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Spécialité de doctorat : Mathématique
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Abstract

In this thesis, our investigation focuses on spin chains exhibiting fundamental symmetries, these

spin chains are recognized as the fundamental integrable systems. We delve into analyzing par-

ticular integrable quantum spin chains characterized by these symmetries. These spin chains

are regarded as the introductory phase in the exploration of certain two-dimensional field the-

ories. Notably, several functional relationships inherent within these spin chains have been

extrapolated to field theories through the application of a finite set of equations, with the aim

of discerning their spectrum.

This thesis commences with an exposition on the extensively researched rational spin chain

endowed with GL(n) symmetry, employing the Coderivative operator to construct a polynomial

Q-operator facilitating the diagonalization of the Hamiltonian. We demonstrate its equivalence

to an alternative construction rooted in representations that are explicitly formulated in terms

of harmonic oscillators.

Subsequently, our focus shifts to the comparatively less explored spin chain characterized

by SO(2r) symmetry. Within representations where Q-operators are accessible, we proceed to

construct these operators. Subsequently, we employ various methodologies to construct the

operators above for general representations. These efforts indicate that the Coderivative alone

may not be adequate for describing general representations within auxiliary space. However, we

remain optimistic that these endeavors will contribute to identifying additional tools necessary

for their characterization.
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Résumé

Dans cette thèse, notre investigation se concentre sur les châınes de spins présentant des

symétries fondamentales, ces châınes de spins étant reconnues comme des systèmes intégrables

fondamentaux. Nous plongeons dans l’analyse de châınes de spins quantiques intégrables par-

ticulières caractérisées par ces symétries. Ces châınes de spins sont considérées comme la phase

introductive dans l’exploration de certaines théories de champs bidimensionnelles. Notam-

ment, plusieurs relations fonctionnelles inhérentes à ces châınes de spins ont été extrapolées

aux théories de champs grâce à l’application d’un ensemble fini d’équations, afin de discerner

leur spectre.

Cette thèse débute par une exposition sur des châınes de spins largement étudiées: les

châınes de spins rationnelles dotées de la symétrie GL(n). Pour ces châınes, l’opérateur

codérivée permet construire un opérateur polynomial Q facilitant la diagonalisation de l’ha-

miltonien. Nous démontrons son équivalence avec une construction alternative basée sur des

représentations explicitement formulées en termes d’oscillateurs harmoniques.

Ensuite, notre attention se tourne vers des châınes de spins caractérisées par la symétrie

SO(2r), qui sont comparativement moins explorée . Dans les représentations où les opérateurs

Q sont accessibles, nous procédons à la construction de ces opérateurs. Ensuite, nous employons

différentes méthodologies pour construire les opérateurs ci-dessus pour des représentations

générales. Ces efforts indiquent que le codérivé seul pourrait ne pas être adéquat pour décrire

les représentations générales dans l’espace auxiliaire. Cependant, nous restons optimistes quant

au fait que ces efforts contribueront à identifier des outils supplémentaires nécessaires à leur

caractérisation.
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Chapter I

Introduction

In 1925, one of the earliest resolution of a classical one-dimensional many-body interacting

systems was made by E. Ising [Isi24]; this will be later known as the Ising model. Soon after

that, W. Heisenberg was studying the quantum origins of magnetism in material [Hei28]. One

can argue that these attempts are the origin of what we know in the field of theoretical physics

as Spin chains.

The Heisenberg spin chain is a system (lattice) of spin-1{2 particles with a nearest neighbors

interactions. A general form of this system (with no external sources) is known in the literature

as the XY Z-spin chain where one can write the totally anisotropic quantum Hamiltonian as:

HXY Z “ ´

N
ÿ

i“1

´

γ1σ
p1q

i σ
p1q

i`1 ` γ2σ
p2q

i σ
p2q

i`1 ` γ3σ
p3q

i σ
p3q

i`1

¯

In the last expression, σ
pkq

i are the local spin operators, which act as Pauli matrices in the ith

local subspace of the total Hilbert space, and k “ 1, 2, 3. The physical interpretation of the

coefficients γk is known as Slater’s exchange integral. The last equation describes the simple

case of one-dimensional spin chain of length N with periodicity condition σ
pkq

N`1 “ σ
pkq

1 . Know

models can be extracted from the previous relation; by setting the longitudinal anisotropy

coupling constants γ1 “ γ2 “ γ and γ3 “ ∆γ, one obtains the famous XXZ-model, whereas

by setting the isotropic constants γ1 “ γ2 “ γ3 “ γ, we obtain the famous XXX-model, which

will be the studied system in this thesis.

In 1931, Hans Bethe [Bet31] showed that the XXX-model can be solved analytically to

obtain exact wavefunctions and their eigenvalues; this method is now known as coordinate

Bethe ansatz. It parametrizes the Bethe wavefunctions with a complex spectral parameters

that satisfies a system of equations known as Bethe equations, and the roots of these equations

are known as Bethe roots. Bethes work was generalized to other one-dimensional quantum

systems; the most notable examples include the non-linear Schrodinger equations NLS model

[LL63] and the XXZ-model [Orb58].

From the exact solutions of the Ising model by Onsager [Ons44] up to that of the hard

hexagon model by Baxter [Bax80], researchers have repeatedly observed the remarkable sim-

ilarity between one-dimensional quantum integrable models and exactly solvable models of
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two-dimensional statistical physics. The most notable example of this similarity is the work

by Lieb [Lie67], where he used the transfer matrix method to find the six-vertex model wave-

function and verify the similarity with the wavefunction obtained from the Bethe ansatz for

the XXZ-spin model. In 1968, the work done by Lax [Lax68]and Gardner, Greene, Kruskal

and Miura [GGKM67] on the Korteweg and de Vries (KdV) equation led to the realisation

that non-linear problem of the KdV equation can be rephrased in terms of evolution problem

of a linear operator, which surprisingly turns out to be the Schrödinger operator in the case

of KdV equation. This method of using the Lax operator was further developed by Zakharov,

Faddeev and Shabat in [ZS70, FZ71, ZS79] and it came to be known as classical inverse scat-

tering method. These simultaneous developments in the classical integrable systems as well as

exactly solvable lattice models played a crucial role towards the development of the quantum

inverse scattering method by Faddeev, Sklyanin and Takhtadzhyan [FST79].

At the same time, in a different branch of physics, string theory was developed, and a series

of major steps paved the way for connecting the two sectors of physics. Historically, string

theory was seen as a candidate for a unified theory of everything (starting as a theory that will

describe strong interaction [Ven68]), that is, quantum gravity alongside gauge theories that

describe all other interactions in nature. One of these major steps was done by ’tHooft in

[tH74]. In his work, ’tHooft demonstrated that in a gauge theory with SUpnq symmetry, if we

take a large n limit, the expansion in terms of Feynman diagrams turns out to be the string

perturbative expansion over Riemann surfaces. Similar work by Wilson [Wil74] shows that the

strong coupling expansions can be seen as propagating closed strings.

Another significant milestone was the establishment of Gauge/String Dualities by Malda-

cena [Mal98]. Soon after that, the work by Gubser, Klebanov, Polyakov [GKP98] and Witten

[Wit96] was the elaboration on some of the important aspects of correspondence. In his work,

Maldacena showed that a four-dimensional supersymmetric gauge theory N “ 4 with SUpnq

gauge group is equivalent to type IIB string theory in AdS5 ˆ S5 background by proposing

a conjecture that relaizes the gauge/string duality. Now, one can foresee a four-dimensional

theory as a boundary of AdS5, while the S5 represents the geometry that arises due to the

internal supersymmetry of the gauge theory. This formulation has laid the groundwork for

comprehending the duality between certain gravity theories and quantum field theories, i. e.

the AdS/CFT correspondence.

In 2002, significant progress was achieved by Berenstein, Maldacena, and Nastase [BMN02],

as well as by Gubser, Klebanov, and Polyakov [GKP02], in the field of AdS/CFT duality. Their

work employed the semiclassical approach to string theory, focusing on perturbative corrections

around classical solutions of the string equation of motion in the AdS5ˆS5 background. Specif-

ically, they explored expressing the theory in terms of alternative quantum numbers at both

classical and quantum-corrected levels. Subsequently, in 2003, Minahan and Zarembo [MZ03]

provided initial evidence of integrability in N “ 4 Super Yang-Mills, establishing a connection

between the one-loop dilatation operator and a spin chain with SOp6q symmetry. This reve-

lation paved the way for the extension of integrability to all one-loop operators, followed by
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subsequent advancements to encompass two-loop and three-loop operators within N “ 4 Super

Yang-Mills. Ultimately, Beisert et al. [BKS03] conjectured that integrability might extend

to all-loop features. The presence of integrability on both sides of the duality is particularly

notable, as it manifests through the analogy between the dilatation operator in N “ 4 Super

Yang-Mills and the Hamiltonian of a one-dimensional spin chain in the weak coupling limit.

This alignment suggests promising avenues for further exploration, potentially revealing addi-

tional insights into the theory’s properties through the utilization of the Yang-Baxter ansatz.

In this thesis, we will explore the construction methods outlined in the literature for a set of

commuting transfer matrices (T -operators) of spin chains. These matrices are linked to the sim-

plest representations of quantum groups, which are in turn associated with finite-dimensional

representations of classical Lie algebras. Additionally, the functional relations within this the-

ory play a significant role in the study of integrable quantum systems. These operators appear

to offer a solution for certain bilinear relationships known as the Hirota equation. This con-

cept was further generalized in [KP92, KNS94], where an infinite system of such equations

was derived. This infinite system of equations, coupled with the constraint of polynomiality

(analyticity in field theory) in T -operators, is referred to as T-systems. Remarkably, these

T-systems have proven to be ubiquitous structures, demonstrating relevance in solving N “ 4

Super Yang-Mills equations. The T-system is not the exclusive common structure among many

integrable systems; others, including the Y-system and Q-systems, also exist. However, within

this study, we will refrain from exploring Y-system. The Q-system, on the other hand, com-

prises a system of equations, known as QQ-relations, involving a finite number of commuting

operators, in contrast to the infinite number of T-functions.

It has been observed that the Bethe equations, tasked with encoding the spectrum, can

be reformulated as polynomial equations derived from QQ-relations, which operate upon a

family of polynomial functions recognized as Q-functions. Subsequently, it became apparent

that when extracting the spectrum from these QQ-relations, no ’unphysical solutions’ arise, in

contrast to the Bethe equations where such solutions necessitate identification and elimination.

This was demonstrated by Huang, Lu, and Mukhin in [HLM19], and Chernyak, Leurent, and

Volin in [CLV22], where they proved that the algebraic number of solutions to these relations is

equal to the dimension of the spin chain Hilbert space. The establishment of these Q-functions

proves challenging, intertwined with the completeness of Bethe Ansatz, thus demanding their

explicit construction: they manifest as the eigenvalues of the Q-operators. Consequently, this

manuscript will thoroughly examine the construction of these Q-operators. Furthermore, the

T-functions can be represented as determinants of shifted Q-functions [KLWZ97], facilitating

a compact diagonalization of the Hamiltonian. This compactness arises from the fact that

QQ-relations encode the algebraic properties of the system’s conserved charges.

Until recently, the study of the Q-system was far less developed compared to the T- and

Y-systems. In fact, the first appearance of the Q-system was in the work by Baxter on the

eight-vertex model [Bax72]. Fortunately, much progress in this topic was achieved by doing

a case-by-case study of various models; some noticeable examples are [Bax72, Bax82, BS90,
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GP92, BLZ97, Smi00, BT06]. From these studies, a theory that allows constructing Q-operators

was needed. In 2011, the work done by V. Bazhanov, Lukowski, Meneghelli, Staudacher and

Frassek[BLMS10, BFL`11] to construct Q-operators by using the theory of Yangians (which

is the simplest example of a quantum groups) was introduced for a spin chain with GLpnq

symmetry, where they utilized new aspects of the theory of infinite-dimensional representations

of Yangians, which led to the construction of Q-operators, more details about the construction

of these operators is in Appendix(A.1).

Prior to the construction using oscillator representations, an idea introduced by Kazakov

and Vieira [KV08] that allowed the construction of conserved T -operators using a differen-

tial operator called Coderivative. This method reduced the algebraic understanding needed

in constructing T -operators to only knowing the character and the generating series of the

representation introduced in the auxiliary space. Additionally, it reduced the construction of

Q-operators to a combinatorial diagrammatical description. After that, Kazakov, Leurent, and

Tsuboi [KLT12] used the same differential operator to give an operatorial form to the func-

tional TQ-relations for the supersymmetric spin chain with GLpn|mq symmetry; this allowed

to define all the T - and Q-operators in all levels of nesting.

The main objective behind the work presented in this thesis is to generalize the ideas

presented in [KV08, KLT12] to a different symmetry group other than GLpnq. We study the

case of a spin chain with SOp2rq symmetry in the auxiliary space and introduce a modified

version of the Coderivative operator to describe the conserved T -operators and Q-operators for

the new symmetry. The other objective would be to show the equivalence between the oscillator

and differential constructions of Q-operators.

Outline of the thesis

This thesis is organized into two chapters. The first chapter is dedicated to discussing the

construction of spin chain operators with a GLpnq symmetry in the auxiliary space. The

second chapter uses the ideas introduced in the first chapter to model a system of spin chains

with SOp2rq symmetry.

The first chapter is divided into two sections. The initial section, as detailed in the first

chapter, commences with a brief introduction to the transfer matrix (T -operators) of a spin

chain with a twist in the auxiliary space and its connection to the Heisenberg spin chain. Then

we proceed to formulate the findings established in [BFL`11] concerning the construction of

the oscillator description of theR-matrix. Finally, rewriting the T -operators using the the

Coderivative operator intruduced in [KV08], and as an original result, in Section II.1.5 we show

that a Yang-Baxter equation with one auxiliary space is satisfied due to Schwartz’s property

of the differential operator. In the subsequent section, Section II.2, we argue the equivalence

between the two construction methodologies discussed in the preceding section of the chapter.

This is accomplished by composing the Wronskian determinant of shifted Q-functions, enabling

us to express the transfer matrix. Leveraging the concepts introduced in [BLMS10, BFL`11,

FKT21], we decode the nested expression of the transfer matrix, utilizing the nested transfer
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matrix expression uncovered in [KLT12]. Additionally, we employ the concept of normalized

limits, introduced in the notation section of the introduction.

The second chapter, as detailed in Chapter III, also commences by providing a brief overview

of the existing literature concerning spin chains with SOp2rq symmetry. Here, we apply the same

methodologies introduced in the first chapter to express the transfer matrix T - and Q-operators

with the new symmetry. In Section III.1.3, we present a modified definition of the Coderiva-

tive operator, enabling us to reformulate the expressions of T -operators for the spinorial and

symmetric representations. Subsequently, we commence a discussion on the reformulation of

the Q-operators for these representations based on their functional relations. Following this,

in Section III.3, we explore various methods to verify the limits of the available solutions and

attempt to formulate an expression for T -operators with general rectangular representations in

the auxiliary space. Additionally, we allude to the notion that utilizing only the Coderivative

operator may be inadequate for describing a general case of the rectangular representation.

I.1 Notations and symbols

Throughout this script, we are going to be using the concept physical space frequently, so it

will be very convenient to define the basis of such a system basis for our Hilbert space to be

able to introduce all operators needed in the study of this system. As we will see in the first

chapter, the Hilbert space is defined as H “
ÂN

i“1 Hi, where every small Hi defines a physical

space in our spin chain (represented as a vertical line in Fig(II.1)). Thus, we need to assign

an orthonormal basis for each space in our Hilbert space, i. e. for the space Hi we have the

vectors |1yi , |2yi , . . . , |diyi representing it 1. With that, our Hilbert space is defined with a set

of orthonormal vectors as:

|m1,m2, . . . ,mNy ” |m1y1 b |m2y2 b ¨ ¨ ¨ b |mNyN (I.1.1)

with each mi to be finite and each mi to be smaller than di. Now, we are ready to define the

necessary operators for our systems. In this study, it’s more convenient to introduce a general

definition of an arbitrary linear operator O (an N tensor operator) such that the matrix/tensor

coefficients take the form:

Oi1,i2,...,iN
j1,j2,...,jN

“ xi1, i2, . . . , iN | O |j1, j2, . . . , jNy (I.1.2)

Where pi, jq in the previous relation will denote what we will refer to throughout this text as

(outgoing/ingoing) indices, respectively. The number of these indices refers to the length of the

chain; each ingoing index can be contracted with an outgoing or an ingoing index.

Among the pivotal operators in this study are P and Q. Their matrix coefficients play a

crucial role in comprehending our systems. Beginning with P , we can elucidate its actions on

a basis vector as illustrated in (I.1.1):

Pσ : |m1,m2, . . . ,mNy ÞÑ
∣∣mσp1q,mσp2q, . . . ,mσpNq

D

(I.1.3a)

1We are considering the case when Hi’s are finite-dimensional, i. e. di is a finite number
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i. e. pPσq
i1,i2,...,iN
j1,j2,...,jN

“

N
ź

k“1

δ
σpikq

jk
(I.1.3b)

where σ P SN . This operator arranges the way we link the ingoing index with the outgoing ones.

A similar statement can be found for Q, this operator is a bit more complicated to explain, but

it is defined as:

pQa,bq
i1,i2,...,iN
j1,j2,...,jN

“ δia
i
1

b

δ
j

1

a
jb

N
ź

k“1
k‰a,b

δikjk (I.1.4)

The prime means that we flipped the ingoing/outgoing labels before connecting them, i. e.
`

Ai
j

˘1

“ Aj
1

i1
2. A very interesting property of Q comes from the way it connects operators to one

another. To see that, let us take the tensor product of two operators A,B, where the entrys of

these operators commute among themselves, and act by a Q on them. The tensor coefficients

of these operators are represented as:

pQ pA b Bqq
i1,i2
j1,j2

“ Qi1,i2
k1,k2

ppA b Bqq
k1,k2
j1,j2

“ δi1
i
1

2

δk1
k

1

2

Ak1
j1
Bk2

j2
“ δi1

i
1

2

Ak1
j1
B

k
1

1
j2

“

ˆ

Q
ˆ

I b

´

B
1

A
¯1
˙˙i1,i2

j1,j2

(I.1.5)

This question can be diagrammatically represented as:

A B
“

AB
1

AB
“

It is worth noting that the form of (I.1.5) represents a choice in the labeling of spaces. (I.1.5)

can equivalently be expressed as:

pQ pA b Bqq
i1,i2
j1,j2

“ Q
ˆ

´

A
1

B
¯1

b I
˙i1,i2

j1,j2

(I.1.6)

Index notations

In this thesis, we are going to use a set of unified notations throughout the manuscript unless

stated otherwise, these notations will be listed here.

One of the more common notations is the partition of non-negative integers as λ “ pλ1, λ2, . . . q

with the descending property λ1 ě λ2 . . . . The number of non-zero integers in the partition is

finite when we talk about finite-dimensional representation operators. More of these notations

2The meaning of the prime notation for square matrix entry is j
1

“ n ´ i ` 1, where n is the size of the

matrix.
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are below:

C set of complex numbers

I identity matrix

N length of the spin chain

δi,j Kronecker’s delta function

P permutation operator

Q transposed Permutation operator

g twist operator

Scaler notation

In this thesis some objects, such as the sets of rapidities or spectral parameters, and the eigen-

values of the twist operator, will be scalers. They are listed as:

z free parameter

u “

tu1, u2, . . . , uNu

set of complex parameter spectral parameter

tx1, x2, . . . , xNu eigenvalues of the twist operator

χλpgq character of the twist operator

If a scaler is written with indices, it can be thought of as the scaler multiplied by the identity

operator, for example: pxcq
i
j “ δijxc, where c P J1, NK is a label to indicate which eigenvalue we

have from the twist.

To complement the idea of the character, let us recall the notation of the representation of

a group G to be pV, ρq, where V stands for the vector space of the group and ρ is the morphism

ρ : G Ñ GLpV q, i. e. a map from G to GLpV q such that:

@g1, g2 P G, ρ pg1 ¨ g2q “ ρ pg1q ¨ ρ pg2q (I.1.7)

It is worth noting that the fundamental representation is the one with a vector space Cn and a

morphism ρ pgq “ g.

In this manuscript, we will use different notations of the morphism ρ, ρs, ρλ, etc to denote

different representations of the algebra, all of which follow the general identity :

χ :

#

G Ñ C

g Ñ Tr pρ pgqq
(I.1.8)

Whereas, a morphism between two Lie algebras g, r¨, ¨sg and h, r¨, ¨sh is a linear map π : g Ñ h

such that it preserves the Lie bracket, meaning for all x, y P g, we have:

π
´

rx, ys g

¯

“ rπ pxq , π pyqs h (I.1.9)

9



GLpnq and SOp2rq notations

We have two different algebras to study in the manuscript, thus we have two sets of operators

for each algebra. We will differentiate between the operators of these algebra as shown in the

table.

For the GLpnq symmetry, we have the notation to be unified for all arbitrary representations

of the algebra.

GLpnq notation

D̂ Coderivative operator

J fundamental algebra generators

R a solution of the Yang-Baxter equation

T conserved charges or T -operators

Q Q-operators for a spin chain

Unlike the the GLpnq case, we have two families of representations of the algebra with dif-

ferent solution that require us to use deferent notation in the manuscript, these representation

are know as the spinorial and symmetric representation:

SOp2rq notation

D Coderivative operator

F fundamental algebra generators

R a solution of the Yang-Baxter equation with the spinorial symmetry

R a solution of the Yang-Baxter equation with the symmetric representation

T conserved charges or T -operators with spinorial symmetry

T conserved charges or T -operators with symmetric representation

S Q-operators for of the spinorial symmetry

Q Q-operators for of the symmetric representation

I.1.1 Shifts and Normalized limits

This part of the introduction will be devoted to introducing two important notations that will

be used often in this text.

Shifts

We will introduce a notion of shit that will help us simplify the bulky formulas we will have later

in the manuscript. Some functions will be formulated as f rks puq, where f puq is an arbitrary
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function of the spectral parameter u. The notation we have is a shift in u, which we will define

as:

f rks
puq ” f

ˆ

u `
k

2

˙

(I.1.10)

This notation will be carried throughout this thesis3.

Normalized limits

In this thesis, we will consider the leading order of given quantities (for example, the leading

order of polynomials) and omit normalizations that make the quantity convergent. To do

this, we introduce the notation N lim, which allows us not to write the normalization factor

explicitly. This notion means that we multiply by a normalization which fixes the leading term

of the limit.

For instance, let us take the example:

N lim
zÑ8

7zpz3u4
´ z4u3

` z4q “ lim
zÑ8

7zpz3u4 ´ z4u3 ` z4q

´7zz4
“ u3

´ 1

?The normalization was fixed by requiring that the limit is non-zero but finite, and that the

result to be a monic polynomial in u.

Now, let us provide a more precise definition of N lim:

Definition

Let Λ be a complex parameter, and P pΛ, uq be a Λ-dependent polynomial in u, i. e. P pΛ, uq “
řd

i“0 fipΛqui for a given degree d. We wish to study the Λ Ñ Λ0 limit. We first define

P̃ pΛ, uq “ lim
ΛÑΛ0

P pΛ, uq

maxi |fipΛq|
“

d1
ÿ

i“0

ciu
i (I.1.11)

where the degree d1 may be smaller than the initial degree d. Then we define the normalized

limit of P (denoted as N limΛÑΛ0 P pΛ, uq) as:

N lim
ΛÑΛ0

P puq “
P̃ pΛ, uq

cd1

(I.1.12)

which imposes the monicity of N limΛÑΛ0 P pΛ, uq (as a polynomial in u).

In some situation, the situation will spasify that the result we obtin from N limΛÑΛ0 P pΛ, uq

to be of a specific value v. In that context, we should change (I.1.12) to:

N lim
ΛÑΛ0

P puq “
v

cd1

P̃ puq (I.1.13)

Several properties follow from this definition. An obvious property is that for an arbitrary

polynomial P puq (of degree d), we have:

N lim
ΛÑ8

P pu ` Λq “ 1, (I.1.14)

3There are other references that also introduce similar notation with different shifts; this is really up to the

author.
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because the only coefficient of P pu`Λq with magnitude Λd is the constant coefficient. In what

follow, we will write several properties which are less trivial and will be used in this thesis.

Lemma I.1.1. If a function f pΛ, uq is the product xΛP pΛ, uq, where P pΛ, uq is an arbitrary

polynomial in the two variables Λ and u, then:

N lim
ΛÑ8

f pΛ, uq “ N lim
zÑ 1

x

ÿ

Λě0

f pΛ, uq zΛ (I.1.15)

Proof. Lemma(I.1.1):

Let us denote P pΛ, uq “
řd

k“0

řmk

l“0 ck,lΛ
kul (where d is the degree of P pΛ, uq as a function of

Λ). Then, the left hand side of (I.1.15) is equal to the monic polynomial 1
cd,md

md
ř

l“0

cd,lu
l. This

can be shown as:

N lim
ΛÑ8

f pΛ, uq “
max |cd,l|

cd,md

P̃ puq “
max |cd,l|

cd,md

lim
ΛÑ8

f pΛ, uq

xΛΛd max |cd,l|
looooooooooomooooooooooon

1
max |cd,l|

md
ř

l“0
cd,lul

“
1

cd,md

md
ÿ

l“0

cd,lu
l

(I.1.16)

On the other hand, the right hand side of (I.1.15) is a combination of infinite sums:

ÿ

Λě0

Λn
pxzq

Λ
“

řn´1
m“0 γ pn,mq pxzq

m`1

p1 ´ xzq
n`1 (I.1.17)

where the explicit expressions of the coefficients γ pk, βq in the numerator of these fractions are

known, and they are called Eulerian numbers4. It is clear that when taking the limit z Ñ 1
x
, the

pole with the highest multiplicity comes from the term with highest degree in Λ, consequently

the right hand side is equal to 1
cd,md

md
ř

l“0

cd,lu
l. This can be shown as:

N lim
zÑ 1

x

ÿ

Λě0

f pΛ, uq zΛ “
max |cd,l|

d!cd,md

P̃ puq “
max |cd,l|

d!cd,md

lim
zÑ 1

x

ř

Λě0 P pΛ, uq pxzqΛ

1{ p1 ´ xzq
d`1max |cd,l|

looooooooooooooooomooooooooooooooooon

řd´1
m“0 γpd,mq

max |cd,l|

md
ř

l“0
cd,lul

“
1

cd,md

md
ÿ

l“0

cd,lu
l

(I.1.18)

In the second equality, the d! comes from the Eulerian numbers property:
řn´1

k“0 γ pn, kq “

n!.

Now that we have the concept of normalized limits, we will give a more general form of the

previous lemma:

Lemma I.1.2. If a function f pΛ, uq is the finite sum
ř

i x
Λ
i Pi pΛ, uq, where the non-zero num-

bers xi are pairwise distinct, and Pi pΛ, uq are an arbitrary non-zero polynomials in two variables

Λ and u then:

N lim
zÑ 1

xℓ

ÿ

Λě0

f pΛ, uq zΛ “ N lim
ΛÑ8

Pℓ pΛ, uq (I.1.19)

4This sum is ill-defined when n “ 0, and it should be replaced by 1.
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In the case when z Ñ 1
xℓ
, the only singular term in

ř

λě0 f pλ, uq zλ comes from xλ
ℓPℓ pλ, uq,

where all the other terms are finite functions in the limit. Thus, the proof follow as the proof

of Lemma(I.1.2)

There are two distinct cases we need to look at here: If @i ‰ ℓ, |xi| ą |xℓ|, the (I.1.19) holds

in the open disk D
´

0, 1
max |xℓ|

¯

: in the disk, the sum
ř

Λě0 f pΛ, uq zΛ “
ř

i

ř

Λě0pzxiq
ΛPi pΛ, uq

with the only singular term being pzxℓq
ΛPi pΛ, uq when taking the limit z Ñ 1

xℓ
making all the

other terms subleading and (I.1.19) hold.

By contrast if xℓ is not smaller than the other xi, then (I.1.19) holds in the sense of analytic

continuation: N limzÑ 1
xℓ

ř

Λě0 f pΛ, uq zΛ is an abuse of notation to denote a process where one

first computes the sum over Λ when |z| ă mini |xi|, then continues analytically the resulting

function of z (it forms a rational function for z P Cz tx1, x2, . . . u), and then takes the normalized

limit where z Ñ 1
xℓ
. In this limit, the term pzxℓq

ΛPℓ pΛ, uq is still the only singular terms, all

other terms are subleading, and one gets (I.1.19).

Remark: In practice, we may use the following corollary of lemm(I.1.2):

If a function f pΛ, uq is the finite sum
ř

i x
Λ
i Pi pΛ, uqQi pu ` Λq, where the numbers xi are

pairwise distinct, and Pi pΛ, uq are an arbitrary non-zero polynomials in two variables Λ and u

whereas each Qi is a univariate polynomial:

N lim
zÑ 1

xℓ

ÿ

Λě0

f pΛ, uq zΛ “ N lim
ΛÑ8

Pℓ pΛ, uq (I.1.20)

This corollary follows from the previous property and from the fact thatN lim
ΛÑ8

Pℓ pΛ, uqQℓ pu ` Λq “

N lim
ΛÑ8

Pℓ pΛ, uq, as follows from (I.1.14).

Limits of diagonalizable operators

In this thesis, we will often take the normalized limit of matrix-valued polynomials in the

variable u (for instance, the limit of a transfer matrix).

For simplicity, we do not give a general prescription for the normalized limit of an arbitrary

matrix (for instance, a non-diagonalizable matrix, or a matrix whose eigenvectors are functions

of u and Λ).

It will turn out that in this article, we will always take the limit of a diagonalizable matrix

M “ P´1DP , where D “ diagpd1, d2, . . . q is diagonal and where the matrix P depends only on

the physical parameters of the model (the twist and the inhomogeneities), and not on the param-

eters u and Λ. In that case, we defineN limΛÑ8 M “ P´1diagpN limΛÑ8 d1,N limΛÑ8 d2, . . . qP .

The precise discussion of this point is postponed to Sec(II.2.3). It will turn out that the

normalization factors are block-wise multiples of identity, for instance
¨

˚

˚

˚

˚

˝

a 0 0 0

0 b 0 0

0 0 b 0

0 0 0 c

˛

‹

‹

‹

‹

‚

13



where the corresponding blocks correspond to simultaneous eigenspaces of all T- and Q-operators:

these blocks correspond to the sectors of the Hilbert space.
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II.1 Spin chain and the construction of the T -operators

In this chapter, we are going to explain the changes in constructing Q-operators with GLpnq

symmetry and show that they are equivalent. The two ways in question are the oscillator

description (which was formulated in a series of papers [BLMS10, BFL`11, FKT21]), and the

differential description Coderivative (which was introduced in [KV08]).

To do this, we will briefly introduce the recipe for a quantum integrable spin chain, give a

formal definition of T -operators, and show that they give rise to a family of conserved charges.

Then, we will present a way to explicitly manipulate these operators using a differential operator

called Coderivative, as shown in [KV08]. We will also elaborate on how we can modify a

specific Yang-Baxter equation using a differential operator, where we motivate a proof of the

Yang-Baxter equation using a property of the differential operator only. Additionally, in the two

descriptions, the functional relations of our integrable system were described using Q-operators.

We will show that the construction of T - and Q-operators are equivalent between the oscillator

and differential representations.

II.1.1 Introduction to quantum integrable systems

In this section, we will review the definition and primary properties of integrable spin chain.

This subject has been extensively researched, and there is a wealthy literature available on

the topic. Some of the references that aid in introducing and fully developing this subject

include: [Gau83] for a complete general overview of the subject of integrability and spin chains;

[Bet31] which introduces the idea of Coordinate Bethe Ansatz and devalobe the one-dimensional

Heisenberg spin chain (also [KMGT97, KHM98, KHM00] for a comblite discussion); and[FST79,

NW13, Skl82, AV87] where they develop the spectrum of the model using Algebraic Bethe

Ansatz (and [MT00, Sla18, Gro17, Sla07, NW14, KMST05] for more detail).

Thus, the definition of an integrable spin chain in the literature: spin chains are quantum

integrable systems if they have a sufficient number of independent commuting T -operators1, a

description of these systems is provided in Fig(II.1). In the figure, a vertical line stands for the

vector space, and a set of these lines corresponds to a tensor product of these vector spaces.

The horizontal lines denote the so-called Auxiliary spaces; they take an ellipse shape in the

figure, indicating a trace over Auxiliary spaces. Also, at each crossing of a vertical with the

horizontal lines, there is a ball representing the so-called R-matrix, where these matrices are

solutions of a key identity called the Yang-Baxter equation (for more details on the solutions

of the Yang-Baxter equation check II.1.3), and the two (blue, purple) circles represent the so-

called Twist operator. In the Figure, we labeled a set of vertical lines with an ellipse as T .

Thus, T1 and T2 are operators on the Hilbert space H “
ÂN

i“1 Hi “ pCnq
bN . The key argument

in proving the commutation relation proposed in Fig(II.1) is the Yang-Baxter equation:

Ri,j pu ´ vqRi,k puqRj,k pvq “ Rj,k pvqRi,k puqRi,j pu ´ vq (II.1.1a)

1The number of these operators is equal to the dimension of the Hilbert space.
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i. e. Ri,j puq “ uI ` Pi,j (II.1.1b)

Where P “

n
ÿ

α,β“1

Jα,β b Jβ,α, and Jα,β “ |αy xβ| (II.1.1c)

Where (II.1.1c) is the same as (I.1.3), Ri,j puq in (II.1.1b) is a solution of the Yang-Baxter

T1

T2 . . .

=

. . .

=

. . .

...

=

. . .

=

T2

T1

Figure II.1: This is a rough graphical description of the commutation relation between the

so-called T -operators. The first part of this diagram represents two operators, T1 and T2

represented as two ellipses with vertical lines crossing each ellipse. Then, using the famous

Yang-Baxter equation, one can show the commutativity between T -operators.

equation (II.1.1a) and will be referred to as R-matrix, pi, j, kq are labels discribing three different

vector spaces Vi,Vj, and Vk (in the figure, these spaces are in the fundamental representation),

and u, v P C are called spectral parameters. Each R-matrix acts on a tensor product of these

spaces 2. Now, we can show the steps taken in Fig(II.1) using (II.1.1a) with the unitarity

condition of the R-matrices pRi,j puqRj,i p´uq 9Iq3 represented in Fig(II.1) as the (green/violet)

balls. Using the diagrammatical definition of (II.1.1a) shown in Fig(II.2), we can move the green

2The R-matrix acts trivially on a vector space that it is not assigned to. For example, Rj,k puq acts trivially

on Vi.
3The unitarity condition Ri,j puqRj,i p´uq “ ζ puq I, where ζ puq is a polynomial of degree two in u.
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ball from the left hand side of a vertical line to the right hand side of the line, as proposed in

the second diagram in Fig(II.1). This process is repeated for all other vertical lines, and we

end up with the last diagram in the figure.

In order for the reader to follow the diagram in Fig(II.1), it is important to introduce

the convention used to read the diagram into formulas. Starting with two R-matrices on two

different physical spaces pi, jq and an auxiliary space paq, then two R-matrices on one physical

space with two auxiliary spaces:

a

i j

“ Ri,aRj,a

a

b

i

“ Ri,aRi,b

As we can see, the diagram is read from left to right and from bottom to top. Then, one can

ask if we have two physical spaces with two auxiliary spaces with four R-matrices i. e.:

a

b

i j

“

Ri,bRj,bRi,aRj,a

Ri,bRi,aRj,bRj,a

There is an ambiguity in the order of the operators; as stated in the last picture. This can be

solved by noticing that operators on different spaces do commute, i. e.:

rA b I, I b Bs “ 0 (II.1.2)

Thus allow us to see that Rj,bRi,a “ Ri,aRj,b, which also remove this ambiguity when writing

the mathematical expression of Fig(II.1).

We also skipped an important step in showing the commutativity between T1 and T2, and

that is the commutation between the R-matrix and the twist operator. As stated before, the

(blue, purple) circles are what we call twist operators; they are group elements g P GLpnq and

can be in any arbitrary algebraic representation. In this section, we will show the commutation

relation between R-matrix and the fundamental twist operators4, i. e. rga1 b ga2 ,Ra1,a2 puqs “ 0,

where a1, a2 refers to the two auxiliary spaces in Fig(II.1). The proof is straightforward; taking

the definition of the R-matrix from (II.1.1b), one notice that I commutes with everything, and

from the general property of the permutation operator:

P1,2 pA b Bq “ pB b AqP1,2

From the last relation, we can see that the permutation operator exchanges the positions of the

operators, indicating an exchange in the physical space position of the twist operators. This
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=

Figure II.2: The diagrammatical representation of the Yang-Baxter equation (II.1.1a)

g

λ =

123N − 2N − 1
N

. . .

Figure II.3: A graphical description of a T -operators with a general representation λ in the

auxiliary space. The R-matrix are represented as small black balls and multiplied along the

auxiliary space. whereas the set of vertical lines physical space relabels the Hilbert space, these

spaces are defined in the fundamental representation λ “ ˝.

property of P relabels the twist operators a1 Ø a2, making it the last step in proving the

commutativity between T -operators impling that rga1 b ga2 ,Ra1,a2 puqs “ 0 holds.

After proving that T -operators commute, we will give the general description of these oper-

ators from Fig(II.1). Generally and throughout this thesis, the representation of the auxiliary

space can be something more complicated than the fundamental representation. We will refer

to a general representation of the symmetry group as λ unless stated otherwise, λ will be de-

noting a Young diagram. By contrast, we will only have the fundamental ones in our physical

spaces. In representation pλq, the twist operator will be referred to as ρλ pgq and the general

definition of T -operators:

T pλq
puq “ trλ

˜

RN,λ pu ´ θNq ¨ RN´1,λ pu ´ θN´1q . . .R1,λ pu ´ θ1q ρλ pgq

¸

(II.1.3a)

Where Ri,λ puq “ u `

ρi,λpPq
hkkkkkkkkkkikkkkkkkkkkj

ÿ

α,β

Jα,β b ρλ pJβ,αq (II.1.3b)

Equation (II.1.3a) reads as a trace of a product of R-matrix with spectral parameter u and

an inhomogeneities θi, also a twist operator in a general representation of the algebra (the

graphical description of (II.1.3a) is shown in Fig(II.3)). Additionally, (II.1.3b) represents R-

matrices that satisfies the Yang-Baxter equation for a given representation λ in the auxiliary

space.

4For the general representation, check Sec(II.1.5)
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A generalization to the commutation relation presented in Fig(II.1) is:

rT pλq
puq , T pµq

puqs “ 0 (II.1.4)

where (II.1.4) is the commutation relation between T -operators with different representations

of the algebra in their auxiliary spaces. This relation holds when both T -operators share the

same twist g and inhomogeneities θi. When restricting the representation in (II.1.4) to be the

symmetric one, i. e. λ “ p1, sq “ . . .
s

, the proof of (II.1.4) then depends on writing the

projector operator Pp1,sq; this was explained in [KV08]. (In the paper, they explain that the

projector of the symmetric representation is written as a product of fundamental R-matrix).

II.1.2 T -operators and Hamiltonian

In this thesis, we are interested in a spin chain with nearest-neighbor interactions. This is

apparent from the definition of the Hamiltonian operator of the spin chain in the introduction.

In the literature, the Hamiltonian can be obtained from T -operators, using the fromula:

H “
2

n
N ´ 2

BuT puq

T puq

ˇ

ˇ

ˇ

ˇ

ˇ

u“0

(II.1.5)

where N is the length of the spin chain and n is related to the rank of the algebra. Notice that

T -operators in (II.1.5) are in the fundamental representation T ˝ puq, and we have dropped

the notation ˝For simplicity, the derivation of the Hamiltonian involves finding the derivative

of 5 revealing it to be a trace of sums of products of permutation operators with a missing site.

This arises due to the relations Ri,j p0q “ Pi,j and 9Ri,j p0q “ δi,j, where 9R “ BuR. The same

procedure applies to T puq
´1. This can be depicted graphically, as shown in Fig. (II.4). Thus,

the Hamiltonian of this system reads:

H “
2

n
N ´ 2

N´1
ÿ

k“1

Pk,k`1 ´ 2P1,N ¨ gN ¨ g´1
1 (II.1.6)

Here g1, gN denote the twist operators associated with the first and N th quantum spaces, respec-

tively. The term involving the twist operator arises from the second segment of the diagram,

as the two twist operators are not contracted. Additionally, the diagrammatic representation

of the operators I and P , are provided below:

I: P :

5One can find an extensive calculation on how to extract the Hamiltonian from (II.1.5) in the literature. For

example, the GLp2q was presented in [Sla18].
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N−1∑

k=1

N N-1 N-2 k+1 k k-1 1. . . . . .

. . . . . .
g

. . . . . .
1/g

T−1 (0)Ṫ (0) =

+

N N-1 N-2 3 2 1

. . .

g

. . .
1/g

=
N−1∑

k=1

Pk,k+1 + PN,1 · gN · g−1
1

Figure II.4: This is a diagrammatical representation of the object BuT puq

T puq

ˇ

ˇ

ˇ

u“0
. The R-matrices

are substituted with permutation operators due to Ri,j p0q “ Pi,j except for k and k´1 lines in

the first segment (and N and 1 lines in the second segment) of the diagram. In these instances,

they denote an identity operator due to the derivative of the R-matrix. If a vertical line begins

at position k at the bottom and terminates at position l at the top, it signifies the factor δk,l.

One can see from (II.1.5) that one of the T -operators is the Hamiltonian, thus the family of

commuting T -operators are actually conserved charges. In order to show that our T -operators

(II.1.3a) describes an integrable system, we will show how it is connected to the well-known

Heisenberg spin chain.

Integrablity and the Heisenberg spin chain

The Heisenberg spin chain is a simple integrable system; usually, it is referred to as the XXX1{2

spin chain. To show the link between our definition of integrability and this system, we are

going to recover the Hamiltonian of the XXX1{2 spin chain by restricting our general statement

about integrability to GLp2q and the twist to identity.
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This will simplify the Hamiltonian formula (II.1.6) to6:

HXXX1{2
“ N ´ 2

N
ÿ

k“1

Pk,k`1 (II.1.7)

To recover the well-known Hamiltonian of the Heisenberg spin chain, one must notice that

the permutation operator P defined in (II.1.1c) can be rewritten using the 2 ˆ 2 matrix rep-

resentation of the GLp2q generators. We have four generators associated with this algebra:

pJ1,1, J1,2, J2,1, J2,2q, and the matrix realization of these operators in the fundamental represen-

tation takes the form:

Ji,j |pkqy “ δj,k |piqy (II.1.8)

This translates to a matrix representation where all of the coefficients are equal to zeros, except

the ones at position pi, jq:

and J1,1 “

˜

1 0

0 0

¸

, J1,2 “

˜

0 1

0 0

¸

, J2,1 “

˜

0 0

1 0

¸

, J2,2 “

˜

0 0

0 1

¸

Consequentially, using (II.1.1c), we can define the matrix representation of the permutation

operator using the Pauli matrices as (σx “
`

J1,2 ` J2,1
˘

, σy “ ´i
`

J1,2 ´ J2,1
˘

and σz “
`

J1,1 ´ J2,2
˘

):

Pi,j “
1

2
pI ` σ⃗i ¨ σ⃗jq (II.1.9a)

Where σ⃗i ¨ σ⃗j “ σx
i ¨ σx

j ` σy
i ¨ σy

j ` σz
i ¨ σz

j (II.1.9b)

where the labeling pi, jq in (II.1.9a) and (II.1.9b) refers to the positions on quantum spaces piq

and pjq, respectively. Substituting (II.1.9a) in (II.1.7), one obtains:

HXXX1{2
“ ´

N
ÿ

i“1

σ⃗i ¨ σ⃗i`1 (II.1.10)

The Hamiltonian describes the simplest spin chain with nearest neighbor interactions and cor-

responds to a quantum version of the Ising model, i. e. the Heisenberg spin chain. Notice that

the minus sign in (II.1.10) means that our spin chain describes the ferromagnetic model.

II.1.3 Yang-Baxter equation

In this subsection, we will introduce the solution of the cornerstone equation for an integrable

system, the Yang-Baxter equation. We are going to motivate the solution in the fundamental

representation of the auxiliary space pVi “ C2q and demonstrate that one of its non-trivial

solutions is the permutation operator P .

6In the intruduction, we have an overall factor γ in the Hamiltonian, which can be translated by multiplying

(II.1.6) and (II.1.7) with γ.
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By construction, the operators R puq of the Yang-Baxter equation (II.1.1a) are an n2 ˆ n2

matrices, such that R puq : Cn b Cn Ñ Cn b Cn. One can start by looking for a non-trivial

solution of a simpler version of (II.1.1a) (by setting the spectral parameters u, v to zeros). An

obvious solution would be the identity matrix (which is not interesting). A less obvious solution

would be the permutation matrix P . Indeed, by taking the identity:

Pi,jPi,kPj,k “ Pj,k Pj,kPi,jPi,kPj,k
loooooooomoooooooon

Pi,kPi,j

“ Pj,kPi,kPi,j
(II.1.11)

where we have used P2 “ I and multiplied the last equation with P2
j,k from the left, giving us

the second equality. One can see that (II.1.11) satisfies the Yang-Baxter equation.

Now, we would look for solutions dependent on the spectral parameters by setting Rpuq “

ϕpuqI ` cP , where ϕpuq is a smooth function of u and c is a constant 7. By substituting the

proposed R-matrix in (II.1.1a) and expanding with respect to powers of the constant c, one

finds that the non-trivial equation comes from the coefficients of c2:

ϕpuqPi,jPj,k ` ϕp´vqPi,jPi,k ` ϕpu ´ vqPi,kPj,k

“

ϕpuqPj,kPi,j ` ϕp´vqPi,kPi,j ` ϕpu ´ vqPj,kPi,k

Multiplying the last equation by Pi,k from the left and Pi,j from the right, we obtain:

ϕpuqI ` ϕp´vqI ` ϕpu ´ vqPj,kPi,j “ ϕpuqPi,kPj,k ` ϕp´vqI ` ϕpu ´ vq (II.1.12)

Finally, we multiply by Pj,k from the left and obtain:

´

ϕpuq ` ϕp´vq ´ ϕpu ´ vq

¯

Pi,j “

´

ϕpuq ` ϕp´vq ´ ϕpu ´ vq

¯

Pj,k (II.1.13)

Thus, R puq “ ϕ puq I ` cP is a solution of the Yang-Baxter equation if and only if:

ϕpu ´ vq “ ϕpuq ` ϕp´vq

and the only well-known linear function that satisfies the last identity is ϕ puq “ au, where a is

a constant. Giving us:

R puq “ auI ` cP (II.1.14)

The constant a can be absorbed in c, and by setting c “ 1 we obtain (II.1.1b). This equation

is a solution to the Yang-Baxter equation in the fundamental representation; a more general

solution (general representation V “ Cn) can be found.

II.1.3.1 Oscillator representation and the R-matrix

In appendix(A.1), the fundamental relations of the Yangian algebra were introduced. We

can use these relations to formulate an oscillator description of the R-matrix. Knowing that

7If one has a solution R puq of the Yang-Baxter equation, then ϕ puqR puq is also a solution.
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the R-matrices are n ˆ n matrices whose matrix elements are operators valued functions of

the spectral parameter belonging to the Yangian algebra Y pglpnqq. Indeed, the Yang-Baxter

equation provide to define the relations of the matrix elements of the R-matrix which are the

relations of the Yangian operators ti,j
8.

We will change the notations in this section slightly; the indices ti1, i2, j1, j2u will be the

physical labeling of the operators, and they will be referred to as (outgoing, ingoing) for pi, jq,

respectively. From the left hand side of the Yang-Baxter equation, one can write:

˜

R pu ´ vq

´

R̃ puq b I
¯´

I b R̃ pvq

¯

¸i1,i2

j1,j2

“

˜

pu ´ vq δi1k1δ
i2
k2

` δi1k2δ
i2
k1

¸

´

R̃ puqk1,m1
δk2m2

¯´

δm1
j1

R̃ pvqm2,j2

¯

“ pu ´ vq R̃ puqi1,j1 R̃ puqi2,j2 ` R̃ puqi2,j1 R̃ puqi1,j2

(II.1.15)

where R̃ is in n ˆ n matrix that acts on a single copy of the space Cn. The second equality

comes from expanding the product, were we also used:

¨

˚

˝

Ibpk´1q
b

kth´position
hkkikkj

R̃ bIbpn´k`1q

˛

‹

‚

i1,...,in

j1,...,jn

“
ź

1ďmďn
m‰k

δimjmR̃ik,jk
(II.1.16)

The same goes for the right hand side of the Yang-Baxter equation.

˜

´

I b R̃ pvq

¯´

R̃ puq b I
¯

R pu ´ vq

¸i1,i2

j1,j2

“ pu ´ vq R̃ pvqi2,j2 R̃ puqi1,j1 ` R̃ pvqi2,j1 R̃ puqi1,j2

(II.1.17)

Now, by substituting the left hand side and right hand side in the Yang-Baxter equation, we

find the commutation relation between the matrix entry of R̃:

”

R̃ puqi1,j1 , R̃ pvqi2,j2

ı

“
1

u ´ v

´

R̃ pvqi2,j1 R̃ puqi1,j2 ´ R̃ puqi2,j1 R̃ pvqi1,j2

¯

(II.1.18)

which is exactly the same as (A.1.6) up to changing R-matrices into t-operators. One can also

show that if we write the R-matrix as generating series of the form (A.1.5), we find:

”

R̃prq

i,j , R̃psq

k,l

ı

“

minpr,sq
ÿ

a“1

´

R̃pa´1q

k,j R̃pr`s´aq

i,l ´ R̃pr`s´aq

k,j R̃pa´1q

i,l

¯

(II.1.19)

where R̃paq means that we take the ath coefficient in the Laurent series defined in (A.1.5). Thus,

the problem of solving the Yang-Baxter equation reduces to the construction of representations

of the infinite-dimensional quadratic algebra (II.1.19). With the evaluation map defined in

8This section is a derivation from [BFL`11]
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(A.1.8), we see that the infinite series of the R-matrix diminishes after the second term. With

a trivial change in normalization, these representations correspond to:

R̃i,j puq “ uδi,j ` Ji,j (II.1.20)

where Ji,j denotes the generators of the algebra in the defining representation which they

satisfy the commutation relation (A.1.1). In defining the R-matrices, we are going to introduce

a generalization to the system by changing (A.1.1) and (A.1.5), i. e.R̃i,p0q

j not to be equal to

the identity matrix δij, instead we are going to leave it to be R̃i,p0q

j . With the fact that the R-

matrix is GLpnq-invariant (the commutation between R-matrix and the twist operators shown

in Sec(II.1.1)), and satisfy the Yang-Baxter relation9, one can show that:

R̃p0q
“ diag

¨

˝1, ..., 1
loomoon

m

, 0, ..., 0
loomoon

n´m

˛

‚ m “ 1, 2, ..., n (II.1.21)

It is easy to see that (II.1.21) is equal to the identity matrix if m “ n. According to (II.1.19),

we only need to find the matrix elements of R̃p1q since R̃prq “ 0, @r ě 2. Thus, we write the

remaining coefficient of R̃p1q in the form:

R̃p1q
“

˜

Aa,b Ba,b̄

Cā,b Dā,b̄

¸

(II.1.22)

where A,B,C and D are operator-valued matrices of dimensions mˆm,mˆpn´mq, pn´mqˆ

m and pn´mq ˆ pn´mq, respectively. Notice that the undashed and dashed indices run from:

1 ď a, b ď m, m ` 1 ď ā, b̄ ď n (II.1.23)

By inserting (II.1.22) in (II.1.19), we obtain the commutation relations of the matrix elements:

rAa,b, Ac,es “ δa,eAc,b ´ δc,bAa,e, rAa,b, Bc,c̄s “ ´δb,cBa,c̄, rAa,b, Bc̄,cs “ δa,cCc̄,b

“

Ba,b̄, Bc,ē

‰

“ 0,
“

Ba,b̄, Cā,b

‰

“ δa,bDā,b̄, rCā,b, Cc̄,es “ 0

“

Dā,b̄, Lc,e

‰

“
“

Dā,b̄, Lc,c̄

‰

“
“

Dā,b̄, Lc̄,ē

‰

“ 0

(II.1.24)

I will show here how to find the first and last commutation relations; the rest follow in the same

manner. To obtain the first relation, we set r “ s “ 1 in (II.1.19), then for convenience we

rewrite the indices as i Ñ a, j Ñ b, k Ñ c and l Ñ e, notice that we are in the undashed sector

of (II.1.22) 10, given us the commutation relation of R̃p1q

a,b “ Aa,b. On the other hand, if we

look for the commutation relations of Dā,b̄ in (II.1.19) we notice that the labeling of order zero

9If the R-matrix satisfies the Yang-Baxter relation, then GR̃ puqF where G,F P glpnq also satisfies the

Yang-Baxter.
10Notice that (II.1.21) is equal to the delta function in the undashed sector.
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are R̃p0q

k,l̄
, R̃p0q

k̄,l
or R̃p0q

k̄,l̄
, these elements are all zeros since we are not in the undashed sector of

(II.1.21), giving us the last three commutation relations in (II.1.24). It was realized in [BFL`11]

that the resulting algebra in (II.1.24) can be realized as a direct product of the algebra glpmq

with mpn ´ mq copy of a harmonic oscillator algebra:

glpmq b Hbmpn´mq (II.1.25)

By introducing mpn ´ mq independent oscillator pairs pbā,b, b
:

b,āq, where ā “ m ` 1, . . . , n and

b “ 1, . . . ,m, that satisfy the commutation relation:
”

bā,b, b
:
c,ē

ı

“ δā,ēδb,c (II.1.26)

The connection of the algebra (II.1.24) to the product (II.1.25) was established in [BFL`11]

where they defined an evaluation homomorphism map from the infinite-dimensional Yangian

algebra (II.1.19) to the finite-dimensional algebra (II.1.25) which reads as:

R̃t1,2,...,pu “

˜

uδa,b ` Jb,a ´
řn

c̄“p`1

´

b:
a,c̄bc̄,b ` 1

2
δa,b

¯

b:

a,b̄

´bā,b δā,b̄

¸

(II.1.27)

II.1.4 Coderivative: the operational description of T -operators

The differential method of constructing T -operators was first introduced in the work by Kaza-

kov and Vieira [KV08]. This approach stemmed from how the R-matrices were defined (II.1.14)

using the permutation operator P . The concept presented in [KV08], involved rewriting the

tensor product from the operational description in (II.1.3a) using a differential operator in-

dependent of the representation used in our auxiliary space. The operator is referred to as

Coderivative. An aim of this approach is to reduce the terms influenced by the representation,

among other reasons that will be detailed later. With that, the definition of T -operators was

transformed into a set of operators that act on an object described by the representation.

As a start point, let us introduce the Coderivative operator:

D̂ b f pgq ”
B

Bεt
b f

`

exε|Jyg
˘

ˇ

ˇ

ˇ

ε“0

“

n
ÿ

i,j“1

Ji,j b
B

Bεj,i
f
´

e
řn

α,β“1 εα,βJα,βg
¯
ˇ

ˇ

ˇ

εÑ0

(II.1.28)

where f is a N -tensor valued function of the twist operator g, i. e. f pgq
i1,i2,...,iN
j1,j2,...,jN

, Jα,β is a GLpnq

generators and xε|Jy “
řn

α,β“1 εα,βJα,β denote the inner product. To help us understand how

one can rewrite T -operators using (II.1.28), we first need to see the action of Coderivative on

ρλ pgq. Using (II.1.28), one obtains:

D̂ b ρλ pgq “
ÿ

i,j

Ji,j b
B

Bεj,i
ρλ

`

e
ř

α,β εα,βJα,β ¨ g
˘

|ε“0

“
ÿ

i,j

Ji,j b

ˆ

B

Bεj,i
e
ř

α,β εα,βπλpJα,βq ¨ ρλ pgq

˙

|ε“0

“
ÿ

i,j

Ji,j b πλ pJj,iq ¨ ρλ pgq “ P1,λ pI b ρλ pgqq

(II.1.29)
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Notice that the action of Coderivative on the twist with an arbitrary representation pλq pro-

duces a generalized permutation operator, which appears in the definition of the R-matrix with

representation pλq in the auxiliary space (II.1.3b). This allows us to replace the generalized

permutation operators in (II.1.3a) with D̂.

The next logical step is to check the action of two Coderivatives on ρλ pgq. Thankfully, the

Coderivative operator obeys the Leibniz rule:

D̂ b pf pgq ¨ h pgqq “

´

D̂ b f pgq

¯

¨ pI b h pgqq ` pI b f pgqq ¨

´

D̂ b h pgq

¯

(II.1.30)

Thus, by acting with a second Coderivative on (II.1.29), one obtain:

D̂ b D̂ b ρλ pgq “ D̂ b pP2,λ ¨ pI b ρλ pgqqq “ P2,λ ¨

´

D̂ b pI b ρλ pgqq

¯

“ P2,λP1,λ ¨ pI b I b ρλ pgqq

(II.1.31)

In this relation, it is evident from the right hand side that we have a reversed labeling of

our physical spaces when using D̂. By induction, one can show that an arbitrary number of

Coderivatives acting on ρλ pgq will produce a set of permutation operators:

D̂bN
b ρλ pgq “ PN,λPN´1,λ . . .P1,λ ¨

`

IbN
b ρλ pgq

˘

(II.1.32)

Thus, one can think of reformulating the T -operators in terms of Coderivative by replacing the

P-operators with a Coderivative operator11. The T -operators takes the form:

T pλq
puq “

´

u1 ` D̂
¯

b

´

u2 ` D̂
¯

b ¨ ¨ ¨ b

´

uN ` D̂
¯

χλ pgq

“

N
â

i“1

´

ui ` D̂
¯

b χλ pgq

(II.1.33a)

Where ui “ u ´ θi, And χλ pgq “ trλ pρλ pgqq (II.1.33b)

As mentioned at the beginning of the section, (II.1.33a) is a description of T -operators with

the differential operator D̂ that acts on the character of the representation (II.1.33b). The two

definitions of T -operators provided in (II.1.3a) and (II.1.33a) have a conceptual difference in

constructing T -operators, which are built using R-matrices which correspond to spin in our spin

chain and then take a trace on the auxiliary space, whereas the latter starts with the character

of our system, and spins are added up by the action of the Coderivative on the character 12.

With the help of D̂, one can: use the fact that we have a Wronskian expression of symmetric

T -operators T p1,sq puq13 to describe a more general representation of a T -operators T pλq puq, this

11When replacing the P-operators with Coderivatives, one should not forget about the flipping in the Hilbert

space, as we have shown in (II.1.31).
12Also, from (II.1.33a) or (II.1.3a), one notice that these operators are polynomials in u

13T p1,sq puq is a T -operators with a symmetric representation in the auxiliary space; p1, sq “ . . .
s

refers to the number of (rows, columns) respectively of the representation (as shown in Fig. II.3).
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was well documented in [KV08] (check [Leu12] for a more detailed discussion). Also, it allows

us to describe fundamental objects from the generating series of the symmetry character called

Q-operators, these operators were described in [KLT12] using Coderivative (they have managed

to show the computations of Q-operators reduced to a combinatorial description of permutation

diagrams). In this PhD, we will use this operator to provide a proof of the Yang-Baxter equation

with a general function of the twist f pgq in the auxiliary space (see Sec(II.1.5)). Then, in

Sec(II.2), we will show how to obtain a nested T - and Q-operators from the two descriptions

(oscillator and differential) and prove that the two results are equivalent.

II.1.5 Coderivative and the Yang-Baxter equation.

Now that we have (II.1.33a), one can ask about the family of functions that satisfies the modified

Yang-Baxter equation using the Coderivative operator. This question was answered in [KLT12],

where it was obtained by the action of Coderivative on an arbitrary collection of the character

(that was a consequence of the properties of the R-matrix). In this section, we will provide a

formal proof of the question using Schwartz’s property of the differential operator.

This can be proven by taking the first step of rewriting the Coderivative version of the

particular Yang-Baxter equation (a Yang-Baxter equation with one auxiliary space and two

physical ones):

Ri1,i2
k1,k2

pu ´ vq

´

u ` D̂
¯k1

j1

´

v ` D̂
¯k2

j2
fpgq “

´

v ` D̂
¯i2

k2

´

u ` D̂
¯i1

k1
Rk1,k2

j1,j2
pu ´ vq fpgq (II.1.34)

where the indices ti1, i2, j1, j2u are the physical labeling of the operators, and they will be

referred to as (outgoing, ingoing) for pi, jq , respectively, whereas the indices tk1, k2u will refer

to a contraction between the operators. An expression like
´

u ` D̂
¯α

β
read as uδα,β ` D̂α

β

The proof of (II.1.34) boils down to the nontrivial identity we obtained in Appendix(B.1.1).

In the appendix, we collected the terms of all the powers of the spectral parameters in (II.1.34)

and found out that the only nontrivial one to be 14:

¨

˝

DD
´ DD

˛

‚f pgq “

ˆ

D ´ D

˙

f pgq (II.1.35)

Proof. of (II.1.34):

First, notice that the matrix coefficients of the operators DD and DD has a permutation that

exchanges the outgoing and ingoing labeling of its physical spaces respectively. For generality,

14The diagrammatic representation of operators

¨

˚

˚

˝

D, , DD , DD

˛

‹

‹

‚

read as
´

D̂, I,P
´

D̂ b D̂
¯

,
´

D̂ b D̂
¯

P
¯

,

respectively.
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we assumed a function of the twist f pgq to be on the auxiliary space, using (II.1.28) the left

hand side of (II.1.35) reads:

¨

˝

DD
´ DD

˛

‚

i1,i2

j1,j2

f pgq “
B

Bε

B

Bϕ

˜

f
`

eϕJj2,i1eεJj1,i2
˘

´ f
`

eϕJj1,i2eεJj2,i1
˘

¸

|ε“ϕ“0

“
B

Bε

B

Bϕ

˜

f
´

g ` pεJj1,i2 ` ϕJj2,i1 ` εϕδi1,j1Jj2,i2q g ` O
`

ϕ2
˘

` O
`

ε2
˘

¯

´ f
´

g ` pεJj2,i1 ` ϕJj1,i2 ` εϕδi2,j2Jj1,i1q g ` O
`

ϕ2
˘

` O
`

ε2
˘

¯

¸

|ε“ϕ“0

(II.1.36)

To elaborate, the second equality was obtained by taking the multiplication of the Taylor

expansion of the exponential functions and leaving only the terms with degree one in ε and

ϕ. Assuming that f P C2, this will help us in writing (II.1.36) as a differential function using

directional derivatives. For example, the matrix coefficient of the term pJj1,i2gq from (II.1.36)

reads:

pJj1,i2gq
k1
k2

“

δj1,k1δi2,m
hkkkikkkj

pJj1,i2q
k1
m gmk2 “ δj1,k1g

i2
k2

Using that, we can write DD as:

DDf pgq “

˜

f pgq `
ÿ

k1,k2

Bf

Bgk1,k2

«

εδk1,j1g
i2
k2

` ϕδk1,j2g
i1
k2

` εϕδi1,j1δi1,k1g
i2
k2

ff

`

ÿ

k1,k2,k3,k4

B2f

Bgk1,k2Bgk3,k4

«

εϕ
`

δk1,j1g
i2
k2

˘ `

δk3,j2g
i1
k4

˘

ff

` O
`

ϕ2
˘

` O
`

ε2
˘

¸

|ε“ϕ“0

(II.1.37)

The same goes for DD up to changing the indices pi1 Ø i2q, pj1 Ø j2q and pε Ø ϕq, the last

exchange is permitted; scene ε, ϕ are dummy variables. After collecting the terms together, one

finds:
¨

˝

DD
´ DD

˛

‚f pgq “
ÿ

k1,k2

Bf

Bgk1,k2

˜

δi1,j1δk1,j2g
i2
k2

´ δi2,j2δk1,j1g
i1
k2

¸

(II.1.38)

In the last expression, we notice that we have a free Kronecker delta (a Kronecker delta with

no index k to contract with another function), and they are labeled with the first or second

quantum indices pi1, j1q, pi2, j2q, respectively. To prove the equality in (II.1.35), one can easily

do the same steps as before for the right hand side of (II.1.35) and obtain the same result as

(II.1.38).
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II.2 Q-operators

In the study of spin chains, one key object is theQ-operators, a family of commuting T -operators

that commute with T -operators (and hence with the Hamiltonian), these operators were heavily

studied in the literature, some of the references about the subject are: [KLWZ97, GKLT11,

Tsu13] where they generate the Q-operators from the Bethe algebra, and [BLZ99, Tsu10,

KLV16] showing the various functional relations these operators satisfy and there connection

to Bethe Ansatz. This section will be a review to two different constructions of Q-operators,

but let us first mention that they allow us to express T -operators via the following Wronskian

determinant:

T pλq
puq “ χλpgquN

` . . . (II.2.1a)

9

∣∣∣∣∣∣∣∣∣∣

xλ1
1 Qr2λ1s

t1u
puq xλ1

2 Qr2λ1s

t2u
puq . . . xλ1

n Qr2λ1s

tnu
puq

xλ2´1
1 Qr2λ2´2s

t1u
puq xλ2´1

2 Qr2λ2´2s

t2u
puq . . . xλ2´1

n Qr2λ2´2s

tnu
puq

...
... . . .

...

xλn´n`1
1 Qr2λn´2n`2s

t1u
puq xλn´n`1

2 Qr2λn´2n`2s

t2u
puq . . . xλn´n`1

n Qr2λn´2n`2s

tnu
puq

∣∣∣∣∣∣∣∣∣∣

9

ˇ

ˇ

ˇ

ˇ

ˇ

´

xλk´k`1
j Qr2λk´2k`2s

tju
puq

¯

j,kPJ1,nK

ˇ

ˇ

ˇ

ˇ

ˇ

, (II.2.1b)

where the 9 symbol is a normalization factor that is fixed by (II.2.1a) (which sets the coefficient

of uN to χλpgq, as follows from the definition (II.1.33a)), and x1, . . . , xn are the eigenvalues of

the twist operator g 15. The Q-operators are hence directly related to the Hamiltonian, and they

provide a way to diagonalize the Hamiltonian, known as Wronskian Bethe equations [CLV22].

The operators Q
tju

puq that appear in this expression are the single-indexed Q-operators, as

opposed to multi-indexed Q-operators Q
ti1,i2,... u

puq that we will also introduce, and which will

be labeled by arbitrary subsets ti1, i2, . . . u Ă t1, 2, . . . , nu.

It turns out that the minors of the determinant play an important role (which will be

used in Sec(II.2.2.3)). To exemplify this idea, let us take an arbitrary subset ti1, i2, . . . , iku Ă

t1, 2, . . . , nu and some weights µ1 ě µ2 ¨ ¨ ¨ ě µk (associated to a representation of GLpnq), one

can define the minor

T pµ1,...,µkq

ti1,i2,...,iku
puq “ χµ pg̃q ud

` . . . where g̃ “ diagpxi1 , xi2 , . . . , xikq (II.2.2a)

9

ˇ

ˇ

ˇ

ˇ

ˇ

´

xµℓ´ℓ`1
ij

Qr2µℓ´2ℓ`2s

tiju
puq

¯

j,ℓPJ1,kK

ˇ

ˇ

ˇ

ˇ

ˇ

, (II.2.2b)

where d is the degree of T pµ1,...,µkq

ti1,i2,...,iku
puq as a polynomial in u16, and we see that the normalization

factor is now given by the character of a GLpkq element g̃ with eigenvalues xi1 , xi2 , . . . , xik ,

15In this thesis, we will address the case of the twist with distinct eigenvalues, i. e. xi ‰ xj if i ‰ j.
16Notice that d itself is an operator, in the sense that the degree of the polynomial varies from one sector

to another in the Hilbert space. One can view all T -operators Q-operators, etc. as block-diagonal (where the

blocks correspond to the number of spins pointing in each direction), and in each block d is an integer multiple

of identity. Hence it is conceptually easier to restrict equation (II.2.2) to any of these blocks, and see d as an

integer. For more details, check out the discussion on conserved charges in this section.
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acting in representation pµ1, . . . µkq. In (II.2.2a), the number k of elements of the subset

ti1, i2, . . . , iku Ă t1, 2, . . . , nu is sometimes referred to as the nesting level17.

A case of particular importance is when pµ1, . . . , µkq “ p0, . . . , 0q, and then it defines the

Q-operators:

Qti1,i2,...,iku puq “ T p0,...,0q

ti1,i2,...,iku
puq . (II.2.3)

II.2.1 Constructions of the nested T-operators

Let us now hint at two of the constructions that can be found in the literature, that shows these

Q-operators do exist and are polynomial, by explicitly constructing them. One construction

[KLT12] was obtained from the Coderivative, by constructing explicitly an operator as (we will

motivate this expression in the subsection II.2.2.3):

T pµ1,...,µkq

ti1,i2,...,iku
puq “ N lim

zj1Ñ1{xj1...
zjn´k

Ñ1{xjn´k

N
â

i“1

´

ui ` n ´ k ` D̂
¯

»

–

ź

jRti1,i2,...,iku

wpzjqχµ pg̃q

fi

fl (II.2.4)

(where we remind that g̃ “ diagpxi1 , xi2 , . . . , xikq) and wpzq “
ř

sě0 χpsqz
s is the generating

series of the symmetric character. Finding out that this operator obeys (II.2.2), and the leading

coefficients in u is fixed by (II.2.1).

Another construction relies on finding an explicit infinite-dimensional representation and

an R-matrix such that the nested T -operators of (II.2.2) is equal to the trace of the product of

these R-matrix (times the action of twist in the representation). This construction was written

in a series of papers (including [BLMS10],[BFL`11] and [FKT21]) and we show below how to

rewrite it in terms of Coderivatives. It follows the three following steps:

• The determinant in (II.2.1) reads
ÿ

σ

p´1q
σ

ź

ℓPJ1,nK

xλℓ´ℓ`1
σpℓq Qr2λℓ´2ℓ`2s

tσpℓqu
puq. In this sum over

permutations σ, it turns out that each term can be written as a trace of product of

R-matrix (times twist), and the authors explicit this R-matrix in terms of oscillator

representations.

This step can easily be rephrased in terms of Coderivatives: the character χλpgq of

(II.1.33a) turns out to be equal to
ˇ

ˇ

ˇ

`

xλi`n´i
j

˘

i,jPJ1,nK

ˇ

ˇ

ˇ

M

ś

iăjpxi ´ xjq. One can expand

this determinant, and we denote χ
pσq

λ pgq “
ś

ℓPJ1,nK x
λℓ`n´ℓ
σpℓq

M

ś

iăjpxi ´ xjq so that we

obtain χλpgq “
ř

σp´1qσχ
pσq

λ pgq, hence T puq “
ř

σp´1qσ
ÂN

i“1

´

ui ` D̂
¯

χ
pσq

λ pgq. We

will not need it in the present discussion, but it turns out that an infinite-dimensional

representation and an R-matrix can be found, which are associated with the character

χ
pσq

λ pgq.

17By contrast, some authors refer to n ´ k as the nesting level.
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• The second step is to take a limit where only a subset of factors survive in the product
ś

ℓPJ1,nK x
λℓ´ℓ`1
σpℓq Qr2λℓ´2ℓ`2s

tσpℓqu
puq (which is the product exhibited in the previous step for a

fixed permutation σ).

More precisely, we set λi “ µi´n`k ` n ´ k when i ą n ´ k, which means that in the last

lines of (II.2.1) the powers of xj (and the shift of Q-functions) are the same as in (II.2.2),

namely pλn´k`1 ´ n ` k, . . . , λn ´ n ` 1q “ pµ1, . . . µk ´ k ` 1q.

We moreover focus on specific permutations σ in this determinant: if we denote the set

J1, nKzti1, i2, . . . , iku as tj1, . . . jn´ku, we chose a permutation sigma such that σp1q “ j1,

σp2q “ j2, . . . , σpn ´ kq “ jn´k whereas the last terms pσpn ´ k ` 1q, . . . , σpnqq form an

arbitrary permutation σ̃ of ti1, i2, . . . , iku.

Then, when we take the limit λi Ñ 8 for each i P J1, n ´ kK, we see that the product
ś

ℓPJ1,nK x
λℓ´ℓ`1
σpℓq Qr2λℓ´2ℓ`2s

tσpℓqu
puq reduces to

ś

ℓPJ1,kK x
µℓ´ℓ`1
iσ̃pℓq

Qr2µℓ´2ℓ`2s

tiσ̃pℓqu
puq.

Indeed, the rest of the product is limλaÑ8

ś

aPJ1,n´kK x
λa´a`1
ja

Qr2λa`2a`2s

tjau
puq which is an

overall σ̃ independent constant, which we normalize out18.

It turns out that in this limit, the R-matrices have a well-defined limit; hence, the result

can be expressed as a trace of the product of R-matrix (times a twist). This expression

in terms of R-matrices was expressed in [BLMS10] for GLp2q, where it is introduced as

a λ Ñ 8 limit as in the above paragraph. By contrast, at higher rank, it was introduced

in [BFL`11] and [FKT21] without a λ Ñ 8 limit, Appendix A.1.2 gives slightly more

details on this construction and shows that it coincides indeed with the limit where λ1,

λ2, . . . , λn´k are infinite.

• The third step is to perform the sum over the permutation σ̃, which allows to recover the

right hand side of (II.2.2b).

If we rewrite this step in terms of Coderivatives, it expresses T pµ1,...,µkq

ti1,i2,...,iku
puq as

T pµ1,...,µkq

ti1,i2,...,iku
puq “

ÿ

σ̃

p´1q
σ̃ N lim

λ1Ñ8...
λn´kÑ8

N
â

i“1

´

ui ` D̂
¯

χ
pσq

λ pgq (II.2.5)

But if we recall the definition of χ
pσq

λ pgq, and the above relations between λ and µ and

between σ and σ̃, we obtain that19

χ
pσq

λ pgq “
pdet gq

n´k xλ1`k´1
j1

. . . x
λn´k`2k´n
jn´k

ś

1ďaăbďn´k pxja ´ xjbq
ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
χpσ̃q
µ pg̃q (II.2.6)

18The normalization follows exactly as described in Sec(I.1.1) or Sec(II.2.2.3) for detailed calculation.
19Equation (II.2.6) follows from the definition of the χσ and of λ and of σ, which give

χσ
λpgq “

xλ1`n´1
j1

. . . x
λn´k`k
jn´k

xµ1`n´1
iσ̃p1q

. . . xµk`n´k
iσ̃pkq

ś

1ďaăbďn´k pxja ´ xjbq
ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
ś

1ďℓămďk pxiℓ ´ ximq
,

and χσ̃
µpg̃q “

xµ1`k´1
iσ̃p1q

. . . xµk

iσ̃pkq
ś

1ďℓămďk pxiℓ ´ ximq
.
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hence

T pµ1,...,µkq

ti1,i2,...,iku
puq “ N lim

λ1Ñ8...
λn´kÑ8

N
â

i“1

´

ui ` D̂
¯ pdet gq

n´k xλ1`k´1
j1

. . . x
λn´k`2k´n
jn´k

ś

1ďaăbďn´k pxja ´ xjbq
ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
χµ pg̃q

(II.2.7)

The way of writing the character as in (II.2.6) will show to be a key step in the argument of

equivalence between the two constructions of Q-operators.

II.2.2 Relation between these two constructions

In the present subsection, we will show that the two constructions hinted in the previous

subsection II.2.1 actually match.

To this end, we will first intruduce a new diagramalcal notation to help us show that (II.2.4)

found in one of the two constructions:

II.2.2.1 Diagrammatic expressions from the Leibniz rule

Before we go any further, we notice that (II.2.4) and (II.2.7) involve Coderivatives of products of

multiple factors. We will now see that such an expression can be expressed via some diagrams:

To start with, let us consider a product of two scalar factors A and B, and let us compute
ÂN

i“1

´

ui ` D̂
¯

AB at lengths N “ 1 and N “ 2:

At length one, the Leibniz rule (II.1.30) gives
´

u1 ` D̂
¯

AB “

´

u1 ` D̂A
A ` D̂B

B

¯

AB, which

we shall write as

ˆ

u ` dA ` dB
˙

AB where u (resp dA , resp dB ) denotes a factor

ui (resp
D̂A
A resp D̂B

B ). At length two,
´

u1 ` D̂
¯´

u2AB ` BD̂A ` AD̂B
¯

involves a Leibniz

rule where the Coderivative can act on either of the two factors of each term. We therefore

obtain:

2
â

i“1

´

ui ` D̂
¯

AB “

ˆ

u u ` u dA ` u dB ` dA u ` dB u

` dB dA ` d2A ` dA dB ` d2 B
˙

AB, (II.2.8)

where for instance u dA denotes u1I b D̂A
A , whereas dB u denotes D̂B

B b u2I, and

d2A denotes D̂2A
A .

Before we give the general statement for the outcome of Leibniz rule, let us also consider

length N “ 3, but now for simplicity we omit the ui:

D̂b3AB “

ˆ

d2 B dA ` d2A dB ` d3A ` dB d2A

` d2A dB ` d2 B dA ` d3 B ` dA d2 B
˙

AB, (II.2.9)
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where d3 B denotes D̂3B
B , and where the crossings of external legs in d2A dB keep

track of the ingoing and outgoing indices: the matrix coefficient at position pi1i2i3, j1j2j3q

in d2A dB is pd2Aq
i1i3
j1j3

pdBq
i2
j2
.

At this point it becomes clear that for an arbitrary product of factors f1f2 . . . fk, the Leibniz

rule allows to expand
ÂN

i“1

´

ui ` D̂
¯

f1f2 . . . fk as the sum of pk`1qN diagrams: each diagram

is characterized by a partition of J1, NK into k ` 1 sets: A0 \ A1 \ ¨ ¨ ¨ \ Ak “ J1, NK and we

associate the legs with position in A1 to d f1, the legs with position in A2 to d f2, etc. and

the legs with position in A0 to factors uiI. For instance, in
Â4

i“1

´

ui ` D̂
¯

f1f2, the term

associated to the partition t1, 3u \ t2u \ t4u corresponds to the diagram u d f1 d f2 ,

which means u1u3I b
D̂ f1
f1

b I b
D̂ f2
f2

.

And we have to remember that the sum of these diagrams is multiplied by f1f2 . . . fk (in

the same way that there were overall factors AB in (II.2.8) and (II.2.9)).

II.2.2.2 Equivalence of the two constructions

Following the previous subsection, the equivalence of these two constructions would amount to

the equality

N lim
zj1Ñ1{xj1...

zjn´k
Ñ1{xjn´k

N
â

i“1

´

ui ` n ´ k ` D̂
¯

«

n´k
ź

a“1

n
ź

i“1

1

1 ´ xizja
χµ pg̃q

ff

“ N lim
λ1Ñ8...

λn´kÑ8

N
â

i“1

´

ui ` D̂
¯ pdet gq

n´k xλ1`k´1
j1

. . . x
λn´k`2k´n
jn´k

ś

1ďaăbďn´k pxja ´ xjbq
ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
χµpg̃q (II.2.10)

This equailty will follow from Lemma(I.1.2). In the previous equation one can see that the

polynomial produced is not monic in u. Thus, the normalization in Sec(I.1.1) can be fixed

according to (I.1.13) using the highest coefficient in u from (II.2.2a).

II.2.2.2.1 Polynomiality in λ

Let us now conclude, from the way that limits are defined up to a normalisation, and from the

above expressions of the Leibniz rule, that in the right hand side of (II.2.10), we actually take

the limit of a polynomial function of the λ.

When we express the right hand side of (II.2.10) from the Leibniz rule as above, it gives

a sum of diagrams, multiplied by the factor
pdet gq

n´kx
λ1`k´1
j1

...x
λn´k`2k´n

jn´k
ś

1ďaăbďn´kpxja´xjbq
ś

1ďaďn´k
1ďℓďk

χµpg̃q (which is the

product f1 . . . fk of the previous paragraph). In this product, the factors xλ1`k´1
j1

. . . x
λn´k`2k´n
jn´k

are the only ones that contain λ, whereas in the diagrams, we only have polynomials in λ.
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Indeed, it turns out that there exists polynomial20 Pn,ipλq such that D̂nxλ
i “ Pn,ipλqxλ

i , and

this polynomial is expressed by recurrence as P1,ipλq “ λpi and Pn,ipλq “ λPn´1,ipλq b pi `

D̂Pn´1,ipλq21 (this last equality follows from the Leibnitz rule when we differentiate Pn´1,ipλqxλ
i ).

It follows that in each diagram, the factors dkxλ
j “ Pk,jpλq are polynomials in λ, and hence we

are in a condition that allows to apply the therom.

It follows that the right hand side of (II.2.10) is equal to

N lim
zj1Ñ1{xja...

zjn´k
Ñ1{xjn´k

N
â

i“1

´

ui ` D̂
¯ pdet gq

n´k śn´k
a“1

1
1´xjazja

ś

1ďaăbďn´k pxja ´ xjbq
ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
χµpg̃q (II.2.11)

Terms that do not contribute to the zj Ñ 1{xj limit

Let us show now that II.2.11 is also equal to

N lim
zj1Ñ1{xja...

zjn´k
Ñ1{xjn´k

N
â

i“1

´

ui ` D̂
¯ pdet gq

n´k śn´k
a“1

1
1´xjazja

ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
χµpg̃q (II.2.12)

i. e. that the factors 1

pxja´xjbq
are completely irrelevant:

To this end, we should first notice that in (II.2.11), (II.2.12) the action of Coderivative

gives a rational function of all zj. The limit zj Ñ 1{xj simply picks the coefficient of the most

singular term in its Laurent series. To identify this coefficient, the first step is to understand

the multiplicity of the pole at zj Ñ 1{xj.

As one can see from the right hand side of (II.2.4), (II.2.11) and (II.2.12) there are poles

that come from the limit zj Ñ 1
xj
. These poles come solely from the factors 1

1´xjℓ
zjℓ

and their

derivatives. Whereas the rest of the factors and their derivatives are C8 in the vicinity of 1
xj
,

they do not contribute to the singularity.

The degree of a pole is sector dependant, i. e. it varies from one sector in the Hilbert space to

another. We will call “sectors” the subspaces spanned by basis vectors |VNy ” |vk1 , vk2 , . . . , vkN y

where a fixed number of factors vkℓ is equal to each vk. Such that, in the eigenvectors of basis,

g1, g2, . . . , gN read as gl |VNy “ xkl |VNy22. Then, a singularity at z Ñ 1
xj

comes from a factor

dk 1
1´xjz

(the notation of derivative d is introduced in Sec(II.2.2.1)). This can be explained by

viewing 1
1´xjzj

as a matrix element of the operator 1
detp1´gzjq

, such that 1
1´xjzℓ

“ xvj|
´

1
1´gzℓ

¯

|vjy.

20Note that Pn,ipλq is an operator valued polynomial, ie the coefficient of each power of λ is a complicated

function of g.
21The parameter pi is the projector on the eigenspace associated with the eigenvalue xi and is described in

Appendix(B.1).
22For a chain with N spins in it, gℓ “ Ibpℓ´1q b g b IbpN´ℓ`1q refare to how it act on a vector |VN y of the

Hilbert space.
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Then, we write the matrix coefficients of an opeartor dN 1
detp1´gzℓq

as:

xvi1 . . . , viN | dN
1

det p1 ´ gzℓq
|vj1 . . . , vjN y “

ÿ

σPSN

N
ź

k“1

˜

pxkzℓq
θpσpkq´kq

1 ´ xkzℓ

¸

δ
piσkq

jk
(II.2.13)

The expression on the right hand side of dN 1
detp1´gzℓq

was found in [KLT12], θpkq “

#

1, if k ě 0

0, if k ă 0

is the Heaviside step function, and the sum is taken over all permutations in SN . This relation

tells us that when you act by dN 1
detp1´gzℓq

on a vector |VNy, the highest multiplicity of a pole

when z Ñ 1
xj

comes from all of the factors of dN 1
detp1´gzℓq

when acted on |vj, . . . , vjy, that being
the sector with the highest multiplicity. Other secotrs have lower degrees due to some of the

factors acting on different vectors.

To a non-negative integers m1,m2, . . . ,mn such that
ř

ℓ mℓ “ N , we associate the sector

Spm1,m2,...,mnq spanned by all the basis vectors |vi1 . . . viN y such that @k P t1, 2, . . . , nu : mk “

#tp|ip “ ku. As pointed out in [KLT12], this is a conserved number, which can be produced

by an operator Mj such that Mj |VNy “ mj |VNy. This operator is a conserved quantity of the

system, where:

rMj,Ps “ rMj,
N
â

i“1

´

ui ` D̂
¯

f pgqs “ 0 (II.2.14)

The first commutation is straightforward due to the fact that P does not change the number of

charges in the sector, as defined in (I.1.3a). Also,
ÂN

i“1

´

ui ` D̂
¯

f pgq is made of permutation

operators and operators which are diagonal on the same basis as the twist g. That is why we

have rMj,
ÂN

i“1

´

ui ` D̂
¯

f pgqs “ 0.

Now we are ready to compare (II.2.11) to (II.2.12): When we expand the Leibniz rule of

both expressions, as in (II.2.8) and (II.2.9), they differ by the factors 1
xja´xjb

which appear both

as some factors d... 1
xja´xjb

is several diagrams, and as a global prefactor (in the factor f1f2 . . . fk

that multiplies the sum of diagrams). The contribution as a global prefactor disappears when

we take the limit, because this limit involves a global normalisation which forces the leading

order term to be given by (II.2.2a). Therefore, expressions (II.2.11) and (II.2.12) differ only by

some factors d... 1
xja´xjb

is several diagrams. The expression of d... 1
xja´xjb

is itself made of several

terms, and each term contains a pja or a pjb or the (potentially iterated) derivative of the pja
or pjb . It follows that such terms give zero on vectors |vk1vk2 . . . vkN y unless there is at least

one ingoing leg that is attached to a vja (or vjb). But if this is the case, then the corresponding

ingoing leg is not attached to a diagram d... 1
1´xjazja

(or d... 1
1´xjb

zjb
) hence the corresponding

term is subleading in the zja Ñ 1{xja limit (or in the zjb Ñ 1{xjb limit) and such term does not

contribute in the limit.

Therefore, when we take the limit, we obtain the equality between (II.2.11) and (II.2.12).

The exact same argument can be applied to the left hand side of (II.2.10), where it allows to

drop the factors 1
1´xizja

when i “ jb (ie an index of J1, nKzti1, i2, . . . , iku) for a b ‰ a. Then the

left hand side of (II.2.10) is equal to lim
ÂN

i“1

´

ui ` D̂
¯ ”

śn´k
a“1

1
1´xjazja

śk
ℓ“1

1
1´xiℓ

zja
χµ pg̃q

ı

.
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Therefore, the proof of equality reduces to proving the equality

N lim
zj1Ñ1{xja...

zjn´k
Ñ1{xjn´k

N
â

i“1

´

ui ` n ´ k ` D̂
¯

«

n´k
ź

a“1

1

1 ´ xjazja

k
ź

ℓ“1

1

1 ´ xiℓzja
χµ pg̃q

ff

“ N lim
zj1Ñ1{xja...

zjn´k
Ñ1{xjn´k

N
â

i“1

´

ui ` D̂
¯ pdet gq

n´k śn´k
a“1

1
1´xjazja

ś

1ďaďn´k
1ďℓďk

pxja ´ xiℓq
χµpg̃q (II.2.15)

At this point we have to use the relation D̂ det g “ det g, which allows to rewrite the right

hand side as lim
zj1Ñ1{xja...

zjn´k
Ñ1{xjn´k

ÂN
i“1

´

ui ` n ´ k ` D̂
¯

śn´k
a“1

1
1´xjazja

ś

1ďaďn´k
1ďℓďk

pxja´xiℓq
χµpg̃q.

Next, the expressions only differ by factors 1
1´xiℓ

zja
(in the left hand side) compared to

1
xja´xiℓ

(in the right hand side). Therefore it only remains to show that factors 1
xja´xiℓ

can be

replaced with 1
1´xiℓ

zja
without changing the limit, exactly like we showed previously that the

factors 1
xja´xjb

can be dropped to obtain the equality of (II.2.11) and (II.2.12).

To this end, we have to consider the quantity dr 1
xja´xiℓ

, which itself contains several terms:

if all Coderivatives successively act on the xiℓ (and its derivatives) and never on the xja then we

obtain the same as limzjaÑ 1
xja

dr 1
1{zja´xiℓ

, because D̂zja “ 0. Whereas if at least one derivative

acts on xja (and the next Coderivatives potentially act on the result), then we get terms that

contain pja in at least one of the outer legs. As discussed above, such terms are subleading

and should be dropped. Hence we can replace each factor 1
xja´xiℓ

with 1
1{zja´xiℓ

which can be

written as 1
zja

1
1´xiℓ

zja
, and the factor 1

zja
is not impacted by Coderivatives hence it is absorbed

into the normalisation when we take the limit.

This concludes the proof that the two expressions of T
pµ1,...,µkq

ti1,i2,...,iku
coincide, i. e. that the two

above constructions of nested T -operators (and of nested Q-operators via (II.2.3)) do coincide.

II.2.2.3 Derivation of (II.2.4)

This discussion was motivated by Appendix C of [CLV22] for a single-indexed Q-operators. We

are going to capitalize on that idea and deduce the nested T -operatorsin (II.2.2) and multi-

indexed Q-operatorsin (II.2.3). To be more precise, we will show that nested T - and Q-operators

are only dependant on the nested character and the generating series of the removed eigenvalues.

To start with, if we use Lemma (I.1.2) to isolate terms with factor xλ1
1 in (II.2.1), we obtain

that:

N lim
z1Ñ1{x1

ÿ

λ1ě0

T pλq
puq zλ1

1 “

∣∣∣∣∣∣∣∣

xλ2´1
2 Qr2λ2´2s

t2u
puq . . . xλ2´1

n Qr2λ2´2s

tnu
puq

... . . .
...

xλn´n`1
2 Qr2λn´2n`2s

t2u
puq . . . xλn´n`1

n Qr2λn´2n`2s

tnu
puq

∣∣∣∣∣∣∣∣
(II.2.16)

where the right hand side differs from (II.2.1) by the removal of the first line and column of

the determinant.
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If we iterate the process and denote λ “ pλ1, λ2, . . . , λn´k, µ1, . . . , µkq similarly to section

II.2.123, then we obtain:

T pµ1,...,µkq

ti1,i2,...,iku
pu ´ n ` kq “ N lim

zj1Ñ1{xj1...
zjn´k

Ñ1{xjn´k

ÿ

λj1
ě0

. . .
ÿ

λjn´k
ě0

T pλq
puq z

λj1
j1

. . . z
λjn´k

jn´k
(II.2.17)

“ N lim
zj1Ñ1{xj1...

zjn´k
Ñ1{xjn´k

N
â

m“1

´

um ` D̂
¯

ÿ

λj1
ě0...

λjn´k
ě0

z
λj1
j1

. . . z
λjn´k

jn´k
det

`

χpλj´j`iqpgq
˘

1ďi,jďn

where χpλj´j`iqpgq is the character in the symmetric representation representation psq “ ps, 0, . . . q,

and where we used the Weyl formula express χλpgq as det
`

χpλj´j`iqpgq
˘

1ďi,jďn
.

The right hand side of (II.2.17) is made of coderivatives of the following determinant:
ÿ

λj1
ě0...

λjn´k
ě0

z
λj1
j1

. . . z
λjn´k

jn´k
det

`

χpλj´j`iqpgq
˘

1ďi,jďn

“

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ř

λ1ě0 z
λ1
j1
χλ1 pgq . . .

ř

λ1ě0 z
λ1
j1
χλ1`n´1 pgq

...
...

ř

λn´kě0 z
λn´k

jn´k
χλn´k´n`k`1 pgq . . .

ř

λn´kě0 z
λn´k

jn´k
χλn´k`k pgq

χµ1´n`k pgq . . . χµ1`k´1 pgq

...
...

χµk´n`1 pgq . . . χµk
pgq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

“

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w pzj1q . . . w pzj1q {zn´1
j1

...
...

zn´k´1
jn´k

w
`

zjn´k

˘

. . . w
`

zjn´k

˘

{zkjn´k

χµ1´n`k pgq . . . χµ1`k´1 pgq

...
...

χµk´n`1 pgq . . . χµk
pgq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

` regular terms

where the regular terms are boundary terms for the sum over λ. For instance, for the top-right

coefficient of the matrix, one has

ÿ

λ1ě0

zλ1
j1
χ

pλ1`n´1q
pgq “

˜

ÿ

λ1ě1´n

´

´1
ÿ

λ1“1´n

¸

´

zλ1
j1
χ

pλ1`n´1q
pgq

¯

(II.2.18)

“

˜

wpzj1q ´

n´2
ÿ

s“0

zsj1χs
pgq

¸

{zn´1
j1

(II.2.19)

and
řn´2

λ1
zλ1
j1
χλ1 pgq {zλ1

j1
gives one of the regular terms. We call them “regular terms” because

in the limit zj Ñ 1{xj these terms (and their coderivative) have no pole (unlike w pzjq), hence

these terms do not contribute to the N lim in (II.2.17).

23The reader may notice a slight change of convention with respect to section II.2.1 where the convention was

λ “ pλ1, λ2, . . . , λn´k, µ1 ` n ´ k, . . . , µk ` n ´ kq.
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The previous discussion compresses (II.2.17) to:

T pµ1,...,µkq

ti1,i2,...,iku
pu ´ n ` kq “ N lim

zj1Ñ1{xj1...
zjn´k

Ñ1{xjn´k

N
â

m“1

´

um ` D̂
¯

∣∣∣∣∣∣∣

´

za´b
zja

w pzjaq

¯

1ďaďn´k
bPJ1,nK

`

χpµa´k´a`bqpgq
˘

n´k`1ďaďn
bPJ1,nK

∣∣∣∣∣∣∣
(II.2.20)

where the generating series factors out from the determinant, and due to the properties of the

determinant, one can deduce that:
∣∣∣∣∣∣

`

xb´a
ja

˘

1ďaďn´k
bPJ1,nK

`

χpλa´a`bqpgq
˘

n´k`1ďaďn
bPJ1,nK

∣∣∣∣∣∣
“

n´k
ź

a“1

`

x1´a
ja

˘

χµ pg̃q (II.2.21)

where
śn´k

a“1

`

x1´a
ja

˘

is a prefactor of the removed eigenvalues, and χµpg̃q is the nested character.

From the discussion in Sec(II.2.2.2) for the non-contributing factors of the limit, we know

D̂bN ¨
śn´k

a“1

`

x1´a
ja

˘

is subleading when taking the normalized limit. After shifting the spectral

parameter u ù u ` n ´ k, we end up with (II.2.4).

Proof. of (II.2.21):

The equality in (II.2.21) stems from the fact that we have two equivalent definitions of the

character: the CBR and 1st Weyl formula:

χCBR
λ pgq “

∣∣∣pχλi`j´iq1ďi,jďn

∣∣∣ (II.2.22a)

χWeyl
λ pgq “

∣∣∣
`

xλi`n´i
j

˘

1ďi,jďn

∣∣∣
∆ px1, . . . , xnq

(II.2.22b)

The steps here have already been done for (II.2.17), but we will do the steps precisely in order

to find the prefactor in (II.2.21). Starting with taking the infinite sums24 of (II.2.22a):

ÿ

λ1ě0...
λn´kě0

χCBR
λ pgq zλ1

j1
. . . z

λn´k

jn´k
“

∣∣∣∣∣∣∣

´

za´b
zja

w pzjaq

¯

1ďaďn´k
bPJ1,nK

`

χpµa´k´a`bqpgq
˘

n´k`1ďaďn
bPJ1,nK

∣∣∣∣∣∣∣
(II.2.23)

The next step is to eliminate the singularities of the expression when taking the limit. We

propose the normalization factor p1 ´ xzq, which will 25 read as:

lim
zj1Ñ1{xj1...

zjn´k
Ñ1{xjn´k

n´k
ź

a“1

p1 ´ xjazjaq
ÿ

λ1ě0...
λn´kě0

χCBR
λ pgq zλ1

j1
. . . z

λn´k

jn´k
“

n´k
ź

a“1

xn´1
ja

∣∣∣∣∣∣

`

xb´a
ja

˘

1ďaďn´k
bPJ1,nK

`

χpµa´k´a`bqpgq
˘

n´k`1ďaďn
bPJ1,nK

∣∣∣∣∣∣
∆
`

xj1 , . . . , xjn´k

˘

(II.2.24)

24The CBR formula (II.2.22a) is equivalent to (II.2.1) when N “ 0.
25∆ px1, . . . , xmq is defined as

∣∣∣xa´b
a

∣∣∣
1ďa,bďm

.
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The prefactor infrote of the determinant comes from the normalized limit on the generating

series of the symmetric characters:

lim
zj1Ñ1{xj1...

zjn´k
Ñ1{xjn´k

n´k
ź

a“1

p1 ´ xjazjaqw pzjaq “

śn´k
a“1 x

n´1
ja

∆
`

xj1 , . . . , xjn´k

˘ (II.2.25)

Using the same steps for the 1st Weyl formula of the character, we obtain:

lim
zj1Ñ1{xj1...

zjn´k
Ñ1{xjn´k

n´k
ź

a“1

p1 ´ xjazjaq
ÿ

λ1ě0...
λn´kě0

χWeyl
λ pgq zλ1

j1
. . . z

λn´k

jn´k
“

1

∆ pxj1 , . . . , xjnq

∣∣∣∣∣∣∣

´

δa,bx
pn´aq

ja

¯

1ďaďn´k
bPJ1,nK

`

xλa`n´a
ja

˘

n´k`1ďaďn
bPJ1,nK

∣∣∣∣∣∣∣

“

śn´k
a“1

`

xn´a
ja

˘

∆ pxj1 , . . . , xjnq

∣∣∣
`

xλa`n´a
ja

˘

n´k`1ďa,bďn

∣∣∣

(II.2.26)

One can also write the numerator of the right hand side in the previous equation as:

∣∣∣
`

xλa`n´a
ja

˘

k`1ďa,bďn

∣∣∣ “ ∆
`

xjk`1
, . . . , xjn

˘

χµ pg̃q , g̃ “ diag
`

xjk`1
, . . . , xjn

˘

(II.2.27)

This will allow us to rewrite (II.2.26):

lim
zj1Ñ1{xj1...

zjn´k
Ñ1{xjn´k

n´k
ź

a“1

p1 ´ xjazjaq
ÿ

λ1ě0...
λn´kě0

χWeyl
λ pgq zλ1

j1
. . . z

λn´k

jn´k
“

n´k
ź

a“1

xn´a
ja

χµ pg̃q

∆ pxj1 , . . . , xjn´kq (II.2.28)

Finally, with the equivalence between (II.2.24) and (II.2.28), one obtain (II.2.21).

II.2.3 Normalized limit of operators

In the introduction, we manipulated normalized limits of operator-valued polynomials without

thoroughly discussing whether they have the same definition and can be manipulated in the

same manner as normalized limits of complex-valued polynomials.

II.2.3.1 Small size example

To clarify the question, let us start with a simple explicit example: In a glp2q-spin chain of

length N “ 2, the operator Q1 puq defined by equation (II.2.3) and (II.2.4), is given by Q1 puq “

N limz2Ñ1{x2

ÂN
i“1

´

ui ` 1 ` D̂
¯

wpz2q . In the basis (|11y, |12y, |21y, |22y), the expression (found

in [KV08]):

D̂i1
j1
D̂i2

j2
. . . D̂iN

jN
wpzq “

ÿ

σPSN

N
ź

k“1

˜

pg zq
Θpk´σpkqq

1 ´ g z

¸iσk

jk

wpzq , (II.2.29)
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allows to write it as:

Q1puq “ N lim
z2Ñ1{x2

¨

˚

˚

˚

˚

˝

A 0 0 0

0
B

0

0 0

0 0 0 C

˛

‹

‹

‹

‹

‚

wpz2q (II.2.30a)

where A “ pu1 ` 1
1´x1z2

qpu2 ` 1
1´x1z2

q ` x1z2
p1´x1z2q2

, (II.2.30b)

B “

˜

pu1`
1

1´x1z2
qpu2`

1
1´x2z2

q
x1z2

p1´x1z2qp1´x2z2q

x2z2
p1´x1z2qp1´x2z2q

pu1`
1

1´x2z2
qpu2`

1
1´x1z2

q

¸

, (II.2.30c)

and C “ pu1 ` 1
1´x2z2

qpu2 ` 1
1´x2z2

q ` x2z2
p1´x2z2q2

. (II.2.30d)

As expected, the block structure is given by the sectors of the Hilbert space26, which were

defined in section II.2.2.1.

The Normalized limit was introduced in section I.1.1 by saying that we multiply by a normal-

isation which makes the limit finite and fixes the leading coefficient of the limit, as a polynomial

in u.

Following this recipe, we would compute the normalized limit as:

Q1puq “ lim
z2Ñ1{x2

¨

˚

˚

˚

˚

˝

1 0 0 0

0
p1 ´ x2z2qI

0

0 0

0 0 0 p1´x2z2q2

2

˛

‹

‹

‹

‹

‚

wpz2q

¨

˚

˚

˚

˚

˝

A 0 0 0

0
B

0

0 0

0 0 0 C

˛

‹

‹

‹

‹

‚wpz2q (II.2.31)

“

¨

˚

˚

˚

˚

˝

pu1 ` x2

x2´x1
qpu2 ` x2

x2´x1
q `

x2
2

px2´x1q2
0 0 0

0 u1 ` x2

x2´x1

x1

x2´x1
0

0 x2

x2´x1
u2 ` x2

x2´x1
0

0 0 0 1

˛

‹

‹

‹

‹

‚

(II.2.32)

We notice for instance that the matrix coefficients of this normalized limit are not the

normalized limit of the matrix coefficients: for instance the normalized limit of the off-diagonal

coefficients of B (in (II.2.30c)) is equal to one (because they are u-independent), whereas the

corresponding coefficients in (II.2.32) are x1

x2´x1
(resp x2

x2´x1
).

In what follows we precise a posteriori the definition of normalized limit for these precise

operators, so that it gives indeed (II.2.32) and that the manipulations of normalized limit in

sections II.2.2.3 and II.2.1 are legitimate.

II.2.3.2 Sector-wise definition

The simplest way to defined normalized limits for the present article is to notice that we are

manipulating very specific operators: On the one hand, all of them are block-diagonal, where

26This block structure is a consequence of the diagrammatic expression which express T- and Q-operators as

sums of products of permutation operators and diagonal matrices.
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the blocks correspond to the sectors of the Hilbert space, introduced in Sec(II.2.2.1); and on the

other hand, the normalisation factor which we introduce to make the limit finite is block-wise

proportional to identity.

The block structure (i. e. the statement that the sectors of the Hilbert space are stable spaces

of all considered operators) follows simply from the fact that we always considers operators

which are sums of products of permutation operators and diagonal matrices. This property is

for instance very manifest in (II.2.29), and more generally it follows from the Leibnitz rule and

from (B.1.6) and (B.1.10).

Due to this block-diagonality, we will only generalise equations (I.1.11-I.1.12) inside each

sector. In each sector, we generalize “maxi |fipΛq|” (in (I.1.11)) as maxi }fipΛq}, where } . . . }

denotes an arbitrary norm. Indeed, we remind that all norms are equivalent in finite dimensional

spaces, and we will only use this norm to capture the scaling (e.g. the multiplicity of a pole).

II.2.3.2.1 Explicit example

For instance in the example (II.2.30), if we focus on the sector Sp1,1q, we use the norm }M} “
ř

|mi,j|, and we denote by fi the coefficients of the polynomial P puq “
řd

i“0 fiu
i as in (I.1.11)27),

then we have:

f0 “

˜

p
1

1´x1z2
´θ1qp

1
1´x2z2

´θ2q
x1z2

p1´x1z2qp1´x2z2q

x2z2
p1´x1z2qp1´x2z2q

p
1

1´x2z2
´θ1qp

1
1´x1z2

´θ2q

¸

wpz2q (II.2.33)

f1 “

ˆ 1
1´x1z2

`
1

1´x2z2
´θ1´θ2 0

0
1

1´x2z2
`

1
1´x1z2

´θ1´θ2

˙

wpz2q (II.2.34)

f2 “ p 1 0
0 1 qwpz2q (II.2.35)

hence }f2} “ 2|wpz2q|, }f1} “
2

|1 ´ x2z2|
|wpz2q| ` Op1q (II.2.36)

and }f0} “

´
ˇ

ˇ

ˇ

1
1´x1z2

´ θ1

ˇ

ˇ

ˇ
`

|x1|`|x2|

|1´x1z2|
`

ˇ

ˇ

ˇ

1
1´x1z2

´ θ2

ˇ

ˇ

ˇ

¯

|wpz2q|

|1 ´ x2z2|
` Op1q (II.2.37)

Therefore, maxi }fi} scales like |wpz2q|

|1´x2z2|
. In order to follow precisely (I.1.11-I.1.12) we can

introduce an α such maxi }fi} “ α wpz2q

1´x2z2
– this function α is a maximum of several functions of

the eigenvalues and the inhomogeneities28 – which has a finite limit α0 when z2 Ñ 1{x2. Then

in equations (I.1.11-I.1.12), P̃ puq is given by

c0 “

˜

1
1´x1{x2

´θ1
x1{x2

1´x1{x2

1
1´x1{x2

1
1´x1{x2

´θ2

¸O

α0, c1 “ p 1 0
0 1 q{α0 and d1

“ 1 (II.2.38)

Then c1 is proportional to identity, which allows to manipulate it as if it was a scalar in (I.1.12),

and we get the normalized limit announced in (II.2.32), with an overall normalisation factor
1

maxi }fipΛq}cd1
“

p1´x2z2q

wpz2q
.

27Notice that compared to (I.1.11), the limit z2 Ñ 1{x2 plays the role of the limit Λ Ñ Λ0.
28Notice that if maxi }fi} was replaced by another (necessarily equivalent) norm – for instance

ř

i }fi}, then

the function α would be modified but the discussion would remain exactly the same.
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II.2.3.2.2 General justification

The main propoerty which enabled to generalize the definitions (I.1.11-I.1.12) to operators, is

that on each sector the coefficient cd1 used in (I.1.12) is a scalar (a multiple of identity).

Let us show that in sector Spm1,m2,...,mnq (as defined in Sec(II.2.2.1)), the normalized limit

(II.2.4) involves the renormalisation by a factor:

1

maxi }fipΛq}cd1

“

n´k
ź

a“1

p1 ´ xjazjaqmja

mja !

O˜

χµ pg̃q

n´k
ź

a“1

wpzjaq

¸

First let us explain the factor
śn´k

a“1
p1´xjazja q

mja

mja !
. We remember that the factor p1 ´ xjazjaqmja

was identified in Sec(II.2.2.2.1) where we identified the multiplicity of the poles in each sector

of the Hilbert space. The factor 1
mja !

follows from the expression of the terms with lead-

ing degree in u: when we act on a given basis vector |a1, . . . aNy, we get diagrams such

as

a1 a2 a3 a4 a5

u dwpzj1qdwpzj2qdχ
µ
pg̃q (in the notations of Sec(II.2.2.1)), where the leading dia-

grams (see Sec(II.2.2.2.1) are the diagrams such that for each p P t1, 2, . . . Nu, such that

ap P tj1, j2, . . . , jn´ku, the index ap is connected to the dwpzapq. Among those, one single

diagram has maximal degree in u: the diagram such that for each p P t1, 2, . . . Nu, such

that ap P ti1, i2, . . . , in´ku, the index ap is connected to the u. From the expression (II.2.29) of

dwpzjbq, we see that this diagram has a
śn´k

a“1 mja ! which comes from the sum over permutations

in each dwpzjaq.

Now than we have explained the factor
śn´k

a“1
p1´xjazja q

mja

mja !
, we should remember that in the

sum of diagrams given in Sec(II.2.2.1), all diagrams are multiplied by χµ pg̃q
śn´k

a“1 wpzjaq, and

in order to absorb this factor we need a normalisation:

1

maxi }fipΛq}cd1

“

n´k
ź

a“1

p1 ´ xjazjaqmja

mja !

O˜

χµ pg̃q

n´k
ź

a“1

wpzjaq

¸

II.2.3.3 Diagonalizability

In the intruduction, another claim was given to say that the normalized limit would reduce to

normalized limits of complex-valued polynomial:

The claim is that we only consider the normalized limit of diagonalizable matricesMpu,Λq “

P´1DP , where the change of basis P is indenpendant of u and of the parameter Λ (or zj) with

respect to which we take the limit. Denoting the diagonal part as D “ diagpd1, d2, . . . q, the

statement is then that N limP´1DP “ P´1diagpN lim d1,N lim d2, . . . qP .

Although this argument looks rather simple in order to understand what is meant by nor-

malized limit of an operator, we will only sketch its justification, which requires two claims:

1. For each u and Λ (or zj), the operator Mpuq that we consider is diagonalisable.

46



2. This operator comutes in itself, in the sense that arbitrary u and u0, and Λ and Λ0, we

have rMpu,Λq,Mpu0,Λ0qs “ 0. This implies that they are co-diagonalisable, i. e. that

the matrix P of change of basis can be chosen independent of u and Λ.

The property 2 follows from the fact that all operators of the form
ÂN

i“1

´

uiI ` D̂
¯

F px1, x2, . . . , xnq

(where F is a scalar-valued, rationnal function) belong to the Bethe Algebra, hence they com-

mute with each other. This property was justified in [KLT12] when F is a symmetric function

of the eigenvalues xi. For arbitrary functions, one has to take a limit of class functions, as

was discussed for instance in Appendix C of [CLV22] to show that it still belongs to the Bethe

Algebra.

The property 1 is more subtle: for generic values of the inhomogeities θi it is known that

the elements of Bethe algebra do not have Jordan blocks. But there are exceptionnal values

of inhomogeneities for which that is not the case anymore. Therefore, the diagonalisability

argument, works only for generic values of inhomogeneities.

For all expressions of the form
ÂN

m“1

´

um ` D̂
¯ ”

F
śn´k

ℓ“1 wpzℓq
ı

– where the rational func-

tion F has no pole when zj Ñ 1{xj – the normalisation factor is
śn´k

a“1
p1´xjazja q

mja

mja !

M”

F
śn´k

ℓ“1 wpzℓq
ı

,

as follows by the very same arguments.

Additionally, if we compute T- and Q-operators using (II.2.7) instead of (II.2.4), then we

identify the normalisation factor – in the sector Spm1,m2,...,mnq – as

śn´k
a“1 λ

mja
a

O

pdet gq
n´kx

λ1`k´1
j1

...x
λn´k`2k´n

jn´k
χ
µ
pg̃q

ś

1ďaăbďn´kpxja´xjbq
ś

1ďaďn´k
1ďℓďk

pxja´xiℓq
.

In all cases, what see if that when we restrict to a sector in the Hilbert space, the definition

(II.2.3-II.2.4) make sense with a scalar normalisation factor, which justifies the use of normalised

limits in Sec(II.2.2.3) and Sec(II.2.1).
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Chapter III

Spin chains with SOp2rq symmetry.
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III.1 Spin chain and Conserved charges

Similar to what we did in the previous chapter, we are going to study integrable spin chain

with a different symmetry. In doing so, we will assume the integrable system in the previous

chapter and change the symmetry of our system to SOp2rq. With the new symmetry, we will

give a new formal definition to a differential operator, which allows us to explicitly manipulate

the operators of the system, where these operators are defined in the oscillator description

[ZZ79, Fra20].

Unlike the GLpnq case, the new symmetry will prove to be more complicated in constructing

T - and Q-operators with an arbitrary representation in the auxiliary space. It is possible to

write T -operators with rectangular representations in the auxiliary space from a Wronskian

determinant as presented in [FFK21, ESV20], but it will turn out that finding a differential

discripting (an expression of the T -operators with only Coderivatives, spectral parameters, and

the twist) of these operators is unfeasible.

III.1.1 The Yang-Baxter equation and T -operators

As stated, we are going to assume the same integrable system with the SOp2rq symmetry, which

indicate the existance of T -operators. We saw in Sec(II.1) that the Yang-Baxter equation is the

fundamental idea in describing an integrable spin chain, and the R-matrices to be its solutions.

The definition of these operators was found in [ZZ79] for the fundamental representation and

it reads:

Where: Ra1,a2 puq “

´

u `
κ

2

¯´

u ´
κ

2

¯

I `

´

u `
κ

2

¯

Pa1,a2 ´

´

u ´
κ

2

¯

Qa1,a2 (III.1.1a)

Where, κ “ r ´ 1, P “

2r
ÿ

α,β“1

Jα,β b Fβ,α, Q “

2r
ÿ

α,β“1

Jα,β b Fα1 ,β1 (III.1.1b)

The parameter κ is a number related to the rank of the Lie algebra; pP ,Qq are defined in the

intruduction and pJi,j, Fi,jq are the glpnq and the sop2rq fundamental generators, respectively.

The matrix representation of these operators is of size 2r ˆ 2r where glpnq generators obey the

standard relations Ji,jJk,l “ δj,kJi,l and the sop2rq 1 reads Fi,j “ Ji,j ´ Jj1 ,i1 .

The construction of the T -operators follows exactly as in Sec(II.1.1) and they have the

following definition/relations:

rT puq , T pvqs “ 0, T puq ” tr
´

RN puq ¨ RN´1 puq ¨ ¨ ¨R1 puq

¯

(III.1.2)

The only notable difference is the building blocks (R-matrix), which will be the reason for

the limited freedom in the form of the allowed functions in the auxiliary space. As it is the

case in Sec(II.1.2), the Hamiltonian of our system is defined through Fig(III.1), this is the

1In this notation, the genreator Fj,i obeys Fi1 ,j1 “ ´Fj,i, which is defined in [Fra20]. As matrices, the prime

filps the matrix entries Xi,j as follows: X
1

i,j “ Xr´i`1,r´i`1; this also means X
2

i,j “ Xi,j .
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N N-1 N-2 k+1 k k-1 1. . . . . .

. . . . . .

. . . . . .

= κ−1
∑N

k=1 (I−Q+ P)k,k+1

T−1
(κ
2

)
Ṫ
(κ
2

)
= κ−1

N−1∑

k=1

Figure III.1: This is a diagrammatic description of the non-twisted Hamiltonian of a spin chain

with SOp2rq symmetry. This follows exactly like the non-twisted diagram description of the

Hamiltonian of the GLpnq case up to a difference in the derivative of R
1

pκ{2q “ pκI ` P ´ Qq,

which is represented as the shaded circle, and for the rest of the lines, R pκ{2q “ P .

diagrammatical description of the non-twisted Hamiltonian. Notice that we are taking the

derivative in Fig(III.1) at u “ κ
2
due to (III.1.1a). The diagramalcal representation of I, P is

in Sec(II.1.2), and the Q is represented as:

Q:

Each vector space has a permutation operator due to R pκ{2q “ P exipt the kth one (where we

have the shaded ball), which has R
1

pκ{2q “ pκI ` P ´ Qq. From Fig(III.1) and (II.1.5), we can

write the Hamiltonian as:

H “
B

Bu
log pT puqq

ˇ

ˇ

ˇ

u“κ
2

“ κ´1
N
ÿ

i“1

pI ´ Q ` κPqi,i`1 (III.1.3)

III.1.2 Generalizing T -operators

The process of finding a bigger family of commuting T -operators will be labeled as the general-

ization process of family of T -operators. When taking SOp2rq symmetry in the auxiliary space

is not similar to the case with GLpnq symmetry (described in [KLT12] or section 1 of chapter

1 in [Leu12]). As specified in Fig(III.2), the R-matrices that are related to the symmetric

and spinorial representations are generated by the algebra generators only, whereas the other

R-matrices related to the nodes labeled with unknowns are constructed with more than the

generators of the algebra; check [KK21a, KOW22, Oka07].

This process of generalizing T -operators in the GLpnq case was possible due to (II.1.3b).

That equation describes the R-matrix in any arbitrary representation of the algebra in the

auxiliary space by the generators of the algebra in that representation. The same process can
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be done for the spinorial and symmetric representations of SOp2rq, due to the fact that the

R-matrices in these representations are described by the generators of the algebra sop2rq only.

1 2 r-2

+

−

Fund. and symm.

Unknown

spinorial

Figure III.2: SOp2rq Dynkin diagram. We are distinguishing the diagonal into three parts if

we know the R-matrix of the symmetry proposed by the nodes of the diagram.

A good starting point would be to introduce T -operators with a twist in the fundamental

representation (λ “ ˝), then discuss the symmetries separately.

Introducing the twist and inhomogeneities.

In this case, we are following the same steps presented in Sec(III.1.1), the extra thing to

checking rQ, g b gs “ 0, which shows that the twist is a group element g P SOp2rq. This can

be done using (I.1.5) and (I.1.6). In the interest of not writing too many indices, let us use the

diagrammatical version of it:

g g ´ g g “ I gg
1

´ gg
1 I “ ´ “ 0

In the first equality, we use (I.1.5) to move one of the twist operators from one physical space

to the other (we stress that Q work as a contraction between these spaces) up to priming

one of the twist operators, then using gg
1

“ I (which is the orthogonality condition of SOp2rq

elements) in the third equality. Thus, T -operators with a twist in the auxiliary space takes the

form:

rT puq , T pvqs “ 0, T puq ” tr
´

RN pu ´ θNq ¨ RN´1 pu ´ θN´1q ¨ ¨ ¨R1 pu ´ θ1q g
¯

(III.1.4)

We have introduced two extra elements to our T -operators, the twist g and the inhomogeneities

θ. The introduction of the twist will generalize the description of the Hamiltonian (III.1.3) to

a new operator with terms depending on the twist.

The twisted Hamiltonian is described in Fig(III.3), where one can see that the sum splits

into two factors; the first is similar to Fig(III.1) (up to a change in the sum), giving us the same

expression as (III.1.3), whereas the last part of the figure gives rise to the terms that are twist

dependent, i. e.
´

κ´1gN pI ´ Q ` κPqN,1 g
´1
1

¯

. Thus, the twisted Hamiltonian takes the form:
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N N-1 N-2 k+1 k k-1 1. . . . . .

. . . . . .
g

. . . . . .
1/g

+

T−1
(κ
2

)
Ṫ
(κ
2

)
= κ−1

N−1∑

k=1

N N-1 N-2 3 2 1

. . .

g

. . .

κ−1

1/g

=
1

κ

(
N−1∑

k=1

(I−Q+ κP)k,k+1 + gN (I−Q+ κP)N,1 g
−1
1

)

Figure III.3: This is a diagrammatic description of the twisted Hamiltonian of SOp2rq spin

chains. The first part of the diagram follows as Fig(III.1), which means the lines connecting

the twists cancel out. For the second part of the diagram, we have the twist connected to

R
1

puq

ˇ

ˇ

ˇ

u“κ
2

“ pκI ` P ´ Qq which gives rise to the twist term in the expression.

Htwist “ κ´1

˜

N´1
ÿ

i“1

pI ´ Q ` κPqi,i`1 ` gN pI ´ Q ` κPqN,1 g
´1
1

¸

(III.1.5)

One can notice that the twist Hamiltonian (III.1.5) is equal to the non-twisted one (III.1.3)

when taking the limit pg Ñ 1q, i. e. H “ Htwist

ˇ

ˇ

ˇ

g“1
.

From here on, we are going to distinguish between the T -operators depending on the sym-

metry they have in the auxiliary space.

III.1.2.0.1 General representations.

After introducing the twist into the auxiliary space, we can now change the representation

into the spinorial or symmetric ones, and then write the corresponding T -operators of these

representations. Since we have two different representations, we are going to treat each case

separately.
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Spinorial T -operators

The R-matrices in the spinorial representation are realized to be linear in the spectral parameter

u (check out [Res85, Bes85], also [KK21b] for a discussion on representation construction,

[CDI13] for a complete discussion on the spinorial solutions of the Yang-Baxter equation and

[MRV16, FKSZ20, ESV20, EV21, KS95] for the spinorial QQ-relations), which takes the form:

R puq “ u `

2r
ÿ

α,β“1

Jα,β b π˘ pFβ,αq (III.1.6)

This definition is very similar to the definition of an R-matrix in the glpnq case (up to exchanging

GLpnq generators for SOp2rq ones). With that, the T -operators are defined in a similar manner

as in (II.1.3), and they read as:

“

Tp˘q puq ,Tp˘q pvq
‰

“ 0, Tp˘q puq ” tr pRN pu ´ θNq ¨ RN´1 pu ´ θN´1q ¨ ¨ ¨R1 pu ´ θ1q ρ˘ pgqq

(III.1.7)

where the trace is taken over the auxiliary space, p˘q refers to the two spinorial nodes in

Fig(III.2) and ρ˘ is the morphism of the spinorial representations.

Symmetric T -operators

g

λ = . . .

123N − 2N − 1
N

. . .

Figure III.4: A graphical description to T -operators with a symmetric representation in the

auxiliary space pλ “ ps, 0, 0, ...qq. This graph follows the same description as Fig(II.3).

The fundamental R-matrix defined in (III.1.1a) is the special case when taking the repre-

sentation λ “ p1, 0, 0, . . . q of the symmetric R-matrix R puq. For the symmetric representation,

the R-matrix was introduced in [Fra20, Res85] (also, check [KK21b] for the symmetric repre-

sentation description) as:

R puq “

ˆ

u2
´

1

4

`

pκ ´ 1q
2

` 2κs ` s2
˘

˙

I `

´

u `
κ

2

¯

2r
ÿ

α,β“1

Jα,β b πs pFβ,αq `

1

2

2r
ÿ

α,β“1

2r
ÿ

k“1

pJα,β b πs pFk,βqπs pFα,kqq

(III.1.8)
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Thus, the definition of the T -operators reads (check out Fig(III.4)):
”

Tp1,sq puq , Tp1,s1
q pvq

ı

“ 0, Tp1,sq puq ” tr
´

RN pu ´ θNq¨RN´1 pu ´ θN´1q ¨ ¨ ¨R1 pu ´ θ1q ρpsq pgq

¯

(III.1.9)

where the trace is taken over the auxiliary space, ps, s
1

q are two symmetric representations on

the auxiliary space and ρpsq is the morphism of the symmetric representation.

It is worth noting that the Casimir operator of the symmetric representations is equal to

the representation-dependent part of (III.1.8), and it is defined as:

C “ Tr

˜

2r
ÿ

i,j“1

πs pFk,jq πs pFi,kq

¸

“ 2
`

2κs ` s2
˘

(III.1.10)

This will be useful for the next section when we formulate symmetric T -operators with the

differential opeartor.

III.1.3 Coderivative: for sop2rq case

Motivated by Sec(II.1.4), we are going to introduce a new differential operator (modified version

of the glpnq case (II.1.28)), which will be referred to as D. As is the case in Sec(II.1.4),

constriction T -operators using D will be conceptually similar to GLpnq case (which will be

governed by the action of D on the character). The definition of the modified operator D:

D b f pgq ”
ÿ

i,j

Ji,j b
B

Bεj,i
f
´

e
ř2r

α,β“1 εα,βFα,βg
¯
ˇ

ˇ

ˇ

ε“0
(III.1.11)

where f is a tensor-valued function of the twist g P SOp2rq, i. e. f i1,i2,...,iN
j1,j2,...,jN

pgq, ε is an 2r ˆ 2r

matrix, and Jα,β are the generators of GLpnq, whereas Fα,β are the generators of SOp2rq. The

action of D does indeed add a spin to the chain, as is the case in GLpnq. In order to rewrite

T -operators using the new differential operator D, we need to study the action of D on the

general twist operator ρλ pgq:

D b ρλ pgq “
ÿ

i,j

Ji,j b
B

Bεj,i
ρλ

`

e
ř

α,β εα,βFα,β ¨ g
˘

|ε“0

“
ÿ

i,j

pJi,j b πλ pFj,iqq ¨ pI b ρλ pgqq

(III.1.12)

When restricting the representation of the last equation to the fundamental pλ “ ˝ q, the

expression
ř

i,j pJi,j b πλ pFj,iqq becomes pP1,λ ´ Q1,λq, which are the permutation P and the

transposed permutation Q. Fortunately, D also obey the Leibniz rule:

D b pf pgq ¨ h pgqq “ pD b f pgqq ¨ pI b h pgqq ` pI b f pgqq ¨ pD b h pgqq (III.1.13)

With that, we can then check the action of two D operators on the fundamental twist:

D b D b ρλ pgq “ pP ´ Qq2,λ ¨ pD b pI b ρλ pgqqq

“ pP ´ Qq2,λ pP ´ Qq1,λ ¨ pI b I b ρλ pgqq
(III.1.14)
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Notice that the two quantum labelings are swapped (which is the same as the GLpnq case).

With the definition (III.1.11) and properties of D, we will be able to redefine the T -operators

in the two known representations according to the definitions of their R-matrices.

Remark 1. One can think of the SOp2rq operator D as two GLpnq operators D̂ up to priming

one of them. In our chain, the physical spaces are defined with a fundamental representation

of the algebra λ “ ˝ , thus in (III.1.11) the sop2rq generators Fα,β can be replaced with glpnq

generators, i. e. Fα,β “ Jα,β ´ Jβ1 ,α1 , which in terns implize that:

D ” D̂ ´ D̂
1

(III.1.15)

From (III.1.15), we can see that the SOp2rq operator D have the following property: D
1

“ ´D.

Spinorial representation

Reformulating the T -operators with SOp2rq symmetry will take the same steps as the GLpnq

case. In the spinorial case, the definition of R-matrix provided in (III.1.6) is extremely similar

to the GLpnq one. Following the same logic as in Sec(II.1.4), it is straightforward to write the

spinorial T -operators as:

Tp˘q puq “

N
â

i“1

pui ` Dqχ˘ (III.1.16)

Where χ˘ is the finite-dimensional character of this representation (˘ is the labeling of the two

spinorial nodes in Fig. (III.2)). The exact form of this character is given in Sec(III.2.2).

Symmetric (Fundamental) representation

For the symmetric case, finding the operatorial description of T -operators is trickier than the

GLpnq or the spinorial cases due to representation dependence in the R-matrix, and the term

with products of SOp2rq generates in (III.1.8). For this particular case, the reformulated ex-

pression of T -operators takes on the form:

Tp1,sq puq “

N
â

i“1

„

u2
i ´

1

4
pk ´ 1q

2
´

1

8
Tr

`

D2
˘

`

´

ui `
κ

2

¯

D `
1

2

`

D2
˘1

ȷ

χs (III.1.17)

Here, χs represents the finite symmetric character. To comprehend how we arrived at the final

formula, we must determine the expression of the Casimir and the second-degree coefficient

in the generators sop2rq in (III.1.8) as Coderivative operators. The other terms in (III.1.8)

follow straightforwardly, as in the case of GLpnq. To achieve this, let us expand the following

expression and demonstrate that it is equivalent to the second-degree expression in (III.1.8):

2r
ÿ

α,β“1

pJα,β b πs pFβ,αqq
2

“

2r
ÿ

α,β“1

2r
ÿ

k“1

pJα,k b πs pFk,αqq pJk,β b πs pFβ,kqq

“

2r
ÿ

α,β“1

2r
ÿ

k“1

pJα,β b πs pFk,βq πs pFα,kqq

(III.1.18)
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This observation leads us to consider two Coderivative operator with a contraction between

them, although caution must be exercised when dealing with indices. Taking D2 and using

(III.1.11) and ommiting ρs pgq for simplicity, we find:

Dα1
β1
Dα2

β2
“

ÿ

α1,β1

ÿ

α2,β2

pJα2,β2 b πs pFβ2,α2qq pJα1,β1 b πs pFβ1,α1qq (III.1.19)

To ensure that the expression in (III.1.19) matches with (III.1.18), we need to replace α1 “ β2

with k and α2 with α, β1 with β. This is expressed in terms of Coderivatives as Dk
βD

α
k “ pD2q

1
2.

The illustration of pD2q
1

diagrammatically take the form DD. The same idea applies to the

description of the Casimir operation with Coderivatives.

III.2 Symmetric and Spinorial Q-operators.

Similar to what has been done in Sec(II.2), we have a family of commuting Q-operators that also

commute with T -operators. These operators allow us to express T -operators via a Wronskian

determinant obtained in [FFK21] for both representations separately.

In the spinorial case, the Wronskian relation describing T -operators was defined in [FFK21]

with weights λ “
`

s
2
, ..., s

2
,˘ s

2

˘

as:

Tp˘q puq 9
ÿ

tαiu˘

χ`
α⃗

´

´
κ

2

¯

S
rκ`ss

α⃗ puqS
r´κ´ss

´α⃗ puq (III.2.1a)

χ`
α⃗ pzq “

r
ź

i“1

xαiz
i

ź

1ďjăkďr

1

1 ´ 1{px
αj

j xαk
k q

(III.2.1b)

where S puq are the spinorial Q-operators and χ`
α pzq is the infinite-dimensional characters. We

define α⃗ “ pα1, . . . , αrq with αi “ ˘1, @i P J1, rK, and tαiu˘ denotes all permissible config-

urations where
ś

j αj “ ˘1. In [FFK21], the definition of S puq was given as a non-monic

polynomial in u, a polynomial with a normalization that will allow the case N “ 0 in (III.2.1a)

to give the finite dimensional character. We are not spasifing the normalization factor, which

is why we are using the symbol 9.

Similar to what has been done for the spinorial case, the Wronskian describing the sym-

metric T -operators takes the form:

Tp1,sq puq 9

´

Q
rκ`ss

tiu puqQ
r´κ´ss

ti1
u

puq ` Q
r´κ´ss

tiu puqQ
rκ`ss

ti1
u

puq

¯

(III.2.2)

where Qtiu puq are the single-indexed Q-functions3. In what follows, we will show how to

construct T - and Q-operators using the same ideas as in Sec(II.2).

A good starting point would be to give a brief description of the infinite-dimensional T -

operators in the spinorial case.

2The operator
`

D2
˘

1

does not follow the same Leibniz rule as D. The proof is in Appendix(B.2)
3The diagonalization of T -operators has been done in [DK87] using the algebraic Bethe ansatz, and [GR20]

for the trigonometric case.
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III.2.1 Infinite dimensional spinorial T -operators

The spinorial oscillator representation was introduced in a series of papers [FFK21, FKT21],

and the fusion relation of this representation reads:

Rα⃗ pu ` yα⃗qR´α⃗ pu ´ y´α⃗ ´ κq 9R`
puq (III.2.3a)

R`
puq “ u `

ÿ

α,β

Jα,β b Fβ,α (III.2.3b)

In the above expression, the symbol 9 signifies that we have omitted certain factors that do not

play a role in the present discussion, and the parameter yα plays the role of the representation

label. In [FKT21], there was a discussion on how to extract Rα⃗ puq from the fusion relation.

We will briefly describe the discussion and show how one can write the result using D. The

authors of [FKT21] started by restricting α⃗ to p`, . . . ,`q, thus (III.2.3a) reads as (we are going

to drop α in y):

Rp`,...,`q pu ` yqRp´,...,´q pu ´ y ´ κq 9R`
puq (III.2.4)

This fusion relation is quite similar to the GLp2q fusion relation defined in [BLMS10] (In this

case, Rp`,...,`q and Rp´,...,´q are represented as two distinct diagonal blocks in R`), and by

following the same ideas as in Appendix(A.1.2), they were able to write the two opeartors:

$
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’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Rp`,...,`q puq “ lim
yÑ8

¨

˚

˚

˚

˚

˝

Np`,...,`q
hkkkkkkkkikkkkkkkkj

˜

Irˆr 0

0 1
´2y

Irˆr

¸

¨R`
pu ´ yq

˛

‹

‹

‹

‹

‚

Rp´,...,´q puq “ lim
yÑ8

¨

˚

˚

˚

˚

˝

R`
pu ` y ` κq ¨

Np´,...,´q
hkkkkkkkkikkkkkkkkj

˜

1
2y
Irˆr 0

0 Irˆr

¸

˛

‹

‹

‹

‹

‚

(III.2.5)

With that, they can define two of the infinite-dimensional T -operators pT`

p`,...,`q
puq ,T`

p´,...,´q
puqq.

Instead of doing the same for different α⃗, they introduced a transformation that allows us to

find T`

pα⃗q
puq from T`

p`,...,`q
puq. This is due to the fact that different T`

pα⃗q
puq are distinct by

their diagonal blocs and their eigenvalues. They refer to the transformation as particle-hole

transformation, which takes care of both criteria and is defined as:

T`

pα⃗q
puq “ pSα⃗ b ¨ ¨ ¨ b Sα⃗qT`

p`,...,`q
puq pSα⃗ b ¨ ¨ ¨ b Sα⃗q

´1

ˇ

ˇ

ˇ

ˇ

ˇ

␣

xiÑ
1
xi

|αi“´1
(

(III.2.6a)

Sα⃗ “

αj“´1
ź

1ďjďr

¨

˚

˝

Jj,j1 ´ Jj1
,j `

ÿ

1ďkďr
k‰j

`

Jk,k ` Jk1 ,k1

˘

˛

‹

‚

(III.2.6b)
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where Ja,b satisfy (II.1.8). Using the transformation, one obtain the general relation for the

spinorial T -operators:

T`

pα⃗q
puq “ lim

yαÑ8
@αPα⃗

Tr
´

qRN,α⃗ puq ¨ qRN´1,α⃗ puq ¨ ¨ ¨ qR1,α⃗ puq ρ`
α⃗ pgq

¯

(III.2.7a)

Where qRα⃗ puq “ Nα⃗R
`

puq , Nα⃗ “ Sα⃗Np`,...,`qS´1
α⃗ (III.2.7b)

where
`

ρ`
α⃗ pgq

˘

is the infinite-dimensional twist operator. Notice that (III.2.6a),(III.2.7a) define

the rest of the 2r infinite-dimensional T -operators.

By using the definition of R` puq in (III.2.3b), we replace the sum of generators p
ř

i,j Ji,j b

Fj,iq with D using (III.1.12). Then, the trace and the transformation act solely on the twist

pρ` pgqq, which gives us the infinite-dimensional character, and (III.2.7a) becomes:

T`

pα⃗q
puq “

N
â

i“1

pui ` Dq ¨ χ`
α⃗ pzq (III.2.8)

where the infinite-dimensional character χ`
α is defined as the trace of

`

Sα⃗ρ
`
α⃗ pgqSα⃗

˘

and given

in (III.2.1b).

III.2.2 Spinorial Q-operators.

Using (III.2.1a) and the ideas in Sec(II.2.2.3), we will motivate a Coderivative description for

the spinorial Q-operators, a description where the Coderivative acts on a somewhat generating

series of the spinorial character. Starting by shifting the spectral parameter u ù u´ 1
2

pκ ` sq

in (III.2.1a), then taking the infinite sum
ř

sě0:

ÿ

sě0

T
r´κ´ss

p˘q
puq zs9

ÿ

tαiu˘

χ`
α⃗

´

´κ ´
s

2

¯

Sα⃗ puq
ÿ

sě0

´

S
r´2κ´2ss

´α⃗ puq zs
¯

(III.2.9)

The infinite sum on the right hand side has a radius of conferences |z| ă min
∣∣∣ 1
śr

i“1 x
αi
i

∣∣∣. In-

deed, by denoting 1
śr

i“1 x
αis
i

S´α⃗ puq “ 1
śr

i“1 x
αis
i

řMd

k“0 C´α,Md´ku
k, and using the normalized limit

defined in Lemma(I.1.1). As discussed in [CLV22] and in Sec(I.1.1), the limit z Ñ 1
śr

i“1 x
αis
i

of the infinite sum on the right hand side of the previous equation gives us singularities with

different orders depending on the sector (the infinite sum gives us the Eulerian number formula

(I.1.17)). Thus, one finds the relation between the spinorial T - and Q-operators to be:

Sα⃗ puq “ N lim
zÑ 1

śr
i“1

x
αi
i

ÿ

sě0

T
r´κ´ss

p˘q
puq zs (III.2.10)

Finally, substituting (III.1.16) in the last formula, we can write Sα⃗ puq using D as:

Sα⃗ puq “ N lim
zÑ 1

śr
i“1

x
αi
i

N
â

i“1

ˆ

ui ´
κ

2
´ z

B

Bz
` D

˙

ÿ

sě0

χα⃗,sz
s (III.2.11)

58



The factor s is replaced by z B

Bz
4. The action of D on the character is well-understood due to

Appendix(B.1) 5. The normalization in (III.2.11) takes the form:

N9

˜

1 ´ z
r
ź

i“1

xαi
i

¸Md`1

(III.2.12)

Where 9 is used to emphasize the missing factors that will make our polynomial monic. One

can argue that the normalization in (III.2.11) nullifies all components that are not in the α⃗

direction, which is a similar statement to the proof of Lemma(I.1.2).

One can also describe the finite-dimensional character from the infinite-dimensional ones

(III.2.1a) using the fact that T - and Q-operators are polynomials in u with a coefficient of the

leading order in u to be χ˘ and χ`, respectively. By collecting the coefficients of the leading

order in u (or by taking a chain of length N “ 0) of both sides of (III.2.1a), one obtains:

χ˘ “
ÿ

tαiu˘

χ`
α⃗

´s

2

¯

(III.2.13)

III.2.3 Symmetric Q-operators

With the same idea as the previous subsection, we can define a Coderivative description of

the single-indexed Q-operators using (III.2.2). This description is an action of Coderivative on

the generating series of the symmetric character. Starting with shifting the spectral parameter

u ù u ´ 1
2

pκ ` sq, then taking the infinite sum
ř

sě0:

ÿ

sě0

T
r´κ´ss

p1,sq
puq 9

r
ÿ

i“1

˜

Qtiu puq

˜

ÿ

sě0

Q
r´2κ´2ss

ti1
u

puq

¸

`

˜

ÿ

sě0

Q
r´2κ´2ss

tiu puq

¸

Qti1
u puq

¸

(III.2.14)

Where 9 is used to remove factors that have no impact on our present argument. The infi-

nite sum of the last expression has a radius of convergence |z| ď min
∣∣∣ 1
x
i
1

∣∣∣ for Qti
1
u puq and

|z| ď min | 1
xi
| for Qtiu puq. Indeed, if we take Qti1

u puq “ 1
xu
i

řM1

d
k“0 Ci1 ,M1

d´ku
k, and Qtiu puq “

1
xu

i
1

řMd

k“0 Ci,Md´ku
k, then using the same arguments as the previous chapter, we find the relation

between the symmetric T -operators and single-indexed Q-operators:

Qtiu puq “ N lim
zÑ 1

x
i
1

ÿ

sě0

T
r´κ´ss

p1,sq
puq zs (III.2.15a)

Qti1
u puq “ N lim

zÑ 1
xi

ÿ

sě0

T
r´κ´ss

p1,sq
puq zs (III.2.15b)

4The sum
ř

sě0 s
jzs “ zj B

j

Bzj

ř

sě0 z
s.

5We are unaware of a generating series for the spinorial representation. Therefore, we have kept the infinite

sum in the right hand side of (III.2.11).
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Using (III.1.17), we can formulate the symmetric Q-operators as:

Qtiu puq “ N lim
zÑ 1

x
i
1

N
â

k“1

«

uku
r2κs

k ` ukz
B

Bz
`

1

4
p2κ ´ 1q `

ˆ

u
r´κ

2
s

k ´
z

2

B

Bz

˙

D

`
1

2

`

D2
˘1

ff

`

1 ´ z2
˘

w pzq

(III.2.16)

where a formnula for Qti1
u puq is exactly the same as the one for Qtiu puq up changing the limit

to z Ñ 1
xi

and the normalization. The normalization expression of Q-operators in the previous

relation take the form: p1 ´ xi1zq
Md`1 (resp. p1 ´ xizq

M1

d`1) for Qtiu puq (resp. Qti1
u puq).

Conserved numbers

In the case of the sop2rq symmetry group, the basis vectors will be labelled as

vr1 , vpr´1q
1 , . . . v2111 , v11 , v1, v2, . . . , vr

Then the sectors will not be defined by fixing the number of occurrences of each factor vk as in

GLpnq, but by fixing the difference between the number of occurrences of vk and the number

of occurrences of vk1 :

To an N-tuple of integers m1,m2, . . . ,mr such that N ´
ř

ℓ |mℓ| P 2Zě0, we associate the

sector spanned by all the basis vectors |vi1 . . . viN y such that @k P t1, 2, . . . , ru :

mk “ #tp|ip “ ku ´ #tp|ip “ k
1

u

This is a conserved number, which means we have an operatorMj such thatMj |VNy “ mj |VNy.

This operator has the same relations as (II.2.14) plus rQ,Mjs “ 0.

To understand rQ,Mjs , and without loss of generality, let us take the action of Q1,2 on a

state, Q1,2 |vk1 , vk2 , vk3 , . . .y “ δv
k

1

1
,vk2

ř

k |k, k1

, vk3 , . . .y. Now, by acting on that state with M so
j ,

we find:

M so
j Q1,2 |vk1 , vk2 , vk3 , . . .y “

$

’

’

&

’

’

%

0 “ Q1,2M
so
j |vk1 , vk2 , vk3 , . . .y , if vk1 ‰ vk1

2

Q1,2M
so
j |vk1 , vk2 , vk3 , . . .y

looooooooooooooomooooooooooooooon

mso
j Q1,2|vk1 ,vk2 ,vk3 ,...y

, if vk1 “ vk1

2
(III.2.17)

Thus showing rQ,M so
j s “ 0.

III.3 Coderivatives are not sufficient to describe other

representations of SOp2rq

As argued below, we expect that Coderivatives are not sufficient to describe other representa-

tions of SOp2rq. We have tested several methods in building T - and Q-operators for a general
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rectangular representation in the auxiliary space; these attempts included changing the Casimir

or other terms that depend on the number of rows in a Young diagram. As we will see later, all

these attempts fail to describe a more general representation due to the fact that Coderivatives

(powers of Coderivative, contractions, and other complicated coefficients) cannot produce the

R-matrix of a generic rectangular representation. This is even apparent for the antisymmetric

representation; if we interpret the leading coefficient of the spectral parameter in T -operators

as the character of the SOp2rq representation associated with this Yangian representation, then

it does not correspond to an irreducible representation of SOp2rq. Therefore, we could expect

a Yangian representation where some generators are independent from the so(2r) generators.

Such terms cannot be produced with a Coderivative, which only produces the so(2r) generators

(see (III.1.12)).

This can be inferred from examining the Yangian representation theory introduced in [FH91]

which enables the construction of R-matrices for general rectangular representations, along with

the representation theory of SOp2rq. As an example, are aware from the representation theory

of SOp2rq that the space V “ pC2rq
b2

can be decomposed into:

Â

“
À À

(III.3.1)

On the right hand side, the representations , are defined from the space of

symmetric and antisymmetric tensors respectively, and is known as the dot representation.

It turns out that the dimension of symmetric representation on the right hand side is the same

when studying the symmetric Yangian algebra, whereas this is not true for the antisymmetric

one. It seems that for this specific example, the combination of the last two representations on

the right hand side would produce the irreducible representation of the Yangian algebra.

The spinorial and symmetric representations possess certain algebraic properties that render

them particularly suitable for the construction of Q-operators, notably due to the fact that all

operators in the expression of the R-matrices are generators of the Lie algebra sop2rq. These

families of irreducible representations are simple to investigate with Coderivative operator.

However, there exist other representations for which an R-matrix is known [KK21a, KOW22,

Oka07, FH91], but their expressions are less explicit and not solely in terms of sop2rq generators.

These R-matrices are referred to as Kirillov-Reshetikhin R-matrices and present a natural

extension for further investigation beyond the scope of this manuscript. The exploration of

these representations remains a task for future research.

In the following sections, we will share insights gained from our exploration, hoping they will

prove beneficial for future research endeavors. We begin by mimicking Sec(II.1.5) of the GLpnq

case, wherein we consider a general function of the twist operator f pgq in the auxiliary space

and examine the non-trivial coefficients obtained. Then, inspired by the discussion in [KV08],

we attempt to seek T -operators with general rectangular representation from the CBR formula

(III.3.4), derived in [Che86, BR90]. When considering only the rectangular representations,

the CBR formula is equivalent to the bilinear identity Hirota identity, appearing in [KNS11,
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Res83, KP92], and also in [KNS94] where it was shown that the symmetric T -operators are a

solution of the Hirota identity for the nodes on the tail of Fig(III.2). This identity reads:

Tpa`1,sq puq Tpa´1,sq puq “ Tpa,sq

ˆ

u `
1

2

˙

Tpa,sq

ˆ

u ´
1

2

˙

´ Tpa,s`1q puq Tpa,s´1q puq (III.3.2)

We have emphasized that our desired representations on the auxiliary space are general rect-

angular representations. In the GLpnq case, this statement can be generalized to arbitrary

representations on the auxiliary space due to Tp0,sq puq “ Tpa,0q puq “ Tp0,0q puq “
śN

i“1 ui, which

is not the case in SOp2rq:

Tp0,sq puq “

N
â

i“1

ˆ

u2
i ´

1

4

`

pκ ´ 1q
2

` 2κs ` s2
˘

˙

(III.3.3)

This is not equal to T0,0 puq “
śN

i“1

`

u2
i ´ 1

4
pκ ´ 1q

2
˘

, and no gauge transformation will achieve

such equality. Know that, the CBR identity for genearic rectangular representations take the

form:

Tpa,sq puq “

∣∣∣∣
´

T
ra´i´j`1s

p1,s`i´jq
puq

¯

1ďi,jďa

∣∣∣∣
N
ź

n“1

a´1
ź

k“1

T
ra´2ks

p0,sq
puq

(III.3.4)

This relation can be formulated by taking the cases a “ 2, 3, . . . in (III.3.2) and writing

Tp2,sq puq , Tp3,sq puq , etc using Tp1,sq puq. So as an example, when a “ 2, (III.3.2) takes the form:

Tp2,sq puq “
T

r1s

p1,sq
puq T

r´1s

p1,sq
puq ´ Tp1,s`1q puq Tp1,s´1q puq

Tp0,sq puq
(III.3.5)

Which can be seen as a 2 ˆ 2 determinant:

Tp2,sq puq “

∣∣∣∣∣
T

r1s

p1,sq
puq Tp1,s´1q puq

Tp1,s`1q puq T
r´1s

p1,sq
puq

∣∣∣∣∣
Tp0,sq puq

(III.3.6)

Which does coincide with (III.3.4). Next, we can do the same for a “ 3:

Tp3,sq puq “
T

r1s

p2,sq
puq T

r´1s

p2,sq
puq ´ Tp2,s`1q puq Tp2,s´1q puq

Tp1,sq puq
(III.3.7)
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If T1,s puq is non-zero, then we can plug (III.3.6) in (III.3.7) to get:

T3,s puq “
1

Tp1,sq puq

¨

˚

˚

˚

˚

˝

∣∣∣∣∣
T

r2s

p1,sq
puq T

r1s

p1,s´1q
puq

T
r1s

p1,s`1q
puq Tp1,sq puq

∣∣∣∣∣
T

r1s

p0,sq
puq

∣∣∣∣∣
Tp1,sq puq T

r´1s

p1,s´1q
puq

T
r´1s

p1,s`1q
puq T

r´2s

p1,sq
puq

∣∣∣∣∣
T

r´1s

p0,sq
puq

˛

‹

‹

‹

‹

‚

´
1

Tp1,sq puq

¨

˚

˚

˚

˚

˝

∣∣∣∣∣
T

r1s

p1,s`1q
puq Tp1,sq puq

Tp1,s`2q puq T
r´1s

p1,s`1q
puq

∣∣∣∣∣
Tp0,s`1q puq

∣∣∣∣∣
T

r1s

p1,s´1q
puq Tp1,s´2q puq

Tp1,sq puq T
r´1s

p1,s´1q
puq

∣∣∣∣∣
Tp0,s´1q puq

˛

‹

‹

‹

‹

‚

“ T
r2s

p1,sq
puq

˜

Tp1,sq puq T
r´2s

p1,sq
puq ´ T

r´1s

p1,s´1q
puq T

r´1s

p1,s`1q
puq

T
r1s

p0,sq
puq T

r´1s

p0,sq
puq

¸

` T
r1s

p1,s´1q
puq

˜

T
r´1s

p1,s´1q
puq Tp1,s`2q puq ´ T

r1s

p1,s`1q
puq T

r´2s

p1,sq
puq

T
r1s

p0,sq
puq T

r´1s

p0,sq
puq

¸

` Tp1,s´2q puq

˜

T
r1s

p1,s`1q
puq T

r´1s

p1,s`1q
puq ´ Tp1,sq puq Tp1,s`2q puq

T
r1s

p0,sq
puq T

r´1s

p0,sq
puq

¸

“

∣∣∣∣∣∣∣

T
r2s

p1,sq
puq T

r1s

p1,s´1q
puq Tp1,s´2q puq

T
r1s

p1,s`1q
puq Tp1,sq puq T

r´1s

p1,s´1q
puq

Tp1,s`2q puq T
r´1s

p1,s`1q
puq T

r´2s

p1,sq
puq

∣∣∣∣∣∣∣

T
r1s

p0,sq
puq T

r´1s

p0,sq
puq

(III.3.8)

Again, this coincides with (III.3.4), and the reason why is simply the fact that (III.3.4) satisfies

the Hirota equation. Then a simple recurrence shows that if the Hirota equation holds, then

one gets iteratively the rectangular CBR formula (III.3.4).

III.3.1 Coderivative and the Yang-Baxter equation

Knowing that the naively constructed Yang-Baxter equation is not satisfied with a general

rectangular representation in the auxiliary space, it might be interesting to see the coefficients

that break down the statement. By Replicating the approach in Sec(II.1.5) for the spinorial and

symmetric cases, the Yang-Baxter equation is depicted diagrammatically in Fig(III.5), where

D is the graphical representation of D. Also, for simplicity, we will denote the factors with

different powers in the spectral parameters as:

$

’

’

&

’

’

%

R̃ puq “ u2
` Du, R̃ p0q “ ´

1

4

ˆ

pκ ´ 1q
2

`
1

2
DD

˙

`
κ

2
D `

1

2
DD, if λ is symmetric

R̃ puq “ u, R̃ p0q “ D, if λ is spinorial

In doing so, Fig(III.5) is the diagrammatically description of the Yang-Baxter equation:
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R̃ (u) + R̃ (0) R̃ (v) + R̃ (0)

v2 + u2 − 2vu+ κ (v − u) + (v − u+ κ)P − (v − u)Q

λ

=

j1 j2

i1 i2

R̃ (v) + R̃ (0) R̃ (u) + R̃ (0)

v2 + u2 − 2vu+ κ (v − u) + (v − u+ κ)P − (v − u)Q

λ

i1 i2

j1 j2

Figure III.5: A diagrammatical representation of Yang-Baxter equation with SOp2rq symmetry.

It read exactly like Fig(B.3) up to the definition of the R-matrix (III.1.8).

Spinorial Yang-Baxter equation

For the spinorial case, the process of determining the coefficients of the various spectral param-

eter powers is straightforward, as we only encounter 2 nontrivial factors:

• Factors of the spectral power u2v0 and uv:

D D ´ D D “

ˆ

D ´ D

˙

´

¨

˚

˚

˝

D ´ D

˛

‹

‹

‚

(III.3.9)

This is the sop2rq virsion of (B.1.15), and can be proven as in Sec(II.1.5).

• Factors of the spectral power u1v0:

D D ´ D D “ κ

¨

˚

˚

˝

D ´ D

˛

‹

‹

‚

(III.3.10)

This identity immediately fails when f pgq ‰ χ˘. Additionally, one can verify the equality

of the left hand side and the right hand side using only (I.1.5) and Remark(1) to shift

the Coderivatives on the left hand side. Upon doing so, we obtain:

D D ´ D D “ ´

¨

˚

˚

˝

DD ´ DD

˛

‹

‹

‚

(III.3.11)

This expression differs from (III.3.10). However, it does not provide clear guidance on

what additions or modifications are required in our R-matrix o ensure a general solution

of the YB equation in the spinorial representation.
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Symmetric Yang-Baxter equation

This case proves to be significantly more intricate than the spinorial or the GLpnq cases. Upon

following a similar procedure as before, we have identified several non-trivial factors that fail to

hold when generalizing our representation, i. e. f pgq ‰ χs. Surprisingly, among those that are

successful for general representations, we rediscovered again (A.1.7) and (III.3.11). One of the

most notable identities we found arises from collecting the factors of the spectral parameter u3

or v3, which is expressed as:

DD D ´ D DD “

¨

˚

˚

˝

DD ´ DD

˛

‹

‹

‚

´

ˆ

DD ´ DD

˙

(III.3.12)

Although we were unable to prove this equation in a manner similar to that in Sec(II.1.5), we

have verified its validity on the computer for f pgq “ gb3. Using the ideas in Sec(II.2.2.1), we

can confidently assert that it holds ture for f pgq “ gbk, @k P N.

III.3.2 Fusion and symmetric T -operators

Another idea that we had was to try and describe the symmetric T -operators using two GLpnq

R-matrices with different contractions between them. By virtue of (III.1.15), we can rewrite

(III.1.17) using glpnq Coderivatives D̂ with varying contractions. It’s worth noting that the

representation-dependent part s or the Casimir operator C can also be written using a traced

D̂ or D. Still, it is subtle to introduce glpnq operators to act on sop2rq characters; in the next

paragraph, we will discuss the setup difference between the two cases and how to modify it.

Setup of D in GLpnq.

let us define a function f pgq which has a degree d, i. e. f pζgq “ ζdf pgq. Then Dfpgq “

degpfpgqq fpgq.

Proof. It is easy to see the connection between the degree of a function of the twist f pgq and D.

By defining the function Γpgq “ degpfpgqq fpgq, and asking what is the degree of the function:

Γpgq “ degpfpζgqqfpζgq

“ ζddegpζdfpgqqfpgq

“ ζ2ddegpfpgqqfpgq

(III.3.13)

which is D
2
fpgq, and by a simple recurrence we can show that D

m
fpgq “ dmfpgq. It is also

true for xk and for g (which have degree 1), for pj (which has degree zero and Dpj “ 0), and

product/tensor product go nicely through thanks to the leibnitz rule (and degree of a product

is the sum of the degrees). It also goes through for sums obviously.
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Because D̂ preserve the degree in f pgq, it also follows that for instance DDDDDfpgq “

d2DDDfpgq.

Setup of D in SOp2rq.

The definition of Dfpgq is ambiguous in the sop2rq setup. A priori, if a function fpgq defined

for g P SOp2rq, then only Dfpgq is well defined (not D̂fpgq).

For instance χ
pglq
s pgq ´ χ

pglq
s´2pgq and χ

pglq
s pgq ´ pdet gq

1{r χ
pglq
s´2pgq are two functions in GLpnq

which both coincide with χ
psoq
s pgq when g P SOp2rq. These two functions do not have the same

D̂, but they have the same D. This reflects the fact that Dχ
psoq
s is well defined, but not D̂χ

psoq
s

(hence not Dχ
psoq
s either).

Statement

The function fspgq “ χ
pglq
s pgq´pdet gq

1{r χ
pglq
s´2pgq is defined in glpnq and has degree s in g. Hence

Dfs “ sfs.

Thus D
ř

sě0 z
sfs “

ř

sě0 sz
sfs (and it still goes through after inserting arbitrarily many D̂

(or even D)). Thus, if we redefine the sop2rq character as
´

χ
pglq
s pgq ´ pdet gq

1{r χ
pglq
s´2pgq

¯

, then

we obtain that for this character D does exactly the same as s.

With that, we can write the symmetric T -operators using the modified character and the

glpnq coderivatives as:

T1,s puq “

N
â

i“1

«

ˆ

u2
i ´

1

4

´

pκ ´ 1q
2

` 2κD ` D
2¯
˙

I `

´

ui `
κ

2

¯

D ´

´

ui `
κ

2

¯

D

`
1

2

ˆ

DD ´ DD ´ DD ` DD

˙

loooooooooooooooomoooooooooooooooon

DD

ff

¨

´

χpglq
s ´ detpgq

1{rχ
pglq
s´2

¯

(III.3.14)

The last equation can be described with two operators
´

u ` D̂
¯

with varying contractions,

this can be represented as:

” ´

u ` α1 ` D̂
¯́

u ` α2 ` D̂
¯ ı́

χ
pglq
s ´ detpgq

1{rχ
pglq
s´2

¯

T1,s puq “
ÿ

jPall combination

βj

In the expression above, the two lines on left hand side of the diamond represent the ingoing

and outgoing, while the other lines represent all the possible ways the two operators can be

contracted together. The factors pα1, α2q denote a shift in the spectral parameter, and βj

represents a prefactor. There are fifteen different ways of contracting in the last expression,

and the objective is to solve all the resulting linear equations to determine the prefactors and
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the shifts of the spectral parameter. Regrettably, a rapid collection of the coefficients reveals

that no feasible solution can be attained.

III.3.3 CBR determinant

This section aims to establish a relation for general rectangular T -operators. Utilizing (III.3.4),

we will replicate the methodology employed in [KV08] to describe T -operators with arbitrary

a

s

n

A rectangular Young diagram
(λ = (7, 7, 7, 7, 0, 0, . . . )) .

Figure III.6: Young diagram and pa, sq Lattice for SOp2rq.

representations for GLpnq. We commence by introducing rectangular T -operators which will

be denoted as Tpa,sq puq, where pa, sq denotes the number of (rows, column) in a Young diagram,

respactivly (as in Fig(III.6)).

We are aware that rectangular T -operators are non-zero polynomials in u due to (III.3.2).

Furthermore, rectangular T -operators can only be discribe with other rectangular T -operators,

this can be demonstrated through the fat hook relation:

L “

#

pa, sq P N ˆ Z

ˇ

ˇ

ˇ

ˇ

ˇ

s ě 0, and 0 ď a ď r ´ 3

+

(III.3.15)

The explicit computations for this process are exceedingly immense, and they are detailed

in Appendix(B.2). To provide a brief overview of our approach, we start with expanding

the determinant in (III.3.4) and extracting the coefficients of each individual power of the

spectral parameter. Subsequently, we endeavor to condense these coefficients, expressing them

as determinants of T -operators of lengths (N -1), denoted as Tp1,sq puq. However, We have

observed that not all coefficients will simplify to our naive guess, resulting in our expression for

general rectangular T -operators becoming exceedingly bulky.

The rationale behind this approach was to emulate [KV08], where they define a Coderivative

expression of T -operators with a general representation of GLpnq in the auxiliary space. In
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[KV08], the expansion of the rectangle T -operators truncated after the u´1 and the Coderivative

operator adheres to the Leibniz rule. However, in SOp2rq expansion is truncated after u´2,

yielding more terms to attempt to compactify, and the operator pD2q
1

does not adhere to the

Leibniz rule (which is also detailed in Appendix(B.2)).

After a careful computation, detailed in Appendix(B.2), the description of general rectan-

gular T -operators takes the form:

Ta,s puq “

N
â

i“1

˜

u
rκ´as

i u
r´κ`as

i ´
1

8
Tr

`

D2
˘

` u
rκs

i D `
1

2

`

D2
˘1

¸

det
1ďi,jďa

pχ1,s`i´jq

`
1

2
N
ź

ną1

a´1
ź

k“1

urκ`s´a`2ks
n ur´κ´s`a´2ks

n

ÿ

σPSa

p´1q
σ

«

a
ÿ

k“1

k´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq

´

pk ` σpkq ´ a ´ 1qDT
ra´k´σpkq`1s

1,s`k´σpkq
puq

¯

a
ź

i2“k`1

T
ra´i2´σpi2q`1s

1,s`i2´σpi2q
puqˆ

`

a
ÿ

k1“1

a
ÿ

k2“k1`1

ˆ k1´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq

´

DT
ra´k1´σpk1q`1s

1,s`k1´σpk1q
puq

¯

k2´1
ź

i2“k1`1

T
ra´i2´σpi2q`1s

1,s`i2´σpi2q
puq

`

a
ÿ

k1“1

a
ÿ

k2“k1`1

ˆ k1´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq

´

DT
ra´k1´σpk1q`1s

1,s`k1´σpk1q
puq

¯

k2´1
ź

i2“k1`1

T
ra´i2´σpi2q`1s

1,s`i2´σpi2q
puqˆ

´

DT
ra´k2´σpk2q`1s

1,s`k2´σpk2q
puq

¯

a
ź

i3“k2`1

T
ra´i3´σpi3q`1s

1,s`i3´σpi3q
puq

´

a
ÿ

k1“1

a
ÿ

k2“k1`1

ˆ k1´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puqDT

ra´k1´σpk1q`1s

1,s`k1´σpk1q
puq

k2´1
ź

i2“k1`1

T
ra´i2´σpi2q`1s

1,s`i2´σpi2q
puqˆ

´

DT
ra´k2´σpk2q`1s

1,s`k2´σpk2q
puq

¯

a
ź

i3“k2`1

T
ra´i3´σpi3q`1s

1,s`i3´σpi3q
puq

˙p1
ff

(III.3.16)

Where p1 denotes the priming of the first quantum space entries of the matrix coefficients.

As previously mentioned, for a general rectangular T -operators, the coefficient of the leading

order in u is not equivalent to the character of the rectangular representation in sop2rq, but

rather to the character of the Yangian irreducible representations which are composed of the

characters of the symmetric representation of the sop2rq algebra. This can be observed from

the expression det1ďi,jďa pχ1,s`i´jq. It is noteworthy that when considering a spin chain with

only one particle, the non-compact terms cancel out, as evident from Tp1,sq puq “ χs. This

enables our general T -operators to be sufficiently compact for expression solely in terms of the

Coderivative operator.
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III.4 Conclusion

The methods described in the manuscript allow to generalize to sop2rq spin chains a construction

that had been introduced for glpnq spin chains in [KV08] and [KLT12]. This construction

uses Coderivatives, and the derivation that we provide for the expressions of Q-operators and

nested T -operators is suitable for generalizations from glpnq to sop2rq. We also showed that it

is equivalent to the construction by [BLMS10, BFL`11, FKT21] who defined them as traces

over infinite-dimensional representations.

When we apply this construction to the T - and Q-operators of sop2rq spin chain, they explic-

itly read as combinatoric expressions written as sums of diagrams, but explicit computations

(by “brute force”) turned out to be much more complicated than in the GLpnq case.

Moreover, there are some representations (in the auxiliary space), for which the R-matrix

is not explicited in the literature and for which Coderivatives have so far failed to express the

T -operators, except as determinants of other T - or Q-operators. We expect that in order to

express these T -operators (without refering to other T - or Q-operators), other ingredients than

the Coderivative are necessary. A key piece of evidence lies in the leading coefficient of the

T -operators, which correspond to a reducible representation of sop2rq.

It would be interesting to explicit the R-matrix of rectangular representations, following

the steps of [KK21b], in order to find out what generators allow to build the R-matrix. This

may allow to find another operator than the present Coderivative, out of which the R-matrix

of rectangular representations could be expressed. Interestingly enough, the method used to

deduce Q-operators from T -operators (in particular Sec(II.2.1) and Sec(II.2.2.3)) uses very few

properties of the Coderivatives (mostly its linearity) and should still apply if another operator

is added to (or replaces) the Coderivative.
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Appendix A

Notations2

A.1 Yangian Algebra

I want in this section to discuss the relationship between the classical Lie algebra and the

Yangian algebra. The Yangian forms a remarkable family of quantum groups related to the

rational solutions of the classical Yang-Baxter equation, where the defining relation of the

Yangian can be written in the form of an RTT-relation. This was done for the Lie algebra g,

and Y pgq is the Yangian for that Lie algebra, which was developed in the frame work of the

quantum inverse scattering method by L.D. Faddeev and St. Ptersburg.

We will show the defining relation of the Yangian and how they allow a special algebraic

technique The R-matrix formalism to be used in studying and describing the structure of the

representation of these algebras1.

A.1.1 Yangian for glpnq

The definition of the Yangian Y pglpnqq can be motivated by a generalization of the defining

relation of the Lie algebra glpnq. Thus, by taking the generators Ji,j of glpnq in their defining

representation, they obey the commutation relation:

rJi,j, Jk,ls “ δk,jJi,l ´ δi,lJk,j (A.1.1)

It is also known that the powers of the generators J also satisfy the commutation relation:

rJi,j, pJs
qk,ls “ δk,jpJ

s
qi,l ´ δi,lpJ

s
qk,j (A.1.2)

Proof. (A.1.2) By induction.

Case s “ 1 is satisfied due to (A.1.1). By the induction hypothesis, we have (A.1.2), and

we show that the case ps “ s ` 1q is also satisfied:
“

Ji,j, pes`1
qk,l

‰

“ rJi,j, pesqk,msJm,l ` pesqk,mrJi,j, Jm,ls

“ pδk,jpe
s
qi,l ´ δi,lpe

s
qk,jq Jm,l ` pesqk,m pδk,jJi,l ´ δi,lJk,jq

“ δk,jpe
s`1

qi,l ´ δi,lpe
s`1

qk,j

1For a more detailed discussion about Yangian algebra, check out [Mol07, KS95]

70



A generalization of (A.1.2), which is less known and can be proven by induction, takes the

form:
“

pJr`1
qi,j, pJs

qk,l
‰

´
“

pJr
qi,j, pJs`1

qk,l
‰

“ pJr
qk,jpJ

s
qi,l ´ pJs

qk,jpJ
r
qi,l (A.1.3)

Now we are ready to introduce the definition of the Yangian Y pglpnqq. Replacing Jr in (A.1.3)

with an abstract generator t
prq

i,j , we obtain the Yangian defining relation.

Definition A.1.1. The Yangian Y pglpnqq is a unital associative algebra over C with countably

many generators t
p1q

i,j , t
p2q

i,j , . . . where i, j “ 1, 2, . . . , n and the defining relation:

”

t
pr`1q

i,j , t
psq

k,l

ı

´

”

t
prq

i,j , t
ps`1q

k,l

ı

“ t
prq

k,jt
psq

i,l ´ t
psq

k,jt
prq

i,l (A.1.4)

where r, s “ 0, 1, . . . and t
p0q

i,j “ δi,j

With this definition and the generating series:

ti,j puq “

8
ÿ

r“0

t
prq

i,j u
´r (A.1.5)

we can write (A.1.4) in the form:

rti,j puq , tk,l pvqs “
1

pu ´ vq
ptk,j puq ti,l pvq ´ tk,j pvq ti,l puqq (A.1.6)

The parameters u, v are assumed to commute with each other and the generators ti,j.

Proposition 1. The following relation is equivalent to (A.1.4).

”

t
prq

i,j , t
psq

k,l

ı

“

minpr,sq
ÿ

a“1

´

t
pa´1q

k,j t
pr`s´aq

i,l ´ t
pr`s´aq

k,j ta´1
i,l

¯

(A.1.7)

Proof. By substituting the generating series of the Yangian (A.1.5) and 1
u´v

“
ř

kě0 u
´1´kvk

in (A.1.7), then collecting the coefficient of u´rv´s with r ď s, we find:

”

t
prq

i,j , t
psq

k,l

ı

“

r
ÿ

a“1

´

t
pa´1q

k,j t
pr`s´aq

i,l ´ t
pr`s´aq

k,j ta´1
i,l

¯

and for the case r ą s, we find:

”

t
prq

i,j , t
psq

k,l

ı

“

r
ÿ

a“s`1

´

t
pa´1q

k,j t
pr`s´aq

i,l ´ t
pr`s´aq

k,j ta´1
i,l

¯

The last two expressions agree with (A.1.7) in their respective cases, thus completing the

proof.

Finally, we will define the homomorphism map ρn that allows us to connect the Yangian

algebra to what we have done so far in the previous section.
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Definition A.1.2. The evaluation homomorphism:

ρn : ti,j puq ãÑ δi,j ` Ji,ju
´1 (A.1.8)

is a surjective homomorphism Y pglpnqq Ðâ U pglpnqq. Moreover, the map

Ji,j ãÑ t
p1q

i,j (A.1.9)

define an embedding U pglpnqq ãÑ Y pglpnqq

It’s easy to see that if one takes the case r “ s “ 1 in (A.1.7), we get:
”

t
p1q

i,j , t
p1q

k,l

ı

“ δk,jt
p1q

i,l ´ δi,lt
p1q

k,j

and the evaluation homomorphism we recover (A.1.1).

A.1.2 Oscillators description of Q-operators

This section will be dedicated to discussing the construction of T - and Q-operators from

a series of papers [BLMS10, BFL`11, FKT21] that uses the oscillator representation (cre-

ation/annihilation operators) to build R̃. This was described using the fusion relation found

in [BFL`11]:

R̃t1u

´

u ` λ
1

1

¯

¨ R̃t2u

´

u ` λ
1

2

¯

¨ ¨ ¨ R̃tnu

´

u ` λ
1

n

¯

9R̃`
puq (A.1.10a)

R̃`
puq “ uI `

ÿ

i,j

Ji,j b ρ`
λ pJj,iq (A.1.10b)

where λ
1

i “ λi ` n`2i´1
2

are the shifted weights of the represent λ “ pλ1, λ2, . . . , λnq. The idea is

to extract the building blocks R-matrix and define the nested T - and Q-operators as:

T `,pλq

tju
puq “ trλ

˜

R̃tju puq b R̃tju puq b ¨ ¨ ¨ b R̃tju puq ¨ ρ`
λ pgq

¸

(A.1.11a)

Qtju puq “ T p0,0,... q

tju
puq (A.1.11b)

This approach was explained precisely for GLp2q in [BFL`11]. Where, extracting R̃-operators

from (A.1.10a) (when restricted to n=2) took the form:

$

’

’

’

’

&

’

’

’

’

%

R̃t1u puq 9 lim
λ2Ñ8

˜˜

1 0

0 1
λ2

¸

¨ R̃`
pu ´ λ1q

¸

R̃t2u puq 9 lim
λ1Ñ8

˜

R̃`
pu ´ λ2q ¨

˜

1
λ1

0

0 1

¸¸ (A.1.12)

As you can see, we need to take a limit of a normalized R̃` puq, where the position of the

normalization multiplication changed between R̃1 puq and R̃2 puq. This shows that finding a

similar prescription for an algebra with n ě 3 is not possible (due to the non-commutativity be-

tween the normalization and the R̃tju puq). Fortunately, when taking the trace of (A.1.10a) and
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implementing the same process as described in [BFL`11], one obtains the infinite-dimensional

T -operators T `

tju
puq (due to the trace, there is no commutativity problem), allowing us to write:

T `,pλiq

tiu puq “ lim
J PJ1,...,nKztiu
@kPJ ,λkÑ8

Ntiu trλ

˜

R̃`
puq b R̃`

puq b ¨ ¨ ¨ b R̃`
puq ¨ ρ`

λ pgq

¸

(A.1.13)

Now, we can use the same logic introduced in Sec(II.1.4) in rewriting the finite-dimensional

T -operators using D̂ on the infinite-dimensional ones defined in (A.1.13), one obtain:

T `,pλiq

tiu puq “ lim
J PJ1,...,nKztiu
@kPJ ,λkÑ8

Ntiu

N
â

k“1

´

uk ` D̂
¯

χ`
λ pgq (A.1.14)

In (A.1.14), we defined the infinite-dimensional nested T -operators acting on the full infinite-

dimensional character, then removing all of the directions which are not i. For now we will

assume a normalization that satisfies this description (details of the normalization will be in

Sec(A.1.3)). Now, using the BGG relation
`

T pλq puq “
ř

σPSn
p´1q

σ T `,pλq

σpλn`ρnq´ρn
puq

˘

introduced

in [BFL`11], where where ρn is a constant n-component vector
`

ρn “
`

n´1
2
, n´3

2
, . . . , 1´n

2

˘˘

and

(A.1.13) to define the nested finite-dimensional T -operators and (A.1.11b) to define the nested

Q-operators:

T pλiq

tiu puq “ lim
J PJ1,...,nKztiu
@kPJ ,λkÑ8

Ntiu

ÿ

σPSn

p´1q
σ T `,pλq

σpλn`ρnq´ρn
puq

“ lim
J PJ1,...,nKztiu
@kPJ ,λkÑ8

Ntiu

N
â

k“1

´

uk ` D̂
¯

χλpgq
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

ÿ

σPSn

p´1q
σ χ`

σpλn`ρnq´ρn
pgq

(A.1.15a)

Qtiu puq “ T p0,0,... q

tiu puq

ˇ

ˇ

ˇ

ˇ

ˇ

λ“p0,0,... q

(A.1.15b)

A similar (but more interesting for later discussion) formula can be written for these operators

by reformulating the character (writing the part with direction tiu independently from the rest

of the character):

T `,pλiq

tiu puq “ lim
J PJ1,...,nKztiu
@kPJ ,λkÑ8

Ntiu

N
â

k“1

´

uk ` D̂
¯

¨

„

˜

xλi
i

ź

kăi

1

1 ´ xi{xk

¸

χ`

t̄iu
pgq

ȷ

(A.1.16a)

Where, χ`

t̄iu
pgq “

ź

j‰i

x
λj

j

ź

1ďkăjďn
j,k‰i

1

1 ´ xj{xk

(A.1.16b)

where (A.1.16b) is the nested character (removing a direction tiu from the full character χ`
λ pgq).

At this point, we can generalize our expressions of T -operators and Q-operators to an arbitrary

nesting level I:

T `,pλIq

I puq “ lim
J PJ1,nKzI

@kPJ ,λkÑ8

NI

N
â

k“1

´

uk ` D̂
¯

„

˜

ź

iPI

xλi
i

kăi
ź

iPI
kRI

1

1 ´ xi{xk

¸

χ`
I pgq

ȷ

(A.1.17a)

73



Where, χ`
I pgq “

ź

iRI

xλi
i

ź

1ďkăiďn
i,kRI

1

1 ´ xi{xk

(A.1.17b)

And similar to (A.1.15a) and (A.1.15b), the finite-dimensional nested T - and Q-operators take

the form:

T pλIq

I puq “ lim
J PJ1,...,nKztIu

@kPJ ,λkÑ8

NI

N
â

k“1

´

uk ` D̂
¯

ÿ

σPSn

p´1q
σ

„

˜

ź

iPI

xλi
j

kăi
ź

iPI
kRI

1

1 ´ xi{xk

¸

χ`
I pgq

ȷ

(A.1.18a)

QI puq T p0,0,... q

I puq (A.1.18b)

A.1.3 Normalization

In the discussion about the construction of T - and Q-operators from the oscillators represen-

tation, we have left out the definition of the normalizations that will allow our argument in

Sec(A.1.2) to be satisfied. To define the normalization, we need to study the object T `,pλq

I puq

in (A.1.17) for finite lengths (N “ 0, 1 for example) to build an idea about the normalization.

Starting with pN “ 0q, equation (A.1.17) becomes:

T `,pλq

I puq “ lim
J PJ1,nKzI

@kPJ ,λkÑ8

NI χ`
λ pgq (A.1.19)

We know that the last expression should give us the infinite-dimensional nested character, which

means that our normalization should nullify the other parts of the full character:

N pN“0q

I “
1

χ`
I pgq

(A.1.20)

The last equation ensures the non-existence of any directions other than the jth one in the

nested character2. Next, let us check (A.1.14) for pN “ 1q:

lim
J PJ1,nKzI

@kPJ ,λkÑ8

NI

¨

˚

˝

u ` λ1 ` ˚

. . .

u ` λn ` ˚

˛

‹

‚

χ`
λ pgq (A.1.21)

where p˚q denotes factors that are not essential to our discussion. The limit will produce a

pn´ |I|q infinites (in this limit, all pλk P J1, nKzIq are infinites). Thus, the normalization should

nullify all these infinities and remove the non-desirable factors from the character as follows:

N pN“1q

I “
1

χ`
I pgq

˜

ź

kPI

λ´1
k

¸

(A.1.22)

For higher lengths (N ě 2), the degree of λ is sector-dependent. To clarify, each entry in the

matrix will have a mixture of different powers of λi’s and other factors p˚q, and each power of

2Equation (A.1.20) is length-independent (this factor will appear in the normalization for any length).
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λi will be equivalent to the total spin number in the ith’s directions. To nullify these infinites,

we multiply with a normalization:

N pNě2q

I “
1

χ`
I pgq

˜

ź

kPI

λ´mk
k

¸

(A.1.23)

where mk is the total spin number in the direction k (See Sec(II.2.2.3) for more details on mk).
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Appendix B

Coderivative and its properties

B.1 Coderivative D̂ and the eigenvalues

In this section, we are going to define the action of the Coderivative on the eigenvalues and the

eigenvectors (xi, pi), respectively. The eigenvalues are the elements that describe the character

of a representation, whereas the eigenvectors are the projectors into the eigenspace of the twist

associated with the eigenvalues.

The Coderivative was introduced in [KV08], and in [KLT12] they showed how one can use it

on a combination of the generating series of the symmetric character, from which they defined

a differential expression for T - and Q-operators, then from the Wronskian relation describing

T -operators with arbitrary representation from the symmetric ones, they obtain an expression

using Coderivative on the character of these representation. In this section, we will motivate

the action of the Coderivative on the character when built as a combination of eigenvalues xi’s;

this will be particularly important for the results obtained in Sec(II.2) and Sec(III.2).

To answer this question, one needs to define D̂xi. Since the Coderivative acts on the function

of the twist g (II.1.28), one should try and write the twist in terms of the eigenvalues. To do

that, first, we are going to assume a diagonal twist for simplicity, then let us take the trace of

the general twist pgmq:

Trpgmq “

n
ÿ

i“1

xm
i (B.1.1)

Using the previous equation and the fact that
´

D̂ b Tr
`

gk
˘

“ kgk
¯

1, one obtains:

mgm “
ÿ

i

m
´

D̂xi

¯

xm´1
i (B.1.2)

1Check [KV08] for the action of D̂ on the twist.
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The matrix representation of the last equation with different powers n takes the form:
¨

˚

˚

˚

˚

˝

g

g2

...

gn

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1 1 ... 1 1

x1 x2 ... xn´1 xn

...

xn
1 xn

2 ... xn
n´1 xn

n

˛

‹

‹

‹

‹

‚

loooooooooooooomoooooooooooooon

Vandermonde matrix

¨

˚

˚

˚

˚

˝

D̂x1

D̂x2

...

D̂xn

˛

‹

‹

‹

‹

‚

(B.1.3)

Finally, using the inverse of the Vandermonde determinant 2, one finds the action of Coderiva-

tive on the eigenvalue xi to be:

D̂xi “ g
ź

1ďkďn
k‰i

pg ´ xkq

pxi ´ xkq
(B.1.4)

The previous relation tells us that all of the directions in the twist are zeros except the ith-

direction. For example, let us take the simple case of a diagonal twist of GLp2q. Then (B.1.4)

reads:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

D̂x1 “

¨

˝

x1

´

x1´x2

x1´x2

¯

0

0 x2

´

x2´x2

x1´x2

¯

˛

‚“

˜

x1 0

0 0

¸

D̂x2 “

¨

˝

´x1

´

x1´x1

x1´x2

¯

0

0 ´x2

´

x2´x1

x1´x2

¯

˛

‚“

˜

0 0

0 x2

¸

(B.1.5)

This can be generalized to GLpnq, and it reads:

D̂xi “ pixi (B.1.6)

This is a unique solution, where pi is the projector into the eigenspace associated with the

eigenvalue xi. Now, to have successive actions of Coderivative on the characters, one should

define the D̂ b pi. Following the same idea we used in defining D̂xi, we look for the action of

Coderivative on the general twist gm:

D̂ b gm “

n
ÿ

i

´

m ppi b piqx
m
i `

´

D̂ b pi

¯

xm
i

¯

(B.1.7)

Using (II.1.28), we can show that D̂bgm “ P
`
řm´1

k“0

`

gk b gm´k
˘˘

. The matrix representation

of the previous relationship has the form:
¨

˚

˚

˚

˚

˝

P p1 b gq

P p1 b g2 ` g b gq

...

P
`
řm´1

k“0

`

gk b gm´k
˘˘

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

x1 x2 . . . xn

2x2
1 2x2

2 . . . 2x2
n

...

mxm
1 mxm

2 . . . mxm
n

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

p1 b p1

p2 b p2
...

pn b pn

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...

xm
1 xm

2 . . . xm
n

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

D̂ b p1

D̂ b p2
...

D̂ b pn

˛

‹

‹

‹

‹

‚

(B.1.8)

2This is true when considering the twist to have pairwise distinct eigenvalues.
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Taking the inverse of the two Vandermondes, one obtains the complicated expression 3:

D̂ b pi “

n
ÿ

m“1

p´1q
n´m

ÿ

1ďj1ă¨¨¨ăjmďm
j1,j2,...,jm!“i

xj1 . . . xjm

xi

śn
k“1
k‰i

pxi ´ xkq

ˆ

P
m´1
ÿ

k“0

gk b gm´k
´

pn ´ mq

n
ÿ

l“1

ppj b pjqx
m
j

˙

(B.1.9)

As stated, this expression is very bulky. On the other hand, we have a more compact guessed

expression of the same object, and it reads:

D̂ b pi “ P pI b gq ¨

«

1 ´ pi
xi ´ g

b pi ` pi b
1 ´ pi
xi ´ g

ff

(B.1.10)

This expression can be obtained by applying D̂ on the projectors pi in every direction i, but

it is an extremely complicated process to do for high-ranked algebra. We will show that this

guessed statement is compatible with our solution for D̂pi by replacing D̂ b pi in (B.1.7) with

(B.1.10) and then asking if the following equation:

n
ÿ

i“1

˜

P pI b gq ¨

«

1 ´ pi
xi ´ g

b pi ` pi b
1 ´ pi
xi ´ g

ff

xm
i `m ppi b piqx

m
i

¸

´

P1,2

˜

m´1
ÿ

k“0

`

gk b gm´k
˘

¸

“ 0

(B.1.11)

is equal to zero on the general basis vectors p|a, ay , |a, byq:

• When (B.1.11) acts on the vector |a, ay:

p0 ` mxm
a q |a, ay ´

m´1
ÿ

k“0

xn
a

hkkikkj

xk
ax

m´k
a |a, ay “ 0 (B.1.12)

• When (B.1.11) acts on the vector |a, by
ˆ

xb

ˆ

xm
b

xb ´ xa

`
xm
a

xa ´ xb

˙

` 0

˙

|b, ay ´

m´1
ÿ

k“0

`

xk
ax

m´k
b

˘

|b, ay
?
“ 0 (B.1.13)

where P |a, by “ |b, ay, and the projector operators p assign a direction to the expression;

for example, when the expression 1´pi
xi´g

b pi acts on the sate |a, by, it means that pi takes

only one term from the sum, and that is when i “ b (more or less like a δ-function). One

also knows that
řm´1

k“0

`

xk
ax

m´k
b

˘

“ xb

´

xm
a ´xm

b

xa´xb

¯

, proving that (B.1.13) is equal to zero.

3There is an even more complicated way of defining this relation, by dividing (B.1.6) with an xi and then

taking the Coderivative.
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This proves that our guessed formula (B.1.10) is indeed an expression that is compatible with

(B.1.9).

Notice that each factor 1´pi
xi´g

may look singular because 1
xi´g

is infinite on the eigenspace

associated to xi. But the numerator 1 ´ pi is also zero on this eigenspace, so that we get 0
0
. In

fact, expression (B.1.10) is valid if we take the convention 0
0

“ 0, i. e. the abusive notation 1´pi
xi´g

is defined by 1´pi
xi´g

pj “

$

&

%

0, if i “ j

1
xi´xj

pj, else.

B.1.1 Yang-Baxter equation and Coderivative.

This section will be dedicated to explaining and finding the coefficients of (II.1.34) in Sec(II.1.5).

This will be done by writing (II.1.34) with the auxiliary indices, then drawing the equation for

simplicity.

The formula with auxiliary indices take the form:

Ri1,i2
k1,k2

pu ´ vq R̃ puq
k1,α1
j1,α2R̃ pvq

k2,α2
j2,α3 “ R̃ pvq

i2,α1
k2,α2R̃ puq

i1,α2
k1,α3Rk1,k2

j1,j2
pu ´ vq (B.1.14)

similar to the notation in Sec(II.1.5), we denoted the indices (i,j) to refer to the (outgoing,

ingoing), respectively; pkq’s denote a contraction of operators on the physical space. Whereas

the pαq labels the auxiliary indices, notice that in the previous equation, we have a contraction

on the auxiliary space represented by pα2q. The diagrammatical representation of (B.1.14) is

shown in Fig(B.1).

R̃ puq R̃ pvq

R pu ´ vq

j1 j2

i2i1

“

α1

α2

α3

α4

R̃ pvq R̃ puq

Rpu ´ vq

j1 j2

i2i1

α1

α2

α3

α4

Figure B.1: This is the diagrammatical representation of (B.1.14). The gray dashed line

represents the auxiliary space, and pαq’s govern the operator contraction with the auxiliary

space. The black straight lines are the representation of the physical spaces, which are labeled

by (i,j), and pkq’s govern the contraction of the operators with the physical space.

In (B.1.14) and from Fig(B.1), we notice that the left hand side has a swapping between its

outgoing indices and the contracted indices as well, which means the existance of a permutation

operator4. We can swap the positions of the two operators R̃ puq and R̃ pvq in the physical space

4Permutations operators are represented diagrammatically as a cross.
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using the identity:

P pA b BqP “ B b A

Now, we need to take into account the way these operators contract with the auxiliary space

after the swapping. The same operators are contracted to the same positions in the auxiliary

space, making the unpleasant figure:

R̃ puq R̃ pvq

R pu ´ vq

j1 j2

i2i1

“

α1

α2

α3

α4

R̃ puq R̃ pvq

Rpu ´ vq

j1 j2

i2i1

α1

α2

α3

α4

Figure B.2: This is the diagrammatical result of swapping the operators on left hand side of

Fig(B.1). The difference between the auxiliary space on both sides of the diagram is due to the

swapping of the two operators in the physical space and keeping the same contraction with the

auxiliary space.

In order to find the relations imposed by Yang-Baxter equation on the Coderivative, we will

write R̃ puq and R̃ pvq using (II.1.33a). This will impose a swapping in the physical spaces that

come from (II.1.31), and using the permutation identity, one will end up with Fig(B.3).

u ` D̂ v ` D̂

u ´ v ` P

j1 j2

i2i1

“

α1

α2

α3

α4

v ` D̂ u ` D̂

u ´ v ` P

j1 j2

i2i1

α1

α2

α3

α4

Figure B.3: A diagrammatical representation of (B.1.14) after replaceing the operators with

their D̂. Notice that we are ommiting the identity operator I

Now, we are ready to find all non-trivial coefficient from Fig(B.3). Fortunately, there is

only one non-trivial coefficient that can be found, and it comes from the spectral parameters

of powers u1 or v1:

DD
´ DD “ D ´ D (B.1.15)

The proof of (B.1.15) will be discussed in Sec(II.1.5).

80



B.2 Comutations of rectangular T -operators in Sec(III.3.3)

This section will detail the mathematical steps needed to derive (III.3.16). Start by writing

the shifted symmetry T -operators in the numerator and denominator of (III.3.4) using the

convention introduced in Sec(II.2), the read as:

T1,s puq “

N
â

i“1

„

u
rκ`s´1s

i u
r´κ´s`1s

i ´
s

2
` u

rκs

i D `
1

2

`

D2
˘1

ȷ

¨ χs (B.2.1a)

N
ź

n“1

a´1
ź

k“1

T
ra´2ks

0,s puq “

N
ź

i“1

a´1
ź

k“1

´

u
rκ`s´a`2ks

i

¯´

u
r´κ´s`a´2ks

i

¯

(B.2.1b)

As stated in Sec(III.3.3), we will write T -operators of length N as a polynomial of degree

one in the spectral parameter
´´

u
rκ`s´1s

1

¯´

u
r´κ´s`1s

1

¯

´ s
2

` u
rκs

1 D ` 1
2

pD2q
1
¯

that acts on T -

operators of length pN ´ 1q, where the latter will be referred to as T1,s puq:

T1,s puq “

„

u
rκ`s´1s

1 u
r´κ´s`1s

1 ´
s

2
` u

rκs

1 D `
1

2

`

D2
˘1

ȷ

¨ T1,s puq (B.2.2)

With that, we can factor out u
rκ`s´as

1 u
r´κ´s`as

1 from the determinant, then expand the deter-

minant, which will give:

Ta,s puq “
u

rκ`s´as

1 u
r´κ´s`as

1
śN

ną1

śa´1
k“1 u

rκ`s´a`2ks
n u

r´κ´s`a´2ks
n

ÿ

σPSa

p´1q
σ

a
ź

i“1

˜#

1`

u
ra´i´σpiq`rs

1 D ` 1
2

pD2q
1

´
s`i´σpiq

2

u
rκ`s`a´2σpiqs

1 u
r´κ´s`a´2i`2s

1

+

T
ra´i´j`1s

1,s`i´j puq

¸ (B.2.3)

We are going to drop the notation b between D and T -operators for simplicity. Due to the

commutativity between T -operators, the last expression can be written as:

Ta,s puq “
u

rκ`s´as

1 u
r´κ´s`as

1
śN

ną1

śa´1
k“1 u

rκ`s´a`2ks
n u

r´κ´s`a´2ks
n

#

det
1ďi,jďa

´

T
ra´i´j`1s

1,s`i´j puq

¯

`
1

u2
1

ÿ

σPSa

p´1q
σ

a
ÿ

k“1

k´1
ź

i1‰k

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq ˆ

´

u
ra´k´σpkq`rs

1 D ` 1
2

pD2q
1

´ 1
2

ps ` k ´ σpkqq

¯

T
ra´k´σpkq`1s

1,s`k´σpkq
puq

´

1 ` 1
2u1

pκ ` s ` a ´ 2σpkqq

¯´

1 ´ 1
2u1

pκ ` s ´ a ` 2k ´ 2q

¯

a
ź

i2“k`1

T
ra´i1´σpi2q`1s

1,s`i2´σpi2q
puq

`
1

u2
1

ÿ

σPSa

p´1q
σ

a
ÿ

k1“1

a
ÿ

k2“k1`1

ˆ k1´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puqDT

ra´k1´σpk1q`1s

1,s`k1´σpk1q
puq

k2´1
ź

i2“k1`1

ˆ

T
ra´i1´σpi2q`1s

1,s`i2´σpi2q
puqDT

ra´k2´σpk2q`1s

1,s`k2´σpk2q
puq

a
ź

i3“k2`1

T
ra´i3´σpi3q`1s

1,s`i3´σpi3q
puq

˙

` O
ˆ

1

u3
1

˙

+

(B.2.4)
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This expression is different than what the authors of [KV08] found, because our R-matrix

in the sop2rq case is of order two in the spectral parameter u, which gives us more terms in

the expansion to look through. We will deal with each power of u1 in the last expression

individually.

For now, let us focus on the second term in the expansion and collect the coefficients of

pu´1
1 , u´2

1 q:

• For u´1
1 :

ÿ

σPSa

p´1q
σ

a
ÿ

k“1

k´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq

´

DT
ra´k´σpkq`1s

1,s`k´σpkq
puq

¯

a
ź

i2“k`1

T
ra´i1´σpi2q`1s

1,s`i2´σpi2q
puq

“ D det
1ďi,jďa

´

T
ra´i´j`1s

1,s`i´j puq

¯

(B.2.5)

This is a Coderivative acting on a determinant of shifted symmetric T -operators.

• For u´2
1 :

1

2
pκD ´ asq det

1ďi,jďa

´

T
ra´i´j`1s

1,s`i´j puq

¯

`
1

2

ÿ

σPSa

p´1q
σ

a
ÿ

k“1

k´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq ˆ

´

`

D2
˘1

T
ra´k´σpkq`1s

1,s`k´σpkq
puq

¯

a
ź

i2“k`1

T
ra´i1´σpi2q`1s

1,s`i2´σpi2q
puq

`
1

2

ÿ

σPSa

p´1q
σ

a
ÿ

k“1

k´1
ź

i1“1

T
ra´i1´σpi1q`1s

1,s`i1´σpi1q
puq

´

pk ` σpkq ´ a ´ 1qDT
ra´k´σpkq`1s

1,s`k´σpkq
puq

¯

ˆ

a
ź

i2“k`1

T
ra´i1´σpi2q`1s

1,s`i2´σpi2q
puq

(B.2.6)

Unfortunately, this expression could not be completely expressed as a Coderivative acting

on some expression of T -operators.

Notice that the factor of pD2q
1

was not written as

«

pD2q
1

det1ďi,jďa

´

T
ra´i´j`1s

1,s`i´j puq

¯

ff

, this is

due to the fact that pD2q
1

does not follow the usual Leibniz rule (III.1.13). Instead, the action

of this operator on a product of N -tensor valued functions takes the form:

´

pD2
q

1

¨ pf ˆ gq

¯i1,...,iN

j1,...,jN
“ Dk1

j1
Di1

k1

¨

˚

˚

˝

f

î2
hkkkikkkj

i2, . . . , in
k2, . . . , kn
loooomoooon

k̂2

g

k̂2
hkkkkikkkkj

k2, . . . , kn
j2, . . . , jn
loooomoooon

ĵ2

˛

‹

‹

‚

“ Dk1
j1
Di1

k1
f î2
k̂2
gk̂2
ĵ2

` Di1
k1
f î2
k̂2
Dk1

j1
gk̂2
ĵ2

` Dk1
j1
f î2
k̂2
Di1

k1
gk̂2
ĵ2

` f î2
k̂2
Dk1

j1
Di1

k1
gk̂2
ĵ2

(B.2.7)

Which can be representationed diagrammatically as: Notice that we have referred to l2, . . . , ln

in (B.2.7) as l̂2 for simplicity where l “ i, j and k. Whereas, in the diagram, the black lines
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j1

D

D

i1

ĵ2

g

f

î2

`

j1

D

D

i1

ĵ2

g

f

î2

`

j1

D

D

i1

ĵ2

g

f

î2

`

j1

D

D

i1

ĵ2

g

f

î2

show how an object is connected to the external points i, j, the red ones show how we contract

these objects together, and the blue ones show which Coderivative acting on which object f, g.

With that, we can act by pD2q
1

on det
1ďi,jďa

´

T
ra´i´j`1s

1,s`i´j puq

¯

and write:

pD2
q

1

det
1ďi,jďa

´

T
ra´i´j`1s

1,s`i´j puq

¯

“
ÿ

σPSa

p´1q
σ

a
ÿ

k“1

pD2
q
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After a tedious calculation and noticing the similarity between (B.2.8) and (B.2.4), we fine:
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(B.2.9)

Finally, we should do the same process for all other special parameters puiqiPJ2,NK, one find out

(III.3.16).

84



Bibliography

[AV87] L. V. Avdeev and A. A. Vladimirov. Exceptional solutions to the bethe ansatz

equations. Theoretical and Mathematical Physics, 69(2):1071–1079, 1987.

[Bax72] Rodney J Baxter. Partition function of the eight-vertex lattice model. Annals of

Physics, 70(1):193–228, 1972.

[Bax80] R J Baxter. Hard hexagons: exact solution. Journal of Physics A: Mathematical

and General, 13(3):L61, mar 1980.

[Bax82] R. J. Baxter. Exactly solved models in statistical mechanics. 1982.

[Bes85] N Y Beshetikhin. Hamiltonian structures for integrable field theory models. ii.

models with o(n) and sp(2k) symmetry on a one-dimensional lattice. Theor. Math.

Phys.; (United States), 11 1985.

[Bet31] H. A. Bethe. Zur Theorie der Metalle. i. Eigenwerte und Eigenfunktionen der

linearen Atomkette. Zeit. für Physik, 71:205, 1931.

[BFL`11] Vladimir V. Bazhanov, Rouven Frassek, Tomasz Lukowski, Carlo Meneghelli, and

Matthias Staudacher. Baxter Q-Operators and Representations of Yangians. Nucl.

Phys. B, 850:148–174, 2011.

[BKS03] N. Beisert, C. Kristjansen, and M. Staudacher. The Dilatation operator of confor-

mal N=4 superYang-Mills theory. Nucl. Phys. B, 664:131–184, 2003.

[BLMS10] Vladimir V. Bazhanov, Tomasz Lukowski, Carlo Meneghelli, and Matthias Stau-

dacher. A Shortcut to the Q-Operator. J. Stat. Mech., 1011:P11002, 2010.

[BLZ97] Vladimir V. Bazhanov, Sergei L. Lukyanov, and Alexander B. Zamolodchikov.

Integrable structure of conformal field theory. 2. Q operator and DDV equation.

Commun. Math. Phys., 190:247–278, 1997.

[BLZ99] Vladimir V. Bazhanov, Sergei L. Lukyanov, and Alexander B. Zamolodchikov. In-

tegrable structure of conformal field theory. 3. The Yang-Baxter relation. Commun.

Math. Phys., 200:297–324, 1999.

85



[BMN02] David Eliecer Berenstein, Juan Martin Maldacena, and Horatiu Stefan Nastase.

Strings in flat space and pp waves from N=4 superYang-Mills. JHEP, 04:013,

2002.

[BR90] V. Bazhanov and N. Reshetikhin. Restricted Solid on Solid Models Connected

With Simply Based Algebras and Conformal Field Theory. J. Phys. A, 23:1477,

1990.

[BS90] VV Bazhanov and Yu G Stroganov. Chiral potts model as a descendant of the

six-vertex model. Journal of Statistical Physics, 59:799–817, 1990.

[BT06] Andrei G. Bytsko and Jorg Teschner. Quantization of models with non-compact

quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model.

J. Phys. A, 39:12927–12981, 2006.

[CDI13] D. Chicherin, S. Derkachov, and A. P. Isaev. The spinorial R-matrix. J. Phys. A,

46:485201, 2013.

[Che86] Ivan Cherednik. Special bases of irreducible representations of a degenerate affine

hecke algebra. Functional Analysis and Its Applications, 20:76–78, 1986.
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