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INTRODUCTION

“The process of scientific discovery is, in effect, a
continual flight from wonder.”

— Albert Einstein

0.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
0.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
0.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

0.1 Context

Diabetes is a chronic disease characterized by an excess of sugar in the blood, affecting
422 million people worldwide, including 3.3 million in France [1]. One of the most common
complications of diabetes is diabetic retinopathy (DR), the leading cause of blindness in
the working population of developed countries. However, there is an important obstacle to
combating DR: the existing classification system, based on old imaging technology, namely
Color Fundus Photography (CFP), is insufficient to finely predict the evolution of the dis-
ease. Recent advances in imaging techniques, such as Ultra-Wide-Field CFP (UWF-CFP),
Optical Coherence Tomography (OCT), and Optical Coherence Tomography Angiogra-
phy (OCTA), have made it possible to provide more detailed and comprehensive fundus
information to aid in the diagnosis of DR. There is, however, an expanding amount of
data produced by these new imaging modalities, which requires high levels of expertise
from humans. It will be difficult for most ophthalmologists to develop a predictive clinical
score based on all these factors. The "Évaluation Intelligente de la Rétinopathie diabé-
tique" (EviRed) project is thus developing an expert system that answers a medical need:
replacing the current classification of diabetic retinopathy based on up-to-date imaging
modalities and other medical data of the patient. It is expected to better predict the
evolution of the disease and guarantee timely treatments.
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0.2 Motivation

As part of the EviRed project, this thesis investigates the use of artificial intelligence
in order to properly integrate this massive amount of data. It should deliver a better
diagnosis, accurate prediction, and better decision-making by ophthalmologists during
the follow-up of DR cases. Specifically, the goal was to design deep learning network
architectures that combine the advantages of different imaging modalities in order to
enhance diagnostic performance. As part of this thesis, we examined the following fusion
scenarios involving 3D and 2D data:

1. Joint analysis of multi-modal information in OCTA.

2. Joint analysis of different specifications of OCTA acquisitions.

3. Joint analysis of OCTA and UWF-CFP.

These joint analyses tested and compared different state-of-the-art multimodal infor-
mation fusion methods, and new architectures for DR diagnostics were proposed. The
performance of the fusion of these modalities is clinically validated, and our experimental
results also demonstrated the effectiveness of our multimodal fusion approach, resulting
in significant improvements in joint analysis compared to unimodal images for differ-
ent diagnostic tasks involving DR pathology. Our designed algorithm will be part of the
EviRed system to provide more accurate information for future clinical DR diagnostic
work. Ophthalmology is on the verge of a revolution in terms of screening, diagnosis, and
management of pathologies. We hope this work will contribute to this revolution.

0.3 Thesis outline

The organization of this manuscript is as follows:
— Chapter 1 begins with a discussion of the clinical background and development

of diabetic retinopathy. Next, several modality data currently used in the clinic
are analyzed. Following that, we examined the screening and treatment system
relevant to DR. Finally, we introduced the EviRed project, which aims to establish
an automated DR diagnostic system, thus introducing the objective of our study:
Diagnostics of DR using multimodal information fusion.

— Chapter 2 is an exploration of state-of-the-art multimodal fusion methods based
on deep learning. Based on the analysis of a large number of literature reviews

18



Introduction

in the field of DR and other fields of medicine, we have proposed five different
architectures for multimodal fusion.

— Chapter 3 describes the data used in the study. With the advancement of the
EviRed project, our dataset has evolved and become complete. Data used at dif-
ferent stages of the thesis and their multimodal fusion objectives are described.

— Chapter 4 presents our initial explorations of multimodal fusion using data from
the early stages of the EviRed project. The performance of different fusion methods
on the three modalities in the OCTA images is compared.

— Chapter 5 describes our exploration of the unlabeled data from the EviRed
project. We have tested both self-supervised and semi-supervised learning meth-
ods in order to enhance the diagnostic performance of the fusion model using the
unlabeled data.

— Chapter 6 contains the fusion tests of different OCTA acquisitions after we re-
ceived the data annotations. A hybrid fusion framework utilizing high-resolution
and ultra-widefield OCTA was proposed to assess DR severity automatically.

— Chapter 7 presents an initial exploration of the fusion of Ultra-WideField Color
Fundus Photograph and OCTA. Using Manifold Mixup and Squeeze-and-Excitation
blocks, our model generates a compelling outcome through a feature-level fusion
strategy.

— Conclusion We end with a conclusion and discuss future works in Chapter Con-
clusion.
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Chapter 1

DIABETIC RETINOPATHY AND THESIS

CONTEXT

“Wherever the art of Medicine is loved, there is also a
love of Humanity.”

— Hippocrates

1.1 Development and impact of diabetic retinopathy . . . . . . . . . . . . . . . 22
1.2 Classification of diabetic retinopathy . . . . . . . . . . . . . . . . . . . . . 23
1.3 Novel retinal imaging technologies for diabetic retinopathy . . . . . . . . . 26

1.3.1 Ultra-Wide-Field imaging . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . 27
1.3.3 Optical Coherence Tomography Angiography . . . . . . . . . . . . . 28
1.3.4 Other technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Screening and treatment of diabetic retinopathy . . . . . . . . . . . . . . . 29
1.4.1 Screening of diabetic retinopathy . . . . . . . . . . . . . . . . . . . 29
1.4.2 Treatment of diabetic retinopathy . . . . . . . . . . . . . . . . . . . 32
1.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 EviRed Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Diabetic retinopathy (DR) is a progressive eye condition characterized
by damage to the retina caused by diabetes, potentially leading to

vision impairment or even blindness if left untreated. This chapter briefly
overviews the clinical background of DR and its development. There has
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been an increase in the use of emerging medical imaging techniques for
diagnosing DR in recent years. The existing diagnostic systems are diffi-
cult to adapt to emerging imaging technologies. As a result, we presented
the EviRed project, which aims to develop an automated DR diagnostic
system, thus introducing the goal of our study: Diagnostics of DR using
multimodal information fusion.

1.1 Development and impact of diabetic retinopathy

The disease of diabetes mellitus is a heterogeneous group of disorders
characterized by hyperglycemia resulting from an absolute or relative de-
crease in insulin levels [2]. Depending on the etiopathology, diabetes mel-
litus can be categorized into Type 1 and Type 2 diabetes [3]. In people
with Type 1 diabetes (T1D), beta cells in the endocrine pancreas are de-
stroyed as a result of an autoimmune process resulting in a severe insulin
deficiency [4]. Type 2 diabetes (T2D) is characterized by impaired insulin
action, which is mainly caused by a combination of factors and, in its later
stages, leads to decreased insulin production [5]. It is estimated that more
than 90% of those contributing to the steep rise in disease incidence have
T2D, which can be attributed to the consumption of calorie-dense foods
with low nutritional value, inactivity, and an increasing prevalence of obe-
sity [6]. In recent years, T2D has reached epidemic proportions, primarily
in developing nations, due to the adoption of American-style dietary habits
[7]. Throughout the world, diabetes mellitus is on the rise, with an esti-
mated 382 million people diagnosed in 2013, rising to 592 million by 2030
[8–10].

There is an increasing burden posed by diabetes complications in ad-
vanced nations and also in developing nations, and many of these com-
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plications result from the vascular complications of diabetes [7]. The most
common complication of diabetes is diabetic retinopathy, which is the lead-
ing cause of blindness in people of working age throughout the world [11].
It is estimated that about one-third of diabetic patients worldwide will
develop diabetic retinopathy, with increased risk associated with longer
disease duration, high hemoglobin A1C (HbA1c), and hypertension [12].
The number of diabetic retinopathy patients is expected to increase by 191
million by 2030 from 127 million in 2010 [13]. Besides the implications for
the patient personally and financially, diabetic retinopathy has a signifi-
cant impact on society as well. Healthcare costs for patients with diabetic
retinopathy are almost double those of those without the disease [14]. As
a result, the early diagnosis and treatment of DR are of great value to
diabetic patients and to society in general.

1.2 Classification of diabetic retinopathy

The screening of the retina is essential for diabetic patients in order to
detect and treat diabetic retinopathy at an early stage in order to avoid
the risk of blindness [15]. Color Fundus Photographs (CFP) are one of the
most cost-effective screening tools for diabetic retinopathy [16]. CFP have
the advantage of clearly illustrating the optic disc, optic cup, and blood
vessels [17]. The Early Treatment Diabetic Retinopathy Study (ETDRS)
established the gold standard method for assessing DR severity [18, 19].
This method relies on the examination of seven standard retinal fields on
30° stereoscopic color fundus photographs. Despite its accuracy and repro-
ducibility, this technique is labor-intensive and requires skilled photogra-
phers and skilled readers, as well as sophisticated photography equipment,
film processing, and archiving [20]. The turnaround time between data ac-
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quisition and interpretation in clinical trials can be several weeks. From the
patient’s perspective, it can be time-consuming and uncomfortable. Cur-
rently, it is recommended to perform two 45° retinopathographies of each
eye, the first centered on the macula and the second centered on the papilla,
allowing analysis of the mid-nasal periphery [21]. These recommendations
supersede those of the ETDRS. Nowadays, the retinograph can produce
high-quality images without pupillary dilation, allowing patients to save
time and experience greater comfort during the procedure.

Diagnosis of DR is based on the clinical manifestations of vascular ab-
normalities in the retina. Diabetic retinopathy consists of two major types:
non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR) [22]. NPDR refers to the early stages of DR in which
increased permeability and capillary occlusion are the primary signs ob-
served in the retinal circulation. Even if the patient is asymptomatic, fun-
dus photography can detect retinal pathologies such as microaneurysms,
hemorrhages, and hard exudates during this stage [23]. DR which has pro-
gressed to PDR, is characterized by neovascularization. When the new
abnormal vessels bleed into the vitreous during this stage (vitreous hem-
orrhage) or when tractional retinal detachment occurs, the patient may
experience severe vision impairment [24].

According to the Early Treatment Diabetic Retinopathy Study [25], DR
is classified based on the analysis of stereoscopic pairs of color photographs
taken at seven-field fundus photography [26]. The appearance of different
types of lesions on a retinal image indicates the presence of DR [23]. It
includes microaneurysms (MA), haemorrhages (HM), and soft and hard
exudates (EX) [19, 27]. According to the description of the lesions visible
on the fundus, different classifications have been made in order to determine
the severity, the prognosis, and the treatment for the lesions.
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- The earliest indication of DR is microaneurysms, which appear as
small red round dots on the retina [28]. The size is less than 125
micrometers in size, and the margins are sharp [29].

- The retinal hemorrhages are large spots with irregular margins, larger
than 125 micrometers [30].

- The hard exudates appear as bright yellow spots on the retina due
to the leakage of plasma. Their margins are sharp and found in the
retina’s outer layers [28].

- Soft exudates appear as spots of white on the retina as a result of
swelling of the nerve fibers. It has an oval or round shape [28].

In addition to these lesions, some more serious lesions may occur in the
advanced stages of DR, such as venous reduplication (VR), neovascular-
ization (NV), and venous loops (VL). Based on the presence of the lesions,
there are five stages of DR: no DR, mild NPDR, moderate NPDR, severe
NPDR, and PDR. Two more recent classifications are currently used in
France [21]: the ALFEDIAM classification (Association de langue française
pour l’étude du diabète et des maladies métaboliques) [31] and the inter-
national classification of the American Academy of Ophthalmology (AAO)
[32] represented Tab. 1.1. Fig. 1.1 shows the sample of color fundus pho-
tography of DR stages.

Figure 1.1 – The different DR stages in retinal fundus photographs: (a) No apparent
retinopathy (b) Mild NPDR, (c) Moderate NPDR, (d) Severe NPDR, (e) PDR [33].
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Table 1.1 – Diabetic Retinopathy Disease Severity Scale for AAO [32].

Proposed Disease Severity Level Findings Observable on Dilated
Ophthalmoscopy

No apparent retinopathy No abnormalities.
Mild nonproliferative DR Microaneurysms only.

Moderate nonproliferative DR
More than just microaneurysms

but less than severe
nonproliferative DR.

Severe nonproliferative DR

Any of the following: more than 20
intraretinal hemorrhages in each
of 4 quadrants; definite venous
beading in 2+ quadrants;
Prominent intraretinal
microvascular abnormalities
in 1+ quadrant And no signs
of proliferative retinopathy.

Proliferative DR
One or more of the following:

neovascularization, vitreous/
preretinal hemorrhage.

1.3 Novel retinal imaging technologies for diabetic
retinopathy

Several modern fundus imaging techniques for DR diagnosis have emerged
as a result of progress in fundus photography and improvements in medical
diagnostic systems: Ultra-Wide-Field imaging, Optical Coherence Tomog-
raphy, Optical Coherence Tomography Angiography, etc.

1.3.1 Ultra-Wide-Field imaging

As a result of the relatively small retinal field covered by conventional
CFP, its clinical application is limited. The technology of retinal imaging
has evolved rapidly over the past decade. In recent years, the advent of
ultra-wide-field (UWF) imaging, defined as a field-of-view of 100 degrees or
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more by the Diabetic Retinopathy Clinical Research Network (DRCRnet),
has allowed for the visualization of the far peripheral retina, areas that are
beyond the field of view of traditional CFP [34]. By covering 3x more retinal
surface than 45° pictures, UWF provides the best choice of new imaging
technologies. About 30% to 40% of eyes have peripheral DR lesions that
are located outside of the 45° photo fields [35]. In 10-15% of cases, the
severity of the DR is underestimated by at least one step on 45° images. It
has been noted that even problems that can threaten the vision, such as the
development of new vessels, can occur mostly outside the 45°photos field
in 53.9% of all cases [36]. The use of UWF imaging has made a significant
contribution to the detection and management of DR [37]. According to
current research, UWF imaging detects additional and more extensive PDR
pathologies when compared to conventional CFP imaging [35].

1.3.2 Optical Coherence Tomography

The field of ophthalmology has seen remarkable advancements in retinal
imaging technology, which now plays a crucial role in the clinical diagnosis
of DR. As a major advancement, Optical Coherence Tomography (OCT)
has been a game-changer since its introduction in 1991. OCT has trans-
formed not only the evaluation of the retina but the entire field of oph-
thalmology [38]. The OCT technique is non-invasive, non-contact, and uses
laser refraction to visualize anatomical structures in cross-section, similar
to histology [39]. This is the only examination that is capable of obtaining
cross-sections of the retina with a definition of five to ten microns [21]. It as-
sists in the detection of vascular abnormalities, including microaneurysms,
non-perfused areas, Intraretinal microvascular abnormalities (IRMA), mac-
ular edema, and preretinal neovascularization associated with diabetes [40].
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1.3.3 Optical Coherence Tomography Angiography

Based on the OCT’s foundations, Optical Coherence Tomography An-
giography (OCTA) offers a non-invasive method for producing detailed and
depth-resolved images of the chorioretinal microvasculature. The technique
works by analyzing differences between two scans taken at the same loca-
tion. Moving structures, such as red blood cells, generate a decorrelation
signal. Thus, by detecting these signals, OCTA can highlight the retinal
vascular networks, offering a rich picture of the retina’s health [41]. Re-
cently, swept-source technology has been used in OCTA, leading to the de-
velopment of Swept-Source OCTA (SS-OCTA). This new approach, lauded
for its non-invasive, safe, and repeatable imaging of retinal blood flow, has
been the subject of numerous studies exploring its potential in diagnos-
ing, screening, and monitoring DR [42–45]. The technological leap from
SD-OCTA to SS-OCTA allowed imaging larger fields of view: most of the
initial studies use SS-OCTA equipment that can capture a 12 × 12mm2

area in a single scan (as opposed to typically 3 × 3mm2 or 6 × 6mm2

previously) [44, 46, 47]. This imaging area can be further expanded by
stitching together multiple scans or adding dioptric lenses [42, 45, 48, 49],
although these techniques may require longer acquisition times and are
likely to introduce more artifacts [37]. Machines recently developed that
can obtain 15 × 15 mm2 or wider retinal blood flow images by a single
scan have emerged to solve these problems well and provide a fast, reliable
solution for DR diagnosis and screening [50, 51]. The introduction of such
ultra-widefield SS-OCTA (UWF-SS-OCTA) has offered a broader view for
assessing DR lesions [26].
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1.3.4 Other technologies

Adaptive optics (AO) is a technique that reduces the effects of opti-
cal aberrations on optical systems to improve their performance [52]. The
adaptive optics scanning laser ophthalmoscopy (AO-SLO) technique is a
noninvasive, objective, and direct method of examining the retinal mi-
crovasculature [53]. Through adaptive optics, researchers are able to cor-
rect for ocular aberrations and obtain high-resolution retinal images of
photoreceptors [54], blood flow [55], blood corpuscles [56], capillary net-
works [57], retinal wall [58], and retinal nerve fiber layers [59]. In light of
the fact that retinal diabetic changes result from microcirculatory distur-
bances, AO-SLO, which can be used to observe blood corpuscles directly in
the parafovea, may serve as a technique for assessing retinal hemorheology
in capillary networks [53, 60].

Monitoring retinal blood flow is essential for understanding the patho-
physiology of DR, which requires a temporal resolution beyond the capa-
bility of present-day OCT-A systems [61]. A new full-field imaging method,
laser Doppler holography, was introduced in order to measure blood flow
within the retina and choroid with as yet unrivaled temporal resolution
[62]. Laser Doppler holography uses Doppler spectral broadening of light
backscattered by the retina to create the angiographic contrast [61].

1.4 Screening and treatment of diabetic retinopathy

1.4.1 Screening of diabetic retinopathy

The screening process for diabetic retinopathy contributes to the early
detection of advanced stages of the disease, which is very important for
the selection of a treatment that is appropriate and for preventing further
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vision loss [63, 64]. While laser photocoagulation reduces the risk of vision
loss associated with diabetic retinopathy, the disease still contributes to a
significant amount of blindness and visual impairment in most developed
countries [65–68]. It is largely due to the fact that the diagnosis is often
made too late for treatment to prevent complications from occurring [69].
Regular eye examinations are the only way to identify and treat patients be-
fore vision-threatening complications arise [70]. It has been recommended
that an annual eye examination be conducted following the diagnosis of di-
abetes by the l’étude du diabète et des maladies métaboliques (Alfediam),
Agence nationale d’accréditation et d’évaluation en santé (Anaes), Agence
française de sécurité sanitaire des produits de santé (Afssaps) and Haute
Autorité de santé (HAS) 1 [71–73]. However, in France, annual funduscopic
examinations of all diabetic patients are not sufficiently carried out [69]. It
has been confirmed by an Echantillon National Témoin Représentatif des
Personnes Diabétiques (ENTRED) study [74]. In addition to the increase
in diabetic patients, there is a decrease in the number of ophthalmologists,
which contributes to the low number of annual eye examinations [75]. Based
on a 2002 study by the French Ministry of Health, the patient-to-physician
ratio is not expected to improve in the next 15 years [76].

The French DR screening process typically involves an ophthalmolo-
gist performing a funduscopic examination [69]. Fundus photography us-
ing a non-mydriatic camera, followed by review by an ophthalmologist,
is an alternative method of evaluating DR, which is at least as sensitive
as ophthalmoscopy [77–80]. Further, non-mydriatic cameras can capture
high-quality digital fundus photographs without requiring pupil dilation
and can be transmitted to remote experts via the Internet. The charac-
teristics of diabetic retinopathy, combined with the advancements in data

1. http://www.has-sante.fr
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transmission technology, provide an ideal platform for telemedicine [81].
Several countries have already established telemedical networks to screen
for diabetic retinopathy with good results [82–87].

In certain regions of France, a telemedicine network has been established
to improve DR screening. Founded in 2004, the Ophthalmology Diabetes
Telemedicine (Ophdiat®) network aims to improve the ophthalmological
screening of diabetic patients in the Île-de-France region (12,000 km2; 11
millions inhabitants) [69]. This network consists of screening centers that
are linked through a central server to ophthalmological reading centers, as
shown in Fig. 1.2. DR screening was performed by trained orthoptists or
nurses who were legally authorized to take retinal photographs [88]. Us-
ing a non-mydriatic funduscopic camera, three 45° non-stereoscopic retinal
digital photographs were obtained for each eye without pupil dilation [69].
Images were originally stored on a conventional personal computer. A team
of five certified ophthalmologists from the Reading Centre downloaded the
stored images. The report was generated by readers and included a diag-
nosis of diabetes-related ocular disorders, a diagnosis of non-diabetic ocu-
lar disorders, and recommendations for further care. In cases of referable
DR, according to the International DR classification [32], patients should
consult an ophthalmologist. Those with normal examinations were invited
to retest their eyes the following year. Each retinal image was graded in
approximately five minutes. As a result of the evaluation, the evaluation
report was uploaded from the server, printed at the screening center, and
sent to the general practitioner and patient [69]. As a result, the Ophdiat®
network represents a reliable screening program for DR that can be used
in a variety of healthcare settings [89]. Both patients and physicians have
well received the program.
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Figure 1.2 – An overview of the Ophdiat® network. The screening centers in Île-de-France
are connected to an ophthalmological reading center via a central server [69].

1.4.2 Treatment of diabetic retinopathy

The management of diabetic retinopathy (DR) relies primarily on a
good control of diabetes mellitus. However, when the severity of the vas-
cular lesions warrants further treatment, laser photocoagulation or vitreo-
retinal surgery may need to be performed [90]. Currently, there are several
treatment options available for different stages of DR: (1) For a long time,
laser treatment has been considered an evidence-based treatment for DME
and PDR [91–93]. Despite the fact that new therapies with anti-vascular
endothelial growth factor and corticosteroids are revolutionizing the man-
agement of DME, laser photocoagulation remains the standard of care,
both in PDR and DME [94, 95]. (2) Currently, intravitreal injections are
a validated treatment option, which may increase the ocular therapeutic
effects of many agents and reduce the incidence of systemic adverse events
[96]. Several studies have demonstrated that different intravitreal agents
are effective not only in preventing vision loss but also in restoring visual
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acuity [97–99]. (3) According to the results of randomized clinical trials, in-
travitreal ranibizumab (IVR) is currently an approved therapeutic option
for the treatment of DME [100, 101]. IVR has been evaluated both as a
monotherapy and as a combination treatment with laser photocoagulation
[102, 103]. (4) For patients who do not respond to laser photocoagulation
in both DME and PDR, pars plana vitrectomy (PPV) is considered an
option [104, 105].

1.4.3 Conclusion

As medical devices and medical systems develop, diabetic retinopathy
screening and treatment systems are improving. Currently, the following
solutions are available: (1) For diabetic patients, initial screening is per-
formed using 45° CFP images. (2) Further diagnosis and follow-up using
more advanced medical image imaging modalities (e.g., UWF, OCTA) for
patients with pathology. (3) Treatment of the patient, if necessary, such as
laser photocoagulation. Ophdiat®’s advent has undoubtedly improved the
efficiency of initial patient diagnosis and screening. However, it remains
inefficient for follow-up and further precise diagnosis of pathology. In one
sense, new medical imaging equipment is still in the process of becoming
popular, and hospitals require extra time and funding to upgrade their fa-
cilities. On the other hand, physicians need time to become familiar with
the use of more advanced imaging technologies. The development of a com-
prehensive diagnostic and follow-up system is urgently needed as medical
systems evolve and patients live longer.
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1.5 EviRed Project

There is an important obstacle to combating DR with the existing clas-
sification system based on old imaging technology, which is insufficient to
finely predict the evolution of the disease: in 50% of cases, ophthalmologists
overestimate or underestimate the possibility of complications. Compared
to standard CFP, ultrawide-field photography provides useful information
regarding the periphery of the retina that is absent from standard pho-
tography. Optical coherence tomography, which produces cross-sectional
images with a resolution of a few microns, serves as the gold standard in
the diagnosis of diabetic macular edema. In addition, it has been enhanced
with OCTA, which can demonstrate the retina’s vasculature non-invasively.
Widefield OCTA is capable of demonstrating areas of non-perfusion, which
are a hallmark of DR and cannot be resolved by fluorescein angiography
alone. There is, however, an expanding amount of data produced by these
new imaging modalities, which requires high levels of expertise from hu-
mans. It will be difficult for most ophthalmologists to develop a clinical
score based on these factors. That is why it is important to propose a
thorough review of DR diagnosis by replacing the existing classification
with an expert system based on artificial intelligence (AI) that combines
newly available imaging techniques and patient information (age, gender,
blood pressure, and glycemic control, state of the other eye, etc.) to provide
diagnosis and prediction. Further, this system is able to predict the devel-
opment of complications in the next 12 months (macular edema or pro-
liferative DR). The Évaluation Intelligente de la Rétinopathie diabétique
(EviRed) consortium (AP-HP, UBO, ZEISS, Evolucare Technologies, Uni-
versité Paris Diderot, and ADCIS) developed a fundus photo RD screen-
ing system based on artificial intelligence (CE marking and market release
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pending), and it is reinforced by the world’s leading eye imaging company,
ZEISS, which has extensive research and development experience.

The main objective of the EVIRED project is to develop and validate
an AI-based expert system assisting the ophthalmologist by improving pre-
diction of evolution and decision-making during diabetic retinopathy (DR)
follow-up. This main objective will consist of the validation of the prog-
nostic tool and the evaluation of how accurately the algorithm can predict
progression to severe retinopathy (defined by the presence of proliferative
DR and/or severe macular edema involving the center of the macula or
the need for laser photocoagulation, vitrectomy, or intravitreal injection)
in the following year. It will replace the current diagnosis of DR using
a classification mainly based on outdated fundus photography captured
with a 45°field and providing an insufficient prediction precision. It will
use Artificial Intelligence (AI) trained on a large data set of images (pro-
vided by the best fundus imaging devices available today), with medical
data of importance concerning the patient, to provide a better diagnosis
and a prediction of evolution. It should facilitate a better diagnosis, ac-
curate prediction, and better decision-making by ophthalmologists during
the follow-up of DR cases. As a result, critical progress should be made in
the management of DR.

The Work program for Evired is shown in Fig. 1.3. As part of WP1,
EviRed developed a platform and annotation tools for a virtual reading
center. It was administered by the AP-HP (Lariboisière) as the reference
center for DR. A total of ten ophthalmology departments and thirteen di-
abetology departments (a total of 5000 diabetic patients) were planned to
contribute to clinical studies (WP2). My laboratory, LaTIM, is expected
to develop algorithms based on multimodal data; to support this effort, the
retrospective extraction of 2000 images was initially planned (WP3). The
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algorithms were trained on various imaging technologies using a prospective
dataset of 1000 diabetic patients. For improved diagnosis and risk predic-
tion, multimodal information fusion combined all images and patient data.
It is planned to compare the algorithm with current practices using a se-
ries of 1000 images read by a human expert using the current classification
system. In addition, algorithms were applied to images captured by dif-
ferent systems in order to assess their reliability on those systems as well.
Together with international experts, the AP-HP will develop a consensus
on how to integrate the system into clinical practices and daily decision-
making (WP4). With the assistance of Sécurité Sociale, the consortium
will also conduct studies on improving general care pathways for diabetic
patients. The medico-economic research unit of AP-HP will also assess the
impact of AP-HP’s system on care pathways and costs. In WP5, industrial
partners will industrialize the system in a variety of formats, including
stand-alone boxes, software, or integrated into machines. Evolucare and
ADCIS, with their networks in France and abroad, and ZEISS, with its
global marketing force, will be offering the system globally. WP6 manages
all partners and entities involved in EviRed and handles appropriate IP
transfers and dissemination.

The added-value of EviRed is to develop a medical decision support
tool for diagnosis. In other existing projects, retrospective data was used,
and artificial intelligence was used as a substitute for humans, primarily
during screening. This project is unique in that it brings together knowledge
of diabetology and ophthalmology, R&D academic skills, a large cohort
of patients, companies who have already proven they can work together,
and a world leader in eye imaging. Additionally, EviRed will minimize
unnecessary burdens and costs by improving care personalization and by
enabling faster treatment, which should preserve vision to a greater extent.
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Figure 1.3 – Scientific program and structure of the proposal of Evired.
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This would facilitate the diagnosis and make the procedure accessible to
all ophthalmologists, thereby contributing to the spread of expertise.

1.6 Conclusion

This thesis was conducted as part of the Evired project, as part of WP3,
and I intend to examine a fundamental aspect of artificial intelligence in
this context: How can all images acquired during an eye examination, as
well as information about a patient’s clinical context be analyzed together
to develop recommendations that are automatically generated? With the
advent of new imaging technologies, the diagnosis of diabetic retinopathy
has become much more accurate and comprehensive, and I hope to combine
these advantages to arrive at an optimal diagnosis. The study of time-series
analysis is being conducted by another PhD student in parallel. Jointly, the
results of these two theses will address the main AI challenges of the Evired
project. As part of my thesis, I will examine the following multimodal
fusions:

— Joint analysis of multi-modal information in OCTA.
— Joint analysis of different specifications of OCTA acquisitions.
— Joint analysis of OCTA and UWF-CFP.

As a result, we will develop a new automated diagnostic model for dia-
betic retinopathy, which will utilize advanced imaging data for integrated
analysis to obtain more accurate diagnostic results. In conjunction with
new medical devices, the models we develop can assist ophthalmologists in
reducing the amount of work and expertise required.
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Multimodal medical imaging plays a pivotal role in clinical diagno-
sis and research, as it combines information from various imaging

modalities to provide a more comprehensive understanding of the under-
lying pathology. Deep learning-based multimodal fusion techniques have
emerged as powerful tools for improving medical image classification. This
chapter presents an extensive analysis of the developments in deep learning-
based multimodal fusion for the diagnosis of diabetic retinopathy (DR) and
other medical classification tasks. We examine the complementary relation-
ships among the modalities for diagnostic DR and other common clinical
modalities and discuss three major fusion schemes for multimodal classifi-
cation networks: input fusion, intermediate fusion (subdivided into single-
level fusion, hierarchical fusion, and attention-based fusion), and output
fusion. By evaluating the performance of these fusion techniques, we pro-
vide insight into the suitability of different network architectures for the
diagnosis of DR.

2.1 Image-based Computer-aided Diagnosis

2.1.1 Introduction

As part of the interface between medicine and computer science, computer-
aided diagnosis (CAD) systems can be viewed as a cutting-edge expert and
intelligence systems [106]. Diagnostic rules can be used in CAD systems
to simulate the decision-making process of a skilled human practitioner
in medicine. The development of CAD in medicine has been influenced
by a number of factors [107]. In addition to the complexity of the medi-
cal diagnosis process itself, large amounts of complex clinical data perti-
nent to many diseases and conditions are also available. There is also a
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large amount of diagnostic knowledge and advances in computer science
(especially in the fields of AI and machine learning). The third artificial
intelligence (AI) boom, as illustrated in Fig. 2.1, is gaining momentum.
Particularly, the CAD field for medical images is undergoing a transfor-
mation due to the advent of ANN called deep learning, which is part of
machine learning techniques [108].

Figure 2.1 – There have been two AI booms in the past, and a third is currently underway.
The progress of CAD research is closely related to the advancement of AI technology [108].

2.1.2 Deep Learning

A computer science field called AI is devoted to the creation of algo-
rithms that solve problems that usually require human intelligence to solve
[109]. The term machine learning refers to a subcategory of AI in which
computers are able to learn without being explicitly programmed. As part
of classic ’Machine Learning’, human experts select imaging features that
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appear to be most representative of the visual data and apply statistical
techniques in order to classify the data based on these features [110]. The
concept of ’Deep Learning’, a subtype of machine learning, involves the
use of representation learning without the use of feature selection [111].
It is instead the algorithm that determines which features are most ef-
fective for classifying the data by itself [109]. In the presence of sufficient
training data, representation learning could potentially outperform hand-
engineered features [112]. An illustration of the interrelationship between
the three terms can be found in Fig. 2.2.

Figure 2.2 – Subsets of AI [113].

The majority of deep learning methods are based on artificial neural
networks (ANN) [114]. The ANN is based loosely on the hypothesis that
biological neural networks operate: data enters the dendrites of a neuron,
something mathematical is done within the neuron, and the result is output
through the axon [115]. The biological neural network is composed of the
dendrites and axon terminals of many neurons that are interconnected in
the cortex of the brain [116]. Fig. 2.3 illustrates an ANN example. The cir-
cles in the figure represent individual neurons, while the arrows connecting
the neurons represent the weighting factors. Throughout the hierarchical
structure, the left input layer is simulated to the right output layer. In
its multilayered structure, a number of middle layers are interconnected.
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There is a great deal of power in ANNs due to the large number of neurons
that are arranged in interconnected deep hidden layers, which gives the
network its computational power [108].

Figure 2.3 – Schematic representation of three hidden layers in a simple ANN [115].

Convolutional neural networks

The most commonly used network in medical image diagnosis is the
convolutional neural network (CNN), a subtype of the ANN [117]. It was
first proposed by LeCun et al. [118] in 1990 to classify digits and later
used to recognize handwritten numbers on bank checks. However, the big
breakthrough was achieved in 2012 with the ImageNet challenge [119].

Two key differences exist between ANNs and CNNs. First, CNNs per-
form convolution operations on images by sharing weights within the net-
work [120]. This method eliminates the need for learning separate detectors
for the same object occurring at different positions in an image, making
the network equivariant with respect to translations [117]. In addition, it
significantly reduces the number of parameters that need to be learned
[115]. Secondly, CNNs typically incorporate pooling layers using a permu-
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tation invariant function, such as max or mean, to aggregate pixel values
of neighborhoods [120]. The convolutional layer can then be translated in-
variantly and have a larger receptive field [116]. Fully connected layers are
usually added at the end of the convolutional stream of the network. The
CNN structure is shown in Fig. 2.4, which includes three types of layers:
convolution, pooling, and fully connected.

Figure 2.4 – An example of a CNN’s classification of benign (B) and malignant (M) tumors
on the chest radiograph. Processing of feature extraction takes place on convolutional
layers and pooling layers, which are intermediate layers, and classifying processing occurs
on all following fully connected layers. Convolutional layers act in a similar manner to
spatial filtering in conventional image processing, while pooling layers function in a similar
manner to reduction layers [108].

Transformers

In recent years, Transformers [121] have dominated the field of natural
language processing (NLP), with applications in speech recognition [122],
synthesis [123], text to speech [124], and natural language generation [125].
In addition to achieving unprecedented success on natural language tasks,
Transformers have been successfully applied to numerous computer vision
problems, achieving state-of-the-art results and leading researchers to re-
consider the supremacy of convolutional neural networks as de facto op-
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erators [126]. Taking advantage of these advances in computer vision, the
medical imaging field has also seen a growing interest in Transformers that
are capable of capturing global context as opposed to CNNs with local
receptive fields [127]. During the past few years, the medical imaging com-
munity has witnessed an exponential increase in the use of Transformer-
based techniques, especially after the introduction of Vision Transformer
(ViT) [128].

Transformers are based on self-attention, which allows every element
of a sequence to interact with every other and find out who they should
pay more attention to [129]. As a result, they are better able to capture
explicit long-range dependencies [130]. Other benefits of transformers in-
clude their ability to scale up more easily [131] and their resistance to cor-
ruption [132]. Further, their weak inductive bias enables them to perform
better than CNNs when large-scale models and datasets are considered
[131, 133, 134]. There has been a surge of interest in further developing
Transformer-based models following encouraging results in several medical
imaging applications [135–138].

An image classification model based on the basic architecture of con-
ventional transformers is known as ViT. The structure of ViT is shown in
Fig. 2.5. ViT converts input images into a series of patches, each encoded
with a positional encoding method to provide spatial information [139].
When the patches are fed into the transformer along with the class token,
the multi-head self-attention is calculated, and the learned embeddings of
patches are output [129]. This image representation is derived from the
state of the class token at the output of the ViT. Finally, the learned im-
age representation is classified using a multi-layer perceptron (MLP) [128].
ViTs can also use feature maps from CNNs for relational mapping in ad-
dition to raw images [139].
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Figure 2.5 – The Vision Transformer architecture (left) and the encoder block (right). The
vision transformer splits the input image into patches and projects them (after flattening)
into a feature space where a transformer encoder processes them to produce a classification
result [126].

2.1.3 Conclusions

CAD systems have made significant process recently. As their perfor-
mance increase, they become more and more relevant and could potentially
reduce the workload of clinicians in various use cases. For this reason, deep
learning techniques are the first and most essential element of our research.

2.2 Information fusion techniques for multimodal med-
ical image classification

Due to the fact that we are at the beginning of a new ophthalmic pho-
tography technology, there are currently very few multimodal fusion al-
gorithms in which we are interested. In light of the current deep learning
DR diagnosis papers, it is difficult to summarize and propose innovations
for multimodal fusion methods. As a consequence, we have broadened our
scope and proposed exploring multimodal methods in the entire medical
image field, and after summarizing and learning systematic multimodal fu-
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sion methods from them, we will use these methods in order to diagnose
DR.

2.2.1 Introduction

Context

In recent years, the field of medical image analysis has attempted to
apply deep learning-based methods to the classification of various diseases,
notably related to the brain [140–142], breasts [143–145], prostate [146–
148] and eyes [149, 150]. The ability to accurately classify and diagnose
diseases from medical images has the potential to revolutionize health-
care by improving diagnostic accuracy, reducing human error, and enabling
more personalized treatment planning. This has driven the need for robust
and efficient methods for analyzing medical images from multiple imaging
modalities.

With advances of medical image acquisition systems, many new imag-
ing modalities have been used to diagnose patients [151–153], resulting in
larger and more diverse datasets. An imaging modality alone does not usu-
ally provide all the information needed to ensure accurate clinical diagnosis.
Therefore, clinicians increasingly base their diagnosis on images obtained
from a variety of sources: a combination of abundant information can be
used in clinical practice with more confidence. Following this trend and to
improve diagnosis results, AI-based classification models are increasingly
being developed by combining data from multiple modalities to take ad-
vantage of both redundancies and complementarities across modalities. By
using multimodal approaches, medical images from a variety of modalities
are combined to provide complementary information that can contribute
to improving diagnostic results.
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Traditional methods

Non-deep learning-based information fusion strategies, relying on tra-
ditional image processing and machine learning, have been reviewed in a
previous survey [154]. We summarize hereafter the main developments and
highlight the benefits of non-deep learning-based information fusion.

Input fusion is the most commonly used strategy among traditional
methods. It involves the fusion of images from various modalities into struc-
tured data and fuses them into different categories depending on the fusion
domain: spatial fusion [155–159], frequency fusion [160–165] and sparse rep-
resentation [166–168]. In spatial fusion, multimodal images are combined at
the pixel level, but this approach often leads to spectral degradation [169]
and color distortion [170]. Frequency fusion, which involves transforming
the input image into the frequency domain, is more complex and results in
limited spatial resolution [171]. Sparse representation, on the other hand,
can be sensitive to registration errors and lacks attention to details [170].
These limitations highlight the need for more advanced techniques, such
as deep learning-based multimodal fusion methods, able to overcome the
challenges faced by traditional methods.

Other strategies include intermediate and output fusion, which do not
require registration of the input images. Intermediate fusion involves ex-
tracting features from different imaging modalities, concatenating them,
and feeding them into a classifier, generally a support vector machine
(SVM), for diagnosis [172–174]. This approach requires extensive test-
ing and rich domain knowledge for feature extraction and selection. On
the other hand, output fusion involves stacking the data results from uni-
modal models, such as SVM [175]. Traditional methods contain complex
pre-processing steps and simple model structures, which often result in in-
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Table 2.1 – A list of multimodal image datasets. The list is sorted by the number of
publications on PubMed (Keywords: dataset name AND ’multimodal’).

Dataset Year Modalities Body Organ(s) Medical Diagnosis
ADNI 2004 sMRI, fMRI, PET Brain Alzheimer’s Disease
BraTS 2012 MRI (TI, T2, T1c, FLAIR) Brain Brain Tumor

TCIA 2014 CT, MRI, PET, US, etc.
Brain, Breast, Lung,
Kidney, Head-Neck,
Liver, Pancreas, etc.

Common Cancer Disease

OASIS 2007 MRI, PET Brain Alzheimer’s Disease

SPC 2018 Dsc, Clinical Image,
Metadata Skin Skin Lesion

TCGA 2006 Pathological data,
Genomic data Brain, Lung, etc. Common Cancer Disease

ABIDE 2012 sMRI, fMRI Brain Autism Spectrum
Disorder (ASD)

ADHD-200 2011 sMRI, fMRI Brain
Attention Deficit
Hyperactivity Disorder
(ADHD)

COBRE 2012 sMRI, fMRI Brain Schizophrenia
GAMMA 2021 OCT, Fundus Image Eye Glaucoma
CPM-RadPath 2019 MRI (TI, T2, T1c, FLAIR) Brain Brain Tumor

ISIT-UMR 2019
White Light RGB,
Narrow Band Imaging
(NBI)

Digestive Tract Gastrointestinal Lesions

MRNet 2018 MRI (TI, T2) Knee Knee Injuries
CTU-UHB 2014 CT (FHR, UC) Uterus Fetal Distress Diagnosis

formation loss during feature extraction, making it difficult to fully exploit
the complementarities between different modalities.

Besides requiring domain knowledge, these traditional multimodal fu-
sion approaches do not fully utilize the complementary between multimodal
features. In contrast, deep learning network architectures offer complex
models that can explore more possibilities for multimodal fusion. Further-
more, various end-to-end models significantly reduce the amount of domain
knowledge required for diagnosis purposes. This has led to the exploration
of alternative approaches based on deep learning to address the challenges
faced by traditional methods.
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Paper selection

In our initial literature search, a total of 14 public multimodal image
datasets were found: these datasets are listed in Tab. 2.1. The 14 pub-
lic multimodal datasets will be described in detail in Sect. 2.2.2, and
our summary is provided in Tab. 7.2. The final list of papers analyzed
was established as follows. For each of the 14 datasets, we searched on
Pubmed all publications mentioning the dataset name plus ((multimodal-
ity) OR (multimodal) OR (multi-modal) OR (multiparametric) OR (multi-
parametric)). Next, the resulting 14 lists were merged. Finally, based on
the abstracts, we manually filtered articles that discuss multimodal in-
formation fusion using deep learning methods. Unfortunately, any public
multimodal datasets focusing on classification tasks are available for some
organs (breast, lung, prostate, kidneys, larynx, heart, liver) mentioned in
the multimodal medical image analysis literature. Therefore, to broaden
the scope of the search, we also included 19 relevant articles targeting these
organs that use private datasets. This resulted in a list of 90 publications.

Taxonomy

As discussed in Sect. 2.2.1 and other surveys [151, 176, 177], multimodal
fusion methods are traditionally classified as input fusion, intermediate fu-
sion or output fusion, based on the stage of information fusion in the clas-
sification pipeline, as in Fig. 2.6(a). Note that some publications refer to
input fusion as early fusion, while intermediate fusion may be considered
as feature-level fusion, and output fusion is equivalent to decision-level fu-
sion or late fusion [176, 177]. We show that intermediate fusion is currently
the most popular category. In order to provide a broader understanding of
multimodal deep learning networks, we further divide intermediate fusion
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Figure 2.6 – (a) Unimodal classification task flow and different types of multimodal fusion
based on the stages in which they perform information fusion. (b) Information fusion
networks for the three types of multimodal fusion, inputs to information fusion, and the
implementation of information fusion.

into single-level fusion, hierarchical fusion and attention-based fusion, as il-
lustrated in Fig. 2.6(b). The proposed taxonomy is detailed and discussed
in Sect. 2.2.4: it covers the majority of the current multimodal classifica-
tion network architectures, providing insight into their stages and styles of
information fusion.

2.2.2 Multimodal medical images

Imaging modalities

For medical diagnosis purposes, each imaging modality has its own char-
acteristics and information. Different medical imaging modalities use dif-
ferent frequency bands of the electromagnetic spectrum in order to screen
and diagnose different medical conditions in the human body [152]. There
are different wavelengths and frequencies associated with each imaging
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Table 2.2 – Typical imaging modalities and organs found in the multimodal medical image
analysis literature.

Modalities Body organs
examined

Invasive/
Non-invasive Description

Magnetic
Resonance Image

(MRI)

Brain, Prostate,
Breast, etc. Non-Invasive

In addition to high spatial resolution
and exquisite soft tissue contrast,

MRI can also display dynamic physiologic
changes in three dimensions [179].

Positron Emission
Tomography

(PET)

Brain, Prostate,
Breast, etc. Invasive

The PET provides information
about the organs’ activity, as well as

its sugar use as energy[180].
Computed

Tomography
(CT)

Lung, Bone,
Oral, etc.

Non-Invasive
(harmful)

CT is an excellent tool for detecting bone,
joint, and soft tissue lesions that may

affect bone, joints, or soft tissues [181].

Ultrasound
(US)

Abdomen,
Breast, etc. Non-Invasive

In addition to showing the activity and
function of certain organs in the body, US can
also identify whether a tissue or organ contains

fluid or gas [182].
Optical Coherence

Tomography
(OCT)

Eye, Heart Non-Invasive
Biological tissues can be visualized

in high-resolution with OCT scanning in
two-dimensional or three-dimensional modes [38].

Dermatoscope
(Dsc) Skin Non-Invasive

Dsc allows better visualization of
subsurface structures and improved
identification of skin diseases [183].

modality, as well as different characteristics (structure, function, etc.) [178].
Furthermore, medical imaging modalities can be classified as invasive or
non-invasive. Invasive methods involve inserting an object into the body
through an incision or needle injection in order to examine an organ, while
non-invasive methods utilize some form of radiation or sound [152]. Ta-
ble 2.2 shows some modalities that appear in multimodal medical image
datasets.

Due to their complementary nature, there has been a significant focus
on the following combinations of modalities targetting various diseases:
(1) multi-parametric MRI (TI, T2, T1C, FLAIR) [184, 185], (2) MRI and
PET [186, 187], (3) PET and CT [188], (4) multi-view ultrasound (US B-
mode, US color Doppler) [143, 145], (5) Color Fundus Photographs (CFP)
and Optical Coherence Tomography (OCT) [17], (6) Dsc and Clinical Im-
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age [189, 190], and (7) combined diagnosis of Image Data and Clinical
Data. The complementary relationships between these modal images will
be briefly discussed.

Neurology and neurosurgery frequently use MRI. Different MRI images
can be obtained by changing the factors affecting the magnetic resonance
(MR) signal, and these different images are referred to as sequences. De-
pending on the sequence used, the behavior of tumors may vary, and it is
essential to use multiple sequences to accurately determine tumor location
and size [191]. T1-weighted (T1) and T2-weighted (T2) MRIs are the most
common MRI sequences. Tomographic anatomical maps can be observed
with the T1 sequence. The T2 sequence clearly shows the location and size
of the lesion, but the puffy area around the tumor is blurred and difficult to
discern [192]. To overcome this, the Fluid Attenuated Inversion Recovery
(Flair) sequence is used. It provides better visualization of the area of puffi-
ness around the tumor site, making it easier to detect the tumor’s bound-
aries [193]. Furthermore, contrast-enhanced T1-weighted (T1c) sequences
can be used to detect intra-tumor conditions and distinguish tumors from
non-tumorigenic lesions [194]. T2 and Flair are suitable for detecting tu-
mors with peritumoral edema, while T1 and T1c are suitable for detecting
tumors without peritumoral edema [195].

Diffusion-weighted imaging (DWI) is another useful sequence designed
to detect the random movements of water protons. Therefore, DWI se-
quence is a highly sensitive method for detecting acute strokes [196]. An
increased apparent diffusion coefficient (ADC) value with lower signals of
DWI images could reveal the fast diffusion of water molecules [197]. In
addition to using multiple sequences, co-diagnosis using structural MRI
(sMRI) and functional MRI (fMRI) is becoming increasingly popular [198,
199]. fMRI measures the small changes in blood flow that occur with brain
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activity. This test can be used to determine which parts of the brain are
performing critical functions and to determine the effects of strokes and
other diseases on the brain [200].

The combination of PET and MRI, PET and CT has been recognized as
a valuable method for screening and diagnosing various diseases [201–205].
The PET scan is preceded by the administration of a radioactive agent
to the patient. This allows doctors to determine the metabolic processes
in which the brain tissue is involved [180]. Compared to other imaging
methods such as CT and MRI, PET has a high sensitivity and can detect
lesions even if MRI/CT does not yet show abnormalities. PET also has
high specificity, making it possible to determine whether a tumor is ma-
lignant based on its metabolism at the time of MRI/CT detection [206].
However, because PET scan lacks information about organ anatomy, they
should be conducted in conjunction with CT/MRI scans [198]. In sum-
mary, the combination of PET and MRI/CT scans provides structural and
functional information related to various diseases, improving the effective-
ness of diagnosis. Fig. 2.7 shows the images of PET, CT, and MRI, as well
as several sequences of MRI.

Availability, low cost, and safety make ultrasonography the most widely
used clinical diagnostic tool. Conventional B-mode imaging is used to ex-
amine abnormal masses in tissues, while Color Doppler imaging shows the
distribution of blood vessels within tissues [207]. The combined use of these
two modalities is common in identifying cervical lymph nodes [208], diag-
nosing breast cancer [143, 145], and so forth [209–211].

In the diagnosis of ophthalmic diseases, CFP and OCT are the two most
cost-effective methods [16]. These imaging modalities provide prominent
biomarkers that can be used to identify glaucoma suspects, such as the
vertical cup-to-disc ratio (vCDR) on fundus images and the retinal nerve
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Figure 2.7 – (a)-(c) are the images of PET, CT, and MRI. (d)-(g) are the different se-
quences of MRI. Images from [195], with permission of the first author.

Figure 2.8 – Images of CFP and OCT from GAMMA challenge [17].

fiber layer thickness (RNFL) on an OCT image. A more accurate and
reliable diagnosis is often achieved by taking both screenings in clinical
practice [17]. Fig. 2.8 shows the images of CFP and OCT.

In the diagnosis of skin cancer, a combination of dermoscopic and clini-
cal images is often used [189]. The clinical image is captured using a digital
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Figure 2.9 – Dermoscopic and clinical images. Image from public datasets SPC [190].

camera and shows the visualized feature in different views and lighting con-
ditions. On the other hand, dermoscopic images provide a clear view of the
skin’s subsurface structures and are obtained using a specific skin imaging
technique in contact with the skin [212]. Fig. 2.9 shows the dermoscopic
and clinical images.

In addition to multimodal image combinations, clinical information re-
garding the patient’s medical history and symptoms can significantly con-
tribute to the diagnosis of the disease. The textually recorded clinical data
may contain implicit features that may improve the model’s classification
performance. Electronic Health Records (EHR) are commonly used to de-
tect brain diseases by integrating image analysis features [213, 214]. Simi-
larly, skin cancer detection also relies heavily on metadata [189, 215].

Multimodal image datasets

In the early stages of multimodal medical diagnosis, multimodal datasets
are particularly valuable for testing various networks and developing fu-
sion methods. However, the privacy and cost of medical images often
make obtaining more comprehensive multimodal datasets challenging for
researchers. Fortunately, there are several freely available multimodal datasets.
These datasets provide information regarding the diagnosis of diseases at
various locations in the body, as well as the analysis of various multimodal

56



State of the art literature review

combinations. These datasets are expected to contribute to the analysis of
fusion methods and serve as a foundation for the future development of
multimodal fusion methods.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1 is a multi-center
longitudinal study to discover clinical, imaging, genetic, and biochemical
biomarkers for Alzheimer’s disease (AD). ADNI has three stages: ADNI
1 included 400 subjects diagnosed with mild cognitive impairment (MCI),
200 subjects with early AD, and 200 elderly control subjects; ADNI 2
added new participant groups: 150 elderly controls, 100 EMCI subjects,
150 late mild cognitive impairment (LMCI) subjects, and 150 mild AD
patients; ADNI 3 added hundreds of new MCI subjects, mild AD subjects,
and elderly controls. The MRI Brain Tumor Segmentation (BraTS) 2 chal-
lenge has been held since 2012 and currently includes classification tasks
in addition to tumor segmentation. Each subject has four MRI modal-
ities (T1, T1C, T2, and T2 FLAIR), human annotation of tumor seg-
mentation, and tumor grade. The Cancer Imaging Archive (TCIA) 3 is a
large-scale public database containing medical images of common tumors
(lung cancer, prostate cancer, etc.) and corresponding clinical information
(treatment protocol details, genetics, pathology, etc.). Open Access Series
of Imaging Studies (OASIS) 4 seeks to make neuroimaging datasets freely
accessible to the scientific community. OASIS-3 contains 755 cognitively
normal adults and 622 individuals at various stages of cognitive decline
ranging in age from 42-95 years. Seven-point Criteria Evaluation Database
(SPC) 5 provides a database for evaluating computerized image-based pre-
diction of the 7-point malignancy checklist for skin lesions. The dataset

1. https://adni.loni.usc.edu/
2. http://braintumorsegmentation.org/
3. https://www.cancerimagingarchive.net/
4. https://www.oasis-brains.org/
5. https://derm.cs.sfu.ca/Welcome.html
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contains more than 2000 clinical and dermoscopy color images and struc-
tured metadata for training and evaluating CAD systems [190]. As part of
the Cancer Genome Atlas (TCGA) 6, an internationally recognized cancer
genomics project, more than 20000 primary cancer samples and matched
normal samples were molecularly characterized [216]. The Autism Brain
Imaging Data Exchange (ABIDE) 7 initiative now includes two large-scale
collections, ABIDE I and ABIDE II, whose ultimate goal is to facilitate
discovery science and comparative analysis across samples. ABIDE I con-
tains 1112 datasets, including 539 from individuals with ASD and 573
from typical controls (ages 7-64 years, median 14.7 years across groups).
ABIDE II contains 1114 datasets from 521 individuals with ASD and 593
controls (age range: 5-64 years). ADHD-200 Sample 8 is a grassroots ini-
tiative that aims to improve scientific understanding of the neural basis of
ADHD through the implementation of open data sharing and discovery-
based research methods. The Center for Biomedical Research Excellence
(COBRE) 9 is providing raw anatomical and functional magnetic resonance
imaging data from 72 patients with schizophrenia and 75 healthy controls
(ages ranging from 18 to 65 in each group). The Glaucoma Grading from
Multimodality Images (GAMMA) 10 Challenge is intended to facilitate the
development of fundus and OCT-based glaucoma grading. GAMMA con-
tains 2D fundus images and 3D OCT images of 300 patients. Computa-
tional Precision Medicine: Radiology-Pathology Challenge on Brain Tumor
Classification 2019 (CPM-RadPath) 11 is a brain tumor classification chal-
lenge. Each patient contains multiple MRI sequences: T1, post-contrast

6. https://www.cancer.gov/ccg/research/genome-sequencing/tcga
7. http://fcon_1000.projects.nitrc.org/indi/abide/
8. http://fcon_1000.projects.nitrc.org/indi/adhd200/
9. http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

10. https://aistudio.baidu.com/aistudio/competition/detail/90/0/introduction
11. https://www.med.upenn.edu/cbica/cpm-rad-path-2019/
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T1-weighted (T1Gd), T2, and FLAIR. ISIT-UMR 12 is a dataset for the
classification of gastrointestinal lesions in regular colonoscopy. The dataset
consists of 76 polyps with white light and NBI videos from the same polyp.
The MRNet 13 dataset consists of 1,370 knee MRI exams performed at Stan-
ford University Medical Center between January 1, 2001, and December
31, 2012. There were 1104 (80.6%) abnormal exams in the dataset, with
319 anterior cruciate ligament (ACL) tears and 508 meniscal tears. CTU-
UHB 14 is a database containing 552 cardiac tomography recordings from
the Czech Technical University (CTU) in Prague and the University Hos-
pital in Brno (UHB). As part of each CT, a fetal heart rate time series
(FHR), as well as a uterine contraction (UC) signal, are recorded.

The previously mentioned datasets provide valuable resources for de-
veloping and testing multimodal fusion methods. They contain images of
different medical modalities of the same patient, as well as images of dif-
ferent patients. Access to these datasets is available upon request and at
no cost. We summarized the fusion methods presented in 41 articles that
use ADNI, 11 articles that use TCIA, 4 articles that use BraTS, 3 arti-
cles that use COBRE, 3 articles that use ADHD-200, 2 articles that use
CPM-RadPath, 2 articles that use ABIDE, 2 articles that use GAMMA, 2
articles that use SPC, 2 articles that use MRNet, 1 article that uses TCGA,
1 article that uses CTU-UHB, 1 article that uses OASIS, and 1 article that
uses ISIT-UMR.

12. http://www.depeca.uah.es/colonoscopy_dataset/
13. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002699
14. https://physionet.org/content/ctu-uhb-ctgdb/1.0.0/
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Table 2.3 – Multimodal classification pipeline.
Stage Description

Data preprocessing
The initial step of the classification task is to perform
operations such as registration, denoising, and data
augmentation on the raw data.

DL backbone Extraction of high-dimensional features of data by the
deep learning network structure.

Information fusion Fusion of multimodal data/features by different methods.

Final classifier The final stage of generating classification results from
multimodal data.

Model evaluation Different metrics are used to evaluate the performance of
multimodal models.

2.2.3 Multimodal classification pipeline

Multimodal fusion research is still in its infancy, and the current def-
initions of fusion methods and processes are unclear. Many publications
use the terms input fusion, intermediate fusion, and output fusion, but
these terms do not necessarily have the same meaning. To provide a stan-
dardized framework for multimodal classification, we follow the five-stage
pipeline proposed in [217], as shown in Tab. 2.3. These five stages can be
used to summarize all medical multimodal classification tasks. This section
provides clear definitions of each stage and presents the methods for im-
plementing them. According to the order and structure of the information
fusion stage and the deep learning (DL) backbone stage, we categorize the
multimodal fusion methods into five methods in Section 4.2.3.

Pre-processing

Image pre-processing is crucial for multimodal medical classification
tasks, as it enhances DL network efficiency and effectiveness in extracting
features. Pre-processing techniques, such as image registration, cropping,
denoising, resampling, intensity normalization, regions-of-interest (ROI)
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extraction [218–220], and feature selection [143, 198, 221, 222], prepare the
data for more accurate and efficient analysis by DL models.

To further improve the performance of these models, data augmenta-
tion techniques play an essential role in the pre-processing pipeline. For
example, data augmentation helps prevent overfitting [223] using methods
like random cropping, flipping, and rotation during training. In addition,
increasing the training dataset’s diversity improves the model’s generaliza-
tion capabilities.

Considering the large volumes of data generated by multimodal medical
images, it is noteworthy that only a small fraction is relevant to diagnosing
diseases. Therefore, feature selection emerges as a crucial pre-processing
step, aiming to reduce data dimensionality while retaining pertinent infor-
mation. Common feature selection methods include manual selection [224–
226] and Principal Component Analysis (PCA) [227–229].

Another critical aspect of pre-processing in the context of multimodal
medical images is image registration. By aligning multiple images from
various modalities, image registration ensures the accurate matching of
corresponding anatomical structures across image types. This alignment
facilitates comprehensive data analysis and becomes particularly critical
for input-level fusion, where combining complementary information from
different modalities depends on proper alignment.

Information fusion

A key component of multimodal image classification is information fu-
sion. Information fusion can be divided into input fusion, intermediate
fusion, and output fusion based on the level at which information is fused.
And there are two ways to achieve fusion [217], namely concatenation and
merge. Concatenation involves the concatenation of data from different
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Figure 2.10 – Two types of fusion. Orange and green: data of different modalities. Blue:
the output fused data.

modalities into a single tensor for the next step. Merge involves complex
calculations such as adding data from different modalities; the final result
is a smaller amount of data. Fig. 2.10 illustrates the two types of fusion.
Our study focuses on the fusion of different medical imaging modalities,
and in the next section, we will examine the different fusion methods in
greater detail.

Deep learning backbone

DL backbones are used to extract high-dimensional features of modali-
ties during the modal classification process. Over recent years, several high-
performing network architectures have emerged, including AlexNet [119],
VGG [230], GoogLeNet [231], ResNet [232], DenseNet [233], AE [234–236],
ViT [237], and others, providing state-of-the-art performance in classifi-
cation. A summary of the common architectures for DL is presented in
Tab. 2.4. DL has developed rapidly due to several factors, including the
development of hardware devices like graphics processing units (GPUs) and
tensor processing units (TPUs), which have greatly improved the training
speed of DL networks. Additionally, publicly available datasets such as
ImageNet [238] have facilitated the training and testing of various models.
Furthermore, DL is capable of learning advanced features directly from
data without requiring extensive expertise or prior experience, making it
easily adaptable across various domains.
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Table 2.4 – Some common architectures of deep neural networks. Different architectures
are more suitable for different types of data.

Architecture Description

Fully Connected Neural Network
(FCNN)

FCNN are the most traditional deep neural networks.
Every neuron in a layer is connected to
every neuron in the layer below it [239].

Convolutional Neural Network
(CNN)

CNN can model spatial structures,
such as images or volumes.

Convolutional kernels model local information by
sliding over input data [239].

Autoencoders (AE)

By compressing and reconstructing the input data,
AE learns low-dimensional encoding.
There are different types of layers,

such as convolutional and fully connected [240].

Transformer
Transformer is a model that uses

a multi-headed attention mechanism.
Feature extraction is solely based on attention [241].

In input fusion, a single backbone can extract features from fused modal-
ities. However, in other fusion schemes, such as intermediate or output fu-
sion, multiple DL backbones may be used to extract features from different
modalities. In current multimodal fusion research, Convolutional Neural
Networks (CNN) are the preferred choice of the majority of researchers
due to their effectiveness in feature extraction from medical images. Many
pre-trained models have already been tested on large datasets, making
them suitable for use in medical imaging research. In the articles analyzed,
CNNs were used in 65 articles, Fully Connected Neural Networks (FCNN)
in 10 articles, Auto-Encoders (AE) in 8 articles, and Transformers in 6
articles.

Final classifier

Multimodal classification employs a final classifier to generate the clas-
sification results based on multimodal features or multiple independent
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classification results, depending on the fusion scheme employed. In DL net-
works, the Fully Connected (FC) layer [188, 198, 199, 242] is often used as
the final classifier. Other methods, such as SVM [227, 243], Random Forest
[144], and Score Merge [244, 245] can also be used as final classifiers.

Evaluation metrics

Evaluation metrics for multimodal fusion tasks are similar to those used
in unimodal classification tasks. Commonly used indicators for assessing
the performance of multimodal fusion methods and DL networks in the con-
text of medical classification tasks include True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Negative (FN). These indicators
can be used to calculate several performance metrics, such as sensitivity,
specificity, accuracy, precision, and F1 score, among others. Additionally,
the Area Under the Curve (AUC) and Kappa are commonly used metrics
to evaluate medical classification tasks. The Receiver Operating Character-
istic (ROC) curve is a graphical representation of a classifier’s performance,
and AUC quantifies the classifier’s ability to distinguish between different
classes, with a higher AUC indicating better discrimination.

- Accuracy (ACC) = TP+TN
TP+TN+FP+FN

- Sensitivity (SEN) = TP
TP+FN

- Specificity (SPEC) = TN
TN+FP

- F1 Score = 2×TP
2×TP+FP+FN

- Positive Predictive Value (PPV) = TP
TP+FP

- Negative Predictive Value (NPV) = TN
TN+FN

- Area Under the receiver operating characteristic Curve (AUC)
- Cohen’s Kappa (Kappa) = p0−pe

1−pe

where p0 is the accuracy and pe is the sum of the products of the actual and
predicted numbers corresponding to each category, divided by the square
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Figure 2.11 – Five types of multimodal fusion networks.

of the total number of samples.

2.2.4 Multimodal classification networks

Information fusion taxonomy for multimodal image classification

The positions of pre-processing and the final classifier are fixed during
the process of multimodal classification. Based on the number and sequence
of DL backbones and information fusion step, multimodal DL network ar-
chitectures can be categorized into five types: input fusion, single-level
fusion, hierarchical fusion, attention-based fusion, and output fusion, as
shown in Fig. 2.11. As explained hereafter, single-level, hierarchical, and
attention-based fusion are sub-categories of intermediate fusion. These cat-
egories describe how the network processes and combines the input modal-
ities to produce classification results.

(1) Input Fusion can also be referred to as input-level fusion, where
the information fusion phase precedes the DL backbone. Concatenation
and Merge are two methods of information fusion. For the concatenation
method, data of different modalities are used as different channels of the
input. In the merge approach, data is fused at the pixel or voxel level, and
the merged images are used as inputs for the DL classifier. The process
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Figure 2.12 – Input fusion process diagram. Information fusion: Concatenation/Merge
(Inputs).

Figure 2.13 – Single-level fusion process diagram. Information fusion: Concatena-
tion/Merge (Classic).

diagram for input fusion is shown in Fig. 2.12.
(2) Single-level Fusion involves information fusion after the DL back-

bone but before the final classifier. As part of a single-level fusion, the
features extracted by the DL backbone are fused only once at some point
before the classifier is applied. Depending on the network structure, it can
be divided into two types: Classic Fusion and Network Fusion. In Classic
Fusion, high-dimensional features are extracted from different modalities
using different DL classifiers and then merged or concatenated. This is the
most common network structure in intermediate fusion, so we call it Clas-
sic. Fig.2.13 illustrates the process diagram of Classic Fusion. In Network
Fusion, the intermediate features of different modalities are first extracted
using DL classifiers, followed by the extraction of high-level features of the
fused modalities using additional DL backbones. Fig.2.14 shows the process
diagram of Network Single-level Fusion.

(3) Hierarchical Fusion is an improvement over single-level fusion. In
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Figure 2.14 – Single-level fusion process diagram. Information fusion: Concatena-
tion/Merge (Network).

Figure 2.15 – Hierarchical fusion process diagram. Information fusion 1: Concatena-
tion/Merge (Network). Information fusion 2: Concatenation/Merge (Classic).

this approach, the DL backbone extracts features from the data of different
modalities, while features from each level are then fused at the network
level by concatenation or merging. Additionally, further feature fusion is
performed following the DL backbone. This allows for more complex feature
combinations to be learned, improving classification accuracy. The process
diagram for output fusion is shown in Fig. 2.15.

(4) The emergence of Transformers has led to the development of Attention-
based Fusion as a new network architecture. Through its unique DL back-
bone, this architecture is able to extract features and implement feature
fusion based on the attention relationship between different modalities.
Fig. 2.16 illustrates the process diagram of attention-based fusion. A more
detailed analysis of the network architecture will be presented in Sect. 2.2.4.

(5) Output Fusion, also known as decision-level fusion or late fusion,
involves the use of DL backbones to extract high-dimensional features from
different modalities of data. The extracted features are then used to gener-
ate separate classification results for each modality. These results are then
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Figure 2.16 – Attention-based fusion process diagram.

Figure 2.17 – Output fusion process diagram. Information fusion: Merge (Outputs).

Figure 2.18 – The percentage of different fusion methods used in our study. Intermediate
fusion accounts for 73% of all methods. Tags: multimodal classification networks, number
of publications, percentage.

combined using a fusion technique, such as majority voting or averaging, to
produce a final classification result. The process diagram for output fusion
is depicted in Fig. 2.17.

Recent years have seen a growing trend toward the use of deep learning
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networks in multimodal fusion research. Fig. 2.18 illustrates the distribu-
tion of five fusion methods in the scope of the study. In contrast to tradi-
tional methods, single-level fusion is the most commonly used method in
DL multimodal fusion, followed by input and output fusion. Hierarchical
fusion and attention-based fusion are also gaining attention and present
great potential for research. These more recent fusion methods offer more
complex ways of combining modalities, enabling deep learning networks to
learn more powerful representations of multimodal data.

Input fusion networks

Input fusion combines data from multiple modalities into a single feature
tensor fed into the deep neural network as an input. Input fusion typically
involves the fusion of modalities with similar structures, making implemen-
tation relatively straightforward. Some modalities can be acquired together
at the time of clinical photography (e.g., CT and PET). In many cases,
these modalities have the same voxels and spacing after data processing,
making obtaining registered multimodal data easy. Furthermore, the ma-
jority of input fusion tasks do not require re-modeling, only modifying the
input part of the unimodal model to achieve multimodality. Fusion can be
accomplished in three ways: concatenating or merging multimodal medical
images, extracting high-dimensional features from multimodal images, and
then fusing them.

(1) The registered multimodal data are fed into the DL classifier as
input for different channels to obtain classification results, which is the
most common input fusion approach. Fig. 2.19 illustrates this typical in-
put fusion network architecture used in the research of [246–249]. [246]
proposed a semi-automatic method for the classification of prostate cancer
without feature selection. Several combinations of 3D volumes (e.g., ADC,
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Figure 2.19 – Schematic diagram of the network architecture for input fusion. Information
fusion method: Concatenation (Inputs).

DWI, and T2) are utilized as inputs of the CNN network. Each sequence is
considered an input channel; the output is the classification of significant
versus nonsignificant lesions. [247] employed MRI and PET to diagnose
Alzheimer’s disease. PET and MRI are used as two channels for the input
of the CNN classification network, based on an ROI crop model to learn a
classifier and fuse different features from MRI and PET. [248] concatenated
T2, ADC and DWI for tumor foci classification using an end-to-end CNN
network. In order to diagnose triple-negative breast cancer, [249] concate-
nated manually segmented multiparametric MRI images (PEI, DWI) into
a CNN network. Despite the ease of implementing this fusion architecture,
it has some limitations with regard to the modal data requirements. For
instance, the registration performance of different modal data can influence
the classification results. Moreover, this approach is not suitable for fusing
heterogeneous data, such as 3D medical images and 1D clinical records,
which have different characteristics and dimensions.

(2) The merging of images is another input fusion method in addition
to concatenation. Various image modalities are fused at the pixel or voxel
level in order to create a new fused image that is used for classification
[140, 250]. [250] proposed an effective multimodal image fusion method
for Alzheimer’s disease diagnosis using MRI and PET. Through registra-
tion and mask coding, they were able to fuse gray matter (GM) and 18-
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fluorodeoxyglucose positron emission tomography (FDG-PET) images to
create a new imaging modality called "GM-PET". In the resultant com-
posite image, the GM area is clearly highlighted, allowing AD diagnosis to
be made while maintaining both the contour and metabolic characteristics
of the subject’s brain tissue. They then fed the fused images to the CNN
for classification. The GM region cropped from the MRI image is mapped
onto the PET image, resulting in the fusion of PET and MRI data in [140]
research. In addition to providing anatomical and metabolic information
about the brain, the fusion modality also allows the viewer to focus on
the main features of the brain by reducing the visual noise. The benefit
of fused images is that they contain a wealth of medical information, but
the process of generating them often requires an extensive amount of prior
medical knowledge.

(3) Some studies have performed input fusion after extracting features
from multimodal images instead of performing a direct fusion of medical
images [186, 227]. [227] used PCA to extract features from MRI, PET,
and cerebrospinal fluid (CSF) and then concatenated these features into
the Restricted Boltzmann Machine (RBM) network for the diagnosis of
Alzheimer’s disease. [186] manually extracted features from MRI and PET
and then used stacked auto-encoder (SAE) to classify the concatenated
multimodal features in order to diagnose Alzheimer’s disease. The archi-
tecture of extracting features and combining them can solve the problem of
multimodal heterogeneity. However, PCA-based or manual feature extrac-
tion requires prior knowledge and does not fully utilize image information.

In input fusion, fused data is used in single-branch feature extraction,
and the network architecture design reduces network parameters and de-
ployment difficulties significantly. Due to the fusion of the data at the input
level, the complementary information from the different modalities is not
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utilized to the fullest extent possible.

Single-level fusion networks

The single-level fusion process uses different DL backbones to extract
features from different modalities separately, followed by an information
fusion process before making the final decision. Based on the position of
information fusion within the network architecture, it can be divided into
classic fusion structures and network fusion structures.

(1) The most common single-level fusion architecture is to extract fea-
tures from multimodal data by using different branches, then fuse these
features and feed them to the final classifier [147, 185, 188, 215, 224, 234,
235, 243, 251–255]. A schematic diagram of its network architecture is
shown in Fig. 2.20. After preprocessing the data, the architecture [224]
extracted low-level 3D features from fMRI and sMRI to classify Attention
Deficit Hyperactivity Disorder (ADHD) automatically. As soon as the fea-
tures are concatenated, softmax classifiers are used to differentiate ADHD
cases from typically developing children (TDC) cases. In order to diagnose
breast cancer, [254] fused MRI (T1, T2) and clinical information. Two
3D ResNet-50 were used to extract features from contrast-enhanced T1
subtraction MR images and T2 MR images, while the FC layer provided
clinical inputs. For the prediction of pathological complete response, the
outputs of each 3D ResNet-50 and FC layer were concatenated, and the
final FC layer with sigmoid activation function was used. Likewise, [215]
employed ResNet and FC layers to extract features from DSC, Clinical
Image, and metadata, then applied FC layers for skin lesion classification.
Aside from these methods of concatenating modal features, complex com-
putations can also be used to merge features. [252] used visual field (VF)
and OCT for the diagnosis of glaucoma. VFNet and OCTNet were used
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Figure 2.20 – Schematic diagram of the network architecture for classic single-level fusion.
Information fusion method: Concatenation (Classic).

to extract features from the VF and OCT modes, respectively. A weighted
average was used to obtain an aggregated representation from bimodal fea-
tures using an attention module. Each modal feature was assigned a weight
using a fully connected layer, followed by a sigmoid function to calculate a
scalar value (0-1) indicating that feature’s relative contribution to the ag-
gregate representation. To aggregate all features, a global average pooling
layer was also used. The results of glaucoma diagnosis were predicted using
three fully connected layers and a softmax layer. For CT and PET modal-
ities, [188] extracted features using CNN networks, merged the features
using gated multimodal units (GMU), and classified lung cancer using FC
layers. GMU, unlike the widely used connection operation, allows for the
learning of intermediate representations of multimodality features by using
hidden structures and gate controls, thereby enabling the prediction layer
to assign weights more effectively to intrinsically associated features.

(2) Two stages can be described as the single-level fusion architecture
for network fusion. The first stage involves extracting single-level features
separately from different modalities using DL backbones, followed by the
second stage of information fusion, which involves utilizing an additional
DL backbone to extract high-level features from the fused features [225,
226, 256–259]. Lastly, the extracted high-level features are used in the final
classification process. Fig. 2.21 illustrates a typical network fusion architec-
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ture. [257] used cascaded CNN for the multimodal fusion of MRI and PET
to diagnose Alzheimer’s disease. They proposed a 2D CNN to combine the
multimodality features and make the final classification. After 3D CNN
output features are flattened to one dimension, the 1D feature vectors of
MRI and PET are combined to produce a two-dimensional feature map for
2D CNN analysis. [226] developed a multimodal architecture for combining
MRI, PET, and CSF features. Each modality’s individual representation of
high-level features is calculated using the stacked sparse extreme learning
machine auto-encoder (sELM-AE). Another stacked sELM-AE is used to
get the joint features from the high-level MRI, PET, and CSF features. The
kernel-based extreme learning machine classifies the joint feature represen-
tation. With multimodality neuroimaging and genetic data, [260] proposed
a three-stage deep feature learning DNN framework for Alzheimer’s dis-
ease classification. Each modality’s latent representation is learned in the
first stage, then each pair of modalities’ joint latent representations are
learned in the second stage, and in the third stage, each pair of modalities’
joint latent representations are used to create the classification model. [258]
classified schizophrenia using sMRI, fMRI, and single nucleotide polymor-
phisms. The latent representations for the static functional network con-
nectivity (sFNC), sMRI, and single nucleotide polymorphism (SNP) are
learned using an autoencoder, multi-layered perceptron, and bi-directional
long short-term memory (LSTM). The Multimodal Bottleneck Attention
Module performs the fusion of the embeddings and then sends the com-
bined embeddings to a variational autoencoder for encoding, followed by a
SoftMax layer for classification.

The single-level fusion method is currently used to merge multiple med-
ical modalities for classification tasks and can be applied to the fusion of
different medical modalities. The method does not require a specific for-
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Figure 2.21 – Schematic diagram of the network architecture for single-level network
fusion. Information fusion method: Merge (Network).

mat for the data as it extracts features from modalities using different
branches and fuses data at a high-dimensional feature level. In this regard,
single-level fusion is a suitable solution for unregistered or different dimen-
sional data. Due to the fact that information fusion occurs only at the end
of the network architecture, single-level fusion is not capable of analyzing
low-dimensional features jointly.

Hierarchical fusion networks

Hierarchical fusion extends single-level fusion further in order to further
exploit the complementary information between multimodal data. The hi-
erarchical fusion process involves the fusion of different dimensional fea-
tures and the classification of these jointly represented features through
the process of fusion [229, 242, 261, 262]. There are two ways to implement
hierarchical fusion: by using additional branches for multimodal feature fu-
sion or by using fusion blocks for joining features from different modalities.

(1) The common hierarchical fusion architecture involves extracting dif-
ferent modalities via different branches and simultaneously combining mul-
timodal features of different dimensions via another parallel branch. Fi-
nally, the high-dimensional features from the fusion branch and each modal
branch are combined for classification. Fig. 2.22 shows a typical network
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Figure 2.22 – Schematic diagram of the network architecture for hierarchical fusion. In-
formation fusion method: Merge (Network) and Concatenation (Classic).

architecture for hierarchical fusion, [229, 262] utilized this network archi-
tecture. [229] utilized three sparse-response Deep Belief Network (DBN)
branches to extract features from PET/MRI modalities, fuse them, and
then employed an Extreme Learning Machine (ELM) to classify the fused
features for brain diseases. [262] used a deep multi-modal fusion network
(DMFNet) to fuse PET and MRI data for the diagnosis of Alzheimer’s dis-
ease. Three branches are present in DMFNet, two of which extract features
from the MRI and PET scans, respectively. A channel attention model is
used to extract the features from each branch and merge the reweighted
feature maps. In the third branch, fused features are further extracted.

(2) Hierarchical fusion can also be structured in another way by ex-
tracting features using different branches and fusing them in different di-
mensions by using fusion blocks, which are then returned to each modality
branch for further fusion. The design of such a network structure can re-
duce the number of model parameters while fusing features at multiple
levels. Fig. 2.23 illustrates a typical network architecture, [242, 263] uti-
lized this network architecture. To classify brain diseases, [263] proposed
a pathwise transfer deep convolution network that gradually learned and
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Figure 2.23 – Schematic diagram of another network architecture for hierarchical fusion.
Information fusion method: Merge (Network) and Concatenation (Classic).

combined the multi-level and multimodal features of MRI and PET. The
pathwise transfer blocks are designed to fully utilize complementary in-
formation from different imaging modalities. Pathwise transfer blocks are
used to communicate information across PET and MRI, which helps to im-
prove the classification model’s performance. [242] proposed a multimodal
MRI hierarchical-order multimodal interaction fusion network (HOMIF) to
diagnose gliomas. There are two branch networks for each modality, sev-
eral multimodal interaction modules with different scales and orderings,
diverse learning constraints, and a predictive subnet in the framework.
Each branch network has three CNN blocks with multiscale inputs and an
arm with diverse high-order multimodal interaction (HOMI) modules to
integrate and interact deeply with the multiscale features.

The multi-level feature fusion allows hierarchical fusion to explore more
fully the complex and complementary information between modalities.
Learning the synergy of multimodal data while maintaining the features of
the modalities improves the model’s classification performance [262]. How-
ever, as it involves the fusion of low-dimensional features, the registration
of multimodal data may affect the classification performance of hierarchical
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fusion.

Attention-based fusion networks

As attentional mechanisms [121] have been proposed and developed,
more and more studies are beginning to incorporate attentional mecha-
nisms into network architectures. Some of the network architectures men-
tioned above also included attention mechanisms in order to enhance the
performance of the models. [262] added attention modules to reweight the
modal features. [237] use a vision transformer (ViT) to extract the modal
features and fuse them. These studies, however, only operate on unimodal
modalities and do not utilize the attention mechanism for multimodal in-
teractions. Recently, some studies have used the attention mechanism to
extract and combine features [264–269]. This network architecture is called
attention-based fusion, which is not related to any of the previous fusion
architectures.

In the study of [264], they propose TransMed, which combines CNN and
transformer to capture high-level cross-modalities and low-level features.
First, TransMed sends the multimodal images to CNN, where they are
processed as sequences, then transformers learn the relationships between
them and predict the end result. TransMed is more efficient and accurate
than existing multimodal fusion methods because it effectively models the
global features of multimodal images.

Attention-based Hierarchical Multimodal Fusion (AHM-Fusion) is a novel
fusion module [265] designed. The system includes both an early feature
guidance module and a late feature fusion module, capturing deep interac-
tion information between different multimodal features. In the early stage
of feature aggregation, the early feature guidance module is used to capture
multimodal interactions. To obtain classification results, late feature fusion
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modules based on attention mechanisms are used. Through cascading dou-
ble attention layers in the late feature fusion module, the deep interaction
information is further captured. Then, they used a gating-based attention
mechanism to decrease the impact of insignificant features in each modal-
ity.

[266] proposed a multimodal Medical Information Fusion (MMIF) frame-
work that combines the Category Constrained-Parallel ViT framework
(CCPViT) and the multimodal Representation Alignment Network (MRAN)
as backbones, enabling the modeling of images and texts as unimodal fea-
tures, as well as cross-modal features. CCPViT is proposed as a tool for
learning key features of different modalities and for solving unaligned multi-
modal tasks. Then in MRAN, Cross-attention was used to cascade encoded
images and decoded texts to explore deep-level interactive representations
of cross-modal data, assisting with modal alignment and identifying abnor-
malities. MMIF is an image-text foundation modeling that could contribute
to a much higher-precision classification model when compared with uni-
modal models.

Multimodal Mixing Transformer (3MT) was presented [267] as a novel
technique to classify diseases. Based on neuroimaging data, gender, age,
and the Mini-Mental State Examination (MMSE), They tested it for Alzheimer’s
Disease classification. Multimodal information is incorporated through a
Cascaded Modality Transformers architecture with cross-attention. Differ-
ent embedding layers are used to obtain Key (K) and Value (V) from
imaging features and clinical data. K and V are then placed into a cross-
attention layer with a latent code known as Query (Q). 3MT allows mixing
unlimited modalities and formats and full data utilization.

Research is increasingly incorporating attention mechanisms, particu-
larly Transformer structures, into multimodal classification tasks. While
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performing cross-modal attention computation, a multi-level fusion of mul-
timodal features is achieved. Furthermore, the Transformer structure is
well-suited for joining modalities of different dimensions. Nevertheless, Trans-
former research in medical tasks is still in its infancy, and various studies
tend to focus on solving particular problems, making it difficult to conclude
a general multimodal classification architecture. A further important point
to be noted is that while the success of Transformer is accompanied by
pre-training on large datasets, the number of samples in medical datasets
is often not sufficient to achieve the good training effect of Transformer. As
a result, it is recommended that Transformer and CNN are used together
in a hybrid fashion.

Output fusion networks

Fusion at the output level or fusion at the decision level can also be
referred to as output fusion. In output fusion, for each modality that uses
a separate DL backbone to extract features and make decisions, the results
are merged into one final decision. Fig. 2.24 shows a typical network ar-
chitecture for output fusion. The final Classifier of decision fusion can be
achieved by simple operations [270, 271] such as voting, weighting, and av-
eraging, or by classifiers [149, 187, 272, 273] such as SVM, extreme gradient
boosting (XGBoost), adaptive boosting (AdaBoost), Decision Tree, and K-
nearest neighbor (KNN). [270] used unweighted average, weighted average,
weighted voting, and stacking to fusion the classification results from dif-
ferent modalities of US to identify breast tumors. [271] applied a linear
weighted module to assemble the predicted probabilities of the pre-trained
models based on the 4 MRI modalities for the classification of gliomas. In
order to achieve the diagnosis of early glottic cancer, [273] used decision
trees to combine the classification results from the sound data and the im-
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Figure 2.24 – Schematic diagram of the network architecture for output fusion. Informa-
tion fusion method: Merge (Outputs).

age data. [272] used SVM, KNN, and linear discriminant analysis (LDA)
to fuse the classification results of fMRI and sMRI to diagnose ADHD.

The output fusion process involves combining unimodal results from
different modalities. As a result, it is relatively easy to implement and gen-
erally does not require additional training. It is, however, difficult to exploit
the complementary information between different modalities because there
is no feature fusion. Furthermore, output fusion may not improve classifica-
tion performance if there are large differences in decisions between different
modalities.

2.2.5 Discussion

Which fusion method is the best?

The choice of the fusion method is crucial when dealing with multi-
modal medical classification problems. We have quantitatively compared
various fusion methods using the ADNI dataset to compare the perfor-
mance of different fusion architectures. MRI and PET were used to diag-
nose Alzheimer’s disease in all of these studies, and the number of subjects
used in each study was relatively similar. There are three stages in the
progression of Alzheimer’s disease: normal cognition (NC), mild cognitive
impairment (MCI), and Alzheimer’s disease (AD). In spite of the fact that
MCI does not significantly interfere with daily activities, a high risk of AD
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progression has been consistently demonstrated in patients with MCI [274].
MCI subjects can be classified into MCI converters (cMCI) and MCI non-
converters (ncMCI) to predict the transition risk of MCI. Tab. 2.5 shows
the results of different fusion methods. When comparing these results, it
should be noted that each paper relies on a different subset of patients.

Table 2.5 – Comparison of the results of different fusion methods on ADNI dataset. In
the multi-classification task, 3 class is NC vs. MCI vs. AD, and 4 class is NC vs. ncMCI
vs. cMCI vs. AD. Unit:%.

Research Year Fusion
Methods Dataset NC vs. AD NC vs MCI Multi-classification

[186] 2015 Input
Fusion

331 subjects:
77 NC,
102 ncMCI,
67 cMCI,
85 AD

ACC: 91.40
SEN: 92.32
SPE: 90.42

ACC: 82.10
SEN: 60.00
SPE: 92.32

4 Class
ACC: 53.79
SEN: 52.14
SPE: 86.98

[250] 2021 Input
Fusion

381 subjects:
126 NC,
160 MCI,
95 AD

ACC: 94.11
SEN: 93.33
SPE: 94.27

ACC: 85.00
SEN: 84.69
SPE: 85.60

3 Class
ACC: 71.52
SEN: 55.67
SPE: 83.40

[140] 2022 Input
Fusion

370 subjects:
130 NC,
129 MCI,
111 AD

ACC: 93.21
SEN: 91.43
SPE: 95.42

ACC: 86.52
SEN: 94.34
SPE: 81.64

3 Class
ACC: 87.67

[243] 2014 Single-level
Fusion

398 subjects:
101 NC,
128 ncMCI,
76 cMCI,
93 AD

ACC: 95.35
SEN: 94.65
SPE: 95.22

ACC: 85.67
SEN: 95.37
SPE: 65.87

-

[225] 2017 Single-level
Fusion

202 subjects:
52 NC,
56 ncMCI,
43 cMCI,
51 AD

ACC: 97.13
SEN: 95.93
SPE: 98.53

ACC: 87.24
SEN: 97.91
SPE: 67.04

4 Class
ACC: 57.00
SEN: 53.65
SPE: 85.05

[275] 2019 Single-level
Fusion

392 subjects:
101 NC,
200 MCI,
91 AD

ACC: 98.47
SEN: 96.58
SPE: 95.39

ACC: 85.74
SEN: 90.11
SPE: 91.82

-

[276] 2022 Single-level
Fusion

959 subjects:
264 NC,
273 ncMCI,
204 cMCI,
218 AD

ACC: 98.24
SEN: 98.82
SPE: 97.52

ACC: 94.59
SEN: 90.26
SPE: 96.98

-

[262] 2020 Hierarchical
Fusion

500 subjects:
163 NC,
113 ncMCI,
105cMCI,
119 AD

ACC: 95.21
SEN: 93.56
SPE: 97.48

- 4 Class
ACC: 86.15

[187] 2020 Output
Fusion

398 subjects:
101 NC,
204 MCI,
93 AD

ACC: 99.27
SEN: 95.89
SPE: 98.72

ACC: 90.35
SEN: 88.36
SPE: 92.56

-

In general, we believe that deep multi-level fusion can better exploit
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the synergy of multimodal data to produce better classification results.
This is further supported by the results in Tab. 2.5. Compared with the
input fusion, the single-level fusion has a more robust feature fusion, which
improves the overall ACC of the middle fusion. Hierarchical fusion utilizing
multi-level feature fusion did not improve significantly the performance of
dichotomous classification but performed well for four class classifications.
Generally, a complex model does not improve performance much when
applied to a simple classification task. The more complex the network, the
better it is at solving complex classification problems. When the number
of categories for multi-category classification increases from two to four,
the hierarchical fusion classification accuracy improves significantly. Last
but not least, we note that the output fusion achieves excellent results
on NC versus AD classification, thanks to the pre-training of different
modal branches. With output fusion, DL backbones can be pre-trained on
a large number of unimodal datasets and then fine-tuned on the multimodal
datasets. Other datasets provide similar results. ABIDE data was combined
with sMRI and fMRI to diagnose autism spectrum disorders. It was found
that the hierarchical fusion [199] result was 87.2%, which was better than
the input fusion [198] result of 65.5%. [258] used the COBRE dataset for
the diagnosis of schizophrenia, and the accuracy of input fusion, output
fusion, and single-level fusion was 70%, 78%, and 95%, respectively, when
the same dataset was used.

It is difficult to determine a unified solution for a wide variety of mul-
timodal fusion medical image fusion tasks. In spite of this, we can draw
some preliminary conclusions from the above analysis. Modal registration is
easier for medical modalities with similar structures, so input fusion, single-
level fusion, and hierarchical fusion are all network structures worth investi-
gating. Generally, single-level fusion and hierarchical fusion fuse deeper fea-
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tures, which will improve the classification performance. When data have
a wide range of structures or dimensions, single-level fusion and attention-
based fusion are preferable solutions, as they are capable of handling a wide
range of modal feature fusion scenarios. Lastly, if we have a large number
of unimodal datasets for each modality in multimodal data, output fusion
will perform well.

In addition to using a single multimodal fusion method, multiple fusion
methods can be combined [189, 244, 245]. [189] achieved the classification
of skin lesions using a combination of single-level fusion and output fu-
sion. In order to improve the diagnosis of breast cancer, [245] fused multi-
parametric MRI data at three levels: input, feature (intermediate), and
decision (output). Combining different fusion methods can cumulate their
advantages, allowing data from various perspectives to be fused and im-
proving classification performance to some extent. It is one of the promising
strategies that can be used when performing multimodal medical classifi-
cation.

2.2.6 Conclusion

In this section, we conducted a comprehensive review of the develop-
ment of deep learning-based multimodal medical classification tasks over
the past few years. We examined the complementary relationships among
several common clinical modalities and delved into five key architectures
for deep learning multimodal classification networks: input fusion, single-
level fusion, hierarchical fusion, attention-based fusion, and output fusion.
Our study covered a wide range of multimodal fusion scenarios in med-
ical classification, as well as the application domains for which different
network architectures are most suitable.
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2.3 Methodology of Automated DR diagnosis

Having reviewed and analyzed different fusion methods for multimodal
medical classification tasks, our focus in this section was to review methods
for DR diagnosis. We first examined the unimodal method used for different
modalities and then briefly discussed the few multimodal fusion methods
available. We hope that these methods related to DR diagnosis can provide
references and insights for our thesis.

2.3.1 Unimodal diagnosis

Our research will start with deep learning-based unimodal ophthalmic
imaging in order to provide ideas and solutions for future multimodal fusion
research.

Color Fundus Photographs

CFP-based deep learning DR detection systems are relatively as the
gold standard for early detection and diagnosis of DR. In addition, be-
cause of the ease and low cost of deployment of its shooting devices, many
public datasets have emerged, e.g., EyePACS [84], APTOS [277], Messidor
[278], DDR [279], E-Ophtha [280], etc. The emergence of these publicly
available datasets has further advanced the development of deep learning
techniques for CFP-based diabetic retinopathy diagnosis. In 2020, there
has been a systematic review of deep learning algorithms for CFP-based
detection of diabetic retinopathy [33]. The algorithms are essentially all
CNN algorithms, with some combining CNNs with machine learning algo-
rithms (CNN with random forest, decision tree, and support vector ma-
chine) [281–283]. The range of sensitivity and specificity of included studies
was 30% to 100% and 70.7% to 98.5%, respectively. The area under the
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receiver operating characteristic (AUROC) ranged from 95% to 99.3%. In
addition, the accuracy of the DL model in detecting/classifying DR ranged
from 75% to 97.28% [33].

Ultra-Wide-Field imaging

The development of ultra-wide-field imaging has revolutionized the as-
sessment of diabetic retinopathy [284]. There have been several studies
that have evaluated the utility of ultra-wide-field imaging in the diagnosis
of diabetic retinopathy. According to [285], diabetic retinopathy severity
grading was compared between Optomap ultra-wide-field images and ET-
DRS seven-standard field views. In spite of the fact that severity grades
were identical in 85% of the images and within one severity level in 100%
of the images, 19% of the images were assigned a higher retinopathy level
in the ultra-wide-field view than in the ETDRS seven-field view. A study
by [286] showed that Optomap ultra-wide-field images detected approx-
imately 30% more peripheral neovascularization than standard two-field
imaging in diabetic patients. Despite this, a limited number of studies
have been conducted using only UWF images for deep learning-based di-
abetic retinopathy because the devices for capturing UWF are not widely
available. With the Swin Transformer model, [287] proposed a hybrid pre-
processing method for UWF that resulted in an average of classification
accuracy(ACA) 0.72, Macro F1 0.7018, and Kappa 0.65 for the diagnostic
task of diabetic retinopathy. With the help of the VGG-19 model, [288] was
able to achieve accuracy, sensitivity, specificity, and Cohen’s kappa score
of 80% , 95%, 80% and 0.75, respectively, for DR diagnosis.
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Optical Coherence Tomography

Images obtained with retinal optical coherence tomography provide valu-
able information regarding the health of the posterior eye, such as the retina
and choroid, which can be used as a tool to identify the type and severity of
diabetic retinopathy [289, 290]. The SD-OCT detects the disorganization
of the inner retinal layers, which are also biomarkers of centrally involving
diabetic macular edema (DME) with reduced vision [291]. Furthermore,
the choroid of diabetic eyes with retinopathy was thinner than that of
diabetic eyes without retinopathy [292]. The subtle changes in choroidal
thickness on SS-OCT help distinguish early from more advanced stages of
diabetes [293]. It has been reported that deep learning approaches have
been applied for the analysis of OCT images to diagnose diabetic retinopa-
thy [294]. A research article published in 2022 [295] presented a three-step
system for diagnosing diabetic retinopathy (DR) utilizing optical coherence
tomography (OCT) images as an example of diagnosing diabetic retinopa-
thy (DR). As part of the process, retinal layers are segmented, 3D features
are extracted, and backpropagation neural networks are used to classify
the data. There is a 96.81% accuracy rate for the proposed system. An-
other example comes from [296], where an optical coherence tomography
(OCT)-based deep learning CAD method is proposed to detect DR early
through the use of structural 3D retinal scans. Three phases are involved
in the development of the CAD system. In the first phase, the 3D-OCT
was segmented into 12 layers. During the second phase, distinguishable
features of higher-order reflectivity are extracted. The third stage involves
classifying each layer based on the extracted features and applying a ma-
jority vote to the classification layer’s output to obtain the global diagnosis.
An accuracy of 96.88% was achieved by the proposed deep learning CAD
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system. It should be noted, however, that there are few end-to-end OCT
diagnostic methods that utilize deep learning.

Optical Coherence Tomography Angiography

I remind OCT-angiography is a motion-sensitive extension of OCT en-
abled by fast OCT acquisitions [297]. It was shown to provide quantitative
information regarding blood flow within the retina and contrast with the
retinal vasculature [298]. There is a clear benefit to OCTA for DR [299]:
1) Structure volume allows objective and quantitative assessment of dia-
betic macular edema, 2) flow Maximal Intensity Projections (MIP) allows
quantification of retinal vascular plexus, non-perfusion and vessel density
as well as the identification of damage; [300] lists the various biomark-
ers of DR and DME in OCTA acquisitions. CAD of DR using OCTA is
an emerging area of research, motivated in part by the promise of useful
biomarkers, as well as the challenge of integrating large amounts of data
(i.e., 3-D ultra-widefield structural and flow images). To assist in the early
detection, staging, and progression of DR, various quantitative metrics
were automated [301]. Those metrics quantify retinal fluid volumes [302],
retinal vasculature features (e.g., density, tortuosity) [303–305], avascular
zones [302, 306], including the Foveal Avascular Zone (FAZ) [303, 307],
and proliferative DR features such as neovascularization [308]. Based on a
radiomics approach [305, 309, 310], these features were used to determine
the severity of DR automatically. A number of methods have also been
investigated to assess DR severity directly from OCTA images. With 2-D
CNN, some authors classified 2-D en-face MIP images: [304, 310–313] clas-
sified one en-face flow MIP image (superficial plexus, deep plexus, or entire
retina), [314] jointly classified two en-face flow MIPs (superficial and deep
plexus) and their corresponding en-face structure MIPs, as well as two-
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dimensional feature maps derived from feature segmentation and en-face
flow MIPs jointly classified by [315] and [307]. Other authors have classified
3-D images using 3-D CNNs: [316] has classified a 3D image that includes
two channels (structure and flow).

2.3.2 Multimodal diagnosis

It is true that the unimodal diagnosis method gives us ideas on how to
handle different modal data, but for my thesis, we are more concerned with
multimodal diagnosis, specifically the fusion method of multimodal infor-
mation. There are already multimodal diagnostic studies, which often focus
on the combined diagnosis of CFP images and OCT volumes [17, 317, 318].
[317] evaluated the feasibility and clinical utility of a deep learning-based
dual-modality screening algorithm for DR and macular edema by combin-
ing fundus photos and OCT images in a community hospital. ResNet 101
[319] was used to classify DR stages on fundus images, and Faster R-CNN
[320] was used to detect retinal abnormalities on OCT scans. The Glau-
coma Grading from Multi-Modality Ages (GAMMA) Challenge was estab-
lished by [17] to promote the development of fundus & OCT-based glau-
coma grading. Across all 10 of the top solutions, a two-branch CNN model
was used to extract and fuse features from the different modalities. [318]
proposed a multimodal algorithm for the detection of glaucoma based on
fundus photographs assessed with OCT. This multimodal model was com-
bined with two image classifiers, a regression model, axial length, visual
acuity, and the demographic numerical data of the participants. Finally,
the classification results from different data are combined and analyzed by
an integrated model. In spite of this, little research has been conducted on
the multimodal fusion of emerging fundus photography techniques.

89



State of the art literature review

The acquisition of OCTA data can be divided into two volumes: the
structure volume obtained by averaging successive 3-D scans, and the flow
volume, which is determined by the amplitude of the local intensity vari-
ations across consecutive 3-D scans [321]. Structure and flow volume have
been combined to provide depth-resolved, three-dimensional, micrometer-
scale retinal images [38, 322–324]. Several studies have demonstrated the
ability of combined structure volume and flow volume imaging to diagnose
and detect DR pathology using quantitative measurements [325–327]. It is
important to note that despite these advantages for the diagnosis of DR, a
diagnostic platform based on combined structure volume and flow volume
imaging will still require innovation before it can be translated to clinical
practice [328]. The combined structure volume and flow volume data sets
are large, and manual examination of these datasets can take a consider-
able amount of time. There may also be a lack of clinical infrastructure
to meet these data analysis demands in underserved areas [329]. It is nec-
essary to implement an automated CAD system in order to resolve these
issues. The first objective of our research Joint analysis of multi-modal
information in OCTA can be supported by a number of studies [328,
330, 331]. [328] proposed an automated diagnostic 3D CNN framework
based on structure volume and flow volume that can be used to diagnose
DR, AMD, and glaucoma. As part of the framework, a semi-sequential
classifier is used, which consists of two parts with identical architectures,
one of which diagnoses DR and AMD, and the other which diagnoses glau-
coma. [330] proposed a framework for automating the classification of DR
based on structure volume and flow volume data as inputs. First, inputs
are resized to 160×224×224×2 pixels (two channels: structure and flow).
This data is fed into a DR screening framework using a 3D CNN archi-
tecture. Two outputs are generated by the network: a non-referable DR
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(nrDR) or referable DR (rDR) classification and a non-vision-threatening
(nvtDR) or vision-threatening (vtDR) classification. Based on the results
of the rDR and vtDR classifications, the multiclass DR classification is de-
fined. [331] used ensemble learning techniques in conjunction with CNNs in
order to classify referable DRs based on the structure volume and flow vol-
ume. VGG19-trained [230] networks performed better than those trained
on deeper architectures. As a result of constructing ensemble networks
based on four fine-tuned VGG19 architectures, accuracies were 92% and
90% for majority soft voting and stacking, respectively.

Unfortunately, there are no published DR diagnostic CAD systems based
on deep learning for our second goal Joint analysis of different specifi-
cations of OCTA acquisitions and third goal Joint analysis of OCTA
and UWF-CFP at this time. These multimodal fusions, however, have
been demonstrated to be clinically valid in some clinical articles [37, 332–
334]. In view of this, these directions are worth exploring and are the focus
of research and innovation, as well as the focus of the thesis.

2.4 Conclusion

This summary of multimodal approaches to medical diagnostic tasks
provides us with an overview of multimodal fusion techniques. Further,
there is no doubt that we apply these methods to multimodal diagnosis
in DR. Our first step will be to use input fusion, single-level fusion, and
output fusion since these three methods have proven effective in a num-
ber of medical tasks and are relatively straightforward to implement, so
we will utilize their results as a starting point. The emerging hierarchical
fusion has shown superiority in complex classification, which is the focus
of our study. In addition, although there is no stable and effective model
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for attention-based fusion on multimodal diagnostic tasks, it is undergoing
rapid development, and its performance on DR diagnosis should be exam-
ined. Lastly, the fusion of 2D and 3D data is a challenging task for our
study. It will be necessary to consider how different fusion methods can be
applied to different dimensions of data.
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“It is a capital mistake to theorize before one has data.”

— Sherlock Holmes
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This chapter provides a description of the materials collected and used
for this thesis. The different protocols used to obtain the database

and the acquisition methods are discussed.

3.1 Introduction

The thesis research work utilized three different types of datasets: the
EviRed retrospective dataset, the EviRed prospective dataset, and the Sup-
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plemental dataset. The EviRed prospective dataset follows the protocol of
the EviRed study: it is the most comprehensive in terms of imaging modal-
ity available, in terms of follow-up, etc. The EviRed retrospective dataset is
a smaller and less comprehensive collection of images intended to support
the initial algorithm developments until enough patients are recruited in
the EviRed study. Because this retrospective dataset was not large enough
to demonstrate the generality of the initial algorithms, we also considered
a Supplemental dataset targeting a different pathology and slightly dif-
ferent imaging modalities. It is important to note that the EviRed study
began in December 2020, and the retrospective dataset was received in
January 2021. Due to difficulties in collecting patient data and delays in
ophthalmologists’ annotation, we received the prospective EviRed dataset
with annotations in November 2022, which resulted in some delays in de-
veloping and testing our fusion algorithm. The chronology of arrivals for
the different stages of the EviRed dataset is shown in Fig.3.1.

Figure 3.1 – Chronology of arrivals for different stages of the EviRed dataset.

3.2 EviRed retrospective dataset

The EviRed retrospective dataset consists of 102 patient data from two
hospitals (Avicenne Hospital and Lariboisière Hospital) that are members
of the Assistance publique – Hôpitaux de Paris (APHP). The Plex®Elite
9000 (Carl Zeiss Meditec Inc. Dublin, California, USA) is used to simul-
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taneously acquire 3D structural OCT, 3D OCT angiography, and 2D line
scanning ophthalmoscope (LSO) data for patients as Fig. 3.2. Scanning
protocols included 3 × 3 mm2, 6 × 6 mm2, and 15 × 9 mm2. The exami-
nation was conducted with patients’ informed consent. The Declaration of
Helsinki was followed during all procedures. The data is stored and trans-
mitted via Nextcloud.

Figure 3.2 – Data from three imaging modalities in the EviRed retrospective dataset.

Annotations include pathological information and metadata relating to
the patient’s right and left eyes, including DR pathology, macular edema,
date of birth, etc. According to the International Clinical Diabetic Retinopa-
thy Disease Severity Scale (ICDR) scale, the DR severity level was graded
by a retina specialist using fundus photographs: absence of diabetic retinopa-
thy, mild nonproliferative diabetic retinopathy (NPDR), mild to moder-
ate NPDR, moderate NPDR, moderate to severe NPDR, severe NPDR,
proliferative diabetic retinopathy (PDR) and panretinal photocoagulation
(PRP). The severity of ’mild to moderate NPDR’ and ’moderate to severe
NPDR’ are non-standard severity labels: they underline the challenge of
reliably assigning severity labels, even for an expert.

The EviRed raw data size is 300 × 1536 × 300 × 2 voxels for the 3 × 3
mm2 SS-OCTA, 500 × 1536 × 500 × 2 voxels for the 6 × 6 mm2 SS-OCTA
and 834 × 1536 × 500 × 2 voxels for the 15 × 9 mm2 SS-OCTA as Fig. 3.3.
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The last channel presents the information of 3D structural OCT (Structure)
and 3D OCT angiography (Flow), respectively. Furthermore, an additional
LSO image of 512×664 was captured in addition to the LSO corresponding
to the size of the en-face slice.

Figure 3.3 – 3D structural OCT and 3D OCT angiography en-face slices and LSO images
from 3 × 3 mm2 SS-OCTA, 6 × 6 mm2 SS-OCTA and 15 × 9 mm2 SS-OCTA.

3.3 EviRed prospective dataset

3.3.1 Introduction

For the EviRed prospective dataset, a cohort of up to 5000 diabetic
patients is being recruited and followed for an average of 2 years. This co-
hort of patients is stratified to include 10% of patients with no DR or mild
non-proliferative DR in both eyes, 10% of patients with complications in
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both eyes, complications meaning proliferative DR (untreated or treated
with panretinal photocoagulation PRP) or macular edema involving the
center of the macula (untreated or previously treated with intravitreal
injections), and 80% of patients with uncomplicated moderate to severe
non-proliferative DR in at least one eye. Each year, general data as well
as ophthalmological data and resource utilization data are collected. Reti-
nal images and videos of both eyes are acquired using different imaging
modalities, including widefield photography, OCT, and OCT angiography.
All images and data are collected thanks to a common platform and cen-
tralized on a server. The EviRed cohort will be randomly split into two
groups: one group of up to 4000 patients for building algorithms (train-
ing cohort) and one group of 1000 patients to evaluate them (evaluation
cohort).

3.3.2 Data collection

Photography devices

The patients are followed according to usual clinical care, except that
they have retinal imaging with two devices of different brands (Zeiss and/or
another brand) instead of one for color fundus and OCT/OCT angiography.
Zeiss is providing generously 6 * Swept Source OCT/OCTA Plex 9000 and
9 * CLARUS 5000 for the patient’s analysis. Patients are followed with the
same devices during the whole study.

— Ultra widefield fundus photography with CLARUS500 and/or other
brands (Optos or Eidon).

— OCT and OCT Angiography exam with PLEX®Elite 9000 and/or
OCT/OCTA device of another brand (Topcon, Spectralis, Optovue
or Cirrus).
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Required ethical and regulatory clearances

The recruitment of patients is being conducted in strict adherence to
the Convention for the Protection of Human Rights and Fundamental Free-
doms and EU regulations on ethical issues, including Directive 95/46/EC
on the protection of individuals with regard to the processing of personal
data and on the free movement of such data, Directives 2001/20/EC,
2005/28/EC relating to implementation of good clinical practice in the
conduct of clinical trials.

The participants of this RHU project also consider other international
guidance, including:

— The Declaration of Helsinki by the World Medical Association.
— The International Ethical Guidelines for Biomedical Research Involv-

ing Human Subjects by the Council for International Organizations
of Medical Sciences (CIOMS).

— The "Charter of Fundamental Rights" of the European Union (2000/C364/01).
— The Convention of the Council of Europe on "Human Rights and

Biomedicine" (CETS164).
— The Declaration on Human Genetic Data adopted by UNESCO on

October 16th 2003-The Universal Declaration on Bioethics and Hu-
man Rights adopted by UNESCO on October 19th 2005.

The AP-HP acts as the sponsor for all studies requiring promotion in
the EviRed project.

Approval has been obtained from an Ethics Committee (CPP) as well
as the authorization of the Regulatory Authority (ANSM). The study pro-
tocol was approved by the French South-West and Overseas Ethics Com-
mittee 4 on August 28, 2020 (Clinical Trial NCT04624737). The EviRed
cohort is classified as category II of Loi Jardé since only interventions with
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minimal risks and constraints were added to the current care by the study.
According to the procedures of the sponsor (AP-HP), written consent by
the patients is required to accept the acts added to the current practice
by the research and to allow the use, for clinical research, of all her/his
data collected during the study. As required by the law, a statement re-
garding the computerized filing of personal data collected for the research
was submitted before the beginning of the research. The processing of the
data collected in this research was authorized by the French Data Protec-
tion Authority (CNIL), which was a precondition for the beginning of the
research.

The F-CRIN PARTNERS platform (PX) participated in drafting the
protocol and information and consent forms, the according SOPs, and doc-
uments for the validation of the pharmacovigilance and vigilance of devices
processes. DRCI or representative of the sponsor ensures approval by reg-
ulatory bodies and is in charge of notification and follow-up of the dossier
of vigilance for CPP and ANSM. The EviRed consortium complies with
Directive 95/46/EC on personal data protection (all patients are asked to
specifically consent to use their data in addition to participating in follow-
up).

Collection organization

The diabetic patients are being recruited in 14 Ophthalmology depart-
ments (recruitment centers) working with 18 Diabetology departments
(non-recruitment centers). They will be seen yearly for 3 to 4 years. Each
year, general data, as well as ophthalmological data, will be collected. A
diagnosis will be made at the end of each visit, and usual care will be
provided for each patient.

For the global management of the EviRed cohort, there are seven steps,
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as represented in the following list:

1. Regulatory approvals and ethical follow up (completed)
Before the clinical study is initiated, information or approval by the
regulatory authorities, the ethics committees (EC), and any other
competent authority (data protection, etc.) and registration in the
clinical trial database (clinicaltrials.gov) is needed.

2. Development of the eCRF (completed)
All information required by the protocol must be provided in the
case report form and given by the investigator. Patient data will be
collected and centralized anonymously on the electronic case report
form (eCRF). The URC Lariboisière–St Louis platform (AP-HP) will
design and develop an eCRF based on the paper CRF in collaboration
with the study team. The anonymity of the subjects will be guaran-
teed by using a patient ID number on all documents necessary for
research. Baseline, follow-up visits, and adverse events forms will be
included in the eCRF. The study will be conducted using the Clean-
Web® electronic data capture system, validated according to GCP
guidelines. The principal investigators or sub-/co-investigators will
fill in data in the electronic case report form (e-CRF) provided by
the URC Lariboisière–St Louis (AP-HP). Data transmission to the
web server will be performed by means of an Internet connection,
and no specific software will need to be installed at the study site.

3. Centers selection and initiation (completed)
There are (1) 14 Ophthalmology departments, all specialized in the
management of retinal diseases, and (2) 18 Diabetology departments
representing an active file of 55,000 diabetic patients. All the Oph-
thalmology departments have a consultation dedicated to the man-
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agement of severe cases of DR, where ten to sixty diabetic patients
are seen each week. In all Diabetology departments, an organization
has been set up to screen for DR, using retinal photography graded
by the ophthalmologist remotely. These organizations will thus allow
the selection of diabetic patients.

4. EviRed Cohort recruitment

Patients will be recruited in fourteen Ophthalmology departments,
all specialized in the management of retinal diseases, working with 18
diabetology departments in which patients will be screened as well.
There will be two sources of recruitment: the active cohort of dia-
betic patients followed in the Diabetology departments on one side
and Ophthalmology consultations to which severe cases of diabetic
retinopathy are directly referred on the other side. Fourteen Oph-
thalmology departments are listed:

— Hôpital LARIBOISIERE
— CHU DIJON
— CHU BORDEAUX
— CHU LYON CROIX ROUSSE
— CHU AVICENNE
— CHIC CRETEIL
— CHU PITIE SALPETRIERE
— CENTRE BROCA/MUTUELLE GENERALE
— CHU BREST
— Hôpital des 15-20
— CHU de NANTES
— FONDATION ROTHSCHILD
— MARSEILLE CLINIQUE MONTECELLI
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— CHU de NICE/Hôpital Pasteur 2
Patient recruitment progress for the 14 Ophthalmology departments
at the end of March 2023 is as Fig. 3.4:

Figure 3.4 – Recruitment of patients (end of March 2023). Dark blue is the planned
recruitment numbers, and light blue is the current recruitment numbers.

5. Management and monitoring of the clinical trials
The Sponsor will coordinate the overall clinical studies management.
A quality control system will be established under the responsibility
of the Sponsor. Monitoring will be performed by the PARTNERS
F-CRIN platform (AP-HP).

6. Data management and Statistical Analysis
Data management will begin after the inclusion of the first patients
according to a specific data-monitoring plan. Standard operating pro-
cedures for data management issued from the FCRIN-PARTNERS-
APHP platform (currently in the process of data-center certification
by ECRIN (European clinical research infrastructures network)).
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7. Statistical analysis will be made using SAS version 9

A detailed statistical analysis plan will be written before freezing the
database. All steps of data transfer between eCRF and the Statistical
Analysis System (SAS) database will be traced according to the pro-
cedures proposed by FCRIN-PARTNERS-APHP for its data-center
ECRIN certification.

3.3.3 Data stored and annotated

All the images and data were collected thanks to a common platform and
centralized on a server. The images were annotated by graders in the virtual
reading center run by the Ophthalmology Department in Lariboisiere, using
the Annotation Software product developed during the project’s first year.

Storage of data

Evolucare/ADCIS developed client-side integration software to inter-
act with each OCT, OCTA, and color-fundus system: "Annotate". Specific
software products had to be installed on computers connected to the ac-
quisition systems to retrieve the data from each acquisition device and
upload them to a server. Such a tool also requires specific development to
interface with each device and collect data. Second, Evolucare developed
secured cloud-based software and infrastructure ("the platform”) to host
the data acquired by the different sites. A server ensures compatibility
with client computers and current standards. The platform, in particular,
presents 2D and 3D image visualization capabilities, with the availability of
host rendering for live-shared visualizations, allowing the sharing of exper-
tise and reaching consensus between professionals as well as live decisions
for annotations. Various users’ typologies’ annotations are also managed,
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statistically controlled for multicomparative annotation and quality con-
trol, and used for feedback and further reinforcement and learning by the
algorithms. The platform was designed to handle at least 500 terabytes
(Tb) of data in a centralized secured host with one local buffer server per
acquisition center. It will integrate algorithms after their industrialization.

Annotation of data

Based on "Annotate", AP-HP set up a virtual Reading Center in the
Ophthalmology department of Lariboisière, where the retinal images pro-
duced by the clinical studies are being read, visually interpreted, and la-
beled. Images provided by recruiting centers are graded by several indepen-
dent observers after the creation of a reading center. Two non-ophthalmologist
"graders" (trained orthoptists) read each image independently. Then, one
ophthalmologist "super-grader" analyzes the two sets of annotations to pro-
duce a final consolidated version. All were trained for the use of the digital
platform and tools to use them with high efficiency and quality. They
were also involved in cloud-based grading software specifications and de-
velopment. Annotations generated by the graders were used to develop the
algorithms. At the end of the EviRed project, EviRed will study the feasi-
bility of maintaining the reading center at its size or developing it to accept
external image reading works for other clinical trials.

Data storage servers

The hosting structure of the dataset for EviRed is primarily based on
the robust infrastructure provided by OVH Cloud services 1, a certified
health data host. This assures the security and accessibility of the data

1. https://www.ovhcloud.com/
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throughout the process of this research.
The dataset infrastructure utilizes a total of 10 servers, each with a specific
role. These include:

— Two storage servers are responsible for the storage of incoming data.
These servers maintain the main body of the dataset and ensure
efficient data management and retrieval.

— An annotation server dedicated to the process of data annotation.
This server carries anonymized data, making it accessible to the an-
notation team.

— A master server employed by the AI team. This server contains the
learning database, which is essential for the team’s training tasks.

— Six computing servers, each equipped with 4 Tesla V100s GPUs and
192 GB of RAM. These servers are primarily used for deep learning
model training and preprocessing tasks.

The data for this research is primarily sourced from recruitment centers.
It is directly sent to the storage servers, ensuring a streamlined data input
flow. For data security and redundancy, a copy of all the incoming data
is also saved on a backup server. This safeguards the data against any
unforeseen loss or server failure.
To ensure the privacy and security of the data subjects, only anonymized
data is made available on the annotation server. The annotation teams
are given access to this server for the purpose of data annotation. In this
way, we maintain a balance between accessibility for data processing and
privacy for the data subjects.
The AI team, on the other hand, is provided access to the training dataset
on the master server. This server serves as the team’s main access point
for machine learning operations and tasks.
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3.3.4 Data description

There will be two groups of patients in the EviRed cohort: one group
of 4000, which will be used to develop algorithms, and one group of 1000,
which will be used to validate these algorithms (evaluation cohort). The
algorithms will be trained using the data of the remaining 4000 patients
(training cohort). Both general data and ophthalmological data will be
collected. In addition to the usual clinical care, patients will undergo retinal
imaging with two devices of different brands (Zeiss and/or another brand)
instead of one device for color fundus, OCT, and OCT angiography.

Images modalities

The EviRed project will use Ultra-WideField Color Fundus Photog-
raphy (UWF-CFP) and OCTA images taken by different brands for the
development of the algorithm. Here is the information regarding the two
modalities:

— UWF-CFP
As discussed in Chapter 2, Ultra-widefield retinography examination
is a technological evolution of conventional retinography examination
by allowing extensive retina views and providing more information
about signs of pathology in the periphery. Different UWF devices
exist that produce visually different images. Three different brands
of UWF images are available in the EviRed project: Clarus, Optos,
and Eidon. As shown in Fig.3.5, both sets demonstrate the variations
in imaging quality and detail between the respective systems.

— OCTA
As discussed in Chapter 2, OCTA provides a detailed view of the
retinal and choroid vascularization at the microvascular level. Five
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Figure 3.5 – Comparison of imaging modalities for two patients. (a) Clarus image of
Patient 1, (b) Optos image of Patient 1, (c) Clarus image of Patient 2, and (d) Eidon
image of Patient 2.
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different brands of OCTA images are available in the EviRed project:
PlexElite, Cirrus, Spectralis, Triton, and Optovue. For the time be-
ing, OCTA data is dominated by PlexElite, and data for other brands
is limited. Furthermore, we have not yet finished developing a parser
and viewer for other brands besides PlexElite. Therefore, in my the-
sis research, we only used data from the PLEX®Elite 9000 model
specifically.
The PLEX®Elite 9000 has a scanning frequency of 200 kHz and is
capable of acquiring both 15 × 15 mm2 and 6 × 6 mm2 SS-OCTA
images. Following the EviRed study protocol, each patient’s ocular
data often contains two specifications of acquisitions: 6×6 mm2 high-
resolution SS-OCTA and 15×15 mm2 UWF-SS-OCTA. Each OCTA
image encompasses both structural (Structure) and flow (Flow) infor-
mation. Fig. 3.6 shows en-face images and their corresponding B-scan
images (pre-processed in Chapitre 6) of the Structure and Flow from
the same patient acquired for different specifications.
The EviRed raw data size is 500 × 1536 × 500 × 2 voxels for the 6 × 6
mm2 SS-OCTA and 834 × 3072 × 834 × 2 voxels for the 15 × 15 mm2

SS-OCTA. The last dimension (channels) presents the information of
Structure and Flow, respectively.
Fig.3.7 presents the lesions observed in a patient with severe non-
proliferative diabetic retinopathy. The LSO image (a) provides an
initial overview of the center of the retina using OCTA, while the
high-resolution Clarus image (c) delivers a more detailed panorama
of both the center of the retina and its periphery. Structural images
(d-f) underscore the anatomical intricacies and potential changes,
with macular edema being evident in images (d) and (f). Meanwhile,
the flow images (b, e, g) illuminate the dynamic vascular activities
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Figure 3.6 – Structure and Flow en-face slices and B-scan images from 6 × 6 mm2 SS-
OCTA and 15 × 15 mm2 SS-OCTA. (a,c) Flow of 15 × 15 mm2 SS-OCTA. (b,d) Flow of
6 × 6 mm2 SS-OCTA. (e,g) Structure of 15 × 15 mm2 SS-OCTA. (f,h) Structure of 6 × 6
mm2 SS-OCTA. The area on the 6 × 6 mm2 SS-OCTA is in the center of the 15 × 15 mm2

SS-OCTA image (red bounding box). The green line in the en-face slice shows the source
of the B-scan, and the green line in the B-scan image shows the intercept direction of the
en-face slice.
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and potential discrepancies. Together, these imaging modalities com-
plement one another, not only showcasing the severity of the pathol-
ogy but also offering a comprehensive perspective, emphasizing the
nuanced variations and valuable insights each imaging method con-
tributes.

Figure 3.7 – Multimodal imaging of a patient with severe non-proliferant diabetic retinopa-
thy. (a) LSO image, (c) Corresponding Clarus image, (b, e, g) Flow images, and (d, f)
Structure images.

Contextual data

In addition to imaging modalities, at inclusion, the following data will
be recorded: Age, gender, type and duration of diabetes, race/ethnicity,
occupational group, history of poor glycemic control, current medication
(oral or injectable diabetes medication including insulin, aspirin, statin,
oral blood pressure lowering drugs), tobacco smoking, BMI, history of car-
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dio vascular disease (Stroke, Coronary event or revascularization, Periph-
eral arterial disease/lower extremities arterial disease or revascularization),
nephropathy (Proteinuria, Renal failure, Dialysis, Graft), Plantar foot ul-
cer and/or amputation, History of nephropathy, neuropathy, pregnancy,
sleep apnea, bariatric surgery, environmental data (address, occupational
group), ophthalmological history (cataract surgery, ophthalmological his-
tory, vitrectomy, IOP lowering drugs, laser photocoagulation (PRP/focal),
intravitreal injections (anti VEGFs/steroids).

Training cohort

The Training cohort of EviRed’s program consists of data collected from
up to 4,000 patients. However, the recruitment and annotation of EviRed
data is still in progress, and I received a total of three phases of data
in my thesis study. The first stage of data containing 103 patients was
received in January 2022. However, these data were not annotated since
the annotation process had not been completed. As of November 2022,
we received the second stage data, comprising 532 patients with detailed
annotated e-CRF files. The 532 patients included the 103 patients from the
first stage. In July 2023, we received data and annotations for an additional
500 patients, which, together with 532 patients from the second stage,
comprise the third stage data for 1032 patients. It is important to note
that the EviRed project is ongoing and that more data will be added to
the training cohort and the data collected in the three stages described
above. These are the imaging information of the three stages of data:

1. First stage: 103 patients without annotations

The data information of the different devices in 103 patients is shown
in Fig. 3.8. For the first stage, we only used data from PlexElite for
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102 patients with 243 eyes.

Figure 3.8 – Patient information for different devices in the first stage data.

2. Second stage: 532 patients with annotations
The data information of the different devices in 532 patients is shown
in Fig. 3.9. For the second stage, based on the number of photographs
taken with different brands of devices, we used the data from Clarus
and PlexElite to perform as the source of UWF and OCTA in mul-
timodal fusion.

3. Third stage: 1032 patients with annotations
The data information of the different devices in 1032 patients is shown
in Fig. 3.10. The third stage of the data contains longitudinal time-
series data for the patient, where V1 represents the patient’s first
visit and V2 represents the patient’s second follow-up visit 12 months
later. Due to the fact that the third stage data were received at the
end of the third year of the thesis, the work on the thesis did not
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Figure 3.9 – Patient information for different devices in the second stage data.

involve the testing of the third stage data.

Evaluation cohort

EviRed project will use the 1000 diabetic patient data (evaluation co-
hort) to validate the algorithms that are developed. Algorithms will be
evaluated by comparing the automatic progression prediction provided by
the algorithm to the effective progression observed after one year. The
main outcome measures will be sensitivity, specificity, and the Area Un-
der the Curve (AUC) of the algorithm to predict DR progression toward
a severe form of DR (defined by the presence of proliferative DR and/or
severe macular edema involving the center of the macula, or the need for
laser photocoagulation, vitrectomy, or intravitreal injection) in the follow-
ing year.

The evaluation cohort will be used to evaluate our fusion algorithm in
order to ensure its accuracy and robustness at the end of the project. At
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Figure 3.10 – Patient information for different devices in the third stage data.

this time, the EviRed project is still in a developmental stage, we have
not received all of the training cohort data yet, and the algorithm is still
awaiting further testing. Besides, the LaTIM is not expected to test the
algorithms on the evaluation cohort: ADCIS is in charge of testing the final
algorithms independently.

3.4 Supplemental dataset

In order to assess the effectiveness and robustness of the multimodal al-
gorithm developed based on EviRed retrospective data before the arrival of
the prospective datasets, we selected an ophthalmic multimodal classifica-
tion dataset, Glaucoma grAding from Multi-Modality imAges (GAMMA) 1,
in order to test the algorithm’s effectiveness and robustness.

GAMMA dataset is provided by Sun Yat-sen Ophthalmic Center, Sun
1. https://aistudio.baidu.com/aistudio/competition/detail/119/0/introduction
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Yat-sen University, Guangzhou, China. There are 200 pairs of clinical
modality images in the dataset, 100 pairs in the training set, and 100
pairs in the test set. Each pair contains a 45° fundus image and an OCT
volume. The OCT volumes were acquired using a Topcon DRI OCT Tri-
ton machine. The OCT was centered on the macula and had a 3 × 3 mm
en-face field of view. The Kowa 2000 × 2992 and Topcon TRC-NW400
cameras were used to acquire fundus images [335].

It aims to analyze clinical data of two modalities, 2D fundus images and
3D OCT scanning volumes, and classify the samples into three categories
according to visual features: no glaucoma, early glaucoma, and moderate
or advanced glaucoma as shown in Fig. 3.11. Please note that the samples
without glaucoma are not normal samples without disease but patients
with other eye diseases.

Figure 3.11 – GAMMA dataset and classification.

3.5 Conclusion

The process of our thesis progressed with the EviRed project, but the
data’s delayed arrival has also caused many difficulties for our thesis. For
this reason, combining the goals of our thesis with the arrival times of
different datasets, we made the following plans as we progressed through
the thesis:
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1. In the first year and a half of the thesis, the fusion algorithm for
2D LSO, 3D structural OCT, and 3D OCT angiography was devel-
oped using the EviRed retrospective dataset in Chapter 4, and the
effectiveness of the fusion algorithm was validated on the additional
dataset GAMMA.

2. At the beginning of the second year of the thesis, the first stage data
of the EviRed prospective dataset (103 patients without annotations)
arrived, for which we tried to explore the unlabeled data, hoping to
combine the unlabeled data to improve the performance of the classi-
fication. In Chapter 5, we added the arrival of the EviRed prospective
dataset (103 patients without annotations) to the current dataset for
further multimodal fusion testing.

3. At the beginning of the third year of the thesis, the second stage data
of the EviRed prospective dataset (532 patients with annotations)
arrived. We proposed a new hybrid fusion algorithm for the joint
analysis of different specifications of OCTA acquisitions in Chapter
6.

4. Meanwhile, in the second half of the third year, we tried to test the
joint analysis of OCTA and UWF-CFP using the second-stage data
of the EviRed prospective dataset (532 patients with annotations) in
Chapter 7.

Therefore, we were able to successfully manage our time and schedule
even as the data were delayed, and thus achieve our thesis objective.
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MULTIMODAL INFORMATION FUSION IN

OCTA

“I imagine a world in which AI is going to make us work
less.”

— Gwenolé Quellec
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As part of the early stages of the thesis, we explored the fusion meth-
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ods of different modalities in OCTA. In OCTA, we tested fusion for
three types of information: 2D line scanning ophthalmoscope (LSO), 3D
structural OCT (Structure), and 3D OCT angiography (Flow). To solve
retinal analysis tasks, we investigated three multimodal information fu-
sion strategies based on deep learning using the EviRed retrospective and
public GAMMA datasets: input fusion, single-level fusion, and hierarchical
fusion. In addition, we experimented with the performance of the attention
mechanism on hierarchical fusion.

4.1 Introduction

In recent years, algorithms for diagnosing glaucoma and DR have emerged
with the development of deep learning and improved computer equipment.
Fundus photography and optical coherence tomography (OCT) are the
two most cost-effective screening tools for glaucoma and DR [335]. For
two-dimensional fundus photographs, powerful convolutional neural net-
works (CNN), such as ResNet or GoogleNet Inception models, were used
to achieve pathology detection [336–338]. It should be noted that 2D fundus
data are more accessible than other modalities, so datasets are generally
larger, and thus, models can be trained more efficiently. OCT data are
more sensitive to structural pathological features. Both 3D-CNN networks
and 2D-CNN networks operating on 2D slices were used to achieve feature
extraction from OCT volumes [339–341]. In addition, optical coherence to-
mography angiography (OCTA) is a new, non-invasive imaging technique
that generates volumetric angiography images in seconds. It can display
both structural and blood flow information [342]. The effectiveness of CNN
networks in classifying DR using OCTA data was also demonstrated [343].

All the previous algorithms are usually based on information from only
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one modality. However, multi-modality screening is often recommended to
reach a more accurate and reliable diagnosis [17]. This is why multimodal
algorithms are needed in ophthalmic pathology diagnosis.

Humans are capable of recognizing salient regions in complex scenes
naturally and effectively. This observation led to the introduction of atten-
tion mechanisms into computer vision in order to mimic this aspect of the
human visual system [344]. The attention mechanism described above can
be regarded as a process of dynamic weight adjustment based on features
contained in the input image [345]. In recent years, attention mechanisms
have become a common element of neural architectures and have been ap-
plied to a variety of tasks [346], such as image classification [128, 347], text
classification [348, 349], machine translation [350], action recognition [351,
352] and image caption generation [353]. It is worthwhile exploring the
possibility of incorporating attention mechanisms into multimodal fusion
architectures.

4.2 Material and methods

This chapter presents three fusion algorithms for multimodal data in
ophthalmology: input fusion, single-level fusion, and hierarchical fusion.
They enable the fusion of 2D and 3D modal data. Specifically, the innova-
tive hierarchical fusion algorithm we developed (Fig. 4.2) achieves excellent
glaucoma and DR classification results. We will examine the challenges of
applying different fusion methods to ophthalmic data and the structural as-
pects of our network. Furthermore, we performed some exploratory tests of
the attention mechanism in the fusion network architecture. We evaluated
the proposed method using the EviRed retrospective dataset for diabetic
retinopathy classification and the public GAMMA challenge dataset for
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glaucoma classification.

Figure 4.1 – Different fusion methods for fusing LSO, Structure, and Flow modality in-
formation in the EviRed retrospective dataset.

4.2.1 Input fusion

As described in section , for input fusion, data from different modalities
are fed into a classification network as different channels [195]. Specifically,
multi-modality images are fused channel by channel to form multi-channel
inputs. Then, a classification network is trained to learn a fused feature
representation from these inputs. Many of today’s medical fusion strategies
use input fusion [354, 355].

Let X ×Y ×Z denote the size of the 3D volumes in voxels. In the input
fusion solution, the 2D images are resized to X × Y pixels and duplicated
Z times to form a X × Y × Z voxel channel. Feature extraction from the
multimodal input of size C × X × Y × Z, where C denotes the number of
channels, is then performed using a 3D-CNN network as shown in Fig. 4.2
(a). In addition, the alignment of different modalities is crucial to input
fusion.

Input fusion is a simple method, but it is not very effective due to
the semantic gap between the modalities of ophthalmic data. For exam-
ple, fundus photographs give an overall en-face view of the retina in 2D,
and OCT volumes provide structural information about the retina in 3D.
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However, there is a significant gap between these two modalities regarding
the equipment used to capture them, imaging methods, and data informa-
tion. In particular, when we convert 2D data into 3D volumes, we cannot
guarantee that the modalities are accurately aligned.

4.2.2 Single-level fusion

As described in section , in contrast with input fusion, single fusion
does not assume spatially aligned modalities. Instead, each modality data
is used as an input to a single classification branch, and the outputs from
each branch are integrated to produce a final result [356, 357]. The single-
level fusion strategy fuses features before the final decision layer, as shown
in Fig. 4.2 (b). In contrast, late fusion fuses the decision results, ignoring
any correlation between the different modalities [358].

As we use different independent branches to extract feature information
from each modality, we do not need to consider the consistency of the input
data. Using different 2D and 3D CNN branches to extract different features
for 2D and 3D data is possible.

Single-level fusion is a simple yet effective method for feature fusion. The
method effectively bridges the significant gaps between different modalities
in ophthalmology (2D fundus images and 3D OCT or OCTA volumes). In
particular, most participants in Task 1 of the GAMMA Challenge employed
this method to classify glaucoma and achieved good results [17]. Neverthe-
less, as single-level fusion is a mere concatenation of high-dimensional fea-
tures, the correlation information inevitably gets lost, adversely impacting
classification performance.
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4.2.3 Hierarchical fusion

In this work, we have extended the network structure of single-level
fusion to address its shortcomings. As described in section , hierarchical
fusion works by using each modality image as an input of a single classifica-
tion branch and then fusing these learned individual feature representations
in the deeper layers of the network. However, unlike single-level fusion, an
additional branch performs feature fusion at different scales. A decision
layer is then applied to the fused result to obtain the final label [262].

Fusion between modality-specific features of different dimensions in a
network structure is challenging. Prior studies have generally focused on
simpler problems. For example, the fused modalities are all 3D data of the
same size in [359]. In that case, multimodal features always have the same
shape at each scale so that feature fusion can be easily achieved through
concatenation. For ophthalmic data, the size and dimensionality of the
features are modality-dependent: 3D tensors for 2D images and 4D tensors
for 3D images.

A solution is proposed hereafter and illustrated in Fig. 4.2. Two CNN
branches are used to extract features from a multichannel 2D image and a
multichannel 3D volume, respectively. Furthermore, we use a third fusion
branch to achieve feature fusion at different scales. Since the dimensional
features are of different dimensions and sizes, to allow alignment between 3-
D and 2-D features, we introduce the concept of "conversion layers", which
can be used to harmonize their shape before concatenating them. In these
conversion convolution layers, the parameters are calculated according to
the size of the modality-specific features.
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Figure 4.2 – Proposed hierarchical fusion configuration, illustrated using 2D and 3D
ResNet34, for glaucoma classification from 2D fundus photography and 3D OCT. I and
II are different types of conversion layers, and their configurations are shown in the list.
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F3D (C × Z3D × X3D × Y3D) =⇒ F ′
3D (C × 1 × X3D × Y3D)

F2D (C × X2D × Y2D) −→ F ′
2D (C × X3D × Y3D)

Where F is the feature of modality, X, Y, Z, C represent the length,
width, depth, and number of channels of the features. =⇒ and −→ rep-
resent the 3D and 2D conversion convolutional layers respectively. The
convolution kernel size and stride of 3D conversion convolutional layers are
(Z3D ×1×1) and (1 ×1×1). For the 2D conversion layer, the stride is set to
(2, 2) and the filter size is set to (X2D −2[X3D −1], Y2D −2[Y3D −1]), with-
out padding, to ensure that F ′

2D matches the size of F ′
3D. The parameters

of each convolutional layer are shown in Fig. 4.2 for ResNet34.
We also extract the features from the 2D CNN block to reduce the num-

ber of parameters of the fusion branch. In the end, the high-dimensional
features of the three branches are concatenated, and the classification layer
is used to make the final classification.

In addition to the advantages of single-level fusion, hierarchical fusion
also considers features from different scales, enhancing the correlation be-
tween different modalities and increasing the accuracy of diagnosis.

4.2.4 Attention mechanism

Channel attention block

In multi-modal fusion tasks, attention complementary strategies can
be applied to extract synergies between multi-modal images. Based on
the architecture of hierarchical fusion, [262] proposed a channel attention
block as in Fig. 4.3. The channel attention block can selectively extract
features from different branches and suppress irrelevant information. The

124



Multimodal information fusion in OCTA

fusion ratio of each modality is automatically determined according to the
importance of the data in the attention block.

Figure 4.3 – The architecture of the channel attention block. X represents the input feature
map. X’ represents the output feature map after channel reweighting.

The deployment of the attention model is completed in three steps for
an input feature map X with C channels.

(1) The two-dimensional features of each channel are compressed along
the spatial dimension, transforming them into scalars. The real number
has a global receptive field to some extent, and the output dimensions are
determined by the number of input feature channels. Global pooling can
be used to implement this process, and the following equation depicts the
squeeze operation.

ZC = Fse = 1
H ∗ W

∑H
i

∑W
j XC(i, j)

Where H, W, and C represent each feature map’s height, width, and
number of channels, respectively.

(2) To explicitly model the correlation between feature channels, new
weights are generated for each channel to map its importance with a com-
pressed set of scalars. A 1 x 1 convolution can be used to examine the
correlation among different channels in order to determine their weight

125



Multimodal information fusion in OCTA

distribution. The corresponding calculation is shown as follows.

SC = δ(conv(ZC))

Where δ represents the Sigmoid activation function.
(3) As a result of the second step, weights are regenerated to reflect

the importance of each channel. The original features are then multiplied
gradually in order to complete the redistribution of the original features in
the channel dimension. The transition of the input feature map XC to X ′

C

can be expressed as follows.

X ′
C = SC ⊗ XC

As a result, feature maps XC are transformed into feature maps X ′
C ,

which contain reweighted channel information. It can be considered that
the attention model essentially introduces additional dynamic characteris-
tics on the input, which can be viewed as self-attention functions. There-
fore, we combined hierarchical fusion and channel attention to develop the
fusion model structure shown in Fig. 4.4.

Dual attention fusion block

Considering that not all the features extracted from the encoders are
useful for diagnosis, [360] proposed to recalibrate the features along the
modality and spatial paths using dual attention-based fusion blocks as in
Fig. 4.5, which suppresses less informative features and emphasizes more
informative ones.

(1) In the modality attention module, a global average pooling is first
performed to produce a tensor g ∈ R1×1×4, which represents the global
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Figure 4.4 – Proposed hierarchical fusion with channel attention blocks, for glaucoma
classification from 2D fundus photography and 3D OCT.

Figure 4.5 – The architecture of the dual attention fusion block. The individual feature
representations (Z1, Z2, Z3, Z4 are first concatenated, then they are recalibrated along
modality attention module and spatial attention module to achieve the modality attention
representation Zm and spatial attention representation Zs, final they are added to obtain
the fused feature representation Zf .

127



Multimodal information fusion in OCTA

spatial information of the feature representation, with its kth element.

gk = 1
H × W

H∑
i

W∑
j

Zk(i, j)

Then two fully-connected layers are applied to encode the modality-wise
dependencies, ĝ = W1(δ(W2g)), with W1 ∈ R4×2, W2 ∈ R2×4, being weights
of two fully-connected layers and the ReLU operator δ(·), ĝ is then passed
through the sigmoid layer to obtain the modality-wise weights, which will
be applied to the input representation Z through multiplication to achieve
the modality-wise features Zm, and the σ(ĝk) indicates the importance of
the i modality of the feature representation.

Zm = [σ(ĝ1)Z1, σ(ĝ2)Z2, σ(ĝ3)Z3, σ(ĝ4)Z4]

(2) In the spatial attention module, the feature representation can be
considered as Z = [Z1,1, Z1,2, ..., Z i,j, ..., ZH,W ], Z i,j ∈ R1×1×4, i ∈ 1, 2, ..., H,
j ∈ 1, 2, ..., W and then a convolution operation q = Ws⋆Z, q ∈ RH×W with
weight Ws ∈ R1×1×4×1, is used to squeeze the spatial domain, and to pro-
duce a projection tensor, which represents the linearly combined represen-
tation for all modalities for a spatial location. The tensor is finally passed
through a sigmoid layer to obtain the space-wise weights, σ(qi,j) indicates
the importance of the spatial information (i, j) of the feature representa-
tion.

Zs = [σ(q1,1)Z1,1, ..., σ(qi,j)Z i,j, ..., σ(qH,W )ZH,W ]
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(3) Finally, the learned fused feature representation is obtained by adding
the modality- and space-wise feature representation.

Zf = Zm + Zs

Due to the fact that the dual attention fusion block can be directly
applied to any multimodal fusion problem, we applied it to our hierarchical
fusion, as shown in Fig. 4.6.

Figure 4.6 – Proposed hierarchical fusion with dual attention fusion blocks, for glaucoma
classification from 2D fundus photography and 3D OCT.

4.2.5 Data and classification tasks and metrics

EviRed retrospective dataset

For the EviRed retrospective dataset, we investigated the fusion of 3
modalities: 3D Structure, 3D Flow, and 2D LSO for the classification of
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Table 4.1 – Distribution of eyes with different levels of severity in different datasets.
Severity Train set validation set Test set
Absence of diabetic retinopathy 15 4 5
Mild NPDR 19 7 7
Moderate NPDR 13 4 4
Severe NPDR 25 8 10
PDR or PRP 16 5 9
Total 88 28 35

diabetic retinopathy. DR severity was assessed by a retina specialist us-
ing fundus photographs, according to the International Clinical Diabetic
Retinopathy Disease Severity Scale (ICDR): absence of diabetic retinopa-
thy, mild nonproliferative diabetic retinopathy (NPDR), moderate NPDR,
severe NPDR, proliferative diabetic retinopathy (PDR) and panretinal
photocoagulation (PRP). We performed four binary classification tasks:
task0 (detecting mild NPDR or more), task1 (detecting moderate NPDR
or more), task2 (detecting severe NPDR or more), and task3 (detecting
PDR or PRP). To assess the performance of four binary classifications, we
used Area Under the ROC Curve (AUC) described in Section 2.2.3: AUC0
(≥ mild NPDR), AUC1 (≥ moderate NPDR), AUC2 (≥ severe NPDR)
and AUC3 (≥ PDR).

After removing patient data with incomplete modalities and absent an-
notations from the EviRed retrospective dataset described in Section 3.2,
151 acquisitions from 64 diabetic patients were collected for the binary
classification. This collection was divided as follows: 88 acquisitions (from
31 patients) for training, 28 acquisitions (from 14 patients) for validation
and 35 acquisitions (from 19 patients) for testing. The severity distribution
is displayed in Tab. 4.1.
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GAMMA dataset

For the GAMMA dataset, we analyzed clinical data from 2D fundus
images and 3D OCT scans to classify glaucoma into three groups based on
visual features: no glaucoma, early glaucoma, and moderate or advanced
glaucoma. Cohen’s kappa described in Section 2.2.3 was also used to eval-
uate the EviRed dataset’s six-category results as a standard evaluation
metric for the multi-category classification task. Based on the confusion
matrix, the Kappa coefficient is calculated with a value between -1 (worse
than chance agreement) and 1 (perfect agreement).

There are 50 pairs of no-glaucoma patients in the training set, 26 pairs
of early glaucoma patients, and 24 pairs of moderate or advanced glaucoma
patients in the training set. These pairs were divided as follows: 80 pairs for
training (41 pairs no glaucoma, 21 pairs early glaucoma, 18 pairs moderate
or advanced glaucoma) and 20 pairs for validation (9 pairs no glaucoma, 6
pairs early glaucoma, 5 pairs moderate or advanced glaucoma).

4.2.6 Data pre-processing

The original 2D and 3D images were too large to train a fusion network.
To reduce the volume under consideration, we intercepted the OCTA im-
age located between the internal limiting membrane (ILM) and retinal
pigment epithelium (RPE) layers along the depth (y-axis) and flattened
the ILM layer. The following dimensions were used: X = Y = Z = 100
for the EviRed retrospective dataset, X = 224, Y = 164, and Z = 256 for
the GAMMA dataset. For single-level and hierarchical fusion, 2D images
could be larger than 3D images: they were resized to 400 × 400 pixels for
the EviRed retrospective dataset and 448 × 448 pixels for the GAMMA
dataset. Note that 2D and 3D data are not spatially registered in GAMMA;
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they are only approximately centered on the same anatomical structure
(the optic nerve head). All modalities are natively registered in the EviRed
retrospective dataset.

4.2.7 Implementation details

Experiments were performed using 2D and 3D versions of ResNet [361],
and DenseNet [362]. These networks were used as is or adapted for each
fusion strategy. RandomGamma, GaussianNoise, and flipping were applied
for all tests to augment the data. Gradient descent was performed with the
Adam optimizer, which has an initial learning rate of 1e-4 and a weight
decay rate of 1e-4. The network training and testing were carried out using
one NVIDIA Titan GPU unit with 32 GB memory.

4.3 Results

4.3.1 EviRed retrospective dataset

For the EviRed retrospective dataset, the following backbones were
investigated for each method: ResNet50, ResNet101, DenseNet121, and
DenseNet169. Tab. 4.2 shows the fusion results for different backbones.

According to the results in Tab. 4.2, task0, task1, and task2 perform
averagely and are very unstable. The model is not robust on diagnostic
tasks that are pathologically similar due to the small amount of data we
have. In comparison, the model performs well and is stable on task 3. As
a result, we focused on the classification of PDR in the current dataset.
Moreover, it plays a crucial role in clinical diagnosis. The treatment of
diabetic retinopathy is of prime importance for patients at the PDR stage.
For the PDR classification, we summarized the above results in Tab. 4.3,
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Table 4.2 – Backbones tests results with different fusion methods on the test set.
Backbone Fusion methods AUC0 AUC1 AUC2 AUC3

Resnet50

Structure (Unimodal) 0.434 0.500 0.628 0.815
Flow (Unimodal) 0.505 0.573 0.638 0.705
LSO (Unimodal) 0.592 0.493 0.451 0.650

Input fusion 0.493 0.526 0.614 0.753
Single-level fusion 0.485 0.503 0.632 0.739
Hierarchical fusion 0.587 0.547 0.549 0.812

Resnet101

Structure (Unimodal) 0.546 0.612 0.625 0.859
Flow (Unimodal) 0.665 0.530 0.579 0.650
LSO (Unimodal) 0.582 0.370 0.408 0.568

Input fusion 0.534 0.507 0.605 0.709
Single-level fusion 0.740 0.497 0.493 0.726
Hierarchical fusion 0.546 0.583 0.691 0.846

Densenet121

Structure (Unimodal) 0.434 0.513 0.648 0.774
Flow (Unimodal) 0.469 0.747 0.753 0.585
LSO (Unimodal) 0.684 0.480 0.546 0.662

Input fusion 0.584 0.527 0.642 0.865
Single-level fusion 0.536 0.430 0.671 0.744
Hierarchical fusion 0.434 0.530 0.668 0.911

Densenet169

Structure (Unimodal) 0.505 0.467 0.523 0.620
Flow (Unimodal) 0.607 0.643 0.618 0.816
LSO (Unimodal) 0.689 0.500 0.395 0.628

Input fusion 0.645 0.542 0.575 0.693
Single-level fusion 0.709 0.523 0.566 0.726
Hierarchical fusion 0.531 0.477 0.493 0.679
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Table 4.3 – Results of different fusion methods on the test set.
Method Backbone AUC Sensitivity Specificity Improvement

Single modality (Structure) ResNet101 0.859 0.78 0.77 Baseline
Single modality (Flow) DenseNet169 0.816 0.78 0.85 -0.043
Single modality (LSO) DenseNet121 0.662 0.67 0.74 -0.197

Hierarchical fusion DenseNet121 0.911 0.86 0.88 +0.052
Input Fusion DenseNet121 0.865 0.78 0.85 +0.006

Single-level fusion DenseNet121 0.744 0.67 0.85 -0.115

and its corresponding ROC curve is shown in Fig. 4.7.

Figure 4.7 – ROC curves of different fusion methods on the test set.

The structure data achieved the best performance using a single modal-
ity: AUC reaches 0.859 using ResNet101 (our baseline). Single-level fusion
performed worse than baseline. The three modalities are spatially aligned
in the EviRed retrospective dataset, so the input fusion approach achieves
good results. Hierarchical fusion achieves the best results: AUC reaches
0.911 using DenseNet121. The LSO images do not provide very distinct
pathological details, compared to fundus images, hence a more limited im-
pact of information fusion.
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Table 4.4 – Kappa results of different fusion methods on the GAMMA dataset

Backbone Single modality
(fundus image)

Single modality
(OCT) Input fusion Single-level

fusion
Hierarchical

fusion
ResNet34 0.6997 0.6841 0.6718 0.7547 0.7684
ResNet50 0.6555 0.5952 0.6896 0.7690 0.8404
ResNet101 0.6767 0.5794 0.7113 0.7551 0.8255
ResNet152 0.5207 0.4646 0.4642 0.6570 0.7816

Average 0.6382 0.5808 0.6342 0.7340 0.8040

4.3.2 GAMMA dataset

We tested the performance of four ResNet networks on the same dataset:
ResNet34, ResNet50, ResNet101, and ResNet152. The best-performing mod-
els were selected from the validation set and tested on the 100 pairs test
set. The final Kappa results on the test set were computed independently
by the PaddlePaddle deep learning platform 1, which is the host platform
for the GAMMA challenge.

We tested each modality separately, as well as the three fusion methods,
and the results are shown in Table 4.4.

The Kappa results above show that color fundus images outperform
OCT volumes when using data from a single modality. In addition, ResNet34
has better performance, possibly because simple features of a single modal-
ity are easy to learn. Although, according to the average of different back-
bones, 0.6382 is still far from a result that can be useful for diagnosis. Thus,
single-modality glaucoma classification is very ineffective.

Results for the input fusion were not significantly improved. This prob-
ably is because fundus and OCT images are not spatially registered in this
dataset.

Single-level fusion is a more suitable fusion algorithm in this case be-
1. https://aistudio.baidu.com/aistudio/competition/detail/119/0/introduction
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cause of the disparity between fundus images and OCT volumes, and the
dual feature extraction branch can effectively handle the large differences
between modalities. As a result, the performance of single-level fusion is
greatly improved compared to the single-modality scenario. In addition,
for ResNet152, we had to reduce the batch size during training to prevent
the device from exceeding the memory limit, which is one reason for the
poor performance of ResNet152.

The GAMMA challenge also uses single-level fusion as its baseline [335].
In the official baseline, two convolutional branches are used for single-level
fusion. Based on 3D OCT, retinal thickness is used as a channel for the
input of the 2D convolutional branch in the algorithm. By contrast, we
utilize 3D convolutional branches to extract 3D OCT features, which allows
us to fully utilize the spatial features of 3D data. This is why our Kappa
value of 0.734 for single-level fusion is higher than the official single-level
fusion result of 0.702.

Comparatively to single-level fusion, hierarchical fusion is able to exploit
better correlations between features of different dimensions: the Kappa
value increased by 0.0700. These results support the efficiency of our hier-
archical fusion.

Specifically, our hierarchical fusion performs very well on ResNet50 and
ResNet101. To achieve a higher score in the GAMMA challenge, we selected
the models ResNet50 and ResNet101 for further training. The training
and validation sets were re-divided, and the checkpoint obtained from the
previous test was fine-tuned. Finally, we achieved a Kappa value of 0.8662
for ResNet50 and 0.8745 for ResNet101. For our hierarchical fusion, we
improved the final Kappa to 0.8996 by ensembling the predicted values of
ResNet50 and ResNet101 models.
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Table 4.5 – Results hierarchical fusion with different attention blocks on the test set.

Dataset Metric Without block Channel attention
block

Dual attention
fusion block

EviRed
retrospective

AUC 0.91 0.87 0.90
Sensitivity 0.86 0.79 0.84
Specificity 0.88 0.83 0.85

GAMMA Kappa 0.8404 0.7942 0.8159

4.3.3 Attention mechanism

We incorporated two attention mechanism blocks into the hierarchical
fusion architecture and compared their performance, and the results are
shown in Tab. 4.5. Dual attention fusion blocks outperformed channel at-
tention blocks, but neither was as effective as without attention blocks.
Our attention modules do not work primarily because we fused 2D and 3D
data, making it difficult to calibrate the weights based on the importance
of two-dimensional features. Furthermore, before using the attention mod-
ules, we used the additional conversion convolutional layers to downscale
the features from the 3D data in the Z-axis direction, which negatively
impacts the performance of the channel attention blocks and the modality
attention blocks.

4.4 Discussion and conclusions

This chapter presented three fusion strategies based on deep learning:
input fusion, single-level fusion, and hierarchical fusion. The commonly
used input and single-level fusion are simple but do not fully exploit the
complementary information between modalities. We developed the hierar-
chical fusion approach that focuses on combining features across multiple
dimensions of the network, as well as exploring the correlation between
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modalities. Our hierarchical fusion method performed the best in different
tasks and paved the way for better clinical diagnosis. The results of these
tests not only validate the effectiveness of our fusion method discussed
in Sect. 2, but also provide significant theoretical and experimental evi-
dence for the subsequent fusion of more modalities in the EviRed dataset.
On glaucoma and diabetic retinopathy classification tasks, they clearly
outperform classification using a single modality. The novel hierarchical
fusion approach is particularly promising, both for glaucoma grading and
proliferative DR detection.

However, these experiments should be replicated in larger datasets to
demonstrate clinically useful detection performance. It is of great inter-
est for clinical diagnosis to be able to diagnose pathology at different
stages. However, the performance of the existing dataset is poor. The fur-
ther dataset of EviRed has a sufficient number of patient records to assist
us in the task of multi-classification. In Chapter 5, we added the arrived
EviRed prospective dataset (103 patients without annotations) to the cur-
rent dataset for further multimodal fusion testing.

One of the factors that may limit the performance of the model is the
current input size. Compressing the raw data to fit the inputs into the
network is not particularly suitable. The compression of images results
in a loss of much pathology information, which in turn affects diagnostic
results. The next step in our research should involve the development of
better image-processing methods. Further, the use of GPU technology to
increase the input size is also a promising direction to pursue in addition
to hardware improvements.

Furthermore, we should continue to focus on attention mechanisms. De-
spite the fact that our proposed attention module performs poorly in fusion
networks using 2D and 3D data, there are some transformer-based models
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[121] currently emerging that have shown good performance for multimodal
fusion tasks using data of different dimensions [363–365]. Our multimodal
fusion task may benefit from these models.
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Chapter 5

UNLABELED DATA EXPLORATION

“In a world of diminishing mystery, the unknown
persists.”

— Jhumpa Lahiri
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During the early stages of the second year of my thesis, we received
the EviRed prospective dataset (First stage: 103 patients without

annotations) from hospitals that ophthalmologists had not yet annotated.
We explored these unlabeled data while we awaited the annotation. Two
methods were tested in order to improve diagnostic performance using
these unlabeled data:
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1. Self-Supervised Learning: Pretext task

2. Semi-Supervised Learning: FixMatch

5.1 Introduction

As two fundamental pillars of machine learning, supervised and unsu-
pervised learning offer distinct insights and capacities for extracting infor-
mation from data [366].

Supervised learning involves training a model on a labeled dataset in
which each input is paired with its corresponding output [367]. This ap-
proach requires a large amount of labeled data for training and is well-
suited to tasks such as classification, segmentation, and regression. The
unsupervised learning process involves training a model on unlabeled data
without explicitly labeling the outputs. Through this method, meaning-
ful relationships are discovered between data without the need for specific
guidance [368].

In spite of the fact that both supervised and unsupervised learning are
powerful in their own right, they are not mutually exclusive. By incorporat-
ing both labeled and unlabeled data, semi-supervised learning bridges the
gap between these paradigms [369]. In addition to combining insights from
both supervised and unsupervised approaches, semi-supervised learning
uses the advantages of labeled data and the larger, more readily available
pool of unlabeled data [370]. Models can thus generalize more effectively,
particularly in situations where labeled data are not available or are im-
practical [371]. For example, the Consistency Regularization algorithm is a
technique used in semi-supervised learning to improve model performance
by encouraging consistency between predictions made on augmented ver-
sions of unlabeled data [372].
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Self-supervised learning also is a middle ground between supervised
learning and unsupervised learning. By designing tasks where the model
generates its own supervisory signals from the input data, this approach
creates an effective "self-created supervision" [373]. This approach takes
advantage of the intrinsic relationships within the data, presenting a mid-
dle ground between explicit supervision and autonomous discovery [374].
As an example, when predicting the missing areas of an image (contextual
prediction), the model learns meaningful representations based on the rela-
tionship between different parts of the input [375]. It is possible to predict
missing frames in a video using context prediction.

There were two datasets available: the EviRed retrospective dataset
and the EviRed prospective dataset (First stage: 103 patients without
annotations). Self-supervised learning and semi-supervised learning were
employed to enable the exploration of the unlabeled data. Self-supervised
learning was achieved by using a pretext task to generate a pre-trained
model based on the EviRed prospective dataset and then evaluating the
downstream classification task based on the EviRed retrospective dataset.
As part of the semi-supervised learning process, we utilized the FixMatch
[376] approach to train with both datasets simultaneously. We expected
that these two approaches could fully utilize the unlabeled data, which
would improve the diagnostic performance of the models.

5.2 Material and methods

5.2.1 Pretext task for self-supervised learning

In general, self-supervised learning pipelines involve the execution of two
tasks: a pretext task and a downstream task. Downstream tasks utilize the
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knowledge acquired during the pretext task to perform application-specific
tasks. Fig. 5.1 illustrates how knowledge is transferred from the pretext
task to the downstream task. By fine-tuning the parameters, the learned
parameters serve as a pretrained model for transferring to other down-
stream computer vision tasks [377]. The performance of transfer learning
on these high-level vision tasks demonstrates the generalization ability of
the learned features [373].

Figure 5.1 – An overview of downstream task for images [373].

In order to verify the effectiveness of the pretext task in multimodal
fusion networks, we first designed the pretext and the downstream tasks,
as shown in Fig. 5.2. Our pretext task for analyzing the unlabeled data in
the EviRed prospective dataset consists of determining if the input data for
the Structure and Flow modalities are from the same patient. Contrastive
loss was applied to features derived from different branches in the single-
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level fusion network. It takes as input a pair of features that are either
similar or dissimilar, and it brings similar features closer and dissimilar
features far apart. The contrastive loss is defined as:

L = (1 − Y )∗ ∥ xi − xj ∥2 +Y ∗ max(0, m− ∥ xi − xj ∥2)

Where m is a hyperparameter, defining the lower bound distance be-
tween dissimilar features. xi is the feature of Structure and xj is the feature
of Flow. Label Y that is equal to 0 if the Structure and Flow modalities
are from the same patient and 1 otherwise.

Figure 5.2 – Proposed pretext and downstream tasks.

The downstream task is the same as the diagnosis task in the last chapter
for the classification of PDR. To assess the validity of the pretext task, the
encoder part of the single-level fusion model that has been trained with
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the pretext task is used as a pre-trained model for the downstream task,
while the single-level fusion model without the pretext task is used for
baseline performance. If the pretext task for single-level fusion improves
the downstream task’s performance, the pretext task for more complex
hierarchical fusion will be designed.

5.2.2 FixMatch: a semi-supervised learning algorithm

FixMatch is a semi-supervised method that uses consistency regular-
ization [378] and pseudo-labeling [379] to enhance model performance by
training on both labeled and unlabeled data, which is particularly benefi-
cial for tasks that do not have sufficient labeled examples [376].

Figure 5.3 – Diagram of FixMatch. For the unsupervised part, it is first necessary to feed
a weakly augmented version of an unlabeled image (top) into the model in order to obtain
its predictions (red box). It is converted to a one-hot pseudo-label when the model assigns
a probability to a class above the threshold (dotted line). In the next step, we compute the
model’s prediction for a version of the image that has been strongly augmented (bottom).
Through a standard cross-entropy loss, the model is trained to make predictions for the
strongly augmented version that matches the pseudo-label [376].

The training process of FixMatch is divided into supervised and un-
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supervised parts, as shown in Fig. 5.3. The labeled example involves su-
pervised training. The unlabeled example generates a pseudo-label if the
weakly enhanced output exceeds a certain threshold. This pseudo-label is
then used to supervise the strongly enhanced output values. The unsu-
pervised training process involves consistency regularization and pseudo-
labeling [376]:

— Consistency Regularization: Unlabeled data is augmented multiple
times, generating different versions of each data point. The model’s
predictions on these augmented versions are encouraged to be consis-
tent with each other, promoting stable and reliable predictions across
variations of the same instance [380, 381].

— Pseudo-Labeling: The most confident predictions made by the model
on the augmented unlabeled data are treated as pseudo-labels. These
pseudo-labeled examples are then included in the training process as
if they were labeled data, allowing the model to learn from them and
improve its predictions [382, 383].

FixMatch enhances model generalization by combining these two prin-
ciples. Through a combination of supervised and unsupervised training, it
gradually improves the classification performance of the model.

There are only two cross-entropy loss terms in FixMatch: a supervised
loss ℓs applied to labeled data and an unsupervised loss ℓu. For a sample
b ∈ (1, ..., B) in a batch of B labeled examples, where xb are the training
examples and pb are one-hot labels. Let pm(y | x) be the predicted class
distribution produced by the model for input x. The cross-entropy between
two probability distributions p and q is H(p, q). Two types of augmenta-
tions are part of FixMatch: strong and weak, denoted by A(·) and α(·),
respectively. In particular, ℓs is simply the cross-entropy loss on weakly
augmented labeled examples:
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ℓs = 1
B

B∑
b=1

H(pb, pm(y | α(xb)))

For a sample b ∈ (1, ..., µB) in a batch of µB unlabeled examples,
FixMatch computes an artificial label for each example of unlabeled data
ub, which is then used in a standard cross-entropy loss. In order to create
an artificial label, the model’s predicted class distribution is first computed
given a weakly augmented version of an unlabeled image: qb = pm(y |
α(ub)). Using q̂b = argmax(qb) as a pseudo-label, the cross-entropy loss is
applied to the output of a strongly augmented version of ub as follow:

lu = 1
µB

µB∑
b=1

1(max(qb ≥ τ))H(q̂b, pm(y | A(ub)))

Where τ is a scalar hyperparameter denoting the threshold above which
we retain a pseudo-label. In sum, the loss minimized by FixMatch is simply
ℓs + λuℓu where λu is a fixed scalar hyperparameter denoting the relative
weight of the unlabeled loss.

5.2.3 Dataset

After removing patient data with incomplete modalities and absent an-
notations from the EviRed prospective dataset (First stage: 103 patients
without annotations) described in Section 3.3.4, 170 acquisitions from 71
diabetic patients were collected for unlabeled exploration. In addition, 151
acquisitions (64 patients) with annotations from the EviRed retrospective
dataset were added to the dataset. Tab. 5.1 is information about the data
used for self-supervised and semi-supervised learning:
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Table 5.1 – Datasets used for self-supervised and semi-supervised learning.
Method Datasets Patient Eyes

Pretext task EviRed prospective dataset
(First stage) 71 170

Downstream task EviRed retrospective dataset 64 151

FixMatch
EviRed retrospective dataset
+ EviRed prospective dataset

(First stage)
64+71=135 151+170= 321

For the pretext task, we randomly selected 136 acquisitions (80% of the
unlabeled prospective dataset) as the training set and the remaining 34
acquisitions (20%) as the validation set. For the downstream task, we used
the same training, validation, and test sets as in Section 4.2.5 (from the
labeled retrospective dataset). For FixMatch, we treat all data from the
EviRed prospective dataset (First stage) as unlabeled data in the training
set, and the validation and test sets remain the same as before.

5.2.4 Implementation details

The data was processed in the same way described in Section 4.3.2.
Self-supervised learning is performed using a single-level fusion model of
3D DenseNet121. The hyperparameter m = 1.0 is used for the pretext task.
To augment the data, RandomGamma, GaussianNoise, and flipping were
applied for the pretext task and downstream task. Gradient descent was
performed with the Adam optimizer, which has an initial learning rate of
1e-4 and a weight decay rate of 1e-4.

In the paper of FixMatch, weak augmentation is a standard flip-and-
shift augmentation strategy. Specifically, they randomly flip images hori-
zontally with a probability of 50% and translate images vertically and hor-
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Table 5.2 – 3D data strong augmentation pool.
Operator Parameters Probability
Flip horizontal, vertical 0.5
Rotate x_limit = (-15, 15) 0.5
ElasticTransform deformation_limits = (0, 0.25), interpolation = 2 0.5
RandomRotate90 axes = (1, 2) 0.5
GaussianNoise var_limit = (0, 5) 0.5
RandomGamma gamma_limit = (0.5, 1.5) 0.5

GridDropout ratio = 0.5,unit_size_min = 50, unit_size_max = 60,
holes_number_x = 3, holes_number_y = 2 ,holes_number_z = 2 0.5

CutoutAbs ratio=0.5 1.0

izontally by up to 12.5%. They tested two approaches based on AutoAug-
ment [384] for strong augmentation: RandAugment [385] and CTAugment
[386]. However, the 3D structural and flow modalities in our fusion model
require the reconstruction of an augmentation strategy. With the help of
the Volumentations 3D library [387], we constructed a strong enhancement
pool as in Tab. 5.2. Three data augmentation operations are randomly se-
lected from the pool for data augmentation when a strong augmentation
operation is performed on unlabeled data.

FixMatch is performed using a hierarchical fusion model of 3D DenseNet121.
The hyperparameters τ , µ, and λu are 0.8, 7.0, and 1.0, respectively. The
other training configurations are the same as for self-supervised learning.
The network training and testing were carried out on the OVH cluster
using one NVIDIA Tesla V100S units with 32 GB memory.

5.3 Results

5.3.1 Pretext task

In order to visually verify our pretext task, we concatenated output fea-
tures from different branches of the single-level fusion model and visualized
them using t-SNE [388], as in Fig. 5.4. A certain distance exists between the
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distributions of purple dots (Structure and Flow from the same patients)
and yellow dots (Structure and Flow from different patients). The model
can achieve an accuracy of 0.92 on the validation set of the pretext task.
The model fulfills the task goal excellently and can explicitly distinguish
whether the input Structure and Flow are from the same patient.

Figure 5.4 – The image of the pretext task using t-SNE visualization features. Purple dots
(Class 0) represent features from the same patient for Structure and Flow, and yellow dots
(Class 1) represent features from a different patient.

After that, we tested the performance of single-level fusion by using the
model of the pretext task as a pre-trained model. Despite the good perfor-
mance of the pretext task, Tab. 5.3 indicates that there is no significant
improvement in the downstream task. The pretrained model for the pre-
text task improves AUC and Specificity slightly, but Sensitivity does not
perform as well as the baseline model. In general, the pretrained model of
the pretext task performs similarly to the baseline model.
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Table 5.3 – Performance of different versions of single-level fusion on the test set for PDR
classification.

Method Pretext task AUC Sensitivity Specificity

Single-level fusion # 0.735 0.67 0.83
Single-level fusion ! 0.737 0.66 0.85

Table 5.4 – Performance of different versions of hierarchical fusion on the test set for PDR
classification.

Method FixMatch AUC Sensitivity Specificity

Hierarchical fusion # 0.911 0.86 0.88
Hierarchical fusion ! 0.907 0.85 0.88

5.3.2 FixMatch

The model performance of FixMatch was compared to baseline super-
vised learning as shown in Tab. 5.4. Unfortunately, FixMatch did not en-
hance the diagnostic performance of the model. This is primarily due to the
fact that our unlabeled dataset is not large enough. The amount of data
for unlabeled images in the FixMatch paper is 20 times that for labeled
images. For us, however, the amount of unlabeled images is comparable to
the amount of labeled images, which undoubtedly affects the performance
of FixMatch.

5.4 Discussion and conclusions

In this chapter, we explored the unlabeled EviRed data through self-
supervised and semi-supervised learning. Due to the limited number of
data patients, these two methods did not significantly improve the perfor-
mance of the model. Unfortunately, the pretext task and FixMatch used
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did not improve the diagnostic performance of the fusion model on the
PDR classification task.

Insufficient unlabeled data was the primary cause of the poor perfor-
mance. The EviRed prospective dataset (First stage) we used is compa-
rable to the EviRed retrospective dataset, and exploring the unlabeled
data is not very beneficial for the fusion model. Furthermore, many of the
hyperparameters in FixMatch may require further testing.

Fortunately, as the project progressed, we received more data from the
EviRed prospective dataset. And, unlike the previous release of data, all
subsequent releases associate data with annotations (Second stage: 532
patients with annotations). Considering the poor performance of semi-
supervised and self-supervised learning and the fact that all images are
now annotated, we have decided to continue using supervised learning for
DR classification. In Chapters 6 and 7, we used the Second stage dataset
for the exploration of multimodal fusion methods with supervised learning.
Even so, the exploratory process for unlabeled data is informative for the
future development of the EviRed project.
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“The coming era of Artificial Intelligence will not be the
era of war, but be the era of deep compassion,
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— Amit Ray
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The second stage of the EviRed prospective dataset containing 532
patients and annotations was received in the third year of my thesis.

Diabetic patients were examined with 6×6 mm2 high-resolution OCTA and
15×15 mm2 UWF-OCTA using PLEX®Elite 9000. The OCTA acquisition
specifications used for testing in Chapter 4 were mixed. However, due to the
small number of patients, the model performs poorly on classification tasks
of severity levels. We were not able to study the effect of different types
of OCTA acquisitions on the classification of severity levels in Chapter
4, but the newly arrived dataset for phase "EviRed prospective dataset"
(Second stage) offers this possibility. This chapter evaluated a deep learning
(DL) algorithm for automatic DR severity assessment using high-resolution
and ultra-widefield (UWF) OCTA. A novel DL algorithm was trained for
automatic DR severity inference using both OCTA acquisitions.

6.1 Introduction

In this chapter, we used high-resolution 6×6 mm2 SS-OCTA and 15×15
mm2 UWF-SS-OCTA images obtained from a PLEX® Elite 9000 (Carl
Zeiss Meditec Inc., Dublin, CA, USA) for the diagnosis of DR. Each OCTA
image encompassed both structural (Structure) and flow (Flow) informa-
tion.

The 6 × 6mm2 high-resolution SS-OCTA provides superior visualiza-
tion of the capillary network and the central avascular zone [389]. Con-
sequently, it enables the calculation of metrics such as vascular density
(the ratio of vessel area with respect to the total area) [390–392], fractal
dimensions [393], and intercapillary spaces [394]. However, its limitation
lies in its focus on the macular region, potentially neglecting global retinal
damage.
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On the other hand, the 15 × 15 mm2 UWF-SS-OCTA provides a more
extensive view of the retina, allowing the detection of relevant abnormal-
ities, such as the presence of an intraretinal microvascular abnormality
(IRMA) or a preretinal vascular anomaly (neovessel) [46, 49, 395]. Fur-
thermore, the absence of capillary networks on important surfaces in the
15 × 15 mm2 image can be easily observed [396], which are considered an
important biomarker of proliferating diabetic retinopathy [397, 398].

Overall, 6 × 6 mm2 SS-OCTA allows an accurate calculation of certain
vascular metrics and an analysis of the central avascular zone. Still, it only
explores a small part of the retina, while 15 × 15 mm2 SS-OCTA allows a
broader investigation of vascular anomalies and areas of non-perfusion. The
two specifications complement each other quite well in clinical practice.

This chapter presents an innovative approach to improve the accuracy
of DR diagnosis by leveraging the complementary information provided by
6×6 mm2 and 15×15 mm2 SS-OCTA images. We meticulously investigated
the use of the information from each acquisition and tested the performance
of the fusion on structural and flow information for OCTA. Our proposed
hybrid fusion network utilizes the structural and flow information of each
acquisition and fusing images from both acquisitions to enhance DR diag-
nostic performance significantly. As the first study exploring the fusion of
different OCTA acquisitions using deep learning methods, this work paves
the way for future diagnosis applications from OCTA images.
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6.2 Material and methods

6.2.1 Hybrid fusion workflow

This study aimed to find the best hybrid fusion network structure for
the fusion of 6 × 6 mm2 SS-OCTA data with 15 × 15 mm2 SS-OCTA data.
To achieve this, we organized the workflow into the following four stages:

(1) Data processing. The first step involved exploring a variety of ap-
proaches to process the raw data from different acquisitions and adapt
it to the input specifications of the CNN network.

(2) Backbones. Subsequently, we investigated the most effective back-
bone for the Structure and Flow separately for both acquisitions of
OCTA data.

(3) Fusion of Structure and Flow. After selecting the most effective back-
bone from three deep learning architectures for each modality, we
evaluated four different fusion strategies—input fusion, single-level
fusion, output fusion (leveraging averaging strategies), and hierar-
chical fusion using Structure and Flow.

(4) Fusion of 6×6 mm2 and 15×15 mm2 acquisitions. Based on the best
optimal fusion structure for each acquisition, we assessed two strate-
gies, namely single-level fusion and output fusion, on information
derived from both 6 × 6 mm2 and 15 × 15 mm2 SS-OCTA acquisi-
tions:
— For the single-level fusion strategy, we utilized the model parame-

ters obtained in the previous fusion step and conducted two types
of fine-tuning—(a) fine-tuning the entire network (network fine-
tuning), and (b) freezing all convolutional layers and fine-tuning
the classification layer (layer fine-tuning).

156



Hybrid fusion of high-resolution and ultra-widefield OCTA acquisitions

— For the output fusion strategy, we implemented and tested both
averaging (Avg) and maximization (Max) strategies.

This comprehensive process led us to a hybrid fusion network structure
that facilitates the fusion of single-acquisition multimodal information with
multiple-acquisition information. This hybrid fusion structure maximized
the diagnosis performance of DR by integrating the complementary infor-
mation from both 6 × 6 mm2 and 15 × 15 mm2 SS-OCTA acquisitions.
This method fully leveraged the structural and flow information derived
from each acquisition, thus optimizing our diagnosis process. Figure 6.1
illustrates the workflow of this study.

Figure 6.1 – Proposed workflow.
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6.2.2 Data processing

EviRed prospective dataset

In the second stage of the EviRed prospective dataset described in Sec-
tion 3.3.4, OCTA data were gathered for 875 eyes from a total of 444
patients after removing patient data without OCTA modalities and absent
annotations. This substantial dataset was used to train and test our deep
learning models.

Following the EviRed study protocol, each patient’s ocular data often
contained two specifications of acquisitions: 6 × 6 mm2 high-resolution
SS-OCTA and 15 × 15 mm2 UWF-SS-OCTA with a wavelength of 1060
nanometers. Figure 3.6 shows en-face images and their corresponding B-
scan images (pre-processed) of the Structure and Flow from the same pa-
tient acquired for different specifications.

The EviRed raw data size was 500 × 1536 × 500 × 2 voxels for the 6 × 6
mm2 SS-OCTA and 834 × 3072 × 834 × 2 voxels for the 15 × 15 mm2 SS-
OCTA. The last channel presented the information of Structure and Flow,
respectively. To reduce the volume under consideration, we used the same
preprocessing as in Section 4.2.6. The EviRed raw data were resized to
dimensions of 500 × 224 × 500 × 2 voxels for the 6 × 6 mm2 SS-OCTA and
834 × 224 × 834 × 2 voxels for the 15 × 15 mm2 SS-OCTA. Figure 3.6(a,c)
illustrates the orientation of each dimension. For the 6×6 mm2 SS-OCTA,
the en-face images had a size of 500 × 500 pixels, and the B-scan images
were 500 × 224 pixels. The 15 × 15 mm2 SS-OCTA had en-face images and
B-scan images of sizes 834 × 834 pixels and 834 × 224 pixels, respectively.
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OCTA Cropping

Due to graphics processing unit (GPU) hardware limitations (NVIDIA
Tesla V100S with 32 GB memory), our 3D deep learning backbones could
only accommodate inputs up to 224 × 224 × 224 × 2 voxels. The patch ex-
traction method is commonly used to address hardware limitations in 3D
medical images [142, 243]. Nevertheless, it is difficult to ensure that each
patch contains pathology information. Based on the idea of test time aug-
mentation [399], the model synthesized and analyzed multiple predictions
in order to avoid making inaccurate predictions. As a result, a global pre-
diction of multiple patches was an effective method under the limitations
of our hardware. In this context, we proposed a strategy, named N times
Random Crop method, for processing images as shown in Figure 6.2. We
compared our proposed method with other commonly used methods of data
processing. For this comparison, we used the input fusion of ResNet [361]
with the 15 × 15 mm2 OCTA in order to verify its effectiveness. The fol-
lowing methods were tested for prediction:

(1) N times Random Crop (proposed). During the training of the deep
learning network, Random Crop processing was employed, while in
the prediction process, we utilized multiple volumes extracted from
the OCTA image (N times Random Crop) simultaneously to make
predictions. Considering that the patch size was 224 × 224 × 224 × 2
voxels, it would take at least 9 batches (⌈500

224⌉×⌈224
224⌉×⌈500

224⌉×⌈2
2⌉) to

traverse the 500 × 224 × 500 × 2 voxel 6 × 6 mm2 SS-OCTA images,
while 16 batches (⌈834

224⌉ × ⌈224
224⌉ × ⌈834

224⌉ × ⌈2
2⌉) would be required to

traverse the 834×224×834×2 voxel 15×15 mm2 SS-OCTA images.
By comparing the performance of the ResNet input fusion model on
the validation set with different N times Random Crop methods, we
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determined the N values for the two SS-OCTA acquisitions. The final
prediction for an OCTA image was based on the severest prediction
among these N predictions.

(2) Resize. This method compressed the original volume of 834 × 224 ×
834 × 2 voxels into 224 × 224 × 224 × 2 voxels for both training
and prediction.

(3) Center Crop. This approach selected a random patch of 224 × 224 ×
224 × 2 voxels from the original 834 × 834 × 834 × 2 voxel OCTA for
training. For prediction, a central patch was selected.

(4) Subvolume Crop. This technique traversed the OCTA using a win-
dow, predicting all subvolumes of 224 × 224 × 224 × 2 voxels and
determining the maximum value.

It is worth noting that for single-acquisition fusion, we ensured the reg-
istration of data across different modalities. However, when fusing data
from different acquisitions, Random Crop generated data from varying re-
gions. Having processed the data, our next step was to use these images to
extract meaningful features and combine them for our classification task.

6.2.3 Multimodal information fusion

In this section, we describe three fusion network structures commonly
used in multimodal research as shown in Figure 6.3: input fusion, single-
level fusion, and output fusion [176]. Furthermore, we introduce hierar-
chical fusion, which is our extension of traditional feature fusion. Input,
single-level, and hierarchical fusions are the same as described in Section
4.2.
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Figure 6.2 – Our proposed data processing approach, where N is 10 for 6 × 6 mm2 SS-
OCTA and 20 for 15 × 15 mm2 SS-OCTA. Predictions were based on the same fusion
model as for training. Colored discs indicate the DR severity categories.

Figure 6.3 – An illustration of the three types of multimodal fusion networks: (a) input
fusion, (b) single-level fusion, (c) output fusion.
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Output Fusion

Output fusion involves extracting features and making decisions through
separate deep learning backbones, and the results are combined into one
final decision, as shown in Figure 6.3c. Many fusion strategies have been
proposed for output fusion [400]. Most of them are based on averaging
and majority voting [270, 271]. Due to the absence of single-level fusion,
exploiting the complementary information between different modalities is
difficult.

6.2.4 Classification tasks

DR severity was assessed by a retina specialist using fundus photographs,
according to the International Clinical Diabetic Retinopathy Disease Sever-
ity Scale (ICDR): the absence of diabetic retinopathy, mild nonproliferative
diabetic retinopathy (NPDR), moderate NPDR, severe NPDR, prolifera-
tive diabetic retinopathy (PDR), and panretinal photocoagulation (PRP).
Compared to previous chapters, we now have access to more training data,
which allows us to tackle a more ambitious challenge: classifying all DR
severity levels, and not simply PDR. In addition to the six-category mul-
ticlass classification, we also performed four binary classification tasks:
task0 (detecting mild NPDR or more), task1 (detecting moderate NPDR
or more), task2 (detecting severe NPDR or more), and task3 (detecting
PDR or PRP). To assess the performance of the four binary classifica-
tions, we used the area under the ROC curve (AUC) described in Section
2.2.3: AUC0 (≥mild NPDR), AUC1 (≥moderate NPDR), AUC2 (≥severe
NPDR) and AUC3 (≥PDR). As a standard evaluation metric for the mul-
ticategory classification task, Cohen’s kappa was also used to evaluate
the EviRed dataset’s six-category results. Based on the confusion matrix,
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the Kappa coefficient described in Section 2.2.3 was calculated with a value
between −1 (worse than chance agreement) and 1 (perfect agreement).

6.2.5 Dataset splitting

During the data acquisition process, there were instances when the col-
lection of OCTA data for each patient’s eyes could not be guaranteed due
to factors such as operator errors or the patient’s physical condition. Sim-
ilarly, not all patients were able to provide both 6 × 6 mm2 and 15 × 15
mm2 SS-OCTA data. Despite these constraints, in order to make full use
of the dataset to train different model frameworks for different acquisitions
and to test the performance of the fusion model, we split the data as fol-
lows: Initially, we selected 53 patients out of the 444 in the EviRed dataset
who had both 6 × 6 mm2 and 15 × 15 mm2 SS-OCTA data in each eye to
form a test set. The remaining patients were shared out randomly between
a training set and a validation set. Depending on the fusion task, sub-
sets of the training and validation sets were used in each experiment—all
6 × 6 mm2 acquisitions or all 15×15 mm2 acquisitions for single-acquisition
tasks, all matched pairs of 6 × 6 mm2 and 15 × 15 mm2 acquisitions for
multiple-acquisition tasks. All fusion tests were trained and validated using
five-fold cross-validation (four-fold training and one-fold validation), and
performance scores were derived from the same test sets. In the training,
validation, and test sets, the distribution of data was identical to the orig-
inal distribution. The patient and eye data statistics for different fusion
datasets are shown in Table 6.1, and the severity distribution is displayed
in Table 6.2.
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Table 6.1 – Statistics on the number of patients and eyes in the dataset. For the fusion
of Structure+Flow for 6 × 6 mm2 SS-OCTA, the fusion of Structure+Flow for 15 × 15
mm2 SS-OCTA and the fusion of 6 × 6 mm2 + 15 × 15 mm2 SS-OCTA, the test sets are
identical and fixed. Dataset6×6, Dataset15×15, and Dateset6×6+15×15 represent the
corresponding training and validation sets.

Dataset Type Patients Eyes
Total (EviRed dataset) 444 875
Test set (for all fusion tests) 53 97
Dataset6×6 (for fusion of 6 × 6 mm2 OCTA: Structure + Flow) 386 753
Dataset15×15 (for fusion of 15 × 15 mm2 OCTA: Structure + Flow) 372 701
Dataset6×6+15×15 (for fusion of 6 × 6 mm2 + 15 × 15 mm2 OCTA) 364 676

Table 6.2 – Distribution of eyes with different levels of severity in different datasets.
Severity Dataset6×6 Dataset15×15 Dataset6×6+15×15 Test set
Absence of diabetic retinopathy 151 128 127 17
Mild NPDR 76 69 68 12
Moderate NPDR 348 334 321 39
Severe NPDR 111 107 97 18
PDR 20 20 20 3
PRP 47 43 43 8
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6.2.6 Implementation details

The experiments were carried out with 3D versions of ResNet50 [361],
DenseNet121 [362], and EfficientNetB0 [401] trained from scratch. Data
augmentation techniques such as random Gamma transformations, Gaus-
sian noise injection, and image flipping were employed to enhance the ro-
bustness of these models. For model training, we utilized the Adam opti-
mizer for gradient descent with an initial learning rate of 1 × 10−4. Expo-
nentialLR with a gamma equal to 0.99 was the learning rate decay strategy.
The number of training epochs was set to 500, and the batch size was set to
2. The network training and testing were carried out on the OVH cluster
using four NVIDIA Tesla V100S units with 32 GB memory. For train-
ing large models such as the hierarchical fusion used in this experiment,
model parallelism was used. The validation set was used to select the best
backbones and the best checkpoint of each backbone. It was also used to
select the best data cropping and information fusion strategies. However,
for simplicity, performance is illustrated solely on the test set hereafter.

6.3 Results

Figure 6.4 shows the test results for different N times Random Crop
methods. The performance of the fusion model on different metrics im-
proved with an increase in N. For the 6 × 6 mm2 SS-OCTA, the perfor-
mance at N = 10 and N = 12 was comparable. For the 15 × 15 mm2

SS-OCTA, the performance at N = 20 and N = 25 was essentially un-
changed. As a result, we chose N = 10 for 6 × 6 mm2 SS-OCTA and 20
for 15 × 15 mm2 SS-OCTA as reasonable tradeoffs between computation
times and classification scores.
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Figure 6.4 – The results of the different N times Random Crop methods on the validation
set for the input fusion of ResNet with the two SS-OCTA acquisitions.

Table 6.3 – The results of the different data cropping methods on the test set for the
input fusion of ResNet with the 15 × 15 mm2 SS-OCTA.

Data Cropping Method Kappa AUC0 AUC1 AUC2 AUC3
Resize 0.2913 0.6485 0.6557 0.6836 0.7074
Center Crop 0.3270 0.7257 0.7059 0.6850 0.6903
Subvolume Crop 0.4048 0.7596 0.7429 0.7449 0.8340
N times Random Crop (proposed) 0.4252 0.7721 0.7474 0.7519 0.8546

Table 6.3 compares cropping methods: it shows that the Resize and
Center Crop methods performed poorly due to a significant loss of infor-
mation. As a result of the data compression of Resize, many pathological
details were rendered invisible, while Center Crop focused only on the in-
formation obtained from the center patch. Although Subvolume Crop per-
formed relatively well, manually extracting subvolumes may have omitted
key pathological features, affecting the model’s judgment. In the valida-
tion and test sets, our proposed data cropping method, namely Random
Crop, outperformed the others in each classification task, demonstrating
its effectiveness in handling the large original volume of OCTA images.
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6.3.1 Backbones

A total of four modalities of information from Structure and Flow with
different acquisitions were tested, along with three deep learning back-
bones: ResNet, DenseNet, and EfficientNet. Table 6.4 presents the results
of the backbone tests. In the validation and test sets, ResNet demonstrated
superior performance across all classification tasks for both the structure
modality from the 6 × 6 mm2 SS-OCTA images and the flow modality
from the 15 × 15 mm2 SS-OCTA images. The performance of the other
backbones varied across the remaining modalities, and it was difficult to
determine which backbone was the most effective. EfficientNet was effec-
tive for the multiclass classification as well as early pathology detection in
the Flow from 6 × 6 mm2 SS-OCTA images, while ResNet excelled in the
more severe pathology detection tasks. Interestingly, DenseNet surpassed
ResNet on task 0 when using Structure from 15 × 15 mm2 SS-OCTA im-
ages. Based on these results, we selected the best-performing backbones
(in bold in Table 6.4) for different tasks as baselines for the subsequent
fusion schemes of Structure and Flow.

Table 6.4 – Backbone test results with different modalities on the test set.
Modality Backbone Kappa AUC0 AUC1 AUC2 AUC3

6 × 6 mm2 SS-OCTA—Structure
ResNet 0.4150 0.8375 0.7659 0.7889 0.8104
DenseNet 0.3597 0.8285 0.7462 0.7368 0.7040

EfficientNet 0.4149 0.8246 0.7521 0.7438 0.7788

6 × 6 mm2 SS-OCTA—Flow
ResNet 0.3768 0.7931 0.7653 0.7566 0.7863
DenseNet 0.3399 0.7972 0.7700 0.7525 0.7653

EfficientNet 0.4085 0.8306 0.7775 0.7446 0.7150

15 × 15 mm2 SS-OCTA—Structure
ResNet 0.3900 0.8118 0.7604 0.7462 0.8700

DenseNet 0.3589 0.8251 0.7527 0.7923 0.8732
EfficientNet 0.3230 0.8046 0.7407 0.7757 0.8671

15 × 15 mm2 SS-OCTA—Flow
ResNet 0.4189 0.7927 0.7627 0.7911 0.8774
DenseNet 0.3261 0.7770 0.7517 0.7788 0.8125

EfficientNet 0.3259 0.7848 0.7557 0.7545 0.8397
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6.3.2 Fusion of Structure and Flow

We combined Structure and Flow from different acquisitions using the
top-performing backbones from the previous section. We tested input fu-
sion, single-level fusion, and hierarchical fusion. Tables 6.5 and 6.6 show
the fusion results for 6 × 6 mm2 and 15 × 15 mm2 SS-OCTA acquisitions,
respectively.

Table 6.5 – Results of Structure + Flow fusion for 6 × 6 mm2 SS-OCTA acquisitions on
the test set. The unimodal results are baselines derived from the previous step.

Fusion Method Backbone Kappa AUC0 AUC1 AUC2 AUC3
Structure (unimodal) ResNet 0.4150 0.8375 0.7659 0.7889 0.8104
Flow (unimodal) ResNet 0.3768 0.7931 0.7653 0.7566 0.7863
Flow (unimodal) EfficientNet 0.4085 0.8306 0.7775 0.7446 0.7150
Input Fusion ResNet 0.3849 0.8093 0.7656 0.7476 0.7886
Input Fusion EfficientNet 0.3885 0.8192 0.7755 0.7496 0.7321
Single-level Fusion ResNet + ResNet 0.4329 0.8246 0.7763 0.7577 0.7900
Single-level Fusion ResNet + EfficientNet 0.3959 0.8132 0.7637 0.7023 0.7622
Output Fusion ResNet + ResNet 0.3814 0.8074 0.7757 0.7530 0.7868
Output Fusion ResNet + EfficientNet 0.4227 0.8446 0.7770 0.7500 0.7478
Hierarchical Fusion ResNet + ResNet 0.4752 0.8462 0.7793 0.7607 0.8013
Hierarchical Fusion ResNet + EfficientNet 0.4205 0.8206 0.7662 0.7186 0.7743

In the validation and test sets, the hierarchical fusion outperformed
other methods for 6 × 6 mm2 OCTA. Based on two ResNet branches,
the hierarchical fusion method achieved a Kappa value of 0.4752 for the
six-category multiclass classification, a significant improvement over the
unimodal baseline. Furthermore, hierarchical fusion improved diagnostic
performance for both task 0 and task 1. In contrast, hierarchical fusion
did not perform as well as unimodal fusion in tasks 2 and 3. There was a
significant difference in performance between Structure and Flow in tasks
2 and 3. As a result, fusion was not effective since Flow did not provide
additional complementary information to Structure. Also, the hierarchi-
cal fusion of ResNet and EfficientNet was not effective, likely due to the
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structural differences between these backbones.

Table 6.6 – Results of Structure + Flow fusion for 15 × 15 mm2 SS-OCTA images on the
test set. The multimodal results are baselines derived from the previous step.

Fusion Method Backbone Kappa AUC0 AUC1 AUC2 AUC3
Structure (unimodal) ResNet 0.3900 0.8118 0.7604 0.7462 0.8700
Structure (unimodal) DenseNet 0.3589 0.8251 0.7527 0.7923 0.8732
Flow (unimodal) ResNet 0.4189 0.7927 0.7627 0.7911 0.8774
Input Fusion ResNet 0.4252 0.7721 0.7475 0.7519 0.8546
Input Fusion DenseNet 0.3286 0.7108 0.7072 0.7235 0.8175
Single-level Fusion ResNet + ResNet 0.3982 0.8029 0.7627 0.7876 0.8630
Single-level Fusion DenseNet + ResNet 0.3227 0.7437 0.7366 0.7546 0.8429
Output Fusion ResNet + ResNet 0.4124 0.7949 0.7688 0.7688 0.8728
Output Fusion DenseNet + ResNet 0.4376 0.8205 0.7583 0.7726 0.8754
Hierarchical Fusion ResNet + ResNet 0.4430 0.8187 0.7745 0.7967 0.8786
Hierarchical Fusion DenseNet + ResNet 0.4137 0.8088 0.7662 0.7794 0.8719

Similarly, for the 15×15 mm2 SS-OCTA acquisitions, hierarchical fusion
was the most effective in the validation and test sets. The hierarchical
fusion of two ResNet branches significantly improved performance for six-
category multiclass classification and tasks 1, 2, and 3 compared to the
unimodal baseline results. Specifically, hierarchical fusion achieved an AUC
of 0.8786 for task 3. Due to the similar performance of Structure and Flow,
the hierarchical fusion was able to take advantage of the complementary
information provided by the different modalities and performed well.

From the above results, the 6 × 6 mm2 SS-OCTA was very effective
for diagnosing early diabetic retinal lesions, while the 15 × 15 mm2 SS-
OCTA was more effective in diagnosing more advanced pathology, which
is consistent with our clinical prior knowledge. As shown in [16], hierarchi-
cal fusion proves effective since the Structure and Flow-based hierarchical
fusion can utilize complementary information to enhance the strengths of
each acquisition individually, thereby facilitating the subsequent fusion of
different acquisitions.

169



Hybrid fusion of high-resolution and ultra-widefield OCTA acquisitions

6.3.3 Fusion of 6 × 6 mm2 SS-OCTA and 15 × 15 mm2 SS-OCTA

To maximize the complementary strengths of the 6 × 6 mm2 SS-OCTA
and 15 × 15 mm2 SS-OCTA acquisitions for different tasks, we further
tested single-level fusion and output fusion on the hierarchical fusion ar-
chitectures. The unimodal results of the 6 × 6 mm2 SS-OCTA and 15 × 15
mm2 SS-OCTA images were used as baselines. The results of this fusion
are shown in Table 6.7.

Table 6.7 – Results of the 6 × 6 mm2 SS-OCTA + 15 × 15 mm2 SS-OCTA fusion on
the test set. The 6 × 6 mm2 SS-OCTA and 15 × 15 mm2 SS-OCTA rows show the best
performance of single acquisitions on different tasks.

Modality Fusion Method Kappa AUC0 AUC1 AUC2 AUC3 Inference Time
(seconds/eye)

6 × 6 mm2

SS-OCTA
Structure (Unimodal) 0.4150 0.8375 0.7659 0.7889 0.8104 0.9729
Hierarchical Fusion 0.4752 0.8462 0.7793 0.7607 0.8013 1.8041

15 × 15 mm2

SS-OCTA
Structure (Unimodal) 0.3589 0.8251 0.7527 0.7923 0.8732 1.6394
Hierarchical Fusion 0.4430 0.8187 0.7745 0.7967 0.8786 3.84655

6 × 6 mm2

SS-OCTA +
15 × 15 mm2

SS-OCTA

Single-level Fusion -
Fine-tuning 0.4637 0.8469 0.8004 0.7989 0.8670 4.9233

Single-level Fusion -
Freezing layers 0.5132 0.8741 0.7853 0.7555 0.8207 4.8410

Output fusion - Max 0.5218 0.8801 0.8027 0.8083 0.8911 4.0686
Output fusion - Avg

(Hybrid fusion proposed) 0.5593 0.8868 0.8276 0.8367 0.9070 3.9679

Output fusion with average aggregation was the best strategy for the
validation and test sets. The process of single-level fusion showed improve-
ments over single acquisitions on certain tasks but did not achieve its goal
for tasks 2 and 3. This discrepancy could have been due to the differing vol-
umes of the acquisitions. Without using registered image information for
random cropping, the pathological features between acquisition branches
could vary significantly, potentially impairing the fusion model’s judgment.
Conversely, output fusion had the capacity to address this issue effectively.
The output fusion process operated only on the final output probability
after each branch had independently made its assessments. This allowed
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for the integration of information without being affected by image registra-
tion at the same time. As shown in Table 6.7, the proposed output fusion
method based on averaging performed well.

The inference time of the different fusion methods was also compared.
Inference took longer for 15 × 15 mm2 SS-OCTA (N = 20), since the N
times Random Crop was twice as large as for 6 × 6 mm2 SS-OCTA (N
= 10). Due to the complexity of its structure, hierarchical fusion requires
more time for inference. Despite this, because of the parallel nature of the
model, Our hybrid fusion method did not take longer than hierarchical
fusion. The resulting four-second inference time per eye is acceptable and
can provide reliable results for ophthalmologists within a short period of
time.

6.4 Discussion and conclusions

This chapter investigated a deep learning algorithm to classify dia-
betic retinopathy severity using 6 × 6 mm2 high-resolution SS-OCTA and
15×15 mm2 UWF-SS-OCTA acquisitions. It relied on a hybrid fusion archi-
tecture that utilized complementary structure and flow information from
both acquisitions. In detail, this architecture combined hierarchical fusion
to jointly analyze Flow and Structure from the same acquisition and out-
put fusion to merge predictions from both acquisitions. This algorithm was
evaluated on preliminary data from the EviRed project.

The algorithm employed a unique hybrid fusion framework, integrating
structural and flow information from both acquisitions. It was trained on
data from 875 eyes of 444 patients. Tested on 53 patients (97 eyes), the
algorithm achieved a good area under the receiver operating characteristic
curve (AUC) for detecting DR (0.8868), moderate non-proliferative DR
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(0.8276), severe non-proliferative DR (0.8376), and proliferative/treated
DR (0.9070).

Our experiments showed that the 6×6 mm2 SS-OCTA acquisitions were
highly effective for the detection of early-stage pathology, while 15×15 mm2

SS-OCTA acquisitions performed better in terms of advanced pathology de-
tection (see Table 6.7). This was consistent with the perceived usefulness
of these acquisitions by ophthalmologists: in the early stages, anomalies
are generally small and are therefore better seen in high-resolution SS-
OCTA images, while in the advanced stages, anomalies are larger, and an
ultra-widefield image becomes more beneficial than a high-resolution im-
age. The suggested hybrid fusion system demonstrated significant improve-
ments over single acquisitions (see Table 6.7). The hybrid fusion approach
integrated the strengths of both acquisitions: it delivered excellent per-
formance in both early and late pathological diagnosis while significantly
improving the accuracy of the six-category multiclass classification. There-
fore, this study clearly validated the relevance of jointly analyzing multiple
acquisitions. To a lesser extent, this study also validated the relevance of
analyzing multiple modalities: combining Flow and Structure always out-
performed analyzing a single modality, although the performance gain was
limited (see Tables 6.5 and 6.6).

In recent times, transformer-based models [121] have shown good perfor-
mance on classification tasks, such as the Vision Transformer (ViT) [128],
which we also tested. The performance of the structure and flow modalities
of 6 × 6 mm2 SS-OCTA images was tested using 3D ViT models (patch
size = (32, 32, 32)) from the Monai library 1. Table 6.8 illustrates the test
results for ViT.

In all tasks, ViT performed very poorly. A large dataset and pre-trained
1. https://monai.io/
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Table 6.8 – Results for 3D ViT with different modalities on the test set.
Modality Backbone Kappa AUC0 AUC1 AUC2 AUC3

6 × 6 mm2 SS-OCTA—Structure ViT 0.1122 0.6774 0.6490 0.4900 0.5912
6 × 6 mm2 SS-OCTA—Flow ViT 0.0854 0.6696 0.6474 0.5487 0.5843

models contribute significantly to the excellent performance of ViT [128].
In addition to the limited number of patients in our dataset, there was no
publicly available pre-training model for 3D ViT, which was likely the ma-
jor reason for its poor performance. Nevertheless, extensive testing is still
required for the hyperparameter configuration of 3D transformer models.

It should be noted, however, that some transformer-based models are
increasingly used to perform multimodal tasks in the medical field [264,
402, 403]. It has been observed that these models often combine a CNN
structure with a transformer structure, resulting in excellent classification
performance with limited medical datasets; this is one of the directions
that may be pursued by the team, during the end of the Evired project.

One limitation of this study was that the current dataset is insufficiently
large, resulting in suboptimal performance on the six-category multiclass
classification task. Furthermore, too small a dataset may adversely affect
the robustness of a model. The EviRed project is expected to collect clinical
data from thousands of patients, and so more datasets will be tested in the
near future. Further studies will be conducted to test the model’s stability
and fine-tune it to improve its performance on the six-category multiclass
classification task.

The current EviRed prospective dataset also contains ultra-widefield
color fundus photography (UWF-CFP) data alongside OCTA data from
different acquisitions, which may aid in further improving the accuracy of
DR diagnosis. In [37], the use of UWF-OCTA in conjunction with UWF-
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CFP was recommended for the screening and follow-up of DR. Conversely,
UWF-OCTA alone had some limitations. Identifying microaneurysm and
intraretinal hemorrhage from OCTA en-face images is difficult and some-
times ambiguous. To facilitate diagnosis, searching for corresponding le-
sions on B-scan images is often necessary, a time-consuming process. The
use of UWF-CFP images would make this task much easier. The joint anal-
ysis of OCTA and UWF-CFP images will direct our next investigation in
Chapter 7.
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MULTIMODAL FUSION OF UWF-CFP
AND OCTA IMAGES

“Every great advance in science has issued from a new
audacity of imagination.”

— John Dewey
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Recent advancements in imaging technologies, such as Ultra-WideField
Color Fundus Photography (UWF-CFP) imaging and Optical Co-

herence Tomography Angiography (OCTA), provide opportunities for the
early detection of Diabetic Retinopathy (DR) but also pose significant
challenges given the disparate nature of the data they produce. We have
included both OCTA and UWF-CFP data for each patient in the second
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stage of the EviRed prospective dataset. It has been demonstrated clin-
ically that these two modalities are complementary [37, 404]. This chap-
ter introduces a novel multimodal approach that leverages these imaging
modalities to notably enhance DR classification, as proposed in Section 6.4.
Our approach integrates 2D UWF-CFP images and 3D high-resolution 6x6
mm2 OCTA (both structure and flow) images using a fusion of ResNet50
and 3D-ResNet50 models, with Squeeze-and-Excitation (SE) blocks to am-
plify relevant features. Additionally, to increase the model’s generalization
capabilities, a multimodal extension of Manifold Mixup, applied to con-
catenated multimodal features, is implemented.

7.1 Introduction

Recent advances in imaging techniques have significantly enhanced the
ability to detect and classify DR. UWF-CFP imaging and OCTA are two
such techniques that have shown great promise. UWF-CFP imaging offers
a panoramic view of the retina, allowing for a more comprehensive assess-
ment [405], while OCTA provides depth-resolved images of retinal blood
flow, revealing detailed microvascular changes indicative of DR [406].
Despite the individual merits of these imaging modalities, each offers a
unique perspective on retinal pathology. Leveraging the information from
both could potentially enhance the diagnosis and classification of DR based
on artificial intelligence (AI) [407, 408]. However, the integration of these
modalities poses a significant challenge due to the disparate nature of the
data they produce, especially in terms of dimensionality (2D versus 3D)
and field of view.

In the quest to enhance deep learning (DL) models, the field has bene-
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fited significantly from incorporating innovative techniques like the Mani-
fold Mixup [409]. Through its unique method of generating virtual train-
ing examples via the convex combinations of hidden state representations,
this technique has made a profound impact by significantly reducing a
model’s sensitivity to the data distribution and encouraging smoother de-
cision boundaries.
Building upon these advanced techniques, several proposed methods in
the state of the art have employed multimodal imaging [410, 411]. These
methods aim to utilize the complementary information available in differ-
ent types of images. Recent works have effectively used mixing strategies to
enhance multimodal DL models. For example, the M3ixup approach [412]
leverages a mixup strategy to enhance multimodal representation learn-
ing and increase robustness against missing modalities by mixing differ-
ent modalities and aligning mixed views with original multimodal repre-
sentations. The LeMDA (Learning Multimodal Data Augmentation) [413]
method automatically learns to jointly augment multimodal data in fea-
ture space, enhancing the performance of multimodal deep learning archi-
tectures and achieving good results across various applications. MixGen
[414] introduces a joint data augmentation for vision-language representa-
tion learning to boost data efficiency, generating new image-text pairs while
preserving semantic relationships. This method has shown remarkable per-
formance improvements across various vision-language tasks. Furthermore,
TMMDA (Token Mixup Multimodal Data Augmentation) [415] for Mul-
timodal Sentiment Analysis (MSA) generates virtual modalities from the
mixed token-level representation of raw modalities, enhancing representa-
tion learning on limited labeled datasets.

Despite the significant results obtained, these methods are proposed
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for vision-language and vision-audio fusion but are not suitable for 2D
image/3D volume fusion. This study proposes a new multimodal DL ap-
proach for DR classification, integrating 2D UWF-CFP and 3D OCTA
images and incorporating a custom mixing strategy. Regarding the modal-
ities used in this work, recent research has used UWF-CFP and OCTA
imaging to diagnose diseases such as Alzheimer [416]. However, to the best
of our knowledge, our study is the first to develop a DL model for the
classification of DR using both UWF-CFP and OCTA imaging modalities,
which contributes significantly to the existing body of knowledge.

7.2 Material and methods

7.2.1 Model architecture

We utilize two separate CNN architectures, ResNet50 and 3D-ResNet50,
designed to process 2D UWF-CFP and 3D OCTA images to extract fea-
tures from each imaging modality. ResNet50 was chosen as a backbone
for feature extraction due to its remarkable performance in computer vi-
sion tasks. Its structure provides a balance between depth and complexity,
allowing the network to learn complex patterns without suffering from
overfitting. To further improve such models’ performance, Squeeze-and-
Excitation (SE) blocks have gained attention in the DL community [417].
As shown in Fig.6.3(d), the SE blocks dynamically recalibrate channel-wise
feature responses by explicitly modeling the interdependencies between
channels, thus helping the model focus on more informative features. They
have been demonstrated to significantly improve the representational power
of deep networks without a significant additional computational cost.
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Figure 7.1 – Proposed pipeline.

The 3D-ResNet50, a 3D extension of the ResNet50 architecture, integrated
with SE blocks, is applied to process OCTA images (Fig.7.1(a)). This model
expands traditional 2D convolution operations into the 3D space, making
it particularly appropriate for volumetric image data. This enables the net-
work to decipher spatial hierarchies inherent in volumetric data, thus facil-
itating a comprehensive feature extraction from OCTA volumes. SE blocks
in the 3D-ResNet50 model perform a similar role as in the 2D ResNet50
model, thus enhancing the performance of the 3D backbone. For the rest
of the paper, we will refer to these models as SE-ResNet50 and SE-3D-
ResNet50.

7.2.2 Fusion strategy

The fusion of multiple modalities has been an area of active research
due to the enhanced performances it offers [143, 198, 248]. Such fusion can
be executed at input, feature, and decision levels, each offering distinct
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advantages and disadvantages.
In this work, we employ an input-level fusion for merging the structure and
flow information embedded in OCTA images. Numerous studies affirm that
merging these distinct types of information can significantly enhance the
accuracy of DR diagnosis [410, 418]. Input-level fusion involves integrat-
ing multiple modalities into a single data tensor subsequently processed
by a DL model Fig. 6.3(a). This method is effective without the need for
registration, as the structure and flow data align with each other by design.

On the other hand, the fusion of UWF-CFP and OCTA images is per-
formed through a different approach, primarily due to the absence of in-
herent alignment between these imaging modalities. Here, a feature-level
fusion strategy is adopted, which allows us to use different backbones for
each modality (SE-ResNet50 and 3D-SE-ResNet50), thus effectively ad-
dressing the alignment challenge. We have chosen feature-level fusion over
decision-level fusion to capitalize on the rich interplay between the modal-
ities at the feature level. This strategy facilitates the extraction of features
and the fusion of high-dimensional feature-level information, making it es-
pecially suited for unregistered or dimensionally diverse data [17, 228, 252,
419].

7.2.3 Manifold Mixup

To enhance the model’s robustness and generalization capabilities, we
implemented a multimodal extension of Manifold Mixup into our training
process. The original Manifold Mixup method [409] is a recently introduced
regularization technique. It generates virtual training examples by forming
convex combinations of the hidden state representations of two randomly
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chosen training examples and their associated labels.
Extending the concept of Input Mixup [420] to the hidden layers, Mani-
fold Mixup serves as a robust regularization method that provokes neural
networks to predict interpolated hidden representations with lesser confi-
dence. It leverages semantic interpolations as an auxiliary training signal,
leading to the cultivation of neural networks with smoother decision bound-
aries across multiple representation levels. Consequently, neural networks
trained with Manifold Mixup can learn class representations with reduced
directions of variance, thus yielding a model that exhibits enhanced perfor-
mance on unseen data[409]. The operational process of the Manifold Mixup
approach is as follows:

1. The original Manifold Mixup performs the mixing of the hidden
representation randomly on a set of predefined eligible layers. In-
stead, in our proposed implementation, we have purposefully selected
the layer containing the concatenated feature maps from UWF-CFP
and OCTA images to process the Manifold Mixup. This strategic
choice is not only the simplest way to introduce Manifold Mixup
but also ensures we are capitalizing on a layer that encapsulates a
high-dimensional, multimodal feature space. Creating numerous vir-
tual training samples from the fusion layer significantly improves the
model’s ability to generalize to new data.

2. Feed two images into the neural network until the selected layer is
reached.

3. Extract the feature representations (zi for multimodal data xi and zj

for multimodal data xj).

4. Mix the extracted feature representations according to the following
equation in order to derive the new representation (new features z′
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associated with new label y′).

(z′, y′) = (λzi + (1 − λ)zj, λyi + (1 − λ)yj)

where zi and zj are the features of two random training examples,
and yi and yj are their corresponding labels. λ ∈ [0, 1] is a Mixup
coefficient sampled from a Beta distribution Beta(α, α), where α is a
hyperparameter that determines the shape of the Beta distribution.

5. Carry out the forward pass in the network for the remaining layers
with the mixed data.

6. Use the output of the mixed data to compute the loss and gradients.
Given L the original loss function, the new loss L′ is computed as:

L′ = λL(yi, y′) + (1 − λ)L(yj, y′)

Through this process, Manifold Mixup enhances our fusion strategy by
operating on the joint feature representation (Fig.6.3(b)), thereby ensuring
that the model can generalize from the learned features of UWF-CFP and
OCTA images.

7.2.4 Dataset

After removing patient data with incomplete modalities and absent an-
notations, 875 eyes belonging to 444 patients from the second stage of the
EviRed prospective dataset described in Section 3.3.4 were divided into
training sets, validation sets, and test sets in the same manner as in Section
6.2.5. Each patient’s eye was labeled by an ophthalmologist into one of the
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6 DR classes: Normal, mild nonproliferative diabetic retinopathy (NPDR),
moderate NPDR, severe NPDR, proliferative DR (PDR), or Pan-Retinal
Photocoagulation (PRP). The UWF-CFP images in the dataset, captured
using the Clarus 500 (Carl Zeiss Meditec Inc., Dublin, CA, USA), varied
in size, ranging from 3900×3900 to 7900×4900 pixels. This size variation
arises from the image stitching process for montage creation, not from
changes in the device’s resolution. Considering the clinicians’ focus on the
seven Early Treatment Diabetic Retinopathy Study (ETDRS) fields [421],
we carried out center cropping on each image to 3584×3584. This process
ensured that all seven fields were included in the image. Subsequently, we
resized these cropped images to 1024×1024, a size that guarantees no loss
of details.
The high-resolution 6x6 mm2 OCTA images, offering 500×224×500 voxels
and centered on the macula, were captured using the Zeiss PLEX Elite
9000. Each OCTA volume includes 2-D en-face localizer, structural, and
flow 3D volumes. Due to the restrictions posed by the graphics processing
unit (32Gb GPU) hardware, our 3D-SE-ResNet50 could only accommo-
date inputs up to 224 × 224 × 224 × 2 input tensors. This limitation guided
our data pre-processing. The OCTA images were preprocessed in the same
method as in Section 6.2.2. During the prediction process, we extracted
multiple volumes from the OCTA image using N=10 times random crop,
which were simultaneously processed with the full UWF-CFP image to
make predictions. The final prediction for an examination was determined
based on the severest prediction among these N predictions (test-time aug-
mentation).
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7.2.5 Implementation details

Our models were implemented using the PyTorch 1 deep learning library.
This experiment was performed on the OVH cluster (one NVIDIA Tesla
V100s GPU was used). For UWF-CFP images, we used the SE-ResNet50
architecture with weights pre-trained on ImageNet, while for OCTA im-
ages, we trained from scratch our implementation of the 3D-SE-ResNet50
backbone with input-level fusion for structure and flow volumes. The key
to our model enhancement process included incorporating SE blocks in
both ResNet models and using Manifold Mixup on multimodal features
for model regularization. In our implementation, we set the reduction ra-
tio, a crucial SE hyperparameter, to 16, following the practice from the
original SE network paper [417]. For Mixup, we carried out a grid search
focusing on the α parameter, which is essential for deriving the adequate
Beta distribution Beta(α, α) for sampling the right λ interpolation pa-
rameter during Manifold Mixup training. This comprehensive exploration
determined 0.2 as the optimal value for α, which yielded the best model
performance. The two models were trained jointly on the UWF-CFP and
OCTA datasets, using a cross-entropy loss function and an AdamW opti-
mizer. During training, we used a learning rate of 0.001 with the OneCycle
scheduler, a decay factor of 0.0001, and a batch size of 4 over 200 epochs.

7.3 Results

To compare the performance of our proposed method with the individual
modalities, we trained standalone models using either UWF-CFP or OCTA
images with the same training settings as described above. This provided

1. https://pytorch.org/
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a baseline performance for each modality, against which the performance
of the multimodal approach was compared. In addition, an ablation study
was conducted to further understand each component’s impact and contri-
bution to our pipeline. We compared the performance of our model without
the Manifold Mixup and the SE blocks.
The performance of the proposed models was evaluated in terms of the
Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)
described in Section 2.2.3. This metric was chosen due to its ability to
provide an aggregate measure of performance across the four DR severity
cutoffs (≥ mild NPDR, ≥ moderate NPDR, ≥ severe NPDR, ≥ PDR).
Tab.7.1 presents the performance of the different models: the ResNet50
model trained on UWF-CFP images, the 3D-ResNet50 model trained on
OCTA images, the proposed multimodal pipeline, the multimodal models
without SE, the pipeline without Manifold Mixup (MM in the table), and
the pipeline without SE and Manifold Mixup.

Data SE MM ≥ mild NPDR ≥ moderate NPDR ≥ severe NPDR ≥ PDR
UWF-CFP # # 0.7983 0.7925 0.7906 0.9159

OCTA # # 0.8316 0.7627 0.7338 0.7576
Multimodal ! ! 0.8566 0.8037 0.7922 0.8820
Multimodal # ! 0.8241 0.7969 0.7682 0.8522
Multimodal ! # 0.8431 0.7782 0.7566 0.8420
Multimodal # # 0.8140 0.7775 0.7525 0.8164

Table 7.1 – Performance of Models in DR Classification

Our approach that combines both UWF-CFP and OCTA images using
a multimodal pipeline notably outperformed models based on individual
modalities. Specifically, when evaluating DR severity cutoffs, the multi-
modal model achieved an AUC score of 0.8566 for ≥ mild NPDR, notably
higher than 0.7983 for UWF-CFP alone and 0.8316 for OCTA alone. This
trend continued with ≥ moderate NPDR and ≥ severe NPDR, where our
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multimodal model attained AUC scores of 0.8037 and 0.7922, respectively,
compared to 0.7925 and 0.7906 for UWF-CFP and 0.7627 and 0.7338 for
OCTA.

7.4 Discussion and conclusions

Experimental results demonstrate a remarkable enhancement in DR
classification performance with the proposed multimodal approach com-
pared to methods relying on a single modality only. The methodology laid
out in this work holds substantial promise for facilitating more accurate,
early detection of DR, potentially improving clinical outcomes for patients.

These outcomes underscore the importance of capitalizing on diverse im-
age modalities to provide a more comprehensive, holistic analysis, thereby
enhancing the robustness and accuracy of DR classification. Our study sug-
gests that each imaging modality captures distinct aspects of DR, and the
concurrent utilization of both modalities in our models appears to improve
the diagnosis, which is aligned with clinical studies [407, 408].
The greater success of UWF-CFP in identifying the cutoff ≥ PDR can be
attributed to its wide-field view of the retina, which allows for the detection
of peripheral lesions and signs of PRP laser impacts. Conversely, OCTA
images proved to be particularly useful for ≥ mild NPDR detection due to
their central focus on the macula and the high-resolution imaging of the
microvasculature.
Regarding the added components in our pipeline, the Manifold Mixup and
the SE blocks were proven to enhance the model’s performance. For exam-
ple, omitting the SE blocks caused a decrease in AUC scores across all DR
severities. This indicates the critical role of SE blocks in bolstering feature
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representations and overall model robustness. Similarly, when the Manifold
Mixup was excluded, there was a noticeable drop in performance, corrob-
orating the effectiveness of such a regularization technique in improving
model generalization.

Our findings demonstrate the efficacy of the proposed multimodal model
in improving DR classification. This model, which integrates UWF-CFP
and OCTA images using a feature-level fusion strategy and employing both
our proposed adaption of the Manifold Mixup technique and SE blocks, de-
livers a compelling performance. The ablation study further attests to the
significance of each component within our pipeline. These findings reiterate
the necessity and potency of multimodal approaches coupled with advanced
regularization techniques, such as Manifold Mixup and SE blocks, for med-
ical image classification tasks.

To the best of our knowledge, our study is the first to propose a pipeline
for the classification of DR using both UWF-CFP and OCTA images. How-
ever, we believe several improvements and extensions could further enhance
the classification performance. The application of cross-modal attention
mechanisms may provide a more effective way of fusing features from dif-
ferent modalities by focusing on the most relevant information from each.
Similarly, implementing Manifold Mixup at different levels of the model,
rather than solely at the concatenation layer, could provide further reg-
ularization and performance improvements. Moreover, introducing novel
components, such as Transformer blocks, might prove beneficial in captur-
ing complex relationships within and across modalities.

Additionally, due to the late arrival of data, we were only able to explore
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the multimodal fusion of UWF-CFP and OCTA during the final stages of
the thesis. Currently, the exploration of the fusion of these two modalities
is in its infancy, and a number of tests will be implemented in the future.
In Chapter 6, results indicate that the fusion of the 6 × 6 mm2 OCTA
and 15 × 15 mm2 OCTA can enhance diagnostic performance, and how to
incorporate 15×15 mm2 OCTA into our current fusion network needs to be
explored. Further, we have tested only the single-level fusion architecture
at this time; hierarchical fusion or the more complex hybrid fusion will be
tested in the future.
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CONCLUSIONS AND FUTURE WORKS

“The future is an unknown, but a somewhat predictable
unknown. To look to the future, we must first look back
upon the past. That is where the seeds of the future
were planted.”

— Albert Einstein
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Conclusions

Diabetic retinopathy (DR), which affects 422 million people worldwide,
including 3.3 million in France, is a leading cause of blindness in the coun-
try. The current diagnostic challenge lies in the outdated DR classification
system based on Color Fundus Photography (CFP), which fails to pre-
dict disease progression effectively. Although modern imaging techniques
like Ultra-Wide-Field CFP (UWF-CFP), Optical Coherence Tomography
(OCT), and Optical Coherence Tomography Angiography (OCTA) offer
richer, more detailed data, they generate complex datasets requiring spe-
cialized analysis. The Évaluation Intelligente de la Rétinopathie diabétique
(EviRed) project emerges within this landscape, aspiring to revolution-
ize DR diagnosis. EviRed’s expert system leverages contemporary imaging
and patient data to replace the current classification, aiming to improve
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predictions of disease evolution and ensure timely treatments. This inno-
vation addresses the growing need for enhanced DR diagnostics amidst the
increasing volume of data from advanced imaging, a challenge for many
ophthalmologists.

As a component of the EviRed project, this thesis delved into the ap-
plication of artificial intelligence for the purpose of seamlessly integrating
extensive datasets. Its overarching goal was to streamline the diagnostic
process, improve prediction accuracy, and enhance the decision-making ca-
pabilities of ophthalmologists in their DR case follow-ups. More precisely,
the focus lay in crafting deep learning network structures that could effec-
tively harness the unique advantages offered by diverse imaging modalities,
ultimately elevating the quality of diagnostic outcomes.

During the thesis, we explored multiple fusion techniques between differ-
ent modalities. We summarized and proposed multiple multimodal fusion
deep learning frameworks and conducted extensive evaluations. Experi-
mental results indicate that our multimodal fusion network can effectively
utilize the complementary information between the different modalities,
thus improving the accuracy of DR diagnosis. Overall, the three main ob-
jectives of the thesis have been met:

— For the joint analysis of multi-modal information in OCTA, we
examined fusion techniques across three types of data: 2D line scan-
ning ophthalmoscope (LSO), 3D structural OCT, and 3D OCT an-
giography. In addressing retinal analysis challenges, we explored three
multimodal information fusion strategies grounded in deep learning:
input, single-level, and hierarchical fusion. While input and single-
level fusion methods are straightforward, they fail to fully capitalize
on the complementary information inherent in these modalities. In
response, we developed a hierarchical fusion approach emphasizing
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feature combination across various network dimensions and the ex-
ploration of modality correlations. Our hierarchical fusion approach
consistently outperformed others across different tasks, promising sig-
nificant advancements in clinical diagnosis.

— For the joint analysis of different specifications of OCTA ac-
quisitions, we investigated a deep learning algorithm using both
high resolution and ultra-widefield (UWF) OCTA for assessing DR
severity automatically. It relied on a hybrid fusion architecture that
utilized complementary structure and flow information from both
acquisitions. In detail, this architecture combined hierarchical fu-
sion to jointly analyze Flow and Structure from the same acquisition
and output fusion to merge predictions from both acquisitions. The
hybrid fusion approach integrated the strengths of both acquisitions:
it delivered excellent performance in both early and late patholog-
ical diagnosis while significantly improving the accuracy of the six-
category multiclass classification. Therefore, this study clearly vali-
dated the relevance of jointly analyzing multiple acquisitions. The
suggested hybrid fusion system demonstrated significant improve-
ments over single acquisitions.

— For the joint analysis of OCTA and UWF-CFP, we proposed a
novel single-level fusion network that leverages these imaging modal-
ities to notably enhance DR classification. Our approach integrates
2D UWF-CFP images and 3D high-resolution OCTA images using
a fusion of ResNet50 and 3D-ResNet50 models with Squeeze-and-
Excitation (SE) blocks to amplify relevant features. Additionally, to
increase the model’s generalization capabilities, a multimodal exten-
sion of Manifold Mixup, applied to concatenated multimodal fea-
tures, is implemented. Experimental results demonstrate a remark-
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able enhancement in DR classification performance with the pro-
posed multimodal approach compared to methods relying on a single
modality only. The methodology laid out in this work holds substan-
tial promise for facilitating more accurate, early detection of DR,
potentially improving clinical outcomes for patients.

We have demonstrated that combining multimodal data, from the same
acquisition or from different acquisitions, improves performance in the con-
text of DR severity assessment, provided that a suitable fusion framework
is used. Based on our extensive literature review, we believe this finding
would likely generalize to several other clinical tasks. Therefore, it is ad-
visable to explore multiple fusion frameworks when addressing a clinical
decision support problem with multimodal data. Our work meets the ba-
sic requirements of the EviRed project for multimodal fusion tasks and
provides a reference and direction for the project’s future development. At
the same time, the algorithms we developed can be easily integrated into
the EviRed system, thus providing ophthalmologists with timely and re-
liable assistance in their diagnostic procedures. Further, some exploration
of unlabeled data was also undertaken during the PhD. Even though their
performance on diagnosis was not significantly improved, they still provide
experience and references for future work in the EviRed project. Amidst
the growing enthusiasm for computer-aided diagnosis, our work has made
a meaningful contribution to this evolving landscape.

Future works

The EviRed project is currently in an intermediate stage, with much
exploratory work still to be completed. Specifically, the multimodal fusion
work requires further testing as more patients are recruited, and more data
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is collected. Further, the rapid development of deep learning algorithms
and the upgrading of hardware devices also provide additional directions
for future multimodal fusion methods. Some of the perspectives we wish
to address in the future:

1. Replication of experiments

One limitation of our study was that the current dataset is insuffi-
ciently large, resulting in suboptimal performance on the DR sever-
ity multi-classification task. Furthermore, too small a dataset may
adversely affect the robustness of a model. The third phase of the
EviRed prospective dataset is currently being collected, containing
data on 1032 patients in total. The proposed fusion methods need to
be retrained and tested using this dataset. These experiments should
be replicated in larger datasets to demonstrate clinically useful de-
tection performance.

2. Further exploration of the multimodal fusion of UWF-CFP and OCTA
Images

Our research on the fusion of UWF-CFP and OCTA Images began
at the end of the paper. In comparison to other modalities, these two
contain more complementary information, but the structure of the
fusion network between 2D and 3D modalities is also more complex.
Although preliminary experimental results demonstrate the effective-
ness of our proposed fusion method, we have only tested the single-
level fusion framework between the two modalities. Fusion methods
with more complexity, such as hierarchical and hybrid fusion, require
further testing. Further, our experiments until now have only used
high-resolution OCTA images and UWF-CFP for fusion. Considering
that ultra-widefield OCTA images contain additional information, we
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Figure 7.2 – Registration of UWF-CFP and LSO (from OCTA image) in the en-face image
direction.

need to investigate how to incorporate ultra-widefield OCTA images
into our fusion framework. We will first validate the approach of hi-
erarchical fusion by using different branches to extract features from
each of the three modalities and then adding an additional fusion
branch to fuse the features at different levels.
The results of our experiments have also demonstrated that the reg-
istration between different modalities may affect the performance of
hierarchical fusion. In order to improve information fusion between
different modalities, the EviRed project is working on developing a
registration algorithm for UWF-CFP and OCTA Images. The regis-
tration of UWF-CFP and OCTA images in the en-face image direc-
tion can be roughly realized using LSO images from OCTA Images,
as shown in Fig. 7.2. Meanwhile, we are developing a mechanism for
feature registration within the hierarchical fusion architecture on the
fusion branch.
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Figure 7.3 – Two architectures of Transformer-based fusion.

3. Investigation of Transformer-based fusion networks

Transformer is one of the most popular network architectures, and
multimodal fusion based on Transformer has developed rapidly in
the past two years. In particular, for visual-language tasks, Trans-
former can handle the fusion of images, languages, and text very effec-
tively. Based on the research conducted in different fields, we classify
Transformer-based multimodal fusion networks into self-attention Trans-
formers [363, 364, 422–427] and cross-attention Transformers [428–
435], as shown in Fig. 7.3. Following the extraction of features using
encoders, self-attention Transformers concatenate features from dif-
ferent modalities and compute the attention relationship between
the fused features using Transformer blocks. Alternatively, cross-
attentional Transformers compute the attentional relationships among
different modalities in order to achieve information fusion. Nowadays,
these two architectures are the most popular multimodal fusion net-
works.
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Compared to CNNs, Transformers have the advantage of efficiently
identifying long-range relationships between sequences. In medical
images, most visual representations are ordered due to the similarity
of human organs. Medical images contain more information regarding
sequence relationships than natural images [264]. This indicates that
Transformer-based multimodal medical image fusion is a promising
approach, and the above two network architectures are worth explor-
ing.

In Section 6.4, we did not obtain satisfactory results using ViT. It
should be noted, however, that some transformer-based models are in-
creasingly used to perform multimodal tasks in the medical field [264,
402, 403]. It has been observed that these models often combine a
CNN structure with a transformer structure, resulting in excellent
classification performance with limited medical datasets; this is one
of the directions that we plan to pursue in the future.

4. Problem of incomplete or heterogeneous modality

The problem of modality incompleteness is one of the most pressing
challenges in multimodality medical research. In the EviRed prospec-
tive dataset, there are dozens of patients with modal incompleteness
problems. The most common approach to solving the modality in-
completeness problem is to discard the modality incomplete subjects
[186, 201, 225, 243], just like we did, but this approach reduces the
number of trainable subjects for the deep learning model, resulting
in reduced classification performance.

Generative Adversarial Networks (GAN) [436] is a type of generative
model used to produce data of a modality from another modality
[437]. With the development of GAN, more and more fields are us-
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ing this technology to generate images. The modal incompleteness
problem has recently been solved through the use of GAN in many
studies [141, 247, 259, 438–440]. The GAN is used to generate the
missing data, and then the generated data is used for multimodal
classification. It significantly increases the number of subjects in the
dataset, improves the model’s classification performance, and is an
effective solution when dealing with multimodal incompleteness.
Volume-to-volume GAN has been implemented in the Challenge APIS
(Section 7.4 Challenges), which can be used directly on OCTA im-
ages to generate incomplete OCTA acquisitions. Although the large
volume of OCTA images makes model training difficult, more possi-
bilities can be explored by upgrading GPU hardware.
In addition, we have OCTA and UWF-CFP from different devices
with different specifications. The use of GAN to generate incomplete
or heterogeneous modalities is also worth exploring.

5. Time series analysis of multimodal examinations
As part of the EviRed project, another PhD student is examining
time-series analysis with unimodal data. Through the use of lon-
gitudinal fundus images, we have achieved excellent results in the
diagnosis of DR [441, 442]. Our next objective is to conduct a joint
analysis of multimodal longitudinal data.

As a final note, we believe the work presented in this thesis will result in
a more complete and reliable automated diagnosis for the EviRed project.
This will facilitate a much wider adoption of artificial intelligence, thereby
allowing the shortage of ophthalmologists and the continuous increase in
the number of people at risk of developing DR to be addressed.
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the prediction of disease progression using a single image. Accepted
by International Workshop on Machine Learning in Medical Imaging
2023.

7. Zeghlache, R., Conze, P.-H., El Habib Daho, M., Li, Y., Le Boité
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H., Massin, P., Tadayoni, R., Cochener, B., Brahim, I., Quellec, G.
& Lamard, M., Longitudinal self-supervised learning using neural
ordinary differential equation. Accepted by International Workshop
on Predictive Intelligence in Medicine 2023.

Conference abstract

1. Li, Y., El Habib Daho, M., Conze, P.-H., Zeghlache, R., Ren, H.,
Lepicard, C., Deman, P., Le Guilcher. A., Cochener, B., Tadayoni,
R., Lamard, M. & Quellec, G., 3-D analysis of multiple OCTA ac-
quisitions for the automatic diagnosis of diabetic retinopathy. ARVO
2023.

2. Li, Y., Al Hajj, H., Conze, P.-H., Bonnin, S., Ren, H., Manivannan,
N., Magazzeni, S., Tadayoni, R., Lamard, M. & Quellec, G., Multi-
modal information fusion for the diagnosis of diabetic retinopathy.
ARVO 2022.

3. Li, Y., Al Hajj, H., Conze, P.-H., El Habib Daho, M., Bonnin, S.,
Ren, H., Manivannan, N., Magazzeni, S., Tadayoni, R., Cochener,
B., Lamard, M. & Quellec, G., Multimodal information fusion for
the diagnosis of diabetic retinopathy. RITS 2022.

4. Quellec, G., Li, Y., Al Hajj, H., Bonnin, S., Ren, H., Manivannan, N.,
Magazzeni, S., Tadayoni, R., Conze, P.-H. & Lamard, M., 3-D style
transfer between structure and flow channels in OCT angiography.
ARVO 2022.

5. El Habib Daho, M., Zeghlache, R., Li, Y., Le Boité, H., Bonnin, S.,
Magazzeni, S., Borderie, L., Lay, B., Tadayoni, R., Cochener, B.,
Conze, P.-H., Lamard, M. & Quellec, G., Performance of two ultra-
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widefield retinal imaging systems for the automatic diagnosis of dia-
betic retinopathy. ARVO 2023.

6. Zeghlache, R., Conze, P.-H., El Habib Daho, M., Li, Y., Brahim,
I., Le Boité, H., Massin, P., Tadayoni, R., Cochener, B., Quellec,
G. & Lamard, M., Time-aware deep models for predicting diabetic
retinopathy progression. ARVO 2023.

Challenges

As an extension of my thesis work, I participated in several challenges
related to ophthalmic pathology or multimodal fusion during my PhD. I
have been able to improve my work on the project by using the methods
used in the challenges.

1. MICCAI DRAC2022: Diabetic Retinopathy Analysis Challenge 2022 1

With rising popularity, OCT angiography (OCTA) has the capability
of visualizing the retinal and choroidal vasculature at a microvascular
level in great detail [443]. Specially, swept-source (SS)-OCTA allows
additionally the individual assessment of the choroidal vasculature.
Further, ultra-wide optical coherence tomography angiography imag-
ing (UW-OCTA) modality showed higher burden of pathology in the
retinal periphery that was not captured by typical OCTA [444]. How-
ever, there are currently no works capable of automatic DR analysis
using UW-OCTA. Thus, it is crucial to build a flexible and robust
model to realize automatic image quality assessment, lesion segmen-
tation and PDR detection. In order to promote the application of
machine learning and deep learning algorithms in (1) automatic le-

1. https://drac22.grand-challenge.org/
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sion segmentation, (2) image quality assessment and (3) PDR detec-
tion using UW-OCTA images, and promote the application of corre-
sponding technologies in clinical diagnosis of DR, DRAC2022 provide
a standardized ultra-wide (swept-source) optical coherence tomogra-
phy angiography (UW-OCTA) data set for testing the effectiveness
of various algorithms.

In the challenge, we achieved fifth place in the segmentation task
using nnU-Net and Vnet. Inspire by the semi-supervised learning,
we developed a pseudo-labeling method based on FixMatch method
(Section 5.2.2). In the classification task, the pseudo labeling learning
method we proposed significantly improved the performance of the
model. Our team achieved fourth place out of 45 teams in task two
(image quality detection), and third place out of 45 teams in task
three (diabetic retinopathy classification).

2. MICCAI MMAC2023: Myopic Maculopathy Analysis Challenge 2023 2

Myopia is a common eye disease that affects large populations in the
world [445]. More seriously, myopia may further develop into high
myopia in which the visual impairment mainly results from the de-
velopment of different types of myopic maculopathy [443, 446]. Ac-
cording to the severity, myopic maculopathy can be classified into
five categories: no macular lesions, tessellated fundus, diffuse chori-
oretinal atrophy, patchy chorioretinal atrophy and macular atrophy
[447]. In addition, three additional "Plus" lesions are also defined and
added to these categories: lacquer cracks (Lc), choroidal neovascu-
larization (CNV), and Fuchs spot (Fs). Aiming to advance the state-
of-the-art in automatic myopic maculopathy analysis, MMAC2023

2. https://zenodo.org/record/7866585
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organize the myopic maculopathy analysis challenge. The challenge
encourages researchers to develop algorithms for different tasks in
myopic maculopathy analysis using fundus photography, including
(1) classification of myopic maculopathy, (2) segmentation of myopic
maculopathy plus lesions and (3) spherical equivalent prediction.

Through the use of the pretext task (Section 5.2.1), we were able
to improve the classification performance of our model through self-
supervised learning. Among the 17 teams that participated in the
challenge, our pretrained model based on Pretext task helped us to
achieve the eighth place in task one (classification of myopic mac-
ulopathy). In addition, we proposed a MAnet-based Test Time Aug-
mentation (TTA) method (Section 6.2.2), which achieved the second
place in task two (segmentation of myopic maculopathy plus lesions).
Finally, in task three (spherical equivalent prediction), we were able
to achieve first place with our multi-model ensemble method.

3. MICCAI2023 STAGE Challenge: Structural-Functional Transition in
Glaucoma Assessment 3

STAGE challenge uses OCT images centered on the fovea to predict
the results of the Visual Field (VF) test. OCT is the most widely used
imaging method in ophthalmic examination. VF test is a reference
standard examination to assess visual function. This is a subjective
test that requires the subject to remain calm and focused and coop-
erate with the doctor. Monocular perimetry takes about 15 minutes.
In contrast, a monocular OCT scan takes only about three seconds.
Therefore, STAGE challenge focuses on how to use objective and
easily accessible OCT images of structures to predict functional VF

3. https://aistudio.baidu.com/competition/detail/968/0/introduction
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information. Based on this research, three VF information prediction
tasks are proposed: (1) Prediction of Mean Deviation (MD), (2) Sen-
sitivity map prediction and (3) Pattern deviation probability map
prediction.
Our proposed single-level fusion network (Section 2.3.4) utilizes the
complementary information of the 3D OCT data and the 1D glau-
coma classification annotations to perform well on different tasks.
Our team achieved first place in the preliminary round among 22
teams.

4. ISBI2023 APIS: A Paired CT-MRI Dataset for Ischemic Stroke Seg-
mentation Challenge 4

Stroke represents the second leading cause of mortality worldwide.
The key component for immediate diagnosis is the localization (over
CT scans) and delineation of lesions (over MRI studies). The lesions
are nonetheless poorly delineated, only visible at advanced stages,
and analysis uses manual delineation. This challenge introduces a
paired dataset of CT and ADC studies. The researchers are invited to
propose computational strategies that approach paired data, during
training, and deal with lesion segmentation over CT onset sequences.
To resolve the incomplete multimodal problem, we proposed a Transformer-
based Volume-to-Volume GAN network to generate the correspond-
ing MRI volume based on 3D CT images. We then performed ischemic
stroke segmentation using input fusion method (Section 2.3.4) and
achieved fifth place among 41 teams.

5. MICCAI2022 GOALS Challenge: Glaucoma Oct Analysis and Layer
Segmentation 5

4. https://bivl2ab.uis.edu.co/challenges/apis
5. https://aistudio.baidu.com/competition/detail/230/0/introduction
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Optical Coherence Tomography (OCT) is a powerful tool for the di-
agnosis of ocular diseases, since the image acquisition consists in a
contactless, non-invasive method which gives a set of images of the
main retinal structures in real time. Segmentation and quantification
of layer thickness is useful in the diagnosis of many retinal and optic
nerve disorders, for example, glaucoma, macular degeneration or di-
abetic retinopathy. In the diagnosis of glaucoma, it is easier to detect
early cases using OCT than using fundus color images. GOALS design
two tasks around OCT images: (1) A segmentation task to determine
the retinal nerve fiber layer, ganglion cellinner plexiform layer, and
choroidal layer, which are helpful for diagnosis and differentiation of
glaucoma and (2) An automatic diagnosis task of glaucoma.

As a result of using a multi-model ensemble and an adaptive post-
processing method, our proposed approach performs well on different
tasks, resulting in a final ranking of 10th place out of 100 partici-
pating teams.

6. MICCAI HECKTOR2022: HEad and neCK TumOR segmentation
and outcome prediction 2022 6

Head and Neck (H&N) cancers are among the most common can-
cers worldwide [448]. Recently, several radiomics studies based on
Positron Emission Tomography (PET) and Computed Tomography
(CT) imaging were proposed to better identify patients with a worse
prognosis in a non-invasive fashion and by exploiting already avail-
able images such as these acquired for diagnosis and treatment plan-
ning [449–451]. Two tasks are proposed by HECKTOR: (1) Primary
tumor (GTVp) and lymph nodes (GTVn) segmentation in PET/CT

6. https://hecktor.grand-challenge.org/
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images and (2) Recurrence-Free Survival (RFS) prediction relying on
PET/CT images and/or available clinical information.
As a multimodal segmentation task, we used nn-UNet-based [452]
input fusion method to exploit the complementary information of
PET volume and CT volume for tumor segmentation with excellent
results.
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APPENDIX

Table 7.2: List of publications for different fusion networks.

Research
work

Year Multimodal
combina-
tion

Fusion
Methods

Information
Fusion Tech-
nique

DL
Back-
bone

Final
Classi-
fier

Body
Organ

Dataset

[227] 2015 MRI,
PET, CSF

Input
Fusion

Concatenation
(Inputs)

RBM SVM Brain ADNI

[186] 2015 MRI, PET Input
Fusion

Concatenation
(Inputs)

Manual Softmax Brain ADNI

[198] 2018 sMRI,
fMRI

Input
Fusion

Concatenation
(Inputs)

DBN FC
Layer

Brain ABIDE

[246] 2020 MRI
(ADC,
DWI, T2)

Input
Fusion

Concatenation
(Inputs)

CNN FC
Layer

Prostate TCIA

[143] 2020 US (US
B-mode,
US color
Doppler)

Input
Fusion

Concatenation
(Inputs)

CNN FC
Layer

Breast Private
Data

[248] 2020 MRI
(ADC,
DWI, T2)

Input
Fusion

Concatenation
(Inputs)

CNN FC
Layer

Prostate TCIA

[453] 2020 MRI (T2,
ADC,
High-b)

Input
Fusion

Merge (In-
puts)

Resnet FC
Layer

Prostate TCIA

[247] 2021 MRI, PET Input
Fusion

Concatenation
(Inputs)

CNN FC
Layer

Brain ADNI

[250] 2021 MRI, PET Input
Fusion

Merge (In-
puts)

CNN FC
Layer

Brain ADNI

[184] 2021 MRI (T1,
T1C, T2M
FLAIR)

Input
Fusion

Merge (In-
puts)

CNN FC
Layer

Brain TCIA,
BraTS

[140] 2022 MRI, PET Input
Fusion

Merge (In-
puts)

CNN FC
Layer

Brain ADNI

[141] 2022 MRI, PET Input
Fusion

Concatenation
(Inputs)

Resnet FC
Layer

Brain ADNI

[249] 2023 MRI (PEI,
DWI)

Input
Fusion

Concatenation
(Inputs)

CNN FC
Layer

Breast Private
Data

[234] 2013 MRI,
PET, CSF

Single-level
Fusion

Concatenation
(Classic)

SAE SVM Brain ADNI

[243] 2014 MRI, PET Single-level
Fusion

Concatenation
(Classic)

DBM SVM Brain ADNI

[235] 2015 MRI, PET Single-level
Fusion

Concatenation
(Classic)

SAE SVM Brain ADNI
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[253] 2016 Photograph
of the
cervix,
Pap tests,
HPV tests

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Cervix TCIA

[148] 2017 MRI
(ADC,
DWI,
DCE)

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Prostate TCIA

[454] 2017 MRI, PET Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADNI

[224] 2017 sMRI,
fMRI

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADHD-
200

[147] 2017 MRI
(ADC,
T2)

Single-level
Fusion

Merge (Clas-
sic)

CNN FC
Layer

Prostate Private
Data

[225] 2017 MRI, PET Single-level
Fusion

Concatenation
(Network)

MM-
SDPN

FC
Layer

Brain ADNI

[256] 2017 MRI, PET Single-level
Fusion

Concatenation
(Network)

DNN Score
Merge

Brain ADNI

[185] 2017 MRI (TI,
T2, T1C,
FLAIR)

Single-level
Fusion

Merge (Clas-
sic)

CNN FC
Layer

Brain BraTS

[257] 2017 MRI, PET Single-level
Fusion

Concatenation
(Network)

CNN FC
Layer

Brain ADNI

[146] 2017 MRI
(ADC,
T2WI)

Single-level
Fusion

Merge (Clas-
sic)

CNN SVM Prostate TCIA,
Private
Data

[438] 2018 MRI, PET Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADNI

[455] 2018 MRI
(TI, T2,
FLAIR)

Single-level
Fusion

Merge (Clas-
sic)

CNN FC
Layer

Brain BraTS,
TCIA

[142] 2018 MRI, PET Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADNI

[223] 2018 MRI
(ADC,
T2)

Single-level
Fusion

Concatenation
(Classic)

CNN Softmax Prostate TCIA

[226] 2018 MRI,
PET, CSF

Single-level
Fusion

Concatenation
(Network)

sELM-
AE

KELM Brain ADNI

[190] 2018 Dsc, Clini-
cal Image,
Metadata

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Skin SPC

[456] 2018 MRI, PET Single-level
Fusion

Concatenation
(Network)

DNN Score
Merge

Brain ADNI

[260] 2018 MRI,
PET, SNP

Single-level
Fusion

Concatenation
(Network)

DNN Score
Merge

Brain ADNI

[457] 2019 MRI, PET Single-level
Fusion

Concatenation
(Classic)

CNN,
LSTM

Softmax Brain ADNI
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[144] 2019 MRI
(ADC, T2,
TWIST)

Single-level
Fusion

Concatenation
(Classic)

CNN Random
Forest

Breast Private
Data

[203] 2019 MRI, PET Single-level
Fusion

Concatenation
(Classic)

VGG FC
Layer

Brain ADNI

[458] 2019 MRI,
CSF, De-
mographic
Infor-
mation,
Cognitive
Perfor-
mance

Single-level
Fusion

Concatenation
(Classic)

GRU LR Brain ADNI

[255] 2019 MRI, PET Single-level
Fusion

Merge (Clas-
sic)

CNN FC
Layer

Brain ADNI

[275] 2019 MRI, PET Single-level
Fusion

Concatenation
(Classic)

CNN Softmax Brain ADNI

[188] 2020 PET, CT Single-level
Fusion

Merge (Clas-
sic)

CNN FC
Layer

Lung Private
Data

[439] 2020 MRI, PET Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADNI

[228] 2020 MRI,
PET,
Clinical
Datas

Single-level
Fusion

Concatenation
(Classic)

CNN,
LSTM

FC
Layer

Brain ADNI

[214] 2021 MRI,
EHR,
SNP

Single-level
Fusion

Concatenation
(Classic)

CNN,
SAE

FC
Layer

Brain ADNI

[145] 2021 US (US
B-mode,
US color
Doppler,
US elas-
tography
images)

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Breast Private
Data

[459] 2021 MRI (T1,
FA, MD)

Single-level
Fusion

Concatenation
(Classic)

ResNet FC
Layer

Brain OASIS

[460] 2021 MRI,
PET, SNP

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADNI

[461] 2021 CT, EMR Single-level
Fusion

Concatenation
(Classic)

CNN,
HoFN

FC
Layer

Lung Private
Data

[440] 2021 MRI, PET Single-level
Fusion

Concatenation
(Classic)

mDSNet FC
Layer

Brain ADNI

[236] 2021 EMR,
Patho-
logical
images

Single-level
Fusion

Concatenation
(Classic)

VGG,
AE

FC
Layer

Breast Private
Data

[462] 2021 MRI, PET Single-level
Fusion

Concatenation
(Network)

CNN Score
Merge

Brain ADNI
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[254] 2021 MRI (T1,
T2), Clin-
ical Infor-
mation

Single-level
Fusion

Concatenation
(Classic)

ResNet FC
Layer

Breast Private
Data

[251] 2021 sMRI,
fMRI,
SNP

Single-level
Fusion

Concatenation
(Classic)

DNN FC
Layer

Brain COBRE

[276] 2022 MRI, PET Single-level
Fusion

Concatenation
(Network)

CNN FC
Layer

Brain ADNI

[463] 2022 Echocardio-
graphy,
CMR

Single-level
Fusion

Merge (Net-
work)

CNN SVM Heart Private
Data

[419] 2022 DXA,
CFP

Single-level
Fusion

Concatenation
(Network)

CNN FC
Layer

Heart Private
Data

[258] 2022 sMRI,
fMRI,
Genomic
Sequence

Single-level
Fusion

Merge (Net-
work)

AE,
MLP,
LSTM

Softmax Brain COBRE

[17] 2022 CFP,
OCT

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Eye GAMMA

[259] 2022 MRI, PET Single-level
Fusion

Concatenation
(Network)

ResNet FC
Layer

Brain ADNI

[252] 2022 VF, OCT Single-level
Fusion

Merge (Clas-
sic)

CNN FC
Layer

Eye Private
Data

[150] 2022 VF, CFP Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Eye Private
Data

[237] 2022 PET-
AV45,
PET-FDG

Single-level
Fusion

Concatenation
(Classic)

ViT FC
Layer

Brain ADNI

[464] 2022 sMRI,
fMRI,
SNP

Single-level
Fusion

Concatenation
(Classic)

CNN FC
Layer

Brain ADNI

[261] 2018 White
Light
RGB, NBI

Hierarchical
Fusion

Merge (Net-
work), Con-
catenation
(Classic)

CNN FC
Layer

Digestive
tract

ISIT-
UMR

[262] 2020 MRI, PET Hierarchical
Fusion

Merge
(Network),
Merge (Clas-
sic)

CNN Softmax Brain ADNI

[229] 2021 MRI, PET Hierarchical
Fusion

Merge (Net-
work),Merge
(Classic)

RBM Softmax Brain ADNI

[242] 2021 MRI
(T1C,
FLAIR)

Hierarchical
Fusion

Merge
(Network),
Merge (Clas-
sic)

CNN FC
Layer

Brain TCIA,
BraTS
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[263] 2021 MRI, PET Hierarchical
Fusion

Concatenation
(Network),
Concate-
nation
(Classic)

CNN FC
Layer

Brain ADNI

[16] 2022 CFP,
OCT

Hierarchical
Fusion

Merge (Net-
work), Con-
catenation
(Classic)

CNN FC
Layer

Eye GAMMA,
Private
Data

[199] 2022 sMRI,
fMRI

Hierarchical
Fusion

Merge (Net-
work), Con-
catenation
(Classic)

MGF FC
Layer

Brain ABIDE,
ADHD-
200,
COBRE

[264] 2021 MRI
(T1,T2)

Attention-
based
Fusion

Attention
Fusion

TransMed FC
Layer

Parotid,
Knee

MRNet

[465] 2022 Visual
Data,
Clinical
Data

Attention-
based
Fusion

Attention
Fusion

CLIMAT FFN Brain,
Knee

ADNI

[267] 2022 Neuro-
imaging
Data,
Clinical
Data

Attention-
based
Fusion

Attention
Fusion

3MT FC
Layer

Brain ADNI

[266] 2022 Image,
Text

Attention-
based
Fusion

Attention
Fusion

MMIF FC
Layer

Uterus CTU-
UHB

[268] 2022 Multi-
parametric
MRI

Attention-
based
Fusion

Attention
Fusion

AGDAF FC
Layer

Liver Private
Data

[269] 2022 MRI
(T1,T2)

Attention-
based
Fusion

Attention
Fusion

MMNet FC
Layer

Parotid,
Prostate

MRNet,
TCIA

[265] 2022 Genomic
Data,
Pathology
Data

Attention-
based
Fusion

Attention
Fusion

AHM-
Fusion

FC
Layer

Brain,
Lung

TCGA

[272] 2020 sMRI,
fMRI

Output Fu-
sion

Merge (Out-
puts)

CNN SVM,
KNN,
LDA

Brain ADHD-
200

[466] 2020 MRI
(T1C,
T2), Clini-
cal Data

Output Fu-
sion

Merge (Out-
puts)

ResNet Bagging Kidney Private
Data

[270] 2020 US (ROI,
Tumor im-
age, TSI,
Fused im-
age)

Output Fu-
sion

Merge (Out-
puts)

CNN Score
Merge

Breast BUSI
[467]
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[187] 2020 MRI, PET Output Fu-
sion

Merge (Out-
puts)

CNN AdaBoost Brain ADNI

[468] 2020 CT, EMR Output Fu-
sion

Merge (Out-
puts)

DNN,
CNN

Score
Merge

Lung Private
Data

[469] 2021 MRI, SNP Output Fu-
sion

Merge (Out-
puts)

CNN,
MLP

Ensemble
Gate

Brain ADNI

[149] 2022 CFP, Clin-
ical Data

Output Fu-
sion

Merge (Out-
puts)

ResNet XGBoost Eye Private
Data

[213] 2022 MRI, EHR Output Fu-
sion

Merge (Out-
puts)

CNN,
AE

Score
Merge

Brain ADNI

[271] 2022 MRI (TI,
T2, T1C,
FLAIR)

Output Fu-
sion

Merge (Out-
puts)

CNN Score
Merge

Brain CPM-
RadPath

[273] 2022 Laryngeal
image,
Voice

Output Fu-
sion

Merge (Out-
puts)

CNN Decision
Tree

Larynx Private
Data

[245] 2020 MRI
(DCE,
T2)

Input
Fusion,
Single-level
Fusion,
Output
Fusion

Merge (In-
put), Merge
(Classic),
Merge (Out-
puts)

VGG Score
Merge

Breast Private
Data

[244] 2022 WSI, MRI
(T1, T1-
Gd, T2,
FLAIR)

Input
Fusion,
Output
Fusion

Concatenation
(Input),
Merge (Out-
puts)

CNN Score
Merge

Brain CPM-
RadPath

[189] 2022 Dsc, Clini-
cal Image,
Metadata

Single-level
Fusion,
Output
Fusion

Concatenation
(Classic),
Merge (Out-
puts)

CNN Score
Merge

Skin SPC
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Titre : Fusion d’informations multimodales pour le diagnostic de la rétinopathie diabétique

Mot clés : classification de la RD, fusion d’informations multimodales, apprentissage profond

Résumé : Le diabète touche 422 millions de
personnes dans le monde et 3,3 millions en
France, provoquant des complications comme
la rétinopathie diabétique (RD) et la cécité.
La classification actuelle de la RD, basée sur
la rétinophotographie couleur (CFP), peine à
prédire l’évolution de la maladie. Les tech-
niques d’imagerie modernes comme la ré-
tinophotographie couleur ultra-grand champ
(UWF-CFP), la tomographie en cohérence op-
tique et angiographique (OCTA) fournissent
des données complètes mais complexes, né-
cessitant de l’expertise pour l’analyse. Le pro-
jet EviRed vise le développement d’un sys-
tème expert utilisant des images modernes
et des données patients pour prédire la pro-
gression de la RD et assurer des traite-

ments opportuns. Cette thèse, qui s’inscrit
dans EviRed, explore l’utilisation de l’intelli-
gence artificielle (IA) pour combiner ces diffé-
rentes données, afin d’améliorer le diagnostic
et la prédiction. Différents scénarios sont étu-
diés : l’analyse conjointe d’informations multi-
modales issues de l’OCTA, l’analyse de plu-
sieurs spécifications d’acquisition OCTA ou
encore l’analyse de l’OCTA avec l’UWF-CFP.
De nouvelles architectures neuronales sont
proposées pour cela. La validation clinique
confirme l’efficacité de la fusion, qui améliore
nettement la précision diagnostique par rap-
port aux images unimodales. L’algorithme pro-
posé va renforcer le projet EviRed, contribuant
à la révolution imminente du dépistage, du
diagnostic et de la gestion de la RD.
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Keywords: diabetic retinopathy classification, multimodal information fusion, deep learning

Abstract: Diabetes, affecting 422 million glob-
ally and 3.3 million in France, leads to com-
plications like diabetic retinopathy (DR), caus-
ing blindness. The existing DR classification,
based on outdated Color Fundus Photography
(CFP), cannot predict disease progression ac-
curately. Modern imaging techniques such as
Ultra-Wide-Field CFP (UWF-CFP) and Optical
Coherence Tomography Angiography (OCTA)
generate comprehensive but complex fundus
data needing expert analysis. The EviRed
project aims to develop an expert system us-
ing updated imaging and patient data to pre-
dict DR progression and ensure timely treat-
ments. As part of EviRed, this thesis inves-

tigates artificial intelligence (AI) to integrate
the data, enhancing diagnosis and prediction.
Deep learning network architectures combin-
ing imaging modalities are designed for better
diagnostic performance. Scenarios involving
joint analysis of multimodal OCTA information,
different OCTA acquisition specifications, and
OCTA with UWF-CFP analysis are examined,
proposing new architectures for DR diagnosis.
Clinical validation confirms the fusion’s effec-
tiveness, significantly improving diagnostic ac-
curacy compared to unimodal images. The al-
gorithm will strengthen EviRed, contributing to
the imminent revolution in DR screening, diag-
nosis, and management.
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