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Résumé

Ce travail de thèse cherche à participer au rapprochement entre deux littératures et com-
munautés scientifiques, qui sont jusqu’à présent relativement étanches l’une à l’autre :
l’apprentissage automatique et la biologie computationnelle.
Les réseaux de neurones artificiels, une classe particulière de méthodes d’apprentissage
automatique, ont en effet été largement développés au cours des dernières années pour
des applications aux séquences biologiques. Ils ont permis des avancées importantes dans
des champs variés de la biologie, notamment en génomique régulatrice, par exemple en
permettant de prédire les liaisons des facteurs de transcription, les niveaux d’expression
des gènes, l’accessibilité de la chromatine ou encore les modifications des histones (Zhou
& Troyanskaya, 2015; Kelley et al., 2018; Avsec et al., 2021a,b). Ces méthodes sont
principalement utilisées pour leurs capacités de prédiction d’un trait biologique à partir
d’une séquence, et sont couramment évaluées sur leurs capacités à faire des prédictions
correctes à partir de données qui n’étaient pas présentes dans leurs jeux d’entraînement.
En parallèle, de nombreuses méthodes ont été développées en biologie computationnelle
dans le but de tenter d’expliquer, plutôt que de prédire, ces phénotypes ; le but étant alors
d’aider à leur compréhension. Dans la suite, on nommera simplement ces approches méth-
odes explicatives. On peut notamment citer les études d’association pan-génomiques (Viss-
cher et al., 2017), qui ont pour but l’identification de variants génomiques qui corrèlent
avec le trait biologique d’intérêt, par exemple en utilisant des modèles linéaires. On
peut également citer le nombre croissant d’algorithmes cherchant à détecter des motifs de
séquences (Bailey et al., 2015). Ces motifs, qui peuvent être compris comme de petites
séquences biologiques probabilistes, sont notamment connus pour être des éléments de
base en génomique régulatrice. Bien que ces méthodes aient mené à de nombreuses dé-
couverts durant les dernières années, elles restent soumises à de nombreuses limitations.
Parmi d’autres, on peut citer des restrictions sur le type de variants génétiques qu’elles
peuvent utiliser, ainsi que des limitations statistiques liées à la manière dont elles gèrent
un grand nombre de tests, résultant d’un grand nombre de variants.
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Résumé

Les réseaux de neurones ont initialement été développés dans un but prédictif, et les
architectures les plus utilisées ont souvent été créées pour des applications différentes
des séquences biologiques, telles que la vision par ordinateur (réseaux de neurones con-
volutionnels (CNNs), Lecun & Bengio, 1995) ou encore le traitement automatique du
langage (méchanismes d’attentions Vaswani et al., 2017). Malgré cela, ils reposent par-
fois sur des objets mathématiques qui peuvent facilement s’interpréter d’un point de vue
biologique. Par exemple, les filtres de la première couche de convolution d’un CNN sont
homogènes aux données d’entrées, et peuvent être vus comme de petits bouts d’images
dans un cadre de vision par ordinateur, ou comme des motifs de séquences si le réseau
est appliqué à des séquences biologiques correctement encodées. Sur des réseaux plus
profonds, qui permettent de modéliser des interactions plus complexes sur les données
d’entrées, où cette interprétation ne peut pas être obtenue aussi directement, de plus
en plus de techniques cherchent à expliquer les prédictions en reconstruisant des carac-
téristiques biologiques interprétables à partir de ces réseaux (Novakovsky et al., 2022a).
Ces réseaux, associés avec des méthodes d’interprétabilité, peuvent donc être considérés
comme des méthodes permettant de découvrir des variants biologiques associés à un trait
phénotypique, puisque ces variants en permettent la prédiction, ce qui est donc un but
commun avec les méthodes explicatives.
En revanche, contrairement aux méthodes explicatives issues de la bioinformatique, qui
s’attachent à quantifier statistiquement l’association entre les variants et le phénotype
d’intérêt, il n’y a à notre connaissance que peu de travaux qui cherchent à quantifier
l’association entre les caractéristiques apprises par un réseau de neurones et la sortie
de ce réseau. Mais cela soulève des questions d’inférence post-sélection, un champ de
recherche très actif en statistiques.
L’inférence post-sélection cherche à créer des procédures de test valides dans un cas où les
hypothèses nulles ont été construites, ou sélectionnées, en ayant utilisé les mêmes données
que celles qui seront utilisées pour tester ces hypothèses. En effet, le cadre classique de
l’inférence suppose que les hypothèses ont été formulées indépendamment des données, et
donc l’utilisation d’outils issus de ce cadre classique sur des hypothèses sélectives mène à
des biais, et à des p-valeurs trop optimistes dans le cadre qui nous intéresse (Benjamini,
2020; Taylor & Tibshirani, 2015). L’inférence conditionnelle cherche alors à corriger la
procédure de test, en prenant en compte la sélection préalable.
Cette thèse cherche donc à combiner les avancées en apprentissage automatique, notam-
ment en termes d’explicabilité, avec les méthodes explicatives. Nous voulons montrer com-
ment les réseaux de neurones permettent de surmonter certaines des limites inhérentes
à ces méthodes, tout en prenant en compte les problématiques liées à l’inférence post-
sélection.
Dans un premier temps, nous nous concentrons sur les méthodes bioinformatiques, et
plus particulièrement sur les études d’association pan-génomiques. A partir d’un jeu de
données rassemblant un ensemble d’individus pour lesquels un certain nombre de variants
génomiques et le phénotype sont connus, ces études cherchent à détecter les variants sig-
nificativement associés avec le phénotype, le plus souvent en utilisant un modèle linéaire.
Le nombre de variants testés étant généralement très élevé, ces méthodes doivent donc
prendre en compte la multiplicité des tests.
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Résumé

On peut alors identifier au moins deux facteurs limitant ces études. Premièrement, leurs
découvertes sont nécessairement restreintes à la liste de variants dont elles disposent en
entrée. Ces listes sont à leur tour limitées, que ce soit pour des questions aussi bien
expérimentales que de modélisation. Deuxièmement, ces listes contiennent généralement
énormément de variants différents, et ces études reposent généralement sur de l’inférence
simultanée, en cherchant à contrôler la probabilité de faire au moins une fausse découverte,
pour gérer la multiplicité des tests. Cette approche est relativement stricte et peut limiter
fortement le nombre de découvertes effectuées.
Nous montrons alors comment l’apprentissage automatique permet de répondre à cette
première limite. En effet, on peut souvent décomposer ces méthodes en deux étapes: con-
struction d’une représentation des données, puis application d’un modèle linéaire sur cette
nouvelle représentation. L’étape d’entraînement d’un réseau de neurones cherche alors à
trouver les bons paramètres du modèle linéaire, mais également à apprendre la meilleur
représentation possible pour le problème posé. Certaines représentation sont facilement
interprétables, on peut par exemple penser à représenter une séquence biologique par son
contenu en k-mers — des sous-séquences de longueur k. Les représentations apprises par
les CNNs à une couche reposent sur la comparaison entre la séquence et des motifs de
séquence, ce qui là encore donne accès à une interprétation biologique intéressante. Nous
réalisons alors un état de l’art des méthodes qui cherchent à expliquer les prédictions d’un
réseau de neurones à partir d’éléments biologiques. Cela nous permet de montrer le poten-
tiel que représente l’apprentissage automatique, couplé avec les méthodes d’interprétation,
dans la recherche de nouveaux variants associés avec un trait biologique.
En revanche, ces variants sont donc issus d’une procédure de sélection, qu’il faudra pren-
dre en compte au moment de tester leur association avec le trait biologique d’intérêt.
De plus, cette sélection intervient parmi un ensemble infini, ce qui rajoute une difficulté
supplémentaire. Nous étudions alors les différentes approches qui permettent d’obtenir
des procédures de tests valides, dans le cas où une sélection préalable des objets testés a
eu lieu. Cette question est en fait très proche de la seconde limitation soulevée pour les
études d’association pan-génomiques, et nous présentons donc différentes approches pour
résoudre ce problème. Nous explicitons la problématique rencontrée lors des tests multi-
ples et en présence de sélection, puis nous proposons un état de l’art des connaissances
en inférence conditionnelle, tout en pointant les limites actuelles. Particulièrement, ces
méthodes ne fonctionnent pas pour de la sélection parmi un ensemble infini, ce qui est
pourtant le cas des variants sélectionnés par les réseaux de neurones.
La seconde moitié de la thèse est dédiée à l’introduction de la méthode SEISM— SElective
Inference for Sequence Motifs. Cette méthode se base sur des réseaux de neurones pour
faire de la sélection de variants génomiques, puis propose une procédure d’inférence valide
pour tester l’association entre ces variants et le trait biologique. Cette méthode a fait
l’objet d’un article (Villié et al., 2022) et une implémentation PyTorch est disponible :
https://gitlab.in2p3.fr/antoine.villie1/seism.
Tout d’abord, nous commençons par introduire un cadre pour formaliser la définition
des méthodes d’apprentissage automatique en tant que méthodes de sélection de variants
génétiques. Nous montrons que les réseaux convolutionnels à une couche rentrent dans ce
cadre, et sélectionnent effectivement des motifs de séquences. En revanche, ces méthodes
sont originellement créées pour des problématiques de prédiction, et n’ont donc pas un
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Résumé

comportement satisfaisant pour faire de la sélection, que ce soit au niveau de la stabilité ou
de la pertinence des variants sélectionnés. Nous introduisons donc plusieurs modifications
afin d’améliorer leurs performances dans ce domaine, que ce soit dans l’architecture du
réseau en elle-même ou en ce qui concerne son optimisation.
Nous introduisons ensuite le problème de de-novo motif discovery, qui cherche à déter-
miner des motifs de séquences associés avec un trait biologique, et nous montrons que
notre procédure de sélection obtient des performances similaires aux méthodes explica-
tives issues de la biologie computationnelle, dont c’est le but premier. Nous soulignons
également les différences de modélisation qui sous-tendent ces différentes approches. En
effet, les méthodes bioinformatiques et celles issues de l’apprentissage statistique mod-
élisent de manières différentes les distributions de k-mers à partir d’un motif de séquence,
ce qui mène à des interprétations différentes.
Puis nous définissons un cadre statistique pour tester l’association entre les motifs dé-
couverts et le trait biologique d’intérêt. Nous commençons donc par introduire un mod-
èle Gaussien, des hypothèses nulles et des statistiques de test associées. Les méthodes
d’inférence conditionnelles reposent sur le concept d’événement de sélection : l’ensemble
des traits biologiques qui auraient mené à la sélection des mêmes variants génomiques si
on avait appliqué à ces traits la même procédure de sélection que celle appliquée au vrai
phénotype, celui présent dans le jeu de données initial. Le cœur de l’inférence condition-
nelle consiste à construire la distribution des statistiques de test sous l’hypothèse nulle,
conditionnellement l’événement de sélection.
Mais nous montrons que dans ce cas, une expression analytique pour cette distribution
semble hors d’atteinte. De plus, cet événement étant ici de probabilité nulle, le condition-
nement devient alors mal défini, ce qui complique encore le problème, avec l’apparition
potentielle du paradoxe de Borel-Kolmogorov (Bungert & Wacker, 2022). Les outils clas-
siques d’inférence conditionnelle ne peuvent alors pas s’appliquer directement.
Nous contournons donc le problème en introduisant un maillage de l’espace des motifs
: au lieu de tester un motif ponctuel, nous allons tester un ensemble de motifs qui lui
sont proches. Cette approche entraîne alors une modification des hypothèses nulles et
des statistiques de tests, avec plusieurs options possibles menant à des interprétations
différentes.
Une expression analytique de la distribution nulle conditionnelle restant hors d’atteinte,
nous avons recours à une procédure d’échantillonnage afin de l’approximer. Nous recour-
rons donc à un algorithme dit de hit-and-run : une procédure d’échantillonnage par rejet
qui diminue considérablement le taux de rejet par rapport à une approche naïve, au prix
d’une dépendance entre les points tirés.
Nous proposons également un travail autour des hypothèses nulles, qui sont composites
dans ce cadre. C’est-à-dire qu’une même hypothèse nulle peut être décrite par plusieurs
paramètres. Afin de faciliter l’utilisation de SEISM sur des données réelles, nous cherchons
à limiter le nombre d’hypothèses nécessaires sur ces paramètres, et nous introduisons donc
plusieurs invariances afin de rendre la distribution nulle conditionnelle indépendante de
ces paramètres. Cette problématique dépasse le cadre de SEISM, mais représentait à
notre connaissance une problématique peu étudiée jusque-là.
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Résumé

Grâce à plusieurs expériences, nous montrons que la procédure introduite est correcte-
ment calibrée, et plus puissante qu’une procédure basée sur une stratégie de data-split,
consistant à sélectionner les variants sur une partie seulement des données, et à les tester
sur la seconde partie. Cela valide l’intérêt de la procédure SEISM, notamment dans un
cadre de petits jeux de données.
En revanche, l’inférence conditionnelle par échantillonnage se révèle couteuse d’un point
de vue computationnel, et nous étudions l’impact de différents paramètres sur le temps
de calcul. Nous montrons donc une complémentarité entre une approche conditionnelle
et une approche data-split, en fonction du jeu de données et des différents paramètres de
sélection.
Nous appliquons enfin SEISM sur un jeu de données réelles, et montrons que notre procé-
dure semble robuste à l’hypothèse Gaussienne sur la distribution des traits biologiques.
Pour conclure, ce travail vise à tirer profit des récentes avancées dans le domaine de
l’apprentissage automatique, de l’explicabilité de ces méthodes et en inférence post-
sélection, afin de dépasser la seule notion d’explicabilité d’un réseau de neurones, et
d’en faire un outil qui corresponde aux critères des méthodes de la biologie computation-
nelle. Il constitue une preuve de concept sur un cas d’utilisation relativement simple, et
permet de lever plusieurs barrières théoriques. Mais le cadre introduit et la procédure
statistique développée se veulent les plus généralistes possible, et adaptables à de nom-
breuses méthodes de sélection et autres types de variants génomiques. Cela ouvre la voie
à de nombreux développements afin d’en accroître le champ d’application, constituant
des pistes prometteuses pour de futurs travaux.

v





Remerciements

Tout d’abord, je tiens à remercier Laurent Jacob pour la confiance qu’il m’a accordée en
me proposant ce sujet de thèse. Merci beaucoup de m’avoir accompagné et guidé au cours
de ces trois années, et d’avoir partagé avec moi ton expérience en recherche scientifique.
Merci également pour ta bienveillance et ta disponibilité.
Merci à Yohann de Castro, pour l’intérêt que tu as porté à ce sujet, pour ton implication
et pour ton expertise. Tu nous as permis d’explorer de nombreuses directions, et travailler
avec toi a vraiment été stimulant et formateur.
Merci beaucoup Philippe Veber pour ton aide sur ce projet, et pour les échanges que
nous avons eu pendant ces trois années. Merci de partager ainsi ta passion, toujours avec
beaucoup de pédagogie, et sur des sujets variés.
J’ai eu énormément de chance de vous avoir comme encadrants, et ces quelques années
ont été très agréables grâce à vous !
Merci également aux membres du jury, Anne-Laure Fougères, Élodie Laine, Pierre Mahé,
Pierre Neuvial, Marie-France Sagot et Susana Vinga. Merci pour votre temps, pour votre
expertise, pour l’intérêt que vous avez porté à ce sujet et pour votre participation à ce
jury.
Je tiens à remercier les membres de mon comité de suivi de thèse : Chloé Azencott, Vincent
Daubin, Jean-Philippe Rasigade et plus particulièrement Benoît Cournoyer, pour votre
accompagnement et vos conseils toujours bienveillants au cours de ces trois années.
Merci à François Gindraud, pour ton temps et pour tes conseils sur le développement de
SEISM. Ta contribution a été précieuse, et j’ai énormément appris grâce à toi.
Merci Claire pour ton accueil dans le LBBE, j’ai vraiment apprécié travailler avec toi
pendant le début de cette thèse. Ce fut une belle rencontre, et je te souhaite le meilleur,
tant sur le plan professionnel que personnel !
Merci à Alexandre, Alexia, Djivan, Johanna, Luca, Mary, Maxime, Nicolas, Théo et
Thibault, pour ces bons moments partagés.

vii



Merci à toute l’équipe BAOBAB, et plus particulièrement Marie-France, Sabine, Arnaud,
Vincent pour cette super équipe, avec une super ambiance.
Merci à Annaël, Caro, Damien, Jade, Kaïs, Lola, Lucas, Romain et tout le BCVIL pour
m’avoir permis de décompresser sur les terrains chaque semaine, mais aussi en dehors
des gymnases, et de repartir reboosté. Merci Antoine, Bruno, Cyrielle, Eloïse, Emeline,
Florence, Ludo, Quentin et Tanguy pour toutes ces années d’amitiés qui représentent
beaucoup pour moi. Merci pour votre capacité à comprendre les règles, à dire tout le
temps oui, pour votre calme, votre fair-play, la finesse de vos analyses sportives, pour
votre volonté gravir des sommets, votre présence, votre modération et votre bonne foi.
Un grand merci à mes parents et à mes sœurs, vous m’avez toujours soutenu et encouragé
dans mes différents projets. C’est vous qui m’avez donné cette curiosité et cette envie
d’apprendre, et cette thèse est donc en grande partie grâce à vous.
Enfin, merci Chloé, pour partager avec moi cette aventure, pour la confiance que tu
m’apportes, pour ton soutien constant, ta bonne humeur et surtout ton humour irré-
sistible.



Contents

List of Figures 1

List of Tables 3

List of Symbols 5

Biology Basics for the Mathematically Inclined 7

Foreword 9

1 Machine learning and explainable AI for enhancing Genome Wide
Association Studies 13
1.1 Methodology and limitations of GWAS . . . . . . . . . . . . . . . . . . . . 14
1.2 Machine Learning for biological sequences overview . . . . . . . . . . . . . 16

1.2.1 Linear models, support vector machines and data representation . . 18
1.2.2 Kernel methods for biological sequences . . . . . . . . . . . . . . . . 20
1.2.3 Learning a relevant representation . . . . . . . . . . . . . . . . . . . 22

1.2.3.1 Multiple kernel learning . . . . . . . . . . . . . . . . . . . 23
1.2.3.2 Convolutional neural networks for biological sequences . . 23
1.2.3.3 Attention networks and transformers . . . . . . . . . . . . 28

1.3 Why are explanations important . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Interpretability tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Interpreting first-layer filters of CNNs as sequence motifs . . . . . . 33
1.4.2 Visualizing importance of a neural network node using nullification 33
1.4.3 Obtaining importance from attention mechanisms . . . . . . . . . . 34
1.4.4 An agnostic set of methods: propagation of influence . . . . . . . . 34

1.4.4.1 Forward propagation of influence . . . . . . . . . . . . . . 35
1.4.4.2 Backward propagation of influence . . . . . . . . . . . . . 36

1.4.5 Using prior knowledge to derive transparent models . . . . . . . . . 38
1.4.6 Limitations of interpretability . . . . . . . . . . . . . . . . . . . . . 38

ix



CONTENTS

2 From multiple testing to conditional inference, different strategies for
valid inference procedures on high-dimensional data 41
2.1 Uncovering gene-phenotype associations: a case study . . . . . . . . . . . . 41

2.1.1 Association between a given gene and the phenotype . . . . . . . . 42
2.1.2 What happens with multiple genes? . . . . . . . . . . . . . . . . . . 43

2.2 Simultaneous inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.1 The Bonferroni correction . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 The Benjamini-Hochberg method . . . . . . . . . . . . . . . . . . . 49

2.3 Data-split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Conditional inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Getting intuition on an easy example . . . . . . . . . . . . . . . . . 52
2.4.2 Conditional inference with the LASSO . . . . . . . . . . . . . . . . 54
2.4.3 Some extensions in the linear case . . . . . . . . . . . . . . . . . . . 58
2.4.4 Extensions to the non-linear framework . . . . . . . . . . . . . . . . 59

2.5 Current limitations of conditional inference . . . . . . . . . . . . . . . . . . 61

3 Discovering sequence motifs with SEISM 63
3.1 Association scores and link with CNNs . . . . . . . . . . . . . . . . . . . . 64
3.2 The activation function — measuring the presence of a motif in a sequence 65

3.2.1 Comparing a motif and a k-mer . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Pooling strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Optimizing an association score to select sequence motifs . . . . . . . . . . 68
3.3.1 Difference of convex functions . . . . . . . . . . . . . . . . . . . . . 68
3.3.2 Convexification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.3 (Stochastic) gradient descent with line search . . . . . . . . . . . . 72
3.3.4 Reverse complements . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.5 Adaptive length selection . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 From a joint to a greedy optimization . . . . . . . . . . . . . . . . . . . . . 74
3.5 De-novo motif discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.7 Discussing the different models . . . . . . . . . . . . . . . . . . . . . . . . 82

x



CONTENTS

4 A valid post-selection inference procedure for the association between
the phenotype and trained convolutional filters 85
4.1 Setting up the statistical framework and limitations due to conditioning . . 86

4.1.1 Introduction of the Gaussian model . . . . . . . . . . . . . . . . . . 86
4.1.2 Selection event description . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.3 Conditioning with respect to a null set . . . . . . . . . . . . . . . . 87

4.2 Quantization of the motif space using meshes . . . . . . . . . . . . . . . . 94
4.3 Description of SEISM’s test procedure . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Testing procedure for a single motif . . . . . . . . . . . . . . . . . . 96
4.3.1.1 Definition of the null hypotheses . . . . . . . . . . . . . . 96
4.3.1.2 Sampling from the conditional null distribution with the

hit-and-run algorithm . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Testing procedure for q > 1 motifs . . . . . . . . . . . . . . . . . . . 99
4.3.3 Sampling under selective composite hypotheses with known vari-

ance σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.4 Sampling under selective composite hypotheses with unknown σ . . 101

4.4 Empirical evaluation of SEISM . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Statistical validity and performance . . . . . . . . . . . . . . . . . . 104
4.4.2 Impact of the hyperparameters on computation costs . . . . . . . . 107
4.4.3 Impact and choice of the number of burn-in and replicates . . . . . 109
4.4.4 Robustness of the Gaussian assumption: end-to-end application on

real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Conclusion and future works 117

Neural Networks beyond explainability: Selective inference for sequence
motifs 120

Bibliography 149

xi





List of Figures

1 Overview of SEISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Example of a Manhattan plot . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 One-hot encoding of a DNA sequence . . . . . . . . . . . . . . . . . . . . . 17
1.3 Optimal hyperplanes of a SVM . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Gaussian kernel on biological sequences . . . . . . . . . . . . . . . . . . . . 21
1.5 Diagram of a supervised learning method . . . . . . . . . . . . . . . . . . . 22
1.6 Diagram of DeepBind architecture . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 New mapping using anchor points . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Sequence motif with position probability matrix . . . . . . . . . . . . . . . 27
1.9 Diagram of TBiNet architecture . . . . . . . . . . . . . . . . . . . . . . . . 29
1.10 Complexity and performance of a machine learning model . . . . . . . . . 30
1.11 Classification of the main explainable machine learning methods. . . . . . . 32
1.12 Impact of nullifying a filter on the predition . . . . . . . . . . . . . . . . . 34
1.13 Attribution map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Q-Q plot under the null for one gene . . . . . . . . . . . . . . . . . . . . . 44
2.2 Q-Q plot under the null for the gene with max weight . . . . . . . . . . . . 46
2.3 Q-Q plot under the null for data-split . . . . . . . . . . . . . . . . . . . . . 51
2.4 Q-Q plot of the empirical non-conditional distribution of the p-values (pj),

for j ∈ Jτ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Geometrical interpretation of the polyhedral lemma . . . . . . . . . . . . . 56
2.6 Q-Q plot under the conditinonnal null after LASSO . . . . . . . . . . . . . 58

3.1 Motif discovered using SEISM on simulated dataset with no signal . . . . . 67
3.2 Illustration of the Conic Particle Gradient Descent algorithm . . . . . . . . 71
3.3 A sequence x and its reverse complement x̄. . . . . . . . . . . . . . . . . . 74
3.4 Adaptative length selection with SEISM . . . . . . . . . . . . . . . . . . . 75
3.5 Motifs obtained with CKN-seq . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 Motifs selected with SEISM’s greedy procedure . . . . . . . . . . . . . . . 77
3.7 Generalized suffix tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Selection performance of SEISM . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Comparison between two motifs discovered by STREME or SEISM . . . . 82

4.1 Q-Q plot after SEISM procedure under the null . . . . . . . . . . . . . . . 90
4.2 Toy example on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 The unit sphere S, with events A (the spherical wedge) and B (the great

circle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Discretization of the 3-letters alphabet . . . . . . . . . . . . . . . . . . . . 95

1



LIST OF FIGURES

4.5 Q-Q plots comparing data-split and conditional inference . . . . . . . . . . 106
4.6 Impact of different parameters on the computation time . . . . . . . . . . . 108
4.7 Impact of the regularization parameter on the meshes . . . . . . . . . . . . 109
4.8 Variations of the p-values for different number of samples n and different

numbers of replicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.9 Known binding motif for RAR. . . . . . . . . . . . . . . . . . . . . . . . . 114
4.10 Empirical probability density of the phenotypes in the ChIP-seq dataset. . 114
4.11 Q-Q plot obtained by applying the SEISM procedure to permuted versions

of the ChIP-seq dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2



List of Tables

1.1 Example of a dataset used for a GWAS analysis . . . . . . . . . . . . . . . 14
1.2 Different approaches relying on backpropagation of influence and their lim-

itations. Red cross indicates method limitation. . . . . . . . . . . . . . . . 37

2.1 Example dataset to be used throughout the chapter. . . . . . . . . . . . . . 44
2.2 Classical and post-selection inference framework. . . . . . . . . . . . . . . . 46
2.3 Possible outcomes when testing a null hypothesis. . . . . . . . . . . . . . . 47

4.1 Two equivalent parameterizations for the unit sphere S and their implica-
tions on the joint density functions and on events A and B. . . . . . . . . . 93

4.2 Q-Q plots for a various number of burn-in iterations and replicates obtained
by applying SEISM on 200 simulated datasets under the null hypothesis. . 110

4.3 Q-Q plots for a various number of burn-in iterations and replicates obtained
by applying SEISM on 200 simulated datasets with some signal. . . . . . . 111

4.4 Motifs and p-values obtained using the SEISM procedure (data-split) on
the real ChIP-seq dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3





List of Symbols

R The set of real numbers
R+ The set of positive numbers
Rn×m The set of real-valued matrices of size n×m
In The identity matrix in Rn×n

Cn The centering matrix in Rn×n

0 , 1 The all-zeros and all-ones vectors
AT The transpose of matrix A
y⊥ The orthogonal complement of vector y
〈· , ·〉 The dot product
‖·‖p `p norm

U(0, 1) The uniform distribution between 0 and 1
N (µ, σ2) The Gaussian distribution with mean µ and standard deviation σ
P Probability
E Expected value
L Likelihood function

5





Biology Basics for the Mathematically Inclined

DNA Deoxyribonucleic acid: a polymer carrying genetic in-
structions for the development, functioning, growth
and reproduction of organisms. This polymer is com-
posed of two polynucleotide chains, where each nu-
cleotide, or base, is either adenine (A), cytosine (C),
guanine (G) or thymine (T).

Phenotype The set of observable characteristics or traits of an
organism.

Genotype The complete set of genetic material of an organism.

SNP A single-nucleotide polymorphism is a substitution of
a single nucleotide at a specific position in the genome.
Such variations in the DNA sequence can affect the
phenotype of an individual and can be associated with
diseases.

Indels It refers to insertion and/or deletion of nucleotides
into DNA, usually less than 1000 bases long.

Translocations When a segment of DNA is moved to a new location
on the same or a different chromosome.

Copy-number variations Gain or loss of a segment of DNA resulting in an al-
teration in the number of copies of a gene or set of
genes.
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Biology Basics for the Mathematically Inclined

Mobile genetic elements Segments of DNA that can move around within or be-
tween genomes. They include transposable elements,
plasmids (circular fragments of DNA) and viruses.
For instance, antibiotic resistance genes, if located in
a such a segment, can be transported to share genetic
code with neighboring bacteria.

Microarray A collection of DNA spots attached to a solid surface.
Each spot contains a specific DNA sequence, for in-
stance a short section of a gene, or a small sequence
with a known SNP. Hybridization between the probes
and the target is then detected and quantified, usually
using fluorescence or chemiluminescence. Such chips
can be used to measure the expression levels of genes,
or to genotype a genome.

High-throughput sequencing Also known as next-generation sequencing, it refers
to sequencing methods that allow to sequence the en-
tire genome at once, by sequencing multiple DNA
molecules in parallel, enabling hundreds of millions
of DNA molecules to be sequenced at a time. Usu-
ally, the genome is first fragmented into small pieces,
and then multiple fragments are sequenced at once.

Reference genome A representative example of the DNA sequence in one
idealized individual organism of a species.

Core or accessory genome The core genome represents the shared and conserved
genetic material of a species, usually composed of
genes that are essential for basic cellular functions,
while the accessory genome represents the material
shared within only one or some individuals, and usu-
ally provides specific functions or adaptations, such as
antibiotic resistance.

Transcription factor A protein that regulates the transcription of DNA into
RNA by binding to specific sequences of DNA and
modulating the activity of RNA polymerase. Those
specific sequences are named binding sites, and sets of
similar sequences can be represented using sequence
motifs.

Sequence motif A nucleotide (or amino-acid) sequence pattern, as-
sumed to be related to some biological function.
They can be mathematically represented using posi-
tion weight matrices, or graphically as sequence logos.
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Foreword

In the recent years, neural networks have been successfully used for making predictions
from biological sequences. In particular, they have brought significant improvements in
regulatory genomics, e.g. to predict cell-type specific transcription factor binding, gene
expression, chromatin accessibility or histone modifications from a DNA sequence (Zhou
& Troyanskaya, 2015; Kelley et al., 2018; Avsec et al., 2021a,b). These methods are
usually evaluated based on the accuracy of their predictions or decisions, and they have
made great progress in this regard. It is also worth noting that the majority of these
algorithms were not initially developed for application to biological data, but rather to
computer vision (convolutional neural networks (CNNs), Lecun & Bengio, 1995) or to
natural language processing (attention mechanisms, Vaswani et al., 2017) problems.
Although most neural networks were initially designed for prediction, some architectures
spontaneously reveal features that lend themselves easily to biological interpretations.
For instance, the trained filters of elementary one-layer CNNs have a straightforward
interpretation as position weight matrices, and therefore as sequence motifs. However,
the lack of interpretability is a commonly outlined limitation of deeper networks, for
which the ability to model complex interactions between the features results in significant
performance gains. Interpretability considerations are becoming increasingly important
in the machine learning community, particularly for biological applications. As a result,
approaches for extracting interpretable biological features from these networks have been
developed, and highlight various genetic variant types (Novakovsky et al., 2022a).
In addition to seeking to predict a biological trait, these neural networks — if neces-
sary coupled with explainability approaches — can then be thought of as methods for
selecting variants that appear to be somewhat related to this trait, since they are useful
for the prediction. However finding features somewhat associated with a trait is often
not enough, as an observed non-zero association can be spurious. And that’s why some
methods from the computational biology literature are committed to quantifying the un-
certainty of those associations. These explanatory methods, which have developed greatly
in recent years, seek to explain, rather than predict, certain biological traits, and help
to understand the underlying biology. Genome-wide association studies (Visscher et al.,

9



Foreword

2017) for example find genetic variants (traditionally single-nucleotide polymorphisms)
correlated with a trait. We can also mention the increasing number of algorithms de-
signed to tackle the de-novo motifs discovery task (Bailey et al., 2015). Sequence motifs,
or small probabilistic biological sequences, are indeed historical and basic elements of reg-
ulatory genomics (Harr et al., 1983; Schneider & Stephens, 1990). In this framework, the
quantification of the association between the genetic variants and the biological trait is of
great importance. Although they have led to a remarkable range of discoveries in recent
years, these explanatory methods face different challenges, whether it is to extend their
scope, the types of genetic variants they consider or regarding statistical considerations.
Neural networks then represent a promising direction to try to overcome those limitations.
However, to our knowledge, quantifying the significance of those associations between in-
terpretable features extracted from a neural network and biological traits has only received
little attention and raises many challenges.
In particular, the genetic variants resulting from the training and interpretation of neural
networks have been selected among rich class of variants, and this selection has to be
accounted for when it comes to the test step.
In order to bridge those different approaches, this thesis aims to go beyond interpretations,
by leveraging recent development in post-selection inference to quantify the uncertainty
of explicability for machine learning.
To accomplish this goal, this thesis is organized in four chapters. The first two chapters
aim to give a precise state of the art of the different existing methods, whether to identify
relevant genetic variants or to test them, and to identify some limitations to which we
will try to provide answers in the following chapters.

• Chapter 1 first proposes a rapid overview of genome wide association studies. Once
we provide a brief explanation of how they operate, we can then identify several
limitations that current approaches are subject to. We will then introduce several
machine learning algorithms for biological sequences and show how, in addition
to properly predicting a biological trait, they learn a data representation that is
relevant to the task at hand. This representation can be very complex depending
on the considered algorithm, but can occasionally be explained using mathematical
objects that lend themselves easily to biological interpretations. In this regard, the
machine learning methods constitute a promising direction for addressing some of
the restrictions of the genome wide association studies. We also conduct an overview
of existing explainable machine learning methods, allowing us to derive interpretable
features for more complex networks, in order to try to give a comprehensive picture
of neural network contributions to the considered limitations.

• Chapter 2 focuses on the statistical issues arising when one wants to test the associ-
ation between genetic variants and a trait. Genome wide association studies have to
deal with a huge number of different variants to test, and the current simultaneous
inference approach is being challenged. However, neural networks and interpretation
methods tend to select only a limited number of genetic variants, among rich and
potentially infinite classes. This places us in a post-selection inference framework,
a very active field of research in recent years. Multiple testing and post-selection
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inference are different approaches that can tackle similar problematics, and we will
try to give a comprehensive overview of the challenges and of recent developments.
This will allow us to identify some limitations of current methods, preventing their
application to our framework of interest.

After having completed this overview, we will introduce SElective Inference for Sequence
Motifs (SEISM), a valid statistical inference procedure for the interpretable features ex-
tracted from a trained neural network, depicted in Figure 1.
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Figure 1: Overview of SEISM. (a) The input is a set of sequences and corresponding
phenotypes in some space Y (b) It trains a convolutional neural networks to predict a
phenotype from sequences, which leads to the selection of sequence motifs. (c) Then
SEISM partitions the space of motifs to quantize the selection. The selection event is
the set of phenotype vectors that would lead to selecting an element in the same mesh.
(d) Using a sampling strategy, SEISM builds a null distribution for the test statistic,
conditional to the selection event. The p-value associated with a selected motif is the
quantile of its score under this distribution.

• Chapter 3 presents how SEISM can be used to discover sequence motifs. We first
cast commonly used CNNs in a feature selection framework, and we propose multiple
modifications to classical CNNs in order to improve their performances as feature
selection tools rather than as predictive tools. We also propose several methods to
optimize this network, and we show that SEISM achieves similar performance on
de-novo motifs discovery tasks as state of the art explanatory methods from the
bioinformatics literature.

• Chapter 4 aims at providing a valid statistical inference procedure for the sequence
motifs discovered by SEISM. But existing methods for selective inference only ap-
ply to a selection from a finite set, while the sequence motifs are selected from a
continuously infinite set. We work around this issue by quantizing our selection to
a very large but finite space, making it amenable to existing strategies. We show
that SEISM results in a calibrated test procedure, and compare it with a standard
data-split strategy. We also work on the composite aspect of our null hypotheses,
and provide invariance results suggesting a practical procedure with only a few as-
sumptions regarding the distribution of the data. To our knowledge, there was a
blind spot in sampling-based post-selection inference approaches beyond our spe-
cific context. The results of this chapter, although illustrated on the specific case

11



Foreword

of sequence motifs, remain quite general and can be extended to other features and
types of association.

We provide a preprint (Villié et al., 2022), as well as a PyTorch implementation https:
//gitlab.in2p3.fr/antoine.villie1/seism. This implementation contains all the ex-
periments presented in this work, and it should be easy to apply on any new dataset.
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CHAPTER 1

Machine learning and explainable AI for enhancing Genome Wide
Association Studies

GenomeWide Association Studies have become a widely-used tool in the search for genetic
variations that are associated with certain traits or diseases. Focusing on the entire
genome at once, rather than on individual genes, they have provided valuable insights
into the genetics of a wide range of phenotypes. In this chapter, we will first briefly
describe the methodology associated with these studies, allowing us to draw attention
to two of their inherent limitations. While one of those limitations relates to statistical
considerations and will be the focus of Chapter 2, the other one is about the list of genetic
variants that are used in those studies.
We then examine how current developments in machine learning can help us to overcome
this limitation. In recent years, machine learning models for biological sequences have
indeed gained popularity as a way to analyze genetic data. To that end, they learn a data
representation and identify underlying patterns and relationships. The representation
learned by these models can then provide insights into the underlying biology, and can
also be linked to new classes of genomic variants that might be employed in Genome Wide
Association Studies.
This direction can be pursued even further, thanks to explainable artificial intelligence,
an increasingly important research area for machine learning, especially in biology. It
refers to the use of machine learning models that can provide clear and understandable
explanations for their predictions. The various associated techniques also bring to light
new promising genomic variants, as we will see in a third step, after having proposed an
overview of the current state of knowledge in this area.
Finally, we will see that these advances inevitably raise inference-related questions, com-
plementary to the limitation previously identified, leading us into Chapter 2.
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Chapter 1. Machine learning and xAI for enhancing GWASs

1.1 Methodology and limitations of GWAS

Genome Wide Association Studies (GWASs) are observational studies that aim at de-
tecting associations between genetic variants and phenotypes. They are generally traced
back to the publication of Wellcome Trust Case Control Consortium (2007), the first
large scale GWAS. It leaded to the discovery of more than 20 association signals between
single-nucleotide polymorphisms (SNPs) and various disorders, such as artery disease,
rheumatoid arthritis and diabetes. As of 29 November 2022, the National Human Re-
search Institute Catalog of Published GWAS (Welter et al., 2014) contained 344 498
SNP-trait significant associations at the genome-wide p-value threshold of 5× 10−8. But
GWAS are not limited to human genetics, and the GWAS Atlas (Tian et al., 2020) offers a
curated database of variant-trait associations for ten plant species and five animal species.
They are therefore used in many different fields, from risk factor identification to plan
breeding (Gali et al., 2019).
A typical GWAS relies on microarrays or on sequencing technologies to genotype some
individuals with different phenotypes. Designing microarrays requires prior knowledge
about the location of the SNPs in the genome, which prevents the study of rare SNPs,
since those may be missing from the chip. High throughput sequencing overcomes this
limitation, but comes with an intensive computational step as it maps all the reads to a
reference genome, in order to identify the SNPs. In doing so, both approaches build a
matrix of the variants’ presence or absence pattern (Table 1.1).

Person 1 Person 2 ... Person n
Variant 1 0 1 0
Variant 2 1 0 0

...
Variant v 0 0 1
Trait Control Case Control

Table 1.1: Example of a dataset used for a GWAS analysis. For instance, the association
between a variant and the phenotype may be tested using a linear model.

Next, statistical analysis is carried out to indicate the significance of the association
between each of the variants and the phenotype, for instance using a linear model. The
results are often visualized using a Manhattan plot where the x-axis shows the genomic
coordinates and the y-axis displays the negative logarithm of the association p-value for
each SNP (Figure 1.1). Although Visscher et al. (2017) underline the remarkable range
of discoveries that were facilitated using GWASs, they highlight five factors influencing
the potential of a GWAS to find significantly associated variants for a particular trait.
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1.1. Methodology and limitations of GWAS

Figure 1.1: Example of Manhattan plot for breast carcinoma, obtained using the GWAS
catalog (Welter et al., 2014). In particular, it can be seen that some SNPs on chromosomes
10 and 16 (and more precisely on the regions of the FGFR2 and CASC16 genes) are
associated with the development of this cancer.

Three of them are extraneous to the design of the study:

• The number of different variants affecting this trait in the population,

• The genetic architecture, effect sizes and the frequencies of those variants,

• The heterogeneity of the trait (depending on the biology of the trait, as well as the
ability to measure it precisely).

The two other factors are intrinsic: the experimental sample size, and the panel of genome-
wide variants that are used in the GWAS.
While the experimental sample size may at first sight appear as extraneous, it mainly
limits the success of the GWAS through the minimum achievable p-value it authorizes.
A rare variant with a low effect size indeed requires a large number of samples to be
detected at the genome-wide p-value 5× 10−8. Increasing this threshold would then lead
to a greater number of detections. It is therefore necessary to understand how it was
set and why it is so stringent. It was first introduced in Risch & Merikangas (1996) as
a Bonferroni corrected significance threshold, to account for the multiplicity of tests, see
Chapter 2 Section 2.2. The authors anticipated the evolution of knowledge about the
human genome, and estimated that, in total, the human genome would contain 100 000
genes, with an average of 5 diallelic SNPs of interest in each gene, resulting in a total
of 106 variants. Then, controlling the family-wise error rate, that is the probability of

15



Chapter 1. Machine learning and xAI for enhancing GWASs

rejecting at least one true null hypothesis, at 5×10−2 using the Bonferroni correction gives
a nominal p-value of 5×10−2/106 = 5×10−8. Although it relies on obsolete assumptions,
this threshold is still widely used and similar values have been computed using more
complex assumptions and strategies (Dudbridge & Gusnanto, 2008). This demonstrates
that, given a constant experimental sample size, modifying how the multiplicity of tests
is accounted for may result in an increased number of findings. There exist several ways
to work around this issue, and it will be the focus of Chapter 2.
High throughput sequencing overcomes some limitations related to the panel of genome-
wide variants compared to microarrays. In contrast to the design of SNPs arrays, that
requires some knowledge about the genome of the organism and about the location of
the SNPs, this approach does not require the definition of an a priori list of SNPs, thus
enabling the discovery of new variants. But it still requires a reference genome to map
the reads and identify the SNPs, which limits its applications to species for which such a
reference genome has already been assembled. Even the human reference genome is fre-
quently updated, due to being incomplete (Altemose et al., 2014) and to the occurrence of
a reference bias (Sousa & Hey, 2013). The use of such a reference genome becomes unsuit-
able for bacterial species with a large accessory genome (the portion of the genome that
is not present in all strains). Moreover, relying on SNPs ignores structural variations in
the sequences, such as insertion-deletions, translocations or copy-number variations. But
this ignored structural variation may explain a significant number of phenotypes. That’s
why some recent GWAS methods rely on k-mers, the substrings of length k contained
in a sequence, whose presence represents a wide class of genetic variants, including the
SNPs, but also mobile genetic elements and more (Rahman et al., 2018; Jaillard et al.,
2018; Roux de Bézieux et al., 2022). Such methods are frequently described as reference-
free and agnostic, in the sense that no prior knowledge or alignment step is required. A
promising way to push GWASs even further is then to run them on broader class of ge-
netic variants, while finding new inference methods to improve statistical power. Machine
learning techniques can then offer great opportunities to that end, as discussed in the
following sections.

1.2 Machine Learning for biological sequences overview

This section aims at clarifying the existing link between GWASs and machine learning.
In both cases, these methods look for associations between some input data (e.g. the
genetic variants in the case of GWASs) and some output (the phenotype). While this
link is direct in GWASs, machine learning constructs a representation of the input to
predict an output. We will be able to highlight this connection thanks to the introduction
of linear models. Then, we will focus on kernel methods and more advanced learning
models, allowing to create new representations of the inputs and new associations with
the output.
Machine learning is a subfield of artificial intelligence, that deals with the development
of algorithms and statistical models that enable computers to learn from data and make
predictions or decisions without explicit instructions. It involves the use of computational
methods to extract knowledge from data and improve the performances of the model in
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1.2. Machine Learning for biological sequences overview

an automated way, the goal being that the model generalizes well to new and unseen
data. Despite being initially created for such tasks, the models trained on biological
data can be used to discover relevant genetic variants, especially taking advantage of
the recent advances in explainable artificial intelligence. The different machine learning
approaches are generally grouped into three major categories, relating to the nature of
the problematics:

• In supervised learning, the algorithm is provided with a training dataset, containing
both inputs (x1, . . . , xn) and corresponding outputs (y1, . . . , yn), and aims at learning
a mapping function f from the input space to the outputs. If this task is successful,
the algorithm should be able to precisely predict the outputs f(x) = y from inputs
data x that were not included in the training set. Classification problems (such
as predicting whether a bacteria will resist to an antibiotic given its genotype) and
regressions problems, where the outputs are not restricted to a discrete set of values,
are the main tasks for supervised learning.

• On the contrary, unsupervised learning has no response variable, and the algorithm
attempts to find structure in the inputs. While this can be a goal in itself, such as in
a fraud monitoring framework using outlier detection, it can also be a step among
others, for instance by discovering genetic variants that segregate a population,
thus identifying suitable features which can then be used in a supervised learning
framework.

• In reinforcement learning, the algorithm interacts with a dynamic environment and
tries to perform a certain goal, through trial-and-error. Although it is widely used in
other domains, such as autonomous driving, its application on biological sequences
data is for now quite limited.

This thesis mainly focuses on supervised learning approaches, using biological sequences as
inputs, and phenotypes as labels. In most of the approaches, the sequences are numerically
represented using one-hot encoding (OHE): a sequence with length ` over an alphabet A
is represented as an |A|×` matrix, where each letter is encoded as a vector of all zeros,
except in specific positions where there is a 1 (see Figure 1.2).

ATC..GT OHE−→
A
C
G
T




1 0 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 1 0
0 1 0 . . . 0 1




Figure 1.2: One-hot encoding of a DNA sequence (A = {A,C,G, T}) as a 4-row matrix.
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Chapter 1. Machine learning and xAI for enhancing GWASs

1.2.1 Linear models, support vector machines and data repre-
sentation

Linear models, such as the ridge regression and support vector machines (SVMs) belong
to the simplest and most widely used machine learning models. We will go over their
operations briefly in order to understand why these strategies are effective and identify
some limitations.

• Ridge regression, a regularized version of linear regression, aims at predicting the
output value y ∈ R for an input object x ∈ X . To that end, it learns a linear predic-
tion function ŷ(x) = (ϕx)Tβ, where β ∈ R` contains some weights and ϕx ∈ R` is
the feature vector of the object x according to a representation function ϕ : X → R`.
For instance, one-hot encoding defines such a function on sequences. Ridge regres-
sion optimizes a loss function on the training set (x1, y1), . . . , (xn, yn) ∈ (X ,R)n and
finds the optimal β∗:

β∗ = arg min
β∈R`

1
n

n∑

i=1
(yi − ŷ (xi))2 + λ‖β‖2

2

= arg min
β∈R`

1
n
‖y −ϕXβ‖2+λ‖β‖2

2 ,

(1.1)

where ϕX ∈ Rn×` such that ϕXi,· = ϕxi , and λ ∈ R+ is a regularization factor. This
combination of a quadratic error and a L2 penalization, has an analytical solution:

β∗ =
(
(ϕX)TϕX + λnI`

)−1
(ϕX)Ty , (1.2)

with I` ∈ R`×` the identity matrix (see Chapter 3 Section 3.1 for details).
In (1.2), the quadratic error is an empirical risk minimization: it measures the
difference between the prediction ŷ(x) and the true output y. The L2 penalty,
relying on the squared euclidean norm of β, encourages the learned weights β to be
small in magnitude, which reduces the generalization error, i.e. the error obtained
on an input x′ which does not belong to the training dataset. But other strategies
do exist: The Lasso (Tibshirani, 1996) relies on the L1 regularization ‖β‖1= ∑

j|βj|,
resulting in sparse weights, with a few non-zero elements. The Elastic-net (Zou &
Hastie, 2005) combines both L1 and L2 penalties.

• SVMs (Cortes & Vapnik, 1995) have historically been a particularly successful class
of models for supervised learning, applied in a variety of domains such as hand-
writing recognition, face detection or text categorization. In computational biology,
they have been used notably to classify biological sequences (Rätsch et al., 2006), to
detect protein remote homologies, or to predict the function of a protein (Schölkopf
et al., 2004).
For the sake of simplicity and following Lin et al. (2007) we will focus on a binary
classification task, where each input x is represented as a feature vector ϕx ∈ R`

and associated to an output y = ±1, such that a linear classifier takes the sign of
a function ŷ(x) = (ϕx)Tβ + b. The hyperplane ŷ(x) = 0 then defines a decision
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1.2. Machine Learning for biological sequences overview

Figure 1.3: The optimal hyperplane separates positive and negative training points with
the maximal margin. Its position is completely determined by the support vectors — the
circled points achieving the minimal distance.

boundary in the feature space R`, and the parameters β and b are determined by
running a learning procedure on a training set (x1, y1), . . . , (xn, yn) ∈ (X ,Y)n.

When the dataset is linearly separable, that is when there exists such a function ŷ
whose sign perfectly matches the classes of all training examples, the SVM chooses
the one that maximizes the margin: it selects the function that maximizes the
distance between the decision boundary ŷ(x) = 0 and the closest example, as math-
ematically described in (1.3) with a normalized dataset.

min 1
2‖β‖2

(
Geometrically, the margin is 2

‖β‖2

)

s.t. ∀i ∈ [n] , yi((ϕxi)Tβ + b) ≥ 1
(1.3)

When the training examples are not linearly separable, some mistakes are allowed
in (1.3) using an additional parameter that controls the compromise between large
margins and small mistakes.

The optimization problem is not relevant to this thesis, however it should be noted
that SVMs get their name from the fact that the solution for the choice of β and
b depends only on the subset of points xi that achieve the minimum distance: the
support vectors, as described in Figure 1.3. The SVM’s predictions can then be
explained by a limited subset of xi, which lends these models some sense of inter-
pretability.

The function ϕ, which turns a data point x into a vector in R`, is thus a critical component
of the models. The first question to address before applying any model is the choice of this
representation function. One-hot encoding gives us a solution applicable to any biological
sequences dataset, and kernel methods, developed in the next section, will allow us to
extend such a mapping to other data types. Moreover, this mapping suffers a limitation:
it is agnostic with regard to the biological problem, as it does not depend on the learning
task. In Subsection 1.2.3, we will see that more complex machine learning methods can
tackle this issue.
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1.2.2 Kernel methods for biological sequences

Kernel methods provide a different paradigm to this representation issue: data are no
longer represented individually, but rather through a set of pairwise comparisons. That
is, instead of using a mapping function ϕ : X → R`, they rely on a kernel function k : X ×
X → R. The training dataset is now represented as a n×nmatrix of pairwise comparisons
ki,j = k(xi, xj): the Gram matrix. Such a kernel function must meet some requirements
in order to be usable in machine learning models, as described in Definition 1.2.1.
Definition 1.2.1 (Positive definite kernel).
A function k : X × X → R is called a positive definite kernel if and only if it is:

• symmetric: ∀(x, x′) ∈ X 2 , k(x, x′) = k(x′, x)

• positive definite: ∀n > 0 ,∀(x1, . . . , xn) ∈ Rn and ∀(c1, . . . , cn) ∈ Rn :
n∑

i=1

n∑

j=1
cicjk(xi, xj) ≥ 0

A fundamental property of the kernels is given by Aronszajn’s theorem:
Theorem 1.2.1 (Aronszajn, 1950).
k is a positive definite kernel on the set X if and only if there exists a Hilbert space H
and a mapping ϕ : X → H such that:

∀(x, x′) ∈ X 2 , k(x, x′) = 〈ϕx,ϕx′〉H,

where 〈·, ·〉H in the dot product in H.

This theorem states that using a kernel function implicitly amounts to mapping the objects
x ∈ X to a representation ϕx in a feature space. But there is a significant difference with
the representation discussed in subsection 1.2.1: we can not necessarily access it. Apart
from the fact that having an analytical expression for this mapping can be complicated, H
is often an infinite dimensional space, which makes any computer storage of ϕx impossible.
While this might appear to be a problem at first glance, one has to remember that a
wide class of machine learning methods access the input data only through pairwise dot
products. This is known as the kernel trick: any algorithm for vectorial data that can be
expressed only in terms of dot products between vectors can be performed implicitly in
the feature space associated with any kernel, by replacing each dot product by a kernel
evaluation. While this trivial statement has many important applications, the one that
interests us here is the fact that it allows us to apply algorithms to non-vectorial data,
such as biological sequences (Schölkopf et al., 2004, Section 1.2).
Using various kernels allows for applying the same algorithms to different representations
of those data, and consequently to choose a relevant representation for the given prediction
task.
For instance, a standard kernel is the Gaussian kernel:

∀(x, x′) ∈ X 2 , k(x, x′) = e−
d(x,x′)2

2σ2 , (1.4)
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1.2. Machine Learning for biological sequences overview

defined for some bandwidth parameter σ and using a distance defined over the objects
of X . For biological sequences, such a distance between sequences can be defined as
the euclidean distance between their one-hot encoding matrices, leading to a valid kernel
(Figure 1.4).

ATCT

TCCG

AATC

H functional spaceX biological sequences

'

TCCG

AATC

ATCT

AAAT TCCT

Figure 1.4: The Gaussian kernel on biological sequences X can be represented as an inner
product after the sequences have been mapped to a functional space H. In this feature
space, each sequence x is represented as a Gaussian function over a matrix space, centered
at x.

We are then left with two possibilities:

• Designing by hand a kernel associated with a representation that is well-suited for
our data.

There exist several famous kernels on biological sequences that have been designed,
such as the Spectrum Kernel, introduced by Leslie et al. (2001) for application to
protein classification. Based on the set of all contiguous sub-sequences of length k
contained within a sequence over an alphabetA, it defines a feature map ϕ : X → R|A|k :

ϕx = (ϕxu)u∈Ak , (1.5)

with ϕxu is the number of times the k-mer u occurs in x. As the kernel function is
then k(x, x′) = 〈ϕx,ϕx′〉, two sequences will have a large kernel value if they share
many of the same k-mers.

This kernel, later improved by Leslie et al. (2004) to allow for some degree of mis-
matching in the k-mers comparisons for biological considerations, combined with
SVMs formed the state-of-art approach for protein classification tasks.

• Relying on a machine learning algorithm to choose the best kernel for a given task
from a given class of kernels. That is, learning a good representation that may take
into account both the structure of the training points xi and the learning objective,
as discussed below.
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1.2.3 Learning a relevant representation

Supervised learning models can often be decomposed as two-steps methods, as described
in Figure 1.5:

• First, they represent the input data using a function ϕ. This representation can
be straightforward: if x already is a numerical vector of features x, then a trivial
choice for this mapping is ϕx = x. However, for non-numerical data (such as
biological sequences or graphs), this step is required in order to use the data in
the predictor. Finally, even with numerical data, choosing a relevant representation
can significantly improve the overall performance of the method. When dealing
with kernel methods, this representation step might be implicit, with no ϕx being
explicitly computed.

• Second, the prediction step is often performed using simple linear classifiers or re-
gressions f — such as SVMs or ridge regression.

Figure 1.5: Diagram of a supervised learning method. While the predictor is always
optimized using the training data, the representation ϕ can either be fixed beforehand
(by choosing a specific kernel or by extracting some features from the data) or selected
among a class of functions during the training step.

The representation can then be chosen manually, for example, via a feature engineering
step, by selecting an appropriate kernel as stated in subsection 1.2.2, or by learning both
the predictor and the mapping:

(ϕ∗, f ∗) = arg min
(ϕ∈H,f∈F)

(
n−1

n∑

i=1
L (yi, f ◦ ϕ(xi)) + λΩ(f ◦ ϕ)

)
, (1.6)

where L is a loss function, f is the prediction function selected within the functional space
F (for linear regressions, F is the set of linear functions), Ω is a measure of complexity
used for penalization (whose impact is mitigated by λ) and H is a given class of mappings.
This can be accomplished using methods such as multiple kernel learning (MKL) (Chapelle
et al., 2002) and neural networks (NN), in which the output layer serves as a predictor
while other hidden layers construct the representation. The many existing NN designs
can then be viewed as ways to define different mapping classes H.
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1.2.3.1 Multiple kernel learning

Kernel methods allow for the implicit definition of a new data representation, on which will
be performed a supervised learning task. Using the Spectrum Kernel (1.5) as an example,
we can see that it may define several kernel functions, depending on the considered length
k of the contiguous sub-sequences:

kk(x, x′) = 〈ϕxk ,ϕx
′

k 〉 , where ϕxk = (ϕxu)u∈Ak (1.7)

How can we choose the most relevant length k for a given task? One may also argue
that from biological considerations the output is determined by the content of k-mers of
various lengths rather than of k-mers of a specific size. As any convex combination of
kernels defines a kernel, we can consider the convex combination of spectrum kernels with
various lengths k:

k(x, x′) =
M∑

k=1
wkkk(x, x′) , with wk ≥ 0 and

∑

k

wk = 1 (1.8)

This defines a class of kernel functions K, containing all kernels that can be written
according to (1.8) with any valid combination for the wk. And implicitly, it defines a class
of mapping H: all the functions ϕ associated with a k ∈ K. Finding the optimal convex
combination, resulting in the optimal representation for the prediction task, is known as
the Multiple Kernel Learning (MKL) problem. It is solved through joint optimization, as
described in (1.6).

1.2.3.2 Convolutional neural networks for biological sequences

Over the last decade, convolutional neural networks (CNNs) — introduced by Lecun &
Bengio (1995), have demonstrated outstanding performance in image-based predictions.
Traditionally applied to analyze imaging data, they have also been successfully used for
making predictions from biological sequences. In particular, they have brought significant
improvements in regulatory genomics, e.g. to predict cell-type specific transcription factor
binding, gene expression, chromatin accessibility or histone modifications from a DNA
sequence (Zhou & Troyanskaya, 2015; Kelley et al., 2018; Avsec et al., 2021a,b). The
convolution step allows for translation equivariance, and CNNs are therefore particularly
suited to long sequences, whose relevant parts do not correlate with their positions.
Learning a CNN is typically achieved by minimizing the following objective:

min
g∈G

n−1
n∑

i=1
L(yi, g(xi)) + λΩ(g) (1.9)

It jointly learns a representation and a predictor — g = f◦ϕ using notations from (1.6). In
neural networks, the functions in G perform a sequence of linear and nonlinear operations.
For instance, DeepBind (Alipanahi et al., 2015) first maps a sequence x to a numerical
vector using one-hot encoding, then applies a one-dimensional convolution with q convo-
lution filters Z = (zi)i≤q ∈ R|A|×k×q, followed by a rectified linear unit and a pooling step,
such as:

H =
{
ϕZ : X → Rm : ∃Z ∈ R|A|×k×q , ϕZ(x) = pool (ReLU (conv (ohe(x),Z))))

}
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It then uses a linear output layer, such that F is the set of linear functions from ϕ(X ) = Rq

to R. Figure 1.6 provides an overview of this network.

Figure 1.6: Diagram of DeepBind architecture. It starts by one-hot encoding the sequence
of length ` = 6, then it applies a convolution with q = 2 filters of length k = 3 followed
by a non-linearity, a max pooling step and in the end a linear predictor. Both the linear
weights of the predictor and the convolution filters (circled in red) are optimized during
the training step.

A CNN is then a neural network that contains one or more convolutional layers. Such
layers convolve their inputs with filters, that is they compare the filters with sliding
windows of the inputs with same length.
• Convolutional Kernel Networks
As described in Section 1.2.2, kernels implicitly define data representations. Convolutional
Kernel Networks (CKNs), introduced by Mairal et al. (2014) for images and extended to
biological sequences by Chen et al. (2019a) make use of kernels whose induced mapping
is related to the one obtained with CNNs.
Given two biological sequences x and x′ of respective lengths ` and `′, let’s consider the
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following kernel

k(x, x′) = 1
``′

∑̀

i=1

`′∑

j=1
k0(uxi ,ux

′

j ) , (1.10)

associated with a mapping ϕ, where uxi is the one-hot encoded k-mer of x starting at
position i, and

k0(u,u′) = ‖u‖2‖u′‖2κ

(〈
u

‖u‖2
,
u′

‖u′‖2

〉)
, (1.11)

with κ : v → e
1
ω2 (v−1) for some bandwidth parameter ω. This kernel k0, similarly to the

Gaussian kernel (to which it is actually quite similar), sends the k-mers into a functional
space with infinite dimension using a mapping ϕ0. This mapping ϕ0(u) contains a measure
of similarity between the k-mer u and all possible matrices in R|A|×k, see Figure 1.4. These
matrices can be interpreted as sequence motifs, as described below.
In addition to numerical barriers to accessing this representation, it does not take into
account the learning objective. It then becomes interesting to approximate any represen-
tation in this space using its projection onto a finite-dimensional subspace WZ defined as
the span of some anchor points Z = (zi)i≤q ∈ R|A|×k×q:

WZ = Span (ϕ0(z1), . . . , ϕ0(zq)) , (1.12)

as illustrated in Figure 1.7.

Figure 1.7: The use of anchor points Z allows the definition of a new mapping φ0Z
,

resulting in a approximation of the kernel k.
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Chen et al. (2019a) introduce the following mapping, based on those anchor points:

φ0Z
:R|A|×k → Rq

u 7→K
−1/2
ZZ KZ(u) ,

(1.13)

with KZZ the Gram matrix [k0(zi, zj)]i,j and KZ(u) = (k0(z1,u), . . . , k0(zq,u)).
They show that this mapping approximates the kernel k, introduced in (1.10):

k(x, x′) = 〈ϕ(x), ϕ(x′)〉 ≈ 〈φZ(x), φZ(x′)〉Rq with φZ(x) = 1
`

∑̀

i=1
φ0Z

(uxi ) . (1.14)

We then see that this representation is quite similar to the one learned by a standard
CNN, as it includes a convolution step. The induced representation φZ(x) of a sequence
x is indeed described by some comparison of its k-mers (the sliding window) with points
Z = (z1, . . . ,zq), the filters, that are optimized in a supervised learning framework,
similar to (1.9):

min
β∈Rq

Z∈R|A|×k×q

n−1
n∑

i=1
L(yi,β>φZ(xi)) + λ‖β‖2

2 . (1.15)

CKN demonstrated better performance than state-of-art CNNs, especially in a small- to
medium-scale datasets, in particular thanks to induced regularization mechanisms (the
K
−1/2
ZZ in (1.13)).
• Sequence motifs: a promising variant for GWAS
Because CNNs and CKNs’ first layer convolution filters are homogeneous to the input,
they lend themselves easily to interpretation: as small picture patches for image inputs
and as sequence motifs for one-hot encoded biological sequences. Such a sequence motif,
a historical and basic element of regulatory genomics, can be thought of as a probabilistic
k-mer. It can be represented mathematically as a position probability matrix (PPM)
z ∈ R|A|×k such that

∀j ≤ k ,
|A|∑

i=1
zi,j = 1 and ∀(i, j) , zi,j ≥ 0 . (1.16)

Although the trained filters are not constrained to match conditions (1.16) for optimiza-
tion purposes, they can be projected onto the corresponding space at a later stage. An
other possibility consists in projecting the filters over the position weight matrices (PWMs,
containing log probabilities) vectorial space, and then the link between PPMs and PWMs
is straightforward. The representation of a sequence induced by a convolutional network
is thus dependent on the similarity between its k-mers and the motifs learnt during the
training step.
In addition to this matrix representation, motifs can be displayed as sequence logos (Schnei-
der & Stephens, 1990), in which the characters are stacked on top of each other for each
position. The entire stack’s height represents the information content of the position in
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A
C
G
T




0.11 0.32 0.01 0.99 0.67 0.77 0.00 0.00
0.00 0.38 0.00 0.00 0.25 0.01 0.60 0.00
0.01 0.22 0.13 0.00 0.05 0.21 0.40 0.00
0.88 0.08 0.86 0.01 0.03 0.01 0.00 1.00



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Figure 1.8: A sequence motif represented by its position probability matrix and corre-
sponding sequence logo. The total height of the letters indicates the information content
of the position (in bits), closely related to the Shannon entropy.

the sense of Shannon entropy, with a maximum of 2 bits. Each letter’s height is related
to its probability, as described in Figure 1.8.
As noted in Section 1.1, typical GWASs rely on SNPs to represent a sequence, whereas
newer approaches use k-mers to address some of the SNP’s intrinsic constraints. Sequence
motifs can then be seen as a continuous generalizations of the k-mers, overcoming another
limitation: the presence pattern of similar k-mers may be the best genetic determinant for
a given phenotype rather than the pattern of an exact k-mer. For instance, synonymous
substitutions, which are modifications of one base with no changes to the coded amino
acid, may be silent.
In this case, the GWAS may output a huge list of k-mers, which is not very practical for
the interpretation of the results. Moreover, in a small- to medium-scale dataset, there
will be strong dilution effects with each of the many versions of the k-mers only present
in a small number of individuals, resulting in a fairly low detection capacity. Sequence
motifs, on the contrary, are unaffected by this issue because they are designed to account
for such variations around a k-mer.
• Recurrent neural networks
Recurrent neural networks (RNNs), unlike traditional feed forward neural networks, which
only process input data in a single pass, have feedback connections. They process the
sequence one single letter at a time and output a value to the next artificial neuron.
Thanks to their flexibility for different types of tasks — with biological sequences as
inputs, they can either output a single numerical value (many-to-one) or a sequence
(many-to-many) — they have been used in a variety of biological applications, such as
protein secondary structure or protein-protein interaction prediction (Jurtz et al., 2017)).
They are often used in combination with CNNs, resulting in architectures with one or
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more convolutional layers followed by a recurrent layer.
Chen et al. (2019b) introduce a kernel for biological sequences, and show that the as-
sociated mapping is similar to the mapping induced by a RNN. While training a CKN
results in selecting sequence motifs, the authors show that training this recurrent kernel
network (RKN) allows for gaps in the motifs, motivated by genomics considerations. For
instance, DeeperBind (Hassanzadeh & Wang, 2016) was proposed as an improved version
of DeepBind, using a RNN network in addition to the CNN model.
In contrast to CNNs, which are unable to capture long-range interactions because their
ability to extract local features in restricted by the filter size, RNNs are not constrained
in this way. However, when dealing with long sequences, they may suffer from vanishing
(or exploding) gradient problems (Pascanu et al., 2013). The gradients of the parameters
become very small over the sequential process, making it difficult for the network to learn
such dependencies in long sequences. Furthermore, as the length of the sequence increases,
the limited capacity of their hidden state to store information becomes congested, causing
a bottleneck issue when processing long sequences. Attention methods can help with both
situations.

1.2.3.3 Attention networks and transformers

To get intuition on attention mechanisms (Vaswani et al., 2017), one can think about
them as a way to automatically highlight the most relevant parts of the input data at
each step of the processing. For instance, in a natural language processing framework,
an attention mechanism might select the most relevant words in a sentence, allowing the
network to focus on these words and better understand the sentence’s content. This in in
contrast to traditional neural networks, which evaluate all input data equally and do not
allow for such a focus.
Attention mechanisms may be understood as a new strategy for weight regularization in
a regression context. In the ridge penalization strategy described in Subsection 1.2.1, the
weights β have an optimal analytical solution for (1.1): β∗ =

(
(ϕX)TϕX + λnI`

)−1
(ϕX)Ty,

which leads to:

ŷ(x) = yTϕX
(
(ϕX)TϕX + λnI`

)−1
ϕx

=
n∑

i=1
αX(xi, x)yi , for some function αX .

The output ŷ(x) is computed as a weighted sum of the yi, where the corresponding weights
depend on x and xi. The function αX then encodes the relevance of xi to predict for x and
is specific to the ridge regression. This method is generalized by attention mechanisms,
and an attention function may be defined as a mapping between a query q and a set of
key-value pairs (K,V ) to an output:

A(q,K,V ) =
n∑

i=1
α(ki, q)vi . (1.17)

In the regression example, x is the query, the training points xi are the keys, and the
labels yi are the values. In more complex networks, all (q,K,V ) may depend on trainable
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parameters and/or on x, while α is fixed (Chaudhari et al. (2021) provide a summary of
frequently used functions).
An example of implementation is TBiNet (Park et al., 2020). This network is used for
TF-DNA binding prediction task, and its design is essentially a CNN followed by an
attention layer and then a RNN, see Figure 1.9.

Figure 1.9: Diagram of TBiNet architecture. An input sequence is first passed into a
CNN. Then, the obtained matrix serves both as value V and query q for an attention
layer, while the key K parameters are determined throughout the learning process. The
output is given by a final RNN. The attention layer is circled in blue, while the red boxes
correspond to steps with trained parameters.

Thanks to the CNN (see Subsection 1.2.3.2), this network identifies sequence motifs that
are used to compute the representations of any sequences. Moreover, for a given data point
x, it highlights the most relevant part of x for the prediction: the ones with high attention
scores in the activation vector (Park et al., 2020, Figure 6). Therefore, it provides new
insights on the data representation.
By overcoming both the vanishing gradient problem and the bottleneck caused by the
limited capacity of RNN hidden states, architectures based on attention mechanisms,
like the Transformer (Vaswani et al., 2017), have advanced to the forefront of many
natural language processing (Galassi et al., 2021) and computer vision (Khan et al., 2022)
tasks. For biological sequences, DNABERT (Ji et al., 2021) can achieve state-of-the-art
performance on prediction of promoters, splice sites and transcription factor binding sites.
In a supervised learning context, machine learning models learn a model from a dataset
to make accurate predictions for unseen data points. Even when applied to biological
sequences, these models are almost exclusively evaluated on the basis of their predic-
tive performance. But some models give biological interpretations on why they perform
well, and it draws a link with GWASs that aim to significantly associated variants for
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a phenotype. Apart from that, interpreting machine learning models allows for model
improvements and becomes a prerequisite for many real-world problematics. This is why
it is becoming an increasingly important field of research.

1.3 Why are explanations important

Machine learning models become more sophisticated as they get better and better, re-
quiring more training parameters, as illustrated in Figure 1.10. For instance, in natural
language processing tasks, GPT-3 (Brown et al., 2020) has 175 billion parameters, while
its predecessor GPT-2 (Radford et al., 2019) only had 1.5 billion, already 10 times more
than its own predecessor GPT (Radford et al., 2018). In a more comprehensive way, (Bern-
stein et al., 2021, Figure 1) illustrates a similar trend: the number of parameters in recent
landmark neural networks tends to grow exponentially.

Figure 1.10: The complexity of a machine learning model and the number of parameters
to be trained often increases faster than the performance.

It is necessary to define interpretability, because it is a large and poorly defined notion
on its own. Kim et al. (2016) provides the following definition: "a method is interpretable
if a user can correctly and efficiently predict the method’s result". The greater a machine
learning model’s interpretability, the easier it is to understand why particular predictions
or decisions were made. In this framework, we can rely on the definition given by Miller
(2019) for explainable AI as: "an explanatory agent revealing underlying causes to its or
another agent’s decision making." It includes a broad set of methods, from the design of
the algorithm to various visualization tools. But why not just trust a machine learning
model and ignore why it made a certain prediction if it performs well?
For instance, according to DeGrave et al. (2021), explainable AI should be regarded as
a requirement for clinical deployment of machine learning models in healthcare. The
authors indeed evaluate the trustworthiness of 10 deep learning models applied to detect
COVID-19 from chest radiographs. They first highlight the existence of an important
gap between the performance on internal and on external test sets: the different models
may appear accurate, but fail when applied to radiographs from new hospitals. Second,
they use explainable AI techniques and reveal that the models’ predictions heavily rely on
radiographs areas that are medically irrelevant, such as some laterality markers or patient
positioning.
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To that end, they construct two datasets, both containing COVID-19 positive and negative
radiographs. Dataset I contains COVID-19 positive radiographs from the GitHub-COVID
repository, which includes images from various hospitals (with various image acquisition
systems) and from publications, while the negative ones all come from a single hospital.
As a result, the methods for obtaining radiographs are not uniform in this dataset. On
the contrary, all the radiographs in dataset II (positive and negative) are issued from the
same hospital system, see (DeGrave et al., 2021, Figure 1).
They train the models on dataset I, and compare the predictive performance on held-
out radiographs from this same dataset (internal test set) to performance on radiographs
from dataset II (external). Although the models attain high performance on the internal
test data, half of this performance is lost when testing on dataset II, which suggests
that the algorithms learned some spurious features. Particularly, there exists in dataset I
a correlation between the image acquisition system and the COVID status, therefore
learning features corresponding to those differences will have a positive impact on the
internal performance while not being leverageable on the external test. This hypothesis is
confirmed by the implementation of two explainable AI techniques (DeGrave et al., 2021,
Figure 2):

• Using saliency maps, that are images that highlight pixels that were important from
the COVID status prediction from a given radiograph, indicates that regions of the
radiographs located outside the lungs are important for the algorithms’ predictions

• Implementing and training neural networks that learn how to modify a radiograph
with a given label such that the prediction associated with this modified image
changes, reveals that spurious features, such as the positioning of a patient shoulders,
impacts the prediction.

More surprisingly, the same level of degradation is observed when training the models
on dataset II and comparing the performances on dataset I, suggesting that even when
there are no correlations between the image acquisition system and the COVID-19 status,
the models learn some spurious features. It reveals that this poor behavior persists even
in a more ideal data collection environment, emphasizing the importance of deploying
explainable AI tools alongside traditional prediction models.
In some cases, especially in a low-risk environment such as a movie recommendation
system, a good predictive performance might be enough to use the method. But inter-
pretability may be required:

• For safety issues, such as understanding why the machine learning system has pre-
dicted a given COVID-19 status for the patient,

• To understand and limit the impact of bias in the model, for instance by identifying
patients for which the predictions are known to be poor,

• To learn from the model: if an algorithm can predict accurately a phenotype whose
mechanisms are not yet known, understanding what features were used for the
predictions can give insights on those mechanisms,

• To improve social acceptance, to assist in auditing and debugging...
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1.4 Interpretability tools

Machine learning interpretability methods can be classified using a variety of criteria (Mol-
nar, 2020). The ability of a model to explain its own predictions is referred to as intrinsic
model interpretability. A model is considered to be intrinsically interpretable if it can pro-
vide a clear and understandable explanation of how it arrived at its predictions without
the use of external tools. Linear regression and short decision trees are examples of such
models. In contrast, Post-hoc model interpretability refers to strategies used to explain
a model’s predictions after it has been trained. Following (Novakovsky et al., 2022a), we
shall concentrate on the latter type in this thesis.
On the one hand, local interpretation refers to methods for explaining the predictions
of a model for a given data point (or for a small set of data). In other words, local
interpretation provides an explanation of the model’s prediction for a particular case.
Global interpretation, on the other hand, refers to methods for explaining the model’s
general behavior. Such strategies can assist in identifying patterns and relationships in the
data that the model has learned. In some cases, local interpretations can be aggregated
to reveal a global understanding of the model’s behaviors.
Finally, some methods are restricted to specific model classes, whilst other model-
agnostic tools can be used regardless of the model type. Figure 1.11 depicts the relative
positions of various interpretation methods in relation to these criteria.

Figure 1.11: Classification of the main explainable machine learning methods.
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1.4.1 Interpreting first-layer filters of CNNs as sequence motifs

CNNs and CKNs’ first layer’s convolution filters are homogeneous to biological sequences,
as discussed in Subsection 1.2.3.2, and can thus be regarded as sequence motifs or proba-
bilistic k-mers. Despite the fact that they do not match the requirements for PFMs given
in (1.16) due to optimization considerations, they can be projected to produce PWMs or
PFMs. It is worth noting that other methods for obtaining sequence motifs from first
layer convolution filters exist. For instance, (Min et al., 2017) look for all possible sub-
sequences of length k that yield convolutional activations above a given threshold, and
average their one-hot encoded matrices to obtain a PFM.
This interpretation approach is global, as it provides information about the entire model
rather than about a prediction for a given data point, and is specific to networks with
a single convolutional layer. Although easy to implement, it also has some limitations,
summarized in (Koo & Eddy, 2019):

• Deep CNNs tend to learn distributed representations of sequences motifs. They
learn partial motifs, that are then assembled in deeper layers,

• The filters may learn slightly different versions of the same motif, leading to redun-
dancies,

• As deep neural networks are over-parametrized by design, some filters learn relevant
motifs and capture the signal, but the other filters do not have signal anymore to
learn from, resulting in non-relevant motifs.

1.4.2 Visualizing importance of a neural network node using
nullification

Some nodes of a neural network may be understood as interpretable features. But just
because a given element has been learned, for instance a sequence motif corresponding
to a CNN filter, does not mean that it is necessarily relevant to explain the network’s
behavior. The simplest approach to measure the contribution of a given filter is to nullify
it, and observe the variations in prediction that ensue. Big variations indicate that this
filter plays an important role for the model.
For a given input sequence, the influence of filter nullification can be measured and inter-
preted locally. The simplest method for forming a global interpretation is then to average
the local ones.
But as deeper layers make previous layers filters dependent on each other, this strategy
does not produce satisfying results due to redundancy. If several similar filters do exist
with distributed importance, nullifying one of them will only result in a small impact on
the final predictions. Moreover, some non-linearities may result in model saturation, as
described in Figure 1.12.

33



Chapter 1. Machine learning and xAI for enhancing GWASs

Figure 1.12: Nullifying filter z1 has no impact on the prediction as long as the activation
of z2 is greater than one.

1.4.3 Obtaining importance from attention mechanisms

Attention mechanisms, as explained in Subsection 1.2.3.3, highlight the most relevant
input features in a way dictated by the attention function and the various parameters
learned, particularly the key K. The attention vector (see Figure 1.9) then provides a
direct estimate of the relevance of its input features. For instance, TBiNet computes
attention scores along the regions of an input sequence, which serves as a proxy for their
importance in the prediction. In contrast to Subsection 1.4.2, the received information
no longer has a direct relationship to single nodes.
Again, the offered interpretation is local (it is specific to a given sequence), but can be
averaged using several inputs to acquire more general information about the model as a
whole, as seen in Figure ??.
Finally, Serrano & Smith (2019) criticize the use of attention as a measure of the im-
portance of features. Although the feature with the highest attention weight tends to
have a higher impact on the prediction than the feature with the lower weight, relying on
attention weights ranking to identify the set of features most important to the model’s
prediction often fails.

1.4.4 An agnostic set of methods: propagation of influence

Propagation of influence, or perturbation-based approach, entails making minor changes,
or perturbations, to an input and analyzing how these affect the output of a machine-
learning model. This helps in determining which parts of the input are most critical to the
model’s prediction. Such methods are model-agnostic since they can be applied regardless
of the model’s architecture.
These approaches are classified into two groups. On the one hand, the forward propagation
of influence modifies the input and observes the changes in the predictions. Backward
propagation of influence, on the other hand, uses a backward pass to compute the gradient
(or other similar measures) of the prediction with respect to the various components of
the input.
The two following subsections will follow Novakovsky et al. (2022a) and Shrikumar et al.
(2017), which provide an in-depth analysis of such approaches for biological sequences.
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1.4.4.1 Forward propagation of influence

Forward perturbation strategies are widely used in computer vision, and the associated
philosophy can be exemplified using DeGrave et al. (2021) (introduced in Section 1.3).
Among the different methods they apply to explain radiograph-based COVID status pre-
dictions, the authors have trained neural networks to slightly alter radiographs in order
to inverse the output prediction. If changing a pixel (or a set of pixels) affects the predic-
tion, then it may correspond to a key feature. As a result, the authors discovered that the
various models relied on non-medical features for predicting the COVID status, including
markers related to image acquisition systems.
Altering letters in biological sequences is similar to modifying pixels in a computer vision
framework. This approach is termed in silico mutagenesis (ISM), and was first introduced
by Zhou & Troyanskaya (2015). In this paper, the authors train a neural network to
predict chromatin features from DNA sequences. To discover informative sequence fea-
tures within an input sequence, they compute for each possible mutation the effect on the
prediction using log fold change:

log2

(
P0

1− P0

)
− log2

(
P1

1− P1

)
, (1.18)

where P0 and P1 represent the binding probabilities predicted for the original and mutated
sequence. The results can be visualized using an attribution map (see Figure 1.13.),
similarly to saliency maps used in computer vision.

Figure 1.13: Attribution map obtained by measuring the impact of every possible single
base mutation from the original input sequence CATTCATC with length 8 (3×8 in total).
This result can also be represented as a logo, the information content of a position being
related to the max or average log fold change.

The first drawback that comes to mind is the high number of forward propagations that
must be computed if this method is to be applied to a big number n of sequences of length
`: 3×n×` in total. For the sake of completeness, we can note that the search for efficient
ISM algorithms is an active field of research, with notably fastISM (Nair et al., 2022)
and Yuzu (Schreiber et al., 2022) that are both algorithms that speed up ISM by taking
advantage of specific architectures of neural networks. Furthermore, ISM may suffer from
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model saturation, as seen in Figure 1.12: changing a base that activates already saturated
nodes would result in no prediction change.
Finally, rather than being limited to single base mutations, this approach has been ex-
tended to the k-mer scale to identify relevant sequence motifs with related attribution
scores (Novakovsky et al., 2022a).

1.4.4.2 Backward propagation of influence

Backward methods propagate the signal from an output backwards through the machine
learning model to the input in a single pass, considerably reducing the number of passes
required. They rely on evaluating the derivative (or an approximation) of the model’s
prediction function at the input, to estimate the influence of changes in the input to the
output, thus approaching ISM: instead of measuring precisely the impact of a given base
change, it is estimated thanks to the gradients.
They were first developed for computer vision, and include:

• Deconvolutional Network (deconvnet, Zeiler & Fergus (2013)): a network using the
same components as a CNN (filters, convolutional step, pooling) but in a reverse
order. Instead of mapping an image to features, it maps the features learned by
another CNN back to an image

• Directly using the gradient of the output with respect to the pixels of the image (Si-
monyan et al., 2014), or combining this strategy with deconvnet to generalize the
latter to more architectures (Guided Backpropagation, Springenberg et al. (2015)).

When applied on biological sequences, these methods can be used to produce attribution
maps, similar to Figure 1.13.
These different methods can be seen as different ways of handling non-linearities during
the backward pass (Shrikumar et al., 2017), but all suffer from the saturation problem
(Figure 1.12, as well as instabilities due to discontinuous gradients produced by some non-
linearities). DeepLIFT (Shrikumar et al., 2017) solves both issues: it relies on introducing
a reference output and on back propagating discrete gradients (using a modified version
of backpropagation using chain rule like computation rules) instead of infinitesimal differ-
ences. But doing so, it breaks the Implementation Invariance: applying DeepLIFT to two
networks with the same prediction functions obtained using two different architectures
may lead to two different results. Approaches based on integrating the gradients along
a line from the input to a reference input — Integrated Gradients (Sundararajan et al.,
2017) — respect the Implementation Invariance rule, are not prone to saturation, but
may suffer from instabilities. Those methods are summarized in Table 1.2.
Finally, attribution methods (both forward and backward) are model-agnostic, and de-
liver local interpretations. Nevertheless, some approaches like TF-MoDISco (Shrikumar
et al., 2018) and Global Importance Analysis (GIA) (Koo et al., 2021) aggregate those
local results to derive global interpretation about the models, while once again extracting
sequence motifs:
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Saturation Implementation Invariance Instabilities
Deconvnet 5 3 5

Gradient 5 3 5

Guided backpropagation 5 3 5

DeepLIFT 3 5 3

Integrated Gradients 3 3 5

Table 1.2: Different approaches relying on backpropagation of influence and their limita-
tions. Red cross indicates method limitation.

• TD-MoDISco takes as input a set of importance scores on genomic sequences, for in-
stance obtained with DeepLIFT, and starts by identifying high-importance windows
within the sequences, termed seqlets. Then, it clusters those seqlets into sequence
motifs.

• GIA starts by measuring importance scores for all possible k-mers of a given length:
the more the model’s prediction varies with the presence or absence of a given k-
mer, the higher score it gets. Then, GIA creates an alignment of the top scoring
k-mers and average them to produce sequence motifs.
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1.4.5 Using prior knowledge to derive transparent models

In order to be thorough, we can cite recent works that aim to design new architectures
for neural networks, based on biological knowledge. It may be done at different levels:

• When using a standard architecture with a first convolutional layer, one can initialize
the first layer filters according to known motifs of interest — DanQ (Quang & Xie,
2016),

• Designing the structure and initializing the parameters of the model using knowledge
about cell’s subsystems — DCell (Ma et al., 2018),

• Relying on neural additive models (Agarwal et al., 2021), which rely on linear com-
bination of smaller neural networks, allowing to take advantage of the inherent
interpretability of linear models combined with the expressivity of neural networks.
For instance, ExplaiNN (Novakovsky et al., 2022b) combines several CNNs, each
containing only one convolutional filter.

These methods are then able to identify various biological features to provide global
interpretation of their predictions. These features may include sequence motifs, but they
may also include other diverse genetic variants, such as pathways and gene interactions,
depending on the chosen architecture. Such features would be more difficult to highlight
with traditional neural networks.

1.4.6 Limitations of interpretability

Explainable machine learning covers a heterogeneous set of methods that seek to provide
insights into why a model takes certain decisions rather than others. The approach used
is therefore determined by the architecture of the model, the level of explanation needed
— is it to understand a specific prediction or the overall functioning of the model? — as
well as the type of biological features that the user considers as interesting.
A certain amount of explainability can always be reached. However, there are some
criteria for determining the level of relevance of a given explanation:

• Is the explanation stable? Let’s consider a model trained over a dataset D, and an
explanation f obtained using one of the aforementioned methods (either local for a
given x or global). Would the same explanation be obtained if we add or remove
a data point to D? If the machine learning model is robust to this modification
(the prediction function remains almost unchanged) but a different explanation f ′
is given, it calls into question the relevance of f .

• Is an explanation complete? Does it cover all of the key aspects of the decision-
making process? For instance, interpreting the first-layer filters of a CNN as se-
quence motifs does not provide information about the interactions between those
motifs.
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• Is it accurate? Does the given explanation play a significant role in the decision-
making process?

• Is it actionable? How can this information be used?

The different interpretation methods make it possible to highlight biological features that
seem to be relevant to explain a given phenotype. The class of features is wide and de-
pends both on the architecture of the model and on the chosen interpretation method. In
this sense, it enables the discovery of new genetic variants, which may be subsequently
tested in the same way as GWASs do. Furthermore, computing the statistical significance
of an explanatory element answers at least partially the outlined criteria, depending on the
chosen null hypothesis. While this statistical significance has its own limitations (Wasser-
stein & Lazar, 2016), it often provides an intuitive scale for identifying relevant features
and has only received little attention to our knowledge in the context of neural networks.
Whether using SNPs, k-mers, sequence motifs or any other feature, we see that they
belong to very rich classes. Then, there exists a very large number of variants to test, and
when the class is continuous this number becomes infinite. If we do not pay attention to
this multiplicity, the results may be biased. The goal of the next chapter is to propose an
overview of the different approaches that can be applied in such a context.
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CHAPTER 2

From multiple testing to conditional inference, different strategies
for valid inference procedures on high-dimensional data

Regardless of the type of the genetic variants considered in a GWAS, there are always
a huge number of existing different ones. For instance, the number of interesting SNPs
is above 106 in the human genome, and there exists an infinite number of sequence mo-
tifs, as they are matrices living in a continuous space. Testing these variants poses a
significant replicability challenge due to the high-dimensional statistics and multiple test-
ing context (Benjamini, 2020). The purpose of this chapter is therefore to explain and
give intuition about this issue, and to propose an overview of the different strategies to
overcome it. To that end, we will develop an example throughout the following sections,
allowing us to illustrate the problem and the different methods.

2.1 Uncovering gene-phenotype associations: a case
study

Let’s say that we are interested in discovering the genes whose expression levels are as-
sociated with cell growth rate, denoted y. This rate, often expressed as a population
doubling time, is then a continuous phenotype: y ∈ R.
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2.1.1 Association between a given gene and the phenotype

In this subsection, let’s consider a single given gene g. We are interested in the following
null hypothesis:

H0 : “There is no association between the growth rate y and the expression level of g” .

To this end, we studied n different cells {c1, . . . , cn}, for which we measured the growth
rates y ∈ Rn, such that yi = yi is the growth rate of cell ci. The expression levels for
gene g in these cells are summarized in g = (gi)i≤n.
The null hypothesis described above is quite vague, as several types of association can be
considered. To precise it, we suppose that y is linearly associated with g:

y = β1g + β2 + ε , (2.1)

where the βi ∈ R, and ε ∈ R is normally distributed ε ∼ N (0, σ2), with σ ∈ R. The noise
ε is assumed to be homoscedastic.
The null hypothesis can now be formulated as:

H0 : “β1 = 0” . (2.2)

In other words, H0 states that there is no relationship between the growth rate and the
expression level of gene g.
The true values β = (β1, β2) are unknown, so we can estimate them using the coefficients
β̂ = (β̂j)j≤1 obtained by minimizing the least-squares problem:

β̂ = arg min
β′∈Rq

( 1
n
‖y −GTβ′‖2

2

)
, (2.3)

where G ∈ R2×n, such that G1,· = gT and G2,· = 1Tn is the vector of all ones. Under a
full-rank assumption, this equation admits an analytical solution:

β̂T =
(
GGT

)−1
Gy . (2.4)

To test the null hypothesis (2.2), we rely on the following test statistic V :

V := |β̂1|
se(β̂1)

, (2.5)

where se(β̂1) is the standard error of estimation for β̂1. The test we derive consists in
rejecting the null hypothesis if V ≥ t, where t is some threshold chosen such that the
probability to wrongly reject H0 is lower than a given risk level α.
Under the assumption that the expression level of g across the cells is distributed according
to a Gaussian model, and that H0 (2.2) holds, we have the following result (Giraud, 2021,
Chapter 10):

V ∼ |T (n− 2)| , (2.6)
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with T (n − 2) the Student’s distribution with n − 2 degrees of freedom, and we denote
F|T (n−2)| its cumulative distribution function (CDF). We now define the function p such
that:

p :R+ → [0, 1]
v 7→ 1− F|T (n−2)|(v) .

(2.7)

It follows that if H0 holds, p(V ) ∼ U(0, 1). Then, for a given α ∈ [0, 1], and under the
null hypothesis (2.2), we have:

P(p(V ) ≤ α) = α . (2.8)
This means that if we chose to reject the null hypothesis when p(V ) is lower than α, the
probability of wrongly rejecting H0 is equal to α, and p(V ) consequently defines a correct
p-value.
To illustrate this result, we use the following script to obtain the Q-Q plot in Figure 2.1,
with m = 1 000 independent experiences under the null hypothesis and n = 100 samples
per experience:

pvalues = c()
for (r in 1:m){

# Generating a dataset under the null
g <- rnorm(n)
y <- rnorm(n)

# Finding the optimal hat_beta
model <- lm(y~g)

# Recovering the pvalues
pvalues <- c(pvalues, summary(model)$coefficients[2,4]

}

The resulting distribution fits perfectly with the uniform, which confirms the validity of
the testing procedure described above.

2.1.2 What happens with multiple genes?

In this subsection, instead of studying the association for just one gene g, we collected
the expression levels of q genes {g1, . . . , gq} for n samples, and we want to discover the
genes that are significantly associated with the phenotype y. This dataset is summarized
in Table 2.1.
We therefore generalize the framework introduced in (2.1) using a multiple linear model:

y = β1g1 + · · ·+ βqgq + βq+1 + ε. (2.9)

From this model, we define a set of null hypotheses (H0,j)j≤q such that:

H0,j : “βj = 0” . (2.10)
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Figure 2.1: Comparing the distribution of p-values, obtained under the null for the asso-
ciation of gene g with the phenotype, to a uniform distribution using a Q-Q plot.

Cell c1 Cell c2 . . . Cell cn
Gene g1 g1,1 g2,1 g1,n
Gene g2 g2,1 g2,2 g2,n

Gene gq g1,q g2,q gq,n

Growth rate y1 y2 . . . yn

Table 2.1: Example dataset to be used throughout the chapter.

As above, the βj are unknown and will be estimated using (2.4) with G ∈ R(q+1)×n, still
under a full-rank assumption for GGT . The test statistics are now:

Vj := |β̂j|
se(β̂j)

. (2.11)

Under the Gaussian assumption and the null hypothesis H0,j, we have:

Vj ∼ |T (n− (q + 1))| . (2.12)

Finally, we can modify (2.7) and give a new definition of the function p, using:

p :R+ → [0, 1]
v 7→ 1− F|T (n−(q+1))|(v) .

(2.13)

This leads to a valid definition for the p-value p(Vj) corresponding to the null hypothesis
H0,j. From now on, the p-value associated with H0,j will simply be denoted pj.
For a given gene gj, rejecting H0,j when pj is lower than α results in a probability of
wrongly rejecting H0 equals to α.
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•Where the problems begin
In fact, while looking at the (β̂j)j≤q coefficients, we realize that the gene gs seems partic-
ularly associated with the phenotype. We indeed noticed that |β̂s|= maxj≤q

(
|β̂j|

)
. We

are now interested in computing the p-value ps for this specific gene. To that end, we rely
on (2.11,2.13).
But let’s repeat this experiment a large number m = 1 000 of times, always with data
under the null hypotheses (H0j)j≤q, and observe the empirical distribution of the p-values
ps. In each run, s is chosen such that |β̂s|= maxj≤q(|β̂j|). With n = 1 000 samples per
dataset and q = 100 genes, we use the following code snippet:

pvalues_s <- c()
for (r in 1:m){

# Generating a dataset under the null
G <- matrix(rnorm(n*q), nrow=n)
y <- rnorm(n)

# Fitting the linear model
model <- lm(y~G)

# Recovering all hat_beta and pvalues
hat_beta <- unname(summary(model)$coefficients[2:q,1])
all_pvalues <- unname(summary(model)$coefficients[2:q,4])

# Keeping only p_s, associated with the maximum of the |hat_beta|
pvalues_s <- c(pvalues_s,

all_pvalues[abs(hat_beta)==max(abs(hat_beta))]
}

The resulting Q-Q plot is given in Figure 2.2 and shows a significant decalibration: the
empirical distribution is far from U(0, 1). With this set of parameters, rejecting H0,s when
ps < 0.05 leads to rejecting this null hypothesis for more than 90% of the experiments,
while the expected proportion should be 5%.
And this is where post-selection inference and multiple testing problem appears. Indeed,
the classical inferential scheme, in order to give valid results, assumes that the null hy-
potheses have been chosen without having used the data. This is the classic scheme, where
one formulates a null hypothesis, collects some relevant data, and tests this hypothesis
using the data.
But recently, the increasing amount of available data has encouraged another process: one
first collects a large dataset, then formulates some hypothesis — is the gene gs, chosen
using the data, associated with the phenotype? — and finally tests this hypothesis, see
Table 2.2. But the classical guarantees provided by any statistical method degrade if the
impact of the selection is ignored, as illustrated in Figure 2.2.
The aforementioned example is relatively straightforward and it is easy to identify the
situation as problematic. In fact, choosing the gene with the highest |β̂j| is equivalent
to choosing the gene with the lowest p-value among the q genes, under the simplifying
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Figure 2.2: Q-Q plot comparing the distribution of p-values for the gene gs, corresponding
to the maximum weight β̂, to a uniform distribution.

Classical inference Post-selection inference
1. Devise a model 1. Collect some data
2. Collect some data 2. Select a model
3. Test the hypotheses 3. Test the hypotheses

Table 2.2: Classical and post-selection inference framework.

assumption that the standard errors are all equal. With this assumption, we can compute
the probability distribution of ps if all the null hypotheses hold:

P(min
j≤q

(pj) ≤ x) = P(∃j ≤ q , pj ≤ x)

= 1− P(∀j ≤ q , pj > x)

= 1− P

⋂

j≤q
pj > x




= 1−
∏

j≤q
P(xj > x) (independence)

= 1− (1− F (x))q (with F the CDF function of the p-values)
= 1− (1− x)q (under the null, the p-values are uniform)

(2.14)

The quantile function of this distribution is then given by:

Q(p) = F−1
minj≤q(pj)(p) = 1− (1− x)1/q , (2.15)

which is consistent with the empirical distribution found for ps, as shown in Figure 2.2.
While the selection is relatively easy to identify in this example, it also occurs in less
obvious settings. For instance, if we train a CNN and decide to test the resulting sequence
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motifs (Chapter 1 Subsection 1.2.3.2), we have to be aware that throughout the network’s
training step, only a small subset of possible null hypotheses was chosen to be tested:
the training resulted in a given number of specific motifs from the set of all possible
motifs. Moreover, in this case, the independence assumption made in (2.14) does not
hold anymore.
The tools to choose some null hypothesis, such as machine learning methods, are becoming
increasingly sophisticated. Benjamini (2020) provides an overview of the implications of
selective inference in many fields of science, and the non-management of the selection of
null hypothesis is one of the reasons invoked to explain the replication crisis (Ioannidis,
2005).
However, there are tools that provide statistical guarantees in a situation where a lot of
null hypotheses (and potentially an infinite number) can be tested.
They can be classified into three categories, which will be the focus of the next sections:

• Simultaneous inference: accounting for the multiplicity of the nulls;

• Sample splitting strategies: working around the problem by using different data to
select and to test the nulls;

• Conditional inference: accounting for the selection in the null distribution of the
test statistics.

2.2 Simultaneous inference

Let’s continue our previous example, and consider that we collected the expression levels
for q = 1 000 genes and set a risk level α = 5%. If none of those genes is associated with
the phenotype, each gene has a 5% chance to be declared as significantly associated with
the growth rate. This leads to an expected number of 50 = α × q false discoveries —
wrongly rejected null hypotheses, or false positives — see Table 2.3.

H0 is false H0 is true
p-value≤ α TP (true positive) FP (false positive)
p-value> α TN (false negative) TN (true negative)

Table 2.3: Possible outcomes when testing a null hypothesis.

As a results, considering the risk level on a test-by-test basis is no longer relevant when
dealing with multiple tests.
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That’s why other criteria have been introduced, and we will focus on two of them:

• The False Discovery Rate (FDR):

FDR = E

(
False positives

True positives + False positives

)
, (2.16)

controlling the expected proportion of wrongly rejected null hypotheses among all
the rejected ones. In this equation, E is the expected value.

• The Family-Wise Error Rate (FWER)

FWER = P(False positive ≥ 1) , (2.17)

the probability of having at least one wrong discovery in the set of rejected null
hypotheses.

Any procedure that controls the FWER also controls the FDR. However, if a procedure
controls the FDR only, it can be less stringent (Benjamini & Hochberg, 1995, Section
2.1). Intuitively, accepting a given proportion of false discoveries out of a possibly large
total of null hypotheses may imply a very high probability of at least one false discovery.
However, controlling the FWER will lead to a lower number of discoveries than controlling
the FDR. The tools are then used alternatively, depending on the research question and
on the consequences of a false discovery.

2.2.1 The Bonferroni correction

The Bonferroni correction is a widely used method to choose the risk level α at the test
level to control the FWER.
We need to define the set J0, containing the indices j of the true null hypotheses H0,j:

J0 = {j ≤ q : H0,j holds} . (2.18)

The Bonferroni correction relies on the following observation (assuming that the null
hypotheses are independent):

FWER = P(FP ≥ 1) = P

(
∃j ∈ J0 : pj ≤

α

q

)

≤
∑

j∈J0

P

(
pj ≤

α

q

)
(Boole’s inequality)

≤
∑

j∈J0

α

q

≤ α .

If we want to control the FWER with a risk level α, that is if we want the probability to
have at least one false discovery among the q genes we study to be less than α, then using
α/q as a threshold on the p-value for declaring a gene significant or not, guarantees it.
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2.2. Simultaneous inference

While this method provides a very simple way to control the FWER, it is quite conserva-
tive. There exist other methods for controlling the FWER while making more discoveries,
the Holm-Bonferroni procedure being one of the most widely used.
As discussed in Chapter 1 Section 1.1, the widely-used genome-wide p-value for GWASs
is fixed using the Bonferroni correction. Considering that there exists a total of 106

interesting SNPs in the human genome, if we want to control the FWER to be lower than
5%, it leads to threshold of 5×10−8 = 5×10−2/106. In addition to being based on a very
conservative approach, seeking to control the FWER rather than the FDR in the context
of GWASs is questionable (Chen et al., 2021).

2.2.2 The Benjamini-Hochberg method

The Benjamini-Hochberg procedure aims at controlling the FDR at a level α. It relies on
three steps:

1. Ordering the p-values: (pj)j≤q 7→ (p(j))j≤q, where ∀j < q , p(j) ≤ p(j+1).
The null hypotheses are re-arranged using the same indices (H0,(j))j≤q.

2. Find the largest j0 such that p(j0) ≤ j0α
q
.

3. Reject all null hypotheses H0,(j) for j ≤ j0.

The proof that this procedure guarantees FDR ≤ α is a bit tedious, and is not relevant
to this thesis. It can be found in (Giraud, 2021, Theorem 10.5). But this method provides
a particularly useful way to control the FDR.
Both to control the FWER or the FDR, with Bonferroni or Benjamini-Hochberg methods,
we see that to reject the null hypothesis H0,j, the corresponding p-value pj must be lower
than a certain threshold, inversely proportional to q. The higher the number of genes to
be tested, the lower the threshold. It implies that if the number of genetic variants to be
tested increases, then this threshold risks to be low, sometimes falling below the minimum
p-value attainable for a given n if applicable.
Moreover, if the number of variants is infinite — for instance, the number of sequence
motifs is infinite, as the motifs live in a continuous space — then this multiple testing
approach does not work anymore as q = +∞.
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2.3 Data-split

A data-split strategy is another approach, feasible when the original dataset can be split
into two subsets: a training set and a test set, for instance see Wasserman & Roeder
(2009). It relies on the following steps:

1. Randomly split the set of indices I = {1, . . . , n} into two independent subsets I1
and I2 such that I1 ∩ I2 = ∅ and I1 ∪ I2 = I. Then (y1,G1), containing the data for
indices i ∈ I1 will be the training set and (y2,G2) the test set.

2. Perform any selection method to select any subset of null hypotheses: Js ⊂ {j ≤ q},
using only the training set. The number of selected hypotheses is denoted κ < q.

3. Compute the p-values associated with the null hypotheses (H0,j)j∈Js , using only the
test set.

4. Apply a simultaneous inference method if κ > 1 to correct for the multiplicity of
tests (if more than one nulls have been selected).

Let’s apply it on our example, still selecting the gene gs (and therefore the null H0,s)
such that |β̂s|= maxj≤q(|β̂j|). We chose to split the initial dataset into two equal halves
card(I1) = card(I2):

pvalues_s <- c()
for (r in 1:m){

# Generating a dataset under the null
y <- rnorm(n)
x <- matrix(rnorm(q*n), nrow=n)

# Random split of I, and definition of the test and training sets
I_1 <- sample(I,n/2)
I_2 <- setdiff(I,I_1)
x_1, x_2, y_1, y_2 <- x[I_1,], x[I_2,], y[I_1], y[I_2]

# Training a linear model on the two datasets
model_1, model_2 <- lm(y_1~x_1), lm(y_2~x_2)

# Recovering the hat_beta for the training set
hat_beta_1 <- unname(summary(model_1)$coefficients[2:q,1])

# Recovering the pvalues for the test set
pvalues_2 <- unname(summary(model_2)$coefficients[2:q,4])

# Keeping only pvalue_s, corresponding to max |hat_beta|
pvalues_s <- c(pvalues_s,

pvalues_2[abs(hat_beta_1)==max(abs(hat_beta))])
}
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2.3. Data-split

The resulting Q-Q plot is shown in Figure 2.3, and illustrates the proximity between the
distribution of the p-values ps and the uniform.
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Figure 2.3: Q-Q plot of the distribution of p-values ps, when using a data-split strategy,
versus a uniform distribution.

Finally, using a data-split strategy has two main advantages: it is usually very straight-
forward to implement — it works automatically in many settings —, and it is fairly
assumption free. However, we can identify three drawbacks to using it:

• It introduces some irreproducibility, as the resulting p-values depend on the random
split performed at step 1. Two different splits may lead to different p-values.

• It is inefficient, in a sense that it only uses part of the data to select the null
hypotheses, and the other part to test them. So, the training step might have lower
selection performance, and the test procedure is less powerful than one that would
have used all the data.

• It might be infeasible, depending on the data structure. For instance, time series are
not suited to data-split, as it is hard to define independent subsets. If the original
dataset contains rare observations, a data-split approach may also be blind to those
observations: if the corresponding samples are only in I1, the test of the correspond-
ing null will have no power, and conversely, if they are in I2, the corresponding null
will not be selected.
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Chapter 2. From multiple testing to conditional inference

2.4 Conditional inference

Conditional inference is a different approach, that uses all the available data both for the
selection and for the test step. For each selected null hypothesis H0,j, it constructs the
distribution of the test statistics under the null, conditional on the prior selection of H0,j
using a data-dependent procedure.
A well-studied case where conditional inference occurs is Pearson’s χ2 test (Fisher, 1922).
Let’s say we want to use this test to evaluate the goodness of fit of a random variable
X, for which we have a realization (x1, . . . , xn) — divided in k classes — with a uniform
distribution U . To test the null hypothesis H0 : ”X ∼ U”, we compute the test statistics
and compare it with the quantiles of a χ2(k−1), its asymptotic distribution when n→∞.
But if we want to compare the distribution of X with a Poisson distribution P , the first
step is then to look for the parameter ν, such that the first moment of P(ν) is equal
to the estimated first moment of X — i.e. the average of (x1, . . . , xn). Then the null
hypothesis becomes H0,ν : ”X ∼ P(ν)”, and it was selected among all possible ν. The
distribution of the test statistics under the null then must be adjusted to account for this
selection. Under the right assumptions, it is well established that the new asymptotic
distribution is χ2(k − 2). The distribution of the test statistics under the null has been
changed, to account for the selection. This well-known example is intended to illustrate
the modification in the distribution of the test statistic under a conditional null hypothesis,
compared to an unconditional one.
But besides being very specific, this example is only valid in the asymptotic framework.
We will therefore extend this approach to other testing frameworks, and to results valid
for any n.

2.4.1 Getting intuition on an easy example

Let’s go back to our example. Here, instead of choosing the gene gs with the highest |β̂|,
we are interested in selecting all the genes gj with j ∈ Jτ such that:

Jτ =


j ≤ q , Vj = |β̂j|

se(β̂j)
> τ



 , (2.19)

for a given threshold τ .
We denote F the CDF function of |T (n−(q+1))|. Under the non-selective null hypothesis
H0,j, we have P(Vj ≤ x) = F (x). And the non-conditional p-value pjnc is:

pjnc = 1− F (Vj) . (2.20)

Let’s focus on what happens under a selective null. We can obtain the selective null
distribution Fcond(x) = PVj>τ (Vj ≤ x):

∀x ∈ R+ Fcond(x) = P(Vj > τ ∩ Vj ≤ x)
P(Vj > τ) =





0 if x < τ ,
F (x)−F (τ)

1−F (τ) otherwise .
(2.21)
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2.4. Conditional inference

The conditional null distribution is then the non-conditional null distribution, truncated
at x = τ . And we obtain the conditional p-value pjcond :

pjcond = 1− Fcond(Vj) = 1− F (V )− F (τ)
1− F (τ) = pjnc

1− F (τ) . (2.22)

This result is illustrated using the following experiment, with q = 1 000, n = 10 000 and
τ = 0.1:

# Generating data under the null
y <- rnorm(n, 0, 10)
G <- matrix(rnorm(q*n), nrow=n)

# Fitting the linear regression
model <- lm(y~G)

# Recovering the hat_beta and all the (non-conditional) pvalues
hat_beta <- unname(summary(model)$coefficients[2:q,1])
pvalues = unname(summary(model)$coefficients[2:q,4])

# Keeping only the ones such that |hat_beta| > tau
pvalues <- pvalues[abs(hat_beta)>tau]
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Figure 2.4: Q-Q plot of the empirical non-conditional distribution of the p-values (pj), for
j ∈ Jτ .

The Q-Q plot provided in Figure 2.4 shows the empirical distribution of the non-conditional
(but still selected using Vj > τ) p-values pjnc obtained in the experiment. While it
shows the expected selection bias, the distribution’s alignment on a straight line high-
lights the linear relationship between these unconditional p-values and the conditional
p-values pjcond (2.22) that would have produced a calibrated test.
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Chapter 2. From multiple testing to conditional inference

2.4.2 Conditional inference with the LASSO

To further study our example, we now want to change the way we select the genes we
want to test. Instead of solving the least-squares problem (2.3), we will solve a penalized
version of it:

β̂ = arg min
β′∈Rq

( 1
n
‖y −GTβ′‖2

2+λ‖β′‖1

)
(2.23)

with λ a regularization parameter.
This problem has been introduced in (Tibshirani, 1996) as the LASSO (least absolute
shrinkage and selection operator). It is convex if rank(G) = q and therefore admits a
global minimum, and is known to produce sparse solutions. That is, if λ is correctly
chosen, only a subset of weights β̂j will be non-zero. We denote this set M :

M =
{
j ≤ q : β̂j 6= 0

}
, (2.24)

and M will be referred to as the selected model for the phenotypes of our original dataset
y. For another phenotype y′ ∈ Rn, we will denote M̂(y′) the model selected by optimizing
the LASSO (2.23). We can note here that while model selection can be performed for
interpretability issues — a model containing fewer predictors is easier to interpret, but
can also be required when working with high dimensional data (q>n). In this case, the
linear regression (2.3) becomes ill-defined, as it admits an infinite number of solutions,
contrarily to the LASSO.
We then want to test the genes belonging to the selected model: (gj)j∈M . To that end,
we will follow the procedure described in (Lee et al., 2016), (Tibshirani et al., 2015)
and (Hastie et al., 2015, Chapter 6).
This method can be divided into two steps: obtaining a simple characterization for the
selection of M , and obtaining an analytical expression for the CDF of the test statistics,
conditionally to the selection.
• The LASSO selection event as a union of polyhedra
First, the authors define the selection event E(M), that is the set of vectors y′ ∈ Rn that
lead to selection of the same model M as y:

E(M) =
{
y′ ∈ Rn : M̂(y′) = M̂(y) = M

}
. (2.25)

They show that this set is a union of polyhedra. In other words, it can be described as a
union of sets, each of which can be described using linear constraints:
Theorem 2.4.1.
Let S = {−1, 1}|M | . There exists card(S) = 2|M | matrices (A(M, s))s∈S and 2|M | vectors
(b(M, s))s∈S such that:

E(M) =
⋃

s∈S
{y′ ∈ Rn : A(M, s)y′ ≤ b(M, s)} . (2.26)

While the proof of this theorem is too long for this thesis, we will give here a brief overview
to have some intuition about this theorem.
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2.4. Conditional inference

It starts by introducing s, the vector containing the signs of β̂. The proof is then mainly
based on the Karush-Kuhn-Tucker conditions (KKT). Indeed, for β̂ to be a solution
of (2.23), it is necessary and sufficient that (β̂, s) satisfy the KKT conditions. Next, the
authors take advantage of those conditions to characterize the set of y′ ∈ Rn that lead to
the selection of a particular pair (M, s) and show that it can be described using a set of
linear constraints A(M, s)y′ ≤ b(M, s). To conclude the proof, they make the union of
the sets on all sign vectors s.
We then see that conditioning with respect to the pair (M, s) is easier than using M
alone, since the selection event boils down to a single polyhedron, i,e an intersection of
linear constraints. In the following, we condition on the selection of genes (gj)j∈M and on
the signs with which those genes participate in the linear model (2.9).
Compared to Section 2.1.2, we slightly modify the test statistics, and the model. Here,
we suppose that the phenotype is normally distributed y ∼ N (µ,Σ), with µ ∈ Rn and
Σ ∈ Rn×n a covariance matrix. We still assume homoscedasticity: ∃σ ∈ R , Σ = σ2In.
While the genes (gj)j∈M have been selected using the LASSO (2.23), we will test them
using a standard least-squares model (2.3). The new null hypotheses (H0,j)j∈M and test
statistics (Vj)j∈M make use of the coefficients β∗ of this regression, as computed in (2.4):

β∗ = (GMG
T
M)−1GMy ,

H0,j : “β∗j = 0” ,
Vj = β∗j = eTj β

∗ ,

(2.27)

where GM is the data matrix restrained to genes in M , and ej is the jth vector of the
canonical basis. In order to generalize, we can consider test statistics of the form ηTy,
with η ∈ Rn. As a results, Vj becomes a special case and can be written in this form
using η = ej. Under the null hypothesis H0,j, Vj ∼ N (ηTµ,ηTΣη).
To find the conditional distribution of Vj, the authors study:

ηTy|
{
M̂ = M, ŝ = s

}
. (2.28)

They rewrite this selection event
{
M̂ = M, ŝ = s

}
= {Ay ≤ b} in terms of ηTy (Lee

et al., 2016, Lemma 5.1):
Lemma 2.4.1 (Polyhedra selection as truncation).

{Ay ≤ b} =
{
V−(y) ≤ ηTy ≤ V+(y) ,V0(y) ≥ 0

}
, (2.29)

where:

• V−(y) = max
j :ρj>0

bj − (Ay)j + ρjηTy
ρj

,

• V+(y) = min
j :ρj<0

bj − (Ay)j + ρjηTy
ρj

,

• V0(y) = max
j :ρj=0

bj − (Ay)j,
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Chapter 2. From multiple testing to conditional inference

and ρ = AΣη/ηTΣη.

This lemma is simply obtained by decomposing y = c(ηTy) + z with c = Ση(ηTΣη)−1

and z = (In − cηT )y. Then, we transform {Ay ≤ b} into inequalities on ηTy.
Of note, if Σ can be written as σ2In, with σ ∈ R, then z = Pη⊥(y), the projection of
y onto η⊥ and c(ηTy) = Pη(y). Finally, this lemma lends itself easily to a geometrical
interpretation, see Figure 2.5.

Figure 2.5: Geometrical interpretation of the polyhedral lemma, with Σ = In and ‖η‖= 1.
The event {Ay ≤ b} can be characterized as {V−(y) ≤ ηTy ≤ V+(y) , V0(y) ≥ 0}.
Conditioning on (M, s) is equivalent to conditioning ηTy on a certain segment. We also
note that V+,−(y) only depend on Pη⊥(y) and are then independent of ηTy.

This lemma tells us that [ηTy|{Ay ≤ b}] and [ηTy|{ V−(y) ≤ ηTy ≤ V+(y) , V0(y) ≥
0}] are equally distributed.
• The conditional null is the truncated null
From Lemma 2.4.1, the authors derive the following result:
Lemma 2.4.2 (Pivotal statistic after polyhedral selection).
Let Φ denote the CDF of N (0, 1). Let F [a,b]

θ,σ2 the CDF of a N (θ, σ2) random variable to
lie in [a, b], i,e

∀x , F [a,b]
θ,σ2 (x) = Φ((x− θ)/σ)− Φ((a− θ)/σ)

Φ((b− θ)/σ)− Φ((a− µ)/σ) . (2.30)

For ηTΣη 6= 0, we have

F
[V−,V+]
ηTµ,ηTΣη(η

Ty)|{Ay ≤ b} ∼ Unif(0, 1) . (2.31)

To remove the conditioning on the signs, and condition only onM , we just need to perform
the union over all sign vector s:

F
⋃

s
[V−s ,V+

s ]
0,ηTΣη (ηTy)|

⋃

s

{Asy ≤ bs} ∼ Unif(0, 1) . (2.32)
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A valid test procedure for the genes (gj)j∈M obtained via optimization of the lasso prob-
lem (2.23) is then to compute the p-values for the null H0,j : ”β∗j = 0” as follows:

pj = 1− F
⋃

s
[V−s ,V+

s ]
ηTµ,ηTΣη (β∗j ) , (2.33)

for a one-sided test (H1 : ”β∗j > 0”), or to use:

pj = 2×min
{
F
⋃

s
[V−s ,V+

s ]
0,ηTΣη (β∗j ), 1− F

⋃
s
[V−s ,V+

s ]
0,ηTΣη (β∗j )

}
, (2.34)

for a two-sided test (H1 : ”β∗j 6= 0”).
This procedure has been implemented in the R package ’selectiveInference’ (Tibshirani
et al., 2019). Let’s use it on our example:

pvalues <- c()
for (r in 1:m){

# Generating data under the null
y <- rnorm(n)
G <- scale(matrix(rnorm(q*n), nrow=n), TRUE, TRUE)

# Fitting the LASSO
fit <- glmnet(G, y, standardize = TRUE)

# Extracting the coefficients for a given lambda
lambda <- 0.8
beta <- coef(fit, s=lambda/n, exact = TRUE, x=G, y=y)

# Computing the pvalues
res <- fixedLassoInf(G, y, beta, lambda, sigma =1)
pvalues <- c(pvalues, res$pv)

The Q-Q plot obtained is in Figure 2.6 and confirms the validity of this conditional
inference procedure.
Of note, equivalent results exist when the selection can be described as an intersection
of quadratic inequalities, particularly useful for group-LASSO (Loftus & Taylor, 2015),
but the support of the truncation becomes very computationally intensive O

((
q

card(M)

))
,

quickly becoming intractable. To overcome this issue, sampling-based strategies can be
implemented to approximate the conditional distribution, see Subsection 2.4.4.
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Figure 2.6: Q-Q plot of the distribution of p-values obtained with the conditional inference
procedure after a LASSO selection, against a uniform distribution.

2.4.3 Some extensions in the linear case

The previous results have been extended in different directions.
• Sequential selection procedures
Tibshirani et al. (2015) extend this work to some sequential regression procedures, such
as:

• The forward stepwise regression, which starts from a model containing zero predic-
tors (zero genes), and incrementally adds the predictor that most improves the fit
to the model.

• The Least Angle Regression, introduced by Efron et al. (2004).

Both selection procedures can be described using unions of polyhedra, and the Lem-
mas 2.4.1 and 2.4.2 can be applied, with modifications in matrices A, b and functions
V−,V+,V0.
In the context of sequential selection procedures, there are two options for testing the
genes gj. Let’s define Mk the selected model at step k, such that for all k Mk ⊂ Mk+1.
Then:

• Either we test the gene gj as soon as it enters the model at step k. Its new index in
the model Mk is (j).
Defining β∗(j),k = e(j)β

∗
k with β∗k = (GMk

GT
Mk

)−1GMk
y. The null hypothesis becomes

H0,j : “β∗(j),k = 0”, the test statistics Vj = β∗(j),k, and the conditioning is on the
selection of Mk.
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2.4. Conditional inference

That is, the gene entering the model during step k is tested in the context of the
previously entered genes.

• Or we test the gene gj in the context of the entire model M , obtained at the final
step. Then the test is performed as described in (2.27).

Both options are valid, they only lead to different interpretations. The literature tends
to favor the second option: the test in the context of the final model.
• Groups of features
Our example dataset contains q genes, and for now we have considered them each sepa-
rately. But it could be interesting to define groups of gene, for instance by grouping the
genes that are in the same biological pathways. Reid & Tibshirani (2015); Reid et al.
(2015); Loftus & Taylor (2015) define a test procedure for such groups. The method can
be described as follows:

1. Group the predictors (the genes of our example), using either some knowledge con-
siderations or a clustering method.

2. For each group, extract a prototype, that is a representative for the group. It can be
achieved either in an unsupervised way (e.g. average the expressions of the genes)
or in a supervised way (e.g. select the gene gj with the highest marginal correlation
with y).

3. Select some prototypes, using forward stepwise regression (or another method) and
test them using a conditional inference approach, using adapted version of Lem-
mas 2.4.1 and 2.4.2.

2.4.4 Extensions to the non-linear framework

Until now, we assumed that the gene expression levels were associated with the growth
rate in a linear manner (2.9). But we can try to go beyond this linear framework, and
test other types of association. To that end,(Yamada et al., 2018) propose a kernel-based
conditional inference approach.
• Selection with HSIC criterion
In addition to allowing non-linear associations, the use of kernels (see Chapter 1 Subsec-
tion 1.2.2) allows for using non-numerical data, such as biological sequences instead of
gene expressions.
In this approach, the authors estimate the discrepancy from independence between the
jth predictor (the gene gj in our example, but not necessarily its expression level) and the
outcome y (the phenotype): Î(gj,y), the estimate of the true discrepancy I(gj,y).

They denote z ∈ Rq such that zj = Î(gj,y), and assume that it is normally distributed
with mean µ ∈ Rq and covariance Σ ∈ Rq×q:

z ∼ N (µ,Σ) . (2.35)
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To estimate the discrepancy from independence, the authors rely on the Hilbert-Schmidt
Independence Criterion I(gj,y) = HSIC(gj,y) and rely on its empirical approximation

ˆHSIC(gj,y), as introduced in (Gretton et al., 2005). This criterion is known to asymp-
totically follow normal distribution when n goes to infinity (Zhang et al., 2018), justify-
ing (2.35).
It can be expressed using two kernels, one on the predictors and one on the output. It
therefore measures a non-linear association between y and gj, depending on the chosen
kernels. For gene gj, the authors define the null hypothesis as the independence:

H0,j : “HSIC(gj,y) = 0” , (2.36)

and the test statistics is Vj = zj.
They select the set of predictors M (containing a fixed number) with the highest discrep-
ancy from independence, leading to the selection event:

E(M) =
{
y′ ∈ Rn , ∀(m, `) ∈M × {1, . . . , q}\M, Î(gm,y′) ≥ Î(gl,y′)

}
. (2.37)

Then the selection event, originally expressed as a set of constraints on y′, can be rewrit-
ten as a set of linear inequalities with respect to z, and the results derived in Subsec-
tion 2.4.2 can be applied to find an analytical expression for the distribution of zj under
the null (2.36), conditionally to the selection of the model M .
To sum things up, (Yamada et al., 2018) enables to select and test the predictors gj using
a non-linear association with the outcome, this association being defined by the two given
kernels in HSIC. The new parametrization with z allowed them to switch from non-linear
constraints on y to linear constraints on z, and thus to apply the aforementioned results.
• General framework for kernel selection
However, (Slim et al., 2019) go even further, and propose a general framework for selecting
and testing kernels, extending the possible associations types.
As discussed in Chapter 1, a kernel defines an implicit representation of the data. If we
rely on a parameterized class of kernel functions K = {Kθ , θ ∈ Θ}, with Θ a parameter
space, then we can be interested in testing the association between Kθ and the phenotype.
For the sake of clarity, let’s apply it to our original example, with y the vector containing
the growth rates for n cells. But now, instead of having the gene expression levels g, let’s
say the inputs are the DNA sequences of those cells: X = (xi)i≤n. We first define the
class of kernel functions:

K̃ = {Kθ : ∃θ ∈ Θ , Kθ(x, x′) = 〈ϕθ(x), ϕθ(x′)〉} , (2.38)

where Θ is the set of existing k-mers of a given length k, and ϕθ(x) is the number of
occurrences of θ in x — in this simple case 〈ϕθ(x), ϕθ(x′)〉 = ϕθ(x)× ϕθ(x′).
We can then define the association between a kernel Kθ and the phenotype, e.g by using
the squared correlation between ϕθ(X) = [ϕθ(xi)]i≤n:

association(Kθ,y) = yTϕθ(X)ϕθ(X)Ty = yTKθy , (2.39)
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with Kθ the Gram matrix associated to Kθ.
Under the Gaussian assumption y ∼ N (µ,Σ), we are interested in the following null
hypotheses:

H0,θ : “association(Kθ,µ) = 0” , (2.40)
using Vj = association(Kθ,y) as a test statistics.
We can select a limited number of {θj}j∈M by applying one of the aforementioned selection
procedures to maximize the association (e.g. LASSO, FS or LAR) and test their respective
null hypotheses, conditionally to the selection of M .
However, the authors show that the selection event

{
y′ ∈ Rn : arg max

M ′

(
association(K{θj}∈M ′ ,y′)

)
= M

}
, (2.41)

cannot be written as a set of linear constraints on y′, but as a set of quadratic constraints.
As discussed above, obtaining the right truncation of the null distribution to account for
this conditioning is then theoretically feasible, but intractable, and the authors rely on
a smart rejection sampling strategy to approximate this distribution: the hypersphere
direction sampling, first proposed by Berbee et al. (1987). This method will be discussed
in detail in Chapter 4 Subsection 4.3.1.2, as the inference procedure we propose is based
on it.

2.5 Current limitations of conditional inference

To sum things up, there exists three main classes of methods to perform valid inference
in a context of multiple null hypotheses. The simultaneous inference approach is comple-
mentary to data-split and conditional inference as it gives different statistical guarantees.
Data-split, when applicable, is quite straightforward, but is data-inefficient compared to
the conditional inference approach, as it only uses distinct subsets to perform selection
and inference.
However, we can identify several limitations to the use of conditional inference:

• It often relies on some assumptions regarding the data, and particularly the output,
such a Gaussian assumption with a known variance. While some results exist for
the variance (Lee et al., 2016, Section 8), we believe our results from Chapter 4 can
improve this point.

• They are designed to work with selection among a finite number of predictors. But
when working with continuous variants, such as sequence motifs, the selection is
performed over a infinite set of features. Chapter 4 introduces a method to overcome
this issue.
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CHAPTER 3

Discovering sequence motifs with SEISM

Within the following chapters, we set out to go beyond explainable machine learning by
introducing SElective Inference for Sequence Motifs (SEISM): a valid statistical inference
procedure for features obtained using interpretability tools over machine learning models.
SEISM is introduced in (Villié et al., 2022), and a PyTorch implementation is provided
at https://gitlab.in2p3.fr/antoine.villie1.seism.
This chapter aims at defining a procedure for selecting q sequence motifs Z = {z1, . . . ,zq}
that are associated with a phenotype in a given dataset (X,y) containing n samples. Each
sample is composed of a one-hot encoded sequence xi ∈ X , defined over an alphabet A
(Chapter 1 Section 1.2), and of the corresponding measurement of a biological property
yi ∈ Y .
The motifs must match the constraint (1.16) provided in Chapter 1, and thus Z ∈ Zq,
where Z is a subset of R|A|×k, given by the simplex:

Z =


 z ∈ R|A|×k+ : ∀j ≤ k ,

|A|∑

i=1
zi,j = 1



 , (3.1)

and k is the length of the motif.
In order to do so, we cast commonly used CNNs in a feature selection framework. While
achieving state-of-art performance for predictions tasks, their feature selection perfor-
mance suffers limitations discussed in Chapter 1: instabilities, irrelevant, redundant or
partial motifs... We will then modify those CNNs to work around these issues and show
that they can be fitted into a broader analysis paradigm: association scores. By represent-
ing various association types between motifs and phenotypes using this new paradigm, we
are able to create a more versatile selection approach. These scores will then be leveraged
in Chapter 4 to derive a valid test procedure for the selected motifs.
In the second part of the chapter, we compare the motif selection performance of SEISM
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Chapter 3. Discovering sequence motifs with SEISM

with existing de-novo motifs discovery tools, and show that SEISM reaches state-of-art
performance.

3.1 Association scores and link with CNNs

As described in Chapter 1 Subsection 1.2.3.2, one-layer CNNs parametrize a function
g : X 7→ Y by q filters of length k and q weights β ∈ Rq. The function g can be
decomposed as a linear predictor applied over a data representation:

∀x ∈ X , g(x) = ϕZ,xβ . (3.2)

In this section, the focus is put on the loss function, i.e. the function that measures the
difference between the predicted output and the true one. The goal of training a model
is to minimize the value of this function. The classical framework for CNNs, using the
data {X,y}, relies on a quadratic loss measuring the empirical risk, associated with a L2

penalty:

min
(Z,β)∈(Z,Rq)

n−1‖y −ϕZ,Xβ‖2
2+λ‖β‖2

2 , (3.3)

with ϕZ,X ∈ Rn×q such that [ϕZ,X ](i,·) = ϕZ,xi and some λ > 0.
Problem (3.3) defines a convex and differentiable function of β, and its minimum can
then be found by setting the gradient in β to 0:

0 = −2n−1
(
ϕz,X

)T (
y −ϕz,Xβ

)
+ 2λβ

=
((
ϕz,X

)T
ϕz,X + λnIq

)
β +

(
ϕz,X

)T
y .

Then we can observe that
(
ϕz,X

)T
ϕz,X is positive, and definite if ϕz,X has rank q:

∀v ∈ Rq , vT
(
ϕz,X

)T
ϕz,Xv = 〈ϕz,Xv,ϕz,Xv〉 ≥ 0 ,

leading to
((
ϕz,X

)T
ϕz,X + nλIq

)
being invertible. Next, we derive the optimal solution

for (3.3):
β∗ =

((
ϕz,X

)T
ϕz,X + λnIq

)−1 (
ϕz,X

)T
y . (3.4)

By plugging this solution (3.4) into (3.3), we obtain:

arg min
Z

{
min
β

{
n−1‖y −ϕZ,Xβ‖2

2+λ‖β‖2
2

}}
= arg max

Z

{
sridge
λ (Z,y)

}
, (3.5)

where sridge defines a particular quadratic association score between an outcome y and a
set of filters Z:

sridge
λ (Z,y) := yTϕZ,X

[(
ϕZ,X

)T
ϕZ,X + λnIq

]−1 (
ϕZ,X

)T
y . (3.6)
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Strictly speaking, since (3.3) is a non-convex joint objective in (Z,β), its solution can
differ from the solution of (3.5). It is indeed possible for the joint minimum to be different
from the minimum in Z of the minimum in β.
It nonetheless formalizes the training of a CNN as the selection of a set of filters whose
association with the phenotype y in the sense of sridge

λ is maximal.
We adopt the concept of association score from (Slim et al., 2019), albeit the conditions
we will set in Chapter 4 for a given association score to be employed in SEISM deviate
slightly from the description provided by the authors. Introducing the association scores
allows us the generalize the different results that follow, particularly in Chapter 4. Indeed,
the developed methodology may be applied as long as such an association score between
the phenotype and explanatory features of interest can be defined.
• Other association scores
In a way, association scores assess the relationship between a phenotype and an explana-
tory feature. We can then use different scores to measure different types of relationships.
To begin, we can observe that if ϕZ,X is centered:

lim
λ→∞

λn× sridge
λ (Z,y) = yTϕZ,X(ϕZ,X)Ty := sHSIC(Z,y) , (3.7)

so for large values of the regularization hyperparameter, selecting filters by learning a
CNN is equivalent to selecting filters with the classical Hilbert-Schmidt Independence
Criterion (HSIC) score (Song et al., 2012), a widely used criterion for feature selection.
Other scores can be implemented by modifying the way the representation ϕZ,X is linked
to y, or by changing the way the data is represented by using alternative representation
functions ϕ. For instance, (Ditz et al., 2022) extend CNNs to include positional informa-
tion in ϕ, thus enabling to derive an association score between a phenotype and (motif,
position) couples.

3.2 The activation function — measuring the pres-
ence of a motif in a sequence

In Chapter 1, we introduced the spectrum kernel for biological sequences (1.5). This
representation basically counts the number of occurrences of existing k-mers in a given
sequence. But we then see that we cannot apply the exact same strategy with sequence
motifs: the occurrence of a motif in a sequence is not well defined. Different literatures
employ different strategies to determine the extent to which a motif is present in a se-
quence. These methods are all based on a comparison of the motif with the k-mers u of
the sequence.
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3.2.1 Comparing a motif and a k-mer

On the one hand, most bioinformatic tools — such as the MEME suite (Bailey et al.,
2015), an integrated set of tools for studying sequence motifs in biological sequences
considered as state-of-art — rely on a categorical model, where the weight of a motif at
a given position can be directly interpreted as the probability to find the corresponding
letter in this position in a k-mer. One can then compute the presence of a motif in a
sequence using a pooling step (either max or mean pooling), resulting in the following
representation for sequences X using motifs Z:

∀(i, j) , [ϕ̃Z,Xcat ](i,j) = Poolingu∈xi

(
k∏

`=1
uT` Z(j,`)

)
. (3.8)

On the other hand, the standard machine learning methods for biological sequences, for
instance typical CNNs, rely on exponential activation functions:

∀(i, j) , [ϕ̃Z,Xexp ](i,j) = Poolingu∈xi
(
e

1
ω2 (uTZj−1)

)
, (3.9)

for some bandwidth parameter ω.
In this work, we will use a slightly modified version of this activation function and rely
on a Gaussian activation, where the probability distribution defined by a motif can be
represented by a Gaussian over Z, similarly to Figure 1.4. This activation empirically
results in better selection performance compared to the exponential activation:

∀(i, j) , [ϕ̃Z,Xgaus ](i,j) = Poolingu∈xi

(
e−
‖Zj−u‖22

2ω2

)
, (3.10)

and the impact of ω will be studied in Subsection 3.3.5. As all the k-mers u have the
same norm ‖u‖2= k, we can note working with normalized motifs Zj would make (3.9)
and (3.10) equivalent up to a constant factor. But using z ∈ Z leads to slightly different
results.
Furthermore, in contrast to standard CNNs, we will use a centered version of the repre-
sentation ϕZ,X = Cnϕ̃

Z,X , where Cn = In − n−11n1Tn is the centering operator, In the
identity matrix and 1n the all-one vector in Rn.
In addition to connecting sridge with sHSIC as discussed in Section 3.1, we observed that
this centering led to the selection of more relevant sequence motifs in our experiments, as
it allows SEISM to work with skewed data, since imbalanced classes will have no effect
on the result.
We observe that the centering matrix is an orthogonal projection matrix onto
E := Range(Cn), the orthogonal of the vector line generated by the vector 1n, and then
it holds:

‖y −ϕZ,Xβ‖2
2= ‖Cny −ϕZ,Xβ‖2

2+‖y −Cny‖2
2 . (3.11)

The solution of (3.3) is unchanged if y is replaced by Cny, and so we can assume that
y ∈ E without any generality loss. In practice, y is centered at the very beginning of the
SEISM procedure.
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3.2. The activation function — measuring the presence of a motif in a sequence

3.2.2 Pooling strategies

When using CNNs for prediction performance, max pooling and mean pooling are two
methodologies that, depending on the task, can both produce good results. As a result,
the two strategies are often implemented and left at the discretion of the user, and we
began to work with these two options:

[ϕ̃Z,Xmean](i,j) = 1
|xi|

∑

u∈xi

(
e−
‖Zj−u‖22

2ω2

)
and [ϕ̃Z,Xmax ](i,j) = max

u∈xi

(
e−
‖Zj−u‖22

2ω2

)
(3.12)

However, it turns out that max pooling is superior when it comes to de-novo motifs
discovery. Indeed, mean pooling tends to select homopolymers: motifs that look like
repeated strings of one or two letters, as shown in Figure 3.1. This issue, which is not
addressed in standard machine learning approaches because it does not negatively impact
the prediction performance, has long been known in the bioinformatics literature (Bailey
& Elkan, 1994).

Figure 3.1: Motif discovered using SEISM with mean pooling on a simulated dataset with
no signal (the phenotype was pure noise). The discovery of this homopolymer reveals a
minor imbalance in the C content of the positive and negative sequences.

In our framework, this issue arises when a given nucleotide sequence content in X cor-
relates (even slightly) with the phenotype y. A prediction based on this feature would
have very low generalization performance, as from a biological point of view this feature
is irrelevant for most phenotypes. While they might sometimes be relevant, for instance
the GC content can correlate with biological properties (Galtier & Lobry, 1997), they are
most often pointless.
This problem does not occur with max pooling strategies since they do not evaluate the
nucleotide content at the sequence scale. As a result, they achieve superior selection
performance.
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3.3 Optimizing an association score to select sequence
motifs

Both sHSIC and sridge scores with the Gaussian activation function are non-convex functions
of Z. The search for a global maximum is thus not straightforward, and in the course of
this thesis, we studied three approaches for optimizing the association score.
The first one makes use of a reformulation of our optimization problem as a difference of
convex functions. There exists a literature dedicated to this class of problems, and it has
already been applied in a setting similar to ours. The second one consists in convexifying
the problem, by generalizing it on a richer class of functions. Finally, the most standard
approach relies on gradient descent algorithms to identify local optima. Each approach
has its own advantages and trade-offs, and SEISM is based on this latter method.

3.3.1 Difference of convex functions

When working with sHSIC, the exponential activation and only one filter z, one can note
that optimizing the objective function is equivalent to optimizing a difference of convex
functions:

arg max
z

sHSIC(z,y) = arg max
z

(
yTϕz,Xexp (ϕz,Xexp )Ty

)

= arg max
z

((
(ϕz,Xexp )Ty

)2
)

= arg max
z

(
(ϕz,Xexp i)Ty

)
(Assumption: (ϕz,Xexp i)Ty > 0)

= arg max
z


∑

yi>0
yiϕ

z,xi
exp −

∑

yi<0
|yi|ϕz,xiexp




= arg min
z


∑

yi<0
|yi|ez

T xi −
∑

yi>0
yie

zT xi




= arg min
z

(g(z)− h(z)) ,

(3.13)

where g : z 7→
∑

yi<0
|yi|ez

T xi and h : z 7→
∑

yi>0
yie

zT xi are both convex functions of z, and Z

is a convex subset of R|A|×k.
Optimizing the association score over the convex set Z is therefore equivalent to mini-
mizing the function f = g − h, which belongs to the class of DC functions, as introduced
in Definition 3.3.1 following Horst & Thoai (1999):
Definition 3.3.1 (DC functions).
Let Ω be a convex subset of Rd. A real-valued function f : Ω → R is called DC on Ω, if
there exist two convex functions (g , h) : Ω→ R such that f can be expressed in the form:

f = g − h .
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3.3. Optimizing an association score to select sequence motifs

From this definition, the authors derive the following optimality condition:
Proposition 3.3.1 (Optimality condition for DC functions).
A point z∗ is an optimal solution z∗ = arg minz (g(z)− h(z)) if and only if there is t∗ ∈ R
such that:

0 = inf {−h(z) + t : z ∈ Z, t ∈ R, g(z)− t ≤ g(z∗)− t∗} . (3.14)

This formulation motivates a cutting plane algorithm, which iteratively identifies and
add constraints to the problem, until the optimal solution is found. The main idea is to
construct a sequence of nested polytopes P i+1 ⊆ P i which contain the optimal solution
(z∗, t∗). Subsequent polytopes are then defined by cutting out the current vertex (zi, ti)
while keeping the solution inside.
In particular, this algorithm was adapted by Argyriou et al. (2006) to perform kernel
selection among a convex hull of a continuous parametrized family of kernels. Our frame-
work also fits this definition, and the developed methodology can therefore theoretically
be applied to our case.
However, Argyriou et al. (2006) apply their algorithm to find the best kernel in a family
parametrized with only a few parameters, and describe a sharp increase of the required
computation time with the number of parameters: on their dataset, it took between one
and two minutes to select the best kernel when there was only one parameter, about five
minutes to learn two parameters, and about one hour to learn four parameters. Because
the number of parameters for a sequence motif of length k is 3× k, this algorithm is way
too slow to detect even very short motifs.
Nonetheless, considering our optimization problem with the HSIC score (3.13) as a DC
problem, and particularly using the optimality condition provided by Proposition 3.3.1
could be interesting to determine whether a sequence motif is a global optimal for a given
phenotype, which could be beneficial for the inference step, in particular to describe a
selection event, see Chapter 4 Subsection 4.1.2. Working around this topic could thus be
an interesting line of work to pursue.

3.3.2 Convexification

In this section, we will slightly modify our optimization objective (3.3) and rely on a
LASSO rather that on the Ridge penalty:

min
(Z,β)∈(Z,Rq)

n−1‖y −ϕZ,X β‖2
2+λ‖β‖1 . (3.15)

The idea of this section is to reparametrize the optimization problem: instead of try-
ing to find filters Z = (zj)i≤q and weights β minimizing (3.15), we will define a richer
problem and find a measure µ minimizing it. This new formulation indeed leads to a
convex problem, facilitating the search for a global optimum. To our knowledge, this idea
originally comes from the optimal transport literature, see for instance (Peyré & Cuturi,
2020, Chapter 2), in particular the Monge Problem and the Kantorovich relaxation. It
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was recently leveraged by the machine learning community (Zhang et al., 2016; Bach,
2016).
In (3.3), the prediction function g can be expressed with parameters Z and β:

g(x) = ϕZ,x β =
q∑

j=1
βjϕ

zj ,x . (3.16)

In this section, we introduce a prediction function h, that can be expressed using a measure
µ ∈M(Z):

h(x) =
∫

Z
ϕz,xdµ(z) , (3.17)

where M(Z) is simply the set of signed measures on Z. We can then note that any
prediction function of the form (3.16) can be expressed as a function of the form (3.17)
using the following parametrization:

µ =
q∑

i=1
βjδzj , (3.18)

where δzj : X → R is the Dirac measure centered on zj. In this sense, (3.17) defines a
richer class of functions than (3.16).
Similarly, we obtain the following mapping:

ϕZ,x 7→
∫

Z
ϕz,xdµ(z) = Φ(µ) . (3.19)

We now introduce F = (C(Z), ‖·‖∞) the normed vector space, with C(Z) the set of
continuous real-valued functions on the compact set Z, and:

‖·‖∞ : C(Z)→ R
f 7→ sup

z∈Z
|f(z)| . (3.20)

In particular, we will work on the topological dual space F ∗, that is the set of continuous
real-valued linear functions on F :

F ∗ =
{
ρ :F → R

f 7→ ρ(f) linear

}
. (3.21)

Next, we will take advantage of the Riesz representation theorem, see for instance (Le Gall,
2006, Theorem 6.4.1):
Theorem 3.3.1 (Riesz representation theorem).
Let ρ ∈ F ∗ be a continuous linear function on F = C(Z). There exists a unique signed
measure µ ∈M(Z) such that:

∀f ∈ C(Z) , ρ(f) =
∫

Z
fdµ . (3.22)

From this theorem, we obtain:

F ∗ = (C(Z), ‖· ‖∞)∗ = (M(Z), ‖·‖1) , (3.23)
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with ‖·‖1 the total variation, such that:

‖µ‖1= sup
‖f‖∞≤1

∫

Z
fdµ. (3.24)

Finally, this new parametrization leads us to a new formulation for (3.3):

min
µ∈F ∗

1
n

n∑

i=1

(
yi −

∫

Z
ϕz,xidµ(z)

)2
+ λ‖µ‖1 . (3.25)

We can then recognize that this new formulation is very similar to the LASSO (see
Chapter 2 Subsection 2.4.2). It corresponds actually to the Beurling LASSO (BLASSO)
problem, introduced by Azais et al. (2014), and is a convex optimization objective for
µ ∈ F ∗. Consequently, it admits a global minimum µ∗, and the L1 penalization enforces
this solution to be sparse:

µ∗ =
p∗∑

j=1
β′jδz′j , (3.26)

for some number of particles p∗, some weights β ∈ Rp∗ and some Dirac (atomic) measures
δz′j .

The Conic Particle Gradient Descent (CPGD) (Chizat, 2020) provides an efficient way to
optimize this problem. It starts with an initial measure µ0 described with a high number
of particles (usually p > n) and leverages the gradient flows to modify the weights and
atomic measures in order to achieve (3.25). This algorithm is illustrated in Figure 3.2.

Figure 3.2: Illustration of the Conic Particle Gradient Descent algorithm. The size of
a particle represents its weight βj. From a initial distribution of s particles with same
weights, all particles follow their respective gradient flows. Some of them converge towards
the optimal positions, while other vanish βj → 0.

In addition to providing a global minimum, this approach allows to automatically find
the right number of particles. That is, under some assumptions about the regularization,
the number of particles (sequence motifs) obtained with this approach is identical to what
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we would have obtained by optimizing the non-convex problem (3.15). In comparison, a
classical CNN will always find a fixed and predetermined number of filters.
Another possibility for solving (3.25) is to rely on the Sliding Frank-Wolfe algorithm,
introduced by Denoyelle et al. (2018): a greedy first-order optimization for constrained
convex optimization. At each step, this algorithm performs a linear approximation of the
objective function, and looks for a minimizer of this linear function. While the problem
it solves is convex, it relies on non-convex steps.
While it contains non-convex steps, and therefore is not guaranteed to converge towards
the global optimum, this latter algorithm does not suffer from a curse of dimensionality,
unlike CPGD, which requires a growing initial number of particles.
To conclude, this direction emerged at an advanced stage of this thesis, and the focus
was already on the next component of SEISM (the inference), so we did not have time to
implement it yet. Nonetheless, it seems to be a promising direction and its implementation
constitutes a future work.

3.3.3 (Stochastic) gradient descent with line search

While they may only find local optimizers instead of global ones, gradient-based strategies
are traditionally used for neural networks, leading to good results for prediction. It is then
common to solve (3.3) by gradient descent over the filters. As described in Chapter 1,
the stability of the explanation is an important criterion, that’s why we prefer to work
with a full gradient strategy rather than a stochastic one. This choice prevents the use of
SEISM on large datasets. While SEISM was initially developed for small-scale datasets,
it will later be interesting to extend it to bigger datasets, and implementing stochastic
gradient descent approaches could be a future work.
During the optimization, we work on a less constrained set than Z, defined in (3.1), and
don’t enforce the positivity constraint, resulting in the following vectorial space:

Zuc =


z ∈ R|A |×k : ∀j ∈≤ k ,

|A|∑

i=1
zi,j = 1



 . (3.27)

One can note that the gradients of both sHSIC and sridge with respect to z belong to Zuc.
Any point obtained by taking a step in the gradient direction from a point in Zuc also
belongs to this vectorial space. It is therefore not necessary to use projected gradient
strategies in this framework.
At the end of this optimization step, the resulting point is projected onto the simplex
Z using an orthogonal projection, according to the algorithm described in Duchi et al.
(2008).
The point picked for the initiation of this gradient descent is another element that might
result in instability in the selected motifs. Indeed, common strategies that randomly
initialize the filters might produce varying outcomes from one run to the next, as the
gradient descent strategy is not guaranteed to find the global minimum. To tackle this
issue, we propose to initialize the filter at the k-mer with the best association score. To
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that end, all the k-mers contained in X are enumerated using the DSK software (Rizk
et al., 2013), which provides an efficient method to do so. We restrict the search for the
best k-mer to the 5% most prevalent k-mers in X to avoid using up too much memory.
Empirically, the best k-mer appears to typically be in this subset.
Moreover, we rely on a backtracking line search approach with Armijo-Goldstein stopping
criterion for the optimization (Armijo, 1966). It is a simple way to adaptively choose the
step size and the number of iterations, that tends to work well in practice, see Algorithm 1.

Algorithm 1 Backtracking line search
/* Description: The line search algorithm determines the amount to move

along the gradient’s direction in order to rapidly reach a maximum.
*/

Inputs: Association score s, phenotypes y, motif z(i) obtained after optimization step
i and ∇zs(z(i),y) the gradient of the score evaluated in z(i). Hyperparameters (c, τ) ∈
(0, 1)2: a control parameter and a diminution factor. The initial step size α0.
Result: The new motif z(i+1) obtained after optimization step i+ 1.

1 j ← 0
2 αj ← α0

3 while
(
s
(
z(i) + αj∇zs(z(i),y),y

)
− s(z(i),y)

)
≤ αj × c× ‖∇zs(z(i),y)‖2 do

/* The shrinking of the step size αj continues until a value provides
an increase in the objective function that matches the increase
expected to be achieved based on the gradient. */

4 j ← j + 1
5 αj ← τ × αj
6 end

3.3.4 Reverse complements

The DNA has a well-known double-helical structure, made up of two interwoven strands.
Each strand can be thought of as an oriented chain made up of the nucleotides {A,C,G, T}.
The nucleotides of the two strands interact deterministically at each site since only the
pairings of the nucleotides (A, T ) and (G,C) can occur. By complementing each nu-
cleotide and reversing the order, we can determine the so-called reverse complement (RC)
sequence of a strand, see Figure 3.3. During the sequencing step, only one of those
two strands is randomly chosen and sequenced. Therefore, any DNA sequence may be
represented equally by two RC sequences, motivating the creation of methods with RC
equivalence (Mallet & Vert, 2021; Zhou et al., 2022).
To this end, the representation function of SEISM is slightly modified, in order to compare
the motifs with the k-mers and their reverse complements contained within a sequence:

[
ϕ̃Z,X

]
(i,j)

= max
u∈xi

(
max

(
e−
‖Zj−u‖22

2ω2 , e−
‖Zj−ū‖22

2ω2

))
, (3.28)

where ū is the RC version of u.
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Figure 3.3: A sequence x and its reverse complement x̄.

3.3.5 Adaptive length selection

As described in Equation (3.10), the data representation ϕZ,Xgaus used by SEISM depends on
a hyperparameter ω controlling the bandwidth of the Gaussian non-linearity: exp

(
−‖z−u‖222ω2

)
.

Assuming that the positions within a k-mer are independent, the expected value of the
squared distance between a motif z and a k-mer u with length k is then proportional to
k.
In order to get an activation that does not depend on the length of the motifs, we simply
set ω to be proportional to

√
k. From empirical tests, we set ω =

√
0.9k
2 to achieve good

selection performance by choosing the motif that maximizes the association score among
the set of possible lengths, as described in Figure 3.4.
To create this figure, we constructed a simulated dataset, with one true motif (Fig-
ure 3.4b top row) associated with the phenotype. This motif was randomly inserted
in the sequences of the dataset. We then applied the SEISM procedure to select the mo-
tifs from length 3 to 19 (Figure 3.4b bottom row). Figure 3.4a summarizes the association
scores of those different motifs.

3.4 From a joint to a greedy optimization

The previous section focused on optimizing the association score for only one motif z.
We will now see how SEISM performs the selection of several motifs. Standard CNNs
indeed commonly optimize the objective function jointly over the q filters. More generally,
this approach for training a neural network with a single, large hidden layer is known
to find a global optimizer at the large q limit under some assumptions (Soltanolkotabi
et al., 2019). While it leads to very good performance for prediction, our objective here
is slightly different: we do not necessarily aim at approximating a continuous measure
with a large number of particles, but we aim at selecting a small number of particles
lending themselves to interpretation. Furthermore, the number of relevant motifs for a
given dataset is generally unknown. As discussed in Chapter 1, jointly optimizing the
convolution filters leads to irrelevant motifs, with some actual motif split along several
filters and other duplicated, as illustrated in Figure 3.5.
A possible strategy is to forego filter-level interpretation, train an over-parametrized net-
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(b) Motifs obtained with length ranging from 3 to 19.

Figure 3.4: Using an adaptive ω =
√

0.9k
2 allows to select the motif with the right length

from several possible ones. While the true motif has length 16, the two extreme posi-
tions are uninformative, and therefore the selection of the motif with length 14 is ade-
quate. Adding highly informative positions leads to a rapid growth of the association
score (lengths 3 to 7) while adding non-informative positions degrades this score (length
11 and lengths 15 to 19).
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Figure 3.5: Motifs obtained by training a convolutional neural network (CKN) with 12
filters on a simulated with a known true motif. One can observe redundancies, partial or
non-informative motifs.

work — with a much larger q than the expected number of motifs — and use attribution
methods to extract relevant motifs from the trained network (Subsection 1.4.4).
Another possibility, coming from the bioinformatics literature, is to perform a greedy
optimization: selecting the motifs one by one. For instance, once a motif has been selected
during step j, STREME (Bailey, 2021) erases the motif from the dataset: in a given
sequence, it will remove all the k-mers corresponding to the motif (k-mers with a Euclidean
distance to the motif below some threshold). But this strategy requires the use of an
additional hyperparameter (the threshold).
Of note, forward selection procedures over finite sets of features work around the problem
by iteratively removing the selected elements from the set over which the selection is
performed (Slim et al., 2019). Such a strategy is not suited to our framework, where the
selection is performed over a continuous set of motifs.
With SEISM, we adopt a different strategy. Similarly to bioinformatics methods, we use
a forward stepwise procedure. A first naive approach would then be to select at each of
the q steps the motif that maximizes the overall score:

zj = arg max
z∈Z

s ([z1, . . . ,zj−1, z],y) . (3.29)

But one can note that iterating (3.29) using sHSIC would return the same motif z at each
step. With Z = (zj)j≤q, we can indeed observe:
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Figure 3.6: Motifs selected using SEISM’s greedy procedure with q = 6 on a simulated
with a phenotype determined by two true motifs. The two first discovered motifs (j = 1
and j = 2) correspond to the two true motifs, while the following ones are less similar
and less informative.

sHSIC(Z,y) = yTϕZ,X
(
ϕZ,X

)T
y

= ‖
(
ϕZ,X

)T
y‖2

2

=
q∑

j=1

((
ϕzj ,X

)T
y
)2

.

The score sridge introduces some interactions between the filters thanks to the inverse
term (3.6) but does not enforce a sufficient separation of the motifs.
To work around this issue, instead of modifying the sequences by removing the already
selected motif sites, SEISM iteratively optimizes each of the convolution filters over the
residual error left by the previous ones.
More precisely at each of the q steps, we select zj such that:

zj = arg max
z∈Z

s(z,Pjy) , (3.30)

where Pj is the projection operator onto the orthogonal of the subspace Span
`<j

{
1,ϕz`,X

}
.

This is how zj is optimized over the residuals of the previous filters. The vector 1 enforces
that we project y on a subspace of E , in particular P1 = Cn.
This strategy enables a solid separation of the selected motifs, as illustrated in Figure 3.6.

77



Chapter 3. Discovering sequence motifs with SEISM

3.5 De-novo motif discovery

De-novo motif discovery tools are algorithms that aim to identify motifs in biological
sequences. They differ from other approaches in that they do not rely on any prior
knowledge about the motifs being searched for, but rather rely on statistical tools. Here
is a quick summary of the various strategies used by some different tools.
In particular, these methods are widely used for motif discovery in Transcription Factor
(TF) ChIP-seq datasets. ChIP-seq (chromatin immunoprecipitation sequencing, Robert-
son et al., 2007) is a technique for examining how proteins interact with DNA. In a
nutshell, it first links the DNA with proteins (and other molecules, such as RNA), then
breaks the resulting complex (the chromatin) into small fragments. Third, it leverages
specific antibodies, that recognize the transcription factors of interest, to extract only
the fragments containing DNA sequences that are bound with transcription factors, and
finally sequences those small sequences.
A transcription factor is a protein that, by binding to a particular DNA sequence, regulates
the rate at which genetic information is transcribed from DNA to messenger RNA, and
therefore regulates the expression of genes. There are about 1 500 of them in the human
genome (Vaquerizas et al., 2009).
A binding motif is then a particular group of DNA sequences that a TF prefers to bind to.
TFs have a variety of binding affinities for the sequences that make up their set of binding
motifs. While the TFs have been largely identified, it is still unclear which sequences they
can recognize. That is why algorithms able to detect those motifs from ChIP-seq datasets
are useful.
Among the different existing algorithms, we can cite:
• MEME: Multiple Expectation maximization for Motif Elicitation (Bailey & Elkan,
1995) is an unsupervised algorithm for discovering enriched motifs in a set of sequences. To
that end, it looks for maximum likelihood estimates of the parameters of a mixture model
— made up of a given background distribution and the categorical model for generating
k-mers at some positions (3.31) — with respect to the dataset, using an expectation
maximization technique. It discovers motifs in a greedy way by incorporating information
about the motifs already discovered into the current model to avoid selecting the same
motifs again.
• Weeder (Pavesi et al., 2004) makes use of a data structure called a generalized suffix
tree (Figure 3.7) to identify all k-mers of some lengths occurring with a given number of
errors. To that end, it enumerates the paths of the tree and weeds out the ones that are
unlikely to contain the k-mer. Those k-mers might be aggregated as sequence motifs in a
second step.
• SMILE (Marsan & Sagot, 2000) is an unsupervised method looking for k-mers that are
present — up to a given number of mismatches (therefore being similar to motifs) — in
more than a user-defined number of sequences. To that end, it also makes use of a suffix
tree.
•HOMER (Heinz et al., 2010) is a supervised algorithm. It selects the top k-mers whose
enrichment are particularly high in the positive dataset compared to the negative one,
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Figure 3.7: Generalized suffix tree for sequences CAGT and CCATG, with termination
markers (1) and (2) respectively. To search for a k-mer in the set of sequences, for instance
CAT, we start at the root, choose branch C, then branch A and then the leave starting
with the T. On the contrary, TAG is not present in the sequences: starting with root and
branch T, no following branch starting with an A exist in the tree. By keeping track of
the numbered of encountered mismatches on each path, one can also search for a k-mer
with a given number of allowed mismatches.

and converts them into motifs. It also uses the generalized suffix tree structure to speed
up the counting.
• STREME (Bailey, 2021) is also a supervised method, that maximizes a Fisher asso-
ciation score between the presence of a motif and the binary class of sequences. It also
derives valid p-values for the selected motifs using a data-split strategy.
In order to compare the SEISM selection performance with existing motif discovery al-
gorithm, we followed the methodology described in Bailey (2021). This work introduces
the STREME algorithm, establishing a new state-of-the-art method for de-novo motifs
discovery tasks. The authors compare STREME with several widely used algorithms,
including the majority of the aforementioned algorithms.
The evaluation method proposed in (Bailey, 2021) for those algorithms makes use of 40 TF
ChIP-seq experiments in K562 cells (a human myelogenous leukemia cell line) provided
by the ENCODE project (ENCODE Project Consortium, 2004). Each dataset contains
between 1 233 and 56 058 sequences of 100bp regions. A known TF motif binding site
is associated to each dataset, derived using completely independent assays (Jolma et al.,
2013). All the sequences are associated with positive labels, as they all interact with the
associated TF, and negative sequences are generated by shuffling the positive sequences.
This comprehensive comparison of those different approaches highlights that MEME is
the most accurate method for small-scale datasets, while STREME outperforms other
tools for middle- to large-scale datasets. In the following, we will therefore only compare
SEISM with MEME and STREME.
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3.6 Results comparison

To benchmark SEISM selection performance, we rely on the 40 datasets described in
Subsection 3.5 and we test three sample sizes n ∈ {50, 100, 500}. For each dataset, n/2
sequences are sampled (the positive sequences) and then shuffled to create the negative
sequences. For MEME, the unsupervised method, the negative sequences are useless. But
MEME constructs a background model using the positive sequences, which is almost the
same in this situation. In the end, 100 subsets are created per initial dataset.
We set up STREME, MEME and SEISM to select 5 sequence motifs. SEISM is run with
λ = 0.01. We add CKN-seq (the neural network leveraging kernel methods and CNNs,
described in Chapter 1 Subsection 1.2.3.2) to the comparison, to visualize the effects of
the modifications we applied to convolutional networks with SEISM. It is parametrized
to jointly optimize 128 filters (such networks notoriously lead to poor performances when
a few filters are used).
We measure the accuracy of all the methods by comparing the motifs they discover with
the known motif corresponding to the transcription factor binding site m∗. We rely on
the TOMTOM method (Gupta et al., 2007), which quantifies the probability that the
Euclidean distance between a random motif and m∗ is lower than the distance between
the discovered motif and m∗. Put simply, it gauges how close the discovered motif is
to m∗. More precisely, for each method we use the lowest TOMTOM p-value between
the known TF binding site motif m∗ and any of those discovered by the method. The
TOMTOM score is then defined as − log10 of this p-value. We define the accuracy of a
method as the proportion of experiments where the TOMTOM score between its best
match and the true TF binding site motif was higher than some threshold.
Figure 3.8 (left column) shows that SEISM is as good as, if not superior to STREME
at detecting sequences motifs with a threshold for TOMTOM p-values at 0.01, for any
dataset size. It also performs better than MEME, except for small-scale datasets. It
should be noted here that unlike STREME and MEME, SEISM provides a statistical
significance for the discovered motifs without resorting to data-split strategies. This
means that if we want to obtain valid p-values for the motifs discovered with STREME or
MEME, we will have to set aside part of the sequences during the selection step, reducing
their performance. The one-layer CNN with jointly optimized filters performs poorly in
these experiments, emphasizing the importance of greedy optimization for accurate motif
selection. This results confirm that the filters learned by a CNN do not correspond to
very relevant motifs, and highlights the need for specific methods, such as TF-MoDISco,
as discussed in Chapter 1 Subsection 1.4.2.
Figure 3.8 (right column) shows that SEISM performs slightly worse than STREME
and MEME for high thresholds on TOMTOM scores. This suggests that the motif z
that SEISM identifies is close enough to the PWM corresponding to the true motif, but
farther away than the matrices identified by STREME or MEME. This discrepancy reflects
a different usage of z for the parametrization of the k-mers distribution. This will be the
focus of the following section. In practice, we observe that for a given dataset, the p-values
of the best motifs discovered by SEISM and STREME/MEME are not separated by more
than 2 orders of magnitude, which leads to minor differences in the motifs, as illustrated
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Figure 3.8: Left: Proportion of datasets where the true motif was detected by the desig-
nated algorithm. A true motif is said to be detected if its highest TOMTOM score with
the discovered motifs is greater than 2. Right: Accuracy of motif discovery algorithms
on ENCODE TF ChIP-seq datasets. The curves represent the proportion of ChIP-seq
datasets were the best motif identified by the designated algorithm has a TOMTOM score
greater than x.
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Reference motif SEISM motif STREME motif
ATV_DBD p-value= 10−6 p-value= 3× 10−8
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Figure 3.9: Comparison between two discovered sequence motifs by SEISM or STREME,
and the true motif ATV_DBD.

in Figure 3.9.

3.7 Discussing the different models

The discovered motifs can be interpreted as representing a distribution of k-mers at the
transcription factor binding site. As discussed in Subsection 3.2, both STREME and
MEME rely on a categorical model, whereby the matrix z directly defines the probability
of observing each letter at each of the k positions:

∀(u, z ∈ Z) , Lcat(u; z) =
k∏

i=1
uTi zi . (3.31)

SEISM, on the other hand, is based on the Gaussian model. Through representation (3.10),
z is meant to maximize the Gaussian likelihood of a set of k-mers, i.e.

∀(u, z ∈ Z) Lgaus(u; z) = C
k∏

i=1
e−
‖ui−zi‖

2

2ω2 , (3.32)

where C is a constant such that the sum of probabilities over R|A|×l equals 1.
We now illustrate on a simple example how the same distribution of k-mers can be
parametrized by different matrices under the different models. To build an easy example,
we focus on k-mers of length 1, with the following distribution:

P (A) = 0.3 P (C) = 0.4 P (G) = 0.1 P (T ) = 0.2 . (3.33)

The matrix z1 = (0.3, 0.4, 0.1, 0.2)T used with the categorical model trivially leads to
such a distribution. But using the same matrix with a Gaussian model with a band-
width parameters ω fixed as described in Subsection 3.3.5 leads to a slightly different
distribution:

P (A) = 0.28 P (C) = 0.43 P (G) = 0.11 P (T ) = 0.18 . (3.34)
A distribution closer to (3.33) can be constructed with a Gaussian model parametrized
by

z2 = (0.315, 0.38, 0.08, 0.225)T .

To clarify the relationship between those two motifs, (3.31) can be rewritten to account
for the fact that u is one-hot encoded. That is, for each position i it only has one 1 for
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letter j(i) and 0’s elsewhere:

∀(u, z ∈ Z) Lcat(u; z) =
k∏

i=1
zi,j(i) . (3.35)

Assuming that the columns of z are normalized and ω = 1, we can modify (3.32):

∀(u, z ∈ Z) Lgaus(u; z) = C
k∏

i=1
e−
‖ui−zi‖

2

2ω2 = C2

k∏

i=1
eu

T
i zi = C2

k∏

i=1
ezi,j(i) . (3.36)

With the Gaussian model and a few assumptions, the motifs can then be seen as defining
the log probability to observe each letter at each of the k sites. This gives us a new
interpretation for the filters learned by CNNs and suggests that, in this framework, it
might be interesting to constrain ez to be in the simplex Z rather than z.
The true TF binding site motifs used in Subsection 3.6 from Jolma et al. (2013) must be
interpreted with the categorical model, since they have been derived by averaging k-mers
which corresponds to a maximum likelihood estimate under this model. This can explain
why the z obtained with MEME/STREME are closer to those true motifs than the ones
obtained with SEISM and a different model, as shown in Figure 3.8. In this framework, we
used a Gaussian activation function to fit with the classical CNNs approaches, but SEISM
is generic enough to allow other activation functions based on the categorical model by
using the activation function ϕ̃Z,Xcat introduced in (3.8), or more realistic variants (Ruan
& Stormo, 2017).
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CHAPTER 4

A valid post-selection inference procedure for the association
between the phenotype and trained convolutional filters

We now proceed to the issue of testing the association between the trained filters of our
network, that is the selected motifs z and the phenotype y. In order to do so, we need
to solve three interrelated problems.
First, using Chapter 3, the motifs were specifically selected for their association with
the trait, which leads to the well-known post-selection inference problem, as described in
Chapter 2. Any inference procedure that disregards the fact that the null hypotheses were
constructed or selected using the same data as the one used for testing is likely invalid
and the results may appear more significant than they actually are.
Second, we deal with a continuous selection event, because the selection described in (3.30)
is performed over a continuous set Z. By contrast, existing solutions for conditional
inference address selections over finite sets.
Third, the null hypothesis commonly used for similar post-selection inference problems
is composite, i.e., it corresponds to several values of the parameters. Existing methods
work around this issue by fixing these parameters to arbitrary values, thereby limiting
the scope under which they are calibrated. In this chapter, we present our solutions to
these three problems.
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Chapter 4. A valid conditional inference procedure for SEISM

4.1 Setting up the statistical framework and limita-
tions due to conditioning

This section introduces the model and the null hypotheses associated with the sequence
motifs, and highlights inherent limitations due to selecting motifs from a continuous set.

4.1.1 Introduction of the Gaussian model

Let’s consider the Gaussian model:

y = µ+ σε , (4.1)

where µ ∈ E is the target deterministic signal and ε ∼ N (0,Cn) is the standard Gaussian
distribution on E := Range(Cn). We represent the probability distribution associated
with this model through its probability measure υ.
We will follow (Yamada et al., 2018) and test the association of a motif z through the
following null hypothesis:

H0 : “s(z,µ) = 0” , (4.2)

for some association score s.
For a z chosen independently of the data, H0 could be tested by sampling replicates y′
under the corresponding distribution (4.1), and using the quantile of the scores s(z,y′)
corresponding to s(z,y) as a p-value — i.e., the probability, when sampling a phenotype
under H0, to observe a score as extreme as s(z,y).
As in our frameworks, z was not chosen independently, we rely on recent developments
in post-selection inference, and we will make use of the concept of selection event.

4.1.2 Selection event description

Formally, our selection event Ẽ is the set of outcomes y′ that would have led to the
selection of the same set of motifsZ = {z1, . . . ,zq} as the one selected using the phenotype
y from the dataset, when applying the same selection procedure:

Ẽ(Z) :=
{
y′ ∈ E : arg max

z∈Z
s(z,Pjy′) = zj, ∀j ≤ q

}
, (4.3)

where Pj is the orthogonal projection onto Span`<j
{
1,ϕz`,X

}T
.

A simple rejection approach to sample from the null (4.2) conditioned to Ẽ(Z) would be
to sample y′ in E under (4.1, 4.2) and retain only those in Ẽ(Z).
Unfortunately, Ẽ(Z) belongs to a strictly lower-dimensional vector space of Rn and is
therefore a null set for the measure υ. In other words, a vector y′ sampled according
to (4.1) has a zero probability to belong to Ẽ(Z).
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4.1. Setting up the statistical framework and limitations due to conditioning

Indeed, for a vector y′ to admit zj as a maximum for the score at step j, the filter zj
must be at least a critical point (the gradient of the score must be zero in zj). For our
scores sHSIC and sridge, this leads to the following necessary condition:

y′ ∈ Ẽ(Z)⇒ Pjy
′ ∈ Span

{
∇zϕzj ,X

}T
,∀j ≤ q . (4.4)

We will denote S(Z) =
{
y′ ∈ E : Pjy′ ∈ Span

{
∇zϕzj ,X

}T
, ∀j ≤ q

}
the set of vectors

verifying this condition. We then obtain Ẽ(Z) ⊆ S(Z).
For instance, for q = 1 and assuming that all the different directions of the gradient are
independent, this set is a vector subspace S(Z) with dimension n− 4× k.
We empirically observed that sampling from this subspace produced a non-zero proportion
of y′ in Ẽ(Z), allowing a rejection sampling strategy. Nonetheless, choosing a sampling
distribution on S(Z) that leads to the correct conditional distribution on Ẽ(Z) after
rejection sampling is not straightforward — and may not even be possible — as discussed
below and illustrated with the theorem of disintegration. We can note here that this result
was not intuitive for us, and that we thought at the beginning that Ẽ(Z) was reduced to
a single point.
Moreover, relying on conditional probability with respect to a null set is not well defined
and may lead to the Borel-Kolmogorov paradox (Bungert & Wacker, 2022), which further
complicates its use.

4.1.3 Conditioning with respect to a null set: disintegration and
Borel-Kolmogorov paradox

In what follows, we seek to derive the null distribution, conditioned with respect to S(Z),
which would allow us, with a rejection sampling strategy, to approximate the conditional
null distribution on Ẽ(Z). To that end, we will leverage the disintegration theorem,
requiring a mapping from E to the set of possible S.
We will then consider the set:

D = {S : ∃Z ∈ Zq , S = S(Z)} . (4.5)

We also consider the mapping:

π : E → D
y 7 → S(Z(1)) ,

(4.6)

where Z(1) is the sequence of motifs selected with phenotype y′.
In order to use the disintegration theorem, this mapping must be well defined, i.e. to a
given y′ corresponds a unique subspace S, which is not straightforward.
Indeed, π being well defined is equivalent to

π′ : E → Zq

y′ 7→ Z(1) (4.7)
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being well defined.
The latter is not clear, as a same y′ may lead to the selection of at least two different
motifs sequences Z(1) and Z(2) if the score admits more than one global maximum.
As a first remark, we can see that the set of problematic y′ is exactly

P :=
⋃

Z(1) 6=Z(2)

Ẽ(Z(1)) ∩ Ẽ(Z(2)) . (4.8)

When one assumes that the y′ admits a unique maximum Z = (z1, . . . ,zq), one implicitly
assumes that υ(P) = 0. For sufficiently regular scores this is however the case. We will
not comprehensively study this issue here but we will give an argument that tends to
support this assumption for the scores sHSIC and sridge.
Indeed, with those scores, we can circumvent this difficulty considering the Gaussian
random fields indexed by Z:

• z 7→ 〈ϕz,X ,y′〉 for sHSIC,

• z 7→ 〈(‖ϕz,X‖2+λn)−1/2ϕz,X ,y′〉 for sridge.

Of note, in both cases the autocovariance function is C2 — the autocovariance functions
of the Gaussian random fields are given by:

(z, z′) 7→ σ2〈ϕz,X ,ϕz′,X〉, (4.9)

from (4.1) for the HSIC score, and by :

(z, z′) 7→ σ2〈ϕz,X , ϕz,X〉 × (‖ϕz,X‖2+λn)−1/2(‖ϕz′,X‖2+λn)−1/2 (4.10)

for the Ridge score.
The score is then the largest norm of this Gaussian random field. It is well established in
the theory of Gaussian random fields (Azäis & Wschebor, 2009, Chapter 7) that the law
of this maximum is regular and that the argument maximum is unique. Tsirel’son (1976)
and Lifshits (1983) are relevant references in this regard.
In Tsirelson’s theorem, the parameter set is countable. This says that the same result
holds true for separable bounded Gaussian processes, since in this case, the distribution
of the supremum coincides almost surely with the one of the suprema on the countable
nonrandom set.
This argument does not constitute a rigorous proof, and we will then assume that almost
surely the selected sequence of motifs Z = (z1, . . . ,zq) is uniquely defined, hence π′, and
consequently π, are well defined.
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• The disintegration steps
To sample conditionally on {y′ ∈ S(Z)}, we need to consider the conditional probability
distribution with respect to this event. We will represent it using the associated probabil-
ity measure υS(Z), depending only on υ (the non-conditional distribution), S(Z) and π.
This law is described by the theorem of disintegration (Ambrosio et al., 2005, Theorem
5.3.1).
Let’s define ν the pushforward measure of υ by π, a probability measure on D denoted
by ν = π#υ:

ν := π#υ :D → R+

S(Z) 7→ υ(π−1(S(Z))) .
(4.11)

By the disintegration theorem, there exists a ν-almost everywhere uniquely determined
family of probability measures

(
υS(Z)

)
S(Z)∈D

on E — corresponding to the conditional
distributions — such that:

• for ν-almost every S(Z), υS(Z) {E \ π−1(S(Z))} = 0 . In other words, the probabil-
ity measures υZ are ν-almost everywhere supported by S(Z);

• it holds that, for every map f : E → [0,+∞],
∫

E
fdυ =

∫

D

(∫

π−1(S(Z))
fdυS(Z)

)
dν(S(Z)) =

∫

D

(∫

S(Z)
fdυS(Z)

)
dν(S(Z))

(4.12)
That is, the expectation of the conditional expectation is the expectation.

Let us comment on this result regarding our purposes. First, we have mentioned that we
know that the support of Ẽ(Z) is included in some vectorial subspace S(Z) defined by
the first order condition (4.4).
Second, although one can use a rejection sampling strategy on the subspace S(Z) to
draw points on the support Ẽ(Z), it is not clear at all what should be the conditional
distribution on S(Z), represented by its probability measure υS(Z). Indeed, the family of
probability measures

(
υS(Z)

)
S(Z)∈D

is the unique family that satisfies (4.12).

It implies that a measure υS(Z(1)) depends on the other measures υS(Z(2)) and this de-
pendency is geometrically given by the (piecewise) topological sub-manifold given by the
function z 7→ ϕz,X from Z to E .
From a practical point of view, we tried various simple distributions for υS(Z), but none
of them matched the condition (4.12). It resulted in decalibrated test procedures, as
illustrated in Figure 4.1.
In the next point, we recall a toy example: the disintegration of the uniform measure
on the sphere is not the uniform measure. Even in this simple geometrical example, the
calculus of the conditional law might be seen as tedious. We believe that the calculus of
υZ is somehow out of reach for our purposes, and a solution to work around this issue
will be described in the following subsections.
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Figure 4.1: Q-Q plot obtained by applying the SEISM procedure on a simulated dataset
under H0, using a Gaussian distribution (4.1) restricted to Ẽ. Instead of sticking to the
y = x line, we observe that the p-values tend to be too low. This indicates that this
distribution is different from the conditional distribution.

• A toy example on the sphere
Let S be the unit sphere in R3, and consider υ the uniform measure on this sphere. Let
{Sθ : θ ∈ [0, π[} be the family of planes, sharing Span{(0, 0, 1)} (say the south-north axis)
as a revolution axis, parameterized by a longitude θ.
Let π̄ : S→ [0, π[ be the function that maps a point to its longitude modulo π. We can
now define the pushforward measure ν = π̄#υ:

ν := π̄#ν : [0, π[→ R+

θ 7→ υ(π̄−1(θ)) .
(4.13)

By spherical symmetries, this probability measure is the uniform measure on [0, π[, leading
to dν(θ) = (1/π)dθ.
Condition (4.12) of the disintegration theorem (the left-hand side of the equality below)
is given by the spherical coordinate system (the right-hand side) in:

∫

S
fdυ =

∫ π

0

(∫

π̄−1(θ)
fdυθ

)
dν(θ) =

∫ π

0

(∫ 2π

0
f(θ, φ) |sinφ|4π dφ

)
dθ , (4.14)

where φ is the latitude.
We can note that π̄−1(θ) = S ∩ Sθ is in bijection with [0, 2π[, using the mapping that
maps a point to its latitude.
Using this representation, we can see that the uniform probability measure on π̄−1(θ) is
given by (1/2π)1[0,2π)(φ), with 1 the indicator function.
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But the above equality shows that the conditional probability distribution, represented
by its measure υθ(1) for the uniform probability on S conditioned to a fixed longitude θ(1),
admits (1/4)|sin(φ)|1[0,2π)(φ) as a density, see Figure 4.2.
It proves that the disintegration of the uniform measure on the sphere is not the uniform
measure, but rather a distribution that will put a little weight around the poles and large
mass around the equator.

Figure 4.2: For θ = 0, Sθ is the light red plan, the conditional measure dν0(φ) is depicted
with a red area and is proportional to |sin(φ)|, which is not the uniform measure.

Equation (4.14) also shows that, if we choose to condition the uniform probability on
ϕ = 0 rather than on a fixed θ, the resulting density is uniform: 1

π
1[0,π[(θ). But in

both cases, we condition on a great circle. We here have a first intuition on the Borel-
Kolmogorov paradox: conditioning on a null set may lead to different results, depending
on the chosen parameterization. We will now illustrate this paradox on an example.
• Illustration of the Borel-Kolmogorov paradox
Largely inspired by https://en.wikipedia.org/wiki/Borel-Kolmogorov_paradox, as
of 01/14/2023.
Indeed, in addition to being out of reach, the conditional probability distribution given a
zero-probability event, such as y ∈ Ẽ(Z) for a vector y under the Gaussian model (4.1)
and some motifs Z, may be ill-defined: let’s consider two random variables X and Y and
recall the definition of the conditional probability density, given the event X = x:

fY |X(y|x) = fX,Y (x, y)
fX(x) , (4.15)

where fX,Y (x, y) is the joint density of X and Y , and fX(x) is the marginal density for
X. We then see that if P(X = x) = 0, (4.15) is undefined.
We can then try to work around this problem by conditioning on “X close to x”, for
instance X ∈ {x − ε, x + ε} and defining the conditional probability given X = x as the
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limit obtained for ε→ 0. But the Borel-Kolmogorov paradox demonstrates that it cannot
be achieved in a consistent manner.
To illustrate this paradox, let’s consider a random vector V = (X, Y, Z), uniformly dis-
tributed on the unit sphere S. We will consider two events, illustrated in Figure 4.3:

• A = {0 < X < 1 , 0 < Y < X}

• B = {Z = 0} (and then P(B) = 0).

Figure 4.3: The unit sphere S, with events A (the spherical wedge) and B (the great
circle).

We will now compute P(A|B) using two different — but equivalent — parameterizations,
described in Table 4.1. Parameterization 2 is indeed a rotation of 90◦ around the y-axis
of parameterization 1.
With parametrization 1, we can note that as Φ and Θ are independent, the events A and
Bε are also independent when formulated with this parameterization. We then obtain:

lim
ε→0

P(A ∩Bε)
P(Bε)

= lim
ε→0

P(A)× P(Bε)
P(Bε)

= P(A) = P

(
Θ ∈

]
0, π4

[)
= 1

8

However, with parameterization 2, the calculation is less straightforward. While Φ′ and Θ′
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Parameterization 1 Parameterization 2
New coordinates, with (ϕ, θ) ∈ [−π

2 ,
π
2 ]× [−π, π]

x = r cosϕ cos θ x = r sinϕ
y = r cosϕ sin θ y = r cosϕ sin θ
z = r sinϕ z = −r cosϕ cos θ

R =
√
X2 + Y 2 + Z2 R′ =

√
X2 + Y 2 + Z2

Φ = arcsin(Z) Φ′ = arcsin(X)
Θ = arctan2

(
Y√

1−Z2 ,
X√

1−Z2

)
Θ′ = arctan2

(
Y√

1−X2 ,
−Z√
1−X2

)

Jacobian matrix J



cosϕ cos θ −r cosϕ sin θ −r sinϕ cos θ
cosϕ sin θ r cosϕ cos θ −r sinϕ sin θ

sinϕ 0 r cosϕ







sinϕ 0 r cos θ
cosφ sin θ r cosφ cos θ −r sinϕ sin θ
− cosϕ cos θ r cosϕ sin θ r sinϕ cos θ




Determinant
|J |= r2 cosϕ |J |= r2 cosϕ

Surface of a spherical cap wedge (r = 1)
Area(Θ ≤ θ,Φ ≤ ϕ) Area(Θ′ ≤ θ,Φ′ ≤ ϕ)∫ θ

−π
∫ φ
−π/2 cos(ϕ)dϕdθ = (1 + sin(ϕ))(θ + π) (1 + sin(ϕ))(θ + π)

Joint cumulative distribution function on S
FΦ,Θ(ϕ, θ) = 1

4π (1 + sin(ϕ))(θ + π) FΦ′,Θ′(ϕ, θ) = 1
4π (1 + sin(ϕ))(θ + π)

Joint probability density function on S

fΦ,Θ(ϕ, θ) = ∂2FΦ,Θ(ϕ,θ)
∂φ∂θ

= 1
4π cosϕ fΦ′,Θ′(ϕ, θ) = 1

4π cosϕ

Translations of A = {0 < X < 1, 0 < Y < X} and B = {Z = 0}
A =

{
0 < Θ < π

4
}

A =
{
Θ′ ∈]0, π[,Φ′ ∈]0, π2 [, sin Θ′ < tan Φ′

}

B = {Φ = 0} B =
{
Θ′ = −π

2
} ∪ {Θ′ = π

2
}

Definition of events Bε and B′ε
Bε = {|Φ|< ε} B′ε =

{
|Θ′ + π

2 |< ε
}
∪
{
|Θ′ − π

2 |< ε
}

Table 4.1: Two equivalent parameterizations for the unit sphere S and their implications
on the joint density functions and on events A and B.
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are still independent, the events A and B (and a fortiori A and Bε) are not independent:

lim
ε→0

P(A ∩B′ε)
P(B′ε)

= lim
ε→0

2π
4εP(A ∩B′ε)

= lim
ε→0

π

2ε

∫ π/2+ε

π/2−ε

∫ π/2

0
1sin(θ)<tan(ϕ)fΦ′,Θ′(ϕ, θ)dϕdθ

= π

2 lim
ε→0

∂

∂ε

∫ π/2+ε

π/2−ε

∫ π/2

0
1sin(θ)<tan(ϕ)fΦ′,Θ′(ϕ, θ)dϕdθ (L’Hôpital’s rule)

= π
∫ π/2

0
11<tan(ϕ)fΦ′,Θ′

(
ϕ,
π

2

)
dϕ (Leibniz integral rule)

= π
∫ π/2

π/4

1
4π cos(ϕ)dϕ

= 1
4

(
1− 1√

2

)

Parameterization 1 and 2 then lead to different values, demonstrating that lim
ε→0

P(A ∩Bε)
P(Bε)

cannot be used as a conditional probability P(A|B) when P(B) = 0.

4.2 Quantization of the motif space using meshes

In this work, we choose to circumvent the issue of conditioning with respect to a null set
described above by using a partition of the space Z, over which our selection operates,
into a very large but finite set of meshes: Z = ⊔

Mi. This quantization solves the
aforementioned problems, since the set of y′ resulting in motifs in a given mesh is then
of strictly positive measure. As depicted in Figure 4.4, we consider a regular partition of
each coordinate into m bins.
Based in this partition into meshes, we define a quantized selection event E as follows.
First, given an outcome y we define the sequence of the q selected meshes (Mi1 , . . . ,Miq)
as

∀j ≤ q , arg max
z∈Z

s(z,Pjy) ∈Mij . (4.16)

Second, the selection event is given by

E(i1, . . . , iq) :=
{
y′ ∈ E : arg max

z∈Z
s(z,Pjy′) ∈Mij , ∀j ≤ q

}
, (4.17)

the set of outcomes y′ that would have led to the selection of motifs within the same
meshes (Mi1 , . . . ,Miq) as the ones selected with y.
This quantization leads to the definition of selection events with non-zero Lebesgue mea-
sure, and so the issues identified in the previous section are no longer present. Deriving an
analytical expression for the conditional null distribution is nevertheless out of reach to
our knowledge, and we will see how it can be approximated using a sampling procedure.
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Figure 4.4: Discretization of the 3-letters alphabet simplex A,C,G, with a binning pa-
rameter for the meshes m = 4.

This meshing introduces several hyperparameters: in addition of the binning parameterm,
our choice for the geometry of the meshes is only one possibility among others. Although
if applied to the 3-letters simplex, it leads to meshes with identical sizes, as illustrated
in Figure 4.4, it is not the case anymore when applied to the 4-letters simplex — for
instance, with m = 2, the mesh located at the center of the simplex is bigger than the
other meshes. We chose this option because it seemed the most straightforward, but other
possibilities can be explored in the future.
In addition to modifying the interpretation of the tests, the mesh size also affects the
power. Following (Fithian et al., 2017, Proposition 3), we typically sacrifice power as we
move to finer selection events. For instance, in the case of LASSO, we start by conditioning
on both the selected model and the signs (Chapter 2 Subsection 2.4.2) because it facilitates
the access to the conditional null distribution. But in a second step, we remove the
conditioning on the signs (thanks to an union), notably for the sake of power gain. In our
case, conditioning on finer meshes does not allow us to access the conditional distribution.
On the contrary, due to the sampling procedure, the opposite is true: it is harder to
sample from a finer selection event, as discussed in Subsection 4.4.2. The choice of m is
then determined by the fineness with which we want to test a motif, and the preceding
arguments are in favour of selecting meshes that are not too fine.
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4.3 Description of SEISM’s test procedure

We now show how the quantization (4.17) of the selection event enables the definition of
a valid inference procedure. We start with the simplest case, where we select only a single
motif (q = 1).

4.3.1 Testing procedure for a single motif

In this section, considering that only the motif z1 was chosen by the SEISM selection
procedure, selection event (4.17) boils down to:

E(i1) :=
{
y′ ∈ E : arg max

z∈Z
s(z,y′) ∈Mi1

}
. (4.18)

4.3.1.1 Definition of the null hypotheses

We use this simplified case to introduce our null hypotheses and test statistics attached
to this selection event, and we consider two options:

• A first option consists in representing the mesh Mi1 by its center c1. Then, the
corresponding null hypothesis is the following:

H′0,1 : “s(c1,µ) = 0” . (4.19)

It can be tested using statistic V ′1 = s(c1,y).

• A second possibility is to represent Mi1 by the motif with the highest association
score within it. In this case, the null hypothesis becomes:

H′′0,1 : “s(z,µ = 0) , ∀z ∈Mi1” . (4.20)

We test it using statistic V ′′1 = max
z∈Z

s(z,y).

In both cases, we reject the null hypothesis if the test statistics are greater than a thresh-
old, determined by their cumulative distributions under the nulls (4.19, 4.20) conditionally
to E(i1): F′1,(i1) and F′′1,(i1). In practice, we do not have closed forms for these conditional
cumulative distributions, and we rely on empirical versions that we build using a hit-and-
run sampler algorithm, as described in Subsection 4.3.1.2.
Hypotheses (4.19) and (4.20) lead to very similar results when the meshes are small
enough, which is easily the case in practice. Hypothesis (4.19) gives us insights on one
specific motif of the mesh — the center, but (4.20) tells us about whether there exists
a motif within Mi1 associated with the phenotype. To illustrate the difference, let us
consider a meshing with only one bin per coordinate, that is the meshing with only one
mesh, containing all the motifs.
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• Testing the center-based null hypothesis (4.19) boils down to testing the association
of µ with the motif c1 with the same probabilities for each letter of A at every
position (the center of the simplex). It produces a p-value of 1, regardless of the
data, since for any k-mer u, ‖c1−u‖2

2= k×(0.752 +3×0.252), leading to ϕc1,X = 0
for all X ∈ X n, according to the centering step in SEISM. Finally, it leads to a zero
score for any y′ ∈ E , and consequently to a value of 1 for the p-value.

• By contrast, one can obtain a non-trivial p-value for (4.20), because different y′ ∈ E
can lead to different scores, which means that there may exist a motif in Z associated
with y — but does not inform us on which motif it is.

4.3.1.2 Sampling from the conditional null distribution with the hit-and-run
algorithm

Even after reducing our selection event to a finite set (Subsection 4.2), a rejection sampling
strategy that would draw y′ from either (4.1, 4.19) or (4.1, 4.20) and only retain those
leading to the selection of the same mesh as y is not tractable as the rejection rate is
empirically too low. Following (Slim et al., 2019), we resort to a Hypersphere Direction
strategy (Algorithm 2).
The hit-and-run algorithm produces uniform samples from an open and bounded accep-
tance region (Smith, 1984; Bélisle et al., 1993) — corresponding, in our case, to the
selection event. It starts from any point in the acceptance region, draws a random di-
rection from this point and performs rejection sampling along this direction until it finds
one element that also falls in the acceptance region. It then follows the same procedure
from this new starting point.
The hit-and-run sampler therefore also relies on rejection, but it does so along a single
direction rather than over Rn. It explores the selection event step by step, starting from
a point that belongs to this event, guaranteeing a higher acceptance rate than naive
rejection sampling.
But since the points produced by this algorithm are not independent from each other,
we need a large number of burn-in — the first y′ generated are trashed to remove the
dependence on the original y — and a large number of replicates to produce a good
approximation for the targeted distribution. While (Smith, 1984, Section 3) provides
theoretical upper bounds on the rate of convergence towards the uniform distribution,
these bounds highly overestimate the required number of iterations. In practice, this
number is set heuristically. Its impact is studied in Subsection 4.4.3. Nonetheless, these
bounds tell us that two parameters are critical to fix those numbers:

• The dimension of the problem n, resulting in a curse of dimensionality;

• The geometry of the acceptance region, as the bounds depend on the ratio between
the volume of the acceptance region and the volume of the smallest sphere containing
this region.

To speed up the procedure, we parallelize the rejection step across several computing
cores. Because each point sampled by the hit-and-run procedure depends on the previous
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Algorithm 2 Hypersphere Directions hit-and-run sampler
/* Description: The Hypersphere Directions hit-and-run sampler creates a

discrete-time Markov chain on an open and bounded region and is used
to approximate a uniform distribution on the selection event E. */

Inputs: Response y ∈ E ⊆ Rn, B and R the numbers of burn-in iterations and replicates.
Result: y′(B+1), ...,y

′(B+R) ∈ E ⊆ Rn the replicates sampled under the conditional null
distribution

7 ˜y′(0) ← L(y); /* L is the cumulative distribution function of N (µ, σ2Cn) */
8 for t = 1, . . . , B +R do
9 Sample uniformly θ(t) from {θ ∈ Rn, ‖θ‖= 1};

10 a(t) ← max


max
θ

(i)
t >0
− ỹ

′
′(t−1)

θt
; max
θ

(i)
t <0

1− ỹ′(t−1)

θt



;

11 b(t) ← max


min
θ

(i)
t <0
− ỹ

′(t−1)

θt
; min
θ

(i)
t >0

1− ỹ′(t−1)

θt



; /* Sampling λ(t) from

]
a(t), b(t)

[

ensures that ỹ
′(t−1) + λ(t)θ(t) ∈]0, 1[n */

12 while y′(t) /∈ E do
/* This loop is parallelized on several cores until one of them

discovers a replicate in the selection event. */
13 Sample uniformly λ(t) from

]
a(t), b(t)

[
;

14 ỹ
′(t) ← ỹ

′(t−1) + λ(t)θ(t);
15 y

′(t) ← L−1(ỹ′(t));
16 end
17 end

one, it is impossible to parallelize the whole sampling process. By contrast, the rejection
step used for computing a single replicate, once a sampling direction has been fixed, can be
parallelized. We draw several distances to the initial point independently, optimizing new
independent points, until one of them belongs to the selection event. This parallelization
provides a significant time saving, as discussed in Subsection 4.4.2.
This algorithm is designed to produce uniform samples from an open and bounded accep-
tance region. While the openness requirement is ensured by the definition of the meshes,
the boundedness assumption does not hold in our case, as the arg max over Z of the score
only depends on the direction of y and not on its norm (at least for sHSIC).
Following (Slim et al., 2019) again, we use the reparameterization ỹ = L(y), where
L : Rn →]0, 1[n is defined as L(y)i = Lµ,σ2(yi) for i = 1, . . . , n and Lµ,σ2 denotes the
cumulative distribution function of N (µ, σ2Cn). Sampling uniform ỹ from the open
bounded space ]0, 1[n then indirectly provides normal samples from N (µ, σ2Cn), using
L−1(ỹ).
Combining this sampling strategy with the quantization of the selection event described in
Subsection 4.2 and the selective null hypotheses attached to this event provides a selective
inference procedure for one selected motif z1 (q = 1) and a null defined by a given pair
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(µ, σ) of parameters. Our next steps are to handle the selection of multiple motifs, and
the general case where several µ describe the same null hypothesis and σ is not specified.

4.3.2 Testing procedure for q > 1 motifs

We now consider that we selected q > 1 motifs with the SEISM procedure, leading to
the general selection event E(i1, . . . , iq) (4.17). Generalizing our single-motif strategy
described above, we propose two options for defining null hypotheses (and test statistics)
related to this selection event:

• The first one relies one the centers of the selected meshes

H0,j : “s(cj,Π′jµ) = 0” , (4.21)

where Π′j is the orthogonal projector onto Span` 6=j
{
ϕc`,X

}⊥
. In other words, it

expresses that the center of the mesh Mij is associated with µ after removing its
component carried by the span of the center of the meshes corresponding to the
q − 1 other motifs.

• And the second one takes advantages of the best motifs in each mesh:

H0,j : “s
(
z,Π′′

((
z∗i`

)
` 6=j

)
µ
)

= 0 , ∀(z∗i`)`6=j ∈ (Mi`)` 6=j , ∀z ∈Mij” , (4.22)

with Π′′
((
z∗i`

)
6̀=j

)
being the projection onto Span` 6=j

{
ϕ
z∗i`

,X
}⊥

.

Generalizing what we introduced for q = 1 motif (Subsection 4.3.1), we test those hy-
potheses using V ′j = s(cj,Π′jy) and V ′′j = maxz∈Mij

s(z,Π′′jy).

To that end, we rely on their cumulative distributions under the nulls (4.21, 4.22) condi-
tionally to E(i1, . . . , iq): respectively F′1,...,q,(i1,...,iq) and F

′′
1,...,q,(i1,...,iq), empirically approxi-

mated using Algorithm 2.
Following the work of Loftus & Taylor (2015) in the finite case, both versions of our null
hypothesis are joint across the q motifs: each of them considers the association between
the j-th selected motif and µ after projection onto the span of all others, not just the ones
that were selected before — using Π′ and Π′′. This is to be contrasted to our sequential
selection process, which adjusts at each step for the previously selected motifs using P .
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• Description of the null hypotheses
In order to give more insights on the null hypotheses (4.21, 4.22), we derive the following
proposition:
Proposition 4.3.1 (Description of the selective nulls).
Let Z = {z1, . . . ,zq} be q sequence motifs. Let s(·, ·) be a score such that "nullity implies
orthogonality" (for instance sHSIC or sridge):

(A1) Nullity implies orthogonality: If {s(z,y) = 0} then
{
〈ϕz,X ,y〉 = 0

}
, for every

(y, z) ∈ E × Z, and for some function z → ϕz,X ∈ E.

Let µ ∈ E and decompose µ as

µ =
q∑

j=1
αjϕ

zj ,X + µ , (4.23)

with µ ∈ E orthogonal to Span(ϕZ,X).
It holds that “s(zj,Πjµ) = 0” is equivalent to “αj = 0” for some decomposition (4.23).

If Rank
(
ϕZ,X

)
= q then the decomposition (4.23) is unique — the greedy selection

procedure described in Chapter 3 enforces this situation. We interpret this as follows:
we look at a motif z` and would like to test its significance; in view of property (A1),
we can eliminate the effects that are captured by the other motifs by using the orthog-
onal projection onto the orthogonal of Span(ϕzj ,X), given by Πj — using Πj = Π′j or
Πj = Π′′j

((
z∗i`

)
6̀=j

)
.

Finally, we can consider Πjy to test the association “s(zj,Πj µ) = 0”, equivalently to
testing “αj = 0” by the above proposition.

4.3.3 Sampling under selective composite hypotheses with known
variance σ

The sampling strategy described in Subsection 4.3.1 builds a conditional null distribution
— therefore offering a selective inference procedure — for a given µ and σ. In practice, σ
is not known, and several values of µ can describe the selective null hypotheses (4.21, 4.22)
for a given motif selection. Of note, this issue is not specific to our selective inference
procedure. It will arise in any sampling-based post-selection inference strategy including
data-split: even if the latter samples from a non-selective null hypothesis, it still needs
given values for µ and σ.
We leave aside the choice of σ for now, and describe how we can sample from any null
distribution (4.21) or (4.22) for a given σ. Our results hold for scores verifying the
following assumption — this includes both sHSIC and sridge:
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(A2) Nullity implies translation-invariant: For every (y, z) ∈ E ×Z, if s(z,y) = 0,
then ∀y′ ∈ E , s(z,y′) = s(z,y + y′)

Under this assumption, the following proposition ensures that relying on the quantiles
of the empirical distribution of scores sampled under µ = 0 leads to a calibrated test
procedure.
Proposition 4.3.2.
Let s be an association score such that (A2) holds. Let V ′j = s(cj,Π′jy) and
V ′′j = maxz∈Mij

s(z,Π′′jy), formed from y sampled according to (4.1) with any mean µ
such that s(z′,µ) = 0, any known variance σ > 0, and such that z′ = arg maxz∈Z s(z,y).
The conditional null distributions F′j,(i1,...,iq) and F′′j,(i1,...,iq) with means 0 and variance σ
verify:

F′j,(i1,...,iq)(V
′
j ) ∼ U(0, 1) and F′′j,(i1,...,iq)(V

′′
j ) ∼ U(0, 1) (4.24)

Proof. Assumption (A2) under the Gaussian model (4.1) implies the following property:

∀(z,A,y) ∈ Z × Rn×n × E such that y = µ+ σε,

“s(z,Aµ) = 0”⇒ “s(z,Ay) = s(z, σAε)” ,
(4.25)

which implies that, for a composite null hypothesis of the form H0 : “s(z,Aµ) = 0”, the
distribution of s(z,Ay) does not depend on the mean µ that satisfies H0.
Hence, even if the hypothesis H0 corresponds to a set of probability distributions of y that
may depend on µ, the distribution of the statistic s(z,Ay) does not depend on µ under
this hypothesis. We can then conclude that if σ is known, as it is assumed to be the case
in this section, then a test statistic of the form V = s(z,Πy) has the same distribution
as s(z, σΠε).

4.3.4 Sampling under selective composite hypotheses with un-
known σ

In practice, σ is often unknown. To address this issue, we rely on the normalized versions
of the test statistics V ′ and V ′′ introduced in Subsection 4.3.2, defined by

T ′j :=
s(cj,Π′jy)
‖y‖2

2
and T ′′j := max

z∈Mij

s
(
z,Π′′

(
(zi`)` 6=j

)
y
)

‖y‖2
2

, (4.26)

where zi` = arg maxz∈Z s(z,P`y) ∈ Mi` . We will denote G′j,(i1,...,iq) and G′′j,(i1,...,iq) their
cumulative distribution functions under the null, conditionally to E(i1, . . . , iq).
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We will also make use of a third assumption, here again fulfilled by both sHSIC and sridge:

(A3) Two-homogeneity: It holds that s(z, ty) = t2s(z,y) for all (y, z) ∈ E × Z and
all t ≥ 0.

Of note, normalizing the association score with respect to the labels does not affect the
selection:

∀y ∈ E , arg max
z∈Z

s(z,y) = arg max
z∈Z

s(z,y)
‖y‖2

2
. (4.27)

• A simpler case: µ = 0
If µ = 0, the distribution of the normalized statistics does not depend on σ, and the
empirical cumulative distribution functions of normalized scores obtained by sampling
under µ = 0 and any σ still provides a valid inference procedure, as stated by the
following proposition.
Proposition 4.3.3.
Let s be an association score such that (A2) and (A3) hold. Let T ′j = s(cj,Π′jy)/‖y‖2

2
and T ′′j = maxz∈Mij

s(z,Π′′jy)/‖y‖2
2, formed from y sampled from (4.1) with mean µ = 0,

and any variance σ > 0. Then for all σ′ > 0, their conditional null distributions G′j,(i1,...,iq)
and G′′j,(i1,...,iq) with mean 0 and variance σ′ verify:

G′j,(i1,...,iq)(T
′
j) ∼ U(0, 1) and G′′j,(i1,...,iq)(T

′′
j ) ∼ U(0, 1) . (4.28)

Proof. Let us consider two different normal models as defined in (4.1) under the global
null hypothesis “µ = 0” and given by

y(1) = σ(1)ε(1) and y(2) = σ(2)ε(2) .

Then we have:

s(cj,Π′jy(1))
‖y(1)‖2

2
∼ s(cj,Π′jy(2))

‖y(2)‖2
2

and
s
(
z,Π′′

(
(z`)`6=j

)
y(1)

)

‖y(1)‖2
2

∼
s
(
z,Π′′

(
(z`)`6=j

)
y(2)

)

‖y(2)‖2
2

The proof directly follows assumption (A3) applied with t = ‖y(·)‖2. Proposition 4.3.3 is
complementary to Proposition 4.3.2 and provides a selective inference procedure when σ
is unknown, under the special hypothesis µ = 0.

• For any mean µ
Our final result investigates the testing procedures for the general null
hypothesis (4.21, 4.22) — not restricted to µ = 0 — with an unknown σ. Recall that
the decision rule is to reject the null hypothesis if the observed value of the statistic is
greater than a given threshold t. We show that choosing t to be a quantile for the global
null hypothesis (µ = 0) leads to a calibrated test — for the type I error, see (4.29) — in
the non-selective framework.
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4.3. Description of SEISM’s test procedure

Proposition 4.3.4 (Global null achieves lowest observed significance).
Let Z = {z1, . . . ,zq} be q sequence motifs. Let s(·, ·) be a score such that (A1) , (A2) and
(A3) hold. Let µ ∈ E be such that:

H0 : “s(Z,µ) = 0” .

Then

∀t > 0, sup
µ∈H0

P

[
s(Z,µ+ σε)
‖µ+ σε‖2

2
≥ t

]
= P

[
s(Z, ε)
‖ε‖2

2
≥ t

]
. (4.29)

Proof. This proof makes an ad-hoc use of Anderson’s theorem (Theorem 1, Anderson,
1955) on a symmetric convex cone (whereas it is usually devoted to symmetric convex
bodies).
Consider the orthogonal decomposition

E = S
⊕
T ,

where T is the span of µ and S = T ⊥. Consider y ∈ E and its orthogonal decomposition
y = s + te where e = µ/‖µ‖2 is a unit norm vector that spans T . Let τ > 0 and note
that it is enough to prove that

Pµ

[
s(Z,Y )
‖Y ‖2

2
≤ τ

]
≥ P0

[
s(Z,Y )
‖Y ‖2

2
≤ τ

]
,

where Y is a random variable with the same distribution as µ+ σε (respectively σε) on
the probability space defined by Pµ (respectively P0).
Using Assumptions (A2) and (A3), one gets that s(Z,y) = s(Z, tµ/‖µ‖2 +s) = s(Z, s).
By the Pythagorean theorem, we then have the following equality:

{
y : s(Z,y)

‖y‖2
2
≤ τ

}
=
{

(t, s) : s(Z, s) ≤ τ(t2 + ‖s‖2
2)
}
.

By orthogonality, we can note that the law of s is independent from t and that this law is
a centered Gaussian multivariate law. We deduce that the aforementioned probabilities
are of the form

Pµ

[
s(Z,Y )
‖Y ‖2

2
≤ τ

]
=
∫ ∞

0
w0(t)φµ(t)dt ,

where
w0(t) = P0

[
s(Z, s) ≤ τ(t2 + ‖s‖2

2)
]

= P0
[
s(Z, s)/τ − ‖s‖2

2≤ t2
]
,

√
2πφµ(t) = exp(−(t− µe)2/2) + exp(−(t+ µe)2/2) ,

with µe = 〈e,µ〉 = ‖µ‖2. Using the right-hand side of the aforementioned definition of
w0, one can check that w0 is a CDF and hence it has generalized inverse, denoted w−1

0 .
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The Fubini’s equality yields:

Pµ

[
s(Z,Y )
‖Y ‖2

2
≤ τ

]
=
∫ ∞

0
w0(t)φµ(t)dt

=
∫ ∞

0

∫ 1

0
1{u≤w0(t)}duφµ(t)dt

=
∫ ∞

0

∫ 1

0
1{w−1

0 (u)≤t} duφµ(t)dt

=
∫ 1

0

∫ ∞

w−1
0 (u)

φµ(t)dtdu .

By Anderson’s theorem, the measure of the interval [−w−1
0 (u), w−1

0 (u)] for the centered
Gaussian density is greater than the one for a non-centered Gaussian density with the
same variance. As a results, we deduce that

∫ ∞

w−1
0 (u)

φµ(t)dt ≥
∫ ∞

w−1
0 (u)

φ0(t)dt ,

which achieves the proof.

Proposition 4.3.4 shows that data-split produces a calibrated procedure for testing the
general null hypotheses (4.21, 4.22) when sampling the test statistics (4.26) under the
global null (µ = 0).
We could not prove an equivalent statement for conditional null hypotheses, and Propo-
sition 4.3.4 therefore does not guarantee the validity of a selective inference procedure
sampling under the global null (µ = 0). Yet, we used it as a heuristic justification of
SEISM and we observed that it leads to empirically calibrated procedures, see Subsec-
tion 4.4.1.
In view of Proposition 4.3.4 and its proof, one can see that the alternatives µ such that
‖Pqµ‖2/‖µ‖2 is large have small power. As the selection procedure described in Chap-
ter 3 achieves good results, the chosen motifs Z should capture the principal components
of µ, and therefore are such that ‖Pqµ‖2/‖µ‖2 should be small.

4.4 Empirical evaluation of SEISM

4.4.1 Statistical validity and performance

In order to assess the statistical validity and the performance of the SEISM procedure
with the different strategies described above, we derived the following protocol

1. We first create some simulated datasets:

• We draw one sequence motif z̃ with length k = 8 for each simulated dataset
using a uniform distribution of Z restricted to motifs with an information level
fixed at 10 bits.
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• Then, we draw a set of n = 30 biological sequences X as follows: all sites
are generated according to a uniform distribution over {A,C,G, T} for all
sequences. In half of those sequences, we draw one k-mer according to the
categorical model (3.31) parameterized by z̃, and insert it at a random position.

• The phenotypes y are drawn from N (0, σ2Cn) to generate data under the null
hypothesis for calibration experiments, and from N (ϕz̃,X , σ2Cn) to generate
data under the alternative for experiments on statistical power, with σ = 0.1
in both cases.

2. We then run the SEISM procedure:

• We select q = 2 sequence motifs.
• We test them using either a data-split strategy or the conditional inference one.

For both strategies, the distribution from which the replicates are sampled uses
the empirical variance of y as variance parameter. Although any choice for this
parameter leads to a valid procedure, as described in Subsection 4.3.4, we make
this choice for numerical stability considerations. For the conditional inference
strategy, we sample 50 000 replicates under the conditional null hypothesis
using the hypersphere direction sampler, after 10 000 burn-in iterations.

The top row of Figure 4.5 shows the Q-Q plot of the distribution of quantiles for the p-
values obtained across 1 000 datasets under the null hypothesis for the data-split strategy
and 100 datasets for the hit-and-run sampler one. All the data points are well-aligned
with the diagonal, which confirms the correct calibration of both the data-split and hy-
persphere direction sampling strategies, either considering the best motif or the center of
the mesh (4.21, 4.22) and regardless of the size parameter m of the mesh.
The bottom row of Figure 4.5 shows the same Q-Q plot on data generated under the
alternative hypothesis. From this figure, we observe that on small datasets, the post-
selection inference strategy is more powerful than the data-split one, regardless of the size
of the mesh m, or the choice concerning the definition of the null hypothesis.
The deviation observed on the curves associated with the selective inference procedure for
the second motif is due to the presence of a weak residual remaining signal after the first
motif, as a result of an imperfect selection step. Testing it with the best motif in the mesh
captures this signal, resulting in curves under the diagonal. By contrast, focusing on the
center of the meshes leads to testing motifs that do not capture this signal, placing us in
the conservative situation described at the end of Subsection 4.3.4. The residual signal is
not well explained by the mesh’s centers, and thus its component on the orthogonal of the
span of the activation vector of the second motif is important. The larger the mesh, the
farther its center is to the selected motif and thus the less signal it captures, explaining
the differences between the two curves.
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Figure 4.5: Q-Q plots obtained by applying the SEISM procedure with data-split and hit-
and-run strategies with different parameters to select two motifs and test their association
with an outcome. Top: data simulated under the null hypothesis. The proximity between
the quantiles of the obtained p-values and those of the uniform distribution confirms that
all SEISM strategies presented in this work are correctly calibrated. Bottom: data
simulated under an alternative hypothesis, where the outcome depends on the activation
ϕz̃,X of a single true motif z̃ in the sequences. The distributions of the p-values computed
with the post-selection inference (PSI) strategies have a larger deviation to the uniform
distributions than the p-values computed with the data-split strategy (purple).
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4.4.2 Impact of the hyperparameters on computation costs

This section serves as an overview of how various user-specified parameters impact the
computation time required by the post-selection inference procedure.
As discussed in Subsection 4.3.1.2, the hit-and-run algorithm is actually a rejection sam-
pler. Its overall computation cost depends mainly on two characteristics: the cost of the
selection step, that is the cost for selecting q motifs for a given y′, and the acceptance
rate.
Although some parameters affect the selection cost, the acceptance rate is primarily
responsible for determining if a user-specified combination of parameters results in a
tractable configuration for the conditional inference method in a reasonable amount of
time.
This rate is high compared with a naive rejection sampler over E , as the hit-and-run
strategy reduces the dimension over which the rejection step is performed: from n with
a naive sampler to 1. Nonetheless, some parameters may have a major impact on the
rejection rate. To clarify it, we studied in Figure 4.6 the impact of several user-specified
parameters — the number of motifs to be discovered q, the precision of the meshes m,
the regularization parameter λ and the number of computation cores allowed during the
rejection step of the hit-and-run sampler.

• Although the number of motifs to be found by SEISM undoubtedly affects the
selection cost, we can roughly consider that this relationship is linear. The upper
left curve in Figure 4.6, however, demonstrates that the influence of q on the overall
computation costs is super-linear, in line with an exponential growth of the number
of distinct selection events one may describe with a fixed mesh size m when q grows.
As a result, the post-selection process quickly becomes intractable for testing more
than a few motifs.

• We make a similar observation for mesh precision: computation time grows ex-
ponentially with the number of bins m used to define the meshing. This can be
explained by the exponential relationship between the number of bins and the num-
ber of different meshes (and thus the rejection rate). Of note, mesh precision has
no impact on the selection time, and therefore the difference in computation time
is entirely explained by the acceptance rate.

• We observe that the greater the regularization parameter λ, the lower the compu-
tation time. This can be explained by detailing its impact on the rejection rate.
To understand it, it is necessary to note that the motifs are not selected over Z,
but over a less constrained set Zuc, as described in Chapter 3 Subsection 3.3.3.
They are only projected onto Z at the end of the whole procedure, to ease their
interpretation.
The meshes are then defined over a vectorial space, leading to an infinite number
of meshes. Compared to a small regularization parameter, a higher λ favors motifs
resulting in a ϕz,X with a higher norm (3.6). With regard to the activation function,
such motifs are located closer from the k-mers, and thus from Z, see Figure 4.7.
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Figure 4.6: Impact of different parameters on the computation time for the post-selection
inference procedure. Upper left: Impact of the number of motifs to be discovered q.
Upper right: Impact of the number of bins defining the meshes m. Bottom right:
Impact of the ridge regularization parameter λ. Bottom right (Log scale) Impact of the
number of threads over which the hit-and-run sampler is parallelized.

Then λ has no effect on the number of existing meshes, but impacts the number of
acceptable ones, in the sense that they have a reasonable probability to be selected. A
lower λ leads to better selection performances, but to a higher number of acceptable
meshes, and thus to a lower acceptance rate. We empirically set λ = 0.01 to provide
a good trade-off.

• Finally, the rejection sampling step can be parallelized over several computation
cores, which accelerates the whole procedure, as described in Subsection 4.3.1.2. As
long as the acceptance rate is small enough, using j cores to parallelize the rejection
step roughly divides the computation time by a factor j.

We can clearly identify limitations inherent to the use of the selective inference procedure.
Although it is more powerful than the data-split approach, it cannot be used in every
situation. The data-split approach does indeed not include any rejection step, and the
only factor influencing its overall computation time is the selection time, only marginally
influenced by the aforementioned parameters.
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Figure 4.7: Diagram of the simplex Z (red) and vectorial space Zuc (light blue). The
meshes are represented by dotted lines, and a k-mer u is located on a vertex of Z. The
function ϕ : z 7→ ϕz,u is represented in dark blue. We say that a mesh is acceptable if the
activation function goes beyond a given threshold in this mesh. Indeed, a mesh needs to
contain a motif with a high score, and then a high activation function, to be selected.
If we consider two thresholds t1 < t2, we observe that 6 meshes contain at least one
motif z with ϕ(z) > t2 (indicated with yellow dots), while 14 meshes contain motifs with
ϕ(z) > t1 (green dots). A lower λ tends to lower this threshold.

4.4.3 Impact and choice of the number of burn-in and replicates

As described in Subsection 4.3.1.2, the hit-and-run sampler generates a Markov chain
over the selection event E. It requires a large number of burn-in iterations, to reduce
the dependence on the original phenotype y and a large number of replicates to provide
a good approximation of the target distribution and to address the dependence between
consecutive replicates. In this section, we give insights on the impact of the number of
burn-in and replicates on the statistical validity and on the power of the test, and on the
stability of the resulting p-values.
• Impact of the number of burn-in iterations and replicates on the calibration
and statistical power
First, we generate 200 datasets under the null (with n = 50), and apply the SEISM
procedure with different number of burn-in and replicates. The corresponding Q-Q plots
are represented in Table 4.2. We can then make two different observations:

• The number of burn-in iterations has no impact on the validity of the procedure.
The p-values distributions obtained with 0 burn-in are close to uniforms.

• On the contrary, using too few replicates leads to S-shaped curves — the p-values
are too extreme, either too high or too low, except when the number of burn-in is
set to zero. That is because with a non-zero number of burn-in, the first replicates
belong to a small area of the selection event located far from the initial y. The y′ in
this region have similar scores (as the y′ are close from one another): either higher
or lower scores than s(z,y). If we do not allow a sufficient number of replicates, only
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Table 4.2: Q-Q plots for a various number of burn-in iterations and replicates obtained
by applying SEISM on 200 simulated datasets under the null hypothesis.

this small area will be sampled. This leads to p-values close to 0 or 1 respectively.
With zero burn-in, the area contains y′ close to y, therefore leading to similar scores
and to uniform p-values.

Then, we generate 200 datasets under an alternative hypothesis, by adding some signal
in y. The results are compiled in Table 4.3. Once again, we can describe the impact of
the number of burn-in and replicates:

• A low number of burn-in tends to reduce the statistical power. Indeed, the first
replicates will then be close to the initial y, and consequently they have close scores.
Keeping these points in the distribution tends to bring it closer to the uniform.

• A high number of replicates can mitigate the impact of a low number of burn-in
iterations, by reducing the proportion of points close to y. But if the number of
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Table 4.3: Q-Q plots for a various number of burn-in iterations and replicates obtained
by applying SEISM on 200 simulated datasets with some signal.

burn-in is sufficient, then the number of replicates seems to have a very limited
impact on the power.

Although the number of replicates has a limited impact on the power, a low number can
lead to unstable p-values, as described below.
• Impact of the dimension n on the required number of replicates
Because it defines the dimension of the selection event E, the number of samples n in the
dataset has an impact on the required number of replicates required to approximate the
uniform distribution. We are confronted here with a curse of dimensionality, as the volume
of the space increases rapidly with the number of dimensions. Therefore, it is necessary to
have a large number of samples to sufficiently fill this space and thus correctly approximate
the distribution. This may then have an impact on the p-values.
In order to illustrate it, we create a random dataset under the null, with 50 sequences.
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Figure 4.8: Variations of the p-values for different number of samples n and different
numbers of replicates.

From this dataset, we create 3 new datasets, by randomly sampling 20, 30 and 40 indi-
viduals. We are then left with 4 datasets, with n ∈ {20, 30, 40, 50}. We apply 20 times
the SEISM procedure on each dataset, with 10,000 burn-in iterations. As the selection
procedure is stable from one run to another, the selected motifs are identical from one run
to the next. But the test procedure involves random steps in the hit-and-run sampler. In
particular, the replicates vary from one run to the next, resulting in different p-values.
With a sufficient number of replicates — a good approximation of the conditional distri-
bution — the variations of the p-values should be limited. But the number of replicates
required to have stable p-values is dependent on n. To illustrate this, we computed the
p-values for each run with a growing number of replicates, and the results are compiled
in Figure 4.8.
First, we observe that the variability of the p-values decreases with the number of repli-
cates. Second, it shows that this decrease is faster for small datasets (n = 20) than for
big ones (n = 50). Those two observations are consistent with the theory, and simply
allow us to have some intuition on the behavior of the p-values.
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4.4.4 Robustness of the Gaussian assumption: end-to-end ap-
plication on real data

We now have a valid procedure to select sequence motifs associated with a phenotype,
thanks to an adapted version of one-layer CNNs, and to test those trained filters. We
now want to apply SEISM to a given real-world dataset. One question remains: even if it
can be applied with no a priori for µ and σ, is the dataset compatible with the Gaussian
model (3.32)? Is the test procedure valid for this particular dataset?
In fact, Gaussian phenotypes are not expected in the vast majority of datasets. Obviously,
classification problems do not fit this model, but even for continuous datasets the Gaussian
assumption may be challenging. In this section, we provide a method to check whether
the SEISM procedure is valid for a given dataset or not.
To this end, we will work on a real case study, using the ChIP-seq dataset from (Chatagnon
et al., 2015). This experiment seeks to understand some of the mechanisms underlying
cell differentiation. It is known that retinoic acid plays a role in these mechanisms, and
thus the retinoic acid receptor (RAR) is an interesting transcription factor. We are then
looking for the binding motifs for RAR.
We apply the SEISM procedure on this dataset, to detect 4 motifs and test them using a
data-split approach

seism analysis fasta_file.fa --nb-motifs 4 --min-motifs-length 8
--max-motifs-length 16 --association-score ridge --ridge-lambda 0.01
--inferer-type data_split --ds-nb-replicates 1000 --ds-split-ratio 0.1

The selected motifs are represented in Table 4.4 with their respective p-values.

Motif 1 p = 10−3 Motif 2 p = 0.013

Motif 3 p = 0.47 Motif 4 p = 0.23

Table 4.4: Motifs and p-values obtained using the SEISM procedure (data-split) on the
real ChIP-seq dataset.

We can already note that the first motif found, with the lowest p-value, actually corre-
sponds to a known binding motif for RAR (Balmer & Blomhoff, 2005), see Figure 4.9.
But are the obtained p-values valid, since the Gaussian hypothesis does not necessarily
hold for this dataset? By plotting the distribution of the phenotypes in Figure 4.10, we re-
alize that the empirical distribution does not look like a Gaussian one (and unsurprisingly,
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Figure 4.9: Known binding motif for RAR.

a normality test such as D’Agostino-Pearson leads to an extremely low p-value< 10−100).
In this dataset, the outcome y contains the − log10 of p-values resulting from a test to de-
termine whether the corresponding sequence is associated with a high number of bindings
with RAR.
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Figure 4.10: Empirical probability density of the phenotypes in the ChIP-seq dataset.

Although this problem is not limited to SEISM, we propose here an approach that deter-
mines whether the Gaussian assumption is valid for a given dataset (X,y) or not for the
SEISM analysis. This method can be divided into 3 steps:

1. Create N datasets (X,y(i)) derived from the original one. The sequences are un-
changed, but the labels are randomly permuted versions of y. If there exists motifs
Z that are effectively associated with y, then this permutation step breaks those
associations, thus enforcing that the permuted datasets are under the null. But it
will maintain the original probability distribution of y.

2. Run the whole SEISM procedure on each of those permuted datasets, and collect
the p-values.

3. Draw a Q-Q plot with those p-values. If the distribution is close to the uniform,
then it validates the Gaussian assumption, and the p-values obtained on the non-
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permuted dataset actually reflect the association between the discovered motifs and
y.

We applied this methodology to our dataset, and created 1 000 permuted versions. The
obtained Q-Q plot is in Figure 4.11, and it confirms that the SEISM procedure is valid
for this dataset.
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Figure 4.11: Q-Q plot obtained by applying the SEISM procedure to permuted versions
of the ChIP-seq dataset

To conclude this chapter, we have introduced a new analytical framework, allowing to
test the interpretable features extracted from a machine learning model. This framework
is generic enough to be used with different features, as long as an association score can
be defined (with a few conditions) between the feature and the phenotype. We were
interested in a very wide range of possible associations.
We provided a proof of concept on a particular case, the motifs extracted from a CNN.
Although in SEISM, the selection procedure is coupled with the test, it is by no means
a necessity. For instance, the SEISM test procedure can be used to test motifs extracted
by TF-MoDISco, with the appropriate modification of the selection event.
Finally, we have attempted to reduce the number of assumptions required to apply SEISM,
either on the parameters of the null distribution, or this null distribution itself. We
therefore hope that this work will facilitate the application of SEISM on real datasets.
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Conclusion and future works

In this work, we introduced a new approach to quantify the association between inter-
pretable features extracted from a trained neural network and the outcome of this net-
work. We have indeed shown that, despite the fact that these networks were originally
designed with the aim of correctly predicting a biological trait, they can be used to cor-
rectly select features associated with the phenotype. Thanks to slight modifications, or
to methods coming from the explainable artificial intelligence literature, they can achieve
similar performance for feature selection tasks than state of art explanatory methods from
the computational biology literature.
Our procedure relies on the post-selection framework and formalizes the network training
as a feature selection step. Along the way, we addressed general problems related to
selective inference over composite hypotheses, which has implications beyond testing of
features extracted on trained neural networks. Our strategy to normalize the statistic to
make it scale-free could easily be transferred for testing the association of kernels with a
trait (Slim et al., 2019), or to previous selective inference frameworks for testing groups
of variables using sampling strategies (Reid et al., 2015).
Nonetheless, SEISM represents a first step in the direction of quantifying the uncertainty
of explicability in machine learning. It can be considered as a proof of concept, and its
development suggests lots of questions and directions to study.
•Which activation model for the motifs?
The selection step of SEISM formalizes that training a one-layer CNN is equivalent to
selecting a finite set of PWMs, or sequence motifs, that have a maximal association to the
outcome for some particular score. This formalization also highlights the specific way by
which CNNs with exponential activation functions parametrize the distribution of k-mers
at a binding site. As discussed in Chapter 3 Subsection 3.2 and Section 3.7, although
the PWMs returned by most bioinformatics models represents a categorical distribution,
the convolution filters parametrize a Gaussian distribution. In practice, this difference
leads to discrepancies between the trained convolution filters and the motifs learned using
categorical likelihoods — including those offered by databases and often used as ground
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truth. This observation suggests alternative set of constraints for convolution filters, for
instance instead of constraining a motif z to belong to Z, we could try to constrain the
pointwise exponential of z. We could also try to modify the activation function, from the
classical exponential activation to a categorical one.
• Extending SEISM to other biological features
The test and the selection procedures are linked by the selection event and the resulting
conditioning. SEISM was only implemented to test sequence motifs, obtained with a
modified version of a one-layer CNN. However, the test method is general enough to be
theoretically applied to different selection methods.
The theoretical foundation of our test method, as well as how it was implemented in
the code provided with this thesis, were designed to be modular. That is, the results
provided in Chapter 4 and the code should be easily adaptable to new genetic variants
and selection procedures. In a very simple way, the framework described in Chapter 4 with
a data-split strategy provides a straightforward method for testing any feature, as long as
an association score can be defined between the feature and the trait. But even for the
conditional inference method, we tried to explicit the requirements for a feature selection
method to be compatible with our test procedure, and the code has been developed trying
to be as generic as possible towards the selection method. Also obviously implementation
issues will arise when we will try to apply it with a different selection method, we hope
that having developed this code with modularity in mind would decrease the occurrence
of these issues.
The most important step in extending SEISM to other biological features or selection
methods is to formulate the training of the network and the extraction of the feature as
a feature selection problem, and to formalize the association between those features and
the phenotype, meeting the assumptions described in Chapter 4. For instance, we may
test motif interactions derived from convolutional-attention networks (Ullah & Ben-Hur,
2021), a (motif, position) couple as selected in (Ditz et al., 2022) or motifs extracted by
TF-MoDISco (Shrikumar et al., 2018). For this latter case, we can note that our inference
procedure can be directly applied, as we simply need to change the rejection step in the
hit-and-run algorithm: in this case, we keep the replicates resulting in the selection of the
same motifs using TF-MoDISco. More relevant association scores could be devised for
such motifs, but our procedure is nonetheless valid.
For other features types, some practical problems may arise. First, the hit-and-run sam-
pler requires the selection method to be stable, that is, running the selection method twice
on the same input must lead to the selection of the same set of features. This property is
required to guarantee the theoretical convergence of the algorithm, but may not be nec-
essary in practice. Second, some attention may be required to avoid the computational
cost to become prohibitive, in particular depending on the regularity properties of the
selection event, that may lead to a higher rejection probability or to a higher required
number of replicates. Granted that these technical challenges can be addressed, we are
confident that extending SEISM to more general networks and corresponding features will
benefit both the fields currently using these networks — such as regulatory genomics —
and genome wide association studies.
• Accelerating the conditional inference procedure
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The main obstacle to using SEISM on a real dataset is the time required for the inference
step. To tackle this issue, we identify two promising directions:

• We can try to leverage the formulation of the optimization problem as a difference
of convex functions, as discussed in Chapter 3 Subsection 3.3.1. While it does not
seem relevant to use it to select the motif associated with a y, we can try to make
use of condition (3.14) to check if a given y′ admits a motif as an argmax for the
score. Indeed, during the rejection step of the hit-and-run sampler, each replicate
currently goes through the whole selection procedure, to check whether it leads to
the selection of the same set of motifs than the initial y. But we can try to derive
from this condition a quicker check method.

• As discussed in Chapter 2 Subsection 2.4.4, Yamada et al. (2018) introduce a new
parametrization for the selection event. Instead of parametrizing the test with the
outcome y, resulting in quadratic constraints, the authors directly rely on the mea-
sure of independence — the score in our framework. They show that this new
parametrization leads to linear constraints, and thus can derive an analytical ex-
pression for the truncation bounds of the null distribution. However, a few obstacles
prevent us from applying the same trick. First, our selection event, even with the
meshes, cannot be described with a finite number of constraints. Consequently,
there are still theoretical challenges to overcome. Moreover, their method relies on
a Gaussian assumption on the distribution of the scores. While this assumption is
asymptotically true for the HSIC score, it does not necessarily hold with different
scores. And the authors show that for a small number of samples, their procedure is
not calibrated due to the violation of this assumption. As it is, our method is more
general (and applicable to small datasets), but this direction is nevertheless a very
interesting direction, since it could lead to substantial cuts in the computational
costs.

• Third, our selection event can be written as an intersection of quadratic constraints.
As discussed in Chapter 2, theoretical analytical bounds for the null distribution
exist, but computing them is not tractable. It could then be interesting to try to
obtain an approximation of these bounds in a reasonable amount of time, and to
check whether this leads to a valid inference procedure or not.

• From SEISM to genome wide association studies: remaining challenges
Finally, this thesis attempted to create a bridge between neural networks and genome wide
association studies. But many challenges remain before applying SEISM in a genome wide
association study. First of all, it should be able to run on a large number of samples.
While stochastic gradient descent can be implemented, it is still necessary to confirm that
the hit-and-run algorithm works with an unstable selection method. Then, the activation
functions we proposed in this thesis may not be relevant to detect a signal at the scale of a
whole genome with millions or billions of base pairs. As of now, SEISM only gave results
on small sequences, with a few hundred base pairs. In a GWAS context, we could use
a CNN with long filters, resulting in selecting long sequence motifs, and thus sequences,
with some flexibility, associated with the trait. Adding attention layers could help to
select interactions between those sequences.
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In conclusion, the development of SEISM marks, in our opinion, a significant step for-
ward in going beyond explicability for machine learning, but its current application scope
remains rather limited. However, lots of promising opportunities for improvement have
been identified, and we look forward exploring them in future research.
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Abstract

Over the past decade, neural networks have been successful at making predictions from
biological sequences, especially in the context of regulatory genomics. As in other fields of
deep learning, tools have been devised to extract features such as sequence motifs that can
explain the predictions made by a trained network. Here we intend to go beyond explainable
machine learning and introduce SEISM, a selective inference procedure to test the association
between these extracted features and the predicted phenotype. In particular, we discuss
how training a one-layer convolutional network is formally equivalent to selecting motifs
maximizing some association score. We adapt existing sampling-based selective inference
procedures by quantizing this selection over an infinite set to a large but finite grid. Finally,
we show that sampling under a specific choice of parameters is sufficient to characterize
the composite null hypothesis typically used for selective inference—a result that goes well
beyond our particular framework. We illustrate the behavior of our method in terms of
calibration, power and speed and discuss its power/speed trade-off with a simpler data-split
strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory
genomics, and to more powerful methods for genome wide association studies (GWAS).

1 Introduction

In the recent years, neural networks have been successfully used for making predictions from biological se-
quences. In particular, they have brought significant improvements in regulatory genomics, e.g. to predict
cell-type specific transcription factor binding, gene expression, chromatin accessibility or histone modifica-
tions from a DNA sequence (Zhou & Troyanskaya, 2015; Kelley et al., 2018; Avsec et al., 2021a;b). These
tasks are expected to be a good proxy for predicting the functional effect of non-coding variants, and help us
in turn make better sense of the observed human genetic variation and its effect on various phenotypical traits
including diseases. Most successful models have used convolutional neural networks (CNNs, LeCun & Bengio,
1998) and more recent approaches have explored self-attention mechanisms (Vaswani et al., 2017). These
models have been trained from experimental data obtained from ChIP-seq, ATAC-seq, DNase-seq, or CAGE
assays, that provide examples where both the DNA sequence and the outcome of interest are known.

A commonly outlined limitation of neural networks is their lack of explainability or black box aspect, i.e.,
the contrast between their excellent prediction accuracy and the possibility to explain these in intuitive or
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mechanistic terms (Ras et al., 2022; Molnar, 2022). Elementary one-layer CNNs don’t face this issue, as
their trained filters have a straightforward interpretation as position weight matrices (PWMs, Harr et al.,
1983; Schneider & Stephens, 1990), a historical and basic element of regulatory genomics. Nonetheless, these
simple models are notoriously too simple to capture the complexity of the regulatory code which requires
to account not only for individual motif presence but for their long range sequence context and mutual
interactions (Avsec et al., 2021b). Multi-layer CNNs and self-attention mechanisms model this additional
complexity but are less straightforward to interpret. Tools inspired from the explainable deep learning
literature have been adapted to extract features beyond PWMs and one-layer CNNs to explain the predicted
regulatory behavior (Novakovsky et al., 2022). It is therefore often possible to explain the predictions of a
trained neural network for biological sequences, either directly through estimates of its parameters or through
features extracted post hoc.

Unfortunately, finding features somewhat associated to an outcome is often not enough, as an observed non-
zero association can be spurious. In experimental science, it is actually common to quantify the significance
of this association, e.g., by testing the hypothesis that it is zero. Genome wide association studies (GWAS,
Visscher et al., 2017) for example find genetic variants correlated with a trait by building a linear model
explaining this trait by each variant and testing the hypothesis that the weight is zero. Statistical significance
has its own limitations (Wasserstein & Lazar, 2016), but often provides an intuitive scale for identifying
relevant features. Quantifying the significance of associations between interpretable features and predicted
outcome is equally important in the context of neural networks but has received little attention to our
knowledge.
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Figure 1: Overview of our SEISM procedure. (a) The input is a set of sequences and corresponding pheno-
types in some space Y (b) It trains a convolutional neural networks to predict a phenotype from sequences,
which leads to the selection of sequence motifs. (c) Then SEISM partitions the space of motifs to quantize
the selection. The selection event is the set of phenotype vectors that would lead to selecting an element
in the same mesh. (d) Using a sampling strategy, SEISM builds a null distribution for the test statistic,
conditional to the selection event. The p-values associated with a selected motif is the quantile of its score
under this distribution.

Here, we set out to go beyond explainable machine learning by introducing SElective Inference for Sequence
Motifs (SEISM), depicted in Figure 1, a valid statistical inference procedure for these features. In order to
do so, we cast commonly used CNNs in a feature selection framework, and show that it achieves similar
selection performances as existing bioinformatics algorithms on de novo motifs discovery tasks. This selec-
tion needs to be accounted for when testing the association of the features with the predicted trait. This
problem has been discussed and addressed in the growing literature on selective inference over the past few
years (Taylor & Tibshirani, 2015; Reid et al., 2018; Slim et al., 2019), but existing methods only apply to a
selection from a finite set. We work around this issue by quantizing our selection to a very large but finite
space, making it amenable to existing sampling strategies. We show that the resulting procedure is well
calibrated and compare it to a data-split strategy on a variety of settings.
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For the sake of simplicity, we choose to restrict this presentation to simple one-layer CNNs and sequence
motifs. The procedure that we introduce, however, is by no means limited to this framework, and could be
applied to any of the more expressive features proposed in the explainable machine learning literature.

Our contributions are as follows:

• We formally cast one-layer CNNs into a motif discovery tool, reaching similar performances as
de-novo motifs discovery tools from the bio-informatics literature (Section 3).

• We define a framework to perform post-selection inference dealing with selection over a continuous
set of features, and thereby we make interpretable features amenable to inference (Section 4).

• The standard Gaussian framework for selective inference typically allows several means to be under
the same selective null hypothesis, and require the variance to be known, both of which make more
difficult the sampling under this null. We provide invariance results suggesting a practical procedure
that works around these issues (Section 4.6). To our knowledge, they were a blind spot in sampling-
based post-selection inference approaches beyond our specific context.

• We provide a PyTorch implementation of SEISM at:
https://gitlab.in2p3.fr/antoine.villie1/seism.

2 A short overview of our SEISM procedure

SEISM aims to detect sequence motifs associated with a biological outcome, and to test the statistical
significance of this association. To this end, it performs different steps which we will briefly describe here,
in order to give the reader an overview of the procedure. They are summarized in Algorithm 1, and more
details will be given in the following sections.

(i) SEISM takes as input biological sequences X associated with a phenotype y. The user must also
specify the number of motifs to find, as well as a parameter controlling the meshing of the motif space,
that is the precision with which the found motifs will be tested.

(ii) The motif selection step corresponds to the maximisation of a so-called association score s(·, ·), which
depends on the phenotype and on the motifs z through their activation patterns in the biological
sequences ϕz,X . This step is formally equivalent to training a one hidden layer CNN. We implement
a greedy procedure, optimizing each new filter over the residuals of the previously entered ones, using
a gradient descent method initialized at the k-mer with the best score. To that end, we enumerates
the k-mers contained in X using the DSK software (Rizk et al., 2013) and compute their scores s(·, ·).

(iii) SEISM splits the set of sequence motifs into meshes according to the input parameter. This step leads
to the definition of a set of null hypotheses and of a selection event E, i.e. the set of outcomes y′ that
would have led to the selection of motifs within the same meshes as the ones selected in (ii), namely
the sequence of meshes (Mi1 , . . . , Miq ). Formally, the selection event reads

E :=
{

y′ ∈ Y : ∀j ∈ [q] , arg max
z∈Z

s(z, Pjy′) ∈Mij

}
, (1)

for some projection matrix Pj , to be defined later.

(iv) It approximates the conditional null distribution of the test statistics by sampling biological outcomes y′

under the null, conditionally to the selection event. This sampling is performed using a hit-and-run
strategy (according to Algorithm 2), by building a discrete time Markov chain on E whose distribution
converges to the uniform one.

(v) SEISM finally computes the p-values for the null hypotheses defined in (iii), associated with the selected
motifs in ii, using the empirical distribution of the test statistics, and returns the motifs with their
association p-values. Given these p-values, one can adjust the number of selected motifs discarding the
ones with non-significant p-values. This multiple-testing issue has not been investigated in this paper,
but the practitioner can use for instance a Bonferroni bound to select the number of motifs.
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Algorithm 1 SEISM algorithm (general formulation)

# Description: SEISM selects a set of sequence motifs (z1, . . . , zq) based on an association score s(·, ·), and
evaluate their p-values based on a partition Z =

⊔
Mi.

Inputs: Response y ∈ Y ⊆ Rn, sequence samples X, feature function z ∈ Z 7→ ϕz,X ∈ Rn, association
score s : Z × Y → R, number of selected motifs q ≥ 1, meshes Z =

⊔
i=1

Mi, sampling algorithm HR.

Result: ((p1, z1), . . . , (pq, zq)), sequence of p-values and sequence motifs.
# Selection step: Selection of the sequence motifs (z1, . . . , zq) and the sequence of meshes (Mi1 , . . . , Miq ).

1 for j = 1, . . . , q do
2 zj ← arg max

z∈Z
s(z, Pjy) ; // Pk orthogonal projection onto Span

ℓ<j

{
ϕzℓ,X

}⊥

3 ij ← i s.t. zj ∈Mi ; // the mesh Mij is selected
4 end

# Inference step: SEISM provides a p-value pk on the statistical influence of the selected sequence motifs zk

conditional on the selection event (1) of observations y′ that would have led to same selection of the sequence
of meshes (Mi1 , . . . , Miq ).

5 y
′(1), ..., y

′(N) ← HR(y,
(
Mi1 , . . . , Miq

)
) ; // Sampling outcomes under the selected null

6 for j = 1, . . . , q do
7 F̃j( · ; y

′(1), ..., y
′(N)) ← empirical cumulative distribution function of s(rMij , Πjy′) under the selected

null ; // rMij is a motif representing Mij and Πj the orthogonal projection onto
Span

ℓ 6=j

{
ϕzℓ,X

}⊥

8 pj ← F̃j(s(rMij ) ; y
′(1), ..., y

′(N)) ; // output the jth p-value
9 end

3 One hidden layer CNNs select sequence motifs maximizing an association score

One-layer CNNs have been at the core of the rising popularity of deep learning over the past decade, by
enabling major improvements in computer vision tasks (Krizhevsky et al., 2012). Although they are formally
a specialized fully connected feedforward networks with additional constraints on the weights, CNNs are
equivalent to, and more often thought of as, a set of convolutions of the vectorial input with some smaller
vectors referred to as filters. When applying the network, dot products are taken between each of them and
successive windows of the vectorial input followed by some non-linear operation, producing an activation
profile for each filter. In one-layer networks, these activations are pooled across the windows into a single
scalar for each filter and these scalars are combined—typically through a linear or regular fully connected
network—to provide a prediction for the input. Because convolution filters are homogeneous to the input,
they easily lend themselves to interpretation: as small image patches for image inputs, and as sequence
motifs for appropriately encoded biological sequence inputs. Accordingly, activation profiles reflect how
much each piece of the input is similar to the filter—in the sense of the dot product—and applying a one-
layer CNN amounts to applying a predictive function to a modified representation of the original data by
these similarity profiles. Because convolution filters are jointly optimized with the parameterization of the
predictive function, CNNs are often described as a strategy to jointly learn a data representation and a
function acting on this representation, both being optimized for a prediction objective. In computer vision,
the optimized filters of the first layer typically learn to detect edges with different orientations. In biological
sequences, they learn short sequences whose presence anywhere in the input is predictive of the output
phenotype used for training.

Unlike input sequences that are formed by a discrete succession of letters in some alphabet, trained filters
are continuous and therefore account for possible variation in the predictive short sequence, e.g., a T mostly
followed by a C but sometimes an A or a G and so on (Figure 2). These probabilistic objects have also been
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Figure 2: A motif represented by its position weight matrix and corresponding sequence logo. The total
height of the letters indicates the information content of the position (in bits), closely related to the Shannon
entropy.

used for a long time in the bioinformatics literature and referred to as position weight matrices (PWMs).
Inferring PWMs either according to their frequency in a set of sequences (Bailey et al., 2006) or their
discriminating power between two sets (Bailey, 2021) has been a major theme over the past thirty years.
Here we formalize the training a one-layer CNN as equivalent to the selection of a set of sequence motifs
that are optimal for some association score. This formalization will be instrumental in the definition of our
hypothesis testing procedure in Section 4.

Notations Let X represent a data set of n one-hot encoded sequence samples {x1, x2, . . . , xn}, in a set X
of biological sequences assumed to be over an alphabet A—for DNA sequences, A = {A, C, T, G}. One-hot
encoding maps each letter in A to a vector in {0, 1}|A|, with all-zero entries except for a single 1 at the
coordinate corresponding to the order of the letter in A—for DNA sequences, A is encoded as (1, 0, 0, 0).
Every xi is therefore encoded as a matrix in {0, 1}|A|×|xi|—although in practice, encoded sequences are often
padded with dummy columns to have the same lengths. We denote yi ∈ Y the measurement of a biological
property associated with sequence xi, and y ∈ Yn the corresponding vector of outcomes. We consider one-
layer CNNs with a Gaussian non-linearity with scale ω, a max global pooling and a linear prediction function.
These CNNs parameterize a function f : X → Y by q filters of length k, namely Z := {z1, . . . , zq} ∈ Zq,
where Z is a subset of R|A|×k, given by the simplex in this paper:

Z =
{

z ∈ R|A|×k
+ : ∀j ∈ [k] ,

|A|∑

i=1
zi,j = 1

}
, (2)

and q weights β ∈ Rq.

More precisely, we define f(xi) :=
(
ϕZ,Xβ

)
i
, with ϕZ,X ∈ Rn×q defined as ϕZ,X = Cnϕ̃Z,X , where

Cn = In − n−11n1⊤
n is the centering operator, In the identity matrix, 1n the all-one vector in Rn, and

ϕ̃Z,X
i,j := max

u∈[xi]ℓ

{
exp

(
−||zj − u||2

2ω2

)}
, (3)

where [xi]ℓ denotes the set of ℓ consecutive entries of the vector xi (and of its reverse-complement coun-
terpart), and ω is a bandwidth hyperparameter whose impact and tuning is studied in Appendix A. This
model differs with a typical CNN in two ways. First, it uses a Gaussian activation function instead of an
exponential one; second the use of the centering operator that sets the average of the activation to zero.
These adjustments were made to improve the SEISM algorithm’s selection performances.

3.1 From empirical risk minimization to association scores

The function f is learned in a classical penalized empirical risk minimization framework, using the
data {X, y}:

min
(Z,β)∈(Z×Rq)

n−1∥∥y −ϕZ,Xβ
∥∥2 + λ||β||2, (4)

for some λ > 0. Equation (4) formalizes the idea that learning a one-layer CNN on one-hot encoded
sequences amounts to learning a data-representation ϕZ,X of the sequences parameterized by a set Z of
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filters—corresponding to PWMs—and a linear function with weights β acting on this representation. Noting
that there exists a unique explicit optimal β for Eq. (4), it follows immediately that:

arg min
Z

{
min

β

{
n−1||y −ϕZ,Xβ||2 + λ||β||2

}}
= arg max

Z

{
sridge

λ (Z, y)
}

, (5)

where sridge defines a particular quadratic association score between an outcome y and a set of filters Z:

sridge
λ (Z, y) := yT ϕZ,X

[
(ϕZ,X)T ϕZ,X + λnIq

]−1(ϕZ,X)T y. (6)

It formalizes the training of a CNN as the selection of a set of filters whose association with y in the sense
of sridge

λ is maximal. Of note, one has

lim
λ→∞

λn× sridge
λ (Z, y) = yT ϕZ,X(ϕZ,X)T y =: sHSIC(Z, y) ,

so for large values of the regularization hyperparameter, selecting filters by learning a CNN is equivalent
to selecting filters with the classical HSIC score (Song et al., 2012), because ϕ already includes a centering
operator. In addition to connecting sridge with sHSIC, we observed that the centering in the definition
of ϕZ,X led to the selection of better sequence motifs in our experiments. Observe that the centering matrix
is an orthogonal projection matrix onto E := Range(Cn), the orthogonal of the vector line generated by the
vector 1, and it holds ∥∥y −ϕZ,Xβ

∥∥2
n

=
∥∥Cny −ϕZ,Xβ

∥∥2
n

+
∥∥y −Cny‖2

n . (7)
The solution of (4) is unchanged if y is replaced by Cny, and so we can assume that y ∈ E without any
generality loss. Furthermore, this shows that we can work with skewed data in a classification context, since
imbalanced classes will have no effect on the result.

3.2 Greedy optimization

It is common to solve (4) by stochastic gradient descent (SGD) jointly over the q filters. More generally, this
approach for training a neural network with a single, large hidden layer is known to find a global optimizer at
the large q limit under some assumptions (Soltanolkotabi et al., 2019). Our objective here is slightly different:
we do not necessarily aim at approximating a continuous measure with a large number of particules, but we
aim at selecting a small number of particules lending themselves to a biological interpretation. Furthermore,
the number of relevant motifs on a given dataset is generally unknown. In this context, it is known that jointly
optimizing the convolution filters leads to irrelevant PWMs, with some actual motif split across several filters
and other duplicated (Koo & Eddy, 2019). A possible strategy is to forego filter-level interpretation, train an
overparameterized network—with a much larger q than the expected number of motifs—and use attribution
methods to extract relevant motifs or other interpretable features from the trained network (Shrikumar et al.,
2018). Here we adopt a different strategy using a forward stepwise procedure, where we iteratively optimize
each of the convolution filters over the residual error left by the previous ones.

More precisely at each of the q steps, we select zj such that:

zj = arg max
z∈Z

sridge(z, Pjy) , (8)

where Pj is the projection operator onto the orthogonal of the subspace Span
ℓ<j

{
1, ϕzℓ,X

}
, see line 2 of

Algorithm 1. This is how zj is optimized over the residuals of the previous filters. The vector 1 enforces that
we project on a subspace of E , in particular P1 = Cn. Without this projection, iterating (8) would return
the same z. Of note, joint optimization procedures of the q filters don’t face this issue, and forward selection
procedures over finite sets of features work around the problem by iteratively removing the selected elements
from the set over which selection if performed (Slim et al., 2019). This sequential strategy combined with
the testing procedure introduces in Section 4 provides a data-driven mean to choose the number q of relevant
motifs.

In practice, we solve (8) with a standard gradient descent algorithm, initialized at the k-mer with the best
association score. The k-mer list is obtained using the DSK software (Rizk et al., 2013). We work on a less
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constrained set than Z (2) and don’t enforce the positivity constraint during optimization. We project the
optimized motifs onto the full Z at the end of the process. Our procedure also requires to choose a motif
length k. We proceed adaptively by choosing the length leading to the highest score, within a user-specified
range.

With the one-layer CNNs training formally cast as the successive selection of q sequence motifs optimizing
an association score, we now turn to the problem of testing the significance of these associations. Of note,
what follows is only based on the definition of an association score and could be applied to perform inference
on other features coming from the training step of any algorithm, as long as one can define an association
score between the feature and the outcome.

4 Post-selection testing of the association between the outcome and trained
convolution filters

We now turn to the problem of testing the association between the selected motifs z and the trait y. In order
to do so, we need to solve three interrelated problems. First, the motifs were specifically selected for their
association with the trait, which leads to the well known post-selection inference problem. Any inference
procedure that disregards that the hypothesis was constructed using the same data used for testing is likely
invalid and produces deflated p-values. Second, we deal with a continuous selection event, because (8)
is performed over a continuous set Z. By contrast, existing solutions for post-selection inference address
selections over finite sets. Third, the null hypothesis commonly used for similar post-selection inference
problems is composite, i.e., it corresponds to several values of the parameters. Existing methods work
around this issue by fixing theses parameters to arbitrary values, thereby limiting the scope under which
they are calibrated. Here we present our solutions to these three problems.

Consider the Gaussian model:
y = µ + σǫ (9)

where µ ∈ E is the target deterministic signal, and ǫ ∼ N (0, Cn) the standard Gaussian distribution on E .

4.1 Selective null hypothesis

We follow Yamada et al. (2018) and test the association of a motif z through the following null hypothesis:

H0 : “s(z, µ) = 0”, (10)

for some association score s. For a z chosen independently of the data, H0 could be tested by sampling y′

under the corresponding distribution, and using the quantile of the s(z, y′) scores corresponding to s(z, y)
as a p-value—i.e., the probability when sampling under H0 to observe a score as extreme as s(z, y). In
our case, however, the motifs z in the trained convolution filters were specifically selected for their strong
association with y, and this procedure would not produce calibrated p-values. This problem is known as
post-selection inference, and has been discussed and addressed in a growing literature over the past few
years. Although data-split strategies — which split the data into two parts, and then perform the selection
and the inference on the two different parts — lead to valid procedures (Wasserman & Roeder, 2009), they
necessarily result in a reduction of the sample size, unsatisfying when the original sample size is limited.
Alternatively, selective inference frameworks were developed in the recent years to address these issues. We
refer to (Hastie et al., 2015, Chapter 6) and references therein for a general presentation. Taylor et al. (2014)
and Lee et al. (2016) address scenarios where the selection event, i.e. the set of data outputs that would
result in the selection of the same set of features, is polyhedral—determined by the finite intersection of
linear constraints. Reid & Tibshirani (2013), and later Reid et al. (2015) extend this selection to clusters or
groups of features, still in the linear framework. Yamada et al. (2018) extended post-selection inference to
the non-linear framework, by proposing a kernel-based approach, where the selection is performed through
the HSIC criterion. Slim et al. (2019) generalize this work, by allowing the selection to be carried out with
a wider range of tools, making use of quadratic association scores.

To our knowledge, post-selection inference literature only addresses the problem of selecting features from
a discrete collection and does not provide a solution for selections from a continuous set like our Z. Hence,
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testing (10) directly is not feasible and we resort to the quantization of the motif space to address this
problem.

In addition to that, we push the analysis of the statistical model further, in order to be able to apply it with
weaker assumptions on the data distribution.

4.2 Dealing with selection events over a continuous set of features

Formally, our selection event Econt. is the set of outcomes y′ that would have led to the selection of the same
set of motifs Z = {z1, . . . , zq} than the one selected using y from the real dataset, when applying the same
selection procedure:

Econt. :=
{

y′ ∈ E : ∀j ∈ {1, . . . , q} arg max
z∈Z

s(z, Pjy′) = zj

}
, (11)

where Pj is the orthogonal projection onto Span
ℓ<j

{
1, ϕzℓ,X

}⊥.

A simple rejection approach to sample from the null (10) conditioned to Econt. would be to sample y in E
under (9, 10) and only retain those in Econt.. Unfortunately, Econt. belongs to a strictly lower-dimensional
vector space of Rn and is therefore a null set for the Lebesgue measure on Rn. For sHSIC and sridge, and
noting that a maximum is also a critical point, we indeed obtain:

y′ ∈ Econt. =⇒ ∀j ∈ {1, . . . , q} Pjy′ ∈ Span
{
∇zϕzj ,X

}⊥
.

For q = 1 and assuming that the different directions of the gradient are independent, this spans is a
vector subspace with dimension n − 4 × k. We empirically observed that sampling from this subspace
produced a non-zero proportion of y′ in Econt.. Nonetheless, choosing a sampling distribution that leads
to the correct conditional distribution is not straightforward—and may not even be possible—as discussed
in Supplementary Material B. Moreover, relying on conditional probability with respect to a null set is
not well defined and may lead to the Borel-Kolmogorov paradox (Bungert & Wacker, 2022), which further
complicates its use.

We choose to circumvent this issue using a partition of the space Z of motifs spaces, over which our selec-
tion (8) operates, into a very large but finite set of meshes: Z =

⊔
Mi. As depicted in Figure 3, we consider

a regular partition of each coordinates into m bins:

1

0:75

0:5

0:25

0

1 0:75 0:5 0:25 0

0

0:25

0:5

0:75

1

A C

G

Figure 3: Discretization of the 3-letters alphabet simplex {A, C, G}, with a binning parameter for the meshes
m = 4.

Based on this partition into meshes, we define a quantized selection event E as follows. First, given an
outcome y we define the sequence of the q selected meshes (Mi1 , . . . , Miq ) as

∀j ∈ {1, . . . , q} , arg max
z∈Z

s(z, Pjy) ∈Mij ,
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Second, the selection event is given by:

E(i1, . . . , iq) :=
{

y′ ∈ Y : ∀j ∈ {1, . . . , q} , arg max
z∈Z

s(z, Pjy′) ∈Mij

}
, (12)

the set of outcomes y′ that would have led to the selection of motifs within the same meshes as the selected
ones (Mi1 , . . . , Miq ).

We now show how quantization (12) of the selection problem make enables the definition of a valid inference
procedure. We start with the simplest case where we select a single motif (q = 1).

4.3 Test with only one motif q = 1, µ and σ fixed

In this section, considering the motif z1 was chosen by the SEISM selection procedure, selection event (12)
boils down to:

E(i1) :=
{

y′ ∈ Y : arg max
z∈Z

s(z, y′) ∈Mi1

}
(13)

We use this simplified case to introduce our null hypotheses and test statistics attached to this selection
event, and consider two options:

• A first option consists in representing the mesh Mi1 by its center c1. Then the corresponding null
hypothesis is the following:

H′
0,1 : “s(c1, µ) = 0”, (14)

It can be tested using statistic V ′
1 = s(c1, y).

• A second possibility is to represent Mi1 by the motif with the highest association score within. In
this case, the null hypothesis becomes:

H′′
0,1 : “∀z ∈Mi1 , s(z, µ) = 0”, (15)

We test it using statistic V ′′
1 = max

z∈Mi1
s(z, y).

In both cases, we reject the null hypothesis if the test statistics are greater than a threshold, determined
by their cumulative distributions under the nulls (14), (15) conditionally to E(i1) : F′

1,(i1) and F′′
1,(i1). In

practice, there is no closed form for these conditional cumulative distributions, and we rely on an empirical
version that we build using a hit-and-run sampler algorithm, as described in Section 4.4.

Hypotheses (14) and (15) lead to very similar results when the meshes are small enough, which is easily the
case in practice. (14) gives us insights on one specific motif of the mesh — the center, but (15) tells us about
whether there exists a motif within Mi1 associated with the phenotype. To illustrate the difference, let us
consider a meshing with only one bin per coordinate, that is the meshing with only one mesh, containing all
the motifs:

• Testing the center-based null hypothesis (14) boils down to testing the association of µ with the
motif c1 with the same probabilities for each letter of A at every position, and produces a p-value
of 1, regardless of the data, since for any k-mer u, ‖c−u‖2= k× (0.752 + 3× 0.252), which leads to
∀X ∈ X , ϕc,X = 0 according to the centering step, and to a zero score for any y′ ∈ E .

• By contrast, one can obtain a strictly less than 1 p-value for (15), because different y′ ∈ E can lead
to different scores, which means that there may exist a motif in Z associated with y— but does not
inform us on which motif it is.
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Algorithm 2 Hypersphere Directions hit-and-run sampler
/* Description: The Hypersphere Directions hit-and-run sampler creates a discrete-time

Markov chain on an open and bounded region and is used to approximate a uniform
distribution on the selection event E. */

Inputs: Response y ∈ E ⊆ Rn, B and R the numbers of burn-in iterations and replicates.
Result: y

′(B+1), ..., y
′(B+R) ∈ E ⊆ Rn the replicates sampled under the conditional null distribution

10 ỹ
′(0) ← L(y); /* L is the cumulative distribution function of N (µ, σ2Cn) */

11 for t = 1, . . . , B + R do
12 Sample uniformly θ(t) from {θ ∈ Rn, ‖θ‖= 1};

13 a(t) ← max
{

max
θ

(i)
t >0

− ỹ
′(t−1)

θt
; max

θ
(i)
t <0

1− ỹ
′(t−1)

θt

}
;

14 b(t) ← max
{

min
θ

(i)
t <0

− ỹ
′(t−1)

θt
; min

θ
(i)
t >0

1− ỹ
′(t−1)

θt

}
; /* Sampling λ(t) from

]
a(t), b(t)[ ensures that

ỹ
′(t−1) + λ(t)θ(t) ∈]0, 1[n */

15 while y
′(t) /∈ E do

/* This loop is parallelized on several cores until one of them discovers a
replicates in the selection event. */

16 Sample uniformly λ(t) from
]
a(t), b(t)[;

17 ỹ
′(t) ← ỹ

′(t−1) + λ(t)θ(t);
18 y

′(t) ← L−1(ỹ′(t));
19 end
20 end

4.4 Sampling from the conditional null distribution with the Hit-and-Run algorithm

Even after reducing our selection to a finite set (Section 4.2), a rejection sampling strategy that would
draw y′ from either (9, 16) or (9, 17) and only retain those leading to the selection of the same mesh as y
is not tractable as the rejection rate is empirically too low. Following Slim et al. (2019), we resort to a
Hypersphere Direction strategy (Algorithm 2).

The hit-and-run algorithm produces uniform samples from an open and bounded acceptance region—
corresponding, in our case, to the selection event. It starts from any point in the acceptance region, draws a
random direction from this point and samples along this direction until it finds one elements that also falls
in the acceptance region. It then follows the same procedure from this new starting point. The hit-and-run
sampler therefore also relies on rejection but it does so along a single dimension rather than from Rn. It
explores the selection event step by step, starting from a point that belongs to this event, which guarantees
a higher acceptance rate. To speed up the procedure, we parallelize the rejection step across several cores.
Because each point sampled by the hit-and-run procedure depends on the previous one, it is impossible to
parallelize the whole sampling process. By contrast, the rejection step used for computing a single replicate,
once a sampling direction has been fixed, can be parallelized. We draw several distances to the initial point
independently, optimizing new independent points, until one of them belongs to the selection event. This
parallelization provides a significant time saving, as discussed in Section 5.3. Algorithm 2 produces uniform
samples from an open and bounded acceptance region. The boundedness assumption does not hold in our
case as the arg max over Z of the score only depends on the direction of y and not on its norm. The
openness requirement is ensured by the definition of the meshes. Following Slim et al. (2019) again, we use
the reparameterization ỹ = L(y), where L : Rn →]0, 1[n is defined as L(y)i = Lµ,σ2(yi) for i = 1, . . . , n
and Lµ,σ2 denotes the cumulative distribution function of N (µ, σ2Cn). Sampling uniform ỹ from the open
bounded space ]0, 1[n indirectly provides normal samples from N (µ, σ2Cn).
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Combining this sampling strategy with the quantization of the selection event introduced in Section 4.2 and
the selective null hypotheses attached to this event introduced in Section 4.3 provides a selective inference
procedure for one selected motif z1 (q = 1) and a null defined by a given pair (µ, σ) of parameters. Our
next two steps are to handle the selection of multiple motifs, and the general case where several µ describe
the same null hypothesis and σ is not specified.

4.5 Dealing with the selection of several motifs (q > 1)

We now consider that we selected q > 1 motifs with the SEISM procedure, leading to the general (12)
selection event E(i1, . . . , iq) . Generalizing our single-motif strategy of Section 4.3, we propose two options
for defining null hypotheses (and test statistics) related to this selection event:

• The first one relies on the centers of the selected meshes:

H0,j : “s(cj , Π′
jµ) = 0”, (16)

where Π′
j is the orthogonal projector onto Spanℓ 6=j

{
ϕcℓ,X

}⊥. In other words, it expresses that the
center of the mesh Mij is associated with µ after removing its component carried by the span of the
centers of the meshes corresponding the the q − 1 other motifs.

• And the second one takes advantages of the best motifs in each mesh:

H0,j : “∀(z∗
iℓ

)ℓ 6=j ∈ (Miℓ
)ℓ 6=j , ∀z ∈Mij , s(z, Π′′

((
z∗

iℓ

)
ℓ 6=j

)
µ) = 0”, (17)

with Π′′
((

z∗
iℓ

)
ℓ 6=j

)
being the projection onto Spanℓ 6=j

{
ϕz∗

iℓ
,X}⊥.

Generalizing what we introduced for q = 1 (Section 4.3), we test those hypotheses using V ′
j = s(cj , Π′

jy) and
V ′′

j = maxz∈Mij
s(z, Π′′

j y). To that end, we rely on their cumulative distributions under the nulls (16), (17)
conditionally to E(i1, . . . , iq) : respectively F′

1,...,q(i1,...,iq) and F′′
1,...,q,(i1,...,iq), empirically approximated with

Algorithm 2.

Following the work of Loftus & Taylor (2015) in the finite case, both versions of our null hypothesis are
joint across the q motifs: each of them considers the association between the j-th selected motif and µ after
projecting onto the span of all others, not just the ones that were selected before — using Π′ and Π′′. This
is to be contrasted to our sequential selection process, which adjusts at each steps for the previously selected
motifs using P .

In order to give more insights on these null hypotheses, we derive the following proposition:
Proposition 4.1 (Description of the selective nulls). Let Z = {z1, . . . , zq} be q sequence motifs. Let s(·, ·)
be a score such that "nullity implies orthogonality" (for instance sHSIC or sridge):

(A1) Nullity implies orthogonality: If {s(z, y) = 0} then {〈ϕz,X , y〉 = 0}, for every (y, z) ∈ E × Z,
and for some function z → ϕz,X ∈ E.

Let µ ∈ E and decompose µ as

µ =
q∑

j=1
αjϕzj ,X + µ (18)

with µ ∈ E orthogonal to Span(ϕZ,X).

It holds that “s(zj , Πjµ) = 0” is equivalent to “αj = 0” for some decomposition (18).

If Rank(ϕZ,X) = q then the decomposition (18) is unique, and the greedy selection procedure described
in Section 3 enforces this situation. We interpret this as follows: we look at a motif zℓ and would like to
test its significance; in view of property (A1), we can eliminate the effects that are captured by the other
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motifs by using the orthogonal projection onto the orthogonal of Span(ϕzj ,X), given by Πj (using Πj = Π′
j

or Πj = Π′′
((

z∗
iℓ

)
ℓ 6=j

)
), and consider Πjy to test the association “s(zj , Πjµ) = 0”; equivalent to testing

“αj = 0” by the above proposition.

4.6 Sampling under selective multiple hypotheses with known σ

The sampling strategy described in Section 4.4 builds a conditional null distribution—therefore offering a
selective inference procedure—for a given µ and σ. In practice, σ is not known, and several values of µ
can describe the selective null hypotheses (16) or (17) for a given motif selection. Of note, this issue is
not specific to our selective inference procedure. It will arise in any sampling-based post-selection inference
strategy including data-split: even if the latter samples from a non-selective null hypothesis, it still needs
concrete values for µ and σ.

We leave aside the choice of σ for now, and describe how we can sample from any null distribution (16)
or (17) using µ = 0 for a given σ. Our results holds for scores verifying the following assumption—this
includes both sHSIC and sridge:

(A2) Nullity implies translation-invariant: If s(z, y) = 0 then ∀y′ ∈ E , s(z, y′) = s(z, y + y′), for
every (y, z) ∈ E × Z;

Under this assumption, the following proposition ensures that using the quantile of the empirical distribution
of scores sampled under µ = 0 leads to a calibrated test procedure:
Proposition 4.2. Let s be an association score such that (A2) holds. Let V ′

j = s(cj , Π′
jy) and V ′′

j =
maxz∈Mij

s(z, Π′′
j y), formed from y sampled from (9) with any mean µ such that s(z′, µ) = 0, any known

variance σ > 0, and such that z′ = arg maxz∈Z s(z, y). The conditional null distributions F′
j,(i1,...,iq) and

F′′
j,(i1,...,iq), with mean 0 and variance σ verify:

F′
j,(i1,...,iq)(V ′

j ) ∼ Unif (0, 1) and F′′
j,(i1,...,iq)(V ′′

j ) ∼ Unif (0, 1)

Proof. Assumption (A2) under the Gaussian model (9) implies the following property:

∀(z, A, y) ∈ Z ×A× E such that y = µ + σǫ,

“s(z, Aµ) = 0” =⇒ “s(z, Ay) = s(z, σAε)”,
(19)

which implies that, for a composite null hypothesis of the form H0 : “s(z, Aµ) = 0”, the distribution
of s(z, Ay) does not depend on the mean µ that satisfies H0. Hence, even if the hypothesis H0 corresponds
to a set of probability distributions of y that may depend on µ, the distribution of the statistic s(z, Ay)
does not depend on µ under this hypothesis. We can then conclude that if σ is known, as it is assumed
to be the case in this section, then a test statistic of the form V = s(z, Πy) has the same distribution
as s(z, σΠǫ).

4.7 Sampling under selective multiple hypotheses with unknown σ

In practice, σ is often unknown. To address this issue, we rely on the normalized versions of the test
statistics V ′ and V ′′ introduced in Section 4.3, defined by

T ′
j :=

s(cj , Π′
jy)

‖y‖2 and T ′′
j := max

z∈Mij

s
(

z, Π′′((zℓ)ℓ 6=j

)
y

)

‖y‖2 (20)

where zℓ = arg maxz∈Z s(z, Pℓy). We will denote G′
j,(i1,...,iq) and G′′

j,(i1,...,iq) their cumulative distribution
functions under the null, conditionally to E(i1, . . . , iq).

We will also make use of a third assumption, here again fulfilled by sHSIC and sridge:
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(A3) Two-homogeneity: It holds that s(z, ty) = t2s(z, y) for all (y, z) ∈ E × Z and all t > 0.

Of note, normalizing the association score with respect to the labels does not affect the selection:

∀y ∈ Y, arg max
z∈Z

s(z, y) = arg max
z∈Z

s(z, y)
‖y‖2 (21)

If µ = 0, the distribution of the normalized statistics does not depend on σ, and the empirical cumulative
distribution functions of normalized scores obtained by sampling under µ = 0 and any σ still provide a valid
inference procedure :
Proposition 4.3. Let s be an association score such that (A2) and (A3) hold. Let T ′

j = s(cj , Π′
jy)/‖y‖2

and T ′′
j = maxz∈Mij

s(z, Π′′
j y)/‖y‖2, formed from y sampled from (9) with mean µ = 0, and any variance

σ > 0. Then for all σ′ > 0, their conditional null distributions G′
j,(i1,...,iq) and G′′

j,(i1,...,iq) with mean 0 and
variance σ′ verify:

G′
j,(i1,...,iq)(T ′

j) ∼ Unif (0, 1) and G′′
j,(i1,...,iq)(T ′′

j ) ∼ Unif (0, 1)

Proof. Let us consider two different normal models as defined in (9) under the global null hypothesis “µ = 0”
and given by

y(1) = σ(1)ε(1) and y(2) = σ(2)ε(2)

Then

s(cj , Π′
jy(1))

‖y(1)‖2 ∼
s(cj , Π′

jy(2))
‖y(2)‖2 and

s(z, Π′′
(

(zℓ)ℓ 6=j

)
y(1))

‖y(1)‖2 ∼
s(z, Π′′

(
(zℓ)ℓ 6=j

)
y(2))

‖y(2)‖2 .

The proof directly follows assumption (A3) applied with t = ‖y(·)‖2. Proposition 4.3 is complementary
to Proposition 4.2 and provides a selective inference procedure when σ is unknown, under the special null
hypothesis µ = 0.

Our final result investigates the testing procedures for the general null hypotheses (16) and (17)—not re-
stricted to µ = 0—with an unknown σ. Recall that the decision rule is to reject the null hypothesis if the
observed value of the statistic is greater than a given threshold t. We show that choosing t to be a quantile
for the global null hypothesis (µ = 0) leads to a calibrated (for the type I error) non-selective procedure,
see (22).
Proposition 4.4 (Global null achieves lowest observed significance). Let Z = {z1, . . . , zq} be q sequence
motifs. Let s(·, ·) be a score such that (A1) and (A2) hold. Let µ ∈ E be such that

H0 : “s(Z, µ) = 0”

Then
∀t > 0 , sup

µ∈H0

P

[
s(Z, µ + σǫ)
‖µ + σǫ‖2 ≥ t

]
= P

[
s(Z, ǫ)
‖ǫ‖2 ≥ t

]
(22)

We provide a proof in Appendix C. This proof makes an ad-hoc use of Anderson’s theorem on a symmetric
convex cone (whereas it is usually devoted to symmetric convex bodies).

Proposition 4.4 shows that data-split produces a calibrated procedure for testing the general null hypothe-
ses (16) and (17) when sampling under the global null (µ = 0) the test statistics (20). We could not prove
an equivalent statement for conditional null hypotheses, and Proposition 4.4 therefore does not guarantee
the validity of a selective inference procedure sampling under the global null (µ = 0). Yet, we used it as
a heuristic justification of SEISM and we observed that it leads to empirically calibrated procedures, see
Section 5.2.

In view of Proposition 4.4 and its proof, one can see that the alternatives µ such that ‖Pqµ‖/‖µ‖ is large
have small power. As the selection procedure described in Section 3 achieves good results (Section 5.1),
the chosen motifs Z should capture the principal components of µ, and therefore are such that ‖Pqµ‖/‖µ‖
should be small.
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5 Results

5.1 SEISM performs as well as state-of-the-art de novo motif discovery methods

In order to compare the accuracy of our selection step with existing motif discovery algorithms, we use
the 40 ENCODE Transcription Factors ChIP-seq datasets from K562 cells (ENCODE Project Consortium,
2004), each of which contains a known TF motif, denoted m∗, derived using completely independent assays
(Jolma et al., 2013). STREME (Bailey, 2021) and MEME (Bailey et al., 2006) are state-of-art bioinformatics
methods for de-novo motifs discovery tasks. STREME identifies motifs that maximize a Fisher score of
association between the presence of the motif and the binary class of sequences. By looking for maximum
likelihood estimates of the parameters of a mixture model - made up of a background distribution and a model
for generating k-mers at some positions - that may have produced a particular dataset using an expectation
maximisation technique, MEME finds enriched motifs in this dataset. Finally CKN-seq (Chen et al., 2017)
is a one-layer CNN tailored to small scale datasets. We set up STREME, MEME and SEISM to select 5
sequence motifs. SEISM is run with a regularization parameter λ = 0.01. CKN-seq jointly optimizes its
filters, which notoriously leads to poor performances when few filters are used. We train it consequently over
128 filters. We measure these accuracy of all methods by comparing the motifs they discover with the known
motif corresponding to the transcription factor m∗. We rely on the Tomtom method (Gupta et al., 2007),
which quantifies the probability that the euclidean distance between a random motif and m∗ is lower than the
distance between the discovered motif and m∗. More precisely for each method we use the lowest Tomtom
p-value between the known TF motif m∗ and any of those discovered by the method. The Tomtom score is
then defined as − log10 of the Tomtom p-value. We define the accuracy of the method as the proportion of
experiments where the Tomtom score between its best match and the true TF motif was higher than some
threshold.
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Figure 4: Left: Proportion of datasets where the true motif was detected by the designated algorithm. A
true motif is said to be detected if its highest Tomtom score with the discovered motifs is greater than 2.
Right: Accuracy of motif discovery algorithms on ENCODE TF ChIP-seq datasets. The curves display the
proportion of ChIP-seq datasets were the best motif identified by the designated algorithm has a Tomtom
score greater than x.

Figure 4 (left panel) demonstrates that SEISM is just as good as, if not superior to, state-of-the-art bioinfor-
matics algorithms at detecting sequence motifs when thresholding Tomtom p-values at 0.01. The one-layer
CNN with jointly optimized filters performs poorly in this experiments, emphasising the importance of greedy
optimization for selecting the right motif.

Figure 4 (right panel) shows that SEISM performs slightly worse than STREME and MEME for high
thresholds on the Tomtom scores. This suggests that the matrix z that SEISM identifies is close enough to
the PWM matrix of the true motif, but farther away than the matrices identified by STREME or MEME.
This discrepancy reflects a different usage of z to parameterize a distribution of k-mers. In practice, we

14



observe that on a given dataset, the p-values of the best motifs discovered by SEISM and STREME are not
separated by more than 2 orders of magnitude, which leads to minor differences in the motifs, as illustrated
in Table 1.

Reference motif SEISM motif STREME motif
(ATF4_DBD) p-value= 10−6 p-value= 3× 10−8
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Table 1: Comparison between two discovered sequence motifs by SEISM or STREME, and the true motif
(ATF4_DBD)

Both SEISM and MEME/STREME exploit a distribution of k-mers at the transcription factor binding site.
MEME and STREME maximize the likelihood of a categorical model, whereby the matrix z directly defines
the probability to observe each letter at each of the k sites:

∀
(
u, z ∈ Z

)
, Lcat(u; z) =

k∏

i=1
uT

i zi (23)

SEISM on the other hand is based on a Gaussian model. Through representation (3), z is meant to maximize
the Gaussian likelihood of a set of k-mers, i.e.

∀
(
u, z ∈ Z

)
, Lgaus(u; z) = C

k∏

i=1
e− ‖ui−zi‖2

2ω2 (24)

where C is a constant such that the sum of probabilities over R4×k equals 1. If we consider a binary y to
match the setting of MEME/STREME, this set is made of one k-mer for each positive sequence. Importantly,
the true TF motifs from (Jolma et al., 2013) that we use to assess selection accuracies are also defined through
the maximum likelihood in a categorical model, which can explain why the z obtained with MEME/STREME
are closer to the true PWM than the one obtained with SEISM.

We now illustrate on a simple example how the same distribution of k-mers is parameterized by different
matrices under the two models. To build an easy example, we focus on k-mers of length 1, with

P (A) = 0.3, P (C) = 0.4, P (G) = 0.1, P (T ) = 0.2 (25)

The matrix z1 = (0.3, 0.4, 0.1, 0.2)T used with the categorical model trivially constructs such a distribution.
But using the same matrix in a Gaussian model with a parameter ω fixed as described in Appendix A leads
to a slightly different distribution:

P (A) = 0.28, P (C) = 0.43, P (G) = 0.11, P (T ) = 0.18 (26)

A distribution closer to Equation (25) can be constructed with a Gaussian model parameterized by z2 =
(0.315, 0.38, 0.08, 0.225)T .

To clarify the relationships between those two motifs, we will rewrite (23) considering u is one hot encoded.
That is, for each position i, it has only one 1 for letter j(i) and 0’s elsewhere:

∀
(
u, z ∈ Z

)
, Lcat(u; z) =

k∏

i=1
zi,j(i) (27)
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Assuming that the columns of z are normalized and ω = 1, we can modify (24):

∀
(
u, z ∈ Z

)
, Lgaus(u; z) = C

k∏

i=1
e− ‖ui−zi‖2

2ω2 = C2

k∏

i=1
euT

i zi = C2

k∏

i=1
ezi,j(i) (28)

With the Gaussian model and a few assumptions, the motifs can the be seen as defining the log probability
to observe each letter at each of the k sites. This gives us a new interpretation for the filters learned by
CNNs and suggests that in this framework it might be interesting to constrain ez rather than z to be in Z.

We used a Gaussian activation function since it is closer to typical CNNs approaches. Our framework
is generic enough to allow other activation functions based on the categorical model, or more realistic
variants (Ruan & Stormo, 2017).

5.2 Statistical validity and performances

In order to assess the statistical validity and of the SEISM procedure with the different strategies, we simulate
datasets under the null hypothesis. To that end, we draw one sequence motif z̃ with length k = 8 for each
simulated dataset using a uniform distribution on Z restricted to motifs with an information level fixed at
10 bits. Then, we draw a set of n = 30 biological sequences X as follows: all sites are generated according
to a uniform distribution over A, C, T, G for all sequences, and for half of the sequences one k-mer is drawn
according to the categorical model parameterized by z̃. The phenotypes y are drawn from N (0, σ2Cn) to
generate data under the null hypothesis for calibration experiments, and from N (ϕz̃,X , σ2Cn) to generate
data under the alternative for experiments on statistical power, with σ = 0.1 in both cases. We then run
the SEISM procedure to select and test two sequence motifs. For both the data-split strategy and the
hypersphere direction sampling one, the distribution from which the replicates are drawn uses the empirical
variance from y as variance parameter. Although any choice for this parameter leads to a valid procedure,
as described in Section 4.6, we make this choice for numerical stability considerations. For the data-split
strategy, we sample 1000 replicates under the null hypothesis to compute the p-value. For SEISM, we sample
50, 000 replicates under the conditional null hypothesis using the hypersphere direction sampler, after 10, 000
burn-in iterations.

Figure 5 (top) shows the Q-Q plot of the distribution of quantiles of the uniform distribution against the
p-values obtained across 1000 datasets under the null hypothesis for the data-split strategy and 100 datasets
for the hypersphere direction sampling one. All the data points are well-aligned with the diagonal, which
confirms the correct calibration of both the data-split and hypersphere direction sampling strategies, either
considering the best motif or the center of the mesh and regardless of the size parameter.

Figure 5 (bottom) shows the same Q-Q plot on data generated under the alternative hypothesis. From
this figure, we observe that on small datasets, the post-selection strategy is more powerful than the data-
split one, regardless of the size of the mesh considered or the choice concerning the definition of the null
hypothesis. The variance observed on the curves associated with the selective inference procedure is due to
the presence of a weak residual signal after the first motif as a result of an imperfect selection step. Testing
it with the best motif in the mesh captures this signal, resulting in curves under the diagonal. By contrast,
focusing on the center of the meshes leads to testing motifs that do not capture this signal, placing us in the
conservative situation, described at the end of Section 4.7. The residual signal is not well explained by the
mesh’s centers, and thus its component on the orthogonal of the span of the activation vector of the second
motif is important. The larger the mesh, the farther its center is to the selected motif and thus the less
signal it captures, which explains the differences between the two curves.

5.3 Computation costs

The section serves as an overview of how various user-specified parameters impact the computation time
required by the post-selection inference procedure.

As discussed in 4.6, the hit-and-run algorithm is actually a rejection sampler. Its overall computation cost
depends mainly on two characteristics: the cost of the selection step, that is the cost of selecting q motifs
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Figure 5: Q-Q plots obtained by applying data-split and different hit-and-run sampling strategies to select
two motifs and test their association with an outcome. Top: data simulated under the null hypothesis. The
proximity between the quantiles of the obtained p-values and those of the uniform distribution confirms that
all SEISM strategies presented in this article are correctly calibrated. Bottom: data simulated under an
alternative hypothesis, where the outcome depends on the activation ϕ

˜z,X of a single motif in the sequence.
The distributions of the p-values computed with the post-selection inference (PSI) strategies have a larger
deviation to the uniform distribution than the distributions of the p-values computed with the data-split
strategy (purple).

for a given phenotype y, and the acceptance rate. Although some parameters affect the selection cost, the
acceptance rate is primarily responsible for determining if a user-specified combination of parameters results
in a tractable configuration for the post-selection method in a reasonable amount of time. This rate is high
compared with a naive rejection sampler over E , as the hit-and-run strategy reduces the dimension over
which the rejection step is performed: from n with a naive sampler to 1. Nonetheless some parameters may
have a major impact on the rejection rate. To clarify it, we studied in Figure 6 the impact of several user-
specified parameters — the number of motifs to be discovered, the precision of the meshes, the regularization
parameter of the ridge score and the number of computation cores allowed during the rejection step of the
hit-and-run sampler.

Although the number of motifs to be found by SEISM undoubtedly affects the selection cost, we can roughly
consider that this relationship is linear. The upper left figure in Figure 6, however, demonstrates that the
influence on the overall computing cost is superlinear, in line with the exponential growth of the number
of distinct selection events one may describe with a fixed mesh size. As a result, the post-selection process
quickly becomes intractable for discovering and test more than a few motifs.
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We make a similar observation for mesh precision: computation time grows exponentially with the number of
bins used to define the meshing. This can be explained by the exponential relationship between the number
of bins and the number of different meshes (and thus the rejection rate). Of note, mesh precision has no
impact on the selection time, and therefore the computation time is entirely explained by the acceptance
rate.

We observe that the greater the regularization parameter λ, the lower the computation time. This can be
explained by detailing its impact on the rejection rate. To understand it, it is necessary to note that the
motifs are not selected over Z, but over a less constrained set as described in 3. They are only projected
onto Z at the end of the whole procedure, to ease their interpretation. The meshes are then defined over a
vectorial space, leading to an infinite number of meshes. Compared to a small regularization parameter, a
higher λ favors motifs resulting in a ϕz,X with a higher norm. With regard to the activation function, such
motifs are located closer from the k-mers, and thus from Z. λ has then no effect on the number of existing
meshes, but impacts the number of acceptable ones, in the sense that they have a reasonable probability to
be selected. A lower λ leads to better selection performances, but to a higher number of acceptable meshes,
and thus to a lower acceptance rate. We empirically set λ = 0.01 to provide a good trade-off.

Finally, the rejection sampling step can be parallelized over several computation cores, which accelerates the
whole procedure, as described in Section 4.4. As long as the acceptance rate is small enough, using j cores
to parallelize the rejection step should roughly divide the computation time by j.

We can clearly identify limitations inherent to the use of the selective inference procedure. Although it is
more powerful than the data-split approach, it can not be used in every situation. This latter approach does
indeed not include any rejection step, and the only factor influencing its overall computation time is the
selection time, only marginally influenced by the aforementioned parameters.

6 Discussion and future works

We have introduced a procedure to test the association between features learned by a neural network and
the outcome predicted by this network. We did so by relying on the post-selection inference framework and
formalizing the network training as a feature selection step. Along the way, we addressed general problems
related to selective inference over composite hypotheses, which has implications beyond testing of features
extracted by trained neural networks. In particular to our knowledge, all previous procedures had to work
under the assumption that the variance was known. Our strategy to normalize the statistic to make it
scale-free could easily be transferred to kernelPSI for testing the association of kernels with a trait, or to
previous selective inference frameworks for testing groups of variables using sampling strategies (Slim et al.,
2019; Reid et al., 2018).

Through the SEISM procedure, we are also drawing connections between neural networks for biological
sequences and two related fields: sequence motif detection, and GWAS.

Sequence motif detection has been a major theme in bioinformatics for the past 30 years and many methods
have been proposed to identify motifs that are over-represented in a set of sequence compared to some
control class or background distribution. The earliest CNNs for regulatory genomics Alipanahi et al. (2015);
Zhou & Troyanskaya (2015) already exploited the fact that trained convolution filters of the first layer could
be interpreted as PWMs, and more recent work have sought to extract PWMs from entire multi-layer trained
networks through attribution methods. The selection step of our procedure merely formalizes that training
a one-layer CNN is equivalent to selecting a finite set of PWMs that have a maximal association to the
outcome for some particular score. This formalization also highlights the specific way by which CNNs with
exponential activation functions parameterize the distribution of k-mers at a binding site. Although the
PWM returned by most bioinformatics models represents a categorical distribution—probability to draw
each letter at each site, trained convolution matrices parameterize a Gaussian distribution. In practice, this
difference leads to discrepancies between the trained convolution filters and PWMs learned using categorical
likelihoods—including those offered by databases and often used as ground truth. This observation also
suggests alternative sets of constraints for convolution filters—e.g., each column of the pointwise exponential
of the filter should belong to the simplex.
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Figure 6: Impact of different parameters on the computation time for 100 replicates for the post-selection
inference procedure. Upper left: Impact of the number of motifs to be discovered Upper right: Impact
of the number of bins defining the meshes. Bottom left: Impact of the ridge regularization parameter.
Bottom right: (Log scale) Impact of the number of threads over which the hit-and-run sampling is paral-
lelized.
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By providing an inference procedure for features extracted by the trained model, our work also connects
neural networks for genomic sequences to GWAS. The good predictive performances of these neural networks
is often explained by their ability to jointly learn an appropriate data representation and a regular prediction
function acting on this representation. Nonetheless, the space from which these representations are learned is
seldom formalized and to our knowledge the association of the extracted features with the predicted outcome
is never tested. GWAS on the other hand relies on hypothesis testing, but commonly relies on relatively
simple genomic variants such as single nucleotide polymorphisms (SNPs) or k-mer presence (Jaillard et al.,
2018; Roux de Bézieux et al., 2022). Our framework paves the way to GWAS over richer sets of variants,
e.g. capturing the presence of entire polymorphic genes through large convolution filters, or the interaction
of simpler variants through multilayer or self-attention networks (Avsec et al., 2021a). This will require
scaling to entire genomes as inputs, and making more complex networks, such as multi-layer CNNs and
networks using attention mechanisms, amenable to inference. The most important step in achieving this
goal is to formulate the training of these networks as a feature selection problem and formalize the association
between these features and the phenotype. The inference framework might then be directly derived from this
present work. For instance, we may test motif interactions derived from convolutional-attention networks
(Ullah & Ben-Hur, 2021), a (motif, position) couple as selected in (Ditz et al., 2022) or motifs extracted
by TF-MoDISco (Shrikumar et al., 2018). For this latter case, we can note that the inference procedure we
describe is completely independent from the selection method, and we can then apply directly this procedure
to TF-MoDISco’s motifs. More relevant association scores than, e.g., sridge could be devised for such motifs,
but the procedure is nonetheless valid. For other features, the definition of a relevant association score, which
meets the assumptions described in Section 4, is needed. A few practical problems may arise. First, the
hit-and-run sampler requires the selection method to be stable, that is, running the selection method twice
on the same input will lead to the same selection on features. This property is required to guarantee the
theoretical convergence of the the algorithm but may not be necessary in practice. Second, some attention
may be required to avoid the that computational cost become prohibitive, in particular depending on the
regularity properties of the selection event leading to a higher rejection probability or to a higher number
of replicates required. Granted that these technical challenges can be addressed, we are confident that
extending SEISM to more general networks and corresponding features will benefit both the fields currently
using these networks—such as regulatory genomics—and GWAS.
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Supplemental Materials of “Neural Networks beyond explainability: Selective
inference for sequence motifs"

A Tuning the activation bandwidth hyperparameter

The data representation ϕZ,X depends on a hyperparameter ω controlling the bandwidth of the gaussian
non-linearity (Equation 3): exp

(
− ||zj−u||2

2ω2

)
. Assuming that the positions are independant, we know that

the expected value of the distance between a motif z and a k-mer u with length k is proportional to k.

In order to get an activation that does not depend on the length of the motifs, we simply set ω to be
proportional to

√
k. From empirical tests, we set ω =

√
0.9∗k

2 to achieve good selection results by choosing
the motif that maximizes the association score among a set of possible lengths.

B Disintegration of the selection event given by sequence motifs

In this section we consider the selection event:

Econt.(Z) :=
{

y′ ∈ E , ∀i ∈ {1, . . . , q} arg max
z∈Z

s(z, Piy
′) = zi

}
, (S1)

given by the sequence of selected motifs Z = (z1, . . . , zq). We denote by µ the law of y as given by Eq. (9),
a Gaussian distribution on E .

A first remark on the uniqueness of the selection

Consider the mapping π : E → Zq given by π(y′) = Z where Z = (z1, . . . , zq) is the sequence of motifs
such that y′ ∈ Econt.(Z). It is not clear that π is well defined as a same y′ may lead to the selection of at
least two different motifs sequences Z and Z ′. As a first remark, we can see that the set of problematic y′

is exactly
P :=

⋃

Z 6=Z′

Econt.(Z) ∩ Econt.(Z ′) .

When one assumes that Z = (z1, . . . , zq) is unique, one implicitly assumes that µ(P) = 0. For sufficiently
regular scores, this is however the case. For sake of readability, we will not comprehensively study this issue
but we will present an argument for the scores sHSIC and sridge. In this case, we can circumvent this difficulty
considering the Gaussian random field

z 7→ 〈ϕz,X , y〉 for (HSIC) and z 7→ 〈
(
‖ϕz,X‖2 + λn

)−1/2
ϕz,X , y〉 for (Ridge)

indexed by Z where y is distributed with respect to a multivariate Gaussian distribution Eq. (9). Its
autocovariance function is given by (z, z′) 7→ σ2〈ϕz,X , ϕz′,X〉 from Eq. (9) (one has to multiply by(
‖ϕz,X‖2 + λn

)−1/2(
‖ϕz′,X‖2 + λn

)−1/2 for the Ridge). The score is just the largest norm of this Gaussian
random field. It is well established in theory of Gaussian random fields that the law of this maximum is
regular and the argument maximum is unique. The interested reader may consult the pioneering work of
Tsirelson (Tsirelson, 1976) and Lifshits (Lifshits, 1983). In Tsirelson’s theorem, the parameter set is count-
able. This says that the same result holds true for separable bounded Gaussian processes, since in this case,
the distribution of the supremum coincides a.s. with the one of the supremum on some countable nonrandom
set. To avoid a cumbersome presentation, we will assume that almost surely the selected sequence motifs
Z = (z1, . . . , zq) is uniquely defined, hence π is well defined.
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The disintegration steps

To sample conditionally on (S1), one need to consider the conditional law with respect to this event. We
will denote this law by µZ , it depends only on µ, Z and π. This law is described by the theorem of
disintegration, see for instance (Ambrosio et al., 2005, Theorem 5.3.1). Denote ν the pushforward measure
of µ by π, denoted by ν = π#µ, a probability measure on the set Zq of Z. By the disintegration theorem,
there exists a ν-almost everywhere uniquely determined Borel family of probability measures µZ (the though-
after conditional distributions) such that

• Supported by Econt.(Z): µZ

{
E \ π−1(Z)

}
= 0 for ν-almost every Z;

• Expectation of the conditional expectation is the expectation: It holds that, for every Borel
test map f : E → [0, +∞],

∫

E
fdµ =

∫

Zq

( ∫

π−1(Z)
fdµZ

)
dν(Z) , (S2)

where one can remark that π−1(Z) = Econt.(Z) by definition of π. Let us comment on this result regarding
our purposes. First, we have mentioned that we known that the support Econt.(Z) is included in some
subspace, say S, defined by the first order conditions. Second, although one can use a rejection sampling
strategy on the subspace S to draw points on the support Econt.(Z) (viewed as a subset of the same Hausdorff
dimension as the subspace S), it is not clear at all what should be the density of µZ . Indeed, the family of
probability measures µZ is the unique family that satisfies Eq. (S2). It implies that a measure µZ depends
on the others measures µZ′ and this dependency is geometrically given by the (piece-wise) topological sub-
manifold given by the function z 7→ ϕz,X from Z to E .

From a practical view point, we tried various law for µZ such as the uniform, or a rejection sampling based
on the Gaussian distribution (9), but none of them matched the condition (S2). In the next subsection, we
recall a toy example: the disintegration of the uniform measure on the sphere is not the uniform measure.
Even in this simple geometrical example, the calculus of the conditional law might be seen as tedious. We
believe that the calculus of µZ is somehow out of reach for our purposes and our analysis with selection
events defined by meshes more suited.

A toy example on the sphere

Let S be the 2-sphere embedded in the 3-Euclidean space. Let µ be the uniform measure on the sphere S. Let
{Sθ : θ ∈ [0, π)} be a family of sub-spaces of co-dimension 1 (hyper-planes) sharing Span{(0, 0, 1)} (say the
north pole) as a revolution axis parameterized by θ. The parameter θ can be interpreted as the longitude.

Let π̄ be the function that maps a point to its longitude modulo π. By spherical symmetries, the pushforward
measure ν = π̄#µ is the uniform measure on [0, π), so that dν(θ) = (1/π)dθ. Condition (S2) (the lhs of the
equality below) is given by the coordinate integration system (the rhs) in:

∫

S

fdµ =
∫ π

0

( ∫

π̄−1(θ)
fdµθ

)
dν(θ) =

∫ π

0

( ∫ 2π

0
f(θ, φ) | sin φ|

4π
dφ

)
dθ ,

where φ is the latitude. Note that π̄−1(θ) = S∩Sθ and it is in bijection with [0, 2π) using the mapping that to
a point maps its latitude. Using this representation, it is not hard to see that the uniform measure on π̄−1(θ)
is given by (1/2π)1[0,2π)(φ) while the above equality shows that the conditional measure µθ of the uniform
measure on the sphere has density (1/4)| sin φ|1[0,2π)(φ), see Figure S1. It proves that the disintegration of
the uniform measure on the sphere is not the uniform measure, but rather a distribution that will put few
mass around the poles and large mass around the equator.

C Proof of Proposition 4.4

Consider the orthogonal decompositon
E = R⊕ S ⊕ T

2



Figure S1: For θ = 0, Sθ is the light red plan, the conditional measure dµ0(φ) is depicted with a red area
and is proportional to | sin(φ)|, which is not the uniform measure.

where R is the span of ϕZ,X , T is the span of µ (orthogonal to R by Proposition 4.1), and S such that the
equality holds. Consider y ∈ E and its othogonal decomposition y = r + s + te where e = µ/‖µ‖2 is a unit
norm vector that spans T . Let τ > 0 and note that it is enough to prove that

Pµ

{s(Z, Y )
‖Y ‖2 ≤ τ

}
≥ P0

{s(Z, Y )
‖Y ‖2 ≤ τ

}
,

where Y is a random variable with the same distribution as µ + σǫ (resp. σǫ) on the probability space
defined by Pµ (resp. P0). Not that the event decomposed as

{
y : s(Z, y)

‖y‖2 ≤ τ
}

=
{

(t, r, s) : s(Z, r) ≤ τ(t2‖µ‖2 + ‖r‖2 + ‖s‖2)
}

By othogonality, note that Lµ(r, s) = L0(r, s) and this law is a centered Gaussian multivariate law. We
deduce that the aforementioned probabilities are of the form

Pµ

{s(Z, Y )
‖Y ‖2 ≤ τ

}
=

∫ ∞

0
w0(t)ϕµ(t)dt

where

w0(t) = P0

{
s(Z, r) ≤ τ(t2‖µ‖2 + ‖r‖2 + ‖s‖2)

}

ϕµ(t) = exp
(
−(t− µe)2/2

)
+ exp

(
−(t + µe)2/2

)

with µe = 〈e, µ〉 = ‖µ‖2. Note that w0 : (0,∞) → (0, 1) is an increasing continuous function. It is an
increasing homeomorphism and the Fubini’s equality yields

Pµ

{s(Z, Y )
‖Y ‖2 ≤ τ

}
=

∫ ∞

0
w0(t)ϕµ(t)dt

=
∫ ∞

0

∫ 1

0
1{u≤w0(t)}du ϕµ(t)dt

=
∫ ∞

0

∫ 1

0
1{w−1

0 (u)≤t}du ϕµ(t)dt

=
∫ 1

0

∫ ∞

w−1
0 (u)

ϕµ(t)dtdu

3



By Anderson’s theorem, the measure of the interval [−w−1
0 (u), w−1

0 (u)] for the centered Gaussian density is
greater than the one for a non-centered Gaussian density with the same variance. As a result, we deduce
that ∫ ∞

w−1
0 (u)

ϕµ(t)dt ≥
∫ ∞

w−1
0 (u)

ϕ0(t)dt ,

which achieves the proof.
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Abstract:
Over the past decade, neural networks have been successful at making predictions from
biological sequences, especially in the context of regulatory genomics. These networks
are mainly evaluated on their predictive capacities, and are often criticized for their lack
of interpretability. Some methods from the bioinformatics literature, on the other hand,
seek to help understand the underlying biology, by selecting genomic variants significantly
associated with a biological trait. Although having led to many discoveries in the recent
years, these methods remain subject to many limitations. Recently, explainability tools
have been devised to extract interpretable biological features from the trained neural
networks. These networks can consequently be seen as methods for selecting genomic
variants, and can help to overcome some of the aforementioned limitations. Quantify-
ing the significance of associations between interpretable features and biological traits
has only received little attention to our knowledge in the context of neural networks.
We therefore propose to go beyond the notion of explicability for machine learning, by
seeking to statistically quantify the association between variants extracted from neural
networks and biological traits, in order to participate in building a bridge between ma-
chine learning methods and computational biology. In particular, we formalize the link
between the training of a neural network and the selection of biological variants, and we
propose different modifications to these networks, in order to improve their performances
as selection methods. We also propose a valid test procedure for the selected variants,
based on recent advances in post-selection inference.

Résumé :
Les réseaux de neurones artificiels ont récemment été utilisés avec succès pour faire des
prédictions sur des séquences biologiques. Ces réseaux sont principalement évalués pour
leurs capacités prédictives, et sont souvent critiqués pour leur manque d’interprétabilité.
D’un autre côté, plusieurs méthodes issues de la littérature bioinformatique cherchent à
aider à comprendre les mécanismes biologiques sous-jacents, en sélectionnant des vari-
ants génomiques significativement associés avec le trait biologique d’intérêt. Bien qu’elles
aient mené à de nombreuses découvertes durant les dernières années, ces méthodes restent
soumises à certaines limitations. Récemment, des outils cherchent à expliquer les prédic-
tions des réseaux de neurones, en extrayant des caractéristiques biologiques interprétables
de ces réseaux entraînés. Les réseaux de neurones peuvent alors être compris comme des
méthodes permettant de sélectionner des variants génomiques, et peuvent permettre de
dépasser certaines des limitations préalablement mentionnées. Mais à notre connaissance,
la quantification de la significativité de l’association entre les caractéristiques biologiques
extraites de ces réseaux et les traits biologiques d’intérêt n’a reçu que peu d’attention.
Nous proposons donc de dépasser la notion d’explicabilité pour l’apprentissage automa-
tique, en cherchant à quantifier statistiquement l’association entre les variants issus de
réseaux de neurones et le phénotype, afin de participer à créer un lien entre les méth-
odes d’apprentissage automatiques et celles provenant de la biologie computationnelle.
En particulier, nous formalisons le lien entre réseaux de neurones et sélection de variants
biologiques, et nous proposons différentes modifications à ces réseaux, afin d’améliorer
leurs performances en tant que méthodes de sélection. Nous proposons également une
procédure de test valide pour les variants ainsi sélectionnés, issue des avancées récentes
en inférence post-sélection.
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