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Summary

Laser cooling and trapping of lanthanides has opened the possibility to carry out new
experiments with ultracold dipolar gases, which can be used, for example, for quantum
simulation of solid state physics. To identify new suitable candidates for laser-cooling,
it is crucial to have a precise spectroscopic knowledge of the atom under consideration.
First general direction of the thesis is the modeling of the energy levels of neutral lan-
thanides, firstly for neutral erbium (Er), an element belonging to the right part of the
lanthanide row, which is particularly attractive because of a narrow-inner shell transi-
tion, connecting the erbium ground state to a long-lived excited state and secondly for
neutral neodymium (Nd), an element belonging to the left part of series, which has not
yet been considered for laser-cooling. Using the semi-empirical method implemented in
the Cowan suite of codes, we have improved the levels of odd parity configurations of Er
by incorporating more configuration interaction parameters than in previous calcula-
tions. We have calculated quantities such us Lande g factors, excited state lifetime, and
polarizabilities, which were then compared with experimental results done by a group
in Innsbruck, Austria. During the collaborative work few magic wavelength conditions
were proposed. Then, for Nd, we were able to interpret more than 200 experimental
levels of the NIST database belonging to both parities. For Nd, after doing precise
spectroscopic calculations, we have proposed new laser-cooling transitions. The logical
continuation and perspective of the work for the future will be the calculation of the
Einstein coefficients, which are necessary to characterize the efficiency of laser cooling
and trapping of atoms.

Most of the lanthanides usually exist as trivalent cations. Because of the presence
of unpaired electrons lanthanides exhibit strong electromagnetic and light properties.
In their trivalent form, lanthanides are widely used for industrial purposes, in lasers,
and as (co-) dopants in doped-fiber optical amplifiers; for example, in Er-doped fiber
amplifiers. Second general direction of the thesis is devoted to trivalent lanthanides,
especially to discussion when they are doped in a host material. All the transitions
that ware interesting for these applications are activated by the crystal field. Judd-
Ofelt theory has been used for decades to describe these transitions, but there are some
restrictions arising from the way it is derived. This is especially the case for Eu3+. In
the thesis we have done spectroscopic calculations, using the same methodology as for
neutral lanthanides, for three elements: Eu3+, Nd3+ and Er3+. We have proposed an
extension of Judd-Ofelt theory in which we include precise spectroscopic calculations
of the considered ion and account for wavelength dependence of the refractive index.
The results of the extension are satisfactory, we are able to give a physical insight
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into all the transitions within the ground electronic configuration, including the ones
that were forbidden before by the standard version of the theory, and also to reproduce
quantitatively experimental absorption oscillator strengths. The code used to make the
calculations is available on GitLab. As a prospect, we plan to treat transitions with
polarized light or between individual ion-crystal sublevels. This will be possible in our
model, because the only fitted parameters are the crystal-field ones. This can open the
possibility to model the spectroscopic properties of Ln3+-doped nanometer-scale host
materials.



Résumé

Le refroidissement laser et le piégeage des lanthanides ont ouvert la possibilité de
réaliser de nouvelles expériences avec des gaz dipolaires ultra-froids, qui peuvent être
utilisés, par exemple, pour la simulation quantique de la physique du solide. Pour
identifier de nouveaux candidats au refroidissement laser, il est crucial de disposer
d’une connaissance spectroscopique précise de l’atome considéré. La première grande
orientation de ma thèse est la modélisation du spectre des lanthanides neutres, d’une
part de l’erbium (Er), un élément de la partie droite de la rangée des lanthanides,
particulièrement attractif en raison d’une transition très fine, reliant l’état fondamental
et un état excité métastable, et d’autre part du néodyme (Nd), un élément de la partie
gauche de la rangée, qui n’a pas encore été explorée pour le refroidissement laser. En
utilisant la méthode semi-empirique implémentée dans les codes de Cowan, nous avons
amélioré la description des niveaux de configurations impaires de Er. Nous avons aussi
calculé des quantités telles que le facteur de Landé, la durée de vie et la polarisabilité
de l’état excité cité plus haut, pour les comparer aux résultats expérimentaux obtenus
par un groupe d’Innsbruck en Autriche. Ensuite, pour Nd, nous avons pu interpréter
plus de 200 niveaux expérimentaux de la base de données du NIST appartenant aux
deux parités, puis nous avons proposé de nouvelles transitions de refroidissement laser.
La suite logique de ces travaux est le calcul des coefficients d’Einstein, nécessaires pour
caractériser l’efficacité du refroidissement laser et du piégeage des atomes.

La plupart des lanthanides existent généralement sous forme de cations triva-
lents. En raison de la présence d’électrons non appariés, les lanthanides présentent
d’intéressantes propriétés électromagnétiques et lumineuses. Sous leur forme trivalente,
ils sont largement utilisés à des fins industrielles, dans les lasers et comme (co-)dopants
dans les amplificateurs optiques à fibres, par exemple dopée à l’erbium. La deuxième
grande orientation de ma thèse est consacrée aux lanthanides trivalents, utilisés comme
dopants dans un matériau hôte. Toutes les transitions intéressantes pour ces applica-
tions sont induites par le champ cristallin. La théorie de Judd-Ofelt est utilisée depuis
des décennies pour décrire ces transitions, mais il existe certaines restrictions liées à la
manière dont elle est formulée, en particulier pour l’europium (Eu3+). Dans cette thèse,
nous avons effectué des calculs spectroscopiques, en utilisant la même méthodologie que
pour les lanthanides neutres, pour trois éléments : Eu3+, Nd3+ et Er3+. Nous avons
proposé une extension de la théorie de Judd-Ofelt dans laquelle nous incluons une
description précise du spectre de l’ion dopant, et nous tenons compte de la variation
de l’indice de réfraction du matériau hôte avec la longueur d’onde. Les résultats de
notre modèle sont satisfaisants, car il nous donne un aperçu physique de toutes les
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transitions observées, y compris celles qui sont interdites par la version standard de la
théorie. Par ailleurs, notre modèle reproduit quantitativement les forces d’oscillateurs
d’absorption expérimentales. Le code utilisé pour effectuer les calculs est disponible
sur GitLab. Comme perspective, nous prévoyons de traiter les transitions en lumière
polarisée ou entre des sous-niveaux individuels des ions. Cela sera possible dans notre
modèle, car les seuls paramètres ajustés sont ceux du champ cristallin. Cela ouvre la
possibilité de modéliser les propriétés spectroscopiques de matériaux hôtes à l’échelle
nanométrique.
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Introduction

Spectroscopy as a broad field of experimental and theoretical research has provided
much to our knowledge with regard to the physical nature of life and various things,
not only of our own Earth but of the Sun, of planets, of interstellar space and of
distant stars too. Although the Romans were already familiar with the ability of a
prism to generate a rainbow of colors [1], it is very appropriate to say that Isaac
Newton is the traditional founder of spectroscopy, but it is only fair to acknowledge
that he was not the first scientist to study and report on solar spectrum. The works
of Athanasius Kircher (1646), Jan Marek Marci (1648), Robert Boyle (1664), and
Francesco Maria Grimaldi (1665), predate Newton’s optics experiments (1666–1672).
Sir Isaac Newton’s experiments discovered that the white light could be split up into
component colors when passing through a prism, and that these components can be
recombined to generate a white light. It was for him to show that the colors did not
originate in the crystal, the prism is not imparting or creating the colors, but that
the colors were the necessary ingredients that make up the sunlight. The band of
colors falling on a screen Newton called a spectrum. If Newton had used a narrow
slit as a secondary source of light and examined the spectrum, he would have very
probably discovered the dark absorption lines on the Sun’s spectrum, as did Joseph
von Fraunhofer almost 100 years later. He made a significant experimental leap forward
by replacing a prism with a diffraction grating as the source of wavelength dispersion.
Fraunhofer built off the theories of light interference developed by Thomas Young,
François Arago and Augustin-Jean Fresnel. He performed his own experiments to
demonstrate the effect of passing light through a single rectangular slit, then two slits,
and so forth, eventually developing a means of closely spacing thousands of slits to
form a diffraction grating. Fraunhofer made and published systematic observations of
the solar spectrum, and the dark bands he observed and specified the wavelengths of
are still known as Fraunhofer lines [2].

It was around this time when lanthanides were first discovered. In 1787, in a
small Swedish town called Ytterby was identified the first mineral that contained a
lanthanide. This unusual black mineral was later separated into different elements,
and in 1800s would be called gadolinite, after the chemist Johan Gadolin, who found
the first compound. The name Ytterby has been vastly used after this; ytterbium (Yb),
yttrium (Y), terbium (Tb), and erbium (Er) have been named after this little town.
The privilege to be the first lanthanide to be obtained as an element, was cerium’s
(Ce). In 1839 lanthanum was discovered by Carl Gustav Mosander and got its name
because it was “lying hidden” or “escaping notice” in a cerium mineral.
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The systematic acknowledgment of spectra of chemical elements began only in the
1860s by Robert Bunsen and Gustav Kirchhoff. By making spectro-chemical analysis
in laboratory and astrophysical science, they established the linkage between chemi-
cal elements and their unique spectral patterns. In the process, they instituted the
technique of analytical spectroscopy. These works led to the demonstration that spec-
troscopy could be used for trace chemical analysis and they have discovered several
chemical elements, which were previously unknown. One of the example of this is the
discovery of gadolinium (Gd) by Jean Charles de Marignac, who detected its oxide by
using spectroscopy. It is named after the mineral gadolinite. The link between the
nature of absorption and emission was established exactly at this period. Later, the
husband-and-wife team of William and Margaret Huggins used spectroscopy to deter-
mine that the stars were composed of the exactly same elements as found on Earth.
This became a good step forward for lanthanide chemistry.

In 1923, George Charles de Hevesy and Dirk Coster discovered hafnium (Hf) at the
University of Copenhagen and named it after the city’s New Latin name: Hafnia. Using
an x-ray spectra of the elements, Moseley proved that there are 14 elements between
Lanthanum and Hafnium. The fifth element was named Holmium (Ho) after the city
Stockholm, thulium was named after the old name Thule (Tm) and samarium (Sm) was
named after the mineral samarskite from which it was isolated. The pure neodymium
(Nd) was isolated in 1925 and got its name from the Greek words neos : new, and
didymos : twin. Praseodymium’s (Pr) name was derived similarly, from Ancient Greek
prasinos : leek-green, and means green twin, since it appears with different shades
of yellow-green when incorporated into glasses. All these elements were classified as
“rare earth” elements, because they were obtained in rare minerals. In 1925 Victor
Goldschmidt introduced the term lanthanides, which was a natural choice since the
lanthanum is the first element of the series. Although the word comes from the Greek
word lanthanein: “to lie hidden”, it does not reflect the idea of the natural abundance
of these elements, but rather refers to the fact that they like to “hide” behind each
other in minerals. Dysprosium (Dy) was similarly named, using the Greek dysprositos
for “hard to get at”. Europium (Eu) was named after the continent, since it was
separated from the mineral samaria in magnesium-samarium nitrate by the French
chemist Eugène-Anatole Demarcay. Promethium (Pm) was the last to be discovered
in 1947 at Oak Ridge National Laboratory. Czech chemist Bohuslav Brauner was
surprised with the differences in properties between neodymium and samarium, since
these were larger and more abnormal than between any two consecutive lanthanides;
as a conclusion, the idea of another element existing between these two was suggested.
The newly found element got its name from the Greek Titan Prometheus, who stole fire
from Zeus and passed it to people. The element’s name is a reference to the courage and
pain needed to synthesize it. So, with the exception of Promethium, all the rare earths
were discovered in the span of a little more than a century. Although lanthanides are
very difficult to separate from each other, in the 19th century, the scientists, working
on such minerals, found that the characteristics of the light emitted by hot atoms of
a particular element were distinctive to the elements. For example, the street lamps
that give strong yellow light contain sodium.

If we do a scientific jump to early 20th century we will be encountering the inter-
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pretation of spectral series of hydrogen by Lyman and the creation of the basics of
quantum theory by Plank [3] and Einstein [4], which was later developed by Pauli,
Heisenberg, Schrödinger, and Dirac. This is also the time span where Bohr formulated
his quantum mechanical model of atom and published a theory about hydrogen-like
atoms, which could explain the observed wavelengths of spectral lines due to electrons
transitioning from different energy states [5]. After some advances in quantum mechan-
ics, such as understanding of the spin and exclusion principle that allowed conceiving
how electron shells of atoms are filled with the increasing atomic number, a special
attention was drawn to the branch of spectroscopy that deals with radiation related
with atoms that are missing several electrons. These are called multiply ionized atoms,
or multiply charged ions, or highly charged ions. It turns out that these ions are quite
ever-present in nature and are caught to be responsible for diverse phenomena from the
luminescence of the Sun to the existence of the Earth’s ionosphere. Atoms in their ionic
state may have a different color from neutral atoms. The lowest excited electron shells
of such ions can decay into stable ground states; this produces photons in ultraviolet,
extreme-ultraviolet and soft X-ray spectral regions.

After this analytical and exploratory period, lanthanide unique optical properties
were taken advantage of in optical glasses, filters, and lasers. In the mid-1970s, E. Soini
and I. Hemmila proposed lanthanide luminescent probes for time-resolved immunoas-
says [6] and this has been the starting point of the present numerous bio-applications
based on optical properties of lanthanides. The natural occurrences for different ioniza-
tion states varies from one element to another. In low ionisation stages the lanthanides
appear in astrophysics: neutron stars, chemically peculiar stars, kilo novaes. Recent
studies show that kilo novae photospheric spectra exhibit absorption features of La3+

and Ce3+ in the NIR region [7].
Most of the lanthanides usually exist as trivalent cations. Because of the presence

of unpaired electrons lanthanides exhibit strong electromagnetic and light properties.
In their trivalent form, lanthanides are widely used for industrial purposes [8]. Triva-
lent lanthanide (globally referred as Ln3+) compounds and doped inorganic materials
are used as catalysts, magnetic, optical and laser materials, in rechargeable hybrid
batteries, organic electronics, wind- and solar-energy conversion, economical lighting,
bio-analyses, imaging, etc. Most lanthanides are widely used in lasers, and as (co-)
dopants in doped-fiber optical amplifiers; for example, in Er-doped fiber amplifiers,
which are used as repeaters in the terrestrial and submarine fiber-optic transmission
links that carry internet traffic. These elements deflect ultraviolet and infrared radi-
ation and are commonly used in the production of sunglass lenses. In addition, Ln3+

doped crystal analyses are still in the object of fundamental studies. The electronic
configuration for trivalent lanthanides is [Xe] 4fw, where [Xe] is the ground configura-
tion of xenon, only composed of closed subshells, w is varying from 0 (La) to 15 (Lu)
(w = 6 for Eu3+ for example). The first excited configuration is 4fw−15d.

The applications mentioned before imply transitions between levels of the ground
configuration, which are forbidden in the free-ion case. They become allowed in solids
due to the coupling with levels of higher configuration, especially 4fw−15d, created by
the crystal field around the Ln3+ ion. Therefore, these applications require the knowl-
edge of the ground and first excited configurations energy levels, and the intensities of
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transitions between levels of the ground configuration.
Moreover, in spectroscopy, electromagnetic fields are used to probe the structure

of internal states. Extensions of the same techniques developed for spectroscopy allow
one to control the internal degrees of freedom coherently. Laser cooling and trapping
techniques allow one to do the same with the external degrees of freedom of the atom.
Ultracold gases are ensembles of atoms held at a temperature near absolute zero.
Experiments with ultracold atoms study a variety of phenomena, including quantum
phase transitions, Bose–Einstein condensation (BEC), bosonic superfluidity, quantum
magnetism, many-body spin dynamics, etc. Samples of ultracold atoms are typically
prepared through the interaction of a dilute gas with a laser field. Evidence for radiation
pressure, was demonstrated independently by Lebedev, and Nichols and Hull in 1901.
In 1933, Otto Frisch demonstrated the deflection of individual sodium particles by light
generated from a sodium lamp. Owing to their unique quantum properties, ultracold
atoms have a wide variety of applications. They have been proposed as a platform
for quantum computation and quantum simulation [9], accompanied by very active
experimental research to achieve these goals.

In the field of ultracold atomic and molecular matter, quantum gases composed
of particles with a strong intrinsic permanent dipole moment, called dipolar gases,
have attracted great interest in the last few years because they can be controlled by
external electric or magnetic fields. Through long-range and anisotropic interactions
between particles, dipolar gases enable the production and study of highly correlated
quantum matter, which is critical for quantum information or for modeling many-body
or condensed matter physics [9–11].

Open-shell atoms have a permanent magnetic dipole moment that is determined by
their total angular momentum. In the context of ultracold matter, important achieve-
ments were also the first Bose-Einstein condensates of highly magnetic atoms obtained
with chromium [12]. Later, much attention began to be attracted to the lanthanides.
These atoms open up new possibilities for interactions, not only because of their large
ground state magnetic dipole moments, enabling long-range and anisotropic interac-
tions, but also because of the large number of optical transitions with widely vary-
ing properties that provide controllability that can help exploit these interactions.
These distinctive properties are primarily due to a unique electronic structure: the
so-called submerged f-shell configuration. All lanthanides have a completely filled 6s
shell and an inner 4f shell filled to some extent. Moreover, among the lanthanide
atoms with the largest atomic numbers, many share a common set of properties and
often have similar transitions at the same wavelengths, which helps the theoreticians
in various analysis and can be, for some cases, considered interchangeably in certain
experiments [13, 14]. These characteristic properties enable enhanced control over ul-
tracold atoms and their interactions. So far, laser cooling has been demonstrated in
erbium [15, 16], dysprosium [17, 18], holmium [19], thulium [20, 21] and europium [22],
as well as in erbium–dysprosium mixtures [23].

These achievements stimulated both theoretical and experimental studies, in partic-
ular aiming to identify new suitable species for laser cooling. In this respect, among the
Ln elements of the left half of the lanthanides series in the periodic table, neodymium
(Nd) and praseodymium (Pr) represent the most suitable energy spectrum for the for-
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mation of a dipolar gas. Nd represents the great advantage of having bosonic and
fermionic stable isotopes, which makes Nd a very attractive candidate for such exper-
iments.

In order to find possible laser-cooling transitions, it is essential to carefully model
the spectrum - energies and transition dipole moments (TDMs). Particular attention
should be paid to accurately describing configuration-interaction (CI) mixing, to which
TDMs are very sensitive, especially those that lead to weak transitions, which play an
important role in this design. The main technical difficulty comes from the least-
square fitting of energy levels, because we need to determine to which experimental
counterparts each computed energy level should converge.

Evidently, the success of projects aimed at laser cooling of neutral lanthanides,
as well as the analysis of crystals doped with Ln3+, requires a thorough study of the
spectroscopic data of the corresponding elements and/or their ions. This is the leading
principle of this research work.

The thesis has three parts: Theoretical Background, Trivalent Lanthanides and
Neutral Lanthanides, and each part has two chapters. In chapter one, which is named
“Elements of atomic-structure theory”, I recall some theory which can be necessary for
the reader to understand the essence of the work and to go further into the research.
The chapter starts with a summary of spectra for atoms and ions and prompts on
angular momentum. The chapter also includes the description of one-electron atom,
then we go one step further to describe a two-electron atom and, finally, the idea is
generalized to reach to N-electron atom system. The chapter is concluded by recalling
some properties of transitions.

Chapter two is dedicated to a description of transition intensities in solids when
they are doped with lanthanides. It covers a broad chronicle on lanthanides as a series
of elements and an explanation to why are those elements so attractive for science. We
carry on the chapter description with general theoretical remarks on ions in solids, and
their uniqueness as a physical system. The last section of the chapter is devoted to
the Judd-Ofelt theory, which was derived in the 1960s and is used to characterize the
intensities of lanthanide and actinide transitions in solids and solutions. The section
includes explanation of the theory as well as the challenges that arise for some trivalent
lanthanides, for example Eu3+, Pr3+, Sm3+, Tb3+, etc.

No scientific work is complete without a well thought methodology of calculations
designed carefully and specifically for the research topic. I cover this narration in first
section of chapter three. It includes description for the software, program and the
calculation approach we adopted for the sake of precision in this research work. In
chapter three I also describe free-ion calculations on three trivalent lanthanides, which
was done with the calculation technique described in the previous chapter. It includes
three sections; each designed for the description of individual calculations performed
on those three elements that were considered in the work: Nd3+, Er3+ and Eu3+.

Chapter four shows and summarizes the attempts done in order to overcome the
challenges that arise in Judd-Ofelt theory and making the later more inclusive for
lanthanides. It has two sections that cover the evolution of the extension theory, by
describing the steps we have taken for our objective. Each of those steps are followed
with a benchmarking calculations on three lanthanides that were described in chapter



6

three.
Since ultracold atomic physics is one of the most prolific and fastest growing re-

search areas in modern physics, I have carried out spectroscopic calculations on neutral
Erbium and Neodymium, which are described in chapters five and six, respectively. In
chapter five I describe the observation and coherent excitation of atoms on the narrow
inner-shell orbital transition at 1299 nm, connecting the erbium ground state to the
excited state done by the experimental group in Innsbruck as well as the theoretical
work done by us to improve the spectroscopic data of erbium and support the exper-
iment. In chapter six, I present a detailed modeling of the energy levels of neutral
neodymium, which will help to identify possibly laser-cooling transitions.

The thesis is then summarized with conclusion marks and possible points for future
improvements.



Part I

Theoretical Background





Chapter 1

Elements of atomic-structure
theory

Spectroscopic studies of the light emitted or absorbed by atoms and ions date from
the early nineteenth century. From these studies, it gradually became clear that the
particular wavelengths of light associated with atoms of a given element are charac-
teristic of that element, and that spectral information must therefore provide clues to
the internal structure of the atom. During the last quarter of the nineteenth century,
important regularities were discovered among the wavelengths of hydrogen and other
comparatively simple spectra [24].

The spectrum emitted by atom or ion provides reliable signature to analyze the
composition of alloys or other mixtures of atoms; indeed, several elements (among
them helium, rubidium, cesium, gallium, indium, and thallium) were discovered spec-
troscopically. A good example of this is the Fraunhofer lines, which were originally
observed as dark features (absorption lines) in the optical spectrum of the Sun.

Understanding the lines emitted by the atoms was the initial motivation to derive
the quantum theory. The fact that the light is radiated by an atom at only certain dis-
crete wavelengths is associated with the fact that the atom can exist only in stationary
states having certain discrete values of internal energy E. The various possible energies
of the atom are called energy levels. The lowest possible energy is called the ground
level and each quantum state of the atom having this energy (there may be more than
one such state) is called a ground state. All other levels are called excited levels and the
corresponding quantum states are called excited states. The fundamental problem in
the theory of atomic structure is the calculation of the wavefunction for each quantum
state of interest. But before moving to a calculation part wee need to understand the
theory that lies behind all this physics. This chapter is dedicated to the theoretical
background for all the applications mentioned in the introduction. It also includes the
theory necessary to understand the calculations and the results that will be presented
later in the thesis.

The outline of the chapter is as follows, in section 1.2 we will remind some angular
momentum theory and then we will go from the simplest atoms to most complex cases:
one-electron atom (1.4), two-electron atom (1.5) and finally, N-electron atom (1.6). In
this chapter we also briefly introduce the creation of coupled functions, followed by

9
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a discussion about possible coupling schemes. We recall state notations that will be
used throughout this research and some properties and examples of 3n-j symbols. The
chapter is concluded with transition properties.

1.1 Characteristics of spectra of atoms and ions

Each atom or ion emits a line spectrum which is characteristic of that atom or ion. The
spectrum emitted by neutral atoms of a given element is called the first spectrum of
that element, and is denoted by the Roman numeral I, the spectrum emitted by a singly
ionized atoms is called the second spectrum and is denoted by the Roman numeral II,
etc. Obviously the number of different possible line spectra of an element is equal to
its atomic number Z, consequently there exist spectra H I, He I, He II, Li I, Li II,
etc. By extension Roman numerals are used to refer also to the ion that produced the
spectrum: C I is the neutral carbon, C II is the singly ionized atom C+, C IV is C3+,
etc. The wavelengths of spectrum lines are most commonly given in Angstroms (1Å
= 10−8 cm = 10−10 m), but sometimes in microns or micrometers. Most commonly,
however, spectrum lines are described simply in terms of the wavenumber σ, or the
number of wavelengths (in vacuum) per unit of length (usually per centimeter: cm−1):
σ = E

hc
, where h is the Planck constant and c is the speed of light in vacuum. E/hc

is called the pseudo-energy unit and is used almost exclusively. The energies of the
various levels of an atom are most commonly specified in terms of the excitation energy
above the ground state. A frequently used unit, especially for levels corresponding to
excitation of inner-shell electrons, is the electron-volt. The equivalences between the
energy and pseudo-energy units are: 1 eV = 8065.479 cm−1.

The possible energy levels of an atom are conveniently depicted by means of a
diagram in which each level is represented by a short horizontal line placed at the
appropriate point along a vertical energy scale. Each level is usually placed in one of
several different columns, according to certain properties of the quantum state(s) that
correspond to that level. An example of an energy diagram is figure 1.1, which will be
discussed in section 3.4 for Eu3+.

If an atom exists in an excited state of energy E2 it may spontaneously decay to
some other state of lower energy E1 the energy difference appearing as a photon of
energy E2−E1. This photon corresponds to emitted radiation of frequency ν, vacuum
wavelength λ, and wavenumber σ given by: E2−E1 = hν = hc

λ
= hcσ, or if the energy

levels are given in the pseudo-energy units E
hc
: E2

hc
− E1

hc
= 1

λ
= σ. On the other hand,

if the atom exists in the state 1 and lies in a radiation field that includes radiation
of wavenumber σ, it may be excited to the state 2 by absorption of one photon of
energy E2 - E1. The Ritz combination principle states that any two energy levels of
the atom can combine in the above manner to give rise to a spectrum line. The visual
representation of absorption and emission is shown in figure 1.2.

The presence of an external electric or magnetic field may result in either a slight
decrease or a slight increase in the energy of an atom. In an energy-level diagram, each
possible level is in general split into several possible sublevels. The magnitude of the
effect depends how strong the external field is. Each spectrum line is then split into
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Figure 1.1: Energy diagram of the 4f 6 (blue) and 4f 55d (red) configurations of Eu3+

as functions of the electronic angular momentum J . All energy values are in cm−1 and
the graph is limited to 140000 cm−1.

several parts. This effect is called Stark effect if the external field is electric and Zeeman
effect if the field is magnetic. In addition to the splittings produced by external fields,
each level may be split into a number of sublevels as a result of hyperfine-structure
splitting (caused primarily by magnetic interactions of the electrons with the nuclear
magnetic moment).

The classical problem of experimental spectroscopy is to deduce the possible energy
levels of an atom or ion from the observed wavenumbers of its spectrum lines. In
comparatively simple atoms, there is in principle no real problem in making purely
empirical spectrum analysis. In practice, there can be serious difficulties in carrying
the procedure beyond the determination of some of the lower-lying levels, especially in
the more complex atoms. Energy levels and spectra are very useful for direct practical
reasons, knowledge of the level structure of an atom is one of the final goals in which
scientists are interested. Energy levels and line strengths provide the main clues to
a fundamental understanding of the electronic structure of the atom. These clues,
however, can be interpreted meaningfully only in terms of a theoretical model. There
were many attempts to find a suitable model for adequately describe atomic structure.
The state of the art was well summarized in 1935 by Condon and Shortley [25]. Then
a very powerful mathematical technique, the algebra of irreducible tensor operators,
was developed by Racah [26].

The theory of atomic structure can be used to predict the numbers and types of
energy levels for any given atom. It can be used in a semi-empirical parameterized
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Figure 1.2: A simple diagram for absorption and spontaneous emission.

form, in which the values of certain theoretical parameters are determined by least-
squares fitting of empirically determined energy levels. The theory can also be used
in a completely ab initio fashion by computing theoretical values for above mentioned
parameters. The accuracy of computed results is limited, especially for very complex
neutral atoms, but the predicted energy level structures can still provide a very helpful
guide for getting a start to an empirical spectrum analysis. In the ab initio form of the
theory (and to a certain extent in the semi-empirical form also), one obtains not only
level energies but also the wavefunctions of the corresponding quantum states. From
these wavefunctions one can compute any desired properties of the atom, for example
the strengths of spectrum lines.

The fundamental problem in the theory of atomic structure is the calculation of
the wavefunction for each considered quantum state. For practical purposes, it is
convenient to be able to describe each wavefunction briefly in terms of characteristic
properties of the function; these properties then serve also to provide an informative
and useful designation for the corresponding energy level. The properties in question
consist primarily of certain symmetry properties of the wavefunction. When discussing
atoms or molecules in crystals, the use of group theory is essential, but for free atoms,
which show a spherical symmetry the pertinent full rotation group is closely related
to the angular momentum properties of the atom. This gives us permission to work
directly in terms of the quantum mechanical theory of angular momentum.

1.2 Reminder on angular momentum

In physics, angular momentum is the rotational analog of linear momentum. It is
an important physical quantity. The angular momentum is especially useful in the
problems with central forces and central potentials, because it is a constant of motion,
i.e. it is conserved. Conservation of angular momentum is also why hurricanes form
spirals and neutron stars have high rotational rates. The angular momentum is a
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constant of motion also for the isolated composed systems. There are two special
types of angular momentum: the spin angular momentum is the angular momentum
around the object’s centre of mass, and the orbital angular momentum is the angular
momentum around a chosen center of rotation. The Earth has an orbital angular
momentum by the nature of its rotation around Sun, and a spin angular momentum
by the nature of its daily rotation around the polar axis. The total angular momentum
is the sum of the spin and orbital angular momentum.

In quantum mechanics, angular momentum (like other quantities) is expressed by
an operator, and its one-dimensional projections have quantized eigenvalues. Angular
momentum is subject to Heisenberg’s uncertainty principle, which implies that at any
given time only one projection (also called a component) can be measured with a
certain accuracy, while the other two then remain undefined.

An example of isolated composed system is an atom in the absence of external field.
In classical mechanics, the orbital angular momentum L⃗ (about some given reference
point) of a particle moving with linear momentum p⃗ at a position r⃗ with respect to that

point is defined as L⃗ = r⃗× p⃗, or for example for the z component it is Lz = xpy − ypx.
Other components are obtained by circular permutation. The corresponding quantum-
mechanical operators, obtained as usual by replacing px with −iℏ ∂

∂x
, etc., are given by

Lz = −iℏ(x ∂
∂y

− y ∂
∂x
).

The commutation relation for a general angular-momentum operator J⃗ is [Ji, Jj] =
ϵijkiℏJk, where ϵijk is the Levi-Civita symbol and is 1 if (i, j, k) is an even permutation
of (x, y, z), −1 if it is an odd permutation, and 0 if any index is repeated. They are

applicable to electron spin S⃗ as well as to orbital angular momentum L⃗. It is possible
to find functions that are not only eigenfunctions of one component of J⃗ (usually Jz)

but also are eigenfunctions of J⃗2 = J⃗ · J⃗ = J2
x + J2

y + J2
z , which is possible, because J⃗2

and Jz commute. They also commute with the Hamiltonian of isolated system or with
the Hamiltonian with central field potential. The possible eigenvalues of J⃗2 is found
to be j(j + 1)ℏ2 where j = 0, 1/2, 1, 3/2, 2, .... For any given value of j, the possible
eigenvalues of Jz are mjℏ, where mj = −j,−j + 1,−j + 2, ..., j − 1, j. The eigenstates

of J⃗2 and Jz are |jmj⟩. The quantum numbers ml and ms are used in the cases of
orbital and spin momenta.

An electron is known from both empirical evidence and the relativistic Dirac theory
to possess an intrinsic angular momentum corresponding to the value j = 1/2. For

electron spin, the general symbols J⃗ , j, andmj are customarily replaced by S⃗, s(= 1/2),

and ms. For a single electron, the only possible eigenvalue of S⃗2 is s(s + 1)ℏ2 = 3
4
ℏ2

and the possible eigenvalues of Sz are msℏ , where ms = −1
2
or 1

2
. Electrons are also

known to carry orbital angular momentum, which is a property of electron’s rotational
motion and is related to the shape of the orbital of the electron. In the theory it is
marked as ℓ and can have integer values.
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1.3 Coupled angular-momentum states and Wigner

3n-j symbols

The physical reason for our interest in angular-momentum coupled states is that there
usually exists some sort of interaction between the two subsystems to which the angular
momenta J1, and J2 have a reference. For example, in the case of two electrons, that
will be discussed in section 1.5, in an atom moving with orbital angular momenta l1,
and l2, there exists the Coulomb repulsion of either electron by the other; in the case
of a single electron, there exists a magnetic interaction between the magnetic dipole
associated with the spin angular momentum s and that associated with the orbital
angular momentum l. As a consequence, each subsystem exerts a force on the other,
causing a rotation, so that neither J1 nor J2 are constant of motion, on the other
hand if there is no external force acting on the combined system of J1J2 then the
total momentum J remains constant. With the presence of an external force the z-
components of J1 and J2 are not constant and m1 and m2 are not physically significant
or ”good” quantum numbers, but the sum J1z + J2z remains constant and so the good
quantum numbers are m1 + m2. The coupled wavefunction discussed below, reflects
this situation: each corresponds to definite values of the quantum numbers j and m, in
agreement with the fact that the magnitude and orientation of J are constant in time,
but consists of a mixture of uncoupled functions for all possible pairs of values m1,m2

such that m1 +m2 is equal to m.
Namely, we consider two angular momenta J⃗1 and J⃗2 characterized by their individ-

ual quantum numbers j1, m1, j2 and m2. The corresponding states |j1m1j2m2⟩, which
are eigenvectors of J2

1 , J1z ...., are said to be uncoupled. If we define the total angular

momentum J⃗ , it is possible to define the eigenvectors |j1j2jm⟩ of J2
1 , J

2
2 , J

2 and Jz,
which are said to be coupled. The relation between the coupled and uncoupled states
is: ∣∣j1j2jm⟩ =

j1∑
m1=−j1

j2∑
m2=−j2

Cjm
j1j2m1m2

∣∣j1m1j2m2⟩, (1.1)

but summation can only include the terms for which m1+m2 = m, which implies that
each coefficient C must contain δm2,m−m1 factor and so the equation simplifies to:∣∣j1j2jm⟩ =

∑
m1

Cjm
j1j2m1m−m1

∣∣j1m1j2m−m1⟩, (1.2)

where the coefficients are called vector-addition or Clebsch-Gordon coefficients [27],
which will be used in the discussion of this research very often.

1.3.1 Coupling of two angular momenta, Clebsch-Gordan co-
efficients and 3-j symbols

The Clebsch-Gordan coefficients can be very simply expressed as:

Cj3m3

j1m1j2m2
= (−1)j1−j2+m3 [j3]

1/2

(
j1 j2 j3
m1 m2 −m3

)
. (1.3)
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where [j] ≡ 2j+1 and the expression in parenthesis is called a Wigner 3j symbol. Those
symbols, or their close relatives, called the Clebsch-Gordon and Racah coefficients, are
very important for quantitative calculations of atomic structure and spectra.

The 3j symbol represents the probability amplitude that three angular momenta
j1, j2 and j3 are coupled to give zero angular momentum:(

j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2+j3

∑
j′m′

Cj′m′

j1m1j2m2
C00

j′m′j3m3
. (1.4)

The 3j function is defined (i.e., is non-zero) only for values of ji and mi which are
either integral or half-integral, such that j1+j2+j3 and m1+m2+m3 must be integral
and that j1 − j2 +m3 is integral so that the 3j symbol is real. Also, the three ji must
satisfy the three inequalities:

j1 + j2 ≥ j3,

j2 + j3 ≥ j1,

j3 + j1 ≥ j2, (1.5)

these inequalities together with the integral-sum restriction are referred to as the tri-
angle relations.

The 3j symbols satisfy the symmetry properties:

(
j2 j1 j3
m2 m1 m3

)
=

(
j1 j3 j2
m1 m3 m2

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (1.6)

From these two relations it follows that(
ji jk jn
mi mk mn

)
= ϵ

(
j1 j2 j3
m1 m2 m3

)
, (1.7)

where ϵ is -1 or (−1)j1+j2+j3 according as (ikn) is an even or odd permutation of (123).
It can be also seen that:(

j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (1.8)

These symmetry properties make it possible to greatly shorten calculations.
As stated before [j] ≡ 2j + 1, and the following abbreviated notation will be used

in the calculations very often as well [j1, j2, · · · ] ≡ (2j1 + 1)(2j2 + 1) · · · . Various
notations have been introduced for different quantities that are related to 3j symbols,
for convenience of cross-reference we present here as a reminder the relation between
Clebsch-Gordon coefficients and the 3j symbols:

(j1j2m1m2|j1j2j3m3) = (−1)j1−j2+m3 [j3]
1/2

(
j1 j2 j3
m1 m2 −m3

)
. (1.9)
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1.3.2 Coupling of three angular momenta and 6-j symbols

When we have two angular momenta to couple, the problem is rather simple, since we
have only two different ways: either the second one can be coupled to onto the first
one or the first one can be coupled onto the second one. Things are getting slightly
more difficult when we have more than two angular momenta to couple. In this case
the coupling can be done on a number of different ways. Let’s discuss the case when
we have three different momenta j1, j2 and j3, we can first couple j2 and j1, to get j12,
and then we can couple j3 to j12 getting the total momentum J . Using (1.1) and (1.3),
the coupled wavefunction in this case will be:

∣∣[(j1j2)j12, j3]jm⟩ =
∑

m12m3

(−1)j12−j3+m[j]1/2

(
j12 j3 J
m12 m3 −m

)

×
∑
m1m2

(−1)j1−j2+m12 [j12]
1/2

(
j1 j2 j12
m1 m2 −m12

)∣∣j1m1⟩
∣∣j2m2⟩

∣∣j3m3⟩. (1.10)

Another possibility for three angular momentum coupling is to couple j3 to j2 to
get j23, and then couple j23 to j1 to get the total J . For this case we will have:

∣∣[j1, (j2j3)j23]jm⟩ =
∑

m1m23

(−1)j1−j23+m[j]1/2

(
j1 j23 j
m1 m23 −m

)

×
∑
m′

2m
′
3

(−1)j2−j3+m23 [j23]
1/2

(
j2 j3 j23
m′

2 m′
3 −m23

)∣∣j1m1⟩
∣∣j2m′

2⟩
∣∣j3m′

3⟩. (1.11)

To go from one basis to another, there exists a basis transformation whose matrix
elements are given by:

⟨j1j2(j12)j3jm|j1, j2j3(j23)j′m′⟩ =

δjj′δmm′(−1)j1+j2+j3+j[j12j23]
1/2

{
j1 j2 j12
j3 j j23

}
(1.12)

The 6j symbol is a function of six arguments that may be defined as

{
j1 j2 j12
j3 j j23

}
.

In atomic-structure theory, the 6j symbol usually arises as a five-fold summation over
a product of four 3j symbols. They are related to the coefficients of transformation
between different coupling schemes of three angular momenta discussed in the previous
section. If we have angular momenta j1, j2 and j3 they can be coupled in three different
ways:

• j⃗1 + j⃗2 = j⃗12, j⃗12 + j⃗3 = j⃗
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• j⃗2 + j⃗3 = j⃗23, j⃗1 + j⃗23 = j⃗

• j⃗1 + j⃗3 = j⃗13, j⃗23 + j⃗2 = j⃗.

By definition the value of the 6j symbol is unchanged if any two columns are inter-
changed, or if any two numbers in the bottom row are interchanged with the corre-
sponding two numbers in the top row.

1.3.3 Coupling of four angular momenta and 9-j symbols

Similarly, the 9j symbol is defined as:

{ j1 j2 j12
j3 j4 j34
j13 j24 j

}
, where all nine arguments are

obviously angular-momentum quantum numbers, and hence non-negative integers or
half-integers. They are associated with the coefficients of transformation which con-
nects different coupling schemes of four angular momenta. Let’s consider four angular
momenta j1, j2, j3 and j4, for which there exists different coupling schemes. for the
sake of simplicity we will consider the following two schemes:

• j⃗1 + j⃗2 = j⃗12, j⃗3 + j⃗4 = j⃗34, j⃗12 + j⃗34 = j⃗,

• j⃗1 + j⃗3 = j⃗13, j⃗2 + j⃗4 = j⃗24, j⃗13 + j⃗24 = j⃗.

The Wigner 9j symbols can be introduces a basis transformation between these two
coupling schemes:

⟨j1j2(j12)j3j4(j34)jm|j1j3(j13)j2j4(j24)j′m′⟩ =

δjj′δmm′ [j12j13j24j34]
1/2

{ j1 j2 j12
j3 j4 j34
j13 j24 j

}
. (1.13)

The 9-j symbol is zero unless the arguments in each row and in each column satisfy
the triangle relations. The value of the 9j symbol is unchanged upon reflection about
either diagonal; upon permutation of the rows or of the columns, the value of the 9j
symbol is unchanged or is multiplied by (−1)S, where S is the sum of all nine arguments,
according as the permutation is even or odd respectively.

Higher-order 3n-j symbols can be also defined: there are two essentially different 12-
j symbols, five different 15-j symbols, and eighteen different 18-j symbols, for example.
But we will mainly use 3j and 6j symbols throughout this work. Also higher-order
symbols can always be expressed using 3j, 6j or 9j symbols.

1.4 One-electron atom

The prototype system for the quantum description of atoms is the so-called one-electron
atom, consisting of a single electron, with charge −qe, and an atomic nucleus, with
charge +Zqe. Examples are the hydrogen atom, the helium atom, when one of its
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electrons is removed, the lithium atom with two electrons removed, etc. There are two
features of the one-electron atom that gives simplifications for various analysis. First,
because the nucleus is so much heavier than the electron, it is possible to use a very
good approximation and treat the nucleus as fixed in space, with the electron moving
around it. Second, because there are no other electrons present, the potential energy is

V (r) = − Zq2e
4πε0r

, due to the Coulomb attraction of the electron and the nucleus, which
depends only on the distance, r, of the electron from the nucleus. In the potential
energy formula qe is the elementary charge, ε0 is the vacuum permitivity, Z is the
atomic number and r is the distance between the electron and nucleus.

The Schrödinger equation for the single electron of mass me and charge −qe mov-
ing in the electrostatic field of the (stationary) nucleus of charge Zqe, whose mass is
supposed infinite, with a potential energy V (r), is:

Hψ = − ℏ2

2me

∇2ψ + V (r)ψ = Eψ. (1.14)

Here we have a referential system whose origin is taken at the nucleus and r⃗ is expressed
in spherical coordinates, r⃗ = (r, θ, ϕ). By expressing the Laplacian operator in spherical
coordinates, we have the following for H:

H = − ℏ2

2me

[
1

r

∂2

∂r2
r +

1

r2 sin θ

(
∂

∂θ
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

]
+ V (r)

= − ℏ2

2me

1

r

∂2

∂r2
r +

L⃗2

2mer2
+ V (r),

(1.15)

where ℏ is reduced Planck’s constant, and L⃗2 is the orbital angular momentum of the
electron introduced in section 1.2.

Because V (r) is not dependent on θ and ϕ and spin, the wavefunctions can be
factorized in radial, angular and spin parts. For bound energies, E < 0, the total
wavefunction of this eigenvalue equation is of the form

ψnlmlms(r, θ, ϕ, sz) =
1

r
Pnl(r)Ylml

(θ, ψ)σms(sz), (1.16)

where the functions Ylml
= ⟨θ, ϕ|ℓmℓ⟩ are the spherical harmonics, i.e. the eigen-

functions of the orbital angular momentum operators L⃗ and Lz in position space and
σms(sz) is the one-electron spin eigenfunction. Radial function Pnl must be everywhere
finite, Pnl must satisfy the boundary conditions Pnl(0) = 0 and Pnl(∞) = 0. More-
over, if ψ is to be normalized, then Pnl must be normalized:

∫∞
0
P ∗
nl(r)Pnl(r)dr = 1.

The precise form of Pnl can be found in [24]. n = 1, 2, 3, ... is the new quantum num-
ber, which is called the principal quantum number. Orbital angular-momentum states
corresponding to l = 0, 1, 2, and 3 are called s, p, d, and f states, respectively. For
values of l ≥ 3, successive letters of the alphabet following f are used. The notations
nl = 1s, 2s, 3p, etc., are used to characterize the orbitals.

When E < 0, the equation (1.14) accepts discrete values of energy, corresponding to
bound levels of atoms: En = −Z2

n2 Ry, where Ry= me4

2ℏ2 = 13.6058 eV is the Rydberg
constant.
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Relativistic corrections When the atomic number Z increases, the mean speed of
the electron becomes fraction of the speed of light and because of that the relativistic
effects come into play. The electron starts to move very fast, especially if it is very close
to the nucleus. To treat this we need the Dirac equation, but doing Taylor expansion
of that equation, we retrieve the Schrödinger equation, but with additional corrections
in the Hamiltonian, which are the relativistic corrections. The complete Hamiltonian
becomes:

H = −∇2 + V − α2

4

(
dV

dr

)
∂

∂r
+
α2

2

1

r

(
dV

dr

)
(l · s), (1.17)

where all distances are measured in Bohr units a0, all energies are measured in Rydberg
units and α = e2

4πε0ℏc =
1

137.036
is the fine-structure constant.

To solve the Schrödinger equation with this Hamiltonian, we first have to define a
new angular-momentum operator j⃗ = l⃗ + s⃗. The operators l⃗ and s⃗ commute with
each other because they act on entirely different sets of coordinates. We seek a solution
of the Schrödinger equation (1.14) with Hamiltonian (1.17) having the following form:

ψnljmj
(r, θ, ϕ, sz) =

1

r
Pnlj(r)Flsjmj

(θ, ϕ, sz), (1.18)

where Flsjmj
(θ, ϕ, sz) =

∑
ml,ms

C
j,mj

l,s,ml,ms
Ylml

(θ, ϕ)σms(sz) is not only an eigenfunction

of the four operators l2, s2, j2 and jz, but also an eigenfunction of l⃗ · s⃗ = 1
2
(⃗j2 − l⃗2 − s⃗2),

but not of lz and sz. The coefficients C are called vector-addition or Clebsch-Gordan
coefficients.

The corresponding energies are:

Enlj = −Z
2

n2
+ Em + ED + Eso, (1.19)

where Em is called the mass-velocity correction term, because it arises from the rela-
tivistic variation of mass with velocity and has the following final expression:

Em = −α
2Z4

4n4

[
4n

l + 1/2
− 3

]
Ry. (1.20)

The third term of equation (1.19) is the Darwin correction term, which arises from
relativistically-induced electric moment of the electron, or from the relativistic non-
localizability of the electron. ED has the final expression of:

ED = δl0
α2Z4

n3
Ry. (1.21)

The most important part in equation (1.19) is the spin-orbit correction

Eso = (1− δl0)
α2Z4

n3l(l + 1)(2l + 1)
[j(j + 1) − l(l + 1) − s(s+ 1)] Ry, (1.22)

because it induces splitting in the levels. A good example of this is the “yellow doublet
of Na”. The 3p level is split into states with total angular momentum j = 3/2 and
j = 1/2 due to the presence of the spin-orbit interaction. The mass velocity Em and
Darwin ED corrections are responsible for a global shift only.
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1.5 Two electron atom

This section is dedicated to the atom of two electrons. All the expressions below can
be used, for example, for a helium atom (Z=2). The Hamiltonian operator for the
atom of two electrons, including relativistic corrections, is:

H = −∇2
1 −∇2

2 − 2Z

r1
− 2Z

r2
+

2

r12
+ ζ1(r1) (l⃗1 · s⃗1) + ζ2(r2) (l⃗2 · s⃗2), (1.23)

where r12 = |r⃗2 − r⃗1| is the distance between first and second electron. The pro-
portionality factor ζi in the Hamiltonian (1.23) is called the spin-orbit integral and
is measured in Rydbergs (with l and s in units of ℏ) and is given by the expression

ζ(ri) = α2

2
1
ri

(
dV
dri

)
. The first two terms in the Hamiltonian are the kinetic energies of

electron 1 and electron 2, third and forth terms are interaction between the electrons
and the nuclei, fifth term is Coulombic repulsion between two electrons and, finally,
the last term is spin-orbit interaction term. Energies are in Rydberg and distances are
in Bohr units.

For the first step we consider that the spin-orbit interaction is 0. Here, for the case of
the atom of two electrons, we can not use the wavefunction of hydrogen atom because of
the electron-electron interaction term: V12 =

2
r12

. We will use the following technique.
We will consider that the first electron is submitted to the mean field (which has central
symmetry) of the second electron and vice versa. This is the principle of Hartree-Fock
(HF) approximation. With this consideration the two electrons look independent from
each other, because we do not have the dependence on the instantaneous position
of the other electron. Therefore, the wavefunction can be written as a product of
wavefunctions of independent electrons: ψn1l1ml1

ms1
× ψn2l2ml2

ms2
, but the underlying

Pnili is not the same as for the case of hydrogen.
Now we can introduce in the compact form, dropping the m quantum numbers, the

product n1l1 n2l2, which is called an electron configuration, or simply a configuration. If
n1l1 = n2l2 we have equivalent electrons and the configuration can be written (n1l2)

2.
Helium only has 2 electrons and therefore it has a ground configuration of 1s2.

Now we want to go little bit further in the description, by taking into account the
correlation between the electrons. As we have mentioned before, for an isolated system
the total angular momentum is conserved. The total orbital angular momentum for the
system of two electrons is L⃗ = l⃗1 + l⃗2, the total spin angular momentum is S⃗ = s⃗1 + s⃗2
and the total angular momentum of the atom is J⃗ = L⃗ + S⃗. Now we have new, so
called, coupled basis function

|n1l1n2l2LSJM⟩ =
∑

MLMS

CJM
LMLSMS

∑
ml1

ml2

CLML
l1ml1

l2ml2

×
∑

ms1ms2

CSMs
sms1sms2

|n1l1ml1ms1⟩|n2l2ml2ms2⟩, (1.24)

where the coefficients C are Clebsch-Gordan (CG) coefficients as in the equation (1.18).
The Pauli exclusion principle states that:
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No two electrons can occupy the same spin-orbital state. This means that the
wave function of electrons must be antisymmetric with respect to permutations of two
electrons. So |n1l1n2l2LSJM⟩A = N [|n1l1n2l2LSJM⟩−(−1)L+S+l1+l2+s1+s2|n2l2n1l1LSJM⟩],
where N = 1√

2(1+δm1m2δl1l2 )
is a normalisation factor and the phase factor is coming

from the permutation of quantum numbers of two electrons in Clebsch-Gordon coef-
ficients. Here we have another restriction, which states that L + S must be even for
equivalent electrons (see in more detail in appendix A). This is the reason why 1s2 has
only 1S0 and not 3S1 in the case of Helium.

Now we consider non-zero spin-orbit interaction in (1.23). This spin-orbit matrix
element can couple different values of L′ = L,L ± 1 and S ′ = S, S ± 1. As long as
spin-orbit interaction is smaller than the Coulombic interaction the eigenvectors of the
Hamiltonian have one value of L and one value of S. This is the case of LS or Russell-
Saunders coupling [24]. Otherwise, the eigenvectors of Hamiltonian are sums of basis
functions with different L and S. So, when the spin-orbit interaction becomes greater
than the Coulombic interaction, it is better to define functions with j⃗i = l⃗i + s⃗i and
J⃗ = j⃗1 + j⃗2. This is called jj coupling scheme.

1.6 N-electron atom

The more general and inclusive case is the case of an atom containing N electrons.
Theoretical treatment of such a system requires first of all knowledge of a suitable
Hamiltonian operator. An appropriate operator may be obtained by generalizing the
two-electron operator (1.23):

H = −
∑
i

∇2
i −

∑
i

2Z

ri
+
∑∑

i>j

2

rij
+
∑
i

ζi(ri)(l⃗i · s⃗i). (1.25)

Here ri = |ri| is the distance of the ith electron from the nucleus, rij = |ri − rj| is
the distance between the ith and jth electrons and the summation is over all pairs of
electrons.

Our task is to solve the Schrodinger equation:

HΨk = EkΨk (1.26)

to obtain the wavefunction Ψk and the energy Ek of the atom for every stationary
quantum state k of interest. However, the wavefunction is a function of 4N variables
(three space and one spin coordinate for each electron), and the quantum mechanical
problem is extremely complex.

The usual approximation is to assume some form of wavefunction that contains
several adjustable parameters, and to vary the values of these parameters to obtain the
best possible function, as judged by some appropriate criteria. If the inter-electronic
distances rij are included explicitly in the wavefunction in order to properly take into
account the correlations among positions of the various electrons owing to their mu-
tual Coulomb repulsions, the problem becomes already complex even for N = 3 or
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4. Even accurate perturbation calculations of correlation energies (using simpler zero-
order wavefunctions) are extremely lengthy for N greater than 6. For spectroscopic
purposes, we are interested in tens, hundreds, or even thousands of different levels of
each atom and ion. It is obvious that we must approach the problem by making very
drastic approximations.

The first approximation method that we can use is developed by Slater and later
expended by Cordon and Shortley, it is commonly known as Slater-Cordon theory. The
basis idea is to expand the unknown Ψk wavefunction in terms of set of known basis
functions,

Ψk =
∑
b

ykbΨb, (1.27)

where Ψb are basis functions and are assumed to be members of a complete set of
orthonormal functions:

⟨Ψb|Ψb′⟩ = δbb′ . (1.28)

In general this set has an infinite number of members, and so in principle represents
an infinite series. In practice, it is necessary to truncate the series to a finite number
of terms.

The N electrons in the atom interact with each other through their mutual Coulomb
repulsions, and in order to obtain reasonably accurate results the resulting correlation
between the positions of the various electrons must be reflected in our basis functions.
We begin with the central-field and mean-field approximations of the atom: we make
the approximation that any given electron i moves independently of the others in the
electrostatic field of the nucleus and the other N−1 electrons. This field is assumed to
be time-averaged over the motion of the N−1 electrons, and therefore to be spherically
symmetric. The assumption of spherical symmetry and the mean-field approximation
with the Hamiltonian, which includes the relativistic correction, is a well known method
called the HFR (Hartree-Fock and relativistic) approximation. This method is used to
approximate the wavefunction and the energy of a quantum multi-electron system in a
stationary state. This approximation assumes that the exact N-body wavefunction of
the system can be approximated by a product of single-electron wavefunctions. In other
words the Hartree-Fock approximation breaks down a multi-electron wave function into
a set of one-electron wave functions.

In the central-field model the wavefunction can be described by a one-electron
wavefunction that is identical in form with equation (1.16) and reads:

ψi(ri) =
1

r
Pnili(ri)Ylimli

(θi, ϕi)σmsi
(siz), (1.29)

where (ri, θi, ϕi) is the position of electron i with respect to the nucleus and also the spin
orientation s. The angular momentum of electron i is a constant of motion, so the above
written function is an eigenfunction of the one-electron angular-momentum operators
l2i , lzi , s

2
i and szi with eigenvalues li(li +1), mli , si(si +1) = 3/4 and msi , respectively,

but in comparison with equation (1.16) there is a difference in radial wavefunction Pnl,
because the potential energy is no longer a simple Coulomb function. The quantitative
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calculations of wavefunctions and energy levels involves two stages: first it is necessary
to determine the detailed shape of the function Pnl that form the radial part of the
one electron spin-orbitals (1.16). Then it is required to calculate the energy matrix
elements Hbb′ = ⟨b|H|b′⟩ using the basis functions Ψb, which means that before finding
a method to specify the form of Pnl, we need to construct a basis function for the entire
atom. The first idea is to take as a basis function the simple product of spin-orbitals
in a form:

Ψ = ψ1(r1)ψ2(r2)ψ3(r3)...ψN(rN), (1.30)

where each subscript i is an abbreviation for nilimlimsi , but the problem with this
product wavefunction is that it does not include the fermionic character of electrons,
which requires that when two electrons are interchanged the total wave function must
change sign. After following the same reasoning and discussions done for two-electron
atom discussed in section 1.5 antisymmetrized function can be written in the form of
a determinant:

Ψ =
1

N !1/2

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) ψ1(r3)
ψ2(r1) ψ2(r2) ψ2(r3)
ψ3(r1) ψ3(r2) ψ3(r3)
. . .
. . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣
(1.31)

and is therefore referred to as a determinantal function or a Slater determinant. It can
be written in the following form:

Ψ = (N !)−1/2
∑
P

(−1)pψ1(r1)ψ2(r2)ψ3(r3)...ψN(rN), (1.32)

which is antisymmetric upon interchange of any two electron coordinates. The summa-
tion is over all N! possible permutations P = 123...N of the normal coordinates, and
p is the parity of the permutation P (p = 0 if P is obtained from the normal ordering
by an even number of interchanges, and p = 1 if an odd number of interchanges is
involved).

In such a basis function there are q different radial functions Pnj lj(r) one for each
subshell of equivalent electrons njl

wj

j . The radial matrix elements and hence the eigen-
values depend on these values. Pnj lj(r) functions should be determined by the criteria
that they minimize the calculated energy of atom according to the variational princi-
ple, while respecting the orthonormalization conditions. It is convenient to be able to
describe the energy of a configuration in terms of an appropriate form of an average
value. The simple form reads as:

Eav =

∑
b⟨b|H|b⟩
Nbas

, (1.33)

where b are all the basis functions belonging to the configuration in question and Nbas is
the number of these functions. In the case of uncoupled basis functions are considered,
the Eav is build by averaging over all possible sets of values of the one-electron magnetic
quantum numbers mlimsi . Such an average is equivalent to performing a spherically
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symmetrized average over the angular distribution of the electrons in the atom, which is
consistent with the central-field model we have adopted. Therefore the determination
of the Pnj lj by minimizing Eav is consistent with the fact that the form of the spin-
orbitals (1.16) was determined in the first place on the basis of the central field model
of the atom. Minimization of Eav with respect to variations in the form of Pnj lj leads
to a set of coupled differential equations known as the spherically averaged Hartree-
Fock (HF) equations. Then, with the help of radial wavefunctions Pnl, that can be
determined by the solution of the HF equations, the determinantal functions (1.32)
are known. These function can be used as basis functions for evaluation of the matrix
elements of Hamiltonian and therefore to calculate the energy levels.

The Hamiltonian operator that should be used has the form of (1.25), the first three
terms of which are one-electron operators that have the form of

∑N
i=1 fi =

∑
i f(ri)

and are symmetric in the spatial and spin coordinated ri of all N electrons. The last
term of the Hamiltonian is a two-electron operator that is symmetric in all N(N-1)/2
pairs of coordinates and has the form

∑N
i=2

∑i−1
j=1 gij =

∑∑
i>jg(ri, rj). These sym-

metry conditions are coming from the indistinguishability of electrons. Simplification
of matrix elements for determinantal functions is a complicated procedure. Here we
will not recall all the steps. The expression for (1.33) becomes:

Eav =
∑
i

⟨i|∇2|i⟩av +
∑
i

⟨i| − 2Z/ri|i⟩av

+
∑∑

i>j

[⟨ij|2/rij|ij⟩av − ⟨ij|2/rij|ji⟩av],
(1.34)

that can be written in the equivalent form of

Eav =
∑
i

Ei
k +

∑
i

Ei
n +

∑∑
i>j

Eij. (1.35)

The kinetic energy Ei
k has the following form:

Ei
k = ⟨i|∇2|i⟩ =

∫ ∞

0

P ∗
nili

(r)
[
− d2

dr2
+
li(li + 1)

r2

]
Pnili(r)dr. (1.36)

Electron-nuclear energy Ei
n can be written as:

Ei
n = ⟨i| − 2Z/r|i⟩ =

∫ ∞

0

(−2Z/r)|Pi(r)|2dr. (1.37)

The electron-electron Coulomb interaction can be written in the following form:

2

rij
=

∞∑
k=0

2rk<
rk+1
>

k∑
q=−k

(−1)qC
(k)
−q (θi, ϕi)C

(k)
q (θj, ϕj), (1.38)

and involve two contributions: direct and exchange, where r< and r> are respectively
the lesser and greater of the distances ri and rj of the electrons from the nucleus. The

C
(k)
q (θj, ϕj) are Racah spherical harmonics related to the usual ones by C

(k)
q (θj, ϕj) =
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4π/(2k + 1)×Ykq(θj, ϕj). The direct terms the electron-electron Coulomb interaction

represent the positive energy of mutual electrostatic repulsion for an uncorrected spatial
distribution of the electrons; the exchange terms represent the decrease in this energy
that results when one includes the positional correlation of parallel-spin electrons.
Evaluation of the matrix elements of the electron-electron interaction is a somewhat
lengthy process. We recall here only the results:

⟨ij| 2
r12

|tu⟩ = δmsimst
δmsjmsu

∞∑
k=0

Rk(ij, tu)

×
k∑

q=−k

δq,mlt
−mli

δq,mlj
−mlu

(−1)qck(li,mli , lt,mlt)c
k(lj,mlj , lu,mlu), (1.39)

where

Rk(ij, tu) =

∫ ∞

0

∫ ∞

0

2rk<
rk+1
>

P ∗
i (r1)P

∗
j (r2)Pt(r1)Pu(r2)dr1dr2

=

∫ ∞

0

{
2

rk+1
2

∫ r2

0

rk1P
∗
i Ptdr1 + rk2

∫ ∞

r2

2

rk+1
1

P ∗
i Ptdr1

}
P ∗
j Pudr2, (1.40)

where

ck(li,mli , lt,mlt) = ⟨limli |C(k)
q |ltmlt⟩ =

√
2lt + 1

2li + 1
C

limli
ltmlt

kqC
li0
lt0k0

= (−1)mli

√
(2li + 1)(2lt + 1)

(
li k lt

−mli q mlt

)(
li k lt
−0 0 0

)
. (1.41)

Abbreviations ij and tu refer only to the corresponding quantum numbers nl (not
mlms) pertinent to the radial factors Pnl of the spin-orbitals. In the equation (1.39),
the ck are angular coefficients, that are contained in particular in Clebsch-Gordan
coefficients. They impose mli = mlt + q, |li− lt| ≤ k ≤ li+ lt and li+ lt+k is even and,
similarly, for j and u. We can also express the matrix element of 2

r12
in the coupled

basis, see eq. (1.24), which imposes L′ = L, S ′ = S, J ′ = J and M ′ =M . If i = t and
j = u, we have a specific case, direct contribution:

F k(ij) = Rk(ij, ij) =

∫ ∞

0

∫ ∞

0

2rk<
rk+1
>

|Pi(r1)|2 |Pj(r2)|2dr1dr2. (1.42)

If i = u and t = j, we have an exchange contribution:

Gk(ij) = Rk(ij, ji) =

∫ ∞

0

∫ ∞

0

2rk<
rk+1
>

P ∗
i (r1)P

∗
j (r2)Pj(r1)Pi(r2)dr1dr2. (1.43)

Here, the radial integrals F k andGk (or more generally, Rk) are frequently referred to as
Slater integrals. The triangle relation imposes that the only k values for radial integrals
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F k(ij) are k = 0, 2, 4, ...,min(2li, 2lj) and k = |li − lj|, |li − lj|+ 2, |li − lj|+ 4, ..., li + lj
for Gk(ij).

After solving the problem of averaging overall all permissible values of the four
quantum numbers, we find for non-equivalent electrons:

Eij = ⟨ij|2/r12|ij⟩av − ⟨ij|2/r12|ji⟩av

= F 0(ij)− 1

2

∑
k

(
li k lj
0 0 0

)2

Gk(ij).
(1.44)

For equivalent electrons we obtain:

Eii = F 0(ii)− 2li + 1

4li + 1

∑
k>0

(
li k li
0 0 0

)2

F k(ii). (1.45)

If we had used product functions rather than antisymmetrized (determinantal) func-
tions, we would have obtained only the direct matrix elements and would have found
for either equivalent or non-equivalent electrons the same results:

Eij = ⟨ij|2/r12|ij⟩av = F 0(ij). (1.46)

As discussed earlier, the Pnili ≡ Pi should be chosen so as to minimize the center-
of-gravity for the configuration (n1 l1)

w1 (n2 l2)
w2 ... (nq lq)

wq , where
∑q

j=1wq = N, and
q is the number of subshells and w is the number of electrons. When dealing with
the Pi it will be more convenient to replace summations over the N spin-orbitals by
summations over the q subshells, with a weighting factor wi for the i

th subshell. For
any small variations of δPi(r) the Pi(r) should be such that the resulting δEav will be
zero, while the orthonormalization conditions∫ ∞

0

P ∗
nili

(ri)Pnili(ri)dri = δninj
(1.47)

and boundary conditions Pi(r) = 0 at r = 0 and ∞ are satisfied. This is the basis
of the variational method: choosing a ”trial wavefunction” depending on one or many
parameters and then finding the values of these parameters for which the energy has
the lowest possible value.

The expression of Eav may be written in the form:

Eav =
N∑
j=1

{
Ej

k + Ej
n +

1

2

N∑
t̸=j

Ejt
}

=

q∑
j=1

wj

{
Ej

k + Ej
n +

1

2
(wj − 1)Ejj +

1

2

q∑
t̸=j

wtE
jt
}
,

(1.48)

from which we can determine the variation of Eav caused only by a variation of Pi:

δiEav = wj

{
δiE

j
k + δiE

j
n +

1

2
(wi − 1)δiE

ii +
1

2

∑
t̸=i

wtδiE
it +

1

2

∑
j ̸=i

wjδiE
ji
}
, (1.49)
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where the last two elements are the same since Eij = Eji. Then with the aid of
equations (1.36), (1.37), (1.44) and (1.45) we can get one equation for each value of
i, meaning one for each subshell nili. This set of equations is called Hartree-Fock
equations. Without going into detail, we obtain:

[
− d2

dr2
+
li(li + 1)

r2
− 2Z

r
+

q∑
j=1

(wj − δij)

∫ ∞

0

2

r>
P 2
j (r2)dr2 − (wi − 1)Ai(r)

]
Pi(r)

= εiPi(r) +

q∑
j( ̸=i)=1

wj[δliljεij +Bij(r)]Pj(r),

(1.50)

where

Ai(r) =
2li + 1

4li + 1

∑
k>0

(
li k li
0 0 0

)2 ∫ ∞

0

2rk<
rk+1
>

P 2
i (r2)dr2 (1.51)

and

Bij(r) =
1

2

∑
k

(
li k lj
0 0 0

)2 ∫ ∞

0

2rk<
rk+1
>

Pj(r2)Pi(r2)dr2, (1.52)

where r< and r> represent the lesser and the greater of r and r2 and the terms involv-
ing Lagrangian multipliers εij are arising from the orthogonality requirements. The
solution of these HF equations are the required radial wavefunctions.

In equation (1.50) the first two terms come from the variation of Ei
k, the third term

comes from Ei
n, the next term arises from the direct portion of the electron-electron

interactions Eij and the terms involving Ai and Bij come from the exchange portions of
Eij. The next steps to take are the following: assuming a set of trial wavefunctions, for
each i computing Ai, Bij and εij, then solving the HF equation for new wavefunctions.
These steps are repeated until the assumed and calculated wavefunctions are identical.

In order to simply summarize the calculation results, we will use the example of
Eu3+. When we take a configuration to calculate we have the parameter Eav, then we
have for each open non-s subshell the spin-orbit parameter ζi, where i=(4f,5d), as well as
for each subshell with two or more electrons and two or more vacancies the parameters
Fk(ii) (for example: F2(4f4f), F4(4f4f), F6(4f4f)). We need for couples of open subshells
the parameters Fk and Gk(ij): F2(4f5d), F4(4f5d), G1(4f5d), G3(4f5d), G5(4f5d) and for
each couple of configurations differing at most by two electrons the CI parameters, for
example R2(4f5d,4f6s) and R3(4f5d,6s4f) for Eu3+ (for configurations 4f5 5d ans 4f5 6s,
if we were to consider CI mixing). Sometimes, a set of so called ”effective parameters”
are introduced that help with the precision of the calculations. These parameters will
be described in section 3.1. For each parity and for each angular momenta value J, the
fully coupled states are built, then the matrix elements of Hamiltonian are expressed
using above mentioned Slater parameters.
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Figure 1.3: The figure on the left is the visual representation of LS coupling scheme,
in which case, the interaction between the electrons is stronger than the spin-orbit in-
teraction in each of them. The one on the right demonstrates the jj coupling scheme,
in which case, the individual coupling between the electrons, via the spin-orbit inter-
action, is stronger than the electrostatic interaction between them.

1.7 Coupling schemes

In an atom containing N electrons with N > 1, there are more than 2 elementary
angular momenta. There are N orbital angular momenta li, and N spin momenta s
and the total angular momentum of the atom is J⃗ =

∑N
i=1 (⃗li+ s⃗i). The order in which

the momenta are coupled together can be chosen in many different ways; any specific
choice is known as a coupling scheme. The individual wavefunctions will correspond
most closely to the various physical states of the atom if the coupling scheme used
corresponds to the coupling of successive momenta in the order of decreasing strength
of the various interactions. Usually, the strongest interactions among the electrons of
an atom are their mutual Coulomb repulsions. These repulsions affect only the orbital
angular momenta and not the spins. It is thus most appropriate to first couple together
all the orbital angular momenta to give eigenfunctions of L2 and Lz, where L⃗ =

∑
i l⃗i,

is the total angular momentum of the atom and similarly to couple together all the
spins to give eigenfunctions of S2 and Sz, where S⃗ =

∑
i s⃗i is the total spin angular

momentum. L⃗ and S⃗ are then coupled together to give eigenfunctions of J2 and Jz,
where J⃗ = L⃗ + S⃗. This scheme is known as the LS or Russell-Saunders coupling
scheme.

State notations

In order to manipulate better and make the discussions of orbital and spin angular mo-
mentum of electrons and atoms universal customary notations are employed. Orbital
angular-momentum states corresponding to l = 0, 1, 2, 3 are called s, p, d and f states
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respectively. This set of labels had its origin in the early work of experimental atomic
spectroscopy. The letter s stood for sharp, p for principal, d for diffuse and f for funda-
mental in characterizing spectral lines of the alkali and alkaline-earth elements. From
the letter f onwards the naming of the orbitals is alphabetical l = 4, 5, 6 → g, h, i, .....
For orbital-angular momentum states of the atom as a whole analogous capital-letter
notation is used. For LS-coupled functions, in which the all-electron total quantum
numbers for orbital L, spin S and total J angular momenta are good quantum num-
bers, Russell and Saunders introduced a shorthand notation, also called a term symbol,
which is used universally and can be written as:

2S+1LJ , (1.53)

where the value of 2S + 1 is called the multiplicity of the term or simply a spin
multiplicity, which is the number of possible values of the spin magnetic quantum
number.

In the special case of a one-electron atom discussed in section 1.4, S is equal to s
= 1/2 and L is necessarily equal to l, the possible values of notation (1.53) are:

2S1/2,
2P1/2,

2P3/2,
2D3/2,

2D5/2, .... (1.54)

In atomic spectroscopy, term is specified by L and S together, L, S and J specify a
level and, finally, a state is described by L, S, J and M . In descriptions of electronic
states of an atom the electronic configuration is also used along with the term symbol.

The list of N pairs of quantum numbers ni li, that defines a set of coupled or
uncoupled functions is called an electron configuration, or simply a configuration. In
general there may be more than one spin-orbital with a given value of ni li and so the list
is written by the following notation (n1 l1)

w1 (n2 l2)
w2 ... (nq lq)

wq , where
∑q

j=1wq = N.
wj is called an occupation number. The maximum number of electrons that can exist
in a given subshell is 4l+2. A subshell occupied by the maximum number of electrons
is called a filled or closed subshell. For each open subshell, there is one Lq and Sq.

When there are two or more allowed terms of lw with the same values of LS, the
additional quantity is required to distinguish the terms from each other. The ”seniority
number” α is a quantity introduced by Racah to serve this purpose, for example 5D1,
5D2, 5D3 terms of the 4f6 configuration of Eu3+. Term symbols can be used in neutral
and charged atoms, to their ground and excited states. They are most often used to
describe the totality for all electrons, but sometimes can be used to discuss electrons
in a given subshell, or even a set of subshells.

In LS-coupling conditions the electrostatic interactions between electrons are much
stronger than the interaction between the spin of an electron and its own orbital mo-
tion. With increasing Z, the spin-orbit interactions become increasingly more impor-
tant. When these interactions become much stronger than the Coulomb terms, the
coupling conditions approach pure jj coupling. In the jj-coupling scheme, basis func-
tions are formed by first coupling the spin of each electron to its own orbital angular
momentum and then coupling together the various resultants ji to obtain the total
angular momentum J⃗ =

∑
i j⃗i: For example the jj coupling scheme for two electron

atom may be described by the condensed notation

[(l1, s1) j1, (l2, s2) j2]JM, (1.55)
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and the usual jj-coupling notation for energy levels which is analogous to the Russell-
Saunders notation, is (j1, j2)J .

In jj coupling, the Pauli principle takes the form that no two electrons may have
the same set of one-electron quantum numbers nilijimi. The jj-coupled basis states
are used extensively in nuclear physics. However, for atomic-electron subshells lw, the
coupling conditions are usually closer to the LS than to the jj scheme, and the latter
is rarely considered except in a very few high Z cases. At the same time, the coupling
between different subshells may lie close to pure jj conditions. The visual representation
of these two coupling scheme is shown on Figure 1.3. There are of course many other
coupling schemes.

Pair coupling

The coupling conditions under which the energy levels tend to appear in pairs, is called
pair coupling. These conditions occur for excited configurations in which the energy
depends only slightly on the spin s of the excited electron; the level pairs correspond to
the two possible values of J that are obtained when s is added to the resultant, K, of
all other angular momentum. Pair-coupling conditions occur mainly when the excited
electron has large angular momentum (f or g electron) because such an electron tends
not to penetrate the core and thus experiences only a small spin-dependent (exchange)
Coulomb interaction, and its spin-orbit interaction is likewise small. The more common
limiting type of pair coupling, jK coupling, occurs when the strongest interaction is
the spin-orbit interaction of the more tightly bound electron, and the next strongest
interaction is the spin-independent (direct) portion of the Coulomb interaction between
the two electrons.

The corresponding angular-momentum coupling scheme is

{[(l1, s1) j1, l2]K, s2} JM. (1.56)

The other form of pair coupling is called LK (or Ls) coupling. In two-electron config-
urations, it corresponds to the case in which the direct Coulomb interaction is greater
than the spin-orbit interaction of either electron, and the spin-orbit interaction of the
inner electron is next most important. The coupling scheme is

{[(l1, l2)L, s1]K, s2} JM. (1.57)

There are many coupling schemes, but the ones mentioned above are the most common
coupling schemes.

Parity

In addition to the classification of wavefunctions by means of their angular-momentum
properties, they can be further described in terms of the important concept of parity,
with respect to the inversion of all electronic coordinates around the nuclei:

P = (−1)
∑

li , (1.58)
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Figure 1.4: Schematic representation of some levels of the two lowest manifolds 7F
and 5D of Eu3+.

where the sum is over all N values of i. A wavefunction is said to have even or odd
parity according to the value of P is +1 or -1, respectively. When odd parity levels
are discussed, an superscript ”o” is added in term designation, for example the level
4f 5(6Ho) 5d(7Ko

4) in the case of the first excited configuration of Eu3+.

1.8 Radiative transition probabilities

In atomic physics and chemistry, an atomic electron transition (also called an electronic
(de-)excitation, atomic transition) is a change of an electron from one energy level to
another within an atom. Sometimes it is called a quantum jump. It was first theorized
by Niehls Bohr in 1913, after that, James Franck and Gustav Ludwig Hertz proved
experimentally that atoms have quantized energy states.

Electronic transitions cause the emission or absorption of electromagnetic radiation
in the form of quantized units called photons. The larger the energy separation of the
states between which the electron jumps, the shorter the wavelength of the photon
that is emitted.

An atom in an excited state 2 of energy E2 can in general make a spontaneous
radiative transition to a state 1, that has a lower energy E1. This process happens
with an emission of a photon of energy:

hν2 = E2 − E1. (1.59)

The probability per unit time that an atom in state 2 will make such a transition to
state 1 is denoted by a21. For an isolated, field-free atom in a state with total angular
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momentum j1, there are g1 = 2J1 + 1 degenerate states of energy E1, that correspond
to the 2J1 + 1 possible values of the magnetic quantum number M1. The Einstein
spontaneous emission transition probability rate is defined to be the total probability
per unit time of an atom in a specific state 2 making a transition to any of the g1,
states of the energy level 1:

A21 =
∑
M1

a21. (1.60)

The Einstein coefficient A21(s
−1) for spontaneous emission is related to oscillator

strength f12 with the following expression:

A21 =
2πν2e2

ε0mec3
g1
g2
f12, (1.61)

where e is the electron charge, me is the electron mass.
An important quantity for describing spectral lines is weighted transition probabil-

ity and is defined as:

g2A2 = g2
∑
M1

a21. (1.62)

States are also defined by a quantity called lifetime: τ2 =
(∑

1A21

)−1

, which is the

natural lifetime of the atom in any one of the states of the level 2. Some emission
transitions are simply presented in figure 1.4.

In contrary, when an atom, ion, or molecule moves from a lower-energy state to
a higher-energy state it absorbs photons with energies equal to the difference in en-
ergy between the two states. The process is described by the Einstein coefficient B12

(m3J−1s−2):

B12 =
e2

4ε0mehν
f12, (1.63)

where f12 is the oscillator strength.
Every element has a unique set of absorption and emission lines. The pattern

of lines is known as a spectral signature. The absorption and emission spectra of
each element are inverses of each other: The wavelengths of a particular element’s
absorption lines are the same as the wavelengths of its emission lines. The Einstein
transition probabilities are physical properties of the atom depending only on the states
1 and 2, and are independent of whether or not a state of thermodynamic equilibrium
actually exists.

The calculation of the coefficient gA involves making multipole expansions to find
the contribution to gA from the interaction between the electromagnetic field and each
electric and magnetic multipole moment of the atom. The various contributions are
denoted E1 (also called ED), E2, E3, for the electric dipole, quadrupole, octupole,
etc. moments and M1, M2, M3, for the corresponding magnetic moments. The ED
Einstein coefficient for the spontaneous emission from level 2 to 1 is:

AED =
e2a20(E2 − E1)

3

3πε0ℏ4c3(2J2 + 1)
SED, (1.64)
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where SED is called transition line strength and is the square of the reduced ED matrix
element, SED = |⟨Ψ1∥P (1)∥Ψ2⟩|2, where P (1) is the electric dipole moment. The line
strength has the following relation with oscillator strength:

SED =
3ℏ2(2J1 + 1)

2mea20(E2 − E1)
f12,ED, (1.65)

where 1 (2) denotes the lower (upper) levels of energy E1 (E2) and total angular
momentum J1 (J2), ℏ is the reduced Planck constant, me the electron mass, a0 =
4πε0ℏ2/mee

2 the Bohr radius, ε0 the vacuum permitivity and e the electron charge.
In Eq. (1.65), the ED line strength is in atomic units (units of e2a20). Because the
oscillator strength for stimulated emission is defined as f21 = −2J1+1

2J2+1
f12, the so-called

weighted oscillator strength

gfED = (2J1 + 1)f12,ED = −(2J2 + 1)f21,ED (1.66)

does not depend on the nature of the transition.

S L J (No 0 ↔ 0) Parity

Electric Dipole ∆S = 0 ∆L = 0, ± 1 ∆J = 0, ± 1 opposite
Magnetic Dipole ∆S = 0 ∆L = 0 ∆J = 0, ± 1 same
Electric Quadrupole ∆S = 0 ∆L = 0, ±1, ±2 ∆J = 0, ± 1, ±2 same

Table 1.1: Selection rules for E1, M1 and E2 transitions.

The MD Einstein coefficients AMD, can be calculated by:

AMD =
e2a20(E2 − E1)

3

3πε0ℏ4c3(2J2 + 1)
SMD, (1.67)

where the MD line strength is written in units of e2a20 [24]

SMD =
α2

4
|⟨Ψ1∥L+ gsS ∥Ψ2⟩|2 (1.68)

with α the fine-structure constant and gs the electronic-spin g-factor. Because the
orbital L and spin S angular momenta are even-parity tensors of rank one, MD transi-
tions can occur in free space or in solids, between levels of the same configuration and
with ∆J ≤ 1 except (J1, J2) = (0, 0). Unlike the magnetic-dipole (MD) and electric-
quadrupole (E2) transitions [28], the ED ones are activated by the presence of the host
material, which relaxes the free-space selection rules. The E1 selection rules are the
following: ∆S = 0, ∆L = 0,±1 and ∆L = 0,±1. The rest of the selection rules for
E1, M1 and E2 transitions are shown in table 1.1. Some of these selection rules are
convicted to change when the ions are hosted in an environment (see chapter 2).





Chapter 2

Lanthanides in gas and in solid
phases

Even before the advent of lasers, the rare earths presented a puzzle in trying to under-
stand their spectral properties in the context of the quantum theory that blossomed
in 1920’s and 1930’s. It was called a puzzle because it was well known that rare earths
exhibited sharp spectral lines, which would be expected if the transitions occurred be-
tween levels inside the 4f electronic shell. Such transitions were known to be forbidden
by the free-ion or Laporte selection rules (see section 1.8), which says that states with
even parity can be connected by electric dipole (E1, or ED) transitions only with states
of odd parity, and odd states only with even ones. Another way of saying this is that
the algebraic sum of the angular momenta of the electrons in the initial and final state
must change by an odd integer. For transitions within the 4f shell, ED transitions are
forbidden, but allowed d for magnetic dipole (M1) or electric quadrupole (E2) radia-
tion. The terms forbidden and allowed are not strictly accurate. The term forbidden
means a transition may occur in principle, but with low probability. The first possi-
bility would be indicative of broad spectral lines in contrast to the sharp lines that
were observed. Magnetic dipole radiation could account for some transitions, but not
all transitions, and represents a special case. Quadruple radiation could account for
more transitions, but was too weak to account for the observed intensities. Only ED
radiation was a reasonable solution, but it is forbidden by the Laporte selection rule.
The solution considered a distortion of the electronic motion by crystalline fields in
solids, so that the selection rules for free atoms no longer applied.

In this chapter I give a general description on lanthanides in the first section,
covering discussion on their various properties that will be interesting in our further
discussions. Then the next section is devoted to describing the ions in solids: why are
they interesting as a system, what special properties they have, etc. Then, I go on
with the description of well known Judd-Ofelt theory, which is used to describe the
transitions of ions when they are hosted in a solid or a glass.

35
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Figure 2.1: The lanthanide row highlighted from the periodic table of the (chemical)
elements.

2.1 Lanthanides in free space

The lanthanide series of chemical elements comprises the 15 metallic chemical elements
with atomic numbers 57–71, from lanthanum through lutetium (see figure 2.1). The
informal chemical symbol Ln is used in general discussions of lanthanide chemistry to
refer to any lanthanide. All lanthanide elements form trivalent cations, Ln3+. They
are called lanthanides because the elements in the series are chemically similar to
lanthanum. These elements, along with the chemically similar elements scandium
and yttrium, are often collectively known as the rare earth elements. Most of these
elements were discovered over a period of time stretching from the late 18th century to
the early 20th century. In the universe, the rare earths are approximately 106 times less
abundant than the more common element silicon. In spite of their scarcity and difficulty
in obtaining, the rare earths are highly valued for their unique properties, especially
as optically active elements in their ionized state for lasers [29]. All lanthanides except
one (lutetium) are f-block elements, corresponding to the filling of the 4f electron shell,
while lutetium is a d-block element and so also a transition metal. The electronic
configurations of the free atoms are nearly all [Xe] 4f 0−145d0−16s2, where 4f orbital
is gradually filled as the atomic number increases. The exceptions are cerium (Ce),
gadolinium (Gd) and lutetium (Lu). The lanthanum (La) has 5d orbital singly occupied
but after La further filling of 5d orbital is discontinued. In comparison with the trivalent
lanthanides, the lowest configurations of neutral lanthanides are very close in energy,
namely 4fw 6s2, 4fw 5d 6s, 4fw−1 5d 6s2 and 4fw−1 5d2 6s, where w = 4 for Nd and w = 12



2.2. LANTHANIDE IONS IN SOLIDS 37

for Er.

The first two ionization stages of the lanthanides involve simply the removal of the
two 6s electrons. The third ionization then removes a 4f electron. The lanthanides
usually exist as trivalent cations, in which case their electronic configuration, for ex-
ample, is [Xe] 4fw, where Xe is a chemical element, with atomic number 54, called
xenon. w is varying from 0 (La3+) to 14 (Lu3+) and w = 6 for Eu3+. The parity is
(−1)3w = (−1)w. The first excited configuration is the promotion of 4f towards 5d
orbital: 4fw−15d, which has an opposite parity. The levels can be quite high-several
10000 cm−1. The gap between the configuration decreases when ionized stage decreases.
There are many levels for 4fw and even more for 4fw−15d. Because of the large num-
ber of quantum states that may belong to an 4fw sub-shell, the number of levels of
a configuration involving additional partially filled sub-shells may be enormous. The
spectra of rare-earth atoms are very complex and one spectrum may contain tens or
hundreds of thousands of observable lines.

The 4f electrons of rare-earth atoms lie rather close together. Consequently, their
mutual Coulomb repulsions are quite large and the values of the Slater integrals F k(4f ,
4f) are also large: 50000 to 100000 cm−1. Because of the gradual contraction of the 4f
orbital with increasing Z, the parameter values F k and ζ increase with Z, so that the
level spacings tend to increase also. The spin-orbit parameters ζ increase much faster
with Z than do the Coulomb parameters F k.

Configurations that involve partially filled sub-shells in addition to the 4f sub-shell
have of course more complicated level structures. Although all lanthanide spectra are
exceptionally complex, those in the right half of the series tend to be somewhat simpler
than those in the left half, in that the former spectra tend to show contrasting strong
and weak lines whereas lines of the latter tend to be more uniform in intensity. The
reasons for this are associated with the gradual contraction of the 4f orbital with
increasing Z, so that the 4fw sub-shell becomes more and more deeply buried within
the atom and therefore interacts less and less strongly with the outer valence electrons.

2.2 Lanthanide ions in solids

An ion in a solid can be understood as an impurity embedded in the solid host material,
usually in small quantities. These impurities replace host ions and form optically active
centers that exhibit luminescence when excited by an appropriate excitation source.
When speaking of solids, in general, we mean glass or crystal. Glasses are amorphous
over a long range, but may contain a local order. On the other hand the crystals have
definite long-range order in a lattice structure. The host material and their properties
play a fundamental and important role while describing the nature of observed spectra
of the impurity ions. These impurities or dopant ions are usually transition metal or
lanthanide series ions characterized by unfilled shells in the interior of the ion. The
atomic structure for both are shown in figure 2.2.

All lanthanide ions are characterized by a [Xe] core, an unfilled 4f shell, and some
outer shells that screen the 4f shell from outside perturbing influences. This screening
effect protects the optically active electrons to some extent from the influence of the
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Figure 2.2: Atomic structure of lanthanide and transition metal ions. Representa-
tions are not on scale and are shown simply to give an overall visual insight on their
structure [29].

crystal field, giving the lanthanides their characteristic sharp and well defined spectral
features. In other words they are very similar to free ion spectra. This particular
property will give us permission to use good approximation in our further descriptions.
The crystal field plays an important role in influencing the features of optical spectra.
It also plays an obvious role in the Stark effect regarding the splitting of energy levels of
ions in solids. It is the influence it has on the ionic states regarding selection rules that
makes such transitions possible, as will be discussed. The ligand, or crystalline field is
totally external to the optically active dopant ion and has the symmetry determined by
the chemical composition of the host. In an ionic crystal, the optically active dopant
ions feel the influence of electrons, belonging to crystal host ions, as a repulsion, and of
the nuclei, belonging to the crystal host, as an attraction. The accumulation of these
influences can be considered as a net electric field, known as the crystalline field. This
crystal field is small in comparison to spin-orbit interactions. The interaction with the
environment is smaller than the free ion energies [29]. Contrary to the lanthanides, for
which the 4f shell is weakly affected by surrounding host ions, for transition metal ions
3d shell is strongly affected by host ions. Lanthanides are characterised with narrow
spectral lines and large cross sections, while transition metal ions mainly have broad
spectral lines and small cross sections.

The applications that were listed in the first chapter imply transitions between
levels of the ground configuration, which are forbidden in the free-ion case, but become
allowed because of the crystal field. Since the quantum numbers for crystal doped ions
are the same as for the free ion, the spectrum of Ln3+ -doped crystals can be understood
as a free ion spectrum, but perturbed by the crystal field. For this purposes we need
to study the energy spectrum, transition probabilities and radial matrix elements for
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Figure 2.3: Energy level diagram for 4fw (left columns) and 4fw−15d (right columns)
configurations of the trivalent lanthanides calculated in LiYF3 crystal [30]

Ln3+. These matrix elements are integrals of the electric-multipole operators between
the upper and lower wave functions of the transition, where the integration takes place
over the volume of the atom. The radial matrix elements can be used in the Judd-
Ofelt theory, which describes the intensities of lanthanide transitions between levels
of the ground configuration in solids and solutions and will be discussed in the next
section. Figure 2.3 shows energy level diagram for the trivalent lanthanides in LiYF3

calculated by K. Ogasawara and coworkers [30]. In figure 2.3, the energy levels of 4fw

and 4fw−15d configurations are shown in the left and right columns, respectively. The
lengths of the lines denote the contribution of each configuration.

2.3 Judd-Ofelt theory

The Judd-Ofelt (JO) theory is based on the static, free-ion and single configuration
approximations. In the static model, the central ion is affected by the surrounding
host ions via a static electric field, referred to as the ligand or crystal field. In the free-
ion model, the host environment produces the static crystal field, and is treated as a
perturbation on the free-ion Hamiltonian [31,32]. In the single configuration model, the
interaction of electrons between configurations is neglected. Simply stated, the Judd-
Ofelt theory describes the intensities of lanthanide and actinide transitions in solids
and solutions. During the transition the atom can be considered an electric dipole
oscillating at some frequency, in what case the amplitude is proportional to the value
of this matrix element. It is the interaction of this dipole moment with the electric field
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of the electromagnetic wave that induces the transition. On the other hand quantum
mechanically, the situation is more complicated because the parity between the upper
and lower electronic states must be considered. In quantum mechanics, electric dipole
transitions between electronic states of the same parity are forbidden. This results from
the fact that the expectation value of the position operator r, is odd under inversion,
and vanishes for definite parity. In free ions this implies that ED transitions within
the 4f shell of lanthanide ions are forbidden. However, electric dipole transitions can
be forced if opposite parity states from higher lying configurations outside the 4f shell
are mixed into the upper state, which become possible when the ions are placed in a
noncentrosymmetric perturbing field such as the crystal field. The odd-order parts of
the crystal field, which can be expanded in a series of spherical harmonics, perturb
the system and produce mixed parity states making electric dipole transitions allowed.
This is the starting point of standard Judd-Ofelt calculations.

The essence of the Judd-Ofelt theory is to characterize this admixture using time-
independent quantum perturbation theory. It allows to calculate the transition inten-
sity by calculating the matrix elements of the ED operator between the initial and final
levels. Using angular-momentum theory, JO theory helps deriving selection rules for
the transitions.

We assume that the nucleus of Ln3+ is located at the center of the referential frame
and the coordinates of the electron j are rj = (rj, θj, ϕj). The perturbation created
by the host material (crystal or glass environment) is considered to be an electrostatic
potential that creates the crystal-field (CF) potential energy, which has the following
form:

VCF = −qe
N∑
j=1

Φ(rj), (2.1)

where −qe is the electronic charge and N the number of electrons in the dopant.
Assuming that Φ is created by point charges distributed in the ligand atoms, VCF can
be written using the multipolar expansion:

VCF = −qe
N∑
j=1

rj

+∞∑
k=0

+k∑
q=−k

AkqC
(k)
q (θj, ϕj) =

+∞∑
k=0

+k∑
q=−k

AkqP
(k)
q , (2.2)

where Akq are structural parameters characterizing the local electrostatic potential at
the ion position,

P (k)
q = −qe

N∑
j=1

rjC
(k)
q (θj, ϕj) (2.3)

are the ionic multipole moments of rank k and component q.
The unperturbed or zeroth-order states |Ψ0

i ⟩ are the free-ion ones. In the ground
configuration they are |4fw LSJM⟩ and |4fw−15dLSJM⟩ for the first excited one,
where LS coupling scheme is assumed for simplicity, and L and S characterize the
orbital and spin angular momenta, J and M the total (electronic) angular momentum
and its z-projection. The general form for both configurations is |nℓw−1n′ℓ′ LSJM⟩,
with n′ℓ′ = nℓ = 4f or n′ℓ′ = 5d.
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Perturbation theory requires the calculation of the matrix elements of the pertur-
bation operator in the unperturbed basis,〈

Ψ0
1

∣∣VCF

∣∣Ψ0
2

〉
=
∑
kq

Akq

〈
Ψ0

1

∣∣P (k)
q

∣∣Ψ0
2

〉
, (2.4)

where |Ψ0
1⟩ and |Ψ0

2⟩ have angular momentum M1 and M2, respectively. Because the
multipole moments are irreducible tensors, their matrix elements can be calculated
using the Wigner-Eckart (WE) theorem

〈
Ψ0

1

∣∣P (k)
q

∣∣Ψ0
2

〉
=

CJ1M1
J2M2kq√
2J1 + 1

〈
Ψ0

1∥P (k)∥Ψ0
2

〉
= (−1)J1−M1

(
J1 k J2

−M1 q M2

)〈
Ψ0

1∥P (k)∥Ψ0
2

〉
, (2.5)

where CJ1M1
J2M2kq

is a Clebsh-Gordan (CG) coefficient, (:::) a Wigner 3-j symbol (see

section 1.3), and ⟨Ψ0
1∥P (k)∥Ψ0

2⟩ is called the reduced matrix element and is independent
from M1, M2 and q. The WE theorem imposes some selection rules: |J2 − J1| ≤ k ≤
J1 + J2 and M1 = M2 + q. The complete expression of the reduced matrix element
is quite involved and depends on the levels configuration, but we can simplify it as
follows:

⟨Ψ0
1∥P (k)∥Ψ0

2⟩ ∝ δS1S2

(
ℓ′1 k ℓ′2
0 0 0

)
⟨n′

1ℓ
′
1| rk |n′

2ℓ
′
2⟩ , (2.6)

which gives the following information:

1. The Kronecker symbol imposes S1 = S2: since the electric multipole moments
only depend on the positions of the electrons, the electronic spin is spectator.

2. The 3-j symbol is non-zero provided that ℓ′1 + k + ℓ′2 is even and that |ℓ′1 − ℓ′2| ≤
k ≤ ℓ′1 + ℓ′2.

3. ⟨n′
1ℓ

′
1| rk |n′

2ℓ
′
2⟩ =

∫ +∞
0

drPn′
1ℓ

′
1
(r) rk Pn′

2ℓ
′
2
(r) is a radial integral involving the wave

function Pnℓ(r), solution of the one-electron radial Schrödinger equation.

The free states are (2J +1)-time degenerate and their energies are M -independent.
In this case, the first-order corrections on energies will be obtained by diagonalizing
the perturbation operator in each subspace of degeneracy, that is to say, for the ground
configuration. The corresponding eigenvalues and eigenvectors describe the Stark sub-
levels. Some of them can still be degenerate, depending on the symmetry of the host
site. In the reduced matrix element (eq. (2.6)), because in our case ℓ′1 = ℓ′2 = 3,
the 3-j symbol imposes k = 0, 2, 4, 6. The Stark sublevels depend on the even-order
crystal-field parameters A2q, A4q and A6q and k = 0 gives a shift which is identical for
all the states.

At present we want to calculate the ED transition amplitude between the levels
|Ψ1

1⟩ and |Ψ1
2⟩ of the ground configuration, perturbed by the CF potential. The deriva-

tion in standard version of Judd-Ofelt theory starts with a first-order correction on
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eigenvectors:

|Ψ1
i ⟩ =

∑
t̸=i

|Ψ0
t ⟩
⟨Ψ0

t |VCF |Ψ0
i ⟩

E0
i − E0

t

, (2.7)

where the E0
i and E0

t are the unperturbed energies and i = ground configuration and
t = excited configuration. In order to characterize the photon absorption or emission
we need to calculate the matrix element D12 = P

(1)
p up to the first order

D12 = ⟨Ψ1
i |P (1)

p |Ψ0
2⟩+ ⟨Ψ0

i |P (1)
p |Ψ1

2⟩ =
∑
t1 ̸=1

⟨Ψ0
1|VCF |Ψ0

t1
⟩

E0
1 − E0

t1

⟨Ψ0
t1
|P (1)

p |Ψ0
2⟩

+
∑
t2 ̸=i2

⟨Ψ0
1|P 1

p |Ψ0
t2
⟩
⟨Ψ0

t2
|VCF |Ψ0

2⟩
E0

2 − E0
t2

, (2.8)

where p stands for the light polarization (p = 0 for π and p = ± for σ±). In what
follows we consider |Ψ0

1,2⟩ belong to the ground configuration 4fn. If we apply the
selection rules described after equation (2.6), we will obtain ℓt1 + ℓ1 +1 even and since
ℓ1 = 3 it necessarily means that 2 ≤ ℓt1 ≤ 4, meaning that |ℓt1⟩ belongs to an excited
configuration. The denominator of equation (2.8) indicates the configuration with the
lowest energy mainly contributes to the ED moment, which is 4fw−1 5d in the case of
Ln3+. When we apply the selection rules on ⟨Ψ0

1|VCF |Ψ0
t1
⟩, we find k = 1, 3, 5. We

can reach the same reasoning with |Ψ0
t2
⟩. Therefore, the ED transitions inside 4fw

are due to small couplings with 4fw−1 5d configuration and this coupling is happening
under the effect of the odd-rank terms k = 1, 3, 5 of the crystal-field potential. After
expending the product equation (2.8) as a sum of tensor operators and keeping in mind

that |Ψ(0)
t1 ⟩ = |nℓw−1n′ℓ′L′S ′J ′M ′⟩, we get:

⟨Ψ0
1|P (k)

q |Ψt1
0⟩⟨Ψt1

0|P (1)
p |Ψ0

2⟩

=
CJ1M1

J ′m′kqC
J ′M ′
J2M21p√

(2J1 + 1)(2J ′ + 1)
⟨Ψ0

1||P (k)||Ψt1
0⟩⟨Ψt1

0||P (1)||Ψ0
2⟩

=
k+1∑

λ=k−1

+λ∑
µ=−λ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1
J2M2λµ

{
k 1 λ
J2 J1 J ′

}
⟨Ψ0

1||P (k)||Ψt1
0⟩⟨Ψt1

0||P (1)||Ψ0
2⟩,

(2.9)

which appears as a sum of irreducible tensors of rank λ and component µ coupling
directly Ψ0

1 and Ψ0
2, to which we can apply the Wigner-Eckart theorem. We re-

call here that equation (2.9) contains the reduced matrix elements between levels of
the ground configuration |Ψ1⟩ = |4fwαLSJM⟩ and of the first excited one |Ψt1⟩ =
|nℓw−1n′ℓ′L′S ′J ′M ′⟩. We get the following selection rules:

|J2 − J1| ≤ λ ≤ J1 + J2. (2.10)

Generally speaking the P
(k)
q is a sum of one-electron operators, so we can write:

⟨Ψ0
t ||P (k)||Ψ0

i ⟩ = ⟨n′ℓ′||P (k)||nℓ⟩ × ⟨Ψ0
t ||
∑
i

uk(i)||Ψ0
i ⟩, (2.11)
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where uk(i) is the one-particle (i) unit tensor operator of rank k and we can define
U (k) =

∑
i u

k(i), where sum runs over open-shell electrons. In equation (2.9) we expend

the product of multipole moments ⟨Ψ0
1|P

(k)
q |Ψt1

0⟩⟨Ψt1
0|P (1)

p |Ψ0
2⟩, as a sum of irreducible

tensor operators. We rewrite it as:

⟨Ψ0
1|P (k)

q |Ψt1
0⟩⟨Ψ0

1|P (1)
p |Ψ0

2⟩

=
k+1∑

λ=k−1

+λ∑
µ=−λ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1
J2M2λµ

{
k 1 λ
J2 J1 J ′

}
× ⟨nℓ

∥∥P (k)
∥∥n′ℓ′⟩⟨n′ℓ′

∥∥P (1)
∥∥nℓ⟩⟨Ψ0

1

∥∥U (k)
∥∥Ψt1

0⟩⟨Ψt1
0
∥∥U (1)

∥∥Ψ0
2⟩

= ⟨nℓ
∥∥P (k)

∥∥n′ℓ′⟩⟨n′ℓ′
∥∥P (1)

∥∥nℓ⟩∑
λµ

Cλµ
kq1pC

J1M1
J2M2λµ√

2J1 + 1
⟨Ψ0

1

∥∥W (λ)
∥∥Ψ0

2⟩, (2.12)

where

⟨Ψ0
1

∥∥W (λ)
∥∥Ψ0

2⟩ = (−1)J1+J2−λ
√
2λ+ 1

{
k 1 λ
J2 J1 J ′

}
⟨Ψ0

1

∥∥U (k)
∥∥Ψt1

0⟩⟨Ψ0
1

∥∥U (1)
∥∥Ψ0

2⟩

(2.13)

is a reduced matrix element of a tensor operator of rank λ as well and connects the
levels of the ground configuration. It can be transformed as:

⟨Ψ0
1

∥∥W (λ)
∥∥Ψ0

2⟩ = ⟨nlwα1L1S1J1
∥∥W (λ)

∥∥nlwα2L2S2J2⟩
= σS1S2(−1)L1+S2+J2+λ

√
(2J1 + 1)(2J2 + 1)

×
{
L2 S2 J2
J1 λ L1

}
⟨nlwα1L1

∥∥W (λ)
∥∥nlwα2L2⟩

= σS1S2(−1)l+S2+J2
√

(2J1 + 1)(2J2 + 1)(2L1 + 1)(2L2 + 1)

× ⟨nℓ∥W (λ) ∥nℓ⟩ (nlw−1αLS|nlwα1L1S1)(nl
w−1αLS|nlwα2L2S2),

(2.14)

where (αLS) are the terms of nℓw−1, and

⟨nℓ∥W (λ) ∥nℓ⟩ = (−1)λw
√
2λ+ 1

{
k 1 λ
ℓ ℓ ℓ′

}
⟨nℓ∥u(k)(i = w) ∥n′ℓ′⟩ ⟨n′ℓ′∥u(1)(i = w) ∥nℓ⟩

= (−1)λw
√
2λ+ 1

{
k 1 λ
ℓ ℓ ℓ′

}
. (2.15)

The operators U (λ) that will be introduced in the JO line strengths are such that

⟨Ψ0
1

∥∥W (λ)
∥∥Ψ0

2⟩ = (−1)λ
√
2λ+ 1

{
k 1 λ
ℓ ℓ ℓ′

}〈
Ψ0

1

∥∥U (λ)
∥∥Ψ0

2

〉
. (2.16)

The ⟨Ψ0
1

∥∥U (λ)
∥∥Ψ0

2⟩ are actually the reduced matrix elements that would appear in the

calculation of a rank-λ electric-multipole matrix element ⟨Ψ0
1∥P (λ)∥Ψ0

2⟩ between levels
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of the ground configuration, namely ⟨Ψ0
1∥P (λ)∥Ψ0

2⟩ = ⟨nℓ∥P (λ)∥nℓ⟩ × ⟨Ψ0
1∥U (λ)∥Ψ0

2⟩.
The quantities ⟨Ψ0

1

∥∥W (λ)
∥∥Ψ0

2⟩ are invariant under permutation of k, which is the rank
of crystal-field, and 1, which is the rank of electric dipole.

Since the excited configuration levels are very high in energy, we can make the
assumption that all the transitions in equation (2.8) have approximately the same
energy and we can demonstrate that the two terms in equation (2.8) are equal for
λ = k ± 1 and they cancel out for λ = k. The final (strong) assumption of the
Judd-Ofelt theory is to solely conserve the term λ = k + 1, supposed to be dominant.
Therefore, to k = 1, 2, 3 correspond λ = 2, 4, 6 (the term λ = 0 is not included). This
selection rule explains the fact that the standard Judd-Ofelt theory can not account
for transitions J1 = 0 ↔ J2 = 0, J1 = 0 ↔ J2 = 1 and J1 = 1 ↔ J2 = 0, for example
the case of transitions 7F0 ↔ 5DJodd ,

7FJodd ↔ 5D0 and 7F0 ↔ 5D0 of Eu3+. After the
assumptions above, the ED expression is the following:

D12 =
2

∆E

∑
kq

Akq

∑
λµ

δλ,k+1(−1)λ ×
√

2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1
J2M2λµ

×
{
k 1 λ
l l l′

}
⟨Ψ0

1

∥∥U (λ)
∥∥Ψ0

2⟩⟨nℓ
∥∥P (k)

∥∥n′ℓ′⟩⟨n′ℓ′
∥∥P (1)

∥∥nℓ⟩, (2.17)

where

⟨nℓ
∥∥P (k)

∥∥n′ℓ′⟩ = (−1)ℓ[ℓℓ′]1/2
(
ℓ k ℓ
0 0 0

)
× ⟨nℓ|rk|n′ℓ′⟩. (2.18)

A similar development can be carried out for the term ⟨Ψ0
1|P

(1)
q |Ψt1

0⟩⟨Ψ0
1|P

(k)
p |Ψ0

2⟩.
The result is the same, except that the pairs of indices (1,p) and (k,q) in the CG are
interchanged. This results in a factor of (−1)1+k−λ.

The utility of the Judd-Ofelt theory is that it provides a theoretical expression
for the line strength. From equation (2.17) we can calculate the ED line strength
SED =

∑
pM1M2

[D12]
2, on which depend the absorption oscillator strength and the

Einstein coefficients:

SED =
∑

λ=2,4,6

Ωλ

∣∣〈Ψ0
i

∥∥U (λ)
∥∥Ψ0

2

〉∣∣2 , (2.19)

with

Ωλ =
4

∆E2

∑
kq

δλ,k+1
|Akq|2

2k + 1
(2λ+ 1)

[{
1 k λ
ℓ ℓ ℓ′

}
(2ℓ+ 1) (2ℓ′ + 1)

]2
×
[(

ℓ 1 ℓ′

0 0 0

)(
ℓ′ k ℓ
0 0 0

)
⟨nℓ| r |n′ℓ′⟩ ⟨n′ℓ′| rk |nℓ⟩

]2
(2.20)

and ⟨Ψ0
1∥U (λ)∥Ψ0

2⟩ is the reduced matrix element of the so-called unit tensor operator
of rank λ, that were discussed earlier. They are only functions of angular-momentum
quantum numbers J1, J2, J

′, ..., and can therefore be calculated exactly. By contrast,
the Judd-Ofelt parameters Ωλ depend on the atomic and crystal-field properties, which
are difficult to evaluate from first principles. The parameter Ω2 indicates the covalent
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nature of ion-ligand bonds and the asymmetric nature of Nd3+ ion local environment.
On the other hand, the Ω4 and Ω6 parameters are related to the rigidity of the host
matrix. These parameters are treated as adjustable parameters in the linear least-
square fitting of experimental and theoretical line strengths.

Due to the spin-orbit interaction in the 4f subshell, the unperturbed states are
linear combination of LS states, and can be written as:∣∣Ψ0

i

〉
=
∑

αiLiSi

cαiLiSi
|nℓw αiLiSiJiMi⟩ , (2.21)

where Li, Si and Ji are the quantum numbers associated with the orbital, spin and total
electronic angular momentum respectively, whileMi is associated with the z-projection
of the latter. The index αi is sometimes necessary to distinguish manifolds with the
same Li and Si (for example 5D1, 5D2 and 5D3 in Eu3+). The cαiLiSi

coefficients
are the eigenvector components of the ionic Hamiltonian. For Ln3+ ion in the lowest
configuration, there is most often one dominant LS component (with |cαiLiSi

|2 > 0.7)
and smaller ones.

In the case of Eu3+, for example, the levels of the 7F manifold are slightly coupled
to the 5D, and vice versa. Therefore, the pair coupling (2.21) allows to describe
the spin-changing transitions between quintuplet and septuplet levels. However, the
standard JO theory does not account for the influence of the spin mixing in the excited
configuration 4f 55d.

Despite its remarkable efficiency, this standard JO theory cannot reproduce some of
the observed transitions, because of its strong selection rules. It is especially the case for
europium (Eu3+) [33, 34], well known to challenge the standard JO theory [29]. Many
extensions of the original model have been proposed to overcome this drawback [35],
including e.g. J-mixing [36–38], the Wybourne-Downer mechanism [39, 40], velocity-
gauge expression of the electric-dipole (ED) operator [41], relativistic or configuration-
interaction (CI) effects [30, 42–45], purely ab initio intensity calculations [46]. In this
respect, Smentek and coworkers were able to reproduce experimental absorption oscil-
lator strengths with a very high accuracy, with up to 17 adjustable parameters [47].
But in spite of all these improvements, even the most recent experimental studies use
the standard version of the JO theory [48,49]. This restrictions caused by the standard
JO theory and many (not fully successful) attempts of extending it, make the desire
and the need for an extension of JO theory very natural.

As stated before in the standard JO theory, the line strength characterizing a given
transition is a linear combinations of three parameters Ωλ (with λ = 2, 4 and 6),
which are functions of both the properties of the Ln3+ ion and the crystal-field pa-
rameters [29, 50]. Since the Ωλ-parameters are adjusted by least-square fitting, those
two types of contributions cannot be separated. However, the properties of the impu-
rity can be investigated by means of free-ion spectroscopy. As discussed in sections
2.1 and 2.2, lanthanides have special structure, due to a very submerged subshell, f
electrons are shielded from the environment, and therefore they weakly interact with
the environment. When discussing different types of interactions within the ion, it is
evident that the ion-crystal interaction (having a magnitude of ∼ 100 cm−1) is small
compared to the Columbic interaction (having a magnitude of ∼ 10000 cm−1). As
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a consequence, the spectrum of Ln3+-doped crystals can be understood as a free-ion
spectrum but perturbed by the crystal field. This being the case, the necessity of a
very accurate free-ion spectrum and properties is inevitable. In this respect we have
to do free-ion spectroscopic calculations for the elements for which we plan to discuss
the JO theory and its possible extension.

The next chapter is dedicated to the description of the methodology used for free-ion
calculations.



Part II

Trivalent Lanthanides





Chapter 3

Free-ion calculation on trivalent
lanthanides

Investigations on the spectroscopic properties of triply ionized lanthanides have been
always attractive to scientists. All the applications described in previous chapters
require precise free-ion calculations of energies for the elements that are planned to
be discussed. This chapter is devoted to discussion of results for free-ion calculations
on three lanthanide ions: Eu3+, Nd3+ and Er3+. The calculations are done using the
methodology and the software, Robert Cowan’s atomic structure suite of code, that
will be reported in section 3.1.

Among all the lanthanides, Eu3+ is well known ion to challenge the standard JO
theory, described in chapter 2, so the choice of this ion is only natural. Moreover, a
collaborative work was performed with an experimental group at ICB, where they were
working with Eu3+ in nanorods and needed assistance in discussion of transitions [51].
Along with Eu3+, we have done the calculations also Nd3+ and Er3+, since the excited
configuration levels for these elements are known in detail and those are elements with
many applications, for example, lasers. Our fitting calculations require experimental
energies. For Nd3+, Er3+ and the ground configuration of Eu3+ we find them in the
NIST ASD database [52], however no experimental level has been reported for the 4f 55d
configuration. Among the lanthanide series the 4fw configurations (with 2 ≤ w ≤ 12)
and the 4fw−15d ones (with 3 ≤ w ≤ 13) possess the same energy parameters. This fact
allows us to perform a least-square fitting calculation of some 4fw−15d configurations
for which experimental levels are known, namely for Nd3+ (w = 3) and Er3+ (w = 11)
[53–55]. Then, relying on the regularities of the scaling factors fX that are seen for
lanthanide series, we do the calculations for the excited configuration of Eu3+ as well,
using the calculated parameters of trivalent neodymium and erbium.

In order to respect the chronology and the sense of the calculation we first describe
the free-ion calculations done for Nd3+ (section 3.2) and Er3+ (section 3.3) and only
after we discuss the calculation on Eu3+ (section 3.4).

49
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3.1 Methodology of calculations

The calculation with simple configurations involving only one or two open subshells are
relatively easy, provided that the coupling conditions lie close to some pure-coupling
scheme, so that the Hamiltonian matrix is nearly diagonal in appropriate represen-
tation. The task of calculating energy levels is particularly easy in the near-LS case.
However, very often, routine calculations of energy levels and spectra are practical only
with elaborate computer programs. It is obvious that for configurations containing two
or more open subshells, the matrices can become very large.

The suite of computer codes based on the famous book of Robert Cowan “The
Theory of Atomic structure and Spectra” published in 1981, continue to be highly
influential and convenient for such calculations [24]. It calculates atomic structure
and spectra via the superposition-of-configuration method. Robert Cowan’s codes are
based on ab initio calculation and least-square fitting. The latest version of Cowan’s
code package is presently distributed by Cormac McGuinness at the University of
Dublin, Ireland [56]. Another version of the codes are developed by Alexander Kramida.
He introduced a drastic modification to the least squares fitting procedure [57]. The
Kramida version includes also visual modifications of the output files.

Generally speaking, the codes use non-relativistic Hartree–Fock method, while the
relativistic effects are accounted for as perturbations. The radial wavefunctions are
calculated using a hydrogenic single-configuration approximation. More complex and
maybe more accurate ab initio methods are present in the literature, but these codes
give better accuracy only for limited number of spectra. The situation is far more
complex in the case of lanthanides and actinides and so the ab initio calculations alone
can not handle the cases where configuration interactions are large and numerous. It
is inevitable to have strong CIs between closely-lying levels of the same parity and the
same J value. In the suite of Cowan codes this problem is overcome by introducing
least squares fitting of all levels. The package includes four subprograms written in
FORTRAN. The names of these programs are made of Cowan’s initials: “RC”, followed
by a code letter. The codes run in sequence, since each subprogram produces output
files which are simultaneously input files for the next subprogram of the chain.

The calculations start with the code called RCN , which calculates the single-
configuration or one-electron radial wavefunction for each of any number of specified
electron configurations via Hartree-Fock method. The principal output consists of
center-of-gravity (Eav) of the configuration, as well as the radial Coulomb (Fk and Gk)
and spin-orbit (ζ) integrals which are necessary to calculate the energy levels. The
input file required by the code when executing, is an ascii text file which contains
descriptions of the electronic configurations for which the radial wavefunctions should
be computed. The results of these calculations are then stored for use by the RCN2
code. The RCN program also produces a text output file, which can be used for various
analyses.

The next subprogram is called RCN2 . It is an interface program that uses the
output wavefunctions from RCN to calculate the configuration-interaction Coulomb
integrals (Rk) between each pair of interacting configurations. RCN2 calculates also
the electric-dipole (E1) and/or electric quadrupole (E2) radial integrals between each
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pair of configurations. There are two input files required for the execution of the RCN2
code. The first is an ascii text file in which certain options can be set for the execution
of the code. The second binary input file, which is produced by the RCN program,
contains the actual radial wavefunctions required to calculate the radial integrals. The
resulting output file prepared by RCN2 serves as input to RCG.

RCG sets up energy matrices for each possible value of the total angular mo-
mentum J . Then it diagonalizes each matrix to get eigenvalues (energy levels) and
eigenvectors (multi-configuration, intermediate- coupling wavefunctions in various pos-
sible angular-momentum-coupling representations), and then computes M1 (magnetic
dipole), E2, and/or E1 radiation spectra, with wavelengths, oscillator strengths, radia-
tive transition probabilities, and radiative lifetimes. In comparison with the previous
subprograms there are many files associated with the RCG code and in normal usage
we can concentrate only on two of these. The first is the required ascii text file, the
contents of which are data about the configurations involved in the calculation such as
occupation numbers and configuration average energies, data about pairs of interacting
configurations required for calculation of configuration-interaction (same parities) and
for electromagnetic dipole transitions (different parities). The output file created by
the RCG contains almost all relevant information about the calculation which has been
performed.

The output for the RCG program is very rich, it contains:

• Details of the configuration average energies and parities for each configuration
included in the calculation.

• For each possible total angular momentum resulting from the configurations, each
state is labelled in terms of both the LS and jj angular-momentum-coupling
schemes.

• For each configuration and for each pair of interacting configurations various
integrals are listed.

• The eigenvalues and the corresponding configuration serial numbers are listed,
which are followed by the eigenvector coupling matrices, corresponding to the LS
and jj coupling schemes.

• The calculated spectrum with all the transition lines is listed.

Generally the first three Cowan programs (RCN/RCN2/RCG) are run in sequence
with the output of each program forming an important part of the input to the next.
To facilitate these codes being executed in an unbroken sequence a powerful shell script
has been created.

Once considerable progress has been made in the interpretation of observed spec-
trum lines and in the deduction of the associated energy levels, with the aid of ab
initio calculations, the radial integrals Eav, F

k, Gk, ζ and Rk are considered simply
as adjustable parameters, whose values are to be determined empirically so as to give
the best possible fit between the calculated eigenvalues and the observed energy levels.
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For this purpose the last program of Cowan’s package called RCE is used in an iter-
ative way. The resulting least-squares-fit parameters can be used to repeat the RCG
calculations with the improved energy levels and (presumably) wavefunctions. Any of
the parameters can be held fixed at specified values, or groups of parameters can be
forced to vary in such a way that the ratios of the values within a group remain fixed
relative to each other. Parameters that are supposed to be linked together (meaning
the ratios of their values held fixed), should be given equal negative values of so called
”constraints” (sometimes also called ”flags”).

The input files required for RCE are produced when appropriate options are set
in the input to the RCG program. The fitting process is carried out by an automatic
iterative procedure until the parameter values no longer change from one iteration cycle
to the next (by more than 0.03), or for a specified maximum number of cycles.

In RCN the internal units are Bohr units of length and Rydberg units (units of
13.6058 eV) for energy. The final line of the output for each configuration gives the
quantities needed for energy-level calculations in RCG, with Eav in Ry and all other
energy radial integrals in units of kK (1000 cm−1).

Some difficulties arise for complicated transitions and rare-earth configurations in-
volving partially filled d and f subshells, where the average spacing between energy
levels may be so small as to be comparable with the standard deviation of the fit. In
an attempt to improve the quality of a fit (and therefore, the accuracy of the result-
ing eigenvectors), a variety of “effective-operator” parameters, called α, β and γ and
“illegal”-k F k, Gk have been introduced, representing corrections to both the electro-
static and the magnetic single-configuration effects. “Illegal”-k means that these are
the values of k that do not satisfy to the triangle relation discussed in the section
1.5. These effective parameters, unlike other parameters, can not be calculated ab
initio. The resulting least-square-fit parameters can then be used to repeat the RCG
calculation with the improved energy levels and wavefunctions.

Workflow of the codes The logical workflow for the Cowan codes are the following:

1. specify the atomic configurations for the calculations, an example of an input file
for RCN can be seen in the top panel of figure 3.1,

2. run RCN (the result is an input file for RCN2),

3. run RCN2 (the result is an input file for RCG, see the bottom panel of figure
3.1),

4. run RCG, those first raw results are rather inaccurate, they sometimes are called
ab initio or HFR results (XHFR)and can be compared with the final results. The
output is an input file RCE,

5. run RCE; this step is a fitting procedure and, and as mentioned earlier, requires
experimental data. If necessary this step can be retaken after checking and
correcting experimental data,

6. transfer the fitted parameters resulting from previous step to RCG input file,
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Figure 3.1: An example of RCN (top panel) and RCG (bottom panel) input files for
Eu3+.

7. rerun RCG.

Steps 2 and 3 can be taken separately, however most of the cases RCN and RCN2 are
run together. All the calculations are automated, except for the second to last step, the
RCE run, since it is a least squares fit and can sometimes require a lot of manual work.
This least squares step is very prone to a qualitative improvement. The accuracy of
RCE calculations depend on the inclusion of important interacting configurations in the
calculation, as well as the choice of free and constrained parameters. By comparing the
fitted and predicted energies it is possible to evaluate the accuracy of the least square
fitting. The accuracy of the fit is measured by means of the standard deviation:

s =

[∑
(Eth − Eexp)

2

Nlev −Npar

] 1
2

, (3.1)

where Eexp are the observed energy values and the Eth are the computed eigenvalues,
Nlev is the number of levels being fitted andNpar is the number of adjustable parameters
involved in the fit [24]. It is sometimes convenient to be able to link several parameters
together in such a way that the mutual ratios of their values remain constant during
the iteration. Some parameters can be excluded from the fit in particular cases, i.e.
these parameters will not be modified [58]. It is obvious that a low standard deviation
indicates that the theoretical or computed values tend to be close to the experimental
ones, while a high standard deviation indicates that the values are spread out over a
wider range.

To make some comparisons between different elements and ionization stages, one
often defines the scaling factor (SF) fX = Xfit/XHFR between the fitted and the HFR
value of a given parameter X.

The analysis can take from few minutes to few weeks, depending on the complexity
of the configurations considered for the calculation, but they give a very reasonable
accuracy, most of the cases the standard deviation is below or around 100 cm−1. An-
other advantage of the Cowan’s codes is that it can be also used to calculate transition
probabilities.
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Regardless of how it is crucial to follow the workflow of the codes, each user requires
an individual methodology of steps and calculations specifically sketched out for a given
problem. In this work the general methodology for the calculation is as follows: (a)
fitting the parameters with an ab initio value while effective parameters are forced
to be zero; (b) fixing the parameters resulting from step (a) and fitting the effective
parameters; (c) using the final values of (b), fitting all the parameters together.

3.2 Results on Neodymium ion: Nd3+

Neodymium is a chemical element with the symbol Nd and atomic number 60. It is
the fourth member of the lanthanide series and is considered to be one of the rare-
earth metals. Neodymium compounds were first commercially used as glass dyes in
1927 and remain a popular additive. The color of neodymium compounds comes from
the Nd3+ ion and is often a reddish-purple. However, this changes with the type of
lighting because of the interaction of the sharp light absorption bands of neodymium
with ambient light enriched with the sharp visible emission bands of mercury, trivalent
europium or terbium. Neodymium-doped glasses are used in lasers that emit infrared
with wavelengths between 1047 and 1064 nanometers. These lasers have been used
in extremely high-power applications, such as experiments in inertial confinement fu-
sion. Neodymium is also used with various other substrate crystals, such as yttrium
aluminium garnet in the Nd:YAG laser. In the periodic table, it appears between the
lanthanides praseodymium to its left and the radioactive element promethium to its
right, and above the actinide uranium (see figure 2.1).

A critical collection of lanthanides energy levels was created by Martin et al. [59],
after that the first results for Nd3+ was obtained by Wyart et al. [60]. After it was
improved by Wyart et al. in 2007, when the neodymium spectrum emitted by a
sliding spark was photographed on the 10.7m normal incidence vacuum ultraviolet
spectrographs at the National Institute of Standards and Technology and at the Paris-
Meudon Observatory [53]. The work led to the determination of the entire ground
configuration 4f3 and to a large part of the excited configurations 4f2 5d, 4f2 6s and
4f2 6p with the support of predictions using the Cowan codes. From relatively recent
works, noteworthy is the one by Arab et al. [55], where the authors are dealing with
the core-excited configuration 5p5 4f35d.

In this current work the calculations have been done for two configurations of Nd3+:
4f 3 (odd parity) and 4f 25d (even parity). The choice of these configuration has been
made keeping in mind that these two configurations are coupled by ED transition and
this transition has strong character. Additionally, throughout this work, we are inter-
ested in transitions that happen between the levels of 4f 3 configuration (see chapter
2). Moreover, the calculations with more configurations and the interpretation of Nd3+

and Er3+ spectra show that the eigenvectors are essentially composed of one configu-
ration only and because CI mixing is very low, a one-configuration approximation can
safely be applied in both parities, which is done here. The experimentally known levels
that are essential for our least-square calculations are taken from the above described
work of Wyart et al. [53]. There are 41 levels for 4f 3 configuration and 111 for 4f 25d
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Table 3.1: Comparison between the experimental [53] and computed values for the
levels of 4f 3 configuration of Nd3+, with total angular momenta from J = 0.5 to 7.5
and energies up to 30000 cm−1, as well as at most the five leading eigenvectors with
their percentages. All energy values are in cm−1. The ”o” superscript, indicating the
odd parity, common to all terms, has been omitted.

Exp. This work J Eigenvectors with non-zero percentages

0 74 4.5 4I 97.1 % 2H2 2.6 % 2H1 0.3 %
1897 1961 5.5 4I 99.0 % 2H2 0.9 % 2H1 0.1 %
3907 3975 6.5 4I 99.6 % 2K 0.4 %
5989 6075 7.5 4I 98.8 % 2K 1.2 %
11698 11746 1.5 4F 94.3 % 2D1 4.8 % 2P 0.3 % 2D2 0.3 % 4S 0.3 %
12748 12800 2.5 4F 97.7 % 2D1 2.1 % 2F2 0.1 % 2F1 0.1 %
12800 13002 4.5 2H2 55.7 % 4F 13.4 % 2G1 10.9 % 2H1 7.9 % 2G2 7.7 %
13720 13692 1.5 4S 94.5 % 2P 4.8 % 4F 0.5 % 2D1 0.2 %
13792 13805 3.5 4F 93.6 % 2G1 3.7 % 2G2 2.4 % 2F2 0.1% 4G 0.1 %
14995 15100 4.5 4F 75.8 % 2H2 19 % 2H1 2.2 % 2G1 1.6 % 2G2 0.7 %
16162 16329 5.5 2H2 80.5 % 2H1 12.5 % 4G 5.8 % 4I 0.9 % 2I 0.3 %
17707 17544 2.5 4G 98.6 % 2F1 0.7 % 2F2 0.6 % 4F 0.1 %
17655 17711 3.5 4G 41.9 % 2G1 30.7 % 2G2 23.1 % 4F 4.3 %
19541 19498 3.5 4G 57.4 % 2G1 24.3 % 2G2 15.7 % 4F 2.0 % 2F2 0.3 %
19970 19928 4.5 4G 75.8 % 2G1 7.2 % 2G2 6.5 % 2H2 6.0 % 4F 2.9 %
20005 19974 6.5 2K 98.7 % 2I 0.9 % 4I 0.4 %
21493 21574 4.5 2G1 39.1 % 2G2 26.0 % 4G 21.6 % 4F 7.8 % 2H2 5.4 %
21701 21667 1.5 2D1 45.8 % 2P 43.6 % 4S 3.7 % 4F 3.6 % 4D 1.6 %
22044 22006 7.5 2K 97.7 % 2L 4.1 % 4I 1.2 %
22047 21986 5.5 4G 92.7 % 2H1 4.1 % 2H2 3.1 %
23789 23571 0.5 2P 94.1 % 4D 5.9 %
24333 24348 2.5 2D1 97.5 % 4F 2.1 % 2D2 0.3 % 2F1 0.1 %
26761 26696 1.5 2P 48.9 % 2D1 44.5 % 2D2 2.8 % 4F 1.5 % 4S 1.5 %
29010 28958 1.5 4D 82.0 % 2D2 15.0 % 2P 1.6 % 2D1 1.3 %
29191 29121 2.5 4D 79.8 % 2D2 17.9 % 2F2 1.1 % 2F1 1.1 % 4G 0.1 %
29540 29533 0.5 4D 94.1 % 2P 5.9 %

configuration.

The calculations were done with the general methodology described in section 3.1.
We recall here that such calculations start with the ab initio determination of en-
ergy parameters, later, in the next steps, these parameters are treated as adjustable
parameters for least-squares fit.

The precision of calculations is measured by means of standard deviation (see equa-
tion (3.1)). For the first step, where all parameters were allowed to evolve freely, but
the effective parameters were fixed to 0 the standard deviation is 475 cm−1, for odd
parity configuration 4f 3 of Nd3+. By including the effective parameters included in
the fitting procedure, we managed to decrease the standard deviation to 130 cm−1. A
similar calculation was performed for even parity configuration 4f 25d too. For the first
step the standard deviation is 228 cm−1, and it is decreased to the value 75 cm−1 for
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Table 3.2: Comparison between the experimental [53] and computed values for the
first 15 levels of 4f 2 5d configuration of Nd3+, with total angular momenta from J = 2.5
to 7.5, and at most the three leading eigenvectors with their percentages. All energy
values are in cm−1.

Exp. This work J Eigenvectors with non-zero percentages

70817 70893 4.5 2H 45 % 4I 46 % 2H 5 %
71745 71675 5.5 4K 76 % 2I 11 % 2I 6 %
73366 73350 4.5 4I 50 % 2H 32 % 2H 9 %
73557 73644 5.5 2H 36 % 4I 43 % 2H 6 %
73616 73692 2.5 4G 47 % 4G 22 % 2F 14 %
74364 74316 3.5 4H 84 % 2G 7 % 4G 3 %
74572 74552 5.5 4I 52 % 2H 15 % 4K 9 %
74674 74580 6.5 4K 94 % 2I 3 % 2I 2 %
75667 75709 3.5 4G 61 % 4G 24 % 4H 6 %
76412 76400 4.5 4H 86 % 4G 6 % 2G 3 %
76471 76495 6.5 4I 98 % 2K 1 % 2I 1 %
77540 77437 7.5 4K 100 % 2K 1 % 2I 1 %
77598 77616 2.5 2F 30 % 4G 23 % 2F 16 %
77833 77829 3.5 4H 92 % 2G 3 % 2G 2 %
77810 77840 4.5 4G 62 % 4G 24 % 4H 7 %

the last cycle of fitting procedure.
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Figure 3.2: Calculated energy levels of the 4f3 (red) and 4f2 5d (blue) configurations
of Nd3+ as functions of the electronic angular momentum J .
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Figure 3.2 shows the levels computed for both configurations, and their comparison
with the data reported in [53] is shown in table 3.1 for levels of ground configuration
below 30000 cm−1 and in table 3.2 for the first 15 levels of 4f2 5d configuration. We
provide also information about our computed eigenvectors, with at most five non-zero
percentages. Our theoretical results include accurately calculated 42 levels with energy
levels up to ∼70000 cm−1 for the ground configuration 4f3 and 107 levels with energy
levels belonging to the range ∼71000 - 137000 cm−1 for the first excited configuration
4f2 5d of Nd3+.

Most of levels are well described by the LS coupling, with leading components
above 70 %. This is less the case for the intermediate J-values of 3.5 and 4.5, for which
2H, 2G, 4G and 4F manifolds are mixed by the spin-orbit interaction. Note that for the
level at 17655 cm−1, the leading component is 4G with 41.9 %; but if one adds the two
2G manifolds, it yields 53.8 %. This can lead to some ambiguity when labeling that
level. Spin-orbit mixing is also significant between 2P and 2D manifolds for J = 1.5.

The Judd-Ofelt theory, which is described in chapter 2, requires the calculation of
matrix elements:

⟨n′l′∥P (k)∥nl⟩ = (−1)l
′
[ll′]1/2

(
l′ k l
0 0 0

)∫ ∞

0

drPn′l′(r)r
kPnl(r). (3.2)

In our case n′l′ = 4f and nl = 5d, with k = 1, 3, 5. The matrix element only for k = 1
can be calculated by one of the subprograms of Cowan codes, RCN2, but another
subprogram RCN allow to print the wavefunctions with the HFR method. In order to
calculate the matrix elements for k = 1, 3, 5 we have written an octave code. For k = 1
the matrix element calculated by the octave program is 1.2877242 a0, while the value
calculated by RCN2 is 1.28773 a0. The matrix element is -4.10141 a30 and 30.49720 a50
for k = 3 and k = 5, respectively.

After carrying out free-ion calculation on energy levels for Nd3+, we compare our
[U (λ)]2 matrix elements with those of Carnall [61] in order to check our free-ion eigen-
vectors. Those matrix elements are computed for transitions that will be used in our
extension calculations and are present in the next subsections.

The results are shown in table 3.3, showing a very good agreement except for the
transitions 4I9/2 ↔ 4S3/2 and 4I9/2 ↔ 4F7/2. By looking closely, we presume that
the lines corresponding to those two upper levels in Table V of Ref. [62] have been
interchanged. They are indeed so close in energy that their order is inverted in certain
materials. In other words, their absorption peaks overlap, which makes it difficult to
correctly identify them. This, for example, happens In the article by Jyothi et al. [63]
dedicated to Nd3+-doped tellurite and metaborate glasses, where those two transitions
are superposed. In this case, the [U (λ)]2 matrix elements can be summed to give a
single effective transition.

3.3 Results on Erbium ion: Er3+

Erbium is a chemical element with the symbol Er and atomic number 68. Erbium’s
principal uses involve its pink-colored Er3+ ions, which have optical fluorescent proper-
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Table 3.3: Comparison between our reduced matrix elements [U (λ)]2 for selected
transitions of Nd3+ and those of Ref. [62].

Transition [U(2)]2 [U(4)]2 [U(6)]2

Our Rep. Our Rep. Our Rep.

4I9/2 ↔ 4F3/2 0 0 0.2297 0.2293 0.0553 0.0549
4I9/2 ↔ 2H9/2 0.0089 0.0092 0.0079 0.0080 0.1129 0.1154
4I9/2 ↔ 4F7/2

a 0.0009 0.0010 0.0430 0.0422 0.4238 0.4245
4I9/2 ↔ 4S3/2

a 0 0 0.0026 0.0027 0.2349 0.2352
4I9/2 ↔ 4F9/2 0.0009 0.0009 0.0092 0.0092 0.0421 0.0417
4I9/2 ↔ 4G5/2 0.8979 0.8979 0.4095 0.4093 0.0356 0.0359
4I9/2 ↔ 4G9/2 0.0047 0.0046 0.0603 0.0608 0.0407 0.0406
4I9/2 ↔ 4G11/2 0.00001 ∼ 0 0.0051 0.0053 0.0080 0.0080
4I9/2 ↔ 2P1/2 0 0 0.0350 0.0367 0 0
4I9/2 ↔ 4D1/2 0 0 0.2603 0.2584 0 0
a Probable inversion in Table V of Ref. [62]

ties particularly useful in certain laser applications. Erbium-doped glasses or crystals
can be used as optical amplification media, where Er3+ ions are optically pumped at
around 980 or 1480 nm and then radiate light at 1530 nm in stimulated emission.
This process results in an unusually mechanically simple laser optical amplifier for
signals transmitted by fiber optics. The 1550 nm wavelength is especially important
for optical communications because standard single mode optical fibers have minimal
dispersion at this particular wavelength. Moreover, a large variety of medical applica-
tions (i.e. dermatology, dentistry) utilize erbium ion’s 2940 nm emission (see Er:YAG
laser), which is highly absorbed in water. The triply charged ion Er3+ received special
attention since erbium oxide has been tested as a candidate for fusion reactor blanket
systems [64] and more recently for possible quantum information applications when
embedded in silicon [65].

In the work of Meftah et al. [54] and extended by Chikh et al. [66], the vacuum spark
spectrum of erbium is observed in the wavelength region 705–2460 Å where transitions
between the low-lying configurations 4f11, 4f10 5d, 4f10 6s and 4f10 6p take place. They
achieved a completely revised analyses of trivalent Er, which led to determine 120
energy levels belonging to the configurations 4f11, 4f10 5d, 4f10 6s and 4f10 6p.

Since we are interested in the transitions that happen between the levels of config-
uration 4f11 when they are coupled with the first excited one, the calculations in the
present work have been done for two configurations of Er3+: 4f11 (odd parity) and 4f10

5d (even parity). The experimental levels that are necessary for our calculations are
taken from the above discussed article of Meftah et al. [54]. There are 38 experimental
levels of the configuration 4f 11 and 58 of 4f 10 5d.

We followed the same general methodology for Er3+ as for trivalent Nd. When the
effective parameters are present in the fitting procedure, we obtain standard deviation
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Table 3.4: Comparison between the experimental [54] and computed values for the
levels of 4f 11 configuration of Er3+, with total angular momenta from J = 1.5 to 7.5
and energies up to 30000 cm−1, as well as at most five eigenvectors with non-zero
percentages. All energy values are in cm−1. The ”o” superscript, indicating the odd
parity, common to all terms, has been omitted.

Exp. This work J Eigenvectors with non-zero percentages

0 -1 7.5 4I 97.0 % 2K 3.0 %
6508 6531 6.5 4I 99.1 % 2K 0.8 % 2I 0.1 %
10172 10167 5.5 4I 82.4 % 2H2 14.8 % 4G 1.3 % 2H1 1.1 % 2I 0.4 %
12469 12429 4.5 4I 53.8 % 2H2 17.6 % 4F 12.3 % 2G1 7.7 % 2G2 4.8 %
15405 15413 4.5 4F 59.6 % 4I 25.3 % 2G1 8.7 % 2G2 4.8 % 4G 0.8 %

- 18755 1.5 4S 67.8 % 2P 18.6 % 2D1 7.9 % 4F 5.5 % 4D 0.2 %
19332 19343 5.5 2H2 48.3 % 4G 34.2 % 4I 15.0 % 2H1 2.1 % 2I 0.3 %

- 20690 3.5 4F 92.3 % 2G1 4.6 % 2G2 2.5 % 2F2 0.3 % 2F1 0.2 %
- 22294 2.5 4F 83.9 % 2D1 13.0 % 2D2 2.0 % 2F2 0.5 % 4D 0.2 %
- 22708 1.5 4F 62.6 % 2D1 20.1 % 4S 16.9 % 2P 0.4 %

24736 24736 4.5 4F 24.3 % 2G1 19.0 % 2H2 16.6 % 2G2 14.9 % 4I 12.4 %
26708 26739 5.5 4G 61.6 % 2H2 25.5 % 2H1 1.5 % 4I 2.4 %
27767 27738 4.5 4G 79.5 % 2H2 14.5 % 4I 4.7 % 2H1 0.8 % 2G2 0.4 %

- 27353 7.5 2K 90.9 % 2L 60.1 % 4I 3.0 %
- 28311 3.5 4G 41.6 % 2G1 26.6 % 2G2 23.3 % 4F 3.9 % 2F2 2.2 %

equal to 37 cm−1 for odd configuration 4f 11. For the even configuration 4f 10 5d, the
standard deviation is 124 cm−1. Both values are very satisfactory, since the magnitude
of ion-crystal interaction in such systems of crystal doped lanthanides is in order of ∼
100 cm−1.

Table 3.4, where we present all the eigenvector components with non-zero percent-
ages, shows a good agreement between experimental values and our computed values
for the ground configuration 4f 11 of Er3+. Compared to neodymium, the density of
ground-configuration levels is smaller for erbium. Table 3.4 also presents up to five
eigenvector components with non-zero percentages. Although not as good as for Nd3+

it shows that most of the levels of Er3+ are well described by the LS coupling scheme,
which is due to the larger spin-orbit interaction. The leading component for 8 levels
out of 15 is above 70%. On the other hand, for the levels with intermediate J-values
of 3.5 and 4.5 LS is less of a good coupling scheme. For the levels with calculated
energies of 24736 and 28311 cm−1, labeling is not trivial. For the former, the sum of
2G components gives the largest contribution of 33.9 %, and so we retain the label
2G9/2. For the latter, the sum of 2G components, equal to 49.9 % exceeds the 4G one:
therefore we retain the label 2G7/2 (see last column of Table 3.4). Table 3.5 shows
comparison between 15 theoretical and experimental energy levels of the first excited
configuration of Er3+. It shows a good agreement, although, contrary to the ground
configuration levels, the excited configuration levels are not very well described with
LS coupling scheme.
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Table 3.5: Comparison between the experimental [53] and computed values for the
first 15 levels of 4f 11 5d configuration of Er3+, with total angular momenta from J = 4.5
to 10.5, and at most the three leading eigenvectors with their percentages. All energy
values are in cm−1.

Exp. This work J Eigenvectors with non-zero percentages

73426 73380 7.5 6H 50 % 6I 28 % 4I 7 %
73426 73704 8.5 6I 68 % 6K 16 % 4K 8 %
74536 74496 6.5 6G 58 % 6H 23 % 6I 5 %
75983 76024 9.5 6K 51 % 4L 22 % 6L 19 %
78917 78915 6.5 6I 37 % 6G 26 % 6H 20 %
79154 79152 8.5 4K 37 % 6I 23 % 6K 22 %
79276 79206 10.5 6L 92 % 4M 6 % 4M 2 %
79362 79324 7.5 2K 0 % 6H 32 % 6I 30 %
79522 79470 9.5 4L 44 % 6K 40 % 6L 9 %
79743 79751 5.5 6G 41 % 6H 36 % 6I 11 %
82610 82663 8.5 2L 0 % 6L 38 % 4K 35 %
82922 82901 6.5 2I 0 % 6I 22 % 6K 20 %
83110 83137 5.5 6I 45 % 6G 29 % 6K 6 %
83377 83262 7.5 4I 40 % 6K 30 % 6L 9 %
83709 83745 4.5 6H 42 % 6G 23 % 6I 22 %
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Figure 3.3: Calculated nergy levels of the 4f 11 (red) and 4f 105d (blue) configurations
of Er3+ as functions of the electronic angular momentum J .

Overall we managed to precisely identify 39 levels with energy values up to ∼
69000 cm−1 for the ground configuration and 692 levels in the range of ∼ 73000-
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Table 3.6: Comparison between our reduced matrix elements [U (λ)]2 for selected
transitions of Er3+ and those of Ref. [62].

Transition [U (2)]2 [U (4)]2 [U (6)]2

Our Rep. Our Rep. Our Rep.

4I15/2 ↔ 4I13/2 0.0195 0.0195 0.1173 0.1173 1.4304 1.4316
4I15/2 ↔ 4I11/2 0.0275 0.0282 0.0002 0.0003 0.3983 0.3953
4I15/2 ↔ 4I9/2 0 0 0.1504 0.1733 0.0053 0.0099
4I15/2 ↔ 4F9/2 0 0 0.5581 0.5581 0.4643 0.4643
4I15/2 ↔ 4S3/2 0 0 0 0 0.2191 0.2191
4I15/2 ↔ 2H11/2 0.6922 0.7125 0.3973 0.4125 0.0865 0.0925
4I15/2 ↔ 4F7/2 0 0 0.1467 0.1469 0.6272 0.6266
4I15/2 ↔ 4F5/2 0 0 0 0 0.2222 0.2232
4I15/2 ↔ 2G9/2 0 0 0.0217 0.0189 0.2215 0.2256
4I15/2 ↔ 4G11/2 0.9391 0.9183 0.5381 0.5262 0.1215 0.1235
4I15/2 ↔ 2G7/2 0 0 0.0175 0.0174 0.1158 0.1163
4I15/2 ↔ 4G9/2 0 0 0.2380 0.2416 0.1293 0.1235

237000 cm−1 for the first excited configuration of Er3+. The computed levels of Er3+

are shown in figure 3.3. For being convenient and for the sake of simplicity, the graph
is limited to 140000 cm−1. The energy diagram shows in particular a large density in
the excited configuration, which is due to the four vacancies in the 4f shell.

As for Nd3+ we have also done the calculation of matrix elements ⟨n′l′∥rk∥nl⟩ for
Er3+, where nl = 4f and n′l′ = 5d. We obtain 0.96441 a0, -2.37459 a

3
0 and 14.24536 a50

for k = 1, 3 and 5, respectively, while the value calculated for this matrix element
by Cowan codes is 0.9644014 a0. We completed radial matrix elements calculations on
trivalent erbium as well.

Table 3.6 shows results for [U (λ)]2 matrix elements calculated with our eigenvectors,
in comparison with values reported in the article of Carnall [62]. It shows an overall
good agreement, except for [⟨4I15/2∥U (6)∥4I9/2⟩]2 that we find almost twice as small as
Carnall.

3.4 Results on Europium ion: Eu3+

Europium is a chemical element with the symbol Eu and atomic number 63. Europium
is a silvery-white metal and is the most chemically reactive, least dense, and softest of
the lanthanide elements. Europium was isolated in 1901 and named after the continent
of Europe. Its compounds tend to exist in a trivalent oxidation state under most con-
ditions. Europium can create a red or a blue luminescence depending on its oxidation
state. Relative to most other elements, commercial applications for europium are few
and rather specialized. Trivalent europium (Eu3+, sometimes also named Eu IV) with
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Table 3.7: Comparison between the experimental, computed and other theory [68]
values for the levels of 4f 6 configuration of Eu3+, with total angular momenta from
J = 0 to 6 and energies up to 30000 cm−1, as well as first three LS-coupling eigenvectors
with their percentages. All energy values are in cm−1.

Exp. This work Other theory J First three eigenvectors and percentages

0 -21 0 0 7F 93.4 % 5D1 3.5 % 5D3 2.8 %
370 357 380 1 7F 94.7 % 5D1 2.8 % 5D3 2.2 %
1040 1022 1040 2 7F 96.3 % 5D1 1.9 % 5D3 1.4 %
1890 1880 1880 3 7F 97.4 % 5D1 1.1 % 5D3 0.7 %
2860 2860 2830 4 7F 97.9 % 5F2 0.5 % 5D1 0.4 %
3910 3912 3860 5 7F 97.6 % 5G1 0.8 % 5G3 0.8 %
4940 4998 4970 6 7F 96.4 % 5G1 1.5 % 5G3 1.5 %
17270 17257 17830 0 5D3 45.4 % 5D1 30.4 % 3P6 6.7 %
19030 19015 19450 1 5D3 50.6 % 5D1 33.5 % 7F 4.7 %
21510 21489 22140 2 5D3 54.3 % 5D1 36.1 % 7F 2.9 %
24390 24360 25370 3 5D3 55.2 % 5D1 37.7 % 5D2 2.0 %

25257 6 5L 88.7 % 3K5 3.0 % 3K1 2.2 %
26314 2 5G3 40.6 % 5G1 36.0 % 5G2 16.7 %
26622 3 5G3 37.8 % 5G1 33.3 % 5G2 16.4 %
26814 4 5G3 33.2 % 5G1 28.5 % 5G2 17.8 %
26913 5 5G3 30.2 % 5G1 24.9 % 5G2 20.2 %
26926 6 5G3 26.9 % 5G2 22.7 % 5G1 20.4 %

27640 27574 28960 4 5D3 52.8 % 5D1 37.6 % 5F2 2.3 %

its partially filled f-shell attracted particular attention, since it exhibits interesting
optical properties which allow its application as an activator in diverse phosphors for
lightning in fluorescent light bulbs, fluorescent tubes, LEDs, and in displays, such as
plasma displays, LCD displays, and the older CRTs [67].

As stated before there are no experimental studies performed for trivalent Eu. In
the NIST database it is possible to find 12 levels for the ground state 4f 6 of Eu3+,
but almost all the levels were determined by interpolation or extrapolation of known
experimental values or by semi-empirical calculation [59]; their absolute accuracy is
reflected in the number of significant figures assigned to it [52]. This is because the
free-ion has not been analyzed yet. The situation is even more crucial for the excited
configuration 4f 5 5d, since there are no level information present in the database. As
in the case of Nd3+ and Er3+, the calculations have been done for two lowest electronic
configurations of Eu3+: 4f 6, of even parity, and 4f 55d, of odd parity.

The standard deviation for 4f 6 configuration is 28cm−1. Table 3.7 shows a good
agreement between these experimental values, our computed values and the theoretical
values calculated by Freidzon and coworkers [68]. Our values are closer to the exper-
imental ones in the 5D manifold. Note that a direct comparison with the article of
Ogasawara and coworkers [30] is difficult, as the authors do not give tables of energy
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Table 3.8: Manifolds of quintet (S = 2) and septet (S = 3) multiplicities of 4f 6

ground configuration of Eu3+. All energy values are in cm−1.

Energy Eigenvector

3895 |7F⟩

24561
√
0.576 |5D3⟩ -

√
0.406 |5D1⟩ -

√
0.019 |5D2⟩

28212 |5L⟩

28268
√
0.408 |5G3⟩ -

√
0.328 |5G1⟩ -

√
0.264 |5G2⟩

32821
√
0.652 |5H1⟩ -

√
0.348 |5H2⟩

35683
√
0.970 |5I2⟩ -

√
0.03 |5I1⟩

35822
√
0.755 |5F2⟩ -

√
0.245 |5F1⟩

39329 |5K⟩

42446
√
0.732 |5G2⟩ -

√
0.159 |5G1⟩ -

√
0.109 |5G3⟩

43892
√
0.803 |5D3 ⟩ -

√
0.165 |5D1⟩ -

√
0.031 |5D2⟩

45888 |5P⟩

47553
√
0.652 |5H2⟩ -

√
0.348 |5H1⟩

57251 |5S⟩

62588
√
0.970 |5I1⟩ -

√
0.030 |5I2⟩

64164
√
0.755 |5F1⟩ -

√
0.245 |5F2⟩

75177
√
0.513 |5G1⟩ -

√
0.483 |5G3⟩ -

√
0.004 |5G2⟩

76112
√
0.430 |5D1⟩ -

√
0.392 |5D3⟩ -

√
0.177 |5D2⟩

levels for Eu3+. In total, the 4f 6 configuration contains 296 levels with J values ranging
from 0 to 12. Table 3.7 also illustrates that the ground-configuration levels are well
described by the LS coupling scheme. Some levels are mainly characterized by a single
term, like 7F or 5L, but others are shared between several terms with the same L and
S quantum numbers, but different seniority numbers like 5D(1,2,3) or 5G(1,2,3), which
are used to indicate that these are coming from different parent terms of 4f 5. The
small deviations from LS coupling are due to the SO interaction, for example, a small
5D component in the 7F levels. The terms coupled by SO are such that ∆L = 0,±1
and ∆S = 0,±1.

Finally, Table 3.8 contains the energy value and eigenvector of the manifolds with
S = 2 and 3, calculated by setting to 0 the spin-orbit parameter ζf of Table 3.9. This
information is necessary to build our extension theory, see Eq. (4.16). Note that the
first excited manifold is a superposition of 5D3, 5D1 and 5D2 terms. But due to its
strong importance in Eu3+ spectroscopic studies, it will be denoted 5D in the rest of
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Table 3.9: Scaling factors (SFs) of ab initio parameters (see text), values of Eav

and fitted effective parameters Xfit (in cm−1) for two lowest configurations of Nd3+,
Er3+ and Eu3+, as well as all the fitted parameters for Eu3+. Here, for brevity, we use
F k(fd) as F k(4f, 5d), ζf as ζ4f and ζd as ζ5d.

Param. 4fw 4fw−15d
name

SF(Nd3+) SF(Er3+) SF(Eu3+) value (Eu3+) SF(Nd3+) SF(Er3+) SF(Eu3+) value (Eu3+)
Eav 24898.0 35577.1 65609.0 88430.0 133432.5 137500.0

F 2(ff) 0.738 0.754 0.781 88732.0 0.759 0.756 0.758 91269.9
F 4(ff) 0.825 0.919 0.950 67778.0 0.909 0.988 0.949 72029.8
F 6(ff) 0.773 0.898 0.800 41060.7 0.870 0.798 0.834 45638.6
α 19.1 -0.2 22.6 22.6 32.4 22.6
β -558.5 -204.7 -605.0 -605.0 -668.4 -605.0
γ 1690.5 55.8 292.2 292.2 1409.8 292.2
ζf 0.930 0.979 0.928 1313.6 0.947 0.995 0.971 1481.1
ζd 0.972 0.916 0.945 1290.0

F 1(fd) 1025.3 1370.6 0
F 2(fd) 0.726 0.776 0.751 23046.8
F 3(fd) 111.5 2330.4 0
F 4(fd) 1.128 1.124 1.126 16815.7
G1(fd) 0.762 0.653 0.707 9113.2
G2(fd) 2199 411.1 0
G3(fd) 1.005 0.838 0.922 10103.2
G4(fd) 2016.0 0 0
G5(fd) 0.874 0.680 0.778 6603.8

this research work.

However, as stated before, no experimental level has been reported for the 4f 55d
configuration, but the 4fw configurations (with 2 ≤ n ≤ 12) and the 4fw−15d ones
(with 3 ≤ n ≤ 13) possess the same energy parameters for the elements of lanthanide
series. In order to overcome this obstacle we use the calculation done on Nd3+ and
Er3+. For these two ions we calculate the so-called scaling factors, which are the ratios
between final and HFR value of parameters and are given in Table 3.9. Then, for Eu3+

we multiply the obtained scaling factors by the HFR parameters for Eu3+ to compute
the energies of 4f 5 5d, which will be described later in this section.

The parameters necessary for the calculations are given in Table 3.9. Table 3.9
shows a comparison of the final SFs (for ab initio parameters) or the fitted values (for
effective parameters), for the two lowest configurations of the above mentioned ions.
It also shows the parameter values used in the Eu3+ spectrum calculations. In the
4fw configurations, the least-square fitting calculations, performed for each element,
illustrates the regularities of SFs for F k and ζf parameters. Regarding effective param-
eters, the negative values of β are usual, while the small values of α and γ of Er3+ are
not. The regularities are also visible between 4f 25d and 4f 105d configurations of Nd3+

and Er3+ respectively. Therefore, we calculate our Eu3+ parameters by multiplying the
HFR values by the average SF obtained for Nd3+ and Er3+. The effective parameters
are those obtained for Nd3+, and the center-of-gravity energy of 4f 55d is calculated by
assuming that the difference Eav(4f

w−15d)− Eav(4f
w) increases linearly with w.
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Table 3.10: First 20 energy levels for 4f 55d configuration of Eu3+ with total angular
momentum J = 0, 1 and 2, as well as first three eigenvectors with their percentages.
As an example, (6H) 7H is used for brevity for 4f 5(6Ho)5d 7Ho, where the superscript
“o” indicates odd parity. All energy values are in cm−1.

Energy J First three eigenvectors and percentages

78744 2 (6H) 7H 57.6 % (6H) 5G 14.1 % (6F) 7H 14.0 %
79541 1 (6H) 5F 52.9 % (6H) 7G 20.7 % (6H) 7F 10.1 %
80396 2 (6H) 5F 41.2 % (6H) 7F 23.7 % (6H) 7G 12.0 %
81171 0 (6H) 7F 91.5 % (4G) 5D 3.1 % (4G) 5D 2.0 %
81493 1 (6H) 7F 65.0 % (6H) 7G 23.1 % (6F) 7G 4.3 %
82105 2 (6H) 7G 48.6 % (6H) 7F 34.1 % (6F) 7G 9.5 %
83096 1 (6H) 7G 32.1 % (6H) 5F 26.6 % (6H) 7F 17.4 %
83849 2 (6H) 7F 31.6 % (6H) 5F 18.1 % (6H) 5G 14.7 %
84398 1 (6F) 7G 73.0 % (6H) 7G 18.5 % (6F) 5F 3.9 %
84785 2 (6F) 7G 75.1 % (6H) 7G 14.8 % (6F) 5F 2.4 %
85060 2 (6F) 7H 47.4 % (6H) 5G 18.3 % (6H) 5F 10.9 %
86736 0 (6F) 7F 81.5 % (6F) 5D 7.4 % (6H) 7F 2.6 %
87056 1 (6F) 7F 82.2 % (6F) 5D 6.7 % (6H) 7F 2.4 %
87134 2 (6H) 5G 37.2 % (6H) 7H 28.1 % (6F) 7H 18.1 %
87679 2 (6F) 7F 80.9 % (6F) 5D 5.9 % (6P) 7F 2.2 %
89165 1 (6F) 7D 84.2 % (6F) 5P 7.8 % (4F) 5P 1.8 %
89220 2 (6F) 7P 78.1 % (6F) 7D 6.0 % (6F) 5P 5.0 %
90024 2 (6F) 7D 81.8 % (6F) 7P 7.6 % (6F) 5P 2.0 %
91979 0 (6F) 5D 61.5 % (6F) 7F 7.9 % (6P) 5D 5.9 %
93243 2 (6F) 5D 47.0 % (6F) 5G 16.9 % (6F) 5F 5.6 %

The 4f 55d configuration contains 1878 levels with J-values from 0 to 14, and ac-
cording to our calculations, with energies from 74438 to 243060 cm−1. The dominant
eigenvector of the 74438-cm−1 level is 4f 5(6Ho) 5d(7Ko

4) with 93.8 %. As examples,
Table 3.10 shows the 20 lowest energy levels with J = 0, 1 and 2, along with their
three dominant eigenvectors.

Table 3.10 shows that the levels of the 4f 55d configuration do not possess a strongly
dominant eigenvector (or a group of eigenvectors) characterized by the same L and S
quantum numbers. This means that, unlike the ground configuration, see Table 3.7,
the LS coupling scheme is not appropriate for the excited configuration. It can be
shown that the jj coupling scheme is not appropriate neither, because the spin-orbit
energy of the 5d electron is of the same order of magnitude as the electrostatic energy
between 4f and 5d electrons. The eigenvectors are therefore written in pair coupling,
i.e. linear combination of LS-coupling states.

In a given energy level, the L and S quantum numbers, which characterize the
parent term of the 4f 5 subshell, are common to the majority of the eigenvectors. With
increasing energy, the levels mainly possess 6Ho, 6Fo and 6Po characters; then come the
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Figure 3.4: Calculated energy levels of the 4f 6 (blue) and 4f 55d (red) configurations
of Eu3+ as functions of the electronic angular momentum J . The plot is restricted to
energy values between 0 and 100000 cm−1.

quartet and doublet parent terms. Indeed the SO interaction within the 4f 5 subshell
is too small to significantly mix different L and S of the 4f 5 subshell. By contrast,
the total L and S quantum numbers of the LS states differ at most by one unity.
For example, we notice the pairs 7H-5G (∆S = 1 and ∆L = 1), 7G-7F (∆S = 0
and ∆L = 1) and 5F-7F (∆S = 1 and ∆L = 0) for the level at 78744, 79541 and
80396 cm−1 respectively. In consequence, the mixing between quintet and septet states
of Eu3+ is mainly due to the SO interaction of the 5d electron. That is why we ignore
the influence of the 4f electrons to account for the Wybourne-Downer mechanism (see
Subsection 4.1.2 and Eq. (A.8)).

The resulting spectrum of Eu3+ is presented on Fig. 3.4, where the diagram is
limited to 100000 cm−1. We have done radial matrix elements calculation for Eu3+

too. As for Nd3+ and Er3+, we have calculated those integrals with a the Octave code.
We obtain 1.130629 a0, -3.221348 a

3
0 and 21.727152 a50 for k = 1, k = 3 and k = 5,

respectively, while the k = 1 value calculated by Cowan is 1.130618 a0. Figure 3.5
shows the wavefunctions for 4f subshell in the 4f 6 configuration and for 5d subshell
of 4f 55d configuration. We can see from figure 3.5 that 4f is located very close to the
nuclei, but the 5d is a little bit further from it.

We have also calculated the reduced matrix elements of the so-called doubly reduced
unit tensor operators of rank k of Eu3+, [U (k)]2, which appear in the standard JO theory
and are independent of the crystal host. This allows us to test the quality of our free-
ion calculation. In this respect, Table 3.11 shows a very good agreement between our
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Figure 3.5: Wavefunction as a function of distance from the nucleus for the 4f subshell
of 4f 6 configuration (in blue) and for the 5d subshell of 4f 55d configuration (in red).

values and those from the seminal article of Carnall [62]. The transitions present in
the table are those used in the fitting procedure with the data from Babu et al. [69],
which will be described in the next chapter.

In conclusion, this chapter was dedicated to spectroscopic calculations. In the
first section the methodology was described and the next sections was used to discuss
the calculation results on three trivalent lanthanides: Eu3+, Nd3+ and Er3+. For all
the elements, the standard deviation, that indicates the precision of calculated energy
levels, is smaller than 100 cm−1. The comparison between computed and experimental
results are very good. Our calculations illustrates that the ground-configuration levels
are well described by the LS coupling scheme, which is less the case for the excited
configurations.
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Table 3.11: Values of the reduced matrix elements of the squared unit-tensor operator
[U (λ)]2 (from the present work) for the transitions of Eu3+ present in Ref. [69], compared
with the values reported in Ref. [62] (Rep.).

Transition [U (2)]2 [U (4)]2 [U (6)]2

Our Rep. Our Rep. Our Rep.

7F1 ↔ 7F6 0 0 0 0 0.3772 0.3773
7F0 ↔ 7F6 0 0 0 0 0.1449 0.1450
7F1 ↔ 5D1 0.0026 0.0026 0 0 0 0
7F0 ↔ 5D2 0.0008 0.0008 0 0 0 0
7F1 ↔ 5D3 0.0004 0.0004 0.0013 0.0012 0 0
7F1 ↔ 5L6 0 0 0 0 0.0096 0.0090
7F0 ↔ 5L6 0 0 0 0 0.0147 0.0155
7F0 ↔ 5G2 0.0006 0.0006 0 0 0 0
7F0 ↔ 5D4 0 0 0.0013 0.0011 0 0



Chapter 4

Extension of Judd-Ofelt theory

The Judd-Ofelt (JO) theory has been successfully applied since almost 60 years, to
interpret the intensities of absorption and emission lines of crystals and glasses doped
with trivalent lanthanide ions (Ln3+). Despite its remarkable efficiency, this standard
JO theory cannot reproduce some of the observed transitions.

An example of demanding ions for JO theory are the praseodymium ions, for which
there are very often divergence between calculations and experimental observations.
Moreover sometimes negative values are obtained for Ωλ values.

S L J (No 0 ↔ 0) Parity

Electric Dipole ∆S = 0 ∆L ≤ 6 ∆J ≤ 6 opposite
∆J = 2, 4, 6 (J or J’ = 0)

Magnetic Dipole ∆S = 0 ∆L = 0 ∆J = 0, ± 1 same
Electric Quadrupole ∆S = 0 ∆L = 0, ±1, ±2 ∆J = 0, ± 1, ±2 same

Table 4.1: Selection rules in the standard Judd-Ofelt theory [29].

Europium is a very well known example to challenge the JO theory, too. In par-
ticular 7F0 ↔ 5DJodd ,

7FJodd ↔ 5D0 and 7F0 ↔ 5D0 are forbidden transitions because
of the selection rules shown in table 4.1. Although some of these transitions are of
magnetic nature, in some materials they do appear as electric dipole transitions, but
with low intensity. These transitions invoke the necessity for possible extension of
JO theory. Many extensions of the original model have been proposed to overcome
this drawback [35], including e.g. J-mixing [36–38], the Wybourne-Downer mecha-
nism [39, 40], velocity-gauge expression of the electric-dipole (ED) operator [41], rel-
ativistic or configuration-interaction (CI) effects [30, 42–45], purely ab initio intensity
calculations [46]. In this respect, Smentek and coworkers were able to reproduce ex-
perimental absorption oscillator strengths with a very high accuracy, with up to 17
adjustable parameters [47]. But in spite of all these improvements, even the most
recent experimental studies use the standard version of the JO theory [48,49].

In this chapter we present a modified version of the JO theory in which the prop-
erties of the free Ln3+ ions, i.e. energies and transition integrals, are computed using a

69
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combination of ab initio and least-square fitting procedures available in Cowan’s suite
of codes [24, 57] described in section 3.1. This allows us to relax some of the strong
assumptions of the JO theory. The line strengths appear as linear combinations of
three adjustable parameters which are only functions of the crystal-field potential, giv-
ing access to the local environment around the ion. We have modeled the extension in
two steps. In the first version of the extension, described in section 4.1, the spin-orbit
interaction of the ion is treated using perturbation theory, both in the ground and in
the first excited configurations. In section 4.2 we describe the second version of the
extension, where the spin-orbit interaction is fully taken into account in the ground
configuration. We include all the eigenvector components of a given level, while in the
previous version only the four leading ones were included. We also account for the
wavelength dependence of the host material refractive index, using the modified Sell-
meier equation. We test the validity of the two models on three trivalent lanthanides:
neodymium (section 4.3.2), erbium (section 4.3.3) and europium (section 4.1.3 and
4.3.1).

4.1 First extension of JO theory

The aim of the present section is to derive analytical expressions for the electric-dipole
(ED) line strengths, which enable to characterize absorption and emission intensities
of Ln3+-doped solids. Unlike the magnetic-dipole (MD) and electric-quadrupole (EQ)
transitions [28], the ED ones are activated by the presence of the host material, which
relaxes the free-space selection rules. We use similar hypotheses as in the original
JO model [31, 32]: the crystal-field (CF) potential slightly admixes the levels of the
ground configuration [Xe]4fw and those of the first excited configuration [Xe]4fw−15d,
where [Xe] denotes the ground configuration of xenon, dropped in the rest of the work.
In the resulting perturbative expression of the ED line strength, we assume that all
the levels of the excited configuration have the same energy. However, we relax some
of the original hypothesis, by accounting for the energies of the ground-configuration
levels, and by applying the closure relation less strictly. Unlike the standard and most
common extensions of the JO model, we do not introduce effective operators, like the
so-called unit-tensor operator U (k) [24], but rather work on the matrix elements of
the CF or ED operators. To calculate the line strength, we firstly use the second-
order perturbation theory (see subsection 4.1.1) and then the third-order perturbation
theory (see subsection 4.1.2), for which the free-ion spin-orbit operator is within the
perturbation.

The common starting point of those two calculations is the multipolar expansion
of the crystal-field potential,

VCF =
∑
kq

Akq

N∑
j=1

rkjC
(k)
q (θj, ϕj) ≡

∑
kq

AkqP
(k)
q (4.1)

where k is a non-negative integer and q = −k, −k + 1, ..., +k, (rj, θj, ϕj) are the
spherical coordinates of the j-th (j = 1 to N) electron in the referential frame cen-

tered on the nucleus of the Ln3+ ion, and C
(k)
q are the Racah spherical harmonics of
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rank k and component q, related to the usual spherical harmonics by C
(k)
q (θj, ϕj) =√

4π/(2k + 1) × Ykq(θj, ϕj), see for example Chap. 5 of Ref. [27]. In Eq. (4.1), the

quantities P
(k)
q represent the electric multipole moment as defined in Chaps. 14 and 15

of Ref. [24]. The simplest way of calculating the CF parameters Akq is to assume that
they are due to distributed charges inside the host material. More elaborate models
can be used, like distributed dipoles resulting in the so-called dynamical coupling [35],
or the vibration of the ion center-of-mass. This would affect the physical origin of the
Akq coefficients, but not the validity of the forthcoming results [31].

4.1.1 Second-order correction

In the theory of light-matter interaction, the ED approximation arises at the first order
of perturbation theory. Furthermore, the f-f transitions in Ln3+-doped solids are only
possible if the free-ion levels are perturbed by the CF potential. Therefore, using
the first-order correction on the ion levels to calculate the matrix element of the ED
operator gives in total a second-order correction.

We call |Ψi⟩ the eigenvectors associated with the ion+crystal system (without elec-
tromagnetic field). In the framework of perturbation theory, we express them as
|Ψi⟩ =

∑
m |Ψm

i ⟩, where m denotes the order of the perturbative expansion. In this
subsection, we consider that the 0-th, i.e. unperturbed, eigenvectors |Ψ0

i ⟩ are the free-
ion levels. Those belonging to the ground configuration nℓw (with nℓ = 4f for Ln3+

ions) are written in intermediate coupling scheme [24]

|Ψ0
i ⟩ =

∑
αiLiSi

cαiLiSi
|nℓw αiLiSiJiMi⟩ (4.2)

where Li, Si and Ji are the quantum numbers associated with the orbital, spin and total
electronic angular momentum respectively, whileMi is associated with the z-projection
of the latter. The free-ion levels of energy E0

i ≡ Ei are degenerate in Mi. Finally in
Eq. (4.2), α is a generic notation containing additional information like the seniority
number [24]. In the 4fw configuration of Ln3+ ions, the energy levels are usually well
described in the LS coupling scheme (see Table 3.7).

In the first excited configuration nℓw−1n′ℓ′, with (nℓ, n′ℓ′) = (4f, 5d) for Ln3+ ions,
we consider free-ion levels in pure LS coupling,

|Ψ0
t ⟩ = |nℓw−1αLS, n′ℓ′L′S ′J ′M ′⟩, (4.3)

where the overlined quantum numbers characterize the nℓw−1 subshell alone. As Table
3.10 shows, the LS coupling is not appropriate for the energy levels of the excited
configuration. But since, in our ED matrix element calculation, we will assume that
all the levels of the excited configuration have the same energy, the choice of coupling
scheme is arbitrary, and so we take the simplest one.

Now we express the ED transition amplitude D12 between eigenvectors |Ψ0
i ⟩+ |Ψ1

i ⟩
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(i = 1, 2), perturbed by the CF potential up to the first order,

D12 =
〈
Ψ1

1

∣∣P (1)
p

∣∣Ψ0
2

〉
+
〈
Ψ0

1

∣∣P (1)
p

∣∣Ψ1
2

〉
=

∑
t

[
⟨Ψ0

1|VCF |Ψ0
t ⟩

E1 − Et

〈
Ψ0

t

∣∣P (1)
p

∣∣Ψ0
2

〉
+
〈
Ψ0

1

∣∣P (1)
p

∣∣Ψ0
t

〉 ⟨Ψ0
t |VCF |Ψ0

2⟩
E2 − Et

]
, (4.4)

where the index p = 0 denotes π light polarization, and p = ±1 denote σ± polariza-
tions. We recall that ⟨Ψ0

1|P
(1)
p |Ψ0

2⟩ = 0, because in free space, there is no ED transition
between levels of the same electronic configuration. In what follows, we assume that
all the energies of the excited configuration are equal, Et ≈ En′ℓ′ (see subsection 4.1.3
for the choice of En′ℓ′). Rather than the center-of-gravity energy of the excited con-
figuration, Et can be regarded as the mean energy for which the coupling with both
levels 1 and 2 is significant.

Equation (4.4) contains matrix elements of P
(1)
p and VCF, itself function of P

(k)
q as

Eq. (4.1) shows. Being irreducible tensor operators, the matrix elements of P
(k)
q satisfy

the Wigner-Eckart theorem [27]

〈
Ψ0

i

∣∣P (k)
q

∣∣Ψ0
t

〉
=

CJiMi

J ′M ′kq√
2Ji + 1

〈
Ψ0

i

∥∥P (k)
∥∥Ψ0

t

〉
(4.5)

where CJiMi

J ′M ′kq = ⟨J ′M ′kq|J ′kJiMi⟩ is a Clebsch-Gordan (CG) coefficient, and ⟨Ψ0
i ∥P (k)∥Ψ0

t ⟩
the reduced matrix element given in Eq. (A.6), which is independent from Mi, M

′ and
q.

By contrast, the products of the kind ⟨Ψ0
i |P

(k)
q |Ψ0

t ⟩ ×⟨Ψ0
t |P

(1)
p |Ψ0

2⟩ are not irreducible
tensors; still we overcome this problem by expanding the product of two CG coefficients
given in [27], which yields

〈
Ψ0

1

∣∣P (k)
q

∣∣Ψ0
t

〉 〈
Ψ0

t

∣∣P (1)
p

∣∣Ψ0
2

〉
=
∑
λµ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1
J2M2λµ

×
{

k 1 λ
J2 J1 J ′

}〈
Ψ0

1

∥∥P (k)
∥∥Ψ0

t

〉 〈
Ψ0

t

∥∥P (1)
∥∥Ψ0

2

〉
(4.6)

where the quantity between curly brackets is a Wigner 6-j symbol. Equation (4.6)
is interesting because the only dependence on quantum numbers Mi is in the CG
coefficient CJ1M1

J2M2λµ
, while M ′ is absent. The equation appears as a sum of irreducible

tensors of rank λ and component µ coupling directly |Ψ0
1⟩ and |Ψ0

2⟩. The selection
rules governing this coupling are ∆J = |J2 − J1| ≤ λ ≤ J1 + J2 and M1 = M2 + µ.
Moreover, the triangle rule associated with Cλµ

kq1p imposes λ = k, k ± 1, µ = p+ q and
−λ ≤ µ ≤ +λ.

Applying the same reasoning for the third line of Eq. (4.4), we obtain the same
result as Eq. (4.6) except the permutations of the couples of indexes (k, q) and (1, p).
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Using the symmetry relation of CG coefficients Cλµ
1pkq = (−1)1+k−λCλµ

kq1p, we get to the
final expression for the transition amplitude

D12 =
∑

α1L1S1

cα1L1S1

∑
α2L2S2

cα2L2S2

∑
kq

Akq

∑
λµ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1
J2M2λµ

×
∑
J ′

({
k 1 λ
J2 J1 J ′

}
D(k1)

12,J ′ + (−1)1+k−λ

{
1 k λ
J2 J1 J ′

}
D(1k)

12,J ′

)
, (4.7)

where we have introduced the quantities

D(k1)
12,J ′ =

1

E1 − En′ℓ′

×
∑

αLS,L′S′J ′

〈
nℓw α1L1S1J1

∥∥P (k)
∥∥αLS, L′S ′J ′〉 〈αLS, L′S ′J ′ ∥∥P (1)

∥∥nℓw α2L2S2J2
〉

(4.8)

D(1k)
12,J ′ =

1

E2 − En′ℓ′

×
∑

αLS,L′S′J ′

〈
nℓw α1L1S1J1

∥∥P (1)
∥∥αLS, L′S ′J ′〉 〈αLS, L′S ′J ′ ∥∥P (k)

∥∥nℓw α2L2S2J2
〉

(4.9)

in which |αLS, L′S ′J ′⟩ is a condensed representation of |Ψ0
t ⟩, see Eq. (4.3). The super-

scripts (k1) and (1k) correspond to the order in which the tensor operators P (k) and
P (1) are written.

For eigenvectors |Ψ0
1,2⟩ belonging to the ground configuration and |Ψ0

t ⟩ belonging
to the first excited configuration, the 3-j symbol of Eq. (A.6) imposes that the CF
potential matrix elements are non-zero for k = 1, 3 and 5, which, according to Eq. (4.6),
imposes λ = 0, 1, ..., 6. By contrast, in the standard version of the JO theory,
λ = k + 1 = 2, 4 and 6. The λ = 0 contribution in Eq. (4.6) comes from the
dipolar term k = 1 of the CF potential; it is the only non-zero contribution when
J1 = J2 = 0, for instance the 5D0 ↔ 7F0 transition in Eu3+. Our odd-λ contributions
are responsible for the transitions like 5D0 ↔ 7F3,5 and 5D3 ↔ 7F0; they arise because
we consider distinct energies for levels 1 and 2, E1 ̸= E2, unlike the standard JO
theory. But since the energy difference |E2 − E1| is significantly smaller (although
not negligible) compared to En′ℓ′ − E1,2, those transitions are weak. Finally, since the
operators P (k) do not couple different spin states, the spin-changing transitions are
only due to the mixing of different spin states within the ground-configuration levels
|Ψ0

1,2⟩, see Eq. (4.2). In other words, Eq. (4.7) does not account for the so-called
Downer-Wybourne mechanism [39].

At present, we calculate the ED line strength SED =
∑

pM1M2
(D12)

2. Expressing
Eq. (4.7) twice gives many sums: in particular on p, M1, M2, k, q, µ and J ′, but also
k′, q′, µ′ and J ′′ (coming from the second expansion of D12). Focusing on the sum
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involving CG coefficients, we have∑
pqq′µµ′

Cλµ
kq1pC

λ′µ′

k′q′1p

∑
M1M2

CJ1M1
J2M2λµ

CJ1M1

J2M2λ′µ′

2J1 + 1
=
∑

pqq′µµ′

Cλµ
kq1pC

λ′µ′

k′q′1p

δλλ′δµµ′

2λ+ 1

=
δλλ′

2λ+ 1

∑
pqq′µ

Cλµ
kq1pC

λµ
k′q′1p =

δλλ′δkk′δqq′

2k + 1
,

(4.10)

where the Kronecker symbols come from the orthonormalization relation of CG coeffi-
cients. Plugging Eq. (4.10) into the line strength gives

SED =
∑

α1aL1aS1a

cα1aL1aS1a

∑
α2aL2aS2a

cα2aL2aS2a

∑
α1bL1bS1b

cα1bL1bS1b

∑
α2bL2bS2b

cα2bL2bS2b

∑
kq

|Akq|2

2k + 1

×
∑
λ

(2λ+ 1)
∑
J ′

({
k 1 λ
J2 J1 J ′

}
D(k1)

1a,2a,J ′ + (−1)1+k−λ

{
1 k λ
J2 J1 J ′

}
D(1k)

1a,2a,J ′

)
×
∑
J ′′

({
k 1 λ
J2 J1 J ′′

}
D(k1)

1b,2b,J ′′ + (−1)1+k−λ

{
1 k λ
J2 J1 J ′′

}
D(1k)

1b,2b,J ′′

)
. (4.11)

When expanded, the last two lines contain four terms: two of the kind∑
λ

(2λ+ 1)

{
k1 k2 λ
J2 J1 J ′

}{
k1 k2 λ
J2 J1 J ′′

}
D(k1k2)

1a,2a,J ′D(k1k2)
1b,2b,J ′′ =

δJ ′J ′′

2J ′ + 1
D(k1k2)

1a,2a,J ′D(k1k2)
1b,2b,J ′

(4.12)
where the sum on λ is actually the orthonormalization relation of 6-j symbols; and two
terms of the kind∑

λ

(−1)k1+k2−λ (2λ+ 1)

{
k1 k2 λ
J2 J1 J ′

}{
k2 k1 λ
J2 J1 J ′′

}
D(k1k2)

1a,2a,J ′D(k2k1)
1b,2b,J ′′

= (−1)k1+k2+J ′+J ′′
{
k1 J1 J ′

k2 J2 J ′′

}
D(k1k2)

1a,2a,J ′D(k2k1)
1b,2b,J ′′ (4.13)

where we use some properties of 6-j symbols (see Ref. [27], p. 305). The final expression
of the line strength is

SED =
∑

α1aL1aS1a

cα1aL1aS1a

∑
α2aL2aS2a

cα2aL2aS2a

∑
α1bL1bS1b

cα1bL1bS1b

∑
α2bL2bS2b

cα2bL2bS2b

∑
kq

|Akq|2

2k + 1

×
∑
J ′

[
D(k1)

1a,2a,J ′D(k1)
1b,2b,J ′ +D(1k)

1a,2a,J ′D(1k)
1b,2b,J ′

2J ′ + 1
+
∑
J ′′

(−1)1+k+J ′+J ′′

×
({

k J1 J ′

1 J2 J ′′

}
D(k1)

1a,2a,J ′D(1k)
1b,2b,J ′′ +

{
1 J1 J ′

k J2 J ′′

}
D(1k)

1a,2a,J ′D(k1)
1b,2b,J ′′

)]
. (4.14)

Equation (4.14) looks very different from the standard JO line strength SED =∑
λ Ωλ⟨Ψ0

1∥U (λ)∥Ψ0
2⟩, especially because it does not depend on λ, but depends on J ′
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and J ′′ (which are by contrast eliminated in the standard case). The index λ is still
relevant in the ED transition amplitudeD12, see Eq. (4.7), because it allows for deriving
the selection rules, but it disappears in the line strength, where we consider unpolarized
light and ions (that is to say sums on p, M1 and M2). In Eq. (4.14), the influence of
the CF potential are only contained in the three parameters Xk = (2k+1)−1

∑
q |Akq|2,

for k = 1, 3 and 5, which are q-averages of the square of Akq. In what follows, they
will be treated as adjustable parameters, whereas all the atomic properties have been
computed using atomic-structure methods.

4.1.2 Third-order correction

In this section, we address the influence of spin-orbit (SO) mixing in the excited config-
uration on spin-changing f-f transitions. Contrary to the ground configuration, the LS
coupling scheme is by far not appropriate to interpret the levels of the 4fw−15d config-
uration (see Table 3.10), because the electrostatic energy between 4f and 5d electrons
and the SO energy of the 5d electron are comparable. Therefore one can expect these
excited levels to play a significant role in the spin-changing transitions.

To check this hypothesis, we will investigate the effect of the SO Hamiltonian of
the ion HSO using perturbation theory. Namely we define a perturbation operator V
containing SO and CF interactions,

V = HSO + VCF . (4.15)

In consequence, the new unperturbed eigenvectors related to the ground configuration
are called manifolds, i.e. atomic levels for which the SO energy is set to 0. Those
manifolds |Ψ̃0

i ⟩, of energy Ẽi are degenerate in Mi as previously, but also in Ji, and
they are characterized by one Li and one Si quantum number,

|Ψ̃0
i ⟩ =

∑
αi

c̃αi
|nℓw αiLiSiJiMi⟩ . (4.16)

Some manifolds, like the lowest 5D one in Eu3+, are linear combination of different
terms having the same L and S but different seniority numbers, hence the sum on α
in Eq. (4.16). For the excited configuration, the unperturbed eigenvectors are those
given in Eq. (4.3).

The selection rules associated with HSO and VCF are very different. In particular,
HSO couples unperturbed eigenvectors of the same configuration, whereas the odd terms
of VCF couple configurations of opposite parities. Therefore, the influence of both SO
and CF potentials appears as products of matrix elements like ⟨Ψ̃0

1|HSO|Ψ̃0
i ⟩⟨Ψ̃0

i |VCF|Ψ0
t ⟩,

and we need to go to the third order of perturbation theory to calculate the transition
amplitude,

D12 =
〈
Ψ̃1

1

∣∣∣P (1)
p

∣∣∣Ψ̃1
2

〉
+
〈
Ψ̃2

1

∣∣∣P (1)
p

∣∣∣Ψ̃0
2

〉
+
〈
Ψ̃0

1

∣∣∣P (1)
p

∣∣∣Ψ̃2
2

〉
(4.17)

where the second-order correction of eigenvectors is given in Eq. (A.9).
By expanding Eq. (4.17), we get six terms corresponding to the six possible prod-

ucts of matrix element of HSO, P
(1)
p and P

(k)
q . Since HSO couples states of the same

configuration, unlike P
(1)
p and P

(k)
q , we distinguish two kinds of terms:
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• ⟨Ψ̃0
1|P

(k)
q |Ψ0

t ⟩ × ⟨Ψ0
t |HSO|Ψ0

u⟩ × ⟨Ψ0
u|P

(1)
p |Ψ̃0

2⟩ and ⟨Ψ̃0
1|P

(1)
p |Ψ0

t ⟩ × ⟨Ψ0
t |HSO|Ψ0

u⟩ ×
⟨Ψ0

u|P
(k)
q |Ψ̃0

2⟩, for which the SO interaction mixes levels of the excited configura-
tion, for example quintets and septets in Eu3+;

• ⟨Ψ̃0
1|HSO|Ψ̃0

i′1
⟩ × ⟨Ψ̃0

i′1
|P (k)

q |Ψ0
t ⟩ × ⟨Ψ0

t |P
(1)
p |Ψ̃0

2⟩,
⟨Ψ̃0

1|HSO|Ψ̃0
i′1
⟩ × ⟨Ψ̃0

i′1
|P (1)

p |Ψ0
t ⟩ × ⟨Ψ0

t |P
(k)
q |Ψ̃0

2⟩,
⟨Ψ̃0

1|P
(k)
q |Ψ0

t ⟩ × ⟨Ψ0
t |P

(1)
p |Ψ̃0

i′2
⟩ × ⟨Ψ̃0

i′2
|HSO|Ψ̃0

2⟩ and
⟨Ψ̃0

1|P
(1)
p |Ψ0

t ⟩ × ⟨Ψ0
t |P

(k)
q |Ψ̃0

i′2
⟩ × ⟨Ψ̃0

i′2
|HSO|Ψ̃0

2⟩. In those cases, the SO interaction

mixes manifolds of the ground configuration, for example in Eu3+, 7F with 5D,
5F and 5G.

Because HSO is a scalar, i.e. a tensor operator of rank 0, the application of the
Wigner-Eckart theorem gives a CG coefficients CJ ′M ′

JM00 = δJJ ′δMM ′ . So, applying the

Wigner-Eckart theorem to P
(k)
q and P

(1)
p as in Eq. (4.5), the product of three matrix

elements can be expanded in a similar way to Eq (4.6). For example,

〈
Ψ0

1

∣∣P (k)
q

∣∣Ψ0
t

〉 〈
Ψ0

t

∣∣HSO

∣∣Ψ0
u

〉 〈
Ψ0

u

∣∣P (1)
p

∣∣Ψ0
2

〉
=

∑
λµ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1

J2M2λµ

{
k 1 λ

J2 J1 J ′

}

×
〈
Ψ0

1

∥∥∥P (k)
∥∥∥Ψ0

t

〉 〈
Ψ0

t

∣∣HSO

∣∣Ψ0
u

〉 〈
Ψ0

u

∥∥∥P (1)
∥∥∥Ψ0

2

〉
(4.18)

where |Ψ0
t,u⟩ are two eigenvectors of the excited configuration with the same total

angular momentum J ′. The other products give similar results: the order of reduced
matrix elements in the last line is of course the same as the order of matrix elements
in the first line; if P

(1)
p appears before P

(k)
q , the 1 and k are interchanged in the CG

coefficients and 6-j symbols, like in Eq. (4.7).
Gathering the six matrix-element products, we can write the ED transition

amplitude as

D12 =
∑
α1α2

c̃α1
c̃α2

∑
kq

Akq

∑
λµ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1

J2M2λµ

×
∑
J′

[{
k 1 λ

J2 J1 J ′

}(
D(0k1)

12,J′ +D(k01)
12,J′ +D(k10)

12,J′

)
+(−1)

1+k−λ

{
1 k λ

J2 J1 J ′

}(
D(01k)

12,J′ +D(10k)
12,J′ +D(1k0)

12,J′

)]
, (4.19)

where the terms D(k1k2k3)
12,J ′ are built in analogy to Eqs. (4.8) and (4.9): the order of

the superscripts is the one in which the matrix element of operators appear (the “0”

standing for HSO). Firstly, the D(0k2k3)
12,J ′ are such that

D(0k2k3)
12,J′ =

1

∆k2k3

∑
i′1α

′
1β

′
1L

′
1

c̃α′
1
c̃β′

1

Ẽ1 − Ẽi′1

× ⟨α1L1S1J1 |HSO|α′
1L

′
1S2J1⟩

×
∑

αLS,L′
2

〈
β′
1L

′
1S2J1

∥∥∥P (k2)
∥∥∥αLS,L′

2S2J
′
〉〈

αLS,L′
2S2J

′
∥∥∥P (k3)

∥∥∥α2L2S2J2

〉
,(4.20)
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with

∆lm =

{
Ẽ1 − En′ℓ′ for (l,m) = (k, 1)

Ẽ2 − En′ℓ′ for (l,m) = (1, k).
(4.21)

In Eu3+ for example, for |Ψ̃0
1⟩ in the lowest 5D manifold and |Ψ̃0

1⟩ in the 7F manifold,

HSO couples |Ψ̃0
1⟩ to the 7L′

1 manifolds on the ground configuration (actually there is
only one: 7F). The quantum numbers (αLS,L′

2) characterize the septet levels (S2 = 3)
of the excited configuration. Similarly,

D(k1k20)
12,J ′ =

1

∆k1k2

∑
αLS,L′

1

〈
α1L1S1J1

∥∥P (k1)
∥∥αLS,L′

1S1J
′〉× ∑

i′2α
′
2β

′
2L

′
2

c̃α′
2
c̃β′

2

Ẽ2 − Ẽi′2

×
〈
αLS,L′

1S1J
′ ∥∥P (k2)

∥∥α′
2L

′
2S1J2

〉
⟨β′

2L
′
2S1J2 |HSO|α2L2S2J2⟩ , (4.22)

where ∆k1k2 is given by Eq. (4.21). Here the SO Hamiltonian couples the 7F manifold
to the various quintet manifolds, for instance 5D, 5F and 5G manifolds, since L′

2−L2 =

0, ±1. Finally, the terms D(k10k3)
12,J ′ correspond to the Wybourne-Downer mechanism [39]

where HSO couples the quintet and septet levels of the excited configuration. Namely,

D(k10k3)
12,J′ =

1

∆2
k1k3

∑
αLS

∑
L′

1L
′
2

〈
α1L1S1J1

∥∥∥P (k1)
∥∥∥αLS,L′

1S1J
′
〉

×
〈
αLS,L′

1S1J
′∣∣HSO

∣∣αLS,L′
2S2J

′〉 〈αLS,L′
2S2J

′
∥∥∥P (k3)

∥∥∥α2L2S2J2

〉
, (4.23)

where ∆k1k3 is given by Eq. (4.21).
If we assume that in Equations (4.20), (4.22) and (4.23), the spin-orbit interac-

tions are of the same order of magnitude (see Table 3.9), the main difference between
them comes from the energy denominator. The quantity ∆lm is on the order of sev-
eral tens of thousands of cm−1, while the differences Ẽ1 − Ẽi′1

and Ẽ2 − Ẽi′2
, which

are the energies between different manifolds of the ground configuration, are on the
order of several thousand cm−1. This means that Eq. (4.23) is, roughly speaking, one
order of magnitude smaller than Eqs. (4.20) and (4.22). This fact is really a precious
information that brings the third order correction.

Combining Eqs. (4.14) and (4.19), we can see that the ED line strength SED

now contains 36 terms, containing products of the kind D(k1ak2ak3a)
1a,2a,J ′ × D(k1bk2bk3b)

1b,2b,J ′′ . For
the 18 terms in which k and 1 appear in the same order in (k1ak2ak3a) and (k1bk2bk3b),
we have the same prefactor as the second line of Eq. (4.14), that is (2J ′ + 1)−1. For
the 18 other terms in which k and 1 appear in different orders, we have the prefactors
with the 6-j symbols as in the second and third lines of Eq. (4.14). Namely, we can
write the line strength as

SED =
∑

α1aα1b

c̃α1a c̃α1b

∑
α2aα2b

c̃α2a c̃α2b

∑
kq

|Akq|2

2k + 1

∑
κaκb

∑
J′

[
δ̃κa,(k1)δ̃κb,(k1) + δ̃κa,(1k)δ̃κb,(1k)

2J ′ + 1
D(κa)

1a,2a,J′D(κb)
1b,2b,J′

+
∑
J′′

(−1)
1+k+J′+J′′

({
k J1 J ′

1 J2 J ′′

}
δ̃κa,(k1)δ̃κb,(1k) +

{
1 J1 J ′

k J2 J ′′

}
δ̃κa,(1k)δ̃κb,(k1)

)
D(κa)

1a,2a,J′D(κb)
1b,2b,J′′

]
(4.24)
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where κa = (k1ak2ak3a) and κb = (k1bk2bk3b) designate the possible combinations of in-

dices k, 1 and 0. The quantity δ̃κ,(k1) = 1 if κ is a combination in which k appears firstly

and 1 secondly, namely κ = (k10), (k01), (0k1), and 0 otherwise. The quantity δ̃κ,(1k)
corresponds to the inverse situation. Similarly to Eq. (4.14), the line strength (4.24)
depends on the CF potential through the three parameters Xk = (2k+1)−1

∑
q |Akq|2,

which will be treated as adjustable in the next section.

4.1.3 Application to europium

Excited-configuration energy En′ℓ′

Equations (4.14) and (4.24) show that our f-f transition line strengths require the
reduced multipole moments of some free-ion transitions which only occur between
levels of the ground and excited configurations. In this subsection, we focus on the
electric-dipole (ED) free-ion transitions (k = 1), that are the most intense.

A widely used quantity for the discussion of spectral lines and transitions is the
absorption oscillator strength f12,ED, which is related to the ED line strength SED (see
equation (1.65)) through the expression

f12,ED =
2mea

2
0(E2 − E1)

3ℏ2(2J1 + 1)
SED, (4.25)

where E1 (E2) and J1 (J2) are the lower (upper) level’s energy and total angular
momentum, respectively. For ED free-ion transitions, the line strength of Eq. (4.25) is
the square of the reduced ED matrix element, SED = |⟨Ψ1∥P (1)∥Ψ2⟩|2.

Figure 4.1 shows the dependence of the logarithm of the weighted oscillator strengths
given by Eq. (1.66) on the energy of the excited-configuration level, for transitions in-
volving two levels of the ground configuration. The purpose of this discussion is to
determine En′ℓ′ . It shows that the energy band with strong transitions is rather nar-
row and lies in the range of 80000–100000 cm−1, while for larger excited-level energies,
the values of log(gf) for the level 7F1 (blue dots) decrease faster than those for 5D1

(red dots). Indeed, the total spin S of 4f 55d levels tends to decrease with energy
(see Table 3.10), the coupling with levels of the 4f 6 7F manifold drops faster than the
coupling with levels of the quintet manifolds. Therefore, in the framework of the JO
theory, the excited-configuration energy En′ℓ′ appearing in the denominators of the line
strengths, see Eqs. (4.14) and (4.24), is not the center-of-gravity energy of the excited-
configuration, but rather the strong-coupling window between 80000 and 100000 cm−1:
in practice, we take En′ℓ′ = 90000 cm−1. The free-ion ED reduced matrix elements for
k = 1, k = 3 and k = 5 that are described in section 3.4, are required for the JO
theory.
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Figure 4.1: Logarithm of the weighted ED oscillator strengths, see Eq. (1.66), as
functions of the energy of the excited-configuration levels, for transitions implying the
7F1 (blue) and 5D1 (red) levels of the ground configuration for Eu3+.

Least-square fitting procedure

Using the expression for the ED line strength, we now seek to minimize the standard
deviation between calculated and experimental line strengths

σ =

[∑Ntr

i=1 (Sexp,i − SED,i)
2

Ntr −Npar

] 1
2

, (4.26)

where Ntr is the number of experimental transitions included in the calculation and
Npar = 3 is the number of adjustable parameters. The experimental line strengths in
atomic units are given as function of the measured oscillator strengths fexp by

Sexp =
3(2J1 + 1)ℏ2

2mea20(E2 − E1)

nr

χED

fexp (4.27)

where nr is the host refractive index and is dependent on wavelength and χED = (n2
r +

2)/9 the local-field correction in the virtual-cavity model (see for example Ref. [70]).
It is convenient to give the so-called relative standard deviations, which is the ratio
σ/Smax between the standard deviation and the maximum value among the experi-
mental oscillator strengths. It is often expressed as a percentage.

After the fitting, using these optimal Xk parameters, we can predict line strengths,
oscillator strengths and Einstein A coefficients, for other transitions. Of course, that
procedure only involves transitions with a predominant ED character; magnetic-dipole
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Table 4.2: Transition labels, experimental oscillator strengths (× 10 −6) [69] and
ratios between theoretical and experimental line strength for the standard Judd-Ofelt
theory (r0), as well as for our second-order (r1) and third-order (r2) corrections of our
theory. The last lines present the absolute and relative standard deviations for each
model (see text).

Tr. label Exp. o.s. r0 r1 r2

5D4 ↔ 7F0 0.489 1.14 0.07 0.80
5G2 ↔ 7F0 0.523 0.82 0.59 0.28
5L6 ↔ 7F0 3.338 0.38 0.31 0.29
5L6 ↔ 7F1 1.383 0.17 0.33 0.29
5D3 ↔ 7F1 0.302 0.87 0.12 1.10
5D2 ↔ 7F0 0.333 1.41 1.66 0.88
5D1 ↔ 7F1 0.450 0.99 1.00 1.00
7F6 ↔ 7F0 1.232 1.83 1.81 1.83
7F6 ↔ 7F1 1.983 0.93 0.95 0.94

σ 0.266 0.252 0.258
σ/Smax 8.71 % 8.24 % 8.45 %

(MD) transitions like 5D0 ↔ 7F1 and 5D1 ↔ 7F0 are therefore excluded from the fit.
For them, the MD line strength SMD, oscillator strengths and Einstein coefficients can
be calculated from the free-ion eigenvectors.

Eu3+ in lithium fluoroborate

In order to validate our model with experimental data we have chosen the thorough
investigation of Babu et al. [69], who measured absorption oscillator strengths and
interpreted them with the standard JO theory. Their study deals with transitions
within the ground manifold 7F and between the ground and first excited manifold 5D
for Eu3+-doped lithium fluoroborate glass. In the latter case, the transitions involve a
change in spin, well known to challenge the standard JO theory. We have included 9 out
of the 14 transitions measured with the so-called L6BE glass in Table 3 of Ref. [69].
We have excluded three predominant MD transitions, 5D0 ↔ 7F1,

5D1 ↔ 7F0 and
5D2 ↔ 7F1, as well as the 5G4 ↔ 7F0 and 5D0 ↔ 7F0 for which we observe large
deviations between theory and experiment. They are probably due to the fact that the
5D0 and

5G4 are further from LS coupling than the other levels. In particular, the four
leading components represent 88.4 and 86.9 % of the total eigenvectors respectively.

Table 4.2 shows the results of our least-square calculations with the second- and
third-order theory, in comparison with the standard JO theory used in Ref. [69]. For
each transition, the table contains the experimental values of the oscillator strength
(×10−6) [69] and the ratios rn between the theoretical and experimental oscillator
strengths, where r0 is the ratio for the standard Judd-Ofelt theory, and the r1 and
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Table 4.3: Fitted parameters from the absorption oscillator strengths of Ref. [69].
The second column gives standard JO parameters Ω2,4,6; the third and fourth ones give
Xk obtained with Eqs. (4.14) and (4.24), respectively.

Std. JO 2nd-order 3rd-order

k Ωk+1 (10−20 cm2) Xk (a.u.) Xk (a.u.)

1 17.93 9.424× 10−7 1.441× 10−6

3 11.92 2.330× 10−5 9.916× 10−6

5 2.13 7.187× 10−8 6.406× 10−8

r2 are the ratios, respectively, for second and third order corrections of theory (see
subsection 4.1.1 and 4.1.2). For each model, we present the absolute σ and relative
standard deviations, taken by dividing Eq. (4.26) by the largest experimental line
strength Smax = 3.057 × 10−4 for the 7F6 ↔ 7F1 transition. Figure 4.2 gives a visual
insight into the results of Table 4.2, with histograms of the experimental absorption
oscillator strengths, and those resulting from the standard JO theory and our third-
order correction, plotted as functions of the transition wavelength.

Globally, the three methods have similar performances. That shows that the SO
interaction in the excited configuration has little effect, since it is included in the third-
order correction and not in the second-order one. Our third-order corrections better
describes transitions between 7F and 5D manifolds. However, it predicts the smallest
oscillator strength for 5G2 ↔ 7F0, owing to the proximity between the 5G3 and 5H1
manifolds, which puts into question the use of SO interaction as a perturbation. On
the other hand, the second-order correction fails to describe the 5D4 ↔ 7F0 transi-
tion. The three methods tend to underestimate the oscillator strengths for high-energy
transitions, where the refractive index nr is larger than 1.57.

The final fitted parameters are given in Table 4.3 for the standard JO calculation of
Ref. [69] (see Set B of Table 4), as well as our second-order correction (4.14) and third-
order correction (4.24). The orders of magnitude of the Xk are the same for the two
corrections. The parameter X3 are the largest, then the X1 are roughly one order of
magnitude smaller than theX3, and theX5 are roughly two orders of magnitude smaller
than X3. It is hard to make direct comparisons with the standard JO parameters given
in Table 4 of Ref. [69] (data set B); but we see that that the Ω6 parameter, responsible
of the 7F6 ↔ 7F0,1 and 5L6 ↔ 7F0,1 transitions just like X5 is respectively 9 and 6
times smaller than Ω2 and Ω4. To give more insight values of the parameter, we notice
that the quantities

√
Xk ×⟨nℓ|rk|n′ℓ′⟩ is the order-of-magnitude energy of the ion-field

interaction: in the third-order correction, they are respectively equal to 298, 2226 and
1207 cm−1 for k = 1, 3 and 5.

Magnetic-dipole transitions

Now that we have the Xk parameters, we can calculate oscillator strengths for tran-
sitions not present in the fit. In particular, we can predict the percentage of ED and
MD characters for the transitions having both characters [51,71–73], assuming that the
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Figure 4.2: Comparison between experimental [69] and theoretical oscillator strengths
of absorption, plotted as function of the transition wavelength (not at scale). The
transitions are labeled with the LS-term quantum numbers of the Eu3+ free ion.

total oscillator strength is equal to the sum fED+fMD. The ED part can be calculated
by inverting Eq. (4.27) and replacing the subscripts “exp” by “ED”, while the MD part
reads [28]

fMD =
2mea

2
0(E2 − E1)

3(2J1 + 1)ℏ2
nrSMD (4.28)

where the MD line strength is given with the formula 1.68.
Table 4.4 presents experimental and theoretical absorption oscillator strengths for

the transitions having in principle an ED and a MD character. The MD oscillator
strengths are calculated by multiplying the free-ion one computed with Cowan’s code
by the host refractive index nr, see Eq. (4.28). The table clearly shows that the
5D1 ↔ 7F1 transition is purely electric (at least 99.9 %), hence its inclusion in the fit.
The 5D2 ↔ 7F1 is also mainly electric, but to a lesser extent, roughly at 95 %. The
two others are mostly magnetic, but the experimental and theoretical MD oscillator
strengths significantly differ from each other. Still, the ED character looks larger for
the 5D1 ↔ 7F0 transition (4-9 %) than for the 5D0 ↔ 7F1 one (1-2 %).

The 5D0 ↔ 7F0 transition

Since the 5D0 ↔ 7F0 transition is forbidden by the selection rules of the standard
JO model, it has attracted a lot of attention (see Ref. [34] and references therein),
in order to understand its origin. Even though it is not forbidden in our model, we
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Table 4.4: Experimental absorption oscillator strengths, as well as ED and MD
theoretical ones, for transitions having both an ED and a MD character (numbers in
brackets are the powers of 10).

Tr. label fexp fth,ED fth,MD

5D1 ↔ 7F0 7.8(-8) 2.74(-9) 2.67(-8)
5D0 ↔ 7F1 5.7(-8) 7.70(-10) 3.93(-8)
5D1 ↔ 7F1 4.50(-7) 4.50(-7) 1.92(-11)
5D2 ↔ 7F1 2.48(-7) 1.74(-7) 4.96(-9)

had to exclude it in the fit, because of a strong discrepancy between the experimental
and our computed oscillator strength. With our optimal parameters Xk, we obtain an
oscillator strength 1.25× 10−7, that is 7.8 times larger than the experimental value. In
this paragraph, we investigate in closer details the possible origin of that discrepancy
and how to reduce it.

Firstly, as mentioned in Subsection 4.1.2, the sums in Eqs. (4.19) and (4.24) involves
quintet and septet manifolds of the ground configuration. But a closer look at the
eigenvectors shows that the 5D0 level contains 6.7 % of 3P6 character, see Table 3.7, as
well as 5.1 % of 3P3, while 7F0 contains 0.1 % of 3P6 character. These small components
are likely to contribute to the transition amplitude, and so they need to be accounted
for through a complete description of the free-ion eigenvectors.

The selection rules associated with Eq. (4.19) show merely the terms with k = 1 of
the CF potential can induce a transition of the kind (J1, J2) = (0, 0). This result seems
consistent because: (i) those terms are stronger in sites with low symmetries, and (ii)
observing the 5D0 ↔ 7F0 transition is an indication of Cnv, Cn or Cs point groups at
the ion site [74–76]. Although that transition is often very weak, it is unusually intense
in the β-diketonate, with the Eu3+ ion at a site with C3 symmetry [77]. Unusually
high intensities for the 5D0 ↔ 7F0 transition are also observed for Eu3+ in fluorapatite,
hydroxyapatite, oxysulfates, α-cordierite, mullite, etc.

Chen et al. listed some anomalous Eu3+ containing systems, in which very strong
ratios of I00

I01
are found, where I00 is the intensity of 5D0 ↔ 7F0 and I01 is the intensity of

5D0 ↔ 7F1 [78]. Several interesting features can be noted from their list: (i) anomalous
CF spectra are often found in those systems in which there are oxygen-compensating
sites; and (ii) all the systems with a ratio larger than 20 have Cs symmetry. The
most probable explanation for this is that Eu ions, which occupy the Cs position,
are surrounded by oxygen atoms from other host groups, and the CF is deformed by
O [79]. This could mean that the presence of oxygen atoms in the host material tends
to induce a rather strong 5D0 ↔ 7F0 transition. This is the case in the crystals studied
in many articles: for example, the composition of lithium borate of Ref. [69] is L6BE
= 39.5Li2CO3 + 59.5 H3BO3 + 1Eu2O3.

Another frequently invoked mechanism to explain the 5D0 ↔ 7F0 transition is J-
mixing [36–38], especially between levels of the lowest manifold 7F. However, because
this mixing is limited to 10 %, it cannot explain the strongest 0-0 transitions listed
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in Ref. [78]. Charge-transfer states are also likely to play a role in the 0-0 transition,
especially in hosts with oxygen-compensating sites around by which the CF tends to be
strongly deformed [79]. However, those two mechanisms are not present in our model.

We recall that, in our extension model the 7F0 ↔ 5D0 transition is allowed. With
Babu’s data [69], the ratio between the theoretical and experimental OSs is equal to
20 in the third-order correction and 7.8 in the second-order one.

Radiative lifetime of the 5D0 level

In addition to absorption oscillator strengths, our model also makes it possible to
calculate the ED Einstein coefficient for the spontaneous emission from level 2 to 1,

AED =
e2a20(E2 − E1)

3

3πε0ℏ4c3(2J2 + 1)
nrχEDSED, (4.29)

where c is the speed of light and SED is given by Eq. (4.24). We can also compute the
MD Einstein coefficients AMD, by multiplying the free-ion value calculated with Cowan
by n3

r; namely

AMD =
e2a20(E2 − E1)

3

3πε0ℏ4c3(2J2 + 1)
n3
rSMD (4.30)

where SMD is given by Eq. (1.68).
From them, we can deduce the radiative lifetime τ of a given level. In particular

for the 5D0 level, it reads

τ(5D0) =

(
6∑

J=0

AED(
5D0,

7FJ) + AMD(
5D0,

7F1)

)−1

. (4.31)

Transitions 5D0 ↔ 7FJ , where J = 1 to 6, are not included in our fit, and so are
considered as additional transitions, for which our program calculated line strengths
and Einstein coefficients. For the transition 5D0 ↔ 7F1, the total Einstein coefficient
is the sum of the electric and the magnetic parts, calculated using Cowan code. The
latter is found to be AMD(

5D0,
7F1) = 53.44 s−1. The sum of Einstein coefficients for

all other transitions, including the electric part of transition 5D0 ↔ 7F1, is 500.529
s−1. That sum includes the transition 5D0 ↔ 7F0, whose Einstein coefficient (4.29) is
calculated using the line strength deduced from the experimental oscillator strength
following Eq. (4.27). This yields the very small value of 0.029 s−1. The resulting
radiative lifetime is τ(5D0) = 1805 µs, which is close to the experimental value of
1920 µs reported in Ref. [69]. In principle, the relaxation limiting the lifetime is due
to radiative as well as nonradiative processes; however the latter are expected to be
unlikely for the 5D0 level [80], due to the large gap between the 5D0 and

7F6 levels, see
Table 3.7.

Although this version of the extension works good for Eu3+ and the oscillator
strengths are well described, the extension can be improved by incorporating all the
eigenvector components and account for the wavelength dependence of the refractive
index. The second version of extension will be described in the next section.
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4.2 Second extension of JO theory

Transition amplitude and line strength

In the previous version of extension, we present two different calculations: (i) where
the spin-orbit (SO) interaction within the 4fw−15d configuration is not included, and
(ii) where it is included. In the first version, described in section 4.1, the ED transition
amplitude D12 is calculated with the second-order perturbation theory in which the
perturbation operator is VCF. The unperturbed states are the free-ion levels of the
lowest configuration 4fw. Therefore the 4fw SO interaction is fully accounted for, as it is
part of the unperturbed Hamiltonian. In the second version, the perturbation operator
is VCF + HSO, and in order to catch the effect of both terms, D12 is calculated with
the third-order perturbation theory. Because HSO is accounted for in a perturbative
way both in the ground and the excited configurations, the unperturbed states are the
free-ion manifolds, i.e. levels without SO interaction. In other words, all the J levels
inside a given manifold, like 7FJ in Eu3+, are degenerate.

In the present version, we merge the two previous versions as follows. As before we
consider as unperturbed states the free-ion levels of the ground configuration written
in pair coupling, as in the first version of the extension:

|Ψ0
i ⟩ =

∑
αiLiSi

cαiLiSi
|nℓw αiLiSiJiMi⟩ , (4.32)

where i = 1, 2 describes the lower and upper levels, and Li, Si, Ji, Mi respectively de-
note the orbital, spin, total angular momenta and their z-projections. The indices αi,
standing for the seniority numbers, are sometimes necessary to distinguish manifolds
with the same Li and Si (for example 5D1, 5D2 and 5D3 in Eu3+). The cαiLiSi

coeffi-
cients are the eigenvector components of the ionic Hamiltonian in LS coupling scheme.
Because for Ln3+ ion in the lowest configuration, there is most often one dominant LS
component (with |cαiLiSi

|2 > 0.7), the free-ion levels are labeled with that component.
In the present work, we take all the components into account, whereas in the first
version we only took the four leading ones (due to practical reasons).

The transition amplitude D12 is now the sum of the second-order contribution
describing the bare influence of the CF, and a third-order contribution describing the
influence of the CF and excited-configuration SO interaction (the so-called Downer-
Wybourne mechanism). The expression of D12 becomes

D12 =
∑
t

[
⟨Ψ0

1|VCF|Ψ0
t ⟩⟨Ψ0

t |P
(1)
p |Ψ0

2⟩
E1 − Et

+
⟨Ψ0

1|P
(1)
p |Ψ0

t ⟩⟨Ψ0
t |VCF|Ψ0

2⟩
E2 − Et

+
∑
u

{
⟨Ψ0

1|VCF|Ψ0
t ⟩⟨Ψ0

t |HSO|Ψ0
u⟩⟨Ψ0

u|P
(1)
p |Ψ0

2⟩
(E1 − Et)2

+
⟨Ψ0

1|P
(1)
p |Ψ0

t ⟩⟨Ψ0
t |HSO|Ψ0

u⟩⟨Ψ0
u|VCF|Ψ0

2⟩
(E2 − Eu)2

}]
, (4.33)
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where |Ψ0
t,u⟩ = |nℓw−1αLS, n′ℓ′L′

1,2S
′
1,2J

′M ′⟩ are unperturbed LS states of the excited
configuration: namely nℓ = 4f and n′ℓ′ = 5d.

Performing the same angular-momentum properties as in the first version, we obtain
for the transition amplitude

D12 =
∑

α1L1S1

cα1L1S1

∑
α2L2S2

cα2L2S2

∑
kq

Akq

∑
λµ

(−1)J1+J2−λ

√
2λ+ 1

2J1 + 1
Cλµ

kq1pC
J1M1
J2M2λµ

×
∑
J ′

[{
k 1 λ
J2 J1 J ′

}(
D(k1)

12,J ′ +D(k01)
12,J ′

)
+ (−1)1+k−λ

{
1 k λ
J2 J1 J ′

}(
D(1k)

12,J ′ +D(10k)
12,J ′

)]
,

(4.34)

where Ccγ
aαbβ is a Clebsch-Gordan coefficient and the quantity between curly brackets

is a Wigner 6-j symbol. For the line strength SED =
∑

M1M2p
(D12)

2, one has

SED =
∑

α1aL1aS1a

cα1aL1aS1a

∑
α2aL2aS2a

cα2aL2aS2a

∑
α1bL1bS1b

cα1bL1bS1b

∑
α2bL2bS2b

cα2bL2bS2b

∑
kq

|Akq|2

2k + 1

×
∑
J ′

[
1

2J ′ + 1

(
D̃(k1)

1a,2a,J ′D̃(k1)
1b,2b,J ′ + D̃(1k)

1a,2a,J ′D̃(1k)
1b,2b,J ′

)
+
∑
J ′′

(−1)1+k+J ′+J ′′

×
({

k J1 J ′

1 J2 J ′′

}
D̃(k1)

1a,2a,J ′D̃(1k)
1b,2b,J ′′ +

{
1 J1 J ′

k J2 J ′′

}
D̃(1k)

1a,2a,J ′D̃(k1)
1b,2b,J ′′

)]
.

(4.35)

where D̃(k1k2)
12,J ′ = D(k1k2)

12,J ′ + D(k10k2)
12,J ′ , and D(k1k2)

12,J ′ and D(k10k2)
12,J ′ are given in Eqs. (8), (9)

and (23) of the first version.
Due to angular-momentum selection rules, these equations impose some conditions

on the indices:

• |ℓ− ℓ′| ≤ k ≤ ℓ + ℓ′ and ℓ + ℓ′ + k even, which gives k = 1, 3 and 5, since ℓ = 3
and ℓ′ = 2.

• k − 1 ≤ λ ≤ k + 1, which gives λ = 0 to 6. In the standard JO theory, one has
λ = k + 1.

• |J1 − J2| ≤ λ ≤ J1 + J2, which gives 0 ≤ |J1 − J2| ≤ 6.

• 0 ≤ |L1 − L2| ≤ 7.

• |S1 − S2| = 0 or 1.

Regarding the last rule, the second-order correction, given by the two first lines
of Eq. (4.33), imposes |S1 − S2| = 0. Therefore spin changing comes from the fact
the free-ion 4fw levels have different spin components Si, even though one is by far
dominant. The two last lines of Eq. (4.33) may in contrast given S1 − S2 = ±1 due to
the SO interaction within the 4fw−15d configuration.
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Wavelength dependence of refractive index

The refractive index of a material depends on the optical frequency or wavelength;
this dependence is called chromatic dispersion. Typical refractive index values for
glasses and crystals in the visible spectral region are in the range from 1.4 to 2.8, and
typically the refractive index increases for shorter wavelengths (normal dispersion).
The wavelength-dependent refractive index of a transparent optical material can often
be described analytically with Cauchy’s equation, which contains several empirically
obtained parameters. The most general form of Cauchy’s equation is

nr(λ) = A+
B

λ2
+
C

λ4
+ · · · , (4.36)

where nr is the refractive index, λ is the wavelength, A, B, C, etc. are coefficients that
can be determined for a material by fitting the equation to measured refractive indices
at known wavelengths.

The Sellmeier equation is a later development of Cauchy’s work that handles anoma-
lously dispersive regions, and more accurately models a material refractive index across
the ultraviolet, visible, and infrared spectrum. In its original and the most general form,
the Sellmeier equation is given by

n2
r(λ) = n2

0 +
m∑
i=1

Aiλ
2

λ2 −Bi

, (4.37)

where n0 is the refractive index in vacuum, λ is the wavelength, and Ai and Bi are
experimentally determined Sellmeier coefficients. The literature contains a great vari-
ety of modified equations which are also often called Sellmeier formulas. A somehow
general form, used in many papers dealing with the study of the intensities of Ln3+

ions in various crystals, is as follows:

n2
r(λ) = n2

0 +
m∑
i=1

Aiλ
2

λ2 −Bi

−
p∑

j=1

Cj

λ2
(4.38)

However, in the experimental studies with which we deal here, the authors use the
simple formula

n2
r(λ) = n2

0 +
Aλ2

λ2 −B
. (4.39)

obtained by setting m = 1 and p = 0.

4.3 JO extension application on trivalent lanthanides

The goal of this section is to check the effectiveness of the second version of the ex-
tension model. For that purpose we have chosen two sets of experimental data of
oscillator strengths (OS) for each ion: Eu3+, Nd3+ and Er3+. We start the discussions
from Eu3+ in order to make the transition from first extension results, discussed in sub-
section 4.1.3, to results of the second extension smooth. The calculations and results
for europium is discussed in subsection 4.3.1. Subsections 4.3.2 and 4.3.3 are dedicated
to discussion on application results for Nd3+ and Er3+, respectively.
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Table 4.5: Values of Judd-Ofelt parameters (in 10−20 cm2) and |Akq|2 (in a.u.) for
Eu3+ from the present work (Our), compared to values reported in the literature (Rep.).
The experimental oscillator strengths and Judd-Ofelt parameters from Babu et al. [69]
are from set B (with thermal corrections). Judd-Ofelt parameters are calculated with
the transition set from Kedziorski et al. [47].

X1 Ω2 X3 Ω4 X5 Ω6

(10−4 a.u.) (10−20 cm2) (10−5 a.u.) (10−20 cm2) (10−8 a.u.) (10−20 cm2)
Our Rep. Our Rep. Our Rep.

Eu3+ in Li fluoroborate [69] 1.816 18.73 17.96 1.898 12.58 11.92 6.882 2.253 2.13
Eu3+ in acetate [47] 0.7887 6.991 - 0.1317 8.326 - 0.1008 4.940 -

4.3.1 Application to europium

In addition to the free-ion ED reduced matrix element (k = 1), our model requires
those for k = 3 (octupole) and k = 5, which depend on the radial transition integral
⟨4f|rk|5d⟩, the calculations of which are recalled in section 3.4. We bring back those
values for the convenience: we obtain 1.130629 a0, -3.221348 a

3
0 and 21.727152 a50 for

k = 1, k = 3 and k = 5, respectively, while the k = 1 value calculated by Cowan is
1.130618 a0.

Eu3+ in lithium fluoroborate

Now we will benchmark our model with two sets of experimental data. The first one
comes from the thorough investigation of Babu et al. [69] which was used to test the
first extension of JO theory in subsection 4.1.3. In the article they measure absorption
oscillator strengths and interpret them with standard JO theory. As for the calculation
with the first version of the extension model, here as well, we focus on the oscillator
strengths given in their Table 3. Since we want to check the effect of the inclusion of
the wavelength dependence of the refractive index we need Sellmeier coefficients for
the L6BE glasses that are discussed by Babu et al.. We have found those coefficients
of the host refractive index from Adamiv et al. [81], where optical properties of borate
glasses have been measured.

Similarly to the calculations done in the first version, here we apply the first exten-
sion and the standard JO theory to 9 transitions out of 14. For standard JO calculation
we find a relative standard deviation (4.26) of 8.52 %. With our model (4.35), we find
the standard deviation to be 8.19 % by assuming a wavelength-independent refrac-
tive index. When we apply the Sellmeier equation (4.39), standard deviation drops
to 8.03 %. Therefore our model has slightly better performance, especially when we
include the dispersion in the host material.

We have also performed calculations for the JO parameters by investigating the
effect of dispersion on them. When including the wavelength-dependence, all of them
decrease: Ω2 from 25.79×10−20cm2 to 18.73×10−20 cm2, Ω4 from 17.88×10−20 cm2 to
12.58×10−20 cm2 and, finally, Ω6 from 3.015×10−20 cm2 to 2.253×10−20 cm2, mak-
ing the comparison with values reported in Babu et al. [69] better. The results are
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summarised in table 4.5. This table also presents the optimal fitted parameters Xk

of our extension in atomic units, that is to say (Eh/a
k
0)

2 with Eh the Hartree energy.
Performing a direct comparison between them and the Ωλ parameters is a bit tricky,
because they do not represent the same quantity, but it is detectable that they follow
similar trends, namely Ω2 > Ω4 > Ω6 and X1 > X3 > X5.

At present, we investigate the agreement between theory and experiment for each
transition included in the fit. From the data set of [69] we have excluded the three
transitions that have a significant MD character, namely 7F1-

5D0,
7F0-

5D1 and
7F1-

5D2,
but also 7F0-

5D0 (see subsections 4.1.3 and 4.3.1), and 7F0-
5G4 for which we obtain

a large discrepancy. For the 9 remaining transitions, the upper panel of figure 4.3
presents, as functions of the wavelength but not at scale, histograms of the experimental
and various calculated oscillator strengths, obtained with the standard JO model, our
third-order correction of the first version, and the current (second) version.

Our present model show equal or better performance than the standard JO model,
except for the 7F0-

5G2 transition. The same trend is observed between the present
model and the one of the first version, except for 7F0-

5D2 transition, see also Table 4.6.
Remarkably, the three models give significantly smaller oscillator strengths than the
experimental ones, for the transitions involving the 5L6 level. This could come from
an inaccuracy in the free-ion eigenvector of this level, underlying the three models.
However, such an overestimation of the OS is not visible on the bottom panel of figure
4.3 with another data set. Another possible explanation is that those transitions overlap
with ones involving another excited level close in energy.

Eu3+ in acetate

As a second data set we use absorption transitions from Kedziorski et al. [47], where the
authors present OSs for Eu3+ in acetate crystal. We only consider resolved transitions
between individual free-ion levels: namely we exclude those labeled 7F0-

5G4,5,6 and
7F0-

5H4,5,6. We also exclude the 7F1-
5D2 due to its strong MD character, as well as

the 7F0-
5D0 one due to strong discrepancy. Unlike for the borate glass, we could not

find Sellmeier coefficients in the literature for acetate crystal, and the calculations were
carried out under the assumption that the refractive index is constant and equal to
1.570.

Table 4.5 presents the optimal fitting parameters Xk and Ωλ. Comparison with
literature values of standard JO parameters was not possible because in the article of
Kedziorski et al. [47] these quantities are not discussed.

The calculations were carried out with 12 transitions included from Kedziorski et
al. [47]. The relative standard given by the JO model is 6.49 %, for the present model
it is 4.92 %, while the standard deviation from the first version is 6.21 %.

Most of the discussion in the article of Kedziorski et al. is based on the article of
Bukietynska et al. [83], where the transition 7F0 ↔ 5I6 is mentioned to have super-
imposed absorption bands with transition 7F0 ↔ 5H6. In order to avoid the possible
confusion in identification of the peaks we exclude this transition from our fitting pro-
cedure. Transition 7F0 ↔ 5I4 is also excluded because our model overestimates the
oscillator strength for this transition in comparison with the one mentioned in the



90 CHAPTER 4. EXTENSION OF JUDD-OFELT THEORY

Table 4.6: Transition labels and ratios between theoretical and experimental oscillator
strength for the third-order correction of the first version (noted as “Version I”) and for
the second version of the model (noted as “Present”) for Eu3+, when the experimental
data are taken from [69] (second and third columns), and [47] (two last columns). The
last line presents the relative standard deviations for each model.

Transition Eu3+ in Li fluoroborate (Babu [69]) Eu3+ in acetate (Kedziorski [47])
Label

Version I Present Version I Present

7F0 ↔ 7F4 0.82 1.36
7F0 ↔ 7F2 0.16 1.06
7F0 ↔ 5D4 0.80 1.10 0.88 1.35
7F1 ↔ 5D4 0.98 0.70
7F0 ↔ 5G2 0.28 1.25 0.83 2.16
7F0 ↔ 5L6 0.29 0.58 0.99 1.00
7F1 ↔ 5L6 0.29 0.31
7F0 ↔ 5D3 2.96 1.74
7F1 ↔ 5D3 1.10 0.94 1.18 0.98
7F0 ↔ 5D2 0.88 1.53 0.75 0.98
7F2 ↔ 5D2 1.11 0.83
7F1 ↔ 5D1 1.00 0.95 0.82 0.87
7F0 ↔ 5D2 0.26 1.44
7F0 ↔ 7F6 1.83 1.84
7F1 ↔ 7F6 0.94 0.94

σ/Smax 8.45 % 8.03 % 6.21 % 4.92 %
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Figure 4.3: Comparison between experimental (top panel: [69], bottom panel: [47])
and theoretical (3rd order correction of the first version (article I is article [82]) and
new versions) oscillator strengths of absorption, plotted as function of the transition
wavelength (not at scale). The transitions are labeled with the LS-term quantum
numbers of the Eu3+ free ion.

article.

A comparison between experimental and the OSs calculated with the standard JO
model, the one resulting from version I and the one of the present version are shown
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in the bottom panel of figure 4.3. The two insets are dedicated to the 7F0 ↔ 5L6 and
the 7F0 ↔ 5D3 transitions which are not well visible on the main plot. In accordance
with the relative standard deviations, our models systematically give better OSs than
the standard JO one, except for the 7F0 ↔ 5G2 transition. Note that the JO model
cannot describe the 7F0 ↔ 5D3 transition [29, 34], and that the present model gives
a closer OS than the model of version I. For some transitions our present extension
works better, while for others, the one of version I has better results, as shows Table
4.6. Note that in contrary to the calculations done with the first data set, the current
calculations give better results for for the transition involving the 5L6 level.

0-0 transition

As mentioned before the 5D0 ↔ 7F0 transition is strictly forbidden according to the
standard Judd–Ofelt theory. The occurrence of this transition is a well-known example
of the breakdown of the selection rules of the Judd–Ofelt theory, because this transition
is forbidden by the selection rule of the theory.

There have been many attempts for a possible explanations of this transition; in-
cluding the J-mixing or to mixing of low-lying charge-transfer states into the wave-
functions of the 4f 6 configuration.

In our models of extension I and of the present model, the 7F0 ↔ 5D0 transition is
allowed. With Babu’s data [69] in extension I, the ratio between the theoretical and
experimental OSs is equal to 20 in the third-order correction and 7.8 in the second-
order correction (see subsection 4.1.3). With the present model, it goes down to 4.4
with or without the host dispersion (the theoretical OS is respectively 6.995×10−8 and
7.00×10−8). This improved prediction is certainly due to the inclusion of all eigenvector
components in both levels, especially the 3P6 one, as mentioned in article [82]. Still,
it is important to mention that, with the data set of Ref. [47], the ratio is very large,
namely equal to 20.9 (the calculated OS is 3.13× 10−8).

4.3.2 Application to neodymium

Our ability to derive rather simple formulas for the OSs relies in particular on the
approximation that all the levels of the first-excited configuration, namely Et,u in
Eq. (4.4), are equal. In order to estimate the best possible value, we search for the
range in which the ED coupling involving various levels of the ground configuration is
strong. In figure 4.4, we plot the weighted free-ion absorption OSs in log scale, that is
the OS multiplied by the degeneracy factor 2J1 + 1 of the lower level. That quantity
is indeed proportional to the ED line strength and so to (⟨4f|r|5d⟩)2. For 4I9/2, the OS
shows strong values between 70000 and 80000 cm−1, and then it strongly drops. For
the two other levels, no such trend is visible. But because the measured transitions
in solids most often involve 4IJ levels, we select 75000 cm−1 for the energy of excited
configuration levels.
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Figure 4.4: Logarithm of the weighted ED oscillator strengths, as functions of the
energy of the excited-configuration levels, for transitions implying the 4I9/2 (blue dots),
2H9/2 (red squares) and 4F9/2 (green cross) levels of the ground configuration of Nd3+.

Nd3+ in SrGdGa3O7

For the purpose of testing the validity of the extension model we have chosen two
experimental data set for Nd3+. The first set of experimental oscillator strengths is
taken from Zhang et al. [84], where the authors describe the growth of Nd:SrGdGa3O7

(Nd:SGGM) laser crystal by Czochralski method [85] and thermal properties, absorp-
tion and emission spectra were measured. In that work, the host refractive index is
also measured at different wavelengths and fitted, using Sellmeier’s equation (4.38)
with m = p = 1, which will help in our further discussions since we intend to include
the Sellmeier coefficients too. In the article of Zhang et al. nine absorption transitions
were measured in σ and π polarizations, and the OSs were averaged with factors 2/3
and 1/3 to obtain unpolarized spectra. In our analysis we use the Tables IV and V of
Ref. [84], we take as upper levels those written in the table rows where the OSs are
written. In other words, we assume no overlapping transitions.

As for Eu3+ we calculate the JO parameters for Nd3+ as well. The results are shown
in table 4.7. Note that, although, our theoretical value of standard JO parameter Ω6

is different from the one reported by Zhang et al., the general tendency of Ω4 < Ω6

reported in many other articles [86–91], is conserved.

When 9 transitions are included, the relative standard deviation is 23.78 % for the
present model and 26.61 % for the standard JO one. Our model is slightly better,
but the relative standard deviation remains large. This is certainly because there are
several overlapping transitions that our code do not account for. In Ref [84], the
authors obtain a relative standard deviation of 5.4 %. Those deviations are also visible
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Table 4.7: Values of Judd-Ofelt parameters (in 10−20 cm2) andXk (in a.u.), calculated
by us (Our), compared with values reported by Zhang et al. [84] and Chanthima et
al. [86] (Rep.) for Nd3+.

X1 Ω2 X3 Ω4 X5 Ω6

(10−6 a.u.) (10−20 cm2) (10−6 a.u.) (10−20 cm2) (10−8 a.u.) (10−20 cm2)
Our Rep. Our Rep. Our Rep.

Nd3+:SrGdGa3O7 [84] 2.069 1.304 1.883 1.972 5.265 4.441 3.784 7.586 2.956
Nd3+:CaO-BaO-P2O5 [86] 5.035 1.547 1.09 1.859 2.850 1.97 1.702 2.388 3.37

on the JO parameters, as shows Table 4.7.

Detailed comparisons between experimental and calculated OSs are presented in
the top panel of figure 4.5 and the left column of Table 4.8. The figure gives a vi-
sual insight with histograms of the experimental OSs, and those resulting from our
standard JO model and our present extension. The performances of the two models
are similar. Table 4.8 shows the ratios between experimental OSs and calculated ones
with the present model. The agreement is very good for the intense 4I9/2 ↔ 4G5/2

transition, which according to Ref. [84] is isolated. This transition is usually referred
as hypersensitive transition (HST) since it strongly depends on the ion-ligand bond
environment and have influence on the magnitude of JO parameters. On the contrary,
the transition 4I9/2 ↔ 4D1/2 has a significantly larger experimental OS, certainly due
to superimposition with transition peaks with upper states like 4D3/2,

4D5/2 and 2I11/2
as described in the articles of Florez et al. [88], Singh et al. [92], in Ma et al. [89], or in
Sardar et al. [93]. We see the same phenomenon with the transition 4I9/2 ↔ 2H9/2: in
many articles [88, 92–95], this transition is reported to be superimposed with a tran-
sition with upper state of 4F5/2. Very often it is rather challenging to separate the
properties of superimposed absorption bands. This can explain the difference between
theoretical oscillator strengths (calculated with the standard and extended versions of
the theory) and the experimental values.

Nd3+ in CaO-BaO-P2O5

We did similar calculations with another set of absorption transitions, reported in
Chanthima et al., where the authors do luminescence study and Judd-Ofelt analysis
of CaO-BaO-P2O5 glasses doped with Nd3+ ions. For this glass we had difficulties
to find the Sellmeier parameters, consequently the refractive index is assumed to be
constant and equal to 1.556. When 11 transitions are included in the calculations,
the relative standard deviation for standard JO calculation is 8.86 %. The resulting
JO parameters are shown in table 4.8, with a comparison with values reported in the
article. The relative standard deviation with the present model is 8.16 %, a little better
than the JO one, and much better than the one obtained with the data of Zhang et
al..

The results of calculations for this data set are summarized in the bottom panel of
figure 4.5 and in the right part of Table 4.7. They confirm that the overall agreement
is better than for the data set of Zhang and coworkers [84], probably because there
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Table 4.8: Transition labels and ratios between theoretical and experimental oscillator
strength for Nd3+, when the experimental data for the calculation is taken from [84]
(left part) and [86] (right part). The last line presents the relative standard deviations
for each calculation.

Transition Nd3+:SrGdGa3O7 Nd3+:CaO-BaO-P2O5

Label Zhang [84] Chanthima [86]

4I9/2 ↔ 4F3/2 3.18 1.13
4I9/2 ↔ 2H9/2 0.37
4I9/2 ↔ 4F5/2 1.10
4I9/2 ↔ 4S3/2 1.49
4I9/2 ↔ 4F7/2 0.95
4I9/2 ↔ 4F9/2 2.13 0.98
4I9/2 ↔ 2H11/2 0.59
4I9/2 ↔ 4G5/2 1.00 1.00
4I9/2 ↔ 4G7/2 0.81
4I9/2 ↔ 4G9/2 0.57 0.50
4I9/2 ↔ 2G9/2 0.21
4I9/2 ↔ 4G11/2 0.30 0.11
4I9/2 ↔ 2P1/2 1.55 1.21
4I9/2 ↔ 4D1/2 0.80

σ/Smax 23.78 % 8.16 %



96 CHAPTER 4. EXTENSION OF JUDD-OFELT THEORY

Wavelength (in nm)

O
s

c
ill

a
to

r 
s

tr
e

n
g

th
 (

×
 1

0
-6

)

4
I9/2-

4
D1/2

4
I9/2-

2
P1/2

4
I9/2-

4
G11/2

4
I9/2-

4
G9/2

4
I9/2-

4
G5/2

4
I9/2-

4
F9/2

4
I9/2-

4
S3/2

4
I9/2-

2
H9/2

4
I9/2-

4
F3/2

360 433 474 527 588 685 749 809 873

0

2

4

6

8

10

12

14

Experiment

Our theory

Standard JO theory

Wavelength (in nm)

O
s

c
ill

a
to

r 
s

tr
e

n
g

th
 (

×
 1

0
-6

)

4
I9/2-

2
P1/2

4
I9/2-

4
G11/2

4
I9/2-

2
G9/2

4
I9/2-

4
G9/2

4
I9/2-

4
G7/2

4
I9/2-

4
G5/2

4
I9/2-

2
H11/2

4
I9/2-

4
F9/2

4
I9/2-

4
F7/2

4
I9/2-

4
F5/2

4
I9/2-

4
F3/2

431 463 473 514 526 581 628 683 747 804 874

0

1

2

3

4

5

6

7

Experiment

Our theory

Standard JO theory

Figure 4.5: Comparison between experimental (top panel: [84], bottom panel: [86])
and theoretical oscillator strengths of absorption, plotted as function of the transition
wavelength (not at scale). The transitions are labeled with the LS-term quantum
numbers of the Nd3+ free ion.

are less overlapping transitions. Still, the OSs of the 4I9/2 ↔ 2G9/2 and 4I9/2 ↔ 4G11/2

transitions are strongly underestimated by our model (as in Table 2 of Ref. [86]), which
may be due to the overlap with the upper level transitions at 22044 and 20005 cm−1,
respectively.
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Figure 4.6: Logarithm of the free-ion weighted ED oscillator strengths, as functions
of the energy of the excited-configuration levels, for transitions implying the 4I11/2 (blue
dots), 2H11/2 (red squares) and 4G11/2 (green cross) levels of the ground configuration
of Er3+.

4.3.3 Application to erbium

In this section we perform extension calculations on Er3+. The free-ion calculations
are described in detail in section 3.3.

We have also calculated the matrix elements ⟨n′l′|rk|nl⟩ for Er3+, where nl = 4f
and n′l′ = 5d. We obtain 0.96441 a0, -2.37459 a

3
0 and 14.24536 a50 for k = 1, 3 and

5, respectively, while the value calculated for this matrix element by Cowan codes is
0.9644014. Based on ⟨4f|r|5d⟩, we plot on Figure 4.6 the logarithm of the weighted
free-ion oscillator strengths as functions of the excited-configuration level energy, for
transitions involving three J = 11/2 levels of the ground configuration. It shows that
the energy band with strong transitions, in other words, the strong-coupling window
for Er3+ is between 115000 and 160000 cm−1. Therefore, as the excited-configuration
energy Et,u in Eq. (4.4), we do not take the center-of-gravity energy of the excited-
configuration, but a value of 145000 cm−1.

Er3+ in Lu3Ga5O12

To investigate the viability of our extension theory for Er3+. As a first set of OSs, we
take the article by Liu et al. [96], where the authors report growth, refractive index
dispersion, optical absorption and Judd-Ofelt spectroscopic properties of Er3+-doped
lutetium gallium garnet (Lu3Ga5O12) single-crystal. A fit of their measured refractive
index with Eq. (4.39) gives n0 = 1, A = 2.72452 and B = 0.0172907 µm2. Following
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Table 4.9: Transition labels and ratios between theoretical and experimental line
strength for Er3+, when the experimental data for the calculation is taken from [96]
and [97]. The last line presents the relative standard deviations for each calculation.

Transition Er3+:Lu3Ga5O12 Er3+:SrGdGa3O7

Label Liu [96] Piao [97]

4I15/2 ↔ 4I13/2 0.87 0.88
4I15/2 ↔ 4I11/2 0.90 1.52
4I15/2 ↔ 4I9/2 0.93
4I15/2 ↔ 4F9/2 0.80 0.97
4I15/2 ↔ 4S3/2 1.33 1.14
4I15/2 ↔ 2H11/2 0.85 0.84
4I15/2 ↔ 4F7/2 2.83 1.53
4I15/2 ↔ 4F5/2 1.29
4I15/2 ↔ 2G9/2 2.34 1.67
4I15/2 ↔ 4G11/2 1.10 1.09
4I15/2 ↔ 2G7/2 3.07
4I15/2 ↔ 4G9/2 0.93

σ/Smax 13.36 % 7.48 %

the discussion of Table 3.4, we cautiously examine the transition labels of the article.

The first challenge in this kind of calculations is to identify the lower and upper
levels of a given experimental transition based on the free-ion calculations. For the
transition labeled 4I15/2 ↔ 2H9/2, Liu et al. report a wavelength of 410 nm, which
corresponds to the energy level close to 245000 cm−1. In our free-ion calculations (see
Table 3.4) the dominant eigenvector component of this level is 24.3 % 4F, but its largest
LS term is 2G.

We exclude from the fit the overlapping transitions 4I15/2 ↔ 4F5/2,3/2, as well as
the transition 4I15/2 ↔ 4I9/2 because we obtain a very small ratio of ∼ 10−2 between
calculated and experimental OSs.

The relative standard deviation with the JO model is 11.49 %; the one with our
model is 13.36 %. The better performance of the standard JO model is visible for
each transition of the left panel of Figure 4.7. Regarding the fitted parameters, we
obtain negative values of X3 and Ω4, which is abnormal since all parameters should be
positive. The Ω4 value of Liu et al. [96], although positive, is small compared to the
other Ωλ. Their Ω2 and Ω6 strongly differ from ours.

Er3+ in SrGdGa3O7

The second set of experimental OSs, that we use to check the reliability of the extension
model, is taken from the article of Piao et al., where the authors describe optical and
Judd-Ofelt spectroscopic study of Er3+-doped strontium gadolinium gallium garnet
single-crystal [97]. For this second set of absorption data we did the calculations
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Figure 4.7: Comparison between experimental (top panel: [96], bottom panel: [97])
and theoretical oscillator strengths of absorption, plotted as function of the transition
wavelength (not at scale). The transitions are labeled with the LS-term quantum
numbers of the Er3+ free ion.

once, assuming the refractive index is constant and equal to 1.81014 for all wavelength
values, since it was impossible to find values for Sellmeier coefficients for the crystal
investigated in the article of Piao et al. [97].

The level identification for this data set was a bit delicate. This is especially the
case for transitions 4I15/2 ↔ 2H9/2 and 4I15/2 ↔ 2G9/2 as identified in the article of
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Table 4.10: Values of Judd-Ofelt parameters (in 10−20 cm2) for Er3+, compared with
values reported in Liu et al. [96] and Piao et al. [97].

X1 Ω2 X3 Ω4 X5 Ω6

(10−5 a.u.) (10−20 cm2) (10−6 a.u.) (10−20 cm2) (10−7 a.u.) (10−20 cm2)
Our Rep. Our Rep. Our Rep.

Er3+:Lu3Ga5O12 [96] 17.11 2.095 0.89 ± 0.16 -13.82 -0.5706 0.16 ± 0.10 10.71 4.296 1.85 ± 0.25
Er3+:SrGdGa3O7 [97] 19.17 2.792 2.46 11.97 0.8883 1.24 2.387 0.9541 0.51

Piao et al. However our free-ion calculations show that the first one should rather be
identified as 4I15/2 ↔ 2G9/2, and the second as 4I15/2 ↔ 4G9/2. This is confirmed by
the fact that the peak of the first transition is at 410 nm, which corresponds to the
energy level value of 24300 cm−1, having a first term of 4F with 24.3% and two terms
of 2G with 19.0% and 14.9% percentages, making the term 2G a dominant one with a
percentage of 33.9%. The identification is possible because this level has 2H term with
a 16.6% (see table 3.4).

We have a tricky situation for the second absorption band as well, which in the
article of Piao et al. is indicated to be at 370 nm, corresponding to the energy level of
∼27000 cm−1. Our free-ion calculations show that the first and dominant LS term for
this level is 79.5% 4G, but it has a 2G term with 0.4%, which makes the identification
somehow possible (see table 3.4). It our calculations, however, we will use the labeling
corresponding to our free-ion calculation results.

When 11 transitions were included the standard deviation with the JO model is
5.63 %, with our model it is 7.48 %. Table 4.10 shows results for JO parameters Ωλ, in
comparison with values reported in Piao et al. [97] as well as the fitting parameters Xk,
which are all positive, and follow the trend X5 < X3 < X1. Table 4.9 and figure 4.7
show, unlike the previous data set, a good match between the OSs of the 4I15/2 ↔ 4I9/2
transition.

In this chapter, two versions of the Judd-Ofelt theory extension are presented, and
then tested on lanthanide ions: first one on Eu3+ and version two on Eu3+, Nd3+

and Er3+. The version one not only shows good results on Eu3+, but it also gives
a simple physical insight into a transition that was forbidden by standard version of
Judd-Ofelt theory. The extension theory is then improved by adding more eigenvector
components and incorporating the wavelength dependence of the refractive index of
the host material. Compared to version I, the spin-orbit interaction within the first
excited configuration 4fw−15d is described in a perturbative way, whereas it is exactly
taken into account in the ground configuration 4fw. This new model shows better
results in the case of Eu3+: not only it allows for interpreting more transitions that the
standard Judd-Ofelt model, but it also reproduces more accurately the other oscillator
strengths. For the two other ions, in one data set, we obtain comparable performances.
But for one data set of Nd3+ [84], we observe large discrepancies that we expect to
come from overlapping transitions involving close excited levels. To solve this problem,
we will add in our code the possibility to treat such situations. In one data set of
Er3+ [96], we observe some negative fitting parameters, whereas they are supposed
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to be positive. That abnormal situation is all the more difficult to interpret that
the Ω4 parameter published in Ref. [96], though positive, is small compared to other
parameters. As a prospect, we plan to treat transitions with polarized light or between
individual ion-crystal sublevels. This will be possible in our model, because the only
fitted parameters are the crystal-field ones. This can open the possibility to model the
spectroscopic properties of Ln3+-doped nanometer-scale host materials [51]. The latest
version of the code with necessary input files are published on GitLab [98].





Part III

Neutral Lanthanides





Chapter 5

Experimental and theoretical study
of a metastable level of erbium

Up to now, I have dealt with trivalent lanthanide ions in solids. In the next two chap-
ters, I will focus on neutral lanthanide atoms in the context of ultracold gases. An
ultracold atom is an atom with temperature near absolute zero. Typical temperatures
of an ultracold gas is under 1µK. In order to reach such temperatures, a combination
of special techniques has to be used. As electromagnetic fields are used to probe the
structure of internal states and the extension of such techniques are developed for spec-
troscopy to allow control the internal degrees of freedom coherently, the laser cooling
and trapping techniques are used to do the same for external degrees of freedom of the
atom [99]. Ultracold atoms are typically made by first trapping and pre-cooling via
laser cooling in a magneto-optical trap. Further cooling is performed using evaporative
cooling in a magnetic or optical trap. The first magneto-optical trap (MOT) was cre-
ated by Raab et al. in 1987 [100], then, in 1997 the Nobel Prize was awarded to Steven
Chu, Claude Cohen-Tannoudji and William D. Phillips for development of methods
to cool and trap atoms with laser light. Four years after, in 2001, Eric A. Cornell,
Wolfgang Ketterle and Carl E. Wieman got the Nobel Prize for the achievement of
Bose-Einstein condensate in dilute gases of alkali atoms.

In order to have a greater control of ultracold atoms the interactions have to be
considered strongly. The interaction type is dependent on the atomic species that are
used. For example the alkali and alkaline-earth atoms interact via contact interac-
tions [11, 101–104]. Lanthanides open up new opportunities for interactions, because
of their large ground-state magnetic dipole moments [13]. This large magnetic mo-
ment leads to relatively strong dipole–dipole interactions. Lanthanides have multiple
valence electrons and this gives a possibility of a rich excitation spectrum. Moreover,
many lanthanides exhibit fine structure splitting even in their ground state. They
are interesting candidates also because they have both bosonic and fermionic isotopes.
f-d orbital transitions are of great interest, since they couple the ground level with
opposite-parity excited ones. So far, laser cooling has been demonstrated for elements
belonging to the right part of the lanthanide row, namely erbium [15, 16, 105, 106],
dysprosium [17,18,107,108], holmium [19], thulium [20,21] and europium [22], as well
as in erbium–dysprosium mixtures [23].

105
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In high precision measurements and when controlling and manipulating atoms on
a quantum level ultranarrow transitions are immensely important tools, the reason is
their small spectral linewidth, which allows the high-resolution detection of energy
shifts on very fine scales. Noteworthy examples are clock transitions in alkaline-
earth-like atoms [109, 110]. In addition, these narrow transitions allow the optical
manipulation and coherent control of ultracold atoms. It allowed the creation of ul-
tracold molecules via Raman state transfer [111–113], the preparation of the atoms
in different nuclear spin configurations [114], and the creation of spin-orbit coupled
quantum gases [115–117]. Moreover, with the coherent excitation the realization of
quantum computation and quantum simulations becomes possible, e.g., with neutral
atoms loaded into optical lattices [118,119].

As said before, lanthanides are multi-valence electron atoms and have a special
electron configuration, in which the 6s shell is filled, while the lower-lying 4f and
5d subshells are open (see chapter 2). This characteristic leads to a large variety of
transitions in these elements, whose with linewidths ranging from tens of µHz to tens
of MHz. In addition to that they possess a magnetic moment in their ground state,
which allows the combination of a narrow transition with a large magnetic moment.
This chapter is dedicated to erbium. It is a lanthanide, a rare-earth element, originally
found in the gadolinite mine in Ytterby, Sweden, which is the source of the element’s
name. A silvery-white solid metal when artificially isolated, natural erbium is always
found in chemical combination with other elements. The electronic configurations of
Er in its ground state reads as [Xe]4f 126s2, accounting for a xenon core, an open inner f
shell with a two-electron vacancy, and a closed s shell. The corresponding total angular
momentum is J=6, given by the sum of the orbital (L=5) and the spin (S=1) quantum
number.

For the specific case of erbium, there is a prediction of a narrow inner-shell tran-
sition, which has a change in the total angular moment of ∆J = +1 and a change in
the total spin of ∆S = 1. The transition involves the excitation of a 4f ground-state
electron to a 5d state. Experimental observation of the narrow transition and theo-
retical study of that state is the main objective of the collaborative work done with
the Austrian group of Francesca Ferlaino. The experimental findings were compared
with our semi-empirical model. The first section of this chapter includes discussions
on laser cooling and trapping of lanthanides atoms. Then I recall the experimental
observations by the group in Innsbruck, Austria and the theoretical study of energy
levels, extraction of the state lifetime. The chapter includes also calculation done to
find the atomic polarizability, revealing few magic-wavelength conditions.

5.1 Laser cooling and trapping of lanthanide atoms

Lanthanides are open-shell atoms, which means that they have a rich internal structure
with many ∆J = ±1 transitions for laser cooling. The electrons in the f shell have
a high orbital angular momentum L = 3. This partial occupancy can lead to ground
state configurations with large total angular momentum [13]. There are many conse-
quences of the large angular momentum of the ground state, such as the large magnetic
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Figure 5.1: Energy levels of erbium, showing 3 possible laser cooling transitions.
Adapted from [120].

moment, as well as the large number of accessible levels, and the resulting consequences
for interparticle scattering. In order to analyze the laser cooling possibilities for a given
atom, we need to analyze the energy spectrum and then the transition rates (or the
Einstein coefficients). Moreover, associated lifetime and the natural linewidth deter-
mines many important quantities. Another important step in cooling is to take care
of the optical leaks via spontaneous decay to other metastable levels instead of to the
ground state. This decay can interfere with laser cooling, because it permits atoms to
escape continued absorption and reemission process. This will lead to loss of atoms
and will be unfavourable for the laser cooling. Possible optical leaks can be identified
by discussing the selection rules for spontaneous emission and considering energy levels
below the upper level of the transition in question.

Figure 5.1 shows energy levels of Er and three possible transitions for laser cooling.
It is worth noting that this scheme is also valid for Dy, Ho, Tm. The ground state
with a term 3H6 is at 4f12 6s2 configuration, which has an even parity and its total
angular momentum is J = 6. It is preferential to consider transitions to odd parity
excited states that have J = 7 angular momentum, since J = 6 is the largest angular
momentum that the ground configuration can have and we are interested in transitions
with ∆J = 1 to avoid possible leakages. All the lower-lying states are accessible to
common lasers. The 4f11(4Io15/2)5d3/26s

2 (15
2
, 3
2
)o7 level at 11887.503 cm

−1 can be reached

with a laser operating at 841nm. The 4f12 (3H6) 6s 6p (3P o
1 ) (6, 1)

o
7 level at 17157.307
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cm−1 can be reached with a laser operating at 583nm and, finally, the 4f12 (3H6) 6s 6p
(1P o

1 ) (6, 1)
o
7 level at 24943.272 cm−1 can be reached with a laser operating at 401nm.

Generally speaking, while considering laser cooling, one has to start with a broader
transition (the blue one in the case of Er), which is used to slow down hot atoms,
then move to a narrower one (the yellow one), which is very common for reaching
smaller temperatures. This is the usual way for other elements as well, but rarely
the even narrower red one can be used too (see figure 5.1). Bellow the 841nm state
there is an even-parity level, but it involves a forbidden J value. There are also some
odd-parity levels, to which leakages are possible but they have forbidden J value or
are separated by a small energy. For the 583nm level the leaks are possible, since the
selection rule ∆J = 0,±1 are satisfied, but since these levels are very close and the
Einstein coefficient will be extremely small these leakages are not happening. This is
the case for 401nm level too. But as for the 583nm level, the available levels are either
very close to each other or, very high in energy. Bellow the 1299nm state there are two
even-parity levels with J values of 4 and 5, which forbids the electric dipole radiation.

In the current study we concentrate on the 1299nm opportunity, and for this we
have performed spectroscopic calculations, that will allow us to perform lifetime and
linewidth measurements. Those calculations are described in the next section. In the
case of anisotropic trapping given ultracold atoms confined in a dipole trap are submit-
ted to a potential with a depth, that is proportional to the real part of their dynamic
dipole polarizability. Its imaginary part is associated with photon scattering rate. The
response of non-spherically-symmetric atoms such as erbium to an electromagnetic field
depends on its polarization and on the magnetic sublevel MJ . In the general case of
an elliptically polarized light with unit vector of polarization e, the trapping potential
is the following:

U ell
MJ

(r; θp; θk;A;ω) = − 1

2ε0c
I(r)

{
Re[αscal(ω)] +Acosθk

MJ

2J
Re[αvect(ω)]

+
3M2

J − J(J + 1)

J(2J − 1)
× 3cos2θp − 1

2
Re[αtens(ω)]

}
, (5.1)

were ω and I(r) are the angular frequency and intensity of the electromagnetic wave,
ε0 denotes the vacuum permittivity and c is the speed of light. θp is the angle between
the light polarization and the z axis, while θk is the angle with the wave vector k and
A is the ellipticity parameter. In equation (5.1) αscal, αvect and αtens are, respectively,
the scalar, vector and tensor dynamic dipole polarizabilities, given by:

Re[αscal(ω)] =
1

3(2J + 1)

∑
β′J ′

(Eβ′J ′ − EβJ)|⟨β′J ′
∥∥P (1)

∥∥βJ⟩|2
(Eβ′J ′ − EβJ)2 − ℏ2ω2

Re[αvect(ω)] = 2
∑
β′J ′

X
(1)
JJ ′

ℏω|⟨β′J ′
∥∥P (1)

∥∥βJ⟩|2
(Eβ′J ′ − EβJ)2 − ℏ2ω2

Re[αtens(ω)] = −4
∑
β′J ′

X
(2)
JJ ′

(Eβ′J ′ − EβJ)|⟨β′J ′
∥∥P (1)

∥∥βJ⟩|2
(Eβ′J ′ − EβJ)2 − ℏ2ω2

, (5.2)
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where X
(k)
JJ ′ are angular factors given by:

X
(1)
JJ ′ = (−1)(J+J ′)

√
6J

(J + 1)(2J + 1)

{
1 1 1
J J J ′

}

X
(1)
JJ ′ = (−1)(J+J ′)

√
5J(2J − 1)

6(J + 1)(2J + 1)(2J + 3)

{
1 1 2
J J J ′

}
(5.3)

It is shown that polarizability is very sensitive to configuration-interaction coefficients
[121], hence the necessity to calculate the former as precisely as possible.

5.2 Description of calculations

The goal of our theoretical calculations is to improve configuration interaction parame-
ters and transition dipole moments in comparison with [122] and [123]. In the previous
studies, the 4f-5d integrals could not be considered as free parameters, because the fit
did not converge. It was constrained to the 6s-6p integral. The idea of improving the
energy fit, with more free CI parameters, can give possibilities for an improvement of
the eigenvector precision. Since for possible laser cooling techniques we need to have a
good data on energy levels and then Einstein coefficients, eigenvector precision is cru-
cial. Einstein coefficients necessary for discussion of laser cooling will be fitted using
FitAik package [124].

I have done the spectroscopic calculations of energy levels. The calculations done on
neutral erbium are based on the semi-empirical method provided by the COWAN suite
of codes [58] and the methodology is described in section 3.1. To recall briefly: ab initio
radial wavefunctions are computed with the relativistic Hartree-Fock (HFR) method
for all the subshells of the considered configurations. Then energy parameters are
calculated using those wave functions and these parameters, being the building blocks
of the atomic Hamiltonian, these parameters are adjusted in the next step so that
calculated eigenvalues are in a good agreement with the experimental ones. This last
step is a least squares fitting, where we use the experimental levels of the NIST database
as experimentally known levels. In the NIST database the main source is Martin et
al. [59]. With the help of wave functions it is possible to calculate the mono-electronic
transition integral, that have the following form ⟨nℓ|r|n′ℓ′⟩ =

∫
Pnℓ(r)rPn′ℓ′(r)dr and

are pivotal in calculations of Aik Einstein coefficients for spontaneous emission.
To calculate the polarizability of this excited state, a ground state data set is

also required. During the calculations the even electronic configurations are separated
into three groups: 4f12 6s2 + 4f12 5d 6s + 4f11 6s2 6p, 4f12 6s2 + 4f11 5d 6s 6p and
4f12 6s2 + 4f12 6s 7s + 4f12 6s 6d + 4f12 6p2. Each group is associated with a different
least-square fitting calculation with experimental levels belonging to the corresponding
configurations. The calculation is carried out using the Kramida version of the COWAN
codes [57].

Compared to Refs. [122,123], the odd-parity level calculations have been improved
by adding some high-lying experimental energy levels that were previously excluded
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from the fitting procedure, as well as incorporating a larger number of free configuration-
interaction (CI) parameters into the fitting procedure. The following configurations are
included in the calculation: 4f11 5d 6s2, 4f11 5d2 6s, 4f12 6s 6p, 4f12 5d 6p and 4f13 6s.
The latter is included for technical purpose, but does not play a physical role. The
fitting procedure is performed using a total of 30 free groups of parameters and 219
levels. The calculation results on level values can be found in table 5.1, where we
present few energy levels smaller than 30000 cm−1 for 4f11 5d 6s2, 4f11 5d2 6s, 4f12

6s 6p, and 4f13 6s configurations of neutral erbium and their comparison with NIST
database values [52]. Table also contains theoretical Lande-g factors compared with
experimental ones (if possible) and the dominant terms with their percentages. In the
table we use the following abbreviations: 4f12 6s2 = A-6s2, 4f11 5d 6s2 = B-ds2, 4f11

5d2 6s = B-ds2 and 4f12 6s 6p = A-s6p.

Table 5.1: Comparison between the experimental and computed values for some levels
of neutral Er. The levels are chosen such that the table includes energy levels from
each configuration. All energy levels are in cm−1.

Conf. J Energy Landé g Dom. term

Theory Exp. Theory Exp.

A-6s2 4 5034 5035 1.141 1.147 3F 63%
A-6s2 4 10755 10751 0.944 0.936 3H 62%
A-6s2 3 12378 12378 1.084 1.065 3F 100%
A-6s2 2 13099 13098 0.740 0.750 3F 80%
B-ds2 6 7190 7177 1.305 1.302 5G 77%
B-ds2 9 8610 8621 1.137 1.150 3L 46%
B-ds2 10 9652 9656 1.197 1.194 5L 95%
B-ds2 7 11880 11888 1.150 1.153 3I 48%
B-ds2 5 15228 15185 1.172 1.160 3G 54%
A-s6p 6 16337 16321 1.239 1.220 5G 52%
A-s6p 7 17135 17157 1.189 1.195 5I 40%
A-s6p 8 18325 18335 1.250 1.250 5I 98%
B-ds2 4 19014 19048 1.014 1.010 3G 28%
A-s6p 6 19349 19327 1.175 1.180 5H 31%
B-d2s 6 20200 20166 1.475 1.485 7F 78%
B-ds2 7 21168 21168 1.061 1.065 3K 33%
B-d2s 8 21935 21979 1.294 1.295 7H 35%
A-s6p 3 22277 22269 1.065 1.065 3G 16%
B-d2s 6 22556 22450 1.375 1.360 7F 36%
B-d2s 11 23455 23473 1.216 1.215 7M 49%
A-s6p 6 23842 23831 1.247 1.250 5G 56%
A-s6p 5 24061 24083 1.123 1.128 3G 45%
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Table 5.1 Continued

Conf. J Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-ds2 3 24689 24713 0.974 0.970 3G 48%
B-d2s 11 24759 24754 1.241 1.235 7L 64%
A-s6p 7 24968 24943 1.146 1.160 3I 57%
B-ds2 5 25195 25163 1.010 1.010 3I 25%
B-d2s 10 25311 25319 1.194 1.190 7L 29%
A-s6p 7 25591 25598 1.166 1.155 3I 39%
B-ds2 4 25800 25754 0.981 0.955 3H 24%
B-d2s 8 26035 26093 1.334 - 7H 58%
A-s6p 5 26240 26199 1.069 1.045 5H 49%
B-ds2 3 26606 26585 1.346 1.360 5D 31%
B-d2s 7 27367 27307 1.245 1.225 7H 27%
A-s6p 4 27791 27777 1.039 1.020 5I 15%
B-d2s 4 27946 28083 1.060 1.075 7F 9%
B-ds2 7 28119 28018 1.072 1.080 3K 23%
B-ds2 3 28271 28290 1.155 1.140 5F 25%
A-s6p 2 28848 28790 0.625 0.630 5G 34%
B-d2s 6 29054 29153 1.198 1.175 7H 13%
B-ds2 2 29099 29080 0.812 0.830 5G 42%
A-s6p 2 29060 29595 1.171 1.170 5G 34%
B-d2s 6 29655 29561 1.115 1.175 3I 8%
B-d2s 8 29727 29805 1.132 - 5I 11%
A-s6p 4 29861 29974 1.090 - 5H 19%
A-s6p 1 29927 29940 0.260 0.270 5F 63%

The standard deviation between experimental and calculated energies is equal to
53 cm−1, which is satisfactory for a semi-empirical calculation. Tables 5.2 and 5.3 show
non configuration-interaction (non CI) parameters, constraints and the scaling factors
of these parameters (fX = Xfit/XHFR) for odd parity configurations of neutral Erbium.
The 4f13 6s configuration is not included here because we do not have experimental
levels for the 4f13 6s configuration. The flags for energy parameters are set according
to the article [122], the configuration-interaction (CI) parameter flags are set to be free
progressively by groups (depending on the nature of the interactions). Table 5.4 shows
configuration-interaction (CI) parameters, constraints and the scaling factors of these
parameters.

Then, the ⟨nl|r|n′l′⟩ transition integrals were adjusted, especially the transitions
involving levels of ground state configurations [Xe]4f12 6s2. For this purpose the Aik
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Table 5.2: Parameters, constraints (const.), fitted parameters and their scaling factors
(fX = Pfit / PHFR) for 4f11 5d 6s2 and 4f11 5d2 6s configurations of neutral Er. All
parameters are in cm−1.

Parameter P Constr. Pfit fX Pfit fX

4f11 5d 6s2 4f11 5d2 6s

Eav 46412 65531.6
F2(4f 4f) r1 98177.6 0.761 98004.7 0.761
F4(4f 4f) r2 69264 0.856 69134 0.856
F6(4f 4f) r3 50068 0.861 49972.2 0.861
α r4 20 20
β fix -650 -650
γ fix 2000 2000
F2(5d 5d) 21668.3 0.663
F4(5d 5d) 17208.2 0.831
ζ4f r5 2389.8 0.984 2387.8 0.984
ζ5d r6 788.2 0.831 652.6 0.831
F1(4f 5d) r7 741.7 741.7
F2(4f 5d) r8 15711.7 0.775 13597.8 0.775
F4(4f 5d) r9 10558.2 1.149 8970.9 1.149
G1(4f 5d) r10 5054.1 0.580 4325.8 0.580
G2(4f 5d) r11 1717.4 1717.4
G3(4f 5d) r12 6400.3 0.928 5422.6 0.928
G4(4f 5d) r13 1630.6 1630.6
G5(4f 5d) r14 3809.7 0.732 3216.7 0.732
G3(4f 6s) r15 1254.3 0.844
G2(5d 6s) r17 11696.8 0.609

coefficients of Ref. [125] are used as experimentally known values. The goal is to
minimize the standard deviation on Einstein coefficients, but the fact that the latter is
highly sensitive to ⟨4f |r|5d⟩ makes the finding of such an integral difficult, especially
since it was not possible to set free that integral. In order to overcome that issue a
scaling factor with respect to the HFR integral equal to f4f,5d = 0.95 was chosen based
on calculation done on Dy [126] and Ho [121]. After the fitting procedure, ⟨6s|r|6p⟩
is found to be f6s,6p = 0.768. The polarizability of the excited level also depends on
⟨5d|r|6p⟩, for which we took a scaling factor of 0.8.

With this optimized set of energies and transition integrals, we have calculated the
polarizabilities of the ground and excited states using the sum-over-state formula com-
ing from second-order perturbation theory. From our theory we obtain a wavenumber
of νth = 7729.3 cm−1, a factor of gJ = 1.2622, and an excited-state lifetime of τth =
602 ms. For νth and gJ we find satisfactory agreement with the values reported from
the experiment. Note that, by included least-square fitted energy parameters in the
theoretical calculations, we obtain better agreement with the experimental data. Our
theoretically obtained result of 602 ms for the lifetime is about a factor of 3 longer
compared to the experimentally measured value. This discrepancy comes from the fact
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that the underlying transition dipole moment involves small components in the eigen-
vector associated with the excited level. Those small components are more difficult to
optimize, as they are less affected by the least-square fitting procedure on energies.

The results on calculated polarizability α (in a.u.) is shown in figure 5.4 in a broad
wavelength range from 350 nm to 1500 nm. The polarizability spectrum becomes very
dense at lower wavelengths. A very important ingredient for the coherent control of
two two-level system is the atomic polarizability of each state, as well as the ratio
between the polarizability of each state.

The bottom panel of figure 5.4 shows interesting regions of wavelengths where the
polarizabilities of the excited and ground state cross, which means that atoms in both
states will experience the same optical trapping potential. These specific values of the
wavelength produce so called magic conditions.

Table 5.3: Parameters, constraints (Constr.), fitted parameters and their scaling
factors (fX = Pfit / PHFR) for 4f

12 6s 6p and 4f12 5d 6p configurations of neutral Er.
All parameters are in cm−1.

Parameter P Constr. Pfit fX Pfit fX

4f12 6s 6p 4f12 5d 6p

Eav 36278.6 60020.5
F2(4f 4f) r1 92716.3 0.761 92496.8 0.761
F4(4f 4f) r2 65123.3 0.856 64956.1 0.856
F6(4f 4f) r3 46996.3 0.861 46876.2 0.861
α r4 20 20
β fix -650 -650
γ fix 2000 2000
ζ4f r5 2250.3 0.984 2250.3 0.985
ζ5d r6 454.7 0.831
ζ6p r18 1513 1.461 1119.6 1.461
F1(4f 5d) r7 741.7
F2(4f 5d) r8 11092.6 0.775
F4(4f 5d) r9 7222.8 1.149
F1(4f 6p) fix 100 150
F2(4f 6p) r19 3776.9 1.156 3006.1 1.151
F2(6p 5d) fix 11470.1 0.794
G1(4f 5d) fix 3897.8 0.585
G2(4f 5d) fix 1091.6
G3(4f 5d) fix 4397.4 0.895
G4(4f 5d) fix 1028.3
G5(4f 5d) fix 2761.2 0.761
G3(4f 6s) r15 1405.1 0.843
G2(4f 6p) r19 864.4 1.155 656.3 1.155
G4(4f 6p) r19 751.9 1.156 568.2 1.157
G1(6s 6p) 12209.7 0.522
G1(6p 5d) fix 7880 0.600
G3(6p 5d) fix 5052 0.600
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Table 5.4: Configuration-interaction parameters, constraints (Constr.), fitted param-
eters and their scaling factors (Fs = Pfit / PHFR) even configurations of neutral Er.
All parameters are in cm−1.

Parameter P Constr. Pfit Fs

4f11 5d 6s2 - 4f11 5d2 6s

R2 (4f 6s, 4f 5d) r21 -799.8 0.852
R3 (4f 6s, 4f 5d) r21 1128.5 1.465
R2 (5d 6s, 5d 5d) r17 -13663.3 0.621

4f11 5d 6s2 - 4f12 6s 6p

R1 (5d 6s, 4f 6p) r20 -3173.6 0.461
R3 (5d 6s, 6p 4f) r20 -679.9 0.461

4f11 5d2 6s - 4f12 6s 6p

R1 (5d 5d, 4f 6p) r22 2405.6 0.647
R3 (5d 5d, 4f 6p) r22 643.7 0.647

4f11 5d2 6s - 4f12 5d 6p

R1 (5d 6s, 4f 6p) r22 -2536.8 0.427
R3 (5d 6s, 4f 6p) r22 -564.5 0.427

4f12 6s 6p - 4f12 5d 6p

R2 (4f 6s, 4f 5d) r23 -5359.9
R3 (4f 6s, 5d 4f) r23 2758.3
R2 (6s 6p, 5d 6p) r22 -6833.7
R1 (6s 6p, 6p 5d) r22 -7463.2

5.3 Experimental measurements and comparison with

theoretical results

The experimental part of the joint project was implemented by the Erbium group of
Francesca Ferlaino from the University of Innsbruck, Austria [127]. They reported
on the observation and coherent excitation of atoms on the narrow inner-shell orbital
transition, connecting the erbium ground state [Xe]4f12 (3H6 )6s2 to the excited state
[Xe]4f11 (4I15/2)

05d(2D3/2)6s
2(15/2, 3/2)07.

The experimentalists of Innsbruck group observe the transition at 1299 nm for the
bosonic isotopes 164Er, 166Er, 168Er, and 170Er and for the fermionic isotope 167Er. The
search for this narrow inner-shell transition is done by performing measurements on
trapped quantum degenerate erbium gas. An erbium Bose-Einstein condensate (BEC)
is created when atoms are loaded into an optical dipole trap operating at 1064 nm after
being laser cooled in a magneto optical trap. The BEC is then created by evaporative
cooling down to quantum degeneracy. The BEC typically contains N = 2×104 atoms.
To ensure that the atomic cloud remains spin-polarized in the lowest Zeeman level, a
homogeneous magnetic field is applied. The light for driving the narrow inner-shell
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transition is generated from an external-cavity diode laser (ECDL) operating at 1299
nm.

Figure 5.2: Left panel : Schematic level scheme illustrating the inner-shell orbital
transition at 1299 nm, and the transition at 401 nm used for absorption imaging. The
horizontal lines indicate the energy levels for ground (blue, even parity), excited (red,
odd parity), and the state at 401 nm (black, odd parity). The grey boxes are Zeeman
manifolds. Energies are not presented on scale. Right panel : Coarse spectroscopy
results for the four bosonic isotopes and one fermionic one.

After 1299nm spectroscopy light was shine on the sample and after an irradiation
time of 100 ms, the atoms are released from the trap for 30 ms. The number of ground
state atoms are recorded by performing absorption imaging with resonant light at 401
nm (see the left panel of figure 5.2). The tabulated frequency is νNIST = 230.738 THz (=
7696.956 cm−1), and each repetition of the measurements have a 40 MHz step size. The
results are shown in the right panel of figure 5.2. As expected, all the bosonic isotopes
(164Er, 166Er, 168Er, and 170Er) have one absorption line, since their nuclear spin is 0,
on the other hand, the fermionic isotope 167Er shows three resonances corresponding
to three transitions, since it possesses a hyperfine structure (I = 7

2
and the resonances

are attributed to F ′ = 21/2, 19/2 and 17/2.
The next step is the high resolution spectroscopy measurements with a much higher

spectral resolution and lower laser intensity, allowing also to resolve the magnetic Zee-
man sublevels. After sample preparation, all trapping lights are switched off, and the
prepared sample is irradiated with a 1299 nm spectroscopy pulse of 1 ms, correspond-
ing to a Fourier limited linewidth of 800 Hz. The light contains contributions from all
light polarizations, such that the 1299-nm beam can induce σ+ , σ−, and π transitions.
Using a wavemeter the absolute wavenumber is determined to be ν = 7696.955(2)cm−1.
From our theory we obtain a wavenumber of 7729.3 cm−1. The relatively long wave-
length of the transition is advantageous for studies of collective scattering from ordered
atomic samples. This transition allows the coherent control of magnetic Zeeman levels
for dipolar bosonic atoms.
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An important quantity to describe the atomic interaction with an external magnetic
field, or the interaction between different atoms via their magnetic dipoles and to
benchmark atomic spectrum calculations is the Lande gj factor, which is extracted
with the following formula:

gj =
(νσ+ − νπ)h

µbB
, (5.4)

where B is the applied magnetic field, µb is the Bohr magneton and h is the Planck
constant. Experimentally measured gj value of the excited state is gj = 1.2599(5),
while in the NIST database it is 1.266. On the other hand, we calculated the Landé
g factor to be 1.2622, while the experimental group measured it as 1.2599(5). This
agreement is very satisfactory and is consistent with the NIST database value.

In addition to gj factor, the high resolution spectroscopy allows the experimentalists
to extract the isotope shift with high precision. It is the shift in various forms of
spectroscopy that occurs when one isotope is replaced by another. Generally they are
caused by the field shift (that arise from the change of the nuclear size) and the mass
shift (caused by the change of the mass). In the case of erbium, involved 4f ↔ 5d
transition, both contributions are large. The discussion of possible isotope shifts can
provide an exceptional insight into intranuclear interactions. Erbium is an interesting
potential candidate, because it has four isotopes with zero nuclear spin and a large
number of different narrow transitions. Table 5.5 gives the results on isotope shifts,

Isotope pair ν0 − ν1680 (MHz)

164 - 168 –2732.290(3)
166 - 168 –1371.710(3)
170 - 168 1414.920(5)

Table 5.5: Isotope shifts for three bosonic isotopes in dependence of the 168Er isotope.

where the error bars denote the statistical error, mainly given by uncertainties of B,
but it can not be compared to theory.

Another important opportunity arises with narrow line transitions and plays a
fundamental role, e.g., in quantum information and communication protocols, is the
possibility to coherently control the atomic state. The coherent control allows to trans-
fer atoms from ground state to excited state with an efficiency higher than 97%. This
high efficiency opens the possibility to measure the lifetime of atoms in excited state.
The mean lifetime of the excited state is experimentally measured to be τ = 178(19)
ms. Theoretically we have obtained an excited-state lifetime of τth = 602 ms. The
disagreement comes from the fact that there are small components in the eigenvector
originating from the excited level in the underlying transition dipole moment.

The experimentalists carried out trap frequency measurements to determine the
atomic polarizability of the excited state relative to the ground state with the trapping
light at 532.2 nm. They were able to get close to a magic-wavelength condition, where
the ground and excited states feature the same polarizability. Finally, with already
optimized set of energies and transition integrals, we have calculated the polarizabilities
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Figure 5.3: Polarizability ratio α|e⟩ / α|g⟩ for different polarizations of the trapping
light defined by the angle ϕ between u and the optical axis of the λ / 4 waveplate.
The black solid line is a guide to the eye based on a sinusoidal fit to the experimental
data and the grey solid represents theoretical results obtained from the sum-over-states
method. The inset illustrates the experimental configuration for the shown data.

of the ground and excited states using the sum-over-state formula coming from second-
order perturbation theory. In our calculations, we were able to confirm the magic
trapping condition at 532 nm, and we have also predicted several alternative options
for magic wavelengths.

Another interesting exploration is the impact of the vectorial polarizability on the
ratio αe/αg for a commonly used trapping wavelength of 532.2 nm. In order to study
the impact of the vectorial polarizability, αe/αg is measured for different polarization of
the light at 532.2 nm. In each measurement the orientation of the polarization vector
u with respect to B is θ = 90◦, while the angle ϕ defining the polarization vector of the
laser field is varied. A periodic behaviour of αe/αg is observed and at angle ϕ = 45◦,
the ratio is 0.98(3). Theoretical value for (αe/αg)th is 0.97, moreover theory predicts
crossings at 528.9 nm and 532.5 nm, which are interesting options to explore with
tunable laser systems.

Figure 5.3 summarizes the results. A periodic behaviour of α|e⟩ / α|g⟩ as a function
of ϕ is observed. It reaches its maximum for σ− polarized light (ϕ = 45◦). The figure
also has theoretical calculation results, which qualitatively reproduces the experimental
values, although with a smaller amplitude, which might indicate a shift of the close by
transition as well as an underestimation of the transition strength.

The summary of results and comparison is shown on table 5.6.
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Figure 5.4: Top panel : Theoretically calculated polarizability for the excited state as
a function of the wavelength. Bottom panel : Zoom-in into different wavelength regions
to show polarizability of ground (blue) and excited (red) states. The green stars are
possible magic wavelengths.

Experiment Theory

Landé g 1.2599(5) 1.2622
Absolute wavenumber 7696.955(2) cm−1 7729.3 cm−1

Lifetime of |e⟩ 178(19) ms 602 ms
α|e⟩/α|g⟩ 0.98(3) 0.97

Table 5.6: Comparison between experimental and theoretical results on Er.

In conclusion, we have done spectroscopic calculations to improve the CI param-
eters and transition dipole moments. The odd-parity levels have been improved by
adding some high-lying experimental energy levels that were previously excluded from
the fitting procedure. With the optimized set of energies we have calculated the polar-
izabilities of the ground and excited states using the sum-over-state formula. We have
calculated the wavenumber and the excited-state lifetime. Both were compared with
experimental results. The comparison between experimental and calculated wavenum-
ber is great, but there is a disagreement when discussing the excited-level lifetime.
We have calculated the Lande g factor and the results are very satisfactory in com-
parison not only with the experimental one but also with the value reported in NIST
database. Several magic wavelength conditions were proposed. The results can still
be improved. Some limitations, such as inability to calculate the isotopic shifts, are
coming from the semi empirical COWAN codes. Another possibility is to use GRASP
(General Relativistic Atomic Structure Package), which is a fully relativistic compu-
tational method for producing atomic data [128]. Although the precision of energy
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levels calculated by GRASP are not as good as in the case of COWAN, but less ac-
curacy is accepted if resulting eigenvector components and Einstein coefficients have
better precision. Moreover, the software allows to calculate isotope shift, which can be
interesting for comparison with their experimental counterparts.





Chapter 6

Prospect for laser-cooling of neutral
neodymium

In the field of ultracold atomic and molecular matter dipolar gases have become very
attractive since they can be controlled by external electric field or magnetic fields.
The production and study of highly correlated quantum matter, which is critical for
quantum information or for modeling many-body or condensed matter physics [9–11],
is enabled thanks to dipolar gases through long-range and anisotropic interactions be-
tween particles. Among the different families of systems, open-shell atoms have a
permanent magnetic dipole moment that is determined by their total electronic angu-
lar momentum. Laser cooling and trapping of lanthanides has opened the possibility
to carry out new experiments with ultracold dipolar gases, for example for quantum
simulation of solid state physics. All this special characteristics open the question of
identifying new suitable species for laser cooling within lanthanides, especially in the
left part series. Among them, we notice that, cerium (Ce, Z = 58) has the ground
configuration 4f 5d 6s2, which makes this element a priori not convenient for such exper-
iments. On the other hand, when we go to the middle of the series, we have radioactive
promethium (Pm, Z = 61), after which the spectrum of the elements becomes more
and more dense, starting with samarium (Sm, Z = 62), making these elements not
favourable for possible laser cooling studies. Therefore, neodymium (Nd, Z = 60)
and praseodymium (Pr, Z = 59) represent the most promising energy spectrum for
the formation of a dipolar gas. Their lowest configurations are very close in energy,
namely 4fw 6s2, 4fw 5d 6s, 4fw−1 5d 6s2 and 4fw−1 5d2 6s, where w = 3 for Pr and w = 4
for Nd. Meanwhile, the lowest levels of 4fw 5d 6s and 4fw−1 5d2 6s configurations are
mainly characterized by a spin S = w/2 + 1, which makes the decay by spontaneous
emission toward levels of 4fw 6s2 and 4fw−1 5d 6s2 rather unlikely and denoting that
laser-cooling transitions may be chosen among the latter configurations. The 4fw 5d 6s
and 4fw−1 5d2 6s configurations also have levels that are very close in energy, and that
can be significantly mixed to induce an electric dipole moment in addition to the mag-
netic one. The idea and the goal is to find in Nd levels with larger lifetime than the
levels in Dy, mentioned in [129]. Moreover Nd represents the great advantage of having
bosonic and fermionic stable isotopes, while Pr has only one bosonic stable isotope.

In order to find possible laser-cooling transitions for neutral Nd, it is essential to

121
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Figure 6.1: Energy diagrams as functions of the electronic angular momentum J and
sorted by electronic parity are shown for neodymium (Nd, left panel) and dysprosium
(Dy, right panel) for comparison.

carefully model the spectrum, i.e. energies and transition dipole moments (TDMs). In
this work, as a first step, we carefully study the Nd energy levels. Particular attention is
paid to accurately describing configuration-interaction (CI) mixing, to which TDMs are
very sensitive, especially those that lead to weak transitions, which play an important
role in this design. Since Nd belongs to the left part of the lanthanide row, it presents
a high density of levels in the range 8000-15000 cm−1 in contrast with Dy (see figure
6.1). To calculate energies, we use the combination of ab initio and least-square fitting
techniques implemented in the Cowan codes [24, 57] (see section 3.1). We include the
three lowest configurations of each parity which allows us to interpret more than 200
energy levels given in the NIST ASD database [52]. The main technical difficulty of
this work comes from the least-squares fitting of close energy levels, because we need
to determine to which experimental counterparts each computed level should converge.

6.1 Description of calculations

The calculations were performed with three configurations in each parity, namely:

• 4f4 6s2, 4f4 5d 6s, 4f3 5d 6s 6p for the even parity;

• 4f4 6s 6p, 4f3 5d 6s2, 4f3 5d2 6s for the odd parity.

The choice was made keeping in mind that the other even configurations are very
high. Moreover, we have tried to add the configuration 4f4 5d 6p, but could not find
a convergence. For both parities, we use values from the NIST database as reference
energy levels [52]. The primary source of data on neutral Nd levels in the NIST database
is Martin et al. [59].

Since it belongs to the left part of the lanthanide row of the Periodic Table of the
Elements, Nd possesses a dense spectrum, which makes it difficult to identify the levels.
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In order to overcome this issue, we have divided the calculation into steps. As a first
step, for even parity, the configurations 4f4 6s2 and 4f4 5d 6s were considered together,
and the calculations for the configuration 4f3 5d 6s 6p were carried out separately. For
the first group when we have included 42 experimental levels and the fitting is done
with 11 groups of parameters, the standard deviation is 91 cm−1. For the configura-
tion 4f3 5d 6s 6p the calculations were done with 10 groups of parameters. When 14
interpreted experimental levels are included the standard deviation is 101 cm−1.

Table 6.1: Differences between NIST database and theoretical results for energies,
Landé-g factors and dominant LS terms with the percentage of the theoretical one.
Case 1: when the configurations are the same, but there are differences in terms. All
energy levels are in cm−1.

Energy Landé g Dominant term

Configuration J Theory Exp. Theory Exp. Theory Exp.

B-d6sp 7 24187 24218 1.095 0.870 58% 7K 5M
B-d2s 4 15457 15600 0.704 0.630 15% 5I 7G
A-6sp 4 20273 20361 0.957 0.735 27% 5H 5I
A-6sp 5 20271 20301 1.169 0.775 35% 7G 5K
A-6sp 5 21015 21005 1.176 0.960 28% 7F 5I
B-d2s 6 15522 15598 0.958 1.210 31% 7K 7H
B-d2s 6 18535 18679 1.008 1.080 17% 3K 7I
B-ds2 6 20112 20119 1.039 1.015 21% 5H 3K
B-d2s 7 16633 16747 1.059 1.265 21% 7K 7H

After the calculation, the optimal values of the energy parameters were determined.
The final parameter values of the first step serve as initial values of the second step. In
the next step, these two groups were combined together, and the optimal parameters
of the individual calculations were taken as an initial set for the combined calculation.
In this step 54 interpreted experimental levels are included for three even parity con-
figurations and the fitting is done with 12 groups of free parameters. The standard
deviation for this combined calculation is 89 cm−1. The latter results are discussed in
more details in section 6.2.

We followed a similar method for odd parity configurations. We have treated sepa-
rately the configurations 4f3 5d 6s2 and 4f3 5d2 6s on one hand, and 4f4 6s 6p on the other
hand. For the first group of odd parity configurations the calculation is done with 11
parameter groups and 79 experimental levels are included. After the final calculation
the standard deviation is 94 cm−1. For configuration 4f4 6s 6p we have 19 experimental
levels included and 10 parameter groups. For this configuration standard deviation is
160 cm−1. When these two separate analyzes have been completed, we treated these
three configurations together. The final least square fitting is done with 15 parameter
groups and there are 96 levels included. Standard deviation in this case is 111 cm−1.
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Table 6.2: Differences between NIST database and theoretical results for energies,
Landé-g factors and dominant LS terms, with the percentage of the theoretical one.
Case 2: when there is a good match in energy levels, but the configurations are different.
All energy levels are in cm−1.

J Energy Configuration Landé g Dominant term

Theory Exp. Theory Exp. Theory Exp. Theory Exp.

4 14716 14802 B-d2s A-6sp 0.443 0.825 80% 7K 5H
4 15898 15863 B-ds2 A-6sp 1.059 1.020 62% 3G 7H
4 16293 16210 B-d2s B-ds2 0.771 1.055 66% 7I 3G
4 18701 18741 B-d2s B-ds2 0.926 0.930 8% 5I 5H
5 15049 14797 B-ds2 B-d2s 1.084 0.760 37% 3H 5K
5 15215 15114 B-d2s B-ds2 0.872 1.110 27% 7K 3H
7 22752 22761 B-d2s A-6sp 1.098 1.035 14% 3K 5K
8 24148 24121 B-d2s A-6sp 1.089 1.135 12% 5L 5K
9 20594 20523 B-d2s A-6sp 1.082 1.230 42% 5M 7I

Again, the latter results are discussed in more details in section 6.2.

Table 6.3: Differences between NIST database and theoretical results for energies,
Landé-g factors and dominant LS terms, with the percentage of the theoretical one.
Case 3: when the configurations are different, but among the other components of
the level eigenvectors, there is one whose configuration or term makes identification
possible (see the last three columns). All energy levels are in cm−1.

J Energy Configuration Landé g Dominant term Other component

Theory Exp. Theory Exp. Theory Exp. Theory Exp.

3 15886 15899 A-6sp B-d2s 0.737 0.600 48% 7H 5H B-d2s 18% 7I
3 20600 20595 B-d2s B-ds2 1.037 0.910 11% 5H 3G B-ds2 9% 5P
5 19912 19816 B-d2s B-ds2 1.016 1.110 8% 7H 5H B-ds2 7% 3H
6 14270 14308 B-d2s B-ds2 1.041 1.106 30% 7I 5H B-ds2 16% 5H
6 20690 20673 B-d2s B-ds2 1.099 1.185 16% 5I 5H B-ds2 7% 3I
6 21548 21543 B-d2s A-6sp 1.109 0.900 7% 5H 5K A-6sp 6% 5I
7 19192 19271 A-6sp B-d2s 1.249 1.260 48% 7H 7G B-d2s 11% 7I
9 25649 25519 B-d2s A-6sp 1.205 1.220 17% 5K 5K A-6sp 16% 5K

In what follows we will use the following abbreviations for even parity configura-
tions: 4f4 6s2 = A-6s2, 4f4 5d 6s = A-ds and 4f3 5d 6s 6p = B-d6sp and for odd parity
configurations: 4f4 6s 6p = A-6sp, 4f3 5d 6s2 = B-ds2 and 4f3 5d2 6s = B-d2s.
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6.2 NIST interpreted levels

In the NIST database, some of the Nd levels are well interpreted: detailed information
are given, such as Landé g-factors, dominant configurations, terms, etc. To distin-
guish these levels from other levels present in the NIST database, we refer to them as
“NIST interpreted” levels. This subsection is devoted to the calculation when only the
interpreted experimental levels are included in the fitting process.

As stated before the dense spectrum of neutral neodymium makes it difficult to
identify the levels. This is especially true for levels of J = 4, 5 and 6. For most
levels, the matching between theory and the NIST database is quite good. However,
we noticed differences which can be divided into three groups:

Case 1 : when the configurations are the same, but there are differences in the leading
terms (see table 6.1).

Case 2 : when there is a good match in energy levels, but the configurations are
different (see table 6.2).

Case 3 : when the configurations are different, but in the second or third component
of the level eigenvector, the configuration and/or the term is the same as in the
experimental leading term, which makes the identification possible (see table 6.3).

We can see that except the first level of table 6.1, those three tables only contain levels
of odd parity, mostly with intermediate angular momenta J = 4 to 6, for which the
energy spectrum is the densest. Their leading term have a low percentage (mostly
below 50 %), which means that the leading term coming out of calculations can be
sensitive to the radial parameters. The corresponding optimal radial parameters and
their SFs are given in the appendix, section B.

6.3 Newly interpreted levels

After successfully performing the calculation for six Nd configurations with NIST-
interpreted levels and finding the optimal parameters for each configuration, we pro-
ceeded to include in the fit levels that are present in the database but are not inter-
preted. We were able to identify 25 levels for even-parity configurations and over 200
levels for odd-parity configurations (see figure 6.2). The newly identified levels of even
parity are shown and compared with NIST values in table 6.4. In the case of odd
parity configurations for each J value we show 10 newly interpreted levels and their
comparison with NIST database in table 6.5. Tables for each J values containing the
whole list of newly identified levels and their comparison with the data reported in
NIST, can be found in Appendix B.

The inclusion of these new interpreted levels produced the following results: for
even parity, with 83 levels included and 12 parameter groups, the standard deviation
is 90 cm−1, and for even parity, with 298 levels included and 15 parameter groups, the
standard deviation drops to 74 cm−1.
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Figure 6.2: Experimental (blue), newly interpreted (red) and newly predicted (only
theoretical) (black, short) energy levels of even parity (top) and odd parity (bottom)
configurations of neutral Nd as functions of the electronic angular momentum J . Plots
are limited to energy values of 25000 cm−1.

Figure 6.2 shows the energies of even and odd configurations as functions of the an-
gular momentum J . Note that unlike figure 6.1, figure 6.2 has one panel for each parity.
The blue lines show the experimental energy of interpreted levels present in the NIST
database, red lines correspond to the experimental energies of levels that are present
in the database but have not been interpreted in detail. Finally, black short lines cor-
respond to newly predicted levels, indicating that their energies are purely theoretical.
We see that the latter are numerous and that they are located among experimental
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levels. In the even parity, there are no experimental levels between approximately
16000 and 20000 cm−1, corresponding respectively to the highest interpreted levels of
the 4f4 5d 6s configuration and the lowest ones of the 4f3 5d 6s 6p configuration. In the
odd parity, the density of levels is even larger. For extreme values of J , the predicted
levels are significantly more present than experimental ones. This trend is not vis-
ible for intermediate values J = 4–7 where more experimental levels were observed
spectroscopically.

When identifying the levels and trying to find corresponding counter-experimental
levels to the theoretical ones calculated by us for the least-square fit, we noticed some
differences in the Landé g-factors for some levels. Figure 6.3 shows that for most levels,
the difference in Landé g-factors is limited to the region [-0.1:0.1]. However, there are
levels for which the absolute value of the difference exceeds 0.4. There are three such
levels: the Landé g-factor of level J = 3 of configuration A-6s2, with an energy value
of 11129 cm−1, differs from its counter-experimental level by 1.237. The J = 5 level of
the A-ds configuration with an energy value of 21899 cm−1 has a Landé g-factor that
differs from the experimental one by 0.790. And, finally, the Landé g-factor of the level
J = 6 of the A-ds configuration with an energy value of 11134 cm−1 diverges from the
experimental one by -0.451.

Table 6.5: Identification and comparison with NIST database values for 10 levels of
odd parity configurations for each J value. All energy levels are in cm−1.

Conf. J Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 3 16924 16974 0.685 0.520 7H 49%
B-d2s 3 20303 20282 0.302 0.895 7I 77%
B-ds2 3 21139 21228 1.259 1.032 5D 26%
B-d2s 3 21890 21952 0.974 1.070 7G 33%
B-d2s 3 22208 22229 0.817 0.705 5H 36%
B-d2s 3 22504 22491 0.766 0.830 5H 24%
B-d2s 3 22649 22631 0.790 1.130 7H 18%
B-d2s 3 22888 22930 1.012 0.765 3G 7%
B-d2s 3 23034 22956 0.997 0.990 5G 14%
B-ds2 3 23280 23218 0.956 1.060 3G 15%
B-d2s 4 17073 17032 1.231 1.020 7F 26%
B-d2s 4 17206 17320 0.983 0.865 7H 33%
B-ds2 4 18518 18436 0.954 1.075 3H 21%
B-ds2 4 19232 19209 0.888 0.990 5G 12%
A-6sp 4 19569 19590 1.124 0.785 7G 33%
B-d2s 4 19770 19770 0.873 0.920 5I 15%
A-6sp 4 19952 19957 0.798 0.910 5I 23%
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Table 6.5 Continued

Conf. J Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-ds2 4 19984 20047 0.917 0.900 3G 12%
B-d2s 4 20960 20860 0.886 1.080 7I 35%
A-6sp 4 20995 21009 1.611 1.280 7D 89%
A-6sp 5 15963 16028 1.000 0.915 7I 75%
B-ds2 5 17826 17791 0.907 1.005 3I 20%
B-d2s 5 17985 18030 0.990 0.970 5K 13%
B-d2s 5 18060 18068 1.142 0.920 7H 21%
B-ds2 5 19180 19226 0.944 0.944 5H 31%
A-6sp 5 19722 19648 0.931 1.070 5K 12%
A-6sp 5 20186 20177 1.229 0.960 7G 54%
B-d2s 5 20982 20963 0.994 0.990 5I 20%
B-ds2 5 21337 21272 1.054 1.040 1H 9%
B-d2s 5 21746 21727 1.063 1.000 5F 9%
B-d2s 6 15923 15780 0.924 0.945 5K 17%
B-d2s 6 17832 17749 1.133 1.090 7I 24%
A-6sp 6 18184 18172 1.236 1.080 7H 61%
B-d2s 6 19108 19152 1.074 0.930 5I 8%
B-d2s 6 19225 19281 1.081 1.055 7H 24%
B-d2s 6 19974 19995 1.321 0.920 7F 30%
B-d2s 6 20518 20432 1.101 1.040 5K 13%
B-d2s 6 20784 20703 0.881 1.035 5L 17%
B-ds2 6 20873 20839 1.062 0.940 3I 15%
B-d2s 6 20994 20918 0.948 0.840 5L 10%
B-d2s 7 16839 16845 1.071 1.120 5K 22%
B-d2s 7 17312 17290 1.188 1.070 7H 29%
B-d2s 7 18121 18257 0.852 0.955 5M 42%
B-d2s 7 19682 19746 1.279 1.090 7G 21%
B-ds2 7 21090 21026 1.160 1.235 5H 39%
B-d2s 7 21306 21286 1.035 1.050 5K 22%
B-d2s 7 21365 21412 1.064 1.067 5K 12%
A-6sp 7 21910 21909 1.086 0.970 5K 14%
A-6sp 7 22055 22042 1.376 1.020 7G 79%
B-d2s 7 22334 22320 1.133 1.128 5I 15%
B-d2s 8 18080 17973 1.141 1.200 7K 38%
A-6sp 8 19921 19862 1.162 1.290 7H 14%
A-6sp 8 23542 23474 1.135 1.123 5K 19%
B-d2s 8 23665 23653 1.206 1.128 7I 27%
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Table 6.5 Continued

Conf. J Energy Landé g Dom. term

Theory Exp. Theory Exp.

A-6sp 8 23972 24078 1.167 1.070 5K 14%
B-d2s 8 24651 24688 1.183 1.155 7I 17%
B-d2s 8 24756 24773 1.180 1.145 5I 21%
B-d2s 8 25191 25191 1.191 1.195 5I 16%
B-d2s 8 25212 25281 1.174 1.115 5I 15%
B-d2s 8 25477 25383 1.157 1.140 5I 17%
B-d2s 9 24933 24935 1.098 1.150 3M 20%
B-d2s 9 25224 25142 1.102 1.120 3M 17%
B-d2s 9 26424 26511 1.121 1.165 3L 28%
B-d2s 9 27862 27842 1.121 1.160 3L 24%
B-ds2 9 28734 28781 1.105 1.215 3L 72%
B-d2s 9 28983 29061 1.220 1.015 5K 25%

When the optimal set of parameters and the best (smallest) standard deviation
are found, it is interesting to calculate the scaling factors (SF) for all parameters and
groups of parameters that participated in the calculations, including CI ones. Table
6.6 shows the optimal parameters (Xfit) for even parity configurations, as well as their
constraints and scaling factors (fX) if the parameter had an initial HFR value. Table
6.7 presents the same information for odd parity configurations, and table 6.8 for the
CI parameters of even and odd parity configuration pairs.

Table 6.6–6.8 also presents the constraints defining groups of fitting parameters:
the parameters having the same rn value belong to the same group. Because our
fit was made in several steps, in which the constraints have not been the same, the
parameters with the same rn coefficients do not necessarily have the same scaling
factors. Among the latter, we note especially large values for Gk parameters of the
4f4 6s 6p configuration and small values for CI parameters for even configuration pairs
implying 4f3 5d 6s 6p. We can compare our fitted parameters to Ref. [130] which is
dedicated to even-parity configurations 4f4 6s2 + 4f4 5d 6s. The agreement between
theoretical and experimental levels is very good, but we note surprisingly small values
of F k(4f 4f) parameters of the 4f4 5d 6s configuration. All the results are shown in the
article [131].

6.4 Possible laser-cooling transitions

The natural next step after the energy level calculations is to calculate the Aik coef-
ficients with the FitAik package [124]. Transitions necessary for magneto-optical trap
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Table 6.4: Newly interpreted levels and their comparison with NIST database values
for even parity of neutral Nd. All energy levels are in cm−1.

Conf. J Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d6sp 4 23329 23347 0.744 0.740 7I 62%
A-ds 4 23840 23808 1.391 0.610 5D 39%
A-ds 5 24555 24578 0.926 0.870 7I 22%
A-6s2 6 23113 23109 1.028 0.895 3I 69%
A-ds 6 23093 23222 1.002 0.965 5K 14%
A-ds 6 23331 23242 1.373 1.115 7F 60%
A-ds 6 24950 24927 1.062 0.955 5K 15%
B-d6sp 6 25166 25207 1.023 0.905 7I 42%
B-d6sp 6 25733 25746 0.905 0.860 5L 10%
A-ds 7 24396 24260 1.063 1.010 5L 14%
A-ds 7 24773 24821 1.233 1.060 5H 36%
B-d6sp 7 25037 25005 0.906 0.905 3L 30%
A-ds 7 25406 25384 1.086 0.971 5K 18%
B-d6sp 7 26444 26516 1.043 1.085 7I 12%
A-ds 7 26871 26898 1.184 1.040 5I 16%
A-ds 7 27038 27000 1.148 1.055 7I 17%
B-d6sp 8 23919 23953 1.080 1.053 7L 64%
A-ds 8 25177 25190 1.096 1.110 5K 25%
B-d6sp 8 25572 25529 1.184 0.990 7K 62%
A-ds 8 26472 26425 1.013 1.135 1L 22%
A-ds 8 27451 27324 1.109 1.040 5I 25%
A-ds 8 27660 27815 0.951 1.015 5N 18%
B-d6sp 8 27997 27922 1.158 1.125 7K 38%
A-ds 9 26928 26987 1.077 1.140 1M 24%
A-ds 9 27418 27266 1.036 1.040 1M 23%

of type I should have a ∆J → J + 1 change in angular momentum. Although this is
the most common technique, it is not the only one. Transitions ∆J → J − 1 are less
usual but with this type we can avoid leakages, so sometimes those are considered too.
Towards the goal of proposing new laser-cooling transitions for neodymium, the next
step after doing precise spectroscopic calculations, is to model the transition dipole
moments (TDMs). A good and promising starting point can be transitions involving
the ground level 4f4 6s2 5I4. The low levels of the 4f3 5d 6s2 are interesting, because
they have the same electronic spin S = 2 as the ground level. Although it is not the
common MOT type, but transitions with upper levels of electronic angular momentum
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Table 6.6: Parameter names, constraints, fitted values and scaling factors (fX =
Xfit/PHFR) for even configurations of neutral Nd. All parameters are in cm−1.

Param. X Cons. Xfit fX Param. X Cons. Xfit fX Cons. Xfit fX

A-6s2 A-ds B-d6sp

Eav 29612 Eav 43472 61355
F2(4f 4f) r1 67945 0.740 F2(4f 4f) fix 68255 0.750 fix 86247 0.853
F4(4f 4f) r2 38310 0.670 F4(4f 4f) fix 42450 0.750 fix 37856 0.597
F6(4f 4f) r3 28534 0.696 F6(4f 4f) fix 30437 0.750 fix 35027 0.769
α fix 37 α fix 37 r51 97
β fix -963 β fix -963 fix -655
γ fix 478 γ fix 478 fix 1691
ζ4f r4 770 0.912 ζ4f r4 765 0.912 r4 975 1.032

ζ5d r4 353 0.912 r4 736 1.032
ζ6p r4 868 1.032
F1(4f 5d) r9 1854
F2(4f 5d) r1 12316 0.740 r1 27733 1.171
F3(4f 5d) r9 1854
F4(4f 5d) r2 5307 0.670 r2 31253 2.71
F1(4f 6p) r5 613
F2(4f 6p) r1 4730 1.171
F1(5d 6p) r5 613
F2(5d 6p) r5 16009 1.171
G1(4f 5d) r5 5393 0.584 r6 13100 1.147
G2(4f 5d) r9 207
G3(4f 5d) r5 3868 0.584 r6 10316 1.147
G4(4f 5d) r9 1562
G5(4f 5d) r5 2832 0.584 r6 7794 1.147
G3(4f 6s) r5 947 0.584 r6 2111 1.147
G2(4f 6p) r7 1073 1.175
G4(4f 6p) r7 682 0.842
G2(5d 6s) r5 9719 0.584 r7 17957 1.176
G1(5d 6p) r6 9118 1.147
G3(5d 6p) r6 6613 1.147
G1(6s 6p) r6 26970 1.147

J ′ = 3 are preferential, since they can not decay towards other levels of the ground
manifold 5I. ∆L = 1,∆S = 0 selection rules and parity change is satisfied for the level
4f3 5d 6s2 (5Ho

3) at 9927 cm−1. The corresponding transition wavelength is around
1007 nm. The upper J ′ = 3 level of configuration 4f3 5d 6s2 at 11375 cm−1 is very
interesting. It has a dominant term of 59 % 5Go

3, i.e. L
′ = 4 and S ′ = 2, and second

term of 23% 3Go
3, i.e. L

′ = 4 and S ′ = 1. The remaining 18 % is not known on NIST
database [52], but it may strongly influence the transition probability. Our calculations
show that the third term is 9 % 5Ho

3 , which means L′ = 5 and S ′ = 2.

Beside the ground level, it is very interesting also to consider laser-cooling of the
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Table 6.7: Parameter names, constraints, fitted values and scaling factors (fX =
Xfit/PHFR) for odd configurations of neutral Nd. All parameters are in cm−1.

Param. X Cons. Xfit fX Param. X Cons. Xfit fX Cons. Xfit fX

A-6sp B-ds2 B-d2s

Eav 52188 Eav 32792 40755
F2(4f 4f) r1 72210 0.785 F2(4f 4f) r1 70314 0.696 r1 69931 0.696
F4(4f 4f) r1 45150 0.789 F4(4f 4f) r1 36982 0.584 r1 36765 0.584
F6(4f 4f) r1 32379 0.789 F6(4f 4f) r1 21619 0.475 r1 21489 0.475
α r58 237 α r8 73 r8 73
β r58 -159 β r8 -667 r8 -667
γ r58 411 γ r8 1744 r8 1744

F2(5d 5d) r5 19957 0.600
F4(5d 5d) r5 10733 0.501
α r8 71
β r8 -650

ζ4f r4 828 0.980 ζ4f r4 881 0.932 r4 877 0.932
ζ6p r4 699 0.980 ζ5d r4 523 0.767 r4 443 0.767
F1(4f 6p) r3 1742 F2(4f 5d) r2 13678 0.598 r2 12185 0.598
F2(4f 6p) r3 2355 0.593 F4(4f 5d) r2 5523 0.499 r2 4846 0.499
G3(4f 6s) r6 6463 3.384 G1(4f 5d) r6 6267 0.570 r6 5583 0.570
G2(4f 6p) r7 4754 5.185 G3(4f 5d) r6 4921 0.570 r6 4323 0.570
G3(4f 6p) r7 3842 G5(4f 5d) r6 3714 0.570 r6 3248 0.570
G4(4f 6p) r7 2702 3.357 G3(4f 6s) r7 866 0.566
G1(6s 6p) r7 17539 0.783 G2(5d 6s) r7 8719 0.566

metastable highest 5I8 level of the ground manifold, which has an energy value of
5048.6 cm−1. This can open up a possibility of a more usual cooling scheme with
an upper level J ′ = J + 1 = 9, without any leakage toward levels of the 4f4 6s2 5I
manifold. A promising candidate is the level 4f3 5d 6s2 (5Ko

9) which is not tabulated in
NIST database but according to our calculations is at 13491 cm−1. For cooling in the
5I8 level, it will be required to calculate the radiative lifetime of this metastable level
and populate that level using, for example, two Stimulated Raman Adiabatic Passage
(STIRAP) steps from the ground level 5I4. Table 6.9 shows 10 possible laser cooling
transitions involving the ground level 4f4 6s2 5I4 and three transitions involving the
level 4f4 6s2 5I8.

In this chapter, we have given a theoretical interpretation of the spectrum of neu-
tral neodymium, which is an essential component for new experiments with ultracold
dipolar gases. We did the calculations for three even configurations: 4f4 6s2, 4f4 5d 6s,
4f3 5d 6s 6p, and three odd configurations: 4f4 6s 6p, 4f3 5d 6s2 and 4f3 5d2 6s. For this
purpose we used Cowan’s suite of codes. We were able to interpret more than 200
levels for odd parity configurations and 25 levels for even parity configurations, for
which there were no detailed information in the NIST ASD database. In the course
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Table 6.8: Fitted configuration interaction (CI) parameters, their scaling factors (fX
= Xfit / XHFR) and constraints for even and odd configurations of neutral Nd. All
parameters are in cm−1.

Parameter X Xfit fX Parameter X Xfit fX

A-6s2 –A-ds A-6sp –B-ds2

R2 (4f 6s, 4f 5d) -1074 0.441 R1 (4f 6p, 5d 6s) -4065 0.475
R3 (4f 6s, 4f 5d) 231 0.441 R3 (4f 6p, 5d 6s) -866 0.475

A-6s2 –B-d6sp A-6sp –B-d2s

R1 (4f 6s, 5d 6p) -1517 0.163 R1 (4f 6p, 5d 5d) 1464 0.347
R3 (4f 6s, 5d 6p) -260 0.163 R3 (4f 6p, 5d 5d) 440 0.347

A-ds –B-d6sp B-ds2 –B-d2s

R2 (4f 4f, 4f 6p) -531 0.163 R2 (4f 6s, 4f 5d) -628 0.487
R4 (4f 4f, 4f 6p) -348 0.163 R3 (4f 6s, 4f 5d) 607 0.487
R1 (4f 5d, 5d 6p) 1047 0.163 R2 (5d 6s, 5d 5d) -9305 0.487
R3 (4f 5d, 5d 6p) 354 0.163
R2 (4f 5d, 5d 6p) 27 0.163
R4 (4f 5d, 5d 6p) 58 0.164

Table 6.9: Lower and upper states, wavelengths, Einstein coefficients and widths for
some possible laser cooling transitions for neutral Nd organized by increasing order of
upper level energy. It is based on experimental studies of Stockett et al. [132].

Upper level Lower level Wavelength Aik Width
Energy Parity J Energy Parity J (nm) (106 s−1) (MHz)
(cm−1) (cm−1)

17787.0 odd 3 0 even 4 562 13.1 0.525
17976.9 odd 3 0 even 4 556 3.3 2.085
21572.6 odd 3 0 even 4 463 88.0 14.006
23487.0 odd 3 0 even 4 425 10.7 1.703
24935.0 odd 9 5048.6 even 8 503 12.8 2.037
25141.5 odd 9 5048.6 even 8 498 18.5 2.944
25518.7 odd 9 5048.6 even 8 488 108 17.188

of calculations, we noticed discrepancies with the NIST database values, for example,
in Landé g-factors. After comparison we showed that for all levels except for three,
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the absolute value of the difference between the theoretical and experimental Landé
g values does not exceed 0.4. The logical continuation and perspective of this work
for the future will be the calculation of the transition dipole moments (TDMs) and
Einstein coefficients, which are necessary to characterize the efficiency of laser cooling
and trapping of atoms. The test with the data set from [133] was not very conclusive,
because we had difficulties to identify the strongest transitions involving the ground
level. Therefore, it is logical to use experimental Aik coefficients to give a first an-
swer about laser-cooling transitions. For better accuracy, we plan to fit the Einstein
coefficients using the FitAik package [124], for which we will use the optimal set of
parameters that we have determined in this study. We plan to test the limits of FitAik
package on Nd and as an alternative use Pr, since it has simpler configuration than
Nd.
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Figure 6.3: Differences between calculated and experimental Landé g-factors for
energy levels for neutral Nd with an experimentally known g-factors. The second and
the third pictures are enlarged versions to show the differences in detail. The largest
difference at 11129 cm−1 (first panel) is out of the y-scale on the last panel. Energy
levels are in cm−1.





Conclusion

The work carried out during the preparation of this thesis is designated to improve
the spectroscopic knowledge of lanthanides and unravel their spectral fingerprints. All
the theoretical background necessary for the work is presented in chapter 1, which
begins with description of characteristics of spectra atoms and ions, as well as summary
on angular momentum. One-electron and two-electron atoms are introduced in this
chapter and the idea is generalized to reach the N-electron atom, which is more complex
and is the main concern of the work. The chapter has information for coupled angular
momentum states and different coupling schemes and is concluded with description of
state notations and transition properties as well as 3n − j symbols, which are very
crucial in the calculations.

The work that has been done for the thesis had two global directions. First one
was dedicated to trivalent lanthanides and their transition intensities when they are
hosted in solids. Chapter 2 was dedicated to describe generally the lanthanides as
elements, covering their properties and their significance in various applications. The
chapter includes also explanations on ion-solid systems, mainly focusing on trivalent
lanthanides as ions hosted in a crystal field. The last section of the chapter was
devoted to description of Judd-Ofelt theory, which described the intensities of trivalent
ions when they are in a crystal field. It covered information about the standard version
of the JO theory and challenges coming into play when we consider solids doped with
Eu3+, Pr3+, Sm3+, etc. The theory is based on free-ion calculations, which I have
done with the methodology described in section 3.1. It includes description of the suits
of codes used for spectroscopic calculations of trivalent lanthanides and the general
working mechanism I have been incorporated. I have done calculations of energy
levels of the ground and the first excited configuration of Eu3+, Nd3+ and Er3+. The
comparison with the experimental results is very good.

During the thesis an extension of the Judd-Ofelt model was developed, enabling to
calculate intensities of absorption and emission transitions for Ln3+-doped solids. It
is described in chapter 4. In our model, the properties of the Ln3+ impurity are fixed
parameters calculated with free-ion spectroscopy, while the crystal-field ones are ad-
justed by least-square fitting. In particular, the line strengths, oscillator strengths and
Einstein coefficients are functions of three least-square fitted crystal-field parameters.
All the free-ion spectroscopic calculations for this extension were carried out by the
semi empirical method: ab initio + least square fit. For this purpose, we used Cowan
codes, while the actual extension codes are written in FORTRAN. The extension is
realized in two steps, in the first model, described in section 4.1, the spin-orbit interac-
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tion within the first excited configuration 4fw−15d is described in a perturbative way,
whereas it is exactly taken into account in the ground configuration 4fw. Section 4.2 is
devoted to the second version of the extension, where all the eigenvector components
of the free-ion levels are included, while in the previous version only four leading ones
are taken into account. The wavelength dependence of the refractive index of the host
material is also accounted for by means of the Sellmeier equation, while in the first ver-
sion the refractive index was assumed to be constant. The first version of the extension
is tested only on Eu3+, while the second version is also applied on Nd3+ and Er3+. For
each ion we have performed a calculation of the [U(k)]2 matrix elements and compared
them with the values reported in the articles of Carnall [61, 62]. As a way to validate
our model we also calculating the Ωλ parameters of standard JO theory and compared
them with the values reported in the articles where the experimental transition for our
fitting calculations were taken from. Both calculations are in a good agreement with
reported data. By doing the standard JO calculations twice (with and without the
inclusion of the wavelength dependence of the refractive index) we have noticed that
when the Sellmeier coefficients are included and so the dispersion is accounted for, our
results of Ωλ are closer to the ones reported in other articles.

We have tested the validity of the extension on two experimental absorption data
set for each ion. We have noticed that all the changes made to the extension model has
also improved the results. It’s worth mentioning that although for second data sets it
was impossible to find the Sellmeier coefficients to include the wavelength dependence
of the refractive index, the results of the extension are satisfactory.

Generally speaking, our extended model works as good as the standard version,
but while for some transitions the oscillator strengths resulting from standard JO
calculations are closer to the experimental values, for others the extended version gives
better results. In comparison with the version described in article [82], the updated
version of the extension works better. This result was demonstrated for the case of
Eu3+ for two sets of experimental oscillator strengths. However we notice that for
the absorption transitions that were measured in σ and π polarizations the resulting
OS are diverging more from experimental values than for unpolarized spectra. As
a perspective and a possible improvement of the extension of JO theory we plan to
include the polarization. This will give the possibility to include the experimentally
measured OS as they are and not average them with factors of 2/3 and 1/3 to obtain the
unpolarized spectra. We expect this improvement to give more precise and satisfactory
results for the calculations. Finally, separating the dopant and crystal-field parameters
can open the possibility to interpret transitions between individual crystal-field levels,
which can be especially relevant for nanometer-scale host materials.

The second global direction of the thesis was the spectroscopic calculation on neu-
tral lanthanides. I have worked with neutral Er (chapter 5) and Nd (chapter 6).
Compared to the calculations performed earlier, for the odd-parity erbium configura-
tions, we have added some high-lying experimental energy levels that were previously
excluded from the fitting procedure. We also incorporated a larger number of free
configuration-interaction (CI) parameters into the fitting procedure. The experimen-
tal group in Innsbruck observed the narrow inner-shell orbital transition at 1299 nm.
They characterize the transition by measuring the Landé g factor and the atomic po-
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larizability at 532.2 nm, which was compared with our semi-empirical model. We have
good agreement with the experimental data for calculating the Landé g factor and the
wavenumber for our level of interest. But our theoretical result for the excited-state
lifetime is 3 times higher than the experimental result. This comes from the fact that
the underlying transition dipole moment involves small components in the eigenvector
associated with the excited level.

We have given a theoretical interpretation of the spectrum of neutral neodymium,
which is an essential component for new experiments with ultracold dipolar gases. We
did the calculations for three even configurations: 4f4 6s2, 4f4 5d 6s, 4f3 5d 6s 6p, and
three odd configurations: 4f4 6s 6p, 4f3 5d 6s2 and 4f3 5d2 6s. For this purpose we used
Cowan’s suite of codes.

Although Nd is a difficult element for such calculations, due to its very dense
spectrum, we have been able to carry out the calculations by introducing a method
in which we divide the calculation of each parity into two parts. The challenging part
of this calculation was the least squares fit, because we needed to find experimental
analogs for each theoretical level to which they should converge. We were able to
interpret more than 200 levels for odd parity configurations and 25 levels for even parity
configurations, for which there were no detailed information in the NIST ASD database.
In the course of calculations, we noticed discrepancies with the NIST database values,
for example, in Landé g-factors. After comparison we showed that for all levels except
for three, the absolute value of the difference between the theoretical and experimental
Landé g values does not exceed 0.4.

The logical continuation and perspective of this work for the future will be the
calculation of the transition dipole moments (TDMs) and Einstein coefficients, which
are necessary to characterize the efficiency of laser cooling and trapping of atoms. For
better accuracy, we plan to fit the Einstein coefficients using the FitAik package [124],
for which we will use the optimal set of parameters that we have determined in this
study.

In the thesis we have done spectroscopic calculation for two neutral lanthanides:
Er and Nd, and three trivalent ones: Eu3+, Nd3+ and Er3+. Precise spectroscopic
data of neutrals is necessary for ultracold experiments. On the other hand, trivalent
cations are attractive because of their wide scientific and industrial purposes. All the
calculations have been done with the semi-empirical model implemented in Cowan
codes. The results are in a good agreement with experimental ones. For neutral
lanthanides possible laser cooling and trapping conditions has been discussed. For
trivalent ones, an extension of Judd-Ofelt theory, describing the transitions within the
ground configuration of discussed ions, has been introduced. The new model has been
tested on Eu3+, Nd3+ and Er3+ and not only gives very satisfactory results, but also
allows the description of transitions that were forbidden before by the standard version.
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Appendix: Theoretical background

Antisymmetrization of a wavefunction

We can do the antisymmetrization for either the coupled or uncoupled function. We
start with an uncoupled one:

|n1l1ml1ms1n2l2ml2ms2⟩A = N [n1l1ml1ms1n2l2ml2ms2⟩ − |n2l2ml2ms2n1l1ml1ms1⟩],
(A.1)

where N = 1√
2(1+δm1m2δl1l2 )

called normalisation factor. P12|n1l1ml1ms1n2l2ml2ms2⟩ =
−|n2l2ml2ms2n1l1ml1ms1⟩ called permutation operator. Equation (A.1) comes from the
action of the permutation operator P12 between the two electrons. The action of this
operator on coupled wavefunction is:

P12|n1l1n2l2LSJM⟩ =
∑

MLMS

CJM
LMLSMS

∑
ml1

ms1

∑
ml2

ms2

CLML
l1ml1

l2ml2

× CSMS
s2ms2s1ms1

|n2l2ml2ms2n1l1ml1ms1⟩.
(A.2)

Now, we want to make a change of the indices in the coefficients, in order to have
similarity with the permutation operator. So,

CLML
l1ml1

l2ml2
= (−1)l1+l2−LCLML

l2ml2
l1ml1

, (A.3)

and
CSMS

s1ms1s2ms2
= (−1)s1+s2−SCSMS

s2ms2s1ms1
. (A.4)

So, the action of the permutation operator will be:

P12|n1l1n2l2LSJM⟩ = (−1)l1+l2−L+s1+s2−S
∑

MLMS

CJM
LMLSMS

∑
ml1

ml2

CLML
l2ml2

l1ml1

×
∑

ms1ms2

CSMS
s2ms2s1ms1

|n2l2ml2ms2n1l1ml1ms1⟩

= (−1)l1+l2−L+s1+s2−S|n2l2n1l1LSJM⟩.

(A.5)

If we have equivalent electrons s1 = s2 and l1 = l2, so s1 + s2 = 1 and l1 + l2 =
2l is always even. But because of the antisymmetrization principle the coefficient
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(−1)l1+l2−L+s1+s2−S = (−1)1−L−S must be -1. This fact imposes that L + S must be
even.

Useful relations

In the appendix, the LS-coupling basis functions of the ground and excited con-
figurations are respectively written |αLSJ⟩ and |αLS, L′S ′J ′⟩. The reduced matrix

element of the electric-multipole operator P
(k)
q are given by [24]〈

αLS, L′S ′J ′ ∥∥P (k)
∥∥αLSJ〉 = (−1)S+J+L+k

×
√
w (2J + 1) (2J ′ + 1) (2L+ 1) (2L′ + 1) (2ℓ+ 1) (2ℓ′ + 1)

× (nℓw−1 αLS|}nℓw αLS)
{
L S J
J ′ k L′

}{
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L′ k ℓ′

}
×
(
ℓ′ k ℓ
0 0 0

)
⟨n′ℓ′| rk |nℓ⟩ , (A.6)

where (nℓw−1 αLS|}nℓw αLS) is a coefficient of fractional parentage introduced by
Racah [26]. The matrix element of the spin-orbit operator within the ground con-
figuration is

⟨α1L1S1J1|HSO |α2L2S2J2⟩
= δJ1J2 (−1)L2+S1+J1 wζnℓ

√
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In the excited configuration, we assume that the off-diagonal matrix elements are only
due to the outermost n′ℓ′ = 5d electron,〈
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The second-order correction on the eigenvector |Ψ2
i ⟩ is∣∣Ψ2
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where Vit = ⟨Ψ0
i |V |Ψ0

t ⟩ and ∆it = Ei − Et.
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Appendix: Neutral neodymium

Fitted energy parameters

In this section, we present tables with fitted parameter values (Xfit) for configurations
of Nd after the last calculation and their scaling factors (fX) (if the parameter had
an initial HFR value), when only NIST interpreted levels are included in the fitting
process (see Section 6.2 of the main text).

Table B.1: Parameters, constraints, fitted parameters and their scaling factors (fX
= Xfit / XHFR) for even configurations of neutral Nd. All parameters are in cm−1.

Param. X Cons. Xfit fX Param. X Cons. Xfit fX Cons. Xfit fX

A-6s2 A-ds B-d6sp

Eav 29054 Eav 43510 61333
F2(4f 4f) r1 67029 0.730 F2(4f 4f) fixed 68255 0.750 fixed 86247 0.853
F4(4f 4f) r2 36840 0.645 F4(4f 4f) fixed 42450 0.750 fixed 37856 0.597
F6(4f 4f) r3 25772 0.629 F6(4f 4f) fixed 30437 0.750 fixed 35027 0.769
α fixed 37 α fixed 37 r51 96
β fixed 963 β fixed 963 fixed 655
γ fixed 478 γ fixed 478 fixed 1691
ζ4f r4 775 0.917 ζ4f r4 770 0.918 r4 981 1.039

ζ5d r4 356 0.918 r4 741 1.038
ζ6p r4 873 1.038
F1(4f 5d) r9 2111
F2(4f 5d) r1 12150 0.730 r1 27359 1.155
F3(4f 5d) r9 2111
F4(4f 5d) r2 5104 0.645 r2 30055 2.610
F1(4f 6p) r5 619
F2(4f 6p) r1 4667 1.115

143



144 APPENDIX B. APPENDIX: NEUTRAL NEODYMIUM

Table B.1 Continued

Param. X Cons. Xfit fX Param. X Cons. Xfit fX Cons. Xfit fX

A-6s2 A-ds B-d6sp

F1(5d 6p) r5 619
F2(5d 6p) r5 15793 1.115
G1(4f 5d) r5 5443 0.589 r6 12950 1.134
G2(4f 5d) r9 235
G3(4f 5d) r5 3904 0.586 r6 10198 1.134
G4(4f 5d) r9 1779
G5(4f 5d) r5 2858 0.589 r6 7705 1.134
G3(4f 6s) r5 956 0.589 r6 2087 1.134
G2(4f 6p) r7 1138 1.247
G4(4f 6p) r7 723 0.893
G2(5d 6s) r5 9809 0.589 r7 19047 1.247
G1(5d 6p) r6 6537 1.134
G3(5d 6p) r6 6613 1.134
G1(6s 6p) r6 26659 1.134

Table B.2: Parameters, constraints, fitted parameters and their scaling factors (fX =
Xfit / XHFR) for odd configurations of neutral Nd. All parameters are in cm−1.

Param. X Cons. Xfit fX Param. X Cons. Xfit fX Cons. Xfit fX

A-6sp B-ds2 B-d2s

Eav 52415 Eav 32902 40943
F2(4f 4f) r1 72969 0.793 F2(4f 4f) r1 71053 0.703 r1 70665 0.703
F4(4f 4f) r1 45624 0.797 F4(4f 4f) r1 37370 0.590 r1 37151 0.589
F6(4f 4f) r1 32719 0.797 F6(4f 4f) r1 21846 0.479 r1 21714 0.479
α r58 255 α r8 78 r8 78
β r58 -171 β r8 -717 r8 -717
γ r58 441 γ r8 1875 r8 1875

F2(5d 5d) r5 20344 0.612
F4(5d 5d) r5 10941 0.511
α r8 76
β r8 -698

ζ4f r4 832 0.985 ζ4f r4 885 0.937 r4 881 0.937
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Table B.2 Continued

Param. X Cons. Xfit fX Param. X Cons. Xfit fX Cons. Xfit fX

A-6sp B-ds2 B-d2s

ζ6p r4 702 0.985 ζ5d r4 524 0.771 r4 445 0.771
F1(4f 6p) r3 1726 F2(4f 5d) r2 13821 0.604 r2 12313 0.604
F2(4f 6p) r3 2333 0.588 F4(4f 5d) r2 5580 0.505 r2 4897 0.505
G3(4f 6s) r6 6406 3.354 G1(4f 5d) r6 6212 0.565 r6 5534 0.565
G2(4f 6p) r7 4762 5.194 G3(4f 5d) r6 4878 0.565 r6 4285 0.565
G3(4f 6p) r7 3848 G5(4f 5d) r6 3682 0.565 r6 3219 0.565
G4(4f 6p) r7 2706 3.363 G3(4f 6s) r7 867 0.567
G1(6s 6p) r7 17566 0.784 G2(5d 6s) r7 8733 0.567

Table B.3: Fitted configuration interaction (CI) parameters, their scaling factors (fX
= Xfit / XHFR) and constraints for even and odd configurations of neutral Nd. All
parameters are in cm−1.

Parameter X Xfit fX Parameter X Xfit fX

A-6s2 –A-ds A-6sp –B-ds2

R2 (4f 6s, 4f 5d) -1033 0.425 R1 (4f 6p, 5d 6s) -4049 0.473
R3 (4f 6s, 4f 5d) 222 0.425 R3 (4f 6p, 5d 6s) -863 0.474

A-6s2 –B-d6sp A-6sp –B-d2s

R1 (4f 6s, 5d 6p) -1496 0.161 R1 (4f 6p, 5d 5d) 1476 0.351
R3 (4f 6s, 5d 6p) -257 0.161 R3 (4f 6p, 5d 5d) 443 0.351

A-ds –B-d6sp B-ds2 –B-d2s

R2 (4f 4f, 4f 6p) -524 0.161 R2 (4f 6s, 4f 5d) -595 0.461
R4 (4f 4f, 4f 6p) -343 0.161 R3 (4f 6s, 4f 5d) 575 0.461
R1 (4f 5d, 5d 6p) 1033 0.161 R2 (5d 6s, 5d 5d) -8813 0.461
R3 (4f 5d, 5d 6p) 349 0.161
R2 (4f 5d, 5d 6p) 26 0.161
R4 (4f 5d, 5d 6p) 57 0.161
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Identified levels

Here we present detailed tables for newly interpreted levels for even and odd parity con-
figurations of neutral Nd. In what follows we use the abbreviations: conf.=configuration,
exp.=experimental data taken from the NIST database and dom. term=dominant
eigenvalue term with its percentage.

Table B.4: Identification and comparison with NIST database values for J = 3 levels
of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 16924 16974 0.685 0.520 7H 49%
B-d2s 20303 20282 0.302 0.895 7I 77%
B-ds2 21139 21228 1.259 1.032 5D 26%
B-d2s 21890 21952 0.974 1.070 7G 33%
B-d2s 22208 22229 0.817 0.705 5H 36%
B-d2s 22504 22491 0.766 0.830 5H 24%
B-d2s 22649 22631 0.790 1.130 7H 18%
B-d2s 22888 22930 1.012 0.765 3G 7%
B-d2s 23034 22956 0.997 0.990 5G 14%
B-ds2 23280 23218 0.956 1.060 3G 15%
B-ds2 23687 23762 1.108 1.190 1F 15%
B-d2s 24804 24775 1.180 1.352 5G 8%
B-d2s 25061 25164 1.088 1.050 5G 16%
A-6sp 25331 25282 1.209 1.360 5D 10%
A-6sp 25535 25500 0.904 0.825 7H 44%
B-d2s 25669 25642 1.117 0.900 3F 8%
B-d2s 25754 25788 1.166 0.900 7G 26%
B-d2s 25996 26061 1.134 1.360 7G 12%
B-d2s 26170 26096 0.759 0.980 7I 24%
B-d2s 26219 26163 1.057 1.180 7S 4%
B-ds2 26283 26346 1.065 1.025 3D 4%
B-d2s 26359 26395 0.880 1.060 7I 13%
A-6sp 26425 26463 1.133 0.865 7G 49%
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Table B.5: Identification and comparison with NIST database values for J = 4 levels
of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 17073 17032 1.231 1.020 7F 26%
B-d2s 17206 17320 0.983 0.865 7H 33%
B-ds2 18518 18436 0.954 1.075 3H 21%
B-ds2 19232 19209 0.888 0.990 5G 12%
A-6sp 19569 19590 1.124 0.785 7G 33%
B-d2s 19770 19770 0.873 0.920 5I 15%
A-6sp 19952 19957 0.798 0.910 5I 23%
B-ds2 19984 20047 0.917 0.900 3G 12%
B-d2s 20960 20860 0.886 1.080 7I 35%
A-6sp 20995 21009 1.611 1.280 7D 89%
B-d2s 21125 21185 0.827 0.920 5I 10%
B-d2s 21297 21314 0.916 0.985 5G 16%
B-d2s 21448 21488 0.909 0.910 5I 12%
B-ds2 22038 22077 1.046 1.035 3F 10%
B-ds2 22392 22471 1.099 0.995 3F 12%
B-d2s 22584 22623 1.003 1.135 3H 15%
B-d2s 22651 22678 1.033 0.885 7G 9%
B-ds2 22867 22815 0.846 0.975 5I 23%
B-ds2 22953 23016 0.794 0.810 5I 28%
B-d2s 23026 23089 0.941 1.250 7H 27%
B-d2s 23284 23204 1.170 1.200 7P 11%
B-d2s 23444 23439 0.998 0.885 7H 18%
B-d2s 23527 23563 1.067 0.940 5H 7%
B-d2s 23877 23846 0.989 1.175 5I 7%
B-ds2 23962 23953 0.899 0.830 3G 12%
B-d2s 24070 24001 1.237 1.110 7D 16%
B-ds2 24747 24674 1.070 1.060 3G 11%
B-d2s 25352 25448 1.148 1.175 7D 10%
B-ds2 25494 25476 0.881 0.915 5H 23%
B-ds2 25621 25621 1.085 1.175 5H 17%
B-d2s 25674 25641 1.041 1.120 5F 7%
B-ds2 25798 25791 1.138 0.920 5G 18%
B-d2s 26182 26232 1.083 1.025 5F 5%
B-d2s 26642 26662 1.120 1.000 5D 5%
B-d2s 26734 26684 1.172 1.130 5D 8%
B-d2s 26770 26770 1.052 1.200 3G 7%
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Table B.5 Continued

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-ds2 26995 27144 1.137 0.965 5G 14%
B-d2s 27261 27230 0.972 1.125 7I 10%
B-d2s 27478 27490 1.109 1.085 3H 10%
A-6sp 27678 27717 1.038 0.890 3G 8%
B-d2s 27801 27780 1.059 1.030 3G 4%
B-d2s 27924 27860 1.208 1.125 5D 9%
B-d2s 28004 27990 1.166 0.930 5F 7%

Table B.6: Identification and comparison with NIST database values for J = 5 levels
of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

A-6sp 15963 16028 1.000 0.915 7I 75%
B-ds2 17826 17791 0.907 1.005 3I 20%
B-d2s 17985 18030 0.990 0.970 5K 13%
B-d2s 18060 18068 1.142 0.920 7H 21%
B-ds2 19180 19226 0.944 0.944 5H 31%
A-6sp 19722 19648 0.931 1.070 5K 12%
A-6sp 20186 20177 1.229 0.960 7G 54%
B-d2s 20982 20963 0.994 0.990 5I 20%
B-ds2 21337 21272 1.054 1.040 1H 9%
B-d2s 21746 21727 1.063 1.000 5F 9%
B-d2s 22069 22129 1.052 1.060 5H 7%
B-ds2 22108 22192 0.943 1.090 3I 12%
B-d2s 22415 22367 1.211 1.085 7G 9%
B-d2s 22828 22737 1.062 1.070 3H 13%
B-ds2 22987 23050 1.025 1.060 3G 11%
B-d2s 23262 23198 1.053 1.085 7H 18%
B-d2s 23459 23434 1.047 0.965 7H 15%
B-d2s 23598 23573 1.083 1.080 5H 11%
B-d2s 23830 23830 1.152 1.165 5H 6%
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Table B.6 Continued

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-ds2 24063 23968 1.017 0.980 5I 12%
B-d2s 24266 24292 1.037 1.060 5H 10%
A-6sp 24333 24364 0.984 1.090 3I 19%
B-d2s 24443 24428 0.981 1.190 3I 20%
B-d2s 24638 24586 1.107 1.110 7D 8%
B-d2s 24743 24746 1.245 1.185 7F 17%
A-6sp 25036 25075 1.035 1.020 3H 15%
B-d2s 25257 25227 0.832 0.995 5K 17%
B-d2s 25914 25924 1.227 1.050 7D 12%
A-6sp 26071 26029 1.304 1.035 5F 20%
B-d2s 26332 26345 1.178 1.100 3H 6%
B-d2s 26495 26484 1.144 1.035 5G 12%
B-d2s 26516 26503 1.231 1.180 7K 7%
B-d2s 26580 26595 1.079 1.015 3G 4%
B-d2s 27447 27474 1.116 1.080 3G 7%
B-ds2 27509 27524 1.058 0.970 3I 15%
B-d2s 27853 27841 1.175 0.990 7F 17%
B-d2s 28032 28000 1.105 0.915 7I 6%
B-d2s 28146 28179 1.053 0.965 3I 5%
B-d2s 28262 28280 1.095 1.070 7I 7%
B-d2s 28556 28567 1.132 1.090 3G 14%
A-6sp 28576 28531 1.394 1.115 7F 56%
B-d2s 28689 28662 1.136 0.960 3I 5%
B-d2s 28785 28723 1.060 0.895 5H 4%
B-d2s 28865 28844 1.201 1.100 7D 7%
A-6sp 28893 28863 1.077 0.945 5I 13%

Table B.7: Identification and comparison with NIST database values for J = 6 levels
of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.
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Table B.7 Continued

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 15923 15780 0.924 0.945 5K 17%
B-d2s 17832 17749 1.133 1.090 7I 24%
A-6sp 18184 18172 1.236 1.080 7H 61%
B-d2s 19108 19152 1.074 0.930 5I 8%
B-d2s 19225 19281 1.081 1.055 7H 24%
B-d2s 19974 19995 1.321 0.920 7F 30%
B-d2s 20518 20432 1.101 1.040 5K 13%
B-d2s 20784 20703 0.881 1.035 5L 17%
B-ds2 20873 20839 1.062 0.940 3I 15%
B-d2s 20994 20918 0.948 0.840 5L 10%
A-6sp 21261 21314 1.080 1.060 5K 12%
B-d2s 21695 21718 1.066 0.960 5K 10%
B-d2s 22028 22050 1.069 1.040 3I 9%
B-d2s 22222 22124 1.037 1.170 7I 15%
B-d2s 22308 22303 1.053 1.080 7I 40%
B-ds2 22539 22560 1.050 1.135 3H 10%
B-d2s 22759 22739 1.000 0.985 5L 10%
B-d2s 22883 22871 0.934 1.164 3K 12%
B-d2s 23254 23284 1.131 1.040 3I 11%
B-d2s 23508 23496 1.039 0.930 1I 9%
B-d2s 23649 23578 1.089 0.985 5H 7%
B-ds2 23718 23756 1.105 1.075 3H 10%
B-d2s 23884 23889 1.185 1.030 7H 26%
B-d2s 23990 23986 1.065 1.100 5I 13%
B-d2s 24085 23996 1.176 1.045 7H 7%
A-6sp 24558 24590 1.007 1.010 3K 24%
B-d2s 24689 24702 1.058 1.135 7H 13%
A-6sp 24750 24751 0.974 0.925 3K 34%
A-6sp 24946 24922 1.088 1.080 3K 7%
B-d2s 25033 24984 1.170 1.210 3H 19%
B-d2s 25111 25115 1.196 1.225 5G 17%
B-d2s 25139 25196 1.023 1.120 3K 7%
B-d2s 25313 25301 1.162 1.210 5G 9%
B-d2s 25526 25478 1.084 1.085 5I 16%
B-ds2 25581 25609 1.064 0.895 5I 57%
B-d2s 25695 25662 1.043 1.190 5K 10%
B-d2s 25802 25751 1.258 1.200 7F 20%
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Table B.7 Continued

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 26535 26511 1.090 1.040 3K 5%
B-d2s 26727 26696 1.129 1.040 5H 11%
A-6sp 26805 26816 1.174 1.215 5G 6%
A-6sp 26882 26908 1.240 1.125 5G 31%

Table B.8: Identification and comparison with NIST database values for J = 7 levels
of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 16839 16845 1.071 1.120 5K 22%
B-d2s 17312 17290 1.188 1.070 7H 29%
B-d2s 18121 18257 0.852 0.955 5M 42%
B-d2s 19682 19746 1.279 1.090 7G 21%
B-ds2 21090 21026 1.160 1.235 5H 39%
B-d2s 21306 21286 1.035 1.050 5K 22%
B-d2s 21365 21412 1.064 1.067 5K 12%
A-6sp 21910 21909 1.086 0.970 5K 14%
A-6sp 22055 22042 1.376 1.020 7G 79%
B-d2s 22334 22320 1.133 1.128 5I 15%
A-6sp 22513 22483 1.053 1.120 5K 23%
B-d2s 23084 22939 1.059 1.065 7I 12%
A-6sp 23518 23518 1.147 1.052 5I 16%
B-d2s 23779 23745 1.097 1.040 5L 13%
B-d2s 24072 23991 1.072 1.225 5K 10%
A-6sp 24177 24213 1.255 1.060 5H 36%
B-d2s 24676 24730 1.216 1.150 5H 19%
B-d2s 24825 24968 1.120 1.145 5H 8%
B-d2s 25079 25064 1.136 1.100 3I 21%
B-d2s 25164 25198 1.222 1.120 5H 17%
B-d2s 25485 25504 1.140 1.115 5I 7%
B-d2s 25569 25596 1.234 1.095 7G 17%
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Table B.8 Continued

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-ds2 25919 25849 0.951 1.085 3L 57%
B-d2s 25954 25886 1.068 0.965 1K 11%
B-ds2 26162 26155 1.116 0.950 5I 11%
A-6sp 26270 26327 1.124 1.250 3K 14%
B-d2s 26424 26395 1.118 1.080 3I 8%
B-d2s 26509 26635 1.060 1.125 3L 13%

Table B.9: Identification and comparison with NIST database values for J = 8 levels
of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 18080 17973 1.141 1.200 7K 38%
A-6sp 19921 19862 1.162 1.290 7H 14%
A-6sp 23542 23474 1.135 1.123 5K 19%
B-d2s 23665 23653 1.206 1.128 7I 27%
A-6sp 23972 24078 1.167 1.070 5K 14%
B-d2s 24651 24688 1.183 1.155 7I 17%
B-d2s 24756 24773 1.180 1.145 5I 21%
B-d2s 25191 25191 1.191 1.195 5I 16%
B-d2s 25212 25281 1.174 1.115 5I 15%
B-d2s 25477 25383 1.157 1.140 5I 17%
B-d2s 25538 25514 1.100 1.140 3L 12%
B-d2s 26738 26783 1.087 1.118 3L 15%
B-ds2 26996 27044 1.026 1.015 3L 53%
B-d2s 27168 27131 1.196 1.170 5I 13%
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Table B.10: Identification and comparison with NIST database values for J = 9
levels of odd parity configurations. All energy levels are in cm−1.

Conf. Energy Landé g Dom. term

Theory Exp. Theory Exp.

B-d2s 24933 24935 1.098 1.150 3M 20%
B-d2s 25224 25142 1.102 1.120 3M 17%
B-d2s 26424 26511 1.121 1.165 3L 28%
B-d2s 27862 27842 1.121 1.160 3L 24%
B-ds2 28734 28781 1.105 1.215 3L 72%
B-d2s 28983 29061 1.220 1.015 5K 25%
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[66] A Chikh, D Deghiche, A Meftah, W-Ü L Tchang-Brillet, J-F Wyart, C Balança,
N Champion, and C Blaess. Extended analysis of the free ion spectrum of Er3+

(Er IV). J. Quant. Spectrosc. Rad. Transf., 272:107796, 2021.

[67] S. Shionoya, W.M. Yen, and H. Yamamoto. Phosphor Handbook. CRC Press
laser and optical science and technology series. CRC Press, 2018.

[68] Alexandra Ya Freidzon, Ilia A Kurbatov, and Vitaliy I Vovna. Ab initio calcu-
lation of energy levels of trivalent lanthanide ions. Physical Chemistry Chemical
Physics, 20(21):14564–14577, 2018.

[69] P Babu and CK Jayasankar. Optical spectroscopy of Eu3+ ions in lithium borate
and lithium fluoroborate glasses. Physica B: Condensed Matter, 279(4):262–281,
2000.

[70] Antoine Aubret, MAGJ Orrit, and Florian Kulzer. Understanding local-field
correction factors in the framework of the Onsager-Bottcher model. Chem. Phys.
Chem., 20(3):345–355, 2018.

[71] Simon Freed and SI Weissman. Multiple nature of elementary sources of
radiation—wide-angle interference. Phys. Rev., 60(6):440, 1941.

[72] RE Kunz and W Lukosz. Changes in fluorescence lifetimes induced by variable
optical environments. Phys. Rev. B, 21(10):4814, 1980.

[73] Tim H Taminiau, Sinan Karaveli, Niek F Van Hulst, and Rashid Zia. Quantifying
the magnetic nature of light emission. Nat. Comm., 3(1):1–6, 2012.

[74] WC Nieuwpoort and G Blasse. Linear crystal-field terms and the 5do-7fo tran-
sition of the eu3+ ion. Solid State Communications, 4(5):227–229, 1966.

[75] Koen Binnemans and Christiane Görller-Walrand. Application of the Eu3+ ion
for site symmetry determination. J. Rare Earths, 14(3):173–180, 1996.

[76] Koen Binnemans, Karel Van Herck, and Christiane Görller-Walrand. Influence of
dipicolinate ligands on the spectroscopic properties of europium (III) in solution.
Chem. Phys. Lett., 266(3-4):297–302, 1997.

[77] Andrew F Kirby and FS Richardson. Detailed analysis of the optical absorption
and emission spectra of Eu3+ in the trigonal (C3) Eu (DBM) 3. H2O system.
The Journal of Physical Chemistry, 87(14):2544–2556, 1983.

[78] XY Chen and GK Liu. The standard and anomalous crystal-field spectra of
eu3+. Journal of Solid State Chemistry, 178(2):419–428, 2005.



BIBLIOGRAPHY 161

[79] M Karbowiak and S Hubert. Site-selective emission spectra of Eu3+:Ca5(PO4)3F.
J. Alloys Compounds, 302(1-2):87–93, 2000.

[80] Freddy T Rabouw, P Tim Prins, and David J Norris. Europium-doped NaYF4

nanocrystals as probes for the electric and magnetic local density of optical states
throughout the visible spectral range. Nano letters, 16(11):7254–7260, 2016.

[81] VT Adamiv, Ya V Burak, RV Gamernyk, GM Romanyuk, and IM Teslyuk.
Optical properties, electronic polarizability and optical basicity of lithium borate
glasses. Physics and Chemistry of Glasses-European Journal of Glass Science and
Technology Part B, 52(4):152–156, 2011.

[82] Gohar Hovhannesyan, Vincent Boudon, and Maxence Lepers. Transition in-
tensities of trivalent lanthanide ions in solids: Extending the judd-ofelt theory.
Journal of Luminescence, 241:118456, 2022.
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