if and only if P1 holds.
The function δ̄(k) defined in Equation (6.4) has range

]
1+C ′(0), 1

[
, and this coincides

with ]0, 1[ if and only if P2 holds.

Proof. It is easy to see that the function δ(k) goes to 0 as k goes to ∞ if and only if P1
holds. The condition δ(−∞) = 1 corresponds to the fact that d1(k, σ̂(k)) goes to ∞ as
k decreases, but this is always true. More precisely, from Equation (6.3) it follows

C(∞) = D0(T )F0(T )δ(∞)

so that the range of δ(k) is
] C(∞)
D0(T )F0(T )

, 1
[
.

Secondly, the assumption P2 is the equivalent of the assumption P1 for the sym-
metric smile ˆ̄σ(k) = σ̂(−k). Indeed, it holds d1(k, ˆ̄σ(k)) = −d2(−k, σ̂(−k)), so that
condition P2 is equivalent to requiring that the d1 function for the symmetric smile, i.e.
d1(k, ˆ̄σ(k)), satisfies P1. It is immediate that

δ̄(∞) = 1 + C ′(0)

since d2(−∞) = −N−1(1 +C ′(0)). On the other hand, the limit of δ̄(k) for k decreasing
is still 1. Then, the range of the symmetric delta δ̄(k) is ]1 + C ′(0), 1[.

6.3 From a smile in delta to a smile in strike and vice
versa

6.3.1 From a smile in delta to a smile in strike

In the industry, it is not an unusual practice to calibrate volatility smiles in the delta
parametrization, instead of the usual strike one, especially when dealing with FX prod-
ucts. When options are quoted on a grid of maturities and deltas, such choice is natural
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and easy to be exploited. When, on the other hand, options are quoted on a grid of
maturities and strikes, the permutation between delta and strike smiles is not straight-
forward.

Indeed, it is firstly necessary to transform data in strikes into data in deltas. For a
fixed maturity, the procedure reads:

1. compute volatilities σ̂(k) for the quoted strikes F0(T )ek using the inversion of the
Black-Scholes pricing formula;

2. compute corresponding deltas δ(k) with Equation (6.1) and uniquely associate
them to the smile values;

3. interpolate pairs (δ(k), σ̂(k)) = (δ, σ(δ)) with a chosen method in order to recover
the continuous smile δ → σ(δ).

At this point, different operations can be done using the smiles in delta, such as col-
lecting historical values, stressing data, doing statistics, and so on. When it is necessary
to come back to the strike notation, for example to compute a stressed option price with
known strike, the smile in delta must have the ability to be converted into a smile in
strike.

In this section we aim to find conditions under which any positive and continuous
function δ → σ(δ) defined on ]0, 1[ allows to recover a function k → σ̂(k).

Definition 6.1. We call ΣD the set of positive and continuous delta smiles δ → σ(δ)
defined on ]0, 1[ for which there exists a surjective mapping k → δ(k) defined on R
satisfying δ(k) = N(d1(k, σ(δ(k)))).

In particular,

ΣD :=
{
δ → σ(δ) ∈ C(]0, 1[,R+)

∣∣ ∀k ∈ R ∃!δ(k) | δ(k) = N(d1(k, σ(δ(k)))),

{δ(k) | k ∈ R} =]0, 1[
}
.

For a smile in ΣD, the corresponding smile in strike is defined as σ̂(k) := σ(δ(k)).
Note that there is indeed a question, because in the above procedure it could happen
that two different pairs (δ, σ(δ)) produce the same strike, meaning that there is no way
to define the value σ̂(k). The second condition defining ΣD is added in order to avoid
degenerate cases.

Let us define the function

l(δ) :=
(
N−1(δ) − σ(δ)

√
T

2

)
σ(δ)

√
T . (6.5)

In the following Lemma, we characterize the set ΣD through the function l(δ).

Lemma 6.1. A continuous and positive delta smile δ → σ(δ) belongs to ΣD if and only
if the function δ → l(δ) is strictly increasing and surjective onto R.

In other words,

ΣD =
{
δ → σ(δ) ∈ C(]0, 1[,R+) | l strictly increasing and surjective onto R

}
.
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Proof. Reformulating the conditions of ΣD, we ask that given a continuous positive
function δ → σ(δ) defined on ]0, 1[,

� for every k ∈ R there exists a unique δ(k) such that −k = l(δ(k)),

� the mapping k → δ(k) is surjective in ]0, 1[.

This implies that the function k → l(δ(k)) must be well-defined, monotonic and surjec-
tive. For a delta smile in ΣD, the function k → δ(k) is monotonic and surjective, so
that we are requiring δ → l(δ) to be monotonic and surjective from the interval ]0, 1[ to
] −∞,+∞[. Since l(0) is negative, l must be strictly increasing.

These conditions are necessary but also sufficient. Indeed, the uniqueness of δ(k)
follows from the fact that if for a fixed k there are two different δ(k), say δ1 and δ2, then
l(δ1) ̸= l(δ2) since l is monotonic. However, l(δ(k)) = −k, so the two values of l should
be the same. The existence of δ(k) is guaranteed by the surjectivity of l.

For the second condition, firstly observe that from the relation −k = l(δ(k)), it
follows l(δ(∞)) = −∞ and since l is injective, it must hold δ(∞) = 0. Similarly we can
show δ(−∞) = 1. These observations guarantee the full range of δ(k).

6.3.2 From a smile in strike to a smile in delta

Starting from a smile in strike k → σ̂(k) and making k move in R, one obtains a
collection of pairs (δ(k), σ̂(k)). There is no guarantee that such a collection allows to
define a function δ → σ(δ). Indeed, in order to define a function in δ, for every δ ∈]0, 1[,
there must exist a unique k such that δ = N(d1(k, σ̂(k)). In such a way one can define
unambiguously a function σ by the equality σ(δ) = σ̂(k) for all ks. We define ΣK the
set of delta smiles obtained from a smile in strike when this condition holds.

Definition 6.2. We call ΣK the set of positive and continuous delta smiles δ → σ(δ)
defined on ]0, 1[ for which there exist a positive and continuous strike smile k → σ̂(k) and
a surjective mapping δ → k(δ) such that δ = N(d1(k(δ), σ̂(k(δ)))) and σ̂(k(δ)) = σ(δ).

In particular,

ΣK :=
{
δ → σ(δ) ∈ C(]0, 1[,R+)

∣∣∃k → σ̂(k) ∈ C(R,R+) s.t. ∀δ ∈]0, 1[∃!k(δ) s.t.

δ = N(d1(k(δ), σ̂(k(δ)))),

σ̂(k(δ)) = σ(δ),{
k(δ) | δ ∈]0, 1[

}
= R

}
.

This definition can be simplified thanks to the following Lemma:

Lemma 6.2. A continuous and positive delta smile δ → σ(δ) belongs to ΣK if and only if
there exists a continuous and positive strike smile k → σ̂(k) with σ̂(k) = σ(N(d1(k, σ̂(k))))
and such that the function k → d1(k, σ̂(k)) is strictly decreasing and surjective.
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In other words,

ΣK =
{
δ → σ(δ) ∈ C(]0, 1[,R+)

∣∣ ∃k → σ̂(k) ∈ C(R,R+) s.t.

k → d1(k, σ̂(k)) is strictly decreasing and surjective,

σ̂(k) = σ(N(d1(k, σ̂(k))))
}
.

Proof. The existence and uniqueness of a k(δ) in the first condition defining ΣK can
be translated in requiring that the map k → N(d1(k, σ̂(k))) is strictly monotonic. The
second condition defining ΣK requires the surjectivity of δ → k(δ). Equivalently, the
two conditions hold if and only if the map k → d1(k, σ̂(k)) is strictly monotonic and
surjective in ]−∞,∞[. The decreasing behavior is due to the formula defining the map
k → d1(k, σ̂(k)).

Remark 6.4. In Lemma 6.2 we have shown that all smiles in delta living in ΣK are
such that their smile in strike satisfies P1 and F1, i.e. d1(k, σ̂(k)) is decreasing and
surjective.

6.3.3 Reversibility of smiles in delta to smiles in strike

We now look at the relation between smiles in delta that can be transformed into smiles
in strike and smiles in strike that can be transformed in smiles in delta. It turns out
that the image of the latter set in the space of smiles in delta actually coincides with
the former set. In other words, a smile in delta obtained through a smile in strike can
be re-transformed into the original smile in strike. Also, any smile in delta that can be
transformed in a smile in strike can be recovered from its transformation into a smile in
strike.

Proposition 6.3. It holds ΣD = ΣK and δ → k(δ) is the inverse of k → δ(k).

Proof. We firstly prove ΣK ⊂ ΣD. For a function δ → σ(δ) in ΣK and a fixed k ∈ R,
there exists a unique δK(k) such that δK(k) = N(d1(k, σ̂(k)). Given the definition of
σ(δ), it holds σ̂(k) = σ(δK(k)), so that δK(k) = N(d1(k, σ(δK(k))). Suppose there is
a second δ̃ such that δ̃ = N(d1(k, σ(δ̃))). For such δ̃ there is a unique k(δ̃) such that
δ̃ = N(d1(k(δ̃), σ̂(k(δ̃)))), furthermore σ̂(k(δ̃)) = σ(δ̃). Then, N(d1(k, σ(δ̃))) = δ̃ =
N(d1(k(δ̃), σ(δ̃))), from which it immediately follows k = k(δ̃). Then for k, it both holds
δK(k) = N(d1(k, σ̂(k)) and δ̃ = N(d1(k, σ̂(k))), so that δK(k) = δ̃. The function δK(k),
in particular, corresponds to the function δ(k) defining the set ΣD.

On the other hand, we now look at the relation ΣD ⊂ ΣK . Let δ → σ(δ) in ΣD, then
we can define a function k → σ̂(k) such that σ̂(k) := σ(δ(k)), where δ(k) is the only δ
satisfying δ = N(d1(k, σ(δ)). If two values k1 and k2 have the same delta δ(k1) = δ(k2),
then they also have the same volatility since σ̂(k1) = σ(δ(k1)) = σ(δ(k2)) = σ̂(k2).
From Remark 6.1, the pair (δ(k1), σ̂(k1)) = (δ(k2), σ̂(k2)) is associated to a unique
log-forward moneyness, so that k1 = k2. Then k → δ(k) is injective. The function
d1(k) = d1(k, σ̂(k)) is surjective since for any δ ∈]0, 1[ there exists a k such that δ = δ(k)
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so that δ = N(d1(k, σ(δ)) = N(d1(k, σ̂(k)). To prove the monotonicity, firstly observe
that for any k there is a unique δ(k) such that δ(k) = N(d1(k, σ(δ(k)))), which is
equivalent to write

l(δ(k)) = −k. (6.6)

Secondly, from the definition of σ̂(k), it holds

δ(k) = N(d1(k, σ̂(k))). (6.7)

The functions l(δ), δ(k) and d1(k) are monotonic into an open interval, so they are
a.e. differentiable. Taking derivatives with respect to k (in the complementary of the
zero measure set where these derivatives are not defined) in both Equation (6.6) and
Equation (6.7), we find l′(δ(k)) dδdk (k) = −1 and dδ

dk (k) = n(d1(k))d′1(k), so in particular

d′1(k)l′(δ(k)) = − 1

n(d1(k))
.

Since δ → σ(δ) lives in ΣD, l is increasing so d1 is decreasing and σ(δ) lives also in ΣK .
The inverse of the function k → δ(k), in particular, corresponds to the function δ → k(δ)
defined in ΣK .

Remark 6.5. From now on, we will generally denote the identical sets ΣD and ΣK as
Σ.

Remark 6.6. As a side-product of the proof of Proposition 6.3, the functions k → δ(k)
and δ → k(δ) are both a.e. differentiable. Furthermore, in the proof we have shown that
a smile in strike transformed into a smile in delta, can be re-transformed into a smile in
strike and such smile necessarily coincides with the initial one.

6.3.4 Calibration of a delta smile in Σ

Suppose we want to calibrate a smile in delta to market quotes given in either the strike
or the delta variable, in such a way that the calibrated smile can be converted to a smile
in strike and vice versa, i.e. that the smile lives in Σ. We could go through the following
steps:

1. a. consider the market discrete pillars in delta notation {(δi, σi)}i;

b. if the market discrete pillars are in strike notation {(ki, σi)}i, convert them
to the pillars in delta notation {(δi, σi)}i by defining δi = N(d1(ki, σi));

2. compute the pillars {(δi, li)}i with li =
(
N−1(δi) − σi

√
T

2

)
σi
√
T ;

3. interpolate/extrapolate an increasing and surjective function δ → l(δ), given pillars
in point 2.

150



6.3. From a smile in delta to a smile in strike and vice versa

The last natural point would be to recover a function δ → σ(δ) by the calibrated
function l(δ). However, this reduces to solve the equation

σ2T

2
−N−1(δ)

√
Tσ + l(δ) = 0,

which could have none, one or two solutions. In the following section we study the
problem of existence and uniqueness of the solution σ.

Conditions on l for the existence of σ

Proposition 6.4. Let l :]0, 1[→ R an increasing and surjective function. The equation

σ2T

2
−N−1(δ)

√
Tσ + l(δ) = 0 (6.8)

has at least one solution σ for every δ ∈]0, 1[ if and only if l
(
1
2

)
< 0 and l(δ) ≤ N−1(δ)2

2
for all δ > 1

2 . The continuous solution δ → σ(δ) is(
N−1(δ) +

√
N−1(δ)2 − 2l(δ)

)
/
√
T (6.9)

for δ ≤ 1
2 and it could switch between Equation (6.9) and(

N−1(δ) −
√
N−1(δ)2 − 2l(δ)

)
/
√
T (6.10)

at any δ̃ > 1
2 such that l(δ̃) = N−1(δ̃)2

2 .

Proof. For a fixed δ ∈]0, 1[, the two admissible solutions to Equation (6.8) are

σ±(δ) =
N−1(δ)√

T
±
√
N−1(δ)2 − 2l(δ)√

T
.

For the existence, the delta of the equation must be non-negative and at least one of the
two solutions must be positive, so

N−1(δ)2 − 2l(δ) ≥ 0,

N−1(δ) ±
√
N−1(δ)2 − 2l(δ) > 0,

where the sign depends on the chosen solution.

Firstly, when δ ≤ 1
2 , the quantity N−1(δ) is non-positive and the σ− solution is

negative, so it can be discarded. Instead, the σ+ solution is well-defined and positive if
and only if l(δ) < 0. Since l is increasing, the latter condition is equivalent to l

(
1
2

)
< 0.

When δ > 1
2 , then N−1(δ) is positive and both the solutions could be valid. Under

the requirement l(δ) ≤ N−1(δ)2

2 , the σ+ solution is always positive while the σ− solution
becomes positive when l becomes positive, and it will stay positive since l is increasing.
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6. Smiles in delta

The possibility to pass from the σ+ to the σ− solution at a point δ̃ must be guaranteed
by continuity of the volatility on δ̃. Then, it should hold σ+(δ̃) = σ−(δ̃), or 2l(δ̃) =
N−1(δ̃)2 and σ(δ̃)

√
T = N−1(δ̃). Rewriting equation Equation (6.8) as

l(δ) =
(
N−1(δ) − σ(δ)

√
T

2

)
σ(δ)

√
T

and evaluating in δ̃, one finds l(δ̃) = σ(δ̃)2T
2 . If there exists such a point δ̃, then either

the solution keeps being σ+ after δ̃, or it switches to σ−. If there is no such point δ̃, the
solution remains σ+.

As an immediate consequence of Proposition 6.4, under the requirements l
(
1
2

)
< 0

and l(δ) ≤ N−1(δ)2

2 , if there are no δ̃ such that l(δ̃) = N−1(δ̃)2

2 , the σ solution is unique

and it coincides with Equation (6.9). If there are one or more points δ̃, the unique-
ness is not guaranteed since the σ solution could either switch between Equation (6.9)
and Equation (6.10) or not do the switch. For the uniqueness of the solution, more
requirements on the solution itself are needed.

In the following lemma we show that smiles in delta living in Σ actually satisfy the

requirements l
(
1
2

)
< 0 and l(δ) ≤ N−1(δ)2

2 , so that calibrating a function l(δ) which
satisfies such conditions and is increasing and surjective guarantees the existence of at
least one solution to Equation (6.8), and this solution lives in Σ. We will show in
Lemma 6.4 that if we require the solution σ to satisfy P1, P2, F1 and F2, then the
uniqueness is satisfied.

Lemma 6.3. For every δ → σ(δ) ∈ Σ, the function l satisfies l
(
1
2

)
< 0 and l(δ) ≤

N−1(δ)2

2 for all δ > 1
2 .

Proof. From the definition of ΣK , it follows that its smiles are such that for any δ ∈]0, 1[
there is a unique k(δ) satisfying δ = N(d1(k(δ), σ̂(k(δ)))). In particular, by the definition

of the smile δ → σ(δ), it holds δ = N(d1(k(δ), σ(δ))), or σ(δ)2T
2 −N−1(δ)

√
Tσ(δ)−k(δ) =

0. Then, σ = σ(δ) is a solution of Equation (6.8) and the conclusion follows from
Proposition 6.4.

The statement can also be proven by hand. Indeed, l
(
1
2

)
is equal to −σ( 1

2
)2T

2 , which
is always negative, and the second condition reads

(
N−1(δ) − 1

2
σ(δ)

√
T
)
σ(δ)

√
T ≤ N−1(δ)2

2
,

which simplifying becomes (N−1(δ) − σ(δ)
√
T )2 ≥ 0, which is always verified.
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Application: calibration of delta smiles in Σ

We now reconsider the calibration of a smile in delta started in the introduction to this
section. The aim here is to calibrate a delta smile which can be transformed into a
smile in strike and vice versa, and in particular the smile in strike satisfies F1 and P1
(i.e. the function d1(k) is decreasing and surjective). We have seen that belonging to Σ
guarantees the existence of a solution σ(δ) to Equation (6.8) but not its uniqueness. In
the following calibration procedure, we target one of the possible solutions. The reason
behind the choice of this particular solution is that it approaches the weak arbitrage-free
solution as we will see in Lemma 6.4.

The calibration methodology follows the steps:

1. a. consider the market discrete pillars in delta notation {(δi, σi)}i;
b. if the market discrete pillars are in strike notation {(ki, σi)}i, convert them

to the pillars in delta notation {(δi, σi)}i by defining δi = N(d1(ki, σi));

2. compute the pillars {(δi, li)}i with li =
(
N−1(δi) − σi

√
T

2

)
σi
√
T ;

3. given the pillars in point 2., interpolate/extrapolate a function δ → l(δ) such that

a. l(0) = −∞, l(1) = +∞,

b. l strictly increasing,

c. l
(
1
2

)
< 0,

d. l(δ) ≤ N−1(δ)2

2 ∀δ > 1
2 ,

e. ∃!δ̃| l(δ̃) = N−1(δ̃)2

2 .

This would guarantee that the smile δ → σ(δ) defined as

σ(δ)
√
T =

{
N−1(δ) +

√
N−1(δ)2 − 2l(δ) if δ ≤ δ̃,

N−1(δ) −
√
N−1(δ)2 − 2l(δ) if δ > δ̃.

lives in Σ, i.e. that the smile in delta can be transformed into a smile in strike and
reverted to the original smile in delta.

Remark 6.7. The calibration here described requires the knowledge of market points
{(δi, σi)}i (or equivalently {(ki, σi)}i). However, in the FX market smiles are quoted in
terms of ATM volatility, risk reversals and strangles associated to a specific delta.

The market point (δATM, σATM) is easily retrieved by δATM = N
(
σATM

√
T

2

)
. Under

the approximation that the δ risk reversal volatility is the difference between the volatility
at δ and the volatility at 1 − δ, while the strangle volatility is the average between these
two volatilities, the market points (δ, σ(δ)) and (1 − δ, σ(1 − δ)) are easily calculated.

If the approximation is not used, there is ambiguity in the definition of market points
associated to δ and 1 − δ. Indeed, it is known (cf. e.g. [16]) that there are 4 different
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6. Smiles in delta

strikes associated to risk reversals and strangles (and so 4 different deltas), so that the
situation is much more intricate.

To our knowledge, market providers such as Bloomeberg make available {(δi, σi)}i
market quotes (which the provider deducts under its internal models from standard FX
quotes), so that no ambiguity arises.

Application: inversion of delta smiles in Σ into strike smiles

We have seen in Proposition 6.3 that smiles in delta living in Σ can be converted into
smiles in strike satisfying P1 and F1, using the relation σ̂(k) = σ(δ(k)). The function
δ(k) is the inverse of k(δ) = −l(δ). Then, if we are able to calibrate the inverse of −l(δ)
for a given smile σ in delta living in Σ, we can directly calibrate a smile σ̂ in strike
satisfying P1 and F1. To do so, we can use a monotonic preserving interpolation and a
well-chosen fine enough grid for the δi points.

The inversion of the smile σ in delta living in Σ can then be performed following the
steps:

1. consider the fine enough discrete pillars in delta notation {(δi, σi)}i;

2. compute the pillars {(−li, δi)}i with li =
(
N−1(δi) − σi

√
T

2

)
σi
√
T ;

3. given the pillars in point 2., interpolate/extrapolate a function −l → δ(−l) such
that

a. δ(−∞) = 1, δ(∞) = 0,

b. δ strictly decreasing.

If the delta grid is fine enough and in particular it includes the points
(
−l
(
1
2

)
, 12
)

and
(
−N−1(δ̃)2

2 , δ̃
)
, the interpolated function δ(−l) is the inverse of l(δ). Then, the smile

defined as

σ̂(k) = σ(δ(k))

is the corresponding smile in strike of the original smile in delta.

Following the steps above we can transform any smile in delta living in Σ into its smile
in strike satisfying P1 and F1 in an efficient way and without involving any optimization
routine.

6.4 Qualitative properties of the smile: from k to δ

In this section we look at the qualitative properties of the smile in delta resulting from
the transformation of a smile in strike with decreasing k → d1(k, σ̂(k)) function.

We start with an easy consequence to Proposition 6.3.

Proposition 6.5. For every smile σ(δ) ∈ Σ it holds

154



6.4. Qualitative properties of the smile: from k to δ

� σ′(δ) ≥ 0 if and only if σ̂′(k(δ)) ≤ 0 and points of minimum (respectively maxi-
mum) δ̄ for σ(δ) are points of minimum (resp.maximum) k(δ̄) for σ̂(k);

� σ̂′(k) ≥ 0 if and only if σ′(δ(k)) ≤ 0 and points of minimum (respectively maxi-
mum) k̄ for σ̂(k) are points of minimum (resp.maximum) δ(k̄) for σ(δ).

Proof. Firstly observe that σ̂(k) = σ(δ(k)) is differentiable being composition of differ-
entiable functions.

Since σ̂(k(δ)) = σ(δ), taking derivatives with respect to δ implies

σ′(δ) = σ̂′(k(δ))k′(δ)

= −σ̂′(k(δ))l′(δ)

where we have used l(δ) = −k(δ) as in Equation (6.6). Smiles in Σ have increasing l(δ),
so the sign of σ′(δ) is opposite to the sign of σ̂′(k(δ)). Furthermore, if δ̄ is a point of
minimum for σ(δ), then for every δ in a neighborhood of δ̄, it holds σ(δ̄) < σ(δ). Using
the relation σ̂(k(δ)) = σ(δ), it follows σ̂(k(δ̄)) < σ̂(k(δ)). Since the function d1(k, σ̂(k))
is monotonic and surjective, it is continuous, so also k(δ) = d−1

1 (N−1(δ)) is continuous.
Then for every k in a neighborhood of k(δ̄) it holds σ̂(k(δ̄)) < σ̂(k), so k(δ̄) is a point of
minimum for σ̂(k). Similarly for points of maximum.

The proof is similar for the second point, using the relation σ̂(k) = σ(δ(k)) and the
fact that δ′(k) = 1

k′(δ(k)) = − 1
l′(δ(k)) .

We have already seen in Proposition 6.1 that under P1 and P2, the left and right

wing Lee conditions hold, i.e. that the limits of σ̂(k)2T
k at ±∞ are bounded by 2. We

now look at what these limits correspond to in the δ notation.

Proposition 6.6 (Lee moment formula in delta). Let σ(δ) ∈ Σ and σ̂(k) the corre-

sponding smile in strike. The left wing Lee condition σ̂(k)2T
k > −2 for sufficiently large

−k holds if and only if σ(δ)
√
T

N−1(δ)
< 1 for δ near 1. The right wing Lee condition σ̂(k)2T

k < 2

for sufficiently large k holds.

Furthermore,

lim sup
k→−∞

σ̂(k)2T

k
= a ⇐⇒ lim inf

δ→1

σ(δ)
√
T

N−1(δ)
= − 2a

2 − a
,

and

lim sup
k→∞

σ̂(k)2T

k
= b ⇐⇒ lim inf

δ→0

σ(δ)
√
T

N−1(δ)
= − 2b

2 − b
.

Proof. Since σ(δ) ∈ Σ, there exists a smile in strike σ̂(k) with strictly decreasing sur-
jective function k → d1(k, σ̂(k)). Thanks to the surjectivity of d1, the right wing Lee
condition is satisfied as shown in Proposition 6.1.
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For every k it holds σ̂(k)2T
k = σ(δ(k))2T

k(δ(k)) , where δ(k) = N(d1(k, σ̂(k)) and k(δ) is its

inverse. Since δ(k) is surjective decreasing, it goes to 1 when k goes to −∞ and to 0
when k goes to ∞. Also, since it is monotonic continuous, the left wing Lee condition

holds if and only if σ(δ)2T
k(δ) > −2 for every δ near 1, and it holds

lim sup
k→−∞

σ̂(k)2T

k
= lim sup

δ→1

σ(δ)2T

k(δ)

and similarly for k → ∞. From Equation (6.6), we can substitute k(δ) with −l(δ), which

is defined in Equation (6.5), so that we are now studying the quantity − σ(δ)
√
T

N−1(δ)−σ(δ)
√
T

2

.

Since l(δ) is increasing surjective, the denominator is negative for small δ and positive
for large δ. Then, it is easy to see that the left wing Lee condition holds if and only if
σ(δ)

√
T

N−1(δ)
< 1.

The argument of the limit becomes
(
1
2 − N−1(δ)

σ(δ)
√
T

)−1
, so that the two limits superior

are equal to (1

2
− lim sup

δ

N−1(δ)

σ(δ)
√
T

)−1
.

This quantity is equal to c (either a for δ → 1 or b for δ → 0) if and only if lim supδ
N−1(δ)

σ(δ)
√
T

=
c−2
2c and the conclusion follows. The reasoning still holds for c = 0.

From the above proposition it follows that Lee conditions applied to the total variance
limits (i.e. a ∈ [−2, 0] and b ∈ [0, 2]), translate in the delta notation into the requirement

that the limit at 0 of σ(δ)
√
T

N−1(δ)
is negative while the limit at 1 is positive and smaller than

1. The first condition, i.e. the right wing Lee condition, is automatically granted by the
sign of the function N−1(δ). This is what we expected using Proposition 6.1 since a
smile in delta which can be transformed in a smile in strike has surjective function k →
d1(k, σ̂(k)). The second condition, i.e. the left wing Lee condition, is not automatically
granted.

Remark 6.8. In section 4.1 of [64], it is shown that the high Gaussian quantile can
be asymptotically written as N−1(δ) =

√
−2 log(1 − δ) + o(N−1(δ)). With a simi-

lar reasoning, it is easy to prove that for low Gaussian quantiles it holds N−1(δ) =
−
√
−2 log(δ) +o(N−1(δ)). Then, the limit inferior in Proposition 6.6 can be substituted

with

lim inf
δ→1

σ(δ)
√
T√

−2 log(1 − δ)
and lim inf

δ→0

σ(δ)
√
T

−
√
−2 log(δ)

.

We now look at the expansion of a smile in delta around the ATM point for a given
expansion of the corresponding smile in strike.
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Proposition 6.7. Let σ(δ) ∈ Σ and σ̂(k) the corresponding smile in strike, and suppose
σ̂(k) is twice differentiable in a neighborhood of k = 0. If

σ̂(k)
√
T = a0 + a1k + a2k

2 + o(k2)

then

σ(δ)
√
T = a0 −

2a0a1

n
(
a0
2

)
(2 − a0a1)

(δ − δATM) +

+
a0(−a30a31 + 4a20a

2
1 − 4a0a1 + 16a0a2 + 16a21)

2n
(
a0
2

)2
(2 − a0a1)3

(δ − δATM)2 +

+ o((δ − δATM)2)

where δATM = N
(
a0
2

)
is the delta ATM point.

Proof. The delta ATM point is δATM = δ(0) = N(d1(0, σ̂(0)) = N
(
a0
2

)
. Observe that

from Equation (6.6), it holds l(δ) = −k(δ). We will use the following relations:

σ(δ) = σ̂(k(δ)) (6.11)

σ′(δ) = −σ̂′(k(δ))l′(δ) (6.12)

σ′′(δ) = σ̂′′(k(δ))l′(δ)2 − σ̂′(k(δ))l′′(δ). (6.13)

The first and second derivatives of l(δ) can be computed from the definition in Equa-
tion (6.5) as

l′(δ) =

(
1

n(N−1(δ))
− σ′(δ)

√
T

2

)
σ(δ)

√
T + l(δ)

σ′(δ)

σ(δ)

l′′(δ) =

(
N−1(δ)

n(N−1(δ))2
− σ′′(δ)

√
T

2

)
σ(δ)

√
T +

(
2l′(δ) − l(δ)

σ′(δ)

σ(δ)

)
σ′(δ)

σ(δ)
+ l(δ)

d

dδ

σ′(δ)

σ(δ)
.

From Equation (6.11), it follows that the constant coefficient of the expansion of
σ(δ)

√
T is a0.

Observe that l(δ(0)) = −k(δ(0)) = 0, so that l′(δ(0)) has only one term. For the first
order coefficient, from Equation (6.12) we obtain σ′(δ(0))

√
T = −a1l′(δ(0)). Substituting

in the expression for the derivative of l(δ) and solving for l′(δ(0)), it follows

l′(δ(0)) =
2a0

n
(
a0
2

)
(2 − a0a1)

,

so that we find the first order coefficient of the expansion of σ(δ)
√
T .

Finally, the second order coefficient can be found from the expression for the second
derivative of l(δ) evaluated in δ(0). As in the previous steps, substituting σ′′(δ(0))

√
T

with 2a2l
′(δ(0))2 − a1l

′′(δ(0)) from Equation (6.13) and solving for l′′(δ(0)), we find

l′′(δ(0)) =
a0
(
a0(2 − a0a1)

2 − 8(a20a2 + 2a1)
)

n
(
a0
2

)2
(2 − a0a1)3

and from this the expression for the second order coefficient of the expansion of σ(δ)
√
T .
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6.5 Weak Arbitrage-free smiles in delta

The parametrization of the set ΣA of Butterfly arbitrage-free smiles is hard. Indeed,
twice differentiable functions σ(δ) belong to ΣA if and only if they satisfy the delta
version of the requirement of positivity of Equation (6.2). Observe that such condition
can be written only for the subset of ΣA of twice differentiable functions since it involves
second derivatives of the smile.

Consider the smile inversion k → σ̂(−k) =: ˆ̄σ(k). Arbitrage-free smiles are such that
their inverse smile is still arbitrage-free. Even though we do not parametrize the set ΣA,
we show that the subset of Σ which is closed under symmetry can be parametrized, and
this could make a step forward to the search of arbitrage-free smiles in delta. We define
such set ΣWA since it is the set of smiles satisfying the Weak Arbitrage-free conditions
F1 and F2 (plus the surjectivity of such functions, i.e. properties P1 and P2). As we
showed before, the requirement defining Σ is that there exists a smile k → σ̂(k) such
that the function d1(k) = d1(k, σ̂(k)) is decreasing and surjective. For the inverse smile,
we are asking that the function d̄1(k) = d1(k, ˆ̄σ(k)) is decreasing and surjective. It is
easy to see that d̄1(k) = −d2(−k).

Taking the function σ(δ) = σ̂(k(δ)) where k(δ) = d−1
1 (N−1(δ)), the requirement that

d2(k) is decreasing and surjective corresponds to the requirement that δ → d2(k(δ)) is
increasing and surjective. It holds d2(k) = d1(k)− σ̂(k)

√
T , so in the delta notation the

requirement is that the function

m(δ) := N−1(δ) − σ(δ)
√
T

is increasing and surjective.
We can then define the subset of Σ closed for smile inversion as in the following:

Definition 6.3. We call ΣWA the set of Weak Arbitrage-free delta smiles, i.e. the set
of continuous and positive delta smiles δ → σ(δ) for which there exist a continuous and
positive strike smile k → σ̂(k) with σ̂(k(δ)) = σ(δ) where k(δ) = d−1

1 (N−1(δ)), which
satisfies P1, P2, F1, F2, i.e. the functions k → d1,2(k, σ̂(k)) are strictly decreasing
surjective.

In particular,

ΣWA :=
{
δ → σ(δ) ∈ C(]0, 1[,R+)

∣∣ ∃k → σ̂(k) ∈ C(R,R+) s.t.

k → d1(k, σ̂(k)) is strictly decreasing surjective,

k → d2(k, σ̂(k)) is strictly decreasing surjective,

σ̂(k(δ)) = σ(δ), k(δ) = d−1
1 (N−1(δ))

}
.

It is easy to see that if σ(δ) belongs to ΣWA, then it is possible to define the
smile σ̄(δ) := ˆ̄σ(k̄(δ)) where k̄(δ) = d̄−1

1 (N−1(δ)) = −d−1
2 (−N−1(δ)), so that σ̄(δ) =

σ̂(d−1
2 (−N−1(δ))) and σ̄(δ) belongs to ΣWA.

Remark 6.9. For smiles living in ΣWA, the functions d1(k, σ̂(k)) and d2(k, σ̂(k)) are
strictly decreasing and surjective, so they are a.e. differentiable. As a consequence,
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6.5. Weak Arbitrage-free smiles in delta

the smile σ̂(k) = d1(k, σ̂(k)) − d2(k, σ̂(k)) is a.e. differentiable and so is σ(δ) =
σ̂(d−1

1 (N−1(δ))).

6.5.1 Parametrization of ΣWA

We showed in Lemma 6.3 that the properties P1 and F1 for a smile guarantee the
existence of a σ solution to Equation (6.8). We now see that smiles satisfying also P2
and F2, i.e. living in ΣWA, guarantee the existence and uniqueness of a σ solution.

Lemma 6.4. For every δ → σ(δ) ∈ ΣWA, the function l satisfies l
(
1
2

)
< 0, l(δ) ≤ N−1(δ)2

2

for all δ > 1
2 and there exists a unique δ̃ such that l(δ̃) = N−1(δ̃)2

2 . Furthermore

σ(δ)
√
T =

{
N−1(δ) +

√
N−1(δ)2 − 2l(δ) if δ ≤ δ̃,

N−1(δ) −
√
N−1(δ)2 − 2l(δ) if δ > δ̃.

(6.14)

Proof. Since ΣWA is a subset of Σ, the conditions l
(
1
2

)
< 0 and l(δ) ≤ N−1(δ)2

2 for all
δ > 1

2 are satisfied by Lemma 6.3.

Since d2(k) is a decreasing and surjective function, the left wing Lee condition
σ̂(k)

√
T <

√
−2k for sufficiently large −k holds. Since l(δ(k)) = −k, the condition

becomes σ(δ(k))
√
T <

√
2l(δ(k)) for k negative enough. Given the monotonicity of the

function δ(k), this is equivalent to requiring σ(δ)
√
T <

√
2l(δ) for sufficiently large δ,

in particular δ > 1
2 . The σ solution of Equation (6.8) can be either of the form σ+

Equation (6.9) or σ− Equation (6.10). Computing the square of σ±, the Lee condition
is

N−1(δ)
(
N−1(δ) ±

√
N−1(δ)2 − 2l(δ)

)
< 2l(δ).

Since δ > 1
2 , the quantity N−1(δ) is positive and dividing we get

±
√
N−1(δ)2 − 2l(δ) <

2l(δ)

N−1(δ)
−N−1(δ).

The right hand side is positive if and only if 2l(δ) > N−1(δ)2, which cannot hold. Then
the σ+ solution does not satisfy the left wing Lee condition for small k. On the other
hand, the σ− solution always satisfies it since the above inequality holds true if and only
if 2l(δ) < N−1(δ)2.

Then, the σ solution is equal to σ+ for δ smaller than a certain δ̃ such that l(δ̃) =
N−1(δ̃)2

2 and then it switches to σ−. The uniqueness of such point δ̃ follows from the

monotonicity of d2(k). Indeed, if two points δ̃ and δ̂ satisfy l(δ) = N−1(δ)2

2 , then they also

satisfy σ(δ)
√
T = N−1(δ). In the log-forward moneyness notation, there exist k̃ = k(δ̃)

and k̂ = k(δ̂) which satisfy σ̂(k)
√
T = d1(k), or d2(k) = 0. Since d2 is one-to-one, k̃ = k̂

and δ̃ = δ̂.
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6. Smiles in delta

Thanks to the above result, it is possible to parametrize the smile σ living in ΣWA

using a parametrization of the function l, which has to be increasing and surjective and
has to satisfy the conditions of existence and uniqueness of Lemma 6.4.

We finally state how to parametrize the set ΣWA, which is our main result.

Theorem 6.1 (Parametrization of weak arbitrage-free smiles). A smile σ(δ) belongs to
ΣWA if and only if it can be parametrized as

σ(δ)
√
T =


N−1(δ) +

√
N−1(δ)2 + 2

(∫ 1
2
δ λ(x) dx+

∫ δ̃
1
2
µ(x) dx

)
if δ ≤ 1

2 ,

N−1(δ) +

√
2
∫ δ̃
δ µ(x) dx if 1

2 < δ ≤ δ̃,

N−1(δ) −
√

2
∫ N−1(δ)

N−1(δ̃)
xβ(x) dx if δ > δ̃,

(6.15)

where

� δ̃ ∈
]
1
2 , 1
[
;

� λ is an a.e. continuous positive function defined on
]
0, 12
]
such that

∫ 1
2
0 λ(x) dx =

∞;

� µ is an a.e. continuous positive function defined on
[
1
2 , δ̃
[
;

� β is an a.e. continuous function defined on ]N−1(δ̃),∞[ such that β(x) ∈]0, 1[ a.e.
and

∫∞
N−1(δ̃) xβ(x) dx =

∫∞
N−1(δ̃) x(1 − β(x)) dx = ∞.

Proof. Let σ(δ) ∈ ΣWA, then σ(δ) is a.e. differentiable for Remark 6.9, and has the
form in Equation (6.14) for Lemma 6.4. The function l(δ) is increasing and surjective

and it satisfies l
(
1
2

)
< 0, l(δ) ≤ N−1(δ)2

2 for all δ > 1
2 , and there exists a unique δ̃

such that l(δ̃) = N−1(δ̃)2

2 . Since d2(k) is decreasing and surjective, the function m(δ) =

N−1(δ)−σ(δ)
√
T is increasing and surjective. Substituting with the expression for σ(δ),

m(δ) can be re-written as ∓
√
N−1(δ)2 − 2l(δ), where the sign is negative for δ ≤ δ̃

and positive otherwise. Its derivative, when it is defined, is ∓
N−1(δ)

n(N−1(δ))
−l′(δ)

√
N−1(δ)2−2l(δ)

, and it is

positive. Equivalently, the derivative of l satisfies

l′(δ) >
N−1(δ)

n(N−1(δ))
a.e. if δ < δ̃,

l′(δ) <
N−1(δ)

n(N−1(δ))
a.e. if δ > δ̃

(6.16)

The first inequality is weaker than l′(δ) > 0 a.e. if δ < 1
2 . Consider then δ ∈

[
1
2 , δ̃
[
.

The first inequality implies that there is a positive and a.e. continuous function µ(δ)

on
[
1
2 , δ̃
[
, such that l′(δ) = N−1(δ)

n(N−1(δ))
+ µ(δ). Taking the integral from δ to δ̃ results
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into l(δ) = N−1(δ)2

2 −
∫ δ̃
δ µ(x) dx. If δ ≤ 1

2 , the fact that l′(δ) is positive can be written
as l′(δ) = λ(δ) where λ(δ) is an a.e. continuous positive function defined on

]
0, 12
]
.

Taking the integral between δ and 1
2 implies l(δ) = l

(
1
2

)
−
∫ 1

2
δ λ(x) dx. Substituting with

the value of l
(
1
2

)
in the expression with µ, it holds l(δ) = −

∫ 1
2
δ λ(x) dx −

∫ δ̃
1
2
µ(x) dx.

Since l(δ) is surjective and l
(
1
2

)
is finite, then

∫ 1
2
0 λ(x) dx = ∞. Similarly, for δ > δ̃,

the property of the derivative of l(δ) implies l(δ) = N−1(δ)2

2 −
∫ δ
δ̃ η(x) dx for an a.e.

continuous positive function η(δ) defined on ]δ̃, 1[. Also, since l′(δ) > 0, η(δ) is smaller

than N−1(δ)
n(N−1(δ))

, so η(δ) = α(δ) N−1(δ)
n(N−1(δ))

where α(δ) is a function strictly bounded between

0 and 1 and a.e. continuous on ]δ̃, 1[. Since
∫ δ
δ̃ α(x) N−1(x)

n(N−1(x))
dx =

∫ N−1(δ)

N−1(δ̃)
xα(N(x)) dx

and N−1(δ)2

2 =
∫ N−1(δ)

N−1(δ̃)
x dx+ N−1(δ̃)2

2 , it holds l(δ) = N−1(δ̃)2

2 +
∫ N−1(δ)

N−1(δ̃)
x(1−α(N(x)) dx

for δ > δ̃. The function β(x) = α(N(x)) is strictly bounded between 0 and 1 and a.e.
continuous on ]N−1(δ̃),∞[. Furthermore, l(1) = ∞, then

∫∞
N−1(δ̃) x(1 − β(x)) dx = ∞.

In order to have m(1) = ∞, it must hold
∫∞
N−1(δ̃) xβ(x) dx = ∞.

On the other hand, if a function σ(δ) has the form in Equation (6.15), the function
l(δ) is

l(δ) =


−
∫ 1

2
δ λ(x) dx−

∫ δ̃
1
2
µ(x) dx if δ ≤ 1

2 ,

N−1(δ)2

2 −
∫ δ̃
δ µ(x) dx if 1

2 < δ ≤ δ̃,
N−1(δ̃)2

2 +
∫ N−1(δ)

N−1(δ̃)
x(1 − β(x)) dx if δ > δ̃.

Given the hypothesis on the parameters, it is easy to show that l(δ) is a.e. differentiable

and l′(δ) > 0 for every δ where the derivative is defined. Also, l(0) = −
∫ 1

2
0 λ(x) dx = −∞

and l(1) = ∞. So far, we have proven σ(δ) ∈ Σ. The only requirement left is m(δ) in-
creasing and surjective. The monotonicity holds since inequalities in Equation (6.16) are

verified. For the surjectivity, m(0) = −
√
N−1(0)2 + 2

(∫ 1
2
0 λ(x) dx+

∫ δ̃
1
2
µ(x) dx

)
which

is −∞, while m(1) is equal to
√

2
∫∞
N−1(δ̃) xβ(x) dx which diverges.

A first consequence of Theorem 6.1 is that the given reparametrization of the smiles
in delta guarantees a simpler calibration than the one in Section 6.3.4 as we will see in
Section 6.5.2. Indeed, conditions on λ, µ and β are more easily verified in practice.

Interestingly, in the attempt of characterizing the Fukasawa conditions F1 and F2
considering the parametrization in log-forward moneyness, Lucic has found similar re-
sults in Theorem 2.2 of [51]. In particular, Lucic’s theorem states that an a.e. differen-
tiable smile σ̂(k) has both d1(k, σ̂(k)) and d2(k, σ̂(k)) strictly decreasing if and only if it
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can be parametrized as

σ̂(k)
√
T =


−
√

2k − ϕ(k) +
√

−ϕ(k) if k ≤ k∗,√
2k − ϕ(k) +

√
−ϕ(k) if k∗ < k ≤ k∗,√

2k + ϕ(k) −
√
ϕ(k) if k > k∗

(6.17)

where k∗ < 0 < k∗ and ϕ(k) is a continuous increasing function such that ϕ(k∗) = 2k∗,
ϕ(k∗) = 0, and ϕ′(k) > 2 for k < k∗, ϕ

′(k) < 2 for k∗ < k ≤ k∗.
Note that results in Theorem 6.1 have been achieved independently and looking solely

at the delta parametrization. It can be shown that Theorem 6.1 and Lucic’s theorem
are equivalent when some requirements on the limits at infinity of the functions ϕ and
2k − ϕ(k) are added. Indeed, the additional conditions are needed under P1 and P2
and guarantee the surjectivity of functions d1(k, σ̂(k)) and d2(k, σ̂(k)). In the following
proposition we explain how to pass from the parametrization in Theorem 6.1 to Lucic’s
parametrization as in Equation (6.17). The proof can be found in Section 6.A.

Proposition 6.8. A smile σ(δ) ∈ ΣWA with parametrization as in Theorem 6.1 has
corresponding smile in strike σ̂(k) with parametrization as in Equation (6.17) where
ϕ(k) := −N−1(l−1(−k))|N−1(l−1(−k))| and

l(δ) :=


−
∫ 1

2
δ λ(x) dx−

∫ δ̃
1
2
µ(x) dx if δ ≤ 1

2 ,

N−1(δ)2

2 −
∫ δ̃
δ µ(x) dx if 1

2 < δ ≤ δ̃,
N−1(δ̃)2

2 +
∫ N−1(δ)

N−1(δ̃)
x(1 − β(x)) dx if δ > δ̃.

(6.18)

Vice versa, consider a smile σ̂(k) with parametrization as in Equation (6.17) and sur-
jective function ϕ(k) such that 2k − ϕ(k) goes to ∞ for k going to −∞. Then, it has
corresponding smile in delta σ(δ) with parametrization as in Theorem 6.1 where

λ(δ) := − 2χ(δ)

ϕ′
(
ϕ−1(χ(δ)2)

)
n(χ(δ))

µ(δ) :=
χ(δ)

n(χ(δ))

(
2

ϕ′
(
ϕ−1(−χ(δ)2)

) − 1

)
β(x) := 1 − 2

ϕ′
(
ϕ−1(−x2)

)
(6.19)

and χ(δ) = N−1(δ).

Requirements on the parameters

The relation of the functions λ, µ and β with l and m is detailed in Section 6.B.
In Theorem 6.1, the positivity of parameter λ and the requirement β < 1 are directly

linked to the fact that the function l(δ) must be increasing. The positivity of µ and β is
instead connected with the monotonicity of the function m(δ).
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The requirement
∫ 1

2
0 λ(x) dx = ∞ comes from the fact that l(0) = −∞ and it also

implies m(0) = −∞.
The requirement

∫∞
N−1(δ̃) x(1 − β(x)) dx arises to satisfy l(1) = ∞. Observe that if

limx→∞ β(x) < 1, the requirement is automatically satisfied, but this is a sufficient and
not necessary property of β. Indeed, the choice of β(x) = 1 − c

x for a positive constant

c ≤ N−1(δ̃) still satisfies conditions of Theorem 6.1 even though β has right limit equal
to 1.

The last requirement
∫∞
N−1(δ̃) xβ(x) dx = ∞ originates from m(1) = ∞. Similarly as

before, taking limx→∞ β(x) > 0 automatically satisfies this requirement, even though it
is not a necessary condition on β. As a counterexample, we could indeed take β(x) = c

x

with c positive and smaller than N−1(δ̃).

Remark 6.10. If we are requiring the delta smile to not have discontinuity points, we
should add additional conditions on parameters. In particular, the function l(δ) should
be differentiable also in 1

2 and δ̃. Which means that it should hold λ
(
1
2

)
= µ

(
1
2

)
and

µ(δ̃) = − N−1(δ̃)

n(N−1(δ̃))
β(N−1(δ̃)) = 0 since all the functions are positive.

6.5.2 Application: calibration of weak arbitrage-free smiles in delta

In this section we develop a similar calibration procedure as the one in Section 6.3.4 but
for weak arbitrage-free smiles, i.e. smiles living in ΣWA.

There are two methodologies that can be designed. The first one is tricky to be
implemented. Indeed, it reconsiders the calibration in Section 6.3.4 and, in order to
have that the smile in delta lives in ΣWA, it requires to add in step 3. the conditions:

f. l′(δ) > N−1(δ)
n(N−1(δ))

a.e. for δ ∈
]
1
2 , δ̃
[
,

g. l′(δ) < N−1(δ)
n(N−1(δ))

a.e. for δ > δ̃,

so that the function m(δ) is increasing and surjective.
Interpolating a function l which satisfies these requirements is not immediate. For

this reason, a second more cunning calibration methodology can be implemented, using
Theorem 6.1. The target of such calibration routine are the functions λ, µ and β.
These functions must satisfy the requirements in Theorem 6.1 in order to guarantee that
the smile in Equation (6.15) can be transformed into a smile in strike satisfying the
conditions of bijectivity of the functions d1(k, σ̂(k)) and d2(k, σ̂(k)).

The steps to be performed become:

1. a. consider the market discrete pillars in delta notation {(δi, σi)}i;
b. if the market discrete pillars are in strike notation {(ki, σi)}i, convert them

to the pillars in delta notation {(δi, σi)}i by defining δi = N(d1(ki, σi));

2. given the pillars in point 1., interpolate/extrapolate a function δ → σ(δ) defined
as in Theorem 6.1 such that
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a. δ̃ ∈
]
1
2 , 1
[
;

b. λ is a positive function defined on
]
0, 12
]

such that
∫ 1

2
0 λ(x) dx = ∞;

c. µ is a positive function defined on
[
1
2 , δ̃
[
;

d. β is a function defined on ]N−1(δ̃),∞[ such that β(x) ∈]0, 1[, and∫∞
N−1(δ̃) xβ(x) dx =

∫∞
N−1(δ̃) x(1 − β(x)) dx = ∞.

The requirements on the functions λ, µ and β can be easily achieved parametrizing
these functions. As an example, for chosen positive degrees nλ, mλ > 1, nµ, mµ and nβ,
we could define

λ(δ) = anλ
δnλ + · · · + a1x+ a0 +

a−1

δ
+ · · · +

a−mλ

δmλ

µ(δ) = cnµδ
nµ + · · · + c1δ + c0 +

c−1

δ
+ · · · +

c−mµ

δmµ

β(x) =
bnβ

N(x)nβ + · · · + b1N(x)

bnβ
+ · · · + b1 + b0

and require the coefficients ai, ci and bi to be non-negative, b0 to be non zero, and at
least one of the ai for i < −1 and one of the bi with i > 0 to be non zero. In alternative,
all parameters can be required to be positive.

These definitions satisfy the requirements on the functions λ, µ and β because they

are positive, continuous, β(x) < 1, and
∫ 1

2
0 λ(x) dx diverges because of the terms a−i

δi

for i > 1. The divergence of the integrals
∫∞
N−1(δ̃) xβ(x) dx and

∫∞
N−1(δ̃) x(1 − β(x)) dx is

guaranteed by the fact that limx→∞ β(x) ∈]0, 1[.

In this way, the calibration algorithm in point 2. can be implemented as a least
squares, i.e. a minimization algorithm on the target function defined as the sum of
squared differences between market and model delta volatilities evaluated at market delta
points {(δi, σi)}i. In particular, the minimization depends on the positive parameters
ai, ci and bi. The scipy library of Python can easily perform this kind of calibrations
via the function optimize.least_squares.

6.5.3 Examples of smiles in ΣWA

Bounded smiles

Let us look at the requirement on β detailed in Section 6.5.1. It has been shown that
β(x) = 1 − cβ

x with cβ ≤ N−1(δ̃) satisfies conditions of Theorem 6.1. An interesting
consequence of this example is that the limit of σ(δ) in 1 is finite in this case. Indeed,
for δ > δ̃, it holds

σ(δ)
√
T = N−1(δ) −

√
N−1(δ)

(
N−1(δ) − 2cβ

)
+ d
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Figure 6.1: Skew shaped smile with bounded left wing in delta (left) and bounded right
wing in log-forward moneyness (center) obtained with parameters as in Equation (6.20).
On the right, the corresponding function l(δ) = −k(δ) for δ < 0.8.

where d = N−1(δ̃)2(2cβ − 1) is a constant term. In turn, the latter expression coincides
with

2cβN
−1(δ) − d

N−1(δ) +
√
N−1(δ)

(
N−1(δ) − 2cβ

)
+ d

which converges to cβ as δ goes to 1. This means that it is possible to obtain bounded
smiles on the right appropriately choosing the function β(x) in the parametrization of
Theorem 6.1.

Similarly, it is possible to have bounded wings on the left choosing a suitable λ(δ)
function. For example, we can define λ(δ) = cλ

n(N−1(δ))
to have the convergence of the

smile to cλ on the left.

Figure 6.1 shows a skew-shaped smile, which notably has a bounded left wing of the
smile in delta. The function λ is defined as above with cλ = 0.1. In order to guarantee
continuity of the derivative and a nice shape of the smile, the other parameters have
been chosen as

µ(δ) =
cλ
n(0)

δ̃ − δ

δ̃ − 1
2

β(x) =


n(x)
x µ(2δ̃ −N(x)) if x < N−1(δ̂)

n(N−1(δ̂))

N−1(δ̂)
µ
(
1
2

)
if x ≥ N−1(δ̂)

(6.20)

where δ̂ = 2δ̃ − 1
2 and δ̃ = 0.7. As a consequence, k̃ = k(δ̃) ≈ −0.137 and k

(
1
2

)
≈ 0.025.

This example can be further pushed to obtain a flat smile. Indeed, if we want a flat
total implied volatility σ(δ)

√
T at a level c, we can define

λ(δ) =
c

n(N−1(δ))
µ(δ) =

c−N−1(δ)

n(N−1(δ))
β(x) = 1 − c

x

and δ̃ = N(c).

Remark 6.11. Smiles of the form in Theorem 6.1 allow for bounded wings and for flat
shapes.
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6. Smiles in delta

Figure 6.2: W-shaped smile in delta (left) and in log-forward moneyness (center) obtained
with parameters as in Equation (6.21). On the right, the corresponding function l(δ) =
−k(δ).

W-shaped smile

The parametrization in Theorem 6.1 can be used to model very different kind of smiles,
and also unusual ones. For example, we can model ‘sad smiles’ setting δ̃ = 0.7 and

λ(δ) =

{
δ21c
δ2

if δ < δ1

c if δ ≥ δ1
µ(δ) = c− N−1(δ)

n(N−1(δ))

β(x) =

{
1 − cn(x)x if x < N−1(δ2)

1 − cn(N
−1(δ2))

N−1(δ2)
if x ≥ N−1(δ2)

(6.21)

where c = N−1(δ̃)

n(N−1(δ̃))
, δ1 = 0.02 and δ2 = 0.9.

With these parameters, all conditions of Theorem 6.1 are satisfied and the resulting
smile in delta σ(δ) has a W-shape as in Figure 6.2.

It is easy to show that the left and right limits of the smile (both in delta and in
strike) are infinite. Choosing different values for δ1 and δ2 allows to move the location
of the two minima and the maxima of the smile. In this way, it is possible to obtain
smiles with W-shapes that have been described in the log-normal mixture framework by
Glasserman and Pirjol [37] and have been seen, for example, for the Amazon stock on
the 26 of April 2018 for options with expiry 27 April 2018, before to the first quarter
earnings announcement.

SVI

The SVI model has been introduced by Gatheral at the Global Derivatives conference
in Madrid in 2004 [33]. It is a model for the implied total variance ω̂(k) = σ̂(k)2T as a
function of the log-forward moneyness k and it is defined as

ω̂(k) = a+ b
(
ρ(k −m) +

√
(k −m)2 + σ̄2

)
.

We suppose that the SVI parameters under study satisfy P1, P2, F1 and F2. These
conditions have been explicited in [53]. In such way, the corresponding smile in delta
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6.5. Weak Arbitrage-free smiles in delta

obtained through the definition σ(δ) = σ̂(k(δ)) where k(δ) = N−1(d−1
1 (δ)), belongs to

ΣWA. In the following, we do not compute explicitly the whole delta parametrization of
SVI smiles and we just compute the quantity δ̃.

By Lemma 6.4, there exists a unique δ̃ such that l(δ̃) = N−1(δ̃)2

2 . In the strike

notation, this is equivalent to say that there exists a unique k̃ such that −k̃ = d1(k̃)2

2 , or

simplifying σ(k̃)2T = −2k̃. We now calculate such k̃.
We need to look at the solutions of

a+ b(ρ(k −m) +
√

(k −m)2 + σ̄2) = −2k,

or equivalently
−(2 + bρ)k + bρm− a = b

√
(k −m)2 + σ̄2.

Under the Lee moment formula for sufficiently large δ (larger than 1
2), or sufficiently

large −k, it holds b(1 − ρ) < 2, so 2 + bρ > 2 + bρ− b > 0. Then, the above condition is
never satisfied if k ≥ bρm−a

2+bρ := E. Otherwise, we can take the square and simplifying,

one recovers a second-degree equation of the form Ak2 +Bk + C = 0 where

A := (2 + bρ− b)(2 + bρ+ b)

B := 2
(
a(2 + bρ) −m

(
b2(1 − ρ2) − 2bρ

))
C := (bρm− a)2 − b2(m2 + σ̄2) = 0.

The leading coefficient A is positive, and the Delta of such equation is ∆ = 4b2((a+
2m)2 + σ̄2(2 + bρ− b)(2 + bρ+ b)), which is also positive since both terms are positive.
Let us call k+ and k− the two possible solutions, with k− < k+. They are acceptable if
and only if they are smaller than E, or if and only if ±

√
∆ < 2AE+B respectively. The

RHS is 2b2(a+2m)
2+bρ , which is positive if and only if a > −2m. In such case, the + solution

is acceptable if and only if

0 < (2AE +B)2 − ∆ = 2A(2AE2 − EB + 2C)

= − 4b2A

(2 + bρ)2
(
(a+ 2m)2 + σ̄2(2 + bρ)2

)
which is not possible. On the other hand, the − solution is acceptable if and only if
a > −2m or ∆ − (2AE +B)2 > 0, which is always verified as proved above.

In particular,

k̃ =
bm(2ρ− b(1 − ρ2)) − a(2 + bρ) − b

√
(a+ 2m)2 + σ̄2(2 + b(1 + ρ))(2 − b(1 − ρ))

(2 + b(1 + ρ))(2 − b(1 − ρ))
.

The SVI model has given birth to other sub-models, obtained reducing the original
5 parameters model to a model with fewer parameters. Among them, the SSVI model
by Gatheral and Jacquier [36] has been largely used in industry. It has the form

ω̂(k) =
θ

2

(
1 + ρφk +

√
(φk + ρ)2 + (1 − ρ2)

)
.
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6. Smiles in delta

where the parameters are defined from the SVI ones as φ =

√
1−ρ2
σ and θ = 2bσ√

1−ρ2
.

In the case of SSVI, the expression for k̃ is easier. Indeed

k̃ = −2θ

R

where

R =
(

2 +
θφ

2
(1 + ρ)

)(
2 − θφ

2
(1 − ρ)

)
is positive because of the Lee bounds, which require θφ

2 (1 + |ρ|) < 2. The corresponding

delta is δ̃ = N
(

4
√

θ
R

)
.

6.6 Conclusion

The possibility to pass from a smile in delta to a smile in strike and vice versa has
been characterized requiring that the d1 function of the Black-Scholes formula has to be
decreasing and surjective. This condition is one of the two necessary requirements for
the absence of Butterfly arbitrage obtained by Fukasawa. The requirement that the d2
function is decreasing too ensures that also the symmetric smile can be transformed into
the delta space.

The requirements that the d1 and d2 functions have to be decreasing can be translated
into the delta space with specific conditions. These conditions identify a characterization
of the set of smiles in delta satisfying the weak no Butterfly arbitrage requirements and
allow to parametrize such set. As a consequence, we have obtained a parametrization
depending on one real number and three positive functions which guarantees that the
resulting smiles in delta satisfy the weak no arbitrage conditions identified by Fukasawa.

Practitioners who use smiles in delta could use those parametrizations to ensure at
least weak no Butterfly arbitrage. An open challenging task is to characterize the sub-
family of no Butterfly arbitrage smiles in delta. We recall that the task of characterizing
the set of Butterfly arbitrage-free smiles is open in both delta and strike spaces. The
results in the present chapter give hope of achieving the characterization of such set
using the delta parametrization.
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6.A. Proof of Proposition 6.8

6.A Proof of Proposition 6.8

Let σ(δ) be a smile in ΣWA, then it is a.s. differentiable. Then, for Theorem 6.1 it has
a parametrization as in Equation (6.15), and for Theorem 2.2 of [51] the corresponding
smile σ̂(k) has the parametrization of Equation (6.17) since it has decreasing functions
d1(k, σ̂(k)) and d2(k, σ̂(k)). From the proof of Theorem 6.1, the function l(δ) defined
as in Equation (6.18) is strictly increasing and surjective, so that it has an inverse.

Given the parametrization of σ(δ), it holds l(δ) =
(
N−1(δ) − σ(δ)

√
T

2

)
σ(δ)

√
T . Since

N−1(δ(k)) = d1(k, σ̂(k)) and σ(δ(k)) = σ̂(k), it follows l(δ(k)) = −k, or δ(k) = l−1(−k).
In particular, N−1(l−1(−k)) = d1(k, σ̂(k)) and ϕ(k) = −d1(k, σ̂(k))|d1(k, σ̂(k))|. This
function coincides with the one given in proof of Theorem 2.2 of [51], so that the def-
inition of ϕ(k) is correct. In particular, δ(k∗) coincides with N(d1(k

∗, σ̂(k∗))) = N(0),

i.e. δ(k∗) = 1
2 , and l(δ(k∗)) = −k∗ which is equivalent to −ϕ(k∗)

2 and, from the definition

of ϕ(k), to N−1(δ(k∗))2

2 , i.e. δ(k∗) = δ̃. The bounds on the slope of ϕ′(k) coincide with
the requirement that the function m(δ) is increasing. Indeed, ϕ(k) = −N−1(l−1(−k))2

for k ≤ k∗ so its derivative is

ϕ′(k) = 2
N−1(l−1(−k))

n(N−1(l−1(−k)))

1

l′(l−1(−k))

or equivalently, substituting k with k(δ) for δ ≥ 1
2 ,

ϕ′(k(δ)) = 2
N−1(δ)

n(N−1(δ))

1

l′(δ)
.

This quantity is larger than 2 for k < k∗ and smaller than 2 for k∗ < k ≤ k∗ iff the

quantity l′(δ) is smaller than N−1(δ)
n(N−1(δ))

for δ > δ̃ and larger than N−1(δ)
n(N−1(δ))

for 1
2 ≤ δ < δ̃.

This corresponds to Equation (6.16), i.e. to the fact that m(δ) is increasing.

Vice versa, let σ̂(k) be a smile with parametrization Equation (6.17). Since ϕ(k) is
surjective and increasing, it is a.s. differentiable, and so is σ̂(k). For Theorem 2.2 of [51],
σ̂(k) has strictly decreasing functions d1(k, σ̂(k)) and d2(k, σ̂(k)). Furthermore, in the
proof of Theorem 2.2, Lucic shows that d1(k, σ̂(k)) = ±

√
∓ϕ(k) for k ⋚ k∗ respectively,

and

d2(k, σ̂(k)) =


√

2k − ϕ(k) if k ≤ k∗

−
√

2k − ϕ(k) if k∗ < k ≤ k∗

−
√

2k + ϕ(k) if k > k∗.

As a consequence, since ϕ(k) is required to be surjective, d1(k, σ̂(k)) is also surjective and
d2(k, σ̂(k)) has infinite right limit. Furthermore, since for hypothesis 2k−ϕ(k) explodes
at −∞, also d2(k, σ̂(k)) does. Then, the smile σ̂(k) admits a delta smile σ(δ) which
lives in ΣWA and it has a parametrization as in Equation (6.15) for Theorem 6.1. It
holds d1(k(δ), σ(δ)) = N−1(δ), so that N−1(δ) = ∓

√
±ϕ(k(δ)) for δ ⋚ 1

2 or equivalently

k(δ) = ϕ−1(±N−1(δ)2) for δ ⋚ 1
2 . Then k

(
1
2

)
= ϕ−1(0) = k∗ and ϕ(k(δ̃)) = −N−1(δ̃)2
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6. Smiles in delta

which coincides with −2l(δ̃) and in turn with 2k(δ̃), so k(δ̃) = k∗. From the definition
of µ(δ) in Equation (6.19) and from the fact that

N−1(δ̃)2

2
+ ϕ−1(−N−1(δ̃)2) = −ϕ(k(δ̃))

2
+ k(δ̃) = 0,

it is easy to see that ∫ δ̃

δ
µ(x) dx =

N−1(δ)2

2
+ ϕ−1(−N−1(δ)2).

It holds σ(δ)
√
T = σ̂(k(δ))

√
T , which has the form

√
2k(δ) − ϕ(k(δ)) +

√
−ϕ(k(δ)) for

1
2 < δ ≤ δ̃. Substituting with the expression of k(δ), it follows σ(δ)

√
T = N−1(δ) +√

2ϕ−1(−N−1(δ)2) +N−1(δ)2, or σ(δ)
√
T = N−1(δ) +

√
2
∫ δ̃
δ µ(x) dx. This is what we

looked for, so the definition of µ(δ) is correct. The proof is similar for λ(δ) and β(x).
The conditions on parameters λ(δ), µ(δ) and β(x) in Theorem 6.1 hold true because
σ(δ) lives in ΣWA.

6.B Relations of the parameters with l and m

In this appendix we study the relation between the parameters δ̃, λ, µ and β and the
two functions l(δ) and m(δ).

Given a function δ → σ(δ) in ΣWA, the point δ̃ is the only solution (which will be

automatically greater than 1
2) to l(δ) = N−1(δ)2

2 . Equivalently, the point δ̃ is the only
solution to m(δ) = 0.

The function µ can be recovered from

σ(δ)
√
T = N−1(δ) +

√
2

∫ δ̃

δ
µ(x) dx

for δ ∈
[
1
2 , δ̃
[
. In particular,

∫ δ̃
δ µ(x) dx = (σ(δ)

√
T−N−1(δ))2

2 = m(δ)2

2 , and deriving one
finds

µ(δ) = −m(δ)m′(δ).

In the proof of Theorem 6.1, we showed λ(δ) = l′(δ) for δ ≤ 1
2 .

Finally, consider δ > δ̃. Then

σ(δ)
√
T = N−1(δ) −

√
2

∫ N−1(δ)

N−1(δ̃)
xβ(x) dx

and similarly as before

β(x) =
n(x)

x
m(N(x))m′(N(x)).
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Chapter 7

Options are also options on
options: how to smile with
Black-Scholes

Abstract

We observe that a European Call option with strike L > K can be seen as a Call
option with strike L−K on a Call option with strike K. Under no arbitrage assump-
tions, this yields immediately that the prices of the two contracts are the same, in
full generality. We study in detail the relative pricing function which gives the price
of the Call on Call option as a function of its underlying Call option, and provide
quasi-closed formula for those new pricing functions in the Carr-Pelts-Tehranchi fam-
ily [Carr and Pelts, Duality, Deltas, and Derivatives Pricing, 2015] and [Tehranchi,
A Black-Scholes inequality: applications and generalisations, Finance Stoch, 2020]
that includes the Black-Scholes model as a particular case. We also study the prop-
erties of the function that maps the price normalized by the underlier, viewed as
a function of the moneyness, to the normalized relative price, which allows us to
produce several new closed formulas. In connection to the symmetry transformation
of a smile, we build a lift of the relative pricing function in the case of an underlier
that does not vanish. We finally provide some properties of the implied volatility
smiles of Calls on Calls and lifted Calls on Calls in the Black-Scholes model.

From:
C. Martini and A. Mingone, Options are also options on options: how to smile with
Black-Scholes, arXiv preprint https://arxiv.org/abs/2308.04130, 2023.

7.1 Structure of the chapter

In this chapter we look at the relation for which a Call option with strike L > K can
be seen as a Call option with strike L − K on a Call option with strike K and same
maturity T .
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7. Options are also options on options: how to smile with Black-Scholes

In Section 7.2, we foster this option on option point of view and obtain, in full
generality, relationships between the price of options on options and the initial Call or
Put prices at other strikes: Calls are Calls on Calls, and Puts are Calls on Puts.

In Section 7.2.2 we define rigorously the relative Call on Call pricing function ĈK
and obtain useful properties in Section 7.2.3 in the case of homogeneous pricing func-
tion where the option price normalized by the underlier value does depend only of the
moneyness.

In Section 7.2.4 we provide interesting properties of the transformation

Tkc(x) :=
c
(
k + c(k)x

)
c(k)

defined on the space of normalized (by the value of the underlier) Call prices c as func-
tions of the moneyness k = K

S , that we call the Tehranchi space. We then extend the
transformations Tk, in some sense, to 2-parameter transformations.

Section 7.3 is devoted to the computation of new closed formulas either for pricing
functions or for normalized ones. We provide a quasi-closed formula when the initial
pricing function belongs to the Carr-Pelts-Tehranchi family, which generalizes the Black-
Scholes formula, obtaining along the way an expression for the underlier value viewed
as a function of the option price for this family.

In relation to the inversion of the volatility smile in the moneyness space, there is a
generic pricing function transformation which consists in working in the numeraire of the
underlier. We investigate in detail in Section 7.4 this transformation in the case where
the underlier may vanish at maturity, and show that iterating it twice provides a pricing
function on an underlier which does not vanish at maturity. We provide a quasi-closed
formula for the so lifted pricing function in the case of the Black-Scholes model.

Eventually we provide basic properties of the volatility smiles associated to the Black-
Scholes relative function and to the lifted relative one in Section 7.5.

7.2 Pricing functions

We consider general pricing functions which give the price C(S,K) of a Call option as
a function of the underlier price S and of its strike K. Of course, the option price may
depend on other variables as well (like the instantaneous variance in stochastic volatility
models as the Heston model), but we will be only interested in this partial dependency
in this case.

The partial function K → C(S,K) gives the Call prices when the strike varies for the
current value of the underlier S, and typically will aim at calibrating the market quotes,
whereas the function S → C(S,K) is more interesting in a risk and/or sensitivity context,
e.g. to get an insight of the order of magnitude of the tail risk of an option portfolio at
horizon one day for margining purposes.

172



7.2. Pricing functions

7.2.1 Options are options on options

In this section we use the notation X(T ) for the value of the contract X at time T . We
will drop this notation in the following sections where T will not play any role.

Calls are Calls on Calls

Consider 0 < K < L and a European Call on Call contract, with strike L −K, which
delivers at maturity T a Call contract with strike K. The payoff at T of this contract
will be (C(S,K)(T ) − (L−K))+.

Observe now that C(S,K)(T ) = (S(T ) −K)+ so that the payoff of the contract is
equal to ((S(T ) − K)+ − (L − K))+. Now this latter quantity is 0 if S(T ) ≤ L and
S(T ) − L otherwise, so it is equal to (S(T ) − L)+ = C(S,L)(T ), i.e.

∀0 < K < L, C(S,L)(T ) =
(
C(S,K)(T ) − (L−K)

)
+
.

So in full generality under perfect market assumptions for the underlier and the
options C(S,K) and C(S,L), the price of a Call option with strike L − K on a Call
option with strike K is the price of a Call option with strike L.

What happens if L is smaller than K? There is no hope to get any relation in this
case, since the option price C(S,K)(T ) will vanish in the range [L,K] where the Call
C(S,L)(T ) will not. So, in terms of smiles, for a fixed value of K, only the part of the
smile on the right of K will give rise to a new smile.

What happens for Put prices?

Put-Call-Parity and the Put price

Let us denote ĈK(X,M) and P̂K(X,M) the Call and Put pricing functions for Calls and
Puts with a strike M on a Call option X = C(S,K) with strike K. The Put-Call-Parity
reads

ĈK(X,L−K) − P̂K(X,L−K) = C(S,K) − (L−K).

Now ĈK(X,L−K) = C(S,L) and using the classic Put-Call-Parity at strikes K and L
yields, taking the difference: C(S,L) − C(S,K) = P (S,L) − P (S,K) − (L −K). This
implies that

P̂K(X,L−K) = P (S,L) − P (S,K).

This relation clarifies what the price of the Put is in the new world where the underlier
is the option with strike K, but also provides insights on the properties of the difference
P (S,L) − P (S,K). Can we prove it directly? Yes, indeed if we look at the difference
(L − S(T ))+ − (K − S(T ))+, it is constantly equal to L −K below K, and then goes
to 0 linearly at point L, where it remains. This can be viewed also as a function of
(S(T ) −K)+, which is exactly a Put payoff with strike L−K. In other words, it holds
that

(L− S(T ))+ − (K − S(T ))+ =
(
(L−K) − (S(T ) −K)+

)
+
,

which gives another proof of the relation P̂K(X,L−K) = P (S,L) − P (S,K).
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Eventually, summarizing the Call an Put computations we have the property that

ĈK(X,L−K) = C(S,L)

P̂K(X,L−K) = P (S,L) − P (S,K)

or yet for any M ≥ 0

ĈK(X,M) = C(S,K +M)

P̂K(X,M) = P (S,K +M) − P (S,K).

Calls on Calls: further iterations Considering now a Call option with strike N
written on a Call ĈK(X,M), from the above equation this is equivalent to a Call of
the form ĈK+M (X,N). The latter quantity again is equivalent to C(S,K + M + N).
Similarly, a Put option with strike N written on a Call ĈK(X,M) is a Put option written
on C(S,K +M), so it equals P̂K+M (X,N), or P (S,K +M +N) − P (S,K +M).

We have therefore a semigroup property, and iterating further does not yield new
pricing functions.

Puts are Calls on Puts

Consider now Y = P (S,K) as an underlier. Can we mimic the above approach using
Puts as underliers? Observe first that Put prices are bounded by the strike, so that we
have an underlier with values in [0,K].

Take now any strike 0 ≤ L < K. Then(
(K − S(T ))+ − L

)
+

=
(
(K − L) − S(T )

)
+

which gives that a Call on P (S,K) with strike L is a Put on S with strike K − L.

This entails, if we denote by C̃K(Y,L) the price of this Call, that C̃K(Y,L) =
P (S,K−L). To get the price P̃K(Y,L) of the corresponding Put, let us use the Put-Call-
Parity as above: C̃K(Y, L)− P̃K(Y,L) = P (S,K)−L. Using the classic Put-Call-Parity
at the strikes K − L and K, we find

P̃K(Y,L) = P (S,K − L) − P (S,K) + L = C(S,K − L) − C(S,K).

We get eventually another pair transform: for all 0 ≤ L < K,

C̃K(Y,L) = P (S,K − L)

P̃K(Y,L) = C(S,K − L) − C(S,K).

Puts on Puts: further iterations Consider now a Call option with strike N < L <
K written on P̃K(Y, L). Looking at the payoff function, it can be easily shown that((

L− (K − S(T ))+
)
+
−N

)
+

=
(
S(T ) − (K − (L−N))

)
+
−
(
S(T ) −K

)
+
.
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In other words, such a Call has the same value as the portfolio C(S,K − (L − N)) −
C(S,K), which in turn we have shown to be equal to P̃K(Y,L − N). Again, using
the Put-Call-Parity, we find that a Put with strike N on P̃K(Y, L) is equivalent to the
portfolio P (S,K − (L−N)) − P (S,K − L), i.e. to C̃K(Y,L−N) − C̃K(Y, L).

Summarizing, we get the following relationships:

Call on P̃K(Y, L)(N) = C(S,K − (L−N)) − C(S,K)

Put on P̃K(Y, L)(N) = P (S,K − (L−N)) − P (S,K − L).

7.2.2 The Call on Call pricing function

In order to define rigorously the relative function ĈK of Calls on Calls, we need to
assume for a while that the function S → C(S,K) is invertible (it is the case in the
Black-Scholes model and many other ones).

Definition 7.1. Let X = C(S,K) and M > 0. We denote with ĈK(X,M) the Call
option with strike M on the Call option with strike K. Then ĈK(X,M) is the price
of a Call option with strike K + M and underlier S. In particular, if the function
S → C(S,K) is invertible it holds

ĈK(X,M) := C
(
C−1(X,K),K +M

)
. (7.1)

K is called the relative underlying strike of ĈK(X,M) and X the underlier of ĈK(X,M).

Equation (7.1) gives a first representation of ĈK . It is of little practical interest
though, since we are not aware of any model where both C−1 and C can be computed
explicitly. Nevertheless, we will see in Section 7.3.1 that in the vast class of pricing
functions of the Carr-Pelts-Tehranchi family a convenient representation formula for the
inverse function is available.

We investigate below general properties of the Call on Call pricing function.

Properties of the Call on Call pricing function

From the arguments of Section 7.2.1, we can deduct some first properties of the function
ĈK . In particular, Calls on Calls satisfy the usual arbitrage bounds for Call prices,
i.e. they are always larger than their intrinsic value and smaller than the underlier. Fur-
thermore, they are convex and non-increasing as functions of the strike. We already
expect these properties to hold true for arbitrage arguments, and we show them rigor-
ously in the following proposition.

Proposition 7.1 (Relative pricing function: strike dependence). The function M →
ĈK(X,M) satisfies

(X −M)+ ≤ ĈK(X,M) ≤ X

and it is convex, non-increasing, with a slope strictly larger than −1.
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Proof. The function M → C(S,K + M) is convex and non-increasing, and so is M →
ĈK(X,M). This can be proved also observing that the basic relations (S − K)+ ≤
C(S,K) ≤ S translate into (C(S,K) −M)+ ≤ C(S,K +M) ≤ C(S,K), which gives in
particular that the functionM → ĈK(X,M) is non-increasing. Furthermore, from Equa-
tion (7.1), d

dM ĈK(X,M) = ∂KC(C−1(X,M),K + M) ≥ ∂KC(C−1(X,M),K) which is
strictly larger than −1.

Observe that the above inequality implies (S − (K + M))+ ≤ ĈK(X,M) ≤ S since
(S − (K +M))+ ≤ (C(S,K) −M)+ and S ≥ C(S,K) = X.

Remark 7.1. Proposition 7.1 implies in particular that the slope of Calls on Calls in 0
is stricly larger than −1. This is not a problem in terms of arbitrageable prices, but it is
an uncommon feature since it is linked to the presence of a positive mass of the underlier
in 0 (see Theorem 2.1.2. of [66]). This is expected indeed, since the new underlier is
a Call option, which has a whole region of null payoff. We will target this point in
Section 7.4 where we will define lifted Calls on Calls’ prices with derivative equal to −1
at 0.

In the following we identify the necessary and sufficient conditions that the Call on
Call pricing function must satisfy in order to be monotone as a function of the relative
underlying strike and convex as a function of the underlier, i.e. the original Call price.

Lemma 7.1 (Monotonicity with respect to the relative underlying strike). Assuming the
C1 smoothness of C(·,K) and C(S, ·), the function K → ĈK(X,M) is non-decreasing if
and only if the function

L→ ∂KC(S,L)

∂SC(S,L)

is non-decreasing for every S.

Proof. Firstly observe that C(C−1(X,K),K) = X, so that taking the derivative with
respect to K we find

0 = ∂SC(C−1(X,K),K)∂KC
−1(X,K) + ∂KC(C−1(X,K),K)

or

∂KC
−1(X,K) = −∂KC(C−1(X,K),K)

∂SC(C−1(X,K),K)
.

We can now consider the relation ĈK(X,M) = C(C−1(X,K),K +M) and develop the
derivative with respect to K:

d

dK
ĈK(X,M) = − ∂SC(C−1(X,K),K +M)∂KC(C−1(X,K),K)

∂SC(C−1(X,K),K)
+

+ ∂KC(C−1(X,K),K +M).
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Then, ĈK(X,M) is non-decreasing as a function of K iff

∂KC(C−1(X,K),K)

∂SC(C−1(X,K),K)
≤ ∂KC(C−1(X,K),K +M)

∂SC(C−1(X,K),K +M)
,

or equivalently iff the function

L→ ∂KC(S,L)

∂SC(S,L)

is non-decreasing for every S.

Lemma 7.2 (Convexity with respect to the underlier). Assuming the C2 smoothness of
C(·,K), the function X → ĈK(X,M) is convex if and only if the function

K →
∂2SC(S,K)

∂SC(S,K)

is non-decreasing for every S.

Proof. Let us restart from ĈK(X,M) = C(C−1(X,K),K + M). Assuming the C2

smoothness of C(·,K) we get

d

dX
ĈK(X,M) =

∂SC(C−1(X,K),K +M)

∂SC(C−1(X,K),K)
,

so that d2

dX Ĉ(X,M) has the sign of the quantity

∂2SC(C−1(X,K),K +M)∂SC(C−1(X,K),K)+

− ∂SC(C−1(X,K),K +M)∂2SC(C−1(X,K),K).

As a consequence, the function X → ĈK(X,M) is convex for any K,M iff the function

L→
∂2SC(C−1(X,K), L)

∂SC(C−1(X,K), L)

is non-decreasing for any X, which is equivalent to state the same property for the
function

K →
∂2SC(S,K)

∂SC(S,K)

at any point S.

In the next section we will apply Lemmas 7.1 and 7.2 to the case of homogeneous
pricing functions, and in particular to the Black-Scholes case for which the properties of
monotonicity with respect to the relative underlying strike and of convexity with respect
to the underlier are always satisfied.
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7.2.3 Normalized Call prices

We now switch from the strike space to the moneyness k = K
S space and consider

normalized Call pricing functions, i.e. Call prices divided by their underlier.

Definition 7.2. Let k = K
S the moneyness of the Call option C(S,K), and m = M

C(S,K)

the moneyness of the Call option ĈK(C(S,K),M). We denote with

CS(k) :=
C(S, Sk)

S

the normalization of C with respect to k, and with

ĈK,S(m) :=
ĈK(C(S,K), C(S,K)m)

C(S,K)

the normalization of ĈK with respect to m.

Furthermore, we say that C is homogeneous if CS does not depend on S and define
the normalized pricing function c by the relation c(k) := C1(k) for every k.

Normalized Call prices are particularly interesting when Call prices are homogeneous,
since they satisfy key properties as we will show in Section 7.2.3. Furthermore, the most
notorious models such as the Black-Scholes, the Heston and the implied volatility models
are homogeneous. In this case the function C can be recovered from c through the for-
mula C(S,K) = Sc

(
K
S

)
. Not all models are homogeneous: examples of inhomogeneous

models include local volatility or local stochastic volatility (except in very few cases).

In order to work with Black-Scholes prices, throughout the rest of the paper we
denote with ϕ the standard normal probability density function and with Φ its cumulative
density function. Furthermore, we denote with BS(S,K, v) the traditional Black-Scholes
function for Call prices with implied total volatility v = σ

√
T :

BS(S,K, v) = SΦ
(
d1(S,K, v)

)
−KΦ

(
d2(S,K, v)

)
d1,2(S,K, v) = −

log K
S

v
± v

2
.

(7.2)

We will sometimes drop the dependency in v for notation simplicity. When considering
normalized Black-Scholes prices, we use the notation

BS(S,K) = Sbs

(
K

S

)
.

Reconstructed prices obtained from bs(k) in the Black-Scholes case correspond to the
perspective function of section 3.2.6. of [12].

In the following Lemma we show that the normalization CS(k) as a function of the
moneyness k has the same properties as the original price C(S,K) as a function of the
strike K.
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Lemma 7.3. Normalized prices CS(k) are non-increasing and convex functions of k,
and satisfy

(1 − k)+ ≤ CS(k) ≤ 1.

Proof. It holds C ′
S(k) = d

dKC(S, Sk) and C ′′
S(k) = S d2

dK2C(S, Sk), so that CS(k) is non-
increasing and convex in k. Also, since Call prices satisfy (S − K)+ ≤ C(S,K) ≤ S,
then dividing by S it holds (1 − k)+ ≤ CS(k) ≤ 1.

It turns out that there is a convenient relationship between the initial normal-
ized Call pricing function and the (normalized) relative Call on Call one. Indeed,
observe that ĈK(C(S,K),M) = C(S,K + M), so that ĈK(C(S,K), C(S,K)m) =

C
(
S, SK+C(S,K)m

S

)
. Now from Definition 7.2 it holds

CS(k + CS(k)m) =
C
(
S, S(k + CS(k)m)

)
S

and consequently

ĈSk,S(m) =
CS(k + CS(k)m)

CS(k)
.

In particular, in case C is homogeneous,

ĈSk,S(m) =
c(k + c(k)m)

c(k)
. (7.3)

We will further exploit the relationship in Equation (7.3) in Section 7.2.4 where we
work in the space of normalized homogeneous Call prices, and define transformations in
such space.

As in Remark 7.1, observe that by the chain rule it holds that d
dm ĈSk,S(0+) =

C ′
S(k) = ∂KC(S, Sk), which will be in general (for strictly convex functions) strictly

larger than −1.

Homogeneous Call prices

We now look at the properties of the Call on Call pricing functions in Section 7.2.2 in
the case of homogeneous Call prices. It turns out that Calls on Calls with homogeneous
pricing function are non-decreasing functions of the relative underlying strike and that
Black-Scholes Calls on Calls are convex with respect to the underlier. As a consequence,
when calibrating Calls on Calls, one should design an algorithm such to satisfy these
necessary properties.

In the following proposition we consider conditions of Lemma 7.1 in the case of
homogeneous Call prices and show that they are always satisfied, i.e. that Calls on
Calls with homogeneous pricing function are non-decresing with respect to the relative
underlying strike.
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Proposition 7.2 (Monotonicity of Calls on Calls with respect to the relative underlying
strike: the homogeneous case). Let C(S,K) homogeneous and C1 in both variables. Then
the function K → ĈK(X,M) is non-decreasing.

Proof. From Lemma 7.1, we shall prove that the function

L→ ∂KC(S,L)

∂SC(S,L)

is non-decreasing for every S. In the homogeneous case this can be simplified writing
C(S,L) = c

(
L
S

)
S and considering that a function is monotone in L iff it is monotone in

l = L
S . We then find that the function K → ĈK(X,M) is non-decreasing iff the function

l → c′(l)

c(l) − lc′(l)

is non-decreasing. This is actually the case since the derivative of the latter function is
c(l)c′′(l)

(c(l)−lc′(l))2 , which is always positive for convex prices.

The previous proposition implies in particular that C(X,M) = Ĉ0(X,M) ≤ ĈK(X,M)
in case of homogeneous Call prices. In other words, Call on Call prices are always not
smaller than the original Call prices for fixed moneyness.

Consider now a fixed value of X. The proposition gives that at a fixed moneyness M
X ,

the mapK → ĈK(X,M) is non-decreasing and so, for any continuous increasing function
Y with Y (0) = 0, the map t→ ĈY (t)(X,M) is non-decreasing as well, meaning there is
no calendar-spread arbitrage for the price surface (t,M) → CY (t)(X,M). Since there is
no Butterfly arbitrage in the strike dimension for any t, we have built an arbitrage-free
forward extrapolation of the pricing function C0(X,M) = C(X,M). One can see that
we treat the strike K here as a shadow parameter, completely forgetting its role in the
design of the relative pricing function.

We now pass to the study of Lemma 7.2. Conditions for the convexity of Calls on
Calls with respect to the underlier can be re-written in the homogeneous case. Differently
from the property of monotonicity with respect to the relative underlying strike, here
we do not achieve to show the convexity property for all homogeneous pricing function.
However, we prove it for the Black-Scholes case.

Proposition 7.3 (Convexity of Calls on Calls with respect to the underlier: the homo-
geneous case). Let C(S,K) homogeneous and C2 in the first variable. Then the function
X → ĈK(X,M) is convex if and only if the function

k → k2c′′(k)

c(k) − kc′(k)

is non-decreasing. In particular this holds true in the Black-Scholes case.
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Proof. From Lemma 7.2 we shall prove that the function

K →
∂2SC(S,K)

∂SC(S,K)

is non-decreasing for every S. We can write C(S,K) = c
(
K
S

)
S, develop the derivatives

and consider that a function is monotone in K iff it is monotone in K
S . We find that in

the homogeneous case, X → ĈK(X,M) is convex for any K,M iff the function

k → k2c′′(k)

S(c(k) − kc′(k))

is non-decreasing for any S. We can drop S at the denominator and conclude.

In the Black-Scholes case, bs′′(k) = ϕ(d2)
kv where d1,2 = − log k

v ± v
2 . Then the above

requirement is that

k → kϕ(d2)

vΦ(d1)

is non-decreasing. This holds true iff, taking the derivative, the quantity

ϕ(d2)

vΦ(d1)2

(
Φ(d1) +

Φ(d1)d2 + ϕ(d1)

v

)
is positive. Observe that d2 = d1−v, so that we are asking the quantity Φ(d1)d1 +ϕ(d1)
to be positive. When d1 is positive this is gained. Otherwise, we can use the upper
bound of the Mill’s ratio 1−Φ(x)

ϕ(x) < 1
x for every x > 0 with x = −d1 and obtain the

desired property.

The convexity in the underlier of the option price is a key property from a risk analysis
perspective, and allows to study the behavior of the option price dynamic as being locally
Black-Scholes-like, with a positive Gamma for Calls and Puts. Combined with the
previous proposition and the discussion that follows it, we get a forward extrapolation
scheme with nice properties when the convexity property is fulfilled.

Remark 7.2. It is interesting to observe that the function ĈK(X,M) cannot be homo-
geneous when C(S,K) is. Indeed, in order to satisfy such a property, its normalized

function ĈK,S(m) = ĈK(X,Xm)
X where S is recovered from X = C(S,K) should not de-

pend on X, i.e. it should be a function of the form g(m). From Equation (7.3), it should

hold g(m) =
c
(

K
S
+c
(

K
S

)
m
)

c
(

K
S

) . However the right term depends on X in the S term, so

that the equality cannot hold for all X. Indeed, for X moving from its lowest values to
∞, S moves from 0 to ∞, so that g(m) = c(∞)

c(∞) = 1 and g(m) = c(m) respectively. In
non-degenerate cases, normalized prices are not constantly equal to 1 so that Calls on
Calls with homogeneous pricing function cannot be homogeneous.
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7.2.4 A transformation in the Tehranchi space

In Lemma 7.3 we have pointed out some necessary properties that normalized Call
prices satisfy: monotonicity and convexity with respect to the moneyness, and upper
and lower bounds corresponding to the constant function 1 and the normalized intrinsic
value function (1 − k)+. Note that the property of monotonicity is actually implied by
the two other properties.

A crucial point here is that the underlier is considered to be frozen (and, given the
normalization, with unit value): in other words we only consider the partial dependency
in the normalized strike (the moneyness) of the pricing function.

As Tehranchi has deeply studied normalized Call prices in [66], we will name Tehranchi
space the space C of such normalized Call prices:

C =
{
c : R+ −→ [0, 1]

∣∣ c convex, ∀m, (1 −m)+ ≤ c(m) ≤ 1
}
.

As an immediate consequence, functions in C are non-increasing and satisfy c(0) = 1.
Also, from Lemma 7.3, functions obtained by the normalization c(k) of homogeneous
prices defined in Definition 7.2 belong to the Tehranchi space.

Equation (7.3) suggests to define the following transformation on C.

Definition 7.3. For any c ∈ C and k ≥ 0 with c(k) > 0 we define the transformation

Tkc(·) :=
c(k + c(k)·)

c(k)
.

k is called the relative underlying moneyness of Tk.

Observe that functions in C are either positive, or positive before a threshold a and
null beyond a. It is natural if needed to extend the definition of Tk for k ≥ a by Tk ≡ 1,
the constant function equal to the normalized underlier.

In relation to Equation (7.3), the transformation Tk corresponds to the normalization
of Calls on Calls with homogeneous pricing function, i.e. Tkc(m) = ĈSk,S(m). Also, for
a given S and a function Tkc(·), it is always possible to reconstruct the corresponding
non-normalized Call on Call. In particular, the original underlier Call written on S has
strike K = Sk, and the Call on Call with strike M is

ĈK(C(S,K),M) = ĈK(Sc(k),M) = Tkc
( M

Sc(k)

)
Sc(k).

Properties of the transformation Tk

The following lemma lists important properties of the transformations Tk. In particular,
it states that the new function Tkc still lives in C and that it has a derivative in 0 which
is larger than −1. Furthermore the lemma gives the limits of the transformation Tk with
respect to k.

Lemma 7.4 (Properties of Tk). For any c ∈ C and k ≥ 0 with c(k) > 0 it holds:
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1. Tkc ∈ C;

2. d
dmTkc(0+) = c′(k);

3. Tkc(∞) = c(∞)
c(k) ;

4. T0c = c;

5. T∞c ≡ 1.

Proof. The only difficult point is the last one. Observe that at fixed k, m, it holds
c(k + c(k)m) = c(k) + c′(k + uc(k))c(k)m for some u in ]0,m[. Whence Tkc(m) =
1 + c′(k + uc(k))m and since c′ goes uniformly to 0 at infinity this yields Tkc(·) → 1 as
k → ∞.

At this point, one can consider the family {Tkc : k ≥ 0}, as a (one-dimensional)
enrichment of the price curve c, given that T0c = c. The initial forward moneyness k
should be considered here as a plain parameter; all the price curves Tkc are arbitrage-free
in the sense that they belong to C.

In relation to this latter point, one can wonder about the composition of the above
enrichment/extensions, like Tkn · · ·Tk2Tk1 . The following property corresponds to the
image of the semigroup property in the normalized space:

Lemma 7.5 (Iterates of Tk). It holds TbTac = Ta+c(a)bc.

Proof. The following relations hold

TbTac(m) =
Tac(b+ Tac(b)m)

Tac(b)

= Tac
(
b+

c(a+ c(a)b)

c(a)
m
) c(a)

c(a+ c(a)b)

=
c
(
a+ c(a)

(
b+ c(a+c(a)b)

c(a) m
))

c(a)

c(a)

c(a+ c(a)b)

=
c(a+ c(a)b+ c(a+ c(a)b)m

c(a+ c(a)b)

= Ta+c(a)bc(m).

This means that the range of T. is the same as the range of its iterates, and there is
no additional enrichment to hope for from performing those iterations.

We shall now consider Proposition 7.2 where we proved that Calls on Calls with
homogeneous pricing function are non-decreasing with respect to the relative underlying
strike. We expect to find a similar property for k → Tkc(m) = ĈSk,S(m).
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Proposition 7.4 (Monotonicity of Tk with respect to the relative underlying money-
ness). For any c ∈ C and m ≥ 0, the map k → Tkc(m) is non-decreasing.

Proof. It holds

d

dk
Tkc(m) =

c′(k + c(k)m)(1 + c′(k)m)c(k) − c(k + c(k)m)c′(k)

c(k)2
.

Doing the derivative with respect to m, one finds d
dm

d
dkTkc(m) = c′′(k + c(k)m)(1 +

c′(k)m) which is positive iff m < − 1
c′(k) . Then, the function d

dkTkc(m) with variable m

is increasing up to − 1
c′(k) and then starts decreasing. To show that it is non-negative for

every k and m, it is enough to show that it is non-negative for every k and m ∈ {0,∞}.
At m = 0, it is easy to see d

dkTkc(0) = 0. From Theorem 2.1.2 of [66], there exists a
random variable S such that c(y) = 1 − E[S ∧ y] and −c′(y) = P (S > y). Then

c(y) − yc′(y) = 1 − E[S ∧ y] + yP (S > y)

= 1 −
∫

(s ∧ y)fS(s) ds+ y

∫ ∞

y
fS(s) ds

= 1 −
∫ y

0
sfS(s) ds− y

∫ ∞

y
fS(s) ds+ y

∫ ∞

y
fS(s) ds

= 1 −
∫ y

0
sfS(s) ds

and this goes to 1 − E[S] = c(∞) ≥ 0 as y goes to ∞. As a consequence, yc′(y) goes to
0 and the result holds.

Note that the above proposition implies in particular

c(m) = T0c(m) ≤ Tkc(m) =
c(k + c(k)m)

c(k)
.

In Figure 7.1 we plot the function Tkc(m) with respect to k for different fixed ms. The
function c is a normalized Black-Scholes Call function with implied total volatility equal
to 0.2. It can be seen that Tkc(m) is non-decreasing in k (as shown in Proposition 7.4)
and non-increasing in m, as expected since c is a non-increasing function.

A slight generalization

From Lemma 7.4, the function m → Tkc(m) has a particular feature at 0. Indeed, its
right derivative is d

dmTkc(0+) = c′(k) which for k > 0 is in general larger than −1. As
already seen in Remark 7.1, this feature might be annoying since it implies the presence
of a mass in 0 of the probability density function associated to the underlier of prices.

We are then interested in generalizing suitably the transformation Tk in order to get
rid of this mass at 0 phenomenon. This generalization is formulated on the Tehranchi
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Figure 7.1: Function k → Tkc(m) for different levels of m. The original Black-Scholes
implied total volatility is set at 0.2.

space here. In Section 7.4.1 we will see how to change the probability measure in order
to lift Calls on Calls to Calls on Calls with no mass in 0, and will provide the connection
with the generalized transformation of this section.

To introduce the generalized transformation, firstly consider α ≥ 0 and the quantity
Vk,α defined as follows.

Definition 7.4. For any c ∈ C and α, k ≥ 0 with c(k) > 0, we define the transformation

Vk,αc(·) :=
c(k + α·)
c(k)

.

The transformation Tk can be written as a function of Vk,α in the sense that Tkc =
Vk,c(k)c.

It is easy to see that functions m→ Vk,αc(·) are convex and bounded by 1. Adding

the requirement that α(k) ≤ − c(k)
c′(k) also guarantees the lower bound (1 −m)+, so that

the transformations Vk,α can be viewed as operating on the Tehranchi space.

Lemma 7.6 (Properties of Vk,α). For any c ∈ C, α, k ≥ 0 with c(k) > 0 and α ≤ − c(k)
c′(k) ,

it holds

1. Vk,αc ∈ C;

2. d
dmVk,αc(0+) = c′(k)

c(k) α ≥ 1;

3. Vk,αc(∞) = c(∞)
c(k) ;

4. V0,1c = c.

Proof. The derivative and second derivative of Vk,αc(m) with respect to m are respec-

tively c′(k+αm)
c(k) α and c′(k+αm)

c(k) α2. Then Vk,αc(m) is convex in m. Since c ∈ C, it is
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non-increasing and Vk,αc(m) ≤ 1. The inequality Vk,αc(m) ≥ (1 − m)+ amounts to
c(k + αm) − c(k) ≥ −c(k)m for m < 1; by the mean value theorem the LHS writes
αc′(k + αu)m for some u in ]0,m[ where the derivative is negative. Since c is convex,
the latter quantity is larger than αc′(k)m and Vk,αc(m) ≥ (1 −m)+ holds true as soon

as α ≤ − c(k)
c′(k) .

The other points follow immediately.

As the transformation Tk, also its generalization Vk,α satisfies a semigroup property
and, as a consequence, iterations of this transformation do not further enrich the family
{Vk,α : k ≥ 0, α ≥ 0}:

Lemma 7.7 (Iterates of Vk,α). It holds Vb,βVa,αc = Va+αb,αβc.
Furthermore, if α ≤ − c(a)

c′(a) and β ≤ − Va,αc(b)
d

dm
Va,αc(b)

then αβ ≤ − c(a+αb)
c′(a+αb) .

Proof. The proof of the first statement is similar to the proof of Lemma 7.5.

Since d
dmVa,αc(b) = c′(a+αb)

c(a) α, if β ≤ − Va,αc(b)
d

dm
Va,αc(b)

then β ≤ − c(a+αb)
αc′(a+αb) and the second

statement follows.

The second statement of Lemma 7.7 implies that the family
{
Vk,αc : c ∈ C, k ≥

0, 0 ≤ α ≤ − c(k)
c′(k)

}
(where c ∈ C is also a parameter) is closed under iterations.

From Lemma 7.6, we see that the critical case α = − c(k)
c′(k) is of particular interest

since it will entail the property d
dmVk,αc(0+) = −1. This gives rise to a new transform

on the Tehranchi space:

Definition 7.5. For any c ∈ C and k ≥ 0 with c(k) > 0 and c′(k) ̸= 0 we define the
transformation

Ukc(·) :=
c
(
k − c(k)

c′(k) ·
)

c(k)
.

The transformation Uk can be written as a function of Vk,α in the sense that Ukc =
V
k,− c(k)

c′(k)
c, so properties of the latter transformation (for fixed c) still hold for the former

one.

Lemma 7.8 (Properties of Uk). For any c ∈ C and k ≥ 0 with c(k) > 0 and c′(k) ̸= 0,
it holds:

1. Ukc ∈ C;

2. d
dmUkc(0+) = −1;

3. Ukc(∞) = c(∞)
c(k) ;

4. If c′(0+) = −1, then U0c = c.
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Lemma 7.7 can be applied to Uk but it does not automatically guarantee that iterates
of Uk are still functions in the family {Ukc : k ≥ 0}, even though they certainly live in
{Vk,α : k ≥ 0, α ≥ 0}. In the following lemma we prove this point.

Lemma 7.9 (Iterates of Uk). It holds UbUac = U
a− c(a)

c′(a) b
c.

Proof. The proof can be shown directly as in Lemma 7.5. Alternatively, applying

Lemma 7.7, we have UbUac = Vb,βVa,αc where α = − c(a)
c′(a) and β = − Va,αc(b)

d
dm

Va,αc(b)
=

− c(a+αb)
αc′(a+αb) . Then a+ αb = a− c(a)

c′(a)b and αβ = − c(a+αb)
c′(a+αb) , so Va+αb,αβc = U

a− c(a)

c′(a) b
c.

The transformation Uk has a derivative in 0+ equal to −1 and is then linked to
probabilitiees with no mass in 0. This will allow us to define new closed pricing formulas
in Section 7.4, that we will call lifted Calls on Calls.

7.3 New closed formulas

In this section, we provide a quasi-closed formula for the pricing function within the
Carr-Pelts-Tehranchi family (see [14, 15, 66]), which generalizes the Black-Scholes pric-
ing function associated to the standard normal density to any log-concave (and even,
unimodal, as shown by Vladimir Lucic in [50]) density function. This includes the Black-
Scholes case as a particular case. Those pricing functions are the pricing functions of
options on option, where the price of the latter option is viewed as the underlier.

The reason to work with this family of pricing function is that a variational formula
for the option price, reminiscent of a dual transform, is available, and it turns out that
this variational formula can be inverted to get an expression for the underlier value in
terms of the option price and the other parameters.

In the second section below, we derive new closed formulas from the normalized price
transformations - these formulas will yield (new) homogeneous pricing functions when
de-normalized.

7.3.1 The Carr-Pelts-Tehranchi family

Knowing the expression of the underlier S as a function of the option price X := C(S,K)
yields a closed formula for the option price which is given by C(S,K +M), as a pricing
function of X and M . In general, such an expression is unavailable, even if one can
resort to straightforward numerical procedures like a basic dichotomy to compute it
numerically, given the monotonicity of the map S → C(S,K).

It turns out that one can say more in the case of the Carr-Pelts-Tehranchi family,
due to the availability of a particular variational formulation for the option price.

We dub Carr-Pelts-Tehranchi (CPT) model the explicit arbitrage-free parametriza-
tion for FX option prices introduced by Carr and Pelts in 2015 at a conference in honor
of Steven Shreve at Purdue university (see [14]). The model has then been independently
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7. Options are also options on options: how to smile with Black-Scholes

rediscovered by Tehranchi in [66] while studying advanced properties of the Black-Scholes
formula.

In the CPT model, the family of Call prices is indexed by log-concave densities
f : R → [0,∞[ and increasing functions y : [0,∞[→ R (which correspond to the total
implied volatility in the Black-Scholes framework). The Black-Scholes model is a special
case of CPT choosing f to be the standard normal probability density function ϕ and
y(t) = v = σ

√
t with reference to Equation (7.2).

Similarly to Black-Scholes, the CPT model has the nice feature that option prices
have a closed quasi-explicit formula. Indeed, the CPT Call price is

CCPT(S,K; f, y(t)) :=

∫ ∞

−∞

(
Sf(z + y(t)) −Kf(z)

)
+

dz. (7.4)

Tehranchi shows in section 3.2 of [66] that if f is log-concave and y is increasing, then
prices in Equation (7.4) represent a Call price surface of the form E[(ST −K)+] for a
certain non-negative supermartingale St such that E[ST ] = S. Equivalently, Call prices
are non-decreasing in t, convex in K and equal to (S −K)+ for t = 0.

Remarkably, prices in Equation (7.4) can actually be represented with a formulation
very close to the Black-Scholes one as

CCPT(S,K; f, y(t)) = SF (d(K, y(t); f) + y(t)) −KF (d(K, y(t); f)

where

d(K, y; f) := sup

{
z :

f(z + y)

f(z)
≥ K

}
and z lives in the support of f , and F is the cumulative density function associated with
f . In the Black-Scholes case, the function d(K, y(t); f) can be obtained explicitly and is

given by the classical expression d2(S,K, v) = − log K
S

v − v
2 .

Note that the CPT pricing functions are homogeneous ones.
Furthermore, Lucic has shown in [50] that under the more general hypothesis that f

is unimodal, i.e. it has a single peak (point of maximum), and y is increasing, prices in
Equation (7.4) are still a Call price surface.

Since in the present article we are considering smiles of the Call surface, i.e. for fixed
time-to-maturity, we will drop the dependence to t of y.

One of the important properties of the CPT family is the availability of a variational
formula for the option price (Theorem 4.1.2 of [66]):

CCPT(S,K; f, y) = sup
p∈]0,1[

SF (F−1(p) + y) − pK.

This formula is the key of the following result.

Lemma 7.10 (Inversion of the CPT formula). Let f a unimodal probability density
function and F its cumulative density function. For K, y ≥ 0 let X = CCPT(S,K; f, y),
then it holds

S = Kψ

(
X

K
, y;F

)
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where

ψ(a, y;F ) := inf
r∈R

a+ F (r − y)

F (r)
.

Proof. It holds
X = sup

p∈]0,1[
SF (F−1(p) + y) − pK

so that for every p, X ≥ SF (F−1(p) + y) − pK or yet S ≤ X+pK
F (F−1(p)+y)

, and also

S = inf
p∈]0,1[

X + pK

F (F−1(p) + y)
.

Set r := F−1(p) + y, then p = F (r − y) and, given that the range of r when p runs into
]0, 1[ is R irrespective of y, the conclusion follows.

We can easily apply the result from this lemma to the relation ĈK(C(S,K),M) =
C(S,K +M) and obtain the following.

Proposition 7.5 (Quasi-closed formula for the Call on Call pricing function in the CPT
family). Let f a unimodal probability density function. For K,M, y ≥ 0 it holds

ĈK(X,M) =

∫ ∞

−∞

(
Kψ

(
X

K
, y;F

)
f(z + y) − (K +M)f(z)

)
+

dz

= Kψ

(
X

K
, y;F

)
F (d(K +M,y; f) + y) − (K +M)F (d(K +M,y; f)).

In particular, in the Black-Scholes case with v = σ
√
T

ĈK(X,M) = Kψ

(
X

K
, v; Φ

)
Φ

(
d1

(
Kψ

(X
K
, v; Φ

)
,K +M,v

))
+

− (K +M)Φ

(
d2

(
Kψ

(X
K
, v; Φ

)
,K +M, v

))
where d1,2(a, b, v) = − log b

a
v ± v

2 .

Observe that in the Black-Scholes case of the above proposition, choosing M = 0,
we find the expression

ĈK(X, 0) = Kψ

(
X

K
, v; Φ

)
Φ

(
d1

(
Kψ

(X
K
, v; Φ

)
,K, v

))
−KΦ

(
d2

(
Kψ

(X
K
, v; Φ

)
,K, v

))
which is the classic Black-Scholes formula for the Call C(S̃,K) where S̃ = Kψ

(
X
K , v; Φ

)
.

This was indeed expected since Call prices with null strike coincide with the value of
their underlier. Furthermore, by the definition of ψ in Lemma 7.10, the underlier of
the Call option X with strike K is S = Kψ

(
X
K , v; Φ

)
, so that S̃ = S and the above

expression is the Call price of an option with strike K and underlier S, i.e. it coincides
with X:

X = Kψ

(
X

K
, v; Φ

)
Φ

(
d1

(
Kψ

(X
K
, v; Φ

)
,K, v

))
−KΦ

(
d2

(
Kψ

(X
K
, v; Φ

)
,K, v

))
.
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Numerical computation of ψ

The function ψ in Lemma 7.10 is still not explicit. However, one can study more precisely
ψ in the case of a strictly log-concave f , which covers the Black-Scholes case in particular.

Indeed, let us look at the function ψ(a, y). We consider a > 0 and call

γ(r; a, y) :=
a+ F (r − y)

F (r)

the argument of the infimum. Then γ(∞; a, y) = 1 + a and γ is non-increasing iff

γ′(r; a, y) = F (r)f(r−y)−f(r)(a+F (r−y))
F (r)2

≤ 0, or iff a ≥ δ(r; y) where

δ(r; y) :=
f(r − y)

f(r)
F (r) − F (r − y).

We have the following:

Lemma 7.11. Let f a strictly log-concave probability density function and F its cumu-
lative density function, and let a, y > 0. Then δ(r; y) is strictly increasing in r and:

� If δ(∞; y) ≤ a then ψ(a, y) = 1 + a;

� If δ(∞; y) > a then ψ(a, y) = a+F (r∗−y)
F (r∗) = f(r∗−y)

f(r∗) where r∗ := δ−1(a; y).

� In the Black-Scholes case δ(∞; v) = ∞ for every v.

Proof. Observe that if γ has a finite limit at −∞, then δ(r; y) = F (r)
(f(r−y)

f(r) − F (r−y)
F (r)

)
has a limit equal to 0 due to l’Hı̈¿½pital’s rule. Also, if γ explodes at −∞, then its
derivative must be non-positive at −∞, i.e. a is always larger or equal than δ(−∞; y),
which does not depend on a. As a consequence, δ(−∞; y) = 0 in any case.

If δ(r; y) is increasing, two scenarios are possible:

� δ(∞; y) > a, then a cannot be always larger than δ(r, y) and the function γ has at
least one point of minimum. Also, since δ is monotonous in r, there is a unique
r∗ such that a = δ(r∗; y) and this point is also the point of minimum of γ, i.e.

ψ(a, y) = a+F (r∗−y)
F (r∗) = f(r∗−y)

f(r∗) ;

� δ(∞; y) ≤ a (in particular δ is not surjective), then γ is decreasing and therefore
ψ(a, y) = 1 + a.

Now since f is strictly log-concave, then the function f ′

f is decreasing. The derivative

of δ with respect to r is F (r)
f(r)2

(f(r)f ′(r − y) − f(r − y)f ′(r)) and this is positive iff
f ′(r−y)
f(r−y) >

f ′(r)
f(r) , which holds true.

Then, if δ(∞; y) > a there exists a unique r∗ := δ−1(a; y) and ψ(a, y) = a+F (r∗−y)
F (r∗) .

Otherwise, if δ(∞; y) ≤ a, it holds ψ(a, y) = 1 + a.
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In the Black-Scholes case, f is strictly log-concave and f(r−v)
f(r) = exp

(
− (r−v)2−r2

2

)
=

exp
(v(2r−v)

2

)
which explodes for r going to ∞. Then δ(∞; v) = ∞ > a.

We can actually give more details on the bounds of the point of minimum r∗ of the
function γ, when it exists (i.e. when δ(∞; y) > a). In the following lemma we find a
lower bound rl and an upper bound ru for r∗ under the hypothesis of surjectivity of the
function f ′

f , and in the successive corollary we study the Black-Scholes case, where the
bounds are actually explicit. In this way, the point r∗ can be numerically computed in
a very quick way inverting the function δ in the interval [rl, ru].

Lemma 7.12. Let f a strictly log-concave probability density function and F its cumu-

lative density function, and let a, y > 0. Then f ′(r)
f(r) is decreasing and f is unimodal. Let

s the unique point of maximum of f .

In the case δ(∞; y) > a, if f ′(r)
f(r) is surjective, it holds

� If δ(s; y) ≥ a then r̃ < r∗ ≤ s, where r̃ is the unique r ≤ s solving a = F (r) −
F (r − y).

� If δ(s; y) < a and δ(s+ y; y) ≥ a then s < r∗ ≤ s+ y.

� If δ(s + y; y) < a then s + y < r∗ < r̂, where r̂ is the unique r solving f(r−y)
f(r) =

a
F (s) + 1.

Proof. Firstly observe that since f is strictly log-concave, then the function r → f ′(r)
f(r)

is decreasing while the function r → f(r−y)
f(r) is increasing, given that its derivative is

f ′(r−y)f(r)−f(r−y)f ′(r)
f(r)2

. Secondly, from the proof of Theorem 4.1.6. of [66], it holds

f ′(r)

f(r)
≤ 1

y
log

f(r)

f(r − y)
≤ f ′(r − y)

f(r − y)
.

Then if f ′(r)
f(r) goes to −∞ at ∞, the function f(r−y)

f(r) explodes at ∞, while if f ′(r)
f(r) goes to

∞ at −∞, then f(r−y)
f(r) goes to 0 at −∞.

In the case δ(∞; y) > a, from Lemma 7.11 there exists a unique r∗ such that a =
δ(r∗; y). Since F (r) > F (r − y), it holds

a = δ(r∗; y) >

(
f(r∗ − y)

f(r∗)
− 1

)
F (r∗ − y).

If δ(s; y) ≥ a then r∗ ≤ s. Otherwise r∗ > s. If δ(s+y; y) ≥ a then r∗ ≤ s+y. Otherwise

r∗ > s+ y, so F (r∗ − y) > F (s), f(r∗−y)
f(r∗) > 1 and a

F (s) + 1 > f(r∗−y)
f(r∗) . Since the function

r → f(r−y)
f(r) is increasing and explodes at ∞ under the hypothesis that f ′(r)

f(r) goes to −∞,

then there exists a unique r̂ such that f(r̂−y)
f(r̂) = a

F (0) + 1. Furthermore, r∗ < r̂.
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In the previous step we have already found a lower bound (either s or s+ y) in the

case δ(s; y) < a. If δ(s; y) ≥ a, then r∗ ≤ s and f(r∗−y)
f(r∗) < 1, so

a = δ(r∗; y) < F (r∗) − F (r∗ − y).

The function r → F (r) − F (r − y) has derivative f(r) − f(r − y), which is positive for
r ≤ s. Then there is a unique r̃ ≤ s solving a = F (r̃) − F (r̃ − y) and r̃ < r∗.

Lemma 7.12 can be further exploit in the Black-Scholes case. It turns out that the
bounds for r∗ are explicit and do not need any inversion algorithm.

Corollary 7.1 (Explicit bounds for r∗ in the Black-Scholes case). In the Black-Scholes
case:

� If a ≤
√

π
2ϕ(v) + Φ(v) − 1 then −

√
−2 log

(
a
v

√
2π
)
< r∗ ≤ 0.

� If
√

π
2ϕ(v) + Φ(v) − 1 < a ≤ 1√

2π

Φ(v)
ϕ(v) −

1
2 then 0 < r∗ ≤ v.

� If a > 1√
2π

Φ(v)
ϕ(v) −

1
2 then v < r∗ < 1

2

(
v + 2

v log(2a+ 1)
)
.

Proof. In the Black-Scholes case, f = ϕ, s = 0 and ϕ′(r) = −rϕ(r), so that ϕ′(r)
ϕ(r) = −r

which is surjective. In Lemma 7.11 we showed that δ(∞; v) = ∞ > a, so three scenarios
are possible applying Lemma 7.12.

In the first scenario, the condition δ(s; v) ≥ a reads ϕ(−v)
ϕ(0) Φ(0) − Φ(−v) ≥ a. Since

Φ(−v) = 1 − Φ(v), ϕ(−v) = ϕ(v), Φ(0) = 1
2 and ϕ(0) = 1√

2π
, the condition is equivalent

to a ≤
√

π
2ϕ(v) + Φ(v) − 1. In this case the point r̃ ≤ 0 is the only r satisfying

a =
∫ r
r−v ϕ(z) dz and it holds r∗ > r̃. Since r̃ ≤ 0, it holds

∫ r
r−v ϕ(z) dz <

∫ r
r−v ϕ(r̃) dz =

ϕ(r̃)v, so that a
v

√
2π < exp

(
− r̃2

2

)
. As a consequence, the LHS is smaller than 1 and we

can solve r̃2 < −2 log
(
a
v

√
2π
)
, which implies in particular r̃ > −

√
−2 log

(
a
v

√
2π
)
.

In the second scenario, the condition δ(s + v; v) ≥ a is ϕ(0)
ϕ(v)Φ(v) − Φ(0) ≥ a, or

equivalently a ≤ 1√
2π

Φ(v)
ϕ(v) −

1
2 .

In the last scenario, the point r̂ solves ϕ(r̂−v)
ϕ(r̂) = 2a+ 1. The LHS is exp

(v(2r−v)
2

)
and

solving we find r̂ = 1
2

(
v + 2

v log(2a+ 1)
)
.

Thanks to Lemma 7.12 and Corollary 7.1 we have found specific bounds for r∗.
Then extremely fast numerical implementations based on standard methods such as the
brentq function of the scipy.optimize library in Python can be obtained using these
bounds.
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7.3.2 Formulas from normalized transformations

The transformation Vk,α of Section 7.2.4, and so Tk and Uk, allow to generate new
pricing formulas using the following recipe: start from a Call pricing function with
closed formula, normalize it, apply the transformation and de-normalize to get another
closed formula. This allows to extend any closed formula to a 2-parameter family of
closed formulas.

In other words, we look at the pricing formula in the new world, but consider eventu-
ally applying it to the usual world: we take a financial engineer point of view here, where
any pricing function depending on some parameters is a useful candidate to calibrate
the current state of the market (in the usual world).

So we go through the following pipeline of transformations:

1. Start from any homogeneous arbitrage-free Call pricing function K → C(S,K);

2. Normalize it and get a function c ∈ C defined as c(k) := C(S,kS)
S ;

3. Apply, for any k, α ≥ 0 such that c(k) > 0 and α ≤ − c(k)
c′(k) , the transformation

Vk,α to c;
4. Get a new arbitrage-free Call pricing function given by the formula M →
XVk,αc

(
M
X

)
, where X > 0 represents the value of the new underlier.

The above steps can be applied in particular for the two special choices of α defining
Tk and Uk: α = c(k) and α = − c(k)

c′(k) .

Observe that if we choose k = K
S and X = C(S,K) the new Call pricing function

obtained using the transformation Vk,c(k) = Tk coincides with M → ĈK(C(S,K),M) =
C(S,K +M).

Let us compute the new closed formulas we obtain implementing the above pipeline
for the known families of Black-Scholes, SVI (composed with the Black-Scholes pricing
function), and CPT, that all provide closed-form formulas.

A 2-parameter enrichment of the Black-Scholes formula

Let BS(S,K) the Black-Scholes function defined in Equation (7.2). Then BS(S,K) =
Sbs

(
K
S

)
where the normalized Black-Scholes pricing function bs belongs to the Tehranchi

space. We can therefore consider the two families of functions indexed by k:

bsTk

(
M

X

)
:=

bs
(
k + bs(k)MX

)
bs(k)

bsUk

(
M

X

)
:=

bs
(
k − bs(k)

bs′(k)
M
X

)
bs(k)
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Figure 7.2: Prices BSTk (X,M) and BSUk (X,M) obtained from Black-Scholes formula
applying transformations Tk and Uk respectively. The original Black-Scholes implied
total volatility is set at 0.2.

leading to the enriched Black-Scholes models

BST
k (X,M) := XbsTk

(
M

X

)
= X

bs
(
k + bs(k)MX

)
bs(k)

BSU
k (X,M) := XbsUk

(
M

X

)
= X

bs
(
k − bs(k)

bs′(k)
M
X

)
bs(k)

.

In Figure 7.2 we plot the BST
k (X,M) and BSU

k (X,M) prices (for fixed maturity) for
different values of k and a fixed value of X = 1. The original implied total volatility is
fixed at 0.2.

In order to define the 2-parameter enrichment of the Black-Scholes formula BSV
k,z as

suggested in the introduction of this section, let us make explicit the second parameter
of the function bs, the total implied volatility v = σ

√
T . As seen in Section 7.2.4,

the families BST
k and BSU

k are a particular choice in the more generic set of families

X
bs
(
k+αM

X
,v
)

bs(k,v) . In particular, BST
k corresponds to the choice α = bs(k) and BSU

k to the

choice α = − bs(k)
bs′(k)

.

More generally, we can represent α as the value of a normalized Black-Scholes pricing
function at k: α = bs(k, z) where the variability is given by the choice of the implied
total volatility z. We have then identified a 2-parameters enrichment of the Black-Scholes
pricing function that satisfies properties of Proposition 7.1:

Proposition 7.6 (2-parameter enrichment of the Black-Scholes formula from the nor-
malized pricing function). For any k ≥ 0 and z > 0 we define the 2-parameter enrich-
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ment of the Black-Scholes pricing function with v = σ1
√
T and z = σ2

√
T

BSVk,z(X,M, v) := X
bs
(
k + bs(k, z)MX , v

)
bs(k, v)

.

Then BSVk,z(X,M, v) is a non-increasing and convex function of M with

BSVk,z(X,M, v) ≤ X. If z ≤ v, then (X −M)+ ≤ BSVk,z(X,M, v).

In the case z = v, the function k → BSVk,v(X,M, v) is non-decreasing.

In particular BSV0,z(X,M, v) = Xbs
(
M
X , v

)
= BS(X,M, v).

Proof. The monotonicity and convexity with respect to M are easy to be proved. Since
k + bs(k, z)MX ≥ k and the function bs(k, v) is decreasing in k, we obtain the first

inequality. If z ≤ v, then bs(k, z) ≤ bs(k, v) and BSV
k,z(X,M, v) ≥ X

bs
(
k+bs(k,v)M

X
,v
)

bs(k,v)

which is larger than (X −M)+ from Lemma 7.4.

Finally if z = v we apply Proposition 7.4.

The enriched SVI models

The Stochastic Volatility Inspired model (SVI) is a model for the implied total variance
with formulation

SVI(h) = a+ b(ρ(h−m) +
√

(h−m)2 + σ2)

where h = log K
S is the log-forward moneyness. It was firstly proposed by Jim Gatheral

in 2004 at the Global Derivatives and Risk Management Madrid conference [33].

In this model, Call prices at moneyness k are Black-Scholes prices with implied total
variance

√
SVI(log k). We denote these prices with

BSSVI(S,K) := BS

(
S,K,

√
SVI

(
log

K

S

))
.

Applying Tk and Uk, we obtain the enriched SVI models:

BSSVI,T
k (X,M) := X

bsSVI
(
k + bsSVI(k)MX

)
bsSVI(k)

BSSVI,U
k (X,M) := X

bsSVI
(
k − bsSVI(k)

(bsSVI)′(k)
M
X

)
bsSVI(k)

.

We plot prices BSSVI,T
k (X,M) and BSSVI,U

k (X,M) of the enriched SVI models in
Figure 7.3, where we choose as initial arbitrage-free parameters for the SVI smile a =
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7. Options are also options on options: how to smile with Black-Scholes

Figure 7.3: Prices BSSVI,T
k (X,M) and BSSVI,U

k (X,M) obtained from SVI prices applying
transformations Tk and Uk respectively. The original arbitrage-free SVI parameters are
a = 0.01, b = 0.1, rho = −0.6, m = −0.05, and sigma = 0.1.

0.01, b = 0.1, ρ = −0.6, m = −0.05, and σ = 0.1 (see Table 2 of [53]). We take a fixed
value X = 1.

Again, we can enrich also the SVI model to a 2-parameter family indexed by k and
α:

BSSVI,V
k,α (X,M) := X

bsSVI
(
k + αMX

)
bsSVI(k)

.

The enriched CPT models

The CPT prices are defined in Equation (7.4) and have corresponding normalized prices

cCPT(k; f, y) :=
CCPT(S, Sk; f, y)

S
=

∫ ∞

−∞

(
f(z + y) − kf(z)

)
+
dz.

Even the CPT model can be extended via Tk and Uk to get the enriched CPT models:

CCPT,T
k (X,M) := X

cCPT
(
k + cCPT(k; f, y)MX ; f, y

)
cCPT(k; f, y)

CCPT,U
k (X,M) := X

cCPT
(
k − cCPT(k;f,y)

(cCPT)′(k;f,y)
M
X ; f, y

)
cCPT(k; f, y)

and via Vk,α to get the 2-parameter extension of the CPT model:

CCPT,V
k,α (X,M) := X

cCPT
(
k + αMX ; f, y

)
cCPT(k; f, y)

.
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7.4. Smile symmetry and a lift of the relative pricing function

7.4 Smile symmetry and a lift of the relative pricing
function

As already pointed out in Remark 7.1, Calls on Calls are contracts written on underliers
with a positive mass in 0, i.e. that can become null with positive probability. This implies
some unusual features such as a derivative of the pricing function with respect to the
strike which is larger than −1 at the origin. However, it is possible to change the proba-
bility measure in order to obtain new contracts that do not present this feature anymore.
Moreover, here is a tight relationship with the symmetry operation applied to the smile,
as is well-known and detailed in section 2.2 of [52]. An analogous transformation is
performed in section 2.2 of [66] with the involution of Call prices.

7.4.1 The change of probability with a mass at 0

We firstly start with the definition of the probability P ∗ associated to a non-negative
non-constantly zero random variable XT . Note that we re-introduce the maturity T
here, in order to convey some financial context, on one hand, and also to distinguish
those random variables from constant quantities known at the current time (assumed to
be time 0).

Definition 7.6. Let XT a non-negative non-constantly zero random variable on the
probability space (P,Ω), with finite expectation E[XT ]. We define

P ∗(A) :=
E
[
1AXT1{XT>0}

]
E[XT ]

for every A ∈ Ω. We also denote X := E[XT ] and P0 := P (XT = 0).

An immediate consequence of the above definition is that P ∗ is actually a probability
measure on a subset of the original Ω. The proof of the following lemma is elementary
and so omitted.

Lemma 7.13. P ∗ is a probability measure on Ω∗ = {XT > 0}. Any random variable Z
on (P,Ω) can be restricted to a random variable on (P ∗,Ω∗) (that we still denote with
Z). Then E∗[Z] = 1

XE[ZXT1{XT>0}].

Let X∗
T := 1

XT
. Then

E∗[X∗
T ] =

1 − P0

X
.

This lemma suggests to consider contracts under the probability P ∗ on the underlier
X∗
T = 1

XT
. Indeed, it holds

E∗
[(

1

XT
− 1

K

)
+

]
=
E
[
(K −XT )+1{XT>0}

]
XK

E∗
[( 1

K
− 1

XT

)
+

]
=
E
[
(XT −K)+

]
XK
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which suggests that a Call price under P is also a Put price on the underlier X∗
T under the

new probability P ∗. Furthermore E[(K−XT )+] = E
[
(K−XT )+1{XT>0}+K1{XT=0}

]
=

E
[
(K −XT )+1{XT>0}] +KP0 so that the Put-Call-Parity

1 − P0

X
− 1

K
= E∗

[(
1

XT
− 1

K

)
+

]
− E∗

[(
1

K
− 1

XT

)
+

]

allows us to express the price of Calls on 1
XT

with strike 1
K under P ∗ with respect to the

original Call prices as

E∗
[(

1

X T
− 1

K

)
+

]
= E∗

[(
1

K
− 1

XT

)
+

]
+

1 − P0

X
− 1

K

=
E
[
(XT −K)+

]
XK

+
1 − P0

X
− 1

K
.

We can re-apply the same procedure to the underlier X∗
T under P ∗, defining a prob-

ability measure P ∗∗ and an underlier X∗∗
T .

Definition 7.7. Let XT a non-negative non-constantly zero random variable on the
probability space (P,Ω), with finite expectation E[XT ]. We define

P ∗∗(A) :=
E∗[

1AX
∗
T

]
E∗[X∗

T ]

for every A ∈ Ω∗.

The random variable 1
X∗

T
is well defined and does not vanish under P ∗ since it is

defined on the space Ω∗, so that the corresponding of Lemma 7.13 for the function P ∗∗

becomes the following.

Lemma 7.14. P ∗∗ is a probability measure on Ω∗ = {XT > 0}. Any random variable Z
on (P,Ω) can be restricted to a random variable on (P ∗∗,Ω∗) (that we still denote with
Z). Then E∗∗[Z] = X

1−P0
E∗[Z] = 1

1−P0
E[Z1{XT>0}].

Let X∗∗
T := 1

X∗
T
. Then

E∗∗[X∗∗
T ] =

X

1 − P0
.
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7.4. Smile symmetry and a lift of the relative pricing function

We can now consider Call prices written on X∗∗
T using again the Put-Call-Parity:

E∗∗
[(

1

X∗
T

− 1

K

)
+

]
= E∗∗

[(
1

K
− 1

X∗
T

)
+

]
+

X

1 − P0
− 1

K

=
1

1 − P0
E

[(
1

K
−XT

)
+

1{XT>0}

]
+

X

1 − P0
− 1

K

=
1

1 − P0

(
E

[(
XT − 1

K

)
+

]
−X +

1 − P0

K

)
+

X

1 − P0
− 1

K

=
1

1 − P0
E

[(
XT − 1

K

)
+

]
.

In other words, Calls on X∗∗
T are still Calls on XT , with an apposite rescaling. The

main difference between the two type of Calls is that while Calls on XT might have a
derivative larger than −1 in 0 because of the non-null probability of XT to nullify, the
derived Calls on X∗∗

T will anyways have a derivative in 0 strictly equal to −1.

7.4.2 In terms of pricing functions

We have introduced the change of probability measure to avoid mass in zero, now we can
consider contracts written in the new probability spaces. From the previous discussion
in Section 7.4.1 we get the following.

Lemma 7.15. Assume there is a function C of two variables such that C(X,K) =
E[(XT −K)+]. Then

E∗[(X∗
T −K

)
+

]
=
K

X
C

(
X,

1

K

)
+

1 − P0

X
−K

E∗∗[(X∗∗
T −K

)
+

]
=

1

1 − P0
C(X,K).

We are interested by necessary and sufficient conditions on C such that there exist
functions C∗ and C∗∗ satisfying

C∗(X∗,K) = E∗[(X∗
T −K

)
+

]
C∗∗(X∗∗,K) = E∗∗[(X∗∗

T −K
)
+

] (7.5)

where X∗ := 1−P0
X and X∗∗ := X

1−P0
.

The usual situation where P0 = 0 constantly leads, given that X∗ = 1
X and X∗∗ = X,

to the formulas

C∗(X∗,K) = KX∗C

(
1

X∗ ,
1

K

)
+X∗ −K

C∗∗(X∗∗,K) = C(X∗∗,K).
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which are described in Theorem 2.2.2. of [66].

Note that in the degenerate case where C(X,K) = (X − (1 − P0)K)+, it holds
K
XC

(
X, 1

K

)
+ 1−P0

X − K = (K − X∗)+ + X∗ − K = (X∗ − K)+ and 1
1−P0

C(X,K) =
(X∗∗ −K)+, so that the required property in Equation (7.5) holds.

Going back to the general case, the following lemma finds a sufficient condition for the
existence of the functions C∗ and C∗∗ in case P0 is given by some function P̂0(X) = P0.

Lemma 7.16. A sufficient condition for the existence of functions C∗ and C∗∗ satisfying
Equation (7.5) is the existence of a function f such that X = f

(
X

1−P0

)
where P0 = P̂0(X).

Then

C∗(X∗,K) :=
K

f
(

1
X∗

)C(f( 1

X∗

)
,

1

K

)
+X∗ −K

C∗∗(X∗∗,K) :=
X∗∗

f(X∗∗)
C(f(X∗∗),K).

This lemma generalizes the no-mass at 0 situation where f is the identity function.

In terms of normalized pricing functions

It is also interesting to look at the normalized partial pricing functions (for a fixed pair
X,P0) where the strike is replaced by the moneyness m, and the price is scaled by the
underlier as in Section 7.2.3.

Lemma 7.17. It holds

c∗(m) = mc

(
1

−c′(0+)m

)
+ 1 −m

c∗∗(m) = c

(
m

−c′(0+)

)
.

In particular

c∗
′
(0+) = c(∞) − 1

c∗∗
′
(0+) = −1.

Proof. From definitions, it holds

c∗(m) =
m

X
C

(
X,

X

(1 − P0)m

)
+ 1 −m

c∗∗(m) =
1

X
C

(
X,

X

1 − P0
m

)
.

The first conclusion follows from the definition of c(m) = C(X,Xm)
X and from the fact

that P0 = P (XT = 0) = 1 + c′(0+).
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It is easy to show that the derivative of c∗∗ in 0+ is −1, while the derivative of c∗ in

0+ is c(∞) − 1 + limm→0+

c′
(

1
−c′(0+)m

)
−c′(0+)m . Now by Fubini, d

dKC(X,K) = −P (XT > K) =

−E[1{XT>K}] and it holds

X = E[XT1{XT>K}] + E[XT1{XT≤K}]

≥ KE[1{XT>K}] + E[XT1{XT≤K}].

Letting K to ∞, the term E[XT1{XT≤K}] goes to E[XT ] = X, so that the term

KE[1{XT>K}] = −K d
dKC(X,K) must go to 0. As a consequence, kc′(k) = K

X
d
dKC(X,K)

goes to 0 as k = 1
−c′(0+)m goes to ∞.

7.4.3 The lifted Calls on Calls

Let us go back now to the case of the relative Call on Call pricing function which satisfies

C(S,K +M) = ĈK
(
C(S,K),M

)
.

This means that we set the random variable XT in Definition 7.6 to be (ST −K)+, so
that XT = 0 iff ST ≤ K.

In this contest, the random variables X∗
T and X∗∗

T correspond to 1
(ST−K)+

and (ST −
K)+ seen as random variables in the set {ST > K}, so that

X = C(S,K)

X∗ =
1 − P (ST ≤ K)

C(S,K)

X∗∗ =
C(S,K)

1 − P (ST ≤ K)
.

Then we want to find functions Ĉ∗
K and Ĉ∗∗

K such that

Ĉ∗
K(X∗,M) =

M

C(S,L)
ĈK

(
C(S,K),

1

M

)
+

1 − P (ST ≤ K)

C(S,L)
−M

Ĉ∗∗
K (X∗∗,M) =

1

1 − P (ST ≤ K)
ĈK
(
C(S,K),M

) (7.6)

and we call lifted Calls on Calls the prices Ĉ∗∗
K .

In the following proposition we reconsider Lemma 7.16 and state a sufficient condition
for the existence of such functions Ĉ∗

K and Ĉ∗∗
K .

Proposition 7.7 (Sufficient condition for the existence of Ĉ∗
K and Ĉ∗∗

K ). A sufficient

condition for the existence of functions Ĉ∗
K and Ĉ∗∗

K satisfying Equation (7.6) is that the
function

S → − d

dS
C(S,K)

d

dK
C(S,K) + C(S,K)

d2

dSdK
C(S,K)
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has constant sign for fixed K.

In the homogeneous case this is equivalent to the condition that the function

kc′(k)2 − c(k)c′(k) − kc(k)c′′(k) (7.7)

has constant sign.

In the Black-Scholes case, the condition holds true.

Proof. From Lemma 7.16, a sufficient condition for the existence of Ĉ∗
K and Ĉ∗∗

K is

the existence of a function f such that f
( C(S,K)
1−P (ST≤K)

)
= C(S,K). This condition is

one to one with the fact that the function g(S) = C(S,K)
1−P (ST≤K) is monotone. Indeed, if

g(S1) = g(S2), then f(g(S1)) = f(g(S2)), i.e. C(S1,K) = C(S2,K) and S1 = S2 since
C(·,K) is a monotone function. On the other hand, if g is monotone, then the function
f(x) = C(g−1(x),K) is the required function.

Observe that 1 − P (ST ≤ K) = − d
dKC(S,K). Then we should prove that g(S) =

C(S,K)

− d
dK

C(S,K)
is monotone. The derivative of g has the sign of

− d

dS
C(S,K)

d

dK
C(S,K) + C(S,K)

d2

dSdK
C(S,K).

In the homogeneous case

g(S) =
c(k)S

−c′(k)

and it is monotone iff Equation (7.7) has constant sign.

In the Black-Scholes case, we have

bs(k) = Φ(d1) − kΦ(d2)

bs′(k) = −Φ(d2)

bs′′(k) =
ϕ(d2)

kv

where d1,2 = − log k
v ± v

2 and v = σ
√
T . The expression in Equation (7.7) becomes

Φ(d1)Φ(d2) − (Φ(d1) − kΦ(d2))
ϕ(d2)
v and, using the equality kϕ(d2) = ϕ(d1), the latter

expression becomes 1
v (ϕ(d1)Φ(d2) + vΦ(d1)Φ(d2) − ϕ(d2)Φ(d1)). Since d1 = d2 + v, we

shall study the sign of ϕ(x+ v)Φ(x) + vΦ(x+ v)Φ(x)−ϕ(x)Φ(x+ v) for v > 0. Dividing
by ϕ(x+ v)ϕ(x), this reduces to study

R(x) + vR(x+ v)R(x) −R(x+ v) (7.8)

where R(x) = Φ(x)
ϕ(x) . Let us consider the function Rx(v) = R(x+v)

1+vR(x+v) for a fixed x. Its

derivative can be simplified to R′(x+v)−R2(x+v)
(1+vR(x+v))2

, which has the sign of ϕ(z)2+zΦ(z)n(z)−
Φ(z)2 = ϕ(z)2

(
1 + zR(z) −R(z)2

)
where z = x+ v.
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7.4. Smile symmetry and a lift of the relative pricing function

Observe now that R(z) = r(−z) where r denotes the Mill’s ratio, whence 1+zR(z)−
R(z)2 = 1 − tr(t) − r(t)2 with t = −z. We know that 1 − tr(t) = −r′(t), and also from
Sampford [63] that 1 > 1

r

′
= −r′

r2
, which proves that 1 + zR(z) −R(z)2 < 0.

Therefore Rx(v) attains its maximum for v going to 0, where Rx(0) = R(x). As a
consequence the expression Equation (7.8) is always positive and so is Equation (7.7).

Proposition 7.7 is of particular interest since it shows that in the Black-Scholes case
there exist functions Ĉ∗

K and Ĉ∗∗
K satisfying Equation (7.6), meaning that it is possible

to define lifted Call on Call pricing functions, i.e. Calls on Calls with the property of a
derivative equal to −1 at 0. In particular, we have proved that in the Black-Scholes case

the function g(X) = X
Φ(d2(C−1(X,K),K,v))

where d2(a, b, v) = − log b
a

v − v
2 is invertible in the

variable X and its inverse is f(X∗∗) := g−1(X∗∗) which satisfies

f

(
X

Φ(d2(C−1(X,K),K, v))

)
= X.

The function f , however, does not present an explicit form.
Using Proposition 7.5 we can write the formula for the lifted Call on Call pricing

function in the Black-Scholes case:

Proposition 7.8 (Formula for the lifted Call on Call pricing function in the Black-Sc-

holes model). For K,M, v = σ
√
T ≥ 0, let ψ(a, v; Φ) = infr∈R

a+Φ(r−v)
Φ(r) . Call f̃(·, v) the

inverse of the function

z → z

Φ
(
d2(ψ(z, v; Φ), 1, v)

) .
Then for Black-Scholes prices it holds

Ĉ∗∗
K (X∗∗,M) =

1

Φ(d2(ŝ, 1, v))

(
KŝΦ

(
d1(Kŝ,K+M,v)

)
−(K+M)Φ

(
d2(Kŝ,K+M,v)

))
where d1,2(a, b, v) = − log b

a
v ± v

2 and ŝ = ψ
(
f̃
(
X∗∗

K , v
)
, v; Φ

)
.

Relation with the transformation Uk

Let us consider the lifted Call on Call Ĉ∗∗
K (X∗∗,M) and its normalized function

ĉ∗∗K (m) =
Ĉ∗∗
K (X∗∗, X∗∗m)

X∗∗

where X∗∗ = X
1−P (XT=0) . Then in turn it holds

ĉ∗∗K (m) =
1

X
ĈK

(
X,

X

1 − P (XT = 0)
m

)
=

1

X
C

(
C−1(X,K),K +

X

1 − P (XT = 0)
m

)
.
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We write k = K
C−1(X,K)

and define the function c(l) := C(C−1(X,K),lC−1(X,K))
C−1(X,K)

, then

X = c(k)C−1(X,K) and

ĉ∗∗K (m) =
c
(
k + c(k)

1−P (XT=0)m
)

c(k)

where 1 − P (XT = 0) = −∂KC(C−1(X,K),K) = −c′(k). Then

ĉ∗∗K (m) = Uk(X,K)c(m)

where k(X,K) = K
C−1(X,K)

.

While in Section 7.2.4 we have proved that the transformation Tk corresponds to the
normalization of the relative Call on Call ĈK , here we showed that the transformation
Uk actually corresponds to the normalization of the lifted Call on Call Ĉ∗∗

K . In other
words we showed the following.

Lemma 7.18. The transformations Tk and Uk are linked to relative Calls on Calls ĈK
and lifted Calls on Calls Ĉ∗∗

K via

ĈK(X,M) = Tk(X,K)c
(M
X

)
X

Ĉ∗∗
K (X∗∗,M) = Uk(X,K)c

( M

X∗∗

)
X∗∗

where k(X,K) = K
C−1(X,K)

.

7.5 Implied volatility of the relative pricing functions

The Calls on Calls prices and their lifted prices can be studied from an implied volatility
point of view. It is of extreme interest that, even in the case of underlying Black-Scholes
Calls, the relative prices actually hide smile shapes which are not constant. Also, we
can state something more on these smiles, as we will see that they always explode for
small strikes while behave as the original smiles at ∞.

We define the implied total volatility v̂K(X,M) of the relative Call on Call ĈK(X,M)
and the implied total volatility v̂∗∗K (X∗∗,M) of the lifted Call on Call Ĉ∗∗

K (X∗∗,M) to
be the value of v = σ

√
T satisfying

ĈK(X,M) = BS(X,M, v)

and

Ĉ∗∗
K (X∗∗,M) = BS(X∗∗,M, v)

respectively, where BS is defined in Equation (7.2).
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We are interested in the functions M → v̂K(X,M) and M → v̂∗∗K (X,M) and in
particular to their asymptotics for M going to ∞ and 0. We can look at the limits of
this function studying the relations

ĈK(X,M) = C(C−1(X,K),K +M)

Ĉ∗∗
K (X∗∗,M) =

X∗∗

f(X∗∗)
ĈK(f(X∗∗),M)

where we suppose that there exists f such that f(X∗∗) = X.
We denote with v(S,L) the implied total volatility of the Call option with strike L

and underlier S, so that we shall study the relation between v̂K(X,M) (or v̂∗∗K (X∗∗,M))

and v(C−1(X,K),K + M)). We will also denote d̂1,2(X,M) := d1,2
(
X,M, v̂K(X,M)

)
and d̂∗∗1,2(X

∗∗,M) := d1,2
(
X∗∗,M, v̂∗∗K (X∗∗,M)

)
. When it is clear, we will drop the

dependence to X and X∗∗.

Remark 7.3. In the framework of arbitrage-free prices the functions d1 and d2 are
monotone for the results found by Fukasawa in [32]. The condition of surjectivity is not
granted a priori. In general, it always holds that the function d1 goes at +∞ for small
strikes and the function d2 goes at −∞ for large strikes. However, the function d1 goes
to −∞ for large strikes iff Call prices vanish at ∞, and d2 goes to ∞ for small strikes
iff there is no mass at 0, i.e. the derivative of Call prices is −1 in 0.

Furthermore, Proposition 2.1 in [56] shows that if d1 is surjective, then the Lee right

wing condition holds: v(S,K) <
√

2 log K
S for K large enough; while if d2 is surjective,

then the Lee left wing condition holds: v(S,K) <
√
−2 log K

S for K small enough.

Remark 7.4. For two functions f and g we write f ∼ g iff limx
f(x)
g(x) = 1, where the

limit of x will depend on the situation.
Integrating by parts the expression for 1 − Φ(x) we find

1 − Φ(x) =
ϕ(x)

x
−
∫ ∞

x

ϕ(t)

t2
dt =

ϕ(x)

x
− ϕ(x)

x3
+

∫ ∞

x

ϕ(t)

t4
dt

so that for x > 0
ϕ(x)

x
− ϕ(x)

x3
< 1 − Φ(x) <

ϕ(x)

x
.

Then, for x going to ∞, Φ(−x) ∼ ϕ(x)
x .

7.5.1 Calls on Calls’ implied volatility

In this section we prove that the Calls on Calls’ smiles behave as the original smiles at

∞, while at small strikes they always explode with a rate of
√
−2 log M

X .

Lemma 7.19 (Asymptotic behavior of the Calls on Calls’ total implied volatility). The
Calls on Calls’ total implied volatility v̂K(X,M) behaves asymptotically as
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�

√
−2 log M

X − d̂2(X, 0) for small strikes;

� the underlying total implied volatility v(C−1(X,K),K +M) for large strikes. If it
exists, the limit of v̂K(X,M) is equal to the limit of v(C−1(X,K),K +M).

Proof. Firstly, we observe that − d
dM ĈK(X,M) = −∂KC(C−1(X,K),K +M). In M =

0, this means that Calls on Calls’ prices have a derivative in 0 equal to −∂KC(C−1(X,K),K)
which, for K > 0, is strictly larger than −1. Then, the function d̂2(M) is not surjective

and v̂K ∼
√
−2 log M

X . More precisely, we can write v̂K = γ
√

−2 log M
X where γ ∼ 1 at

∞. Substituting in the expression for d̂2(M), we find

d̂2(M) =

√
2

2

√
− log

M

X

(
1

γ
− γ

)
∼ d̂2(0) (7.9)

where d̂2(0) is the finite limit of d̂2 for M = 0. Observe that 1
1−ε = 1 − ε+ o(ε) so that

1
1−ε − (1 − ε) = 2ε + o(ε). Setting γ = 1 − ϵ, we find from Equation (7.9) that it must

hold ε ∼ d̂2(0)√
−2 log M

X

, or γ ∼ 1 − d̂2(0)√
−2 log M

X

. All in all, we find v̂K ∼
√
−2 log M

X − d̂2(0).

Secondly, from the definition of Calls on Calls’ prices, it follows that Calls on Calls
vanish at increasing strikes iff the underlying Calls vanish. In particular, if d1 has finite
limit, then its implied total volatility must explode at ∞, and similarly for d̂1 and v̂K .
Otherwise, if d1 is surjective, then d̂1 is surjective and in particular for Remark 7.3 the

Lee right wing condition holds, i.e. v(C−1(X,K),M), v̂K(X,M) <
√

2 log M
X for large

M . We can then write the asymptotics of the Call on Call price using Remark 7.4 as

CBS(X,M, v̂K) ∼ X
ϕ(d̂1(M))

−d̂1(M)
−M

ϕ(d̂2(M))

−d̂2(M)

and since Mϕ(d̂2(M)) = Xϕ(d̂1(M)), developing the expressions for d̂1(M) and d̂2(M),
the right hand side becomes

CBS(X,M, v̂K) ∼ Xϕ(d̂1(M))
v̂3K(

log M
X

)2 − v̂4K
4

.

Taking the logarithm in the above expression and looking at the dominating terms, we
find

logCBS(X,M, v̂K) ∼ − d̂1(M)2

2
.

If v̂K ∈ o
(√

log M
X

)
(this includes the case where it goes to a finite limit) then

logCBS(X,M, v̂K) ∼ − 1

2v̂2K

(
log

M

X

)2

,
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otherwise, if v̂K ∼ ĉ
√

log M
X with 0 < ĉ <

√
2, then

logCBS(X,M, v̂K) ∼ −
log M

X

8ĉ2
(2 − ĉ2)2.

Similarly, we develop the asymptotics of the logarithm of CBS(C−1(X,K),K+M,v)

and get that if v ∈ o
(√

log K+M
C−1(X,K)

)
these coincide with

logCBS(C−1(X,K),K +M, v) ∼ − 1

2v2

(
log

K +M

C−1(X,K)

)2

.

Then, also the logarithm of Call on Call prices must have a similar behavior, so that

since log M
X ∼ log K+M

C−1(X,K)
the only possible case is v̂K ∈ o

(√
log M

X

)
and equating the

asymptotic behaviors it follows v̂K ∼ v. In particular, if it exists, the limit of v̂K(X,M)
at ∞ is equal to the limit of v(C−1(X,K),K +M).

Otherwise, if v ∼ c
√

log K+M
C−1(X,K)

with 0 < c <
√

2, then

logCBS(X,M, v̂K) ∼ −
log K+M

C−1(X,K)

8c2
(2 − c2)2.

Now in order to have equivalent asymptotic behaviors, then there must be a positive

ĉ <
√

2 such that v̂K ∼ ĉ
√

log M
X and (2−ĉ2)2

ĉ2
= (2−c2)2

c2
. Solving, the only positive

solution is ĉ = c, so that again v̂K ∼ v.

Relation with the underlying implied volatility

In Lemma 7.1 we show that, in the homogeneous case, Calls on Calls’ prices are in-
creasing as functions of the relative underlying strike. Then, ĈK1(X,M) < ĈK2(X,M)
for every K1 < K2, which implies v̂K1(X,M) < v̂K2(X,M). In particular, for K1 = 0
and K2 = K, it holds Ĉ0(X,M) = C(X,M) = CBS(X,M, v(X,M)) and ĈK(X,M) =
CBS(X,M, v̂K(X,M)), so that looking at the implied total volatilities it follows v(X,M) <
v̂(X,M). This means that the Calls on Calls’s implied total volatility is always larger
than the original implied total volatility for fixed moneyness.

7.5.2 Lifted Calls on Calls’ implied volatility

We now look at the behavior of the smiles of lifted Calls on Calls. In this case, we
expect d̂∗∗2 to be surjective since prices have derivative equal to −1 in 0. However, we
will show that the smiles still explode for small strikes, while the behavior at ∞ is as for
the original smile.

Lemma 7.20 (Asymptotic behavior of the lifted Calls on Calls’ total implied volatility).
The lifted Calls on Calls’ total implied volatility v̂∗∗K (X∗∗,M) behaves asymptotically as

207



7. Options are also options on options: how to smile with Black-Scholes

� (2 −
√

2)
√
− log M

X∗∗ for small strikes;

� the underlying total implied volatility v(C−1(f(X∗∗),K),K +M) for large strikes.
If it exists, the limit of v̂∗∗K (X∗∗,M) is equal to the limit of v(C−1(f(X∗∗),K),K+
M).

Proof. It holds −∂M Ĉ∗∗
K (X∗∗,M) = − X∗∗

f(X∗∗)∂M ĈK(f(X∗∗),M) and −∂M ĈK(f(X∗∗),M) =

1 − P (f(X∗∗) = 0) = f(X∗∗)
X∗∗ , then lifted Calls on Calls’ prices have derivative equal to

−1 at null strikes. In particular, the Lee left wing condition holds: v̂∗∗K (X∗∗,M) <√
−2 log M

X∗∗ for small strikes.

From the Put-Call-Parity, it holds

P ∗∗
BS(X∗∗,M, v̂∗∗K ) =

X∗∗

f(X∗∗)
C(C−1(f(X∗∗),K),K +M) −X∗∗ +M (7.10)

where we dropped the dependence of the implied total variance from the underlier and
the strike for notation simplicity. For M going to 0, since both d̂∗∗1 and d̂∗∗2 go to ∞, the
left hand side behaves as

P ∗∗
BS(X∗∗,M, v̂∗∗K ) ∼ −X∗∗ϕ(d̂∗∗1 )

d̂∗∗1
+M

ϕ(d̂∗∗2 )

d̂∗∗2

= X∗∗ϕ(d̂∗∗1 )
v̂∗∗3K(

log M
X∗∗

)2 − v̂∗∗4K
4

.

As in the proof of Lemma 7.19, we take the logarithm and consider the dominant terms,
so that

logP ∗∗
BS(X∗∗,M, v̂∗∗K ) ∼ − d̂

∗∗2
1

2
.

On the other hand, the right hand side in Equation (7.10) is equal to

X∗∗

f(X∗∗)

(
C(C−1(f(X∗∗),K),K +M) − f(X∗∗)

)
+M

and, since C(C−1(f(X∗∗),K),K) = f(X∗∗), for M going to 0 the above expression
behaves as

X∗∗

f(X∗∗)

(
∂KC(C−1(f(X∗∗),K),K)M + ∂2KC(C−1(f(X∗∗),K),K)M2

)
+M.

Observe that X∗∗

f(X∗∗) = 1
−∂KC(C−1(f(X∗∗),K),K)

so that the above expression reduces to

X∗∗

f(X∗∗)
∂2KC(C−1(f(X∗∗),K),K)M2

where the term multiplying M2 is a positive constant. Then, taking the logarithm, this
behaves as 2 logM .
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Now, if v̂∗∗K ∈ o
(√

− log M
X∗∗

)
then

logP ∗∗
BS(X∗∗,M, v̂∗∗K ) ∼ − 1

2v̂∗∗2K

(
log

M

X∗∗

)2

.

and equating this with 2 logM we find v̂∗∗K ∼
√
− logM

2 , which implies v̂∗∗K /∈ o
(√

− log M
X∗∗

)
,

so that this solution cannot be accepted. If v̂∗∗K ∼ c∗∗
√

− log M
X∗∗ with c∗∗ <

√
2 then

logP ∗∗
BS(X∗∗,M, v̂∗∗K ) ∼

log M
X∗∗

8c∗∗2
(2 + c∗∗2)2

and equating with 2 logM we find that the only admissible solution is c∗∗ = 2 −
√

2.
Regarding the limit for large strikes, the definition of Ĉ∗∗

K implies that lifted Calls on
Calls vanish at ∞ iff the underlying Calls do. Then, d∗∗1 is surjective iff d1 is. So that if
d1 has a finite limit at ∞, then v̂∗∗K must explode. Otherwise, as in the relative Calls on

Calls’ case, the Lee right wing condition must hold: v̂∗∗K (X∗∗,M) <
√

2 log M
X∗∗ for large

enough M . Similarly to the previous section, considering the relation

CBS(X∗∗,M, v̂∗∗K ) =
X∗∗

f(X∗∗)
CBS(C−1(f(X∗∗),K),K +M,v)

and developing for large M , we obtain that v̂∗∗K (X∗∗,M) at ∞ behaves as v(C−1(f(X∗∗),
K),K+M). In particular, if the limit exists, this is equal to the limit of v(C−1(f(X∗∗),
K),K +M) at ∞.

7.5.3 Examples

Black-Scholes Calls on Calls’ implied volatility

In the Black-Scholes case, the implied total volatility is constant. In Lemmas 7.19
and 7.20 we showed that both the Calls on Calls’ implied total volatility and the lifted
Calls on Calls’ implied total volatility explode for M = 0 and go to the original Black-
Scholes total implied volatility at M = ∞.

On the left of Figure 7.4 we plot the total implied volatilities v̂K(X,M) and v̂∗∗K (X,M)
as functions of M . We take X = BS(S,K, v) where S = 100, K = 110 and v = 0.2.

SVI Calls on Calls’ implied volatility

We consider now the SVI model as in Section 7.3.2. For K going to 0, the corresponding

implied total volatility
√

SVI(log K
S ) behaves as

√
b(1 − ρ)| log K

S |. Except for a con-

stant, this is equivalent to the behavior of v̂K(X,M) and v̂K(X∗∗,M) in 0. Also, for M
going to ∞, the three total implied volatilities behave similarly, exploding with a speed

of
√
b(1 + ρ) log K+M

S .
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Figure 7.4: The hidden smiles v̂k(X,M) and v̂∗∗k (X∗∗,M) of the Black-Scholes model
(left) and the smiles obtained from SVI prices (right). The current underlier has value
100, the original strike is set at 110, the original Black-Scholes implied total volatility at
0.2, and the original SVI parameters at a = 0.01, b = 0.1, ρ = −0.6, m = −0.5, σ = 0.1.

We show on the right of Figure 7.4 the total implied volatilities v̂K(X,M) and
v̂∗∗K (X∗∗,M) as functions of M . We set X = BS(S,K,SVI(log K

S )) where S = 100,
K = 110 and the SVI parameters a = 0.01, b = 0.1, ρ = −0.6, m = −0.5, σ = 0.1 are
taken as in Section 7.3.2 in order to guarantee arbitrage-free prices.
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Chapter 8

A closed form model-free
approximation for the Initial
Margin of option portfolios

Abstract

Central clearing counterparty houses (CCPs) play a fundamental role in mitigating
the counterparty risk for exchange traded options. CCPs cover for possible losses
during the liquidation of a defaulting member’s portfolio by collecting initial margins
from their members. In this chapter we analyze the current state of the art in the
industry for computing initial margins for options, whose core component is generally
based on a VaR or Expected Shortfall risk measure. We derive an approximation
formula for the VaR at short horizons in a model-free setting. This innovating
formula has promising features and behaves in a much more satisfactory way than
the classical Filtered Historical Simulation-based VaR in our numerical experiments.
In addition, we consider the neural-SDE model for normalized Call prices proposed
by [Cohen et al., arXiv:2202.07148, 2022] and obtain a quasi-explicit formula for
the VaR and a closed formula for the short term VaR in this model, due to its
conditional affine structure.

From:
C. Martini and A. Mingone, A closed form model-free approximation for the Initial
Margin of option portfolios, arXiv preprint https://arxiv.org/abs/2306.16346,
2023.

8.1 Structure of the chapter

In the first part of this chapter, we look at the mechanism of options’ initial margin
adopted by CCPs in Section 8.2. In Section 8.3 we go into detail in the practical
implementations used by CCPs to calculate initial margins, followed by an assessment
of their pros and cons.
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In the second part of the chapter, we firstly describe in Section 8.4 the short-term
model-free formula that we advance as short-term VaR formula for option portfolios, and
show that it coincides with the exact one in the Stochastic Volatility model. Secondly in
Section 8.5, we derive the closed margin formula in the neural-SDE model for normalized
option prices proposed in [18]. In particular, we will see that the latter closed formula
has the form of our short-term model-free formula for small time steps. We conclude
the chapter by performing numerical experiments in Section 8.6, where plots show the
more regular and promising behavior of our short-term model-free formula compared to
the classic FHS VaR.

8.2 The mechanism of initial margin for options

CCPs charge clearing members, on a daily or intra-daily basis, with total risk require-
ments that are computed from initial margins. The initial margin aims at covering
possible losses in the portfolio value when liquidating it after a default, under normal
market conditions, and it is estimated considering a tail risk.

Consider a portfolio, at time t, with possibly both long (Li)i and short (Sj)j option
positions (both Li and Sj are positive) with different strikes and expiries. In the case
of default at time t, the CCP has to liquidate the portfolio in a Margin Period of Risk
(MPOR) of say h days (h is usually 2 days for exchange-traded options). At date t+ h,
the portfolio could have undergone market movements, so that the CCP has to estimate
its payoff after liquidation.

The initial margin (IM) is then the Value-at-Risk (VaR) or Expected-Shortfall (ES)
at a confidence level of generally 0.99 of the portfolio predicted P&Ls:

IM(t) = −VaR0.99

(
P&L(t+ h)

)
where the minus sign ensures a positive margin value.

At this point, the total risk requirement charged by the CCP does not solely include
the initial margin. Indeed, the CCP eventually adds to the latter quantity some add-
ons to take into account risks that are not directly related to market moves. Among
these, we typically find the Wrong Way Risk add-on, the liquidity and concentration
risk add-on and possibly other specific add-ons:

Total margin(t) = IM(t) + Add-ons(t).

Now, the total margin is floored by the Short Option Minimum (SOM). Deep short
OTM positions have very little risk since they will probably stay OTM along the MPOR.
However, their extreme risk is still not 0 and the methodology should be able to capture
it. This is generally not the case for strikes very far from the ATM, because of the lack
of historical liquid data on these strikes. Then, to assure an enough conservative margin,
a secure floor should be applied to the risk requirement. The SOM is generally the sum
along all short positions of the calibrated extreme costs for these options:

Refined total margin(t) = max
(
Total margin(t); SOM(t)

)
.
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At this point, the final total risk requirement is the refined total margin adjusted by
two other terms: minus the Net Option Value (NOV) on equity-style options (options
for which the premium is paid in full at the settlement date, i.e. one or two days after
the option trade) and the Unpaid Premium (UP), described below:

Total risk requirement(t) = max
(
Refined total margin(t) − NOV(t) + UP(t); 0

)
where the floor by zero is to avoid that the CCP pays and

NOV(t) =
∑
i

LiOi(t) −
∑
j

SjOj(t)

UP(t) =
∑

i unpaid

LiOi(t) −
∑

j undelivered

SjOj(t)

with O denoting the option prices.
For the NOV, let us consider for instance the case of a short option position, where

the option is of equity-style. In the case of a default, the liquidation of this position
would require to buy the option in the market, which amounts to the CCP paying the
option price at the time of liquidation. This means that the initial margin for a short
option position should aim to cover the largest option price, up to a fixed confidence
level. On the other hand, the liquidation of a long option position will always result in
a positive inflow for the CCP, because the CCP will sell the long option position and
receive the option price.

The reason why the CCP applies the NOV can alternatively be explained observing
that the liquidation at the end of the MPOR, at time t + h, will result for the CCP in
the monetary flow:

Liquidation P&L(t+ h) =
∑
i

LiOi(t+ h) −
∑
j

SjOj(t+ h).

The Liquidation P&L can be expressed as the sum of the NOV and the portfolio’s value
increment:

Liquidation P&L(t+ h) =
(∑

i

LiOi(t) −
∑
j

SjOj(t)
)

+

+
(∑

i

Li
(
Oi(t+ h) −Oi(t)

)
−
∑
j

Sj
(
Oj(t+ h) −Oj(t)

))
= NOV(t) + P&L(t+ h).

Then, the CCP has to charge to the clearing member minus the liquidation profit, i.e. the
predicted losses (the initial margin appropriately adjusted by the add-ons and the SOM)
minus the NOV on equity-style options.

The UP is charged by the CCP to cover from the risk of default of the counterparts
before the settlement date of the option premium, and it corresponds to the net position
of accrued option premiums which are still unpaid (because the settlement date has not
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passed yet). In this way, the difference between the UP and the NOV can be seen as a
(Contingent) Variation Margin for Options (VMO) not yet settled.

Consider a defaulting clearing member which is long an option before the settlement
date. The CCP will need to pay the premium to its counterpart in the trade, and this
will be done re-selling the option and collecting its new premium, and using the VMO
previously required to the buyer. This latter component is needed to account for the
difference between the initially established option premium and today’s one. Similarly,
the CCP has to liquidate defaulting short positions on not yet settled options buying
the option and delivering it to the buyer counterpart. To do so, it will use the money
from the buyer plus the VMO from the defaulting seller.

All in all, the final formula for the total risk requirement is

Total risk requirement(t) = max
(
max

(
IM(t)+Add-ons(t); SOM(t)

)
−NOV(t)+UP(t); 0

)
.

In this chapter we will focus on the IM component of the total risk requirement.

8.3 Initial margin for options in the industry: a short
survey

The total risk requirement mechanism and its different layers is essentially the same
across all CCPs, with possible differences in wording. What really makes the difference
among CCPs’ requirements is the way the IMs (and the add-ons) are computed. A
notorious parametric model for margining has been proposed by CME Group under
the name of SPAN.1 It consists in computing the P&Ls of the portfolio under different
risk scenarios depending on the combination of underlying price changes and implied
volatility changes. A similar model has been implemented by ICE with the name of
IRM. These models are particularly tricky and overconservative, and for these reasons
nowadays CCPs are passing to new models. In particular, both SPAN and IRM models
have been upgraded to the corresponding SPAN22 and IRM23 models, which both use
the Filtered Historical Simulation (FHS) techniques to create risk scenarios. Indeed, the
majority of CCPs is now adopting the FHS to compute IMs for option portfolios.

8.3.1 Filtered Historical Simulation

The FHS has recently become the standard approach for VaR computations among
CCPs, especially on cash equity markets. The FHS technique is indeed particularly
efficient in cash equity and fixed income markets for spot instruments, but it becomes
more subtle in derivatives clearing.

The FHS model is particularly appreciated since it is essentially data-driven and
model-free, and it relies on few requirements to be satisfied. For a given instrument

1https://www.cmegroup.com/clearing/risk-management/span-overview.html
2https://www.cmegroup.com/clearing/risk-management/span-overview/span-2-methodology

.html
3https://www.theice.com/clearing/margin-models/irm-2/methodology
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to be cleared, firstly the CCP must choose the risk factors which drive its price; let
rs denote their returns, either logarithmic, absolute, or relative depending on the risk
factor. A key property that scaled returns must satisfy is stationarity (see [7]). Indeed,
the FHS model relies on the hypothesis that risk factors’ returns at tomorrow’s date
t+ 1 behave as

rt+1 = ησt+1

where σt+1 is the returns’ simulated conditional volatility at day t + 1 and η is drawn
from the historical observations

ηs =
rs
σs
.

In other words, the past historical return is re-contextualized to the current volatility
context by the FHS devoling/revoling steps.

Generally, the industry standard is to use an Exponentially Weighted Moving Av-
erage (EWMA) variance estimator for the volatility. A EWMA volatility with decay
factor λ is computed as

EWMAs =
√

(1 − λ)(rs)2 + λEWMA2
s−1,

with an eventual flooring in case of too low values. Then, the historical volatility
σs used to scale historical returns can be calculated with two possible formulations:
σs = EWMAs and σs = EWMAs−1 respectively. The two alternatives are discussed in
[42], section 7.1, where it is acknowledged that they will lead to significantly different
outcomes.

When computing the IM for portfolios of options using the FHS methodology, the
CCP has to choose a set of risk factors, assessing the stationarity property in particular.
Together with the underlying value (and possibly the interest/repo rate), also the Implied
Volatility (IV) has to be taken as a risk factor. Since the IV is actually a surface
which behaves differently depending on the strike and the maturity of the option, two
alternatives can be considered in order to generate IV scenarios:

1. Identify a fixed two-dimensional grid for the IV surface and define each point as a
risk factor.

2. Choose a model for option prices and take its parameters as risk factors.

For deeper insights on the VaR computation for options in a FHS approach see [40].

Implied Volatility anchor points

In the first alternative, the anchor points on the grid can be chosen with fixed time-to-
maturity or fixed rolling index as first coordinate, and fixed log-forward moneyness, or
fixed delta, or (equivalently) fixed ratio between log-forward moneyness and square-root
of time-to-maturity as second coordinate. Since market data is more dense around the
ATM point for shortest maturities and spreads out for increasing maturities, the fixed
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delta grid is generally preferred. Indeed, it implies a grid in log-forward moneyness with
a triangular shape, with a range that starts from the ATM point and spreads out as the
time-to-maturity increases.

If choosing a dense grid guarantees a more precise fit of IVs in between the anchor
points, it highly decreases computation performances and makes it difficult to identify
general historical patterns in the IV surface dynamics. For this reason, Principal Com-
ponent Analysis (PCA) can be performed in order to model the shifts of the surface.
To cite an example, in [68], the authors test the FHS method on the (PCA) principal
components in a Karhunen-Loève decomposition and find that scenarios satisfy the con-
ditions of no Butterfly arbitrage (i.e. the requirement that for a fixed maturity, Call
prices must be non-increasing and convex with respect to the strike).

Once scenarios are generated on the anchor points, the model still needs an interpo-
lation/extrapolation criterion to predict future prices on points outside the grid. The
criterion could be either a model for the implied volatility (such as SVI) or for prices
(such as SABR), which has to be calibrated from the scenarios grid, or classic interpola-
tions via b-splines. The choice can be driven by arguments of non-arbitrability of prices,
or of best fit and computation efficiency of the algorithm.

Implied Volatility models

In the second alternative, the CCP chooses a pricing model for options and, once the
stationarity property on the model parameters’ returns is verified, performs an FHS on
the model parameters.

As an example, the SABR model is an industry standard and it is driven by three
parameters α, β and ρ. Generally, the β parameter is fixed a priori based on historical
observations, so that only the α and ρ parameters need to be estimated. After showing
the stationarity of their returns in the target market, the CCP can apply the FHS
technique on the historical observations of α and ρ, and use their drawn values to simulate
future prices.

Similarly, the Stochastic Volatility Inspired (SVI) model by Gatheral is largely used
among CCPs, and also among crypto funds, to model the implied total variance. Its
sub-model Slices SVI (SSVI) is sometimes preferred since it has more tractable arbitrage-
free requirements and since it still fits data pretty well. SSVI has three parameters θ, φ
and ρ per each maturity, so that if the stationarity of their returns is verified, the FHS
technique can be applied to obtain simulated prices. An example of this application can
be found in [40].

Lastly, a model which is sometimes considered is the Gaussian lognormal mixture
model as described by Glasserman and Pirjol in [37]. It consists in a convex combination
of Black-Scholes prices and the number of parameters depends on chosen number of basis
prices. Even though it is easy to implement, it guarantees no arbitrage for slices and it
has very good fitting ability, the model is not easy to extend to full surfaces and it hides
potential issues when extrapolating in extreme events. Indeed, it has the theoretical
property to have the same constant asymptotic level in the two wings of the smile
(Proposition 5.1 of [37]), so that while the calibration of market smiles could suggest
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a decreasing shape, the calibrated smile with a lognormal Gaussian mixtures would
necessarily increase at large strikes, a pure model artefact. As a consequence, while
calibration fit could be good for liquid market data (concentrated around the ATM
point), in contexts such as the computation of tail risks as in margins, the extrapolation
at extreme strikes would be misleading in those circumstances.

Limitations of the FHS

The FHS technique works well when a large history of risk factors is stored, which is in
fact a first immediate practical limitation. Indeed, the possible number of scenarios for
the FHS cannot be larger than the available history, since the normalized returns are
drawn from past observations.

A second important drawback of the FHS methodology for complex products is the
capture of the joint dynamics of risk factors. Indeed, in the FHS model, risk factors are
re-scaled according to their own intrinsic volatility, without any reference to other risk
factors and this may cause a discrepancy in the relationships between the risk factors,
and in particular in their correlations, as explained in section 7.2 of [42]. Furthermore,
while the property of stationarity of the normalized returns of single assets is generally
historically satisfied, this is more hardly the case for the returns of IV points or model
parameters, resulting in more unstable and unnatural results for the FHS methodology.

Thirdly, FHS is relatively straightforward to implement, as far as the risk factors
under study do not have structural relationships which could be destroyed by the core
FHS algorithm. Unfortunately, this is exactly the case for futures’ curves and implied
volatility surfaces.

Indeed, in the case of futures’ curves, the FHS simulation considers a set of fixed
pillars (i.e. futures’ time-to-maturities) of the curves today and apply the re-scaled cor-
responding past returns. For each simulation, the simulated vector of futures values on
the fixed pillars should be consistent between the spot returns and the future returns.
However, this consistency is not guaranteed by the FHS simulations.

Similarly, when using the IV anchor points as risk factors, even if the calibrated
volatility surfaces are perfectly calibrated and arbitrage-free, the volatility surfaces ob-
tained by an FHS procedure have no reason to be arbitrage-free in turn (and in general
will not be, because arbitrage-free surfaces do not have nice additive or multiplicative
properties). Furthermore, IV anchor points returns are generally considered in absolute
terms, which could cause negative simulated implied volatilities. Flooring the latter
quantities to 0 is not a good choice, since: 1) prices for zero volatility are always strictly
lower than the market prices for European options; 2) since Call option prices are de-
creasing functions of the strike, a zero volatility for an OTM option implies that all the
options of same type with the same maturity and larger strikes should also have a zero
volatility, so that also simulated implied volatility smiles should satisfy this property.

The possibility of generating scenarios such that each matrix of prices indexed by
the moneyness and time-to-maturity grid is arbitrage-free is essentially an open ques-
tion. A recent article [24] describes a weighted Monte-Carlo algorithm which penalizes
arbitrageable scenarios to obtain arbitrage-free simulations with higher probability. We
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explain the model in Section 8.3.3. Another alternative is to use parametric models of
IV surfaces, for which no-arbitrage conditions are available, and work at the level of the
parameters of such models. Yet, randomizing the model parameters may produce a lot
of instability. A noteworthy attempt is the neural-SDE model of [18], that we investigate
further below, which provides a consistent framework for this purpose.

Finally, the FHS methodology is known to be procyclical as shown for example in
section 6 of [42]. Procyclicality has to be avoided because it implies margins which
react too abruptly to market changes, and this may cause liquidity issues to the clearing
members who have to post the corresponding collateral.

8.3.2 The procyclicality control by Wong and Zhang (Options
Clearing Corporation)

Even though the FHS model is the most popular among CCPS, in the recent years some
new models for the options clearing are born and CCPs are starting to look at these
alternatives. An important feature in margin requirements that CCPs should always try
to mitigate is procyclicality and we have seen that FHS does not properly satisfy this
requirement. Article 28 of [21] is dictated to the procyclicality control, detailing specific
actions that CCPs have to adopt for its limitation.

With this in mind, Wong and Zhang from the Options Clearing Corporation (OCC)
choose a model for options initial margin (see [67]) that guarantees to control procycli-
cality thanks to a dynamic scaling factor that behaves as an inverted S-curve and is
higher during low-volatility periods and lower during high-volatility ones.

The model specifies the log-returns of the ATM IV at expiry Tj by

log
σt+h(Tj , Ft(Tj))

σt(Tj , Ft(Tj))
:= ηt

(Tj
T1

)−α√
hzt (8.1)

where zt is a normalized innovation, centered with unit variance, Ft(Tj) is today’s forward
for maturity Tj , and T1 is the first quoted expiry. The factor ηt in turn is a dynamic
rescaling of the CBOE VVIXSM (VVIX), in particular

ηt = D(σt)VVIXt

where σt is the S&P500 ATM IV of the short-term expiry (or any reference expiry, like
the one-month), and the scaling factor D(σt) is a sigmoid function, which models a state
transition from a risk point of view:

D(σt) = L+
H

1 + exp (κ(σt − σ∗))
.

Here L is the minimum of the ratio between the long-term mean of the historical vol-of-
vol and the VVIX, H is the difference between the maximum and the minimum of the
latter ratio, κ is the growth rate of the curve, and σ∗ is the sigmoid’s midpoint.
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The IV surface is recovered from the ATM IV dynamics considering the second order
approximation in log K

Ft(T )
:

σt(T,K) ≈ σt(T, Ft(T )) + Σt(T ) log
K

Ft(T )
+ Ct(T )

(
log

K

Ft(T )

)2
,

where Σt(T ) and Ct(T ) are respectively the ATM skew and the ATM curvature.
In this way, knowing the distribution of zt allows to perform simulations of implied

volatility surfaces and to compute an empirical VaR.
Observe that the dynamics of the implied volatility in Equation (8.1) are modeled

for fixed strike and expiry, i.e. for a fixed contract. This differs with the majority of
other models, whose dynamics are defined for fixed time-to-maturity and log-forward
moneyness.

8.3.3 Arbitrage-free simulations for options

When computing an IM, the priority of the CCP is to be conservative enough to cover for
members’ defaults, while not requiring too high margins to keep its competitiveness in
the market and avoiding procyclicality. For this reason, arbitrage-free requirements are
not necessarily taken into account as seen for the FHS methodology. However, simulating
reliable scenarios (and so scenarios with no arbitrage) allows to estimate more plausible
margins, and avoids the pitfall of paying for implausible scenarios.

The article [24] describes a cunning way to compute an empirical VaR tweaking
the simulations from any model in favor of arbitrage-free simulations. The arbitrage
considered in the article is the static arbitrage, that, in case of options, can arise in both
the direction of time-to-maturity and the direction of log-forward moneyness. Arbitrage-
free Call prices should:

1. lie between the discounted intrinsic value (computed with respect to the forward)
and the discounted forward;

2. increase in time-to-maturity at a fixed moneyness;

3. decrease in log-forward moneyness at a fixed time-to-maturity;

4. be a convex function of the log-forward moneyness.

Note that in the article, the authors only address the last three points, but the
methodology can be easily extended to include the first one.

Per each arbitrage situation, a penalization function is defined, depending only on the
normalized Call prices surface on a fixed time-to-maturity and log-forward moneyness
discrete grid. Penalization functions are null in case of no arbitrage and increase their
value with increasing arbitrageable grid points. The target arbitrage penalty function is
the sum of the three penalization functions, and it is null if and only if the discrete Call
prices are free of arbitrage.

At this point, the VaR calculation algorithm is straightforward:
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1. Simulate scenarios using the chosen initial model.

2. Per each simulated scenario:

� evaluate the arbitrage penalty function;

� compute its weight inversely proportional to the arbitrage penalty function.

3. Compute empirical VaR under the probability measure resulting from weights.

Since weights prioritize arbitrage-free scenarios, the VaR calculation hangs towards
more reliable and possible values.

The methodology holds for any model that simulates scenarios. It can then be applied
to both FHS and Monte-Carlo simulation models. In particular, the authors apply it to
a non-parametric generative model for implied volatility surfaces called VolGAN (section
6 of [24]).

8.3.4 The neural-SDE model

In [19], Cohen at al. show very good empirical results on options’ VaR estimation. The
results are based on a specific model that the authors introduce in [18], which consists in
a representation of normalized Call prices via non-random linear functions of some risk
factors ξt. The articles focus on how to calibrate and consequently generate arbitrage-
free Call prices surfaces via neural networks for the dynamics under consideration.

In the neural-SDE model, the normalized Call prices (i.e. Call prices divided by the
forward and discount factor) are affinely decomposed into time-independent non-random
surfaces Gi and time-dependent stochastic combining factors ξt,i ∈ Rd:

ct(τ, k) = G0(τ, k) +G(τ, k) · ξt

= G0(τ, k) +

d∑
i=1

Gi(τ, k)ξt,i
(8.2)

where τ is the time-to-maturity and k is the log-forward moneyness. The underlying
asset St and the time-dependent vector ξt evolve as

dSt = α(ξt)Stdt+ β(ξt)StdW0,t S0 = s0 ∈ R,
dξt = µ(ξt)dt+ σ(ξt) · dWt ξ0 = ζ0 ∈ Rd,

(8.3)

where W0 ∈ R, W = (W1, . . . ,Wd)
T ∈ Rd are independent standard Brownian motions

under the real-world measure P , and the hypothesis for the existence and uniqueness
of the processes hold, i.e. α(ξt) ∈ L1

loc(R), µ(ξt) ∈ L1
loc(Rd), β(ξt) ∈ L2

loc(R), σ(ξt) ∈
L2
loc(Rd×d). Observe that α, β, µ and σ are deterministic functions.

Starting from these assumptions, the factors are decoded using different PCA-based
techniques to also ensure that the reconstructed prices are more likely to be arbitrage-
free both in a static and in a dynamic sense. Absence of dynamic arbitrage is ensured
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through Heath-Jarrow-Morton-type conditions while absence of static arbitrage is en-
sured by imposing that each discretized normalized Call prices’ surface satisfies a set of
linear conditions Ac ≥ b for some matrix A and vector b (see [17]). Notice that since the
decomposition of the normalized Call prices is affine and the no static arbitrage condi-
tions are linear, it is possible to rewrite the latter conditions for ξt as A·G·ξt ≥ b−A·G0.

Given the history of market Call prices, the factors Gi can be calibrated for every
grid point (τj , kj) and factors ξs,i for every past day s under the no arbitrage constraints.

After the factors decoding, Cohen at al. set up a supervised learning process to
estimate α(ξt), β(ξt), µ(ξt), σ(ξt) via a maximal likelihood function which ensures that
the time series for ξt evolves inside the convex polytope generated by the no static
arbitrage conditions.

Empirical VaR in the neural-SDE model

From now on we denote with αt the process α(ξt) and similarly for βt, µt and σt.

Suppose we want to compute the VaR of a portfolio constituted of Call options at
MPOR date t+ h, where h = nδt and δt is the one day unit.

Having the drift and diffusion functions for the time series of ξt and the underlier
from the model calibration, predictions can be made with an Euler scheme in a Monte-
Carlo fashion. In particular (with an abuse of notation), processes values for the first
step at t+ δt are

St+δt = St exp

((
αt −

β2t
2

)
δt+ βt(W0,t+δt −W0,t)

)
,

ξt+δt = ξt + µtδt+ σt(Wt+δt −Wt),

where

W0,t+δt −W0,t =
√
δtX0,

Wt+δt −Wt =
√
δtX,

with independent standard Gaussian random variables X0 ∈ R, X ∈ Rd.
In order to guarantee more stability of simulations, a tamed Euler scheme can also

be implemented.

The following steps are performed as above, using the latest values of S· and ξ·. At
each step, new parameters α·, β·, µ· and σ· can be estimated using the neural network
algorithm implemented in [18].

Alternatively, assuming α·, β·, µ· and σ· to be constant between t and t+h = t+nδt,
simulations for St+h and ξt+h can be faster computed as

St+h = St exp

((
αt −

β2t
2

)
h+ βt(W0,t+h −W0,t)

)
,

ξt+h = ξt + µth+ σt(Wt+h −Wt).

(8.4)

223



8. A closed form model-free approx for the IM of option portfolios

The predicted values of ξt+h can then be used to compute predicted values of normal-
ized Call prices using Equation (8.2), which can be de-normalized using the predicted
values of St+h.

The number of simulations that can be performed is arbitrary, so that a stable value
of the VaR can be computed as the empirical quantile of simulated Call prices.

Limitations of the neural-SDE model

In this calibration routine of the neural-SDE model, there is an important point which,
according to us, should be taken into consideration in applications: the G parameters are
calibrated on the history of market prices, but given their linear role in the normalized
Call prices, there is little hope that a long history of Call prices will be well explained
by the very same G factors. Indeed, normalized Call prices in this model are random
linear combinations of fixed surfaces, so that one should probably expect the Call prices
to maintain these fixed parameters for no more than a typical period of one month or so,
after which they should be re-calibrated. In [18], the G parameters are calibrated on a
17-years history, which might be far from being realistic in practice. As a consequence,
calibration fit is not as good as in other more dynamic models. As an example, the mean
absolute percentage error (MAPE) computed by the authors in Table 2 of [19] using two
components of ξt is around 4.61% and 5.40%, while in our tests limiting the calibration
window of G to one month reduces the MAPE to about 1.5 percentage points. On the
other hand, it is not possible to simply calibrate the G parameters on shorter periods of
past history, since then the neural-SDE on the ξt factors cannot be properly trained to
estimate the model parameters, given the too low amount of historical data.

To some extent, there is therefore a trade-off between the stationarity of the model
and its relevance - note though that one could argue that this is a general situation for
any model.

Furthermore, this stationarity of parameters is likely to be related to the low procycli-
cality of the obtained VaR estimations that the authors claim: because the G parameters
are the same since several years, the initial margin is indeed automatically less reactive
to market changes.

This being said, the neural-SDE model provides a consistent and tractable framework
which seems to us very promising.

8.3.5 The market data in input of the margin computation, and
Market/Model add-ons

The models described above for margin computations (FHS, arbitrage-free GANs, neural-
SDE) have all in common the generation of scenarios for the risk factors. In the case
of options, these scenarios can only be generated after an initial calibration of market
prices using any internal model, calibration which will then be reversed to get simulated
prices. Indeed, the CCP needs a model and/or an interpolation scheme to get prices at
any time-to-maturity and log-forward moneyness, and this scheme is used since the be-
ginning of the IM computation. As a result, margins are based on model prices (i.e. prices
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calibrated/interpolated with the selected scheme), rather than market prices, and should
then be adjusted by a term taking into consideration how the initial discrepancy between
market and model prices propagates when computing the IM.

There can be two approaches to this issue in the context of a VaR-type model:

1. Apply the scenarios to the calibrated model prices, thus obtaining shocked model
prices, and assume that the model P&Ls are a good representative of the market
P&Ls, along each scenario. This means that the calibration error is assumed to be
the same at the current date and at the future date along the shocked scenario.

2. Compute a Market/Model add-on, which incorporates risk coming from the fact
that the model which has been used to estimate the IM does not perfectly match
market prices. Since the final risk requirement is computed on model prices and
captures future movements of model prices, so that it could differ from the actual
requirement needed for market prices, the Market/Model add-on estimates how
large the difference between the market IM and the model IM is and adds it to the
final requirement.

In the second approach, market P&Ls can be decomposed in 3 terms:

� the difference between the portfolio price under the calibrated model and its market
price: Pmod

t − Pmkt
t ;

� the difference between the portfolio model prices along the scenario s: P̃mod
t+h,s −

Pmod
t ;

� the difference between the portfolio price under the calibrated model and its market
price at the simulated date along the scenario s: P̃mkt

t+h,s − P̃mod
t+h,s.

The first of the 3 terms above is known and can be readily computed; the second term
is computed in the IM; the third term depends on each scenario and upon the assumption
on the distance between the market and model prices at the future simulated date along
each scenario. The Market/Model add-on aims at covering this third source of risk.

8.4 A simple short-term model-free formula

In this section we describe a new short-term model-free formula for options VaR, which
only depends on market data and does not need any model-specific calibration. The
short-term attribute depends on the fact that approximations are performed in the
MPOR component, so that the shorter the MPOR, the more precise is the formula.

In the following we work at today’s time t, so that all past quantities up to time t
(included) are observed. We denote with DFt(τ) and Ft(τ) the discount factor and the
forward value for time-to-maturity τ evaluated at time t. We work under the hypothesis
of known constant rates between today date t and the MPOR date t + h, so that for a
given time-to-maturity, discount factors are constant and forward values are proportional
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to the underlier St. In particular we write Ft(τ) = f(τ)St. We call δt the one day unit
and consider an MPOR h = nδt of n days. Finally, we denote respectively by pY and FY
the probability density function and the cumulative density function of a generic random
variable Y . The cumulative density function and the probability density function of a
standard Gaussian random variable are denoted with Φ and ϕ respectively. Also, when
considering the distribution of the underlier St+h at time t + h, we actually mean the
distribution conditional to quantities at time t (i.e. St and other risk factors ξt). If
not otherwise specified, the coefficients of any SDE (such as αt, βt, µt, σt, ηt, ρt) are
deterministic functions of the risk factors and time.

In the following sections we will always consider a portfolio of Vanilla Calls with
price at time t given by

Πt(St, ξt) =
∑
i

πiC
(
Ti − t, log

Ki

f(Ti − t)St
;St, ξt

)
where C(τ, k;St, ξt) is a generic model price of a Call with time-to-maturity τ and log-
forward moneyness k, depending on the current value of the underlier St and of the other
possible risk factors ξt (as for example the implied volatility in the short-term model-free
case). The P&Ls are defined as the finite differences of the portfolio over the MPOR:

P&L := Πt+h(St+h, ξt+h) − Πt(St, ξt).

The h-days VaR at confidence level θ (close to 1) of the portfolio is the quantity
v(θ, h) such that

P
(
P&L ≤ v(θ, h)

)
= 1 − θ.

Sometimes we will need to develop the above expression using conditional probabilities.
In particular, it holds

P
(
P&L ≤ v(θ, h)

)
= E[1P&L≤v(θ,h)]

= E
[
E[1P&L≤v(θ,h)|St+h]

]
=

∫ ∞

0
P
(
P&L ≤ v(θ, h)|St+h = s

)
dFSt+h

(s).

(8.5)

In the case of existence of a probability function for St+h, the latter expression can be
written as

P
(
P&L ≤ v(θ, h)

)
=

∫ ∞

0
pSt+h

(s)P
(
P&L ≤ v(θ, h)|St+h = s

)
ds.

8.4.1 The Black-Scholes case and the Stochastic Volatility case

Before introducing the short-term model-free VaR formula, we firstly look at some pro-
totypical examples such as the Black-Scholes and the Stochastic Volatility cases.

In the classic Black-Scholes case, the underlier is a geometric Brownian motion

dSt = αtStdt+ βtStdWt
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under the real-world probability measure. Applying Ito’s lemma, portfolio prices are
processes such that

dΠt(St) =

(
Stαt

d

dSt
Πt(St) +

1

2
S2
t β

2
t

d2

dS2
t

Πt(St)

)
dt+ Stβt

d

dSt
Πt(St)dWt.

Writing dWt as
√
hX where X is a standard Gaussian random variable and approximat-

ing the above expression at the first order we have that the P&Ls have the form

Πt+h(St+h) − Πt(St) ≈ Stβt
d

dSt
Πt(St)

√
hX.

Then, it is easy to compute the VaR with a first order approximation:

P
(
P&L ≤ v(θ, h)

)
= P

(
d

dSt
Πt(St)X ≤ v(θ, h)

Stβt
√
h

)
so that

v(θ, h) = Φ−1(1 − θ)Stβt

∣∣∣ d
dSt

Πt(St)
∣∣∣√h.

The above reasoning can actually be generalized to Stochastic Volatility models where
the volatility of the underlier is a stochastic process with volatility σt:

dSt = αtStdt+ ξtStdW0,t

dξt = µtdt+ σtdWt

dW0,tdWt = ρtdt.

In the above formulation we have dropped the dependency of volatility parameters in
the volatility itself, i.e. µt = µt(ξt) and σt = σt(ξt). Indeed, in order to guarantee the
positivity of the volatility there must be such a dependency. Applying Ito’s lemma to
the portfolio Πt(St, ξt) of option prices generated by the pricing version of the Stochastic
Volatility model, one finds

dΠt(St, ξt) = atdt+ Stξt
d

dSt
Πt(St, ξt)dW0,t + σt

d

dξt
Πt(St, ξt)dWt

where

at = αtSt
d

dSt
Πt(St, ξt) + µt

d

dξt
Πt(St, ξt) +

ξ2t S
2
t

2

d2

dS2
t

Πt(St, ξt)+

+
σ2t
2

d2

dξ2t
Πt(St, ξt) + ξtStσtρt

d2

dStdξt
Πt(St, ξt).

Considering the finite increments of the portfolio and neglecting linear terms for h going
to 0, the form of the P&Ls becomes

Πt+h(St+h, ξt+h) − Πt(St, ξt) ≈ Stξt
d

dSt
Πt(St, ξt)

√
hX0 + σt

d

dξt
Πt(St, ξt)

√
hX,
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where X0 and X are standard jointly normal random variables with correlation ρt equal
to the correlation of the two Brownian motions. Then, any combination of X0 and X is
still normal and the VaR of the portfolio is

v(θ, h) = Φ−1(1 − θ)

√√√√√√√
(
Stξt

d

dSt
Πt(St, ξt)

)2
+
(
σt

d

dξt
Πt(St, ξt)

)2
+2ρtStξtσt

d

dSt
Πt(St, ξt)

d

dξt
Πt(St, ξt)

√
h. (8.6)

8.4.2 A short-term model-free formula

Driven by the results in the Black-Scholes and the Stochastic Voaltility case, we gener-
alize the VaR formulas to a short-term model-free formula which can be applied to any
historical series of spot and option prices.

With this aim, we rather work using the implied volatility, which can always be
computed from market prices using a root-finding algorithm applied to the classic Black-
Scholes pricing formula

BSt
(
k, τ, ω, Ft(τ),DFt(τ), σimp

t (k, τ)
)

= ωDFt(τ)Ft(τ)
(
Φ(ωd1) − ekΦ(ωd2)

)
where k = log K

Ft(τ)
is the log-forward moneyness, τ = T − t is the time-to-maturity,

ω = +1 if the option is a Call, −1 if it is a put, and

d1,2 = − k

σimp
t (k, τ)

√
τ
± σimp

t (k, τ)
√
τ

2
.

When computing risks, the implied volatility σimp
t (k, τ) is generally considered as a

risk factor together with the underlier St. For this reason, we write it as a function of
a driving factor ξt: σ

imp
t (k, τ) = σ(k, τ, ξt), so that the dynamics of the two risk factors

are
dSt = αtStdt+ βtStdW0,t

dξt = µtdt+ ηtdWt

dW0,tdWt = ρtdt.

(H1)

Observe that the implied volatility risk factor depends on the log-forward moneyness
and the time-to-maturity rather than the contract strike and its maturity. Indeed, the
time series of a fixed contract is available since its issue date and is then limited in time.
Furthermore, we do not expect its implied volatility to have any nice statistical property
of stationarity that could legitimate drawing meaningful forecasts for its historical re-
turns between time t and t+ h. On the contrary, we expect that the market encode the
implied volatility risk rather in a log-forward moneyness, time-to-maturity map, mean-
ing that the time series of the implied volatility at a fixed point in this relative grid will
have much nicer features.
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Let us consider a portfolio of Calls and Puts written as Black-Scholes functions:

Πt(St, ξt) =
∑
i

πiBSt

(
log

Ki

f(Ti − t)St
, Ti − t, ωi, Ft(Ti − t),DFt(Ti − t),

σ
(

log
Ki

f(Ti − t)St
, Ti − t, ξt

))
=:
∑
i

πiBSit.

(8.7)

Repeating the steps in Section 8.4.1, the approximated formula for the VaR becomes

v(θ, h) = Φ−1(1 − θ)

√√√√√√√
(
Stβt

d

dSt
Πt(St, ξt)

)2
+
(
ηt

d

dξt
Πt(St, ξt)

)2
+2ρtStβtηt

d

dSt
Πt(St, ξt)

d

dξt
Πt(St, ξt)

√
h.

This formula is far from being model-free for two reasons:

� The term d
dSt

Πt(St, ξt) is the full derivative of the portfolio Πt with respect to St,
which also involves the derivative of prices with respect to the implied volatility,
since it depends on k = log K

f(τ)St
. As a consequence, it does not correspond to the

Black-Scholes delta and its expression must be made explicit.

� The term d
dξt

Πt(St, ξt) is the derivative of the portfolio with respect to ξt, and it
does not coincide with what the market indicates with vega, i.e. the sensibility of
the portfolio to the option volatility.

Given the above, we shall rather develop the dynamics of the portfolio as a function
of St and σ(k, τ, ξt) where k also depends on St.

Observe that for fixed k and τ , we have

dσt = ∂ξσt dξt

= µt∂ξσt dt+ ηt∂ξσt dWt
(8.8)

where σt = σ(k, τ, ξt). We define ζt(k, τ, ξt) := ηt∂ξσ(k, τ, ξt).

On the other hand, writing k = log K
f(τ)St

and τ = T − t, we rather find

dσt = at dt−
∂kσt
St

dSt + ∂ξσt dξt

=
(
at − αt∂kσt + µt∂ξσt

)
dt− βt∂kσt dW0,t + ζt dWt

(8.9)

where at = −∂τσt + ∂kσt
∂τf
f +

β2
t
2 (∂2kσt + ∂kσt) +

η2t
2 ∂

2
ξσt − ρtβtηt∂ξ∂kσt and σt =

σ
(
log K

f(T−t)St
, T − t, ξt

)
.
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Using Equation (8.9) and ignoring the terms in h in the finite scheme of the portfolio
increments, the P&Ls assume the form

Πt+h(St+h, ξt+h) − Πt(St, ξt) ≈ βt
(
St
∑
i

πi∂SBSit −
∑
i

πi∂kσ
i
t∂σBSit

)√
hX0+

+
∑
i

πiζ
i
t∂σBSit

√
hX

where σit = σ
(
log Ki

f(Ti−t)St
, Ti − t, ξt

)
, ζit = ζt

(
log Ki

f(Ti−t)St
, Ti − t, ξt

)
, and X0 and X are

standard jointly normal random variables with correlation ρt.
Let us denote ∆i

t := ∂SBSit and V it := ∂σBSit. Using the same proof as in the
Stochastic Volatility case of Section 8.4.1, we finally find a VaR formula on an MPOR
horizon of h days of the form:

VaRθ,t(h) = Φ−1(1 − θ)
√
c2t + q2t + 2ρtctqt

√
h

ct = βt
(
St
∑
i

πi∆
i
t −
∑
i

πiV it∂kσit
)

qt =
∑
i

πiζ
i
tV it .

(Short-term formula)

This expression is actually model-free. Indeed, the terms ∆i
t and V it are respectively

the Black-Scholes delta and vega of the i-th option in the portfolio. In particular they
correspond to

∆t

(
k, τ, ω, σimp

t (k, τ)
)

= ωΦ(ωd1),

Vt
(
k, τ, Ft(τ),DFt(τ), σimp

t (k, τ)
)

= DFt(τ)Ft(τ)ϕ(d1)
√
τ .

The volatility βt of the underlying spot St can be computed looking at historical
moves. For example, it could be a EWMA volatility on log-returns appropriately rescaled
by the square-root of the returns’ distance hr (of for example one trading day): βt =
EWMA(rS,t)√

hr
where rS,t = log St

St−hr
.

Given Equation (8.8), the quantity ζit is simply the vol-of-vol evaluated in(
log Ki

f(Ti−t)St
, Ti− t, ξt

)
and it could be also computed as a EWMA volatility on histori-

cal absolute returns of the implied volatility surface at the fixed log-forward moneyness
and time-to-maturity grid point, rescaled by the square-root of hr. For liquidity reasons,
it is also possible to approximate the latter quantity as the vol-of-vol at the 1M ATM
point, times an appropriate factor (see Section 8.6.3 for the description of a possible way
to calibrate such a factor). In [67], the authors suggest to consider the historical series
of the 1M ATM implied volatility point. A less procyclical alternative identified by the
authors consists in rescaling the VVIX historical value with a sigmoid function which
ensures a smooth vol-of-vol transition between high and low volatility regimes.

The correlation parameter ρt can be computed using a EWMA correlation between
spot log-returns and absolute IV returns, where the IV point considered can be again
the 1M ATM point.
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Lastly, the derivative ∂kσ
i
t is the derivative of the smile with respect to the log-

forward moneyness, evaluated in
(
log Ki

f(Ti−t)St
, Ti − t, ξt

)
. Since options are quoted in

strike and maturity rather than log-forward moneyness and time-to-maturity, observe
that

∂kσ
i
t = ∂kσt

(
log

Ki

f(Ti − t)St
, Ti − t, ξt

)
= K∂K σ̃

imp
t (Ki, Ti)

where σ̃imp
t (K,T ) = σimp

t

(
log K

f(T−t)St
, T − t

)
. The derivative of the strike smile can be

recovered by simple interpolation of market data (for example, using cubic B-splines or
arbitrage-free smile models), or by finite differences of market data.

t-Student short-term model-free VaR formulation

When calculating risk, a large majority of financial players considers the distribution of
the returns of an underlier St to be t-Student. The reason is linked to the shape of the
probability functions of such distribution, which are fatter, compared to a classic normal
distribution. In this way the importance of extreme events is higher and this guarantees
a larger conservativeness of the risk model.

Assumptions. In this section we consider then a t-Student distribution for the
relative returns

St+h−St

St
, with νt degrees of freedom, location parameter αth and scale

parameter βt
√
h. In particular, we consider the model

St+h = St(1 + αth+ βtTt+h) (H1)

where Tt+h ∈ R is a t-Student with νt degrees of freedom, null mean and variance equal
to h. Then, the probability density function of St+h is

pSt+h
(s) =

Γ
(
νt+1
2

)
Γ
(
νt
2

)
Stβt

√
πh

(
1 +

1

νt

(
s− St(1 + αth)

Stβt
√
h

)2)− νt+1
2

. (8.10)

Also, for every strike K and maturity T , denoting τ = T − t, k(s) = log K
f(τ)s , we

consider the increment ∆σt(k(St), τ) := σt+h(k(St+h), τ − h) − σt(k(St), τ) conditional
to St+h to be a Gaussian random variable with mean mt(St+h, k(St), τ) and variance
ζt(k(St), τ)2(1 − ρ2t )h, with

mt(s, k(St), τ) = µt(k(St), τ)h+
s− St(1 + αth)

βtSt
ζt(k(St), τ)ρt.

In other words, we write the conditional implied volatility increments as

∆σt(k(St), τ)|(St+h = s) = mt(s, k(St), τ) + ζt(k(St), τ)
√

1 − ρ2t
√
hX (H2)

where X is a standard Gaussian random variable.
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Remark 8.1. Since with the above hypothesis we only know the distribution of the
implied volatility increments conditional to St+h, it could seem difficult to calibrate pa-
rameters µt, ζt and ρt on market data. However, given a conditional distribution, it
is easy to recover the moments of the marginal distribution using the tower property
in expectations. Indeed, moments up to the second order of ∆σt(k(St), τ) (without the
conditioning to St+h) are

E[∆σt(k(St), τ)] = µt(k(St), τ)h

Var[∆σt(k(St), τ)] = ζt(k(St), τ)2h

Corr[St+h,∆σt(k(St), τ)] = ρt.

This allows to easily calibrate parameters based on the historical mean and variance of
∆σt(k(St), τ).

In the next paragraphs, we justify the following formula for the h-days VaR with
confidence level θ under Equations (H1) and (H2):

VaRθ,t(h) = F−1
Z (1 − θ)

√
c2t + q2t + 2ρtctqt

√
h

ct = βt
(
St
∑
i

πi∆
i
t −
∑
i

πiV it∂kσit
)

qt =
∑
i

πiζ
i
tV it

(Short-term t-Student)

where

Z =
qt
√

1 − ρ2tX + (ct + qtρt)Y√
c2t + q2t + 2ρtctqt

(8.11)

and X is a standard Gaussian random variable and Y is a standard t-Student with νt
degrees of freedom independent of X.

Quantities that enter Equation (Short-term t-Student) are the same as in the Gaus-
sian case: the Black-Scholes Greeks delta ∆i

t and vega V it , the volatility βt of the under-
lying spot St, the vol-of-vol ζit , the correlation ρt, and the derivative ∂kσ

i
t of the smile

with respect to the log-forward moneyness. See Section 8.4.2 for a description of how to
compute these quantities in practice from market data.

Remark 8.2. [9] shows in Theorem 1 that the probability density function of Z is

pZ(z) =
∞∑
k=0

ϕ
(νt,γ)
k gk,a1(z)

where a1 =
q
√

1−ρ2t√
c2t+q

2
t+2ρtctqt

, γ = ct+qtρt

qt
√

2(1−ρ2t )
and

ϕ
(νt,γ)
k =

Γ
(
k + 1

2

)
k!Γ
(
1
2

)
Γ
(
νt
2

) ∫ ∞

0
exp(−f)f

νt−1
2
(
f + γ2

)−k− 1
2 df

gk,a1(z) =
Γ
(
1
2

)
Γ
(
k + 1

2

)
a1
√

2π

(
z2

2a21

)k
exp

(
− z2

2a21

)
.
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Quantiles of Z can also be computed empirically, simulating the distribution of the
linear combination of two independent random variables distributed as a standard Gaus-
sian and a standard t-Student with νt degrees of freedom. In particular, simulations of
Z can be found following the steps:

1. Simulate two independent normal random variables X and NY , with mean 0 and
variance 1;

2. Turn NY into a uniform distribution UY = Φ(NY );

3. Recover the t-Student random variable via Y = F−1
t (UY ; νt) where Ft(·; νt) is the

cumulative density function of a t-Student with νt degrees of freedom;

4. Put Z =
qt
√

1−ρ2tX+(ct+qtρt)Y√
c2t+q

2
t+2ρtctqt

.

We now explain the rationale of Equation (Short-term t-Student). Doing a first order
approximation of increments of the option portfolio Πt(St, σt), taking into consideration
the dependence of every options’ implied volatility to the log-forward moneyness and so
to the underlier, we find that the form of the P&Ls is

Πt+h(St+h, σt+h) − Πt(St, σt) ≈ βt
(
St
∑
i

πi∂SBSit −
∑
i

πi∂kσ
i
t∂σBSit

)
Tt+h+

+
∑
i

πi∂σBSit∆σ
i
t

= ctTt+h +
∑
i

πiV it∆σit,

(8.12)

where we used the same notations as in Section 8.4.2. Here, we do not know the distri-
bution of the increments of the implied volatilities, so that we cannot automatically infer
the distribution of the P&Ls. However, we can still compute VaRs using the relation in
Equation (8.5).

Firstly, we can write Tt+h =
√
hỸ where Ỹ is a standard t-Student with νt degrees

of freedom, and

∆σt(k(St), τ) = µt(k(St), τ)h+ ζt(k(St), τ)
√
hX̃

for a certain random variable X̃ with mean 0 and variance 1. Then, given Equa-
tion (8.12), the distribution of P&L√

h
tends to the distribution of ctỸ +

∑
i πiV itζitX̃, which

does not depend on h. In particular since

1 − θ = P
(
P&L ≤ v(θ, h)

)
= P

(
P&L√
h

≤ v(θ, h)√
h

)
,
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and the limiting random variable has a strictly positive density, then the function v(θ, h)
is asymptotic with

√
h, i.e. v(θ, h) = u(θ)

√
h + o(

√
h). This is consistent with Equa-

tion (Short-term formula), where the h-days VaR is proportional to the square-root of
h.

Secondly, the distribution of the P&Ls conditional to St+h is Gaussian and in par-
ticular

P
(
P&L ≤ v(θ, h)|St+h = s

)
= Φ

(
v(θ, h) − ctt(s) −

∑
i πiV itmi

t(s)

qt
√

1 − ρ2t
√
h

)
where t(s) = s−St(1+αth)

βtSt
. Then, removing the conditionality to the probability of the

P&Ls, it holds

P
(
P&L ≤ v(θ, h)

)
=

∫ ∞

−∞
pSt+h

(s)Φ

(
v(θ, h) − ctt(s) −

∑
i πiV itmi

t(s)

qt
√

1 − ρ2t
√
h

)
ds

and this in turn is∫ ∞

−∞
pT (y)Φ

(
v(θ, h) − cty

√
h−

∑
i πiV itmi

t

(
St(1 + yβt

√
h+ αth)

)
qt
√

1 − ρ2t
√
h

)
dy

where pSt+h
is as in Equation (8.10), pT is the probability density function of a standard

t-Student with ν degrees of freedom, and we used the transformation y = t(s)√
h

. In

this way, for the Lebesgue’s dominated convergence theorem and using the fact that
v(θ, h) = u(θ)

√
h+ o(

√
h), the right hand side of the previous relation goes to∫ ∞

−∞
pT (y)Φ

(
u(θ) − (ct + qtρt)y

qt
√

1 − ρ2t

)
dy

for h going to 0. Consider two independent random variables X and Y with X a standard
Gaussian and Y a standard t-Student with νt degrees of freedom. We can write the latter
expression as

E

[
P

(
X ≤ u(θ) − (ct + qtρt)Y

qt
√

1 − ρ2t

)]
= P

(
X ≤ u(θ) − (ct + qtρt)Y

qt
√

1 − ρ2t

)
.

Defining the random variable Z as in Equation (8.11), we shall look at the value of u(θ)
such that

1 − θ = P

(
Z ≤ u(θ)√

c2t + q2t + 2ρtctqt

)
.

All in all, the short-term model-free VaR formula in the t-Student case becomes
Equation (Short-term t-Student) ignoring terms in o(

√
h).

Remark 8.3. In both Equation (Short-term formula) and Equation (Short-term t-
Student) the vol-of-vol parameter depends on the strike and maturity of the option, while
the correlation does not. This is due to the underlying hypothesis that the whole implied
volatility surface is driven by one single Brownian motion, even though the magnitude of
movements for each surface point depends on the point itself. The short-term model-free
formulas can be generalized to the case where there is more than one Brownian motion
driving the implied volatility surface (typically the target dimension is of 2 or 3).
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8.4.3 Properties and limitations

Local quantities and extreme risk: concrete practical implementation

Observe that all the above VaR estimations (the Black-Scholes formula, the Stochas-
tic volatility formula, and the short-term model-free formula) are defined with local
quantities: deltas, vegas, instantaneous volatility and correlation coefficients. The ini-
tial margin however incorporates a tail risk which looks at future moves in prices that
typically correspond to large moves. Even if there is an apparent paradox here, the
explanation is clear: those formulas are asymptotic formulas when the time step h goes
to zero, and for sufficient small h even the tail risk will be driven by the local quantities,
in so far as we deal we diffusion models.

The whole question therefore is how those asymptotic formulas will behave in prac-
tice. Obviously, the smaller the MPOR, or the less volatile the market, the better. A
careful backtesting will be the clue here: it will allow to diagnose whether the coverage
and procyclicality behavior of the formula are satisfactory.

In this regard, and especially from a regulatory perspective, one should keep in mind
that the final IM formula will contain other components besides this core one, like a
weighted Stress Historical VaR and the Short Option Minimum quantity described in
Section 8.2. In general the former component will be obtained by computing price returns
along stress historical scenarios with full re-evaluation (meaning, using the Black-Scholes
formula for options with the shocked underlier and implied volatility) instead of the local
first order Greeks. Therefore the risk of missing a convexity behavior should be largely
mitigated, if not fully eliminated. Regarding the SOM, consider a portfolio of short deep
OTM options. Today, this portfolio has negligible delta and vega quantities, so that the
VaR estimation is around 0, even though there actually is a tail risk. This hidden risk
is far to be local, but it still should be taken into consideration in the initial margin
calculation. This is the rationale of the SOM, which is already implemented by CCPs
and should cover the risk of those short-term portfolios, as discussed in Section 8.2.

Symmetry with respect to the portfolio

It is easy to see that all the new VaR formulas in this chapter are symmetrical with
respect to the portfolio, i.e. being short or long on the same portfolio would produce the
same VaR exposure. This could seem weird, especially when we suppose a log-normal
distribution of the spot, which is not symmetric. The symmetricity appears when we
take the limit for h going to 0. Indeed, the terms multiplying

√
h are symmetrical in

the portfolio position while the ones that should break the symmetricity multiply higher
orders of h, so that they are canceled out in the limit.

However, this symmetry is not an issue when computing margins: as seen in Sec-
tion 8.2, the final total risk requirement charged by the CCP is composed of the margin
computed on P&Ls (refined by the add-ons and the SOM) minus the NOV component.
In this way, neglecting the add-ons and the SOM, a long portfolio Π > 0 with initial
margin IM has a total risk requirement equal to IM − Π; while the same portfolio but
on a short position −Π < 0 implies a total risk requirement of IM + Π.
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Comparison with FHS

In Section 8.3.1, we have seen that among its drawbacks, the FHS model is limited
by the number of scenarios that it can generate, depending on the available historical
data. On the other hand, the short-term model-free formula in Section 8.4.2 does not
need to compute simulated scenarios and eventually requires historical data only for the
calibration of volatility parameters.

Secondly, while the FHS does not capture the joint dynamics of risk factors in com-
plex products, the short-term model-free formula in Section 8.4.2 considers both the
singular margin impact of each risk factor and the joint margin impact affected by the
correlation of risk factors. Furthermore, the short-term model-free formula for options
is more natural than the FHS methodology, whose application to IV surface points is
more subtle.

A third limitation is the difficulty of FHS to generate arbitrage-free scenarios, which
is not an issue for the short-term model-free formula in Section 8.4.2 since it does not
require the generation of scenarios and does not face the arbitrage issue.

Finally, regarding the procyclicality of the VaR estimation, we show in numerical
experiments in Section 8.6.3 that the short-term model-free VaR is less procyclical then
the FHS VaR for the tested portfolios.

We turn now to the exact computation of the VaR in the neural-SDE model.

8.5 Quasi-explicit formula for the VaR in the neural-SDE
model

In this section we investigate the neural-SDE model described in Section 8.3.4 and the
special specification of its parameters with the aim of applying it to an IM computation.
We are not interested in the calibration of arbitrage-free Call prices surfaces via neu-
ral networks but to the affine factor model for normalized option prices itself, so that
parameters can be calibrated with any algorithm of choice, which is not necessarily a
neural network.

The model is particularly simple and it turns out to have a quasi-explicit formula for
the VaR of option portfolios, as we show in Section 8.5.1 below. In practice, this could
enable rapid computations for the IM in such models, which may prove to be highly
relevant when properly calibrated.

Moreover, the VaR can be approximated by a closed formula which is proportional to
the square-root of the MPOR (see Section 8.5.2). This approximated formula coincides
with the VaR formula in the Stochastic Volatility model of Section 8.4.1.

We reemphasize the fact that while the model can be calibrated also in different ways
as the ones described in [18], the results in this chapter are still valid and independent
from the calibration setup.

We use the same notations as in Section 8.4. Furthermore, in the whole section, the
notation ∥·∥2 indicates the Euclidean 2-norm, i.e. ∥(a1, . . . , ad)

T ∥22 =
∑d

i=1 a
2
i .
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8.5.1 Quasi-explicit formula for the VaR

Consider a portfolio of Vanilla Calls with price at time t given by

Πt(St, ξt) =
∑
i

πiC
(
Ti − t, log

Ki

f(Ti − t)St
;St, ξt

)
= St

∑
i

πiDFt(Ti − t)f(Ti − t)c
(
Ti − t, log

Ki

f(Ti − t)St
; ξt

) (8.13)

where

c
(
Ti−t, log

Ki

f(Ti − t)St
; ξt

)
= G0

(
Ti−t, log

Ki

f(Ti − t)St

)
+G

(
Ti−t, log

Ki

f(Ti − t)St

)
·ξt.

From now on, we work at time t, so that quantities St and ξt are known. The P&L :=
Πt+h(St+h, ξt+h) − Πt(St, ξt) of the portfolio reads then

P&L = A(h, St+h) +B(h, St+h) ·
(
ξt+h − ξt

)
(8.14)

where

A(h, s) = s
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))×

×
(
G0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s

)
+

+G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s

)
· ξt
)
− Πt(St, ξt),

B(h, s) = s
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s

)
.

(8.15)

An important consequence to the representation in Equation (8.14) is the linearity
of the P&Ls in ξt+h − ξt. In terms of VaR calculations, this means that the VaR for
the P&Ls’ distribution conditional to St+h is linear with respect to the VaR for the ξt+h
distribution.

Hypothesis on the joint increments

Since from a practical perspective market data is always related to a discrete time grid,
from now on, for risk calculations we consider processes defined via their Euler scheme
as in Section 8.3.4, i.e.

St+h = St exp

((
αt −

β2t
2

)
h+ βt(W0,t+h −W0,t)

)
,

ξt+h = ξt + µth+ σt · (Wt+h −Wt)

(8.16)
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where W0,t+h − W0,t ∈ R and Wt+h − Wt ∈ Rd are Gaussian random variables with
combined law N(0, hPt) and Pt is the correlation matrix

Pt =

(
1 P TS,ξ,t

PS,ξ,t Pξ,t

)
.

We work at time t, so that quantities St, ξt, αt, βt, µt and σt are known. We will
not need to observe W0,t and Wt.

Remark 8.4. The Euler schemes with time step h for the processes St and ξt defined
via the SDE Equation (8.3) are a particular case of Equation (8.16), therefore the results
of this section hold also in this case.

To develop Equation (8.5) we need a partial result regarding the distribution of the
increments of ξt conditional to St+h.

Lemma 8.1. For processes in Equation (8.16), the distribution of ξt+h − ξt conditional
to St+h = s is a Gaussian N(mt(s), Vt) where

mt(s) = µth+
1

βt

(
log

s

St
−
(
αt −

β2t
2

)
h

)
σt · PS,ξ,t,

Vt = h(σt · bt) · (σt · bt)T ,

and bt ∈ Rd×d is a matrix such that bt · bTt = Pξ,t − PS,ξ,t · P TS,ξ,t.
In the case of independent processes, mt(s) = µth and Vt = hσt · σTt .

Proof. Let us consider the Brownian increments ∆W0,t = W0,t+h − W0,t and ∆Wt =
Wt+h −Wt, which have Gaussian joint distribution N(0, hPt). The Gaussian random
variable Z = ∆Wt−∆W0,tPS,ξ has null mean and variance equal to h(Pξ,t−PS,ξ,t ·P TS,ξ,t).
Since covariance matrices are symmetric and positive semi-definite, there exists a matrix
bt ∈ Rd×d such that bt · bTt = Pξ,t − PS,ξ,t · P TS,ξ,t. Also, Z and ∆W0,t are independent
since uncorrelated and jointly Gaussian, and it follows that the distribution of ∆Wt

conditional to ∆W0,t = w0 is a Gaussian with mean w0PS,ξ,t and covariance matrix
hbt · bTt .

From Equation (8.16), it is immediate to recover the distribution of ξt+h − ξt condi-
tional to ∆W0,t = w0. For the conditionality with respect to St+h = s, it is enough to

substitute w0 with 1
βt

(
log s

St
−
(
αt − β2

t
2

)
h
)
.

If processes are independent, PS,ξ,t = 0, Pξ,t = Id, and the conclusion follows.

As an immediate consequence to Lemma 8.1, we can write the increments of ξt
conditional to St+h as

ξt+h − ξt|(St+h = s) = mt(s) +
√
hσt · bt ·X (8.17)

where X ∼ N(0, Id) is a Gaussian random variable independent to St+h.

238



8.5. Quasi-explicit formula for the VaR in the neural-SDE model

Then

P&L|(St+h = s) = A(h, s) +B(h, s) ·
(
mt(s) +

√
hσt · bt ·X

)
= Â(h, s) + B̂(h, s) ·X

where

Â(h, s) := A(h, s) +B(h, s) ·mt(s) ∈ R,

B̂(h, s) := B(h, s) ·
√
hσt · bt ∈ R1×d.

(8.18)

In particular, conditional to St+h = s, the P&L is a sum of jointly Gaussian variables,
so it is also a Gaussian variable with law N(Â(h, s), ∥B̂(h, s)∥22). Then the quantity
P (P&L ≤ v(θ, h)|St+h = s) is the cumulative function of a Gaussian variable, and in
particular it is equal to

P (P&L ≤ v(θ, h)|St+h = s) = Φ

(
v(θ, h) − Â(h, s)

∥B̂(h, s)∥2

)
.

Reconsidering Equation (8.5), the VaR at risk level θ for the P&Ls can be computed
as specified in the following proposition.

Proposition 8.1. Under the model of Equations (8.2) and (8.16), the h-days VaR at
confidence level θ of the portfolio Equation (8.13) is the value of v(θ, h) which solves

1 − θ =

∫ ∞

0
Φ

(
v(θ, h) − Â(h, s)

∥B̂(h, s)∥2

)
dFSt+h

(s)s. (8.19)

where Equations (8.15) and (8.18) define Â(h, s) and B̂(h, s).

Note that Proposition 8.1 gives a semi-closed formula for the VaR in the neural-SDE
model, with no need of further hypothesis. As a consequence, we can compute efficiently
the VaR in this model without using any approximation.

We shall notice that since losses cannot be larger than today’s position, the result
v(θ, h) should always be higher than minus the current value of the portfolio, i.e. v(θ, h) ≥
−Πt(St, ξt). This condition holds true if and only if the P&Ls’ distribution is null below
−Πt(St, ξt), or equivalently if and only if the distribution of future prices is null below
0. In particular, it must hold

G · ξt+h > −G0

for any ξt+h. This condition does not seem to be guaranteed a priori. Indeed, it depends
on how the parameters of the distribution of the ξt are calibrated. However, if the ξt are
calibrated such that Call prices always satisfy no arbitrage conditions, then in particular
prices will always be positive.
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Calls and Puts portfolio

In the case of portfolios with both Call and Put options, it is sufficient to re-write Put
options using the Put-Call parity

P
(
T − t, log

K

Ft(T − t)

)
= C

(
T − t, log

K

Ft(T − t)

)
− DFt(T − t)

(
Ft(T − t) −K

)
.

In this way, the relation in Equation (8.14) still holds redefining quantities A and B with
elementary steps. In particular for every Put option position πP

(
T − t, log K

Ft(T−t)
)

in

the portfolio, A(h, s) adds the term

sπDFt(T − (t+ h))f(T − (t+ h))

(
G0

(
T − (t+ h), log

K

f(T − (t+ h))s

)
+

+G
(
T − (t+ h), log

K

f(T − (t+ h))s

)
· ξt − 1

)
+ πDFt(T − (t+ h))K,

with the term Πt(St, ξt) updating its value with the added Puts, while B(h, s) adds

sπDFt(T − (t+ h))f(T − (t+ h))G
(
T − (t+ h), log

K

f(T − (t+ h))s

)
.

8.5.2 Closed formula for the short term VaR

In this section we start by proving that the VaR in the neural-SDE model for option prices
is of the form u(θ)

√
h asymptotically with h. This formulation reflects empirical results

and standard models adopted in industry and it is consistent with Equation (Short-term
formula). Then, we state the main result of this section computing the explicit form of
the function u(θ).

Firstly, we look at the form of the function v(θ, h) when h is small.

Lemma 8.2. Under the model of Equations (8.2) and (8.16), the h-days VaR at con-
fidence level θ of the portfolio in Equation (8.13) is asymptotic to

√
h for h going to

0:

VaRθ,t(h) = u(θ)
√
h+ o

(√
h
)

for a certain function u(θ) not depending on h.

We give the proof in Section 8.A.
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Our next result uses the quantities

ct := Stβt
∑
i

πiDFt(Ti − t)f(Ti − t)×

×
[
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt − 1Puts(i)+

− ∂k

(
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt
)]

+

+B(0, St) · σt · PS,ξ,t,
qt :=

∥∥B(0, St) · σt · bt
∥∥
2
,

(8.20)
where 1Puts(i) is 1 if the index i refers to a put, otherwise it is null, and

B(0, St) = St
∑
i

πiDFt(Ti − t)f(Ti − t)G
(
Ti − t, log

Ki

f(Ti − t)St

)
.

Remark 8.5. It is easy to prove that ct and qt can be written with the alternative
expressions:

ct = Stβt
d

dSt
Πt(St, ξt) + ∇ξtΠt(St, ξt)

T · σt · PS,ξ,t,

qt = ∥∇ξtΠt(St, ξt)
T · σt · bt∥2.

We can now state the main result of this section.

Proposition 8.2. Under the model of Equations (8.2) and (8.16), the h-days VaR at
confidence level θ of the portfolio in Equation (8.13) is

VaRθ,t(h) = Φ−1
(
1 − θ

)√
c2t + q2t

√
h+ o

(√
h
)

(8.21)

where ct and qt are defined in Equation (8.20).

The proof is given in Section 8.B.

Corollary 8.1. Under the model of Equations (8.2) and (8.16) with d = 1, the h-days
VaR at confidence level θ of the portfolio Equation (8.13) is

VaRθ,t(h) = Φ−1
(
1 − θ

)
√√√√√√√
(
Stβt

d

dSt
Πt(St, ξt)

)2
+
(
σt

d

dξt
Πt(St, ξt)

)2
+2PS,ξ,tStβtσt

d

dSt
Πt(St, ξt)

d

dξt
Πt(St, ξt)

√
h+ o

(√
h
)
.

Observe that this is compatible with the Stochastic Volatility model’s VaR in Equa-
tion (8.6).
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Normal distribution for St+h

Lemma 8.1 still holds considering normal increments for St+h:

St+h = St

(
1 + αth+ βt(W0,t+h −W0,t)

)
,

appropriately redefining the quantity mt(s). Indeed, in this case mt(s) becomes µth +
s−St(1+αth)

Stβt
σt · PS,ξ,t.

The results in Lemma 8.2 and Proposition 8.2 are exactly the same as for the log-
normal case. Indeed, the probability density function of St+h is

pSt+h
(s) =

1

Stβt
√

2πh
exp

(
−

(
s− St(1 + αth)

Stβt
√

2h

)2)
and the conclusion can be easily attained as in the previous case, using the transformation
y = s−St(1+αth)

Stβt
√
h

as done in Section 8.B.

t-Student distribution for St+h

As in Section 8.4.2, we consider the case where the increments of the underlier St fol-
low a t-Student distribution, while increments of the implied volatility σt are Gaussian
conditional to St+h.

Lemma 8.1 holds true in the Gaussian case because the random variable Z =
∆Wt−∆W0,tPS,ξ is still Gaussian and its decorrelation with ∆W0,t implies its indepen-
dence. However, in this case ∆W0,t is substituted with a t-Student and we cannot derive
the same result. We need then some additional hypothesis to derive the equivalent of
Proposition 8.1 when St+h is a t-Student, and in particular we shall take Equation (8.17)
as granted a priori.

Lemma 8.3. Consider the model of Equation (8.2) and the hypothesis that

St+h = St(1 + αth+ βtTt+h)

where Tt+h ∈ R is a t-Student with νt degrees of freedom, null mean and variance equal
to h, and ξt+h − ξt conditional to St+h = s is a Gaussian random variable with mean
mt(s) and covariance matrix Vt with

mt(s) = µth+
s− St(1 + αth)

Stβt
σt · PS,ξ,t,

Vt = h(σt · bt) · (σt · bt)T ,

and bt ∈ Rd×d is a matrix such that bt ·bTt = Pξ,t−PS,ξ,t ·P TS,ξ,t, for certain parameters µt,

PS,ξ,t ∈ Rd, σt, Pξ,t ∈ Rd×d. Then the h-days VaR at confidence level θ of the portfolio
in Equation (8.13) is the value of v(θ, h) which solves

1 − θ =

∫ ∞

0
Φ

(
v(θ, h) − Â(h, s)

∥B̂(h, s)∥2

)
dFSt+h

(s)s.
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where Equations (8.15) and (8.18) define Â(h, s) and B̂(h, s).

The calibration of the parameters µt, PS,ξ,t, σt and Pξ,t is practically difficult if per-
formed from the distribution of ξt+h−ξt conditional to St+h. However, as in Remark 8.1,
we can recover the moments of the marginal distribution, allowing an easy calibration
of the parameters based on the historical mean and covariances of ξt+h − ξt.

Remark 8.6. Under the model

St+h = St(1 + αth+ βtTt+h)

where Tt+h ∈ R is a t-Student with νt degrees of freedom, null mean and variance equal
to h, if ξt+h−ξt conditional to St+h = s is a Gaussian random variable with mean mt(s)
and covariance matrix Vt as in Lemma 8.3, then

E[ξt+h − ξt] = µth

Cov[ξt+h − ξt] = hσt · Pξ,t · σTt

Cov

[(
St+h

ξt+h − ξt

)]
=

(
β2t S

2
t h βtSth(σt · PS,ξ,t)T

βtSthσt · PS,ξ,t hσt · Pξ,t · σTt

)
.

The result in Lemma 8.2 still holds true in the t-Student case. The proof is equivalent
to the one given in Section 8.A, with the adaptations regarding the distribution of
St+h and ξt+h − ξt. These adaptations can be found in the proof of Equation (Short-
term t-Student) in Section 8.4.2. As a consequence, the function v(θ, h) is of the form
u(θ)

√
h+ o(

√
h) for h small.

The probability density function of St+h is as in Equation (8.10). In this way, using

the transformation y = s−St(1+αth)

Stβt
√
h

and repeating the calculations in Section 8.B.1, we

find Equation (8.23) with exactly the same values for ct and qt. We then look for the
value of u(θ) such that

1 − θ = E

[
P

(
qtX + ctY√
c2t + q2t

≤ u(θ)√
c2t + q2t

)]
.

The random variable Z = qtX+ctY√
c2t+q

2
t

is not Gaussian in this case since it is the sum of

a standard Gaussian random variable and a standard t-Student random variable, which
are independent. However, it still holds that the initial margin in the case of t-Student
returns is

VaRθ,t(h) = F−1
Z

(
1 − θ

)√
c2t + q2t

√
h+ o

(√
h
)
.

The empirical quantile of Z can be recovered as detailed in Remark 8.2.
The above observations lead us to the following.

Corollary 8.2. Under the framework of Lemma 8.3, the h-days VaR at confidence level
θ of the portfolio in Equation (8.13) is

VaRθ,t(h) = F−1
Z

(
1 − θ

)√
c2t + q2t

√
h+ o

(√
h
)
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where ct, qt are defined in Equation (8.20) and Z = qX+cY√
c2t+q

2
t

with X and Y independent

and X standard Gaussian, Y standard t-Student with νt degrees of freedom.

8.6 Numerical experiments

8.6.1 Backtesting option portfolios

Before going into the numerical experiments, it is worth focusing on the specific issues
arising while backtesting option portfolios. Indeed, options are contracts with a fixed
strike and a fixed expiry, so that considering a backtest on a real fixed contract is
awkward for two reasons: at maturity the option will expire and the backtest could not
continue anymore; the option could become far OTM or ITM in time, completing losing
interest in the market and becoming illiquid or even not traded anymore.

Moreover, in order to focus on a given risk (like the calendar spread one), and
its adequate coverage by the margin model, it is better to consider a portfolio with a
constant risk profile across time, and so constant specifications in terms of moneyness
and time-to-maturity.

For this reason, options are generally backtested for fixed log-forward moneyness (or
delta) and fixed time-to-maturity, rather than fixed contract. Of course, these desired
options are not always available among the market quoted ones, so that two possibilities
arise:

1. Considering the nearest in log-forward moneyness (or delta) and time-to-maturity
real quoted option.

2. Considering synthetic option prices on the chosen fixed log-forward moneyness (or
delta) and fixed time-to-maturity obtained via the model pricing criteria.

In the first case, the backtested portfolios will possibly change every day, depending
on how much the ATM level has moved and on the rolling maturity. In the second case,
the VaR estimations are compared to model P&Ls rather than real ones, so that if the
calibration model is not good enough, backtesting results could be misleading.

In general, there is no preferred way to backtest option portfolios and CCPs may
adopt both methodologies. We recommend to perform the two approaches for produc-
tion, because the synthetic option prices, due to the complexity of the data treatments
performed, may eventually not reflect fully faithfully the effective market returns when
they are available, as used directly in the first approach above.
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8.6.2 VaR formula in the Heston model

The VaR formula in Equation (8.6) can be applied to any Stochastic Volatility model.
In this section we test it on the classic Heston model

dSt = αtStdt+
√
νtStdW0,t

dνt = κ(θ − νt)dt+ ξ
√
νtdWt

dW0,tdWt = ρdt.

In this case, Equation (8.6) has the form

VaRθ,t(h) = Φ−1(1 − θ)

√√√√√√√S2
t νt

( d

dSt
Πt(St, νt)

)2
+ ξ2νt

( d

dνt
Πt(St, νt)

)2
+2ρξStνt

d

dSt
Πt(St, βt)

d

dνt
Πt(St, νt)

√
h. (8.22)

Firstly, we simulate one year (365 days) history of the process (St, νt) with a simple
Euler scheme of the form

St+δt = St
(
1 + αtδt+

√
νt
√
δtX0

)
νt+δt = |νt + κ(θ − νt)δt+ ξ

√
νt
√
δtX|

where X0, X are standard Gaussian random variables with correlation ρ. Differences on
the final results are negligible using the log-formulation for St, i.e.

St+δt = St exp
((
αt −

νt
2

)
δt+

√
νt
√
δtX0

)
,

or using a Milstein scheme instead of the Euler’s one. Observe that more efficient
simulation schemes for the Heston model could be considered, however here we are
interested into the performances of the short-term model-free VaR formula, rather than
efficient ways to simulate the underlier.

At this point, for different outright, calendar and butterfly portfolios, we compute
daily prices using the semi-analytical formula for a Call option in the Heston model
described in [47]. We take null rates, so that the forward price coincides with the
spot value and the discount factor is 1. Finally we compare real PnLs with 0.99-VaR
estimations as in Equation (8.22) on different MPOR horizons. In order to compute
portfolio derivatives with respect to the spot and the volatility of the spot, we use the
average between the corresponding backward and forward finite differences:

d

dSt
Πt(St, νt) ≈

Πt(St + ε, νt) − Πt(St − ε, νt)

2ε
,

d

dνt
Πt(St, νt) ≈

Πt(St, νt + ε) − Πt(St, νt − ε)

2ε
.

Note in particular that these quantities are not the Black-Scholes ones defined
through the sensitivities of the Black-Scholes formula evaluated at the implied volatility
corresponding to the Heston model price.
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MPOR (days) Coverage Size of loss

Mean Median Mean Median

1 0.9927 0.9945 0.0485 0.0204
2 0.9902 0.9945 0.0645 0.0353
3 0.9896 0.9945 0.0682 0.0422

Table 8.1: Average coverage and size of loss of Equation (8.22) on 74 option portfolios
on simulated Heston data.

We use calibrated Heston parameters on S&P500 on December 2015 (see [13]), in
particular (κ,

√
θ, ξ, ρ) = (6.169, 0.16168, 0.477,−0.781), and we start with initial values

S0 = 2054 and
√
ν0 = 0.15562. For the Euler scheme, we choose a step δt of 10−1 days.

The portfolios considered are outright Calls with delta in {0.2, 0.35, δATM, 0.65, 0.8} and
time-to-maturity in {30, 90, 180, 365} days, and the resulting combinations of calendar
spread and butterfly spread portfolios. In particular, a calendar spread is a portfolio
with one short Call at a fixed strike K and maturity T1 and one long Call with same
strike K and maturity T2 > T1. For a fixed delta, the common strike of the two options
is chosen to be the one related to the shortest maturity. A butterfly spread is composed
of two long Calls with deltas δ and 1 − δ respectively, and two short ATM Calls. For
butterfly spreads, we also test the deltas 0.1, 0.3, 0.4, 0.45.

The number of tested portfolios is then: 5 × 4 = 20 outrights,
(
4
2

)
× 5 = 30 calendar

spreads, and 6 × 4 = 24 butterfly spreads; in total 74 portfolios.

For each tested portfolio, we compute the coverage ratio as the number of days where
the model VaR covers the realized loss over the total number of tested days, and the
size of losses as the ratio between the margin loss (difference between realized loss and
model VaR) and the portfolio price. The average and the median over all portfolios is
displayed in Table 8.1. The results are very satisfactory for all MPORs. Indeed, the
average coverage meets the 0.99-VaR requirement and breaches are of a very small size
below 7% of the portfolio value.

Similarly, we compute the initial margin using the short-term model-free formula
described in Section 8.4.2. In particular, we simulate 5 years history of an Heston
process with same parameters as in the previous test and compute the initial margin
for the same portfolios on the last year’s observations (the previous history is used to
calibrate parameters). The formula used is then Equation (Short-term formula), where
the delta and the vega Greeks are the Black-Scholes ones, the spot volatility, the vol-of-
vol and the correlation between risk factors are computed with the EWMA specification,
and the derivative of the implied volatility with respect to the log-forward moneyness
in computed via finite differences. The implied volatility point used to compute the
EWMA correlation is the 1M ATM point.

As in the previous test, we compute the average coverage and size of loss for each
tested MPOR. Results are shown in Table 8.2. Results are less conservative than in the
previous test since the coverage is around 0.983. However, the size of loss is still very
small compared to the portfolio value, and actually smaller than in the previous test.
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MPOR (days) Coverage Size of loss

Mean Median Mean Median

1 0.9853 0.9863 0.0404 0.0194
2 0.9826 0.9822 0.0565 0.0368
3 0.9813 0.9808 0.0496 0.0255

Table 8.2: Average coverage and size of loss of Equation (Short-term formula) on 74
option portfolios on simulated Heston data, under the hypothesis of log-normal distribu-
tion of spot returns.

MPOR (days) Coverage Size of loss

Mean Median Mean Median

1 0.9907 0.9918 0.0362 0.0164
2 0.9886 0.9918 0.0596 0.0364
3 0.9889 0.9945 0.0485 0.0291

Table 8.3: Average coverage and size of loss of Equation (Short-term t-Student) on 74
option portfolios on simulated Heston data, under the hypothesis of t-Student with 5
degrees of freedom distribution of spot returns.

Results can actually be improved using the hypothesis of a t-Student distribution for
spot returns and redefining the VaR for MPOR h as in Equation (Short-term t-Student)
where the distribution of Z is obtained empirically as explained in Remark 8.2. Table 8.3
shows results when considering 5 degrees of freedom in the t-Student distribution of spot
returns. As expected, results are more conservative than the normal case and satisfy the
0.99 coverage requirement.

8.6.3 Coverage performances of the short-term model-free VaR

In this section we show the results of coverage of the short-term model-free 0.99 VaR for-
mula in Section 8.4.2 compared with the classical FHS model described in Section 8.3.1.

We use a database of S&P500 data provided to Zeliade by the Clearify project4 on
end of the day option prices. Firstly, we clean the rough data removing options with 0
volume and use the Put-Call parity on mid prices to extrapolate forward and discount
factors for each quoted maturity having at least two Put-Call couples. Then, we remove
all Calls not satisfying the arbitrage bounds

DFt(T )(Ft(T ) −K)+ ≤ Ct(T,K) ≤ DFt(T )Ft(T ),

and all Puts not satisfying

DFt(T )(K − Ft(T ))+ ≤ Pt(T,K) ≤ DFt(T )K.

4Clearify is a collaboration between Zeliade and the Imperial College Mathematical Finance Depart-
ment funded by an Imperial Faculty of Natural Sciences Strategic Research Funding Award.
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At this points, Puts are transformed into Calls and all the following computations are
performed for Call prices.

In order to get normalized historical prices, we compute synthetic historical prices on
a fixed grid of time-to-maturity and log-forward moneyness. At this aim, we observe that
market data is generally dense around the ATM point for short maturities and it spreads
out with increasing expiry. For this reason, the most cunning fixed grid should be in
delta, so we identify 17 delta points from 0.015 to 0.985 and compute the corresponding
log-forward moneyness for a symbolic volatility of 0.1, over the grid of time-to-maturities
of 2, 5, 10, 21, 42, 63, 126 and 252 days. Observe that in this way the grid is not
constant in log-forward moneyness for different time-to-maturities. At this point, we
firstly compute implied volatilities based on real prices. Then, we interpolate linearly on
the log-forward moneyness direction since data is dense enough. The interpolation on
the time-to-maturity direction is done on the implied total variances (squared implied
volatilities times the time-to-maturity) adding synthetic points for the zero maturity
equal to 0 and then interpolating linearly. The interpolated prices are then corrected to
avoid static arbitrage as described in [17].

For comparison, we implemented a second interpolation scheme firstly adding syn-
thetic points for the zero maturity (setting prices equal to their intrinsic values) and for
extreme moneyness (with ITM prices equal to the discounted forward and null OTM
prices); then normalizing all prices by their discounted forward; finally using monotonic
cubic splines on the log-forward moneyness direction and linear interpolation on the
time-to-maturity direction. The final results reported in this section do not significantly
change.

We consider two portfolios: the first one is an ATM calendar spread between ma-
turities of 1M and 6M; while the second one is a butterfly spread on maturity 3M and
moneyness 0.9, 1, 1.1. We compute the VaR for an MPOR horizon of 1 day and a
confidence level θ = 0.99.

The short-term model-free VaR is obtained computing:

1. The spot volatility βt via a EWMA volatility algorithm with decay factor 0.97 on
spot log-returns, divided by the square-root of the daily step;

2. The correlation ρt via a EWMA correlation on spot log-returns and 1M ATM
implied volatility absolute returns;

3. The vol-of-vol ζt(k, τ) as F times the 1M ATM vol-of-vol obtained as a EWMA
volatility on implied volatility absolute returns, divided by the square root of the
daily step. In order to be conservative enough, the F factor is 1.1 times the quantile
0.9 of 5 years history of ratios between the (k, τ) vol-of-vol and the 1M ATM vol-
of-vol;

4. Delta and vega quantities as the Black-Scholes deltas and vegas evaluated at the
option implied volatility;

5. The derivative of the smile with respect to the log-forward moneyness as the deriva-
tive of the interpolated smile via B-splines.
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Since we consider log-normal spot returns, we use the VaR formulation with normal
quantiles of Equation (Short-term formula).

The FHS risk factors are the spot prices and the 17× 8 implied volatility grid points
for fixed log-forward moneyness and time-to-maturity. We consider log-returns for the
former risk factors and absolute returns for the latter ones. The volatility of risk factors’
returns is computed via EWMA with decay factor 0.97. The future discount factors
and forward values are obtained under the assumption of constant risk-free rates in the
MPOR horizon.

We backtest the short-term model-free VaR and the FHS VaR against the synthetic
P&Ls as explained in the second approach of Section 8.6.1.

Figure 8.1 shows the VaR patterns for the tested portfolios. We can see that the short-
term model-free VaR has more breaches then the FHS VaR, however these are of small
size and can be entirely removed setting a larger vol-of-vol factor F . Alternatively, one
could consider the t-Student framework described in Section 8.4.2. The most noticeable
feature of the short-term model-free VaR is its regularity compared to the FHS VaR.
In particular, the short-term model-free VaR behaves as we expect after large moves in
realized P&Ls, and it also softens its behavior, without big jumps. On the contrary, the
FHS VaR is not as consistent (and sometimes seems to move without following market
patterns).

Furthermore, the short-term model-free VaR looks more smooth, i.e. less procyclical.
To prove this sentence, we compute the peak-to-trough ratio on the whole 2019 dates
and the average n-day procyclicality measure (in percentage) for n equal to 1, 5, 10 and
20 days. In particular, the two quantities are computed as

Peak-to-trough =
maxt

(
−VaR0.99,t(h)

)
mint

(
−VaR0.99,t(h)

)
n-day % = maxt

(
−VaR0.99,t(h)

−VaR0.99,t−n(h)
− 1

)
× 100

where t ranges in the whole 2019 and we choose an MPOR h = 1. Results are displayed
in Table 8.4. We see that except for the 1-day procyclicality measure in the calendar
spread portfolio, all other procyclicality measures for both portfolios are largely smaller
for the short-term model-free VaR, i.e. the latter model is less procyclical than the FHS
VaR.

8.6.4 Practical implementation of the neural-SDE model

In this section we consider the neural-SDE model for normalized option prices, and in
particular we compare VaR estimations obtained as empirical quantiles on simulations
(see Section 8.3.4) and VaR values resulting from the approximated closed formula of
Proposition 8.2.

We use the same data as in Section 8.6.3 and compute forward and discount factors
similarly.
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Figure 8.1: Margins obtained with the FHS algorithm (blue) and the short-term model-
free VaR (orange), for a calendar spread ATM 1M-6M portfolio (left) and a butterfly
spread 3M with moneyness (0.9, 1, 1.1) portfolio (right).

Calendar ATM 1M-6M Butterfly 3M m(0.9, 1, 1.1)

FHS Short-term model-free FHS Short-term model-free

Peak-to-trough 5.32 3.27 2.26 2.77
1-day % 42.17 45.38 31.34 17.95
5-day % 90.11 89.04 70.47 44.23
10-day % 143.88 109.28 106.69 52.17
20-day % 139.75 118.53 90.35 44.56

Table 8.4: Comparison between FHS VaR and short-term model-free VaR peak-to-trough
ratio and average percentage n-day procyclicality measure for a calendar spread and a
butterfly spread portfolios.

Before calibrating the G factors on the time-to-maturity, log-forward moneyness grid
identified in Section 8.6.3, historical prices must be interpolated on such a grid. With
this aim, we use the same interpolation/extrapolation algorithm consisting in implied
volatility’s linear interpolation on the space dimension and total variances’ linear inter-
polation in the time direction.

Now, for a fixed date t, the past 5 years historical data (1260 observations) is used
to calibrate the G and ξ factors. We choose to calibrate the factors ξs for s ≤ t in the
most efficient way, only looking at the statistical accuracy. In particular, for the fixed
time-to-maturity and log-forward moneyness grid, we choose G0 as the average historical
prices and the remaining Gi as the principal components of the residuals between prices
and values of G0. See [18] for a detailed description of the calibration algorithm. The
calibration code that we use is the one implemented in the Github repository of the cited
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article.5 Based on calibration accuracy and process time, we decide to take 2 statistical
accuracy factors ξs.

At this point we have the constant factors G on the fixed grid and an history of factors
ξs. Furthermore, the calibration uses neural networks to estimate the distributions of
S and ξ as in Equation (8.3). In particular, we have today’s parameters αt, βt, µt and
σt, and for any value of S and ξ, the neural network can predict the corresponding
parameters. Observe that we take the covariance matrix Pt = Id as in [18].

For future computations, the matrix G has to be interpolated outside the fixed time-
to-maturity and log-forward moneyness grid. To do so, we firstly interpolate normalized
Call prices on the target couple (τ, k) for every historical past day. The interpolation is
performed as in the preparation of the initial database, computing implied volatilities
and interpolating them linearly on the space direction and linearly in total variance on
the time direction. Once all history on (τ, k) is retrieved, the G(τ, k) factors are the
intercept and the coefficients of the linear regression of prices along the history of the
ξs.

At present, the two VaR calculation methodologies can be implemented. We test the
same two portfolios of Section 8.6.3 consisting of an ATM calendar spread 1M-6M, and
a butterfly spread on maturity 3M and moneyness 0.9, 1, 1.1. We consider an MPOR of
1 day and a VaR confidence level θ = 0.99.

For both VaR methodologies, we work under the assumption of constant risk-free
rates in the MPOR horizon. Then, the discount factor DFt+h(τ) in h days on a time-to-
maturity τ is equal to today’s discount factor DFt(τ), while the forward value Ft+h(τ)

in h days on a time-to-maturity τ becomes
St+h

St
Ft(τ).

For the empirical VaR, simulations are performed under the hypothesis that param-
eters α·, β·, µ· and σ· are constant between t and t + h, following Euler’s scheme in
Equation (8.16). Starting with the estimation of today’s parameters, values of St+h and
ξt+h are simulated 10000 times. Future normalized prices are computed using the model
relation in Equation (8.2) with the G factors evaluated on time-to-maturity τ − h and

log-forward moneyness k + log Ft(τ)
Ft+h(τ−h) , and the estimated values of ξt+h. Once the

simulated normalized Call prices are computed, they are re-denormalized multiplying
by DFt(τ − h) and Ft+h(τ − h). The final VaR is the 1 − θ empirical quantile of P&Ls
obtained as difference of simulated future prices and today price.

In the case of VaR obtained via approximated closed formula, in order to be con-
sistent with the empirical VaR, the distribution of St+h is taken to be a log-normal
distribution, so that the used closed formula coincides with Equation (8.21). Derivatives
of the components of G with respect to k are computed as the average between backward
and forward finite differences.

We plot the percentage ratio between the absolute difference between the two VaR
estimations and the portfolio value along year 2019 in Figure 8.2. We can see that the
empirical VaR and the approximated formula in Equation (8.21) for the VaR generally
have a very small error (about 4% for the calendar portfolio and 1% for the butterfly

5https://github.com/vicaws/neuralSDE-marketmodel
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Figure 8.2: Percentage relative error between the empirical neural-SDE VaR calculated
as in Section 8.3.4 and the approximated closed formula VaR in Proposition 8.2, for a
calendar spread ATM 1M-6M portfolio (left) and a butterfly spread 3M with moneyness
(0.9, 1, 1.1) portfolio (right).

portfolio), with some higher picks which could reach the 10% of the portfolio. This is
due to the fact that the approximated formula is less procyclical than the empirical one
and reacts slower to market changes. All in all, the results confirm the consistency of
hypothesis in Proposition 8.2.

8.7 Conclusion

We summarize and analyze the methodologies that CCPs currently use for the initial
margin of option portfolios. In particular, we compute a quasi-explicit formula for the
VaR of option portfolios in the neural-SDE model of [18], and propose a closed asymp-
totic short-term model-free formula for the VaR at small time horizons.

Based on the numerical experiments that we conduct, we are confident that this new
short-term model-free formula could be considered as a candidate for the core component
of IM methodologies for option portfolios, duly complemented by Short Option Minimum
and Stress Historical VaR components.
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8.A. Proof of Lemma 8.2

8.A Proof of Lemma 8.2

Let us consider the distribution of P&L√
h

given in Equations (8.14) and (8.16). We write

W0,t+h −W0,t =
√
hY and Wt+h −Wt =

√
hX where Y is a standard Gaussian random

variable and X is a d-dimensional Gaussian random variable with correlation matrix Pt
not depending on h.

We first consider the term
A(h,St+h)√

h
and look at its limit for h going to 0. Since St+h

goes to St, both the numerator and the denominator go to 0. We then use L’Hôpital’s
rule to develop the limit. The derivative of St+h with respect to h is

St+h

(
αt −

β2t
2

+
βt

2
√
h
Y

)

so that the derivative of A(h, St+h) with respect to h is

St+h

[(
αt −

β2t
2

+
βt

2
√
h
Y

)∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))×

×
(
G0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt − 1Puts(i)

)
+

+
∑
i

πi
d

dh

(
DFt(Ti − (t+ h))f(Ti − (t+ h))

)
×

×
(
G0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt − 1Puts(i)

)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))

(
∂τG0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+ ∂τG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt
)

+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))

(
∂kG0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+ ∂kG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt
)
×

×

(
−∂τf(Ti − (t+ h))

f(Ti − (t+ h))
+ αt −

β2t
2

+
βt

2
√
h
Y

)]
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where 1Puts(i) is 1 if the index i refers to a put, otherwise it is null. This quantity
explodes for h going to 0 with speed γY

2
√
h

where

γ = Stβt
∑
i

πiDFt(Ti − t)f(Ti − t)×

×
[
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt − 1Puts(i)+

− ∂k

(
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt
)]
.

This means that the ratio
A(h,St+h)√

h
tends to γY , where γ does not depend on h.

We now look at the term B(h, St+h) · ξt+h−ξt√
h

. Firstly, the limit of B(h, St+h) for h
going to 0 is

St
∑
i

πiDFt(Ti − t)f(Ti − t)G
(
Ti − t, log

Ki

f(Ti − t)St

)
which is simply a sum of Call surfaces and, in general, is different from 0. Secondly, the
ratio

ξt+h−ξt√
h

is equal to µt
√
h+ σt ·X and goes to σt ·X when h tends to 0.

All in all, P&L√
h

tends to γY + B(0, St) · σt · X almost surely, hence in law. Then,

since the cumulative density function of the random variable γY + B(0, St) · σt ·X has
a continuous inverse, all the quantiles of P&L√

h
converge to the corresponding quantiles of

γY +B(0, St) · σt ·X as h tends to 0.

The h-days VaR with confidence level θ is the value of v(θ, h) solving

1 − θ = P (P&L ≤ v(θ, h))

= P

(
P&L√
h

≤ v(θ, h)√
h

)
.

From the above discussion, we have v(θ, h) = u(θ)
√
h+ o(

√
h), where

u(θ) = F−1
γY+B(0,St)·σt·X(1 − θ).

8.B Proof of Proposition 8.2

From the definition in Equation (8.16), St+h has a log-normal distribution with density

pSt+h
(s) =

1

sβt
√

2πh
exp

(
−

(
log s

St
−
(
αt − β2

t
2

)
h

βt
√

2h

)2)
.

We look at the RHS of Equation (8.19) when h goes to 0.
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We can re-write the integral using a change of variable y =
log s

St
−
(
αt−

β2t
2

)
h

βt
√
h

as∫ ∞

−∞

1√
2π

exp

(
−y

2

2

)
Φ

(
v(θ, h) − Â(h, s(h, y))

∥B̂(h, s(h, y))∥2

)
dy

where s(h, y) = St exp
(
yβt

√
h +

(
αt − β2

t
2

)
h
)
. Observe that the integrand is dominated

by the integrable function 1√
2π

exp
(
−y2

2

)
.

If we prove that for h going to 0 the integrand converges pointwise to a function of
the form Φ

(−cty+u(θ)
qt

)
where ct and qt do not depend on y, for the Lebesgue’s dominated

convergence theorem the whole integral converges to∫ ∞

−∞

1√
2π

exp

(
−y

2

2

)
Φ

(
−cty + u(θ)

qt

)
dy. (8.23)

Assuming the proof of the convergence is done (see Section 8.B.1), we can pick-up
a pair of independent standard Gaussian random variables X,Y and write the latter
expression as

E

[
1

(
X ≤ −ctY + u(θ)

qt

)]
.

The random variable Z = qtX+ctY√
c2t+q

2
t

has a standard normal distribution, so that the latter

quantity is equal to

E

[
Φ

(
u(θ)√
c2t + q2t

)]
= Φ

(
u(θ)√
c2t + q2t

)
.

Then, we can finally recover the expression of the initial margin VaRθ,t(h) as in
Equation (8.21).

8.B.1 Proof of the pointwise convergence

The pointwise convergence of

Φ

(
v(θ, h) − Â(h, s(h, y))

∥B̂(h, s(h, y))∥2

)
to a function of the form Φ

(−cty+u(θ)
qt

)
can be proved firstly observing that we can work

under hypothesis of continuous functions, given that normalized prices can be considered
to be continuous in time-to-maturity and log-forward moneyness. Also, since we are
looking at the limit when h is small, we can use Lemma 8.2 and substitute v(θ, h) with
u(θ)

√
h+ o(

√
h).

Firstly observe that the matrix bt does not depend on h, and ∥B̂(h, s(h, y))∥2 =√
h∥B(h, s(h, y)) · σt · bt∥2 where

B(h, s(h, y)) = s(h, y)
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))×

×G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
.
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As shown in Section 8.A, the limit of B(h, s(h, y)) for h going to 0 is

St
∑
i

πiDFt(Ti − t)f(Ti − t)G
(
Ti − t, log

Ki

f(Ti − t)St

)

which is different from 0. Then, the ratio u(θ)
√
h+o(

√
h)

∥B̂(h,s(h,y))∥2
goes to

u(θ)

∥B(0, St) · σt · bt∥2
=
u(θ)

qt

in 0.

We now consider the ratio Â(h,s(h,y))√
h∥B(h,s(h,y))·σt·bt∥2

. The function Â(h, s(h, y)) is in turn

the sum between A(h, s(h, y)) and B(h, s(h, y)) ·mt(s(h, y)). The latter term is equal to
B(h, s(h, y)) · (µth+ yσt ·PS,ξ,t

√
h), so that its ratio with

√
h∥B(h, s(h, y)) ·σt · bt∥2 goes

to
B(0,St)·σt·PS,ξ,t

qt
y.

We shall now focus on the ratio A(h,s(h,y))√
h∥B(h,s(h,y))·σt·bt∥2

. Since both the numerator and

denominator go to 0 with h, we use L’Hôpital’s rule to develop the limit.

The derivative of B(h, s(h, y)) with respect to h is

s(h, y)

[(
yβt

2
√
h

+ αt −
β2t
2

)∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))×

×G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
+

+
∑
i

πi
d

dh

(
DFt(Ti − (t+ h))f(Ti − (t+ h))

)
×

×G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))∂τG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))∂kG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
×

×

(
−∂τf(Ti − (t+ h))

f(Ti − (t+ h))
+

yβt

2
√
h

+ αt −
β2t
2

)]

and for h going to 0, it explodes with a speed of

1

2
√
h
Styβt

∑
i

πiDFt(Ti − t)f(Ti − t)×

×
(
G
(
Ti − t, log

Ki

f(Ti − t)St

)
− ∂kG

(
Ti − t, log

Ki

f(Ti − t)St
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.

256



8.B. Proof of Proposition 8.2

Similarly, the derivative of A(h, s(h, y)) with respect to h explodes with a speed of

1

2
√
h
Styβt

∑
i

πiDFt(Ti − t)f(Ti − t)×

×
[
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt − 1Puts(i)+

− ∂k

(
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt
)]
.

Doing the derivative of
√
h∥B(h, s(h, y)) · σt · bt∥2, we find

1

2
√
h
∥B(h, s(h, y)) · σt · bt∥2 +

√
h

(
d
dhB(h, s(h, y)) · σt · bt

)T ·
(
B(h, s(h, y)) · σt · bt

)
∥B(h, s(h, y)) · σt · bt∥2

,

and this explodes with the first term.

All in all, L’Hôpital’s rule shows that the limit of Â(h,s(h,y))√
h∥B(h,s(h,y))·σt·bt∥2

for h going to

0 is ct
qt
y.
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Chapter 9

Backtesting Expected Shortfall

Abstract

Since its introduction in 2001, the Expected Shortfall (ES) quickly became the stan-
dard risk measure used by financial institutions including central clearing counter-
parties (CCPs). Indeed, many CCPs switched from the Value at Risk (VaR) to the
more conservative ES to compute their initial margins. The need of a sound backtest
for the ES arose then naturally. In 2011, the proof that the Expected Shortfall (ES)
lacks a property called elicitability has led to the incorrect conclusion that the ES
is not backtestable. Three years later, Acerbi and Szekely designed three possible
backtests for the ES and, since then, many other backtests have been proposed in
the practitioner literature. In this work we study four of these test statistics from
both a theoretical and practical point of view and eventually give some advice for
CCPs in search of a good backtest for ES.

From:
Zeliade Systems, Backtesting Expected Shortfall, Zeliade Systems White Paper https:

//www.zeliade.com/wp-content/uploads/whitepapers/zwp-011-BacktestingExpe

ctedShortfall.pdf, 2021.

9.1 Structure of the chapter

In this chapter we deal with one of the metrics used by CCPs to measure the counterparty
risk: the Expected Shortfall. We firstly compare it to the well known Value-at-Risk in
Section 9.2 and point out the pros and cons of its usage. Then, in Section 9.3 we
define what a backtest is and discuss and compare different possible Expected Shortfall
backtest procedures. We start in Section 9.3.1 with the analysis of the test statistic
proposed by Moldenhauer and Pitera in [57]. We try to explain why this statistic is not
strictly a proper backtest for the ES, but it rather tests the distribution of the P&Ls.
From a theoretical point of view, one should prefer Z̄2 analyzed in Section 9.3.2 and
the minimally biased statistic, which we denote by Z̄MB and study in Section 9.3.3,
both proposed by Acerbi and Szekely in the articles [1] and [3]. We also have a look in
Section 9.3.4 at the so called Z̄3 statistic of [1] and see that it has the same theoretical
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9. Backtesting Expected Shortfall

issues than the Moldenhauer and Pitera statistic. From a theoretical point of view, we
end up by suggesting the use of Z̄MB as its own authors do. On the other hand, we
will see in Section 9.4 that from a practical point of view the Moldenhauer and Pitera
statistic is as good as Z̄MB, at least on the tests we performed.

9.2 Expected Shortfall vs Value-at-Risk

The Value-at-Risk (VaR) has become a standard risk measure for financial risk manage-
ment due to its conceptual simplicity, ease of computation, and immediate applicability.
The VaR measures the maximum potential change in the value of a portfolio with a
given probability over a pre-set horizon:

VaRα

(
P&Ld

)
:= − inf{x|P (P&Ld ≤ x) > α}

Nevertheless, the VaR has several conceptual problems:

� It measures only a quantile of the P&Ls distribution and does not account for the
losses beyond this level.

� It is not coherent, since it is not subadditive, which implies that the sum of sub-
VaRs is not necessarily conservative.

The latter item means that if we split a portfolio into two sub-portfolios and compute
the VaR for each sub-portfolio then the sum of the two VaRs can be smaller than the
true VaR of the global portfolio.

As an alternative to the VaR risk measure, Artzner et al. (1997) [6] proposed the
Expected Shortfall (ES shortly, also called “conditional VaR”, “mean excess loss”, “be-
yond VaR”, or “tail VaR”). The ES is the conditional expectation of loss given that the
loss is beyond the VaR level; that is

ESα
(
P&Ld

)
:= E

[
−P&Ld | P&Ld ≤ −VaRα

(
P&Ld

)]
.

The ES is generally considered a more useful risk measure than VaR thanks to its
robustness and to the fact that the ES verifies the subadditivity property, as opposed
to the VaR. This means that the sum of two sub-ESs is not smaller than the global ES,
entailing an inherent conservativeness.

The ES takes into account, by definition, the severity of the tail observations beyond
the VaR. This makes the ES a more conservative risk measure than the VaR, for the
same confidence level:

ESα
(
P&Ld

)
≥ VaRα

(
P&Ld

)
.

Moreover, the ES is more robust: the fact that the ES is an average of all P&Ls
beyond the VaR makes its estimation more stable, since a change in a single observation
would be mitigated by the rest of the values in the average. In the VaR case, its
estimation is driven by a single value (or at most two values if a linear interpolation is
used), which means that the VaR would suffer from large jumps when the time window
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Figure 9.1: Realized P&Ls VS VaR and ES on the Brazil Stock Market Index (BVSP)
for business dates in 2018 and 2019.

moves and extreme observations are included or excluded. This robustness/stability
plays an important role in diminishing the procyclicality of the margins, since when
extreme market moves happen, the margins would increase slower than for VaR. This
prevents, partially, from exacerbating the market stress events.

All these advantages of the ES explain its use by the majors CCPs for their margin
computations, to the point where it became an industry standard.

The only weak feature of the ES was the lack of backtesting tests, while the VaR
has several robust statistical tests such as the Kupiec and Christoffersen tests. This
weakness was remedied by the recently proposed statistical tests, starting from the work
of Acerbi and Szekely [1].

We illustrate in Figure 9.1 an example of a VaR and ES computation for the Brazil
Stock Market Index (BVSP). We can see that the use of the ES allows to reduce the
number of breaches from 8 to 0.

9.3 Backtesting ES

The computation of the ES needs to be backtested, which means that one should check
a posteriori whether the risk prediction was correct. This check, when it leads to a
negative result, is a good indicator that the ES computation method should be revised.
In the past years the backtestability of the ES has been questioned: since Gneiting
proved in 2011 [38] that this risk measure lacks a property called elicitability (whereas
the pair (VaR,ES) is elicitable, [30]), some mathematicians concluded that the ES was
not backtestable. However, in 2014 Acerbi and Szekely proved in [1] that this is not the
case, by simply finding some backtest statistics for the ES. Since then, many articles
regarding the backtestability of the ES have been published but a lot of them lack of
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9. Backtesting Expected Shortfall

a proper definition of backtestability and, as a consequence, the tests proposed are not
theoretically rigorous. For this reason we start the current section by mathematically
defining what backtesting the ES means.

When we talk about backtesting a statistic, we refer to Definition 3.1 of [2]. In
particular, we say that

Definition 9.1. The statistic ES is backtestable if there exists a backtest function Z(e, v, x)
such that

� EH [Z(e, v,X)] = 0 iff e = −EH [X|X ≤ −v]

� EH [Z(e1, v,X)] < EH [Z(e2, v,X)] if e1 < e2

for a fixed v.

This means that when we underestimate the value of the ES, the sign of the backtest
function will be negative on average.

With these tools, we can then define the backtest test as

Z̄(X) =
1

N

N∑
d=1

Z(ÊS
α
d ,

ˆVaR
α
d , Xd)

where X, ÊS
α

and ˆVaR
α

are the vectors of respectively the valuations of a portfolio
(e.g. P&Ls), the estimated ESs and the estimated VaRs. From the previous definition, we
have that under the null hypothesis H0 : ESαd = ˆESαd , it holds EH0 [Z( ˆESα, ˆVaR

α
, X)] =

0 while under the alternative hypothesis of underestimation of the ES, H1 : ESαd ≥
ˆESαd ∀d ∧ ∃d : ESαd >

ˆESαd , it holds

EH1 [Z( ˆESα, ˆVaR
α
, X)] < EH1 [Z(ESα,VaRα, X)] = 0 = EH0 [Z( ˆESα, ˆVaR

α
, X)]

(note that here we are supposing ˆVaR
α

= VaRα but this is not needed if we ask in the
definition of backtestability that EH [Z(e, v1, X)] < EH [Z(e, v2, X)] if v1 < v2 and add
to the alternative hypothesis the requirement VaRα

d ≥ ˆVaRα
d ∀d).

Then, in order to backtest the ES, one has to compute the value of the realized Z̄(X)
and compare it with a threshold value, using the p-test. The p-value is the probability,
under the null hypothesis, that the test statistic Z̄(X) is at least as extreme as the
realized value of Z̄(X). Since we are considering a one-sided left-tail test statistic Z̄, the
p-value is PH0(Z̄(X̃) < Z̄(X)) where X̃ is distributed as in the null hypothesis. A test
statistic Z̄(X) is rejected if the p-value is smaller than a level ϕ (generally about 5%).
In other words, the test statistic is rejected if the realized value of Z̄(X) is smaller than
the ϕ-quantile of Z̄(X̃).

This threshold can be empirically obtained by repeating M times the following steps:

1. Simulate a N -vector of values X̃ under the distribution of the null hypothesis.

2. Calculate Z̄(X̃) using the already computed ˆESαd ,
ˆVaRα
d for d = 1, . . . , N .

262



9.3. Backtesting ES

At this point the ϕ-quantile can be calculated as Z̄(X̃)([x]) + (x − [x])(Z̄(X̃)([x]+1) −
Z̄(X̃)([x])) where x = ϕ

100(M − 1) + 1. The realized value Z̄(X) is then accepted iff it is
greater than the threshold.

We will refer to type I and type II errors as

1. Type I error: when ÊS
α

is correct but it is rejected.

2. Type II error: when ÊS
α

underestimates the real ES but it is accepted.

In the following subsections we will discuss and compare different possible Expected
Shortfall backtest procedures. We start with the analysis of the test statistic proposed
by Moldenhauer and Pitera in [57]. We try to explain why this statistic is not strictly a
proper backtest for ES, in the sense of Definition 9.1, but rather tests the distribution
of the P&Ls. Then, from a theoretical point of view, one should prefer Z̄2 and the
minimally biased statistic, which we denote with Z̄MB, proposed by Acerbi and Szekely
in the articles [1, 3]. We also have a look at the so called Z̄3 statistic in [1] and see that
it has the same theoretical issues than the Moldenhauer and Pitera statistic. From a
theoretical point of view, we end up by suggesting the use of Z̄MB as its own authors
do. On the other hand, we will see in the next section that from a practical point of
view the Moldenhauer and Pitera statistic is as good as Z̄MB, at least on the tests we
performed.

9.3.1 Moldenhauer and Pitera test statistic

This test was proposed by Moldenhauer and Pitera in [57].

Theoretical presentation

Let Xd denote the random process of the valuation of a portfolio (e.g. the P&L) and let
ESαd denote the computed Expected Shortfall value for the probability α at day d. We
define the random process

Y = X + ESα

to be the secured position. Alternatively, the definition Y = X+ESα

ESα can be used. With
this choice, the whole following discussion does not change.

The ES test statistic used by Moldenhauer and Pitera is

G(X,ESα) =

N∑
k=1

1(Y[1]+···+Y[k]<0)

where N is the number of days in the observation window and the random process Y[d]
denotes the ordered statistic of Yd. Note that the authors define this statistic divided
by N but for stability properties, we do not do this division (see Section 9.3.1).

In order to check whether this is a good backtest for the ES, we need to see what
happens to the statistic when the ES is underestimated. Suppose that the calculated
value of the ES at time d is ˆESαd . We set the null hypothesis to be H0 : ESαd = ˆESαd ∀d
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while the alternative hypothesis will be H1 : ESαd ≥ ˆESαd ∀d ∧ ∃d : ESαd >
ˆESαd . Note

that if we use a unique method to evaluate the ES, the distributions of X are different
in the two hypothesis.

Under the alternative hypothesis note that Xd+ ˆESαd ≤ Xd+ ESαd for every d so that

(Xd + ˆESαd )[k] ≤ (Xd + ESαd )[k] for every k and (Xd + ˆESαd )[1] + · · · + (Xd + ˆESαd )[k] ≤
(Xd + ESαd )[1] + · · · + (Xd + ESαd )[k] for every k and the inequality is strict for some k.
Then

EH1 [G(X, ˆESα)] =

N∑
k=1

PH1((Xd + ˆESαd )[1] + · · · + (Xd + ˆESαd )[k] < 0)

>
N∑
k=1

PH1((Xd + ESαd )[1] + · · · + (Xd + ESαd )[k] < 0)

= EH1 [G(X,ESα)].

What we found is that if we underestimate the ES value, the statistic G will have
on average a value greater than its true value, which depends of course also on the
distribution of X. This test statistic is then a right-tail one, so that signs in Definition 9.1
should inverted, and the realized value of the statistic is accepted iff it is smaller than
ϕ. In order to find a threshold, however, we cannot use the value EH1 [G(X,ESα)], since
we do not know it. What is fundamental to prove is rather that EH1 [G(X, ˆESα)] >
EH0 [G(X, ˆESα)]. This could be done if, for example, the statistic G is constructed
in such a way that G(X,ESα) = 0 iff ESα is the true value of the ES. In this case
then EH1 [G(X,ESα)] = 0 = EH0 [G(X, ˆESα)] and the required inequality would be
automatically achieved. After, we could proceed with setting the threshold value to be
the empirical ϕ-quantile obtained by simulations of G(X, ˆESα). The requirement that
a test statistic is null at the true value of the backtested quantity is also one of the
requirements in Definition 9.1.

Theoretical misspecification of the backtest

In Appendix I we present two counterexamples which show that from a strict theoretical
perspective, the G statistic is not the best choice for backtesting the ES, according to
Definition 9.1.

In the first example, we show that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)] does not
imply ˆESα < ESα. This means that if we calculate the threshold as the ϕ-quantile of the
simulated vector of G and then accept ˆESα iff G(X, ˆESα) is smaller than the threshold,
then we could be rejecting ˆESα even if it correctly overestimates the real ESα. This
causes an higher probability to make type I errors.

The second example proves that the very general hypothesis H1 : ESαd ≥ ˆESαd ∀d∧∃d :

ESαd > ˆESαd does not imply that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)]. This fact could

cause the error of accepting ˆESα even if it underestimates the real ESα and so an error
of type II.
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These are very easy examples since we take N = 1 but even with only one variable
X it is possible to show that the statistic G does not satisfy Definition 9.1 of a backtest
function. Why then does it seem to work properly in the article of Moldenhauer and
Pitera? We think that rather than being a backtest for the ES, it is a backtest for the
generic distribution of X, with similar hypothesis as in Section 9.3.4. Indeed, we prove
this fact in Section 9.B.

The hypothesis used does not lead to the desired result in the previous examples.
Then, if we restricted ourselves to the strict theoretical aspect, the G statistic would
not be considered. On the other hand, from a practical point of view, the P&Ls’ distri-
butions are generally approximated by t-Student, whose tails (in particular for negative
values) can be compared by stochastic dominance. In particular, if Pν1 and Pν2 are the
distributions of two t-Student with ν1 < ν2 degrees of freedom, then Pν1 ⪯ Pν2 . This
means that if we set the degrees of freedom of the distribution of X to be higher than
in reality, the statistic G will correctly signal it.

How to avoid simulations

The G statistic, whatever it backtests, is rather robust with respect to the underlying
distribution for N small enough and ϕ not too high and so the threshold can be simulated
by standard normal distributions for X. The threshold can be calculated as follows:

1. Compute ESα for the standard normal distribution (with closed formulas).

2. Iterate M times the following steps:

a) Simulate a N -vector of values X̃ under the standard normal distribution.

b) Calculate G(X̃,ESα) using the already computed ESα.

3. Take the ϕ-quantile of the values of G(X̃,ESα).

In particular, for α = 0.5% and ϕ = 95%, the threshold can be set at 6. Note that
in this case, if we use a t-Student distribution for X, the result is still 6.

It must be remarked that increasing N or ϕ, the statistic G is not stable anymore and
its threshold cannot be approximated in this way but it must be computed as explained
in Section 9.3. Indeed, from Table 9.1 we can see that the thresholds for G under a
t-Student distribution with 5 degrees of freedom or a standard normal distribution for
X can drastically change (we set α = 0.5%).

N ϕ(%) Normal t-Student

0 500 95.00 6 6
1 500 99.99 12 17
2 1000 95.00 10 10
3 1000 99.99 18 24
4 2000 95.00 17 18
5 2000 99.99 27 35
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Table 9.1: Thresholds of G for α = 0.5%.

9.3.2 Acerbi and Szekely Z̄2 statistic

This test was proposed by Acerbi and Szekely in their 2014 article [1].

Theoretical presentation

Define the backtest function

Z2(e, v, x) =
x1{x+v<0}

αe
+ 1.

Then, under the hypothesis that VaRα(X) = v and ESα(X) = e it holds E[Z2(e, v,X)] =
0. Furthermore Z2 is strictly increasing with v and with e, meaning that when
E[Z2(e, v,X)] < 0, the computed VaR v and/or the computed Expected Shortfall e
underestimate the real ones.

A natural test statistic for the calculated value ˆESα can then be chosen as

Z̄2(X) =
1

N

N∑
d=1

Z2( ˆESαd ,
ˆVaRα
d , Xd).

It is easy to see that, under the null hypothesis of correctly chosen ˆESαd , the mean
value of Z̄2(X) is 0. Otherwise, under the alternative hypothesis of underestimation of
the risk

H1 : ESαd ≥ ˆESαd ∀d ∧ ∃d : ESαd >
ˆESαd

VaRα
d ≥ ˆVaRα

d ∀d,

it holds EH1 [Z̄2(X)] < 0 = EH0 [Z̄2(X)].
This means that in contrast with the Moldenhauer and Pitera test, the Z̄2 statistic

correctly backtests the ES, following our definition of backtestability.

How to avoid simulations

For fixed α and ϕ, it is possible to numerically check that the thresholds for the Z̄2

statistic in case of t-Student distributions are quite stable through the νs. The thresh-
old values for α = 0.5% and ϕ = 5% are reported in Table 9.2 (here we do 500000
simulations).

Threshold
ν

3 -1.3
5 -1.2
10 -1.2
100 -1.1
1000 -1.1
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Table 9.2: Thresholds of Z̄2 for α = 0.5% and ϕ = 5%.

It follows that for this test statistic one can take as fixed threshold a value of −1.2
avoiding to calculate it.

9.3.3 Acerbi and Szekely Z̄MB statistic

This test was proposed by Acerbi and Szekely in their 2017 article [2].

Theoretical presentation

Following the steps for Z̄2, the authors define a different test statistic. This time the
backtest function is

ZMB(e, v, x) = e− v +
(x+ v)1{x+v<0}

α
.

As before, if VaRα(X) = v and ESα(X) = e, then E[ZMB(e, v,X)] = 0 and Acerbi and
Szekely show in section 4.2 of [2] that E[ZMB(e, v,X)] < 0 when the calculated ˆESα = e
underestimates the real one, no matter the value of v.

The corresponding test statistic for ˆESα is

Z̄MB(X) =
1

N

N∑
d=1

ZMB( ˆESαd ,
ˆVaRα
d , Xd).

Setting the less strict alternative hypothesis H1 : ESαd ≥ ˆESαd ∀d ∧ ∃d : ESαd >
ˆESαd ,

it holds again EH1 [Z̄MB(X)] < 0 = EH0 [Z̄MB(X)] and the ES can be backtested as in
the previous example.

This statistic is preferred by Acerbi and Szekely since it presents a smaller sensitivity
to VaR predictions. In particular, the test statistic Z̄2 could face type I and type II errors
with more probability than the test statistic Z̄MB if the prediction ˆVaR

α
is not correct.

This fact is well explained in [3]. Indeed, under the real world probability, it holds

E[ZMB( ˆESα, ˆVaRα, X)] = ˆESα − ESα −B( ˆVaRα)

where the bias B is defined as

B(v) = E

[
v −

(X + v)1{X+v<0}

α

]
− ESα.

From [4], we have the representation

ESα = min
v
E

[
v +

(X + v)1{X+v<0}

α

]
so that the bias is positive for any v and it vanishes iff the VaR prediction is correct.
Authors show that it is small for small discrepancies of v to VaRα, so that the Z̄MB

test statistic acquires a fundamental role: it can be used as a direct estimation of the
discrepancy between the predicted and the real ES.
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9.3.4 Acerbi and Szekely Z̄3 statistic

We now consider another statistic which does not directly backtest the computed value
of the ES but which rather backtests the distribution of X used to evaluate the ES. This
test was proposed by Acerbi and Szekely in their 2014 article [1].

Theoretical presentation

In particular call Pd the predicted distribution of Xd used to evaluate the VaR and the
ES, and call Qd the real unknown distribution of Xd. We put

H0 : Qd = Pd ∀d
H1 : Qd ⪯ Pd ∀d ∧ ∃d : Qd ≺ Pd

where ⪯ denotes that the left hand side is first order stochastically dominated by the
right hand side. This is equivalent to say that the CDF of Qd is no smaller than the
CDF of Pd (denoted with FPd

) at every point and that for every non-decreasing function
u it holds

∫
u(x) dQd(x) ≤

∫
u(x) dPd(x). As a consequence, both VaR and ES are

underestimated under Pd.

If the test ends up to accept the null hypothesis, then it is possible to evaluate ÊS
α
d

through the formula

ÊS
α
d = ÊS

α
M (Y d) = − 1

[Mα]

[Mα]∑
i=1

Y d
[i]

where M is a big number (e.g. M = N if an historical simulation is used) and Y d is an
M -vector of simulated variables distributed as Pd.

The test statistic used is

Z̄3 = − 1

N

N∑
d=1

ÊS
α
N (F−1

Pd
(U))

EV [ÊS
α
N (F−1

Pd
(V ))]

+ 1

where U is an iid N -vector such that Ud = FPd
(Xd) while V is an iid N -vector of variables

U([0, 1]). Denoting a regularized incomplete beta function as Ix(a, b), the denominator
can be analytically computed as

EV [ÊS
α
N (F−1

Pd
(V ))] = − N

[Nα]

∫ 1

0
I1−p(N − [Nα], [Nα])F−1

Pd
(p) dp.

This entails that EH0 [Z̄3] = 0 and EH1 [Z̄3] < 0.

This test statistic is very general and its alternative hypothesis does not directly
involve the computed ES: this means that it is not a backtest for the ES. Furthermore,
it is not as straightforward as the other statistics considered so we do not suggest its use
for the precise purpose of backtesting the ES at least.
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9.3.5 Conclusion

We can sum up the pros and cons of each test statistic:

� Moldenhauer and Pitera test statistic G:

– Pros: the threshold can be calculated taking a standard normal distribution
for X.

– Cons: it does not satisfy Definition 9.1 of a backtest function.

� Acerbi and Szekely Z̄2:

– Pros: extremely easy to be implemented, the threshold can be calculated
taking a t-Student (with e.g. ν = 5 degrees of freedom) distribution for X.

– Cons: it could face type II errors.

� Acerbi and Szekely Z̄MB:

– Pros: extremely easy to be implemented, it is very little influenced by the
VaR predictions.

– Cons: the threshold must be evaluated through simulations of the distribution
of X.

� Acerbi and Szekely Z̄3:

– Pros: not many.

– Cons: it is the most difficult to be implemented, it is not a proper backtest
for the ES.

The best theoretical choice is the Z̄MB statistic because it correctly tests the ES,
it is very easy to be implemented and its little sensitivity to VaR predictions makes it
a corrective model for ES predictions. From the practical point of view, however, the
fact that the threshold cannot be approximated by standard distribution requires, if
using a Filtered Historical Simulation method, to store all the simulation of X used to
compute the ES. The statistics G and Z̄2 do not face this problem, although G lacks
some theoretical justifications and it is a little bit more difficult to be implemented, while
Z̄2 is not as precise as Z̄MB in the choice of accepting or rejecting the computed ES.

9.4 Quantitative assessment

9.4.1 Tests on simulated data

We compare here the power of the four statistics G, Z̄2, Z̄MB and Z̄3. The simulated
distribution of the P&L process are t-Student with ν degrees of freedom and the null and
alternative hypothesis change for the number of degrees of freedom of the distribution.
In particular, H0 : ν = ν0 while H1 : ν = ν1. The power of a statistic is the probability
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to reject the null hypothesis when indeed the alternative hypothesis is correct. This
means that the higher the power, the better is the test statistic in terms of avoiding
type II errors. To evaluate the power of the tests under a null hypothesis H0 which
underestimates the risk, it is necessary to have ν1 < ν0.

We can use the function power for two purposes:

1. Evaluation of the probability to commit type I errors: this error arises when the
null hypothesis is rejected even if it is true and the probability at which it arises
is equal to the significance level ϕ. In order to check whether the function power
is correctly written, we put ν1 = ν0 and see if its value is actually ϕ.

2. Evaluation of the probability to commit type II errors: this probability is the
difference between 1 and the power.

We set the level of the ES at α = 99.5%, the significance level of the test at ϕ = 5%
(which means that if the p-value is less than ϕ, the statistic is rejected) and the number
of days in the observation window at N = 500. To calculate the threshold level for the
statistic we compute 250000 simulations while to calculate the power, that is the rate of
rejected statistics, we do 100000 simulation.

In order to use the same input data as the Acerbi and Szekely’s statistics, instead of
computing the G statistic, we calculate −G. Furthermore, as Moldenhauer and Pitera
suggest, we use the relative secured positions: Y = X+ESα

ESα .

We add also the power column for the Z̄2 statistic with a precomputed threshold
equal to −1.2, calling it Z̄2 bis.

ν in H0 ν in H1 G Z̄2 Z̄MB Z̄3 Z̄2 bis

0 3 3 7.4 4.9 4.9 5.1 6.1
1 5 3 76.0 76.7 68.8 55.4 76.4
2 10 3 99.5 99.5 99.3 97.2 99.5
3 100 3 100.0 100.0 100.0 100.0 100.0
4 5 5 6.9 5.0 5.0 5.0 5.1
5 10 5 71.0 67.7 66.2 54.8 66.7
6 100 5 99.4 99.0 99.2 97.7 98.7
7 10 10 5.9 5.0 5.1 5.0 4.6
8 100 10 75.0 70.0 73.4 64.4 66.9
9 100 100 5.3 5.0 5.0 5.2 4.3

Table 9.3: Power of G, Z̄2, Z̄MB, Z̄3 and Z̄2 bis (%) for a value of ϕ = 5%.

We can see from Table 9.3 that G, Z̄2 and Z̄MB’s powers are definitely higher than
Z̄3’s one. Also, the evaluation of the latter statistic requires much more time than the
former, whose computation times are similar.

The computation time of Z̄2 bis is definitely lower since it does not require the
calculation of the threshold. Its power cannot actually be compared with the other
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statistics’ ones since it is evaluated on significance levels which differ from 5%. In
particular, the significance level is 6.1% for ν = 3, 4.5% for ν = 10 and 4.3% for ν = 100.
A higher (lower) significance level leads to a higher (lower) power so setting these levels
of significance for the other statistics would also increase (decrease) their power. For
this reason we suggest the use of a precomputed threshold statistic only in the case of
very long computation times, which in these examples do not actually arise.

This argument holds also for G, whose significance levels are somehow higher than
5% for small values of ν, which means that the corresponding powers will also be higher.
Then, the real power of G is not as high as it seems. The reason why G faces a higher
probability of type I error is explained in Section 9.3.1.

For a matter of completeness we report in Tables 9.4 and 9.5 the power of Z̄2 and
Z̄MB for the actual significance levels used by Z̄2 bis (Table 9.4) and by G (Table 9.5).
We see that their power changes as predicted.

ϕ Z̄2 Z̄MB Z̄2 bis

0 6.1 6.0 6.2 5.1
1 6.1 78.6 72.1 55.4
2 6.1 99.6 99.5 97.2
3 6.1 100.0 100.0 100.0
4 5.1 5.1 5.2 5.0
5 5.1 68.2 66.9 54.8
6 5.1 99.0 99.2 97.7
7 4.6 4.5 4.7 5.0
8 4.6 68.3 72.3 64.4
9 4.3 4.2 4.2 5.2

Table 9.4: Power of Z̄2, Z̄MB and Z̄2 bis with different values of ϕ (%).

ϕ Z̄2 Z̄MB G

0 7.4 7.4 7.3 7.4
1 7.4 80.8 75.0 76.0
2 7.4 99.7 99.5 99.5
3 7.4 100.0 100.0 100.0
4 6.9 6.9 6.9 6.9
5 6.9 72.6 71.2 71.0
6 6.9 99.2 99.4 99.4
7 5.9 5.9 5.8 5.9
8 5.9 72.1 75.4 75.0
9 5.3 5.2 5.2 5.3

Table 9.5: Power of Z̄2, Z̄MB and G with different values of ϕ (%).
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9.4.2 Tests on historical data

The evaluation of the ES is done as described in Section 9.3 and, as before, we denote
ˆESαd its estimated value at day d. We have Xd = Sd+1 − Sd where Sd is the value of the

asset at day d. The statistic Z̄ will be evaluated on these realized values of X:

Z̄(X) =
1

N

N∑
d=1

Z( ˆESαd ,
ˆVaRα
d , Xd).

In order to calculate the threshold, it is necessary to simulate the test statistic M times
and then to compare the ϕ-quantile with Z̄(X). How can Z̄ be simulated if we use
an historical distribution? In order to calculate ˆESαd through an historical method as
HS or FHS, we need to simulate M scenario of Xd for every d, taking into account the
history of X. Since we do an historical simulation, M corresponds to the number of
data available (for us, ten years so M = 2500). We can then use the same simulations
to compute

Z̄k =
1

N

N∑
d=1

Z( ˆESαd ,
ˆVaRα
d , Xd,k)

for each k = 1, . . . ,M and finally take the ϕ-quantile of the Z̄ vector.

We now let run the G, Z̄2 and Z̄MB backtests on some portfolios on equity products
obtained from Yahoo Finance in the period from 02/12/2005 to 02/12/2020.

G Threshold Accepted

AXJO -9 -9 No

BVSP 0 -9 Yes

FCHI -3 -12 Yes

GDAXI -2 -14 Yes

GSPC -9 -11 Yes

GSPTSE -3 -14 Yes

KS11 -7 -15 Yes

MXX -8 -10 Yes

SSMI -3 -11 Yes

TWII -12 -11 No

Table 9.6: Accepted ES for G.
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Z̄2 Threshold Accepted

AXJO -2.5397 -2.76928 Yes

BVSP -1.67839 -2.27365 Yes

FCHI -0.527363 -3.96901 Yes

GDAXI -0.458829 -4.07022 Yes

GSPC -2.1588 -2.95039 Yes

GSPTSE -0.160738 -3.80838 Yes

KS11 -1.77876 -4.18092 Yes

MXX -1.52592 -2.83534 Yes

SSMI -0.481356 -2.68431 Yes

TWII -1.39444 -3.85184 Yes

Table 9.7: Accepted ES for Z̄2.

Z̄MB Threshold Accepted

AXJO -82.1309 -76.2563 No

BVSP -396.507 -2533.57 Yes

FCHI -15.1573 -132.957 Yes

GDAXI -5.50087 -318.857 Yes

GSPC -46.6548 -64.55 Yes

GSPTSE 4.73223 -459.015 Yes

KS11 -26.4939 -59.7472 Yes

MXX -799.427 -904.342 Yes

SSMI -15.3335 -228.596 Yes

TWII -381.284 -197.07 No

Table 9.8: Accepted ES for Z̄MB.

From Tables 9.6 to 9.8 it can be seen that the backtests G and Z̄MB lead to the same
results. This is somehow surprising since from the theoretical point of view we have
proven that G does not satisfy theoretical conditions of Definition 9.1 of a backtest func-
tion. However, our observations suggest that G is a backtest for the whole distribution
of the P&Ls and so it could have the same results of a backtest for the ES, when the
distributions employed for the evaluation of the ES are misspecified.

The backtest Z̄2 accepts the estimated ES for a higher number of portfolios and if G
or Z̄MB accept the ES, then also Z̄2 does. This could be explained by Example 4.3 and
Figure 5 of [2], where it is shown that when the ES is underestimated, Z̄2 could fail to
reject it causing a type II error, while this would never happen for Z̄MB. Which of the
three statistics is then right?

Figure 9.2 shows the realized P&Ls versus the ES estimated level for the Taiwan
Weighted Index (TWII). From this plot, we can see that there are only three breaches
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9. Backtesting Expected Shortfall

Figure 9.2: Realized P&Ls VS ES on the Taiwan Weighted Index (TWII) for business
dates in 2018 and 2019.

but they are huge, so G and Z̄MB take into account also the magnitude of the breaches
while Z̄2 seems to slightly neglect it. Once again, we suggest the use of the Z̄MB statistic.

9.4.3 Tests on historical data with approximated thresholds

We repeat the tests done in the previous session for G and Z̄2 but approximating the
thresholds with pre-computed ones. This will save a lot of memory since it does not
require the storage of all the P&Ls simulations but it will affect the results. This time
the test cannot be done with the statistic Z̄MB because it is not stable in the distribution
of the underlying. We stress the fact that this approximation can be done on G when
N is not too large and ϕ is not too small.

For G we precompute the threshold with standard normal distributions or, equiva-
lently, with t-Student distributions for the P&Ls. Setting α = 99.5% and ϕ = 5%, we
find that the threshold value is −6. For Z̄2 we use a t-Student with 5 degrees of freedom.
In this case the threshold is −1.2.
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9.4. Quantitative assessment

G Threshold Accepted

AXJO -9 -6 No

BVSP 0 -6 Yes

FCHI -3 -6 Yes

GDAXI -2 -6 Yes

GSPC -9 -6 No

GSPTSE -3 -6 Yes

KS11 -7 -6 No

MXX -8 -6 No

SSMI -3 -6 Yes

TWII -12 -6 No

Table 9.9: Accepted ES for G.

Z̄2 Threshold Accepted

AXJO -2.5397 -1.2 No

BVSP -1.67839 -1.2 No

FCHI -0.527363 -1.2 Yes

GDAXI -0.458829 -1.2 Yes

GSPC -2.1588 -1.2 No

GSPTSE -0.160738 -1.2 Yes

KS11 -1.77876 -1.2 No

MXX -1.52592 -1.2 No

SSMI -0.481356 -1.2 Yes

TWII -1.39444 -1.2 No

Table 9.10: Accepted ES for Z̄2.

Of course, the values of the statistics are the same as in the previous tests but the
output results regarding the acceptance of the ES are different. We can see in Tables 9.6
and 9.10 that in this case, both statistics become more conservative and that Z̄2 seems
more conservative than G, because the calculated ES for the BVSP is accepted by G
and rejected by Z̄2. However, we can see from the Figure 9.1 that there are no breaches
in the portfolio.

The reason why Z̄2 rejects the computed ES is that this statistic is very sensitive
to VaR misspecifications. Since the number of breaches for the computed VaR amounts
to 8, then there is a rejection, even if there should not be. Then G gives better results
regarding the acceptance of ÊS

α
.
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9. Backtesting Expected Shortfall

9.4.4 Conclusion

To sum up, we found that the best statistic from the theoretical and numeric point of
view is Z̄MB since it is the most conservative one as it correctly accepts or rejects the
computed values of ES, it is not influenced by VaR misspecifications and it provides
an estimation of the real ES value. However, the evaluation of the threshold requires
the storage of the historical simulations used to calculate the ES and this slows down
computations. The time required for the evaluation of the threshold is in any case of
some seconds so the additional storage is not computationally demanding.

If one prefers not having to deal with the storage of the P&Ls simulations, both
the Z̄2 and G statistics can be used. From a practical point of view, G gives better
results (the same results as Z̄MB) on the portfolios that we tested, although it lacks
some theoretical justifications.
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9.A. Moldenhauer and Pitera counterexamples

Figure 9.3: Pdf of X under H0 (blue) and H1 (green) for example 1.

9.A Moldenhauer and Pitera counterexamples

9.A.1 Example 1: EH1 [G(X, ÊS
α
)] > EH0 [G(X, ÊS

α
)] does not imply

ÊS
α
< ESα

In this example we will prove that EH1 [G(X, ÊS
α
)] > EH0 [G(X, ÊS

α
)] does not imply

that we are underestimating the ES or in other words that ÊS
α
< ESα.

Consider in particular a toy example with N = 1. In Figure 9.3 we plot the pdf
of the unique X under the null hypothesis, denoted by fH0 , and under the alternative
hypothesis, denoted by fH1 . We consider only the part regarding extreme losses of X,
so that the distribution for X > −v can be arbitrarily chosen.

The VaRs under H0 and H1 are both equal to v. The ES under H0 is

ÊS
α

= −
a
ε
x2

2

∣∣∣−x
−x−ε

+ α−a
ε

x2

2

∣∣∣−v
−v−ε

α
=

α
2 ε+ (ax+ (α− a)v)

α

and similarly the ES under H1 is

ESα =
α
2 ε+ (by + (α− b)v)

α
.

Note that ÊS
α
> v iff α

2 ε+ (ax+ (α− a)v) > αv iff α
2 ε+ a(x− v) > 0 which holds true.

Set ε < 2a(α−b)
αb (x − v). We have ÊS

α
< x iff α

2 ε + (ax + (α − a)v) < αx iff

ε < 2(α−a)
α (x − v) and this is true for the chosen ε since a < b. We can then choose

y = ÊS
α
. In this way ÊS

α
> ESα, iff ax+ (α− a)v > b

α(α2 ε+ (ax+ (α− a)v)) + (α− b)v

iff a(α− b)(x− v) > αb
2 ε which is true for the chosen ε.
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9. Backtesting Expected Shortfall

Figure 9.4: Pdf of X under H0 (blue) and H1 (green) for example 2.

This means that ESα < ÊS
α

so that we are overestimating the real ES. Let us see
what happens to the statistic G = 1X+ESα<0. We have EH1 [G(X, ˆESα)] = PH1(X +

ˆESα < 0) = b while EH0 [G(X, ˆESα)] = PH0(X + ˆESα < 0) = a so EH1 [G(X, ˆESα)] >
EH0 [G(X, ˆESα)], even if we are overestimating the ES.

9.A.2 Example 2: ˆESα < ESα does not imply
EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)]

On the other hand, we can construct an example which shows that the very general
hypothesis H1 : ESαd ≥ ˆESαd ∀d∧∃d : ESαd >

ˆESαd does not imply that EH1 [G(X, ˆESα)] >

EH0 [G(X, ˆESα)].

As in the previous example, we take N = 1 and we plot in Figure 9.4 the tail pdfs
under the null and the alternative hypothesis.

As before, we have ÊS
α

=
α
2
ε+(ax+(α−a)v)

α and ESα =
α
2
ε+(by+(α−b)v)

α . For ε <
2b(α−b)
αa (y − v), it holds v < ESα < y so we can set x = ESα. In this way it can be

shown that ÊS
α
< ESα and EH1 [G(X, ˆESα)] < EH0 [G(X, ˆESα)], which was our aim.

9.B Moldenhauer and Pitera alternative hypothesis

For the G statistic, let us consider the same hypothesis used for Z̄3, which are:

H0 : Qd = Pd ∀d
H1 : Qd ⪯ Pd ∀d ∧ ∃d : Qd ≺ Pd
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9.B. Moldenhauer and Pitera alternative hypothesis

where Pd is the predicted distribution of Xd used to evaluate the ES and Qd is the real
unknown distribution of Xd. In particular, for every non-increasing function u, we have
EPd

[u(Xd)] ≤ EQd
[u(Xd)].

Let us consider the function 1((X+ÊS
α
)[1]+···+(X+ÊS

α
)[k]<0). We prove that it is non-

increasing as a function of each Xi. We have that the function Y → 1(Y <0) is non-

increasing. Call f the function f(Xi) = (X + ÊS
α
)[1] + · · · + (X + ÊS

α
)[k] where Xd

is fixed for d ̸= i. Then, it is enough to prove that f is increasing or equivalently that
f(Xi) < f(Xi + ∆Xi) for every ∆Xi. Let us suppose to increase Xi to Xi + ∆Xi. It
follows that

� If Xi + ÊS
α
i ≤ (X + ÊS

α
)[k] and Xi + ∆Xi + ÊS

α
i ≤ (X + ÊS

α
)[k+1], then f(Xi +

∆Xi) = f(Xi) + ∆Xi > f(Xi).

� If Xi + ÊS
α
i ≤ (X + ÊS

α
)[k] and Xi + ∆Xi + ÊS

α
i > (X + ÊS

α
)[k+1], then f(Xi +

∆Xi) = f(Xi) − (Xi + ÊS
α
i ) + (X + ÊS

α
)[k+1] > f(Xi) since Xi + ÊS

α
i < (X +

ÊS
α
)[k+1].

� if Xi + ÊS
α
i > (X + ÊS

α
)[k], then also Xi + ∆Xi + ÊS

α
i > (X + ÊS

α
)[k] and

f(Xi + ∆Xi) = f(Xi).

So f is an increasing function and Xi → 1(f(Xi)<0) is decreasing for every i =
1, . . . , N . We also recall that the expected value of a decreasing function is still a
decreasing function.

Applying Fubini’s Theorem and sequentially using the fact that Qd ⪯ Pd, we have

EH0

[
1((X+ÊS

α
)[1]+···+(X+ÊS

α
)[k]<0)

]
= EP1

[
EP2

[
. . . EPN

[
1((X+ÊS

α
)[1]+···+(X+ÊS

α
)[k]<0)

]]]
≤ EF1

[
EF2

[
. . . EFN

[
1((X+ÊS

α
)[1]+···+(X+ÊS

α
)[k]<0)

]]]
= EH1

[
1((X+ÊS

α
)[1]+···+(X+ÊS

α
)[k]<0)

]
.

From this, it follows that EH0 [G(X, ˆESα)] < EH1 [G(X, ˆESα)] where the inequality is
strict since Qd ≺ Pd for some d.
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Titre: Modèles avancés de volatilité implicite pour la gestion des risques et les Chambres de com-
pensation.

Mots clés: volatilité implicite, paramétrisation sans arbitrage, calibration, Chambres de compensa-
tion, marge initiale

Résumé: Dans la première partie de cette thèse,
nous abordons la tâche de construire des surfaces
de volatilité implicite sans arbitrage qui puissent
être utilisées par les opérateurs de marché. Nous
étudions les contraintes d’arbitrage statique pour
les portefeuilles d’options et nous les appliquons
à des modèles de volatilité implicite connus. Tout
d’abord, nous caractérisons l’absence d’arbitrage
Butterfly dans le modèle SVI de Gatheral, et nous
étudions le cas de certains modèles sous-SVI à 3
paramètres, tels que le SVI symétrique, le SVI
Vanishing Upward/Downward et le SSVI. Nous
reconsidérons ensuite ce dernier modèle, étendu à
plusieurs maturités, et nous combinons les condi-
tions d’absence d’arbitrage Butterfly avec celles
d’absence d’arbitrage Calendar Spread. Nous
identifions donc un algorithme de calibration
globale garantissant l’absence d’arbitrage pour
le modèle eSSVI. Ensuite, nous étudions la car-
actérisation d’une notion plus faible d’absence

d’arbitrage Butterfly, c’est-à-dire les deux condi-
tions de monotonie des fonctions d1 et d2 de la
formule de Black-Scholes, dans le cadre des smiles
paramétrés en delta. Enfin, en nous basant sur la
remarque que les options Call peuvent être vues
comme des Calls écrits sur d’autres Calls, nous
étudions les propriétés dynamiques de ces con-
trats.
Dans la deuxième partie, nous étudions le
problème de la quantification du risque de con-
trepartie auquel les Chambres de compensation
sont confrontées quotidiennement. Nous identi-
fions une nouvelle formule model-free pour la VaR
à court terme des portefeuilles d’options qui mon-
tre d’avoir des meilleurs performances que celles
de l’approche classique de la Filtered Historical
Simulation dans nos tests numériques. Enfin,
nous considérons la notion d’Expected Shortfall,
dont nous comparons différents types de mesures
de backtesting.

Title: Advanced implied volatility modeling for risk management and central clearing

Keywords: implied volatility, arbitrage-free parametrization, calibration, Central Clearing Counter-
parties, initial margin

Abstract: In the first part of this thesis we ad-
dress the non trivial task of building arbitrage-free
implied volatility surfaces which could be used
by market operators for practical purposes. We
study in depth static arbitrage constraints for op-
tion portfolios and apply them to notorious im-
plied volatility models. We firstly fully character-
ize the absence of Butterfly arbitrage in the SVI
model by Gatheral, and study the case of some 3-
parameter sub-SVIs models, such as the Symmet-
ric SVI, the Vanishing Upward/Downward SVI,
and SSVI. We then reconsider the latter model,
extended to multiple maturity slices, and combine
the so identified conditions of no Butterfly arbi-
trage with the already known conditions of no Cal-
endar Spread arbitrage. As a result, we identify a
global calibration algorithm for the eSSVI model
ensuring the absence of arbitrage. Secondly, we

study the characterization of a weaker notion of
absence of Butterfly arbitrage, i.e. the two mono-
tonicity requirements of the functions d1 and d2
in the Black-Scholes formula, in the framework
of smiles parameterized in delta. Finally, based
on the remark that Call options can be seen as
Calls written on other Calls, we study the dy-
namic properties of these contracts.
In the second part, we consider the problem of
quantifying the counterparty risk for option port-
folios that Central Clearing Counterparties face
daily. We identify a new model-free formula for
the short-term VaR of option portfolios which per-
forms better than the classical approach of Fil-
tered Historical Simulation in our numerical tests.
Finally, we look at the notion of Expected Short-
fall, and compare different types of backtesting
measures.
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