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ECOLE DOCTORALE

CARNOT - PASTEUR

Décomposition de Chow-Kiinneth

Résumé: L’année derniere, Rosenschon et Srivinas ont prouvé une équivalence entre la conjecture
de Hodge avec des coeflicients rationnels et une version intégrale de la conjecture de Hodge utilisant
la cohomologie motivique étale. Dans le méme esprit, la question qui se pose naturellement est de
savoir si I’on peut obtenir un résultat similaire concernant la décomposition de Chow-Kiinneth des
motifs. Cette these est consacrée a ’étude de la décomposition de Chow-Kiinneth d’un point de
vue motivique étale, présentant la décomposition intégrale du motif étale des variétés abéliennes.

Dans la premiére partie de la theése, nous posons les bases de la théorie des motifs purs et mixtes,
ainsi qu’une description complete de la cohomologie étale motivique, en donnant les principales
similitudes et différences avec les groupes de Chow. Dans la deuxiéme partie, nous examinons
certaines conséquences sur les aspects géométriques intégraux des motifs en utilisant la catégorie
triangulée des motifs étales. Tout d’abord, nous obtenons une conjecture équivalente, utilisant des
coefficients intégraux, de la conjecture de Hodge généralisée. Enfin, nous commencons a étudier
la décomposition des motifs étales, dans un premier temps, en utilisant un analogue étale de
I’application degré des 0-cycles. Puis, on continue avec I’étude de la décomposition des motifs en
utilisant la propriété de conservativité sur le changement des coeflicients intégraux vers coefficients
rationnels et finis. Avec ce résultat, nous obtenons la décomposition du motif étale intégral d’un
groupe commutatif lisse sur une base avec des propriétés suffisantes.

Mots clés : Cohomologie motivique, cycles algébriques, motifs étale, cohomologie étale, con-
jecture de Hodge généralisée, décomposition motivique.

Chow-Kiinneth decomposition

Abstract: In the past few years, Rosenschon and Srivinas proved an equivalence between the
Hodge conjecture with rational coefficients and an integral version of the Hodge conjecture using
étale motivic cohomology. Using the same spirit, the question that arises naturally is whether or
not we can obtain a similar result concerning the Chow-Kiinneth decomposition of motives. This
thesis is devoted to the study of the Chow-Kiinneth decomposition from an étale motivic point of
view, presenting the integral decomposition of the étale motive of abelian varieties.

In the first part of the thesis, we set the basis for the theory of pure and mixed motives, together
with a full description of the structure of étale motivic cohomology, giving the principal similarities
and differences with the Chow groups. In the second part, we look at some consequences of the
integral geometric aspects of motives using the triangulated category of étale motives. First, we
obtain an equivalent conjecture, using integral coefficients, of the generalized Hodge conjecture.
Finally, we start looking at the decomposition of an étale motive, in the first instance, using an
étale analog of the degree map. After we continue the study of the decomposition of motives using
the conservativity property about the change of coefficients from integral to rational and finite
coefficients, with this result, we obtain the decomposition of the integral étale motive of a smooth
commutative group over a base with good enough properties.

Keywords: Motivic cohomology, algebraic cycles, étale motives, étale cohomology, generalized
Hodge conjecture, motivic decomposition.
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Introduction

Historical background

In different expressions of art, such as narrative, music, visual or textiles arts, the word
motif appears as the definition of a recurring element which has an important role inside
the piece of art in question, such as a reason or pattern and a fundamental element.
The theory of pure motives was introduced by Grothendieck in a letter to Serre
in the middle of the 60’s as an attempt to explain the structures underlying different
Weil cohomology theories. such as Betti, de Rham (analytic and algebraic), ¢-adic and
crystalline cohomology. In some cases, there is a deep relation between them, for instance,
if the base field is £ = C and X/C is a smooth projective variety, then by the de Rham

theorem one has
Hjp(Xan; C) = Hy(X,Q) ®q C.

On the other hand, under the same assumptions of X and the base field k, one has
the theorem of Artin

This evidence indicates that there should exist an underlying reason for the similar
behaviour of these different cohomology theories in the complex case. Having this idea in
mind, Grothendieck tried to define a “universal cohomology theory” which explains these
connections between cohomology theories. In order to achieve that goal, he introduced
the category of pure motives, whose construction, using smooth projective varieties over a
field k, is fairly simple and unconditional. Grothendieck worked with numerical motives
(motives modulo numerical equivalence), whereas in this thesis we mainly use Chow
motives (motives modulo rational equivalence). The link between cohomology theories
should be given by realizations of the objects in this category. Using the construction of
the category and the existence of realization functors p, we find that any Weil cohomology
theory with coefficients in a field F' of characteristic zero factors uniquely through the

category of Chow motives as follows:

SmProj, {graded F-algebras}
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where H is a Weil-cohomology theory, h(—) is the functor which associates to a smooth
projective variety X its Chow motive h(X) = (X, Ax).

Mimicking the cohomological behaviour, is conjectured that the Chow motive of a
smooth projective variety carries a decomposition, known as the Chow-Kiinneth decompo-
sition. This conjecture was described by Murre in [Mur93] and states that the diagonal cy-
cle Ax in X x X is asum of cycles Ax = Zfiiom(x) pi(X) with p;(X) € CHI™X) (X x X)q
a cycle in the Chow groups of X x X of codimension dim(X), such that p;(X) are send
to the Kiinneth projectors AEOPO. Also the composition of correspondences p;(X)op;(X)
should be zero if i # j and p;(X) otherwise.

In some sense, due to the realization to de Rham cohomology in the complex case, we
can see the theory of pure motives as an analogue of pure Hodge structures. Hence one
can ask if this construction can be extended to the case of singular or noncompact varieties
where we should obtain mixed motives by analogy with mixed Hodge structures. Several
candidates for such a category of mixed motives have been proposed by Hanamura,
Levine, Nori and Voevodsky. In the Voevodsky setting, is described in [Voe00], it is
possible to obtain triangulated categories of mixed motives over a perfect field k£ with
different coefficients and suitable topologies such as étale, Nisnevich and h-topology. One
of the main successes of Voevodky’s approach was his proof of the Milnor and Bloch-Kato
conjectures. The triangulated category of mixed motives over a field k with coefficients
in Q, denoted by DM(k, Q), is a generalization of Chow(k)q is the sense that there exists
a fully-faithful embedding Chow(k)g — DM(k,Q) and according to Bondarko [Bon14],
Chow(k)g appears as the element of weight zero in DM(k, Q).

Later, Morel and Voevodsky introduced motivic homotopy theory, This new approach
is a link between algebraic topology and algebraic geometry, putting in a more general
context the notion of Al-homotopy theory of schemes. Within this theory the concept of
P!-stabilization process for motivic complexes was introduced.

In the second part of Ayoub’s thesis |[Ayo06[, he gives a full description of Grothendieck’s
six functor formalism for systems of triangulated categories. This is equivalent to the
properties of Al-localization, P!-stabilization and rigidity. Later, Cisinski and Déglise
[CD19| studied fibered triangulated categories. They give a full description of the six
functor formalism, construction problems and the relation between rational motivic com-
plexes and the Beilinson program/Beilinson’s motives.

By changing from Nisnevich to étale or h-topology, we can obtain different models
for integral motives having a deep link with étale cohomology theory. The first descrip-
tion about the categories with étale or h-topology is given in [Voe00] and [MVWO06|.
Later, Ayoub in [Ayol4b] gave the functorial framework for the category DA (k,Z) of
motivic complexes without transfers. Another model for the étale category of motives,
the category of DM (k,Z), is given by Cisinski and Déglise in [CD16|, which consider
étale sheaves with transfers and gives the equivalence with the category of h-motives
DMy, (k,Z).

The triangulated category of étale or h-motives with integral coefficients is one of

the main candidate for being the good framework for integral motives. As a example

10
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of the good properties of the integral étale motives, recently, Rosenschon and Srinivas
[RS16|] gave a new characterization of the Hodge and Tate conjectures using étale motivic
cohomology, the analogue of Chow groups but using the category DMg (k, Z). Recall that

the Hodge and Tate conjectures are the following:

Conjecture (Hodge conjecture). For a complex smooth projective variety X and n € N
the image of the cycle class map ¢" : CH"(X)g — HZ'(X,Q(n)) is the set of Hodge
classes Hdg*"(X,Q) = H™™(X) N H*(X,Q).

Where Hj(X,Q(n)) is the Betti cohomology ring of X with coefficients in Q.

Conjecture (Tate conjecture). Let X be a smooth projective geometrically integral k-
variety with k a finite field. Let k be a separable closure of k. If £ # char(k) is a prime

then the cycle class map
cg, : CHY(X) ® Q¢ — HZ'(X,Qq(n))"
18 surjective

Here T'j, represents the Galois group of k, Hf (X, Q) is the f-adic cohomology and
X=X®k.

These conjectures can be expressed in terms of motives and the realization functor
as stated in [And04, Propositions 7.2.1.3 et 7.3.1.1].

Making a connection between the realization of Chow motives with rational coeffi-
cients and the category of integral étale motives, it was possible to conclude that the
étale versions of the conjectures, i.e. changing Chow groups by an étale analogue, called
Lichtenbaum cohomology groups, which is the étale hypercohomology of the complex of

étale sheave given by the Bloch complex,

Conjecture (Lichtenbaum Hodge conjecture). For a complex smooth projective vari-
ety X and n € N the image of the cycle class map ¢} : CH}(X) — H#'(X,Z(n)) is
Hdg*" (X, 7).

Conjecture (Lichtenbaum Tate conjecture). Let X be a smooth projective geometrically
integral k-variety with k a finite field. Consider k be a separable closure of k. If ¢ #

char(k) is a prime then the cycle class map
cLz, + CHL(X) @ Zg — HE(X, Zo(n))"*
18 surjective.

With this idea in mind, is valid to ask whether or not is possible to obtain new results
about algebraic or arithmetic properties of integral étale motives and relate them with
its rational counterpart. This is due to the fact that there exist counter-examples for
the integral Hodge conjecture when using Chow groups, therefore integrally, étale Chow

groups should give us more information about X.

11
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In this thesis, we aim to approach to the decomposition of integral étale motives using
the same spirit given by Rosenschon and Srinivas: see if we can improve the decomposition
of integral motives but working with the category of étale motives DMy (k,Z). Given

results about conservative family of functors associated to coefficients change:

pg : DM (k, Z) — DM (k, Q)
pz/[ : DMet(k,Z) — DMét(k>Z/€)

one can see whether or not it is possible to lift isomorphism of motives with rational
coefficients to the integral case passing through an argument involving finite coefficients.
As an underlying goal, we present a detailed description about the structure of étale mo-
tivic cohomology and develop the étale analogue of intersection theory using the motivic
categorical formalism.

Trying to follow the historical development of motives, we structure the thesis as
follows: with a total of four chapters and each chapter divided in several sections. The
first two chapters work as an introduction to the theory of pure and mixed motives, setting
the bases for a further generalization to the étale case. We continue by introducing
the étale analogue to the classical theory, giving all the parallelism that we can give:
in the level of Chow groups, induced morphism , equivalences on algebraic cycles and
the category of étale Chow motives; and aspects about étale motives and étale motivic
cohomology.

In the third chapter, using as a guideline the characterization of the generalized Hodge
conjecture in terms of realization of effective motives, we revisit the main result of [RS16]
giving a new characterization of the generalized Hodge conjecture in terms of the category
of étale Chow motives, and the description of non-algebraic integral cohomology classes
in term of étale motivic cohomology. In the last chapter we will present decomposition
of étale motives using the conservative of the family of functors associated to change of

coefficients in the following way

Definition. Let k be a field and let f : X — k be a smooth projective variety, of

dimension d. We say that hg(X) admits an integral Chow-Kinneth decomposition in

Chowg (k) if:

e h(X) admits a rational Chow-Kinneth decomposition
2d
hX) = @ r(X) € Chou(k)q,
=0

and this map is induced by a morphism g : hg(X) — M = (Y, p) in Chowg(k).

e Consider the base change to the algebraic closure g : heg(Xz) — My. For ev-
ery prime number £ # char(k), the induced map pe(g) : Rf«(Z/0) — Mg/l €
D(ke, Z.)0) is an isomorphism and p(p) = p1 + ... + pag with the following condi-
tions

pi if i =7 \—1 i T .
piop; = T p(g)" " opi(Mg/t) = R f.(Z]) for all .
0 if i # j,

12
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using different approaches and points of view. The following is a more described
outline of the thesis.

In this thesis, we present the result obtained by the author in the pre-prints [Ros22]
and |Ros23b|, together with the work in progress [Ros23a].

Outline of the thesis

Chapter 1

The first chapter is divided in two sections: the first one treats the construction of pure
motives, giving main definition and results of such theory. The second part is devoted to
the triangulated category of motives. We start giving a general overview of the theory of
classical motives, focused in the algebraic properties of pure motives, for this, we revisit
the main references of [MNP13], [And04] and [Sch94]. We discuss the main results and
basics of the theory of pure motives, such as the Manin’s identity principle [Man68|
and the application of it to the computation of the motive of a projective bundle, blow-
up with smooth center and varieties that admit cellular decomposition. Continuing with
developing the theory of motives, going to the triangulated category of motivic complexes,
visiting the references of [CD19| and presenting the basis of premotivic categories and
the six functor formalism in the motivic context.

The goal of this chapter is refresh the theory of pure motives and establish the ba-
sis for the construction of étale Chow motives and the triangulated category of mixed
motives part is there in order to give a proper introduction to the terminology and func-
toriality properties of the triangulated categories of motives and in that way be able to

use important tools in the construction of our theory.

Chapter 2

Chapter 2 is the most extensive one, because is the one in which we treat in a deep
way étale cohomology and étale motivic complexes. For that, we start by introducing
two different models of the triangulated category of étale motives: the ones introduced
in [CD16] and [Ayol4b], considering complexes of sheaves with and without transfers
respectively. We also give a result about conservative functors, mimicking the proof
given for [AHP16, Lemma A.6.]:

Lemma (Lemma 2.1.5). Let S be a scheme of finite Krull dimension and
pedy(5) = sup {edy(r(s))} € NU{oo},
s€

where k(s) is the residue field of a point s € S, is bounded for all prime number p. Then
the following holds:

1. Let M € DAYS,Z) be a motive. Then M is zero if and only if the pullbacks i M

to any geometric point § — S is zero.

13
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2. Let f be a morphism in DAét(S, Z). Then f is an isomorphism if and only if the

pullback i5(f) for any geometric point § — S is an isomorphism.

In section 2 of this chapter we explore the different notions of étale motivic cohomol-
ogy. The first one is defined by means of the model for étale motivic complexes with
transfers, while the second one is defined as the étale hypercohomology of a complex of
étale sheaves (using the étale sheafification of Bloch’s complex), known as Lichtenbaum
cohomology. The advantages of giving the two definitions are that with the first one,
we can describe the functorial behaviour of étale motivic cohomology and constructing
the analogue of cycle’s operations and maps like specialization map. Whereas using the
second definition, we can use computational tools, such as Hoschschild-Serre spectral

sequence and its relation with Galois cohomology.

Proposition (Lemma [2.2.16). Let p : Y — X be a finite Galois covering of X with
Galois group G, then there exists a convergent Hochschild-Serre spectral sequence with

abutment the Lichtenbaum cohomology group
Ey*(n) = HY(G, H (Y, Z(n))) = H} (X, Z(n)).

In section 3 we discuss the birational properties of the étale analogue for 0-cycles,
giving examples where the étale analogue is not an invariant for birational maps. We
also linked the theory of étale Chow groups with the decomposition of the diagonal in
the sense on Bloch-Srinivas [BS83].

The fourth section works as a parallel between classical theory of algebraic cycles
and the one we defined in section 2. We define in the étale setting different equivalence
relations such as algebraic, homological and numerical, establishing the similarities and
differences with the properties obtained for the classical case.

During the fifth and last section, we construct the étale analogue of the category
of pure motives with integral coefficients, which we call étale Chow motives, and which
embeds full faithfully into the triangulated category of étale motives. For that, we given
a description of étale correspondences and their actions as morphism of algebraic cycles.
Using the theory of étale correspondences, we can construct the category of étale Chow
motives, and since this category is an analogue of the one of pure motives, one can recover
classical result such as Manin’s identity principle.

We also introduce some result about conservative family of functors associated to

change of base fields.

Chapter 3

After the results given in [RS16], we continue looking the consequences of such equivalence
between Hodge conjectures in the integral étale and rational cases.
We prove a refined version of [RS16, Theorem 1.1] (which can be seen as a direct

consequence of the previously cited theorem):

14
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Proposition (see Corollary [3.1.8). Let X be a complex smooth projective variety and
consider a sub-Hodge structure W C H2F(X,Z(k)) of type (k,k). Then W is L-algebraic,
i.e. W Cim(ck), if and only if W ® Q is algebraic.

Starting from [RS16, Remark 5.1.a] we use the étale analogue of the generalized Hodge
conjecture given there in order to study the classical version. In Proposition [3.2.6] we
give a complete proof of the equivalence between the different versions of the generalized
Hodge conjecture (usual case and Lichtenbaum) in weight 2k — 1 and level 1, result that
was stated in the same remark in [RS16|. For that, we split the proof in two parts: in
the first, we prove that the L-generalized Hodge conjecture in weight 2k — 1 and level 1
is equivalent to the fact that a part of the Hodge conjecture for the product of X x C
is true for all smooth and projective curve C, after that we invoke Corollary To
finalize, our main results are the following:

First, we obtain a characterization of the generalized conjecture (for all X € SmProjc)
given in [RS16] which follows the idea of the classical case, that is, in term of realization

of motives previously defined in section 2 and the Hodge conjecture:

Theorem (see Theorem [3.2.8)). The Lichtenbaum generalized Hodge conjecture for all
X € SmProjc holds if and only if the following two conditions hold:

e the Lichtenbaum Hodge conjecture holds,
e a homological €tale motive is effective if and only if its Hodge realization is effective.
With this, we obtain as a corollary the following equivalence:

Corollary (see Corollary [3.2.9). The generalized Hodge conjecture with Q-coefficients
holds if and only if the generalized integral L-Hodge conjecture holds.

Concerning the counter-examples, in Claims and we give an explicit
description of the torsion classes which arise as counter-examples to the integral Hodge
conjecture given in [AH62] and [BO20] respectively. Since in both cases the class that is
not algebraic is a torsion class, the main result that we used is the fact that for Licht-
enbaum cohomology with finite coefficients we have the isomorphism H}*(X,Z/("(n)) ~
HZ (X, W@;") which is a consequence of the Bloch-Kato conjecture proved by Voevodsky
(see [CD16, Section 4] for an argument in terms of rigidity of étale motives). We need
to remark that the way we use the rigidity theorem are different in both cases: in the
first case we consider two things, that the counter-example comes from a Godeaux-Serre
variety X, so there is a Serre spectral sequence associated fibration BG — Y — X,
and the Steenrod operations for étale cohomology. For the second case, which comes
from the product of a very general curve C' of genus > 1 and a smooth Enriques surface
S, we used the fact that Br(S) = Z/2 and the Kiinneth formula for integral and finite
coefficients. After that, in Proposition [3.1.23] we study general properties of the Licht-
enbaum cohomology groups of smooth hypersurfaces in IP’%+1 obtaining that their higher

Brauer groups are zero and consequently CHY (X)®Z /" ~ H2*(X, u?ﬁk ). This allows us

15
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in Remark [3.1.25] to give a better description of the Lichtenbaum classes for the Kollar
counter-example and stating the differences with motivic cohomology and the failure of

the Hodge conjecture with integral coefficients.

Chapter 4

In the last chapter we focus on the goal of the thesis; find an enrichment for the decom-
position of integral motives. Roughly speaking, we can say that this chapter consists in
two parts: definition of étale degree map and étale index of O-cycles, giving examples
where the later definition does not agree with the classical case, and decomposition of
étale motives using different approaches.

The main results of the first part of the fourth chapter, concern the existence of
smooth and projective varieties X over a field of cohomological dimension < 1 whose

index I(X) > 1 but with étale anaologue I¢ (X ) = 1, as the following theorems show:

Theorem 1 (Theorem [4.2.4). There exists a smooth projective surface S over a field k,
with char(k) = 0 of cohomological dimension < 1, without zero cycles of degree one but
Tg(X) =1

Theorem 2 (Theorem {4.2.5). For each prime p > 5 there exists a field k such that
char(k) = 0 with cd(k) = 1 and a smooth projective hypersurface X C P} with I4(X) =1
but index I(X) = p.

To find this kind of varieties, we use Proposition [4.2.3] which characterizes some
smooth varieties X over a field k& of cohomological dimension < 1, the ones such that
Alb(X%)tors = 0, whose étale degree map is surjective. The proof relies in the fact that
the condition Alb(X%)ors = 0 impose that CHOL(X 7#)hom is uniquely divisible, thus, with
trivial Galois cohomology in positive degrees. After that we remark that the varieties
presented in [CMO04, Théoreme 1.1], |[CM04, Théoréme 1.2] and |Col05, Theorem 5.1]
fulfill the hypothesis of Proposition [£.2.3]

These results give us the first refinement for the existence of hg(X) = hQ (X) @
hgrt(X ) @ hgf(X ) in the category of integral étale motives but not in the category of
integral Chow motives. Despite this new refinement of the index of a smooth projective
variety, we give an example of how the property I (X) = 1 is not always achieved. For
Severi-Brauer varieties X, we show that I (X) is greater or equal to the order of the
class [X] € Br(k), as follows:

Theorem 3 (Theorem . Let X be a Severi-Brauer variety of dimension d over
a field k. Then the image of degg : C’Hgt(X) — 7 s isomorphic to a subgroup of
Pic(X), and in particular 14(X) > ord([X]) where [X] is the Brauer class of X in Br(k).
Moreover, if cd(k) < 4 then this subgroup is isomorphic to Pic(X) i.e. I4(X) = ord([X]).

After that, we prove that this bound also holds for the product of Severi-Brauer
varieties. In order to prove that, we give the following generalization of [GS06|, Theorem
5.4.10]:
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Lemma (Lemma [4.2.14). Let X be a Severi-Brauer variety of dimension d over a field

n—times

—_——~
k. For the product X*™ := X x ... x X we then obtain an exact sequence
0 — Pic(X*™) — Pic(P4 x ... xPHY ~Z & ...® Z > Br(k) — Br(X*")
where s sends (a1, ...,an) — >, a; [X] € Br(k).

With this lemma, we can state and prove the following result for a product of Severi-

Brauer varieties:

Theorem 4 (Theorem [4.2.15)). Let k be a field and let X be a Severi-Brauer variety over
k of dimension d. Then I4(X*™) > I4(X) > ord([X]).

After that, we move to the decomposition of étale motives in different settings, by
using different tools and approaches. Between the ways that we can obtain decomposition
of integral étale motives we will use three possible options: the first one is a consequence
of [RS16] and the non-existence of transcendental cohomology classes for some complex

algebraic varieties:

Proposition (Proposition |4.3.3). Fizing k = C, let X be a smooth projective complex
variety of dimension d such that the groups HE(X, Q) are algebraic for all i # d. Then
hea(X) admits an integral Chow-Kiinneth decomposition in Chowg(C).

We continue in a more general context with the decomposition of relative étale motives
of a commutative group scheme in the category of DM (S, Z). We define the homotopy
fixed points and homotopy orbits of &,, of a motive M e*%(X ) as follows: knowing that
DMy (S,Z)® has a structure of an oo-category which is monoidal and symmetric, thus

we obtain adjunctions

( )triV : DMét(S7 Z) = DMét(Sy Z)BGn : ( )hGn = hOhI‘IlBGn7
hOCOlimBGn = ( )hGn : DMét(S’ Z)BG" = DMét(S, Z) . ( )triv‘

With this definitions, one obtains the integral analogue of [AEH15] as follows:

Theorem 5 (Proposition [4.3.14)). Let k be an algebraically closed field and G /k a con-

nected commutative group scheme. Then the morphism

kd(G)

¢c : Ma(G) — €D (Mi(G)®)

=0

hG&;

is an isomorphism in DMg(k,Z).

If we apply the following result which mimic the conclusion given in [AHP16, Lemma
A6

Lemma (Lemma [2.1.5). Let S be a scheme which has finite Krull dimension and the
punctual p-cohomological dimension is bounded for all prime number p. Then the follow-

ing holds:
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1. Let M € DA(S,7Z) be a motive. Then M is zero if and only if the pullbacks it M

to any geometric point 5 — S is zero.

2. Let f be a morphism in DAét(S, Z). Then f is an isomorphism if and only if the

pullback it(f) for any geometric point s — S is an isomorphism.
we then obtain the relative version of Proposition

Theorem 6 (Theorem [4.3.15)). Let S be a scheme which has finite Krull dimension and
the punctual p-cohomological dimension is bounded for all prime number p, and let G be

a connected commutative scheme over S. Then the morphism

kd(G/S) e
bc: ME(G) = P (Mi(G/9)*)™"
i=0

is an isomorphism in DMg(S,7Z).

We conclude the section about the decomposition of étale motives by giving a result

involving the decompostion of the étale Chow motive of the product of Jacobian varieties:

Theorem 7 (Theorem [4.3.19)). Let k be a field of finite cohomological dimension and
consider C;/k a projective smooth curve, for i € {1,...,n}. Then the variety J(C7) x

... X J(Cy) admits an integral Chow-Kiinneth decomposition.

In the same spirit, for an algebrically closed field we can conclude that principally

polarized varieties admit a Chow-Kiinneth decomposition in the étale setting:

Theorem 8 (Theorem [4.3.21)). Let k = k be a field and let A be a principally polarized

variety. Then there exists a Chow-Kinneth decomposition of A.

This result leads us to conditions that we can impose to a smooth projective variety
X over an algebraically closed field in order to obtain the existence of the projectors
pi*(X) and phy_, (X)

Theorem 9 (Theorem 4.3.22)). Let X be a smooth projective variety of dimension d over
an algebraically closed field k. If Pic®(X) is a principally polarized variety, then there

exists a decomposition of the motive hg(X) as
he(X) = hi(X) ® hig(X) ® WE(X) © hi) ™ (X) & hg(X)

Finally, we end the chapter four, with a characterization of isomorphism of étale Chow
motives: we obtained an analogue to [Huyl8, Lemma 1], which is the characterization of

isomorphism in the category of Chow motives over algebraically closed fields.

Theorem 10 (Improved version of Manin’s principle). [Theorem [{.3.43] Let f : M —
N be a morphism in the category Chowg (k). Then f is a isomorphism of motives in
Chowg(k) if and only if for Q an universal domain over k, the induced map (fq)« :
CH:(Mq) — CH(Nq) given by the base change fq : Mq — Nq, is bijective.
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Conventions

For a field k we denote the n-dimensional k-projective space as P} and SmProj; is the
category of smooth and projective reduced k-schemes. Let G be an abelian group, ¢ a
prime number and 7 > 1, then we denote G[¢"] :={g € G | " - g = 0}, G{¢} := |, G[("],
Giors denotes the torsion sub-group of G and Giee := G/Giors its torsion free quotient.
The prefix “L-” indicates the respective version of some result, conjecture, group, etc.
in the Lichtenbaum setting. H%(X,Z(n)) denotes the Betti cohomology groups of X.
Continuing with the same hypothesis for G, for an integer p, we set G[1/p] := GRzZ[1/p].
If now G is a profinite group, i.e. can be written as G = @Gi with G; finite groups,
and A is a G-module we will consider its cohomology group H?(G, A) as the continuous
cohomology group of G with coefficients in A defined as H'(G, A) := ligHj(Gi,AHi)
with H; running over the open normal subgroups of G such that G/H; ~ G;.

Let k be a field, we denote as k* and k the separable and algebraic closure of k
respectively. For a prime number ¢, we denote the /—cohomological dimension of k as
cdg(k), and we set the cohomological dimension of k to be cd(k) := sup, {cds(k)}. Smy
will denote the category of smooth schemes over k£ and X¢ denotes the small étale site
of X.
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Chapter 1

Motives: From pure to mixed

motives

The aim of this chapter is to give an overview on the theory of motives, form the first
definition of the category of Chow motives to the triangulated category of mixed motives.

We start by giving a quick overview about Chow motives, mentioning the principal
definition and results about the theory of classical motives. We will follow as introduction
for the theory of motives the references [And04], [MNP13|] and [Sch94]. After that, we
move to the notion of triangulated category of motives in different contexts. For this we
follow the references [CD16| and [Ayol4b]| for étale motives, and [MVWO06] and [CD19]

for a general context of motives in the Nisnevich setting.

In the first section of the chapter, we revisit well-known results about algebraic cycles
of a smooth projective variety over a field k. We recall the classical operations on alge-
braic cycles and the notion of adequate equivalence relations, such as rational, algebraic,
homological and numerical equivalence. We focus on rational equivalence, since it gives
us the Chow groups. We continue by introducing the concept of correspondences, given
the action of an specific algebraic cycle, that work as the morphisms in the category of
pure motives.

The second section is devoted for the presentation of the theory of pure motives
introduced by Grothendieck. We define the category of motives, depending on an ade-
quate equivalence relation of algebraic cycles. Since the construction of such category
is fairly easy but powerful, we present categorical consequences coming from this con-
struction and the relation with realizations to Weil cohomology theories. We then give
the description of the Manin principle, introduced by Manin in [Man68], which is a con-
sequence of Yoneda’s lemma and helps to characterize isomorphisms in the category of
pure motives through an universal property. To illustrate this principle we compute the
Chow motive of projective bundles, blow-ups of a smooth projective variety with smooth
center and varieties that admit a cellular decomposition, such as Grassmannians. We fin-
ish section two by introducing the notion of Chow-Kiinneth decomposition, which gives
the necessary terminology for the development of further techniques for the integral étale

case.
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

Finally in the third section we present the theory of premotivic categories, which
provides a more general framework than the theory presented in the second section. We
start by giving the definition of Grothendieck’s six functor formalism. After that we
introduce the notion of premotivic category, give some examples and discuss the relation
with the theory of pure motives. Next we present the theory of triangulated categories by
giving examples of premotivic categories and their properties, and by giving an expression
for the infinite suspension functor that allows us to invert Tate motives. In this section
we also introduce several categories of motives which depend on a suitable Grothendieck
topology, such as the h-topology, and the Nisnevich and ¢ fh-topologies. We also recall
a result of Bondarko [Bonl4], which relates the category of pure motives Chow(k)qg to
DM(k, Q).

1.1 Algebraic cycles and correspondences

For a field k, we denote as SmProj;, the category of smooth projective varieties over a
field k. Throughout this thesis a variety will be a reduced scheme.

Let us give a quick introduction to algebraic cycles, using the references [Ful98| and
[EH16|. After that we move on to the definition of correspondences. As we mainly want

use them in the theory of pure motives, we follow the reference [MNP13|.

Algebraic cycles

An algebraic cycle on a variety X is a formal finite linear combination Z = Y n,Z, of
irreducible subvarieties Z,, where n, € Z for all a. Given an integer i > 0 we define the

abelian group of codimension i-cycles of X, denoted by
Z'(X) := {codim i cycles on X}.

Also it is important to consider the group Z¢(X) with coefficients in a field K, which in
almost all the cases will be Q, denoted by Z/(X)g = Z4(X) @z K.

Along with the sum of algebraic cycles, we can define other operations on cycles:

o (Cartesian product of cycles: The usual cartesian product of subvarieties can be
linearly extended to product of cycles, but now we shall consider this cycle on the

product variety.

o Pushforward: Let f: X — Y be a proper morphism of k—varieties and Z C X an

irreducible subvariety. We define the degree as follows

kK(Z):k(f(Z if dimf(Z) = dimZ
a2 (2 = | O HUEN 2

Define the push-forward as the function f, : Z4(X) — Z*(Y) which acts via f.(Z) =
deg(2/f(2))f(2).
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1.1. Algebraic cycles and correspondences

e Intersection: (Not always defined) Let V; and V5 be two subvarieties of X of
codimension ¢ and j respectively. They intersect in a union of subvarieties Z, of
codimension greater or equal to i + j, see [Har77, Theorem 7.2, Section I]. If the

codimension of Z,, is equal to i+ j for every a we say that the intersection is proper.
In the case of a proper intersection, the intersection number is defined as follows:
i1 Va; Z) := (=1)"€a(Tor (A/I(V), A/I(V2)))
T

where AA = Oy 7 is the local ring, I(V;) is the ideal of the variety V; in the ring

A. Then, the intersection product can be defined as

Vi-Vo= Zi(Vl Va3 Za) Za

«

e Pull-back: (Not always defined) Let f : X — Y be a morphism in SmProj, and
Z C Y any subvariety. Let I'y C X X Y be the graph of f. If I'y meets X x Z

properly then we can define the pull-back function as
f(Z) = [prx]«(Ty - (X x Z))

where pry : X x Y — X is the projection. With the notion of pull-back we can
define the intersection for cycles V,W € Z(X) as

VW =A%V x W)

where Ax : X — X x X is the diagonal embedding. Although for a general f the
pull-back is not necessarily defined, if f is a flat morphism, then by [Ful98, Lemma
1.7.1], for a subscheme Z the pull-back f*Z is the inverse image scheme f~1(Z)
which is always defined, and this can be extended linearly to cycles inducing a
homomorphism f*: Z{(Y) — Z/(X).

e Correspondences: (Not always defined) A correspondence from X to Y is simply

a cycle on the product X x Y. A correspondence Z € Z'(X x Y) acts as follows:
Z(T) = [pory s (Z - (T x Y)) € Z+4(y)
T € ZY(X), d = dim(X) whenever this is defined.

The last three operations are not always defined because the intersection product is
not always defined for any two projective varieties. As we will see in the next subsection,
these operations become well-defined after taking the quotient of the group of algebraic

cycles by an adequate equivalence relation.

Equivalence relations on algebraic cycles

Let us consider the graded group Z(X) = @, Z'(X). We can consider an equivalence
relation ~ on this group (which we are going to call “good” or “adequate”) if it has the

following properties:
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

1. Compatibility with grading and addition.

2. Compatibility with products: if Z ~ 0 then for all Y € SmProj;, we have Z x Y ~
0eZ(X xY).

3. Compatibility with intersection: if X ~ 0 and X -Y is defined, then X - Y ~ 0.

4. Compatibility with projections: if Z ~ 0 in Z(X x Y), then (pry)«(Z) ~ 0 in
Z(X).

5. Moving lemma: given Z,Y7,...,Y,, € Z(X) there exists Z’ ~ Z such that Z'-Y; is
defined for all i € {1,...,m}.

For an adequate equivalence relation and a given integer i, we define the subgroup
Z1(X) C ZY(X) of ~-trivial cycles as follows: Z € Z!(X) <= Z € Z/(X) and Z ~ 0.
It follows from the first property of an adequate equivalence that Z° (X) is a subgroup
of Z(X), so we can define quotient A, = Z/(X)/Z" (X) of ~-cycles of codimension i.
This group has richer structure than Z(X): because of the fifth property of an adequate
relation A% (X) is a ring, with the product induced from intersection of cycles. Having
a well defined intersection product means that every operation of algebraic cycles is now

defined in the ring A’ (X) as stated in the following lemma:
Lemma 1.1.1. For any adequate equivalence relation ~ we have:
1. A*(X) is a ring with a product operation induced from the intersection of cycles

2. For any morphism f: X —Y in SmProj, the maps f. and f* induce well defined
ring homomorphisms fy : A*(X) — A (Y) and f*AL(X) — AL(Y).

~

3. A correspondence Z from X to'Y of degree v induces Z, : A, (X) — AF"(Y) and

equivalent correspondences induce the same correspondence Z,.

In the following subsections we present five adequate equivalence relations, but in the

sequel we mainly focus on rational equivalence.

Rational Equivalence

This is the adequate equivalence relation that give us the Chow groups for a variety X.
Since we will use it throughout the following chapter, we recall the definitions and basic
properties of this relation. Let k(X)) be the function field of X and consider f € k(X)
The divisor of f is defined as follows:

e div(f) = Z ordy (f) - Y where Y is a subvariety of X of codimension 1, and

YCcX
the order is defined as ordy : k(X)* — Z, let A = Oxy local ring, f € A and

ordy (f) = €a(A/(f)), where £4 is the length of the A—module.
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1.1. Algebraic cycles and correspondences

From this, it follows that the divisor div(f) of a function f € k(Y)* on an irreducible
subvariety Y C X is a codimension 1 cycle on Y, and therefore if Y is of codimension
i—1in X, div(f) € Z(X). Therefore, for a codimension i cycle Z C X, we have Z ~yu; 0
if there exist (Ya, fo) codimension i — 1 and irreducible cycles such that Z = Y div(f,).

Let X® be the collection of irreducible codimension i subvarieties of X. We have

Ziw(X)=Im{ @ k) P zy,

YeXx(i-1) ZeX (@)

and the Chow group of codimension ¢ cycles on X is defined as follows

CH'(X) = coker @ kE(Y)* A, @ Z
Yex(i-1) ZeX (@)

e We say that D is a principal divisor of X (cycle of codimension 1) if there exists
f € E(X) such that D = div(f). We can define a equivalence between divisors
called linear equivalence, denoted by ~y,, which is defined as follows: Dj ~ii,
Dy <= 3 f € k(X) such that D; — Dy = div(f).

e For divisors linear equivalence and rational equivalence coincide.

e If X is smooth, the quotient group Div(X) by the subgroup {div(f) | f € k(X)*}
(principal divisors) is the Picard group Pic(X).

Also, we can define the morphism

N: @ V)= & kW)

V€X<n+1) W€Y<n+1)

in the following way: If the field extension is of infinite degree we define Nl = 0,
otherwise we can consider the usual norm of between fields N : k(V)* — k(W)*. With

those maps, the following diagram commutes:

Dyex (V) —I . 7,(X)
: E
Diwey k(1) ———— Z,(¥)

This information an be summarized in the following theorem:

Theorem 1.1.2 ([Ful98, Proposition 1.4]). Let f : X — Y be a proper surjective mor-
phism of normal varieties, and let r € k(X)*. Then

1. fi[div(r)] = 0 if dim(Y) < dim(X).
2. feldiv(r)] = [div(N(r))] if dim(Y) = dim(X).
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

Definition 1.1.3 (Alternative definition). Suppose X is a smooth and projective variety,
then Zv,Zy € Z'(X) are rationally equivalent if and only if there exist W € Z'(X x P})
and a,b € P} such that, defining W (t) := (pryx)«(W - (X x t)), we have W (a) = Z1 and
W(b) = Z,.

These two definition are equivalent:

Proposition 1.1.4 (|Ful98, Proposition 1.6]). A cycle o € Z¢(X) is rationally equivalent
to zero if and only if there are subvarieties Vi,...,V; of X x PY with codimension i — 1

such that the projections from V; to P' are dominant, with

in Z4(X).

Lemma 1.1.5 ([Blo10, Lemma 1A.1]). Let X be a smooth variety over an algebraically
closed field k, Y any k—variety. Let i > 0, then writing K = k(Y) we have

CH(Xg)=~ lim CH(X xU).
UCY open
Theorem 1.1.6 ([MNP13| Theorem 1.2.6]). 1. If f : X — Y is a morphism in SmProjp,,
then f*: CH'(Y) — CH*(X) is a graded ring homomorphism, and f. : @; CH;(X) —
CH;(Y) is an additive graded homomorphism of degree dim(Y') — dim(X).

2. if X,Y € SmProj, then Z € CHY¥™X)(X x Y) induces an homomorphism Z, :
CH*(X) — CH*(Y) of degree e.

3. Local exact sequence: if i : Y — X is a closed embedding and j : U .= X -Y — X

the associated open embedding, then we have an exact sequence

3

CH,(Y) = CH,(X) L5 CH,(U) = 0

4. The homotopy property holds: the projection pry : X x Al — X induces an iso-
morphism pry : CH(X) = CH'(X x A7)

We can say more about the structure of the Chow ring for some smooth projective
varieties, such as projective bundles, Blow-ups with smooth center and varieties that

admit a cellular decomposition.

Theorem 1.1.7 ([EH16, Theorem 9.6]). Let E be a vector bundle of rank r +1 on a
smooth projective scheme X, and let £ = c1(Oppy(1)) € CH'(P(E)). Let w: P(E) — X
be the projection. The map ©* : CH'(X) — CH*(P(FE)) is an injection of rings, and via

this map we have
CH*(P(E)) = CH (X)[E]/ (€ + c1(B)E + ... + crpa (B)).
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1.1. Algebraic cycles and correspondences

In particular the group homomorphism

é CH*(X) — CH*(B(E))

=0
r .
(a0, ar) = 3 €l (ay)
i=0
r .
is an isomorphism, which gives us CH*(P(E)) = @5‘ CH (X).
=0
Remark 1.1.8. Let X,Y € SmProj,, and E be a locally free sheaf of rank 7+1 > 1 on X.

Let m1 : X XY — X be the projection in the first component,which is dominant, then

we have the following diagram:

U
P(x*E) P(E)
W/l m
X xY - X

and using compatibility of the Chern classes with pull-back, i.e., ¢;(f*E) = f*¢;(E), we
obtain the isomorphism @;_, CH*(X x Y) — CH*(7{P(E)).

Theorem 1.1.9 (|Ko6c91, Appendix A]). Suppose m : X — S is a flat morphism of
relative dimension n and that X admits a filtration by closed subschemes X = Xg D
... D X D such that X;_ 1 — X; = Ag_d" for some d; € Z. There is an isomorphisms of
Chow groups

P cr%(S) - CH/(X)
=0
which is functorial with respect to cartesian squares

X/

X

/

e ™

S/

S

T

Finally, let X be a smooth variety, let Z be a subvariety of X of codimension m. Let
i : Z — X be the inclusion map. We associate 7 : W := Blz X — X the blow-up of
X along Z. The exceptional divisor E of W is said to be 771(Z) and Ny /x the normal
bundle of Z in X.

Theorem 1.1.10 ([EH16, Theorem 13.14]). Let i : Z — X be the inclusion of a smooth
subvariety of codimension m in a smooth variety X, m: W — X the blow-up of X along

Z and E the exceptional divisor with inclusion j : E — W. If Q is the universal quotient
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

bundle on E = IP’NZ/X, there is a split exact sequence of additives groups, preserving the

grading by dimensions

0= cH(2) Y o (x) @ crr(B) T omr(w) s o.

where h : CH(Z) — CH*(E) is defined by h(o) = —cim—1(Q)715 ().

Algebraic equivalence

The definition is similar to the given in the rational equivalence, but instead of considering

P! we can consider any smooth curve C, such that a,b € C.

Definition 1.1.11. Z1 ~y4 Z3 if and only if there is a smooth irreducible curve C,
W e Z{(C x X) and two points a,b € C such that Zy — Zy = W(a) — W(b).

Remark 1.1.12. It is possible to define rational equivalence by using a smooth projective
variety M instead of a curve, fulfilling the condition a,b € M, but we can consider a
curve C immersed in M such that a,b € C.

Remark 1.1.13. The definition of algebraic equivalence gives us an important result: if
Z1 ~rat Zo == Z1 ~alg Z2 1.e. ~pyt is finer than ~,, but in general the two definitions
do not coincide. Let X be an elliptic curve and let a, b be different points on X (k), and
define the cycle a —b. This cycle is not rationally equivalent to zero (see [Sil09, Corollary

3.5]), but it is algebraically equivalent to zero because its degree is zero.

Smash nilpotent equivalence

Let X be a smooth projective variety. We will denote the n-th cartesian product of itself
as X" (the same notation will be used for cycles of X). Then we will say that Z is smash
nilpotent equivalent to zero, denoted Z ~g 0, if and only if there exists n € N such that
Z"™ ~pap 0 on X7,

It is easy to see that from the definition we have Z?

i+ (X) C Z%(X), but the assertion
(X) C ZL(X) is not quite as straightforward.

i
Zalg

Theorem 1.1.14 (Voevodsky-Voisin). [[MNP13, Theorem B-1.2]] We have that Zilg(X)@ C
Z5(X)o-

Homological equivalence

Let F be a field of characteristic 0. To define the Homological equivalence first we shall
recall what is a Weil-cohomology theory. A Weil cohomology theory is a graded functor
H between the category SmProj;” and the category of finite dimensional graded vector

spaces over the field F', which satisfies the following axioms:

1. There exists a cup product between H(X) x H(X) — H(X), which is graded and

super-commutative
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1.1. Algebraic cycles and correspondences

2. We have the Poincaré duality: there is a trace isomorphism Tr : H?¢(X) & F (X

being irreducible and equidimensional) such that
HY(X) x H¥(X) 2% H*(X) S F
is a perfect pairing
3. The Kiinneth formula holds:
H(X) @ H(Y) Pl 0) gox soyy
is a graded isomorphism.
4. There is a cycle class map vy : CHY(X) — H?(X) which is:

e functorial in the sense that for f : X — Y in SmProj,,, we have f*oyy = yxof*
and fy ovx =Yy o fs.
e compatible with intersection product, i.e. yx(a - 3) = yx(a) Uvx ().

e compatible with points P, which means the following diagram commutes:

cHO(x) —

HO(P)

deg Tr

Z

F

5. Weak Lefschetz property holds: if ¢ : Y31 < X is a smooth hyperplane section,
then

. P ] an isomorphism for ¢ < d —1
H'(X) — H'(Y) is
injective for i = d — 1.

6. Hard Lefschetz property holds: the Lefschetz operator L(a) = aU~vyx(Y) induces

isomorphisms

LU gN(X) S HTY(X), 0<i<d.

Example 1.1.15. 1. Some examples of Weil cohomology theories (if the characteris-
tic of k is equal to zero and k C C):

e Singular cohomology group H'(X ) with Q or C coefficients. Xap, denotes the
complex manifold associated to X.

e The classical de Rham cohomology Hyr(Xan,C).

e The algebraic de Rham cohomology HéR(X, C) := HY(X zar, QB(/k)
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

2. If X € SmProj,, consider the base change to the algebraic closure X = X ®, k.
We define the étale cohomology of X as follows: let £ be a prime number different
from the characteristic of the field k, let us recall the definitions

Hiy(X i Z) o= lim H(X3, 2/07)

n

Hi(Xp, Qo) 1= Hig(Xg, Ze) @z, Qe
For further details about étale cohomology see [Mil80)].

3. For a perfect field k and a smooth projective k-variety X, one has crystalline co-
homology H.,,(X/W(k)) ® K, where K is the field of fractions of the Witt ring

Definition 1.1.16. Let X be an equidimensional smooth projective variety over k and
Z € ZY(X). For a given a Weil cohomology theory H, we define Z € Z ~pom 0 <

1x(Z) = 0.

Remark 1.1.17. It is important to say that the homological equivalence depends on the

Weil cohomology theory we are working with.

An important fact, is that we obtain a second relation between different equivalences,
it Z1 ~ag Z2 = Z1 ~hom Z2. This follows because two points on a curve are
homologically equivalent and the properties of the cycle class map.

In the same way, we can obtain that Z% (X) C Zi__(X). Let us consider that Z ~g 0,

which means that exists n € N positive, such that Z" ~,, 0. Considering its cycle class
n .
yxn(Z7) = Q) x(Z) =0 € H*"(X™)
i=1
then vx(Z) = 0.

Numerical equivalence

Let X € SmProj, be a equidimensional and irreducible variety. For Z € Z¢(X) we say
Z ~pum 0 if and only if for every W € Z971(X) (with d dimension of X) where the
product Z - W is defined, we have deg(Z - W) = 0.

If Z € Zi_(X) (for a given cohomology theory H) with i < d, and W € Z¢74(X)
such that Z - W is defined, then by functorial properties of the degree map we obtain

deg(Z - W) = Tr(yx(Z - W))
=Tr(vx(Z2) Urx(W)) =0,

which gives us the assertion Zj _(X) C Zt

num

(X).

Theorem 1.1.18 (Matsusaka). Let k be an algebraically closed field, then for divisors
we have the equality Z;lg(X) =27}, (X)=Z}L.(X).

num
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1.1. Algebraic cycles and correspondences

(X) for

all 7. This is one of the standard conjectures known as the conjecture D(X). If k is

num

If k is an algebraically closed field, it is conjectured that Z{ (X) = Z¢

algebraically closed field of characteristic zero, the equality is known for ¢ = 2, and for

curves and abelian varieties.

Remark 1.1.19. The equivalence relations previously presented are adequate equivalence
relations. For more details about algebraic, homological and numerical equivalence, see
[Ful98, Chapter 19] and [MNP13| Chapter 1].

Finally, we can conclude the following chain of inclusions between the group of cycles
that are equivalent to zero by different relations

Zi

rat

Zﬁat(X)K - Z;lg(X)K CZ%Q(X)K C lelom(X)K c Z

num

(X) CZ;lg<X> - Zliom<X) - Zl

num

(X)
(X)k if Q c K

Lemma 1.1.20 ([And04, Lemme 3.2.2.1]). Rational equivalence ~,q is the finest ade-

quate equivalence relations, and numerical equivalence is the coarsest.

Proof. Let ~ be an adequate equivalence relation, if Z ~ 0, by properties of adequate
equivalence relations Z-Y ~ 0 for Y, whenever the intersection product is defined, which
gave us Z'(X) C Z¢ i (X).

Now, we need to prove Y ~, 0 = Y ~ 0. The general idea is prove that [0] ~ [o0]
on P! (in general any two points are related) by using the properties of an adequate
relation. By the moving lemma, there is a cycle > n;[z;] ~ [1] such that the intersection
product Y n;[x;] - [1] is well defined, i.e. z; # 1 for all i. Let « = > n;[x;] —1 ~ 0 and let
I't be the graph cycle of f(z) =1—1]] (%)mz with m; > 0. Then we have a sequence
of implications of equivalences to zero of different algebraic cycles:

a~0 = axP'~0 = Iy (axP)~0 = (pry) ('[y-(axP"))~0
we obtain that mn[l] ~ m[0] with n = Y n; and m = ) m;, since m is arbitrary we
conclude that n[1] ~ [0]. Applying x — 1/x we obtain n[1] ~ [co] = [0] ~ [o0]. O

Remark 1.1.21. Another important conjecture about algebraic cycles, known as Voevod-
sky’s conjecture, which states that Zi(X) = Z{,.(X). Note that the last conjecture
implies the standard conjecture D(X) for every Weil cohomology theory, since Voevod-

sky’s conjecture is independent of the choice of a Weil cohomology theory.

Correspondences

Let X and Y be in SmProj,. For a given adequate equivalence relation ~, we define
Corrl,(X,Y), the group of correspondences of degree r from X to Y, as follows: When
X is an equi-dimensional variety of dimension d, Cort” (X,Y) = AL"(X x Y)q. If

X = 11X, where X; is a connected variety, then
Corr”(X,Y) = @ Corr,(X;,Y) C AL(X xY)g.
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

Let pry, : X XY x Z — X x Z be the projection (analogously for pryy and pry ),
f € Corr(X,Y) and g € Corr(Y, Z), then we define the composition of correspondences
go f € Corr (X, Z) by the formula

gof=Iprxzl {(f x2)- (X xg)},

in the case when X =Y = Z then Corr. (X, X) has a ring structure, where the cycle of
the diagonal A(X) C X x X acts as the identity element. It is necessary to remark that
the composition is well defined, because the intersection product in A (X x Y x Z) is

well defined, and in general is not commutative.

Definition 1.1.22. A projector for X is an element (or also an idempotent element)

p € Corr(X x X) such that pop = p. Note that a projector p has degree 0.

Let ¢ : X — Y be a morphism of varieties, with X and Y irreducible varieties of
dimension d and e respectively. Let I'y C X X Y the associated graph of ¢, this define
¢s =Ty € Corr®4(X,Y) and ¢* := T € Corr? (Y, X).

Example 1.1.23. Suppose ¢ is a generically finite morphism of degree r and d = e, then
¢« 0 @ defines a correspondence from'Y to'Y of degree 0 which in fact can be described

as

$e 09" = [pryy]e {('Ty x Y) - (Y x Ty) }

Let us notice that the cycle [pryy]« {('Tg x Y) - (Y x T'y)} can be see as the pushforward
of the following map composition

X &l X xY Yy« Y

g $Xidx o, (o(x),z, d(x)) Ty (¢(x), p(x))

which is the same cycle resulted of the image of the morphism’s composition X Oy By,
Y x Y. Using the pushforward of the morphisms ¢ and Ay we obtain

CH (X) 25 o (v) B ey x Y)
where ¢.([X]) = r[Y] and (Ay)([Y]) = idy, therefore Ty o 'T'y = ridy.

Any correspondence induces a homomorphism of groups between cycles of some codi-
mension depending of the degree of the correspondence. Let f € Corr (X,Y), then we

define the induced homomorphism as follows:
fe:r AL(X)g = AT (Y)o
Z = [+(Z) = (pry )« {f - (prx)"(2)}

If f has degree zero, then the homomorphism respects the degree. In the same way for
f € Corr (X,Y) it is possible to define an operation on a Weil cohomology (only in the

cases when ~ is finer or equal than ~yqp,)
fo: H(X) — H(Y)
a — fu(a) = pry{yxxy (f) U (prx)*(a)}
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1.2. Theory of pure motives

Lemma 1.1.24 (Lieberman’s lemma, [MNP13, Lemma 2.1.3]). Let f € Corr.(X,Y),
a € Corr(X,X"), B € Corru(Y,Y"), then (a x B)«(f) = Bo fola.

1.2 Theory of pure motives

Definition of motives

The construction of the category of classical motives is simple and does not depend on
the standard conjectures. We will proceed by the definition of motives with respect to an

adequate equivalence relation ~.

Definition 1.2.1. The category M..(k) of k-motives with respect to the adequate equiv-
alence relation ~ is defined as follows: an object of this category is a triplet (X, p,m)
where X is in SmProj,, p € Cor®,(X,X) is a projector and m € Z. If (X,p,m) and

(Y,q,n) are motives then
Hompg ) (X, p,m), (Y, q,n)) = g o Corr’"(X,Y) o p.

A morphism f : (X,p,m) — (Y, q,n) is of the form gogop where g is a correspondence
of degree n — m. There is another way to see the morphism of motives. Consider the

subgroup
M((X,p,m),(Y,q,n)) :={g € Corr ™ (X,Y) [ gop=gog}

an we define an equivalence relation by declaring g ~ 0 if and only if pog = goq = 0,
then g = gop ~ qog =~ gogop. In the subgroup M ((X,p, m), (X,p, m)) we have p ~ idx,
the same for (Y, ¢,n) and q.

Let [g] be the equivalence class, then [f] = [g], therefore

HomMN(k)((X7p7 m)’ (}/7 q, n)) = M((Xapam)? (Y7Q7n))/ ~ .

Remark 1.2.2. 1. By properties of the group of correspondences and the idempotent
elements p and ¢, the category M. (k) is additive, Q—linear and pseudoabelian, but
in general is not abelian (see |[Sch94, §3.5]). Another important fact of the category
of motives comes from Jannsen’s theorem, which states that M. (k) is an abelian
semi-simple category if and only if the equivalence relation used in the definition of

the category is the numerical equivalence (see |[Jan00] or [MNP13, Theorem 3.2.1]).

2. Notice that by changing the coefficients of the correspondences, to its integral
version, we can define the integral version of the category M. (k), that we denote

by MN(]{?)Z

3. When ~=n~,; we denote the category M. (k) (resp. M~ (k)z) by Chow(k)q (resp.
by Chow(k)z).
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

In the general case, we have a (contravariant) functor h. which acts as follows:

h~. : SmProj, — M. (k)
X = ho(X) = (X,Ax,0)
(f: X =Y) = ho(f) =Ty € Cort®(X,Y) = Hom g 3) (h(X), h(Y))

Thanks to the definition of the category M. (k), we obtain that two motives, M =
(X,p,0) and N = (Y, q,0), are isomorphic if there exist two zero degree correspondences
f/: X —-Y and ¢’ : Y — X such that the composition of morphism f = go f’ op and
g=pog oqgonehas fog=¢q=1idy and go f = p = idy;. In general, for motives
two M = (X,p,m) and N = (Y, ¢,n) in order to be isomorphic one should find f’ and
g’ correspondences having degree n — m and m — n, such that the relations holds. If

~=nrupat We denote the functor h. simply by h.

Examples and properties of motives

Let k be a field, we can define the following motives: 1 := (Spec(k),id,0) (motive of a
point). This motive acts as the unity when we define a product structure in the category
of motives. The Lefschetz motive, defined as L. = (Spec(k),id, —1) and the Tate motive
T = (Spec(k),id, 1). Assume X (k) # () and consider e € X (k), this can be assured if we
enlarge the field k. We can define two projectors of X

po(X):=ex X, pou(X):=X xe.

Those projectors will be important in the developing of the decomposition of motives
h(X), because they define orthogonal projectorsi.e. po(X)opaq(X) = paq(X)ope(X) =0,

because:

Po(X) 0 paa(X) = (prxx)s (€ x X x X) - (X x X x €)}
=0
by definition of the pushforward on algebraic cycles. In case that X (k) = (), then we
choose a zero cycle z € CHy(X) of degree n and then define the projectors
1

po(X) = =[x X], paalX) = % X x 2.

With these projectors, we have the definition of two new motives
hON(X):(vaO(X)7O)7 hzd(X):(szd(X);O)

Example 1.2.3. The first example of an isomorphism of motives that we can construct
by definition is h%(X) = 1. Let a : X — Spec(k) be the structural morphism and e :
Spec(k) — X be the injection map with e € X (k). Those maps induces correspondences
a* = Spec(k) x X and e* = e x Spec(k). We have that €* o o™ = idy(gpec(i))- On the other
hand

a*oe* = (pryx)« {(e x Spec(k) x X) - (X x Spec(k) x X)}
=ex X
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1.2. Theory of pure motives

The morphisms of motives a* : 1 — h%(X) and e* : h%(X) — 1 are mutually inverse

because

d o e*opO(X)OOé*Oid: id
po(X)oa*oidoe® opy(X) = po(X)

therefore 1 2 h? (X).
There is a tensor product on the category M..(k), which is defined on objects by
(X,p,m)® (Y,q,n) = (X XY,p®q,m+n).

By the definition of tensor product of motives, we have immediately that L® T = 1.
In the same way, we can define another operation such as the direct sum of motives.
Let M = (X,p,m) and N = (Y, q,n) be motives, then one can define a motive M @& N.

In the case that m = n then
(X,p,m)@ (Y,q,m) = (XTY,pllq,m).
For a general construction when m # n, let us assume m < n, then we can decompose

M= (X,p,n)@L"™
= (X.p.n) @ 2 (BY)"
= (X X (Pl)n_maﬁv n)

where the projector p is defined as p = p @ (P! x {z})"~™. Therefore M & N = (X x
(PYy"m 1Y, 511 g, ).

If ¢ : X — Y is a generically finite morphism of degree d we have that ¢, o0¢* = d-idy
and p := (1/d) - ¢* o ¢ is a projector on the variety X. In fact (X,p,0) = h(Y)

Let M = (X,p,0) and N = (Y,q,0) be motives and assume that there exist mor-
phisms of motives f,g such that f : M — N, g: N — M and fog = idy = ¢, then by the
remarks in the section of category theory p’ = go f defines an idempotent correspondence
which is a projector on X and N = (X,p’,0), and also M 2 N & (X,p —p,0).

There exists a direct application to the direct sum of motives. Let us consider the
projectors pp and pog defined previously. Let p™(X) := A — po(X) — pag(X) be a
correspondence, which by the properties of py and pog is also a projector. If we put
hE(X) := (X,p"(X),0) there is a decomposition of h(X) as

ho(X) = 2 (X) @ hE(X) @ h?4(X)

Example 1.2.4. Let x € PY(k). One has a decomposition of the diagonal as the sum
of {x} x P! and P! x {x}, actually, this decomposition is independent of x, then we can

obtain the following decomposition of motives
ho(X)=1aL.
This is the first example of the decomposition of the diagonal in the category of motives.
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

In general h?¢(X) = (Spec(k),id, —d) = L%, Let us prove the first isomorphism.
Due to the definition of isomorphism of motives, we need to find two correspondences
/" : Spec(k) — X and ¢’ : X — Spec(k) such that

f" € Corr (Spec(k), X) = AL (Spec(k) x X) ® Q
g € CorrZ%(X, Spec(k)) = A (X x Spec(k)) @ Q.

Using the correspondences f’ = e, and ¢’ = a4, on one hand we obtain ay, oe, = 1

as a correspondence on Spec(k), on the other hand e, o a,, = X X e because

ex 0y = pryx {(X x Spec(k) x X) - (X x Spec(k) x e)}
=X xe.

The conclusion is similar to the conclusion of the isomorphism between h% (X) = 1.

Proposition 1.2.5 ([Sch94, Proposition 1.12]). Any motive M can be expressed as a
direct factor of some h(X') @ L™ with X' equidimensional.

Proof. Let M = (X,p,m) then M = ph.(X)® L™™, so it is enough to prove the case
when M = h(X). Let X =1II]_, X; be the decomposition of X into its equidimensional
components. Let d; := dim(X;) and set aj,...,a, € N such that for some k € N,
di+a;=kforalli=1,...,r. Then

he(X) = P he(Xi) = P (ho(X3) @ 1)
=1

=1

= @ (h(X:) © h2(B))
=1

- éhN (X; x P%)

i=1

but @i_; he (Xi x P4) = ho (IT]_; X; x P%). O

It is possible to define Chow groups of motives (also for every adequate relation). For
any projector p : X — X, for all ¢ one has induced maps py : CHi(X)Q — CHi(X)Q and
for M = (X, p, m) one defines

CH'(M) := p.(CH™™(X)q) C CH™™(X)q
Proposition 1.2.6 ([MNP13, Proposition 2.5.1]). If M = (X,p, m), one has that
CH' (M) 22 Homcpour), (L', M)
Remark 1.2.7. The proof of the last proposition uses Lieberman’s lemma, which is valid

for any adequate relation, so it is possible define A, (M) as A’ (M) = Hom () (L', M)
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1.2. Theory of pure motives

Note that the Chow group of the motive M ® L7 is closely related to the motive of
M by

AL(M L) = AL (X, p,m — j)
= p (AT (X)q)
= AITI(M)

Now let ~ be an equivalence relation finer or equal than homological equivalence.
Then for a motive M = (X, p,m) we can define the cohomology groups for it in a similar

way as cycle groups. Considering the induced map p, : H(X) — H*(X) then
H'(M) := p,(H'"™ (X)) C H?™(X).

If M = (X,p,0) is a motive, then this motive contains information about X, in the
sense that is a “piece” of X which is responsible for a certain part of the geometrical
and/or algebraical properties of X (for instance the Chow groups of the motive M as a
subgroup of the Chow group of X), depending on the equivalence relation that we work
with. When M = (X, p, m) with m # 0, by Proposition M is a direct summand of
the motives h.(X x (P!)™), therefore the motive M can be realized as a part of different

varieties.

Manin’s identity principle

There exists the duality operator which acts as follows:

Vi Mo (B)°PP — M (k)
M = (X,p,m) — (X,p,m)v = (X,tp,dfm)

if X is purely d—dimensional. In particular, if we continue with the assumption of X
purely d—dimensional, then h(X)V = h(X) ® L™% It is clear that the duality operator

is an involution, i.e. MYV = M, and we have the formula
HomMN(k)(M ® N, P) = HOHIMN(k)(M, NV () P)

For any motive M € ob(M.(k)) and d € Z we define the cycle groups of M by
AL (M) = HomMN(k)(Ld,M). Let Vectg be the category of Q—vector spaces, then
Af (=) : Mo(k) — Vectg is a Z—graded and additive functor. If M, N € ob(M(k))
then

Hom 3y (N, M) = Homp_ ) (1, M @ NV) = AL(M ®@ NY)

Using the properties of the category M. (k), in particular that is a small category,
by the Yoneda lemma and the remarks made in the subsection of preliminaries, the
functor F : M(k) — Sets™~® " which attaches M € ob(M.(k)) to the functor
Hom (1) (—, M) is fully-faithful.
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

As we know, any N € ob(M.(k)) can be seen as a direct factor of h(Y) ® L"
for some Y € SmProj; and n € Z, and along with the properties of duality, we have
AS (M @b (Y)®L") = AZM(M ® h-(Y)). Denoting by wy the following functor

Wi SmPronpp — Vectg
Y s wy(Y):=AL(M e h(Y))
then the functor which attaches M € ob(M.(k)) to wys is full faithful. This is because

of the properties of the category of motives and Yoneda’s lemma.
Theorem 1.2.8 ([Sch94, Section 2.3]). [Manin’s identity principle/

o Let f, g: M — N be morphism of motives. Then f is an isomorphism if and only
if the induced map

wi(Y) s AS(M @ ho(Y)) = A%(N @ ho(Y))

is an isomorphism for every Y € SmProjy,, and f = g if and only if wr(Y) = we(Y)
for every Y € SmProj;,.

e A sequence 0 — M’ ENS VEENS Vry M. (k) is exact if and only if, for every
Y € SmProj,, the sequence

0= A (M @ ho(Y)) L0 4 (M @ ho(v) 2% A% (M" @ ho(Y)) =0
18 exact.

Proof. The proof of the first assertion comes directly from the properties of the category
of motives and Yoneda’s lemma. The hypothesis are clearly fulfilled for this case because
of the given arguments about the morphisms in the category of motives. The second

property follows since the functors are fully-faithful. O

Motive of a projective bundle

The first example that we consider is the calculation of the motive of a projective bundle,
because it gives us an important fact about the functor h and how it acts on the objects
of Chow(k)g.
Remark 1.2.9. For the next example, we need to remember that the Chow group for
X x P" where X € SmProj, is given by CH*(X x P*) = CH*(X)[t]/(t"*1).

Let us consider X € SmProj, and the free projective bundle over X of rank n,
X x P". By definition we have h(X x P") = (X x P", Axypn,0) which is isomorphic to
h(X) ® h(P") = (X,Ax,0) ® (P", Apn,0) (due to the decomposition of the diagonal).
For the case of the motive h(P") one has the decomposition A(P?) =1 L' @ ... L"

E In other words, for the motive of the free projective bundle of rank we obtain

h(X x P") = éLBh(X) ® L.
=0

this comes from the fact that we construct projectors p; = €™~ % x ¢* for all 4 € {0,...,n}, where &
is the class of a hyperplane in the Chow group of P", such that the projectors p; are pairwise orthogonal
and Apn =Y "  p;. For more details see [Man68| p. 455.
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1.2. Theory of pure motives

Example 1.2.10. Let E be a locally free sheaf of rank r +1 on X € SmProj,, and let
7 :P(E) — X be the projective bundle and £ = c1(Opg)(1)) the tautological line bundle.

As we have seen before, there is an isomorphism A for Chow groups

E) =@ CcH (X
=0

with inverse p. Now, let us consider T € SmProjy, it is easy to see that (idp X p) o (idp X
A) = id on the group CH*(T x P(E)) i.e. the property remains true universally after an
arbitrary base change T"— Spec(k) (also considering (idr x A) o (idp x p) = id on the
group @_, &' CH (T x X)), having for all T an isomorphism

CH*(T x P(E)) = égicm(:r x X)
=0

therefore, we can conclude that (P(E), Ap(gy,0) = @(X Ax,—i) (with the usual nota-
=0

tion h(P EB h(X) ® IU

Remark 1.2.11. 1. This example shows two varieties, X xP" and P(F) with E a locally
free sheaf of rank r + 1 > 1 over X, that are not isomorphic and such that their
respective motives are isomorphic. We obtain an important conclusion, the motive
of a projective bundle over X € SmProj; only depends of the rank of F, so it can be
constructed as if E were a free sheaf. In a language of category theory, the functor

h : SmProj;,, — Chow(k)qg is not conservative, i.e. is not injective on objects.

2. In case of the existence of a Chow-Kiinneth decomposition of X one has a decom-

position of the motive of a projective bundle as

r 2dim(X)
=P P W) eL).
i=0 j=0

Motive of a Blow-up

Example 1.2.12 (|Sch94, 2.7, Theorem 2.8], [Man68, §9, p. 461]). Another example
of the Manin principle is the isomorphism that relates the motives of a variety X, a
subvariety Z C X of codimension (m + 1) and W = Blz X the blow-up of X along Z in
the following way:

h(X)® h(E) = h(Z)®h(W)

Due to Theorem|1.1.10, for T € SmProj, the exact sequence can be extended to

@*h)

0= CH (T x 2) " o (T x X) @ CH(T x E) 2% o (T x W) = 0.

which gives an exact sequence

in the category of motives Chow(k)g.
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

Cellular decomposition

Example 1.2.13. Let X — S be a smooth projective variety which admits a cellular
decomposition. Since the isomorphism presented in Theorem 1s preserved under
base change S" — S, by Manin’s identity principle we conclude that

k
h(X) = P h(S) e L.
=0

In all the examples, the principal argument was the functoriality of the isomorphism of
Chow groups with respect cartesian products, which allows us to apply Manin’s identity
principle. So in order to know if a morphism is an isomorphism we have to check it
in a universal way for all Y € SmProj,. There exists an improved version of Manin
principle, but for algebraically closed fields as is stated in |[Huyl8, Lemma 1.1]: Let
f : M — N be a morphism in the category Chow(k)g. Then f is a isomorphism of
motives in Chow(k)q if and only if for {2 an universal domain over k, the induced map
(fa)« : CH*(Mgq)gp — CH*(Ngq)g given by the base change fq : Mo — Ngq, is bijective.

We will describe this principle with more details in chapter four.

Chow-Kiinneth decomposition

For certain motives h(X) there exists a decomposition, called the Chow-Kiinneth decom-
position. Consider the following example: let C be a connected, smooth and projective
curve defined over a field k& = k. Fixing a k-rational point e € C(k), we define the
correspondences po(C) = e x C and p(C) = C x e which are idempotent and mutually
orthogonal. Defining p;(C) := p™(C) and hL,(C) = (C,p1(C),0), we obtain

ho(C) = h2(C) @ hL(C) D h2(C).

Modulo isomorphism, hl (C) is well defined as a unique motive. As we have said
before, the theory of the motive hl (C) is closely related to the theory of abelian varieties.

In general, we say that X € SmProj;, admits a Chow-Kinneth decomposition if there
exists projectors p;(X) € Corrpat (X, X), for all i =0, ..., 2d such that

2d
=0

2. pi(X) opj(X) = pi(X) if i = j, otherwise p;(X) o p;(X) =0,

3. vxxx(pi(X)) = APP°(X), where AYP°(X) € H?~% ® H'(X) corresponds i—th
Kinneth component of the diagonal as topological cycle class in the decomposition
of 7xxx (A(X)) = 23, A (X) .

If such projectors exists, we obtain a decomposition of motives, called the Chow-
Kiinneth decomposition for motives, by defining h?(X) = (X, p;(X),0), then

2d ‘
h(X) =P r(X).
=0
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1.3. Triangulated motives

There is a conjecture, called the Chow-Kiinneth conjecture, which states that every
X € SmProj; admits a Chow-Kinneth decomposition. Working with rational coefficients,
the projectors po(X) and pog(X) always exist. This is also the case for the projectors
p1(X) and pog—1(X) by a theorem of Murre, see [MNP13, Theorem 6.2.1]. Hence we

obtain a decomposition of the motive h(X) as follows
hX) ~h(X)®h(X)®hT(X)®h2HX) @ h¥(X).

The motives h'(X) and h??~1(X) are called the Picard and Albanese motives and satisfy
the properties
A 0ifi#1 . 0ifi#£2d—1
CH'(h*(X))g ~ # CH! (R 1(X))g ~ *
Pic®(X)(k)g if i = 1, Ab(X)(k)g if i = 2d — 1.
Some examples of varieties for which is known that the Chow-Kinneth decomposition

holds are the following:

1. For dimension reasons and the existence of the projectors po(X), p1(X), paq—1(X)

and peq(X), the Chow-Kiinneth decomposition holds for curves and surfaces.

2. Abelian varieties A over a base scheme S, given by [MD91] or [Kiin93|, and using

the Fourier-Mukai transform.
3. Conic bundles over a surface, by [NS09].

4. By arguments involving the nonexistence of transcendental cohomology in all de-
grees but in the middle dimension (see [MNP13, Appendix C]) such as complete

intersections in projective spaces and Calabi-Yau threefolds.

5. If X and Y are two projective varieties that admit a Chow-Kiinneth decomposition,

the product X x Y admits a decomposition as well, by imposing the projectors

Pr(X xY) = Y pi(X) x p;(Y).
i+j=k

1.3 Triangulated motives

The main result that we use in this section is the so called Grothendieck sixz functors
formalism. We recall some facts about premotivic theories and the six functor formalism
presented in [Ayol4b|, [CD16] and [CD19).

A monoidal category is a category C equipped with an associative product functor
® : C x C — C and a unit object 1. The associativity property is expressed in terms of

imposing an isomorphism
napc:(A®B)®@C — A® (B®0),

and for the unit 1 we demand the existence of isomorphisms a4 : A® 1 — A and

B4:1® A — A. We require naturality about these maps as follows:
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

e the isomorphism 74 g ¢ depends functorially on the triple (A, B, C), i.e. it can be

regarded as a natural isomorphism between functors

CxCxC—=C
(A,B,C)— (A® B)® C
(A,B,C)— A® (B® ()

and similarly for the maps avq and 4.
e Given any four objects A, B,C, D € C the following pentagram

(A®B)®C)® D
WA,BW W,D
(A (B C))® D (A® B)® (C® D)
JVUA,B®C,D lﬂA,B,C@D

A® ((B®C)® D) » AR (B® (C® D))

ida®ns,c,p

is commutative.

e For any pair (A, B) of objects in C, the triangle

NA1,B

(A®1)@ B A® (1 B)
QAWX\ Aﬁ}s
A®B

is commutative.

Grothendieck six functors formalism

We assume that all schemes are noetherian and of finite dimension. Consider a family of

morphisms P which is one of the following families
e The class of étale morphisms which are separated of finite type, denoted by Et.
e The class of smooth morphisms which are separated of finite type, denoted by Sm.
e The class of separated morphisms of finite type, denoted by F7t.

Let S be a given base scheme, then we denote Sg, Smg and fgt be the category of
noetherian S-scheme having structural morphism U — S in the class of morphisms Et,
Sm and F7t respectively. All of these families areadmissible families in the sense of
[CD19]. In general a family of morphisms P of a category C is called admissible if it has

the following properties:
1. All isomorphisms are in P.

2. The class P is stable by composition.
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1.3. Triangulated motives

3. The class P is stable by fiber products.

Definition 1.3.1 (Triangulated premotivic category). We say that a fibred category M
over Sch is a triangulated (resp. abelian) P-premotivic category if satisfies the following

properties:

1. For any scheme S, the fiber Mg is a well generated triangulated (resp. Grothendieck

abelian) category with a closed monoidal structure.

2. For any morphism of schemes f, the functor f* is triangulated (resp. additive),

monoidal and admits a right adjoint denoted by fy.
3. For any morphism p € P, the functor p* admits a left adjoint denoted by py.

4. For any cartesian square
vy 1o X
A f
— S

Q

T p

there exists a canonical isomorphism Ex(A;é) Dqugt — [pu.

5. For any morphism p : T — S in P and any object (M,N) of Mp x Mg, there
exists a canonical isomorphism Ex(py, ®) : pg(M @71 p*(N)) — pg(M) ®s N.

Let us consider a premotivic triangulated category 7. Given any smooth morphism p :
X — S, we define the homological Voevodsky premotive associated to X/S as the object
Mg(X) :=py(1x), which has a covariant nature. Let p : Pk — S be the projection. We
define the Tate premotive as the kernel of the map py : MS(P}g) — 1g shifted by —2,
denoted by 1(1) and for a premotive M € T we define the n—th Tate twist of M as the
n—th tensor power of M by 1(1). If 1(1) is ®-invertible in 7 then it is possible to define
the Tate twist for negative n.

We associate to the premotivic category T a bi-graded cohomology theory defined by
Hy"(S) := Homy(1s, 15(n)[m]).

One also introduces the following properties of the premotivic triangulated category

T:

1. Homotopy property: For any S-scheme, the canonical projection of the affine line

over S induces an isomorphism Mg(A}L) — 1g.
2. Stability property: The Tate premotive is ®-invertible.

3. Orientation: an orientation of 7 is natural transformation of contravariant functors,

such that for all schemes S the map

c1 : Pic(PY) — HZ'(PY).
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

sends Op}g(—l) to1lin H%O(S) via the decomposition H%I(P}g) ~ H?il(S)EBHg—’O(S),
where the identification of the last factor uses the stability property.

When T is equipped with an orientation we say that 7T is oriented.

Remark 1.3.2. As one of the authors of [CD19] mentions, there is a typo in the definition

given in the book forgetting the previous condition.

Definition 1.3.3. Consider T a triangulated premotivic category which is oriented. We
say that T satisfies the Grothendieck sixz functors formalism if it satisfies the stability
property and for any f:Y — X € FIt there exists a pair of adjoints functors

f:TY)=2T(X): f
with the following properties:

1. There exists a structure of a covariant 2-functor on f — fi and of a contravariant
2-functor on f — f*.

2. There exists a natural transformation oy : fi — fi which turns out to be an iso-

morphism when f is proper.

3. For any smooth morphism f : X — S of relative dimension d there are canonical

natural isomorphisms

By f4 — fi(d)[2d]
Byt f* = f(—d)[-2d]

which are dual to each other.

4. For any cartesian square

Y

1

< P

—
A
Y f

such that f € FIt, there exist natural isomorphisms
g h = fg
~ pl o~ |
G — [ g«

5. For any separated morphism of finite type f : Y — X there exist natural isomor-

phisms

Ex(f*,®): (hK)®x L = fi(K ®y f*L),
Homy (fi(L), K) = f.Homy (L, f'(K))
' Homy (L, M) = Homy (f*(L), f'(M))
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1.3. Triangulated motives

6. For any closed immersion i : Z — S with complementary open immersion j, there

exist distinguished triangles of natural transformations as follows:

o, ) )
S R ALy
it 2512 4 2 ail)

/

where o

and «; denote the co-unit and unit of the adjunctions.

We introduce the following definitions related to some of the axiomatic properties of

premotivic categories:

e Given a closed immersion 7, the fact that i, is conservative and the existence of the

first distinguished triangle in (6) is called the localization property with respect to i.

e The conjunction of properties (2) and (3) of Definition [1.3.3 gives, for a smooth
proper morphism f, an isomorphism ps : fu — fi(d)[2d]. Under the stability and
weak localization properties, when such an isomorphism exists, we say that f is

T-pure (or simply pure when T is clear).

Definition 1.3.4. Consider the notation and assumptions above. We say that T satisfies
the localization property (resp weak localization property) if it satisfies the localization
property with respect to any closed immersion i (resp. which admits a smooth retraction).

We say that T satisfies the purity property (resp. weak purity property) if for any
smooth proper morphism f (resp. for any scheme S and integer n > 0, the projection
p:P¢&— S)is T-pure.

Premotivic categories

Let P be one of the classes defined before. The categories Shgt(Ps, A) of étale sheaves of
A-modules over Pg form the fibers of an abelian premotivic category. The derived cate-
gories D(Shet(Ps, A)) for various schemes S form the fibers of a canonical triangulated
premotivic category. Consider the homotopy relation, [CD19, Definition 5.2.16]: first
consider A an abelian P-premotivic category compatible with an admissible topology
t. Let us consider Wy1 to be the family of morphism Mg(AY){i} — Mg(X){i} for a
P-scheme X/S and a twist ¢ in 7. We define Df{f(.A) := D(A) [ngl]. We called this
category as the effective P-premotivic Al-derived category with coefficients in A.

With this notation, we can define the following categories:

1. Consider the class P = Sm, the admissible topology t = Nis and a commutative
ring A. Consider the category defined as szf, A= Df’gf(ShNis(Sm, A)). We define
the fibers DKff(S, A) = DfS(ShNiS(Sm/S, A)) for a scheme S. If ¢t = ét then we
denote the category Dig"i = Dfo’it(Shét(Sm, A)) and the fibers as Dig’ét(S, A) =
D (Shee(Sm/S.A)) |
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1. MOTIVES: FROM PURE TO MIXED MOTIVES

2. Assume that P = Ff*. Consider the admissible topology t = h (resp. t = ¢fh) and
define the premotivic category of effective h-motives (resp. effective ¢fh-motives)

over our base S with coefficients in A as follows:

DM;(S,A) = Dii(Shy(F'*/S, A)),
resp. DM, (S, A) = DS5 (Shyp, (FT'/S, A)).

We define the category of h-motives over a base S, denoted by DM%H(S, A), as the
smallest full subcategory of DM ZH(S, A) closed under arbitrary small sums and
containing the objects of the form A%(X) for X — S smooth.

3. Consider S the category of noetherian finite-dimensional schemes and let Smg be
the category of smooth separated S-schemes. We define the A-linear category of
motivic complexes as the category DMST := Df{f(Sh"(—,A)) where Sh'" (S, A) is
the category of Nisnevich sheaves with transfers for a scheme S. For a given scheme

S we put DM°T(S, A) := DS (Sh'" (S, A)).

For an abelian P-premotivic category A. Consider any scheme S, we then have a split
monomorphism of A—premotives 1g — Mg(Gyy,,s). Let us denote by 1g{1} the cokernel
of this monomorphism called the suspended Tate S-premotive with coefficients in A. For
an integer n > 0, we denote by 1g{n} its n-th tensor product. We define the symmetric
Tate spectrum over S as the symmetric sequence 1g{*} = Sym(1g{1}). We denote by
Sp(A) the abelian P—premotivic category of modules over 1g{} in the category A®.

Notice that we have adjunctions
¥>*: A= Sp(A) - O (1.1)

of abelian P-premotivic categories. We can introduce the A'-localization to the category

Sp(A) having an adjunction of triangulated P-premotivic categories
Y : AS Sp(A) - Q% (1.2)

Now consider X a P-scheme over S. From the definition of the functor X°°, there is a
canonical morphism of abelian Tate spectra [2*°(15{1})]{—1} — ¥*°1g. Tensoring this
map by elements of the form X*°Mg(X, A){—n} for any P-scheme X over S and any

integer n € N we obtain a family of morphisms
[E*(Ms(X, {1 {—(n+ 1)} = E¥ Mg (X, A){—n}
We denote this family by Wq and set Wa1 o := Wo UW 1.

Definition 1.3.5. Let A be an abelian P-premotivic category compatible with an admis-
sible topology t. We define the stable A'-derived P-premotivic category with coefficients

in A as the derived P-premotivic category
Dy (A) = D(Sp(A)) [Wilg].
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1.3. Triangulated motives

Given a scheme S and a commutative ring A, we focus on DM®®(S, A). Using the
previous construction of the infinite suspension functor >°°, we obtain an adjunction of

triangulated premotivic categories
¥ DMT(S, A) & DM(S, A) : Q°

where DM(S, A) is called the A-linear category of stable motivic complexes. In this
context, for a scheme S and (m,n) € Z2, we define the motivic cohomology of S in

degree m and twist n with coefficients in A as the A-module
H} (S, A(n)) := Hompyy(sa) (1s, 1s(n)[m])

Let A = Z and k be a perfect field. Given any smooth separated k-scheme S,
the motivic cohomology groups coincide with higher Chow groups: Hj;(S,A(n)) =
CH"(S,2m — n) (see [MVWO06, Theorem 19.1]).

According to [CD19, Proposition 11.1.5], if A’ is a localization of A, then the change

of coefficients induces adjunctions
DM(S,A) @z A = DM(S, A)

which are equivalences of triangulated premotivic categories. As a consequence we obtain
that the morphism HJ}(S,Z(n)) ® Q — Hy;(S,Q(n)) is an isomorphism for every bi-
degree (m,n) € Z%. Now we fix A = Q and consider the functor i : Chow(k:)%’ —
DM(k, Q) given by i(h(X)) = M(X). By [MVWO06, Theorem 20.1] this functor is fully-
faithful embedding, thus we can see pure motives as a subcategory of DM(k, Q). This
has a important consequence, because the category Chow(k‘)g’ appears in DM(k, Q) as
the subcategory generated by elements of pure weight 0, in the sense of Bondarko given
in [Bonl14].
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Chapter 2

Etale Chow motives

In this chapter we mainly focus on the definition of the étale analogue of the category
of Chow motives. It should be noted that the category that we construct cannot be
defined as the subcategory of DM (k,Z) generated by elements of pure weight 0, in the
sense of Bondarko, contrary to the Nisnevich case. For the definition of weight structure
see [Bonl4, Section 1] and [Bonl4, Theorem 2.1.1]. For a detailed explanation of the
non-existence of a weight structure on DMy (k, Z) see [CD16, Remark 7.2.26].

In the first section of the present chapter we review the triangulated category of
étale motives, presenting two models for this category, working with sheaves with and
without transfers. For the first model we mainly use the references |[Ayol4a) and [Ayol4b],
whereas for the second model we use [CD16]. We recall properties of conservativity of
functors associated to change of coefficients, morphisms between schemes and duality
functors. We prove also that under suitable conditions on the base S, we obtain an
analogue of |[AHP16, Lemma A.6).

The second section aims to introduce two different notions of étale motivic cohomol-
ogy: the first one is defined by using DMg;(k,Z) as model for étale motives. We use
this definition to establish the existence of pull-backs, pushforwards, intersection prod-
uct and localization long exact sequences, giving an étale analogue of classical properties
of Chow groups. The second definition is obtained by taking the hypercohomology of
the étale sheafification of the Bloch’s complex sheaf and leads to so-called Lichtenbaum
cohomology groups. Together with the definition we mention the main facts about the
structure of Lichtenbaum cohomology groups and comparison maps between these groups

and motivic or étale motivic groups.

In the third section we look at the problem of birational invariance, and explain
when this property fails for the étale analogue of zero cycles CHy(X). Even though we
cannot find an étale analogue of birational invariance for the whole category SmProj;, we
present some cases where this invariance is true and cases where this obstruction appears
for CH§'(X).

Continuing with the introduction to the chapter, the goal of the fourth section is to
give a brief description of different equivalence relations on étale Chow groups, such as

algebraic, homological, nilpotent and numerical equivalence by analogy with the classical
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case.
Finally, in the last section, using the properties that we give in section two and four,
we construct the category of étale Chow motives, denoted by Chowg(k), which fits in

the following commutative diagram:

Chow (k)9 —2— DM(k,Z)

| |

Chow (k)P —2 DM, (k, Z),

where Chow(k) is the category of integral Chow motives, DM(k,Z) and DM (k,Z) are
the triangulated categories of motives over k and its étale counterpart respectively, and
the horizontal arrows are full embeddings. As in the classical case, we obtain a version of
the Manin principle for Chowe (k) and consequently the decomposition of étale motives
for projective bundles, varieties with cellular decomposition and blow-ups with smooth

center.

2.1 Etale motives

We recall the definition of two models for the category étale of étale motives: the first
one DA (S, A), uses étale sheaves without transfers, and the second one, DMy (S, A),
uses sheaves with transfers. As we have mentioned, for the first model we mainly use the
references |[Ayolda] and [Ayol4b]; for the second one we use [CD16].

Let A be a commutative ring which in this context is called the ring of coefficients.
We are interested in the cases when A = Z, Q, Z/m (we will omit A in the notation when
A = 7Z). We fix a noetherian scheme S as our base scheme and we denote Sch/S and
Sm/S the categories of schemes of finite type and smooth schemes over S respectively.
We denote by Sh(Sm/S, A) the category of étale sheaves with values in A—modules.

For a given object X in Sm/S we denote by Az (X) the étale sheaf associated to
the presheaf U + A[Homgy,/g(U, X)] where A[Homgy,,s(U, X)] is the free A—module
generated by Homgp, /g(U, X).

Consider the derived category of étale sheaves D(Shvg(Sm/S,A)) and denote by £

the subcategory of the derived category of étale sheaves that contains the two complexes
o= 0= AS(AL) = A (U) = 0 — ...

and is closed under arbitrary direct sums. Here A! := Spec(Z[t]) and U is a smooth

S—scheme, while the non-zero map is induced by the projection A}, — U.

Definition 2.1.1. Define DA??(S, A) as the Verdier quotient of D(Shg(Sm/S,A)) by
L. An object in DAZ?C(S, A) is called an effective motivic sheaf over S with coefficients
in A. The motivic sheaf Agt(X) 1s called the effective homological motive of X and from
now on we will denote it by MZ(X).

It is necessary to remark that the category DAg,flr (S,A) has the same objects of the
category D(She(Sm/S, A)), the difference lies in the morphisms of the category, since
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every morphism in D(She(Sm/S, A)) whose cone is in £ gets inverted in DASE(S, A).
In particular there is an isomorphism Mg (AY) — Mg (X) for all X € Sm/S induced by
p: AL — X. Another important observation is that DAST(S, A) inherits the monoidal
structure of D(She¢(Sm/S, A)), which at the same time comes from the monoidal struc-
ture of She(Sm/S, A).

Let L be the Lefschetz motive defined as the cokernel of the inclusion A% (cog) <
AéSt (IP%) The next step in the construction of the triangulated category of motivic étale
sheaves is to invert the Lefschetz motive for the monoidal structure. The process used to
formally invert the Lefschetz motive in [Ayol4b] is to consider L—spectra for the tensor

product.

Definition 2.1.2. An L—spectrum of étale sheaves on Sm/S is a collection of étale

sheaves

E= (Ena 'Vn)nEN

where v, : L® B, — E,11 is a morphism of sheaves called the n-th assembly map. We
call the sheaf E, the n-th level of the L—spectrum E.

A morphism of L—spectra f : E — E’ is a collection of morphism of sheaves f =
(fn)nen, where f,, : E,, — E! such that the diagram

Lo E, Y 1 e p

l , 2

fn+1 /
En+1 - n+1

commutes for all n € N. We denote by Spty,(Shg(Sm/S, A)) the category of L-spectra.
Consider an L—spectrum E. The evaluation functor Ev, : Spty(Shg(Sm/S,A)) —
Shet(Sm/S, A) admits a left adjoint Susf given by

p—1 times

——
Sust (K) = (0,..,0, K,L& K,L? 9 K, ...,)

When p = 0 the suspension functor is called the infinite suspension functor and it
is denoted by X3°. Finally, we define DAét(S, A) as the Verdier quotient of the cate-
gory D(Spty,(Shve(Sm/S,A))) by the smallest triangulated subcategory Ly closed by

arbitrary sums and containing the complexes

o= 0 — SusP AZ(A}) —»SustAZ(U) — 0 — ...

o= 0= Sut T (L@ AZ (U)) = Sush AZ(U) = 0 — ...
for all U € Sm/S and all p € N.

Definition 2.1.3. The objects in the category DAét(S, A) are called motivic étale sheaves
over S. Given a smooth S—scheme X, then EiOA*gt(X) is called the homological motive
of X and will be denoted by M2(X). We denote DAZ(S, A) the smallest triangulated
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subcategory of DAét(S, A) closed under direct summands and containing the motives
MZ(X)(—p)[—2p] :== Susf A%,(X) for p € N and X an S—scheme of finite presentation.

Those motivic sheaves are called constructible.

The category DM (S, A) is constructed in a similar way as DA® (S, A), but instead of
considering the whole category Shve(Sm/S, A) we consider the category of étale sheaves
with transfers, i.e. sheaves that come from an étale presheaf that is an additive con-
travariant functor.

Denote as SmCor(S, A) the category of smooth correspondences over S with coeffi-
cients in A. The objects are the same ones of Sm/S, and for U,V € Sm/S the morphisms
are finite A-correspondences from U — V. Let Shg (SmCor(S,A)) be the category of
additive presheaves of commutative groups on SmCor(S, A) whose restriction to Sm/S
is an étale sheaf. We call this the category of étale shaves with transfers. According to

[CD16, Corollary 2.1.12] there is an adjoint pair of functors
7"+ Shet (Sm/S, A) = She (SmCor (S, A)) : s

Let X be a smooth S-scheme. We denote by A (X) the complex of sheaves given by
¢(—, X) the finite correspondences and let X be the sheaf associated to X defined by the
presheaf

Uw— X(U) = AHomSm/S(U,X).

of commutative groups. The functor ~, forgets transfers and v*(X) = Z"(X). We con-
tinue by considering the derived category D(Sh¢(SmCor(S,A))) as She (SmCor(S, A))
is an abelian category. After that we take the A'-localization of the derived category
D(Shg (SmCor(S,A))), giving us the triangulated category of effective étale motives
DME?(S’, A). Finally, to this category we can associate a stable Al-derived category
DMg; (S, A), the category of triangulated étale motives, by ®-inverting the Tate object
A% (1) :== A%(PL, 00)[—2]. This can be obtained by applying the functor $>°.

The functor v* is a left Quillen functor, thus we have its derived version
L~* : D(She (Sm/S, A)) 2 D(She (SmCor(S,A))) : 7.
which preserves A'-equivalences. With this we obtain an adjunction in the following way
Ly* : DA®(S,A) = DM (S, A) : R,

If S is a noetherian scheme of finite dimension, notice that by [Ayol4b|, Théoréme B.1]
and |[CD16, Remark 5.5.9], the categories above mentioned are equivalent. In the context
of Voevodsky motives the constructible (compact) objects are called the geometrical
motives; the corresponding category is denoted by DM¥%" (S, A). Also by [CD16, Corollary
5.5.5] for a quasi-excellent geometrically unibranch noetherian scheme of finite dimension

S the adjunctions

Lty : DM (S, R) = DM, (S, R) : Ryp*
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give us an equivalence of monoidal triangulated categories.

Among the properties that we have to mention about the different models for the
triangulated category of étale motives, is the one concerning conservative functors. Let
T be the 2-category of triangulated categories. According to [Ayol4b, Théoreme 3.9],
for a commutative ring A the homotopic stable 2-functor DA®(— A) : Sch/S — TC is
separated, this means that for any S-morphism f : X — Y, the induced functor f* is
conservative. Fixing a field k, let us consider a field extension K/k, and the induced map

p : Spec(K) — Spec(k). Since p is a surjective k-morphism, we have that
p* : DA% (k,A) — DA (K, A)

is conservative. Using the equivalence of categories DA (k, A) ~ DM (k,A) (and the
same for K), we obtain that p* : DM (k, A) — DMg (K, A) is also conservative.

The next examples of a conservative family: according to [Ayol4bl Proposition 3.24],
for a scheme S such that the cohomological dimension of the residue fields is bounded,
the family of functors z* : DA®(S,A) — DA% (z, A) for x € S, is conservative.

Now consider a noetherian scheme S, by [AHP16, Lemma A.6], a motive M €
DAét(S, Q) is zero if and only if the pullback to any geometric point iz : § — S is
zero. Even more, a morphism f € DA®(S,Q) is an isomorphism if and only if i*(f) is
an isomorphism for any geometric point 5. This theorem can be extended to Z-coefficients
by imposing more restrictions on the base S. In order to do this, let us recall some defi-
nitions given in |Ayol4bl Définition 3.12]: for a prime number p, we define the punctual
p-cohomological dimension of a scheme S as ped,(S) = supyeg {cd,(k(s))} € NU {oo},
where £(s) is the residue field of a point s € S.

Definition 2.1.4. Let S be a scheme. We say that S is good enough for this purposes if
it has finite Krull dimension and the punctual p-cohomological dimension is bounded for

every prime p.

We can now move on to the following lemma, by mimicking the proof given for
[AHP16, Lemma A.6.]:

Lemma 2.1.5. Let S be a good enough scheme. Then the following holds:

1. Let M € DA®(S,Z) be a motive. Then M is zero if and only if the pullback it M

to any geometric point s — S is zero.

2. Let f be a morphism in DAét(S, Z). Then f is an isomorphism if and only if the

pullback i:(f) is an isomorphism for any geometric point § — S.

Proof. This follows from arguments given in [AHP16|. By |Ayol4bl Proposition 3.24] we
can assume that S = Spec(k) with & a field. Assuming that k is perfect, consider an
algebraic closure k. Let N € DAét(k,Z) be a motive such that the pullback ¢* N, with
i : k — k, vanishes. Under the assumptions on S, DAét(S, Z) is compactly generated.
Therefore we have to prove that all morphism f : C' — N with C' compact vanish. Using

the assumptions, ¢*(f) vanishes, ans according to |[Ayol4b, Lemme 3.4], there exists a

93



2. ETALE CHOW MOTIVES

finite extension K /k such that the pullback of f vanishes. By |Ayol4b, Théoreme 3.9]
the functor % : DA®(k,Z) — DA®(K,Z) is conservative, therefore f vanishes. When
k is not perfect, we consider a purely inseparable extension k&’ and note that the pullback
functor DA (k,Z) — DA®(k?, Z) is an equivalence of categories, by [CD16}, Proposition
6.3.16]. The second statement follows from the first one. O

The last result that we mention about conservativity is related to the family of func-
tors induced by change of coefficients. Let S be a noetherian scheme of finite dimension.
For such S, we recall that by |[CD16| Proposition 5.4.12], the family of functors

po : DMy (S, Z) — DM (S, Q)
pz/e - DMg (S, Z) — DM (S,Z/¢), ¢ prime number invertible in S
is conservative. Since DMg; (S, Q) ~ DM(S,Q) and by |[CD16, Theorem 4.5.2], the so-
called rigidity theorem, we have that DM (S, Z/¢) ~ D(Se¢, Z/!), where the last category
is the derived category of étale sheaves with coefficients over Z//.
By [CD16, Theorem 6.2.17] and |[CD19, Corollary 4.4.24], in the category of étale
motives we also have Verdier duality. We say that an object U € DMg (X, R) is dualizing

if has the following two properties:
1. U is constructible;
2. For any constructible element M € DMg (X, R) the morphism
M — Hom,(Homp (M, U), U)
is an isomorphism.

Following |[CD16, Theorem 6.2.17], if S is a regular scheme an object U is dualizing
if and only if is ®-invertible. Let f : X — S be a separated morphism of finite type, we
define the duality operator Dx/g as

Dxs(=) = Hom(—, f'U)
If R is a Q-algebra or if R = Z/¢™, with ¢ an invertible element in S and m a natural

number, then

1. For any separated S-scheme of finite type X, and for all objects M, N in DM (X, R),

if IV is constructible, then we have a canonical isomorphism
Dx/s(M ® Dx;s(N)) ~ Hompy,, (x,z) (M, N).

2. For any morphism between separated S-schemes f : Y — X we have natural

isomorphisms
Dyjso f* =~ f'oDy/s
f*oDxss~ Dygo f'
Dx/so fi~ fioDys
fioDyjs ~ Dx;s 0 [«

restricting to constructible elements.
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The case when R is a Q-algebra follows from [CD19, Corollary 4.4.24] and the ¢-adic case
follows from Gabber’s work [ILO14, Exposé XVII].

Remark 2.1.6. The category DM (S, R) has all the good properties described before,
without any hypothesis over S and the coefficient ring R. One has an equivalence of
categories DMy, (S, R) and DA® (S, R), at least if the base S is good enough. With respect
to the model of étale sheaves with transfers, DM (S, R) coincides with DM(S, R) for
an arbitrary base S if the R is a torsion ring whose characteristic is invertible in S by
[CD16|, Corollary 5.5.4] or for any ring R and S a quasi-excellent geometrically unibranch

noetherian scheme of finite dimension, |[CD16, Corollary 5.5.5].

2.2 Etale motivic cohomology

Etale motivic cohomology

In this subsection we use the category of étale motives, since we do not mention much
more details about the construction and/or functorial behaviour of the category, for
further details about these properties we refer the reader to [Ayol4b| and |[CD16]. Let
k be a field and let R be a commutative ring. We denote the category of effective
motivic étale sheaves with coefficients in R over the field £ as DME?(Z{:, R). If we invert
the Lefschetz motive, we then obtain the category of motivic étale sheaves denoted by
DMegt(k, R). One defines the étale motivic cohomology group of X of bi-degree (m,n)

with coefficients in a commutative ring R as
Hyp (X, R(n)) := Hompyy,, (k) (Mes (X ), R(n)[m]).

where Mg (X) = p*M(X) with p the canonical map associated to the change of topol-
ogy p : (Smy)g — (Smy)yes Which induces an adjunction p* := Lp* : DM(k,Z) &
DMgi(k,Z) : Rpyx =: ps. In particular we define the étale Chow groups of codimension
n as the étale motivic cohomology in bi-degree (2n,n) with coefficients in Z, i.e.
CHE(X) : = Hi (X, Z(n))
= Hompyy,, (x) (Met (X), Z(n)[2n]).
Remark 2.2.1. 1. Let k£ be a field and let £ be a prime number different from the

characteristic of k. By the rigidity theorem for torsion motives, see [CD16, Theorem

4.5.2], we have an isomorphism

HJp (X, Z/0 (n)) = HE (X, p").

2. Let f: X — Spec(k) be a smooth scheme over a field k. Due to the six functor

formalism we can define
HE (X, Z(n)) := Hompy,, (x)(1x, Lx(n)[m])
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because

Hg (X, Z(n)) = Hompyy,, (x)(1x, 1x (n)[m])
= Hompwy, (x)(1x, f*(1x)(n)[m])
~ Hompyy,, (k) (L f#(1x), 1k(n)[m])
= Hompyy,, (k) (Mgt (X), 1 (n)[m])

3. It is possible to work with étale motivic homology for a singular scheme X over a
base S with structural morphism f : X — S. For that we need to introduce the

Borel-Moore homology as follows
HEN(X/S) = Hompa, (x) (Lx (n)ml, /' (1s))

with this notation CHEM4t(x/8) := HPM (X /8). We also can recover a com-

2n,n
parison map o, : CH,(X/S) — CH3M:S(X/3).
Gysin morphism and functoriality properties

With respect to functoriality properties of the étale Chow groups we should mention
that we can recover well-known properties analogous to that of classical Chow groups,
such as pull-back and proper pushforwards of cycles. In particular, we get a degree
map. All these properties will arise from the properties of the category DMg (k, Z) (resp.
DM(k,Z)) and the covariant functor Me(—) (resp. M(—)).

Let us recall that the canonical map p : (Smy)s — (Smy)y;, induces an adjunction

of triangulated categories
p* : DMy, (k,Z) = DMy, 0 (k, Z) : ps,

which leads us to express the étale Chow groups in terms of morphism in the category
DM(k,Z) as follows

Hyp (X, Z(n)) := Hompug,, (r) (Mer (X), Zet (n)[m])
~ Hompi(k) (M (X), psZet (n)[m]).

Proposition 2.2.2. The comparison map
o™ Hy (X, Z(n)) — Hyp (X, Z(n))

coming from the adjunction of triangulated categories, is compatible with pullbacks, push-

forward and intersection products.
Proof. Consider the adjunction of triangulated categories

p* : DM(k,Z) = DM (k, Z) : ps

o6
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where p* is the functor induced by the étale sheafification and p, is the right adjoint
which is a forgetful functor which forgets that the complexes are étale. As we have said,

the cycle class map is obtained by the following use of the adjunction
Hompyy(r,z) (M(X), Z(n)[m]) o Hompui,, (k,z) (0" M (X), p*Z(n)[m])

where Z(n) is the motivic complex of twist n and M (X) is the triangulated motive

associated with X. By adjunction we have

Hompyy,, kz) (0" M(X), p*Z(n)[m]) = Hompy(r z) (M (X), pxp™Z(n)[ml])

so we obtain a canonical map Z(n) — p.p*Z(n) = p«Ze&(n) given by the unit transfor-
mation associated to the adjunction. Now, the functorial properties of maps f: X — Y
follow from the (covariant) functorial properties of the motive M (X) and the existence
of Gysin maps, for more details about the existence of Gysin morphisms we refer to
[Dégl2a] and [Dég08]. To be more precise: Let f : Y — X be a morphism of relative

dimension d, then we have induced commutative squares

M(X)(d)[2d] —L— (V) MY) — m(x)
b b )
Meo(X)(d)[2d] —— M (v) Ma(Y) —L M (X)

which induce the pullback and pushforward for proper morphisms. In fact, any morphism
of motivic complexes like the one given by the adjunction will yield a morphism of
cohomology groups compatible both with pullbacks and pushforward.
Finally, we need to prove the compatibility with respect to products. This property
comes from the fact that we have a quasi-isomorphism
Z(i) @ Z(j) = Z(i + 7)

and that the functor p* is monoidal, i.e. p*(M ® N) ~ p*(M) ® p*(N). Therefore we

also obtain that
Z(i)et @ Z(5)et — Z(i + 7)et

For intersection products the remaining part is to consider that the product comes from
the operation a - f = A*(a ® ). O

Lemma 2.2.3 (Projection formula). Let f : Y — X be a projective morphism of codi-
mension d between smooth schemes. Then for ally € CH:(Y) and x € CH%(X) we have
that

Proof. Consider an element o € H}}(X,Z(n)) and any morphism ¢ : M(X) — N in
DM(k), viewing o : M(X) — 1(n)[m| as a morphism of motives and A, : M(X) —
M(X) ® M(X) the map induced by the diagonal. Define the product

dRa:=(p@a)oA,: M(X) — N(p)[m].
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By [Dég08|, Corollary 5.18] for such f there is an equality ((1y )« X fi)o f* = f* K (1x)«
as morphisms of the motives M (X) — M (X x Y)(d)[2d]. This induce a map of étale
higher Chow groups Hﬁ;?d(X x Y, Z(n — d)) — Hyj4(X,Z(n)). On one hand, the
map ((1y ).« X fi) o f* on the level of motives induces the map f.(f*(—) -idy) on étale
Chow groups and the map f* X (1x), induces idy - fi(—), and we obtain the desired
equality. O
Localization sequence and specialization properties

Consider a base scheme S, we define the relative motivic cohomology of X as follows:

Definition 2.2.4. Let X be a smooth S-scheme. We define the motivic cohomology of
X relative to S in the following way

Hyp(X/S, Z(n)) := Hompyysy (Ms(X), 1s(n)[m]).

For the special case m = 2n we set CH'(X/S) := H3¥(X/S,Z(n)). In the same way, we

define the relative étale motivic cohomology of X
Hyj ¢(X/S,Z(n)) := Hompyy,, sy (Ms(X),1s(n)[m]).
In the special case m = 2n we write CH},(X/S) := H%Zét(X/S,Z(n))

Consider 7 : Z — X be a closed immersion of smooth schemes over a scheme S of pure
codimension ¢ and denote the open complement as U := X — Z. Consider the structural
morphism p : X — 5, then we have that Mg(X) := px(1x). We have an associated
Gysin triangle of the form

Ms(U) 25 Ms(X) 55 Mg(Z)(0)[2¢] 225 Mg(U)[1].

This exact triangle give us the long exact sequence known as localization sequence, which

is the following
...—» CH"(U/S,1) - CH"¢(Z/S) — CH"(X/S) — CH"(U/S) — 0.

Since the functor p : DM(S,Z) — DM (S, Z) is exact, we obtain the following exact

triangle
i i* Ox,
ME(U) 5 MG(X) = ME(Z)(e)[2 =2 MEWU)[1]

in DMg(S,Z). Thus, it is easy to see that we have an associated long exact sequence,

and we obtain the étale analogue of the localization long exact sequence for Chow groups

... CH!¢(Z/S) — CHZ(X/S) — CHZ(U/S) — CH™¢(Z/S, —1) — ...

Remark 2.2.5. Notice that even when S = Spec(k), there are no arguments to assume
that in general the map j* : CHf, (X) — CHY, (U) is surjective. For instance, consider Z a
smooth projective surface in X and n = dim(X)—1, then we have CH}; “(Z, —1) ~ Br(Z).
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Let S be a regular scheme, X a smooth S-scheme with f: X — S, andi: S < S a
closed embedding. We set S° := S — S and j : S° < S the open immersion. In this way,

we obtain a commutative diagram with cartesian squares

lf if lfo (2.1)
S—'s 9 S°

Let us recall some functorial properties about these maps through the six functor for-
malism given in Definition Since the motivic category DM(SS, Z) has the six functor

formalism, the natural transformations 4 — 4., iy — i1(c)[2¢] and i* — 4'(—c)[~2c] are

J

i
<

isomorphisms (where the last two isomorphisms also hold for j by setting ¢ = 0). There is
a natural transformation f*i; = ixf* which is an isomorphism, while for the left-hand
square the natural transformation f? j!X = j'f. is also an isomorphism.

Since the structure morphism of X° as an S-scheme is f o jx, we obtain that
Mg(X°) = (foix)¢(ls) = (jo [°)s(1xe) and Mge(X°) = f7(1xo) therefore we have the

following isomorphism of relative Chow groups
CHn(XO/S) = HomDM(S) (]ﬁ (¢] ‘](}io(l‘xc)7 15’(72)[2')7,])
~ HomDM(S) (]1 o fﬁo(]_Xo), 15 )[2 ])

2

~ Hompy(se) (/5 (1x2), ' (1s(m)[2n]) )
~ Hompyy(se) (f5 (1x=), 1s= (n)[2n]) = CH"(X°/5°),

3

(
(

while for the closed immersion X, we have that Mg(X)
f:(1%). Therefore

(iof)s(1g) and Mg(X) =

CH"(X/S) = Hompys) (is o f5(1x), Ls(n)[2n])
~ Hompyys) (i1(f;(1x))(c)[2¢], 1s(n)[2n])
~ Hompyy(s) (fi(1x), i (1s(n — ¢)[2n — 2] )
( (
(

)
1x),i"(1s(n)[2n]))
:(1%),15(n)[2n]) = CH"(X/S).

Remark 2.2.6. We can obtain the same formalism for étale motivic cohomology, since
the duality properties still hold for the categories DMg; (.S, Z) with S an integral scheme.
Therefore, if we define the relative versions of étale Chow groups there are isomorphisms
CH%(X°/S) ~ CHZ(X°/S°) and CHZ (X/S) ~ CHZ (X/S).

Consider the operation i' : CH"(X/S) — CH" ¢(X/S) ~ CH"¢(X/S) and suppose
that i' 04, : CH"¢(X/8) — CH" ¢(X/S) is the zero map. Then there is a unique map
o : CH"(X°/S°) — CH" ¢(X/S), called the specialization map, such that o(j*a) = i' ()
for all o € CH"(X/S). For more details see [Ful98, Chapter 20].

99



2. ETALE CHOW MOTIVES

For a more general setting where we would be able to work with singular schemes,
we have to consider Borel-Moore homology and motivic homotopic theory. For a base

scheme S, let us consider the adjunctions, in the following diagram

DM(S,Z) 3 - : DM (S, Z)
e -
SH(S)

Define the étale motivic cohomology spectrum as HpssZ = 7' (Zg(0)) and the

Borel-Moore étale motivic cohomology and homology as follows

Hyps (X) := Homgpyry (%X, HyaZ(n)[m])
HEMY(X) := Homgp ) (fi(1x)(n)[m], HyreZ)
~ Hompyy,, (x) (fi(1x)(n)[m], 1k)

where f : X — k is a separated scheme of finite type. Now consider f : X — S a
separated S-scheme of finite type, then we define the relative étale Borel-Moore motivic

homology groups of X as
H,y 3 (X /S) i= Hompyy,, s.2) (fi(1x)(n)[m], 1s)

Consider again the cartesian diagram For any object A € F(X), from |[DJK21,

(4.5.6.a)] we obtain a natural transformation of the form
ix« (ixA® f*Th(-NgS)) — jx1ix A,

for a pure i-spectrum E € F(S) and any point of the K-theory space e € K(X), we have

a specialization map
o:E(X°/S5%e) ~E(X°/S,e) = E(X/S,e — f5(NgS)) ~E(X/S,e)

which is the generalization of the isomorphism obtained before. From the commutative
diagram of adjunctions we have the following definition:

Definition 2.2.7. With the above notation, if S = Spec(R) with R a discrete valuation
ring we take S° = K := Frac(R) and S = k := R/m, so we define the localization map

for étale Chow groups as
o« CHIM (X ) — CHFM (X))
which can be understood as a map from the generic fiber to a special one.

Under the assumptions of smoothness, we obtain the specialization map o : CHf, (Xx) —
CHY, (X%). Notice that this map is compatible with proper push-forward, flat pullbacks

and intersection products.
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Lichtenbaum cohomology

We consider a second notion of the étale version of Chow groups, the well known Licht-
enbaum cohomology groups defined as the hypercohomology of the étale sheafification of
the Bloch complex. These groups are characterized by Rosenschon and Srinivas in [RS16]
using étale hypercoverings. In this context, we consider Smy as the category of smooth
separated k—schemes over a field k. For each integer n > 0, we define the n-simplex

scheme as the affine k-scheme

A" = Spec (kz[tg, oo tal/ (zn:tl - 1))
i=0

which is isomorphic (non-canonically) to A}. Given a non-decreasing map p : {1,...,m} —
{1,...,n} we obtain an induced map p : A™ — A" acting on the coordinates as
t; — Zp(j):i tj. If the map p is injective, we call p a face map with p(A™) a face
of A™. If p is surjective, then p is called a degeneracy map. Given natural numbers n
and i, we define the group 2"(X,i) C 2"(X x A?) as the n-codimensional cycles in X x A’
which intersect properly all X x F with F' C A’ a face. We denote z"(X, e) the cycle
complex of abelian groups defined by Bloch

ZMX,e) = 2"(X,i) == 2"(X,1) - 2"(X,0) >0

where the differentials are given by the alternating sum of the pull-backs of the face
maps and whose homology groups define the higher Chow groups CH"(X,2n — m) =
H,,(2"(X,e)).

Let us recall that 2"(X,7) and the complex 2"(X,e) are covariant functorial for
proper maps and contravariant functorial for flat morphisms between smooth k-schemes,
see |Blo86, Proposition 1.3]. Therefore for a topology t € {flat, ét, Nis, Zar} we have
a complex of t-presheaves z"(—,e) : U — 2"(U,e). In particular the presheaf z"(—,1) :
U+ 2"(U,1) is a sheaf for t € {flat, ét, Nis, Zar}, see |Gei04, Lemma 3.1], and then
2"(—,e) is a complex of sheaves for the small étale, Nisnevich and Zariski sites of X. We

define the complex of ¢-sheaves
Rx(n)e = (2"(—, ®): ® R) [-2n]

where R is an abelian group. For our purposes, we just consider ¢ = Zar or ét and then we
compute the hypercohomology groups H"(X, Rx(n)). For example, setting ¢t = Zar and
R = 7Z the hypercohomology of the complex allows us to recover the higher Chow groups
CH™(X,2n — m) ~ H

Zar

(X,Z(n)) because the complex of presheaves U ~— 2"(U, ) on
X has the Mayer-Vietoris property i.e. for every open U C X and every open covering
U = Uy U Us the square

2"(U,0) ———— 2" (U, )

| |

2" (Uz, @) —— 2" (U1 NUy,e)
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is homotopy cartesian (Brown-Gersten), then by [MVWO06, Theorem 19.11] the Bloch
complex satisfies Zariski descent, i.e. the maps H™ (2™ (U,e)[—2n|) — H7 (U, Zy(n))
are isomorphisms. We denote the motivic and Lichtenbaum cohomology groups with

coefficients in R as
Hij (X, R(n)) = Hz,, (X, R(n)), H['(X, R(n)) = Hg (X, R(n))

and in particular we set CH7.(X) = H?"(X,Z(n)). Let m: X¢t — Xzar be the canonical
morphism of sites, then the associated adjunction formula Zx(n) — Rm.n*Zx(n) =

Rm.Zx(n)e induces comparison morphisms
HYj (X, Z(n)) “= HE(X, Z(n))

for all bi-degrees (m,n) € Z2. We can say more about the comparison map: due to
[Voell, Theorem 6.18], the comparison map ™" : H{}(X,Z(n)) — H*(X,Z(n)) is an

isomorphism for m < n + 1 and a monomorphism for m < n + 2.

Proposition 2.2.8. Let X be a smooth projective variety over a field k, then the com-

parison map between motivic and Lichtenbaum cohomology groups
& HYp (X, Z(n)) — HE'(X, Z(n))

18 compatible with respect to pullbacks of morphism and is also compatible with the product

of cycles for all bi-degrees (m,n).

Proof. Consider 7 : X4 — Xz, the canonical map of sites. There are induced functors

in the derived categories
7 : D(AbShv(X7zar)) & D(AbShv(Xgt)) : Ry

where 7* is the étalification of the Zariski sheaf and R, is a forgetful functor.

Consider the canonical map induced by the adjunction Z(n) — Rm.m*Z(n), i.e.

Homp,,, (Z(X), Z(n)[m]) * Homp,, (7*Z(X), " Z(n)[m])
~ Homp, (Z(X),Rr.m*Z(n)[m])

The induced map is contravariantly functorial with respect to any morphism of

smooth projective varieties, and also compatible with products. ]

In some cases it is possible to obtain more information about the Lichtenbaum co-
homology groups and the comparison with higher Chow groups. For instance there is
a quasi-isomorphism Ax(0)g = A, the latter as an étale sheaf, thus we obtain that the
Lichtenbaum cohomology agrees with the usual étale cohomology, i.e. HT'(X, A(0)) =~
H% (X, A) for all m € Z>o and in particular CHY(X) = Z™X) In the next step, n = 1,
since there is a quasi-isomorphism of complexes Zx (1)¢ ~ Gy,[—1] we obtain the follow-

ing isomorphisms

CH'(X) ~ CH}(X) = Pic(X)
H} (X, Z(1)) = H (X, G [1]) = Br(X)
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where Pic(X) and Br(X) are the Picard and Grothendieck-Brauer groups of X respec-
tively. In fact for bi-degree (n, 1) by [VSF00, Corollary 3.4.3] there exists an isomorphism
H?,(X,Z(1)) ~ Hy ' (X, G,,) because the quasi-isomorphism Zx (1) ~ Gy,[—1] also holds
in the Zariski topology. As a particular case we obtain H3,(X,Z(1)) ~ H, (X, G,) = 0
because HY;(X,Z(n)) = 0 if m > 2n, whereas the Grothendieck-Brauer group of X is
not always zero (for instance consider X an Enriques surface).

In bi-degree (4,2) the comparison map is known to be injective but in general not

surjective; we have a short exact sequence
2
0 — CH*(X) %5 CH? (X) — H3.(X,Q/Z(2)) — 0,

where 13, (Q/Z(2)) is the Zariski sheaf associated to U — He (U, Q/Z(2)). Its unramified
part is H2 (X, Q/Z(2)) = I'(X, H2,(Q/Z(2))), for a proof we refer to [Kah12, Proposition
2.9]. If k = C the latter group surjects onto the torsion of the obstruction, in codimension
4, to the integral Hodge conjecture, i.e.

H?.(X,Q/Z(2)) - (Hdg"(X,Z)/im {c* : CH*(X) — Hp(X,Z(2))})

tors

and this obstruction is not zero in general, hence the comparison map 2 is not surjective;
for more details see [CV12, Théoreme 3.7].

Remark 2.2.9. The adjunction formula for rational coefficients, the morphism Qx(n) —
R, Qx (n)e turns out to be isomorphism (see [Kah12, Théoreme 2.6]), thus H}; (X, Q(n)) ~
H7Y(X,Q(n)) for all (m,n) € Z>2.

Example 2.2.10. Let k be a field and let X = Spec(k), then we can calculate the Licht-
enbaum cohomology for Spec(k) and compare it with the motivic case. By the previous

remarks we have

H7 (Spec(k), R(0)) ~ HZ,(Spec(k), R)
~ H"(G, M).

Here G = Gal(k®/k) where k* is the separable closure of k and M = lim, ., R(Spec(k'))
where k' is a separable finite extension of k and H™(G, M) is the Galois cohomology of
G with values in M. On the other hand we have that

R ifn=0,

Hy;(Spec(k), R(0)) =
0 otherwise.

The following result is a well known fact, known as the Suslin rigidity theorem, about
the morphism Zy (n) — Rm.Zx (n)g for n > dim(X) over k = k.

Theorem 2.2.11. [VSF00, Section 6, Theo. 4.2],[Geil7, Section 2] Let X be a smooth
projective variety of dimension d over an algebraically closed field k. Then for n > d the
canonical map 7 : X¢ — X zqr induces a quasi-isomorphism between complexes of Zariski

sheaves Zx (n) = RmZx(n)e.
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Proof. Since Qx(n) — RmQx(n)g is a quasi-isomorphism for all n € N, we only have
to focus on torsion coeflicients. In characteristic zero this was already proved by Suslin
in [VSFO0, Prop. 4.1, Thm. 4.2], an in general away from the characteristic of the field
k.

For the general case, assume that n = d and [ € N. If k£ has positive characteristic then
by [|Geil0, Lemma 2.4] for a constructible sheaf F we have that RHom(F,Z/l(d)[2d])[—1] =
RHom(F,Z(d)[2d]) and also there exists a perfect pairing of finite groups

Ext' " (F, Zx (d)[2d]) x H"(Xer, Z/1)) = Q/Z,

so this gives us an isomorphism HJQV‘}_m(X, ZJl(d))* ~ H"(X¢t,Z/1). Since X is smooth,
Poincaré duality holds for étale cohomology, see [Mil80, Chapter VI §11]. Hence

HM (X, Z/1))* =~ HE™(X, Z/1(d)),
and therefore we obtain the isomorphisms
Hyj ™™ (X,Z/1(d)) = H"(X, Z/1(d)) =~ H"™" (X, Z/i(d).

As in [VSF00, Theorem. 4.2] for a general n > d we use the homotopy invariance of the
higher Chow groups

H2™(X, Z)1(d)) ~ H¥™(X x AZ, Z/1(d))
~ H™(X x AP, Z/1)*
~ H 2= (X 7./1(d — n))*.

To conclude, we have a quasi-isomorphism (Z/1)y (n) — Rm, (Z/1)x (n)¢ for all I € N,
therefore (Q/Z)y (n) = Rm, (Q/Z) x (n)s; as well. Thus from the commutative diagram

— HP7YX,Q/Z(n) — HY(X,Z(n)) — H(X,Q(n)) — Hj(X,Q/Z(n)) —
— HP"Y(X,Q/Z(n)) — H{"(X,Z(n)) — H'(X,Q(n)) — H{(X,Q/Z(n)) —
we conclude that Hy}(X,Z(n)) ~ H*(X, Z(n)). =

If R is torsion then we can compute the Lichtenbaum cohomology as étale cohomology.
To be more precise, for a prime number ¢, r € N > 1 and R = Z/{" then we have the
following quasi-isomorphisms
n :
~ | e if char(k) # ¢
(Z/07) x (n)er = ¢ °°
vp(n)[—n| if char(k) = ¢

where v,.(n) is the logarithmic de Rham-Witt sheaf. After passing to direct limit we have

also quasi-isomorphisms

(Qe/Ze) x (n)st, — ti, 1" if char(k) 7 ¢
lig vy (n)[—n] if char(k) = ¢
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and finally set (Q/Z)x (n)s = @D(Q¢/Z¢)x (n)er — Q/Z(n)e. In the case when k = k,
X a smooth projective variety and n > dim(X) the morphism Zx(n) — Rp.«Zx(n)st
is a quasi-isomorphism by the Suslin rigidity theorem. Another important reminder
concerns the vanishing of higher Chow groups. Following [MVW06, Theorem 3.6] for
every smooth scheme and any abelian group R, we have H}}(X, R(n)) = 0 when m >
n+dim(X). Also we have a second vanishing theorem for motivic cohomology, presented
in [MVWO06|, Theorem 19.2], for X and R under the same assumptions as before, we have
that H}(X, R(n)) = 0 when m > 2n.

Remark 2.2.12. Let k = k. Since the map Zy(n) — Rp«Zx(n)e is a quasi-isomorphism for
all n > 0 we obtain that H}"(Spec(k),Z(n)) ~ Hj}}(Spec(k),Z(n)) for all (m,n) € Z x N.

In particular H}*(Spec(k),Z(n)) = 0 for m > n > 0.

For a bi-degree (2n,n) with n > 3 is more difficult to give an expression like a
short exact sequence, because the comparison map x> could be neither injective nor
surjective. This is a consequence of the existence of a quasi-isomorphism of sheaves

Zx(n) = T<pi1RmZx(n)s, which leads us to a distinguished triangle of Zariski sheaves
Zx (n) — RW*Zx(n)ét — T2n+2R7T*ZX (n) — Zx(n)[l].

So we have the following long exact sequence

o= H2NX, Topga R Zx (n)e) — CH™(X) — CHE(X) — HZ (X, TontoRTZx (n)er) — - . -

and a spectral sequence associated to the hypercohomology

EP9 = HP(X, R'TspyoRmZx (n)er) = HbtU(X, Tonso R Zx (n)at)-

Zar

where the Es-terms can be described in more detail and are related to the unramified
cohomology groups of X. Because of [Kah12, Corollaire 2.8] for ¢ > n+ 1 there exists an
isomorphism of Zariski sheaves H'™1(Rm.Q/Z(n)) — H (RmZx (n)s)-

Thus we have the quasi-isomorphism

~ |0 ifg<n+1
RqTZn_:,_QRW*Z(n)ét — 1
H (Q/Z(n) ifg>n+2

Example 2.2.13. Since CH"(X,—1) = 0 for all X € SmProj, and for all n, the long

exact sequence shows that
coker(k™) ~ HZ (X, Tonroa R Zx (n) é).

These groups are torsion, but nonzero in general so the comparison map k" is not sur-

jective in general.

By pursuing a similar vanishing theorem for Lichtenbaum cohomology, we obtain the

following results about the vanishing of the cohomology groups:

Lemma 2.2.14. Let k be a field and let X be in SmProj,. Consider a bi-degree (m,n) €
72 we then have the following:
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1. if m >mn and m > cd(k) + 1 we have that H}*(Spec(k), Z(n)) = 0.
2. More generally if m > n + cd(X) then H*(X,Z(n)) = 0.

Proof. Let k be a field of characteristic exponent p and let (m,n) € Z2. For (1)
we use [Voell, Theorem 6.18] to obtain that if m < n + 1 then HJ}(k,Z[1/p](n)) ~
Hyj ¢ (k,Z(n)) and in particular Hy L (k,Z(n)) = 0. Now consider the exact triangle

Z(n)er = Q)er = Q/Z(n)er —
which induces a long exact sequence
o= HP(k,Z(n)) — H(k,Q(n)) — H*(k,Q/Z(n)) — HP ™ (k,Z(n)) — ...

Considering the previous remark concerning the vanishing of higher Chow group and
Lichtenbaum cohomology, we obtain an isomorphism H7(k,Z(n)) ~ H*(k,Q/Z(n))
where n € N and m > n, with the later isomorphism we conclude that H}*(k,Z(n)) =0
if m >n and m > cd(k) + 1.

For the more general case presented in (2) consider X be SmProj, and the motivic
complex Z(n). This complex vanishes for degrees greater than n. Let us consider the

canonical map p : X¢g — Xzar, the functor that is induced by the change
p* : D(AbShvy,, (Smy)) S D(AbShvg (Smyg)) @ Rps.

Recall that H}*(X, Z(n)) is the hypercohomology of the complex of étale sheaves Zx (n)¢.
Since the functor p* is exact, the étale cohomology sheaves of Zx (n)g vanish in coho-
mological degree > n. Thus, we conclude that H}*(X,Z(n)) =0 for m > n+cd(X). O

If char(k) = 0 there is an explicit relation between motivic and Lichtenbaum coho-
mology groups, which is analogue to the case of étale and Zariski cohomology of sheaves:
X a smooth quasi-projective k—variety, then by [RS16, Theorem 4.2] the canonical map

of sites induces an isomorphism

HJ (X, Z(n)) ~ lim HY} (Xo, Z(n)), m € Z, n >0,
Xe

where the direct limit is taken over all étale hypercoverings X, — X.
Let us denote the Suslin-Voevodsky motivic complex of Nisnevich sheaves in Smy, as
Zsy(n). Since Zx (n)e, — Zsy (n) N is a quasi-isomorphism we have a comparison map

ét

P H (X, () — Hi (X, Z(n))

which is induced by the quasi-isomorphisms Zx (n)s — Zsy(n) . and Zgy(n)g —
L;1(Zsy(n)es) where Ly is the Al —localization functor of étale mot‘;i/ic complexes. Ac-
cording to [CD16, Theorem 7.1.2] the morphism p™" becomes an isomorphism after
inverting the characteristic exponent of k. If p equals the field characteristic, therefore
by using Z[1/p|x(n)e we can recover the functorial properties of étale motivic cohomol-

ogy for Lichtenbaum cohomology.
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The latter isomorphism gives us an important tool for the study of the étale motivic
cohomology, after inverting the characteristic exponent of the field, which is the relation-
ship between Galois cohomology and Lichtenbaum cohomology via the Hochschild-Serre
spectral sequence for Lichtenbaum cohomology. In order to present this important result
that we will use throughout the following chapters, let us recall some definitions and
results about profinite cohomology groups: If G is a profinite group, i.e. G = @Gi
with G; finite groups, and A is a G-module, we will consider its cohomology group
HI(G, A) as the continuous cohomology group of G with coefficients in A defined as
HI(G,A) = hgl HI(G;, A% with H; running over the open normal subgroups of G such
that G/H; ~ G;. We start by presenting a useful fact about continuous cohomology
of profinite groups with coefficients in a uniquely divisible module, which will be used

several times in this thesis.

Lemma 2.2.15. Let G be a profinite commutative group and let A be a G-module which
is uniquely divisible. Then H"(G,A) =0 for all n > 1.

Proof. Let G be a profinite group and let H be an open normal subgroup of G. By
definition we have that
HY (G, A) =lim HY (G/H, A™),
H

as G/H is a finite group, using [Wei94, Proposition 6.1.10] we have that the result holds
for H-modules where multiplication is an isomorphism , in particular uniquely divisible
modules, therefore H/(G/H, A") = 0 for all H and all j > 0. The result then follows

from the definition of continuous cohomology. O

Let us recall the definition of Galois cohomology. Let k be a field, fix a separable
closure denoted by k° and denote by Gy its Galois group. Our main interest is the
study of the cohomology of the group Gy. For a finite Galois extension K/k we denote
the Galois group of K by Gal(K/k) and recall that G, ~ T&lGal(K/k‘), where K runs
through the finite Galois extensions of k, is a profinite group. The importance of this
fact throughout the paper is reflected in the relationship between Galois cohomology
and Lichtenbaum cohomology groups via a Hoschschild-Serre spectral sequence, stated
in [CK13] without a proof which was done in [RS18| Pages 6-7].

Lemma 2.2.16. [CK15, P. 31] Let p: Y — X be a finite Galois covering of X with Ga-
lois group G. There exists a convergent Hochschild-Serre spectral sequence with abutment

the Lichtenbaum cohomology group
E3(n) = HP(G, H] (Y, Z(n))) = H} (X, Z(n)).

Proof. Let p: Y — X be a Galois covering with X be a smooth projective k—variety and
G the Galois group associated to the covering. Let Cx := Ch(Shvg (X)) be the category

of cochain complexes of abelian étale sheaves. Consider the composite functor

Shvg (X) — Z[G]-mod — Ab
F — F(Y)— F(Y)¢
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which is I'(X, —) by |Mil80, Proposition II.1.4], therefore for C* € Cx we have a spectral

sequence, |Wei94, Section 5.7] associated with such functor
EY? = HP(G,HL (Y,C*%)) = HEI(X, C*).

Our main interest is the case when we consider C*® as the étale sheafification of the
Bloch complex Zx(n)g for some n, so from now on we consider C* = Zx(n)g. To
show the convergence of the spectral sequence we use the arguments given in [Kahl2,
Section 2]. We have H7} (X, Zx (n)¢) ~ H7 (X, Rp.Zx(n)e) with p : Xgp — Xzar
and consider the exact triangle Rp.Zx(n) — Rp.Qx(n) — Rp.Q/Zx(n) *L,. Since
Qx(n) ~ Rp«Qx(n)e, the hypercohomology of the second and third terms are convergent

and so are their respective hypercohomology spectral sequences. O

Remark 2.2.17. Let k be a field and k° be a separable closure. Since cohomology
commutes with inverse limits, and the absolute Galois group of k is the inverse limit
of Gal(K/k) over the finite separable field extensions k& C K C k° the convergent
spectral sequences HP(Gal(K/k), H (Xx,Z(n))) = HYTY(X,Z(n)) for [K : k] < oo
induce a spectral sequence for the absolute Galois group H?(Gy, H} (Xjs,Z(n))) =
HYH(X, Z(n)).

Lemma 2.2.18. Let X,Y € SmProj, with k be a field of finite cohomological dimension
or characteristic zero, then for i € N we have an isomorphism

CHy(Xyr)) = lim CHy(X %, U)

vcy
U open

Proof. Considering the projective system Xy = m vcy (X xxU) if k has finite coho-
U open
mological dimension then the result follows from [CD16, Proposition 6.3.7] and |[CD16],

Remark 6.3.8].

If char(k) = 0 then by [RS16, Theorem 4.2] we have that CHY, (X) = ling H2(Xo,Z(1))
where the limit is taken over all étale hypercoverings X, — X. By the same proposition
we have that CHet(Xk ) = lim., H3(Ye, Z(i)) with Yy — Xjy). Then we have to
prove that

O (Xeqr)) = lig HR(YV 20) = Iy iy FIR(XLZ()) = i CHE(X 0 )

UCY X,—-Xx U ucy

U open X! U open

étale hyp.

Let us denote
e Op(Y) the category of open sub-schemes of Y.
e Jy the category of étale hypercoverings of X x U for a fixed U € Op(Y').
e Jim the category of étale hypercoverings of Xj(y).

e C be the category whose objects are defined as pairs (U, U,) with U € Op(Y') and
U, C Jy with morphisms
Homj, (Vo,We) it U =W

Home (U, Va), (W, W,)) =
() otherwise.
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and consider the functor F': C — Jy, which acts (U, X,) — )Z'. with )NC. being the fiber
product

5(:. —_— Xk(Y)

l i (2.3)

Xe — X xU
We can see that this functor is co-final and apply [AMO06, Appendix, Proposition

1.8]: consider a hypercovering X, > X k(Y), using the canonical map for an open U,
Xy — X x U we can find an element (U, Ys) with Y := Xy — Xjy) = X x U in the
category C.

Now consider two hypercoverings of Xy, denoted by X, and Y such that there

f
exist two morphism X, = Y,, where F(U,Y]) = Y, for some (U,Y,) € C. Consider the
9

constant hypecovering (X x U)s — X x U, then we have F (U, (X x U)s) = (Xyv))

It is clear that we have a canonical map Y] 2% (X x U),, which is sent to the canonical

map

(¥ (X 0)) = (Yo (Xugr), )

f
By the construction of F', we obtain that iy equalizes Xo =2 Y, as
g

f iv)=i
X, :&F(U,Y,’) _v, F(iy)
g

(X)), = F(U,(X x U)s).
O

Lemma 2.2.19. Let X and Y be smooth projective varieties over an algebraically closed
field k of characteristic p > 0. Then for £ # p and for every bi-degree (m,n) € Z? such

that 2m + 1 # n we have an isomorphism
HP (X, Z){C} = HE ™ Xy, Qe/Ze(n)).
Proof. Consider a smooth open U C Y, we have a short exact sequence
0— H N X xU,Z(n) @ Z/0" — HI N X x U, ") — HP*(X x U, Z(n))[£"] — 0.

Taking the direct limit over r, by [RS16], Proposition 3.1] we have that Hj* (X xU, Z(n)){{"} ~
H;?_l(X x U,Q¢/Z¢(n)). On the other hand, if we take the limit over the open subsets
U C Y instead of r (and using again direct limit is an exact functor), we obtain the short

exact sequence
0 — H" (Xyyy Z(n) @ Z/€ — HE ™ (Xyqyy, wi) — HE (Xi(yy, Z(n))[€'] = 0.

This result is obtained by the continuity properties described in |[CD16, Proposition
6.3.7]. Using the isomorphism of functors li%mr hﬂUcY ~ li%mUCy liglw we can conclude
that

HM Xy, L)LY = HE ™ (X, Qe/Zo(n)).-
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An important result about Lichtenbaum cohomology concerns the change of base
fields, when the fields are algebraically closed or purely inseparable extensions. The

following result is similar to [Vial7, Lemma 1.2]:

Proposition 2.2.20. Let k be a field, X a smooth projective k-scheme and K a field

extension of k. Let i > 0 be an integer.

1. If k is an algebraically closed field and also K = K, then the map CHY(X) —
CH. (X) induced by the base change is injective.

2. If K is a finite purely inseparable extension then the maps CHy (X) — CH: (Xk)
and CH' (Xg) — CH' (X) are isomorphisms.

Proof. First, let k be a perfect field with & = k and consider a field extension K which
is again algebraically closed. By the smooth base change, we have that HI'(X, us") —
H} (X, ,u%?”) is an isomorphism when £ is prime to the characteristic of k and then so
it is the morphism HZ (X, Q/Z¢(n)) — H (XK, Q¢/Z¢(n)) and from the commutative

diagram with exact rows

0 —— HP(X,Z(n) ® Qo/Ze —— HE (X, Qo/Ze(n)) — HP (X, Z(n){f} —— 0

| 5 !

0 —— HF(XK,Z(TL)) ®Qg/Zg — Hgg(XK,Qg/Zg(n)) e HFJA(XK,Z(H)){Z} — 0

we conclude that H*(X,Z(n)) ® Q¢/Z¢ — H(Xk,Z(n)) ® Q¢/Zy is an injective mor-
phism. Recall that for a separably closed field as in our case we have that for m # 2n+1
an isomorphism H7'(X,Z(n)){¢} ~ H2 (X, Q¢/Ze(n)).

Let A™" = H™X,Z(n)) and A" = H*(Xk,Z(n)), then we have that in the

following commutative diagram

0 —— A" —— A™" — 5 AM"Q —— A" ®Q/Z —— 0

] / l

the arrow A" ®Q — A" @ Q is an injection by classical arguments, therefore A™" —
A" is an injective map as well.

For the second part we proceed in a similar way. The isomorphism for the torsion
part is a consequence of the map Xx — X which is finite surjective radiciel (see [Fulb,
Proposition 5.7.1]), therefore Hérz_l(X, pe) — Hgg_l(XK, (5") is an isomorphism. The
isomorphism of the torsion free part is a consequence of [Vial7, Lemma 1.2]. We then

conclude as in the previous case. ]
In a more general setting for field extension we have the following result

Proposition 2.2.21. Let X be a k—smooth projective variety with k an algebraically
closed field, and let K D k be a field extension, n € N and ¢ € {L, ét}, then the map
f*: CH}(X) - CHX(Xk) induced by f : Xg — X has torsion kernel.
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Proof. Due to the contravariant functoriality of Lichtenbaum and étale Chow groups we

have a commutative square

CH"(X) —Z— CH™(X)

I

CH™(Xk) —X CH™(Xk)

Notice that by [Blo86, Lemma (1A.3)] the map CH"(X) — CH"(X ) has torsion kernel,
hence with rational coefficients it becomes an injective morphism. On the other hand,
with rational coefficients the horizontal arrows are isomorphisms, therefore CHZ (X) —
CHZ (X k) has torsion kernel. O

We conclude this section by mentioning some well-known results about the structure
of étale motivic and Lichtenbaum cohomology groups of projective bundles, smooth blow-

ups and varieties with cellular decomposition:

Lemma 2.2.22. Let k be a field of characteristic p > 0 and let X be a smooth projective
scheme over k. Let ¢ € {L,{M, ét}} and consider a bi-degree (m,n) € Z?, then there

exists the following characterizations:

1. Ifr > 0 and let P’y be the projective space of dimension r over X, then the canonical

map P — X induces an isomorphism:

HI'M(PY, Z(n)) ~ D HI' (X, Z(n — 1))
1=0

2. Let Z be a smooth projective sub-scheme of X of codimension ¢ > 2. Denote the
blow-up of X along Z as Bly(X), then
c—1

HI"(Blz(X),Z(n)) ~ H™(X,Z(n)) & @ H* *(Z,Z(n — i)).
=1

3. Assume that k = k* and that there exists a map f : X — S which is a flat of
relative dimension r over a smooth base S. Assume as well that X has a filtration
X =X,DXp-1D...D XD X_1 =0 where X; is smooth and projective for all
tand U; = X; — X;-1 ~ Agﬁdi then we obtain the following formula:

p

HY'(X,Z[1/p)(n)) = @ H " (S, Z[1/p](n — dy)).
1=0

Proof. The statements (1) and (2) are obtained in a similar way: first notice that by
properties of DM(k, R) with R a commutative ring, see [MVWO06, Section 14 & 15], we

have canonical isomorphisms of motives

r

P M(X)(i)[2i] = MP%) and M(Blz(X)) ~ M(X) @ <@ M(Z)(z’)[2z‘]> .

1=0
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When ¢ = L both formulas (1) holds because for R = Q we recover the formulas
for rational coefficients whereas for finite coefficients we invoke |[Mil80, VI, Lemma 10.2]
for coefficients away from the characteristic and [Gro85, I, Théoreme 2.1.11] for the
logarithmic Hodge-Witt complex. The formula (2) holds again because it holds for R = Q
and for finite coefficients by the proper base change [Mil80, VI, Corollary 2.3] and |Gro85,
IV, Corollaire 1.3.6] for the logarithmic Hodge-Witt complex.

Meanwhile for e = {M, ét} the statement holds because of the previous isomorphisms
when R = Z and the fact that the functor p* : DM(k, Z) — DM (k,Z) is exact.

For (3) we have to invert the characteristic of k. We will proceed as in [K6c91, Ap-
pendix], by induction and use the localization long exact sequence. We have dim(X;) =
dim(S) +n — d;j and for k < j we put c;; = codim(Xy, X;) = dp — d;. Notice that d;
is the codimension of X; in X. By the homotopy invariance of higher Chow groups and
[Mil80, VI, Corollary 4.20], the map =« : H*(S,Z[1/p](n)) — H*(Xo,Z[1/p](n)) is an
isomorphism for all bi-degree. Denote 7; : U; — S. Consider the following commutative

diagram with exact rows:

=0 i=0
lg l l(ﬂj)*

M=2Cj—1,j,n=Cj—1,j

% HJ (Xj_1) — 2 H(X) — L HP(U) —— ..

where H;""(Y) := H™(Y,Z[1/p](n)). By the inductive hypothesis the right vertical
arrow is an isomorphism, and the left one is an isomorphism because of the homotopy in-
variance of étale motivic cohomology, therefore the map j* is surjective and i, is injective.

Thus we obtain the desired formula. O

Remark 2.2.23. 1. Consider a cycle module M is the sense of Rost, for further details
see [Ros96]. By using the same kind of arguments as the ones in [K6c91] and
applying the homotopy invariance given in [Ros96, Theorem 8.6], which says that

if 7:Y — X is an affine bundle of dimension n and M is a cycle module, then
T Ap(Xs M) = Apn (Y M)

is bijective for all n, we can recover the formula

P Ap-a,(5; M) — A, (Y3 M)
=0

for Y having a cellular decomposition.

2. For any € € {L,{M,ét}} the isomorphisms described in Lemma are func-
torial with respect to base change T' — X. For this, one has the functoriality for
Chow groups as is described in subsection 1.1.1, while the torsion different to the
characteristic is given by |[Mil80, §, Theorem 4.1]. For the logarithmic Hodge-Witt
complex, the functoriality for the projective bundle and flag varieties is given by
[Gro85, Chap. III, Théoreme 1.1.1].
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In the sequel we recall a few facts about the structure of Lichtenbaum cohomology
group of smooth projective varieties over an algebraically closed field. For further details
about the structure and properties about Lichtenbaum cohomology we refer the reader
to [Kah12, Proposition 4.17], [Geil7, Theorem 1.1] and [RS16, Theorem 3.1]. Consider
X € SmProj,, with k& = k of characteristic exponent p and consider a bi-degree (m,n) €
Z%. If m # 2n then according to [RS16, Theorem 3.1] HP(X,Z(n)) ® Q¢/Z¢ = 0 for all

¢ # p. Denoting (Q/Z)" = @y, Q¢/Z; we have that H*(X,Z[1/p](n)) ® (Q/Z) = 0
and then

0— H'(X,Z(n))tors = H (X, Z(n)) — H*(X,Z(n)) @ Q — 0.

In fact this short exact sequence splits, so for m # 2n, H*(X,Z(n)) is the direct sum of
a uniquely divisible group and a torsion group. For the case when m # 2n + 1 we have
an isomorphism H7'(X,Z(n)){¢} ~ H (X, Q¢/Ze(n)), again considering ¢ # p.

Since for any n we have an exact triangle

Zx(n)es = Qx (e = (Q/Z)x(n)e;

and for m < 0 the group HZ'(X,Q/Z(n)) vanishes, we conclude that for such m we have
isomorphisms H}"(X,Z(n)) ~ H{*(X,Q(n)) i.e. the Lichtenbaum cohomology groups
with integral coefficients are Q-vector spaces, thus uniquely divisible groups.

Now let us come-back to the Hochschild-Serre spectral sequence for Lichtenbaum
cohomology. Assume that X is a smooth projective geometrically integral k—variety of

dimension d with k a perfect field of characteristic exponent p, and let k be an algebraic

closure of k with Galois group Gy and define Xz = X Xgpec(r) Spec(k). For such X

consider the Hochschild-Serre spectral sequence
E}Y(n) := HP(Gy, HY(Xy Z[1/)(n))) = HYY(X, Z[1/5)(n)).
Using the previous results, we can give information about the vanishing of some EY!(n)—terms:
e EP%(n) =0 for p < 0 because we work with the cohomology of a profinite group.
e EN(n) =0 for p >0 and q < 0 since H} (X3, Z[1/p](n)) is uniquely divisible.
e E19(n) =0 for p > cd(k) and g # 2n. Indeed, as ¢ # 2n then
HY (X3, Z[1/p)(n)) = H] (X3, Q(n)) & HY (X3, Z[1/p](n))sors,

since H} (Xj,Q(n)) is uniquely divisible, so for a pair (p,q) satisfying the above

restrictions, we have that
HP (G, Hi (X, Z[1/p](n))) ~ H? (G, Hf (X5, Z[1/p](n))tors)-
Now, if p > cd(k), the group HP(Gy, H} (X5, Z[1/p](n))tors) vanishes.
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Example 2.2.24. If we assume that cd(k) < 2 and q < 2n, then we have the following

isomorphisms

= H2(Gy, H (X, 2An)) /i { HE (X, Z(n) O = (G HY (X Z)

2.3 Birational invariance

Let us recall some definitions from birational geometry. Let X,Y be smooth k-varieties.
We say that a rational map f : X — Y is birational if there exist open subsets U C X
and V C Y such that f: U — V is an isomorphism. We say that X is stably birational
to Y if there exist r,s € N such that X x P;, — Y x P} is a birational morphism.
The importance of CHy(X) lies in its birational invariance, for which we refer to [Ful98|
Example 16.1.11]. If X — Y is stably birational then there exist r, s such that

CHo(X x P}) = CHo(Y x P§),

but by the projective bundle formula for Chow groups and the vanishing properties we
obtain that CHo(X x P}) ~ CHo(X) and CHo(Y xP}) ~ CHo(Y") so CHo(X) ~ CHo(Y).

So CHy is also a stable birational invariant.

Remark 2.3.1. The proof of birational invariance of CHg(X) in [Ful98, Example 16.1.11]

is given for algebraically closed fields, but the same argument works for any field.

The first question that arises is whether or not CH%(X) (or CHS! (X)) is a birational
invariant or a stably birational invariant. Let X be a smooth projective variety over a
field k, because of the comparison map CHp(X) — CHZ(X) we can say a few words
about the invariance depending on the field and the dimension of X: if & = k then
CHY(X) ~ CH%(X), thus we can use the stable birational invariance of zero cycles in the
classical setting cited above, for the category SmProj;. If the field is not algebraically
closed, then we lose many of the properties. For example, consider k£ a number field
which can be embedded into R and d > 2, by invoking Lemma [2.2.22| and the vanishing
properties of Lemma we see immediately that

d
CHY (Spec(k)) # CHY (P) ~ € CH, (Spec(k)).
=0

Thus CHY is not a stable birational invariant. If now we focus on the birational

invariance of CHE (X)), we have the following result:
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Proposition 2.3.2. Let k be an arbitrary field and let X be a smooth projective scheme
of dimension d over k. Then CHX is a birational invariant if d € {0,1,2}.

Proof. The case d = 0 is trivial. If d = 1, we use the isomorphism CH(X) ~ CH} (X)
and the birational invariance of zero cycles in the classical case. For d = 2 we have a

short exact sequence
0 — CH*(X) — CH%(X) — H2.(X,Q/Z(2)) — 0.

The group CH?(X) is a birational invariant for surfaces and the unramified cohomology
groups H3 (X,Q/7Z(2)) is birational invariant for any dimension. (This is a consequence
of the Gersten’s conjecture, see [CV12, Théoréme 2.8]). Therefore CH? (X) is a birational

invariant. OJ

In higher dimensions the argument using the comparison map fails. To illustrate this
consider the following: Let X be a smooth projective variety of dimension three over a

field k. There is a long exact sequence
— H, (X, 755 RT.Z(3) &) — CH?(X) — CH} (X) — HY,. (X, 7>5 RmZ(3)s) — O.

We have that H_ (X, 755 Rm.Z(3)et) ~ Hp (X, Q/Z(3)) is a birational invariant. There-

fore CH? (X) is a birational invariant if and only if HS_ (X, 755 Rm.Z(3)¢) is a birational

Zar

invariant. We obtain a short exact sequence,
0 = Hzop (X, Hit (Q/Z(3))) — Hyor (X, 25 RMZ(3)er) = Eol’ — 0

where S’ = ker { H3,(X,Q/Z(3)) — H3

Zar

(X, H2,(Q/Z(3)))}. In fact, one can find the
first counter-example in dimension 3. Recall that by the formulas given in Lemma [2.2.22
we have the following: let X be a smooth projective variety and let Z C X a smooth
sub-variety of codimension c¢. Then for the blow-up Xz of X along Z, Lichtenbaum

cohomology decomposes as follows
_ c—1 )
CHY (Xz) ~ CHY (X) & P CH] 7(2).
j=1

Notice that d — j > d — ¢ = dim(Z), therefore the groups CHij(Z ) are just torsion
(d—j)

isomorphic to H%a; (X, T>d—j+2RmZ(d—j)¢t). The next example shows how to exploit

this fact to get a counter-example.

Example 2.3.3. Consider X a smooth threefold with a rational point over K, with K
an algebraic number field which is not totally imaginary, and let Z = Spec(K). Let Xy
be the blow-up with center Z, then we have that

CH} (Xz) = CH} (X) @ CH? (Spec(K)).
Since CH3 (Spec(K)) ~ HZ,(Spec(K),Q/Z(2)) we can conclude that CH3 (X z) # CH3 (X).
In general we have the proposition:
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Proposition 2.3.4. Let k be a field and assume that there exists n > 2 such that
Hgf_l(Spec(k),M?i") # 0 for some prime number £ and v € N, then CHY is not a

birational invariant for SmProj,.

Proof. Let us consider the field k such that HZ" '(Spec(k), ui") # 0 for some prime
number ¢, r € N and n > 2. Consider X a smooth projective variety over k of dimension
d > n+ 1 such that X has a k-rational point. Let X be the blow-up of X along a point
Z = Spec(k) — X. Invoking Lemma we obtain

d—1
CHY (X) ~ CH{ (X) & (P cH] 7(2)
j=1

As CHY (Z) ~ HZ~(Z,Q/Z(3)) for i > 2, the hypothesis implies that CH} (Z) # 0 and
thus CH? (X) # CHY (X). O

Remark 2.3.5. Note that the hypothesis of the last proposition implies that the coho-
mological dimension of k should be > 3. Thus the previous argument does not give a

counter-example for fields with cohomological dimension < 2.

We have the following étale analogue of the results of Bloch-Srinivas.

Proposition 2.3.6. Let X be such smooth projective variety over k of dimension dx
such that CHy(Xq) =~ CHcelf (Xq) = Z for a universal domain Q2 (an extension of k of
infinite transcendence degree). Consider the diagonal Ag € CHif (X x X). There exist
an integer N, a closed sub-scheme T’ C X and cycles 'y, I'y € CH‘ZtX (X x X) with

I € im{oﬂzf*CV(v x X) 1 CHY (X % X)}

and
Ty € im { CHEF ™7 (X x T) % CHE (X x X)

such that NAg =11 +T's.

Proof. Denote L := k(X ) with an immersion in {2 which extends k < Q. Recall that we
have an isomorphism CHth (Xp) ~ limy, , CHe‘,th (X x U) where U runs over all nonempty
Zariski open subsets U C X. As mentioned before, we have an isomorphism CHX (Xq) ~
CHZf (Xq). Therefore CHgltX (Upr) is torsion as in the classical case.

From the localization sequence
L= CHE OV (V) 25 CHIX (xp) L5 CHE (U) — CHE =V (Vp, —1) — ...

we conclude that for every cycle z € im(j*) C CHth (Ur) there exists N € N and
y € CHIX ™V (V;) such that Nz = i.(y) € CHIX (Xp).

Consider 7, the image of the generic point n of X, and set z = 7¢. Then we have
Nney =6 € CHth (XL), by the same kind of argument as in [BS83, Proposition 1]. Since
the closure of 1 in X x X is the diagonal, we have that Ag maps to ng through the map
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v CHth (X x X) — CHZ,DX (X1), which is the pullback of the map p : X; — X x X

given by the cartesian square

XLL)XXX

N

Spec(k(X)) — X.
With the same arguments we find an element
Iy € im {CHE ™V (V x X) £ CHE (X x X) |

whose image through ~ is §. Then it is easy to see that NAg — I'y € ker(y). Since
CHth (X)) ~ limy, , CHe‘,th (X x U), there exists U C X open sub-scheme such that
Jxxu (NAg —T'1) =0 € CHZtX (X x U) so setting T' := X — U, from the localization

sequence we conclude that there exists
Ty € im { CHE ™7 (X x T) 5 CHE (X x X) |

such that NAg4 —T'} = T'y € CHIX (X x X). O

ét

2.4 Equivalence relations on étale cycles

As in the classical theory of algebraic cycles it is possible to define étale cycles which are

algebraically, homologically or numerically equivalent to zero.

Algebraic equivalence

We say that a cycle z € CHét(X ) is algebraically equivalent to zero if there exists a
smooth connected projective curve C' and distinct points t1, t2 € C such that z is in the

image of the map
. t5—t3 -
CHg, (C x X) =— CH{ (X).
We denote the subgroup of those elements as CHY, (X ).
Proposition 2.4.1. The comparison map induces a map CH'(X )4y — CH(X) a1q-

Proof. Let z € CH(X ),y then there exists a curve C, a cycle W € CH(C x X) and two
points a,b € C such that the action

W (t) = (pry)«(W - (X x 1))

evaluated in these points gives us z = W(a) — W(b). Since the comparison map is

compatible with push-forwards and intersection product we conclude. ]
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Smash Nilpotent equivalence

Assume that X is a smooth projective variety. We define the étale analogue of the smash

nilpotent equivalence.

Definition 2.4.2. Let z € CH’;t(X), we say that z is étale smash nilpotent equivalent to
zero if and only if exists n € N such that 2™ = 0 € C'ngt(X”). The subgroup of these
elements is denoted by CH%(X)g.

Remark 2.4.3. 1. Cngt(X)(g is a subgroup because if we take two elements 21, 29 €
CH%,(X)g then there exists ny and ny such that 27" = 0. If we consider that

[
n = n 4 n—i
(21 + 22)" = Z (i>21 X 2q
=0

just consider n = nj + noa.
2. Due to the compatibility of the comparison map with products we have a morphism
r: CHY(X)g — CHE (X)g
Homological equivalence

At this point we should state some conventions, because we can define several cycle class
maps. These depend on the characteristic of the ground field, and on the use of étale
Chow groups or Lichtenbaum cohomology groups. If we work over the complex numbers,
then we use the isomorphism CHY; (X) ~ CHY} (X) and the cycle class map constructed
in [RS16].

In this case we have a cycle class map ¢;"" : H*(X,Z(n)) — HE(X,Z(n)) to Betti
cohomology and we define the Lichtenbaum (or étale) cycles equivalent to zero as the

kernel of the L-cycle class map
CHZ, (X )nom := ker {c% : CHE(X) — HE'(X,Z(n))} .
Lemma 2.4.4. Let X be a complexr smooth projective variety, then:
1,1

1. ¢ is the zero map,

2. ci’l induces a surjection Br(X) — H3(X,Z(1))ors.
Proof. Consider the exponential sheaf sequence

; fref *
0—2mZ — Ox —— Ox — 0

which arises a long exact sequence

0 — D(X,Z(1)) — D(X, 0x) — T(X,0%) & H'(X,2(1))

— HY(X,0x) — H'(X,0%) = H*(X,Z(1)) — ...

we know that I'(X,Z(1)) ~ 2miZ, I'(X,Ox) ~ C and I'(X, O%) ~ C* and therefore h is
zero. On the other hand, by [Voell, Theorem 6.18] Hi(X,Zx (1)) ~ H},(X,Zx (1)) ~
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I'(X, O%) and then the induced map h coincide with the cycle class map ci’l. The second
statement follows from the isomorphism Hj(X,Z(1)) ~ HZ(X,G,,) ~ Br(X) (which is
torsion) and |[RS16, Theorem 1.1]. O

If we consider as a base an algebraically closed field k # C of characteristic p > 0,
the quasi-isomorphism (Z/¢"Z)x (n)e — p3", where ¢ # char(k), and the short exact

sequence of complexes of étale sheaves
o r
0— ZX(n)ét — Zx(n)ét — (Z/ﬁ Z)X(n)ét —0

we obtain a map ¢}y : HP'(X,Z(n)) — H{ (X, (Z/0"Z)x(n)) =~ HZ (X, ug"). After
taking the inverse limit CT’; = l&n c?’gﬁ we obtain a Lichtenbaum ¢—adic cycle class
9 I8 9

map
cpy t HE'(X,Z(n)) = Hel (X, Zy(n)).

We then define the étale algebraic cycles homologically equivalent to zero as

CH} (X)nom :=ker ¢ [[ ¢l :CHLX) = [] H&(X,Z(n))
{#char(k) {#char(k)

Notice that by compatibility with the comparison maps the classical Betti and /—adic
cycle class maps factor through Lichtenbaum cohomology: tthaving the following compo-

sitions

CH"(X) — CH%(X) — H*(X,Z(n)) if k = C,

CH™(X) — CHE(X) —» [ H&'(X,Z(n)).
L#char(k)

Hence there exists a homomorphism CH" (X )pom — CHF (X )pom- There is a big difference
concerning the algebraic properties of the homologically trivial L-cycles and the usual
case. For example there exist algebraic varieties where Griff(X) ® Q/Z # 0 whereas in
the Lichtenbaum case if we define its analogue we have that Griffz(X) ® Q/Z = 0.

Lemma 2.4.5. [Geil7, Lemma 3.2] Let X be a smooth and projective k—wvariety with
k and algebraically closed field, then the subgroup CH} (X )nom ts the maximal divisible
subgroup inside CHY(X).

Proof. Let k be a field and X be a smooth projective k-variety. Consider the groups of

homologically trivial Lichtenbaum cycles
CH} (X)hom :=ker¢ [ cfo:CHE(X) = [] HE(X,Zi(n))
{#char(k) {#char(k)

Since HZ"(X,Zy(n)) = Jim, H?"(X,Z/l(n)) and the cycle class map cf 4 factors trough
lim, H, 2n(X,Z(n))/¢, the kernel is (-divisible for each ¢ # char(k), so it is divisible. The
maximality comes from the factorization cj , through H, (X, Z(n)) /)l O
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Numerical equivalence

If we fix an algebraically closed field k£ as a base, recall that according to Theorem
2.2.11| we have an isomorphism CHy(X) ~ CH%(X). So in this case we can use the
same definition of degree map as in the classical case. If the field is not algebraically
closed of characteristic p, then one has to consider an étale version of the degree map
dim(X 5

degg, == p, : CHI™X) (x) = CHE(X) — Z[1/p]]]

Let X be a smooth projective variety of dimension d One has a pairing

CHe, (X) x CHE (X)) — Z[1/p]
(a, B) — degg (- B).
For a fixed o € CHY (X)) define degg; ,(8) := degg (cr - B).

Definition 2.4.6. Let X be a smooth projective variety of dimension d over a field k,
and let o € CHL(X) be a fized but arbitrary étale cycle. We say that o is numerically
equivalent to zero if and only if ker (degéta(~)) = C’Hd_i( ). We will denote the group of

the elements of codimension i numerically equivalent to zero as CH (X)) num C CHiét(X).

Proposition 2.4.7. Let k : CH'(X) — CH(X) be comparison map, tthe image of
CH(X ) pum under & is contained in CHY.(X) pum-

Proof. We have to prove that the diagram

CHI=/(X) ——* 5 CHL(X)
deg,,
At (o)

is commutative, but this comes immediately from the fact that x is compatible with
pushforward and products of algebraic cycles.
O

Consider the group CHY, (X )yum previously defined, then we define
NMét (X) = CHét(X)/CHét (X)num

With this definition we wanted to follow the spirit of the numerical cycles in the classical
sense of Chow groups in order to obtain a similar result for the nilpotent properties and

try to extend the conjecture to étale Chow groups.

Proposition 2.4.8. Let X be a smooth projective variety over and algebraically closed
field k. Then for n > 0 the induced map

NM'(X) — NM(X)

s an isomorphism of finitely generated free abelian groups.

'In chapter 4 we will return to the degree map in more detail, giving functoriality properties and the
definition of the étale analogue for the index of a scheme.
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Proof. In order to prove that NM"(X) is a finitely generated free abelian group, first
notice that NM" (X)) is torsion free since by definition we have a non-degenerated pairing,
then we use the well-known fact that NM"(X)q is a finite dimensional Q—vector space
of dimension < by, = dimg, Hg" (X, Q¢(n)). Choose generators {a,...,o;} C NM"(X)
of NM"(X)g and let mn(X) be the Z-submodule of NM"(X) generated by the «s.
Define the dual NM"(X)" := Hom(NM"(X),Z) and notice that NM"(X)/ﬁI\//In(X) is

torsion, therefore its dual as Z is zero. Hence the map
NM*"(X) € NM*(X)¥ — NM" (X)V

is injective, and since WH(X )V is free, NM9~"(X) is a finitely generated free abelian

group. For the isomorphism, consider the commutative diagram

NM"(X) —— NMZ%(X)

NM4(X)Y «—— NME(X)V.

Since the above map is surjective after tensor product with rational numbers, all the

groups have the same rank. O

This is the same proof given in [Geil7, Proposition 3.1] which states the same result
but using Lichtenbaum cohomology instead of étale Chow groups. Now let 0 < i < d =

dim(X), the previous result leads us to a commutative diagram

0 —— CH(X)pum — CH(X) —— NM(X) —— 0

lmnum ln lﬁ

0 —— CHL (X)pum —— CHL(X) —— NM4L (X) —— 0.

By the snake lemma we have that ker (/i ) — ker(k) is an isomorphism, as well as

num

the map coker (n‘ ) — coker(k). Then, and after noticing that by [RS16, Proposition
num
5.1] the groups ker(x) and coker(k) are torsion since  is an isomorphism with rational

coefficients, the cycles numerically equivalent to zero which map to zero through the

comparison map are just torsion elements.

Lemma 2.4.9. Let X be a smooth projective variety. The map
CH"(X)num/ CH" (X )hom = CHE(X ) num/ CHg(X ) hom

18 injective with torsion kernel and cokernel.

Proof. Let z € CH"(X) such that x(z) € CHZ (X )nom since the cycle class map factors
through « then is contained in CH" (X )pom which implies the injectivity. Again the kernel

and cokernel are torsion because the groups agree rationally. O
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2.5 The category of étale Chow motives

Correspondences

We first introduce the concept of correspondences, which play an important role in the
definition of the morphisms in the category of étale Chow motives. For this construction
we will use étale Chow groups, but always keep in mind the following: consider a field k
of characteristic exponent p and a smooth k-scheme X which is of finite type. For every
bi-degree (m,n) € Z* there exists a map py" : Hf"(X,Z(n)) — Hj} (X, Z(n)) which
is induced by the A!-localization functor of effective étale motivic sheaves. If we tensor
by Z[1/p], then p¢"™ becomes an isomorphism, for a proof we refer to [CD16, Theorem

7.1.2]. In particular the two definitions coincide in characteristic zero.

Definition 2.5.1. Let X and Y be smooth projective varieties. An étale correspondence

from X toY of degree r is defined as follows: if X is purely of dimension d
Cor(X,Y) = CH,/(X x Y).

For the general case

Corr,(X,Y) @ CHF%(X; x Y)

where X = H?:l X, and d; is the dimension of X;.

For a € Corrl(X,Y) and 8 € Corri,(Y,Z) we define the composition o o €

Corrl,,*(X, Z) of correspondences as

foa= (PT13)* (prisa - prégﬁ)

where prig : X X Y X Z — X X Y (similar definition for prys and pry; with the

respective change in the projection’s components).
Proposition 2.5.2. The composition of correspondences is an associative operation.

Proof. To see that this operation is associative, we recall the Gysin morphism for étale
motives. Consider X, Y and S smooth schemes over k such that there exists a cartesian
square of smooth schemes

X xsY —25Y

s lf (24)

X —>2 5

with p and ¢ are projective morphism and dim(X/S) = dim(X xgY/Y), thus by [Dég08,

Proposition 5.17] we have the following commutative diagrams

M(X x5 Y)(=n)[~2n] +—— M(Y) CHL (X x5Y) —— CHj(Y)
Jg* Jf* Q*T f*T
M(X)(=n)[=2n] +—— M(S) CH™(X) —— CHL(S)
(2.5)

82



2.5. The category of étale Chow motives

where n = dim(X/S).

Consider the following commutative diagram

XY ZW

pr
XXxYXxZxW2XEL XxY xZ
XYZW XY Z
lprxzw J’Prxz
XZW
Prxz

XXZIxW ———— X x 7

by (2) we have that (pr§¥§w)* (pr%‘z/ng)* = (p1"§12/2)>k (pr%%w)*, so the rest of the
*

proof is similar to the proof of [Ful98, 16.1.1.(a)]: the formula (pr%%%w)* (pr§§§/w) =

(prﬁxzfz )* (pr%%w)* gives us the following
vo(Boa)=prxih (X2 (prz? (pry 7 a-pryz 2 B)) - praif’ ) (2.6)
=iy (prXziy (orxy 2’ (eeXy e pryz 8)) - pgd ) (2.7)
= oK (e (o7 b7 8) bR B ) (29
= prxnY (e e priy 2V B) - pran ) (2.9)

XYZW (. XYZIW XY ZW XY ZW
= Pr'xwsx (PI“XY *a'(Pl"YZ B praw *’Y))

Here (2.6) is the definition of composition of correspondences, (2.7 is obtained by the
argument given in the second point of the remark (2.8) by the projection formula
and (2.9) by the functoriality of pullbacks.

L]

Remark 2.5.3. e The composition of correspondences gives Corrg (X, X ) a ring struc-

ture. In general it is not a commutative ring.

e Let X be a smooth projective scheme of dimension n, then the étale cycle Aé},

induced by the diagonal, is the identity for the composition operation, i.e. for

a € Corr%y (X,Y) and B € Corr’, (Y, X) we obtain that a0 A$ = a and Ao = 3.
Operations on correspondences

We define the addition and product of correspondences in the following way: suppose
that o € Corrg (X, X) and 5 € Corrg(Y,Y), then we define the element a + 3 as the
element resulting from the following operation on cycles:
CHa (X x X) ® CHg(Y x V) < CHe ((XHY) X (XHY))
(o, B) = (i1)xx + (i2)«8

where i1 : X X X — (X]]Y) x (X]]Y) is the usual closed immersion map (similar
definition for i and Y'). In a similar way we define the tensor product of correspondences

as

CHgt (X x X) @ CHg (Y xY) - CHg(X XY x X xY)

(o, B) = priy xa - pryy 3
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where pryy : X XY x X xY — X x X, similar definition for pryy-. Both structures
will play a big role in the definition of operations in the category of Chow étale motives.

Another important operation is the transposition of cycles.

Definition 2.5.4. Let X andY be smooth projective varieties and let 7 : X XY — Y x X
which permutes the components (z,y) — (y,z). Let ' € CH(X X Y), we define the

transpose cycle as Tt := 7,(T).

Due to some functoriality properties in DMg;(k,Z) we recover an étale version of

Lieberman’s lemma:

Lemma 2.5.5 (Lieberman’s lemma). Let X,Y,Z and W € SmProj,. Consider f €
Corray(X,Y), a € Corrgy(X,Z) and 8 € Corrg(Y,W). Then (a x 8)«(f) = Bo foal.

Proof. We follow the proof of [MNP13| Lemma 2.1.3]. By definition of the action of

cycles

(ax B)a(f) = (przit" s (@ x B+ (x5 )" (f))
where pr‘;‘(?,?'" cAxBxC...— X xY...denotes the projection. Note that we have
the isomorphism 7: X X Z x Y xW — Z x X xY x W, then we have

(prx?™) =170 (X)) and (przf" ™). = (7 Y)e o

Using this and the projection formula thus we have the following

(ax B).(f) = (przit ™) (@ x 8- (rx7 )" (f))
= P ") (7 (@ x 8- 7 (%3 ()))

~ (prZi ) (el x B) - (pry ™) (f))

since 7 just permutes the first two coordinates we obtain that 7.(a x 8) = af x 3. As

pr%{VYW factors through the canonical projections Zx X xY xW & ZxY xW L& ZxW

, where p = prgg,(%,/vw, q= pr?vaw and also that af x 8 = (prZx¥")*(at)- (prxz/{ﬁ(,yw*)*(ﬁ),

then we replace in the previous expression

(a X B)u(f) = gu o pu ((prx"") () - (priay” ™) (8) - (x5 V)*(f)) -

By similar arguments we find that préX¥" = ¢’ op and then (prZxYW)* = p* o ¢’* with
Yy g YW YW
q = prZilV so

(ax B)a(f) = g« {p+ (prZx" V) (@) - (e (f) - 0" (¢%(8))) }
~ g {p« (PrZ"")* (") - (e ™) () - d™(B)} -

Let us focus in the part p, ((prZsY W)*(af) - (pr¥3¥W)*(f)). Consider the projections
r XX XYXW > ZxXXY,51:ZxXXY >ZxXandsy: ZxXxY - X xY.

Then we obtain

ps ((rzx ") (@) - (prx3 )" (f)) =
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Considering the commutative diagram

IXxXXxYxW 25 ZxY xW

ZYW
J/T lprzy
ZXY

ZIxXxY 22 zxy.

By (2) of remarkwe have p,or* = (prZy")" (prZY) ,» which gives us the equality p,o
r* (si(at) - s5(f)) = (prZy")" (prZsY), (si(at) - s3(f)) and by definition of composition

we obtain (prggw)* ( fo at). The last part is just a direct consequence of the definition

(@ x B)(f) = g {p« ((rZX") (") - (e ) () - ¢ (8)}
= (e Z), { B (Foat) - ) (8)}

=Bo foa

Action on cycles and cohomology groups

Let X and Y be smooth projective varieties. For a correspondence I' € Corry, (X,Y") we
define the action T, : CH, (X) — CHL"(Y) as

[.Z = pry, (T pri(Z)) € CH{(Y)

for Z € CHL (X). Here we need to work with étale Chow groups because of their
functoriality properties for proper maps, instead of Lichtenbaum cohomology. In order
to use an action considering Lichtenbaum cohomology, it would be necessary to invert
the characteristic exponent of the base field.

Classical correspondences have a natural action over on their étale analogue using the

comparison map:

Corr?(X, X) x Corrl (X,Y) — Corr% (X,Y)

(o, Z) = prxy, (pryx(k(a)) - pryy(2))

Let I' € Corry (X,Y) be an étale correspondence of degree r. Let us assume that
there exist a cohomology theory (not necessarily a Weil cohomology theory) H with a
cycle class map Cé’t, 5 o CHL(X) — H?(X). We recall that this choice depends on the
base field. For example if k = C we can consider H(X) = H5(X,Z) or if k = k one
can consider H'(X) = H. (X,Z/¢) or H(X) = H. (X, Zy), with £ # char(k). As in the
classical case, the correspondence gives us an action I'y : H*(X) — H**?"(Y) defined by

[z :=pry, (cgg(;r(I’) U pr&(z)) € HF(Y)

with z € H*(X). As we will see in the following chapter, this action will be the cornerstone
for a well-defined version Hodge conjecture and generalized Hodge conjecture in the

Lichtenbaum setting.
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Etale Chow motives

Let SmProj, be the category of smooth projective varieties over k. We construct the

category of effective étale motives over k, denoted by Chowgff(k:), as follows:

e The elements are pairs (X,p) where X is a smooth projective variety and p €

Corrd (X, X) is an idempotent element, i.e. pop = p.

e Morphism (X,p) — (Y, q) are the elements of the form f = qgo gop where g €
Corr, (X,Y), therefore

Homgpgyemy ((X,p), (Y, q)) = qo Corrd (X,Y)op

Finally, the category Chowyg (k) of Chow étale motives is defined in the following
way: the objects are triplets (X,p,m) where X is a smooth projective variety, p is a
correspondence of degree 0 and idempotent and m € Z. The morphisms (X,p,m) —

(Y,q,n) are defined as
HomChOWét(k) ((X,p’ m)? (Y7 q, n)) =qo° Corrgt_m(Xa Y) op

As in the theory of Chow motives, for étale motives there is an obvious fully-faithful
functor ChowS (k) < Chowg (k).
We define a functor he; : SmProj,” — Chowg (k) as

het : SmProj;, — Chowe (k)
X — hét(X) = (X, idx,())

<X ER Y) — (hét(y) hald), hét(X)>

where idx is the element that acts as the identity on the correspondences from X to
itself and he(f) = H([F?D

Here there are some examples of étale Chow motives:
1. Lefschetz motive is
L := (Spec(k),id, —1)
and L7 := L®4 ~ (Spec(k),id, —d).
2. The unit motive 1 defined as 1 := (Spec(k),id, 0).
3. The Tate motive is defined as

T := (Spec(k),id, 1)

Remark 2.5.6. 1. Let us remark that there was another construction of a category of
Chow étale motives, which here we denote Chow’ (k), given in [Kah02, §5] by Kahn.

This category is pseudo-abelian and rigid symmetric monoidal. The definition
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2.5. The category of étale Chow motives

of such (effective) category is similar as the one we gave, but just considering
elements (X, p) where p = p? € Corrg: (X, X) ® Q and morphisms between (X, p)
and (Y, q) are correspondences f € Corrg (X,Y) such that f®@ Q =gqo fop = f €
Corrg (X,Y) ® Q.

2. If k is an algebraically closed field of characteristic zero, then by Theorem [2.2.11] for
every X € SmProj, of dimension d we have that CHY™™(X) ~ CHg;r "(X) for all
n > 0. If k is not algebraically closed then CHY, (Spec(k)) is torsion for all n > 1.

Lemma 2.5.7. There exists a monoidal functor cg : Chow(k) — Chowg (k) coming from

the comparison map from classical to étale Chow groups.

Proof. We define ¢, : Chow(k) — Chowg (k) as follows: for an element M = (X, p,m) €

Chow (k)we have c¢ (M) = (X, 0(p), m), its action on morphisms is given by

(LN e (cét(M) call), cét(N)>

= (X,0(p),m) 225 (v, 0(g), ).

The monoidal property comes from the compatibility of the cycle class map with the

product of cycles. O

Remark 2.5.8. Along with the category Chowg (k) we can define the étale analogue of
the categories M (k) for an adequate equivalence relation. We denote as M (k) if we
replace the étale Chow groups for ~-étale groups. If the base field k is algebraically

closed, we then obtain the following commutative diagram

Chow(k)z —— Mag(k)z —— Muom(k)z —— Muum(k)z
hz(—)

:0p
SmProj;

hé(k;

Choweg (k) — M (k) —— M (k) ——— M (k).

alg hom

Proposition 2.5.9. Similar to the theory of pure Chow motives, there exists a fully-
faithful embedding functor F : Chowe (k)P — DMg(k)

Proof. Let X,Y,Z € SmProj;. The map ex y : Hompyy,, 1) (M (X), M(Y)) = Cortd (Y, X)
is an isomorphism, which can be obtained with the same arguments as in [MVWO06),

Proposition 20.1]. We proceed as in case of the Chow motives. Let X and Y be two
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2. ETALE CHOW MOTIVES

equidimensional smooth projective varieties, with dimension dx and dy respectively, then
Hompyy,, (k) (M (X), M(Y)) =~ Hompyy,, x) (M (X) ® DM(Y), Z)
~ Hompg, iy (M (X) ® M(Y)(~dy)|~2dy]. Z)
~ Hompy,, (k) (M (X) ® M(Y), Z(dy)[2dy])
~ Hompy,, (k) (M (X x Y), Z(dy ) [2dy])
= CHY (X x Y)
= Corrf (Y, X) = Hompag, () (R(Y), (X))
Denote as exy : Hompyg,, ) (M(X), M(Y)) = CHCéltY (Y x X), it remains to prove that

the composition is compatible with ex y., but the compatibility obtained as in [Fanl6,
Theorem 3.17] using [Fan16|, Proposition 2.39]. O

Definition 2.5.10. Let M = (X,p,m) be an étale motive. We define the i—th étale

Chow group of M as the image of the action of the correspondence p, i.e.
CH(M) = im{p, : CH;/™(X) — CH;™(X)}.
Similarly the i—th cohomology group of M is define as the action of the projector p
H' (M) = im{p, : H"™™(X) — H""(X)}

where H' can be H'(X,Z) if X is a complex variety and H'(X,Z) for an algebraically
closed field (not necessarily of characteristic zero), but always ¢ # char(k). These are
the Betti and {—adic realizations of M.

Let us consider the functor F? defined as follows F* : Chowg (k) — Z-mod, M +
F{(M) := HomChOWét(k)(Li,M), with M of the form M = (X,p,m), and consider the
Z-graded functor F := @®;czF" : Chowgi (k) — Z-modGr. By definition of F' we have
that

F'(M) = Homgpou,, ) (L', M)
= p o CHY ™ (Spec(k) x X)
~ p, CHL™(X) = CHL (M).
By definition F' is an additive functor, and by duality
HomChOWét(k) ((X7p7 m)’ (K q, n)) =qo Corrgtim(X7 Y) op
= qo CHL ™ (X xY)o
~ F(M @ NV).
Notice that N is a sub-motive of h(Y) ® L™ for some Y € SmProj, and n € Z and by
duality FO(M @ h(Y) @ L") ~ F~"(M ® hg(Y)). For a fixed M € Chowg (k) define the
following functor
w : SmProj” — Z-modGr

Y= wy(Y):=F(M®hg(Y))
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2.5. The category of étale Chow motives

then Yoneda embedding implies that the functor

w : Chowet (k) — Z-mod GromProiy”

M — WM
is fully-faithful. Hence we recover the classical Manin principle but in the étale setting!

Proposition 2.5.11. [Manin’s identity principle] Let f, g : M — N be morphism of

étale motives then:
1. f is an isomorphism if and only if the induced map
wr(Y) : wp ((Y)) = wn (h(Y))

is an isomorphism for all'Y € SmProj, and f = g is and only if wr(Y) = wy(Y)
for all'Y € SmProj,.

2. A sequence
0—)M1LM2£>M3—>0

is exact if and only if, for every Y € SmProj, the sequence

wy (h(Y)) wg (h(Y))

0 = wary (A(Y)) =2 wagy (A(Y)) witz (h(Y)) = 0

Proof. This properties is a consequence of the faithfulness of the functor w and the fact

that fully-faithful functor reflects monic, epi and isomorphisms. O

The following isomorphisms in Chowg (k) are obtained as a consequence of Lemma
2.2.22| about the structure of étale motivic cohomology groups: we can obtain decompo-

sition for motives of a projective bundle, blow-ups with smooth center and flag varieties.

Example 2.5.12. 1. Consider E a locally free sheaf of rank (n + 1) over X, and
7 :Px(E) — X its associated projective bundle. Then

CHL,(Px (E @ CH.(

Since this isomorphism is functorial with respect to base change, for all Y €
SmProj,, we have an isomorphism CH4(Y x Px(E)) ~ Do CHZj (Y x X), there-

fore we have a decomposition of the motive of Px(E) as

et PX @ het

2. Consider Y = Blz X the Blow-up of X € SmProj, along a smooth sub-scheme Z of
codimension (d+1). Since the isomorphism described in Lemma is functorial
with respect fo base change, then we have a decomposition of the motive of Y as

follows

m

ha(Y) = ha(X) & @ ha(Z)(~i).

i=1
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3. Let S be a smooth k-scheme and let X — S be a flat morphism of relative dimension
n such that X has a decomposition in smooth projective varieties X = X;, D X,_1 D
.D X9 D X4 =0 with X; — X;_q1 ~ Agfdi for some d; € 7. Since the
characterization of the étale Chow groups of X given in Lemma[2.2.29 is functorial
with respect to base change S — S XY, then

p
hea(X) ~ @D ha(S)(d:).
i=0

In chapter 4 we will continue with another results concerning the decomposition of
étale Chow motives and some generalized version of Manin principle. For the moment,

let us mention an analogue of [Kim05, Theorem 6.8].

Definition 2.5.13. Let f: M — N be a morphism of étale Chow motives. We say that

f is a surjective morphism if for oll Z € SmProj,, the induced map
(f @ idy). : CHY(M @ h(Z)) — CHY(N @ h(Z))
s surjective for all n.

Lemma 2.5.14. Let f : M = (X,p,m) - N = (Y,q,n) be a morphism of étale Chow

motives. The following conditions are equivalent:
1. f is surjective.
2. There exists a right inverse g : N — M i.e. fog=idy.
3. q= fos for some s € Corr(Y, X).

Proof. (1. = 2.) For this implication, we use Lieberman’s lemma (see Lemma [2.5.5))
for étale correspondences. Assuming point 1. consider the particular case Z = Y and
q' € Cortd,(Y,Y). By Lieberman’s lemma ¢’ = (¢ x idy).idy then ¢* € CH} (N ® h(Y)).
By assumption there exists an element r € CH} (M ® h(Y')) C CHZ (X x Y') such that
(f x idy)«r = ¢*, and again by Lieberman r o f¢ = q'. Take g = portogq.

(2. = 1.) As fog = idy after base change using Z € SmProj, we obtain that
(fxidz)«o(gxidz)« = idngz. Therefore (fxidz). : CHL (M ®h(Z)) — CHEL(N®I(Z))
is surjective.

(2. = 3.) For that just take the element s as the correspondence associated to
f € Corrd, (Y, X).

(3. = 2.) Consider the morphism defined by the correspondence g =posogq. [

Now again, we get an étale analogue of [Vial7, Lemma 3.2]:

Proposition 2.5.15. Let f : M — N be a morphism of étale motives defined over an
algebraically closed field k:

1. Assume that for some field extension K (with K = K ) the map (fx )« : CHy,(My) —
CH,(Nk) is injective. Then f. : CHy(M) — CHY,(N) is injective.
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2. Assume that for some field extension K (with K = K ) the map (fi )« : CHy(My) —
CH',(Nk) is surjective. Then f,: CH, (M) — CHL(N) is surjective.

Proof. The first statement follows from the commutative diagram

CH (M) —— CHg (M)

|- |-

CHét(N) — CHét(NK)

and the fact that CH% (X) — CHY, (Xf) is an injection by Proposition [2.2.20, For the sur-
jectivity, notice that under assumptions about the base field, the map Hg?*l (X,Q¢/Zy(n)) —
HJ Y (Xk,Q¢/Ze(n)) is an isomorphism for every bi-degree, therefore if the map after
tensor with the rational is surjective ( which is the result of [Vial7, Lemma 3.2]), we then

obtain that the map is surjective from a similar argument of Proposition [2.2.20 O

Lemma 2.5.16. Let k be a field and let (u; : k; — k); be finite Galois extensions of
the field k. Then the associated family of functors u; : Chowg(k) — Chowg(k;) is

conservative.

Proof. By Propositionm the functor ®¢* : Chowy; (k)% — DM (k, Z) is fully-faithful,
hence conservative. According to [Ayoldb, Théoréme 3.9] the family of functors u} :

DMy (k, Z) — DMy (ki, Z) is also conservative. The commutative diagram

ét

[
Choweg (k) —~— DM (k, Z)

L [
cpét

Chowey (i) — DM (ki, Z),
then shows that the family of functors u} : Chowg; (k) — Chowsg(k;) is conservative. [

Lemma 2.5.17. Let M = (X, p,m) be an étale Chow motive over a field k. Then M =0
if and only if M = 0 for some field extension K.

Proof. This is a direct consequence of Lemma [2.5.16 O

Remark 2.5.18. Notice that [Vial7, Proposition 1.3] is also a direct consequence of the
condition of separateness of DM (k, Q) and the fully-faithful embedding Chow(k)°? —
DM(ka Q) = DMet(k> @)

Proposition 2.5.19. Let k be a field and let K be an inseparable extension of k. Then
the associated functor p* : Chowg(k) — Chowg(K) is fully-faithful.

Proof. This is a consequence of Lemma [2.2.20 O
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Chapter 3

Hodge and generalized Hodge

conjecture

In this chapter we study the consequences of [RS16] on the level of Hodge structures.
Let X be a smooth projective variety over C, k € N and consider the cycle class map
¥ . CHF¥(X) — H¥(X,Z(k)) where Z(k) = (2mi)FZ. Tts image is a subgroup of the
Hodge classes Hdgzk(X, Z). The integral Hodge conjecture asks whether or not this
map is surjective. Putting n = dimg(X), then for £ = 0 and & = n the conjecture
is immediately true and also for k& = 1 by the Lefschetz (1,1) theorem, however for
k = 2 the statement is not true as is shown by the counterexamples given by Atiyah and
Hirzebruch in [AH62] (a torsion class which is not algebraic) and by Kéllar in [BCC92] (a
non-algebraic non-torsion class) respectively. Even with rational coefficients the validity
of the statement regarding the surjectivity of the cycle class map is still an open question,
and is known as the Hodge conjecture. In a more general and ambitious framework, there
exists another conjecture, called the generalized Hodge conjecture, which deals with sub-
Hodge structures of smooth projective varieties of different weights and levels. To be
more precise the conjecture for weight k and level k — 2¢ (or equivalently for weight &
and coniveau c¢) says that for any rational sub-Hodge structure H ¢ H*(X, Q) of level

at most k — 2c¢ there exists a closed subvariety Z < X of codimension > ¢ such that
H < im {H"(Z,Q(~c)) ™ B*(X,Q)}

where v, = iy 0 dy, 14 is the Gysin map associated to the inclusion ¢ : ¥ — X and
d:Z — Z is a resolution of singularities.

The aim of this chapter is to find an analogue of |[RS16, Theorem 1.1] for the gen-
eralized Hodge conjecture. In the first section, we attack two problems: throughout the
first subsection, we present a refined version of [RS16, Theorem 1.1]. We show that if
we restrict to a sub-Hodge structure W C H2¥(X,Z(k)) and ask whether W ® Q is al-
gebraic in the usual sense if and only if W is L-algebraic. In subsection 3.2 we give an
explicit description of the torsion classes that are not algebraic in the classical sense, for
the counterexamples presented in [AH62] and [BO20|. We then study the Lichtenbaum

cohomology groups for hypersurfaces in subsection 3.2.3 and explain the torsion-free
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counter-example of Kéllar given in [BCC92|.

With respect to the generalized Hodge conjecture, in section 2 of this chapter, we
show several equivalences between the classical case and the L-version (involving Licht-
enbaum cohomology and integral Hodge structures) in different weights and levels using
characterizations through the Hodge conjecture (étale and classical setting) and the ef-
fectiveness of étale Chow motives, the category that we introduced in chapter 2. In the
last subsection, we consider the equivalence between the classical and étale version of the

generalized Hodge conjecture in Bardelli’s example in [Bar91].

3.1 Hodge conjecture

Hodge conjecture and Lichtenbaum cohomology

Fix an integer k& € Z. An integral pure Hodge structure H of weight k is a finitely
generated Z-module such that H ® C = @pﬂ:k
space with H%? = HP4. For m € Z we denote by Z(m) the Tate Hodge structure of

weight —2m whose Hodge decomposition is concentrated in bi-degree (—m,—m). For

HPY where HPY, is a complex vector

a pure Hodge structure H of weight k its Tate twist H(m) is defined to be the tensor
product H ®z Z(m) which is a Hodge structure of weight k — 2m and its decomposition

18

H(m) @z C = @ H(m)P4 = @ FP—maa—m

p+q=k—2m p+q=k—2m

If X is a complex smooth projective variety of dimension d, we denote by Hdg?" (X, Z)
the Hodge classes of X of weight 2n, defined as

Hdg?"(X,Z) = {a e HY(X,Z(n)) ‘ pla) € FT"H> (X, @)}

where p : Hy'(X,Z) — H*(X,C) and FPH*"(X,C) = @,>, H"***(X). Notice that
by definition HZ(X,Z)tors C Hdg?"(X,Z). The image of the cycle class map to Betti
cohomology ¢" : CH"(X) — H%'(X,Z(n)) is contained in Hdg®"(X,Z). We denote as
HC™(X) the following statement:

Conjecture 3.1.1 (Hodge conjecture with integral coefficients). For a smooth complex
projective variety X and n € N, the image of the cycle class map ¢* : CH'(X) —
HZ\(X,Z(n)) is Hig" (X, 7).

Under the above hypothesis for X, by trivial arguments we have that HCO(X ) and
HC?(X) holds. The validity of HC!(X) is a consequence of the Lefschetz (1,1) theorem.
For n ¢ {0,1,d} it is known that the Hodge conjecture (with integral coefficients) does
not hold, even if we work with torsion free classes. We define the obstruction to the
integral Hodge conjecture as Z%(X) := Hdg*(X,Z(i))/im(c!). In [AH62] it is proved
that for every prime number p, there exists a smooth variety X such that Z*(X)[p] # 0.
If we replace in the conjecture Z by Q coefficients, we will denote this new statement as
HC"(X)q the following statement:
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Conjecture 3.1.2 (Hodge conjecture with rational coefficients). For a smooth complex
projective variety X and n € N, the image of the cycle class map cfy : CH"(X)g —
H%Y(X,Q(n)) is isomorphic to Hdg*™ (X, Q).

Thanks to the Hard Lefschetz theorem, the statement HC?1(X)q is true, but oly if
we work with rational coefficients. More generally, if HC" (X )g holds for some n < d/2,
then HCY™"(X)g holds. Of course HC™(X)q is still an open problem; there is no known
counter-example for the Hodge conjecture with rational coefficients up to this day.

The Hodge conjecture can be stated in terms of motives as well. By using the Hodge

realization, we can characterize the validity of the conjecture for the category SmProj¢:

Proposition 3.1.3. Consider k = C and let pg the Hodge realization for Chow(C) (with
rational coefficients), then HC(X)qg holds for all X € SmProj(C) if and only if py is a
full functor.

Proof. Suppose that the Hodge conjecture holds. Then the Hodge classes of X are
algebraic. By the Kiinneth formula and Poincaré duality, the Hodge classes in H]23k (X x
Y,Q) are in bijection with @?ﬁo Hompsg(HXx~%+(X, Q), H(Y,Q)). Therefore we

have the following diagram

HomChow((C) (h(X)a h(Y)) o HomHSQ(Hp(Xv Q)a Hp(Y; Q))

CHY (X x V)g —2— (H*x"7(X,Q) @ HY(Y,Q)) N H*x(X x X)

| [

CH™ (X x Y)g » Hdg?™* (X x Y, Q)

which implies that pg is full.
On the other hand, suppose that the Hodge realization is full, so in particular for all

smooth projective variety X and n € N the following map

Homcpow(c) (1(—n), (X, Ax)) 2 Hompusg(Q(—n), H*"(X,Q))

CH"(X)q » Hdg™(X,Q)

is surjective, which is the exact statement of the Hodge conjecture. O

Before going into the proof of the equivalences of the weaker version of the equivalence
between the Hodge conjecture with rational coefficients and the Lichtenbaum Hodge
conjecture let us recall the definitions of Deligne cohomology and intermediate Jacobians.
Fixing an integer & > 0 one defines the k—th intermediate Jacobian J*(X) as the complex

torus

JE(X) .= H*Y(X,C)/(FFH*1(X,C) @ H* (X, 7).
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Consider the Deligne complex Z(p)p of a complex manifold X defined as
0= Z(p) = O0x = Q% —» ... 0% = 0.

We then define the Deligne cohomology groups as the hypercohomology groups of

the Deligne complex i.e.
HJ (X, Z(p)) := Hy, (X, Z(p) D).
We have an exact sequence relating Hodge classes and intermediate Jacobians
0— JNX) = H¥(X,Z(k)) — Hdg?*(X,Z) — 0.

Remark 3.1.4. The definition of intermediate Jacobians can be extended to pure Hodge
structures of odd weight. Assume that H is a Hodge structure of weight 2k — 1 then we
define the complex torus J¥(H) := Hc/(FF¥H @ H). This construction is functorial with
respect to morphisms of Hodge structures. For more details about these facts see [Voi02),
Remarque 12.3] and [PS08, Section 3.5].

There exist maps c§, : CHY(X) — HH¥(X,Z(k)) and ®% : CH*(X)pom — J*(X)
called the Deligne cycle class and the Abel-Jacobi map respectively. There is a
useful relation between the Deligne cycle class map, the Abel-Jacobi map and the cycle

class map given by the following commutative diagram with exact rows:

0 —— CH*(X)pom —— CHF(X) — < [F(X) —— 0
l J,CkD linto
0 — J¥NX) —— H¥(X,Z(k)) — Hdg*(X,Z) —— 0.

For Lichtenbaum cohomology groups we have analogous maps, c’i D CH’E(X ) —
H¥(X,Z(k)) and <I>’§(7L : CHY (X)pom — J*(X) (the construction of the first one is done
in [RS16, Theorem 4.4]) which fit in a similar commutative diagram as the one given

before.

Remark 3.1.5. Let £ be a prime number and r € N. Notice that the exact triangle 0 —
Q=r=1-1] - Zp(n) — Z(n) — 0 induces maps CS:Z : HY(X,Z(n)) — HE(X,Z(n))

which fit in the following commutative diagram

0 —— Hpy Y (X, Z(n)) @ Z/0" —— HY (X, Z/0"(n)) _Pp HP(X, Z(n))[l"] —

l -

0 —— HEF Y X,Z(n) @ Z/1" —— HE X, Z/0"(n)) AN HY (X, Z(n))[l"] ——

C ,n
D,B

%

where [p is the morphism induced by the exact triangle 0 — Zp(n) iR Zp(n) —
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(Z/f")p(n) — 0. Also we obtain another commutative diagram:

0 —— HP" YX,Z(n) @ Z/0" ——— HZ N (X, u3") ——— HPMX,Z(n))[l'] —— 0

m,n
l l: DL

0 —— HPYX,Z(n) ® Z/IT —— HZNX,Z/0 (n)) 22 HP (X, Z(n))["] —— 0

0 —— Hy YX,Z(n) @ Z/0" —— HE Y (X,Z/0"(n)) —— HF(X,Z(n))["] — 0.

By the snake lemma the arrows
HP N X, Z(n) /0" — HY N (X, Z(n)) /0" and Hpy (X, Z(n)) /0" — HY (X, Z(n)) /0"
are injective while the arrows
Hp (X, Z(n)[0'] = Hp (X, Z(n))["] and HEy (X, Z(n))[¢"] = HE'(X, Z(n))[(']
are surjective. Also the image of the composite of the right vertical arrows is equal to

the image of ¢]"" restricted to £"-torsion elements.

The following results are immediate corollaries obtained after [RS16, Prop 5.1 (b)
and Theo. 1.1]:

Corollary 3.1.6. Let X be a smooth projective variety over C, and fiz an integer k such
that 1 < k < dimc(X). Then the restriction of the Abel-Jacobi map to torsion groups

@g(‘t(m : (CH’E(X)hom) — J¥(X)tors is an isomorphism.

tors

Proof. Consider the following commutative diagram with exact rows

Ck
0 —— CHY (X)pom —— CHY(X) —~2— I¥(X) ——— 0

lckD,L [hom lckD,L linto

0 — J¥X) ——— H¥(X,Z(k)) — Hdg?*(X,Z) —— 0
Since CHE (X)pom ® Q/Z = 0 by [RS16, Proposition 5.1 (b)] and J*(X) ® Q/Z = 0
because J*(X) is divisible, we have then a commutative diagram

0 —— (CH’E(X)hom>tors e CHIZ(X)torS _ If(X)tors — 0

k .
k
lCD’Llhom chvL llnto

0 ——— J¥(X)iors —— HF (X, Z(k))tors — HAg® (X, Z)1ors — 0
(3.1)
Since CHY (X)iors ~ HH(X,Z(k))tors by [RS16, Proposition 5.1 (a)] and the map
CH" (X)tors — H?*(X, Z)tors is surjective (see [RS16, Remark 3.2]), the middle arrow is

an isomorphism as well as the right one. Therefore the left arrow is an isomorphism. [

Remark 3.1.7. Notice that if we set k = dim(X), by Proposition [2.2.11] Chow groups and

Lichntebaum cohomology coincide. Then we recover the classical Roitman theorem

CH(}Jlom(X)tors ~ Albx (C)tors-
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3. HODGE AND GENERALIZED HODGE CONJECTURE

We say that W C HZ(X,Z(k)) is a sub-Hodge structure if W is s sub-lattice of
H% (X, Z(k)) such that it has an induced Hodge decomposition W¢ = D, +g—or WP with
WP4 = WenHPY. Let W C H2F(X, Z(k)) be a sub-Hodge structure, we define the partial
Hodge conjecture with rational coefficients related to W as the following statement: for
every element o« € W there exists NV € N and an algebraic cycle a € CHk(X ) such that
¢(@) = Na. Tt is clear that for W = Hdg?*(X, Z) we recover the usual Hodge conjecture.
For a fixed W we denote the previous statement by HC*(X, W)q.

Similarly we denote by HC’Z(X , W)z the statement that for every element of o € W
there exists a Lichtenbaum cycle @ € CH¥ (X) such that ¢z (@) = a. Then, inspired by
the proof of [RS16, Theorem 1.1}, we obtain the following result:

Corollary 3.1.8. Let X be a complex smooth projective variety and let W C H%k (X, Z(k))
be a sub-Hodge structure. Then HCY (X, W)z holds if and only if HC*(X,W)q holds.

Proof. Let W C H%(X,Z(k)) be a sub-Hodge structure and let & : CH}(X) —
H2¥ (X, Z(k)) be the Lichtenbaum cycle class map constructed in [RS16| (similarly we can
consider the classical cycle class map ¢* : CH¥(X) — H¥(X,Z)). Define CH{‘;‘V’ (X)) =
()~ (W) as the preimage of W in CHE(X). Tt is easy to see that CHY(X)nom <
CH%L(X). Following with this notation, we will denote I{fV’L(X) ;= im(ck) N W, there-
fore W is Lichtenbaum algebraic if and only if Z"§V7L(X) = W/I{}/’L(X) = 0. In the
classical case, this is equivalent to say that Wy is algebraic if and only if Z{fV(X ) is a
finite group. Since IX,(X) C I{},} 1 (X) we have an exact sequence

0 — Iy £(X) /T (X) = Z(X) = Ziy,.(X) >0

Denote 7 : H# (X, Z(k)) — Hdg?* (X, Z) the surjective map coming from the short ex-
act sequence of Deligne-Beilinson cohomology, intermediate Jacobian and Hodge classes
and denote H%D(X,Z(k)) := 7 }(W). Then we have the following commutative dia-

gram:

k
0 —— CH}(X)hom —— CHyp(X) — 2 I}, (X) —— 0

k k
JCD,L Ihom lCDﬁLle_l Jinto

0 —— J"X) ——— Hif p(X, Z(k)) 114 s 0

Since CHY (X)pom ® Q/Z = 0 by [RS16, Proposition 5.1 (b)] and J*(X) is divisible,

we obtain the commutative diagram but with the torsion part of each group

0 (CHE(Xon) s (OHL()) T H (X —— 0

k k :
\LCD’L [nom J/CD,L |WE 1 llnto

0 ———— J*(X)tors —— Hipi p(X, Z(k))tors > Wiors > 0.

Due to the surjectivity of CHIE(X Vtors = H?*(X,Z)tors, the right vertical arrow is an

isomorphism. If we can prove that the arrow in the middle is surjective, then we
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3.1. Hodge conjecture

can conclude with similar arguments as in [RS16|, but this comes from the fact that

(CH’Z (X )hom) ~ J¥(X)tors by Corollary and therefore c’fx 7 |hom induces an iso-

morphism in the torsion part.

tors

Since we have an isomorphism (CH’;V (X)), o~ H%ﬂ“ p(X,Z)tors, we obtain a com-

tors
mutative diagram

0 — Atps —— A —— ARQ —— A®Q/Z —— 0

B }’B,L\A | [ino (3.2)

0 —— Bio;s —— B——B®Q — B®Q/Z —— 0

where A = CH{?V’L(X) and B = H%’,“’D(X,Z(k‘)) and A®Q/Z — B®Q/Z is an injection,
this can be seen in the computations done in Corollary We can split diagram ([3.2))

into two diagrams with short exact sequences as rows:

0 —— Aiors ——> A —— Apee —— 0

Eoobe b

0 —— Biors —— B —— Bpee —— 0

and
0 — Afpee — ARQ —— A®Q/Z —— 0

|# X [imto (3.3)

0 —— Bfgee —> B®Q —— BRQ/Z —— 0

The cokernel from the induced map A ® Q — B ® Q is torsion free as a quotient
of Q-vector spaces. Thus from diagram (3.3), we obtain that coker(f) is torsion free
because it injects into a torsion free group, which, implies that Coker(cg 1]a) is torsion
free and, along with the divisibility of J*(X), so Z{fV’ 1 (X) as well.

The remaining part of the proof consists in proving that I{fy} . (X)/If,(X) is a torsion
group, but this comes from the fact that I{fu 7 (X) and IE,(X) have the same Z—rank and

therefore the quotient should be a finite group, so

Zy(X)®@Q=0 < Z; (X)®Q=0 < Zj;(X)=0.

Kiinneth conjecture

Let us remark a consequence of Corollary Fixing k£ = C, it is possible to find an
equivalence between the Kiinneth conjecture in the classical and Lichtenbaum setting,
but before state this equivalence we need to define the Kiinneth conjecture in the general
setting.

Let X be a smooth projective variety over a field k of dimension d and consider
Ay € CHY(X x X )o the diagonal. Fix a Weil cohomology theory H*, thanks to the
Kiinneth decomposition of H* we have

2d
cl(Ax) € H*(X x X) ~ P H* (X)) ® H'(X).
=0
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3. HODGE AND GENERALIZED HODGE CONJECTURE

We write AZOpO € H*~(X)® H(X) for the i-th Kiinneth component.

Conjecture 3.1.9 (Kiinneth conjecture). Fizing a Weil cohomology theory H*, then
the Kinneth components AEOPO are algebraic, i.e. there are algebraic cycle classes A; €

CHY(X x X)q such that ¢}(A;) = ALP°.

Now, consider the Betti realization for the étale setting, this is well-defined with
integral coefficients due to the existence of a Lichtenbaum cycle class map, but, in general
is not a ®—functor, because the Kiinneth decomposition would carry torsion elements,
it becomes a ®—functor after modding out the torsion of the cohomology groups. With
integral coefficients, or in a more general setting with coefficients in a principal ideal

domain R, the Kiinneth formula is given by the following short exact sequence

0— P HL(X,R)® Hy(Y,R) —» HR(X xY,R) » @ Torf(H4(X,R), H,(Y,R)) =0
pt+q=n p+g=n+1

which is natural on X and Y, and also splits, but not canonically (see |[Hat02, Theorem

3B.6]). Notice that if R is a field, then the Torf’ functor vanishes and we obtain the

classical Kiinneth formula. The same happens if one of the cohomology groups of X or

Y is torsion free. The case in which we are interested is when R = Z.

Remark 3.1.10. For f—adic cohomology there exists a similar Kiinneth formula, see
[Mil80, Theorem 8.21]. Let X, Y two varieties over a field k and let ¢ # char(k) then

there exists a short exact sequence

0— P HL(X,Ze) ® HE(Y, Ze) — HE(X x Y, Zg) — @D Tor* (HE, (X, Zy), HE (Y, Zg)) — 0
pt+qg=n n+1

which also holds for cohomology with compact support.

For the case when k& = C, the restriction to torsion subgroups ¢} : CH} (X )tors —
H]%”(X , L)tors 1s surjective, therefore it is possible (for this case) to work with a version

of the Kiinneth conjecture modulo torsion.

Conjecture 3.1.11 (Lichtenbaum-Kiinneth conjecture). Let X be a smooth projective
coplez variety. Then the integral Kinneth components AEOPO € 1‘¢71235l_"(X7 Z)® H5(X,7)
are étale algebraic, i.e. there exists a Lichtenbaum cycle N; € CHY(X x X) such that
d (A ) Atopo

Cet

Proposition 3.1.12. Qver the complex field, the Kinneth conjecture holds if and only

if the Lichtenbaum version of the Kiinneth conjecture holds.

Proof. Consider X € SmProj¢ of dimension d and let us consider H%!(X x X, Z) modulo
torsion. As we consider it modulo torsion, we apply the Kiinneth decomposition H %d(X X
X,Z) ~ @HY(X,Z2) @ Hy(X,Z) and let A; € HE (X, Z) @ Hy(X,Z) be the i-
th component of the diagonal. Let W; be the sub-Hodge structure generated by A;.
By Corollary W; is L-algebraic if and only if W; ® Q is algebraic, therefore the
rational Kiinneth conjecture for X holds if and only if the Kiinneth components are
L-algebraic. O
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3.1. Hodge conjecture

Sign conjecture

This is a weaker version of Kiinneth conjecture, for more details we refer to [And04),
Chapitre 5]. We set A = Z?:o A;‘;po called the even Kiinneth projector and its odd
counterpart A_ = A — Ay. For the following, we fix the base field to & = C, but the

following conjecture can be defined for any field and a Weil cohomology theory.

Conjecture 3.1.13. The even Kiinneth projector AL is algebraic, i.e. exists an algebraic
cycle Y € CHY(X x X)q such that <H(Y) = AL.

As in Kiinneth conjecture, in the complex case the sign conjecture has a Lichtenbaum

equivalent:

Conjecture 3.1.14. The even Kiinneth projector Ay is Lichtenbaum algebraic, i.e. ex-
ists an algebraic cycle Y € CH}(X x X) such that ¢} (V) = A.

The previous conjecture gives the next proposition making the link between both

version of the conjecture of signs:

Proposition 3.1.15. Over the complex field, the sign conjecture holds if and only if the

Lichtenbaum version of the conjectur of sings holds.

Proof. The proof goes in the same way as in the Kiinneth conjecture using Corollary

B.18 O

Standard conjectures of Lefschetz type

Consider a smooth projective variety X over C and let Y be a smooth hyperplane section.
Consider the cohomology class ¢'(Y) € H3(X,Q) and the Lefschetz operator

L: Hy(X,Q) — Hy*(X,Q)
aaUcd(Y).

The iteration of the operation if denoted by L". By the hard Lefschetz theorem
L HE(X,Q) & HEY(X,Q)

with 0 < j < d. The hard Lefschetz property defines an unique linear map A :
HL(X,Q) — H};%X7 Q), where 2 < i < 2d, in cohomology which makes the follow-

ing diagram commutes. For ¢ =d — j and 0 < j < d — 2 we have

HE(X,Q) —£— HE(X,0Q)

~

A s

HEI72(X,Q) 25 B (X, Q).
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3. HODGE AND GENERALIZED HODGE CONJECTURE

i=d+jand 2 <j <d:

HET(x, Q) L5 HiH-2(X, Q)

™
LT A
I

HYI(X,Q) —£— HI(X,Q).

Conjecture 3.1.16. The linear map A : H5(X,Q) — Hg2(X, Q) is induced by an
algebraic cycle i.e. there exists some Z € CHY (X x X)g such that A = ¢~Y(Z) €
HE2(X x X,Q).

Due to the equivalence given in Corollary we have the following consequence:

Proposition 3.1.17. There exists an algebraic cycle Z € CHY(X x X)q such that
A = c=Y(Z) if and only exists Z' € CHY (X x X) with A = ¢t (Z').

Examples

We study two counterexamples of the Hodge conjecture with integral coefficients: the
ones presented in [AH62] and [BO20|. Both cases deal with torsion Hodge classes that do
not come from algebraic cycles, but the constructions of are different: the first example

uses arguments of K-theory, the second one is based on a degeneration argument.

Atiyah-Hirzebruch’s countexample

Let us start by giving a quick overview of the construction of Atiyah-Hirzebruch’s coun-
terexample presented in [AH62|. They consider a smooth projective quotient vari-
ety with a non-algebraic torsion class, that is constructed using the Steenrod alge-
bra and classifying spaces. By [AH62, Theorem 6.1], if a class a € Hép (X,Z) is al-
gebraic then S¢'(@) = 0 for all i odd prime, where & is the reduction mod 2 and
Sq': HY(X,Z/2) — HP " (X,Z/2) is the i-th the Steenrod operation. Also considering
[AH62|, Proposition 6.6], for every finite group G and r € N>; there exists a complete
intersection variety Y with dimc(Y) = r and G acting freely on Y, such that for the
Godeaux-Serre type variety X = Y/G, the group cohomology H*(G,Z) is a direct factor
of H5(X,Z) for all i <r.

As a particular case, consider G = Z/2 x Z/2 x Z/2 and r = 7, thus there ex-
ists X € SmProj¢ such that H(G,Z) — H%(X,Z) as a direct factor for i < 7. As
H*(Z/2,7./2) ~ 7Z/2[u] with deg(u) = 1, the Kiinneth formula shows that H*(G,Z/2) ~
Z/2[u1,ug,uz). Consider the element ujusus € H3(G,Z/2) and B(ujuguz) =: a €
H*(G,Z) < H%(X,Z), where 3 is the Bockstein’s morphism 3 : H3(G,Z/2) — H*(G,Z),

and the following commutative diagram
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3.1. Hodge conjecture

H3(G,2/2) 2 HMG,Z) — HY(X,Z(2))

lSql iredg

HY(G,Z/2) Hp(X,Z/2(2))
J/Sq3 \LSq?’
H'(G,Z/2) sy HS(X,Z,/2(4)).

A direct computation gives that Sq3(Sq*(uiugus)) = S¢3(a) # 0 € H5(X,Z/2(4)), and
consequently « is a 2-torsion class which is not algebraic. However, we have a short exact

sequence
0— J2(X) = Hb(X,Z(2)) & HdgY(X,Z) = 0

which after tensoring by Z/2, and considering that J2(X) is divisible, induces a short

exact sequence or torsion groups
0 — JAHX)[2] = Hp(X,Z(2))[2] & Hdg*(X,7Z)[2] — 0

and therefore the composite map CH? (X)[2] — H}(X,Z(2))[2] — Hdg*(X,Z)[2] is sur-
jective. Specifically, we have the following result, which gives an explicit representative

of the Lichtenbaum class that maps to a.

Claim 3.1.18. Let X be a Godeaux-Serre variety as the one described previously. Then
there exists a class * € CH3 (X)[2] such that ¢ (x) = a and

redy(z) = & € ker { HA(X, u5?) — H} (X, Z(2))} -

Also there exists x € CH2(X) which maps to «; it is the image of uyuguz € H3(G,Z/2)
in CH2 (X).

Proof. Let X be a smooth projective quotient variety coming from the action of G =
(Z/2)3 over Y, with Y satisfying the above hypothesis (a complete intersection variety
of dimension 7). We consider the fibration Y — X — BG with its associated the Serre
spectral sequence EY'? = HP(BG, H1(Y,Z/2)) = HP'9(X,Z/2), where the differentials

are graded derivations. Since Y is a smooth complete intersection variety

Z/2, ifqevenand q#7

H(Y,7/2) ~ '
0, if g odd and g # 7,

therefore if ¢ # 7, the terms of the Serre spectral sequence are either HP(BG,Z/2) =
HP(G,7Z/2) or 0. Notice that due to the structure of the E5?-terms we have isomorphisms
EP9 ~ EP? for ¢ < 7. Since d3 is a graded derivation, then d3 : Eg’Q ~ 7/2 — Eg”o
is the trivial map, so Fa. ~ E??’O and therefore 0 — Eg’o — H3(X,Z/2), which gives
us the existence of an injection H*(G,Z/2) — H}(X,Z/2(2)) ~ H} (X,Z/2). Consider
ujugug € H3(X,7/2(2)) and the short exact sequence

0— JXX) = Hh(X,Z(2)) & Hdg* (X, Z) — 0.
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Let B(wiugus) = o € Hg(X,Z(2))[2] be the non-algebraic torsion class. It can be lifted
to an element ap € g7 (o) C HH(X,7Z(2))[2] because J?(X) is divisible. It follows from
[RS16, Proposition 5.1 (a)] that it has a unique preimage & € CH2(X)[2]. Consider the
exact triangle Zx (2)gt 2 Zx(2)er — (Z/2)x(2)et L and the resulting commutative
diagram with exact rows

reds

. CH}(X) HA(X, 15%) —— HY(X.Z(2) — ...

| S |

. —— HH(X,Z(2)) —— HE(X,Z/2(2)) —— HH(X,Z(2) — ...

It shows that reds(CH7 (X)) = ker { HY (X, u$?) — Hp (X, 7(2))} and redy(Z) = a. Take
again the element wjugus € Hp(X,Z/2(2)) and consider its image in CH? (X) via the
map p : H3(X,Z/2(2)) = H (X, u$?) — CH%(X) (map which is surjective over the
2-torsion of CHZ (X)), denoted by = = p(ujugus) € CH2 (X)[2]. The last assertion to be
proved is that ¢2 (z) = o and ci p(z) € g7 (). For this, considering the morphisms and
commutative diagrams of remark we get the following commutative diagram:

0 —— CH}(X,1)®2Z/2 —— H3 (X, uy?) ——— CHE(X)[2] ——— 0

| ¥ Jo-

0 —— H3(X,Z(2) @ Z)2 —— H3(X,2/2(2)) 22 HL(X,7(2))[2] —— 0

- 2
lﬁ JVCD B

H3.(X,2/2(2)) —— HY(X,Z(2))[2] —— 0.

Notice that the image of the map 02D p restricted to 2-torsion classes is isomorphic to the

image of g restricted to such classes. Hence ¢ (z) = B(ujugus) = o O

Remark 3.1.19. 1. In [Tot97] Totaro revisited Atiyah-Hirzebruch’s example and gave
an explanation in terms of complex cobordism: the cycle class map CHY(X) —
H%(X,7) admits a factorization CH'(X) — MU%(X) ®y;y2: Z — HZ(X,Z) where
MU?%(X) is the cobordism group of X. Therefore, if a torsion class is not in the
image of the map MU (X) ® 2 Z — H#(X,Z) cannot be algebraic. Notice that
through cobordism, one can only explain the obstruction to the integral Hodge
conjecture when it comes from torsion classes, since in the torsion free part of the

cobordism group is isomorphic to the free part of the cohomology group.

2. Totaro used Godeaux-Serre type varieties as an example of a smooth projective
variety of dimension 7 such that CH?*(X)/2 — H}(X,7Z/2) is not injective and a
variety dimension of dimension 15 such that there exists an element o € CH?(X) of
order 2 that is mapped to 0 in H%(X,Z) and J3(X). Here we can find differences

with Lichtenbaum cohomology groups.

a) In Totaro’s example CH?*(X)/2 — H*(X,Z/2) is not injective, while in the

Lichtenbaum case, and for all X € SmProjc, the sequence

0 — CH?(X)/2 — H} (X, u5?) — HY(X,Z(2))[2] = 0
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is exact and also H} (X, 7Z/2(2)) ~ Hi (X, u5?) ~ HE(X,Z/2(2)) by the com-
parison theorem, therefore CH? (X)/2 — H%(X,7Z/2(2)) is always injective.

b) In the second of Totaro’s examples the condition can’t hold for a Lichtenbaum
cycle because if o € CH3 (X)[2] and o € CH? (X )pom then by Corollary [3.1.6
its image in J3(X )tors 1S not zero unless the intermediate Jacobian is zero
itself.

Benoist-Ottem counterexample

Let us recall [BO20, Theorem 0.1]. Let S be an arbitrary but fixed complex Enriques
surface and let ¢ > 1 be an integer. Then if B is a very general smooth projective
complex curve of genus g, the integral Hodge conjecture for codimension 2 cycles does
not hold on the product B x S, and the non-algebraic class is a 2-torsion class. Since the
non-algebraic cycle is torsion, it comes from a Lichtenbaum class. In the sequel we give
an explicit construction of such a Lichtenbaum cycle.

Let C € SmProjc be a connected curve of genus g > 1 and S be the previous Enriques
surface, we have then a cycle class map ¢2 : CH? (C' x S) — HA(C x S,7Z(2)). As is
mentioned in [BO20, Proposition 1.1}, H*%(C x S) = 0 because H'%(S) = H*°(S) = 0,
thus the validity of the L-Hodge conjecture for C' x S relies on the surjectivity of the
map c2 : CH*(C x S) — HE(C x S,7(2)). Since Hj(C,Z) is torsion free, we have the

following isomorphism obtained from the Kiinneth formula:
HE(C x S,Z(2)) ~ H(C,Z) @ H*(S,Z) ® H'(C,Z) ® H*(S,Z) ® H*(C,Z) @ H*(S,Z),

where H(C,Z) @ H*(S,Z) is algebraic and by the Lefschetz (1,1) theorem H?(C,Z) ®
H?(S,7) is algebraic as well, so L-algebraic. In particular if there exists a non-algebraic
class, it should come from H'(C,Z) ® H3(S,7Z).

Consider the exact sequence of abelian groups
0—Z(1) > Z(1) = Z/2(1) = 0
which induces a short exact sequence
0— Hp(C,Z(1)) ® Z/2 — Hp(C,Z/2(1)) — HE(C,Z(1))[2] — 0.
In the case of Lichtenbaum cohomology the sequence of complexes of étale sheaves
0= Ze(Da = Ze(er = (2/2)c(L)er =0
induces a short exact sequence
0— H}(C,Z(1))®Z/2 — Hi(C,Z/2(1)) — CHL(C)[2] — 0.

Moreover H} (C,Z(1))®Z/2 = 0 because H} (C,Z(1)) ~ C* is divisible, and H} (C, Z/2(1)) ~
H}(C,us) ~ HE(C,Z/2) because of the comparison theorem of cohomologies of com-

plex varieties, and because the cohomology groups of a smooth and projective curve are
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torsion free H2(C,Z(1))[2] = 0, therefore CH} (C)[2] ~ H5(C,Z(1)) ® Z/2. For the

Enriques surface S consider the short exact sequence
0— HE(S,Z(1)) ® Z)2 — HE(S,Z/2(1)) — H}(S,Z(1))[2] —» 0

where H3 (S, 7Z(1))[2] = Br(S)[2] ~ Br(S) =~ Z/2 (see [Bea09} p. 2]) and H?(S,Z/2(1)) ~
Hézt(S, t2). We have a composite map

P Hg(Cop) @ HE(S, p2) — Hg (C xS, uy®) = HE(C x S,Z(2))[2]

where the first inclusion is the one given by the Kiinneth formula with finite coefficients

and the second map is obtained from the short exact sequence
0 — CH*(C x S,1) ® Z/2 — H3.(C x S,u$?) — HE(C x S,Z(2))[2] — 0 (3.4)

induced by the exact triangle Zexs(2)st 2, Zeoxs(2)et = (Z)2)cxs(2)e X,

Finally, we need to find an element which is not contained in the image of the induced
injection H3(C x S,Z(2)) @ Z/2 < H3(C x S, u$*). So we can take ¢ € H} (C, u2) and
denote by bg € Br(S) the non-zero element of the Brauer group of S. We then fix an
element s € HZ(S, us) such that s maps to bg through the map HZ (S, u2) — Br(9)
and define 7, := p(c ® s) € CH2(C x S)[2]. In the following result we give an explicit
description of the Lichtenbaum classes that maps to a given element of Hy(C,Z) ®
H%(S,7Z) in terms of 7.

Claim 3.1.20. Let S be an Enriques surface and C be a smooth projective and connected
curve curve of genus g > 1, let C®bg € HY(C,7Z) ® H3(S,7Z) be an arbitrary class and
let c € H5(C,Z/2) be the reduction mod 2 of ¢. Then c2(y.) =¢® bs.

Proof. Let pr; : C' x S — C and pry : C x S — S be the canonical projections and con-
sider the induced pull-backs and Bockstein homomorphisms, then we have the following

commutative squares

Hy(C,2/2) —— HY(C,2) H(S,2/2) —— HL(5,2)
lpri lpr’f ipré ipré
Hiy(C x 8,Z/2) —2 HI(C x 8,7) Hi(C x 8,2/2) —2 HEY(C x S, 7).

From now on fix i = 1, j = 2 together with a = prj(c) and b = prj(s) in order to have
aUb=c®s. Since Bockstein homomorphisms satisfy derivation properties (see [Hat02,
Section 3.E]), it follows that

Blaub) = Bla) Ub— (~1)**Wa U 5(b)
= B(pri(e)) Ub — (=1)*#@a U B(pr3(s))
= pri(B(c)) Ub — (=1)*#@a U pr3(5(s))

- (c x [S]U[C] x bs) — cobg € HS(C,7) ® HY(S,Z) c HL(C x S,7)[2].

deg

)
)
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Asc®s ¢ im{H}(C x S,Z)®7Z/2 — HL(C x S,Z/2)}, then neither can be lifted to
H3/(Cx S,7(2))®Z/2 nor Hy (CxS,7Z(2))®7Z/2 thus v, # 0 for all ¢ # 0 € HL(C,7Z/2).
Therefore from the commutative diagrams of Remark we obtain ¢? (7.) = B(c ® s)
giving the characterization of the preimages of the elements in H5(C,Z) ® H3,(S,Z). O

Remark 3.1.21. By the same kind of arguments as in [BO20, Proposition 1.1], mutatis
mutandis, we can obtain an equivalence between the action of Lichtenbaum correspon-
dences and the L-Hodge conjecture, i.e. the Lichtenbaum Hodge conjecture holds for
codimension 2-cycles in the product if and only if for every ¢ € H(C,Z/2) there exists a
correspondence Z € CH? (C' x S) such that Z*a = ¢, where a € H5(S,7/2) is the class
corresponding to the degree 2 étale cover of S by a K3-surface. Since C%(%) =c ®Zg we
have that

Ve = pri, (i (7e) Upri(a))

= pri.(pri(c) Uprs(bs) Uprs(a))
= pry. (pri(e) Upri(bs U ).

By Poincaré duality we have that bs U a is a non-zero element in H 4(8,7,/2), then

Vi = c.

Kollar’s counterexample

As we have said, the situation with the Hodge conjecture does not improve if we consider
just the free part of the cohomology, due to Kollar’s example [BCC92]. We will start by
giving some general facts about smooth hypersurfaces. Consider a smooth hypersurface
X C IP’EH of degree d. By the Lefschetz hyperplane theorem ([Voi02, Théoreme 13.23])

if £ < n then we have the isomorphism
HE(P™H,2) S HE(X,Z)

and if k& = n, the map i* is an injection. Here HZF(P"'!,Z) ~ ZH* with H =
c1(Opn+1(1)) and Hf—fH(IP’”“, Z) = 0. Since Betti cohomology groups of hypersurfaces
(with integral coefficients) are torsion free, by Poincaré duality we obtain the isomor-

phisms

HY (X, 2)" ~ H"M(X, 7).
In particular if 2k > n then H2(X,Z) ~ Za where (o, h"*) = 1 with (-,-) being the
intersection product and h = ¢1(Ox (1)) = H‘X.

Remark 3.1.22. By the Lefschetz hyperplane section in étale cohomology (see |[Mil80,
Chapter VI, §7]) the map H(X, u%k) L HHQ(IP’%H, u%kJrl) is an isomorphism if i > n
and a surjection if ¢ = n.

In the following proposition, we give characterizations for some of the Lichtenbaum
cohomology groups of a smooth hypersurfaces X in IP’%+1 and study the close relation

with étale cohomology groups with finite coefficients.
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Proposition 3.1.23. Leti: X — P@Jrl be a smooth and projective hypersurface of degree
d and let j: (U := IP’%'H\X) — ]P’g'*'1 be the open complement. Let k be an integer with
0 <k <n such that 2k ¢ {n — 1,n}, then:

1. The higher Brauer group Br*(X) := H2*™ (X, Z(k)) and the group Hay ™ (X, Z(k)) tors

are trivial.

2. If 2k > n then CH**Y(U) ~ Z%*(X) and CHY ' (U) ~ Z2*(X) and in particular
the group CHEYY(U) is trivial.

Proof. Let us start with the first statement. Since our base field is of characteristic zero,
fix an arbitrary prime number ¢ and an (also arbitrary) natural number r. As in [RS16,

Proposition 3.1] consider the long exact sequence
... — CHE(X) -5 CHE,(X) — HZ(X, u2¥) — Brf(X) -5 Bk (X) — HZMU(X, u8h) — ..
By assumption 2k + 1 # n, hence HéztkH(X, ,u%?k) = 0. Therefore the map Br*(X) N
Br*(X) is surjective for every prime number ¢ and for all r, thus Br*(X) is divisible and

a torsion group. For the remaining part, we consider the commutative diagram given in
Remark and the short exact sequence

0— J¥X) - H¥(X,Z(k)) — Hdg?*(X,Z) — 0.

Since J*(X) is divisible, then HZ(X,Z(k))/¢" ~ Hdg®*(X,Z)/¢". Under the conditions
for k we have the isomorphisms H# (X, Z(k)) ~ Hdg* (X, Z(k)) and since H5 (X, Z) =
0 then by the diagram of Remark we conclude that Ha ™ (X, Z(k))[¢"] = 0.

The short exact sequence
0 — CHE (X) /0" — HE (X, uZF) — Br*(X)[¢"] — 0

gives a surjective map Z/¢" — Br¥(X)[¢"]. Taking the direct limit, we obtain a surjection
Q/Z — Br*(X). As Br*(X) ~ (Q/Z)" (for the structure of Lichtenbaum cohomology see
|Geil7, Theorem 1.1]) for some r € N we have that » = 0 or 1. Since I?*(X) # 0 we have
I?F(X) # 0 and hence there are isomorphisms CH} (X) ® Q/Z ~ I?*(X) ® Q/Z ~ Q/Z
so Br¥(X) = 0.

For part 2. consider the localization sequence for Chow groups and its étale analogue.
By functoriality of the comparison map with Gysin morphisms and pull-backs we have

the following commutative diagram:

CHML(U, 1) —2 CHF(X) — cHFT (PR —Ly CHFTY(U) —— 0

| | o

CHETY (U, 1) —% omh (x) — cHET (PRt L cHETY(U) —— 0.

Notice that the map CH’E“(IP%H) EAN CHY*L(U) is not surjective in general, but in this

case it is surjective as a consequence of part 1. By the functorial properties of the usual
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cycle class map we have the following commutative square

CH,,_(X) —%— CH,_,(P%)

lcn_,c E

H2(n7k) (Xv Z) — H2(nfk) (ng—’—l? Z)

where if 2(n — k) < n then the map iy : Ha,—p)(X,Z) = Hop gy (PEH!, Z) is an iso-
morphism. Therefore i, (CH’“(X )) =~ im(c"), hence using the previous commutative

diagrams, which relates localization exact sequences, it is easy to see that

CH*Y(U) ~ coker(i,)
~ Hyn 1) (X, Z)/im(cnt) = Z2(X).

For the étale case we proceed in the same way. The last part of the second statement
is due to the fact that i, (CH} (X)) ~ CHE‘H(IP’@H) ~ 7 therefore j* : CH’EH(IP’%H) —
CHYTY(U) has trivial image, thus we conclude that CH¥™ (U7) injects into Br¥(X), which
is trivial by the first point. O

Corollary 3.1.24. Let X C IP’%H be a smooth projective hypersurface of degree d and
let k be an integer such that 2k ¢ {n — 1,n}. Then we have the following

1. For all prime numbers ¢ and allr the cycle class map Clz,er : CHE (X)) — HZF(X, u$F)

18 surjective.
2. For all prime numbers €, all r and k such that 2k ¢ {n — 1,n,n + 1} the pairing
CHy™M(X)/0" @ CH{(X)/¢" — CH(X)/" ~Z/"
is non-degenerate. The result also holds for the particular case n =3 and k = 2.

3. If 2k > n there exists a class z € CHy(X) such that i,(z) = HF ! € C'HkH(]P’gH)
where H*+Y is the generator of CHFTY(PEMY). Furthermore cf,(2) and ck(z) are
the generators of the groups H2F(X, u%k) and H¥ (X, 7Z(k)) respectively.

Proof. This is a direct consequence of Proposition[3.1.23] Fix arbitrary prime and natural

numbers denoted ¢ and r respectively. For part 1. use the long exact sequence
.= CHY(X) -5 CHE(X) — HZF(X, 42F) — B (X) -5 B (X) — ...

and obtain the surjectivity since Br¥(X) = 0. The second part follows from the vanishing
of Brf(X). Hence we obtain an isomorphism CHY (X) ® Z/¢" = HZF(X, ,u?ik) and the
same for codimension n — k. Thus the non-degeneracy comes from Poincaré duality
in étale cohomology. For the case n = 3 and k = 2, use that CH} (X) ~ CH!(X) ~
Z-c1(Ox(1)), then CH} (X)®Z/¢" ~ H2 (X, juer). While CH? (X) @ Z/0" ~ HE (X, u3?)
by Corollary [3.1.2411. The last assertion follows from the localization sequence, the
vanishing of Br*(X) and the compatibility of the cycle class maps with push-forwards. [J
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Remark 3.1.25. 1. If n = 3 and k = 2 then Hdg*(X,Z) = Z while the image of
the cycle class map I*(X) = I C Z is determined by the degrees of the curves
C C X, ie I=ged({deg(C)|C C X})Z. The strategy for the counter-example
to the integral Hodge conjecture is as follows: consider a very general hypersurface
X of degree d = sp? with p a prime number > 5, Kollar proved that under these
assumptions for every curve C' C X its degree deg(C') is divisible by p and therefore
Z4(X) = Z/m # 0 with m divisible by p. Notice that if d > 6 the Griffiths-Harris
conjecture would imply that m = d. Here the class a is not algebraic, whereas
da = h2.

2. Motivic and Lichtenbaum cohomology behave differently when we work with fi-
nite coefficients. In general, for j € N, Hﬂ“(X,Z(j)) =0so CH(X)®Z/" =
H%(X, 70" (j)). By Bloch-Ogus we know that CH/(X) ® Z/¢" ~ AJ(X) @ Z/I,
where A7(X) is the group of codimension j cycles of X modulo algebraic equiva-
lence. Again consider X C IPE‘H and k as in part 2 of Corollary [3.1.24] We obtain

a commutative diagram

HE(X, 207 (k) @ HA" ™ (X, 2/ (n — k) —2 HZ(X, 2/ (n)) 2 7,/0"

i 5 |

HE (X, u@F) @ Hy" ™ (X, pgn =) ——%—— BE(X, pfm) —C 20

where the pairing in the lower row is non-degenerate because of Poincaré duality,
whereas the one in the upper row could be degenerate as Kéllar’s example shows or
as Griffiths-Harris’ conjecture states. By Proposition[3.1.23]there is an isomorphism
CHY(X)®Z/tm = Hgtk(X,ug?k), thus (if 2k > n) we always have an element of

degree 1 in the Lichtenbaum groups.

3.2 Generalized Hodge conjecture

Let H be a pure Hodge structure of weight n and let 0 # Hc = H @ C = @p+q:n apa,
We say that H is effective if and only if H?? = 0 for p < 0 or ¢ < 0. The level of [
of H is defined as | = max{|p — ¢| | HP? # 0}. Let X be a smooth projective complex
variety, we write GHC(n, ¢, X)q for the generalized Hodge conjecture in weight n and

level n — 2¢:

Conjecture 3.2.1 (|Gro69, Generalized Hodge conjecture|). For every Q—sub-Hodge
structure H C H"(X,Q) of level n — 2¢ there exists a subvariety Y C X of pure codi-

mension ¢ such that H is supported on Y, i.e. H is contained in the image of
H < im{H'(V,Q(-0) 25 H"(X,Q)}

where Y. = 1y 0 dy, 14 1S the Gysin map associated to the inclusion i : Y — X and

d:Y =Y is a resolution of singularities.
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There is an equivalent assertion of the generalized Hodge conjectures, in terms of

algebraic cycles; for a proof, we refer to [Sch89, Lemma 0.1].

Conjecture 3.2.2. If H C H"(X,Q) is a Q-sub-Hodge structure of level | = n—2c, then
GHC(n,c, X) holds for H if and only if there exist a smooth projective complex variety
Y and a correspondence z € Corr*(Y,X) such that H is contained in z,H (Y,Q).

Note that this conjecture, similarly to the Hodge conjecture, can be stated in terms

of classical motives over C:

Proposition 3.2.3. [Gro69, Page 301] The generalized Hodge conjecture for all X €
SmProjc is equivalent to the following statement: the Hodge conjecture holds and a ho-

mological motive is effective if and only if its Hodge realization is effective.

Proof. Suppose that the generalized Hodge conjecture holds, this implies immediately
the Hodge conjecture. Consider a pure motive M such that its realization H := pg (M)
is effective of weight k£ and coniveau c, or equivalently its level is [ = k — 2¢. Then there
exists a closed subvariety Y < X of codimension ¢ such that H is contained in the image

of the composition map
H im {H'(Y,Q(~¢) ™ B*(X,Q)},

where v, = iy 0 dy, 14 is the Gysin map associated to the inclusion 7 : ¥ — X and
d:Y — Y is a resolution of singularities. There exists an integer n such that M(n) is
effective. Hence we can recover M (n) as a sub-object of h(Y) which then implies that
M is effective because is a sub-object of h(X).

On the other hand, suppose that H C H"(X,Q) is a sub-Hodge structure of weight
n and level [ = n — 2¢, then H(c) is still an effective Hodge structure, by effectiveness
hypotheses there exists Y smooth and projective variety such that H(c) is a quotient
Hodge structure of H"~2¢(Y,Q). Since the category of Q-polarized Hodge structures is

semi-simple we obtain a decomposition
H"2¢(Y,Q) ~ H(c) ® R

which gives us a morphism of Hodge structures f : H"~2¢(Y, Q(—c)) — H"(X, Q) defined
by

id®Q(—c)
—

H"2(Y,Q) 2% H(c) H < H"(X,Q).

Such a morphism f contains H in its image. Furthermore, note that there exists an

isomorphism
Homysg (H™ (Y, Q), H"(X, Q)) ~ Hdg2 ¥ +)(Y x X,Q).

Therefore by the assumption of the Hodge conjecture, the map f is induced by a corre-
spondence v € CHdY+C(Y x X)g. Thus the generalized Hodge conjecture holds. O
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Generalized Hodge conjecture and Lichtenbaum cohomology

Based on the previous reformulation of the generalized Hodge conjecture, Rosenschon and
Srinivas proposed the following variant of the generalized Hodge conjecture for integral

coefficients, using Lichtenbaum cohomology groups:

Conjecture 3.2.4 (L-Generalized Hodge Conjecture). Let X be a smooth projective
complex variety. If H C H"(X,Z) is a Z-sub-Hodge structure of level | = n — 2c, then
GHCp(n,c, X) holds for H if and only if there exist a smooth projective complex variety
Y and an element z € Corrs (Y, X) such that H is contained in 2 H' (Y,Z).

For a smooth projective complex variety X, conjecture is denoted by GHC,(n, ¢, X )q.
In some particular cases it is known to be equivalent to GHC(n, ¢, X)g. For instance if
we consider GHC(2k — 1,k — 1, X)g in |Gro69, §2] it was mentioned that with this level

and weights it is related to the usual Hodge conjecture:

Proposition 3.2.5. [Lew99, Remark 12.30] Let X be a smooth projective complex va-
riety. Then GHC(2k — 1,k — 1, X)g holds if and only if (H**~1(X,Q)® H'(I',Q)) N

HFE(T x X) is algebraic for every smooth projective complex curve T.

The Lichtenbaum version of the previous result still holds as is stated in [RS16,
Remarks 5.2]; the proof uses arguments similar to the ones presented in |[Lew99, Remark
12.30]. Before we go into the proof of the proposition, it is necessary to introduce some
notation and conventions. First Betti cohomology is considered modulo torsion. Define

(X, Z) = {a* HY(Y,Z) — H*Y(X,2)| ¢ € Corrtt (Y, X), dimY = 1} Jtors

where Y is smooth and projective, and recall

max

H2 (X, 7) = {the largest Z-sub HS in {H’“’k_l(X) ® H’“_Lk(X)} N H2*1(X, Z)}

The generalized Hodge conjecture GHCp (2k—1, k—1, X)) states that these are equal. Note
that kaa_lgl (X,Z)®C = H]Ei];;gl(X) ® Hﬁ_allgk(X) because of the Hodge decomposition.
Also there exists a partial version of the previous result, which asks whether or not a
sub-Hodge structure W C H?*~1(X,Z) is contained in the image of the action of some
Lichtenbaum correspondence over cohomology groups.

In the following proposition, we characterize this partial étale version of the general-
ized Hodge conjecture of a Hodge structure of weight 2k —1 and level 1, and give a general
description of the GHCL(2k — 1,k — 1, X) and its equivalence to GHC(2k — 1,k —1, X)q,
as is stated in [RS16, Remark 5.2]:

Proposition 3.2.6. Let X € SmProjc, k € N>1 and let W € H**7Y(X,Z) be a sub-
Hodge structure of level 1. Then:

(i.) there exist Y € SmProjc and a Lichtenbaum correspondence z € C’H%YH(Y x X)
such that W C z,HY(Y,Z) if and only if for all curves C € SmProjc the Hodge
classes H**(C x X) N {HY(C,Z) @ W} are algebraic.
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(i1.) In particular GHCL(2k—1,k—1, X) holds if and only if for all curves C € SmProj¢
the Hodge classes HM*(C x X) N {HY(C,Z) ® H*~Y(X,Z)} are L-algebraic, i.e.

Hk’k(C’xX)ﬂ{Hl(C, Z) ® H*(X, Z)} c im{clz L CHE (C x X) — HZ(X, Z(k:))} .

(111.) GHC(2k — 1,k —1,X)q holds if and only if GHCp(2k — 1,k — 1, X) holds.

Proof. For (i.), let W ¢ H*~(X,Z) be a sub-Hodge structure of weight 2k — 1 and level
1 and assume that there exists ¥ € SmProjc and a Lichtenbaum correspondence z €
CH%Y+k_1(Y x X) (correspondence of degree k—1) such that W C 2, H'(Y,Z). Consider
C' a smooth complex projective curve and consider an element h € {H LY, Z) ® W} N
HMF(C x X) ~ Homps(H'(C,Z),W). Let hy : H'(C,Z) — W be the map of Hodge
structures induced by h. Define V' = ker(z,), which by the theory of Hodge structures, is
a Hodge structure itself. We know that the image of im(z,) is a Hodge structures of the
same weight (see [Voi02, Lemme 7.23 et 7.25]), then H'(Y,Z) = V @ R where R = V.
Then we have a morphism A := (z,|g) " W im(z,) N W Cc H*~1(X,Z) — R which fits

into the following commutative diagram

HY(C,Z) s W im(z,) N W —2— H\(Y,Z)

Jn =

w w.

The map obtained obtained from the upper arrows is induced by a Hodge class by
Lefschetz (1,1) and therefore h is algebraic.

Conversely, suppose that for all smooth and projective curve C' the Hodge classes
HMF(C x X)n {HY(C,Z) ® W} are algebraic. Let W C H*~1(X,Z) be a sub-Hodge
structure of level 1 and notice that W has a decomposition as W ®@C = Whkkr-1gWwk-1k,
Then its associated k-th intermediate Jacobian is of the form J*(W) = Wk-1F/1/
which is an abelian variety. Since Jk(W) is a complex torus, then its holomorphic
tangent bundle is W*~1! and the fundamental group is isomorphic to the lattice W,
thus 7 (JF(W)) ~ H{(J¥(W),Z) = W. Set m = dim(J*(W)) then H*>"~1(J*(W),C) =
Hm=bm(JE W) @ H™™=1(J*(W)) and

H™bm (TR W) o HYO(JF(W))*

= HO(J’C(W):Q}]k(W))*
~ HO(JH W), Q)
~ HO(JH W), T yyy)* = WEDE,

then H2"~1(JF(W),C) = Wh=Lk g k-1,

Taking hyperplane sections of J*¥(W) and applying Bertini’s theorem, we find a
smooth projective curve I' C J¥(W) and a surjective map H;(T',Z) — Hy(J*(W),Z) ~
W. Also by Poincaré duality Hy(T',Z) ~ HY(T,Z) so we have a surjective map f :
HY(T,Z) — W. Since the map f is a morphism of Hodge structures, then it is an ele-
ment in H*¥(T' x X) N {H'(T,Z) ® W} which by hypothesis is L-algebraic. Therefore
there exists a class z € CH2*(T' x X) such that W C z,H(T,Z) Cc H*~1(X, 7).
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The statement (ii.) is a direct consequence of (i.) taking W = H**~1(X,Z) and the
maximal sub-Hodge structure of it H2*-'(X,Z). For (iii.) notice that for a complex

smooth projective curve C the Betti cohomology groups are torsion free. Thus Kiinneth
formula holds for the product C' x X and then

H" (O x X) N {Hl(c, Z) ® H*-1(X, Z)} C H**(C x X) N H*(C x X,Z) = Hdg?* (C x X, Z).

Invoking Corollary the Hodge classes H**(C x X) N {Hl(C, Z)® H2k*1(X,Z)}
are L-algebraic if and only if H**(C' x X)n {Hl(C’, Q) ® H?*~1(X, Q)} are algebraic in

the usual sense, which gives us the equivalences

GHC(2k — 1,k — 1, X)q holds
— H"(CxX)n {Hl(c, Q) ® H2k_1(X7Q)} is alg. V curve C
— H"(C x X)n {Hl(C, Z)® H* (X, Z)} is L-alg. V curve C
< GHCp(2k — 1,k — 1, X) holds.

O]

In the sequel, we give more subtle relations between the Hodge conjecture and the

generalized one, following the proof of the classical case given in [Ful2, Lemma 2.3]:

Lemma 3.2.7. Let X be a smooth projective variety of dimension n and H C Hk(X, 7)
be a sub-Hodge structure of coniveau at least ¢ and assume that there exists a smooth pro-
jective variety Y of dimension dy , such that H(c) is a sub-Hodge structure of H*=2¢(Y, 7).
If Hivtedvte(y x X)n {HX N +9=k(Y,Z) ® H*(X,Z)} is L-algebraic, the generalized
L-Hodge conjecture for H holds.

Proof. Since torsion classes come from Lichtenbaum cycles, for simplicity we will neglect
torsion Hodge classes. Suppose that H is a sub-Hodge structure of H*(X,Z) of weight
k and coniveau c¢. We know that H(c) is still an effective Hodge structure, then there is
a smooth projective variety Y such that H(c) is a sub-Hodge structure of H*~2¢(Y,Z),
which by polarization can be decomposed as H*~2¢(Y,Z) ~ H(c) @ R. Consider f :
H¥=2¢(Y,Z) — H*(X,Z) the morphism resulting from the composition of the following

maps

id®Z(—c)
—_—

H*2¢(v,7) 2% H(c) H — H*(X,7)

Since Hompsz(H*~2¢(Y, Z), H*(X,Z)) ~ Hdg?¥ 72¢(X x Y) the hypothesis implies that
f comes from a Lichtenbaum algebraic cycle v € CHCLIYJFC(Y xX)and H C v, H* (Y, Z).
Thus the generalized L-Hodge conjecture holds for H. O

Using the same kind of arguments, and adding an hypothesis of effectiveness it is
possible to characterize the generalized Hodge conjecture in terms of the integral Hodge

conjecture in the étale setting.
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Theorem 3.2.8. The Lichtenbaum generalized Hodge conjecture for all X € SmProjc
holds if and only if the following two conditions hold:

e the Lichtenbaum Hodge conjecture holds,
e a homological €tale motive is effective if and only if its Hodge realization is effective.

Proof. The generalized L-Hodge conjecture immediately implies the L-Hodge conjecture.
Suppose that M has an effective realization and let H := py (M) be its associated Hodge
structure of weight n and coniveau c¢. By the generalized L-Hodge conjecture there exists
Y € SmProjc and v € CHdLY+C(Y x X) such that H C 4. H"2(Y,Z) C H"(X,Z). The
motive M (c) is effective in h(Y'), thus M is effective because it is a sub-object of the
effective motive h(X).

Assume that the L-Hodge conjecture holds for every X € SmProj- and that a homo-
logical motive is effective if and only if its realization is effective. We can neglect torsion
Hodge classes because they always come from torsion algebraic cycles. Suppose that H
is a sub-Hodge structure of H"(X,Z) of weight n and coniveau ¢. We know that H(c)
is still an effective Hodge structure. Then there is a smooth projective variety Y such
that H(c) is a sub-Hodge structure of H"~2¢(Y,Z) which by polarization can be decom-
posed as H"2¢(Y,Z) ~ H(c) ® R. Consider f : H" (Y, Z) — H"™(X,Z) the morphism

resulting from the composition of the following maps

id®Z(—c)
T

H" (Y, 7) 25 H(c) H < H"(X,Z)

Since Homygz (H"2¢(Y,Z), H"(X,Z)) ~ Hdg?*®*2¢(X x Y), f comes from a Lichten-
baum algebraic cycle v € CHdLY+C(Y x X) and H C v, H"2¢(Y,Z). Thus the generalized
L-Hodge conjecture holds. O

Then we have the following corollary coming from the previous characterizations of

the Generalized Hodge conjecture (classical and Lichtenbaum setting)

Corollary 3.2.9. The generalized Hodge conjecture holds if and only if the generalized
L-Hodge conjecture holds.

Bardelli’s example

Let us recall the example presented in [Bar91] of a threefold X where GHC(3,1, X)q
holds. Let o : P” — P7 be the involution defined as o(zg : ... : 23 : Yo,...,¥y3) =
(xo @ ...t 3+ —Yo,...,—y3) and let X = V(Qo,Q1,Q2,Q3) be a smooth complete
intersection of four o-invariant quadrics. There exists a smooth irreducible curve C, of
genus 33, obtained as the intersection of two nodal surfaces, and an étale double covering
C — C such that HI(C~', Q)~ — H3(X,Q)” is surjective, where the first group is the
anti-invariant part of the involution 7 : C — C associated to the double covering and
the later group is the anti-invariant part associated to the involution o. Notice that
by [Bar91 Fact 2.4.1] if we assume that X is a very general threefold, then H3(X, Q)"
and H3(X,Q)~ are perpendicular with respect to the cup product on H3(X,Q) and
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3. HODGE AND GENERALIZED HODGE CONJECTURE

H39(X) c H3(X,C)™ therefore H3(X,Q)~ is a polarized Hodge structure perpendicular
to H3%(X) i.e. a polarized sub-Hodge structure of H3(X,Q) of level 1. The isogeny
o : Prym(C — C) — J(X)~, where J(X)~ is the projection of H2(X)~ into J2(X),
is the correspondence that induces the isomorphism H 1(6,@)* — H3(X,Q)~, but in
the case of integral coeflicients the image of the correspondence is a subgroup of index 2.

From the previous results we have the following equivalences:

GHC(3,1, X)g holds for H3(X,Q)~
= H**(I'x X)n{H Q) ® H*(X,Q) "} is alg. V curve I
— H>?('x X)N{H'(,Z)® H*(X,Z)"} is L-alg. V curve I
<= GHCL(3,1, X) holds for H*(X,Z)~

so there exists a smooth projective curve I'V and a correspondence z € CH% (T” x X) such
that H3(X,Z)~ C z.H (T, Z).
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Chapter 4

Decomposition of integral étale

motives

The following chapter is devoted to the decomposition of étale motives and the existence
of projectors in étale motivic cohomology groups. Let us recall some facts about the
decomposition of motives in the category of integral motives in the classical sense. If
there exists a zero cycle of degree 1 in a smooth projective variety X, then one can
define the projectors po(X) and pog(X) integrally, otherwise it is necessary to invert
some integer in the coefficient ring. In the étale setting, one may be able to improve this
result and define new integral projectors.

In the following two sections we focus on the étale degree map, in order to see when
it is possible to obtain integral projectors p§'(X) and pS(X) for a smooth projective
variety X over a field k. In the first section, we define the étale analogue of the degree
map on CH% (X), d = dim(X). We then study varieties over a field k of characteristic
zero for which the étale degree map is surjective. Also, we show that surjectivity does
not always hold for Severi-Brauer varieties that do not split over the field k.

The last section, which is divided into three subsections, is devoted to the study
of the decomposition of integral étale motives. In the first part, we use the result of
[RS16] to construct a projector in étale motivic cohomology and then use this to find an
integral decomposition of complex varieties that do not have transcendental cohomology
in degrees different from the dimension, extending the result given in [MNP13, Appendix
C] to the case of integral coefficients. In the second part, we give an étale analogue
of a result of Huybrechts in [Huyl8, Lemma 1.1]. The last part is concerned to the
integral étale decomposition of smooth commutative groups schemes G over a base S, as
a consequence of the good properties of the family of functors associated to the change
of coefficients and the results given in [AEH15|, [AHP16] and [BS13].

4.1 Etale degree map

Let X be a smooth projective variety over a field k. One defines the zero cycles of X,

denoted by Zo(X), as the free the abelian group generated by sums ) n,z with = a
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4. DECOMPOSITION OF INTEGRAL ETALE MOTIVES

closed point of X and n, = 0 for all but finitely many x. The degree map is defined by
deg: Zp(X) = Z
anx — an[k(x) s k],

see [Ful98| Defintion 1.4] for more details.
This map descends to the quotient CHy(X). By definition, it coincides with the push-
forward along the structural map p : X — Spec(k) as p, : CHo(X) — CHo(Spec(k)) = Z.

We define the index of a variety X over k as follows
I(X) :=ged{[k(z) : k] | z € X}.

If the field is algebraically closed then there exists a k-rational point and the map is
surjective. However if the base field is not algebraically closed the existence of a k-
rational point, or even of a zero cycle of degree 1, is not guaranteed. Let us remark that
the existence of a k-rational point implies the existence of a zero cycle of degree 1, but
the converse does not always hold. As it is shown in [CM04] for d = 2, 3, 4 there exist del
Pezzo surfaces of degree d over a field of cohomological dimension 1 which do not have a
zero cycle of degree 1. Or as is presented in [Col05, Theorem 5.1] a hypersurface whose
index I(X) = p, for a prime p > 5.

We can reformulate this definition due to the existence of Gysin morphisms in DM(k, Z)
as is described in [Dégl2a] and [Dég08]. With this formalism we obtain the pull-back of
the morphism p defined as p* : M (Spec(k))(d)[2d] = Z(d)[2d] — M(X) in the category
DMSE (k,Z). Applying the contravariant functor Homypyper 4, 7 (—, Z(d)[2d]) we re-obtain
the previous definition of push-forward in the case of Chow groups, [Dégl2a, Proposition
4.9] . From this, we can extend the existence of Gysin morphisms for DM (k, Z), giving

us an étale analogue of the degree map for étale Chow groups:

Definition 4.1.1. Let X be a smooth and projective scheme of dimension d over k,
where k is a field of characteristic exponent equal to p. Then we define the étale degree
map degy, : CHL(X) — CHY(Spec(k)) ~ Z[1/p] as degy, := ps«, where p is the structure
morphism p : X — Spec(k). We define the étale index of X as the greatest common
divisor of the subgroup deg,(CHZ,(X)) NZ, denoted by T4(X).

Remark 4.1.2. 1. Let k£ be a field of characteristic exponent p. Due to functoriality

properties we have the following commutative diagram

Hompyk,z) (M (Y), Z(d)[2d]) — Hompyk,z) (Z(d)[2d], Z(d)[2d])

|

Hompyy,, (1,2)(Met (Y), Z(d)[2d]) — Hompyy,, (1,2)(Z(d)[2d], Z(d)[2d])
where for CH? (Spec(k)) with 7 € {Nis, ét}, there are isomorphisms
Hompyyk,z) (Z(d)[2d], Z(d)[2d]) = Hyy (Spec(k)) ~ Z
and

Hompyy,, (1,z) (Z(d)[2d], Z(d)[2d]) = Hyp, (Spec(k)) ~ Z[1/p]
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4.1. Etale degree map

2. By the previous point, if char(k) = 0, K/k is a finite Galois extension and X — k
a smooth projective k-scheme then the morphism f : Xx — X is a finite étale
morphism. As f is proper, there exists an induced map f, : CH% (Xx) — CHY (X)

which fits into the following commutative diagram

CHY(Xx) —— CHYX
\ k
V /
V_/ dEgét
CHY (Xx) —"— CHY(X)

with [K : k| the degree of the extension.

3. It is possible to define the étale degree map for Lichtenbaum cohomology over a
field k = k. If X is a smooth and proper projective variety of dimension d, there
is a quasi-isomorphism Zyx (n)za — RmZx (n)g for n > d, see Theorem If
this is not the case, we then can invert the characteristic exponent of k£ and use the

isomorphism between Lichtenbaum and étale Chow groups.

Since in the following part we will use spectral sequences, for the sake of legibility,
from the following we will denote the characteristic exponent of a field k£ by p. The letter
p is reserved for the bi-degrees of the spectral sequence.

Let f: X — Y be a projective morphism of smooth varieties of relative dimension
c. Again by the existence of Gysin morphisms in DMg(k,Z), we obtain a push-forward

map for étale motivic cohomology
for HyG (X, Z(n + ¢)) — Hij (Y, Z(n)).

Combining the existence of push-forward maps for étale motivic cohomology and the

functoriality of the Hochschild-Serre spectral sequence we obtain the following diagram

HP (G, HE (X3, ZIL/B)(n + €)) == H}""" (X, Z[1/p)(n + ¢))

|7 |+

HP(Gy, H} (Y, Z[1/p)(n))) === H]"(Y.Z[1/p)(n))

where p is the characteristic exponent of k and f : Xz — Yz. For the particular case of

the étale degree map we have the following:

Proposition 4.1.3. Let X be a smooth and projective of dimension d over a field k with
characteristic exponent p. Then the map degy : CHL(X) — Z[1/p] factors through a
subgroup of CHY(Xz)[1/p]C*

0,2d

Proof. We will prove that the subgroup in question is given by the Eg™-term of the

Hochschild-Serre spectral sequence associated to X. To see this, consider the structural

morphism f : X — k, then we have an induced morphism of Es-terms

ERT = HP(Gy, H} (X3, Z[1/P)(d)) — HP(Gy, Hi~**(Spec(k), Z[1/5](0)))
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4. DECOMPOSITION OF INTEGRAL ETALE MOTIVES

if we look at the cases when g — 2d < 0, we get that

for d
HI %X (Spec(k), Z[1/5](0)) ~ ;[1/; firQq:Qd

This gives us HY (k,Z[1/p](0)) ~ HP(Gy, H(k,Z[1/p](0))) and hence we conclude that
degg, : CH%(X) — Z[1/p] factors as

Bl () ——» B

dm ldeg

Z[1/p]
where a;_g/ is the composite map

B9 s B9 = CHY(Xp)[1/5]% — CHAX)[1/5] =5 Z[1/7]

4.2 Lichtenbaum zero cycles

Varieties where Ig(X) =1

The aim of this subsection is to construct examples where the étale degree map is sur-
jective but its classical counterpart is not. In order to achieve this, we start by giving
a lemma about the divisibility of the zero cycles of degree zero of a variety over an

algebraically closed field:

Lemma 4.2.1. Let X be a complete scheme over an algebraically closed field k of char-
acteristic p > 0. Define Ag(X) = ker{deg: CHy(X) — Z}, then Ao(X) is a divisible
group. If X is a smooth quasi-projective scheme and Hgf_l(X, Q¢/Ze(d)) =0 for £ #p

then Ag(X) AN Ao(X) is an isomorphism for all r € N.

Proof. The first statement is known, see [Ful98, Example 1.6.6]. The argument goes as
follows: since Ag(X) is generated by the image of the maps of the form:
fe+ Ag(C) = Ap(X)
[P] = [Q] — fu([P] —[Q])
where f: C — X a smooth projective curve with P, @ points in C. Since Ay(C) ~ J(C)
and the Jacobian of a smooth projective curve is divisible over an algebraically closed
field k, we obtain the desired result. We prove the second assertion. Notice that by the

assumption that k is an algebraically closed field, one gets that CHY(X) ~ CH% (X) and
that CHY (X){¢} ~ H?*'(X,Q¢/Z(d)). Therefore

CHo(X){¢} = CH*(X){} ~ HZ''(X,Qu/Z(d)) = 0

and CHoy(X){l} ~ Ap(X){¢}, so one deduces that under the assumption, Ag(X) is £’-
divisible for any r > 0. O
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4.2. Lichtenbaum zero cycles

Remark 4.2.2. Notice that with the previous statement, if Hgtdfl(X, Q¢/Zy(d)) = 0 for all
¢ different from the characteristic of k, we conclude that Ag(X) is uniquely ¢"-divisible.

For X a smooth and projective variety over a field k of characteristic exponent equal

to p, we set
ASH(X) := ker {degét : CHY,(X) — Z[l/p]} .
Notice that if k is algebraically closed then we have an isomorphism A§H(X) ~ A (X)[1/p].

Proposition 4.2.3. Let X be a geometrically integral smooth projective variety of di-
mension d > 2 over a perfect field k with cd(k) < 1 and p the characteristic exponent
of k. Let k be the algebraic closure of k and assume that Hzftd_l(X]‘g,Qg/Zg(d)) =0 for
every prime £ # char(k), then degg, : CH%,(X) — Z[1/p] is surjective.

Proof. First assume that char(k) = 0, then CH}(X) ~ CHZ,(X) for all n € N. Using
the notation given in Lemma if cd(k) < 1 then Eg’q(n) =0for 1 < ¢ < 2n, so
by the characterizations of the infinity terms given in Example [2.2.24] we obtain a short
exact sequence 0 — H (G, H3" 1(X}, Z(n))) — CH}(X) — CH}(X})¢* — 0. Forn =d
we have that CHY (X) — CH% (X})%* is always surjective. Now consider the short exact
sequence

0 — Ao(Xg) — CHY(X7) 284 7 0

where Ag(X}) = ker {degg, : CH% (X;) — Z}, i.e. the numerically trivial zero cycles of
X}, which induces a long exact sequence

0 — Ag(Xp)% — CHL(X)% 2% 7 - HY(Gy, Ao(X})) — ...

where the factor Z is obtained by using the fact that CH"(Spec(k))“* ~ CH(Spec(k)).
By [RS16, Proposition 3.1(a)] we have that CHY(X;){¢} ~ HZ* (X5, Q/Z(d)) so
Ao(X7)tors =~ CHdL(X,;)tors = 0 and then the group Ag(Xj) is uniquely divisible, so
we conclude that H'(G, Ag(Xz)) = 0. Consequently the map degs : CH?(X) —
CHY (X;)C* — Z is surjective.

Now assume that char(k) = p > 0, in this case it is necessary to invert the charac-
teristic exponent p of the field. For an abelian group A we put A[l/p] := A ®z Z[1/p].
Setting ¢ # 2d, we have that Hj (X}, Z(d)) is a extension of a divisible groups D by a

torsion groups 7'. Using the convention for tensor product, we notice that
0— D — H}(X;,Z(d))[1/p| = T[1/p] — 0

where the last map Kkills the p-primary part of the torsion group 7. Also the spectral
sequence holds for the complex of étale sheaves Z[1/p|(n )4, for the convergence we use the

same arguments with the exact triangle Z[1/p]x (d)ss — Qx (d)st — @ Q¢/Zo(d)
{#char(k)
therefore we have a similar short exact sequence 0 — H'(Gy, H:" (X}, Z[1/p](n))) —

CHJ(X)[1/7] — CH (Xp)[1/5]% — 0 and also 0 — Ag(Xp)[1/5] — CH{ (Xp)[1/5] <25
Z[1/p] — 0, therefore we can conclude. O
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4. DECOMPOSITION OF INTEGRAL ETALE MOTIVES

Theorem 4.2.4. There exists a smooth projective surface S over a field k of character-
istic zero and cohomological dimension < 1, such that X does not admit a zero cycle of
degree one but I4(X) =1.

Proof. By |[CMO04, Théoreme 1.1] and [CM04, Théoreme 1.2] there exist del Pezzo surfaces
of degree 2, 3 and 4 over a field k of characteristic zero and cd(k) = 1 without zero cycles
of degree 1. Let S be one of such surfaces of degree d € {2,3,4}. Since S is a del Pezzo
surface, thus for all field extension K/k the variety Sk is a del Pezzo surface of degree
d as well, so in particular for K = k. As S is del Pezzo, we have that H'(Sj, Os,) =
H?(S}, Og;) = 0 therefore Alb(S;) = 0. Since we are working over an algebraically closed
field, CH?(S;) ~ CH?%(S;) and then by Roitman’s theorem CH?Z (S} )tors = A0 (S )tors = 0
so the group Ag(Sj) is uniquely divisible and consequently by Proposition the map
CH2(S) — CHZ(S;)%* — Z is surjective, while CH?(S) — Z is not a surjective map. [J

Theorem 4.2.5. For each prime p > 5 there exist a field F' such that char(F) = 0 with
cd(F) =1 and a smooth projective hypersurface X C Ph, with I4(X) =1 but I(X) = p.

Proof. Let us consider n > 2, a field k such that cd(k) < 1 and a hypersurface X C ]P’ZJrl
that is geometrically integral. Consider the hypersurface Xj C IP”]—EH. By the Lefschetz
hyperplane theorem [Mil80, Theorem 7.1], we have

H2 (X, pn) = B2 (PR 8ty = 0

for all £ # char(k), thus H2" (X5, Q/Z¢(n)) = 0 so by Proposition the morphism
degg; : CHZ (X) — Z is surjective. Now if we fix a prime number p > 5 then by [Col05|
Theorem 1.1] there exist a field F' with cd(F) = 1 and a smooth projective hypersurface
X C P, with index equal to p. O

Remark 4.2.6. Assume that k is a field with cd(k) < 1. Consider S a smooth geometri-
cally integral k-surface with H'(S,Og) = 0, therefore Alb(S) = 0 so again by Roitman’s
theorem CH?Z (S;) is torsion free and uniquely divisible, so H'(G, A(S;)) = 0 and then
CH2(S) — Z is surjective. In general if Ag(X3) is a divisible group then CHY (X) — Z

is surjective.

Etale degree of Severi-Brauer varieties

In the following, we will see non-trivial examples where the étale degree map is not
surjective. For this we will study the Lichtenbaum cohomology groups of Severi-Brauer
varieties by giving an explicit characterization of the zero cycles of Lichtenbaum groups

of Severi-Brauer varieties.

Definition 4.2.7. A variety X over a field k is called a Severi-Brauer variety of dimen-
sion n if and only if X ~Pp. If X is a Severi-Brauer variety of dimension n and there

exists an algebraic extension k C k' C k such that Xy ~ P7, we say that X splits over
K.
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4.2. Lichtenbaum zero cycles

If Br(k) = 0, there exists a unique Severi-Brauer variety modulo isomorphisms to P}.

Some cases of such fields are the following:

e a field k with cd(k) < 1. In this category we can find fields such as algebraically
and separable closed fields, finite fields, extensions of transcendence degree 1 of an

algebraically closed field.

e If k is a field extension of Q containing all the roots of unity, see [Ser68, §7] and
[Ser02, I1.§3, Proposition 9].

Lemma 4.2.8. Let X be a Severi-Brauer variety of dimension d over k which splits
over a field k'. Then for all 0 < n < d the group CH"(Xy) ~ CH"(P},) is a trivial
Gal(K' /k)-module.

Proof. First consider d = 1, then CH'(P{,) ~ Pic(P%,) ~ Z. Following the argument
given in [GS06, Proposition 5.4.4] the action of Gal(k'/k) over Pic(P%,) is trivial as
the only non-trivial action would permute 1 with —1. The vector bundles of IP’%, with
Chern class 1 cannot permute with the ones in the class —1 due to the existence of global
sections for the first case. For the general cases when n # 1 we consider the isomorphisms
CHI(IP’g,) ~ CH"(P%,) given by the intersection with hyperplanes. O

Remark 4.2.9. 1. We can similarly deduce that for all m,n € N we have Pic(P7" x
P?) ~ Z[a] ® Z[B], where a and 3 are the generators of Pic(P7') and Pic(P})

respectively, is a trivial Gi-module.

2. Let k be a perfect field of characteristic exponent p and let X be a Severi-Brauer
variety of dimension d over k. The fact Xz ~ IP’% simplifies several computations
for the Hochschild-Serre spectral sequence given in Lemma [2.2.16] For instance if
m # 2n + 1, then for £ # p we can characterize the /-primary torsion groups as

follows

m m—1 /md Qé/Zg if m is odd
HL (X,*C?Z(n)){ﬁ} = Hét (PE7QZ/ZZ(n)) ~ .
0 otherwise.

Therefore for m even and m < 2n the group H}"(Xj,Z(n)) is uniquely divisible,
thus some of the Ea(n)-terms associated to the Hochschild-Serre spectral sequence
of HY™(X,Z[1/p](n)) can be characterized in the following way

HI(Pg, Z(n))% if p=0,
EPU(n) = { HP(Gy, HI ' (Pg, (Q/Z)(n))) if ¢ is odd and p > 0,

0 if gis even and p > 0.

Now let us set n = 1 and let X be a Severi-Brauer variety over k of dimension d. If we

use the Hoschschild-Serre spectral sequence given in Lemma [2.2.16] and Lemma [4.2.8] we
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4. DECOMPOSITION OF INTEGRAL ETALE MOTIVES

recover a classical result of Lichtenbaum [GS06, Theorem 5.4.10] concerning the Picard

group of X and Brauer groups: there is an exact sequence

0 — Pic(X) — Pic(P4)% 2 Br(k) — Br(k(X)), (4.1)
where the map 0 sends 1 to the class of X in Br(k). For an arbitrary integer n, if we

apply the projective bundle formula to obtain

d
HZ‘(IP’%, Z(n)) ~ @ HE”_QZ(Spec(E), Z(n —1i)).
=0
After base change to the algebra'ic closu_re we have Hzl(]P’%, Z(d)) ~ Hy} (}P’%, Z(d)) for all
m € Z and in particular H}" ?(Spec(k),Z(d — i)) = 0 if m — d > i. For instance if
m = 2d—1 then H;" Y (P4, Z(d)) ~ KM (k) or for m = 2d — 2 we have H;*~*(P¢, Z(d)) ~
K é\/[ (k) and hence for a Severi-Brauer variety and applying Lemma[2.2.16| we obtain that
Ey*=Nd) = HY(Gy, k*) = 0, by Hilbert 90, and B> (d) = H2(Gy, k*) = Br(k).

Theorem 4.2.10. Let X be a Severi-Brauer variety of dimension d over a field k. Then
the image of degs, : CHL(X) — Z is isomorphic to a subgroup of Pic(X) and in particular
I(X) > ord([X]) where [X] is the Brauer class of X in Br(k). Moreover, if cd(k) < 4
then this subgroup is isomorphic to Pic(X) i.e. I14(X) = ord([X]).

Proof. Let X be a Severi-Brauer variety of dimension d, and consider the Hochschild-
Serre spectral sequence for Lichtenbaum cohomology in two cases: when n = 1 and
n = d. For n = 1 we recover , where some of the terms of the exact sequence
come from E8’2(1) = Pic(IP%)Gk and E22’1(1) ~ Br(k). For the case when n = d, and
using the computations from the previous discussion, we obtain the following terms:
Eg’Zd(d) = CHd(}P’%)Gk and E§’2d_1(d) ~ Br(k). Notice that the isomorphisms

d o
HP (P4, Z(n)) ~ @ H;" (k. Z(n — 0))
=0

for n = 1 and d are induced by the map IP’% — Spec(k). This gives us a commutative

diagram where the vertical arrows are given by the intersection with the hyperplane

section of IP%

Pic(Pd)% —2— Br(k)

Eo, b

crd@d)er 2 gk

Since the vertical arrows are isomorphisms, Eg’Qd(d) = ker(dg’Qd(d)) ~ ker(d) ~ Pic(X).
Now by Proposition the map degy, factors through ngd(d) which is a subgroup
of E§’2d(d). The assumption about the cohomological dimension of k gives us that
E%*(d) ~ E§’2d(d). For further details about this computation see the next example

and proposition. ]

124



4.2. Lichtenbaum zero cycles

Remark 4.2.11. Notice the following: Consider 1 < n < d and consider the Hochschild-
Serre spectral sequence associated to CH7(X). From the projective bundle formula
we have that Hin_l(IP’%) ~ KM(k), thus Eg’2"(n) ~ Br(k) and consequently by the
commutative diagram

Pic(P?)% —2— Br(k)

l 0,2n J

d
cH (P 28 Bk
the term Eor"(n) is isomorphic to a subgroup of Pic(X).

Example 4.2.12. Let X be a Severi-Brauer variety of dimension d = 2 over a perfect
field k with Galois group Gi. Using the previous characterizations through the projective

bundle formula, we then describe the Es-terms associated to X in the following way:

R = HP (G, HY (Spec(R), 2(2))), ER' = HP(Gy, Hly(Spec(k), Z(2)),
EY? = HY (G, K (R)), ES® = HY(Gr, K} (),
B}t = HP(Gy, CIB (B2)) and E5 =0 for g > 5.

By Remark (2), we have that EYY = EP? =0 for p > 0, also Ey® = 0 by Hilbert

90 theorem and E22’3 = Br(k), obtaining with this the following terms: for trivial reasons
1,3 2,2 4,0

EX = E3 = E =0 and:

B3 = B3 Gy, H (R, Z(2))) /im { K (F)C* — H3(Gy, Hy (R, 7,(2)))}

The only remaining piece of the filtration of CH%(X) that we need to study is E%L.
By definition we have that E§’4 = ker{CH2(IP’%)Gk — Br(k)} and as E;’Z = 0 then
E2’4 = E§’4. Finally, we observe that Ei"l = Eg’l = E;"’l and thus again by definition

Y = ker { EQ* - B} }
- k:er{EgA — HY(Gy,, HY, (Spec(k), Z(z)))} .

Therefore CH%(X) fits into a short exact sequence given by the filtration induced by the

Hochschild-Serre spectral sequence
0— E3 - CH3 (X) — E%! — 0.

If we want to generalize this result for higher dimension, we need to impose a condition

on the cohomological dimension of k:

Proposition 4.2.13. Let X be a Severi-Brauer variety of dimension d over a perfect
field k of cohomological dimension cd(k) < 4. Then the group CHEY(X) fits in an exact

sequence
0— EX**! - CH}(X) — E3?* -0
with BY** = ker{CHit(Pg)Gk — Br(k)}. In particular I4(X) = ord([X]).
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Proof. We follow the arguments given in example Consider k£ and X as above, then
by hypothesis Xz ~ IP’%. By the projective bundle formula for Lichtenbaum cohomology

we have
d
H™(P4,7(d)) ~ @5 H}* > (Spec(k), Z(d — ).
1=0

Notice that by divisibility arguments we have that E} 2 — 0 for 0 <k<dandp>0.
Under the assumption about the cohomological dimension of k we have that EP? = 0
for p > 4 and ¢ < 2n, this results that E*? ~ E0’2d = ker {CHd IP’d)Gk — H*(Gi, k*)}
and the other E5Y-terms with p+ ¢ = 2d that could not vanish are E1 24=1 and E3’2d73

but H241 P¢. 7Z(d)) ~ KM (k) therefore E}??=1 — 0. On the other hand, the remaining
L k 1 2

E§O2d 3 _ Ei ,2d—3

piece of the filtration, which is , is defined as

Eizd 3 E3 2d— 3/ {EO ,2d—1 E§,2d—3}
— H(Gy, H3 (P4, 2(d))) fimm { K (R) — (G, B3 (P, 2(a))) }
Using the recursive formula
H7 (P}, Z(n)) ~ H* (k, Z(n)) & H' (P?~ 1, Z(n — 1)).
we obtain
0ifd=1
H23=3(Pd 7(d)) ~ { HY, (k if d =
M 2 =~ vk, Z(2))if d =2
H} (k,Z(2)) ® KM (k) if d > 3.
Again as in Example 4.2.12) the group CH‘éit(X ) fits into the following short exact

sequence
0 — EZ*% - CHY (X) — EY* — 0.

As mentioned in Proposition the étale degree map factors through E%2?. This

gives a commutative diagram

3,2d—3 0,2d
E¥ —— E%

deg
ml
0,2d

where deg B — 7 is the composition of the maps

0 —— HCH& — 0

E% < cHYPH O 5 cHYPY) L%, 7.
O

As we may expect, the étale index of a product of Severi-Brauer is again bounded by
n-times

—_—~
the order of the Brauer class in Br(k). For the sequel we denote X *" := X x ... x X
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4.2. Lichtenbaum zero cycles

Lemma 4.2.14. Let X be a Severi-Brauer variety of dimension d over a field k. Then

there exists an exact sequence
0 — Pic(X x X) — Pic(P4 x PH ~ 7 & Z % Br(k) — Br(X x X).

The map s sends (a,b) to (a + b) [X] € Br(k), where [X] is the Brauer class associated

to X. In general for a product X*™ we then obtain an exact sequence

0 — Pic(X*™) = Pic(P4 x ... xPHY% ~Z & ... & Z > Br(k) — Br(X*")

with s(a1,...,an) = > i ;i [X] € Br(k).

Proof. Let Y a smooth projective variety over k. Considering the Hochschild-Serre spec-

tral sequence
B9 = HP(Gy, HY(Y;, Z(1))) = HYYI(Y,Z(1))

we obtain the following exact sequence 0 — E% — Eg,z — E22’1 — B3, IfY = X*»
then Y; ~ IP’% X ... X IP’% and consequently Pic(IP’% X ...X IP’%) ~7®...dZ. By remark
we obtain an isomorphism Pic(IP’% X ... X ]P’%)Gk ~ Z&...HZ that gives us the exact
sequences of the statement.

Now let us see the easiest case for Y = X x X. Consider the maps
A pry
X ——— XxX —=X
pPro

where A : X — X x X is the diagonal embedding and pr; : X x X — X is the projection
to the i-th component. Notice that the composition gives the identity on X. Notice that
the morphism pr; : X x X — X induces a morphism

pr} : H'(X,Z(n)) — H*(X x X,Z(n)) and pr} : H"(P4, Z(n)) — H* (P x P4, Z(n))

for every bi-degree (m,n). By functoriality properties of the Hochschild-Serre spectral

sequence we have a diagram

0 ——— Pic(X) > Z » Br(k) ——— Br(X)

| | 7 |

0 —— Pic(X x X) —— Z®Z —— Br(k) —— Br(X x X)

where the vertical arrows are induced by pr;. The composition pr; o A is the identity
on X, thus id* = A* o pr} therefore we obtain that the maps f : Z — Z & Z and
f : Br(k) — Br(k) are injective and then, the elements of the form (a,0) and (0,b) are
mapped to a[X] and b[X] € Br(k) respectively. For the general case we consider the

maps
n-times pry

X -25%X%x..xX X
pr,,

where A is the n-diagonal morphism and pr,; is the projection to the i-th component,

and conclude as in the case of X x X. O
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Theorem 4.2.15. Let k be a field and let X be a Severi-Brauer variety over k of di-
mension d. Then Ig4(X*™) > Ig4(X) > ord([X]).

Proof. Fix an integer n > 1. By hypothesis we have that Xj ~ IP)%, hence (X*")z ~
IP’% X oo X IP’%. Consider the Hochschild-Serre spectral sequence for the Lichtenbaum
cohomology of X*™

Byt = HY(Gy, HL(P)", Z(nd))) = H] (X", Z(nd)).

By the projective bundle formula for Lichtenbaum cohomology we have

et (@t mmd) ~ @ 5 (Spect) 2 na - Zay

0<ai,...an<d

£ 2nd—1-25% a; > nd— Y7, a; then Hy' 2297 (Spec(k), Z(nd— 7, a;)) =

0, this give us a vanishing condition for nd — 1 > Z?Zl aj. As 0 < a; <d for all j, then

the only n-tuples (ay,...,a,) which do not satisfy such condition are

i-th pos.
—=
€ =1(d,...,d, d—1,d,...,d) for all i, and (d,...,d).

For such cases, if a; = d for all j then

HErd=1=2nd(pec(k), Z(nd — nd)) = Hy ' (Spec(k), Z(0)) = 0,
and if (a1,...,a,) = €, then
Hznd_1_2 2= “(Spec(k), Z(nd — Za] = H'(Spec(k), Z(1)) ~ KM (k) = k*.

Hence H2”d_1((IP%)X", Z(nd)) ~ @}, k* and consequently Eg 2nd=l ~ ;" | Br(k). The
term Eg 14 is isomorphic to ker {CH”d((IP%)X")Gk b, Br(k:)} ,. Consider the ele-

ment il
nd—

b= (0 )t o=y T gl

91 IP’%X‘..XIP’%( ) Ty L,

ai,...,an€{d—1,d}
ai+...+anp=nd—1

and let x; be the pull-back of the generator of Pic(]P",—i) through the map pr; : X*" — X.

The intersection product with J defines morphisms
. ué n us nd— n
Pic((P)*") = CH"((P1)*") and HL((PF)*™),Z(1)) = HP""H((PE)*"), Z(nd)).

By the functoriality of the Hochschild-Serre spectral sequence we obtain a commutative
diagram
Pic((P$)*")% ——— Br(k)

| |

CH™M((P§)*m)% —L P Br(k),
=1
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4.2. Lichtenbaum zero cycles

where the vertical arrows are induced by 6. According to Lemma the map s
sends (al,.. ) €EZ® ... ®Z to N oy[X] € Br(k). Note that the map z;
d.. g9 22 induces an 1somorphlsm CHl((IF’%)X") o~ CH"d_l((IP’%)X”) and that we

Ly n
have an isomorphism
CH™=((BE)*™) @ H' (PO, Z(1)) =~ H7" 1 ((P{)*", Z(nd))

given by the map (aq,...,a,) ® 8+ B(aq,...,ay) which is the cup product.

Therefore g maps a € CH”d((IP’%)X")Gk to (a[X],...,a[X]) € Br(k) giving us that
ker(g) = ord([X])Z. Since E%2d E§’2"d = ker(g) and degy, factors through Eo:2"" we
conclude the proof. O

The natural question that arises is when this bound is reached. This is the case for
the product C x C' when C' is a smooth, geometrically connected curve of genus 0 over a

field k such that Cf ~ P’% as the following proposition shows:

Proposition 4.2.16. Let k be a perfect field of characteristic p > 0 with Galois group
Gy, and let C' be a smooth, geometrically connected curve of genus 0 over the field k such

that Cy, =~ IP’}C, then I4(C x C) = ord([C)).

Proof. By our assumptions we have that Cy ~ IP’}C then (C' x C)f ~ ]P’]% X JP’]%:. Considering

the Hochschild-Serre spectral sequence for Lichtenbaum cohomology
ES? = HP(Gy, HY (Pr x PL,Z(2))) = HY™(C x C,Z(2)).

Since HF(]P’/}€ X IP’,%,Z(Z)) o~ l'{]\“}[(]P’}C X ]P%,Z(2)) for m < 3, using again the projective

bundle formula for motivic cohomology we obtain that

H} (P}, x P, Z(2)) = Hy (P, Z(2)) @ Hy (P, Z(1)) = Ka (k) © Ka(k)
H} (P} x P, Z(2)) ~ Hy (Py, Z(2)) @ Hy (Py, Z(1)) ~ Ko (k)

Hi (P, x P}, Z(2)) =~ Hy (P}, Z(2)) =~ H),(Spec(k), Z(2))

H (P x P, Z(2)) ~ Hy (P}, Z(2)) ~ Hy(Spec(k), Z(2)).

As we have mentioned before, HY,(Spec(k), Z(2)) and K(k) are uniquely divisible, hence
for p > 0 we have E} 0 = E§’2 = 0. Due to the compatibility of étale cohomology with
colimits, and in particular with direct sums, we obtain Eg’?’ ~ HP(Gy, k*) ® HP(Gy, k).
In particular, notice that again Hilbert’s theorem 90 gives us that E;’s = 0 and that by
definition E2’3 ~ Br(k) @ Br(k).

With this information about the Es-terms, we obtain E E2 - Eég,o =0, Eg54 =
ker { CH?( IE”%C X IED}C)G’C — Br(k) ® Br(k)} and B3 = Eg’ ! /im {Eg 3 Eg”l}. Hence we

obtain a commutative diagram

0 y B! CH%(C xC) —— E% —— 0
\ lagg
deget
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4. DECOMPOSITION OF INTEGRAL ETALE MOTIVES

where a;_g/ : EYY = Z is the composition of the following maps:
E%* < CH2(PL x PL)% = CH2 (P x PL) 5 7.

Let us give more information about the term E%* Mimicking the proof of Theorem
4.2.15, we have an isomorphism Pic(]P’%C X IP)}C) ~ Z[x] ® Zly]. The Chern class § =
c1(Op1 yp1 (1)) = x + y induces morphisms

k k

HE(PL x PL7(1)) 2 H}(PL x PL Z(2)) and CH'(PL x PL) 2% CH2(PL x PL).

Consider the isomorphism

CH'(P; x P}) ® H} (P} x P} Z(1)) = H} (P} x P}, Z(2))
(a,b) ® a — afa,b)

induced by the cup product. Hence the cup product with the diagonal induces a map
Br(k) — Br(k) @ Br(k) defined by a — (a,a) and then we can deduce that CHQ(]P’}C X
IP’/,%)G’c — Br(k) @ Br(k) sends the 1 — ([C],[C]). Since EX' ~ ord([C])Z we conclude
that I (C x C) = ord(][C)). O

Remark 4.2.17. If k is a field with Br(k) = 0, then the Severi-Brauer varieties X over k
split and I(X) = I¢(X) = 1. Hence Theorem {4.2.15 shows that Br(k) is an obstruction

for the existence of an étale zero cycle of degree 1.

4.3 Decomposition of étale motives

We apply Theorems and to the decomposition of integral étale motives. Even
though by Theorem there exists X such that Is(X) # 1, at least we have that
I(X) > I4(X) and in the particular case of Theorems and we obtain the
existence of integral projectors in the following sense: if there exists an element e €
CHY (X) of étale degree 1 then we define

P (X) = pri(e) - pr3(X) and p3o(X) = pri(X) - pri(e)

where pr; : X x X — X is the projection to the i-th factor, this lead us to a decomposition

of the integral motive hgt(X) as follows
het(X) = hgt(X) ® h;(X) ® h?f(X)

where h% (X) = (X, pf(X),0) and h24(X) = (X,ps4(X),0). These projectors do not
exist in the integral classical Chow groups and then we have an improvement in the
existence of integral projectors by changing from Chow to étale motivic cohomology as
expected.

Notice that in general this improvement is not always possible, for example, if C' is a

projective curve over k without a zero cycle of degree 1, then the projectors po(X) and
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4.3. Decomposition of étale motives

p2(C) do not exist and consequently there is no chance of obtaining an integral decom-
position in the classical nor the étale setting. This is a consequence of the isomorphism
CHY(X) ~ CHL (X) when X is smooth and projective over a field k of characteristic
Zero.

Our goal is to study the existence of an integral decomposition of the motive heg(X).

Let us start by giving the definition of an integral decomposition in Chowyg(k):

Definition 4.3.1. Let k be a field and let f : X — k be a smooth projective variety,

of dimension d. We say that he(X) admits an integral Chow-Kiinneth decomposition in
Chowg (k) if:

o W(X) admits a rational Chow-Kiinneth decomposition, see (MNP13, Definition
6.1.1],

2d
h(X) = P H(X) € Chouw(k)q,
=0

and this map is induced by a morphism g : he(X) — M = (Y, p) in Chowg(k).

o Consider the base change to the algebraic closure g : heg(Xg) — My. For ev-
ery prime number ¢ # char(k), the induced map pe(g) : Rf(Z/0) — Mg/l €
D(kg, Z./0) is an isomorphism and pe(p) = p1 + ... + pag with the following condi-
tions

i Zfl =7 \—1 i 7 .
piop =" p(3) " o pi(Mi/0) = RIFL(Z/2) for alli.
0ifi# 7,

This is nothing but a direct translation of the conservativity properties of the family
of functors associated to the change of coefficients in [CD16, Proposition 5.4.12] and
combining the results about conservativity [Ayol4b, Théoreme 3.9] and continuity [CD16),

Proposition 6.3.7] applied to k = @kz where k; runs over the finite fields extensions of
k.

Proposition 4.3.2. Consider a field k of finite cohomological dimension and let hg(X) €
Chowe(k). Then he(Xg) has an integral Chow-Kiinneth decomposition if and only if
there exists a field extension K/k such that he(Xki) has an integral Chow-Kinneth de-

composition.

Proof. For simplicity, up to tensoring with Lefschetz motive, which is a direct summand
of a geometric motive, we may assume that M = (X, p). If Mg has an integral Chow-
Kiinneth decomposition then the result is trivial.

Conversely, assume that there exists a Chow-Kiinneth decomposition for some field
extension K /k. For the rational part we invoke [Vial7, Proposition 1.5]. For the torsion
part, let ¢ # char(k) be a prime number and consider the field extension K/k. Consider
the morphism of s : Spec(K) — Spec(k). Let us assume that h¢(Xx) has a Chow-
Kiinneth decomposition, thus we have that p(gi) : Rfx(Z/¢) — Mg /¢ with the above
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properties for py(px). The induced functor s* : D(kg,Z/l) — D(Kg,Z/f) is an equiv-
alence of categories, hence py(g) : Rf.(Z/¢) — My /l € D(ke,Z/0) is an isomorphism,
thus we have the same results for py(p) and conclude the proof.

O

Etale decomposition of complex varieties

We present some applications of [RS16, Theorem 1.1] to the integral decomposition of
étale Chow motives. The simplest case is the one described in [MNP13, Appendix C]
for varieties without transcendental cohomology classes in degrees different from the

dimension.

Proposition 4.3.3. Fizing k = C, let X be a smooth projective complex variety of
dimension d such that the groups H5(X,Q) are algebraic for all i # d. Then hg(X)

admits an integral Chow-Kiinneth decomposition in Chowg(C).

Proof. We will use the equivalence given in [RS16, Theorem 1.1] and [MNP13| Appendix
C]. Let us start by saying that according to [RS16, Theorem 1.1.a] the map Lichtenbaum

cycle class map

;" HiY(X,Z(n)) — HE (X, Z(n))

restricted to the torsion subgroup HJ'(X,Z(n))tors — HE(X,Z(n))tors is surjective.
With this in mind we consider that the groups H5(X,Z) are torsion free and then

Poincaré duality holds, i.e. the pairing

Hy(X,2)® HEY(X,2) - Z

(@, 8) = aU B

is perfect. By [RS16, Theorem 1.1] we have H% (X, Q) is algebraic if and only if H# (X, Z)
is L-algebraic, thus there exists a set of cycles which are send to the generators {e?i
1< <ba; (X)

of H5(X, Z) and notice that by Poincaré duality we have a dual basis {éi(d_l) }
1<5<bo(g—iy (X)

for the dual of H#(X,Z). Let us remark that we have the following

) . 0if j #1
U élQ(dfz) _ J#
lifj=1

By hypothesis, there exists L-algebraic cycles {ai»

j}lﬁgbm(x) c CH} (X) and

d—i d—1
CH] (X
{al }1<l<b2(di)(x) - L)

such that
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for all 1 < j < bg;(X) and 1 <1 < by(q—;)(X). Due to the compatibility of the cycle class

map with intersection products we have that

s Joiti#

o Q e
: 1ifj=1.

.

Let us define the elements

paij = o x &l
and note that po; ; = qéi ;- Even more, these are orthogonal projectors. For ¢ < d, define

the projectors

p(X) = > oy poa—n(X) = D quy
1<5<ba (X) 1< <bgi(X)
and for 2i — 1 # d we put p9;—1(X) = 0. The remaining part should involve torsion
classes. As the groups HéjJrl(X, Z) are torsion for all j € N, the groups H?BkH(X x X,7)
are torsion for all k¥ € N by the Kiinneth formula, this implies that all intermediates
Jacobians J¥*1(X x X) vanish for all k € N. Combining [RS16, Theorem 1.1.b] and
[Ros23b, Proposition 3.1.5] we obtain an isomorphism CH’Z(X X X)tors = H%k(X X
X, Z(k))tors for all & € N, so in particular for the degree k = d. Consider that we have
the diagonal element A and let us denote the torsion free part as Ay = Z?io pi(X) and
consider Aiors = A — Ayp. As this element Agors € H%d(X X X,7Z), then it has a unique
preimage in CHdL (X X X)tors, which is denoted as Ayos again, thus we have the following

decomposition of the diagonal
2d
A= sz(X) + Ators-
§=0

Since the isomorphism CH’E(X X X )tors = H?Bk (X x X, Z)tors is an isomorphism for all
k, the projectors in H&(X x X, Z)tors can be lifted to CHA (X x X).
O

Example 4.3.4. 1. Let X be a smooth complex complete intersection in projective
space. As all the cohomology groups are algebraic and torsion free, we have a

decomposition of étale integral motives as follows:
ha(X)~1oL@...ehd(X)o... oL

where L is the Lefschetz motive and h,(X) = (X, pd(X),0) with

2d
pHX)=A— > pi(X).
i=0,2id

2. Let X be a smooth K3 surface. For such X we have the following isomorphisms

HY(X,7)~ HYX,Z) ~7Z, H'(X,Z) ~ H3(X,Z) =0, H*(X,Z)~17%*
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and Pic(X) = ZPX) | with p(X) the Picard rank of X and 0 < p(X) < 20. Since
the cohomology is torsion free, we apply Proposition[[.3.3to obtain a decomposition

of the étale motive

hea(X) ~ hg’t(X) & hﬁt(X) © hi’t(X)-

3. Let S be an Enriques surface. As H'(Og) = 0 for i = 1,2 we have an isomor-
phism Pic(S) — H]%(S, 7) ~ 7' @ Z/2 while the other cohomology groups are

characterized by
H°(S,7) = HY(S,Z) =7, H'(S,Z) =0 and H>(S,Z)=17/2.

as we can lift the torsion free part, we have to care about the torsion part of the
cohomology. By Kiinneth formula, we have that H%(S x S,Z) ~ (Z/2)®% and
H3(SxS,Z) ~7/267/2 thus we conclude that the intermediate Jacobians J*(S x
S) =0 and J3(Sx S) = 0 vanish. Combining [RS16, Proposition 5.1] and Corollary
3.1.6, we have an isomorphism C’H%(S X ) tors = Hé(S X S, 7(2))tors which acts

as the identity on the torsion part.

4. For a Calabi-Yau threefold X (for example a quintic threefold) X the Betti numbers
are h1(X) = h3(X) = 0 and h°(X) = h?(X) = h*(X) = h%(X) = 1, thus we obtain

a decomposition of the motive hg(X) as

ha(X)~1aLoh(X)eL>oL3.

Commutative group schemes

Let S be a noetherian finite dimensional scheme and let G/S a smooth commutative group
scheme of finite type over S. We start with the definition of the 1-motive associated to
G/ S, for that we define the étale sheaf induced by G/S:

Definition 4.3.5. Let Gi/S be the étale sheaf of abelian groups on Smg defined by G:
G/S(U) = Homgmg (U, G)
for U € Smg. We say that M1(G/S) is the 1-motive associated to G/S and is defined as
M (G/S) = 2*° M (G/S) € DAY(S,7),
where Mfﬁ(G/S) is the effective étale motive in DA%(S, Z) induced by G/S.

According to [AHP16, Theorem 3.7], we have a decomposition of the relative motive
Mg(G) in the motivic category DMg; (.S, Q) in the following way
kd(G/S)
Ms(G) = | @ Sym"Mi(G/S) | ® M(m(G/S)),
n>0
where M;(G/S) is the 1-motive induced by the étale sheaf represented by G//S ® Q and
kd(G/S) := max{2gs + 75 | s € S} is the Kimura dimension (g, is the abelian rank of

G5 and ry is the torus rank).
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Definition 4.3.6. The order of mo(G/S), denoted by o(mo(G/S)) is defined as the least
common multiple of the order of all the elements of the groups mo(G3/S), with s geometric
point of S.

The aim of this subsection is to see if we can lift this isomorphism to integral coeffi-
cients in DM (S, 7Z). If we want to construct such a morphism in DMg (S, Z), we have to
define the integral analogue of the symmetric algebra. For this we consider the homotopy

fixed points of a group action, where the group is finite.

S,,-actions on DM (S, Z)

In this subsection we will present some aspects about the action of a finite group G in the
category DM (S, Z) of integral étale motives. In this context, an oo-category will be an
(00, 1)-category in the sense of Lurie [Lur09]. An co-functor between two co-categories
C and D is simply a map F : C — D of simplicial sets.

Consider the group of permutations of n elements &,, and let B&,, be the category of a
single object and morphism the elements of the groups &,,. Define the homotopy fixed
points and homotopy orbits of &,, of a motive Mebz(X ) as follows: we know that
DMy (S, 7Z) carries a structure of an oco-category. Let DMg (S, Z)®S" be the category
of étale motives with a &,—action, i.e. oo-functors BS,, — DMg(S,Z). We obtain

adjunctions
()™ : DMg (S, Z) S DMg (S, Z)P9 : ()" := holimps,,,
hOCOlimBGn =: ( )hGn : DMét(S, Z)BGn = DMét(S, Z) : ( )triv

where ( )"V represents the trivial action. Let DM (S, Z)® be the underlying symmetric

hGn

monoidal category of DMg; (S, Z). We can give an explicit description of (—)"®" for some

motives by using the monoidal structure of DM (S, Z)®. Notice that for X € Smy we

have an action of &,, given by

o X" 5 X

(3717 s )xn) = (xo(l)a s axa(n))
n-times
—_——
where 0 € G,, and X" := X x ... x X. For such X and n, consider the functor
FY : BG,, — Smg
x> X"
(T %) o (X7 25 X7

We can consider the motive MeSt(X )®¥" as an oo-functor from the category Smg to
DM (S, Z)®. Therefore we obtain the homotopy fixed points of Mg (X)®" as

h&n

(MZ(X)®")"™" ~ holimpe, M5 o F(-). (4.2)

If we Q-linearize the homotopy fixed points, then we have the following result relating

them with the usual fixed points of a group action:
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Lemma 4.3.7. Let Mg(X™) ~ Mg(X)®" € DMy(S,Q), then
hS, (G2
(Ms(X)7)/ = (Mg(X)°")
and equals the image of the projector % Y oves, o Mg(X)®".

Proof. This holds in greater generality, see [CD19, p. 3.3.21]. If V is a Q-linear stable
model category and G is a finite group that acts on an object E € V we define

E"e .= holimpcE,

and define E¢ € Ho(V) as the image of

1
p(x) = @l > g

geG

Then the morphism E¢ = E"G induced by the inclusion EY — F is an isomorphism in
Ho(V). O

Remark 4.3.8. 1. The same argument works in a category DMg (S, A) if n is invertible
in the ring A. A very important remark is that the proof of the previous lemma
relies in the commutative structure of the Q-linear vector space. If we consider the
homotopy fixed points using an anti-commutative structure (and n is invertible),
then we obtain that E"®» equals the image of the projector % >

ves, Sen(o)oL k.

2. In the same way, we define the homotopy orbits of &,, as the co-invariants of
Mg (X)®", ie. in the following way (Mg (X)®")e, = hocolimps, Mz (X)®". By
the definition of homotopy colimit, we have a map Mg (X)®" — (MZ(X)®" )i,

3. Let DMy (S, Zg) be localizing subcategory of DMy, (.S, Z) generated by the objects of
the form M /¢ = Z/¢ @ M. According to [CD16, p. 7.2.10] we have an adjunction
p; : DMy (S, Z) = DMy, (S, Zy) : pes, where p; is called the /-adic realization functor,
which by [CD16, Theorem 7.2.11] it is compatible with the six functors formalism
of Grothendieck, and preserves colimits. Let D(Sg,Z¢) be the derived category of
¢-adic sheaves as in [Eke90|. Consider the equivalence of categories given in |[CD16),
Proposition 7.2.21], then DMy, (S, Zg) ~ D(Se¢,Zg), so we define the realization
functor py : DMy (S,Z) — D(Se, Zg). This functor again is compatible with the six
functors formalism of Grothendieck, and preserves colimits (as it is the composition

of a left adjoint with an ), thus we have that

pe (MG (X)®™)pe,,) = ((pEMéSt<X>)®n)h€»n :

For the sake of completeness, we will present a reminder about the theory of 1-motives,
with such goal in mind, we present some of the main results of [Org04]. Consider a
commutative group scheme G over a perfect field k. According to |Org04, Lemme 3.1.1],
the sheaf G is an étale presheaf which admits transfers. Notice that as a presheaf G

~

is homotopy invariant i.e. G(U) = G(U x A}) is an isomorphism for any k-smooth
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4.3. Decomposition of étale motives

variety U, for a proof see [Org04, Lemme 3.3.1]. As we have a morphism of a complex of
sheaves CS%ZI (G) — CP%(G) and a quasi-isomorphism G — C$(G), finally we obtain
a morphism in DM (k, Z) between the motives Mg (G) =2 M, (G).

If we want to work over a noetherian base .S, and simplify the condition about étale
sheaves with transfers, we work with the category DA®(S,Z). Consider a commuta-
tive group scheme G over a noetherian base S and let G/S the associated abelian sheaf
and M;(G/S) the 1-motive described in Definition AS we have a morphism of a
complex of pre-sheaves ag g : ZHomg(:,G) — G/S, then after sheafification we obtain
a morphism aerf/S : Mé‘z’eﬁ(G) — MH(G/9) EESE(S, Z). Finally we obtain a mor-
phism in DA®(S,Z) between the motives ag/s = Eooa‘éﬁ/s : ME(G) 4 My(G/S) in
DA (S, 7).

As the functor Mg is monoidal and commutative, we obtain an isomorphism Mg, (G x
n-times

———
G) ~ Mg (G) ® M§(G). For the general case we denote M, (G)®" := M (G x ... x G).
For a fixed n and using the n-diagonal morphism 58/5 :G — G x ... x (G, we obtain an
induced morphism of motives

(0% o)+
ME(@) =L Mg (G)En.

Together with the map ag we construct a map

(67 )w a®mn
bn - ME(G) —20 M5 (G)E™ 2225 My (GS)®™.
Notice that Mf;(G)@)" admits an action of the permutation group &,,, and this action
leaves invariant the diagonal map 4, /s Therefore we can apply the functor of homotopy

fixed points h&,. With this, we have a commutative diagram

Xn
®G/s

ME(G) MG(G)*" ——=—— Mi(G/S)*"

(ag/sk . |

(ME(@)'S 5 (ary(a/s)"m)

(0%5)+

hGn,

We denote the composite map a%’}s o (58/5)* : ME(G) — (Ml(G/S)®”)hG” as /g -

€

Definition 4.3.9. Let G be a smooth commutative group scheme over a noetherian

scheme S. Then we define the following:

ba/s =Dty : MEG) — D (M(G/9)=) "

i>0 i>0
in the category DMg(S,Z). We define the weak symmetric algebra of M1(G) as
i\ h&;
wSym(Mi(G)) == €P (Mi(G)®")"™" .

>0
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Let us give some information about the realization of the morphism ¢¢/g presented in
Definition [4.3.9] in the category D(Sg,Z/¢™) for a prime number ¢ invertible in S and n €
N. We have a realization pz/m : DMy(S,Z) — D(Sg,Z/0") and denote M1 (G/S, (") =
pzen(M1(G/S)), which is a complex in degree —1. We use H1(G/S,Z/(") for the
homology of M;(G/S,¢") is degree 1 and H!'(G/S,Z/¢") for the cohomology of the
complex M;(G/S,¢") in degree —1. If the base is S = Spec(k) with &k = k then
D(ke, Z)0) ~ (Fp — v.5.)%, where (F; — v.s.)% is the category of Z-graded F,-vector
spaces, H1(G/S,Z /") is a finite dimensional Fy-vector space.

Lemma 4.3.10. Let ¢ be a prime number invertible in S, n € N and consider the
realization functor pgm : DMg(S,Z) — D(Se, Z/€"). Then:

1. if ¢ : DMg4(S,7) — DMg(S,7Z) is an additive functor and ¢ : D(Sg, Z/0") —
D(Se,Z/0") its associated counterpart with finite coefficients, then the functor
Pz en commutes with ¢, in the sense that b= pz/en © §-

2. If S = Spec(k) for some field k, then pg m(M1(G)) = Hi(G,Z/1") ~ G[E”][I]H.
3. There exists N >> 0 such that (My(G/S)®™)"Sm =0 for allm > N.

Proof. 1. Recall that the functor is defined as pg (M) = Z/0* @ M = coker(M N
M), therefore we have a canonical isomorphism pz /(M) ~ Cone(¢" -idys). Let ¢ be an

additive functor, then in the commutative diagram

G(£"-idps)
M= G(M) —— & (pzjen(M)) =
H [n 1d¢(]v1) H +1

QM) —— pzyen(p(M)) —

the right vertical arrow is an isomorphism as well.

2. Let us consider the 1-motive M;(G) = G which is concentrated in degree 1. Recall
that the f-adic realization of M;(G), integral or rational, is given by the Tate module
Ty(G) = lim | G[("], thus pzem (M1(G)) ~ G[£"][1] by the transition maps.

3. Using Lemma we see that the weak symmetric algebra of M;(G/S) with
rational coefficients coincides with the symmetric algebra of M;(G/S). In particular
Sym"(M;(G/S)) = 0 in DM (k, Q) if n > kd(G/S) by |[AHP16, Proposition 4.1]. The
only argument that remains to be given is for the torsion part. For this, consider a
prime number ¢ invertible in S. Notice that wSym(H.(G/S,Z/¢)) is anticommuta-
tive by the cup-product, see [Fulb, Proposition 7.4.10], therefore according to the first
point in Remark if n and ¢ are coprime, we have that (H;(G/S,Z/0)%")Sn ~
A" H1(G/S,Z/¢), and in particular vanishes if n > kd(G/S). If n and ¢ are not coprime,
then we proceed as follows: we can reduce to the case where S = Spec(k) for an alge-
braically closed field k. Then by the point 2, we have that M;(G/S,¢") is a complex in

'Here the first square bracket is associated to the ¢"-torsion of G and the second is associated to the
translation functor.
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4.3. Decomposition of étale motives

degree 1 whose first homology group Hi(G/S,7Z/¢) is a finite dimensional vector space
over [Fy. Let r¢ be the dimension of H1(G/S,Z/¢) and let {e1,..., e} be a base, then if
we consider m > 1y, then there will always be at least one e; repeated in e;, ® ... ® e;,,
as a base of H1(G/S,Z/0)®™. By the alternating action of &,, in H1(G/S,Z/¢)®™ and
the description in this particular case of the homotopy fixed points given in , we
conclude that (H1(G/S,Z/6)®™)"Sm =0 for all m > 7.

Since the family of functors associated to the change of coefficient is conservative,
then one concludes that N = max,{kd(G),r¢}. O

Remark 4.3.11. 1. Consider S = Spec(k) with k an algebraically closed field, then for
a commutative algebraic group G/k. By an argument given in [BS13, Proposition
4.1] involving reduction to the assumption that G is semi-abelian, we may assume
that GG is the extension of an abelian variety A by a torus T, we have a short exact
sequence 1 — T[("] — G[{"] — A[{"] — 1 obtaining that G[{"] ~ (Z/{™)?9F,

where ¢ is the dimension of A and r is the rank of 7.

2. Under the same assumptions for S, thank to the second point of Lemma
we get that pz/(Mi(G)) € D(kes, Z/0) ~ (Fy — v.s.)%, where (Fy — v.s.)” is the
category of Z-graded Fy-vector spaces, is a finite dimensional Fy-vector space. Since
the dimension of the vector space depends only on G and not on ¢, we can say that

the N described in point 3 of Lemma corresponds to the Kimura dimension
kd(G).

Lemma 4.3.12. Let G be a smooth group scheme over a field k = k and let £ be a
prime number different from char(k). Then we have an isomorphism in D(keg, Z/0) ~

(Fy — e.v.)? given by

Kd(G) /i
pze(Ma(G)) = Ma(G)/t = P (/\ Hl(G,Z/€)> [1]
i=0

Proof. First, we have that M;(G) is a geometric motive and is Z-additive, therefore we
have M1 (G x H) ~ My(G) @ M;(H). Let us recall that the weak symmetric algebra of
Mi(G/S) is defined as
kd(G)
wSym(M;i(G)) := (M1 (G)®")
i

By point 1 of Lemma pz,/¢ commutes with any additive functor, so we get

Q

hG&;

Il
=)

k(@) . kd(G) -
i\ hSi i i
prye | @D (MG | = @ pzye ((M1(6))").
=0 =0

Notice that by definition pz,(M) = M @ Z /(. Since — @ Z /¢ commutes with colimits

and is monoidal, see |[Ayol4b, Definition 5.6], we obtain an isomorphism

Pz/e ((M1(G)®i) > ~ (pzy0 (M1(G)®"))
~ (H1(G,Z/0)%) "

h& h&;
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So in terms of realization we obtain pz/,(WSym(M;(G))) ~ wSym(H1(G,Z/¢)). No-
tice that if £ > kd(G), then we get immediately (using the proof in point 3 of Lemma
4.3.10) that wSym(H: (G, Z/0)) ~ @< (/\Z’m(G,Z/z)) .

In the following part we will prove that for a prime ¢ # char(k) and G, H two

smooth commutative algebraic groups we have an isomorphism wSym(H, (G x H,Z/{)) ~
wSym(H1(G,Z/0))@wSym(H1(H,Z/¢)), which will allow us to conclude when ¢ < kd(G).
By definition

wSym (M (G x H)) ~ wSym(M;(G) & M1(H))
kd(Gx H) e
- P (na@ o))
i=0
Since the homotopy fixed points of a motive M are defined as a homotopy limit, they
commute with finite sums. For simplicity we write M := M;(G) and N := M;(H), thus
we have (M®" @ N&)'Sn ~ (318n)'Sn g (N®m)"Sn - Moreover we have a canonical

morphism

n (7)
holimpe, (M & N)®" — (M @& N)*" ~ (G M® @ N*",

i=0
where the last isomorphism is obtained by the distributive and commutative proper-
ties. Since pz/, commutes with additive functors and limits and is monoidal, we obtain
P70 (((M ® N)®”)h6") ~ (M/t® N/€)®")h6", passing to the realization pyz/, and due
to the anticommutative structure given by the cup-product, if n and ¢ are coprimes, then

n

(M/L@w NJOE) " = \(M/L & N/2),

Notice that the functor B&; x B&; — B(6; x &;) is an equivalence of categories,
then

(M) @ (N/2)n )M 8n) o holimpe e, (M/0) @ (N/0)*
~ (M0 0 (N/0)=nT)Sns.

Due to the anticommutativity of the weak algebra, we have an isomorphism of Fy-

vector spaces

(?)—times (n)

i

holimpe, M® @ N" '@ ...& M® @ N"" —— (HM® @ N

l: /'

hOIimB(GiXGR,i)M(gi X ani

Therefore, we have an isomorphism of graded (anticommutative) algebras wSym(H (G X

H,Z/0)) ~ wSym(H1(G, Z/t)) @ wSym(H, (H,Z/1)).
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4.3. Decomposition of étale motives

So the final argument is that the addition map m : G x G — G induces a morphism
of graded algebras over the field Fy

m* : wSym(M;(G)/¢) — wSym(M;(G)/¢) @ wSym(M;(G)/¥)
xl—>x®1+1®x+2xi®yi.

By a lemma about the fundamental structure of such algebras, [Mil86, Lemma 15.2], we
have that wSym(M; (G)/f) ~ @ (/\i 11(G, Z/€)> . O

By using the properties of conservative functors associated to change of coefficients
described in |[CD16, Proposition 5.4.12], which for the sake of completeness, we recall

such proposition:

Proposition 4.3.13 (|CD16, Proposition 5.4.12]). Let P be the set of prime integers
and S be a noetherian scheme of finite dimension. If R is a flat ring over Z, then the

family of change of coefficients functors:

PQ : DMh(S, R) — DMh(S,R(X) Q)
Pz/p * DMh(S, R) — DMh(S, R/p), peP

1S conservative.

With this proposition, we get an improvement of the results obtained in [AEH15],
getting the following theorem:

Theorem 4.3.14. Let k be an algebraically closed field and G /k a connected commutative

group scheme. Then the morphism

kd(G)

bc : Mg(G) — @ (M1(G)®)

1=0

hGS;

is an isomorphism in DMg(k,Z).

Proof. We split the proof into two steps: first we start by looking at the functor pg. Ap-
plying Lemma we obtain that the induced morphism by pg(¢¢c) is the morphism
v given in [AHP16, Definition 3.1] and |[AHP16, Theorem 3.3, with S = k, which
is shown to be an isomorphism in DMg(k, Q). The reason behind this is the follow-
ing: po(Me(G)) = M(G) and by Lemma [4.3.7| we have pg <@?;18G) (Ml(G)®i)hGi) ~
@;{ig@ Sym"™(M;(G)) and finally, by construction of the morphisms ¢g and g of Def-
inition and |[AHP16| Definition 3.1], and the uniqueness part of [AHP16, Theorem
2.8] we get that pg(da) = ¢a-

For the second step, we fix a prime number ¢ # char(k). Let us consider the functor

pz,/¢ and let us compute the elements of

kd(G)

p20(06) : pzse (Mee(G)) — pzse | D (Ml(G)@)hGi
i=0
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Here we are assuming that the realization functor is covariant (sending the elements

to homological instead of cohomological objects). By [BS13| Theorem 4.1] we have that

kd(G) i
H;(G,Z/t) ~ (/\H%G,Z/@) [i],

=0

where / is a prime number not equal to char(k). Consider the duality operator Dy on
D(ke,Z)0), let f : G — k be the structure morphism and d the dimension of G. By

definition we have

Dy (pze (Mt(G))) ~ Dy fif (Z/0)s
~ fuDa(Z/t)c
>~ (Met(G)e)(d)[2d].

Here the first isomorphism pz/, (Mt (G)) =~ fif Z/0)}, is because the realization functor
commutes with the six functors formalism, see [CD16, A.1.16], while the second are third
are given by [ILO14] Exposé XVII]

As we stated in Lemmaf4.3.12} one has that pz /(M (G)) =~ EB?:E)G) (/\Z Hi(G, Z/f)) [1]

for all ¢ # char(k), whose dual is isomorphic to @?iéG) </\Z HY(G, Z/ﬁ)) [i], thus by con-

servative properties given in [CD16, Proposition 5.4.12], we conclude that

Me(G) = (M1(G)®)"S" € DMy (k, 7).

O

Theorem 4.3.15. Let S be a good enough scheme in the sense of Definition[2.1.4}, and let

G be a connected commutative scheme over S. Then the morphism ¢g given in Definition

is an isomorphism.

Proof. Consider a morphism of good enough schemes f : T'— S, we have that f*M;(G/S) ~
Mi(Gr/T) € DM (T,Z). As we have done before, we will split the proof in two: first
for rational coefficients DM (7T, Q) and then for DM (T,7Z/¢) for all prime integer ¢
invertible in T'. According to [AHP16, Proposition 2.7], one has that f*M;(G/S)q ~
Mi(G1/T)g € DMg(T, Q). On the other hand, having shown that pzm(M1(G/S)) ~
G/S[¢"][—1], and that by the universal property of fibre product we have f*G/S ~
GiT/T . Invoking [Ayol4b, Théoreme 6.6(A)] one gets for a quasi-projective morpfhism
mz ser = pzyer © 7, thus we get the following isomorphism

pzen(F*M1(G/S)) =~ f* (pzm (M1(G/S)))

~ Gr/T"][1] = pg e (M1 (GT/T)).
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4.3. Decomposition of étale motives

As ¢ is any prime number, then we conclude that f*M;(G/S) ~ M1(Gr/T) € DM (T, Z).
In particular we obtain that ¢g is natural over the base. By the previous fact, we get

that the morphism ¢¢,. := f*(¢q) acts as follows:

kd(G/S) . p kd(Gr/T)
MEQ) 2% @D (Mi(G)S)E) " ME(Gr) 25 @ (My(Gp/T)®)"®
1=0

In this way, for any geometric point iz : § — S we have an isomorphism of mo-
tives i M1(G/S) ~ M1(Gs/5), and then by the previous remark, if(¢g) = ¢, for any

geometric point § of S, the map

_ Gs

Mg (Gs) — (My1(Gs/5)%"
turns out to be an isomorphism by Theorem 4.3.14. By Lemma the family of

functors 7% is conservative, therefore ¢¢ /g is an isomorphism. O

Remark 4.3.16. The direct factor h,(G/S) = (bé}s ((Ml(G/S)®n)h6n) of MS(G) is
characterized as follows: for m € Z that is equal to 1 modulo o(m(G/S)) (see Definition
[4.3.6), the map Mg ([m]) operates on h,,(G/S) as m™-id. This is a consequence of [AHP16],
Lemma 2.6(1)]. If we tensorize by Q, we recover the following fact about decomposition
of the motivic cohomology groups of G: Suppose that S is a good enough scheme. Then
for every bi-degree (m,n) € Z? the relative étale cohomology groups of G in degrees

(m,n) with integral coefficients decomposes as

kd(G/S)
Hit(G/S,Q(n) ~ € Hyl(G/S,Qn)),
=0
where
Hypl(G/S,Q(n)) = {Z € Hyj 4(G/S.Q(n)) | [n]*Z =n?Z, ¥n = 1(mod o(mo(G/S)))} .

As is stated in [AHP16, Theorem 3.9].

Let A be an abelian variety over an algebraically closed field k, the question which
arises naturally is if the isomorphism Mg (A4) — @kigA) (M (A)®i)h6i comes from an

morphism in Chowg (k).

Proposition 4.3.17. Let A be an abelian variety of dimension g over a field k = k, then

the following are equivalent:

1. the isomorphism Mg(A) — @?io (Ml(A)®i)hGi is a morphism in the category
Chowg(k).

2. The exist an element h € Chowg (k) such that h ~ M;(A) € Chowg(k).
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Proof. Let A be an abelian variety over k of dimension g, and consider the map
il hS
Mg (A) = €D (M1 (A)®)™" € DMey(k, Z).
i=0

Let us remark that he(A) ~ Mg (A) by the full embedding of Chowe (k)P —
DMg(k,Z). If we assume (1), then (2) follows immediately since M;(A) is a direct
factor of the finite sum @?io (M, (A)®i)h6i € Chowgy (k).

If we assume (2), there exists an element h € Chowyg (k) such that h ~ M;(A), then
h®" € Chowg (k) for all i > 0. We will assume that h = (X, p) for some X € SmProj,
and p € Corrd, (X, X). In other words, p € Endchowe, (k) (R(X)) =~ Endpyy, (k,2) (M (X)),
therefore p®™ € Endcpow,, (k) (R(X)®™), thus we define (p®™)"S» as the image of p®" in
Endpg,, (5,7 (M (X)®")"6"), we then define the motive

n-times

—_——
(h®n)h6" = (X x...x X, (p®™")"®") € Chowy (k)
Then we see that morphism Mg (A) — @7 (M1(A)®)™" is in Chowe (k). O

Changing the coefficients in the proof of Theorem[4.3.14], we obtain that he;(A) admits
an integral Chow-Kiinneth decomposition in Chowyg (k) if the 1-motive M;(A) belongs
to the category Chowyg (k).

In order to give an example of an integral étale motive with Chow-Kiinneth decompo-
sition, we should recall some results coming from the classical theory of abelian varieties.

We have the following results:

Lemma 4.3.18. Let C be a smooth projective curve over an algebraically closed field k,
and let J(C) be the Jacobian of C, then:

1. the motive Mg(C) can be decomposed as Mg(C) ~ 1@ hL(C) & 1(1)[2].
2. If C' is another smooth projective curve over k, then

Hom chowg () (héa(C), hiey(C')) = Homay (J(C), J(C)) [1/p].
3. The motives ht,(C) and My(J(C)) are isomorphic.

Proof. 1. It is a classic result, for instance see [MNP13, Theorem 2.7.2] and the fully-
faithful functor of 1-motives to the étale cohomology with integral coefficients.

2. This is a consequence of the isomorphism

HomChow(k)Z (hl (C)v hl (Cl)) [1/]7] = HomChOWét(k/‘) (hét(c)v hét(cl))

and [MNP13, Theorem 2.7.2.(b)].

3. The argument is the same as in [AEH15, Lemma 4.3.2]. Consider the 1-motive
My (C') which is cohomologically concentrated in degrees 0 and -1 as is given in [Voe00,
Theorem 3.4.2]. The cohomology in degree 0 is Pic¢[1/p] while in degree 0 is equal to
G [1/p]. Since Zc(1)¢r ~ G [1/ples[—1] we obtain that 161(1)[2] ~ Z[1/p]®Gm[1/p][1].
The remaining object is given by the kernel of the map Picc/,[1/p] — Z[1/p], which is
isomorphic to M;(J(C)). - O
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Theorem 4.3.19. Let k = k be a field and consider C;/k a projective smooth curve, for
i €{1,...,n}. Then the variety J(C1) x ... x J(Cy) admits an integral Chow-Kinneth

decomposition.

Proof. By point 3. of Lemma one has an isomorphism h} (C;) ~ M;(J(C;)). Since
M, is an additive functor, we obtain M;(J(Cy) x ... x J(Cy)) ~ @;, M1(J(C;)), thus

My(J(Ch)x...xJ(Cy)) =~ @i bl (C;) in Chowet(k) Therefore M;(J(C1) x...xJ(Cy))
is 1som0rphlc to the motive h = (I, Cs, Y1, p&.(C;)) € Chowe (k) O

Recall that thanks to [Kin93] we have Chow-Kiinneth decomposition with rational
coefficients for abelian varieties and that by |[AEH15, Proposition 4.3.3] the hq(A) part
is isomorphic to M;(A)g in Chow(k)g. Given the part hi(A) of the motive h(A) and
its associated projector pi(A), then we can characterize the existence of an integral étale

Chow-Kiinneth decomposition in the following way:

Theorem 4.3.20. Let a field k = k and consider A an abelian variety of dimension g

over k. Then the following statements are equivalents:
1. hg(A) admits an integral étale Chow-Kinneth decomposition.

2. The projector associated to hi(A) € Chow(k)g can be lifted to a projector in
CHY(A x A).

Proof. 1. (=) 2. is immediate. If we assume 2. then there exists an element p €
CHY, (A x A) such that hi(A) = (A,pg) € Chow(k)g where pg is the image of p in
CHY, (A x A)g. Then the realization of the motive h = (A, p) coincides with hy(A) if we
change to rational coefficients. If ¢ # char(k), then Hy(Ag, Ze) = Te(A) is Zy-torsion free
since A[("] ~ (Z/#™)%, so we have an injection Hj(Ag, Z¢) < Ty(A) @ Qp = Hy(As, Qp),
therefore pg acts as the identity on Hy(Agt, Zy).

Consider the realization pn € CHY (A x A,7Z/{™), where the last group is isomorphic
to Hé%f](A x A,Z/0"). As Qy is a flat Zs-module and im . is a right exact functor we
have that ps acts as the identity over Hi(Ag, Z/0™). d

Theorem 4.3.21. Let k =k be a field and let A be a principally polarized variety. Then

there exists a Chow-Kiinneth decomposition of A.

Proof. Consider an abelian variety A/k, then we have that

Endchowe, (k) (het(A)) =~ Endpa, (r) (Mt (A))-

Since Mj(A) is a direct factor of Mg (A), then it defines an endomorphism p of M (A),
as the endomorphism of the motive hei(A) is defined as CHY, (A x A) where g = dim(A)
Since p € CHY (A x A) such that p? = p, thus we define the motive hi(A) := (4,p,0)
The functor Chowg(k)? — DM (k), sends hi(A) — M;i(A), therefore, as M;(A) €

O

Chowyg (k) we conclude that hg(A) admits a Chow-Kiinneth decomposition.
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Theorem 4.3.22. Let X be a smooth projective variety of dimension d over an alge-
braically closed field k. If Pic®(X) is a principally polarized variety, then there exists a

decomposition of the motive hg(X) as
ha(X) = hg(X) © hiy(X) ® hE(X) @ W31 (X) @ hE (X)

Proof. An abelian variety A admits a principal polarization if and only A admits one.
So if A = Pic%(X) then the Picard variety is principally polarized if and only if Albx (k)
admits one. Let k be an algebraically closed field and let A be a principally polarized
abelian variety A : A = A induced by a symmetric ample line bundle. We have an

injection
Homay (A, A) < Homg, (Ty(A), T,(A))

Therefore A\ induce an isomorphism of Tate modules. Since we have the following iso-

morphisms
2g 1 2g 1
(A, Zy) = Ty(A) = Ty(A) ~ (A4,2Zy)

considering the isomorphism H}, (A, Zy) ~ Hgffl(g, Zy¢). Since A is induced by a cycle
(thanks to the integral étale Fourier transform). Now take an hyperplane H in X and

intersect it with itself g — 1 times, then it induces a Lefschetz operator
-1 2g—1
LY H(X, Ze) — HGd ™ (X, Zg)

which turns out to be an injection. We will see that there exists and étale cycle in
CHY, (A x A) whose multiple by an integer equals the Lefschetz operator. We recall that

there exists isomorphisms

Homg,,,p,0;, (X, Pic’ (X)) ~ Homay (Albx (k), Pic’(X))
~ CH}, (X x X)/CHL(X x X)

where CHL(X x X) = prj(CH, (X)) @ pry(CH, (X)) and Homgmpmjk stands for the
pointed morphisms of smooth projective varieties over k. Thus the polarization A :
Albx (k) — Pic’(X) is induced by a divisor in X x X. Now consider the abelian va-
riety A = Pic%(X), then there is a morphism A~ : Pic%(X) — Albx(k), thanks to
the existence of a Fourier transform with integral coefficients which is motivic. The cy-
cle e1(Ppio(x))* 7 /(29 — 1)! € CHZ ! (Pic”(X) x Albx (k) where g = dim(Pic’(X))
induce an isomorphism H'(X,Z/¢") — H?¥~1(X,Z/¢"), since we have isomorphisms
f:Picd(X)[¢"] ~ HY(X,Z/¢") and g : Albx (k)[("] ~ H*~1(X,Z/¢") which are induced
by divisors in CH}, (X x X), see [Mil80, Chap. III, Cor. 4.18], thus we associate the cycle

c1(Ppico(x) )29t
(2g — 1)!

A li=go o f' € CHL(X x X).

By arguments given in [MNP13, Lemma 6.2.3], one has that Lg{l defines an isogeny
a : Pic’(X) — Albx (k) and another one 3 : Albx(k) — Pic®(X) such that a0 8 =

146



4.3. Decomposition of étale motives

m-idarpy (k) and oo = m-idp;e0(x) for some m € N. If we take the isogeny A : Albx (k) —
Pic’(X) and A7 : Pic”(X) — Albx (k), with this, we have that A" o A = idajp () and
AoA™t = idp;e0(x), since avo f is induced by an algebraic cycle and also A~Lo) (but in this
specific case it is induced by an étale cycle). Therefore m is invertible in CHY, (X x X),

thus we obtain the existence of the projector p{*(X) and pS, ;(X). O

PD-structure

Let X be a quasi-projective scheme over a field k. For an integer d > 1, we define the d-th
symmetric power Sym?(X) of X (over k) as the quotient of X% by the natural actions of
the symmetric group &, (this quotient always exists for a finite group, see [DG70, II, §,
n°6 ]). This quotient is functorial in the sense that for a morphism f: X — Y between
quasi-projective k-schemes we have that Sym?(f) : Sym%(X) — Sym?(Y).

Lemma 4.3.23 (|]MP10, Lemma 1.1]). Let X be a quasi-projective scheme over k.
1. The quotient morphism qq x : x4 - Symd(X) s again quasi-projective.

2. Assume that X is equidimensional of dimensionn > 0. Then X% and Symd(X) are
equidimensional of dimension dn, and there exists a dense open subset in Symd(X)

over which qq x s étale of degree d!.

3. Assume that X is equi-dimensional and that there exist mon-negatives integers
di,...,d, such that dy + ...+ d, = d. Then the natural map

adydy Symd1 (X) x...x Syde(X) — Symd(X)

is finite, and there is a dense open subset in Symd(X) over which it is étale of

ﬁ. Ford, e > 1, the natural map Sym®(Sym®(X)) — Sym®(X) is

1 ayt

finite, and there is a dense open subset in Sym(X) over which it is étale of degree
(de)!

d!(ehd

Let us consider a quasi-projective scheme X over a field k. Consider the d-diagonal

d d
embedding X 2% X and the composite map pg : X o, xd X, Sym?(X). Since §%

degree

and gq x are proper morphism, then we have a push-forward map
(pa)« : CHy;(X) — CHg, (Sym?(X))
In the same way we define the Pontryagin product as
CHE (Sym™ (X)) x CHE (Sym® (X)) — CHE (Sym™ +2(X)

using the formula zxy := (a4, 4,)«(x xy). Foracycle§ =70 n;Z; with Z; € CHE(X),
we define
W= Y nfen (2 % (Z)
dy+..Adr=d

For d = 0 let us set for an element a € CH(X) the vo(a) = [Spec(k)] € CHS'(X), which
is the unit element in CHS'(X).
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Lemma 4.3.24. Let X be a quasi-projective scheme over k, then:

1. If Z € CHitO(X) and dy,...,d; are non-negative integers with di+...+d; = d then

d!

Va (Z) % -+ %74, (Z) = m

2. Let &1,...,& be cycles in CHY(X), and let € = 3'_ &. Then

Vd(g) = Z Y1 (51) ¥oeeox ’Ydt(ft)'

di+..+dy=d
3. Ifi: V< X is a closed immersion and let & be a cycle in CHZ(V), then
va(ix€) = Sym® (i) (va(€)) € CHg, (Sym? (X))
4. Let V C X be a closed subscheme, equidimensional of positive dimension. Then
va([Vle) = [Sym (V)] a

where we view Sym? (V) as a closed subscheme of Sym?(X) and [Sym® (V)]s repre-
sents the image of the algebraic cycle [Sym®(V))] € CHgp(Sym? (X)) in CHS (Sym? (X))

Proof. (1) is a direct consequence of [MP10, Lemma 1.1.(iii)], [CD19, Proposition 11.2.5]
and the existence of a functor DM(X,Z) — DMg(X,Z). The same argument works for
(2) and the compatibility of the comparison map.

(3) This again is obtained by the definition of Pontryagin product using push-forward.
The push-forward via the map Sym?(i) : Sym¢(V) — Sym?(X) respects Pontryagin
products.

(4) Is a direct consequence of [MP10, Lemma 1.3.4] and the compatibility of the

comparison map with proper push-forwards. ]

Lemma 4.3.25. Let f : X — Y be a proper morphism of quasi-projective k-schemes.
Then for all x € CHZ,(X) and all d > 0 one has

Sym®(f)«(va(@)) = valf<z)
Proof. This follows from [MP10, Proposition 1.5] and [CD19, Proposition 11.2.5]. O

Let k be a field and let (My,),en be a commutative graded monoid in the category of
quasi-projective schemes. Recalling such definition: M, is a quasi-projective k-scheme
for all n > 0, and that we have product maps fim,, : My, x My — M;,4,, which satisfy
commutativity and associativity. Assuming that there exists a k-rational point e € My (k)
which is a unit for these products and that the maps ji, ,, are proper morphism, then
we can define the Pontryagin product on the ring

CHE (M,) := @5 CHE (M)
neN
by the formula z %y := (jim.n)«(z X y) for x € CH®(M,,) and y € CH®(M,,). Something
that we ought to notice is that the iteration of the multiplication map i, 1 : M,‘f — My,
factors through the proper map pq : Symd(Mn) — My,,. We set pg to be the map e — M.
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Theorem 4.3.26. For a commutative graded monoid (My,)nen with identity and with

proper product morphisms, the maps
"yM : CHét M,) — C’Hét M
d - >O( n) * ( dn)

given by x +— (pa)«va(z) estends uniquely to a PD-structure {y}}s>0 on the ideal
CHZ,(M,) C CHY(M,). The PD-structure is functorial with respect to (f : My, — Ny,)
which are proper for all n € N.

Proof. Let x =), cNTn, Tn € CH%,(M,) and x,, is non-zero for finitely many n. Thus

we define

val@) = Y i () s ()
di+do+...=d

Clearly by definition we get ’yé\/f (A\x) = )\d'ycjl‘/f (z), and by Lemma [4.3.24] we have

Wty = > @) =)
di+dso=d
for all x, y € CHE,(M,) and for all d > 0. As this formula holds, for z € CH%;(X) and

d, e > 0 we obtain the following relation

d+e
@) ttia) = () et
For the other property

(de)!
v (v () = W%jg(fﬁ)

we apply [CD19, Proposition 11.2.5], the functorial properties of the topology change

p: Xet = Xzar and [MP10, Lemma 1.1.(iii)]. O

If X is a smooth quasi-projective k-scheme then the previous construction gives a
PD-structure on the graded ideal P, CHE,(Sym®(X)). If M,, = 0 for all n > 0 (like
for example an abelian variety and the multiplication) we obtain the following version

(which is ungraded):

Corollary 4.3.27. Let M be a commutative monoid with identity in the category of
quasi-projective k-schemes, such that the product morphism p: M x M — M 1is proper.
Let pq : Symd(M) — M be the morphism induced by the iterated multiplication map
M? — M. Then the maps v} : CHZ (M) — CHZ(M) defined by x +— (pa)«va(x) define
a PD-structure on the ideal CHSy(M) C CHE(M).

Corollary 4.3.28. Let k = k be a field. Let A be an abelian variety over k, then there is
a canonical PD-structure, with respect to the Pontryagin product, on the augmentation
ideal in CHY(A), generated by CHfO(A) together with the 0-cycles of degree 0.

Proof. Let I C CHSt(A) be the ideal of 0-cycles of degree 0 on A. After noticing that
over algebraically closed fields we have an isomorphism CHg(A) ~ CHE(A), then the
existence of the PD structure is due to [MP10, Corollary 1.8]. O
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Etale Fourier transform

Let A be an abelian variety over a field k. The Fourier transform on the level of Chow

groups is the groups homomorphism
Fa:CH(A)g — CH(A)g

induced by the correspondence ch(P4) € CH(A x X)Q, where ch(Py4) is the Chern char-

acter of P4. One has the Fourier transform on the level of étale cohomology:
8t HE (A, Qe(®) = HE (Aps, Qul))

which preserves integral cohomology classes and induces, for each ¢ with 0 < ¢ < 2g, an

isomorphism
Sa: Hét(Aksvzf(n)) — Hgtgii(gk’sa Z@(?’L +9— 2))7

and if k& = C, then ch(P4) induces, for each 0 < i < 2g, an isomorphism of Hodge

structures
Fa: HY(AZ) - HY (A, Z(g —i)).

Definition 4.3.29. Let A be an abelian variety over k and let Fg : CHg(A) — CHét(ﬁ)
be a group homomorphism. We call Fs a weak integral étale Fourier transform if the

following diagram commutes

CHa(A) —2%— CHu4(A)

| !

F -~
CHg(A)g —2+ CHu(A)g.
We call a weak integral Fourier transform Fg algebraic if it is induced by a cycle I' €
CHu4(A x A) that satisfies Lo = ch(Pa). A group homomorphism Fe : CHgy(A) —
CHét(A\) is an integral étale Fourier transform up to homology if the following diagram
commutes:

CHz(A) i » CHy(A)

! !

29
D HE(Aps, Za(i) @H (Aks, Za(3)).
=0

Finally an integral étale Fourier transform up to homology Fe is called algebraic if it
is induced by a cycle T € CHgy(A x A) such that cT) = ch(Pa) € @?ﬁo HZ((A x
E)ks,Zg(i)). Similarly, a Zg-module homomorphism Fg o : CHgy(A)z, — CHét(;{)Zé is
called an (-adic integral Fourier transform up to homology if Fee is compatible with
§a and the L-adic cycle class map. If such homomorphism exists and is induced by a
cycle I'y € CHg(A % A\)ZZ and cl(I'y) = ch(P4) is called an algebraic £-adic integral étale

Fourier transform.
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-~

If Fg : CHg(A) — CHg(A) is a weak integral étale Fourier transform, then Fg; is an

-~

integral étale Fourier transform up to homology. If k = C, then Fg; : CHgy(A) — CHgi(A)
is an integral étale Fourier transform up to homology if and only if F¢; is compatible with
the Fourier transform §a : Hj(A,Z) — HE(A\, Z) on Betti cohomology.

Lemma 4.3.30. Let A be a complex abelian variety and let Fg : CHgy(A) — CHét(A\)

be an integral étale Fourier transform up to homology.

1. For each i € N the integral étale Hodge conjecture for degree 2i classes on A implies

the integral étale Hodge conjecture for degree 2(g — i) classes on A.

2. If Fu is algebraic, then Fa induces a group isomorphism Z%(A) — Zzt(gfi)(zzl\),

where ZEZ(A) is the image of the Lichtenbaum cycle class map.

Proof. Consider the following diagram

i Fe n TN
CHg, (A) — CHg(A) —=— CHg(A) —— CHY, '(4)

HE(A,Z) —— H}(A,Z) — HY(A,Z) —— HA(4,7)

The composition of the bottom line H%(A,Z) — H29-)5(A, Z) is an isomorphism of

Hodge structures, then we obtain a commutative diagram

CH. (A) —— CHZ ‘(A)

ét
i g—1i
icét J/Cét

Hdg*(A,Z) —= Hdg>v=" (A, 7)
Thus t}ie surjectivity of ¢, implies the surjectivity of e ‘ Arguing in the same way for
A and A we obtain the desired equivalence. O

For an abelian variety A over k we define the following cycles:

(=c1(Pa) € CHL(A X A)g,

c1 (,PA)Qgil
(2g — 1)!

c1(P3) € CHY (A x A)g
_ (:1(771@)29_1 991, ~
== W S CHét (A X A)Q

For a € CHg(A)g we define E(a) € CHg(A)g as the exponential element using x-

Ra = € CHY (A x A)g, R

)

operation:

*n

E(a):=Y_ an! € CHy (A)g.

n>0

The following theorem is the same one as [BG23, Theorem 3.8] but changing Chow

groups to its étale analogue,

Theorem 4.3.31. Let A be an abelian variety over k of dimension g. The following

statements are equivalent:
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2g9—1
1. The one cycle @
(29 —1)!

2. The abelian variety A admits an étale motivic weak integral Fourier transform.

€ CHu(A x A)g lifts to CHY ™ (A x A).

3. The abelian variety A X A admits an étale motivic weak integral Fourier transform.

If we assume that A carries a symmetric ample line bundle which induces a principal

polarization A : A = g, therefore the previous statements are equivalent to the following

c1 (PA)Qg—Q
(4) The two cycle Q-2

(5) Denoting as © € CH%(A)Q to the symmetric ample class attached to A, then the
g—
€ CHg(A)q lifts to a one cycle in C'H‘Z/t_l(A).

€ CHu(A x A)g lifts to CHY*(A x A).

one cycle I'g =

2)
(g—1)!

(6) The abelian variety A admits a weak integral étale Fourier transform.
(7) The Fourier transform Fa satisfies Fa(CHe(A)y) C CHét(A\)tf.
(8) There exists a PD-structure on the ideal CHZO(A)tf C CHy(A)y-

Proof. Assuming (1), then there exists a cycle Z € CHzg_l(A X E) such that Zg €

t
. 29—-1 ~
CHszl(AxA)Q equals 61((27314)1)'. Consider the cycle (—=1)9-E((—1)9-Z) € CHg (AxA),
g—1)!

by [BG23, Lemma 3.4] we have that

A VI (Pa)*~

(1)1 B0 2)q = (-1 B (12 AT

> = ch(P4) € CHg (A x A)g

then follows (2). By the same principle, the line bundle P, 7 on the abelian variety

X = Ax Ax Ax A, we have that Piwa = m3Pa®my, Py, then

(m5c1(Pa) + ma4e1(Py)) 9!

RAXA\ = (49 — 1)!
c 2g—1 ¢ D)7
= T4 <1(é7;'4_)1)‘> 24 ([0] 4 2) + T13([0] 45 4) - 724 (1((27;14—)1)'>

therefore we conclude that R, 7 lifts to CHgf_l(X ), this implies that A x A ad-

mits a motivic weak integral Fourier transform. (3)==(1) follows from the fact that

~

(=1)9F 3, 4(=0) = Ra.

From now on, we assume that A is a principally polarized variety A : A — A, with
L be the symmetric ample line bundle. Assuming that (4) holds and denoting s4 €
CHS' (A x A) = CHZf_2(A x A) such that (sa)g = %. Consider the symmetric
line bundles CHéym(A) C CH'(A) and the homomorphism F : CHéym(A) — CHS'(A)

defined as the composition
CHY, (A) = CH!(A) 255 CHY (A x A) 24 CHZ72(A x A) 22 CHE(4)
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As the line bundle £ is symmetric, we have the following

©=—-(id,\)*c1(Pa)
. Cl((id, )\)*PA)

(L@ L) =c1(L) € CHY (A)g

N RN RN

The Chern class of £ is sent to O, therefore F(c1(£))g = I'e, therefore (5) holds. If we
assume that (5) holds, then by [BG23, Lemma 3.5] we obtain (1).

If (2) holds then immediately holds (4), so we obtain that (4) = (5) = (1) =
(2) = (4). Under the assumptions about polarization, we see that (2) = (6) = (7).
If we assume that (7), since © = ¢;1(£) is lifted to CH'(A), then F4(0) = (—=1)9 " Tg is
lifted to CH{'(A), thus (5) holds. Again if (7) holds, then F4 defines an isomorphism

Fa : CHgy(A)yr — CHegy(A)yy.

The ideal CHE,(A)i C CHg;(A)¢s admits a PD-structure for the Pontryagin product. As
F4 exchanges Pontryagin product by intersection product, we obtain (8).
O

Using the same arguments, we can obtain the following equivalences for the different

notions of étale Fourier transform:

Proposition 4.3.32. Let A be an abelian variety of dimension g over a field k. The

following assertions are equivalent:

1 (PA)Qg—l
(29 —1)!
CHY (A x A).

1. The class € Hiff_Q((A X A\)ks,Z[(2g — 1)) is the class of a cycle in

2. The abelian variety A admits an étale integral Fourier transform up to homology

which is algebraic.

3. The abelian variety A x A admits an étale integral Fourier transform up to homology

which is algebraic.
If we assume that A carries a symmetric ample line bundle which induces a principal

polarization X : A = g, therefore the previous statements are equivalent to the following:

29-2 ~
(4) The class Cl(g;A_)Q)' € H;%f_zl((A X A)gs, Ze(29 — 2)) is the class of a cycle in

CHY (A x A).
(5) The class 69~ /(g — 1)! € HY *(Aps, Zy(g — 1)) lifts to a cycle in CHY, '(A).

et

(6) The abelian variety A admits an integral étale Fourier transform up to homology.

If k = C then the previous (1)-(6) is equivalent to the same statement replacing étale
cohomology by Betti cohomology.
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Proof. The proof of the equivalences is analogue to Theorem If the base field is
k = C, we have an isomorphism H, (A, Z¢) ~ H%(A, Z) and the fact that 8 € H% (A, Z)
is in the image of the cycle class map if and only if 8, € H éQti(A, Zyg) is in the image of the

cycle class map. O

Remark 4.3.33. Since the PD-sctructure on (CHE,(A), ) induces a PD-structure on
(CHE(A)z,,*), Proposition [4.3.32 remains true if we change CHg (A) by CHg(A)z,
and “étale integral Fourier transform up to homology” by “étale f-adic integral Fourier

transform up to homology”.

Corollary 4.3.34. Let k be an algebraically closed field and let ¢ # char(k) be a prime
integer. Considering an abelian variety A/k, then for { there exists an {-adic integral

étale Fourier transform up to homology which is algebraic.

Proof. Consider a smooth projective variety X over k, then we have a cycle class map
Cét,é : CHY,(X)z, — H?(X,Z). Let us consider a finitely generated sub Z,-module
G C H2(X,Z). Let CH,(X)z, 2 W = cé’tjél(G) and take the map f as cétl restricted
to W, thus we have f : W — G. Denoting by I%ﬁ’étyg(X) = im(f) and IéQtix(X) : im(cém),
then we have that (G/I%,ét,E(X)) {{} — (Hgtl(X, Z@)/Ié&AX)) {¢} = 0. Thus we can

conclude that (G /I (X )) is a torsion free Z;-module, thus

(G/I%,ét,E(X)) Q=0 < (G/I%Qét7£(X)) —0

So this implies that G is in the preimage of CH% (X)z, if and only if G ® Qy is in

the preimage of CH% (X)g,. In particular, consider X = A x A and the integral /-
2g—1 N

a(Pa)? € H%(A x A,Zy(2g — 1)) and let G be the sub Z,—module

(29 — 1)!
n 2g—1
of HgtgiZ(A X A, Z¢(2g — 1)) generated by 61((27314)1)'
g — !

coefficients), thus by the previous remark we obtain that lifts to CH{* (A x //l\)Zl. O

adic class

(which is algebraic with rational

Remark 4.3.35. Even though we can lift the Chern class of the Poincaré bundle P4 it
is not clear whether or not the Tate conjecture holds for abelian varieties due to the
obstruction Ty(Br(A x A)).

Corollary 4.3.36. Let k be any of the following fields: one finitely generated over QQ
or Fpr for p a prime number and r € N. Then any abelian variety A/k admits anétale

L-adic integral Fourier transform up to homology for the other cases.

Proof. The other cases are a consequence of [RS16, Theorem 1.3 and 1.4] respectively

using the argument described beforehand in the proof of last corollary. O

Theorem 4.3.37. Let k be an algebraically closed field, then for any abelian variety A
over k there exists an integral algebraic étale Fourier transform if and only if for all

¢ # char(k), A/k admits an étale £-adic integral Fourier transform up to homology.
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Proof. One way is clear. For the other one we shall split the proof in several parts:
First, let us prove that the Fourier transform preserves torsion classes. Notice that as

H! (A,Z(j)) is a torsion free Z,-module, then we have a short exact sequence

0= Hi (A, Z(§)) — Hi (A, Qu(j)) — Hi(A Qu/Z(j)) — 0,

assuming that ¢ # 2j + 1 by |[RS16, Proposition 5.1] then we have an isomorphism
HY (A, Qu/Z(5)) =~ H}J;(A Z(j)){¢}, the same holds for A. With this we have obtain

a commutative diagram

0 —— Hi (A Ze(j)) ——— Hiy(A,Qu(j) —— Hi(A,Qo/Ze(j)) — 0

isA i&; i&j’f

0 —— HZ (A, Zy(a) — H'~'(A,Qula) — H'~'(A,Qu/Zi(a)) — 0

where a = j 4+ g — ¢ and 3?4’6 is the induced map by the quotient, therefore we have an
morphism of torsion groups, therefore we have that 3?4’6 : CHL, (A){¢} = CHY L A){e).

Assuming that for each prime number ¢ # char(k), then we have a commutative diagram

CHY, (A)z, — CHg(A)z, %+ CHe(A)z, — CHY '(A)g,

o
e | L et
A

HP (A, Zy) —— HY(A,Zy) —— HE(A,Z) —— H0 (A, 2)

exchanging the Fourier transform A with the double dual of A, we can conclude that
ete(CHet(A> ) cgtg(CHg Z(A)Ze) Since the kernel of the cycle class map céw is
(-divisible, then CH (A) ® Qp/Z¢ =~ Iggg( )@ Q¢/Zy.

Consider the short exact sequence 0 — Zy — Qy — Qg/Zy — 0, then by the previous
remark, we obtain a quotient map Ff‘ : CHg(A)g,/z, — CHét(zzl\)Ql/Ze which is an
isomorphism. First let us assume that char(k) = 0, with that we obtain a commutative

diagram
0—— CHét(A)tors — CHét(A) —_— CHét(A)Q — CHét<A)Q/Z — 0

l&i FA i}—A iFA

0 —— CHgy(A)rors — CHg(A) —— CHg(A)g —— CHeg(A)gyz — 0

where § = @#Chm(k)gif and F'a = Dyschar(k) Ff‘. In particular we found §4 ® Q = Fy,
so it maintains integral étale cycles. If we work over positive characteristic p, then we
take ¢ # p and use the fact that CHg (A) ~ CH(A)[1/p]. O

Decomposition of motives over an algebraically closed field

In this subsection we aim to obtain an analogue of [Huyl8, Lemma 1.1] for the category
Chowygt (k). Roughly speaking, this result is an improved version of Manin’s principle,

but only when one works over an algebraically closed field.
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Manin principle says that a morphism f : M — N between Chow motives is an
isomorphism if and only if the associated map (f xidz). : CH*(M ® h(Z))g — CH* (N ®
h(Z))q is an isomorphism for every smooth projective variety Z. There are few cases
where the structure of the Chow groups are maintained in an easy way, such as projective
bundles or blow-ups, but in general it is not an easy task to obtain this property. Recalling
that a universal domain 2 over k is an algebraically closed field extension of infinite
transcendence degree (for example k = Q and Q = C), the improved Manin priciple

states the following:

Theorem 4.3.38 (|Huyl8, Lemma 1.1]). Consider an algebraically closed field k. Let
f M — N be a morphism in the category Chow(k)g. Then f is an isomorphism of

motives in Chow(k)g if and only if for Q a universal domain over k, the induced map
(fa)« : CH (Mgq)g — CH*(Nq)qg given by the base change fq : Mq — Nq, is bijective.

Therefore for an algebraically closed field, is not necessary to test a morphism indexed
by the objects in SmProj,, only for a huge field extension of k. The improved version of
Manin principle is a direct consequence of the results [GG12, Lemma 1], [Vial7, Theorem
3.18] and [BP20, Lemma 2.4].

Example 4.3.39. Consider a conic bundle X — P%, we have that the Chow groups of

X are characterized by
CH(X)g~ CH*(X)g~Q, CH'(X)~Q®Q and CH*(X) ~Q® Q& Prym(C/C)q,

so for this case we can recover the motivic decomposition of X obtained in [NS09]. In
this context, C is called the discriminant curve of X, oc : C — C is a double covering
and Prym(C/C) is the Prym variety.

In the following, we will present the analogue of [Huy18| Lemma 1.1] for the category
Chowyg (k). To obtain that, we will prove the analogue of |[GG12, Lemma 1]:

Lemma 4.3.40. Let M = (X, p,m) be an étale Chow motive defined over an algebraically
closed field k. Let Q be a universal domain of k and assume that CH.,(Mgq) = 0 for all
i >0. Then M ~ 0 in Chowg(k).

Proof. We proceed with similar arguments as in [GG12, Lemma 1]. Consider Y €
SmProj, and let ¢ : Z — Y be a smooth closed immersion of codimension cz and

let U :=Y — Z be the open complement
o= CHY%(X x Z) — CHL (X x V) — CHL (X x U) = Bri™*?(X x Z) — ...

now take the direct limit over opens U C Y we obtain that

o= @D CHG (X x Z) = CHE (X x V) = lim CHg (X x U) - @ Br (X x Z) — ...

t
ZCY ucy ZCcY
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4.3. Decomposition of étale motives

since we have the isomorphism ling, . CHL (X x U) =~ CHét(Xk(y)) and consider the
morphism (defined through the action of correspondences) p ® Y : CH, (X x V) —
CHY, (X x Y) defined as follows

(p@Y)(a) := (prag)s (priz(e) x p- Fprlz)

where pr;; : X X X XY — X; x X; and I'y;, is the graph of the projection morphism.
We apply the morphisms @, p® Z, p®@Y and p ® k(Y) we then obtain the following

exact sequence

P imp® 2Z) = impeY) - CHy (Myyy) = D im(p® 2)_1.
ZCY ZCY

Notice the following facts about the étale Chow groups of the motive M:

e If Y is irreducible with dim(Y") = 0, then im(p ® Y') = CH%, (M), and consider {2 a
field extension of k which is algebraically closed. Then we have that CH% (M) —
CHZ, (Mg) is injective, so by the hypothesis CHY, (M) = 0 for all i > 0.

e By induction, assume that for Z of dimension 0,...,n — 1 we have that im(p ® Z)
vanish, then im(p ® Y') injects in CHét(Mk(y)) by the localization sequence. By
|[GG12, Lemma 1], the action of p® k(Y) over the torsion free part of CHy (X(y)),
then CHY, (My(y)) = (p @ k(Y))H " (Xp(v), (Q/Z)(0)).

To conclude we will use a specialization argument. Consider a open subset U C Y
and consider the motive (Xy7, pr). Now let u be a closed point of U therefore we
can define the regular embedding j, : u < U. Notice that the closed fibers of U are
isomorphic to (X, p) over k. Since the specialization map commutes with products,
pull-backs and pushforwards, we obtain that the projector p ® U acts as zero over
CHY, (X x U), therefore we conclude that p ® k(Y') acts as zero over CHét(Xk(y)).
Finally, we conclude that CHg (Myyy) = 0 for all integer i > 0.

Since we have that CHét(Mk(y)) = 0 and im(p ® Y) injects into CHfét(Mk(y)) for all
Y € SmProj, since im(p ® Y) ~ CH (M ® h(Y)) by the Manin principle for étale

motives we can conclude that M = 0. O

Along with Definition [2.5.13] and Lemma [2.5.14] we obtain the analogue of [Vial7,

Theorem 3.18] for étale motivic cohomology:

Lemma 4.3.41. Let f : M — N be a morphism of motives over k with k = k, k —
Q, with Q an universal domain, such that the induced morphism (fq), : CHy(Ma) —
CH;,(Nq) is surjective. Then f is surjective.

Proof. Let f be a morphism of motives over k and let 2 be a universal domain such that
k — €. Consider Z € SmProj;,, we will prove that the morphism f® Z : CH% (X x Z) —
CHZ (Y x Z) has the same image as ¢ ® Z : CH (Y x Z) — CH; (Y x Z), for all Z. In

order to prove this, we proceed by induction over the dimension of Z.
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4. DECOMPOSITION OF INTEGRAL ETALE MOTIVES

If dim(Z) = 0 then the result is clear. So let us assume that works for dim(Z) < n.

Consider the following commutative diagram induced by the localization sequence

. — P CHE (X x D) —— CHL(X x Z) —— CH(Xk) — ...

DcZz
i@ f®D ‘/f@z ‘/(fK)*

. —— P CHE (Y x D) —— CHE(Y x Z) —— CH§ (Vi) — ...
DcZz

where K = k(Z). By assumption, we have that the map (fq), : CH% (Xq) — CH (Ya)
is surjective, then we have that in the level of torsion CHZ (X )tors — CHZ (X)tors 1S
an isomorphism, so the map CHZ (Xg )tors — CHE (X g )tors — CHZ (X0)tors 1S surjec-
tive because it factors through the previous map. This gives us that the map (fx), :
CHE (XK )tors — CHZ (YK )tors is surjective, and then also the induced map (fx), :
CH3, (Xx) — CH, ().

By induction hypothesis f ® D it has the same image as ¢® D, for all D C Z. In the
same way, we have a similar commutative diagram involving @,y ¢ ® D, ¢ ® Z and
q® K.

. —— @B CHE (Y x D) —— CHE(Y x Z) —— CHg(Yk) — ...

Dcz
l@ 4®D lq@)Z l(qx)*

. —— @B CHE(Y x D) —— CHE(Y x Z) —— CHg(Yk) — ...
DcZz

Finally, as we have im(¢ ® Z) = im(f ® Z), then (f x idz). : CH (M ® he(Z)) —
CHZ, (N ® h¢t(Z)) is a surjective map for all Z smooth projective variety, therefore by
Lemma [2.5.14] we have that f is surjective.

]

Finally, we can get the extension to the integral étale case of [Huyl8, Lemma 1.1]

using the following lemma:

Lemma 4.3.42. Let f : M — N be a morphism of motives over k such that for a univer-
sal domain €, the induced morphism (fq), : CHL(Mq) — CH,(Ng) is an isomorphism
for alli > 0. Then fq is an isomorphism in the category Chowe (S2).

Proof. Let 2 be an universal domain of k. By assumption, we have an isomorphism
(fa), : CHE (Mq) = CHL (Ng), so by Lemma there exists a morphism g : No —
Mg such that fqog = idn,. Therefore, we have a sub-oject of Mq, denoted by T', and
an isomorphism fq : Mo — No@®T. Since CHét(MQ) = CHét(NQ), then we obtain that
CHL,(T) ~ 0 for all i > 0, so invoking Lemma we obtain that 7" = 0, so we obtain
that fo : Mo — Ngq is an isomorphism. O
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4.3. Decomposition of étale motives

Theorem 4.3.43 (Improved version of Manin’s principle). Let f : M — N be a mor-
phism in the category Chowg(k). Then f is a isomorphism of motives in Chowg (k) if and
only if for Q@ an universal domain over k, the induced map (fa)« : CH:(Mq) — CH(Ngq)
given by the base change fq : Mg — Nq, is bijective.

Proof. Assume that f: M — N is a isomorphism and K/k a field extension of k, then
it is clear that fx : Mg — Nk is an isomorphism in Chowg(K). Now let us assume
that (fa).« : CHZ (Mq) — CHY (Nq) is an isomorphism. By Lemma then the
map fq : Mg — Ngq is bijective, then if we invoke [Ayol4b, Théoréme 3.9] and the
full-faithfulness of the functor Chowe (k)P <— DMy (k, Z), we obtain that the associated
functor i* : Chowgi (k) — Chowg(£2) is conservative, since i*(f) = fq, we conclude that

f is an isomorphism in Chowy (k). O

Remark 4.3.44. We can obtain a fully characterization of the étale Chow groups a conic
bundle X — S with S a smooth surface. Since J?(X) ~ Albg(S) @ Pic®(S) @ P5 by
[Bel85| Theorem 3.5] and using the results of [Bea77] and [Bel85], we obtain the following

characterization

~ CHE,(S) ® CH(S) @ P
3

Since we have an isomorphism CH*(X) ~ CHZ (X), by |[RS16, Theorem 1.1] we can
conclude that the classical integral Hodge conjecture holds for smooth conic bundles
X =S

Open question about decomposition

We address to a problem about the decomposition of motives which is induced by a
filtration of dimension. We start with general facts about triangulated categories and
the representation of functors in this contexts. After these facts, we recall the definition
of n-motives and give a reason why starting from 0 and 1-motives we can think that this
filtration can be related to the Chow-Kiinneth decomposition.

Before that, we ought to say a few words about the existence of a reasonable t-
structure in the category DMgﬁfn(k, 7), which again is linked with the decomposition of a
motive, pointing out differences with the étale case and why the argument of Voevodsky
for the nonexistence of a reasonable t-structure cannot be used in the étale analogue of

the category.

t-structure with integral coefficients and decomposition for integral motives

In [VSFO00], Voevodsky provides a counterexample for the existence of a reasonable t-

structure for the triangulated category of geometrical motives DMgfgl(k, Z) with integral
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coefficients. A t-structure 7 = (D=Y, D=%) on DMS%T(/{:,Z) is called reasonable if the

following conditions hold:

1. 7 is compatible with Tate twist, i.e. M € D= (similarly if M € D=°) if and only
if M(1) € D=" (respectively M(1) € D=9).

2. For a smooth affine scheme X of dimension n one has

H] (Mg (X)) =0 fori<Oori>n

1

H (M, (X)) =0 fori<mnori>2n

am

Corollary 4.3.45 ([VSF00, Corollary 3.4.3]). Let X be a smooth scheme over k. Then

one has

Hom Mg (X), Z(1)[5]) = H}, (X, Gy)

DMgﬁfn(k,Z)(
Now we can state the counterexample provided by Voevodsky.

Proposition 4.3.46. Let k be a field such that there exists a conic X over k with no

k—rational points. Then DM;Q;(k,Z) has no reasonable t-structure.

Proof. Suppose that exists a reasonable t-structure 7 = (D=, D), then for any smooth

plane curve X C IP’% we have

0  fori#0, 1,2
H (Mgn(X))=4q Z  fori=0 (4.3)
Z(1) fori=2

and for a smooth hypersurface Y in P} we have the exact triangles in DM;{,{ (k) of the

form

) = Mg, (P = Y) — Mg, (Y)[1]

then H](Mgm(Y)) = 0 because of the definition of the cohomology functor and the
translation of Mg, (Y)(1) in the second exact triangle. Let X be a conic over k with no
rational points and consider X < X x X the diagonal embedding in Pz, because every
curve C' can be embedded in P} (for example see [Har77, Corollary 3.6, sect. IV]). Then

we can conclude that

0 fori #0, 2
HI (Mgn(X)) =4 Z  fori=0 (4.4)
Z(1) fori=2

since Mg, (X) is clearly a direct summand of Mg, (X x X). We have a distinguished

triangle

Z(1)[2] = Mgm(X) — Z — Z(1)[3].
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4.3. Decomposition of étale motives

Due to the previous corollary we have that

Hompyyetr 4 7 (2, Z(1)[3]) = Hompyerr (1. 7y (Mgm (Spec(k)), Z(1)[3])
= H%ar(spec(k)v Gm) =0

therefore the last arrow is the zero map, giving us that the triangle splits Mg, (X) =
Z & 7Z(1)[2]. Then the map

Hompyyor 1.7 (2, Myn(X)) = Z <= CHy(X) Ny

is surjective which contradicts the hypothesis of X about the nonexistence of a rational

point. [

Remark 4.3.47. 1. This counterexample does not work for the contradiction of the
existence of a reasonable t-structure for the étale case because of the following
argument: by definition we have

Hompyger 2 (Z Z(1)[3]) = H,(Spec(k), Z(1))

gm,ét

= Br(k)

which is the Brauer group of k, and therefore related with the existence of a k-
rational point. This later group may be non zero and thus we obtain a non splitting
exact triangle. In this direction we can think that in the étale setting we can obtain
a decomposition of the motive which does not split. To continue developing this
idea we need to introduce the notion of n—motives and focus in the cases when

n=0orn=1.

2. The dependence of the existence of a k—rational point is crucial in this example and
in general to define the projectors mp(X) and moq(X) where X is smooth projective
variety of dimension d. With rational coefficients this can be bypassed if we define
the projectors po(X) and pog(X) with a 0-cycle of degree n (and inverting the
degree). Another way of solving this problem would be enlarging our base field k

to K where it is possible to find a K —rational point.

Triangulated categories

We have to say a few words about triangulated categories that are compactly generated,
for that we mainly focus in [Nee01] and [Ayo06]. Let us recall the definition of a compact

object:

Definition 4.3.48. Let T be a triangulated category with small sums. An object A € T
is compact if and only if the functor Homy(A,—) commutes with small sums, i.e. for

every small family of objects (Bj)ier in T the canonical homomorphism

P Homr (A, B;) — Homy (A, @ierB;)
iel

1s invertible.
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Definition 4.3.49. Let T be a triangulated category with small sums. We say that T is

compactly generated if there is a set of compact objects A C T such that T is generated
by A.

Proposition 4.3.50. [NeeO1, Theorem 8.5.3], [Ayo006, Proposition 2.1.21] Let T be
a compactly generated triangulated category with small sums. Let h : T — Ab an
exact contravariant functor that transforms small sums in small products. Then h is

representable.

Remark 4.3.51. A consideration on the notation and used names should be done. In the
context of triangulated categories, the term exact functor is another name for triangu-
lated functor, i.e. an additive functor that commutes with translations and preserves

distinguished triangles.

The previous result is a criterion of representability of Brown which implies that for
a triangulated functor of a compactly generated category there exists a right adjoint,

under some technical properties:

Proposition 4.3.52. [Ayo006, Corollaire 2.1.22] Let T and T be two triangulated cat-
egories with small sums. Suppose that T is compactly generated. Let F : T — T a
covariant triangulated functor which commutes with small sums. Then F admits a right

adjoint.
Proof. Let B be an object in the category 7”. Define hp as follows

hp:T — Ab
A hp(A) == Homp (f(A), B).

By the hypothesis of f the functor hp transforms small sums in small products. This

functor is represented by an object g(B) in T, then we have an isomorphism
hi(A) = Homy (f(A), B) = Homr(A, g(B)).

Consider the association of elements B — g(B). There is a way of understanding this

association such that the isomorphism is natural in A and B. O

The fact that the previously defined right adjoint functor is a triangulated functor
comes immediately as a consequence of [Ayo06, Lemme 2.1.23]. An immediate conclusion
from the previous theorems of existence of adjoints is the existence of universal object

with respect to a subcategory.

Lemma 4.3.53. Let A be a compactly generated triangulated category stable under small
sums, and B be a full subcategory and let i : B — A be the full embedding. Then for every
compact object A € A there exist an object My € B and a map ia : My — A such that
for every object B € B that admits a morphism f : B — A, the f factors through M4,
such that f: B — My A, 4.
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4.3. Decomposition of étale motives

Proof. By the previous lemmas the full embedding admits a right adjoint, denoted by v.
If we consider the co-unit transformation ¢ : i o v = id then we define My = i(v(A))

giving us the existence of the arrow M4 — A. The universality of M4 comes from the

isomorphism
Hom 4 (B, A) ~ Homp(B,v(A))
SN Homu (B, Ba)
given by the adjunction and the full embedding. O

Remark 4.3.54. Notice that this properties give us that for a compact object in B € BB
there exists an isomorphism Mp — B. We say that Mg is the stabilizer of B.

Filtration induced by n-motives

We recall the definition of n-motives, where we use mainly the references of [VSFO00],
[Org04] and [BK16].

For a perfect field k, in [Voe00, Section 3.4], Voevodsky defined and constructed a
filtration of the category of (effective) geometrical motives DMeNfgsygm(k,Z) induced by
the dimension of the generating classes of geometric motives (i.e. the compact elements
in the category DMeNfifS’_(k, 7)), where he studied the cases of the filtration of dimension
at most 1.

Concerning the category of 0—motives, the so called category Artin motives and
denoted in [Voe00] as dSODMgfn(k, Z), it was proved in |[Org04} Proposition 2.2 et 2.7] that
it is equivalent to pseudo-abelian envelope of H®(Perm(k)), which is the full subcategory
of Z|G)]—modules that are permutational representations with Gj, = Gal(k/k). The
case for DMf\IfifSﬁ(k,Z) has also an equivalence category to D~ (Shv(Perm(k))) where
Shv(Perm(k)) is the category of additive contravariant functors from Perm(k) to the

Ab, all of this fitting in the following commutative diagram

Hb(Perm(k)) —— D~ (Shv(Perm(k)))

| |

d<oDME (k,Z) ——— d<oDM*(k, Z).

In a more general context it is possible to give a description of the category of 1-

motives. In [BK16, Theorem 2.1.2] it is shown that there exists a functor
T : D*(My[1/p]) — DM (k, Z)

whose essential image is dngMgggm(k,Z). Here, D?(M;[1/p]) represents the derived
category of bounded Deligne’s 1-motives and p is the characteristic exponent of the
field. We can generalize the construction of 0 and 1-motives by taking the category of
cohomological motives, which is generated by motives of cohomological type defined as

follows:
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Definition 4.3.55. Let S be a noetherian scheme and X a proper S—scheme. We define

the cohomological motive of X as follows
hs(X) = (mx)«(mx)"1s € DA«(S,Z),
where tx : X — S.

Note that by the properties of the structural morphism, this is equivalent to [AZ12,
Definition 1.3], where the cohomological motive of X over S is defined to be hg(X) =
(mx)«1x. This is a consequence of fact that if f: X — Y then f* takes the homological

motive of Y and sends it to the homological motive of the X —scheme X xg Y.

Definition 4.3.56. Let S be a noetherian scheme. We denote by DAS"(S, A) the cat-
egory of constructible cohomological motives, which is the smallest triangulated subcate-
gory of DA &(S, A) stable under finite sums and containing hs(X) for all quasi-projective
S—scheme X. Respectively, the category of Artin motives over S with coefficients in A,
which is denoted DAY,(S, ), as the smallest subcategory containing hg(X) where X is

a zero dimensional S—scheme.

Remark 4.3.57. We use the same definition for cohomological motives in the model of
étale motives with transfers: we denote by DMgEh(S, A) the category of cohomological
motives, which is the smallest triangulated subcategory of DM (.S, A) stable under finite

sums and containing hg(X) for all quasi-projective S—schemes X.

Definition 4.3.58. If we take a noetherian scheme S, we define the category of n-motives
relative to S with coefficients in A, denoted by DM?2,(S,A) as the smallest subcategory of
DM%M(S, N) containing the elements hg(X) where X is a m-dimensional S-scheme with

m < n. We define in the same way the analogue for the category of étale motives without
transfers DAY,(S, A).

The full subcategory DME, (S, A) is called the category of n—motivic étale sheaves over

S with coefficients in A. Along with these definitions, we use the following notations:
e i will stand for the full embedding DM, (S, A) < DMZ (S, A) where m > n,
e i, = “i%” is the full embedding DM% (S, A) — DMSR(S, A).
e The functors v;' and v, are the right adjoints of 7] and %, respectively
i DMZ (S, A) = DMZ(S,A) : v, i, : DM2(S,A) < DMEE(S, A) : vy,

m

m
n OV

o Let w =1 " and w™ := i, o v, be the functors associated with the co-unit

transformations.

With this construction, we have a sequence of full embeddings of categories indexed

by the bound of the dimension for the generators n:

DMY (S, A) < DM (S,A) < ... < DMZ(S,A) < ... — DML(S, A).
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4.3. Decomposition of étale motives

Consider the graded pieces of the category DMg‘t)h(S, A) as
gr, DM (S, A) = DM (S, A) /DM (S, A)
where for M € DMSP(S, A) the n-th graded pieces are defined as
gr,(M) = coker(wP~H (M) — wP(M)).

Notice that the construction of the graded pieces by definition is functorial. Now let us
prove some basic results about n—motives and the underlying filtration of DMggh(S’, A)

that we defined previously.

Lemma 4.3.59. Let S be a noetherian scheme and A a commutative ring. Assume that
M s a cohomological motive in DME"(S,A). For all 6" : w™ — id with n > 0 and

6L, wk, — id, with | > m, the co-augmentation associated with the co-unit:

(i) If M € DM(S,A), we have an isomorphism 6™ : w™(M) = M. In particular
(W™t w" o w™ =5 W, Moreover 6" o w" = w" o §".

(i) For k € N there exists a natural transformation 7** between the functors 57
k

W — W R,

(iii) For k € N the natural transformations 6™ have an induced compatibility expressed
in term of 6" = 8"k o 6"t also there exists an isomorphism w" (W™ (M)) ~
WH(WH(M)) ~ W (M),

Proof. In (i) the first statement follows a general proposition of triangulated categories
given in Lemma meanwhile the second is a consequence of the universality of the

elements w™(M). The last statement of (i) is a consequence of the commutative diagram

(@ (M) D ()
|6 P"(M)

W () —D g
because w™(6"(M)) and §"(w™(M)) are isomorphisms due to the stabilization property.
Therefore we obtain that w™(6"™(M)) = 0™ (w"™(M)).

In (ii) and for k£ = 1 the existence of the map w" (M) ﬂ w1 (M) comes from the
universality of w"*1(M) and the fact that w™(M) is a (n + 1)—motive, the remaining
cases arises from an induction on k.

The compatibility of the natural transformations is a consequence of the universality
of the elements w™(M) in the category of n—motives. Concerning the isomorphisms
of (iii), the second one is obtained as a consequence of (i), meanwhile for the first one

consider the following commutative diagrams

W (M) —

" M
=]
M

wn+l (M) 5n+1
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and apply to it the functor w™ along with result (i) we conclude.

w(M) —220" 5 (M)

lw"oéll”l H

WM W™ (M) 2 o (M)
]

Proposition 4.3.60. For any constructible cohomological motive M € DME™(S, A) there
exists n € N such that w™(M) = M.

Proof. Immediate after the previous observations and the construction of the category

DMELI(S, A). O
Definition 4.3.61. The sequence of transformations

n

O W id

1s called the filtration by dimension.

Let M be a cohomological motive in DM (S, A), we define the object w>™(M) =
w21 (M) which fits into the distinguished triangle

WN(M) = M — w”(M) — w™(M)[1].

The first thing we must do is to show that this element is defined uniquely up to
isomorphism, for that we use the axioms of a triangulated category and the universality

of the elements due to the filtration.

Lemma 4.3.62. Let M € DMS"(S,A) then the object w>™(M) is defined uniquely up

to isomorphism and w>™ defines a functor.

Proof. For all My, My € DMg‘t)h(S, A) and k € N then by the universality of w™* we

have
Homypyjeon g 5 (W™ (M), " TR (My)) = Homypyjeon g 5 (W"(My), Ma)
which is equivalent to
HomDMgtoh(&A) (W (M), w” (M) =0

proving (7). Notice that there are natural transformations id — w>" and w>" — w>"T1,
O

Let M be cohomological motive in DMS(S, A) and (n,p,q) € N x Z? where n is
fixed but arbitrary. Define the following terms

Dp’q = HomDMggh(SJ\) (wp(M)u 15’(7’1) [p + Q])

EP4 = Hompygeon (g x)(87,(M), Ls(n)[p + q])
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which induce an exact couple, where the transition maps arises naturally from the exact

triangle

W' TH M) = W™ (M) = gr, (M) = "N (M)[1]

and the contravariant functor Hom(—,1g(n)[p + ¢|) the first map DP9 — DP~1a+1 of
grading (—1,1) comes from the map wP(M) — wPTL(M), the map DP~1a+1l — ppratl of
degree (1,0) comes from map gr, (M) — wP~(M)[1].

Recalling [Dégl12b, Definition 1.2], in a triangulated category T, a tower X, over X
is the data of a sequence (X, — X)pez of objects over X and a sequence of morphism

over X

o= Xy = Xp—

Now let M be an object in DM, (S, A)) we know that:

1. for n big enough w™ stabilizes for M and by convention we can put w"(M) = 0 for
n < 0.

2. There is a family of objects and morphism (w" (M) — M ),ez such that

0—=wO(M) = w(M)—...— M

So in other words the family of functors (w™),cz defines a bounded and exhaustive
tower for each M, in the sense of [Dégl12b| Definition 1.2], thus for a fixed n € N, we get

a convergent spectral sequence

EP? = Hompypeon g 4 (81,(M), Ls(n)[p + q]) = Hompyeon (g ) (M, Ls(n)[p+ q]) (4.5)

Remark 4.3.63. Notice that if A = Q, S = Spec(k) and M = M (X) where X is a smooth
k-scheme of relative dimension d then D% = CHY, (mo(X))q, where X — mo(X/k) — k
is the Stein factorization, and D% = CH2(X)q.

Proposition 4.3.64. Let S be a noetherian schemes and let f : S — T be a morphism

of schemes, and A a commutative ring, then
1. —® —: DM}(S,A) @ DM(S, A) — DME™™ (S, A)
2. f*: DMZ,(T,A) — DM%,(S, A),

3. if f is separated of finite type of relative dimension m, then we have f, : DM%,(S,A) —
DMy™(T, A),

4. Assume that X — S is proeper, then Dg(mwx)«1x is a cohomological object.

Proof. For the first assertion consider mx : X — S and my : Y — S two proper morphism
and the product of cohomological motives (7x)«1x ® (7my)«1y. Using the six functors
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formalism on DMg (S, A), we have that

(Tx)+1x ® (7y)«1 Txhlx @ (my hily
mx ) (1x ® (mx)"(my )hily)

~ (7x)
=~ (mx)1
= (mx)i(mx)* (my )ily
(mx)
(7x)-

12

12

TX lhlg 1y

1

X )shlxxgy > (Tx o h)elxxgy
where h and g are morphisms associated to the cartesian square

XxsY —25v

L

XW4X>S.

Therefore (7x).1x ® (my)«1y is a cohomological motive and mx oh: X xgY — S has
relative dimension at most m + n, concluding the proof of 1.

2. It follows from the base change formula because then its action is characterized by
ff(rx)«lx ~ h(Z x X).

3. For the last one we consider the morphism f : S — T and a proper morphism
wx : X — S, consider the cohomological motive (mx).1x, then we consider fi(7x)«1x,
since fi ~ f. then we have that fi(7x)«lx ~ fi(mx)«lx =~ (f o mx)«1x which is a

T-morphism of relative dimension n + m. O

4. Let M = (7x).«1x be a cohomological motive, then Dg(M) = f.(Dx1x) ~ filx.

Moreover, if M is a n-motive, then the dual is also a n-motive.

Example 4.3.65. Consider a smooth curve C over a field k and let h(C') be its coho-
mological motive i.e. h(C) = M(C)" = M(C)(-1)[-2]. Using the fact that gr, (M) =
coker(wP=(M) — wP(M)) and w'(h(C)) = h(C) we obtain that the graded pieces are
characterized as

gro(h(C)) = w°(h(C)) = h(mo(C))

gr1(h(C)) = coker(wW(h(C)) — w(h(C))) = coker(h(m(C)) — h(C))

which fit in the exact triangle
h(mo(C)) = h(C) — coker(h(mo(C)) — h(C)) — h(mo(C))[1].

If C is connected and has a k—rational point then h(mo(C)) = Z and the motive of the
curve is h(C) ~ Z & Jac(C) & Z(1)[2]. Hence gri(h(C)) = coker (w°(h(C)) — w!(h(C)))
is isomorphic to Jac(C) & Z(1)[2].

We conclude with a list of open questions:

1. If we set A = Q, can we relate n-th graded piece of the motive h(X) to the h™(X)
part of the Chow-Kiinneth decomposition? Is gry(h(X)) linked to h?(X), or does
it give a good candidate for this motive and by duality, for h2?2(X) ?
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4.3. Decomposition of étale motives

2. Is it possible that this filtration leads to a motivic equivalent of the conjectural
descending filtration of Chow groups called the Bloch-Beilinson filtration? See
[MNP13, 7.1 and 7.2]

3. In the spirit of [RS16|, are there other conjectures about motives and algebraic

cycles that can be reformulated in terms of étale motives?

4. Does the spectral sequence given in induce a filtration which corresponds to a
niveau filtration? For example, the niveau filtration of Bloch and Ogus presented
in [BO74] ?
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