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UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ
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Décomposition de Chow-Künneth

Résumé: L’année dernière, Rosenschon et Srivinas ont prouvé une équivalence entre la conjecture

de Hodge avec des coefficients rationnels et une version intégrale de la conjecture de Hodge utilisant

la cohomologie motivique étale. Dans le même esprit, la question qui se pose naturellement est de

savoir si l’on peut obtenir un résultat similaire concernant la décomposition de Chow-Künneth des

motifs. Cette thèse est consacrée à l’étude de la décomposition de Chow-Künneth d’un point de

vue motivique étale, présentant la décomposition intégrale du motif étale des variétés abéliennes.

Dans la première partie de la thèse, nous posons les bases de la théorie des motifs purs et mixtes,

ainsi qu’une description complète de la cohomologie étale motivique, en donnant les principales

similitudes et différences avec les groupes de Chow. Dans la deuxième partie, nous examinons

certaines conséquences sur les aspects géométriques intégraux des motifs en utilisant la catégorie

triangulée des motifs étales. Tout d’abord, nous obtenons une conjecture équivalente, utilisant des

coefficients intégraux, de la conjecture de Hodge généralisée. Enfin, nous commençons à étudier

la décomposition des motifs étales, dans un premier temps, en utilisant un analogue étale de

l’application degré des 0-cycles. Puis, on continue avec l’étude de la décomposition des motifs en

utilisant la propriété de conservativité sur le changement des coefficients intégraux vers coefficients

rationnels et finis. Avec ce résultat, nous obtenons la décomposition du motif étale intégral d’un

groupe commutatif lisse sur une base avec des propriétés suffisantes.

Mots clés : Cohomologie motivique, cycles algébriques, motifs étale, cohomologie étale, con-

jecture de Hodge généralisée, décomposition motivique.

Chow-Künneth decomposition

Abstract: In the past few years, Rosenschon and Srivinas proved an equivalence between the

Hodge conjecture with rational coefficients and an integral version of the Hodge conjecture using

étale motivic cohomology. Using the same spirit, the question that arises naturally is whether or

not we can obtain a similar result concerning the Chow-Künneth decomposition of motives. This

thesis is devoted to the study of the Chow-Künneth decomposition from an étale motivic point of

view, presenting the integral decomposition of the étale motive of abelian varieties.

In the first part of the thesis, we set the basis for the theory of pure and mixed motives, together

with a full description of the structure of étale motivic cohomology, giving the principal similarities

and differences with the Chow groups. In the second part, we look at some consequences of the

integral geometric aspects of motives using the triangulated category of étale motives. First, we

obtain an equivalent conjecture, using integral coefficients, of the generalized Hodge conjecture.

Finally, we start looking at the decomposition of an étale motive, in the first instance, using an

étale analog of the degree map. After we continue the study of the decomposition of motives using

the conservativity property about the change of coefficients from integral to rational and finite

coefficients, with this result, we obtain the decomposition of the integral étale motive of a smooth

commutative group over a base with good enough properties.

Keywords: Motivic cohomology, algebraic cycles, étale motives, étale cohomology, generalized

Hodge conjecture, motivic decomposition.
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Introduction

Historical background

In different expressions of art, such as narrative, music, visual or textiles arts, the word

motif appears as the definition of a recurring element which has an important role inside

the piece of art in question, such as a reason or pattern and a fundamental element.

The theory of pure motives was introduced by Grothendieck in a letter to Serre

in the middle of the 60’s as an attempt to explain the structures underlying different

Weil cohomology theories. such as Betti, de Rham (analytic and algebraic), ℓ-adic and

crystalline cohomology. In some cases, there is a deep relation between them, for instance,

if the base field is k = C and X/C is a smooth projective variety, then by the de Rham

theorem one has

H∗
dR(Xan;C)

∼−→ H∗
B(X,Q)⊗Q C.

On the other hand, under the same assumptions of X and the base field k, one has

the theorem of Artin

H∗
ét(X,Qℓ)

∼−→ H∗
B(X,Q)⊗Q Qℓ.

This evidence indicates that there should exist an underlying reason for the similar

behaviour of these different cohomology theories in the complex case. Having this idea in

mind, Grothendieck tried to define a “universal cohomology theory” which explains these

connections between cohomology theories. In order to achieve that goal, he introduced

the category of pure motives, whose construction, using smooth projective varieties over a

field k, is fairly simple and unconditional. Grothendieck worked with numerical motives

(motives modulo numerical equivalence), whereas in this thesis we mainly use Chow

motives (motives modulo rational equivalence). The link between cohomology theories

should be given by realizations of the objects in this category. Using the construction of

the category and the existence of realization functors ρ, we find that any Weil cohomology

theory with coefficients in a field F of characteristic zero factors uniquely through the

category of Chow motives as follows:

SmProjk {graded F -algebras}

Chow(k)Q.

H∗(−)

h(−) ρ(−) (1)
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where H is a Weil-cohomology theory, h(−) is the functor which associates to a smooth

projective variety X its Chow motive h(X) = (X,∆X).

Mimicking the cohomological behaviour, is conjectured that the Chow motive of a

smooth projective variety carries a decomposition, known as the Chow-Künneth decompo-

sition. This conjecture was described by Murre in [Mur93] and states that the diagonal cy-

cle ∆X inX×X is a sum of cycles ∆X =
∑2dim(X)

i=0 pi(X) with pi(X) ∈ CHdim(X)(X×X)Q

a cycle in the Chow groups of X ×X of codimension dim(X), such that pi(X) are send

to the Künneth projectors ∆topo
i . Also the composition of correspondences pi(X)◦pj(X)

should be zero if i ̸= j and pi(X) otherwise.

In some sense, due to the realization to de Rham cohomology in the complex case, we

can see the theory of pure motives as an analogue of pure Hodge structures. Hence one

can ask if this construction can be extended to the case of singular or noncompact varieties

where we should obtain mixed motives by analogy with mixed Hodge structures. Several

candidates for such a category of mixed motives have been proposed by Hanamura,

Levine, Nori and Voevodsky. In the Voevodsky setting, is described in [Voe00], it is

possible to obtain triangulated categories of mixed motives over a perfect field k with

different coefficients and suitable topologies such as étale, Nisnevich and h-topology. One

of the main successes of Voevodky’s approach was his proof of the Milnor and Bloch-Kato

conjectures. The triangulated category of mixed motives over a field k with coefficients

in Q, denoted by DM(k,Q), is a generalization of Chow(k)Q is the sense that there exists

a fully-faithful embedding Chow(k)opQ ↪→ DM(k,Q) and according to Bondarko [Bon14],

Chow(k)Q appears as the element of weight zero in DM(k,Q).

Later, Morel and Voevodsky introduced motivic homotopy theory, This new approach

is a link between algebraic topology and algebraic geometry, putting in a more general

context the notion of A1-homotopy theory of schemes. Within this theory the concept of

P1-stabilization process for motivic complexes was introduced.

In the second part of Ayoub’s thesis [Ayo06], he gives a full description of Grothendieck’s

six functor formalism for systems of triangulated categories. This is equivalent to the

properties of A1-localization, P1-stabilization and rigidity. Later, Cisinski and Déglise

[CD19] studied fibered triangulated categories. They give a full description of the six

functor formalism, construction problems and the relation between rational motivic com-

plexes and the Beilinson program/Beilinson’s motives.

By changing from Nisnevich to étale or h-topology, we can obtain different models

for integral motives having a deep link with étale cohomology theory. The first descrip-

tion about the categories with étale or h-topology is given in [Voe00] and [MVW06].

Later, Ayoub in [Ayo14b] gave the functorial framework for the category DAét(k,Z) of
motivic complexes without transfers. Another model for the étale category of motives,

the category of DMét(k,Z), is given by Cisinski and Déglise in [CD16], which consider

étale sheaves with transfers and gives the equivalence with the category of h-motives

DMh(k,Z).
The triangulated category of étale or h-motives with integral coefficients is one of

the main candidate for being the good framework for integral motives. As a example

10
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of the good properties of the integral étale motives, recently, Rosenschon and Srinivas

[RS16] gave a new characterization of the Hodge and Tate conjectures using étale motivic

cohomology, the analogue of Chow groups but using the category DMét(k,Z). Recall that
the Hodge and Tate conjectures are the following:

Conjecture (Hodge conjecture). For a complex smooth projective variety X and n ∈ N
the image of the cycle class map cn : CHn(X)Q → H2n

B (X,Q(n)) is the set of Hodge

classes Hdg2n(X,Q) = Hn,n(X) ∩H2n(X,Q).

Where H∗
B(X,Q(n)) is the Betti cohomology ring of X with coefficients in Q.

Conjecture (Tate conjecture). Let X be a smooth projective geometrically integral k-

variety with k a finite field. Let k̄ be a separable closure of k. If ℓ ̸= char(k) is a prime

then the cycle class map

cnQℓ
: CHn(X)⊗Qℓ → H2n

ét (X̄,Qℓ(n))
Γk

is surjective

Here Γk represents the Galois group of k, H∗
ét(X̄,Qℓ) is the ℓ-adic cohomology and

X̄ = X ⊗k k̄.

These conjectures can be expressed in terms of motives and the realization functor

as stated in [And04, Propositions 7.2.1.3 et 7.3.1.1].

Making a connection between the realization of Chow motives with rational coeffi-

cients and the category of integral étale motives, it was possible to conclude that the

étale versions of the conjectures, i.e. changing Chow groups by an étale analogue, called

Lichtenbaum cohomology groups, which is the étale hypercohomology of the complex of

étale sheave given by the Bloch complex,

Conjecture (Lichtenbaum Hodge conjecture). For a complex smooth projective vari-

ety X and n ∈ N the image of the cycle class map cnL : CHn
L(X) → H2n

B (X,Z(n)) is

Hdg2n(X,Z).

Conjecture (Lichtenbaum Tate conjecture). Let X be a smooth projective geometrically

integral k-variety with k a finite field. Consider k̄ be a separable closure of k. If ℓ ̸=
char(k) is a prime then the cycle class map

cnL,Zℓ
: CHn

L(X)⊗ Zℓ → H2n
ét (X̄,Zℓ(n))

Γk

is surjective.

With this idea in mind, is valid to ask whether or not is possible to obtain new results

about algebraic or arithmetic properties of integral étale motives and relate them with

its rational counterpart. This is due to the fact that there exist counter-examples for

the integral Hodge conjecture when using Chow groups, therefore integrally, étale Chow

groups should give us more information about X.

11
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In this thesis, we aim to approach to the decomposition of integral étale motives using

the same spirit given by Rosenschon and Srinivas: see if we can improve the decomposition

of integral motives but working with the category of étale motives DMét(k,Z). Given

results about conservative family of functors associated to coefficients change:

ρQ : DMét(k,Z)→ DMét(k,Q)

ρZ/ℓ : DMét(k,Z)→ DMét(k,Z/ℓ)

one can see whether or not it is possible to lift isomorphism of motives with rational

coefficients to the integral case passing through an argument involving finite coefficients.

As an underlying goal, we present a detailed description about the structure of étale mo-

tivic cohomology and develop the étale analogue of intersection theory using the motivic

categorical formalism.

Trying to follow the historical development of motives, we structure the thesis as

follows: with a total of four chapters and each chapter divided in several sections. The

first two chapters work as an introduction to the theory of pure and mixed motives, setting

the bases for a further generalization to the étale case. We continue by introducing

the étale analogue to the classical theory, giving all the parallelism that we can give:

in the level of Chow groups, induced morphism , equivalences on algebraic cycles and

the category of étale Chow motives; and aspects about étale motives and étale motivic

cohomology.

In the third chapter, using as a guideline the characterization of the generalized Hodge

conjecture in terms of realization of effective motives, we revisit the main result of [RS16]

giving a new characterization of the generalized Hodge conjecture in terms of the category

of étale Chow motives, and the description of non-algebraic integral cohomology classes

in term of étale motivic cohomology. In the last chapter we will present decomposition

of étale motives using the conservative of the family of functors associated to change of

coefficients in the following way

Definition. Let k be a field and let f : X → k be a smooth projective variety, of

dimension d. We say that hét(X) admits an integral Chow-Künneth decomposition in

Chowét(k) if:

• h(X) admits a rational Chow-Künneth decomposition

h(X)
≃−→

2d⊕
i=0

hi(X) ∈ Chow(k)Q,

and this map is induced by a morphism g : hét(X)→M = (Y, p) in Chowét(k).

• Consider the base change to the algebraic closure ḡ : hét(Xk̄) → Mk̄. For ev-

ery prime number ℓ ̸= char(k), the induced map ρℓ(ḡ) : Rf̄∗(Z/ℓ) → Mk̄/ℓ ∈
D(k̄ét,Z/ℓ) is an isomorphism and ρℓ(p̄) = p1 + . . .+ p2d with the following condi-

tions

pi ◦ pj =

pi if i = j

0 if i ̸= j,
ρ(ḡ)−1 ◦ pi(Mk̄/ℓ) = Rif̄∗(Z/ℓ) for all i.

12
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using different approaches and points of view. The following is a more described

outline of the thesis.

In this thesis, we present the result obtained by the author in the pre-prints [Ros22]

and [Ros23b], together with the work in progress [Ros23a].

Outline of the thesis

Chapter 1

The first chapter is divided in two sections: the first one treats the construction of pure

motives, giving main definition and results of such theory. The second part is devoted to

the triangulated category of motives. We start giving a general overview of the theory of

classical motives, focused in the algebraic properties of pure motives, for this, we revisit

the main references of [MNP13], [And04] and [Sch94]. We discuss the main results and

basics of the theory of pure motives, such as the Manin’s identity principle [Man68]

and the application of it to the computation of the motive of a projective bundle, blow-

up with smooth center and varieties that admit cellular decomposition. Continuing with

developing the theory of motives, going to the triangulated category of motivic complexes,

visiting the references of [CD19] and presenting the basis of premotivic categories and

the six functor formalism in the motivic context.

The goal of this chapter is refresh the theory of pure motives and establish the ba-

sis for the construction of étale Chow motives and the triangulated category of mixed

motives part is there in order to give a proper introduction to the terminology and func-

toriality properties of the triangulated categories of motives and in that way be able to

use important tools in the construction of our theory.

Chapter 2

Chapter 2 is the most extensive one, because is the one in which we treat in a deep

way étale cohomology and étale motivic complexes. For that, we start by introducing

two different models of the triangulated category of étale motives: the ones introduced

in [CD16] and [Ayo14b], considering complexes of sheaves with and without transfers

respectively. We also give a result about conservative functors, mimicking the proof

given for [AHP16, Lemma A.6.]:

Lemma (Lemma 2.1.5). Let S be a scheme of finite Krull dimension and

pcdp(S) = sup
s∈S
{cdp(κ(s))} ∈ N ∪ {∞},

where κ(s) is the residue field of a point s ∈ S, is bounded for all prime number p. Then

the following holds:

1. Let M ∈ DAét(S,Z) be a motive. Then M is zero if and only if the pullbacks i∗s̄M

to any geometric point s̄→ S is zero.

13
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2. Let f be a morphism in DAét(S,Z). Then f is an isomorphism if and only if the

pullback i∗s̄(f) for any geometric point s̄→ S is an isomorphism.

In section 2 of this chapter we explore the different notions of étale motivic cohomol-

ogy. The first one is defined by means of the model for étale motivic complexes with

transfers, while the second one is defined as the étale hypercohomology of a complex of

étale sheaves (using the étale sheafification of Bloch’s complex), known as Lichtenbaum

cohomology. The advantages of giving the two definitions are that with the first one,

we can describe the functorial behaviour of étale motivic cohomology and constructing

the analogue of cycle’s operations and maps like specialization map. Whereas using the

second definition, we can use computational tools, such as Hoschschild-Serre spectral

sequence and its relation with Galois cohomology.

Proposition (Lemma 2.2.16). Let p : Y → X be a finite Galois covering of X with

Galois group G, then there exists a convergent Hochschild-Serre spectral sequence with

abutment the Lichtenbaum cohomology group

Ep,q
2 (n) = Hp(G,Hq

L(Y,Z(n))) =⇒ Hp+q
L (X,Z(n)).

In section 3 we discuss the birational properties of the étale analogue for 0-cycles,

giving examples where the étale analogue is not an invariant for birational maps. We

also linked the theory of étale Chow groups with the decomposition of the diagonal in

the sense on Bloch-Srinivas [BS83].

The fourth section works as a parallel between classical theory of algebraic cycles

and the one we defined in section 2. We define in the étale setting different equivalence

relations such as algebraic, homological and numerical, establishing the similarities and

differences with the properties obtained for the classical case.

During the fifth and last section, we construct the étale analogue of the category

of pure motives with integral coefficients, which we call étale Chow motives, and which

embeds full faithfully into the triangulated category of étale motives. For that, we given

a description of étale correspondences and their actions as morphism of algebraic cycles.

Using the theory of étale correspondences, we can construct the category of étale Chow

motives, and since this category is an analogue of the one of pure motives, one can recover

classical result such as Manin’s identity principle.

We also introduce some result about conservative family of functors associated to

change of base fields.

Chapter 3

After the results given in [RS16], we continue looking the consequences of such equivalence

between Hodge conjectures in the integral étale and rational cases.

We prove a refined version of [RS16, Theorem 1.1] (which can be seen as a direct

consequence of the previously cited theorem):

14
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Proposition (see Corollary 3.1.8). Let X be a complex smooth projective variety and

consider a sub-Hodge structure W ⊂ H2k
B (X,Z(k)) of type (k, k). Then W is L-algebraic,

i.e. W ⊂ im(ckL), if and only if W ⊗Q is algebraic.

Starting from [RS16, Remark 5.1.a] we use the étale analogue of the generalized Hodge

conjecture given there in order to study the classical version. In Proposition 3.2.6 we

give a complete proof of the equivalence between the different versions of the generalized

Hodge conjecture (usual case and Lichtenbaum) in weight 2k− 1 and level 1, result that

was stated in the same remark in [RS16]. For that, we split the proof in two parts: in

the first, we prove that the L-generalized Hodge conjecture in weight 2k − 1 and level 1

is equivalent to the fact that a part of the Hodge conjecture for the product of X × C
is true for all smooth and projective curve C, after that we invoke Corollary 3.1.8. To

finalize, our main results are the following:

First, we obtain a characterization of the generalized conjecture (for allX ∈ SmProjC)

given in [RS16] which follows the idea of the classical case, that is, in term of realization

of motives previously defined in section 2 and the Hodge conjecture:

Theorem (see Theorem 3.2.8). The Lichtenbaum generalized Hodge conjecture for all

X ∈ SmProjC holds if and only if the following two conditions hold:

• the Lichtenbaum Hodge conjecture holds,

• a homological étale motive is effective if and only if its Hodge realization is effective.

With this, we obtain as a corollary the following equivalence:

Corollary (see Corollary 3.2.9). The generalized Hodge conjecture with Q-coefficients

holds if and only if the generalized integral L-Hodge conjecture holds.

Concerning the counter-examples, in Claims 3.1.18 and 3.1.20 we give an explicit

description of the torsion classes which arise as counter-examples to the integral Hodge

conjecture given in [AH62] and [BO20] respectively. Since in both cases the class that is

not algebraic is a torsion class, the main result that we used is the fact that for Licht-

enbaum cohomology with finite coefficients we have the isomorphism Hm
L (X,Z/ℓr(n)) ≃

Hm
ét (X,µ

⊗n
ℓr ) which is a consequence of the Bloch-Kato conjecture proved by Voevodsky

(see [CD16, Section 4] for an argument in terms of rigidity of étale motives). We need

to remark that the way we use the rigidity theorem are different in both cases: in the

first case we consider two things, that the counter-example comes from a Godeaux-Serre

variety X, so there is a Serre spectral sequence associated fibration BG → Y → X,

and the Steenrod operations for étale cohomology. For the second case, which comes

from the product of a very general curve C of genus ≥ 1 and a smooth Enriques surface

S, we used the fact that Br(S) = Z/2 and the Künneth formula for integral and finite

coefficients. After that, in Proposition 3.1.23 we study general properties of the Licht-

enbaum cohomology groups of smooth hypersurfaces in Pn+1
C obtaining that their higher

Brauer groups are zero and consequently CHk
L(X)⊗Z/ℓr ≃ H2k

ét (X,µ
⊗k
ℓr ). This allows us
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in Remark 3.1.25 to give a better description of the Lichtenbaum classes for the Kóllar

counter-example and stating the differences with motivic cohomology and the failure of

the Hodge conjecture with integral coefficients.

Chapter 4

In the last chapter we focus on the goal of the thesis; find an enrichment for the decom-

position of integral motives. Roughly speaking, we can say that this chapter consists in

two parts: definition of étale degree map and étale index of 0-cycles, giving examples

where the later definition does not agree with the classical case, and decomposition of

étale motives using different approaches.

The main results of the first part of the fourth chapter, concern the existence of

smooth and projective varieties X over a field of cohomological dimension ≤ 1 whose

index I(X) > 1 but with étale anaologue Iét(X) = 1, as the following theorems show:

Theorem 1 (Theorem 4.2.4). There exists a smooth projective surface S over a field k,

with char(k) = 0 of cohomological dimension ≤ 1, without zero cycles of degree one but

Iét(X) = 1.

Theorem 2 (Theorem 4.2.5). For each prime p ≥ 5 there exists a field k such that

char(k) = 0 with cd(k) = 1 and a smooth projective hypersurface X ⊂ Pp
k with Iét(X) = 1

but index I(X) = p.

To find this kind of varieties, we use Proposition 4.2.3 which characterizes some

smooth varieties X over a field k of cohomological dimension ≤ 1, the ones such that

Alb(Xk̄)tors = 0, whose étale degree map is surjective. The proof relies in the fact that

the condition Alb(Xk̄)tors = 0 impose that CHL
0 (Xk̄)hom is uniquely divisible, thus, with

trivial Galois cohomology in positive degrees. After that we remark that the varieties

presented in [CM04, Théorème 1.1], [CM04, Théorème 1.2] and [Col05, Theorem 5.1]

fulfill the hypothesis of Proposition 4.2.3.

These results give us the first refinement for the existence of hét(X) = h0ét(X) ⊕
h+ét(X) ⊕ h2dét (X) in the category of integral étale motives but not in the category of

integral Chow motives. Despite this new refinement of the index of a smooth projective

variety, we give an example of how the property Iét(X) = 1 is not always achieved. For

Severi-Brauer varieties X, we show that Iét(X) is greater or equal to the order of the

class [X] ∈ Br(k), as follows:

Theorem 3 (Theorem 4.2.10). Let X be a Severi-Brauer variety of dimension d over

a field k. Then the image of degét : CHd
ét(X) → Z is isomorphic to a subgroup of

Pic(X), and in particular Iét(X) ≥ ord([X]) where [X] is the Brauer class of X in Br(k).

Moreover, if cd(k) ≤ 4 then this subgroup is isomorphic to Pic(X) i.e. Iét(X) = ord([X]).

After that, we prove that this bound also holds for the product of Severi-Brauer

varieties. In order to prove that, we give the following generalization of [GS06, Theorem

5.4.10]:
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Lemma (Lemma 4.2.14). Let X be a Severi-Brauer variety of dimension d over a field

k. For the product X×n :=

n−times︷ ︸︸ ︷
X × . . .×X we then obtain an exact sequence

0→ Pic(X×n)→ Pic(Pd
k̄ × . . .× Pd

k̄)
Gk ≃ Z⊕ . . .⊕ Z s−→ Br(k)→ Br(X×n)

where s sends (a1, . . . , an) 7→
∑n

i=1 ai [X] ∈ Br(k).

With this lemma, we can state and prove the following result for a product of Severi-

Brauer varieties:

Theorem 4 (Theorem 4.2.15). Let k be a field and let X be a Severi-Brauer variety over

k of dimension d. Then Iét(X
×n) ≥ Iét(X) ≥ ord([X]).

After that, we move to the decomposition of étale motives in different settings, by

using different tools and approaches. Between the ways that we can obtain decomposition

of integral étale motives we will use three possible options: the first one is a consequence

of [RS16] and the non-existence of transcendental cohomology classes for some complex

algebraic varieties:

Proposition (Proposition 4.3.3). Fixing k = C, let X be a smooth projective complex

variety of dimension d such that the groups H i
B(X,Q) are algebraic for all i ̸= d. Then

hét(X) admits an integral Chow-Künneth decomposition in Chowét(C).

We continue in a more general context with the decomposition of relative étale motives

of a commutative group scheme in the category of DMét(S,Z). We define the homotopy

fixed points and homotopy orbits of Sn of a motiveMS
ét(X) as follows: knowing that

DMét(S,Z)⊗ has a structure of an ∞-category which is monoidal and symmetric, thus

we obtain adjunctions

( )triv : DMét(S,Z)⇆ DMét(S,Z)BSn : ( )hSn := holimBSn ,

hocolimBSn =: ( )hSn : DMét(S,Z)BSn ⇆ DMét(S,Z) : ( )triv.

With this definitions, one obtains the integral analogue of [AEH15] as follows:

Theorem 5 (Proposition 4.3.14). Let k be an algebraically closed field and G/k a con-

nected commutative group scheme. Then the morphism

ϕG :Mét(G)→
kd(G)⊕
i=0

(
M1(G)

⊗i
)hSi

is an isomorphism in DMét(k,Z).

If we apply the following result which mimic the conclusion given in [AHP16, Lemma

A.6.]

Lemma (Lemma 2.1.5). Let S be a scheme which has finite Krull dimension and the

punctual p-cohomological dimension is bounded for all prime number p. Then the follow-

ing holds:
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1. Let M ∈ DAét(S,Z) be a motive. Then M is zero if and only if the pullbacks i∗s̄M

to any geometric point s̄→ S is zero.

2. Let f be a morphism in DAét(S,Z). Then f is an isomorphism if and only if the

pullback i∗s̄(f) for any geometric point s̄→ S is an isomorphism.

we then obtain the relative version of Proposition 4.3.14:

Theorem 6 (Theorem 4.3.15). Let S be a scheme which has finite Krull dimension and

the punctual p-cohomological dimension is bounded for all prime number p, and let G be

a connected commutative scheme over S. Then the morphism

ϕG :MS
ét(G)→

kd(G/S)⊕
i=0

(
M1(G/S)

⊗i
)hSi

is an isomorphism in DMét(S,Z).

We conclude the section about the decomposition of étale motives by giving a result

involving the decompostion of the étale Chow motive of the product of Jacobian varieties:

Theorem 7 (Theorem 4.3.19). Let k be a field of finite cohomological dimension and

consider Ci/k a projective smooth curve, for i ∈ {1, . . . , n}. Then the variety J(C1) ×
. . .× J(Cn) admits an integral Chow-Künneth decomposition.

In the same spirit, for an algebrically closed field we can conclude that principally

polarized varieties admit a Chow-Künneth decomposition in the étale setting:

Theorem 8 (Theorem 4.3.21). Let k = k̄ be a field and let A be a principally polarized

variety. Then there exists a Chow-Künneth decomposition of A.

This result leads us to conditions that we can impose to a smooth projective variety

X over an algebraically closed field in order to obtain the existence of the projectors

pét1 (X) and pét2d−1(X)

Theorem 9 (Theorem 4.3.22). Let X be a smooth projective variety of dimension d over

an algebraically closed field k. If Pic0(X) is a principally polarized variety, then there

exists a decomposition of the motive hét(X) as

hét(X) = h0ét(X)⊕ h1ét(X)⊕ h+ét(X)⊕ h2d−1
ét (X)⊕ h2dét (X)

Finally, we end the chapter four, with a characterization of isomorphism of étale Chow

motives: we obtained an analogue to [Huy18, Lemma 1], which is the characterization of

isomorphism in the category of Chow motives over algebraically closed fields.

Theorem 10 (Improved version of Manin’s principle). [Theorem 4.3.43] Let f : M →
N be a morphism in the category Chowét(k). Then f is a isomorphism of motives in

Chowét(k) if and only if for Ω an universal domain over k, the induced map (fΩ)∗ :

CH∗
ét(MΩ)→ CH∗

ét(NΩ) given by the base change fΩ :MΩ → NΩ, is bijective.
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Conventions

For a field k we denote the n-dimensional k-projective space as Pn
k and SmProjk is the

category of smooth and projective reduced k-schemes. Let G be an abelian group, ℓ a

prime number and r ≥ 1, then we denote G[ℓr] := {g ∈ G | ℓr · g = 0}, G{ℓ} :=
⋃

rG[ℓ
r],

Gtors denotes the torsion sub-group of G and Gfree := G/Gtors its torsion free quotient.

The prefix “L-” indicates the respective version of some result, conjecture, group, etc.

in the Lichtenbaum setting. H i
B(X,Z(n)) denotes the Betti cohomology groups of X.

Continuing with the same hypothesis for G, for an integer p, we set G[1/p] := G⊗ZZ[1/p].
If now G is a profinite group, i.e. can be written as G = lim←−Gi with Gi finite groups,

and A is a G-module we will consider its cohomology group Hj(G,A) as the continuous

cohomology group of G with coefficients in A defined as Hj(G,A) := lim−→Hj(Gi, A
Hi)

with Hi running over the open normal subgroups of G such that G/Hi ≃ Gi.

Let k be a field, we denote as ks and k̄ the separable and algebraic closure of k

respectively. For a prime number ℓ, we denote the ℓ−cohomological dimension of k as

cdℓ(k), and we set the cohomological dimension of k to be cd(k) := supℓ {cdℓ(k)}. Smk

will denote the category of smooth schemes over k and Xét denotes the small étale site

of X.
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Chapter 1

Motives: From pure to mixed

motives

The aim of this chapter is to give an overview on the theory of motives, form the first

definition of the category of Chow motives to the triangulated category of mixed motives.

We start by giving a quick overview about Chow motives, mentioning the principal

definition and results about the theory of classical motives. We will follow as introduction

for the theory of motives the references [And04], [MNP13] and [Sch94]. After that, we

move to the notion of triangulated category of motives in different contexts. For this we

follow the references [CD16] and [Ayo14b] for étale motives, and [MVW06] and [CD19]

for a general context of motives in the Nisnevich setting.

In the first section of the chapter, we revisit well-known results about algebraic cycles

of a smooth projective variety over a field k. We recall the classical operations on alge-

braic cycles and the notion of adequate equivalence relations, such as rational, algebraic,

homological and numerical equivalence. We focus on rational equivalence, since it gives

us the Chow groups. We continue by introducing the concept of correspondences, given

the action of an specific algebraic cycle, that work as the morphisms in the category of

pure motives.

The second section is devoted for the presentation of the theory of pure motives

introduced by Grothendieck. We define the category of motives, depending on an ade-

quate equivalence relation of algebraic cycles. Since the construction of such category

is fairly easy but powerful, we present categorical consequences coming from this con-

struction and the relation with realizations to Weil cohomology theories. We then give

the description of the Manin principle, introduced by Manin in [Man68], which is a con-

sequence of Yoneda’s lemma and helps to characterize isomorphisms in the category of

pure motives through an universal property. To illustrate this principle we compute the

Chow motive of projective bundles, blow-ups of a smooth projective variety with smooth

center and varieties that admit a cellular decomposition, such as Grassmannians. We fin-

ish section two by introducing the notion of Chow-Künneth decomposition, which gives

the necessary terminology for the development of further techniques for the integral étale

case.
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1. Motives: From pure to mixed motives

Finally in the third section we present the theory of premotivic categories, which

provides a more general framework than the theory presented in the second section. We

start by giving the definition of Grothendieck’s six functor formalism. After that we

introduce the notion of premotivic category, give some examples and discuss the relation

with the theory of pure motives. Next we present the theory of triangulated categories by

giving examples of premotivic categories and their properties, and by giving an expression

for the infinite suspension functor that allows us to invert Tate motives. In this section

we also introduce several categories of motives which depend on a suitable Grothendieck

topology, such as the h-topology, and the Nisnevich and qfh-topologies. We also recall

a result of Bondarko [Bon14], which relates the category of pure motives Chow(k)Q to

DM(k,Q).

1.1 Algebraic cycles and correspondences

For a field k, we denote as SmProjk the category of smooth projective varieties over a

field k. Throughout this thesis a variety will be a reduced scheme.

Let us give a quick introduction to algebraic cycles, using the references [Ful98] and

[EH16]. After that we move on to the definition of correspondences. As we mainly want

use them in the theory of pure motives, we follow the reference [MNP13].

Algebraic cycles

An algebraic cycle on a variety X is a formal finite linear combination Z =
∑
nαZα of

irreducible subvarieties Zα, where nα ∈ Z for all α. Given an integer i ≥ 0 we define the

abelian group of codimension i-cycles of X, denoted by

Zi(X) := {codim i cycles on X}.

Also it is important to consider the group Zi(X) with coefficients in a field K, which in

almost all the cases will be Q, denoted by Zi(X)K = Zi(X)⊗Z K.

Along with the sum of algebraic cycles, we can define other operations on cycles:

• Cartesian product of cycles: The usual cartesian product of subvarieties can be

linearly extended to product of cycles, but now we shall consider this cycle on the

product variety.

• Pushforward: Let f : X → Y be a proper morphism of k−varieties and Z ⊂ X an

irreducible subvariety. We define the degree as follows

deg(Z/f(Z)) :=

[k(Z) : k(f(Z))] if dimf(Z) = dimZ

0 otherwise.

Define the push-forward as the function f∗ : Z
i(X)→ Zi(Y ) which acts via f∗(Z) =

deg(Z/f(Z))f(Z).
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1.1. Algebraic cycles and correspondences

• Intersection: (Not always defined) Let V1 and V2 be two subvarieties of X of

codimension i and j respectively. They intersect in a union of subvarieties Zα of

codimension greater or equal to i + j, see [Har77, Theorem 7.2, Section I]. If the

codimension of Zα is equal to i+j for every α we say that the intersection is proper.

In the case of a proper intersection, the intersection number is defined as follows:

i(V1 · V2;Z) :=
∑
r

(−1)rℓA(TorAr (A/I(V1), A/I(V2)))

where AA = OX,Z is the local ring, I(Vi) is the ideal of the variety Vi in the ring

A. Then, the intersection product can be defined as

V1 · V2 =
∑
α

i(V1 · V2;Zα)Zα

• Pull-back: (Not always defined) Let f : X → Y be a morphism in SmProjk and

Z ⊂ Y any subvariety. Let Γf ⊂ X × Y be the graph of f . If Γf meets X × Z
properly then we can define the pull-back function as

f∗(Z) := [prX ]∗(Γf · (X × Z))

where prX : X × Y → X is the projection. With the notion of pull-back we can

define the intersection for cycles V,W ∈ Z(X) as

V ·W = ∆∗
X(V ×W )

where ∆X : X ↪→ X ×X is the diagonal embedding. Although for a general f the

pull-back is not necessarily defined, if f is a flat morphism, then by [Ful98, Lemma

1.7.1], for a subscheme Z the pull-back f∗Z is the inverse image scheme f−1(Z)

which is always defined, and this can be extended linearly to cycles inducing a

homomorphism f∗ : Zi(Y )→ Zi(X).

• Correspondences: (Not always defined) A correspondence from X to Y is simply

a cycle on the product X × Y . A correspondence Z ∈ Zt(X × Y ) acts as follows:

Z(T ) := [prX ]∗(Z · (T × Y )) ∈ Zi+t−d(Y )

T ∈ Zi(X), d = dim(X) whenever this is defined.

The last three operations are not always defined because the intersection product is

not always defined for any two projective varieties. As we will see in the next subsection,

these operations become well-defined after taking the quotient of the group of algebraic

cycles by an adequate equivalence relation.

Equivalence relations on algebraic cycles

Let us consider the graded group Z(X) =
⊕

i Z
i(X). We can consider an equivalence

relation ∼ on this group (which we are going to call “good” or “adequate”) if it has the

following properties:
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1. Motives: From pure to mixed motives

1. Compatibility with grading and addition.

2. Compatibility with products: if Z ∼ 0 then for all Y ∈ SmProjk we have Z × Y ∼
0 ∈ Z(X × Y ).

3. Compatibility with intersection: if X ∼ 0 and X · Y is defined, then X · Y ∼ 0.

4. Compatibility with projections: if Z ∼ 0 in Z(X × Y ), then (prX)∗(Z) ∼ 0 in

Z(X).

5. Moving lemma: given Z, Y1, . . . , Ym ∈ Z(X) there exists Z ′ ∼ Z such that Z ′ ·Yi is
defined for all i ∈ {1, . . . ,m}.

For an adequate equivalence relation and a given integer i, we define the subgroup

Zi
∼(X) ⊂ Zi(X) of ∼-trivial cycles as follows: Z ∈ Zi

∼(X) ⇐⇒ Z ∈ Zi(X) and Z ∼ 0.

It follows from the first property of an adequate equivalence that Zi
∼(X) is a subgroup

of Zi(X), so we can define quotient Ai
∼ = Zi(X)/Zi

∼(X) of ∼-cycles of codimension i.

This group has richer structure than Z(X): because of the fifth property of an adequate

relation A∗
∼(X) is a ring, with the product induced from intersection of cycles. Having

a well defined intersection product means that every operation of algebraic cycles is now

defined in the ring A∗
∼(X) as stated in the following lemma:

Lemma 1.1.1. For any adequate equivalence relation ∼ we have:

1. A∗
∼(X) is a ring with a product operation induced from the intersection of cycles

2. For any morphism f : X → Y in SmProjk the maps f∗ and f∗ induce well defined

ring homomorphisms f∗ : A
∗
∼(X)→ A∗

∼(Y ) and f∗A∗
∼(X)→ A∗

∼(Y ).

3. A correspondence Z from X to Y of degree r induces Z∗ : Ai
∼(X)→ Ai+r

∼ (Y ) and

equivalent correspondences induce the same correspondence Z∗.

In the following subsections we present five adequate equivalence relations, but in the

sequel we mainly focus on rational equivalence.

Rational Equivalence

This is the adequate equivalence relation that give us the Chow groups for a variety X.

Since we will use it throughout the following chapter, we recall the definitions and basic

properties of this relation. Let k(X) be the function field of X and consider f ∈ k(X)

The divisor of f is defined as follows:

• div(f) =
∑
Y⊂X

ordY (f) · Y where Y is a subvariety of X of codimension 1, and

the order is defined as ordY : k(X)∗ → Z, let A = OX,Y local ring, f ∈ A and

ordY (f) = ℓA(A/(f)), where ℓA is the length of the A−module.
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1.1. Algebraic cycles and correspondences

From this, it follows that the divisor div(f) of a function f ∈ k(Y )∗ on an irreducible

subvariety Y ⊂ X is a codimension 1 cycle on Y , and therefore if Y is of codimension

i−1 in X, div(f) ∈ Zi(X). Therefore, for a codimension i cycle Z ⊂ X, we have Z ∼rat 0

if there exist (Yα, fα) codimension i− 1 and irreducible cycles such that Z =
∑

div(fα).

Let X(i) be the collection of irreducible codimension i subvarieties of X. We have

Zi
rat(X) = Im

 ⊕
Y ∈X(i−1)

k(Y )∗
div−−→

⊕
Z∈X(i)

Z

 ,

and the Chow group of codimension i cycles on X is defined as follows

CHi(X) = coker

 ⊕
Y ∈X(i−1)

k(Y )∗
div−−→

⊕
Z∈X(i)

Z


• We say that D is a principal divisor of X (cycle of codimension 1) if there exists

f ∈ k(X) such that D = div(f). We can define a equivalence between divisors

called linear equivalence, denoted by ∼lin, which is defined as follows: D1 ∼lin

D2 ⇐⇒ ∃ f ∈ k(X) such that D1 −D2 = div(f).

• For divisors linear equivalence and rational equivalence coincide.

• If X is smooth, the quotient group Div(X) by the subgroup {div(f) | f ∈ k(X)×}
(principal divisors) is the Picard group Pic(X).

Also, we can define the morphism

N :
⊕

V ∈X(n+1)

k(V )× →
⊕

W∈Y(n+1)

k(W )×

in the following way: If the field extension is of infinite degree we define N |k(V ) = 0,

otherwise we can consider the usual norm of between fields N : k(V )× → k(W )×. With

those maps, the following diagram commutes:

⊕
V ∈X k(V )× Zn(X)

⊕
W∈Y k(W )× Zn(Y )

N

div

div

f∗

This information an be summarized in the following theorem:

Theorem 1.1.2 ([Ful98, Proposition 1.4]). Let f : X → Y be a proper surjective mor-

phism of normal varieties, and let r ∈ k(X)∗. Then

1. f∗[div(r)] = 0 if dim(Y ) < dim(X).

2. f∗[div(r)] = [div(N(r))] if dim(Y ) = dim(X).
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1. Motives: From pure to mixed motives

Definition 1.1.3 (Alternative definition). Suppose X is a smooth and projective variety,

then Z1, Z2 ∈ Zi(X) are rationally equivalent if and only if there exist W ∈ Zi(X × P1
k)

and a, b ∈ P1
k such that, defining W (t) := (prX)∗(W · (X × t)), we have W (a) = Z1 and

W (b) = Z2.

These two definition are equivalent:

Proposition 1.1.4 ([Ful98, Proposition 1.6]). A cycle α ∈ Zi(X) is rationally equivalent

to zero if and only if there are subvarieties V1, . . . , Vt of X × P1 with codimension i − 1

such that the projections from Vi to P1 are dominant, with

α =

t∑
i=1

[Vi(0)]− [Vi(∞)]

in Zi(X).

Lemma 1.1.5 ([Blo10, Lemma 1A.1]). Let X be a smooth variety over an algebraically

closed field k, Y any k−variety. Let i ≥ 0, then writing K = k(Y ) we have

CHi(XK) ≃ lim−→
U⊂Y open

CHi(X × U).

Theorem 1.1.6 ([MNP13, Theorem 1.2.6]). 1. If f : X → Y is a morphism in SmProjk,

then f∗ : CH∗(Y )→ CH∗(X) is a graded ring homomorphism, and f∗ :
⊕

j CHj(X)→
CHj(Y ) is an additive graded homomorphism of degree dim(Y )− dim(X).

2. if X,Y ∈ SmProjk, then Z ∈ CHe+dim(X)(X × Y ) induces an homomorphism Z∗ :

CH∗(X)→ CH∗(Y ) of degree e.

3. Local exact sequence: if i : Y ↪→ X is a closed embedding and j : U := X −Y ↪→ X

the associated open embedding, then we have an exact sequence

CHq(Y )
i∗−→ CHq(X)

j∗−→ CHq(U)→ 0

4. The homotopy property holds: the projection prX : X × An
k → X induces an iso-

morphism pr∗X : CHi(X)
∼−→ CHi(X × An

k)

We can say more about the structure of the Chow ring for some smooth projective

varieties, such as projective bundles, Blow-ups with smooth center and varieties that

admit a cellular decomposition.

Theorem 1.1.7 ([EH16, Theorem 9.6]). Let E be a vector bundle of rank r + 1 on a

smooth projective scheme X, and let ξ = c1(OP(E)(1)) ∈ CH1(P(E)). Let π : P(E)→ X

be the projection. The map π∗ : CH∗(X)→ CH∗(P(E)) is an injection of rings, and via

this map we have

CH∗(P(E)) ∼= CH∗(X)[ξ]/(ξr+1 + c1(E)ξr + . . .+ cr+1(E)).
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1.1. Algebraic cycles and correspondences

In particular the group homomorphism

r⊕
i=0

CH∗(X)→ CH∗(P(E))

(a0, . . . , ar)→
r∑

i=0

ξiπ∗(ai)

is an isomorphism, which gives us CH∗(P(E)) ∼=
r⊕

i=0

ξiCH∗(X).

Remark 1.1.8. Let X,Y ∈ SmProjk and E be a locally free sheaf of rank r+1 > 1 on X.

Let π1 : X × Y → X be the projection in the first component,which is dominant, then

we have the following diagram:

P(π∗1E) P(E)

X × Y X

π′

π′1

π1

π

and using compatibility of the Chern classes with pull-back, i.e., ci(f
∗E) = f∗ci(E), we

obtain the isomorphism
⊕r

i=0CH
∗(X × Y )→ CH∗(π∗1P(E)).

Theorem 1.1.9 ([Köc91, Appendix A]). Suppose π : X → S is a flat morphism of

relative dimension n and that X admits a filtration by closed subschemes X = X0 ⊃
. . . ⊃ Xk ⊃ such that Xi−1 −Xi

∼= An−di
S for some di ∈ Z. There is an isomorphisms of

Chow groups ⊕
i=0

CHi−di(S)→ CHi(X)

which is functorial with respect to cartesian squares

X ′ X

S′ S

π′

π′1

π1

π

Finally, let X be a smooth variety, let Z be a subvariety of X of codimension m. Let

i : Z ↪→ X be the inclusion map. We associate π : W := BlZX → X the blow-up of

X along Z. The exceptional divisor E of W is said to be π−1(Z) and NZ/X the normal

bundle of Z in X.

Theorem 1.1.10 ([EH16, Theorem 13.14]). Let i : Z → X be the inclusion of a smooth

subvariety of codimension m in a smooth variety X, π :W → X the blow-up of X along

Z and E the exceptional divisor with inclusion j : E →W . If Q is the universal quotient
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1. Motives: From pure to mixed motives

bundle on E ∼= PNZ/X , there is a split exact sequence of additives groups, preserving the

grading by dimensions

0→ CH∗(Z)
(i∗,h)−−−→ CH∗(X)⊕ CH∗(E)

(π∗j∗)−−−−→ CH∗(W )→ 0.

where h : CH∗(Z)→ CH∗(E) is defined by h(α) = −cm−1(Q)π∗E(α).

Algebraic equivalence

The definition is similar to the given in the rational equivalence, but instead of considering

P1 we can consider any smooth curve C, such that a, b ∈ C.

Definition 1.1.11. Z1 ∼alg Z2 if and only if there is a smooth irreducible curve C,

W ∈ Zi(C ×X) and two points a, b ∈ C such that Z1 − Z2 =W (a)−W (b).

Remark 1.1.12. It is possible to define rational equivalence by using a smooth projective

variety M instead of a curve, fulfilling the condition a, b ∈ M , but we can consider a

curve C immersed in M such that a, b ∈ C.

Remark 1.1.13. The definition of algebraic equivalence gives us an important result: if

Z1 ∼rat Z2 =⇒ Z1 ∼alg Z2 i.e. ∼rat is finer than ∼alg, but in general the two definitions

do not coincide. Let X be an elliptic curve and let a, b be different points on X(k), and

define the cycle a− b. This cycle is not rationally equivalent to zero (see [Sil09, Corollary

3.5]), but it is algebraically equivalent to zero because its degree is zero.

Smash nilpotent equivalence

Let X be a smooth projective variety. We will denote the n-th cartesian product of itself

as Xn (the same notation will be used for cycles of X). Then we will say that Z is smash

nilpotent equivalent to zero, denoted Z ∼⊗ 0, if and only if there exists n ∈ N such that

Zn ∼rat 0 on Xn.

It is easy to see that from the definition we have Zi
rat(X) ⊂ Zi

⊗(X), but the assertion

Zi
alg(X) ⊂ Zi

⊗(X) is not quite as straightforward.

Theorem 1.1.14 (Voevodsky-Voisin). [[MNP13, Theorem B-1.2]] We have that Zi
alg(X)Q ⊂

Zi
⊗(X)Q.

Homological equivalence

Let F be a field of characteristic 0. To define the Homological equivalence first we shall

recall what is a Weil-cohomology theory. A Weil cohomology theory is a graded functor

H between the category SmProjopk and the category of finite dimensional graded vector

spaces over the field F , which satisfies the following axioms:

1. There exists a cup product between H(X)×H(X)→ H(X), which is graded and

super-commutative
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1.1. Algebraic cycles and correspondences

2. We have the Poincaré duality: there is a trace isomorphism Tr : H2d(X)
∼−→ F (X

being irreducible and equidimensional) such that

H i(X)×H2d−i(X)
∪−→ H2d(X)

∼−→ F

is a perfect pairing

3. The Künneth formula holds:

H(X)⊗H(Y )
(prX)∗⊗(prY )∗−−−−−−−−−→ H(X × Y )

is a graded isomorphism.

4. There is a cycle class map γX : CHi(X)→ H2i(X) which is:

• functorial in the sense that for f : X → Y in SmProjk, we have f
∗◦γY = γX◦f∗

and f∗ ◦ γX = γY ◦ f∗.

• compatible with intersection product, i.e. γX(α · β) = γX(α) ∪ γX(β).

• compatible with points P , which means the following diagram commutes:

CH0(X) H0(P )

Z F

deg

γP

Tr

5. Weak Lefschetz property holds: if i : Yd−1 ↪→ Xd is a smooth hyperplane section,

then

H i(X)
i∗−→ H i(Y ) is

an isomorphism for i < d− 1

injective for i = d− 1.

6. Hard Lefschetz property holds: the Lefschetz operator L(α) = α ∪ γX(Y ) induces

isomorphisms

Ld−1 : Hd−i(X)
∼−→ Hd+i(X), 0 ≤ i ≤ d.

Example 1.1.15. 1. Some examples of Weil cohomology theories (if the characteris-

tic of k is equal to zero and k ⊂ C):

• Singular cohomology group H i(Xan) with Q or C coefficients. Xan denotes the

complex manifold associated to X.

• The classical de Rham cohomology HdR(Xan,C).

• The algebraic de Rham cohomology H i
dR(X,C) := Hi(XZar,Ω

•
X/k)
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1. Motives: From pure to mixed motives

2. If X ∈ SmProjk, consider the base change to the algebraic closure Xk̄ = X ⊗k k̄.

We define the étale cohomology of X as follows: let ℓ be a prime number different

from the characteristic of the field k, let us recall the definitions

H i
ét(Xk̄,Zℓ) := lim←−

n

H i
ét(Xk̄,Z/ℓ

n)

H i
ét(Xk̄,Qℓ) := H i

ét(Xk̄,Zℓ)⊗Zℓ
Qℓ.

For further details about étale cohomology see [Mil80].

3. For a perfect field k and a smooth projective k-variety X, one has crystalline co-

homology H i
crys(X/W (k)) ⊗ K, where K is the field of fractions of the Witt ring

W (k).

Definition 1.1.16. Let X be an equidimensional smooth projective variety over k and

Z ∈ Zi(X). For a given a Weil cohomology theory H, we define Z ∈ Z ∼hom 0 ⇐⇒
γX(Z) = 0.

Remark 1.1.17. It is important to say that the homological equivalence depends on the

Weil cohomology theory we are working with.

An important fact, is that we obtain a second relation between different equivalences,

if Z1 ∼alg Z2 =⇒ Z1 ∼hom Z2. This follows because two points on a curve are

homologically equivalent and the properties of the cycle class map.

In the same way, we can obtain that Zi
⊗(X) ⊂ Zi

hom(X). Let us consider that Z ∼⊗ 0,

which means that exists n ∈ N positive, such that Zn ∼alg 0. Considering its cycle class

γXn(Zn) =

n⊗
i=1

γX(Z) = 0 ∈ H2in(Xn)

then γX(Z) = 0.

Numerical equivalence

Let X ∈ SmProjk be a equidimensional and irreducible variety. For Z ∈ Zi(X) we say

Z ∼num 0 if and only if for every W ∈ Zd−i(X) (with d dimension of X) where the

product Z ·W is defined, we have deg(Z ·W ) = 0.

If Z ∈ Zi
hom(X) (for a given cohomology theory H) with i < d, and W ∈ Zd−i(X)

such that Z ·W is defined, then by functorial properties of the degree map we obtain

deg(Z ·W ) = Tr(γX(Z ·W ))

= Tr(γX(Z) ∪ γX(W )) = 0,

which gives us the assertion Zi
hom(X) ⊂ Zi

num(X).

Theorem 1.1.18 (Matsusaka). Let k be an algebraically closed field, then for divisors

we have the equality Z1
alg(X) = Z1

hom(X) = Z1
num(X).

30



1.1. Algebraic cycles and correspondences

If k is an algebraically closed field, it is conjectured that Zi
hom(X) = Zi

num(X) for

all i. This is one of the standard conjectures known as the conjecture D(X). If k is

algebraically closed field of characteristic zero, the equality is known for i = 2, and for

curves and abelian varieties.

Remark 1.1.19. The equivalence relations previously presented are adequate equivalence

relations. For more details about algebraic, homological and numerical equivalence, see

[Ful98, Chapter 19] and [MNP13, Chapter 1].

Finally, we can conclude the following chain of inclusions between the group of cycles

that are equivalent to zero by different relations

Zi
rat(X) ⊂Zi

alg(X) ⊂ Zi
hom(X) ⊂ Zi

num(X)

Zi
rat(X)K ⊂ Zi

alg(X)K ⊂Zi
⊗(X)K ⊂ Zi

hom(X)K ⊂ Zi
num(X)K if Q ⊂ K

Lemma 1.1.20 ([And04, Lemme 3.2.2.1]). Rational equivalence ∼rat is the finest ade-

quate equivalence relations, and numerical equivalence is the coarsest.

Proof. Let ∼ be an adequate equivalence relation, if Z ∼ 0, by properties of adequate

equivalence relations Z ·Y ∼ 0 for Y , whenever the intersection product is defined, which

gave us Zi
∼(X) ⊂ Zi

num(X).

Now, we need to prove Y ∼rat 0 =⇒ Y ∼ 0. The general idea is prove that [0] ∼ [∞]

on P1 (in general any two points are related) by using the properties of an adequate

relation. By the moving lemma, there is a cycle
∑
ni[xi] ∼ [1] such that the intersection

product
∑
ni[xi] · [1] is well defined, i.e. xi ̸= 1 for all i. Let α =

∑
ni[xi]−1 ∼ 0 and let

Γf be the graph cycle of f(x) = 1−
∏(x−xi

1−xi

)mi

with mi > 0. Then we have a sequence

of implications of equivalences to zero of different algebraic cycles:

α ∼ 0 =⇒ α× P1 ∼ 0 =⇒ Γf · (α× P1) ∼ 0 =⇒ (prX)∗
(
tΓf · (α× P1)

)
∼ 0

we obtain that mn[1] ∼ m[0] with n =
∑
ni and m =

∑
mi, since m is arbitrary we

conclude that n[1] ∼ [0]. Applying x→ 1/x we obtain n[1] ∼ [∞] =⇒ [0] ∼ [∞].

Remark 1.1.21. Another important conjecture about algebraic cycles, known as Voevod-

sky’s conjecture, which states that Zi
⊗(X) = Zi

num(X). Note that the last conjecture

implies the standard conjecture D(X) for every Weil cohomology theory, since Voevod-

sky’s conjecture is independent of the choice of a Weil cohomology theory.

Correspondences

Let X and Y be in SmProjk. For a given adequate equivalence relation ∼, we define

Corrr∼(X,Y ), the group of correspondences of degree r from X to Y , as follows: When

X is an equi-dimensional variety of dimension d, Corrr∼(X,Y ) = Ad+r
∼ (X × Y )Q. If

X = ⨿Xi where Xi is a connected variety, then

Corrr∼(X,Y ) =
⊕

Corrr∼(Xi, Y ) ⊂ A∗
∼(X × Y )Q.
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1. Motives: From pure to mixed motives

Let prXZ : X × Y ×Z → X ×Z be the projection (analogously for prXY and prY Z),

f ∈ Corr∼(X,Y ) and g ∈ Corr(Y, Z), then we define the composition of correspondences

g ◦ f ∈ Corr∼(X,Z) by the formula

g ◦ f = [prXZ ]∗ {(f × Z) · (X × g)} ,

in the case when X = Y = Z then Corr∼(X,X) has a ring structure, where the cycle of

the diagonal ∆(X) ⊂ X ×X acts as the identity element. It is necessary to remark that

the composition is well defined, because the intersection product in A∗
∼(X × Y × Z) is

well defined, and in general is not commutative.

Definition 1.1.22. A projector for X is an element (or also an idempotent element)

p ∈ Corr∼(X ×X) such that p ◦ p = p. Note that a projector p has degree 0.

Let ϕ : X → Y be a morphism of varieties, with X and Y irreducible varieties of

dimension d and e respectively. Let Γϕ ⊂ X × Y the associated graph of ϕ, this define

ϕ∗ := Γϕ ∈ Corre−d
∼ (X,Y ) and ϕ∗ := tΓϕ ∈ Corr0∼(Y,X).

Example 1.1.23. Suppose ϕ is a generically finite morphism of degree r and d = e, then

ϕ∗ ◦ ϕ∗ defines a correspondence from Y to Y of degree 0 which in fact can be described

as

ϕ∗ ◦ ϕ∗ = [prY Y ]∗
{
(tΓϕ × Y ) · (Y × Γϕ)

}
Let us notice that the cycle [prY Y ]∗

{
(tΓϕ × Y ) · (Y × Γϕ)

}
can be see as the pushforward

of the following map composition

X
ϕ×idX×ϕ−−−−−−→ Y ×X × Y prY Y−−−→ Y × Y

x
ϕ×idX×ϕ−−−−−−→ (ϕ(x), x, ϕ(x))

prY Y−−−→ (ϕ(x), ϕ(x))

which is the same cycle resulted of the image of the morphism’s composition X
ϕ−→ Y

∆Y−−→
Y × Y . Using the pushforward of the morphisms ϕ and ∆Y we obtain

CH∗(X)
ϕ∗−→ CH∗(Y )

(∆Y )∗−−−−→ CH∗(Y × Y )

where ϕ∗([X]) = r[Y ] and (∆Y )∗([Y ]) = idY , therefore Γϕ ◦ tΓϕ = ridY .

Any correspondence induces a homomorphism of groups between cycles of some codi-

mension depending of the degree of the correspondence. Let f ∈ Corrr∼(X,Y ), then we

define the induced homomorphism as follows:

f∗ : A
i
∼(X)Q → Ai+r

∼ (Y )Q

Z → f∗(Z) := (prY )∗ {f · (prX)∗(Z)}

If f has degree zero, then the homomorphism respects the degree. In the same way for

f ∈ Corrr∼(X,Y ) it is possible to define an operation on a Weil cohomology (only in the

cases when ∼ is finer or equal than ∼hom)

f∗ : H
i(X)→ H i+2r(Y )

α→ f∗(α) := prY {γX×Y (f) ∪ (prX)∗(α)}
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1.2. Theory of pure motives

Lemma 1.1.24 (Lieberman’s lemma, [MNP13, Lemma 2.1.3]). Let f ∈ Corr∼(X,Y ),

α ∈ Corr∼(X,X
′), β ∈ Corr∼(Y, Y

′), then (α× β)∗(f) = β ◦ f ◦ tα.

1.2 Theory of pure motives

Definition of motives

The construction of the category of classical motives is simple and does not depend on

the standard conjectures. We will proceed by the definition of motives with respect to an

adequate equivalence relation ∼.

Definition 1.2.1. The categoryM∼(k) of k-motives with respect to the adequate equiv-

alence relation ∼ is defined as follows: an object of this category is a triplet (X, p,m)

where X is in SmProjk, p ∈ Corr0∼(X,X) is a projector and m ∈ Z. If (X, p,m) and

(Y, q, n) are motives then

HomM∼(k)((X, p,m), (Y, q, n)) = q ◦ Corrn−m
∼ (X,Y ) ◦ p.

A morphism f : (X, p,m)→ (Y, q, n) is of the form q◦g◦p where g is a correspondence

of degree n −m. There is another way to see the morphism of motives. Consider the

subgroup

M((X, p,m), (Y, q, n)) := {g ∈ Corrn−m
∼ (X,Y ) | g ◦ p = q ◦ g}

an we define an equivalence relation by declaring g ≈ 0 if and only if p ◦ g = g ◦ q = 0,

then g ≈ g◦p ≈ q◦g ≈ q◦g◦p. In the subgroupM((X, p,m), (X, p,m)) we have p ≈ idX ,

the same for (Y, q, n) and q.

Let [g] be the equivalence class, then [f ] = [g], therefore

HomM∼(k)((X, p,m), (Y, q, n)) =M((X, p,m), (Y, q, n))/ ≈ .

Remark 1.2.2. 1. By properties of the group of correspondences and the idempotent

elements p and q, the categoryM∼(k) is additive, Q−linear and pseudoabelian, but

in general is not abelian (see [Sch94, §3.5]). Another important fact of the category

of motives comes from Jannsen’s theorem, which states thatM∼(k) is an abelian

semi-simple category if and only if the equivalence relation used in the definition of

the category is the numerical equivalence (see [Jan00] or [MNP13, Theorem 3.2.1]).

2. Notice that by changing the coefficients of the correspondences, to its integral

version, we can define the integral version of the categoryM∼(k), that we denote

byM∼(k)Z.

3. When ∼=∼rat we denote the categoryM∼(k) (resp. M∼(k)Z) by Chow(k)Q (resp.

by Chow(k)Z).
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1. Motives: From pure to mixed motives

In the general case, we have a (contravariant) functor h∼ which acts as follows:

h∼ : SmProjk →M∼(k)

X → h∼(X) = (X,∆X , 0)

(f : X → Y )→ h∼(f) =
tΓf ∈ Corr0(X,Y ) = HomM∼(k)(h∼(X), h∼(Y ))

Thanks to the definition of the category M∼(k), we obtain that two motives, M =

(X, p, 0) and N = (Y, q, 0), are isomorphic if there exist two zero degree correspondences

f ′ : X → Y and g′ : Y → X such that the composition of morphism f = q ◦ f ′ ◦ p and

g = p ◦ g′ ◦ q one has f ◦ g = q = idN and g ◦ f = p = idM . In general, for motives

two M = (X, p,m) and N = (Y, q, n) in order to be isomorphic one should find f ′ and

g′ correspondences having degree n − m and m − n, such that the relations holds. If

∼=∼rat we denote the functor h∼ simply by h.

Examples and properties of motives

Let k be a field, we can define the following motives: 1 := (Spec(k), id, 0) (motive of a

point). This motive acts as the unity when we define a product structure in the category

of motives. The Lefschetz motive, defined as L = (Spec(k), id,−1) and the Tate motive

T = (Spec(k), id, 1). Assume X(k) ̸= ∅ and consider e ∈ X(k), this can be assured if we

enlarge the field k. We can define two projectors of X

p0(X) := e×X, p2d(X) := X × e.

Those projectors will be important in the developing of the decomposition of motives

h(X), because they define orthogonal projectors i.e. p0(X)◦p2d(X) = p2d(X)◦p0(X) = 0,

because:

p0(X) ◦ p2d(X) = (prXX)∗ {(e×X ×X) · (X ×X × e)}

= 0

by definition of the pushforward on algebraic cycles. In case that X(k) = ∅, then we

choose a zero cycle z ∈ CH0(X) of degree n and then define the projectors

p0(X) :=
1

n
[z ×X] , p2d(X) :=

1

n
[X × z] .

With these projectors, we have the definition of two new motives

h0∼(X) = (X, p0(X), 0), h2d∼ (X) = (X, p2d(X), 0).

Example 1.2.3. The first example of an isomorphism of motives that we can construct

by definition is h0(X) ∼= 1. Let α : X → Spec(k) be the structural morphism and e :

Spec(k) → X be the injection map with e ∈ X(k). Those maps induces correspondences

α∗ = Spec(k)×X and e∗ = e×Spec(k). We have that e∗ ◦α∗ = idh(Spec(k)). On the other

hand

α∗ ◦ e∗ = (prXX)∗ {(e× Spec(k)×X) · (X × Spec(k)×X)}

= e×X
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1.2. Theory of pure motives

The morphisms of motives α∗ : 1 → h0∼(X) and e∗ : h0∼(X) → 1 are mutually inverse

because

id ◦ e∗ ◦ p0(X) ◦ α∗ ◦ id = id

p0(X) ◦ α∗ ◦ id ◦ e∗ ◦ p0(X) = p0(X)

therefore 1 ∼= h0∼(X).

There is a tensor product on the categoryM∼(k), which is defined on objects by

(X, p,m)⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n).

By the definition of tensor product of motives, we have immediately that L⊗ T = 1.

In the same way, we can define another operation such as the direct sum of motives.

Let M = (X, p,m) and N = (Y, q, n) be motives, then one can define a motive M ⊕N .

In the case that m = n then

(X, p,m)⊕ (Y, q,m) := (X ⨿ Y, p⨿ q,m).

For a general construction when m ̸= n, let us assume m < n, then we can decompose

M = (X, p, n)⊗ Ln−m

= (X, p, n)⊗ h2∼(P1)n−m

= (X × (P1)n−m, p̃, n)

where the projector p̃ is defined as p̃ = p ⊗ (P1 × {x})n−m. Therefore M ⊕ N = (X ×
(P1)n−m ⨿ Y, p̃⨿ q, n).

If ϕ : X → Y is a generically finite morphism of degree d we have that ϕ∗◦ϕ∗ = d · idY
and p := (1/d) · ϕ∗ ◦ ϕ∗ is a projector on the variety X. In fact (X, p, 0) ∼= h∼(Y )

Let M = (X, p, 0) and N = (Y, q, 0) be motives and assume that there exist mor-

phisms of motives f, g such that f :M → N , g : N →M and f ◦g = idN = q, then by the

remarks in the section of category theory p′ = g◦f defines an idempotent correspondence

which is a projector on X and N ∼= (X, p′, 0), and also M ∼= N ⊕ (X, p− p′, 0).
There exists a direct application to the direct sum of motives. Let us consider the

projectors p0 and p2d defined previously. Let p+(X) := ∆ − p0(X) − p2d(X) be a

correspondence, which by the properties of p0 and p2d is also a projector. If we put

h+∼(X) := (X, p+(X), 0) there is a decomposition of h∼(X) as

h∼(X) = h0∼(X)⊕ h+∼(X)⊕ h2d∼ (X)

Example 1.2.4. Let x ∈ P1(k). One has a decomposition of the diagonal as the sum

of {x} × P1 and P1 × {x}, actually, this decomposition is independent of x, then we can

obtain the following decomposition of motives

h∼(X) = 1⊕ L.

This is the first example of the decomposition of the diagonal in the category of motives.
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1. Motives: From pure to mixed motives

In general h2d∼ (X) ∼= (Spec(k), id,−d) ∼= Ld. Let us prove the first isomorphism.

Due to the definition of isomorphism of motives, we need to find two correspondences

f ′ : Spec(k)→ X and g′ : X → Spec(k) such that

f ′ ∈ Corrd∼(Spec(k), X) = Ad
∼(Spec(k)×X)⊗Q

g′ ∈ Corr−d
∼ (X,Spec(k)) = A0

∼(X × Spec(k))⊗Q.

Using the correspondences f ′ = e∗ and g′ = α∗, on one hand we obtain α∗ ◦ e∗ = 1

as a correspondence on Spec(k), on the other hand e∗ ◦ α∗ = X × e because

e∗ ◦ α∗ = prXX {(X × Spec(k)×X) · (X × Spec(k)× e)}

= X × e.

The conclusion is similar to the conclusion of the isomorphism between h0∼(X) ∼= 1.

Proposition 1.2.5 ([Sch94, Proposition 1.12]). Any motive M can be expressed as a

direct factor of some h(X ′)⊗ Ln with X ′ equidimensional.

Proof. Let M = (X, p,m) then M = ph∼(X) ⊗ L−m, so it is enough to prove the case

when M = h∼(X). Let X = ⨿r
i=1Xi be the decomposition of X into its equidimensional

components. Let di := dim(Xi) and set a1, . . . , ar ∈ N such that for some k ∈ N,
di + ai = k for all i = 1, . . . , r. Then

h∼(X) =
r⊕

i=1

h∼(Xi) =
r⊕

i=1

(h∼(Xi)⊗ 1)

∼=
r⊕

i=1

(
h∼(Xi)⊗ h0∼(Pai)

)
⊆

r⊕
i=1

h∼ (Xi × Pai)

but
⊕r

i=1 h∼ (Xi × Pai) = h∼ (⨿r
i=1Xi × Pai).

It is possible to define Chow groups of motives (also for every adequate relation). For

any projector p : X → X, for all i one has induced maps p∗ : CH
i(X)Q → CHi(X)Q and

for M = (X, p,m) one defines

CHi(M) := p∗(CH
i+m(X)Q) ⊂ CHi+m(X)Q

Proposition 1.2.6 ([MNP13, Proposition 2.5.1]). If M = (X, p,m), one has that

CHi(M) ∼= HomChow(k)Q(L
i,M)

Remark 1.2.7. The proof of the last proposition uses Lieberman’s lemma, which is valid

for any adequate relation, so it is possible define Ai
∼(M) as Ai

∼(M) = HomM∼(k)(Li,M)

.
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1.2. Theory of pure motives

Note that the Chow group of the motive M ⊗ Lj is closely related to the motive of

M by

Ai
∼(M ⊗ Lj) = Ai

∼(X, p,m− j)

= p∗(A
i+m−j
∼ (X)Q)

= Ai−j
∼ (M)

Now let ∼ be an equivalence relation finer or equal than homological equivalence.

Then for a motive M = (X, p,m) we can define the cohomology groups for it in a similar

way as cycle groups. Considering the induced map p∗ : H
i(X)→ H i(X) then

H i(M) := p∗(H
i+m(X)) ⊂ H i+2m(X).

If M = (X, p, 0) is a motive, then this motive contains information about X, in the

sense that is a “piece” of X which is responsible for a certain part of the geometrical

and/or algebraical properties of X (for instance the Chow groups of the motive M as a

subgroup of the Chow group of X), depending on the equivalence relation that we work

with. When M = (X, p,m) with m ̸= 0, by Proposition 1.2.5 M is a direct summand of

the motives h∼(X× (P1)m), therefore the motive M can be realized as a part of different

varieties.

Manin’s identity principle

There exists the duality operator which acts as follows:

∨ :M∼(k)
opp →M∼(k)

M = (X, p,m)→ (X, p,m)∨ = (X, tp, d−m)

if X is purely d−dimensional. In particular, if we continue with the assumption of X

purely d−dimensional, then h(X)∨ = h(X) ⊗ L−d. It is clear that the duality operator

is an involution, i.e. M∨∨ =M , and we have the formula

HomM∼(k)(M ⊗N,P ) = HomM∼(k)(M,N∨ ⊗ P ).

For any motive M ∈ ob(M∼(k)) and d ∈ Z we define the cycle groups of M by

Ad
∼(M) = HomM∼(k)(Ld,M). Let VectQ be the category of Q−vector spaces, then

A∗
∼(−) :M∼(k) → VectQ is a Z−graded and additive functor. If M , N ∈ ob(M∼(k))

then

HomM∼(k)(N,M) = HomM∼(k)(1,M ⊗N∨) = A0
∼(M ⊗N∨)

Using the properties of the category M∼(k), in particular that is a small category,

by the Yoneda lemma and the remarks made in the subsection of preliminaries, the

functor F : M∼(k) → SetsM∼(k)opp which attaches M ∈ ob(M∼(k)) to the functor

HomM∼(k)(−,M) is fully-faithful.
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1. Motives: From pure to mixed motives

As we know, any N ∈ ob(M∼(k)) can be seen as a direct factor of h∼(Y ) ⊗ Ln

for some Y ∈ SmProjk and n ∈ Z, and along with the properties of duality, we have

A0
∼(M ⊗ h∼(Y )⊗ Ln) = A−n

∼ (M ⊗ h∼(Y )). Denoting by ωM the following functor

ωM : SmProjoppk → VectQ

Y → ωM (Y ) := A∗
∼(M ⊗ h∼(Y ))

then the functor which attaches M ∈ ob(M∼(k)) to ωM is full faithful. This is because

of the properties of the category of motives and Yoneda’s lemma.

Theorem 1.2.8 ([Sch94, Section 2.3]). [Manin’s identity principle]

• Let f , g :M → N be morphism of motives. Then f is an isomorphism if and only

if the induced map

ωf (Y ) : A∗
∼(M ⊗ h∼(Y ))→ A∗

∼(N ⊗ h∼(Y ))

is an isomorphism for every Y ∈ SmProjk, and f = g if and only if ωf (Y ) = ωg(Y )

for every Y ∈ SmProjk.

• A sequence 0 → M ′ f−→ M
g−→ M ′′ → 0 in M∼(k) is exact if and only if, for every

Y ∈ SmProjk, the sequence

0→ A∗
∼(M

′ ⊗ h∼(Y ))
ωf (Y )
−−−−→ A∗

∼(M ⊗ h∼(Y ))
ωg(Y )−−−−→ A∗

∼(M
′′ ⊗ h∼(Y ))→ 0

is exact.

Proof. The proof of the first assertion comes directly from the properties of the category

of motives and Yoneda’s lemma. The hypothesis are clearly fulfilled for this case because

of the given arguments about the morphisms in the category of motives. The second

property follows since the functors are fully-faithful.

Motive of a projective bundle

The first example that we consider is the calculation of the motive of a projective bundle,

because it gives us an important fact about the functor h and how it acts on the objects

of Chow(k)Q.

Remark 1.2.9. For the next example, we need to remember that the Chow group for

X × Pn where X ∈ SmProjk is given by CH∗(X × Pn) ∼= CH∗(X)[t]/(tn+1).

Let us consider X ∈ SmProjk and the free projective bundle over X of rank n,

X × Pn. By definition we have h(X × Pn) = (X × Pn,∆X×Pn , 0) which is isomorphic to

h(X) ⊗ h(Pn) = (X,∆X , 0) ⊗ (Pn,∆Pn , 0) (due to the decomposition of the diagonal).

For the case of the motive h(Pn) one has the decomposition h(Pn) = 1 ⊕ L1 ⊕ . . . ⊕ Ln

1. In other words, for the motive of the free projective bundle of rank we obtain

h(X × Pn) ∼=
n⊕

i=0

h(X)⊗ Li.

1this comes from the fact that we construct projectors pi = ξn−i × ξi for all i ∈ {0, . . . , n}, where ξ
is the class of a hyperplane in the Chow group of Pn, such that the projectors pi are pairwise orthogonal
and ∆Pn =

∑n
i=0 pi. For more details see [Man68] p. 455.
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1.2. Theory of pure motives

Example 1.2.10. Let E be a locally free sheaf of rank r + 1 on X ∈ SmProjk, and let

π : P(E)→ X be the projective bundle and ξ = c1(OP(E)(1)) the tautological line bundle.

As we have seen before, there is an isomorphism λ for Chow groups

CH∗(P(E)) ∼=
r⊕

i=0

ξiCH∗(X)

with inverse µ. Now, let us consider T ∈ SmProjk, it is easy to see that (idT ×µ)◦ (idT ×
λ) = id on the group CH∗(T × P(E)) i.e. the property remains true universally after an

arbitrary base change T → Spec(k) (also considering (idT × λ) ◦ (idT × µ) = id on the

group
⊕r

i=0 ξ
iCH∗(T ×X)), having for all T an isomorphism

CH∗(T × P(E)) ∼=
r⊕

i=0

ξiCH∗(T ×X)

therefore, we can conclude that (P(E),∆P(E), 0) ∼=
r⊕

i=0

(X,∆X ,−i) (with the usual nota-

tion h(P(E)) ∼=
r⊕

i=0

h(X)⊗ Li)

Remark 1.2.11. 1. This example shows two varieties, X×Pr and P(E) with E a locally

free sheaf of rank r + 1 > 1 over X, that are not isomorphic and such that their

respective motives are isomorphic. We obtain an important conclusion, the motive

of a projective bundle over X ∈ SmProjk only depends of the rank of E, so it can be

constructed as if E were a free sheaf. In a language of category theory, the functor

h : SmProjk → Chow(k)Q is not conservative, i.e. is not injective on objects.

2. In case of the existence of a Chow-Künneth decomposition of X one has a decom-

position of the motive of a projective bundle as

h(P(E)) ∼=
r⊕

i=0

2dim(X)⊕
j=0

(
hj(X)⊗ Li

)
.

Motive of a Blow-up

Example 1.2.12 ([Sch94, 2.7, Theorem 2.8], [Man68, §9, p. 461]). Another example

of the Manin principle is the isomorphism that relates the motives of a variety X, a

subvariety Z ⊂ X of codimension (m+ 1) and W = BlZX the blow-up of X along Z in

the following way:

h(X)⊕ h(E) ∼= h(Z)⊕ h(W )

Due to Theorem 1.1.10, for T ∈ SmProjk the exact sequence can be extended to

0→ CH∗(T × Z) (i∗h)−−−→ CH∗(T ×X)⊕ CH∗(T × E)
(π∗j∗)−−−−→ CH∗(T ×W )→ 0.

which gives an exact sequence

h(W ) = h(X)⊕
m⊕
i=1

h(Z)⊗ Li

in the category of motives Chow(k)Q.

39



1. Motives: From pure to mixed motives

Cellular decomposition

Example 1.2.13. Let X → S be a smooth projective variety which admits a cellular

decomposition. Since the isomorphism presented in Theorem 1.1.9 is preserved under

base change S′ → S, by Manin’s identity principle we conclude that

h(X) ∼=
k⊕

i=0

h(S)⊗ Ldi .

In all the examples, the principal argument was the functoriality of the isomorphism of

Chow groups with respect cartesian products, which allows us to apply Manin’s identity

principle. So in order to know if a morphism is an isomorphism we have to check it

in a universal way for all Y ∈ SmProjk. There exists an improved version of Manin

principle, but for algebraically closed fields as is stated in [Huy18, Lemma 1.1]: Let

f : M → N be a morphism in the category Chow(k)Q. Then f is a isomorphism of

motives in Chow(k)Q if and only if for Ω an universal domain over k, the induced map

(fΩ)∗ : CH∗(MΩ)Q → CH∗(NΩ)Q given by the base change fΩ : MΩ → NΩ, is bijective.

We will describe this principle with more details in chapter four.

Chow-Künneth decomposition

For certain motives h(X) there exists a decomposition, called the Chow-Künneth decom-

position. Consider the following example: let C be a connected, smooth and projective

curve defined over a field k = k̄. Fixing a k-rational point e ∈ C(k), we define the

correspondences p0(C) = e× C and p2(C) = C × e which are idempotent and mutually

orthogonal. Defining p1(C) := p+(C) and h1∼(C) = (C, p1(C), 0), we obtain

h∼(C) = h0∼(C)⊕ h1∼(C)⊕ h2∼(C).

Modulo isomorphism, h1∼(C) is well defined as a unique motive. As we have said

before, the theory of the motive h1∼(C) is closely related to the theory of abelian varieties.

In general, we say that X ∈ SmProjk admits a Chow-Künneth decomposition if there

exists projectors pi(X) ∈ Corrrat(X,X), for all i = 0, . . . , 2d such that

1.

2d∑
i=0

pi(X) = ∆(X),

2. pi(X) ◦ pj(X) = pi(X) if i = j, otherwise pi(X) ◦ pj(X) = 0,

3. γX×X(pi(X)) = ∆topo
i (X), where ∆topo

i (X) ∈ H2d−i ⊗ H i(X) corresponds i−th
Künneth component of the diagonal as topological cycle class in the decomposition

of γX×X(∆(X)) =
∑2d

i=0∆
topo
i (X) .

If such projectors exists, we obtain a decomposition of motives, called the Chow-

Künneth decomposition for motives, by defining hi(X) = (X, pi(X), 0), then

h(X) =

2d⊕
i=0

hi(X).
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1.3. Triangulated motives

There is a conjecture, called the Chow-Künneth conjecture, which states that every

X ∈ SmProjk admits a Chow-Künneth decomposition. Working with rational coefficients,

the projectors p0(X) and p2d(X) always exist. This is also the case for the projectors

p1(X) and p2d−1(X) by a theorem of Murre, see [MNP13, Theorem 6.2.1]. Hence we

obtain a decomposition of the motive h(X) as follows

h(X) ≃ h0(X)⊕ h1(X)⊕ h+(X)⊕ h2d−1(X)⊕ h2d(X).

The motives h1(X) and h2d−1(X) are called the Picard and Albanese motives and satisfy

the properties

CHi(h1(X))Q ≃

 0 if i ̸= 1

Pic0(X)(k)Q if i = 1,
CHi(h2d−1(X))Q ≃

 0 if i ̸= 2d− 1

Alb(X)(k)Q if i = 2d− 1.

Some examples of varieties for which is known that the Chow-Kûnneth decomposition

holds are the following:

1. For dimension reasons and the existence of the projectors p0(X), p1(X), p2d−1(X)

and p2d(X), the Chow-Künneth decomposition holds for curves and surfaces.

2. Abelian varieties A over a base scheme S, given by [MD91] or [Kün93], and using

the Fourier-Mukai transform.

3. Conic bundles over a surface, by [NS09].

4. By arguments involving the nonexistence of transcendental cohomology in all de-

grees but in the middle dimension (see [MNP13, Appendix C]) such as complete

intersections in projective spaces and Calabi-Yau threefolds.

5. If X and Y are two projective varieties that admit a Chow-Künneth decomposition,

the product X × Y admits a decomposition as well, by imposing the projectors

pk(X × Y ) =
∑

i+j=k

pi(X)× pj(Y ).

1.3 Triangulated motives

The main result that we use in this section is the so called Grothendieck six functors

formalism. We recall some facts about premotivic theories and the six functor formalism

presented in [Ayo14b], [CD16] and [CD19].

A monoidal category is a category C equipped with an associative product functor

⊗ : C × C → C and a unit object 1. The associativity property is expressed in terms of

imposing an isomorphism

ηA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

and for the unit 1 we demand the existence of isomorphisms αA : A ⊗ 1 → A and

βA : 1⊗A→ A. We require naturality about these maps as follows:
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1. Motives: From pure to mixed motives

• the isomorphism ηA,B,C depends functorially on the triple (A,B,C), i.e. it can be

regarded as a natural isomorphism between functors

C × C × C → C

(A,B,C) 7→ (A⊗B)⊗ C

(A,B,C) 7→ A⊗ (B ⊗ C)

and similarly for the maps αA and βA.

• Given any four objects A,B,C,D ∈ C the following pentagram

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

ηA,B,C⊗idD ηA⊗B,C,D

ηA,B⊗C,D ηA,B,C⊗D

idA⊗ηB,C,D

is commutative.

• For any pair (A,B) of objects in C, the triangle

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

ηA,1,B

αA⊗idB idA⊗βB

is commutative.

Grothendieck six functors formalism

We assume that all schemes are noetherian and of finite dimension. Consider a family of

morphisms P which is one of the following families

• The class of étale morphisms which are separated of finite type, denoted by Ét.

• The class of smooth morphisms which are separated of finite type, denoted by Sm.

• The class of separated morphisms of finite type, denoted by Fft.

Let S be a given base scheme, then we denote Sét, SmS and Fft
S be the category of

noetherian S-scheme having structural morphism U → S in the class of morphisms Ét,

Sm and Fft respectively. All of these families areadmissible families in the sense of

[CD19]. In general a family of morphisms P of a category C is called admissible if it has

the following properties:

1. All isomorphisms are in P.

2. The class P is stable by composition.
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1.3. Triangulated motives

3. The class P is stable by fiber products.

Definition 1.3.1 (Triangulated premotivic category). We say that a fibred categoryM
over Sch is a triangulated (resp. abelian) P-premotivic category if satisfies the following

properties:

1. For any scheme S, the fiberMS is a well generated triangulated (resp. Grothendieck

abelian) category with a closed monoidal structure.

2. For any morphism of schemes f , the functor f∗ is triangulated (resp. additive),

monoidal and admits a right adjoint denoted by f∗.

3. For any morphism p ∈ P, the functor p∗ admits a left adjoint denoted by p#.

4. For any cartesian square

Y X

T S

g

q

∆ f

p

there exists a canonical isomorphism Ex(∆∗
#) : q#g

∗ → f∗p#.

5. For any morphism p : T → S in P and any object (M,N) of MT ×MS, there

exists a canonical isomorphism Ex(p∗#,⊗) : p#(M ⊗T p
∗(N))→ p#(M)⊗S N .

Let us consider a premotivic triangulated category T . Given any smooth morphism p :

X → S, we define the homological Voevodsky premotive associated to X/S as the object

MS(X) := p#(1X), which has a covariant nature. Let p : P1
S → S be the projection. We

define the Tate premotive as the kernel of the map p∗ : MS(P1
S) → 1S shifted by −2,

denoted by 1(1) and for a premotive M ∈ T we define the n−th Tate twist of M as the

n−th tensor power of M by 1(1). If 1(1) is ⊗-invertible in T then it is possible to define

the Tate twist for negative n.

We associate to the premotivic category T a bi-graded cohomology theory defined by

Hm,n
T (S) := HomT (1S ,1S(n)[m]).

One also introduces the following properties of the premotivic triangulated category

T :

1. Homotopy property: For any S-scheme, the canonical projection of the affine line

over S induces an isomorphism MS(A1
S)→ 1S .

2. Stability property: The Tate premotive is ⊗-invertible.

3. Orientation: an orientation of T is natural transformation of contravariant functors,

such that for all schemes S the map

c1 : Pic(P1
S)→ H2,1

T (P1
S).
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1. Motives: From pure to mixed motives

sendsOP1
S
(−1) to 1 inH0,0

T (S) via the decompositionH2,1
T (P1

S) ≃ H
2,1
T (S)⊕H0,0

T (S),

where the identification of the last factor uses the stability property.

When T is equipped with an orientation we say that T is oriented.

Remark 1.3.2. As one of the authors of [CD19] mentions, there is a typo in the definition

given in the book forgetting the previous condition.

Definition 1.3.3. Consider T a triangulated premotivic category which is oriented. We

say that T satisfies the Grothendieck six functors formalism if it satisfies the stability

property and for any f : Y → X ∈ Fft there exists a pair of adjoints functors

f! : T (Y )⇄ T (X) : f !

with the following properties:

1. There exists a structure of a covariant 2-functor on f 7→ f! and of a contravariant

2-functor on f 7→ f !.

2. There exists a natural transformation αf : f! → f∗ which turns out to be an iso-

morphism when f is proper.

3. For any smooth morphism f : X → S of relative dimension d there are canonical

natural isomorphisms

βf : f# → f!(d)[2d]

β̃′f : f∗ → f !(−d)[−2d]

which are dual to each other.

4. For any cartesian square

Ỹ X̃

Y X

g̃

f̃

∆ g

f

such that f ∈ Fft, there exist natural isomorphisms

g∗f!
∼−→ f̃!g̃

∗

g̃∗f̃
! ∼−→ f !g∗

5. For any separated morphism of finite type f : Y → X there exist natural isomor-

phisms

Ex(f∗! ,⊗) : (f!K)⊗X L
∼−→ f!(K ⊗Y f

∗L),

HomX(f!(L),K)
∼−→ f∗HomY (L, f

!(K))

f !HomX(L,M)
∼−→ HomY (f

∗(L), f !(M))
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1.3. Triangulated motives

6. For any closed immersion i : Z → S with complementary open immersion j, there

exist distinguished triangles of natural transformations as follows:

j!j
!

α′
j−→ 1

αi−→ i∗i
∗ ∂i−→ j!j

![1]

i!i
! α′

i−→ 1
αj−→ j∗j

∗ ∂̃i−→ i!i
![1]

where α′
j and αi denote the co-unit and unit of the adjunctions.

We introduce the following definitions related to some of the axiomatic properties of

premotivic categories:

• Given a closed immersion i, the fact that i∗ is conservative and the existence of the

first distinguished triangle in (6) is called the localization property with respect to i.

• The conjunction of properties (2) and (3) of Definition 1.3.3 gives, for a smooth

proper morphism f , an isomorphism pf : f# → f∗(d)[2d]. Under the stability and

weak localization properties, when such an isomorphism exists, we say that f is

T -pure (or simply pure when T is clear).

Definition 1.3.4. Consider the notation and assumptions above. We say that T satisfies

the localization property (resp weak localization property) if it satisfies the localization

property with respect to any closed immersion i (resp. which admits a smooth retraction).

We say that T satisfies the purity property (resp. weak purity property) if for any

smooth proper morphism f (resp. for any scheme S and integer n > 0, the projection

p : Pn
S → S) is T -pure.

Premotivic categories

Let P be one of the classes defined before. The categories Shét(PS ,Λ) of étale sheaves of

Λ-modules over PS form the fibers of an abelian premotivic category. The derived cate-

gories D(Shét(PS ,Λ)) for various schemes S form the fibers of a canonical triangulated

premotivic category. Consider the homotopy relation, [CD19, Definition 5.2.16]: first

consider A an abelian P-premotivic category compatible with an admissible topology

t. Let us consider WA1 to be the family of morphism MS(A1
X){i} → MS(X){i} for a

P-scheme X/S and a twist i in τ . We define Deff
A1(A) := D(A)[W−1

A1 ]. We called this

category as the effective P-premotivic A1-derived category with coefficients in A.
With this notation, we can define the following categories:

1. Consider the class P = Sm, the admissible topology t = Nis and a commutative

ring Λ. Consider the category defined as Deff
A1,Λ := Deff

A1(ShNis(Sm,Λ)). We define

the fibers Deff
A1(S,Λ) := Deff

A1(ShNis(Sm/S,Λ)) for a scheme S. If t = ét then we

denote the category Deff,ét
A1,Λ

:= Deff,ét
A1,Λ

(Shét(Sm,Λ)) and the fibers as Deff,ét
A1 (S,Λ) :=

Deff
A1(Shét(Sm/S,Λ))
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1. Motives: From pure to mixed motives

2. Assume that P = Fft. Consider the admissible topology t = h (resp. t = qfh) and

define the premotivic category of effective h-motives (resp. effective qfh-motives)

over our base S with coefficients in Λ as follows:

DM eff
h (S,Λ) = Deff

A1(Shh(Fft/S,Λ)),

resp. DM eff
qfh(S,Λ) = Deff

A1(Shqfh(Fft/S,Λ)).

We define the category of h-motives over a base S, denoted by DMeff
h (S,Λ), as the

smallest full subcategory of DM eff
h (S,Λ) closed under arbitrary small sums and

containing the objects of the form Λh
S(X) for X → S smooth.

3. Consider S the category of noetherian finite-dimensional schemes and let SmS be

the category of smooth separated S-schemes. We define the Λ-linear category of

motivic complexes as the category DMeff
Λ := Deff

A1(Sh
tr(−,Λ)) where Shtr(S,Λ) is

the category of Nisnevich sheaves with transfers for a scheme S. For a given scheme

S we put DMeff(S,Λ) := Deff
A1(Sh

tr(S,Λ)).

For an abelian P-premotivic category A. Consider any scheme S, we then have a split

monomorphism of A−premotives 1S →MS(Gm,S). Let us denote by 1S{1} the cokernel
of this monomorphism called the suspended Tate S-premotive with coefficients in A. For
an integer n ≥ 0, we denote by 1S{n} its n-th tensor product. We define the symmetric

Tate spectrum over S as the symmetric sequence 1S{∗} = Sym(1S{1}). We denote by

Sp(A) the abelian P−premotivic category of modules over 1S{∗} in the category AS.

Notice that we have adjunctions

Σ∞ : A⇆ Sp(A) : Ω∞ (1.1)

of abelian P-premotivic categories. We can introduce the A1-localization to the category

Sp(A) having an adjunction of triangulated P-premotivic categories

Σ∞ : A⇆ Sp(A) : Ω∞ (1.2)

Now consider X a P-scheme over S. From the definition of the functor Σ∞, there is a

canonical morphism of abelian Tate spectra [Σ∞(1S{1})] {−1} → Σ∞1S . Tensoring this

map by elements of the form Σ∞MS(X,A){−n} for any P-scheme X over S and any

integer n ∈ N we obtain a family of morphisms

[Σ∞(MS(X,A){1})] {−(n+ 1)} → Σ∞MS(X,A){−n}

We denote this family by WΩ and set WA1,Ω :=WΩ ∪WA1 .

Definition 1.3.5. Let A be an abelian P-premotivic category compatible with an admis-

sible topology t. We define the stable A1-derived P-premotivic category with coefficients

in A as the derived P-premotivic category

DA1(A) := D(Sp(A))
[
W−1

A1,Ω

]
.

46



1.3. Triangulated motives

Given a scheme S and a commutative ring Λ, we focus on DMeff(S,Λ). Using the

previous construction of the infinite suspension functor Σ∞, we obtain an adjunction of

triangulated premotivic categories

Σ∞ : DMeff(S,Λ)⇆ DM(S,Λ) : Ω∞

where DM(S,Λ) is called the Λ-linear category of stable motivic complexes. In this

context, for a scheme S and (m,n) ∈ Z2, we define the motivic cohomology of S in

degree m and twist n with coefficients in Λ as the Λ-module

Hm
M (S,Λ(n)) := HomDM(S,Λ) (1S ,1S(n)[m])

Let Λ = Z and k be a perfect field. Given any smooth separated k-scheme S,

the motivic cohomology groups coincide with higher Chow groups: Hm
M (S,Λ(n)) =

CHn(S, 2m− n) (see [MVW06, Theorem 19.1]).

According to [CD19, Proposition 11.1.5], if Λ′ is a localization of Λ, then the change

of coefficients induces adjunctions

DM(S,Λ)⊗Λ Λ′ ⇆ DM(S,Λ′)

which are equivalences of triangulated premotivic categories. As a consequence we obtain

that the morphism Hm
M (S,Z(n)) ⊗ Q → Hm

M (S,Q(n)) is an isomorphism for every bi-

degree (m,n) ∈ Z2. Now we fix Λ = Q and consider the functor i : Chow(k)opQ →
DM(k,Q) given by i(h(X)) = M(X). By [MVW06, Theorem 20.1] this functor is fully-

faithful embedding, thus we can see pure motives as a subcategory of DM(k,Q). This

has a important consequence, because the category Chow(k)opQ appears in DM(k,Q) as

the subcategory generated by elements of pure weight 0, in the sense of Bondarko given

in [Bon14].
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Chapter 2

Étale Chow motives

In this chapter we mainly focus on the definition of the étale analogue of the category

of Chow motives. It should be noted that the category that we construct cannot be

defined as the subcategory of DMét(k,Z) generated by elements of pure weight 0, in the

sense of Bondarko, contrary to the Nisnevich case. For the definition of weight structure

see [Bon14, Section 1] and [Bon14, Theorem 2.1.1]. For a detailed explanation of the

non-existence of a weight structure on DMét(k,Z) see [CD16, Remark 7.2.26].

In the first section of the present chapter we review the triangulated category of

étale motives, presenting two models for this category, working with sheaves with and

without transfers. For the first model we mainly use the references [Ayo14a] and [Ayo14b],

whereas for the second model we use [CD16]. We recall properties of conservativity of

functors associated to change of coefficients, morphisms between schemes and duality

functors. We prove also that under suitable conditions on the base S, we obtain an

analogue of [AHP16, Lemma A.6].

The second section aims to introduce two different notions of étale motivic cohomol-

ogy : the first one is defined by using DMét(k,Z) as model for étale motives. We use

this definition to establish the existence of pull-backs, pushforwards, intersection prod-

uct and localization long exact sequences, giving an étale analogue of classical properties

of Chow groups. The second definition is obtained by taking the hypercohomology of

the étale sheafification of the Bloch’s complex sheaf and leads to so-called Lichtenbaum

cohomology groups. Together with the definition we mention the main facts about the

structure of Lichtenbaum cohomology groups and comparison maps between these groups

and motivic or étale motivic groups.

In the third section we look at the problem of birational invariance, and explain

when this property fails for the étale analogue of zero cycles CH0(X). Even though we

cannot find an étale analogue of birational invariance for the whole category SmProjk, we

present some cases where this invariance is true and cases where this obstruction appears

for CHét
0 (X).

Continuing with the introduction to the chapter, the goal of the fourth section is to

give a brief description of different equivalence relations on étale Chow groups, such as

algebraic, homological, nilpotent and numerical equivalence by analogy with the classical
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2. Étale Chow motives

case.

Finally, in the last section, using the properties that we give in section two and four,

we construct the category of étale Chow motives, denoted by Chowét(k), which fits in

the following commutative diagram:

Chow(k)opZ DM(k,Z)

Chowét(k)
op DMét(k,Z),

Φ

Φét

where Chow(k) is the category of integral Chow motives, DM(k,Z) and DMét(k,Z) are
the triangulated categories of motives over k and its étale counterpart respectively, and

the horizontal arrows are full embeddings. As in the classical case, we obtain a version of

the Manin principle for Chowét(k) and consequently the decomposition of étale motives

for projective bundles, varieties with cellular decomposition and blow-ups with smooth

center.

2.1 Etale motives

We recall the definition of two models for the category étale of étale motives: the first

one DAét(S,Λ), uses étale sheaves without transfers, and the second one, DMét(S,Λ),

uses sheaves with transfers. As we have mentioned, for the first model we mainly use the

references [Ayo14a] and [Ayo14b]; for the second one we use [CD16].

Let Λ be a commutative ring which in this context is called the ring of coefficients.

We are interested in the cases when Λ = Z, Q, Z/m (we will omit Λ in the notation when

Λ = Z). We fix a noetherian scheme S as our base scheme and we denote Sch/S and

Sm/S the categories of schemes of finite type and smooth schemes over S respectively.

We denote by Shét(Sm/S,Λ) the category of étale sheaves with values in Λ−modules.

For a given object X in Sm/S we denote by ΛS
ét(X) the étale sheaf associated to

the presheaf U 7→ Λ[HomSm/S(U,X)] where Λ[HomSm/S(U,X)] is the free Λ−module

generated by HomSm/S(U,X).

Consider the derived category of étale sheaves D(Shvét(Sm/S,Λ)) and denote by L
the subcategory of the derived category of étale sheaves that contains the two complexes

. . .→ 0→ ΛS
ét(A1

U )→ Λét(U)→ 0→ . . .

and is closed under arbitrary direct sums. Here A1 := Spec(Z[t]) and U is a smooth

S−scheme, while the non-zero map is induced by the projection A1
U → U .

Definition 2.1.1. Define DAeff
ét (S,Λ) as the Verdier quotient of D(Shét(Sm/S,Λ)) by

L. An object in DAeff
ét (S,Λ) is called an effective motivic sheaf over S with coefficients

in Λ. The motivic sheaf ΛS
ét(X) is called the effective homological motive of X and from

now on we will denote it by MS
ét(X).

It is necessary to remark that the category DAeff
ét (S,Λ) has the same objects of the

category D(Shét(Sm/S,Λ)), the difference lies in the morphisms of the category, since
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2.1. Etale motives

every morphism in D(Shét(Sm/S,Λ)) whose cone is in L gets inverted in DAeff
ét (S,Λ).

In particular there is an isomorphism MS
ét(A1

X)→MS
ét(X) for all X ∈ Sm/S induced by

p : A1
X → X. Another important observation is that DAeff

ét (S,Λ) inherits the monoidal

structure of D(Shét(Sm/S,Λ)), which at the same time comes from the monoidal struc-

ture of Shét(Sm/S,Λ).

Let L be the Lefschetz motive defined as the cokernel of the inclusion ΛS
ét(∞S) ↪→

ΛS
ét(P1

S). The next step in the construction of the triangulated category of motivic étale

sheaves is to invert the Lefschetz motive for the monoidal structure. The process used to

formally invert the Lefschetz motive in [Ayo14b] is to consider L−spectra for the tensor

product.

Definition 2.1.2. An L−spectrum of étale sheaves on Sm/S is a collection of étale

sheaves

E = (En, γn)n∈N

where γn : L ⊗ En → En+1 is a morphism of sheaves called the n-th assembly map. We

call the sheaf En the n-th level of the L−spectrum E.

A morphism of L−spectra f : E → E′ is a collection of morphism of sheaves f =

(fn)n∈N, where fn : En → E′
n such that the diagram

L⊗ En L⊗ E′
n

En+1 E′
n+1

id⊗fn

γn γ′
n

fn+1

commutes for all n ∈ N. We denote by SptL(Shét(Sm/S,Λ)) the category of L-spectra.

Consider an L−spectrum E. The evaluation functor Evp : SptL(Shét(Sm/S,Λ)) →
Shét(Sm/S,Λ) admits a left adjoint SuspL given by

SuspL(K) = (

p−1 times︷ ︸︸ ︷
0, . . . , 0 ,K,L⊗K,L⊗2 ⊗K, . . . , )

When p = 0 the suspension functor is called the infinite suspension functor and it

is denoted by Σ∞
L . Finally, we define DAét(S,Λ) as the Verdier quotient of the cate-

gory D(SptL(Shvét(Sm/S,Λ))) by the smallest triangulated subcategory Lst closed by

arbitrary sums and containing the complexes

. . .→ 0→ SuspLΛ
S
ét(A1

U )→SuspLΛ
S
ét(U)→ 0→ . . .

. . .→ 0→ Susp+1
L (L⊗ ΛS

ét(U))→ SuspLΛ
S
ét(U)→ 0→ . . .

for all U ∈ Sm/S and all p ∈ N.

Definition 2.1.3. The objects in the category DAét(S,Λ) are called motivic étale sheaves

over S. Given a smooth S−scheme X, then Σ∞
L ΛS

ét(X) is called the homological motive

of X and will be denoted by MS
ét(X). We denote DAét

ct(S,Λ) the smallest triangulated
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2. Étale Chow motives

subcategory of DAét(S,Λ) closed under direct summands and containing the motives

MS
ét(X)(−p)[−2p] := SuspLΛ

S
ét(X) for p ∈ N and X an S−scheme of finite presentation.

Those motivic sheaves are called constructible.

The category DMét(S,Λ) is constructed in a similar way as DAét(S,Λ), but instead of

considering the whole category Shvét(Sm/S,Λ) we consider the category of étale sheaves

with transfers, i.e. sheaves that come from an étale presheaf that is an additive con-

travariant functor.

Denote as SmCor(S,Λ) the category of smooth correspondences over S with coeffi-

cients in Λ. The objects are the same ones of Sm/S, and for U, V ∈ Sm/S the morphisms

are finite Λ-correspondences from U → V . Let Shét(SmCor(S,Λ)) be the category of

additive presheaves of commutative groups on SmCor(S,Λ) whose restriction to Sm/S

is an étale sheaf. We call this the category of étale shaves with transfers. According to

[CD16, Corollary 2.1.12] there is an adjoint pair of functors

γ∗ : Shét(Sm/S,Λ)⇄ Shét(SmCor(S,Λ)) : γ∗.

Let X be a smooth S-scheme. We denote by Λtr(X) the complex of sheaves given by

c(−, X) the finite correspondences and let X be the sheaf associated to X defined by the

presheaf

U 7→ X(U) = ΛHomSm/S(U,X).

of commutative groups. The functor γ∗ forgets transfers and γ∗(X) = Ztr(X). We con-

tinue by considering the derived category D(Shét(SmCor(S,Λ))) as Shét(SmCor(S,Λ))

is an abelian category. After that we take the A1-localization of the derived category

D(Shét(SmCor(S,Λ))), giving us the triangulated category of effective étale motives

DMeff
ét (S,Λ). Finally, to this category we can associate a stable A1-derived category

DMét(S,Λ), the category of triangulated étale motives, by ⊗-inverting the Tate object

Λtr
S (1) := Λtr

S (P1
S ,∞)[−2]. This can be obtained by applying the functor Σ∞.

The functor γ∗ is a left Quillen functor, thus we have its derived version

Lγ∗ : D(Shét(Sm/S,Λ))⇄ D(Shét(SmCor(S,Λ))) : γ∗.

which preserves A1-equivalences. With this we obtain an adjunction in the following way

Lγ∗ : DAét(S,Λ)⇄ DMét(S,Λ) : Rγ∗

If S is a noetherian scheme of finite dimension, notice that by [Ayo14b, Théorème B.1]

and [CD16, Remark 5.5.9], the categories above mentioned are equivalent. In the context

of Voevodsky motives the constructible (compact) objects are called the geometrical

motives; the corresponding category is denoted by DMgm
ét (S,Λ). Also by [CD16, Corollary

5.5.5] for a quasi-excellent geometrically unibranch noetherian scheme of finite dimension

S the adjunctions

Lψ! : DMét(S,R)⇄ DMh(S,R) : Rψ
∗
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2.1. Etale motives

give us an equivalence of monoidal triangulated categories.

Among the properties that we have to mention about the different models for the

triangulated category of étale motives, is the one concerning conservative functors. Let

TC be the 2-category of triangulated categories. According to [Ayo14b, Théorème 3.9],

for a commutative ring Λ the homotopic stable 2-functor DAét(−,Λ) : Sch/S → TC is

separated, this means that for any S-morphism f : X → Y , the induced functor f∗ is

conservative. Fixing a field k, let us consider a field extension K/k, and the induced map

p : Spec(K)→ Spec(k). Since p is a surjective k-morphism, we have that

p∗ : DAét(k,Λ)→ DAét(K,Λ)

is conservative. Using the equivalence of categories DAét(k,Λ) ≃ DMét(k,Λ) (and the

same for K), we obtain that p∗ : DMét(k,Λ)→ DMét(K,Λ) is also conservative.

The next examples of a conservative family: according to [Ayo14b, Proposition 3.24],

for a scheme S such that the cohomological dimension of the residue fields is bounded,

the family of functors x∗ : DAét(S,Λ)→ DAét(x,Λ) ,for x ∈ S, is conservative.
Now consider a noetherian scheme S, by [AHP16, Lemma A.6], a motive M ∈

DAét(S,Q) is zero if and only if the pullback to any geometric point is̄ : s̄ → S is

zero. Even more, a morphism f ∈ DAét(S,Q) is an isomorphism if and only if i∗s̄(f) is

an isomorphism for any geometric point s̄. This theorem can be extended to Z-coefficients

by imposing more restrictions on the base S. In order to do this, let us recall some defi-

nitions given in [Ayo14b, Définition 3.12]: for a prime number p, we define the punctual

p-cohomological dimension of a scheme S as pcdp(S) = sups∈S {cdp(κ(s))} ∈ N ∪ {∞},
where κ(s) is the residue field of a point s ∈ S.

Definition 2.1.4. Let S be a scheme. We say that S is good enough for this purposes if

it has finite Krull dimension and the punctual p-cohomological dimension is bounded for

every prime p.

We can now move on to the following lemma, by mimicking the proof given for

[AHP16, Lemma A.6.]:

Lemma 2.1.5. Let S be a good enough scheme. Then the following holds:

1. Let M ∈ DAét(S,Z) be a motive. Then M is zero if and only if the pullback i∗s̄M

to any geometric point s̄→ S is zero.

2. Let f be a morphism in DAét(S,Z). Then f is an isomorphism if and only if the

pullback i∗s̄(f) is an isomorphism for any geometric point s̄→ S.

Proof. This follows from arguments given in [AHP16]. By [Ayo14b, Proposition 3.24] we

can assume that S = Spec(k) with k a field. Assuming that k is perfect, consider an

algebraic closure k̄. Let N ∈ DAét(k,Z) be a motive such that the pullback i∗N , with

i : k̄ → k, vanishes. Under the assumptions on S, DAét(S,Z) is compactly generated.

Therefore we have to prove that all morphism f : C → N with C compact vanish. Using

the assumptions, i∗(f) vanishes, ans according to [Ayo14b, Lemme 3.4], there exists a
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2. Étale Chow motives

finite extension K/k such that the pullback of f vanishes. By [Ayo14b, Théorème 3.9]

the functor i∗K : DAét(k,Z) → DAét(K,Z) is conservative, therefore f vanishes. When

k is not perfect, we consider a purely inseparable extension ki and note that the pullback

functor DAét(k,Z)→ DAét(ki,Z) is an equivalence of categories, by [CD16, Proposition

6.3.16]. The second statement follows from the first one.

The last result that we mention about conservativity is related to the family of func-

tors induced by change of coefficients. Let S be a noetherian scheme of finite dimension.

For such S, we recall that by [CD16, Proposition 5.4.12], the family of functors

ρQ : DMét(S,Z)→ DMét(S,Q)

ρZ/ℓ : DMét(S,Z)→ DMét(S,Z/ℓ), ℓ prime number invertible in S

is conservative. Since DMét(S,Q) ≃ DM(S,Q) and by [CD16, Theorem 4.5.2], the so-

called rigidity theorem, we have that DMét(S,Z/ℓ) ≃ D(Sét,Z/ℓ), where the last category
is the derived category of étale sheaves with coefficients over Z/ℓ.

By [CD16, Theorem 6.2.17] and [CD19, Corollary 4.4.24], in the category of étale

motives we also have Verdier duality. We say that an object U ∈ DMét(X,R) is dualizing

if has the following two properties:

1. U is constructible;

2. For any constructible element M ∈ DMét(X,R) the morphism

M → HomR(HomR(M,U), U)

is an isomorphism.

Following [CD16, Theorem 6.2.17], if S is a regular scheme an object U is dualizing

if and only if is ⊗-invertible. Let f : X → S be a separated morphism of finite type, we

define the duality operator DX/S as

DX/S(−) := Hom(−, f !U)

If R is a Q-algebra or if R = Z/ℓm, with ℓ an invertible element in S and m a natural

number, then

1. For any separated S-scheme of finite typeX, and for all objectsM , N in DMét(X,R),

if N is constructible, then we have a canonical isomorphism

DX/S(M ⊗DX/S(N)) ≃ HomDMét(X,R)(M,N).

2. For any morphism between separated S-schemes f : Y → X we have natural

isomorphisms

DY/S ◦ f∗ ≃ f ! ◦DX/S

f∗ ◦DX/S ≃ DY/S ◦ f !

DX/S ◦ f! ≃ f∗ ◦DY/S

f! ◦DY/S ≃ DX/S ◦ f∗

restricting to constructible elements.

54



2.2. Étale motivic cohomology

The case when R is a Q-algebra follows from [CD19, Corollary 4.4.24] and the ℓ-adic case

follows from Gabber’s work [ILO14, Exposé XVII].

Remark 2.1.6. The category DMh(S,R) has all the good properties described before,

without any hypothesis over S and the coefficient ring R. One has an equivalence of

categories DMh(S,R) andDAét(S,R), at least if the base S is good enough. With respect

to the model of étale sheaves with transfers, DMét(S,R) coincides with DMh(S,R) for

an arbitrary base S if the R is a torsion ring whose characteristic is invertible in S by

[CD16, Corollary 5.5.4] or for any ring R and S a quasi-excellent geometrically unibranch

noetherian scheme of finite dimension, [CD16, Corollary 5.5.5].

2.2 Étale motivic cohomology

Étale motivic cohomology

In this subsection we use the category of étale motives, since we do not mention much

more details about the construction and/or functorial behaviour of the category, for

further details about these properties we refer the reader to [Ayo14b] and [CD16]. Let

k be a field and let R be a commutative ring. We denote the category of effective

motivic étale sheaves with coefficients in R over the field k as DMeff
ét (k,R). If we invert

the Lefschetz motive, we then obtain the category of motivic étale sheaves denoted by

DMét(k,R). One defines the étale motivic cohomology group of X of bi-degree (m,n)

with coefficients in a commutative ring R as

Hm
M,ét(X,R(n)) := HomDMét(k,R)(Mét(X), R(n)[m]).

where Mét(X) = ρ∗M(X) with ρ the canonical map associated to the change of topol-

ogy ρ : (Smk)ét → (Smk)Nis, which induces an adjunction ρ∗ := Lρ∗ : DM(k,Z) ⇄
DMét(k,Z) : Rρ∗ =: ρ∗. In particular we define the étale Chow groups of codimension

n as the étale motivic cohomology in bi-degree (2n, n) with coefficients in Z, i.e.

CHn
ét(X) : = H2n

M,ét(X,Z(n))

= HomDMét(k)(Mét(X),Z(n)[2n]).

Remark 2.2.1. 1. Let k be a field and let ℓ be a prime number different from the

characteristic of k. By the rigidity theorem for torsion motives, see [CD16, Theorem

4.5.2], we have an isomorphism

Hm
M,ét(X,Z/ℓr(n)) ≃ Hm

ét (X,µ
⊗n
ℓr ).

2. Let f : X → Spec(k) be a smooth scheme over a field k. Due to the six functor

formalism we can define

Hm
ét (X,Z(n)) := HomDMét(X)(1X ,1X(n)[m])

55



2. Étale Chow motives

because

Hm
ét (X,Z(n)) = HomDMét(X)(1X ,1X(n)[m])

= HomDMét(X)(1X , f
∗(1k)(n)[m])

≃ HomDMét(k)(Lf#(1X),1k(n)[m])

= HomDMét(k)(Mét(X),1k(n)[m])

3. It is possible to work with étale motivic homology for a singular scheme X over a

base S with structural morphism f : X → S. For that we need to introduce the

Borel-Moore homology as follows

HBM,ét
m,n (X/S) := HomDMh(X)

(
1X(n)[m], f !(1S)

)
with this notation CHBM,ét

n (X/S) := HBM,ét
2n,n (X/S). We also can recover a com-

parison map σn : CHn(X/S)→ CHBM,ét
n (X/S).

Gysin morphism and functoriality properties

With respect to functoriality properties of the étale Chow groups we should mention

that we can recover well-known properties analogous to that of classical Chow groups,

such as pull-back and proper pushforwards of cycles. In particular, we get a degree

map. All these properties will arise from the properties of the category DMét(k,Z) (resp.
DM(k,Z)) and the covariant functor Mét(−) (resp. M(−)).

Let us recall that the canonical map ρ : (Smk)ét → (Smk)Nis induces an adjunction

of triangulated categories

ρ∗ : DMgm(k,Z)⇄ DMgm,ét(k,Z) : ρ∗,

which leads us to express the étale Chow groups in terms of morphism in the category

DM(k,Z) as follows

Hm
M,ét(X,Z(n)) := HomDMét(k)(Mét(X),Zét(n)[m])

≃ HomDM(k)(M(X), ρ∗Zét(n)[m]).

Proposition 2.2.2. The comparison map

σm,n : Hm
M (X,Z(n))→ Hm

M,ét(X,Z(n))

coming from the adjunction of triangulated categories, is compatible with pullbacks, push-

forward and intersection products.

Proof. Consider the adjunction of triangulated categories

ρ∗ : DM(k,Z)⇄ DMét(k,Z) : ρ∗
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where ρ∗ is the functor induced by the étale sheafification and ρ∗ is the right adjoint

which is a forgetful functor which forgets that the complexes are étale. As we have said,

the cycle class map is obtained by the following use of the adjunction

HomDM(k,Z) (M(X),Z(n)[m])
ρ∗−→ HomDMét(k,Z)(ρ

∗M(X), ρ∗Z(n)[m])

where Z(n) is the motivic complex of twist n and M(X) is the triangulated motive

associated with X. By adjunction we have

HomDMét(k,Z)(ρ
∗M(X), ρ∗Z(n)[m]) ≃ HomDM(k,Z)(M(X), ρ∗ρ

∗Z(n)[m])

so we obtain a canonical map Z(n) → ρ∗ρ
∗Z(n) = ρ∗Zét(n) given by the unit transfor-

mation associated to the adjunction. Now, the functorial properties of maps f : X → Y

follow from the (covariant) functorial properties of the motive M(X) and the existence

of Gysin maps, for more details about the existence of Gysin morphisms we refer to

[Dég12a] and [Dég08]. To be more precise: Let f : Y → X be a morphism of relative

dimension d, then we have induced commutative squares

M(X)(d)[2d] M(Y ) M(Y ) M(X)

Mét(X)(d)[2d] Mét(Y ) Mét(Y ) Mét(X)

f !

ρ∗ ρ∗

f∗

ρ∗ ρ∗

f ! f∗

which induce the pullback and pushforward for proper morphisms. In fact, any morphism

of motivic complexes like the one given by the adjunction will yield a morphism of

cohomology groups compatible both with pullbacks and pushforward.

Finally, we need to prove the compatibility with respect to products. This property

comes from the fact that we have a quasi-isomorphism

Z(i)⊗ Z(j) ∼−→ Z(i+ j)

and that the functor ρ∗ is monoidal, i.e. ρ∗(M ⊗ N) ≃ ρ∗(M) ⊗ ρ∗(N). Therefore we

also obtain that

Z(i)ét ⊗ Z(j)ét
∼−→ Z(i+ j)ét

For intersection products the remaining part is to consider that the product comes from

the operation α · β = ∆∗(α⊗ β).

Lemma 2.2.3 (Projection formula). Let f : Y → X be a projective morphism of codi-

mension d between smooth schemes. Then for all y ∈ CH∗
ét(Y ) and x ∈ CH∗

ét(X) we have

that

f∗(f
∗(x) · y) = x · f∗(y).

Proof. Consider an element α ∈ Hm
M (X,Z(n)) and any morphism ϕ : M(X) → N in

DM(k), viewing α : M(X) → 1(n)[m] as a morphism of motives and ∆∗ : M(X) →
M(X)⊗M(X) the map induced by the diagonal. Define the product

ϕ⊠ α := (ϕ⊗ α) ◦∆∗ :M(X)→ N(p)[m].
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By [Dég08, Corollary 5.18] for such f there is an equality ((1Y )∗⊠ f∗) ◦ f∗ = f∗⊠ (1X)∗

as morphisms of the motives M(X) → M(X × Y )(d)[2d]. This induce a map of étale

higher Chow groups Hm−2d
M,ét (X × Y,Z(n − d)) → Hm

M,ét(X,Z(n)). On one hand, the

map ((1Y )∗ ⊠ f∗) ◦ f∗ on the level of motives induces the map f∗(f
∗(−) · idY ) on étale

Chow groups and the map f∗ ⊠ (1X)∗ induces idX · f∗(−), and we obtain the desired

equality.

Localization sequence and specialization properties

Consider a base scheme S, we define the relative motivic cohomology of X as follows:

Definition 2.2.4. Let X be a smooth S-scheme. We define the motivic cohomology of

X relative to S in the following way

Hm
M (X/S,Z(n)) := HomDM(S) (MS(X),1S(n)[m]) .

For the special case m = 2n we set CHn(X/S) := H2n
M (X/S,Z(n)). In the same way, we

define the relative étale motivic cohomology of X

Hm
M,ét(X/S,Z(n)) := HomDMét(S) (MS(X),1S(n)[m]) .

In the special case m = 2n we write CHn
ét(X/S) := H2n

M,ét(X/S,Z(n))

Consider i : Z → X be a closed immersion of smooth schemes over a scheme S of pure

codimension c and denote the open complement as U := X −Z. Consider the structural

morphism p : X → S, then we have that MS(X) := p#(1X). We have an associated

Gysin triangle of the form

MS(U)
j∗−→MS(X)

i∗−→MS(Z)(c)[2c]
∂X,Z−−−→MS(U)[1].

This exact triangle give us the long exact sequence known as localization sequence, which

is the following

. . .→ CHn(U/S, 1)→ CHn−c(Z/S)→ CHn(X/S)→ CHn(U/S)→ 0.

Since the functor ρ : DM(S,Z)→ DMét(S,Z) is exact, we obtain the following exact

triangle

MS
ét(U)

j∗−→MS
ét(X)

i∗−→MS
ét(Z)(c)[2c]

∂X,Z−−−→MS
ét(U)[1]

in DMét(S,Z). Thus, it is easy to see that we have an associated long exact sequence,

and we obtain the étale analogue of the localization long exact sequence for Chow groups

. . .→ CHn−c
ét (Z/S)→ CHn

ét(X/S)→ CHn
ét(U/S)→ CHn−c

ét (Z/S,−1)→ . . .

Remark 2.2.5. Notice that even when S = Spec(k), there are no arguments to assume

that in general the map j∗ : CHn
ét(X)→ CHn

ét(U) is surjective. For instance, consider Z a

smooth projective surface inX and n = dim(X)−1, then we have CHn−c
ét (Z,−1) ≃ Br(Z).
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Let S be a regular scheme, X a smooth S-scheme with f : X → S, and i : S̄ ↪→ S a

closed embedding. We set S◦ := S − S̄ and j : S◦ ↪→ S the open immersion. In this way,

we obtain a commutative diagram with cartesian squares

X̄ X X◦

S̄ S S◦

iX

f̄ f

jX

f◦

i j

(2.1)

Let us recall some functorial properties about these maps through the six functor for-

malism given in Definition 1.3.3. Since the motivic category DM(S,Z) has the six functor

formalism, the natural transformations i! → i∗, i♯ → i!(c)[2c] and i
∗ → i!(−c)[−2c] are

isomorphisms (where the last two isomorphisms also hold for j by setting c = 0). There is

a natural transformation f∗i!
∼−→ iX!f̄

∗ which is an isomorphism, while for the left-hand

square the natural transformation f◦∗ j
!
X

∼−→ j!f∗ is also an isomorphism.

Since the structure morphism of X◦ as an S-scheme is f ◦ jX , we obtain that

MS(X
◦) = (f ◦ jX)♯(1S) = (j ◦ f◦)♯(1X◦) and MS◦(X◦) = f◦♯ (1X◦) therefore we have the

following isomorphism of relative Chow groups

CHn(X◦/S) = HomDM(S)

(
j♯ ◦ f◦♯ (1X◦),1S(n)[2n]

)
≃ HomDM(S)

(
j! ◦ f◦♯ (1X◦),1S(n)[2n]

)
≃ HomDM(S◦)

(
f◦♯ (1X◦), j!(1S(n)[2n])

)
≃ HomDM(S◦)

(
f◦♯ (1X◦),1S◦(n)[2n]

)
= CHn(X◦/S◦),

while for the closed immersion X̄, we have that MS(X̄) = (i ◦ f̄)♯(1X̄) and MS̄(X̄) =

f̄♯(1X̄). Therefore

CHn(X̄/S) = HomDM(S)

(
i♯ ◦ f̄♯(1X̄),1S(n)[2n]

)
≃ HomDM(S)

(
i!(f̄♯(1X̄))(c)[2c],1S(n)[2n]

)
≃ HomDM(S̄)

(
f̄♯(1X̄), i!(1S(n− c)[2n− 2c])

)
≃ HomDM(S̄)

(
f̄♯(1X̄), i∗(1S(n)[2n])

)
≃ HomDM(S̄)

(
f̄♯(1X̄),1S̄(n)[2n]

)
= CHn(X̄/S̄).

Remark 2.2.6. We can obtain the same formalism for étale motivic cohomology, since

the duality properties still hold for the categories DMét(S,Z) with S an integral scheme.

Therefore, if we define the relative versions of étale Chow groups there are isomorphisms

CHn
ét(X

◦/S) ≃ CHn
ét(X

◦/S◦) and CHn
ét(X̄/S) ≃ CHn

ét(X̄/S̄).

Consider the operation i! : CHn(X/S) → CHn−c(X̄/S) ≃ CHn−c(X̄/S̄) and suppose

that i! ◦ i∗ : CHn−c(X̄/S̄)→ CHn−c(X̄/S̄) is the zero map. Then there is a unique map

σ : CHn(X◦/S◦)→ CHn−c(X̄/S̄), called the specialization map, such that σ(j∗α) = i!(α)

for all α ∈ CHn(X/S). For more details see [Ful98, Chapter 20].
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For a more general setting where we would be able to work with singular schemes,

we have to consider Borel-Moore homology and motivic homotopic theory. For a base

scheme S, let us consider the adjunctions, in the following diagram

DM(S,Z) DMét(S,Z)

SH(S)

ρ∗

γ∗
ρ∗

γét
∗

γ∗

γ∗
ét (2.2)

Define the étale motivic cohomology spectrum as HM,étZ := γ ét∗ (Zét(0)) and the

Borel-Moore étale motivic cohomology and homology as follows

Hm,n
M,ét(X) := HomSH(k) (Σ

∞X+, HM,étZ(n)[m])

HBM,ét
m,n (X) := HomSH(k) (f!(1X)(n)[m], HM,étZ)

≃ HomDMét(k) (f!(1X)(n)[m],1k)

where f : X → k is a separated scheme of finite type. Now consider f : X → S a

separated S-scheme of finite type, then we define the relative étale Borel-Moore motivic

homology groups of X as

HBM,ét
m,n (X/S) := HomDMét(S,Z) (f!(1X)(n)[m],1S)

Consider again the cartesian diagram 2.1. For any object A ∈ F(X), from [DJK21,

(4.5.6.a)] we obtain a natural transformation of the form

iX∗
(
i∗XA⊗ f̄∗Th(−NS̄S)

)
→ jX!j

!
XA,

for a pure i-spectrum E ∈ F(S) and any point of the K-theory space e ∈ K(X), we have

a specialization map

σ : E(X◦/S◦, e) ≃ E(X◦/S, e)→ E(X̄/S, e− f∗S̄⟨NS̄S⟩) ≃ E(X̄/S̄, e)

which is the generalization of the isomorphism obtained before. From the commutative

diagram of adjunctions 2.2, we have the following definition:

Definition 2.2.7. With the above notation, if S = Spec(R) with R a discrete valuation

ring we take S◦ = K := Frac(R) and S̄ = k := R/m, so we define the localization map

for étale Chow groups as

σ : CHBM,ét
n (XK)→ CHBM,ét

n (Xk)

which can be understood as a map from the generic fiber to a special one.

Under the assumptions of smoothness, we obtain the specialization map σ : CHn
ét(XK)→

CHn
ét(Xk). Notice that this map is compatible with proper push-forward, flat pullbacks

and intersection products.
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Lichtenbaum cohomology

We consider a second notion of the étale version of Chow groups, the well known Licht-

enbaum cohomology groups defined as the hypercohomology of the étale sheafification of

the Bloch complex. These groups are characterized by Rosenschon and Srinivas in [RS16]

using étale hypercoverings. In this context, we consider Smk as the category of smooth

separated k−schemes over a field k. For each integer n ≥ 0, we define the n-simplex

scheme as the affine k-scheme

∆n = Spec

(
k[t0, . . . , tn]/

(
n∑

i=0

ti − 1

))

which is isomorphic (non-canonically) to An
k . Given a non-decreasing map ρ : {1, . . . ,m} →

{1, . . . , n} we obtain an induced map ρ̃ : ∆m → ∆n acting on the coordinates as

ti 7→
∑

ρ(j)=i tj . If the map ρ is injective, we call ρ̃ a face map with ρ̃(∆m) a face

of ∆n. If ρ is surjective, then ρ̃ is called a degeneracy map. Given natural numbers n

and i, we define the group zn(X, i) ⊂ zn(X×∆i) as the n-codimensional cycles in X×∆i

which intersect properly all X × F with F ⊂ ∆i a face. We denote zn(X, •) the cycle

complex of abelian groups defined by Bloch

zn(X, •) : · · · → zn(X, i)→ · · · → zn(X, 1)→ zn(X, 0)→ 0

where the differentials are given by the alternating sum of the pull-backs of the face

maps and whose homology groups define the higher Chow groups CHn(X, 2n − m) =

Hm(zn(X, •)).
Let us recall that zn(X, i) and the complex zn(X, •) are covariant functorial for

proper maps and contravariant functorial for flat morphisms between smooth k-schemes,

see [Blo86, Proposition 1.3]. Therefore for a topology t ∈ {flat, ét, Nis, Zar} we have

a complex of t-presheaves zn(−, •) : U 7→ zn(U, •). In particular the presheaf zn(−, i) :
U 7→ zn(U, i) is a sheaf for t ∈ {flat, ét, Nis, Zar}, see [Gei04, Lemma 3.1], and then

zn(−, •) is a complex of sheaves for the small étale, Nisnevich and Zariski sites of X. We

define the complex of t-sheaves

RX(n)t = (zn(−, •)t ⊗R) [−2n]

where R is an abelian group. For our purposes, we just consider t = Zar or ét and then we

compute the hypercohomology groups Hm
t (X,RX(n)t). For example, setting t = Zar and

R = Z the hypercohomology of the complex allows us to recover the higher Chow groups

CHn(X, 2n −m) ≃ Hm
Zar(X,Z(n)) because the complex of presheaves U 7→ zn(U, •) on

X has the Mayer-Vietoris property i.e. for every open U ⊂ X and every open covering

U = U1 ∪ U2 the square

zn(U, •) zn(U1, •)

zn(U2, •) zn(U1 ∩ U2, •)
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2. Étale Chow motives

is homotopy cartesian (Brown-Gersten), then by [MVW06, Theorem 19.11] the Bloch

complex satisfies Zariski descent, i.e. the maps Hm(zm(U, •)[−2n]) → Hm
Zar(U,ZU (n))

are isomorphisms. We denote the motivic and Lichtenbaum cohomology groups with

coefficients in R as

Hm
M (X,R(n)) = Hm

Zar(X,R(n)), Hm
L (X,R(n)) = Hm

ét(X,R(n))

and in particular we set CHn
L(X) = H2n

L (X,Z(n)). Let π : Xét → XZar be the canonical

morphism of sites, then the associated adjunction formula ZX(n) → Rπ∗π
∗ZX(n) =

Rπ∗ZX(n)ét induces comparison morphisms

Hm
M (X,Z(n)) κm,n

−−−→ Hm
L (X,Z(n))

for all bi-degrees (m,n) ∈ Z2. We can say more about the comparison map: due to

[Voe11, Theorem 6.18], the comparison map κm,n : Hm
M (X,Z(n)) → Hm

L (X,Z(n)) is an

isomorphism for m ≤ n+ 1 and a monomorphism for m ≤ n+ 2.

Proposition 2.2.8. Let X be a smooth projective variety over a field k, then the com-

parison map between motivic and Lichtenbaum cohomology groups

κm,n : Hm
M (X,Z(n))→ Hm

L (X,Z(n))

is compatible with respect to pullbacks of morphism and is also compatible with the product

of cycles for all bi-degrees (m,n).

Proof. Consider π : Xét → XZar the canonical map of sites. There are induced functors

in the derived categories

π∗ : D(AbShv(XZar))⇄ D(AbShv(Xét)) : Rπ∗

where π∗ is the étalification of the Zariski sheaf and Rπ∗ is a forgetful functor.

Consider the canonical map induced by the adjunction Z(n)→ Rπ∗π
∗Z(n), i.e.

HomDZar
(Z(X),Z(n)[m])

π∗
−→ HomDét

(π∗Z(X), π∗Z(n)[m])

≃ HomDZar
(Z(X), Rπ∗π

∗Z(n)[m])

The induced map is contravariantly functorial with respect to any morphism of

smooth projective varieties, and also compatible with products.

In some cases it is possible to obtain more information about the Lichtenbaum co-

homology groups and the comparison with higher Chow groups. For instance there is

a quasi-isomorphism AX(0)ét = A, the latter as an étale sheaf, thus we obtain that the

Lichtenbaum cohomology agrees with the usual étale cohomology, i.e. Hm
L (X,A(0)) ≃

Hn
ét(X,A) for all m ∈ Z≥0 and in particular CH0

L(X) = Zπ0(X). In the next step, n = 1,

since there is a quasi-isomorphism of complexes ZX(1)ét ∼ Gm[−1] we obtain the follow-

ing isomorphisms

CH1(X) ≃ CH1
L(X) = Pic(X)

H3
L(X,Z(1)) ≃ H3

ét(X,Gm[−1]) = Br(X)
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2.2. Étale motivic cohomology

where Pic(X) and Br(X) are the Picard and Grothendieck-Brauer groups of X respec-

tively. In fact for bi-degree (n, 1) by [VSF00, Corollary 3.4.3] there exists an isomorphism

Hn
M (X,Z(1)) ≃ Hn−1

Zar (X,Gm) because the quasi-isomorphism ZX(1) ∼ Gm[−1] also holds
in the Zariski topology. As a particular case we obtain H3

M (X,Z(1)) ≃ H2
Zar(X,Gm) = 0

because Hm
M (X,Z(n)) = 0 if m > 2n, whereas the Grothendieck-Brauer group of X is

not always zero (for instance consider X an Enriques surface).

In bi-degree (4, 2) the comparison map is known to be injective but in general not

surjective; we have a short exact sequence

0→ CH2(X)
κ2

−→ CH2
L(X)→ H3

nr(X,Q/Z(2))→ 0,

where H3
ét(Q/Z(2)) is the Zariski sheaf associated to U 7→ Hét(U,Q/Z(2)). Its unramified

part is H3
nr(X,Q/Z(2)) = Γ(X,H3

ét(Q/Z(2))), for a proof we refer to [Kah12, Proposition

2.9]. If k = C the latter group surjects onto the torsion of the obstruction, in codimension

4, to the integral Hodge conjecture, i.e.

H3
nr(X,Q/Z(2))↠

(
Hdg4(X,Z)/im

{
c2 : CH2(X)→ H4

B(X,Z(2))
})

tors

and this obstruction is not zero in general, hence the comparison map κ2 is not surjective;

for more details see [CV12, Théorème 3.7].

Remark 2.2.9. The adjunction formula for rational coefficients, the morphism QX(n)→
Rπ∗QX(n)ét turns out to be isomorphism (see [Kah12, Théorème 2.6]), thus Hm

M (X,Q(n)) ≃
Hm

L (X,Q(n)) for all (m,n) ∈ Z2.

Example 2.2.10. Let k be a field and let X = Spec(k), then we can calculate the Licht-

enbaum cohomology for Spec(k) and compare it with the motivic case. By the previous

remarks we have

Hn
L(Spec(k), R(0)) ≃ Hn

ét(Spec(k), R)

≃ Hn(G,M).

Here G = Gal(ks/k) where ks is the separable closure of k and M = lim−→k⊂k′
R(Spec(k′))

where k′ is a separable finite extension of k and Hn(G,M) is the Galois cohomology of

G with values in M . On the other hand we have that

Hn
M (Spec(k), R(0)) =

R if n = 0,

0 otherwise.

The following result is a well known fact, known as the Suslin rigidity theorem, about

the morphism ZX(n)→ Rπ∗ZX(n)ét for n ≥ dim(X) over k = k̄.

Theorem 2.2.11. [VSF00, Section 6, Theo. 4.2],[Gei17, Section 2] Let X be a smooth

projective variety of dimension d over an algebraically closed field k. Then for n ≥ d the

canonical map π : Xét → XZar induces a quasi-isomorphism between complexes of Zariski

sheaves ZX(n)→ Rπ∗ZX(n)ét.
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Proof. Since QX(n) → Rπ∗QX(n)ét is a quasi-isomorphism for all n ∈ N, we only have

to focus on torsion coefficients. In characteristic zero this was already proved by Suslin

in [VSF00, Prop. 4.1, Thm. 4.2], an in general away from the characteristic of the field

k.

For the general case, assume that n = d and l ∈ N. If k has positive characteristic then

by [Gei10, Lemma 2.4] for a constructible sheaf F we have thatRHom(F ,Z/l(d)[2d])[−1] ∼=
RHom(F ,Z(d)[2d]) and also there exists a perfect pairing of finite groups

Ext1−m(F ,ZX(d)[2d])×Hm
c (Xét,Z/l))→ Q/Z,

so this gives us an isomorphism H2d−m
M (X,Z/l(d))∗ ≃ Hm

c (Xét,Z/l). Since X is smooth,

Poincaré duality holds for étale cohomology, see [Mil80, Chapter VI §11]. Hence

Hm
c (Xét,Z/l))∗ ≃ H2d−m

ét (X,Z/l(d)),

and therefore we obtain the isomorphisms

H2d−m
M (X,Z/l(d)) ≃ H2d−m

ét (X,Z/l(d)) ≃ H2d−m
L (X,Z/l(d)).

As in [VSF00, Theorem. 4.2] for a general n ≥ d we use the homotopy invariance of the

higher Chow groups

H2d−m
M (X,Z/l(d)) ≃ H2d−m

M (X × An
k ,Z/l(d))

≃ Hm
c (X × An

k ,Z/l)∗

≃ Hm−2(n−d)
c (X,Z/l(d− n))∗.

To conclude, we have a quasi-isomorphism (Z/l)X (n) → Rπ∗ (Z/l)X (n)ét for all l ∈ N,
therefore (Q/Z)X (n)→ Rπ∗ (Q/Z)X (n)ét as well. Thus from the commutative diagram

Hm−1
M (X,Q/Z(n)) Hm

M (X,Z(n)) Hm
M (X,Q(n)) Hm

M (X,Q/Z(n))→

Hm−1
L (X,Q/Z(n)) Hm

L (X,Z(n)) Hm
L (X,Q(n)) Hm

L (X,Q/Z(n))→

≃ ≃ ≃

we conclude that Hm
M (X,Z(n)) ≃ Hm

L (X,Z(n)).

If R is torsion then we can compute the Lichtenbaum cohomology as étale cohomology.

To be more precise, for a prime number ℓ, r ∈ N ≥ 1 and R = Z/ℓr then we have the

following quasi-isomorphisms

(Z/ℓr)X(n)ét
∼−→

µ⊗n
ℓr if char(k) ̸= ℓ

νr(n)[−n] if char(k) = ℓ

where νr(n) is the logarithmic de Rham-Witt sheaf. After passing to direct limit we have

also quasi-isomorphisms

(Qℓ/Zℓ)X(n)ét
∼−→

lim−→r
µ⊗n
ℓr if char(k) ̸= ℓ

lim−→r
νr(n)[−n] if char(k) = ℓ
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and finally set (Q/Z)X(n)ét =
⊕

(Qℓ/Zℓ)X(n)ét
∼−→ Q/Z(n)ét. In the case when k = k̄,

X a smooth projective variety and n ≥ dim(X) the morphism ZX(n) → Rρ∗ZX(n)ét

is a quasi-isomorphism by the Suslin rigidity theorem. Another important reminder

concerns the vanishing of higher Chow groups. Following [MVW06, Theorem 3.6] for

every smooth scheme and any abelian group R, we have Hm
M (X,R(n)) = 0 when m >

n+dim(X). Also we have a second vanishing theorem for motivic cohomology, presented

in [MVW06, Theorem 19.2], for X and R under the same assumptions as before, we have

that Hm
M (X,R(n)) = 0 when m > 2n.

Remark 2.2.12. Let k = k̄. Since the map Zk(n)→ Rρ∗Zk(n)ét is a quasi-isomorphism for

all n ≥ 0 we obtain that Hm
L (Spec(k),Z(n)) ≃ Hm

M (Spec(k),Z(n)) for all (m,n) ∈ Z×N.
In particular Hm

L (Spec(k̄),Z(n)) = 0 for m > n ≥ 0.

For a bi-degree (2n, n) with n ≥ 3 is more difficult to give an expression like a

short exact sequence, because the comparison map κ3 could be neither injective nor

surjective. This is a consequence of the existence of a quasi-isomorphism of sheaves

ZX(n)
∼−→ τ≤n+1Rπ∗ZX(n)ét, which leads us to a distinguished triangle of Zariski sheaves

ZX(n)→ Rπ∗ZX(n)ét → τ≥n+2Rπ∗ZX(n)→ ZX(n)[1].

So we have the following long exact sequence

. . .→ H2n−1
Zar (X, τ≥n+2Rπ∗ZX(n)ét)→ CHn(X)→ CHn

L(X)→ H2n
Zar(X, τ≥n+2Rπ∗ZX(n)ét)→ . . .

and a spectral sequence associated to the hypercohomology

Ep,q
2 = Hp(X,Rqτ≥n+2Rπ∗ZX(n)ét) =⇒ Hp+q

Zar (X, τ≥n+2Rπ∗ZX(n)ét).

where the E2-terms can be described in more detail and are related to the unramified

cohomology groups of X. Because of [Kah12, Corollaire 2.8] for i > n+1 there exists an

isomorphism of Zariski sheaves Hi−1(Rπ∗Q/Z(n))→ Hi(Rπ∗ZX(n)ét).

Thus we have the quasi-isomorphism

Rqτ≥n+2Rπ∗Z(n)ét
∼−→

0 if q ≤ n+ 1

Hq−1
ét (Q/Z(n)) if q ≥ n+ 2

Example 2.2.13. Since CHn(X,−1) = 0 for all X ∈ SmProjk and for all n, the long

exact sequence shows that

coker(κn) ≃ H2n
Zar(X, τ≥n+2Rπ∗ZX(n)ét).

These groups are torsion, but nonzero in general so the comparison map κn is not sur-

jective in general.

By pursuing a similar vanishing theorem for Lichtenbaum cohomology, we obtain the

following results about the vanishing of the cohomology groups:

Lemma 2.2.14. Let k be a field and let X be in SmProjk. Consider a bi-degree (m,n) ∈
Z2 we then have the following:
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1. if m > n and m > cd(k) + 1 we have that Hm
L (Spec(k),Z(n)) = 0.

2. More generally if m > n+ cd(X) then Hm
L (X,Z(n)) = 0.

Proof. Let k be a field of characteristic exponent p and let (m,n) ∈ Z2. For (1)

we use [Voe11, Theorem 6.18] to obtain that if m ≤ n + 1 then Hm
M (k,Z[1/p](n)) ≃

Hm
M,ét(k,Z(n)) and in particular Hn+1

M,ét(k,Z(n)) = 0. Now consider the exact triangle

Z(n)ét → Q(n)ét → Q/Z(n)ét
+1−−→

which induces a long exact sequence

. . .→ Hm
L (k,Z(n))→ Hm

L (k,Q(n))→ Hm
L (k,Q/Z(n))→ Hm+1

L (k,Z(n))→ . . .

Considering the previous remark concerning the vanishing of higher Chow group and

Lichtenbaum cohomology, we obtain an isomorphism Hm
L (k,Z(n)) ≃ Hm−1

ét (k,Q/Z(n))
where n ∈ N and m > n, with the later isomorphism we conclude that Hm

L (k,Z(n)) = 0

if m > n and m > cd(k) + 1.

For the more general case presented in (2) consider X be SmProjk and the motivic

complex Z(n). This complex vanishes for degrees greater than n. Let us consider the

canonical map ρ : Xét → XZar, the functor that is induced by the change

ρ∗ : D(AbShvZar(Smk))⇆ D(AbShvét(Smk)) : Rρ∗.

Recall thatHm
L (X,Z(n)) is the hypercohomology of the complex of étale sheaves ZX(n)ét.

Since the functor ρ∗ is exact, the étale cohomology sheaves of ZX(n)ét vanish in coho-

mological degree > n. Thus, we conclude that Hm
L (X,Z(n)) = 0 for m > n+cd(X).

If char(k) = 0 there is an explicit relation between motivic and Lichtenbaum coho-

mology groups, which is analogue to the case of étale and Zariski cohomology of sheaves:

X a smooth quasi-projective k−variety, then by [RS16, Theorem 4.2] the canonical map

of sites induces an isomorphism

Hm
L (X,Z(n)) ≃ lim−→

X•

Hm
M (X•,Z(n)), m ∈ Z, n ≥ 0,

where the direct limit is taken over all étale hypercoverings X• → X.

Let us denote the Suslin-Voevodsky motivic complex of Nisnevich sheaves in Smk as

ZSV (n). Since ZX(n)ét
∼−→ ZSV (n)

∣∣∣
Xét

is a quasi-isomorphism we have a comparison map

ρm,n : Hm
L (X,Z(n))→ Hm

M,ét(X,Z(n))

which is induced by the quasi-isomorphisms ZX(n)ét
∼−→ ZSV (n)

∣∣∣
Xét

and ZSV (n)ét →

LA1(ZSV (n)ét) where LA1 is the A1−localization functor of étale motivic complexes. Ac-

cording to [CD16, Theorem 7.1.2] the morphism ρm,n becomes an isomorphism after

inverting the characteristic exponent of k. If p equals the field characteristic, therefore

by using Z[1/p]X(n)ét we can recover the functorial properties of étale motivic cohomol-

ogy for Lichtenbaum cohomology.
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The latter isomorphism gives us an important tool for the study of the étale motivic

cohomology, after inverting the characteristic exponent of the field, which is the relation-

ship between Galois cohomology and Lichtenbaum cohomology via the Hochschild-Serre

spectral sequence for Lichtenbaum cohomology. In order to present this important result

that we will use throughout the following chapters, let us recall some definitions and

results about profinite cohomology groups: If G is a profinite group, i.e. G = lim←−Gi

with Gi finite groups, and A is a G-module, we will consider its cohomology group

Hj(G,A) as the continuous cohomology group of G with coefficients in A defined as

Hj(G,A) := lim−→Hj(Gi, A
Hi) with Hi running over the open normal subgroups of G such

that G/Hi ≃ Gi. We start by presenting a useful fact about continuous cohomology

of profinite groups with coefficients in a uniquely divisible module, which will be used

several times in this thesis.

Lemma 2.2.15. Let G be a profinite commutative group and let A be a G-module which

is uniquely divisible. Then Hn(G,A) = 0 for all n ≥ 1.

Proof. Let G be a profinite group and let H be an open normal subgroup of G. By

definition we have that

Hj(G,A) = lim−→
H

Hj(G/H,AH),

as G/H is a finite group, using [Wei94, Proposition 6.1.10] we have that the result holds

for H-modules where multiplication is an isomorphism , in particular uniquely divisible

modules, therefore Hj(G/H,AH) = 0 for all H and all j > 0. The result then follows

from the definition of continuous cohomology.

Let us recall the definition of Galois cohomology. Let k be a field, fix a separable

closure denoted by ks and denote by Gk its Galois group. Our main interest is the

study of the cohomology of the group Gk. For a finite Galois extension K/k we denote

the Galois group of K by Gal(K/k) and recall that Gk ≃ lim←−Gal(K/k), where K runs

through the finite Galois extensions of k, is a profinite group. The importance of this

fact throughout the paper is reflected in the relationship between Galois cohomology

and Lichtenbaum cohomology groups via a Hoschschild-Serre spectral sequence, stated

in [CK13] without a proof which was done in [RS18, Pages 6-7].

Lemma 2.2.16. [CK13, P. 31] Let p : Y → X be a finite Galois covering of X with Ga-

lois group G. There exists a convergent Hochschild-Serre spectral sequence with abutment

the Lichtenbaum cohomology group

Ep,q
2 (n) = Hp(G,Hq

L(Y,Z(n))) =⇒ Hp+q
L (X,Z(n)).

Proof. Let p : Y → X be a Galois covering with X be a smooth projective k−variety and

G the Galois group associated to the covering. Let CX := Ch(Shvét(X)) be the category

of cochain complexes of abelian étale sheaves. Consider the composite functor

Shvét(X)→ Z[G]-mod→ Ab

F 7→ F (Y ) 7→ F (Y )G
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which is Γ(X,−) by [Mil80, Proposition II.1.4], therefore for C• ∈ CX we have a spectral

sequence, [Wei94, Section 5.7] associated with such functor

Ep,q
2 = Hp(G,Hq

ét(Y,C
•)) =⇒ Hp+q

ét (X,C•).

Our main interest is the case when we consider C• as the étale sheafification of the

Bloch complex ZX(n)ét for some n, so from now on we consider C• = ZX(n)ét. To

show the convergence of the spectral sequence we use the arguments given in [Kah12,

Section 2]. We have Hm
ét(X,ZX(n)ét) ≃ Hm

Zar(X,Rρ∗ZX(n)ét) with ρ : Xét → XZar

and consider the exact triangle Rρ∗ZX(n) → Rρ∗QX(n) → Rρ∗Q/ZX(n)
+1−−→. Since

QX(n) ≃ Rρ∗QX(n)ét, the hypercohomology of the second and third terms are convergent

and so are their respective hypercohomology spectral sequences.

Remark 2.2.17. Let k be a field and ks be a separable closure. Since cohomology

commutes with inverse limits, and the absolute Galois group of k is the inverse limit

of Gal(K/k) over the finite separable field extensions k ⊂ K ⊂ ks, the convergent

spectral sequences Hp(Gal(K/k), Hq
L(XK ,Z(n))) =⇒ Hp+q

L (X,Z(n)) for [K : k] < ∞
induce a spectral sequence for the absolute Galois group Hp(Gk, H

q
L(Xks ,Z(n))) =⇒

Hp+q
L (X,Z(n)).

Lemma 2.2.18. Let X,Y ∈ SmProjk with k be a field of finite cohomological dimension

or characteristic zero, then for i ∈ N we have an isomorphism

CHi
ét(Xk(Y )) ≃ lim−→

U⊂Y
U open

CHi
ét(X ×k U)

Proof. Considering the projective system Xk(Y ) = lim←− U⊂Y
U open

(X×kU) if k has finite coho-

mological dimension then the result follows from [CD16, Proposition 6.3.7] and [CD16,

Remark 6.3.8].

If char(k) = 0 then by [RS16, Theorem 4.2] we have that CHi
ét(X) = lim−→X•

H2i
M (X•,Z(i))

where the limit is taken over all étale hypercoverings X• → X. By the same proposition

we have that CHi
ét(Xk(Y )) = lim−→Y•

H2i
M (Y•,Z(i)) with Y• → Xk(Y ). Then we have to

prove that

CHi
ét(Xk(Y )) = lim−→

Y•

H2i
M (Y•,Z(i)) ≃ lim−→

U⊂Y
U open

lim−→
X′

•→X×kU
X′

• étale hyp.

H2i
M (X ′

•,Z(i)) = lim−→
U⊂Y
U open

CHi
ét(X ×k U)

Let us denote

• Op(Y ) the category of open sub-schemes of Y .

• JU the category of étale hypercoverings of X × U for a fixed U ∈ Op(Y ).

• Jlim the category of étale hypercoverings of Xk(Y ).

• C be the category whose objects are defined as pairs (U,U•) with U ∈ Op(Y ) and

U• ⊂ JU with morphisms

HomC ((U, V•), (W,W•)) =

HomJU (V•,W•) if U =W

∅ otherwise.
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and consider the functor F : C → Jlim which acts (U,X•) 7→ X̃• with X̃• being the fiber

product

X̃• Xk(Y )

X• X × U

(2.3)

We can see that this functor is co-final and apply [AM06, Appendix, Proposition

1.8]: consider a hypercovering X̃• → Xk(Y ), using the canonical map for an open U ,

Xk(Y ) → X × U we can find an element (U, Y•) with Y• := X̃• → Xk(Y ) → X × U in the

category C.
Now consider two hypercoverings of Xk(Y ), denoted by X• and Y• such that there

exist two morphism X•
f

⇒
g
Y•, where F (U, Y

′
•) = Y• for some (U, Y ′

•) ∈ C. Consider the

constant hypecovering (X × U)• → X × U , then we have F (U, (X × U)•) =
(
Xk(Y )

)
•.

It is clear that we have a canonical map Y ′
•

iU−→ (X × U)•, which is sent to the canonical

map (
Y ′
•

iU−→ (X × U)•

)
7→
(
Y•

i−→
(
Xk(Y )

)
•

)
.

By the construction of F , we obtain that iU equalizes X•
f

⇒
g
Y• as

X•
f

⇒
g
F (U, Y ′

•) = Y•
F (iU )=i−−−−−→

(
Xk(Y )

)
• = F (U, (X × U)•).

Lemma 2.2.19. Let X and Y be smooth projective varieties over an algebraically closed

field k of characteristic p ≥ 0. Then for ℓ ̸= p and for every bi-degree (m,n) ∈ Z2 such

that 2m+ 1 ̸= n we have an isomorphism

Hm
L (Xk(Y ),Z(n)){ℓr} ≃ Hm−1

ét (Xk(Y ),Qℓ/Zℓ(n)).

Proof. Consider a smooth open U ⊂ Y , we have a short exact sequence

0→ Hm−1
L (X × U,Z(n))⊗ Z/ℓr → Hm−1

ét (X × U, µ⊗n
ℓr )→ Hm

L (X × U,Z(n))[ℓr]→ 0.

Taking the direct limit over r, by [RS16, Proposition 3.1] we have thatHm
L (X×U,Z(n)){ℓr} ≃

Hm−1
ét (X × U,Qℓ/Zℓ(n)). On the other hand, if we take the limit over the open subsets

U ⊂ Y instead of r (and using again direct limit is an exact functor), we obtain the short

exact sequence

0→ Hm−1
L (Xk(Y ),Z(n))⊗ Z/ℓr → Hm−1

ét (Xk(Y ), µ
⊗n
ℓr )→ Hm

L (Xk(Y ),Z(n))[ℓr]→ 0.

This result is obtained by the continuity properties described in [CD16, Proposition

6.3.7]. Using the isomorphism of functors lim−→r
lim−→U⊂Y

≃ lim−→U⊂Y
lim−→r

, we can conclude

that

Hm
L (Xk(Y ),Z(n)){ℓr} ≃ Hm−1

ét (Xk(Y ),Qℓ/Zℓ(n)).
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An important result about Lichtenbaum cohomology concerns the change of base

fields, when the fields are algebraically closed or purely inseparable extensions. The

following result is similar to [Via17, Lemma 1.2]:

Proposition 2.2.20. Let k be a field, X a smooth projective k-scheme and K a field

extension of k. Let i ≥ 0 be an integer.

1. If k is an algebraically closed field and also K = K̄, then the map CHi
L(X) →

CHi
L(XK) induced by the base change is injective.

2. If K is a finite purely inseparable extension then the maps CHi
L(X) → CHi

L(XK)

and CHi
L(XK)→ CHi

L(X) are isomorphisms.

Proof. First, let k be a perfect field with k = k̄ and consider a field extension K which

is again algebraically closed. By the smooth base change, we have that Hm
ét (X,µ

⊗n
ℓr ) →

Hm
ét (XK , µ

⊗n
ℓr ) is an isomorphism when ℓ is prime to the characteristic of k and then so

it is the morphism Hm
ét (X,Qℓ/Zℓ(n)) → Hm

ét (XK ,Qℓ/Zℓ(n)) and from the commutative

diagram with exact rows

0 Hm
L (X,Z(n))⊗Qℓ/Zℓ Hm

ét (X,Qℓ/Zℓ(n)) Hm+1
L (X,Z(n)){ℓ} 0

0 Hm
L (XK ,Z(n))⊗Qℓ/Zℓ Hm

ét (XK ,Qℓ/Zℓ(n)) Hm+1
L (XK ,Z(n)){ℓ} 0

≃

we conclude that Hm
L (X,Z(n)) ⊗ Qℓ/Zℓ → Hm

L (XK ,Z(n)) ⊗ Qℓ/Zℓ is an injective mor-

phism. Recall that for a separably closed field as in our case we have that for m ̸= 2n+1

an isomorphism Hm
L (X,Z(n)){ℓ} ≃ Hm−1

ét (X,Qℓ/Zℓ(n)).

Let Am,n = Hm
L (X,Z(n)) and Am,n

K = Hm
L (XK ,Z(n)), then we have that in the

following commutative diagram

0 Am,n
tor Am,n Am,n ⊗Q Am,n ⊗Q/Z 0

0 Am,n
K,tor Am,n

K Am,n
K ⊗Q Am,n

K ⊗Q/Z 0

≃

the arrow Am,n⊗Q→ Am,n
K ⊗Q is an injection by classical arguments, therefore Am,n →

Am,n
K is an injective map as well.

For the second part we proceed in a similar way. The isomorphism for the torsion

part is a consequence of the map XK → X which is finite surjective radiciel (see [Fu15,

Proposition 5.7.1]), therefore Hm−1
ét (X,µ⊗n

ℓr )→ Hm−1
ét (XK , µ

⊗n
ℓr ) is an isomorphism. The

isomorphism of the torsion free part is a consequence of [Via17, Lemma 1.2]. We then

conclude as in the previous case.

In a more general setting for field extension we have the following result

Proposition 2.2.21. Let X be a k−smooth projective variety with k an algebraically

closed field, and let K ⊃ k be a field extension, n ∈ N and ε ∈ {L, ét}, then the map

f∗ : CHn
ε (X)→ CHn

ε (XK) induced by f : XK → X has torsion kernel.
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Proof. Due to the contravariant functoriality of Lichtenbaum and étale Chow groups we

have a commutative square

CHn(X) CHn
ε (X)

CHn(XK) CHn
ε (XK)

σn

f∗ f∗

σn
K

Notice that by [Blo86, Lemma (1A.3)] the map CHn(X)→ CHn(XK) has torsion kernel,

hence with rational coefficients it becomes an injective morphism. On the other hand,

with rational coefficients the horizontal arrows are isomorphisms, therefore CHn
ε (X) →

CHn
ε (XK) has torsion kernel.

We conclude this section by mentioning some well-known results about the structure

of étale motivic and Lichtenbaum cohomology groups of projective bundles, smooth blow-

ups and varieties with cellular decomposition:

Lemma 2.2.22. Let k be a field of characteristic p ≥ 0 and let X be a smooth projective

scheme over k. Let ε ∈ {L, {M, ét}} and consider a bi-degree (m,n) ∈ Z2, then there

exists the following characterizations:

1. If r ≥ 0 and let Pr
X be the projective space of dimension r over X, then the canonical

map Pr
X → X induces an isomorphism:

Hm
ε (Pr

X ,Z(n)) ≃
r⊕

i=0

Hm−2i
ε (X,Z(n− i)).

2. Let Z be a smooth projective sub-scheme of X of codimension c ≥ 2. Denote the

blow-up of X along Z as BlZ(X), then

Hm
ε (BlZ(X),Z(n)) ≃ Hm

ε (X,Z(n))⊕
c−1⊕
i=1

Hm−2i
ε (Z,Z(n− i)).

3. Assume that k = ks and that there exists a map f : X → S which is a flat of

relative dimension r over a smooth base S. Assume as well that X has a filtration

X = Xp ⊃ Xp−1 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅ where Xi is smooth and projective for all

i and Ui := Xi −Xi−1 ≃ Ar−di
S then we obtain the following formula:

Hm
L (X,Z[1/p](n)) ≃

p⊕
i=0

Hm−2di
L (S,Z[1/p](n− di)).

Proof. The statements (1) and (2) are obtained in a similar way: first notice that by

properties of DM(k,R) with R a commutative ring, see [MVW06, Section 14 & 15], we

have canonical isomorphisms of motives

r⊕
i=0

M(X)(i)[2i]
≃−→M(Pr

X) and M(BlZ(X)) ≃M(X)⊕

(
c−1⊕
i=1

M(Z)(i)[2i]

)
.
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When ε = L both formulas (1) holds because for R = Q we recover the formulas

for rational coefficients whereas for finite coefficients we invoke [Mil80, VI, Lemma 10.2]

for coefficients away from the characteristic and [Gro85, I, Théorème 2.1.11] for the

logarithmic Hodge-Witt complex. The formula (2) holds again because it holds for R = Q
and for finite coefficients by the proper base change [Mil80, VI, Corollary 2.3] and [Gro85,

IV, Corollaire 1.3.6] for the logarithmic Hodge-Witt complex.

Meanwhile for ε = {M, ét} the statement holds because of the previous isomorphisms

when R = Z and the fact that the functor ρ∗ : DM(k,Z)→ DMét(k,Z) is exact.
For (3) we have to invert the characteristic of k. We will proceed as in [Köc91, Ap-

pendix], by induction and use the localization long exact sequence. We have dim(Xj) =

dim(S) + n − dj and for k < j we put ck,j = codim(Xk, Xj) = dk − dj . Notice that dj

is the codimension of Xj in X. By the homotopy invariance of higher Chow groups and

[Mil80, VI, Corollary 4.20], the map π∗0 : Hm
L (S,Z[1/p](n)) → Hm

L (X0,Z[1/p](n)) is an

isomorphism for all bi-degree. Denote πj : Uj → S. Consider the following commutative

diagram with exact rows:

0

j−1⊕
i=0

H
m−2cj,i,n−cj,i
L (S)

j⊕
i=0

H
m−2cj,i,n−cj,i
L (S) Hm,n

L (S) 0

. . . H
m−2cj−1,j ,n−cj−1,j

L (Xj−1) Hm,n
L (Xj) Hm,n

L (Uj) . . .

≃ (πj)
∗

i∗ j∗

where Hm,n
L (Y ) := Hm

L (Y,Z[1/p](n)). By the inductive hypothesis the right vertical

arrow is an isomorphism, and the left one is an isomorphism because of the homotopy in-

variance of étale motivic cohomology, therefore the map j∗ is surjective and i∗ is injective.

Thus we obtain the desired formula.

Remark 2.2.23. 1. Consider a cycle module M is the sense of Rost, for further details

see [Ros96]. By using the same kind of arguments as the ones in [Köc91] and

applying the homotopy invariance given in [Ros96, Theorem 8.6], which says that

if π : Y → X is an affine bundle of dimension n and M is a cycle module, then

π∗ : Ap(X;M)→ Ap+n(Y ;M)

is bijective for all n, we can recover the formula

n⊕
i=0

Ap−di(S;M)→ Ap(Y ;M)

for Y having a cellular decomposition.

2. For any ϵ ∈ {L, {M, ét}} the isomorphisms described in Lemma 2.2.22 are func-

torial with respect to base change T → X. For this, one has the functoriality for

Chow groups as is described in subsection 1.1.1, while the torsion different to the

characteristic is given by [Mil80, §, Theorem 4.1]. For the logarithmic Hodge-Witt

complex, the functoriality for the projective bundle and flag varieties is given by

[Gro85, Chap. III, Théorème 1.1.1].
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In the sequel we recall a few facts about the structure of Lichtenbaum cohomology

group of smooth projective varieties over an algebraically closed field. For further details

about the structure and properties about Lichtenbaum cohomology we refer the reader

to [Kah12, Proposition 4.17], [Gei17, Theorem 1.1] and [RS16, Theorem 3.1]. Consider

X ∈ SmProjk with k = k̄ of characteristic exponent p and consider a bi-degree (m,n) ∈
Z2. If m ̸= 2n then according to [RS16, Theorem 3.1] Hm

L (X,Z(n))⊗Qℓ/Zℓ = 0 for all

ℓ ̸= p. Denoting (Q/Z)′ =
⊕

ℓ̸=pQℓ/Zℓ we have that Hm
L (X,Z[1/p](n)) ⊗ (Q/Z)′ = 0

and then

0→ Hm
L (X,Z(n))tors → Hm

L (X,Z(n))→ Hm
L (X,Z(n))⊗Q→ 0.

In fact this short exact sequence splits, so for m ̸= 2n, Hm
L (X,Z(n)) is the direct sum of

a uniquely divisible group and a torsion group. For the case when m ̸= 2n + 1 we have

an isomorphism Hm
L (X,Z(n)){ℓ} ≃ Hm−1

ét (X,Qℓ/Zℓ(n)), again considering ℓ ̸= p.

Since for any n we have an exact triangle

ZX(n)ét → QX(n)ét → (Q/Z)X(n)ét
+1−−→

and for m < 0 the group Hm
ét (X,Q/Z(n)) vanishes, we conclude that for such m we have

isomorphisms Hm
L (X,Z(n)) ≃ Hm

L (X,Q(n)) i.e. the Lichtenbaum cohomology groups

with integral coefficients are Q-vector spaces, thus uniquely divisible groups.

Now let us come-back to the Hochschild-Serre spectral sequence for Lichtenbaum

cohomology. Assume that X is a smooth projective geometrically integral k−variety of

dimension d with k a perfect field of characteristic exponent p̃, and let k̄ be an algebraic

closure of k with Galois group Gk and define Xk̄ = X ×Spec(k) Spec(k̄). For such X

consider the Hochschild-Serre spectral sequence

Ep,q
2 (n) := Hp(Gk, H

q
L(Xk̄,Z[1/p̃](n))) =⇒ Hp+q

L (X,Z[1/p̃](n)).

Using the previous results, we can give information about the vanishing of some Ep,q
2 (n)−terms:

• Ep,q
2 (n) = 0 for p < 0 because we work with the cohomology of a profinite group.

• Ep,q
2 (n) = 0 for p > 0 and q < 0 since Hq

L(Xk̄,Z[1/p̃](n)) is uniquely divisible.

• Ep,q
2 (n) = 0 for p > cd(k) and q ̸= 2n. Indeed, as q ̸= 2n then

Hq
L(Xk̄,Z[1/p̃](n)) ≃ H

q
L(Xk̄,Q(n))⊕Hq

L(Xk̄,Z[1/p̃](n))tors,

since Hq
L(Xk̄,Q(n)) is uniquely divisible, so for a pair (p, q) satisfying the above

restrictions, we have that

Hp(Gk, H
q
L(Xk̄,Z[1/p̃](n))) ≃ Hp(Gk, H

q
L(Xk̄,Z[1/p̃](n))tors).

Now, if p > cd(k), the group Hp(Gk, H
q
L(Xk̄,Z[1/p̃](n))tors) vanishes.
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Example 2.2.24. If we assume that cd(k) ≤ 2 and q < 2n, then we have the following

isomorphisms

E0,q
∞ (n) = ker

{
d2 : E

0,q
2 (n)→ E2,q−1

2 (n)
}

= ker
{
d2 : H

q(Xk̄,Z(n))
Gk → H2(Gk, H

q−1
L (Xk̄,Z(n)))

}
E1,q

∞ (n) ≃ E1,q
2 (n)

E2,q
∞ (n) ≃ E2,q

2 (n)/im
{
E0,q+1

2 (n)→ E2,q
2 (n)

}
= H2(Gk, H

q
L(Xk̄,Z(n)))/im

{
Hq+1

L (Xk̄,Z(n))
Gk → H2(Gk, H

q
L(Xk̄,Z(n)))

}
.

2.3 Birational invariance

Let us recall some definitions from birational geometry. Let X,Y be smooth k-varieties.

We say that a rational map f : X → Y is birational if there exist open subsets U ⊂ X

and V ⊂ Y such that f : U → V is an isomorphism. We say that X is stably birational

to Y if there exist r, s ∈ N such that X × Pr
k → Y × Ps

k is a birational morphism.

The importance of CH0(X) lies in its birational invariance, for which we refer to [Ful98,

Example 16.1.11]. If X → Y is stably birational then there exist r, s such that

CH0(X × Pr
k)

≃−→ CH0(Y × Ps
k),

but by the projective bundle formula for Chow groups and the vanishing properties we

obtain that CH0(X×Pr
k) ≃ CH0(X) and CH0(Y ×Ps

k) ≃ CH0(Y ) so CH0(X) ≃ CH0(Y ).

So CH0 is also a stable birational invariant.

Remark 2.3.1. The proof of birational invariance of CH0(X) in [Ful98, Example 16.1.11]

is given for algebraically closed fields, but the same argument works for any field.

The first question that arises is whether or not CHL
0 (X) (or CHét

0 (X)) is a birational

invariant or a stably birational invariant. Let X be a smooth projective variety over a

field k, because of the comparison map CH0(X) → CHL
0 (X) we can say a few words

about the invariance depending on the field and the dimension of X: if k = k̄ then

CHd(X) ≃ CHd
L(X), thus we can use the stable birational invariance of zero cycles in the

classical setting cited above, for the category SmProjk. If the field is not algebraically

closed, then we lose many of the properties. For example, consider k a number field

which can be embedded into R and d ≥ 2, by invoking Lemma 2.2.22 and the vanishing

properties of Lemma 2.2.14, we see immediately that

CH0
L(Spec(k)) ̸= CHd

L(Pd
k) ≃

d⊕
i=0

CHi
L(Spec(k)).

Thus CHL
0 is not a stable birational invariant. If now we focus on the birational

invariance of CHL
0 (X), we have the following result:
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Proposition 2.3.2. Let k be an arbitrary field and let X be a smooth projective scheme

of dimension d over k. Then CHL
0 is a birational invariant if d ∈ {0, 1, 2}.

Proof. The case d = 0 is trivial. If d = 1, we use the isomorphism CH1(X) ≃ CH1
L(X)

and the birational invariance of zero cycles in the classical case. For d = 2 we have a

short exact sequence

0→ CH2(X)→ CH2
L(X)→ H3

nr(X,Q/Z(2))→ 0.

The group CH2(X) is a birational invariant for surfaces and the unramified cohomology

groups H3
nr(X,Q/Z(2)) is birational invariant for any dimension. (This is a consequence

of the Gersten’s conjecture, see [CV12, Théorème 2.8]). Therefore CH2
L(X) is a birational

invariant.

In higher dimensions the argument using the comparison map fails. To illustrate this

consider the following: Let X be a smooth projective variety of dimension three over a

field k. There is a long exact sequence

→ H5
Zar(X, τ≥5Rπ∗Z(3)ét)→ CH3(X)→ CH3

L(X)→ H6
Zar(X, τ≥5Rπ∗Z(3)ét)→ 0.

We have that H5
Zar(X, τ≥5Rπ∗Z(3)ét) ≃ H4

nr(X,Q/Z(3)) is a birational invariant. There-

fore CH3
L(X) is a birational invariant if and only if H6

Zar(X, τ≥5Rπ∗Z(3)ét) is a birational

invariant. We obtain a short exact sequence,

0→ H1
Zar(X,H4

ét(Q/Z(3)))→ H6
Zar(X, τ≥5Rπ∗Z(3)ét)→ E0,6

∞ → 0

where E0,6
∞ = ker

{
H5

nr(X,Q/Z(3))→ H2
Zar(X,H4

ét(Q/Z(3)))
}
. In fact, one can find the

first counter-example in dimension 3. Recall that by the formulas given in Lemma 2.2.22

we have the following: let X be a smooth projective variety and let Z ⊂ X a smooth

sub-variety of codimension c. Then for the blow-up X̃Z of X along Z, Lichtenbaum

cohomology decomposes as follows

CHd
L(X̃Z) ≃ CHd

L(X)⊕
c−1⊕
j=1

CHd−j
L (Z).

Notice that d − j > d − c = dim(Z), therefore the groups CHd−j
L (Z) are just torsion

isomorphic to H2(d−j)
Zar (X, τ≥d−j+2Rπ∗Z(d−j)ét). The next example shows how to exploit

this fact to get a counter-example.

Example 2.3.3. Consider X a smooth threefold with a rational point over K, with K

an algebraic number field which is not totally imaginary, and let Z = Spec(K). Let X̃Z

be the blow-up with center Z, then we have that

CH3
L(X̃Z) = CH3

L(X)⊕ CH2
L(Spec(K)).

Since CH2
L(Spec(K)) ≃ H3

ét(Spec(K),Q/Z(2)) we can conclude that CH3
L(X̃Z) ̸= CH3

L(X).

In general we have the proposition:
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2. Étale Chow motives

Proposition 2.3.4. Let k be a field and assume that there exists n ≥ 2 such that

H2n−1
ét (Spec(k), µ⊗n

ℓr ) ̸= 0 for some prime number ℓ and r ∈ N, then CHL
0 is not a

birational invariant for SmProjk.

Proof. Let us consider the field k such that H2n−1
ét (Spec(k), µ⊗n

ℓr ) ̸= 0 for some prime

number ℓ, r ∈ N and n ≥ 2. Consider X a smooth projective variety over k of dimension

d ≥ n+ 1 such that X has a k-rational point. Let X̃ be the blow-up of X along a point

Z = Spec(k)→ X. Invoking Lemma 2.2.22 we obtain

CHd
L(X̃) ≃ CHd

L(X)⊕
d−1⊕
j=1

CHd−j
L (Z)

As CHi
L(Z) ≃ H2i−1

ét (Z,Q/Z(i)) for i ≥ 2, the hypothesis implies that CHn
L(Z) ̸= 0 and

thus CHd
L(X̃) ̸= CHd

L(X).

Remark 2.3.5. Note that the hypothesis of the last proposition implies that the coho-

mological dimension of k should be ≥ 3. Thus the previous argument does not give a

counter-example for fields with cohomological dimension ≤ 2.

We have the following étale analogue of the results of Bloch-Srinivas.

Proposition 2.3.6. Let X be such smooth projective variety over k of dimension dX

such that CH0(XΩ) ≃ CHdX
ét (XΩ) = Z for a universal domain Ω (an extension of k of

infinite transcendence degree). Consider the diagonal ∆ét ∈ CHdX
ét (X ×X). There exist

an integer N , a closed sub-scheme T ⊂ X and cycles Γ1, Γ2 ∈ CHdX
ét (X ×X) with

Γ1 ∈ im
{
CHdX−cV

ét (V ×X)
i∗−→ CHdX

ét (X ×X)
}

and

Γ2 ∈ im
{
CHdX−cT

ét (X × T ) i∗−→ CHdX
ét (X ×X)

}
such that N∆ét = Γ1 + Γ2.

Proof. Denote L := k(X) with an immersion in Ω which extends k ↪→ Ω. Recall that we

have an isomorphism CHdX
ét (XL) ≃ lim−→U

CHdX
ét (X × U) where U runs over all nonempty

Zariski open subsets U ⊂ X. As mentioned before, we have an isomorphism CHdX (XΩ) ≃
CHdX

ét (XΩ). Therefore CHdX
ét (UL) is torsion as in the classical case.

From the localization sequence

. . .→ CHdX−cV
ét (VL)

i∗−→ CHdX
ét (XL)

j∗−→ CHdX
ét (UL)→ CHdX−cV

ét (VL,−1)→ . . .

we conclude that for every cycle z ∈ im(j∗) ⊂ CHdX
ét (UL) there exists N ∈ N and

y ∈ CHdX−cV
ét (VL) such that Nz = i∗(y) ∈ CHdX

ét (XL).

Consider ηét, the image of the generic point η of XL, and set z = ηét. Then we have

Nηét = δ ∈ CHdX
ét (XL), by the same kind of argument as in [BS83, Proposition 1]. Since

the closure of η in X ×X is the diagonal, we have that ∆ét maps to ηét through the map
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2.4. Equivalence relations on étale cycles

γ : CHdX
ét (X × X) → CHdX

ét (XL), which is the pullback of the map p : XL → X × X
given by the cartesian square

XL X ×X

Spec(k(X)) X.

p

pr

With the same arguments we find an element

Γ1 ∈ im
{
CHdX−cV

ét (V ×X)
i∗−→ CHdX

ét (X ×X)
}

whose image through γ is δ. Then it is easy to see that N∆ét − Γ1 ∈ ker(γ). Since

CHdX
ét (XL) ≃ lim−→U

CHdX
ét (X × U), there exists U ⊂ X open sub-scheme such that

j∗X×U (N∆ét − Γ1) = 0 ∈ CHdX
ét (X × U) so setting T := X − U , from the localization

sequence we conclude that there exists

Γ2 ∈ im
{
CHdX−cT

ét (X × T ) i∗−→ CHdX
ét (X ×X)

}
such that N∆ét − Γ1 = Γ2 ∈ CHdX

ét (X ×X).

2.4 Equivalence relations on étale cycles

As in the classical theory of algebraic cycles it is possible to define étale cycles which are

algebraically, homologically or numerically equivalent to zero.

Algebraic equivalence

We say that a cycle z ∈ CHi
ét(X) is algebraically equivalent to zero if there exists a

smooth connected projective curve C and distinct points t1, t2 ∈ C such that z is in the

image of the map

CHi
ét(C ×X)

t∗2−t∗1−−−→ CHi
ét(X).

We denote the subgroup of those elements as CHi
ét(X)alg.

Proposition 2.4.1. The comparison map induces a map CHi(X)alg → CHi
ét(X)alg.

Proof. Let z ∈ CHi(X)alg then there exists a curve C, a cycle W ∈ CHi(C ×X) and two

points a, b ∈ C such that the action

W (t) := (prX)∗(W · (X × t))

evaluated in these points gives us z = W (a) − W (b). Since the comparison map is

compatible with push-forwards and intersection product we conclude.
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2. Étale Chow motives

Smash Nilpotent equivalence

Assume that X is a smooth projective variety. We define the étale analogue of the smash

nilpotent equivalence.

Definition 2.4.2. Let z ∈ CHk
ét(X), we say that z is étale smash nilpotent equivalent to

zero if and only if exists n ∈ N such that z⊗n = 0 ∈ CHk
ét(X

n). The subgroup of these

elements is denoted by CHk
ét(X)⊗.

Remark 2.4.3. 1. CHk
ét(X)⊗ is a subgroup because if we take two elements z1, z2 ∈

CHk
ét(X)⊗ then there exists n1 and n2 such that z⊗ni

i = 0. If we consider that

(z1 + z2)
n =

n∑
i=0

(
n

i

)
zi1 ⊗ zn−i

2

just consider n = n1 + n2.

2. Due to the compatibility of the comparison map with products we have a morphism

κ : CHk(X)⊗ → CHk
ét(X)⊗

Homological equivalence

At this point we should state some conventions, because we can define several cycle class

maps. These depend on the characteristic of the ground field, and on the use of étale

Chow groups or Lichtenbaum cohomology groups. If we work over the complex numbers,

then we use the isomorphism CHn
ét(X) ≃ CHn

L(X) and the cycle class map constructed

in [RS16].

In this case we have a cycle class map cm,n
L : Hm

L (X,Z(n)) → Hm
B (X,Z(n)) to Betti

cohomology and we define the Lichtenbaum (or étale) cycles equivalent to zero as the

kernel of the L-cycle class map

CHn
ét(X)hom := ker

{
cnét : CH

n
ét(X)→ H2n

B (X,Z(n))
}
.

Lemma 2.4.4. Let X be a complex smooth projective variety, then:

1. c1,1L is the zero map,

2. c3,1L induces a surjection Br(X)→ H3(X,Z(1))tors.

Proof. Consider the exponential sheaf sequence

0→ 2πiZ→ OX
f 7→ef−−−→ O∗

X → 0

which arises a long exact sequence

0→ Γ(X,Z(1))→ Γ(X,OX)→ Γ(X,O∗
X)

h−→ H1(X,Z(1))

→ H1(X,OX)→ H1(X,O∗
X)

c1−→ H2(X,Z(1))→ . . .

we know that Γ(X,Z(1)) ≃ 2πiZ, Γ(X,OX) ≃ C and Γ(X,O∗
X) ≃ C∗ and therefore h is

zero. On the other hand, by [Voe11, Theorem 6.18] H1
L(X,ZX(1)) ≃ H1

M (X,ZX(1)) ≃
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Γ(X,O∗
X) and then the induced map h coincide with the cycle class map c1,1L . The second

statement follows from the isomorphism H3
L(X,Z(1)) ≃ H2

ét(X,Gm) ≃ Br(X) (which is

torsion) and [RS16, Theorem 1.1].

If we consider as a base an algebraically closed field k ̸= C of characteristic p ≥ 0,

the quasi-isomorphism (Z/ℓrZ)X(n)ét
∼−→ µ⊗n

ℓr , where ℓ ̸= char(k), and the short exact

sequence of complexes of étale sheaves

0→ ZX(n)ét
ℓr−→ ZX(n)ét → (Z/ℓrZ)X(n)ét → 0

we obtain a map cm,n
L,ℓr : Hm

L (X,Z(n)) → Hm
L (X, (Z/ℓrZ)X(n)) ≃ Hm

ét (X,µ
⊗n
ℓr ). After

taking the inverse limit cm,n
L,ℓ := lim←−r

cm,n
L,ℓr we obtain a Lichtenbaum ℓ−adic cycle class

map

cm,n
L,ℓ : Hm

L (X,Z(n))→ Hm
ét (X,Zℓ(n)).

We then define the étale algebraic cycles homologically equivalent to zero as

CHn
L(X)hom := ker

 ∏
ℓ̸=char(k)

cm,n
L,ℓ : CHn

L(X)→
∏

ℓ ̸=char(k)

H2n
ét (X,Zℓ(n))


Notice that by compatibility with the comparison maps the classical Betti and ℓ−adic

cycle class maps factor through Lichtenbaum cohomology: ùhaving the following compo-

sitions

CHn(X)→ CHn
ét(X)→ H2n(X,Z(n)) if k = C,

CHn(X)→ CHn
L(X)→

∏
ℓ̸=char(k)

H2n
ét (X,Zℓ(n)).

Hence there exists a homomorphism CHn(X)hom → CHn
L(X)hom. There is a big difference

concerning the algebraic properties of the homologically trivial L-cycles and the usual

case. For example there exist algebraic varieties where Griff(X) ⊗ Q/Z ̸= 0 whereas in

the Lichtenbaum case if we define its analogue we have that GriffL(X)⊗Q/Z = 0.

Lemma 2.4.5. [Gei17, Lemma 3.2] Let X be a smooth and projective k−variety with

k and algebraically closed field, then the subgroup CHn
L(X)hom is the maximal divisible

subgroup inside CHn
L(X).

Proof. Let k be a field and X be a smooth projective k-variety. Consider the groups of

homologically trivial Lichtenbaum cycles

CHn
L(X)hom := ker

 ∏
ℓ̸=char(k)

cnL,ℓ : CH
n
L(X)→

∏
ℓ̸=char(k)

H2n
ét (X,Zℓ(n))


Since H2n

ét (X,Zℓ(n)) = lim←−i
H2n

ét (X,Z/ℓi(n)) and the cycle class map cnL,ℓ factors trough

lim←−i
H2n

ét (X,Z(n))/ℓi, the kernel is ℓ-divisible for each ℓ ̸= char(k), so it is divisible. The

maximality comes from the factorization cnL,ℓ through H
2n
ét (X,Z(n))/ℓi.

79



2. Étale Chow motives

Numerical equivalence

If we fix an algebraically closed field k as a base, recall that according to Theorem

2.2.11 we have an isomorphism CH0(X) ≃ CHL
0 (X). So in this case we can use the

same definition of degree map as in the classical case. If the field is not algebraically

closed of characteristic p, then one has to consider an étale version of the degree map

degét := p∗ : CH
dim(X)
ét (X) = CHét

0 (X)→ Z[1/p].1

Let X be a smooth projective variety of dimension d One has a pairing

CHi
ét(X)× CHd−i

ét (X)→ Z[1/p]

(α, β) 7→ degét(α · β).

For a fixed α ∈ CHi
ét(X) define degét,α(β) := degét(α · β).

Definition 2.4.6. Let X be a smooth projective variety of dimension d over a field k,

and let α ∈ CHi
ét(X) be a fixed but arbitrary étale cycle. We say that α is numerically

equivalent to zero if and only if ker
(
degét,α(·)

)
= CHd−i

ét (X). We will denote the group of

the elements of codimension i numerically equivalent to zero as CHi
ét(X)num ⊂ CHi

ét(X).

Proposition 2.4.7. Let κ : CHi(X) → CHi
ét(X) be comparison map, tthe image of

CHi(X)num under κ is contained in CHi
ét(X)num.

Proof. We have to prove that the diagram

CHd−i(X) CHd−i
ét (X)

Z

κ

degα

degét,κ(α)

is commutative, but this comes immediately from the fact that κ is compatible with

pushforward and products of algebraic cycles.

Consider the group CHi
ét(X)num previously defined, then we define

NMi
ét(X) := CHi

ét(X)/CHi
ét(X)num

With this definition we wanted to follow the spirit of the numerical cycles in the classical

sense of Chow groups in order to obtain a similar result for the nilpotent properties and

try to extend the conjecture to étale Chow groups.

Proposition 2.4.8. Let X be a smooth projective variety over and algebraically closed

field k. Then for n ≥ 0 the induced map

NMn(X)→ NMn
ét(X)

is an isomorphism of finitely generated free abelian groups.

1In chapter 4 we will return to the degree map in more detail, giving functoriality properties and the
definition of the étale analogue for the index of a scheme.
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Proof. In order to prove that NMn(X) is a finitely generated free abelian group, first

notice that NMn(X) is torsion free since by definition we have a non-degenerated pairing,

then we use the well-known fact that NMn(X)Q is a finite dimensional Q−vector space
of dimension ≤ b2n = dimQℓ

H2n
ét (X,Qℓ(n)). Choose generators {α1, . . . , αi} ⊂ NMn(X)

of NMn(X)Q and let ÑM
n
(X) be the Z-submodule of NMn(X) generated by the α′

is.

Define the dual NMn(X)∨ := Hom(NMn(X),Z) and notice that NMn(X)/ÑM
n
(X) is

torsion, therefore its dual as Z is zero. Hence the map

NMd−n(X) ⊂ NMn(X)∨ → ÑM
n
(X)∨

is injective, and since ÑM
n
(X)∨ is free, NMd−n(X) is a finitely generated free abelian

group. For the isomorphism, consider the commutative diagram

NMn(X) NMn
ét(X)

NMd−n(X)∨ NMd−n
ét (X)∨.

Since the above map is surjective after tensor product with rational numbers, all the

groups have the same rank.

This is the same proof given in [Gei17, Proposition 3.1] which states the same result

but using Lichtenbaum cohomology instead of étale Chow groups. Now let 0 ≤ i ≤ d =

dim(X), the previous result leads us to a commutative diagram

0 CHi(X)num CHi(X) NMi(X) 0

0 CHi
ét(X)num CHi

ét(X) NMi
ét(X) 0.

κ|num κ ≃

By the snake lemma we have that ker
(
κ
∣∣∣
num

)
→ ker(κ) is an isomorphism, as well as

the map coker
(
κ
∣∣∣
num

)
→ coker(κ). Then, and after noticing that by [RS16, Proposition

5.1] the groups ker(κ) and coker(κ) are torsion since κ is an isomorphism with rational

coefficients, the cycles numerically equivalent to zero which map to zero through the

comparison map are just torsion elements.

Lemma 2.4.9. Let X be a smooth projective variety. The map

CHn(X)num/CH
n(X)hom → CHn

ét(X)num/CH
n
ét(X)hom

is injective with torsion kernel and cokernel.

Proof. Let z ∈ CHn(X) such that κ(z) ∈ CHn
ét(X)hom since the cycle class map factors

through κ then is contained in CHn(X)hom which implies the injectivity. Again the kernel

and cokernel are torsion because the groups agree rationally.
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2.5 The category of étale Chow motives

Correspondences

We first introduce the concept of correspondences, which play an important role in the

definition of the morphisms in the category of étale Chow motives. For this construction

we will use étale Chow groups, but always keep in mind the following: consider a field k

of characteristic exponent p and a smooth k-scheme X which is of finite type. For every

bi-degree (m,n) ∈ Z2 there exists a map ρm,n
X : Hm

L (X,Z(n)) → Hm
M,ét(X,Z(n)) which

is induced by the A1-localization functor of effective étale motivic sheaves. If we tensor

by Z[1/p], then ρm,n
X becomes an isomorphism, for a proof we refer to [CD16, Theorem

7.1.2]. In particular the two definitions coincide in characteristic zero.

Definition 2.5.1. Let X and Y be smooth projective varieties. An étale correspondence

from X to Y of degree r is defined as follows: if X is purely of dimension d

Corrrét(X,Y ) = CHr+d
ét (X × Y ).

For the general case

Corrrét(X,Y ) =
n⊕

i=1

CHr+di
ét (Xi × Y )

where X =
∐n

i=1Xi and di is the dimension of Xi.

For α ∈ Corrrét(X,Y ) and β ∈ Corrsét(Y, Z) we define the composition β ◦ α ∈
Corrr+s

ét (X,Z) of correspondences as

β ◦ α = (pr13)∗ (pr
∗
12α · pr∗23β)

where pr12 : X ×k Y ×k Z → X ×k Y (similar definition for pr23 and pr13 with the

respective change in the projection’s components).

Proposition 2.5.2. The composition of correspondences is an associative operation.

Proof. To see that this operation is associative, we recall the Gysin morphism for étale

motives. Consider X, Y and S smooth schemes over k such that there exists a cartesian

square of smooth schemes

X ×S Y Y

X S

q

g f

p

(2.4)

with p and q are projective morphism and dim(X/S) = dim(X×S Y/Y ), thus by [Dég08,

Proposition 5.17] we have the following commutative diagrams

M(X ×S Y )(−n)[−2n] M(Y ) CHi+n
ét (X ×S Y ) CHi

ét(Y )

M(X)(−n)[−2n] M(S) CHi+n
ét (X) CHi

ét(S)

g∗

q∗

f∗

q∗

p∗

g∗

p∗

f∗

(2.5)
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where n = dim(X/S).

Consider the following commutative diagram

X × Y × Z ×W X × Y × Z

X × Z ×W X × Z

prXY ZW
XY Z

prXY ZW
XZW prXY Z

XZ

prXZW
XZ

by (2) we have that
(
prXY ZW

XY Z

)
∗
(
prXY ZW

XZW

)∗
=
(
prXY Z

XZ

)∗ (
prXZW

XZ

)
∗, so the rest of the

proof is similar to the proof of [Ful98, 16.1.1.(a)]: the formula
(
prXY ZW

XY Z

)
∗
(
prXY ZW

XZW

)∗
=(

prXY Z
XZ

)∗ (
prXZW

XZ

)
∗ gives us the following

γ ◦ (β ◦ α) = prXZW
XW∗

(
prXZW∗

XZ

(
prXY Z

XZ∗
(
prXY Z∗

XY α · prXY Z∗
Y Z β

))
· prXZW∗

ZW γ
)

(2.6)

= prXZW
XW∗

(
prXY ZW

XZW∗
(
prXY ZW∗

XY Z

(
prXY Z∗

XY α · prXY Z∗
Y Z β

))
· prXZW∗

ZW γ
)

(2.7)

= prXZW
XW∗

(
prXY ZW

XZW∗
((
prXY ZW∗

XY α · prXY ZW∗
Y Z β

)
· prXY ZW∗

XZW prXZW∗
ZW γ

))
(2.8)

= prXY ZW
XW∗

((
prXY ZW∗

XY α · prXY ZW∗
Y Z β

)
· prXY ZW∗

ZW γ
)

(2.9)

= prXY ZW
XW∗

(
prXY ZW∗

XY α ·
(
prXY ZW∗

Y Z β · prXY ZW∗
ZW γ

))
.

Here (2.6) is the definition of composition of correspondences, (2.7) is obtained by the

argument given in the second point of the remark 2.5, (2.8) by the projection formula

and (2.9) by the functoriality of pullbacks.

Remark 2.5.3. • The composition of correspondences gives Corrét(X,X) a ring struc-

ture. In general it is not a commutative ring.

• Let X be a smooth projective scheme of dimension n, then the étale cycle ∆ét
X ,

induced by the diagonal, is the identity for the composition operation, i.e. for

α ∈ Corrrét(X,Y ) and β ∈ Corrrét(Y,X) we obtain that α◦∆ét
X = α and ∆ét

X ◦β = β.

Operations on correspondences

We define the addition and product of correspondences in the following way: suppose

that α ∈ Corrét(X,X) and β ∈ Corrét(Y, Y ), then we define the element α + β as the

element resulting from the following operation on cycles:

CHét(X ×X)⊕ CHét(Y × Y ) ↪→ CHét

((
X
∐

Y
)
×
(
X
∐

Y
))

(α, β) 7→ (i1)∗α+ (i2)∗β

where i1 : X × X ↪→ (X
∐
Y ) × (X

∐
Y ) is the usual closed immersion map (similar

definition for i2 and Y ). In a similar way we define the tensor product of correspondences

as

CHét(X ×X)⊗ CHét(Y × Y )→ CHét(X × Y ×X × Y )

(α, β) 7→ pr∗XXα · pr∗Y Y β
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where prXX : X × Y × X × Y → X × X, similar definition for prY Y . Both structures

will play a big role in the definition of operations in the category of Chow étale motives.

Another important operation is the transposition of cycles.

Definition 2.5.4. Let X and Y be smooth projective varieties and let τ : X×Y → Y ×X
which permutes the components (x, y) 7→ (y, x). Let Γ ∈ CHn

ét(X × Y ), we define the

transpose cycle as Γt := τ∗(Γ).

Due to some functoriality properties in DMét(k,Z) we recover an étale version of

Lieberman’s lemma:

Lemma 2.5.5 (Lieberman’s lemma). Let X,Y, Z and W ∈ SmProjk. Consider f ∈
Corrét(X,Y ), α ∈ Corrét(X,Z) and β ∈ Corrét(Y,W ). Then (α× β)∗(f) = β ◦ f ◦ αt.

Proof. We follow the proof of [MNP13, Lemma 2.1.3]. By definition of the action of

cycles

(α× β)∗(f) = (prXZYW
ZW )∗

(
α× β · (prXZYW

XY )∗(f)
)

where prABC...
XY ... : A × B × C . . . → X × Y . . . denotes the projection. Note that we have

the isomorphism τ : X × Z × Y ×W → Z ×X × Y ×W , then we have

(prXZYW
XY )∗ = τ∗ ◦ (prZXYW

XY )∗ and (prXZYW
ZW )∗ = (prZXYW

ZW )∗ ◦ τ∗.

Using this and the projection formula thus we have the following

(α× β)∗(f) = (prXZYW
ZW )∗

(
α× β · (prXZYW

XY )∗(f)
)

= (prZXYW
ZW )∗

(
τ∗
(
α× β · τ∗

(
(prZXYW

XY )∗(f)
)))

≃ (prZXYW
ZW )∗

(
τ∗(α× β) · (prZXYW

XY )∗(f)
)

since τ just permutes the first two coordinates we obtain that τ∗(α × β) = αt × β. As

prZXYW
ZW factors through the canonical projections Z×X×Y ×W p−→ Z×Y ×W q−→ Z×W

, where p = prZXYW
ZYW , q = prZYW

ZW and also that αt×β = (prZXYW
ZX )∗(αt)·(prZXYW∗

YW )∗(β),

then we replace in the previous expression

(α× β)∗(f) ≃ q∗ ◦ p∗
(
(prZXYW

ZX )∗(αt) · (prZXYW
YW )∗(β) · (prZXYW

XY )∗(f)
)
.

By similar arguments we find that prZXYW
YW = q′ ◦ p and then (prZXYW

YW )∗ = p∗ ◦ q′∗ with

q′ = prZYW
YW so

(α× β)∗(f) ≃ q∗
{
p∗
(
(prZXYW

ZX )∗(αt) · (prZXYW
XY )∗(f) · p∗

(
q′∗(β)

))}
≃ q∗

{
p∗
(
(prZXYW

ZX )∗(αt) · (prZXYW
XY )∗(f)

)
· q′∗(β)

}
.

Let us focus in the part p∗
(
(prZXYW

ZX )∗(αt) · (prZXYW
XY )∗(f)

)
. Consider the projections

r : Z×X×Y ×W → Z×X×Y , s1 : Z×X×Y → Z×X and s2 : Z×X×Y → X×Y .

Then we obtain

p∗
(
(prZXYW

ZX )∗(αt) · (prZXYW
XY )∗(f)

)
≃ p∗

(
r∗(s∗1(α

t)) · r∗(s∗2(f))
)

≃ p∗ ◦ r∗
(
s∗1(α

t) · s∗2(f).
)
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2.5. The category of étale Chow motives

Considering the commutative diagram

Z ×X × Y ×W Z × Y ×W

Z ×X × Y Z × Y.

p

r prZY W
ZY

prZXY
ZY

By (2) of remark 2.5 we have p∗◦r∗ =
(
prZYW

ZY

)∗ (
prZXY

ZY

)
∗, which gives us the equality p∗◦

r∗
(
s∗1(α

t) · s∗2(f)
)
=
(
prZYW

ZY

)∗ (
prZXY

ZY

)
∗
(
s∗1(α

t) · s∗2(f)
)
and by definition of composition

we obtain
(
prZYW

ZY

)∗ (
f ◦ αt

)
. The last part is just a direct consequence of the definition

(α× β)∗(f) = q∗
{
p∗
(
(prZXYW

ZX )∗(αt) · (prZXYW
XY )∗(f)

)
· q′∗(β)

}
=
(
prZYW

ZW

)
∗

{(
prZYW

ZY

)∗ (
f ◦ αt

)
· (prZYW

YW )∗(β)
}

= β ◦ f ◦ αt.

Action on cycles and cohomology groups

Let X and Y be smooth projective varieties. For a correspondence Γ ∈ Corrrét(X,Y ) we

define the action Γ∗ : CH
i
ét(X)→ CHi+r

ét (Y ) as

Γ∗Z = prY ∗ (Γ · pr∗X(Z)) ∈ CHi+r
ét (Y )

for Z ∈ CHi
ét(X). Here we need to work with étale Chow groups because of their

functoriality properties for proper maps, instead of Lichtenbaum cohomology. In order

to use an action considering Lichtenbaum cohomology, it would be necessary to invert

the characteristic exponent of the base field.

Classical correspondences have a natural action over on their étale analogue using the

comparison map:

Corr0(X,X)× Corrrét(X,Y )→ Corrrét(X,Y )

(α,Z) 7→ prXY ∗ (pr
∗
XX(κ(α)) · pr∗XY (Z))

Let Γ ∈ Corrrét(X,Y ) be an étale correspondence of degree r. Let us assume that

there exist a cohomology theory (not necessarily a Weil cohomology theory) H with a

cycle class map ciét,H : CHi
ét(X) → H2i(X). We recall that this choice depends on the

base field. For example if k = C we can consider H i(X) = H i
B(X,Z) or if k = k̄ one

can consider H i(X) = H i
ét(X,Z/ℓ) or H i(X) = H i

ét(X,Zℓ), with ℓ ̸= char(k). As in the

classical case, the correspondence gives us an action Γ∗ : H
i(X)→ H i+2r(Y ) defined by

Γ∗z := prY ∗

(
cdX+r
ét,H (Γ) ∪ pr∗X(z)

)
∈ H i+2r(Y )

with z ∈ H i(X). As we will see in the following chapter, this action will be the cornerstone

for a well-defined version Hodge conjecture and generalized Hodge conjecture in the

Lichtenbaum setting.
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2. Étale Chow motives

Étale Chow motives

Let SmProjk be the category of smooth projective varieties over k. We construct the

category of effective étale motives over k, denoted by Choweff
ét (k), as follows:

• The elements are pairs (X, p) where X is a smooth projective variety and p ∈
Corr0ét(X,X) is an idempotent element, i.e. p ◦ p = p.

• Morphism (X, p) → (Y, q) are the elements of the form f = q ◦ g ◦ p where g ∈
Corr0ét(X,Y ), therefore

HomChoweff
ét (k)

((X, p), (Y, q)) = q ◦ Corr0ét(X,Y ) ◦ p

Finally, the category Chowét(k) of Chow étale motives is defined in the following

way: the objects are triplets (X, p,m) where X is a smooth projective variety, p is a

correspondence of degree 0 and idempotent and m ∈ Z. The morphisms (X, p,m) →
(Y, q, n) are defined as

HomChowét(k) ((X, p,m), (Y, q, n)) = q ◦ Corrn−m
ét (X,Y ) ◦ p

As in the theory of Chow motives, for étale motives there is an obvious fully-faithful

functor Choweff
ét (k) ↪→ Chowét(k).

We define a functor hét : SmProjopk → Chowét(k) as

hét : SmProjk → Chowét(k)

X 7→ hét(X) := (X, idX , 0)(
X

f−→ Y
)
7→
(
hét(Y )

hét(f)−−−−→ hét(X)

)
where idX is the element that acts as the identity on the correspondences from X to

itself and hét(f) = κ([Γt
f ]).

Here there are some examples of étale Chow motives:

1. Lefschetz motive is

L := (Spec(k), id,−1)

and Ld := L⊗d ≃ (Spec(k), id,−d).

2. The unit motive 1 defined as 1 := (Spec(k), id, 0).

3. The Tate motive is defined as

T := (Spec(k), id, 1)

Remark 2.5.6. 1. Let us remark that there was another construction of a category of

Chow étale motives, which here we denote ChowK
ét(k), given in [Kah02, §5] by Kahn.

This category is pseudo-abelian and rigid symmetric monoidal. The definition
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2.5. The category of étale Chow motives

of such (effective) category is similar as the one we gave, but just considering

elements (X, p) where p = p2 ∈ Corrét(X,X) ⊗ Q and morphisms between (X, p)

and (Y, q) are correspondences f ∈ Corrét(X,Y ) such that f ⊗Q = q ◦ f̃ ◦ p = f̃ ∈
Corrét(X,Y )⊗Q.

2. If k is an algebraically closed field of characteristic zero, then by Theorem 2.2.11 for

every X ∈ SmProjk of dimension d we have that CHd+n(X) ≃ CHd+n
ét (X) for all

n ≥ 0. If k is not algebraically closed then CHn
ét(Spec(k)) is torsion for all n ≥ 1.

Lemma 2.5.7. There exists a monoidal functor cét : Chow(k)→ Chowét(k) coming from

the comparison map from classical to étale Chow groups.

Proof. We define cét : Chow(k)→ Chowét(k) as follows: for an element M = (X, p,m) ∈
Chow(k)we have cét(M) = (X,σ(p),m), its action on morphisms is given by

(
M

f−→ N
)
7→
(
cét(M)

cét(f)−−−→ cét(N)

)
= (X,σ(p),m)

σ(f)−−−→ (Y, σ(q), n).

The monoidal property comes from the compatibility of the cycle class map with the

product of cycles.

Remark 2.5.8. Along with the category Chowét(k) we can define the étale analogue of

the categoriesM∼(k) for an adequate equivalence relation. We denote asMét
∼(k) if we

replace the étale Chow groups for ∼-étale groups. If the base field k is algebraically

closed, we then obtain the following commutative diagram

Chow(k)Z Malg(k)Z Mhom(k)Z Mnum(k)Z

SmProjopk

Chowét(k) Mét
alg(k) Mét

hom(k) Mét
num(k).

hZ(−)

hét(−)

Proposition 2.5.9. Similar to the theory of pure Chow motives, there exists a fully-

faithful embedding functor F : Chowét(k)
op ↪→ DMét(k)

Proof. LetX,Y, Z ∈ SmProjk. The map ϵX,Y : HomDMét(k)(M(X),M(Y ))
≃−→ Corr0ét(Y,X)

is an isomorphism, which can be obtained with the same arguments as in [MVW06,

Proposition 20.1]. We proceed as in case of the Chow motives. Let X and Y be two
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2. Étale Chow motives

equidimensional smooth projective varieties, with dimension dX and dY respectively, then

HomDMét(k)(M(X),M(Y )) ≃ HomDMét(k)(M(X)⊗DM(Y ),Z)

≃ HomDMét(k)(M(X)⊗M(Y )(−dY )[−2dY ],Z)

≃ HomDMét(k)(M(X)⊗M(Y ),Z(dY )[2dY ])

≃ HomDMét(k)(M(X × Y ),Z(dY )[2dY ])

= CHdY
ét (X × Y )

= Corr0ét(Y,X) = HomDMét(k)(h(Y ), h(X))

Denote as ϵX,Y : HomDMét(k)(M(X),M(Y ))
∼−→ CHdY

ét (Y ×X), it remains to prove that

the composition is compatible with ϵX,Y ., but the compatibility obtained as in [Fan16,

Theorem 3.17] using [Fan16, Proposition 2.39].

Definition 2.5.10. Let M = (X, p,m) be an étale motive. We define the i−th étale

Chow group of M as the image of the action of the correspondence p, i.e.

CHi
ét(M) = im

{
p∗ : CH

i+m
ét (X)→ CHi+m

ét (X)
}
.

Similarly the i−th cohomology group of M is define as the action of the projector p

H i(M) = im
{
p∗ : H

i+2m(X)→ H i+2m(X)
}

where H i can be H i(X,Z) if X is a complex variety and H i
ét(X,Zℓ) for an algebraically

closed field (not necessarily of characteristic zero), but always ℓ ̸= char(k). These are

the Betti and ℓ−adic realizations of M .

Let us consider the functor F i defined as follows F i : Chowét(k) → Z-mod, M 7→
F i(M) := HomChowét(k)(L

i,M), with M of the form M = (X, p,m), and consider the

Z-graded functor F := ⊕i∈ZF
i : Chowét(k) → Z-modGr. By definition of F i we have

that

F i(M) = HomChowét(k)(L
i,M)

= p ◦ CHi+m
ét (Spec(k)×X)

≃ p∗CHi+m
ét (X) = CHi

ét(M).

By definition F is an additive functor, and by duality

HomChowét(k)((X, p,m), (Y, q, n)) = q ◦ Corrn−m
ét (X,Y ) ◦ p

= q ◦ CHn−m+dX
ét (X × Y ) ◦ p

≃ F 0(M ⊗N∨).

Notice that N is a sub-motive of h(Y ) ⊗ Ln for some Y ∈ SmProjk and n ∈ Z and by

duality F 0(M ⊗ h(Y )⊗ Ln) ≃ F−n(M ⊗ hét(Y )). For a fixed M ∈ Chowét(k) define the

following functor

ωM : SmProjopk → Z-modGr

Y 7→ ωM (Y ) := F (M ⊗ hét(Y ))
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2.5. The category of étale Chow motives

then Yoneda embedding implies that the functor

ω : Chowét(k)→ Z-modGrSmProjopk

M 7→ ωM

is fully-faithful. Hence we recover the classical Manin principle but in the étale setting!

Proposition 2.5.11. [Manin’s identity principle] Let f , g : M → N be morphism of

étale motives then:

1. f is an isomorphism if and only if the induced map

ωf (Y ) : ωM (h(Y ))→ ωN (h(Y ))

is an isomorphism for all Y ∈ SmProjk and f = g is and only if ωf (Y ) = ωg(Y )

for all Y ∈ SmProjk.

2. A sequence

0→M1
f−→M2

g−→M3 → 0

is exact if and only if, for every Y ∈ SmProjk the sequence

0→ ωM1(h(Y ))
ωf (h(Y ))
−−−−−−→ ωM2(h(Y ))

ωg(h(Y ))−−−−−→ ωM3(h(Y ))→ 0

Proof. This properties is a consequence of the faithfulness of the functor ω and the fact

that fully-faithful functor reflects monic, epi and isomorphisms.

The following isomorphisms in Chowét(k) are obtained as a consequence of Lemma

2.2.22 about the structure of étale motivic cohomology groups: we can obtain decompo-

sition for motives of a projective bundle, blow-ups with smooth center and flag varieties.

Example 2.5.12. 1. Consider E a locally free sheaf of rank (n + 1) over X, and

π : PX(E)→ X its associated projective bundle. Then

CHi
ét(PX(E)) ≃

n⊕
j=0

CHi−j
ét (X).

Since this isomorphism is functorial with respect to base change, for all Y ∈
SmProjk we have an isomorphism CHi

ét(Y ×PX(E)) ≃
⊕n

j=0CH
i−j
ét (Y ×X), there-

fore we have a decomposition of the motive of PX(E) as

hét(PX(E)) ≃
n⊕

i=0

hét(X)(−i).

2. Consider Y = BlZX the Blow-up of X ∈ SmProjk along a smooth sub-scheme Z of

codimension (d+1). Since the isomorphism described in Lemma 2.2.22 is functorial

with respect fo base change, then we have a decomposition of the motive of Y as

follows

hét(Y ) ≃ hét(X)⊕
m⊕
i=1

hét(Z)(−i).
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3. Let S be a smooth k-scheme and let X → S be a flat morphism of relative dimension

n such that X has a decomposition in smooth projective varieties X = Xp ⊃ Xp−1 ⊃
. . . ⊃ X0 ⊃ X−1 = ∅ with Xi − Xi−1 ≃ An−di

S for some di ∈ Z. Since the

characterization of the étale Chow groups of X given in Lemma 2.2.22 is functorial

with respect to base change S → S × Y , then

hét(X) ≃
p⊕

i=0

hét(S)(di).

In chapter 4 we will continue with another results concerning the decomposition of

étale Chow motives and some generalized version of Manin principle. For the moment,

let us mention an analogue of [Kim05, Theorem 6.8].

Definition 2.5.13. Let f :M → N be a morphism of étale Chow motives. We say that

f is a surjective morphism if for all Z ∈ SmProjk the induced map

(f ⊗ idZ)∗ : CH
n
ét(M ⊗ h(Z))→ CHn

ét(N ⊗ h(Z))

is surjective for all n.

Lemma 2.5.14. Let f : M = (X, p,m) → N = (Y, q, n) be a morphism of étale Chow

motives. The following conditions are equivalent:

1. f is surjective.

2. There exists a right inverse g : N →M i.e. f ◦ g = idN .

3. q = f ◦ s for some s ∈ Corr0ét(Y,X).

Proof. (1. =⇒ 2.) For this implication, we use Lieberman’s lemma (see Lemma 2.5.5)

for étale correspondences. Assuming point 1. consider the particular case Z = Y and

qt ∈ Corr0ét(Y, Y ). By Lieberman’s lemma qt = (q× idY )∗idY then qt ∈ CH∗
ét(N ⊗ h(Y )).

By assumption there exists an element r ∈ CH∗
ét(M ⊗ h(Y )) ⊂ CH∗

ét(X × Y ) such that

(f × idY )∗r = qt, and again by Lieberman r ◦ f t = qt. Take g = p ◦ rt ◦ q.
(2. =⇒ 1.) As f ◦ g = idN after base change using Z ∈ SmProjk we obtain that

(f×idZ)∗◦(g×idZ)∗ = idN⊗Z . Therefore (f×idZ)∗ : CHn
ét(M⊗h(Z))→ CHn

ét(N⊗h(Z))
is surjective.

(2. =⇒ 3.) For that just take the element s as the correspondence associated to

f ∈ Corr0ét(Y,X).

(3. =⇒ 2.) Consider the morphism defined by the correspondence g = p ◦ s ◦ q.

Now again, we get an étale analogue of [Via17, Lemma 3.2]:

Proposition 2.5.15. Let f : M → N be a morphism of étale motives defined over an

algebraically closed field k:

1. Assume that for some field extension K (with K = K̄) the map (fK)∗ : CH
i
ét(MK)→

CHi
ét(NK) is injective. Then f∗ : CH

i
ét(M)→ CHi

ét(N) is injective.
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2. Assume that for some field extension K (with K = K̄) the map (fK)∗ : CH
i
ét(MK)→

CHi
ét(NK) is surjective. Then f∗ : CH

i
ét(M)→ CHi

ét(N) is surjective.

Proof. The first statement follows from the commutative diagram

CHi
ét(M) CHi

ét(MK)

CHi
ét(N) CHi

ét(NK)

f∗ (fK)∗

and the fact that CHi
ét(X)→ CHi

ét(XK) is an injection by Proposition 2.2.20. For the sur-

jectivity, notice that under assumptions about the base field, the mapHm−1
ét (X,Qℓ/Zℓ(n))→

Hm−1
ét (XK ,Qℓ/Zℓ(n)) is an isomorphism for every bi-degree, therefore if the map after

tensor with the rational is surjective ( which is the result of [Via17, Lemma 3.2]), we then

obtain that the map is surjective from a similar argument of Proposition 2.2.20.

Lemma 2.5.16. Let k be a field and let (ui : ki → k)i be finite Galois extensions of

the field k. Then the associated family of functors u∗i : Chowét(k) → Chowét(ki) is

conservative.

Proof. By Proposition 2.5.9, the functor Φét
k : Chowét(k)

op → DMét(k,Z) is fully-faithful,
hence conservative. According to [Ayo14b, Théorème 3.9] the family of functors u∗i :

DMét(k,Z)→ DMét(ki,Z) is also conservative. The commutative diagram

Chowét(k)
op DMét(k,Z)

Chowét(ki)
op DMét(ki,Z),

u∗
i

Φét
k

u∗
i

Φét
ki

then shows that the family of functors u∗i : Chowét(k)→ Chowét(ki) is conservative.

Lemma 2.5.17. Let M = (X, p,m) be an étale Chow motive over a field k. Then M = 0

if and only if MK = 0 for some field extension K.

Proof. This is a direct consequence of Lemma 2.5.16.

Remark 2.5.18. Notice that [Via17, Proposition 1.3] is also a direct consequence of the

condition of separateness of DMét(k,Q) and the fully-faithful embedding Chow(k)op →
DM(k,Q) ≃ DMét(k,Q).

Proposition 2.5.19. Let k be a field and let K be an inseparable extension of k. Then

the associated functor p∗ : Chowét(k)→ Chowét(K) is fully-faithful.

Proof. This is a consequence of Lemma 2.2.20.
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Chapter 3

Hodge and generalized Hodge

conjecture

In this chapter we study the consequences of [RS16] on the level of Hodge structures.

Let X be a smooth projective variety over C, k ∈ N and consider the cycle class map

ck : CHk(X) → H2k
B (X,Z(k)) where Z(k) = (2πi)kZ. Its image is a subgroup of the

Hodge classes Hdg2k(X,Z). The integral Hodge conjecture asks whether or not this

map is surjective. Putting n = dimC(X), then for k = 0 and k = n the conjecture

is immediately true and also for k = 1 by the Lefschetz (1,1) theorem, however for

k = 2 the statement is not true as is shown by the counterexamples given by Atiyah and

Hirzebruch in [AH62] (a torsion class which is not algebraic) and by Kóllar in [BCC92] (a

non-algebraic non-torsion class) respectively. Even with rational coefficients the validity

of the statement regarding the surjectivity of the cycle class map is still an open question,

and is known as the Hodge conjecture. In a more general and ambitious framework, there

exists another conjecture, called the generalized Hodge conjecture, which deals with sub-

Hodge structures of smooth projective varieties of different weights and levels. To be

more precise the conjecture for weight k and level k − 2c (or equivalently for weight k

and coniveau c) says that for any rational sub-Hodge structure H ⊂ Hk(X,Q) of level

at most k − 2c there exists a closed subvariety Z ↪→ X of codimension ≥ c such that

H ⊂ im
{
Hk−2c(Z̃,Q(−c)) γ∗−→ Hk(X,Q)

}
where γ∗ = i∗ ◦ d∗, i∗ is the Gysin map associated to the inclusion i : Y ↪→ X and

d : Z̃ → Z is a resolution of singularities.

The aim of this chapter is to find an analogue of [RS16, Theorem 1.1] for the gen-

eralized Hodge conjecture. In the first section, we attack two problems: throughout the

first subsection, we present a refined version of [RS16, Theorem 1.1]. We show that if

we restrict to a sub-Hodge structure W ⊂ H2k
B (X,Z(k)) and ask whether W ⊗ Q is al-

gebraic in the usual sense if and only if W is L-algebraic. In subsection 3.2 we give an

explicit description of the torsion classes that are not algebraic in the classical sense, for

the counterexamples presented in [AH62] and [BO20]. We then study the Lichtenbaum

cohomology groups for hypersurfaces in subsection 3.2.3 and explain the torsion-free
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counter-example of Kóllar given in [BCC92].

With respect to the generalized Hodge conjecture, in section 2 of this chapter, we

show several equivalences between the classical case and the L-version (involving Licht-

enbaum cohomology and integral Hodge structures) in different weights and levels using

characterizations through the Hodge conjecture (étale and classical setting) and the ef-

fectiveness of étale Chow motives, the category that we introduced in chapter 2. In the

last subsection, we consider the equivalence between the classical and étale version of the

generalized Hodge conjecture in Bardelli’s example in [Bar91].

3.1 Hodge conjecture

Hodge conjecture and Lichtenbaum cohomology

Fix an integer k ∈ Z. An integral pure Hodge structure H of weight k is a finitely

generated Z-module such that H ⊗ C =
⊕

p+q=kH
p,q where Hp,q, is a complex vector

space with Hq,p = Hp,q. For m ∈ Z we denote by Z(m) the Tate Hodge structure of

weight −2m whose Hodge decomposition is concentrated in bi-degree (−m,−m). For

a pure Hodge structure H of weight k its Tate twist H(m) is defined to be the tensor

product H ⊗Z Z(m) which is a Hodge structure of weight k − 2m and its decomposition

is

H(m)⊗Z C =
⊕

p+q=k−2m

H(m)p,q =
⊕

p+q=k−2m

Hp−m,q−m

If X is a complex smooth projective variety of dimension d, we denote by Hdg2n(X,Z)
the Hodge classes of X of weight 2n, defined as

Hdg2n(X,Z) :=
{
α ∈ H2n

B (X,Z(n))
∣∣∣ ρ(α) ∈ FnH2n(X,C)

}
where ρ : H2n

B (X,Z) → H2n(X,C) and F pH2n(X,C) =
⊕

i≥pH
i,2n−i(X). Notice that

by definition H2n
B (X,Z)tors ⊂ Hdg2n(X,Z). The image of the cycle class map to Betti

cohomology cn : CHn(X) → H2n
B (X,Z(n)) is contained in Hdg2n(X,Z). We denote as

HCn(X) the following statement:

Conjecture 3.1.1 (Hodge conjecture with integral coefficients). For a smooth complex

projective variety X and n ∈ N, the image of the cycle class map cn : CHn(X) →
H2n

B (X,Z(n)) is Hdg2n(X,Z).

Under the above hypothesis for X, by trivial arguments we have that HC0(X) and

HCd(X) holds. The validity of HC1(X) is a consequence of the Lefschetz (1,1) theorem.

For n /∈ {0, 1, d} it is known that the Hodge conjecture (with integral coefficients) does

not hold, even if we work with torsion free classes. We define the obstruction to the

integral Hodge conjecture as Z2i(X) := Hdg2i(X,Z(i))/im(ci). In [AH62] it is proved

that for every prime number p, there exists a smooth variety X such that Z4(X)[p] ̸= 0.

If we replace in the conjecture Z by Q coefficients, we will denote this new statement as

HCn(X)Q the following statement:
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3.1. Hodge conjecture

Conjecture 3.1.2 (Hodge conjecture with rational coefficients). For a smooth complex

projective variety X and n ∈ N, the image of the cycle class map cnQ : CHn(X)Q →
H2n

B (X,Q(n)) is isomorphic to Hdg2n(X,Q).

Thanks to the Hard Lefschetz theorem, the statement HCd−1(X)Q is true, but oly if

we work with rational coefficients. More generally, if HCn(X)Q holds for some n < d/2,

then HCd−n(X)Q holds. Of course HCn(X)Q is still an open problem; there is no known

counter-example for the Hodge conjecture with rational coefficients up to this day.

The Hodge conjecture can be stated in terms of motives as well. By using the Hodge

realization, we can characterize the validity of the conjecture for the category SmProjC:

Proposition 3.1.3. Consider k = C and let ρH the Hodge realization for Chow(C) (with
rational coefficients), then HC(X)Q holds for all X ∈ SmProj(C) if and only if ρH is a

full functor.

Proof. Suppose that the Hodge conjecture holds. Then the Hodge classes of X are

algebraic. By the Künneth formula and Poincaré duality, the Hodge classes in H2k
B (X ×

Y,Q) are in bijection with
⊕2k

i=0HomHSQ(H
2(dX−k)+i(X,Q), H i(Y,Q)). Therefore we

have the following diagram

HomChow(C)(h(X), h(Y )) HomHSQ(H
p(X,Q), Hp(Y,Q))

CHdX (X × Y )Q

(
H2dX−p(X,Q)⊗Hp(Y,Q)

)
∩HdX ,dX (X ×X)

CHdX (X × Y )Q Hdg2dX (X × Y,Q)

ρH

ρH

which implies that ρH is full.

On the other hand, suppose that the Hodge realization is full, so in particular for all

smooth projective variety X and n ∈ N the following map

HomChow(C)(1(−n), (X,∆X)) HomHSQ(Q(−n), H2n(X,Q))

CHn(X)Q Hdg2n(X,Q)

ρH

is surjective, which is the exact statement of the Hodge conjecture.

Before going into the proof of the equivalences of the weaker version of the equivalence

between the Hodge conjecture with rational coefficients and the Lichtenbaum Hodge

conjecture let us recall the definitions of Deligne cohomology and intermediate Jacobians.

Fixing an integer k ≥ 0 one defines the k−th intermediate Jacobian Jk(X) as the complex

torus

Jk(X) := H2k−1(X,C)/(F kH2k−1(X,C)⊕H2k−1(X,Z)).
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3. Hodge and generalized Hodge conjecture

Consider the Deligne complex Z(p)D of a complex manifold X defined as

0→ Z(p)→ OX → Ω1
X → . . .→ Ωp−1

X → 0.

We then define the Deligne cohomology groups as the hypercohomology groups of

the Deligne complex i.e.

Hk
D(X,Z(p)) := Hk

an(X,Z(p)D).

We have an exact sequence relating Hodge classes and intermediate Jacobians

0→ Jk(X)→ H2k
D (X,Z(k))→ Hdg2k(X,Z)→ 0.

Remark 3.1.4. The definition of intermediate Jacobians can be extended to pure Hodge

structures of odd weight. Assume that H is a Hodge structure of weight 2k − 1 then we

define the complex torus Jk(H) := HC/(F
kH ⊕H). This construction is functorial with

respect to morphisms of Hodge structures. For more details about these facts see [Voi02,

Remarque 12.3] and [PS08, Section 3.5].

There exist maps ckD : CHk(X) → H2k
D (X,Z(k)) and Φk

X : CHk(X)hom → Jk(X)

called the Deligne cycle class and the Abel-Jacobi map respectively. There is a

useful relation between the Deligne cycle class map, the Abel-Jacobi map and the cycle

class map given by the following commutative diagram with exact rows:

0 CHk(X)hom CHk(X) Ik(X) 0

0 Jk(X) H2k
D (X,Z(k)) Hdg2k(X,Z) 0.

Φk
X

ck

ckD into

For Lichtenbaum cohomology groups we have analogous maps, ckL,D : CHk
L(X) →

H2k
D (X,Z(k)) and Φk

X,L : CHk
L(X)hom → Jk(X) (the construction of the first one is done

in [RS16, Theorem 4.4]) which fit in a similar commutative diagram as the one given

before.

Remark 3.1.5. Let ℓ be a prime number and r ∈ N. Notice that the exact triangle 0 →
Ω≤n−1[−1] → ZD(n) → Z(n) → 0 induces maps cm,n

D,B : Hm
D (X,Z(n)) → Hm

B (X,Z(n))
which fit in the following commutative diagram

0 Hm−1
D (X,Z(n))⊗ Z/ℓr Hm−1

D (X,Z/ℓr(n)) Hm
D (X,Z(n))[ℓr] 0

0 Hm−1
B (X,Z(n))⊗ Z/ℓr Hm−1

B (X,Z/ℓr(n)) Hm
B (X,Z(n))[ℓr] 0

βD

≃ cm,n
D,B

β

where βD is the morphism induced by the exact triangle 0 → ZD(n)
·ℓr−→ ZD(n) →
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3.1. Hodge conjecture

(Z/ℓr)D(n)→ 0. Also we obtain another commutative diagram:

0 Hm−1
L (X,Z(n))⊗ Z/ℓr Hm−1

ét (X,µ⊗n
ℓr ) Hm

L (X,Z(n))[ℓr] 0

0 Hm−1
D (X,Z(n))⊗ Z/ℓr Hm−1

D (X,Z/ℓr(n)) Hm
D (X,Z(n))[ℓr] 0

0 Hm−1
B (X,Z(n))⊗ Z/ℓr Hm−1

B (X,Z/ℓr(n)) Hm
B (X,Z(n))[ℓr] 0.

≃ cm,n
D,L

βD

≃ cm,n
D,B

β

By the snake lemma the arrows

Hm−1
L (X,Z(n))/ℓr → Hm−1

D (X,Z(n))/ℓr and Hm−1
D (X,Z(n))/ℓr → Hm−1

B (X,Z(n))/ℓr

are injective while the arrows

Hm
L (X,Z(n))[ℓr]→ Hm

D (X,Z(n))[ℓr] and Hm
D (X,Z(n))[ℓr]→ Hm

B (X,Z(n))[ℓr]

are surjective. Also the image of the composite of the right vertical arrows is equal to

the image of cm,n
L restricted to ℓr-torsion elements.

The following results are immediate corollaries obtained after [RS16, Prop 5.1 (b)

and Theo. 1.1]:

Corollary 3.1.6. Let X be a smooth projective variety over C, and fix an integer k such

that 1 ≤ k ≤ dimC(X). Then the restriction of the Abel-Jacobi map to torsion groups

Φk
X

∣∣∣
tors

:
(
CHk

L(X)hom
)
tors
→ Jk(X)tors is an isomorphism.

Proof. Consider the following commutative diagram with exact rows

0 CHk
L(X)hom CHk

L(X) IkL(X) 0

0 Jk(X) H2k
D (X,Z(k)) Hdg2k(X,Z) 0

ckD,L|hom

ckL

ckD,L into

Since CHk
L(X)hom ⊗ Q/Z = 0 by [RS16, Proposition 5.1 (b)] and Jk(X) ⊗ Q/Z = 0

because Jk(X) is divisible, we have then a commutative diagram

0
(
CHk

L(X)hom

)
tors

CHk
L(X)tors IkL(X)tors 0

0 Jk(X)tors H2k
D (X,Z(k))tors Hdg2k(X,Z)tors 0

ckD,L|hom ckD,L into

(3.1)

Since CHk
L(X)tors ≃ H2k

D (X,Z(k))tors by [RS16, Proposition 5.1 (a)] and the map

CHk
L(X)tors → H2k(X,Z)tors is surjective (see [RS16, Remark 3.2]), the middle arrow is

an isomorphism as well as the right one. Therefore the left arrow is an isomorphism.

Remark 3.1.7. Notice that if we set k = dim(X), by Proposition 2.2.11 Chow groups and

Lichntebaum cohomology coincide. Then we recover the classical Roitman theorem

CHhom
0 (X)tors ≃ AlbX(C)tors.
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3. Hodge and generalized Hodge conjecture

We say that W ⊂ H2k
B (X,Z(k)) is a sub-Hodge structure if W is s sub-lattice of

H2k
B (X,Z(k)) such that it has an induced Hodge decompositionWC =

⊕
p+q=2kW

p,q with

W p,q =WC∩Hp,q. LetW ⊂ H2k
B (X,Z(k)) be a sub-Hodge structure, we define the partial

Hodge conjecture with rational coefficients related to W as the following statement: for

every element α ∈ W there exists N ∈ N and an algebraic cycle α̃ ∈ CHk(X) such that

c(α̃) = Nα. It is clear that for W = Hdg2k(X,Z) we recover the usual Hodge conjecture.
For a fixed W we denote the previous statement by HCk(X,W )Q.

Similarly we denote by HCk
L(X,W )Z the statement that for every element of α ∈W

there exists a Lichtenbaum cycle α̃ ∈ CHk
L(X) such that cL(α̃) = α. Then, inspired by

the proof of [RS16, Theorem 1.1], we obtain the following result:

Corollary 3.1.8. Let X be a complex smooth projective variety and letW ⊂ H2k
B (X,Z(k))

be a sub-Hodge structure. Then HCk
L(X,W )Z holds if and only if HCk(X,W )Q holds.

Proof. Let W ⊂ H2k
B (X,Z(k)) be a sub-Hodge structure and let ckL : CHk

L(X) →
H2k

B (X,Z(k)) be the Lichtenbaum cycle class map constructed in [RS16] (similarly we can

consider the classical cycle class map ck : CHk(X) → H2k
B (X,Z)). Define CHk

W,L(X) :=

(ckL)
−1(W ) as the preimage of W in CHk

L(X). It is easy to see that CHk
L(X)hom ↪→

CHk
W,L(X). Following with this notation, we will denote IkW,L(X) := im(ckL) ∩W , there-

fore W is Lichtenbaum algebraic if and only if Zk
W,L(X) := W/IkW,L(X) = 0. In the

classical case, this is equivalent to say that WQ is algebraic if and only if Zk
W (X) is a

finite group. Since IkW (X) ⊂ IkW,L(X) we have an exact sequence

0→ IkW,L(X)/IkW (X)→ Zk
W (X)→ Zk

W,L(X)→ 0

Denote π : H2k
D (X,Z(k))→ Hdg2k(X,Z) the surjective map coming from the short ex-

act sequence of Deligne-Beilinson cohomology, intermediate Jacobian and Hodge classes

and denote H2k
W,D(X,Z(k)) := π−1(W ). Then we have the following commutative dia-

gram:

0 CHk
L(X)hom CHk

W,L(X) IkW,L(X) 0

0 Jk(X) H2k
W,D(X,Z(k)) W 0

ckD,L|hom

ckL

ckD,L|W−1
L

into

Since CHk
L(X)hom ⊗ Q/Z = 0 by [RS16, Proposition 5.1 (b)] and Jk(X) is divisible,

we obtain the commutative diagram but with the torsion part of each group

0
(
CHk

L(X)hom

)
tors

(
CHk

W,L(X)
)
tors

IkW,L(X)tors 0

0 Jk(X)tors H2k
W,D(X,Z(k))tors Wtors 0.

ckD,L|hom

ckL

ckD,L|W−1
L

into

Due to the surjectivity of CHk
L(X)tors → H2k(X,Z)tors, the right vertical arrow is an

isomorphism. If we can prove that the arrow in the middle is surjective, then we
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3.1. Hodge conjecture

can conclude with similar arguments as in [RS16], but this comes from the fact that(
CHk

L(X)hom
)
tors
≃ Jk(X)tors by Corollary 3.1.6, and therefore ckD,L|hom induces an iso-

morphism in the torsion part.

Since we have an isomorphism
(
CHk

W,L(X)
)
tors
≃ H2k

W,D(X,Z)tors, we obtain a com-

mutative diagram

0 Ators A A⊗Q A⊗Q/Z 0

0 Btors B B ⊗Q B ⊗Q/Z 0

≃ ckD,L|A into (3.2)

where A = CHk
W,L(X) and B = H2k

W,D(X,Z(k)) and A⊗Q/Z ↪→ B⊗Q/Z is an injection,

this can be seen in the computations done in Corollary 3.1.6. We can split diagram (3.2)

into two diagrams with short exact sequences as rows:

0 Ators A Afree 0

0 Btors B Bfree 0

≃ ckD,L f

and
0 Afree A⊗Q A⊗Q/Z 0

0 Bfree B ⊗Q B ⊗Q/Z 0

f ckD,L into (3.3)

The cokernel from the induced map A ⊗ Q → B ⊗ Q is torsion free as a quotient

of Q-vector spaces. Thus from diagram (3.3), we obtain that coker(f) is torsion free

because it injects into a torsion free group, which, implies that coker(ckD,L|A) is torsion

free and, along with the divisibility of Jk(X), so Zk
W,L(X) as well.

The remaining part of the proof consists in proving that IkW,L(X)/IkW (X) is a torsion

group, but this comes from the fact that IkW,L(X) and IkW (X) have the same Z−rank and

therefore the quotient should be a finite group, so

Zk
W (X)⊗Q = 0 ⇐⇒ Zk

W,L(X)⊗Q = 0 ⇐⇒ Zk
W,L(X) = 0.

Künneth conjecture

Let us remark a consequence of Corollary 3.1.8. Fixing k = C, it is possible to find an

equivalence between the Künneth conjecture in the classical and Lichtenbaum setting,

but before state this equivalence we need to define the Künneth conjecture in the general

setting.

Let X be a smooth projective variety over a field k of dimension d and consider

∆X ∈ CHd(X × X)Q the diagonal. Fix a Weil cohomology theory H∗, thanks to the

Künneth decomposition of H∗ we have

cd(∆X) ∈ H2d(X ×X) ≃
2d⊕
i=0

H2d−i(X)⊗H i(X).
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3. Hodge and generalized Hodge conjecture

We write ∆topo
i ∈ H2d−i(X)⊗H i(X) for the i-th Künneth component.

Conjecture 3.1.9 (Künneth conjecture). Fixing a Weil cohomology theory H∗, then

the Künneth components ∆topo
i are algebraic, i.e. there are algebraic cycle classes ∆i ∈

CHd(X ×X)Q such that cd(∆i) = ∆topo
i .

Now, consider the Betti realization for the étale setting, this is well-defined with

integral coefficients due to the existence of a Lichtenbaum cycle class map, but, in general

is not a ⊗−functor, because the Künneth decomposition would carry torsion elements,

it becomes a ⊗−functor after modding out the torsion of the cohomology groups. With

integral coefficients, or in a more general setting with coefficients in a principal ideal

domain R, the Künneth formula is given by the following short exact sequence

0→
⊕

p+q=n

Hp
B(X,R)⊗H

q
B(Y,R)→ Hn

B(X × Y,R)→
⊕

p+q=n+1

TorR1 (H
p
B(X,R), H

q
B(Y,R))→ 0

which is natural on X and Y , and also splits, but not canonically (see [Hat02, Theorem

3B.6]). Notice that if R is a field, then the TorR1 functor vanishes and we obtain the

classical Künneth formula. The same happens if one of the cohomology groups of X or

Y is torsion free. The case in which we are interested is when R = Z.

Remark 3.1.10. For ℓ−adic cohomology there exists a similar Künneth formula, see

[Mil80, Theorem 8.21]. Let X, Y two varieties over a field k and let ℓ ̸= char(k) then

there exists a short exact sequence

0→
⊕

p+q=n

Hp
ét(X,Zℓ)⊗Hq

ét(Y,Zℓ)→ Hn
ét(X × Y,Zℓ)→

⊕
n+1

TorZℓ
1 (Hp

ét(X,Zℓ), H
q
ét(Y,Zℓ))→ 0

which also holds for cohomology with compact support.

For the case when k = C, the restriction to torsion subgroups cnL : CHn
L(X)tors →

H2n
B (X,Z)tors is surjective, therefore it is possible (for this case) to work with a version

of the Künneth conjecture modulo torsion.

Conjecture 3.1.11 (Lichtenbaum-Künneth conjecture). Let X be a smooth projective

coplex variety. Then the integral Künneth components ∆topo
i ∈ H2d−i

B (X,Z)⊗H i
B(X,Z)

are étale algebraic, i.e. there exists a Lichtenbaum cycle ∆i ∈ CHd
ét(X × X) such that

cdét(∆i) = ∆topo
i .

Proposition 3.1.12. Over the complex field, the Künneth conjecture holds if and only

if the Lichtenbaum version of the Künneth conjecture holds.

Proof. Consider X ∈ SmProjC of dimension d and let us consider H2d
B (X×X,Z) modulo

torsion. As we consider it modulo torsion, we apply the Künneth decomposition H2d
B (X×

X,Z) ≃
⊕
H2d−i

B (X,Z) ⊗ H i
B(X,Z) and let ∆i ∈ H2d−i

B (X,Z) ⊗ H i
B(X,Z) be the i-

th component of the diagonal. Let Wi be the sub-Hodge structure generated by ∆i.

By Corollary 3.1.8 Wi is L-algebraic if and only if Wi ⊗ Q is algebraic, therefore the

rational Künneth conjecture for X holds if and only if the Künneth components are

L-algebraic.
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Sign conjecture

This is a weaker version of Künneth conjecture, for more details we refer to [And04,

Chapitre 5]. We set ∆+ =
∑d

i=0∆
topo
2i called the even Künneth projector and its odd

counterpart ∆− = ∆ − ∆+. For the following, we fix the base field to k = C, but the

following conjecture can be defined for any field and a Weil cohomology theory.

Conjecture 3.1.13. The even Künneth projector ∆+ is algebraic, i.e. exists an algebraic

cycle Y ∈ CHd(X ×X)Q such that cd(Y ) = ∆+.

As in Künneth conjecture, in the complex case the sign conjecture has a Lichtenbaum

equivalent:

Conjecture 3.1.14. The even Künneth projector ∆+ is Lichtenbaum algebraic, i.e. ex-

ists an algebraic cycle Y ∈ CHd
L(X ×X) such that cdL(Y ) = ∆+.

The previous conjecture gives the next proposition making the link between both

version of the conjecture of signs:

Proposition 3.1.15. Over the complex field, the sign conjecture holds if and only if the

Lichtenbaum version of the conjectur of sings holds.

Proof. The proof goes in the same way as in the Künneth conjecture using Corollary

3.1.8.

Standard conjectures of Lefschetz type

Consider a smooth projective variety X over C and let Y be a smooth hyperplane section.

Consider the cohomology class c1(Y ) ∈ H2
B(X,Q) and the Lefschetz operator

L : H i
B(X,Q)→ H i+2

B (X,Q)

α 7→ α ∪ c1(Y ).

The iteration of the operation if denoted by Lr. By the hard Lefschetz theorem

Lj : Hd−j
B (X,Q)

∼−→ Hd+j
B (X,Q)

with 0 ≤ j ≤ d. The hard Lefschetz property defines an unique linear map Λ :

H i
B(X,Q) → H i−2

B (X,Q), where 2 ≤ i ≤ 2d, in cohomology which makes the follow-

ing diagram commutes. For i = d− j and 0 ≤ j ≤ d− 2 we have

Hd−j
B (X,Q) Hd+j

B (X,Q)

Hd−j−2
B (X,Q) Hd+j+2

B (X,Q).

Lj

∼

Λ L

Lj+2

∼
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3. Hodge and generalized Hodge conjecture

For i = d + 1 we obtain the isomorphism Hd−1
B (X,Q) Hd+1

B (X,Q).
L
∼
Λ

Lastly, for

i = d+ j and 2 ≤ j ≤ d:

Hd−j+2
B (X,Q) Hd+j−2

B (X,Q)

Hd−j
B (X,Q) Hd+j

B (X,Q).

Lj−2

∼

L

Lj

∼

Λ

Conjecture 3.1.16. The linear map Λ : H i
B(X,Q) → H i−2

B (X,Q) is induced by an

algebraic cycle i.e. there exists some Z ∈ CHd−1(X × X)Q such that Λ = cd−1(Z) ∈
H2d−2

B (X ×X,Q).

Due to the equivalence given in Corollary 3.1.8, we have the following consequence:

Proposition 3.1.17. There exists an algebraic cycle Z ∈ CHd−1(X × X)Q such that

Λ = cd−1(Z) if and only exists Z ′ ∈ CHd−1
L (X ×X) with Λ = cd−1

L (Z ′).

Examples

We study two counterexamples of the Hodge conjecture with integral coefficients: the

ones presented in [AH62] and [BO20]. Both cases deal with torsion Hodge classes that do

not come from algebraic cycles, but the constructions of are different: the first example

uses arguments of K-theory, the second one is based on a degeneration argument.

Atiyah-Hirzebruch’s countexample

Let us start by giving a quick overview of the construction of Atiyah-Hirzebruch’s coun-

terexample presented in [AH62]. They consider a smooth projective quotient vari-

ety with a non-algebraic torsion class, that is constructed using the Steenrod alge-

bra and classifying spaces. By [AH62, Theorem 6.1], if a class α ∈ H2p
B (X,Z) is al-

gebraic then Sqi(ᾱ) = 0 for all i odd prime, where ᾱ is the reduction mod 2 and

Sqi : H2p
B (X,Z/2)→ H2p+i

B (X,Z/2) is the i-th the Steenrod operation. Also considering

[AH62, Proposition 6.6], for every finite group G and r ∈ N≥1 there exists a complete

intersection variety Y with dimC(Y ) = r and G acting freely on Y , such that for the

Godeaux-Serre type variety X = Y/G, the group cohomology H i(G,Z) is a direct factor

of H i
B(X,Z) for all i ≤ r.
As a particular case, consider G = Z/2 × Z/2 × Z/2 and r = 7, thus there ex-

ists X ∈ SmProjC such that H i(G,Z) ↪→ H i
B(X,Z) as a direct factor for i ≤ 7. As

H∗(Z/2,Z/2) ≃ Z/2[u] with deg(u) = 1, the Künneth formula shows that H∗(G,Z/2) ≃
Z/2[u1, u2, u3]. Consider the element u1u2u3 ∈ H3(G,Z/2) and β(u1u2u3) =: α ∈
H4(G,Z) ↪→ H4

B(X,Z), where β is the Bockstein’s morphism β : H3(G,Z/2)→ H4(G,Z),
and the following commutative diagram
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3.1. Hodge conjecture

H3(G,Z/2) H4(G,Z) H4
B(X,Z(2))

H4(G,Z/2) H4
B(X,Z/2(2))

H7(G,Z/2) H7
B(X,Z/2(4)).

β

Sq1 red2

Sq3 Sq3

A direct computation gives that Sq3(Sq1(u1u2u3)) = Sq3(ᾱ) ̸= 0 ∈ H7
B(X,Z/2(4)), and

consequently α is a 2-torsion class which is not algebraic. However, we have a short exact

sequence

0→ J2(X)→ H4
D(X,Z(2))

g−→ Hdg4(X,Z)→ 0

which after tensoring by Z/2, and considering that J2(X) is divisible, induces a short

exact sequence or torsion groups

0→ J2(X)[2]→ H4
D(X,Z(2))[2]

g−→ Hdg4(X,Z)[2]→ 0

and therefore the composite map CH2
L(X)[2]→ H4

D(X,Z(2))[2]→ Hdg4(X,Z)[2] is sur-
jective. Specifically, we have the following result, which gives an explicit representative

of the Lichtenbaum class that maps to α.

Claim 3.1.18. Let X be a Godeaux-Serre variety as the one described previously. Then

there exists a class x ∈ CH2
L(X)[2] such that c2L(x) = α and

red2(x) = ᾱ ∈ ker
{
H4

ét(X,µ
⊗2
2 )→ H5

L(X,Z(2))
}
.

Also there exists x ∈ CH2
L(X) which maps to α; it is the image of u1u2u3 ∈ H3(G,Z/2)

in CH2
L(X).

Proof. Let X be a smooth projective quotient variety coming from the action of G =

(Z/2)3 over Y , with Y satisfying the above hypothesis (a complete intersection variety

of dimension 7). We consider the fibration Y → X → BG with its associated the Serre

spectral sequence Ep,q
2 = Hp(BG,Hq(Y,Z/2)) =⇒ Hp+q(X,Z/2), where the differentials

are graded derivations. Since Y is a smooth complete intersection variety

Hq
ét(Y,Z/2) ≃

Z/2, if q even and q ̸= 7

0, if q odd and q ̸= 7,

therefore if q ̸= 7, the terms of the Serre spectral sequence are either Hp(BG,Z/2) ∼=
Hp(G,Z/2) or 0. Notice that due to the structure of the Ep,q

2 -terms we have isomorphisms

Ep,q
2 ≃ Ep,q

3 for q < 7. Since d3 is a graded derivation, then d3 : E0,2
3 ≃ Z/2 → E3,0

3

is the trivial map, so E3,0
∞ ≃ E3,0

3 and therefore 0 → E3,0
3 → H3

ét(X,Z/2), which gives

us the existence of an injection H3(G,Z/2) ↪→ H3
B(X,Z/2(2)) ≃ H3

ét(X,Z/2). Consider

u1u2u3 ∈ H3
B(X,Z/2(2)) and the short exact sequence

0→ J2(X)→ H4
D(X,Z(2))

g−→ Hdg4(X,Z)→ 0.
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Let β(u1u2u3) = α ∈ H4
B(X,Z(2))[2] be the non-algebraic torsion class. It can be lifted

to an element αD ∈ g−1(α) ⊂ H4
D(X,Z(2))[2] because J2(X) is divisible. It follows from

[RS16, Proposition 5.1 (a)] that it has a unique preimage x̃ ∈ CH2
L(X)[2]. Consider the

exact triangle ZX(2)ét
·2−→ ZX(2)ét → (Z/2)X(2)ét

+1−−→ and the resulting commutative

diagram with exact rows

. . . CH2
L(X) H4

ét(X,µ
⊗2
2 ) H5

L(X,Z(2)) . . .

. . . H4
D(X,Z(2)) H4

B(X,Z/2(2)) H5
D(X,Z(2)) . . .

red2

≃

It shows that red2(CH
2
L(X)) = ker

{
H4

ét(X,µ
⊗2
2 )→ H5

L(X,Z(2))
}
and red2(x̃) = ᾱ. Take

again the element u1u2u3 ∈ H3
B(X,Z/2(2)) and consider its image in CH2

L(X) via the

map p : H3
B(X,Z/2(2))

∼−→ H3
ét(X,µ

⊗2
2 ) → CH2

L(X) (map which is surjective over the

2-torsion of CH2
L(X)), denoted by x = p(u1u2u3) ∈ CH2

L(X)[2]. The last assertion to be

proved is that c2L(x) = α and c2L,D(x) ∈ g−1(α). For this, considering the morphisms and

commutative diagrams of remark 3.1.5, we get the following commutative diagram:

0 CH2
L(X, 1)⊗ Z/2 H3

ét(X,µ
⊗2
2 ) CH2

L(X)[2] 0

0 H3
D(X,Z(2))⊗ Z/2 H3

D(X,Z/2(2)) H4
D(X,Z(2))[2] 0

H3
B(X,Z/2(2)) H4

B(X,Z(2))[2] 0.

≃ c2D,L

βD

≃ c2D,B

β

Notice that the image of the map c2D,B restricted to 2-torsion classes is isomorphic to the

image of g restricted to such classes. Hence c2L(x) = β(u1u2u3) = α.

Remark 3.1.19. 1. In [Tot97] Totaro revisited Atiyah-Hirzebruch’s example and gave

an explanation in terms of complex cobordism: the cycle class map CHi(X) →
H2i

B (X,Z) admits a factorization CHi(X)→ MU2i(X)⊗MU2i Z→ H2i
B (X,Z) where

MU2i(X) is the cobordism group of X. Therefore, if a torsion class is not in the

image of the map MU2i(X)⊗MU2i Z→ H2i
B (X,Z) cannot be algebraic. Notice that

through cobordism, one can only explain the obstruction to the integral Hodge

conjecture when it comes from torsion classes, since in the torsion free part of the

cobordism group is isomorphic to the free part of the cohomology group.

2. Totaro used Godeaux-Serre type varieties as an example of a smooth projective

variety of dimension 7 such that CH2(X)/2 → H4
B(X,Z/2) is not injective and a

variety dimension of dimension 15 such that there exists an element α ∈ CH3(X) of

order 2 that is mapped to 0 in H6
B(X,Z) and J3(X). Here we can find differences

with Lichtenbaum cohomology groups.

a) In Totaro’s example CH2(X)/2 → H4(X,Z/2) is not injective, while in the

Lichtenbaum case, and for all X ∈ SmProjC, the sequence

0→ CH2
L(X)/2→ H4

L(X,µ
⊗2
2 )→ H5

L(X,Z(2))[2]→ 0
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is exact and also H4
L(X,Z/2(2)) ≃ H4

ét(X,µ
⊗2
2 ) ≃ H4

B(X,Z/2(2)) by the com-

parison theorem, therefore CH2
L(X)/2→ H4

B(X,Z/2(2)) is always injective.

b) In the second of Totaro’s examples the condition can’t hold for a Lichtenbaum

cycle because if α ∈ CH3
L(X)[2] and α ∈ CH3

L(X)hom then by Corollary 3.1.6

its image in J3(X)tors is not zero unless the intermediate Jacobian is zero

itself.

Benoist-Ottem counterexample

Let us recall [BO20, Theorem 0.1]. Let S be an arbitrary but fixed complex Enriques

surface and let g ≥ 1 be an integer. Then if B is a very general smooth projective

complex curve of genus g, the integral Hodge conjecture for codimension 2 cycles does

not hold on the product B×S, and the non-algebraic class is a 2-torsion class. Since the

non-algebraic cycle is torsion, it comes from a Lichtenbaum class. In the sequel we give

an explicit construction of such a Lichtenbaum cycle.

Let C ∈ SmProjC be a connected curve of genus g ≥ 1 and S be the previous Enriques

surface, we have then a cycle class map c2L : CH2
L(C × S) → H4

B(C × S,Z(2)). As is

mentioned in [BO20, Proposition 1.1], H2,0(C × S) = 0 because H1,0(S) = H2,0(S) = 0,

thus the validity of the L-Hodge conjecture for C × S relies on the surjectivity of the

map c2L : CH2(C × S) → H4
B(C × S,Z(2)). Since H∗

B(C,Z) is torsion free, we have the

following isomorphism obtained from the Künneth formula:

H4
B(C × S,Z(2)) ≃ H0(C,Z)⊗H4(S,Z)⊕H1(C,Z)⊗H3(S,Z)⊕H2(C,Z)⊗H2(S,Z),

where H0(C,Z) ⊗H4(S,Z) is algebraic and by the Lefschetz (1,1) theorem H2(C,Z) ⊗
H2(S,Z) is algebraic as well, so L-algebraic. In particular if there exists a non-algebraic

class, it should come from H1(C,Z)⊗H3(S,Z).
Consider the exact sequence of abelian groups

0→ Z(1) ·2−→ Z(1)→ Z/2(1)→ 0

which induces a short exact sequence

0→ H1
B(C,Z(1))⊗ Z/2→ H1

B(C,Z/2(1))→ H2
B(C,Z(1))[2]→ 0.

In the case of Lichtenbaum cohomology the sequence of complexes of étale sheaves

0→ ZC(1)ét
·2−→ ZC(1)ét → (Z/2)C(1)ét → 0

induces a short exact sequence

0→ H1
L(C,Z(1))⊗ Z/2→ H1

L(C,Z/2(1))→ CH1
L(C)[2]→ 0.

MoreoverH1
L(C,Z(1))⊗Z/2 = 0 becauseH1

L(C,Z(1)) ≃ C∗ is divisible, andH1
L(C,Z/2(1)) ≃

H1
ét(C, µ2) ≃ H1

B(C,Z/2) because of the comparison theorem of cohomologies of com-

plex varieties, and because the cohomology groups of a smooth and projective curve are
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torsion free H2
B(C,Z(1))[2] = 0, therefore CH1

L(C)[2] ≃ H1
B(C,Z(1)) ⊗ Z/2. For the

Enriques surface S consider the short exact sequence

0→ H2
L(S,Z(1))⊗ Z/2→ H2

L(S,Z/2(1))→ H3
L(S,Z(1))[2]→ 0

where H3
L(S,Z(1))[2] = Br(S)[2] ≃ Br(S) ≃ Z/2 (see [Bea09, p. 2]) and H2

L(S,Z/2(1)) ≃
H2

ét(S, µ2). We have a composite map

p : H1
ét(C, µ2)⊗H2

ét(S, µ2) ↪→ H3
ét(C × S, µ⊗2

2 )→ H4
L(C × S,Z(2))[2]

where the first inclusion is the one given by the Künneth formula with finite coefficients

and the second map is obtained from the short exact sequence

0→ CH2(C × S, 1)⊗ Z/2→ H3
ét(C × S, µ⊗2

2 )→ H4
L(C × S,Z(2))[2]→ 0 (3.4)

induced by the exact triangle ZC×S(2)ét
·2−→ ZC×S(2)ét → (Z/2)C×S(2)ét

+1−−→.

Finally, we need to find an element which is not contained in the image of the induced

injection H3
B(C × S,Z(2))⊗ Z/2 ↪→ H3

ét(C × S, µ
⊗2
2 ). So we can take c ∈ H1

ét(C, µ2) and

denote by bS ∈ Br(S) the non-zero element of the Brauer group of S. We then fix an

element s ∈ H2
ét(S, µ2) such that s maps to bS through the map H2

ét(S, µ2) → Br(S)

and define γc := p(c ⊗ s) ∈ CH2
L(C × S)[2]. In the following result we give an explicit

description of the Lichtenbaum classes that maps to a given element of H1
B(C,Z) ⊗

H3
B(S,Z) in terms of γc.

Claim 3.1.20. Let S be an Enriques surface and C be a smooth projective and connected

curve curve of genus g ≥ 1, let c̃ ⊗ b̃S ∈ H1(C,Z) ⊗H3(S,Z) be an arbitrary class and

let c ∈ H1
B(C,Z/2) be the reduction mod 2 of c̃. Then c2L(γc) = c̃⊗ b̃S.

Proof. Let pr1 : C × S → C and pr2 : C × S → S be the canonical projections and con-

sider the induced pull-backs and Bockstein homomorphisms, then we have the following

commutative squares

H i
B(C,Z/2) H i+1

B (C,Z) Hj
B(S,Z/2) Hj+1

B (S,Z)

H i
B(C × S,Z/2) H i+1

B (C × S,Z) Hj
B(C × S,Z/2) Hj+1

B (C × S,Z).

pr∗1

β

pr∗1 pr∗2

β

pr∗2

β β

From now on fix i = 1, j = 2 together with a = pr∗1(c) and b = pr∗2(s) in order to have

a ∪ b = c⊗ s. Since Bockstein homomorphisms satisfy derivation properties (see [Hat02,

Section 3.E]), it follows that

β(a ∪ b) = β(a) ∪ b− (−1)deg(a)a ∪ β(b)

= β(pr∗1(c)) ∪ b− (−1)deg(a)a ∪ β(pr∗2(s))

= pr∗1(β(c)) ∪ b− (−1)deg(a)a ∪ pr∗2(β(s))

=
(
c× [S] ∪ [C]× b̃S

)
= c⊗ b̃S ∈ H1

B(C,Z)⊗H3
B(S,Z) ⊂ H4

B(C × S,Z)[2].
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As c ⊗ s /∈ im
{
H3

B(C × S,Z)⊗ Z/2→ H3
B(C × S,Z/2)

}
, then neither can be lifted to

H3
D(C×S,Z(2))⊗Z/2 nor H3

L(C×S,Z(2))⊗Z/2 thus γc ̸= 0 for all c ̸= 0 ∈ H1
B(C,Z/2).

Therefore from the commutative diagrams of Remark 3.1.5, we obtain c2L(γc) = β(c⊗ s)
giving the characterization of the preimages of the elements in H1

B(C,Z)⊗H3
B(S,Z).

Remark 3.1.21. By the same kind of arguments as in [BO20, Proposition 1.1], mutatis

mutandis, we can obtain an equivalence between the action of Lichtenbaum correspon-

dences and the L-Hodge conjecture, i.e. the Lichtenbaum Hodge conjecture holds for

codimension 2-cycles in the product if and only if for every c ∈ H1(C,Z/2) there exists a
correspondence Z ∈ CH2

L(C × S) such that Z∗α = c, where α ∈ H1
B(S,Z/2) is the class

corresponding to the degree 2 étale cover of S by a K3-surface. Since c2L(γc) = c⊗ b̃S we

have that

γ∗cα = pr1∗(c
2
L(γc) ∪ pr∗2(α))

= pr1∗(pr
∗
1(c) ∪ pr∗2(̃bS) ∪ pr∗2(α))

= pr1∗(pr
∗
1(c) ∪ pr∗2(̃bS ∪ α)).

By Poincaré duality we have that b̃S ∪ α is a non-zero element in H4(S,Z/2), then

γ∗cα = c.

Kollár’s counterexample

As we have said, the situation with the Hodge conjecture does not improve if we consider

just the free part of the cohomology, due to Kollár’s example [BCC92]. We will start by

giving some general facts about smooth hypersurfaces. Consider a smooth hypersurface

X ⊂ Pn+1
C of degree d. By the Lefschetz hyperplane theorem ([Voi02, Théorème 13.23])

if k < n then we have the isomorphism

Hk
B(Pn+1,Z) i∗−→ Hk

B(X,Z)

and if k = n, the map i∗ is an injection. Here H2k
B (Pn+1,Z) ≃ ZHk with H =

c1(OPn+1(1)) and H2k+1
B (Pn+1,Z) = 0. Since Betti cohomology groups of hypersurfaces

(with integral coefficients) are torsion free, by Poincaré duality we obtain the isomor-

phisms

H2k
B (X,Z)∗ ≃ H2(n−k)

B (X,Z).

In particular if 2k > n then H2k
B (X,Z) ≃ Zα where ⟨α, hn−k⟩ = 1 with ⟨·, ·⟩ being the

intersection product and h = c1(OX(1)) = H
∣∣
X
.

Remark 3.1.22. By the Lefschetz hyperplane section in étale cohomology (see [Mil80,

Chapter VI, §7]) the map H i(X,µ⊗k
ℓr )

i∗−→ H i+2(Pn+1
C , µ⊗k+1

ℓr ) is an isomorphism if i > n

and a surjection if i = n.

In the following proposition, we give characterizations for some of the Lichtenbaum

cohomology groups of a smooth hypersurfaces X in Pn+1
C and study the close relation

with étale cohomology groups with finite coefficients.
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Proposition 3.1.23. Let i : X ↪→ Pn+1
C be a smooth and projective hypersurface of degree

d and let j : (U := Pn+1
C \X) → Pn+1

C be the open complement. Let k be an integer with

0 ≤ k ≤ n such that 2k /∈ {n− 1, n}, then:

1. The higher Brauer group Brk(X) := H2k+1
L (X,Z(k)) and the group H2k+1

D (X,Z(k))tors
are trivial.

2. If 2k > n then CHk+1(U) ≃ Z2k(X) and CHk+1
ét (U) ≃ Z2k

L (X) and in particular

the group CHk+1
L (U) is trivial.

Proof. Let us start with the first statement. Since our base field is of characteristic zero,

fix an arbitrary prime number ℓ and an (also arbitrary) natural number r. As in [RS16,

Proposition 3.1] consider the long exact sequence

. . .→ CHk
ét(X)

·ℓr−→ CHk
ét(X)→ H2k

ét (X,µ
⊗k
ℓr )→ Brk(X)

·ℓr−→ Brk(X)→ H2k+1
ét (X,µ⊗k

ℓr )→ . . .

By assumption 2k + 1 ̸= n, hence H2k+1
ét (X,µ⊗k

ℓr ) = 0. Therefore the map Brk(X)
·ℓr−→

Brk(X) is surjective for every prime number ℓ and for all r, thus Brk(X) is divisible and

a torsion group. For the remaining part, we consider the commutative diagram given in

Remark 3.1.5 and the short exact sequence

0→ Jk(X)→ H2k
D (X,Z(k))→ Hdg2k(X,Z)→ 0.

Since Jk(X) is divisible, then H2k
D (X,Z(k))/ℓr ≃ Hdg2k(X,Z)/ℓr. Under the conditions

for k we have the isomorphismsH2k
B (X,Z(k)) ≃ Hdg2k(X,Z(k)) and sinceH2k+1

B (X,Z) =
0 then by the diagram of Remark 3.1.5 we conclude that H2k+1

D (X,Z(k))[ℓr] = 0.

The short exact sequence

0→ CHk
L(X)/ℓr → H2k

ét (X,µ
⊗k
ℓr )→ Brk(X)[ℓr]→ 0

gives a surjective map Z/ℓr → Brk(X)[ℓr]. Taking the direct limit, we obtain a surjection

Q/Z↠ Brk(X). As Brk(X) ≃ (Q/Z)r (for the structure of Lichtenbaum cohomology see

[Gei17, Theorem 1.1]) for some r ∈ N we have that r = 0 or 1. Since I2k(X) ̸= 0 we have

I2kL (X) ̸= 0 and hence there are isomorphisms CHk
L(X)⊗Q/Z ≃ I2kL (X)⊗Q/Z ≃ Q/Z

so Brk(X) = 0.

For part 2. consider the localization sequence for Chow groups and its étale analogue.

By functoriality of the comparison map with Gysin morphisms and pull-backs we have

the following commutative diagram:

CHk+1(U, 1) CHk(X) CHk+1(Pn+1
C ) CHk+1(U) 0

CHk+1
L (U, 1) CHk

L(X) CHk+1
L (Pn+1

C ) CHk+1
L (U) 0.

∂ i∗ j∗

≃

∂ét i∗ j∗

Notice that the map CHk+1
L (Pn+1

C )
j∗−→ CHk+1

L (U) is not surjective in general, but in this

case it is surjective as a consequence of part 1. By the functorial properties of the usual
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cycle class map we have the following commutative square

CHn−k(X) CHn−k(Pn+1
C )

H2(n−k)(X,Z) H2(n−k)(Pn+1
C ,Z)

i∗

cn−k ≃

i∗

where if 2(n − k) < n then the map i∗ : H2(n−k)(X,Z) → H2(n−k)(Pn+1
C ,Z) is an iso-

morphism. Therefore i∗
(
CHk(X)

)
≃ im(ck), hence using the previous commutative

diagrams, which relates localization exact sequences, it is easy to see that

CHk+1(U) ≃ coker(i∗)

≃ H2(n−k)(X,Z)/im(cn−k) = Z2k(X).

For the étale case we proceed in the same way. The last part of the second statement

is due to the fact that i∗
(
CHk

L(X)
)
≃ CHk+1

L (Pn+1
C ) ≃ Z therefore j∗ : CHk+1

L (Pn+1
C ) →

CHk+1
L (U) has trivial image, thus we conclude that CHk+1

L (U) injects into Brk(X), which

is trivial by the first point.

Corollary 3.1.24. Let X ⊂ Pn+1
C be a smooth projective hypersurface of degree d and

let k be an integer such that 2k /∈ {n− 1, n}. Then we have the following

1. For all prime numbers ℓ and all r the cycle class map ckL,ℓr : CHk
L(X)→ H2k

ét (X,µ
⊗k
ℓr )

is surjective.

2. For all prime numbers ℓ, all r and k such that 2k /∈ {n− 1, n, n+ 1} the pairing

CHn−k
L (X)/ℓr ⊗ CHk

L(X)/ℓr → CHn
L(X)/ℓr ≃ Z/ℓr

is non-degenerate. The result also holds for the particular case n = 3 and k = 2.

3. If 2k > n there exists a class z ∈ CHk
L(X) such that i∗(z) = Hk+1 ∈ CHk+1(Pn+1

C )

where Hk+1 is the generator of CHk+1(Pn+1
C ). Furthermore ckℓr(z) and ckL(z) are

the generators of the groups H2k
ét (X,µ

⊗k
ℓr ) and H2k

B (X,Z(k)) respectively.

Proof. This is a direct consequence of Proposition 3.1.23. Fix arbitrary prime and natural

numbers denoted ℓ and r respectively. For part 1. use the long exact sequence

. . .→ CHk
L(X)

·ℓr−→ CHk
L(X)→ H2k

ét (X,µ
⊗k
ℓr )→ Brk(X)

·ℓr−→ Brk(X)→ . . .

and obtain the surjectivity since Brk(X) = 0. The second part follows from the vanishing

of Brk(X). Hence we obtain an isomorphism CHk
L(X) ⊗ Z/ℓr ≃−→ H2k

ét (X,µ
⊗k
ℓr ) and the

same for codimension n − k. Thus the non-degeneracy comes from Poincaré duality

in étale cohomology. For the case n = 3 and k = 2, use that CH1
L(X) ≃ CH1(X) ≃

Z · c1(OX(1)), then CH1
L(X)⊗Z/ℓr ≃ H2

ét(X,µℓr). While CH2
L(X)⊗Z/ℓr ≃ H4

ét(X,µ
⊗2
ℓr )

by Corollary 3.1.24.1. The last assertion follows from the localization sequence, the

vanishing of Brk(X) and the compatibility of the cycle class maps with push-forwards.
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Remark 3.1.25. 1. If n = 3 and k = 2 then Hdg4(X,Z) = Z while the image of

the cycle class map I4(X) = I ⊂ Z is determined by the degrees of the curves

C ⊂ X, i.e. I = gcd ({deg(C) | C ⊂ X})Z. The strategy for the counter-example

to the integral Hodge conjecture is as follows: consider a very general hypersurface

X of degree d = sp3 with p a prime number ≥ 5, Kollár proved that under these

assumptions for every curve C ⊂ X its degree deg(C) is divisible by p and therefore

Z4(X) = Z/m ̸= 0 with m divisible by p. Notice that if d > 6 the Griffiths-Harris

conjecture would imply that m = d. Here the class α is not algebraic, whereas

dα = h2.

2. Motivic and Lichtenbaum cohomology behave differently when we work with fi-

nite coefficients. In general, for j ∈ N, H2j+1
M (X,Z(j)) = 0 so CHj(X) ⊗ Z/ℓr ≃−→

H2j
M (X,Z/ℓr(j)). By Bloch-Ogus we know that CHj(X) ⊗ Z/ℓr ≃ Aj(X) ⊗ Z/ℓr,

where Aj(X) is the group of codimension j cycles of X modulo algebraic equiva-

lence. Again consider X ⊂ Pn+1
C and k as in part 2 of Corollary 3.1.24. We obtain

a commutative diagram

H2k
M (X,Z/ℓr(k))⊗H2(n−k)

M (X,Z/ℓr(n− k)) H2n
M (X,Z/ℓr(n)) Z/ℓr

H2k
ét (X,µ

⊗k
ℓr )⊗H2(n−k)

ét (X,µ⊗n−k
ℓr ) H2n

ét (X,µ
⊗n
ℓr ) Z/ℓr

∪

≃

degℓr

∪ trℓr

where the pairing in the lower row is non-degenerate because of Poincaré duality,

whereas the one in the upper row could be degenerate as Kóllar’s example shows or

as Griffiths-Harris’ conjecture states. By Proposition 3.1.23 there is an isomorphism

CHk
L(X) ⊗ Z/ℓr ≃−→ H2k

ét (X,µ
⊗k
ℓr ), thus (if 2k > n) we always have an element of

degree 1 in the Lichtenbaum groups.

3.2 Generalized Hodge conjecture

Let H be a pure Hodge structure of weight n and let 0 ̸= HC = H ⊗ C =
⊕

p+q=nH
p,q.

We say that H is effective if and only if Hp,q = 0 for p < 0 or q < 0. The level of l

of H is defined as l = max {|p− q| | Hp,q ̸= 0}. Let X be a smooth projective complex

variety, we write GHC(n, c,X)Q for the generalized Hodge conjecture in weight n and

level n− 2c:

Conjecture 3.2.1 ([Gro69, Generalized Hodge conjecture]). For every Q−sub-Hodge
structure H ⊂ Hn(X,Q) of level n − 2c there exists a subvariety Y ⊂ X of pure codi-

mension c such that H is supported on Y , i.e. H is contained in the image of

H ⊂ im
{
H l(Ỹ ,Q(−c)) γ∗−→ Hn(X,Q)

}
where γ∗ = i∗ ◦ d∗, i∗ is the Gysin map associated to the inclusion i : Y ↪→ X and

d : Ỹ → Y is a resolution of singularities.
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3.2. Generalized Hodge conjecture

There is an equivalent assertion of the generalized Hodge conjectures, in terms of

algebraic cycles; for a proof, we refer to [Sch89, Lemma 0.1].

Conjecture 3.2.2. If H ⊂ Hn(X,Q) is a Q-sub-Hodge structure of level l = n−2c, then
GHC(n, c,X) holds for H if and only if there exist a smooth projective complex variety

Y and a correspondence z ∈ Corrc(Y,X) such that H is contained in z∗H
l(Y,Q).

Note that this conjecture, similarly to the Hodge conjecture, can be stated in terms

of classical motives over C:

Proposition 3.2.3. [Gro69, Page 301] The generalized Hodge conjecture for all X ∈
SmProjC is equivalent to the following statement: the Hodge conjecture holds and a ho-

mological motive is effective if and only if its Hodge realization is effective.

Proof. Suppose that the generalized Hodge conjecture holds, this implies immediately

the Hodge conjecture. Consider a pure motive M such that its realization H := ρH(M)

is effective of weight k and coniveau c, or equivalently its level is l = k − 2c. Then there

exists a closed subvariety Y ↪→ X of codimension c such that H is contained in the image

of the composition map

H ⊂ im
{
H l(Ỹ ,Q(−c)) γ∗−→ Hk(X,Q)

}
,

where γ∗ = i∗ ◦ d∗, i∗ is the Gysin map associated to the inclusion i : Y ↪→ X and

d : Ỹ → Y is a resolution of singularities. There exists an integer n such that M(n) is

effective. Hence we can recover M(n) as a sub-object of h(Ỹ ) which then implies that

M is effective because is a sub-object of h(X).

On the other hand, suppose that H ⊂ Hn(X,Q) is a sub-Hodge structure of weight

n and level l = n − 2c, then H(c) is still an effective Hodge structure, by effectiveness

hypotheses there exists Y smooth and projective variety such that H(c) is a quotient

Hodge structure of Hn−2c(Y,Q). Since the category of Q-polarized Hodge structures is

semi-simple we obtain a decomposition

Hn−2c(Y,Q) ≃ H(c)⊕R

which gives us a morphism of Hodge structures f : Hn−2c(Y,Q(−c))→ Hn(X,Q) defined

by

Hn−2c(Y,Q)
pr1−−→ H(c)

id⊗Q(−c)−−−−−−→ H ↪→ Hn(X,Q).

Such a morphism f contains H in its image. Furthermore, note that there exists an

isomorphism

HomHSQ(H
n−2c(Y,Q), Hn(X,Q)) ≃ Hdg2(dY +c)(Y ×X,Q).

Therefore by the assumption of the Hodge conjecture, the map f is induced by a corre-

spondence γ ∈ CHdY +c(Y ×X)Q. Thus the generalized Hodge conjecture holds.
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3. Hodge and generalized Hodge conjecture

Generalized Hodge conjecture and Lichtenbaum cohomology

Based on the previous reformulation of the generalized Hodge conjecture, Rosenschon and

Srinivas proposed the following variant of the generalized Hodge conjecture for integral

coefficients, using Lichtenbaum cohomology groups:

Conjecture 3.2.4 (L-Generalized Hodge Conjecture). Let X be a smooth projective

complex variety. If H ⊂ Hn(X,Z) is a Z-sub-Hodge structure of level l = n − 2c, then

GHCL(n, c,X) holds for H if and only if there exist a smooth projective complex variety

Y and an element z ∈ CorrcL(Y,X) such that H is contained in z∗H
l(Y,Z).

For a smooth projective complex varietyX, conjecture 3.2.4 is denoted by GHCL(n, c,X)Q.

In some particular cases it is known to be equivalent to GHC(n, c,X)Q. For instance if

we consider GHC(2k − 1, k − 1, X)Q in [Gro69, §2] it was mentioned that with this level

and weights it is related to the usual Hodge conjecture:

Proposition 3.2.5. [Lew99, Remark 12.30] Let X be a smooth projective complex va-

riety. Then GHC(2k − 1, k − 1, X)Q holds if and only if
(
H2k−1(X,Q)⊗H1(Γ,Q)

)
∩

Hk,k(Γ×X) is algebraic for every smooth projective complex curve Γ.

The Lichtenbaum version of the previous result still holds as is stated in [RS16,

Remarks 5.2]; the proof uses arguments similar to the ones presented in [Lew99, Remark

12.30]. Before we go into the proof of the proposition, it is necessary to introduce some

notation and conventions. First Betti cohomology is considered modulo torsion. Define

H2k−1
L-alg (X,Z) :=

{
σ∗ : H

1(Y,Z)→ H2k−1(X,Z)| σ ∈ Corrk−1
L (Y,X), dimY = 1

}
/tors

where Y is smooth and projective, and recall

H2k−1
max (X,Z) =

{
the largest Z-sub HS in

{
Hk,k−1(X)⊕Hk−1,k(X)

}
∩H2k−1(X,Z)

}
The generalized Hodge conjecture GHCL(2k−1, k−1, X) states that these are equal. Note

that H2k−1
L-alg (X,Z) ⊗ C = Hk,k−1

L-alg (X) ⊕Hk−1,k
L-alg (X) because of the Hodge decomposition.

Also there exists a partial version of the previous result, which asks whether or not a

sub-Hodge structure W ⊂ H2k−1(X,Z) is contained in the image of the action of some

Lichtenbaum correspondence over cohomology groups.

In the following proposition, we characterize this partial étale version of the general-

ized Hodge conjecture of a Hodge structure of weight 2k−1 and level 1, and give a general

description of the GHCL(2k−1, k−1, X) and its equivalence to GHC(2k−1, k−1, X)Q,

as is stated in [RS16, Remark 5.2]:

Proposition 3.2.6. Let X ∈ SmProjC, k ∈ N≥1 and let W ⊂ H2k−1(X,Z) be a sub-

Hodge structure of level 1. Then:

(i.) there exist Y ∈ SmProjC and a Lichtenbaum correspondence z ∈ CHdY +1
L (Y ×X)

such that W ⊂ z∗H
1(Y,Z) if and only if for all curves C ∈ SmProjC the Hodge

classes Hk,k(C ×X) ∩
{
H1(C,Z)⊗W

}
are algebraic.
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3.2. Generalized Hodge conjecture

(ii.) In particular GHCL(2k−1, k−1, X) holds if and only if for all curves C ∈ SmProjC

the Hodge classes Hk,k(C ×X) ∩
{
H1(C,Z)⊗H2k−1(X,Z)

}
are L-algebraic, i.e.

Hk,k(C×X)∩
{
H1(C,Z)⊗H2k−1(X,Z)

}
⊂ im

{
ckL : CHk

L(C ×X)→ H2k
B (X,Z(k))

}
.

(iii.) GHC(2k − 1, k − 1, X)Q holds if and only if GHCL(2k − 1, k − 1, X) holds.

Proof. For (i.), letW ⊂ H2k−1(X,Z) be a sub-Hodge structure of weight 2k−1 and level

1 and assume that there exists Y ∈ SmProjC and a Lichtenbaum correspondence z ∈
CHdY +k−1

L (Y ×X) (correspondence of degree k−1) such thatW ⊂ z∗H1(Y,Z). Consider
C a smooth complex projective curve and consider an element h ∈

{
H1(Y,Z)⊗W

}
∩

Hk,k(C × X) ≃ HomHS(H
1(C,Z),W ). Let h∗ : H1(C,Z) → W be the map of Hodge

structures induced by h. Define V = ker(z∗), which by the theory of Hodge structures, is

a Hodge structure itself. We know that the image of im(z∗) is a Hodge structures of the

same weight (see [Voi02, Lemme 7.23 et 7.25]), then H1(Y,Z) = V ⊕ R where R = V ⊥.

Then we have a morphism λ := (z∗|R)−1
∣∣∣
W

: im(z∗)∩W ⊂ H2k−1(X,Z)→ R which fits

into the following commutative diagram

H1(C,Z) W im(z∗) ∩W H1(Y,Z)

W W.

h∗

h∗

λ

z∗

The map obtained obtained from the upper arrows is induced by a Hodge class by

Lefschetz (1,1) and therefore h is algebraic.

Conversely, suppose that for all smooth and projective curve C the Hodge classes

Hk,k(C × X) ∩
{
H1(C,Z)⊗W

}
are algebraic. Let W ⊂ H2k−1(X,Z) be a sub-Hodge

structure of level 1 and notice thatW has a decomposition asW ⊗C =W k,k−1⊕W k−1,k.

Then its associated k-th intermediate Jacobian is of the form Jk(W ) = W k−1,k/W

which is an abelian variety. Since Jk(W ) is a complex torus, then its holomorphic

tangent bundle is W k−1,1 and the fundamental group is isomorphic to the lattice W ,

thus π1(J
k(W )) ≃ H1(J

k(W ),Z) =W . Set m = dim(Jk(W )) then H2m−1(Jk(W ),C) =
Hm−1,m(Jk(W ))⊕Hm,m−1(Jk(W )) and

Hm−1,m(Jk(W )) ≃ H1,0(Jk(W ))∗

= H0(Jk(W ),Ω1
Jk(W ))

∗

≃ H0(Jk(W ),Ω1
Jk(W ))

∗

≃ H0(Jk(W ), T ∗
Jk(W ))

∗ ≃W k−1,k.

then H2m−1(Jk(W ),C) =W k−1,k ⊕W k,k−1.

Taking hyperplane sections of Jk(W ) and applying Bertini’s theorem, we find a

smooth projective curve Γ ⊂ Jk(W ) and a surjective map H1(Γ,Z) → H1(J
k(W ),Z) ≃

W . Also by Poincaré duality H1(Γ,Z) ≃ H1(Γ,Z) so we have a surjective map f :

H1(Γ,Z) → W . Since the map f is a morphism of Hodge structures, then it is an ele-

ment in Hk,k(Γ ×X) ∩
{
H1(Γ,Z)⊗W

}
which by hypothesis is L-algebraic. Therefore

there exists a class z ∈ CH2k
L (Γ×X) such that W ⊂ z∗H1(Γ,Z) ⊂ H2k−1(X,Z).
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3. Hodge and generalized Hodge conjecture

The statement (ii.) is a direct consequence of (i.) taking W = H2k−1(X,Z) and the

maximal sub-Hodge structure of it H2k−1
max (X,Z). For (iii.) notice that for a complex

smooth projective curve C the Betti cohomology groups are torsion free. Thus Künneth

formula holds for the product C ×X and then

Hk,k(C ×X) ∩
{
H1(C,Z)⊗H2k−1(X,Z)

}
⊂ Hk,k(C ×X) ∩H2k(C ×X,Z) = Hdg2k(C ×X,Z).

Invoking Corollary 3.1.8, the Hodge classes Hk,k(C × X) ∩
{
H1(C,Z)⊗H2k−1(X,Z)

}
are L-algebraic if and only if Hk,k(C ×X)∩

{
H1(C,Q)⊗H2k−1(X,Q)

}
are algebraic in

the usual sense, which gives us the equivalences

GHC(2k − 1, k − 1, X)Q holds

⇐⇒ Hk,k(C ×X) ∩
{
H1(C,Q)⊗H2k−1(X,Q)

}
is alg. ∀ curve C

⇐⇒ Hk,k(C ×X) ∩
{
H1(C,Z)⊗H2k−1(X,Z)

}
is L-alg. ∀ curve C

⇐⇒ GHCL(2k − 1, k − 1, X) holds.

In the sequel, we give more subtle relations between the Hodge conjecture and the

generalized one, following the proof of the classical case given in [Fu12, Lemma 2.3]:

Lemma 3.2.7. Let X be a smooth projective variety of dimension n and H ⊂ Hk(X,Z)
be a sub-Hodge structure of coniveau at least c and assume that there exists a smooth pro-

jective variety Y of dimension dY , such that H(c) is a sub-Hodge structure of Hk−2c(Y,Z).
If HdY +c,dY +c(Y × X) ∩

{
H2(dY +c)−k(Y,Z)⊗Hk(X,Z)

}
is L-algebraic, the generalized

L-Hodge conjecture for H holds.

Proof. Since torsion classes come from Lichtenbaum cycles, for simplicity we will neglect

torsion Hodge classes. Suppose that H is a sub-Hodge structure of Hk(X,Z) of weight

k and coniveau c. We know that H(c) is still an effective Hodge structure, then there is

a smooth projective variety Y such that H(c) is a sub-Hodge structure of Hk−2c(Y,Z),
which by polarization can be decomposed as Hk−2c(Y,Z) ≃ H(c) ⊕ R. Consider f :

Hk−2c(Y,Z) → Hk(X,Z) the morphism resulting from the composition of the following

maps

Hk−2c(Y,Z) pr1−−→ H(c)
id⊗Z(−c)−−−−−−→ H ↪→ Hk(X,Z)

Since HomHSZ(H
k−2c(Y,Z), Hk(X,Z)) ≃ Hdg2dY +2c(X × Y ) the hypothesis implies that

f comes from a Lichtenbaum algebraic cycle γ ∈ CHdY +c
L (Y ×X) andH ⊂ γ∗Hk−2c(Y,Z).

Thus the generalized L-Hodge conjecture holds for H.

Using the same kind of arguments, and adding an hypothesis of effectiveness it is

possible to characterize the generalized Hodge conjecture in terms of the integral Hodge

conjecture in the étale setting.
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3.2. Generalized Hodge conjecture

Theorem 3.2.8. The Lichtenbaum generalized Hodge conjecture for all X ∈ SmProjC

holds if and only if the following two conditions hold:

• the Lichtenbaum Hodge conjecture holds,

• a homological étale motive is effective if and only if its Hodge realization is effective.

Proof. The generalized L-Hodge conjecture immediately implies the L-Hodge conjecture.

Suppose thatM has an effective realization and let H := ρH(M) be its associated Hodge

structure of weight n and coniveau c. By the generalized L-Hodge conjecture there exists

Y ∈ SmProjC and γ ∈ CHdY +c
L (Y ×X) such that H ⊂ γ∗H

n−2c(Y,Z) ⊂ Hn(X,Z). The
motive M(c) is effective in h(Y ), thus M is effective because it is a sub-object of the

effective motive h(X).

Assume that the L-Hodge conjecture holds for every X ∈ SmProjC and that a homo-

logical motive is effective if and only if its realization is effective. We can neglect torsion

Hodge classes because they always come from torsion algebraic cycles. Suppose that H

is a sub-Hodge structure of Hn(X,Z) of weight n and coniveau c. We know that H(c)

is still an effective Hodge structure. Then there is a smooth projective variety Y such

that H(c) is a sub-Hodge structure of Hn−2c(Y,Z) which by polarization can be decom-

posed as Hn−2c(Y,Z) ≃ H(c)⊕R. Consider f : Hn−2c(Y,Z)→ Hn(X,Z) the morphism

resulting from the composition of the following maps

Hn−2c(Y,Z) pr1−−→ H(c)
id⊗Z(−c)−−−−−−→ H ↪→ Hn(X,Z)

Since HomHSZ(H
n−2c(Y,Z), Hn(X,Z)) ≃ Hdg2dY +2c(X × Y ), f comes from a Lichten-

baum algebraic cycle γ ∈ CHdY +c
L (Y ×X) and H ⊂ γ∗Hn−2c(Y,Z). Thus the generalized

L-Hodge conjecture holds.

Then we have the following corollary coming from the previous characterizations of

the Generalized Hodge conjecture (classical and Lichtenbaum setting)

Corollary 3.2.9. The generalized Hodge conjecture holds if and only if the generalized

L-Hodge conjecture holds.

Bardelli’s example

Let us recall the example presented in [Bar91] of a threefold X where GHC(3, 1, X)Q

holds. Let σ : P7 → P7 be the involution defined as σ(x0 : . . . : x3 : y0, . . . , y3) =

(x0 : . . . : x3 : −y0, . . . ,−y3) and let X = V (Q0, Q1, Q2, Q3) be a smooth complete

intersection of four σ-invariant quadrics. There exists a smooth irreducible curve C, of

genus 33, obtained as the intersection of two nodal surfaces, and an étale double covering

C̃ → C such that H1(C̃,Q)− → H3(X,Q)− is surjective, where the first group is the

anti-invariant part of the involution τ : C̃ → C̃ associated to the double covering and

the later group is the anti-invariant part associated to the involution σ. Notice that

by [Bar91, Fact 2.4.1] if we assume that X is a very general threefold, then H3(X,Q)+

and H3(X,Q)− are perpendicular with respect to the cup product on H3(X,Q) and
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H3,0(X) ⊂ H3(X,C)+ therefore H3(X,Q)− is a polarized Hodge structure perpendicular

to H3,0(X) i.e. a polarized sub-Hodge structure of H3(X,Q) of level 1. The isogeny

α : Prym(C̃ → C) → J(X)−, where J(X)− is the projection of H1,2(X)− into J2(X),

is the correspondence that induces the isomorphism H1(C̃,Q)− → H3(X,Q)−, but in

the case of integral coefficients the image of the correspondence is a subgroup of index 2.

From the previous results we have the following equivalences:

GHC(3, 1, X)Q holds for H3(X,Q)−

⇐⇒ H2,2(Γ×X) ∩
{
H1(Γ,Q)⊗H3(X,Q)−

}
is alg. ∀ curve Γ

⇐⇒ H2,2(Γ×X) ∩
{
H1(Γ,Z)⊗H3(X,Z)−

}
is L-alg. ∀ curve Γ

⇐⇒ GHCL(3, 1, X) holds for H3(X,Z)−

so there exists a smooth projective curve Γ′ and a correspondence z ∈ CH2
L(Γ

′×X) such

that H3(X,Z)− ⊂ z∗H1(Γ′,Z).
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Chapter 4

Decomposition of integral étale

motives

The following chapter is devoted to the decomposition of étale motives and the existence

of projectors in étale motivic cohomology groups. Let us recall some facts about the

decomposition of motives in the category of integral motives in the classical sense. If

there exists a zero cycle of degree 1 in a smooth projective variety X, then one can

define the projectors p0(X) and p2d(X) integrally, otherwise it is necessary to invert

some integer in the coefficient ring. In the étale setting, one may be able to improve this

result and define new integral projectors.

In the following two sections we focus on the étale degree map, in order to see when

it is possible to obtain integral projectors pét0 (X) and pét2d(X) for a smooth projective

variety X over a field k. In the first section, we define the étale analogue of the degree

map on CHd
ét(X), d = dim(X). We then study varieties over a field k of characteristic

zero for which the étale degree map is surjective. Also, we show that surjectivity does

not always hold for Severi-Brauer varieties that do not split over the field k.

The last section, which is divided into three subsections, is devoted to the study

of the decomposition of integral étale motives. In the first part, we use the result of

[RS16] to construct a projector in étale motivic cohomology and then use this to find an

integral decomposition of complex varieties that do not have transcendental cohomology

in degrees different from the dimension, extending the result given in [MNP13, Appendix

C] to the case of integral coefficients. In the second part, we give an étale analogue

of a result of Huybrechts in [Huy18, Lemma 1.1]. The last part is concerned to the

integral étale decomposition of smooth commutative groups schemes G over a base S, as

a consequence of the good properties of the family of functors associated to the change

of coefficients and the results given in [AEH15], [AHP16] and [BS13].

4.1 Étale degree map

Let X be a smooth projective variety over a field k. One defines the zero cycles of X,

denoted by Z0(X), as the free the abelian group generated by sums
∑

x nxx with x a
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4. Decomposition of integral étale motives

closed point of X and nx = 0 for all but finitely many x. The degree map is defined by

deg : Z0(X)→ Z∑
x

nxx 7→
∑
x

nx[k(x) : k],

see [Ful98, Defintion 1.4] for more details.

This map descends to the quotient CH0(X). By definition, it coincides with the push-

forward along the structural map p : X → Spec(k) as p∗ : CH0(X)→ CH0(Spec(k)) = Z.
We define the index of a variety X over k as follows

I(X) := gcd {[k(x) : k] | x ∈ X} .

If the field is algebraically closed then there exists a k-rational point and the map is

surjective. However if the base field is not algebraically closed the existence of a k-

rational point, or even of a zero cycle of degree 1, is not guaranteed. Let us remark that

the existence of a k-rational point implies the existence of a zero cycle of degree 1, but

the converse does not always hold. As it is shown in [CM04] for d = 2, 3, 4 there exist del

Pezzo surfaces of degree d over a field of cohomological dimension 1 which do not have a

zero cycle of degree 1. Or as is presented in [Col05, Theorem 5.1] a hypersurface whose

index I(X) = p, for a prime p ≥ 5.

We can reformulate this definition due to the existence of Gysin morphisms in DM(k,Z)
as is described in [Dég12a] and [Dég08]. With this formalism we obtain the pull-back of

the morphism p defined as p∗ : M(Spec(k))(d)[2d] = Z(d)[2d] → M(X) in the category

DMeff
Nis(k,Z). Applying the contravariant functor HomDMeff

Nis(k,Z)
(−,Z(d)[2d]) we re-obtain

the previous definition of push-forward in the case of Chow groups, [Dég12a, Proposition

4.9] . From this, we can extend the existence of Gysin morphisms for DMét(k,Z), giving
us an étale analogue of the degree map for étale Chow groups:

Definition 4.1.1. Let X be a smooth and projective scheme of dimension d over k,

where k is a field of characteristic exponent equal to p. Then we define the étale degree

map degét : CH
d
ét(X) → CH0

ét(Spec(k)) ≃ Z[1/p] as degét := p∗, where p is the structure

morphism p : X → Spec(k). We define the étale index of X as the greatest common

divisor of the subgroup degét(CH
d
ét(X)) ∩ Z, denoted by Iét(X).

Remark 4.1.2. 1. Let k be a field of characteristic exponent p. Due to functoriality

properties we have the following commutative diagram

HomDM(k,Z)(M(Y ),Z(d)[2d]) HomDM(k,Z)(Z(d)[2d],Z(d)[2d])

HomDMét(k,Z)(Mét(Y ),Z(d)[2d]) HomDMét(k,Z)(Z(d)[2d],Z(d)[2d])

p∗

p∗

where for CH0
τ (Spec(k)) with τ ∈ {Nis, ét}, there are isomorphisms

HomDM(k,Z)(Z(d)[2d],Z(d)[2d]) = H0,0
M (Spec(k)) ≃ Z

and

HomDMét(k,Z)(Z(d)[2d],Z(d)[2d]) = H0,0
M,ét(Spec(k)) ≃ Z[1/p]
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2. By the previous point, if char(k) = 0, K/k is a finite Galois extension and X → k

a smooth projective k-scheme then the morphism f : XK → X is a finite étale

morphism. As f is proper, there exists an induced map f∗ : CH
d
ét(XK)→ CHd

ét(X)

which fits into the following commutative diagram

CHd(XK) CHd(X)

Z Z

CHd
ét(XK) CHd

ét(X)

f∗

deg deg

[K:k]·

f∗

degét

degét

with [K : k] the degree of the extension.

3. It is possible to define the étale degree map for Lichtenbaum cohomology over a

field k = k̄. If X is a smooth and proper projective variety of dimension d, there

is a quasi-isomorphism ZX(n)Zar → Rπ∗ZX(n)ét for n ≥ d, see Theorem 2.2.11. If

this is not the case, we then can invert the characteristic exponent of k and use the

isomorphism between Lichtenbaum and étale Chow groups.

Since in the following part we will use spectral sequences, for the sake of legibility,

from the following we will denote the characteristic exponent of a field k by p̃. The letter

p is reserved for the bi-degrees of the spectral sequence.

Let f : X → Y be a projective morphism of smooth varieties of relative dimension

c. Again by the existence of Gysin morphisms in DMét(k,Z), we obtain a push-forward

map for étale motivic cohomology

f∗ : H
m+2c
M,ét (X,Z(n+ c))→ Hm

M,ét(Y,Z(n)).

Combining the existence of push-forward maps for étale motivic cohomology and the

functoriality of the Hochschild-Serre spectral sequence we obtain the following diagram

Hp(Gk, H
q+2c
L (Xk̄,Z[1/p̃](n+ c))) Hp+q+2c

L (X,Z[1/p̃](n+ c))

Hp(Gk, H
q
L(Yk̄,Z[1/p̃](n))) Hp+q

L (Y,Z[1/p̃](n))

f̃∗ f∗

where p̃ is the characteristic exponent of k and f̃ : Xk̄ → Yk̄. For the particular case of

the étale degree map we have the following:

Proposition 4.1.3. Let X be a smooth and projective of dimension d over a field k with

characteristic exponent p̃. Then the map degét : CHd
ét(X) → Z[1/p̃] factors through a

subgroup of CHd(Xk̄)[1/p̃]
Gk .

Proof. We will prove that the subgroup in question is given by the E0,2d
∞ -term of the

Hochschild-Serre spectral sequence associated to X. To see this, consider the structural

morphism f : X → k, then we have an induced morphism of E2-terms

Ep,q
2 := Hp(Gk, H

q
L(Xk̄,Z[1/p̃](d)))→ Hp(Gk, H

q−2d
L (Spec(k̄),Z[1/p̃](0)))
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4. Decomposition of integral étale motives

if we look at the cases when q − 2d ≤ 0, we get that

Hq−2dX
L (Spec(k̄),Z[1/p̃](0)) ≃

0 for q ̸= 2d

Z[1/p̃] for q = 2d.

This gives us Hp
L(k,Z[1/p̃](0)) ≃ Hp(Gk, H

0(k̄,Z[1/p̃](0))) and hence we conclude that

degét : CH
d
ét(X)→ Z[1/p̃] factors as

CHd
ét(X) E0,2d

∞

Z[1/p̃]
degét

d̃eg

where d̃eg is the composite map

E0,2d
∞ ↪→ E0,2d

2 = CHd(Xk̄)[1/p̃]
Gk ↪→ CHd(Xk̄)[1/p̃]

deg−−→ Z[1/p̃].

4.2 Lichtenbaum zero cycles

Varieties where Iét(X) = 1

The aim of this subsection is to construct examples where the étale degree map is sur-

jective but its classical counterpart is not. In order to achieve this, we start by giving

a lemma about the divisibility of the zero cycles of degree zero of a variety over an

algebraically closed field:

Lemma 4.2.1. Let X be a complete scheme over an algebraically closed field k of char-

acteristic p ≥ 0. Define A0(X) = ker {deg : CH0(X)→ Z}, then A0(X) is a divisible

group. If X is a smooth quasi-projective scheme and H2d−1
ét (X,Qℓ/Zℓ(d)) = 0 for ℓ ̸= p

then A0(X)
·ℓr−→ A0(X) is an isomorphism for all r ∈ N.

Proof. The first statement is known, see [Ful98, Example 1.6.6]. The argument goes as

follows: since A0(X) is generated by the image of the maps of the form:

f∗ : A0(C)→ A0(X)

[P ]− [Q] 7→ f∗([P ]− [Q])

where f : C → X a smooth projective curve with P , Q points in C. Since A0(C) ≃ J(C)
and the Jacobian of a smooth projective curve is divisible over an algebraically closed

field k, we obtain the desired result. We prove the second assertion. Notice that by the

assumption that k is an algebraically closed field, one gets that CHd(X) ≃ CHd
L(X) and

that CHd
L(X){ℓ} ≃ H2d−1

ét (X,Qℓ/Zℓ(d)). Therefore

CH0(X){ℓ} = CH2d(X){ℓ} ≃ H2d−1
ét (X,Qℓ/Zℓ(d)) = 0

and CH0(X){ℓ} ≃ A0(X){ℓ}, so one deduces that under the assumption, A0(X) is ℓr-

divisible for any r > 0.
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4.2. Lichtenbaum zero cycles

Remark 4.2.2. Notice that with the previous statement, if H2d−1
ét (X,Qℓ/Zℓ(d)) = 0 for all

ℓ different from the characteristic of k, we conclude that A0(X) is uniquely ℓr-divisible.

For X a smooth and projective variety over a field k of characteristic exponent equal

to p, we set

Aét
0 (X) := ker

{
degét : CH

d
ét(X)→ Z[1/p]

}
.

Notice that if k is algebraically closed then we have an isomorphismAét
0 (X) ≃ A0(X)[1/p].

Proposition 4.2.3. Let X be a geometrically integral smooth projective variety of di-

mension d ≥ 2 over a perfect field k with cd(k) ≤ 1 and p̃ the characteristic exponent

of k. Let k̄ be the algebraic closure of k and assume that H2d−1
ét (Xk̄,Qℓ/Zℓ(d)) = 0 for

every prime ℓ ̸= char(k), then degét : CH
d
ét(X)→ Z[1/p̃] is surjective.

Proof. First assume that char(k) = 0, then CHn
L(X) ≃ CHn

ét(X) for all n ∈ N. Using

the notation given in Lemma 2.2.16, if cd(k) ≤ 1 then E2,q
2 (n) = 0 for 1 < q < 2n, so

by the characterizations of the infinity terms given in Example 2.2.24 we obtain a short

exact sequence 0→ H1(G,H2n−1
L (Xk̄,Z(n)))→ CHn

L(X)→ CHn
L(Xk̄)

Gk → 0. For n = d

we have that CHd
L(X)→ CHd

L(Xk̄)
Gk is always surjective. Now consider the short exact

sequence

0→ A0(Xk̄)→ CHd
L(Xk̄)

degét−−−→ Z→ 0

where A0(Xk̄) := ker
{
degét : CH

d
ét(Xk̄)→ Z

}
, i.e. the numerically trivial zero cycles of

Xk̄, which induces a long exact sequence

0→ A0(Xk̄)
Gk → CHd

L(Xk̄)
Gk

d̃eg−−→ Z→ H1(Gk, A0(Xk̄))→ . . .

where the factor Z is obtained by using the fact that CH0(Spec(k̄))Gk ≃ CH0(Spec(k)).

By [RS16, Proposition 3.1(a)] we have that CHd
L(Xk̄){ℓ} ≃ H2d−1

ét (Xk̄,Qℓ/Zℓ(d)) so

A0(Xk̄)tors ≃ CHd
L(Xk̄)tors = 0 and then the group A0(Xk̄) is uniquely divisible, so

we conclude that H1(G,A0(Xk̄)) = 0. Consequently the map degét : CHd
L(X) →

CHd
L(Xk̄)

Gk → Z is surjective.

Now assume that char(k) = p > 0, in this case it is necessary to invert the charac-

teristic exponent p̃ of the field. For an abelian group A we put A[1/p̃] := A ⊗Z Z[1/p̃].
Setting q ̸= 2d, we have that Hq

L(Xk̄,Z(d)) is a extension of a divisible groups D by a

torsion groups T . Using the convention for tensor product, we notice that

0→ D → Hq
L(Xk̄,Z(d))[1/p]→ T [1/p]→ 0

where the last map kills the p-primary part of the torsion group T . Also the spectral

sequence holds for the complex of étale sheaves Z[1/p](n)ét, for the convergence we use the
same arguments with the exact triangle Z[1/p]X(d)ét → QX(d)ét →

⊕
ℓ ̸=char(k)

Qℓ/Zℓ(d)
+1−−→

therefore we have a similar short exact sequence 0 → H1(Gk, H
2n−1
L (Xk̄,Z[1/p̃](n))) →

CHn
L(X)[1/p̃]→ CHn

L(Xk̄)[1/p̃]
Gk → 0 and also 0→ A0(Xk̄)[1/p̃]→ CHd

L(Xk̄)[1/p̃]
degL−−−→

Z[1/p̃]→ 0, therefore we can conclude.
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4. Decomposition of integral étale motives

Theorem 4.2.4. There exists a smooth projective surface S over a field k of character-

istic zero and cohomological dimension ≤ 1, such that X does not admit a zero cycle of

degree one but Iét(X) = 1.

Proof. By [CM04, Théorème 1.1] and [CM04, Théorème 1.2] there exist del Pezzo surfaces

of degree 2, 3 and 4 over a field k of characteristic zero and cd(k) = 1 without zero cycles

of degree 1. Let S be one of such surfaces of degree d ∈ {2, 3, 4}. Since S is a del Pezzo

surface, thus for all field extension K/k the variety SK is a del Pezzo surface of degree

d as well, so in particular for K = k̄. As Sk̄ is del Pezzo, we have that H1(Sk̄,OSk̄
) =

H2(Sk̄,OSk̄
) = 0 therefore Alb(Sk̄) = 0. Since we are working over an algebraically closed

field, CH2(Sk̄) ≃ CH2
L(Sk̄) and then by Roitman’s theorem CH2

L(Sk̄)tors = A0(Sk̄)tors = 0

so the group A0(Sk̄) is uniquely divisible and consequently by Proposition 4.2.3 the map

CH2
L(S)→ CH2

L(Sk̄)
Gk → Z is surjective, while CH2(S)→ Z is not a surjective map.

Theorem 4.2.5. For each prime p ≥ 5 there exist a field F such that char(F ) = 0 with

cd(F ) = 1 and a smooth projective hypersurface X ⊂ Pp
F with Iét(X) = 1 but I(X) = p.

Proof. Let us consider n ≥ 2, a field k such that cd(k) ≤ 1 and a hypersurface X ⊂ Pn+1
k

that is geometrically integral. Consider the hypersurface Xk̄ ⊂ Pn+1
k̄

. By the Lefschetz

hyperplane theorem [Mil80, Theorem 7.1], we have

H2n−1
ét (Xk̄, µ

⊗n
ℓr ) ≃ H2n+1

ét (Pn+1
k̄

, µ⊗n+1
ℓr ) = 0

for all ℓ ̸= char(k), thus H2n−1
ét (Xk̄,Qℓ/Zℓ(n)) = 0 so by Proposition 4.2.3 the morphism

degét : CH
n
ét(X) → Z is surjective. Now if we fix a prime number p ≥ 5 then by [Col05,

Theorem 1.1] there exist a field F with cd(F ) = 1 and a smooth projective hypersurface

X ⊂ Pp
F with index equal to p.

Remark 4.2.6. Assume that k is a field with cd(k) ≤ 1. Consider S a smooth geometri-

cally integral k-surface with H1(S,OS) = 0 , therefore Alb(S) = 0 so again by Roitman’s

theorem CH2
L(Sk̄) is torsion free and uniquely divisible, so H1(G,A0(Sk̄)) = 0 and then

CH2
L(S) → Z is surjective. In general if A0(Xk̄) is a divisible group then CHd

L(X) → Z
is surjective.

Étale degree of Severi-Brauer varieties

In the following, we will see non-trivial examples where the étale degree map is not

surjective. For this we will study the Lichtenbaum cohomology groups of Severi-Brauer

varieties by giving an explicit characterization of the zero cycles of Lichtenbaum groups

of Severi-Brauer varieties.

Definition 4.2.7. A variety X over a field k is called a Severi-Brauer variety of dimen-

sion n if and only if Xk̄ ≃ Pn
k̄
. If X is a Severi-Brauer variety of dimension n and there

exists an algebraic extension k ⊂ k′ ⊂ k̄ such that Xk′ ≃ Pn
k′ we say that X splits over

k′.
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4.2. Lichtenbaum zero cycles

If Br(k) = 0, there exists a unique Severi-Brauer variety modulo isomorphisms to Pn
k .

Some cases of such fields are the following:

• a field k with cd(k) ≤ 1. In this category we can find fields such as algebraically

and separable closed fields, finite fields, extensions of transcendence degree 1 of an

algebraically closed field.

• If k is a field extension of Q containing all the roots of unity, see [Ser68, §7] and
[Ser02, II.§3, Proposition 9].

Lemma 4.2.8. Let X be a Severi-Brauer variety of dimension d over k which splits

over a field k′. Then for all 0 ≤ n ≤ d the group CHn(Xk′) ≃ CHn(Pd
k′) is a trivial

Gal(k′/k)-module.

Proof. First consider d = 1, then CH1(Pd
k′) ≃ Pic(Pd

k′) ≃ Z. Following the argument

given in [GS06, Proposition 5.4.4] the action of Gal(k′/k) over Pic(Pd
k′) is trivial as

the only non-trivial action would permute 1 with −1. The vector bundles of Pd
k′ with

Chern class 1 cannot permute with the ones in the class −1 due to the existence of global

sections for the first case. For the general cases when n ̸= 1 we consider the isomorphisms

CH1(Pd
k′) ≃ CHn(Pd

k′) given by the intersection with hyperplanes.

Remark 4.2.9. 1. We can similarly deduce that for all m,n ∈ N we have Pic(Pm
k̄
×

Pn
k̄
) ≃ Z[α] ⊕ Z[β], where α and β are the generators of Pic(Pm

k̄
) and Pic(Pn

k̄
)

respectively, is a trivial Gk-module.

2. Let k be a perfect field of characteristic exponent p̃ and let X be a Severi-Brauer

variety of dimension d over k. The fact Xk̄ ≃ Pd
k̄
simplifies several computations

for the Hochschild-Serre spectral sequence given in Lemma 2.2.16. For instance if

m ̸= 2n + 1, then for ℓ ̸= p̃ we can characterize the ℓ-primary torsion groups as

follows

Hm
L (Xk̄,Z(n)){ℓ} ≃ H

m−1
ét (Pd

k̄,Qℓ/Zℓ(n)) ≃

Qℓ/Zℓ if m is odd

0 otherwise.

Therefore for m even and m < 2n the group Hm
L (Xk̄,Z(n)) is uniquely divisible,

thus some of the E2(n)-terms associated to the Hochschild-Serre spectral sequence

of Hp+q
L (X,Z[1/p̃](n)) can be characterized in the following way

Ep,q
2 (n) =


Hq(Pk̄,Z(n))Gk if p = 0,

Hp(Gk, H
q−1
ét (Pk̄, (Q/Z)′(n))) if q is odd and p > 0,

0 if q is even and p > 0.

Now let us set n = 1 and let X be a Severi-Brauer variety over k of dimension d. If we

use the Hoschschild-Serre spectral sequence given in Lemma 2.2.16 and Lemma 4.2.8, we
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4. Decomposition of integral étale motives

recover a classical result of Lichtenbaum [GS06, Theorem 5.4.10] concerning the Picard

group of X and Brauer groups: there is an exact sequence

0→ Pic(X)→ Pic(Pd
k̄)

Gk
δ−→ Br(k)→ Br(k(X)), (4.1)

where the map δ sends 1 to the class of X in Br(k). For an arbitrary integer n, if we

apply the projective bundle formula to obtain

Hm
L (Pd

k̄,Z(n)) ≃
d⊕

i=0

Hm−2i
L (Spec(k̄),Z(n− i)).

After base change to the algebraic closure we have Hm
L (Pd

k̄
,Z(d)) ≃ Hm

M (Pd
k̄
,Z(d)) for all

m ∈ Z and in particular Hm−2i
L (Spec(k̄),Z(d − i)) = 0 if m − d > i. For instance if

m = 2d−1 then H2d−1
L (Pd

k̄
,Z(d)) ≃ KM

1 (k̄) or for m = 2d−2 we have H2d−2
L (Pd

k̄
,Z(d)) ≃

KM
2 (k̄) and hence for a Severi-Brauer variety and applying Lemma 2.2.16, we obtain that

E1,2d−1
2 (d) = H1(Gk, k̄

∗) = 0, by Hilbert 90, and E2,2d−1
2 (d) = H2(Gk, k̄

∗) = Br(k).

Theorem 4.2.10. Let X be a Severi-Brauer variety of dimension d over a field k. Then

the image of degét : CH
d
ét(X)→ Z is isomorphic to a subgroup of Pic(X) and in particular

Iét(X) ≥ ord([X]) where [X] is the Brauer class of X in Br(k). Moreover, if cd(k) ≤ 4

then this subgroup is isomorphic to Pic(X) i.e. Iét(X) = ord([X]).

Proof. Let X be a Severi-Brauer variety of dimension d, and consider the Hochschild-

Serre spectral sequence for Lichtenbaum cohomology in two cases: when n = 1 and

n = d. For n = 1 we recover (4.1), where some of the terms of the exact sequence

come from E0,2
2 (1) = Pic(Pd

k̄
)Gk and E2,1

2 (1) ≃ Br(k). For the case when n = d, and

using the computations from the previous discussion, we obtain the following terms:

E0,2d
2 (d) = CHd(Pd

k̄
)Gk and E2,2d−1

2 (d) ≃ Br(k). Notice that the isomorphisms

H2n
L (Pd

k̄,Z(n)) ≃
d⊕

i=0

H
2(n−i)
L (k̄,Z(n− i))

for n = 1 and d are induced by the map Pd
k̄
→ Spec(k̄). This gives us a commutative

diagram where the vertical arrows are given by the intersection with the hyperplane

section of Pd
k̄

Pic(Pd
k̄)

Gk Br(k)

CHd(Pd
k̄)

Gk Br(k)

δ

≃ ≃

d0,2d2 (d)

Since the vertical arrows are isomorphisms, E0,2d
3 (d) = ker(d0,2d2 (d)) ≃ ker(δ) ≃ Pic(X).

Now by Proposition 4.1.3, the map degét factors through E0,2d
∞ (d) which is a subgroup

of E0,2d
3 (d). The assumption about the cohomological dimension of k gives us that

E0,2d
∞ (d) ≃ E0,2d

3 (d). For further details about this computation see the next example

and proposition.
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Remark 4.2.11. Notice the following: Consider 1 ≤ n ≤ d and consider the Hochschild-

Serre spectral sequence associated to CHn
L(X). From the projective bundle formula

we have that H2n−1
L (Pd

k̄
) ≃ KM

1 (k̄), thus E0,2n
2 (n) ≃ Br(k) and consequently by the

commutative diagram

Pic(Pd
k̄)

Gk Br(k)

CHn(Pd
k̄)

Gk Br(k)

δ

≃ ≃

d0,2n2 (n)

the term E0,2n
∞ (n) is isomorphic to a subgroup of Pic(X).

Example 4.2.12. Let X be a Severi-Brauer variety of dimension d = 2 over a perfect

field k with Galois group Gk. Using the previous characterizations through the projective

bundle formula, we then describe the E2-terms associated to X in the following way:

Ep,0
2 = Hp(Gk, H

0
M (Spec(k̄),Z(2))), Ep,1

2 = Hp(Gk, H
1
M (Spec(k̄),Z(2))),

Ep,2
2 = Hp(Gk,K

M
2 (k̄)), Ep,3

2 = Hp(Gk,K
M
1 (k̄)),

Ep,4
2 = Hp(Gk,CH

2
L(P2

k̄)) and E
p,q
2 = 0 for q ≥ 5.

By Remark 4.2.9 (2), we have that Ep,0
2 = Ep,2

2 = 0 for p > 0, also E1,3
2 = 0 by Hilbert

90 theorem and E2,3
2 = Br(k), obtaining with this the following terms: for trivial reasons

E1,3
∞ = E2,2

∞ = E4,0
∞ = 0 and:

E3,1
∞ = H3(Gk, H

1
M (k̄,Z(2)))/im

{
KM

1 (k̄)Gk → H3(Gk, H
1
M (k̄,Z(2)))

}
The only remaining piece of the filtration of CH2

L(X) that we need to study is E0,4
∞ .

By definition we have that E0,4
3 = ker

{
CH2(P2

k̄
)Gk → Br(k)

}
and as E3,2

2 = 0 then

E0,4
4 = E0,4

3 . Finally, we observe that E4,1
4 = E4,1

3 = E4,1
2 and thus again by definition

E0,4
∞ = ker

{
E0,4

4 → E4,1
4

}
= ker

{
E0,4

4 → H4(Gk, H
1
M (Spec(k̄),Z(2)))

}
.

Therefore CH2
L(X) fits into a short exact sequence given by the filtration induced by the

Hochschild-Serre spectral sequence

0→ E3,1
∞ → CH2

L(X)→ E0,4
∞ → 0.

If we want to generalize this result for higher dimension, we need to impose a condition

on the cohomological dimension of k:

Proposition 4.2.13. Let X be a Severi-Brauer variety of dimension d over a perfect

field k of cohomological dimension cd(k) ≤ 4. Then the group CHL
0 (X) fits in an exact

sequence

0→ E3,2d−1
∞ → CHd

L(X)→ E0,2d
∞ → 0

with E0,2d
∞ = ker

{
CHd

ét(Pd
k̄
)Gk → Br(k)

}
. In particular Iét(X) = ord([X]).
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Proof. We follow the arguments given in example 4.2.12. Consider k andX as above, then

by hypothesis Xk̄ ≃ Pd
k̄
. By the projective bundle formula for Lichtenbaum cohomology

we have

Hm(Pd
k̄,Z(d)) ≃

d⊕
i=0

Hm−2i
L (Spec(k̄),Z(d− i)).

Notice that by divisibility arguments we have that Ep,2k
2 = 0 for 0 ≤ k ≤ d and p > 0.

Under the assumption about the cohomological dimension of k we have that Ep,q
2 = 0

for p > 4 and q < 2n, this results that E0,2d
∞ ≃ E0,2d

3 = ker
{
CHd(Pd

k̄
)Gk → H2(Gk, k̄

∗)
}

and the other Ep,q
2 -terms with p+ q = 2d that could not vanish are E1,2d−1

2 and E3,2d−3
2 ,

but H2d−1
L (Pd

k̄
,Z(d)) ≃ KM

1 (k̄) therefore E1,2d−1
2 = 0. On the other hand, the remaining

piece of the filtration, which is E3,2d−3
∞ = E3,2d−3

4 , is defined as

E3,2d−3
4 = E3,2d−3

3 /im
{
E0,2d−1

3 → E3,2d−3
3

}
= H3(Gk, H

2d−3
M (Pd

k̄,Z(d)))/im
{
KM

1 (k̄)Gk → H3(Gk, H
2d−3
M (Pd

k̄,Z(d)))
}
.

Using the recursive formula

Hm
L (Pn

k̄ ,Z(n)) ≃ H
m
L (k̄,Z(n))⊕Hm−2

L (Pn−1
k̄

,Z(n− 1)).

we obtain

H2d−3
M (Pd

k̄,Z(d)) ≃


0 if d = 1

H1
M (k̄,Z(2)) if d = 2

H1
M (k̄,Z(2))⊕KM

3 (k̄) if d ≥ 3.

Again as in Example 4.2.12, the group CHd
ét(X) fits into the following short exact

sequence

0→ E3,2d−3
∞ → CHd

ét(X)→ E0,2d
∞ → 0.

As mentioned in Proposition 4.1.3, the étale degree map factors through E0,2d
∞ . This

gives a commutative diagram

0 E3,2d−3
∞ CHd

ét(X) E0,2d
∞ 0

Z
degét

d̃eg

where d̃eg : E0,2d
∞ → Z is the composition of the maps

E0,2d
∞ ↪→ CHd(Pd

k̄)
Gk

≃−→ CHd(Pd
k̄)

deg−−→ Z.

As we may expect, the étale index of a product of Severi-Brauer is again bounded by

the order of the Brauer class in Br(k). For the sequel we denote X×n :=

n-times︷ ︸︸ ︷
X × . . .×X
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Lemma 4.2.14. Let X be a Severi-Brauer variety of dimension d over a field k. Then

there exists an exact sequence

0→ Pic(X ×X)→ Pic(Pd
k̄ × Pd

k̄)
Gk ≃ Z⊕ Z s−→ Br(k)→ Br(X ×X).

The map s sends (a, b) to (a + b) [X] ∈ Br(k), where [X] is the Brauer class associated

to X. In general for a product X×n we then obtain an exact sequence

0→ Pic(X×n)→ Pic(Pd
k̄ × . . .× Pd

k̄)
Gk ≃ Z⊕ . . .⊕ Z s−→ Br(k)→ Br(X×n)

with s(a1, . . . , an) =
∑n

i=1 ai [X] ∈ Br(k).

Proof. Let Y a smooth projective variety over k. Considering the Hochschild-Serre spec-

tral sequence

Ep,q
2 = Hp(Gk, H

q
L(Yk̄,Z(1))) =⇒ Hp+q

L (Y,Z(1))

we obtain the following exact sequence 0 → E2
∞ → E0,2

2 → E2,1
2 → E3

∞. If Y = X×n

then Yk̄ ≃ Pd
k̄
× . . .× Pd

k̄
and consequently Pic(Pd

k̄
× . . .× Pd

k̄
) ≃ Z⊕ . . .⊕ Z. By remark

4.2.9 we obtain an isomorphism Pic(Pd
k̄
× . . .×Pd

k̄
)Gk ≃ Z⊕ . . .⊕Z that gives us the exact

sequences of the statement.

Now let us see the easiest case for Y = X ×X. Consider the maps

X X ×X X∆
pr1

pr2

where ∆ : X → X×X is the diagonal embedding and pri : X×X → X is the projection

to the i-th component. Notice that the composition gives the identity on X. Notice that

the morphism pri : X ×X → X induces a morphism

pr∗i : H
m
L (X,Z(n))→ Hm

L (X ×X,Z(n)) and pr∗i : H
m
L (Pd

k̄,Z(n))→ Hm
L (Pd

k̄ × Pd
k̄,Z(n))

for every bi-degree (m,n). By functoriality properties of the Hochschild-Serre spectral

sequence we have a diagram

0 Pic(X) Z Br(k) Br(X)

0 Pic(X ×X) Z⊕ Z Br(k) Br(X ×X)

f f̃

s

where the vertical arrows are induced by pr∗i . The composition pri ◦ ∆ is the identity

on X, thus id∗ = ∆∗ ◦ pr∗i therefore we obtain that the maps f : Z → Z ⊕ Z and

f̃ : Br(k) → Br(k) are injective and then, the elements of the form (a, 0) and (0, b) are

mapped to a [X] and b [X] ∈ Br(k) respectively. For the general case we consider the

maps

X

n-times︷ ︸︸ ︷
X × . . .×X X∆̃

pr1
...

prn

where ∆̃ is the n-diagonal morphism and pri is the projection to the i-th component,

and conclude as in the case of X ×X.
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4. Decomposition of integral étale motives

Theorem 4.2.15. Let k be a field and let X be a Severi-Brauer variety over k of di-

mension d. Then Iét(X
×n) ≥ Iét(X) ≥ ord([X]).

Proof. Fix an integer n ≥ 1. By hypothesis we have that Xk̄ ≃ Pd
k̄
, hence (X×n)k̄ ≃

Pd
k̄
× . . . × Pd

k̄
. Consider the Hochschild-Serre spectral sequence for the Lichtenbaum

cohomology of X×n

Ep,q
2 = Hp(Gk, H

q
L((P

d
k̄)

×n,Z(nd))) =⇒ Hp+q
L (X×n,Z(nd)).

By the projective bundle formula for Lichtenbaum cohomology we have

H2nd−1
L

(
(Pd

k̄)
×n,Z(nd)

)
≃

n⊕
0≤a1,...an≤d

H
2nd−1−2

∑n
j=1 aj

L

Spec(k̄),Z

nd− n∑
j=1

aj

 .

If 2nd−1−2
∑d

j=1 aj > nd−
∑n

j=1 aj then H
2nd−1−2

∑n
j=1 aj

L (Spec(k̄),Z(nd−
∑n

j=1 aj)) =

0, this give us a vanishing condition for nd− 1 >
∑n

j=1 aj . As 0 ≤ aj ≤ d for all j, then

the only n-tuples (a1, . . . , an) which do not satisfy such condition are

ϵi = (d, . . . , d,

i-th pos.︷ ︸︸ ︷
d− 1 , d, . . . , d) for all i, and (d, . . . , d).

For such cases, if aj = d for all j then

H2nd−1−2nd
L (Spec(k̄),Z(nd− nd)) = H−1

L (Spec(k̄),Z(0)) = 0,

and if (a1, . . . , an) = ϵi, then

H
2nd−1−2

∑n
j=1 aj

L (Spec(k̄),Z(nd−
n∑

j=1

aj)) = H1(Spec(k̄),Z(1)) ≃ KM
1 (k̄) = k̄∗.

Hence H2nd−1
L ((Pd

k̄
)×n,Z(nd)) ≃

⊕n
i=1 k̄

∗ and consequently E2,2nd−1
2 ≃

⊕n
i=1Br(k). The

term E0,2nd
3 is isomorphic to ker

{
CHnd((Pd

k̄
)×n)Gk

g−→
⊕n

i=1Br(k)
}
,. Consider the ele-

ment

δ = c1

(
OPd

k̄
×...×Pd

k̄
(1)
)nd−1

=
∑

a1,...,an∈{d−1,d}
a1+...+an=nd−1

xa11 · · ·x
an
n

and let xi be the pull-back of the generator of Pic(Pd
k̄
) through the map pri : X

×n → X.

The intersection product with δ defines morphisms

Pic((Pd
k̄)

×n)
∪δ−→ CHnd((Pd

k̄)
×n) and H1

L((Pd
k̄)

×n),Z(1)) ∪δ−→ H2nd−1
L ((Pd

k̄)
×n),Z(nd)).

By the functoriality of the Hochschild-Serre spectral sequence we obtain a commutative

diagram

Pic((Pd
k̄)

×n)Gk Br(k)

CHnd((Pd
k̄)

×n)Gk

n⊕
i=1

Br(k),

s

g
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4.2. Lichtenbaum zero cycles

where the vertical arrows are induced by δ. According to Lemma 4.2.14 the map s

sends (α1, . . . , αn) ∈ Z ⊕ . . . ⊕ Z to
∑d

i=1 αi[X] ∈ Br(k). Note that the map xi 7→
xd1 · · ·x

d−1
i · · ·xdn induces an isomorphism CH1((Pd

k̄
)×n) ≃ CHnd−1((Pd

k̄
)×n) and that we

have an isomorphism

CHnd−1((Pd
k̄)

×n)⊗H1((Pd
k̄)

×n,Z(1)) ≃ H2nd−1
L ((Pd

k̄)
×n,Z(nd))

given by the map (α1, . . . , αn)⊗ β 7→ β(α1, . . . , αn) which is the cup product.

Therefore g maps a ∈ CHnd((Pd
k̄
)×n)Gk to (a[X], . . . , a[X]) ∈ Br(k) giving us that

ker(g) = ord([X])Z. Since E0,2nd
∞ ↪→ E0,2nd

3 = ker(g) and degét factors through E
0,2nd
∞ we

conclude the proof.

The natural question that arises is when this bound is reached. This is the case for

the product C ×C when C is a smooth, geometrically connected curve of genus 0 over a

field k such that Ck̄ ≃ P1
k̄
as the following proposition shows:

Proposition 4.2.16. Let k be a perfect field of characteristic p ≥ 0 with Galois group

Gk, and let C be a smooth, geometrically connected curve of genus 0 over the field k such

that Ck̄ ≃ P1
k̄
, then Iét(C × C) = ord([C]).

Proof. By our assumptions we have that Ck̄ ≃ P1
k̄
then (C×C)k̄ ≃ P1

k̄
×P1

k̄
. Considering

the Hochschild-Serre spectral sequence for Lichtenbaum cohomology

Ep,q
2 = Hp(Gk, H

q
L(P

1
k̄ × P1

k̄,Z(2))) =⇒ Hp+q
L (C × C,Z(2)).

Since Hm
L (P1

k̄
× P1

k̄
,Z(2)) ≃ Hm

M (P1
k̄
× P1

k̄
,Z(2)) for m ≤ 3, using again the projective

bundle formula for motivic cohomology we obtain that

H3
L(P1

k̄ × P1
k̄,Z(2)) ≃ H

3
M (P1

k̄,Z(2))⊕H
1
M (P1

k̄,Z(1)) ≃ K1(k̄)⊕K1(k̄)

H2
L(P1

k̄ × P1
k̄,Z(2)) ≃ H

2
M (P1

k̄,Z(2))⊕H
0
M (P1

k̄,Z(1)) ≃ K2(k̄)

H1
L(P1

k̄ × P1
k̄,Z(2)) ≃ H

1
M (P1

k̄,Z(2)) ≃ H
1
M (Spec(k̄),Z(2))

H0
L(P1

k̄ × P1
k̄,Z(2)) ≃ H

0
M (P1

k̄,Z(2)) ≃ H
0
M (Spec(k̄),Z(2)).

As we have mentioned before, H0
M (Spec(k̄),Z(2)) and K2(k̄) are uniquely divisible, hence

for p > 0 we have Ep,0
2 = Ep,2

2 = 0. Due to the compatibility of étale cohomology with

colimits, and in particular with direct sums, we obtain Ep,3
2 ≃ Hp(Gk, k̄

∗)⊕Hp(Gk, k̄
∗).

In particular, notice that again Hilbert’s theorem 90 gives us that E1,3
2 = 0 and that by

definition E2,3
2 ≃ Br(k)⊕ Br(k).

With this information about the E2-terms, we obtain E1,3
∞ = E2,2

∞ = E4,0
∞ = 0, E0,4

∞ =

ker
{
CH2(P1

k̄
× P1

k̄
)Gk → Br(k)⊕ Br(k)

}
and E3,1

∞ = E3,1
2 /im

{
E0,3

2 → E3,1
2

}
. Hence we

obtain a commutative diagram

0 E3,1
∞ CH2

ét(C × C) E0,4
∞ 0

Z
degét

d̃eg
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4. Decomposition of integral étale motives

where d̃eg : E0,4
∞ → Z is the composition of the following maps:

E0,4
∞ ↪→ CH2(P1

k̄ × P1
k̄)

Gk
≃−→ CH2(P1

k̄ × P1
k̄)

deg−−→ Z.

Let us give more information about the term E0,4
∞ . Mimicking the proof of Theorem

4.2.15, we have an isomorphism Pic(P1
k̄
× P1

k̄
) ≃ Z[x] ⊕ Z[y]. The Chern class δ =

c1(OP1
k̄
×P1

k̄
(1)) = x+ y induces morphisms

H1
L(P1

k̄ × P1
k̄,Z(1))

∪δ−→ H3
L(P1

k̄ × P1
k̄,Z(2)) and CH1(P1

k̄ × P1
k̄)

∪δ−→ CH2(P1
k̄ × P1

k̄).

Consider the isomorphism

CH1(P1
k̄ × P1

k̄)⊗H
1
L(P1

k̄ × P1
k̄,Z(1))

≃−→ H3
L(P1

k̄ × P1
k̄,Z(2))

(a, b)⊗ α 7→ α(a, b)

induced by the cup product. Hence the cup product with the diagonal induces a map

Br(k) → Br(k) ⊕ Br(k) defined by a 7→ (a, a) and then we can deduce that CH2(P1
k̄
×

P1
k̄
)Gk → Br(k) ⊕ Br(k) sends the 1 7→ ([C], [C]). Since E0,4

∞ ≃ ord([C])Z we conclude

that Iét(C × C) = ord([C]).

Remark 4.2.17. If k is a field with Br(k) = 0, then the Severi-Brauer varieties X over k

split and I(X) = Iét(X) = 1. Hence Theorem 4.2.15 shows that Br(k) is an obstruction

for the existence of an étale zero cycle of degree 1.

4.3 Decomposition of étale motives

We apply Theorems 4.2.4 and 4.2.5 to the decomposition of integral étale motives. Even

though by Theorem 4.2.15 there exists X such that Iét(X) ̸= 1, at least we have that

I(X) ≥ Iét(X) and in the particular case of Theorems 4.2.4 and 4.2.5 we obtain the

existence of integral projectors in the following sense: if there exists an element e ∈
CHd

ét(X) of étale degree 1 then we define

pét0 (X) = pr∗1(e) · pr∗2(X) and pét2d(X) = pr∗1(X) · pr∗2(e)

where pri : X×X → X is the projection to the i-th factor, this lead us to a decomposition

of the integral motive hét(X) as follows

hét(X) = h0ét(X)⊕ h+ét(X)⊕ h2dét (X)

where h0ét(X) = (X, pét0 (X), 0) and h2dét (X) = (X, pét2d(X), 0). These projectors do not

exist in the integral classical Chow groups and then we have an improvement in the

existence of integral projectors by changing from Chow to étale motivic cohomology as

expected.

Notice that in general this improvement is not always possible, for example, if C is a

projective curve over k without a zero cycle of degree 1, then the projectors p0(X) and
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4.3. Decomposition of étale motives

p2(C) do not exist and consequently there is no chance of obtaining an integral decom-

position in the classical nor the étale setting. This is a consequence of the isomorphism

CH1(X) ≃ CH1
ét(X) when X is smooth and projective over a field k of characteristic

zero.

Our goal is to study the existence of an integral decomposition of the motive hét(X).

Let us start by giving the definition of an integral decomposition in Chowét(k):

Definition 4.3.1. Let k be a field and let f : X → k be a smooth projective variety,

of dimension d. We say that hét(X) admits an integral Chow-Künneth decomposition in

Chowét(k) if:

• h(X) admits a rational Chow-Künneth decomposition, see [MNP13, Definition

6.1.1],

h(X)
≃−→

2d⊕
i=0

hi(X) ∈ Chow(k)Q,

and this map is induced by a morphism g : hét(X)→M = (Y, p) in Chowét(k).

• Consider the base change to the algebraic closure ḡ : hét(Xk̄) → Mk̄. For ev-

ery prime number ℓ ̸= char(k), the induced map ρℓ(ḡ) : Rf̄∗(Z/ℓ) → Mk̄/ℓ ∈
D(k̄ét,Z/ℓ) is an isomorphism and ρℓ(p̄) = p1 + . . .+ p2d with the following condi-

tions

pi ◦ pj =

pi if i = j

0 if i ̸= j,
ρ(ḡ)−1 ◦ pi(Mk̄/ℓ) = Rif̄∗(Z/ℓ) for all i.

This is nothing but a direct translation of the conservativity properties of the family

of functors associated to the change of coefficients in [CD16, Proposition 5.4.12] and

combining the results about conservativity [Ayo14b, Théorème 3.9] and continuity [CD16,

Proposition 6.3.7] applied to k̄ = lim←− ki where ki runs over the finite fields extensions of

k.

Proposition 4.3.2. Consider a field k of finite cohomological dimension and let hét(X) ∈
Chowét(k). Then hét(Xk̄) has an integral Chow-Künneth decomposition if and only if

there exists a field extension K/k such that hét(XK) has an integral Chow-Künneth de-

composition.

Proof. For simplicity, up to tensoring with Lefschetz motive, which is a direct summand

of a geometric motive, we may assume that M = (X, p). If Mk̄ has an integral Chow-

Künneth decomposition then the result is trivial.

Conversely, assume that there exists a Chow-Künneth decomposition for some field

extension K/k. For the rational part we invoke [Via17, Proposition 1.5]. For the torsion

part, let ℓ ̸= char(k) be a prime number and consider the field extension K/k. Consider

the morphism of s : Spec(K̄) → Spec(k̄). Let us assume that hét(XK) has a Chow-

Künneth decomposition, thus we have that ρℓ(ḡK) : Rf̄K(Z/ℓ)→ MK̄/ℓ with the above
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4. Decomposition of integral étale motives

properties for ρℓ(p̄K). The induced functor s∗ : D(k̄ét,Z/ℓ) → D(K̄ét,Z/ℓ) is an equiv-

alence of categories, hence ρℓ(ḡ) : Rf̄∗(Z/ℓ) → Mk̄/ℓ ∈ D(k̄ét,Z/ℓ) is an isomorphism,

thus we have the same results for ρℓ(p̄) and conclude the proof.

Étale decomposition of complex varieties

We present some applications of [RS16, Theorem 1.1] to the integral decomposition of

étale Chow motives. The simplest case is the one described in [MNP13, Appendix C]

for varieties without transcendental cohomology classes in degrees different from the

dimension.

Proposition 4.3.3. Fixing k = C, let X be a smooth projective complex variety of

dimension d such that the groups H i
B(X,Q) are algebraic for all i ̸= d. Then hét(X)

admits an integral Chow-Künneth decomposition in Chowét(C).

Proof. We will use the equivalence given in [RS16, Theorem 1.1] and [MNP13, Appendix

C]. Let us start by saying that according to [RS16, Theorem 1.1.a] the map Lichtenbaum

cycle class map

cm,n
L : Hm

L (X,Z(n))→ Hm
B (X,Z(n))

restricted to the torsion subgroup Hm
L (X,Z(n))tors → Hm

B (X,Z(n))tors is surjective.

With this in mind we consider that the groups H i
B(X,Z) are torsion free and then

Poincaré duality holds, i.e. the pairing

H i
B(X,Z)⊗H2d−i

B (X,Z)→ Z

(α, β)
∪−→ α ∪ β

is perfect. By [RS16, Theorem 1.1] we haveH2i
B (X,Q) is algebraic if and only ifH2i

B (X,Z)
is L-algebraic, thus there exists a set of cycles which are send to the generators

{
e2ij

}
1≤j≤b2i(X)

ofH i
B(X,Z) and notice that by Poincaré duality we have a dual basis

{
ê
2(d−i)
j

}
1≤j≤b2(d−i)(X)

for the dual of H2i
B (X,Z). Let us remark that we have the following

e2ij ∪ ê
2(d−i)
l =

0 if j ̸= l

1 if j = l

By hypothesis, there exists L-algebraic cycles
{
αi
j

}
1≤j≤b2i(X)

⊂ CHi
L(X) and

{
α̂d−i
l

}
1≤l≤b2(d−i)(X)

⊂ CHd−i
L (X)

such that

ciL(α
i
j) = e2ij , cd−i

L (α̂d−i
l ) = ê

2(d−i)
l
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4.3. Decomposition of étale motives

for all 1 ≤ j ≤ b2i(X) and 1 ≤ l ≤ b2(d−i)(X). Due to the compatibility of the cycle class

map with intersection products we have that

αi
j · α̂d−i

l =

0 if j ̸= l

1 if j = l.

Let us define the elements

p2i,j = αi
j × α̂d−i

j q2i,j = α̂d−i
j × αi

j

and note that p2i,j = qt2i,j . Even more, these are orthogonal projectors. For i < d, define

the projectors

p2i(X) :=
∑

1≤j≤b2i(X)

p2i,j p2(d−i)(X) :=
∑

1≤j≤b2i(X)

q2i,j

and for 2i − 1 ̸= d we put p2i−1(X) = 0. The remaining part should involve torsion

classes. As the groups H2j+1
B (X,Z) are torsion for all j ∈ N, the groups H2k+1

B (X×X,Z)
are torsion for all k ∈ N by the Künneth formula, this implies that all intermediates

Jacobians Jk+1(X × X) vanish for all k ∈ N. Combining [RS16, Theorem 1.1.b] and

[Ros23b, Proposition 3.1.5] we obtain an isomorphism CHk
L(X × X)tors

≃−→ H2k
B (X ×

X,Z(k))tors for all k ∈ N, so in particular for the degree k = d. Consider that we have

the diagonal element ∆ and let us denote the torsion free part as ∆tf =
∑2d

j=0 pi(X) and

consider ∆tors = ∆−∆tf. As this element ∆tors ∈ H2d
B (X ×X,Z), then it has a unique

preimage in CHd
L(X×X)tors, which is denoted as ∆tors again, thus we have the following

decomposition of the diagonal

∆ =
2d∑
j=0

pi(X) + ∆tors.

Since the isomorphism CHk
L(X ×X)tors

≃−→ H2k
B (X ×X,Z)tors is an isomorphism for all

k, the projectors in H2k
B (X ×X,Z)tors can be lifted to CHk

L(X ×X).

Example 4.3.4. 1. Let X be a smooth complex complete intersection in projective

space. As all the cohomology groups are algebraic and torsion free, we have a

decomposition of étale integral motives as follows:

hét(X) ≃ 1⊕ L⊕ . . .⊕ hdét(X)⊕ . . .⊕ Ld.

where L is the Lefschetz motive and hdét(X) = (X, pétd (X), 0) with

pétd (X) = ∆−
2d∑

i=0,2i ̸=d

péti (X).

2. Let X be a smooth K3 surface. For such X we have the following isomorphisms

H0(X,Z) ≃ H4(X,Z) ≃ Z, H1(X,Z) ≃ H3(X,Z) = 0, H2(X,Z) ≃ Z22
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4. Decomposition of integral étale motives

and Pic(X) = Zρ(X), with ρ(X) the Picard rank of X and 0 ≤ ρ(X) ≤ 20. Since

the cohomology is torsion free, we apply Proposition 4.3.3 to obtain a decomposition

of the étale motive

hét(X) ≃ h0ét(X)⊕ h2ét(X)⊕ h4ét(X).

3. Let S be an Enriques surface. As H i(OS) = 0 for i = 1, 2 we have an isomor-

phism Pic(S) → H2
B(S,Z) ≃ Z10 ⊕ Z/2 while the other cohomology groups are

characterized by

H0(S,Z) = H4(S,Z) = Z, H1(S,Z) = 0 and H3(S,Z) = Z/2.

as we can lift the torsion free part, we have to care about the torsion part of the

cohomology. By Künneth formula, we have that H5
B(S × S,Z) ≃ (Z/2)⊕23 and

H3
B(S×S,Z) ≃ Z/2⊕Z/2 thus we conclude that the intermediate Jacobians J2(S×

S) = 0 and J3(S×S) = 0 vanish. Combining [RS16, Proposition 5.1] and Corollary

3.1.6, we have an isomorphism CH2
L(S × S)tors

≃−→ H4
B(S × S,Z(2))tors which acts

as the identity on the torsion part.

4. For a Calabi-Yau threefold X (for example a quintic threefold) X the Betti numbers

are h1(X) = h5(X) = 0 and h0(X) = h2(X) = h4(X) = h6(X) = 1, thus we obtain

a decomposition of the motive hét(X) as

hét(X) ≃ 1⊕ L⊕ h3ét(X)⊕ L2 ⊕ L3.

Commutative group schemes

Let S be a noetherian finite dimensional scheme and letG/S a smooth commutative group

scheme of finite type over S. We start with the definition of the 1-motive associated to

G/S, for that we define the étale sheaf induced by G/S:

Definition 4.3.5. Let G/S be the étale sheaf of abelian groups on SmS defined by G:

G/S(U) = HomSmS
(U,G)

for U ∈ SmS. We say that M1(G/S) is the 1-motive associated to G/S and is defined as

M1(G/S) := Σ∞M eff
1 (G/S) ∈ DAét(S,Z),

where M eff
1 (G/S) is the effective étale motive in DAét

eff(S,Z) induced by G/S.

According to [AHP16, Theorem 3.7], we have a decomposition of the relative motive

MS(G) in the motivic category DMét(S,Q) in the following way

MS(G)
≃−→

kd(G/S)⊕
n≥0

SymnM1(G/S)

⊗M(π0(G/S)),

where M1(G/S) is the 1-motive induced by the étale sheaf represented by G/S ⊗Q and

kd(G/S) := max {2gs + rs | s ∈ S} is the Kimura dimension (gs is the abelian rank of

Gs and rs is the torus rank).
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4.3. Decomposition of étale motives

Definition 4.3.6. The order of π0(G/S), denoted by o(π0(G/S)) is defined as the least

common multiple of the order of all the elements of the groups π0(Gs̄/s̄), with s̄ geometric

point of S.

The aim of this subsection is to see if we can lift this isomorphism to integral coeffi-

cients in DMét(S,Z). If we want to construct such a morphism in DMét(S,Z), we have to
define the integral analogue of the symmetric algebra. For this we consider the homotopy

fixed points of a group action, where the group is finite.

Sn-actions on DMét(S,Z)

In this subsection we will present some aspects about the action of a finite group G in the

category DMét(S,Z) of integral étale motives. In this context, an ∞-category will be an

(∞, 1)-category in the sense of Lurie [Lur09]. An ∞-functor between two ∞-categories

C and D is simply a map F : C → D of simplicial sets.

Consider the group of permutations of n elementsSn and let BSn be the category of a

single object and morphism the elements of the groups Sn. Define the homotopy fixed

points and homotopy orbits of Sn of a motive MS
ét(X) as follows: we know that

DMét(S,Z) carries a structure of an ∞-category. Let DMét(S,Z)BSn be the category

of étale motives with a Sn−action, i.e. ∞-functors BSn → DMét(S,Z). We obtain

adjunctions

( )triv : DMét(S,Z)⇆ DMét(S,Z)BSn : ( )hSn := holimBSn ,

hocolimBSn =: ( )hSn : DMét(S,Z)BSn ⇆ DMét(S,Z) : ( )triv

where ( )triv represents the trivial action. Let DMét(S,Z)⊗ be the underlying symmetric

monoidal category of DMét(S,Z). We can give an explicit description of (−)hSn for some

motives by using the monoidal structure of DMét(S,Z)⊗. Notice that for X ∈ Smk we

have an action of Sn given by

σ∗ : X
n → Xn

(x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n))

where σ ∈ Sn and Xn :=

n-times︷ ︸︸ ︷
X × . . .×X. For such X and n, consider the functor

Fn
X : BSn → SmS

∗ 7→ Xn

(∗ σ−→ ∗) 7→ (Xn σ∗−→ Xn)

We can consider the motive MS
ét(X)⊗n as an ∞-functor from the category SmS to

DMét(S,Z)⊗. Therefore we obtain the homotopy fixed points of MS
ét(X)⊗n as(

MS
ét(X)⊗n

)hSn ≃ holimBSnM
S
ét ◦ Fn

X(−). (4.2)

If we Q-linearize the homotopy fixed points, then we have the following result relating

them with the usual fixed points of a group action:
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4. Decomposition of integral étale motives

Lemma 4.3.7. Let MS(X
n) ≃MS(X)⊗n ∈ DMét(S,Q), then(
MS(X)⊗n

)hSn ≃
(
MS(X)⊗n

)Sn

and equals the image of the projector 1
n!

∑
σ∈Sn

σ∗MS(X)⊗n.

Proof. This holds in greater generality, see [CD19, p. 3.3.21]. If V is a Q-linear stable

model category and G is a finite group that acts on an object E ∈ V we define

EhG := holimBGE,

and define EG ∈ Ho(V) as the image of

p(x) =
1

|G|
∑
g∈G

g.x.

Then the morphism EG ∼−→ EhG induced by the inclusion EG → E is an isomorphism in

Ho(V).

Remark 4.3.8. 1. The same argument works in a category DMét(S,Λ) if n is invertible

in the ring Λ. A very important remark is that the proof of the previous lemma

relies in the commutative structure of the Q-linear vector space. If we consider the

homotopy fixed points using an anti-commutative structure (and n is invertible),

then we obtain that EhSn equals the image of the projector 1
n!

∑
σ∈Sn

sgn(σ)σ∗E.

2. In the same way, we define the homotopy orbits of Sn as the co-invariants of

MS
ét(X)⊗n, i.e. in the following way (MS

ét(X)⊗n)hSn = hocolimBSnM
S
ét(X)⊗n. By

the definition of homotopy colimit, we have a map MS
ét(X)⊗n → (MS

ét(X)⊗n)hSn .

3. Let DMh(S, Ẑℓ) be localizing subcategory of DMh(S,Z) generated by the objects of

the form M/ℓ = Z/ℓ⊗RM . According to [CD16, p. 7.2.10] we have an adjunction

ρ̂∗ℓ : DMh(S,Z)⇆ DMh(S, Ẑℓ) : ρ̂ℓ∗, where ρ̂
∗
ℓ is called the ℓ-adic realization functor,

which by [CD16, Theorem 7.2.11] it is compatible with the six functors formalism

of Grothendieck, and preserves colimits. Let D(Sét,Zℓ) be the derived category of

ℓ-adic sheaves as in [Eke90]. Consider the equivalence of categories given in [CD16,

Proposition 7.2.21], then DMh(S, Ẑℓ) ≃ D(Sét,Zℓ), so we define the realization

functor ρℓ : DMh(S,Z)→ D(Sét,Zℓ). This functor again is compatible with the six

functors formalism of Grothendieck, and preserves colimits (as it is the composition

of a left adjoint with an ), thus we have that

ρℓ
(
(MS

ét(X)⊗n)hSn

)
≃
(
(ρℓM

S
ét(X))⊗n

)
hSn

.

For the sake of completeness, we will present a reminder about the theory of 1-motives,

with such goal in mind, we present some of the main results of [Org04]. Consider a

commutative group scheme G over a perfect field k. According to [Org04, Lemme 3.1.1],

the sheaf G is an étale presheaf which admits transfers. Notice that as a presheaf G

is homotopy invariant i.e. G(U)
∼−→ G(U × A1

k) is an isomorphism for any k-smooth
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4.3. Decomposition of étale motives

variety U , for a proof see [Org04, Lemme 3.3.1]. As we have a morphism of a complex of

sheaves CSus
∗ Ztr(G)→ CSus

∗ (G) and a quasi-isomorphism G→ CSus
∗ (G), finally we obtain

a morphism in DMét(k,Z) between the motives Mét(G)
αA−−→M1(G).

If we want to work over a noetherian base S, and simplify the condition about étale

sheaves with transfers, we work with the category DAét(S,Z). Consider a commuta-

tive group scheme G over a noetherian base S and let G/S the associated abelian sheaf

and M1(G/S) the 1-motive described in Definition 4.3.5. As we have a morphism of a

complex of pre-sheaves aG/S : ZHomS(·, G) → G/S, then after sheafification we obtain

a morphism αeff
G/S : MS,eff

ét (G) → M eff
1 (G/S) ∈ DAét

eff(S,Z). Finally we obtain a mor-

phism in DAét(S,Z) between the motives αG/S = Σ∞αeff
G/S : MS

ét(G)
αA−−→ M1(G/S) in

DAét(S,Z).
As the functorMS

ét is monoidal and commutative, we obtain an isomorphismMS
ét(G×

G) ≃MS
ét(G)⊗MS

ét(G). For the general case we denote MS
ét(G)

⊗n :=MS
ét(

n-times︷ ︸︸ ︷
G× . . .×G).

For a fixed n and using the n-diagonal morphism δnG/S : G→ G× . . .×G, we obtain an

induced morphism of motives

MS
ét(G)

(δn
G/S

)∗
−−−−−→MS

ét(G)
⊗n.

Together with the map αG we construct a map

ϕn :MS
ét(G)

(δn
G/S

)∗
−−−−−→MS

ét(G)
⊗n

α⊗n
G/S−−−→M1(G/S)

⊗n.

Notice that MS
ét(G)

⊗n admits an action of the permutation group Sn, and this action

leaves invariant the diagonal map δnG/S . Therefore we can apply the functor of homotopy

fixed points hSn. With this, we have a commutative diagram

MS
ét(G) MS

ét(G)
⊗n M1(G/S)

⊗n

(
MS

ét(G)
⊗n
)hSn

(
M1(G/S)

⊗n
)hSn .

(δn
G/S

)∗

(δn
G/S

)∗

α⊗n
G/S

α⊗n
G/S

We denote the composite map α⊗n
G/S ◦ (δ

n
G/S)∗ :M

S
ét(G)→ (M1(G/S)

⊗n)
hSn as ϕnG/S .

Definition 4.3.9. Let G be a smooth commutative group scheme over a noetherian

scheme S. Then we define the following:

ϕG/S :=
⊕
i≥0

ϕiG/S :MS
ét(G)→

⊕
i≥0

(
M1(G/S)

⊗i
)hSi

in the category DMét(S,Z). We define the weak symmetric algebra of M1(G) as

wSym(M1(G)) :=
⊕
i≥0

(
M1(G)

⊗i
)hSi .
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4. Decomposition of integral étale motives

Let us give some information about the realization of the morphism ϕG/S presented in

Definition 4.3.9, in the categoryD(Sét,Z/ℓn) for a prime number ℓ invertible in S and n ∈
N. We have a realization ρZ/ℓn : DMh(S,Z)→ D(Sét,Z/ℓn) and denote M1(G/S, ℓ

n) :=

ρZ/ℓn(M1(G/S)), which is a complex in degree −1. We use H1(G/S,Z/ℓn) for the

homology of M1(G/S, ℓ
n) is degree 1 and H1(G/S,Z/ℓn) for the cohomology of the

complex M1(G/S, ℓ
n) in degree −1. If the base is S = Spec(k) with k̄ = k then

D(két,Z/ℓ) ≃ (Fℓ − v.s.)Z, where (Fℓ − v.s.)Z is the category of Z-graded Fℓ-vector

spaces, H1(G/S,Z/ℓn) is a finite dimensional Fℓ-vector space.

Lemma 4.3.10. Let ℓ be a prime number invertible in S, n ∈ N and consider the

realization functor ρZ/ℓn : DMét(S,Z)→ D(Sét,Z/ℓn). Then:

1. if ϕ : DMét(S,Z) → DMét(S,Z) is an additive functor and ϕ̄ : D(Sét,Z/ℓn) →
D(Sét,Z/ℓn) its associated counterpart with finite coefficients, then the functor

ρZ/ℓn commutes with ϕ, in the sense that ϕ̄ = ρZ/ℓn ◦ ϕ.

2. If S = Spec(k) for some field k, then ρZ/ℓn(M1(G)) = H1(G,Z/ℓn) ≃ G[ℓn][1]1.

3. There exists N >> 0 such that (M1(G/S)
⊗m)hSm = 0 for all m > N .

Proof. 1. Recall that the functor is defined as ρZ/ℓn(M) = Z/ℓn ⊗L M = coker(M
·ℓn−−→

M), therefore we have a canonical isomorphism ρZ/ℓn(M) ≃ Cone(ℓn · idM ). Let ϕ be an

additive functor, then in the commutative diagram

ϕ(M) ϕ(M) ϕ̄
(
ρZ/ℓn(M)

) +1−−→

ϕ(M) ϕ(M) ρZ/ℓn(ϕ(M))
+1−−→

ϕ(ℓn·idM )

ℓn·idϕ(M)

the right vertical arrow is an isomorphism as well.

2. Let us consider the 1-motive M1(G) = G which is concentrated in degree 1. Recall

that the ℓ-adic realization of M1(G), integral or rational, is given by the Tate module

Tℓ(G) = lim←−n
G[ℓn], thus ρZ/ℓn(M1(G)) ≃ G[ℓn][1] by the transition maps.

3. Using Lemma 4.3.7, we see that the weak symmetric algebra of M1(G/S) with

rational coefficients coincides with the symmetric algebra of M1(G/S). In particular

Symn(M1(G/S)) = 0 in DMét(k,Q) if n > kd(G/S) by [AHP16, Proposition 4.1]. The

only argument that remains to be given is for the torsion part. For this, consider a

prime number ℓ invertible in S. Notice that wSym(H1(G/S,Z/ℓ)) is anticommuta-

tive by the cup-product, see [Fu15, Proposition 7.4.10], therefore according to the first

point in Remark 4.3.8, if n and ℓ are coprime, we have that (H1(G/S,Z/ℓ)⊗n)hSn ≃∧nH1(G/S,Z/ℓ), and in particular vanishes if n > kd(G/S). If n and ℓ are not coprime,

then we proceed as follows: we can reduce to the case where S = Spec(k) for an alge-

braically closed field k. Then by the point 2, we have that M1(G/S, ℓ
n) is a complex in

1Here the first square bracket is associated to the ℓn-torsion of G and the second is associated to the
translation functor.
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4.3. Decomposition of étale motives

degree 1 whose first homology group H1(G/S,Z/ℓ) is a finite dimensional vector space

over Fℓ. Let rℓ be the dimension of H1(G/S,Z/ℓ) and let {e1, . . . , erℓ} be a base, then if

we consider m > rℓ, then there will always be at least one ei repeated in ei1 ⊗ . . .⊗ eim
as a base of H1(G/S,Z/ℓ)⊗m. By the alternating action of Sm in H1(G/S,Z/ℓ)⊗m and

the description in this particular case of the homotopy fixed points given in (4.2), we

conclude that (H1(G/S,Z/ℓ)⊗m)hSm = 0 for all m > rℓ.

Since the family of functors associated to the change of coefficient is conservative,

then one concludes that N = maxℓ{kd(G), rℓ}.

Remark 4.3.11. 1. Consider S = Spec(k) with k an algebraically closed field, then for

a commutative algebraic group G/k. By an argument given in [BS13, Proposition

4.1] involving reduction to the assumption that G is semi-abelian, we may assume

that G is the extension of an abelian variety A by a torus T , we have a short exact

sequence 1 → T [ℓn] → G[ℓn] → A[ℓn] → 1 obtaining that G[ℓn] ≃ (Z/ℓn)2g+r,

where g is the dimension of A and r is the rank of T .

2. Under the same assumptions for S, thank to the second point of Lemma 4.3.10

we get that ρZ/ℓ(M1(G)) ∈ D(két,Z/ℓ) ≃ (Fℓ − v.s.)Z, where (Fℓ − v.s.)Z is the

category of Z-graded Fℓ-vector spaces, is a finite dimensional Fℓ-vector space. Since

the dimension of the vector space depends only on G and not on ℓ, we can say that

the N described in point 3 of Lemma 4.3.10 corresponds to the Kimura dimension

kd(G).

Lemma 4.3.12. Let G be a smooth group scheme over a field k = k̄ and let ℓ be a

prime number different from char(k). Then we have an isomorphism in D(két,Z/ℓ) ≃
(Fℓ − e.v.)Z given by

ρZ/ℓ(Mét(G)) =Mét(G)/ℓ
∼−→

kd(G)⊕
i=0

(
i∧
H1(G,Z/ℓ)

)
[i]

Proof. First, we have that M1(G) is a geometric motive and is Z-additive, therefore we

have M1(G ×H) ≃ M1(G) ⊕M1(H). Let us recall that the weak symmetric algebra of

M1(G/S) is defined as

wSym(M1(G)) :=

kd(G)⊕
i=0

(
M1(G)

⊗i
)hSi .

By point 1 of Lemma 4.3.10, ρZ/ℓ commutes with any additive functor, so we get

ρZ/ℓ

kd(G)⊕
i=0

(
M1(G)

⊗i
)hSi

 ≃ kd(G)⊕
i=0

ρZ/ℓ

((
M1(G)

⊗i
)hSi

)
.

Notice that by definition ρZ/ℓ(M) =M ⊗L Z/ℓ. Since −⊗L Z/ℓ commutes with colimits

and is monoidal, see [Ayo14b, Definition 5.6], we obtain an isomorphism

ρZ/ℓ

((
M1(G)

⊗i
)hSi

)
≃
(
ρZ/ℓ

(
M1(G)

⊗i
))hSi

≃
(
H1(G,Z/ℓ)⊗i

)hSi .
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4. Decomposition of integral étale motives

So in terms of realization we obtain ρZ/ℓ(wSym(M1(G))) ≃ wSym(H1(G,Z/ℓ)). No-
tice that if ℓ > kd(G), then we get immediately (using the proof in point 3 of Lemma

4.3.10) that wSym(H1(G,Z/ℓ)) ≃
⊕kd(G)

i=0

(∧iH1(G,Z/ℓ)
)
[i].

In the following part we will prove that for a prime ℓ ̸= char(k) and G, H two

smooth commutative algebraic groups we have an isomorphism wSym(H1(G×H,Z/ℓ)) ≃
wSym(H1(G,Z/ℓ))⊗wSym(H1(H,Z/ℓ)), which will allow us to conclude when ℓ ≤ kd(G).

By definition

wSym(M1(G×H)) ≃ wSym(M1(G)⊕M1(H))

=

kd(G×H)⊕
i=0

(
(M1(G)⊕M1(H))⊗i

)hSi

Since the homotopy fixed points of a motive M are defined as a homotopy limit, they

commute with finite sums. For simplicity we write M :=M1(G) and N :=M1(H), thus

we have (M⊗n ⊕N⊗n)
hSn ≃ (M⊗n)

hSn ⊕ (N⊗n)
hSn . Moreover we have a canonical

morphism

holimBSn(M ⊕N)⊗n → (M ⊕N)⊗n ≃
n⊕

i=0

(ni)⊕
M⊗i ⊗N⊗n−i,

where the last isomorphism is obtained by the distributive and commutative proper-

ties. Since ρZ/ℓ commutes with additive functors and limits and is monoidal, we obtain

ρZ/ℓ

(
((M ⊕N)⊗n)

hSn

)
≃ ((M/ℓ⊕N/ℓ)⊗n)

hSn , passing to the realization ρZ/ℓ and due

to the anticommutative structure given by the cup-product, if n and ℓ are coprimes, then

(
(M/ℓ⊕N/ℓ)⊗n

)hSn ≃
n∧
(M/ℓ⊕N/ℓ).

Notice that the functor BSi × BSj → B(Si × Sj) is an equivalence of categories,

then

((M/ℓ)⊗i ⊗ (N/ℓ)⊗n−i)h(Si×Sn−i) ≃ holimBSi×BSn−i(M/ℓ)⊗i ⊗ (N/ℓ)⊗n−i

≃ ((M/ℓ)⊗i)hSi ⊗ ((N/ℓ)⊗n−i)hSn−i .

Due to the anticommutativity of the weak algebra, we have an isomorphism of Fℓ-

vector spaces

holimBSn

(ni)-times︷ ︸︸ ︷
M⊗i ⊗Nn−i ⊕ . . .⊕M⊗i ⊗Nn−i

(ni)⊕
M⊗i ⊗N⊗n−i

holimB(Si×Sn−i)M
⊗i ⊗Nn−i

≃

Therefore, we have an isomorphism of graded (anticommutative) algebras wSym(H1(G×
H,Z/ℓ)) ≃ wSym(H1(G,Z/ℓ))⊗ wSym(H1(H,Z/ℓ)).
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So the final argument is that the addition map m : G×G→ G induces a morphism

of graded algebras over the field Fℓ

m∗ : wSym(M1(G)/ℓ)→ wSym(M1(G)/ℓ)⊗ wSym(M1(G)/ℓ)

x 7→ x⊗ 1 + 1⊗ x+
∑

xi ⊗ yi.

By a lemma about the fundamental structure of such algebras, [Mil86, Lemma 15.2], we

have that wSym(M1(G)/ℓ) ≃
⊕kd(G)

i=0

(∧iH1(G,Z/ℓ)
)
[i].

By using the properties of conservative functors associated to change of coefficients

described in [CD16, Proposition 5.4.12], which for the sake of completeness, we recall

such proposition:

Proposition 4.3.13 ([CD16, Proposition 5.4.12]). Let P be the set of prime integers

and S be a noetherian scheme of finite dimension. If R is a flat ring over Z, then the

family of change of coefficients functors:

ρQ : DMh(S,R)→ DMh(S,R⊗Q)

ρZ/p : DMh(S,R)→ DMh(S,R/p), p ∈ P

is conservative.

With this proposition, we get an improvement of the results obtained in [AEH15],

getting the following theorem:

Theorem 4.3.14. Let k be an algebraically closed field and G/k a connected commutative

group scheme. Then the morphism

ϕG :Mét(G)→
kd(G)⊕
i=0

(
M1(G)

⊗i
)hSi

is an isomorphism in DMét(k,Z).

Proof. We split the proof into two steps: first we start by looking at the functor ρQ. Ap-

plying Lemma 4.3.7, we obtain that the induced morphism by ρQ(ϕG) is the morphism

φG given in [AHP16, Definition 3.1] and [AHP16, Theorem 3.3], with S = k, which

is shown to be an isomorphism in DMét(k,Q). The reason behind this is the follow-

ing: ρQ(Mét(G)) = M(G) and by Lemma 4.3.7 we have ρQ

(⊕kd(G)
i=0

(
M1(G)

⊗i
)hSi

)
≃⊕kd(G)

i=0 Symn(M1(G)) and finally, by construction of the morphisms ϕG and φG of Def-

inition 4.3.9 and [AHP16, Definition 3.1], and the uniqueness part of [AHP16, Theorem

2.8] we get that ρQ(ϕG) = φG.

For the second step, we fix a prime number ℓ ̸= char(k). Let us consider the functor

ρZ/ℓ and let us compute the elements of

ρZ/ℓ(ϕG) : ρZ/ℓ (Mét(G))→ ρZ/ℓ

kd(G)⊕
i=0

(
M1(G)

⊗i
)hSi

 .
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4. Decomposition of integral étale motives

Here we are assuming that the realization functor is covariant (sending the elements

to homological instead of cohomological objects). By [BS13, Theorem 4.1] we have that

H∗
ét(G,Z/ℓ) ≃

kd(G)⊕
i=0

(
i∧
H1(G,Z/ℓ)

)
[i],

where ℓ is a prime number not equal to char(k). Consider the duality operator Dk on

D(két,Z/ℓ), let f : G → k be the structure morphism and d the dimension of G. By

definition we have

Dk

(
ρZ/ℓ (Mét(G))

)
≃ Dkf!f

!(Z/ℓ)k
≃ f∗DG(Z/ℓ)G
≃ (Mét(G)ℓ)(d)[2d].

Here the first isomorphism ρZ/ℓ (Mét(G)) ≃ f!f !(Z/ℓ)k is because the realization functor

commutes with the six functors formalism, see [CD16, A.1.16], while the second are third

are given by [ILO14, Exposé XVII]

As we stated in Lemma 4.3.12, one has that ρZ/ℓ(Mét(G)) ≃
⊕kd(G)

i=0

(∧iH1(G,Z/ℓ)
)
[i]

for all ℓ ̸= char(k), whose dual is isomorphic to
⊕kd(G)

i=0

(∧iH1(G,Z/ℓ)
)
[i], thus by con-

servative properties given in [CD16, Proposition 5.4.12], we conclude that

Mét(G)
≃−→

kd(G)⊕
i=0

(
M1(G)

⊗i
)hSi ∈ DMét(k,Z).

Theorem 4.3.15. Let S be a good enough scheme in the sense of Definition 2.1.4, and let

G be a connected commutative scheme over S. Then the morphism ϕG given in Definition

4.3.9 is an isomorphism.

Proof. Consider a morphism of good enough schemes f : T → S, we have that f∗M1(G/S) ≃
M1(GT /T ) ∈ DMét(T,Z). As we have done before, we will split the proof in two: first

for rational coefficients DMét(T,Q) and then for DMét(T,Z/ℓ) for all prime integer ℓ

invertible in T . According to [AHP16, Proposition 2.7], one has that f∗M1(G/S)Q ≃
M1(GT /T )Q ∈ DMét(T,Q). On the other hand, having shown that ρZ/ℓn(M1(G/S)) ≃
G/S[ℓn][−1], and that by the universal property of fibre product we have f∗G/S ≃
GT /T . Invoking [Ayo14b, Théorème 6.6(A)] one gets for a quasi-projective morphism

f∗ ◦ ρZ/ℓr ≃ ρZ/ℓr ◦ f∗, thus we get the following isomorphism

ρZ/ℓn(f
∗M1(G/S)) ≃ f∗

(
ρZ/ℓn(M1(G/S))

)
≃ f∗

(
G/S[ℓn][1]

)
≃ f∗

(
G/S

)
[ℓn][1]

≃ GT /T [ℓ
n][1] = ρZ/ℓn(M1(GT /T )).
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As ℓ is any prime number, then we conclude that f∗M1(G/S) ≃M1(GT /T ) ∈ DMét(T,Z).
In particular we obtain that ϕG is natural over the base. By the previous fact, we get

that the morphism ϕGT
:= f∗(ϕG) acts as follows:

MS
ét(G)

ϕG−−→
kd(G/S)⊕

i=0

(
M1(G/S)

⊗i
)hSi ⇝MT

ét(GT )
ϕGT−−−→

kd(GT /T )⊕
i=0

(
M1(GT /T )

⊗i
)hSi .

In this way, for any geometric point is̄ : s̄ → S we have an isomorphism of mo-

tives i∗s̄M1(G/S) ≃ M1(Gs̄/s̄), and then by the previous remark, i∗s̄(ϕG) = ϕGs̄ for any

geometric point s̄ of S, the map

M s̄
ét(Gs̄)

ϕGs̄−−→
kd(Gs̄/s̄)⊕

i=0

(
M1(Gs̄/s̄)

⊗i
)hSi

turns out to be an isomorphism by Theorem 4.3.14. By Lemma 2.1.5, the family of

functors i∗s̄ is conservative, therefore ϕG/S is an isomorphism.

Remark 4.3.16. The direct factor hn(G/S) = ϕ−1
G/S

(
(M1(G/S)

⊗n)
hSn

)
of MS

ét(G) is

characterized as follows: for m ∈ Z that is equal to 1 modulo o(π0(G/S)) (see Definition

4.3.6), the mapMét([m]) operates on hn(G/S) asm
n·id. This is a consequence of [AHP16,

Lemma 2.6(1)]. If we tensorize by Q, we recover the following fact about decomposition

of the motivic cohomology groups of G: Suppose that S is a good enough scheme. Then

for every bi-degree (m,n) ∈ Z2 the relative étale cohomology groups of G in degrees

(m,n) with integral coefficients decomposes as

Hm
M,ét(G/S,Q(n)) ≃

kd(G/S)⊕
j=0

Hm,j
M,ét(G/S,Q(n)),

where

Hm,j
M,ét(G/S,Q(n)) =

{
Z ∈ Hm

M,ét(G/S,Q(n)) | [n]∗Z = njZ, ∀n ≡ 1(mod o(π0(G/S)))
}
.

As is stated in [AHP16, Theorem 3.9].

Let A be an abelian variety over an algebraically closed field k, the question which

arises naturally is if the isomorphism Mét(A) →
⊕kd(A)

i=0

(
M1(A)

⊗i
)hSi comes from an

morphism in Chowét(k).

Proposition 4.3.17. Let A be an abelian variety of dimension g over a field k = k̄, then

the following are equivalent:

1. the isomorphism Mét(A) →
⊕2g

i=0

(
M1(A)

⊗i
)hSi is a morphism in the category

Chowét(k).

2. The exist an element h ∈ Chowét(k) such that h ≃M1(A) ∈ Chowét(k).
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4. Decomposition of integral étale motives

Proof. Let A be an abelian variety over k of dimension g, and consider the map

Mét(A)→
2g⊕
i=0

(
M1(A)

⊗i
)hSi ∈ DMét(k,Z).

Let us remark that hét(A) ≃ Mét(A) by the full embedding of Chowét(k)
op ↪→

DMét(k,Z). If we assume (1), then (2) follows immediately since M1(A) is a direct

factor of the finite sum
⊕2g

i=0

(
M1(A)

⊗i
)hSi ∈ Chowét(k).

If we assume (2), there exists an element h ∈ Chowét(k) such that h ≃ M1(A), then

h⊗i ∈ Chowét(k) for all i ≥ 0. We will assume that h = (X, p) for some X ∈ SmProjk

and p ∈ Corr0ét(X,X). In other words, p ∈ EndChowét(k)(h(X)) ≃ EndDMét(k,Z)(M(X)),

therefore p⊗n ∈ EndChowét(k)(h(X)⊗n), thus we define (p⊗n)hSn as the image of p⊗n in

EndDMét(k,Z)((M(X)⊗n)hSn), we then define the motive

(
h⊗n

)hSn := (

n-times︷ ︸︸ ︷
X × . . .×X, (p⊗n)hSn) ∈ Chowét(k)

Then we see that morphism Mét(A)→
⊕2g

i=0

(
M1(A)

⊗i
)hSi is in Chowét(k).

Changing the coefficients in the proof of Theorem 4.3.14, we obtain that hét(A) admits

an integral Chow-Künneth decomposition in Chowét(k) if the 1-motive M1(A) belongs

to the category Chowét(k).

In order to give an example of an integral étale motive with Chow-Künneth decompo-

sition, we should recall some results coming from the classical theory of abelian varieties.

We have the following results:

Lemma 4.3.18. Let C be a smooth projective curve over an algebraically closed field k,

and let J(C) be the Jacobian of C, then:

1. the motive Mét(C) can be decomposed as Mét(C) ≃ 1⊕ h1ét(C)⊕ 1(1)[2].

2. If C ′ is another smooth projective curve over k, then

HomChowét(k)

(
h1ét(C), h

1
ét(C

′)
)
≃ HomAV

(
J(C), J(C ′)

)
[1/p].

3. The motives h1ét(C) and M1(J(C)) are isomorphic.

Proof. 1. It is a classic result, for instance see [MNP13, Theorem 2.7.2] and the fully-

faithful functor of 1-motives to the étale cohomology with integral coefficients.

2. This is a consequence of the isomorphism

HomChow(k)Z

(
h1(C), h1(C ′)

)
[1/p] ≃ HomChowét(k)

(
h1ét(C), h

1
ét(C

′)
)

and [MNP13, Theorem 2.7.2.(b)].

3. The argument is the same as in [AEH15, Lemma 4.3.2]. Consider the 1-motive

Mét(C) which is cohomologically concentrated in degrees 0 and -1 as is given in [Voe00,

Theorem 3.4.2]. The cohomology in degree 0 is PicC/k[1/p] while in degree 0 is equal to

Gm[1/p]. Since ZC(1)ét ∼ Gm[1/p]ét[−1] we obtain that 1⊕1(1)[2] ≃ Z[1/p]⊕Gm[1/p][1].

The remaining object is given by the kernel of the map PicC/k[1/p] → Z[1/p], which is

isomorphic to M1(J(C)).
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4.3. Decomposition of étale motives

Theorem 4.3.19. Let k = k̄ be a field and consider Ci/k a projective smooth curve, for

i ∈ {1, . . . , n}. Then the variety J(C1) × . . . × J(Cn) admits an integral Chow-Künneth

decomposition.

Proof. By point 3. of Lemma 4.3.18, one has an isomorphism h1ét(Ci) ≃M1(J(Ci)). Since

M1 is an additive functor, we obtain M1(J(C1)× . . .× J(Cn)) ≃
⊕n

i=1M1(J(Ci)), thus

M1(J(C1)×. . .×J(Cn)) ≃
⊕n

i=1 h
1
ét(Ci) in Chowét(k). ThereforeM1(J(C1)×. . .×J(Cn))

is isomorphic to the motive h =
(∐

iCi,
∑n

i=1 p
1
ét(Ci)

)
∈ Chowét(k)

Recall that thanks to [Kün93] we have Chow-Künneth decomposition with rational

coefficients for abelian varieties and that by [AEH15, Proposition 4.3.3] the h1(A) part

is isomorphic to M1(A)Q in Chow(k)Q. Given the part h1(A) of the motive h(A) and

its associated projector p1(A), then we can characterize the existence of an integral étale

Chow-Künneth decomposition in the following way:

Theorem 4.3.20. Let a field k = k̄ and consider A an abelian variety of dimension g

over k. Then the following statements are equivalents:

1. hét(A) admits an integral étale Chow-Künneth decomposition.

2. The projector associated to h1(A) ∈ Chow(k)Q can be lifted to a projector in

CHg
ét(A×A).

Proof. 1. (=⇒) 2. is immediate. If we assume 2. then there exists an element p ∈
CHg

ét(A × A) such that h1(A) = (A, pQ) ∈ Chow(k)Q where pQ is the image of p in

CHg
ét(A×A)Q. Then the realization of the motive h = (A, p) coincides with h1(A) if we

change to rational coefficients. If ℓ ̸= char(k), then H1(Aét,Zℓ) = Tℓ(A) is Zℓ-torsion free

since A[ℓn] ≃ (Z/ℓn)2g, so we have an injection H1(Aét,Zℓ) ↪→ Tℓ(A)⊗Qℓ = H1(Aét,Qℓ),

therefore pQ acts as the identity on H1(Aét,Zℓ).

Consider the realization pℓn ∈ CHg
ét(A×A,Z/ℓ

n), where the last group is isomorphic

to H2g
ét (A × A,Z/ℓ

n). As Qℓ is a flat Zℓ-module and lim←−n∈N is a right exact functor we

have that pℓn acts as the identity over H1(Aét,Z/ℓn).

Theorem 4.3.21. Let k = k̄ be a field and let A be a principally polarized variety. Then

there exists a Chow-Künneth decomposition of A.

Proof. Consider an abelian variety A/k, then we have that

EndChowét(k)(hét(A)) ≃ EndDMét(k)(Mét(A)).

Since M1(A) is a direct factor of Mét(A), then it defines an endomorphism p of Mét(A),

as the endomorphism of the motive hét(A) is defined as CHg
ét(A×A) where g = dim(A).

Since p ∈ CHg
ét(A × A) such that p2 = p, thus we define the motive h1(A) := (A, p, 0).

The functor Chowét(k)
op ↪→ DMét(k), sends h1(A) 7→ M1(A), therefore, as M1(A) ∈

Chowét(k) we conclude that hét(A) admits a Chow-Künneth decomposition.
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4. Decomposition of integral étale motives

Theorem 4.3.22. Let X be a smooth projective variety of dimension d over an alge-

braically closed field k. If Pic0(X) is a principally polarized variety, then there exists a

decomposition of the motive hét(X) as

hét(X) = h0ét(X)⊕ h1ét(X)⊕ h+ét(X)⊕ h2d−1
ét (X)⊕ h2dét (X)

Proof. An abelian variety A admits a principal polarization if and only Â admits one.

So if A = Pic0(X) then the Picard variety is principally polarized if and only if AlbX(k)

admits one. Let k be an algebraically closed field and let A be a principally polarized

abelian variety λ : A
∼−→ Â induced by a symmetric ample line bundle. We have an

injection

HomAV (A, Â) ↪→ HomZℓ
(Tℓ(A), Tℓ(Â))

Therefore λ induce an isomorphism of Tate modules. Since we have the following iso-

morphisms

H2g−1
ét (A,Zℓ) ≃ Tℓ(A)

∼−→ Tℓ(Â) ≃ H2g−1
ét (Â,Zℓ)

considering the isomorphism H1
ét(A,Zℓ) ≃ H2g−1

ét (Â,Zℓ). Since λ is induced by a cycle

(thanks to the integral étale Fourier transform). Now take an hyperplane H in X and

intersect it with itself g − 1 times, then it induces a Lefschetz operator

Lg−1
A : H1

ét(X,Zℓ)→ H2g−1
ét (X,Zℓ)

which turns out to be an injection. We will see that there exists and étale cycle in

CHg
ét(A×A) whose multiple by an integer equals the Lefschetz operator. We recall that

there exists isomorphisms

Hom0
SmProjk

(X,Pic0(X)) ≃ HomAV (AlbX(k),Pic0(X))

≃ CH1
ét(X ×X)/CH1

≡(X ×X)

where CH1
≡(X × X) = pr∗1(CH

1
ét(X)) ⊕ pr∗2(CH

1
ét(X)) and Hom0

SmProjk
stands for the

pointed morphisms of smooth projective varieties over k. Thus the polarization λ :

AlbX(k) → Pic0(X) is induced by a divisor in X × X. Now consider the abelian va-

riety A = Pic0(X), then there is a morphism λ−1 : Pic0(X) → AlbX(k), thanks to

the existence of a Fourier transform with integral coefficients which is motivic. The cy-

cle c1(PPic0(X))
2g−1/(2g − 1)! ∈ CH2g−1

ét (Pic0(X) × AlbX(k)) where g = dim(Pic0(X))

induce an isomorphism H1(X,Z/ℓn) → H2d−1(X,Z/ℓn), since we have isomorphisms

f : Pic0(X)[ℓn] ≃ H1(X,Z/ℓn) and g : AlbX(k)[ℓr] ≃ H2d−1(X,Z/ℓn) which are induced

by divisors in CH1
ét(X×X), see [Mil80, Chap. III, Cor. 4.18], thus we associate the cycle

λ−1 := g ◦
c1(PPic0(X))

2g−1

(2g − 1)!
◦ f−1 ∈ CHd

ét(X ×X).

By arguments given in [MNP13, Lemma 6.2.3], one has that Lg−1
X defines an isogeny

α : Pic0(X) → AlbX(k) and another one β : AlbX(k) → Pic0(X) such that α ◦ β =
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4.3. Decomposition of étale motives

m·idAlbX(k) and β◦α = m·idPic0(X) for somem ∈ N. If we take the isogeny λ : AlbX(k)→
Pic0(X) and λ−1 : Pic0(X)→ AlbX(k), with this, we have that λ−1 ◦ λ = idAlbX(k) and

λ◦λ−1 = idPic0(X), since α◦β is induced by an algebraic cycle and also λ−1◦λ (but in this

specific case it is induced by an étale cycle). Therefore m is invertible in CHg
ét(X ×X),

thus we obtain the existence of the projector pét1 (X) and pét2d−1(X).

PD-structure

Let X be a quasi-projective scheme over a field k. For an integer d ≥ 1, we define the d-th

symmetric power Symd(X) of X (over k) as the quotient of Xd by the natural actions of

the symmetric group Sd (this quotient always exists for a finite group, see [DG70, II, §,
n◦6 ]). This quotient is functorial in the sense that for a morphism f : X → Y between

quasi-projective k-schemes we have that Symd(f) : Symd(X)→ Symd(Y ).

Lemma 4.3.23 ([MP10, Lemma 1.1]). Let X be a quasi-projective scheme over k.

1. The quotient morphism qd,X : Xd → Symd(X) is again quasi-projective.

2. Assume that X is equidimensional of dimension n > 0. Then Xd and Symd(X) are

equidimensional of dimension dn, and there exists a dense open subset in Symd(X)

over which qd,X is étale of degree d!.

3. Assume that X is equi-dimensional and that there exist non-negatives integers

d1, . . . , dr such that d1 + . . .+ dr = d. Then the natural map

αd1,...,dr : Symd1(X)× . . .× Symdr(X)→ Symd(X)

is finite, and there is a dense open subset in Symd(X) over which it is étale of

degree
d!

d1! · . . . · dr!
. For d, e ≥ 1, the natural map Symd(Syme(X))→ Symde(X) is

finite, and there is a dense open subset in Symde(X) over which it is étale of degree
(de)!

d!(e!)d
.

Let us consider a quasi-projective scheme X over a field k. Consider the d-diagonal

embedding X
δd−→ Xd and the composite map pd : X

δd−→ Xd qd,X−−−→ Symd(X). Since δd

and qd,X are proper morphism, then we have a push-forward map

(pd)∗ : CH
ét
m(X)→ CHét

dm(Symd(X))

In the same way we define the Pontryagin product as

CHét
∗ (Sym

d1(X))× CHét
∗ (Sym

d2(X))→ CHét
∗ (Sym

d1+d2(X))

using the formula x∗y := (αd1,d2)∗(x×y). For a cycle ξ =
∑r

j=1 njZj with Zj ∈ CHét
∗ (X),

we define

γd(ξ) :=
∑

d1+...+dr=d

nd11 · · ·n
dr
r · γd1(Z1) ∗ . . . ∗ γdr(Zr)

For d = 0 let us set for an element a ∈ CHét
∗ (X) the γ0(a) = [Spec(k)] ∈ CHét

0 (X), which

is the unit element in CHét
0 (X).
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4. Decomposition of integral étale motives

Lemma 4.3.24. Let X be a quasi-projective scheme over k, then:

1. If Z ∈ CHét
>0(X) and d1, . . . , dt are non-negative integers with d1+ . . .+dt = d then

γd1(Z) ∗ · · · ∗ γdt(Z) =
d!

d1!d2! · · · dt!
· γd(Z).

2. Let ξ1, . . . , ξt be cycles in CHét
>0(X), and let ξ =

∑t
i=1 ξi. Then

γd(ξ) =
∑

d1+...+dt=d

γd1(ξ1) ∗ · · · ∗ γdt(ξt).

3. If i : V ↪→ X is a closed immersion and let ξ be a cycle in CHét
m(V ), then

γd(i∗ξ) = Symd(i)∗(γd(ξ)) ∈ CHét
dm(Symd(X))

4. Let V ⊂ X be a closed subscheme, equidimensional of positive dimension. Then

γd([V ]ét) = [Symd(V )]ét

where we view Symd(V ) as a closed subscheme of Symd(X) and [Symd(V )]ét repre-

sents the image of the algebraic cycle [Symd(V )] ∈ CHdm(Symd(X)) in CHét
dm(Symd(X))

Proof. (1) is a direct consequence of [MP10, Lemma 1.1.(iii)], [CD19, Proposition 11.2.5]

and the existence of a functor DM(X,Z)→ DMét(X,Z). The same argument works for

(2) and the compatibility of the comparison map.

(3) This again is obtained by the definition of Pontryagin product using push-forward.

The push-forward via the map Symd(i) : Symd(V ) → Symd(X) respects Pontryagin

products.

(4) Is a direct consequence of [MP10, Lemma 1.3.4] and the compatibility of the

comparison map with proper push-forwards.

Lemma 4.3.25. Let f : X → Y be a proper morphism of quasi-projective k-schemes.

Then for all x ∈ CHét
>0(X) and all d ≥ 0 one has

Symd(f)∗(γd(x)) = γd(f∗x)

Proof. This follows from [MP10, Proposition 1.5] and [CD19, Proposition 11.2.5].

Let k be a field and let (Mn)n∈N be a commutative graded monoid in the category of

quasi-projective schemes. Recalling such definition: Mn is a quasi-projective k-scheme

for all n ≥ 0, and that we have product maps µm,n : Mm ×Mn → Mm+n which satisfy

commutativity and associativity. Assuming that there exists a k-rational point e ∈M0(k)

which is a unit for these products and that the maps µn,m are proper morphism, then

we can define the Pontryagin product on the ring

CHét
∗ (M•) :=

⊕
n∈N

CHét
∗ (Mn)

by the formula x ∗ y := (µm,n)∗(x× y) for x ∈ CHét
∗ (Mm) and y ∈ CHét

∗ (Mn). Something

that we ought to notice is that the iteration of the multiplication map µn,...,n :Md
n →Mdn

factors through the proper map pd : Symd(Mn)→Mdn. We set p0 to be the map e→M0.
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4.3. Decomposition of étale motives

Theorem 4.3.26. For a commutative graded monoid (Mn)n∈N with identity and with

proper product morphisms, the maps

γMd : CHét
>0(Mn)→ CHét

∗ (Mdn)

given by x 7→ (pd)∗γd(x) extends uniquely to a PD-structure {γMd }d≥0 on the ideal

CHét
>0(M•) ⊂ CHét

∗ (M•). The PD-structure is functorial with respect to (fn :Mn → Nn)

which are proper for all n ∈ N.

Proof. Let x =
∑

n∈N xn, xn ∈ CHét
>0(M•) and xn is non-zero for finitely many n. Thus

we define

γMd (x) :=
∑

d1+d2+...=d

γMd1 (x1) ∗ γ
M
d2 (x2) ∗ . . .

Clearly by definition we get γMd (λx) = λdγMd (x), and by Lemma 4.3.24 we have

γMd (x+ y) =
∑

d1+d2=d

γMd1 (x) ∗ γ
M
d2 (y)

for all x, y ∈ CHét
>0(M•) and for all d ≥ 0. As this formula holds, for x ∈ CHét

>0(X) and

d, e ≥ 0 we obtain the following relation

γMd (x) ∗ γMe (x) =

(
d+ e

d

)
· γMd+e(x).

For the other property

γMd
(
γMe (x)

)
=

(de)!

d!(e!)d
γMde (x)

we apply [CD19, Proposition 11.2.5], the functorial properties of the topology change

ρ : Xét → XZar and [MP10, Lemma 1.1.(iii)].

If X is a smooth quasi-projective k-scheme then the previous construction gives a

PD-structure on the graded ideal
⊕

i≥0CH
ét
>0(Sym

i(X)). If Mn = ∅ for all n > 0 (like

for example an abelian variety and the multiplication) we obtain the following version

(which is ungraded):

Corollary 4.3.27. Let M be a commutative monoid with identity in the category of

quasi-projective k-schemes, such that the product morphism µ : M ×M → M is proper.

Let pd : Symd(M) → M be the morphism induced by the iterated multiplication map

Md →M . Then the maps γMd : CHét
>0(M)→ CHét

∗ (M) defined by x 7→ (pd)∗γd(x) define

a PD-structure on the ideal CHét
>0(M) ⊂ CHét

∗ (M).

Corollary 4.3.28. Let k = k̄ be a field. Let A be an abelian variety over k, then there is

a canonical PD-structure, with respect to the Pontryagin product, on the augmentation

ideal in CHét
∗ (A), generated by CHét

>0(A) together with the 0-cycles of degree 0.

Proof. Let I ⊂ CHét
0 (A) be the ideal of 0-cycles of degree 0 on A. After noticing that

over algebraically closed fields we have an isomorphism CH0(A) ≃ CHL
0 (A), then the

existence of the PD structure is due to [MP10, Corollary 1.8].
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4. Decomposition of integral étale motives

Etale Fourier transform

Let A be an abelian variety over a field k. The Fourier transform on the level of Chow

groups is the groups homomorphism

FA : CH(A)Q → CH(Â)Q

induced by the correspondence ch(PA) ∈ CH(A× Â)Q, where ch(PA) is the Chern char-

acter of PA. One has the Fourier transform on the level of étale cohomology:

FA : H•
ét(Aks ,Qℓ(•))→ H•

ét(Âks ,Qℓ(•))

which preserves integral cohomology classes and induces, for each i with 0 ≤ i ≤ 2g, an

isomorphism

FA : H i
ét(Aks ,Zℓ(n))→ H2g−i

ét (Âks ,Zℓ(n+ g − i)),

and if k = C, then ch(PA) induces, for each 0 ≤ i ≤ 2g, an isomorphism of Hodge

structures

FA : H i(A,Z)→ H2g−i(Â,Z(g − i)).

Definition 4.3.29. Let A be an abelian variety over k and let Fét : CHét(A)→ CHét(Â)

be a group homomorphism. We call Fét a weak integral étale Fourier transform if the

following diagram commutes

CHét(A) CHét(Â)

CHét(A)Q CHét(Â)Q.

Fét

FA

We call a weak integral Fourier transform Fét algebraic if it is induced by a cycle Γ ∈
CHét(A × Â) that satisfies ΓQ = ch(PA). A group homomorphism Fét : CHét(A) →
CHét(Â) is an integral étale Fourier transform up to homology if the following diagram

commutes:

CHét(A) CHét(Â)

2g⊕
i=0

H2i
ét (Âks ,Zℓ(i))

2g⊕
i=0

H2i
ét (Âks ,Zℓ(i)).

Fét

FA

Finally an integral étale Fourier transform up to homology Fét is called algebraic if it

is induced by a cycle Γ ∈ CHét(A × Â) such that cl(Γ) = ch(PA) ∈
⊕4g

i=0H
2i
ét ((A ×

Â)ks ,Zℓ(i)). Similarly, a Zℓ-module homomorphism Fét,ℓ : CHét(A)Zℓ
→ CHét(Â)Zℓ

is

called an ℓ-adic integral Fourier transform up to homology if Fét,ℓ is compatible with

FA and the ℓ-adic cycle class map. If such homomorphism exists and is induced by a

cycle Γℓ ∈ CHét(A× Â)Zℓ
and cl(Γℓ) = ch(PA) is called an algebraic ℓ-adic integral étale

Fourier transform.
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4.3. Decomposition of étale motives

If Fét : CHét(A)→ CHét(Â) is a weak integral étale Fourier transform, then Fét is an

integral étale Fourier transform up to homology. If k = C, then Fét : CHét(A)→ CHét(Â)

is an integral étale Fourier transform up to homology if and only if Fét is compatible with

the Fourier transform FA : H•
B(A,Z)→ H•

B(Â,Z) on Betti cohomology.

Lemma 4.3.30. Let A be a complex abelian variety and let Fét : CHét(A) → CHét(Â)

be an integral étale Fourier transform up to homology.

1. For each i ∈ N the integral étale Hodge conjecture for degree 2i classes on A implies

the integral étale Hodge conjecture for degree 2(g − i) classes on Â.

2. If Fét is algebraic, then FA induces a group isomorphism Z2i
ét (A) → Z

2(g−i)
ét (Â),

where Z2i
ét (A) is the image of the Lichtenbaum cycle class map.

Proof. Consider the following diagram

CHi
ét(A) CHét(A) CHét(Â) CHg−i

ét (Â)

H2i
B (A,Z) H•

B(A,Z) H•
B(Â,Z) H

2(g−i)
B (Â,Z)

ciét

Fét

cg−i
ét

The composition of the bottom line H2i
B (A,Z) → H2(g−i)B (Â,Z) is an isomorphism of

Hodge structures, then we obtain a commutative diagram

CHi
ét(A) CHg−i

ét (Â)

Hdg2i(A,Z) Hdg2(g−i)(Â,Z)

ciét cg−i
ét

≃

Thus the surjectivity of ciét implies the surjectivity of cg−i
ét . Arguing in the same way for

Â and ̂̂A we obtain the desired equivalence.

For an abelian variety A over k we define the following cycles:

ℓ = c1(PA) ∈ CH1
ét(A× Â)Q, ℓ̂ = c1(PÂ) ∈ CH1

ét(Â×A)Q

RA =
c1(PA)2g−1

(2g − 1)!
∈ CH2g−1

ét (A× Â)Q, RÂ
=
c1(PÂ)

2g−1

(2g − 1)!
∈ CH2g−1

ét (Â×A)Q.

For a ∈ CHét(A)Q we define E(a) ∈ CHét(A)Q as the exponential element using ∗-
operation:

E(a) :=
∑
n≥0

a∗n

n!
∈ CHét(A)Q.

The following theorem is the same one as [BG23, Theorem 3.8] but changing Chow

groups to its étale analogue,

Theorem 4.3.31. Let A be an abelian variety over k of dimension g. The following

statements are equivalent:
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4. Decomposition of integral étale motives

1. The one cycle
c1(PA)2g−1

(2g − 1)!
∈ CHét(A× Â)Q lifts to CH2g−1

ét (A× Â).

2. The abelian variety A admits an étale motivic weak integral Fourier transform.

3. The abelian variety A× Â admits an étale motivic weak integral Fourier transform.

If we assume that A carries a symmetric ample line bundle which induces a principal

polarization λ : A
∼−→ Â, therefore the previous statements are equivalent to the following

(4) The two cycle
c1(PA)2g−2

(2g − 2)!
∈ CHét(A× Â)Q lifts to CH2g−2

ét (A× Â).

(5) Denoting as Θ ∈ CH1
ét(A)Q to the symmetric ample class attached to λ, then the

one cycle ΓΘ =
Θg−1

(g − 1)!
∈ CHét(A)Q lifts to a one cycle in CHg−1

ét (A).

(6) The abelian variety A admits a weak integral étale Fourier transform.

(7) The Fourier transform FA satisfies FA(CHét(A)tf) ⊂ CHét(Â)tf.

(8) There exists a PD-structure on the ideal CH>0
ét (A)tf ⊂ CHét(A)tf.

Proof. Assuming (1), then there exists a cycle Z ∈ CH2g−1
ét (A × Â) such that ZQ ∈

CH2g−1
ét (A×Â)Q equals

c1(PA)2g−1

(2g − 1)!
. Consider the cycle (−1)g·E((−1)g·Z) ∈ CHét(A×Â),

by [BG23, Lemma 3.4] we have that

(−1)g · E((−1)g · Z)Q = (−1)g · E
(
(−1)g · c1(PA)

2g−1

(2g − 1)!

)
= ch(PA) ∈ CHét(A× Â)Q

then follows (2). By the same principle, the line bundle P
A×Â

on the abelian variety

X = A× Â× Â×A, we have that P
A×Â

≃ π∗13PA ⊗ π∗24PÂ, then

R
A×Â

=
(π∗13c1(PA) + π∗24c1(PÂ))

4g−1

(4g − 1)!

= π∗13

(
c1(PA)2g−1

(2g − 1)!

)
· π∗24([0]A×Â

) + π∗13([0]Â×A
) · π∗24

(
c1(PÂ)

2g−1

(2g − 1)!

)

therefore we conclude that R
A×Â

lifts to CH4g−1
ét (X), this implies that A × Â ad-

mits a motivic weak integral Fourier transform. (3)=⇒(1) follows from the fact that

(−1)gF
Â×A

(−ℓ̂) = RA.

From now on, we assume that A is a principally polarized variety λ : A → Â, with

L be the symmetric ample line bundle. Assuming that (4) holds and denoting sA ∈
CHét

2 (A × A) = CH2g−2
ét (A × A) such that (sA)Q = c1(PA)2g−2

(2g−2)! . Consider the symmetric

line bundles CH1
Sym(A) ⊂ CH1(A) and the homomorphism F : CH1

Sym(A) → CHét
1 (A)

defined as the composition

CH1
Sym(A) ↪→ CH1(A)

pr∗1−−→ CH1
ét(A×A)

·sA−−→ CH2g−2
ét (A×A) pr2∗−−→ CHét

1 (A)
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4.3. Decomposition of étale motives

As the line bundle L is symmetric, we have the following

Θ =
1

2
· (id, λ)∗c1(PA)

=
1

2
· c1((id, λ)∗PA)

=
1

2
· c1(L ⊗ L) = c1(L) ∈ CH1(A)Q

The Chern class of L is sent to Θ, therefore F(c1(L))Q = ΓΘ, therefore (5) holds. If we

assume that (5) holds, then by [BG23, Lemma 3.5] we obtain (1).

If (2) holds then immediately holds (4), so we obtain that (4) =⇒ (5) =⇒ (1) =⇒
(2) =⇒ (4). Under the assumptions about polarization, we see that (2) =⇒ (6) =⇒ (7).

If we assume that (7), since Θ = c1(L) is lifted to CH1(A), then FA(Θ) = (−1)g−1ΓΘ is

lifted to CHét
1 (A), thus (5) holds. Again if (7) holds, then FA defines an isomorphism

FA : CHét(A)tf
∼−→ CHét(A)tf.

The ideal CHét
>0(A)tf ⊂ CHét(A)tf admits a PD-structure for the Pontryagin product. As

FA exchanges Pontryagin product by intersection product, we obtain (8).

Using the same arguments, we can obtain the following equivalences for the different

notions of étale Fourier transform:

Proposition 4.3.32. Let A be an abelian variety of dimension g over a field k. The

following assertions are equivalent:

1. The class
c1(PA)2g−1

(2g − 1)!
∈ H4g−2

ét ((A × Â)ks ,Zℓ(2g − 1)) is the class of a cycle in

CH2g−1
ét (A× Â).

2. The abelian variety A admits an étale integral Fourier transform up to homology

which is algebraic.

3. The abelian variety A×Â admits an étale integral Fourier transform up to homology

which is algebraic.

If we assume that A carries a symmetric ample line bundle which induces a principal

polarization λ : A
∼−→ Â, therefore the previous statements are equivalent to the following:

(4) The class
c1(PA)2g−2

(2g − 2)!
∈ H4g−4

ét ((A × Â)ks ,Zℓ(2g − 2)) is the class of a cycle in

CH2g−2
ét (A× Â).

(5) The class θg−1/(g − 1)! ∈ H2g−2
ét (Aks ,Zℓ(g − 1)) lifts to a cycle in CHg−1

ét (A).

(6) The abelian variety A admits an integral étale Fourier transform up to homology.

If k = C then the previous (1)-(6) is equivalent to the same statement replacing étale

cohomology by Betti cohomology.

153



4. Decomposition of integral étale motives

Proof. The proof of the equivalences is analogue to Theorem 4.3.31. If the base field is

k = C, we have an isomorphism H i
ét(A,Zℓ) ≃ H i

B(A,Zℓ) and the fact that β ∈ H2i
B (A,Z)

is in the image of the cycle class map if and only if βℓ ∈ H2i
ét (A,Zℓ) is in the image of the

cycle class map.

Remark 4.3.33. Since the PD-sctructure on (CHét
>0(A), ∗) induces a PD-structure on

(CHét
>0(A)Zℓ

, ∗), Proposition 4.3.32 remains true if we change CHét(A) by CHét(A)Zℓ

and “étale integral Fourier transform up to homology” by “étale ℓ-adic integral Fourier

transform up to homology”.

Corollary 4.3.34. Let k be an algebraically closed field and let ℓ ̸= char(k) be a prime

integer. Considering an abelian variety A/k, then for ℓ there exists an ℓ-adic integral

étale Fourier transform up to homology which is algebraic.

Proof. Consider a smooth projective variety X over k, then we have a cycle class map

ciét,ℓ : CHi
ét(X)Zℓ

→ H2i
ét (X,Zℓ). Let us consider a finitely generated sub Zℓ-module

G ⊆ H2i
ét (X,Zℓ). Let CH

i
ét(X)Zℓ

⊇ W := ci,−1
ét,ℓ (G) and take the map f as ciét,ℓ restricted

to W , thus we have f :W → G. Denoting by I2iW,ét,ℓ(X) = im(f) and I2iét,ℓ(X) : im(ciét,ℓ),

then we have that
(
G/I2iW,ét,ℓ(X)

)
{ℓ} ↪→

(
H2i

ét (X,Zℓ)/I
2i
ét,ℓ(X)

)
{ℓ} = 0. Thus we can

conclude that
(
G/I2iW,ét,ℓ(X)

)
is a torsion free Zℓ-module, thus

(
G/I2iW,ét,ℓ(X)

)
⊗Q = 0 ⇐⇒

(
G/I2iW,ét,ℓ(X)

)
= 0

So this implies that G is in the preimage of CHi
ét(X)Zℓ

if and only if G ⊗ Qℓ is in

the preimage of CHi
ét(X)Qℓ

. In particular, consider X = A × Â and the integral ℓ-

adic class
c1(PA)2g−1

(2g − 1)!
∈ H4g−2

ét (A × Â,Zℓ(2g − 1)) and let G be the sub Zℓ−module

of H4g−2
ét (A × Â,Zℓ(2g − 1)) generated by

c1(PA)2g−1

(2g − 1)!
(which is algebraic with rational

coefficients), thus by the previous remark we obtain that lifts to CHét
1 (A× Â)Zℓ

.

Remark 4.3.35. Even though we can lift the Chern class of the Poincaré bundle PA it

is not clear whether or not the Tate conjecture holds for abelian varieties due to the

obstruction Tℓ(Br
n(A× Â)).

Corollary 4.3.36. Let k be any of the following fields: one finitely generated over Q
or Fpr for p a prime number and r ∈ N. Then any abelian variety A/k admits anétale

ℓ-adic integral Fourier transform up to homology for the other cases.

Proof. The other cases are a consequence of [RS16, Theorem 1.3 and 1.4] respectively

using the argument described beforehand in the proof of last corollary.

Theorem 4.3.37. Let k be an algebraically closed field, then for any abelian variety A

over k there exists an integral algebraic étale Fourier transform if and only if for all

ℓ ̸= char(k), A/k admits an étale ℓ-adic integral Fourier transform up to homology.
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4.3. Decomposition of étale motives

Proof. One way is clear. For the other one we shall split the proof in several parts:

First, let us prove that the Fourier transform preserves torsion classes. Notice that as

H i
ét(A,Zℓ(j)) is a torsion free Zℓ-module, then we have a short exact sequence

0→ H i
ét(A,Zℓ(j))→ H i

ét(A,Qℓ(j))→ H i
ét(A,Qℓ/Zℓ(j))→ 0,

assuming that i ̸= 2j + 1 by [RS16, Proposition 5.1] then we have an isomorphism

H i
ét(A,Qℓ/Zℓ(j)) ≃ H i+1

M,ét(A,Z(j)){ℓ}, the same holds for Â. With this we have obtain

a commutative diagram

0 H i
ét(A,Zℓ(j)) H i

ét(A,Qℓ(j)) H i
ét(A,Qℓ/Zℓ(j)) 0

0 H2g−i
ét (Â,Zℓ(a)) H2g−i

ét (Â,Qℓ(a)) H2g−i
ét (Â,Qℓ/Zℓ(a)) 0

FA FA Fq,ℓ
A

where a = j + g − i and Fq,ℓ
A is the induced map by the quotient, therefore we have an

morphism of torsion groups, therefore we have that Fq,ℓ
A : CHi

ét(A){ℓ}
≃−→ CHg−i+1

ét (Â){ℓ}.
Assuming that for each prime number ℓ ̸= char(k), then we have a commutative diagram

CHi
ét(A)Zℓ

CHét(A)Zℓ
CHét(Â)Zℓ

CHg−i
ét (Â)Zℓ

H2i
ét (A,Zℓ) H•

ét(A,Zℓ) H•
ét(Â,Zℓ) H

2(g−i)
ét (Â,Zℓ)

ciét,ℓ

Fét

cg−i
ét,ℓ

exchanging the Fourier transform Â with the double dual of A, we can conclude that

ciét,ℓ(CH
i
ét(A)Zℓ

) ≃ cg−i
ét,ℓ (CH

g−i
ét (Â)Zℓ

). Since the kernel of the cycle class map ciét,ℓ is

ℓ-divisible, then CHi
ét(A)⊗Qℓ/Zℓ ≃ I2iét,ℓ(A)⊗Qℓ/Zℓ.

Consider the short exact sequence 0→ Zℓ → Qℓ → Qℓ/Zℓ → 0, then by the previous

remark, we obtain a quotient map F ℓ
A : CHét(A)Qℓ/Zℓ

→ CHét(Â)Qℓ/Zℓ
which is an

isomorphism. First let us assume that char(k) = 0, with that we obtain a commutative

diagram

0 CHét(A)tors CHét(A) CHét(A)Q CHét(A)Q/Z 0

0 CHét(Â)tors CHét(Â) CHét(Â)Q CHét(Â)Q/Z 0

Fq
A FA FA FA

where Fq
A = ⊕ℓ̸=char(k)F

q,ℓ
A and FA = ⊕ℓ̸=char(k)F

ℓ
A. In particular we found FA⊗Q = FA,

so it maintains integral étale cycles. If we work over positive characteristic p, then we

take ℓ ̸= p and use the fact that CHét(A) ≃ CHL(A)[1/p].

Decomposition of motives over an algebraically closed field

In this subsection we aim to obtain an analogue of [Huy18, Lemma 1.1] for the category

Chowét(k). Roughly speaking, this result is an improved version of Manin’s principle,

but only when one works over an algebraically closed field.
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4. Decomposition of integral étale motives

Manin principle says that a morphism f : M → N between Chow motives is an

isomorphism if and only if the associated map (f × idZ)∗ : CH
∗(M ⊗h(Z))Q → CH∗(N ⊗

h(Z))Q is an isomorphism for every smooth projective variety Z. There are few cases

where the structure of the Chow groups are maintained in an easy way, such as projective

bundles or blow-ups, but in general it is not an easy task to obtain this property. Recalling

that a universal domain Ω over k is an algebraically closed field extension of infinite

transcendence degree (for example k = Q̄ and Ω = C), the improved Manin priciple

states the following:

Theorem 4.3.38 ([Huy18, Lemma 1.1]). Consider an algebraically closed field k. Let

f : M → N be a morphism in the category Chow(k)Q. Then f is an isomorphism of

motives in Chow(k)Q if and only if for Ω a universal domain over k, the induced map

(fΩ)∗ : CH
∗(MΩ)Q → CH∗(NΩ)Q given by the base change fΩ :MΩ → NΩ, is bijective.

Therefore for an algebraically closed field, is not necessary to test a morphism indexed

by the objects in SmProjk, only for a huge field extension of k. The improved version of

Manin principle is a direct consequence of the results [GG12, Lemma 1], [Via17, Theorem

3.18] and [BP20, Lemma 2.4].

Example 4.3.39. Consider a conic bundle X → P2
Q̄
, we have that the Chow groups of

X are characterized by

CH0(X)Q ≃ CH3(X)Q ≃ Q, CH1(X) ≃ Q⊕Q and CH2(X) ≃ Q⊕Q⊕ Prym(C̄/C)Q,

so for this case we can recover the motivic decomposition of X obtained in [NS09]. In

this context, C is called the discriminant curve of X, σC : C̄ → C is a double covering

and Prym(C̄/C) is the Prym variety.

In the following, we will present the analogue of [Huy18, Lemma 1.1] for the category

Chowét(k). To obtain that, we will prove the analogue of [GG12, Lemma 1]:

Lemma 4.3.40. LetM = (X, p,m) be an étale Chow motive defined over an algebraically

closed field k. Let Ω be a universal domain of k and assume that CHi
ét(MΩ) = 0 for all

i ≥ 0. Then M ≃ 0 in Chowét(k).

Proof. We proceed with similar arguments as in [GG12, Lemma 1]. Consider Y ∈
SmProjk and let i : Z ↪→ Y be a smooth closed immersion of codimension cZ and

let U := Y − Z be the open complement

. . .→ CHi−cZ
ét (X × Z)→ CHi

ét(X × Y )→ CHi
ét(X × U)→ Bri−cZ (X × Z)→ . . .

now take the direct limit over opens U ⊂ Y we obtain that

. . .→
⊕
Z⊂Y

CHi−cZ
ét (X × Z)→ CHi

ét(X × Y )→ lim−→
U⊂Y

CHi
ét(X × U)→

⊕
Z⊂Y

Bri−cZ (X × Z)→ . . .
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4.3. Decomposition of étale motives

since we have the isomorphism lim−→U⊂Y
CHi

ét(X × U) ≃ CHi
ét(Xk(Y )) and consider the

morphism (defined through the action of correspondences) p ⊗ Y : CHi
ét(X × Y ) →

CHi
ét(X × Y ) defined as follows

(p⊗ Y )(α) := (pr23)∗
(
pr∗13(α)× p · Γpr12

)
where prij : X ×X × Y → Xi ×Xj and Γpr12 is the graph of the projection morphism.

We apply the morphisms
⊕

Z p ⊗ Z, p ⊗ Y and p ⊗ k(Y ) we then obtain the following

exact sequence⊕
Z⊂Y

im(p⊗ Z)→ im(p⊗ Y )→ CHi
ét(Mk(Y ))→

⊕
Z⊂Y

im(p⊗ Z)−1.

Notice the following facts about the étale Chow groups of the motive M :

• If Y is irreducible with dim(Y ) = 0, then im(p⊗ Y ) = CHi
ét(M), and consider Ω a

field extension of k which is algebraically closed. Then we have that CHi
ét(M) →

CHi
ét(MΩ) is injective, so by the hypothesis CHi

ét(M) = 0 for all i ≥ 0.

• By induction, assume that for Z of dimension 0, . . . , n− 1 we have that im(p⊗ Z)
vanish, then im(p ⊗ Y ) injects in CHi

ét(Mk(Y )) by the localization sequence. By

[GG12, Lemma 1], the action of p⊗k(Y ) over the torsion free part of CHi
ét(Xk(Y )),

then CHi
ét(Mk(Y )) ≃ (p⊗ k(Y ))∗H

2i−1
ét (Xk(Y ), (Q/Z)′(i)).

To conclude we will use a specialization argument. Consider a open subset U ⊂ Y
and consider the motive (XU , pU ). Now let u be a closed point of U therefore we

can define the regular embedding ju : u ↪→ U . Notice that the closed fibers of U are

isomorphic to (X, p) over k. Since the specialization map commutes with products,

pull-backs and pushforwards, we obtain that the projector p⊗ U acts as zero over

CHi
ét(X × U), therefore we conclude that p⊗ k(Y ) acts as zero over CHi

ét(Xk(Y )).

Finally, we conclude that CHi
ét(Mk(Y )) = 0 for all integer i ≥ 0.

Since we have that CHi
ét(Mk(Y )) = 0 and im(p ⊗ Y ) injects into CHi

ét(Mk(Y )) for all

Y ∈ SmProjk, since im(p ⊗ Y ) ≃ CHi
ét(M ⊗ h(Y )) by the Manin principle for étale

motives we can conclude that M = 0.

Along with Definition 2.5.13 and Lemma 2.5.14 we obtain the analogue of [Via17,

Theorem 3.18] for étale motivic cohomology:

Lemma 4.3.41. Let f : M → N be a morphism of motives over k with k = k̄, k ↪→
Ω, with Ω an universal domain, such that the induced morphism (fΩ)∗ : CH∗

ét(MΩ) →
CH∗

ét(NΩ) is surjective. Then f is surjective.

Proof. Let f be a morphism of motives over k and let Ω be a universal domain such that

k ↪→ Ω. Consider Z ∈ SmProjk, we will prove that the morphism f⊗Z : CH∗
ét(X×Z)→

CH∗
ét(Y × Z) has the same image as q ⊗ Z : CH∗

ét(Y × Z)→ CH∗
ét(Y × Z), for all Z. In

order to prove this, we proceed by induction over the dimension of Z.
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4. Decomposition of integral étale motives

If dim(Z) = 0 then the result is clear. So let us assume that works for dim(Z) ≤ n.

Consider the following commutative diagram induced by the localization sequence

. . .
⊕
D⊂Z

CH∗
ét(X ×D) CH∗

ét(X × Z) CH∗
ét(XK) . . .

. . .
⊕
D⊂Z

CH∗
ét(Y ×D) CH∗

ét(Y × Z) CH∗
ét(YK) . . .

⊕
f⊗D

f⊗Z (fK)∗

where K = k(Z). By assumption, we have that the map (fΩ)∗ : CH∗
ét(XΩ)→ CH∗

ét(YΩ)

is surjective, then we have that in the level of torsion CH∗
ét(X)tors → CH∗

ét(XΩ)tors is

an isomorphism, so the map CH∗
ét(XK)tors → CH∗

ét(XK̄)tors
∼−→ CH∗

ét(XΩ)tors is surjec-

tive because it factors through the previous map. This gives us that the map (fK)∗ :

CH∗
ét(XK)tors → CH∗

ét(YK)tors is surjective, and then also the induced map (fK)∗ :

CH∗
ét(XK)→ CH∗

ét(YK).

By induction hypothesis f ⊗D it has the same image as q⊗D, for all D ⊂ Z. In the

same way, we have a similar commutative diagram involving
⊕

D⊂Y q ⊗ D, q ⊗ Z and

q ⊗K.

. . .
⊕
D⊂Z

CH∗
ét(Y ×D) CH∗

ét(Y × Z) CH∗
ét(YK) . . .

. . .
⊕
D⊂Z

CH∗
ét(Y ×D) CH∗

ét(Y × Z) CH∗
ét(YK) . . .

⊕
q⊗D

q⊗Z (qK)∗

Finally, as we have im(q ⊗ Z) = im(f ⊗ Z), then (f × idZ)∗ : CH∗
ét(M ⊗ hét(Z)) →

CH∗
ét(N ⊗ hét(Z)) is a surjective map for all Z smooth projective variety, therefore by

Lemma 2.5.14 we have that f is surjective.

Finally, we can get the extension to the integral étale case of [Huy18, Lemma 1.1]

using the following lemma:

Lemma 4.3.42. Let f :M → N be a morphism of motives over k such that for a univer-

sal domain Ω, the induced morphism (fΩ)∗ : CHi
ét(MΩ)→ CHi

ét(NΩ) is an isomorphism

for all i ≥ 0. Then fΩ is an isomorphism in the category Chowét(Ω).

Proof. Let Ω be an universal domain of k. By assumption, we have an isomorphism

(fΩ)∗ : CH
i
ét(MΩ)

≃−→ CHi
ét(NΩ), so by Lemma 4.3.41, there exists a morphism g : NΩ →

MΩ such that fΩ ◦ g = idNΩ
. Therefore, we have a sub-oject of MΩ, denoted by T , and

an isomorphism fΩ :MΩ → NΩ⊕T . Since CHi
ét(MΩ)

≃−→ CHi
ét(NΩ), then we obtain that

CHi
ét(T ) ≃ 0 for all i ≥ 0, so invoking Lemma 4.3.40, we obtain that T = 0, so we obtain

that fΩ :MΩ → NΩ is an isomorphism.
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Theorem 4.3.43 (Improved version of Manin’s principle). Let f : M → N be a mor-

phism in the category Chowét(k). Then f is a isomorphism of motives in Chowét(k) if and

only if for Ω an universal domain over k, the induced map (fΩ)∗ : CH
∗
ét(MΩ)→ CH∗

ét(NΩ)

given by the base change fΩ :MΩ → NΩ, is bijective.

Proof. Assume that f : M → N is a isomorphism and K/k a field extension of k, then

it is clear that fK : MK → NK is an isomorphism in Chowét(K). Now let us assume

that (fΩ)∗ : CH∗
ét(MΩ) → CH∗

ét(NΩ) is an isomorphism. By Lemma 4.3.42, then the

map fΩ : MΩ → NΩ is bijective, then if we invoke [Ayo14b, Théorème 3.9] and the

full-faithfulness of the functor Chowét(k)
op ↪→ DMét(k,Z), we obtain that the associated

functor i∗ : Chowét(k) → Chowét(Ω) is conservative, since i
∗(f) = fΩ, we conclude that

f is an isomorphism in Chowét(k).

Remark 4.3.44. We can obtain a fully characterization of the étale Chow groups a conic

bundle X → S with S a smooth surface. Since J2(X) ≃ AlbS(S) ⊕ Pic0(S) ⊕ P
C̃

by

[Bel85, Theorem 3.5] and using the results of [Bea77] and [Bel85], we obtain the following

characterization

CH0
ét(X) ≃ Z,

CH1
ét(X) ≃ CH1(X),

CH2
ét(X) ≃ CH2

ét(S)⊕ CH1
ét(S)⊕ PC̃

,

CH3
ét(X) ≃ CH3(X).

Since we have an isomorphism CH∗(X) ≃ CH∗
ét(X), by [RS16, Theorem 1.1] we can

conclude that the classical integral Hodge conjecture holds for smooth conic bundles

X → S.

Open question about decomposition

We address to a problem about the decomposition of motives which is induced by a

filtration of dimension. We start with general facts about triangulated categories and

the representation of functors in this contexts. After these facts, we recall the definition

of n-motives and give a reason why starting from 0 and 1-motives we can think that this

filtration can be related to the Chow-Künneth decomposition.

Before that, we ought to say a few words about the existence of a reasonable t-

structure in the category DMeff
gm(k,Z), which again is linked with the decomposition of a

motive, pointing out differences with the étale case and why the argument of Voevodsky

for the nonexistence of a reasonable t-structure cannot be used in the étale analogue of

the category.

t-structure with integral coefficients and decomposition for integral motives

In [VSF00], Voevodsky provides a counterexample for the existence of a reasonable t-

structure for the triangulated category of geometrical motives DMeff
gm(k,Z) with integral
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4. Decomposition of integral étale motives

coefficients. A t-structure τ = (D≤0,D≥0) on DMeff
gm(k,Z) is called reasonable if the

following conditions hold:

1. τ is compatible with Tate twist, i.e. M ∈ D≤0 (similarly if M ∈ D≥0) if and only

if M(1) ∈ D≤0 (respectively M(1) ∈ D≥0).

2. For a smooth affine scheme X of dimension n one has

Hτ
i (Mgm(X)) = 0 for i < 0 or i > n

Hτ
i (M

c
gm(X)) = 0 for i < n or i > 2n

Corollary 4.3.45 ([VSF00, Corollary 3.4.3]). Let X be a smooth scheme over k. Then

one has

Hom
DMeff

gm(k,Z)(Mgm(X),Z(1)[j]) = Hj−1
Zar (X,Gm)

Now we can state the counterexample provided by Voevodsky.

Proposition 4.3.46. Let k be a field such that there exists a conic X over k with no

k−rational points. Then DMeff
gm(k,Z) has no reasonable t-structure.

Proof. Suppose that exists a reasonable t-structure τ = (D≤0,D≥0), then for any smooth

plane curve X ⊂ P2
k we have

Hτ
i (Mgm(X)) =


0 for i ̸= 0, 1, 2

Z for i = 0

Z(1) for i = 2

(4.3)

and for a smooth hypersurface Y in P3
k we have the exact triangles in DMeff

gm (k) of the

form

M c
gm(Y )→M c

gm(P3
k)→M c

gm(P3
k − Y )→M c

gm(Y )[1]

Mgm(P3
k − Y )→Mgm(P3

k)→Mgm(Y )(1)[2]→Mgm(P3
k − Y )[1]

then Hτ
1 (Mgm(Y )) = 0 because of the definition of the cohomology functor and the

translation of Mgm(Y )(1) in the second exact triangle. Let X be a conic over k with no

rational points and consider X ↪→ X ×X the diagonal embedding in P3
k, because every

curve C can be embedded in P3
k (for example see [Har77, Corollary 3.6, sect. IV]). Then

we can conclude that

Hτ
i (Mgm(X)) =


0 for i ̸= 0, 2

Z for i = 0

Z(1) for i = 2

(4.4)

since Mgm(X) is clearly a direct summand of Mgm(X × X). We have a distinguished

triangle

Z(1)[2]→Mgm(X)→ Z→ Z(1)[3].
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4.3. Decomposition of étale motives

Due to the previous corollary we have that

HomDMeff
gm(k,Z)(Z,Z(1)[3]) = HomDMeff

gm(k,Z)(Mgm(Spec(k)),Z(1)[3])

= H2
Zar(Spec(k),Gm) = 0

therefore the last arrow is the zero map, giving us that the triangle splits Mgm(X) =

Z⊕ Z(1)[2]. Then the map

HomDMeff
gm(k,Z)(Z,Mgm(X))→ Z ⇐⇒ CH0(X)

deg−−→ Z

is surjective which contradicts the hypothesis of X about the nonexistence of a rational

point.

Remark 4.3.47. 1. This counterexample does not work for the contradiction of the

existence of a reasonable t-structure for the étale case because of the following

argument: by definition we have

HomDMeff
gm,ét(k,Z)

(Z,Z(1)[3]) = H3
ét(Spec(k),Z(1))

= Br(k)

which is the Brauer group of k, and therefore related with the existence of a k-

rational point. This later group may be non zero and thus we obtain a non splitting

exact triangle. In this direction we can think that in the étale setting we can obtain

a decomposition of the motive which does not split. To continue developing this

idea we need to introduce the notion of n−motives and focus in the cases when

n = 0 or n = 1.

2. The dependence of the existence of a k−rational point is crucial in this example and

in general to define the projectors π0(X) and π2d(X) where X is smooth projective

variety of dimension d. With rational coefficients this can be bypassed if we define

the projectors p0(X) and p2d(X) with a 0-cycle of degree n (and inverting the

degree). Another way of solving this problem would be enlarging our base field k

to K where it is possible to find a K−rational point.

Triangulated categories

We have to say a few words about triangulated categories that are compactly generated,

for that we mainly focus in [Nee01] and [Ayo06]. Let us recall the definition of a compact

object:

Definition 4.3.48. Let T be a triangulated category with small sums. An object A ∈ T
is compact if and only if the functor HomT (A,−) commutes with small sums, i.e. for

every small family of objects (Bi)i∈I in T the canonical homomorphism⊕
i∈I

HomT (A,Bi)→ HomT (A,⊕i∈IBi)

is invertible.
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4. Decomposition of integral étale motives

Definition 4.3.49. Let T be a triangulated category with small sums. We say that T is

compactly generated if there is a set of compact objects Λ ⊂ T such that T is generated

by Λ.

Proposition 4.3.50. [Nee01, Theorem 8.3.3], [Ayo06, Proposition 2.1.21] Let T be

a compactly generated triangulated category with small sums. Let h : T → Ab an

exact contravariant functor that transforms small sums in small products. Then h is

representable.

Remark 4.3.51. A consideration on the notation and used names should be done. In the

context of triangulated categories, the term exact functor is another name for triangu-

lated functor, i.e. an additive functor that commutes with translations and preserves

distinguished triangles.

The previous result is a criterion of representability of Brown which implies that for

a triangulated functor of a compactly generated category there exists a right adjoint,

under some technical properties:

Proposition 4.3.52. [Ayo06, Corollaire 2.1.22] Let T and T ′ be two triangulated cat-

egories with small sums. Suppose that T is compactly generated. Let F : T → T ′ a

covariant triangulated functor which commutes with small sums. Then F admits a right

adjoint.

Proof. Let B be an object in the category T ′. Define hB as follows

hB : T → Ab

A 7→ hB(A) := HomT ′(f(A), B).

By the hypothesis of f the functor hB transforms small sums in small products. This

functor is represented by an object g(B) in T , then we have an isomorphism

hB(A) = HomT ′(f(A), B)
∼−→ HomT (A, g(B)).

Consider the association of elements B → g(B). There is a way of understanding this

association such that the isomorphism is natural in A and B.

The fact that the previously defined right adjoint functor is a triangulated functor

comes immediately as a consequence of [Ayo06, Lemme 2.1.23]. An immediate conclusion

from the previous theorems of existence of adjoints is the existence of universal object

with respect to a subcategory.

Lemma 4.3.53. Let A be a compactly generated triangulated category stable under small

sums, and B be a full subcategory and let i : B → A be the full embedding. Then for every

compact object A ∈ A there exist an object MA ∈ B and a map iA : MA → A such that

for every object B ∈ B that admits a morphism f : B → A, the f factors through MA,

such that f : B →MA
iA−→ A.
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4.3. Decomposition of étale motives

Proof. By the previous lemmas the full embedding admits a right adjoint, denoted by ν.

If we consider the co-unit transformation δ : i ◦ ν =⇒ id then we define MA := i(ν(A))

giving us the existence of the arrow MA → A. The universality of MA comes from the

isomorphism

HomA(B,A) ≃ HomB(B, ν(A))

i−→ HomA(B,BA)

given by the adjunction and the full embedding.

Remark 4.3.54. Notice that this properties give us that for a compact object in B ∈ B
there exists an isomorphism MB

∼−→ B. We say that MB is the stabilizer of B.

Filtration induced by n-motives

We recall the definition of n-motives, where we use mainly the references of [VSF00],

[Org04] and [BK16].

For a perfect field k, in [Voe00, Section 3.4], Voevodsky defined and constructed a

filtration of the category of (effective) geometrical motives DMeff
Nis,gm(k,Z) induced by

the dimension of the generating classes of geometric motives (i.e. the compact elements

in the category DMeff
Nis,−(k,Z)), where he studied the cases of the filtration of dimension

at most 1.

Concerning the category of 0−motives, the so called category Artin motives and

denoted in [Voe00] as d≤0DMeff
gm(k,Z), it was proved in [Org04, Proposition 2.2 et 2.7] that

it is equivalent to pseudo-abelian envelope of Hb(Perm(k)), which is the full subcategory

of Z[Gk]−modules that are permutational representations with Gk = Gal(k̄/k). The

case for DMeff
Nis,−(k,Z) has also an equivalence category to D−(Shv(Perm(k))) where

Shv(Perm(k)) is the category of additive contravariant functors from Perm(k) to the

Ab, all of this fitting in the following commutative diagram

Hb(Perm(k)) D−(Shv(Perm(k)))

d≤0DMeff
gm(k,Z) d≤0DMeff

− (k,Z).

In a more general context it is possible to give a description of the category of 1-

motives. In [BK16, Theorem 2.1.2] it is shown that there exists a functor

T : Db(M1[1/p])→ DMeff
−,ét(k,Z)

whose essential image is d≤1DMeff
ét,gm(k,Z). Here, Db(M1[1/p]) represents the derived

category of bounded Deligne’s 1-motives and p is the characteristic exponent of the

field. We can generalize the construction of 0 and 1-motives by taking the category of

cohomological motives, which is generated by motives of cohomological type defined as

follows:
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4. Decomposition of integral étale motives

Definition 4.3.55. Let S be a noetherian scheme and X a proper S−scheme. We define

the cohomological motive of X as follows

hS(X) := (πX)∗(πX)∗1S ∈ DAét(S,Z),

where πX : X → S.

Note that by the properties of the structural morphism, this is equivalent to [AZ12,

Definition 1.3], where the cohomological motive of X over S is defined to be hS(X) =

(πX)∗1X . This is a consequence of fact that if f : X → Y then f∗ takes the homological

motive of Y and sends it to the homological motive of the X−scheme X ×S Y .

Definition 4.3.56. Let S be a noetherian scheme. We denote by DAcoh
ét (S,Λ) the cat-

egory of constructible cohomological motives, which is the smallest triangulated subcate-

gory of DAét(S,Λ) stable under finite sums and containing hS(X) for all quasi-projective

S−scheme X. Respectively, the category of Artin motives over S with coefficients in Λ,

which is denoted DA0
ét(S,Λ), as the smallest subcategory containing hS(X) where X is

a zero dimensional S−scheme.

Remark 4.3.57. We use the same definition for cohomological motives in the model of

étale motives with transfers: we denote by DMcoh
ét (S,Λ) the category of cohomological

motives, which is the smallest triangulated subcategory of DMét(S,Λ) stable under finite

sums and containing hS(X) for all quasi-projective S−schemes X.

Definition 4.3.58. If we take a noetherian scheme S, we define the category of n-motives

relative to S with coefficients in Λ, denoted by DMn
ét(S,Λ) as the smallest subcategory of

DMcoh
ét (S,Λ) containing the elements hS(X) where X is a m-dimensional S-scheme with

m ≤ n. We define in the same way the analogue for the category of étale motives without

transfers DAn
ét(S,Λ).

The full subcategory DMn
ét(S,Λ) is called the category of n−motivic étale sheaves over

S with coefficients in Λ. Along with these definitions, we use the following notations:

• imn will stand for the full embedding DMn
ét(S,Λ) ↪→ DMm

ét(S,Λ) where m > n,

• in = “i∞n ” is the full embedding DMn
ét(S,Λ) ↪→ DMcoh

ét (S,Λ).

• The functors νmn and νn are the right adjoints of imn and in respectively

imn : DMn
ét(S,Λ)⇆ DMm

ét(S,Λ) : ν
m
n , in : DMn

ét(S,Λ)⇆ DMcoh
ét (S,Λ) : νn.

• Let ωm
n := imn ◦ νmn and ωn := in ◦ νn be the functors associated with the co-unit

transformations.

With this construction, we have a sequence of full embeddings of categories indexed

by the bound of the dimension for the generators n:

DM0
ét(S,Λ) ↪→ DM1

ét(S,Λ) ↪→ . . . ↪→ DMn
ét(S,Λ) ↪→ . . . ↪→ DMcoh

ét (S,Λ).
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4.3. Decomposition of étale motives

Consider the graded pieces of the category DMcoh
ét (S,Λ) as

grnDMcoh
ét (S,Λ) := DMn

ét(S,Λ)/DMn−1
ét (S,Λ)

where for M ∈ DMcoh
ét (S,Λ) the n-th graded pieces are defined as

grp(M) = coker(ωp−1(M)→ ωp(M)).

Notice that the construction of the graded pieces by definition is functorial. Now let us

prove some basic results about n−motives and the underlying filtration of DMcoh
ét (S,Λ)

that we defined previously.

Lemma 4.3.59. Let S be a noetherian scheme and Λ a commutative ring. Assume that

M is a cohomological motive in DMcoh
ét (S,Λ). For all δn : ωn → id with n ≥ 0 and

δlm : ωl
m → id, with l > m, the co-augmentation associated with the co-unit:

(i) If M ∈ DMn
ét(S,Λ), we have an isomorphism δn : ωn(M)

∼−→ M . In particular

δn(ωn) : ωn ◦ ωn ∼−→ ωn. Moreover δn ◦ ωn = ωn ◦ δn.

(ii) For k ∈ N there exists a natural transformation δn+k
n between the functors δn+k

n :

ωn → ωn+k.

(iii) For k ∈ N the natural transformations δn have an induced compatibility expressed

in term of δn = δn+k ◦ δn+k
n , also there exists an isomorphism ωn−1(ωn(M)) ≃

ωn(ωn−1(M)) ≃ ωn−1(M).

Proof. In (i) the first statement follows a general proposition of triangulated categories

given in Lemma 4.3.53, meanwhile the second is a consequence of the universality of the

elements ωn(M). The last statement of (i) is a consequence of the commutative diagram

ωn(ωn(M)) ωn(M)

ωn(M) M

ωn(δn(M))

δn(ωn(M))

δn(M)

δn(M)

because ωn(δn(M)) and δn(ωn(M)) are isomorphisms due to the stabilization property.

Therefore we obtain that ωn(δn(M)) = δn(ωn(M)).

In (ii) and for k = 1 the existence of the map ωn(M)
δn+1
n−−−→ ωn+1(M) comes from the

universality of ωn+1(M) and the fact that ωn(M) is a (n + 1)−motive, the remaining

cases arises from an induction on k.

The compatibility of the natural transformations is a consequence of the universality

of the elements ωn(M) in the category of n−motives. Concerning the isomorphisms

of (iii), the second one is obtained as a consequence of (i), meanwhile for the first one

consider the following commutative diagrams

ωn(M) M

ωn+1(M) M

δn+1
n

δn

δn+1
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and apply to it the functor ωn along with result (i) we conclude.

ωn(M) ωn(M)

ωn(ωn+1(M)) ωn(M)

ωn◦δn+1
n

ωn◦δn

ωn◦δn+1

Proposition 4.3.60. For any constructible cohomological motiveM ∈ DMcoh
ét (S,Λ) there

exists n ∈ N such that ωn(M) =M .

Proof. Immediate after the previous observations and the construction of the category

DMcoh
ét (S,Λ).

Definition 4.3.61. The sequence of transformations

ω0 → ω1 → . . .→ ωn → . . .→ id

is called the filtration by dimension.

Let M be a cohomological motive in DMcoh
ét (S,Λ), we define the object ω>n(M) =

ω≥n+1(M) which fits into the distinguished triangle

ωn(M)→M → ω>n(M)→ ωn(M)[1].

The first thing we must do is to show that this element is defined uniquely up to

isomorphism, for that we use the axioms of a triangulated category and the universality

of the elements due to the filtration.

Lemma 4.3.62. Let M ∈ DMcoh
ét (S,Λ) then the object ω>n(M) is defined uniquely up

to isomorphism and ω>n defines a functor.

Proof. For all M1, M2 ∈ DMcoh
ét (S,Λ) and k ∈ N then by the universality of ωn+k we

have

HomDMcoh
ét (S,Λ)(ω

n(M1), ω
n+k(M2))

∼−→ HomDMcoh
ét (S,Λ)(ω

n(M1),M2)

which is equivalent to

HomDMcoh
ét (S,Λ)(ω

n(M1), ω
>n+k(M2)) = 0

proving (i). Notice that there are natural transformations id→ ω>n and ω>n → ω>n+1.

Let M be cohomological motive in DMcoh
ét (S,Λ) and (n, p, q) ∈ N × Z2 where n is

fixed but arbitrary. Define the following terms

Dp,q := HomDMcoh
ét (S,Λ)(ω

p(M),1S(n)[p+ q])

Ep,q := HomDMcoh
ét (S,Λ)(grp(M),1S(n)[p+ q])
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which induce an exact couple, where the transition maps arises naturally from the exact

triangle

ωn−1(M)→ ωn(M)→ grn(M)→ ωn−1(M)[1]

and the contravariant functor Hom(−,1S(n)[p + q]) the first map Dp,q → Dp−1,q+1 of

grading (−1, 1) comes from the map ωp(M)→ ωp+1(M), the map Dp−1,q+1 → Ep,q+1 of

degree (1, 0) comes from map grp(M)→ ωp−1(M)[1].

Recalling [Dég12b, Definition 1.2], in a triangulated category T , a tower X• over X

is the data of a sequence (Xp → X)p∈Z of objects over X and a sequence of morphism

over X

. . .→ Xp−1 → Xp → . . .

Now let M be an object in DMn
ét(S,Λ)) we know that:

1. for n big enough ωn stabilizes for M and by convention we can put ωn(M) = 0 for

n < 0.

2. There is a family of objects and morphism (ωn(M)→M)n∈Z such that

0→ ω0(M)→ ω1(M)→ . . .→M.

So in other words the family of functors (ωn)n∈Z defines a bounded and exhaustive

tower for each M , in the sense of [Dég12b, Definition 1.2], thus for a fixed n ∈ N , we get

a convergent spectral sequence

Ep,q
1 = HomDMcoh

ét (S,Λ)(grp(M),1S(n)[p+ q]) =⇒ HomDMcoh
ét (S,Λ)(M,1S(n)[p+ q]) (4.5)

Remark 4.3.63. Notice that if Λ = Q, S = Spec(k) andM =M(X) where X is a smooth

k-scheme of relative dimension d then D0,q = CHq
ét(π0(X))Q, where X → π0(X/k) → k

is the Stein factorization, and Dd,q = CH2d+q
ét (X)Q.

Proposition 4.3.64. Let S be a noetherian schemes and let f : S → T be a morphism

of schemes, and Λ a commutative ring, then

1. −⊗− : DMn
ét(S,Λ)⊗DMm

ét(S,Λ)→ DMn+m
ét (S,Λ)

2. f∗ : DMn
ét(T,Λ)→ DMn

ét(S,Λ),

3. if f is separated of finite type of relative dimensionm, then we have f! : DMn
ét(S,Λ)→

DMn+m
ét (T,Λ),

4. Assume that X → S is proeper, then DS(πX)∗1X is a cohomological object.

Proof. For the first assertion consider πX : X → S and πY : Y → S two proper morphism

and the product of cohomological motives (πX)∗1X ⊗ (πY )∗1Y . Using the six functors
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4. Decomposition of integral étale motives

formalism on DMét(S,Λ), we have that

(πX)∗1X ⊗ (πY )∗1Y ≃ (πX)!1X ⊗ (πY )!1Y

≃ (πX)! (1X ⊗ (πX)∗(πY )!1Y )

= (πX)!(πX)∗(πY )!1Y

≃ (πX)!h!g
∗1Y

≃ (πX)∗h∗1X×SY ≃ (πX ◦ h)∗1X×SY

where h and g are morphisms associated to the cartesian square

X ×S Y Y

X S.

h

g

πY

πX

Therefore (πX)∗1X ⊗ (πY )∗1Y is a cohomological motive and πX ◦ h : X ×S Y → S has

relative dimension at most m+ n, concluding the proof of 1.

2. It follows from the base change formula because then its action is characterized by

f∗(πX)∗1X ≃ h(Z ×X).

3. For the last one we consider the morphism f : S → T and a proper morphism

πX : X → S, consider the cohomological motive (πX)∗1X , then we consider f!(πX)∗1X ,

since f! ≃ f∗ then we have that f!(πX)∗1X ≃ f∗(πX)∗1X ≃ (f ◦ πX)∗1X which is a

T -morphism of relative dimension n+m.

4. Let M = (πX)∗1X be a cohomological motive, then DS(M) = f∗(DX1X) ≃ f∗1X .

Moreover, if M is a n-motive, then the dual is also a n-motive.

Example 4.3.65. Consider a smooth curve C over a field k and let h(C) be its coho-

mological motive i.e. h(C) = M(C)∨ = M(C)(−1)[−2]. Using the fact that grp(M) =

coker(ωp−1(M) → ωp(M)) and ω1(h(C)) ∼= h(C) we obtain that the graded pieces are

characterized as

gr0(h(C)) = ω0(h(C)) ∼= h(π0(C))

gr1(h(C)) = coker(ω0(h(C))→ ω1(h(C))) ∼= coker(h(π0(C))→ h(C))

which fit in the exact triangle

h(π0(C))→ h(C)→ coker(h(π0(C))→ h(C))→ h(π0(C))[1].

If C is connected and has a k−rational point then h(π0(C)) ∼= Z and the motive of the

curve is h(C) ≃ Z⊕ Jac(C)⊕Z(1)[2]. Hence gr1(h(C)) = coker
(
ω0(h(C))→ ω1(h(C))

)
is isomorphic to Jac(C)⊕ Z(1)[2].

We conclude with a list of open questions:

1. If we set Λ = Q, can we relate n-th graded piece of the motive h(X) to the hn(X)

part of the Chow-Künneth decomposition? Is gr2(h(X)) linked to h2(X), or does

it give a good candidate for this motive and by duality, for h2d−2(X) ?
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4.3. Decomposition of étale motives

2. Is it possible that this filtration leads to a motivic equivalent of the conjectural

descending filtration of Chow groups called the Bloch-Beilinson filtration? See

[MNP13, 7.1 and 7.2]

3. In the spirit of [RS16], are there other conjectures about motives and algebraic

cycles that can be reformulated in terms of étale motives?

4. Does the spectral sequence given in 4.5 induce a filtration which corresponds to a

niveau filtration? For example, the niveau filtration of Bloch and Ogus presented

in [BO74] ?
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laboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud,
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