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préparée à l’École polytechnique
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Abstract

It has been shown that Machine Learning (ML) models can leak information about
their training sets. This is a critical issue in the case where the training data is of a
sensitive nature, e.g., medical applications where the data belongs to patients.

A popular approach for measuring the leakage of information from ML models is to
perform inference attacks against the models. The goal of this approach is to measure
the privacy of the system as the robustness to inference attacks. These attacks are
mainly categorized into Membership Inference Attacks (MIAs) and Attribute Inference
Attacks (AIAs). The goal of a MIA is to determine if a sample or group of samples
are part of the training set of the model, while an AIA tries to infer or reconstruct a
sample from the trained model.

Although there exist other methods for measuring privacy in ML, such as Differential
Privacy (DP), the main focus of this thesis is on inference attacks.

This work is divided in three big chapters. The first chapter provides the motivation
for our work, problem statement, review of the state-of-the-art and sets the notation and
theoretical framework to be used in future chapters. The second chapter contains our
main theoretical results and provides a taxonomy of membership and attribute inference
attacks. The third chapter provides and thorough description of our experiments and a
discussion on the results.

Our theoretical findings regarding inference attacks are described as follows: First,
we derive theoretical bounds on the success rate of an attacker. This result provides an
upper bound on the success probability of an inference attack in the specific case where
the attacker has access to the model parameters of the trained model, and therefore
in any other scenario where the attacker possesses less information. Second, we derive
bounds that link the generalization gap of a ML model to the success rate of an attacker
against this model. This result suggests that a ML that generalizes poorly will be
susceptible to MIAs. However, the converse is not always true, as we prove with a
pertinent example. Third, we derive a list of results that relate the mutual information
between the trained model and its training set to the generalization gap and the success
rate of the attacker.

We use our theoretical framework to describe the existing MIA strategies in the
literature and we propose several novel strategies. We explore the use of Out of
Distribution (OOD) techniques and diversity measures for MIAs. We also propose a
technique based on the norm of the minimum perturbation necessary to make a model
change its prediction using an adversarial attack. Additionally, we use our framework
to describe a set of AIAs.

Our theoretical results are illustrated in a toy scenario. The lower bound relating
the generalization gap to the success rate is tested and compared to state of the art
MIAs in a more realistic scenario.

The bulk of our experiments are dedicated to benchmark the performance of different
MIAs strategies against state of the art image classification models. We describe and
categorize the existing state of the art strategies. We compare the effectiveness of the
novel strategies proposed in this work to the state of the art. We empirically show that
having access to additional samples that can be used as training data for the attacker
does not provide an advantage over strategies that do not require additional data. We



rank different strategies based on their performance against state of the art image
classification models. This result provides guidelines on how to measure the privacy
robustness of a ML model.

Finally, we test the effectiveness of AIAs against a model trained to classify hand-
written digits. The data set contains the identity of the writers, and we use this as the
sensitive information to be determined by the AIAs.

We show with mathematical rigour and also empirically that Deep Neural Networks
are susceptible to MIAs, even when they generalize well. Empirically, we show that
resource hungry MIA strategies are not more effective than strategies that simply query
the target ML model one time. This result suggests that the most relevant information
to determine membership is contained in the last layers of the target model.
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Résumé

Il a été démontré que les modèles d’apprentissage automatique (ML) peuvent
divulguer des informations sur leurs ensembles d’apprentissage. Il s’agit d’un problème
critique lorsque les données d’apprentissage sont de nature sensible, par exemple dans
les applications médicales où les données appartiennent à des patients.

Une approche populaire pour mesurer la fuite d’informations des modèles de ML
consiste à effectuer des attaques d’inférence contre les modèles. L’objectif de cette
approche est de mesurer la confidentialité du système en fonction de sa robustesse
aux attaques par inférence. Ces attaques sont principalement classées en attaques
d’inférence de membres (MIA) et en attaques d’inférence d’attributs (AIA). L’objectif
d’une MIA est de déterminer si un échantillon ou un groupe d’échantillons fait partie
de l’ensemble d’apprentissage du modèle, tandis qu’une AIA tente de déduire ou de
reconstruire un échantillon à partir du modèle d’apprentissage.

Bien qu’il existe d’autres méthodes pour mesurer la confidentialité en ML, comme
la confidentialité différentielle, cette thèse se concentre principalement sur les attaques
par inférence.

Ce travail est divisé en trois grands chapitres. Le premier chapitre présente la
motivation de notre travail, l’énoncé du problème, l’examen de l’état de l’art et définit
la notation et le cadre théorique qui seront utilisés dans les chapitres suivants. Le
deuxième chapitre contient nos principaux résultats théoriques et fournit une taxonomie
des attaques d’inférence de membres et d’attributs. Le troisième chapitre fournit une
description détaillée de nos expériences et une discussion sur les résultats.

Nos résultats théoriques concernant les attaques par inférence sont décrits comme suit:
Tout d’abord, nous dérivons des limites théoriques sur le taux de réussite d’un attaquant.
Ce résultat fournit une limite supérieure à la probabilité de succès d’une attaque par
inférence dans le cas spécifique où l’attaquant a accès aux paramètres du modèle
entrâıné, et donc dans tout autre scénario où l’attaquant possède moins d’informations.
Deuxièmement, nous dérivons des limites qui relient l’écart de généralisation d’un modèle
ML au taux de réussite d’un attaquant contre ce modèle. Ce résultat suggère qu’un
modèle ML qui se généralise mal sera susceptible de faire l’objet de MIA. Cependant,
l’inverse n’est pas toujours vrai, comme nous le prouvons à l’aide d’un exemple pertinent.
Troisièmement, nous dressons une liste de résultats qui relient l’information mutuelle
entre le modèle entrâıné et son ensemble d’entrâınement à l’écart de généralisation et
au taux de réussite de l’attaquant.

Nous utilisons notre cadre théorique pour décrire les stratégies de MIA existant
dans la littérature et nous proposons plusieurs nouvelles stratégies. Nous explorons
l’utilisation de techniques de détection de distribution et de mesures de diversité pour
les MIA. Nous proposons également une technique basée sur la norme de la perturbation
minimale nécessaire pour qu’un modèle modifie sa prédiction à l’aide d’une attaque
adversariale. En outre, nous utilisons notre cadre pour décrire un ensemble d’AIA.

Nos résultats théoriques sont illustrés à l’aide d’un scénario fictif. La limite inférieure
reliant l’écart de généralisation au taux de réussite de l’attaquant est testée et comparée
à l’état de l’art des MIAs dans un scénario plus réaliste.

La majeure partie de nos expériences est consacrée à l’évaluation comparative des
performances des différentes stratégies de MIA contre des modèles de classification
d’images les plus récents. Nous décrivons et classons les stratégies existantes dans
l’état de l’art. Nous comparons l’efficacité des nouvelles stratégies proposées dans ce
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travail à l’état de l’art. Nous montrons empiriquement que le fait d’avoir accès à des
échantillons supplémentaires pouvant être utilisés comme données d’entrâınement pour
l’attaquant n’offre pas d’avantage par rapport aux stratégies qui ne nécessitent pas de
données supplémentaires. Nous classons les différentes stratégies en fonction de leurs
performances contre les modèles de classification d’images les plus récents. Ce résultat
fournit des indications sur la manière de mesurer la robustesse d’un modèle de ML en
matière de protection de la vie privée.

Enfin, nous testons l’efficacité des AIA contre un modèle entrâıné à classer les chiffres
manuscrits. L’ensemble de données contient l’identité des auteurs et nous l’utilisons
comme information sensible à déterminer par les AIA.

Nous montrons avec rigueur mathématique et de manière empirique que les réseaux
neuronaux profonds sont sensibles aux attaques d’inférence de membres, même lorsqu’ils
généralisent bien. Nous montrons empiriquement que les stratégies de MIA coûteuses
en ressources ne sont pas plus efficaces que les stratégies qui interrogent une seule fois
le modèle ML cible. Ce résultat suggère que les informations les plus pertinentes pour
déterminer l’appartenance sont contenues dans les dernières couches du modèle cible.
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Chapter 1

Introduction

Machine learning has seen astounding progress in the last few decades thanks to the
critical increase of computational power and the deluge of data available in recent times.
This improvement has brought the development of techniques in many fields such as
computer vision [30, 83, 51, 34], time series [102, 66, 26] and natural language processing
[13, 7, 33, 25, 107]. In turn, these techniques have been applied in a wide range of societal
applications ranging from industry [16, 54] to modern medicine [70, 103, 53, 69, 55] to
art [47, 35], all of which may be considered sensitive domains, given the nature of the
data involved.

These applications have the potential to impact our society and the lives of in-
dividuals, raising concerns about the functioning of the technology behind them [4].
Moreover, in some of these applications, the data used to train the ML models belongs
to individuals or is the intellectual property of a company or institution. This raises
concerns not only about the anonymity of individuals present in the data [43], but also
about the leakage of intellectual property. In view of this, new regulations have emerged,
such as the General Data Protection Regulation (GDPR) in Europe and the California
Consumer Privacy Act in the United States [84, 1], and with them new challenges
for designing and training ML models [96]. According to the GDPR, in order for an
ML algorithm to be private, it must be impossible to single out any individual from
the training set. To impose these principles in practice, there exists several practical
definitions of privacy in ML.

One such definition is DP [28] which provides that the output of an algorithm should
not reveal whether or not a particular individual was part of the input data. This
definition provides formal guarantees for privacy. However, satisfying differential privacy
has proven to be taxing for the utility of ML models [2, 111], thus we resort to other
measures of privacy.

Inference attacks measure the privacy of a system through their vulnerability [90].
If there exists no attack that is capable of extracting sensitive information from a ML
model, then the model is considered private. In addition to measuring the privacy of
the model, inference attacks can be used to validate the model and adjust its training
in order to ensure privacy. We distinguish two main kinds of inference attacks.

First, MIAs try to determine if a sample or group of samples were part of the
training set of a ML model. These attacks can represent a risk when the membership
information is sensitive. For example, consider a study about patients with cancer;
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identifying an individual in the data implies that the individual has cancer. Moreover,
these attacks can serve as a gateway for more elaborated and dangerous attacks; having
identified an individual in the training set, the attacker might try to extract additional
information about this individual from the trained model. In a MIAs, the attacker
has access to a sample (or a group of samples) and to the target model. Being robust
to such attack guarantees that the model will be robust to other attacks that try to
extract more information or that have access to less resources.

Second, AIAs try to determine a target concept or attribute from the target model.
This definition covers a wide range of attacks. Some have partial access to a sample
and try to determine missing features from a target model that used this sample as
part of its training set. Others try to reconstruct a sample representative of a target
class present in the classification task of the target model. This represents a high risk
for the individuals present in the training set of the target model, as their data could
potentially be reconstructed by the attacker. Even when the data is not sensitive to
individuals, the data could be the intellectual property of a company, and risk being
stolen by AIAs.

8



1.1 Overview

The goal of this work is to develop methods to guarantee the privacy of ML models,
and we focus on inference attacks to achieve this goal. The first stage was to develop a
formalism to describe inference attacks (Section 2.1). This formalism is used to derive
bounds on the success rate of inference attacks (See Theorem 1), and link the success
rate of those attacks to the generalization gap of the target model (See Theorem 2).
We show an upper bound on the success rate of an attacker having access to the target
model’s parameters. Such an upper bound provides a measure of the privacy of the
system. If the upper bound is low, the success rate of any attacker is guaranteed to
be low, ensuring privacy of the system. We show that the success rate of the attacker
achieving the upper bound is lower bounded by the generalization gap of the target
model. Intuitively, this means that a model with a large generalization gap will be
vulnerable to inference attacks. Nevertheless, the converse does not necessarily hold,
i.e. having a low generalization gap is not enough to guarantee the safety of a model
against inference attacks. We show this by a suitable example in Section 2.1.3.

These concepts are illustrated using a toy example in Section 3.2.1. Additionally,
the link between the success rate of the attacker and the generalization gap of the target
model is demonstrated in a more realistic scenario in Section 3.2.2, where the target
model is a generic model for image classification.

The second part of this work focuses on practical methods for launching inference
attacks. We present a thorough revision of the existing methods for MIAs in Section 2.2.
Additionally,

• We propose a method that leverages the magnitude of a perturbation necessary
to make the target model change its prediction under an adversarial attack. The
intuition behind this is that during training, the value of the loss function is
minimized over samples in the training set, while adversarial attacks attempt to
maximize this same quantity; thus, it should be more costly to maximize the value
of the loss for samples in the training set than for it is for samples outside the
training set (See Section 2.2.3).

• We propose methods inspired in the field of OOD detection. This methods include
the use of the Mahalanobis distance, Fisher-Rao distance, Renyi-divergence and a
learned diversity metric. The hypothesis is that there is a significant statistical
difference between the distributions of the model parameters resulting from a
particular sample being inside or outside the training set. Since we are therefore
dealing with a problem of a shift of distributions, OOD detection techniques
appear to be suitable to detect if a sample is in the distribution of the training
set or not (See Section 2.3).

We show empirically that there is no gain to be had over simple methods by exploiting
additional resources, such as a training set for the attacker, or additional information,
such as having white-box access to the model. These results are presented in Section 3.3.

Our experiments on state-of-the-art models for image classification show a vulnera-
bility to very simple MIAs, such as the loss attack. These attacks are simple in terms
of the resources and information they require. For example, the loss attack computes
the loss of the target sample on the target model, and thus requires only the ground
truth for the target sample and one query to the model plus the loss computation. This
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attack, despite being extremely cheap in terms of computational resources, achieves
state-of-the-art performance and shows a significant privacy breach in the target models.
On the other hand, we were unsuccessful in finding better performing attacks when using
additional resources. Our results suggest that additional resources fail to improve the
performance of inference attacks. Despite having tried a wide array of attack strategies,
we cannot formally conclude that there does not exists a strategy that uses additional
resources to produce more effective attacks. These results are presented in Section 3.3.

AIAs are described in the context of our framework in Section 2.4 and their perfor-
mance is empirically verified using a target model trained to classify hand-written digits
encoded in the form of time series in Section 3.4. The sensitive information in this
setup is the identity of the writer, which is used by the target model in its classification
task. It is shown that simple strategies provide a significant gain over a random guess
in trying to determine the identity of the writer.

The rest of this chapter is organized in the following manner: Section 1.2 provides
an overview of inference attacks against ML models and other related security issues in
ML. Section 1.3 introduces the general notation and definitions used throughout this
work.

10



1.2 State of the Art

Connection between Privacy Leakage and Generalization: The authors of [109]
study the interplay between generalization, DP, attribute and membership inference
attacks. Our work investigates related questions, but offers a different and comple-
mentary perspective. While their analysis considers only bounded loss functions, we
extend the results to the more general case of tail-bounded loss functions. They consider
a membership inference strategy that uses the loss of the target model, yielding an
equivalence between generalization gap and success rate of this attacker. In contrast,
we consider a Bayesian attacker with white-box access, yielding an upper bound on the
probability of success of all possible adversaries and also on the generalization gap.

Consequently, a large generalization gap implies a high success probability for the
attacker. The converse statement, i.e., “generalization implies privacy” has been proven
false in previous works, such as [18, 67, 109]. Our work also provides a counter proof,
giving an example where the generalization gap tends to 0 while the attacker achieves
perfect accuracy.

In this line of work, the authors of [86] derived an attack strategy for membership
inference that is optimal to their setup. However, their results rely on randomness
during training and assume a specific form in the distribution of network parameters
given the training set. In this sense, our Bayesian attacker can be specialized to their
framework and models.

The authors of concurrent work [95] studied the trade-off between the size of the
target model (number of model parameters) and the success rate of an optimal attacker
within their framework. That setup differs from ours mainly in terms of the capabilities of
the attacker; while our attacker has access to the model parameters and full information
on the target sample, their attacker only has access to the target sample data and
corresponding model output. The work [95] presents a formal relation between the
over-parametrization of the model and the success rate the Bayesian attacker against a
linear regression model trained on Gaussian data. Differences in the definition of the
sample-space, target model and attacker capabilities lead to orthogonal results, but
similar conclusions.

Membership Inference: The authors of [90] utilize MIAs to measure privacy
leakage in deep neural networks. Their attacks consist in training a classifier that
distinguishes members from non-members. While their first work covers the case of
black-box attacks, subsequent work [74] considers white-box attacks, where the adversary
has access to the model parameters. Later, in [99] the influence of model choice on the
privacy leakage of ML models via membership inference was studied.

Recent works [50, 85, 93, 17] revise new and old membership inference strategies
under the light of new evaluation metrics. In particular, the work in [17] takes inspiration
from [86], developing an attack strategy based on estimating the distribution of the loss.
Further work [64] proposes to use learned differences in distribution between outputs of
intermediate layers to predict membership. In [23], a new MIA strategy is proposed,
which is based on the magnitude of the perturbation necessary to successfully make the
target model change its prediction. It is compared to state-of-the-art methods [85, 74].

The use of shadow models is prevalent in the MIA literature. These models mimic
the behavior of the target model, while allowing an attacker access to the training
set and model parameters. Many of the aforementioned MIAs require the training
of an attacker model (e.g. [85]), while others require the training of shadow models

11



[90, 74, 64, 88] in addition to training an attacker. The attacks in [93] require only
black box access to the model and no additional information, while the attacks in [23]
require white box access.

Recent work [20], applies the Modified Entropy strategy proposed by [93] to launch
MIAs against poisoned target models. This setup differs from previous works in the
sense that the attacker plays an active role in the training by poisoning part of the
training data. The work in [20] shows that the effectiveness of MIAs is highly increased
against poisoned models.

Typically, when studying the privacy leakage of ML models, classifiers are considered
as the target to privacy attacks. In contrast, the authors of [41] were the first to consider
MIAs against generative models. A comprehensive study of MIAs against GANs and
other generative models is provided in [19].

Attribute Inference/Model Inversion: A more severe violation of privacy is
represented by attribute inference attacks. Mainly two forms of these attacks have been
considered in the literature. The first consists in inferring a sensitive attribute from a
partially known record plus knowledge of a model that was trained using this record, e.g.
[32, 44, 92, 110, 72, 77]. The second consists in generating a representative sample of one
of the members of the training set, or one of the classes in a classification problem, by
exploiting knowledge of the target model, e.g. [31, 10, 11, 108, 45, 87]. Our framework is
applicable to both forms, but in this work we focus on the former, i.e., inferring sensitive
information from a partially known record. The authors of [104] propose a framework
that generalizes to both types of attribute inference attacks and connects them to
several cryptographic notions. The notion of attribute inference is also formalized by
[109]. While their work defines the advantage of an adversary as the difference between
the information leaked by the model and the information present in the underlying
probability distribution of the data, our formalism only allows the adversary to gain
advantage from the target model. Furthermore, we consider and compare different
attack strategies, while their work only focuses on the attack introduced by [32], and
an attacker with oracle access to a membership inference algorithm.

Model Extraction: A third class of privacy violation consists in stealing the
functionality of a model, when the model and its parameters are considered sensitive
information, e.g., [97], but this setup is out of the scope of our work.

Unintended Memorization: Leakage of sensitive information might be caused
by unintended memorization by the model. The authors of [18] study unintended
memorization by generative sequence models. They prove that unintended memorization
is persistent and hard to avoid; moreover, they find that a model can present exposure
even before overfitting. This is an instance in which a model can leak sensitive
information even while generalizing well.

Differential Privacy in Machine Learning: DP, introduced in [28, 29], is a
widely used definition of privacy, which guarantees the safety of individuals in a database
while releasing general information about the group. There have been several works in
ML that use DP as a measure for privacy or use DP mechanisms for defense against
inference attacks. The work [2] proposes a Differentially Private Stochastic Gradient
Descent method for training neural networks. Their analysis allows them to estimate
the privacy budget when successively applying noise to the model parameters during
training. Later, in [111] the authors presented a comprehensive analysis of DP in ML
by considering the different stages in which noise can be added to make an ML model
differentially private. [49] evaluates the effectiveness and cost of DP methods for ML
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in the light of inference attacks. The authors of [98] propose Bayesian DP, which
takes into account the data distribution to provide more practical privacy guarantees,
achieving the same accuracy as DP while providing better privacy guarantees on several
models and datasets. Recent work [68] proposes an algorithm to “audit” the privacy of
ML models, accurately computing the privacy budget necessary to prevent attacks with
minimal impact on the utility of the target model. We do not consider the connection
between DP and MIAs, as this is thoroughly analyzed in [109].

Federated Learning: Inference attacks that target federated systems have been
investigated by [45, 6]. Privacy preserving methods specific for federated learning have
been proposed by [91, 14, 89, 58]. The work [73] provides a comprehensive study of
MIAs against Federated Learning models. In these setups the attacker can influence
other entities during training. In our framework the attacker directly obtains the trained
model; thus, our framework does not cover such cases.

Adversarial Examples and Privacy: There have been several works that combine
the topics of privacy and adversarial examples. E.g. the work [94] studies the impact
that securing a Machine Learning model against Adversarial Attacks has on the privacy
of the model. The authors of [52] make use of Adversarial Examples as part of a defense
mechanism against MIAs. The authors of [78] were the first to simultaneously address
the issues of robustness and privacy, providing a complete analysis of both aspects of
Deep Neural Networks (DNNs).
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1.3 Preliminaries

In this section we introduce the general notation and definitions that are used throughout
this work and we set up the formalism for membership, attribute and adversarial attacks.
Section 1.3.1 introduces the general notation and provides a quick reference of the
mathematical symbols used in this work. Section 1.3.2 introduces the learning and
inference framework and necessary definitions. Section 1.3.3 defines the attack model,
assumptions and capabilities of the attacker for inference attacks against machine
learning models. Section 1.3.4 defines adversarial examples.

1.3.1 Notation

A random variable is indicated by upper case (e.g., X). Lower case letters indicate
realizations, while calligraphic case denotes the alphabet (e.g., X takes values in X
and x is a realization of X). A probability density function (pdf) is denoted by p (e.g.,
the pdf of X is denoted by pX). A random variable, its alphabet and realizations are
denoted all by the same letter unless otherwise indicated.

Bold face quantities denote vectors (e.g. x). For a vector x, xi indicates its i-th
component.

Expectations E[·] are taken over all random variables inside the square brackets.
Tables 1.1 and 1.2 provide a quick reference to some of the notation used throughout

the manuscript. The list is not exhaustive, but contains the symbols most used
throughout this work.

1.3.2 Learning and Inference

We assume a fully Bayesian framework, where Z = (X,Y ) ∼ pXY ≡ pZ denotes data
X and according labels Y , drawn from sets X and Y, respectively. The training set
consists of n i.i.d. copies Z ≜ {Z1, . . . , Zn} drawn according to Z ∼ pnZ .

Let F ≜ {fθ | θ ∈ Θ} be a hypothesis class of (possibly randomized) decision functions
parameterized with θ, i.e., for every θ ∈ Θ, fθ( · ;x) is a probability distribution on
Y. We will abuse notation and let fθ(y;x) be a probability mass function (pmf) or a
pdf in y for every x ∈ X , depending on the context. The symbol Ŷθ(x) will be used to
denote the random variable on Y distributed according to fθ( · ;x). For a deterministic
decision function fθ(y;x) ∈ {0, 1} is a one-hot pmf for every θ ∈ Θ, x ∈ X . We write
ŷθ(x) ∈ Y, to denote a realization of Ŷθ(x).

A learning algorithm is a (possibly randomized) algorithm A that assigns to every
training set z ∈ (X × Y)n a probability distribution on the parameter space Θ (and,
thus, also on the hypothesis space F). We have A : z 7→ A( · ; z), where A( · ; z) is a
probability distribution on Θ. The symbol θ̂(z) is used to denote a random variable on
Θ, distributed according to A( · ; z). In case of a deterministic learning algorithm, we
have a pmf A(θ; z) ∈ {0, 1} for every training set z and can thus define the function

θ̂(z) = argmaxθ∈ΘA(θ; z), yielding the (possibly random) decision function fθ̂(z). Let

us define for use in later sections the Softmax function with temperature scaling.

Definition 1 (Softmax with temperature scaling). Let fθ be a decision function which
maps an input x ∈ X into a probability distribution on Y. fθ is parameterized by θ.
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The Softmax function with temperature scaling of fθ with input x is defined by,

fθ,δ( · ;x) =
exp (fθ( · ;x)/δ)∑

y′∈Y exp (fθ(y′;x)/δ)
, (1.1)

where δ > 0 is the temperature parameter.

The temperature parameter has the effect of smoothing out the distribution defined
by fθ( · ;x) when δ ≥ 1 or making the distribution closer to a Dirac delta when 0 < δ < 1.
δ = 1 describes the usual Softmax function.

To judge the quality of a decision function f ∈ F we require a loss function
ℓ : Y × Y → R. We naturally extend this definition to vectors by an average over
component-wise application, i.e., ℓ(y,y′) = 1

n

∑n
i=1 ℓ(yi, y

′
i).

Definition 2 (Expected risk). We define ϱ(θ, (x, y)) ≜ E[ℓ(Ŷθ(x), y)] as the expected
loss between fθ(x) and y. This notation is naturally extended to vectors as

ϱ(θ, z) ≜
1

n

n∑
i=1

E[ℓ(Ŷθ(xi), yi)]. (1.2)

The expected risk and empirical risk of a learning algorithm A at training set Z are
respectively defined as1 2

Rexp(A) ≜ E
[
ϱ
(
θ̂(Z), (X,Y )

)]
, Remp(A) ≜ ϱ

(
θ̂(Z),Z

)
, (1.3)

where the training set Z and (X,Y ) are independent. The difference between expected
and empirical risk is the generalization gap GG(A). The expectation of this quantity is
denoted by EG(A). These quantities are respectively defined as,

GG(A) ≜ Rexp(A)−Remp(A) , EG(A) ≜ E[GG(A)] . (1.4)

1.3.3 Attack Model and Assumptions

In order to make privacy guarantees for an algorithm A, we need to specify an attacker
model and the capabilities of an attacker. We will adopt a point of view of information-
theoretic privacy and will not make assumptions about the computation power afforded
to an attacker. We will also assume that the attacker has perfect knowledge of the
underlying data distribution pZ , as well as the algorithm A.

In general, the goal of the attacker is to infer some property of z from θ̂(z). However,
in general the attacker may have access to certain side information. This may include
the specific potential member of the training set that is queried (in case of a MIA) or
any additional knowledge gained by the attacker. This side information is modeled
by a random variable S taking values in S, dependent on Z, the value of which is
known to the attacker. The attacker is interested in a target (or concept) property
denoted by a random variable T taking values in T , which we assume to be discrete,
which is dependent on (Z, S). A (white box) attack strategy is a (measurable) function
φ : Θ× S → T .

1Note that the expectation is taken over all random quantities, i.e., Z ∼ pnZ , θ̂(Z) ∼ A( · ;Z), and
(X,Y ) ∼ pZ .

2Note that the empirical risk is computed using the training data of the algorithm.
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We shall assume that S and T are independent, but not necessarily conditionally
independent given Z. This natural assumption ensures that knowledge of the side-
information S does not change the prior pT = pT |S of the attacker.

Definition 3. The Bayes success probability of a (randomized) attack strategy φ is

PSuc(φ) = P{φ(θ̂(Z), S) = T}. (1.5)

We may additionally define the success probability conditioned on side information
S = s as

PSuc(φ|s) = P{φ(θ̂(Z), s) = T |S = s}. (1.6)

Definition 4 (Membership Inference Attack). In a MIA, T is a Bernoulli variable
on T = {0, 1} and J is independently, uniformly distributed on {1, 2, . . . , n}. Then set
S = TZJ + (1− T )Z, where ZJ is a random element of the training set and Z ∼ pZ
is independently drawn. Thus, an attacker needs to determine if T = 1 or T = 0, i.e.,
whether S is part of the training set or not.

From a practical perspective, we can consider a MIA as a binary hypothesis test,
in which the attacker tries to determine T according to the trained model parameters
θ̂(z) and to the side-information S. This approach will be used later in Section 2.2 to
describe a wide array of attack strategies.

Definition 5 (Attribute inference attack). We model the non-sensitive attribute by a
random variable V ∈ V. In this context, the input to the model is formed by the sensitive
and non-sensitive attributes X ≡ (V, T ). Thus X ⊆ V × T . The side information given
to the attacker can consist of S = V or S = (V, Y ), depending on the attack strategy
considered.

This definition describes the case in which the attacker has access to only some
features from a target sample, and aims to determine the missing features via the target
model which was trained using the target sample.

For later use we define the random variable R ≜ ϱ(θ̂(Z), S), i.e., the (random)
loss function evaluated at S (cf. Definition 2). A MIA using an arbitrary strategy is
illustrated in Fig. 1.1.

Although, in practice, the prior distribution of the target attribute T is usually
unknown, we define the optimal rejection region of an idealized attacker, having access
to all other involved distributions.

Definition 6 (Most powerful test according to Neyman-Pearson lemma). In a mem-
bership inference setup (Definition 4), define, for a threshold 0 < γ <∞, the decision
region

T̂ (γ) ≜
{
(θ, s) ∈ Θ× S : pθ̂(Z)S|T

(
θ, s|1

)
> γ · pθ̂(Z)S|T

(
θ, s|0

)}
. (1.7)

By the Neyman-Pearson lemma [75], the most powerful test at threshold γ is then given

by φ(θ, s) = 1 if and only if (θ, s) ∈ T̂ (γ).

In Proposition 1 we will provide lower bounds on the error achieved by this decision
region and make the connection to the fully Bayesian case.
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(z1, . . . , zn) = z

zj

θ

parameters

s

side information

(target sample)

training data

Figure 1.1: Schematic of a MIA. If t = 1, the target sample is drawn from the training
set z = (z1, . . . , zn) used by A to train the target model. If t = 0, the target sample
is independently drawn from the data distribution. The attacker φ then uses the
parameters θ at the output of A and the side information s to provide an estimate t̂ of
t.

1.3.4 Adversarial Examples

The framework of untargeted adversarial examples can be set as follows: Given an input
x ∈ X , where we assume X to be a vector space, and a target model fθ̂(z), the goal of

adversarial strategy ψp,ϵ is to produce some perturbation ν ∈ X such that the prediction
provided by fθ̂(z)( · ;x+ ν) changes from that provided by fθ̂(z)( · ;x). Additionally, we
require that the perturbation ν is small.

Definition 7 (Untargeted adversarial attack). Let an untargerted adversarial strategy
for a classifier fθ ∈ F be defined as a function ψp,ϵ : X ×F → X on the input space X ,
such that for any x ∈ X and fθ ∈ F it obtains ν ≜ ψp,ϵ(x, fθ) ∈ X with

argmax
y′∈Y

fθ(y
′;x+ ν) ̸= argmax

y′∈Y
fθ(y

′;x) and (1.8)

∥ν∥p ≤ ϵ , (1.9)

i.e., the constrained perturbation ν changes the prediction of the target model to a
different class.

Adversarial examples are computed constraining ∥ν∥p < ϵ, with ϵ > 0 and the lp
norm ∥ · ∥p (see [3] for an extensive review on adversarial strategies). The purpose of
this constraint is twofold: to perturb the original image in a way that is imperceptible
for the human eye and to control the power of the attacker. In our case, the goal is
not to produce subtle perturbations, the adversarial examples may be significantly
different from their original counterparts. Indeed, our goal is to observe the size of the
perturbation necessary to force the target model to drastically change its prediction, and
use it as a criteria to distinguish members from non-members of the training set. Since
ψp,ϵ will tend to compute the smallest perturbation possible such that fθ̂(z) changes its

prediction, arbitrarily high ϵ can be allowed while still observing a significant difference
between the size of the perturbation of samples in and outside the training set.

For our experiments we use Auto-Attack to build adversarial examples3 [22]. The
Auto-Attack library offers an ensemble of different strategies to compute adversarial ex-

3Code available at https://github.com/fra31/auto-attack.
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amples. Particularly, we use auto Projected Gradient Descent (Auto-PGD). Given an ob-
jective function for the adversary ℓa : X 7→ R and a constraint in the form S ⊂ X , Auto-
PGD iteratively solves maxx∈S ℓa(x) by applying x(k+1) = PS

(
x(k) + η(k)∇x(k)ℓa(x

(k))
)
,

for k = [1, . . . , Niter], where PS is the projection onto the surface of S, and typically
ℓa(x) = ℓ(y, ŷθ̂(z)(x)). In the original algorithm introduced by [61, 71], the step size η(k)

is fixed, while Auto-PGD uses an adaptive step size which improves the performance
and makes the algorithm model-agnostic.
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General notation
R Set of real numbers

exp( · ) Exponential function. exp : R → R. Defined by the rule
exp(x) = ex

P{ · } Probability measure. P : E → [0, 1] is a real valued function
that assigns a probability to an event in an event space E .

1{ · }
Indicator function. 1 : E → {0, 1} is a random variable for an
event that assigns the value 1 when the event happens and 0
when it does not happen

E[ · ]
Expected value. Consider a continuous random variable X
with a pdf given by a function p in the real numbers. The
expectation of X is given by the integral

∫
R xp(x)dx

dKL( · ∥ · )
Kullback Leibler divergence. Consider pdfs p and g of a contin-
uous random variable X. The Kullback Leibler divergence of
p from g is defined by, dKL(p∥g) =

∫
R p(x) log(p(x)/g(x))dx

I( · ; · )

Mutual information. For a jointly continuous pair of random
variables (X,Y ) with joint distribution pXY and marginal
distributions pX and pY , the mutual information between X
and Y is defined by I(X;Y ) = dKL(pXY ∥pXpY )

∥ · ∥p
lp norm. Given a vector x in a vector space X of dimension

N , the lp norm of x is given by ∥x∥p = (
∑N
i=1 |xi|p)

1
p

N ( · ;µ, σ)
Normal distribution with mean µ and variance σ2. For a con-
tinuous random variable x, the normal distribution with mean

µ and σ2 is defined by the pdf, N (x;µ, σ) = exp (−(x−µ)2/2σ2)√
2πσ2

ess sup

Essential supremum. Let f be a real valued function defined
on a space X . Let (X ,Σ, µ) be a measure space with measure
µ. Define f−1(a,∞) = {x ∈ X : f(x) > a}. Define U ess

f =

{a ∈ R : µ(f−1(a,∞)) = 0} the set of essential upper bounds.
The essential supremum of f is defined by ess sup f = inf U ess

f

ess inf
Essential infimum. Similarly to the essential supremum, the
essential infimum of f is defined by ess sup f = sup{b ∈ R :
µ({x ∈ X : f(x) < b}) = 0}

Table 1.1: Quick reference for general notation.
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Learning and Inference

Z = (X,Y )
Data X according to label Y with X and Y taking values in
X and Y, respectively

z
Realization of the training set; n i.i.d. copies z ≜ {z1, . . . , zn}
drawn according to Z ∼ pnZ

fθ
Decision function f parameterized by θ. For every θ ∈ Θ and
x ∈ X fθ( · ;x) is a probability distribution on Y

fθ̂(z) Decision function trained on z

fθ,δ

Softmax function with temperature scaling. θ corresponds to
the parameters of the decision function, δ corresponds to the
temperature parameter

A
Learning algorithm. Possibly randomized algorithm that
assigns to every training set z a probability distribution on
the parameter space Θ

ℓ
Loss function. Judges the quality of a decision function. Maps
Y × Y to R

Inference attacks
T Target property or concept
S Side-information

φ

Inference attack strategy. Maps the trained model’s param-
eters θ̂(z) and side-information S into a prediction of the

target concept T̂
γ Threshold. γ ∈ R

ϕ

Score criteria for a Membership Inference Attack. Maps the
trained model’s parameters θ̂(z) and side-information S into
a score which is compared to a threshold γ to predict the
target concept T̂

Table 1.2: Quick reference for notation (learning and inference).
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Chapter 2

Theoretical Framework

The two main goals of this work are to provide formal guarantees on the privacy of ML
models and to translate those guarantees to practical scenarios. The first section of this
chapter derives formal results on the success rate of inference attacks. Bounds on the
success rate of arbitrary attackers provide formal guarantees for the privacy of individuals
present in the training set. If an attacker cannot identify that a particular sample is
present in the training set, even when having full access to this sample and to the target
model, then it is impossible for the attacker to extract any additional information. The
results we derive are difficult to apply in practice, due to the impossibility to estimate
the distributions of the parameters of the target model in most practical scenarios.
Thus, the later sections of this chapter are dedicated to describing a wide array of
strategies for membership and attribute inference attacks in a formal way. This list
comprehends strategies for membership inference present in the literature, plus several
novel strategies. Finally, some basic strategies for attribute inference are described to
illustrate how these can fit into our framework.

Section 2.1 describes theoretical bounds on the success rate of arbitrary inference
attacks. Upper bounds are important to assess the privacy of the trained model, while
lower bounds show a connection to its generalization gap. Yet, generalization is shown
to be a necessary, but not sufficient condition to guarantee privacy. The last part of this
section provides a list of results linking the success rate of the attacker to the mutual
information between the learned model parameters and the target concept.

Section 2.2 describes a list of strategies for membership inference attacks. Section 2.3
studies the connection between the problem of OOD detection and the problem of
membership inference and describes how OOD detection techniques can be adapted for
membership inference. Section 2.4 lists a few strategies for attribute inference that are
inspired on basic membership inference strategies.

21



2.1 Bounds on Information Leakage

The goal of our framework is to derive theoretical results on the performance of inference
attacks in the most general way possible. This gives us an overview of the problem and
an understanding of the capabilities and limitations of the attacker. This section is
dedicated to deriving those theoretical results and to explain their consequences.

Section 2.1.1 presents the Bayesian attacker, an attacker having access to the
conditional distribution of the target concept given the trained model parameters and
side information. The performance of the Bayesian attacker provides upper bounds on
the success rate of arbitrary attackers having access to the same or a smaller amount of
information. The results of Section 2.1.2 are specific to membership inference, and lower
bound the success rate of MIAs by an expression that depends on the generalization
gap of the target model. These results mean that, if the target model has a large
generalization gap, there exists a MIA strategy that will succeed. Furthermore, these
results depend on the characteristics of the loss function considering three different
cases: bound, sub-Gaussian and exponentially tail-bounded loss functions. Section 2.1.3
shows by a suitable example that good generalization is not enough to prevent successful
membership inference attacks. Section 2.1.4 provides three results. The first result links
the gain of the attacker over prior knowledge to the mutual information between the
target concept and the model parameters. The second result links the generalization
gap to the mutual information between training set and trained model parameters.
The third result connects the first two results by a relation between the two mutual
information quantities.

2.1.1 Performance of the Bayesian Attacker

In this section, we establish two theorems that provide upper bounds on the success
probability of an arbitrary attacker. First, consider the general case in which the target
attribute T is not necessarily binary, but finite. This case includes both membership and
feature inference attacks. In this case the Bayes classifier is the best possible attacker,
which arises naturally from a maximum a posteriori optimization of the target attribute.

Theorem 1 (Success of the Bayesian attacker). Assume that T is a finite set and φ is
an arbitrary attack strategy.1 The Bayes success probability is upper bounded by,

PSuc(φ) ≤ E
[
max
t∈T

pT |θ̂(Z)S(t|θ̂(Z), S)
]
, (2.1)

where the upper bound is achieved by the attack strategy,

φ⋆(θ, s) = argmax
t∈T

pT |θ̂(Z)S(t|θ, s) . (2.2)

If the argmax in (2.2) is not unique, any t ∈ T achieving the maximum can be chosen.

Proof. Let T̂ denote the random variable defined by T̂ ≜ φ(θ̂(Z), S). Note that T̂ is

independent from T given (θ̂(Z), S). First, the upper bound in (2.1) is shown, then

1As this result provides an upper bound on the success probability, no restrictions are placed on the
capabilities of the attacker.
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z A
Bayesian Attacker:

φ⋆(θ, s) = argmax
t∈T

pT |θ̂(Z)S(t|θ, s) t̂

s

θ

Figure 2.1: Schematic of the Bayesian attacker. The Bayesian attacker achieves the
upper bound shown in Theorem 1, but needs to be able to evaluate the conditional
distribution pT |θ̂(Z)S . The observations required for the attack are the side-information

s and model parameters θ.

it is shown that this upper bound is achieved by (2.2). Let φ be an arbitrary attack
strategy defining pdf pT̂ |θ̂(Z)S(t̂|θ, s) for each (θ, s) ∈ Θ× S,

PSuc(φ) = E
[∑
t̂∈T

pT̂ |θ̂(Z)S(t̂|θ̂(Z), S)pT |θ̂(Z)S(t̂|θ̂(Z), S)
]

≤ E
[
max
t′∈T

pT |θ̂(Z)S(t
′|θ̂(Z), S)

]
. (2.3)

Now, consider an attack strategy φ⋆, such that φ⋆(θ, s) is in{
t ∈ T : pT |θ̂(Z)S(t|θ, s) = max

t′∈T
pT |θ̂(Z)S(t

′|θ, s)
}
, (2.4)

for given θ ∈ Θ and s ∈ S. Hence,

PSuc(φ
⋆) =E

[
max
t′∈T

pT |θ̂(Z)S(t
′|θ̂(Z), S)

]
. (2.5)

Note that the bound is achieved as long as (2.4) is satisfied.

A schema of the Bayesian attack is shown in Fig. 2.1. Given white-box access to the
model and its parameters, as well as side information, the attacker (2.2) has the highest
probability of successfully identifying a record in the training set. Thus, resilience
against strategy (2.2) provides a strong privacy guarantee. Note that, even though S
plays a very specific role in a MIA, it may contain additional samples, or any other
kind of information, making Theorem 1 applicable to other setups.

Theorem 1 can also be applied to the black-box case. A black-box attack is
not granted access to the parameters θ ∈ Θ, but only to the input-output relation{(
x, fθ(x)

)
| x ∈ X

}
where fθ ∈ F is the model associated to the parameters θ. Thus,

any black-box attack strategy φ′ : F × S → T can be seen as a particular case of
a white-box strategy defined as φ(θ, s) = φ′(fθ, s), and therefore the upper bound
expressed by Theorem 1 still applies, since it is an upper bound for all strategies.

Similarly, when the attacker has access to only a subset of the parameters, it can be
seen as a particular case of the attacker considered in Theorem 1, and therefore the
result still applies. Section 3.2.1 illustrates how the upper bound can be computed in
an artificial scenario.
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The following proposition provides similar results for the membership inference
problem.

Proposition 1 (Decision tradeoff). In a membership inference setup (Definition 4),

let T̂ ⊆ Θ× S be any decision set, and define

ϵ1(T̂ ) ≜
∫
T̂
pθ̂(Z)S|T (θ, s|0) dθ ds , ϵ0(T̂

c) ≜
∫
T̂ c

pθ̂(Z)S|T (θ, s|1) dθ ds, (2.6)

the average Type-I (false positive) and Type-II (false negative) error probabilities, re-
spectively. Then,

ϵ0(T̂ ) + ϵ1(T̂ c) ≥ 1−∆, (2.7)

where ∆ ≜
∥∥pθ̂(Z)S|T=1− pθ̂(Z)S|T=0

∥∥
TV

and ∥ · ∥TV is the total variation distance [37].

Equality is achieved by choosing T̂ ⋆ ≡ T̂ (1) according to Definition 6. If the hypotheses
are equality distributed, then the minimum average Bayesian error satisfies

inf
φ

P
{
φ(θ̂(Z), S) ̸= T

}
=

1

2
(1−∆) . (2.8)

The proof of this proposition is rather lengthy and so is relegated to B. Equation (2.7),
similar to (2.1), provides a lower bound for the total error of an arbitrary attacker.
Equation (2.8) provides the error of the Bayesian attacker from Theorem 1 in the case
where the hypotheses are equally distributed.

2.1.2 Generalization Gap and Success of the Attacker

In this section, we explore the connection between the generalization gap and the success
probability of MIAs. Large generalization gap implies poor privacy guarantees against
MIAs. Moreover, depending on characteristics of the loss function, the probability of
success of the attacker is lower bounded by the generalization gap:

Theorem 2 (Bounded loss function). If the loss is bounded by |ℓ| ≤ ℓmax, then there is
an attack strategy φ for a MIA (Definition 4) such that,

PSuc(φ) ≥ max

{
Pm, Pm

(
|EG(A)|
2ℓmax

− 1

)
+ 1

}
, (2.9)

where Pm ≜ maxt∈{0,1} P{T = t}.

Proof. Recalling Definitions 2 and 4, and in particular ϱ(θ, (x, y)) = E[ℓ(Ŷθ(x), y)], as
well as the random variable R = ϱ(θ̂(Z), S), we obtain

|EG(A)| =
∣∣∣∣∫ r(pR|T (r|0)− pR|T (r|1)) dr

∣∣∣∣
≤
∫
|r||pR|T (r|0)− pR|T (r|1)| dr

≤ ℓmax∥pR|T (·|0)− pR|T (·|1)∥1. (2.10)
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Assume w.l.o.g. that the attacker φ satisfies the condition,

pRT (ϱ(θ, (x, y)), φ(θ, x, y)) ≥ pRT (ϱ(θ, (x, y)), 1− φ(θ, x, y)). (2.11)

Thus, we obtain,

PSuc(φ) =
1

2

(
1 +

∫
|pRT (r, 0)− pRT (r, 1)| dr

)
≥ 1

2
Pm∥pR|T (·|0)− pR|T (·|1)∥1 + 1− Pm

≥ Pm

(
|EG(A)|
2ℓmax

− 1

)
+ 1. (2.12)

Note that the lower bound, Pm

(
|EG(A)|
2ℓmax

− 1
)
+ 1, varies from 1 − Pm to 1, as the

generalization gap increases. However, an attacker with knowledge of the prior on T can
always have a success probability of at least Pm by guessing t̂ = argmaxt∈T P{T = t};
therefore,

PSuc(φ) ≥ max

{
Pm, Pm

(
|EG(A)|
2ℓmax

− 1

)
+ 1

}
Theorem 2 indicates that strong privacy guarantees (i.e., small success probability

for any attacker), imply that the generalization gap is also small. Viewed in a different
way, if the generalization gap is large, there exists a membership inference strategy
that will succeed with a certain probability given by (2.9). We remark that, on the
other hand, ensuring that the generalization gap is small does not make a model robust
against MIAs. We shall return to this important point in Section 2.1.3.

In the following, we extend the result of Theorem 2 to sub-Gaussian and exponentially
tail-bounded loss functions.

Theorem 3 (Sub-Gaussian loss). In a membership inference problem (Definition 4),

assume that R = ϱ(θ̂(Z), S) is a sub-Gaussian random variable with variance proxy σ2
R.

For all Rmax ≥ r0 ≜
√
2σ2

R log 2, there exists an attack strategy φ, such that,

PSuc(φ) ≥ max

{
Pm, Pm

(
|EG(A)|
2Rmax

− C(Rmax, σR)

1− Pm
− 1

)
+ 1

}
. (2.13)

where C(Rmax, σR) ≜ exp
(
−R

2
max

2σ2
R

)(
1 +

σ2
R

R2
max

)
.

Proof. Given that R is a sub-Gaussian random variable with variance proxy σ2
R, we

have P{|R| ≥ r} ≤ 2e
− r2

2σ2
R for all r ≥ 0 [15]. Define the random variable R0 to have the

distribution function Q0(r) ≜ P{R0 ≤ r} ≜ 1− 2e
− r2

2σ2
R on its support [r0,∞), where

r0 =
√
2σ2

R log 2, i.e., the pdf of R0 is pR0
(r) = 2r

σ2
R
e
− r2

2σ2
R . Let Q be the distribution

function of |R|. Then, using the construction in the proof of [57, Theorem 1.104], we can
write |R| = Q−1 ◦Q0(R0), where Q

−1 is the left continuous inverse of Q, noting that Q0

is continuous. The sub-Gaussian property then implies Q(r) = 1−P{|R| ≥ r} ≥ Q0(r),
which immediately yields Q−1 ◦Q0(r) ≤ r.
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We thus have, for Rmax ≥ r0,∫
|r|≥Rmax

|r|pR(r)dr =
∫
Q0(r)≥Q(Rmax)

Q−1(Q0(r))pR0
(r)dr

≤
∫
Q0(r)≥Q(Rmax)

rpR0
(r)dr

≤
∫
r≥Rmax

rpR0
(r)dr

≤ 2RmaxC(Rmax, σR) (2.14)

Following steps similar to those in (2.10),

|EG(A)| ≤
∫
|r|≤Rmax

|r||pR|T (r|0)− pR|T (r|1)| dr

+

∫
|r|>Rmax

|r||pR|T (r|0)− pR|T (r|1)| dr

≤ Rmax∥pR|T (r|0)− pR|T (r|1)∥1 +
2RmaxC(Rmax, σR)

1− Pm
, (2.15)

where the last inequality follows from (2.14). Consequently,

∥pR|T (r|0)− pR|T (r|1)∥1 ≥
|EG(A)|
Rmax

− 2C(Rmax, σR)

1− Pm
. (2.16)

The rest of the proof follows identically to that of Theorem 2.

Theorem 4 (Tail-bounded loss). In a membership inference problem (Definition 4),

assume that R = ϱ(θ̂(Z), S) is such that P{|R| ≥ r} ≤ 2 exp(−r/2σ2
R) for all r ≥ 0 with

some variance proxy σ2
R > 0. Then, for all Rmax ≥ r0 ≜ 2σ2

R log 2, there is an attack
strategy φ such that, (2.13) holds with

C(Rmax, σR) ≜ exp

(
−Rmax

2σ2
R

)(
1 +

2σ2
R

Rmax

)
. (2.17)

The proof of this theorem is analogous to that of Theorem 3 and will be omitted
here.

Note that in principle both Theorem 3 and Theorem 4 are applicable when the loss
is bounded, since all bounded random variables are sub-Gaussian and exponentially
tail-bounded; nonetheless, we expect Theorem 2 to provide a tighter bound in this case,
as it certainly does for ℓmax = Rmax.

In practice the distribution of the loss for a particular model is often unknown;
however, it can be estimated and fitted to one of the cases presented in this section.
Then, these results can be applied to measure the potential impact of generalization on
the privacy leakage of the model.

2.1.3 Good Generalization is not Enough to Prevent Successful
Attacks

Generalization does not imply privacy. The purpose of this section is to prove that
in general the success rate of the attacker may not be directly proportional to the
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Figure 2.2: Illustration of the conditional distributions of the error incurred by the
target model.

generalization gap. We show this by constructing a synthetic example of a membership
inference problem, where the generalization gap can be made arbitrarily small, while T
can be determined with certainty by an attacker. To construct the counterexample we
need to define the random variables X, Y and a loss function ℓ for fixed parameters
0 < ϵ < D. Let pX be an arbitrary continuous pdf on R, e.g., X ∼ N (0, σ2), and define
Y = X + U , where U is independent of X and uniformly distributed on [− ϵ

2 ,
ϵ
2 ]. Given

the training set z and an input x, the learned decision function f( · ;x) either outputs
the correct label y, if (x, y) ∈ z, and otherwise f( · ;x) = x+D + U ′, where U ′ is an
i.i.d. copy of U , i.e., uniformly distributed on [− ϵ

2 ,
ϵ
2 ]. With Euclidean distance loss

ℓ(y, y′) = |y − y′|, these definitions immediately yield P{R = 0|T = 1} = 1 and the
conditional pdf

pR|T (r|0) =
1

ϵ
Λ((r −D)/ϵ). (2.18)

where Λ(r) ≜ max(1 − |r|, 0) is the triangle distribution. The parameters 0 < ϵ < D
can be chosen arbitrarily. Clearly then an attacker can simply check whether R = 0 to
determine T with probability one. On the other hand, from (2.18), it is easily verified
that,

|EG(A)| = |E[R|T = 0]− E[R|T = 1]| = D. (2.19)

Thus, by varying the parameter D, we can make the generalization gap arbitrarily small,
while the attacker maintains perfect success. Therefore, good generalization does not
prevent the attacker from easily determining which samples were part of the training set.
Remark that as NNs are universal approximators, any (reasonable) function, including
the decision rule in this example, can be approximated to arbitrary degree by a NN;
therefore, this behavior could be seen in practice.

2.1.4 On the Amount of Missing Information in Inference At-
tacks and Generalization

We aim at investigating the following simple but fundamental questions, from the
perspective of information theory:
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• How much information do the model parameters θ̂(z) store about the training set
z? How is this information related to the generalization gap?

• How much information about the unknown (sensitive) attribute T is contained in

the model parameters θ̂(z) and the side information S? And how much information
is needed for the inference of T?

• How do the above information quantities relate or bound to each other?

From the point of view of information theory these questions make sense only if we
consider θ̂(z) and T as random variables, that is, attribute probabilities to the target
attribute and model parameters, which is perfectly consistent with the investigated
framework in this paper.

To state the following theorem, we need the Fenchel-Legendre dual function [12]
g⋆ : R→ R of a function g : R→ R, which is defined as g⋆(t) ≜ sup{λ · t− g(λ) : λ ∈ R}.
We will also use the log-moment-generating function ψW : R→ R of a random variable
W , defined as ψW (λ) ≜ logE[eλW ]. More information on these quantities and their
properties are given in the discussion of the Cramér-Chernoff Method in D.1.1.

Theorem 5 (Mutual information). Let T̂ ≜ φ(θ̂(Z), S) be the (random) prediction of
any attacker φ (Definition 3). Then,

I
(
T ; θ̂(Z)

∣∣S) ≥ dKL

(
PSuc(φ)

∥∥∥ max
t∈T

pT (t)
)
, (2.20)

where dKL(p∥q) denotes the KL divergence between Bernoulli random variables with
probabilities (p, q). Moreover, for ϵ ≥ 0, the generalization gap EG at Z satisfies

P
(
GG(A) ≥ ϵ

)
≤ I(Z; θ̂(Z)) + 1

nK(ϵ)
, (2.21)

where
K(ϵ) ≜ ess inf

θ∼P
θ̂(Z)

ψ∗
E[ϱ(θ̂,(X,Y ))]−ϱ(θ,(X,Y ))

(ϵ) (2.22)

is an essential infimum w.r.t. θ ∼ Pθ̂(Z) of the Fenchel-Legendre dual function ψ⋆ of the

log-moment-generating function of E[ϱ(θ, (X,Y ))]− ϱ(θ, (X,Y )). Furthermore,

I(T ; θ̂(Z)|S) = I(S; θ̂(Z)|T )− I(S; θ̂(Z)) ≤ I(Z; θ̂(Z))− I(S; θ̂(Z)). (2.23)

Theorem 5 is proved in D.
The mutual information expressions in (2.20) and (2.21) are related by the inequality

(2.23), where I(Z; θ̂(Z)) represents the average amount of information about the random

training set Z retained in the model parameters θ̂(Z); and I(S; θ̂(Z)) indicates the
amount of information already contained in the side information S before observing the
parameters θ̂(Z).

From (2.23) it is clear that by controlling the average number of bits of information

about the training set Z that the model parameters θ̂(z) store, i.e., I(Z; θ̂(Z)) ≤ r, it
is possible to control both the generalization gap in (2.21) and the accuracy of any
possible attacker in (2.20). Nevertheless, a more effective defense strategy may aim

directly at reducing the mutual information I(T ; θ̂(Z)|S), which is expected to have
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less severe impact on the performance of the trained model, i.e., the expected risk
E
[
ℓ(Ŷθ̂(Z)(X), Y )

]
. As (2.20) indicates, the performance of any attacker must be close to

a random guess if the mutual information I(T ; θ̂(Z)|S) is suitably small. This equation
can be numerically computed to obtain an upper bound on PSuc(φ).

The generalization gap bound in (2.21) is subtly different from most PAC-Bayes
scenarios of learning. In the present case, we are bounding the joint probability over
both the training data Z and the randomness involved in the learning algorithm, which
is within the spirit of the work by [8]. But due to the term K(ϵ), the bound presented
in (2.21) is tighter.

Assuming that the loss is sub-Gaussian or bounded, it is not difficult to provide a
lower bound for K(ϵ) that is independent of the underlying data distribution.
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2.2 Membership Inference Attacks

Membership inference attacks (MIAs) can be used to measure the privacy leakage of
ML models [90]. The more effective a MIA strategy is, the more reliably we can assess
the privacy of a model. This section provides a comprehensive list of MIA strategies
and these are later compared and evaluated in Section 3.3.

Throughout this section let s = (x, y), the target sample, be a realisation of Z. Let

z, the training set, be a realisation of Z. Let θ̂(z) be the parameters of the target model.
Following Definition 4, the goal of a MIA is to determine whether a sample s belongs
to the training set of target model (T = 1) or not (T = 0). The problem can be stated
as a binary decision test in which the attacker predicts T according to some criteria. In
the following, let ϕ be a scoring criteria, which can be a function of the target model,
the target sample and any other additional information, such as additional samples
from the training set that the attacker might possess. Given these inputs, ϕ outputs a
real number referred to as the prediction score. This prediction score can be compared
to a threshold γ ∈ R to determine if the test sample belongs to the training set of the
target model. Formally,

T̂ = φ(s, θ̂(z), ∗) =

{
1 if ϕ(s, θ̂(z), ∗) ≥ γ
0 otherwise

, (2.24)

where the symbol ∗ denotes any additional inputs that the attacker might use. The
hyper parameter γ selects the operating point in ROC curve. In practice, we make our
analysis independent of γ by comparing performance for the whole range of possible γ
values.

2.2.1 Scoring criteria

This section is dedicated to explaining the different scoring criteria existing in the
literature, and those we propose.
Baseline. As a baseline on the performance of MIAs we consider a very simple strategy
that predicts all misclassified samples to be outside the training set and all correctly
classified samples to be in the training set. The baseline strategy can be defined as
follows,

ϕ(x, y, θ̂(z)) =

{
1 if argmaxy′∈Y fθ̂(z)(y

′;x) = y

0 otherwise
. (2.25)

This strategy will be favorable against models that fail to generalize, that is, classify
correctly only samples in the training set. However, as models improve, more advance
strategies become necessary in order to determine membership.
Softmax Response. The main claim of this strategy is that models tend to give more
confident predictions over samples that belong to their training set. This strategy aims
to exploit the confidence of the predictions to identify members of the training set of
the target model,

ϕ(x, θ̂(z)) = max
y′∈Y

fθ̂(z)(y
′;x) , (2.26)
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where we make use of Definition 1. This scoring criterion has previously been used to
build MIAs in [90, 74], by training an attack model using the soft probabilities output by
the model, while in [94], the authors directly compare the score to a threshold. Remark
that this strategy does not take into account whether the model predicts the correct
class, in other words, the ground truth for the target sample is not used. Moreover,
this strategy only uses the output of the target model; thus, simply querying the target
model is enough to obtain the information necessary to mount the attack.
Modified Entropy. An alternative idea is to look at the uncertainty of the model.
Intuitively, this should be lower for samples that were present in the training set.
[93] proposes a metric called modified entropy, which decreases with the prediction
probability of the correct class and increases with the prediction probability of any
other class:

ϕ(x, y, θ̂(z)) = −
(
1− fθ̂(z)(y;x)

)
log
(
fθ̂(z)(y;x)

)
−
∑
y′ ̸=y

fθ̂(z)(y
′;x) log

(
1− fθ̂(z)(y

′;x)
)
. (2.27)

Unlike previously considered metrics, modified entropy (2.27) uses the ground truth y
for the target sample, taking into account whether the target model is predicting the
correct class or not, and how confident it is on its prediction.
Loss. The learning objective of ML models is to minimize a loss function,

ϕ(x, y, θ̂(z)) = −ℓ
(
y, ŷθ̂(z)(x)

)
, (2.28)

over samples from the training set. Hence, we expect the value of the loss to be lower
for samples in the training set. The minus sign in front of the loss is added to make
this definition consistent with (2.24). An attack proposed in [109] compares the loss
on the target sample to the average loss on the training set. This intuition was also
exploited in [90].
Gradient Norm. The loss function is minimized via Stochastic Gradient Descent, or
similar iterative optimization algorithms. Around the optimal points, the gradient of
the loss function with respect to its model parameters should approach 0. This attack
strategy measures the l2 norm of the gradient of the loss function w.r.t. to the model
parameters over different samples and expects this norm to be smaller for members of
the training set,

ϕ(x, θ̂(z)) = −
∥∥∥∇θℓ(y, ŷθ̂(z)(x))∥∥∥2

2
. (2.29)

Since we expect the norm of the gradient to be smaller for members of the training set,
the minus sign is added to make this definition consistent with (2.24). This observation
was first used in [90] as part of their MIA.

Although these ideas are not novel, most of them have not been used to make a
binary decision test. Instead, they have been used as labeled observations to train
an attack model. This requires knowledge of the member/not-member label for each
sample. Our aim is to assess and compare in a systematic way the power of these
observations and whether or not it is possible to perform MIAs with them without
requiring a training set for the attacker.
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2.2.2 Attack strategies that train an attack model

Most of the MIA strategies proposed in the literature combine sets of features of the
target sample and target model. Combining these features into a single score that can
be used for a binary decision test is a challenging task. A common strategy is to train a
machine learning model that learns to combine these features and predict whether the
target sample belongs to the training set or not. Naturally, the attack model requires a
set of samples that are labeled as either part of the training set of the target model or
outside of the training set of the target model. In this section we present a short review
of attack models previously proposed in the literature:
Grad x and Grad w Attack Models: In [85], they propose an attack model that
uses an array of statistics from the gradient of the loss of target model. The statistics
considered are the l1 norm, l2 norm, maximum value, mean, skewness, kurtosis and
absolute minimum of the gradient. These statistics are combined by a logistic regression
model trained on labeled data, where the labels indicate whether the sample belongs
to the training set of the target model or not. We implement this attack model and
reproduce the results in our setting. When the gradient is taken with respect to the
model parameters, we refer to the attack model as ‘Grad w’. On the other hand, when
the gradient is taken with respect to the input sample, we refer to the attack model as
‘Grad x’.
Intermediate Outputs: The authors of [85] also consider an attack model that uses
the intermediate outputs of the target model. For the models considered in their work,
the attacker uses the outputs of the last two layers of the target model. This attack
model is also implemented as described in the original paper and evaluated in our
setting. This model is later abbreviated as ‘Int. Outs’.
White-Box [74]: The attack model proposed by [74] utilizes the gradients of the loss
function with respect to model parameters at the target sample, the value of the loss at
the target sample, intermediate outputs of the target model and the one hot encoded
labels of the target sample. To our knowledge this was the first work to propose using
the gradient of the loss w.r.t. model parameters as a criteria to infer membership. We
implement this attack strategy and reproduce the results presented in their paper. This
attack strategy is referred to as WB [74].
Ensemble Attacker We propose an ensemble attacker that takes as input the Softmax
response of the target model, the value of its loss function, the norm of the gradient of
the loss with respect to the model parameters, the norm of the gradient of the loss with
respect to the input sample, and the modified entropy. This model outperforms the
state-of-the-art against AlexNet, and achieves similar performance against ResNext.

This attacker requires not only white-box access to the model, as it needs to compute
gradients with respect to input and to model parameters, but it also requires a training
set of its own (similarly to [74, 90, 85]). Essentially, what the attacker learns is how to
map different observations to a membership label.

The attack model is a DNN with 5 fully connected layers with output sizes
40, 40, 20, 10 and 1, respectively. The input to the network is a vector of length 6,
containing the softmax response, modified entropy, loss value, gradient norm w.r.t.
parameters, gradient norm w.r.t. input, and adversarial distance. These quantities are
re-scaled to [0, 1], which significantly improves the performance of the model. The
rescaling is done according to the maximum and minimum values from the training set.
The model is trained with Adam optimizer [56] for up to 300 epochs. The performance of
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Figure 2.3: Schematic of the Adversarial Distance method for membership inference. A
target sample and target model are taken as input. A perturbation is computed using
an adversarial attack strategy, such that the model changes its original prediction. The
magnitude of the perturbation is computed and compared to a threshold. Based on
this comparison, the attacker predicts if the sample belongs to the training set of the
target model or not.

the ensemble attacker is evaluated and compared to the performance of other strategies.

2.2.3 Membership inference from adversarial examples

In this section, we show how the adversarial distance bridges the gap between MIAs
and adversarial examples. We introduce the adversarial distance strategy and describe
the resulting algorithm in detail. Figure 2.3 illustrates the scheme for the attack. The
images for the pipeline’s input and adversarial noise are provided by [39]. The noise
showed in the figure is obtained with the fast gradient sign method against GoogLeNet’s
classification algorithm. The added noise changes the classifier’s output from class
“panda” to class “gibbon”.

During training, the target model minimizes the loss over samples from the training
set. The objective of Projected Gradient Descent [71, 61] and other algorithms derived
from it (e.g., Auto-PGD [22]) is to maximize the very same loss. Hence, we expect this
process to require larger perturbations for members of the training set, compared to
samples that were not observed during training. We exploit this feature to perform
MIAs against machine learning models.

Our membership inference strategy measures the distance between an adversarial
example and its original counterpart, i.e., the size of the perturbation, and uses this as
a criteria to distinguish members of the training set,

ϕ(x, θ̂(z)) = ∥ψp,ϵ(x, fθ̂(z))∥p , (2.30)

where ∥ · ∥p measures the magnitude of the perturbation. In our experiments, we use
either l1, l2 or l∞ norm to measure the distance between samples (i.e., p ∈ {1, 2,∞})
and the same norm is used to constraint the size of the perturbation produced by
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Figure 2.4: Histogram of adversarial distances over 50k samples from the training set
(blue) superposed to the same histogram over 10k samples from the test set. The
adversarial examples are computed for AlexNet, trained on CIFAR-100, based on the
∥ · ∥∞ norm and ϵ = 1.

the adversarial strategy, guaranteeing that ϕ(x, fθ̂(z)) ≤ ϵ (see Algorithm 1). As a

step previous to the computation of the adversarial example, it is verified whether the
target sample is correctly classified by the target model or not. If the target sample
is misclassified by the target model, then the attacker predicts that the sample is not
part of the training set; otherwise, the adversarial example is computed. This assumes
that the target model classifies correctly all samples in the training set and serves as a
baseline for the attack.

Algorithm 1

Require: Target sample (x, y), target model fθ̂(z), adversarial strategy ψp,ϵ, p ∈
{1, 2,∞}, ϵ > 0 and, γ ∈ R.

1. if ŷθ̂(z)(x) ̸= y then
2. return 0

\\The sample is predicted to be outside of the training set.

3. end if
4. ν ← ψp,ϵ(x, fθ̂(z))

\\Adversarial perturbation ν.
5. return 1{∥ν∥p ≥ γ}
\\Is the distance between the adv. ex. and the original input x
greater than γ?

When computing adversarial examples, we rescale the images so that their dynamic
range lies within [0, 1]. This is necessary in order for the adversarial attacks to compute
distance and perform clipping properly. However, since the pre-trained models were
trained on the natural images (previous to rescaling), we include an additional layer at
the input of each target model that reverts the scaling, preserving the performance of
the target model.

Since we are not interested in producing subtle perturbations that preserve the
perspective of a human, we let the adversarial attacker generate arbitrarily large
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perturbations (constrained only by the dynamic range of the image). However, as shown
in Fig. 2.4 and as demonstrated in the experimental section, there is a significant shift
in the distribution of the size of perturbations, depending on whether (or not) the
samples are part of the training set.

2.2.4 Diversity Measures

A diversity coefficient is map from a space of probability distributions into the real
line, which reflects differences between individual members of the same population [82].
In this section, we propose the use of diversity coefficients for membership inference.
The output of the target model in a MIA can be seen as a distribution over the set of
labels Y given an input to the model. Following this remark, a diversity coefficient for
the categorical distribution defined by the target sample is computed. This diversity
coefficient is used as a score criteria for membership inference. The way to compute
the diversity coefficient is determined by a diversity measure. In the present work, we
take a metric learning approach and learn a diversity measure that suits our problem.
The aim of this strategy is to learn a diversity measure that minimizes the diversity
coefficient for samples in the training set and maximizes the same quantity for samples
outside the training set. Therefore, members of the training set of the target model will
define a categorical distribution with a lower diversity coefficient.

Let fθ̂(z)( · ;x), the output of the target model, define a probability distribution over

Y given x ∈ X . Let Ŷθ̂(z)(x) denote the random variable in Y distributed according

to fθ̂(z)( · ;x). In this setup, the set Y is finite, thus fθ̂(z)( · ;x) defines a categorical

distribution, meaning that Ŷθ̂(z)(x) can be in one of |Y| possible categories, with the

probabilities for each category separately specified. Since Y is finite, we will abuse
notation and take Y to refer to the set of integers from 1 to |Y| when needed, i.e.,
Y = {1, . . . , |Y|}. In the following, we define the diversity coefficient for a categorical
distribution p and the diversity measure used to compute it.

Given a categorical distribution p, its diversity coefficient is given by,

DIVC (p;M) =
∑
i,j∈Y

piMijpj , (2.31)

where Mij corresponds to the elements of a |Y|× |Y| matrix M which defines a diversity
measure. Since, fθ̂(z)( · ;x) is a categorical distribution, we can use (2.31) to compute

its diversity coefficient. Intuitively, M should provide a notion of distance between the
possible values of the random variable Ŷθ̂(z)(x). Thus, the diversity coefficient provides

the average difference between two randomly drawn instances of Ŷθ̂(z)(x).

As mentioned above, the idea of this strategy is to learn a diversity measure M such
that the diversity coefficient is minimal for members of the training set and maximal
for samples outside of the training set. This problem can be posed as a Lagrangian
optimization problem and solved in closed form. Consider a subset of the training set
{(x1, y1), . . . , (xN , yN )} ⊂ z and a subset of the test set {(x′1, y′1), . . . , (x′N , y′N )}∩z = ∅,
where N is the number of samples in each set. The optimization problem can be written
as,
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min
M∈R|Y|×|Y|

(
N∑
k=1

DIVC
(
fθ̂(z)( · ;xk);M

)
−

N∑
k=1

DIVC
(
fθ̂(z)( · ;x

′
k);M

))
(2.32)∑

i,j∈Y
M2
ij = 1 (2.33)

Mij > 1 ∀ i, j ∈ Y , (2.34)

where (2.32) is the function to minimize, (2.33) imposes a constraint on the Frobenius
norm of M and (2.34) imposes that the elements of M be positive. The Lagrangian
function to be optimized is,

L(M) =

N∑
k=1

DIVC
(
fθ̂(z)( · ;xk);M

)
−

N∑
k=1

DIVC
(
fθ̂(z)( · ;x

′
k);M

)

− λ

∑
i,j∈Y

M2
ij − 1

− ∑
i,j∈Y

µijMij , (2.35)

where λ and µij for all i, j ∈ Y are Lagrange multipliers. The first term corresponds to
the minimization of the diversity coefficient over the subset of samples from the training
set, while the second term corresponds to the maximization of the diversity coefficient
over samples outside the training set. The third term imposes a constraint over the
Frobenius norm of the matrix M , and the last term of the equation imposes that the
elements of M be positive. The former constraint is necessary to arrive to a unique
solution, while the latter constraint is imposed so that the diversity coefficient can be
interpreted as a loss function.

The optimization problem described by (2.35) can be solved in closed form with the
usual methods, obtaining the following solution,

µij =

{
0 if

∑N
k=1 fθ̂(z)(i;xk)fθ̂(z)(j;xk)−

∑N
k=1 fθ̂(z)(i;x

′
k)fθ̂(z)(j;x

′
k) ≥ 0∑N

k=1 fθ̂(z)(i;xk)fθ̂(z)(j;xk)−
∑N
k=1 fθ̂(z)(i;x

′
k)fθ̂(z)(j;x

′
k) otherwise

(2.36)

λ =
1

2

√√√√√∑
i,j∈Y

(
N∑
k=1

fθ̂(z)(i;xk)fθ̂(z)(j;xk)−
N∑
k=1

fθ̂(z)(i;x
′
k)fθ̂(z)(j;x

′
k)− µij

)2

(2.37)

Mij =
1

2λ

(
N∑
k=1

fθ̂(z)(i;xk)fθ̂(z)(j;xk)−
N∑
k=1

fθ̂(z)(i;x
′
k)fθ̂(z)(j;x

′
k)− µij

)
(2.38)

The above definition of the Lagrangian multipliers µij guarantees that the elements
of the matrix M be positive. The definition of λ imposes that M has Frobenius norm
equal to one. Note that this method requires additional samples from the training set
as well as additional samples from outside the training set. However, we have not yet
considered the use of the ground truth for each sample. To exploit this information,
we consider a solution per class, that is, we learn a different matrix My for each class
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y ∈ Y . To compute this matrix, change the sums in the above equations from
∑N
k=1 to∑

k:yk=y
, meaning the sum over the samples is only over those samples that belong to

class y.
Finally, the MIA strategy proposed has the following score criteria,

ϕ(x, y, θ̂(z)) = DIVC
(
fθ̂(z)( · ;x);My

)
. (2.39)

As we can observe in Fig. 2.5, this Lagrangian leads to learning a diversity measure that
has every element close to zero, except for the element along the diagonal corresponding
to class y, which is close to one. In this case, we observe that the computed diversity
coefficient is proportional to the cross-entropy loss. Note, that the diversity coefficient in

this case will be approximately
(
fθ̂(z)(y;x)

)2
. Therefore, both the diversity coefficient

and the cross-entropy loss are monotonously increasing functions of fθ̂(z)(y;x), the

component of the categorical distribution output by the model corresponding to the
ground truth y. This means that from the perspective of a binary hypothesis test,
both the cross-entropy loss and the diversity coefficient are equivalent score criteria.
As we will see in the experimental section, the performance of the diversity coefficient
attack and the performance of the loss attack are very close, as is to be expected.
Surprisingly, having additional information in this case does not provide the attacker
with an advantage over the case where no additional samples are available, since the
attacker learns essentially the same information that would be provided by a simple
loss computation. The fact that additional information and resources do not provide an
advantage to the attacker is a trend that we saw across all the different strategies we
tested in our experiments.

Since using the Lagrangian given by (2.35) does not provide any advantage over the
loss computation, we propose to learn a different diversity measure using a different
objective. Instead of trying to minimize the diversity coefficient given by (2.31) over
samples in the training set and maximizing the same quantity over samples outside
the training set, we directly minimize the error incurred by using (2.31) as a score
criteria to perform MIAs. Empirically, we found that the diversity measure learnt with
this method produces diversity coefficients for samples inside the training set larger
than for samples outside the training set. Based on this observation, we change our
previous assumptions and predict that samples ins the training set of the target model
will have a larger diversity coefficient compared to samples outside of the training set.
Additionally, we relax the condition that the elements of the diversity measure matrix
M should be positive. The new optimization problem can be written as,

min
M∈R|Y|×|Y| , γ∈R

(
N∑
k=1

max
{
0 , γ −DIVC

(
fθ̂(z)( · ;xk);M

)}
+

N∑
k=1

max
{
0 , DIVC

(
fθ̂(z)( · ;x

′
k);M

)
− γ
})

(2.40)∑
i,j∈Y

M2
ij = 1 , (2.41)

where the goal in (2.40) is to minimize the error made by using the diversity coefficient
as a score criteria for membership inference and (2.41) imposes that the Frobenius norm
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Figure 2.5: Diversity measure matrices determined for different classes. The matrices
are computed from the outputs of an AlexNet model trained on the CIFAR-100 dataset.
The attacker has access to 80 samples from each class to compute the matrices for the
attack. Half of these samples are from the training set and half of them are from outside
the training set. From left to right, top to bottom, the corresponding classes are 20, 40,
60 and, 80.
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of M be positive. The Lagrangian function to be optimized is,

L(M,γ) =

N∑
k=1

max
{
0 , γ −DIVC

(
fθ̂(z)( · ;xk);M

)}
+

N∑
k=1

max
{
0 , DIVC

(
fθ̂(z)( · ;x

′
k);M

)
− γ
}

− λ

∑
i,j∈Y

M2
ij − 1

 , (2.42)

where the optimization is now also over the threshold γ. The first term in this equation
represents the error incurred by classifying a member of the training set as a non-member.
Note that if the diversity coefficient is larger than the threshold, the sample is classified
as a member of the training set. Thus in the first term, where the sum is over samples
from the training set, the samples that are correctly classified will add null to the sum
of the error. Similarly, the second term corresponds to the error incurred by classifying
samples outside the training set as members. When the diversity coefficient is smaller
than the threshold the samples are classified to be outside the training set. Thus in the
second term, where the sum is over samples outside of the training set, the samples
that are correctly classified will add null to the sum of the error. The last term puts a
constraint on the Frobenius norm of M . Notably, we remove the positivity constraint
on the elements of M .

In contrast to (2.35), (2.42) does not have a close form solution. This is notably
due to the presence of the max operation inside the sums in the first two terms. In
consequence, we need to look for an alternative optimization method. We propose
to solve the problem iteratively through Stochastic Gradient Descent. Algorithm 2
explains how the learning of M is performed. In practice, the max operation in (2.42) is
replaced by a ReLU activation function. Additionally, we will require the membership
labels of samples t in order to write the loss function to be minimizing during training.
Following the established convention, t = 1 corresponds to the sample being part of the
training set, while t = 0 corresponds to the sample being outside to the training set.
Thus, the loss used for learning the diversity measure that minimizes the error is given
by,

ℓDIVC(x, t;M,γ) = tReLU
{
γ −DIVC

(
fθ̂(z)( · ;x);M

)}
+ (1− t)ReLU

{
DIVC

(
fθ̂(z)( · ;x);M

)
− γ
}
. (2.43)

The constraint on the Frobenius norm of M is imposed iteratively during training by
dividing M by its norm.

In practice, we fix the threshold at 0 and optimize only the diversity measure. The
diversity measure M is randomly initialized by drawing independently each component
from a normal distribution. This initialization is compatible with the choice of the
threshold used for training, allowing the loss to be optimized for both samples in and
outside of the training set. The diversity measure M is trained for Niter epochs, and
saved after each epoch. At the end of training, the best M value is chosen across
different epochs based on its performance over a validation set. At each epoch the
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diversity measure is updated iteratively for each minibatch by setting its Frobenius
norm to one and then applying the Adam [56] optimizer. In our experiments Niter is
set to 1, the batch size for minibatches is set to 128 and the learning rate parameter for
Adam is 0.01. The training set for the attacker is balanced in terms of the number of
members and non-members of the training set of the original model. It is also balanced
in terms of the classes for the original classification task.

Algorithm 2 Learning of the divergence measure

Require: Training set samples {(x1, y1), . . . , (xN , yN )} ⊂ z, test set samples
{(x′1, y′1), . . . , (x′N , y′N )} ∩ z = ∅, target model fθ̂(z), threshold γ, learning rate

η, number of iterations Niter.
1. Initialize M (0) with each component drawn randomly independently from the same

normal distribution N (·; 0, 1)
2. for k in [Niter] do
3. Split {(x1, y1), . . . , (xN , yN )} ∪ {(x′1, y′1), . . . , (x′N , y′N )} in Minibatches
4. M ←M (k−1)

5. for Minibatch in Minibatches do
6. M ←M − η∇M

(∑
(x,t)∈Minibatch ℓDIVC(x, t;M/∥M∥2, γ)

)
7. M ←M/∥M∥2 \\Set the norm to 1.

8. end for
9. M (k) ←M

10. end for
11. M ← Select the best M (k), with k ∈ [Niter]
12. return M

Finally, this solution can be improved by considering a separate diversity measure
for each class y ∈ Y. In our experiments, the training procedure described above
is performed separately for each class to produce a diversity measure My for each
y ∈ Y. In contrast to the closed form solution obtained by minimizing the average
diversity coefficient over samples of the training set and maximizing the average diversity
coefficient over samples outside of the training set (2.35), minimizing the error provides
a very distinct metric with respect to the cross-entropy loss. In Fig. 2.6 we can observe
that the matrices learned are very distinct from those obtained by computing the closed
form solution. In the benchmark section, we will see that this solution achieves a similar
performance to the state-of-the-art; however, it does not provide an advantage to the
attacker despite the attacker having access to additional samples in this setup.
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Figure 2.6: Diversity measure matrices determined for different classes. The matrices
are learned by minimizing the error loss using as a training set for the attacker the
outputs of an AlexNet model trained on the CIFAR-100 dataset. The attacker has
access to 80 samples from each class to compute the matrices for the attack. Half of
these samples are from the training set and half of them are from outside the training
set. From left to right, top to bottom, the corresponding classes are 20, 40, 60 and, 80.
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2.2.5 Renyi Divergence

The Renyi alpha-divergence generalizes the Kullback-Leibler divergence and other
notions of divergence. It allows to measure the divergence of a given probability
distribution from another. We propose the use of this divergence for membership
inference. The intuition is that samples from the training set belonging to the same
class will produce similar outputs when fed to the target model. Since these outputs can
be interpreted as categorical probability distributions, we can measure the divergence
between the output at the target sample and the output at a reference sample belonging
to the training set and use this value as a score criteria to perform MIAs. In other
words, the smaller the value of the Renyi divergence of the target sample from the
reference, the more likely the target sample is to be part of the training set. In the
following we define the Renyi alpha-divergence for two generic categorical distributions.
Let p and q be two categorical distributions. The Renyi alpha-divergence of p from q
is given by,

dα

(
p
∥∥∥q) =

1

α− 1

∑
i∈Y

pαi
qα−1
i

, (2.44)

where 0 < α <∞ and α ̸= 1. Remark that this quantity is not symmetric on the
two probability distributions. This quantity is equal to zero if and only if p is equal
to q and otherwise positive. The special cases where α = 0, 1 and α → ∞ are given
by computing the respective limits. In particular the case where α = 1 leads to the
Kullback-Leibler divergence.

Let fθ̂(z)( · ;x) be the probability distribution defined by the output of the target

model fθ̂(z) at input x. Given two different inputs x and x′, we can compute the Renyi

alpha-divergence of fθ̂(z)( · ;x) from fθ̂(z)( · ;x
′),

dα

(
fθ̂(z)( · ;x)

∥∥∥fθ̂(z)( · ;x′)) =
1

α− 1

∑
i∈Y

fα
θ̂(z)

(i;x)

fα−1

θ̂(z)
(i;x′)

, (2.45)

In this case x refers to the target sample and x′ to the reference sample. Note that
the target model could produce equal or very similar outputs even if x is different than

x′. Thus dα

(
fθ̂(z)( · ;x)

∥∥∥fθ̂(z)( · ;x′)) = 0, does not imply x = x′.

In order to use this quantity as a score criteria for membership inference, we need
to choose a reference sample from the training set. This implies that the attacker needs
to have access to a subset of the training set of the target model. The attacker takes
only reference samples from the same class as the target sample. Then the attacker
measures the Renyi alpha-divergence of the target sample from every possible reference
sample and takes the minimum of those values as the score criteria for the attack. I.e.
the attacker uses as score criteria the smallest divergence value of the target sample
from the reference samples in the subset of the training set. Formally, the score criteria
for the attack is,

ϕ(x, y, θ̂(z)) = min
(x′,y′)∈z′

train:y
′=y

dα

(
fθ̂(z)( · ;x)

∥∥∥fθ̂(z)( · ;x′)) , (2.46)

where z′train ⊂ z denotes the subset of the training set of the target model that
the attacker possesses. Empirically, we determined α = 0.0005 to be the value that
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maximizes the AUROC score of the attack. To determine this value, we performed a
grid search and computed the AUROC score for each value of α. Note that this attack
falls into the category of attacks that require additional samples. It requires extra
samples from the training set to be used as reference samples and extra samples from
both inside and outside the training set of the target model in order to determine the
best value for α.

In our experiments, we observed this strategy to be effective, achieving comparable
performance, or even improving over the state-of-the-art. However, the improvement is
marginal and might not be justified considering there is other strategies that do not
require the use of additional samples.

2.2.6 Merlin

Merlin, which stands for Measuring Relative Loss in Neighbourhood, is a strategy for
membership inference developed in [50]. The strategy consists in perturbing the input
sample to observe how this changes the values of the loss over the sample. This process is
repeated a certain number of iterations, and the number of times that the loss increases
is counted. If the loss increases more frequently than it decreases, then the sample is
predicted to be part of the training set. The intuition is that, since the loss function
should be minimized over samples that belong to the training set, perturbing these
samples should increase the value of the loss. Algorithm 3 describes the attack strategy.
The number of iterations Niter and the value of σ are taken as 100 and 0.01, respectively,
which are the original values used in [50].

Algorithm 3 Merlin

Require: Number of iterations Niter, target model ŷθ̂(z), standard deviation σ, target

sample (x, y), threshold γ
1. count← 0
2. for Niter do
3. w ← N ( · ; 0, σ2) \\Draw random noise from a Gaussian distribution.

4. if ℓ(ŷθ̂(z)(x+ w), y) > ℓ(ŷθ̂(z)(x), y) then
5. count← count+ 1
6. end if
7. end for
8. return 1{ count/Niter ≥ γ} \\Threshold check

Algorithm 3 outputs 1 if the attack is successful and 0 if the attack fails. In our
experiments, we found this strategy to be ineffective, achieving a performance similar to
a random guess. [50] proposes an improvement to this attack, Morgan, which involves
adjusting two different thresholds. We do not consider this strategy, as our analysis is
threshold independent and adjusting two different thresholds would lead to an unfair
comparison to other methods.
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2.3 MIAs from Out-of-Distribution detection tech-
niques

2.3.1 Why use OOD detection techniques?

In this section, we introduce the use of OOD detection techniques for membership
inference. We discuss the similarities between the two problems, and why it makes
sense to pose membership inference as a OOD detection problem.

Consider the output of the target model Ŷθ̂(z)(X), with input X a random variable

given by (X,Y ) = S and the random variable S given by Definition 4 as S = TZJ +
(1− T )Z. Remark that T determines whether S is ZJ , a member of the training set,
or Z ∼ pZ , independently drawn. In this setup, the randomness in the observation
Ŷθ̂(z)(X) comes from the fact that the input is random X, from the learning algorithm

and from the fact that the training set Z is random.
In terms of the underlying probability distribution of the target model’s output,

there is a fundamental difference between the case where T = 1, which corresponds to
the target sample belonging to the training set, and the case where T = 0, making and
the training set and the target sample independent. Therefore, it might be possible to
identify a shift in terms of the distributions of Ŷθ̂(z)(X) when T = 1, i.e. X is part of

the training set and when T = 0, i.e. X is not in the training set. Interestingly enough,
this observation is not only true for the output of the model Ŷθ̂(z)(X), but for any other

function ϕ(S, θ̂(z)) of the input sample, its label and the target model. For example, if
we consider ϕ to be the output of an intermediate layer of the model, we could observe
a similar shift in the distribution of this random variable. This is precisely what we
exploit in the following section to perform membership inference attacks.

Note that both MIAs and OOD detection can be posed as binary decision problems.
In membership inference we try to determine if the target sample belongs to the training
set of the target model or not; while in OOD detection we try to determine whether
the target sample is ‘in-distribution’ or ‘out-of-distribution’. This similarity permits
to directly apply many of the existing methods for OOD detection to the problem of
membership inference. However, as we observed in our experiments, applying these
techniques directly does not often lead to good results for the attacker. Significant work
is required to adapt these techniques, showing that there is a fundamental difference
between these problems.

The next subsections provide detailed descriptions of the state of the art methods
for OOD detection and how they can be adapted to launch MIAs.

2.3.2 ODIN Membership Score

ODIN [65] represents an adaptation of the softmax response framework for selective
classification [36] to the problem of OOD sample detection. Consider a model fθ̂(z)
and a sample x ∈ X . In this context consider the output of the model to be the logits.
The core idea of ODIN is to leverage the information contained in the maximum of
the model’s softmax probabilities, on which the decision is based, by comparing it to
a suitable threshold in order to tell in-distribution and OOD samples apart. Using
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Definition 1, tThe scoring criterion for a MIAs is,

ϕ(x, θ̂(z)) = max
y′∈Y

fθ̂(z),δ(y
′;x) , (2.47)

where the temperature δ is a parameter of the attack. The temperature parameter can
have the effect to smooth out the distribution of the outputs of the target model when
δ ≥ 1, making it closer to a uniform distribution. On the other hand, when δ < 1, the
distribution becomes more peaked.

The intuition is that a model will be more confident on a sample it has already seen
at training time. Note that, save for the temperature scaling, this strategy is identical
to the softmax response strategy defined by (2.26). Just like softmax response, ODIN
uses the confidence in the prediction of the model without taking into account the
ground truth.

By carefully choosing a threshold γ ∈ [0, 1], and interpreting ϕ(x, θ̂(z)) as the
confidence of the target model when predicting the class of the target sample, ODIN
proposes to label x as in-distribution if ϕ(x, θ̂(z)) > γ, or as out-of-distribution otherwise.
It is straightforward to draw a parallelism between in-distribution and member samples
on the one side, and out-of-distribution and non member samples on the other, hence
proposing the application of such a technique to the MIA problem.

2.3.3 DOCTOR Membership Score

Another method that can be used to identify members of the training set is the
DOCTOR membership score. Although it has neither been designed nor optimized for
OOD detection, it proves to be very effective in the misclassification detection problem
[40], i.e. telling correctly and incorrectly classified samples apart. Though similar to
(2.47), the DOCTOR Membership score, formalized as,

ϕ(x, θ̂(z)) =
∑
y′∈Y

(
fθ̂(z),δ(y

′;x)
)2

, (2.48)

uses all the softmax probability components. With δ the parameter for the tempera-
ture scalling. Crucially, the score above is closely related to the Rényi divergence [101]
between the model’s output distribution and the uniform distribution over the classes,
indeed gauging the self-uncertainty of the model. Much like the previous technique,
it is trivial to draw a parallellism between the OOD detection and the membership
inference problem by assigning the in-distribution samples to member samples on the
one side, and the out-of-distribution samples to non member samples on the other.

2.3.4 Mahalanobis Membership Score

First proposed in [63] for the problem of OOD detection, we adapt this technique for
membership inference. This method measures the distance from the candidate sample
to two empirical distributions, the first corresponding to training samples and the
second corresponding to samples outside the training set. The assumption made by
this method is that the intermediate outputs of the target model follow a multivariate
class-conditional Gaussian distribution.
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Let ŷθ̂(z) l(x) denote an intermediate output of the model, indexed by l ∈ {1, . . . , L},
with L the number of layers of the target model. In this setup, the attacker is given
two set of samples, the first a subset of the training set and the second a subset of the
test set of the target model. For ease of notation, {(xi, yi) : i ∈ {1, . . . , N}} will refer to
either of these sets in the following. For the l-th layer and class y ∈ Y, the parameters
of the empirical distribution of the target model’s output are computed as,

µ̂y,l =
1

Ny

∑
i:yi=y

ŷθ̂(z) l(xi) , (2.49)

Σ̂l =
1

N

∑
y∈Y

∑
i:yi=y

(ŷθ̂(z) l(xi)− µ̂y,l)(ŷθ̂(z) l(xi)− µ̂y,l)
⊤ , (2.50)

where Ny is the number of samples from class y used to estimate the parameters
and N =

∑
y Ny. The mean µ̂y,l is estimated per class, while the covariance matrix

Σ̂l is averaged over all classes. In our setup, the attacker is given a small number of
samples N to estimate Σ̂l; thus the error incurred by trying to estimate a covariance
matrix per class would be too high. Note that in contrast to other methods, this one
requires additional samples from the training set and from outside the training set to
estimate the distributions of training and outside the training set samples, respectively.

The Mahalanobis distance-based confidence score [63], provides a notion of distance
between a single sample and the class-conditional Gaussian distribution defined above,

Ml(x) = max
y∈Y

[
−(ŷθ̂(z) l(x)− µ̂y,l)

⊤Σ̂−1
l (ŷθ̂(z) l(x)− µ̂y,l)

]
. (2.51)

The main difference with the OOD detection framework posed in [63] is that they
measure the distance to a single distribution, and the goal is to determine if the target
sample follows or not that distribution. In the MIA framework, we measure the distance
to two distributions, the training set distribution and the outside-of-the-training-set
distribution, and determine membership by verifying to which distribution the target
sample is closest.

In fact, our MIA strategy uses the ratio between the distance to the outside-of-the-
training-set distribution and the training set distribution. This requires to estimate two
sets of parameters, one using samples from the training set, and the other using samples
from outside the training set. For this we use subsets of the training set and test set,
respectively. We denote the Mahalanobis distance score to the training set distribution
as Min l(x) and the equivalent with respect to samples outside of the training set as
Mout l(x). With this notation we can write the Mahalanobis membership score,

ϕl(x, θ̂(z)) =
Mout l(x)

Min l(x)
. (2.52)

As for all the other MIAs strategies, the score is compared to a threshold in order to
predict the membership of the target sample. Indeed, if the ratio is large, the candidate
sample is closer in distribution to the training set, and therefore is predicted to be in
the training set. Otherwise, the candidate sample is closer in distribution to samples
outside the training set and is predicted to be outside the training set. The whole
process of computing the Mahalanobis membership score is illustrated by Fig. 2.7.
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Figure 2.7: Schematic of Mahalnobis membership score computation. A subset z′train of
the training set of the target model is used to estimate the parameters of the training
set distribution. Similarly, a subset z′test of the test set of the target model is used
to estimate the parameters of the outside-of-the-training-set distribution. With the
estimated parameters, the Mahalanobis distance with respect to the training set Min

and the Mahalanobis distance with respect to the test set Mout are computed. The
ratio of this quantities is taken as a score criteria to perform membership inference.

Algorithm 4 Mahalanobis Membership Inference Attack

Require: Target sample x, target model fθ̂(z), parameters of the training set distri-

bution µ̂y,l , Σ̂l, parameters of the test set distribution µ̂′
y,l , Σ̂

′
l, and threshold

γ ∈ R.
1. for l ∈ {1, . . . , L} do
2. Min l(x)← maxy −(ŷθ̂(z) l(x)− µ̂y,l)

⊤Σ̂−1
l (ŷθ̂(z) l(x)− µ̂y,l)

3. Mout l(x)← maxy −(ŷθ̂(z) l(x)− µ̂
′
y,l)

⊤Σ̂
′−1
l (ŷθ̂(z) l(x)− µ̂

′
y,l)

4. ϕl(x, fθ̂(z))←
Mout l(x)
Min l(x)

5. end for
6. ϕ(x, θ̂(z))←

∑
l wlϕl(x, θ̂(z)) \\Mahalanobis membership score

7. return 1{ϕ(x, θ̂(z)) ≥ γ} \\Threshold check

In order to combine the Mahalanobis membership scores for different layers, we
compute their weighted sum,

ϕ(x, θ̂(z)) =

L∑
l=1

wl ϕl(x, fθ̂(z)) . (2.53)

The weights {wl} are learned by logistic regression with the goal of maximizing the
prediction accuracy of the MIA. The logistic regression uses the same subsets of the
training and test set that are used to estimate the parameters of the distribution in (2.49)
and (2.50). Algorithm 4 summarizes this MIA strategy.

It is important to mention that the outputs of intermediate layers are reduced by
averaging across the spatial dimensions. The computational resources necessary to store
and to compute algebraic operations on the output of intermediate layers can grow
exponentially for certain models and datasets. Therefore, to make these computations
feasible for the intermediate layers we need to reduce their dimension. Inspired by [63],
the idea is to reduce the intermediate outputs from F ×H ×W to F × 1, where F is
the number of channels, and H ×W is the spatial dimension.
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In our experiments, we tried to reduce the spatial dimensions of the outputs of
intermediate layers with different methods. Namely, by taking the pixel with the
maximum value, by taking the average of all pixels along each channel, and by taking
the pixel with the maximum variation across a subset of samples. We found that
taking the average per channel was the most efficient in terms of the performance of
the attacker, thus we chose to apply this method.

2.3.5 Information Geometry Approach to OOD Detection

The following method is similar to the Mahalanobis membership score in the sense that
it measures how much the target sample follows a given distribution. The attacker will
estimate the empirical distribution of the outputs of the target model over samples
from training set and over samples from outside the training set. The attacker will
measure the distance to both of these distributions and compute their ratio. The ratio
is used as a score to predict membership. Figure 2.7 could also be used to describe
this technique, with the only difference being the form of the distributions and the
parameters that have to be learned from the additional samples given to the attacker.
The following describes the assumptions of the model and defines the distributions and
their parameters to be estimated.

Let us consider a statistical manifold, i.e. a parameterized family of probability
distributions that is obtained by fixing the parameters of a neural network model and
changing its input features. Through the Fisher-Rao distance (see [5, 80] and references
therein), it is possible to measure the dissimilarity between two probability models
within this family by calculating the geodesic distance between two points on the learned
manifold. This measure has been successfully applied to the OOD detection problem
in [38] and to the adversarial robustness probelm in [79].

We apply two different formulations of the Fisher-Rao (FR) distance measure. For
the logits layer, that is l = L, we use expression (1.1), and let [79]:

dFR−Logits(x, x
′; θ̂(z), δ) = 2 arccos

∑
y′∈Y

√
fθ̂(z),δ(y

′;x)fθ̂(z),δ(y
′;x′)

 , (2.54)

for two inputs x, x′ ∈ X . Using this expression, we compute the Fisher-Rao score,

FRL(x) =
∑
y∈Y

dFR−Logits(x, µy; θ̂(z), δ), (2.55)

where µy is the empirical centroid for the logits of each class y ∈ Y according to the
Fisher-Rao distance (2.54). The empirical centroids were estimated according to the
following expression,

µy = argmin
µ∈R|Y|

1

Ny

∑
i:yi=y

dFR−Logits(xi, µ; θ̂(z), δ) , (2.56)

where Ny is the amount of considered samples with label y. We optimize this expression
where the parameter to be tuned is µ in the logits space. Before the optimization
procedure for class y ∈ Y begins, µ is initialized as the y-th standard basis vector of
R|Y|. For each class, we minimize the expression in equation (2.56), selecting ADAM as
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gradient descent optimizer, using 1000 epochs with a fixed learning rate equal to 10−2

for each model and dataset involved in our empirical evaluation. The parameters µy are
estimated separately over a set of samples belonging to the training set and over a set
of samples that do not belong to the training set so that we can compute the distance
in distribution to samples inside and outside the training set, respectively.

For the intermediate layers (latent code), i.e. l ∈ {1, . . . , L − 1}, since their out-
puts are not directly interpretable as distributions, it is possible to define a set of
class-conditional Gaussian distributions with diagonal covariance matrix Σl and class-
conditional mean µ̂y,l. The mean is computed as in (2.49), while the diagonal elements
of the covariance matrix Σl are,

(Σl)j,j =
1

N

∑
y∈Y

∑
i:yi=y

((
ŷθ̂(z) l(xi)

)
j
− (µ̂y,l)j

)2

, (2.57)

where j ∈ {1, . . . , J}, J denotes the size of the l-th intermediate layer and, with Ny
being the amount of samples in class y, N =

∑
y Ny. The Fisher-Rao distance ρFR

between two arbitrary univariate Gaussian pdfs N1 and N2 with parameters (µ1, σ1)
and (µ2, σ2) respectively, is given by,

ρFR ((µ1, σ1), (µ2, σ2)) =
√
2 log

∥∥∥( µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∥∥∥+ ∥∥∥( µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∥∥∥∥∥∥( µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∥∥∥− ∥∥∥( µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∥∥∥ ,
(2.58)

where ∥ · ∥ denotes the 2-norm in R2. The Fisher-Rao distance dFR−Gauss between two
multivariate Gaussian pdfs with diagonal standard deviation matrix is derived from the
univariate case and is given by,

dFR−Gauss ((µ,Σ), (µ
′,Σ′)) =

√√√√ J∑
j=1

ρFR
(
(µj ,Σj,j), (µ′

j ,Σ
′
j,j)
)2
, (2.59)

where µ, µ′ ∈ RJ and Σ,Σ′ ∈ RJ×J are diagonal, positive definite matrices.
Finally, a score based on dFR−Gauss can be derived by applying the notion of Fisher-

Rao distance between the candidate sample x and the closest class-conditional diagonal
Gaussian distribution. We obtain,

FRl(x) = min
y∈Y

dFR−Gauss ((x,Σl), (µ̂y,l,Σl)) , (2.60)

where µ̂y,l and Σl are given in (2.49) and (2.57), respectively. Similarly to the concept
reported in Section 2.3.4 (cf. (2.52)), the quantities Σl and µ̂y,l can be empirically esti-
mated using training data (resulting in FRin l(x)), or test data (resulting in FRout l(x)).
The same reasoning can be applied to (2.55), allowing us to reduce these scores to

the ratio
FRl

out(x)

FRl
in(x)

. Once again, taking a cue from Section 2.3.4, these ratio scores are

aggregated,

ϕ(x, θ̂(z)) =

L∑
l=1

wl
FRout l(x)

FRin l(x)
, (2.61)

using logistic regression to compute the aggregation weights as in (2.53).
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2.4 Attribute Inference Attacks

The idea of this section is to illustrate how AIAs can be formalized within our framework
and how membership inference strategies can translate to the attribute inference problem.
Following Definition 5, the attacker has access to side information s, which includes
the non-sensitive attributes v of the target sample, and their goal is to determine the
sensitive attribute t. We will take the same approach as we did for MIAs and determine
the target (sensitive) attribute by choosing the most likely value according to some
criteria. Thus, each criteria will determine a AIAs strategy. The Gradient and Loss
strategies are inspired by similar strategies from the membership inference literature
[74, 90].

Softmax Response: The intuition behind this attack is that a model is more
confident on samples that were part of its training. Therefore, by choosing the correct
value t, the model will maximize its output for the predicted label. Note that this
criteria does not care about the model making the right prediction. The side information
given to the attacker are the non-sensitive attributes, s = v. This strategy chooses the
sensitive attribute that outputs the highest score, i.e.,

φ(v, θ̂(z)) = argmax
t∈T

[
max
y′∈Y

fθ̂(z) (y
′; (v, t))

]
. (2.62)

Accuracy: In contrast to the previous one, this strategy chooses the sensitive
attribute that produces the right prediction with the highest score. This is the clos-
est to the strategy proposed by [32]. The side information given to the attacker

are the non-sensitive attributes and the label, s = (v, y). Define set X̂yθ̂(z) ≜{
x ∈ X : argmaxy′∈Y

(
fθ̂(z)(y

′;x)
)
= y
}
, then,

φ(v, y, θ̂(z)) = argmax
t∈T : x∈X̂

yθ̂(z)

[
max
y′∈|Y|

fθ̂(z)
(
y′; (v, t)

)]
. (2.63)

Loss: This attack strategy assumes that the target sample was part of the training set
of the target model. During training, the target model minimizes the loss over samples
in its training set. Thus for a ‘real’ sample, i.e. a sample with the correct t value,
the loss should be at a minimum. The side information given to the attacker is the
non-sensitive attributes and the label: s = (v, y). This strategy chooses the sensitive
attribute that minimizes the loss, i.e.,

φ(v, y, θ̂(z)) = argmin
t∈T

ℓ
(
ŷθ̂(z) ((v, t)) , y

)
. (2.64)

Gradient: Similar to the previous strategy, the assumption here is that the target
sample was part of the training set of the target model. Near a minimum of the loss
function, the norm of its gradient with respect to its model parameters should approach
0; the attacker exploits this knowledge for the present attack strategy. While the
previous attacks only make use of the output of the model or the value of its loss, the
present attack makes explicit use of its parameters, thus being considered a white-box
attack. The side information given to the attacker are the non-sensitive attributes and
the label, s = (v, y). This strategy chooses the sensitive attribute that minimizes the
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gradient norm, i.e.,

φ(v, y, θ̂(z)) = argmin
t∈T

∥∥∥∇θ̂(z)ℓ(ŷθ̂(z)((v, t)), y)∥∥∥2
2
. (2.65)

In Section 3.4 we test these strategies against a model trained on the PenDigits
dataset. In this experiment, the model is trained to identity digits using, among other
attributes, the identity of the writer. After training, the identities of the writers are
removed from the dataset and the attacker is asked to recover those identities from
the incomplete samples plus the target model. As shown in our experiments, attribute
inference strategies inspired from membership inference can be effective at recovering
sensitive information from a dataset where this information has been removed.
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Chapter 3

Experiments

The aim of this chapter is to illustrate and provide empirical evidence for the ideas and
results presented in the previous chapter. The first part of the chapter is dedicated to
illustrating our theoretical results. We start by considering a simple scenario, linear
regression with Gaussian data, which allows to estimate the performance of the Bayesian
attacker and its lower bound connecting to the generalization gap of the target model.
Following these experiments, we apply our theoretical results in a more complex scenario;
namely, DNNs for image classification. Although this scenario does not allow us to
compute the success rate of the Bayesian attacker, we can still compute its lower bound
which connects to the generalization gap of the target model.

The second part of this chapter focuses on finding the most effective MIA strategy
in practice. For this purpose, we evaluate a wide array of MIA strategies by launching
attacks against pre-trained state-of-the-art models for image classification and comparing
their performance.

Starting off, Section 3.1 explains the datasets and target models used in the experi-
ments of the following sections. The theoretical results presented in section Section 2.1
are illustrated in Section 3.2, while the membership inference strategies presented
throughout Sections 2.2 and 2.3 are evaluated and compared in Section 3.3. Finally,
the attribute inference strategies presented in Section 2.4 are evaluated in Section 3.4.
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3.1 Datasets and Target Models

In this section we describe the datasets and target models used in our experiments.

3.1.1 Datasets

MNIST. Published in [62]. The dataset contains 70k 28× 28 pixels, grayscale images
of hand-written digits split amongst 10 different classes. The classes correspond to
the digits from 0 to 9. In standard libraries, such as PyTorch [76], this dataset is
divided into a training set containing 60k images and a test set containing 10k images.
The standard training set provided by PyTorch is used to train the target models we
consider, the rest is used as outside-the-training-set data.
Fashion MNIST. This dataset was first published in [105]. Similar to MNIST, it
contains 70k 28× 28 pixels, grayscale images split amongst 10 different classes. In this
case the classes correspond to different types of clothing items, such as ‘shoe’ or ‘bag’.
The splitting of the dataset in standard libraries is the same as for MNIST, with a
training set containing 60k images and a test set containing 10k images. The standard
training set provided by PyTorch is used to train the target models we consider, the
rest is used as outside-the-training-set data.
CIFAR10 and CIFAR100. These datasets are a standard benchmark for image
recognition tasks [59]. They contain 60k 32×32 pixels, color (RGB) images split amongst
10, 100 distinct classes, respectively. The classes correspond to different animals or
objects, e.g. ‘bird’ or ‘truck’. In standard libraries these datasets are usually divided
into a training set containing 50k images and a test set containing the remaining 10k
images. The standard training set provided by PyTorch is used to train the target
models we consider, the rest is used as outside-the-training-set data.
PenDigits The dataset [27] was taken by asking participants to write digits from 0 to
9 on a tablet. The original data contains variable-length time series that correspond to
the position of the pen on the tablet over time. We pre-process the data to make the
length of the time series uniform (length 32). Since the capture rate of the tablet is
uniform, we can infer the time that it took to write a digit by the length of the original
series. We keep this information, along with the number of strokes that were used to
write the digit and the identity of the writer. Thus, each sample from this dataset
contains a multivariate time series with the coordinates of the pen, a float indicating
the total time of recording, an integer number indicating the number of strokes and
a one-hot-encoding of the identity of the writer. For attribute inference experiments,
the whole dataset of 11990 samples is used as a pool of training samples, from which
training sets can be selected. For membership inference, the dataset is split into a
pool of 8k training samples and a pool of 3990 test samples. In this case, the training
pool is used to select a training set for the target model and the test pool is used as
outside-the-training-set data.

3.1.2 Target Models

Custom DNNs. The target model for the experiments of Section 3.2.2 is a Deep
Neural Network with 4 convolutional layers and 3 fully connected layers. For CIFAR10
the model has a total of 439722 parameters, while for MNIST and Fashion MNIST it
has only 376714. The loss used for training is the mean squared error (MSE) between
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the soft probabilities and the one-hot-encoded labels. The model is trained for up to
150 epochs using the Adam optimizer [56] with learning rate 5 · 10−3. The batch size
used for training the models is 200 (this represents the whole training set when the
total number of samples in the training set is equal to 200). An early stop criteria
compares the current loss over the training set to the total loss after the previous epoch,
and stops training if the difference is below 10−3. The number of epochs of training
can change drastically depending on the size of the training set.
State-of-the-art models for image recognition. We consider popular models for
image recognition, pre-trained and publicly available1. Namely, the models considered
are AlexNet [60], ResNet [42], ResNext [106] and DenseNet [46], trained for image
classification on CIFAR100. These are the same pretrained models considered in
previous works that evaluate the performance of MIA strategies [74, 85].
DNN for PenDigits classification. The model is a DNN trained to classify hand-
written digits. The input to the network consist of two time series (one for each
coordinate) indicating the position of the pen over time, an integer indicating the
number of strokes, a float between 0 and 1 indicating the length of the original sequences
and a one-hot-encoding of the identity of the writer. The latter is considered as the
sensitive attribute, while the other inputs are considered non-sensitive.

The target model possesses 4 fully-connected layers and a total of 4650 parameters.
The loss for training is the MSE between the soft probabilities and the one-hot-encoded
labels; this is a bounded loss function, allowing us to use Theorem 2 to lower bound
the success rate of the Bayesian attacker. The model is trained with Adam optimizer
(learning rate 5 · 10−3) for up to 2500 epochs. An early stop criteria compares the
current loss over the training set to the total loss after the previous epoch, and stops
training if the difference is below 10−4.

1Model implementations, pre-trained weights and code to train the models available at https:

//github.com/bearpaw/pytorch-classification

54

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification


3.2 Empirical Assessment of the Bounds

The aim of this section is to illustrate the theoretical results from Section 2.1 and how
they can be used to assess the privacy of a ML model in practice. We propose a setup
where the target model is a linear regression algorithm trained on synthetic Gaussian
data. The simplicity of this setup allows to compute several important quantities, such
as the generalization gap and the error incurred by the Bayesian attacker, in closed
form. This in turn allows to apply Theorem 1 directly to assess the privacy of the
model. It is important to remember that privacy means nothing without taking into
account the utility of the trained model. A model that is not trained will present no
privacy risks, but it will also provide no utility. In view of this remark, we measure the
accuracy and generalization gap of the trained model along with its privacy, to have a
complete picture of the trained model.

To see how these results translate to a more realistic scenario, we perform similar
experiments on a DNN trained for image classification. The complexity of the target
model forces us to measure the generalization gap in an empirical way, rather than
being able to compute it in closed form. It also results impossible to compute the
error incurred by the Bayesian attacker in closed form in this setup. To circumvent
this difficulty, we implement state-of-the-art membership inference strategies and use
the success rate achieved by these strategies as a surrogate for the success rate of
the Bayesian attacker. Since the loss function for this model is bounded, we are able
to compute the lower bound on the success rate of the Bayesian attacker given by
Theorem 2 and compare it to the success rate of the implemented MIA strategies.

3.2.1 Linear Regression on (Synthetic) Gaussian Data

The following example allows us to illustrate how the theoretical results from Section 2.1
might be used to assess the privacy guarantees of a specific model. We implement the
Bayesian attacker from Theorem 1 and estimate its success probability to monitor the
privacy leakage of the model. Empirically, we observe that both the success rate of
the attacker and the generalization gap of the model are a function of the number of
training samples; thus, we study the variation of both of these quantities as we increase
the number of training samples. Second, since the loss is tail-bounded exponentially,
we use Theorem 4 to derive lower bounds on the success probability of the attacker.
Lastly, we utilize (2.20) from Theorem 5 to upper bound the success probability of the
Bayesian attacker.

For i ∈ [n], let xi be a fixed vector on Rd and for a fixed vector β ∈ Rd, let
Yi = βTxi +Wi with E[Wi] = 0 and E[W 2

i ] = σ2 <∞ for i ∈ [n]. The training set is
z = {y1, . . . , yn}, a realization of Yi for each i ∈ [n]. The function space F consists of
linear regression functions fθ(xi) = θTxi for θ ∈ Rd and the deterministic algorithm A
minimizes squared error on the training set and thus yields2 θ̂(y) = (xxT )−1xyT and
the associated decision function fθ̂(y)(xi) = yxT (xxT )−1xi. Using squared error loss,

ℓ(y, y′) = (y − y′)2, we obtain the generalization gap,

EG(A) =
2d

n
σ2 , (3.1)

2Let x be the [d × n] matrix x = (x1, x2, . . . , xn). Similarly, y = (y1, y2, . . . , yn) and W =
(W1,W2, . . . ,Wn) are [1× n] vectors.
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A derivation of this formula is presented in E. Assuming the noise W to be Gaussian,
the scalar response Y = βTx+W then also follows a Gaussian distribution, with W a
row vector of i.i.d. components. Similarly, the model parameters θ̂(Y) are normally
distributed. Now choose a test sample SJ = T (YJ) + (1 − T )(Y ′

J), where J is an
index in [n], YJ is the J − th component of the (random) training set and Y ′

J is drawn
independently of the training set. Assuming a Bernoulli 1/2 prior on the hypothesis T ,
the success probability of the Bayesian attacker φ⋆ is given by

PSuc(φ
⋆) = 1− 1

2

[
ϵ0
(
T̂ (1)

)
+ ϵ1

(
T̂ (1)c

)]
, (3.2)

with the Type-I and Type-II errors defined by (2.6), and the optimal decision region

T̂ (1) defined by (1.7). With posteriors defined by,

pSJJθ̂|T (s, j, θ|0) =
1

n
Q(θ)pYj

(s) , (3.3)

pSJJθ̂|T (s, j, θ|1) =
1

n
Qj(θ|s)pYj

(s) . (3.4)

The index j indicates the feature vector xj from which the test sample s is generated.
Q(θ) is the distribution of the model parameters conditioned to T = 0. It is independent
of the test sample s and of the index j. Qj(θ|s) is the distribution of the model
parameters conditioned to T = 1. Since, under this hypothesis, the attacker assumes s
is one of the samples in the training set, this conditional distribution depends on the test
sample s and its corresponding index j. The distribution of the test sample pYj

is defined

by pYj
( · ) ≜ N ( · ;βTxj , σ2). Q( · ) and Qj( · |s) are defined by Q( · ) ≜ N ( · ;β, σ2x−1)

and Qj( · |s) ≜ N
(
· ;β + x−1xj(s− xTj β), σ2x−1(Id×d − xjxTj x−1)

)
, respectively, where

x ≜ xxT . These distributions are derived in E.
The success probability of the Bayesian attack strategy in Theorem 1 is given

by (3.2). In our experiments we perform a Monte Carlo estimation of the integrals
in (2.6), by randomly drawing T , s and θ. The posterior distributions can be computed
in closed form with the above definitions. Since the loss is exponentially tail-bounded,
we can apply Theorem 4 to obtain the lower bound

PSuc(φ
⋆) ≥ 1

2
+

d

2n

σ2

Rmax
− C(Rmax, σ), (3.5)

where we used (3.1) and C(Rmax, σ) is defined in expression (2.17). Rmax can be chosen
to maximize the upper bound in this expression. In our experiments, we choose the
optimal Rmax using the golden section search algorithm. Furthermore, from (2.20) we
have,

I
(
SJ ; θ̂(Y)

∣∣T ) ≥ dKL

(
PSuc(φ)

∥∥∥ max
t∈T

pT (t)
)
. (3.6)

Note that I
(
SJ ; θ̂(Y)

∣∣T ) ≥ I(T ; θ̂(Y)
∣∣SJ). The mutual information between the testing

sample and the model parameters given the sensitive attribute, I
(
SJ ; θ̂(Y)

∣∣T ), can be
explicitly computed in this setup; the details of this computation are relegated to E.
Fixing the prior on the hypothesis T to a Bernoulli 1/2, we can utilize (3.6) to find
an upper bound on the success probability of the Bayesian attacker. This is done by
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Algorithm 5 Estimate success rate of the attacker
1: Input: feature vectors x, training set size n
2: Draw t uniform in {0, 1}
3: Draw j uniform in [n]
4: y←− βTx+W
5: if t then
6: s←− yj
7: else
8: s←− βT xj +W
9: end if
10: θ ←− (xxT )−1xyT

11: return p
SJJθ̂|T (s, j, θ|1) > p

SJJθ̂|T (s, j, θ|0) XNOR t

searching for the success rate PSuc(φ) that makes the l.h.s. of (3.6) equal to its r.h.s.
Namely, the golden section search algorithm is used to minimize the square distance
between the mutual information and the KL-divergence with respect to PSuc(φ).

Algorithm 5 details our simulations to estimate the success rate of the Bayesian
attacker. It returns ‘1’ when the attacker successfully predicts whether the test sample
s was part of the training set or not, and ‘0’ otherwise. In our experiments we vary n to
study how the generalization gap and success rate of the attacker evolve as a function of
the number of training samples. The dimension of the feature space is fixed to d = 20.
For each value of n, we fix x and we repeat (10k times) Algorithm 5 to estimate the
success rate of the attacker. The feature vectors x are generated i.i.d. and then fixed
for each value of n. Additionally, for n, we compute the generalization gap (3.1), which
is used to compute the lower bound (3.5). We also compute the Mutual Information in
the l.h.s. of (3.6), which is used to compute the upper bound on the success probability
of the attacker.

Figure 3.1 (Top) shows the success rate (SR) of the Bayesian attacker as a function
of the number of samples in the training set n. Along with it is the lower bound (LB)
provided by Theorem 4 and the upper bound (UP) provided by equation (3.6). The
lower bound predicts the behavior of the SR as a function of the generalization gap.
For large n (small generalization gap), the success rate and its lower bound approach
0.5, the success rate of an attacker that only uses knowledge on the prior of T . While
the lower bound seems loose in this setting, it is worth noting that we compare with
the best possible strategy. Nonetheless, this example shows that the bounds are not
vacuous and they may serve as a framework for understanding the connection between
information leakage and generalization in ML. On the other hand, the upper bound
provides a strong privacy guarantee. In cases where the success rate of the Bayesian
attacker cannot be explicitly computed, its upper bound is the best privacy guarantee
that can be provided. Additionally, Fig. 3.1 (Bottom) shows the mutual information
(l.h.s. of (3.6)) that is used to compute the upper bound.

3.2.2 Examples on DNNs

We train DNNs on various datasets to study the interplay between generalization gap
and the success rate of three different black-box MIA strategies. We compare the success
rate of the different attack strategies to the lower bound provided by Theorem 2 to
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Figure 3.1: Dependence of success rate of the Bayesian attacker, generalization gap, and
mutual information on the number of training samples n, using Gaussian data. Top:
Success Rate (SR), Lower Bound (LB), and Upper Bound (UB). Bottom: Mutual
Information (MI), Upper Bound (UB; axis labels on the right).
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Softmax Response Loss Modified Entropy [93] [109] [90]
Attack complexity One query One query One query One query Thousands of queries and

train shadow models
Required Knowledge Soft Probabilities Loss value Soft Probabilities Training Loss Additional Samples

PPV MNIST 0.444± 0.000 0.446± 0.000 0.444± 0.000 0.505 0.517
PPV CIFAR-10 0.446± 0.001 0.451± 0.001 0.449± 0.001 0.694 0.72

PPV Fashion-MNIST 0.445± 0.000 0.447± 0.001 0.446± 0.001 – –
Recall > 0.99 > 0.99 > 0.99 > 0.99 > 0.99

Table 3.1: Comparison of the basic MIA strategies to previous black-box MIAs from
the literature. Precision (PPV; Positive Predictive Value) and recall are reported for
CIFAR10, MNIST and Fashion MNIST.

Algorithm 6 Estimate success rate of the Attacker
1: Require: Target model f

θ̂(z)
, score criteria ϕ, threshold γ, training set, test set.

2: Draw t uniform in {0, 1}
3: if t then
4: Draw s uniform from the training set.
5: else
6: Draw s uniform from the test set.
7: end if
8: return ϕ(s, θ̂(z)) > h XNOR t

assess the quality of the bound. Our datasets for these experiments are MNIST, Fashion
MNIST and CIFAR10. Details about datasets and the target model are provided in
Section 3.1.

The loss function used for training and for computing the generalization gap is
the MSE loss between the one-hot encoded labels and the soft probabilities output
by the network. Note that this loss function is bounded by 2. While Cross-Entropy
is a more common choice for loss function, it is not bounded. On the other hand
MSE has a negligible effect on performance and allows us to apply Theorem 2 to lower
bound the success probability of the Bayesian attacker. However, in this setup it results
impossible to estimate the success probability of the Bayesian attacker, due to the high
number of model parameters. To circumvent this limitation and assess the quality of
the bound provided by Theorem 2, we implement the Softmax response, Loss, and
Modified Entropy attack strategies for membership inference described in Section 2.2,
and compare their success rate to the bound.

To compute the success rate of the given attack strategies we draw the target
concept t uniformly in {0, 1} and then draw the target sample from the training set
or the test set of the target model accordingly. This part of the procedure is detailed
in Algorithm 6. Note that Algorithm 6 outputs 1 if the attacker infers membership
correctly and 0 otherwise. Then, the success rate of the attacker is computed by simply
counting the number of times it succeeds over the total number of trials, which is set to
10k. Experimentally, we found that a threshold of h = 0.8 works best across different
values of n.

The number of samples in the training set, n, varies in our experiments. For fixed
n, that many samples are uniformly randomly picked from a pool of training samples.
A test set is also fixed to measure the accuracy of the trained model and to empirically
compute the generalization gap. In the case of MNIST and Fashion MNIST, the training
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set is picked from a pool of 60k samples. A separate pool of 10k samples is fixed as the
test set. For CIFAR10, the pool of training samples is of size 50k, and the pool of test
samples is of size 10k.

We vary the size n of the training set and observe how this affects the success
rate of attacks, the generalization gap and consequently the lower bound derived from
Theorem 2. For a fixed value of n, the number of samples in the training set, the success
rate of the Softmax response (SR), Loss (LS), and Modified Entropy (ME) attacks
along with the lower bound (LB) provided by Theorem 2 and the accuracy on the test
set (Acc) are obtained empirically in 100 runs. The results over different realizations of
the target model are averaged to produce a single value for each n.

The results for CIFAR10, MNIST and Fashion MNIST are reported in Figure 3.2.
The lower bound predicts the behavior of the success rate of the MIAs as a function of
the generalization gap; both approach 0.5 (the success rate of a random guess) as the
generalization gap vanishes. Note that it is possible for the success rate of the Softmax
Response attack to go below the lower bound of the Bayesian attack. For some large
n values of MNIST the average success rate of the attacker goes below 0.5. In this
region the attacker cannot do better than a random guess and sometimes its success
rate goes below 0.5, which implies the model can be more confident in samples outside
the training set. This is an artifact of the random sampling of the training set and the
training of the model.

Table 3.1 compares the strategies considered in our experiments to other previous
MIA strategies found in the literature. The three strategies here considered do not
require access to the model parameters or additional samples, and they only need to
query the model once, while the other strategies [109, 90] require extra information or
significantly more computing power. The attack is performed against target models
with a training set of 8000 samples, to match the setup used in [109, 90]; however, the
architectures of the target models, as well as the (random) selection of training samples
differ in all three setups.
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Figure 3.2: Success rate of the Softmax Response (SR), Loss attack (LS), Modified
Entropy attack (ME), lower bound (LB) and accuracy (Acc; axis labels on the right)
depend on the number of training samples n. Top: CIFAR10; Middle: MNIST;
Bottom: Fashion MNIST.
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Attack Strategy AlexNet (10) DenseNet (10) ResNet (10) AlexNet (100) DenseNet (100) ResNet (100) ResNext (100)

Baseline 57.32± 0.17 51.64± 0.09 52.78± 0.09 74.31± 0.31 58.60± 0.13 60.80± 0.26 58.75± 0.19
Softmax Resp. 54.94± 0.38 56.93± 0.40 53.35± 0.38 68.31± 0.31 74.56± 0.47 60.42± 0.34 79.08± 0.23
Mod. Entropy 57.96± 0.35 56.61± 0.12 54.78± 0.30 77.56± 0.21 76.21± 0.29 63.03± 0.39 79.64± 0.20
Loss 57.89± 0.35 57.04± 0.39 53.63± 0.35 77.40± 0.19 74.82± 0.47 62.85± 0.39 79.23± 0.23
Grad. Norm x 57.98± 0.35 57.05± 0.42 53.65± 0.35 76.25± 0.20 74.82± 0.46 62.86± 0.37 79.12± 0.24
Grad. Norm w 57.99± 0.34 57.11± 0.39 53.64± 0.35 77.51± 0.22 74.95± 0.46 63.08± 0.39 79.32± 0.22
Grad. x 58.69± 0.39 55.55± 0.48 54.88± 0.38 76.61± 0.29 73.65± 0.56 63.78± 0.58 76.34± 1.25
Grad. w 58.72± 0.41 55.52± 0.30 56.37± 0.43 78.99± 0.29 73.43± 0.76 63.60± 0.38 76.48± 0.28
Int. Outputs 50.91± 0.50 53.38± 0.55 51.08± 0.56 50.41± 0.40 52.48± 1.11 50.71± 0.45 78.70± 0.42
White-Box 51.64± 1.02 50.32± 0.16 50.65± 0.43 74.47± 5.91 53.56± 2.49 52.65± 0.93 52.94± 1.65
Ensemble Attacker 59.57± 0.86 56.50± 1.88 53.95± 0.75 78.94± 0.95 74.91± 0.46 63.86± 1.12 79.26± 0.22
Adv. Distance l2 57.74± 0.22 51.61± 0.36 53.01± 0.37 73.56± 0.31 58.13± 0.36 60.09± 0.34 58.30± 0.39
Adv. Distance l∞ 57.51± 0.19 51.66± 0.46 52.95± 0.39 73.76± 0.19 58.24± 0.33 60.08± 0.35 57.93± 0.31
Div. Metric 59.81± 0.0 57.35± 0.83 53.98± 0.62 77.67± 0.73 75.19± 0.83 63.71± 0.77 79.25± 0.56
Div. Metric (Learned) 53.14± 0.0 55.35± 1.07 52.06± 0.77 65.60± 0.80 70.89± 0.62 54.48± 0.92 76.45± 0.74
Renyi Div. 56.51± 0.31 56.69± 0.38 54.90± 0.19 76.55± 0.32 76.57± 0.17 62.60± 0.32 80.32± 0.34
Merlin 50.58± 0.23 50.63± 0.26 50.37± 0.27 50.83± 0.34 52.35± 0.34 51.63± 0.38 51.01± 0.35
ODIN 54.86± 0.38 56.34± 0.38 53.31± 0.37 68.27± 0.32 74.10± 0.47 59.99± 0.36 78.99± 0.24
DOCTOR 54.96± 0.38 56.93± 0.40 53.35± 0.38 68.30± 0.30 74.56± 0.47 60.47± 0.34 79.08± 0.23
Mahalanobis 50.72± 0.65 51.01± 1.14 51.45± 0.77 53.09± 2.20 52.52± 1.81 53.29± 0.85 80.63± 1.38
Fisher-Rao 51.87± 0.66 56.29± 0.35 51.74± 0.55 58.29± 0.61 67.88± 0.39 54.50± 0.44 78.69± 0.16

Table 3.2: Comparison of different MIA Techniques. The AUROC score (%) on a
balanced evaluation set is reported. 6k samples are uniformly selected from the training
set (members) and 6k samples are uniformly selected from the test set (non-members).
All the data selected is used for evaluation. The models marked (10) are trained on
Cifar10, while the models marked as (100) are trained on Cifar100.

Figure 3.3: Critical Difference Diagram providing the average ranking of different MIA
strategies based on their AUROC score. The average ranking is taken over all the
different scenarios considered, but for each scenario a single value of the AUROC score
is taken (the average over different cross-validation runs).

3.3 Membership Inference Attack Benchmark

Hereafter, we first present the experimental setting for MIAs and then provide numerical
results on real world data. The code necessary to reproduce these experiments is available
in our repository3.

To evaluate a membership inference strategy, two groups of samples are needed:
samples from the training set and samples outside the training set of the target model.
The pre-trained models considered in this work are trained on 50k samples from the
Cifar10 or Cifar100 datasets. The remaining 10k samples constitute the test set, which
is used in our experiments as outside-of-the-training-set data.

The accuracy presented in Table 3.3 is computed by choosing a threshold along
the ROC curve for each strategy. The threshold is chosen in order to maximize the

3https://github.com/ganeshdg95/Leveraging-Adversarial-Examples-to-Quantify-Membersh

ip-Information-Leakage
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Figure 3.4: ROC curves of top performing strategies for membership inference evaluated
against the AlexNet model trained on Cifar100. The curves are plotten of a log-log
scale to emphasizes the performance on the low FPR region.

Figure 3.5: ROC curves of top performing strategies for membership inference evaluated
against the ResNet model trained on Cifar100. The curves are plotten of a log-log scale
to emphasizes the performance on the low FPR region.
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Figure 3.6: ROC curves of top performing strategies for membership inference evaluated
against the DenseNet model trained on Cifar100. The curves are plotten of a log-log
scale to emphasizes the performance on the low FPR region.

Figure 3.7: ROC curves of top performing strategies for membership inference evaluated
against the ResNext model trained on Cifar100. The curves are plotten of a log-log
scale to emphasizes the performance on the low FPR region.
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Attack Strategy AlexNet (10) DenseNet (10) ResNet (10) AlexNet (100) DenseNet (100) ResNet (100) ResNext (100)

Baseline 57.32± 0.17 51.64± 0.09 52.78± 0.09 74.31± 0.31 58.60± 0.13 60.80± 0.26 58.75± 0.19
Softmax Resp. 54.74± 0.27 56.64± 0.20 54.33± 0.33 65.52± 0.33 73.71± 0.28 60.11± 0.24 77.97± 0.21
Mod. Entropy 57.94± 0.28 56.44± 0.12 54.79± 0.30 74.50± 0.27 74.07± 0.23 62.69± 0.32 78.15± 0.20
Loss 57.91± 0.26 56.79± 0.18 54.79± 0.29 74.44± 0.29 74.08± 0.26 62.66± 0.31 78.18± 0.21
Grad. Norm x 57.91± 0.28 57.31± 0.12 54.88± 0.29 73.64± 0.30 74.40± 0.24 62.96± 0.30 78.33± 0.18
Grad. Norm w 58.12± 0.29 57.19± 0.15 54.86± 0.30 75.08± 0.31 74.4± 0.27 63.01± 0.32 78.43± 0.20
Grad. x 57.93± 0.27 54.30± 0.38 54.85± 0.31 73.64± 0.31 70.16± 0.74 62.94± 0.29 73.31± 1.68
Grad. w 57.99± 0.28 55.02± 0.52 55.21± 0.25 75.03± 0.30 72.14± 0.82 62.99± 0.31 72.49± 0.29
Int. Outputs 51.14± 0.40 52.64± 0.42 51.22± 0.44 50.89± 0.21 52.24± 0.70 51.07± 0.37 73.02± 0.36
White-Box 51.53± 0.70 50.69± 0.10 50.83± 0.25 70.64± 5.16 52.99± 2.10 52.22± 0.64 52.40± 1.13
Ensemble Attacker 58.10± 0.28 56.84± 0.96 54.93± 0.29 75.24± 0.30 74.39± 0.26 63.04± 0.32 78.39± 0.20
Adv. Distance l2 57.37± 0.17 51.81± 0.10 52.93± 0.12 74.33± 0.31 58.64± 0.11 60.81± 0.26 58.77± 0.18
Adv. Distance l∞ 57.38± 0.19 51.83± 0.08 52.84± 0.09 74.32± 0.31 58.60± 0.12 60.81± 0.26 58.77± 0.17
Div. Metric 59.53± 0.0 57.14± 0.59 54.80± 0.40 74.66± 0.72 74.55± 0.55 62.85± 0.62 78.22± 0.52
Div. Metric (Learned) 55.39± 0.0 55.78± 0.46 53.55± 0.40 66.07± 0.80 69.25± 0.81 57.49± 0.63 74.13± 0.78
Renyi Div. 56.25± 0.19 56.52± 0.26 54.56± 0.16 73.53± 0.27 74.17± 0.29 62.41± 0.11 78.13± 0.16
Merlin 50.72± 0.21 51.05± 0.22 50.64± 0.18 50.90± 0.27 52.24± 0.22 51.54± 0.35 51.44± 0.26
ODIN 54.68± 0.30 55.62± 0.22 54.16± 0.33 65.55± 0.38 72.58± 0.29 59.69± 0.28 77.28± 0.21
DOCTOR 54.73± 0.28 56.64± 0.20 54.33± 0.32 65.52± 0.34 73.71± 0.29 60.13± 0.24 77.97± 0.21
Mahalanobis 51.13± 0.73 51.37± 0.96 51.58± 0.33 52.73± 1.61 52.19± 1.19 52.97± 0.71 75.43± 1.28
Fisher-Rao 51.74± 0.48 55.40± 0.25 51.64± 0.42 57.07± 0.46 64.72± 0.34 53.65± 0.42 74.54± 0.30

Table 3.3: Comparison of different MIA Techniques. The best accuracy (%) on a
balanced evaluation set is reported. 6k samples are uniformly selected from the training
set (members) and 6k samples are uniformly selected from the test set (non-members).
All the data selected is used for evaluation. All the data selected is used for evaluation.
The models marked (10) are trained on Cifar10, while the models marked as (100) are
trained on Cifar100.

accuracy. A similar process is done in [85], where 80% of the data is used to determine
the threshold that maximizes the accuracy, and then the accuracy is reported for the
other 20% of the data.

We perform membership inference attacks using a total of 21 different strategies,
which are listed and described throughout Sections 2.2 and 2.3. The Baseline, Softmax
Response, Modified Entropy, Loss, ODIN, and DOCTOR strategies are black-box
strategies, since the attacker only requires access to the target sample, its label and
the output of the model (either the logits or Softmax response of the model). Note
that this can be achieved with a single query to the target model, without need of
additional samples from inside or outside the training set. On the other hand, the
Gradient Norm w, Gradient Norm x and Adversarial Distance strategies are white-box,
as the attacker requires access to the model parameters in order to compute gradients
of the loss function. The Merlin strategy is black-box but it requires many queries
to the target model. The rest of the listed strategies, namely Gradient w, Gradient
x Intermediate Outputs, White-Box, Ensemble Attacker, Divergence Metric, Renyi
Divergence, Mahalanobis and Fisher-Rao, require additional samples from the training
set and additional samples from outside of the training set of the target model, in
addition to white-box access. Strategies that require additional samples are provided 4k
samples selected uniformly from the training set as in-training and 4 samples selected
uniformly from the test set of the target model as outside-of-the-training-set data.

In our analysis we consider a balanced evaluation set and report the AUROC score
(Table 3.2), the maximum accuracy (Table 3.3) and the false positive rate at true
positive rate 95% (3.4) obtained for each strategy against each target model considered.
In this setting, subsets of 6k samples are selected uniformly from the training set and
the test set of the target model as in-training and outside-of-the-training-set data,
respectively. Since the choice of these subsets influences our results, the experiments
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Attack Strategy AlexNet (10) DenseNet (10) ResNet (10) AlexNet (100) DenseNet (100) ResNet (100) ResNext (100)

Baseline 91.75± 0.24 0.0± 0.0 99.44± 0.07 92.50± 0.38 99.98± 0.01 95.76± 0.20 99.99± 0.00
Softmax Resp. 97.45± 0.25 99.99± 0.00 98.58± 0.20 98.67± 0.17 100.0± 0.0 98.95± 0.10 100.0± 0.0
Mod. Entropy 99.63± 0.07 100.0± 0.0 99.71± 0.04 100.0± 0.0 100.0± 0.0 99.92± 0.02 100.0± 0.0
Loss 99.71± 0.05 100.0± 0.0 99.73± 0.04 100.0± 0.0 100.0± 0.0 99.94± 0.03 100.0± 0.0
Grad. Norm x 99.03± 0.07 100.0± 0.0 99.63± 0.06 99.74± 0.05 100.0± 0.0 99.76± 0.05 100.0± 0.0
Grad. Norm w 99.47± 0.08 100.0± 0.0 99.68± 0.05 99.93± 0.02 100.0± 0.0 99.87± 0.03 100.0± 0.0
Grad. x 98.98± 0.10 99.96± 0.06 99.61± 0.06 99.74± 0.05 100.0± 0.0 99.76± 0.05 100.0± 0.0
Grad. w 99.49± 0.07 100.0± 0.0 99.68± 0.06 99.94± 0.02 100.0± 0.0 99.86± 0.03 100.0± 0.0
Int. Outputs 95.11± 0.35 97.03± 0.41 95.29± 0.31 94.74± 0.38 95.65± 0.64 94.92± 0.26 99.99± 0.00
White-Box 95.78± 0.67 95.38± 0.38 95.57± 0.32 99.69± 0.83 96.78± 1.28 96.30± 0.70 96.35± 0.93
Ensemble Attacker 99.72± 0.05 100.0± 0.0 99.69± 0.05 99.99± 0.00 100.0± 0.0 99.92± 0.03 100.0± 0.0
Adv. Distance l2 91.75± 0.24 98.37± 0.24 99.44± 0.07 92.50± 0.38 99.98± 0.01 95.76± 0.20 99.99± 0.00
Adv. Distance l∞ 91.75± 0.24 98.36± 0.09 99.44± 0.07 92.50± 0.38 99.98± 0.01 95.76± 0.20 99.99± 0.00
Div. Metric 99.84± 0.0 100.0± 0.0 99.77± 0.14 99.98± 0.04 100.0± 0.0 99.75± 0.31 100.0± 0.0
Div. Metric (Learned) 98.75± 0.0 99.98± 0.03 99.29± 0.26 99.53± 0.21 99.98± 0.03 98.96± 0.26 99.98± 0.03
Renyi Div. 99.18± 0.11 99.99± 0.00 99.57± 0.08 99.99± 0.01 100.0± 0.0 99.94± 0.03 100.0± 0.0
Merlin 94.77± 0.51 94.74± 0.31 84.14± 7.05 93.77± 0.59 94.17± 0.30 95.06± 0.28 94.40± 0.33
ODIN 97.34± 0.29 99.95± 0.02 98.50± 0.16 98.67± 0.18 99.99± 0.01 98.61± 0.11 100.0± 0.0
DOCTOR 97.34± 0.21 99.99± 0.00 98.56± 0.18 98.57± 0.16 100.0± 0.0 99.04± 0.09 100.0± 0.0
Mahalanobis 95.07± 0.31 95.39± 0.45 95.6± 0.50 95.48± 0.79 95.54± 0.48 95.45± 0.75 99.90± 0.19
Fisher-Rao 95.54± 0.52 99.37± 0.14 95.58± 0.33 97.30± 0.28 99.98± 0.03 96.64± 0.33 100.0± 0.0

Table 3.4: Comparison of different MIA Techniques. The FPR at 95% TPR (%) on a
balanced evaluation set is reported. 6k samples are uniformly selected from the training
set (members) and 6k samples are uniformly selected from the test set (non-members).
All the data selected is used for evaluation. All the data selected is used for evaluation.
The models marked (10) are trained on Cifar10, while the models marked as (100) are
trained on Cifar100.

are repeated 10 times, choosing a different subset each time for cross-validation. All
the quantities reported are averaged over these 10 runs of the experiment and the error
reported is the empirical standard deviation. The results of this analysis are reported
in Tables 3.2 to 3.4. Note that the strategies are listed in the tables in the order they
appear in previous sections.

To summarize these results we make use of Critical Difference diagrams, originally
proposed in [24], which provide an average ranking of different methods across different
scenarios based on a performance statistic. In our case the different MIA methods (the
rows on Table 3.2) are ranked based on their AUROC score and the different scenarios
considered are the different target models (the columns on Table 3.2). Thus Fig. 3.3
summarizes the results from Table 3.2. The lower the number in the diagram the higher
the rank and the better the performance is for that method. The Diversity Metric
method has an average rank of 2.57; being the lowest number, it is on average the
best method across the different scenarios considered. Figure 3.3 is generated using
the procedure described in [48], where the average rank comparison is replaced by a
Wilcoxon signed-rank test 4. The thick horizontal line across all methods means that
they are not significantly different in terms of AUROC score, according to the Wilcoxon
test with Holm’s alpha correction (see [48] for more details).

Figures 3.4 to 3.7 show the ROC curves obtained for the top performing methods
against the AlexNet, DenseNet, ResNet, and ResNext models trained on Cifar100,
respectively. The curves are plotted on a log-log scale to emphasize the performance on
the low false positive rate region, after the fashion of [17].

The best performing strategy when no additional samples are available is the

4Code necessary to generate Critical Difference diagrams is available at https://github.com/hfawa
z/cd-diagram
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Modified Entropy strategy, with the Diversity Metric strategy providing a marginal
improvement at the cost of requiring additional samples to learn a suitable diversity
measure. The diversity measure computed in closed form by using additional samples
provides a criteria that is, for the purposes of a binary hypothesis test, equivalent to
that of the Loss.This suggest that the value of the loss might be the optimal criteria
given the output of the model. Statistically, the different in performance between the
Loss strategy and the Diversity Metric strategy is not enough to justify the requirement
of additional data.

Note that the Modified Entropy and Loss strategies perform consistently across
all target models, regardless of how well these generalize, and even surpass the more
resource hungry strategies in most cases. When additional samples are available, the
Diversity Metric and Ensemble strategies are most effective. It is worth to mention that
it might be infeasible for the attacker to obtain enough samples from the training set of
the target model to launch these attacks, in which case Modified Entropy might be a
better alternative.
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3.4 Attribute Inference on PenDigits

To demonstrate the risk of information leakage from ML models, we consider attribute
inference attacks against a model that classifies hand-written digits. We consider the
PenDigits dataset [27], as it contains identity information about the writers, which we
use as the sensitive attribute. The target model is a fully-connected network trained
to classify hand-written digits. Details about the model and its training are provided,
along with information about the dataset and its pre-processing, in Section 3.1. When
performing MIAs, we utilize MSE, which is bounded, as the loss for training. This
allows us to apply Theorem 2.

In our experiments we perform attribute inference attacks using each of the strategies
described in Section 2.4 as we vary n. For each value of n, we randomly uniformly select
100 different training sets drawn from a pool containing a total of 11990 samples. For
each training set we train a model. Subsequently, we apply each attack criteria to 100
training samples of each trained model. The success rate of the attacker is computed
by counting the amount of times the attack is successful. The reported success rate is
an average over different target models. Since there are 44 different writers in the data
set, a random guess would amount to a success rate of approximately 2.3%.

The success rates for each strategy are computed and reported in Figure 3.8 (Top).
For a small training set (100 samples), the attacker has a gain of 25% over a random
guess. This decreases significantly with the size of the training set; however, even for a
large training set, the attacker still has twice as much accuracy as a random guess.

Additionally, we perform MIAs against the same models. The attack strategy
utilized is the Softmax response attack, given in Section 2.2. The procedure used for
these experiments identical to that described in Section 3.2.2, with the exception that
the size of the pool of training samples is of 8k and the size of the pool of test samples
is of 3990. The success rate of the attacker, lower bound on the Bayesian attacker and
accuracy of the model are presented in Fig. 3.8 (Bottom). We can observe that there
is a significant leakage of membership information for low values of n, while this drops
almost to the value of a random guess for large values (n = 8000).
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Figure 3.8: Attribute and Membership Inference Attacks on PenDigits for different sizes
n of training sets. Top: Success Rate of different attribute inference attack strategies;
Bottom: Success Rate of the Softmax Response attack (SR), Lower Bound (LB) and
Accuracy (Acc; axis labels on the right).

69



Chapter 4

Conclusion

In Section 2.1 we presented the Bayesian attacker, which servers as an upper bound for
the success rate of inference attacks. Such an upper bound guarantees the privacy of
ML models, as no other strategy with the same resources and information can hope
to attain a better success rate. Thus, if the Bayesian attacker presents no gain over a
random guess, it is impossible for any other attacker to extract additional information
from the model.

Complementary to this result, we presented a lower bound on the success rate of the
Bayesian attacker, which connects the success rate of the attacker to the generalization
gap of the target model. We found that a model that does not generalize well will be
vulnerable to MIAs. Namely, if the target model suffers from a large generalization gap,
the success rate of the Bayesian attacker is bound to be high. This implies that good
generalization is a necessary condition for privacy. Nonetheless, good generalization does
not guarantee privacy, as we proved by a theoretical example where the generalization
gap can be made arbitrarily close to zero, while the success rate of a membership attack
can be made arbitrarily close to one. Therefore, generalization is a necessary but not a
sufficient condition for privacy.

Additionally, we analyzed the problem from the perspective of Information Theory.
By considering the mutual information between the model parameters and their training
set, we provided a concentration bound on the generalization gap of the target model.
This bound is tighter than similar bounds previously presented in the PAC-Bayes learning
literature, e.g. [8]. We found that the performance of the Bayesian attacker is upper
bounded by the conditional mutual information between the target concept and the
target model’s parameters given the attacker’s side-information. The mutual information
appearing in the latter result is upper bounded by the mutual information appearing
in the former result. From these results we conclude that both the generalization gap
of the target model and the success rate of the Bayesian attacker can be controlled
through the amount of information stored by the model’s parameters about the training
set.

The framework we proposed allowed us to have an overview of the problem and of
the important concepts at play. For instance, we now have a deeper understanding of
the role played by generalization on the vulnerability of the target model. The amount
of information about the target model required to compute the success rate of the
Bayesian attacker makes it unrealistic to implement it as an attack strategy in most
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practical scenarios. Nonetheless, our results can be more easily applied during training
in order to assess the privacy guarantees of ML models. Thus, these theoretical results
can find utility in auditing and defending models against membership inference, rather
than launching MIAs.

In Sections 2.2 and 2.3 we presented an array of strategies for membership inference.
Section 2.2 provides a comprehensive list of MIA strategies present in the literature.
Remark that many of the MIA strategies present in the literature take certain quantities
(e.g. the value of the loss) and use them for training attack models (e.g. [74]). In this
work, we took these quantities and used them directly as criteria to perform membership
inference. This represents an advantage from the point of view of the attacker, as the
attack requires less resources and information. The question that follows is whether the
attack’s performance deteriorates as a result of the diminished resources and information.
As we were able to verify in our experiments, simpler attacks, i.e. those that require no
extra samples or resources for training an attack model, tend to perform better.

We proposed the use of adversarial examples to launch MIAs against ML models.
Empirically, we found the success rate of this strategy to be comparable to the state-
of-the-art in some cases. However, the performance of the strategy in comparison
to strategies such as the Modified Entropy strategy does not justify the requirement
to have white-box access to the model. We proposed the use of diversity measures
for membership inference, which achieves state-of-the-art performance. In a critical
difference diagram, the diversity metric method achieved the highest average ranking
over different target models and datasets. Yet again, the gain in performance over
previous methods does not justify the use of additional samples to compute the desired
diversity measure. In fact, after comparing a wide array of strategies (some from the
literature, some proposed by us), we found that having white-box access to the target
model, having access to additional resources, or having access to samples from the
training set does not translate into a significant gain for the attacker, compared to less
resource hungry methods.

In Section 2.3 we studied the use of OOD detection techniques for membership
inference. We found that, although it is straight forward to apply most OOD detection
techniques in the context of membership inference, the results given by these techniques
are sub-optimal in comparison to other well established MIA methods. In practice,
the difference in distribution between training data and test data is too subtle to be
captured by OOD detection techniques. Our efforts to modify and re-adapt these
methods were insufficient to produce a powerful membership inference strategy. As with
previous methods, we saw that additional information did not result in an advantage
for the attacker.

In Section 3.2, we illustrated how to implement the Bayesian attacker against a
linear regression model trained to classify Gaussian data. Through this experiments we
were able to validate our theoretical results. The success rate of the Bayesian attacker is
lower bounded by a function of the generalization gap of the target model. The specific
form of this bound hinges on the fact that the loss function used to train the target
model in this setup is exponentially tail-bounded. To showcase the possible application
of our framework to more realistic scenarios, we also computed the lower bound of
the Bayesian attacker in the setup of DNNs for image classification. In this case, the
specific form of the bound comes from the fact that the loss function used to train the
models is itself bounded. In both experiments we observed how increasing the amount
of samples in the training set of the target model led to a decrease in the generalization

71



gap and in the success rate of membership inference attacks.
In Section 3.3 we implemented and tested all the MIA strategies listed in Sections 2.2

and 2.3. We empirically determined the Diversity Measure strategy to be the most
effective on average across all scenarios, with the Modified Entropy and Loss strategies
coming close (with little statistical difference) in terms of performance. We hope that
this benchmark serves as a starting point for future works that aim to develop novel
and more powerful MIAs, providing inspiration and a reference point to compare new
strategies. Through our analysis, we determined that even well generalizing models,
such as the DenseNet and ResNext models, are susceptible to MIAs. This verifies our
previous observation that good generalization is a necessary but not sufficient condition
to prevent membership inference.

Empirically, we observed that methods that use additional samples from the training
set or that train an attack model to perform membership inference do not significantly
improve over methods that simply query the target model one time. Despite our
extensive efforts we were not able to come up with strategies that effectively exploit
extra resources and information. This suggests that the most relevant information to
determine membership is concentrated in the output of the last layers of the target
model, which is precisely the information used by methods such as Modified Entropy. As
extensive as experiments can be, it is not possible to prove such conjecture empirically.
An interesting direction for future work would be to provide a formal prove for this
conjecture.

In Section 2.4 we proposed a list of techniques for attribute inference inspired in the
state-of-the-art for membership inference. We found these techniques to be effective
and easily applied in the context of hand-written digit classification with the PenDigits
dataset. Our experiments in Section 3.4 showed that the success rate of AIA can be
tightly correlated to the success rate of MIAs. Given the nature of attribute inference
attacks, it is non-trivial to determine a setup in which all strategies can be tested.
In fact, most of the AIA strategies proposed in the literature are tailored to specific
target models. An interesting, and much necessary direction for research in this field
is to determine a common setup in which different AIA strategies can be tested and
compared.
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4.1 Patents

During the course of my PhD, I did an internship at the Ericsson research center in
France. During this time, I co-authored two patents. The patents have not yet been
published by the time of submission of this manuscript, therefore, I do not have the
liberty to disclose any details about their contents. Nonetheless, we list the patents and
provide a brief description:

• Predictive canary testing. Canary testing is a technique used for testing and
gradually releasing a new version of an application. Canary testing allows live
testing of the new version of the application by releasing it to a small number
of users. Predictive canary testing aims to prevent deterioration in the quality
of service of users that are part of the test group. Our novel technique allows to
predict the behavior of the new version of the software and to control its release
in the context of telecommunications.

• Decision making based on interdependencies between different levels
related to an anomaly in telecommunication networks. Anomaly detection
is vital to ensure quality of service in telecommunications systems. When a
failure occurs, it often propagates through several layers of the system, and the
level at which it is detected is not necessarily the one in which it was produced.
Our solution aims to exploit the interdependencies between different levels in
telecommunications systems to detect anomalies and to determine not only their
origin, but the extent to which they propagate over different levels.
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Appendix A

Experimental Details

Most of the code for the experiments in Sections 3.2.1, 3.2.2 and 3.4 was run on a
Latitude-7400 computer, with an Intel Core i7-8665U CPU @ 1.90GHz x 8 Processor.
Part of the experiments were run on a server with two NVIDIA Quadro RTX 6000
GPUs and an AMD EPYC 7302 16-Core processor.

The code and instructions necessary to reproduce the experiments in Sections 3.2.1,
3.2.2 and 3.4 can be found at https://github.com/anonymus369/Formalizing-

Attribute-and-Membership-Inference.
Most of the code for the experiments in Section 3.3 was run on a cluster with

multiple nodes, each with NVIDIA Quadro RTX 6000 GPUs and an AMD EPYC 7302
16-Core processor.

The code and instructions necessary to reproduce the experiments in Section 3.3 can
be found at https://github.com/ganeshdg95/Leveraging-Adversarial-Examples-
to-Quantify-Membership-Information-Leakage.
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Appendix B

Proof of Proposition 1

We recall the definition of the total variation distance when applied to distributions P ,
Q on a set X ⊆ Rd and Scheffé’s identity [100, Lemma 2.1]

∥P −Q∥TV ≜ sup
A∈Bd

|P (A)−Q(A)| = 1

2

∫
|pX(x)− qX(x)|dµ(x) , (B.1)

with respect to a base measure µ, where Bd denotes the class of all Borel sets on Rd.

Proof. First of all, we prove equality for γ = 1. Let us denote the optimal decision
regions with T ⋆ ≡ T (1) and T ⋆c ≡ T c(1) (cf. Definition 6). Let ϵ0(T ⋆c) and ϵ1(T ⋆)
the Type-I and Type-II errors. Then,

ϵ1(T ⋆) + ϵ0(T ⋆c) =
∫
T ⋆

pθ̂(Z)S|T (θ, s|0) dθds+
∫
T ⋆c

pθ̂(Z)S|T (θ, s|1) dθds

=

∫
T ⋆

min
t∈{0,1}

pθ̂(Z)S|T (θ, s|t) dθds+
∫
T ⋆c

min
t∈{0,1}

pθ̂(Z)S|T (θ, s|t) dθds

=

∫
Θ×S

min
t∈{0,1}

pθ̂(Z)S|T (θ, s|t) dθds

= 1−
∥∥∥pθ̂(Z)S|T (·|1)− pθ̂(Z)S|T (·|0)

∥∥∥
TV

= 1−∆, (B.2)

where the last identity follows by applying Scheffé’s identity (B.1). From (B.2), we have

for any decision region T̂ ⊆ Θ× S,

1−∆ =

∫
Θ×S

min
t∈{0,1}

pθ̂(Z)S|T (θ, s|t) dθds

=

∫
T̂

min
t∈{0,1}

pθ̂(Z)S|T (θ, s|t) dθds+
∫
T̂ c

min
t∈{0,1}

pθ̂(Z)S|T (θ, s|t) dθds

≤
∫
T̂
pθ̂(Z)S|T (θ, s|0) dθds+

∫
T̂ c

pθ̂(Z)S|T (θ, s|1) dθds

= ϵ1(T̂ ) + ϵ0(T̂ c). (B.3)

87



It remains to show (2.8), assuming that P{T = 1} = P{T = 0} = 1/2. Using (B.2),
we have

1

2

[
1−∆

]
=

1

2

[
ϵ1(T ⋆) + ϵ0(T ⋆c)

]
= inf

φ
P
{
φ(θ̂(Z), S) ̸= T

}
, (B.4)

where the last identity follows by the definition of the decision regions.
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Appendix C

Proof of Theorem 4

Proof. Using the definitions from the previous proofs, let R ≜ ϱ(θ̂(Z), X, Y ) be the
square of a sub-Gaussian random variable RSG ≜

√
|R| with variance proxy σ2

R. Then,

we have P{R ≥ r2} = P{|RSG| ≥ r} ≤ 2e
− r2

2σ2
R for all r ≥ 0, which in turn yields

P{R ≥ r} ≤ 2e
− r

2σ2
R for all r ≥ 0. Define the random variable R0 to have the

distribution function Q0(r) ≜ P{R0 ≤ r} ≜ 1− 2e
− r

2σ2
R on its support [r0,∞), where

r0 = 2σ2
R log 2, i.e., the pdf of R0 is pR0

(r) = 1
σ2
R
e
− r

2σ2
R .

Let Q be the distribution function of R. Then, using the construction in the proof
of in [57, Theorem 1.104], we can write R = Q−1 ◦ Q0(R0), where Q

−1 is the left
continuous inverse of Q, noting that Q0 is continuous. The tail bound on R then implies
Q(r) = 1− P{|R| ≥ r} ≥ Q0(r), which immediately yields Q−1 ◦Q0(r) ≤ r.

Following similar steps as for Theorem 3, for Rmax ≥ r0, we get,∫
|r|≥Rmax

|r|pR(r)dr =
∫
Q−1◦Q0(r)≥Rmax

Q−1 ◦Q0(r)pR0
(r)dr

=

∫
Q0(r)≥Q(Rmax)

Q−1 ◦Q0(r)pR0
(r)dr

≤
∫
Q0(r)≥Q(Rmax)

rpR0
(r)dr

≤
∫
r≥Rmax

rpR0
(r)dr

=

∫ ∞

Rmax

r

σ2
R

e
− r

2σ2
R dr

= −2
∫ ∞

Rmax

∂ re
− r

2σ2
R

∂r
dr + 2

∫ ∞

Rmax

e
− r

2σ2
R dr

= 2Rmax exp

(
−Rmax

2σ2
R

)(
1 +

2σ2
R

Rmax

)
. (C.1)
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The rest of the proof follows identically to that of Theorem 3 and yields,

PSuc(φ) ≥ max

{
Pm, Pm

(
|E[EG(A,Z)]|

2Rmax

− 1

1− Pm
exp

(
− Rmax

2σ2
R

)(
1 +

2σ2
R

Rmax

)
− 1

)
+ 1

}
. (C.2)
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Appendix D

Proof of Theorem 5

Before we proceed with the proof of Theorem 5, we provide a series of definitions and
preliminary results.

D.1 Basic Definitions and Change of Measure

Let us consider two probability measures P and Q on a common measurable space
(Ω,F). Let X denote a random variable X : Ω → X and PX , QX correspond to the
induced distributions. Assuming absolute continuity PX ≪ QX , the KL-divergence of
QX with respect to PX is defined by

DKL(PX∥QX) ≜ EQX

[
− log

(
dPX
dQX

)]
. (D.1)

Consider a kernel (or channel) according to the law PY |X that produces the random
variable Y given X. Let PY be the induced distribution of Y when X is generated
according to PX while QY is the distribution of Y when X is generated according to
QX . Then, by the data-processing inequality for KL-divergence [81, Theorem 2.2 6.],
we have

DKL(PX∥QX) ≥ DKL(PY ∥QY ). (D.2)

Equality holds if and only if PX|Y = QX|Y , where PX|Y PY = PY |XPX and QX|YQY =
PY |XPX . A simple application of this inequality leads to the following result.

Lemma 1 (Data-processing reduces KL-divergence [21]). For any measurable set
B ∈ F(X ), inequality (D.2) applied to the degenerate channel based on the indicator
function Y = 1{X ∈ B} implies:

DKL(PX∥QX) ≥ dKL(pB∥qB) = dKL(1− pB∥1− qB), (D.3)

where dKL(·∥·) denotes the binary KL-divergence with parameters pB = PX(B) and
qB = QX(B). Note that if t ∈ [0, 1] and M > 1, then

log2(M)− dKL(t∥1− 1/M) = t log2(M − 1) +H2(t) , (D.4)

where H2(t) ≜ −t log2 t − (1 − t) log2(1 − t) is the binary entropy function. Equality
holds in (D.3) if and only if PX|X∈B = QX|X∈B and PX|X/∈B = QX|X/∈B.
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The proof of this lemma is rather straightforward from basic properties and will be
omitted. We next revisit a well-known result to obtain bounds for the probability of an
arbitrary event B ∈ F(X ).

Lemma 2 (Change of measure [9]). Let the distributions PX and QX be induced by
the random variable X as described. Then,

sup
B∈F(X )

PX(B) log2(1/QX(B)) ≤ DKL(PX∥QX) + 1, (D.5)

where the supremum is taken over all measurable sets B ∈ F(X ).

Proof. For any set B ∈ F(X ), we have by Lemma 1, that

DKL(PX∥QX) ≥ dKL(pB∥qB)

= PX(B) log PX(B)
QX(B)

+ PX(Bc) log PX(Bc)
QX(Bc)

= PX(B) log2
1

QX(B)
+ PX(Bc) log2

1

QX(Bc)
−H2(pB)

≥ PX(B) log2
(

1

QX(B)

)
− 1. (D.6)

The final inequality (D.5) follows by taking the supremum over all measurable sets
B ∈ F(X ) in (D.6).

D.1.1 Cramér-Chernoff Method

We recall a distribution-dependent deviation bound based on the optimization of the
Markov inequality which is known as Cramér-Chernoff method.

Let Z be a real-valued random variable and define its log-moment-generating function
as

ψZ(λ) = logE [expλZ] , λ ≥ 0. (D.7)

For λ ≥ 0, the Markov inequality implies:

P(Z ≥ t) ≤ P(eλZ ≥ eλt)
≤ e−λtE[eλZ ]
= exp

[
− λt+ ψZ(λ)

]
. (D.8)

As (D.8) holds for any λ ≥ 0, we immediately obtain P(Z ≥ t) ≤ exp [−ψ∗
Z(t)] for

t ≥ E[Z], where
ψ∗
Z(t) = sup

λ∈R

{
λt− logE

[
eλZ

]}
. (D.9)

This expression is known as the Fenchel-Legendre dual function of ψZ(λ) and it equals
ψ∗
Z(t) = sup {λt− ψZ(λ) : λ ≥ 0} whenever t ≥ E[Z].
And therefore, for t ≥ E[Z],

P(Z ≥ t) ≤ exp [−ψ∗
Z(t)] . (D.10)

We will need the following properties:
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• If Z = X1 + · · ·+Xn with {Xi}ni=1 being i.i.d. copies of X, then

ψ∗
Z(t) = nψ∗

X

(
t

n

)
; (D.11)

• For any random variable Z,

ψ∗
Z/n(t) = ψ∗

Z (nt) . (D.12)

An immediate consequence of these properties is that the random variable

Z = E[X]− 1

n

n∑
i=1

Xi,

with {Xi}ni=1 i.i.d. copies of X, satisfies

P(Z ≥ t) ≤ exp
[
−nψ∗

E[X]−X(t)
]
, ∀t ≥ 0. (D.13)

D.2 Proof

Using these preliminary results, we are now ready to prove Theorem 5. The proof
requires three steps which are described below.

Information loss. First, we observe that (T, S) ↔ Z ↔ θ̂(Z) and thus T ↔
(Z, S)↔ θ̂(Z) form Markov chains since θ̂ is a stochastic function of Z. As a consequence
of the data-processing inequality [21, Theorem 2.8.1], we obtain (2.23) from

I(T ; θ̂(Z)|S) ≤ I(Z; θ̂(Z)|S) = I(Z; θ̂(Z))− I(S; θ̂(Z)). (D.14)

Interestingly, we will show that I(T ; θ̂(Z)|S) bounds the accuracy of the membership

(sensitive attribute) inference while I(Z; θ̂(Z)) bounds the generalization gap of the

hypothesis associated with θ̂.
Generalization gap. The proof of the bound on the generalization gap (2.21)

easily follows from application of well-known results. For ϵ ≥ 0 let us define the region

B ≜

{
(θ, z) ∈ Θ×Zn : E[ϱ(θ, Z)]− 1

n

n∑
i=1

ϱ(θ, zi) ≥ ϵ

}
. (D.15)

By the definition of the generalization gap (Definition 2), we have GG(A,Z) ≥ ϵ if and
only if

(
θ̂(Z),Z

)
∈ B. We define the associated fibers B(θ) ≜ {z ∈ Zn : (θ, z) ∈ B} for

θ ∈ Θ. First, we apply the Cramér-Chernoff method (D.1.1) to the random variable

Rθ ≜ E[ϱ(θ, (X,Y ))]− ϱ(θ, (X,Y )) (D.16)

B(θ) with respect to the data probability measure PZ, where (D.10)–(D.12) then yield

P
(
Z ∈ B(θ)

)
≤ exp

[
− nψ∗

Rθ
(ϵ)
]
, (D.17)
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where ψ∗
Rθ

is the Fenchel-Legendre dual function of the real-valued random variable: .
Then, it follows that,

ess sup
θ∼P

θ̂(Z)

P
(
Z ∈ B(θ)

)
≤ exp

[
− n ess inf

θ∼P
θ̂(Z)

ψ∗
Rθ

(ϵ)
]
. (D.18)

We can now use Lemma 2, rearranging terms and taking the expectation w.r.t. Pθ̂(Z),

we have that

P (GG(A,Z) ≥ ϵ) = P
(
(θ̂(Z),Z) ∈ B

)
≤ I(Z; θ̂(Z)) + 1

− log(Pθ̂(Z) × PZ(B))
(D.19)

≤ I(Z; θ̂(Z)) + 1

− log
( ∫

PZ(B(θ)) dPθ̂(Z)(θ)
)

≤ I(Z; θ̂(Z)) + 1

− log
[
ess sup
θ∼P

θ̂(Z)

P
(
Z ∈ B(θ)

)]
≤ I(Z; θ̂(Z)) + 1

n
[
ess inf
θ∼P

θ̂(Z)

ψ∗
Rθ

(ϵ)
] , (D.20)

where inequality (D.19) follows from (D.5) and (D.20) follows from (D.18).
Attribute inference. Let φ⋆ be the attack strategy given in (2.2) with PSuc(φ

⋆) =

P{T̂ = T} ≥ 1/2, where T̂ denotes the random variable T̂ ≜ φ⋆(θ̂(Z), S). Note that T̂

is independent of T given (θ̂(Z), S). We will show that,

I(T ; θ̂(Z)|S) ≥ dKL

(
PSuc(φ

⋆)

∥∥∥∥E[min
t∈T

PT |S(t|S)
])

, (D.21)

where,

dKL(p∥q) ≜ p log2
p

q
+ (1− p) log2

(1− p)
(1− q)

. (D.22)

To this end, denote by DKL(·∥·) the KL-divergence between two distributions and
observe that, by Lemma 1,

DKL

(
PT |θ̂(Z)S(·|θ, s)∥PT |S(·|s)

)
≥ dKL

(
PT |θ̂(Z)S

(
t|θ, s

) ∥∥PT |S
(
t|s
))
, (D.23)

where t = t(s, θ) may be any function of (s, θ) ∈ S ×Θ. By taking the expectation over
θ, s ∼ pS,θ̂(Z), we obtain

I(T ;θ̂(Z)|S) ≥ E
[
dKL

(
PT |θ̂(Z)S

(
t|θ̂(Z), S

) ∥∥PT |S
(
t|S
))]

. (D.24)

We choose a mapping t⋆(s,θ) that satisfies,

E
[
PT |θ̂(Z)S(t

⋆|θ̂(Z), S)
]
= E

[
max
t∈T

PT |θ̂(Z)S(t|θ̂(Z), S)
]
= PSuc(φ

⋆). (D.25)
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It is straightforward to verify that,

PSuc(φ
⋆) ≥ E

[
max
t∈T

PT |S(t|S)
]
. (D.26)

Then, by convexity of the function (p, q) 7→ dKL(p∥q), we can continue from (D.24) to
show,

I(T ; θ̂(Z)|S) ≥ E
[
dKL

(
PT |θ̂(Z)S(t

⋆|θ̂(Z), S)
∥∥PT |S(t

⋆|S)
)]

≥ dKL

(
PSuc(φ

⋆)
∥∥E[PT |S

(
t⋆|S

)])
≥ dKL

(
PSuc(φ

⋆)
∥∥E[max

t∈T
PT |S(t|S)

])
, (D.27)

where the last inequality (D.27) follows by using (D.26) and noticing that the function
q 7→ dKL(p∥q) is non-increasing for q ∈ [0, p].

Finally, notice that we can apply the bound,

dKL(p∥q) ≥ max
{
2(p− q)2,−p log2(q)− 1

}
, (D.28)

with p ≥ q.
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Appendix E

Gaussian Data and Linear
Regression

Recall the following notation: x is the [d × n] matrix given by x = (x1, x2, . . . , xn),
while y = (y1, y2, . . . , yn) and W = (W1,W2, . . . ,Wn) are [1×n] vectors. Let each copy
of noise W be normal i.i.d.; W ∼ N ( · ; 0, σ2). Since Yi is linear in Wi, Yi is also normal
distributed, Yi ∼ N ( · ;βTxi, σ2). Since model parameters are linear in the training

set Y, their pdf is a multivariate Gaussian, θ̂(Y) ∼ Q( · ) ≜ N ( · ;β, σ2x−1), where

x ≜ xxT . Furthermore, fixing the j − th sample in the training set to s, we have θ̂(Y)
distributed as Qj( · |s) ≜ N

(
· ;β + x−1xj(s− xTj β), σ2x−1(Id×d − xjxTj x−1)

)
.

Consider a MIA against this model. The attacker possesses side information (SJ , J),
that is, a test sample and its corresponding index. Recall our definition SJ = T (YJ) +
(1− T )(Y ′

J), where J is a random index in [n]. When T = 0, S = Y ′
J , independent of

the training set; hence,

pSJJθ̂|T (s, j, θ|0) =
1

n
pSJ θ̂(Y)|T,J(s, θ|0, j)

=
1

n
pθ̂(Y)|T (θ|0)pSJ |T,J(s|0, j)

=
1

n
Q(θ)pYj

(s) , (E.1)

On the other hand, when T = 1, S = YJ is the J − th component of the training set
Y; therefore,

pSJJθ̂|T (s, j, θ|1) =
1

n
pSJ θ̂(Y)|T,J(s, θ|1, j)

=
1

n
pθ̂(Y)|TJSJ

(θ|1, j, s)pSJ |T,J(s|1, j)

=
1

n
Qj(θ|s)pYj

(s) . (E.2)

Note that Q( · ) and Qi( · |s) differ only by their mean and variance. The second
pdf has shifted mean and reduced variance. The reduced variance is to be expected,
since fixing one of the samples in the training set should reduce randomness. Note that
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if the dimension of the space of features is equal to the amount of samples (i.e., d ≥ n)
an attacker having access to the feature vectors in the training set x can solve a system
of equations to obtain y.

In the following, we derive a theoretical lower bound for (3.2). Define R ≜
xTJ (xx

T )−1xYT −SJ . Fixing J and T , R is a linear combination of Gaussian r.v.s, and
thus R is a Gaussian random variable. Regardless of T and J , E[R] = 0. If T = 0; then
SJ = Y ′

J , independent of Y,

Var[R|T = 0] = σ2 +
dσ2

n
. (E.3)

If T = 1, then SJ = YJ is the J − th component of Y; consequently,

Var[R|T = 1] = σ2 − dσ2

n
. (E.4)

In total,

σ2
R ≜ Var[R] = σ2 . (E.5)

Since R is a Gaussian random variable, the squared error, defined by R2 ≜(
xT (xxT )−1xY − SJ

)2
, is exponentially tail-bounded1; hence, we can apply Theo-

rem 4 to get a theoretical lower bound on the success probability of the Bayesian MIA.
Assume that T is Bernoulli 1/2 distributed; thus,

PSuc(φ
⋆) ≥ 1

2
+
|E[EG(A,Z)]|

4Rmax

− exp

(
−Rmax

2σ2
R

)(
1 +

2σ2
R

Rmax

)
.

=
1

2
+

d

2n

σ2

Rmax
− exp

(
−Rmax

2σ2

)(
1 +

2σ2

Rmax

)
, (E.6)

where we use (3.1).

The Mutual information between a test sample SJ and the model parameters θ̂(Y)
given the sensitive attribute T is,

1See proof of Theorem 4 in C.
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I(SJ ; θ̂(Y)|T ) =
∑

t∈{0,1}

I(SJ ; θ̂(Y)|T = t)

= P{T = 1}I(SJ ; θ̂(Y)|T = 1)

= P{T = 1} 1
n

n∑
j=1

∫
Qj(θ|s)PYj

(s) log

[
Qj(θ|s)PYj

(s)

Q(θ)PYj (s)

]
dθds

= P{T = 1} 1
n

n∑
j=1

∫
Qj(θ|s)PYj

(s) log

[
Qj(θ|s)
Q(θ)

]
dθds

= P{T = 1} 1
n

n∑
j=1

ES∼PYj

[
DKL(Qj(θ|s)|Q(θ))

]
= P{T = 1} 1

2n

n∑
j=1

ES∼PYj

[
Tr
(
Σ−1Σj

)
− log

(
|Σj |
|Σ|

)
− d

+ (µj(S)− β)TΣ−1(µj(S)− β)
]

= P{T = 1} 1

2n

n∑
j=1

(
Tr
(
Σ−1Σj

)
− log

(
|Σj |
|Σ|

)
− d+ xTj x

−1xj

)

= P{T = 1} 1

2n

n∑
j=1

log

(
|Σ|
|Σj |

)
, (E.7)

with µj(s) ≜ β + x−1xj(s− xTj β), Σj ≜ σ2x−1(Id×d − xjxTj x−1)
)
and, Σ = x−1σ2.

Using the upper bound I(SJ ; θ̂(Y)|T ) ≥ I(T ; θ̂(Y)|SJ ) in combination with (2.20), we
can estimate an upper bound on the probability of success of the Bayesian attacker.

Proof of (3.1). Recall the definition of the generalization gap, substituting the MSE
and the model into the definition, we obtain,

E [EG(A,Y)] = E

[
1

n

n∑
i=1

ℓ(fθ̂(Y)(xi), Y
′
i )−

1

n

n∑
i=1

ℓ(fθ̂(Y)(xi), Yi)

]

=
1

n
E
[∥∥∥θ̂(Y)Tx−Y′

∥∥∥2 − ∥∥∥θ̂(Y)Tx−Y
∥∥∥2] , (E.8)

Let x ≜ xxT , then,

E
[∥∥∥θ̂(Y)Tx−Y′

∥∥∥2] = E
[(

YxTx−1xx−1xYT − 2Y′xTx−1xYT + ∥Y′∥2
)]

= E
[
WxTx−1xWT − βTxβ − 2W′xTx−1xWT + ∥Y′∥2

]
= E

[
WxTx−1xWT − βTxβ + ∥Y′∥2

]
, (E.9)

Note that E
[
2W′xTx−1xWT

]
= 0; since E [W ] = 0 and W′ is independent from W.
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On the other hand,

E
[∥∥∥θ̂(Y)Tx−Y

∥∥∥2] = E
[(
∥Y∥2 −YxTx−1xYT

)]
= E

[(
∥Y∥2 − βTxβ −WxTx−1xWT

)]
(E.10)

Note that E[∥Y∥2] = E[Y′2], since Y and Y′ are i.i.d. copies of the same random vector.
Hence,

E |EG(A,Y)| = 2

n
E
[
WxTx−1xWT

]
, (E.11)

Taking the trace of the remaining term in the expectation,

2

n
E
[
WxTx−1xWT

]
=

2

n
E
[
Tr(WxTx−1xWT )

]
=

2

n
E
[
Tr(xTx−1xWTW)

]
=

2

n
Tr(xTx−1x E

[
WTW

]
)

=
2

n
Tr(σ2xTx−1x)

=
2

n
Tr(σ2Id×d) =

2dσ2

n
. (E.12)

which gives the desired result.
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Titre : Fuite de Données Sensibles Dans les Modèles d’Apprentissage Profond

Mots clés : Apprentissage Profond, Privacy, Attaques d’Inférence de Membres

Résumé : Il a été démontré que les modèles d’apprentissage automa-
tique (ML) peuvent divulguer des informations sur leurs ensembles d’appren-
tissage. Il s’agit d’un problème critique lorsque les données d’apprentissage
sont de nature sensible, par exemple dans les applications médicales où les
données appartiennent à des patients.
Une approche populaire pour mesurer la fuite d’informations des modèles de
ML consiste à effectuer des attaques d’inférence contre les modèles. L’ob-
jectif de cette approche est de mesurer la confidentialité du système en
fonction de sa robustesse aux attaques par inférence. Ces attaques sont
principalement classées en attaques d’inférence de membres (MIA) et en at-
taques d’inférence d’attributs (AIA). L’objectif d’une MIA est de déterminer si
un échantillon ou un groupe d’échantillons fait partie de l’ensemble d’appren-
tissage du modèle, tandis qu’une AIA tente de déduire ou de reconstruire un
échantillon à partir du modèle d’apprentissage.
Bien qu’il existe d’autres méthodes pour mesurer la confidentialité en ML,
comme la confidentialité différentielle, cette thèse se concentre principale-
ment sur les attaques par inférence.
Ce travail est divisé en trois grands chapitres. Le premier chapitre présente la
motivation de notre travail, l’énoncé du problème, l’examen de l’état de l’art et
définit la notation et le cadre théorique qui seront utilisés dans les chapitres
suivants. Le deuxième chapitre contient nos principaux résultats théoriques
et fournit une taxonomie des attaques d’inférence de membres et d’attributs.
Le troisième chapitre fournit une description détaillée de nos expériences et
une discussion sur les résultats.
Nos résultats théoriques concernant les attaques par inférence sont décrits
comme suit: Tout d’abord, nous dérivons des limites théoriques sur le taux
de réussite d’un attaquant. Ce résultat fournit une limite supérieure à la pro-
babilité de succès d’une attaque par inférence dans le cas spécifique où
l’attaquant a accès aux paramètres du modèle entraı̂né, et donc dans tout
autre scénario où l’attaquant possède moins d’informations. Deuxièmement,
nous dérivons des limites qui relient l’écart de généralisation d’un modèle
ML au taux de réussite d’un attaquant contre ce modèle. Ce résultat suggère
qu’un modèle ML qui se généralise mal sera susceptible de faire l’objet de
MIA. Cependant, l’inverse n’est pas toujours vrai, comme nous le prouvons
à l’aide d’un exemple pertinent. Troisièmement, nous dressons une liste de
résultats qui relient l’information mutuelle entre le modèle entraı̂né et son en-

semble d’entraı̂nement à l’écart de généralisation et au taux de réussite de
l’attaquant.
Nous utilisons notre cadre théorique pour décrire les stratégies de MIA exis-
tant dans la littérature et nous proposons plusieurs nouvelles stratégies.
Nous explorons l’utilisation de techniques de détection de distribution et de
mesures de diversité pour les MIA. Nous proposons également une tech-
nique basée sur la norme de la perturbation minimale nécessaire pour qu’un
modèle modifie sa prédiction à l’aide d’une attaque adversariale. En outre,
nous utilisons notre cadre pour décrire un ensemble d’AIA.
Nos résultats théoriques sont illustrés à l’aide d’un scénario fictif. La limite
inférieure reliant l’écart de généralisation au taux de réussite de l’attaquant
est testée et comparée à l’état de l’art des MIAs dans un scénario plus
réaliste.
La majeure partie de nos expériences est consacrée à l’évaluation compara-
tive des performances des différentes stratégies de MIA contre des modèles
de classification d’images les plus récents. Nous décrivons et classons les
stratégies existantes dans l’état de l’art. Nous comparons l’efficacité des nou-
velles stratégies proposées dans ce travail à l’état de l’art. Nous montrons
empiriquement que le fait d’avoir accès à des échantillons supplémentaires
pouvant être utilisés comme données d’entraı̂nement pour l’attaquant n’offre
pas d’avantage par rapport aux stratégies qui ne nécessitent pas de données
supplémentaires. Nous classons les différentes stratégies en fonction de
leurs performances contre les modèles de classification d’images les plus
récents. Ce résultat fournit des indications sur la manière de mesurer la ro-
bustesse d’un modèle de ML en matière de protection de la vie privée.
Enfin, nous testons l’efficacité des AIA contre un modèle entraı̂né à classer
les chiffres manuscrits. L’ensemble de données contient l’identité des auteurs
et nous l’utilisons comme information sensible à déterminer par les AIA.
Nous montrons avec rigueur mathématique et de manière empirique que
les réseaux neuronaux profonds sont sensibles aux attaques d’inférence de
membres, même lorsqu’ils généralisent bien. Nous montrons empiriquement
que les stratégies de MIA coûteuses en ressources ne sont pas plus effi-
caces que les stratégies qui interrogent une seule fois le modèle ML cible.
Ce résultat suggère que les informations les plus pertinentes pour déterminer
l’appartenance sont contenues dans les dernières couches du modèle cible.

Title : Leakage of Sensitive Data from Deep Neural Networks

Keywords : Deep Learning, Privacy, Membership Inference Attacks

Abstract : It has been shown that Machine Learning (ML) models can
leak information about their training sets. This is a critical issue in the case
where the training data is of a sensitive nature, e.g., medical applications
where the data belongs to patients.
A popular approach for measuring the leakage of information from ML mo-
dels is to perform inference attacks against the models. The goal of this ap-
proach is to measure the privacy of the system as the robustness to inference
attacks. These attacks are mainly categorized into Membership Inference At-
tacks (MIAs) and Attribute Inference Attacks (AIAs). The goal of a MIA is to
determine if a sample or group of samples are part of the training set of the
model, while an AIA tries to infer or reconstruct a sample from the trained
model.
Although there exist other methods for measuring privacy in ML, such as dif-
ferential privacy, the main focus of this thesis is on inference attacks.
This work is divided in three big chapters. The first chapter provides the moti-
vation for our work, problem statement, review of the state-of-the-art and sets
the notation and theoretical framework to be used in future chapters. The se-
cond chapter contains our main theoretical results and provides a taxonomy
of membership and attribute inference attacks. The third chapter provides
and thorough description of our experiments and a discussion on the results.
Our theoretical findings regarding inference attacks are described as follows:
First, we derive theoretical bounds on the success rate of an attacker. This
result provides an upper bound on the success probability of an inference
attack in the specific case where the attacker has access to the model para-
meters of the trained model, and therefore in any other scenario where the
attacker possesses less information. Second, we derive bounds that link the
generalization gap of a ML model to the success rate of an attacker against
this model. This result suggests that a ML that generalizes poorly will be sus-
ceptible to MIAs. However, the converse is not always true, as we prove with
a pertinent example. Third, we derive a list of results that relate the mutual

information between the trained model and its training set to the generaliza-
tion gap and the success rate of the attacker.
We use our theoretical framework to describe the MIA strategies existing in
the literature and we propose several novel strategies. We explore the use
of out of distribution detection techniques and diversity measures for MIAs.
We also propose a technique based on the norm of the minimum perturba-
tion necessary to make a model change its prediction using an adversarial
attack. Additionally, we use our framework to describe a set of AIAs.
Our theoretical results are illustrated in a toy scenario. The lower bound re-
lating the generalization gap to the success rate is tested and compared to
state of the art MIAs in a more realistic scenario.
The bulk of our experiments are dedicated to benchmark the performance
of different MIAs strategies against state of the art image classification mo-
dels. We describe and categorize the existing state of the art strategies. We
compare the effectiveness of the novel strategies proposed in this work to
the state of the art. We empirically show that having access to additional
samples that can be used as training data for the attacker does not provide
an advantage over strategies that do not require additional data. We rank dif-
ferent strategies based on their performance against state of the art image
classification models. This result provides guidelines on how to measure the
privacy robustness of a ML model.
Finally, we test the effectiveness of AIAs against a model trained to classify
handwritten digits. The data set contains the identity of the writers, and we
use this as the sensitive information to be determined by the AIAs.
We show with mathematical rigour and also empirically that Deep Neural
Networks are susceptible to Membership Inference Attacks, even when they
generalize well. Empirically, we show that resource hungry MIA strategies
are not more effective than strategies that simply query the target ML model
one time. This result suggests that the most relevant information to determine
membership is contained in the last layers of the target model.
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