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Abstract2

A high-throughput selection system to quantify the specificity of antibodies3

4

Proteins are phenotypically characterized by their functional properties, e.g. bind-5

ing a�nity and specificity for a target molecule in the case of antibodies. Understanding6

whether and how much these properties are linked has remained largely elusive so far. Ad-7

dressing this question relies on our capacity to quantify binding specificity, which stands8

as a challenge. We developed an in vitro experimental setup combined with a statistical9

analysis pipeline to systematically quantify the binding specificity of proteins. In par-10

ticular, we designed a library of random DNA molecules acting as targets and screened11

them using SELEX against a pool of recombinant antibodies with frameworks taken from12

natural antibodies. We found that we could assess global specificity (by estimating the13

average a�nity of antibodies for the DNA library) as well as local specificity (by measur-14

ing the diversity of DNA sequences bound by the antibodies). We showed that selection15

experiments can be optimized in order to provide a robust quantification of a�nity and16

specificity in a high throughput fashion. These results pave the way for a systematic map-17

ping of the relationship between a�nity and specificity.18

19
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Résumé24

Un système de sélection à haut débit pour quantifier la spécificité des anticorps25

26

Les protéines sont des biomolécules fondamentales de tout être vivant. Leurs fonctions très27

variées sont contrôlées par leur structure tridimensionnelle ; elle-même déterminée par leur séquence28

d’acides aminés. Le rôle des anticorps, par exemple, est de reconnaitre et neutraliser des molécules29

cibles (appelées antigènes) qui pourraient représenter une menace pour l’organisme. Leur fonction30

est directement liée à leur a�nité (force d’interaction) et spécificité (précision) de liaison à ces31

molécules cibles. Bien que de nombreux travaux aient été réalisés dans le but d’étudier l’a�nité32

des anticorps d’une part, et leur spécificité d’autre part, nous avons à ce jour une compréhension33

limitée de la relation entre ces deux propriétés fonctionnelles. Par ailleurs, tandis que la métrique34

d’a�nité est clairement définie (elle correspond à la constante de dissociation entre la protéine et35

sa cible), il n’existe pas de métrique consensuelle de spécificité. Nous faisons donc face à deux36

principaux défis : Comment quantifier la spécificité de liaison de protéines ? Et quelle est la37

nature de la relation liant l’a�nité et la spécificité de liaison des protéines ? De manière à y38

répondre, il s’agit tout d’abord de mettre au point une méthode visant à mesurer la spécificité. Ici,39

nous proposons un procédé expérimental in vitro ainsi qu’une approche statistique permettant une40

quantification systématique de la spécificité de liaison des protéines. Nous avons mis au point une41

banque de molécules d’ADN (utilisées comme ligands) avec une structure en tige-boucle que nous42

avons sélectionnées par SELEX contre un ensemble d’anticorps recombinants (dont la structure est43

issue d’anticorps naturels possédant di↵érents niveaux de maturation -ou di↵érentes a�nités- pour44

une cible biologique). Nous avons ensuite utilisé le séquençage à haut débit afin d’identifier les45

molécules d’ADN ayant les plus hautes a�nités pour ces anticorps. Nous proposons une métrique46

de la spécificité globale (en estimant l’a�nité moyenne des anticorps pour la banque d’ADN) ainsi47

que de la spécificité locale (en mesurant la diversité des séquences d’ADN sélectionnées par les48

anticorps). Nous avons par ailleurs optimisé le protocole de sélection dans le but d’obtenir une49

quantification robuste et à haut débit de l’a�nité et de la spécificité. L’utilisation d’une banque50

de molécules d’ADN nous a permis de mesurer di↵érentes spécificités locales et globales pour des51

anticorps caractérisés par di↵érents niveaux de maturation. En particulier, nous avons constaté52

que les anticorps moins maturés ont une a�nité moyenne pour la banque de molécules d’ADN53

plus élevée, et qu’ils sélectionnent avec moins de précision les séquences d’ADN par rapport aux54

anticorps maturés. Ces résultats ouvrent la voie vers une étude systématique de la relation entre55

a�nité et spécificité.56

57

Mots-clés:58

anticorps, spécificité, SELEX, séquençage à haut-débit59
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Chapter 1174

Introduction175

1.1 Proteins are characterized by a set of functional prop-176

erties177

Proteins are part of the fundamental biomolecules of living organisms. They perform178

a vast array of functions including the catalysis of biological reactions, the transport of179

small molecules and the formation of the cell structure. Their function is related to the180

3D structure that they adopt and which is determined by their amino-acids sequence.181

Many studies have been dedicated to the study of the relationship between the structure182

of proteins and their function, with the ultimate goal of predicting functional properties183

(e.g. stability, catalytic activity, a�nity, etc.) from amino-acid sequences. However,184

and while proteins are characterized by an ensemble of properties that can potentially be185

linked to each other, most of the studies only focus on the investigation of one particular186

functional property .187

For example, the binding of proteins to ligands which initiates every biological reac-188

tions depends on 2 major functional properties: (1) the a�nity (i.e. the binding strength189

between a protein and its ligand) and (2) the specificity (i.e. the ability of a protein to190

discriminate between di↵erent ligands). These functional properties are related by defini-191

tion, since the specificity of a protein is defined as the distribution of its a�nity over every192

possible ligand. However, we don’t know if these two properties are intrinsically linked193

and if they are, what is the nature of their relationship.194

195

One possible schematic view of specificity is the binding landscape (Fig. 1.1) [George196

and Gray, 1999] where every possible ligand is mapped in a 1 or 2 dimensional space (to197

simplify the representation). In such a space, the distance between ligands corresponds198

to their relative di↵erences 1. Each ligand has a particular binding a�nity (or binding199

energy) for the protein and the ensemble of these binding a�nity values characterizes the200

1The way to define how ligands di↵er from one another can be argued; if ligands are DNA molecules, an
example for a metric would be the Hamming distance (i.e. the number of positions at which the nucleotides
are di↵erent between 2 DNA sequences).

13



14 CHAPTER 1. INTRODUCTION

topography of the landscape.201

202

Not included for copyright reasons

Fig. 1 from [George and Gray, 1999] 

Figure 1.1: A schematic representation of a binding a�nity landscape. All possi-
ble antigen-binding sites are shown on the x axis, with the most similar adjacent to each
other. The a�nity of the antibody for each antigen is shown on the y axis. Coloured
arrows show di↵erent trajectories of mutating proteins (antibodies) that increase their
binding a�nity for antigen-binding sites. Taken from [George and Gray, 1999].

We can use the binding landscape picture to describe two levels of specificity:203

• At the larger scale, we can verify if the protein of interest has a high a�nity for204

very di↵erent ligands by looking at the global ruggedness of its binding landscape.205

The ability of a protein to interact with very di↵erent ligands is characteristic of its206

global specificity207

• At the smaller scale, we can verify if the protein has di↵erent a�nities for ligands208

that are very similar in structure by looking at the local ruggedness of its binding209

landscape. The ability of a protein to discriminate between similar ligands is char-210

acteristic of its local specificity.211

212

Measuring protein’s specificity is the first step towards understanding its function.213

However, it is di�cult (if not e↵ectively impossible) to determine the full binding landscape214

of a protein, as it would require the experimentalist to measure its a�nity for a myriad of215

possible ligands. Still, it is possible to explore subregions of this landscape: this is what216

research e↵orts over the past decades have thrived to measure [Jolma et al., 2013] [Prigent217

et al., 2018] [McGeary et al., 2019] [Tonikian et al., 2008].218

1.2 Measuring specificity of DNA-binding proteins219

As a case study, let us consider the example of a category of proteins for which binding220

a�nity and specificity are crucial in their biological function: transcription factors (TFs).221
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Their main function is the control of gene expression achieved by physically interacting222

with genomic DNA. Human transcription factors, for instance, recognize DNA motifs (i.e.223

a precise sequence of 4 to 20 nucleotides) among the billions of more or less accessible224

nucleotides that constitute the genome. The a�nity and specificity of these transcription225

factors for DNA motifs crucially a↵ect the way in which they bind to their target sequence.226

227

The first studies of transcription factors were based on the identification of the major228

DNA motif that they recognize. However, it has been shown that relevant binding sites are229

not only the ones with the highest a�nity [Jiang and Levine, 1993] [Crocker et al., 2015].230

Consequently, following studies focused on the mapping of the full binding landscape of231

these transcription factors in the space of all possible DNA motifs.232

233

A variety of high-throughput techniques have been developed to study the binding234

landscape of transcription factors in the space of DNA sequences. Among those tech-235

niques, 2 are particularly popular: (1) the HT-SELEX (high-throughput Systematic evo-236

lution of ligands by exponential enrichment) approach, during which up to billions of short237

DNA fragments are mixed together and screened against a transcription factor for their238

a�nity for the latter [Gu et al., 2013] [Chen et al., 2016] [Jolma et al., 2010] [Jolma et al.,239

2013] and (2) the PBM (Protein Binding Microarray) based approaches during which up240

to millions of short DNA fragments are immobilized on a chip and the proteins are allowed241

to interact with these DNA motifs according to their respective a�nities [Carlson et al.,242

2014] [Le et al., 2018] [Isakova et al., 2017].243

In both approaches, the experimentalists design a library of short DNA ligands containing244

every possible DNA motifs and they expose the DNA library to the transcription factor245

of interest. The output of these assays are binding scores that are indirectly linked to246

the a�nities: the output of HT-SELEX assays are enrichment values that indicate how247

much the DNA ligands increased their prevalence during selection against a TF; while the248

output of PBM-based approaches are indirect measurements of the number of TFs that249

interacted with each DNA ligand.250

251

The resulting binding scores are either directly used to assess the specificity profile of252

TFs, or are further analyzed with theoretical models in order to be converted into binding253

energies or dissociation constants (definition of dissociation constant in 4.1.1).254

255

Using the binding data, the specificity profile of TFs are generally depicted in 2 ways:256

• The binding scores values are represented as a distribution (Fig.1.2, Left) or as a257

binding landscape (Fig.1.2, Upper Right) where the ensemble of DNA sequences is258

mapped in a 1 or 2 dimensional space (their distance depending on their Hamming259

distance2) and their corresponding binding scores characterize the topography of the260

2The Hamming distance is the number of positions at which the nucleotides are di↵erent between 2
sequences.
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landscape. The distribution of binding scores informs us about the number of DNA261

ligands that have a high a�nity for a given TF while the landscape informs us about262

both the number of high a�nity DNA ligands and the similarity of their sequences.263

• The sequences with the highest binding scores are directly compared as a sequence264

logo (Fig.1.2, Left) where the 4 nucleotides are represented as stacked letters for each265

position and their relative sizes are proportional to their frequency. More sophisti-266

cated analyses have been proposed to generate the sequence logo that represents the267

most selected DNA sub-motifs (within the selected sequences) [Jolma et al., 2010]268

[Rube et al., 2018][Isakova et al., 2017]. Online tools (https://meme-suite.org) are269

also available to identify or compare motifs from high-throughput selection data.270

The sequence logo is a helpful representation to quickly identify the DNA motifs271

with the highest a�nities for transcription factors.272

273

Not included for copyright reasons

Fig. 2a from [Carlson et al., 2010] 

Figure 1.2: Sequence specificity landscapes of a DNA binding protein. Left:
distribution of the binding score obtained with CSI (Cognate Site Identifier) approach.
The sequences with the highest binding scores are compared in a sequence logo. Upper
Right: Circular sequence specificity landscape displays the binding intensities of a given
DNA ligand across all DNA permutations on the CSI array, with every sequence displayed
on the plot. We note the number of mismatches from the most selected motif (seed motif)
on each concentric circle (SSL: Sequence Specificity Landscape, PWM: Position Weight
Matrix). Taken from [Carlson et al., 2010].

However, this representation has 2 major limitations: (1) it only shows the most se-274

lected DNA sequences or motifs (and as we mentioned above, DNA motifs with small275

a�nities can be critical in the function of TFs) and (2) it assumes that each position in276

the sequence contributes additively to the overall a�nity between the DNA motif and the277

TF (it provides no information about the correlation between positions). As a result, more278
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sophisticated models have been proposed to include partial or total dependency between279

the nucleotides along the selected DNA sequences [Rastogi et al., 2018] [Robinson et al.,280

2003].281

282

All in all, these studies have shown how the high-throughput measurement of binding283

scores can be used to get a sense for the specificity landscape of TFs. However, on one284

hand, binding scores cannot necessarily be assumed to be proportional to a�nity values285

(and consequently the specificity profiles are merely qualitative in nature). On the other286

hand, there has been e↵orts to convert binding scores into dissociation constants to obtain287

a quantitative specificity landscape, but only at the cost of heavy experimental setups and288

sophisticated theoretical models [Isakova et al., 2017]. We propose in chapter 4, a new289

high-throughput approach to simply and quickly measure multiple dissociation constants290

in a single experiment in order to obtain quantitative specificity profile.291

292

In this section, we presented the investigations on TF specificity as a case study for the293

approaches used to measure specificity profiles. We next present the advantages associated294

to using a di↵erent model system – another protein whose function is critically linked to295

a�nity and specificity: the antibody.296

1.3 Antibodies as a model system297

Antibodies are major players in immune response. There function lies in identifying and298

neutralizing pathogens that can infect our organism by binding target molecules called299

antigens. Antibodies are known for there high binding specificity for target molecules. As300

an example, they must be able to di↵erentiate antigens (that belong to pathogens) from301

self-antigens (that belong to the host organism). They are also commonly used as tools302

to outline cellular structures by specifically recognizing a protein of interest. However,303

antibodies are also known for their ability to interact with very di↵erent antigens (i.e.304

their polyspecificity) (the case of broadly neutralizing antibodies is presented below). As305

an example, some theoretical studies suggest that antibodies must be able to interact with306

several target molecules in order to allow our immune system to recognize the infinite307

number of possible antigens we can encounter. To illustrate this idea, a conceptual for-308

malism called “shape space”3 has been proposed 40 years ago to represent the antibody309

antigen binding and to explain how antibodies can recognize antigens they never encoun-310

tered before [Perelson and Oster, 1979][Lapedes and Farber, 2001].311

3In a shape space, antibodies and antigens are represented as points. Their coordinates in this space
can be physical or chemical properties and the euclidean distance between antigens and antibodies is
linked to their a�nities. Each antibody can be surrounded by a sphere that represents its specificity: any
antigen located within the sphere can be recognized by the antibody. Shape space representations have
been used to understand how a finite number of antibodies could recognize an infinite number of antigens.
Namely, hypotheses have been formulated regarding the optimal size of the sphere (i.e. specificity) N
antibodies should have so their spheres fills the space S and ensure that all the antigens are recognized by
the antibodies [Perelson and Oster, 1979].
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312

Once an antibody encounters an antigen for the first time, it undergoes an acceler-313

ated evolutionary process called a�nity maturation that consists in cycles of mutations,314

selection and amplification. Over months or years, antibodies accumulate mutations in315

their sequence to increase their a�nity for this antigen. During this maturation process,316

it has been reported that specificity of antibodies evolves as well. However, it is not clear317

whether and how the a�nity and specificity coevolve over the course of antibody matura-318

tion. Di↵erent scenarios have been proposed [Eisen and Chakraborty, 2010].319

320

In the first scenario, antibodies are initially able to recognize multiple antigens but lose321

their polyspecificity over the course of a�nity maturation by decreasing their flexibility.322

It has been showed with crystallographic data that non-maturated antibodies can have323

multiple 3D conformations (allowing the binding to multiple ligands) while maturated324

antibodies can only have one conformation (allowing the binding to one single ligand)325

[James, 2003].326

327

In the second scenario, antibodies develop the ability to recognize very di↵erent anti-328

gens over the course of a�nity maturation. Typical examples are Broadly Neutralizing329

antibodies that have maturated against the HIV virus for years. Numerous studies have330

shown that broadly neutralizing antibodies developed the ability to recognize mutating331

antigen but also self-antigens [Haynes et al., 2013] [Prigent et al., 2018]. Similar observa-332

tions have been made for artificially maturated antibodies, in the context of ACT therapy4.333

It has been shown that antibodies with very high a�nity for a target molecule developed334

auto-reactivity (i.e. they recognized self-antigens) [D’Ippolito et al., 2019]. The authors335

showed that a fine balance between a�nity and specificity was necessary to develop arti-336

ficially maturated antibodies that maximize the elimination of the antigen and minimize337

the interaction with self-antigens. A theoretical study proposed a simplistic model to un-338

derstand the relationship between a�nity and specificity of proteins [Savir and Tlusty,339

2007]. Using a minimalist model of ligand and target, the authors showed that a flexible340

ligand must not perfectly match its target (i.e. must not have a maximal a�nity for its341

target) but should have a slight mismatch to maximize its binding specificity in the pres-342

ence of similar competing targets. Indeed, if 2 competing targets are very similar, and if343

the ligand has a high a�nity for the first target, it will have a medium a�nity for the344

second target. However, if the ligand has a medium a�nity for the first target, it will have345

a negligible a�nity for the second one, and thus its specificity will be increased. These346

results suggest that a maximal specificity is possible at the cost of a non-optimal a�nity.347

348

A third scenario can also be considered where there is no fundamental link between349

4During ACT therapy, T cells of a patient are collected, maturated in vitro to increase their a�nity
for an antigen, amplified and re-injected into the patient to increase the e�ciency of his immune system
against the pathogen
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the a�nity and specificity of antibodies.350

351

The 2 first scenarios suggest the existence of di↵erent selective pressures: (1) In the first352

one the antibodies evolve to bind a single antigen while in the second one (2) antibodies353

evolve to bind similar antigens. However, we still don’t know if the selective pressure354

alone can account for the non-trivial relationship that is observed between the a�nity and355

specificity of antibodies. In order to better understand what links these two properties,356

we first need to quantify the specificity of antibodies. The main question we address in357

this project is the following: can we quantitatively measure the specificity of antibodies358

(with potentially di↵erent specificity profiles) ?359

We propose to study the specificity of a pool of recombinant antibodies (called synthetic360

antibodies in this manuscript) using a DNA ligand library and a high-throughput in vitro361

selection assay (we expect the studied antibodies to have di↵erent specificity profiles and362

thus we expect to observe di↵erent binding behaviors with the DNA ligand library we363

designed).364

1.4 Our approach365

We studied a pool of synthetic antibodies (i.e. recombinant antibodies) that have been366

designed and studied as part of previous work [Boyer et al., 2016] [Schulz et al., 2021].367

The synthetic antibodies are composed of 2 main parts (Fig. 1.3): (1) A sca↵old (also368

called framework) corresponding to a 100 amino acids sequence directly taken from the369

VH region of a human antibody and (2) a CDR3 region corresponding to a 4 amino acids370

sequence acting as a binding site.371

372

2 di↵erent frameworks have been designed using 2 human antibodies. One has never373

maturated against an antigen, it is called “Germline”(-reversed). The other has matu-374

rated against the HIV virus and has accumulated 15 mutations in its VH region (it is375

called “Limited”). From these 2 frameworks, 2 libraries have been designed by random-376

izing the CDR3 region of the antibody sequences. Each library had a diversity of 105377

di↵erent antibodies.378

379

The authors screened each antibody library separately (by Phage Display) against 2380

di↵erent DNA ligands in order to identify the synthetic antibodies with the highest a�nity381

for each DNA targets.382

383

Measurement of specificity at a small scale:384

385

Then the authors investigated the specificity of a subset of synthetic antibodies using386

2 low-throughput selection experiments. They build a minimalist library of antibodies387

composed of the best binders for each DNA ligand, with Germline and Limited frameworks388
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Figure 1.3: Our protein model. The proteins are recombinant antibodies with frame-
works taken from human antibodies. We call them “synthetic antibodies”. As part of
previous work [Boyer et al., 2016], several synthetic antibodies have been designed with
di↵erent framework and CDR3 regions.

then they selected the antibodies against both DNA ligands, separately (Fig. 1.4).389

They showed that di↵erent synthetic antibodies have di↵erent specificities for 2 DNA390

ligands (some antibodies have a higher a�nity for the first DNA ligand than for the other391

one and vice versa). These results motivated the use of this system to study specificity on392

a larger scale with a high-throughput approach.393

394

Our project consists in measuring specificity at a larger scale:395

396

The authors previously selected (via Phage Display) 105 di↵erent antibodies against 2397

DNA ligands. Here we select (via SELEX) a library of 104 DNA ligands against di↵erent398

synthetic antibodies (we chose antibodies with blue and green frameworks in Fig. 1.4,399

with potentially di↵erent specificity profiles) in order to measure their specificity for DNA400

ligands. We have 2 main goals:401

(1) We want to propose a quantitative measurement of specificity (chapter 4)402

(2) We want to understand the relationship between the sequence of antibodies and their403

specificity for DNA ligands. More precisely, we ask if synthetic antibodies with various404

sequences have di↵erent average a�nities for DNA ligands (chapter 2) and if they can405

discriminate between DNA ligands with similar sequences (chapter 3).406
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affinity maturation of the 
frameworks against HIV

Figure 1.4: Comparison of selectivities for antibodies with di↵erent frameworks
and CDR3 regions. The authors build a minimalist library of antibodies with 3 di↵erent
frameworks (blue, green and red, more or less maturated against a common antigen). The
minimalist library has been selected by Phage Display against 2 DNA ligands, separately.
For each antibody, the selectivity has been calculated as the ratio between its number of
copies after and before the selection (selectivities are positively linked to a�nities). The
measured selectivities are presented in the upper plots. Taken from [Schulz et al., 2021].
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Chapter 2407

Measuring the average binding408

a�nity of antibodies for DNA409

ligands410

2.1 Context & Problem411

Antibodies have the ability to interact with a broad range of ligands such as proteins,412

peptides, polysaccharides, lipids, DNA and RNA. Specificity profile of antibodies can413

be schematized as a binding a�nity landscape where ligands are mapped in a one or414

two dimensional space and where the corresponding binding a�nities characterize the415

topography of the landscape.416

We propose an approach to investigate the global specificity of a set of antibodies by417

exploring a sub-region of their binding landscape where ligands are nucleic acids. Using418

selection assays, we estimated the average a�nity of antibodies for DNA ligands. We419

asked whether we could measure di↵erent binding a�nities to DNA ligands for antibodies420

with di↵erent sequences. We answered the question in 2 steps. First we compared the421

a�nities between 2 groups of antibodies with di↵erent frameworks. Then we verified if422

the di↵erences we observed were systematic within each group.423

2.2 How we estimated average binding a�nities of antibod-424

ies for the DNA library425

2.2.1 Presentation of our minimalist system426

The protein models we worked with are synthetic antibodies. They have been designed427

and studied as part of previous work [Boyer et al., 2016][Schulz et al., 2021]. They are428

composed of 2 regions: the framework that forms the sca↵old of the antibody and the429

CDR3 region that is directly involved in the binding of the antibody to its target (Supp.430

6.1.1). We studied 2 groups of synthetic antibodies: each group has a di↵erent framework.431

23
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The first group is composed of 6 antibodies and is called “Germline”, the framework432

comes from a human Germline(-reversed) antibody. The second group is composed of 5433

antibodies and is called “Limited”, the framework comes from a human antibody that434

has maturated against the HIV virus. Within each group, the antibodies share the same435

framework but have di↵erent CDR3 regions. In each group, some CDR3 have been chosen436

because they have the highest a�nity (from their group) for a particular DNA ligand437

(the corresponding antibodies are called “TOP”) and the other CDR3 have been chosen438

because they have a lower a�nity for the same ligand (the corresponding antibodies are439

called “Random”).440

441

We used 2 libraries of 32,768 DNA molecules (each) as ligands to measure the global442

specificity of the synthetic antibodies (Supp. 6.1.2). The DNA molecules are single-443

stranded and have a stem-loop 3D structure. They share the same sequence in the stem444

region but have di↵erent sequences in the loop region (their structure is similar to ligands445

used to select antibodies in [Boyer et al., 2016] and [Schulz et al., 2021] but their loops446

are randomized).447

2.2.2 Presentation of the selection experiments448

We had two approaches to study the binding a�nity of synthetic antibodies: We used449

the SELEX approach to have a qualitative measurement of the average a�nity of each450

antibody for one of the DNA ligand libraries, and we used the ELISA approach to have a451

quantitative measurement of a�nities between each antibody and few DNA ligands.452

453

1- SELEX approach:454

We used SELEX [Jolma et al., 2010] to estimate average binding a�nity of each synthetic455

antibody for a population of thousands of DNA molecules. During SELEX experiments,456

multiple copies of the synthetic antibody are immobilized on a solid surface and the DNA457

library is exposed to the antibody for 1 hour. After 1 hour, the DNA molecules that didn’t458

interact with the antibody are washed out and the DNA molecules in complex with the459

antibody are collected (Supp. 6.2.3, we performed a single round of selection). We then460

estimated the concentration of recovered DNA molecules using an electrophoresis gel to461

generate a binding score for each synthetic antibody (Supp. 6.3.1).462

463

2- ELISA approach:464

We used ELISA to measure the dissociation constant (i.e. a�nity) of synthetic antibodies465

for few DNA molecules, separately. During ELISA experiment, we fixed the concentration466

of the DNA molecules, varied the concentration of the antibodies and measured the con-467

centration of the antibody-DNA complex at equilibrium for each condition (Supp. 6.2.2).468

As a result we obtained a binding curve from which we could directly measure the disso-469

ciation constants of the complex and generate a binding score (Supp. 6.3.2).470
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471

For both approaches, high binding scores suggest that antibodies have high a�nities472

for the DNA library and thus can interact with DNA ligands.473

474

2.3 Results475

2.3.1 Comparison of binding a�nities between 2 groups of antibodies476

We compared the binding a�nities of Germline and Limited antibodies. If the two groups477

have similar binding a�nities, we expect them to have similar binding scores for the DNA478

library.479

480

We first used SELEX to calculate the binding scores of 1 TOP antibody in each group.481

For each antibody, we did 4 selection experiments where we varied the experimental condi-482

tions (we tested 2 di↵erent DNA libraries, and 2 di↵erent concentrations for each library).483

Thus we obtained 4 binding scores for the antibody coming from the Germline group,484

and 4 binding scores for the antibody coming from the Limited group (Fig. 2.1A). The485

results show binding scores that are higher for the Germline antibody than for the Limited486

antibody in average. If we look at each specific condition separately (matching symbols487

correspond to the same experimental conditions), the Germline antibody has systemati-488

cally a higher binding score than the Limited antibody.489

490

Then we used ELISA to calculate the binding scores of 3 TOP Limited and 3 TOP491

Germline antibodies for 1 to 3 DNA molecules (Fig. 2.1B). We used the same protocol to492

measure all the a�nity values but we couldn’t accurately measure the dissociation con-493

stant of the Limited antibodies ( their a�nity are too low for these DNA molecules so we494

didn’t manage to obtain their full binding curves). Each unsuccessful measurement of K
d

495

is displayed below the “detection threshold” line. The binding scores are systematically496

higher for Germline antibodies than for Limited antibodies.497

498

Conclusion:499

• SELEX and ELISA experiments show that the TOP Germline antibodies500

have a higher average a�nity for the DNA ligand library than the TOP501

Limited antibodies we tested.502

503

Discussion:504

• We compared Germline and Limited antibodies that were the best binders from505

their respective group, for a given DNA ligand. We systematically observed a higher506
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Figure 2.1: Germline and Limited antibodies have di↵erent average a�nities
for DNA ligands A. The Germline antibody has a higher average a�nity for the DNA
ligand library than the Limited antibody, independently of the experimental conditions.
The binding scores represent the amount of DNA ligand library collected at the end of the
selection experiment (measured with SELEX). The average a�nity of 1 Limited (LBT1)
and 1 Germline (GBT2) antibody are compared for 4 di↵erent selection protocols (DNA
libraries with 2 di↵erent constant regions and 2 DNA library concentrations). Matching
symbols correspond to the same experimental protocols. B. 3 Germline antibodies (GNT4,
GNT3, GBT3) have higher a�nities for the tested DNA ligands than 3 Limited antibodies
(LNT3, LNT4, LBT1). The binding scores have been calculated with the dissociation con-
stants measured by ELISA. The binding scores below the detection threshold correspond
to a�nities that could not be measured experimentally because they are too low.

average a�nity for the Germline antibodies. These results suggest that the frame-507

work of the synthetic antibodies control the maximal average a�nity they can reach508

for the DNA library. The Germline framework allows antibodies to have a higher509

average a�nity for DNA than Limited framework. One explanation could be that510

maturation against HIV has reduced the selection potential of Limited framework511

based antibodies.512

• The di↵erent average a�nites between Germline and Limited antibodies for DNA513

ligands suggest that these antibodies have di↵erent global specificities that are con-514

trolled by their framework.515

2.3.2 Are the di↵erences that we have seen systematic within each group516

of antibodies?517

We previously studied the e↵ect of the frameworks of TOP synthetic antibodies on their518

a�nities for DNA ligands. Now we want to study the e↵ect of the CDR3 regions of both519



2.3. RESULTS 27

TOP and Random antibodies. If the CDR3 region has no impact on the binding a�ni-520

ties, we expect all of the antibodies (TOP and Random) that share the same framework521

(Germline or Limited) to have similar binding scores.522

523

We first used the SELEX technique to calculate the binding scores of antibodies with524

the same framework but di↵erent CDR3 regions (TOP and Random). We did the same525

analysis for both groups, Germline and Limited and we tested 2 di↵erent DNA libraries526

in parallel (DNA library 1 & 2). The results are presented in (Fig. 2.2). For each exper-527

imental condition we observe the same result: the binding scores of the TOP antibodies528

are higher in average than the binding scores of the Random antibodies.529

530

Germline Limited

DNA library 1

DNA library 2

x Random antibodies

x TOP antibodies

binding 
score 
(ratio  

gel intensity)

Figure 2.2: Antibodies with di↵erent CDR3 sequences have di↵erent average
a�nities for DNA ligands. On average, TOP antibodies have a higher a�nity for the
DNA ligand library than Random antibodies. Crosses represent the individual binding
scores and dots the averages. We grouped CDR3 corresponding to TOP antibodies (black
crosses) and CDR3 corresponding to Random antibodies (green crosses). The binding
scores represent the amount of DNA library collected at the end of the selection experiment
(measured with SELEX). We didn’t systematically test all of the antibodies against both
DNA libraries, which explains the variable number of Germline and Limited antibodies in
the di↵erent plots.

Then we used ELISA to calculate the binding score of 5 di↵erent Germline antibodies531
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(that have di↵erent CDR3 sequences) for 1 to 6 DNA molecules. The results are presented532

in Fig. 2.3. When the a�nities were too low to be experimentally measured, we displayed533

the binding scores below the detection threshold. We can see that TOP antibodies have534

systematically a higher binding score than Random antibodies.535

536

binding 
score 

(1/Kd, nM-1)

Figure 2.3: Antibodies with di↵erent CDR3 sequences have di↵erent a�nities
for the tested DNA ligands. TOP antibodies (GNT3, GBT3, GNT4) have higher
a�nities for the tested DNA ligands than Random antibodies (GR1, GR2). The binding
scores have been calculated with the dissociation constants measured by ELISA. We mea-
sured the a�nities of 5 antibodies for 1 to 6 di↵erent DNA ligands. The 6 DNA molecules
are composed of 3 di↵erent DNA loops (i.e. DNA ligands) with 2 di↵erent constant regions
for each loop. We used the same experimental conditions to measure the a�nities of both
TOP and Random Germline antibodies but we couldn’t measure the dissociation constant
of Random antibodies (their a�nity for DNA ligands are too low).

Conclusion:537

• SELEX and ELISA experiments show that antibodies with di↵erent CDR3538

sequences have di↵erent average a�nities for the DNA ligand library.539

2.4 Summary540

• Wemeasured di↵erent average a�nities between the 2 groups of antibodies (Germline541

& Limited).542

– On average, Germline antibodies have a higher a�nity for DNA ligands than543

Limited antibodies.544

• The average a�nity is not systematic among antibodies that share the same frame-545

work.546
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– TOP antibodies have a higher average a�nity for DNA ligands than Random547

antibodies.548

2.5 Discussion549

• Our results suggest that binding a�nities of antibodies are controlled by both the550

framework and the CDR3 sequences on 2 di↵erent levels:551

– The framework controls the dynamic range of antibody a�nity for DNA ligands552

⇤ The comparison of TOP antibodies with Germline and Limited frame-553

works shows a higher average a�nity for Germline antibodies than for554

Limited antibodies.555

⇤ This observation is consistent with the fact that natural Germline anti-556

bodies must recognize a broad range of potential targets whereas Limited557

a�nity maturated antibodies are specialized in the binding of a particular558

biological target.559

– The CDR3 region controls the a�nity of the antibody within the dynamic range560

fixed by the framework561

• For each antibody, we estimated the average of the a�nity distribution for the DNA562

ligand library. It would be more informative to have access to the full distribution of563

a�nities (because di↵erent a�nity distributions can have the same average), using564

the calibration assay presented in chapter 4.565
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Chapter 3566

Measuring the sequence diversity567

of DNA ligands selected by568

antibodies569

3.1 Context & Problem570

In chapter 2, we defined the global specificity of antibodies as their ability to bind very571

di↵erent ligands. Using the binding landscape analogy, we presented the global specificity572

as the long-range ruggedness of their binding landscape. In this chapter, we study the573

local specificity of antibodies, i.e. their ability to discriminate between ligands that are574

similar to each other. We can describe local specificity as the short-range ruggedness of575

their binding landscape.576

We propose an approach to investigate the local specificity of antibodies by testing their577

ability to discriminate between sequences of DNA ligands (dubbed “DNA sequences”). We578

used the same library that was employed in chapter 3 to study global specificity, combined579

with a high-throughput selection assay. We asked whether di↵erent types of antibodies580

have the same ability to discriminate DNA sequences. We answered the question in 3 steps.581

First we verified if synthetic antibodies are able to discriminate DNA sequences. Then we582

compared the selected DNA sequences for antibodies sharing the same framework. And583

finally we compared the selected DNA sequences for antibodies with di↵erent frameworks.584

Measuring the ability of antibodies to discriminate molecules that are similar to each585

other in the fitness landscape is a first step in understanding the local specificity of these586

antibodies.587

31
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3.2 How we analyzed the sequences of the selected DNA588

ligands589

3.2.1 Presentation of our minimalist system590

In this section, we studied 4 Germline and 4 Limited antibodies. In each group, half are591

TOP antibodies and half are Random antibodies. We used 2 libraries of 32,768 DNA592

molecules (DNA library 1&2, Supp. 6.1.2) to measure the local specificity of these anti-593

bodies.594

3.2.2 Analysis of the deep-sequencing data in 3 steps595

We selected both DNA ligand libraries against the 4 synthetic antibodies using SELEX596

(Supp. 6.2.3, we performed a single round of selection). During SELEX, we exposed a597

DNA ligand library to one antibody and identified the DNA sequences that interacted598

the most with the latter using deep-sequencing. Deep-sequencing is used to measure the599

number of occurrences of each DNA ligand before and after its selection. The selected and600

non-selected DNA libraries are prepared for deep-sequencing with 2 successive PCR reac-601

tions during which the DNA ligands are amplified and extended with extra nucleotides.602

The goals of these extra nucleotides are to link each DNA molecule to the selection exper-603

iment it comes from and to allow its deep-sequencing (for more detail, see protocol 6.2.4).604

We performed the analysis of deep-sequencing data in 3 successive steps:605

606

Step1: Comparison of the copy number of each DNA sequence after and607

before its selection608

The principle is to compare a�nities of DNA sequences for the antibody by looking at609

their copy number after and before their selection. DNA sequences that have a high a�n-610

ity for the antibody are significantly more present after than before the selection in the611

deep-sequencing data, while DNA sequences with a low a�nity for the antibody are as612

much present after than before the selection. We typically observe 2 modes in the results613

of a selection experiment (Fig. 3.1): The first mode is composed of DNA sequences that614

have the highest a�nities for the antibody. They are located above the diagonal (we call615

them outliers). The second mode is composed of DNA sequences with lower a�nities616

for the antibody. They are located around the diagonal (we call them bulk sequences).617

The copy numbers of the outliers after their selection are principally controlled by their618

a�nity for the antibody while the copy numbers of the sequences in the bulk are a mix of619

selection and experimental noise (for more details, see Supp. 6.3.3) (the study of a�nities620

of sequences from the bulk requires a more sophisticated analysis to extract the selection621

signal). In order to correct the bias due to the non-uniform representation of of each DNA622

sequence in the initial library, we calculate the enrichment value for each sequence (see623

below).624

625
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Step2: Measurement of enrichments626

We quantified the selection of each sequence by measuring its enrichment during selection.627

The enrichment of a sequence is calculated as the ratio between its number of copies after628

and before the selection (in this study, we systematically normalized the enrichments so629

their sum equal 1). We only measured enrichments for copy numbers >10 because smaller630

copy numbers are not representative of the frequency of the sequences in the total popu-631

lation (they are dominated by experimental noise, Supp. 6.3.3).632

633

Step3: Sequence logo634

We evaluated the diversity of the nucleotides present in the most selected DNA sequences635

using sequence logos (Supp. 6.11). Sequence logos are commonly used to analyze the636

diversity of a pool of sequences by representing the information content of each position637

along the DNA sequence. The information content of a position is maximal when all the638

sequences of the pool have the same nucleotide at this position.639

3.3 Results640

3.3.1 Can antibodies discriminate DNA sequences ?641

We first asked if synthetic antibodies discriminate DNA sequences. If they do, we would642

expect to observe sequences that are significantly more present after than before the se-643

lection in the deep-sequencing data. We asked this question for the TOP (CDR3 region644

with a high a�nity for a particular DNA sequence) and the Random (CDR3 region with645

a low a�nity for the same DNA sequence) antibodies, separately.646

647

1- Can TOP antibodies discriminate DNA sequences ?648

649

We selected a DNA library against one TOP Germline and one TOP Limited anti-650

body. For each selection experiment, we compared the number of copies of the sequences651

after and before their selection (Fig. 3.1). We observe outliers in both selection experi-652

ments. In order to test if the results we observe are significant, we replicated the selection653

experiments and compared the enrichments between replicates (Fig. 6.9). The highest654

enrichments are reproducible from one replicate to another (we also compared the enrich-655

ments between selection and control experiments for each antibody in Supp. 6.4.2 and we656

showed that the outliers where specifically selected by antibodies). These results confirm657

that both antibodies discriminate DNA sequences.658

659

2- Can Random antibodies discriminate DNA sequences ?660

661

We then tested the ability of one Random Germline and one Random Limited anti-662

body to discriminate DNA sequences. The results are presented in (Fig. 3.2). We don’t663
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Figure 3.1: Synthetic antibodies discriminate DNA sequences during SELEX
experiment. Each dot corresponds to a DNA sequence. The number of copies before
selection are indicated on the x axis and the number of copies after selection are indicated
on the y axis. The selection is specific when the number of copies after the selection is
significantly higher than the number of copies before the selection. A. We selected a DNA
library against one Limited antibody (LBT1). B. We selected a DNA library against one
Germline antibody (GNT3). We observe 2 modes in both graphs: (1) One mode where
the copy numbers before and after the selection are similar, this mode is dominated by
non-specific binding (2) One mode where the copy numbers are significantly higher after
than before the selection. This mode is dominated by specific binding.

observe sequences that are significantly enriched in neither of the 2 selection experiments.664

665

Conclusion:666

• The analysis of 2 Germline and 2 Limited antibodies shows that TOP667

antibodies discriminate DNA sequences (that have the same stem but668

di↵erent DNA sequences in their loop) while Random antibodies do not,669

under the same experimental conditions.670

3.3.2 Within each group, do di↵erent antibodies select the same DNA671

sequences ?672

Before asking whether Limited and Germline antibodies select the same or di↵erent DNA673

sequences, we first need to ask whether Limited antibodies with di↵erent CDR3 regions674

select the same sequences or not, and conversely for Germline. If di↵erent antibodies select675

the same DNA sequences, we expect a correlation between the measured enrichments for676

these sequences.677
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Figure 3.2: Randomly chosen synthetic antibodies discriminate less DNA lig-
ands than antibodies previously selected against one DNA sequence, under the
same experimental conditions. A. We selected a DNA library against one Random
Limited antibody. B. We selected a DNA library against one Random Germline antibody.
We don’t observe DNA sequences that have been significantly enriched in neither of the 2
selection experiments.

678

We compared the enrichments of 2 TOP Germline and 2 TOP Limited antibodies,679

the results are presented in (Fig. 3.3 ). When comparing the 2 Germline antibodies, we680

observe a correlation between the most enriched DNA sequences. That means that the681

same DNA sequences are selected by both Germline antibodies (We tested 3 other TOP682

Germline antibodies, the few most enriched sequences were the same as the one enriched683

in Fig. 3.3 (data not shown)). On the contrary, the 2 Limited antibodies select di↵erent684

sequences (We tested a 3rd Limited antibody that selected DNA sequences di↵erent from685

the ones in Fig. 3.3B (data not shown)).686

687

Conclusion:688

• The study of 2 TOP Germline and 2 TOP Limited antibodies show that689

antibodies with Germline framework select the same DNA sequences690

while antibodies with Limited framework selected di↵erent DNA sequences.691

Discussion:692

• The results suggest that the framework of the synthetic antibodies has an impact693

on the role of the CDR3 region during selection694

• We limited our study to few antibodies. For each framework, we would need to695
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Figure 3.3: Germline antibodies select the same DNA sequences while Limited
antibodies select di↵erent DNA sequences. A. We compare enrichments between 2
Germline antibodies (GNT3 and GBT3). The highest enrichments are correlated for both
antibodies, thus these Germline antibodies select the same DNA sequences. B. We compare
enrichments between 2 Limited antibodies (LBT1 and LNT4). The highest enrichments
are not correlated between both antibodies, thus these Limited antibodies select di↵erent
DNA sequences.

test more CDR3 regions, that are more or less di↵erent from each other, in order to696

conclude on the role of the framework and CDR3 regions in the binding to the DNA697

sequence.698

3.3.3 To what extent does the constant region of DNA molecules impact699

the selection of the loop region ?700

The results encountered so far have been obtained with DNA libraries with di↵erent con-701

stant regions (DNA library 1&2, Supp. 6.2). We presented the selection of the DNA library702

2 by the Limited antibodies and the selection of the DNA library 1 by the Germline anti-703

bodies. The next question we can ask is to what extent does the constant region impact704

the selection of the loop ? If the constant region of the DNA molecules has no impact705

during selection, we expect the antibodies to select the same loops independently of DNA706

molecules’ constant region.707

708

To answer this question, we replicated the selection experiment for TOP Limited an-709

tibodies (LBT1 & LNT4) but we changed the constant region of the DNA library. The710

results are presented in (Fig. 3.4). In the left plot are compared the enrichments of DNA711

loops from library 2 for two Limited antibodies (The most selected DNA sequences are712
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highlighted for each antibody with 2 di↵erent colors). In the right plot are compared the713

enrichments of DNA loops from library 1 for the same antibodies (the same sequences are714

highlighted with the same color-code in plots A and B). The same loops are selected with715

both constant regions, but the enrichment values are higher for the DNA library 2.716

717

log10(enrichment) 
LBT1

log10(enrichment) LNT4

#sequences#sequencesA BDNA 
library 2

DNA 
library 1

Figure 3.4: 2 Limited antibodies select DNA loops independently of the constant
region of the DNA library. For both Limited antibodies (LBT1 and LNT4), the most
enriched DNA loops in the library 2 (marked in red for LBT1 and in black for LNT4)
(figure A) are also the most enriched in the library 1 (figure B). The dataset used in figure
A is the same as in figure 3.3 B.

Conclusion:718

• As far as Limited antibodies are concerned, the constant region of DNA719

molecules has a small impact on the enrichment of the DNA loops.720

721

Discussion:722

• We studied the impact of the constant region of DNA molecules on the selection of723

the DNA loops by Germline antibodies as well (Supp. 6.6). Regarding Germline724

antibodies, the constant region of DNA molecules has a non-negligible impact on725

the selection of the loop (this observation does not change the previous conclusions:726

Germline antibodies select the same DNA sequences while Limited antibodies select727

di↵erent DNA sequences).728

• For Germline antibodies, we observe the strongest selection signal with the DNA729

library 1. For Limited antibodies, we observe the strongest selection signal with the730
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DNA library 2. Consequently, for the rest of this chapter, we study the selection of731

the DNA library 1 by Germline antibodies, and the selection of the DNA library 2732

by Limited antibodies.733

3.3.4 Does the antibody framework impact the sequence diversity of the734

selected DNA molecules ?735

We compared the diversity of DNA sequences selected by Germline and Limited antibodies.736

We studied the selected sequences with 2 levels of resolution: we first studied the selection737

of the entire sequence of the loop (7 nucleotides) then we studied the selection of shorter738

sequences, i.e. DNA motifs, inside the loop (less than 7 nucleotides).739

3.3.4.1 Resolution = DNA loop740

We first analyzed the selection of the entire loop by Germline and Limited antibodies. In741

order to evaluate the diversity of the selected sequences, we generated the sequence logo of742

the outliers for 2 TOP Germline and 2 TOP Limited antibodies. The results are presented743

in (Fig. 3.5). The qualitative comparison of the sequence logos shows that the most se-744

lected sequences are di↵erent between the 2 Limited antibodies and similar between the745

2 Germline antibodies. The quantitative comparison of the sequence logo shows that the746

average information content of the selected nucleotides is higher for the Limited antibodies747

than for the Germline antibodies. Thus, each Limited antibody selects DNA ligands with748

similar sequences while each Germline antibody selects DNA ligands with more diverse749

sequences.750

751

Conclusion:752

• The framework of the antibodies we tested impacts the diversity of the753

selected DNA sequences754

• The sequence diversity of the selected DNA loops is smaller for the 2755

Limited antibodies than for the 2 Germline antibodies.756

757

Discussion:758

• We generated new sequence logo for GNT3 antibody using smaller numbers of DNA759

sequences in order to verify if the di↵erent information contents we observed in760

Fig. 3.5 are due to antibody binding specificity or sampling size (Supplementary761

Fig. 6.11). We obtain similar sequence logos independently of the number of DNA762

sequences we include in the analysis (for GNT3).763

• Because we limited this analysis to the outliers for each selection experiment, we were764

reduced to the analysis of a sub-sample of DNA sequences (between 9 and 150 out765

of the 32,768 present in the library). We could redo the same selection experiments766
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information 
(bits)
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LBT1 (N=52) LNT4 (N=9)

GNT3 (N=160) GBT3 (N=18)

Figure 3.5: Limited antibodies select DNA ligands with similar sequences (high
information content) while Germline antibodies select DNA ligands with di↵er-
ent sequences (low information content). Here we present the 9 nucleotides forming
the loop (including the first (position 0) and last (position 8) nucleotides that close the
loop). We represented the sequence logo of the most enriched loops for 2 Germline (GNT3,
GBT3) and 2 Limited (LBT1, LNT4) antibodies. Each sequence logo has been generated
with di↵erent numbers of sequences (N) because we only considered the outliers in our
analysis (the outliers are dominated by specific binding).

with optimal experimental conditions to maximize the number of outliers for each767

antibody768

• The optimal experimental conditions that maximize the number of outliers can be769

identified with a calibration experiment (Chapter 4)770

• It is likely that Germline antibodies select loop sequences that disorganize the stem-771

loop structure of the DNA library 1. Most of the enriched DNA loops have a sequence772

that matches a sub-region of the stem. These loop sequences can perturb the stem773

loop folding of the DNA molecules and generate alternative 3D structures. The774

selection of these particular DNA sequences has only been observed for Germline775

antibodies.776

3.3.4.2 Resolution = DNA motifs inside the loop777

We previously analyzed the selection of the entire loop by antibodies. The sequence logos778

in Fig. 3.5 showed conserved nucleotides at consecutive positions which suggests the se-779

lection of DNA motifs inside the loop.780

781
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1) Do antibodies select DNA motifs ?782

783

If an antibody selects specific DNA motifs, we expect to observe the same motifs mul-784

tiple times in the most enriched sequences.785

786

We did a simple test where we identified a potential DNA motif (“ATAT”) in the787

sequence logo of a TOP Limited antibody (Fig. 3.5, LBT1) and we highlighted all the788

DNA sequences that contain this motif (at the 4th position in the loop) in the Fig. 3.6.789

Half of the most selected DNA sequences share this motif.790

791

NNNATAT

log10(#copies) 
(after selection)

log10(#copies) 
(before selection)

#sequences

Figure 3.6: Synthetic antibodies can select 4 nucleotides motifs inside the loop
of the DNA molecules. We highlighted in red all the sequences that share the same
motif “ATAT” at the fourth position in their loop. The DNA motif is present in half of
the outliers. The dataset used in this figure is the same as in figure 3.1 A.

Conclusion:792

• The TOP Limited antibody (LBT1) selects DNA motifs inside the 7 nu-793

cleotides loop of the DNA molecules.794

795

Discussion:796

• We observe DNA sequences containing this motif in the TOP region of the bulk.797

• This observation suggests that despite the fact that the experimental noise is domi-798

nant in the bulk (Supp. 6.3.3), the distribution of the sequences in this region also799
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depends on their a�nity for the antibody.800

801

2) Can we include all the sequences (outliers and bulk) in the study of the selection of802

motifs ?803

804

The analysis of the selected DNA loops showed enrichments that were not reproducible805

(between replicate experiments) for the smallest values (Fig. 6.9). We propose to analyse806

the selection of DNA motifs inside the loops and see if we can obtain more reproducible807

enrichments.808

To do so, we compared the enrichment values between replicate experiments and we809

used the same datasets for both analyses (first and second levels of resolution). The com-810

parison of the enrichments with the first analysis (selection of loops) is presented in Fig.811

3.7A and the comparison of the enrichments with the second analysis (selection of motifs)812

is presented in Fig. 3.7B (For more details about the analysis of motifs, see Supp. 6.3.5,813

here we analyzed the 4 nucleotides motifs located at the beginning of the loops). The814

analysis of selected motifs gives more reproducible enrichment values (The coe�cient of815

determination that was used to assess the reproducibility of the measurements was in-816

creased by almost one order of magnitude).817

818

Conclusion:819

• The “whole-loop” level of resolution limits our study to the outliers (they820

are the only sequences with reproducible enrichments).821

• The “motif” level of resolution allows us to include all the sequences822

(outliers and bulk sequences) in our analysis.823

824

Discussion:825

• The reason why enrichments of motifs are more reproducible than enrichments of826

loops can be explained by the fact that the enrichments of motifs correspond to the827

average enrichments of more than 100 sequences containing these motifs in their828

loop. Consequently, the sampling bias that was dominant in these sequences is av-829

eraged out and we can partially extract the selection signal from these sequences.830

831

3) Do all motif parameters carry information ?832

833

In this section we call parameters the length of the motifs we study and their position834

along the loop. We previously chose arbitrary parameters to study the selection of DNA835

motifs. Here we ask if all parameters can be used to study the selection of DNA motifs836

by synthetic antibodies: do the length of the motifs and their position on the loop matter837
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Figure 3.7: The average enrichments of the motifs are more reproducible than
the individual enrichments of the DNA loops. We used the same datasets (DNA
library selected by LNT4, in 2 replicates) to compare 2 types of analysis A. We compared
the enrichments of individual DNA loops (1st level of resolution) between 2 replicate exper-
iments. The R2 score indicates a low reproducibility between the 2 replicate experiments.
B. We compared the average enrichment of the 4 nucleotides DNA motifs (2nd level of
resolution) (located at the beginning of the loop) between replicate experiments. This
analysis allows a 7.8 folds increase of the R2 score and thus increases the reproducibility
of the enrichments.

? We had two di↵erent criteria to estimate the quality of the parameters we chose:838

839

1- The parameters must maximize the cross-validation score.840

The principle of cross-validation is the following: we split the dataset (containing the en-841

riched sequences) in 2, test the same analysis on both half of the dataset separately and842

then compare the enrichments of each motif calculated in each sub-dataset. If we mea-843

sure the same enrichments in both sub-datasets (equivalently, if the R2 score associated844

to the comparison of both dataset tends to 1), it means that the analysis can be used to845

accurately describe the data (it will give the same results for replicate experiments). For846

each set of parameters we tested, we systematically measured the corresponding cross-847

validation score.848

849

2- The parameters must minimize the correlation between the selection and850

its control experiment.851

The principle is to test the same analysis on both the selection experiment (where we852

select a DNA library against one antibody) and its control experiment (where we select853

the same DNA library against an empty plate). Then we compare the enrichments of each854
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motif calculated for each experiment. If the enrichments are the same between the exper-855

iments (equivalently, if the R2 score associated to the comparison of both dataset tends856

to 1), it means that the parameters we chose didn’t allow us to identify the motifs that857

were specifically selected by the antibody. In this case we must change the parameters858

and repeat the procedure until we observe DNA motifs that are specifically selected by the859

antibody (and are not selected in the control experiment). For each set of parameters we860

tested, we systematically compared the enrichments measured in the selection and control861

experiments, in order to identify DNA motifs that are specifically selected by the antibody.862

863

We do not present the systematic investigation of these parameters. We present in864

(Fig. 3.8) 2 sets of parameters (length=3, position=1 & length=4, position=4): In the865

first one, the parameters maximize the cross validation score but generate also a high866

correlation between the selection experiment and its control. In the second one, we obtain867

a smaller cross-validation score but a more specific signal of the selection by the antibody.868

869

Conclusion:870

• The choice of the length and position of the motifs in the loop is critical871

to capture the specific selection of motifs by antibodies.872

873

4) Can the same parameters be used to study the selection of motifs for di↵erent antibod-874

ies (Germline and Limited)?875

876

We previously showed that di↵erent antibodies can select di↵erent DNA loops (Fig.877

3.5). Here we ask if these antibodies can also select di↵erent DNA motifs. We addressed878

this question using a single set of parameters for all the antibodies (length=4 and posi-879

tion=4). We analyzed the selected motifs of di↵erent Limited and Germline antibodies in880

2 steps: first we compared the enrichments of the selected motifs, then we compared their881

DNA sequences (for each antibody, we verified the cross validation score and the correla-882

tion between selection and control experiments, as explained in the previous section, see883

Supplementary Fig. 6.14 & Supplementary Fig 6.15).884

885

The comparisons of the enrichments between Limited and between Germline antibod-886

ies are presented in (Fig. 3.9). The results show that a unique set of parameters allows us887

to identify specific motifs for each Limited antibody and common motifs for both Germline888

antibodies (We observed the same trends when we compared the enrichment of the entire889

loop (Fig. 3.3)). Note that despite the fact that both Germline antibodies tend to select890

the same DNA motifs, we can see that the most selected motifs are not all the same for891

both antibodies.892

893

We then studied the diversity of the selected motifs using the sequence logo representa-894
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Figure 3.8: The choice of the length and position of motifs inside the loops in
the second level of analysis is critical to measure specific binding. The TOP
plots (figA and B) show cross-validation results of average enrichments of DNA motifs (a
good cross-validation is characterized by a high R2 score). The bottom plots (fig C and
D) show the comparison of enrichments between selection experiment (performed with an
antibody) and control experiment (performed without antibody). Specific selection signal
is characterized by orthogonal enrichments and low R2 score. In the first column, we
consider motifs of 3 nucleotides located at the beginning of the loop. Despite the high
cross validation score (figA), we cannot clearly identify DNA motifs that are specifically
selected by the antibody (figC). In the second column, we consider motifs of 4 nucleotides
located at the end of the loop. The cross validation score is smaller (figB) but we can
identify DNA motifs specifically selected by the antibody (figD).

tion. We build a sequence logo of the 5 most selected DNA motifs (corresponding to more895

than 500 selected DNA sequences) for each Limited and Germline antibodies. The data896

are shown in (Fig. 3.10). For both Limited antibodies, we can notice the presence of the897

motifs “ATAT” for LBT1 and “GACA” for LNT4 (they are also visible in the sequence898

logo of the most enriched DNA loops, in Fig. 3.5 LBT1, LNT4). We observe similar899

sequence logos for LNT4 and GBT3 antibodies. The average information content in each900

sequence logo is similar for both the Limited and Germline antibodies.901

902

Conclusion:903
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Figure 3.9: Limited antibodies select di↵erent DNA motifs while Germline an-
tibodies select the same motifs, in average. We calculated the average enrichments
of 4 nucleotides motifs located at the end of the loop for 2 Limited (LNT4 and LBT1)
and 2 Germline (GNT3 and GBT3) antibodies. A. Comparison of enrichments between
the 2 Limited antibodies. Both antibodies selected di↵erent DNA motifs. The red cross
corresponds to the most selected DNA motif ’ATAT’ by LBT1, that we could already
observe in the sequence logo of the most selected loops (Fig. 3.5, LBT1). The blue cross
corresponds to the most selected DNA motif ’GACA’ by LNT4, that we could already
observe in the sequence logo of the most selected loops in (Fig. 3.5, LNT4). Comparison
of enrichments between the 2 Germline antibodies. Both antibodies select the same DNA
motifs.

• The use of a unique set of parameters allows us to identify motifs that904

are specifically selected by Germline and Limited antibodies.905

906

Discussion:907

• For each antibody, we can measure specific binding of DNA motifs with di↵erent set908

of parameters.909

• The next challenge would be to systematically and automatically look for the optimal910

parameters for each antibody.911

• We can test models where the position of the motifs is not fixed within the loop.912

3.4 Summary913

• The first level of analysis informs us that synthetic antibodies can discriminate DNA914

loops of 7 nucleotides in a library of 32,768 DNA molecules.915
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Figure 3.10: Sequence logo of the 5 most selected DNA motifs for 2 Germline
and 2 Limited antibodies

• The second level of analysis informs us that synthetic antibodies recognize 4 nu-916

cleotides DNA motifs inside the loops .917

• The constant region of DNA molecules has minimal impact on the selection of the918

loop for Limited antibodies.919

• For the 4 tested antibodies, we observed that di↵erent Germline antibodies select920

the same DNA loops while di↵erent Limited antibodies select di↵erent DNA loops.921

• The framework impacts the diversity of the selected DNA sequences.922

• The diversity of the selected DNA sequences is higher for Germline than for Limited923

antibodies.924

• The second level of analysis based on the selection of DNA motifs allowed us to925

extract selection information from sequences dominated by the sampling noise.926

3.5 Discussion927

• The 2 groups of antibodies we tested select DNA sequences with di↵erent levels of928

diversity929

• In order to verify if the di↵erences we observed are systematic for all the antibodies930

that share the same framework, we need to study more Germline and more Limited931

antibodies.932
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• When using sequence logos to study the diversity of selected DNA sequences (at933

the scale of the loop, or at the scale of the motif), we made the assumption that934

each nucleotide contributes additively to the binding of the DNA molecule to the935

antibody (we didn’t investigate the correlation between the di↵erent nucleotides in936

the sequence).937

• With more time, we could test more sophisticated models that take into account the938

inter-dependency of the positions in the loops (or in the motifs) by adding parameters939

that describe the correlation between nucleotides that are far away in the sequence.940

• The measurement of the diversity of selected DNA sequences for di↵erent antibodies941

informed us on their ability to discriminate between similar DNA ligands.942

• Based on these results, we can formulate hypotheses regarding the local specificity943

of these antibodies for nucleic acids.944

• Despite the small number of antibodies we tested, we can make the hypothesis that945

Limited antibodies have a higher local specificity than Germline antibodies.946

• Limited antibodies have small a�nities for DNA ligands but discriminate with high947

precision the DNA sequences.948

• Germline antibodies have high a�nity for DNA ligands but discriminate with low949

precision the DNA sequences.950

• Beyond these conclusions, we have set-up tools that can be in general applied to951

compare binding specificity profiles.952
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Chapter 4953

High-throughput experimental954

measurements of binding a�nities955

4.1 Introduction956

4.1.1 Context & Problem957

In previous chapters, we schematized the specificity profile of proteins as a binding a�nity958

landscape. We proposed a high-throughput selection assay to investigate the long-range959

ruggedness of the landscape (or global specificity) by estimating the average a�nity of960

antibodies for DNA ligands (Chapter 2). We then investigated the short-range ruggedness961

of the landscape (or local specificity) by measuring the sequence diversity of DNA ligands962

recognized by the antibodies (Chapter 3). In these approaches, we used enrichments,963

i.e. ratio of the number of copies of DNA ligands after and before their selection by the964

antibody, as proxy of a�nity (the highest enrichments correspond to the highest a�nities).965

However, the relationship between both measurements is not trivial. In order to rigorously966

investigate the binding a�nity landscape of antibodies, we need to systematically measure967

a�nities of antibody for DNA ligands.968

Let us consider a simple reversible binding reaction where one ligand A meets one969

target B to form a complex C:970

A+B
k���*)��
k+

C (4.1)

k+ is the association rate constant and k- the dissociation rate constant. One commonly

used definition of the a�nity is the dissociation constant (K
d

) with units of moles per liter

(the lower the values of K
d

, the stronger the binding reaction).

K
d

=
k�
k+

=
[A]

eq

[B]
eq

[C]
eq

(4.2)

The dissociation constant (K
d

) is generally measured in the lab using equilibrium experi-971

49
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ments. The principle is to measure the equilibrium concentration of the ligandA-targetB972

complex over a range of concentrations of one of the reactants (ligand A or target B)973

in order to build a binding curve from which we can infer the dissociation equilibrium974

constant. The concentration of complexes are generally measured through chemical and975

optical assays which allow the measurement of one dissociation constant at a time.976

977

The general question of this chapter is the following: How to combine a high-throughput978

selection assay with the quantitative measurement of a�nities to obtain the binding a�n-979

ity profile of protein targets for a library of ligands, in a single experiment?980

4.1.2 State of the art981

Several high-throughput approaches have been designed to measure multiple dissocia-982

tion constants in parallel (generally between a library of ligands and a target, except for983

[Aditham et al., 2021] where they measured the dissociation constants of multiple lig-984

ands for multiple targets in parallel). In [Aditham et al., 2021] the authors measured985

the a�nities of more than 1500 di↵erent transcription factor-DNA complexes by perform-986

ing each binding experiments in separate environments using microfluidic protein arrays987

(STAMMP). They used a microfluidic plateform and designed more than 1500 reaction988

chambers in which the binding curves were separately monitored with fluorescence mea-989

surements.990

In [Adams et al., 2016], the authors used yeast display to study the interaction between a991

library of recombinant antibodies (library of ligands) and an antigen (target) by building992

thousands of binding curves in parallel. During yeast display, the library is expressed993

on the surface of cells (each cell displays a single type of antibody, and each type of an-994

tibody is present on multiple cells). The target is labeled with a fluorescent tag so the995

stronger the a�nity between the target and the antibody, the more fluorescent the cell will996

be. After the incubation, the yeast with the highest fluorescent signal are collected and997

deep-sequenced. This selection experiment has been repeated several times with di↵erent998

concentrations of targets to build the binding curves. The yeast display approach has also999

been used in [Kowalsky and Whitehead, 2016] to measure in a high-throughput fashion1000

the dissociation constant of dockerin protein domain (target) for a library of thousands of1001

cohesin domain mutants (library of ligands), in parallel.1002

In [McGeary et al., 2019], [Lambert et al., 2014] and [Dominguez et al., 2018], the1003

authors studied the binding of di↵erent proteins (targets) to RNA sequences (library of1004

ligands) using the RBNS approach. The RBNS is a combination of 2 techniques (SELEX1005

and Bind-n-Seq) that have been adapted to the study of RNA-proteins interaction and to1006

the generation of binding curves. Multiple binding experiment are performed in parallel1007

with various concentrations of the protein target. The reactants are exposed for one hour1008

and collected using a solid surface as nitrocellulose membrane, resin or magnetic beads.1009

1010
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In these studies, the authors managed to significantly enhance the number of dissocia-1011

tion constants we can measure in the lab by performing more than 1500 a�nity measure-1012

ments in a single experiment. In the studies where all the binding reactions happen in1013

the same mix (yeast display and RBNS), the procedure is always the same: the authors1014

fixed the concentration of the library of ligands and varied the concentration of the tar-1015

get. The reactants are free during the binding reaction, and the complexes are collected1016

by various means (sorting according to fluorescent signal or capture with solid surfaces).1017

The studies based on microfluidics require sophisticated experimental setup that are not1018

accessible to all the labs. Using microfluidics or FACS require extra steps of optimization1019

before they can capture the signal of interest. RBNS has been developed for the study of1020

RNA and thus contained sensitive steps like transcription to generate RNA ligands and1021

reverse transcription to deep-sequence RNA sequences. Each new approach has its own1022

sources of noise: In FACS based approaches, the binding model must take into account1023

the variable number of proteins of interest that are expressed on the surface of the yeasts1024

as wells as the autofluorescence of the cells that can interfere with the fluorescence of the1025

selection. In the RBNS experiments, the non-specific recovery of the free molecules must1026

be included in the binding model to obtain a more accurate description of experimental1027

data.1028

4.1.3 Our approach1029

In this project, we designed a calibration experiment that is a cheap, easy to set-up and1030

high throughput approach to measure multiple K
d

in parallel between a library of DNA1031

ligands and a target protein. We re-purposed SELEX (Systematic evolution of ligands1032

by exponential enrichment) which is a high-throughput binding assay used to identify the1033

DNA ligands with the highest a�nities for a protein of interest. The output of this assay1034

are deep-sequencing data (the sequence of several millions of DNA molecules are read1035

among those present in the output of the assay) that contain the sequences of the DNA1036

ligands that interacted the most with the protein. While SELEX is generally used to1037

qualitatively identify the best DNA binders for a protein of interest with little knowledge1038

about the fundamental drivers and the crucial parameters of this experiment, we propose1039

to adapt the protocol of SELEX to the problem of measuring dissociation equilibrium1040

constant by performing multiple SELEX experiments over a range of concentrations of1041

one of the reactants. From deep-sequencing data, we measure the number of copies of1042

DNA ligands after and before their selection in order to calculate their enrichments (the1043

enrichments are normalized so their sum equal 1) for each tested concentration, then we1044

build their individual binding curves from which the dissociation constant can be inferred.1045

1046

In this chapter we propose to: (1) perform the calibration experiment and build the1047

binding curves of 1 target protein for 218 DNA ligands in parallel, (2) identify the factors1048

that link the experimental measurements of enrichments to a�nities and (3) explore the1049
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experimental parameters that maximize the resolution of the calibration experiment.1050

1051

Our goal is to propose an experimental setup that measures quickly and with little1052

material the a�nity profile of a synthetic antibody for a library of single-stranded DNA1053

ligands. The long term goal is to apply this technique to several synthetic antibodies in1054

order to quantitatively compare their binding profiles for this DNA library.1055

4.2 Presentation of the calibration experiment1056

4.2.1 Our ligand-target system1057

The target model used in this section is a synthetic antibody (“GNT3”) designed and1058

studied as part of previous works [Boyer et al., 2016] [Schulz et al., 2021]. The syn-1059

thetic antibody is a recombinant human heavy chain that consists in a 100 amino-acids1060

sequence acting as a sca↵old (the sequence comes from a Germline(-reversed) antibody),1061

and a CDR3 sequence of 4 amino-acids (R, T, K and H) acting as a binding site (Fig. 1.3).1062

1063

The ligand model is a single-stranded DNA molecule with a stem-loop structure (Fig.1064

6.2). We designed a library of 218 di↵erent DNA ligands that have the same stem but1065

di↵erent loop sequences. This minimalist DNA library was used for the proof of concept1066

of our calibration experiment.1067

1068

4.2.2 The calibration experiment is a high-throughput technique to mea-1069

sure the K
d

of a protein for 218 ligands in parallel1070

The goal of this high-throughput calibration experiment is to generate binding curves of1071

218 DNA ligands in parallel. The procedure is the following:1072

1073

step1 : Selection experiments1074

The calibration assay consists in 7 SELEX experiments that are performed in parallel, in1075

separate wells. Di↵erent concentrations of the DNA library (0.1pM, 1pM, 10pM, 100pM,1076

1nM, 10nM, 100nM and 1µM) are added to the same quantity of immobilized antibody1077

(12.5 pmol). The DNA and antibodies are incubated together for one hour, and the free1078

DNA molecules are removed with multiple washing steps. The DNA molecules in complex1079

with the antibody are detached and collected for the next step (Supp. 6.2.3).1080

1081

step2 : Deep-sequencing1082

Deep-sequencing is used to measure the number of occurrences of each DNA ligand before1083

and after its selection. The selected and non-selected DNA libraries are prepared for deep-1084

sequencing with 2 successive PCR reactions during which the DNA ligands are amplified1085

and extended with extra nucleotides. The goals of these extra nucleotides are to link each1086
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Figure 4.1: The high-throughput calibration assay is based on SELEX approach.
(The calibration assay is composed of 7 SELEX experiments performed in parallel with
the same concentration of antibody but di↵erent concentrations of DNA library). For
each SELEX experiment, a DNA library (whose diversity can reach 104 DNA ligands) is
selected against a synthetic antibody immobilized on a solid surface. After one hour of
incubation, DNA ligands with the lowest a�nities are washed away and DNA ligands with
the highest a�nites are collected and deep-sequenced to be identified and quantified.

DNA molecule to the selection experiment it comes from and to allow its deep-sequencing1087

(for more detail, see protocol 6.2.4).1088

1089

step3 : Enrichments and binding curves1090

We calculated the enrichment of each DNA ligand as the ratio between its number of1091

copies after and before its selection against the antibody (we systematically normalized1092

the enrichment values so their sum equal 1). Here we assess that all the calculated en-1093

richments are representative of the a�nities between the DNA ligands and the antibody1094

(i.e. the enrichment values are positively correlated with a�nities). This assumption has1095

limitations: DNA ligands with small copy numbers are particularly exposed to experi-1096

mental biases such as sampling1 (Supp. 6.3.3). As a result, enrichment calculated with1097

small copy numbers does not reflect the a�nity of the DNA ligand for the antibody. In1098

this section, we assumed that this experimental bias was negligible and we plotted the1099

enrichment of each DNA ligand according to the DNA library concentrations that were1100

used during selection to build the 218 binding curves.1101

1The sampling is the sudden reduction of the number of DNA ligands during the calibration experiment.
The most critical sampling steps are the following: (1) during selection, a limited number of DNA ligands
can interact with the antibodies and (2) for deep-sequencing, we only collect a small fraction of the total
DNA ligand population. During these sampling steps, the small copy numbers are more sensitive to
variability and consequently do not reflect the frequency of the DNA ligands in the total population.
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1102

To sum-up, we used 7 wells to obtain 218 binding curves in a single calibration exper-1103

iment. From these binding curves, we proposed 2 approaches to measure the dissociation1104

constants in this chapter.1105

4.2.3 ELISA is used as a low-throughput technique to measure the K
d

1106

of a protein for one ligand at a time1107

From the library presented above, we took 3 DNA ligands and measured their a�nity for1108

the antibody (GNT3) with another approach (ELISA) in order to compare these results1109

with the data obtained with the high-throughput calibration assay. ELISA assay described1110

below allows the measurement of one binding curve at a time:1111

1112

step1 : Selection experiments1113

The calibration procedure consists in 8 binding experiments that are performed in paral-1114

lel, in separate wells. Di↵erent concentrations of antibodies (one single antibody is used,1115

in multiple copies) are added to the same quantity of immobilized DNA molecules (one1116

single DNA sequence is used, in multiple copies). The DNA molecules and antibodies1117

are incubated together for one hour, and the free antibodies are removed with multiple1118

washing steps. The antibodies in complex with the DNA molecules are quantified in the1119

next sep (Supp. 6.2.2).1120

1121

step2 : Quantification of the formed complex and binding curve1122

The concentration of formed complexes at equilibrium is indirectly measured via the1123

ELISA colorimetric assay (The absorbance measured in each well is positively correlated1124

with the concentration of formed complexes). We plotted the measured absorbance ac-1125

cording to the antibody concentration that was used during the selection to build the1126

binding curve. From the binding curve, we inferred the dissociation constant (The proce-1127

dure is explained in Supp. 6.2.2).1128

1129

To sum-up, we used a total of 24 wells to obtain 3 binding curves. We directly inferred1130

the dissociation constant from each binding curve using a Hill function.1131

4.3 Results1132

4.3.1 Our calibration experiment allows us to generate 218 binding1133

curves at the same time1134

4.3.1.1 This experimental setup provides a high-throughput access to enrich-1135

ment values1136

We selected the 218 DNA ligands of the minimalist library against the synthetic antibody1137

and measured their binding curves using the calibration experiment presented above. The1138
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results are shown in Fig. 4.2. We can observe 3 regimes of DNA concentration. The first1139

and third regimes, corresponding respectively to DNA concentrations smaller or larger1140

than 102nM, show enrichment values of antibody-DNA complexes that are closer to each1141

other. The second regime, corresponding to the DNA concentrations around 102nM, cor-1142

responds to the regime where the enrichments are the most di↵erent from each other (the1143

ranking between the enrichment values is the most conserved among DNA concentrations1144

ranging from 101 to 103nM ,supplementary Fig. 6.16).1145

1146

[DNA]total (nM)

enrichment

Figure 4.2: 218 binding curves are obtained in a single high-throughput cali-
bration assay. The enrichments of 218 DNA ligands have been measured for 7 selection
experiments with DNA concentrations ranging from 10�3 to 103 nM. We can identify 3
regimes of DNA concentration: the first regime with [DNA]< 102nM, the second regime
with [DNA]' 102nM and the third regime with [DNA]> 102nM. The dynamic range of
the enrichment values it the highest in the second regime.

Conclusion:1147

• The high-throughput calibration assay allowed us to measure 218 binding1148

curves at the same time.1149

• There is an optimal DNA concentration that maximizes the discrimina-1150

tion of the DNA ligands during selection.1151
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4.3.1.2 The comparison of the high-throughput calibration and ELISA data1152

shows a linear relationship1153

To verify that the enrichments we measured are linked to the a�nity of the DNA ligands1154

for the antibody, we compared the high-throughput calibration data (for [DNA]=102nM)1155

with ELISA data for 3 DNA ligands. We compared the binding energies with the logarithm1156

of the enrichments in Fig. 4.3. We observe a linear relationship between the calibration1157

experiment and ELISA data (the lowest binding energy correspond to the most enriched1158

DNA ligand).1159

1160

R2 = 0.998
slope = -0.437

log(enrichment)

binding free energies (kBT)

Figure 4.3: Comparison of calibration and ELISA data for 3 DNA ligands. We ob-
serve a linear relationship between the logarithm of the enrichments measured with calibra-
tion and the binding energies indirectly measured with ELISA. The binding free energies
are estimated from the experimental dissociation constants by the equation: �G

i

= lnKi

d

with �G
i

the binding free energy of the complex DNA
i

-antibody expressed in units of
k
B

T andKi

d

the dissociation constant of the complexDNA
i

-antibody measured by ELISA.
The sequences of the 3 DNA ligands have been picked randomly.

Conclusion:1161

• The ranking of the selected DNA ligands are related to their a�nity for1162

the antibody.1163

• There is a linear relationship between the log of the enrichments and the1164

binding energies for the 3 datapoints we tested (with [DNA]=102nM).1165

1166

Discussion:1167

• The correlation we observe for the 3 datapoints is reinforced by the fact that the 21168

experimental setups we compared are very di↵erent from each other: the antibody1169
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is immobilized and its concentration is fixed during the high-throughput calibration1170

while the antibody is free and its concentration varies during ELISA.1171

• We can predict a linear relationship between the log of the enrichments and the1172

binding energies for the ligands that are between the two extreme data-points that1173

we picked for the ELISA.1174

• In order to verify the robustness of the linearity, we could compare the binding1175

energies and enrichments of more DNA ligands.1176

• High-throughput selection experiments are commonly used to study binding proper-1177

ties of proteins based on enrichment data without systematically measuring a�nities1178

[Fowler et al., 2010] [Jolma et al., 2013].1179

• Linearity assumption is validated under the condition that the dynamic range of the1180

studied K
d

does not exceed 10 [Kowalsky and Whitehead, 2016]. This condition is1181

rarely verified in studies working with selection experiments, and thus the building1182

of binding curves is necessary to accurately measure a�nities.1183

4.3.1.3 A combined use of SELEX and ELISA can provide access to a�nity1184

distributions under linear conditions1185

We used the enrichment values (for [DNA]=102nM) to deduce the binding energies of1186

the 218 DNA ligands based on the linear relationship we observed for the 3 tested DNA1187

ligands in the previous section. The distribution of the binding energies is presented in1188

Fig. 4.4. The 2 dashed lines correspond to the binding energies of the tested DNA ligands1189

(we represented the 2 most di↵erent binding energies, the ligands located between these1190

values represent 52% of the DNA library). The binding energies between these limits have1191

been interpolated and thus should be more trusted than the binding energies outside these1192

limits that have been extrapolated. We need more measurements of binding energies to1193

verify if the extrapolated values are correct.1194

1195

Conclusion:1196

• Under linear condition, we can deduce binding energies by combining1197

high-throughput calibration and ELISA data.1198

1199

Discussion:1200

• The assumption of a linear relationship between the calibration experiment and the1201

ELISA data has limitations.1202

• The long-term goal of our approach is to compare antibodies with di↵erent binding1203

profiles, and thus K
d

that can be very di↵erent for the same ligands. Consequently,1204
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binding free energies (kBT)

#sequences

Figure 4.4: Distribution of the binding energies of the DNA library deduced
from the linear relationship between calibration and ELISA data. The vertical
dashed lines correspond to binding energies of the 2 (most di↵erent) datapoints we tested.
The linear relationship between calibration and ELISA data allowed us to interpolate
(deduce energies between the tested datapoints) and extrapolate (deduce energies outside
the tested datapoints) the 218 binding energies using their enrichment values. We have a
higher confidence in the binding energy values between than outside the tested datapoints
because we don’t know what is the dynamic range of the binding energies that are linearly
related to the enrichments.

we need to find a new approach to measure dissociation constants, that does not1205

depend on a linear relationship between the enrichments and binding energies.1206

• We need to understand how the enrichments we measure experimentally are linked1207

to the K
d

. This is the purpose of the next section.1208

4.3.2 A simple binding model based on the specific binding of the DNA1209

ligands to the antibody does not describe the experimental data1210

4.3.2.1 Why do we need to identify the factors that link the experimental1211

data to the KDs we want to infer?1212

1- We identified 3 regimes of selection in the experimental data (Fig 4.1). This observation1213

suggests a non-trivial relationship between the enrichments and the K
d

that depends on1214

the concentrations of reactants we use during calibration.1215

1216

2- Without further experimental verification, we do not know if there is a linear relation-1217

ship between all the binding energies and their corresponding enrichments. Consequently,1218

we need to identify the model that links both measurements.1219

1220
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3- The studies presented in the beginning of this chapter reported the presence of exper-1221

imental noise in their data. Consequently, they had to adapt their selection model to1222

accurately measure the dissociation constants: (1) during yeast display, the authors took1223

into account the varying number of antibodies expressed on the surface of the cells as well1224

as the auto-fluorescence of the cells during sorting in their binding model [Adams et al.,1225

2016] (2) The collection of formed complexes during RBNS experiment was accompanied1226

with the unwanted capture of free reagents, so the authors included this non-specific re-1227

covery in their binding model as well [McGeary et al., 2019].1228

1229

Multiple factors can be considered in the link between experimental data and K
d

we1230

want to measure. To identify these factors, we can simulate the calibration experiment1231

with several selection models and identify the one that could possibly explain our data.1232

4.3.2.2 Presentation of the selection model & identification of the factors that1233

link our data to the a�nities1234

The output of the calibration experiment are enrichments2 of DNA ligand Ai (i 2 {1,...,N}),1235

obtained for di↵erent DNA concentrations. The enrichment of a ligand A
i

can be written1236

as following:1237

1238

enr
A

i

=
P
sel,A

i

NP
j=1

P
sel,A

j

(4.3)

where P
sel,A

i

is the probability of A
i

to be selected (enr
A

i

normalize P
sel,A

i

values so1239

their sum equal 1, as we did for the enrichment values measured experimentally). We can1240

formulate di↵erent selection models to link the probability of a A
i

to be selected to its1241

a�nity for the protein target T (the concentrations are measured at equilibrium):1242

1243

1- Selection model 1 (specific binding):1244

We make the assumption that the only interaction that happens during selection is the1245

binding of the DNA library to the target. In this scenario, A
i

can be in 2 states: either1246

it is bound to the target (AiT ) or it is free in solution (Ai). Its probability of selection1247

P
sel,A

i

is written as following:1248

1249

P
sel,A

i

=
[AiT ]

eq

[AiT ]
eq

+ [Ai]
eq

=
1

1 +
K

A

i

T

[T ]
eq

=
1

1 +
K

A

i

T

[T ]
tot

�
NP

j=1
[Aj

T ]
eq

(4.4)

2We experimentally measure the enrichment of each DNA ligand as the ratio between its number of
copies after and before the selection. We systematically normalized the enrichment values so their sum
equal 1.
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with K
A

i

T

=
[AiT ]

eq

[T ]
eq

[AiT ]
eq

, the a�nity of A
i

for T . Note that [T ]
eq

depends on the con-1250

centrations and the a�nities of the other DNA ligands present in the mix during selection.1251

(Using this selection model and simulations, we studied the impact of the calibration pro-1252

tocol on the enrichment values by either varying the concentration of the DNA library, or1253

by varying the concentration of the target in supp. 6.3.7). Note that if the total concen-1254

tration of target [T ]
tot

is significantly larger than the dissociation constant of the complex1255

AiT , the probability of selection of the ligand A
i

tends to 1 independently of its a�nity1256

for the target (we are in a titration regime). Consequently, every calibration assay must1257

be performed with [T ]
tot

small enough to discriminate the ligands [Jarmoskaite et al., 2020].1258

1259

We simulated a high-throughput calibration experiment using this selection model (we1260

fixed the concentration of the target and varied the concentration of the DNA ligands).1261

The binding curves are presented in Fig. 4.5 A.1262

1263

The qualitative comparison of the simulated data with the experimental data (Fig.1264

4.2) shows significative di↵erences in the regimes of selection. In the simulated data, the1265

enrichments are independent of the DNA concentration and di↵erent from each other. We1266

observe a single regime of selection. In the experimental data, the enrichments depend on1267

the DNA concentration and we can identify 3 di↵erent regimes of DNA concentrations.1268

1269

Conclusion:1270

• A selection model based solely on the specific interaction of the DNA1271

library to the antibody does not describe the experimental data.1272

1273

Discussion:1274

• This selection model potentially describes the experimental enrichments correspond-1275

ing to the intermediate DNA concentration (102nM) where the enrichments are the1276

most di↵erent from each other (in Fig. 4.2)1277

• The presence of 2 regimes of DNA concentrations in the experimental data that are1278

not described with this model suggests that there are additional factors that must1279

be taken into account in the probability of selection of the DNA ligands.1280

• We can formulate hypotheses regarding the nature of these additional factors by1281

looking at the results of control experiments:1282

– The non-specific binding of DNA molecules to the plate: we systematically1283

performed control experiments where we replicated all the steps of the selection,1284

but no antibody was present in the plate. In every control experiments, we1285

managed to collect DNA molecules at the end of the selection, suggesting that1286

the DNA molecules interacted with the plastic of the plate (Supp. 6.3.3).1287
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[DNA] (nM)

enrichment

A Bselection model 1 selection model 2

Figure 4.5: The experimental data are not exclusively described by a simple
selection model based on the specific binding of the DNA library to the an-
tibody. We chose 20 binding energy values ranging from 3.5 to 5.8 k

B

T . We set the
antibody concentration to 10nM and tested DNA concentrations ranging from 10�3 to
103nM. A. The simulated data have been generated with a selection model based on the
the specific binding of the DNA ligands to the antibody. The simulated enrichment values
are nearly independent of the DNA concentrations contrary to what we observe in experi-
mental data (Fig 4.2) . B. The simulated data have been generated with a selection model
based on the the specific binding of the DNA ligands to the antibody, the non-specific
binding of the DNA ligands to the plastic of the plate and the unspecific recovery of free
DNA molecules. The a�nity of the DNA ligand A for the plastic P K

AP

is set to 20nM
and the concentration of the plastic binding sites P [P ]

tot

is set to 200nM. The recovered
free DNA molecule represents 1% of the total DNA concentration. The relationships be-
tween the enrichment values and the DNA concentrations are qualitatively similar for the
simulated and experimental data (Fig. 4.2).

– The recovery of free DNA molecules due to insu�cient washing: at the end of1288

the binding reaction, we keep the DNA in complex with the target and remove1289

the free DNA molecules with multiple washing steps (that dilute the free DNA1290

molecules). However, for selections with high concentrations of DNA, the wash-1291

ings may become insu�cient, leading to a concentration of recovered free DNA1292

molecule that is not negligible anymore and that must be taken into account in1293

the selection model. This hypothesis is supported by the control experiments1294

where we observed proportional increase of recovered free DNA molecule as we1295

were increasing the concentration of DNA during the calibration experiment.1296

1297

2- Selection model 2 (specific binding + non-specific binding + free DNA1298

molecules recovery):1299
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1300

In this selection model, we considered 2 additional ways for the ligand Ai to pass the1301

selection: (1) it binds to the plastic of the plate (we can make the hypothesis that DNA1302

ligands interact with the plastic independently of the sequence in their loop, and thus they1303

all share the same a�nity K
AP

for the plastic of the plate) and (2) it gets through the1304

washing steps.1305

1306

First, we only consider the first scenario where each DNA ligand can be in 3 di↵erent1307

states: free in solution (Ai), bound to the antibody (AiT ) and bound to the plastic (AiP ).1308

The probability of Ai to be selected is written as:1309

1310

P 1
sel,A

i

=
[AiT ]

eq

+ [AiP ]
eq

[AiT ]
eq

+ [AiP ]
eq

+ [Ai]
eq

(4.5)

Then we consider the next scenario where each DNA ligand can be in 3 states (Ai, AiP ,1311

AiT ) and can get through the washings. The probability P 2
sel,A

i

of Ai to be selected is1312

written as:1313

P 2
sel,A

i

= (1� ↵)P 1
sel,A

i

+ ↵ (4.6)

with ↵ the fraction the free DNA molecules that gets through the washings (if the wash-1314

ings remove 100% of the free DNA molecules, ↵ = 0 and P 2
sel,A

i

= P 1
sel,A

i

).1315

1316

We simulated a calibration experiment using this second selection model. The binding1317

curves are presented in Fig. 4.5 B. The simulated data are qualitatively more similar to1318

the experimental data with this new selection model. The simulated data show 3 regimes1319

of selection that are also present in the experimental data. The first and third regimes cor-1320

respond to DNA concentrations where the enrichments are the most similar. The second1321

regime correspond to DNA concentrations where the enrichments are the most di↵erent.1322

1323

Conclusion:1324

• The addition of external factors in the selection model (as the non-specific1325

binding of the DNA ligand to the plastic and the unwanted recovery of1326

free DNA molecules) generate artificial data that are qualitatively more1327

similar to the experimental ones.1328

• A realistic selection model must contain terms describing experimental1329

bias in addition to the specific binding of the ligands to the target (this1330

observation has also been made in the calibration studies presented pre-1331

viously).1332

1333
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Discussion:1334

• Here we make the assumption that we measure concentrations of complexes at equi-1335

librium. However, in order to remove the free DNA molecules, we must perform1336

multiple washing steps that are susceptible to disrupt the equilibrium state of the1337

reaction. Therefore, during calibration experiment, we perform the washings as1338

quickly as possible to minimize the disruption of equilibrium.1339

• We identified at least 2 additional factors that could explain the presence of 3 regimes1340

of selection in the calibration data, based on the analysis of control experiments1341

(however, we must be careful with the use of additional parameters as they will1342

always make easier the fit of the model to experimental data, even if the model is1343

not appropriate).1344

• We can perform extra control experiments to validate the presence of these factors1345

in our selection model (We can replicate the calibration experiment with di↵erent1346

washing protocols, stronger and weaker, and see if we can predict the change in the1347

experimental data).1348

• For both selection models, we verified if the enrichments and binding energies were1349

linearly related under an optimal DNA concentration (Fig. 6.7). The results show1350

that the most sophisticated selection model (with non-specific binding and non-1351

specific recovery terms) generates enrichments that can be linearly linked to binding1352

energies if the dynamic range of these binding energies is small enough. Conse-1353

quently, the simulated data confirms that a linear relationship can be approximated1354

between the enrichments and binding energies measured experimentally under par-1355

ticular conditions.1356

• An additional factor that we did not include in the selection model but that is1357

not negligible in the experimental data is the sampling of the DNA library (Supp.1358

6.3.3.3). The sampling noise is systematically observed in our deep-sequencing data1359

(in particular when we compare the number of copies after and before selection). In1360

the next section, we study the impact of the sampling noise on the resolution of the1361

selection experiment.1362

4.3.3 There is a tradeo↵ between the diversity of the library and the1363

resolution of the experiment1364

4.3.3.1 Experimental data suggest that the design of the DNA ligand library1365

impacts the resolution of the selection experiment1366

In this section we test the limits of our calibration experiment by measuring the resolu-1367

tion 3 of the data for di↵erent library designs. We did 2 separate calibration experiments.1368

3We define the resolution as the minimal value we can measure with little error. A high resolution
allows the accurate measurement of small values. In our case, the values are enrichments. Enrichments
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In the first experiment, the library is composed of 218 DNA ligands while in the second1369

experiment, the library is composed of 32,768 DNA ligands. We adapted the number of1370

sequencing reads to each assay in order to expose them to the same level of sampling dur-1371

ing deep-sequencing. However, we used the same number of antibodies for both libraries1372

during selection.1373

1374

For each calibration assay, we qualitatively measured its resolution by comparing the1375

enrichment values between near-replicate experiments (we compared enrichments obtained1376

with [DNA]=102 and [DNA]=103 nM). The results are presented in Fig 4.6. The DNA1377

library with a high diversity has the lowest resolution (only the highest enrichments are1378

reproducible from one experiment to another). The DNA library with a low diversity1379

shows a higher resolution with enrichments that are more reproducible independently of1380

their value.1381

1382

R2=0.404R2=0.853

log10(enrichment) 
[DNA]total=102nM

#sequences
A Bdiversity 

=218
diversity 
=32,768

log10(enrichment) 
[DNA]total=103nM

Figure 4.6: Experimental data show that the resolution of measured enrichments
is impacted by the diversity of the DNA library. We compared the reproducibility of
enrichments measured for 2 di↵erent DNA libraries. We assessed the reproducibility of the
measurements by comparing selection experiments that have a hundred fold di↵erence in
DNA concentrations ([DNA]=102 and [DNA]=104nM. A. The first library is composed of
218 DNA ligands. B. The second library is composed 32,768 DNA ligands. The enrichment
values are more reproducible for the small DNA library than for the big DNA library (The
R2 score is higher for the small than for the big library).

Conclusion:1383

• The diversity of the DNA library impacts the resolution of the experi-1384

measured with little error allow us to infer K
d

with a high accuracy).
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ment.1385

• The DNA library with the highest diversity has the lowest resolution.1386

1387

Discussion:1388

• The reproducibility of the enrichments is limited by the sampling noise that can be1389

generated at di↵erent steps during the selection experiment (principally during the1390

binding of the DNA ligands to the antibody or during the sequencing step).1391

• We adapted the number of reads to the diversity of the DNA library so a similar1392

number of reads was attributed to each DNA ligand (and thus the sampling due to1393

the deep-sequencing is the same for both assays).1394

• Consequently, the di↵erence in resolution we observe is due to to the sampling during1395

the binding step.1396

• For the same number of selected DNA molecules, the average copy number of DNA1397

ligands in the high diversity library is smaller and thus more sensitive to variability1398

during sampling. This is why the enrichments below a threshold value are not1399

reproducible for this library.1400

• So far, we studied the impact of the diversity of the library on the resolution of1401

the experiment. It would be more accurate to consider the distribution of a�nities1402

of the DNA library because it would also impact the resolution of the experiment.1403

However, during the design of the DNA library, we only have access to its diversity,1404

this is why we focused our study on this parameter.1405

4.3.3.2 Simulated data suggest a tradeo↵ between the diversity of the ligand1406

library and the resolution of the experiment1407

We simulated multiple selection experiments where we fixed the total concentration of the1408

DNA library and varied its diversity (we used the selection model described in eq. 6.1).1409

For each diversity value, we simulated di↵erent numbers of antibodies because we don’t1410

have access to the exact experimental number (we describe how we simulated di↵erent1411

numbers of antibodies in Supp. 6.3.6). For each experimental condition (diversity and1412

number of antibodies), we identified the smallest enrichment value we could measure with1413

less than 10 percents of error and calculated a resolution score. We set the resolution1414

score as the the ratio between the dissociation constant corresponding to the smallest en-1415

richment with less than 10% of error and the highest dissociation constant of the library1416

(as a reminder, the highest dissociation score corresponds to the smallest a�nity in the1417

library) (Fig 4.7).1418

1419
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The simulated data show that the resolution of the experiment is maximal when the1420

number of DNA molecules collected at the end of the selection is significantly higher than1421

the diversity of the DNA library.1422

1423

Number of selected DNA molecules

diversity of 
the DNA library

10

102

103

105104103 106

resolution score

Figure 4.7: Simulated data show that the resolution of selection experiment is
negatively correlated with the diversity of the library, for a fixed number of
selected DNA molecules. We identified the smallest enrichment value we can measure
with less than 10% of error for di↵erent DNA libraries (with diversity ranging from 10 to
103, and K

d

values ranging from 10 to 1000nM) and for di↵erent numbers of selected DNA
molecules (ranging from 103 to 106) . We set the resolution score as the ratio between
the K

d

of the smallest enrichment (with less than 10% of error) and the highest K
d

in
the library. We represented in the matrix the K

d

values (in nM) corresponding to these
enrichments. A small number of selected DNA molecules results in a high sampling noise
that negatively impact the resolution of the experiment.

Conclusion:1424

• The experimental and theoretical data show a trade-o↵ between the diver-1425

sity of the DNA library and the resolution of the calibration experiment1426

due to sampling noise.1427

1428

Discussion:1429

• In order to increase the number of selected DNAmolecules, we would need to increase1430

the number of antibodies per well and take the risk of being in a titration regime1431

where the probabilities of selection do not depend on the a�nities anymore (Section1432

4.3.2.2). There is a maximal diversity we cannot exceed without impacting the1433

resolution of the experiment.1434
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• Thus, the only parameter we can optimize during the calibration experiment is the1435

diversity of the DNA library.1436

1437

4.4 Summary1438

• We designed a protein-ligand system (composed of a synthetic antibody and a li-1439

brary of 218 single-stranded DNA ligands) to set-up the high-throughput calibration1440

experiment.1441

• The high-throughput calibration assay allowed us to build 218 binding curves using1442

7 wells and few days of experimental work while the regular ELISA approach would1443

have required 1744 wells corresponding to 27 plates and as many days of experimental1444

work.1445

• For 3 DNA ligands, we compared their enrichments measured with the high-throughput1446

calibration experiment, with their binding energies measured with an independent1447

assay (ELISA). We observed a linear relationship between calibration and the ELISA1448

data.1449

• The measurement of a�nities with no selection model is possible under the condition1450

that the calibration data are linearly linked to independent measurement of binding1451

energies (this is generally the case when the dynamic range of K
d

is small enough).1452

If this condition is not verified, we must define a selection model to infer a�nity.1453

• The selection model must take into accounts additional factors in order to link the1454

data to the a�nities. Our calibration experiment probably contains at least 2 sources1455

of noise based on the results of control experiments and the qualitative comparison1456

of simulated data (generated with the second selection model) with experimental1457

ones.1458

• Experimental and simulated data show a tradeo↵ between the diversity of the DNA1459

library and the resolution of the experiment.1460

• With more time, we could investigate the limits of the linearity observed between1461

calibration and ELISA data by comparing the data of more than 3 DNA ligands.1462

• In parallel, we could infer the 218 dissociation constants using di↵erent selection1463

models and validate the results with independent measurements of a�nities (ob-1464

tained with ELISA).1465

4.5 Discussion1466

The main goal of the calibration experiment is to combine high-throughput selection assay1467

with quantitative measurement of a�nity. The output of the assay is a distribution of1468



68 CHAPTER 4. HT MEASUREMENTS OF BINDING AFFINITIES

a�nities between a protein of interest and a library of DNA ligands. This distribution1469

that we call “a�nity profile” can be used as a proxy of the specificity of the protein. The1470

long-term goal of the calibration experiment is to measure the binding profile of several1471

Germline and Limited antibodies and use the parameters (average and standard deviation)1472

of the a�nity distributions to quantitatively compare their specificity.1473
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1474
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Chapter 51475

Conclusion, discussion and1476

perspectives1477

5.0.1 Conclusion1478

Our work was motivated by the following question: Can we quantitatively measure the1479

specificity of antibodies ? We decomposed this general question into 3 sub-questions:1480

(1) Do di↵erent synthetic antibodies have di↵erent average a�nities for DNA ligands ?1481

(2) Do di↵erent synthetic antibodies select the same DNA sequences, with the same di-1482

versity ?1483

(3) Can we propose a high-throughput selection assay to measure multiple dissociation1484

constants in a single experiment ?1485

1486

To answer the first and second questions, we estimated the average a�nity of antibod-1487

ies with di↵erent framework and CDR3 regions for 2 DNA libraries, and we compared the1488

diversity of the DNA sequences that were selected by these antibodies. The following con-1489

clusions have been made based on the study of few synthetic antibodies. We observed that1490

antibodies with di↵erent frameworks and CDR3 regions have di↵erent average a�nities1491

for DNA and they select DNA sequences with di↵erent levels of diversity. More precisely,1492

we observed that the frameworks and CDR3 regions have di↵erent e↵ects on the selection1493

of the DNA ligands:1494

1495

Impact of the frameworks on selection:1496

First, we observed that the frameworks control the dynamic range of the a�nities that1497

the CDR3 can reach. More precisely, the Germline framework allows a higher maximal1498

a�nity than the Limited framework. Second, we observed an impact of the framework1499

on the role of the CDR3 region in the discrimination of the DNA sequences: di↵erent1500

antibodies with the Germline framework selected the same DNA sequences while di↵erent1501

antibodies with the Limited framework selected di↵erent DNA sequences.1502

1503

71
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Impact of the CDR3 region on selection:1504

First, we observed that antibodies with di↵erent CDR3 regions have di↵erent a�nities for1505

DNA ligands (within the dynamic range fixed by the framework). In particular, the CDR31506

that have been selected for their high a�nity for 1 particular DNA ligand have an average1507

a�nity for DNA that is higher in comparison with CDR3 randomly chosen. Second, we1508

observed that under the same experimental conditions, the CDR3 selected against 1 DNA1509

ligand can discriminate the DNA library while random CDR3 cannot.1510

1511

To answer the third question, we set-up a high throughput selection assay to build the1512

binding curve of 218 DNA ligands in a single experiment. With more time, these binding1513

curves could be used to infer the dissociation constants of the 218 DNA ligands. The1514

high-throughput calibration assay is a promising approach to obtain quickly and simply a1515

more quantitative specificity profile.1516

5.0.2 Discussion and perspectives1517

5.0.2.1 Limits of our approach1518

Our experimental and theoretical results suggest that there is a tradeo↵ between the di-1519

versity of the DNA library and the resolution of the selection experiment. Indeed, we1520

couldn’t accurately measure the enrichment values of the 32,768 DNA ligands from the1521

high diversity library (the smallest enrichment values were dominated by sampling noise).1522

Consequently, we cannot rigorously measure the dissociation constant of the ligands with1523

the smallest enrichment values. These observations set the limit of our system: with the1524

actual experimental setup, we cannot measure the dissociation constants of 105 DNA lig-1525

ands at the same time.1526

1527

To address this tradeo↵, we can use the same experimental setup and limit our mea-1528

surement to few hundred K
d

(We can generate a new DNA library where we randomize1529

4 consecutive nucleotides instead of 7, based on the observation that 4 nucleotides motifs1530

are selected by antibodies). We can also change the experimental setup and perform the1531

selection step with free DNA ligands and antibodies in solution (the immobilization of1532

antibodies on a solid surface may prevent the optimal interaction between DNA ligands1533

and antibodies).1534

1535

5.0.2.2 Next experiments1536

Our preliminary results suggests that a DNA library can be used to measure di↵erent1537

binding behaviors between di↵erent synthetic antibodies. It motivates the continuation of1538

the project using the same system.1539

1540
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Short term experiments:1541

(1) With more time, we could continue our anlaysis of the 218 binding curves to infer1542

the corresponding dissociation constants. Once the pipeline of the inference is set-up, we1543

could generate the same binding curves for the di↵erent Germline and Limited antibodies1544

we studied in chapters 2 and 3. Then we could quantitatively compare their specificity by1545

measuring the parameters (mean and standard deviation) of their distributions of a�nities1546

for the same library of DNA ligands.1547

1548

(2) So far we only tested the additive model to understand the link between the sequence1549

of the selected DNA ligands and their a�nity for the synthetic antibodies. With more1550

time, we could test more sophisticated models that take into account the correlations be-1551

tween the positions in the selected DNA sequences.1552

1553

Long term experiments:1554

We could perform in vitro a�nity maturation of Germline antibodies (with multiple cycles1555

of mutation, selection and amplification) in order to increase their a�nity for a particular1556

DNA ligand. We could then investigate the relationship between the evolving a�nity of1557

these synthetic antibodies and their specificity for DNA ligands.1558

5.0.2.3 Comparison of our results with previous works1559

The few Germline and Limited antibodies we tested in this project came from larger anti-1560

body libraries that have been studied as part of previous work [Boyer et al., 2016] [Schulz1561

et al., 2021]. Germline and Limited antibody libraries have been selected against a single1562

DNA ligand, separately (Fig. 5.1). The resulting distribution of selectivities (i.e. enrich-1563

ments, not normalized) for each library was used as a proxy of their selection potential1564

(i.e. their ability to yield a high a�nity for a new target).1565

1566

The authors showed that Germline antibodies have a higher selection potential than1567

Limited antibodies: most of the Germline antibodies have a low a�nity for the DNA lig-1568

and that has been tested, but few antibodies have a very high a�nity for this DNA ligand1569

(their distribution of selectivities are characterized by a low average selectivity and high1570

standard deviation). On the other side, most Limited antibodies have a higher a�nity1571

for the same DNA ligand, but no Limited antibody has a particularly high a�nity for1572

the DNA ligand (contrary to what we observe for Germline library) (their distribution of1573

selectivities are characterized by a high average selectivity and low standard deviation).1574

1575

We can equivalently characterize the specificity profile of these antibodies as the pa-1576

rameters of the distribution of their a�nity for the DNA library (the a�nities can be1577

measured with the calibration experiment we present in chapter 4). Based on our obser-1578

vations, we can predict that Germline antibodies have a higher average a�nity for DNA,1579
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selectivity

100 101 102

Figure 5.1: Distributions of selectivities of Germline (in blue) and Limited (in
green) antibody libraries. Both libraries of antibodies have been selected against a
DNA ligand by phage Display. The antibodies (before and after their selection) have been
deep-sequenced and their selectivity have been calculated as the ratio between their copy
numbers after and before the selection (selectivities are equivalent to the non-normalized
enrichments measured in our project). Taken from [Schulz et al., 2021].

with a smaller dynamic range of a�nities, while Limited antibodies have a smaller average1580

a�nity for DNA, with a higher dynamic range.1581

1582

The parameters describing the specificity profiles are potentially opposite to the param-1583

eters describing the selection potential, when comparing Germline and Limited antibodies.1584

This observation suggests that antibodies with the highest selection potential may have1585

the smallest specificity and antibodies with the smallest selection potential may have the1586

highest specificity (this hypothesis must yet be validated with the quantitative analysis of1587

more Germline and Limited antibodies).1588

1589

These predictions are surprising as Germline antibodies analyzed in Fig. 1.4 seem to1590

be more specific than Limited antibodies for 2 DNA ligands. However, we must keep in1591

mind that Phage Display and SELEX are not symmetrical experiments (During Phage1592

Display, antibodies are expressed on the surface of phages and DNA ligands have a small1593

stem while during SELEX, antibodies are purified and DNA ligands have a long stem).1594

1595

Taking a step back, we used a minimalist format of antibody in order to simplify the1596

study of the relationship between the sequence and the phenotype. The preliminary results1597

suggest that mutations in the framework that are potentially far away from the binding1598

region may have an impact on the binding specificity of the protein. Our minimalist system1599

potentially highlighted the long-range interaction between amino-acids in the sequence (the1600

mutations by which Limited di↵ers from Germline framework are 4 to 76 amino-acids away1601

from the CDR3 region) and their impact on the specificity of antibodies.1602
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Chapter 61604

Supplementary material1605

6.1 Design1606

6.1.1 Presentation of the synthetic antibodies1607

QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGS
IYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR....F
DYWGQGTLVT

framework amino acids sequence

germline

limited
QLQLQESGPGLVKPSETLSLTCIVSGGSIGTTDHYWGWIRQSPGKGLEWIGT
TYYSGKTYYNPSLKSRVTISIDTSKNHFSLRLISVTAADTAVYHCAR....F
DYWGQGTLVT

name framework CDR3group
GNT2
GNT3

GNT4
GBT3

GR1
GR2

TOP
TOP
TOP
TOP

Random
Random

germline
germline
germline
germline
germline
germline

RKLH
RTKH

KVRR
RSKH
GRAT

GWWI

name framework CDR3group
LBT1
LNT3

LR2
LNT4

LR3

TOP
TOP
TOP

Random
Random

limited RSCS
limited
limited
limited
limited

ARYK
GRYK
WLLG
CTSQ

A

B C

Figure 6.1: Amino-acid sequences of the frameworks and CDR3 regions. Blue
amino-acids are di↵erent between Germline and Limited framework. Red dots correspond
to the amino-acids in the CDR3 regions (CDR3 sequences are detailed in tables B and C).

6.1.2 Presentation of the DNA library1608

We used 2 libraries of 32,768 di↵erent DNA sequences as potential ligands to study syn-1609

thetic antibodies (Fig. 6.2). The libraries are composed of multiple single stranded DNA1610

molecules of 54 or 57 nucleotides. Single stranded DNA molecules have the particularity1611

to fold on themselves via the complementarity interaction of the nucleotide A with T and1612

77
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C with G. We designed the DNA molecules to have a stem loop 3D structure with a stem1613

region where the nucleotides interact with their complementary pair and form double-1614

stranded DNA (the 2 libraries have di↵erent stem regions), and a loop region where the1615

nucleotide do not interact with others and form a single stranded DNA chain of 7nt. All1616

the DNA molecules from the same library share a constant region that corresponds to1617

the stem and that contains the sequences that are necessary for the analysis of the se-1618

lection experiment. The diversity of the DNA library is located in the DNA loops that1619

are composed of 7 random nucleotides. We designed the library with 2 possible pairs of1620

nucleotides (TA and CG) that can close the loop. Thus the library can reach a diversity1621

of up to 2 ⇤ 47 = 32, 768 di↵erent DNA ligands. We designed these libraries to study1622

the interaction between the CDR3 region of the synthetic antibodies and the loop of the1623

DNA ligands. The presence of two libraries allows us to detect a potential impact of the1624

constant region on the selection of the loops. DNA libraries with di↵erent constant regions1625

are regularly tested when the interaction DNA-protein is studied in the literature, in order1626

to see if the constant region interferes in the binding [Jolma et al., 2010].1627

1628

ELISA assay used to measure K
d

requires the DNA to be immobilized in each well. To1629

do so, the DNA is synthesized with a biotin on its 5’ end so the molecules get covalently1630

bound to the streptavidin of the well. In turn, SELEX assay requires the antibody (not1631

DNA) to be immobilised in each well. Thus, DNA is synthesized with no biotin on its 5’1632

end.1633

1634

6.1.3 Calibration experiment1635

The experimental set-up of our calibration experiment is presented in (Fig. 4.1). While1636

the authors of the high-throughput studies presented in chapter 4 performed the binding1637

steps with reactants that are free in solution, we decided to immobilize the antibody on a1638

solid surface for the 3 following reasons:1639

1640

1- The long term goal of our approach is to compare the a�nity profile of various syn-1641

thetic antibodies. Thus, we need the experimental conditions to be as constant and robust1642

as possible from one antibody to another. Saturating a solid surface with the antibody1643

ensures we always work with the same concentration of antibody independently of the1644

yield of the purification that can greatly vary from one synthetic antibody to another.1645

2-Our approach requires the use of one single plate. There is no need for an extra step for1646

the capture of the formed complexes that are free in the solution. Our approach maximizes1647

the recovery of the formed complexes.1648

3-The configuration where the antibody is immobilized by one of its extremities is symmet-1649

rical to the phage display experiment (used for the selection of the synthetic antibodies)1650

where one single end of the protein was presented to the DNA ligand.1651
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5’ 3’ 5’ 3’ 5’
3’

5’
3’

DNA library 1 DNA library 2

Figure 6.2: Our ligand system The ligands are single-stranded DNA molecules with a
stem-loop 3D structure. There is a constant region forming the stem and a 7 nucleotides
variable region forming the loop. 2 DNA libraries have been designed with di↵erent
constant regions. The DNA library 1 is presented in figA, and the DNA library 2 is
presented in figB.

1652

Working with antibodies immobilized on a solid surface constrains our choice regarding1653

which concentration of reactant we fix and which concentration of reactant we vary during1654

the binding experiments. In this configuration, we had to vary the concentration of the1655

DNA ligand library for the 3 following reasons:1656

1657

1-If we vary the concentration of the antibodies that are immobilized on the solid surface,1658

we vary two parameters at the same time: the concentration of the immobilized antibody,1659

and the concentration of the non specific binding sites (If the number of antibodies in the1660

plate decreases, the surface of plastic that is not covered increases).1661

2-Decreasing the concentration of the antibodies on the solid surface is not trivial. The ca-1662

pacity of binding of the plates indicated by the manufacturers is generally overestimated.1663

It requires systematic tests to evaluate the amount of antibodies that saturates the sur-1664

face, every time a new batch of antibody is prepared or a new antibody is studied.1665

3- Varying the concentration of the antibody requires high amounts of proteins. We are1666

often limited in the concentration of proteins we can produce in the lab because of their1667

low stability or low yield of production by the cells.1668

1669
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6.2 Protocols1670

6.2.1 Production of antibodies1671

Production and purification of the protein:1672

The gene of the protein is in fusion with a his tag (used for the purification) and a SBP1673

tag (used for the immobilization in the SELEX experiment). The gene is located on a1674

plasmid with an ampicillin resistance cassette and under the control of the T7 promoter1675

(Fig. 6.3).

his

pelBpLac G3pam
ber

 co
don

Start Stop 

oriAmp

notIncoI

synthetic antibody

pIT2 (5kb)

SBP

Figure 6.3: Map of the vector that contains the synthetic antibody gene under
the control of the T7 promoter.

1676

The plasmid is transformed into an E. coli strain (C3019). First, a 5mL liquid culture1677

of E. coli containing the plasmid is started in 2xYT growth medium with 1% glucose and1678

ampicillin at 30°C. The day after, a 100 times dilution of the overnight culture is made into1679

a 100mL liquid culture with 0.1% glucose and ampicillin. The OD after dilution should1680

average 0.06. The 100mL liquid culture is then grown into a flask at 37°C for 2 hours1681

until the OD reaches 0.6. Then IPTG is added (final concentration = 1mM) to turn the1682

lac operon on and thus induce the production of the antibody. The induced culture is1683

then grown at 30°C for 12 to 16 hours. At the end of the induction process, the 22.8 kDa1684

antibodies have been massively produced inside the cell and a non negligible fraction of1685

them can be found in the supernantant (their small size allows them to go through the1686

cell membrane). The day after, the liquid culture is spinned for 10 minutes at 8000rpm1687

in order to collect the supernantant and get rid of the cells. (this procedure is repeated1688

twice). From now on the rest of the purification is performed on ice or at 4°C. In order1689

to make sure that all the cells and debris are discarded, the supernatant is filtered with1690

a 0.2uM membrane. Once the antibodies are released in the supernantant, their hist-tag1691

is used to concentrate them in a small volume of PBS bu↵er. To do so, 1mL of HisPur1692

Cobalt Resin is used for the purification of 250mL of supernatant containing the antibod-1693

ies. The cobalt resin is transferred to a gravity-flow column and the supernatant is added1694

to the column twice. The washing and elution procedures are performed following the1695
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online instructions. In order to get rid of the small unwanted peptides that got collected1696

with the protein of interest, the resin eluate is then dialysed using the float-a-lyzer kit.1697

The dialysed solution is aliquoted, snape freezed and stored at -80°C. In order to quantify1698

and evaluate the purity of the produced antibodies, the sample is run on a protein gel in1699

denaturing conditions.1700

1701

1702

6.2.2 ELISA assay1703

The following protocol has been performed using streptavidin-coated plates with di↵erent1704

binding capacities (5-125 pmol/ well). 8 consecutive wells are used to measure the KD1705

of 1 DNA ligand. Up to 7 di↵erent DNA ligands can be studied per 96 well plate (the1706

last row is reserved to the negative control where no DNA is immobilised in the wells).1707

The procedure is performed with a multichannel pipett when it is possible. First the wells1708

are washed 3 times with the washing bu↵er 1 (PBS Tween 0.1%). Then the biotinylated1709

DNA is added to each well in a final volume of 100uL of binding bu↵er/well (BW1X)1710

(a solution of PBS is added to the control wells). The concentration of added DNA is1711

at least 5 times higher than the binding capacity of the well. The biotinylated DNA is1712

incubated in the wells for 1h30 at 20°C or overnight at 4°C with mild shaking. The wells1713

are then washed once with 200uL of washing bu↵er 1. Because the antibodies possess a1714

SBP tag on their C terminal end to be immobilised during the SELEX experiment, all1715

the streptavidin sites of the wells must be occupied with a biotin molecule during the1716

ELISA experiment to prevent the unwanted binding of the antibodies to the plate. To1717

do so, 200uL of PBS-biotin solution (125uM biotin) is added to each well (including the1718

control wells) and incubated for 30 minutes at 20°C, mild shaking. Then, the wells are1719

washed 3 times with 200uL of washing bu↵er 1 and blocked for 30minutes at 20°C at rest1720

with a blocking solution (0.02%BSA). The blocking solution is then replaced with 100uL1721

of PBS containing the antibodies at di↵erent concentrations. The binding is allowed for1722

1h at 20C with mild shaking. Once the equilibrium is reached, the wells are washed once1723

with 200uL of washing bu↵er 2 (PBST Tween 0.1% & BSA 0.02%) and 100uL of washing1724

bu↵er containing the primary antibody anti-polyhistidine and the secondary antibody anti1725

mouse HRP) are added to the wells and incubated for 1h at 20°C with mild shaking. The1726

wells are then washed 5 times with 200uL of washing bu↵er and 100uL of ELISA substrate1727

is added immediately. After few seconds, 50uL of HCl (1M) is added to each well to block1728

the reaction and the absorbance of each well (including the control wells) is measured at1729

450nm using the TECAN platereader.1730

1731

We constructed the binding curve by plotting the measured absorbance according to1732

the antibody concentration that was used in each well (We normalized the data so the1733

absorbance values range from 0 to 1). We fitted the 8 datapoints to the Hill-Langmuir1734
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equation.1735

abs
i

=
1

1 + (K
A

/[ab]
i

)n
(6.1)

where abs
i

(the absorbance measured in the well “i”) and [ab]
i

(the concentration of anti-1736

body in the well “i”) are experimental measurements and K
A

(the antibody concentration1737

that saturate half of the DNA molecules) and n (the Hill coe�cient) are the parameters1738

we infer. Given the absence of competition during binding (we study the binding of anti-1739

body with a single DNA ligand) and given that 1 single DNA and 1 single antibody are1740

needed to form a complex, K
d

equals K
A

. We present an example where we fitted the1741

experimental datapoints to the Hill equation in Fig. 6.4.1742

[antibody] nM 

intensity 
(a.u.) 

Kd inferred = 38.65nM

Figure 6.4: Example of a dissociation constant inference from ELISA data

6.2.3 SELEX assay1743

6.2.3.1 On plate1744

The following protocol has been performed using streptavidin-coated plates with a binding1745

capacity of 125pmol/well. First the wells are washed 3 times with 200uL of washing bu↵er1746

2 (PBS Tween 0.1% & BSA 0.02%). Then the antibody is added to each well in a final1747

volume of 100uL of PBS (a solution of PBS is added to the control wells). The concentra-1748

tion of added antibody are higher than the binding capacity of the well. The antibodies1749

are incubated in the wells for 1h30 at 20°C with mild shaking. Then the wells are washed1750

3 times with the washing bu↵er 2 and blocked with a blocking solution (PBS Tween 0.1%1751

& BSA 0.02%) for 10 minutes at 20°C at rest. The blocking solution is then replaced with1752
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a mix of PBS Tween 0.1%, BSA 0.02%, poly(dI/dC)-oligonucleotide (150ng/250uL) and1753

DNA to reach a final concentration of 1nM). The binding reaction is allowed for 1 hour1754

at 20°C, mild shaking. Once the equilibrium is reached, the wells are washed 25 times1755

with 200uL of washing bu↵er 1 (PBST Tween 0.1%). The DNA molecules attached to the1756

antibodies are then eluted into 50uL of ddH2O by heating at 85°C for 25 minutes. The1757

solution containing the eluted DNA is then transfered into DNA lobind eppendorf tubes1758

for long term storage at -20°C.1759

1760

6.2.3.2 On beads1761

The following protocol has been performed using 10uL of streptavidin-coated beads per1762

tube. First the beads are washed 3 times with 950uL of washing bu↵er (PBS Tween1763

0.1%). Then the antibody is added to the beads (a solution of PBS with no antibody is1764

added to the control tube). The antibodies are incubated with the beads for 1h30 at 20°C1765

with mild shaking. Then the beads are washed 3 times using a magnet with the washing1766

bu↵er and blocked with a blocking solution (PBS Tween 0.1%, BSA 0.02% & 150 ng of1767

poly(dI/dC)-oligonucleotide) for 30 minutes at 20°C with mild shaking. The DNA library1768

is added to reach a final concentration of 250nM in a total volume of 250uL. The binding1769

reaction is allowed for 1 hour at 20°C, mild shaking. Once the equilibrium is reached,1770

the beads are washed 5 times using a magnet with 950uL of washing bu↵er. The DNA1771

molecules attached to the antibodies are then eluted into 25uL of ddH2O by heating at1772

95°C for 10 minutes. The solution containing the eluted DNA is then transfered into DNA1773

lobind eppendorf tubes for long term storage at -20°C.1774

1775

6.2.4 Deep-sequencing of the DNA library1776

At the end of the selection experiment, the DNA molecules in complex with the anti-1777

bodies are collected to be prepared for the deep-sequencing procedure. To sum-up, the1778

preparation consists in 2 successive PCR, a gel purification, a quantification with Qubit1779

device and a multiplexing of the di↵erent selection experiments. 7uL of the DNA library1780

eluted from the beads, or 14uL eluted from the plate are amplified by PCR (15 cycles).1781

They are then PCR purified and amplified again (7-15 cycles). The primers used for these1782

PCR have been designed to add some extra nucleotides on each extremity of the DNA1783

sequences for 2 reasons: first some bare-codes are added so each sequence can be traced-1784

back to its selection experiment (this is necessary when several selection experiments are1785

sequenced at the same time). Second, short DNA sequences called adapters are added1786

to allow the immobilization of the DNA molecules on the chip, their amplification and1787

their deep-sequencing. Once the DNA samples have been amplified twice, they are run1788

on an electrophoresis gel in order to verify if they have the correct length. Then each1789

DNA sample is extracted from the gel and its concentration is measured using the Qubit1790
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device. The DNA sample of several selection experiments are pooled together and deep-1791

sequenced. We can choose between di↵erent deep-sequencing services. We can choose the1792

length of the sequence that are read, the direction in which the DNA is sequenced (from1793

its 5’ end to its 3’ or in both directions) and the number of DNA molecules that can be1794

sequenced. We used the Next-seq service to sequence DNA libraries with a small diversity1795

(218 DNA ligands) with at least 500 000 reads (measuring 75nt) per experiment , in both1796

directions. We used the Novaseq prestation to sequence the high diversity DNA libraries1797

(32768 DNA ligands) with at least 8 millions of reads (measuring 100 nt) per experiment,1798

in both directions.1799

The sequences containing di↵erent barcodes were separated from each other using python.1800

Only the sequences containing (1) a valid barcode, (2) a perfect match between the reads1801

forward and reverse and (3) the correct length were analyzed further. around 80% of the1802

reads obtained by Next Seq and more than 90% of the reads obtained by NovaSeq passed1803

these selection process.1804

1805

We used high-throughput sequencing platforms of I2BC (Gif-sur-Yvette) and of ICM1806

(Salpêtrière, Paris).1807

6.3 Analysis1808

6.3.1 Binding score based on SELEX data1809

At the end of the SELEX experiment, the DNA molecules in interaction with the antibody1810

are detached by a heat treatment. The collected DNA are then amplified with 2 successive1811

PCR reactions (Supp. 6.2.4) and the PCR product that contains amplified DNA is mixed1812

with a loading dye (that increases the density of the solution), and loaded in an agarose1813

gel (the gel contains a sensitive DNA gel stain that form DNA-dye complex that emits1814

green light under UV excitation). Once the DNA sample is loaded, an electrical current1815

is run through the gel so the negatively charged DNA moves across the gel according to1816

the length of its DNA molecules. Under UV excitation, the dye attached to the DNA1817

molecules emits light and the intensity of the signal increases with the number of DNA1818

molecules present in the sample. We estimated the amount of selected DNA for each anti-1819

body by measuring the intensity of the DNA signal on the gel using the image J software.1820

With this approach, we defined a score of binding as the average signal of the selected1821

DNA normalized with the signal of the molecular-weight size marker. The score of binding1822

increases with the amount of DNA detected in the gel and thus with the average a�nity1823

of the antibody for the DNA library. This binding score has the advantage of reflecting1824

the strength of binding of the antibody for the whole library. However, this score is not a1825

direct measurement of a�nity, it only gives an estimation of the amount of DNA molecules1826

that interacted with the antibody.1827

1828
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6.3.2 Binding score based on ELISA data1829

We used the ELISA technique to measure the a�nity between one antibody and one DNA1830

ligand. The output of the experiment is a dissociation constant. The principle is to per-1831

form multiple binding experiments in parallel where we fix the concentration of either the1832

DNA or the antibody, and vary the concentration of the other reactant. Then we plot the1833

concentration of the formed complexes for each concentration. We thus obtain a binding1834

curve from which we extract the dissociation constant (for more details, see the ELISA1835

protocol 6.2.2). The measurement of the dissociation constant allowed us to define a bind-1836

ing score as the invert of the dissociation constant. Thus a high binding score corresponds1837

to a low dissociation constant and by definition a high a�nity. The advantage of this1838

binding score is that it is based on a quantitative measurement of the a�nity. However,1839

this score only reflects the binding strength of one antibody for one single DNA ligand1840

and thus does not give access to the total distribution of the a�nities of the DNA library.1841

1842

6.3.3 The basic analysis of the deep-sequencing data informs us on 31843

experimental biases1844

6.3.3.1 The bias in the initial library1845

The DNA library is designed to be an equi-molar mix of DNA ligands. However, all the1846

deep-sequencing data show that the number of copies are not uniformly distributed. We1847

used the results of a selection experiment presented in Fig. 3.1 as an example. The number1848

of copies in the initial library (represented on the x axis) ranges approximately from 101849

to 103. This figure shows that there is a dynamic range of 2 orders of magnitude in the1850

initial numbers of copies. Consequently, we must systematically compare the number of1851

copies after the selection with the number of copies before the selection to take this bias1852

into account (by calculating enrichments).1853

6.3.3.2 The non-specific binding of the DNA library to the plate1854

We systematically performed control experiments where the conditions are the same as in1855

regular selection experiments except that there is no antibody during the binding step. We1856

systematically collected DNA molecules at the end of the control experiments. The results1857

of the control experiment are presented in Fig. 6.8. The presence of DNA molecules after1858

the selection implies that the DNA interacts with the plastic or with the streptavidin of1859

the plate (the streptavidin is used to immobilize the DNA or antibody molecules during1860

selection).1861

1862
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6.3.3.3 The sampling bias1863

We systematically observe more variability in small copy numbers than in high copy num-1864

bers (see Fig 3.1 as an example). This suggests that there is a sampling step in the1865

selection experiment that is responsible for this variability. We call sampling the action1866

of collecting a small amount of the DNA library and use this sample to continue the ex-1867

periment. During selection assay, multiple steps involve the sampling of the DNA library,1868

we identified 2 critical steps: (1) A small fraction of the DNA library interacts with the1869

target during the binding step and (2) we deep-sequence a sub-sample of the total DNA1870

ligand population before and after its selection. During these sampling steps, the DNA1871

ligands that are present in small number of copies are more sensitive to variability than the1872

other (If we take two samples from the same stock of DNA molecules and compare these1873

samples, we observe more variation in the number of copies of the less frequent molecules1874

than in the number of copies of the most frequent molecules).1875

6.3.4 Sequence logo of the most selected loops1876

(We used the online tool LogoMaker to generate our sequence logo). The sequence logo1877

is a graphical representation of the nucleotide conservation in a pool of aligned sequences1878

(in our case, the pool is composed of the most enriched DNA loops). The x axis of the1879

sequence logo represents the di↵erent positions of the nucleotides along the sequences and1880

the y axis gives information about the representation of the nucleotides at a given posi-1881

tion. For each position, the 4 nucleotides are stacked, their relative sizes indicate their1882

frequencies in the pool of sequences and the total height indicate the information content1883

of the position. The information content has been calculated in 2 steps (as described in1884

[Schneider and Stephens, 1990]):1885

1886

First, the uncertainty measurement has been calculated as1887

H(l) = �
CX

b=A

f(b, l) log2 f(b, l) (6.2)

where H(l) is the uncertainty at the position l (along the sequence), b is one of the bases1888

(A, T, G, and C) and f(b,l) is the frequency of base b, at position l, measured in the pool1889

of sequences. The uncertainty of each position is measured in bits and ranges from 0 to 21890

(0 means there is one single base at a given position and 2 means that the 4 bases have1891

the same frequency at a given position).1892

Then, the information content has been calculated as1893

R
sequence

(l) = 2� (H(l) + e(n)) (6.3)

where R
sequence

(l) is the amount of information present in the sequence at position l, 2 is1894

the maximum uncertainty at any given position and e(n) is a correction factor (used when1895
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the pool of n sequences is small). The information content of each position is measured in1896

bits and ranges from 0 to 2 (0 means that the 4 bases have the same frequency at a given1897

position and 2 means there is one single base at a given position).1898

6.3.5 Analysis of the motifs inside the loop1899

We can define a model where the parameters are the length “l” and the position “p” of1900

the motif along the loop of the DNA molecule. The principle of this analysis is to measure1901

the average enrichment of all the sequences that share the same DNA motif at the same1902

position in the loop, for each motif.1903

6.3.6 Modeling the sampling bias1904

We simulate a calibration experiment with a sampling noise that describes the binding of1905

a limited number of DNA molecules to the antibodies. The input parameters of the simu-1906

lation are m di↵erent sequences with m di↵erent a�nities for the antibody. The antibody1907

is present in n copies and thus a maximum of n DNA molecules can bind the antibody1908

and pass the selection. The output data are enrichments of the selected sequences. The1909

data are simulated in 3 steps:1910

1911

1- Simulation of the frequencies of each DNA sequence, before and after the selection1912

1913

Initial library: We make the assumption that the DNA sequences are uniformly dis-1914

tributed in the library before the selection. Consequently, all the sequences have the same1915

frequency in the initial library.1916

Selected library: If the DNA sequences are uniformly distributed in the initial library,1917

their frequency after the selection is equivalent to their enrichment (the measurement of1918

the enrichment is presented in section 4.3.2.2, for di↵erent selection models).1919

1920

2- Introduction of sampling noise to selected DNA sequences1921

1922

In order to add a sampling noise to the simulated data, we transformed the frequency of1923

each sequence into number of copies:1924

Initial library: The DNA sequences in the initial library are not impacted be the sam-1925

pling noise we describe in this section (the sampling happens during selection), conse-1926

quently their copy numbers are uniformly distributed (the copy numbers are representa-1927

tive of the frequencies in the total population)1928

Selected library: We introduced sampling noise in the selected DNA sequences1by sim-1929

ulating their copy numbers using a multinomial law: n (=number of DNA molecules that1930

1Without sampling noise in the simulation, the relative number of copies are directly linked to the
frequencies. With sampling noise in the simulation, the relative number of copies are not directly linked
to the frequencies anymore.
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bind the antibody) drawings are performed, and m(=diversity of the library) di↵erent DNA1931

ligands can be drawn every time, with a probability p
i

corresponding to their frequency1932

in the selected library. The probability mass function of the multinomial distribution is1933

defined as following:1934

P (N1 = n1, ..., Nm

= n
m

) =
n!

n1!...nm

!
pn1
1 ...pnm

m

(6.4)

with N
i

the number of copies of the sequence i that bind the antibody, p
i

the enrich-1935

ment (normalized) of the sequence i (i.e. its frequency in selected library) and n the total1936

number of sequences that bind the antibodies and pass the selection. We obtain for each1937

selected DNA sequence, a number of copies that depends on both the selection model and1938

the sampling noise.1939

1940

3- Measurement of the enrichment values1941

1942

We calculate the enrichment of each DNA sequence as the ratio between its number1943

of copies after and before its selection (we normalize the enrichment values so their sum1944

equals 1).1945

1946

6.3.7 Impact of the calibration protocol on the shape of the binding1947

curves1948

Because our calibration protocol is di↵erent from the ones commonly used in the literature1949

(we fixed the concentration of the target and varied the concentration of the library of1950

ligands while the other studies do the opposite), we studied in this section the impact of1951

the calibration protocol on the output data of the assay. To do so, we simulated di↵erent1952

calibration protocols and compared the probabilities of selection (using eq. 6.1) as well1953

as the shape of the binding curves for both protocols (Fig. 6.5). The binding curves are1954

qualitatively di↵erent for both protocols. This results supports the fact that we need to1955

define a selection model to describe the relationship between the experimental enrichments1956

and the dissociation constants we want to measure.1957

6.4 Experiments1958

6.4.1 Reproducibility of the SELEX experiments1959

We evaluated the reproducibility of the SELEX experiments by comparing the measured1960

enrichments of each sequence between two replicate experiments. In Fig. 6.9 B are pre-1961

sented the results of the comparison of 2 replicate experiments for one Limited antibody.1962

The highest enrichments are highly reproducible while the smallest enrichments are not1963

reproducible between replicates. The limit between the most and the least reproducible en-1964
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[ligands] fixed [target] fixed
A B

DC

[target] nM [ligands] nM

p(selection)

enrichment

Figure 6.5: The shape of the binding curves depends on the calibration proto-
col. In this figure, the target refers to the antibody, and the ligands to the DNA library.
We simulated 2 selection experiments. In the first column, we fixed the concentration of
the ligands and varied the concentration of the target. In the second column, we fixed the
concentration of target and varied the concentration of the ligands. We plotted the prob-
abilities of selection as a function of the concentrations of targets in figA or as a function
of the concentrations of ligands in figB. We presented in figC and D the corresponding
binding curves with enrichments measured using eq. 4.3. We obtain di↵erent binding
curves according to the calibration protocol we use.

richments correspond to the same limit that separates the outliers from the bulk sequences1965

in fig 6.9 A. The absence of reproducibility for the lowest enrichments is explained by the1966

fact that the copy numbers of the corresponding sequences are dominated by sampling1967

noise rather than selection. Consequently, a simple analysis of the selection based on en-1968

richments can only by performed for the highest values. We need a more sophisticated1969

analysis to extract the selection signal from the sequences in the bulk1970

6.4.2 Comparison of selection with control experiment1971

To verify if the most enriched DNA loops have been specifically selected by the antibody1972

and not by the plastic of the plate, we systematically compared enrichments of selection1973

experiment with enrichments of control experiment (where no antibody is present during1974

selection). We compared in (Fig. 6.10) the enrichment of one Germline and one Limited1975
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antibodies with their respective control experiments. For both antibodies, there is no1976

correlation between the enrichments measured in the selection experiment and the enrich-1977

ments measured in the control experiment. This results confirms that the most enriched1978

DNA ligands are selected by the antibody and are not the product of an experimental1979

bias.1980

6.4.3 Impact of the constant region on the selection of the DNA loops1981

by Germline antibodies1982

We systematically compared the selection of the DNA loops with 2 di↵erent constant1983

regions for every Germline and Limited antibodies. We show in Fig. 6.6 the enrichments1984

of the 2 DNA libraries for one Germline antibody. We observe no correlation between1985

the enrichments for this antibody (we observed no correlation for the other Germline1986

antibodies as well, (data not shown)). The constant region of the DNA molecules has an1987

impact on the selection of the loops for the Germline antibodies we tested.1988

log10(enrichment) 
(DNA library 2) 

#sequences

log10(enrichment) (DNA library 1) 

Figure 6.6: Impact of the constant region on the selection of the loops for 1
Germline antibody. We compared the enrichments of the DNA loops with 2 di↵erent
constant regions for the Germline antibody (GNT3). We observe no correlation between
the enriched DNA loops. The constant region impacts the selection of the loop for this
antibody.
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6.5 Supplementary figures1989

[DNA] nM

enrichment

binding free energy (kBT)

log(enrichment)

A Bselection model 1 selection model 2

Figure 6.7: Simulations show that the nature of the relationship between en-
richments and binding energies depends on the selection model. The parameters
of the simulations are the same as in Fig. 4.5. The red dashed lines indicate the DNA
concentration regime from which the enrichments have been picked to generate the bottom
plots. A. The first selection model predicts a linear relationship between the logarithm
of the enrichments and the binding energies. B. The second selection model predicts a
non-linear relationship between the logarithm of the enrichments and the binding energies.
However, we can make the approximation that the relationship is linear if the dynamic
range of the binding energies we consider is small enough. The 3 black dashed lines repre-
sent the binding energies of the 3 data-points estimated experimentally by ELISA. These
data-points have binding energies that are close enough to be in a linear relationship with
their corresponding enrichment values.
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log10(#copies) 
(after selection)

log10(#copies) 
(before selection)

#sequences

Figure 6.8: The binding of the DNA library to the plate is revealed by a control
experiment. We performed a control experiment where no antibody was present in the
plate during selection. We managed to collect DNA molecules at the end of the selection
experiment. Here we present the number of copies of the DNA library before and after
the control experiment.

1990
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#sequences

log10(#copies) 
(before selection)

log10(#copies) 
(after selection)

log10(enri- 
chment) 
replica 2

log10(enrichment) 
replica 1

A B

Figure 6.9: The highest enrichments (dominated by specific binding) are repro-
ducible while the smallest enrichments (dominated by sampling noise) are not
reproducible. We present in figA the results of a selection experiment (DNA library
2 selected by LBT1). The red line corresponds to the enrichment limit above which the
sequences are called outliers (they are dominated by specifc binding) and below which
the sequences are called bulk sequences (they are dominated by sampling noise). In figB
are compared the enrichments between 2 replicate experiments. The red line correspond
to the same enrichment threshold as presented in figA. The threshold value that sep-
arates the outliers from the bulk also separate the reproducible enrichments from the
non-reproducible enrichments.

1991
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#sequences#sequences

log10(enri- 
chment) 

LBT1 

log10(enrichment) 
CTL 

log10(enri- 
chment) 
GNT3 

log10(enrichment) 
CTL 

BA

Figure 6.10: The comparison of selection experiment with control experiment
shows that the DNA sequences are specifically selected by the antibodies. A.
We compare the enrichments between selection and control experiment for one Limited an-
tibody (LBT1). B. We compare the enrichments between selection and control experiment
for one Germline antibody (GNT3).

GNT3 (N=52)

GNT3 (N=9)

LBT1 (N=52)

LNT4 (N=9)
information 

(bits)

position in the loop

Figure 6.11: Using the same number of selected DNA sequences, the average
information content of Limited antibodies is higher than the average informa-
tion content of Germline antibodies. Here we present the 9 nucleotides forming the
loop (including the first (position 0) and last (position 8) nucleotides that close the loop).
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#sequences

log10(#copies) 
(after selection)

log10(#copies) (before selection)

LBT1 LNT4

LR2 LR3

Figure 6.12: Selection results of 2 TOP and 2 Random Limited antibodies.

#sequences

log10(#copies) 
(after selection)

log10(#copies) (before selection)

GNT3 GBT3

GR1 GR2

Figure 6.13: Selection results of 2 TOP and 2 Random Germline antibodies
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R2=0.848 R2=0.841

R2=0.951 R2=0.624

log10(enrichment) group1 

log10(enrichment) 
group2 

LBT1 LNT4

GNT3 GBT3

Figure 6.14: Cross-validation results for 2 Germline and 2 Limited antibodies
using a unique set of parameters (length motif = 4, position motif = 4)

1992
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log10(enri- 
chment) 
LBT1 

log10(enrichment) CTL 

log10(enri- 
chment) 
GNT3 

log10(enri- 
chment) 
LNT4 

log10(enri- 
chment) 
GBT3 

Figure 6.15: Comparison of motif enrichments between selection and control
experiments for 2 Germline and 2 Limited antibodies using a unique set of
parameters (length motif = 4, position motif = 4)
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R2=0.724

log10(enrichment) 
[DNA]=10-3nM

log10(enrichment) 
[DNA]=102nM

log10(enri- 
chment) 

[DNA]=103nM

log10(enri- 
chment) 

[DNA]=10-2nM

R2=0.854

Figure 6.16: The ranking of the selected DNA sequences is more conserved
among intermediate DNA concentration ranging from 101 to 103nM. A. Compar-
ison of enrichments for [DNA]=10�3 and [DNA]=10�2nM. B. Comparison of enrichments
for [DNA]=102 and [DNA]=103nM. The R2 score is higher in fig B than in fig A.
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Kimmo Palin, Shaheynoor Talukder, Timothy R. Hughes, Nicholas M. Luscombe, Esko2074

Ukkonen, and Jussi Taipale. Multiplexed massively parallel SELEX for characterization2075

of human transcription factor binding specificities. Genome Research, 20(6):861–873,2076

2010. ISSN 10889051. doi: 10.1101/gr.100552.109.2077

Arttu Jolma, Jian Yan, Thomas Whitington, Jarkko Toivonen, Kazuhiro R. Nitta, Pasi2078

Rastas, Ekaterina Morgunova, Martin Enge, Mikko Taipale, Gonghong Wei, Kimmo2079

Palin, Juan M. Vaquerizas, Renaud Vincentelli, Nicholas M. Luscombe, Timothy R.2080

Hughes, Patrick Lemaire, Esko Ukkonen, Teemu Kivioja, and Jussi Taipale. DNA-2081

binding specificities of human transcription factors. Cell, 152(1-2):327–339, 2013. ISSN2082

00928674. doi: 10.1016/j.cell.2012.12.009. URL http://dx.doi.org/10.1016/j.cell.2083

2012.12.009.2084

Caitlin A. Kowalsky and Timothy A. Whitehead. Determination of binding a�nity upon2085

mutation for type I dockerincohesin complexes from Clostridium thermocellum and2086

Clostridium cellulolyticum using deep sequencing. Proteins: Structure, Function and2087

Bioinformatics, 84(12):1914–1928, 2016. ISSN 10970134. doi: 10.1002/prot.25175.2088

Nicole J. Lambert, Alex Robertson, Mohini Jangi, Sean McGeary, Philip A. Sharp, and2089

Christopher B Burge. structural binding specificity of RNA binding proteins. Mol Cell,2090

54(5):887–900, 2014. doi: 10.1016/j.molcel.2014.04.016.RNA.2091

Alan Lapedes and Robert Farber. The geometry of shape space: Application to influenza.2092

Journal of Theoretical Biology, 212(1):57–69, 2001. ISSN 00225193. doi: 10.1006/jtbi.2093

2001.2347.2094

Daniel D. Le, Tyler C. Shimko, Arjun K. Aditham, Allison M. Keys, Scott A. Longwell,2095

Yaron Orenstein, and Polly M. Fordyce. Comprehensive, high-resolution binding energy2096

landscapes reveal context dependencies of transcription factor binding. Proceedings2097

of the National Academy of Sciences, page 201715888, 2018. ISSN 0027-8424. doi:2098

http://www.sciencemag.org/cgi/doi/10.1126/science.1079731
http://www.sciencemag.org/cgi/doi/10.1126/science.1079731
http://www.sciencemag.org/cgi/doi/10.1126/science.1079731
http://dx.doi.org/10.1016/j.cell.2012.12.009
http://dx.doi.org/10.1016/j.cell.2012.12.009
http://dx.doi.org/10.1016/j.cell.2012.12.009


102 BIBLIOGRAPHY

10.1073/pnas.1715888115. URL http://www.pnas.org/lookup/doi/10.1073/pnas.2099

1715888115.2100

Sean E. McGeary, Kathy S. Lin, Charlie Y. Shi, Thy M. Pham, Namita Bisaria, Gina M.2101

Kelley, and David P. Bartel. The biochemical basis of microRNA targeting e�cacy.2102

Science, 366(6472), 2019. ISSN 10959203. doi: 10.1126/science.aav1741.2103

Alan S. Perelson and George F. Oster. Theoretical studies of clonal selection: Minimal anti-2104

body repertoire size and reliability of self-non-self discrimination. Journal of Theoretical2105

Biology, 81(4):645–670, 1979. ISSN 10958541. doi: 10.1016/0022-5193(79)90275-3.2106
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Mouquet. Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Trig-2110

gers Polyreactivity. Cell Reports, 23(9):2568–2581, 2018. ISSN 22111247. doi:2111

10.1016/j.celrep.2018.04.101.2112

Chaitanya Rastogi, H. Tomas Rube, Judith F. Kribelbauer, Justin Crocker, Ryan E.2113

Loker, Gabriella D. Martini, Oleg Laptenko, William A. Freed-Pastor, Carol Prives,2114

David L. Stern, Richard S. Mann, and Harmen J. Bussemaker. Accurate and sensitive2115

quantification of protein-DNA binding a�nity. Proceedings of the National Academy of2116

Sciences, page 201714376, 2018. ISSN 0027-8424. doi: 10.1073/pnas.1714376115. URL2117

http://www.pnas.org/lookup/doi/10.1073/pnas.1714376115.2118

Douglas M. Robinson, David T. Jones, Hirohisa Kishino, Nick Goldman, and Je↵rey L.2119

Thorne. Protein evolution with dependence among codons due to tertiary structure.2120

Molecular Biology and Evolution, 20(10):1692–1704, 2003. ISSN 07374038. doi: 10.2121

1093/molbev/msg184.2122

H. Tomas Rube, Justin Crocker, William A. Freed-Pastor, Chaitanya Rastogi, Judith F.2123

Kribelbauer, David L. Stern, Harmen J. Bussemaker, Ryan E. Loker, Gabriella D.2124

Martini, Richard S. Mann, Carol Prives, and Oleg Laptenko. Accurate and sensitive2125

quantification of protein-DNA binding a�nity. Proceedings of the National Academy of2126

Sciences, 115(16):E3692–E3701, 2018. ISSN 0027-8424. doi: 10.1073/pnas.1714376115.2127

Yonatan Savir and Tsvi Tlusty. Conformational proofreading: The impact of conforma-2128

tional changes on the specificity of molecular recognition. PLoS ONE, 2(5), 2007. ISSN2129

19326203. doi: 10.1371/journal.pone.0000468.2130

Thomas D Schneider and R Michael Stephens. Sequence logos:. Nucleic Acids Research,2131

18(20):6097–6100, 1990.2132
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Résumé  

 Les protéines sont des biomolécules fondamentales de tout être vivant. Leurs fonctions 

très variées (comme la catalyse de réactions biologiques ou le transport de biomolécules dans la 

cellule) sont contrôlées par leur structure tridimensionnelle ; elle-même déterminée 

par  leur  séquence d’acides aminés. Le rôle des anticorps, par exemple, est de reconnaitre et 

neutraliser des molécules cibles (appelées antigènes) provenant de pathogènes en se liant à ces 

dernières. Leur fonction est directement liée à leur affinité (force d’interaction) et spécificité 

(précision)  de liaison à  ces molécules cibles. Les anticorps sont connus pour leur haute 

spécificité de liaison car ils doivent distinguer les antigènes (provenant de pathogènes) des auto-

antigènes (provenant de l’organisme hôte). Ils sont, par exemple, couramment utilisés comme 

outils permettant de révéler des structures cellulaires en se liant spécifiquement à des protéines 

d’intérêt. Cependant, il a également été démontré que les anticorps ont la capacité d’interagir 

avec différents antigènes et donc d’être poly-spécifiques (le cas des anticorps neutralisants à 

large spectre est présenté plus loin). Lorsqu’un anticorps rencontre un antigène pour la première 

fois, il entre dans un processus de maturation d’affinité durant lequel il accumule des mutations 

dans sa séquence afin d’augmenter son affinité pour l’antigène. Durant ce processus évolutif, il 

a été démontré que la spécificité des anticorps est également modifiée. Différentes théories ont 

été proposées pour décrire la coévolution de l’affinité et de la spécificité durant la maturation 

des anticorps. Il existe à ce jour deux principaux scénarios : dans le premier, les anticorps ont 

initialement la capacité de reconnaître plusieurs antigènes, mais perdent cette faculté durant la 

maturation d’affinité afin de se spécialiser dans la liaison à une molécule cible particulière ; 

dans le deuxième scénario, les anticorps développent la capacité de reconnaitre plusieurs 

antigènes durant leur maturation d’affinité. Par exemple, certains anticorps ayant maturé durant 

des années contre le VIH (« anticorps neutralisants à large spectre » ou « bnAb ») ont développé 

la capacité à reconnaître différentes souches de VIH et parfois des auto-antigènes. Des 

observations similaires ont été faites concernant les anticorps maturés artificiellement dans le 

cadre de la thérapie cellulaire « CAR-T » (les lymphocytes de patients atteints de cancers sont 

collectés, maturés artificiellement pour reconnaitre les cellules cancéreuses et réinjectés dans 

les patients). Ces deux scénarios suggèrent l’existence de différentes pressions de sélection : (1) 

dans le premier scénario, les anticorps évoluent pour se lier à un unique antigène ; (2) dans le 

deuxième scénario, ils évoluent pour se lier à différents antigènes. Nous pouvons également 

envisager un troisième scénario dans lequel l’affinité et la spécificité des anticorps sont 

indépendantes. Cependant, nous n’avons pas encore élucidé le rôle des pressions de sélection 

dans l’éventuelle relation liant l’affinité et la spécificité des anticorps. 

 En résumé, bien que de nombreux travaux aient été réalisés dans le but d'étudier 

l’affinité des anticorps d’une part, et leur spécificité d’autre part, nous avons à ce jour une 

compréhension limitée de la relation entre ces deux propriétés fonctionnelles. Par ailleurs, 



tandis que la métrique d’affinité est clairement définie (elle correspond à la constante de 

dissociation entre la protéine et sa cible), il n’existe pas de métrique consensuelle de spécificité. 

Nous faisons donc face à deux principaux défis : comment quantifier la spécificité de liaison de 

protéines ? Et quelle est la nature de la relation liant l’affinité et la spécificité de liaison des 

protéines ? 

 De manière à y répondre, il s'agit tout d'abord de mettre au point une méthode visant à 

mesurer la spécificité. Ici, nous proposons un procédé expérimental in vitro ainsi qu’une 

approche statistique permettant une quantification systématique de la spécificité de liaison des 

protéines. Nous avons mis au point une banque de molécules d’ADN simple brins (utilisées 

comme ligands) avec une structure en tige-boucle (la diversité de la séquence étant localisée 

dans la boucle longue de 7 nucléotides). Nous avons sélectionné cette banque par SELEX contre 

un ensemble d’anticorps recombinants. Ils sont composés de deux parties principales : 

« l’ossature », constituée de 100 acides aminés (provenant d’anticorps naturels « naïfs » n’ayant 

jamais maturé contre un antigène ou bien d’anticorps « évolués » ayant maturé contre le VIH) ; 

et la zone de liaison constituée de 4 acides aminés correspondant au CDR3 (région déterminant 

la complémentarité) des anticorps naturels (cette région est connue pour son implication dans 

l’affinité et la spécificité des anticorps pour leurs antigènes). Différentes séquences de CDR3 ont 

été préalablement choisies pour leurs hautes ou faibles affinités pour une molécule d’ADN 

particulière. Pour chaque expérience de sélection, nous avons utilisé le séquençage  à haut 

débit afin d’identifier les séquences de molécules d’ADN les plus enrichies durant la sélection 

(elles correspondent aux molécules d’ADN avec la plus haute affinité pour l’anticorps) ainsi que 

les molécules d’ADN les moins enrichies. 

 Nous proposons donc d’étudier la spécificité globale des anticorps en explorant une 

sous-région de l’espace des ligands où les molécules cibles sont des acides nucléiques. En 

utilisant les expériences de SELEX, nous pouvons qualitativement comparer les affinités 

moyennes de différents anticorps pour la même banque d’ADN en estimant la quantité de 

molécules d’ADN qui ont interagit avec l’anticorps. Nous pouvons également comparer 

quantitativement des constantes de dissociations mesurées pour un sous-échantillon de 

molécules d’ADN par ELISA. En particulier, nous avons posé la question suivante : pouvons-

nous mesurer différentes affinités moyennes pour des anticorps ayant différentes ossatures (naïve 

ou évoluée) et différents CDR3 ? 

 Nous avons répondu à cette question en deux temps : premièrement, nous avons vérifié 

si nous pouvions mesurer différentes affinités moyennes pour des anticorps naïfs ou évolués, 

puis nous avons vérifié si des anticorps partageant la même ossature mais ayant différents CDR3 

avaient les mêmes affinités ou non pour la banque d’ADN. 

 Nous montrons que : (1) des anticorps avec différentes ossatures présentent différentes 

affinités de liaison pour la banque d’ADN, en particulier, les anticorps naïfs ont une affinité 

moyenne plus élevée que les anticorps évolués ; (2) des anticorps partageant la même ossature 

mais ayant différents CDR3 ont également des affinités moyennes différentes pour la banque 



d’ADN ; (3) L’ossature ainsi que la séquence du CDR3 contrôlent la spécificité globale des 

anticorps, à différents niveaux. 

 De-même, nous proposons d’étudier la spécificité locale des anticorps en mesurant leur 

capacité à discriminer des séquences d’ADN. En utilisant les expériences de SELEX ainsi que le 

séquençage à haut-débit, nous pouvons comparer la diversité des séquences d’ADN 

sélectionnées par différents anticorps. 

 Nous avons posé la question suivante : est-ce que des anticorps avec différentes 

ossatures (naïve ou évoluée) et différents CDR3 discriminent la banque de molécules d’ADN de 

la même manière ? 

 Nous avons répondu à cette question en 3 étapes : premièrement nous avons vérifié si 

les anticorps recombinants sont capables de discriminer différentes séquences d’ADN ; nous 

avons ensuite comparé les séquences des molécules d’ADN sélectionnées par des anticorps 

partageant la même ossature mais ayant différents CDR3, puis nous avons comparé les 

séquences des molécules d’ADN sélectionnées par des anticorps ayant différentes ossatures. 

 Nous montrons que : (1) les anticorps recombinants sont capables de différencier des 

molécules d’ADN ayant différentes boucles de 7 nucléotides parmi une banque de 32768 

molécules ; (2) les anticorps reconnaissent des motifs de 4 nucléotides à l’intérieur des boucles 

d’ADN ; (3) les anticorps naïfs que nous avons testés sélectionnent les mêmes boucles d’ADN 

tandis que les anticorps évolués sélectionnent différentes boucles d’ADN ; (4) le degré de 

maturation des anticorps affecte la diversité des boucles d’ADN qu’ils sélectionnent – en 

particulier, les anticorps naïfs sélectionnent des boucles d’ADN plus variées que les anticorps 

évolués ; (5) l’étude de la sélection des sous-motifs de 4 nucléotides nous permet d’inclure des 

données bruitées dans notre analyse. 

 Nous proposons ensuite une nouvelle approche permettant de mesurer plusieurs 

centaines de constantes de dissociations en une seule expérience de sélection. Nous avons 

développé ce procédé expérimental en utilisant un seul anticorps et une banque minimaliste de 

218 molécules d’ADN. 

 Le principe est le suivant : 7 expériences de SELEX sont réalisées en parallèle avec 

différentes concentrations de banque d’ADN et une concentration fixe d’anticorps. Les mesures 

d’enrichissement de chaque molécule d’ADN pour chaque concentration de la banque sont 

utilisées pour construire 218 courbes de liaison. À partir de chacune de ces courbes, une 

constante de dissociation peut être inférée (correspondant à l’affinité de l’anticorps pour la 

molécule d’ADN correspondante) en utilisant le modèle de sélection approprié. 

 Nous montrons que : (1) l’expérience de calibration permet de générer 218 courbes de 

liaison en utilisant simplement 7 puits (d’une plaque 96 puits) et 2 jours d’expériences contre 

environ 1500 puits et 1 mois d’expérience avec l’approche standard par ELISA ; (2) le 

logarithme des enrichissements est linéairement corrélée avec les énergies de liaison pour une 

concentration optimale d’ADN et à condition que les valeurs extrêmes des énergies de liaison 

soient suffisamment proches l’une de l’autre ; (3) le modèle théorique de sélection doit inclure 



différentes sources de bais afin de décrire les données mesurées expérimentalement ; (4) les 

données expérimentales et simulées suggèrent un compromis entre la diversité de la banque 

d’ADN et la résolution de l’expérience de sélection. 

 En résumé, l’utilisation d’une banque de molécules d’ADN comme un outil de mesure 

de spécificités globale et locale nous a permis d’identifier des différences de spécificités entre 

des anticorps recombinants naïfs ou maturés contre une cible biologique et ayant différents 

CDR3. En particulier, nous avons constaté que les anticorps naïfs ont une affinité moyenne pour 

la banque de molécules d’ADN plus élevée, et qu’ils sélectionnent avec moins de précision les 

séquences d’ADN par rapport aux anticorps maturés. Nous avons en parallèle développé une 

approche plus quantitative de la mesure de spécificité qui nous permettrait, à long terme, de 

systématiquement relier les spécificités globale et locale à des mesures robustes et à haut-débit 

d’affinités. Ces résultats ouvrent la voie vers une étude systématique de la relation entre affinité 

et spécificité. 

 Les résultats préliminaires de mesures de spécificité peuvent être mis en perspective 

avec une récente étude de «  l’évoluabilité  » (décrivant la capacité à évoluer, c’est-à-dire à 

sélectionner des phénotypes plus favorables sous l’effet de mutations aléatoires) de ces mêmes 

anticorps. Cette étude a démontré que différentes ossatures étaient responsables de différents 

niveaux d’évoluabilité tout comme nous avons montré que différentes ossatures étaient 

responsables de différents niveaux de spécificités.  
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