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Introduction

T
he usage of electronical devices developed tremendously in the last years and the
demand is exponentially increasing on the market. For electric vehicles and portable
devices such as smartphones and laptops, the demand is mainly focused on energy

storage. Electrical energy storage is performed using electrical batteries, which can store
and deliver electrical energy through chemical reactions. Today’s 3rd generation batteries
are based on electrodes exchanging Li+ ions, hence the name Lithium-ion batteries. To
achieve higher-performance batteries, two ways of improvement may be investigated: either
using new materials, which means developing new battery materials, or improving the
already existing manufacturing processes. The second option appears to be more suited to
the reduction of production costs and optimization of the current models.

The manufacturing process of Li-ion batteries consists of five main steps: mixing, coat-
ing, calendering, assembly and filling (see Figure 1). Calendering involves passing the
coated electrodes between two rotating cylinders to reduce their thickness (see Figure 2).
It increases their volumetric density, and consequently their energy density, enabling to
produce smaller batteries with the same storage capacity. However, it has been shown
that when electrodes are over-calendered, i.e. when their thickness is highly reduced, the
batteries that are produced struggle to deliver the entirety of the energy they contain when
subjected to high charging power.

Figure 1: Steps of the manufacturing process of Li-ion batteries [160].

Industrials are thus facing a dilemma between energy storage capacity and charging
rate. We aim here to study the effects of the calendering process on electrode properties in
order to better understand the influence of each manufacturing parameter on the electrode
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Figure 2: Calendering machines used for the manufacturing of Li-ion battery electrodes
(CEA LITEN).

final properties by means of simulations. The usage of simulation tools to study the in-
fluence of calendering makes it possible to carry out test campaigns numerically allows to
study more parameters at a lower cost. Numerical simulations can reveal physical mech-
anisms and properties appearing at scales that cannot be easily detected experimentally,
enabling us to develop new solutions and improve the manufacturing process. As shown
in Figure 3, the electrodes can be modeled as cemented granular materials composed of
nearly spherical active material particles and a binding matrix of polymer and conductive
additives. For this reason, the numerical approach based on the Discrete Element Method
(DEM) provides a natural tool for the simulation of Li-ion electrodes.

The goal of this thesis work is to develop DEM simulations to model the calendering
process and understand its effects on the conductivity and energy density of Lithium-ion
electrodes, which control the charge/discharge rate and autonomy of Li-ion batteries. The
nature of this process raises scientific issues that can be addressed owing to recent advances
in the cross-disciplinary field of granular materials:

1. What is the range of porosities that can be be obtained in a granular material and
how it depends on the preparation method?

2. How does the volume change behavior of cohesive granular materials depend on their
initial porosity?

3. Can the effect of calendering process on the electrode be reduced to that of uniaxial
compaction or triaxial compression? Does shear deformation induced by rolling play
a role?

ii



Figure 3: Cross-section of a Li-ion cathode composed of active material particles and
binding matrix (CBD). The central sheet is the electric current collector.

4. How is the bonding structure of the electrode modified by the level of calendering?
Is the mechanical strength of the electrode increased?

To address these issues, we perform DEM simulations of calendering, dynamic isotropic
compaction, and triaxial compression. For the simulations of the calendering process we
develop a new cohesive elasto-plastic force law to account for the binding material and
a realistic model of the calendering setup. Extensive parametric study is carried out to
analyze the effects of thickness reduction and calendering speed on electrode porosity
and its microstructure (particle connectivity, anisotropy, force transmission). We also
calculate the effective electrical and ionic conductivities by means of Fast Fourier Transform
(FFT). On the other hand, we characterize the effects of dynamic isotropic compaction
on the porosity and microstructure of cohesive granular materials to determine the range
of accessible porosities and their scaling with system parameters. We characterize the
mechanical strength and volume change behavior of cohesive numerical samples under
triaxial boundary conditions to assess the effect of initial porosity.
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Thesis outline

The first chapter is a literature review on Li-ion batteries, calendering process, and granular
materials. We present the important characteristics of a battery, the different elements
forming an electrode and their manufacturing process. We focus on the importance of
the calendering process on the battery properties. We present different simulation models
developed around the calendering of Li-ion battery electrodes, each one with its advantages
and short-comings. We also briefly present general aspects of cohesive granular materials.

The second chapter is devoted to a parametric study of the isotropic compaction of co-
hesive granular materials. We study how the material parameters and compressive pressure
influence the microstructure of the granular medium. The different parameters considered
are particle size, elastic stiffness, adhesion force and applied pressure. We analyze in detail
the combined effects of these parameters on the porosity, microstructure and force trans-
mission. We introduce a dimensionless scaling parameter and deviations from the proposed
scaling due to finite size effects.

The third chapter is devoted to triaxial compression of the configurations obtained in
the previous study to assess their mechanical and microstructural properties. In particu-
lar, we are interested in the evolution of void ratio and cohesion of these configurations.
We study the evolution of stress ratio, void ratio, coordination number and anisotropy
for different levels of adhesion. We show that all the parameters are closely linked to
one another through the adhesive force and that in cohesive granular materials, triaxial
compression does not allow to significantly modify the porosity even in the case of highly
porous materials.

In the fourth chapter, we present our numerical calendering simulation model includ-
ing a cohesive elasto-plastic force law and a rotating cylinder. We consider the evolution
of porosity, elongation and microstructure for different levels of thickness reduction and
calendering speed. We compute the electrical and ionic conductivities of our numerically
calendered electrodes using the FFT method. We show how they are related to the calen-
dering parameters and the different microstructural properties of the granular medium and
which ones are the most influent. These simulations, together with the results of triaxial
compression prove that the shearing of the material imposed by rolling is the most impor-
tant source of compaction in the calendering process and lead also a profound modification
of the bonding structure.

The last chapter presents the main conclusions of this work and its perspectives. We
also include an extended abstract in French.
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Chapter 1

Lithium-ion batteries: context and
materials

Lithium-ion batteries finds their application in a wide range of industrial and customer
products. Their performances, such as charging rate and energy storage capacity, are highly
influenced by the microstructure of the electrodes, and thus the manufacturing process.
For modern batteries, it involves a compaction step called calendering where the thickness
of the electrode is reduced between two cylinders in order to increase its density. However,
this compaction step increases also the tortuosity of the electrode, which decreases the final
charging rate of the battery ; thus, a compromise is necessary between energy storage and
charging rate.

The first part of this chapter focuses on Li-ion batteries in general : their development
history, how they work, the various components composing them, the current manufactur-
ing process, and the tools and methods used to characterize them experimentally. In the
second part we present numerical methods used to study the calendering of Li-ion battery
electrodes. Focus is made on the Discrete Element Method as it is the one used in this
thesis. Various models from the literature are explained, how they simulate the calender-
ing process, the representation of the different components of the electrode and how they
interact. Some numerical properties characterized with these methods are shown and how
they are obtained.
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Introduction

In the last decades, the usage of electronic devices has greatly increased and recent studies
show an ever-growing demand [156, 37]. In the case of electric vehicles and portable devices
such as telephones and laptops, demand is mainly focused on energy storage. This relies on
electrical batteries, which store and deliver electrical energy through chemical reactions.
Current battery models, known as batteries of 3rd generation, are based on electrodes
exchanging Li+ ions. To improve the performances of the batteries, two ways may be
explored : either using new materials, which means developing new battery designs in terms
of both architecture and usage, or improving the already existing manufacturing processes;
this second alternative is better suited to reduce the production costs and optimize current
designs [193, 81].

Currently, the manufacturing process of Li-ion batteries follows 5 steps : mixing, coat-
ing, calendering, assembly and filling. Calendering involves passing the coated electrodes
between two rotating cylinders to reduce their thickness. This increases their volumetric
density, and consequently their energy density, enabling to produce smaller batteries with
the same storage capacity. However with over-calendered electrodes, i.e. when their thick-
ness is greatly reduced, the batteries that are then produced have difficulty delivering the
entierety of the energy they contain when submitted to high charging power [64, 86] ; they
struggle to deliver all the energy they contain quickly.

Manufacturers are thus facing a compromise between energy storage capacity and charg-
ing rate. It would therefore be interesting to look at the effects of calendering process on
the electrode properties in order to better understand the influence of each parameterand
the interplay between these parameters, energy storage capacity and charging rate. The
goal of this thesis work is to study the effects of the calendering process on the electrode in
order to better understand the influence of the manufacturing parameters on the electrode
final properties.

1.1 Lithium-ion batteries

1.1.1 History of Lithium-ion batteries

A battery contains two electrodes, an anode and a cathode, separated by a chemical com-
pound called electrolyte, which exchange ions in order to create a chemical potential dif-
ference, generating thus an electrical current. The voltage of this current and the amount
of energy that can be delivered depend on the battery’s composition and microstructure.
Batteries can be distinguished into 2 categories : primary and secondary, also known re-
spectively as cells and accumulators. Primary batteries are designed to have only one cycle
of use, i.e. unlike secondary batteries they are not designed to be recharged. Therefore,
once completely "drained" of their electrical energy, they can no longer be used. Hereafter,
the word battery will be used to designate accumulators (i.e. rechargeable batteries).

Over the years, several different types of rechargeable battery have emerged [6]. Starting

3



with the first lead-acid batteries developed in the 1850s, the Nickel-Cadmium (Ni-Cd or
NiCad) models of the late 19th century were replaced by the more efficient Nickel-Metal
Hydride (Ni-MH) models of the 1960s. The arrival and development of Li-ion batteries
since the 1970s has enabled us to achieve better performance in terms of power and energy
as shown in Figure 1.1.

Figure 1.1: Specific power and energy for different types of rechargeable batteries [37]

The first lithium battery model, developed by Whittingham [190], goes back to the
1970s. This version used LiTiS2 as cathode and pure lithium and anode, making it im-
possible for the battery to be recharged and resulting in high manufacturing costs. By
replacing the cathode material with cobalt oxide (LiCoO2), Goodenough succeeded in pro-
ducing rechargeable lithium batteries, which were later produced by Sony in the 1990s.
The use of carbon black as an anode material, proposed in 1985 by Yoshino [202], resulted
in more stable and less expensive lithium batteries. These three men will be awarded
the Nobel Prize of Chemistry in 2019 for their work on the development of lithium-ion
batteries.

There exists different types of rechargeable Lithium-ion batteries, divided into "gen-
erations" according to the type of material composing them [166]. Table 1.1 lists these
different generations ; currently, industrially produced batteries are based on 1st and 2nd

generation materials, although 3rd generation batteries are starting to emerge [96]. A 2017
European Commission report predicts their full deployment by 2025, while the switch to
all-solid (generation 4) or Lithium-air (generation 5) batteries is not yet considered [166].

The transition to 4th generation all-solid batteries will involve replacing the liquid elec-
trolyte with a solid compound, but also using pure lithium anodes as well as so-called
conversion cathode materials which are expected to be more efficient than the current ones

4



Cell generation Cell chemistry
Generation 5 • Li/O2 (lithium-air)

• All-solid-state with lithium anodeGeneration 4
• Conversion materials (primarily lithium-sulphur)
• Cathode: HE-NMC, HVS (high-voltage spinel)Generation 3b
• Anode: silicon/carbon
• Cathode: NMC622 to NMC811Generation 3a
• Anode: carbon (graphite) + silicon component (5-10%)
• Cathode: NMC523 to NMC622Generation 2b
• Anode: carbon
• Cathode: NMC111Generation 2a
• Anode: 100% carbon
• Cathode: LFP, NCAGeneration 1
• Anode: 100% carbon

Table 1.1: Classification of the different generations of Lithium-ion batteries [166]

[119, 203]. These models are still under development or at the experimental stage, which
would still require a phase of adaptation to industrial manufacturing processes before seeing
this new type of battery go live on the market [28].

The goal of this section is to investigate the current manufacturing process of Li-ion bat-
teries. Given that 3rd generations batteries and below are currently industrially produced
at a large scale, the study will focus on these models.

1.1.2 Working principle of Lithium-ion batteries

An electrical battery works by creating a difference in electrical and chemical potential
between 2 poles. Figure 1.2 shows the composition and working principle of a conventional
Lithium-ion battery. There are 3 main components in a Li-ion battery : the negative and
positive electrodes (respectively called anode and cathode) and a separative phase made
up of an electrolyte and possibly a separator. The main component of the electrodes is the
active material, such as graphite for the anode and LiCoO2 (LCO) for the cathode. The
electrolyte consists of a liquid phase in which lithium-based salt compounds are dissolved
to enable and improve the flow of ions from one electrode to the other.

During the first run of the battery, the cathode contains most of the Li+ ions. During
the charging phase, the electrons contained in the cathode will flow through an external
circuit to the anode. In order to balance the ionic charges inside the battery, the Li+ ions
present in the cathode will flow through the electrolyte to reach the anode, which was
negatively charged due to the external supply of electrons. Inversely, when the battery is
discharged, a negative charge is applied to the cathode, causing the Li+ ions contained in
the anode to come back to the cathode. The battery’s state of charge can then be checked
by comparing the quantity of ions present in each electrode : the battery will be considered
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Figure 1.2: Working principle of a Li-ion battery [53]

charged when the majority of the ions are present in the anode, and discharged when they
are in the cathode.

1.1.3 Composition of a Lithium-ion battery

A current-generation Lithium-ion battery consists of an assembly of anodes and cathodes,
between which a liquid electrolyte has been poured. Each type of electrode contains a
specific active material which characterize it, as well as a binder to maintain its integrity,
and a current collector in order to transport the electrical current between the battery’s
poles. Electronic additives can also be added to the cathode in order to improve its
electrical conductivity. As far as cathode and anode materials are concerned, we will be
focusing on the materials of 3rd generation batteries (see Table 1.1).

Cathode active materials

Among cathode materials, the first one to be used in commercial batteries was the LiCoO2

(LCO). Introduced in the 1980s [104], it is still widely used in commercial battery pro-
duction due to its high storage capacity and relatively simple manufacturing process. The
relatively high cost of cobalt has led to the emergence of new designs that reduce the pro-
portion of cobalt in the active material. The LiNi0.8Co0.15Al0.05O2 (NCA) largely replaces
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cobalt with nickel and aluminum. Its usage has grown exponentially in recent years due
to its use in Tesla’s first electric vehicle models [114]. The main feature of NCA-based
batteries is their high theoretical storage capacity, making them ideal for electric vehi-
cles. Another widely used material in industrial batteries is the LiNixCoyMnzO2 (NCM
or NMC), not only for its high theoretical storage capacity, but also for its reduced cobalt
proportion compared to LCO [198, 157]. An interesting aspect of this compound is that the
proportion of each of the elements can be varied to get different performances depending
on the desired use, the best known of which being the LiNi0.33Co0.33Mn0.33O2 (NMC-333)
[199, 27]. Previous active materials used elements from the transition metal category but
there is another category of intercalation materials which use polyanions. These can be
easily recognized through their chemical name which contains a compound (XO4)

3− (where
X = S, P, Si...,) giving them a higher reduction potential [115]. The emblematic material
in this category is LiFePO4 (LFP), which is known to give cathodes with good thermal
stability [35].

(a) (b)

Figure 1.3: Active material particles observed through SEM (a) NMC-333 grains [27] (b)
Graphite particles [85]

Anode active materials

Regarding anodes of Li-ion batteries, few different materials are currently used. Histori-
cally, carbon-based compounds were used, with the first graphitic electrode designs devel-
oped in the late 1970s [7]. Because carbon is abundant and therefore relatively inexpensive,
it quickly became the material of choice for anodes in commercial batteries. Graphite is
the one with the best properties as an intercalation material [85, 65]. Anodes based on
new carbon structures, such as carbon nanotubes or nanosheets, started to emerge in the
last years [146]. An alternative to graphitic intercalation models is titanium oxides, the
most widely used being Li4Ti5O12 (LTO) [209]. Their distinctive features are that their
rigid crystalline structure meaning that they undergo very little volume change during the
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operational phase [29]. The presence of titanium, however, implies a higher manufacturing
cost, an important parameter in the choice of materials for a battery intended for com-
mercial use. Another material studied in the last years is silicon (Si). This element has
theoretically the highest massic and volumetric electrical storage capacity [212]; its use as
an active material in lithium battery anodes has therefore been envisaged since the end of
the previous century [197]. The main drawback to its use is the significant volume variation
that occurs during (de)lithiation phases, with up to 400% increase in volume [113].

Binder and conductive additives

To be mechanically stable the electrode needs, in addition to active material, to contain
a binding polymeric compound. It plays an important role in the life and safety of the
battery, as it will modify the overall mechanical stability of the electrodes [207]. During
the first step of the battery manufacturing, the mixing phase, the binder initially solid is
dissolved into a liquid solvent to disperses evenly. It will then mix with the active material
particles, and infiltrate them if they are porous (see Figure 1.4a). After being coated
onto the current collector, the solvent evaporates from the mixture during the drying step
and the binder solidifies, creating solid bonds (Figure 1.4b) and/or cohesive surfacic forces
(Figure 1.4c) [208]. Therefore, depending on the type of binder and the proportions of each
components inside the electrode, the binder will produce different phases (see Figure 1.4d)
which will influence the final properties of the battery [187, 73].

Among the binders used in the manufacturing of Lithium-ion batteries, polyvinylidene
fluoride (PVDF) is by far the most popular [206]. Used since the 1970s, it is suitable for
both anodes and cathodes, thanks to its high chemical resistance but also because it is
chemically inert. As a result, it can only be dissolved in organic solvents such as N-methyl-
2-pyrrolidone (NMP). NMP is known to be a flammable pollutant compound, and has
been identified as toxic on chronic exposure, as well as having adverse effects on embryonic
growth. [100] However there exist alternatives to NMP, with water-soluble binders such
as polyacrylic acid (PAA) or carboxymethylcellulose (CMC) [91, 206]. The environmental
impact of battery production and recycling is greatly reduced, as are manufacturing costs.
On the industrial side, anode manufacturing has successfully moved towards the use of
these solvents, but PVDF still remains the standard for cathode manufacturing.

These binders have a major inconvenient: as they bind around the active material
particles (Figure 1.4d), they reduce not only the contact surface between the active material
and the electrolyte, but also the contact surface between the particles of active material
themselves. As they are not good electrical conductors, they create electrically insulating
areas which have a major impact on the battery’s charge-discharge rate [80]. To overcome
this problem, another type of component is added during the mixing phase : conductive
additives. These are carbon powder compounds like carbon black or acetylene black, carbon
nanotubes or even sheets like graphene [205, 164]. Since the additives tend to mix with
the binder due to their nanometric size during the drying phase, they form a phase known
as Carbon-Binder Domain (CBD). The geometric structure of the additives has a strong
influence on the final performance of the battery. Its proportion plays an important role in
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Figure 1.4: Schematic illustration of the binding mechanism : (a) diffusion/penetrating
process during electrode preparation (b) formation of mechanical interlocking during the
drying process (c) interfacial bonding forces (d) polymer states in a bonding system [25]

the final microstructure [79, 73]. The main issue with the use of electronic additives is that
CBD has a low electrical storage capacity, which results in reduced battery storage density.
In addition, the conductive additive particles tend to agglomerate together, increasing the
tortuosity and hence the internal resistance [72].

Electrolyte

In a battery, the two electrodes can not be directly in contact : it would create an internal
short circuit which would instantly drain it from its energy, which can lead to swelling
followed by combustion [191]. To prevent any contact between the two electrodes, a sep-
arator is placed between them. It is a thin layer of porous polymer that allows ionic flow
between the electrodes. However, to ensure that ion transportation is possible, a conduc-
tive compound called electrolyte is added after the electrodes have been assembled with
the separator (see Section 1.1.4). It allows the lithium ions to flow between the electrodes
during charge-discharge phases, thus closing the electrical circuit when the battery is in
use. There are 2 categories of electrolyte : liquid and solid. A liquid electrolyte infiltrates
the pores of the electrodes to maximize the diffusive surface area, while a solid electrolyte
is inserted directly between the electrodes. In today’s industrial Li-ion batteries, liquid
electrolytes are used.
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Liquid electrolytes are formed from lithium salts dissolved in polar solvents. Most of
these salts, such as lithium perchlorate (LiClO4) or lithium hexafluorophosphate (LiPF6),
have long been known and used in other fields, but new salts have been developed specifi-
cally for lithium batteries, such as lithium bis(oxalato)borate (LiBOB) or lithium
bis(trifluoromethane-sulfonyl)imide (LiTFSI) [95]. Among the solvents used in industrial
batteries, the first one to be employed was propylene carbonate (PC). Its good ionic con-
ductivity and its hability to easily dissolve salts made it an ideal solvent for battery manu-
facturing. However, PC tends to facilitate the disaggregation of the carbon in the interface
during the first use cycles, which can lead to internal battery failure. It was then replaced
by ethylene carbonate (EC) which, although not as good as all the other solvents in terms
of conductivity and solvency, creates more electrochemically stable interfaces [170]. The
fact that EC is solid at room temperature can be counterbalanced by mixing it with an-
other solvent, dimethyl carbonate (DMC). Unfortunately, this mixture is constrained by
DMC’s low ignition temperature (18°C vs. 160°C for EC, 55°C for the mixtures), thus
limiting the battery’s maximum operating temperature [196]. However, it is this blend
that is used in the majority of commercial Li-ion batteries today, as it remains the best
compromise between performance and safety [95].

Current collector

The current collector is the element onto which the other electrode components are coated.
It is a metallic plate, made of copper for the anodes and aluminum for the cathodes, a few
micrometers thick. During the operation phase, it allows for the electrons to flow from the
active material particles to the poles of the battery.

1.1.4 Manufacturing process

The manufacturing process of industrial Li-ion batteries is divided in different steps illus-
trated in Figure 1.

Battery manufacturing begins with the mixture preparation of each electrode. First,
the different solid components (active material and binder + conductive additives) are
ground together in a mixer. The resulting powder is then poured into a liquid solvent and
mixed to make the solution homogeneous.

The mixture obtained is then coated onto the current collector, and the thickness of
the electrode is controlled using a blade. The composition of the mixture and the imposed
thickness are used to define the mass loading (in g/m2) of the electrode. The electrodes
are then dried in an oven, if necessary under vacuum, to eliminate the solvent which is
then no longer required. It is not uncommon for drying to be carried out in several stages
and at different temperatures to ensure that all the solvent is evaporated [56].

Next comes the calendering step, in which the electrodes are compacted between two
rotating cylinders to reduce their thickness and increase their energy density. Figure 1.5(b)
shows a cross-section of an electrode after calendering, where the grains of active material,
the binder+additive matrix and the current collector are clearly visible.
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(a) (b)

Figure 1.5: Cathode after calendering (CEA Liten, 2018) (a) Electrode strip (b) Cross-
section observed through SEM

Once calendered, the electrodes form long strips like in Figure 1.5(a), which are then
shaped and assembled according to the type of battery to be manufactured. Although
a "functional" battery requires only a cathode and an anode, it is preferable to make
multi-layer assemblies, where each electrode is physically isolated from the others by a
separator, in order to increase the energy storage capacity. To obtain cylindrical batteries
(Figure 1.6a), a positive and a negative strip are assembled with a separator, then folded
to obtain the cylindrical shape. This results in batteries with a higher volumetric energy
density. For batteries with a parallelepipedic geometry, called prismatic (Figure 1.6b), the
strips are also rolled together, but this time by confining them in a box. With this form,
the batteries can fit more easily to their final usage. For a third type of battery called
a "pouch" (Figure 1.6c), electrodes are cut from strips, then stacked alternating between
positive and negative elements. These batteries are simpler to produce on a large scale but
also in a laboratory, which is why this form is often used in experimental studies [56, 77].

The next step consists in filling the previous assembly with liquid electrolyte to fill the
remaining pores between and in the electrodes and separator. It is important that the
electrolyte fills as many pores as possible to get the highest possible conductivity. Once
filled, the battery is hermetically sealed to prevent any contact between the electrolyte
and the air as some electrolyte components react easily with oxygen and water, leading to
irreversible damage or even destruction of the battery [191].

Why study the calendering process

The calendering stage is one of the most important steps in the manufacturing process
regarding the performance of the final battery : by reducing the thickness of the elec-
trodes, their volumetric density will increase, and consequently their energy density and
storage capacity. However, this compression brings the particles closer together, closing
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Figure 1.6: Types of Lithium-ion cells : (a) Cylindrical (b) Prismatic (c) "Pouch" [28]

the electrode’s internal pores. With fewer open pores the contact surface between the
electrolyte and the active material particles is reduced, and at the same time the battery’s
ionic conductivity (see Figure 1.7) [207, 75].

Figure 1.7: Evolution of electrical and ionic conductivities of cathodes depending on their
porosity [75, 151]

It is therefore necessary to understand the influence of the numerous calendering pa-
rameters in order to obtain batteries with optimum properties [155]. The electrode compo-
sition will obviously have a major influence, particularly in terms of electronical but also
mechanical properties [64, 86, 101]. Indeed, an electrode with a high proportion of binder
will offer better adhesion of the active material particles onto the collector, thus avoiding
its delamination during the calendering step. The electrode’s initial porosity will influence
its resistance to this compression; at equivalent stress, an initially more porous electrode
will emerge from calendering with a higher porosity [151].

Regarding the calendering machines, influential parameters will depend on the ma-
chine’s complexity. On the simplest ones, only the pressure applied by the cylinders
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Figure 1.8: Comparison of the discharge performance between electrodes of different mass
loadings before and after calendering [86]

and/or the opening gap between the cylinders can be controlled (even though the two
are linked). However these parameters are the most influential on the final battery per-
formances machinewise [155, 52, 117, 127]. Higher pressures lead to lower porosities, but
can also induce fragmentation of the active material particles ; electrodes will be more
compact, but their specific capacity will be highly reduced for high discharge electrical
currents [128] (Figure 1.8). The higher the initial density of the electrodes, the greater
their specific capacitance at high discharge levels is affected by the thickness reduction.

The travelling speed of the electrode between the rollers is controlled, but this does not
appear to have a significant effect on the final properties if this speed is sufficiently low
(of the order of 1 m/min) [155] ; however, most industrial production lines use calendering
speeds between 30 and 100 m/min [81]. Calendering speed plays an important role in
the battery manufacturing rate as it maximizes the production cadency. In addition, the
size of the rolls will differ between a "laboratory" calendering machine and an industrial
one : where the former use cylinders around 20cm in diameter, the latter can go up to
1m in diameter [71]. This size will have an important effect on the compressive part of
calendering, as larger cylinders will allow pressure to be applied more gradually, favoring
the vertical normal force over the horizontal tangential force, thus reducing the chances of
the microstructure to break apart. Thus, some problems associated to calendering can only
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be studied via industrial machines. There is hence a whole range of calendering parameters,
both at machine and electrode level, which influence the final properties of the battery. It
would therefore be interesting to study in detail the influence of each of these parameters
during the calendering step.

1.1.5 Experimental characterization

Electrical characterization

Electrical batteries are identified by their energy capacity and electrical capacity. The
electrical capacity, noted Q and measured in Ah or mAh, gives an indication of the total
electrical charge that can be delivered by the battery. This value is obtained by using the
battery at constant electrical current I and measuring the time required to discharge it
completely ; the capacity is then given by the product of the electrical current and the time
spent (Q = I × t). Theoretical electrical capacity is given for 20h cycles. Energy capacity,
measured in Wh, provides information on the amount of energy stored in the battery. It
depends on the electrical capacity, and is calculated by multiplying the electrical capacity
by the nominal battery voltage (E = Q × U). This voltage corresponds to the potential
difference between the battery’s two poles, and represents therefore its state of charge :
the lower the voltage, the more discharged the battery. For current Li-ion batteries, the
voltage can vary between 3 and 5V depending on the active materials used [119].

However, depending on how the battery will be used, the electrical currents to which
it might undergo will vary in intensity ; it has been shown that batteries do not react in
the same way depending on the electrical currents to which they are subjected [86]. Under
high currents, they are unable to deliver the full electrical charge they contain, resulting
in lower electrical capacity values. The "different" electrical capacities of the battery are
recorded during cycling tests with varying electrical currents ; this type of test is called
C-rate cycling [57].

To get a more precise idea of battery performance, particularly at high frequencies, there
exists a characterization method called Electrochemical Impedance Spectroscopy (EIS). By
stimulating the sample with an alternating current of equation E(t, ω) = E0sin (ωt), it will
give a response similar to the solicitation but slightly offset, noted I(t, ω) = I0sin (ωt+ ϕ).
By comparing the solicitation and the response, the impedance Z = E

I
of the sam-

ple can be computed, which can be rewritten in complex form Z (ω) = E0

I0
exp(jϕ) =

Z0 (cos (ϕ) + jsin (ϕ)), giving an intensity Z0 and a phase shift ϕ. By repeating the pro-
cess with different frequencies, it is possible to plot Bode diagrams for Z0 and ϕ, which
combined give a Nyquist diagram (Figure 1.9(a)). This diagram allows to approximate
the behavior of the sample with an equivalent electrical circuit [10, 189], giving then a
simplification of the battery’s operating diagram (Figure 1.9(b)).

Knowing the diffusivity properties of the electrolyte and the geometry of the electrode,
the effective ionic conductivity of the electrode can be computed. By comparing with the
ionic properties of the electrolyte, this gives an estimation of the distance the lithium ions
will have to travel to pass through the electrode; the ratio between this distance and the
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thickness of the electrode is more commonly known as tortuosity, noted τ . Thus, a battery
with a high equivalent resistance will generally have fairly tortuous electrodes along with
a lower charge-discharge speed [55].

(a) (b)

Figure 1.9: EIS analysis of Li-ion batteries (a) Nyquist diagram of a cathode [10] (b)
Equivalent electrical circuit of an entire Li-ion battery [189]

Geometrical characterization

Tortuosity is dependent on the applied calendering but also on electrode composition. In-
deed, depending on the type of active material used and the proportion of each component,
electrode microstructure will differ [73]. The size and distribution of the pores is an im-
portant factor, as it defines the porosity of the electrode and the path taken by the ions
when the battery is used. Some approaches exist to geometrically estimate the porosity
of an electrode [14]. The simplest and most obvious one is to weigh the electrode and
then, knowing its dimensions and the proportion of each of its components, determine the
difference in volume with a "full" electrode ; this difference corresponds to the volume of
internal pores [97]. However, this method is highly sensitive to precision errors, partic-
ularly when measuring electrode thickness. Alternatively, mercury porosimetry may be
used. However this method, known as intrusion porosimetry, can only identify the volume
of open pores, i.e. those accessible from the outside, and those large enough to allow the
fluid to pass through. Closed or undersized pores cannot be identified, which can lead to
significant errors in the porosity measurement depending on the microstructure [45].

These measurement techniques can not indicate whether or not there are local variations
in the microstructure [14]. It is nevertheless possible to use imaging tools to directly observe
the morphology of the sample, and thus its local microstructure. The Scanning Electron
Microscopy (SEM) provides detailed images of the sample surface. A beam of electrons is
projected onto a point on the surface of the sample, from which other electrons of lower
energy but dependent on the material and its morphology are "stripped off". By scanning
its entire surface, it is possible to analyze the sample in its entirety ; where an optical
microscope can only achieve resolution down to the micrometer, SEM allows to get images
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with nanometric precision. Figure 1.10a gives a clear view of each NMC grain and the
surrounding binder matrix. For Li-ion electrodes, SEM is particularly useful for observing
the state of the active material grains, especially their deformation and fragmentation due
to calendering [207, 56]. X-ray computed microtomography (XCT) can be used to produce
a 3D map of a sample without damaging it. It produces a series of cross-sectional views of
the sample which, once digitally assembled, are used to recreate a 3D model of the sample.
This provides a representation of the overall microstructure with an accuracy up to 50 nm
(depending on the device and the material); it is thus possible to visualize the internal
pores of the electrode and estimate its tortuosity and ionic conductivity [108]. However,
only the microstructure of the active material particles can be obtained by XCT, as the
absorption range of the CBD is too small to be able to differentiate it from the pores [211].
Figure 1.10b shows a 3D reconstruction of a cathode microstructure obtained by combining
XCT images and phase contrast microscopy, where LCO grains are identified in black and
additive particles in red.

(a) (b)

Figure 1.10: Cathode visualizations (a) SEM cross-section [32] (b) 3D reconstruction from
XCT images [9]

Mechanical characterization

From the microstructure, it is then possible to obtain information on the mechanical prop-
erties of the electrode, regarding both its components and the electrode as a whole. The
most commonly used method to determine the behavior of micrometric grains is nanoin-
dentation. Depending on the force and displacement measured and the punch used, it is
possible to determine several characteristics of the studied material, the most common one
being the hardness H and the elastic modulus E [121]. Applied to cathodes, nanoinden-
tation showed that the values of H and E were much higher for NMC grains than for the
CBD matrix [32, 210] and that the plastic deformation of the active material grains was
dependent on their size [151].
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Mechanical characterization of the entire battery can also be carried out using more tra-
ditional methods, such as tensile/compressive or shearing tests. With tensile/compressive
studies, it is fairly straightforward to estimate the elastic modulus of the overall electrode,
and if they are pushed to failure, plasticity and/or fracture criteria [210].

Peel tests are often used to check if the components of the electrode are firmly attached
to each other and onto the collector. The electrode is held stationary by gluing either its
collector or one of its faces, depending on whether the current collector has one or both of
its faces coated, then the AM–CBD mixture is "peeled off" at a given angle, usually 90°
or 180° [90]. This type of study measures the adhesion between the current collector and
the mixture ; usually it is the adhesion of the binder to the collector that is studied due
to the non-existent adhesion of grains of active material alone [186].

1.2 Numerical simulations applied to the manufactur-

ing process of Lithium-ion batteries

In order to reduce the production and development costs of Lithium-ion batteries, one
investigation solution is to employ numerical simulation methods. These tools can represent
all or part of a real system in order to study its characteristics while reducing the number of
experimental tests required to characterize it correctly. Furthermore they provide access to
physical properties that are difficult, if not impossible, to measure experimentally. This not
only reduces production costs, but also enables more extensive numerical test campaigns
to be carried out once the model has been calibrated.

There are various numerical simulation methods applicable to battery simulation. De-
pending on the studied system, some methods will be more appropriate : while studying
Li-ion battery electrodes, the Finite Element Method and the Discrete Element Method
are mainly used, as they can represent the structural changes that electrodes undergo dur-
ing the manufacturing process. It should be noted however that other methods have also
been used to simulate the electrodes, such as the one developed by Lenze et al. [77] which
relies on a purely mathematical model to estimate the electrical characteristics of the final
battery. The model of Duquesnoy et al. [40] used a database of experimental results to
build an artificial intelligence able to determine the characteristics of the final electrode
given certain input data.

The Finite Element Method (FEM) is based on a continuous representation of the
system. It employs deformable geometric elements, which are linked together by their
vertices, called nodes. The computation of the elements deformation and the displacement
speed of the nodes is carried out by doing matrix computations, in which the interactions
between the elements are defined in a stiffness matrix. This method is specially useful
to represent material deformations or fluctuations that may occur between elements [179,
178, 99].

The Discrete Element Method (DEM) represents matter as a divided medium, with
each element considered as an isolated body. Each element is then defined with a specific
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position, velocity, shape and material. The movement of the elements is determined by
the equations of dynamics into which the forces resulting from the interactions between
the elements are computed. This numerical simulation method is commonly used to study
the mechanics of rocks and soils [61], but also other industrial fields dealing with granular
media, such as the production of pharmaceutical tablets [99], the grinding of grains in a
rotating drum [122], or, in the case of this study the manufacturing process of electrical
batteries [52, 149, 153]. Indeed, given the granular composition of the electrodes, it is
appropriate to use the Discrete Element Method to represent the calendering of Li-ion
electrodes.

1.2.1 Discrete Element Method

The Discrete Element Method was first introduced in 1979 by Cundall, initially as the
Distinctive Element Method, to study assemblies of disks and spheres [30]. Since that,
variants of DEM have been developed depending on the numerical method employed to
compute the contact force between elements [133] ; the most common are Contact Dynamics
(CD) and Molecular Dynamics (MD).

Contact Dynamics, introduced in the 1980s-90s by Moreau [60, 106, 107], is based
on the fact that elements are rigid and cannot overlap (principle of unilaterality). This
translates into the inequation δ ≥ 0, where δ represents the distance between two elements.
When two elements are in contact (δ = 0), it results in a contact force f ≥ 0. Inversely,
when the elements are no longer in contact (δ > 0), then the contact force f is zero. The
unilateral contact law (or Signorini criterium) results from this observation and, as shown
in Figure 1.11a, stipulates that :

f ≥ 0, δ ≥ 0, f.δ = 0 (1.1)

(a)

δ

f

0

(b)

δ

f
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0

Figure 1.11: Contact law graph (a) unilateral (CD) (b) allowing overlap (MD)

On a contact, the resulting force can be defined as a vector f⃗ and decomposed into 2
parts, normal and tangential, in the form f⃗ = fnn⃗ + ftt⃗. The vector n⃗ gives the contact
direction, while the vector t⃗ corresponds to the tangential direction of the contact and is
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defined according to the relative velocity of the elements in contact : t⃗ = v⃗t/||v⃗t|, where
v⃗t = v⃗ − (v⃗.n⃗) n⃗. Note that the tangential force ftt⃗ (also denoted f⃗t). Depending on
the intensity difference between the normal and the tangential forces, Coulomb’s criterion
ft ≤ µfn, with µ the friction coefficient, links the relative velocity of the elements to these
forces. Indeed, if the tangential force is not big enough to overcome the resulting frictional
force of the contact (ft < µfn), then the contact will be described as frictional and the
sliding velocity between the elements vt will be zero. Inversely, if the tangential force is
able to compensate for the friction force (ft = µfn), then the contact will be described as
sliding and any additional energy "added" to the tangential force will be transferred to the
sliding velocity (vt ≥ 0). Therefore, similarly as for Signorini criterium, Coulomb’s friction
law can be defined with 2 inequations and one equation :

µfn − ft ≥ 0, vt ≥ 0, (µfn − ft) .vt = 0 (1.2)

These two laws of solid mechanics are necessary to describe the behavior of two elements in
contact, but they are not sufficient in themselves as they do not allow us to compute force
and velocity values directly. It is then necessary to use appropriate resolution methods,
such as the non-linear Gauss-Seidel algorithm (NLGS), which will iterate over all the
contacts with provisional values until a convergence criterion is reached [36].

Molecular Dynamics on the other hand is based on other ways of managing contacts.
Unlike Contact Dynamics, the molecular approach considers that on a very small scale the
surface of the materials is covered with asperities that deform elastically upon contact. The
impenetrability and Coulomb friction laws are approximated with high rate linear functions
(see Figure 1.11b). Therefore, when two elements come into contact, δ the distance between
them becomes negative and the elements can overlap. The unilateral contact law defining
the system is no longer valid, and the relationship between distance and contact force is
given by :

δ > 0 → f = 0, δ ≤ 0 → f = −kδ (1.3)

with k a rigidity stiffness coefficient. Hence the resulting contact force will depend on the
overlap between the elements, and its value can be determined directly from the contact.
Thus, the computation of contact forces is simpler, more flexible and more straighforward.

The Discrete Element Method algorithm is divided into 3 main steps as illustrated in
Figure 1.12. First, starting from a given configuration, the couples of elements in contact
are identified and a list of interactions is established. Based on the pairs of elements in
contact, the resulting forces and moments are computed through contact laws. These forces
and moments are then integrated into the equations of motion to obtain the position and
velocity of the elements at the next time step, creating a new configuration.

Contact detection

To avoid testing whether each pair of elements is in contact for a given configuration
(N×(N-1) possible pairs) and thus reduce the overall computational cost, the contact de-
tection phase is broken down into 3 steps [133]. First, a proximity search phase will create
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Figure 1.12: Working principle of the Discrete Element Method algorithm

a list of neighboring elements likely to come into contact. There are various methods for
searching for an element’s neighbors. The simplest one is to divide the space into uni-
form cubic elements and then, for each element, list those located in neighboring cubes,
as illustrated in Figure 1.13a. This method is suitable for compact configurations where
the elements do not move a lot, but reaches its limits when polydispersity is important
and when there is a big difference in size between the smallest and largest elements. An-
other method involves enclosing each element in an equivalent volume (whose shape can
be variable), and then projecting this volume onto the axes to define a list of intervals ;
when two elements have all their intervals matching, they are then considered neighbors.
Figure 1.13b illustrates this method. This second technique is more accurate in detecting
neighbors, but can lose precision when the dimensions of the system differ by orders of
magnitude.

The neighbors list is often refined before moving on to the next step. For simple
elements such as spheres, it is common to reuse the same technique as in the previous
step, with increased precision in order to reduce uncertainty about the contact point.
For more complex elements (concave and/or multi-faceted), the refinement is carried out
around each element’s structure. Here each of the element’s vertices, edges and faces will
be endowed with an equivalent volume, specifying then which of these are most likely to
be in contact with the partner element [183]. Finally, the contact points between each
element is determined from this refined list. There are plenty of contact types, illustrated
in Figure 1.14, which can be either point, line or planar, depending on the geometric
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(a) (b)

Figure 1.13: Scheme for contact detection algorithms [133] (a) Neighboring cubes (b)
Intervals

entities in contact. However, it is possible to consider that all contacts can be defined as a
combination of simple contacts, i.e. vertex-summit, vertex-edge, vertex-face and edge-edge;
this way it is possible to redefine complex contacts as a set of contact points.

Although precise contact detection must be performed at every time step, less precise
steps can be postponed in order to further reduce the computational cost. For example, for
configurations where the relative speed between elements is low, it is possible to postpone
the neighbor detection step. One of these methods is called the Verlet list, which will
update the list of neighbors according to a time step linked to the overall movement of the
configuration [184].

Force computation

Once the contacts have been identified, the resulting forces are computed for each one of
them. Here we will focus on how to compute these values using the Molecular Dynamics
method. A contact law is established to compute the normal and tangential components
of the resulting force, defined as a function of the overlap between the elements and whose
parameters are linked to the materials. The simplest contact law is Coulomb’s linear elastic
law with friction, illustrated in Figure 1.15.

Here, as defined in Equation 1.3, fn the normal force is given by :

fn = −knδn (1.4)

where kn is the normal stiffness of the contact and δn the distance between the elements.
The tangential force component is computed similarly as the normal force with :

∆f⃗t = −kt∆δ⃗t (1.5)

where kt is the tangential stiffness of the contact. Here an increment of force is computed as
the tangential force depends on the relative velocity between the elements, with∆δ⃗t = v⃗t∆t;
if this velocity is null in the tangential direction(v⃗t = 0⃗), the tangential force will not be
changed. For frictional contacts, Coulomb criterium must be respected, as illustrated in
Figure 1.15c, where :

||f⃗t|| ≤ µfn (1.6)
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Figure 1.14: List of possible contact types between polyhedra [23]

with µ a friction coefficient. Hence, if the contact force reaches ||f⃗t|| > µfn, the tangential

force will be set to f⃗t = µfn.f⃗t/||f⃗t|| in order to stay satisfy the Coulomb criterium.
Since this contact law is purely repulsive, it may lead to unstable simulations if the

time step is too large. A normal damping force fv = −αn (v⃗ · n⃗) dependent on the relative
velocity v⃗ is introduced, with αn a normal damping coefficient ; the total force resulting
from the contact is then f⃗ = (fn + fv) n⃗+ f⃗t with only normal damping, although it can be
applied to the tangential component. For non-viscous damping cases, the normal damping
coefficient αn is usually given by :

αn = − 2 ln (ϵn)√
ln2 (ϵn) + π2

(1.7)

with ϵn ∈ ]0; 1] a user-defined coefficient of restitution.

Position and velocity update

Once the resulting forces and moments are computed for each contact, the position and
velocity of each element are updated. To do this, DEM relies on Newton’s laws of motion

22



(a)

−δn

fn

kn

(b)

∆δt

∆ft

kt

(c)

fn

ft

µ

Figure 1.15: Linear elastic contact law (a) Normal force (b) Tangential force (c) Coulomb
criterium

which give the following equations for the element i :

mi
¨⃗xi = mig⃗ +

∑
j ̸=i

f⃗ij (1.8)

[Ii,Oi
]
˙⃗
Ωi =

∑
j ̸=i

M⃗Oi

(
f⃗ij

)
(1.9)

with x⃗i the position of element i, Ω⃗i its angular velocity, [Ii,Oi
] its inertia matrix at point

Oi (corresponding to its center of mass), and M⃗Oi
(f⃗ij) the angular momentum induced by

the force f⃗ij on point Oi.

By integrating these equations, it is then possible to determine the position, velocity,
orientation and angular velocity of the elements. However, continuous temporal integration
is not always possible, particularly as the rupture of some contacts can lead to disconti-
nuities in the forces computation. It is therefore necessary to discretize the integration
of these differential equations with suited algorithms. Verlet’s integration algorithm is
often used in Molecular Dynamics, as it is more stable than the classical Euler method
[184]. However, with this algorithm, position and velocity are not computed at the same
instant, but shifted by half a time step. This offset is necessary, especially for kinetic
energy calculations. An alternative consists in modifying this algorithm to "synchronize"
the computation instants; for example, the Velocity Verlet algorithm allows to compute
the position and velocity of elements at the same instant [168].

With the positions, angles and velocities known at time t, Eq. 1.8 and 1.9 allow to

compute the values of ¨⃗xi and
˙⃗
Ωi at time t+∆t. It is then possible to compute the position,

velocity, orientation and rotation speed values of the elements at the next time. A new
configuration of elements is then obtained, and can be reintroduced into the algorithm to
continue the simulation.
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1.2.2 Simulation of the calendering process of Lithium-ion bat-
tery electrodes using DEM

Modeling of the components

In order to obtain a representative numerical electrode, it is necessary to correctly model its
main component : the active material. For cathodes, they are lithium-based grains (LCO,
NMC, LFP...), and graphite for anodes (see Section 1.1.3). The shape of the elements will
play an important role : the properties of the electrode, both mechanically and electron-
ically, will not be the same depending on which grains are used. It is possible to recover
the "real" shape of the electrode particles using XCT measurements, and thus obtain more
representative particles. Usually each grain has its own shape, which is an inconvenient
in DEM : indeed, complex particle shapes increase the computational cost of the contact
detection phase [167]. It is better to use shapes that are as simple as possible. The simplest
form to represent an element is the sphere ; this shape may be suitable for some types of
active material grains such as NMC, but not for graphite, which usually has a flatter shape
as shown in Figure 1.3. In most numerical cathode models, active material particles are
represented with spheres [52, 117, 153, 188]. Some models even represent particles of active
material as assemblies of spheres, in order to obtain more complex shapes while keeping
computational costs reasonable [118]. Regarding the particle size, for models not built
from tomographic results, this size is either the same for all grains (monodisperse) or the
sizes are variable and their volumetric proportions are chosen to respect an experimental
distribution [117, 51].

In models designed to take into account the influence of the binder and conductive
additives, these components are represented through one common type of element, the
Carbon Binder Domain, due to their small size relative to the active material particles and
their tendency to merge after the mixing phase. In order for the model to be representative
of real electrodes, the mass proportions between each component must be respected. It
varies around 90-95% for the active material, 2.5-5% for the binder and 2.5-5% for the
conductive additives, i.e. the mass ratio between active material and CBD that can vary
from 90-10% to 95-5%. However, since the CBD has a lower bulk density than the active
material, and the grains are usually of nanometric size, the volumic distribution will be
different, with CBD representing between 12 and 25% of the total volume. Thus, by
respecting actual particle densities and sizes, the number of CBD particles will vary between
500 and 1000 for each particle of active material introduced in the simulation [165]. It can
therefore become costly in terms of time and resources to carry out simulations explicitly
taking into account all electrode components. This is why it is common to find models
that do not explicitly take into account the presence of these components [167, 188, 51],
but which nevertheless include CBD-related parameters in their simulations.

The current collector is easier to model : as it is a smooth metal sheet, made of
aluminum for the cathodes and copper for the anodes, it will be represented using a plane
or a rigid block [118, 51], or can even be completely absent if the study focuses on grains
alone [167, 40]. The fact that it is non-deformable is inherent to the models developed
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to date, assuming that the collector will retain its shape throughout battery manufacture.
This assumption is, however, rather unrepresentative of reality, as it has been observed that
particles of active material can deform the current collector during extensive calendering,
resulting in electrodes with high densities [155].

Once the solid elements have been defined, the question of the electrolyte remains.
Ideally, the electrolyte is only present in the electrode from the filling stage onwards ;
it is therefore not necessary to take it into account during the calendering stage. The
presence of the electrolyte will only be useful for ionic conductivity measurements. Thus,
DEM calendering models do not have to worry about it, as the electrolyte is not needed ;
moreover, for conductivity measurements, DEM is not useful, as the particles are then
considered fixed, and so only the electrode microstructure is needed [151, 159].

Interactions between the elements

Once the components have been modeled separately, then establishing the interactions
between each of them is needed. As explained in Section 1.2.1, these relationships are
defined by contact laws, which allow to determine the resulting forces and moments from
the contacts. The contact laws presented here are those employed in DEM simulations
applied to Li-ion electrodes, but they represent only a fraction of the existing laws, which
can be used to represent more or less complex mechanical behaviors. For a more exhaustive
list, see [133, 176, 171].

Elasticity In the simplest simulations, i.e. those only taking into account the presence
and influence of active material particles, the contact law is just elastic. Since the contact
is between metallic materials (like the one presented in Section 1.2.1). The Hertz-Mindlin
law is frequently an alternative [102]. Both are expressed as :

fn

(
δn

)
= −knδn ; ∆f⃗t

(
∆δ⃗t

)
= −kt∆δ⃗t (1.10)

The normal and tangential stiffnesses kn and kt are related to the elastic properties of
the elements in contact. For spherical elements they are given, within the framework of
Hertz theory, by :

kn =
4

3
E∗
√

−R∗δn ; kt = 8G∗
√
−R∗δn (1.11)

with R∗ the effective radius, E∗ the effective elastic modulus and G∗ the effective shear
modulus. For two different materials, denoted i and j, these equivalent parameters are
defined by :

R∗ =
2RiRj

Ri +Rj

;
1

E∗ =
1− ν2

i

Ei

+
1− ν2

j

Ej

;
1

G∗ =
2(2− νi)(1 + νi)

Gi

+
2(2− νj)(1 + νj)

Gj

(1.12)
The values of kn and kt as defined in Eq. 1.11 are here dependent on δn, which makes the

force evolution non-linear (the corresponding fn evolution graph is given in Figure 1.16a).
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Figure 1.16: Graphs of normal force for various contact laws (a) Hertz (b) Rigid plastic
(c) JKR(s) (d) Hertzian-bond (e) Luding (f) EEPA

However, it is possible to use constant values for these rigidities that are independent of δn
and still respect the order of magnitude of the elastic deformations of the contacts, thus
dealing with a linear evolution of the contact force [133]. Choosing between a linear elastic
contact law and a Hertz model will depend on the purpose of the study. Here, the contact
forces are proportional to the pressure applied by the cylinder and to the particle size.
The difference between these two laws lies in the value of the normal interpenetration δn,
which is low and has little influence on overall deformation. In the following, the elastic
component of the contacts will be described using the Hertz-Mindlin law, i.e. with a
non-linear evolution.

The contact between the active material particles and the current collector is usually
defined through an elastic contact since they are both composed of a metallic material ;
their contact being strongly rigid, it is thus similar to an elastic behavior [52].

Plasticity A large number of numerical models seek to represent, or at least take into
account, the damaging of active material particles. Indeed, grains of active material only
behave elastically for small deformations, up to 5% of their size ; beyond the deformations
they undergo will be irreversible, consequently changing their behavior [32]. Numerically,
this change is represented by a change in the contact law : the initially elastic behavior
will switch into another evolution phase once the plasticity threshold is reached. The most
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commonly used law to represent the plastic damage of active material particles is the rigid
plastic law [177, 52, 54]; the corresponding normal force graph is shown in Figure 1.16b.
This law stipulates that beyond a critical force Fy, reached in δy and which can be linked
to the elastic limit of the material, the normal compressive force is defined by :

fn

(
δn

)
= Fy − ky(δn − δy) (1.13)

with ky a constant stiffness independent on δn. Beyond the plasticity threshold, the force

will evolve linearly with the overlap, whereas it previously evolved in δn
3
2 with Hertz’s law.

Once the plasticity criterion is reached, the maximum overlap reached δm ≤ δy is stored.
Thereafter, when the elements separate, the normal force will revert to an elastic evolution

fHertz
n

(
δn−δr

)
with fHertz

n the function defined in Eq. 1.10 giving the normal elastic force,

and δr the residual plastic strain such that fHertz
n

(
δm−δr

)
= Fy+ky (δm − δy) ; the contact

is broken when the force is zero at δn = δr. If the elements move closer together before the
contact breaks, the force will still follow this elastic evolution, until their interpenetration
reaches δm, where it will follow back the evolution from Equation 1.13.

The value of ky can be defined according to the actual behavior of the materials in
contact : indeed, during a nanoindentation test, the force-displacement curves obtained
will not have the same evolution under loading and unloading once the material has reached
its plastic domain. The slope of the curve at the beginning of the discharging phase is
characteristic of the elastic modulus, while the slope at the end of the loading step can be
assimilated to the plastic evolution. Thus, the ratio between these two experimental slopes
can be used to define a relationship between the numerical stiffnesses kn and ky [172].

Since the current collector is made of aluminum or copper and due to its planar geom-
etry, it tends to deform quite easily during the calendering process, due to the stamping of
active material particles ; thus, it would be sensible to also assign it a contact law including
plasticity. However, literature models including the current collector consider it as a rigid
undeformable element, capable only of an elastic response as its deformation is not the
central subject of the study [52, 118]. So far, to our knowledge, there is no DEM model
that takes into account the plastic deformation of the current collector.

Adhesion The adhesive component of the electrodes mechanical behavior is mainly due
to the presence of the binder. In the previous section, two types of numerical model were
presented that include the binder (or CBD) : those that represent it explicitly in particle
form, and those that take it into account only implicitly.

The first ones consider two new types of contacts : one for the contact between the
active material particles and those of CBD, and another one for the CBD particles between
themselves. To describe the behavior of CBD particles when they come into contact, new
contact laws need to be introduced. Although criteria exist for choosing the most suitable
law based on the elastic and adhesive properties of the elements in contact, the most
commonly used laws are those of Lennard-Jones [43] and Johnson-Kendall-Roberts (JKR)
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[117, 165]. The Lennard-Jones potential [76] describes the attractive Van der Walls distant
forces between two particles as :

fn

(
δn

)
=

8πγR∗

3

(
1

4

(
δn
δ0

)−8

−
(
δn
δ0

)−2
)

(1.14)

where γ represents the adhesive surface energy (in J.m−2) and δ0 > 0 the equilibrium
overlap. The adhesive surface energy between two materials is deduced from their surface
energies using formula :

γij = 2
√

γd
i γ

d
j + 2

√
γp
i γ

p
j (1.15)

with γd and γp the dispersive and polar surface energies respectively. Although applicable
in DEM, the Lennard-Jones contact law shows an infinite force upon contact between the
elements (δn = δ0), making it more suitable for CD than MD. The JKR model is adapted
from Hertz’s theory for the contact of large, flexible spheres [62]. The contact forces are
computed by :

fn

(
δn

)
=

4E∗a3

3R∗ −
√

8πE∗γa3 (1.16)

with a the contact radius between the particles, which can be related to the displacement
by |δn| = a2

R∗ − 2
√

πγa
E∗ . Numerical implementation of Equation 1.16 is difficult in DEM, as

here the relationship between a and δn is not linear. Thus, a second version of this contact
law has been developed, entitled JKRs (for JKR simplified), which assumes that for small
deformations a2 ≃ −R∗δn. This then gives :

fn

(
δn

)
= −4

3
E∗
√
−R∗δnδn −

√
6πγE∗ (−R∗δn)

3
4 (1.17)

The two corresponding graphs are plotted in Figure 1.16c, with Eq. 1.16 in red and Eq. 1.17
in blue. It can thus be observed in Eq. 1.17 that when γ = 0, i.e. when the attraction
between the particles is zero, the evolution of the contact force is then identical to Hertz’s
law from Eq. 1.11. Moreover, in both cases, the maximum attractive force is Ff = −3

2
πγR∗,

and is obtained at δf = 3
4

(
π2γ2R∗

E∗2

) 1
3
for JKR [177] and δfs = −

(
9π2γ2R∗

E∗2

) 1
3
for JKRs [133];

this value corresponds to the force required to separate the particles.
In the second types of models - those who do not include the binder particles - only the

cohesive component of the binder is modeled, by modifying the contact law between the
particles of active material to be adhesive. These models often use an Hertzian law with
breakable bonds [98, 188, 51], which is based on the Bonded Particle Method [126], whose
force graph is illustrated in Figure 1.16d. Once the active material particles are introduced
in the simulation, the initial distance Lij = ||x⃗i − x⃗j|| − Ri − Rj between each pair (i,j)
of particles is measured, and a link will be formed between them if this distance complies
with the equation :

Lij < (Ri +Rj)fb (1.18)
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with fb a coefficient controlling bond formation. This coefficient is directly linked to the
proportion of binder in the electrode : knowing that the volume of a cylindrical bond
is πr∗2Lij with r∗ = 0.5R∗, it is then possible to compute the volume of all created
bonds, considered then as the total volume of binder [51]; this coefficient thus controls
the distribution of active material and binder in the sample. The breaking distance δf is

given by fHertz
n

(
δf − Lij

)
= −Ff ≥ 0. Thus, the normal contact force computation can

be reduced to a form similar to Hertz’s law :

fBond
n

(
δn

)
= fHertz

n

(
δn − δf

)
+ Ff (1.19)

When using adhesive contact laws, which allow the normal force to reach negative
values, it is possible to have configurations where Coulomb’s criterion as defined in Eq. 1.2
is no longer valid. To overcome this problem, the normal component of the criterion needs
to be "brought back" to non-negative intervals. This way the Coulomb criterion is redefined
as follows :

µ (fn − Ff )− ft ≥ 0 ⇔ ft ≤ µ (fn − Ff ) (1.20)

Adhesion and plasticity The most comprehensive models used to represent electrodes
mechanical behavior are those with both adhesive and plastic components [154, 153, 188].
As it is often impractical to define several contact laws and use them together when com-
puting the contact force, there are laws that allow both aspects to be considered together
[176].

The simplest models just combine existing laws. For example, to represent the embrit-
tlement of bonds formed by the binder between active material particles [188], it is possible
to add a tensile plasticity criterion to the previously defined adhesive law with breakable
bonds (Hertzian-bond). Thus, when the separation between particles reaches δy, such that
Lij < δy < δf and fBond

n (δy) > Ff , the normal force will evolve similarly to Equation 1.13 :

fn

(
δn

)
= fBond

n

(
δy

)
− ky (δn − δy) (1.21)

This evolution is shown in blue on Figure 1.16d ; the contact is considered as broken either
when the distance between the particles exceeds δf or when the normal force reaches Ff .

Considering contact laws including adhesive and plastic behaviors which do not combine
simpler laws, the only one that is used for calendering simulations is the linear elasto-plastic
law with adhesion [153], also known as Luding’s law [87, 88], illustrated in Figure 1.16e.
The normal force is given by :

fn

(
δn

)
= F0 +


−k1δn si δn ≤ δm
−k2 (δn − δm)− k1δm si δm < δn ≤ δM
kcδn si δM < δn

(1.22)

where F0 ≤ 0 corresponds to the initial attractive force, defined according either to the
JKR or DMT models depending on the "deformability" of the elements [169].
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This law is divided in 3 phases : first, at contact initiation, the force will evolve linearly
along a slope k1 ; this first phase corresponds to plastic behavior, as the force can only
follow this evolution when the contact has exceeded the maximum interpenetration δm
(initially zero), which implies plastic deformation of the material. When the elements
separate after the compression, the force will evolve following another stiffness, of value k2,
which here corresponds to the elastic behavior. If the elements continue to separate, once
the overlap reaches δM = δm

k2−k1
k2+kc

, the contact area between the elements will be assumed
to be a maximum, and the attractive contact force will have reached its extremal value
Fmin = F0 + kcδM . Thus, any configuration of the elements that increases their separation
will result in a weaker adhesion force, and this force will then evolve according to an
"adhesive" stiffness kc until complete separation. One of the main drawbacks of this model
is that, similarly to the plastic evolution during compression, force evolution following the
kc slope is only possible during decompression; thus, if the elements have to move closer
together, the contact would behave elastically, and the force would then follow the k2 slope,
but this time up to the maximal overlap δm

′ which will have been defined according to
the last decompression configuration in δM

′. This phenomenon reflects a reversibility of
plasticity, which is not physically realistic. Other contact laws correct this physical error
[124], but their validation is still too weak to be applied to real models.

Another inconvenient of this model is that it is based on a linear force–overlap relation-
ship, which is not valid following Hertz’s theory [17]. Thus there is another version of this
law which has been put into the form of a power law, called the Edinburgh Elasto-Plastic
Adhesive (EEPA) contact law [111, 154] :

fn

(
δn

)
= F0 +


−k1δ

P
n si δn ≤ δm

−k2
(
δPn − δPm

)
− k1δ

P
m si δm < δn ≤ δM

kcδ
P
n si δM < δn

(EEPA) (1.23)

with the exponent P ≥ 1 and δPM = δPm
k2−k1
k2+kc

; the corresponding normal force graph is
shown in Figure 1.16f. Note that if P = 1 the law reverts to the initial Luding law defined
in Eq. 1.22, and that with P = 1.5 the evolution of the force will be typical of an Hertzian
behavior.

Modeling of the calendering process

In the numerical models representing DEM electrodes, only a handful explicitly study the
calendering process [151, 52, 117, 165, 154, 153]; some of these are shown in Figure 1.17.
Numerical representation of the calendering process is often based on simplification. In-
deed, since the size of the calendering roll is much greater than the thickness of the electrode
(several dozens of centimetres versus hundred of micrometers), and its rotational speed suf-
ficiently low, the calendering process is represented as uniaxial compaction [52, 117, 165].
This model represents well the compressive effect of the calendering to reduce the electrode
thickness and increase its bulk density, but it neglects the tangential shearing aspect due
to the rotation of the cylinder and the translation of the electrode [52]. At industrial scale
the high calendering speeds induce shearing forces that can not be neglected.
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Figure 1.17: Numerical models used to simulate the calendering process of Li-ion battery
electrodes using DEM [52, 117, 165]

In these simulations, the driving calendering parameters are the compression rate
and/or the pressure applied vertically. Because the sides of the sample are periodic, the
thickness of the sample determines its volume, and consequently its porosity. In order to
reach a desired electrode porosity, the vertical compression speed is controlled and kept
constant until the corresponding thickness is reached [117, 165]. Similarly, by controlling
the vertical pressure, the applied force is kept constant [52].

In order to have a simulation with reasonable boundary effects, the sample dimensions
must be at least 20 elements wide. The sample size will mainly be driven by the active
material particles. Thus, the lateral dimensions of the samples are similar in all models,
with a length around 200 µm. This size is also small enough to consider that the contact
between the cylinder and the electrode is flat throughout the sample, due to the large size
differences between the two, thus validating this simplified representation of calendering.
However, the thickness of the sample may vary depending on the simulations. For models
that explicitly take the binder into account, the drying stage is also simulated prior to
calendering : the simulation starts with a sample at a very low volume fraction – of the
order of 10% – which is then compressed vertically to represent solvent evaporation ;
the elements will then move closer together until the desired porosity is reached. Thus, to
achieve realistic electrode characteristics after drying (volume fraction ≃ 50% and thickness
of 100 µm), the initial thickness of these samples must be 5 times greater than that of
simulations implicitly including the binder ; moreover, these simulations require a greater
number of elements to respect the proportions of the components (up to 1000 times more
[165]) : the computational cost of these simulations will therefore be much higher than
without CBD particles.
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1.2.3 Numerical characterization

Mechanical characterization

Simulations of electrode compaction allow to study virtually the characteristics of the sam-
ples. Among these, the models that rerieve their initial microstructure from XCT analyses
enable more accurate estimations of the active material particles shape [167]. These models
also make it possible to study grain contacts before and after calendering, by comparing
experimental data on grain orientation and contacts with numerical results obtained after
compressing the microstructure created by the XCT images. It was demonstrated that,
for NMC-based cathodes, modeling the active material grains as spheres and assuming a
purely elastic behavior is only representative at low compressions, as the grains deform
when the calendering pressure is too high ; their behavior is therefore no longer purely
elastic but includes plastic and damaging components. This plastic evolution is due to
two phenomena : for low compressions, the grains will rearrange in the sample to create
a more energetically stable microstructure, thus inducing macroscopic deformation ; but
once the rearrangement reaches its limit, the grains themselves start to deform and plas-
ticize, inducing then microscopic deformation. In addition, modeling the active material
grains as spheres, compared with an ellipsoidal representation, facilitates microstructure
compaction and reduces the internal electrode tortuosity, but nevertheless reduces the elec-
trical conductivity [11]. However for monodisperse spherical models the lowest porosity
can be determined based on the coefficient of friction µ and the coordination number Z,
i.e. the number of contacts per element [161].

The most commonly used model to simulate calendering is based on a uniaxial com-
pression representation [151, 52] ; some of the samples used to carry out these studies are
illustrated in Figure 1.17. This model represents the active material particles in different
sizes (between 5 and 18 µm), and the presence of CBD is included in an Hertzian-bond
contact law. The behavior of the sample was compared with the use of a purely elastic con-
tact law, and it was observed that the values of internal porosities and pressures recorded
at the compression plane are closer to the experimental results using a plastic contact law.
The study of contact orientation using the fabric tensor highlighted the rearrangement of
the particles, with the majority of contacts initially vertical, becoming horizontal as com-
pression increased. Similarly, the internal stresses measured on the grains increased with
the compression. This model also showed that an initially more porous electrode will allow
greater rearrangement of the grains, and thus achieve lower final porosities.

An online simulation tool called the ARTISTIC Online Calculator [83] provides mixing,
drying and calendering simulation results based on a set of existing models [128, 117, 127,
40, 84, 38]. By specifying the initial volume fraction and the massic ratio between the
active material and the CBD, the tool will first generate a microstructure representing
the state of the mixture as it is deposited on the current collector (Figure 1.18). The red
grains, representing the CBD mixed with the solvent, are then reduced in size to simulate
the drying step. The rate of shrinkage can depend on the vertical position of the particle to
be even more representative, as the solvent evaporates faster if it is closer to the electrode
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surface [117]. Once these particles have reached their final size, calendering is represented
by an uniaxial compaction [128, 127]. The final result can then be analyzed in terms of
porosity or bulk density, and the microstructure can be recovered by the user at a later
stage.

Figure 1.18: Successive simulation steps of the numerical tool developed in [83]

Very few calendering parameters are taken into account here. Indeed, by representing
calendering as an uniaxial compaction, it is not possible to properly study all the param-
eters involved in the real calendering process. The calendering speed for example, can not
be studied effectively, as it can only be modeled here by a variation in compression rate.
This representation is only valid for low calendering speeds (< 1 m/min), which is not
realistic for industrial production lines, where calendering speeds are of the order of 30-100
m/min [71, 81].

Regarding larger scale simulations, studies on adhesion have focused on the tensile/
compressive response. By considering only the presence of active material grains and
using Hertz’s contact law with breakable bonds (Hertzian-bond), bond failure is strongly
dependent on the amount of binder and on the particle size, whereas a quasi-uniform size
distribution allows higher strains to be reached before breaking [188]. By explicitly adding
CBD grains, simulations have shown that kn and kt the normal and tangential stiffnesses
influence the most the microstructure in loading/unloading test [153]. The same study
showed that for a Luding-type contact law, the different coefficients of friction µ, adhesive
surface energies γ and ratios between plastic and elastic stiffnesses are the most influential
parameters [154].

Electronical characterization

As shown in Section 1.1.5, conductivity measurements are carried out when the battery is
in use, i.e. when the electrical current is flowing through the electrodes ; since this flow is
not related to mechanical movement, it can not be represented using the Discrete Element
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Figure 1.19: DEM simulation of an uniaxial tensile failure test between NMC particles
[188]

Method alone and therefore require other computation methods. DEM simulations can be
coupled with these other methods, which will take the microstructures obtained in DEM
as reference configurations [178, 159, 67].

However some studies have developed models and formulations that can estimate the
relative electrical and ionic conductivities of microstructures obtained via DEM simulations
[151]. The electric current flows through the electrodes thanks to the contact between
the grains of active material. Its operation can thus be linked to heat transfer within a
granular medium. A first preliminary study focused on heat exchange within an anode,
heat being considered as propagated via conduction, and therefore by contacts between
particles [149]. This study showed that thermal conductivity decreases when the internal
porosity increases or when the grain size is reduced, due to the reduction in the overall
contact area between grains. Thus a formula estimating the electrical conductivity kel of
an electrode was proposed, deriving from those used to determine the thermal conductivity
of a granular assembly [151]. Based solely on geometric properties related to the granular
microstructure, this formulation gives :

λel = Cel (1− ε)ZFzz
a

R∗λp (1.24)

This formulation implies that a decrease in porosity ε leads to an increase in electrical
conductivity. Similarly, an increase in the number of contacts between grains, represented
by the coordination number Z, together with a higher contact area a/R∗, will result in
a better flow of the electrical current. The parameter Fzz, which represents the diagonal
component of the fabric tensor in the vertical direction, accounts for the directionality of
the contacts between the grains ; thus, the more vertically oriented the contacts, the higher
this value will be, and consequently the better the electrical conductivity in this direction.
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However, these microstructural parameters alone can only give a relative estimate of the
electrical conductivity of the microstructure. It is therefore needed to include λp the
specific conductivity of the material, as well as a correction coefficient Cel in order to
match numerical values with experimental measurements.

As mentioned in Section 1.1.5, characterizing the ionic conductivity mainly involves
measuring the electrode tortuosity. The formula usually employed to numerically deter-
mine the tortuosity is based on Bruggeman’s relationship, which suggests that for battery
electrodes, tortuosity τ and porosity ε are linked via the formula τ = ε−0.5 [45]. However,
it has been observed that this relationship is not always correct, and is only valid in the
case where the electrode is composed of monodisperse spherical particles [185].

Thus, new formulations were developed, based solely on microstructural properties of
the microstructure [151] :

λion = CionεFSA
Fzz

0.5 (Fxx + Fyy)
λbulk
ion (1.25)

The ionic diffusion is proportional to the porosity ε and free surface FSA of the grains.
The directionality of contacts affects the internal diffusivity, as contacts in directions par-
allel to the current collector Fxx and Fyy increase electrode tortuosity, unlike contacts Fzz

perpendicular to the plane ; thus the ratio between the components of the fabric tensor
in these two directions is useful to estimate the tortuosity of an electrode. As for the
electrical conductivity, this formulation is related to the properties of the actual material,
represented here by λbulk

ion the ionic conductivity of the electrolyte in the pores of the elec-
trode. The addition of the corrective coefficient Cion allows numerical values to be fitted
with experimental data. However, these formulas give a global estimation over the whole
sample, and are therefore not suitable for representing local variations in conductivities
that might appear within the electrode.

Fast Fourier Transform

In order to account for the real microstructure of the electrodes in the conductivities compu-
tation, one alternative is to use the Fast Fourier Transform [112]. It is an homogeneization
technique which aims to compute the effective or equivalent property of a multi-phased
medium, and is employed in several domains like mechanic, thermal transfer or diffusion
[22]. The multi-phase geometry of the sample is described explicitely on a cartesian mesh-
ing grid. Each voxel of the grid has a value corresponding to its local property. The
diffusion gradient is considered as homogeneous inside the volume. The method assumes
periodic boundary conditions and the effective properties of the matrix (mesh) is computed
considering a steady state regime. Compared with finite-element method the FFT is able
to handle more degrees of freedom and may be accelerated thanks to parallelization tech-
nique (openMP was employed in this thesis work). Moreover the cartesian mesh allows a
very simple definition and easy to process geometry.
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Voxelisation To compute the effective conductivities of the DEM samples using the FFT
method, the samples must first be discretized [22]. Usually a regular cartesian 3D grid is
used where each subvolume, called a voxel, is defined with a side length dl. Depending on
the type of element inside each voxel, a different phase is attributed to this voxel. Each
phase corresponds to a material, with its own conductive properties. For voxels entirely
inside or outside an element, this attribution is easy, however the phase of the voxels at
the interface between two elements or on the edge of an element is more complicated to
choose. Usually the phase is chosen depending on the element at the center of the voxel.

Computation of effective conductivity In the steady-state regime, the flux (denoted
by j) is solution of (x ∈ V):

∇ . j (x) = 0 with j (x) = λ (x) e (T (x)) (1.26)

where λ (x) is the conductivity and e (T (x)) = −∇.T (x) is the intensity field. To solve
the boundary value problem of Equation 1.26, we consider periodic boundary conditions
[112]. The unknown intensity field is set constant for each voxel, allowing to simplify the
computation. By alternating the resolution between real and Fourier space, the flux j can
be determined.

The effective conductivity λe in a given direction is computed by looking at the intensity
in this direction, for example here in the z direction:

e = e0z ⇒ λe
z =

⟨j.z⟩
e0

(1.27)

with ⟨.⟩ the volume average on the RVE.

1.3 Conclusion

In this chapter we reviewed the existing literature on the calendering of Li-ion battery
electrodes. The first part described the history of electrical batteries and the current
technology of Lithium-ion batteries. The working principle of this type of batteries was
presented, as well as different versions of Li-ion batteries and their internal components:
active materials, binders or electrolytes. The manufacturing process of these batteries
is composed of different steps, one of them being calendering. The importance of the
calendering step on the performances of the batteries was explained. We presented methods
to characterize experimentally the electrodes and different measurable parameters. The
second part of this review chapter was focused on the simulations used to numerically
study the calendering of Li-ion battery electrodes. Since the electrodes are a granular
medium, we focused our work on the DEM and used it for our simulations. Each step of
the algorithm, respectively contact detection, force computation and position updating,
was thoroughly described. To represent the Li-ion battery electrodes, various simulation
models are used, each one accounting for the components of the electrodes in a different
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way. While representing explicitly all the particles composing the electrode requires high
computational costs, most of the simulation models represent only the active material
grains and account for the binder implicitly by considering a cohesive elasto-plastic contact
law. In most past numerical work, the calendering is represented as an unaxial compaction,
considering that the calendering speed is relatively low (≃ 1m/min) and the roll much larger
than the electrode.
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Chapter 2

Dynamic compaction of cohesive
granular materials

The compaction of cohesive granular materials is a common operation in powder-based
manufacture of many products. However, the influence of particle-scale parameters such
as bond strength on the packing structure and the general scaling of the compaction process
are still poorly understood. We use particle dynamics simulations to analyze jammed con-
figurations obtained by dynamic compaction of sticky particles under a fixed compressive
pressure for a broad range of the system parameter values. We identify an asymmetric sig-
moidal scaling of porosity with a modified cohesion number that combines adhesion force,
confining pressure, and particle size, as well as contact stiffness, which is often assumed to
be ineffective but is shown here to play an essential role for compaction. A functional form
based on two power laws provides a physically plausible fit to the data. The statistical
properties of the bond network reveal self-balanced force structures and exponential fall-off
of the number of both tensile and compressive forces. Remarkably, the properties of the
bond network depend on the cohesion number rather than the modified cohesion number,
suggesting that similar bond network characteristics are compatible with a broad range of
porosities mainly due to the effect of contact stiffness. We also discuss the origins of data
points escaping the general scaling of porosity and show that they reflect effects related to
either finite system size or rigid confining walls.
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2.1 Introduction

Granular materials represent a ubiquitous form of solid matter in nature and a major com-
ponent of manufacturing process in several industries. The mobility of grains and their
versatile interactions underlie the ability of granular materials to undergo diverse mechan-
ical and chemo-physical transformations in response to external forcing and environmental
changes. These transformations are strongly coupled with change of porosity or volume,
which for this reason plays a key role in all granular processes [5, 103]. For example, the
compaction and gradual consolidation of sediments deposited in lakes and oceans are at the
origin of sedimentary rocks such as sandstone, limestone, and shale [59]. The compaction
of fine cohesive particles in response to mechanical stress or vibrations is also one of the
most common operations in powder metallurgy, ceramic industry, and pharmaceutical in-
dustry for the production of stable agglomerates of desired composition, shape, strength,
and porosity. Some examples are pharmaceutical pills [1, 63, 195, 99, 44], nuclear fuel
pellets [147, 148], detergent tablets [31, 66], titanium compact tools [120, 158, 136], and
Li-ion battery electrodes [119, 64, 82, 81, 128].

The physics of volume change in granular materials is complex due to the interplay of
the concurrent effects of mutual particle exclusions, collisional energy dissipation, friction,
bond forces, and collective dynamics involving arching and force correlations [58, 143]. The
Reynolds dilatancy (volume change by shear), sensitive dependence of packing fraction on
the confinement strategy, and highly inhomogeneous distribution of local porosities as
a result of shear-banding and wall boundary conditions are among well-known features
that heavily bear on the practical handling of granular materials and raise fundamental
issues about the microstructural origins and controllability of volume change [49, 192, 20,
34, 4, 130, 145]. Although experimental methods are often designed to meet the specific
challenges and types of materials of interest in each field, such common features prompt
also the basic question of whether a universal or inherent volume-change behavior can be
extracted.

This question has been so far mostly addressed in the case of cohesionless granular
materials in soil mechanics[152, 103]. A nearly logarithmic dependence of porosity on
confining pressure or on the number of vibration cycles has been evidenced [68, 103, 18, 34].
This scaling holds within two limits of porosity corresponding to the lowest and highest
porosities that can be reached by applying an assembling procedure to a granular material.
The lowest porosity represents the densest random packing state that is compatible with
steric exclusions whereas the highest porosity is a property of the loosest state that is
compatible with static equilibrium and stability of the packing. Most work on cohesive
granular materials concerns compaction by ballistic aggregation or under the action of a
compressive pressure [49, 181, 182]. A remarkable effect of adhesion between particles is to
increase the range of accessible porosities as compared to cohesionless materials [180, 21].
Indeed, much higher porosities can be reached due to the stabilizing effect of tensile forces
on the particles. However, in most experiments reported on powder compaction only
a limited range of porosities is considered, the main concern often being the mechanical
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strength induced by compaction together with specific target functionalities such as specific
surface or permeability rather than porosity alone [141, 131, 42, 46].

Several different compaction laws have been proposed in the case of cohesive powders
including logarithmic dependence of the porosity on the applied pressure for quasi-static
compaction and power-law dependence on the cohesion number for dynamic compaction
[63, 128, 192]. However, the particle-scale physical mechanisms deriving the compaction
process are not the same in all processes. At low compressive stresses, the compaction
is mainly due to diffusive-like motions, aggregation, and rearrangements of the particles
whereas at high compressive stress the porosity increases also as a result of plastic particle
shape change and breakage. Very low levels of porosity can be reached in the latter case
[105, 70, 116, 82]. It is also important to distinguish the primary compaction of a granular
material as a consequence of the preparation method, such as filling a die, from the sec-
ondary compaction, which is applied with the intension of reducing porosity or enhancing
the tensile strength of the compact.

Beyond many insights provided by compaction experiments, a systematic understand-
ing of the microstructural mechanisms that underlie the compaction behavior of cohesive
granular materials may be achieved by means of particle dynamics simulations based on
the Discrete Element Method (DEM) [30, 125, 175, 142, 134]. In this method, the classical
equations of motion of rigid particles are incrementally integrated by accounting for the
interactions between particles. For example, 2D simulations of the compaction of sticky
particles with and without rolling resistance were carried out to analyze the influence of
the assembling protocol on the resulting microstructures [49, 50]. In these simulations, a
primary process of ballistic aggregation was first applied to obtain a stable packing of high
porosity. Then, the packing was compressed by quasistatic stepwise increase of isotropic
pressure under periodic boundary conditions. The simulations reveal the fractal structure
of the packing below a correlation length of the order of a few diameters (fractal blobs).
During compaction, loose structures collapse as the tensile strength of contacts is overcome
by the externally imposed forces. It is found that the consolidation process is governed by
the reduced pressure p∗ defined as a the ratio of applied pressure to the internal cohesive
stress. A nearly logarithmic dependence of porosity on reduced pressure is observed as in
experiments, followed by a power-law fall-off down to the porosity of a cohesionless mate-
rial. A similar compaction process was simulated in 3D and similar results were obtained
[174, 173]. There are few simulations accounting for particle shape change. A new algo-
rithm coupling Material Point Method (MPM) for the simulation of particle deformation
with DEM for frictional contact interactions in 2D was able to simulate the compaction of a
collection of soft disks down to a porosity close to zero [116]. Interestingly, the logarithmic
scaling of porosity in these simulations were found to hold when compaction enters a stage
of particle deformation without rearrangements. Similar simulations in 3D by coupling
DEM with Finite Elements were recently reported [70].

In this chapter, we employ 3D particle dynamics simulations to analyze the compaction
of a collection of sticky spheres enclosed inside a box whose walls are subjected to a constant
isotropic compressive pressure. The particles are assumed to be rigid and unbreakable so
that the compaction is merely due to particle aggregation and rearrangements. In contrast
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to quasi-static simulations, where the pressure is increased in a step-wise manner after
an initial aggregation process, the compaction process in our simulations is a consequence
of the action of the confining pressure without step-wise control and equilibration of the
packing. In this sense, our simulations are fully dynamic and represent the natural process
of primary compaction under load. We also apply a small kinetic agitation to the particles
to randomize the initial particle positions. Hence, the compaction is a consequence of
diffusion, ballistic aggregation, and collective rearrangements of the particles.

We are interested in the characteristics of the packing and its internal structure as a
function of adhesion force, compressive pressure, particle size, and contact stiffness. Re-
cent simulations of sheared cohesive granular materials evidenced an unexpected influence
of contact stiffness on the location of shear bands [93, 94]. Previous simulations of the
fluidization of cohesive powders have also revealed a significant influence of contact stiff-
ness on the onset of fluidization, but this effect has never been studied in the compaction
process [110, 69]. As we shall see, the combination of contact stiffness with cohesion num-
ber, defined as the ratio of adhesive stress to the confining stress and corresponding to the
inverse of reduced pressure, leads to a new dimensionless parameter that properly scales
the porosity. Nevertheless, as we shall see, the bonding structure is more appropriately
scaled by the cohesion number, implying that packings with a wide range of porosities can
have similar bond networks.

An important important goal of this work is to clarify the effects of rigid walls, which are
essential elements of most applications and are expected to play a major role in cohesive
granular materials. For this reason, periodic boundary conditions were avoided. The
walls and their motion with a finite mass under the action of the applied pressure lead to
strong inhomogeneity of the bonding structure at very low and very high pressures. Such
inhomogeneities are often observed in cohesive powders and we will show that they lead
to average porosities that escape the proposed scaling [34].

In the following, we first describe the simulation method with focus on the force laws
and the characteristics of the simulated system in Section 2.2. In Section 2.3, we present
a detailed parametric study of porosity as a function of system parameters. We consider
the scaling of the data with a modified cohesion number, the origin of the influence of
contact stiffness, the dependence of the highest porosity on system parameters, the effect
of damping parameter, and the functional form of the collapsed porosity data on the
modified cohesion number. In Section 2.4, we investigate and characterize the bonding
structures in terms of connectivity and force transmission, as well as the origins of the
data points escaping the general scaling proposed. Finally, in Section 2.5, we conclude
with a summary of the main findings of this work and open issues for further investigation.
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2.2 Methodology

2.2.1 Force laws

For simulations, we used an in-house code based on DEM (code called Rockable; see Ref.
[140]). The classical velocity-Verlet time-stepping scheme of the equations of motion and
contact detection procedures are used in this code [2]. The total interaction force f between
two particles is the sum of normal and tangential components fn and ft, respectively:

f = fnn+ ft, (2.1)

where n is the contact normal. The directions of n and ft are generally defined to point
from a neighboring particle to the particle considered. The interaction force is a function
of the overlap δn, assumed to be negative when a contact occurs, and cumulative tangential
displacement δt.

δn

fn

−fc

0

−δc

kn

(a)

fn

||ft||

−fc

µ

(b)

Figure 2.1: Graphs of normal force law (Eq. (2.2)) and Coulomb criterion (Eq. (2.7)).

We used an elasto-adhesive contact law, in which the normal force is the sum of a
linear elastic repulsion force f e

n = −knδn, where kn is the normal stiffness, and a constant
adhesion force −fc :

fn =

{
f e
n − fc = −knδn − fc for δn < 0,
0 for δn ≥ 0,

(2.2)

The graph of this force law is plotted in Fig. 2.1(a).
The adhesion force fc is assumed to represent the vdW (van der Waals) force, which

is the main source of bonding for fine particles. The vdW force between two particles is
given by

fw =
Ad

24h2
, (2.3)
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where A is the Hamaker constant, d is particle radius, and h is the gap distance between
the surfaces of the two particles. As the force falls off rapidly with distance, it can be set
with a good approximation equal to its value at the minimal distance h0 allowed by surface
roughness:

fc ≃
Ad

24h2
0

. (2.4)

Such a constant adhesion force acting only at the contact between two particles may be
coined as simple adhesion law. Equivalently, we may consider that fc is the pull-off force
required to break the cohesive bond [62]:

fc =
3

4
πγd, (2.5)

where γ = A/(18πh2
0) is the surface energy.

In the numerical model, we assume that fc is independent of the overlap between
particles. Second-order effects related to the variations of the adhesion force with the
overlap or gap [109, 110], can be more suitably evaluated by comparison with simple
adhesion law. In the absence of external forces acting on two touching particles, the
adhesion force is exactly balanced by the elastic repulsive force so that fn = 0 and the
overlap in equilibrium is given by

δc = − fc
kn

. (2.6)

When two particles are pulled apart from this equilibrium configuration, a tensile force
is mobilized (fn < 0) and increases in absolute value up to −fn = fc for δ = 0, where
the cohesive bond fails. During compaction only compressive pressure is exerted on the
sample but tensile forces develop in the contact network as a consequence of forced collective
particle rearrangements.

For the tangential force, we used a linear elastic law together with a Coulomb dry
friction criterion:

ft =

{
−ktδt for ||ft|| ≤ µ (fn + fc) ,

−µ (fn + fc)
δ̇t

||δ̇t||
otherwise,

(2.7)

where µ is friction coefficient and kt is tangential stiffness. Throughout this work we
set kt = 1.5kn. We checked that the ratio kt/kn has negligibly small influence on the
compaction and porosity of bonding structures although its role in shear simulations may
be significant. Note also that, as compared to the Coulomb criterion ||ft|| ≤ µfn for
cohesionless contacts, here the Coulomb cone is shifted to account for the adhesion force
added to the normal force, as shown in Fig. 2.1(b) [135, 134]. This means that only the
repulsive part f e

n = fn + fc of the normal force comes into play.

For energy dissipation, in addition to frictional sliding and bond breaking as two natural
mechanisms of dissipation, we assume inelastic collisions with a restitution coefficient ϵn <
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0.5fc 0 0.5fc

Figure 2.2: 3D representation of a jammed configuration and its bonding structure. Line
thickness and color level are proportional to normal force with compressive (positive) forces
in blue and tensile (negative) forces in red.

1. In cohesionless contacts, the value of ϵn is controlled by adding a viscous normal force
f v
n to the elastic and adhesion forces:

f v
n = −2αn

√
knm δ̇n, (2.8)

where m is particle mass. With this parametrization of the damping force, αn is simply
given by

αn = − ln (ϵn)√
ln2 (ϵn) + π2

. (2.9)

The value of ϵn represents inelasticity of the contact independently of adhesion. As we
shall see in Section 2.3.2, the effective restitution coefficient for cohesive contacts is lower
and can be calculated as a function of both αn and fc. In particular, for a range of im-
pact velocities below a critical velocity depending on fc the effective restitution coefficient
vanishes and colliding particles aggregate [16]. In nearly all simulations, we set ϵn =

√
0.2,

corresponding to αn ≃ 0.25. In Section 2.3.4, we will discuss the effect of ϵn on the scaling
of porosity. Finally, we set the cohesionless tangential damping to zero. This implies that
the aggregation of colliding particles is controlled only by normal damping.
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2.2.2 Sample preparation and system parameters

The initial granular sample is created by randomly placing 17657 monodisperse particles
inside a rectangular 3D box without overlap between them. The box size is 25d×25d×40d.
The compactness of the system can also be measured in terms of packing fraction ϕ,
porosity (1 − ϕ), and void ratio e. The latter is defined as the ratio of pore volume to
particle volume, so that [19]

e =
1

ϕ
− 1. (2.10)

Void ratio is more commonly used in soil mechanics where the volume of the particles does
not change during compaction, providing therefore a reference volume for the void space
[152, 103, 194, 24]. With this definition, e = 1 corresponds to equal volumes of particles
and pores and a solid fraction ϕ = 0.5. In our compaction simulations the initial void ratio
is ei = 1/ϕi − 1 ≃ 1.72, corresponding to ϕ = ϕi ≃ 0.37.
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Figure 2.3: Evolution of the void ratio e and coordination number Z as a function of time
for three values of cohesive stress σc = fc/d

2 and two values of pressure p.

Isotropic compaction was applied by imposing the same pressure p on all six walls of
the box. The gravity is set to zero to keep the sample in an isotropic stress state. Under
the action of p, the walls move inward, compressing the particles until a stable mechanical
equilibrium is reached. The simulation is stopped when the ratio of kinetic energy to
the total elastic energy stored in the contacts is 2×10−7. This process is fully dynamic
and depends not only on the initial void ratio e0 but also on the wall mass mw. The
pressure p being kept constant, the force acting on each wall decreases as pS, where S
is the surface area of the wall. The initial dynamics of compaction is governed by the
acceleration pS/mw. In all simulations we kept mw constant and equal to 96 times the
mass m of a single particle.

As the walls move inward, they collide with particles and we may distinguish two limit
scenarios depending on the dissipation rate or adhesion force between particles. In one
limit, the walls sweep and capture the particles and a densification front propagates from
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Parameters Values
Cohesive stress σc [MPa] 11 values ∈ [2× 10−3, 4× 102]
Pressure p [MPa] 4 values ∈ [10−2, 1]
Elastic stress σe [MPa] 5 values ∈ [5× 102, 2× 105]
η [2.5× 10−3, 4× 104]
η∗ [3.5× 10−5, 31.6]

Table 2.1: Values of system parameters used in this work.

the walls towards the center of the simulation box. In the other limit, they push the
particles away and the induced kinetic agitation leads to bulk aggregation of the particles.
In both cases, the initial aggregation stage is followed by particle rearrangements under
the action of the compressive pressure. This second stage may fully erase the memory
of the initial aggregation stage if the pressure is sufficiently high or the adhesion force
is sufficiently small. Then, the initial void ratio ei will not affect the resulting bonding
structure and porosity of the packing. Otherwise, the compressive pressure is not high
enough to destroy the bonding structure created by aggregation and the initial void ratio
will fully determine the bonding structure. Figure 2.2 displays an example of a jammed
configuration and its bonding structure at the end of compaction. The force chains are
composed of both compressive and tensile forces.

To enhance the randomness of particle positions, we added a small initial velocity
vk = 10−3 m/s of random orientation to all particles. This kinetic energy is rapidly
dissipated in the initial stages of compaction. The initial kinetic pressure pk = ρϕv2k is
57 times smaller than our lowest pressure p0 = 0.01 MPa. Nevertheless, for this pressure,
the walls are initially pushed outward. Hence, the void ratio e increases beyond ei and
the subsequent aggregation under load leads to a slightly higher void ratio e0 ≃ 1.76
(> ei = 1.72) while the pressure is too low to induce further particle rearrangements. In
the opposite case of high compressive pressure and low adhesion, we obtain the lowest void
ratio emin, which coincides with that of a packing of cohesionless frictional particles. We
obtain emin ≃ 0.76 (ϕ ≃ 0.57) in agreement with previous studies [161]. All values of e
reached during compaction vary therefore between emin and e0.

The two limits of compaction and the two stages of evolution of porosity can be clearly
distinguished in Fig. 2.3, which displays the evolution of e and coordination number Z
with time for several values of the cohesive stress σc = fc/d

2 and p. At low pressure (dotted
lines), e declines with time only at low cohesive stress, otherwise it slightly increases as a
result of the expansion of the simulation box before decreasing again to a constant value
when all particles aggregate. In this regime, the time needed for aggregation decreases as
σc is increased. Note that Z continues to increase slowly as a result of rearrangements
even when e reaches a nearly constant value. At high pressure (solid lines), the initial
aggregation is fast and Z jumps from the very beginning to a finite value. e declines much
faster for all values of adhesion force and we observe slow evolution of Z even when e levels
off. In all cases, the compaction results from the combined effects of diffusion, aggregation
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Figure 2.4: Void ratio e of the stable packing obtained by compaction as a function of (a)
applied pressure p for different values of cohesive stress σc and fixed values of σe; (b) σc for
different values of the applied pressure p and fixed value of σe; (c) σc for different values
of elastic stress σe and fixed value of p. The fixed values of applied pressure and elastic
stress are p = 0.1 MPa and σe = 104 MPa, respectively.

and compression.

We performed compaction simulations with different values of the cohesive stress σc =
fc/d

2, applied pressure p, and elastic stress σe = kn/d. The latter represents the order of
magnitude of the elastic moduli of jammed configurations. To vary σc we varied both the
values of fc and d. For dimensional reasons, particle size is irrelevant and, as we shall see,
the void ratio is controlled by only two dimensionless variables that can be defined from the
above three parameters. The ranges of values of these parameters are given in Table 2.1.
All other parameters are kept constant. In particular, we set mw/m = 96 and µ = 0.4.
The initial void ratio is likely to influence the aggregation phase but it was not considered
in this work and all simulations of compaction start with the same value ei of void ratio.
We initially performed 220 simulations with all combinations of the parameters mentioned
in Table 2.1. This corresponds to the number of data points used for the scaling of void
ratio. Further 55 simulations were run to assess the effect of the damping parameter αn
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(see Section 2.3). In the following, e refers only to the void ratio of the stable configuration
obtained by isotropic compaction.

2.3 Scaling of porosity

In this section, we are interested in the effect of system parameters on the void ratio e of
stable packings obtained by compaction with the goal of identifying dimensionless scaling
parameters that control e.

2.3.1 Parametric study

Figure 2.4(a) shows e as a function of pressure p for different values of cohesive stress σc and
fixed value of σe. As expected, void ratio declines with increasing pressure. Furthermore,
since adhesion tends to hinder particle rearrangements, higher cohesive stress leads to
larger void ratio. Figure 2.4(b) shows e as a function of σc for different values of p and
fixed value of σe. We identify three phases in the evolution of e in agreement with previous
studies [50, 173]. At low adhesion, e increases slowly with p from emin. As adhesion
further increases, e increases more rapidly at a rate increasing with pressure. Finally, at
even higher levels of adhesion, e tends to level off to a plateau value emax. The value of emax

declines as the confining pressure increases. As discussed previously, the highest value of e
in our simulations is e0 = 1.76, corresponding to the highest adhesion and lowest pressure.
The occurrence of a plateau suggests that a minimum value of σc is required to freeze
the contact network in a configuration that is stable enough to withstand rearrangements
under the action of a given value of p. The increase of σc beyond this value is ineffective.

Figure 2.4(c) shows e as a function of σc for different values of σe = kn/d and fixed value
of p. We see here a clear dependence of void ratio on contact stiffness. As σe increases, the
same level of compaction occurs for higher values of σc. We also observe that emax depends
only slightly on σe. These effects of σe are not quite intuitive since particle stiffness is
generally irrelevant for the rheology of cohesionless granular materials. This point will be
discussed in more detail below in connection with the scaling of porosity.

A key question is whether the void ratio can be scaled with dimensionless parameters
combining the parameters σc, p, and σe. Dimensional analysis yields two independent
dimensionless parameters, σc/p = fc/pd

2 and p/σe = pd/kn. Equivalently, the parameters
σc/σe = fc/knd and p/σe = pd/kn may be considered. Hence, it might be possible to express
the void ratio as an additive or multiplicative combination of these two parameters. The
product of arbitrary powers of σc/p and p/σe provides a simple function:

s =

(
σc

p

)a(
p

σe

)b

, (2.11)

where a and b are two exponents that depend on the local mechanisms governing the
compaction process. Only the ratio b/a being physically significant, we set a = 1.
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Figure 2.5: Void ratio e as a function of cohesion number η. Each data point represents
an independent compaction with parameter values represented by symbols and colors.

By setting b = 0, we obtain the cohesion number,

η =
σc

p
=

fc
pd2

, (2.12)

which is a measure of the relative values of cohesive stress and compressive pressure p
induced by confining pressure [24]. Its inverse, called reduced pressure, has been used to
scale packing fraction in previous studies in which kn was set to a constant value [143, 50,
13]. Figure 2.5 shows e as a function of η for all our compaction simulations. We see that
in the dense regime below η = 1, the data points collapse well as a function of η. Above
η = 1, we observe a general trend of e to increase, but the data points are highly dispersed.
This shows that e does not reflect only the condition of static equilibrium, which basically
involves the balance of pressure-induced force pd2 with adhesion force fc, but it depends
also on the dynamic process of compaction, which involves kn in addition to fc and p.

We find that the data points are much better regrouped together when b is set to a
nonzero value. Considering mainly the points in the intermediate range of values of e,
the best fit was obtained by setting b = 1/2 in Eq. (2.11). The corresponding scaling
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Figure 2.6: Void ratio e (a) and packing fraction (b) as a function of modified cohesion
number η∗. Each data point represents an independent compaction with parameter values
represented by symbols and colors.

parameter is

η∗ =
σc√
pσe

=
fc√
pknd3

. (2.13)

The void ratio and packing fraction are plotted as a function of this modified cohesion
number η∗ in Fig. 2.6. We see that the data points are now structured in several well-
separated curves that differ in their plateau levels corresponding to different values of emax

and ϕmin. The plateaus are well defined except for a few datapoints that are either above
(resp. below) or below (resp. above) the plateau of e (resp. ϕ) at high values of η∗.
These datapoints will be discussed in connection with wall effects. For the definition of
the plateau we therefore refer to the value e = emax or ϕ = ϕmin reached at η∗ ≃ 1.

We also observe that the differences between different datasets in the intermediate
range are related to their differences in plateau levels emax. The values of emax for different
sets of parameter values can be extracted from the plots of void ratios as a function of p for
different values of σc and σe. The plateau corresponds to the range of pressures p < pcrit

with

pcrit =
σ2
c

σe

. (2.14)

Note that the right-hand quantity is the order of magnitude of the cohesive energy per
unit volume stored in the bond network. In other words, the plateau level emax is reached
when the applied pressure is not too high to cause plastic rearrangements for given values
of σc and σe.

Figure 2.7(a) displays emax as a function of pcrit/p0. We see that the data are reasonably
well collapsed and emax decreases with increasing pcrit according to the following function:

emax = e0 −
c ln(pcrit/p0)

1 + c ln(pcrit/p0)
, (2.15)
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Figure 2.7: The upper bound values emax of void ratio (plateau levels) as a function
of the critical compressive pressure pcrit = σ2

c/σe normalized by the lowest pressure p0,
corresponding to void ratio e0, for different sets of system parameters. The dashed line is
the logarithmic fitting function of Eq. (2.15).

where e0 ≃ 1.76 is the highest void ratio obtained with the lowest pressure p0 = 0.01 MPa.
The data points are fitted by adjusting only the parameter c to 0.24. The low pressure
limit corresponds to pcrit = p0 for which we have emax = e0. In the high pressure limit, this
relation predicts emax → e0 − 1 ≃ 0.76, which corresponds to the highest packing fraction
ϕ = 0.57. These two limits are independent of the value of c, which controls the curvature
of the fitting form on the semi-logarithmic scale.

We now can rescale the data points of Fig. 2.13 by considering the relative void ratio
er defined from emin and emax:

er =
e− emin

emax − emin

. (2.16)

It varies from 0 for e = emin to 1 for e = emax. Fig. 2.8(a) displays er as a function of
η∗. We observe an excellent collapse of the data on a master curve, implying that er is a
well-defined function of η∗ which combines all our system parameters. A similar collapse
naturally occurs for packing fraction, as shown in Fig. 2.8(b), for the relative packing
fraction ϕr = (ϕ − ϕmin)(ϕmax − ϕmin). Interestingly, this scaling makes clearly appear a
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Figure 2.8: Relative void ratio er (a) and relative packing fraction ϕr (b) as a function of
modified cohesion number η∗ for the data obtained from all compaction simulations. The
dotted line represents the fitting function given by Eq. (2.30). The encircled symbols are
the data points escaping the general scaling.

few datapoints, marked in Fig. 2.8(a), that lie either slightly above or slightly below the
plateau, revealing two limit conditions that will be discussed below.

This collapsed form of the porosity data and the presence of data points escaping
the general trend raise several questions that will be further discussed below: 1) How to
interpret the expression of the modified cohesion number η∗ in Eq. (2.13)? 2) Is the
intermediate range of porosities best fit to a logarithmic function as often suggested by
compaction experiments and simulations? 3) What is the effect of the damping parameter
αn? 4) What is the origin of deviating data points?

2.3.2 Modified cohesion number

The cohesion number η represents the relative importance of the cohesive stress σc acting at
all contact points with respect to the pressure p in static equilibrium. However, compaction
under load is a dynamic process and the porosities of the jammed configurations arise from
the balance of energy rates as in thermodynamic description of the propagation and arrest
of cracks in a solid material [74]. We may attribute a surface energy of the order of
G = f 2

c /(knd
2) to each contact. During compaction, particle rearrangements occur if this

energy is overcome by the work W = pd supplied by the action of p per unit surface
and over a distance of the order of particle size. Hence, the ratio G/W = f 2

c /(pknd
3) =

σ2
c/(pσe) = (η∗)2 is expected to control the compaction level, i.e. the void ratio for which

the particles get jammed in a stable configuration. The modified cohesion number η∗ is
the square root of this ratio. Hence, η∗ can be considered as a measure of the relative level
of inertia during compaction. For this reason, we expect that for low values of η∗, where
dynamic effects are less important, the void ratio is also well scaled by η, and this is what
we observe in Fig. 2.5.

54



The effect of the attraction force on the dynamics can be analyzed in a more straight-
forward way by considering the collision of a particle with a rigid wall [69]. The equation
of motion of the particle is given by:

mδ̈n = −knδn − 2αn

√
knmδ̇n − fc (2.17)

where δn is the distance between the wall and the particle. Considering that upon collision
at time t = 0 we have (δn (t = 0) = 0) and the particle has an impact velocity of v0(
δ̇n (t = 0) = −v0

)
, the solution of Eq. 2.17 is given by:

δn (t) = exp−t/τ2 (A cos (t/τ1) +B sin (t/τ1))− A (2.18)

with

A = −δc =
fc
kn

, (2.19)

B = τ1

(
2fc√
knm

αn − v0

)
, (2.20)

τ1 =
1

(1− α2
n)

√
m

kn
, (2.21)

τ2 =
1

αn

√
m

kn
. (2.22)

The evolution of δn follows a typical linear-spring-dashpot movement with the equilibrium
position δn = δc.

Depending on the impact velocity v0, two different scenarios occur. If v0 is relatively
low, the particle will stick to the wall and δn tends to δc after a few damped oscillations.
Otherwise, the contact will open up and the particle rebounds with a lower velocity. The
contact duration τc in this case satisfies the condition δn (τc) = 0, which can be shown to
be equal to the solution of the following implicit equation:

e−τc/τ2cos (τc/τ1 − γ) = cos (γ) (2.23)

with

γ = arctan

{
τ1

(
2αn

√
kn
m

− knv0
fc

)}
(2.24)

Since the breakage of the contact should happen during the first period of the elastic
bounceback (τc/τ1 < γ), Eq. (2.23) implies γ > 0. This leads to the following criterion for
contact opening:

v0 > vcrit = 2αn
fc√
knm

. (2.25)

From the critical velocity vcrit, we can define a critical adhesion force in the case of
compaction under load p:

f crit
c =

√
knmv0
2αn

=

√
pknd3

2αn

, (2.26)
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where we have set v0 =
√

pd3/m as the typical velocity induced by the force pd2 on
particles. The critical adhesion force represents the adhesion force above which the particles
stick together and aggregate. Obviously, compaction is not a binary process since the
particle velocities are unevenly distributed. However, f crit

c provides a reference adhesion
force from which we can define a dimensionless adhesion force,

fc
f crit
c

= 2αn
fc√
pknd3

= 2αnη
∗, (2.27)

which is expected to be a control parameter of the compaction dynamics. Up to the damp-
ing coefficient, which is kept constant in our simulations, this ratio is the same as η∗. Its
derivation from binary collisions sheds a new light on the role of η∗ as a parameter that
accounts for the probability of aggregation. In the previous argument based on the ratio
of elastic energy release rate and the work of external forcing, the accent was on the likeli-
hood of rearrangements. The aggregation and rearrangements are, however, two facets of
the compaction process, which involves both loss and gain of contacts, as well as collective
motion and deformation of aggregates. The critical velocity below which the effective resti-
tution coefficient vanishes despite the nonzero value of the nominal restitution coefficient,
is an important dynamic effect of adhesion, which explains why the void ratio is not simply
scaled by η. Based on this analysis, it can be conjectured that if the compaction is incre-
mental and the particles are allowed to dissipate their energy to reach static equilibrium
after each increment of compressive pressure, η will provide an appropriate parameter and
the void ratio will not depend on the contact stiffness.

2.3.3 Fitting forms

Let us turn now to the functional form of the collapsed data er(η
∗) in Fig. 2.8. The

intermediate range of this plot looks like a logarithmic function. However, as can also be
checked in past simulations reported in the literature, this range actually concerns only a
small part of the whole range of the values of η∗, which covers at least 5 orders of magnitude.
A power law has also been suggested in the dense regime (er < 0.2) [192, 49]. We found
no fits in the literature for the loose regime (er > 0.8). In 2D simulations of compaction
with samples prepared by aggregation, the upper plateau is not reached as an asymptotic
state and the crossover between the intermediate and loose regimes is discontinuous since
it reflects a transition from stable aggregates to collapsed aggregates. However, previous
3D simulations based on the same preparation process do show a gradual transition to the
loose state as in our simulations of Fig. 2.8 [174, 173].

The trend in this intermediate-to-loose crossover observed in Fig. 2.8 is similar to that
of dense-to-intermediate crossover, but there is an obvious asymmetry between them. In
particular, the evolution of er in the dense regime is slow and takes place over several
decades whereas in the loose regime it occurs for less than one decade. To make clearly
appear this difference, let us consider the ratio

s ≡ 1− er
er

=
emax − e

e− emin

, (2.28)
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Figure 2.9: Rescaled data of the relative void ratio er as a function of scaling parameter
η∗.

which compares the differences of e from its maximum and minimum values. It is plotted
in Fig. 2.9 as a function of η∗. We see that the data are divided into two regimes, each
plausibly described by a power law. In fact, a single fitting function excellently describes
the whole range of data:

s =
1

A(η∗/η∗m)
α + (s−1

m − A)(η∗/η∗m)
β
, (2.29)

with A ≃ 0.475, α ≃ 0.74, and β ≃ 2.3. The point with coordinates η∗ = η∗m ≃ 0.045 and
s = sm ≃ 1.55 is the crossover point. This representation suggests that the intermediate
logarithmic regime is practically absent and simply simply reflects the transition between
the two power-law regimes. Interestingly, a similar power-law behavior with α = 3/4 for
the dense regime was found by contact dynamics simulations of dynamic compaction in
2D [192]. However, the effect of contact stiffness was not included in the scaling proposed
and all the data were described as a function of η.

From Eq. (2.29), we get the following fitting form for er(η
∗):

er =
A(η∗/η∗m)

α + (s−1
m − A)(η∗/η∗m)

β

1 + A(η∗/η∗m)
α + (s−1

m − A)(η∗/η∗m)
β
. (2.30)
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Figure 2.10: Evolution of void ratio e as a function of η∗ (a), αnη
∗ (b), and α

1/4
n η∗ (c), for

different values of damping parameter αn.

This functional form is plotted in Fig. 2.8(a) together with the simulation data. We see
that it provides an excellent fit for the relative void ratio as a function of the modified
cohesion number. In this fit, the ratio β/α captures the asymmetry of the curve. This
asymmetry may depend on the initial void ratio ei, mass ratio mw/m and whether the
compaction pressure is applied incrementally or not.

2.3.4 Effect of damping parameter

All the void ratio data discussed so far were obtained from simulations with a fixed value
of dissipation parameter αn = 0.25. However, Eq. (2.27) naturally suggests αnη

∗ as scaling
parameter rather than η∗. The issue is therefore whether αn can be included in a simple way
in the scaling of void ratios. To assess the effect of αn, we ran a series of simulations with
different values of αn while also varying σc for p = 0.1 MPa and σe = 104 MPa. The results
are shown in Fig. 2.10(a). As expected, for each value of η∗, e increases with αn because
of the stabilizing effect of energy dissipation or, equivalently, because of the decrease of
the effective restitution coefficient or increase of the critical velocity, as suggested by Eq.
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Figure 2.11: Force network in a thin slice inside the packing for (a) η∗ = 10−3, (b) η∗ = 0.05,
and (c) η∗ = 0.5. Line thickness is proportional to force magnitude.

(2.25). This effect is most pronounced for intermediate values of η∗. In transition to the
plateau, the effect of αn declines since the stabilizing effect of fc prevails in this regime.
For the same reason, emax is independent of αn.

If, as suggested by Eq. (2.27), we plot the same data as a function of αnη
∗, we obtain

Fig. 2.10(b). We see that the the data collapse indeed in the dense regime, but the
discrepancy increases everywhere else. The best collapse is obtained by using the scaling
parameter α

1/4
n η∗ as shown in Fig. 2.10(c). Data collapse is nevertheless mediocre in the

dense regime. Note that a dependance on α
1/4
n was observed in shear localization [93, 94].

The same authors found a scaling of cohesion with α0.7
n in a different problem [94]. It

seems therefore that the void ratio depends in a nonlinear and unmonotonic way on the
level of adhesion. Further simulations are necessary to arrive at a scaling that includes the
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dissipation parameter. This can be done by investigating the influence of αn on the general
shape of er(η

∗), i.e. by quantifying the dependence of the parameters of the functional form
of Eq. (2.30) on αn.

2.4 Bonding structure

Particle configuration, contact network and force transmission are key features that evolve
during the compaction process. Besides porosity, these features underlie mechanical prop-
erties and functionalities for which compaction is used in industry. For example, while void
ratio is essential for transport of a fluid in the pore space, the contact network underlies
electronic and heat conductivity across a packing. The pore and solid phases are, however,
related together through two constraints: 1) geometrical duality of the particle and pore
phases, and 2) force balance at the level of each particle. A fundamental issue is therefore
whether void ratio and variables pertaining to the bonding structure are correlated across
the parametric space, i.e. in the whole range of values of compressive pressure, contact
adhesion, and contact stiffness. Hence, we consider in this section several aspects of the
bonding structure and investigate their scaling with system parameters.

2.4.1 Force networks

Figure 2.11 displays three examples of the bond network with increasing value of the
modified cohesion number η∗. At low cohesion (Fig. 2.11(a)), nearly all force chains are in
the compressive state. Although it is difficult to fully appreciate the force chains in a 3D
perspective, the strongest forces are clearly located in the vicinity of the walls, featured by
several arches along the walls or spanning the space between adjacent walls in the corners of
the box. Such wall effects are common in cohesionless packings and their presence together
with a small gradient of forces from the walls towards the center of the box indicate that
mesoscopic force inhomogeneities occur in our system on top of the well-known particle
scale force inhomogeneity [135, 92, 139, 12, 41]. At higher cohesion (Fig. 2.11(b)), we
observe both compressive and tensile force chains. The void ratio is higher but higher
density of forces occurs at the corners of the box. We also see that the number of particle-
wall contacts is reduced, implying that the transmission of the applied pressure from the
walls to the sample is concentrated over a few contacts. At even higher level of cohesion
(Fig. 2.11(c)), the network is even looser and the tensile and compressive forces are almost
equally present everywhere.

Figure 2.12 displays the bond networks for one data point of each of the two groups of
data escaping the general scaling in Fig. 2.8. The first group, encircled in red in Fig. 2.8,
occurs at lowest pressures (p ≤ 5.10−2 MPa) and the data points are above the plateau
er = 1. Fig. 2.12(a) is an example of the corresponding bonding network. As a result of
very low pressure and high adhesion, the particles fully aggregate before the wall moves
and comes in touch with only a few particles. The higher porosity of these samples is in
agreement with 3D quasi-static compaction simulations [173].
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Figure 2.12: Force network in a thin slice inside the packing for (a) η∗ = 15, er > 1 and
(b) η∗ = 3, er < 1. Line thickness is proportional to the force magnitude.

The second group, encircled in blue in Fig. 2.8, occurs for very high pressures (p ≥ 0.5
MPa) and high cohesive stress. Fig. 2.12(b) is an example of the corresponding bonding
network. High pressure leads to fast creation of stable and strong force chains along the
walls followed by their buckling. As a result, most particles in the bulk are screened and
receive a small amount of the external pressure. The high density in a thick layer close
to the walls leads to lower global void ratio. Such inhomogeneous structures at low and
high pressure in highly cohesive granular materials show the effect of both wall dynamics
and finite sample size on the compaction process. In particular, high pressures lead to
fast motion of the walls and dynamic jamming, tending to enhance force correlations and
giving rise to stable arches across the system.

To better characterize the bonding structure for the ‘regular’ and ‘deviating’ data
points, we calculated the void ratio as a function of distance r from the center of the
samples. To do so, we calculated the void ratios inside a cubic probe of side 2r and cen-
tered on the center of the sample. Figure 2.13 shows e as a function of r/L, where L is the
sample size. The five curves correspond to the five bond networks of Figs. 2.11 and 2.12.
In all cases, we observe higher void ratio in the center of the sample and in the vicinity
of the walls. The observed oscillations in the center reflect local ordering of particles or
cohesive aggregates due to steric exclusions. Between these two limits, we observe either
a plateau (for η∗ = 0.5) or a small gradient for the regular data points (for η∗ = 10−3 and
η∗ = 0.05). For the deviating points, we observe either a strong gradient (case of η∗ = 15
with er > 1) or a very high void ratio at the wall (case of η∗ = 3 with er < 1). These
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Figure 2.13: Void ratio e in a cubic probe of side 2r and the same center as the sample
as a function of r/L, where L is the length of the sample, for η∗ = 10−3 (corresponding
to Fig. 2.11(a)), η∗ = 0.05 (corresponding to Fig. 2.11(b)), η∗ = 0.5 (corresponding to
Fig. 2.11(c)), η∗ = 15 (corresponding to Fig. 2.12(a)), and η∗ = 3 (corresponding to Fig.
2.12(b)).

pathologies reflect therefore a strong finite size effect in the former case and a strong wall
effect in the latter case. In this latter case, we also see that the oscillations of e extend
from the center to mid-distance from the wall, indicating the presence of aggregates, as can
also be observed in Fig. 2.12(b). The finite size effects are naturally expected in the case
of highly cohesive granular materials due to the clustering of cohesive particles. We find it
interesting that the general scaling of er with η∗ occurs despite such effects and porosity
gradients inside the samples.

2.4.2 Coordination numbers

The coordination number Z is the lowest-order scalar variable characterizing the contact
network. We find that in all packings and independently of system parameters, Z varies
between 4 and 4.2. Since the coordination number of an isostatic frictional packing of
spheres is 4, this means that bonding structures are only weakly hyperstatic even in the
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Figure 2.14: Evolution of the coordination numbers Z− (empty symbols) and Z+ (plain
symbols) as a function of η and η∗. The symbols and colors are the same as in Fig. 2.8.

dense regime and the force networks are almost uniquely defined. A similar result was
found by compaction simulations with 3D periodic boundary conditions [173]. The con-
tact network is therefore fragile in the sense that, although it is globally stable, it can
easily break or undergo large deformations under the action of shear stresses. The fact
that Z remains low throughout the parametric space indicates that low coordination is a
consequence of isotropic compaction, which is common to all our simulations. Higher levels
of coordination can be reached by shearing or for soft deformable particles.

Since Z does not discriminate the generated packings, we consider tensile and com-
pressive contacts whose numbers vary with the level of cohesion as observed in Fig. 2.11.
Let Z+ and Z− be the compressive and tensile coordination numbers, i.e. the average
numbers of compressive contacts (fn > 0) and tensile contacts (fn < 0), respectively. We
have Z = Z+ +Z−. Figure 2.14 shows both Z+ and Z− as a function of η∗ and η with all
simulation compaction data points. We see that Z− increases steadily with η and levels
off around 2 at large values of η while at the same time Z+ declines and tends to the
same value of 2. Hence, in the asymptotic state each particle has 2 tensile contacts and 2
compressive contacts on the average. This symmetry between the tensile and compressive
networks in the asymptotic state reflects the fact that at large values of η the force network
(with its both tensile and compressive contacts) is mainly induced by adhesion forces which
are well above the forces induced by the confining pressure [137].

Remarkably, in contrast to void ratio, the coordination number data collapse much
better as a function of η rather than η∗! This means that, since η∗ =

√
η
√

σc/σe, the same
values of Z+ and Z− for a fixed value of η are compatible with a range of values of void
ratio obtained by simply changing σe. This is quite important for the range of intermediate
values of er where the latter changes significantly with η∗. Fig. 2.15 shows er as a function
of the proportion Z−/Z of tensile contacts. We see that for each value of Z−/Z (depending
on η), er varies indeed in a broad range of values with the widest variation occurring just
before the plateau. We also see that the largest (resp. lowest) values of er correspond
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Figure 2.15: Relative void ratio er as a function of the proportion Z−/Z of tensile contacts
for all simulations.

to the lowest (resp. largest) values of σe. Figure 2.16 shows force networks for η = 10
but with different values of σe. We clearly see that force gradient increases from center
towards the walls with increasing relative void ratio er although the distributions of tensile
and compressive contacts are similar in the three networks.

The scaling of compressive and tensile coordination numbers with η rather than η∗,
although unexpected, is actually a consequence of static equilibrium. This equilibrium
is ensured at the level of each particle by the balance of forces induced by the applied
pressure, which is of the order of pd2, and the adhesion forces fc acting at all contacts.
The connectivity of the contact network characterized by Z being nearly the same for
all compacted configurations, it is plausible that the force network characterized by the
proportion Z−/Z of tensile contacts depends on the relative importance of adhesion force
and applied pressure via the ratio η = fc/pd

2 .

2.4.3 Force distributions

The bonding structure can be analyzed in more detail by considering the probability density
function (PDF) of normal forces fn. As fc is the reference internal force which varies in
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Figure 2.16: Force networks in a thin slice inside the packing for η = 10 and er = 0.1 (a),
er = 0.5 (b), and er = 0.9 (c).

our parametric study, we focus on the distribution of force ratios fn/fc. Since we have
fn = f e

n − fc at every contact point, the force ratio is fn/fc = f e
n/fc − 1 so that the PDF

of force ratios actually represents the statistics of the mobilization of repulsive forces in
the bond network as compared to the adhesion force. Fig. 2.17 shows three examples of
the PDFs of normalized forces fn/fc. For the three values of η∗, we observe a double-
exponential distribution:

P (fn) ∝
{

eβ
−fn/fc for fn ≤ 0,

e−β+fn/fc for fn ≥ 0,
(2.31)

characterized by the exponents β− > 0 and β+ > 0 for the ranges of tensile and compressive
forces, respectively. These exponents describe the width of the distribution in the two
ranges, which change with η∗. We also observe a Dirac peak at fn = 0 when adhesion
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Figure 2.17: Probability density function of normal force fn normalized by adhesion force
fc for (a) η

∗ = 10−3, (b) η∗ = 0.05, and (c) η∗ = 0.5. The dashed lines are guide to eyes
for a purely exponential function.

is low. Similar distributions have been reported in the past and the Dirac peak was
attributed to the interface between particles or regions of mean positive (compressive) and
mean negative (tensile) pressures [137].

We computed the values of β− and β+ in the ranges [−0.5fc, 0] and [0, 1.5fc] for which
we generally have sufficient statistics. The precision is low in the range of tensile forces at
low values of η due to a much lower number of tensile forces. Fig. 2.18 shows β− and β+ as
a function of both η and η∗. Consistently with the behavior of Z− and Z+ and within our
statistical precision, we find that β− and β+ are much better scaled by η than η∗. Hence,
as in the case of Z−/Z, the force distributions are increasingly uncoupled from the relative
void ratio as η increases. Interestingly, both β− and β+ first decrease and then increase
again at larger values of η. The initial decrease is more pronounced for β+. The minimum
value occurs at η ≃ 0.2 (e ≃ 0.8) and, according to Fig. 2.6, it corresponds to transition
from the dense regime to the intermediate regime. The two exponents tend to the same
value at large η.

To understand the unmonotonic evolution of the exponents with η, it must be reminded
that the evolution of force PDF reflects the effect of adhesion on the distribution of elastic
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forces f e
n = −knδn. In the dense regime, the effect of increasing adhesion is to reinforce

strong force chains via weak tensile forces that play in this way the same role with respect
to the strong force network as the weak compressive forces. As a result, the number of
strong compressive forces and the inhomogeneity of the force network increase, the force
PDFs become wider, and β+ declines. Beyond η ≃ 0.2, the tensile network grows and
self-sustained groups of particles mixing compressive and tensile forces appear as observed
in Fig. 2.11(b). The amplitude of strong compressive forces is increasingly dictated by the
adhesion force rather than external pressure. As a result, the scale of the compressive force
is increasingly imposed by σc rather than p and the value of β+ tends to that of β−. In
this sense, the force network becomes more symmetric around fn = 0 with equal numbers
of tensile and compressive forces.

The observed behavior of the exponents indicates a fundamental asymmetry between
the effects of confining pressure and adhesive forces on the equilibrium of a granular pack-
ing. This point is not trivial when a variable such as η is used as control parameter,
suggesting that the pressure p and compressive stress σc play identical roles with respect
to the equilibrium of the force network. In fact, in the limit where the confining pres-
sure p prevails (η ≪ 1), the PDF P1(fn/pd

2) ∝ eβ
′fn/pd2 of normalized normal forces is

independent of p (i.e. β′ does not depend on p). When η ≫ 1 and the effect of adhesion
prevails, fc is the relevant force scale and P (fn/fc) is independent of fc (i.e. β+ does
not depend on fc). Statistically, the crossover from the regime ruled by p to the regime
ruled by fc occurs when the probabilities for the two alternative normalizations are equal:
P1(fn/pd

2)δfn/pd
2 = P (fn/fc)δfn/fc. Given the exponential form of the PDFs, this con-

dition translates into β+fn/fc = β′fn/pd
2, which implies β+ ≃ ηβ′. The value of β′ can be

evaluated at η = 1, where fc = pd2 and therefore β+ = β′. Figure 2.18 shows that at this
point we have β+ ≃ 1, implying β′ ≃ 1. Since β′ does not depend much on p in this limit,
we may assume that its value remains equal to 1 for lower values of η. Hence, at crossover
between the two regimes, we have β+ = ηβ′ ≃ η. Fig. 2.18(a) shows that this condition
holds with a good approximation at β+ ≃ 0.2, which corresponds to the minimum of the
curve.

2.5 Conclusion

Particle dynamics simulations were performed to investigate the scaling of porosity and
structural characteristics with system parameters in cohesive granular materials assembled
under the action of an isotropic compressive pressure. Spherical particles governed by lin-
ear elasto-adhesive and frictional interactions were used in the simulations for broad ranges
of values of cohesive stress, contact stiffness, compressive pressure, and particle size. In
contrast to previously reported simulations, the compaction process in our simulations is
fully dynamic due to the action of the applied compressive pressure. Because of the initially
non-overlapping configuration of particles, this process involves ballistic aggregation, dy-
namic jamming, and particle rearrangements before a stable packing in static equilibrium
is reached. In this work, the adhesion force was assumed to represent the vdW interactions.
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Figure 2.18: Evolution of the exponents β− (empty symbols) and β+ (plain symbols) of
the force PDFs for the tensile and compressive force domains. The symbols and colors are
the same as in Fig. 2.8.

However, the results hold also for other types of cohesive materials provided the attraction
force is short-ranged and localized at the contact point and the cohesive stress σc can be
clearly defined from the nature of the interaction. For example, liquid-bonded contacts
in the limit of low liquid volume fraction are characterized by a short debonding distance
(nearly equal to the cubic root of liquid volume) and a maximum capillary force propor-
tional to the liquid-gas surface energy at the contact point [78, 138]. We also investigated
in this work the effect of walls.

A key finding is the scaling of porosity (void ratio) with a new dimensionless parameter
η∗ which combines pressure p, cohesive stress σc, and characteristic elastic stress σe. It
was argued that this modified cohesion number arises naturally by considering that, as in
fracture mechanics, particle rearrangements depend on the work supplied by the applied
pressure as compared to the elastic energy stored in the contact network. This scaling
was also related to the critical velocity of aggregation between colliding adhesive particles.
Particle stiffness appears therefore as a control parameter of dynamic compaction as it was
previously found for fluidization and shear banding in cohesive granular materials.

We also found that the functional dependence of void ratio on η∗ is best fit by a general
form involving two power laws for 1) the increase of void ratio from the lowest porosity
in the limit ruled by pressure and 2) the asymptotic increase of void ratio towards its
highest value in the limit ruled by adhesion forces. Furthermore, the asymptotic void ratio
was found to be a function of a critical pressure depending on cohesive stress, and elastic
stress. We showed that the effect of damping parameter on porosity depends on the level
of adhesion, and can not be included in a simple way in the general scaling proposed. We
also discussed the origins of a few data points escaping the proposed scaling and showed
that they result either from a slow motion of the walls and full ballistic aggregation of the
particles due to very low pressure applied or from a fast inward motion of the walls due to
very high pressure applied, causing dynamic jamming and high porosity gradients inside
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the packing. In both cases, the presence of the walls and the finite size of the sample as
compared with force correlations play a crucial role. An important finding of this work
is that, despite such effects, the overall void ratio follows a well-defined scaling with η∗

within the limits that were discussed, clarified, and illustrated.
The bonding structure was analyzed in terms of contact network connectivity, ten-

sile/compressive networks, and force PDFs. These features were found to be rather de-
pendent on the cohesion number η = σc/p rather than η∗. This implies the remarkable
property that a given force distribution is compatible with a wide range of values of void
ratio. This variability reflects the effect of the characteristic elastic stress σe on the assem-
bling process and increases with η. For all values of η, the coordination number Z is only
slightly above 4, which is the isostatic coordination number for frictional spheres, showing
therefore the weak hyperstaticity of the packings generated by isotropic compaction. The
PDFs of both tensile and compressive forces are generically exponential with exponents
that vary unmonotonically with η, revealing a transition from the dense regime, character-
ized by the stabilizing effect of adhesion, to the loose regime, mainly controlled by adhesion
forces. As η increases, the bond network tends to a symmetric structure with similar PDFs
and equal numbers of tensile and compressive forces.

Our results prove that granular materials can be assembled by dynamic compaction in
packings of high void ratio with only normal adhesion forces and no need for rolling resis-
tance. Previous simulations have shown that high levels of void ratio can not be reached
by quasi-static incremental compression without rolling friction or without allowing the
particles to aggregate freely before the application of the compaction pressure [49]. How-
ever, in dynamic compaction the influence of the initial void ratio needs to be investigated
in order to arrive at a quantitative understanding of the role of the initial aggregation.
Furthermore, our simulations may be considered as primary compaction to build a gran-
ular sample since the initial state is a granular gas. It will therefore be interesting to
perform dynamic compaction simulations starting from a different state (e.g. the loosest
state of our simulations or a packing obtained by ballistic aggregation) and investigate the
relevance of the modified cohesion number for the scaling of porosity.

It is also important to consider the effect of Hertzian contacts for which the character-
istic elastic stress explicitly depends on the pressure. It can be conjectured that the scaling
proposed in this chapter based on the elastic stress as an independent parameter continues
to hold by replacing the elastic stress by bulk modulus, which explicitly depends on the
confining pressure in the case of a Hertz contact. This will then modify the expression of
η∗. Another significant parameter is the friction coefficient µ between particles. Its value
was fixed to 0.4 throughout our parametric investigation. However, the effect of µ on the
proposed scaling is nontrivial. In particular, it is interesting to see whether µ controls
only the value of emax without modifying the scaling or it has a more extensive influence
on the compaction process. The aggregation of particles and force correlations inside the
packings and their link with finite size effects and deviating data points were discussed
in this chapter, but more simulations are needed with increasing number of particles or
simulation cell size to quantify such effects. Finally, we investigated the shear response of
the packings obtained in this work with focus on the evolution of void ratio.
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Chapter 3

Triaxial compression of cohesive
granular materials

Our second study of the behavior of cohesive granular media is based on triaxial compres-
sion since this loading is relatively close to the models found in the literature representing
calendering. Starting from the configurations obtained in chapter 2, the side walls are
subjected to constant pressure while the bottom wall is fixed and the top wall is driven
downward at constant speed. Porosity, anisotropy and stresses are measured as compres-
sion proceeds. We focus on the influence of adhesion force for fixed values of particle size,
contact stiffness and confining pressure. The key issue is how the porosity changes during
compression and what is the cohesive strength of the samples. We find that shear stress
increases linearly with void ratio in the critical state (state of continuous deformation).
The void ratio keeps a value close to its initial value, meaning that the void ratio obtained
by dynamic compaction in each sample is close to its critical state void ratio. We show that
the cohesive strength is linearly dependant on the adhesion force between the particles.
Furthermore, the shear strength and the void ratio are linearly linked in the critical state.
We also identify two limit behaviors in the evolution of the microstructure based on the co-
ordination number and the anisotropy of the contact network: (1) increase of coordination
number at constant anisotropy (most cohesive cases) (2) increase of anisotropy at con-
stant coordination number (least cohesive cases). We show that these two microstructural
parameters linked together in the fabric space as a result of steric exclusions.
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Introduction

In the previous chapter we studied the behavior of cohesive granular materials under
isotropic compaction. We determined a new dimensionless number linking the system
parameters to the void ratio of the sample. However this model is not fully representa-
tive of the real calendering process. Based on the hypothesis that the calendering roll
is much larger than the electrode and that the calendering speed is slow, several models
introduced in the literature represent the calendering process as an uniaxial compaction
[52, 117, 151, 165]. This loading compacts the electrode sample vertically while its lateral
sides are periodic. By fixing the horizontal extension of the electrode this approach does
not consider possible elongation of the electrode. In reality, the electrode lengthens in
both horizontal directions during the calendering process, and mostly in the transversal
direction [97]. It would therefore be more representative of the real process to consider
deformation of the sample in all directions. In this chapter, we perform dynamic numerical
simulations of the triaxial compression of cohesive granular materials. We use as initial
configurations the isotropically compacted samples from the previous chapter. This al-
lows us to start from a well-defined isotropic configuration, as electrodes already have a
low porosity before being calendered. A constant pressure is applied to the lateral walls
while the upper wall is lowered at a constant rate. We measure the evolution of electrode
properties for samples of increasing adhesion.

3.1 Methodology

To perform this study, we use the microstructures obtained at the end of the study of
Chapter 2 as initial configurations. One example of initial microstructure is shown in
Figure 3.1. However, we consider fixed values of applied pressure, contact stiffness and
particle size to focus on the effect of the adhesion force.

Starting from a stable isotropic configuration, the applied pressure ph is maintained on
the 4 lateral walls while the top and bottom walls are fixed. Once a new stable configuration
is reached, the upper wall is lowered at constant speed ϵ̇. To reduce dynamic effects, we
chose a low value of ϵ̇ to ensure a quasi-static regime. The inertial number I is used to
determine whether a system is submitted to dynamic effets [133]. It is given by :

I =
ϵ̇d√
p/ρ

(3.1)

A quasi-static regime corresponds to I < 10−3. We therefore chose the value of ϵ̇ such that
I = 10−4 in the initial state with p = ph. p increases during the compaction, reducing
further the value of I.

The samples are compacted up to 40% of axial strain ϵ. Figure 3.2 shows the initial and
deformed configurations for different values of cohesive force fc. As explained in Chapter 2,
the isotropic configurations differ with the value of the adhesion force. Higher values of
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ph

Figure 3.1: Example of a sample used for triaxial compression.

fc yield looser samples with a broader range of forces. Before the top wall starts is set to
move, the sample is in an isotropic state with no specific orientations of contacts. During
triaxial compression, the microstructure orients itself vertically, with strong resistive force
chains pointing in this direction. We observe that the shape of the samples tend to a
rounded and isotropic configuration all the more that adhesion is higher. This leads to less
contacts with the lateral walls and the whole load is supported by only a few particles.

3.2 Evolution of state variables

3.2.1 Void ratio

We are more specifically interested in the evolution of void ratio e for different levels of
adhesion and initial porosity. Intuitively, one expects that for all samples which have a
high initial porosity e0, e will decrease during triaxial compression. However, the high
values of e0 are due to adhesion and it may well happen that shearing of the sample by
triaxial compression will simply deform the sample without significant volume change. The
motions of the walls allow us to compute the deformations of the initial box in the three
principal directions (which are here equivalent to the 3 cartesian directions). The shear
strain ϵq is given by:

ϵq = ϵ1 − ϵ3, (3.2)

where ϵ1 is the strain along the vertical axis and ϵ3 along the horizontal axis. Since the
loading is equal in both horizontal directions, we have ϵ2 ≃ ϵ3.
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(a)

(b)

(c)

Figure 3.2: Microstructures and force networks of samples at ϵ = 0% and ϵ = 20% for
different values of the adhesion force (a) fc = 5 µN (b) fc = 250 µN (c) fc = 5000 µN

Figure 3.3(a) shows the evolution of e as a function of ϵq for different values of fc. For
low values of fc, i.e. for initially denser configurations, the system starts from an already
compact configuration, and the value of e can not naturally decrease much. However, we
see that even configurations of high values of fc – and therefore initially loose microstruc-
tures – first undergo a small compaction phase but then the porosity increases again! All
configurations reach a plateau value of e after almost 50% of deformation. This latter
behavior is typical of rather dense granular materials, where the material dilates after an
initial compaction. Since the dilation is very small in all cases, we may state that all
samples are close to their critical-state void ratios. The plateau values of e are plotted
in Figure 3.3(b) as a function of fc. The evolution follows an asymmetric sigmoid curve
similar to the one in Figure 2.4(a). The data points are close to their initial values of the
isotropic state. This shows that the porosity obtained by isotropic compaction is the same
as the critical porosity reached by triaxial compaction.
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Figure 3.3: (a) Evolution of void ratio e as a function of ϵq (b) Initial and final values of e
as a function of fc.

3.2.2 Stresses

The major principal stress σ1 is directed along the compression axis while the two others
σ2 and σ3 are directed along the extension axes. The mean stress p – not to confuse with
ph the confining stress applied on the lateral walls – and the deviatoric stress q are defined
in 3D by

p =
1

3
(σ1 + σ2 + σ3) , q = σ1 − σ3, (3.3)

under axisymmetric conditions [132]. Figure 3.4(a) displays the shear stress q/p as a
function of ϵq for different values of adhesion force. In the beginning, q/p is close to 0
due to isotropic initial state. Once compression begins, the shear stress ratio increases at
a rate depending on fc; the higher the adhesion force, the faster the increase rate. This
means that more porous samples show a more stiff behavior A peak stress value is reached
followed by a slight softening until a plateau is reached. The absence of a pronounced peak
is consistent with small dilatancy of the samples observed in Fig. 3.3. The evolution is
globally consistent with an initial critical void ratio.

The values of q/p in the critical state are denoted by M . They are plotted in Fig-
ure 3.4(b) as a function of fc. We observe that the relationship between M and fc seems
to follow a sigmoidal evolution, similar to that of void ratio e. This confirms that, despite
lower packing fractions, higher adhesion forces lead to higher shear strength. The minimal
value of M is 0.7 for fc → 0, which corresponds to the shear strength of a cohesionless
material [147]. The maximum value of M seems to tend to 3 as a logarithmic function
of fc.
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Figure 3.4: (a) Evolution of shear stress ratio q/p as a function of shear strain, and (b)
Critical values of q/p = M as a function of fc.

3.2.3 Cohesive strength

The cohesive strength can be determined from the Mohr-Coulomb failure criterion, which
for the normal stress σ and shear stress τ on the failure surface implies

τ = σ tanϕ+ c, (3.4)

where c is the cohesive strength and ϕ is the internal angle of friction. Mohr circles
are plotted in Fig. 3.5 for the principal stresses σ1 and σ2 = σ3 in the critical state. Since
σ2 = σ3, two circles coincide, with radius (σ1−σ3)/2 and center located at ((σ1 + σ3)/2, 0).
From this figure and Equation (3.4), we have:

σ1 − σ3

2
=

σ1 + σ3

2
sinϕ+ c cosϕ (3.5)

The value of c is therefore given by

c =
σ1 − σ3

2 cosϕ
− σ1 + σ3

2
tanϕ (3.6)

The value of c depends on ϕ, which can be determined from a cohesionless configuration
in which the cohesive strength c is nil so that tanϕ = τ/σ = µc. Given the definition of p
and q in Eq. (3.3), the angle of friction ϕ is given in 3D by:

sinϕ =
3q

2p+ q
=

3M

2 +M
. (3.7)

The lowest cohesive configuration at fc = 1 µN is very close to a cohesionless system. We
used the corresponding data to compute the value of ϕ. We get ϕ ≃ 0.298 rad = 17.07◦.

The values of c obtained from Eq. (3.6) using the estimated value of ϕ are displayed in
Fig. 3.6(a). Remarkably, the cohesive strength increases almost linearly with the adhesion
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Figure 3.5: Mohr circle corresponding to the triaxial compression.

force. Alternatively, Fig. 3.6(b) shows normalized cohesion c/p as a function of cohesion
number η = fc/pd

2. Note that p is the average pressure and has not the same value in all
samples. We see again a nearly linear dependence of c/p on η. The most porous samples
are also the most cohesive ones. This cohesion can be attributed to the initial state, i.e.
the configurations generated by dynamic compaction. We find it also remarkable that for
values of η as large as 10, the ratio c/p is only about 1. This value can be compared to
µ = tanϕ ≃ 0.3, showing that adhesion forces prevails over friction forces.

3.2.4 Coordination number

Figure 3.7(a) shows the evolution of coordination number Z as a function of shear deϵ for
different values of fc. Starting around 4.2 in all cases, Z increases until it reaches a plateau
value. The plateau is reached more slowly for highly cohesive systems. Remarkably, the
plateau value Zf is an increasing function of fc as observed in Fig. 3.7(b). Zf increases
almost exponentially with fc. This increase of Zf despite the decrease of packing fraction
appears in this way as a mechanism that allows porous configurations to sustain higher
shear stress. This observation suggests the following physical picture: As adhesion force
increases, the microstructure is is ‘coarse-grained’ in the sens that individual particles are
replaced by dense aggregates, with larger pores between them. This explains the higher
porosity of the packing despite higher coordination number.

Figure 3.8(a) shows the evolution of the proportion of tensile contacts Z−/Z as a
function of the shear strain. Independently on the value of adhesion force, the proportion
of tensile contacts decreases with the deformation until it reaches a plateau value in the
critical state. However, this value is reached at a strain below 5% in all cases, in contrast to
the total coordination number Z. During the compaction and before reaching the plateau
value of Z, the transition rate for a given contact from tensile to compressive is slower
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Figure 3.6: (a) Cohesive strength c as a function of adhesion force fc; (b) normalized
cohesive strength c/p as a function of cohesion number η.
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Figure 3.7: (a) Evolution of coordination number Z as a function of shear strain; (b) Final
values Zf of coordination number as a function of adhesion force fc.

than the creation of new contacts. Similarly to the observations in the isotropic case of
Chapter 2, the final value Z−

f /Z follows a sigmoidal evolution with fc, as shown in Fig.
3.8(b). This shows that like void ratio, the proportion of tensile contacts in the critical
state reflects the material parameters.

3.2.5 Anisotropies

The connectivity of the samples is also characterized by their anisotropy. The mean orien-
tation of contacts inside a granular sample is given by fabric tensor F:

Fij =
1

Nc

Nc∑
α=1

nα
i n

α
j (3.8)
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Figure 3.8: (a) Evolution of Z−/Z as a function of shear strain; (b) Final values Z−
f /Z as

a function of fc.

where Nc is the total number of contacts inside the sample. The contact anisotropy ac of
a granular material is obtained through the deviatoric part of its fabric tensor F [200]:

ac =
15

2

(
F− I

3

)
(3.9)

where I if the identity matrix. The deviatoric invariant of ac is given by:

ac = sign (Sc)

√
3

2
ac : ac (3.10)

Sc is a normalized first joint invariant between s = σ− pI and the anisotropy tensor given
by:

Sc =
ac : s√

ac : ac

√
s : s

(3.11)

Figure 3.9(a) shows the evolution of ac of the different samples as a function of shear
strain ϵ. Starting from a relatively isotropic configuration, ac increases with ϵ. We observe
that ac reaches higher values when adhesion force is low. At higher values of fc, the
evolution is much slower. This shows the lower mobility of the particles in the more
cohesive samples. As a result of the initial relaxation step before triaxial compression, the
anisotropy of the lowest cohesive samples starts at small negative values. The anisotropy
tends to a critical state value afc which depends on the adhesion force fc as displayed in
Fig. 3.9(b). Two regimes can be identified in this graph. For relatively low cohesion, the
critical-state anisotropy is of the order of 0.1. For fc > 10 µN, the critical-state anisotropy
declines with increasing adhesion and tends to a very low value.

The orientational values of mean contact forces can be also obtained from weighed
fabric tensors:

χn
ij =

1

Nc

Nc∑
α=1

fα
nn

α
i n

α
j , χt

ij =
1

Nc

Nc∑
α=1

fα
t n

α
i n

α
j . (3.12)
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Figure 3.9: (a) Contact anisotropy ac as a function of shear strain (b); Final value afc of
anisotropy as a function of adhesion force fc.

We have tr(χn) = ⟨fn⟩. In the same way as for the contact anisotropy, the anisotropies of
normal and tangential force networks can be also obtained from weighed fabric tensors:

an =
15

2

(
χn

tr(χn)
− I

3

)
(3.13)

at =
15

3

χt

tr(χn)
(3.14)

The deviatoric invariant of an and at, noted respectively an and at, are given in the same
way as an in Equation 3.10 and 3.11 by replacing the contact with respectively normal and
tangenial forces.

The final values of an and at as a function of adhesion force fc are shown in Fig. 3.10. In
contrast to afc in Figure 3.9(b), both force anisotropies increase with adhesion. They also
follow a sigmoidal evolution, just as e and M do. However, their ranges differ considerably,
between 0.5 and 4.1 for afn and 0 and 1.05 for aft . The high values of an correspond to
highly oriented force chains along the vertical and horizontal directions. The tangential
force anisotropy at corresponds to friction mobilization and its relatively lower value as
compared with an reflects the reduced role of friction for the equilibrium and stability of
the packing in cohesive granular materials.

From the above definitions, it is easy to show that [144, 123, 8]:

M ≃ 2

5

(
ac + an +

3

2
at

)
(3.15)

Figure 3.11 shows both M and 2
5
(ac + an +

3
2
at) as a function of fc. We see that, the two

curves coincide well. The small difference is mainly due to the approximation that only the
first-order anisotropy terms are included in the calculation. This shows that, the decrease
of contact anisotropy is largely compensated by the increase of force anisotropies, allowing
the shear stress ratio to increase to very high values as a result of force anisotropy and
reflecting the structure of the bonding structure.
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Figure 3.10: Final values of normal force anisotropy afn (a) and tangential force anisotropy
aft as a function of adhesion force fc.

3.3 Relationships between state variables

3.3.1 Void ratio and stresses

It was shown in Section 3.2.3 that the cohesive strength of a granular medium is directly
proportional to the adhesion force between the particles. Figures 3.3(b) and 3.4(b) show
that both e and q/p follow a sigmoidal evolution as a function of adhesion force fc in the
critical state. Figure 3.12 displays q/p as a function of e for all tests. The peak values
of q/p are clearly observed here. The final approach to the critical state point always
corresponds to an increase of e and decrease of q/p. Remarkably, in the critical state the
shear strength increases linearly with void ratio. The relationship between M and e is well
described by

M = M0 + A (e− e0) (3.16)

where M0 = 0.68, e0 = 0.72 and A = 0.878. As mentioned before for cohesion, this is an
unexpected result as it means that looser configurations can withstand higher shear load.

3.3.2 Anisotropy and coordination

The variations of the contact network can be represented in the fabric parametric space
(Z, ac). In cohesionless granular media, it has been shown that as a consequence of steric
exclusions between particles, all values of Z and ac are not accessible, and the limits of the
accessible range can be described as a relation between Z and ac [132]. We show in Fig. 3.13
the relative evolution of the samples in the space (Z,ac). We see well-defined trajectories
between two limit behaviors: In the case of weakly cohesive samples, the coordination
number remain constant and anisotropy increases whereas in highly cohesive systems the
coordination increases while the anisotropy is nearly constant. The first limit is typical
of dense granular materials, where mainly the gain and loss of contacts are orientation
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Figure 3.11: Stress ratio M as measured from simulations and predicted by Eq. (3.15) as
a function of fc.

dependent due to a relatively homogeneous strain field whereas in the second limit the
isotropic gain of contacts occurs as a result of strong correlations across the system.

In the critical state (open circles in the figure), Z increases with the adhesion force
while ac decclines. The data points are well fit to the function

ac =
A0

Z − Z0

(3.17)

where A0 = 6 × 10−2 and Z0 = 4.2. The value of Z0 corresponds to the lowest reachable
coordination number for an infinitely high anisotropy. This relationship shows that higher
cohesion between the particles leads to lower anisotropy and higher coordination number
in the critical state, and that both values are linked. It defines the locus of critical fabric
states, which underlies the relationship between macro-variables M and e in Eq. 3.16.

3.4 Conclusion

The microstructures obtained by isotropic compaction were used as initial conditions for
triaxial compression. Interestingly, we found that the void ratio keeps a value close to its
initial state. In other words, the porosity obtained by isotropic dynamic compaction is
nearly the same as the critical porosity reached by triaxial shearing. During compression
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to a linear fit.

the fabric and shear strength evolve towards the critical state at a rate depending on the
adhesive force between the particles. Values of shear strength and proportion of cohesive
contacts were shown to follow an asymmetric sigmoid evolution depending on the adhesive
force, similarly to the void ratio in Chapter 2. Cohesive strength was shown to increase
linearly with adhesion force and almost logarithmical with void ratio. We found a simple
relationship between critical-state void ratios and shear strengths for a wide range of values
of adhesion. In the same way we found that the critical values of coordination number and
contact anisotropy are simply related across all values of adhesion. These relationships
define correspondence between materials of different values of adhesion.

Our results clearly show that triaxial compression is not an efficient means of com-
paction of cohesive granular materials. The compaction requires transition from one co-
hesive state to a lower cohesive state, and this is possible only either when adhesion force
is decreased or if confining pressure is increased. As we shall see in the next chapter, the
calendering action consists in imposing a thickness reduction while the side boundaries of
the sample are free as in a triaxial compression. We therefore predict from the results
of this chapter that the success of compaction depends on the external stress induced by
calendering.
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Chapter 4

DEM simulation of the calendering
process

The electronic properties of Li-ion batteries crucially depend on the microstructure of
their electrodes which can widely change during the fabrication process, resulting in broad
variations of energy densities and charging rates. One step of the fabrication process
called ‘calendering’ consists in compressing the electrodes between two rotating cylinders
to reduce their thickness and thereby increasing their density. We investigate the effect
of calendering on microstructural and electronic properties of the electrodes by means of
discrete element simulations and a realistic model of the calendering process by includ-
ing the real geometry of the rotating cylinder and the compression of the electrode over
its full length. The electrode is simulated using a rigid current collector and spherical
particles representing theactive material particles of the electrode. We also introduce a
new contact law that accounts for the behavior of the elastic active material particles
and the cohesive-plastic binder layer. We perform extensive simulations for various lev-
els of thickness reduction ratio and calendering speed. We show that our results are in
good agreement with experimental data of porosity, final thickness and elongation. The
calendering speed is found to affect the elongation of the electrode and the orientational
anisotropy of its internal microstructure. We show that the bonding structure induced by
calendering involves mostly vertical tensile contacts and horizontal compressive contacts
which is in radical contrast with the expectation that vertical compression tends to induce
compressive contacts along the vertical direction. This counterintuitive observation shows
the importance of shear deformation induced by rolling and thickness reduction. Using the
FFT method, we also measure the conductivity of the numerically calendered electrodes.
We find that the electric conductivity is proportional to the connectivity and packing frac-
tion of active particles whereas ionic conductivity is controlled by porosity. The former
increases with thickness reduction ration whereas the latter declines.
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Introduction

Li-ion batteries have proven their worth for many years in several domains and play a
key role for various technologies [104]. The manufacturing process of their electrodes
involves several stages designed to create a controlled material capable of storing and
delivering large amounts of energy. The third generation of Li-ion batteries involves a slurry
preparation, coating, drying and calendering steps for their electrodes [160]. Calendering is
the compaction of the electrode between two rotating cylinders to reduce its thickness, as
schematized in Fig. 4.1. The compaction of the electrode increases its energy density and
enhances its storage capacity. However, this process also decreases the ionic conductivity
of the electrode and thus the ability of the battery to store and deliver energy quickly
[64, 86]. The reduction of porosity increases the tortuosity and leads to the clogging of the
pore network. The link between calendering parameters and the final microstructure and
performance of batteries is therefore a crucial feature of manufacturing Li-ion batteries
that remains, however, poorly understood [39].

εi εfεfhghg
hi hf

ωcal

vcal

Figure 4.1: Characteristics and geometry of the calendering process

In this chapter, we are interested in the link between the final properties of the electrode
and the calendering parameters. Since the Li-ion electrode has a granular microstructure,
we employ the Discrete Element Method (DEM) to compute the mechanical behaviour
of the material during the calendering process [30]. This method is based on explicit
representation of the active material particles and their interactions and it has been re-
cently employed by several authors to simulate the manufacturing process of electrodes
[52, 151, 150, 117, 84]. These DEM-based models use different representations of the elec-
trode within the algorithmic constraints imposed by the framework of DEM. A natural
DEM approach proposed by some authors consists in introducing two types of particles,
namely the NMC active material and CBD (Carbon Binder Domain) [165]. This approach
implies, however, a high computational cost as it requires hundreds of small CBD parti-
cles for each active material particle. Computationally affordable models are based on the
representation of active material as rigid particles while the CBD is accounted for through
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contact interactions between particles. For example, the simplest DEM models of the elec-
trode use a Hertzian-bond contact model to account for the elastic behavior of the active
material particles and an adhesion force accounting for the action of the binding material
[51]. This approach considers a solid bond formed by the binder during the drying step
between the active material particles. Some models have improved this representation by
adding a plastic component to the contact law, which allows one to simulate the damage
of active material particles [52, 151, 89, 204]. Some other models assume that the binder
induces a constant attraction force between the active material particles and the particles
follow an elasto-plastic behavior [153, 48, 47]. The use of irreversible cohesive force by
some authors in this context implies irreversible loss of cohesion, which contradicts the
chemo-physical nature of CBD.

Another aspect of DEM-based calendering models concerns the simulation of the pro-
cess itself. The loading applied on the material during the calendering process is usually
represented by a triaxial compression test with a confining pressure applied on the lateral
walls and vertical compression at constant speed. This simplified representation is based
on the fact that the diameter of the calendering roll is much larger than the length of its
contact with the electrode. The contact zone between the calendering roll and the electrode
is therefore assumed to be flat, neglecting the curvature of the roll, and the shear stress
is neglected. Several studies have also been reported in which the compression is mod-
eled by considering periodic boundary conditions along horizontal directions and vertical
compression between two platens [153, 150, 48]. Since the horizontal cell dimensions are
fixed, such a configuration is equivalent to uniaxial compression and can not account for
the free spreading of the material and its lateral extension during calendering. The shear
stresses are also neglected as in triaxial compression and the contact surface is assumed to
be flat. However, in the real calendering process the motion of the electrode between two
counter-rotating rollers is driven by friction forces mobilized between the rollers and the
surface of the electrode. Hence, shear stresses induced by friction and rolling are intrinsic
to the process and should not be neglected. The effect of shear stresses is probably less
crucial for understanding the process at low calendering speeds. The models using simpli-
fied boundary conditions can therefore be relevant for low calendering speeds (< 0.1m/s)
usually employed in laboratory setups while the speeds used in industry are usually close to
1 m/s. The calendering speed affects horizontal elongation [97, 26], and beyond a certain
level of elongation the collector may break during winding [201].

In this work, we present a new DEM-based model for the simulation of the calendering
process of Li-ion battery electrodes. The CBD material is represented by its adhesive-
plastic behavior at the interface between NMC particles and most parameters are cali-
brated from experiments. We also model the calendering by introducing a cylinder that
drives the electrode by its rotation. We carry out a detailed parametric investigation by
varying thickness reduction ratio and calendering speed and analyze their effect on poros-
ity reduction, elongation, microstructure, and electronic properties of the calendered zone.
Our results will be compared by previous DEM simulations reported in the literature when
possible and, as we shall see, the full modeling of the calendering process and contact
interactions turns out to be crucial for the simulated behaviors.
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4.1 Materials and methods

4.1.1 Contact force laws

Numerical models for electrodes either explicitly represent both active material (NMC)
and Carbon-Binder Domain (CBD) particles or only the particles of the active material
and the action of the binding material is modeled through a contact force law with its
plastic and cohesive components [15]. We consider the latter approach with carbon-binder
phase described implicitly as a layer surrounding the particles of active material. The NMC
particles define a polydisperse assembly of spheres [179] and the CBD is a layer of thickness
Rp coating NMC particles, as schematized in Fig. 4.2. The thickness of the binder layer
is fixed from the ratio of the total mass of the binding material to the total mass. The
thickness of the surrounding CBD layer is kept constant during the calendering process.

Rp

R

Binder layer

Active material

Figure 4.2: Schematic representation of the binder-covered particle model of the electrode.

Based on this representation of binder-covered particles, there are three types of con-
tacts between two particles depending on the overlap δn: binder-binder, binder-particle,
and particle-particle. We assume an elasto-plastic behavior with adhesion for binder-binder
and binder-particle contacts and an elasto-plastic behavior for particle-particle contacts.
Figure 4.3 shows the evolution of normal force fn as a function of the overlap δn. Upon
the initial contact at point A between two particles, their binding layers touch each other
and the interaction is governed by a linear elastic law:

fAB
n (δn) = −k1δn, (4.1)

where k1 is the reduced stiffness of binder-binder and binder-particle stiffnesses. Note that
overlaps are counted as negative. At point B the NMC cores of the particles touch each
other (δn = −Rp). The NMC particles being more rigid, the elastic interaction is governed
by a larger stiffness k2 when δn < −Rp and we have

fBC
n (δn) = k1Rp − k2 (δn +Rp) (4.2)

The active material particles used in Li-ion battery electrodes have relatively low yield
strain and undergo cracking and fragmentation under low compression [52]. We account
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Figure 4.3: Normal force fn as a function of overlap δn. The colored zones represent the
contact zones between binder layers and between particles, respectively; see Fig. 4.2.

for the resulting plastic behavior by introducing a yield strain δe (point C). The normal
force will then evolve following a strain-hardening power-law behavior:

fCD
n (δn) = k1Rp − k2 (δe +Rp) + k2

(
|δn|ζ |δe|1−ζ − |δe|

)
, (4.3)

where the exponent ζ controls the intensity of plastic hardening.
Upon unloading from any point, the normal force will follow a linear elastic path,

starting from the largest overlap δmax
n reached prior to unloading. The deformation of the

CBD being irreversible, the elastic stiffness of the unloading path is that of the active
material (k2). The evolution of the normal force is then given by:

funload
n (δn) = fmax

n − k2 (δn − δmax
n ) , (4.4)

where fmax
n is the normal force reached at δmax

n along the loading path. The adhesion
of the binder is modeled by allowing the normal force to take negative values down to a
pull-off force fa depending on both binder properties and the maximum overlap reached.
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Since adhesion is induced by the amount of binding material between two particles, the
maximum value of −fa is reached when δmax

n reaches the limit of the binder layer Rp:

fa (δ
max
n ) = 2πR∗σamin (δmax

n ,−Rp) = kpmin (δmax
n ,−Rp) , (4.5)

where R∗ = (1/R1 + 1/R2)
−1 is the reduced radius between two particles and σa is the

yield strength of the binder. The highest bonding force fa (−Rp) = −2πR∗Rpσa is set
equal to the adhesion force given by the DMT theory [33]:

fa = −2πγR∗ (4.6)

where γ = σaRp is the surface energy. This value is reached if the binder layer is totally
crushed, i.e. when the contact surface area between the binder phases of the particles has
its maximum value.

For the tangential force, we used a linear elastic law combined with a Coulomb dry
friction criterion:

ft =

{
−ktδt for ||ft|| ≤ µ [fn − fa (δ

max
n )] ,

−µ [fn − fa (δ
max
n )] δ̇t

||δ̇t||
otherwise ,

(4.7)

where µ is the friction coefficient and kt is the tangential stiffness.
Throughout this work we set µ = 0.4, and kt is computed following the Hertz-Mindlin

theory for frictional contacts [134]

kt
k2

=
2 (1− ν∗)

2− ν∗ , (4.8)

where ν∗ = (1/ν1 + 1/ν2)
−1 is the equivalent Poisson ratio. Compared to the classical

Coulomb criterion ||ft|| ≤ µfn for cohesionless contacts, here the Coulomb cone is shifted
to account for the adhesion force present in the total normal force [135, 134]. This means
that only the repulsive part f e

n = fn − fa (δ
max
n ) of the normal force comes into play for

tangential force computation.
For energy dissipation, we consider a viscous normal force f v

n equivalent to the one
defined in Eq. ??. In all simulations, we set αn ≃ 0.25. We set the cohesionless tangential
damping to zero, thus dissipation is controlled by normal damping only.

4.1.2 Simulation of calendering

Our DEM model and its parameter values were based on the electrodes that were man-
ufactured and characterised by means of an in-house setup performed in CEA Grenoble.
The cathode structures were made of NMC-811 (LiNi0.8Mn0.1Co0.1O2) (active material),
carbon black (CB) and polyvinylidene fluoride (PVDF), with mass proportions 96-2-2
of the three components. The last two components form the conductive Carbon-Binder
Domain (CBD) matrix. The polydispersity of the NMC particles had a log-normal dis-
tribution, with d10 = 6.1µm, d50 = 12.1µm and d90 = 21.8µm. The slurry was coated
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onto an aluminium foil of thickness hal = 20 µm, resulting in electrodes of initial thickness
ht = 2hi + hal = 194 µm. The initial porosity of the electrodes was ε0 = 44.5%. The elec-
trodes were calendered with different speeds and intercylinder gaps using a rolling press
with cylinders of diameter Dc = 20 cm. After calendering, the elongation of the electrodes
was obtained by comparing their final length to the initial state. Cylindrical samples of
diameter 14 mm were extracted from the calendered electrodes and the thickness hf of each
side was measured. By measuring the mass of the cylindrical samples, their porosity ε was
computed from the volumes, densities, and proportions of the components. The measured
values of porosity, thickness, and elongation are given in Table 4.1.

Target Calendering Measured Porosity (%) Elongation (%)
thickness (µm) speed (m/s) thickness (µm)

Initial - 87 44.5 0

65
1 66.5 27.5 1.11
1.5 68 28.8 0.99
2 68 29.2 0.87

62.5
1 65 26.2 1.48
1.5 65 25.4 1.36
2 64 25.0 1.23

60
1 62 23.4 1.72
1.5 64 24.2 1.60
2 63.5 24.2 1.48

Table 4.1: Experimental data.

For simulations, we used spherical particles with the same particle size distribution as
in experiments. The thickness of the CBD layer was calculated from the experimental data
and set to Rp = 0.34 µm. The current collector was considered to be undeformable. This
assumption holds only for relatively low/medium calendering degrees since high levels of
compression tend to warp the current collector [204]. The calendering rolls are represented
explicitly in the simulations. Since our experimental data were obtained using a stainless
steel cylinder of radius Rc = 10 cm, the length of our samples was set to l = 1 cm. The
width was set to 200 µm with periodic boundary conditions. With an initial thickness hi =
87 µm, we built a numerical electrode composed of 24,425 spherical particles. The values
of the contact law parameters are given in Table 4.2. The values of hardening parameter
ζ were calibrated through a sensitivity analysis in which the porosity and thickness of
the sample were compared to their experimental values under uniaxial compression for a
thickness reduction ratio of 0.25.

The simulations were performed in 3 steps. First, the particles were deposited on the
current collector under their own weights. The relaxed sample is shown in Fig. 4.4. Then,
the cylinder is lowered slowly until it reaches the specified level. Finally, the cylinder starts
to rotate at an increasing rate until the target rotation speed is reached. The motion of
the sample is thus driven by friction with the calendering roll. The translation of the
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Figure 4.4: Macro view of the calendering simulation sample before lowering the cylinder.
The particles, current collector, and calendering roll are colored in red, gray, and black,
respectively. Cylinder size is downscaled 40 times for better visualization.

current collector on Z and X axes are disabled so that the gap hg between the cylinder
and current collector is constant. Figure 4.5 shows close-up snapshots of the electrode at
several instants of simulation.

4.1.3 Calculation of ionic and electric conductivities

For the calculation of ionic and electric conductivites of the numerically calendered samples,
we used Fast Fourier Transform [112]. FFT is a homogeneization technique which is used
to compute the effective or equivalent property of a multi-phase medium. It is extensively
employed in mechanics and for thermal transfer or diffusion. The multi-phase geometry
of the sample is described explicitly on a cartesian meshing grid. Each voxel of the grid
has a value corresponding to its local property. The diffusion gradient is considered as
homogeneous inside the volume. The method assumes periodic boundary conditions and
the effective properties of the matrix (mesh) is computed considering a steady state regime.
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Figure 4.5: Snapshots of a portion of the electrode during the passage of the calendering
roller. Color code represents average particle stress. The snapshots correspond to the
initial and final states and crossover points between the four stages of evolution of porosity
and pressure identified in Fig. 4.6.
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Sph – Sph Sph – Col Sph – Cyl
k1 (kN/m) 2.5 4.5 4.7
k2(kN/m) 130 93 165
kp (kN/m) 4 27.5 0
γ (mJ/m2) 34 240 0

ζ 0.15 0.275 1
kt (kN/m) 117 77 138

Table 4.2: Values of the simulation parameters for particle-particle, particle-collector, and
particle-cylinder contacts.

Compared with finite-element method, the FFT is able to handle more degrees of freedom
and may be accelerated thanks to parallelization technique. Moreover, the cartesian mesh
allows a very simple definition and easy to process geometry. FFT calculation needs a
discretization of the bed defined on a cartesian mesh (voxelisation). It basically defines
the property/value of a voxel thanks to its phase location. The details of the procedure
employed applied to thermal problems can be found in [22].

4.2 Results and discussion

4.2.1 Calendering steps

We performed 28 simulations with different values of the gap hg between the cylinder and
the current collector and the calendering speed vcal = Rc ωcal, where ωcal is the rotation
speed of the roll. The ranges of these values are given in Table 4.3. We investigate here the
deformation of the electrode and evolution of its microstructure in the ‘calendered zone’
defined as the portion of the electrode whole length Lc is equal to that of the contact area
between the cylinder and the material and which is fully compressed once it has moved
a distance equal to its own length Lc due to the rotation of the cylinder. The control
parameter of calendering is the thickness reduction ratio Cr defined by

Cr =
hi − hg

hi

, (4.9)

where hi is the initial thickness of the electrode.

Calendering gap hg [µm] 7 values ∈ [75, 50]
Calendering speed vcal [m/s] {0.5, 1, 2, 5}

Table 4.3: Calendering parameters used in this work.

Figure 4.6 shows the time evolution of porosity and average pressure in the calendered
zone for Cr = 0.28 and speed vcal = 2 m/s. The initial porosity is 0.44. We distinguish
four different periods:
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1. Initial state: The cylinder is away from the calendered zone and the pressure is zero.
The calendered zone is stable and fully relaxed under the action of its own weight
and internal cohesive forces.

2. Compression: The average pressure increases in the calendered zone and porosity
declines.

3. Relaxation: The cylinder leaves the calendered zone, which relaxes with a small
elastic rebound.

4. Final state: A new stable state is reached with zero internal pressure and a porosity
of 0.27.

In the following, we focus on the influence of calendering parameters on this process and
final relaxed state reached by the calendered zone after calendering. Note that each data
point represents the average value over several calendered zones selected from the electrode
during a single simulation run, and error bars are their standard deviation.
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Figure 4.6: Time evolution of porosity (a) and pressure (b) for imposed thickness reduction
Cr = 0.28 and calendering speed vcal=2 m/s. The labels of four successive stages of the
evolution of porosity and pressure are marked. Time is normalized by ω−1, where ωcal is
the rotation speed of the cylinder.

4.2.2 Thickness, porosity, and elongation

Because of elastic rebound, the final thickness reduction ratio Cf is not exactly equal to
the imposed value of Cr. Figure 4.7 displays the evolution of Cf as a function of Cr

for different values of calendering speed vcal. The simulations are in good agreement with
experimental data, and we observe that Cf is independent of vcal. The relationship between
Cr and Cf is linear with a shift of ≃ 2.5% between the target and measured values due
to elastic rebound. This linear evolution and a constant shift from the perfectly plastic
deformation Cf = Cr independently of the value of Cr is obviously a consequence of linear
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plastic behavior of the contacts defined in Eq. (4.4) and vanishing of the pressure exerted
on the electrode during calendering. As we shall see, the compression induces a high
level of self-equilibrated forces all the more that thickness reduction ratio is high. This is
because the adhesion force increases with plastic surface area between particles. The elastic
rebound is therefore mainly due to contacts between the cylinder and the particles. The
maximum elastic displacement after the vanishing of pressure is ≃ fa/k1 at the particle-
cylinder contacts, leading to a deformation of fa/(k1d50). With the values of parameters
used in the simulations (fa = 1360 µN, k1 = 4.7 kN/m, and d50 ≃ 12.1 µm), rather find a
deformation of the order of 2.4%, which is the value we measured.
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Figure 4.7: Relation between imposed thickness reduction ratio Cr and the effective thick-
ness reduction Cf of the electrode. The dashed line represents the ideal thickness reduction
without elastic rebound (Cf = Cr).

The reduction of the electrode thickness has two origins: 1) reduction of porosity and 2)
elongation. Figure 4.8 shows the final porosity ε as a function of Cr for different values of
calendering speed. We see that, as expected, ε declines as Cr increases but is independent
of vcal. The porosity seems to tend to a constant low value For this reason, it is expected
that the variation of porosity will tend to a constant value at high values of Cr. The
numerical data can be fitted by a power-law function:

ε = A (B + Cr)
−α +D. (4.10)

with A ≃ 0.17, B ≃ 0.57, D ≃ 0.06, and α ≃ 1.5. We have ε (Cr = 0) ≃ 0.45, which is close
to the initial porosity ε0 = 0.44 of our numerical electrode. The predicted lowest value of
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porosity by this function is ≃ 0.15 for Cr = 1. However, the lowest value of hg can not be
below one particle diameter, implying that the largest value of Cr is (hi − d50)/hi ≃ 0.89.
This leads to a porosity of the order of 0.16.
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Figure 4.8: Porosity ε as a function of thickness reduction ratio Cr for different values
of the calendering speed. The red dashed line represents the fitting function given in
Eq. (4.10). Triangles are experimental data points. Error bars represent standard deviation
over several calendered zones from a single simulation run.

Figure 4.8 shows also that the numerical values of porosity are close to the experimental
data. However, the experimental value of porosity tends to decline faster with increasing
Cr than numerical porosity. This discrepancy reflects the rather crude assumption in
simulations that the binding material does not deform and remains attached to the particles
as a plastic layer. In reality, the binder is unevenly distributed in the pore space and
deforms with compression [179]. Furthermore, at high pressure levels, the active particles
may also deform and break, allowing the material to reach even lower levels of porosity.

Since the electrode is compressed vertically and sheared horizontally, it is expected to
expand, specially along its longitudinal y direction. Since in our simulations we applied
periodic boundary conditions along the x direction, the electrode cannot expand along
this direction. The longitudinal elongation ∆L/L of the electrode is shown in Fig. 4.9
as a function of Cr for different values of calendering speed. The elongation is nearly
proportional to Cr and decreases with increasing calendering speed. This influence of
the calendering speed on the elongation of the electrode, though limited, is unexpected
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since both final thickness and porosity are independant of the calendering speed. As
observed in Fig. 4.9, the experimental data show a similar correlation between elongation
and calendering speed. It is noteworthy that none of the reported numerical calendering
simulations has been able to predict this dependence on calendering speed.
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Figure 4.9: Elongation of the electrode as a function of thickness reduction ratio Cr for
different values of calendering speed in simulations and experiments.

Since in our model we have an explicit representation of the calendering cylinder, which
sets the electrode in motion via the action of friction force on top of the electrode, the
observed decrease of elongation at higher speeds may well be related to the shearing of
the electrode as a result of the mobilization of friction force. In particular, if at higher
speeds a relative slip of the cylinder with respect to the electrode occurs to some degree,
then the electrode is sheared less and the resulting elongation is smaller. It must also be
remarked that high calendering speeds result in shear stresses strong enough to either rip
the granular mixture from the collector or directly warp it. Cathode current collectors are
usually thin aluminium foils which can not endure large deformations and tend to break
during the assembly step [201]. This observation clearly shows the importance of shear
stresses developed in the electrode during calendering and the importance of accounting
for the real geometry of the process in numerical simulations.

The pressure acting on the calendered zone is a consequence of constriction imposed
by the gap between the cylinder and collector. Figure 4.10 shows the maximum stress
σmax calculated on the calendering roll as a function of Cr. We see that σmax increases
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almost linearly with Cr, in exception to the largest values of Cr, and it is independent
of calendering speed. This large increase of vertical stress means a large decrease of the
cohesion number. As a result, the porosity decreases. As discussed in the last chapter, high
pressures can not be be generated by triaxial compression. Therefore, the generation of
high pressure requires shear strain induced by rolling. Once the external pressure returns
to zero, the compacted configuration requires cohesive forces to avoir rebound and elastic
release.
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Figure 4.10: Maximum stress induced by calendering as a function of thickness reduction
ratio Cr for different values of calendering speed. The stress is directly calculated on the
calendering roll.

Figure 4.11 shows the final porosity ε as a function of σmax. Considering the initial
porosity at zero stress, the relationship between porosity and maximum vertical stress is
not perfectly linear. It is well fit to a power-law function when forced to pass by the initial
porosity at zero stress:

ε = G (σmax +H)−β + I, (4.11)

with G ≃ 9.5, H ≃ 140 MPa, I ≃ −0.26, and β ≃ 0.53. We have ε (σmax = 0) ≃ 0.43,
which is the initial porosity of the electrode. This fitting function implies, however, that
ε vanishes at a finite stress while we have seen that the fitting function (4.10) predicts
a finite porosity. If we take 0.16 as the lowest porosity, as suggested by Eq. (4.10), the
maximum pressure needed to reach this porosity is 212 MPa, above which the fitting form
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of Eq. (4.11) is unphysical. Further simulations are necessary to check the validity of the
fitting forms proposed here for higher values of Cr.
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Figure 4.11: Final porosity ε after calendering as a function of maximum stress σmax for
different calendering speeds. The dashed line is a power-law fitting function given by
Eq. (4.11) forced to pass by the initial porosity at zero stress.

4.2.3 Evolution of microstructure

A key advantage of DEM simulations is to provide access to microstructural variables such
as the contact and force networks. Several microstructural parameters can be defined. In
particular, we are interested in the parameters that control the electric conductivity across
the granular microstructure. The lowest-order parameter is the coordination number Z,
defined as the average number of contact neighbors per particle:

Z = 2
Nc

Np −N0

, (4.12)

where Nc is the total number of contacts, Np is the total number of particles, and N0 is
the total number of floating particles that have contact neighbors. In a cohesive granular
medium, contacts can either be compressive or tensile. Compressive contacts are those
which have a positive normal force whereas tensile contacts have a negative normal force.
By restricting the contact neighbors only to compressive or tensile contacts, we also define
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the coordination numbers Z+ for compressive contacts and Z− for tensile contacts with
Z = Z+ +Z−. The proportion of tensile contacts is a descriptor of the stress state. When
the external confining pressure is high (low) compared to adhesion forces acting between
particles, Z+ is larger (lower) than Z−.

Figure 4.12 shows the time evolution of Z, Z+, and Z−. The coordination number
increases as the cylinder approaches the calendered zone, reaches a maximum value slightly
above 6, and then declines as the cylinder leaves the calendered zone. The final value of Z
is much higher than its initial value. The compressive coordination number Z+ follows a
similar evolution. The tensile coordination number declines and remains nearly constant
during the passage of the cylinder before relaxing to a higher value in the final state. It
is noteworthy that before calendering, Z+ and Z− are nearly equal with a slightly lower
value of Z−, such that Z−/Z ≃ 0.45. In the final state, the proportion of tensile contacts
is Z−/Z ≃ 0.43, which is only slightly above its initial value.
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Figure 4.12: Time evolution of coordination number Z, and the coordination numbers
Z+ and Z− for compressive and tensile contacts, respectively, with an imposed thickness
reduction Cr = 0.28 and calendering speed vcal = 2 m/s.

Figure 4.13 shows the values of Z, Z+, and Z− after calendering as a function of
thickness reduction ratio Cr for different values of calendering speed. The latter has a
small effect on average but it is not significant within the statistical precision of the data.
The three coordination numbers increase linearly with Cr. Z increases from 4.1 before
calendering to values as high as 6.4 for Cr = 0.43. Interestingly, the ratio Z−/Z, i.e. the
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proportion of tensile contacts in the system is nearly constant (≃ 0.43) and independent
of Cr. This shows that the stress state after relaxation and under the action of only the
weights of the particles is the same and independent of Cr. In other words, the compression
of the electrode due to calendering is large enough to drive the microstructure to a state
which is independent of the initial state. As we shall see below, this final state reflects the
anisotropic structure of the calendered material.
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Figure 4.13: Final values of coordination number Z (a) and compressive and tensile coor-
dination numbers Z+ and Z− (b) as a function of thickness reduction ratio Cr for different
values of calendering speed.

As compared to Z, which represents the average connectivity of the particles, the
anisotropy of the contact network is a higher-order descriptor of granular microstructure.
It is conveniently described by the fabric tensor F as defined in Eq. 3.8. By definition, we
have tr(F) = 1 so that its deviatoric part is given by

F′
ij = Fij −

1

3
δij, (4.13)

where δ is the Kronecker delta. The deviatoric fabric tensor F′ quantifies the relative
deviations of the proportions of the contacts in each direction from the perfect isotropic
state, in which the contact orientations are random and uniformly distributed in all space
directions. By definition, we have tr(F′) = 0. Hence, with respect to an isotropic distri-
bution of contact orientations, a positive value of a component in a given direction reflects
an excess of contacts whereas a negative value means a lack of contacts in that direction.

In the calendered zone, we consider two different tensors by either including or exclud-
ing the contacts with the cylinder. Figure 4.14 displays the time evolution of diagonal
components of F′ calculated in the calendered zone for both of these tensors. The compo-
nents F′

xx and F′
yy are almost equal. The electrode is initially in an anisotropic state with

higher value of F′
zz compared to F′

xx and F′
yy as a consequence of gravitational deposition

used to build the electrode. As the roll advances in the calendered zone, F′
zz increases

due to the new contacts created between the electrode and the roll but it declines if these
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contacts are not included. At the same time, since deviatoric fabric tensor is traceless, the
two planar components F′

xx and F′
yy decrease when the contacts with the roll are included

and increase otherwise. As the roll quits the calendered zone, F′
zz declines and F′

xx and
F′

yy increase. As a result, all components are lower in absolute value in the final state. In
other words, calendering reduces the initial anisotropic structure of the electrode.
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Figure 4.14: Time evolution of deviatoric fabric tensor components for an imposed thickness
reduction ratio Cr = 0.28 and calendering speed vcal = 2 m/s. The components are
calculated with (dotted lines) and without (plain lines) accounting for contacts with the
cylinder.

The decrease of F′
zz during calendering is counterintuitive as vertical compression is

expected to induce new contacts along the vertical direction thereby increasing F′
zz. This

is what occurs when a granular material is subjected to triaxial compression. In contrast, in
the process of calendering the variation of fabric components suggests that new contacts are
gained in the horizontal direction and lost in the vertical direction! In fact, the horizontal
motion of the cylinder with an imposed thickness reduction, the horizontal force exerted
by the cylinder on the top calendered layer, and mobilization of friction forces at the
interface between cylinder and electrode induce a complex shear deformation that controls
the gain and loss of contacts. The evolution of fabric tensor reflects this deformation and
its evolution during loading and unloading, showing that the calendering process can not
be reduced to simple compression.

Figure 4.15(a) shows the fabric components after calendering as a function of Cr for

106



vcal=2 m/s. We see that, independently of Cr, the two horizontal components are always
nearly equal. All components decrease almost linearly in absolute value with Cr and tend
to zero at Cr = 0.43. A similar evolution was observed in other studies [48]. Figure 4.15(b)
displays F′

zz after calendering as a function of Cr for different values of the calendering
speed. In all cases, the anisotropy declines with increasing Cr but we observe a slight
dependence on the calendering speed. Increasing the speed leads to less reduction of F′

zz.
Consistently with the effect of calendering speed on the elongation of the electrode, we
may attribute this effect to the overall shear deformation of the material. Less elongation
implies lower shear deformation although the vertical compression is the same for a given
value of Cr, and lower shear deformation leads to less evolution of the fabric.
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Figure 4.15: (a) Diagonal elements of deviatoric fabric tensor after calendering as a function
of thickness reduction ratio Cr for calendering speed vcal = 2 m/s; (b) Vertical fabric
component F

′
zz as a function of Cr for different values of the calendering speed. The

dashed line represents the isotropic state.

The stress and fabric states of the electrode before and after calendering can be visu-
alized through the force network as displayed in Fig. 4.16. In the initial state, the contact
forces are basically induced by particle weights and the contacts are oriented around ±45◦

with respect to the vertical due to the initial gravitational deposition. After calendering
we observe a large number of contacts oriented along the horizontal and vertical directions.
Many vertical contacts are tensile whereas compressive contacts occur predominantly along
the horizontal direction. This organization of the force network is consistent with the ori-
entation of the fabric tensor. It is also important to note that both compressive and tensile
forces are much larger than in the initial state. The larger values of forces is a consequence
of higher mobilization of tensile forces by the action of calendering and self-balanced by
compressive forces of the same order of magnitude.

4.2.4 Electronic properties

The effective electrical and ionic conductivities of our numerically calendered electrodes are
computed by means of the FFT method. We extracted 5 samples of size 200×200×50 µm3
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(a)

(b)

Figure 4.16: Force chains inside the electrode before (a) and after (b) calendering. Line
thickness is proportional to force magnitude (×100 in the initial state).

from our simulations and used a homemade code to voxelize them. Figures 4.17(a) and (b)
show one of the samples before and after the voxelization step. The voxel size was set to
(0.5Rp)

3 µm3 in order to represent efficiently the binder layer. Since FFT computations
require the sample to be periodic in all directions, we did not include the current collector.
The type of material attributed to each voxel is chosen from the DEM sample. If a voxel is
on the edge of a particle, it is identified as CBD phase and if the voxel is inside a particle,
it is considered as active material. In all other cases, the voxel is in the electrolyte phase.

Each voxel has its own bulk conductivity corresponding to its phase. The values that
we employed are summarized in Table 4.4. Some conductivity values – namely the electri-
cal conductivity of the electrolyte and the ionic conductivity of the active material – are
vanishingly small. However, too high contrasts between the highest and lowest conduc-
tivities in FFT computations lead to very high computational costs and slow convergence
rates. We did a parametric study on one reference case with values in the range [10−7, 10−3]
mS/cm in order to select conductivity values which reduce most the computational cost
while keeping the effective conductivities of the electrode close to reference values.

Electric conductivity λel represents the flow of electric current across the active material
particles to the current collector. Figure 4.18(a) shows λel as a function of thickness reduc-
tion ratio Cr for vcal= 1 m/s. We observe a clear correlation between electric conductivity
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(a) (b)

Figure 4.17: Example of voxelisation from DEM sample used for the FFT conductivities
computations. (a) DEM sample; (b) Cartesian mesh after voxelisation: the blue color
corresponds to active material, red color to CBD and empty voxels to electrolyte.

NMC CBD Electrolyte
Electrical

10−2 [3] 100 [163] 10−5*conductivity
(mS/cm)
Ionic

10−4* 10−2 [129] 10 [95]conductivity
(mS/cm)

Table 4.4: Conductivity values used in the FFT computations – values marked by an
asterisk (*) are adopted to ease FFT computations, as explained in text.

and Cr. λel increases as a function of Cr along the three directions and seems to tend to
a plateau value, although a clear plateau is not reached. The gain in electric conductivity
is nearly the same (≃ 30%) in the three directions. Nevertheless, the electric conductivity
along vertical direction is slightly above those in the other directions. Figure 4.18(b) shows
λel as a function of Cr along the vertical direction for different values of calendering speed.
The calendering speed does not seem to affect vertical electric conductivity while, as shown
in Fig. 4.15, F ′

zz slightly depends on the calendering speed. In fact, the variation of F ′
zz as

a function of speed is too small to affect significantly the electric conductivity.
The electric conductivity depends on both contact network and electric conductivity at

each contact. The latter is a function of the contact area and varies therefore with normal
force and the plastic deformation of the contact [151]. Dimensional analysis implies that
λel is proportional to the conductivity λNMC

el of NMC particles. Furthermore, the number
density of contacts nc = Zϕ/2Vp, where Vp is the average volume of one particleand ϕ = 1−ε
is the packing fraction, and their orientations through the fabric tensor control the amount
of electric current and thus the conductivity of the network. Since Fii = 1/3 + F ′

ii ≃ 1/3,
we may neglect the effect of fabric anisotropy. Hence,

λel ∝ ϕZλNMC
el , (4.14)

Figure 4.19 shows that this relation holds for all values of Cr and the proportionality factor
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Figure 4.18: Electric conductivity λel as a function of thickness reduction ratio Cr in all
directions for vcal= 1 m/s (a), and along the vertical direction for different values of the
calendering speed.

is independent of Cr. This relation shows that the influence of Cr is due to the variations
of ε and Z.

The voxelisation step has low precision to describe the real contact surface as it would
require high computational resources. The mesh drives the computation time, it must
therefore be sufficiently precise to describe correctly the domain but also not too small for
the FFT to converge in a reasonable time. All the contacts have therefore almost the same
surface area, which thus do not have a major effect on the effective electrical conductivity.

Ionic conductivity λion reflects the diffusion of ions in the pore space between particles
under the influence of chemical potential gradient. Figure 4.20(a) shows λion calculated by
FFT in three directions for vcal= 1 m/s as a function of Cr. λion declines with increasing Cr

in all directions. Figure 4.20(b) displays λion in the vertical direction for different values of
the calendering speed. We see that λion is independent of calendering speed. This result is
expected since the ionic conductivity mainly depends on the conductivity of the electrolyte
and the porosity ε [47], which was observed to be independent of the calendering speed.
We have

λFFT
ion ∝ ελelectrolyte

ion . (4.15)

Figure 4.21 shows that this relation holds with a proportionality factor which is nearly
independent of Cr.

4.3 Conclusion

We developed a DEM-based model for the simulation of the calendering process of Li-ion
battery electrodes. The CBD material was taken into account as a thin layer coating NMC
particles and governed by a plastic-adhesive behavior. Most parameters were calibrated
from experiments. The model was applied only to one side of the electrode based on the
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Figure 4.19: Normalized effective electric conductivity obtained by means of the FFT
method as a function of thickness reduction factor Cr for different values of calendering
speed.

assumption of rigid current collector in the middle of the electrode. The process was mod-
eled by introducing a cylinder that drives the electrode by its rotation via friction force
mobilization at its interface with electrode and a gap smaller than the initial thickness of
the electrode. As a result, the calendered zone undergoes a complex deformation combin-
ing shear and compression. A parametric investigation was performed by simulations for
a range of values of thickness reduction ratio and calendering speed. The effect of calen-
dering and its parameters was analyzed in terms of porosity, elongation, microstructural
parameters, and electronic properties of the electrode.

We found that most results on porosity and elongation of the electrode were in good
agreement with experimental data. The elongation of the electrode and some other prop-
erties such as the vertical fabric component were shown to be slightly dependent on the
calendering speed. This dependence was not observed in past simulations and in this
respect shows the important role of explicit representation of the calendering roll.

We showed that, as a result of contact plastic behavior and particle rearrangements,
the elastic rebound is small in full agreement with experimental data. The porosity de-
creases as a power law with increasing thickness reduction ratio and seems to tend to a
limit value representing the lowest reachable porosity. The highest stress reached in the
calendered zone was found to increase almost linearly with thickness reduction ratio. As
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Figure 4.20: Evolution of the ionic conductivity as a function of thickness reduction ratio
Cr in all directions at calendering speed vcal= 1 m/s (a) and in the vertical direction for
different values of the calendering speed (b).

a result, the coordination number and the tensile and compressive coordination numbers
also increase linearly with thickness reduction ratio, resulting in much higher self-balanced
tensile and compressive force chains which corresponds to the higher cohesive strength of
the electrode after calendering. Interestingly, the proportion of tensile contacts is constant
and independent of thickness reduction ratio, suggesting that the self-balanced structure
induced by calendering is similar for all levels of thickness reduction. An important result
of this study was to show that this structure involves mostly vertical tensile contacts and
horizontal compressive contacts which is in radical contrast with the expectation that ver-
tical compression tends to induce compressive contacts along the vertical direction. This
counterintuitive observation was attributed to shear deformation induced by rolling and
thickness reduction.

The electronic properties of our numerically calendered electrodes were computed by
means of the FFT technique. The effective electric conductivity is an increasing function
of thickness reduction ratio and independent of calendering speed whereas the effective
ionic conductivity declines at the same time. The electrical conductivity was shown to be
proportional to packing fraction, coordination number and electric conductivity of MMC
particles while ionic conductivity is proportional to electrolyte conductivity filling the pore
space and porosity.

This work can be extended to investigate the effects of larger calendering speeds and
larger thickness reduction ratios (beyond what is used in practice). A more detailed analysis
is necessary to quantify the deformation field in the calendered zone and the degrees of
local slip and shear at the electrode-cylinder interface as a function of calendering speed. In
this work, a constant value of adhesion force (depending on the binder layer thickness) was
assumed. It is important to investigate the effect of this parameter which controls both the
initial porosity and the mobility of particles during calendering. It is well known that the
behavior of cohesive materials depends on the cohesion number which involves the ratio
of cohesive stress and applied compressive stress. Furthermore, it was also recently found
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Figure 4.21: Normalized effective ionic conductivity obtained by the FFT method as a
function of thickness reduction ratio Cr for different values calendering speed.

that contact stiffness plays a key role in the scaling of porosity [162]. The flexibility of the
current collector may also play a role in the evolution of the electrode microstructure. It can
be modeled by finite elements and coupled with discrete particles. The plastic-adhesive
behavior of the binding material is also a model ingredient that can be adapted to the
material used. Alternative representations of the binder can be tested in the framework
of the developed code. For example, a spatial variability in the distribution of the binder
layer thickness can be introduced to account for fabrication hazards.
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General conclusions

T
he goal of this doctoral thesis work was to develop particle dynamics simulations to
model the calendering process and understand its effects on the conductivity and
energy density of Lithium-ion positive electrodes, which bear on the charging rate

and autonomy of Li-ion batteries. The electrode is modeled as a cohesive granular material
composed of active material grains, bound together by a matrix of binding polymers and
conductive additives. We performed both Discrete Element Method (DEM) simulations
based on a realistic representation of the process and dynamic compression of cohesive
granular materials to obtain insights about the evolution of the porosity and microstructure
during the process. For these simulations, we developed a new cohesive elasto-plastic force
law to account for the binding material and a detailed model of the calendering setup,
and we carried out extensive parametric study to analyze the influence of the material and
process parameters on the microstructural and electronical properties of the electrode.

In Chapter 1 we reviewed the existing literature on the calendering of Li-ion battery
electrodes. The first part described the history of electrical batteries and the current
technology of Lithium-ion batteries. The working principle of this type of batteries was
presented, as well as different versions of Li-ion batteries and their internal components:
active materials, binders or electrolytes. The manufacturing process of these batteries
is composed of different steps, one of them being calendering. The importance of the
calendering step on the performances of the batteries was explained. We presented methods
to characterize experimentally the electrodes and different measurable parameters. The
second part of this review chapter was focused on the simulations used to numerically study
the calendering of Li-ion battery electrodes. Since the electrodes are a granular medium,
we focused our work on the DEM and used it for our simulations. Each step of the
algorithm, respectively contact detection, force computation and position updating, was
thoroughly described. To represent the Li-ion battery electrodes, various simulation models
are used, each one accounting for the components of the electrodes in a different way. While
representing explicitly all the particles composing the electrode requires high computational
costs, most of the simulation models represent only the active material grains and account
for the binder implicitly by considering a cohesive elasto-plastic contact law. In most past
numerical work, the calendering is represented as an unaxial compaction, considering that
the calendering speed is relatively low (≃ 1m/min) and the roll much larger than the
electrode. The originality of the work presented in this thesis is (1) to develop a realistic
model of the calendering process, (2) a new force law based on a model of the binding
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material as a layer coating the active material particles, (3) a detailled parametric study
of dynamic compaction to obtain a scaling law for porosity, and (4) using the simulated
microstructures to compute the electrical and ionic conductivities.

Chapter 2 presents our study of microstructural properties of cohesive granular mate-
rials prepared by dynamic compaction. We study how the cohesion induced by the binder
affects the porosity and microstructure of the electrodes under compaction. Using a linear
elastic and cohesion contact law, we used different values of particle size, elastic stiffness,
adhesion force and applied pressure. We showed that the porosity can be expressed as a
unique function of a dimensionless parameter combining all our system parameters. This
new parameter differs from the usual cohesion number employed in the literature by ac-
counting for the elastic stiffness. Remarkably, we found that the bonding structure is more
adequately described by the cohesion number. This suggests that similar bond networks
with various porosities can be reached by modifying the elastic stiffness. We also investi-
gated the origins of data points deviating from the proposed scaling, and showed that they
arise from wall effects.

The microstructures obtained by isotropic compaction are used as initial conditions in
Chapter 3 for triaxial compaction. Interestingly, we found that the void ratio keeps a value
close to its initial state. In other words, the porosity obtained by isotropic compaction is
nearly the same as the critical porosity reached by triaxial compaction. During compression
the fabric and stress ratio evolve towards the critical state at a rate depending on the
adhesive force between the particles. Values of stress ratio and proportion of cohesive
contacts are shown to follow an asymmetric sigmoid evolution depending on the adhesive
force, similarly to the void ratio in Chapter 2. Interestingly we found the counter-intuitive
behavior that the Coulomb cohesion is an increasing function of void ratio. We also found
that the microstructure evolves in all cases to a well defined state characterized by a
simple relation between coordination number and anisotropy which corresponds to the
critical state. Our results of this chapter suggest that cohesive granular materials have
a critical state that is all the more porous that adhesion force is high. For this reason,
triaxial compaction can not be used as a means to reduce significantly the porosity. This
is only possible if a process such as the calendering process increases the average pressure,
thereby reducing the cohesion number.

The effects of the calendering parameters on the microstructure of the electrodes is
studied in Chapter 4. We represented only one side of the electrode assuming that the
current collector is rigid. The active material is simulated explicitly and the binding
matrix is taken into account implicitly. A new cohesive elasto-plastic contact law in 2
phases is developed specially for this model, accounting for the properties of both the active
material and the binder. The calendering process is simulated by explicitly representing
the calendering roll in the model. In simulations we used different heights and rotation
speeds in a broad ranges of values. Final thickness, porosity and elongation show a good
agreement with experimental results. We find that the porosity decreases following a power
law of the thickness reduction. The elongation of the electrode depends on the calendering
speed, as well as the orientation of anisotropy inside the electrode microstructure. The
electrical and ionic conductivities of our numerically calendered electrodes are computed
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using the FFT method. The electrical conductivity was shown to depend on solid fraction
and coordination number while the ionic conductivity only on the porosity.

Perspectives of future work

Due to the complexity of the internal composition of the electrodes, the entirety of its
behavior was not possible to study. One aspect that was overlooked in this study is the
behavior of the electrodes under shear loading. The calendering simulation model we de-
veloped here differs from the others of the literature by the presence of the calendering roll.
Its rotation induces tangential and shearing stresses inside the electrode. Faster calender-
ing speeds imply higher stresses, which can result in the rupture of the current collector or
the delamination of the particle bed. We showed in Chapter 4 that the microstructure of
the electrode was influenced by the calendering speed. It would therefore be interesting to
study the theoretical behavior of an representative volume element under shearing using
the same strategy as in Chapters 2 and 3. This may provide information on the importance
of each microstructural parameter on the mechanical behavior of the electrode. Previous
works on the same subject showed a possible scaling using the cohesion number, but they
did not study the influence of the elastic stiffness [93, 94]. We could use this new study to
observe if the modified cohesion number defined in Chapter 2 can characterize the shearing
behavior of cohesive granular materials.

Depending on the type of battery, different types of materials may be employed. For
3rd generation batteries whose cathodes use NMC particles, the representation of the active
material grains as spherical particles is valid. Considering the anodes, the active material
is mostly carbon which can be found in various forms, such as nanosheets or nanotubes.
Spherical elements are therefore not suited to these applications. The emergence of silicium
anodes with large variations of volume might not change the simulation of the calendering
process. However the computation of electronical conductivities of these electrodes would
require to take this into account.

High levels of compaction of the electrodes often lead to particle deformation and frag-
mentation. In our work we accounted for these effects by considering mechanical damage
in the contact law. However, this approach works only for small deformations, and as
it can be seen in Figure 1.5 the particles can be highly deformed. In order to be more
representative of the real microstructural changes of the electrode, it would therefore be
necessary to use deformable or fragmentable particles. On the same picture the current
collector undergoes some deformation, and therefore can not be considered to be rigid
anymore and its deformation should be taken into account. However this would require
either different simulation methods, such as the Material Point Method [116] which uses
deformable particles, and/or implement the fragmentation of the elements.

Regarding the presence of the carbon binder matrix, some improvements can be added
to our model. In our simulations we considered that the binder matrix uniformly covers
the active material particles while in reality it is more often located at the contact zone
between particles [179]. Our choice has already been discussed and argumented in Chap-
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ter 4, but this only applies to the calendering simulation and not the electronical properties
computation. Indeed, by considering that the binder matrix surrounds the active mate-
rial particles, the voxelisation of the electrode adds a constant layer of highly electrically
conductive material around each particle, creating easier paths for the electrical current
to flow. Considering the binder matrix only around the contact points or even a gradient
around the particles would be more representative of the real distribution of components
inside the electrode.
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Résumé étendu en français

Avant propos

Dans ce résumé étendu, nous présentons une brève synthèse en français du contenu du
manuscrit en respectant la chronologie de la thèse. Les principaux résultats de chaque
chapitre sont rappelés et nous nous attarderons sur quelques éléments choisis illustrant la
démarche numérique mise en oeuvre, les types de tests effectués, les mesures réalisées et
les analyses les plus importantes. Enfin, nous espérons que ce résumé servira de guide de
lecture ou d’introduction rapide pour le lecteur pressé.

Introduction

Durant les dernières décennies le nombre d’appareils électroniques a augmenté considérable-
ment dans notre quotidien. De plus l’émergence et l’ascension fulgurante des véhicules
électriques a poussé à développer de nouveaux moyens de stocker l’énergie électrique. La
technologie actuelle se base sur des batteries Lithium-ion (Li-ion) qui doivent leur nom au
matériau actif à base de Lithium les composant. Pour obtenir des batteries présentant de
meilleures performances, il existe 2 approches : soit utiliser de nouveaux matériaux, soit
améliorer les procédés existants ; c’est sur cette seconde approche que nous nous concen-
trerons. La fabrication des batteries Li-ion est composée de 5 grandes étapes : préparation
du mélange, enduction, calandrage, mise en forme et remplissage. L’étape de calandrage
consiste à comprimer les électrodes en les faisant passer entre 2 cylindres en rotation afin
de réduire leur épaisseur et ainsi augmenter leur densité d’énergie. Toutefois il a été ob-
servé que trop réduire l’épaisseur des électrodes a tendance à diminuer les performances des
batteries, notamment leur vitesse de charge. Les fabricants se trouvent face à un compro-
mis, où ils doivent choisir entre des batteries pouvant stocker une large quantité d’énergie
mais qui ne peuvent pas se charger/décharger rapidement, ou au contraire des batteries
rechargeables rapidement mais dont le capacité de stockage de l’énergie est limitée. C’est
dans ce cadre que s’inscrit cette thèse, où nous allons utiliser les outils de simulation
numérique pour étudier l’influence qu’a le calandrage sur les propriétés microstructurelles
et électroniques des électrodes.
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Contexte

Depuis les premiers modèles au plomb, les batteries électriques ont subi de nombreuses
évolutions. Il existe différents types de batteries Li-ion, identifiés en générations, qui
comportent chacun des compositions différentes. Les modèles actuellement produits à
échelle industrielle sont les batteries de 3ème génération, dont les anodes sont à base de
carbone et les cathodes à base de NMC. Un collecteur de courant permet de faire circuler
les électrons des grains de matériau actif vers les pôles de la batterie. Un liant polymérique
est ajouté dans l’électrode pour créer des liens cohésifs entre les grains de matériau actif
eux mêmes et avec le collecteur de courant. Afin d’améliorer la conductivité électrique
de l’électrode, des additifs électroniques sont aussi introduits et vont se mélanger au liant
afin de former une matrice appelée Carbon Binder Domain (CBD). Un électrolyte liquide
permettant aux ions Li+ de circuler d’une électrode à l’autre est ajouté lors de la dernière
étape de fabrication et ira remplir les pores des électrodes.

La fabrication des batteries Li-ion se décompose en 5 étapes : préparation du mélange,
enduction, calandrage, mise en forme et remplissage. L’étape de calandrage est l’une des
plus importantes en ce qui concerne les performances finales de la batterie. En effet, en
réduisant l’épaisseur des électrodes, leur densité énergétique est augmentée, de même que
leur conductivité électrique. Cependant, les pores internes au travers desquels l’électrolyte
va s’introduire seront bouchés, ce qui allongera le trajet effectué par les ions pour passer
d’une électrode à l’autre. Les batteries ainsi produites auront du mal à délivrer rapi-
dement l’entièreté de l’énergie électrique qu’elles contiennent. Il convient donc d’étudier
quelle est l’influence du calandrage sur les propriétés microstructurelles et électroniques
des électrodes.

Plusieurs méthodes existent pour caractériser expérimentalement les électrodes suiv-
ant quels paramètres sont étudiés, telles que la tomographie, les tests de nanoindenta-
tion ou de traction/compression. Toutefois, certaines caractéristiques ne peuvent pas être
étudiées précisément expérimentalement. Des modèles numériques sont alors développés,
afin d’étudier et de comprendre plus en détail les mécanismes entrant en jeu dans les
procédés expérimentaux.

Les modèles de simulation numérique représentant le calandrage des électrodes Li-ion
se basent principalement sur la Méthode des Eléments Discrets (DEM). Celle-ci considère
que chaque élément présent dans la simulation possède ses propres caractéristiques en
termes de forme, matériau, position et vitesse. Les éléments composant les électrodes
sont introduits dans la simulation de 2 manières différentes : soit explicitement avec des
éléments adaptés, comme par exemple pour les grains de matériau actif et le collecteur
de courant, soit implicitement en ne considérant que leurs propriétés mécaniques, comme
c’est le cas pour le liant qui n’est généralement pas représenté directement mais dont les
propriétés adhésives sont prises en compte dans la loi de contact entre les autres éléments.
Le comportement mécanique des différents éléments est assez variable suivant les systèmes
étudiés, allant de l’élasticité simple à de l’élasto-plasticité endommageable avec cohésion.
Le calandrage est lui représenté de manière simplifiée sous la forme d’une compression
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uniaxiale, en se basant sur les hypothèses que le cylindre de calandrage est beaucoup plus
grand que l’électrode et que sa vitesse de rotation est relativement faible. Les modèles
numériques développés jusqu’alors ont permis d’étudier les changements de microstructure
des électrodes ainsi que les relations entre différents paramètres microstructuraux et les
conductivités électroniques des électrodes.

Compaction isotrope d’un matériau granulaire cohésif

Afin détudier le comportement mécanique des électrodes, qui sont un milieu granulaire
cohésif, nous avons effectué différents essais numériques. Le premier est une compaction
isotrope d’un volume élémentaire représentatif, afin d’étudier l’influence de la cohésion
sur la microstructure. Pour ce faire, nous avons construit un échantillon cubique rempli
de particules sphériques monodisperses dont les parois rigides appliquent une pression
constante. La loi de contact utilisée est une simple loi élastique linéaire avec une force
d’adhésion constante. Différentes valeurs de taille des particules, pression appliquée par
les parois, rigidité élastique et force d’adhésion ont été étudiées.

Les résultats ont permis de démontrer une dépendance de l’indice de vide – qui est
la rapport entre la quantité de vide et de matière dans l’échantillon – avec ces différents
paramètres, et surtout à la force d’adhésion. Les systèmes les plus cohésifs présentent des
indices de vide à l’équilibre plus élevés que pour les systèmes moins cohésifs ; l’évolution
se fait suivant une courbe sigmöıde asymétrique. A partir des équations du mouvement il
est possible de définir une force d’adhésion critique en deçà de laquelle le contact entre 2
particules sera cohésif. Nous avons ainsi pu définir un nouveau paramètre adimensionné
noté η∗, basé sur le nombre de cohésion η et mettant en relation cette force d’adhésion cri-
tique avec la force d’adhésion du système. La différence principale entre ces deux nombres
adimensionnés est la prise en compte dans η∗ de la rigidité élastique, qui jusqu’alors avait
été considérée comme n’affectant pas les systèmes cohésifs. La valeur minimale d’indice
de vide atteignable est indépendante de la force d’adhésion, tandis que la valeur maximale
est liée à une pression critique dépendante des autres paramètres ; il est ainsi possible de
définir un indice de vide relatif er entre ces deux valeurs extremales. Les données tracées
en fonction de er et η∗ permettent de définir une courbe d’évolution commune à tous les
systèmes étudiés présentant deux régimes d’évolution distincts. Quelques points de don-
nées échappent à cette normalisation mais ce sont des cas limites soumis à des effets de
bord importants.

Les réseaux de contacts des différentes microstructures obtenues ont été étudiés en
termes de connectivité, forces attractives/répulsives et distributions de ces forces. Les
systèmes les plus cohésifs montrent des effets de bords plus importants tout en réduisant
le nombre de contacts avec les parois externes. Plus la force d’adhésion est importante,
plus le système est poreux et la proportion de contacts attractifs est élevée. Le nombre de
contacts attractifs peut être relié au nombre de cohésion η et non pas à η∗ ; Toutefois il a
été observé que pour une même proportion de contacts attractifs dans un système, l’indice
de vide relatif pouvait varier grandement, et ce principalement dû à la rigidité élastique. La
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distribution des forces attractives et répulsives est elle aussi dépendante de η, démontrant
ainsi l’influence de la rigidité élastique sur l’équilibre statique du système.

Compression triaxiale d’un matériau granulaire cohésif

La seconde étude portant sur le comportement des milieux granulaires cohésifs se base
sur une compression triaxiale, cette représentation étant relativement proche des mod-
èles représentant le calandrage présents dans la littérature. En partant des configurations
obtenues dans le chapitre précédent, les parois latérales sont maintenues à pression con-
stante tandis que la paroi inférieure est fixée et la paroi supérieure descendue à vitesse
constante. La porosité, l’anisotropie et les contraintes sont mesurées au fil de la com-
pression. Ici toutefois seule l’influence de la force d’adhésion est étudiée. Cette étude a
permis de montrer que la résistance au cisaillement augmente linéairement avec l’indice de
vide dans l’état critique (état de déformation continue). On trouve que l’indice de vide
obtenu par la compaction isotrope garde une valeur approximatement constante proche de
l’indice de vide critique pendant la compression triaxiale. La force de cohésion du milieu
granulaire est montrée comme étant linéairement proportionnelle à la force d’adhésion en-
tre les particules. Par ailleurs nous avons étudié l’évolution de la microstructure dans un
espace de phase de deux variables qui sont le nombre de coordination et l’anisotropie du
réseau de contacts, et determiné deux comportements limites: (1) une augmentation du
nombre de coordination à anisotropie constante (cas les plus cohésifs) (2) une augmen-
tation de l’anisotropie à nombre de coordination constante (cas les moins cohésifs) Dans
l’état critique une relation linéaire entre la résistance au cisaillement et l’indice de vide est
obtenue, de même qu’une relation inverse entre l’anisotropie de contact et le nombre de
coordination.

Simulation du calandrage des électrodes Lithium-Ion

Nous avons ensuite étudié le calandrage des électrodes Li-ion au travers de simulations
numériques effectuées avec la DEM. Des expérimentations ont été effectuées par les mem-
bres du LITEN du CEA Grenoble sur le calandrage d’électrodes Li-ion et les données ont
servi de référence à nos simulations. Dans notre modèle nous avons représenté explicite-
ment les grains de matériau actif et le collecteur de courant, tandis que la matrice de liant-
additifs a été prise en compte implicitement en considérant une couche externe enrobant
les particules de matériau actif mais aussi dans la loi de contact. Celle-ci a été développé
spécialement pour cette étude et se distingue en 2 phases : lorsque le contact se fait au
niveau de la couche externe de liant, le comportement mécanique est considéré comme
plastique cohésif tandis qu’il devient élastique endommageable lorsque l’interpénétration
entre les grains dépasse la couche de liant. Les propriétés cohésives et plastiques de cette
loi de contact sont directement liées aux propriétés du liant, tandis que les composantes
élastiques et en endommagement sont liées au matériau actif.
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Contrairement aux modèles de la litérature, le cylindre de calandrage est introduit di-
rectemenr dans nos simulations afin de représenter de manière plus réaliste le procédé de
calandrage. L’échantillon est ainsi une bande de quelques millimètres de long et 100µm
d’épaisseur initialement et dont les dimensions latérales sont périodiques. Les particules
sont déposées sur le collecteur par dépôt gravitaire, puis une fois stabilisées le cylindre
est descendu jusqu’à atteindre la hauteur désirée ; cette hauteur contrôlera la réduc-
tion d’épaisseur de l’électrode. Le cylindre est ensuite mis en rotation, entrainant ainsi
l’électrode par friction avec les particules. L’électrode sera alors comprimée au fur et à
mesure qu’elle avance sous le cylindre. Plusieurs simulations utilisant différentes valeurs
de réduction d’épaisseur et de vitesse de calandrage ont été réalisées.

Plusieurs paramètres microstructuraux et leur évolution temporelle ont été étudiés.
La porosité de l’électrode évolue en 3 phases au cours du calandrage. Au moment où le
cylindre commence à comprimer l’électrode, la porosité va diminuer jusqu’à atteindre sa
valeur minimale lorsque le cylindre est directement au-dessus de la zone d’étude. Ensuite
la porosité va réaugmenter légèrement dû au retour élastique pour atteindre sa valeur fi-
nale. La valeur finale de porosité est dépendante de la réduction d’épaisseur imposée et
une fonction a été proposée pour prédire la porosité à partir de la réduction d’épaisseur.
Cependant la porosité n’a pas montré de dépendance à la vitesse de calandrage. L’épaisseur
finale de l’électrode est elle linéairement dépendante de la réduction d’épaisseur, avec un
retour élastique constant, mais ne dépend pas non plus de la vitesse de calandrage. Toute-
fois, l’élongation des électrodes est elle dépendante de la vitesse de calandrage, avec un
allongement plus important pour de vitesses plus faibles, ce qui est aussi observé expéri-
mentalement. Comme le cylindre passe plus de temps à comprimer l’électrode, les par-
ticules peuvent mieux se réarranger afin d’atteindre une configuration plus stable. Cela
s’observe aussi dans l’orientation des contacts entre les particules, qui sont plus planes
lorsque la compression est plus importante et la vitesse de calandrage plus faible. Le nom-
bre de contacts attractifs reste cependant le même quelles que soient la compression ou la
vitesse de calandrage utilisées, retranscrivant ainsi le comportement observé dans l’étude
de compaction isotrope.

Les conductivités électriques et ioniques équivalentes des microstructures d’électrodes
ainsi obtenues numériquement ont été calculées. Les microstructures ont d’abord dû être
voxélisées et chacun de leurs voxels s’est vu attribué un matériau – matériau actif, CBD
ou électrolyte – possédant chacun ses propres valeurs de conductivités. Les conductivités
équivalentes ont été obtenues au moyen de la méthode de Transformée de Fourier Rapide
(FFT). La conductivité électrique augmente la compression tandis que la conductivité
ionique diminue, et toutes deux sont indépendantes de la vitesse de calandrage. Nous
avons alors mis en perspectives les valeurs de conductivités obtenues ici avec les paramètres
microstructuraux des électrodes calandrées numériquement afin de déterminer lesquels sont
les plus influents. Il a été obsevée que la conductivité électrique était dépendante de la
densité de l’électrode et du nombre de coordination, tandis que la conductivité ionique
dépendait seulement de la porosité.

123



Conclusions et perspectives

Au cours de cette thèse, nous avons développé un modèle permettant de simuler numérique-
ment le calandrage des électrodes Li-ion de manière réaliste. Les études préliminaires ont
permis d’identifier les paramètres influents sur la microstructure cohésive des électrodes
sous différentes sollicitations. Une nouvelle loi de contact prenant en compte les différents
composants des électrodes a été développé et appliquée à la simulation du calandrage des
électrodes Li-ion. Le modèle de calandrage introduit directement le cylindre afin d’être
plus représentatif du procédé réel. Les résultats ont permis d’identifer quels étaient les
principaux paramètres influençant les propriétés microstructurelles et électroniques des
électrodes. Toutefois, quelques améliorations peuvent encore être apportées, notamment
en ce qui concerne la représentation et la prise en compte de la matrice de liant-additifs
dans les simulations.
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[135] F. Radjäi, I. Preechawuttipong, and R. Peyroux. Cohesive granular texture. In P. A. Ver-
meer, H. J. Herrmann, S. Luding, W. Ehlers, S. Diebels, and E. Ramm, editors, Continu-
ous and Discontinuous Modelling of Cohesive-Frictional Materials, pages 149–162. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001. [Cited in pages 45, 60 and 93]

[136] L. Reig, C. Tojal, D. J. Busquets, and V. Amigó. Microstructure and Mechanical Behavior
of Porous Ti–6Al–4V Processed by Spherical Powder Sintering. Materials, 6(10):4868–4878,
2013. [Cited in page 41]

[137] V. Richefeu, M. S. El Youssoufi, E. Azéma, and F. Radjäi. Force transmission in dry and
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Modélisation du calandrage des électrodes Li-ion en tant que matériau
granulaire cohésif : des propriétés des grains aux performances de l’électrode

Résumé :
Les batteries Li-ion trouvent leurs applications dans de multiples domaines de la vie courante.

Leur performances, telles que la vitesse de charge et la capacité de stockage de l’énergie, sont
fortement influencées par la microstructure des électrodes et donc par leur procédé de fabrication,
en particulier une étape de compaction appelée calandrage au cours de laquelle l’épaisseur de
l’électrode est réduite entre deux cylindres en rotation. Cependant, cette étape de compaction
augmente également la tortuosité de l’électrode, diminuant la vitesse de charge/décharge de la
batterie ; un compromis est donc recherché entre capacité de stockage de l’énergie et vitesse de
charge. La microstructure de l’électrode s’apparente à un milieu granulaire composé de particules
actives et d’une matrice poreuse de liant polymère. Cette thèse s’attache à modéliser l’électrode et
le procédé de calandrage par une approche numérique discrète. La démarche proposée intègre une
étude de l’influence de la cohésion entre les grains, de la pression de confinement et de la vitesse
de compaction sur la porosité, la microstructure et les propriétés mécaniques des électrodes. Une
étude paramétrique détaillée a permis d’établir une loi d’échelle pour la porosité en fonction d’un
nombre sans dimension, d’étudier l’influence des paramètres sur la microstructure et de les relier
aux conductivités électriques et ioniques.
Mots-clés : Milieux granulaires, simulation numérique, cohésion, batterie lithium-ion.

Simulation of the calendering process of Li-ion as cohesive granular material :
from grains properties to electrode performances

Abstract :
Li-ion batteries are used in many areas of everyday life. Their performance, such as charging

rate and energy storage capacity, is strongly influenced by the microstructure of the electrodes and
therefore by their manufacturing process, in particular a compaction step called calendering dur-
ing which the thickness of the electrode is reduced between two rotating cylinders. However, this
compaction step also increases the electrode’s tortuosity, reducing the battery’s charge/discharge
rate; a compromise is therefore sought between energy storage capacity and charging rate. The
electrode microstructure is a granular medium composed of active particles and a porous matrix
of polymer binder. The aim of this thesis work is to model the electrode and the calendering
process using a discrete numerical approach, with the goal of better understanding the influence
of inter-particle cohesion, confining pressure and compaction rate on the porosity, microstructure
and mechanical properties of the electrodes. By means of a detailed parametric study, a scaling
law is established for porosity as a function of a dimensionless number, and the influence of the
parameters on microstructure is studied and linked with electrical and ionic conductivities.
Keywords : Granular materials, numerical simulations, cohesion, lithium-ion battery.




	Introduction
	List of Symbols
	Lithium-ion batteries: context and materials
	Lithium-ion batteries
	History of Lithium-ion batteries
	Working principle of Lithium-ion batteries
	Composition of a Lithium-ion battery
	Manufacturing process
	Experimental characterization

	Numerical simulations applied to the manufacturing process of Lithium-ion batteries
	Discrete Element Method
	Simulation of the calendering process of Lithium-ion battery electrodes using DEM
	Numerical characterization

	Conclusion

	Dynamic compaction of cohesive granular materials
	Introduction
	Methodology
	Force laws
	Sample preparation and system parameters

	Scaling of porosity
	Parametric study
	Modified cohesion number
	Fitting forms
	Effect of damping parameter

	Bonding structure
	Force networks
	Coordination numbers
	Force distributions

	Conclusion

	Triaxial compression of cohesive granular materials
	Methodology
	Evolution of state variables
	Void ratio
	Stresses
	Cohesive strength
	Coordination number
	Anisotropies

	Relationships between state variables
	Void ratio and stresses
	Anisotropy and coordination

	Conclusion

	DEM simulation of the calendering process
	Materials and methods
	Contact force laws
	Simulation of calendering
	Calculation of ionic and electric conductivities

	Results and discussion
	Calendering steps
	Thickness, porosity, and elongation
	Evolution of microstructure
	Electronic properties

	Conclusion

	General conclusions
	Extended summary in french
	Bibliography

