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Introduction

In this introduction, we describe Medieval Manuscript Studies (MMS) and some
AI research fields that we believe can help this domain. This thesis is at the
intersection of AI and MMS, aiming to showcase the utility of leveraging AI as a
helper for Musicology experts. This thesis is at the intersection of AI and MMS,
aiming to showcase the utility of leveraging AI as a helper for Musicology experts
working in the field of MMS. We start by defining the scope and context of our
thesis in a European setting. Then, we defined our research statement and goal
and provided a description of the thesis outline. Finally, we finished by listing the
contribution of this thesis to the fields of AI and MMS.

Context

Cultural Heritage is the legacy we inherited from our past generations and main-
tained in the present for the benefit of the generations to come. Preserving a
nation’s history is of high importance since it provides a unique opportunity to
introduce its identity. Cultural heritage is rooted in the identity of the people as
it reflects the values, hopes, and beliefs of a region and maintains the integrity
and unity of the people. Musical Heritage is especially fragile and intangible,
since safeguarding it and transferring it through generations is harder than pro-
tecting buildings and monuments. One major window to our musical history is
manuscripts as they can provide clues on dance performances, songs, musical in-
struments used, types of clothing, and the different historical festivities. The BNF
1 and other major museums have launched a big digitization campaign of medieval
manuscripts, with over 370,000 manuscripts. Museums also add metadata to the
manuscripts which are well-detailed and structured descriptions such as the date
and Title. Digitalization allows musicologists quick access to manuscripts and doc-
uments but with a large amount of content, searching for the right item becomes
impossible.

As part of the European Commission’s mission, preserving and reconstructing

1https://www.bnf.fr/en

1

https://www.bnf.fr/en
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our past is a challenge of high importance. Projects such as the reconstruction of
the Notre Dame de Paris Cathedral in Paris France made it very clear that our
past is very fragile and preserving it is a mission that can not be postponed. The
European Union is funding a multitude of projects in the context of preserving
European cultural heritage. Some examples are the EU-funded RePAIR project
which aims at facilitating the reconstruction process of bringing ancient and his-
torical artworks back to life which can be one of the most labor-intensive steps of
archaeological research. Other projects such as AI4Europeana aim at building an
Artificial Intelligence platform for the cultural heritage data space by providing
access to a large pool of AI resources such as labeled datasets and basic AI tools.
Not only is preserving cultural heritage an important mission for the European
Union, but it is also a goal for large companies such as Microsoft with their AI
for Cultural Heritage initiatives. The aim of such initiatives is to provide more
realistic experiences of ancient worlds and uncover art histories through AI and
knowledge graphs. Closer to our university, a project of immense importance to the
field of cultural heritage preservation is project PHEND 2 (The Past Has Ears at
Notre Dame (2020-2024)) which is a French Collaborative research project founded
by the ANR aiming at better understanding the sonic history of the Notre-Dame
cathedral in pairs.

Computer vision models are able to provide the human-level performance of
several tasks such as classification, object detection, and instance segmentation
due to the large volumes of images online and the computing powers of GPUs.
Yet their performance degrades drastically when applied to historical data due to
the scarcity of data, large variations in style, and small size of interest objects in
the images. This problem is commonly known as a domain gap and it is closely
related to over-fitting. Researchers [68] have developed several techniques to deal
with such a problem depending on the context task and they all fall under the
transfer learning umbrella [47].

Auxiliary learning [101] is a research field that aims at improving the results of
classification models by leveraging and designing auxiliary tasks that can improve
the performance of the primary task. The underlying assumption is that learning
with an auxiliary task can improve the ability of the model to generalize to unseen
data. This allows it to not over-fit on the training of the primary task such that
the auxiliary task can be a distraction or a regularization that hinders the abilities
and flexibility of the model. This sadly comes at a great cost, which is re-labeling
the data manually to provide the auxiliary labels for the training. The sharing of
the learned weights between the auxiliary model and the primary model results in
the extraction of much more abstract and rich high-level information. This helps
in discriminating between the different classes which otherwise would not have

2http://phend.pasthasears.eu/

http://phend.pasthasears.eu/
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been learned from the primary task training only. This is similar to multi-task
learning which proved to be an extremely effective method of training with one
major difference which is that the only performance that matters is the primary
task. With supervised auxiliary learning can be manually chosen to complement
the primary task based on domain knowledge and the ability of the re-labeling.
Unsupervised Auxiliary learning on the other hand removes the requirement of
manual labor and domain-specific tuning, but that drastically reduces the increase
in performance resulting from using the techniques. In this thesis, we will cover
multiple methods that use both supervised auxiliary learning (as we have multiple
labels for each image thanks to the annotations of the museums that digitalize the
manuscripts such as the date, location, type of supporting materials, artists, some
content specific annotations etc) and unsupervised auxiliary learning.

Goals and research questions

The goal of the thesis is to explore different ways that we can leverage AI for MMS.
We focus intentionally only on computer vision tasks as it is more applicable to the
field of MMS, especially Medieval Musical Iconography which focuses on the study
of music depictions in the manuscripts. It offers us information about performers,
musical instruments, and practices of the Middle Ages (a.d. 500 to about 1500).
We summarize our research statements in the following questions:

• How can we use computer vision-powered AI to search for objects and pat-
terns of interest in the vast amount of digitalized data? : After collaborating
with multiple musicologists working inside the IReMus laboratory, the most
common problem they are facing is the time-consuming and repetitive task of
searching manually in museums websites for images of a specific instrument
or a pattern of singing.

• Is it possible to use images from other domains outside of the field of MMS
to improve the performances of models on MMS tasks? : Immediately af-
ter considering the first question mentioned earlier we are faced with a big
problem which is lack of data in the field. So our next logical step is to get
more data from outside the field sharing similarities with medieval data.

• How much data is needed to train a model for MMS computer vision tasks
effectively? : depending on the difficulty and details required for the MMS
research that musicologists are interested in, we might be able to start with
a large amount of data or with a very small dataset. The question that arises
is, how much data they need to have in order to leverage computer vision AI
as a search engine effectively.
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• Is it possible to use other data types to improve computer vision models’
performances in the field of MMS? : The most creative part of this thesis
aims at solving the problem of lack of image data by using other types of
information commonly available in the field of MMS since these manuscripts
come with detailed metadata in multiple forms.

Challenges

The field of Medieval Manuscript Studies doesn’t have enough active AI research
and the possibilities are endless. This led us to have multiple options for exploring
and innovating in the thesis, but also multiple challenges ahead. Namely, we have
two major issues:

Data Scarcity & variation

The first issue we faced when we wanted to apply computer vision models for both
classification and object detection was the lack of annotated datasets in the field.
Since there are many types of objects to annotate (singers, musical instruments
from multiple centuries and countries, sculptures, stained glass, etc), this makes it
impossible to find a dataset tailored to the musicologist’s interest. But even after
annotating the few images a musicologist probably has for their object of interest,
it is not enough for a computer vision model, as the shapes and colors and styles of
that same object change drastically from one source to the other and even in the
same museum, same country and same century we can find many differences due
to the artist’s expression and style. This makes it very challenging to work with
MMS datasets and lead us to annotate multiple types and variations of datasets
and to explore the fields of transfer learning and few-shot object detection.

Our interest in medieval and historical data makes it very challenging to get
images of the objects that we are interested in finding mainly because research
questions tend to concern objects that are too specific and hence cannot be in-
cluded in the metadata. Figure 1 3 shows clearly a medieval manuscript that
contains 6 musical instruments that are completely ignored by the museum’s an-
notators who focus only on the core of the image which is The virgin and child
with angels.

Domain Drifts

Domain drift is a major problem for machine learning models as is still an active
area of research. The issue arrives when the model is trained on a dataset of a

3https://www.getty.edu/art/collection/object/105T01
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Figure 1: The Virgin and Child with Angels; Lieven van Lathem (Flemish, about
1430 - 1493); about 1471; Tempera colors, gold leaf, gold paint, silver paint, and
ink on parchment; Leaf: 12.4 × 9.2 cm (4 7/8 × 3 5/8 in.); Ms. 37 (89.ML.35),
fol. 5v; No Copyright - United States (http://rightsstatements.org/vocab/NoC-
US/1.0/)
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specific source and then tested and used on a dataset from a slightly different
source. Even though the differences might not be visible for a human, the domain
drift problem can drop the performance of the model drastically. In our case,
the domain drift problem is extremely visible and reduces the performances of
the models of MMS to unusable levels. The solution to this issue is the field of
research known as Domain adaptation, which we explore in detail through various
approaches of auxiliary learning and adversarial training.

Contributions

We split our contributions into two parts: the annotated datasets and the publi-
cations.

Annotated datasets

Our initial contribution is the creation of four new annotated datasets (of museum
images) in the field of Medieval Manuscript Studies focused on different tasks
relating to medieval singing and instruments for the tasks of object detection and
instance segmentation:

• Annotated Musical Instrument Museums Online (AMIMO): The first dataset
of images we extracted from Musical Instrument Museums Online (MIMO)
4 with 10258 manually annotated images. AMIMO focused on real photog-
raphers of medieval and historical string instruments.

• AnnVihuelas: The smallest dataset we created from Vihuelas 5 with only
165 images of the stringed instrument Vihuela, which was popular in Spain
during the Renaissance.

• AnnMusiconis: Musiconis6 is an image archive for musical performances of
the medieval period. We annotated 662 chordophones.

• MMSD: Medieval Musicological Studies Dataset (MMSD) is a dataset of 693
objects mainly focused on books and lecterns and alters as indices to search
for medieval singing practices portrayed in medieval manuscripts.

These datasets allowed us to create and innovate different experimental setups and
solutions for the challenges we faced while applying AI on MMS.

4https://mimo-international.com/MIMO/instrument-families.aspx
5https://vihuelagriffiths.com/
6https://musiconis.huma-num.fr/fr/

https://mimo-international.com/MIMO/instrument-families.aspx
https://vihuelagriffiths.com/
https://musiconis.huma-num.fr/fr/


Contributions 7

Publications

Our first AI contribution was a new black box method for object detection models
that satisfies the constraints we face in the field of medieval studies, such as being
reproducible non-intrusive and model-independent. Our method is called dual
training for transfer learning and it leverages three datasets, an original unrelated
(used for lower-level feature extraction) a mid-size related dataset (similar classes
but different styles) and the target dataset. Our method trains the model in an
iterative manner between related and target datasets in order to improve the final
result over the target data. The experimental trials we performed affirm that
our technique outperforms vanilla Transfer Learning with +8.83% F1-score on our
medieval datasets.

We also tested and extended our transfer learning method to work in situations
where data is extremely scarce. This leads us to explore the field of few-shot object
detection by proposing a new and simple method for black box few-shot object
detection, that works with all the current state-of-the-art object detection models
such as Yolo, RCNN family, and Visual Transformers.

Black box methods [96] are quite easy to generalize and provide an increase in
performance across the board for multiple types of models. But, the effects no-
ticed by black-box methods are not significant enough to build powerful machine
learning models starting on a dataset that suffers from lack of data, high resolu-
tion (5-10 times higher resolution than common images used to train large-scale
models), the small size of the object of interest, deformed images, and a major
variety of style and underlying support material. All of these problems make it
almost impossible to build an acceptable model directly without making signifi-
cant changes to the model’s architecture and training algorithm. Sadly, creating
a new architecture requires abandoning all of the knowledge contained within the
weights of large pre-trained models which makes it an unfeasible solution. Hence,
we decided to leverage the current architectures by making some improvements
to the models and the training steps. The method we chose to use is Auxiliary
learning, which is more invasive and more timely but yields much better results.

Moving to the most important contributions we made, which are the domain
adaptation methods we proposed based on adversarial learning and auxiliary learn-
ing. Our contributions are considered part of the self-supervised learning and un-
supervised auxiliary learning tasks, which are highly related to domain adaptation.
We presented multiple techniques of domain adaptation that leverage Adversarial
Learning and Knowledge Graph embedding.

The third method is a new method for Unsupervised Domain Adaptation that
is at the same time fast and resilient, which we split into two sections (TripNet
and AugNet). Taking as input pictures, the model tries to learn a good classifier
and maintain a neutral and unbiased encoder. The original idea was to take two
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separate data sources and build a source-detector/classifier that we use to train the
encoder in an adversarial manner. This TripNet idea works great but we wanted
to push it even further for cases where we don’t have the metadata related to the
source of the images we are using, so we assume the data is all the same. AugNet
aims to solve this issue by leveraging augmentations to transform the images into
new domains where each augmentation is considered a new domain. The new de-
tector is no longer trying to predict the source of the image but trying to predict the
type of augmentations the image received. This makes it a lot more inclusive and
applicable but it adds a layer of complexity notably for classes that get destroyed
after some specific augmentations (like a 6 becoming a 9 after rotation, etc). The
previous two methods assume the least amount of assumptions on the training
data, aiming to be applied to images from all domains. However, our thesis is
interested in medieval manuscripts, which tend to be available in museum libraries
along with a very detailed descriptive meta-data. Hence we decided to leverage
this idea by putting this meta-data information into a graph and using Node2Vec
to transform these nodes into anchors that clean up and organize the latent space
from the encoder, and hence providing more information and separability that the
classifier can leverage to get unbiased and accurate classifications.

Our final contribution is the application of a Domain generalization technique
that assumes zero information about the input images and treats the image pixels
themselves as a source of randomness and noise that hurt the classifier. Hence,
it adds a decoder on top of the classical classification architecture instead of a
detector which aims to regenerate the input image with all its background noise
while the encoder is trained on the adversarial loss of the reconstruction in order
to forget the noise and style information while focusing on the classification part
of the training.

We summarized our published articles for the thesis in the following list:

• I. E. I. Bekkouch, V. Eyharabide and F. Billiet, "Dual Training for Trans-
fer Learning: Application on Medieval Studies," 2021 International Joint
Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-8,
doi: https://doi.org/10.1109/IJCNN52387.2021.9534426 [14]. In this
article, we presented our Transfer Learning method applied to Medieval
Manuscript datasets.

• I. E. I. Bekkouch, V. Eyharabide, V. Le Page, and Frédéric Billiet. 2022.
"Few-Shot Object Detection: Application to Medieval Musicological Stud-
ies" Journal of Imaging 8, no. 2: 18. https://doi.org/10.3390/jimaging8020018
[72]. In this article, we presented our Few-shot object detection technique
applied to medieval musicological studies and discussed the question of how
much data is needed to build an object detection model.

https://doi.org/10.1109/IJCNN52387.2021.9534426
https://doi.org/10.3390/jimaging8020018
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• I. E. I. Bekkouch, N.D. Constantin, V. Eyharabide, F. Billiet (2022). Adver-
sarial Domain Adaptation for Medieval Instrument Recognition. In: Arai, K.
(eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes
in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.
1007/978-3-030-82196-8_50 [13]. In this article, we presented our first in-
trusive method for unsupervised domain adaptation, where we build a model
using unlabeled inference data.

• V. Eyharabide, I. E. I. Bekkouch, and N. D. Constantin. 2021. "Knowledge
Graph Embedding-Based Domain Adaptation for Musical Instrument Recog-
nition" Computers 10, no. 8: 94. https://doi.org/10.3390/computers10080094
[41]. In this article, we leveraged the meta-data available with our datasets
to guide the computer vision models using a knowledge graph-based domain
adaptation approach.

We also applied published algorithms to the domain of medieval manuscript studies
from the following articles:

• I. E. I. Bekkouch, Y. Youssry, R. Gafarov, A. Khan, and A. M. Khattak.
2019. "Triplet Loss Network for Unsupervised Domain Adaptation" Algo-
rithms 12, no. 5: 96. https://doi.org/10.3390/a12050096 [11]. In this
article, I presented the idea of removing generative models from domain
adaptation techniques, which leads to faster and more generalizable models.
This technique was tested on medieval manuscript datasets in Chapter 5.

• I. E. I. Bekkouch, D. N. Constantin, A. Khan, S. M. A. Kazmi, A. M.
Khattak and B. Ibragimov, "Adversarial Reconstruction Loss for Domain
Generalization," in IEEE Access, vol. 9, pp. 42424-42437, 2021, doi: https:
//doi.org/10.1109/ACCESS.2021.3066041 [8]. In this article, I presented
the domain generalization idea of leveraging the pixel values directly for an
auxiliary task used to constrain the model’s overfitting abilities.

Although I aimed to make the thesis a theoretical thesis with a focus on nov-
elty in training algorithms, loss functions, and architecture, the final goal of the
thesis is to provide much-needed AI-powered aid to musicology research. We did
this throughout the thesis by collaborating with musicology experts mainly by
providing them with new manuscripts that either confirm or reject their initial
hypotheses allowing them to build a better understanding of medieval practices,
especially around singing. Although every thesis chapter is centered around AI for
Musicology, we made the last chapter a recap of the impact that our work had on
musicologists by increasing the Musiconis library of medieval artworks, adding new
musical instruments from the medieval periods, and multiple examples of medieval
singing with a focus on religious singing inside of churches.

https://doi.org/10.1007/978-3-030-82196-8_50
https://doi.org/10.1007/978-3-030-82196-8_50
https://doi.org/10.3390/computers10080094
https://doi.org/10.3390/a12050096
https://doi.org/10.1109/ACCESS.2021.3066041
https://doi.org/10.1109/ACCESS.2021.3066041
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Outline

The remainder of this thesis is organized as follows:

• Chapter 1 is dedicated to exploring the state of the art in the field of Medieval
Manuscript Studies and gives definitions to the concepts discussed in the
thesis.

• Chapter 2 describes the datasets we annotated in detail and provides statis-
tics about the classes and sizes of each dataset.

• Chapter 3 describes our Dual Training for Transfer Learning technique for
object detection and provides empirical evidence for its efficacy.

• Chapter 4 is about the few-shot object detection technique and how we used
it in the field of Medieval signing along with a detailed benchmark to evaluate
the question of how many samples we need to get decent results for object
detection.

• Chapter 5 focuses on adversarial domain adaptation techniques and shows
cases two novel methods based on pseudo labeling, separability losses, and,
most importantly, adversarial training. It proves that there is no need to
use the generative part of the GAN as it is very time-consuming and doesn’t
provide that much better results.

• Chapter 6 goes deeper into the domain adaptation field by combining it
with knowledge graph embeddings and leveraging the full range of metadata
accompanying the museums’ data that we typically work within the field of
MMS.

• In chapter 7, we describe the final innovation of the thesis which is a do-
main generalization technique that reduces the amount of required meta-
data needed by simply treating the pixels themselves as an extra source of
information leaning closer to the unsupervised side of auxiliary learning.

• Chapter 8, is the empirical evidence of our work and puts our methodology
to use to help musicologists in the field of MMS. It starts by presenting
Musiconis archive and showing two projects we worked on throughout the
thesis: medieval singing and musical instrument recognition.

• Finally, we present a summary in chapter 9 that concludes the thesis contri-
butions and presents a few perspectives for future research that can be based
on this thesis.



Chapter 1

Related Works

Before going deeper into the methods and techniques used in this thesis, we start
by discussing some AI-based innovations in MMS. Then, we discuss some computer
vision methods, and we finish this chapter by discussing Generative Adversarial
networks and knowledge graphs, as they are essential for our contributions.

1.1 AI for Medieval Manuscript Studies

In recent years, multiple deep learning applications applied to cultural heritage
(CH) have been developed, especially for images of ancient paintings and histor-
ical artworks. Most of CH’s applications are in the domain of computer vision.
One of the major drawbacks of CH applications’ implementation is the quality
and quantity of annotated datasets available to train and test deep learning al-
gorithms. In general, the data is scarce, and copyrights restrict their reuse and
publication. Several historical manuscript image datasets have been proposed
[120, 147, 143] with the goal of training and evaluating deep learning methods.
Digitalized manuscripts datasets are mainly used for document analysis and text
recognition [69, 119, 159]. Since we are interested in ancient musical instruments
recognition, we need manuscripts that are illuminated. Among the existing illumi-
nated manuscripts datasets, we can mention the HBA corpus [109], or the HORAE
dataset [19], but none of them contain musical instruments. Other datasets con-
taining artistic artworks are PrintArt [25], BAM [170], OmniArt [150].

Neural networks, ranging from Convolutional Neural Networks (CNNs) to Mask
R-CNN [63], are useful in recognizing high-level artworks features from the low-
level image features like colors, shapes, and texture. Hence, they are widely used in
CH’s applications manipulating images of artworks and paintings, such as object
detection [59, 77], image classification [25, 110, 26], image description and caption-
ing [162, 144, 27], or answering visual questions [51] in artworks and paintings.

11
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Writer Identification is another field that has attracted attention in this area,
which is classifying a page of handwritten historical document scans to their origi-
nal author or artist. There exist two main streams for solving this task: the easier
one is building a row-level model followed by a majority classifier using CNNs [33],
whereas the other is a facial recognition inspired method which embeds the whole
scan and computes distances between the training data and the new samples. An-
other promising application of deep learning to medieval and historical works is
predicting the creating date of artworks, like the approach presented in [60] that
used Convolutional Neural Networks and outperformed the traditional rule-based
systems used before.

However, the use of deep learning techniques is not always enough to interpret
artworks. The vision of a human expert is essential to understand the content and
meaning of artworks fully. Therefore, state-of-the-art methods include ontologies
and knowledge graphs that model human knowledge to improve neural networks
results. These approaches with graph embeddings [52] and graph neural networks
[173] aim at creating meaningful vector representations including structural graph
information (such as nodes and edges) as well as the content information (such as
texts or images) of each node. The method presented in this article [173] combining
knowledge graph embeddings with visual embeddings is a clear example of such
approaches.

Although the field of object detection is relatively mature and has been around
for quite some time, its applications to cultural heritage data have been relatively
modest. In the musicology field, most contributions use simple images [42], such as
the recent contributions to digital cultural heritage analysis focusing on similarity
metric learning methods for making semantic-level judgments, such as predicting
a painting’s style, genre, and artist [40, 176]. Other contributions detect fake
artworks through stroke analysis and an artistic style transfer using adversarial
networks to regularize the generation of stylized images [134].

Other applications of deep networks to archaeological remote sensing include
topics such as the detection of buried sites on Arc GIS data [142] and the classifi-
cation of sub-surface sites using R-CNNs on LiDAR data [86]. Both contributions
followed a transfer learning approach by fine-tuning a pre-trained CNN using Li-
DAR data in ImageNet [11]. Overall, we can see that the application of computer
vision in the digital humanities and cultural heritage is a field that is still being
uncovered, mainly because of the lack of data, and this why is our method for
few-shot object detection will open a door towards more contributions in the field,
overcoming the barrier of the lack of data. It is important to note that the lack of
data we are addressing, isn’t the lack of well-documented publicly available images.
The issue is with the lack of annotated data that can be used to train machine
learning models. Examples of such image repositories for medieval manuscripts
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are:

• MMMO Database: Medieval Music Manuscripts Online Database 1 is an
international virtual library of music sources using manuscripts of western
language from the medieval period.

• CVMA Database: Corpus Vitrearum Medii Aevi 2 is an international re-
search project aiming to record medieval stained glass and provides free
access to more than 28000 images3.

• DIAMM Archive: the Digital Image Archive of Medieval Music 4 presents
images and metadata for thousands of manuscripts and publications.

1.2 Computer Vision

Medieval Manuscripts come in different shapes and forms, but the majority of
them are treated as images or text corpuses. For our work, we focused mainly on
the image source as it is the most common format of medieval manuscripts and
the researchers we are collaborating with (musicologists) focus on the iconography
part of the manuscript.

There are three main sub-tasks used for processing such medieval manuscripts,
which are Image classification, Object detection, and instance segmentation. De-
pending on what the goal of the study is, we might need to work with different
computer vision models. In this section, we will discuss in depth the works done
in each sub-task, the technologies commonly used and their usage and possible
applications to the field of medieval manuscript studies.

1.2.1 Image Classification

Traditional Machine Learning Methods

Image classification is one of the most well-researched regions of computer vision
and is still a growing field. Automating the discrimination of different images into
categories has always been a task of interest to researchers and industries alike.
The first technologies used in the field are manual techniques that are not even
learning-based but handwritten heuristics used to compare or extract important
features from images. First methods used for image processing used techniques
such as thresh-holding and edge detection (Canny Edge Detector[177], Laplacian

1http://musmed.eu/
2https://www.cvma.ac.uk/index.html
3https://www.cvma.ac.uk/jsp/index.jsp
4https://www.diamm.ac.uk/

http://musmed.eu/
https://www.cvma.ac.uk/index.html
https://www.cvma.ac.uk/jsp/index.jsp
https://www.diamm.ac.uk/
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Of Gaussian [31], Sobel-Scharr-Prewitt-Roberts filters [131]) for pre-processing
data and using Erosion and Dilation for improving the quality of the data as it is
very common for medieval data to be damaged or missing some parts. The next
steps are usually building Bags of Visual Words to classify the different images
based on their textures, colors, sizes, and shapes. We start first by extracting
the important features of each image by using a features extractor (HOG, SIFT,
Harris Detector, Shi-Tomasi Detector).

The second step is Learn a visual vocabulory from the different features of all
images by selecting the main features of our images, this step is usually done by
k-means clustering where we cluster the feature vectors obtained from the previous
step, the resulting cluster centers (i.e., centroids) are treated as our dictionary of
visual words. The third step is to quantize each given arbitrary image, and quantify
and abstractly represent that image using bag of visual words model. This is done
by computing the nearest neighbor for the important features of the image with the
features from our dictionary, usually done using euclidean distance, and taking the
set of nearest neighbor labels to build a histogram of features presence. And lastly,
we train a Support Vector Machine model to classify the extracted histograms into
the classes of interest.

Deep Learning Methods

Ever since neural networks were invented, they faced one major problem which is
data, because unlike machine learning models which make assumptions on the data
and try to build a model that maximizes the likelihood of the data following its
patterns, deep learning models make very few assumptions and are quite generic,
but they require a lot more data to train effectively. The first deep learning model
was the multi layer perception which takes represents the model as a hierarchical
function mapper with its basic function named the neuron which applies a linear
combination of its input followed by a non linear activation function to increase
the complexity of the learned decision boundary.

MLP are feed forward neural networks [75] which are trained by back-propagation
[89] and gradient descent and are thought to be one of the most generic learners
possible, untill the invention of attention based learning [161]. MLP although
quite powerful for structured data and tabular data specifically they had a big
problem catching up to machine learning models which required far less training
time and ressources untill the adoption of convolutional operation into the field of
deep learning. CNNs made a very clear and simple assumption that at the time
was logical and not constraining which is that decision making for every pixel is
only related to its closest neighbours and not the rest of the image. This assump-
tion was quite correct and provided uncomparable results with machine learning
models and the time of training, amount of data needed was drastically reduced
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compared to MLP.

Current advancements in computer vision lead to believe that both MLP and
CNNs are not the optimal solution for automating vision especially for large scale
application. New research shows that more generic deep learning models can
provide much better results by leveraging the excessive amount of unlabled data
and the big computational resources that big AI companies have [74]. Examples of
such generic models can be attention based models which have dominated the field
of Natural Language Processing for the last 2 years. We will cover attention based
models in a following subsection in detail, but they provide a great advantage in
general especially for our type of data since they appear to perform much better
than other models on higher dimentional data and on objects of smaller size which
are the most common types of pictures and objects that we work with in the field
of culturale heritage and medieval data. One major problem with such models
is that they require a lot of training, fine tuning and huge amounts of data to
provide good results for the moment but we explore them in the rest of the thesis
and examine good measures and techniques for transfer learning that can help
with such drawbacks.

1.2.2 Object Detection

Object detection is one of the main research areas now that image classification
has been well studied and explored. It also started way back as early as image
classification models, with methods such as Viola Jones (VJ) [166], Histogram of
oriented Gradients (HOG) [35] which are still used for tasks such as facial detection
in mobile applications like snapchat and tiktok because of their fast and accurate
performance on edge devices that doesnt have big computational powers.

Object detection [97] is the new major research field in computer vision thanks
to its large applicaton areas and the need of industrial models that provide better
and more resilient performance across large fields and application areas. We can
split Object detection methods into two large categories, the one stage detector
and the two stage detectors. In general, one stage detectors are faster but less
accurate models whereas the two stage models are more accurate but take more
time. These two categories have been largely dominated by two families of models
which are the RCNN family and the YOLO[123] family. RCNN [16] stands for
Region based Convolutional Neural Networks, which as the name suggests, it ap-
plies a Convolutional neural network to different regions of the image and tries to
predict whether an object is present in that region.
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Region based Convolutional Neural Networks

The first version of the model of the RCNN family was named "Rich feature hi-
erarchies for accurate object detection and semantic segmentation" [57] and built
a pretrained CNN model on imagenet and fine-tuned it on the domain specific
images (warped proposal windows) used to extract featres from different regions
and sent for classification using a class specific Support Vector Machine classi-
fier. The main difference between this architecture and a tradiational classifier
is the category-independent region proposal step at the start which includes dif-
ferent methods such as: objectness, selective search, category-independent object
proposals, constrained parametric min-cuts (CPMC), multi-scale combinatorial
grouping.

All of these previously mentioned methods aim at grouping different pixels of
the image in regions that can be potential objects regardless of the type of the
object (size, shape, category, rotation, ratio ...) and they do that by calculating
different similarity metrics such as: color similarity, texture similarity, size simi-
larity, and shape compatibility which are combined in a finale metric named final
similarity. The results of this model are very promising but they take so much
time to train and make inference on, mainly because the selective search algo-
rithm proposes arround 2000 regions for the same image, and hence the training
time becomes 2000 times bigger than that of a classification task. The same thing
is noticed for inference where it takes up to 47s to make inference on a single image
on a powerful machine, which are splitted into in general 2s for the selective search
algorithm and 45s-46s for running the CNN on every single region.

Fast RCNN

The next version of the model’s family [56] came on 2015 with the most intresting
idea in the field and the most revolutionizing which was later included in more
models. The main idea was to send the whole image once over the CNN and then
do all the previous steps but not on the image it self but over the latent space.
This leads to a problem which is that selective search provides objects proposals of
different sizes which leads to different size regions in the latent space that will be
later sent through a Fully Connected Neural Network which requires a fixed input
size. The authors solved this problem with the introduction of a new Pooling layer
which is still currently used in most of the state of the art object detection models
and instance segmentation.

ROI pooling is a new method of pooling named after the application areas
where it is applied, Region Of Interest pooling. Similarly to other pooling layers,
the ROI pooler has no weigths and hence doesnt slow down the training or reduce
the generability of the model. The RoI pooling layer applies a similar technique to
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max pooling which aims at converting the size and shape of the extracted features
maps of a certain proposed region into a smaller size feature map which retains the
most important feature activations of every kernel in the previous layer. Unlike
max pooling, the output of the ROI pooler is independent of the size of its input
because the filter sizes are calculated on the fly foe each regions to correctly map its
dimensions to the chosen output size. The functioning of the RoI max pooling aims
at splitting a hw RoI feature map into a predefined HW matrix of sub-windows of
approximately similar sizes h/Hw/W (in cases where h is not devisable by H, we
take more values for the first parts of the grids) and then max-pooling the values
in each sub-window into the corresponding output grid pixel.

Evaluation methods for object detection models

Object detection models have improved drastically over the years and they have
made their way into many application areas such as self-driving cars and medical
applications. Hence, validating and evaluating such models correctly is a task of
utmost importance. Summarizing a model’s performance in one numeric value
isn’t ideal and will always be problematic and not enough, since the majority of
these metrics will not take into account minorities and special cases, but at least in
the following pages we will provide a list of potential metrics that can help provide
an objective estimation of how good or bad your object detection model is.

The majority of the metrics we will be using to evaluate the object detection
models are actually built to evaluate classification tasks. Hence there is a need
to convert an object detection task into a classification task, and for that we use
Intersection Over Union. Intersection over union (IoU) [62] is a simple yet effective
method that allows to compare the similarity of two bounding boxes, with 1.0
being the highest value possible for an absolute match and 0.0 being the worst
case possible being a complete miss-match. We can calculate the intersection over
union simply by dividing the area of the intersection of two boxes by the their
union 1.1.

IoU =
Area of Overlap

Area of Union
=

B ∩G

B ∪G
, (1.1)

where B is the predicted bounding box, G is the ground truth bounding box,
and ∩ and ∪ represent the intersection and union operations, respectively.

Object detection in essence is the task of detecting the presence of an object
in an image, hence if we take a threshold for IoU between the real boxes and the
predicted boxes we can convert the object detection task into a binary classification
task, with:

• True Positives: predicted box is similar to real box and they share the same
class
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• False Positives: predicted box doesn’t overlap any real box of the same class,
meaning an object that is predicted in the correct location but the incorrect
label will be treated as a double negative value.

• False Negative: meaning there is a real box in the test set that have no
overlapping box of the same class.

• True Negatives: we don’t use the concept of True negatives since this will be
a really high number compared to the rest even for a bad model.

Now that we know how to convert the object detection problem into a binary
classification problem we can start building metrics on top of that. Here is a list
of the most commonly used metrics to benchmark object detection models and
architectures:

• Precision Recall: precision are recall are highly important metrics in the field
of machine learning especially for difficult datasets. Precision is a ratio of
true positives by all the positive predictions, which we want to maximize in
cases of life and death situations or large decision making but we don’t care
about it that much in the case of search applications. whereas on the other
side Recall is the ratio of true positives over the total real positive instances
which we want to maximize the most in our field especially in the search
applications.

• F1-score: is the harmonic mean between precision and recall, and it provides
a balance or a trade off between the two.

• Box AP: in other words Box Average Precision, which estimates the perfor-
mances of the model based on a combination of the precisions and recalls of
the model at several confidence thresholds. It is similar to the concept of
Area Under the Curve for classification tasks. It’s values range from 0 to 1
(or 100%) and the higher it is the better.

• AP50, AP75, AP: which stands for Average precision, and has three major
variations based on the method used for calculation. AP is the primary
metric used for benchmarking and it stands for AP at IoU=0.50 to IoU=0.95
with incremental increases of 0.05. AP50 (and AP75 respectively) is its
variations with IoU=0.50 (and IoU=0.75 respectively).

• AP Across Scales: another important set of variations of the AP metrics
are the scale variations with APs, APm, APl being Average Precesion Small
(Medium and Large respectively). You can define your own small medium
and large threshold but the ones that the literature refers to by default are
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for small objects: area < 322 and medium with 322 < area < 962 and large
objects with 962 < area. it is important to note that we are speaking in
terms of pixels with the average model taking an image of size = 2242 hence
the small objects are less than 2% of the image size, medium between 2%
and 18% and large is anything that is bigger.

Non Maximum Suppression

NMS (Non-Maximum Suppression) [164] is a post-processing step used in all ob-
ject detection models to reduce duplicate detections of the same object due to
overlapping anchors being used on the same location. The main idea behind the
greedy NMS algorithm is to remove all predicted bounding boxes with high IoU
overlap with high confidence predictions. NMS helps in removing duplicate detec-
tions and results in a cleaner output. However, choosing the right threshold for
NMS is also essential and it should be done at an individual dataset level and is
considered as a major part of the hyper-paramter tuning of the model.

1.2.3 Few-Shot Object Detection

Object detection, as a subtask of computer vision, has been the focus of tremen-
dous research interest over the past few years, from traditional computer vision
algorithms such as Viola Jones, and the Histogram of Oriented Gradients De-
tector, which are still commonly used in mobile applications for their speed and
accuracy, to new deep-learning-based models [178, 130, 71] such as Yolo [123],
RCNN [57], SSD [32], and others. We can split the deep learning-based object
detection models into two subgroups: one-stage detectors and two-stage detec-
tors. One-stage detectors are famous for their speed, which started with the Yolo
Tree family (from v1, v2, v3, which are the original models up to v4, v5, and
pp, which are extensions provided by separate researchers). Other one-stage de-
tectors were introduced in the field, such as the Single-Shot MultiBox Detector
(SSD), and RetinaNet [2]. The Single-Shot MultiBox Detector (SSD) introduced
the multi-reference and multi-resolution detection techniques, allowing better ac-
curacy. The developers of RetinaNet argued that the single-shot detectors have
low accuracy because of the imbalance between background and foreground classes
and introduced the focal loss so that the detector would focus more on challenging
examples throughout the training phase.

The second category of models is two-stage detectors, which are known for their
accuracy but lack speed compared with single-shot detectors. Two-stage classifiers
are very useful in cases where the inference time is not crucial, and there is no
need for fast or real-time processing. Such cases are widespread in cultural heritage
studies or medical applications, where accuracy is more important than increasing
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speed by a few microseconds. The branch of two-stage detectors started with the
introduction of region-based convolutional neural networks (RCNNs), which com-
bined deep learning with the traditional selective search algorithm, and which were
later abandoned due to the development of faster RCNN models propoingd a fully
deep approach based on region proposal networks. Although RCNN-based models
have dominated this side of the family tree of object detection, especially with the
introduction of feature pyramid networks, other models have also been proposed
for two-stage detectors, such as spatial pyramid pooling networks (SPPNet) [66],
which demonstrated many ideas that later found their way into the RCNN family.

All the previously mentioned deep models are convolution-based, mainly be-
cause CNNs have dominated the field of computer vision due to their performance
as of 2021. Lately, however, a new branch of models is being added to the computer
vision field, which are attention-based models, rather than CNN-based models. At-
tention is an idea that has been dominating the field of natural language processing
for a long time now, with models such as bert and GPT, which provide a human-like
level of understanding of text and responding to questions. This trend has found its
way to computer vision thanks to the paper “An Image is Worth 16 × 16 Words”,
demonstrating an approach commonly known as vision transformer (ViT) [171],
as well as its follow-ups which applied a transformer architecture on 16 × 16 non-
overlapping medium-sized image patches for image classification. Although ViT
provided a good speed-accuracy trade-off compared with CNN-based models, its
successful application required a large-scale dataset and training, which was later
fixed using data-efficient image transformers (DeiT) [155], which proposed sev-
eral training algorithms allowing the vision transformers to be applied on smaller
datasets. Vision transformers are aiming to replace CNNs and outperform them in
terms of speed and accuracy, and the best example of this is the current state-of-
the-art model for image classification and object detection/instance segmentation,
the Swin Transformer [102], which builds a hierarchical vision transformer using
shifted windows that can be used as a generic backbone for any computer vision
model, replacing the convolutional layers and outperforming them with a large
gap in terms of performance metrics such as top-1 accuracy and mean average
precision (mAP) [93], and which has linear computational complexity with respect
to the input image size.

Few-shot object detection has been a growing field lately but has not received
as much attention as object detection for large-scale datasets or even few-shot
image classification, mainly due to the task’s difficulty compared with image clas-
sification and the large variability of the models’ architecture in the object detec-
tion field [29]. Nonetheless, several proposals have been used in the field, such
as meta-learning-based techniques [46], feature re-weighting [79] and fine-tuning-
based approaches, such as the frustratingly simple few-shot object detection [167]
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method, which is very similar to our method but which lacks its flexibility and
applicability to other architectures.

1.2.4 Image Segmentation

Segmentation divides an image into distinct regions belonging to different cate-
gories (or objects). Segmentation is a rudimentary task in computer vision and
has been a significant research field for the past few years. Traditional segmen-
tation techniques include thresholding (Global or Adaptive), region growing, and
edge detection. However, these techniques are limited in handling complex im-
ages where multiple objects overlap or are partially occluded, especially when the
background is less controlled (real-life situations or drawings). Thanks to the big
boom in deep learning after the successful training of CNNs in 2012, segmentation
models based on convolutional neural networks (CNNs) have become the SOTA
for segmentation (both for speed and accuracy), which have shown superior per-
formance compared to traditional techniques. In cultural heritage preservation,
segmentation can be used to detect and separate different objects in images, such
as statues, buildings, and artifacts, which can help in preserving and documenting
cultural heritage sites. There are two major sub-categories of segmentation which
are Semantic Segmentation and Instance Segmentation.

Semantic

Semantic Segmentation is the simplest form of segmentation in which the goal is
to attribute a class/category to each pixel. One of the most popular CNN-based
semantic segmentation models is the U-Net, which was introduced in 2015 by
Ronneberger et al [146] for the purpose of segmenting medical images. U-Net is
an encoder-decoder architecture that consists of a contracting path that extracts
features from the input image and a symmetric expanding path that generates
the segmentation mask. The main difference between a traditional Auto-Encoder
and U-Net is that U-Net uses only convolutional layers (no fully connected layers)
and U-Net has a set of skip connections from each group of layers in the encoder
to the decoder, allowing the U-Net decoding process to be detail-aware and more
precise. In cultural heritage preservation, semantic segmentation can be used
to extract meaningful information from images, such as the presence of specific
objects, styles, and materials.

Instance

Instance segmentation, on the other hand, is a much more difficult task in which we
have to assign a label corresponding to a particular class and a particular instance
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of that class. Instance segmentation is a technique that requires the model to
have the ability to differentiate between different objects and distinguish between
different instances of the same object. Instance segmentation has gained significant
attention in recent years, and various object detection models have been extended
to perform instance segmentation, such as a Mask-RCNN [64], which is just a
Faster-RCNN + a decoder. So in summary we can think of instance segmentation
as object detection plus semantic segmentation.

1.3 Generative Adversarial Networks

Generative adversarial networks have changed how we think about artificial intel-
ligence applications to real-life problems. Their ability to generate images is so
realistic and impossible to distinguish from real images, which opened up many
doors for applications, especially in cultural heritage. Generative, adversarial net-
works are not the first type of neural network that can perform the generation
of new unseen hyper-realistic images. There are many previous attempts at this
task that were quite successful but took too much time or lacked in the creativity
department. What made GANs [34] so special is the idea of putting two neural
networks in a competitive game in which they both get better with time. This
is why we will discuss gans as two separate parts: the generative ability and the
most essential part, the adversarial learning part.

1.3.1 Generative models

Generative models are now everywhere on social media and are the center of atten-
tion due to their ease of use and applicability. Currently, state-of-the-art models
can only generate images and text, and audios and videos are still not at the state
where they can be confused with actual data. Formally the definition of a gen-
erative model is a model that can capture the joint probability P(X,Y) or P(X)
only in the case of unsupervised data. Generative models aim to include the data
distribution itself and can tell you how likely a given sample is. A very simple
example is the case of text generation, in which they can give you the probability
of the next word in a sentence. Although text generative models are currently the
most researched field, they are not the center of our thesis. Image generative mod-
els are also extremely powerful. As you can imagine, the concept of an image joint
distribution is highly complex and even with neural networks it is very difficult to
model such a distribution. Hence multiple types of generative models for images
exist as we can see in 1.1.

• Explicit Density Estimators: aim to define and solve for Pmodel(X). There are
two types of explicit density estimators (Tractable, Approximate). Firstly,
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Tractable EDE are sequential generators ,and the most commonly known
architecture for tractable EDE are PixelRNN and PixelCNN which use the
chain rule to decompose the likelihood of an image X into the product of
(many) 1-d pixel distributions. Both PixelRNN and PixelCNN use a nerual
network to perform the task of image generation in a sequential manner
(PixelRNN with RNNs and LSTMs while PixelCNN uses CNNs). The only
difference is PixelCNN is much faster in training than PixelRNN since it
is more parallelizable. Both these architectures are super slow on inference
time since they generate the image sequentially pixel by pixel. Secondly,
Approximate EDEs, are models which are models that aim at modeling
the full distribution of the data directly but in an approximate manner.
Variational Auto Encoders are the most famous approximate EDEs and they
aim at using an encoder decoder setup where the latent space is not just a
simple embedding but a distribution of potential embeddings that we can
sample from. Diffusion models are also a type of approximate EDEs and they
are currently the SOTA of generative models as they generate HD images
that are impossible to distinguish from real images. They do this by training
and a denoising auto encoder 100 times on the same image but with an
incremental increase of gaussian noise at each step, leading to the creation
of a Markov chain Monte Carlo.

• Implicit Density Estimators: Aim at learning a model that can sample from
Pmodel(x) without explicitly defining it. As we have seen earlier, explicitly
defining the data distribution was quite hard in earlier days of machine learn-
ing, with the results of PixelRNN, PixelCNN, and VAEs being super bad and
very low quality since we didn’t have enough calculations to build a good
model. The idea was to skip the explicit part of generating images and aim
at building a convertor that maps random vectors into images. Generative
Adversarial Networks did exactly that, by sampling from a Gaussian distri-
bution and mapping it into a generated image using a Decoder (Generator)
setup. The generator is trained in an adversarial manner using a discrimi-
nator to find the different patterns between authentic images and generated
images.

1.3.2 Adversarial Learning

Adversarial learning is the idea at the core of every innovation in this thesis. It
is the most basic building block for most of the domain adaptation methods in
the state of the art. Ever since the introduction of GANs, researchers have been
fascinated by the idea of multiple neural networks collaborating together to build
better models. And soon after the generative hype faded, researchers focused much
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Figure 1.1: Cutting-edge generative model taxonomy.
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more deeply on the adversarial side of the network as it unlocks a completely new
way of thinking about building and training neural networks. The core idea is
to define a behavior that is unwanted from your network (examples could be, a
noisy latent space, a discriminative encoder, etc), build a component that aims to
detect the presence of such behavior in your network, and then push the network
in the opposite direction of this component. Similarly to when teaching a kid
about the world, it needs a balance of positive reinforcement (this is an apple, this
is a chair) but also it needs a teacher that tells it when it is wrong. Adversarial
learning is usually done through the common cross-entropy, which was used for
the GANs training loss, but it can be extended to any loss function with a little
bit of creativity. Application areas of the technique are now endless from gaming
and cyber security to robots and industrial machines.

1.3.3 Transfer Learning

Knowledge transfer or Transfer Learning is a large field of artificial intelligence
that focuses on transferring knowledge from one domain (or task) to another. In
most cases, the transferred knowledge is represented in the deep learning model’s
weights. Given the homogeneity of image classification models, which are based
mainly on CNNs and Encoder/Classifier settings, Transfer Learning has advanced
much faster than on object detection tasks with new research fields such as Do-
main Adaptation, Domain Generalization with several approaches: Instance-Based
Approach, Feature-Based Approach, Parameter-Based Approach, and Relational-
Based Approach. During the Transfer Learning process, some methods rely on
various techniques: 1) unsupervised such as Image reconstruction, Adversarial
losses [7], Image coloring, and Jigsaw puzzle solving[23]; or 2) Supervised such
as Classification loss, Latent space-based losses, Pseudo-labeling and Separability
Losses. The aim is usually to achieve two properties for the latent space of the
input: (i) extract features from the data of both domains that a classifier can use
to get good accuracy, i.e. Category Informative Latent Space; and (ii) make the
latent spaces of both domains harder to tell apart, i.e. Domain Invariant Latent
Space. Given the lack of object detection data, Y. Tang et al.[152] have tried
to leverage image classifiers to build CNN-based object detectors. Such methods
become harder to apply given the considerable heterogeneity of object detection
architectures and their training procedures.

1.3.4 Domain Adaptation

Domain Adaptation has been one of the most active research areas in the last few
years, and has been approached in both traditional Machine learning ways and
more sophisticated Deep Learning based techniques. The deep Learning techniques
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that were applied on DA varied a lot but they all aimed at achieving two properties
for the latent space of the input: (i) extract features from the data of both domains
that can be used by a classifier to get good accuracy i.e Category Informative
Latent Space, and (ii) make the latent spaces of both domains harder to tell apart
i.e Domain Invariant Latent Space. For this purpose many researchers have used
Generative models to generate images from both domains aiming at finding a
mapping between domains that allows the model to reduce the domain gap [68].
Only the discriminating portion of the Generate Adversarial Network has been
used to formulate a minimization-maximization competition between the feature
extractor (Encoder) and the domain discriminator that showed more promising
results and faster convergence [11, 157].

Images are the primary source of information for computer vision models, which
in essence aim to map an image into a category (or multiple categories). But
images are quite hard to find in the field of MMS, unlike meta data which is very
commonly found alongside every manuscript. This metadata can be represented
in the form of a knowledge graph that can help restrain the computer vision model
and allow it to better generalize to new data.

1.4 Metadata & Knowledge Graphs

Knowledge graphs (KGs) have emerged as a powerful tool for representing and
reasoning complex knowledge in various domains in recent years. A knowledge
graph is a graph-based knowledge representation that encodes entities as nodes
and relationships between them as edges. We use Knowledge graphs in this the-
sis because they provide a rich source of structured knowledge allowing neural
networks to incorporate information about the data allowing us to build more
generic and controllable models. Knowledge graphs are a powerful tool that rep-
resents and reasons about the rich metadata associated with cultural artifacts in
museums. IIIF provides a standardized format for representing metadata about
digital images, which we transform into knowledge graphs to help neural networks
perform their objective task more efficiently.

The International Image Interoperability Framework (IIIF) 5 is a set of open
standards enabling digital image repository interoperability. IIIF is widely used in
the cultural heritage domain, particularly in museums and libraries, to access their
digital collections. We used IIIF as a tool providing a rich set of functionalities
for interacting with high-resolution images of cultural artifacts, such as reducing
image quality to speed up our calculations or even zooming at a region of interest.
But the most important feature of IIIF is that it allows us to access meta-data

5https://iiif.io/

https://iiif.io/
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about the museum images in a standardized format, allowing for a far wider data
collection. For example, museums can use IIIF formats to keep metadata about
their manuscripts, including information about the creator, date, provenance, and
description. This metadata can be represented as triples in a knowledge graph,
with the manuscript as the subject, the metadata attribute as the predicate, and
the metadata value as the object. Knowledge graphs can be used to perform
various tasks, such as artifact classification, leveraging the rich metadata provided
by IIIF.

1.4.1 Knowledge Graphs

In this sub-section, we go through a formal introduction to knowledge graphs, their
usage, and how to create them. A knowledge graph is a graph-based knowledge
representation tool (similar to a social media network) consisting of a list of entities,
a set of relationships, and facts that connect entities through relationships.

An entity in a KG represents a real-world object or concept. For example,
in our field of interest, the cultural heritage domain, an entity can be anything
ranging from an artifact, a monument, a building, or a tradition to the central
part of our thesis, which is a manuscript. A relationship in a KG represents a
semantic connection between two entities. For example, in a cultural heritage
domain, a relationship can be a temporal relation between two artifacts, a stylistic
relation between two artworks, or a historical relationship between two monuments.
Finally, a fact in a KG represents a triple that connects two entities through a
relationship. For example, a fact can be (Mona Lisa, painted by, Leonardo da
Vinci) in a cultural heritage domain.

KGs can be constructed from various sources, such as structured databases, un-
structured text, and crowdsourcing. Constructing a KG involves entity extraction,
relationship extraction, and fact extraction. Entity extraction involves identify-
ing and extracting entities from the source data. Relationship extraction involves
identifying and extracting relationships between entities. Finally, fact extraction
involves constructing triples that connect two entities through a relationship.

MusicKG

MusicKG [43] is an example of the use of knowledge graphs in the field of cultural
heritage and especially musical heritage. MusicKG is a multilingual KG special-
izing in medieval artworks relating to musicology and musical representations.
MusicKG is the extract of multiple data sources such as Musiconis (collection
of artworks from other museums), Musicastallis 6, Metropolitan Museum (NY)7,

6https://musicastallis.huma-num.fr/
7https://www.metmuseum.org/

https://musicastallis.huma-num.fr/
https://www.metmuseum.org/
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Figure 1.2: The hierarchy of concepts (entities) in the MusicKG knowledge Graph.

Mandragore 8, Initiale9, Gothic Ivories 10, and others. Each of these databases is
specialized in a particular field of medieval music. Nevertheless, MusicKG built a
shared knowledge graph for all of them, containing different concepts (hierarchies
of concepts) and relations between them. Figure 1.2 shows the hierarchy of con-
cepts in the MusicKG knowledge graph. Most concepts are similar to the W3C
recommendations about the "Data on the web best practices." .

1.4.2 Graph Embeddings & creation

Knowledge graph embeddings methods aim at mapping a component of a KG, in-
cluding nodes, entities, and relationships between them, into a continuous vector
space using algorithms such as Node2Vec. Machine learning models, mainly neural
networks, can use the resulting vectors since this structure is simpler than a graph

8https://mandragore.bnf.fr/html/accueil.html
9https://initiale.irht.cnrs.fr/

10http://www.gothicivories.courtauld.ac.uk/

https://mandragore.bnf.fr/html/accueil.html
https://initiale.irht.cnrs.fr/
http://www.gothicivories.courtauld.ac.uk/
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structure while preserving the inherent information and structure of the graph
[165]. These techniques have gained popularity due to their wide utility for down-
stream applications such as KG completion and relation extraction, Recommender
Systems, Question Answering, and Relation Extraction from texts.

1.4.3 Embeddings

Embeddings are an essential tool in deep learning, natural language processing,
and, especially for us, in the field of Computer Vision. They allow for a sparse
representation of high-dimensional data, such as words or images, in a rich and
dense lower-dimensional space, typically intending to capture some underlying
structure, meaning, or relations. Word embeddings, in particular, are a non-
negotiable part of any natural language model, especially the deep learning models,
as they are unable to input actual string words into a mathematical model. Hence
the conversion from words and sentences into an embedding, which is a 1-D vector
of float values that are more compatible with the type of operations performed in
a neural network, and yet they capture the meaning and hopefully the context of
the word too. One of the simplest and yet well performing methods for generating
word embeddings is probably Word2Vec, which uses an additional neural network
trained to learn words context by inputing a word and predicting its surrounding
words, leading to develop latent spaces that are very rich in meaning and context
information. These embeddings can be used for various tasks, from language
modeling and machine translation to sentiment analysis and question answering.

Knowledge graph embeddings (KGEs) are considered to be a low-dimensional
representations of the nodes and relations in a knowledge graph. Knowledge graph
embeddings are mappings on different parts of the knowledge graph into a vector
space that satisfy certain properties and maintain the information that exists in
the graph. Each method defines a score function which measures the distance
of two nodes relative to their relation in the mapped embedding space. These
goal of these score functions can be summarised as keeping the nodes which are
connected to each other in the graph close in the mapped dimension and those
which are not connected far from each other. The most famous score functions are
TransE, TransR, RESCAL, DistMult, ComplEx, and RotatE [165].

Knowledge Graph embeddings aim to embed components of a KG, including
entities and relations, into a one-dimensional continuous vector space that can be
used to train many types of models, such as link prediction, triple classification,
entity classification, and more. The majority of the knowledge graph embedding
techniques fall into two categories:

• Translational Distance Models: which exploit the distance-based vector scor-
ing functions. Such as TransE[165], which was previously mentioned that
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represents both entities and relations as one-dimensional vectors in the same
space. Taking a fact (h, r, t), the relation is represented as a translation
vector r so that h to t can be as similar to r as possible (with low error),
similar to word2vec.

• Semantic Matching Models: these exploit similarity-based functions that
measure the plausibility of facts by matching latent space semantics of the
tuple’s components represented in their vector spaces, Such as RESCAL[115,
165], which represents each entity with a vector and each relation with a ma-
trix representing the pairwise interactions between the factors, which are
later decomposed using rank-k decomposition through solving an optimiza-
tion problem that is correlated to minimizing the error of the decomposition
reconstruction.

Now that we have discussed the different types of knowledge graph embed-
ding techniques we need to clarify the two main assumptions that are often made
regarding data availability.

• The closed world assumption (CWA) [85]: assumes that anything that is
not pre-known is false, meaning that it is sufficient to detect the absence of
information to determine that it is false. This is commonly used in situations
where we assume that the data is complete and all needed information is
available, as in the medical field where we assume that all patients do not
have any disease that is not mentioned.

• the open world assumption (OWA) [180]: doesn’t make any assumptions on
the veracity of a fact if it is not mentioned in the data. Meaning the absence
of information is not evidence that the information is false. Most of the
knowledge graphs in the field of culturale heritage are missing vast parts of
the data from missing meta-data, lack of attention or the manuscript it self
is destroyed hence we can’t recover all the answers.

1.5 Conclusion

This chapter represents a summary of most of the works that either influenced this
thesis or are related to it. Firstly, we described the advancements in the field of
Medieval Studies and cultural heritage and the major lack of recent AI advance-
ments in the field. Secondly, we described the computer vision field in detail, both
at the level of state-of-the-art applications and research but also defining some very
clear concepts that we will be referencing throughout the thesis, such as object
detection models and the evaluation methods for object detection. Thirdly, we
discussed the generative adversarial networks and finished with a few definitions
for Knowledge Graph Embeddings.



Chapter 2

Datasets

This chapter focuses on the first problem of the thesis, which is missing data. The
datasets chapter is a very important part of the thesis, as it will be referred to in
every other chapter throughout the thesis. We will describe all the datasets that
we annotated and filtered through things like classes and distributions.

2.1 Introduction

All around the world, there are people with different cultures, religions, and lan-
guages. However, they have one point in common: music as a means of expression
and communication. Music is a universal language used since ancient times by
human beings to express all kinds of emotions and feelings. By analyzing the evo-
lution of musical instruments throughout history, we can understand, share, and
value the musical heritage left by our ancestors.

Several public and private collections (such as the Music Museum1 of the Paris
Philharmonie in France, the Gallery of the Academy of Florence2 in Italy, or the J.
Paul Getty Museum3 in USA) preserve musical instruments from Modern history
(from 1500 to the present). However, only a few musical instruments from the Late
Antiquity (4th to 6th centuries AD) or the Middle Ages (5th to 15th centuries AD)
are still conserved nowadays. The older the musical instrument, the fewer well-
preserved copies of that instrument are found. Those old musical instruments that
have not been preserved can only be studied thanks to their representations in
artworks and illuminated manuscripts.

To preserve cultural heritage, different governments, and public institutions
have carried out massive conservation programs. These programs not only seek to

1https://philharmoniedeparis.fr/en/musee-de-la-musique
2https://www.galleriaaccademiafirenze.it/en/
3http://www.getty.edu/museum/
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Figure 2.1: An image segmentation example showing a female musician playing
the vielle, female and male dancers from the AnnMusiconis database

create the optimal conditions to preserve the manuscripts in their physical form
but also digitize them to disseminate their content. The IIIF is a clear example
of a joint international initiative to share images freely. It is estimated that more
than one billion IIIF images are available nowadays, and about 400 million of
them date from the Middle Ages or before. Even though online search engines
enable browsing these collections, only the bibliographic data of the manuscripts
is indexed (such as title, date, author, and origin), and the page’s content is not
considered. Thus, thousands of images should be manually scanned by experts
until a new instrument representation is found, making this search an arduous and
time-consuming task.

Hence, our first major contribution in the thesis is to find and annotate mul-
tiple datasets in the field of cultural heritage and especially medieval music. In
this chapter, we will present AMIMO, AnnMusiconis, AnnVihuelas, Medieval Mu-
sicological Studies Dataset, which are all datasets that we manually annotated
throughout the thesis. To this end, we first review related works on illuminated
and historical image datasets. And then, we present each major dataset we anno-
tated in detail.

2.2 State of the art

Publicly available datasets allow the evaluation and comparison of different neural
algorithms. Several historical manuscript image datasets [120, 147, 143] have been
proposed with the goal of training and evaluating neural networks. This section
presents an overview of existing illuminated and historical image datasets.
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2.2.1 Illuminated manuscripts datasets

Ancient musical instruments (e.g., vielles, lutes) can be found in illuminated
manuscripts. Among the existing illuminated manuscripts datasets, we can men-
tion the HBA corpus [109], which is a pixel-based annotated dataset created for
the ICDAR’2017 Competition on Historical Book Analysis. The HBA dataset
contains 4.436 real scanned ground-truthed historical document images from 11
books in different languages and scripts published between the 13th and 19th cen-
turies. Another historical dataset is HORAE [19], a dataset of annotated pages
from books of hours (a type of handwritten prayer books owned and used by rich
lay people in the late middle ages).

2.2.2 Historical manuscripts datasets

A large number of annotated datasets of historical manuscripts have been cre-
ated for document analysis [5, 141]. However, most of them are not illuminated,
and only the text is annotated. For example, the MLM (Multiple Languages and
Modalities) dataset [4] is a resource to train and evaluate multitask systems on
samples in multiple modalities and three languages. In [90], the authors present the
Newspaper Navigator dataset containing 16.3 million pages from digitized histori-
cal newspapers in the USA. The BADAM dataset [83] is a corpus of 400 annotated
page scans of Arabic and Persian manuscripts spanning a wide range of topics and
dates of production. The Pinkas dataset [6] introduces a public historical document
image dataset. It is the first dataset in medieval handwritten Hebrew and fully
labeled at word, line, and page levels by experts on historical Hebrew manuscripts.

Although the document analysis community has made an enormous effort in im-
age liberalization and bounding box creation, there is a lack of specialized ground
truth to validate computer vision methods for illuminated manuscripts. More-
over, the datasets containing historical document images have some particularities
[109], such as the superimposition of information layers (e.g., signatures, stamps,
handwritten notes) and the variability of their contents and noise (e.g., different
layout, typography, font styles, scanning) that difficult their collection and anno-
tation process.

In summary, even if several image datasets exist for image segmentation, none
has become a standard benchmark since they lack diversity and completeness. Ac-
cording to Kiesel et al. [82] the issues that prevent the reuse of the existing datasets
include missing data sources, bias due to heuristic annotations, no ground truth
annotations, unavailability, and a non-representative sample. The creation of an-
notated illuminated manuscript datasets remains an open issue, and new computer
vision methods and ground-truth data are needed to tackle image segmentation
problems.
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Figure 2.2: Examples of chordophones in the MIMO database.

2.3 Annotated MIMO (AMIMO)

An annotated image dataset of musical instruments for organological analysis and
image segmentation. This dataset contains 10.258 manually-created annotations
of the existing chordophones’ images in the MIMO dataset. MIMO 4 stands for
"Musical Instrument Museums Online" and is the largest freely accessible image
database of musical instrument collections held in public collections worldwide.
The images are accessible at https://mimo-international.com/MIMO/ and our
annotations are placed in the public domain for unrestricted reuse. The AMIMO
dataset will be available for download at https://github.com/ImadEddineBek/
AMIMO with a link to a ROBOFLOW dataset that allows immediate training and
getting started with the results of the thesis for tasks such as: Object detection,
Image segmentation. We show samples of the MIMO dataset 2.7, the first image
shows a zither 5, the second one shows a qanun 6, the third shows an Harp 7 and
the last one 8 shows a Violoncello.

2.3.1 The MIMO dataset

MIMO stands for Musical Instrument Museums Online. The MIMO databasehttps:
//mimo-international.com/MIMO/ is the world’s largest freely accessible database
for information on musical instruments held in public collections. Initially, the
MIMO consortium started as an initiative of the most important musical instru-

4https://mimo-international.com/MIMO/
5https://mimo-international.com/MIMO/doc/IFD/OAI_SMS_MM_POST_6953
6https://mimo-international.com/MIMO/doc/IFD/OAI_MDMB_309797
7https://mimo-international.com/MIMO/doc/IFD/OAI_CIMU_ALOES_0157264
8https://mimo-international.com/MIMO/doc/IFD/MINIM_UK_5000

https://mimo-international.com/MIMO/
https://github.com/ImadEddineBek/AMIMO
https://github.com/ImadEddineBek/AMIMO
https://mimo-international.com/MIMO/
https://mimo-international.com/MIMO/
https://mimo-international.com/MIMO/
https://mimo-international.com/MIMO/doc/IFD/OAI_SMS_MM_POST_6953
https://mimo-international.com/MIMO/doc/IFD/OAI_MDMB_309797
https://mimo-international.com/MIMO/doc/IFD/OAI_CIMU_ALOES_0157264
https://mimo-international.com/MIMO/doc/IFD/MINIM_UK_5000
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Figure 2.3: Zither-Harp - Made in Ger-
many - 1942 Figure 2.4: Qanun - Türkiye - 1825

Figure 2.5: Harp 40 strings.
7 pedals. Hook mechanics.
Paris 1783. Figure 2.6: Violoncello - London - 1792

Figure 2.7: 4 examples of images from the AMIMO dataset.
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ments museums in Europe. The objective was to create a single online access point
to their collections. This initiative was founded by a European Commission project
between 2009 and 2011. The idea was not only to share their digitalized musical
instrument collections but also to create common terminology and a unified classi-
fication system. In addition, the consortium created standards for photographing
musical instruments and detailed guidelines to digitize their collections. Figure 2.2
depicts five images of string instruments in the MIMO dataset:

• Harp : the first example is an harp9 from the beginning of the 19th century
currently in Paris, France.

• Lute: the second example is a lute10 from 1721 belonging to a museum in
Prague, Czech Republic.

• Lyre/guitar: A lyre-guitar example11 from 1809 conserved at the Musee de
la musique in Paris, France.

• Rebec: The image of a rebec12 from 1905 held in Cologne, Germany.

• Zither-harp: Finally, a zither-harp example13 from 1902 nowadays pre-
served in Vienna, Austria.

Due to the tremendous success of this initiative, MIMO now contains collec-
tions from all around the world and has become the reference resource for musical
instruments. Nowadays, MIMO relates the most prestigious instrument museums
worldwide, such as the Philharmonie de Paris, the University of Edinburg, the MIM
de Bruxelles, the Galleria dell’Academia, or the Museu de la Música de Barcelona.
MIMO harvests the digitalized images jointly with detailed musical instrument
descriptions available in six languages. The access is free and multilingual.

2.3.2 String instruments

Musicologists rely on the organological classification called Sachs-Hornbostel, which
was updated by MIMO, to define the following instrumental families according to
the sound made by the instrument:

• Idiophones : the sound comes directly from the instrument’s material (ex-
ample: bells).

9https://mimo-international.com/MIMO/doc/IFD/OAI_CIMU_ALOES_0157264
10https://mimo-international.com/MIMO/doc/IFD/OAI_ULEI_M0002908
11https://mimo-international.com/MIMO/doc/IFD/OAI_CIMU_ALOES_0130404
12https://mimo-international.com/MIMO/doc/IFD/OAI_ULEI_M0002704
13https://mimo-international.com/MIMO/doc/IFD/OAI_ULEI_M0003518

 https://mimo-international.com/MIMO/doc/IFD/OAI_CIMU_ALOES_0157264
 https://mimo-international.com/MIMO/doc/IFD/OAI_ULEI_M0002908
 https://mimo-international.com/MIMO/doc/IFD/OAI_CIMU_ALOES_0130404
 https://mimo-international.com/MIMO/doc/IFD/OAI_ULEI_M0002704
 https://mimo-international.com/MIMO/doc/IFD/OAI_ULEI_M0003518
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• Membranophones : the sound is produced by the vibration of a stretched
membrane (example: drum).

• Chordophones : the sound is produced by the vibration of one or more
strings, stretched between two points (example: harp).

• Aerophones: the sound is created by a vibration due to the passage of air.

These categories make it possible to avoid naming the instruments more pre-
cisely because the names of the instruments often change from one region to an-
other, from one language to another, especially for the medieval period, where
there is no unified lexicon for musical instruments.

The identification of ancient chordophones from two-dimensional images is a
challenging task. Therefore, experts in medieval musical iconography are often
required to verify the instrument’s annotations. Among all the musical instrument
images in the MIMO database, we decided to annotate the chordophones family
in this study.

In particular, string instruments plucked by the fingernail or by a plectrum, or
rubbed with a bow. The presence of the bow in the musical scene is essential to
distinguish the bowed strings since some forms of instruments are quite similar. To
better characterize ancient instruments, we subdivided the chordophones family
into four types: lute, vielle, harp, zither.

• Lute type : (number 321 in the Sachs-Hornbostel classification) describes
instruments with a neck as an extension of the soundbox (cut in the mass or
nested). The strings are stretched from the soundbox to the pegs at the end
of the neck. The strings are plucked (lute type) or bowed (vielle type).

• Harp type: (322 in Sachs-Hornbostel) designates instruments whose strings
are stretched perpendicular to the soundbox. The strings are tuned by pegs
located on the console, which is generally in the upper part of the wooden
triangle with a vertical column and the soundbox placed obliquely.

• Zither type : (314.1 in Sachs-Hornbostel) refers to instruments whose
strings are stretched parallel to the soundbox, either totally like the psaltery
(psaltery type) or partially like the crwth or certain lyres (lyre type).

2.3.3 Annotation Process

The AMIMO dataset (Annotated Musical Instrument Museums Online) is a high-
quality annotated image collection of historical musical instruments. This dataset
provides an excellent opportunity for deep learning to understand in-depth the
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characteristics of these instruments. The dataset aims to provide an annotated
dataset for pre-training a large model for historical musical instrument recognition
for different tasks, such as object detection, instrument recognition, and mainly
instrument segmentation.

The dataset contains information about the objects: the name of the instru-
ment, origin, location, date of creation, title of the host page, URL of the source
description, and the image URL (Full size/w-250). Five experts in organology an-
notated the dataset following three steps: Object contouring, Object classification,
and classification verification.

Object contouring in AMIMO

The first step of object segmentation was built using the supervisely14 (a tool
for image annotation that allows online collaboration for large teams) polygon
contouring technique. This method allows the user to highlight an object in the
image by defining its borders using a set of points. Thus, the user creates a concave
hull surrounding the object as precisely as possible. Since the annotated objects
do not have an empty part in their centers, the borders can correctly define them.

Our experts manually annotated the polygons. Those polygons are converted
later into either a bounding box or an object mask to train different models.

Object Classification

The second step is the Object classification. After the objects are selected, our
musicologists separately annotate each object and classify it in one of our six
categories. This step allows us to detect the objects that are easy to classify and
the more difficult ones.

Classification Verification

The last step is to verify the classes. In this step, all the experts are gathered
together to discuss each complex object in detail. Then, based on their expertise
and the available information, they achieve a consensus to annotate those complex
objects.

2.3.4 Class distribution

Our dataset contains an extensive list of images covering from 1600 to the late
2000s. The main characteristics that make our dataset useful for pre-training larger
neural networks that will operate on smaller musical datasets are the following:

14https://supervise.ly/

https://supervise.ly/
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Figure 2.8: An image segmentation example showing an annotated French Harp
from the 1790’s in the MIMO dataset.

Table 2.1: The distribution of objects in AnnMusiconis across different classes.

Class Counts
Vielle 3508
Lute 3163
Zither 2102
Harp 867
Bow 437
Lyre 181

TOTAL 10.258
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1. Diverse instrument types: musical instruments evolve through history. Due
to the large historical period covered by the data, we work with a huge
collection of different instruments for the same class and also different classes
(as shown in table 2.1).

2. Large object to image ratios: most of our instruments cover a large part
of the image since they are the focus of digitalization. Therefore, these
images are perfect for learning the structure and form of the instruments
and generalizing them to other datasets.

3. High-quality images: the images we work with are of high quality, as big as
3000*2000 pixels.

4. Large geographical coverage: The data we are using covers 11 different coun-
tries.

5. Knowledge Graph-like structure: We associate to our dataset a set of useful
information about the context and the background of the instruments, such
as their original location and creation date.

2.4 AnnVihuelas

The Vihuelas dataset 15 is the only dataset that we didn’t create manually and was
collected by John Griffiths. The dataset is specialized in the vihuela, a stringed
instrument that was popular in Spain and Portugal during the Renaissance. We
annotated 165 chordophones in total. Since it is a dataset of vihuelas, most of the
annotated instruments are from the lutes family.

We show a sample of the vihuelas database in 2.18, the first picture 16 shows
an angel playing waisted sides, long neck, 4 strings, curved pegbox terminating in
an animal head vihuela. The second shows a sculpture made of baked clay and
polychrome, painted in ochre in 1792 and restored in 1912, this vihuela might rep-
resent the “missing link” between the medieval guitarra (3 course of double or triple
strings) and the 4-course guitar of the 16th century. The third 17 shows an excel-
lent example of a vihuela with cornered waists, in Italian, a viola da mano. The
instrument has 6 courses of strings matched by 12 pegs on its sickle-shaped peg-
box, one of the main features that distinguishes it from similar Spanish depictions
of the vihuela c. The fourth shows an angel with 5-course guitar. the instrument is
similar to many 16th-century vihuelas, although the decoration around the sound
hole is characteristic of guitars of the first half of the 17th century.

15https://vihuelagriffiths.com/
16https://vihuelagriffiths.com/vihuela/instruments/25477/
17https://vihuelagriffiths.com/vihuela/instruments/25483/

 https://vihuelagriffiths.com/
https://vihuelagriffiths.com/vihuela/instruments/25477/
https://vihuelagriffiths.com/vihuela/instruments/25483/
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Figure 2.9: Angel playing vihuela
- 13cent - vihuela de péñola
- Salamanca, Catedral vieja,
Capilla del Aceite

Figure 2.10: Angel musician with three-
string vihuela or guitar. Lorenzo Mer-
cadante de Bretaña, 1464-1467

Figure 2.11: Viola da mano played
by Serafino Aquilano

Figure 2.12: Angel guitarist from “La
Presentación de Jesús en el Templo.”
painted by Diego Valentin Díaz. 1600-
1650.

Figure 2.13: 4 examples of images from the Vihuela dataset.
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2.5 AnnMusiconis

The Musiconis database 18: was built by historians and musicology experts to an-
alyze musical performances featuring instrumental musicians (Wind Instruments,
Percussion Instruments, Stringed instruments, etc), singers, and dancers present
on medieval objects (Manuscripts mainly, but also Stained glass, Stone sculpture,
Ivory sculpture, Wood sculpture, or Engraving) from the 8th to the 16th century.
We annotated a smaller segment of 662 chordophones to stay consistent with the
AnnVihuelas dataset, a small Renaissance chordophone. The image distribution
is as follows: 112 are Citharas, 132 harps, 56 lutes, 75 lyres, and 327 vielles (217
vielles played with a bow).

We show samples of the AnnMusiconis dataset 2.7. The first image shows a
viele 19, the second one shows a vièle painting 20, the third shows a luth 21 and the
last one shows king David playing the Harp 22.

Musiconis was developed with financing from the French National Research
Agency (ANR) by a team of researchers from the University of Paris-Sorbonne,
the University of Poitiers, and the CNRS. The database is freely accessible online to
researchers, students, and the general public, and is continuously being improved
by musicology master’s students, and experts. Our hope is that with the help of
our AI, Musiconis will benefit greatly from new resources.

The creation of Musiconis was motivated by the need to provide a compre-
hensive resource for studying musical performances in the Middle Ages. Prior
to the creation of Musiconis, there was no single database that brought together
images of musical performances from a variety of sources. This made it difficult
for researchers to study musical performance’s evolution over time and compare
different cultures.

The creation of Musiconis was a significant undertaking. The researchers had to
identify, collect, and digitize images from various sources, including manuscripts,
sculptures, paintings, and stained glass windows. They also had to develop a
system for annotating the images with metadata, such as the date, location, and
type of performance.

18http://musiconis.huma-num.fr/fr/
19https://musiconis.huma-num.fr/fr/fiche/47/roi-david-jouant-de-la-viele-en-huit.

html
20https://musiconis.huma-num.fr/fr/fiche/1920/anges-jouant-de-la-viele-du-luth-de-la-chalemie-et-du-tambourin.

html
21https://musiconis.huma-num.fr/fr/fiche/529/putto-jouant-du-luth.html
22https://musiconis.huma-num.fr/fr/fiche/442/initiale-historiee-ps-1-representant-le-roi-david-accordant-sa-harpe-inspire-par-le-saint-esprit.

html

https://musiconis.huma-num.fr/fr/fiche/47/roi-david-jouant-de-la-viele-en-huit.html
https://musiconis.huma-num.fr/fr/fiche/47/roi-david-jouant-de-la-viele-en-huit.html
https://musiconis.huma-num.fr/fr/fiche/1920/anges-jouant-de-la-viele-du-luth-de-la-chalemie-et-du-tambourin.html
https://musiconis.huma-num.fr/fr/fiche/1920/anges-jouant-de-la-viele-du-luth-de-la-chalemie-et-du-tambourin.html
https://musiconis.huma-num.fr/fr/fiche/529/putto-jouant-du-luth.html
https://musiconis.huma-num.fr/fr/fiche/442/initiale-historiee-ps-1-representant-le-roi-david-accordant-sa-harpe-inspire-par-le-saint-esprit.html
https://musiconis.huma-num.fr/fr/fiche/442/initiale-historiee-ps-1-representant-le-roi-david-accordant-sa-harpe-inspire-par-le-saint-esprit.html
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Figure 2.14: King David playing the vièle
- 1151 - Troyes, Grand Est, France.

Figure 2.15: The Assumption of the Vir-
gin with Saints Michael and Benedict -
1493 - Cortona, Toscane, Italie

Figure 2.16: Putto Playing the luth -
1540 - Auch, Occitanie, France

Figure 2.17: King David playing the harp
inspired by Saint-Esprit - 1200 - Paris,
France.

Figure 2.18: 4 examples of images from the Muiconis dataset.
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2.5.1 Types of Images

Musiconis contains over 2800+ images of musical performances from the Middle
Ages. The images come from a variety of sources, including:

1. Manuscripts: Musiconis contains images of musical notation from manuscripts,
which can be used to study the development of musical notation over time.

2. Sculptures: Musiconis contains images of sculptures depicting musical per-
formances, which can be used to study the social and cultural context of
music in the Middle Ages.

3. Paintings: Musiconis contains images of paintings depicting musical perfor-
mances, which can be used to study the artistic representations of music in
the Middle Ages.

4. Stained glass windows: Musiconis contains images of stained glass windows
depicting musical performances, which can be used to study the religious
and liturgical aspects of music in the Middle Ages.

2.5.2 Meta Data

The images in Musiconis are annotated with a variety of metadata, including:
1. The date of the image

2. The location of the image

3. The type of performance depicted in the image

4. The instruments used in the performance

5. The singers and dancers depicted in the performance

6. The relationships between the performers

7. The religious or liturgical context of the performance

8. Title in English, French, and Spanish

9. Instrument specific information (Material, Stem type, Horn type, mouthpiece
type, presence of holes, number of strings, etc.

This metadata allows researchers to study the images in Musiconis in a variety
of ways. For example, researchers can use the metadata to track the evolution of
musical instruments over time, to compare different cultures, or to study the role
of music in religious and liturgical contexts.

We include an image from Musiconis in 2.19 23.
23https://musiconis.huma-num.fr/en/fiche/1295/shepherd-holding-a-bagpipe.html

https://musiconis.huma-num.fr/en/fiche/1295/shepherd-holding-a-bagpipe.html
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Figure 2.19: A screenshot from Musiconis website of a Shepherd holding a bagpipe.

2.5.3 Classes

AnnMusiconis contains a large list of instrument types, Idiophones, Membra-
nophones, Chordones and Aerophones. For the sake of simplifying the scope of the
thesis we decided to work only on String instruments (Chordophones). We showed
the list of objects we work with in table 2.2.

accessed on 15th of August 2023.

Table 2.2: Distribution of objects in our AnnMusiconis across different classes.

Class Counts

Citharas 112
harps 132
lutes 56
lyres 75
vielles 327

TOTAL 662
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2.6 Medieval Musicological Studies Dataset (MMSD)

Throughout the thesis, I collaborated closely with Valérie LEPAGE (musicologist
with IReMus) and she visualized hundreds of IIIF manuscripts from various col-
lections to find images of illuminations with singing performances. Among the
consulted institutions were the French National Library (BnF), the J. Paul Getty
Museum, the Universitatsbibliothek Basel, the University of Cambridge, and the
University of Princeton. As a result, we obtained a dataset of 341 IIIF images
of illuminations. In total we annotated, 693 objects, with Book 338, Phylactery
204, Lectern 87, Altar 37, Folio 27.

The image dataset creation and the ground truth annotation and validation
processes were organized into four different steps, described as follows.

1. image dataset: The first step was to create a dataset of images for training.
Therefore, three experts in musicology and professional singers searched for
and manually selected images of manuscript pages containing singing repre-
sentations.

2. Annotate objects: As the domain expert, Valerie LEPAGE annotated the dataset
using the Supervisely tool (https://supervise.ly/, accessed on 1 Novem-
ber 2021), which is a collaborative online tool for image annotation, allowing
users to create bounding boxes and object masks. As a result, the objects
(such as books, lecterns, altars) in each image are highlighted by defining its
borders.

3. Classify the objects: In the third step, the objects annotated previously were
manually classified as book, folio, phylactery, lectern, or altar by the musi-
cologists. Thus, we can not only detect objects but also the exact position
of those objects within the image.

4. Obtain a consensus in the classification of objects: As we explained previously,
it is not easy to detect singing performances. We are working with images
of artworks, so the singing representations are not real; they are paintings or
drawings of an artist who does not necessarily know about vocal practices.
Therefore, the fourth and last step in the classification of objects consists of
achieving a consensus among all the experts to create the ground truth.

2.6.1 Image Dataset of Illuminations Representing Medieval
Singing

At the beginning of the Middle Ages, musical instruments were mainly used as
a complement for singing. At that time, in religious music, the vocal song was

https://supervise.ly/
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Figure 2.20: An annotated phylactery example

thought to represent the divine Word of God. Therefore, religious music was
promoted and developed by high authorities of the Church. Medieval singing
was present in all services, major festivals, and ceremonies. Religious songs were
repeated every day in churches and monasteries. In secular music, singing per-
formances werealso of vital importance. Secular vocal songs were generally trans-
mitted orally. They reflected ordinary people’s daily lives, love and war stories,
or songs intended for processions going to battle.

The importance of the notation of songs is also manifested by rich illuminations,
which gradually range from simple colored to intricately decorated capitals and
complex scenes with multiple characters and rich details. These richly illuminated
manuscripts provide musicologists with numerous clues concerning the practice
of singing. Analyzing a large dataset of images may reveal previously unknown
details to clarify medieval singing beyond eras and regions.

Massive amounts of digital iconographic data are available nowadays thanks to
the development of the IIIF standard. The IIIF standard offers unified access to
view and read digitized ancient documents, significantly increasing the number of
people who can consult them. The most important cultural institutions all around
the world publish their collections using the IIIF format. The vast digitization
of manuscripts now makes it possible to reconsider iconographic studies and an-
alyze a series of gestures and behaviors that can be compared with narratives,
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Table 2.3: Distribution of objects in MMSD across different classes.

Class Counts

Book 338
Phylactery 204

Lectern 87
Altar 37
Folio 27

TOTAL 693

descriptions, and texts of treatises. Thus, new illuminated medieval collections
are now available for researchers, allowing them to harvest millions of illuminated
manuscripts. The ever-increasing number of singing performances hidden in those
illuminated manuscripts challenges researchers to develop new pattern-recognition
methods to find them.

2.6.2 Annotation of Written Supports in Illuminations

The presence of books is an essential aspect of liturgical song representations.
Although in the Middle Ages [72] , songs were mostly memorized since they were
repeated every day in ceremonies and mass, some songs required different texts
depending on the days and times of the liturgical year. Therefore, due to the
increase in the repertoire and the development of polyphony, it was necessary to
create written supports (in this chapter we mention support as an object that
contains writing in general whereas the rest of the thesis a support is the object of
the image - manuscript, painting, glass, sculpture). Examples of written supports
are missals and graduals. The size of written supports may vary from a hand-held
book to a large codex requiring a lectern, around which the singers would gather,
in the middle of the choir. Written supports coud be found in the hands or knees,
tables, altars, lecterns, palace hall, or gardens.

Another type of written support for singing performances is phylacteries and
sheets (with or without musical notation). There are well-known phrases that are
always sung, such as “Ave Maria Gratia plena”, “Cantate Domino”, or “Gloria in
Excelsis Deo”. When these phrases are found in phylacteries or the texts around
illuminations, they indicate a singing performance.

Therefore, in a previously selected dataset of IIIF images selected manually
by experts containing singing performances, we annotated the following classes as
described in Table 2.3:

1. Phylactery:: a medieval speech scroll, which contains or depicts speech, song,
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or other sounds (for example, Figure 2.21d (Bodmer ms. 91 f. 39r: http://
www.e-codices.unifr.ch/loris/fmb/fmb-cb-0091/fmb-cb-0091_039r.jp2/
full/full/0/default/jpg, accessed on 1 November 2021)).

2. Folio: a thin and flat surface that can be used for writing or drawing. (Fig-
ure 2.21b (Abbeville ms. 016 f. 15: https://iiif.irht.cnrs.fr/iiif/
France/Abbeville/B800016201/DEPOT/IRHT_106357_2/1000,500,800,1500/
full/0/default.jpg, accessed on 1 November 2021)).

3. Book: a collection of sheets bound together containing printed or written texts,
pictures, etc. (Figure 2.21a (BnF ms. fr. 166 f. 119v: https://gallica.
bnf.fr/iiif/ark:/12148/btv1b105325870/f252/1500,3100,1000,1200/
full/0/native.jpg, accessed on 1 November 2021)).

4. Altar: a sacred table used for ritual sacrifice or offerings in a religious building.
(Figure 2.21e (Initiale ms. 3028 f.082 http://initiale.irht.cnrs.fr/
decor/58000, accessed on 1 November 2021)).

5. Lectern: a reading desk with a slanted top, on which books are placed for read-
ing aloud. (Figure 2.21c (Avignon ms. 0121, f. 162v: https://bvmm.irht.
cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_
ID=1393519, accessed on 1 November 2021)).

2.7 Conclusions

As artificial intelligence reaches new limits, the most logical extensions are no
longer model improvements but applications of such technologies in new fields
and domains. Hence our first contribution in this thesis is the datasets manu-
ally annotated by Valerie LEPAGE and other musicology experts in the hopes of
pushing research ahead. In this chapter, we presented four datasets, Annotated
MIMO, a dataset of actual pictures of real instruments, AnnMusiconis, a dataset
of manuscripts and sculptures of artistic medieval instruments, AnnVihuelas, a
dataset for the vihuelas instrument, and finally, Medieval Musicological Studies
Dataset (MMSD), a dataset of medieval signing. In the next chapters, we put
these datasets into use.

http://www.e-codices.unifr.ch/loris/fmb/fmb-cb-0091/fmb-cb-0091_039r.jp2/full/full/0/default/jpg
http://www.e-codices.unifr.ch/loris/fmb/fmb-cb-0091/fmb-cb-0091_039r.jp2/full/full/0/default/jpg
http://www.e-codices.unifr.ch/loris/fmb/fmb-cb-0091/fmb-cb-0091_039r.jp2/full/full/0/default/jpg
https://iiif.irht.cnrs.fr/iiif/France/Abbeville/B800016201/DEPOT/IRHT_106357_2/1000,500,800,1500/full/0/default.jpg
https://iiif.irht.cnrs.fr/iiif/France/Abbeville/B800016201/DEPOT/IRHT_106357_2/1000,500,800,1500/full/0/default.jpg
https://iiif.irht.cnrs.fr/iiif/France/Abbeville/B800016201/DEPOT/IRHT_106357_2/1000,500,800,1500/full/0/default.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f252/1500,3100,1000,1200/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f252/1500,3100,1000,1200/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f252/1500,3100,1000,1200/full/0/native.jpg
http://initiale.irht.cnrs.fr/decor/58000
http://initiale.irht.cnrs.fr/decor/58000
https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
https://bvmm.irht.cnrs.fr/consult/consult.php?mode=ecran&reproductionId=15460&VUE_ID=1393519
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(a) Book (b) Folio (c) Lectern

(d) Phylactery (e) Altar

Figure 2.21: Examples of object annotations.



Chapter 3

Dual Training for Transfer Learning

The methods and some results presented in this chapter were published in:
I. E. I. Bekkouch, V. Eyharabide and F. Billiet, "Dual Training for Transfer

Learning: Application on Medieval Studies," 2021 International Joint Conference
on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-8, doi: https://
doi.org/10.1109/IJCNN52387.2021.9534426 [14].

This chapter presents a new method for non-intrusive Transfer Learning that
allows for fast improvement of performances over vanilla Transfer Learning while
remaining simple, reproducible, model-independent, and task-independent. Al-
though most non-intrusive TL methods tend to separate the two domains and
their training, our method’s strength lies in combining both sources in mutual
training of the same model architecture.

3.1 Introduction

Understanding and preserving cultural heritage is essential for comprehending our
past and influencing our present. With regard to everything from music and art
to architecture, theology, and more, the Middle Ages represent a dynamic and
diverse period in our history. It is challenging to go through all the information we
have about that period because studying medieval manuscripts requires extensive
experience and historical knowledge, leaving much to be discovered. Fortunately,
current developments in artificial intelligence and computer vision offer a way to
automate the procedure and quickly extract valuable information from enormous
amounts of data.

As of 2015, deep learning-powered computer vision models beat human per-
formance on the ImageNet Large-Scale Visual Recognition Challenge 2014 [132]
picture classification challenge using models like ResNet [65] and GoogLeNet[151].
Following that, improvements persisted in the form of bounding box regression
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models, which forecast both the class and the location of the object on the image.
Due to the fact that these models were designed solely for single-object images,
a new research area dealing with multi-object identification was created. These
models’ two most well-known branches are Detectron[172, 55] and YOLO[123, 121,
122, 18, 76]. Even on tiny datasets, these models produce reliable findings when
applied to contemporary photos. However, when we apply them to pictures of
antique sculptures and paintings, their performance typically suffers significantly.
Such issues arise as a result of the sort of data that YOLO and other object iden-
tification techniques were trained on, resulting in what is known as a domain gap
issue[11].

The most common types of domain gaps in research are photos of objects
spanning different camera types [135], datasets collected with different composition
biases [154], or different abstractions of the objects[91]. The datasets we use in
the thesis present a challenge to machine learning models for four main reasons:

1. Variation in style: Our dataset covers musical instruments from past and
recent history. The instruments also come in different supporting materials
such as paintings, manuscripts, photographs, and sculptures.

2. Difficulty in acquiring and labeling: When analyzing ancient and dam-
aged artworks, experts sometimes have difficulties recognizing objects in
images. Building Object detection models for such historical data is a chal-
lenging task that requires an experts’ consensus.

3. Scarcity of data: Manually annotated images of medieval artworks are scarce,
even more in the medieval musicology domain.

4. Small Regions of Interest: As with many datasets of object detection, our
dataset focuses on a small region and not the image as a whole, making the
detection problem more challenging (as shown in Fig. 3.1 1).

Transfer Learning is the first answer to mind when facing such domain gap
issues. It consists of using a pre-trained model on a source task and transferring the
learned knowledge into a target task. Typically, the original model is trained on a
large dataset with many classes, which allows it to learn discriminative features for
a large number of tasks. The first part of the model is usually kept the same since
it leans toward generic discriminative abilities. In contrast, the final layers either
require updating or a full change and re-train depending on whether the target
and the source tasks are the same. However, Transfer Learning in its vanilla form
has its limitations and tend to work only on datasets with core style similarities.

1http://musiconis.huma-num.fr/fr/fiche/70/musiciens.html
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Figure 3.1: An example of a Musiconis’ image to show the small size of the musical
instrument compared to the size of the entire page
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Three main research issues distinguish different Transfer Learning methods:
1) What to transfer? 2) How to transfer? When to transfer?[116]. Given the
assumption that the source dataset is related to the target dataset, most of the
focus remains on the How to transfer question. Moreover, we notice two main types
of TL methods, intrusive and non-intrusive. Intrusive TL provides the best results
overall and requires making hypotheses about the classes, the data, and especially
the model’s architecture. Intrusive TL is very successful on image classification
tasks since there is only one main architecture involved, which is Convolutional
Neural Networks (CNN). However, it cannot be applied to more complex tasks
such as Object Detection, which uses several model architectures and training
procedures. The second type is Non-Intrusive TL, which provides worse results
than intrusive TL. Nevertheless, it makes far fewer assumptions about the data and
the task making it more applicable to several scenarios, ranging from Clustering to
Object Detection and Segmentation. Non-intrusive TL is widely used in industrial
applications because it is easily reproduced and provides more stable results.

Our method changes and adapts itself to different model architectures, namely
Detectron2 and different YOLO versions. Our method’s strength comes from its
simplicity and reduction of the model’s assumptions. Our method treats the ob-
ject detection model as a black box with no Even though YOLO and Detectron
architectures are different, YOLO is a one-stage detector, whereas Detectron first
finds regions of interest and then classifies them in two separate steps. This dif-
ference allows YOLO to provide more real-time results even on simpler hardware,
but it decreases the performance compared to Detectron, which was fixed in the
later versions of YOLO.

The rest of the sections present the following: Section 2 provides an overview of
the main research advances in Transfer Learning, Object detection and Medieval
Manuscript Studies. Section 3 presents our model architecture and our dataset
with its characteristics. Details of our experimental setup, and empirical results
are shown in Section 4. Finally, Section 5 wraps up the chapter.

3.2 Method

This section describes our proposed method for Transfer Learning. Our method
assumes the existence of two datasets that share the same classes either fully or
partially, and one of them has a lower number of samples than the other. The goal
is to improve the performance of object detection models on the smaller dataset.
We refer to the big dataset as the source dataset Xs and the small dataset as the
target dataset Xt. In the baselines and the results, we will refer to the Original
Dataset Xo, a separate dataset used for object detection model initialization in
general and not related to our source dataset annotations. The samples of both
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Figure 3.2: Dual Training for Transfer Learning method. The images are extracted
from MIMO dataset (Source) and Musiconis (Target).

the source and target dataset can have different sizes since most object detection
models are either flexible size.

It is essential to notice that the source and target images come from a different
marginal distribution. This difference is at the core of the difficulties of perform-
ing normal Transfer Learning. We train the Object Detection model using both
datasets at delayed times on two repetitive steps. The first step is to train on the
source data, and the second is to train on the target dataset. Each dataset has
its learning rate and its learning rate scheduler, but both share most of the model
layers except for the last classification layers.

The source dataset starts with a big learning rate and then gradually decreases
it as we advance in the iterations. In contrast, the target dataset starts with a
low learning rate that gradually increases and goes back down in the middle of the
training. Thus, the model initially learns most from the source dataset and then
gradually focuses on the target dataset.

3.2.1 Baselines

We compare our method against several baselines to prove its efficiency. The base-
lines we chose are considered the best practice or the direct method of performing
the object detection task.

Transfer Learning

The first baseline uses a model trained on a large dataset and fine-tuning it on
a target dataset directly. This method is the most common form of training an
object detection system. The idea behind this is to leverage a large number of
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images and annotations in an external dataset to train the feature extractors of
the model to recognize and distinguish a variety of classes. This method is not
only widely used in object detection but also in image classification and natural
language processing.

Dual Knowledge Transfer

Basic Transfer Learning suffers from one big loophole: the change in classes, object
sizes, and image distributions between the original and the target datasets. This
drawback is a widespread problem when working with historical datasets. That is
why a new method for Transfer Learning appeared, which first trains the model
on the original dataset. For example, the MS COCO 2020 Detection dataset or
Google AI’s OpenImages. Using the source dataset to fine-tune the model the first
time allows getting closer to the target dataset classes or its style of images. The
next step is a fine-tuning on the target dataset to go much smoother and provide
better results. The key difference is using three datasets instead of two, which
allows the model to provide better performances on the target dataset.

3.2.2 Dual Training for Transfer Learning

Our method’s strength lies in its non-intrusive approach to improving the results
of Transfer Learning and Dual Knowledge Transfer. Our method assumes that the
object detection model is a black box that can take a learning rate and a number
of epochs as input. Thus, it is more applicable to all object detection models
based on deep learning. Fig 3.2 describes the structure of our method. We being
by initializing the weights of the model using a pre-trained model on the Original
dataset XO. We also set the learning rate for the source dataset (lrα) and the
learning rate for the target dataset (lrβ) to keep the initialization of lr0α > lr0β,
allowing the model to focus mostly in the start on the source dataset. Our first
step beings by training the model on the source data for α epochs and decreasing
lrα following this formula:

lrepoch = lr0 ∗ exp(−k ∗ epoch); k = ln(
lrβ0
lrα0

) ∗ −1
Es

(3.1)

where k is usually set to a specific value that allows the two learning rates to
switch values in the middle on training, but it can be used as a hyper-parameter.
The second step is to resume the training of the model’s weights using but with
separate classification layers for the target dataset. We train on the target dataset
for β, such that α > β since the number of pictures in the target dataset is assumed
to be smaller than the size of the source dataset. We update the lrβ after every
step following algorithm 5
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Algorithme 1 : Upgrading the Learning rate for the target data
Input : epoch — Current epoch

lr0 — Initial learning rate
d — Decay parameter
k — Increase parameter
Es — Switching epoch.

Output : lrepoch — Current learning rate for the epoch

if epoch < Es then
In the first part of the training we increase the value of the lr ;
incexp = exp(−k ∗ epoch);
lrepoch = lr0 ∗ (1 + incexp) ;

else
In the second part of the training we decrease the value of the lr from
the maximum.;
incmax = exp(−k ∗ Es);
lrmaximum = lr0 ∗ (1 + incmax);
decexp = exp(−k ∗ Es);
lrepoch = lrmaximum ∗ decexp;

end
return lrepoch
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Figure 3.3: Four examples of vielles. (a) Stone statue in Musiconis database.
(b) Manuscript in Musiconis database. (c) Painting in Vihuelas database. (d)
Photograph in MIMO database.

After we finish step 1 and 2 of our system, we iterate over and over again until
we reach convergence or one of the stopping criteria has been fulfilled. We decide
convergence by having a similar f1-score for both datasets, which exceeds a certain
threshold. In the case where the convergence criteria are not satisfied, the system
stops at one of the following criteria:

1. The max number of iterations was exceeded.

2. The difference between the f1-score of the two datasets keeps increasing for
5 consecutive steps.

3. The f1-score of the source dataset decreases for 5 consecutive steps.

These stopping criteria allow the model to stop running at the best iteration
to provide the best results that satisfy the domain independence and category
informative characteristics that we look for in a model.

3.3 Datasets & Challenges

To test our proposal, we selected three datasets of medieval artworks containing
musical instruments: i) AnnMusiconis database2; ii) AnnVihuelas database3; and
iii) MIMO Database4. The choice of these databases was to collect artworks from
different periods, styles, and supporting materials:

2http://musiconis.huma-num.fr/fr/
3https://vihuelagriffiths.com/
4https://mimo-international.com/MIMO/
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Algorithme 2 : Dual Training for Transfer Learning
Input : lrα0 — Initial learning rate for the source dataset.

lrβ0 — Initial learning rate for the target dataset.
α — the number of epochs to train the model on the target

dataset every step.
β — the number of epochs to train the model on the source

dataset every step.
Es — Switching epoch.

Output : Wtarget — The weights of the target model.

lrα = lrα0;
lrβ = lrβ0;
k = ln(

lrβ0
lrα0

) ∗ −1
Es

;
for epoch← 1 to 2*Es do

for epochα ← 1 to α do
Sample a batch of images from the source domain;
Train the object detection model using lrα;
Update lrα using the formula 3.1 and k;

end
for epochβ ← 1 to β do

Sample a batch of images from the target domain;
Train the object detection model using lrβ;
Update lrβ using the algorithm 5;

end
end
return lrepoch
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1. Large historical periods: These collections include artworks from 11 differ-
ent centuries. First, the AnnMusiconis database contains images mainly of
stone statues from the 9th century to the 17th century. Second, the AnnVi-
huelas database contains artworks from the early modern period (15th to
17th centuries).

2. Several supporting materials: These datasets include musical instruments
in manuscripts, paintings, stained glasses, embroideries, photographs, stone
and ivory sculptures. Thus, we will evaluate our models and compare the
results obtained according to the material used to create the artworks.

3. Variations in representation styles: . The datasets contain musical in-
struments’ variations due to different artists’ painting or sculpting styles.
As we mentioned before, the artist who creates the artwork is not necessar-
ily a musician, so the instrument drawn or sculpted may not correspond to
the real instrument’s characteristics (for example, a missing string, a shorter
neck, or a wider soundboard).

4.- Different conservation states: Since we focus on medieval artworks, some
may suffer from corrosion and are often damaged. Others have been broken
or shattered, making their instruments difficult or harder to recognize.

5. Rich and broad application domain: There are thousands of musical in-
struments throughout history worldwide. Due to the large number and vari-
ability of musical instruments in these databases (more than 65k records),
we decided to identify only chordophones. A chordophone is a musical in-
strument that produces sound from vibrating strings, such as harps, lyres,
or lutes.

6. Different object sizes: Object detection models work perfectly on images
where the object sizes are big and the objects are not crowded together. Fig
3.4 shows the kernel density estimation of the empirical distributions of the
different datasets.

To get a glance on our MIMO, AnnMusiconis, AnnVihuelas (MMV) dataset
and understand their differences, we present Fig. 3.3 which depicts four images of
vielles that vary in color, shape, size, orientation, and perspective. The Vielle was
a chordophone widely used in the Middle Ages, currently considered an ancestor
of the modern violin.
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Figure 3.4: The kernel density estimation of empirical probability density function
of the object area to image size ratios for MMV datasets. The sections represent
the range we chose for deciding small, medium, large sizes for evaluation.

Table 3.1: Per-class Performance map comparison between several Object Detec-
tion models on the task of Transfer Learning. TL refers to vanilla Transfer Learn-
ing, DKT refers to Dual Knowledge Transfer and DTTL refers to our method.
The experiments use MIMO dataset as a source dataset, and either AnnMusiconis
or AnnVihuelas as the target.

Target Dataset MIMO AnnMusiconis AnnVihuelas
OB backbone TL Method Precision RECALL f1-score map Precision RECALL f1-score map

Detectron
TL 56.8 47.1 51.49 34.40 73.9 56.3 63.91 43.412

DKT 59.4 48.51 53.40 35.63 72.41 59.0 65.02 42.95
DTTL 61.35 51.8 56.17 36.09 73.36 61.84 67.11 43.23

YOLO v4 csp
TL 58.49 49.29 53.49 45.07 72.15 58.57 64.65 46.01

DKT 58.39 52.31 55.18 46.39 70.81 60.64 65.33 48.14
DTTL 64.73 53.7 58.71 48.14 74.22 62.18 67.69 52.03

YOLO v4
TL 55.42 35.91 43.58 32.22 54.29 52.41 53.33 43.47

DKT 57.34 41.45 48.11 33.58 58.94 55.14 56.97 43.81
DTTL 59.76 46.68 52.42 34.02 67.49 59.07 63.00 45.98

PP-YOLO
TL 54.74 58.29 56.45 42.45 70.95 57.62 63.59 40.92

DKT 57.21 61.01 59.04 44.28 73.47 59.12 65.51 41.91
DTTL 59.78 60.79 60.28 47.85 75.12 60.34 66.92 43.99

YOLO v5 - m
TL 52.33 48.17 50.16 32.72 58.29 53.45 55.76 38.07

DKT 55.54 48.41 51.73 33.15 64.74 51.79 57.54 40.06
DTTL 58.79 51.72 55.03 35.41 66.57 54.68 60.05 41.53
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Table 3.2: Per-class Performance map comparison between several Object Detec-
tion models on Transfer Learning’s tasks. TL refers to vanilla Transfer Learning,
DKT refers to Dual Knowledge Transfer, and DTTL refers to our method. The
experiments use the MIMO dataset as a source dataset and either AnnMusiconis
or AnnVihuelas as the target.

Target Dataset AnnMusiconis AnnVihuelas
OB backbone TL Method viele Archet Cithare Harpe Luth Lyre viele Archet Luth

Detectron
TL 30.256 25.894 23.90 35.922 41.63 48.82 30.297 60 39.93

DKT 32.12 28.46 22.58 32.85 48.69 49.12 32.79 53.4 42.66
DTTL 40.27 30.08 23.48 31.1 42.55 48.99 36.32 52.26 41.1

YOLO v4 csp
TL 64.54 32.71 48.37 57.53 34.78 32.54 25.64 55.01 57.4

DKT 62.84 32.57 51.99 54.23 39.49 37.26 29.15 56.71 58.57
DTTL 60.54 38.12 48.29 57.93 43.28 40.72 37.96 55.8 62.25

YOLO v4
TL 44.44 33.42 20.68 41.4 24.17 29.22 26.93 50.82 52.67

DKT 42.44 35.13 25.48 43.35 27.07 28.01 27.45 52.38 51.6
DTTL 45.26 36.21 32.1 41.11 17.01 32.47 29.09 54.48 54.38

PP-YOLO
TL 61.18 42.17 48.33 58.29 28.09 16.69 26.81 53.88 42.07

DKT 58.81 45.63 44.52 55.86 38.29 22.58 31.52 50.93 43.3
DTTL 60.28 48.15 49.24 52.99 47.12 29.37 34.67 52.01 45.29

YOLO v5 - m
TL 42.17 38.33 35.62 28.95 30.28 21.02 38.25 43.52 32.45

DKT 43.01 34.29 37.24 29.03 29.85 25.46 36.13 48.56 35.48
DTTL 45.57 32.48 41.19 35.2 32.04 26.03 37.04 48.02 39.54

3.4 Results

This section provides a detailed comparison between the vanilla method for Trans-
fer Learning, the Dual Knowledge Transfer, and our non-intrusive Transfer Learn-
ing method for object detection named Dual Training for Transfer Learning. As
object detection is a central area of interest in the computer vision community,
several models appear every month and lack a proper comparison. We provide a
detailed comparison between them based on f1-score, mAP, training time, inference
time, and model size. The models that we evaluated are: YOLOv4 (original, tiny,
scaled), YOLOv5 (s,m,l,x), PP-YOLO, Detectron 2 (Faster-RCNN). We present
our results in two sections. First, in Section 3.4.1 we present the evaluation based
on global metrics for performance and computations. Second, in section 3.4.2 we
provide a per-class performance improvement comparison to present the effect of
different models and methods for Transfer Learning on unbalanced datasets.

3.4.1 Global Performance Evaluation

Following the steps described in Algorithm 2, we evaluated our method on the task
of Transfer Learning for object detection on our novel historical music datasets.
The goal is to improve the performance of several Object detection Methods on our
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Table 3.3: Hyper-parameters for the transfer learning experiments on musical
instruments object detection for Table 4.1 and Table 3.2. The annotations are
described in Algo 2.

Hyper-paramter lrα lrβ α β Es

Detectron 0.00025 0.00005 15 5 300
YOLO v4 csp 0.001 0.0005 10 5 150

YOLO v4 0.00261 0.0005 15 5 125
PP-YOLO 0.01 0.001 10 5 500

YOLO v5 - m 0.0001 0.00003 20 5 300

target dataset (namely AnnMusiconis and AnnVihuelas) to predict the location
and class of several musical instruments. Table 4.1 presents the results of our
method against vanilla TL and Dual TL. The metrics used for evaluation are
Precision (the number of positive class predictions that belong to the positive
class), Recall (the number of positive class predictions made out of all positive
examples in the dataset), F1-score (A balance between precision and recall), and
mean Average Precision score@[.50:.05:.95] (the average AP for Intersection over
Union from 0.5 to 0.95 with a step size of 0.05.). The different inference threshold
used for precision, recall and f1-score calculations are reported along with the
hyper parameters of each model in table 3.3

Table 4.1shows that for vanilla Transfer Learning the best models to use are
PP-YOLO and YOLO v4 scaled P7 models. PP-YOLO has a higher f1-score
with 0.5829, an increase of 0.02961 over YOLO-scaled, whereas the latter provides
an increase of 0.0262 over PP-YOLO with 0.45 on map score. Besides, both
models remain at the top of the list when combined with Dual Knowledge Transfer,
but their improvement over vanilla TL is small compared to the results with our
method (DTTL). Table 4.1 shows that our TL method improves results for all
models compared to DKT or TL. Our method also increases the f1-score of object
detection models with an average of 4.79 and a maximum increase of 8.83 for the
YOLOv4 model.

3.4.2 Per-class Performance Evaluation

To better understand and evaluate our method, we show in Table 3.2 the per
class-map scores on the different target datasets. The experiments are the same
as before, and the train/valid/test splits are the same across all models and all TL
methods, and the hyper parameters of the method are reported in Table 3.3. The
results show that the map scores correlate heavily with the distribution of samples
per class, meaning classes with higher sample count have better map scores on
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Figure 3.5: Comparison between results of our method DTTL (on bottom) vs
traditional transfer learning method DKT (on top).
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average than those with a small sample count. For example, the Lyre and the
Luth map scores of strong models such as YOLOv4 csp and PP YOLO are lower
than the same models’ map scores on classes such as the viele and the harpe.

As mentioned before, the best two models overall are YOLOv4 csp and PP-
YOLO with YOLOv4 csp slightly taking the lead. These two models provide
overall good results for all classes of both datasets (AnnMusiconis and AnnVihue-
las). Their performance increases when we use the dual knowledge transfer method
over simple transfer learning, especially on classes with a smaller sample count,
such as Viele for the AnnVihuelas dataset, and Luth/Lyre for the AnnMusiconis
dataset. Nevertheless, our transfer learning method outperforms the DKT method
and provide a larger improvement on classes with smaller sample counts. Taking
the example of YOLOv4 csp on the Luth class of AnnMusiconis, we can see that
the normal TL method gives a 34.78 map score whereas DKT improves on this
with 39.49 providing an increase of 4.71, whereas our method gives 43.28 with an
increase of 8.5, which is almost the double.

We can also confirm the improvements provided by our method visually by
analyzing the results’ annotations in the images. For example, Fig. 3.5 shows an
image of angels holding several musical instruments (a harpe, a luth, and a viele
played with a bow). Our method provides more certain results with less noise,
which can be verified on the bow example. The DKT method with Detectron
detects several overlapping instances of the viele and none of them match the
correct form of the instrument (first image on top of Fig. 3.5); whereas our method
provides only one precise detection of the bow with higher probability (second
image at the bottom of Fig. 3.5).

3.5 Conclusion

In this chapter, we presented a new transfer learning method integrates easily
with all state of the art models for object detection and provides a significant
performance increase over other transfer learning methods. Our transfer learning
method is an improvement in the field of medieval manuscript studies because it
allows us to train models and improve their results ever so slightly so they become
useful to us in future applications. Even though we build the algorithm with the
assumption of lack of target data, our method still requires a bare minimum of
images to train on. This drawback lead us to think of new and different methods
for building models, even in situations where data is absolutely sparse. We tackle
this drawback in the next chapter.
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Chapter 4

Few Shot Object Detection

The methods and some results presented in this chapter were published in:
Ibrahim, Bekkouch Imad Eddine, Victoria Eyharabide, Valérie Le Page, and

Frédéric Billiet. 2022. "Few-Shot Object Detection: Application to Medieval
Musicological Studies" Journal of Imaging 8, no. 2: 18. https://doi.org/10.
3390/jimaging8020018 [72].

In this chapter, we explore the field of few-shot object detection by presenting
a new non-intrusive method relying on bi-training of object detection models. The
core of the idea is to train the object detector sub-part of the model on the entire
dataset and then follow it by tuning the classifier/bounding box regressor part of
the model by assigning a higher sample weight on the novel classes. This method
is tested on our dataset MMSD for medieval singing.

4.1 Introduction

The analysis of medieval vocal practices is an essential issue for musicologists and
performers. However, medieval singing as a musical performance has been explored
much less than other musical instrumental performances [15]. This is because
medieval musical instruments are studied mainly by analyzing images of artworks
in which these instruments are represented [13]. However, since the human vocal
cords cannot be displayed explicitly, it is harder to identify whether a person or
group is singing or not.

Even though there are numerous descriptions of musicians and singers in me-
dieval chronicles and tales, illuminated manuscripts are the principal source for
musical iconography. Illuminations often depict very complex situations in a tiny
space. Artists often wished to concentrate much more information in a small illu-
mination than would be contained withinthat scene in real life. However, studying
a large corpus of images allows musicologists to detect repeated patternsand shed
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light on previously unknown medieval vocal practices across different periods and
regions. The discovered patterns could enable performers wishing to perform reper-
toires to better understand the organization of singers, the environment, and the
setting of the songs according to the period and genre considered. For example,
considering the architectural modifications over the centuries, better choices re-
garding locations and musicians could be made to recreate acoustics as close as
possible to the original music scene. Therefore, our objective is to find singing
performances in images from medieval artworks. More precisely, we will detect
medieval images containing persons in solo or group-singing situations, whether
accompanied or not by musical instruments. The final objective for musicologists is
to better understand the physical postures of singers, their relationship, and their
location inside the building.

Since the human voice is not a visible musical instrument, it is necessary to
define possible objects in the images that may suggest the presence of singing
performances. Therefore, we propose identifying characters who have their mouths
open, perhaps with features linked to the vocal utterance (such as declamation or
singing; see Figure 4.1a 1. However, having the mouth open is not a sufficient
condition to determine that a person is singing. The context or environment in
which these singers are performing is vital to understanding the musical scene.

The scene’s context should be analyzed to detect additional clues such as a
book hold in the hands or knees, or placed on a lectern (Figure 4.1b 2, an unfolded
phylactery (and if visible, the text on the phylactery, Figure 4.1c 3), or some musi-
cal notation (Figure 4.1d 4). Moreover, some gestures such as the hand placed on
the shoulder, the movement of the pulse (to set the tempo and anchor the rhythm),
or a finger pointing to the musical score may also evoke singing performances. Mu-
sicologists also analyze the texts embellished by the miniatures or illuminations
containing singing performances. This research deliberately sets aside animals,
hybrids, and monsters to concentrate only on clerics, laity, children, and angels.

When dealing with small datasets (such as those for medival studies) that are
challenging even for typical transfer learning methods, few-shot image classification
is a possible solution [79]. The technique of few-shot learning [168] in computer
vision has progressed drastically over the last years, mainly due to the advances
in transfer learning techniques such as meta-learning [160]. Such advances have

1(BnF ms. fr. 166 f. 121v: https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/
f256/1500,750,1000,1300/full/0/native.jpg, accessed on 1 November 2021))

2(BnF ms. fr. 166 f. 115: https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/
f243/2799,3000,1000,1200/full/0/native.jpg, accessed on 1 November 2021))

3(BnF. NAL 104, f. 50r: https://gallica.bnf.fr/iiif/ark:/12148/btv1b10023007f/
f106/50,50,2000,2300/full/0/native.jpg, accessed on 1 November 2021)

4(BnF ms. fr. 166 f. 126v: https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/
f266/3199,3100,1000,1200/full/0/native.jpg, accessed on 1 November 2021)

https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f256/1500,750,1000,1300/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f256/1500,750,1000,1300/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f243/2799,3000,1000,1200/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f243/2799,3000,1000,1200/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b10023007f/f106/50,50,2000,2300/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b10023007f/f106/50,50,2000,2300/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f266/3199,3100,1000,1200/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f266/3199,3100,1000,1200/full/0/native.jpg
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(a) Book in their hand (b) Book placed on a lectern

(c) Unfolded phylactery
(d) Book with musical

notation

Figure 4.1: Examples of medieval singing illuminations.
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provided great results for basic image classification tasks. Our datasets in the field
of cultural heritage suffer from a great deal of challenges, as described in [13], but
the main challenges are the lack of samples in specific classes due to the loss of
historical artifacts or the difficulty of finding such samples in the vast collections
provided by different museums. Unlike image classification [7], few-shot object
detection has received far less attention in the past and is still a growing field.
The main difference between image classification and object detection is that the
model is required to detect the location of the classified objects from a possible
set of millions of potential locations. This additional sub-task makes the object
detection task even harder to perform in scenarios where annotated data are sparse.

In this chapter, we present two main contributions, (i) a novel technique for
performing few-shot object detection based on bi-stage training, in which the first
stage tries to improve on the object localization process for the new classes and
the second stage aims to improve the image classification and fine tuning of the
pre-located coordinates; and (ii) a benchmark for three main models in the field of
object detection, which are Yolov4 [18], Faster RCNN [125], and SWIN Transform-
ers [102]. We chose these three architectures because they represent the leading
representatives of their family trees of architectures, which are the RCNN fam-
ily [56, 64, 57], the YOLO family [123], and the Visual Transformers family [171].

The chapter is organized as follows: Section 4.2 presents our novel and simple
method for few-shot object detection. The empirical benchmark of our algorithm
is shown in Section 4.3. Finally, Section 4.4 summarizes the contributions of the
chapter.

4.2 Methodology

In this section we describe our novel method for few-shot object detection based
on a bi-training approach. We start by first describing the context of few-shot
object detection and the type of input we work with; then we describe in detail
the different steps and loss functions for our bi-training method. We finish this
section with a description of the contributions provided in this chapter.

We use the same description of few-shot object detection as the settings in-
troduced in [79]. We have a set of base classes Cb, which contain a sufficient
number of samples (sufficiency depends on the model and the pretraining and
the method used for training, which we will investigate in the results section)
and a set of novel classes Cn that have a low representation in the dataset,
with only K objects per class (where K is small number, usually around 10; we
investigate different values of K in the results section). For the object detec-
tion task we need D = (x, y), x ∈ X, y ∈ Y such that x is the input image and
y = (ci, li), i = 1, . . . , N is the set of annotations per image that is made with the
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bounding box coordinates and the class of each object such that the set of classes
is the union of base classes and novel classes. For our dataset, we use a different
ratio of novel/base classes and different thresholds for the definition of a novel and
base class.

To evaluate our method for few-shot object detection, we used a test set that
contained a combination of both novel and base classes, with the final goal of
optimizing the performance of the model on both sets, which we quantified using
the mean average precision (mAP) metric, which combines the results on all classes.
We describe our bi-training few-shot object detection (BiT) method in this section.
We demonstrate that our method is model-agnostic and can work with a variety of
model architectures, allowing it to be used on any pretrained object detector, fine-
tuning it for enhanced performance. We chose to use the faster RCNN approach
with a region proposal network (RPN) backbone as the representative of region-
based convolutional neural networks, and to use Yolov4 as the representative of the
You Only Look Once family and the Swin T model as a representative of the vision
transformer family. Intuitively, our method aims at treating the object detector
as a black box but makes a few assumptions about it. The first assumption is
the existence of an object proposal sub-network (for most two-stage models this
exists easily but for Yolo it is represented as a model with only the “objectness
score calculations” without performing the object classification, making it a class-
agnostic sub-model). The second assumption is the existence of an object classifier,
which is the case for all of our models. Our method operates on two training steps
described in Algorithm 7, which are:

Total Model Improvement

The first step in our method is to fine-tune the object detector (not the classifier)
on the whole dataset, not only the base classes, to make sure the model is able to
propose objects for classification for all classes, especially if the novel classes are
not very similar in shape and style to the base classes. This step can be applied
to all object detection models since they are all either two-step models or YOLO-
based, where the classification and object proposal happen in the same step, and
this can be achieved by using a weighted combination of both losses, where the
weight of the classification at this step is 0. The joint loss would look like this:

L = Lrpn + 0× Lcls + Lloc, (4.1)

such that Lrpn represents the object proposal loss function applied on the RPN
(or the object scoreness cross entropy loss for YOLO-based models), which mainly
used to refine the anchors without touching the feature extractor (the backbone
remains fixed as our dataset does not have enough samples to effectively retrain the
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whole model). Lcls is the object classification cross entropy loss and in this stage
we do not train it; we try to ignore its effect because the object proposal step at
this stage still is not good enough to propose enough samples of the novel classes,
leading to an even bigger class imbalance problem for the classifier. Finally, Lloc

is the smoothed L1 loss used to train the box regressor.

Classifier Fine-Tuning

The second step of our model treats the object detector as a whole as a two-step
model, in which the first step is the object proposal and the second is the classi-
fication and bounding box regression. In our first step we fine-tuned the object
proposal model and now, for the fine-tuning of the classifier and bounding box
regressor, we will treat it as we would another CNN model used for classification.
This simplification works very well on all object detector models, regardless of
whether they are one-step models (Yolo) or two-step models (RCNN). The fine-
tuning is targeted only at the last layer of the bounding box regressor and the
classifier (if they are seperate layers, as in the RCNN family, they are fine tuned
separately, and if they are in the same layer, as in YOLO, they are done together).
We fine-tune both base classes and novel classes but we assign a higher sample
weight to the novel samples, forcing the model to perform better with the novel
samples. We decrease the learning rate in this stage compared to the first stage,
allowing the model to train slower and not to change drastically in order to fit the
novel classes and abandon all results on the base classes.

4.3 Results

In this section, we conduct extensive benchmarking of several object detectors on
the task of few-shot object detection based on two approaches. The first one aims
at measuring the influence of reducing the overall number of samples for both base
classes and novel classes on the performance ofthe model in total. The second
experiment was conducted to see how the change in the number of samples of
the lowest novel class influenced its own average precision. In this chapter, we
focus only on deep learning models instead of machine learning techniques, mainly
because our dataset contains a large variety in forms shapes, sizes and artistic
representations within the same group of objects. Nevertheless, our dataset has
a small sample count for each class, making it a very difficult task for machine
learning models which do not leverage pre-training and transfer learning. For the
sake of a better evaluation, we trained a histogram of oriented gradients, followed
by a support vector machine classifier and a sliding bag of visual words. The results
for the Bag Of Visual Words BOVW model were almost zero regardless of the fine
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Algorithme 3 : Bi-Training Few-Shot Object Detection
Input : X — Training images.

Y — Training labels.
Wn — Sample weight multiplier for the novel classes.
lr1 — First step learning rate.
lr2 — Second step learning rate.

Output : θO — Weights of the object detector

// Training the object detector sub-part of the model.
for i← 1 to epochs do

for j ← 1 to nb_batches do
Sample a batch of images regardless of source class
(x1, y1), (x2, y2), . . . , (xN , yN);
θO = θO − lr1

∂L
∂θO

Equation (4.1) ;
end

end

// Sample weight calculations and classifier fine-tuning
§w = norm([1 if yi ∈ Cb elseWn for i ∈ [1 . . . N ]])
for i← 1 to epochs do

Sample a batch of images for both domains and their labels and weights
from §w (xb, yb, wb), (xn, yn, wn);

Update θO by deriving Lrpn + Lcls + Lloc;
end
return θO
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tuning, but the Histogram of Oriented Gradients HOG model had a high detection
rate (74/138–80% training, 20% testing) but a very low precision since the model
confused many of the other parts of the image as an object, dropping the f1-score
to 0.239. The threshold of the intersection over union used for the experiment was
50% to increase the model’s results.

We used multiple models for benchmarking, mainly the yolov4 (m/s), mask
RCNN (faster RCNN/Mask RCNN), and ViT (Swin-t/ViT) models. Each one
of these models was trained fully on the dataset to provide us with the upper
bound estimation of the baseline for few-shot object detection, which expresses
the full object detection capabilities of the model. We also use a lower bound
baseline to prove the effectiveness of our method for few-shot object detection by
training the models on the few-shot data directly, without adding any emphasis
on the novel classes. For the sake of the experiments in the rest of this section,
we selected two base classes, which were livre (book), and phylactère (phylactery),
mainly because they were highly represented in our dataset, with 338 objects
for book and 204 for phylactery. The novel classes are represented in the rest
of the object classes, specifically: lutrin (lectern), autel (altar), feuillet (leaflet),
texte chanté (sung text), which were much less represented in the dataset, with
lectern having 87 samples, whereas the others had between 20 to 30 samples each.
Although many methods have been proposed for hyper-parameter tuning, such
as Bayesian-optimized bidirectional LSTM [81] and Google Vizier [58], we chose
to hyper-parameter-tune our models using the default hyper-parameters of each
backbone or using grid-search cross validation, as described in hyperparameter
optimization [45], with nepochs = 2000× nc and nc = nb + nn as the total numbers
of classes (base and noval), whereas the learning rates, for example, were set to
[0.0001, 0.00025, 0.001, 0.01, 0.00001], and through grid search CV we found that
we obtained the most optimal results by using lr1 = 0.00025 and lr2 = 0.00001.

4.3.1 Global Few-Shot Object Detection Benchmark

We provide the average AP50 of the models on the whole dataset of medieval
singing images with different distribution percentages of data (100%, 80%, 50%).
These percentages applied to each object class individually to keep the same ratio
of classes in the dataset. The goal of this evaluation was to see how the model’s
performances changes on novel classes and on base classes.

The data were split into training and testing data, following different ratios,
90% 10% for the base classes and 60% 40% for the novel classes, allowing a rela-
tively good amount of objects for novel classes to evaluate and extract meaningful
information and ranking between models. As the number of testing samples for
the novel classes still remains too small to be statically significant to extract useful
interpretations, we report the median results of the models over five repetitions
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Figure 4.2: Inference of the Mask RCNN architecture for few-shot instance seg-
mentation on our medieval singing dataset.

Table 4.1: Average Precision evaluation of different state-of-the-art models for
object detection using our newly proposed dataset. LB refers to the lower bound
baseline, which is transfer learning with the same data, and UB refers to upper
bound baseline, which is a transfer with the full dataset.

Percentage

100% UB 80% Ours 80% LB 50% Ours 50% LB

Base Novel Base Novel Base Novel Base Novel Base Novel

Yolov4
s 83.62 81.86 61.88 62.24 50.24 55.66 54.78 48.57 52.85 51.30

m 72.86 77.19 65.27 58.87 58.28 58.66 36.94 52.54 33.76 36.77

RCNN
Faster 68.90 72.04 61.55 58.44 52.39 54.54 46.77 47.19 42.04 37.08

Mask 79.13 77.472 71.31 62.49 59.77 62.17 55.58 57.03 49.15 54.03

ViT
ViT 57.13 54.96 45.27 42.72 36.84 50.12 33.05 35.55 28.53 23.26

Swin-t 72.08 57.49 65.18 45.35 48.75 45.25 44.30 46.77 38.06 44.49

of the same experiment but with random train test splits, allowing for more sta-
ble estimations of the performances of each model and for the effectiveness of our
few-shot object detection method, and Figure 4.2 shows some inference results on
our dataset for this .

Table 4.1 shows the mean average precision values of the different models on
different versions of our dataset. We can see from the results of the upper boundary
with 100% data that the order of models was as follows—yolov4-s was the best for
our dataset, providing good performance for both base and novel classes, followed
by mask RCNN and yolov4-m, whereas the Swin-t model provided good results on
the base classes and average results for the novel classes. The worst model for our
dataset was ViT, which requires a lot of data to train a good model and is thus
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Table 4.2: Average precision evaluation of different state-of-the-art models for
object detection using our newly proposed dataset. LB refers to the lower bound
baseline, which is transfer learning with the same data, and UB refers to the upper
bound baseline, which is a transfer with the full dataset.

Lowest Novel Count

Full UB 10 Ours 10 LB 5 Ours 5 LB

Yolov4
s 76.15 59.78 52.13 49.71 43.79

m 71.89 53.17 54.40 48.86 31.82

RCNN
Faster 68.17 52.85 53.35 42.08 38.57

Mask 72.65 57.92 57.06 51.14 48.60

ViT
ViT 52.69 46.18 41.92 35.97 24.05

Swin-t 53.61 47.99 40.20 41.88 39.28

not suitable for few-shot object detection tasks and cultural heritage applications
in general. We can also clearly see that our model always improves over the lower
boundary of transfer learning when it is used in isolation for all models and all
versions of the dataset, proving the effectiveness of our simple yet effective method.
Our model works best for the Mask RCNN model, which is the most compatible
with our idea and assumptions, showing a performance for 80% similar to 100%
and for 50% similar to the LB for 80%.

4.3.2 Worst-Case Few-Shot Object Detection Benchmark

In this section we evaluated the performance of the different object detection mod-
els on the task of few-shot object detection while changing the number of samples
in the smallest class and keeping the others full. This gives us an estimation of
the worst-case performance for a specific class by any of these different object
detectors, allowing for a better benchmarking and better decision-making when
choosing a model for different application areas.

Table 4.2 shows the results of the different models on the different states of our
dataset, especially for the lowest represented class. We repeated each experiment
five times and each time we randomly selected a class and set its instances for
training to the chosen number for the experiment, and we report the mean average
precision of the model over all the experiments.

The previously described setup allows us to obtain a good estimation of what
would be the worst results obtained by each model in the task of few-shot object
detection. We can see from the results that the ordering is still the same, with
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yolov4-s still taking the lead, followed by Mask RCNN. Our method also improved
the performances over the transfer learning baseline, showing the effectiveness of
our method. We can also see that attention-based methods are very useful and are
indeed the current state-of-the-art for object detection but they still require a lot
more data to train a good model than all other previous methods such as Yolos
and different versions of RCNN.

4.4 Conclusions

We have presented a new and simple few-shot object detection method integrates
seamlessly with all state-of-the-art models for object detection, such as YOLO-
based, RCNN-based, and attention-based methods, and provides a significant per-
formance increase over traditional transfer learning methods, yet remains very
limited in extreme cases where sample counts are very small. We also concluded
that attention-based models are very powerful, but they require more training
data, unlike models such as YOLOv4 s and YOLOv5 v6.

Our novel method of few shot object detection solves a major issue of drastic
data sparsity and provides a bare minimum model in situations where previously
it was impossible to even train a model. Yet, this is not enough for building a
great model, as transfer learning techniques only touch the surface of the model
by design due to their non-intrusive nature and the aim to generalize to different
architectures.
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Chapter 5

Auxiliary learning: Adversarial
Domain Adaptation

The methods and some results presented in this chapter were published in two
articles:

Bekkouch, Imad Eddine Ibrahim, Youssef Youssry, Rustam Gafarov, Adil Khan,
and Asad Masood Khattak. 2019. "Triplet Loss Network for Unsupervised Domain
Adaptation" Algorithms 12, no. 5: 96. https://doi.org/10.3390/a12050096
[11].

Bekkouch, I.E.I., Constantin, N.D., Eyharabide, V., Billiet, F. (2022). Ad-
versarial Domain Adaptation for Medieval Instrument Recognition. In: Arai, K.
(eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in
Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/
978-3-030-82196-8_50 [13].

In this chapter, we will abandon the goals of non-intrusivity and make drastic
changes to the architecture and loss functions of the models in order to improve
their training. This is called domain adaptation and we approach it using the
idea of Auxiliary learning. This method is tested on our datasets AnnMusiconis,
AnnVihuelas and the famous MNIST-SVHN-USPS datasets.

5.1 Introduction

Machine learning (ML) has become part of our everyday lives, from ads on our
phones to self-driving cars and smart-homes. Mainly because we now have an
abundance of computational power and large datasets to train models for every
task. There are three main types of ML which are supervised learning (Video
Recognition [7], Diagnosis[12]), unsupervised learning (Domain Adaptation[11],
outlier detection[179, 130, 71]) and semi-supervised learning (Speech analysis,
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Figure 5.1: Case study of domain adaptation. Domain adaptation aims at closing
the discrepancy gap between different datasets from different domains SVHN, i.e.,
street view house numbers and MNIST, i.e., hand written digits, while preserving
good performance on a specific task, i.e., digits classification.

Spam Detection[30]) which are defined based on the availability of training an-
notations data. Supervised learning is usually the easiest and most advanced type
given its predictability and stability compared to other types as it gives the re-
quired output and can be tailored to each task.

The primitive solution to the problem of domain gaps is to adapt the model for
the new (or target) domain by retraining the model on the data from the target
domain. However, the collection of new data and the retraining of the whole
model can be difficult, expensive and even impossible. Hence a better approach
is to store the knowledge learned in the primary domain and later transfer that
knowledge to the target domain that shares the same tasks but could follow a
different distribution. This can help in reducing the cost of data recollection and
its labeling.

Let Ds and Dt be the source and target domains, respectively. Domain adap-
tation (DA), which is a sub-field of transductive transfer learning (TTL), aims to
solve a problem in Dt, where data are hard to collect, using data from Ds. Both
domains, usually, share the same tasks, i.e., T t = T s but the marginal distribu-
tions of the inputs differ, i.e., P (Xs) ̸= P (X t), as shown in Fig. 5.1. DA is usually
achieved by learning a shared feature space, i.e., Zs = Zt [116].

DA can be categorized as either closed-set or open-set. Closed-set DA is the
case where the classes of Dt are the same as that of Ds. Our work belongs to
closed-set DA. On the other hand, open-set DA handles the case where only a few
classes are shared between the two domains, and the source or the target domain
might contain more classes.
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Similar to other machine learning tasks, DA can be split into supervised, un-
supervised and semi-supervised depending on how much labeled data are available
from Dt. For supervised domain adaptation (SDA) [112] and semi-supervised do-
main adaptation (SSDA)[181], the data are completely or partially labeled but it
is not sufficient enough to train an accurate model for the target domain from
scratch. In unsupervised domain adaptation (UDA) [22] [133] the target domain
samples are completely unlabeled, which is useful in situations where the data
collection process is easy but the data labeling process is time consuming. The
extreme case of DA is when we don’t have any access to the target data, and it is
called domain generalization (DG). In DG, researchers have mainly used easy-to-
collect datasets from different domains to make a model that can generalize well
to unseen domains [38].

The focus of this chapter is on UDA which typically needs large amounts of
target data specially in the case of deep unsupervised domain adaptation (DUDA).
Although, the focus is on DUDA because of a wide variety of real world applications
that it can solve, we use SDA as an upper bound to aim for because SDA typically
outperforms UDA, and we will exploit this fact to make our model perform even
better using a concept called pseudo-labeling[94]. In the DA literature, the early
contributions considered sample re-weighting [124] as an attempt to outweigh the
samples that almost shares the same distributions with the target domain DT such
as empirical risk minimization [17] and covariate shift [1][70]. The weak point of
this approach is that the support of both the source XS and the target domain
XT may not be shared.

Most of the previous DUDA approaches aim at achieving two targets: (i) pro-
duce (or learn) feature vectors from the data from Ds that can be used by a
classifier to get highly accurate class labels, and (ii) make the features of both Ds

and Dt indistinguishable. Both Z. Ren et al in [126] and Lanqing Hu et al in [67]
used generative models in different manners to achieve those targets. The former
used GAN to reconstruct various property maps of the source images while keeping
the features extracted of both domains similar by training a base encoder on the
opposite loss of the discriminator. The latter work used duplex GAN architecture
that can reconstruct the input images in both flavors, source and target, using the
features extracted from the encoder. Next, a duplex discriminator is trained to
distinguish the reconstructed images into source and target.

In this chapter we provide two methods for UDA, which are incremental im-
provements of the same core idea, defining a negative behavior as a loss function
and traning in an adversarial manner to reduce this negative behavior. Our models
are motivated by the latter work, yet they are much simpler. More specifically,
we show that the generative part is hard to train and is not necessary to obtain
a domain adaptive model. By introducing novel loss functions, we show that our
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models produce comparable results to the state-of-the-art model in a computa-
tionally efficient way.

Our method’s focus is on unsupervised domain adaptation where the source
dataset does not contain labels as it is a less researched area and has several
applications in historical and medieval datasets. Although this data is always an-
notated, they are small in size, making it hard to train models on them directly.
Previous UDA methods aim at achieving two requirements for the shared latent
space: (i) extract (or learn) a latent space representation from Ds and Dt that are
class informative and useful for determining and separating the classes from each
other, and (ii) Making the feature spaces of Ds and Dt similar to each other allow-
ing to get similar results for both domains. The most common domain adaptation
methods rely heavily on either mathematical heuristics, which are formulated as
loss functions affecting the latent space or a min-max problem formulated with
adversarial learning.

Our method leverages adversarial learning only since mathematical heuristics
can be added to any model to improve its performances. We assume that the
classifiers suffer with the classification of new data since the latent space extracted
contains several information about the input, which is not useful for classification.
This information is due to the variation in the data style and is considered noise.
Hence, we apply drastic transformations and data augmentation techniques to the
input images and build a classifier that predicts the transformations applied to each
image. This transformation-classifier is trained separately, and its loss does not
influence the encoder part of our model (the feature extractor). On the contrary,
the encoder is trained on the adversarial side of that classification loss, removing
the transformation and style information from the extracted latent representations.

We evaluate our method on a new dataset of Medieval Musical Instruments
annotated by five expert musical instruments historians and on toy datasets such
as MNIST, SVHN, USPS. The images are extracted from three sources (AnnMu-
siconis, AnnVihuelas, MIMO), providing us with images of instruments through a
long time period.

To conclude, in this chapter, we present two novel approaches to obtain do-
main adaptive model by introducing our separability loss, discrimination loss and
classification loss which works by generating a latent representation that is both
domain invariant and class informative by pushing samples from the same classes
and different domains to share similar distributions. After examining the exist-
ing state-of-the-art contributions in DA, and comparing them against our model
presented in this paper, we can conclude that our model surpasses them in its
adaptivity, accuracy and complexity.

The rest of the chapter is organized as follows. Section 5.2 provides a related
works presentation. Section 5.3 presents our initial model architecture TripNet and
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our novel loss function. Section 5.4 presents our second model AugNet. Details of
our experimental setup, and empirical results are shown in Section 5.5. Finally,
Section 5.6 wraps up the chapter.

5.2 Related Work

In solving the problem of UDA, recent works used deep learning in various ways to
build their models. Discriminator module was a core in most of the papers [67, 118,
126, 175] and its loss is used to tell if the features extracted from both domains are
distinguishable or not. Within the works that have used the discrimination loss,
several are based on generative models [67, 126] and its reconstruction loss [153,
78], and some have used pseudo-labeling [94, 67, 182, 169, 183, 139] to engage the
target domain data into the process of classification. In this regard, our model
is an example of the case where discrimination loss and pseudo-labeling are used
without any reconstruction of the input images. We briefly touch upon these topics
below.

5.2.1 Discriminator

The works [118, 126, 175] used the discriminator in the same manner. The dis-
criminator was fed by the feature vectors of the source and target images and its
loss is used to push the base/encoder/feature extractor network to produce in-
discriminate features. Whereas in [67], the feature vectors were used to generate
images in both source and target domains, and those images were fed into one of
two discriminators that distinguished between real and fake images. This method-
ology was designed to ensure that the features extracted from the encoder network
can be used to generate images of both domains; in other words, the features were
domain invariant.

5.2.2 Image Reconstruction

Similar to image-to-image translation scenario, image reconstruction can be used
in an Encoder-Decoder like architecture to drive the encoder to generate features
for both domains that can reconstruct the image regardless of its domain. For
example, in [78] and [153] a bi-shifting autoencoder (BAE) and an invertible (AE)
used the reconstruction loss to convert samples between domains.
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5.2.3 Pseudo Labeling

It is a commonly used method in semi-supervised learning. In UDA, pseudo la-
beling is used for narrowing the gap between the target and source domains by
providing the pseudo labels for the unlabeled samples from the target domain. In
[183], two classifiers were used to label the unlabeled target data, which was used
further in training the rest of the components. On the other hand, in [139], the
researchers used a similarity metric in building a K-NN graph for the unlabeled
target samples and the labeled source samples. In DupGAN [67], the classifier
built on the labeled source images was used to get the high-confidence images
from the target domain, which were then used to train both the classifier and the
discriminators.

5.3 TripNet: Category Based Adversarial Domain
Adaptation

5.3.1 Overview

The following section describes the proposed model for UDA. We start by defining
the notations that we used. The source domain images and labels are denoted as
Xs = (xs

i , y
s
i )

N
i=1 and the target domain images are X t = (xt

i)
M
i=1, both xs

i and xt
i

share the same dimensions but different distributions. Since our research focuses
on closed set domain adaptation, the target and source domain labels Y are exactly
the same. Our model contains an encoder, a classifier and a discriminator, as shown
in Fig. 5.2. The encoder and the classifier make up the final classification model,
and the discriminator is used to train the encoder to generate domain invariant
features. Hence our classification function f is the composition of two functions
f = e ◦ c, where e : X −→ Z is the encoding function that maps the images into
feature vectors and c : Z −→ Y categorizes the features for both domains. The
discrimination function g is also the composition of two functions g = e◦d where e
is the same encoding function and d : Z −→ A is the binary classification function
that discriminates the domain of the latent representation of the input image.

In addition to the usual classification and discrimination loss, we introduced
a separation loss that operates on the output of the encoder similarly to Linear
Discriminant Analysis (LDA).

5.3.2 Architecture

Encoder: The encoder E(.) is a CNN like network with weights WE. The target
of the encoder is to produce the latent representation of both source and target



5.3. TripNet: Category Based Adversarial Domain Adaptation 85

Figure 5.2: The Architecture of our model. It can be divided into three parts:
an encoder, a discriminator and a classifier. The encoder translates the images
(i.e., X space) to embeddings in the latent space (i.e., Z space). In the latent
space, each group of embeddings is marked by either Si or Mi, where i is the
label of the image, and the prefix letter notates whether it is from MNIST (M) or
SVHN (S). Thus, the Z space can be expressed as Z = Zs ∪Zt, where Zs =

⋃
i Si

and Zt =
⋃

i Mi. The latent representation is fed to both the discriminator and
the classifier. The discriminator distinguishes if the latent representation is from
source or target domain, whereas the classifier finds the suitable label for it.

domain images as below:

z = E(x), x ∈ Xs ∪X t (5.1)

where z ∈ Z are the extracted features that we aim to be domain invariant and
category informative. Therefore, in case of input image from source domain xs, the
output of the encoder is zs = E(xs) and if the image is from target domain xt, the
output is zt = E(xt). The output of the encoder is fed to both the discriminator
and the classifier.

Discriminator: Discrimination between the source and the target in the latent
space is a core part in many of the recent contributions in DA as it was mentioned
in Section II. Our Discriminator D(.) is a DNN with weights WD. The discrimina-
tor is working as a binary classifier to label the latent representation of the images
to one of the domains as follows:

a = D(z) = D(E(x)), a ∈ A, A = {0, 1} (5.2)

Classifier: is a feed forward neural network C(.) with weights WC for either
binary or multi-class classification. It takes as input the latent representation z
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and outputs the probabilities for each class ŷ. C can be any kind of DNN with a
softmax output activation function that fulfills the tasks Tt and Ts.

In the case of multi-class classification, C predicts the class probabilities as
follows:

ŷ = C(z) = C(E(x)), x ∈ X, X = Xs ∪X t (5.3)

where ŷ is the predicted class probabilities vector for the images of both do-
mains ŷ ∈ Ŷ , Ŷ = Ŷ s ∪ Ŷ t, and it shares the same dimensions as the one-hot-
encoded source labels ys and the target pseudo labels yt . The classifier C and the
the encoder E are pre-trained on the source data alone and then used to generate
the pseudo labels for the target domain Y t [28, 136, 67] , using the output of the
classifier on the target images that C is highly confident about. In the beginning
the number of samples chosen for pseudo labeling will be small or even zero and
it increases as we get more domain invariant features.

5.3.3 Losses

Here, we introduce our three losses and explain how each one contributes to achieve
domain invariant and category informative features.

Classification Loss: It is the usual cross entropy loss H(, ., ) for the output of
source images and their labels and the output of target images (chosen for pseudo-
labeling) and their corresponding pseudo labels, and is computed as below:

Lc(W
E,WC) =

(
λs

∑
xs∈Xs

H(ŷs, ys) + λt

∑
xt∈Xt

H(ŷt, yt)

)
(5.4)

Where λs and λt are used to balance the weighted sum between the source and
the target since we only take a few samples using pseudo labeling. By minimizing
this loss, we update the weights of both the encoder and the classifier, WE and WC .

Discrimination Loss: In order to get domain independent features we used the
discrimination loss to train the Discriminator to distinguish between the features
for both domains using binary cross entropy as follows:

LD(W
D) = −

∑
zs∈Zs

log(D(zs))−
∑
zt∈Zt

log(1−D(zt)) (5.5)

which can be written as:

LD(W
D) = −

∑
xs∈Xs

log(D(E(xs)))−
∑
xt∈Xt

log(1−D(E(xt))) (5.6)
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where we assigned 1 for the source images and 0 for target images. The weights
of the discriminator WD are updated by minimizing this loss as an objective func-
tion. And the encoder is trained against an opposite loss that tries to put them in
the same label as follows:

LP (W
E) = −

∑
xs∈Xs

log(1−D(E(xs))) (5.7)

LP is used to update the encoder so that the discriminator is deceived into think-
ing that the features extracted from both domains are indistinguishable. We also
tried to deceive the discriminator using other loss variations, one aimed at pushing
the domains in the exact opposite direction (i.e. target → 1 and source → 0) by
adding −

∑
xt∈Xt log(D(E(xt)) to LP , and another loss aimed at pushing both the

source and the target into the same label by adding −
∑

xt∈Xt log(1 − D(E(xt))
to LP in Equation 5.15, but both these variations didn’t improve the results and
made the model diverge with more iterations. LD and LP work against each other
in a scenario similar to GAN discrimination loss and generative loss.

Separability Loss: Inspired by Linear Discriminant Analysis (LDA) to capture
the separability, Ficher defined an optimization function to maximize the between-
class variability and minimize the within-class variability. Using this idea, we
defined the separability loss as follows:

Lsep(W
E) =

(∑
i∈Y

∑
zij∈Zi

d(zij, µi)∑
i∈Y d(µi, µ)

)
× λBF (5.8)

λBF =
mini |Y t

i |
maxi |Y t

i |

where Zi is the set of latent variables that belongs to class i and it can be
expressed as Zi = Zs

i ∪ Zt
i , which is the union of the sets of latent representation

of both domains that have the same label i. Again, for the target domain latent
representation, we used the pseudo-labels that are produced with a high level of
confidence from the classifier. µi is the mean of the latent representations that
has label i, so it can be expressed as µi = mean(Zi), while µ is the mean of all
the latent representations µ = mean(Z). d(., .) is a distance function we used to
measure the dissimilarity between the latent vectors. So the numerator part of
the equation is the the summation of the distance between each latent vector and
its labeled-center, while the denominator is the summation of the distance from
each labeled-center to the overall center of the latent representation. λBF is a
balancing factor and is equal to the ratio between the number of least represented
pseudo-labeled target samples mini |Y t

i | and the number of the most represented
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ones maxi |Y t
i |, where i is the label. Its purpose is to pull the loss from converging

to some local minima, if some classes are not well represented in the pseudo-labels.
Thus, λBF keeps the separability loss from pushing the model into getting very high
separability and accuracy in only a subset of the classes. Thus, by minimizing this
loss function we can increase the separability of the latent representation according
to the labels, regardless of its domain, which drives the encoder to lose domain
specific features but preserve category informative features. It should be noted
that the generator component in DupGAN [67] has the same purpose: it uses the
extracted features to generate images in both domains to ensure that they are
domain invariant, and reconstructs the input image to ensure that the features do
not lose the category information. However, by using a loss function instead of a
separate generator module, this work achieves the said purpose in a cost-effective
manner.

5.3.4 Optimization

The overall objective function that we aim to minimize in this work is the weighted
sum of the three losses, which we call the triplet loss, and is given as below:

L = min
WD,WC ,WE

βCLC + βPLP + βSepLSep (5.9)

where βC , βP , βSep are the balancing parameters. The detailed training process of
our model, called TripNet, is described in algorithm 5.

Algorithme 4 : The training process of TripNet
Input Xs the source domain images, Y s the source domain image labels,
X t the target domain images, Epochs the number of epochs
Output Weights of the encoder WE and the weights of the classifier WC

[1]
Pre-train E and C using Xs and Y s for e = 1 to Epochs do

end
Sample a batch of images for both domains xt, (xs, ys) Get
pseudo-labelling yt for xt using C. Update WD by deriving LD. Update
WC by deriving LC . Update WE by deriving LC , LP and LSep. return
WC ,WE
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5.4 AugNet: Augmentation Based Adversarial Do-
main Adaptation

5.4.1 Methodology

In this section, we describe our new method for unsupervised domain adaptation.
Before we get into the details of our methods, we start by defining the notations
used thought the section. Let the source domain data be denoted as Xs = (xs

i )
N
i=1

while the target domain data and annotations are X t = (xt
i, y

t
i)

M
i=1, it in important

to note that the input dimensions of xs
i and xt

i are the same but they come from
different marginal distributions. Since our research focuses on open set domain
adaptation, the classes of the tow domains overlap but not necessarily have to the
be the same.

Our model consists of an encoder (The main focus of our method), a classifier
(used only for classification and is not influencing our method) and a transformation-
discriminator (The added component of our method). The Encoder and the clas-
sifier are the the final classification model as in a typical CNN classification sce-
nario, whereas the transformation-discriminator is used only in training time and
removed encoder at inference. Furthermore we can formulate our inference clas-
sification function f as the composition of two sub functions f = e ◦ c, such that
e : X −→ Z represents the encoder’s function which performs the extraction of
latent space vetors from the input images, and c : Z −→ Y performs the clas-
sification of the previously mentioned latent space vectors into their appropriate
classes. The transformation-discriminator function g is similarly another compo-
sition of two sub-functions g = e ◦ d where e is the exact same encoder function
whereas d : Z −→ A is the multi-class multi-label transformation detector func-
tion. Moreover, besides the commonly used classification loss and the discussed
transformation-discriminator loss, we also used a separation loss which was shown
to improve the results of domain adaptation models and it operate similarly to
Linear Discriminant Analysis (LDA).

5.4.2 Architecture

In this subsection, we will only present the component of our method and in the
next subsection we will see the losses that are used to train these neural networks.

Encoder: Our encoder E(.) is a typical pure Convolutional Neural Network
with weights WE (by default it contains only convolutional layers and max-pooling
followed by a Flattening layer, but depending on the use of a pretrained model
the architecture might include other layer types). The goal of using an encoder is
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to encode the input images of both domain into a latent space representation in
vector forms which is represented in the following formula :

z = E(x), x ∈ Xs ∪X t (5.10)

Such that z ∈ Z represents the desired latent representation which we push
towards being more domain invariant and category informative. Hence, we denote
the output of the encoder for the source input images as zs = E(xs) whereas for
the target input images as zt = E(xt). Both the classifier and the transformation-
discrimantor take as input the flattened output of the encoder.

Classifier: Our classifier is a vanilla artificial neural network (ANN)C(.) which
is commonly used for multi-class classification or binary classification by changing
the loss function between binary cross entropy and cross entropy (for the sake of
our dataset we use the formulation with cross entropy as it is a multi-classification
task). As previously states, its input is the output of the encoder function f
which is the latent space vector representation z and its output is the per class the
probabilities represented as the vector ŷ. The function we used in our case is the
following:

ŷ = C(z) = C(E(x)), x ∈ X, X = Xs ∪X t (5.11)

In the above equation, ŷ represents the output of the classifier which the vector
of per-class probabilities such that ŷ ∈ Ŷ , Ŷ = Ŷ s ∪ Ŷ t meaning it is common
for both domains and for both labels of the target domain and pseudo labels for
source domain. The first step is to train the classifier and the encoder on the target
dataset only and we use the confidently predicted classes of source data as pseudo
labels for later training. We repeat the pseudo labelling step on every iteration in
the next step and it usually provides very few samples confidently in the beginning
but it increases with time.

Transformation Discriminator: Our hypothesis is that the classifier isn’t
able to generalize well to other domains because the encoder is extracting informa-
tion not just for classification but also about the style of the images. Our Trans-
formation Discriminator D(.) is a Fully Connected Neural Network with weights
WD similar to the discriminator of the Generative Adversarial Networks but it has
a multi-class output instead of a binary output. The transformation discriminator
works in the following manner:

a = D(z) = D(E(x)), a ∈ A, A = {[0, 1, ..., 0], ..} (5.12)
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such that a is the predicted vector of the transformations applied to the image.

5.4.3 Losses

In this subsection, we give a overview of the three losses that we use to train our
model.

Classification Loss: We start by explaining the classification loss as it is the
most common loss in our method. As previously explained, we cross entropy loss
H(, ., ) applied on the predictions of target data and its annotations and source
images and its pseudo-labels (if any), and is computed as below:

Lc(W
E,WC) =

(
1 ∗

∑
xs∈Xs

H(ŷs, ys) + λt

∑
xt∈Xt

H(ŷt, yt)

)
(5.13)

Where λt is used to as a balancing hyper parameter between the two domains.
As the loss function clearly states this loss effects both classifier and decoder in
the same manner.

Transformation Discrimination Loss: The goal of the classification loss is
to ensure the class informative quality in the latent space whereas the goal of the
transformation discrimination loss is to ensure the domain independence quality
of the latent space. order to get domain independent features we used the discrim-
ination loss to train the Discriminator to distinguish between the features for both
domains using categorical cross entropy CCE loss which operates on multi-label
multi-class classification problems:

LD(W
D) =

∑
xs∈Xs

CCE(D(E(xs)), T r(xs))+
∑
xt∈Xt

CCE(D(E(xt)), T r(xt)) (5.14)

where Tr(.) is the boolean vector of transformations applied to the input im-
ages. This loss effects only the weights of the transformation discriminator WD.

On the other hand, the encoder is trained on the opposite loss that is maxi-
mizing the LD and trying to hide the information relative to transformation and
style, as follows:

LP (W
E) = −LD (5.15)

LP is the loss used to trian the weights of our encoder component in order to
deceive the transformation discriminator and remove the information relative to
style and transformation.
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Separability Loss: This is a typical example of a mathematical heuristic
applied to an encoder as a method for improving the results and providing a
cleaner latent space and hence an easier classification challenge for both domains.
This loss is an extension of Linear Discriminant Analysis (LDA) which is in return
an extension Fisher’s linear discriminant which is used to find a linear combination
of features that characterizes or separates two or more classes of objects or events.
It is later used a linear classifier to separate the classes. We use it as a continuous
function trying to make the latent space as a combination of features that can
seperate the classes in the most linear way possible allowing the classifier to get a
better generalization ability. It is defined as follows:

Lsep(W
E) =

(∑
i∈Y

∑
zij∈Zi

d(zij, µi)∑
i∈Y d(µi, µ)

)
× λBF (5.16)

λBF =
mini |Y t

i |
maxi |Y t

i |

Such that λBF is a balancing parameter used to reduce the effect of badly
annotated source images.

Algorithme 5 : The training process of TripNet
Input : Xs — Source domain images

X t — Target domain images
Y t — Target domain image labels
I — Number of iterations

Output : WE — Weights of the encoder
WC — Weights of the classifier

Pre-train E and C using X t and Y t;
for i← 1 to I do

Sample a batch of images for both domains xs, (xt, yt);
Get pseudo-labelling ŷs for xs using C;
Update WD by deriving LD;
Update WC by deriving LC ;
Update WE by deriving LC, LP and LSep;

end
return WC ,WE
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5.4.4 Optimization

To sum up, we can consider that our model is being trained to minimize the
balanced loss which is a weighted sum of all the three mentioned losses, it is given
in the equation below.

L = min
WD,WC ,WE

1 ∗ LC + βPLP + βSepLSep (5.17)

where βP , βSep are the balancing parameters. We detail how our model im-
proves it prefromance in Algorithm 5.

5.5 Experiments and Results

In this section we present the performances of our method on toy datasets com-
monly used in the field of unsupervised domain adaptation for the sake of com-
parison along with the presentation of the results on our annotated medieval
manuscript studies datasets.

5.5.1 Toy Datasets and Results

We compare our model with several state of the art models on the famous SVHN-
MNIST-USPS Benchmark to showcase the performances of our model. The models
we will compare agaisnt are the current state of the art in the field of domain
adaptation namely: DupGAN [67], SimNet [118], DANN [49, 48] , ADDA [158],
DSN[21] , DRCN [54], CoGAN [100] , UNIT [98], RevGrad [50], PixelDA [20],
kNN-Ad [139] and ATDA [136] for digit classification. Since we followed the same
experimental setup as most of the the compared networks we will evaluate the
models based on the accuracy on the target test set and compare it with the
previously mentioned papers using their reported results from their original papers,
then we will compare our model against DupGAN in terms of complexity (number
of epochs).

We will also compare our model against itself, using just the Encoder and the
classifier trained on the source domain only (noted as EC-SourceOnly) and the
target domain only (noted as EC-TargetOnly) to have a lower bound and approx-
imation of the upper bound. Most importantly we will showcase the importance
of our method in the field of medieval manuscript studies and hopefully provide a
good and solid empirical proof for the necessity and importance of using Domain
Adaptation techniques in field where the data is scarse and limited.
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Table 5.1: The test accuracy comparison for UDA on digit classification. The
results for the previous works have been copied from the original papers or the
DupGAN [67] without repeating the experiments because we used similar archi-
tecture for the encoder and the classifier part as well as the same experimental
setup as those works. The "-" notation is used for experiments where the results
have not been reported in previous works.

Paper SVHN → MNIST MNIST → USPS USPS → MNIST SVHNextra → MNIST
ADDA 76.0 92.87 93.75 86.37

RevGrad - 89.1 89.9 -
PixelDA - 95.9 - -

DSN - 91.3 73.2 -
DANN 73.85 85.1 73.0 -
DRCN 81.97 91.8 73.0 -

KNN-Ad 78.8 - - -
ATDA 85.8 93.17 84.14 91.45
UNIT - 95.97 93.58 90.53

CoGAN - 95.65 93.15 -
SimNet - 96.4 95.6 -

DupGAN 92.46 96.01 98.75 96.42
TripNet (Ours) 94.70 97.63 97.94 98.57

Digital Digit Recognition

We evaluated our model for unsupervised domain adaptation for digit classification
task, on datasets with ten labels ranging from 0 ∼ 9

MNIST database (Modified National Institute of Standards and Technology
database) is the most commonly known machine learning database for handwritten
digits recognition and is used for benchmarking almost every single image process-
ing system. It contains a training set of 60,000 examples, and a test set of 10,000
example. It is a subset of a larger set available from NIST which was originally
20*20 images and converted into a 28*28 greysclae images centered around the
center of mass of the pixels.

SVHN Street View House Numbers (SVHN) is created by taking pictures
of real-world images used also for most benchmarks is association with MNIST.
SVHN was created from numbers plates found in the Google Street View images
and it provides a more challenging scenario than mnist because of the large amount
of side artifacts in its images and since the images are RGB and not only greyscale.

USPS US Post Office Zip Code Data of Handwritten Digits which contains
7291 training samples and 2007 testing samples. The size of the images is are
16*16 grayscale but for the sake of our experiments we convert it into 28*28 make
them similar to MNIST but overall less complex.
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Table 5.2: The best set of hyperparameters for TripNet for the experiments re-
ported in Table 5.1. βSep, βP and βC are the balancing parameters for the triplet
loss from equation 6.6. λT and λS are the balancing parameters between the source
and target classification losses from equation 7.1. PLThresh is the minimum con-
fidence level provided by the classifier so that the image would be considered in
pseudo labeling.

Experiments βSep βC βP λS λT PLThresh

SVHN → MNIST 1.5 1 4 0.5 0.8 0.999
MNIST → USPS 1.5 2.5 1 0.2 1 0.995
USPS → MNIST 2.5 3 1.5 0.6 1 0.995

SVHNextra → MNIST 3 0.5 2 0.5 1 0.9999

Implementation Details

In all experiments, input images from all domains are reshaped into 32 × 32 × 3
images, and each pixel was re-scaled to [−1.0, 1.0]. Given that the latent represen-
tation vectors zi are high dimensional (512 in all experiments) we used the cosine
similarity as our measure of distance d(., .) in the separability loss in equation 7.4.

The Encoder part of our model has 4 convolutional layers using 5 × 5 filters
with 64, 128, 256, 512 filters per each layer, respectively. The classifier and the
discriminator are a 4 layer fully connected networks with 256, 128, 50 neurons per
each of their first three layers, respectively, and an output layer with 10 neurons
for the classifier and one neuron for the discriminator. The rest of the hyper-
parameters are reported below in Table 5.2 as they were tuned empirically for
each experiment in Table 5.1.

Target Accuracy Comparison

Our model was evaluated for UDA for digit classification task, where the labels
are 0 ∼ 9, using different datasets; MNIST of handwritten digits [88], SVHN of
street houses numbers [113] and USPS [37]. These datasets were chosen because
they have different distributions and their labels are present for validation and
evaluation. We used 60000 images from MNIST from its training part and 10000
images from its evaluation part. USPS is a relatively smaller dataset from which
we used 7291 images for training and 2007 images for testing. Finally, SVHN
has 73257 images for training, 26032 images for testing and SVHNextra has 531131
images for training, also. Our experiments were SVHN → MNIST, USPS ↔
MNIST and SVHNextra → MNIST.
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Before Domain Adaptation After Domain Adaptation

Figure 5.3: This is a projection of the latent representation of both source domain
(SVHN) and target domain (MNIST), to describe their distribution in the latent
space, before and after domain adaptation. Each cluster is labeled by M-i or S-i
to denote if it belongs to the MNIST or SVHN, respectively, and i represents the
label associated with each cluster.

The target accuracy results are shown in Table 5.1, where our novel model has
either exceeded the compared methods or approached the highest achieved results.
It is because of the use of the separation loss and the discriminator which allowed
our latent representations to be domain invariant as seen in the Fig. 5.4 where all
classes have been clustered together regardless of there domain.

Fig. 5.4 illustrates the projection of latent representation of both domains in
the first experiment, SVHN → MNIST. The projection for the visualization was
produced using T-SNE [106]. In Fig. 5.4, it can be noticed that, after domain
adaptation, the clusters for both domains that carry the same labels settled close to
each other in the latent space, which demonstrates the competence of the presented
model.

Comparison of TripNet and DupGan

We conducted a comparison between the convergence of TripNet and DupGAN
for the experiment SVHN → MNIST, as shown in Fig. 5.4. It’s clear that our
model converged significantly faster, after just first 120 epochs, than DupGAN
which didn’t even approach its max accuracy even after 500 epochs. Based on our
experiments, we found that the generative model of DupGAN needs roughly 100
times the number of epochs TripNet needs to reach its maximum accuracy.
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Figure 5.4: Comparison between TripNet and DupGAN in terms of number of
epochs needed for convergence for SVHN → MNIST case. This shows that the
generative model comes with its high cost of training time.

Table 5.3: The test accuracy comparison for UDA on digit classification.

Target Deep Source DupGAN TripNet AugNet(ours) AugNet- Sep (ours)
SVHN - MNIST 98.55 98.72 98.79 99.12 99.43
MNIST - USPS 95.02 96.70 96.24 98.23 98.90
USPS - MNIST 98.55 99.31 99.18 99.53 99.51

Avg 97.37 98.24 98.07 98.96 99.28

AugNet: Digital Digit Recognition

In order to evaluate our AugNet method, we implemented the following strategy.
We used a dataset as a source without any labels and a target dataset with labels.
We compared our method against the baseline of training only on the source
dataset (Deep Source) and we compare our values against two state of the art
methods in domain adaptation which are DupGan and TripNet. These two models
are based also on adversarial losses but they use the same type of discriminator as
GANs which takes a lot of time to stabilize whereas our method is much faster.
We also compared the model with and without the seperability loss to prove its
efficiency.

We report the results in table 5.3, where we can see that all methods improve
over the baseline on average which is expected and our method clearly outperforms
the others on average and especially for the MNIST-USPS experiment. We also
see the our method improves by using the separability loss on average. In these
experiments we found that the following transformations gave the best results:
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Table 5.4: Test accuracy for the ablation study for TripNet

Experiments MNIST → USPS SVHNextra → MNIST
EC-SourceOnly 82.20 67.42
TripNet-WD 96.07 81.4
TripNet-WPL 90.42 71.06
TripNet-WSL 90.86 71.33
TripNet-WBF 96.71 92.83
TripNet (Ours) 97.63 98.57
EC-TargetOnly 97.36 99.12

Random Gray scale, Random Collor jitter (For the SVHN experiment), Random
Scale, IAA Super pixels (SLIC algorithm), Bluring.

Ablation Study

For the purpose of seeing the usefulness of each component of TripNet, we per-
formed an ablation study on MNIST → USPS and SVHNextra → MNIST by run-
ning the experiments each time without a specific component and comparing it
with our final model’s results, and the EC-SourceOnly and EC-TargetOnly. Our
experiments also covered training without the balancing factor for separation loss
(referred to as TripNet-WBF), training without the separation loss (referred to
as TripNet-WSL), training without pseudo-labeling (referred to as TripNet-WPL)
and training without discriminator (referred to as TripNet-WD). As shown in Ta-
ble 5.4, the accuracy down-grades if we exclude any component which shows the
necessity of each in the presented model to build an efficient architecture for do-
main adaptation. It is also worth noticing that our model (TripNet) got better
results than EC-TargetOnly on the MNIST→ USPS even though EC-TargetOnly
was trained directly on USPS data and that is mainly due to the fact that USPS
and MNIST are very similar and USPS has a small training set.

5.5.2 Medieval Dataset Results

In this section we go through the dataset description and the results that we
obtained on the different benchmarks. The datasets we used in this chapter are
AnnMusiconis, AnnVihuelas and AMIMO which we have described in details in
the dataset chapter.
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Table 5.5: The test accuracy comparison for UDA on Musical Instruments Recog-
nition In Medieval Artworks.

Target Deep Source TripNet AugNet(ours) AugNet- Sep (ours)
MIMO - AnnVihuelas 92.39 93.24 95.96 96.93

MIMO - AnnMusiconis 74.24 81.05 83.90 86.63
AnnMusiconis - AnnVihuelas 92.39 92.72 94.81 95.83

Avg 86.34 89.00 91.55 93.13

Musical Instruments Recognition In Medieval Artworks

For the purpose of future comparison with our method and new proposed bench-
mark, we implemented the following setup. We used the MIMO dataset as a source
without any labels for two experiments (one for MIMO and one AnnVihuelas) and
made an extra experiment where AnnMusiconis is the source and AnnVihuelas is
target dataset. We compared our method against the baseline of training only on
the source dataset (Deep Source) and we compared our values against the TripNet
method. We present also the results of our model with and without the separability
loss.

We report the results in table 5.5, Our method clearly again outperforms the
TripNet model on average which in return also improves over the deep Source base-
line as expected. We also see the our method improves by using the separability
loss on average. In these experiments we found that the following transformations
gave the best results: Random Gray scale, ISO Noise, Shift Scale Rotate, Random
Collor jitter (For the SVHN experiment), Random Scale, IAA Super pixels (SLIC
algorithm), Bluring.

5.6 Conclusion

The current models that approached the unsupervised domain adaptation problem
using generative models are highly expensive to train in terms of time and space.
Therefore, in this chapter, we made two main contributions which are two noval
methods for UDA: TripNet, AugNet. TripNet consists of an encoder, a classifier
and a discriminator. Both the classifier and the discriminator are stacked on the
encoder. For each of the three components, we defined a specific loss: classification,
discrimination and separability loss. These losses are used to train the components
in a weighted manner. TripNet achieves the state-of-the-art performance on unsu-
pervised domain adaptation for the digit classification task. As a further work in
TripNet, we will evaluate our model on larger datasets and different tasks. Also,
we will explore the problem of semi-supervised domain adaptation as we believe
that TripNet will excel in it as well. AugNet provides a fast adversarial based
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non generative technique to bridging domain gaps between dataset via performing
style transformations and trying to force the encoder to forget information relative
to the style allowing the classifier to improve its accuracy across several domains.

Our initial idea of defining a bad scenario that hurts the model and pushing
Encoder to fight against it in an adversarial manner is quite innovative, but what
if we have a lot more meta data about the our dataset than just a Boolean to
define which source it is extracted from. This is quite common for datasets in the
field of medieval studies. Most of the data comes from museums libraries where
they annotate all the context of each manuscript. Examples can be information
regarding the expected year of the manuscript redaction, the year it was found,
the technique with which it was scanned, the kingdom or region it was redacted in,
the type of manuscript, the style of the manuscript, the use of colors or black and
white, the medium (eg Tempera colors, gold leaf, colored washes, pen and ink), the
dimensions. At least a detailed textual description that describes the manuscript
in general is always present. All of this data can and should be used to help us
build better models and that’s what we will evaluate over the next chapter when
we combine domain adaptation with knowledge Graphs.



Chapter 6

Auxiliary learning: Knowledge
Graphs & Domain Adaptation

The methods and some results presented in this chapter were published in:
V. Eyharabide, I. E. I Bekkouch, and N. D. Constantin. 2021. "Knowledge

Graph Embedding-Based Domain Adaptation for Musical Instrument Recogni-
tion" Computers 10, no. 8: 94. https://doi.org/10.3390/computers10080094
[41].

This chapter focuses on the use of knowledge graph embeddings as anchors for
computer vision models allowing to building a more coherent latent space. The
goal of the approach is to improve the performances of computer vision models
on target datasets through the use of a larger source dataset and an accompa-
nying Knowledge graph. This method is tested on our datasets AnnMusiconis,
AnnVihuelas, and the knowledge graph is extracted from MusicKG.

6.1 Introduction

Although machine learning models and neural networks especially have improved
drastically in the field of supervised learning, they still suffer from a big bias
issue, bias towards the training data. Unlike humans who can learn more accurate
abstractions on what makes an object an object (for example identifying a real dog
in photos and an abstract painting of a dog as the same thing), neural networks
aim at extracting visual clues that increase the probability of the presence of the
object. This leads to neural networks being less reliable and hence less useful for
extreme cases where changes in the forms, shapes, and external characteristics of
the object change frequently, especially on inference data. This is precisely the
case of cultural heritage data which already suffers from a huge within dataset
variance but also from a larger between dataset variance.

101
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Transfer learning (TL) emerged as a solution that tackles the problem of lack
of data and resources for training a full neural network architecture from scratch.
It started as a logical step after the ImageNet competition which encouraged large
corporations to present new architectures of Convolutional Neural Networks. Cur-
rently, transfer learning is the default method to use for training any computer
vision models especially mainly for three reasons:

1. Ability to reshape the input: unlike for tabular datasets where the content
and number of variables differ from one dataset to the next, with images we
can easily reshape the size of the input image directly using mathematical
operations.

2. CNNs translation invariance: Since CNNs are based on the convolutional 2D
operation which slides over the input image batch by batch using the same
kernel, it is able to extract useful information from the image regardless of
their position in the image allowing it to generalize to more cases than a
traditional multi-layer perceptron [84].

3. CNNs hierarchic abilities: with the help of model interpretation methods,
researchers were able to make the claim that CNNs like most neural net-
works are hierachical models but most importantly, CNNs extract lower level
generic features (such as edges, corner, circles, etc) in the first layers of the
model and tend to focus on more higher level and abstract non generalisable
features (such as face, guitar, body, etc), which allows to reuse the first layers
of a CNN on any dataset.

Cultural heritage data is challenging to acquire, demanding to label, and varies
in style through different historical periods. First, finding medieval artwork im-
ages containing a particular type of musical instrument is difficult; the older the
instrument, the fewer artworks that contain it are found. Second, since ancient
artworks are generally damaged or deteriorated, experts may have difficulties in
classifying the instruments. Finally, when dealing with images containing musical
instruments from different historical periods, there are significant differences in
how they were painted or sculpted. Besides, the instruments may differ according
to the artwork supporting materials, such as paintings, manuscripts, photographs,
or sculptures. Those difficulties make the training process on such heterogeneous
images a more demanding task.

Knowledge graphs provide rich semantic context about the images’ content
that is useful to extract class-informative embeddings. This article’s contribution
is to add semantic information gathered in knowledge graphs when training neu-
ral networks with sparse and heterogeneous image datasets, which is the case of
cultural heritage data. In this approach, we use knowledge graphs as an anchor
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for our deep learning models to organize and direct the model’s focus and incorpo-
rate not only visual information in the training process but also global and more
connected information. We evaluate our method on our collected image dataset
of Medieval Musical Instruments, which was annotated and carefully verified by
five musicologists specialized in medieval musical instruments. The images we use
as source data and their knowledge graph are extracted from the AnnMusiconis
dataset, whereas our target images came from the AnnVihuelas dataset.

The rest of the chapter sections are organized as follows: Section 6.2 is an
overview of related works. Section 6.3 describes our model in detail. The empirical
evaluation of our method is shown in Section 6.4. Finally, Section 6.5 summarizes
the chapter.

6.2 Cultural heritage datasets

We evaluated our KG embedding-based domain adaptation approach on music
iconographical data. The analysis of ancient artworks containing musical instru-
ments brings valuable information on the instruments’ nature, physical character-
istics, or playing methods. In this section, we present the image datasets and the
knowledge graph used to test our proposal.

6.2.1 Medieval and Renaissance musical iconography as source
and target domains

As we mentioned before, transfer learning aims to improve a model’s performance
on a target domain by reusing a trained model on an already-known source do-
main. This article uses an image dataset of medieval musical instruments as the
source domain and a renaissance musical instruments database as the target do-
main. Previously in [10], we presented a new manually annotated image dataset
of historical musical instruments and a non-intrusive Transfer Learning method
for object detection. While in [9], we proposed another method for unsupervised
domain adaptation, which starts by applying style transformations to the input
images and train a transformation discriminator module to predict these style
changes. Based on these previous articles, we reused the lessons learned to detect
chordophones in medieval artworks, to detect herein vihuelas (a Spanish renais-
sance chordophone) from a small collection of images. In this article, we combined
knowledge graph embeddings with visual embeddings from the images and trained
a neural network with the combined embeddings to take our methods a step for-
ward. The two main datasets used are AnnMusiconis and AnnVihuelas which are
presented in details in the datasets chapter.
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Figure 6.1: An example of artwork in the AnnMusiconis database

Figure 6.2: Four examples of Renaissance musical instruments in the Vihuelas
database
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Figure 6.3: Representation of the artwork instance describing the example of Fig.
(Eyharabide 2021) 6.1

6.2.2 MusicKG: a knowledge graph of medieval musical iconog-
raphy

In MusicKG, not only the artwork characteristics (such as artist, material used,
or inception) are modeled, but also all the different scenes inside that artwork
(for example, a couple dancing and a musician playing behind). In turn, each
scene is described exhaustively by depicting the performer’s characteristics (type,
genre, clothing, position), the musical instrument’s characteristics (type, family,
material), the sound created, and the analogies, if any. Even though MusicKG is an
extensive graph of relationships between performances and iconographic entities,
we decided to use only a subset of all the RDF triples to create embeddings. Using
a smaller graph allows us to better visualize and interpret the results. Once our
approach efficiency has been proven, we plan to use all the available RDF triples
to exploit the full potential of the KG.

The AnnMusiconis example presented before in Fig. 6.1 1 [43, 41] (Eyharabide
2021) is depicted as a MusicKG artwork instance in Fig. 6.3. The main class
is Visual artwork (herein "artwork") which is connected to the original sources
through several predicates: official website, collection, inventory number and
described at URL. Also, each artwork instance has a title from AnnMusiconis
and a title from its original database in the stated as property. Generally, several
images are associated with an artwork to capture all the details from different
angles and different resolutions. Regarding dates, each artwork has start time,
end time, and time period that indicate the century, the date on which the artist

1https://www.mdpi.com/computers/computers-10-00094/article_deploy/html/
images/computers-10-00094-g003.png accessed 3 September 2021;

https://www.mdpi.com/computers/computers-10-00094/article_deploy/html/images/computers-10-00094-g003.png
https://www.mdpi.com/computers/computers-10-00094/article_deploy/html/images/computers-10-00094-g003.png
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could have begun and finished creating the artwork, respectively. The relation
material used describes the material an artwork is made of, such as Wood or
Ivory for sculptures; or Textile for embroideries and tapestry weavings. The
relation fabrication method relates an artwork with its Artistic technique,
such as Sculpture or Painting.

6.3 Methodology

This section describes our approach for domain adaptation using knowledge graph
embeddings as anchors for our encoders. We start by presenting the terminology
used, then detailing the components of our method, and finally describing the
losses to train the different components.

The core of our idea came from the necessity of providing more data to the
model in order to improve its results. Although hyper-parameter tuning tech-
niques, Freebies, augmentations and regularisation techniques are quite useful, if
you don’t have enough data the model is just not going to train well. In our case,
we are interested in museum data, which contains a lot of meta data about each
manuscript. Although this meta data isn’t necessarily related to the core of our
musicology research and in most cases the annotators of these manuscripts com-
pletely ignore the musicology aspects of the manuscript, they still provide very
useful information about the context of the image which can be used as input
to the model to improve its results. The most common way to combine tabular
(meta-data) and visual images is to use sensor fusion. By building a neural network
that takes the meta-data and embeds it into a latent space, and does the same for
the image, the latent spaces are then merged and fed into the same classifier. This
allows the model to learn from multiple sources of input. the problem is although
we have lots of meta data, they are very sparse and the model and can be used in
situations where the meta data isn’t available. Hence we decided to use the meta
data in a way that it helps the model if it exists but keep the model architecture
exactly the same allowing for an ease of application in multiple scenarios.

Before providing the mathematical functions and different losses, we establish
the terminology and annotations used throughout the chapter. We denote the
source domain as Xs = (xs

i , y
s
i )

N
i=1 where xs

i represent the input images with variant
sizes, ysi is their respective classes, and N being the size of the source dataset. In
this approach, it is important to note that the source domain is associated with a
preexisting knowledge graph that connects the images of the dataset with concepts
Cs in the graph, creating clusters of data around each concept. Thus, the images
are linked together with not just the class information but also along several axes.

The target domain data is referred as X t = (xt
i, y

t
i)

M
i=1 where xt

i represent the
target images, ysi represents their respective classes, and M being the size of the
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Figure 6.4: An overview of the proposed approach

target dataset. Domain Adaptation deals with the case where these two datasets
share similar classes but usually come from a different distribution (meaning they
have some large differences in terms of style, which lead neural networks to be
unable to generalize). Since our research focuses on open-set domain adaptation,
the classes of both domains overlap but do not necessarily have to be the same.

Our model contains two main components typically found in every computer
vision classifier: the Encoder and the Classifier with an additional latent space
mapper (the DimensionMapper) which converts the visual embeddings into the
same dimensions as the knowledge graph embeddings (after training, it is consid-
ered to be a final layer of the Encoder). They are both present during the training
and the inference phase. We can define our model function fas the composition
of the Encoder function e and the classifier function c such that f = e ◦ c where
e : X −→ Z maps the input images into a vectorial-1D latent space which is
considered as the embedding of the visual information of the image, used later to
classify it into its corresponding class using c : Z −→ Y which maps the embed-
dings space into the label space.

Our model’s strength comes from a mathematical heuristic used to guide the
neural network weight optimization through embedding anchors generated from
the associated knowledge graph, which is based on Linear Discriminant Analysis
(LDA).

6.3.1 Architecture

In this subsection, we detail the components of our method from a topology per-
spective. As shown in Fig. 7.3, the principal components are the Encoder, the
Classifier, and DimensionMapper.

Encoder: Our feature extractor E(.) is a pre-trained pure Convolutional Neu-
ral Network extractor with weights WE. In most cases it should contain only
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elements such as convolutional layers and max-pooling with a Flattening layer in
the end, but as different pre-trained model architectures exist, the components of
our model might vary to include things such as residual blocks. The Encoder aims
at transferring the shape of the input images from a 2D array with 3 channels to a
1D vector that fully connected neural networks can use, as shown in the following
formula:

zv = E(x), x ∈ Xs ∪X t, zv ∈ Rv (6.1)

In our formulation, zv ∈ Zv is the annotation for the 1D vector space extracted
by the pre-trained Encoder, which represents (extracts) the visual embedding of
the image. For differentiation between the visual embedding and the knowledge
graph embedding, we use a lower case v to index the visual embeddings. The
embedding space is a flat vector of the same size for all images. In this case, it
is a set of v float numbers such that v ∈ [256, 4096] depending on the model.
The Encoder’s output is sent to the space-mapper, which is later used for training
the Classifier. The desired behavior for the visual embeddings is to be a class-
informative, meaning it extracts information about the label of the object in the
image, and domain-independent meaning images of the same class should be clus-
tered together regardless of their original domain. In the rest of the section, we
annotate the Encoder’s output of source domain samples as zs = E(xs) and the
target samples latent space is zt = E(xt). In the results section we use an encoder
extracted from the pre-trained weights of Resnet 18 trained on ImageNet.

Dimension Mapper: we used a pre-trained model in order to improve the
results of our models, this leads to having different latent spaces dimensions. The
Dimension Mapper outputs the Encoder embeddings (which is in Rv) into the
dimension of the knowledge graph embeddings (which is in Rk) as defined in the
following operation:

zv2k = DM(zv) = DM(E(x)), x ∈ Xs ∪X t (6.2)

Such that our Dimension Mapper is a function that maps the values as follows
dm : Rv −→ Rk .

Classifier: We are using an Encoder/Classifier scenario. While the Encoder
is the only pre-trained part and might include different layer types, the Classifier
is a simplified fully-connected neural network (Multi-Layer Perceptron) C(.). This
type of Classifier is commonly employed for all image classification cases, such as
multi-class classification and binary classification, depending on the chosen final
loss function (which might be a binary cross-entropy or cross-entropy). In this
work, since our dataset contains several classes, we chose cross-entropy as the loss
function. As indicated above, the input of our Classifier is the mapped visual latent
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space, which was transformed from Rv to Rk where k < v in our case. In contrast,
the output is a 1-D probability vector that provides the model’s prediction and
its probability of belonging to each class ŷ. The classifier function is defined as
follows:

ŷ = C(zv2k) = C(DM(E(x))), x ∈ X, X = Xs ∪X t (6.3)

In our annotations we use ŷ to reference vector of per-class probabilities, which
is the output of the classifier such that ŷ ∈ Ŷ , Ŷ = Ŷ s ∪ Ŷ t meaning it is shared
between both domains regardless. Before starting the domain adaptation process,
we first train the Encoder, Dimension Mapper, and Classifier on the source domain
until we reach convergence. Later, we use the Classifier’s output for the target
domain as pseudo-labels, which will help us to better train the model, but only if
the Classifier is confident in his decision. We set the threshold θ such that θ > 0.95.

6.3.2 Losses

This section describes in detail the loss functions that our model uses to train its
components .

Classification Loss: As expected, the first loss our model is trained on is the
classification loss, which in our case is the cross-entropy loss function H(, ., ) that
reduces the differences between the probability distributions of the output and the
labels since they are between 0 and 1 according to the following formula:

Lc(W
E,WC ,WDM) =

(
1 ∗

∑
xs∈Xs

H(ŷs, ys) + λt

∑
xt∈Xt

H(ŷt, yt)

)
(6.4)

We use λt as a hyperparameter to control the contribution to the loss between
the two domains. This loss affects the training of the Encoder, the Classifier, and
the Dimension Mapper.

Anchoring Loss: The core contribution of our method relies on the anchor-
ing loss, which takes the knowledge graph embeddings as anchors and brings the
mapped visual embeddings closer to them, creating richer visual embeddings. This
loss aims to embed more information in the Encoder’s training without using the
data itself as input to the Classifier since it might be missing on some datasets
and, most importantly, unavailable on new images. This loss allows our model to
combine the increased accuracy of fusion models (which use multiple sources of
input data, commonly images and text or images and a vector form tabular data)
with the speed and generalizability of one source model used for image classifica-
tion. This loss is based on a traditional machine learning model, namely, Linear
Discriminant Analysis (LDA) and Fisher’s linear discriminant aiming to map input
data into a space that linearly separates the samples.
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Our goal is not to make the latent space linearly separable as this is impossible
in the case of image embeddings and might lead to performance degradations. In
fact, the objective is only to reduce the distance between the mean of the source
latent space zv2k which are linked to that specific concept allowing the latent
space of the mapped visual embeddings to contain more rich information about
the source images that the Encoder will be forced to focus on and extract. Our
loss follows the following formula:

Lanc(W
E,WDM) =

(∑
i∈Y

∑
c∈C(d(µ

c
v2k, a

c
k) + d(µc

v2k, z
c
v2k−i))∑

ci∈C
∑

cj∈C d(µci
v2k, µ

cj
v2k)

)
× λBF (6.5)

λBF =
mini |Y t

i |
maxi |Y t

i |

The goal of this loss is: i) to reduce the distance between the center of mapped
visual embeddings of a concept µc

v2k and their corresponding anchor ack, which
is represented in the loss as (d(µc

v2k, a
c
k), and ii) to reduce the distance between

the center of mapped visual embeddings of a concept µc
v2k and its corresponding

mapped visual embeddings zcv2k−i), which represented in the loss as d(µc
v2k, z

c
v2k−i).

This formulation of the target proved to be faster in training than directly reducing
the distance between the embeddings and their anchors one by one, and yet it
provides the same gradients in the end. Our anchoring loss’s second aim is to
augment the distance between the centers of the mapped visual embeddings to
create more space between them such that ci ̸= cj. This loss is only used on
different concepts and not the same one.

One downside of using this loss is that it usually has higher values than the
classification loss and can influence the direction of classification. Besides, this loss
is usually very imbalanced and depends on the random samples taken by the data
loader and their classes/concepts, so we added a balancing factor λBF to reduce
its effect when the classes/concepts are not balanced enough.

6.3.3 Optimization

We can imagine our model trained on the weighted sum of both losses. Considering
the different ratios of loss weights (Classification Loss is usually 10-15 times smaller
than the Anchoring Loss), the importance of the Classification Loss (which is vital
for the classification), and the performances of our final model; we decided to add
a balancing parameter βA, which is usually around [0.01,0.03]. This optimization
is summarized in the following formula:
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Algorithme 6 : Knowledge Graph Embedding based Domain Adaptation
Input : Xs — Source domain images.

Y s — Source domain image labels.
KGs — Source domain knowledge graph.
X t — Target domain images.
Y t — Target domain image labels.
βA — Balancing factor - hyperparameter

Output : θE — Weights of the Encoder
θDM — Weights of the domain Mapper
θC — Weights of the classifier

// Creating the anchor embeddings ack using node2vec
Sample walks using a random walk from the KGs. ;
Embed the nodes of KGs using the skip gram model. ;
Generate the ack as the mean of the art work embeddings related to the
concept ;
// Pre-training The Encoder, Mapper, and classifier on the

source domain.
for i← 1 to epochs do

for j ← 1 to nb_batches do
Sample a batch of source images (xj

1s, y
j
1s), (x

j
2s, y

j
2s), ..., (x

j
Ns, y

j
Ns);

θE = θE − α∂LC

∂θE
Equation 7.1 ;

end
end

// Anchoring the source visual concepts and adapting to the
target

for i← 1 to I do
Sample a batch of images for both domains (xs, ys, cs), (xt, yt);
Update WE by deriving LC + Lanc;
Update WE by deriving LC + Lanc;
Update WC by deriving LC ;

end
return θE, θC
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L = min
WE ,WC ,WDM

1 ∗ LC + βALanc (6.6)

For better understanding of the steps of our model, in Algorithm 7 we provide
an algorithmic description that depicts the step-by-step operations needed for our
method. The first step of our method starts by leveraging a knowledge graph that
describes our source dataset, such as the century or the material used to create an
artwork. We later create an embedding of each artwork based on its connections
with the other nodes in the graph using the node2vec algorithm. These artwork
level embeddings help us generate concept level embeddings which will be used
as the anchors for training our neural networks. The second step is to train the
neural network on Classification Loss, and minimize the overall distance between
the center of visual concept embeddings and the normalized center of the knowledge
graph concept embeddings. This method enables the Encoder part of the network
to extract class-informative and structured latent space, allowing the Classifier to
generalize better to other domains.

6.4 Results

This section evaluates our method’s ability to embed knowledge graph extracted
information to improve the results of image classifiers on complex datasets that
suffer from class imbalance and small sample sizes. We used two datasets: the An-
nMusiconis dataset with its images, labels, and knowledge graph (MusicKG) and
the Annvihuelas dataset with its images and labels. First, we describe the model’s
abilities to generalize and present the per-class accuracy metrics against several
baselines that do not use knowledge graphs and show that our model improves
their results, proving the efficiency of adding knowledge graph data to computer
vision deep learning-based models. Second, we evaluate our model’s performance
when we change the source dataset’s size for training to show its sensitivity and re-
silience. Throughout the results section, all the reported results are the average of
5 runs of the model on the best hyperparameters found using k-fold cross-validation
with k=10. The train-test split is a stratified split with 80% for training and 20%
for testing.

6.4.1 Class level Evaluation

This subsection presents our enhanced performances against several baselines and
shows that knowledge graphs can add value to computer vision models without
altering the classification pipeline of classical deep learning-based image classifi-
cation. We compare our model against three baselines: 1) SourceOnly: a deep
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Table 6.1: Per class F1-score comparison between our model and three baselines.

Method Source Only Target Only Source Target KGE-DA (ours) Metric

Viele
64.62 52.16 69.1 72.18 F1-score
58.54 48.09 72.02 73.36 Precision
72.1 56.98 66.4 71.03 Recall

Luth
53.92 67.14 74.96 85.63 F1-score
50.1 62.96 73.22 82.25 Precision
58.36 71.91 53.92 89.29 Recall

Bow
57.89 46.03 71.44 73.06 F1-score
62.29 48.19 79.46 76.66 Precision
54.06 44.05 64.88 69.77 Recall

Avg
58.81 55.11 71.83 76.96 F1-score
56.8 60.55 75.8 74.37 Precision
60.94 50.56 68.24 79.72 Recall

learning model sharing our architecture but trained only with the images and la-
bels of the source dataset; 2) TargetOnly: a deep learning model sharing our
architecture but trained only with the images and labels of the target dataset. 3)
SourceTarget: a deep learning model sharing our architecture but trained with
both the source and the target datasets’ images and labels.

We report the f1-scores for every main class in our dataset (Viele, Luth, Bow)
and the macro F1-score for the models in table 6.1, since it strikes a good balance
between precision and recall and evaluates the models much better than accu-
racy since the sample distribution amongst the classes differ broadly. We chose
to use f1-scores for evaluation instead of accuracy as our dataset suffers from
class imbalance and hence accuracy metrics are not very informative about the
model’s performances. The table clearly shows that our method improves over
the three baselines used for comparison. We can also see that the SourceTarget
model outperforms both baselines since it uses the two datasets. Surprisingly
the SourceOnly model outperformed the TargetOnly model on some classes even
though it was not trained on the target data.

6.4.2 Target size Evaluation

In the previous subsection, we proved that our method outperforms the baselines.
This subsection shows how our method performs against the TargetOnly and
SourceTarget baselines when the target data’s size varies. This comparison is
important since our method’s principal goal is to use datasets with tiny sample
size (the general case of cultural heritage datasets) and still manage to get good
results.
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Table 6.2: Performance evaluation based on f1-score of KGE-DA method while
varying target data sizes

Method Source Only Target Only Source Target KGE-DA (ours)
30% 58.81 36.14 60.31 67.03
45% 58.81 43.49 64.28 70.26
60% 58.81 49.26 64.42 74.86
75% 58.81 52.97 68.7 75.39
100% 58.81 55.11 71.83 76.96

As shown in Table 6.2, our model’s performances are always higher than the
baselines, even in extreme cases. More importantly, our model’s performances
were not affected as much as the baselines when reducing the target dataset’s
sample size. We can also see that the TargetOnly baseline was the most affected
even though it is the most used technique for small data cases. We can also see
that the SourceTarget model still gives better performances than SourceOnly
and TargetOnly. However, the drop of performance was significant, especially
when going from 100% to 75% where it dropped from 71.83% to a 68.7%, unlike
our model that only dropped 1.57% proving our method’s flexibility and efficiency
even in extreme cases.

6.5 Conclusion

We presented a new approach to improve state-of-the-art domain adaptation meth-
ods using Knowledge graph embeddings. We combined knowledge graph embed-
dings with visual embeddings from the images and trained a neural network with
the combined embeddings as anchors. This method is particularly appropriate
when dealing with sparse and heterogeneous datasets, like those we generally face
in the digital humanities and cultural heritage domain. We evaluated our approach
on two cultural heritage datasets of images containing medieval and renaissance
musical instruments. The experimental results showed a significant increase in the
baselines and state-of-the-art performance compared with other domain adapta-
tion methods. Besides, our model’s performances were not affected as much as the
baselines when reducing the target dataset’s size.

Throughout the thesis, we made multiple assumptions about the data, which
in most cases hold true. Yet, all these assumptions make the applicability of our
research much harder, assumptions like the data always comes with large amounts
of tags about the location, the artist etc. Such data although available for trusted
sources such as big museums, it is not always available for all future datasets
especially when it is manually collected by musicologists from different sources
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such as social media or conferences and discussions. This led us to develop a new
approach that makes the least amount of assumptions on the data, images are
images, this is the only assumption we will make in the next chapter and we do
that using a new domain generalization technique.
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Chapter 7

Auxiliary learning: Domain
Generalization

The methods and some results presented in this chapter were published in:
I. E. I. Bekkouch, D. C. Nicolae, A. Khan, S. M. A. Kazmi, A. M. Khattak

and B. Ibragimov, "Adversarial Reconstruction Loss for Domain Generalization,"
in IEEE Access, vol. 9, pp. 42424-42437, 2021, doi: https://doi.org/10.1109/
ACCESS.2021.3066041 [8].

This chapter presents the idea of Adversarial Reconstruction Loss as a do-
main generalization technique that leverages the pixel values of the source dataset
through an auxiliary task. The technique aims to push the encoder to forget pixel
values, allowing the classifier to be more generic and less dependent on the style
of the input. This method is tested on multiple toy datasets and our datasets
AnnMusiconis, AnnVihuelas.

7.1 Introduction

As powerful as they are, Deep Convolutional Networks showed a huge dependency
problem on the data set they were trained on, commonly known as over-fitting
[61]. This problem (called domain-shift [156] or concept drift [148]) is mainly due
to the fact that the training data set (Source domain) comes from a different dis-
tribution than the deployment data (target dataset), resulting in a decrease in the
performance of the model [47], largely due to the fact that the latent distribution
extracted by the encoders for both domain don’t overlap, this can also be con-
firmed by using several Manifold Learning[104, 145] techniques as Bekkouch et al.
showed[11] by reducing the dimensions of the rich latent space into a lower dimen-
sionality and visualizing the distributions of both domains. Manifold Learning and
domain generalization (deep learning in general) are both similar on many levels
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Figure 7.1: A horse wrongly predicted as an Arabian camel by ResNet, because of
the surroundings. The left part is the LIME interpretation of the ResNet decision.

since they both reduce the input shape and learn an underlying structure in high
dimensional data. The main difference between them is the ability for deep learn-
ing based feature extraction to include the class information in the latent space
that is easily interpretable by a deep learning classifier unlike manifold learning
methods which are mostly unsupervised or lack the easy integration with other
deep learning components.

Such changes in real life can occur from very simple things like a change in image
resolution or the brightness of the pictures or even changes in the background.
As Fig 7.1 shows, the horse was miss-classified as an Arabian Camel by ResNet
mostly because of the sand and Arabian architecture in the background, which the
Local Interpretable Model-agnostic Explanations (LIME) [127] algorithm (used to
interpret the decisions of black-box models per sample [128]) confirms by showing
the pixels on which the ResNet relied on to make the decision. The same can
be found in Fig 7.2 where a horse painting was misclassified as a macaw parrot
because of the resemblance between their colors.

These big changes are at the heart of all of our challenges working in the
medieval manuscript studies field and all historical and cultural preservation works.
Our only chances for training a good model for such low level applications such as
musical instrument recognition makes it really difficult to train a large model only
on the medieval data. and in some cases we can’t even train on such data because
we haven’t start the data collection task which is usually a highly time consuming
and very low reward situation. Researchers in the cultural heritage field can really
benefit from a method that doesn’t require them to provide any low-level specific
data for the objects they are looking for but only provide an example of this said
object in the real world or even provide a set of hand-drawn sketches of the object.
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Figure 7.2: A horse wrongly predicted as a macaw parrot by ResNet, because of
different colors (painting). The left part is the LIME interpretation of the ResNet
decision.

The ability to make such a transfer is clearly very hard but such technique even
with low quality results can speed up the search. Such problems are unavoidable
in real research situations, which created a new field in transfer learning named
Domain Generalization (DG).

DG can be also seen as a generalized case of the over-fitting problem, in the
sense that the model is learning the data and not the task, even though in DG
cases the model performs very well on the source test data, unlike traditional
over-fitting scenarios. Domain Generalization (DG) [39] is a sub-field of Transfer
Learning (TL) [116] that aims to solve the aforementioned problem by combining
multiple data sources to train a more resilient model in hopes of generalizing to
unseen domains. DG assumes the existence of multiple sources of data Ds

i (e.g.
Photo, Art Paintings, and Cartoon) that are used for the same task T s

i (e.g.
classifying images of animals), and a target domain Dt (e.g. Sketches of the same
classes of animals) that is harder to work with (harder to label or to collect). Most
DG methods provide an extension to a closely related field, Domain Adaptation
(DA) [7, 11] which often uses one source domain and one target domain to solve
the domain shift problem. At the time of training, DA assumes the availability of
target domain data but can be classified according to the presence of labels in the
target domain in three key ways: Supervised [111], Unsupervised [11], and Semi-
Supervised DA [36]. DG differs from DA in the fact that we do not have access to
the target data nor its labels at training phase. Therefore, DG aims at building
a model that can generalize well to unseen domains rather than generalizing to a
single known domain.

Researchers have approached the problem of domain gaps and their conse-
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quences in many ways. One traditional yet very commonly used technique is to
treat this problem as an over-fitting problem and use regularisation techniques to
help the model (parametric models) generalize well [149, 73]. Many techniques
have proven to be useful in the case of deep neural networks such as learning
rate decay, dropout [149], batch normalisation [73], L1, L2 regularisation [114] and
Shakeout [80]. Although these techniques were proven effective to help the model
generalize well within the same data set and achieve higher test accuracy, however,
it is not the most effective method for DG. Hence, we need to develop new methods
that are both effective for over-fitting and for DG problems.

Recent approaches for DG are commonly neural-network-based and are sepa-
rated into two main types: one-for-all and one-for-each. The former uses all source
domains and learns a common model that works for all of them hoping it would
generalize to future domains [23] whereas the latter approach (one-for-each), trains
a different branch for each source domain. Next, at evaluation, we measure the
closeness of each source domain to the target image and only consider the output
of the corresponding classifier [92].

In this chapter, we deal with the case of one-for-all DG in its largest definition
given its applicability and speed increase over the the one-for-each type. We im-
plemented a new DG method that can generalize from multiple source domains to
an unknown target domain, from one domain to another, and from one domain to
itself, making this method easily applicable in many real world scenarios where the
CNN or the neural networks in general show signs of over-fitting and dependency
on the underlying distribution of the training data.

Similar to JiGen [23], who trains a jigsaw puzzle solver over the images to help
the encoder better learn the internal structure, our approach belongs to the one-
for-all category of DG approaches, focusing on how to use the training data more
effectively to help the model learn better features in an unsupervised manner. In
contrast to JiGen, the proposed model uses an Encoder, a Decoder, and a classifier
to forget specific features of the data and not to learn it better. Unlike traditional
Auto-Encoders that are trained to reconstruct the input, by training a Decoder
to reconstruct the images and training the encoder in an adversarial way against
the reconstruction loss, we force the Encoder to neglect the domain-specific details
and only forward the information required for classification.

As proven by our experimental results on single source DG, our technique can
also be helpful as a measure against over-fitting. Our approach uses pure deep
learning based methods that can be run easily on GPUs, making it simpler to
train and quicker to converge, unlike most other DG methods that add a huge
computational burden such as JiGen (to make the jigsaw puzzle).

In short, this chapter presents a new DG system based adversarial auto en-
coders by training the encoder to extract only classification needed information
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Figure 7.3: Model Architecture: The Encoder generates latent representation z
which is used by the Decoder to reconstruct the input using LR and by the Classifier
to classify the sample using LC . The encoder is trained on the classification LC

and adversarial LA losses.

and remove all the style details noise, which achieves state-of-the-art efficiency
in various scenarios for Domain Generalization, Domain Adaptation and Overfit-
ting without adding a huge computational burden, making it more applicable to
real-world scenarios and easily incorporated into more complex architectures. We
evaluated our method against the state of the art deep learning methods based on
five primary datasets and 13 sub-datasets and showed that our method outper-
forms most of them on all tasks.

7.2 Methods

We explain the approach of Adversarial Reconstruction Loss for Domain Gener-
alization and the motivation behind it in this section. We base our approach on
the premise that for the same problem, deep neural networks can not generalize
to different domains because they are too dependent on their training domain.
In other words, the CNN encoder portion is learning features that are helpful for
prediction but also for extracting other domain-specific features that restrict the
model’s ability to handle unseen data. The CNN (Enoder) part of the models
is responsible for the feature extraction; our main assumption is that the feature
extractor extracts two types of information. Type 1 is the class-informative, which
helps make the decisions and the classification, whereas type 2 is the misleading
background noise. Thus, we characterize the model’s ability for generalizing to
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Figure 7.4: Reconstructed images formed by training a decoder on a model (En-
coder+Classifier) trained only for classification. Reconstructed on the left, Input
image on the right.

unseen datasets by its ability to forget the data’s peculiarities, symbolizing how
much of the input has been overlooked or neglected by the encoder.

We illustrate the Encoder’s ability to sustain low-level image information de-
spite the fact that the only loss we used for the training was the classification loss.
Figure 7.4 explains the amount of information the Encoder preserves even after
applying extreme input alterations.

After training an Encoder plus a Classifier setup on MNIST, the images were
reconstructed based on a frozen Encoder and newly trained Decoder. These find-
ings on the test dataset support our hypothesis that even though we train the
encoder for classification only, it retains numerous input features from its source
data.

7.2.1 Domain Generalization

As with all DG methods, our technique requires S source datasets (domains) and at
least one target dataset (domain). Ni is used to represent the ith source dataset’s
sample size, such that Xs

i = {(xs
i,j, y

s
i,j)}

Ni
j=1, where xs

i,j references the jth sample
of the ith source dataset and ysi,j is its corresponding label. Moreover, we denote
M as the target domain’s sample size with X t = {(xt

j, y
t
j)}Mj=1, where xt

j is the
jth sample from the target dataset and ytj is its label, the t is used to distinguish
between source and target domains.

The three main components of our model are: Encoder, Decoder, and a classi-
fier, as shown in Figure 7.3. The central part of the model and our point of focus
is the Encoder E(.) with its weights θE, which maps the input samples x into the
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latent embedding space z. These features are commonly known as the images’
latent representation.

The Classifier C(.) with weights θC , is a feed forward neural network and
the whole classification model is the combination of the encoder and the classifier
which is represented with the function fc = e ◦ c , where e : X −→ Z is the
encoder function that maps the images into feature vectors and c : Z −→ Y is the
classification function operating on the latent space.

The last part of our method is the Decoder D(.), which will not be included in
the final model since it is not part of the inference process. Its weights are denoted
as θD and we use it to reconstruct the input samples given their latent space
representation such that the reconstruction function fd = e◦d where d : Z −→ X .

Each component of the architecture is trained with a different combination of
losses, starting with the Classifier which is trained by minimizing the classification
error (cross entropy loss) H(., .)

Lc(θ
E, θC) =

S∑
i=1

( ∑
xs
i∈Xs

i

H(C[E(xs
i )], y

s
i )

)
(7.1)

The decoder’s weights are updated to reduce the reconstruction Loss (Mean
Squared Error) between input sample x and the reconstructed image x̂ even though
it doesn’t have access to the input, it does that by mapping the latent space into
a data sample.

LR(θ
D) =

S∑
i=1

( ∑
xs
i∈Xs

i

∥D[E(xs
i )]− xs

i∥
2

)
(7.2)

Our method’s crucial element is that the reconstruction loss LR will not be
used to update the encoder’s weights directly. Nevertheless, the encoder will be
trained on both the classification loss and the adversarial of the reconstruction
Loss:

LA(θ
E) = −

S∑
i=1

( ∑
xs
i∈Xs

i

∥D[E(xs
i )]− xs

i∥
2

)
(7.3)

In computer vision, the initialization of the model’s weights using an auto-
encoder architecture and learning features useful for reconstructing the input is
considered a standard best practice; and assumed to help build better classifiers
using fewer data [95, 87, 44, 174]. We propose to take in the opposite route, en-
abling the Encoder to update its weights under the classification loss and skipping
the structure, shape, and other information that overfits the network.
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The step by step process of the training is described in Algorithm 7.

Algorithme 7 : Domain Generalization with Adversarial reconstruction
loss
Input : Xs — Source domain images.

Y s — Source domain image labels.
generalizing_epochs — NB epochs 1
pretraining_epochs — NB epochs 2
α — The learning rate
β — Balancing factor - hyperparameter

Output : θE — Weights of the encoder
θC — Weights of the classifier

// Start Pre-training the Model
for i← 1 to generalizing_epochs do

for j ← 1 to nb_batches do
Sample a batch of source images (xj

1s, y
j
1s), (x

j
2s, y

j
2s), ..., (x

j
Ns, y

j
Ns);

θE = θE − α∂LC

∂θE
Equation 7.1 ;

end
end

// Start the Generalization process
for i← 1 to pretraining_epochs do

for j ← 1 to nb_batches do
Sample a batch of source images (xj

1s, y
j
1s), (x

j
2s, y

j
2s), ..., (x

j
Ns, y

j
Ns);

θD = θD − α∂LR

∂θD
Equation 7.2 ;

θC = θC − α∂LC

∂θC
Equation 7.1 ;

θE = θE − α∂(LA+βLC)
∂θD

Equation 7.1, 7.3 ;
end

end
return θE, θC

Extension to Unsupervised Domain Adaptation

Our method is easily generalisable to the Unsupervised Domain Adaptation set-
ting. Given the unsupervised nature of the Adversarial Reconstruction Loss, we
can always add more samples without labeling which will help the model general-
ize even better. We also add in this setting a separation loss that operates on the
output of the encoder similar to Linear Discriminant Analysis (LDA). The opti-
mization goal is to maximize the between-class variability (making different classes
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further apart from each other in the latent space) and minimize the within-class
variability (making samples from the same class close together). Our separability
loss is defined as follows:

Lsep(θ
E) =

(∑
i∈Y

∑
zij∈Zi

d(zij, µi)∑
i∈Y d(µi, µ)

)
× λBF (7.4)

λBF =
mini |Y t

i |
maxi |Y t

i |
where Zi is the set of all the latent representations of both source and target

domains, that belongs to class i. For the target domain classes, we used the
pseudo-labels that are produced with a high level of confidence from the classifier
since we assume that the target data has no labels for training. µi is the mean of
all latent representations with label i, such that µi = mean(Zi), whereas µ is the
mean of all the latent representations for both source and target µ = mean(Z).
d(., .) is the distance function used to measure the dissimilarity between the latent
vectors. λBF is a normalizer since the behavior of this loss is very fluctuating in
cases where the batch doesn’t contain a large enough amount for each class, and it
represents the ratio between the number of least represented pseudo-labeled target
samples mini |Y t

i | and the number of the most represented ones maxi |Y t
i |.

Extension to Over-fitting

Over-fitting arrives when a model has learned the training data too well. It is
very common with strong models such as neural networks and decision trees. A
number of techniques for combating over-fitting in neural networks exist such as
reducing the model size, reducing the input data’s dimensions, regularization (L1,
L2), dropouts, and batch normalization, yet most of them constrain the model
from actually learning category informative features.

Our technique although made for DG, can be easily applied in the case of
single source datasets and contrarily to other over-fitting techniques, ours allows
the model to learn as deep as possible without letting it over-fit on the style of the
training data. Our method is not exclusive with other techniques, but it should
be used along the side of most of the previously mentioned techniques since they
are considered to be the best practice for the training process.

7.3 Analysis

Our Adversarial Reconstruction Loss method provided outstanding performances
compared to other states of the art methods on several experiments using different
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datasets. This section is split into four main parts; the first one is the Benchmark-
ing datasets, where we present the five primary datasets and their 13 sub-datasets.
The second part is the main results section, where we compare our model against
several Domain Generalization methods on four benchmarks and especially for
Medieval manuscript studies. The third and last parts are related to unsupervised
domain adaptation and over-fitting results.

7.3.1 Benchamrking Datasets

To explore our Method’s effect on the domain generalization problem and its re-
lated issues (UDA, overfitting), we analyze five datasets extensively chosen in the
field. The first one is MNISTR; the Rotated MNIST dataset is an alteration
to the popular digits classification dataset MNIST. The different domains of RM-
NIST are created via rotating images by 15 degree increments: 0, 15, 30, 45, 60,
and 75 (referred to as M0, ...,M75). We employ a leave-one-out situation at the
training phase, signifying that we will have five source domains and one remaining
for the target. Nevertheless, the data has an identical test/train split as the pri-
mary MNIST; therefore, there is no overlap between train and test samples of the
different domains. Next, we use the MNIST-SVHN-USPS Street View House
Numbers (SVHN), a real-world image dataset for digit recognition which we used
in our previous chapters. SVHN is obtained from house numbers in Google Street
View images and is a little bit more challenging because of many side artifacts in
it and the inclusion of color. US Post Office Zip Code Data (USPS) Handwrit-
ten Digits has 7291 train and 2007 test images. The images are 16*16 grayscale
pixels which make them similar to MNIST but less complex. This combination
of datasets is used both for Domain Generalization and Unsupervised Domain
Adaptation.

7.3.2 Domain Generalization Results

digit classification: RMNIST

For the task of digit classification, we assessed our model’s performance versus
numerous state of the art deep learning methods in domain generalization which
are: MTAE [53], CAE[129], BSF [107], UDS [112], PSSO [163], AFLAC [3]. We
were inspired to pursue this method after conducting experiments on the MNIST
dataset to understand domain dependency better. Therefore, our model performs
significantly better on this dataset than all the current state of the art, as Table
7.1 clearly shows our model’s performance exceeds all the other models on average
and is ranked at least first or second in each experiment.
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Table 7.1: Domain Generalization for digit classification: RMNIST. The average
accuracy over 20 runs of the model. We represent each experiment by the name
of its target dataset.

Method 0 15 30 45 60 75 mean

CAE [129] 72.1 95.3 92.6 81.5 92.7 79.3 85.5
MTAE [53] 82.5 96.3 93.4 78.6 94.2 80.5 87.5
PSSO [163] 94.2 82.5 96.3 93.4 78.6 80.5 87.5
UDS [112] 84.6 95.6 94.6 82.9 94.8 82.1 89.1
BSF [107] 85.6 95.0 95.6 95.5 95.9 84.3 92.0
AFLA [3] 89.3 98.8 98.3 93.3 97.4 88.1 94.2

ARL (ours) 89.5 97.2 97.3 98.1 96.7 89.4 94.7

The reported results are the averaged over 20 runs of the model with the
learning rate set to 0.003, generalizaing_epochs = 50, pretraining_epochs =
100, and the balancing factor set to β = 0.1. Our method outperformed all other
methods on average providing more consistent results than others especially on
the extreme case of 75 degrees, where we had 1.33% accuracy increase over the
second best method AFLAC. We trained our model on a Tesla V100 SXM2 32 GB
with a server with 64 cores and 80G of ram, for a total of 5 hours and 46 min.
The time needed to train the models for classification only without our loss is 2
hours and 18 mins.

In order to fully understand what our technique achieves we regenerated the ex-
periment from Fig 7.4 but with adversarial reconstruction loss used for the training
of the model. So our experiment goes as follows, We train the Encoder by the ad-
versarial reconstruction loss and the classification loss as described in Algorithm 7
and after convergence, we re-train a new decoder on the latent space of the MNIST
dataset without changing the encoder weights. After it converges, we evaluate the
results on the test data with extreme rotations to see if the same effects from the
previous experiment Fig7.4 still holds. We inferred that the results in Fig 7.5 are
definitely different in this case where most of the reconstructions appear to be cen-
tered and without rotation, unlike their respective original inputs. Furthermore,
we can see that most of the specific details in the pictures tend not to appear in
the reconstructed images. We can also easily see that all the reconstructions have
the same class as their input. Proving that the aim of our method was actually
achieved and that the learned features don’t contain information about the specific
details of the input yet they are still useful for classification.
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Figure 7.5: Reconstructed images formed after applying our ARL Generalization
and training a new decoder to reconstruct the input images. Reconstructed on the
right, Input image on the left.

Experiment LB DG UBSource Target
AMIMO+AnnMusiconis AnnVihuelas 54.80 86.77 93.12
AMIMO+AnnVihuelas AnnMusiconis 43.37 79.30 82.71
AVG 49.08 83.03 87.91

Table 7.2: The test accuracy comparison for DG on Musical Instruments Recog-
nition In Medieval Artworks.

Musical Instruments Recognition In Medieval Artworks

Now for the main part of this chapter, we will take a look at whether this method
for domain generalization is actually useful for Cultural Heritage applications and
especially medieval musical manuscript studies. We used our three manully an-
notated datasets namely AMIMO, AnnMusiconis, and AnnViheuals. Training on
AnnVihuelas and AnnMusiconis alone doesn’t lead to improved results on AMIMO
since the difference between the AnnMusiconis and AnnVihuelas is small and that
doesn’t help the model learn deeper features of the objects, and it makes it worse
that the difference between AMIMO, and (AnnVihuelas and AnnMusiconis) is re-
ally big. Hence we will only experiment with AMIMO being a source dataset. We
will compare our model’s results against two benchmarks, the first UpperBaseline
UB which referes to a model that is trained on AMIMO, AnnMusiconis, AnnVi-
huelas. and LB which refers to a model trained only on AMIMO and one extra
dataset.

We reported the results of our musical instruments recognition in medieval
artworks in the 7.2, before analyzing the results of our models we see that the
results of the CNN trained only on AMIMO and one extra dataset leads to very



7.3. Analysis 129

bad results on the unseen target domain unlike with domain adaptation where the
target domain is at least present in the training, and this holds for both target
domains (AnnMusiconis and AnnViheulas). Although our model’s results clearly
aren’t comparable to the UB which is trained on all the datasets, our goal is not
to surpass the UB but to get closer to it, which we clearly do especially when
compared against the LB.

7.3.3 Unsupervised Domain Adaptation

In the case where the unlabeled target images exist during the training (Unsu-
pervised Domain Adaptation), we add an extra loss to our model which is the
Separability loss 7.4. We explore the effects of this loss along with the perfor-
mance of our model on two challenging scenarios, MNIST-USPS-SVHN dataset
and the PACS data.

Digit Classification: MNIST-USPS-SVHN

This is the most common benchmark for domain adaptation tasks and UDA specif-
ically. Hence we follow the same experimental setup as [11, 68]. We compare our
results against first the two baselines (Upper Bound UB, and Lower Bound LB)
which represent the accuracy of training and testing on the target dataset, and the
accuracy of training on the source dataset only without access to the target dataset
(not even unlabeled images), respectively. We also compare it against several of
the state of the art deep learning methods in the field such as TripNet [11], Du-
plexGan [68], TarGan [105], Image2Image [99], Maximum Classifier Discrepancy
[137], Generate to adapt [138], Joint Adaptation Networks [103] and Transferrable
Prototypical Networks [117].

Table 7.3: Digit Recognition Benchmark on the MNSIT-USPS-SVHN dataset for
Unsupervised Domain Adaptation. Each experiment name follows source_domain
- target_domain naming convention. ARL-sep is used to reference to our method
+ the seperability loss and ARL is used to reference our model without it. The
“-“ notation is used for experiments where the results have not been reported in
previous works.

Method UB LB JAN [103] Gen2Adpt [138] MCD [137] I2I [99] TarGAN [105] DupGAN[68] TPN [117] TripNet[11] ARL-sep ARL
SVHN - MNIST 98.97 62.19 78.4 92.4 93.6 90.1 98.1 92.46 93.0 94.70 98.7 93.81
MNIST - USPS 95.02 86.75 84.4 92.8 90.0 98.8 93.8 96.01 92.1 97.63 98.3 97.12
USPS - MNIST 98.96 75.52 83.4 90.8 88.5 97.6 94.1 98.75 94.1 97.94 97.14 95.31

SVHNE - MNIST 98.97 73.67 - - - - - 96.42 - 98.57 98.76 97.13

Our learning rate is α = 0.01 , generalizaing_epochs = 250, pretraining_epochs =
200, and the balancing factor is set to β = 0.15. Table 7.3 shows that our method
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Table 7.4: Multi-source Unsupervised Domain Adaptation results on PACS
datasets obtained as average over five runs for each experiment.

PACS-DA photo art paint. cartoon sketches Avg.

ResNet 18[65] 92.9 74.7 72.4 60.1 75.0
Dial [24] 97.0 87.3 85.5 66.8 84.2

DDiscovery[108] 97.0 87.7 86.9 69.6 85.3
JiGen[23] 97.9 84.8 81.1 79.1 85.7

ARL-sep 98.3 86.1 87.6 73.4 86.3

ARL 96.5 82.9 83.9 71.7 83.7

outperforms most of the current state of the art techniques in 2 out of 4 exper-
iments and ranked 2nd in the other two being only a few 0.05% away in the
MNIST-USPS experiment. We can also see that our ARL-sep model outperforms
our ARL model on all experiments, demonstrating the efficiency of the separability
loss, yet it is also worth mentioning that the ARL model alone performed nicely
being only 1.18% behind ARL-sep in the MNIST - USPS. We trained our model
on a Tesla V100 SXM2 32 GB with a server with 64 cores and 80G of ram, for a
total of 1 hours and 32 min. The time needed to train the models for classification
only without our loss is 0 hours and 31 mins.

PACS - Multi-source Domain Adaptation

Multi-source Domain Adaptation is a subset of DA where we have multiple source
domains with labels but they are treated as one source, and a target domain either
with or without labels. We are focused on the unsupervised case where the tar-
get domain is only available with images. Our method is unsupervised at its core
making it easily applied in such case. To verify our assumptions we make the same
experimental setup as other deep learning methods such as JiGen [23], DDiscovery
[108], and Dial [24] by using ResNet18 [65] as our base model (Encoder + Classi-
fier), whereas our Decoder is built as the mirror of the Encoder. We compare our
method against all of the previous models and against a ResNet18 only model as
our lower baseline. Our learning rate is α = 0.003 , generalizaing_epochs = 350,
pretraining_epochs = 500, and the balancing factor is set to β = 0.1. We trained
our model on a Tesla V100 SXM2 32 GB with a server with 64 cores and 80G of
ram, for a total of 12 hours. The time needed to train the models for classification
only without our loss is 8 hours and 12 mins.

The results in Table 7.4 summarize the outcome of this experiment, where
the provided accuracies show that our method ARL-sep is superior to the other
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Table 7.5: Accuracy results of different models on digit classification datasets
MNIST-USPS-SVHN and MNISTR for the Over-fitting scenario. The best model
is bolded and the second best is underlined.

Method OF WT T-ARL O-ARL F-ARL-sep

MNIST 63.74 98.97 99.31 94.73 99.54

USPS 72.41 95.02 98.12 96.41 97.93
SVHN 58.46 94.97 97.85 92.9 98.14

Avg. 64.87 96.32 98.42 94.68 98.53

MNISTR

0 63.74 98.97 99.31 94.73 99.54

15 60.13 96.64 98.07 91.93 97.17
30 68.52 98.03 98.69 92.86 99.05

45 68.24 98.14 98.83 94.33 99.29

60 65.05 97.12 97.41 92.74 98.17

75 62.48 97.59 97.43 93.42 97.84

Avg. 64.69 97.748 98.29 93.33 98.51

techniques on average and on two out of four of the experiments which are Photo
target domain and the more difficult task of Cartoon target domain. We can also
see that even though the ARL only model isn’t outperforming the other methods
but it still way better than the baseline with a 8.78% increase in accuracy on
average and a maximum of 11.64% accuracy increase on the Sketches dataset.

7.3.4 Over-fitting

Over-fitting problems have been explored ever since the start of neural networks.
Given the strong ability of neural nets to remember and memorize data samples.
To evaluate the efficiency of our method on this problem we make the following
setting, Train a model longer than it needs to force it to over fit, and then see if
adding our loss can help bring it back from the over-fitting scenario, we refer to
this model as (O-ARL).

We compare our method against several baselines: (i) Over-fitted model (OF),
(ii) Well trained model (WT), (iii) model trained with ARL only from the start
(T-ARL), and (iv) model fine-tuned with ARL-sep (F-ARL-sep). We perform
this experiment on several benchmarks for digit classification which are: MNIST,
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Table 7.6: Hyper-parameters for the over fitting experiments on digit classification
Table 7.5. G-epochs is generalizing epochs and PT-epochs is pretraining-epochs.

Hyper-paramter α G-epochs PT-epochs β

MNIST 0.01 50 100 0.2
USPS 0.01 50 100 0.15
SVHN 0.003 250 500 0.15

MNISTR

0 0.01 50 100 0.2
15 0.007 100 200 0.25
30 0.007 100 250 0.15
45 0.003 250 500 0.1
60 0.003 250 500 0.15
75 0.003 250 500 0.1

SVHN, USPS, MNISTR-0, ... , MNISTR75. For each one of these experiments we
used a different set of Hyper-parameters which are all mentioned in Table 7.6. We
use the same experimental setup as [140]. We trained our model on a Tesla V100
SXM2 32 GB with a server with 64 cores and 80G of ram, for a total of 14 hours
and 52 min. The time needed to train the models for classification only without
our loss is 2 hours and 12 mins.

Table 7.5 shows the results of our over fitting experiments. The most obvious
conclusion we can make is that the F-ARL-sep model, which was first trained on
the data and then fine tuned with both the Adversarial Reconstruction Loss and
the Separability loss, outperforms all the other models in most cases specifically
the models that suffer from over-fitting OF and those who are well trained WT
proving that our method is quite good for increasing model’s performances and
accuracy even on the same data domain. We can also see that O-ARL model which
was used on top of an over-fitted OF model was able to help the model go back
to performing good even though it was not as good as F-ARL-sep but it still gave
an increase of 29.81% in accuracy on average. We also see that the T-ARL model
which is trained from the beginning on the ARL loss was as rigid as O-ARL and
even better than WT model in most of the cases.

We also confirm our findings through Figure 7.6 where we show the behaviour
of our different losses and how they influence the testing accuracy of the model
on the MNIST dataset. We can easily notice that the over-fitted models always
go up and then quickly decreases in performance as shown with OF chart, which
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Figure 7.6: Comparison of different models on the task of digit classification on
MNIST for the over-fitting scenario. The accuracy results are reported as the
average of 5 experiments with the best hyper-parameters. OF is the over-fitted
model, which is used by O-ARL as the initial start for solving the over-fitting
problem. WT is the well trained model, T-ARL is the model which is trained
from the start with ARL, and F-ARL-Sep is the WT model and fine-tuned with
both ARL and sep loss7.4.
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is continued using the O-ARL chart which drops the performance in the first few
epochs but then quickly starts giving positive outcome on the model’s performance
approaching results provided by the WT models. We can also notice that the WT
models achieve better than our models in the first few epochs where as our models
(F-ARL-Sep and T-ARL) improve slower but with enough epochs they exceed the
WT performances.

7.4 Conclusion

We proposed a simple but effective task agnostic method for Domain Generaliza-
tion and Unsupervised Domain Adaptation that is based on the assumption that
models extract two types of information, class informative -useful- and style infor-
mation -harmful-. Our method pushes the model to forget the style information
while keeping the class informative part of the input which leads to high perfor-
mance increase on several Object detection and classification benchmarks for DG
and UDA. Our method also showed a great effect in fixing over-fitted models as
shown by the experimental results. Moreover, the proposed method shows great
promise of wide applicability since it is implemented orthogonally to other models
and hence can be applied to different problems such as facial recognition without
having to change the underlying algorithms.



Chapter 8

Musiconis: Populating the database
while advancing research

Medieval musical iconography is an essential tool for anyone wishing to understand
medieval music. This visual evidence is even more important when it comes to
studying societies that remained faithful to the oral traditions of transmitting
music or learning from instruments that are long gone and forgotten because of
wars and time. Our only remaining portal to such periods are the texts and images
that remain in the historical manuscripts at big Museums such as The Bibliothèque
nationale de France (BNF) and Gallica which holds over 45000 different documents
from the medieval period.

Medieval manuscripts are incredibly useful for musical studies because they
provide a unique glimpse into the history of music. These documents contain
invaluable information about the development of musical notation, as well as de-
tailed descriptions of different musical styles and techniques. By studying these
manuscripts, researchers and musicians can gain a deeper understanding of the
cultural context in which certain pieces of music were created, as well as the tech-
niques and methods used by medieval composers and performers. Additionally,
medieval manuscripts often include beautiful illustrations and artwork that offer a
window into the visual culture of the time period. Overall, medieval manuscripts
are an essential resource for anyone interested in studying and performing medieval
music.

Throughout this thesis, we collaborated very closely with multiple musicologists
and other PhD students working on reconstructing an analysis of medieval vocal
practices and medieval instruments. All such examples require musicologists to
search through pages of manuscripts in hopes of finding a dozen images that allow
them to validate their hypotheses.

The goal of musiconis is to build a representation of sound and music in the me-
dieval ages. Musiconis allows researchers interested in medieval music to search in a

135
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much more precise database of musical performances (musicians, singers, dancers)
featured on medieval media (VIIIth-XVIth centuries). Musiconis is hosted online
and allows users to search in over 2700 well-documented images in French, En-
glish, and Spanish. This great effort is the fruit of a big collaboration between
musicologists under the supervision of Professor Frederic Billiet who were able to
retrieve these manuscripts from multiple databases.

This chapter of our thesis is dedicated to showing the impact of artificial in-
telligence on medieval manuscript studies in a practical way. We will start by
discussing two of the musicology use cases we collaborated on, mainly, Medieval
singing understanding and musical instruments search. We follow that by showing
how we used our algorithms to search for visual indicators that the musicologists
give us as clues for what they want. We later discuss the positive results that we
got, such as the big increase in new manuscripts added to musiconis, but also the
failures of the model on specific use cases. We conclude this chapter by showing
the positive part of AI work in general and especially in low researched fields which
is the continuous improvement principle and how can we leverage it in an iterative
approach to make our models better and advance research in musicology.

8.1 Project: Medieval Singing

The analysis of medieval vocal practices is an essential issue for musicologists
and performers [15]. However, since the human vocal cords cannot be displayed
explicitly, it is hard to identify whether a person or group is singing or not.

Even though there are numerous descriptions of musicians and singers in me-
dieval chronicles and tales, illuminated manuscripts are the principal source for
musical iconography. Illuminations often depict very complex situations in a tiny
space. Artists often wished to concentrate much more information in a small illu-
mination than would be contained within that scene in real life. However, studying
a large corpus of images allows musicologists to detect repeated patterns and shed
light on previously unknown medieval vocal practices across different periods and
regions. The discovered patterns could enable performers wishing to perform reper-
toires to better understand the organization of singers, the environment, and the
setting of the songs according to the period and genre considered. For example,
considering the architectural modifications over the centuries, better choices re-
garding locations and musicians could be made to recreate acoustics as close as
possible to the original music scene. Therefore, our objective is to find singing
performances in images from medieval artworks. More precisely, we will detect
medieval images containing persons in solo or group-singing situations, whether
accompanied or not by musical instruments. The final objective for musicologists is
to better understand the physical postures of singers, their relationship, and their
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location inside the building.
Since the human voice is not a visible musical instrument, it is necessary to de-

fine possible objects in the images that may suggest the presence of singing perfor-
mances. Therefore, we propose identifying characters who have their mouths open,
perhaps with features linked to the vocal utterance (such as declamation or singing;
see Figure 4.1a (BnF ms. fr. 166 f. 121v: https://gallica.bnf.fr/iiif/ark:
/12148/btv1b105325870/f256/1500,750,1000,1300/full/0/native.jpg, accessed
on 1 November 2021)). However, having the mouth open is not a sufficient condi-
tion to determine that a person is singing. The context or environment in which
these singers are performing is vital to understanding the musical scene.

8.2 Project: Medieval Musical Instruments

Medieval Musical Instruments clearly indicate musical representations in medieval
manuscripts, much easier than indices such as the open mouth or hand positions.
This is why Musiconis is highly interested in collecting as many folios, manuscripts,
stained glass, carvings (wood, ivory), and sculptures. The goal is to speed up the
hypothesis-testing phase of musicology research. Medieval musical instruments are
an important source of information for musicologists, as they can provide insights
into the development of music in the Middle Ages. Manuscripts that depict musical
instruments can be used to identify the different types of instruments that were
used, as well as the way that they were played. This information can then be used
to reconstruct medieval music, and to gain a better understanding of the role of
music in medieval society. We show two examples of the musiconis library in 8.3
where the first one is a stone sculpture 1 and the second is a stone painting 2 to
show case the great diversity of the medieval musical representation.

8.3 AI-powered search

Musicologists rely heavily on museums’ websites to find manuscripts related to
their field of work, which is a task that has been simplified greatly over the past
decade thanks to the digitalization efforts across the European Union. However,
such great efforts focused a lot on getting the images online and annotating them
with keywords describing the manuscript’s context and not the manuscript’s con-
tent. This makes it very hard for someone to search for a manuscript that contains

1https://musiconis.huma-num.fr/fr/fiche/1768/musiciens-jouant-de-la-viele-en-huit-de-l-
organistrum-du-frestel-du-monocorde-du-psalterion-de-la-rote-de-la-viele-de-la-harpe-carillon-
tintinnabulum-et-acrobate.html

2https://musiconis.huma-num.fr/fr/fiche/18/musicien-jouant-de-la-viele-et-tomberesse.html

https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f256/1500,750,1000,1300/full/0/native.jpg
https://gallica.bnf.fr/iiif/ark:/12148/btv1b105325870/f256/1500,750,1000,1300/full/0/native.jpg
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Figure 8.1: A stone romane
sculpture of a Fiddle-playing mu-
sician from the 11th century from
Saint-Martin-de-Boscherville,
Normandie, France.

Figure 8.2: A stone romane
painting of a Fiddle-playing
musician from the 13th cen-
tury from Retjons, Nouvelle-
Aquitaine, France.

Figure 8.3: Two example images from Musiconis library of medieval musical art-
works.

for example, a Violin, and even harder if the search is on a topic that is more vague
and requires complex pattern recognition and visual indicator detection.

AI can play a significant role in this, as it is able to perform simple but repetitive
tasks that require basic human intelligence at a much faster pace than an ordinary
human being. While working on this thesis, we collaborated with a researcher
and musicologist Valerie le Page who has spent many years searching for specific
images 8.43 to help her understand medieval singing practices and help reconstruct
the Notre Dame de Paris. AI could have helped her perform her search in a much
shorter time.

The idea behind AI-powered search, is that we leverage the images we have
already found of the objects we want and then annotate them and train a machine
learning model (object detection) on our dataset. The task then becomes to use
the model and parse through all the images of manuscripts for each folio and find
potential examples of the same objects in other locations. Figure 8.5 shows the
exact steps to take to perform the search on a museum dataset.

• Data: The quality of the results is dependent directly on the quality and
quantity of the data used for training. This task usually takes a lot of time
to perform as it requires the formulation of a research question, the definition

3BnF ms. fr. 13091 f. 177r Psautier_de_Jean_de_Berry



8.3. AI-powered search 139

Figure 8.4: An example of singing in churches used to train the medieval signing
search engine.
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of the objects to look for, any visual clues that the model can use, other data
sources of objects that are similar, potential objects that are similar and can
confuse the model to include in the dataset and much more.

• Model: Using an improved algorithm to provide better results even in the
case of low data quantity and quality. We recommend using DDTL algorithm
as it is the most generic and easy to recreate even without machine learning
engineering experience as all it needs it to run the code on a colab notebook
which only requires a few clicks and zero programming skills. In cases where
improved results are required, domain adaptation methods provide much bet-
ter results than transfer learning but it requires excellent programming and
machine learning engineering skills. This step usually takes around 1-2 weeks
to tune the perfect model. The weights for the models we used throughout
the thesis are maintained in imadbekkouch/medieval_music_yolov8
https://huggingface.co/imadbekkouch/medieval_music_yolov8.

• Search: This task is the most time-consuming and can take up to months on
a single museum library. It takes a lot of time to pass through the millions
of images available and requires at least a week of experimentation to find
the perfect inference threshold for your model/dataset combination. Usually,
the tuning is simple, experiment with a two-day run and see how many false
positives you get versus True positives, and as long as the true positives
number is acceptable and the total of false positive + true positive is still
within humanly verifiable numbers then that is your perfect threshold. if you
want to increase the true positives, you will have to drop the threshold, and
if you want to decrease your False positives to maintain the ease of validation
by humans, then increase the threshold.

These steps are followed by an expert validation of the false positives and true
positives to search if there is anything useful in the results. It is important to note
that we cannot validate the model based on concepts like mAP, f1-score, or even
recall which is the most important metric for us because it is impossible to know
how many False negatives the model is making on the dataset as this task will
require a human to pass through the dataset manually.

8.4 Results and shortcomings

Although having a mAP number to evaluate the potential of a model mathemati-
cally is helpful, it still doesn’t tell us whether the method is indeed required. Our
AI model has suspected 847 images to contain musical representations, most of
these images were sadly wrong, as the model misclassifies typical objects found in

https://huggingface.co/imadbekkouch/medieval_music_yolov8
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Figure 8.5: Object Detection Search Engine steps.
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medieval manuscripts like swords, papers, and shields as musical representations
of books and musical instruments. But luckily not all of these images were False
Positives; some of them contained exactly what we needed. The model’s results
were even better than what we realistically expected finding 76 books, 8 lutrins,
113 musical instruments, and 24 singing situations. Although not all books were
indeed a representation of singing as 24 is definitely less than 76 but these 24
images can be a big source of information for musicologists and historians alike.

So we have seen that using AI and computer vision to help search in cultural
heritage scenarios is useful but is it the only way? To answer such a question
we decided to compare the model’s search abilities to a text-based search engine
and see whether the images we collected are impossible to find otherwise. Using
the meta-data and the textual description that is attached to the manuscripts on
the museum’s website, we tried to see if we could find these exact images through
a simple keyword-based search. The majority of the metadata surrounding the
manuscripts didn’t contain any reference to the musical aspects of it. Only 9 of
these manuscripts contained a reference to books and from that only one of these
books was indeed a singing situation. The situation gets even worse for musical
instruments where the only reference to them was in one manuscript related to
King David playing the harp, which is indeed a widespread representation but
not what we are looking for in our research, unlike our model, which was able to
find 113 different instruments. This clearly shows the importance of using such
computer vision techniques to help rebuild our understanding of history and guide
our search in the millions of digitized manuscripts out on the internet.

Figure 8.8 4 Shows two examples of the results of the models that we trained
for the tasks of medieval singing and medieval musical instrument recognition.

8.5 Continuous Improvement

"Garbage in, garbage out."

– **Charles Babbage**, English mathematician and inventor (1791-
1871)

A quote that encapsulates the most important principle in machine learning and
computing in general, if your model is trained on bad data, do not expect good re-
sults. This is why it is important to focus on data quality checks and data quantity.

4Initial D: Herod Ordering the Massacre of the Innocents; Initial V: Clerics Singing; Un-
known; about 1300; Tempera colors, gold leaf, and ink on parchment; Leaf: 26.4 × 18.3 cm
(10 3/8 × 7 3/16 in.); Ms. Ludwig IX 3 (83.ML.99), fol. 85v; No Copyright - United States
(http://rightsstatements.org/vocab/NoC-US/1.0/) The J.P. Getty Museum Ms. Ludwig IX 3
(83.ML.99), fol. 85v
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Figure 8.6: Model’s results for
medieval singing, the manuscript
includes a book and lutrin and
two singers with traditional reli-
gious clothes .

Figure 8.7: Model’s results for
instrument search.

Figure 8.8: Two example images found by the instance segmentation search engine.
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Figure 8.9: A simplified overview of the machine learning pipeline.

In this thesis, we presented many datasets all annotated and validated on multiple
passes by musicology experts. Although our results are on par with the current
state of the art, they are still far away from human expert-level performance. But,
there is a glimpse of hope that we need to remember, the diagram shown in figure
8.9 can be interpreted in two ways. The first is Rubbish in, rubbish out (RIRO)
meaning if your data is bad, your model is going to be bad and your results even
worse. But it can also signify the cyclic property of this pipeline, you start with
bad data and bad models which give you a few results, and then these results will
become your data and improve it a little bit. This leads to an improvement of
your model which in return leads to more results and so on and so forth.

Getting the wheel started and making that first pass of data, model, and results,
will help future researchers go much faster with their passes and get better results.
Our contribution to the Musiconis Library with 113 medieval instruments that
weren’t indexed there before, shows that the work done in this thesis although
quite abstract, theoretical, and research-oriented, still has direct implications on
practical issues that musicologists face every day.



Chapter 9

Conclusion

In this thesis, we have proposed several methods for improving the current state
of the art computer vision models for medieval manuscript studies. Our goal was
to experiment with different deep learning and artificial intelligence techniques to
help musicologists and human experts in the field of medieval manuscript studies
and more specifically historical music. We summarize in the rest of this chapter
the different types of contributions we made to the field from new benchmarks
and datasets to novel techniques and algorithms for domain adaptation, transfer
learning and more. We will also discuss the impact that our research had on the
field of medieval manuscript studies and some perspectives for future works.

9.1 Contributions

9.1.1 Datasets and benchmarks

This thesis is in the intersection of artificial intelligence and medieval manuscript
studies. Although the AI part of the thesis is a mainstream research topic and is
considered a heavily documented field, the medieval manuscript part is still young.
One of the main issues we faced during this thesis was to the lack of annotated
datasets and hence with the collaboration of a team of 15 musicology students
and 4 musicology researchers and experts we managed to annotate multiple large
datasets for musical instrument recognition. The selection criteria was very diverse,
we started with real photographs of ancient instruments that are stored in museums
all around Europe, and then we included historical manuscript artistic depictions
of different types of instruments. The main three datasets we annotated are:

1. Annotated Musical Instrument Museums Online (AMIMO): The AMIMO
dataset is a High dimensional photographs collection of ancient musical in-
struments that are stored and maintained in European museums. The goal
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of annotating such large dataset (10258 images of different objects) is to
allow computer vision models the ability to learn and grasp these musical
instruments in their real form. The dataset contains 6 classes which are:
Vielles, Lutes, Zithers, Harps, Bows, Lyres.

2. Medieval Musicological Studies Dataset (MMSD): MMSD is a dataset that
was manually collected and annotated by musicologists in the goal of under-
standing the history of medieval signing. The goal is to contribute using the
insights found in these images to the reconstruction of the burned Notre-
Dame de Paris Cathedral. The dataset is a collection of images of illumi-
nations representing medieval singing in different forms. We annotated 341
images of 5 classes: Phylactery, Folio, Book, Altar, and Lectern.

3. Musical Instruments Recognition In Medieval Artworks: We created this
dataset to allow as a collection from two major sources which are Musiconis
and Vihuelas:

(a) AnnMusiconis Iconography representations for string instruments: The
AnnMusiconis database is collection of images that our team at IReMus
have created over years of manual search and many collaborations on
the french level and even European level. It is a catalog of iconographic
representations for music and sound performances since the start of the
Middle Ages period until its end. the dataset contains 662 images for
string instruments which are: Zithers, Harps, Lutes, Lyres, Vielles.

(b) AnnVihuela: The AnnVihuelas database is a Spanish Renaissance mu-
sical instruments collection. It contains images from 1470 to 1630. We
annotated 165 images with 4 classes which are: Lutes, Vielles, Harps,
and Lyres.

Our datasets will be publicly available on the Musiconis website after the mu-
sicologists who annotated the datasets publish their thesis on the topics.

9.1.2 Transfer learning techniques

The first step for algorithmic contribution in this thesis went for transfer learning.
Transfer learning is a very active field of research in artificial intelligence that
leverages multiple one or multiple sources of data to enhance performances on
another more challenging set of data. Our contributions can be summarized in
two methods, one is for general transfer learning and the second is for the few shot
transfer learning.

1. Dual Training for Transfer Learning: is a non-intrusive approach that aims
at leveraging the current state of the art object detection models which are



9.1. Contributions 147

pre-trained on irrelevant but large datasets that allows the models to learn
basic concepts like shapes. It improves the performances of such models by
incorporating an extra dataset that is similar in style to new photographs
yet contains the classes that we are interested. The algorithms is a two step
process. The first step aims at focusing the weight update of the object
detector on reducing the source domain loss and slowly shifts the interest
towards the target domain in the second step. We control the interest of the
model using an automatically updated weighting function.

2. Few Shot Object Detection: is a simple non-intrusive method for few shot
object detection that integrates seamlessly with the state of the art object
detection models such as: YOLO v4-5-6, Faster RCNNs, and even attention
based models. The idea aims at first improving the object proposal part of
the object detection model regardless of the class, to be able to leverage the
acceptable amount of objects we have in different classes without worrying
about the small object-per-class issue. The second step of our model aims at
training the full model together focusing mainly on the object classification
now instead of the object detection part of the loss.

Both methods are black box techniques and can be used with any object detection
model.

9.1.3 Auxiliary learning techniques

Getting a computer vision to improve its results on a dataset without adding any
extra data is a dream that can only be accomplished using large servers and weeks
of fine tuning. The other method is called auxiliary learning, whereby we add
more data in the form of meta data or a different way of using the same data
to perform an extra task. Our contributions follow the name of the thesis into
two sub parts, Knowledge Graph Embeddings auxiliary learning and Adversarial
auxiliary learning.

1. Knowledge Graph Embeddings: Our images come with a large metadata set
describing the context of The manuscript. we represent this metadata in the
knowledge graph we use to build concept embeddings using the node2vec al-
gorithm. Knowledge graph embeddings form a continuous lower dimensional
space where concepts and their relations are preserved. Our technique lever-
ages these embeddings to guide the domain adaptation process by combining
them with the visual embeddings from the images as anchors that smooth
the latent space using an extension of Fisher’s linear discriminant.

2. Adversarial Learning: After performing a deep analysis of what makes neural
networks overfit, we found a common problem where are the neural network is
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extracting too much noise and irrelevant information from the image related
to the style and surroundings of the objects and not the objects themselves.
Hence we proposed two new solutions that allows the neural network to
learn category informative features and at the same time domain and style
independent.

(a) Reconstruction adversarial learning: After performing a deep analysis
of what makes neural networks overfit, we found a common problem
where are the neural network is extracting too much noise and irrelevant
information from the image related to the style and surroundings of the
objects and not the objects themselves. Hence we proposed two new
solutions that allows the neural network to learn category informative
features and at the same time domain and style independent.

(b) Augmentation adversarial learning : is a simple and fast domain adap-
tation technique that is based on the same idea of defining a behaviour
correlated with over-fitting and domain dependency, building a network
that aims for detecting such behavior in the latent space, and training
your encoder on the adversarial loss to that. For the sake of simplicity
we decided to make the least amount of expectations, by making the
model predict the augmentation transformations applied to the input
image and the encoder will try to hide and ignore these details in the
extraction process which in turn leads to a more generalisable latent
space extraction.

9.1.4 Augmenting Musiconis

Validating models when working on small datasets is a very tricky situation. Even
when using traditional measures like F1-score, recall, precision and accuracy, there
is still a large chance that the results you are getting are due to hyper-parameter
tuning or to just luck. During this thesis we aimed at using multiple datasets
and benchmarks even outside of the field of medieval manuscripts and reported
the average results of at least 5 repeats of the same experiment, but that is not
enough. This is why we took it to the next level, by actually using our models on
the real data from the BNF dataset where we launched a script that downloads
the images of manuscript pages directly from the BNF without applying any pre-
processing such as zooming on the drawings or segmenting the image into different
parts. The model performed extremely well, providing 165 new manuscripts that
were validated by musicologists that contain more than 300 musicology references
(signing with religious books, or without) and instruments. The mode’s results
were very far from perfect as it made many False Positives. Some of the issues
the model has made is predicting swords and spears that are aimed at a person’s
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head/mouth as a wind musical instrument (mainly trumpets) and same also for the
shields as a stringed musical instrument (mainly Lutes). The model has suspected
a 643 manuscript images and the musicologists have chosen 165 of those images
as containing the objects we are looking for. The manuscripts are currently being
described and processed to be added to the musiconis dataset to further aid with
musicology research.

9.2 Perspectives for future work

The deep learning and artificial intelligence field, in general, is evergrowing and
always on continuous improvements, and as we discussed throughout the thesis, our
results provide excellent value to musicologists, but they are far from perfection.
We list down here a couple of future works to enhance the quality of our results.

9.2.1 Rules and clues

For the majority of the research aims of our musicology colleagues, the target of
their interest is associated with a set of rules and guidelines on when is the image
acceptable or not. We take the example of Vieles vs. Lutes, since they look similar
in shape in an almost eroded sculpture, the only clues they have are the position
of the second hand or the presence of arche.

shape(V iele/Lute) ∧ close(other_hand) =⇒ Lute

shape(V iele/Lute) ∧ close(arche) =⇒ V iele

In other cases we have the presence of a book on a lectern in front of a group of
at least three men wearing specific clothes implies the presence of religious singing
and rituals. Such examples of rules and clues are everywhere embedded at the
core of the musicology research, because finding any book in a manuscript was
a very easy task for our models which found many of them but the majority of
the 800+ images of books found by the model were useless and only 12 ended up
containing the musical performance in question. Building a model and a method
that uses these rules and clues as a strength point instead of a failure will provide
researchers with exactly what they are looking for in a much faster time.

9.2.2 Leveraging high dimensional data

The majority of the images we worked with are extremely high dimensional with
image dimensions up to 7000+ pixels in each direction. All of this information
is wasted immediately before our model even see the images. Since we are using
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Figure 9.1: DALL-E mini by
craiyon.com. Figure 9.2: DALL-E by OpenAI.

Figure 9.3: Two example images generated by AI for the following sentence: "King
David playing the harp in medieval manuscript"

pre-trained models such as YOLO v5 and other large models pre-trained on large
datasets because we don’t have enough data to retrain a large model that can take
such images as direct input from scratch. This leads to having the area of interest
so small it can be barely visible by the human eye since most of them cover less
than 1% of the manuscripts area. A logical solution should train two different
systems, one aimed at producing areas of interest followed by another model that
zooms into only those areas of interest and performs the operation again on a more
zoomed in image, this should allow for way less False Negatives which is the most
important measure of error for musicologists.

9.2.3 Image generation

Data scarcity is our biggest problem when working with medieval data. Recent
advances in the field of image generation have revolutionized the field of computer
vision and natural language processing by bridging the gap between them com-
pletely. The main two models currently in use are DALL-E 2 and Google’s Imagen.
DALL-E is an artificial intelligence system which has been designed by OpenAI
that can create hyper realistic images and art from either a description in natural
human language or a source image that can changed slightly. DALL-E was able
to learn the relationships between words and their shapes and colors, through a
process called "diffusion" which takes a random noise in the shape of an image
and continuously alters and makes changes to it towards the target image that
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Figure 9.4: Viele in a medieval
manuscript.

Figure 9.5: King playing the
harp in medieval manuscript.

Figure 9.6: Two example images generated by AI for the following sentence: "King
David playing the harp in medieval manuscript"

contains the specific aspects it is looking for.
Figure 9.3 shows a direct application of DALL-E to our problems. It doesn’t

require an expert to see that even though the model generates hyper-realistic
images and art that is better than any human can, it still suffers greatly with such
difficult scenarios. Although the model usually generated hyper realistic images
for descriptions that are related to different artistic periods and realistic scenarios.
As the models by design accept different images as input we can aim to retrain
or fine-tune such models to generate new images of objects of interest in more
challenging scenarios.

9.2.4 Interpretability

"Why does the model make a mistake?" a question that many researchers in the
field of artificial intelligence work on and many musicologists kept asking me
throughout the thesis. This is a clear proof that interpretability and reasoning
is part of the human nature. Many of the errors of the models that we discussed
earlier were in repeating scenarios such as use of weapons close to the mouth or
holding similar objects to instruments in a suspicious manner. Building a system
that can identify such scenarios where the model lacks in performance can allow
the researchers to understand what more data to annotate or even better what
scenarios can we ask AI to generate in order to help our object detection models
to better understand the underlying research questions of the musicologists.
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Auxiliary learning & Adversarial training pour les études des manuscrits
médiévaux

Résumé

Cette thèse se situe à l'intersection de la musicologie et de l'intelligence artificielle, et vise à exploiter l'IA pour
aider les musicologues dans leur travail répétitif, comme la recherche d'objets dans les manuscrits du musée.
Nous avons annoté quatre nouveaux ensembles de données pour l'étude des manuscrits médiévaux : AMIMO,
AnnMusiconis, AnnVihuelas et MMSD. Dans la deuxième partie, nous améliorons les performances des détecteurs
d'objets en utilisant des techniques de Transfer learning et de Few Shot Object Detection. Dans la troisième
partie, nous discutons d'une approche puissante de Domain Adaptation, qui est auxiliary learning, où nous
formons le modèle sur la tâche cible et une tâche supplémentaire qui permet une meilleure stabilisation du modèle
et réduit le over-fitting. Enfin, nous abordons l'apprentissage auto-supervisé, qui n'utilise pas de méta-données
supplémentaires en tirant parti de l'approche de adversarial learning, forçant le modèle à extraire des
caractéristiques indépendantes du domaine.

Mots-clés : Apprentissage auxiliaire ; réseaux antagonistes ; graphe de connaissances ; réseaux de neurones ;
Patrimoine culturel ; Études des manuscrits médiévaux

Auxiliary learning & Adversarial training for Medieval Manuscript Studies

Summary

This thesis is at the intersection of musicology and artificial intelligence, aiming to leverage AI to help
musicologists with repetitive work, such as object searching in the museum's manuscripts. We annotated four new
datasets for medieval manuscript studies: AMIMO, AnnMusiconis, AnnVihuelas, and MMSD. In the second part,
we improve object detectors' performances using Transfer learning techniques and Few Shot Object Detection. In
the third part, we discuss a powerful approach to Domain Adaptation, which is auxiliary learning, where we train
the model on the target task and an extra task that allows for better stabilization of the model and reduces
over-fitting. Finally, we discuss self-supervised learning, which does not use extra meta-data by leveraging the
adversarial learning approach, forcing the model to extract domain-independent features.

Keywords : Auxiliary learning ; adversarial training ; Knowledge Graph Embeddings ; Neural Network
Embeddings ; Cultural Heritage ; Medieval Manuscript Studies
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